SHIVAJI UNIVERSITY KOLHAPUR

Accredited By NAAC with 'A' Grade

Faculty of Interdisciplinary Studies Structure, Scheme and Syllabus for Bachelor of Vocation (B. Voc.)

Chemical & Petrochemicals / Chemical Technology

Part - I,II,III

Syllabus to be implemented from June 2020

SHIVAJI UNIVERSITY, KOLHAPUR

STRUCTUCTURE AND SYLLABUS OF B.VOC.

Bachelor of Vocation (B.Voc.) – Chemical & Petrochemicals / Chemical Technology TITLE : B.Voc.(Chemical and Petrochemicals / Chemical Technology) Syllabus (Semester Pattern)

Under Faculty of Interdisciplinary Studies

YEAR OF IMPLEMENTATION : Syllabus will be implemented from June 2020

DURATION	:	B. Voc. Part I, II and III (Three Years)
		B. Voc. Part I - Diploma (One Year)
		B. Voc. Part II - Advanced Diploma (Second Year)
		B. Voc. Part III – Degree (Third Year)

PATTERN OF EXAMINATION : Semester Pattern

- Theory Examination-At the end of semester as per Shivaji University Rules
- **Practical Examination** i) In the1st,3rd and 5th semester of B.Voc. there will
 - be internal assessment of practical record, related report submission and project reports at the end of semester.
 - ii) In the second semester of B. Voc. I, there will be internal practical examination at the end of semester.
 - iii) In the 4th and 6th semester of B. Voc. there will be external practical examination at the end of semester.

MEDIUM OF INSTRUCTION : English

STRUCTURE OF COURSE : B. Voc. Part – I, II and III

Two Semester Per Year Two General Papers per year / semester Three Vocational Papers per Year / Semester Three Practical papers per Year / Semester One Project / Industry Visit/ Study Tour / Survey

SCHEME OF EXAMINATION

A) THEORY

- The theory examination shall be at the end of the each semester.
- All the general theory papers shall carry 40 marks and all vocational theory papers shall carry 50 marks.
- Evaluation of the performance of the students in theory shall be on the basis of semester examination as mentioned above.
- Question paper will be set in the view of entire syllabus preferably covering each unit of the syllabus.
- Nature of question paper for Theory examination (Excluding Business Communication Paper)-

There will be seven questions carrying equal marks.

- i. Students will have to solve any five questions.
- Q. No. 1 : Multiple Choice Question (Ten Question)
- Q. No. 2 : Short answer type question with internal choice (Five out of Seven)
- Q. No. 3 : Long answer type questions (Five out of Seven)
- Q. No. 4: Short Notes with internal choice (Two out of Three

PRACTICAL

Evaluation of the performance of the students in practical shall be on the basis of semester examination (Internal assessment at the end of Semester I, II and III and V and external examination at the end of Semester IV and VI as mentioned separately in each paper.

Standard of Passing :

As per the guidelines and rules for B. Voc. (Attached Separately – Annexure I)

Eligibility Criteria:

- 1. The Eligibility for admission is 10+02 or equivalent, in any stream (Arts/ Commerce/ Science) from any recognized board or University.
- 2. The candidates after with 10+02 year ITI course/ in any branch / trade also eligible for course.
- 3. The candidates graduate from any faculty or engineering degree / diploma holders are also eligible.

Structure of the Course

B. Voc. – I (Diploma) Semester – I

Sr.	Paper	Title	Theory	Marks	Distributi	on of Marks	Cr	edits
No	No.		/Practical /Project		Theory	Practical	Theory	Practical
1		General Education Components						
2	Ι	Business Communication (I)	Theory /Practical	50	40	10	3	
3		Skill Development Components						
4	П	Fundamental Chemistry (I)	Theory	50	50		3	
5	III	Fundamental Industrial Chemistry (I)	Theory	50	50		3	
6	IV	Elementary Physics & Mathematics	Theory	50	50		3	
7	III	Laboratory Work						
8	V	General Practical of Chemistry	Practical	50		50		4
9	VI	Laboratory Work : Fundamental Chemistry (I)	Practical	50		50		4
10	VII	Laboratory Work: Fundamental Industrial Chemistry (I)	Practical	50		50		4
11	VIII	Laboratory Work : Elementary Physics	Practical	50		50		4
12		Field Work						
13	IX	Project / Seminar	-	50		50		2
14		Non Credit Courses						
15		Democracy, Elections and Good Governance	Theory	50	50			
		Total Marks and C Semester-I		450				30

General Education Components: The subject (Department/Discipline) in which a student takes admission.

Skill Development Components: The subject (Dopartition Distripute) in which a student's Skill Development Components: The subject closely related to a student's major subject Non Credit Courses: Six courses are of general nature and are compulsory

Sr.	Paper	Title	Theory	Marks	Distribution	of Marks	Credits	
No.	No.		/Practical /Project		Theory	Practical	Theory	Practical
1		General Education Components						
2	X	Business Communication (II)	Theory /Practical	50	50		3	
3		Skill Development Components						
4	XI	Analytical and Electrochemistry	Theory	50	50		3	
5	XII	Chemistry of Surfactants	Theory	50	50		3	
6	XIII	Surface Coating Techniques	Theory	50	50		3	
7		Laboratory Work						
8	XIV	Laboratory Work : Analytical Chemistry	Practical			50		4
9	XV	Laboratory Work: Electrochemistry	Practical			50		4
10	XVI	Laboratory Work : Chemistry of Surfactants	Practical			50		4
11	XVII	Laboratory Work : Surface Coating Techniques	Practical			50		4
12	XVIII	Industrial Visit	-			50		2
13		Non Credit Courses						
14		E-Banking and Financial Services	Theory	50	50			
15		Total Marks and Semester-			450			30

Structure of the Course B. Voc. – I (Diploma) Semester – II

General Education Components: The subject (Department/Discipline) in which a student takes admission. Skill Development Components: The subject closely related to a student's major subject Non Credit Courses: Six courses are of general nature and are compulsory

Theory and Practical Workload of the Course B. Voc. – I (Diploma) Semester – I

<u>Scheme of Teaching:</u> <u>B. Voc. – Part I (Diploma) Semester – I</u>

Sr. No.	Paper No.	Title	Dis	tribution of Work (Per Week)	
110.			Theory	Practical	Total
1	Ι	Business Communication (I)	3		3
2	II	Fundamental Chemistry (I)	3	-	3
3	Ш	Fundamental Industrial Chemistry (I)	3	-	3
4	IV	Elementary Physics and Mathematics	3		3
5	V	Laboratory Work : General Practical in Chemistry		5	5
6	VI	Laboratory Work : Fundamental Chemistry (I)	-	5	5
7	VII	Laboratory Work: Fundamental Industrial Chemistry (I)	-	5	5
8	VIII	Laboratory Work : Elementary Physics and Mathematics	-	5	5
9	IX Project		-	-	-
		Total	12	20	32

Scheme of Teaching:

<u>B.</u>	Voc	- Part I	(Diploma)	Semester –	- II

Sr.	Paper No.	Title	Dis	stribution of Work	load
No.				(Per Week)	
			Theory	Practical	Total
1	X	Business Communication-(II)	3	-	3
2	XI	Analytical & Electrochemistry	3	-	3
3	XII	Chemistry of Surfactants	3	-	3
4	XIII	Surface Coating Techniques	3	-	3
5	XIV	Laboratory Work : Analytical Chemistry	-	5	5
6	XV	Laboratory Work: Electrochemistry	-	5	5
7	XVI	Laboratory Work : Chemistry of Surfactants	-	5	5
8	XVII	Laboratory Work : Surface Coating Techniques		5	
9	XVIII	Study Tour	-	-	-
		Total-	12	20	32

