Shivaji University, Kolhapur

Name of Department: Chemistry

Name of Programme: M.Sc Physical Chemistry

Vision: Engender Human Resource to Lead the Competitive Science World for Nation Building

Mission: Impart most advanced scientific knowledge and training to the students so that genuine researchers and skilled scientists of world standard will be made available for the advancement of national science and technology programs as well as to cater the needs of industrial and pharma sectors

Program Outcomes

PO1: Understanding fundamental principles and laws of physical chemistry

PO2: Development of abilities to study and understand properties of materials

PO3: Design and testing of electrochemical cells and electrochemical properties of materials

PO4: Understanding forces responsible for various types of structure property correlations

PO5: Studies of physicochemical properties of novel materials including nanomaterials

PO6: Studies of protein-ligand binding interactions

PO7: Solid material design, property measurements, structural analysis and application testing

PO8: Empowering the students to do independent research of high cali

Program Specific Outcomes

PSO1: Electronic structure calculation and property analysis or prediction

PSO2: Understanding kinetics and dynamics of materials in gas and condensed phases

PSO3: Structure elucidation and estimation of molecular properties

PSO4: Independently perform a computer simulation to predict structures, reaction paths,

molecular/material properties, etc.

Course Outcomes

Part-I Semester-	ı
------------------	---

CH-1.1 (Inorganic Chemistry – I) 1. CO1: Students will be able to explain the basic chemistry of transition metals and its compounds, spectroscopic characteristics of such compounds, nomenclature, reactions and applications.

CO2: Students will obtain knowledge about
Preparation, structure, physical and chemical

properties of metal carbonyls of transition metals.

CO3: Students will be able to understand the all aspects of synthesis, bonding, structure and reactivity of organometallic compounds and their applications in homogenous catalysis.

CO4: Student will be able determine the stability of the complexes and will be able to explain the nuclear stability and reactions.

CH-1.2 (Organic Chemistry – I)

CO1: Students will able to differentiate between various organic reactive intermediates.

CO2: Students can recognize, classify, explain, and apply fundamental organic reactions.

CO3: Students will have ability to distinguish between

		different kinds of isomers.
		different kinds of isomers.
		CO4: Course will develop interest in writing and
		finding mechanisms of new reactions.
	(D) 1 1	CO1: Students will be able to understand basic
CH-1.3	(Physical	principles of thermodynamics and statistical
	Chemistry – I)	mechanics
		CO2: Able to learn advanced topics like quantum
		statistics and molecular dynamic simulation methods.
		CO3: Develop abilities to understand how to estimate
		and analyze the physicochemical properties of
		condensed and gas phase materials.
		CO4: Able to utilize spectral data to estimate
		molecular thermodynamic properties through partition
		function calculations.
		CO5: Understand properties of detergents and
		colloidal materials
		CO6: Learns the principles and techniques to
		understand gas and liquid adsorptions on solid
		surfaces
		CO7: Can learn spectral techniques to study surface
		adsorption phenomena.
		CO8: Learn principles and techniques for estimation
		of average molecular weight of a polymer or
		biological macromolecules
		CO9: Develop abilities to characterize polymers
		through understanding theories of virial coefficients,
		concepts of glass transition temperatures, etc.

CII 4 4	Analytical	CO1: Students would acquire the knowledge about the
CH.1.4:	Chemistry-I	fundamentals of Analytical Chemistry including the
		sampling, sample pretreatment, basic techniques,
		methods and data handling, processing and statistical
		analysis of the same.
		CO2: Students would acquire the knowledge and
		understand the scope of Analytical Chemistry
		spanning various fields. The students will learn
		fundamentals of qualitative analysis using
		conventional techniques
		CO3: Students will learn the chromatographic
		techniques, choice of chromatographic techniques and
		tuning of the chromatographic technique as per the
		need based on the samples to deal with, learn
		electroanalytical techniques and computation
		chemistry which would groom them for alternative
		analytical strategies which form one of the important
		components of analytical chemistry.
		CO4: Students will learn about referring to the
		standard reference books and infer information from
		the same. Analytical case study problems would be
		discussed to familiarize with the scope and advantages
		of Analytical Chemistry.
PCH-1.1	(Practical – I)	CO1: Ability in professional sampling and sample
		treatment before actual analysis
		CO2: Ability to treat and evaluate the results of
		analysis
		CO3: Understanding and capability of performing
		basic chemical processes in a chemical laboratory
		CO4: Capability of performing measurements on basic

