SHIVAJI UNIVERSITY, KOLHAPUR

Accredited By NAAC with 'A' Grade CHOICE BASED CREDIT SYSTEM

Syllabus For

Bachelor of Science Part - III

BIOTECHNOLOGY (ENTIRE)

SEMESTER V AND VI

(Syllabus to be implemented from June, 2020 onwards.)

Guidelines shall be as per B. Sc. Regular Program.

Rules and Regulations shall be as per B. Sc. Regular Program except CBCS R. B. Sc. –III Structure of Program and List of Cou rses.

Preamble:

This syllabus is framed to give sound knowledge with understanding of Biotechnology to undergraduate students of B. Sc. Biotechnology Entire Program. Students learn Biotechnological processes as a separate course (subject) from B. Sc.III.

The goal of the syllabus is to make the study of Biotechnology popular, interesting and encouraging students for higher studies including research.

Structure of Program and List of Courses are as follows:

B.Sc Part III (Sem V and VI)

Course code	Name of Course	Course code	Name of course
	Semester V	Semester VI	
DSC BT-29	Basics in Genetic	DSC BT-33	Advances in Genetic
	Engineering		Engineering
DSC BT-30	Industrial Biotechnology	DSC BT-34	Food and Microbial
			Biotechnology
DSC BT-31	Application of	DSC BT-35	Application of Biotechnology
	Biotechnology in		in Health
	Agriculture		
DSC BT-32	Developmental Biology	DSC BT-36	Bioinformatics
	(Plant and Animal)		
AECC-E	English -III	AECC-F	English-IV

AECC – C:- Ability Enhancement Compulsory Course: English-III and IV

DSC BTP8	Techniques in Genetic engineering and Bioinformatics	DSC BTP10	Techniques in Agricultural and health Biotechnology
DSC BTP9	Techniques in Industrial Biotechnology	DSC BTP11	Project

DSC BT-29 Basics in Genetic Engineering

Topic No.		Lectures 30
	Credit I	
1	Enzymes in r-DNA technology Introduction and Scope, Enzymes and its applications, Restriction enzymes- types (I, II, III), nomenclature, recognition sequences, cleavage patterns, modification of cut ends (linkers and adaptors), application – RFLP, Restriction mapping. Alkaline phosphatases, DNA ligases T4 and E. coli Ligases, Methylase, Reverse Transcriptases, Polymerases-Klenow enzymes, T4 DNA polymerases, Taq DNA polymerases, Polynucleotide kinase.	15
	Cloning Vectors: Introduction, Properties of good vectors, Cloning & expression vectors, Types- E.coli vector- plasmid – pBR 322 and pUC18 Bacteriophage vectors – λ phage vector, M 13 Vectors (λ replacement e. g. EMBL 3, EM BL 4 and λ insertional e.g λ gt 10 and λgt 11) Cosmid vector, Phagemid vector e.g pBlue script II KS/SK, Yeast vector- YAC and BAC, Animal vectors – Retroviral, Plant vector – Ti plasmid, Ri plasmid, shuttle vector- e.g pJBD 219, Ta clonig vector (introductiory), Selection of recombinant vector.	
	Credit II	
2.	Nucleic Acid Hybridisation: Nucleic Acid and plasmid purification. Probe Preparation, Methods of labelling probes. Radio labelling – Nick translati on, End labeling, Primer extension, Non Radiolabelling – Biotin, dioxygenin, fluorescent dyes, Applications of probes. DNA Sequencing and blotting technique Maxam Gilbert method, Sanger Coulson method, Automated DNA sequencing, Southern Blotting, Northern Blotting, Western blotting, Dot blotting.	

