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Abstract
The Stress-Strength reliability R = P(X; < X») where X; and X, represent the stress applied
and strength of an equipment respectively, plays a crucial role in setting warranty periods while
launching new brands of a product. The paper addresses the issue of estimating R when X; and
X, belong to the exponentiated scale family which includes the popular exponentiated exponential
distribution that has proven to be an excellent model for life time distributions. The cases of
known/unknown and equal/unequal scale parameters are handled separately. For known scale
parameter, a generalized pivot quantity (GPQ) for the shape parameter and R are developed. The
interval estimates of R based on the proposed GPQ exhibited uniformly best performance. For an
unknown scale parameter a maximum scale invariant likelihood estimator (MSILE) of the shape
and an allied estimator of the scale are introduced. The parametric bootstrap interval estimates of
R based on a proposed MSILE of the shape parameter exhibited best performance among others.
An application in setting warranty periods is illustrated based on two real data sets.

Keyword: Exponentiated Exponential Distribution; Generalized Pivot Quantity; Maximal Scale

Invariant Likelihood Estimator; Warranty Period.

1 Introduction

The Stress-Strength reliability of an equipment defined by R=P(X;<Xj5) quantifies the probability
that the strength X; is larger than the stress X;. This probability can be used to assess if the stress
exceeds strength, when there is a high chance of instant failure and vice versa, and has elegant

applications in the field of setting warranty periods for products to be launched in the market,
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customer usage data, reliability engineering among other applications.

A thorough review on various inferential procedures for stress-strength reliability analysis
with illustrative applications can be found in Kotz et. al’. In the recent years, numerous articles
have addressed the problem of inference related to R, see for example Zhou'®, Ragab et. al. 1,
Surles and Padgett '3, Ahmad et. al. !, Kundu and Gupta 8 among others. Under independence
of X7 and Xj,

R=P(X; < Xp) = /yGl ()&, (v)dy, 1)

where G;(.) and g;(.) are the cumulative distribution function (CDF) and probability distribution
function (PDF) of X;,i = 1,2. The inferential procedures addressed in the current literature for
R include maximum likelihood inference, some asymptotic methods, Bayesian methods among
others which are constrained by stringent assumptions and complexity in estimation. Most often,
existence of one or more nuisance parameters disturbs the quality of the underlying non Bayesian
inference.

Recently the inference based on generalized pivotal quantity (GPQ) introduced by Tsui and
Weerahandi 4 has received a wide attention in almost every discipline. GPQs have been observed
to handle the nuisance parameters efficiently and yield accurate simple inference procedures even
under small to moderate sample sizes in almost all cases were they have been used. Asymptotic
properties of the CI based on the GPQs have been discussed by Hanning et. al.® and Roy and Bose
12| The present article exploits this technique for interval estimation of R, when X; and X, are
independently distributed members of the exponentiated scale family, also known as resilience or

frailty parameter family (Marshall and Olkin?):

G(%, n) = F”‘(%) Resilience family  or ()
G(%, ) = F“(%), Frailty family xe R, A, a >0, 3)

where, A and «, are the scale and resilience (frailty) parameters respectively, and F is a given
known distribution function.

The exponentiated scale family encompasses many popular distributions, see for example
Nadarajah and Kotz . Our main emphasis is on the widely applicable and recently most
popular exponentiated exponential distribution (EED) developed by Gupta and Kundu ?, (see for
example Gupta and Kundu 3~°) obtained by introducing a resilience parameter in the exponential

distribution :

G(%, a) = (1 —e*%y

x>0, >0,A>0.
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In the sequel, section 2 outlines a unified procedure for obtaining GPQs for a resilience (frailty)
parameter and the allied interval estimation for the stress-strength reliability, when the scale
parameter is known. The proposed interval estimation of stress-strength reliability is based on
these GPQs. It is notable that the form of the GPQ for the resilience/frailty parameter remains
same within the entire scale family (F(3), A > 0) used in equation (2) and (3). For the case of
an unknown scale parameter the performance of the approximate interval estimates obtained by
replacing unknown scale parameters by their GPQs was not found up to the mark. In this case,
a better procedure is given in section 3 based on a proposed maximal scale invariant likelihood
estimator (MSILE) of a. Section 4 reports the findings of an empirical assessment of the procedures
proposed in section 2 and section 3. The procedures are illustrated with the real-life data in section

5 in the context of setting warranty periods.

2 Confidence Interval for R Under Known Scale Parameter

2.1 A GPQ for the resilience (frailty) parameter

Let, X be a random variable with CDF Fg(.), where {=(8, ¢) is the unknown parameter vector. The

interest lies in the parameter 6 while J is the nuisance parameter. A GPQ for 0 is defined below:
Definition 1: Generalized Pivot Quantity

A random quantity Gy = ¢(X; x, ) is said to be a generalized pivotal quantity for the parameter

of interest 6 if it satisfies following two properties:

1. The probability distribution of Gy is free from any unknown parameters.

2. The value of Gp=9(X; x, {) at X = x does not depend on the nuisance parameter J. For

most of the cases Gg=0.

Let, X = (X1, X2, ..., X) be n independent observations on a random variable X from the
distribution function defined in equation (2) or (3). In the following theorem we develop the main
result used for constructing the GPQs for a resilience(frailty) parameter assuming that the scale

parameter is known.

Theorem 1: Let, & be the maximum likelihood estimator (MLE) of « based on the exponentiated scale
family (2) or (3). Then the distribution of a/& is Gamma(n, 1)/n or equivalently X%n/ 2n,

where x3, is the Chi-square random variable with 21 degrees of freedom.



Proof: By probability integral transform, we have,
X
F* (){) Lu;(0,1),

where U;, i = 1,2, ..., n are independent standard uniform variates. Using standard results

and independence of X1, X», ..., X;; we have,
—ailo (F(&)) d Gamma(n,1) 4)
i=1 & A T

Furthermore, the log-likelihood function for the exponentiated scale family is,

alX) = nlog(e) + (& ~1) Y- og(F(5) + 3 log(F(3)) 5

Equating the derivative of / with respect to « to zero, one gets
n
A= (6)
X
i=1log(F(3))

Noting the result in (4),

-1
2
_< _n X_) o Gamma(n, 1) o omens
— T log(F(¥) n F

R

5‘21’:, where W ~ x3 . Exactly

It is now clear that, the GPQ for a resilience parameter is G, =

similar arguments hold for a frailty parameter.

2.2 Confidence interval for R under common known scale parameter

It is easily verifiable that under common scale parameters, the reliability R for the exponentiated

scale family is:

12 resilience parameter family
Ray, ag) = § “1 %2
’ X1 . .
frailty parameter family. 7
a1+ ap yP y @

Furthermore, it is easily deduced from the definition of GPQ that, if Gy is a GPQ for 0, then
GPQ for any function 77(0) is 77(Gg). As such the GPQ for R(ay, ap) is Gr = R(Gy,, Ga,), Where
Gy, and Gy, are GPQs of a1 and a5 respectively.

Let, X; and X; be independent but not identical random variables from distribution functions
G(%, &i),i =1, 2 respectively. By implementing the algorithm 1 given below an observation on Gg

can be easily generated for the case of known common scale parameter.



Algorithm 1:

Step 1. For observed data x; = {1, Xj, ..., Xin, }, compute MLEs for resilience / frailty parameters

& i=1,2.

Step 2. Generate independent random numbers W; and W, from X%nl and X%nz respectively.

Step 3. Compute GPQ for «;, Gy, = ”‘2’3’ ,i=1,2.

Gy
gpcl +ga2 :

Step 4. For resilience parameter, compute Gr = ga1g+2gn2 and for frailty parameter Gg =
The Algorithm 1 can be repeated B times where B is a sufficiently large number, (say 10000) to
generate B independent copies of Gg. At the level of significance v, the sample (v/2)" and
(1 —/2)" quantiles $y/2 =L and 1_, /2 =U of the generated sample give the proposed interval

estimate [L, U] for R.

2.3 Confidence interval for R under unequal known scale parameters

When scale parameters are known and unequal, that is A; # Ay, it is easily seen that

R=P(X; < Xp) = /v G1(nv,a1)g, (v, ap)dv, (8)

where 7 = %, Gi(.) and g;(.) correspond to the standard (with scale parameter equal to 1) CDF
and PDF of the scale family under consideration. This integral most often may not exist in closed
form and its numerical computations in standard packages like MATLAB and R often gave absurd

results. An easier but very closely accurate computation can be attempted noting that,

R = ‘/O'oo{Gl(ﬂU, ﬂl)gz (’0[ az)ev}e—vdv’
— EV[H(V, aq, Ko, 17)], (9)

where H(V, a1, a3, 1) = G1(7V, a1)g,(V, az)e” and V ~ exp(1). This expectation can then be
evaluated empirically by simulating a large number of standard exponential random numbers v;,
i=1,2, .. M and estimating R by R(ay, ap, 17) = {Zf\ﬁl H(v;, a1, a2, 17)} / M. For M larger than
10000 most often R(.) was found close to R up to O(1072). In algorithm 1, M independent copies
of Gr can be generated using this computational procedure to produce 100(1 — y)% CI for R.

Remark 1.

When the support of X; is the entire IR, the integral in (9) will be from —co to co. Here
use of the standard normal distribution for V is recommended instead of standard exponential

distribution in the above procedure.



3 Confidence Intervals for R Under Unknown Scale Parameter

In case of unknown scale parameters the MLE &; of «; being a function of MLE Ajof Aj,i=1,2the
distributional result proved in Theorem 1 does not hold exactly and the resulting GPQs and hence
the above inferential procedures are approximate. As an alternative, four bootstrapping procedures,
namely parametric and nonparametric bootstrap techniques employed with regular MLEs and
MSILE:s of the parameters under consideration were compared empirically. The MSILE is invariant
under the nuisance scale parameter and is obtained by maximizing the likelihood L*(«;|y;) of
the transformed data y; = (y11, Y12, - Y1 —1) and y, = (Y21, Y22, -, Y2n,—1) Obtained by the

following transformation and integrating over y;,,, i = 1,2:
Xij/ Xin, forj=1,2,..,n -1
i = { Xin, for j =n;; i=1,2.
Often computation of L*(«;|y;) needs numerical integration which can be circumvented by the

technique suggested in section 2.3, equation(9).

3.1 Bootstrap confidence interval for R under common unknown scale param-

eter

Following algorithm is used for computing a bootstrap CI for R. In the sequel, &; denotes the

MSILE of «; and A is the maximizer of L*(A|&, &, x1, X2).
Algorithm 2:

For i = 1,2 follow the following steps:

Step 1. For observed data x; = (x;1, X2, ..., xmi) compute &;, note that &; does not depend on the

unknown A;, i = 1,2.
Step 2. Compute A for given & and & by maximizing the likelihood L*for the combined sample.

Step 3. Generate bootstrap samples x! = (x};, x}5, ..., xl’-‘nl_). Note that for the parametric bootstrap
x} is generated from G;(A, &;) while for the nonparametric bootstrap x} is a random sample

with replacement from x;.
Step 4. Obtain &;* based on x.
Step 5. Next compute A* for given &;* based on the combined sample (x;, x}) as in step 2.

Step 6. Compute bootstrap estimate R* by replacing «; by &;* in (7).



Step 7. By repeating steps 2 to 6 generate sufficiently large number (say B=1000) of copies of
bootstrap estimates, Rypo; = (R%, Rj, ..., R%). The (7/2)" and (1 — v/2)!" sample quantiles

of Ryoot say L and U are the bootstrap confidence limits of R.

3.2 Bootstrap confidence interval for R under unequal unknown scale param-

eters

Confidence interval of R for unequal and unknown scale parameters A; # A;, can also be obtained
based on parametric and non-parametric bootstrap technique. In this case the estimates A; in
step 2 of Algorithm 2 are to be independently computed from the respective sample for given &;,
i = 1,2. The procedure to compute bootstrap estimates 543‘,;\;‘, i = 1,2 is the same as in Algorithm
2, while the reliability estimate in Step 6 should be computed based on equation (9) by replacing 7
by 7* = % and «; by their bootstrap estimates &;, i = 1,2. Rest of the procedure is same as above.

4 Empirical Assessment

EED being a widely used distribution from the exponentiated scale family, is employed for the
comparative empirical study. A comparative study is attempted among the methods discussed
in sections (2) and (3). Performances of all the methods are assessed based on the estimates
of coverage probability and average widths on 2500 simulations. The parametric combinations
considered are: sample sizes (11, 12)=(10, 10), (10, 30), (10, 40), (30, 30), (30, 40), (40, 40). Since
the procedure is invariant under common scale parameter, the value of A=10 is fixed while the
resilience parameter is chosen to be «1=0.5, 1, 2, 5. a, is adjusted such that R=0.1, 0.4, 0.7, 0.9.
Under unequal scale parameters, the parameters are set to a; = 0.5, 5, a3 = 1, 6 and for each A1=0.5,
5 the values of 7 are set to 0.5, 2, 5, 10 by adjusting A, = nA;. The level of significance used is
v = 0.05.

The following five methods are compared:

GPQ: Generalized pivotal quantity

PBMSILE: A parametric bootstrap technique employed on MSILE
PBMLE: A Parametric bootstrap technique employed on MLE
NPBMSILE: A non-parametric bootstrap technique employed on MSILE
NPBMLE: A non-parametric bootstrap technique employed on MLE

Figure 1 displays the results for known scale parameters. Figure 1 (a) and (c) display the box

plots of coverage probabilities of CI’s under equal and unequal scale parameters respectively



while figure 1 (b) and (d) display corresponding average widths of those procedures exhibiting
satisfactory coverage performance. Figure 2 displays the counterparts under unknown scale

parameters. Here the performance of GPQ based CI was not recommendable and is omitted.
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Figure 1: Box plots of simulated coverage probabilities and average widths of CI's (conforming the size performance)

for R under known scale parameters.
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Figure 2: Box plots of simulated coverage probabilities and average widths of CI's (conforming the size performance)

for R under unknown scale parameters.

For the known scale parameters, observation of Figure 1 reveals that GPQ based CI are
clearly outperforming the rest with respect to both the criteria. Here the coverages are very well
concentrated around the nominal level with shorter widths among others. For the case of unknown

scales, observation of Figure 2 reveals that PBMSILE outperforms the rest and is recommended.



5 Real Life Applications

The data given in Table 1 (http://reliawiki.org/index.php/Stress-Strength_Analysis) reports
the miles traveled by 20 sold vehicles in a year (stress variable: X;) and miles traveled before
failure of an independent sample of 50 new vehicles of the same type (strength variable: Xj).
The probability of vehicle failure during a period of one year can be estimated by using the

stress-strength reliability analysis, discussed in section 2.

Table 1: Miles traveled by vehicle per year and miles traveled before failure (In 100 miles).

Stress (X1) 10096 111.83 11534 12141 12536 137.77 12595 138.62 12527 109.55
(miles traveled 104.69 11391 119.19 124.05 140.32 141.38 126.57 139.71 121.05 114.86

in a year)

Strength (X,) 135.07 16125 148.10 167.49 155.22 174.30 13943 16327 149.51 168.62
(miles traveled 13793 163.20 149.40 167.93 15547 178.05 140.17 163.49 151.04 169.30
before failure) 14147 164.06 152.18 169.48 160.03 18575 143.76 166.11 153.11 170.41
143.51 165.01 153.03 170.24 160.18 188.13 14595 166.25 154.80 172.63
15570 178.84 159.75 18549 160.52 189.44 147.46 166.70 15496 173.47

The Table 2 below reports the Akaike information criterion (AIC), Bayesian information
criterion (BIC) and P-value corrosponding to Kolmogrov-Smirnov test statistics (KS test) for fitting

a best life distribution to the data presented in Table 1.

Table 2: Goodness of fit to the data given in Table 1.

Distribution Stress Strength
P-Value AIC BIC P-Value AlC BIC

Weibull 0.5186 160.3475  162.3390 0.7497 409.8429 413.6669
Exponential ~ 0.0000  234.4878  235.4835  0.0000 610.0452 611.9572
Gamma 0.7520  8233.1490 8235.1400 0.9781  28032.1200 28035.9400
Log-Normal 0.8076  2612.3390 2614.331  0.9611  8981.6030  8985.4270
Normal 0.7264  163.7162  162.7076  0.9646 416.6732 420.4973
Pareto 0.0956  170.2461  172.2376  0.0037  434.7542 438.5783
EED 0.9405 160.8999  162.8913 0.5319 407.5343 411.3584

The three criteria together indicate that the Weibull and EED are two almost equally best fitted

10



distributions to both the variables. To illustrate the estimation of R, using the results of previous

sections it is reasonable to assume that the data is coming from EED.

EED Q-Q Plot for Stress EED Q-0 Plet for Strength
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Figure 3: EED Q-Q plot for Stress (Xq) and Strength (Xp) variables.

The Q-Q plots for the two data sets given in Figure 3 also support in favor of the EED to
both X; and X;. MLEs of the scale parameters for (X;) and (X;) are respectively 10.8707 and
12.1455. The CI and point estimates for R = P(X; < X;) computed by the four methods are
presented in Table 3. Based on the likelihood ratio test for equality of scales (P-value = 0.5834 ) it
seems reasonable to assume that the samples are coming from populations with common scale
parameters, so that based on the recommendations, the CI obtained by PBMSILE are most reliable.

The point estimates obtained by mean and median of bootstrap samples and confidence

intervals of stress-strength reliability for four bootstrap methods are depicted in the following

Table 3:

Table 3: Point Estimates and CI for R.

Point Estimate Confidence Interval
Method

Mean Median (L, U)
PBMSILE 0.9833 0.9964 (0.9570, 0.9986)
PBMLE 0.958  0.9597 (0.9219, 0.9824)

NPBMSILE 0.9844 0.9965 (0.9570, 0.9986)
NPBMLE 0.9567 0.959 (0.9253, 0.9803)

The confidence interval of reliability computed with PBMSILE (as well as NPBMSILE) indicates
that the probability of instantaneous failure of a vehicle within a year lies in (0.0014, 0.043), which

11



is very low. It thus follows that setting one year warranty period for a vehicle of this brand is
almost risk free.

A similar analysis for the data on number of pages printed by printers (http://www.weibull.com/
hotwire/issuel63/ hottopics163.htm) also best fitted with EED. Here, the number of pages printed
by users in one year is the stress variable X; and the number of pages printed before the compo-
nent failed during in-house testing is the strength variable X;. The resulting CI for R is (0.9859,
0.9999), indicating that the probability of failure within a year lies between (0.0001,0.0141) which
is very small and here also one year warranty period for the printers can be set with almost no

risk.

6 Concluding Remarks

Efficient estimation of the stress-strength reliability is of prime importance in reliability appli-
cations, particularly in setting warranty period for products to be launched in the market. We
have addressed this issue when the distribution of stress and strength belongs to exponentiated
scale family. When the scale parameters are known, interval estimation of R based on GPQ
is recommended while the case of unknown scale parameters; is recommended to be handled
through the parametric bootstrap approach based on the maximum scale invariant likelihood

estimator of the shape parameter.
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This paper is a revised and expanded version of a paper entitled ‘Economic
design of moving average control chart for non-normal data using
ceased production process’ presented at National Seminar on Stochastic
Modelling and Analysis organised by Department of Statistics, Cochin
University of Science and Technology, Cochin, 25 March 2011.

1 Introduction

Control chart technique was first developed by Shewhart (1931), as an online process
control technique to control the variability in a production process. Since then, there has
been lot of developments taken place in the construction of control charts. This includes
development of control chart for normal as well as non-normal process distributions. In
the design of control chart, the decision about the sample size (n), sampling interval (h)
and the control limit multiplier (k) of the control chart is made to monitor the
manufacturing process in control according to statistical and/or an economic criteria.
These three factors are generally known as control chart parameters. In statistical control
chart, the design parameters are chosen in such a way that the chart meets some statistical
requirements. In the economic design, the overall focus is given on the minimisation of
the total loss cost from the process (that is maximisation of the profit). In economic-
statistical design, while minimising the production cost, some statistical constraints are
applied to the process.

Duncan (1956) was the first to propose an economic design for X control chart. Since
then, based on his foundation, many other researchers have been working on the
economic design for different type of control charts. Montgomery (1980), Collani (1986),
McWilliams (1989), Saniga (1989), Rahim and Banerjee (1993), Yu and Chen (2005)
and many others have worked on the different types of economic designs. Saniga (1989)
first considered the economic-statistical design for X and R chart by applying statistical
constraints on type I and type II error probabilities and concluded that the design gives
better performance as compared to the fully economic model at slight increase in the cost.
Al-oraini and Rahim (2003) also concluded in the same way. Zhang and Berardi (1997),
Chou et al. (2000), Chen and Cheng (2007) and Yeh and Chen (2010) have also worked
on this type of design of X control chart. Alkhedher and Darwish (2013), Sing et al.
(2014), Hashemi et al. (2014) have also reported optimisation procedures in various
applications.

Wu et al. (2008) have developed an optimum design of combined X and cumulative
sum (CUSUM) chart based on extra quadratic loss and compared performance of the
chart with single charts. Trovato et al. (2010) have economically compared several
control strategies including Shewhart, Exponentially Weighted Moving Average
(EWMA) and CUSUM to monitor the process dispersion in short run. They conclude that
while monitoring short run process, production and inspection rates are to be estimated
accurately. Wu et al. (2010) have compared performance of two CUSUM schemes for
shift in mean and variance using optimum design. Nenes (2011) has provided unified
approach for the economic optimisation of different variable parameter (VP) control
charts. He has developed a single cost function to optimise the chart parameters. Mahadik
and Shirke (2011) have compared performance of variable sampling interval (VSI),
variable sample size and sampling interval (VSSI) and special variable sample size and
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sampling interval (SVSSI) T? control charts in terms of steady state average time to
signal (SSATS). Kolli and Limam (2011) have developed an economic design for np
control chart. Zhang Wu et al. (2011) have developed the optimisation design treating
sampling inspection cost and in control average time to signal (ATS) as adjustable
parameters for X and CUSUM chart.

Ou et al. (2012) have proposed an optimal sequential probability ratio test (SPRT)
control chart and compared its performance with basic SPRT chart. Lee et al. (2012)
designed a control chart with double sampling and VSI. Khoo et al. (2013) and Tu (2013)
have developed economic and economic-statistical designs for two unit series system X
chart and synthetic X chart. Amiri et al. (2013) provided economic statistical design of
modified exponentially weighted moving average (MEWMA) control chart. Franco et al.
(2014) have investigated economic-statistical design of X charts using skip sampling
strategies for autocorrelated processes. A&L switching rule is provided to reduce the
switching between sampling intervals in VSI control charts. Guo et al. (2014) have
studied the economic design of variable parameter X chart with a correlated A&L
switching rule. Rostami and Ali (2014) have provided approximation algorithm for
minimum cost flows. Basically, in most of these studies, the quality characteristic is
assumed to be normally distributed and hence for mean charts, the distribution of mean
becomes normal. But, sometimes the quality characteristic may not have normal
distribution. Considering this situation, Rahim (1985), Chou et al. (2001), Chen (2004),
Chen and Yeh (2006) have developed economic design for X control chart for
non-normal data, under different situations.

In the literature, there are good number of research papers on economic design of X
control chart, but relatively less on the economic design of moving average (MA) control
chart. Chen and Yang (2002), Chen and Yu (2003), Yu and Chen (2005) and Yu and Wu
(2004) have reported economic design of MA control charts. These designs are also
based on normal quality characteristics and most of them are for the continuous process.
Patil and Rattihalli (2009) have proposed the economic design for continuous as well as
ceased MA process control chart. In this paper, considering non-normal input quality
characteristics, we have developed the combined loss cost function for MA control chart
under continuous, ceased and semi-ceased process model using unified approach by
Lorenzen and Vance (1986). While developing the cost function, the approach by Yu and
Chen (2005) is found to be useful. The cost function is optimised with respect to design
parameters n, h and k, and the effect on loss cost is observed particularly for continuous
and ceased process. The sensitivity of the design is carried out by applying change in the
input parameters. While developing the cost function we have used different input cost
and time parameters, which may be estimated by original sampled data from trial
production.

The present paper consists of seven sections excluding the present one. In Section 2,
we have introduced a process model and given definitions of notations used in the paper.
A short description about Burr distribution is given in Section 3. Expressions for
expected cycle length and expected loss cost are obtained in Section 4 and Section 5
respectively. An example is given in Section 6 and the sensitivity analysis is carried out
in Section 7. Final conclusions are presented in Section 8.
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2 Process model and notations

Consider the production process monitored by drawing a single unit sample at the
interval of every ‘h’ hour. It is assumed that the time to take the sample, inspect it and to
draw the conclusion is negligible. Let x,, X, ... ... be the sample observations collected on
the process quality characteristic of the process and are assumed to have distribution with
mean p and known variance 6°. The moving average of the observations at time t is given

by,

- = .
Xm :;ZO:XH; ift< n

o M
:HZXH; ift > n

The process is monitored by a single assignable cause with the process target value as the
first moment E(x) of the distribution and is denoted by . The shift in the process target
value is instantaneous and whenever, the process shifts to out of control state (assignable
cause occurs), the target mean shifts from i, to yy + 8o, and otherwise it remains at p.

