Shivaji University, Kolhapur

Name of Department: Mathematics

Name of Programme: M.Sc. Mathematics

Vision
The vision of the Department is to be a premier institute of higher learning
and research in Mathematics at National and International levels.
Mission
To prepare excellent academicians and software developers to cater for the
needs of academic institutes and industries.
Program Outcomes
1. To develop problem-solving skills and apply them independently to
problems in pure and applied mathematics.
2. To develop abstract mathematical thinking.
3. To improve the abilities of students which will be helpful to qualify
competitive examinations.
4. Apply knowledge of Mathematics, in all the fields of learning including
higher research.
5. Work effectively as an individual, and also as a member or leader in multi-
linguistic and multi-disciplinary teams.
6. To qualify lectureship and fellowship exams such as NET, GATE, SET etc.
7. Understand the basic concepts, fundamental principles and mathematical
theories related to various courses and their relevance to other sciences.
Program Specific Outcomes
1. To solve the problems in mass and heat transfer by using the methods on
partial differential equations.
2. To train the students to handle the differentiation and integration in higher
dimensions.
3. To solve real-life problems using numerical and wavelet analysis.
4. To use mathematical software to analyse the dynamical systems.
5. To study abstract structures.

Course Outcomes		
Part-I Semester-	-I	
CC-101	Advanced	1. Analyze convergence of sequences and series
	Calculus	of functions
		2. check differentiability of functions of several
		variables
		3. Apply inverse and implicit function theorems
		for functions of several variables
		4. Use Green's theorem, Stoke's Theorem,
		Gauss divergence Theorem.
CC-102	Linear Algebra	Upon successful completion of this course, the
		student will be able to:
		1. understand basic notions in Linear Algebra
		and use the results in developing advanced
		mathematics.
		2. study the properties of Vector Spaces, Linear
		Transformations, Algebra of Linear
		3. construct Canonical forms and Bilinear forms.
		4. apply knowledge of Vector space, Linear
		Transformations, Canonical Forms and Bilinear
		Transformations.
CC-103	Complex	1. understand fundamental concepts of complex
	Analysis	analysis.
		2. identify analytic functions, Conformal maps.
		3. construct Taylor and Laurent series.
		4. classify singularity and apply Residue
		Theorem to evaluate real integrals.
		5. enjoy the beauty of analytic functions and
		related concepts.
CC-104	Classical	1. discuss the motion of system of particles using
	Mechanics	Lagrangian and Hamiltonian approach.
		2. solve extremization problems using
		variational calculus.
		3. discuss the motion of rigid body.
		4. construct Hamiltonian using Routh process.
		5. use infinitesimal and finite rotations to
		analyze motion of rigid body.
CC-105	Ordinary	1. study basic notions in Differential Equations
	Differential	and use the results in developing advanced
	Equations	mathematics.

		2. solve problems modeled by linear differential equations
		3. use power series methods to solve differential
		equations about ordinary points and regular
		singular
		points.
		4. construct approximate solutions using method
		of successive approximation.
		5. establish uniqueness of solutions
Part-I Semester	_TI	5. establish uniqueness of solutions
CC-201	Functional	1. understand the fundamental topics, principles
CC-201		and methods of functional analysis.
	Analysis	-
		2. demonstrate the knowledge of normed spaces,Banach spaces, Hilbert space.
		3. define continuous linear transformations
		between linear spaces, bounded linear functionals.
		4. apply finite dimensional spectral theorem.
		5. identify normal, self adjoint, unitary, Hermit
CC 202	A 11	ion operators.
CC-202	Algebra	1. study group theory and ring theory in some
		details.
		2. introduce and discuss module structure over a
		ring.
		3. apply Sylow theorems.
		4. use homomorphism and isomorphism
		theorems.
		5. check irreducibility of polynomials over Q
		using Eisenstein criteria.
CC-203	General	1. built foundations for future study in analysis,
	Topology	in geometry, and in algebraic topology.
		2. introduce the fundamental concepts in
		topological spaces.
		3. acquire demonstrable knowledge of
		topological spaces, product spaces, and
		continuous
		functions on topological spaces.
		4. identify compact and connected sets in
		topological spaces.
		5. use Separation and countability axioms,