References:

- Molecular Biotechnology Principles & applications of Recombinent DNA:
 Glick B. R. & Padtranak
- 2. Gene cloning & manipulating Christopher
- 3. An introduction to genetic engineering Nicholl D. S. T.
- 4. Principle of gene manipulation: An introduction to genetic engineering Old R.W. & Primrose S. B.
- 5. Gene VIII Lewin
- 6. Fundamentals of Biotechnology S. S. Purohit
- 7. Fundamentals of Biotechnology H. S. Chawala
- 8. Genetic engineering P. K. Gupta
- 9. Principle of Biochemistry Wilson & Walker
- 10. Plant genetic engineering P. K. Gupta
- 11. Molecular Biotechnology of gene S. N. Jogdan
- 12. Protein Biotechnology M. Philopse
- 13. Molecular Biotechnology Principle & practices by Channarayappa
- 14. Biotechnology R. C. Dubey
- 15. Molecular cloning (Vol I, II, III) Sambrook and Russel

DSC BT – 30 Industrial Biotechnology

Topic		Lectures
No.		30
	Credit I	4.5
1	Introduction to Industrial Biotechnology Concept and range of fermentation technology, Types of fermentations (Batch, continuous, dual, multiple), Concept of solid state & submerged fermentation. Microbial metabolic products-Primary & Secondary products. Basic design of fermenter Components of fermenter and their functions, Fermentation economics Types of fermenter-Stirred tank fermenter, Airlift fermenter, Tower fermenter, Tubular fermenter, Bubble cap fermenter. Microbial Screening, Scale up and strain improvement Primary and secondary screening, Primary screening of antibiotics, organic acids and amines, enzymes, vitamins and amino acid producers, volatile component degraders, organisms using specific carbon and nitrogen sources. Secondary screening of antibiotic producers, Scale up of fermentations, Strain improvement-concept and methods -mutation, genetic recombination. Maintenance and preservation of industrially important cultures. Microbiological assay.	
2	Credit II Fermentation Media Composition of typical fermentation media, Criteria for typical fermentation medium, Types of fermentation media, General role of media components- water, carbon source, nitrogen source, minerals, precursors, growth factors, buffers, antifoams, oxidation-reduction potentials, inducers, inhibitors. Optimization of media- Plackett and Burmann design, Factors affecting fermentation process. Downstream Process and Product Recovery Downstream Processes in fermentation and bioprocess technology Solid and liquid separation, Flocculation and Flotation, filtration and centrifugation, Cell disruption by solid and liquid shear, ultrasonication, enzyme action and mechanical disruption. Product recovery and purification- principle, Precipitation, Crystallization, Liquid-Liquid extraction, Distillation (Fractional and Steam), evaporation, Chromatographic separation (Principles), Adsorption and concentration, Membrane filtration, drying and packing.	

References:

- 1. Text Book of Biotechnology Dr. H. K. Das
- 2. Industrial Microbiology & Biotechnology Arnold L.
- 3. Fermentation Technology Jayanto Acharekar
- 4. Basic Biotechnology Colin and Bjrorn
- 5. Frontiers in Microbial Biotechnology Bisel P.S.
- 6. Industrial Microbiology Prescot and Dunn
- Principle of Fermentation Technology Stanbury P.F., Whitekar H., Hall S.
 Bioprocess Engineering: Principles Nielson T. and Villadeson J.
- 9. Industrial Microbology- L.E. Casida
- 10. Fermentation Biotechnology- H.A. Modi
- 11. Industrial Microbiology- A.H.Patel

