Shivaji University, Kolhapur

Name of Department: Chemistry

Name of Programme: M.Sc Inorganic Chemistry

Vision: Engender Human Resource to Lead the Competitive Science World for Nation Building

Mission : Impart most advanced scientific knowledge and training to the students so that genuine researchers and skilled scientists of world standard will be made available for the advancement of national science and technology programs as well as to cater the needs of industrial and pharma sectors

Program Outcomes

- **PO1:** Students will have a thorough knowledge in the fundamentals and application of modern chemical and scientific theories including those in all branches of Chemical sciences.
- **PO2:** Students will be able to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments.
- **PO3:** Students will be able to use the evidence based comparative chemistry approach for synthesis and analysis of the chemical compounds.
- **PO4:** Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- **PO5:** Students will be able to clearly communicate the results of scientific task in oral and written formats. Students will be able to function as a member of an interdisciplinary problem solving team.
- **PO6:** Students will be able to explain the role of Inorganic Chemistry for addressing social, economic, and environmental problems.

Program Specific Outcomes

- **PSO1:** The students will be able to get global level research opportunities to pursue Ph.D programme, targeted approach of competitive Exams such as CSIR NET/GATE/SET, discipline specific competitive exams conducted by service commission, etc.
- **PSO2:** The students will be able to get employment opportunities in various industries like petrochemicals, metallurgical, materials and pharmaceutical, etc.
- **PSO3:** Understands the background of Inorganic reaction mechanisms, complex chemical structures, and instrumental methods of chemical analysis, separation techniques and analytical methods of general purpose.

PSO4: Gains complete knowledge about all fundamental aspects of all the elements of chemistry.

Course Outco	omes	
Part-I Semeste	er-I	
Part-I Semeste CH-1.1	er-I (Inorganic Chemistry – I)	 1. CO1: Students will be able to explain the basic chemistry of transition metals and its compounds, spectroscopic characteristics of such compounds, nomenclature, reactions and applications. CO2: Students will obtain knowledge about Preparation, structure, physical and chemical properties of metal carbonyls of transition metals. CO3: Students will be able to understand the all aspects of synthesis, bonding, structure and reactivity of organometallic compounds and their applications in homogenous catalysis. CO4: Student will be able determine the stability of the complexes and will be able to explain the nuclear stability and reactions.
СН-1.2	(Organic	CO1: Students will able to differentiate between various organic reactive intermediates.

	Chemistry – I)	CO2: Students can recognize, classify, explain, and
		apply fundamental organic reactions.
		CO3: Students will have ability to distinguish between
		different kinds of isomers.
		CO4: Course will develop interest in writing and
		finding mechanisms of new reactions.
CH-1.3	(Physical	CO1: Students will be able to understand basic
	Chemistry – I)	principles of thermodynamics and statistical
		mechanics
		CO2: Able to learn advanced topics like quantum
		statistics and molecular dynamic simulation methods.
		CO3: Develop abilities to understand how to estimate
		and analyze the physicochemical properties of
		condensed and gas phase materials.
		CO4: Able to utilize spectral data to estimate
		molecular thermodynamic properties through partition
		function calculations.
		CO5: Understand properties of detergents and
		colloidal materials
		CO6: Learns the principles and techniques to
		understand gas and liquid adsorptions on solid
		surfaces
		CO7: Can learn spectral techniques to study surface
		adsorption phenomena.
		CO8: Learn principles and techniques for estimation
		of average molecular weight of a polymer or
		biological macromolecules

		CO9: Develop abilities to characterize polymers
		through understanding theories of virial coefficients,
		concepts of glass transition temperatures, etc.
	Analytical	CO1: Students would acquire the knowledge about the
CH.1.4:	Chemistry-I	fundamentals of Analytical Chemistry including the
		sampling, sample pretreatment, basic techniques,
		methods and data handling, processing and statistical
		analysis of the same.
		CO2: Students would acquire the knowledge and
		understand the scope of Analytical Chemistry
		spanning various fields. The students will learn
		fundamentals of qualitative analysis using
		conventional techniques
		CO3: Students will learn the chromatographic
		techniques, choice of chromatographic techniques and
		tuning of the chromatographic technique as per the
		need based on the samples to deal with, learn
		electroanalytical techniques and computation
		chemistry which would groom them for alternative
		analytical strategies which form one of the important
		components of analytical chemistry.
		CO4: Students will learn about referring to the
		standard reference books and infer information from
		the same. Analytical case study problems would be
		discussed to familiarize with the scope and advantages
		of Analytical Chemistry.
PCH-1.1	(Practical – I)	CO1: Ability in professional sampling and sample
		treatment before actual analysis
		CO2: Ability to treat and evaluate the results of