		analytical instruments (photomators anostromators
		analytical instruments (photometers, spectrometers,
		chromatographs, ion-selective electrodes)
PCH-1.2	(Practical – II)	CO1: Students can be able to prepare various
	,	concentration solutions like molar, normal, ppm, etc.
		CO2: Determine the rate constants of various first
		order and second order reactions
		CO3: Determine the redox potential of a system,
		relative strength of acid etc using potentiometer,
		conductometer
		CO4: Know the formation of alloys like Brass,
		Bronze, phase diagram for binary and ternary systems
		studied in details like a composition, critical
		temperature, etc
		CO5: Validity of Freundlich adsorption isotherms to
		remove toxic material such as dye, acetic acid, and
		other industrial effluents
		other madstrar erracins
Part-I Semest	er-II	
CH-2.1	(Inorganic	CO1: Students will get the knowledge of the basic
	Chemistry – II)	chemistry of non-transition elements and their
		compounds, synthesis and structural features, and
		applications.
		CO2: To be able to explain the structures of inorganic
		compounds based on different theories. Student will
		understand the chemistry of various types of solvents.
		CO3: Be well versed with the knowledge about the
		chemistry of Lanthanides and Actinides with respect
		to occurrence, separation, compounds and
		applications.
		CO4: To understand the three dimensional structures
		201. 10 understand the time dimensional structures

		of solid-state materials of industrial importance and to
		get the knowledge of bio-inorganic Chemistry.
CIL 2.2	(Ougania	Course Outcomes (COs)
CH-2.2	(Organic	CO1: Illustration of modern synthetic methods and
	Chemistry – II)	applications of reagents.
		CO2: Provide knowledge of different organometallic
		compounds and various coupling reactions.
		CO3: Understand principle and applications of
		protection and deprotection of various functional
		groups.
		CO4: It will elaborate to understand the concept of
		chemoselectivity, regioselectivity and
		enantioselectivity.
CH2.3	(Physical	CO1: Students will learn basics of quantum
	Chemistry – II)	mechanics.
		CO2: Knowledge of the course will form the basis or
		essential requirement for the course "Advanced
		Quantum Chemistry"
		CO3: Able to understand selection rules and to predict
		the electronic spectra of conjugated organic
		molecules.
		CO4: Able to study photochemical and photophysical
		phenomena
		CO5: Capable of qualitative and quantitative analysis
		of various ingredients from industrial, food and
		pharma samples using techniques of emission
		spectroscopy.
		CO6: Capable of understand the electrochemical
		aspects of materials, ionic processes and

		preparation and sample treatment before actual
PCH-2.1	(Practical – III)	CO1: Students developed for precise sample solution
		CO4: Learning about different instruments will give them idea about appropriate choice of the instrument for analysis based on the source and type of analyte(s) in the sample under consideration.
		and data interpretation and structural elucidation.
		sample preparation and handling of sample, analysis
		CO3: Students will learn about the instrumentation,
		samples to be considered for analysis.
		DSC etc.) techniques spanning wide variety of
		MS, AAS, ICP and thermal analysis (TGA, DTA,
		advanced instruments used for analysis like NMR,
		CO2: Students will learn about the simple and
		offering choices among the spectroscopic tools.
		discussed so that the students learn about the type of samples which could be analyzed by these tools
		limitations of the spectroscopic tools would be
		analysis and interpretation of the data. The scope and
	Chemistry-II	spectroscopic tools/instruments used in chemical
CH.2.4:	Analytical	CO1: Students will acquire the knowledge of
CII A 4	A 1 1	CO1. Strudente will a a maine the law and the con-
		to understand life governing processes.
		pathways, protein-ligand binding rates, etc. will help
		kinetic studies. Applications to explore reaction
		CO8: Understanding the molecular dynamics through
		characterization etc.
		applications in the field of protein separation,
		CO7: Able to study electrokinetic effects and their
		characterizations etc.
		electrochemical sensors, battery materials and