The process is assumed to be start in control state and the period up to next in control
state through an out of control state is termed to be one production cycle. That is, the time
between start of two successive in control states is termed as a production cycle. This
production cycle consists of in control period as well as out of control period. The model
targets to find expected cycle length of this cycle and the total expected loss during the
cycle, so that, expected loss per unit time from the process is obtained and optimised. The
notations used are as follows.

n sample size
h sampling interval
k control limits coefficient
) magnitude of shift in the process
A parameter of the exponential life time distribution for in control state
¢y, ky parameters of the burr distribution
6 =0 if the process is ceased during the search of an assignable cause
=1 if the process is continued during the search of an assignable cause
5,=0 if the process is ceased for the rectification (repair) of an assignable cause
=1 if the process is continued during the rectification of an assignable cause
o the probability of false alarm
T expected time to search for an assignable cause during the false alarm
T, expected time to search for an assignable cause during the true alarm

T, expected repair time of an assignable cause during the true alarm
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Co expected loss cost per unit time due to the nonconformities produced when
the process is in control

C expected loss cost per unit time due to the nonconformities produced when
the process is out of control

C, expected production loss cost per unit time due to ceasing of the process
ASN average sample number to detect the shift

N no. of samples during the cycle

g time to sample one unit

a,b fixed and variable costs of sampling

v loss cost due to single false alarm

w loss cost due to search and repair of an assignable cause.

3 The Burr distribution

The Burr distribution is discussed in detail by Burr (1942) to represent various types of
non-normal distributions. The probability density function of Burr distribution with
parameters ¢, and k; is given by,

¢k, yo™
fly) =——1——; >0,¢2 1L,k >1
(Y) (1 ¥ ycl )k1+1 y 1 1 (2)
= 0; y <0
and its cumulative distribution function is given by,
1
Fy) =1-————; >0,¢,2 Lk > 1
) (+y" )k1 y 1 1 3)
= 0; y <0

One can apply first four moments or 3rd and 4th moments of the underlying distribution,
as the case may be, to approximate the parameters (c, k;) of the Burr distribution. The
resulting coefficient of skewness and kurtosis from the function cover the broad range
within which many empirical and theoretical distribution lies. Further, the Burr
distribution can be approximated by the normal or gamma distribution (Chen and Yeh,
20006).

Burr (1942) has provided two tables. In Table 2 values of the mean and standard
deviation (S.D.) of the Burr distribution are given and in Table 3, values of skewness and
kurtosis coefficients for different values of parameters c¢; and k; are provided. From the

original sampled data mean (x),, variance (S2), coefficient of skewness (as) and
coefficient of kurtosis (o4) can be obtained. Using Table 3 and the values of coefficient of
skewness and kurtosis one can estimate the values of parameters (cy, k;) of the family of

Burr distribution. Using these values of ¢; and k; and with the help of Table 2, mean (M)
and S.D. (S) for the Burr distribution can be estimated. Using these estimated values of
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mean and variance, the standardised transformation between Burr variable (y) and any
other variable (x) is made by,

S S

X

Y—M:X—i 4@

This transformation is useful to detect type I and type II error probabilities of the control
chart, when the incoming data is non-normal.

4 Expected cycle length

The expected cycle length consists of the in control period, time for search due to false
alarm, the out of control period, time for sampling and testing and the time for search and
repair of an assignable cause. Assuming that, an assignable cause occurs according to the
Poisson process of an intensity of A occurrences per unit time (That is the distribution of
an in control time has an exponential distribution with parameter A), the expected in
control time becomes 1/A.

The probability of false alarm is the probability that, the test statistic falls outside the
control limits, when the process is in control. Our test statistic is based on the moving
average and has mean i, and variance o*/n. Hence,

a= P, < p,— ko/Vn, X > p,+ ko/Vn); at mean = p,, (5)
=1+ P&, < - ko/Vn) — P(X,, < p,+ ko/Vn): at mean = p,,
According to standardised transformation between Burr variable (Y) and r.v. (X,,), we

get,
Y-M Xm-—p,
S o/\n
This gives,
% —p (Y-M)o
m 0 S\/H s

Using this in (5), we get,

(Y-M)o
Svn

Y-M

- P(uo+%< Lo + kc/\/nj

=1 -P(Y <M -kS) + P(Y < M + kS) (6)

1 1

=1+ o K

[1+M+k8) ] [1+(M-kS)" ]

a:1+P[p.o+ <p0—k6/\/nJ

1
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Let, s denotes expected number of samples taken during in control period, then

0

5= Zi(e—mh _ e-x(i+1)h)

)

and, the expected time elapsed due to false alarm = Tyass.
Therefore,

In control time = IT = %+ (1-9,)T,as. (®)

Let, T be expected time of occurrence of an assignable cause in i™ and (i+1)™ sample,
then

Mo
T_¢ K(1}+7uh) ©)

A" =1
Let, uy, i=0,1,2 ... .. n-1;j=1,2 ... ... be the mean of moving group, when an

assignable cause occurs in i and (i+1)™ sample and is detected in j subsequent moving
subgroup and p; be the probability that an assignable cause occurs in i™ and (i+1)®
sample and is detected in j subsequent moving subgroup, then

Jj oo
Wy +——06C ,1+)<n
1+]
— dj S .
uj; = “0+;c ;1+]2n,)j<n (10)
Ky +00 ;i+3,j2n

Further,
P = P(X,, < po— ko/Vn, X, > p, + ko/Vn); at mean =uj.

Hence by standardised transformation of X, to Burr variable, we get

- 8j
Xn~Ho =7 O
1*) ;i+j<n
G/4Ji+]
Y-M - dj
—— 9 Xm"MHoTC

n . . .

—_— ;1+J2n,)<n
o/\n

X~ Ho —8C

o/+n

31+, j2n.
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This gives,
+.8_]'G+(Y—M)G
i+] S\fi+ ]

;i+j<n

;i+j2n,j<n

S</n
(Y -M)o S
py + 06+ 31+ ],]2n.
’ Svn
Hence,
p|y<M-ks [t IS
n i+]
Y >M+kS Ll S_JS_ ;itj<n
P = n 1]
P(Y<M—k8—@,Y>M+kS—8J—SJ ;1+j2n,j<n
S Jo
P(Y <M-kS-8SVn,Y >M+kS—8Svn) SES R
1+ ! . (11)
— o o |
14| M+ks, 2 - 0jS
n\fi+]
— 1 ..+.<
_ . N k, 1+)<n
1+ M—ks, [ 98
= n i+]
1+— ! —- ! - ;1+j2n,j<n
. € ! . C 1
1+(M+kS—8JSJ 1+(M—kS—6JSJ
S S
1 1 ...
1+— 0 - sitijzn
1+(M+kS—SSx/H)I} {H(M—kS—BS\/H)I}
We have,
q; = 1 - Py-

Also, the probability in the last case is independent of i and j, and can be taken as
constant (P), so that Q = 1-P.

If an assignable cause occurs in i’ and (i—i-l)th sample and is detected in next j samples,
the expected number of units to detect the shift (e;) are given by,
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¢ = Py + 29;Pp + 3949pPs + .-
n—1| j-1 n—1 Q
B pil+szinqid+Hqid(n+F) ;i<n (12)
- =2 d=1 d=1
€1 ;i>2n
Hence the ASN is given by,
n-2
ASN = (1 - e™)) e +e e, . (13)

i=0
Therefore, average out of control time (AOT) is given by,

AOT = h*ASN - T (14)
and expected cycle length is given by,

E(T) =IT + AOT + g + T, + T,. (15)

5 Expected loss cost function during the cycle
The loss cost consists of loss during in control and out of control period, loss cost due to
false alarm, cost for search and repair and cost of sampling and testing.

The loss cost due to non-conformities produced is given by,

L =C, B}rcl [(h*ASN-T)+g+8T, +3,T, ]

If, C = C; — C,, is the overhead cost due to nonconformities produced in the out of control
state, then

L, =C, [%+(h*ASN—T)+g+81T1 +62T2}

(16)
+C[(h*ASN-T)+g+8 T +3,T,],
The production loss cost due to ceasing of process during false alarm is,
L, = C,(1-8,)Tyus (17)

If V and W are the cost for search and repair when there is false alarm and true alarm
respectively, then cost for search and repair is,

L= Vas + W (18)
The expected numbers of samples during the cycle are,

%+(h”‘ASN—T)+g+ESITI+82T2

E(N) = - (19)

Therefore, cost of sampling and testing is,
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L,= (a + b)*E(N) (20

Therefore, expected total loss cost per unit time during the cycle is,

E(L)

_Li+L,+L;+L,

5T 1)

The above equation represents a general loss cost function derived for continued as well
as for ceased non-normal production processes and is a function of design parameters n, h
and k. Here, ‘n’ is integer whereas ‘h’ and ‘k’ may be positive real numbers. If we put
d; = 8, = 1, the cost function represents loss cost function for continuous process,
whereas if we put 6, = 3, = 0, it represents loss cost function for ceased process. If we put
o1 =1, 8, = 0, the function represents loss cost function for (1-0) semi-ceased process,
where the process is continued during the search of an assignable cause and ceased
during repair of the cause, if occurred (Patil and Rattihalli, 2009).

The cost function developed is a complicated function of three design parameters
(n, h, k), hence to get desired values of parameters and the expected loss, we use
algorithmic procedure instead of direct derivative method. The optimisation objective
function to develop an algorithm is as given below,

_Li+L,+Ly+ L,

Min E(L)
E(T)
5. t. h > 0.01,
> 0,
> 2

Based on this optimisation function, a MATLAB program is written to find the optimal
values of design parameters and loss. This program works with arbitrary initial values of
the parameters.

6 An example

To illustrate the comparison between the normal and non-normal process as well between
continued and ceased process, here we consider the example by Koo and Case (1990),
which is used by Patil and Rattihalli (2009) with some modifications and also by Yu and
Chen (2005). Following are the values of input parameters selected.

C, = 200, C = 4,000, C, = 1,500, V = 1,000, W = 1,000, a = b = 20,
A= 0026 =2 T, =T=125T,=2

6.1 Comparison between normal and non-normal (Burr) process

To investigate the accuracy of the program, here we consider the parameters of Burr
distribution as ¢; = 5 and k; = 6, which have skewness parameter a; = —0.013 and
kurtosis parameter a4 = 3.010, which are very close to the normal distribution. The
comparative values of the design parameters and the loss for Normal and Burr distributed
process for different type of process design are given in Table 1.
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Table 1 Loss cost for normal and Burr process for different type of process design

Process type distlifgzgon n h k a loss

Continuous Normal 1.75 0.7263 2.3789 0.0174 620.0820
Burr 1.75 0.7229 2.3896 0.0171 620.0097

Semi-ceased Normal 1.75 0.6936 2.3924 0.0167 463.5946
Burr 1.75 0.6903 2.4031 0.0164 463.5105

Ceased Normal 1.8750 0.5846 2.7292 0.0063 386.4249
Burr 1.8750 0.5827 2.7305 0.0062 386.0861

We observe that, almost all values of design parameters and expected loss for Normal
and Burr distributed data are very close to each other. Moderate differences exist due to
slight skewness and kurtosis in the burr data. It is also observed that, for both type of
input data distributions, the loss for continuous process is larger as compared to ceased
process. Also the type I error is large for continuous process and small for ceased
process. The sampling interval is small and control limit parameter is large for ceased
process as compared to continuous process.

6.2 Comparison of expected loss cost between continuous and ceased process
designs for non-normal process

We consider some non-normal input data through coefficient of skewness (a;) and
Kurtosis (o). Let o3 = 0.884 and o4 = 4.122, corresponding to the parameters ¢; = 2 and
ki = 10 of the Burr distribution with mean 0.29134 and Standard Deviation 0.16197. Let
us consider, the two extreme procedures continued production and ceased production and
compare the performance of the process for different values of ‘n’. Table 2 gives
findings.

Table 2 Comparison of loss between continuous and ceased process for different ‘n’
Continued process Ceased process % Saving
n in the
h k loss h k loss loss
2 1.3936 1.9356  587.0542 1.7820 1.9318 373.58 36.36
3 1.2318 1.9442  604.1059 1.5713 1.9378 395.52 34.53
4 1.1547 1.9509  614.1468 1.4708 1.9425 408.32 33.51
5 1.1005 1.9536  622.0929 1.4007 1.9443 418.37 32.75
6 1.0608 1.9559  628.4968 1.3492 1.9458 426.42 32.15
7 1.0289 1.9585  634.1562 1.3081 1.9476 433.48 31.64
8 1.0046 1.9599  638.7200 1.2768 1.9485 439.15 31.25
9 0.9837 1.9613  642.9034 1.2502 1.9493 444.32 30.89
10 0.9663 1.9624  646.5597 1.2281 1.9500 448.81 30.58

Table 2 shows that, the ceased process ensures near about 32% saving over the
continuous process for a particular type of non-normal process data. Further, the loss cost
increases with increase in ‘n’ for both the processes. The values of control limit
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parameter (k) change in the direction of sample size (n) and that of sampling interval (h)
changes in the opposite direction of ‘n’, this may cause increase in the loss for both the
type of processes with increasing values of ‘n’. The percentage saving due to ceasing of
the process during search and repair is larger for smaller values of ‘n” and smaller for
larger values of ‘n’. Thus, the changes in the values of sample size affects more on
continuous process as compared to ceased process.

6.3 Effect of non-normality on the expected loss cost of the continuous and
ceased process designs

To check the effect of non-normality on the design parameters and economy of the design
we make the changes in the skewness (03) and Kurtosis (o) parameters of the input data
and observe the changes in the output. We consider the three cases as follows.

1 oy i1s chosen near to 3 and oy is varied from —0.363 to 0.329
2 oy 1s chosen near to 0 and o is varied from 2.866 to 3.646
3 oyis varied from —0.128 to 3.381 and a4 is varied from 2.92 to 27.86.

Table 3 shows the outcomes for all the three cases for continued and ceased process. In
the table c¢; and k; are the parameters of Burr distribution for corresponding values of
skewness (a;) and Kurtosis (o).

Following are some observations:

1 For case 1, the values of sampling interval (h) and of control limit parameter (k)
slowly decrease and again increase for both the processes, for increase in skewness
parameter.

2 For case 2 and case 3, values of sampling interval (h) increase with increase in the
values of kurtosis parameter for continuous production. The values of control limit
parameter (k) do not show any pattern for both the processes but it appears to be
decreasing for continuous process.

3 The optimum sample size ‘n’ is fixed for continuous process but it changes between
2 and 3 for ceased process.

4 The last rows in case 3 show that, the process behaves abnormally for high increase
in skewness and kurtosis. It is observed that for very high values of skewness and
kurtosis the sampling interval and control limit multiplier reaches at extreme point.

5 For case 2 and case 3, the loss from both the processes increases with increase in
values of kurtosis parameter.

6  The loss cost does not much affected for the change in skewness but is more affected
by change in kurtosis. Hence, the process is much sensitive for change in kurtosis as
compared to change in skewness. Also both the processes are more sensitive for
extreme changes in skewness as well as kurtosis.

7  Both the processes (continuous and ceased) behave almost in similar fashion for
change in skewness and kurtosis.
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Effect of non-normality on the design parameters and expected loss from the process

Table 3
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Effect of change in shift (§) on the design parameters and expected loss from the

process

Table 4
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6.4 Effect of change in shift (3) on the design parameters and the expected loss
cost of the continuous and ceased moving average process designs

To check the effect of change in shift (5) on the parameters and the minimum loss cost of
the design, we change the values of shift from 0.1 to 1 with increment of 0.1. We
consider Burr process with parameters ¢, = 2 and k; = 10 corresponding to a; = 0.884
and o4 = 4.122, we study the change in the values of design parameters (n, h, k) and
minimum loss cost for continuous as well as for ceased processes. Table 4, gives the
outcomes corresponding to the above settings.

From Table 4, we observe the following.

1 As the magnitude of the shift increases, the sample subgroup size (n) and control
limit parameter (k) goes on decreasing, while sampling interval (h) goes on
increasing for both the processes.

2 As the magnitude of the shift increases, the minimum loss cost decreases for both the
processes and the percentage saving due to ceasing increases. That is, for larger
shifts, ceased process is more economical than continuous process.

3 The values of sample size (n) and sampling interval (h) are larger, where as the
values of control limit multiplier (k) are smaller, for ceased process as compared to
the continuous process. This shows that ceased process works better than the
continuous flow process for particular input values.

To check the sensitivity of the design for input parameters, in the following section, we
fix the design parameters corresponding to the magnitude of the shift 0.4 and observe the
change in the loss cost.

7 Sensitivity of the design

The illustrations in the above section of the example represents that, the ceased process
seems better as compared to continuous process, for the given input parameters of the
particular non-normal process quality characteristics. To check the sensitivity of the
design with respect to the input parameters, we change one of the input parameter by 25,
50, 200 and 300 percent, by keeping other constant and observe the effect on the
expected loss cost. In Table 5, we have chosen two optimum designs, one corresponds to
optimum parameters of continuous process noted as Plan 1 and other for ceased process
noted as Plan 2. Both the plans have design parameter (n, h, k) values corresponding to
shift 3 = 0.4.

Table 5 Optimum design parameters corresponding to Plan 1 and Plan 2 used to check
sensitivity of the design

Continued process (Plan 1) Ceased process (Plan 2)
n h k loss n h k loss
04 4 0.6161 2.0432 758.159 4 0.7405 2.0043 587.781

0
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Effect on the expected loss from the continuous and ceased process due to change in

the input parameter

Table 6
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Effect on the expected loss from the continuous and ceased process due to change in

the input parameter (continued)

Table 6
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Table 6 gives the sensitivity results obtained for continuous and ceased process according
to design parameters in Table 5 and by varying the input parameter C = 4000; C, = 200;
C, = 1500;V = 1000;W = 1000;a = 20;b = 20;A = 0.02; g=0; To = 1.25; T, = 1.25; T, =
2. In Table 6, Cont (1), denotes results using continuous process and optimum design
parameters of Plan 1. Ceas (1), denotes results using ceased process and optimum design
parameters of Plan 1. Similarly, Ceas (2), denotes results using ceased process and
optimum design parameters of Plan 2. In the column saving by ceasing, Plan 1, we
means, percentage saving due to ceasing using Plan 1 parameters for both the process and
Plan 1 and Plan 2, mean percentage saving due to ceasing using Plan 1 parameters for
continuous process and Plan 2 parameters for ceased process.

For a quick review of the sensitivity of the design, we may refer to Figures 1 to 4.
Figures 1 and 2, reveal percentage increase in loss with respect to standard value
(according Plan 1 or Plan 2) of the loss due to change in input values for continuous and
ceased process respectively. Figures 3 and 4, show effect on percentage saving by
ceasing of process due to change in input parameters respectively by using unique Plan
for both and their own optimal plans.

Figure 1 Increase in loss due to change in input parameters for continuous process
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Figure 2 Increase in loss due to change in input parameters for ceased process
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Figure 3 Percentage saving in the loss due to ceased process using Plan 1 parameters
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Figure 4 Percentage saving in the loss due to ceased process using individual optimal plan
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From Table 5 and Figures 1 to 4, we have following observations.

1 The continuous as well as ceased process is too much sensitive to the change in the
parameters C, Cy and A. The parameters C, and T are related to only ceased process
and shows considerable effect on the expected loss from the process.

2 The parameter V has significant effect on both the process. The continuous process
is sensitive with respect to T, and T,, where as ceased process seems to be less
sensitive. Both the processes are less sensitive to W.

3 On an average, the continuous process is much sensitive as compared to ceased one
with respect to changes in all the factors.

4  There is significant effect on saving occurred by ceased process due to change in C,
Cy, A, TO, T and T,. Change in the values of Cy, V, W, a and b does not show much
effect on saving due to ceasing.

8 Conclusions

In this paper, we have obtained an expression for expected loss cost function to control
location for continuous and ceased moving average production processes depending on
the non-normal input quality characteristic. The approximation based on Burr distribution
is used to monitor with non-normality of quality characteristic. The cost function is
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optimised with respect to the three design parameters n, h and k. The performance of two
production modes is studied in different views and also the effect of non-normality is
observed. Moreover, this article provides SPC practitioners the way to improve the
process in economic view. The design is as simple as x chart and will promote the
application of this effective chart. Mostly, the producers prefers for continuation of the
process during the search and repair of the process. This article provides the benefit of
ceasing of the process to such practitioners.

There is comparable difference in the loss due to continuous, ceased and semi-ceased
process. The design parameters h and k are affected by non-normality also the loss cost is
mostly affected by change in kurtosis. As the sample size ‘n’ increases, percentage saving
due to ceasing decreases. It shows that, for very larger sample size both the
process models become equally efficient. For the smaller values of shift (5), the process
model shows greater loss and also causes increase in percentage saving due to ceasing
with increasing 6. That is, ceased process designs are more beneficial for larger
shifts. Overall the ceased process appears to be dominant over continuous process
and shows almost 20 to 30% saving in the loss cost. The process model is highly
sensitive to C, CO, A which are the major parameters of the process and is less sensitive to
V, T1, T2 and W. The parameters C2 and TO related to ceased production seems to be
sensitive.

The novelty of the study is, if the production process is affected by small shifts, the
ceasing of process during the repair will be advisable. At the same time, if we use MA
procedure instead of usual mean chart, we are using past sample observations, which may
turn to be long run control of the process, which will be beneficial to the producers.
Further, we have used input parameters from the real life data. There is scope for
investigators to estimate the input parameters from original sampled data. The study can
be extended further with the use of CUSUM or EWMA charts with the non-normal input
data.
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Confidence interval construction for the scale parameter of the half-logistic distribution is
considered using four different methods. The first two are based on the asymptotic
distribution of the maximum likelihood estimator (MLE) and log-transformed MLE. The
last two are based on pivotal quantity and generalized pivotal quantity, respectively. The
MLE for the scale parameter is obtained using the expectation-maximization (EM)
algorithm. Performances are compared with the confidence intervals proposed by
Balakrishnan and Asgharzadeh via coverage probabilities, length, and coverage-to-length
ratio. Simulation results support the efficacy of the proposed approach.

Keywords: Progressively Type-1l censoring, EM algorithm, MLE, pivotal quantity,
confidence interval, generalized confidence interval, coverage probability, coverage to
length ratio, half-logistic distribution

Introduction

In many life testing situations, an experiment has to be terminated before
completion. Because of the various limitations of time and money, testing of life
may need to be stopped for some of the units. In day-to-day experiments,
incomplete information about the failure times is available, or some of the units
must be removed before completion of the experiment. A plan is necessary for
removal of the units before the termination of an experiment to save time and cost,
which is called the censored data.

Type-1 censoring depends on time, where the time is fixed for the
termination of experiment. Suppose an observer continues an experiment up to
time T; lifetimes of units will be known exactly only if these are less than T.
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Failure times of units which have not failed by the time T are not observed.
Suppose n units are being tested, but the decision is made to terminate the
experiment at time T. In this experiment, lifetimes will be known exactly only for
those units that fail before time T. In Type-l censoring, the number of exact
lifetimes observed is random.

A Type-Il censoring scheme is often used in life testing experiments where
the number of units that can be observed before the termination of the experiment
is fixed. In this scheme, only a pre-planned number m out of n units (m < n) are
observed. In the case of Type-Il censoring, the number of exact lifetimes observed
is fixed, but the time required for the termination of the experiment is unknown.
In conventional Type-l and Type-Il censoring, units are removed from the
experiment at the terminal stage, while in a progressive censoring scheme, units
are removed at different stages. Progressive censoring schemes can be applied in
both Type-I and Type-II censoring schemes. More details about various censoring
schemes are available in Lawless (1982).

In an (Ry, Ra,..., Rm) progressive type-ll censoring scheme, the number m

and Ry, Ra,..., Ry are fixed before the start of the experiment and ZL R=n-m.

At the first failure, Ry units are randomly removed from the remaining n — 1 units.
At the second failure, R> units are randomly removed from the remaining
n — 2 — Ry units, etc. At the m™" failure, all the remaining Ry units are removed.
Here, we observe failure times of m units and the remaining n—m units are
removed at different stages of the experiment. In a conventional Type-II
censoring scheme, Rn = n —m and the rest of the R; are zero.

