Shivaji University, Kolhapur

Name of Department: Mathematics

Name of Programme: M.Sc Tech Mathematics

Vision:			
The vision of the Department is to be a premier institute of higher learning and			
research in Mathematics at National and International levels.			
Mission:			
To prepare excellent academicians and software developers to cater for the needs			
of academic institutes and industries.			
Program Outcomes			
1. Demonstrate basic knowledge in fundamentals of programming, algorithms and programming technologies and fundamentals of Computer Science.			
2. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the			
information to provide valid conclusions.			
3. Create, select and apply appropriate techniques, resources			
and modern engineering and IT tools, including prediction and modeling to			
complex engineering activities, with an understanding of the limitations.			
4. Communicate technical topics in written and verbal forms.			
5. Develop the ability to design creative solutions to real life problems faced by			
the industry.			
6. Improve the capability for self-learning.			
7. Map their qualities of learning to demonstrate latest technology.			
Program Specific Outcomes			
1. Identify the central role of concurrency in systems programming and			
produce programs which generate and control a process, establish			
relationship and communication between multiple processes.			
2. Develop short system utilities and applications using system calls.			
3. To train the students to handle the differentiation and integration in higher			
dimensions.			
4. To study abstract structures.			
5. Design automata, regular expressions and context-free grammars for			
accepting or generating a certain language.			

Course Outcomes		
Part-I Semester	-I	
MTT 101	Advanced Calculus	1. Analyze convergence of sequences and series of functions
		2. check differentiability of functions of several variables
		3. Apply inverse and implicit function theorems for functions of several variables
		4. Use Green's Theorem, Stoke's Theorem, Gauss divergence Theorem.
MTT 102	Linear Algebra	 understand basic notions in Linear Algebra and use the results in developing advanced mathematics. study the properties of Vector Spaces, Linear Transformations, Algebra of Linear
		Transformations and Inner product space in some details.
		3. construct Canonical forms and Bilinear forms.
		4. apply knowledge of Vector space, Linear Transformations, Canonical Forms and Bilinear Transformations.
MTT 103	Discrete Mathematical Structures -I	 learn formal logic as a theoretical foundation and its application to topics in discrete mathematics and computer science. relate marriage problem to practical examples real life and solve it.
		3. express the knowledge of logic and graph theory in the form of algorithms.
		4. use this logic to develop various programming.
		5. give the optimal solution to real problems.6. develop simple networks for max flow.
MTT 104	Computer Architecture	 Use various metrics to calculate the performance of a computer system. Identify the addressing mode of instructions Determine which hardware blocks and
		control lines are used for specific instructions 4. Demonstrate how to add and multiply

		integers and floating-point numbers using two's
		complement and IEEE floating point
		representation
		5. Analyze clock periods, performance, and
		instruction throughput of single-cycle, multi-
		cycle, and pipelined implementations of a
		simple instruction set
		6 Detect nipeline hazards and identify possible
		solutions to those hazards
		7 Show how cache design parameters affect
		cache hit rate
		8. Map a virtual address into a physical address
MTT 105	Programming	1. Discover, understand and trace the execution
	in C	of programs written in C language.
		2. Develop and analyze a problem
		3. Construct an algorithm to solve the problem
		4. Build functions to solve the given problem.
		5. Interpret pointers, structures and unions
MTT 106	Lab Work I	Objectives are to apply theory studied in
		computer based papers in the semester.
Part-I Semester	-II	
MTT 201	Functional	1. understand the fundamental topics, principles
	Analysis	and methods of functional analysis.
		2. demonstrate the knowledge of normed
		spaces, Banach spaces, Hilbert space.
		3. define continuous linear transformations
		between linear spaces, bounded linear
		functionals.
		4. apply finite dimensional spectral theorem.
		5. identify normal, self adjoint, unitary, Hermit
		ion operators.
MTT 202	Algebra	1. study group theory and ring theory in some
		details.
		2. introduce and discuss module structure over a
		ring.
		3. apply Sylow theorems.
		4. use homomorphism and isomorphism
		theorems.
		5. check irreducibility of polynomials over Q