DSC BT -31 Application of Biotechnology in Agriculture

Topic No.		Lectures 30
	Credit I	
1	Methods for crop Improvement Introduction and Acclimatization, Breeding for self and cross pollinated plants and vegetatively reproducing plants, selection (clonal pure line and mass), Hybridization and Mutation breeding. Plant tissue culture techniques for crop improvement -Somaclonal variations, Haploids, Micropropagation, Somatic embryogenesis. Somatic hybridization- Definition, protoplast, fusion technique, selection of hybrids, symmetric and asymmetric hybrids, cybrid production. Artificial Seed- Definition, Techniques, factors affecting, applications limitations. Germplasm Conservation- Introduction, In-situ conservation, Exsitu conservation, cryopreservation, Techniques of Cryopreservation, applications, limitations.	15
	Credit II	
2	Transgenic Plants Herbicide resistant — Glyphosate resistance, Pho sphinothricin resistance, Fungal and Bacterial disease resistance approaches—PR proteins, Chitinase, Glucanase, RIPs protein, Virus resistance—Virus coat proteins, Movement proteins ,Trasmission proteins ,Satellite RNAs, Antisense RNAs, Ribozymes, Insect resistance approaches—Bt protein (Bt Cotton, Bt-Brijal), Non Bt protein, Transgenic plant with improved nutrition—Golden Rice, Molecular farming. GM Foods, ethical & socio-economic, legal and environmental issues. Forms of protection—IPR and IPP—Patents, copyright, trademark ,trade secret and PBR Biofertilizers— Definition ,Principle , Mass production and field application—Rhizobium,Azotobacter,Azospirillum,Acetobacter,Azolla, Cyanobacteria, PSB, VAM. Biopesticide— Definition, production and applications of Bacterial, fungal, viral and Plant origin Biopesticides.	15

References:

- 1) Biotechnology U. Satyanarayana
- 2) A textbook of plant breeding B.D. Singh
- 3) Medical biotechnology S. N. Jogd and
- 4) Advances in Biotechnology- S.N.Jogadand
- 5) Introduction to plant breeding R. C. Chaudhary
- 6) A textbook of Biotechnology R. C. Dubey
- 7) Pharmaceutical Biotechnology S. P. Vyas ,V. K. Dixit
- 8) Biotchnology B. D. Singh
- 9) Fundamentals of agriculture biotechnology S. S. Purohit
- 10) Animal & cell biotechnology Ian, Freshney
- 11) Animal cell biotechnology Buttler
- 12) Methods in cell biology Volume 5 7
- 13) Cell and Developmental Biotechnology.-Raj narian Desikar
- 14) Agricultutre application of Microbiology- Neeelima Rajvaidya.

DSC BT -32 Developmental Biology (Plant and Animal)

Topic No.		Lectures 30
	Credit I	
1	Plant Development: Major phases of plant development Vegetative development: Meristem, shoot development, root development, leaf development. Reproductive development: Shift from vegetative to reproductive phase-juvenility, floral signals and floral meristem identity- ABC model. Model systems to understand plant development-Arabidopsis. Meristem organization: Plant meristem, organization and differentiation, Organization of shoot apical meristem, Organization of root apical meristem. Plant Embryology Gametogenesis and Fertilization in plants: Gametogenesis in Plants, Development of male and female Gametophyte, Process of fertilization in Angiosperm. Embryogenesis- first asymmetric division, radial and axial pattern, auxin and apical basal axis, meristem. establishment. Development of Endosperm, Types of endosperm in Angiosperm. Apomixsis: Introduction, Definition, Types, Significance. Polyembryony: Introduction, Definition, Types, Significance. Self incompatibility:Definition, types and its genetic control.	15
	Credit II	
2	Animal embryology Gametogenesis, gametes and fertilization in Animals: Gametogenesis in animals, Types of eggs and sperms in animals, Fertilization in animals. Early development in animals: Types and patterns of cleavages in animals, Cell specification and axis formation, Blastulation, gastrulation in frog and chick up-to the formation of three germ layers, Embryonic induction, Foetal membranes, Types and significance of placentae. Differentiation and Regeneration: Cell lineages, Determination, Commitment -specification and determination, Differentiation, Dedifferentiation, Rediffrentitation, Transdifferentiation, Developmental Plasticity. French flag anatomy Role of gene/s in patterning and development(anterior , posterior and dorsal ventral axis) of Drosophila. Regeneration:	15

References:-

- 1. Development Biology, 9th edition, (2010), Gilbert S.F. (Sinauer Associates, USA).
- 2. Foundations of Embryology Patten
- 3. Cell and Developmental Biotechnology Raj Narian D esikar
- 4. Text book of Bryophytes, Pteridophytes, Gymnosperms and Paleobotany Subramurti
- 5. Plant Anatomy and Embryology- S.N. Pandey, A. Chadha
- 6. David M. Hill, Craig Martiz and Barke Mable, Molecular systematics
- 7. Plant Anatomy E.Cutter.
- 8. The Embryology of Angiosperm Bhojawani .S .S and Bhatnagar.S.P (Vikas Publ House, New Delhi)