CC-204	Numerical Analysis	 Urysohn lemma, Urysohn metrization theorem and the Tychonoff theorem. 1. apply the methods to solve linear and nonlinear equations. 2. find numerical integration and analyze error in computation. 3. solve differential equations using various numerical methods. 4. determine eigen values and eigen vectors of a square matrix. 5. construct LU decomposition of a square matrix.
CC-205	Partial Differential Equations	 Inatrix. classify partial differential equations and transform into canonical form solve linear partial differential equations of both first and second order. solve boundary value problems for Laplace's equation, the heat equation, the wave equation by separation of variables, in Cartesian, polar, spherical and cylindrical coordinates. apply method of characteristics to find the integral surface of a quasi linear partial differential equations. establish uniqueness of solutions of partial differential equations.
Part-II Semester-III		
CC- 301	Real Analysis	 generalise the concept of length of interval. analyse the properties of Lebesgue measurable sets. demonstrate the measurable functions and their properties. understand the concept of Lebesgue integration of measurable functions. characterize Riemann and Lebesgue integrability.

		6. prove completeness of <i>L</i> • Spaces.
DSE- 302	Advanced	1. classify the graphs and apply to real world
	Discrete	problems.
	Mathematics	2. simplify the graphs using matrix.
		3. study Binomial theorem and use to solve
		various combinatorial problems.
		4. simplify the Boolean identities and apply to
		switching circuits.
		5. locate and use information on discrete
		mathematics and its applications
DSE- 302	Topological	1. Apply topological concepts on vector spaces.
	Vector Spaces	2. Construct homeomorphisms on different
	-	topological vector spaces.
		3. Understand and apply separation properties.
		4. formulate compatible metric on topological
		vector spaces.
		5. Study Frechet spaces.
CCS-303,	Number	1. learn more advanced properties of primes and
CCS-304,	Theory	pseudo primes.
CCS-305		2. apply Mobius Inversion formula to number
		theoretic functions.
		3. explore basic idea of cryptography.
		4. understand concept of primitive roots and
		index of an integer relative to a given primitive
		root.
		5. derive Quadratic reciprocity law and its apply
		to solve quadratic congruences.
CCS-303,	Operations	1. identify Convex set and Convex functions.
CCS-304,	Research I	2. Construct linear integer programming models
CCS-305		and discuss the solution techniques,
		3. Formulate the nonlinear programming models,
		4. Propose the best strategy using decision
		making methods,
		5. solve multi –level decision problems using
		dynamic programming method.
CCS-303,	Fuzzy	1. acquire the knowledge of notion of crisp sets
CCS-304,	Mathematics-I	and fuzzy sets,
CCS-305		2. understand the basic concepts of crisp set and
		fuzzy set,

		 3. develop the skill of operation on fuzzy sets and fuzzy arithmetic, 4. demonstrate the techniques of fuzzy sets and fuzzy numbers. 5. apply the notion of fuzzy set, fuzzy number in various problems.
CCS-303, CCS-304, CCS-305	Fluid Dynamics	 explain physical properties of fluids. represent general motion of fluid element. test possible fluid flows, classify rotational and irrotational fluid flows . transform stress components from one co- ordinate system to another, establish relation between strain and stress tensor develop constitutive equations for Newtonian fluids, conservation laws and Navier-Stokes equation. determine the complex potential and images of a two dimensional source, sink and doublet.
CCS-303, CCS-304, CCS-305	Fractional Calculus	 compare Grünwald-Letnikov,Riemann- Liouville,and Caputo fractional derivative. evaluate fractional derivatives and fractional integral of power function and trigonometric functions analyze the behaviour of fractional derivatives near and far from the lower terminal derive important properties such as linearity, compositions, Commutatively and Leibnitz rule for fractional derivatives evaluate transforms of fractional derivatives and integrals. solve fractional differential equations using transform methods.
CCS-303, CCS-304, CCS-305	General Relativity I	 understand Albert Einstein's special and general theory of relativity. formulate fields of General Relativity. relate the covariant derivative and geodesic curves