Consider the problem of interval estimation for the scale parameter of a
half-logistic distribution under a progressive Type-1l censoring scheme.
Progressive Type-Il censoring schemes for various lifetime distributions was
discussed by Cohen (1963), who introduced progressive Type-ll censoring
schemes. Mann (1969, 1971), Balakrishnan, Kannan, Lin, and Ng (2003),
Balakrishnan, Kannan, Lin, and Wu (2004), Ng (2005), and Ng, Kundu, and
Balakrishnan (2006) discussed inference for different lifetime distributions under
progressive Type-Il censoring schemes. Balakrishnan and Aggarwala (2000) is an
excellent reference on progressive censoring. Balakrishnan (2007) studied various
distributions and inferential methods for the progressively censored data. Lin and
Balakrishnan (2011) discussed the consistency and the asymptotic normality of
Maximum Likelihood Estimators (MLEs) based on the progressive Type-II
censored samples. Potdar and Shirke (2013, 2014) studied inference for the scale
parameter of the half logistic and Rayleigh distribution of k-unit parallel systems
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based on progressively Type-Il censored data. Ghitany, Algallaf, and
Balakrishnan (2014) discussed estimation of the parameters of Gompertz
distributions based on progressively Type-Il censored samples. Sultan, Alsadat,
and Kundu (2014) studied estimation for the inverse Weibull parameters under
progressive Type-I1 censoring.

As far as the half-logistic distribution is concerned, Balakrishnan and
Puthenpura (1986) discussed the best linear unbiased estimation of location and
scale parameters. Balakrishnan and Wong (1991) computed the approximate
Maximum Likelihood Estimator (AMLE) for the location and scale parameters of
the half-logistic distribution. Balakrishnan and Chan (1992) studied estimation for
the scale parameter of the half-logistic distribution. Kim and Han (2010) used
importance sampling methods to obtain a Bayes estimator for the scale parameter
of the half-logistic distribution under progressively Type-ll censored samples.
Jang, Park, and Kim (2011) studied estimation of the scale parameter of the half-
logistic distribution with a multiply Type-Il censored sample. Rastogi and
Tripathi (2014) studied estimation of parameter and reliability for the
exponentiated half-logistic distribution.

The likelihood equation of a half-logistic distribution with scale parameter
does not have a closed form solution to obtain MLE. In most of the reported work,
an AMLE of the scale parameter is obtained. Following this approach,
Balakrishnan and Asgharzadeh (2005) and Wang (2009) reported inference for
the scale parameter of a half-logistic distribution based on progressive Type-II
censored samples.

Balakrishnan and Asgharzadeh (2005) showed that, if the relative sample
fraction is small, then the coverage probability of the confidence interval (CI)
based on asymptotic normality of the MLE is unsatisfactory. Wang (2009) paid
more attention to length of Cl and gave a shorter length CI. Dempster, Laird, and
Rubin (1977) introduced the expectation-maximization (EM) algorithm to obtain
the MLE for the incomplete data. McLachlan and Krishnan (1997) gave more
details about the EM algorithm. Here, the MLE is computed using the EM
algorithm, and the focus is on both the coverage probability and length of CI.

Assume that n units having half-logistic lifetime distribution are put on test

and failure times of Z:ilRi:n—m units are censored. Lifetimes of these

censored units are unknown. Consider the censored data as missing data and use
the EM algorithm to compute the MLE. As indicated in Potdar and Shirke (2014),
the EM algorithm gives improved inferential results.
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Model and Estimation of the Scale Parameter

Suppose progressively Type-Il censored data are obtained from the scaled half-
logistic distribution with probability density function

27/

] 1
f(X,ﬂ):zm

, x>0,1>0 (1)

and cumulative distribution function

1_efx/ﬂ.
F(X,/l): m y XZO,A>O

Suppose n units are under test and lifetimes of m units are observed under
progressive Type-1l censoring. Suppose (Ri, Ro,..., Rm), @ progressive censoring
scheme, is used. The observed lifetimes X, X@),..., Xm) are the progressively
Type-I1 censored sample. The likelihood function for the observed data is given
by (Balakrishnan & Aggarwala, 2000)

L()= c]iml[f (x(i);ﬂ)[l—F(x(i);,i)T‘ )

where

=1 i=1

Maximum Likelihood Estimation

Suppose z1, z»,...,Zm are the censored data. Note z; is a vector with R; element
corresponding to R removed units after the it" failure is observed (i =1, 2,...., m).
The censored data Z = (z1, 22,..., Zm) can be considered to be the missing data and
X = (X, X@),---» Xm)) the observed data. W = (X, Z) is the complete data set to be
used for drawing inference for the scale parameter. The complete log-likelihood
function can be written as
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L, =-nlog (A Zlog 2¢” +i . log] ———|z;>% | ()
i=1 (1+e X/’i) i-1 -1 (1+e*2a,~//1)

By differentiating L with respect to 4,

aL, ——£+i \ M+ii > M Z. > X
dA 2 A & 1ve” A2 = = 14e 8/ U

The EM algorithm suggested by Dempster et al. (1977) was used to compute
the MLE. For the E step in the EM algorithm, the expectation of Z; was taken.
Hence, the above equation becomes

d, n 19 I(leXM) 13
a1 2 FZ‘ 1+e "/ ?;Ria(x“i) @
where
e ) et

X
1ren/2 zze (1-e)
= e/ AV d
€ X (1+e )

z

Solving equation (4) is the M step.

The Newton-Raphson method was used to solve equation (4) by taking the
least square estimate as an initial value. Ng (2005) discussed estimation of model
parameters of modified Weibull distributions based on progressively Type-II
censored data, where the empirical distribution function is computed as

'E(X(i>)=1‘lj(l‘ b;)
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with

N S L
b= Pi= 2Rl j=12..m

n—p; k=2

The estimate of the parameters can be obtained by the least squares fit of
simple linear regression

Yi = IBX(i)

with 8 = -1/1,

Y, =In| ——2— i=12,...m
. F(x(l_l))drF(x(l))
2
|A:(X(O))=O

The least square estimate of 1 is given by

Zoati ®)

jo -
Zi:l X(i)yi

While obtaining the MLE in of the scale parameter A, the above approach
was adopted, where 1, was taken as an initial value of / in the Newton-Raphson
method. It will be shown that the MLE in exits and is unique. From equation (2),

m 2Ri +1 e—(Ri +1)x /2

L(l) = Cli;[ P (]_—e_xi//l )Ri+2

where C is defined as above.
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dlogL n 1 & 1 & (R +2)xe™*
=__ — R 1 =0 6
di 7z (R )x = z Trxe " (6)
Define
—A%dlogL dlogL m n (R +2)xe ™
A)= = =nA-— R +1)x =0
9(4) a1 A n ;( 4 )X|+§ Texe
Note

limg(4)<0, /|1I_>n; g(4)>0,andg’'(1)>0

A0
Therefore, the MLE, a solution to g(4) = 0, exists and is unique.

Fisher Information

We compute observed Fisher information using the idea of the missing
information principle of Louis (1982). Thus, observed information = complete
information — missing information. Write this as

L (A)=1,(2) =1 (2) (7)

In the following, we obtain complete and missing information given by

|W(z):_5{‘;ﬂ

where, L is the log-likelihood function of the complete data. By differentiating L
with respect to 4 twice

d’L n 2 & xet” 2 Q Xi(l_e_XiM)
da? A% a*4 (1 +e—w)2 25 1+ xe

The complete information is given by
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n 29| x| 2 e [ X (e

Missing information is given by

o ()= 3R 15 w—iiszleog(f(gjﬁlx“l))]

i=1 i=1 j=1

Consider
1 2p %l
) A ~2/2\?
f(z.:A 1+e
fz|x(zi'|xi'/1): ( 2 ) = ( )
: 1-F(x;4) 1—e /4
11—
14+e7%/*
Therefore,
2 l* 1—e %/
logf =—log A +log {milog {1_(1%\—‘“}}
d Iogf 3 _1 Z” (1_e_zii//1) ) Xi
di A2 (1+e’2““) A% (1+e™%)
and
d2 |0gf ~ 1 Zzi?e_zij/}L B 22ij (1—eizij/l) 2Xi2e—Xi//1 2Xi

iz A2 24 (1+efzij//1)2 A° (1+e’z”/i) " A4 (1+ e/ )2 " A° (1+ e‘xi“)

Hence

331



C. 1. FOR HALF-LOGISTIC DISTRIBUTION UNDER TYPE-II CENSORING

m

i x (’1) = Z R I\(Ai/)|x (}“)

i=1

Confidence Intervals Based on MLE and log-Transformed
MLE

Confidence Interval Based on MLE

Let /, be the MLE of 2 and

be the estimated asymptotic variance of in . Therefore, a 100(1 — a)% asymptotic

Cl for A based on asymptotic normality of /in is given by

(A=t (A) Ay 7,6 (1) (10)

where 1,2 is the upper 100(a/2)™" percentile of the standard normal distribution.

Confidence Interval Based on log-Transformed MLE

Meeker and Escobar (1998) reported the asymptotic CI for A based on Iog(in).
An approximate 100(1 — «)% CI for log(/) is

(|og(,{n)_ra/2 &2 (log(/in )) Iog(/in)Jrra/2 &’ (Iog(ftn ))j
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where &Z(Iog(in)) is the estimated asymptotic variance of Iog( An), which is
approximated by
v (4
5 (1og(4, )]~ j )

n

Hence, an approximate 100(1 — )% CI for 1 is

( { ra/zx'?'z(in)J Ta/:wfé'z(in)
A n
A.e

A

j (11)

Confidence Interval Based on Pivotal and Generalized
Pivotal Quantity

e

Consider two exact Cls based on the pivotal quantities. To define these Cls, show
that the distribution of V = /i//i is free from 2, where A is the MLE of 4, based on

the complete data. In the following lemma, it is proved that V is a pivot, following
Gulati and Mi (2006):

Lemma 1: The distribution of V is free from A.

Proof: Consider the probability density function of the half-logistic
distribution with scale parameter A:

—X/A
f(x,l)zze—, Xx>0,1>0

A(Llre )

Then the log-likelihood function becomes

n n

L=-n Iog(ﬁ)+n|og(2)—%zxi _22|og(l+e—xi/z)

i=1 i=1

dL/dZ = 0 gives the following equation:
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n —X//l

ZX.—ZZ

o “1+e "

The solution of the above equation is the MLE of 1 (say A ). Hence
—X; //1

: X;e )
DX —22 77 =

i=1 i1l+e

“X g% e nd
ZE 221 EVR)

Let £= A/A and Yi = Xi/4. Then

n —yi

Zyi Zy'1+e e
2 -Yi¢
_Zyl__zyl © =0

n“ 1+e7%¢

_ né:fl

Note thatY1, Yo,...,Yn is a random sample from the half-logistic distribution with
parameter 1 = 1. Therefore, the distribution of &= /1/2 is independent of 4. Hence
the proof.

Lemma 2: The distribution of V under progressive Type-I1 censored data from
the half-logistic distribution with scale parameter 1 is free from A.

Proof: This is similar to Lemma 1 and hence is omitted.

This property of the MLE will be used to derive the confidence interval
based on pivot and generalized pivot quantity methods.

Remark: Visalso a pivot for k-unit parallel and k-unit series systems.

Confidence Interval Based on Pivotal Quantity

From Lemma 2, the distribution of V is free from A. Define a and b such that
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P(a<V <b)=1-«a

Therefore we obtain the following as a CI for A:

A A
(b J 12

The constants a and b are obtained using Monte Carlo simulation by using the
following algorithm:

Algorithm to Obtain Percentiles of V

1. Input a, N, m, and progressive Type-Il censoring scheme (R1, Rz,..., Rm).
2. Generate a progressive Type-Il censored random sample of size m using
censoring scheme (Ry, Ro,..., Rm) from the half-logistic distribution with
parameter A = 1.

Obtain a MLE of 4 (say A ) using the EM algorlthm

Repeat steps 2 and 3 N times so as to get /11 A,Z

Arrange the /1i in an increasing order. Denote them by A(l),i(z),...,i(m.

o o &~ w

Compute a= l([(a/z)N]) and b= ’1([(17a/2)N]) '

Confidence Interval Based on Generalized Pivotal Quantity

The concept of a generalized confidence interval (GCI) is introduced by
Weerahandi (1993). Let x denote the observed value of X. To construct a GCI for
, first define a generalized pivotal quantity (GPQ), T(X; x, 4), which is a function
of the random variable X, its observed value x, and the parameter 1. A quantity
T(X; x, A) is required to satisfy the following two conditions:

i) For a fixed x, the probability distribution of T(X; x, 4) is free of unknown
parameters.
i) The observed value of T(X; x, A), namely T(x; X, ), is simply /.

Let T, be the 100a" percentile of T. Then T, becomes the 100(1 — )%

lower bound for 1. Therefore a 100(1 — a)% two-sided GCI for parameter 1 is
given by
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(Ta/Z ' Tl—a/Z ) (13)
Define the GPQ as
. 2
T(X;X,A)=—=

where /, is the MLE obtained using observed data. Note:

i) The distribution of T(X; x, 4) is free from A, which follows from Lemma 2,

and

i) T(x;x, ) = A, since for the observed data, =1, .

A GCI based on T(X; x, 1) is obtained by using following algorithm:

Algorithm to Obtain CI for A using GPQ

1.
2.

© N o O

Input a, N, m, and progressive Type-11 censoring scheme (R1, Rz,..., Rm).
Generate a progressive Type-ll censored random sample of size m from
the half-logistic distribution with an unknown parameter 4.

Based on the data in step 2, obtain a MLE of 4 (say io) using the EM
algorithm.

Generate a progressive Type-11 censored random sample of size m from
the half-logistic distribution with parameter A = 1.

Obtain a MLE of 4 (say ﬂ:,) using the EM algorithm for step 4 data.
Compute Ti= A,/ 4.

Repeat steps 4 to 6 N times, so as to get Ty, To,...,Tn.

Arrange the T; in an increasing order. Denote them by Tq), Te),..., T).

Compute a 100(1 — «)% CI for A as (T([(a/z)N]),T([(la/Z)N])) :

Simulation Study

The Cls given in (10) to (13) will now be compared with the Cls given by
Balakrishnan and Asgharzadeh (2005) and Wang (2009). A simulation study was
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carried out to study the performance of each of the Cls. Asymptotic Cls based on
MLE, log-transformed MLE, and GPQ are compared through length and
confidence level. Balakrishnan and Sandhu (1995) presented an algorithm for
sample generation from progressively Type-Il censored schemes. This algorithm
was used to generate samples from a half-logistic distribution. Consider the 34
different progressively Type-Il censored schemes compiled in Table 1.

Algorithm

1. Generate i.i.d. observations (W1, Wo,...,Wr) from U(O, 1).
2. For censoring scheme (R1, Rz,..., Rm),

1
(i+R,+R ,+...+R )

fori=1,2,...,m.

3. SetV,=WF5 fori=1,2,....m.

4, SetUi=1—(VoVim_1...°Vm_i+1) fori=1, 2,....m. Then (U1, Ua,..., Un)
is the uniform (0, 1) progressively Type-Il censored sample.

5. For given values of the parameter 4, set

1-U.
X =—Alog| ——
® ng}

fori=1,2,...,m.

Then (X@), X@),-.., Xm)) 1S the required progressively Type-Il censored
sample from the half-logistic distribution. In Table 1, censoring scheme
(a, b, ¢, d) stands for R1 =a, Rz = b, R3 =¢, and R4 =d. A similar meaning holds
for schemes described through completely specified vector, while scheme
(10,9%0) means R;=10 and remaining nine R; are zero, Ii.e.
R2=Rs=Rs=... =Ry =0. A simulation was carried out with A =1. For each
particular progressive censoring scheme, 5,000 sets of observations are generated.
The Cls based on asymptotic normal distributions of the MLE and log-
transformed MLE are derived.
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Table 1. Censoring schemes

Scheme No. n m m/n Scheme
[1] 10 4 0.2500 0,0,0,6)
2] 10 4 0.2500 (6,0, 0, 0)
[3] 10 5 0.5000 (0,0,0,0,5)
[4] 10 5 0.5000 (5,0,0,0,0)
[5] 15 4 0.2667 (0,0, 0, 11)
[6] 15 4 0.2667 (11, 0, 0, 0)
[7] 15 5 0.3333 0,0,0,0, 10)
8] 15 5 0.3333 (10, 0, 0, 0, 0)
[9] 15 5 0.3333 (0, 10, 0, 0, 0)

[10] 15 5 0.3333 (0,0, 10,0,0)
[11] 15 5 0.3333 (2,2,2,2,2)
[12] 15 5 0.3333 (4,4,2,0,0)
[13] 20 5 0.2500 0, 0,0,0, 15)
[14] 20 5 0.2500 (15, 0, 0, 0, 0)
[15] 20 5 0.2500 (5,5, 5,0, 0)
[16] 20 5 0.2500 (3,3,3,3,3)
[17] 20 5 0.2500 (0, 15,0,0,0)
[18] 20 5 0.2500 (5,10,0,0,0)
[19] 20 10 0.5000 (9%0, 10)
[20] 20 10 0.5000 (10, 9*0)
[21] 25 5 0.2000 (0, 0,0,0, 20)
[22] 25 5 0.2000 (20, 0, 0, 0, 0)
[23] 25 10 0.4000 (9%0, 15)
[24] 25 10 0.4000 (15, 9*0)
[25] 25 15 0.6000 (14*0, 10)
[26] 25 15 0.6000 (10, 14*0)
[27] 50 20 0.4000 (19%0, 30)
[28] 50 20 0.4000 (30, 19%0)
[29] 50 25 0.5000 (240, 25)
[30] 50 25 0.5000 (25, 24*0)
[31] 100 20 0.2000 (19*0, 80)
[32] 100 20 0.2000 (80, 19%0)
[33] 100 50 0.5000 (49*0, 50)
[34] 100 50 0.5000 (50, 49*0)
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Table 2. Simulated coverage probabilities for confidence intervals

Ci Cs Ca Cs Ce

Scheme 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
[1] 0.8100 0.8396 0.8108 0.8470 0.8710 0.9176 0.8944 0.9458 0.8992 0.9474
[2] 0.8300 0.8640 0.8338 0.8676 0.8804 0.9282 0.9072 0.9514 0.8986 0.9464
[3] 0.8288 0.8638 0.8330 0.8684 0.8768 0.9256 0.8968 0.9462 0.9025 0.9503
[4] 0.8290 0.8688 0.8382 0.8768 0.8814 0.9286 0.9014 0.9528 0.9036 0.9494
[5] 0.8204 0.8508 0.8160 0.8500 0.8786 0.9204 0.8978 0.9476 0.9016 0.9518
[6] 0.8350 0.8650 0.8364 0.8706 0.8830 0.9306 0.8978 0.9528 0.8948 0.9468
[7] 0.8194 0.8582 0.8278 0.8640 0.8736 0.9230 0.8998 0.9522 0.9058 0.9548
[8] 0.8360 0.8686 0.8418 0.8778 0.8834 0.9284 0.9006 0.9528 0.8998 0.9482
[9] 0.8370 0.8684 0.8398 0.8724 0.8794 0.9240 0.9050 0.9526 0.8986 0.9498
[10] 0.8354 0.8656 0.8364 0.8666 0.8780 0.9306 0.8946 0.9456 0.8978 0.9506
[11] 0.8262 0.8596 0.8308 0.8684 0.8822 0.9274 0.9022 0.9494 0.9050 0.9518
[12] 0.8354 0.8650 0.8408 0.8798 0.8896 0.9336 0.9014 0.9514 0.8934 0.9486
[13] 0.8318 0.8626 0.8418 0.8750 0.8842 0.9348 0.9002 0.9504 0.8966 0.9520
[14] 0.8474 0.8806 0.8474 0.8834 0.8866 0.9342 0.8960 0.9474 0.8974 0.9462
[15] 0.8368 0.8740 0.8388 0.8716 0.8752 0.9250 0.8974 0.9528 0.9008 0.9482
[16] 0.8308 0.8632 0.8312 0.8664 0.8816 0.9260 0.9048 0.9532 0.8950 0.9496
[17] 0.8432 0.8724 0.8492 0.8818 0.8870 0.9296 0.9004 0.9504 0.9000 0.9464
[18] 0.8318 0.8690 0.8390 0.8756 0.8788 0.9260 0.8944 0.9488 0.8998 0.9500
[19] 0.8592 0.8954 0.8790 0.9122 0.8902 0.9416 0.8960 0.9510 0.8950 0.9458
[20] 0.8680 0.9068 0.8706 0.9098 0.8864 0.9358 0.9002 0.9528 0.8958 0.9418
[21] 0.8196 0.8544 0.8280 0.8606 0.8764 0.9284 0.8990 0.9496 0.8976 0.9492
[22] 0.8372 0.8720 0.8400 0.8712 0.8764 0.9304 0.8972 0.9542 0.8970 0.9504
[23] 0.8640 0.9072 0.8636 0.8994 0.8858 0.9364 0.8976 0.9490 0.8980 0.9454
[24] 0.8774 0.9128 0.8780 0.9132 0.8964 0.9434 0.8904 0.9466 0.9010 0.9512
[25] 0.8714 0.9160 0.8770 0.9158 0.8948 0.9432 0.8926 0.9448 0.9006 0.9466
[26] 0.8822 0.9210 0.8848 0.9242 0.8996 0.9504 0.9008 0.9492 0.8938 0.9468
[27] 0.8844 0.9246 0.8790 0.9212 0.8914 0.9388 0.9002 0.9502 0.8970 0.9472
[28] 0.8852 0.9302 0.8880 0.9292 0.8952 0.9470 0.9084 0.9532 0.8948 0.9496
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Table 2, continued.

Ci Cs Ca Cs Ce
Scheme 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
[29] 0.8904 0.9276 0.8950 0.9360 0.9022 0.9494 0.9024 0.9466 0.8948 0.9504
[30] 0.8896 0.9348 0.8918 0.9374 0.8982 0.9484 0.9044 0.9530 0.8978 0.9478
[31] 0.8920 0.9324 0.8856 0.9248 0.8962 0.9460 0.9008 0.9526 0.8968 0.9486
[32] 0.8864 0.9306 0.8876 0.9336 0.8972 0.9478 0.9062 0.9534 0.8958 0.9478
[33] 0.8930 0.9374 0.8938 0.9408 0.8998 0.9454 0.8958 0.9446 0.9046 0.9530
[34] 0.8924 0.9416 0.9010 0.9452 0.9026 0.9522 0.8948 0.9448 0.9070 0.9544

Table 3. The expected lengths of confidence intervals

C1 C2 Cs Cs Cs Ce

Scheme 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

[1] 2.0913 2.7742 2.0330 2.7028 1.3723 1.6352 1.4919 1.8397 2.0003 2.6406 2.0432 2.7096
[2] 2.0150 2.6663 1.9223 2.5345 1.3790 1.6432 1.4943 1.8403 1.9281 2.5360 1.9254 2.5328
[3] 1.6829 2.2413 1.6495 2.1395 1.2142 1.4468 1.2952 1.5849 1.6353 2.1214 1.6562 2.1440
[4] 1.6656 2.1061 15932 2.0518 1.2246 1.4592 1.3051 1.5965 1.5883 2.0467 15690 2.0143
[5] 2.1526 2.8298 21217 2.8244 1.4289 1.7026 15625 1.9313 2.1204 2.8675 2.0944 2.7809
[6] 2.0219 2.8139 1.9415 2.5615 1.3863 1.6519 15039 1.8530 1.9146 2.5256 1.9121 25117
[7] 1.8253 2.3360 1.7234 2.2392 1.2655 1.5079 1.3562 1.6627 1.7120 2.2377 1.7132 2.2203
[8] 1.7290 2.2818 1.6054 2.0685 1.2395 1.4770 13220 1.6177 1.6076 2.0631 1.5954 2.0493
[9] 1.6816 2.1968 1.6431 2.1214 1.2488 1.4880 1.3343 1.6339 1.6136 2.0929 1.6358 2.1071
[10] 1.8064 2.2591 1.6754 2.1675 1.2566 1.4973 1.3445 1.6474 1.6653 2.1710 1.6636 2.1482
[11] 1.7245 2.2904 1.6782 2.1775 1.2430 1.4812 13285 1.6270 1.6886 2.2053 1.6426 2.1253
[12] 1.6759 2.1434 1.6449 2.1252 1.2481 1.4872 1.3333 1.6326 1.6374 2.1200 1.6348 2.1033
[13] 1.8299 2.4993 1.7724 2.3044 1.3030 1.5526 14010 1.7199 1.7660 2.2984 1.7672 2.2909
[14] 1.6007 2.0857 1.6130 2.0789 1.2401 1.4776 13232 1.6194 1.5938 2.0671 1.5858 2.0396
[15] 1.7540 2.2729 1.6768 2.1690 12731 1.5170 1.3625 1.6695 1.6698 2.1834 1.6496 2.1262
[16] 1.7848 2.3377 1.7207 2.2350 1.2532 1.4933 1.3429 1.6464 1.6982 2.2097 1.7251 2.2365
[17] 1.7424 2.1501 1.6597 2.1438 1.2722 1.5159 1.3607 1.6669 1.6277 2.1042 1.6401 2.1126
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C1 C2 Cs Ca Cs Ce
Scheme 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
[18] 1.7336 2.1373 1.6528 2.1345 1.2618 1.5035 1.3490 1.6523 1.6297 2.1138 1.6378 2.1099
[19] 1.0242 1.2681 1.0099 1.2531 0.8758 1.0436 0.9047 1.0926 1.0153 1.2497 1.0011 2.2410
[20] 1.0137 1.2284 0.9834 1.2145 0.8717 1.0387 0.8998 1.0864 0.9957 1.2302 0.9712 1.1978
[21] 1.8246 2.3465 1.8066 2.3495 1.3169 1.5692 1.4194 1.7442 1.8067 2.3370 1.8018 2.3372
[22] 1.6455 2.0421 1.6180 2.0857 1.2377 1.4748 1.3211 1.6170 1.6001 2.0816 1.5875 2.0391
[23] 1.0462 1.2845 1.0328 1.2825 0.8884 1.0586 0.9189 1.1104 1.0393 1.2960 1.0311 1.2787
[24] 1.0103 1.2819 0.9854 1.2171 0.8753 1.0430 0.9036 1.0911 0.9800 1.2079 0.9812 1.2099
[25] 0.7842 0.9543 0.7775 0.9509 0.7016 0.8360 0.7165 0.8613 0.7766 0.9502 0.7754 0.9475
[26] 0.7846 0.9490 0.7714 0.9407 0.7079 0.8435 0.7229 0.8691 0.7677 0.9354 0.7671 0.9342
[27] 0.6895 0.8386 0.6832 0.8310 0.6328 0.7540 0.6436 0.7723 0.6820 0.8351 0.6820 0.8275
[28] 0.6546 0.8045 0.6550 0.7944 0.6162 0.7343 0.6261 0.7510 0.6526 0.7914 0.6561 0.7941
[29] 0.6009 0.7334 0.5902 0.7144 0.5567 0.6634 0.5640 0.6758 0.5945 0.7184 0.5879 0.7109
[30] 0.5796 0.7047 0.5780 0.6982 0.5513 0.6569 0.5583 0.6688 0.5752 0.6973 0.5761 0.6951
[31] 0.7042 0.8616 0.7249 0.8823 0.6713 0.7999 0.6842 0.8217 0.7312 0.8881 0.7259 0.8817
[32] 0.6482 0.7763 0.6563 0.7960 0.6176 0.7359 0.6275 0.7526 0.6639 0.8022 0.6546 0.7929
[33] 0.4067 0.4736 0.4067 0.4884 0.3951 0.4708 0.3977 0.4752 0.4043 0.4892 0.4047 0.4859
[34] 0.3985 0.4815 0.3992 0.4789 0.3897 0.4644 0.3922 0.4686 0.4014 0.4818 0.3968 0.4754
Table 4. Coverage to Length Ratio (CLR) of confidence intervals
C1 Cs Ca Cs Cs
Scheme 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
[1] 0.3873 0.3026 0.5908 0.5180 0.5838 0.4988 0.4471 0.3582 0.4401 0.3497
[2] 0.4119 0.3240 0.6046 0.5280 0.5892 0.5044 0.4705 0.3752 0.4667 0.3737
[3] 0.4925 0.3854 0.6860 0.6002 0.6770 0.5840 0.5484 0.4460 0.5449 0.4433
[4] 0.4977 0.4125 0.6845 0.6009 0.6754 0.5816 0.5675 0.4655 0.5759 0.4713
[5] 0.3811 0.3007 0.5711 0.4992 0.5623 0.4766 0.4234 0.3305 0.4305 0.3423
[6] 0.4130 0.3074 0.6033 0.5270 0.5871 0.5022 0.4689 0.3773 0.4680 0.3770
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Table 4, continued.