		using Eisenstein criteria.
MTT 203	Discrete	1. understand applications of discrete
	Mathematical	mathematics including lattices, Boolean algebra
	Structures -II	and its applications.
		2. develop the logic to use the Boolean algebra
		for switching circuits.
		3. prove The Myhill-Nerode theorem.
		4. understand the terminology, operations, and
		symbols of finite state automata and minimum
		language accepted.
		5. use Pushdown Automata and Context-free
		Languages for programming.
MTT 204	Data Structures	1. Develop Programs using functions and
	Using C	Pointers
		2. Write C programs using structures, unions,
		dynamic memory allocation functions and
		command line arguments
		3. Describe and simulate various linear data
		structures like stacks, queues, linked lists using
		static and dynamic allocation and use them in
		solving problems.
		4. Simulate nonlinear data structures like binary
		search tree and threaded binary trees and use
		them in designing applications like sorting,
		expression trees etc.
		5. Explain the various algorithms for sorting and
		searching
		6. Demonstrate the indexing techniques in data
		structures
MTT 205	Operating	1. Describe process management and concepts
	Systems	of threading, multitasking, IPC.
		2. Differentiation of various scheduling
		algorithms and identify the reasons of deadlock
		and their remedial measures in an operating
		system.
		3. Explain various memory management
		techniques.
		4. Know the components and management
		aspects of concurrency management

		5. Understand representation of file system
		interface.
		6. Learn programmatically to implement simple
		OS mechanisms
MTT 206	Lab Work II	Objectives are to apply theory studied in
		computer based papers in the semester.
Part-II Semeste	r-III	·
MTT 301	Complex	1. compute the region of convergence for power
	Analysis	series,
		2. prove the Cauchy-Riemann equations and
		apply them to complex functions in order to
		examine differentiability and analyticity of
		complex functions,
		3. evaluate complex integration along the curve
		via Cauchy's theorem and integral
		formula
		4. prove the Cauchy residue theorem and apply
		it to several kinds of real integrals.
		5. compute the Taylor series and Laurent series
		expansions of complex functions and
		apply it to for checking the nature of
		singularities and calculating residues,
		6. demonstrate accurate and efficient use of
		complex analysis techniques to solve the
		problems in physics, engineering and other
		mathematical contexts
MTT 302	Ordinary	1. solve ordinary differential equations with
	Differential	constant coefficients.
	Equations	2. check linear independence of functions.
		3. construct solutions of ordinary differential
		equations with variable coefficients.
		4. calculate power series solutions.
		5. identify and classify singularities.
		6. generate approximate solutions.
MTT 303	Design and	1. Apply the algorithms and design techniques
	Analysis of	to solve problems. Students will able to
	Algorithms-I	compare two algorithms in terms of time and
		space complexity
		2. Study and implement different searching and

		sorting techniques
		3. Study and Solve Problem using Dynamic
		Programming and Greedy Method
		Algorithms
		4 Students learn advanced data structure and
		hasics of graphs traversal problems
MTT 304	Database	1 classify database management system
	Systems	concepts and different data models
	Systems	2 describe fundamental elements of relational
		data models and master the basics of SOI
		2 understand the concents of integrity security
		and normalization approach
		and normalization approach.
		4. develop skins for query processing and
		opumization.
		5. Identify the basic issues of transaction
		processing. (1)
		6. demonstrate concepts of concurrency control
		and recovery system.
MTT 305	Object Oriented	1. understand the features of C++ supporting
	Programming	object oriented programming
	with C++	2. compare the procedural and object-oriented
		paradigm with concepts of streams,
		classes, functions, data, and object
		3. design, implement, test, debug, and document programs in C++
		4. implement dynamic memory management
		techniques using pointers, constructors.
		destructors
		5 classify inheritance with the understanding of
		early and late binding
		6. demonstrate exception handling, generic
		programming
MTT 306	Lab Work III	Objectives are to apply theory studied in
		computer based papers
		in the semester.
Part-II semester	-IV	
MTT 401	Real Analysis	1. generalise the concept of length of interval.
	5	2. analyse the properties of Lebesgue
		measurable sets.
		3. demonstrate the measurable functions and