		analysis
		CO3: Understanding and capability of performing
		basic chemical processes in a chemical laboratory
		CO4: Capability of performing measurements on basic
		analytical instruments (photometers, spectrometers,
		chromatographs, ion-selective electrodes)
PCH-1.2	(Practical – II)	CO1: Students can be able to prepare various
		concentration solutions like molar, normal, ppm, etc.
		CO2: Determine the rate constants of various first
		order and second order reactions
		CO3: Determine the redox potential of a system,
		relative strength of acid etc using potentiometer,
		conductometer
		CO4: Know the formation of alloys like Brass,
		Bronze, phase diagram for binary and ternary systems
		studied in details like a composition, critical
		temperature, etc
		CO5: Validity of Freundlich adsorption isotherms to
		remove toxic material such as dye, acetic acid, and
		other industrial effluents
Part-I Semester	-II	
CH-2.1	(Inorganic	CO1: Students will get the knowledge of the basic
	Chemistry – II)	chemistry of non-transition elements and their
		compounds, synthesis and structural features, and
		applications.
		CO2: To be able to explain the structures of inorganic
		compounds based on different theories. Student will
		understand the chemistry of various types of solvents.
		CO3: Be well versed with the knowledge about the

		chemistry of Lanthanides and Actinides with respect
		to occurrence, separation, compounds and
		applications.
		CO4: To understand the three dimensional structures
		of solid-state materials of industrial importance and to
		get the knowledge of bio-inorganic Chemistry.
CH-2.2	(Organic	Course Outcomes (COs)
	Chemistry – II)	CO1: Illustration of modern synthetic methods and
		applications of reagents.
		CO2: Provide knowledge of different organometallic compounds and various coupling reactions.
		CO3: Understand principle and applications of
		protection and deprotection of various functional
		groups.
		CO4: It will elaborate to understand the concept of
		chemoselectivity, regioselectivity and
		enantioselectivity.
CH2.3	(Physical	CO1: Students will learn basics of quantum
	Chemistry – II)	mechanics.
		CO2: Knowledge of the course will form the basis or
		essential requirement for the course "Advanced
		Quantum Chemistry"
		CO3: Able to understand selection rules and to predict
		the electronic spectra of conjugated organic molecules.
		CO4: Able to study photochemical and photophysical
		phenomena
		CO5: Capable of qualitative and quantitative analysis
		of various ingredients from industrial, food and
		pharma samples using techniques of emission

		spectroscopy.
		CO6: Capable of understand the electrochemical
		aspects of materials, ionic processes and
		electrochemical sensors, battery materials and
		characterizations etc.
		CO7: Able to study electrokinetic effects and their
		applications in the field of protein separation,
		characterization etc.
		CO8: Understanding the molecular dynamics through
		kinetic studies. Applications to explore reaction
		pathways, protein-ligand binding rates, etc. will help
		to understand life governing processes.
CH.2.4:	Analytical	CO1: Students will acquire the knowledge of
	Chemistry-II	spectroscopic tools/instruments used in chemical
		analysis and interpretation of the data. The scope and
		limitations of the spectroscopic tools would be
		discussed so that the students learn about the type of
		samples which could be analyzed by these tools
		offering choices among the spectroscopic tools.
		CO2: Students will learn about the simple and
		advanced instruments used for analysis like NMR,
		MS, AAS, ICP and thermal analysis (TGA, DTA,
		DSC etc.) techniques spanning wide variety of
		samples to be considered for analysis.
		CO3: Students will learn about the instrumentation,
		sample preparation and handling of sample, analysis
		and data interpretation and structural elucidation.
		CO4: Learning about different instruments will give them idea about appropriate choice of the instrument for analysis based on the source and type of analyte(s) in the sample under consideration.
l	l	<u> </u>