C1 C3 C4 C5 C6

Scheme 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
[7] 0.4489 0.3674 0.6541 0.5730 0.6442 0.5551 0.5256 0.4255 0.5287 0.4300
[8] 0.4835 0.3807 0.6791 0.5943 0.6682 0.5739 0.5602 0.4618 0.5640 0.4627
[9] 0.4977 0.3953 0.6725 0.5863 0.6591 0.5655 0.5609 0.4552 0.5493 0.4508
[10] 0.4625 0.3832 0.6656 0.5788 0.6530 0.5649 0.5372 0.4356 0.5397 0.4425
[11] 0.4791 0.3753 0.6684 0.5863 0.6641 0.5700 0.5343 0.4305 0.5510 0.4478
[12] 0.4985 0.4036 0.6737 0.5916 0.6672 0.5718 0.5505 0.4488 0.5465 0.4510
[13] 0.4546 0.3451 0.6460 0.5636 0.6311 0.5435 0.5097 0.4135 0.5073 0.4156
[14] 0.5294 0.4222 0.6833 0.5979 0.6700 0.5769 0.5622 0.4583 0.5659 0.4639
[15] 0.4771 0.3845 0.6589 0.5746 0.6423 0.5541 0.5374 0.4364 0.5461 0.4460
[16] 0.4655 0.3693 0.6633 0.5802 0.6565 0.5624 0.5328 0.4314 0.5188 0.4246
[17] 0.4839 0.4057 0.6675 0.5817 0.6519 0.5577 0.5532 0.4517 0.5487 0.4480
[18] 0.4798 0.4066 0.6649 0.5824 0.6514 0.5604 0.5488 0.4489 0.5494 0.4503
[19] 0.8389 0.7061 1.0037 0.8741 0.9840 0.8618 0.8825 0.7610 0.8941 0.7621
[20] 0.8563 0.7382 0.9987 0.8759 0.9851 0.8614 0.9041 0.7745 0.9224 0.7863
[21] 0.4492 0.3641 0.6287 0.5484 0.6174 0.5323 0.4976 0.4063 0.4982 0.4061
[22] 0.5088 0.4270 0.6787 0.5907 0.6634 0.5754 0.5607 0.4584 0.5650 0.4661
[23] 0.8258 0.7063 0.9721 0.8496 0.9640 0.8433 0.8637 0.7323 0.8709 0.7393
[24] 0.8685 0.7121 1.0031 0.8756 0.9920 0.8646 0.9085 0.7836 0.9183 0.7862
[25] 1.1112 0.9599 1.2500 1.0955 1.2488 1.0951 1.1493 0.9943 1.1614 0.9990
[26] 1.1244 0.9705 1.2499 1.0957 1.2444 1.0935 1.1733 1.0148 1.1651 1.0135
[27] 1.2827 1.1026 1.3891 1.2218 1.3850 1.2156 1.3199 1.1378 1.3153 1.1447
[28] 1.3523 1.1562 1.4411 1.2654 1.4298 1.2610 1.3920 1.2045 1.3639 1.1959
[29] 1.4818 1.2648 1.6077 1.4109 1.5996 1.4049 1.5180 1.3177 1.5220 1.3368
[30] 1.5349 1.3265 1.6176 1.4270 1.6088 1.4181 1.5722 1.3668 1.5584 1.3635
[31] 1.2667 1.0822 1.3192 1.1561 1.3099 1.1513 1.2319 1.0727 1.2354 1.0759
[32] 1.3675 1.1988 1.4372 1.2687 1.4298 1.2594 1.3651 1.1885 1.3684 1.1954
[33] 2.1957 1.9793 2.2622 1.9983 2.2625 1.9895 2.2158 1.9311 2.2351 1.9614
[34] 2.2394 1.9556 2.3120 2.0353 2.3014 2.0320 2.2291 1.9611 2.2857 2.0076
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We denote by C; the CI proposed by Balakrishnan and Asgharzadeh (2005),
by C> the CI proposed Wang (2009), by Cs the CI based on the MLE obtained by
the EM algorithm, by C,4 the CI based on the log-transformed MLE, by Cs the CI
based on pivotal quantity, and by Cs the GCI. Coverage probabilities of the Cls
for various censoring schemes are displayed in Table 2. Coverage probabilities of
C, are also displayed in the same table. Coverage probabilities for C, are not
provided by Wang (2009). Lengths of Cls for the various censoring schemes are
given in Table 3. For comparison, lengths of C1 and C; are given in the same table.

For effective comparison of Cls, we compute coverage to length ratio (CLR).
CLR for C4, C3, C4, Cs, and Ce are given in Table 4. It is clear that the Cls having
a higher value of CLR are preferred.

Conclusion

Coverage probabilities of Cs, Cs, Cs, and Cg are better than coverage probabilities
of C1. Comparing coverage probabilities of all four Cls, Cs and Ce¢ show the best
performance. For small and large sample sizes (n) and the smallest effective
sample size (m), Cs and Ce show good coverage probability. For large sample
sizes, Cz, C4, Cs, and Cs show good performance. As n and m increase, coverage
probability of Cs and Cs increases rapidly as compared to Cs and Cs. Cs has
higher coverage probability for conventional censoring schemes than progressive
censoring schemes, but Cs and Cs show higher coverage probability for
progressive censoring schemes than conventional censoring schemes.

Cz has smaller length than the lengths of C1 and C,. The MLE by the EM
algorithm provides the shortest length CI among all five Cls. For large sample
sizes, the length of Ce approaches the length of Cs. Lengths of all Cls decrease as
n and m increase. Lengths of Cls based on progressive censoring schemes are
smaller than lengths of Cls based on conventional censoring schemes. There is a
minor difference among lengths of Csz, C4, Cs, and Cs for large sample sizes.
According to the CLR, Cs is the best among the four Cls for small sample sizes.
Ca, Cs, and Cs also show higher CLR than the CLR of C;. CLRs of Cls based on
progressive censoring schemes are better than CLRs of Cls based on conventional
censoring.
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Appendix A. lllustrative Examples

Numeric Example

Balakrishnan and Asgharzadeh (2005) gave simulated sample of size n = 50 from
the half-logistic distribution with scale parameter A = 25. This complete sample is

1.7110, 2.0024, 2.3963, 3.9034, 4.6412, 6.4002, 6.7956, 8.5646, 8.6428, 8.8354,
9.3518, 9.7358, 10.5080, 10.5095, 11.8015, 12.8005, 16.3451, 16.9938, 17.2101,
18.5384, 20.3508, 21.1838, 22.1529, 22.4062, 22.4381, 23.0369, 25.8435,
27.0574, 27.1237, 29.0360, 30.6449, 32.5713, 33.6688, 40.3890, 45.4092,
46.4756, 49.8833, 51.1798, 53.0397, 53.8135, 64.9315, 66.1807, 69.9004,
75.2674, 75.4427, 75.7291, 76.1571, 89.5827, 99.8525, 134.6488.

Balakrishnan and Asgharzadeh (2005) and Wang (2009) derived Cls for this
complete sample and the censored sample. We also derive Cls by using the MLE
obtained by the EM algorithm, and the Cls based on pivot and generalized pivot.
In Table 5, we consider two cases suggested by Wang (2009). Also we use the
censoring schemes and samples given by Wang (2009) and derive 90% and 95%
Cls and their lengths. For comparison, we display Cls and their lengths as stated
by Wang (2009).

Table 5. Confidence interval and its length for illustrative example: n = 50, A =25

C2 Cs
Scheme 90% 95% 90% 95%
Casel  (24.49, 42.97) (23.37, 45.72) (22.76, 40.26) (21.08, 41.94)
(25*%1) 18.48 22.35 17.50 20.86
Case 2 (20.93, 34.82) (20.05, 36.81) (19.95, 33.28) (18.67, 34.56)
(28*0, 10,10) 13.89 16.76 13.33 15.89
Cs Cs
Scheme 90% 95% 90% 95%
Casel (24.52, 42.94) (23.38, 45.67) (24.05, 42.82) (23.18, 45.66)
(25*1) 18.42 22.29 18.77 22.48
Case 2 (21.21, 35.21) (20.31, 37.23) (21.42, 34.93) (20.31, 37.24)
(28*0, 10,10) 14.00 16.92 13.51 16.93

Note: For Case 1, Sr. No. is 1 and m = 25. For Case 2, Sr. No. is 2 and m = 30.
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Table 6. Confidence interval and its length for illustrative example: n = 50, A =25

Ci Cs
Scheme 90% 95% 90% 95%
Case 1l (19.81, 29.53) (18.90, 30.45) (19.88, 29.48) (18.96, 30.40)
(50*0) 9.72 11.55 9.6 11.44
Case 2 (20.78, 32.12) (19.72, 33.18) (18.88, 29.21) (17.89, 30.20)
(39%0, 10) 11.34 13.46 10.33 12.31
Case 3 (18.66, 31.16) (17.48, 32.34) (15.92, 26.62) (14.89, 27.65)
(29%0, 20) 125 14.86 10.7 12.76

Cs Cs
Scheme 90% 95% 90% 95%
Case 1l (20.59, 30.37) (19.85, 31.60) (20.55, 30.26) (19.92, 31.28)
(50*0) 9.78 11.75 9.71 11.36
Case 2 (19.68, 30.38) (18.94, 31.81) (19.53, 30.07) (18.95, 31.47)
(39*0, 10) 10.7 12.87 10.54 12.52
Case 3 (16.95, 28.23) (16.23, 29.80) (16.90, 28.20) (16.06, 29.92)
(29*0, 20) 11.28 13.57 11.3 13.86

Note: For Case 1, Sr. No. is 1 and m = 50. For Case 2, Sr. No. is 2 and m = 40. For Case 3, Sr. No. is 3 and

m = 30.

Balakrishnan and Asgharzadeh (2005) considered three cases, (n =50,
m =50), (n=50, m=40), and (n=50, m=230). They used progressive and
conventional Type-1l censored samples but have not provided samples. To
compare the proposed Cls with the CI proposed by Balakrishnan and
Asgharzadeh (2005), we considered conventional censored and complete samples
considered by Balakrishnan and Asgharzadeh (2005). We obtained 90% and 95%
Cls for these schemes. In Table 6, 90% and 95% Cls and their lengths are
displayed. Also, the Cls and their length proposed by Balakrishnan and
Asgharzadeh (2005) are displayed.

Observe that in the illustrated example, Cz has shorter length than the
lengths of C1, Cz and Cs. Cs has shorter length than that of C;.

Real Data Example

Lawless (1982) presented real data which represented failure times for a specific
type of electrical insulation that was subjected to a continuously increasing
voltage stress.

12.3,21.8,24.4,28.6,43.2,46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9.
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Table 7. Confidence interval and its length for real data: n = 12, A =50.50 (BLUE)

Cs Cs
Scheme 90% 95% 90% 95%
Casel (2859, 66.24)  (24.98, 69.85) (31.88, 70.53) (29.54, 76.10)
(12*0) 37.65 44.87 38.65 46.56
Case2  (25.55,73.70)  (20.94,78.31) (30.55, 80.61) (27.84, 88.46)
(7*0, 4) 48.15 57.37 50.06 60.62
Case 3 (23.35, 68.29) (19.05, 72.59) (28.06, 74.82) (25.54, 82.19)
(4, 7*0) 44.94 53.54 46.74 56.65

Cs Cs
Scheme 90% 95% 90% 95%
Case 1 (33.37, 75.18) (31.19, 82.30) (33.65, 73.96) (31.88, 83.36)
(22*0) 41.81 51.11 40.31 51.48
Case 2 (33.13, 90.13) (30.73, 101.89) (32.60, 86.50) (30.13, 94.26)
(7*0, 4) 57 71.16 53.9 64.13
Case 3 (30.14, 82.01) (27.78, 92.25) (30.55, 83.15) (27.58, 92.42)
(4, 7*0) 51.87 64.47 52.6 64.84

Note: For Case 1, Sr. No. is 1 and m = 12. For Case 2, Sr. No. is 2 and m = 8. For Case 3, Sr. No. is 3 and

m=8.

The half-logistic distribution fits the data extremely well (Balakrishnan &
Chan, 1992). This dataset was used with two censoring schemes, (7*0, 4) and
(4, 7*0), and complete data, and the CI is constructed based on the MLE, log-
MLE, pivot, and generalized pivot. These 90% and 95% Cls and their lengths are
presented in Table 7. Observe that, for real data, C3 has shorter length than Cs, Cs

and Cs.

The EM algorithm approach works well for small sample size n and the
smallest effective sample size m. Overall, the proposed Cls perform better than
the Cls proposed by Balakrishnan and Asgharzadeh (2005) and Wang (2009). The
proposed Cls are superior to the other two Cls with regard to the length and the
coverage probability.
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ABSTRACT
The presence of a nuisance parameter may often perturb the quality

of the likelihood-based inference for a parameter of interest under
small to moderate sample sizes. The article proposes a maximal scale
invariant transformation for likelihood-based inference for the shape
in a shape-scale family to circumvent the effect of the nuisance scale
parameter. The transformation can be used under complete or type-II
censored samples. Simulation-based performance evaluation of the
proposed estimator for the popular Weibull, Gamma and Generalized
exponential distribution exhibits markedly improved performancein
all types of likelihood-based inference for the shape under complete
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and type-ll censored samples. The simulation study leads to a lin-
ear relation between the bias of the classical maximum likelihood
estimator (MLE) and the transformation-based MLE for the popular
Weibull and Gamma distributions. The linearity is exploited to sug-
gest an almost unbiased estimator of the shape parameter for these
distributions. Allied estimation of scale is also discussed.

1. Introduction

The popular shape-scale probability models like Weibull, Gamma, Pareto, Log-normal,
Generalized exponential (GE), etc. are basically skewed in nature and have been employed
to model a wealth of real phenomenon in almost all disciplines. See for example, the mono-
graphs by Rinne [1], Abernethy [2] and McCool [3], among other references. The shape
parameter in a shape-scale family controls the shape of a distribution without shifting
or stretching it. Often the inference related to the shape could be of prime importance,
see for example, Jiang and Murthy [4]. Krishnamoorthy et al. [5], Powar and Kulka-
rni [6], SenGupta et al. [7], Bagdonavicius et al. [8] and Patil and Kulkarni [9] among
others discussed various applications of shape-scale family of distributions and related
inferential procedures. Kulkarni and Patil [10] discussed the two sample comparisons
including zero-inflated continuous data with the applications of shape-scale as well as
location-scale distributions in the field of molecular biology. Abundant literature exists
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on the estimation of parameters of shape-scale distributions, see for example,Zaigraev and
Podraza-Karakulska [11] and Tanaka et al. [12] among others for estimation of the Gamma
shape, while the MLE still remains the most popularly used one in real applications. MLEs,
under mild-regularity conditions enjoy nice asymptotic properties, however, the quality of
their small sample performance can be often perturbed by the existence of an unknown
nuisance scale parameter. We refer to Severini [13] and Berger et al. [14] among others,
who critically addressed the problem of nuisance parameters. In the present work, we
employ the invariance principle for eliminating the scale parameter, to get a maximal scale
invariant transformation of the data coming from a shape-scale distribution.

The resulting scale invariant likelihood can be used for all kind of scale invariant infer-
ence including point and interval estimation and tests for the shape parameter. The scale
invariant likelihood-based inference turned out to be much efficient than classical pro-
cedures for the commonly encountered Weibull, Gamma and GE distribution. For the
Weibull and the Gamma distribution, Monte-Carlo studies based on a large number of
simulations, revelled an almost exact linear relation between the bias of the proposed
transformation-based MLE of shape and that of its classical MLE. Exploiting this linearity,
we propose an almost unbiased estimator of the shape parameter for these two distribu-
tions. In the sequel, Section 2 presents the proposed scale invariant transformation. The
resulting likelihoods are functions of only the shape parameter. The results are illustrated
for popular distributions, namely the Weibull, the Gamma and the GE distribution for
complete and type-II censored samples. While the proposed estimator being an MLE with
respect to a proper likelihood function, enjoys all asymptotic properties under regular con-
ditions, the Section 3 reports simulation-based small sample performance assessment of
the resulting likelihood-based inference procedures and presents further refined estima-
tion procedures. The related problem of estimation of scale is also addressed. Section 4
reports concluding remarks.

2. The proposed transformation and scale invariant inference

Throughout the article, we assume that a random sample under consideration X, =
{X1,X5...,X,} comes from a shape-scale family with density (llf ((x/a),b), a> 0 where
f(, b) is indexed by a single-shape parameter b. This section employs a maximal scale
invariant transformation for eliminating the scale parameter, leading to a nuisance free
likelihood for the shape parameter. In the sequel, L* denotes the likelihood function for
the transformed data.

2.1. Complete data

Letx, = {x1,x2...,x,} beni. i d. observations with the joint probability density function

1
;f((X/a), b) = L(a,b|x)

1 n
= Ef((xi/a>, b),
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a,b,x > 0, where the density f(., b) is indexed only by the shape b. Suppose the interest is
in inferring the shape parameter, the scale a being a nuisance parameter. The classical MLE
of the shape based on L is likely to be a complex function of the nuisance scale parameter.
Consider the following transformation to eliminate the scale parameter:

xi/x, fori=1,2,...,n—1,

JYi= .
X fori = n.

The Jacobian of transformation is, |J| = y”~!, and the transformed joint density for y, =
Ly2.. o yntis,

1 n—1
W1, On/@), 0, 0) = — [ | f(Griyn/@), 0 (/). DI
i=1

Integrating over y,, the resulting scale invariant density function for y,_; is,
L*(b|yn—1) =g (yn-11b)

= / 8(¥n—1>(Yn/a),a,b) d(yy). (1)

n

Note that although the scale a is appearing in the right-hand expression, the process of
integration eliminates it rendering the final result free from a. Inference for the shape b
based on L* is considered in the next section. The following comments are notable:

i. Although apparently it seems as if L* is based on only n—1 observations y,_;, com-
putation of L* is based on all the n original observations, hence L* utilizes the entire
information in the original sample of size .

ii. Often the integrand in the LHS of (1) may not be available in the close form and needs
to be numerically computed. In such cases sometime built-in functions in any software
for computing the integrals are observed to give absurd results. As a way out, a simple
computational trick when the support of y,, is (0, 00) is to use the importance sampling
to evaluate the integral by writing

L* :f {g(Yn—l’()’n/a)’a’b)eyn}eiyn d(}’n)>

which is the expected value of h(y,—1,Yy) = g(yn—1, (Yn/a),a, b)e'r under Y, dis-
tributed as standard exponential distribution. Using the weak law of large numbers
(WLLN) the resulting integral is then well approximated by simulating a fairly large
number M (say M = 10,000) of standard exponential random numbers w;, i =
1,2,..., M leading to the close approximation

M

1 .

L~ M Zg(yn—la (w,-/a),a, b)eWZ’
i=1

for fixed observed datay,_;.
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iii. Since L* is also a proper likelihood function, all kind of likelihood-based inference
procedures using L* enjoy the asymptotic properties of regular likelihood-based
inference, for example, asymptotic normality of MLE and consistency among others,
with an additional advantage of being nuisance scale free.

2.2. Type-ll censored data

Let x¢) = {xq) < x@2) < --- < x(»}, (r < n) be a type-II censored sample from a shape-
scale family (1/a)f((x/a), b). Then the likelihood function is

1 i}
Le(a, bl x() = = l_[f((x(i)/a),b)){F((X(r)/a),b)}”_r,

i=0

where F ((x(r)/a), b) is the underlying survival function evaluated at (x(,/a). The scale
invariant transformation to be employed here is

_ X(,')/X(r) fori=1,2,...,r—1,
yo = X(r) fori=r+1,r+2,...,n

The Jacobian of transformation is |J| = yzr_)l, leading to the transformed likelihood
function

Le(a,blyay) = g(Yor—1)> Vi /a), a, b),
r—1

1 -
= [ [ (Gayn/a),b)f (e /@), IF (i /a), DYy,
=1

Integration over y,) leads to the scale invariant likelihood function under type-II censoring
Le(blyr—1) = g.(yr—1,b),

= j; )gc(Yr—l’ (y(r)/a)> a,b) d}’(r)-

Here, the suffix C on L* indicates that the likelihood is under type-II censoring. If the
number of uncensored observations r is equal to #n then the sample is considered to be a
complete sample. Comments similar to (i)-(iii) at the end of previous sub section hold for
this case also.

The next subsection derives the scale invariant likelihood for popular lifetime distribu-
tions, namely the Weibull, the Gamma and the GE distributions.

3. Inference based on the transformed likelihood

The L* (L{) can be used for all kind of nuisance free likelihood-based inference about the
shape parameter b for complete (type-II censored) case. In the sequel, proposed maximal
scale invariant likelihood estimator (MSILE) of the shape parameter b is the maximizer
b* of the transformed likelihood L* (L{). The transformed likelihood can also be used for
Likelihood ratio tests (LRT) related to the shape, and the resulting tests can also be inverted
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Table 1. Linearity between bias of MLE and that of MSILE with proposed AUE.

Distribution Relation Proposed AUE (b)
Weibull E(b* — b) ~ 0.528E(b — b) (b* — 0.528b)/(1 — 0.528)
Gamma E(b* — b) ~ 0.668£(b — b) (b* — 0.668b)/(1 — 0.668)

to form interval estimates of b in the usual manner, leading to scale invariant inference for
shape in these cases.

Most often a closed form expression does not exist for b* and commonly used numerical
methods can be employed for its computation. Note that the computational load in max-
imizing a function of a single parameter b would be much less than that of maximizing a
function of two arguments as in the regular likelihood.