Structure of the Course

Sr.	Paper	Title	Theory	Marks	Distributio	on of Marks	Credits	
No.	No.		/Practical /Project		Theory	Practical	Theory	Practical
		Theory Workload						
1	XIX	Fundamental Chemistry-II	Theory /Practical	50	50		3	
2	XX	Fundamental Industrial Chemistry-II	Theory	50	50		3	
3	XXI	Industrial Unit Process & Operations	Theory	50	50		3	
4	XXII	Water Analysis	Theory	50	50		3	
		Laboratory Work						
5	XXIII	Laboratory Work : Fundamental Chemistry-II	Practical			50		4
6	XXIV	Laboratory Work: Fundamental Industrial Chemistry-II	Practical			50		4
7	XXV	Laboratory Work : Industrial Unit Process & Operations	Practical			50		4
8	XXVI	Laboratory Work : Water Analysis	Practical			50		4
	XXVII	Project / Seminar	-			50		2
		Total Marks and Semester-			450			30

B. Voc. – II (Advanced Diploma) Semester – III

Structure of the Course

Sr.	Paper	Title	Theory	Marks	Distributio	on of Marks	Credits	
No.	No.		/Practical /Project		Theory	Practical	Theory	Practical
		Theory Workload						
1	XXVIII	Petroleum & Petrochemicals	Theory /Practical	50	50		3	
2	XXIX	Chemistry of Polymer & Composite materials	Theory	50	50		3	
3	XXX	Polymer Technology	Theory	50	50		3	
4	XXXI	Petroleum Analysis	Theory	50	50		3	
		Laboratory Work						
5	XXXII	Laboratory Work : Petroleum & Petrochemicals	Practical			50		4
6	XXXIII	Laboratory Work: Chemistry of Polymer & Composite materials	Practical			50		4
7	XXXIV	Laboratory Work : Polymer Technology	Practical			50		4
8	XXXV	Laboratory Work : Petroleum Analysis	Practical			50		4
	XXXVI	Industrial Visit	-			50		2
		Total Marks and Semester-			450			30

B. Voc. – II (Advanced Diploma) Semester – IV

Sr.	Paper	Title	Dis	tribution of Work	load
No.	No.			(Per Week)	1
			Theory	Practical	Total
1	XIX	Fundamental Chemistry-II	3		3
2	XX	Fundamental Industrial Chemistry-II	3	-	3
3	XXI	Industrial Unit Process & Operations	3	-	3
4	XXII	Water Analysis	3		3
5	XXIII	Laboratory Work : Fundamental Chemistry-II		5	5
6	XXIV	Laboratory Work: Fundamental Industrial Chemistry-II	-	5	5
7	XXV	Laboratory Work : Industrial Unit Process & Operations	-	5	5
8	XXVI	XXVI Laboratory Work : Water Analysis		5	5
9	XXVII	Project	-	-	-
		Total	12	20	32

Scheme of Teaching: B. Voc. - Part II (Advanced Diploma) Semester - III

Scheme of Teaching: B. Voc. – Part II (Advanced Diploma) Semester – IV

Sr.	Paper	Title	Dis	tribution of Work	load
No.	No.			(Per Week)	
			Theory	Practical	Total
1	XXVIII	Petroleum & Petrochemicals	3	-	3
2	XXIX	Chemistry of Polymer & Composite materials	3	-	3
3	XXX	Polymer Technology	3	-	3
4	XXXI	Petroleum Analysis	3	-	3
5	XXXII	Laboratory Work : Petroleum & Petrochemicals	-	5	5
6	XXXIII	Laboratory Work: Chemistry of Polymer & Composite materials	-	5	5
7	XXXIV	Laboratory Work : Polymer Technology	-	5	5
8	XXXV	Laboratory Work : Petroleum Analysis		5	
9	XXXVI	Study Tour	-	-	-
		Total-	12	20	32

Structure of the Course

B. Voc. – III (Degree) Semester – V

Sr.	Paper	Title	Theory	Marks	Distributio	on of Marks	Credits	
No.	No.		/Practical /Project		Theory	Practical	Theory	Practical
		Theory Workload						
1	XXXVII	Stereo Chemistry & Organic reaction Mechanism	Theory /Practical	50	50		3	
2	XXXVIII	Biochemistry	Theory	50	50		3	
3	XXXIX	MAT- Advanced Analytical Techniques	Theory	50	50		3	
4	XXXX	Pharmaceutical (Medicinal) Chemistry	Theory	50	50		3	
		Laboratory Work						
5	XXXXI	Laboratory Work : Stereo Chemistry & Organic reaction Mechanism	Practical			50		4
6	XXXXII	Laboratory Work: Biochemistry	Practical			50		4
7	XXXXIII	: Modern Analytical Techniques	Practical			50		4
8	XXXXIV	Laboratory Work : Pharmaceutical (Medicinal) Chemistry	Practical			50		4
	XXXXV	Mini Project	-			50		2
		Total Marks and Semester			450		30	

Structure of the Course

Sr.	Paper No.	Title	Theory	Marks	Distributio	on of Marks	Credits	
No.			/Practical /Project		Theory	Practical	Theory	Practical
		Theory Workload						
1	XXXXVI	Pharmaceutical Engineering	Theory /Practical	50	40	10	3	
2	XXXXVII	Pharmaceutical Technology	Theory	50	50		3	
3	XXXXVIII	Industrial Applications of Organometallic Compounds	Theory	50	50		3	
4	XXXXIX	Nanotechnology and its applications	Theory	50	50		3	
		Laboratory Work						
5	XXXXX	Laboratory Work : Pharmaceutical Engineering	Practical			50		4
6	XXXXXI	Laboratory Work: Pharmaceutical Technology	Practical			50		4
7	XXXXXII	Laboratory Work : Applications of Organometallic Compounds	Practical			50		4
8	XXXXXIII	Laboratory Work : Nanotechnolog y and its applications	Practical			50		4
	XXXXXIV	Project/ IE	-			50		2
		Total Marks an Semeste			450			30

B. Voc. – III (Degree) Semester – VI

Scheme of Teaching:

B. Voc. – Part III (Degree) Semester – V

Sr. No.	Paper No.	Ti tle	Dis	Distribution of Workload (Per Week)	
1.00.	1.00		Theory	Practical	Total
1	XXXVII	Stereo Chemistry & Organic reaction Mechanism	3		3
2	XXXVIII	Biochemistry	3	-	3
3	XXXIX	MAT- Advanced Analytical Techniques	3	-	3
4	XXXX	Pharmaceutical (Medicinal) Chemistry	3		3
5	XXXXI	Laboratory Work : Stereo Chemistry & Organic reaction Mechanism		5	5
6	XXXXII	Laboratory Work: Biochemistry	-	5	5
7	XXXXIII	Laboratory Work : Modern Analytical Techniques	-	5	5
8	XXXXIV	Laboratory Work : Pharmaceutical (Medicinal) Chemistry	-	5	5
9	XXXXV	Project	-	-	-
		Total	12	20	32