- 9. An Introduction to the Embryology of Angiosperm. P. Maheswari.
- 10. Principles of Development, 4th edition (2010), Wolpert L and Tickle C, Publisher: Oxford University Press, USA.
- 11. Burgess J. (1985) An Introduction to Plant Cell Development (Cambridge Univ Press, UK)
- 12. Taiz L, Zeiger E (2010) Plant physiology (Sinauer Associates, USA).
- 13. Sharma HP (2009) Plant embryology: Classic al and experimental (alpha sci)
- 14. Steeves TA & Sussex IM (2004) Patterns in plant development. (Cambridge Univ Press, Cambridge, New York)

DSC BT -33 Advances in Genetic Engineering

Topic No.		Lectures 30
110.	Credit I	30
1	Isolation of Gene Chemical synthesis, Phosphotriester approach, Phosphitetriester approach, Isolation desired gene from DNA, Isolation of specific gene with PCR, cDNA and genomic library. Screening of libraries-immunological screening and colony or plaque hybridization. PCR and its application Primer designing, Fidelity of thermostable enzymes. Steps in PCR reaction, Types of PCR – RT-PCR, real time PCR, to uchdown PCR, hot start PCR, colony PCR, Applications- site directed mutagenesis, Molecular diagnostics, viral and bacterial detection Introduction to molecular identification16 s r RNA18 s r RNA, and Bar code	
2	Credit II	15
	Cloning methodologies Construction of plasmid – e. g. Somatostatin, Insertion of foreign DNA into host cells, Agrobacterium mediated gene transfer, Transformation, Transfection. Chemical methods- CaCl ₂ coprecipitation, polycation mediated gene transfer. Physical methods- Liposomes, microingection, electroporation, biolistics. screening of recombinants, Direct selection, Insertional inactivation selection, Blue white selection, Expression based screening (HART) Fluorescent Activated Cell Sorter, South –Western S creening. Application of r-DNA technology Production of transgenics- knock out mice, In medicines –Insulin and Somatostatin, Gene Silencing- Introduction, Principle of Si-RNA and Si- RNA technology Molecular Markers Introduction – Morphological, Biochemical, Molecular Markers-RFLP, RAPD, AFLP, STRS, QTL, SSR.	

References:

- Molecular Biotechnology Principles & applications of Recombinent DNA: Glick
 B. R. & Padtranak
- 2. Gene cloning & manipulating Christopher
- 3. An introduction to genetic engineering Nicholl D. S. T.
- 4. Principle of gene manipulation: An introduction to genetic engineering Old R.W. & Primrose S. B.
- 5. Gene VIII Lewin
- 6. Fundamentals of Biotechnology S. S. Purohit
- 7. Fundamentals of Biotechnology H. S. Chawala
- 8. Genetic engineering P. K. Gupta
- 9. Priciple of Biochemistry Wilson & Walker
- 10. Plant genetic engineering P. K. Gupta
- 11. Molecular Biotechnology of gene S. N. Jogdan
- 12. Protein Biotechnology M. Philopse
- 13. Molecular Biotechnology Principle & practices by Channarayappa
- 14. Biotechnology R. C. Dubey
- 15. Molecular cloning (Vol I, II, III) Sambrook and Russel

DSC BT -34 Food and Microbial Biotechnology

Topic No.		Lectures 30
	Credit I	
1	Microbial Cultures and Production Concept of pure and mixed culture., Microbial growth kinetics basic concept (Batch, Continuous and Fed Batch). Microbial Production of - Enzymes (amylase –koji fermentation), Antibiotics (Penicillin), Vitamins (B ₁₂), Amino acids (Lysine), Organic acid (Citric acid). Edible mushroom, Single Cell Protein- (Spirulina).	15
	Fermented Foods and Beverages Dairy Products – Cheese, Dahi, Yoghurt, Indian Foods – I dli, Bakery Products – Bread , Fermented Pickles – Sau erkraut, Beverages – Beer, Wine (Red table and white table) .	