3.1. Animproved almost unbiased estimator (AUE)

A simulation study for the Weibull and Gamma distributions revealed an almost exact
relationship between the bias of b (E(I; — b)) and that of b (E(I;* — b)). Exploiting this
linearity an improved almost unbiased estimator b of b is suggested based on 100 000 sim-
ulated random samples from various parametric combinations of both the distributions.
The details are reported in Table 1, where the relations are not exact but were found to be
very close to exact through simulations. Moreover, it is to be noted that these relations are
between population biases and may not closely hold for a particular observed data set.

A linear relationship between the biases of the two estimators for GE distribution was
also visible but was not sharp to the extent of producing an AUE for the shape parameter.

3.2. Examples

In the sequel, we use following notation:

n r
Tsymb) =Y ¥ Tsmb) = D ¥y
i=1 i=1

n r
Tp(yn, b) = ]_[yf’: Tp(yiry, b) = ]_[yﬁ’n-
i=1

i=1
Also L and L* denote the classical and transformed likelihood functions, respectively. x (y)
denote the original(transformed) observations. Routine computations as per Subsection

2.1 and 2.2 yield the following transformed likelihood functions for the Weibull (W), the
Gamma (G) and the GE distributions.

3.2.1. Weibull distribution
(i) Complete sample:
Regular likelihood function:

b n
LW(b)a | X) = <_h) Tp(Xn) b — l)e_TS(Xn’b)/ab)
a

x,a,b>0, i=12,...,n
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Transformed likelihood function:

C(mb" ' Ty(yp—1,0— 1)
(TS(YH—I)b) + l)ﬂ
yi,b>0, i=12,....,n—1

LT/\/(b [ Yn—1) =

>

(ii) Type-II censored sample:
Regular likelihood function:

b\’ b b
Lw c(ba|x) = <E> Typ(X(r), b — De™ 0D/ @[ T b/ n=r,

a,b>0,0=<x1 <x2 =< = X0n-
Transformed likelihood function:

LV Ty(ye—1),b— 1)
(Ts(yr—1),b) + n—r+ 1"’
0<yn < <yr-n =<1, b>0.

LT/vic(b | Y(rfl)) =

3.2.2. Gamma distribution
(i) Complete sample:
Regular likelihood function:

1 n
, [ T , b—1 *Ts(xml)/“’
Lotbaln) = (i ) Totsmb = e

x,a,b>0, i=12,...,n.

Transformed likelihood function:

L () Ty (yu-1,b — 1)
F(b)n(Ts(Yn—l, b) + l)nh)
yi, b>0, i=12,...,n—1L

L*G(b [Yn—1) =

(ii) Type-1I censored sample:
Regular likelihood function:

1 r _
L balx)=(——) T,(x(»,b)e LEOD/AG(xn, b,a)]" ",
G_c(b,a|x) (abr‘(b)) p(X(r), b) [G(x(r), b, a)]
a>b>0) Ofx(l)f"'fx(r))

where (_}(x(,), b, a) is the survival function of gamma (b,a) distribution evaluated at
X(r)> b is shape parameter and a the scale parameter.
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Transformed likelihood function:
Tp(yor-1),b— 1)

F(b)r Il(y(V—l)ab);

LZ_C(b | Y(r—l)) =

b>0,

where,0 < y) <--- <ye—1) < 1,

[e.¢]
(Y1), b) = / e~ s DUy N B, 1,0)]"" du.
0

3.2.3. GEdistribution
(i) Complete sample:
Regular likelihood function:

b\" "
Lge(b,alx) = (—) e TowD/a T (1 — g i/@)b1,
¢ i=1

x,a,b>0, i=12,...n.
Transformed likelihood function:

Lig(blyn—1) = b"L(yu-1,b),
yi>0, i=12,...,n—1
b>0,

where,
oo n—1
L (yn-1,b) = / [Ta—e)P7ta—emirle Tt qy,
0 i1

(ii) Type-II censored sample:
Regular likelihood function:

r t
Lge_c(b,a|x) = (é> [Ja — e Co/oybrtemTabiagy — (1 — g~ /ab=
- a
i=1

a,b>0,
0<xq0) <x@2 < =x0-
Transformed likelihood function:

Leg c(blye-1)) = b'I3(y(r—1), b)s
b>0,

where 0 < yq) <--- < yr—1) < land

oo 1
I3(y(—1),b) = f l_[(l A

[1—(1-— u)b]n—r ur—l du.

l]n—r)
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Note that, in practical usage, the integrals I, (., b), I>(., b) and I5(., b) need to be numer-
ically computed. The trick mentioned in comment (ii) of Section 2.1 can be employed for
simpler computation.

4. Empirical assessment

This section reports the results of an empirical assessment of the proposed inferential pro-
cedures in comparison to the classical MLE. A total of 100,000 samples are simulated from
the above mentioned 3 distributions. The parametric combinations considered are: sam-
ple sizes n =10,20,30,50, shape parameters b = 0.5, 1, 2, 5, scale parameters a=1,5,10 and
censoring fractions r = 0.5, 0.7, 1 where [nr] observations are actually observed. The quan-
tities rZ, 7, 3, and 7, defined below for quantifying the extent of reduction in bias and MSE
in comparison to MLE are computed for each sample.

Bias i)
Bias b

Bias ZI
Bias b*

MSEb . MSEb

ko
r, =

b rh: b r =

m A rm - ~
MSE b* MSE b

4.1. Assessment of the MSILE of the shape parameter

The average bias (MSE) of the three estimators namely MLE, MSILE and AUE for the
Weibull and the Gamma distribution and MLE and MSILE of the GE distribution are
displayed in Table S1 in the supplementary material. Figure 1 displays the box plots of
the ratios rz‘; (panels (a)-(c)) and r;;, (panels (d)-(f)) for the three distributions. All the
ratios are well above 1 indicating that the biases and MSEs of MSILE are uniformly smaller
than those of MLE. For GE distribution under large sample sizes with small shape param-
eter the precision of MSILE over MLE in terms of both bias and MSE was not notable
and these cases are not included in the box plots. For small samples with high-censoring
fraction a similar thing was observed with respect to MSE for the GE distribution. For
Gamma distribution the precision of MSILE with respect to MSE for small sample size and
high-censoring fraction was markedly large in comparison to other cases and is displayed
separately in Figure 2 for better visibility. Figure 3 displays the ratios 7}, and 7, for the

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

(d) (e) (f)

Figure 1. The extent of reduction in bias ((a)-(c)) and MSE ((d)—(f)) for MSILE in comparison to MLE:
Weibull, Gamma distribution and GE distribution. (a) Weibull distribution, (b) Gamma distribution, (c) GE
distribution, (d) Weibull distribution, () Gamma distribution and (f) GE distribution.
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Figure 2. The extent of reduction in MSE for MSILE in comparison to MLE for Gamma distribution with
sample sizen=10and r=0.5.

B = | = mE | e -

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 3. The extent of reduction in bias ((a) and (b)) and MSE ((c) and (d)) for AUE in comparison
to MLE: Weibull and Gamma distribution. (a) Weibull distribution, (b) Gamma distribution, (c) Weibull
distribution and (d) Gamma distribution.

Weibull and Gamma distributions. A similar observation of Figure 3 reveals that the AUE
further uniformly and markedly refines the performance of MSILE by reducing the bias
to almost zero for all sample sizes and all censoring fractions for the Weibull and Gamma
distributions. The improvement was much more noticeable for the Weibull distribution.
The efficiency increases with the extent of censoring for small sample sizes. Owing to the
consistency of MLEs, the extent of the reduction in MSE reduces with increased sample
size.

Tanaka et al. [12] suggested two improved estimators of shape parameter of Gamma
distribution which exhibit superiority over MLE for the case of complete sample. In the
sequel we refer these estimators as Tanaka_1 and Tanaka_2. Figure 4 shows the box plots
of bias (a) and MSE (b) of improved estimators suggested by Tanaka etal. [12], MLE, MSILE
and AUE for shape parameter of Gamma distribution. The sub-panels of each sub-figure
therein show the box plots of bias and MSE for these estimators with different sample sizes.
Figure 5 displays similar plots varying the shape parameters. The graphs reveal that the
proposed AUE has uniformly smaller bias over all the estimators. The bias of Tanaka_1
are also close to zero at small shape parameter but comparatively larger than AUE for
shape parameter greater than 2. MSEs of Tanaka_2 and AUE are comparable and reason-
ably small. However note that the estimators suggested by Tanaka et al. [12] are valid only
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Figure 4. Sample size wise Bias (a) and MSE (b) of estimators of shape parameters of Gamma distribu-
tion.
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Figure 5. Shape parameter wise Bias (a) and MSE (b) of estimators of shape parameters of Gamma
distribution.

under complete sample case while AUE is available for both complete sample and type-II
censoring.

4.2. One sample test for the shape

LRT under the transformed (original) likelihood based on b (i)) is compared empirically
based on 100,000 simulations, for the same set of parametric combinations as in subsection
4.1 at 5% level. The absolute difference (D) between observed type-I errors and the nominal
level @ = 0.05 are displayed in Table S2 of the supplementary material. The box plots of
the absolute difference (D) are displayed in Figure 6. The differences based on MSILE are
clearly very close to zero compared to MLE for all the three distributions and all parametric
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Figure 6. Box plots of absolute differences (D) between simulated type-I error (size) and actual level
o = 0.05. (a) Weibull distribution, (b) Gamma distribution and (c) GE distribution.
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Figure 7. Coverage probability and average widths of Cl for the shape parameter. (a) Coverage proba-
bility and (b) Average width.

combinations with increasing degree of efficiency with the extent of censoring indicating
the superiority of MSILE for testing the shape parameter.

4.3. Interval estimation

The proposed LRT can be inverted to find a confidence interval (CI) for the shape param-
eter. The coverage probabilities and average widths of CI based on the MSILE and MLE
are displayed in the Figure 7. It is clear that the MSILE has uniformly well concentrated
coverages around the true confidence coefficient 0.95. The extent of benefit of MSILE with
respect to coverage probability was more prominently seen for GE distribution although
the widths in this case are little larger than those of MLE.

4.4. Assessment of the scale parameter

Note that for a fixed shape b, the MLE of the scale parameter a is a function of b. Let it be
denoted by a(b). Similarly, let axs (b) denote the estimator obtained by minimizing the Kol-
mogrov-Smirnov distance between F(., 4, b) and the empirical distribution function F,,(.)
for fixed b. Let acy(b) and aap(b) denote similar estimators based on the Crammer—Von
Mises and the Anderson-Darling distances, respectively. We compare the following point
estimators for the scale parameter a empirically:

(1) M1-M3: a(b), a(b*) and a(b), respectively.

(2) M4-Me: &Ks(l;), &Ks(l;*), axs(b), respectively.

(3) M7-M9: acy (b), acy (b*), acy (b), respectively.
(4) M10-M12: aap(b), aap(b*), aap(b), respectively.
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Figure 8. Bias and MSE of the three estimators (M1, M2 and M11) of the scale parameter in the three
distributions. (a) Weibull distribution, (b) Gamma distribution, (c) GE distribution, (d) Weibull distribution,
(e) Gamma distribution and (f) GE distribution.

Out of these 12 estimators, box plots of the three estimators having smallest simulated
absolute bias and MSE are given in Figure 8 for the Weibull, the Gamma and the GE
distribution. The Anderson-Darling minimum distance estimator (M11) based on MSILE
b*, classical MLE based on b (M1) and the one based on b (M2) were found to exhibit the
smallest bias. The MSE for all the 12 estimators was comparable. The performance of M2 is
satisfactory with the Weibull and Gamma distributions and is recommended for point esti-
mation of the scale. For GE distribution a similar observation leads to the recommendation
of M1 under small samples and M11 under moderate to large samples.

The proposed procedure is illustrated with real life examples in the sequel.

4.5. Real life application

Krishnamoorthy et al. [5], Powar and Kulkarni and SenGupta et al. [7] among others dis-
cussed the importance of shape-scale family of distributions in ground water monitoring,
assessment of air pollution and prediction of environmental events as well. In the context of
ground water monitoring, Krishnamoorthy et al. [5] and Powar and Kulkarni [6] analysed
vinyl chloride concentration in micro grams per litre of water (jug/L) from 34 clean upgra-
dient wells with observed values: 5.1,2.4,0.4, 0.5, 2.5,0.1,6.8,1.2,0.5,0.6, 5.3, 2.3, 1.8, 1.2,
1.3, 1.1, 0.9, 3.2, 1.0, 0.9, 0.4, 0.6, 8.0, 0.4, 2.7, 0.2, 2.0, 0.2, 0.5, 0.8, 2.0, 2.9, 0.1, 4.0. The
nominal level of vinyl chloride suggested by U.S. Environmental Protection Agency is 2.0
to 2.4 pg/L. Note that increased percentage of vinyl chloride is a major cause for cancer or
liver damage. The p-values based on KS statistics for fitting Gamma and Weibull distribu-
tion are 0.9694 and 0.9366, respectively with respective Akaike Information Criteria (AIC)
values 114.8263 and 114.8992. As per the minimum AIC criteria and maximum p-value
of KS-test, the given data is best with fitted Gamma distribution. The estimated maximum
likelihood parameters are: b =1.0627; and & = 1.7685; and the proposed estimates are
bt = 1.0381;, b= 0.9887; and a* = 1.8104;, leading to an estimate of the percentage of
wells having vinyl chloride concentration greater than the prescribed upper bound of 2.4
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is 26.16%, that is almost ith of the wells have critically large percentage of vinyl chloride,
indicating that monitoring of this wells is essential to avoid future risks.

5. Concluding remarks

The maximal invariant transformation-based likelihood inference for the shape parameter
has exhibited uniform marked improvement over their regular likelihood-based counter-
parts under small samples and and high-censoring fractions and is recommended as a
substitute for MLE point and interval estimation as well as testing problem. The proposed
AUE for the Weibull and the Gamma distribution further improves the scenario. MLE of
the scale as a function of MSILE of shape also turns out to be more efficient than its regular
MLE under Weibull and Gamma distributions and is recommended.
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Abstract

The article studied the steady-state behaviour of the synthetic control chart using signed-rank statistic for
shifts in the process median. The steady-state ATS (Average Time to Signal) values are computed using
Markov chain approach. To compute steady-state ATS, the performance of the synthetic control chart and
two-of-L+1 control chart can be made identical over all samples with head start features. When subgroup
sample size n=10, the steady-state performance of the synthetic control chart is worth for small to moderate
shifts under all considered symmetric distributions. When subgroup sample size n=5, steady-state ATS
values are larger under normal and double exponential distributions only for small shifts. However, under
the Cauchy distribution zero-state ATS values are larger but not significantly larger as compared to steady-
state ATS values. Usefulness of proposed control chart explored using numerical example. Proposed
control chart is simple and easy to use for practitioners.

Keyword: Nonparametric, signed-rank, synthetic, runs rule, steady-state and average
time to signal.

1. Introduction

A control chart is one of the most useful tools for monitoring quality of the characteristic
of an interest in a manufacturing process. Most of the control charts are based on the
assumption that the process characteristic follows a normal distribution. Many
researchers have pointed out that all the processes are not normally distributed; see for
example (Chou et al. 2001) and the references cited therein. The standard control charts
do not perform well, if the assumption of normality is not satisfied. The effects of non-

normality on the X chart have been studied in the literature and includes among others
(Schilling and Nelson 1976, Bradley 1973). This demands the construction of
nonparametric control charts. A chart is said to be nonparametric if the run length
distribution of the chart does not depend on the underlying process distribution, when
there is no shift in the process parameter under study. Hence, the in-control Average
Time to Signal (ATS) of nonparametric control chart does not depend on the underlying
process distribution.

In the review of literature related to the nonparametric control charts, (Bakir and
Reynolds 1979) provided a control chart based on within group ranking. (Hackl and
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Ledolter 1991) suggested a control chart based on ranks. (Amin et al. 1995) proposed
nonparametric quality control charts for location and scale parameters based on the sign
statistic. (Bakir 2004) reported a control chart based on signed-rank statistic, which was
further improved in terms of Average Run Length (ARL) by (Chakraborti and Eryilmaz
2007). (Bakir 2006) proposed distribution free quality control charts based on signed-
rank-like statistics. (Chakraborti and Van de Wiel 2008) proposed Mann-Whiteny
statistic based control chart. (Human et al. 2010) studied nonparametric Shewhart-type
sign control charts based on runs. (Khilare and Shirke 2010, 2012) developed
nonparametric synthetic control charts using sign statistics for shifts in location and
variability respectively. (Ho and Costa 2011) proposed monitoring a wandering mean
with an np chart and this chart also works with sign statistic. (YYang et al. 2011) provided
a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts
in the process with non-normal or unknown distributions. (Majid and Neda 2013)
developed nonparametric signed-rank control charts with variable sampling interval.
(Abbasi et al. 2013) proposed nonparametric progressive mean control chart for
monitoring the process target. (Liu et al. 2014) developed dual nonparametric cusum
control chart based on ranks. (Riaz and Abbasi 2016) suggested double EWMA control
chart for process monitoring. (Abid et al. 2016) reported the use of ranked set sampling in
nonparametric EWMA control charts based on sign test statistic. (Abid et al. 2016)
proposed nonparametric EWMA control chart based on Wilcoxon signed-rank statistic
for monitoring location. (Coelho et al. 2017) reported nonparametric signed-rank control
charts with variable sampling intervals.

If process is running in an in-control state for a long period, it will reach in steady-state
mode. In order to characterize long-term properties of a control chart, it is an appropriate
to investigate the steady-state ARL. (Crosier 1986) suggested a technique for obtaining
steady-state ARL of CUSUM chart using the Markov chain approach. (Saccucci and
Lucas 1990) have given a FORTRAN computer program for the computation of ARL of
EWMA and combined Shewhart-EWMA control schemes. The program calculates zero-
state and steady-state ARL using the Markov chain approach. (Champ 1992) computed
steady-state ARL of Shewhart control chart with supplementary runs rules. (Davis and
Woodall 2002) studied the steady-state properties of synthetic control chart to monitor
shifts in process mean. (Lim and Cho 2009) developed a control charts with m-of-m runs
rules to study the economical-statistical properties of control chart using steady-state
ARL. (Khilare and Shirke 2015) studied the steady-state behavior of nonparametric
control charts using sign statistic.

In present article, we proposed the synthetic control chart using runs rules for monitoring
the median of a continuous characteristic of the underlying process. The main purpose of
the paper is to study the steady-state behavior of the synthetic control chart based on
signed-rank statistic when process runs in an in-control state for long time. Rest of paper
is organized as follows.

Section 2 gives a control chart based on the signed-rank statistic. In section 3 conforming
run length control chart is described briefly. Section 4 gives the operations and design
procedure of the synthetic control chart using signed-rank statistic. Section 5 gives runs
rule representation, Markov chain model and steady-state ATS of the synthetic control
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chart. The steady-state performance of the synthetic control chart is given in section 6.
Section 7 gives numerical example. Concluding remarks are given in section 8.

2. A Control Chart Based On the Signed-Rank Statistic:

Let (X X2, ..... , Xin) be a random sample (subgroup) of size n>1 observed from a
continuous process with median 6 at sampling instances t =1, 2, ...... It is assumed that
the underlying process distribution is continuous symmetric and that the in-control
process median is known or specified to be equal to 6. We further assume that 6g is
known and when 6 # 6o the process is out-of-control. (Bakir 2004) provided a
nonparametric control chart based on the signed-rank statistic. For the t subgroup
sample (X, X2, ... ,Xtn), the signed- rank statistic is defined as

v, =Y sign(x; — )R], t=1,2, .. (1)
j=1
Where, sign (u)=-1,0,1if u<0,=0,>0 and

Ry =1+ 2 1% =6 [ % =6 )
i=1

with I(a <b) =1 if a <b and 0 otherwise.

We can rewrite (1) as
. n(n+1
= 2w -0 @

Wherew;" is the well-known Wilcoxon Signed-rank Statistic (the sum of the ranks of the
absolute values of the deviations corresponding to the positive deviations). One can
therefore use y/, given in (2) as a charting statistic instead using (1). Let UCL be the
upper control limit corresponding to a positive-sided control chart. The chart gives an
out-of-control signal at the first sampling instance t for which y, 2UCL. In the
following section we briefly describe conforming run length control chart.

3. The Conforming Run Length Control Chart

The conforming run length (CRL) chart was originally developed for attribute quality
control by (Bourke 1991). In 100% inspection, the CRL is the number of inspected units
between two consecutive nonconforming units (including the ending nonconforming
unit). The CRL chart uses the CRL as the charting statistic. The idea behind the CRL chart
is that the conforming run length will change when the fraction nonconforming ‘p’ in the
process changes. The CRL is shortened as p increases and lengthened as p decreases. The
charting statistic (CRL) follows a geometric distribution with parameter p. The mean
value of CRL (i.e. the average number of inspected units in a CRL sample) is

1
Her = E ) (3)

and its cumulative distribution function (c. d. f.) is given by,
F,(CRL)=1-(1-p)*™; CRL=12,. (4)
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If our only concern is the detection of an increase in p, the lower control limit (denoted L)
is sufficient for the CRL chart. If a.g is the specified/desired type I error of the CRL

chart and p, is the in-control fraction nonconforming, L can be derived from the
following equation.

Qe = FpO(L)=l—(1— po)L’

which gives | = In(-acq ) (5)
In(1-p,)

Note that L must be rounded to the largest integer smaller than or equal to the calculated
value in (5). If the sample CRL (i.e. the charting statistic) is smaller than or equal to L
then it is very likely that the fraction nonconforming p has increased and therefore, an
out-of-control signal will be given. ARL., is the average number of CRL samples

required to detect change in p. The ARL_g, is given by

ARL.., = ! 6)
%~ P|(Unitis nonconfor min g )CRL betwwen two nonconfor min g units < L)]’
1 1
ARL,.., = _ ,
““  pP(CRL<L) pF(L)
Where,
p = P(Unitis nonconfor min g) and F(L)=1-(1—p)".
Therefore,
1
ARLcq = L
p{1-(-p)) ™

In section 4 we briefly discuss synthetic control chart using signed-rank statistic.

4. A Nonparametric Synthetic Control Chart

A nonparametric synthetic control chart proposed by (Pawar and Shirke 2010) is a
combination of the nonparametric signed-rank statistic y, (called the y, chart hereafter)
and the CRL chart. Basically the operation of the nonparametric synthetic control chart is

similar to that of the synthetic control chart for monitoring the process mean as was
proposed by (Wu and Spedding 2000), except that the subgroup mean is replaced by the

signed-rank statistic y, and the upper control limit is changed accordingly. However, we

do not follow the same design procedure due to (Wu and Spedding 2000) in order to
ensure that the synthetic control chart is nonparametric.
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4.1. Operations
The operations of the nonparametric synthetic control chart are as follows:

1. Decide on the upper control limit of the y/, chart and the lower limit L of the CRL
chart. The design of these control parameters will be described shortly.

2. At each inspection point ‘t’ take a random sample of n observations and calculate
Vi

3. If ¥,<UCL, (the sample is called a conforming sample) then control flow goes

back to step (2) (That is continue to draw random samples from the process and
calculate the statisticy, ).Otherwise, the sample is called a nonconforming sample
and control flow goes to the next step.

4. Check the number of samples between the current and the last nonconforming
sample (including the current sample). This number is taken as the value of the
plotting statistic (i.e. CRL) of the CRL chart in the synthetic chart.

5. If this CRL is larger than the lower control limit of the CRL chart, then the process
is thought to be under control and the charting procedure is continued. Otherwise,
the process is declared to be out of control and control flow goes to the next step.

6. Take the necessary action to find and remove the assignable cause(s).

4.2. ARL of the synthetic control chart:
The probability that a synthetic control chart produces an out-of-control signal is given
by
Q(s)= p(6)P(5),
where,
p(6) = P(sample sampleis nonconfor min g),

p(5)=P(y, >UCL/O =6, +5), and

P(5)= P(CRL between two nonconfor min g samples< L),
P(s)=P(CRL<L),

P()

P

b-@-p)")

Hence, ARL of synthetic control chart is given by
ARL,(5)= 1 L

QW) pleNi-- ()]

4.3. Design

The synthetic chart has two parameters namely, L and UCL. For given in-control ARL
and subgroup sample size n, the parameters L and UCL are obtained as follows.

Let ARL.(5) be the out-of-control ARL of the synthetic control chart and can be
obtained using formula given below.

ARL 5)(1 )
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Here p(d) is the probability that the sample is nonconforming, when the permanent
upward step shift of ¢ units occurs in the process. When there is no shift, ¢ is equal to
zero. We note that in equation (7), ‘p’ is the probability that a unit is nonconforming,
while p(9) defined above is the probability that the sample is nonconforming. Thus p(d)
plays the role of p in equation (7).