Scheme of Teaching: B. Voc. - Part III (Degree) Semester -VI

		Total-	12	20	32
9	XXXXXIV	Study Tour	-	-	-
		Chemistry			
8	XXXXXIII	Laboratory Work : Pharmaceutical (Medicinal)		5	
0		Industrial Formulation & GLP	-		
7	XXXXXII	Laboratory Work :		5	5
		Pharmaceutical Technology			
6	XXXXXI	Laboratory Work:	-	5	5
-	1	Pharmaceutical Engineering	-		5
5	XXXXX	Laboratory Work :		5	5
		Chemistry			
4	XXXXIX	Pharmaceutical (Medicinal)	3	-	3
3	XXXXVIII	Industrial Formulation & GLP	3	-	3
2	XXXXVII	Pharmaceutical Technology	3	-	3
1	XXXXVI	Pharmaceutical Engineering	3	-	3
			Theory	Practical	Total
No.			(Per Week)		
Sr.	Paper No.	Title	Dis	tribution of Work	load

Eligibility for Admissi	on : 10 + 2 from any faculty or equivalent Diploma /Advanced Diploma in any related stream.
Eligibility for Faculty	 1) M. Sc. / M. Tech Chemistry/ Chemical Technology with NET / SET/Ph.D. 2) M. A (English) with NET/SET for Functional English & Office Automation Tools
Eligibility for Laboratory Assistant	: B.Sc.(Chemistry) / Diploma in Chemical Technology
Staffing Pattern: Teaching:	In 1 st Year of B. Voc 1 Full Time and 1 Part Time Lecturer and 1 CHB Lecturer for Business Communication In 2 nd Year of B. Voc.–Total requirement of faculty (Inclusive of 1 st Year) will be 3 Full time and 1CHB Lecturer for Financial Accounting 1 CHB Lecturer for Business Communication In 3 rd Year of B.Voc.–Total requirement of faculty (Inclusive of 1 st & 2 nd Year) will be 4 Full time and 1 part time and 1 CHB Lecturer for Business Communication
Lab Assistant:	For 1 st Year of B. Voc 1 Part time
	For 2^{nd} and 3^{rd} Year (Inclusive of 1^{st} Year) of B. Voc. -1 Full Time

Paper – I : Business Communication-I

Units Prescribed for Theory:

50 Marks.

Unit1: Use of English in Business Environment Topics:

Business Vocabulary: Vocabulary for banking, marketing and for maintaining public relations What is a sentence? Elements of a sentence Types of sentence: Simple, compound, complex

Unit 2: Writing a Letter of Application and CV/Resume

Topics:

Structure of a letter of application for various posts CV/ Resume and its essentials

Unit 3: Presenting Information/Data

Topics:

Presenting information / data using graphics like tables, pie charts, tree diagrams, bar diagrams, graphs, flow charts

Unit 4: Interview Technique

Topics: Dos and don'ts of an interview preparing for an interview Presenting documents Language used in an interview

Reference Books:

1. Sethi, Anjanee & Bhavana Adhikari. Business Communication. New Delhi: Tata Mc Graw Hill Tickoo, Champa & Jaya Sasikumar. Writing with a Purpose. New York: OUP, 1979.

- 2. Sonie, Subhash C. Mastering the Art of Effective Business Communication. New Delhi: Student Aid Publication, 2008.
- 3. Herekar, Praksh. Business Communication. Pune: Mehta Publications, 2007.
- 4. Herekar, Praksh. Principals of Business Communication. Pune: Mehta Publications, 2003.
- **5.** Rai, Urmila & S.M. Rai. Business Communication. Himalaya Publishing House, 2007.

Paper – II : Fundamental Chemistry (I)

Objectives:

50 Marks

To study fundamentals of various branches of Chemistry.

Unit I: IUPAC Nomenclature of organic compounds, Chemistry of alkanes, alkenes and alkynes, Haloalkanes, Alcohols, Aldehydes and ketones, Carbon acids, Carboxylic acids and derivatives

Unit II: Chemical kinetics, Thermodynamics of surfaces, Liquid- liquid and solid liquid interfaces, Surfactants, Disperse systems

Unit III: Ionic, Covalent and Polar Bonds, Functional groups, Inductive effect, resonance and hyper conjugation. Bronsted-Lowry acid and bases, strengths of acid and bases, buffer solution, PH, Indicators, Lewis acid and bases, acidic and basic oxides.

Unit IV: Theory of Qualitative organic analysis: Preliminary test, element determination test, functional group test, derivation Mole concept, composition relationship and Stoichiometry.

- 1. Organic Chemistry, L.G. Wade Jr, Pearson Education
- 2. Organic Chemistry, T.W.G. Solomons, C.B. Fryhle, John Wiley and Sons Inc
- 3. Organic Chemistry, J. McMurry, Brooks/Cole
- 4. Organic Chemistry, Paula Y. Bruice, Pearson Education
- 5. Introduction to colloid and surface chemistry D.J.shaw, Butterworth publications
- 6. Surfaces interfaces and colloids- Drew Myers- Wiley VCH
- 7. Surfactants and interfacial phenomena- Milton J Rosen Wiley Interscience
- 8. Industrial utilization of surfactants principles and applications M.J. Rosen and M Dahanayake,
- 9. AOCS Press
- 10. Foundations of Colloid science Robert J Hunter Oxford university Press
- 11. Chemical Process Principles, Hougen O.A., Watson K. M.
- 12. Basic Principles and Calculations in Chemical Engineering, Himmelblau,
- 13. Stoichiometry, Bhatt B.I. and Vora S.M

Paper – III : Fundamental Industrial Chemistry (I)

Objectives:

50 Marks

To study fundamentals of Industrial Chemistry.

Unit I: Overview of Indian chemical industry, raw material and energy sources, role of catalysis, inorganic products, organic intermediates and final products,

Unit II: Petroleum refining and cracking operation, Organic chemicals based on methanol and ethanol, Petrochemicals, Polymers, analysis, and selection of coal

Unit III: Carbonization, Hydrogenation, Complete gasification of coal, Fuel oil specifications, Combustion of solid, liquid, and gaseous fuels.

Unit IV: Classification of solvent, Characteristics properties of solvents, Liquid ammonia, Chemical reaction in liquid ammonia. Hybridization, Salient features of phenomenon of hybridization.

- 1. Encyclopedia of Chemical Technology, Kirk-Othmer
- 2. Ulmann's Encyclopedia of Industrial Chemistry
- 3. Industrial Organic Chemistry, Weissermel&Arpe
- 4. Chemical Process Industries, Shreve B. Austin
- 5. Chemical Process Technology, Moulijn, M. and van Dippen
- 6. Dryden's Outlines of Chemical Technology
- 7. Elements of Fuels, Furnaces and Refractories, O.P. Gupta
- 8. Fuels handbook, Johnson

Paper –IV : Elementary Physics and Mathematics

Objectives:

50 Marks

To study Elementary Physics.

Unit I: Introduction to different elastics constant, Practical applications of elasticity, Fluid Mechanics, Optics and Fiber Optics. Lasers, Ultrasound

Unit II: Ohm's Law and Concept of Resistance, Series and Parallel Connections of Resistance, e.m.f., Introduction to PN Junction Diode, LED and Photo Diode.

Unit III: Taylor's theorem for multivariable functions and its application to error calculations, Maxima/Minima, Integral Calculus: Beta and Gamma functions.

Unit IV: Differentiation under the integral sign, surface integrals, volume integrals.