	Credit II	
2	Food Spoilage, preservation & toxicity	15
	Types of spoilage- Physical, Chemical and Biological (auto and microbial), Preservation methods- High and Low temperatures, Controlled atmosphere and Anerobiosis, Radiations and Asepsis,	
	Chemical preservatives (Salt, sugar, organic acids,SO ₂ , NO ₂). Food Toxicity – Mycotoxin (Aflatoxin), Exotoxin (Staphylococcal), Neurotoxin (Botulinum), Food borne illness-Shigellosis, Amoebiosis, Aspergillosis.	
	Impact of GM food on human health	
P	rinciple, Risk analysis and Regulations, Multidisciplinal perspectives of GM foods and impact, Public health principles Characteristics of food supply for public health, Food Safety, Capacity to supply nutritional adequacy, Sustainability, Capacity for Consumer choice, Accessibly and affordability to all.	ту

References:

- 1. Text Book of Biotechnology Dr. H. K. Das
- 2. Industrial Microbiology & Biotechnology Arnold L.
- 3. Fermentation Technology Jayanto Acharekar
- 4. Basic Biotechnology Colin and Bjrorn
- 5. Frontiers in Microbial Biotechnology Bisel P.S.
- 6. Industrial Microbiology Prescot and Dunn
- 7. Principle of Fermentation Technology Stanbury P.F., Whitekar H., Hall S. J.
- Bioprocess Engineering: Principles Nielson T. and Villadeson J.
 Industrial Microbology- L.E. Casida
- 10. Fermentation Biotechnology- H.A. Modi
- 11. Industrial Microbiology- A.H.Patel
- 12. Food Biotechnology- Varun Mehta

DSC BT -35 Application of Biotechnology in Health

Topic No.		Lectures 30
	Credit I	
1	Stem cells and Transgenic Technology Characteristics of stem cells, Concept of stem cell progenitors, concept of stem cell technology and its application, Transgenic technology & cloning in mammals, Transgenic mice and their applications, Transgenic cattle. Vaccines- Principle and Practices Concept and types of vaccine, Subunit vaccines- Hepatitis B vaccine, Foot and Mouth disease Vaccine, AIDS Vaccine, DNA Vaccines, Edible Vaccines, Recombinant vaccines- Cholera Vaccine, Vaccinia Virus Vaccine.	15

	Credit II	
2		15
	Monoclonal Antibodies- Introduction, Hybridoma Technology,	
	Applications- Diagnostics, Therapeutics, Protein purification and	
	Abzymes.	
	Biosensors- Introduction, Principle, Types (Amperometric,	
	Thermometric, Optical biosensor, Immuno biosensor), Applications	
	Gene Therapy – Introduction, Approaches-ex vivo (Therapy for	
	Adenosine deaminase deficiency) and in vivo gene therapy (Gene	
	therapy strategy for cancer), Antigene and antisense therapy,	
	antisense therapy for cancer	
	Public health	
	Introduction, DNA sample preparation, Methods of Diagnosis -	
	Nucleic acid hybridization (Radioactive and Non radio detection).	
	Detection of infectious disease (Tuberculosis, Malaria, AIDS,	
	Chaga's) Detection of genetic diseases (cystic fibrosis, Sickle cell	
	Anemia, Huntington's, DMD).	

References:

- 1) Biotechnology U. Satyanarayana
- 2) A textbook of plant breeding B.D. Singh
- 3) Medical biotechnology S. N. Jogd and
- 4) Advances in Biotechnology- S.N.Jogadand
- 5) Introduction to plant breeding R. C. Chaudhary
- 6) A textbook of Biotechnology R. C. Dubey
- 7) Pharmaceutical Biotechnology S. P. Vyas ,V. K. Dixit
- 8) Biotchnology B. D. Singh
- 9) Fundamentals of agriculture biotechnology S. S. Purohit
- 10) Animal & cell biotechnology Ian, Freshney
- 11) Animal cell biotechnology Buttler
- 12) Methods in cell biology Volume 5 7
- 13) Cell and Developmental Biotechnology.-Raj narian Desikar
- 14) Text Book of Bryophytes, Pteridophytes, Gymnosperms, and Paleobotany- Subramurti.
- 15) Agricultutre application of Microbiology- Neeelima Rajvaidya.