We note that the in-control ARL of the synthetic chart is given by ARLs(0), where

1
ARLSs(0) = . 8
0= oaa-ron ®)

Suppose the desired in-control ARL is ARL(0) and the subgroup sample size is n. We
compute the ARLs(0) values using equation (8) for UCL=/,2,...,(n(n+1)/2) and
L=1,2,...... and choose that pair of (L, UCL) for which the ARLs(0) is close to ARL(0).
We may note that for a fixed value of UCL, ARLs(0) is a decreasing function of L, while
for a fixed value of L, ARLs(0) is a non-decreasing function of UCL. Table 1 gives values
of ARLs(0) for n =5. As an example, suppose we wish to set ARL(0) at 32. Then, from
Table 1, we see that L=4 and UCL=10 is the required pair as the ARLs(0) corresponding
to these values is 32.77.

Table 1: In control ARL values for positive sided chart for various values of UCL
and L then n=5

L

ucL 1 2 3 4 5 6 7 8 9 10

1 4 267 | 229 | 213 | 206 | 203 | 202 | 201 2 2
2 606 | 38 | 311 | 281 | 266 | 257 | 253 | 25 | 248 | 248
3 606 | 38 | 311 | 281 | 266 | 257 | 253 | 25 | 248 | 248
4 1024 | 607 | 474 | 412 | 3.78 | 358 | 345 | 337 | 331 | 3.28
5 1024 | 607 | 474 | 412 | 378 | 358 | 345 | 337 | 331 | 3.8
6 209 | 11.73 | 874 | 729 | 645 | 592 | 556 | 531 | 513 | 4.99
7 209 | 1173 | 874 | 729 | 645 | 592 | 556 | 531 | 513 | 4.99
8 4096 | 2222 | 16.03 | 12.98 | 11.18 | 10.01 | 9.2 | 861 | 817 | 7.83
9 4096 | 22.22 | 16.03 | 12.98 | 11.18 | 1001 | 9.2 | 861 | 817 | 7.83
10 | 113.78 | 59.69 | 41.71 | 32.77 | 27.44 | 2391 | 21.42 | 19.57 | 18.15 | 17.03
11 | 11378 | 59.69 | 41.71 | 32.77 | 27.44 | 2391 | 21.42 | 19.57 | 18.15 | 17.03
12 256 | 13213 | 90.9 | 70.32 | 58.01 | 49.83 | 44.02 | 39.67 | 36.32 | 33.65
13 256 | 13213 | 90.9 | 70.32 | 58.01 | 49.83 | 44.02 | 39.67 | 36.32 | 33.65
14 1024 | 520.13 | 352.23 | 268.32 | 218.01 | 184.49 | 160.58 | 142.67 | 128.75 | 117.64
15 1024 | 520.13 | 352.23 | 268.32 | 218.01 | 184.49 | 160.58 | 142.67 | 128.75 | 117.64
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5. Runs Rule Representation of the Synthetic Control Chart

The runs rule representation of synthetic control chart to detect shifts in the location

parameter for X control chart has been studied by (Davis and Woodall 2002). This
section presents the runs rule representation of a nonparametric synthetic control chart
using signed-rank statistic. For the runs rule representation of the proposed nonparametric
synthetic control chart using sign-rank statistic, the procedure of (Davis and Woodall
2002) is followed. Let ‘0’ denotes conforming sample and ‘1’ denotes nonconforming
sample. If value of signed-rank statistic falls within control limit, the sample is
conforming and if it falls out-side the control limit then sample is nonconforming. Thus a

sequence of y, can be represented by a string of ‘0” and “1°. For example 100100 would
indicate that in a sequence of six samples, the first and third samples are nonconforming
samples, while the rest are conforming. For simplicity, suppose that L of CRL chart is
equal to 4. This means that any sequence of y, with pattern 10001, 1001, 101 or 11 will

generate an out-of-control signal for the synthetic chart. In general, such sequence also
generates signal under the following runs rule:

If two out-of- L +1 consecutive signed-rank statistics fall out-side of the control limit,
the control chart signals an out-of-control status.

On initial pattern of 0001, the synthetic control chart will signal using L =4, while two-
of- L +1control chart would not. The performance of both the control charts can be made
identical over all the samples using head start feature in the runs rule representation; that
is , it is assumed that the there is signed-rank statistic at time zero and that falls out-side
of the control limit. With this head start, both control charts will signal on initial patterns
1, 01, and 001 but not on the initial pattern 0001.Thus, performance of the synthetic and
two-of-L+1 charts is now identical for all possible sequences of y, . If CRL value is less
than or equal toL | then declare that the process is out-of-control. Thus, the synthetic
control chart using y, identical to the above runs rule with the head start a y, at time

zero is observed and is nonconforming. In the following, we present the Markov chain
model and ATS results of synthetic control chart.

5.1. Steady-State Average Time to Signal of the Synthetic Control Chart:

The steady-state ARL of the proposed synthetic control chart can be obtained using the
Markov chain approach. The states of transition probability matrix (t.p.m.) are based on
the lower control limit of the CRL chart.

Consider the case where L =3. This chart is an identical to a chart which signals if two-
of-four signed-rank statistics fall out-side of the control limit, assuming that a signed-
rank statistic at time zero is out-side of control limit.

Let
A= Pr(next observed signed-rank statistic will be below upper control limit).
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The probability of next observed signed-rank statistic will be lies below the upper control
limit is

A=Pr(y, <UCL),
and B=1-A.

Davis and Woodall (2002) suggested that the following t.p.m. would govern the Markov
chain for the synthetic control chart.

° The row contains ‘A’ in first column and ‘B’ in second column.
. The last row contains ‘A’ in first column.

J In all other rows, the entry above the diagonal is ‘A’.

o In all other locations, the entry is zero.

Table 2:  The transition probability matrix for the synthetic control chart using
signed-rank statistic when L=3

Statesy— — | 000 001 010 100 | Signal
000 A B 0 0 0
001 0 0 A 0 B
010 0 0 0 A B
100 A 0 0 0 B
Signal 0 0 0 0 1
With this Markov chain model, the zero-state ARL (0SARL) is
0SARL =s'(1 —Q) ™1, 9)
hence, zero-state average time to signal (0SATS) is given by
0SATS = (0SARL —0.5)*h, (10)

where, Q isan L+1 by L+1 matrix of probabilities obtained by deleting last row and
last column from the above matrix, 1 is column vector of appropriate order having all
elements unity and I isan L+1 by L+1 identity matrix, s is an initial probabilities of an
order L+1, 1 for initial state and O for the rest of the cases, s'= [0, 1, 0,..., 0, 0]. A state
‘001’ is an initial state.

If the process is running smoothly for a longer time, it reaches in the steady-state.
Therefore, it is necessary to study steady-state behaviour of the process. To study the
steady-state performance of the proposed synthetic control chart, the measure average
time to signal (ATS) is used. The steady-state average time to signal (SSATS) measures
average number of samples required to signal when the effect of head start has
disappeared.
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Let Q,be the stochastic matrix obtained from matrixQ. Let =~ be a row vector
corresponding to the stationary probability distribution ofQ,. The SSARL of the

synthetic chart using sign-rank statistic is given by
SSARL = 7' (I —Q,) 1. (11)

The 7 can be obtained as
7 =Qyr,
subject to constraint

n

Zﬁi =1.

i=1
Finally SSATS is given by,
SSATS =h [SSARL - %) (12)

Where, sampling interval (h) is adjusted according to the desired false alarms rate.

We provide steady-state performance of the synthetic control chart in the following
section.

6. Steady-State Performance of the Synthetic Control Chart

When there is a shift in the process median, the distribution of the charting statistic is
difficult to obtain. Therefore, we use simulation to obtain the ATS values for various
shifts in the process median. A simulation study based on 10000 runs is performed for
sample of sizes n=5, n=10 and the corresponding in-control ATS values are 32 and 380
respectively for computing probabilities of next observed signed-rank statistic will falls
below upper control limit for different shifts. The simulation study is carried out for three
continuous symmetric distributions namely the normal, double exponential and Cauchy.
As in (Bakir 2004), the scale parameter is set to be A = /A2 for the double exponential
distribution to achieve a standard deviation of 1.0. For the Cauchy distribution, 4 =
0.2605 is chosen to achieve a tail probability of 0.05 above € + 1.645, the same as that of
a normal distribution with a mean @ and a standard deviation of 1.0. These three
distributions are continuous symmetric about their median but have different tail
behavior. Moreover, the tail probabilities, say above 3 are 0.0013499, 0.007185 and
0.0275707, while the tail probabilities above 4 are 0.00003167, 0.0017467 and
0.0207007 respectively for the normal, the double exponential and the Cauchy
distributions. In most of times practitioners are interested only in upward shifts in the
process median; therefore, in this paper we computed zero-state and steady-state ATS
values only for up-ward shifts. Similarly we can compute zero-state and steady-state ATS
values for down ward shifts and two-sided shifts in process median. Table 3 and Table 4
give the zero-state and steady-state ATS profile of the synthetic control chart to detect
upward shifts in the process median.

Table 3:  Zero-state and steady-state ATS values of the synthetic control chart
with n=5, L=4, ARL(0)= 32.77 and UCL=10.
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(0 ~ 00) Normal distribution | Double exponential distribution | Cauchy distribution
OSATS | SSATS OSATS SSATS OSATS | SSATS
0 32.77 32.77 32.77 32.77 32.77 32.77
0.2 10.06 10.51 7.45 7.79 3.7 3.69
0.4 451 4.60 3.17 3.08 1.92 1.59
0.6 2.49 2.28 1.96 1.64 1.53 1.09
0.8 1.74 1.36 1.52 1.08 1.36 0.87
1 1.38 0.90 1.29 0.79 1.26 0.74
1.2 1.19 0.66 1.16 0.62 1.22 0.69

From Table 3 we observed that:

For normal and double exponential distributions the steady-state ATS values are
large as compared to zero-state ATS values only for small shifts in median.

For Cauchy distribution zero-state ATS values are large as compared to the
steady-state ATS values but not significantly different.

Table 4: Zero-state and steady-state ATS values of the synthetic control chart with

n=10, L=8, ARL(0)= 380 and UCL=40

(49 3 90) Normal distribution | Double exponential distribution | Cauchy distribution

OSATS | SSATS OSATS SSATS OSATS | SSATS

0 380.00 | 380.00 380.00 380.00 380.00 | 380.00
0.2 37.98 43.86 21.12 25.48 6.44 8.28
0.4 7.56 9.67 4.43 5.69 2.10 2.54
0.6 2.64 3.29 1.87 221 1.36 151
0.8 1.32 1.46 1.13 1.21 1.12 1.19
1 0.85 0.85 0.82 0.81 0.95 0.98
1.2 1.15 1.18 1.17 1.21 1.38 1.50

Following are the findings from Table 4:

194

When subgroup sample size n=10, the steady-state ATS performance is worth as
compared to the zero-state ATS for all considered distributions.

Steady-state ATS performance of the synthetic control chart is better under
Cauchy distribution than double exponential and normal distributions.

Steady-state ATS performance of the synthetic control chart is worth for normal
distribution.
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7.  Numerical Example

The operations of the proposed control chart can be illustrated using data related to the
diameter of casting taken from Montgomery-2009 (Exercise example no.-6.69, page no.-
286). The data set contains 20 samples each of size five. The median of the data set is to
be 11.7531. To have an in-control ARL equal to 32, the parameters of the upper-sided
synthetic control chart are UCL=10 and L = 4. A sample is conforming one when
w, <UCL. Table 5 depicts the values of the signed-rank statistic defined in equation (1)

for 20 samples. Figure 1 gives the upper-sided synthetic control chart using signed-rank
statistic. The synthetic control chart signals an out-of-control status, if CRL <L . Figure 1
show that the signed-rank statistic of sample two is plotted above UCL. That is sample
two is nonconforming and CRL at this time epoch is 2 which is less than L; hence,
synthetic control chart signals an out-of-control status at time epoch 2. The synthetic
control chart also signals at time epochs 13, 17 and 19.

Table 5: Sample number and Signed-rank statistic

Sr. No. | Sign-rank statistic
1 -11
2 13
3 5
4 5
5 -15
6 5
7 -15
8 -8
9 15
10 -1
11 -8
12 -9
13 15
14 -15
15 -6
16 -9
17 15
18 -1
19 15
20 9
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20 1 The Upper-sided Synthetic Control Chart
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Figure 1: The upper-sided synthetic control chart

8. Conclusions

In this article we studied the steady-state behaviour of the synthetic control chart using
signed-rank statistic for shifts in the process median. The steady-state ATS values are
computed using Markov chain approach. To compute steady-state ATS, the performance
of the synthetic control chart and two-of-L+1 control chart can be made identical over all
samples with head start features. When subgroup sample size n=10, the steady-state
performance of the synthetic control chart is worth for small to moderate shifts under all
considered symmetric distributions. When subgroup sample size n=5, steady-state ATS
values are larger under normal and double exponential distributions only for small shifts.
However, under the Cauchy distribution zero-state ATS values are larger but not
significantly larger as compared to steady-state ATS values. Usefulness of proposed
control chart explored using numerical example. Proposed control chart is simple and
easy to use for practitioners.
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1 | INTRODUCTION

Control charts are used to monitor process parameter,
such as location, dispersion, and proportion of defectives.
The widely used control charts are X chart for process
location and R chart or S* chart for the process dispersion;
these charts are also known as Shewhart's charts. The
main drawback of these charts is that these charts are less
efficient against small shifts. One can resolve this problem
by using runs rules. There are some operational issues
while implementing the runs rules charts. An alternative
to detect the small shift is to use memory chart, as like
cumulative sum (CUSUM) chart proposed by Page' or
exponentially weighted moving average (EWMA) charts
proposed by Roberts.? These charts consider the past as
well as current information about the process, which
makes charts very sensitive to small shifts in the process
parameters. In the literature, various parametric CUSUM
procedures are available for monitoring process location
and dispersion, but very few nonparametric CUSUM pro-
cedures are available to monitor the process dispersion.
The traditionally used CUSUM S and CUSUM S*
charts are based on the assumption of normality, but
when the process distribution is not normal, the false
alarm probability of the chart varies. Therefore, one of

In the present article, we propose a nonparametric cumulative sum control
chart for process dispersion based on the sign statistic using in-control deciles.
The chart can be viewed as modified control chart due to Amin et al,® which
is based on in-control quartiles. An average run length performance of the
proposed chart is studied using Markov chain approach. An effect of non-
normality on cumulative sum S* chart is studied. The study reveals that the
proposed cumulative sum control chart is a better alternative to parametric
cumulative sum S? chart, when the process distribution is non-normal. We
provide an illustration of the proposed cumulative sum control chart.

average run length, nonparametric chart, process control, sign test

the robust alternatives to these charts is to use the non-
parametric control charts. A control chart is said to be
nonparametric, if its in-control average run length
(ARL) does not depend on underlying process distribu-
tion. The performance of a control chart is usually mea-
sured using the ARL, which is defined as an average
number of samples required to get an out-of-control
signal.

Till date, there are several parametric as well as non-
parametric Shewhart's control charts reported in the
literature for process location and dispersion. Bakir®
developed a distribution-free Shewhart quality control
chart based on a signed-rank like statistic for process loca-
tion. Chakraborti and Eryilmaz* have proposed a control
chart based on a signed-rank statistic for process center.
Khilare and Shirke’ developed a nonparametric synthetic
control chart using a sign statistic for process location.
Amin et al® developed a nonparametric control chart
based on sign statistic for the process center and variabil-
ity. They have also developed CUSUM chart by using sign
statistic for process center and reported that it can be
extended for variability also. Rendtel” and Reynolds et al®
described a CUSUM chart with variable sampling inter-
vals for process mean. Yang and Cheng’ have proposed
a nonparametric CUSUM mean chart based on the sign
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statistic. Das'® developed a nonparametric control chart
for variability based on the squared rank statistic. Khilare
and Shirke'' have proposed a nonparametric synthetic
control chart for the process variation. Shirke et al*?
have proposed a nonparametric control chart for process
variability based on in-control deciles. Zhou et al“
provided a nonparametric quality control chart based on
Ansari-Bradly test statistic for variability. Chowdhury
et al'* constructed a nonparametric control chart for joint
location and scale monitoring, which is based on the
Lepage test. Guo and Wang"’ have proposed a variable
sampling interval S* chart with known or unknown in-
control variance. Zombade and Ghute'® provided 4
nonparametric control charts for the process variation
based on Sukhatme's 2 sample test and Mood's test. In
the proposed work, we propose a CUSUM chart based
on sign statistic defined by Shirke et al.’* The sign statistic
is defined using in-control deciles of the process
distribution.

The remaining article is organized as follows. Section 2
describes the effect of non-normality on S* chart, a non-
parametric CUSUM chart based on in-control deciles,
and method for obtaining its ARL. Section 3 provides
the performance study of control charts for various pro-
cess distributions. Sections 4 and 5 provide the illustrative
example and conclusions, respectively.

2 | ANONPARAMETRIC CUSUM
CHART BASED ON IN-CONTROL
DECILES

Suppose we are monitoring the process for detecting
variation in the quality characteristic of interest say X.
Let variance of X is o> and when the process is in-control
0% = g2. We monitor the process by drawing a random
sample of size n at fixed time epoch. Let X be the
j™ observation at time epoch i, where i = 1, 2, ... and j =

TABLE 1 ARL* performance of CUSUM S? chart for n = 10

) Normal Laplace
01 284.2 36.8
1.2 11.8 9.2
1.4 3.9 4.3
1.6 24 2.7
1.8 1.7 2.1
2 1.4 1.7
3 1.0 1.1
4 1.0 1.0
5 1.0 1.0

1, 2, .., n. In the literature, parametric CUSUM S? chart
is used to monitor small changes in process dispersion,
where S” be the sample variance. We have to detect a shift
in process dispersion quickly. Let o2 be the process vari-
ance after change in the process dispersion.

The charting statistic for CUSUM S> chart are as
follows:

C/ =max(0,S*—k+C/,)
C; = max(0,k—S* + C,),

1

ey

where k = [2In(cy/01)0001/(0o—01)] and Cj = Cy = 0.
The statistic C;” and C; are called as an upper and lower
CUSUM's respectively and initial values of C;” and C; are
taken to be zero. The chart signals, if any of the C; or C;
exceeds a prespecified control limit h. The parameters h is
chosen to meet in-control ARL specified by an experi-
menter. Therefore, ARL is a function of n, h, and k for
CUSUM procedure. One can use the C; to detect an
increase in the process dispersion only when correspond-
ing upper one-sided ARL is denoted as ARL".

The construction of CUSUM S? chart is based on the
assumption of normality or at least approximately nor-
mality of the process quality characteristic. Amin et al®
discussed the effect of non-normality on control charts
for location. If the process distribution deviates from nor-
mal, the ARLs obtained by assuming normality will differ.
Table 1 gives the ARL values for CUSUM S chart
with sample size n = 10, upper control limit 7 = 1.5362
and k = 1.24 for the normal, double exponential, uniform,
exponential and gamma distributions. Here double expo-
nential is the example of heavy tailed and uniform is the
example of light tailed distribution. An effect of skewed
distributions on CUSUM S? chart is also studied. The
upper control limit only considered with various shifts
in a standard deviation that is ¢ = dog,, where § be the
extent of increase in process standard deviation. Table 1

Uniform Exponential Gamma
448631.0 23.6 37.1
328.6 8.6 9.3
21.2 4.6 4.3
7.9 3.0 2.8
4.8 2.3 2.0
3.5 1.9 1.7
1.7 1.2 1.1
1.3 1.1 1.0
1.1 1.0 1.0
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depicts that if the process distribution is heavy tailed or
skewed and control limit is set under normality assump-
tion, then ARLs are very small as compared with the
normal. While for light tailed distribution, the ARLs tend
to be larger as compared with normal. This implies that
for heavy tailed distribution, a false alarm will occur
frequently.

Shirke et al'? developed a sign chart for variability
based on in-control deciles, which is a modification of a
sign chart based on in-control quartiles given by Amin
et al.® The chart procedure proposed by Shirke et al'? is
as follows. Consider D, and Dy respectively be the 2"
and 8" deciles, when the process is in-control. We assume
that D, and Dg are known from the past data.

Define

1 Xij<D2 OI'Xij>D3
0 XUZDZ OI'XU:Dg
-1 D, <XU<D8’

Wi = 2

and W; = 2;21 W Define a random variable Vi=(W;+n)/2
and has binomial distribution with parameters n and p,
where p=P {X;;<D,orX;;> Dslo=30,}. Moreover, when
the process is in-control p = py = 0.4. The two-sided chart
gives signal if V; > cor V; < n — ¢, where cis chosen such that

()

In the upper one-sided case, c is chosen such that

n—c—1

2

Jj=0

. . n
Po(1=py)"™ + ‘ %
j=ct1

a

(’?)p{;(l—p())“‘f. €))

where o be the false alarm probability, when the process
is in-control.

Shirke et al'> have shown that the chart based on
deciles outperforms chart based on quartiles proposed by
Amin et al.® We extend this approach and provide a
nonparametric CUSUM chart to monitor the process
dispersion 0. We define

andU,; = Z;’Zl Ujj. U; has binomial distribution with param-
eters n and p, where p = P(X;; <D, or X;; > Dglo = 6ay).

The small shifts in process dispersion can be
monitored with the help of the proportion of the
observations which falls in the tails. When there is a
change in the process variation, we denote p by p;.
Consider ¥ =lpy — p1l, ¥ >0 and we wish to detect a shift
of size p; quickly. Define a CUSUM monitoring statistic

for the i subgroup sample,

1 XUSDzorXiszg

(5
0 Xij>D20rXij<Dg,

Ci =max(0,U; — (npy + k1) + C,)
C; = max(0, (npy — ki) = Ui + C_}),

1

(6)

n
where k; is the reference value with k; = 71# The initial

starting values are mostly chosen as zero, that is, cg =0
and C, = 0. Let H be the parameter of a nonparametric
CUSUM chart. If C; > H or C; > H, then the process is
thought to be out-of-control. Moreover, C;” > H is used to

o — 1_ZC: (n) p{; (1_p0)n—j 7 4) detect an increase in process dispersion, while C; > H for
j=o\J to detect the decrease in process dispersion. It is noted that
TABLE 2 The (k;,H) values under ARL{ ~370

ARL*~370
" 0.1 0.2 0.3
n ky H k, H k, H
5 0.25 8.69 0.50 5.00 0.75 3.61
6 0.30 8.11 0.60 5.00 0.90 3.49
7 0.35 8.10 0.70 5.10 1.05 3.50
8 0.40 8.20 0.80 5.00 1.20 3.60
9 0.45 8.80 0.90 5.00 1.35 3.30
10 0.50 9.30 1.00 5.00 1.50 3.51
11 0.55 9.00 1.10 5.00 1.65 3.81
12 0.60 9.98 1.20 5.00 1.80 3.58
13 0.65 9.00 1.30 5.30 1.95 3.69
14 0.70 9.30 1.40 5.00 2.10 3.58
15 0.75 10.20 1.50 5.00 2.25 3.73
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ARL" is the in-control ARL when the control limit set under the normality assumption and

N-CUSUM is the proposed nonparametric CUSUM chart.

the reference value k; and control limit H can be chosen
such that they would satisfy the specified ARL.

It is easy to compute ARLs for Shewhart-type control
chart and not so for CUSUM and EWMA control charts.
There are different methods in the literature to compute
ARLs of a CUSUM chart. Brook and Evans'’ have given
Markov chain approach to obtain ARL of a CUSUM chart.
Yang and Cheng’ used Markov chain approach to
computing ARLs of a CUSUM chart based on sign
statistic. We first obtain ARL for the upper one-sided
CUSUM chart. We divide the region (0, H) into M—1 sub-
intervals of equal width of 2w, where w = H/(2(M—1)).
Take 1* subinterval as (—oo, 0], the k™ interval is (my
—w, m+w), where my be the midpoints of k™ subinterval
with m,; =0, m=02k—-3)H/2(M—1)) for k=273,...,M,
and (M+1)" interval as (H, o). These all M+1 subinter-
vals can be viewed as states of Markov chain. Moreover,
the state M+1 is the action state, which is absorbing state
and remaining M states are transient states of Markov
chain {C;";i=0,1,...}.

Consider the transition probability matrix corre-

sponding to transient states 1,2,..M be RP = ((p,‘zj)),

(k,j=1,2,...,M), whose kj”‘ element represents the tran-
sition probability that statistic C;” reaches state j at time
i, given that C;”, was in state k at time (i—1). The tran-
sition probabilities can be calculated as
P =P(C/ <0ICL, = my) = P(U; = (np, + k)
+CL <0[CE, = my)
=P(U;<npy, + k —my)
[npg+hy —my]

Sy g

s=0
k=1,2,...M;i=1,2,3,....