- 1. Physics: Vols. I and II D. Halliday and R. Resnick, Wiley Eastern.
- 2. Lectures on Physics: Vols. I, II and III R. P. Feynman, R. B. Leighton and M. Sands, Narosa.
- 3. Concepts of Modern Physics A. Beiser, Mc Graw-Hill.
- 4. Introduction to Modern Optics G. R. Fowles, Dover Publications.
- 5. A Course of Experiments with LASERs R. S. Sirohi, Wiley Eastern.
- 6. Optical Fibre Communication G. Keiser, McGraw-Hill.
- 7. Optoelectronics J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India.
- 8. Ultrasonics: Methods and Applications J. Blitz, Butterworth.
- 9. Applied Sonochemistry T. J. Mason and J. P. Lorimer, Wiley VCH.
- 10. Optics by Ajay Ghatak
- 11. Lasersb- by Svelto
- 12. University physics I & II
- 13. Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely.
- 14. Introductory Methods Of Numerical Analysis, S. S. Sastry, PHI.
- 15. A First Course in Probability, Sheldon Ross, Pearson Prentice Hall
- 16. Probability and Statistics in Engineering, W.W. Hines, D. C. Montgomery, D.M. Goldsman.

Paper – V: Laboratory Work : General Practical in Chemistry

Objectives: Marks

Total Marks: 50

To study the basic instrumentation in chemistry.

Practical :

- 1. Conductometry
- 2. Potentiometery
- 3. pH-Metry
- 4. Spectrophotometry
- 5. Find out the amount / percentage of Iron per gram of soap sample colorimetrically
- 6. Find out the percentage of 'Magnesium' in a given sample of Talcum powder complexometrically.
- 7. Determine the concentration in mg/lit of sulphate ion in the given sample of water nephelometrically.

Reference Books:

- 1. F A Henglein: Chemical Technology (Pergamon)
- 2. R.W. Thomas and P. Farago: Industrial Chemistry (HEB)
- 3. R.N. Shreve: Chemical processes Industrial, McGraw Hill Book Company Inc, New York 1956.
- 4. K. Bhogavathi Somdavi: Applied Chemistry, MJP Publications, 2006
- 5. Riegels: Industrial Chemistry (Reinhold)
- 6. B. K. Sharma: Industrial Chemistry, Goel Publishing House, Meerut, 2011

Scheme of practical evaluation

Internal practical evaluation

50 Marks

1. Practical25 Marks2. submission Practical record book & project report15 Marks3. viva-voce10 Marks

Paper – VI : Laboratory Work : Fundamental Chemistry (I)

Objectives:

Total Marks: 50 Marks

To identify the organic compound To estimate organic compound.

Practicals:

- 1. Identification of an organic compound through elemental analysis, group detection, physical constants (m.p and b.p.).
- 2. Estimation of selected organic compounds like: aniline/phenol, formaldehyde/acetone, glucose, glycerol. Neutral equivalents of acids and bases, SAP value of an oil.
- 3. Volumetric Analysis : Preparation and Standardization of Volumetric solutions. Acid base reactions, titrationsof a mixture of (a) hydrochloric and acetic acid (b)Sulfuric and phosphoric acid (c) carbonate and bicarbonate.
- 4. To determine normality of each acid in given mixture of strong acid (A) and weak acid (B)
- 5. To determine relative strength of chloroacetic acid (CH₂ClCOOH) and acetic acid (CH₃COOH) conductometry.

- 1. Organic Chemistry, L.G. Wade Jr, Pearson Education
- 2. Organic Chemistry, T.W.G. Solomons, C.B. Fryhle, John Wiley and Sons Inc
- 3. Organic Chemistry, J. McMurry, Brooks/Cole
- 4. Organic Chemistry, Paula Y. Bruice, Pearson Education
- 5. Introduction to colloid and surface chemistry D.J.shaw, Butterworth publications
- 6. Surfaces interfaces and colloids- Drew Myers- Wiley VCH
- 7. Surfactants and interfacial phenomena- Milton J Rosen Wiley Interscience
- 8. Industrial utilization of surfactants principles and applications M.J. Rosen and M Dahanayake,

Paper – VII: Laboratory Work : Fundamental Industrial Chemistry (I)

Objectives:

Total Marks: 50 Marks

To learn Industrial chemistry.

Practicals:

- 1. Oxidation reduction titrations involving permanganate, dichromate, ceric sulfate, iodine (triiodide) potassium bromate. Precipitation titration :Mohr's and Volhard's titrations. Complexometric titrations involving EDTA :
- 2. Determination of hardness of water. Determination of Manganese in pyrolusite. Gravimetric analysis :
- 3. Gravimetric determination of Fe, Ni, SO4 and Cl. Analysis of a Fe-Ni alloy. Suitable number of experiments from the above list will be performed. Ore analysis.
- 4. Prepare Copper Ferrite (CuFe₂O₄) & Find out percentage practical yield of the Copper Ferrite (CuFe₂O₄)
- 5. Prepare zinc ferrite & Find out percentage practical yield of the zinc ferrite.

- 1. Encyclopedia of Chemical Technology, Kirk-Othmer
- 2. Ulmann's Encyclopedia of Industrial Chemistry
- 3. Industrial Organic Chemistry, Weissermel&Arpe
- 4. Chemical Process Industries, Shreve B. Austin
- 5. Chemical Process Technology, Moulijn, M. and van Dippen
- 6. Dryden's Outlines of Chemical Technology
- 7. Elements of Fuels, Furnaces and Refractories, O.P. Gupta
- 8. Fuels handbook, Johnson

Paper - VIII : Laboratory Work : Elementary Physics

Practicals:

Total Marks: 50 Marks

- 1. Viscosity
- 2. Thermal conductivity (Mention the actual solid-liquid pairs)
- 3. Laser for determination of molecular activities.
- 4. Design of regulated power supply
- 5. Basic Logic Gates
- 6. Solar Cell

- 1. Physics: Vols. I and II D. Halliday and R. Resnick, Wiley Eastern.
- 2. Lectures on Physics: Vols. I, II and III R. P. Feynman, R. B. Leighton and M. Sands, Narosa.
- 3. Concepts of Modern Physics A. Beiser, Mc Graw-Hill.
- 4. Introduction to Modern Optics G. R. Fowles, Dover Publications.
- 5. A Course of Experiments with LASERs R. S. Sirohi, Wiley Eastern.
- 6. Optical Fibre Communication G. Keiser, McGraw-Hill.
- 7. Optoelectronics J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India.
- 8. Ultrasonics: Methods and Applications J. Blitz, Butterworth.
- 9. Applied Sonochemistry T. J. Mason and J. P. Lorimer, Wiley VCH.
- 10. Optics by Ajay Ghatak
- 11. Lasersb- by Svelto
- 12. University physics I & II
- 13. Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely.
- 14. Introductory Methods Of Numerical Analysis, S. S. Sastry, PHI.
- 15. A First Course in Probability, Sheldon Ross, Pearson Prentice Hall
- 16. Probability and Statistics in Engineering, W.W. Hines, D. C. Montgomery, D.M. Goldsman, John-

<u>Project</u>

Total Marks: 50 Marks

Objectives: To inculcate research mind in students

Paper – X : Business Communication-II

Total Marks:

50 Marks

Objectives:

To understand Marketing, Negotiation & Group Discussion.

Unit I : Group Discussion:

Preparing for a Group Discussion, Initiating a Discussion, Eliciting Opinions, Views etc. Expressing Agreement/ Disagreement

Making Suggestions; Accepting and Declining Suggestions Summing up.