		analysis.
		CO2: Students can be able to perform the calculations
		and error analysis
		CO3: Develop understanding of basic chemical
		processes and deciding methods of analysis.
		CO4: Capability of performing measurements on basic
		analytical instruments (photometers, spectrometers,
		chromatographs, high end thermometers,
		refractometer, pH meter etc.)
PCH-2.2	(Practical – IV)	CO1: Students can be able to prepare various
		concentration solutions like molar, normal, ppm, etc.
		CO2: Determine the unknown concentration and
		thermodynamic parameters using conductometer
		CO3: Student will explore how to estimate order of
		reaction and the catalysis
		CO4: students can estimate refractive index and
		molecular weights of species.
		CO5: Students can understand the estimation of
		equilibrium properties like redox potential, phase
		diagram etc
Part-II		
Semester-III		
DCH 2.1	(Advanced	CO1: Learn concepts of atomic orbitals and their
PCH-3.1	Quantum	shapes, spectroscopic selection rules, ionization
	Chemistry)	potentials, etc.
		CO2: Learn advanced quantum methods such HF-SCF
		theory and post-HF methods and learners will be able
		to do accurate electronic energy and molecular
		structure calculations
	l	

CO3: Knowledge of the course will be used to do computer simulations to calculate molecular properties, nmr shift, IR and Raman spectra etc. for small to medium sized molecules or molecular assemblies.

CO4: Will familiarize in understanding and choosing the appropriate basis sets for electronic structure calculations with appropriate corrections through use of electron correlation methods

CO5: Students will learn most advanced method of quantum mechanics i.e Density Function Theory for electron structure calculations

CO6: Learners will be capable of calculate the transition states, potential energy surfaces and reactions paths for chemical reactions using DFT method

CO7: Students can predict all the properties of materials at molecular level even for nanostructures, drugs, solids oxides, composites, solid electrolytes, electrode materials used in batteries and other electronic devices, etc.

CO8: For larger molecules like macrocycles, polymers, peptides etc., learners will be capable of replace or modify computationally demanding two-electron integrals through use semiempirical methods and parameterization tools used in these methods. CO9: Knowledge of this course will make learners a potential candidate to work independently in any R&D laboratory or research laboratory or academic institutes of international repute.

PCH-3.2	(Electrochemistry)	CO1: Students will be able to understand basic principles of electrochemistry CO2: Study of electrochemical charge transfer
		properties of materials and designing of applied experiments for electroanalytical testing of materials. CO3: Charge of the material can be quantified and used for testing of electrokinetic phenomenon. CO4: Study of electrode electrolyte interfaces based on the properties of material shows the energetically viability of electron transfer CO5: Learn the principles and techniques to understand adsorptions and desorption from the electrode interface in the electrolyte solution CO6: Fundamental equation of electrodics to study the reversible charge transfer behavior in the materials electrolyte interfaces. CO7: Learn principles and techniques for estimation of charge transfer behaviors in semiconductor materials CO8: Develop abilities to characterize materials through understanding theories electrode reaction.
PCH- 3.3:	Molecular Structure - I	CO1: Students will learn basics principles and laws of spectroscopy. CO2: From this course student will learn symmetry operations and groups theory for probing the detail spectral detail of molecule CO3: Understand the fundamental modes of oscillations of molecules based on the properties like dipole movement of the molecules CO4: Applications of rotational and vibrational spectroscopy CO5: Fundamental of polarizability of molecules and Raman active modes CO6: Structural investigations of the material based on the microwave, IR and Raman spectra and various theories of peak splitting CO7: Basic Principles of Electronic spectroscopy, progression, sequencing and Birje Spooner plots