Py =Pmj—w<Cl<m+w|Cl) =m)
=P(mj—w<U;— (npy + ki) + CL,
<m; +w|CiL; = my)
= P(mj— my—w + np, + k1< U; < mj — my
+w + np, + ki)
[(my=—mytwtnpo+ki)7] 4, s
- (Hra-p
s=0 N
[(mj—mg—w+np,+k;)~] n s
- Z ( )ps(l_p> ;
s=0 N
k=1,2,...M,j=2,3,..,.M and i=1,2,3,..., where ()~
be the largest integer not greater than §. Let b be the
Mx1 vector of probabilities that the process started in
state 1,2,..M. In this case b:(bl,bz,...,bM)'. Since we
considered that Cj = C, =0, we get b;=1 and b,=0
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for k#1. Consider PP = ((p};)) be a (M+1)x(M+1) tran-
sition probability matrix such that

pp_ RY s | Pusa
01><M 1

Then ARL corresponding to upper one-sided CUSUM
chart can be obtained as ARL™=b(I—RP)™'1’, where 1’
=(1,1,...,1) be the 1xXM vector with elements 1. The in-
control ARLs can be calculated by substituting p=p,
therefore ARL™ = ARL; be the in-control ARL and if
p=p; then ARL" = ARL] be the out-of-control ARL.
Similar way, one can compute ARL for lower one-sided
CUSUM chart, which is denoted by ARL™. Then the
ARL for nonparametric CUSUM chart can be calculated
as follows:

1

ARL = .
1/ARL' + 1/ARL™

(7

Table 2 gives values of k; and H under ARL{ ~370 for
sample size 5 to 15 and $=0.1,0.2,0.3.

3 | PERFORMANCE STUDY OF THE
NONPARAMETRIC CUSUM CHART
BASED ON DECILES

The performance of control charts can be studied to
measure its ability to detect a change in the process
parameter quickly. ARL is one of the performance mea-
sures, which is used for comparison of control charts.
The chart is more efficient, when in-control ARL is large
and corresponding out-of-control ARL is small. We have

TABLE 4 The ARL] values under ARL; ~ 370, 1=0.1, and p,=0.4

studied the performance of the proposed chart for various
process distributions (normal, Laplace, uniform, exponen-
tial, and gamma). In the literature, no any standard
nonparametric CUSUM chart is available to monitor
process dispersion. Therefore, We have compared the
performance of proposed nonparametric CUSUM chart
with parametric CUSUM S? chart.

In most of the situations, early detection of an increase
in the process dispersion is of interest and in that case, a
one-sided control chart is desirable. The performance of
the proposed chart is reported for sample sizes n = 10,
15, 20 with shift § in process standard deviation. Based
on 20,000 runs, the ARL for CUSUM S? chart is com-
puted. Table 3 provide ARLs along with various shifts in
process standard deviation for Normal (0,1), Laplace
(0,1), Uniform (a = 0,b = v/12 + a), Exponential (6=1)
and Gamma (a = 2,b = /a) distribution for sample size
n=10,15,20. It is clear from Table 3 that an out-of-con-
trol ARLs for CUSUM S? chart are smaller than nonpara-
metric CUSUM chart, which indicate that CUSUM S>
chart is more efficient than nonparametric CUSUM chart
for all distributions under study. But, such comparison is
meaningless because in-control ARL is obtained by
using control limit which is set under normality assump-
tion (ARL™). For example, ARL" is quite low (36.6) for
Laplace distribution. Suppose we are interested to
enhance ARL" from 36.6 to 284 using multiplicative factor
(284/36.6=7.75), we get out-of-control ARL to detect shift
in variation of 1.2c as 194.5. This is significantly larger
than corresponding out-of-control ARL 28.2 for nonpara-
metric CUSUM chart. Here, we can see that the ARL" of
CUSUM S? chart changes from 284.2 (for normal distribu-
tion) to 36.6, 448631.0, 23.8 and 37, when the process
distribution is Laplace, uniform, exponential and gamma

P1

n 0.4 0.5 0.6 0.7 0.8 0.9

9 365.1 17.9 7.1 4.4 3.2 2.6
10 377.9 16.8 6.8 43 3.2 2.5
11 367.8 15.6 6.1 3.8 2.8 2.2
12 379.7 14.8 6.1 3.9 2.9 27
13 374.7 13.9 5.4 34 2.5 2.1
14 367.2 13.0 5.2 34 2.5 2.1
15 375.3 12.4 4.9 3.1 2.3 2.0
16 376.0 11.9 4.7 2.9 2.2 2.0
17 364.4 11.3 4.4 2.8 2.1 2.0
18 367.1 10.8 4.4 2.9 2.2 2.0
19 375.3 10.4 4.2 2.7 2.1 1.9



864 Wl LEY SHIRKE AND BARALE

TABLE 5 Piston rings data and values of charting statistic

Sample X, X, X; X, Xs 14 G

1 74.030 74.002 74.019 73.992 74.008 3 0.75
2 73.995 73.992 74.001 74.011 74.004 2 0.50
3 73.988 74.024 74.021 74.005 74.002 3 1.50
4 74.002 73.996 73.993 74.015 74.009 1 0.25
5 73.992 74.007 74.015 73.989 74.014 4 3.25
6 74.009 73.994 73.997 73.985 73.993 1 2.00
7 73.995 74.006 73.994 74.000 74.005 0 1.00
8 73.985 74.003 73.993 74.015 73.988 3 4.00
9 74.008 73.995 74.009 74.005 74.004 0 1.75
10 73.998 74.000 73.990 74.007 73.995 1 2.75
11 73.994 73.998 73.994 73.995 73.990 1 2.75
12 74.004 74.000 74.007 74.000 73.996 0 1.75
13 73.983 74.002 73.998 73.997 74.012 2 3.75
14 74.006 73.967 73.994 74.000 73.984 2 3.75
15 74.012 74.014 73.998 73.999 74.007 2 3.75
16 74.000 73.984 74.005 73.998 73.996 1 275
17 73.994 74.012 73.986 74.005 74.007 2 3.75
18 74.006 74.010 74.018 74.003 74.000 2 3.75
19 73.984 74.002 74.003 74.005 73.997 1 2.75
20 74.000 74.010 74.013 74.020 74.003 3 475
21 73.982 74.001 74.015 74.005 73.996 2 4.50
22 74.004 73.999 73.990 74.006 74.009 1 3.50
23 74.010 73.989 73.990 74.009 74.014 4 6.50
24 74.015 74.008 73.993 74.000 74.010 2 6.25
25 73.982 73.984 73.995 74.017 74.013 4 8.25
26 74.012 74.015 74.030 73.986 74.000 4 10.00
27 73.995 74.010 73.990 74.015 74.001 3 10.75
28 73.987 73.999 73.985 74.000 73.990 3 11.50
29 74.008 74.010 74.003 73.991 74.006 2 11.25
30 74.003 74.000 74.001 73.986 73.997 1 10.25
31 73.994 74.003 74.015 74.020 74.004 2 11.25
32 74.008 74.002 74.018 73.995 74.005 1 10.25
33 74.001 74.004 73.990 73.996 73.998 1 10.25
34 74.015 74.000 74.016 74.025 74.000 3 12.25
35 74.030 74.005 74.000 74.016 74.012 3 13.00
36 74.001 73.990 73.995 74.010 74.024 3 13.75
37 74.015 74.020 74.024 74.005 74.019 4 15.50
38 74.035 74.010 74.012 74.015 74.026 5 18.25
39 74.017 74.013 74.036 74.025 74.026 5 21.00
40 74.010 74.005 74.029 74.000 74.020 3 21.75
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respectively for sample size n=10. Moreover, ARL"
changes from 283.8 to 735294.2 for uniform distribution
with n=20. It means, there is very low false alarm.

The nonparametric CUSUM chart has smaller out-
of-control ARLs when process distributions are uniform
and normal. But it has larger ARLs when the process
distribution is heavy tailed or skewed like Laplace, expo-
nential and gamma. It is observed that from Table 3 that
out-of-control ARLs decreases as sample size increases. In
Table 4, one-sided out-of-control ARL values for various
values of p; and sample size n=9 to 19 are reported. It
can be observed that out-of-control ARLs decreases as
sample size increases and as tail proportion p; increase,
that is shift in process dispersion is increases.

4 | EXAMPLE

Here, we illustrate the construction of a nonparametric
sign chart based on deciles and proposed CUSUM chart
based on deciles with the example inside diameter mea-
surements (mm) for automobile engine piston rings data
Montgomery.'® There are 25 primary samples and 15
additional samples each of size 5, which is described in
Table 5. Figures 1 and 2 show that a nonparametric con-
trol chart based on in-control deciles with control limit

v - f
<+ - o oy

T T T T
0 10 20 30

Sample number

FIGURE 1 A nonparametric control chart based on deciles for
piston rings data [Colour figure can be viewed at
wileyonlinelibrary.com]

Upper CUSUM

T T T T
0 5 10 15 20 25

Sample number

FIGURE 2 A nonparametric CUSUM chart for piston rings data
[Colour figure can be viewed at wileyonlinelibrary.com]

c=4 and a nonparametric CUSUM chart with k;=0.25
and H=8.69. We can see that a nonparametric control
chart based on in-control deciles gives the signal on 38"
sample while a CUSUM chart gives the signal on 26™
sample.

5 | CONCLUSION

In the present article, we present a nonparametric
CUSUM chart based on in-control deciles for detecting
small shifts in process dispersion. Since, whatever be the
process distribution the proposed nonparametric CUSUM
chart give same in-control ARL. Therefore, the proposed
nonparametric chart is a better alternative to CUSUM S*
chart when process distribution is not known in advance.
Moreover, it does not require any distributional assump-
tion. The performance in terms of ARL of the proposed
control chart for various distributions is studied. Due to
the simplified procedure of proposed CUSUM chart, we
recommend for use of proposed CUSUM chart.

ACKNOWLEDGEMENTS

Both the authors would like to acknowledge the financial
support received from University Grants Commission
under Major Research Project (F. No. 43-542/2014 (SR))
to conduct the research work.

REFERENCES

1. Page ES. Cumulative sum charts. Technometrics. 1961;3(1):1-9.

2. Roberts SW. Control chart tests based on geometric moving
averages. Technometrics. 2000;42(1):97-101.

3. Bakir ST. Distribution-free quality control charts based on
signed-rank-like statistics. Commun Stat Theory Methods.
2006;35(4):743-757.

4. Chakraborti S, Eryilmaz S. A nonparametric Shewhart-type
signed-rank control chart based on runs. Commun Stat Simul
Comput. 2007;36(2):335-356.

5. Khilare SK, Shirke DT. A nonparametric synthetic control chart
using sign statistic. Commun Stat Theory Methods. 2010;
39(18):3282-3293.

6. Amin RW, Reynolds MR, Bakir ST. Nonparametric quality con-
trol charts based on the sign statistic. Commun Stat-Theory
Methods. 1995;24(6):1597-1623.

7. Rendtel U. CUSUM-schemes with variable sampling intervals
and sample sizes. Stat Pap. 1990;31(1):103-118.

8. Reynolds MR, Amin RW, Arnold JC. CUSUM charts with vari-
able sampling intervals. Technometrics. 1990;32(4):371-384.

9. Yang S, Cheng SW. A new non-parametric CUSUM mean chart.
Qual Reliab Eng Int. 2011;27(7):867-875.

10. Das N. A non-parametric control chart for controlling variability
based on squared rank test. J Ind Syst Eng. 2008;2(2):114-125.


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

w | WILEY

11.

12.
13.
14.
15.

16.
17.

18.

SHIRKE AND BARALE

Khilare SK, Shirke DT. Nonparametric synthetic control charts
for process variation. Qual Reliab Eng Int. 2012;28(2):193-202.

Shirke DT, Pawar VY, Chakraborti S. A nonparametric control
chart for monitoring variability based on the deciles, Under
review; 2016.

Zhou M, Zhou Q, Geng W. A new nonparametric control
chart for monitoring variability. Qual Reliab Eng Int. 2016;
32(7):2471-2479.

Chowdhury S, Mukherjee A, Chakraborti S. Distribution free

phase II CUSUM control chart for joint monitoring of location
and scale. Qual Reliab Eng Int. 2008;31(1):135-151.

Guo B, Wang BX, Guo B. The variable sampling interval s* chart
with known or unknown in-control variance. Int J Prod Res.
2016;54(11):3365-3379.

Zombade DM, Ghute VB. Nonparametric CUSUM charts for
process variability. J Academia Ind Res. 2014;3(1):53.

Brook D, Evans DA. An approach to the probability distribution
of CUSUM run length. Biometrika. 1972;9(3):539-549.

Montgomery DC. Introduction to Statistical Quality Control. New
York: Wiley; 2009.

D. T. Shirke is a Professor of Statistics at the Shivaji
University, Kolhapur, India. He received his PhD in
Statistics from Shivaji University, Kolhapur, India.
His research areas include statistical inference and sta-
tistical process control. He is an elected member of
International Statistical Institute, the Netherlands.

M. S. Barale is PhD student at Department of Statis-
tics, Shivaji University, Kolhapur, India. He received
his master's degree in Statistics in 2015 from the
Shivaji University, Kolhapur, India.

How to cite this article: Shirke DT, Barale MS. A
Nonparametric CUSUM Chart for Process
Dispersion. Qual Reliab Engng Int. 2018;34:
858-866. https://doi.org/10.1002/qre.2295



https://doi.org/10.1002/qre.2295

Application of Genomics and Proteomics in Bioremediation

Toxicity and Waste Amol Uttam Hivrale (Shivaji University, India), Pankaj K. Pawar (Shivaji University, India), Niraj R. Rane (Shivaji University,
Management Using

Bioremediation

India) and Sanjay P. Govindwar (Shivaji University, India)

Source Title: Toxicity and Waste Management Using Bioremediation
Copyright: © 2016 Pages: 16

DOk 10.4018/978-1-4666-9734-8_ ch005

OnDemand PDF $30.00
Download: List Price: $37-62

Abstract

Bioremediation mediated by microorganisms is proving to be cost effective, ecofriendly and sustainable technology. Genome enable experimental and modeling
technigues are of a great help in evaluating physiclogy and enhancing performance of fife forms to be used for bioremediation purpose. Similarly, the
application of proteomics in bioremediation research provides a global view of the protein composition of microbial cell and offers promising approach to
understand the molecular mechanism of removal of toxic material from the environment. Combination of proteomics and genomics in bioremediation is an
insight into glebal metabolic and regulatory network that can enhance the understanding of gene functions. Present chapter give a bird's eye view of genomics
and proteomics and their potential ufilization in bicremediation and for the clearer understanding of the cellular responses to environmental stimuli. An
understanding of the growth conditions governing the expression of proteome in a specific environment is essential for developing rational strategies for
successful bioremediation.

Chapter Preview

Top
1. Introduction

Bioremediation is a process in which naturally occurring organisms are used for rapid degradation / removal of hazardous peliutants from environment in order
to obfain healthy soil, sediments, substances and ground water (Kumar et al., 2011). In natural way biodegradation is the recycling of waste or breaking down
organic matter in to nuirients for the other organisms (Alexander, 1994). Bioremediation is carried out with the help of life forms, including bacteria, fungi,
insects, worms, plants, etc. by taking nutrients such as C, N and F from the contaminant ultimately transforming xenobiotics in to environment friendly products
{Vidali, 2001). Bioremediation approach becomes important when it comes to remediation of water reserves. Indusirial effluents especially textile industry waste
are responsible for contamination of water bodies which result in limiting the water availability for drinking and agriculture purpose (King et al., 1937).

Microbes and Bioremediation

Dynamic behavior, flexibility in nuiritional requirements and ability to adopt under extreme stress conditions makes the microbe the most eligible life forms for
survival. This virtue of the microbe is proving to be beneficial to human kind especially when it comes to removal of contaminants [ toxic entities from
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Abstract

A large amount of hazardous materials ineluding heavy metals were released into the
environment from natural and extensive anthropogenic activities, which cause soil, air, and
water pollution and deterioration. At higher concentration, these metals exert toxic effects on
plant and animal health including human. Among various traditional soil remediation
technologies, use of phytoremediation to elean up metal(loid)-contaminated sites has gained
inereasing attention as an inexpensive, eco-friendly, and publicly acceptable remediation
technology but has experienced varied successes in practice. Recent scientifie discoveries that
resulted from the application of molecular biclogy, bicinformatics, omics, and next-generation
DNA sequencing technologies have assisted the remarkable impaet of these immensely parallel
platforms on genetics. In this context, genetic engineering has contributed rapid and significant
changes in the crop improvement by offering a wide array of novel genes and traits which can

be effectively inserted into candidate plants to raise its phytoremediation potential for metal
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Abstract

Banana is a climacteric fruit and has a very short postharvest life. Many varieties of banana
fruits are ripened artificially by treating them with hydrocarbons, The current methods of
postharvest management practices used for fruits are not enough to control the ripening in
banana. Recent advances in recombinant DNA technology and genetic engineering have
resulted in the modification of fruit ripening in banana. Towards this, many genes involved in
ripening have been cloned and characterized. Ripening in banana is characterized by a biphasic
ethvlene production with a sharp early peak and a post climacteric small peak. During banana
fruit ripening, ethylene production induces a developmental cascade which results in the
conversion of starch into sugars, an associated burst of respiratory activity, and an increase in
the protein synthesis. Other changes include fruit softening, flavor and aroma development,
change in pigmentation, and increased susceptibility to pathogens: also, banana fruit softening
is attributed to activities of various cell wall hydrolases. The participation of various cell wall
hvdrolases in banana softening during ripening has also been reported recently. The enhancing
and suppressive effects of ABA and [AA on activities of different cell wall hydrolases have been
noticed during ethylene-induced ripening in banana. Simultaneously, decrease in polyphenols,
higher alcohol acetyl transferase activity, chlorophyll degradation etc., have been earlier

reported during ripening in banana. Recently efforts are made to delay the ripening by
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Abstract

Plant molecular farming is the production of recombinant pharmaeeutical and
nonpharmaceutical proteins of commercial importanece utilizing plants as bioreactors. Research
and development on plant-derived recombinant proteins have gained momentum in recent
vears. Advantages of emploving plants as bioreactors for recombinant protein generation are
many including low cost of production, easier scale-up, cost-effective storage. and absence of
animal pathogens in protein preparations. This article reviews the various technologies
developed for employing plants as bioreactors, different plant systems being used as expression
host, and limitations and research advances to overcome these limitations. An overview of
different plant-derived products whether currently in market or are in different stages of
development, including phases of clinical trials, is deseribed. Special emphasis has been given
on banana being used as an expression host, advantages and imitations of using banana in
plant molecular farming, and different approaches which can be utilized to overcome those

limitations have been described.

Keywords
Molecular farming PBecombinant pharmacenticals Magnification Glyeosyvlation
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Abstract Hairy roots (HRs) have been proven as a potential source of secondary
metabolites and also, for the biotransformation of desirable metabolites. Recently,
HRs have emerged as an efficient in vitro model systems for screening the capabili-
ties of different plant species to tolerate, accumulate, and/or to remove environmen-
tal pollutants. HRs offer benefits of greater genotypic and phenotypic stability than
the dedifferentiated cultures, thus providing a more reliable and a reproducible
experimental system, and even for flexibility of insertion of gene of interest to the
HR gene construct for efficient applications. Additionally, absence of soil matrix
and microbes is the key advantage in HRs for precise removal of toxic products as
well as for elucidating metabolic pathways for conversion of hazardous chemicals
to non hazardous products. The feasibility of scale up of HRs in bioreactors offers
an attractive avenue for industrial processes both for metabolite synthesis as well as
for phytoremediation. The present review highlights current knowledge, recent
progress, areas which need to be explored and future perspectives related to the
application and improvement of the efficiency of HRs for phytoremediation
research.
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Toxic metal pollutiorof soilsis a major environmental problem. This review chapter
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Abstract

Environment and living organisms are often threatened by xenobiotic contaminants released
into the environment from extensive anthropogenic activities. Some plants and plant-
associated microbes have developed a massive arsenal of specialized tactics to combat
xenobiotic pollutants, while other plants were unable to do so. However, transgenic approaches
offer various wavs to keep them secure as well as building plant armor and weaponry to combat
xenobiofic pollutants. This book chapter highlights various strategies for genetic engineering of
plant and associated microbes considering the fine-tuning of transgene in transgenic
plants/microbes for a better remediation response and constraints in lab to land transfer.
Furthermore, a role of modern scientific and technological advances in addition to synthetic
biology for building ultimate plants/microbes with enhanced remediation potential is also
discussed.
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In this article, we present a test for testing uniformity. Based on the test, we provide a test for testing
exponentiality. Empirical critical values for both the tests are computed. Both the tests are compared with the
tests proposed by Noughabi and Arghami [H. Alizadeh Noughabi, and N.R. Arghami, Testing exponentiality
using transformed data,]J. Statist. Comput. Simul. 81 (4) (2011), pp. 511-516] using simulation experiments
for a wide class of alternatives. The tests possess attractive power properties.

Keywords: test for uniformity; test for exponentiality; nonparametric kernel density estimation

1. Introduction

In much statistical inference and model building, there is a need to test the validity of assump-
tions made about the underlying populations from which observations have been drawn. Many
times an experimenter begins the analysis of data by proposing a probability distribution for
the observed data. If the assumption regarding underlying distribution is not tested, we may
lead to incorrect conclusions and questions may be raised on the reliability of results obtained
using the assumption. An exponential distribution is probably one of the most commonly used
distributions in statistical work after normal distribution. It has important connections with life
testing, reliability theory, theory of stochastic processes and is closely related to several other
well-known distributions with statistical applications, for example, the gamma and the Weibull
distributions.

Recently, Noughabi and Arghami [1] have provided a test for testing uniformity and using this
test they have proposed a test for testing exponentiality. We have modified the above test and our
simulation study reveals that the modified test gives better performance than the test proposed by
them. The rest of the article is organized as follows.

In Section 2, we propose a test by modifying the test for uniformity due to Noughabi and
Arghami [1] and study power of the same for various alternatives. Section 3 uses the modified
test for testing uniformity for constructing a test for testing exponentiality. Monte Carlo study to
estimate power of the test is discussed in Section 4. Section 5 gives concluding remarks.

*Corresponding author. Email: brd_stats@yahoo.in

© 2012 Taylor & Francis
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2. Testing uniformity

Suppose a random sample X;, X, ..., X, from a population with absolutely continuous density
function f (x) concentrated on the interval [0, 1] and having distribution function F'(x) is available.
Consider the problem of testing the following null hypothesis,
Hp: A random sample of n X-values come from uniform distribution, denoted by U(0, 1).
The test statistic proposed by Noughabi and Arghami [1] for testing Hy is

I A
T=- if (i) — Fo(xi)l,
- ?:1 i f (xi) — Fo(xi)]
where F((x) is the uniform distribution function. Also,

- 1 " Xi — Xj
f) = — ZK (T) :

where the kernel function K (-) is chosen to be the standard normal density function. The bandwidth
h is obtained from the normal optimal smoothing formula, 7 = 1.06sn~1/5, where s is the sample
standard deviation [2].

2.1. Test based on S statistic

To test Hy, we suggest the following modified test statistic:
1 n R
§=- i) — i)l
- ; I () = folee)|

where f(+) is the probability density function of uniform. Also,

~ 1 " Xi — Xj
fo) = nhZK< g )

kernel function K(-) is chosen to be the standard normal density function and bandwidth &
is obtained from the normal optimal smoothing formula, & = 1.06sn~!/>, where s is the sample
standard deviation.

Large values of S indicate that the sample is from a non-uniform distribution. Therefore, we
reject the null hypothesis at the significant level «, if S > C(«). The critical point C(«) is deter-
mined by the orth quantile of the distribution of the § statistic by means of Monte Carlo simulations.
In Table 1, we present the results of Monte Carlo study conducted at an «-nominal level with
10,000 replications to assess the empirical critical values for S statistic.

Table 1. Critical values of S statistic.

o

n 0.01 0.05 0.10

5 2.031 1.037 0.702
10 0.731 0.503 0.398
15 0.579 0.406 0.338
20 0.477 0.358 0.299
25 0.425 0.324 0.280
30 0.397 0.305 0.266

50 0.324 0.265 0.231
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2.2. Performance study of test based on S statistic

Noughabi and Arghami [1] have used several statistical tests that first appeared in Stephens [3].
These statistical tests are

(1) Kolmogorov—Smirnov (D) test,
(2) Kuiper’s (V) test,

(3) the Cramér—von Mises (W?) test,
(4) the Watson (U?) test,

(5) the Anderson—Darling (A?) test.

To study the performance of our test we consider the above tests, along with the test due to
Noughabi and Arghami [1].