Unit II : Business Correspondence:

Writing Memos, e- mails, complaints, inquiries, etc. Inviting Quotations Placing Orders, Tenders, etc.

Unit III : English for Negotiation Topics:

Business Negotiations Agenda for Negotiation Stages of Negotiation

Unit IV : English for Marketing Topics:

Describing/ Explaining a Product/Service Promotion of a Product Dealing/ bargaining with Customers. Marketing a Product / Service: Using Pamphlets, Hoardings, Advertisement, Public Function/Festival.

- 1. Herekar, Praksh. Business Communication. Pune: Mehta Publications, 2007.
- 2. Herekar, Praksh. Principals of Business Communication. Pune: Mehta Publications, 2003. John,
- 3. David. Group Discussions. New Delhi: Arihant Publications.
- 4. Kumar, Varinder. Business Communication. New Delhi: Kalyani Publishers, 2000.
- 5. Pardeshi, P. C. Managerial Communication. Pune: Nirali Prakashan, 2008.
- 6. Pradhan, N. S. Business Communication. Mumbai: Himalaya Publishing House, 2005 Rai,
- 7. Urmila & S. M. Rai. Business Communication. Mumbai: Himalaya Publishing House, 2007.
- 8. Sethi, Anjanee & Bhavana Adhikari. Business Communication. New Delhi: Tata Mc Graw Hill.
- 9. Sonie, Subhash C. *Mastering the Art of Effective Business Communication*. New Delhi: Student Aid Publication, 2008.
- 10. Tickoo, Champa & Jaya Sasikumar. Writing with a Purpose. New York: OUP, 1979.

Paper – XI: Analytical and Electrochemistry

Total Marks:

50 Marks

Objectives:

To inculcate Analytical approach in students.

Unit I: Introduction, Volumetric &, Gravimetric analysis: Introduction, types, theory, indicators and applications, Aspects of analysis, Applied analysis, Chemistry and electricity, Electrochemical cells, Prediction and significance of cell potentials Nernst equation, Batteries and fuel cells Electrochemical Corrosion, Electrolytic cells

Unit II: Instrumental methods, Balancing chemical equations, Avogadro's number and the mole concept, Stoichiometric Calculations, yields of chemical reactions, Preparation and standardization of Solutions, Equivalent weight of acid and base.

Unit III: Thermal methods , Chromatographic and other separation methods. Conductometry: Introduction, arhenius ionic theory, conductivity of electrolytes, Conductance, factors affecting conductance, Kohlrausch law,conductivity cells, applications & advantages of conductometric titration

Unit IV:, Equivalent weight of acid salt, anion, Concept of Normality, Molarity, Molality. Molecular spectral methods, Atomic spectral methods, . Potentio and pH metric methods: introduction, acid – base neutralization titration, redox titration, precipitation titration.

Reference Books:

1. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry 2. J.G. Dick, Analytical Chemistry, R.E. Krieger Pub

- 2. J.G. Dick, Analytical Chemistry, K.E. Krieger I 2. Eminour antal Chemistry, A.V. Da Wilay
- 3. Environmental Chemistry, A. K. De, Wiley
- 4. Chromatography

5 Thermal Methods Electrochemical Engineering by Allen J. Bard, Digby Macdonald, Patrik Schmuki, Martin Stratman

6. Electrochemical Methods: Fundamentals and Applications by Allen J. Bard, Larry R. Faulkner.

7. Modern Electro chemistry series by Bockris and Reddy.

8. Electrochemistry by Samuel Glasstone.

Paper – XII: Chemistry of Surfactants

Objectives:

Total Marks: 50 Marks

To study surfactant.

Unit I: Surface chemistry and catalysis

Unit II: Adsorption-frendlich adsorption isotherm, langmuir adsorption isotherm. Industrial applications of adsorption

Unit III: Catalysis, enzyme catalysis, michaelis-menton equation. industrial applications of catalysts. Polymer chemistry.

Unit IV: Surface active substances or surfactants are amphiphilic compounds having a lyophilic, in particular hydrophilic, part (polar group) and a lyophobic, in particular hydrophobic, part (often hydrocarbon chain).

- 1. Surfactants and polymers in aqueous solution by Krister Holmberg, Bo Jonsson, Bengt Kronberg
- 2. Surface Chemistry of Surfactants and Polymers By Bengt Kronberg, Krister Holmberg, Björn Lindman.
- 3. Surface Chemistry Essentials By K. S. Birdi
- 4. Surfactants and Interfacial Phenomena by M. J. Rosen, Wiley, New York, NY, 2nd edn.
- 5. Surfactants in Solution, ed. K. L. Mittal and B. Lindman, Plenum, New York, 1984, vol. 1-3.
- 6. Surfactants in Solution, ed. K. L. Mittal and P. Bothorel, Plenum, New York, 1987, vol. 4-6

Paper –XIII: Surface Coating Techniques

Objectives:

Total marks 50

To understand Surface Coating Techniques.

Unit I: Surface engineering

Unit II: Chemical Conversion Coating, Metallic coating, Coating from Vapour Phase

Unit III: Different methods for surface modification, Thermal spray coatings, Diffusion Coating.

Unit IV: Case studies based on coatings and surface modification of important engineering components.

- 1. ASM Handbook: Surface Engineering, by Faith Reidenback, ASM-International, Metals Park, OH
- 2. Surface Engineering: Fundamentals of Coatings by P. K. Datta and J. S. Gray, Royal Society of Chemistry
- 3. Chemical Vapor Deposition (Surface Engineering Series, V. 2) by J.-H. Park and T. S. Sudarshan, ASM-International, Metals Park OH.
- 4. Advanced Surface Coatings: A Handbook of Surface Engineering, by D. S. Rickerby, A. Mathews, Blackie Academic and Professional Publ. .
- 5. Handbook of Hard Coatings, by R. F. Bunshah, William Andrew Publishing/Noyes.

Paper – XIV: Laboratory Work : Analytical Chemistry

Objectives:

Total Marks: 50 Marks

To develop Analytical practical knowledge of students

Practicals:

- 1. Determination of Redwood / Saybolt numbers, kinematic viscosity and viscosity index of Lubricating oils
- 2. Determination of flash point, fire point, cloud and pour point of oils
- 3. Determination of acid value and iodine value of oils
- 4. Determination of COD of water samples
- 5. Cement Analysis

Reference Books:

- 1. Herekar, Praksh. Business Communication. Pune: Mehta Publications, 2007.
- 2. Herekar, Praksh. Principals of Business Communication. Pune: Mehta Publications, 2003. John,
- 3. David. Group Discussions. New Delhi: Arihant Publications.
- 4. Kumar, Varinder. Business Communication. New Delhi: Kalyani Publishers, 2000.
- 5. Pardeshi, P. C. Managerial Communication. Pune: Nirali Prakashan, 2008.
- 6. Pradhan, N. S. Business Communication. Mumbai: Himalaya Publishing House, 2005 Rai,
- 7. Urmila & S. M. Rai. Business Communication. Mumbai: Himalaya Publishing House, 2007.
- 8. Sethi, Anjanee & Bhavana Adhikari. Business Communication. New Delhi: Tata Mc Graw Hill.
- 9. Sonie, Subhash C. *Mastering the Art of Effective Business Communication*. New Delhi: Student Aid Publication, 2008.
- 10. Tickoo, Champa & Jaya Sasikumar. Writing with a Purpose. New York: OUP, 1979.