	(1) (6 11 1 6	CO1: Students can be able to provide an introduction
PCH-3.4)	(A) (Solid State	to the concepts underlying solid state chemistry.
	Chemistry	CO2: Describe specific crystal structures by applying
		basic crystallographic concepts
		CO3: Understand generation of X-ray radiation and
		its effects of on matter as well Bragg's diffraction
		equation to find out structural information of solid
		materials
		CO4: Understand the atomic and electronic structure,
		electric conductivity, optical property, magnetism of
		solid materials.
		CO5: Understand the physical and optical properties
		of metal, semiconductor, and insulator using free
		electron theory and band theory
	(B) (Advanced	CO1: Students can understand the basic principles of
PCH-3.4)	Chemical Kinetics	kinetics, proton transfer and effect of proton ion on the
		rates of reaction
		CO2: Various electron transfer process like inner
		sphere and outer sphere reactions
		CO3: Different models to study catalysis and reaction
		mechanisms
		CO4: Different methods of catalysis like micellization
		and pseudo ion exchange
		CO5: students can learn the advanced theories of
		chromium ion reduction
PCH-3.4	(C) Radiation and	CO1: student will learn basic principles and advanced
1 (11-3.4	Photochemistry	radicochemical processes
		*
		CO2: Student will be familiar with lases and their

		wide applications
		CO3: Students will learn basic principles of photochemistry CO4: They may do the data interpretation of rates of radiative process for the obtaioned data from the electrochemical transient and flash photloysis. CO5: Applications of photochemistry for degradation of polymers and other smog, singlet molecular oxygen generation etc.
PCHP – V	Practical -V	CO1: In-depth training on laboratory solution preparations on all concentration scales CO2: Training on laboratory safety and lab ethics in scientific work CO3: Training on planning, design and execution of experiments CO4: Training on uncertainty estimations for experimentally measured and derived properties of solutions CO5: Training on buffer preparations, equilibrium studies and spectral analysis.

PCHP – VI	Practical-VI	CO1: Training on scientific literature search,
		defining the objective of the work, research
		skills, data representation in tabular and
		graphical form etc.
		CO2: Training on experimental verification of
		fundamental theories, comparison of data with
		literature and scientific discussion on any
		deviation of data from expected theoretical
		values or reported literature.
		CO3: Experimental spectral measurements and
		analysis for understanding binding equilibria
		CO4: Training on evaluation of bulk
		thermodynamic properties of condensed states
		CO5: Computer lab training to perform <i>ab</i>
		initio and DFT electronic structure calculation
		through computer simulations
Part-II semester	 r-IV	
Tart-ir semester	1-1 V	
	Lon	
PCH4.1	(Thermodynamics and	CO1: Students with weaker background in
	Molecular Modelling)	mathematical principles will learn how to
		explore the scientific findings with
		mathematical models and advance it further.
		CO2: Learn principles of statistics to
		understand and estimate bulk thermodynamic
		properties of materials.
		CO3: Understand how microscopic properties
		where quantum effects are predominant can be
		correlated to macroscopic properties where

classical thermodynamics is important through

an ensemble theories and statistical distribution laws.

CO4: Through these studies, students will be able to evaluate the thermodynamic properties of systems of quantum particles such as bosons and fermions.

CO5: Knowledge can be used to utilize the classical and statistical thermodynamic principles for computer simulation of real life processes through molecular dynamic simulations.

CO5: Learn techniques of MD simulations to evaluate the molecular properties and structural features for understanding the functions of biopolymers and it's applications in drug design, material design, protein chemistry, polymer industry, etc.

CO6: Training to do the simulations independently through this advanced course will make learners a trained potential candidate for placement in world class research laboratories, institutes, R and D sectors of pharma industries, etc.

CO7: Students will learn applicability of principles of thermodynamics where irreversible effects or near equilibrium phenomena exists.