DSC BT -36 Bioinformatics

Topic No.		Lectures 30
	Credit I	
1		15
	Introduction to Bioinformatics	
	History of bioinformatics: Multidisciplinary approach of	
	bioinformatics, Computers in Biology and Medicines, Internet, and	
	related programs; Networking HTTP, HTML, WAN, LAN, MAN,	
	applications in communication.	
	Information Resources: Introduction, aim and objectives, National	
	Centre for Biotechnology Information(NCBI), National Library of	
	Medicine (NLM), and National Institute of Health (NIH), EBI,	
	Sequence retrieval system(SRS): Entrez, DBGet.	
	Introduction to Genomics and Genome databases: Introduction,	
	Databases, Data, Nucleic acid sequence database, Gene Bank, EMBL,	
	DDBJ.	
	Genomics: Human Genome Project (HGP), Goal and applications,	
	final draft of HGP (complete information resources covered).	

Credit II	
Sequence Alignment and Phylogenetic analysis	15
Sequence Alignment: Introduction, Protein sequence, Nucleic acid	
sequence, Pair wise sequence alignment, Multiple sequence alignment,	
Local and Global sequence alignment.	
Algorithm used in sequence alignment: Matrices- Dot matrix, PAM, BLOSSOM.	
Phylogenetic analysis: Introduction: Evolution, definition of phylogenetic tree, nodes, internodes, root, tree, styles; cladogram, phenogram, curvogram, Steps involved in construction of phylogenetic tree	
Phylogenetic analysis tools: Phylip, ClustalW.	
Drug designing Structure-based drug designing: Introduction; Structure-based	
drug designing approaches, Target Identification and Validation,	
homology modeling and protein folding, receptor mapping, active site analysis and pharmacophore mapping, Grid maps.	
Ligand-based drug designing and Docking: Introduction; Ligand-based drug designing approaches, Lead Designing,	

References

- 1. Bioinformatics methods and applications. S. C. Rastogi, N. Mendiratta, P.Rastogi.
- 2. Principle of bioinformatics. P. Shanmughavel.
- 3. Computational Drug Designing. David C. Young
- 4. Computational Drug Design: A Guide for Computational and Medicinal Chemists.

 David C. Young
- 5. An introduction to Bioinformatics. T. K. Attwood, Parry-Smith D. J.
- 6. A textbook of bioinformatics. Sharma, Munjal, Shankar.

DSC BT P8 Techniques in Genetic Engineering and Bioinformatics

Sr.	Practical		
No.		15 P	
	Techniques in Genetic engineering		
1.	Calculation of molecular size of digested DNA	01	Minor
2.	Construction of restriction map of plasmid DNA	01	Minor
3.	Western blotting technique	01	Major
4.	Southern blotting technique	01	Major
5.	DNA Amplification by PCR	01	Minor
6	cDNA cloning by Reverse Transcription PCR	01	Major
7.	Ligation of DNA	01	Minor
8.	Expression of gene in E. Coli (GST)		Major

	Techniques in Bioinformatics		
11.	Introduction to PUBMED Central database using the ENTREZ search engine.	01	Minor
12.	Getting the amino acid and gene sequences by exploring and querying the protein and nucleic acid Sequence database.	01	Minor
13	Similarity search for nucleotide and protein using the BLASTn, BLASTp and interpretation of the results.	01	Major
14	Protein and nucleic acid pair-wise sequence alignment by using ClustalW and Construction of Phylogenetic Tree using ClustalW.	01	Major
15	Analysis of Secondary and tertiary structure of protein using visualizing software like Pymol or Rasmol.	01	Minor
16	Calculation of PI/MW of protein and Prediction of the secondary structure of protein using ExPasy web tool (GOR method).	01	Major
17	Molecular Docking of protein and ligand by Argus lab.	01	Major
18	Energy calculation of the biomolecules using molecular mechanics and quantum mechanics. (Argus lab)	02	Minor
	Compulsory visit to molecular biology laboratory		