Scheme of practical evaluation

Internal practical evaluation	50 Marks
1. Practical	25 Marks
2. submission Practical record book & Study Tour	15 Marks
3. viva-voce	10 Marks

Paper – XV : Laboratory Work : Electrochemistry

Objectives:

Total Marks: 50 Marks

To understand basic Electrochemistry practically.

Practicals:

- 1. The Electrochemical Series
- 2. Standard Electrode Potentials and the Mean Activity Coefficient
- 3. pH Measurements and Potentiometrically Indicated Titrations
- 4. Redox Titrations (Cerimetry)
- 5. Differential Potentiometric Titration
- 6. Potentiometric Measurement of the Kinetics of the Oxidation of Oxalic Acid
- 7. A Simple Relative Hydrogen Electrode

Reference Books:

1. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry

- 2. J.G. Dick, Analytical Chemistry, R.E. Krieger Pub
- 3. Environmental Chemistry, A. K. De, Wiley
- 4. Chromatography

5 Thermal Methods Electrochemical Engineering by Allen J. Bard, Digby Macdonald, Patrik Schmuki, Martin Stratman

- 6. Electrochemical Methods: Fundamentals and Applications by Allen J. Bard, Larry R. Faulkner.
- 7. Modern Electro chemistry series by Bockris and Reddy.
- 8. Electrochemistry by Samuel Glasstone.

Paper - XVI : Laboratory Work : Chemistry of Surfactants

Objectives:

To develop surfactant knowledge of students

Total marks: 50

Practicals:

- 1. Density mesurements
- 2. conductance mesurements
- 3. partial volume mesurements
- 4. Viscosity mesurements
- 5. Specific heat mesurements

- 1. Surfactants and polymers in aqueous solution by Krister Holmberg, Bo Jonsson, Bengt Kronberg
- 2. Surface Chemistry of Surfactants and Polymers By Bengt Kronberg, Krister Holmberg, Björn Lindman.
- 3. Surface Chemistry Essentials By K. S. Birdi
- 4. Surfactants and Interfacial Phenomena by M. J. Rosen, Wiley, New York, NY, 2nd edn.
- 5. Surfactants in Solution, ed. K. L. Mittal and B. Lindman, Plenum, New York, 1984, vol. 1-3.
- 6. Surfactants in Solution, ed. K. L. Mittal and P. Bothorel, Plenum, New York, 1987, vol. 4-6

Paper – XVII : Laboratory Work : Surface Coating Technique

Objectives:

Total Marks: 50 Marks

To develop Analytical practical knowledge of students

Practicals:

- 1. To study Metallic coating, Coating from, Vapour Phase
- 2. To study Different methods for surface modification, Thermal spray coatings, Diffusion Coating.
- **3.** To study Case studies based on coatings and surface modification of important engineering components.

- 1. ASM Handbook: Surface Engineering, by Faith Reidenback, ASM-International, Metals Park, OH
- 2. Surface Engineering: Fundamentals of Coatings by P. K. Datta and J. S. Gray, Royal Society of Chemistry
- 3. Chemical Vapor Deposition (Surface Engineering Series, V. 2) by J.-H. Park and T. S. Sudarshan, ASM-International, Metals Park OH.
- 4. Advanced Surface Coatings: A Handbook of Surface Engineering, by D. S. Rickerby, A. Mathews, Blackie Academic and Professional Publ. .
- 5. Handbook of Hard Coatings, by R. F. Bunshah, William Andrew Publishing/Noyes.

Paper – XIX Fundamental Chemistry-II

Units Prescribed for Theory

Unit I-Basic principles of catalysis: adsorption isotherms, surface area pore size and acid strength measurement. Enthalpy and entropy of adsorption: interpretation of chemisorptions based on the structure and the nature of the solid – solid state theories – role of defects in catalysis. Kinetic of surface reactions: rate determining step, various type of reaction, simple, parallel and consecutive reactions.

Unit II-Importance of Organometallic compounds as catalysts, Conditions to be satisfied by a metal to act as catalysts, Hydrogenation of Olefins, Importance of Wilkinson's catalyst,

Preparation of the Catalyst, [RhCl(PPh₃)₃], Role of Rhodium Metal in the Catalytic Process, Mechanism of Hydrogenation of Olefins using Wilkinson's Catalyst.

Unit III-Modification over the original catalyst, Hydroformylation of olefins-The Oxo process, Mechanism of Hydroformylation of Olefins using the original catalyst, HCo(CO)4, Modification the original catalyst, Mechanism of the Modified catalysis, Isomerisation of Olefins, Mechanism of Olefin Isomerisation, Oxidation of Olefins- Wacker's Process, Step involved Wacker's Process.

Practical: - Based on theory units

Paper - XX Fundamental Industrial Chemistry-II

Units Prescribed for Theory

Unit I-Methods of reduction to give amino compounds, AminatingAgents, Manufacture of amino compounds by reduction as well as byAmmonoloysis. Catalytic hydrogenation and hydrogenolysis, Different types of catalysts,Hydrogenation equipment, Industrial hydrogenation processes

Unit II-Definition and Scope, Kinetics and mechanism, Manufacture of soap,fatty acids,furfural Dextrose, Ethanol, ethylene glycol, glycerol and phenol.Alkylation and acylation at carbon, oxygen and nitrogen, Friedel-Craftsreaction, Applications of active methylene compounds like diethyl malonate,ethyl acetoacetate etc. Industrial processes

Unit III-Methods of polymerization, Kinetics, Relationship between structure and properties. Industrially important polymerization and polymers: Phenolic, urea, melamine and alkyl resins, Linear condensation polymers, Polycaprolactum, Nylon6,6 Polyesters, epoxy resins, silicone and isocyanate polymers, polyethylene andpolypropylene, Vinyl polymers, polystyrene, acrylate and methacrylate polymers

Practical: - Based on theory units

Paper -XXI Industrial Unit Process & Operations

Units Prescribed for Theory

Unit I-Survey of Indian chemical industries, Indian mineral resources, ferrousmetallurgy, heavy Chemical industries, nonferrous metals

Unit II-Fine chemicals and pharmaceuticals, natural products and agro-based chemicals, contribution of fertilizers and pesticide industries, Growth in export, Fermentation and sugar basted industries. Growth of petrochemicals

Unit III-Role, Government standards like ISI, MINAS, Agmark, I. P., D. P., U.S. P., concepts of quality and quality control, the nature of variabilities, preparation of controlcharts, charts for moving averages, defects and defectives. Specification and tolerances, sampling inspection, cost reduction and quality improvement experiments.

Practical: - Based on theory units

Paper- XXII Water Analysis

Units Prescribed for Theory

Unit I-Water pollution: Water quality criteria for domestic and industrial uses. Analysis of water and wastewater.Principles of water andwastewater treatments.

Unit II-Organic trace chemicals in waste water, volatilecarcinogenic matter in waste water, recovery and recycling techniques, biologicalmethods of waste water treatment.

Unit III-Removal of organics and harmful inorganic from water and wastewater. Biological treatment of wastewater: Theory and practice. Sludge treatment and disposal

Paper-XXVIII Petroleum& Petrochemicals

Units Prescribed for Theory

Unit I-Petrochemical industry – reforming and refining – valueadded chemicals environment protection auto exhaust catalyst Novel catalytic materialclusters, zeolites, mesoporous materials. Hydrocarbons in petroleum, Asphltenes and Resins, classification of petroleum, evaluation of crude oil, Bench mark crudes.