CO8: Students will gain knowledge about science behind the industrially important phenomena like production of electricity from thermal sources, Peltier effects,

		electrophoresis, osmosis, thermos-diffusion, thermos-conductivity etc. CO9: Knowledge gained on entropy production and entropy flow in chemical and biological systems will help learners to understand coupling reactions mostly existing in living organisms.
PCH-4.2	(Chemical Kinetics)	CO1: Students can understand the basic principles of Kinetics CO2: Students can learn different theories of rates of reaction CO3: Learn from fundamental to advanced theories and applications of chemical kinetics CO4: Different methods of study of dynamics of fast reaction mechanism CO5: Different mechanistic aspects of surface reaction and industrial applications CO6: Reaction mechanism and photocatalytic applications of materials CO7: Linear free energy equation and substitutions on aromatic group CO8: Students learn effect different equations expressions expressing reaction constant and substitution constant.
PCH-4.3	(Molecular Structure – II)	CO1: Students will learn basics principles and laws of electronic structure and spectroscopy. CO2: This course studies the electronic properties of materials CO3: The molecular property dipole movement correlation with electronic structure of a molecule CO4: Applications of Magnetic properties measurements to the coordination complexes the CO5: Brief study of magnetic properties of materials. CO6: Structural investigations of the material based on the NMR radiations and various theories of peak splitting CO7: Basic Principles of Mossbauer

		spectroscopy w.r.t fine and hyperfine electron energy splitting CO8: Instrumentation and applications of the Mossbauer spectroscopy.
PCH-4.4	(A) (Surface	CO1: Students can be able to understand the surface
	Chemistry)	phenomenon's like adsorption, mechanism of
		adsorption, factors affecting adsorption. The
		utilization of adsorption mechanism for removal of
		industrial effluents and purification of materials
		studied in detail.
		CO2: Explain the link between liquid surface tension
		and contact angle, and demonstrate how certain
		experimental techniques can be used for the
		assessment of liquid surface tension
		CO3: Apply knowledge on thermodynamics of
		micellization in surfactant solutions describe the
		influence of physical variables such as temperature,
		molecular structure of surfactant, and solvent
		characteristics on parameters such as critical
		micellization concentration (CMC), association
		number, micelle structure etc.
		CO4: Describe and explain different types of colloidal
		systems and interactions between colloidal particles
		CO5: Instrumentation of BET surface area and
		adsorption isotherms to determine surface area of
		catalysts which is one of the important criteria to
		select catalyst in industries
PCH-4.4	(B) (Chemistry of Materials)	CO1: Students can differentiate between the Glasses, Ceramics, Composite and Nanomaterials CO2: Students will understand the synthesis
L		characterization and application of igh Tc materials

		CO3: Students will adopt the different methodology of synthesis of polymers, morphology of of polymers and based on the morphologies their applications CO4: Different mythologies of film formation and their applications CO5: Learn to fabrications of solid state electronic devices.
PCH-4.4 (C)	(Biophysical Chemistry)	CO1: students will know about Amino acids, proteins, enzymes, DNA & RNA in living systems, electrolytes, the chirality of biological molecules, the biochemical process, weak and strong interactions, macromolecules and rubber elasticity, polyelectrolytes iopolymers. CO2: Students will learn the applications of optical and thermodynamic technique to study the interactions of biomolecules with water CO3: Learn about the photo-biological processes CO4: Study about different mechanic hemical processes in the body. CO5: Kinetic properties of muscle and molecular mechanism of receptor
PCHP – VII	Practical-VII	CO1: Training on electrochemical analysis of different physicochemical aspects of materials CO2: Training on different techniques needed to characterize the detergents CO3: Training on Modeling properties of materials CO4: Training on estimation of protonation states of acidic, neutral and basic natural amino acids CO5: Understanding principles of thermodynamics through enthalpy dilution experiments
PCHP – VIII	Practical-VIII	CO1: Application of theoretical and practical knowledge for research training through

mandatory research/industrial projects
CO2: Training to estimate properties of ionic
and non-ionic detergents.
CO3: Computer lab training to perform
molecular dynamic simulations to estimate
molecular properties of biomacromolecules in
aqueous or mixed aqueous solutions.
CO4: Making well trained experimentalist to
handle any experimentally and theoretically
challenging scientific problems for
advancement science and technology.