DSC BT P9 Techniques in Industrial Biotechnology

Sr.	Practicals	15 P	
No.			
1	Primary screening of amylase producers by Replica	01	Major
	Plate technique		
2	Screening and isolation of antibiotic producing	01	Major
	organism from soil (Crowded plate/ Giant colony		
	method).		
3	Production and partial purification of enzyme	01	Major
	(Amylase/ Invertase)		
4	Study of Immobilization of enzyme (Amylase/		
	Invertase).		
5	Production of alcohol/ wine and estimation by	01	Minor
	colorimetric method		
6	Production of sauerkraut.	01	Minor
7	Mushroom Cultivation.	01	Minor
8	Production, Recovery and estimation of Citric Acid	01	Minor
9	Production, Recovery and estimation (Bioassay) a of	01	Major
	Primary metabolite (Growth factor)		
10	Production, Recovery (Filtration, Solvent extraction)	01	Major
	and estimation (Bioassay) a of Secondary metabolite		
	(Antibiotic)		
11	Isolation and identification (Genus level) of spoilage	02	Major
	causing microorganisms from spoiled foods.		

	12	Isolation and identification of starter organisms from Idli batter/ Dahi	01	Major
		Tuli valuei/ Daili		
	13	Analysis of Milk - a) Estimation of lactic acid.	02	Major
		b) Estimation of total fat.		
		c) MBRT		
Į	15	Preparation of fermented food (Bread/ Idli)	01	

DSC BT P10 Techniques in Agricultural and Health Biotechnology

r.	Practicals	15	
No.			
1	Isolation of Azotobacter	01	Major
2	Isolation of Rhizobium from root nodules	01	Major
3	Isolation of PSB from soil.	01	Major
4	Production of Biofertilizer- Azotobacter /PSB	01	Major
5	Isolation of Trichoderma	01	Minor
6	Isolation of Bacillus thuringenisis	01	Minor
7	Production of Biopesticide – Trichoderma	01	Minor
8	Production of Biopesticide – Bacillus thuringenisis	01	Minor
9	Production of Artificial seed	01	Minor
8	Antibiotic sensitivity test using paper disc method	01	Minor
9	Determination of Minimum inhibitory Concentration	01	Minor
	(MIC) of antibacterial compound.		
10	Agrobacterium mediated transformation in plants	01	Minor
11	Isolation of Blood genomic DNA	01	Minor
12	RAPD analysis demonstration experiment.	01	Major
12	RFLP analysis demonstration experiment.	01	Major
13	Immunoglobulin G Purication.	01	Minor
14	Study of Protoplast fusion and regeneration	01	Minor
15	DPPH assay for antioxidant plant extract.	01	Minor
	Industrial Visit- Wine Industry/ Food Processing Industry/Fermentation unit.		

DSC BT P 11 Project

Guidelines -

- 1. Projects can be performed in pair or individually.
- 2. Selection of the Project topic and allotment of project supervisor.
- 3. Preparation of Project Execution Plan: Time and Resource Allocation
- 4. Separate practical session should be organized for preparation of following topics
 - a) Selection of problem, preparation of synopsis. b) Introduction. c) Review of literature
 - d) Materials and Methodology e) Result and discussion f) Bibliography.
- 5. Guidance by the Project Supervisor, for the self-study of relevant course topics and concepts by the student.
- 6. Self-study and reference work of relevant topics and concepts by the student.
- 7. The Project Work must involve practical work(wet lab.) related to selected discipline
- 8. Students are expected to work on "Project Work" for about 10 periods per week.
- 9. The project work must be allotted individually.
- 10. The student invests his energy, time and resources in a project. The project therefore should, if possible, have important bearing on some practical aspect. This will help student to justify his efforts on project.
- 11. It is the joint responsibility of student and project supervisor to maintain daily register book of his/her project work and has to be produced at the time of examination if asked.
- 12. Submission Process: Student should prepare 2 copies of the Project Report. At the beginning, the respective Project Supervisor must approve both copies positively before university examination. Then respective Head or Coordinator approves both copies of the Project Report.
- 13. The student has to submit one of these approved copies of project report, duly signed by the project Supervisor and Principal, before practical examination. The report will be assessed by both Internal examiner (The project supervisor), who will assign the marks out 20 and the external examiner (appointed by university), who will assign marks out of 30, Thus the total will be out of 50 marks.
- 14. Theory, practical and project report shall form separate heads of passing.