PCH-2.1	(Practical – III)	CO1: Students developed for precise sample solution
	(indecieur iii)	preparation and sample treatment before actual
		analysis.
		CO2: Students can be able to perform the calculations
		and error analysis
		CO3: Develop understanding of basic chemical
		processes and deciding methods of analysis.
		CO4: Capability of performing measurements on basic
		analytical instruments (photometers, spectrometers,
		chromatographs, high end thermometers,
		refractometer, pH meter etc.)
PCH-2.2	(Practical – IV)	CO1: Students can be able to prepare various
		concentration solutions like molar, normal, ppm, etc.
		CO2: Determine the unknown concentration and
		thermodynamic parameters using conductometer
		CO3: Student will explore how to estimate order of
		reaction and the catalysis
		CO4: students can estimate refractive index and
		molecular weights of species.
		CO5: Students can understand the estimation of
		equilibrium properties like redox potential, phase
		diagram etc
Part-II		
Semester-III	(T	CO1: At the end the student should be able to:
РСН-3.1	(Inorganic Chemical	Recognize symmetry elements in a molecule;
	Spectroscopy)	State the point group a molecule belongs to; Combine matrices and set up matrix for
	Specifoscopy)	transformations and acquisition of a theoretical
		support which underlies much of spectroscopy.
		CO2: Able to describe molecular vibration with the

ICH- 3.3	(Nuclear Chemistry)	CO1: Students will be able to different modes of radioactive decay and also theories of
		and stabilities of ternary complexes and their reactions.
		CO4: Students will be able to explain the reactivity
		magnetic moment for given complex and predict the nature of magnetic properties.
		CO3: Students should be able to estimate the spin-only
		spectroscopic properties of transition metal complexes.
		predict both position and intensity based on Orgel/Tanabe-Sugano diagrams and explain the
		CO2: At the end of the course students should be able to interpret simple electronic spectra and
		stabilizing the complexes.
	()	ligand field theories and calculate the crystal field stabilization energy and its role in
ICH-3.2	(Coordination Chemistry – I)	in d-metal complexes using crystal field and
		CO1: To be able to describe and explain the bonding
		elements.
		composition and chemical nature of the surface
		compounds and able to explain the surface
		local structure of typical elements in inorganic
		CO4: The ability to investigate and determine the
		explain the function of the several components of a mass spectrometer and predict the fragmentation patterns expected.
		CO3: Students will be able to identify, describe and
		basic concepts in IR and Raman Spectroscopy, Examines IR and Raman spectroscopy and molecular structure determination by the simple molecules.
		interaction of matter with light, Explain the

		1
		radioactive decay.
		CO2: Students will be able to explain the nuclear structure and stability using various models.CO3: Students will get basic knowledge of nuclear reactions, mechanism and energy calculations.
		CO4: At the end students should be able to describe
		the fundamentals of nuclear reactors, isotopic
		chemistry, and the applications of radioactivity.
ICH3. 4	(A) (Organometallic and Bioinorganic Chemistry)	 . CO1: After successful completion of the course the students should be able to explain the synthesis, structure, bonding, properties and reactivity of Alkyls and Aryls of Transition Metals. CO2: After successful completion of the course the students should be able to explain the synthesis, structure, bonding, properties and reactivity of Compounds of Transition Metal –Carbon with Multiple bonds. CO3: Students should be able to describe the role of metals in medicines, deficiency disorders of metals and use of platinum, gold and lithium compounds in the treatment of cancer, arthritis and psycho drugs, respectively. CO4: At the end of the course student should be able to explain the natural proteins that carry dioxygen in various animals, the role of myoglobin and hemoglobin in carrying dioxygen in mammals and other non-heme proteins for oxygen uptake.
	(Selected Topics	CO1: Students will learn about the basic principles
ICH-3.4	in Inorganic	of catalysis.
(B)	Chemistry)	CO2: Students will get knowledge about the coordination polymers.
		CO3: After completion of the course students will be able to learn about the non-conventional sources of energy.