CCS-303, CCS-304, CCS-305	Lattice Theory –I	 4. calculate components of the Riemann curvature tensor form a line element. 5. derive Necessary and Sufficient condition for isometry 1. Students should acquire thorough knowledge of fundamental notions from lattice theory and properties of lattices
		 2. To learn Modular and Distributive lattice 3. To learn about Boolean algebra 4. To know Stone Algebra 5. Students should develop ability to solve individually and creatively advanced problems of lattice theory and also problems connected with its applications to mathematics 6. Describe Lattices and Posets and their use
CCS-303, CCS-304, CCS-305	Approximation Theory	 Construct approximate polynomial for periodic function using Bernstein polynomials Interpolate given function using finite interpolation. determine error bounds in polynomial approximations and establish uniqueness of approximating polynomials. prove convergence of Fourier series of a function of bounded variation. establish orthogonality of Jacobi polynomials and predict zeros of orthogonal polynomials. formulate recurrence relations of orthogonal polynomials.
CCS-303, CCS-304, CCS-305	Dynamical Systems- I	 Classify equilibrium points of the dynamical system Construct bifurcation diagrams and analyze the system for different values of parameter. Relate the qualitative properties of the system with the eigen values of coefficient matrix. Estimate the solution of the system using the canonical form of coefficient matrix Construct the exponential of a matrix and

		apply it to galve the dynamical system
		apply it to solve the dynamical system.
		6. Examine the discrete dynamical systems.
CCS 202	Crark Theory	1 classify the graphs and solve the related
CCS-303,	Graph Theory-	1. classify the graphs and solve the related
CCS-304,	Ι	problems.
CCS-305		2. understand Euler Graph and Hamiltonian
		Graph to solve problems.
		3. use matching's to solve optimal assignment
		problems.
		4. solve network problems
		5. solve graph theoretic problems and apply
000.202	$\mathbf{D}^{*}\mathbf{C}$	algorithms 1. find the directional derivatives of the
CCS-303,	Differential	functions.
CCS-304, CCS-305	Geometry	
CCS-303		2. compare the unit-speed and arbitrary-speed
		curves.
		3. apply the Frenet formulas to analyze the
		curves.
		4. examine whether the given set in R3 is a surface.
		5. construct the parametrizations of different
		surfaces.
		6. formulate different types of curvatures of
		given surface.
CCS-303,	Combinatorics	1. describe Pigeonhole principle and use it to
CCS-304,		solve problems.
CCS-305		2. use definitions and theorems from memory to
		construct solutions to problems
		3. use Burnside Frobenius Theorem in
		counting's.
		4. use various counting techniques to solve
		various problems.
		5. apply combinatorial ideas to practical
		problems.
		6. improve mathematical verbal communication
		skills.
CCS-303,	Commutative	1. classify the ideals to solve the related
CCS-304,	Algebra – I	problems.
CCS-305		2. understand various radicals.

CCS-303, CCS-304, CCS-305	Space dynamics- I	 know Hilbert basis theorem and apply it to other development. use Nakayama Lemma for further development in Noetherion Rings. Derive The Krull intersection theorem formulate trajectory equations and classify trajectories Calculate flight path angle determine orbit from position vectors and from one ground based observation Calculate time of flight and orbit propagation use perturbation methods calculate atmospheric drag.
CCS-303, CCS-304, CCS-305	Theory of Computation	 derive The Myhill Nerode theorem . understand context free grammars. explain The pumping Lemma for context free Languages. describe Churchs hypothesis.
CCS-303, CCS-304, CCS-305	Algebraic Topology	 (i) develop the concept of homotopy of paths (ii) combine the group theory and topology to define fundamental groups of curves and surfaces (iii) determine the fundamental groups of various curves (iv) build the concept of retraction and use to study homotopy (v) evaluate the fundamental group of compact 2-manifolds by applying Seifert-van Kampen theorem.
CCS-303, CCS-304, CCS-305	Probability and Stochastic Processes	 Apply the specialised knowledge in probability theory and random processes to solve practical problems. Gain advanced and integrated understanding of the fundamentals of and interrelationship between