Unit II-Global/Indian petroleum and petrochemical industry.Petroleum refining, outline of chemicals derived from ethylene, xylene andnaphthalene

Unit III-Traffic management, Fire and safety rules. Indian and Global supplyscenario of petroleum and petroleum products. Transportation of petroleum & Petroleum products. Indian and Global supply scenario of petroleum and petroleum products

Practical: - Based on theory units

Paper- XXIX Chemistry of Polymer & Composite materials

Units Prescribed for Theory

Unit I-Basic Concepts, classification, importance of polymers, monomers, initiators, inhibitors, retarders, techniques of polymerisation: mass, solution, suspension, emulsion and gas phase; control of molecular weight and their determination, step polymerisation, radical/chain polymerisation, living and non-living chainpolymerisation, co-ordination polymerisation, co-polymerisation, ionicploymerisation, ring opening polymerisation

Unit II-General Properties of Fibres, Production technique, Melt Spinning, dry Spinning, Solution spinning. Production and uses of – Polyester Ribbon, Nylon 6.6, Nylon6, Acrylic Fibres, Synthetic paper.Production and uses of – Synthetic Isoprene, Butadiene Rubber, styrene Butadiene Rubber, Butyl Rubber.

Unit III-Compounding ofplastics and rubber, type, nature and role of additives, precompoundingoperations, mixing of polymers and additives, compression molding, transfer, injection and blow molding, extrusion, calendering, thermoforming, rotomolding, casting, sintering and compaction, deep coating, mold design, analysisof defects in molded products

Paper- XXX Polymer Technology

Units Prescribed for Theory

Unit I-Mechanism of polymerization, study of polysters, polyamides, PVC, Polystyrene, Polyvinyl acetate, and polyvinyl chloride, polyethylene, viscose rayon, synthesis of polyethylene, synthetic rubbers, styrene – butadiene, butylisopropene, phenol formation, formldehyderesion, plasticizers and oxidants for polymers, natural polymers, starch and cellulose

Unit II-Moleculrshape,structure and configuration,crystallinity,stress-strain behaviour,thermalbehaviour,polymer types and their applications,conducting and ferroelectric polymers

Unit III- Processing Technology introduction to polymer processing Types Injection unit & Elements of plasticizing process Non ConventionalInjectionBlowmoulding Thermoforming Extrusion Compression moulding Rotational moulding Calendaring Special guidelines for machining of polymers LASER machining

Practical: - Based on theory units

Paper- XXXI Petroleum Analysis

Units Prescribed for Theory

Unit I-Petroleum refining: Crude oil distillation process – thermal conversion processes. Conventional thermal cracking – vis-breaking and design variables of vis-breaking – coking: Fluid coking, flexi coking, delayed coking and hardware considerations – catalytic conversion processes -fluid catalytic cracking with special reference to catalyst and reactor design configurations – hydro-treating, hydrodesulphurization and hydro-cracking

Unit II-hydrocarbon intermediates and their production, non-hydrocarbon intermediates, olefin production, processing of olefins C4& C5 cut from steam cracking and fluid cracking.– Reforming: process, catalyst, reactor design configuration – alkylation – isomerization – lube oil manufacturing process, solvent – de-asphalting, solvent de-waxing and hydro finishing – production of PET, waxes and bitumen.

Unit III-Aromatics production, second generation petrochemicals from: methane and synthesis gas derivatives, ethylene and ethylene derivatives, propylene and propylene derivatives, C4 and C5 derivatives, aromatics – benzene, toluene and xylene derivatives – third generation petrochemicals – polymers, elastomers, polyurethanes and synthetic fiber

Paper-XXXVII Stereo Chemistry & Organic reaction Mechanism

Units Prescribed for Theory

Unit I-Concept of Chirality and molecular dissymmetry, Recognition of symmetry elements and chiral centers, Prochiral relationship, homotopic, enantiotopic and disteriotopic groups and faces. Recemic modifications and their resolution, R and S nomenclature. Geometrical isomerism E and Z. Nomenclature. Conformational analysis: cyclohexane derivatives, stability and reactivity, Conformational analysis ofdisubstitutedcyclohexanes.

Unit II-Types of reactions, strength of acids and bases. Generation, structure, stability and reactivity of carbocations and carbanions, free radicals, carbenes, arynes, nitrenes andylids. Effect of structure on reactivity, resonance and field, steric, effects.

Unit III-Name reactions, Aldol, Knoevenagel, Claisen, Perkin, Reimer-Tiemann reaction, Mannich, Michael, Wittig, Diels-Alder, Grignard, Stobbe condensation, Reformatsky reaction, Dieckmann reaction, Robinson annulation, Benzoin condensation, Chichibabin reaction

Practical: - Based on theory units

Paper- XXXVIII Biochemistry

Units Prescribed for Theory

Unit I-Scope and significance of Biochemistry.Important discoveries in Biochemistry. An overview of elements, chemical reactions and biomolecules in livingorganisms.

Unit II-Carbohydrate – Glucose, Fructose, Lactose, Maltose and Sucrose. Proteins –

Precipitation reactions of proteins, Colour reactions of proteins, Colour reactions of amino acids like tryptophan, tyrosine, cysteine, methionine, arginine, proline and histidine. Lipids– solubility, acrolein test, Salkowski test, Lieberman-Burchard test. Qualitative tests for nucleic acid

Unit III-Configuration relationship of D-aldoses, D-ketoses. Generalproperties of aldoses and ketoses. Oxidation, reduction, reducing property, formationof glycosides, acylation, methylation, condensation – phenyl hydrazine, addition –HCN. Interconversion of aldoses and ketoses by chemical method. Ascending anddescending the series by chemical methods. Stereochemistry of monosaccharides, (+)and (-), D and L, epimers.

Paper- XXXIX Advanced Analytical Techniques

Units Prescribed for Theory

Unit I-Basic theory, Instrumentation, Laboratory technique and Applications of following methods

Unit II-X – ray Methods, Introduction and Instrumentation of various Techniques. Diffraction, Fluorescence, absorption, & emission spectroscopy.

Unit III-Thermoanalytical Methods, Basic theory, Therogravimetric AnalysisDifferential Thermal Analysis, Differential scanning calorimetry

Practical: - Based on theory units

Paper- XXXX Pharmaceutical (Medicinal) Chemistry

Units Prescribed for Theory

Unit I- Introduction of Pharmaceutical Chemistry, Difference between Pharmaceutical Chemistry and Medicinal Chemistry Development of new drugs, procedures followed in drug design, concepts of lead compound and lead modification, concepts of prodrugs and soft drugs, structureactivity relationship (SAR), factors affecting bioavtivity, resonance, inductive effect, isosterism, non-isosterism, special considerations.

Unit II-Theroies of drug activity, Introduction, occupancytheory, rate theory, induced fit theory. Quantiative structure activity relationship.Historyand development of QSAR. Concepts of drug receptors. Elementary treatment of drugreceptor ionization constants, steric, Shelton and surface activity parameters and redoxpotentials

Unit III-. Classification of drugs based on activity. Synthetic procedure for the present commonly used drugs of each type, Manufacturing of few important drugs. Semi synthetic penicillins, Vitamins: type of vitamins, synthesis of Vit – A and Vit – E, Vitamin – II of Niacinamide, Use of NMR in structure determination of drugs and pharmaceuticals: Instrumentation and Applications.

Paper- XXXXVI Pharmaceutical Engineering

Units Prescribed for Theory

Unit I-Drying: Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.

Unit II-Materials of pharmaceutical plant construction: Corrosion and its prevention: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention. Ferrous and nonferrous metals, inorganic and organic non metals.