		their properties.
		4. understand the concept of Lebesgue
		integration of measurable functions.
		5. characterize Riemann and Lebesgue
		integrability.
		6. prove completeness of L^{P} Spaces.
MTT 402	Operations	1. Recognize convex sets and convex functions.
	Research	2. Calculate maximum and minimum value of a
		function of several variables.
		3. Solve LPP by simplex and dual simplex
		methods
		4 Construct codes efficiency and redundancy
		in Encoding
		5 Find ontimal value of nonlinear objective
		function subject to constraints
MTT 403	Design and	1 Study and understand basics of parallel
	Analysis of	Algorithms
	Algorithms II	2 Study and solve String marching geometric
	Aigoriumis n	algorithm problem
		3 Understand the various techniques related to
		transformation and modular arithmetic and
		energyption
		A Study and Summariza concent of Lower
		A. Study and Summarize concept of Lower
MTT 404	DIID	1. Students will be equipped with principles
WIII 404		1. Students will be equipped with principles,
	MySQL	knowledge and skills for the design and
		Website and Web Ambientian Development
		website and web Application Development
		using Open Source Language PHP.
		2. On completion of this course, a student will
		able to develop a web application using PHP
		technologies.
		3. Students will demonstrate the skills and
		project-based experience needed for entry into
		web
		application and development careers.
		4. Students will be able to compare multiple
		web technologies to create advanced, dynamic
		& effective
		website by the using of HTML, Java script,

		MySQL, CSS and PHP.
		5. Students will acquire knowledge and Skills
		for creation of Web Site using PHP and
		MySOL
MTT 405	Iava	1 understand basic concepts of Java such as
	Programming	operators classes objects inheritance
	1 Togramming	packages
		packages,
		2. Identify alagaan abjects members of a close
		2. Identify classes, objects, members of a class
		and relationships among them needed for a
		specific
		problem
		3. demonstrate the concepts of polymorphism
		and inheritance
		4. implement Exceptional handling mechanism
		5. design applications of Java using Java applet,
		Event Handling, Abstract Window Toolkit and
		database connectivity
MTT 406	Lab Work IV	Objectives are to apply theory studied in
		computer based papers
		in the semester.
Part-III semeste	er-V	
MTT 501	Advanced Web	1. develop windows form application using C#
	Technology	2. Understand client-server architecture
		3. Develop web form application using
		ASP.NET
		4. Develop application using MVC
MTT 502	Software	1. Understand various models of Software
	Engineering	Development.
		2. Understand requirement gathering and
		requirement modeling.
		3. Explore concepts and models in software
		design.
		4. To understand the testing and debugging
		methods for software.
MTT 503	Computer	1. Understand basic computer network
	Networks	technology.
		2. Identify the different types of network
		topologies and protocols.
		3. Understand the basic protocols of computer

		networks, and how they can be used to assist
		in network design and implementation.
		4. Understand and study transport layer
		protocols and basics of cellular network
		5. Identify and study application layer protocols
MTT 504	Cyber Security	1. Realize the need for Cyber Security
		2. Understand the need for Security in day to
		day communications
		3. Understand the vulnerabilities in the Network
		and Computer System
		4. Understand the cyber law and Cyber
		Forensics
MTT 505(1)	Compiler	1. Initiate an understanding of phases of
	Techniques	compiler and lexical analysis.
	1	2. Understand how compiler performs syntax
		analysis using grammar.
		3. Explore how intermediate code generated and
		syntax directed translation
		occurs.
		4. To understand the code optimization and
		code generation techniques.
MTT 505(2)	Linux	1. Understand basic concept of operating system
	Operating	and system calls.
	System	2. Understand and able to perform the basic set
		of commands and utilities in
		Linux/UNIX systems.
		3. able to create file systems and directories and
		operate them understand and able to
		write shell script and understand basics of
		system administration
MTT 505(3)	Android	1. Install and configure Android application
, í	Programming	development tools.
		2. Describe Android platform, Architecture and
		features.
		3. To learn activity creation and Android UI
		designing.
		4. Design User Interface and develop activity
		for Android App.
		5. Use Intent, Broadcast receivers and Internet
		services in Android App.

		6. Design and implement Database Application
		and Content providers.
MTT 505(4)	Machine	1. learn the basic concepts, techniques and
	Learning	applications of machine learning
		2. become familiar with regression methods,
		classification methods, clustering methods.
		3. become familiar with Dimensionality
		reduction Techniques.
		4. understand the range of machine learning
		algorithms along with their strength and
		weakness
MTT 506	Lab Work V	Objectives are to apply theory studied in
		computer based papers
		in the semester.
Part-III semester-VI		
MTT 601	A. Industrial	
	Project	
MTT 601	B. Technical	
	Communication	