Part-II semester	-IV	discrete and continuous random variables and between deterministic and stochastic processes. 3. Create mathematical models for practical design problems and determine theoretical solutions to the created models.
CC- 401	Field Theory	1) determine the basis and degree of a field over
		its subfield.
		2) construct splitting field for the given
		polynomial over the given field.
		3) find primitive nth roots of unity and nth
		cyclotomic polynomial.
		4) make use of Fundamental Theorem of Galois
		Theory and Fundamental Theorem of Algebra to
		solve problems in Algebra.
		5) apply Galois Theory to constructions with
	T . 1	straight edge and compass.
DSE- 402	Integral	1. classify the linear integral equations and
	Equations	demonstrate the techniques of converting the initial and
		boundary value problem to integral equations and vice versa.
		2. develop the technique to solve the Fredholm
		integral equations with separable kernel.
		3. develop and demonstrate the technique of
		solving integral equations by successive
		approximations,
		using Laplace and Fourier transforms
		4. to analyze the properties of symmetric kernel.
		5. toprove Hilbert Schmidt Theorem and solve
		the integral equation by applying it.
DSE- 402	Measure and	1. generalise the concept of measure.
	Integration	2. appreciate the properties of Lebesgue
		measurable sets.
		3. demonstrate the measurable functions and
		their properties.
		4. understand the concept of Lebesgue
		integration of general measurable functions.
		5. apply Fubini and Tonelli theorem to

		interchange order of the integration.
CCS-403,	Algebraic	1. deal with algebraic numbers, algebraic
CCS-404,	Number	integers and its applications,
CCS-405	Theory	2. concept of lattices and geometric
	5	representation of algebraic numbers.
		3. Understand the concept of fractional ideals.
		4. relate Finitely generated abelian groups and
		modules
		5. derive Minkowski's theorem.
		6. compute class groups and class numbers.
CCS-403,	Operations	1.decide policy for replacement.
CCS-404,	Research – II	2.calculate economic lot size.
CCS-405		3.derivePoission distribution theorem and
		compute attributes of distribution model.
		4.construct Shannon Fano codes.
		5. identify optimal path by using CPM and
		PERT.
CCC 402	-	
CCS-403,	Fuzzy	1. acquire the concept of fuzzy relations.
CCS-404,	Mathematics-	2. understand the basic concepts of fuzzy logic
CCS-405	II	and fuzzy algebra.
		3. develop the skills of solving fuzzy relation
		equations.
		4. construct approximate solutions of fuzzy relation equations.
		5.solve problems in Engineering and medicine.
CCS-403,	Computational	1. classify partial differential equations (PDEs)
CCS-404,	Fluid	mathematically and physically.
CCS-404, CCS-405	Dynamics	2. apply separation of variables method for
	Dynamics	solving initial boundary value problems.
		3. construct forward, backward and centered
		difference formulae.
		4. test stability, convergence & consistency of
		finite difference schemes.
		5. solve problems in CFD using computer
		software.
CCS-403,	Fractional	1. analyze existence and uniqueness of solution
CCS-404,	Differential	of fractional differential equations.
CCS-405	Equations	2. apply Mittag-Leffler functions to derive the
		solution of fractional differential equations.