		CO4: Students will be able to understand the supra-molecular chemistry and the principles of it.
ICHP – V	Practical-V	 CO1: Ability in professional sampling and sample treatment before actual analysis CO2: Ability to treat and evaluate the results of analysis CO3: Understanding and capability of performing basic chemical processes in a chemical laboratory CO4: Capability of performing measurements on basic analytical instruments (photometers, spectrometers, chromatographs, ion-selective electrodes)
ICHP – VI	Practical-VI	 CO1: Ability in professional sampling and sample treatment before actual analysis CO2: Ability to treat and evaluate the results of analysis CO3: Understanding and capability of performing basic chemical processes in a chemical laboratory CO4: Capability of performing measurements on basic analytical instruments (photometers, spectrometers, chromatographs, ion-selective electrodes)COs – POs& PSOs mapping
Part-II semester	r-IV	
ICH4.1	(Instrumental Techniques)	 CO1: Students will obtain knowledge of the working principles involved for selective analytical methods and the fundamental basics of the instrumentation including electronic spectroscopy and diffraction techniques. CO2: Students will understand the advanced methods involved in determination of the quality and quantity of chemical substances in given accompanyed.
		compounds. CO3: At the end of the course students will learn the

		 interpretation of the experimental data obtained using various techniques and instruments for laboratory analysis carried out for quality assurance. CO4: Students will be able to demonstrate the use of complementary analytical techniques to define the system/materials more precisely. To know the recent advancements in the instrumental methods of temperature programmed analysis.
ICH-4.2	(Coordination Chemistry-II)	 CO1: After successful completion of the course students will be able to familiar with various reactions of transition metal complexes and will be able to predict the mechanism involved using direct and indirect evidences. CO2: At the end students will be able to explain the cis-effect, trans-effect, and mechanism of electron transfer reactions. CO3: Students will be able to explain the photochemistry of transition metal complexes. CO4: Students will be able to describe the industrial applications of transition metals as catalysts.
ICH-4.3	(Chemistry of Inorganic Materials)	 CO1: At the end of the course students should be able to explain the bonding and structures of the solid state materials. CO2: After completion of this course students will be able to explain the various defects present in the solid-state materials and their impact on electronic and structural properties of the same. CO3: Students will be able to explain the various synthesis methods and advanced instrumentation tools used for characterization of nano-materials.

		CO4: At the end students will be able to explain
		the optical, magnetic and structural properties
		of the nanomaterials and will be able to explain
		their applications in various industrial fields
		such as Electronic devices, Energy generation
		and storage, Automobiles, Sports and toys,
		Textile Industries, Cosmetics Production,
		etc.COs – POs& PSOs mapping matrix (1-
		low, 2-medium, 3-high, 0-No correlation)
ICH-4.4	(A) (Energy and Environmental Chemistry)	CO1: At the end, students will be able to: Learn basic concepts of solid waste management, beginning from source generation to waste disposal.
		CO2: Students should be able to-Characterize the solid waste in terms of hazardous waste components; impact of waste management on health and environment; understand steps towards solid waste management-waste reduction at source, materials and resource recovery/recycling, treatment and disposal techniques.
		CO3: After completion of the course student will be able to explain the advanced energy conversion devices such as Fuel cells, and the various techniques involves in the production of Hydrogen (future fuel).
		CO4: Students will be able to demonstrate the
		reactions involved in the advanced energy storage
		devices, can predict the theoretical energy storage
		capacities of such devices, understand the chemistry of
		various batteries.
ICH-4.4	(B) (Radiation	CO1: The students will obtain knowledge
	Chemistry)	about the isotopes and health hazards of

		radiation.
		CO2: Students will earn knowledge about the separation of radionuclides.
		CO3:Students will be able to understand the role of tracers in designing a reaction mechanism of certain reactions.
		CO 4: After successful completion of the course student will have knowledge about the detection and measurement of radioactivity.
ICHP – VII	Practical-VII	CO1: Ability in professional sampling and sample treatment before actual analysis
		CO2: Ability to treat and evaluate the results of
		analysis
		CO3: Understanding and capability of performing basic chemical processes in a chemical
		laboratory
		CO4: Capability of performing measurements on basic
		analytical instruments (photometers, spectrometers,
		chromatographs, ion-selective electrodes)
		emomatographis, fon selective electrodes)
ICHP –	Practical-VIII	CO1: Ability in professional sampling and sample
		treatment before actual analysis
VIII		CO2: Ability to treat and evaluate the results of
		analysis
		CO3: Understanding and capability of performing
		basic chemical processes in a chemical
		laboratory
		CO4: Capability of performing measurements on basic
		analytical instruments (photometers, spectrometers,
		chromatographs, ion-selective electrodes