Unit III-Distillation: Objectives, applications & types of distillation. principles, construction, working, uses, merits and demerits of (lab scale and industrial scale) Simple distillation, preparation of purified water and water for injection BP by distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation

Practical: - Based on theory units

Paper-XXXXVII Pharmaceutical Technology

Units Prescribed for Theory

Unit I-Prescription: Parts of prescription, handling of prescription, Posology. Solution: Formulation, aqueous and non aqueous vehicles, factors affecting rate of solubilization and solubility, methods to improve aqueous solubility, formulation additives; Elixirs; Linctus; Mouthwashes and Gargles; Nasal and Ear drops; Lotions; Stability of solution; Syrups.

Unit II-Powder: Classification, advantages of powder formulation, milling, mixing and dividing of powders, factors influencing blending of powders, powders containing liquids, eutexia

Unit III-Introduction to drug absorption, disposition, elimination using pharmacokinetics, important pharmacokinetic parameters in defining drug disposition and in therapeutics. Mention of uses of pharmacokinetics in drug development process

Paper-XXXXVIII Industrial Applications of Organometallic Compounds <u>Units Prescribed for Theory</u>

Unit I-Importance of Organometallic compounds as catalysts, Conditions to be satisfied by a metal to act as catalysts, Hydrogenation of Olefins, Importance of Wilkinson's catalyst, Prepration of the Catalyst, [RhCl(PPh₃)₃],

Unit II-Role of Rhodium Metal in the

Catalytic Process, Mechanism of Hydrogenation of Olefins using Wilkinson's Catalyst, Modification over the original catalyst, Hydroformylation of olefins-The Oxo process, Mechanism of Hydroformylation of Olefins using the original catalyst, HCo(CO)4, Modification the original catalyst, Mechanism of the Modified catalysis

Unit III-Factors retarding the β- elimination process, Role of palladium in Catalysing the oxidation of Ethene to Ethanal, Polymerisation of olefins Ziegler-Natta Catalysis, Heterogenous Catalysis, Homogeneous Catalysis, Importance of Ziegler-Natta Catalysis, Mechanism of Ziegler-Natta Catalysis

Practical: - Based on theory units

Paper-XXXXIX Nanotechnology and its applications

Units Prescribed for Theory

Unit I- Introduction of nanotechnology, Introduction to nanoscale, potential applications, Challenges and opportunities Growth of nanocrystalline materials,

Unit II-Nanocrystals in inorganic matrices, glass matrices, dilusion controlled growth. Nanocrystals in porous glasses, Semiconductor nanocrystals in zeolites.

Unit III- Composite - semiconductor glass films inorganics in organics. Semiconductor nanocrystals in organic solutions and in polymers.Nanocrystals on crystal substrates. Self organized growth. Synopsis of nanocrystals fabricated by various techniques. Special properties and applications of nanocrystalline solids

Practical: - Based on theory units

REFERENCE BOOKS:

1. J. E. Huheey : Inorganic Chemistry (Harper & Row)

- 2. J. D. Lee: New Concise INORGANIC Chemistry (ELBS).
- 3. F. A. Cotton and J. Wilkinson: Inorganic Chemistry (JW).
- 4. J. Mukhlyonov : Catalyst Technology (M1R).
- 5. N. B. Hannay : Solid State Chemistry (PH).
- 6. Z. Wife, R. Speights :Ultrapurity (MDI).

7. J. M. Thomas and W.J. Thomas: Introduction to Principles of

Heterogenneous Catalysis (A.P.)

8. F.A. Kroger: Chemistry of Imperfect Crystals.

9. C. Satteefield: Heterogenneous Catalysis in Practice (MGH).

10. F. Basolo and R. G. Pearson: Inorganic Reaction Mechanism (JW).

11. M. L. Tobe: Inorganic Reaction Mechanism (Nelson, London).

12. H. Taube: Electron Transfer Reaction of Complex Ions in Solution (AP).

13. Benson: Inorganic Reaction Mechanism in Solution (MGH).

14. H. Gopanov: Optical and Electronic Properties of Nanocrystalline Materials.

15. A. Arora: Industrial Management of Toxic and Hazardous Chemicals.

16. R. Gopalan and V. Ramalingam: Concise Co-ordination Chemistry: Vikas Publishing House, Pvt. Ltd.

- 17. D. Banerjee: Co-ordination Chemistry, IIndEdition, Asian Books Private Limited.
- 18. Daniel Minoli: Nanotechnology Applications to Telecommunication Networking.

19. T. Pradeep: Nano: The Essentials of Understanding, Nanosciences& Nanotechnology, McGraw-Hill Education.

20. H J Arnikar: Essential of Nuclear Chemistry

21. R.D. Braum, Introduction to Instrumental Analysis.

22. Willard, Deritt, Dean and Settle, Instrumental methods of Analysis

23. G.W. Ewing, Instrumental Methods of Analysis 4th and 5th editions.

24. Chatawal and Anand, Instrumental Methods of Analysis.

Burger : Medicinal Chemistry (I.W.)

25. W.O. Foye: Principal of Medicinal chemistry (I.E)

26. Lendieer and Mitscher: The organic chemistry of drug synthesis (I.W)

27.N.N.Melnikow: Chemistry of Pesticides (Springer)

28. M.B. Green, G.S.Hartley West: Chemicals for crop protection and pest managements (pergamon)

29. R. Cremlyn: Pesticides

30. K.H. Buchel: Chemistry of Pesticides.

31. H.B.Scher: Advances in pesticides formulation Technology (ACS)

32. Kirk and other: Encyclopedia of chemical Technology

33. S.D.Shukla and G.N. Pandey: Text Book of Chemical technology. Vol. II

34.Introduction to medicinal chemistry, A Gringuage, Wiley- VCH.

35. Wilson Gisvold's Text book of organic Medicinal and pharmaceutical Chemistry, Ed. Robert F.Dorge.

36. An introduction to drug design, S. S. Pandeya and J. R. Dimmock, New age International.

37. Burger's Medicinal Chemistry and Drug Discovery Volume 1 (Chap. 9 and Chap. 14), Ed.M.E. Wolff, John Wiley.

38. Goodman and Gilman's Pharmacological Basis of Therapeutics, McGraw-Hill.

39. The organic Chemistry of Drug Design and drug action, R.B. Silverman, Academic press.

40. Strategies for Organic Drug synthesis and Design, D. Lednicer, John Wiley.

B. Voc. Chemical Technology SEMESTER END UNIVERSITY EXAMINATION

THEORY QUESTION PAPER STYLE- Semester I, II, III, IV, V& VI

Time: 2.00 hrs	Theory- Total Marks-50
Que.:1 Multiple Choice Type Question I MCQs 10 1 mark 10	- 10 Marks
Que.:2 Short Answer Type Q & A Any Five out of Seven Questions - Each carrying 2 marks	- 10 marks
Que.:3Short Note type Q & A Any Two out of Three Questions - Each carrying 4 marks	- 10 marks
Que.:4Long Answer type Q & A Any Five out of Seven Questions - Each carrying 4 marks	- 20 marks

PRACTICAL - Semester I	PRACTICAL - Semester II
Days: 02	Days: 03
Time: 6 hrs/day	Time: 6 hrs/day
Practical - 200 Marks	Practical - 200 Marks
Project - 50 Marks	Project - 50 Marks
Total Practical - 250 Marks	Total Practical - 250 Marks