		3. analyse data dependency of solution of
		fractional differential equations.
		4. examine the properties of solution of
		fractional differential equations with initial
		boundary conditions.
		5. derive stability results for fractional
		differential equations.
CCS-403,	General	1. able to solve Einstein field equations under
CCS-404,	Relativity – II	spherical symmetry.
CCS-405		2.understand calculating relativistic frequency
		shifts for the bending of light passing
		a spherical mass distribution.
		3.understand energy moment tensor, stress
		energy moment tensor for perfect fluid.
		4. understand exterior product, derivative and P-
		forms.
		5. calculate Bianchi identities in tetrad form.
CCS-403,	Lattice Theory	1. analyze Congrunces and Ideals
CCS-404,	-II	2. check Modularity and semimodularity in
CCS-405		given lattice
		3. apply geometric closure operator
		4. use Kurosh – Ore replacement property
CCS-403,	Wavelet	1. calculate Fourier transforms and wavelet
CCS-404,	Analysis	transforms of functions.
CCS-405		2. carry out synthesis and analysis of time signal.
		3. construct mother wavelets.
		4. construct inverse of Gram operator in infinite
		dimensional space.
		5. use orthogonal wavelets.
CCS-403,	Dynamical	1. test for the existence and uniqueness of
CCS-404,	Systems- II	solution of nonlinear system.
CCS-405		2. relate the stability of the system with its
		linearization.
		3. distinguish between stable and unstable sets
		corresponding to the given system.
		4. construct the local stable manifolds for the
		nonlinear system.
		5. identify the chaotic behavior in the system by
		using Lyapunov exponents.

CCS-403, CCS-404, CCS-405	Graph Theory- II	 understand properties of graphs in terms of matrices. use of matching of bipartite graph to solve various problems compute Laplacian eigen values. find energy of graph using its matrix . classification of trees using properties of matrix
CCS-403, CCS-404, CCS-405	Analysis on Manifolds	 develop the concept of integration of functions in higher dimensions. give a geometric interpretation of the determinant function. build the concept of manifold using curves and surfaces. determine the volume of a parameterized manifold. evaluate the integration of differential forms on manifolds
CCS-403, CCS-404, CCS-405	Theory of Distributions	 construct test functions, approximate identity, distributions. differentiate a generalized function. limit of sequence of generalized functions. analyze properties of support of generalized functions. define directional derivatives of generalized functions.
CCS-403, CCS-404, CCS-405	Commutative Algebra – II	 understand Artirian and Noetherion modules. study The Krull-Schmidt theorem. know projective modules for further development in modules. apply integral extensions for going up and going down theorem. derive prime decomposition theorem.
CCS-403, CCS-404, CCS-405	Space dynamics II	 construct Euler's momentum equations. analyze stability of rotation about principle axes. perform Spin stabilization of missiles and

CCS-403, CCS-404, CCS-405	Automata Theory	 projectiles. 4. represent General Motion of a Symmetric Gyro and Rolling of a thin circular disk 5. calculate Inertial components of angle of attack and Attitude Drift of Space Vehicles. 1. understand semigroup relation. 2. explain Mealy machine. 3. derive orthogonal partitions. 4. describe admissible subset system decomposition.
CCS-403, CCS-404, CCS-405	Dynamic Equations on Time Scales	Learning outcome: Upon successful completion of this course, students will be able to: 1. demonstrate the concepts of time scales calculus and dynamic equations on time scales. 2. develop sophisticated skill in understanding unification of continuous and discrete theory. 3. analyze the qualitative and quantitative aspects of solutions of dynamic equations. 4. develop various techniques and apply them to solve certain dynamic equations. 5. develop and demonstrate the techniques to solve self-adjoint equations. 6. unify and extend the traditional study of differential equations and difference equations
CCS-403, CCS-404, CCS-405	Automata, Languages and Computation	 Model, compare and analyse different computational models using combinatorial methods. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. Construct algorithms for different problems and argue formally about correctness on different restricted machine models of computation Identify limitations of some computational models and possible methods of proving them.