Practical Examination:

- A) The practical examination will be scheduled as given below; practical examination should be conducted for minimum 5 hours on each day. For practical examination of DSC BT P8 Techniques in Genetic Engineering and Bioinformatics and DSC BT P10 Project separate examiners should be appointed and conducted in 2 consecutive days for each, while for DSC BT P9 Techniques in Industrial Biotechnology and DSC BT P10 Techniques in Agricultural and Health Biotechnology examination will be conducted in 3 consecutive days.
- B) Each candidate must produce a certificate from the Head of the Department in his/her college stating that he/she has completed in a satisfactory manner the practical course on the guidelines laid down from time to time by Academic Council on the recommendation of Board of studies and has been recorded his/her observations in the laboratory journal and written a report on each

exercise performed. Every journal is to be checked and signed periodically by a member teaching staff and certified by the Head of the Department at the end of staff and certified by the Head of the Department at the end of the year. Candidates are to produce their journal at the time of practical examination. Candidates have to visit the Biotechnological institutes and satisfactorily complete project work and entrepreneurship as per the syllabus. The report of the same should be duly certified by the Head of the Department and submit the respective reports at the time of examination.

DSC BT P8 Techniques in Genetic Engineering and Bioinformatics

- Q.1 A) Major Experiment (DSC BT P8 Techniques in Genetic Engineering) 20 Marks
 B) Minor Experiment (DSC BT P8 Techniques in Bioinformatics) 10 Marks
- Q.2 A) Major Experiment (DSC BT P8 Techniques in Bioinformatics) -20 Marks
 B) Minor Experiment (DSC BT P8 Techniques in Genetic Engineering) 10 Marks
- Q.3 Spotting 05 Marks (5 spots- each carry one mark)
- Q.4 Journal -10 Marks Major Experiment 20 Marks
- Q.5 Tour Report -05 Marks

DSC BT P9 Techniques in Industrial Biotechnology and DSC BT P10 Techniques in Agricultural and Health Biotechnology

- Q.1 Major Experiment 20 Marks
- Q.2 Minor Experiment 10 Marks
- Q.3 Spotting 10 Marks (5 spots- each carry two marks)
- (Q.1 to 3 Based on DSC BT P9 Techniques in Industrial Biotechnology)
- Q.4 Major Experiment 20 Marks
- Q.5 Minor Experiment 10 Marks
- Q.6 Spotting 10 Marks (5 spots- each carry two marks)
- (Q.4 to 6 Based on DSC BT P10 Techniques in Agricultural and Health Biotechnology)
- Q.7 Tour Report 10 Marks
- Q.8 Journal 10 Marks

DSC BT P11 Project

Q.1	Internal Examination	20 Marks
	A) Regularity	10 Marks
	B) Research aptitude	10 Marks
Q.2	External Examination	30 Marks
	A) Project report	05 Marks
	B) Review of Literature	05 Marks
	C) Material & Methods	05 Marks
	D) Result & Discussion	05 Marks
	E) Presentation	05 Marks
	F) Viva-Voce	05 Marks

Nature of Theory Question Paper

Q. No. 1	Multiple Choice based objective type question (four options for each question be given)	8 Marks
Q. No. 2	Attempt any two of the following (out of three)	16 Marks
Q. No. 3	Attempt any four of the following (4 out of 6)	16 Marks
	Total	40 Marks