The null hypothesis is that we have a uniform random number on the interval (0, 1). The seven
alternative distributions, which have been considered by several authors for studying power of

Table 2. Power comparisons of the tests for uniform (0, 1) with size 0.10.

n Alternative D w2 v U? A? T S

10 Fiz1s 0.250 0.270 0.182 0.189 0.258 0.097 0.220
Fr0 0.525 0.574 0.334 0.335 0.551 0.116 0.408
Gr=15 0.086 0.070 0.220 0.232 0.050 0.313 0.330
G20 0.123 0.092 0.446 0.479 0.059 0.581 0.602
Gr=30 0.234 0.235 0.823 0.870 0.175 0.913 0.924
Hi—15 0.198 0.174 0.218 0.228 0.208 0.045 0.054
Hi—20 0.308 0.258 0.454 0.480 0.365 0.038 0.049

20 Fr—1s 0.405 0.447 0.260 0.265 0.437 0.146 0.298
Fr—0 0.811 0.860 0.596 0.582 0.857 0.218 0.609
Gi=15 0.129 0.110 0.346 0.371 0.100 0.454 0.471
G20 0.265 0.273 0.730 0.783 0.289 0.817 0.827
Gi=3o 0.671 0.798 0.987 0.996 0.837 0.996 0.997
Hi—1s 0.251 0.214 0.340 0.372 0.269 0.047 0.052
Hi—20 0.466 0.425 0.730 0.781 0.556 0.061 0.051

Table 3. Power comparisons of the tests for uniform (0, 1) with size 0.05.

n Alternative D w2 \% U? A? T S

10 Fi=15 0.159 0.169 0.101 0.103 0.163 0.042 0.133
Fr=0 0.400 0.435 0.232 0.224 0.417 0.050 0.280
Gir=15 0.040 0.027 130 0.137 0.015 0.189 0.212
Gr=20 0.048 0.023 0.313 0.339 0.010 0.410 0.456
Gr=30 0.095 0.053 0.713 0.760 0.021 0.810 0.852
Hi—15 0.112 0.099 0.128 0.141 0.127 0.024 0.030
Hi—20 0.206 0.158 0.311 0.335 0.235 0.025 0.025

20 Fir_1s 0.281 0.316 0.167 0.164 0.318 0.068 0.184
Fr—20 0.699 0.770 0.468 0.440 0.761 0.094 0.468
Gi=15 0.056 0.039 0.224 0.246 0.035 0.324 0.321
Gr=2.0 0.122 0.101 0.591 0.651 0.103 0.707 0.714
Gr=30 0411 0.508 0.969 0.984 0.561 0.987 0.988
Hi—15 0.149 0.122 0.225 0.243 0.162 0.023 0.025

Hi=20 0.310 0.248 0.593 0.652 0.378 0.054 0.045
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various test statistics, are
F: Foy=1—-(1-xF 0<x<l1
for k equal to 1.5 and 2.

2 k=1)k 0<x<0.5,

G: Fix)=
(=11 260 _ ok 05<x<1

for k equal to 1.5, 2 and 3

0.5-2%D05-x0F 0<x<05,

H: Fx) =
) 054+26Dx—-05% 05<x<1

for k equal to 1.5 and 2.

Alternative F, G and H were first used by Stephens [3] in his study of power comparisons of
several tests for uniformity. According to Stephens, alternative F' gives points closer to zero than
expected under the hypothesis of uniformity, whereas G gives points near to 0.5 and H give two
clusters (close to 0 and 1). The same were used by Noughabi and Arghami [1].

For the nominal levels 5% and 10%, Tables 2 and 3 show the power estimates of the test based
on § statistic and also for the tests mentioned above. The entries are the 10,000 Monte Carlo
samples of size n = 10, 20 that resulted in the rejection of H.

3. Testing exponentiality using transformed data

Suppose that n independent observations are made on X with density f(x) over a non-negative
support and with mean A~! < oo, the hypothesis of interest is

Hy: f(x) = fo(x) = re ™,

where A is unspecified. The alternative to Hy is

Hy: f(x) #fo(x).

Noughabi and Arghami [1] have proposed a goodness-of-fit test for testing Hj. The test statistic
is based on the following theorem, which is due to Alzaid and Al-Osh [4] and is also mentioned
in [5].

THEOREM 3.1 Let X| and X, be two independent observations from a distribution F. Then
X1 /Xy + Xp) is distributed as U (0, 1) if and only if F is exponential

LetX(),i = 1,...,n,betheorder statistics of arandom sample of size n. Furthermore, transform
the sample data to
Yij = Xa i#jij=1,2....n
X + Xg) > 1, 325y

Using Theorem 3.1, under the null hypothesis Hj, each Y; has a uniform distribution. Noughabi and
Arghami [1] used the proposed test for uniformity (introduced in Section 2) to test the uniformity
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Table 4. Critical values of U statistic.

o

n 0.01 0.05 0.10

5 1.297 0.626 0.419
10 0.636 0.388 0.287
15 0.463 0.309 0.244
20 0.384 0.265 0.215
25 0.326 0.251 0.201
30 0.315 0.228 0.188
50 0.225 0.139 0.109

of Y;’s and thus the exponentiality of X;’s. The test statistic due to Noughabi and Arghami [1] is

nn—1)

e LN o0 — P
= 2 W00 = Rl

Based on the modified test for uniformity proposed in Section 2, we define the U statistic as

n(n—1)

I .
U=o"D ; 75 = fol-

Large values of U indicate that the sample is from a non-exponential distribution. In Table 4,
we present the results of Monte Carlo study conducted at an a-nominal level with 10,000 repli-

cations (from exponential distribution with mean one) to assess the empirical critical values for
U statistic.

4. Performance study of the test based on U statistic

For power comparisons, we considered the following alternatives:

(1) The Weibull distribution with density function
f@) =A@ exp[-(0)], x>0, >1,8>0.
(2) The gamma distribution with density function

By B—1 _
Fe B = “%g(m, x>0r>1,8>0.

(3) The log-normal distribution with density function

fx,v, 02) =

mﬁexp {—ﬁ(ln(x) — v)2} , x>0,—c0<v<oo,0>0
We choose the parameters so that E(X) = 1,1i.e. A = I'(1 + 1/8) for the Weibull, A = 8 for the
gamma and v = ¢'2/2 for the log-normal family of distributions.

For the nominal levels 5% and 10%, Tables 5-7 show the power estimates of the test based
on U statistic and the test proposed by Noughabi and Arghami [1] for testing exponentiality. The
entries are the 10,000 Monte Carlo samples of size n = 10,20, which resulted in the rejection
of H().
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Table 5. Power comparisons of the tests for exponential against
the Gamma distribution.

n B o T U
10 2 0.01 0.107 0.119
0.05 0.338 0.346
3 0.01 0.301 0.335
0.05 0.662 0.672
4 0.01 0.523 0.555
0.05 0.861 0.867
20 2 0.01 0.256 0.342
0.05 0.619 0.642
3 0.01 0.714 0.794
0.05 0.946 0.953
4 0.01 0.932 0.962
0.05 0.997 0.998

Table 6. Power comparisons of the tests for exponential against
the Weibull distribution.

n B a T’ U
10 2 0.01 0.354 0.386
0.05 0.695 0.702
3 0.01 0.858 0.878
0.05 0.981 0.983
4 0.01 0.987 0.989
0.05 1.000 1.000
20 2 0.01 0.722 0.836
0.05 0.959 0.964
3 0.01 1.000 1.000
0.05 1.000 1.000
4 0.01 1.000 1.000
0.05 1.000 1.000

Table 7. Power comparisons of the tests for exponential
against the log-normal distribution.

n v o T U
10 —-0.3 0.01 0.089 0.102
0.05 0.307 0.315
—-0.2 0.01 0.252 0.280
0.05 0.611 0.619
—0.1 0.01 0.761 0.790
0.05 0.970 0.972
20 -0.3 0.01 0.304 0.294
0.05 0.600 0.616
—-0.2 0.01 0.713 0.735
0.05 0.941 0.944
—0.1 0.01 0.998 1.000
0.05 1.000 1.000

5. Concluding remark

Simulation results presented in Tables 2 and 3 show that for almost all alternatives the modified
test for testing uniformity performs better than the test due to Noughabi and Arghami [1] for small
and moderate sample sizes. Even though the results are less competitive than the remaining group
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of tests especially for H and F alternatives, our aim was to develop a modified test for testing
exponentiality and not for testing uniformity.

The simulation study presented in Tables 5—7 shows the superiority of the modified test for
testing exponentiality over the test proposed by Noughabi and Arghami [1] for testing exponen-
tiality for the Weibull, gamma as well as log-normal alternatives. The test possesses attractive
power properties for small and moderate sample sizes.
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In this article, we develop a generalized version of S, statistic
based on the jackknifed ridge M-estimator for subset selection
in the presence of outlier and multicollinearity. We establish the
equivalence of this statistic with the existing C,, S, and Rj, statistics.
The performance of the proposed method is illustrated through
some numerical examples and the correct model selection ability
is evaluated using simulation study.
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where Y is a vector of n observations on the response variable, X is an n x k matrix of n observations
on (k — 1) regressor variables with 1’s in the first column, 8 = (Bo, B1, ..., Bk_1) is a vector of k
unknown regression parameters and ¢ is an unknown random error assumed to follow normal dis-
tribution with zero mean and constant variance 2. Without loss of generality, we assume that the
regressor variables are standardized in such a way that X’X is in the form of a correlation matrix.

In the literature, various subset selection methods based on the least squares (LS) estimator are
available like Mallows’ C,, [ 13], stepwise selection methods. The Mallows’ G, is one of the most popular
subset selection methods. It is defined as

RSS
G=—"— (-2, (1.2)

where RSS), is the residual sum of squares of the subset model based on (p — 1) regressor variables, o?

is the error variance and is replaced by its suitable estimate 62 = (Y — X,@Ls) Y —XBLS)/(n —k), 35

is the LS estimator of 8 of the full model based on (k — 1) regressor variables.

It is well known that, the C, statistic is based on the LS estimator and the LS estimator is very
sensitive to the presence of outliers or the violation of the assumption of normality on the error
variable (see Huber [9]). In the past three decades, many robust parameter estimation methods as well
as subset selection methods have been devised. For instance, Ronchetti [17] proposed robust version
of AIC called RAIC, Ronchetti and Statudte [18] proposed robust version of Mallows’ C, called RC),
Sommer and Huggins [19] proposed RT, criterion based on Wald test statistic, Kim and Hwang [12]
defined G, method, Kashid and Kulkarni [11] proposed an S, criterion which is a more general
criterion for subset selection in the presence of outlier in the data. The S, criterion is operationally
simple to implement as compared to the other robust subset selection methods; it is defined as

noa . \2
‘ (Yik - Yip)
="t — g — (k—2p), (1.3)
where SA(,-k and SA(ip are the predicted values of Y; based on the full model and the subset model respec-
tively. The unknown o is replaced by its suitable estimate based on the full model as ¢ = 1.4826
median|r; — median(r;)|, where r; is the ith residual.

The presence of multicollinearity is also one of the most serious and frequently encountered
problems in multiple linear regression. Due to the presence of multicollinearity, the variance of the
LS estimator gets inflated and consequently, the LS estimator becomes unstable and gives misleading
results. To overcome such a problem, Hoerl and Kennard [5,6] proposed the ordinary ridge regression
(ORR) estimator. Recently, Dorugade and Kashid [3] proposed R, statistic for subset selection based
on the ORR estimator of 8. It is defined as

~ 2

n A
> (Vi — )
Ry = = ———— — tr (HgHg) + tr (HpyHra) + P, (14)

o2
where o2 is the error variance and is replaced by its suitable estimate 6% = (Y—X/@R)/(Y—XﬁR)/(n—k)
and BR is the ORR estimator of 8 based on the full model. The matrix Hy = XX'X + rI)~'X/,
Hra = Xa (X3 Xa +rAI)‘1X/’\, r and r, are the biasing constants known as ridge parameters. Note that, the
above S, and the R, statistics are equivalent to Mallows’ C, when the LS estimator is used. Though the
Gy, Sp and R, Statistics are used for correct subset selection in different situations, the subset selection
procedure of these three statistics is same and it is given as follows.

Subset selection procedure based on Cp, S, and R, statistics
Step 1. Compute the value of statistic for all possible subset models.

Step 1I. Select a subset of minimum size, for which the value of the statistic is close to ‘p’ or plot the
values of statistic vs. ‘p’ for all possible subset models and select the subset which is closer to the line
‘statistic = p'.
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Many researchers have pointed out that the M-estimator is a better alternative to the LS estimator
in the presence of outliers (see Brikes and Dodge [1]) and the ORR estimator performs better in the
presence of multicollinearity (see [5-7]). Brikes and Dodge [1], Montgomery et al. [16] have given
description of these methods in the context of parameter estimation. However, these methods give
misleading results when outlier and multicollinearity occur simultaneously in the data (see Jadhav
and Kashid [10]).

To overcome the problem of simultaneous occurrence of outlier and multicollinearity, very re-
cently, Jadhav and Kashid [ 10] proposed an estimator known as Jackknifed Ridge M- (JRM) estimator.
They showed that, the performance of the JRM estimator is better in the mean square error sense
when outliers and multicollinearity present in the data.

In this article, we have proposed a generalized S, criterion, called as GS,, criterion for subset selec-
tion based on the JRM estimator when outlier and multicollinearity occurs simultaneously in the data.

The rest of the article is organized as follows. In Section 2, the effect of presence of multicollinear-
ity and outliers on the existing subset selection criteria is demonstrated. Section 3 briefly introduces
the various estimators which are used in this article. In Section 4, a motivation to propose a new
subset selection criterion is presented and a subset selection criterion based on the JRM estimator is
defined. Some results and the equivalence of GS, statistic with C,, R, and S, statistics are presented
in Section 5. In Section 6, simulated data sets are considered to illustrate the performance of the pro-
posed method. Also, a correct model selection ability of the GS, statistic and the performance of var-
ious robust estimates of 2 are presented in Section 6. Finally, the article ends with some concluding
remarks.

2. The problem

This section illustrates the problem of outlier and multicollinearity from the viewpoint of subset
selection. The purpose of this section is to highlight the effect of simultaneous occurrence of outlier
and multicollinearity on the subset selection criteria based on the LS estimator (C,), M-estimator (S,)
and ORR estimator (R;).

A simulation design given by McDonald and Galarneau [15] is used to introduce multicollinearity
in the regressor variables as follows.

1/2 . .
xj=(1—0%) "z +pzigr1y i=1,2,....n,j=1,2,...,1 (2.1)

where z;'s are independent standard normal pseudo random numbers and p? is the correlation
between any two regressor variables. Here, | = 4 and p = 0.999 are considered to generate n = 20
observations on the response variable Y using the regression model

Yi = 10+ 3xi1 + 5xi + Ox;3 + Oxis + &5, i=1,2,...,20,

where ¢; are independent and identically normally distributed with mean 0 and variance 0.25. A single
outlier observation is introduced in the response variable corresponding to the maximum absolute
residual value. The actual value of the response variable Y;3 = 1.5363 is changed to Y;3 = 30.7260.
How the outlier observation is introduced in the response variable is given in Example 6.1 of Section 6.
To identify the severity of the multicollinearity, the variance inflation factor (VIF) is considered (see
Marquardt [ 14], Montgomery et al. [ 16]). For this data, the VIF for each term are 388.5831, 772.2531,
688.8542 and 296.6157. These VIFs indicate the presence of severe multicollinearity in the data. We
compute the values of Cp, S, and R, statistics and are reported in Table 1. Also, we plot the values of
Cp, Sp and Ry, statistics of all possible subset models in Fig. 1.

FromTable 1, itis observed that the criteria C,, S, and R, select wrong subset models. Consequently,
in Fig. 1, the values of Cp, S, and R, statistics are close to p for wrong subset models. It is clear that,
when both outlier and multicollinearity present in the data, the Cp, S, and R, statistics fail to select
the correct subset model or there is ambiguity concerns to the selection of correct model. This study
indicates that subset selection method based on the LS estimator, M-estimator and ORR estimator
fails to select the correct model when the outlier and multicollinearity occurs simultaneously in the
data.
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Table 1
Values of Cp, S, and R, statistics for all subset models.
Regressors in subset model G, Sp R,
Xi 2.1903 54235  2.3993
X2 27501 1.0843 27413
X3 24824 5.0971 26124
X4 19387 146250  2.2086
X1 Xz 29131 1.0914 29373
X1 X3 3.9301 32280 3.0330
X1 X4 3.8417 54157  2.8594
X3 X3 3.9397 2.5536  3.1816
X2 X4 1.7539 2.6440 25774
X3 X4 3.1544 55966  2.8219
X1 X3 X3 4.6727 3.0192  4.0344
X1 X2 X4 3.0811 3.0597  3.7427
X1 X3 X4 5.0529 49692  3.8366
X3 X3 Xy 3.5144 43136  3.7644
X1 X2 X3 X4 5.0000 5.0000  5.0000
51 o 134
123x
o 23
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X 234
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data label ij... denote the X;X;... regressor variables

Fig. 1. Values of C,, S, and R,, statistics versus p.
3. The estimators

In the multiple linear regression, an important task is to estimate the unknown regression param-
eters B using an appropriate method of estimation. In this section, some of the existing estimation
methods of § are briefly discussed as follows.

Least squares (LS) estimator
For the multiple linear regression model given in Eq. (1.1), the LS estimator of the unknown re-
gression parameters f§ is defined as

Bis = (x'X) 7' XY. (3.1)

Any standard textbook of regression like Draper and Smith [4], Montgomery et al. [ 16] give detailed
description about the LS estimator.
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M-estimator
To handle the problem of outliers, Huber [8] proposed the M-estimator for g. It is obtained by
minimizing a sum of the function of the scaled residuals

- Y — X/
dop (%) : (32)

i=1

where p : R — R robust criterion function (Montgomery et al. [ 16]) and s is a scale parameter which
is replaced by its suitable estimate. To minimize Eq. (3.2), differentiate Eq. (3.2) partially with respect
to each parameter and equate it to zero, we get k nonlinear equations of the form

oYX
Z\”(Ii'ﬁ)xa, J=0.1.2... k-1, (33)
i=1

N

where  (-) is partial derivative of p (-) and x; is jth entry in the ith row of matrix X with x;p = 1.
Solution to these k equations is obtained by iterative reweighted least squares method (see Draper
and Smith [4]). At convergence, M-estimator may be given as

Bu = (XWx)'X'Wy, (3.4)

where W is diagonal matrix of weight with ith diagonal element, W; = ¢ (w) / (w)

N S
Ordinary Ridge Regression (ORR) estimator
To overcome the problem of multicollinearity, various biased estimators are available in the
literature. The ORR estimator proposed by Hoerl and Kennard [5,6] is one of the most popular biased
estimators. It is defined as
Be= (XX +11)7' XY, (3.5)
where r is a ridge parameter.

Jackknifed Ridge M (JRM) estimator
Jadhav and Kashid [10] proposed the JRM estimator of 8 to combat the simultaneous occurrence
of outlier and multicollinearity in the data. It is defined as

B]RM = [1 —r’Q (XX + ﬂ)72 Q] Bu
= RBu, (3.6)

where R = [I —r2Q (XX + rI)72 Q] , Q is the matrix of eigenvectors of X'X, By is the M-estimator

of the unknown parameters 8 and r is the ridge parameter. The performance of this estimator is better
in the MSE sense as compared to the LS estimator, M-estimator, and the ORR estimator when both
outliers and multicollinearity present in the data.

Selection of ridge parameter r

To implement the ORR estimator, we need to obtain the value of ridge parameter r. Various meth-
ods are available in the literature for determining a ridge parameter r. Among these, the choice of the
ridge parameter proposed by Hoerl et al. [7] is widely used to obtain the ORR estimator. It is given by

= &0
BisBis
where 6% = (Y’Y — /?BL’SX’Y) /(n—k) (see Dorugade and Kashid [3]). Jadhav and Kashid [ 10] obtained
the JRM estimator by replacing the values of r by 7 and it is given by
(k—1)s?
BiuBu

: (3.7)

. (3.8)
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where s = 1.4826 median|r; — median(r;)| and r; is ith residual obtained using M-estimator. Based on

the JRM estimator, we propose a generalized version of S, statistic for subset selection in the presence
of outlier and multicollinearity.

4. Proposed method

Consider the multiple linear regression model given in Eq. (1.1). Then the vector of predicted values
of Y based on the JRM estimator of 3 is

Ye = X B]RM
— HY (4.1)

where H = XR (X’WX)_1 X'W is the prediction matrix based on the full model. The full model is the
one which contains all (k — 1) regressor variables.
The model given in Eq. (1.1) can be written as
Y =XaBa+XgBp+ € (4.2)

where X and B are partitioned as X = [X, : Xg]land 8’ = [ﬂ;\ : ,Bg]. The matrix X, is of order n x p with
1s in the first column and the matrix Xp is of order n x (k — p). B4 and Bp are the vectors of parameters
of order p x 1and (k — p) x 1respectively.

Consider the subset model based on the (p — 1) regressor variables

Y = XuBa+¢. (4.3)

Suppose, BA]RM be the JRM estimator of 54 based on the subset model given in Eq. (4.3), then the vector
of predicted values of Y based on the JRM estimator is

Yy = XaPBarm
= HyY (4.4)
where H; = X4Ra (XAWAXA)_] X, W, denote the prediction matrix for the subset model based on the
JRM estimator.
Based on the two predicted vectors Yy and Y, of Y, we propose a generalized version of S,, statistic.

The main objective to define new criterion is that to select a subset model of size p (<k) such that it
will predict the response variable ‘as accurate as’ the full model.

4.1. Motivation

The motivation of the proposed method is similar to the S, criterion proposed by Kashid and Kulka-
rni [11]. Let SA(,',( and f/,p be the predicted values of Y; based on the JRM estimator for the full model and
~ ~ \2
w1 (Yie—Yip) . o 5 .
the subset model respectively. The quantity 21_1(07’;") is small when Yj is close to Yj, that is, the
prediction based on the model with (p — 1) regressors is as accurate as that based on the model with

~ A \2
i Yik—Yj . LT 5 .. .
(k — 1) regressors. When the quantity 2”1(07'213) is large then Yy, is far away from Y;, and it implies

that, prediction based on the model with (p — 1) regressors may not be as ‘accurate’ as that based on
the model with (k — 1) regressors. Using the same logic, we propose the following criterion for subset
selection.

4.2. Definition of GS,,

The proposed generalized S, criterion is denoted by GS,, and is defined as

R N2
(Yik - Yip)

o2

n
i=1

GS, = —tr[(H—Hy)' (H—Hp]+p (4.5)
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where o2 is the unknown error variance, replaced by its suitable estimate based on the JRM estimator,
H and H; are the prediction matrices defined in the beginning of Section 4. The purpose of subtracting

/ ) i (9ik—9ip)2 N -
tr [(H —Hy)' (H— H1)] — p from the first term s simply to compare the GS, statistic
with the dimensions of the subset model for the selection of a correct or an adequate model. A subset
model is said to be correct or adequate, if the prediction based on the subset model is as accurate as
that based on full model.

Below we discuss some results which are useful for implementing the proposed method. Here, note
that the prediction matrix changes with respect to the change in the estimator of unknown regression
parameters and the choice of the estimator is based on the nature of the data.

5. Some results

In this section, we present some results to support the use of the proposed criterion to select the
correct subset model. Also, we have derived the equivalence of the proposed GS, statistic with the
Gy, Sp and R, statistics.

Result 5.1. If the subset model is adequate then,

E (Z (f/,-k - f/,-p)z> =o?tr[(H—Hy) (H—Hy]. (5.1)

i=1

Proof. Consider, f’ik and SA(,-p be the ith predicted values of Y based on the JRM estimator for the full
model and the subset model respectively. Then, we can write,

n R R 2 R R / R R
§ i) = (-7) -7
i=1
= (HY — H;Y)' (HY — H,Y)

=Y (H—H;) (H—H)Y. (5.2)

Now,

E {Z (s?,-k - s?,-p)z} =E[Y'(H—Hy) (H—Hp)Y].

i=1

Since [(H —Hy) (H- H1)] is a symmetric matrix, then using the properties of quadratic form, the
expected value of the quadratic equation given in Eq. (5.2) can be written as,

n

N N 2
E Z(Yik—y,-p> = o2tr[(H — Hy) (H — Hy) | + BX [(H — Hy)' (H — H})] XB.

| i=1

But, when the subset model is appropriate, the quantity g’X’ [(H —H)' (H- H1)] XB = 0, hence,

E[Y (f/ik - f/,»,,)z =o?tr[(H—Hy) (H—Hy].

Li=1

Result 5.2. If the subset model is adequate then

E[GS,] = p. (5.3)
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Proof. When the subset model is adequate, from Result 5.1, we can write,

LN ~ \2

> (V1)

= | = u[H-H) H-H)].
o

Therefore,

E[GSy] = [tr[(H —Hy)' (H—Hp]] = [tr[(H — Hy) (H—Hp)]] +p
p.

— (5.4)
Result 5.3.
Zn: (?ik - ?i,,)z — RSS, — RSS; — 2Y'(H — H'H — H, + HH)Y. (5.5)
i=1
Proof. We can write,
;
50 = -5 1)
i=1
= (h—v+v- yp) (h-v+v-1,)
= (=T = v =) (v = V) — (v = 7))
(Y p) ( 9)+(Y—9,<)/ (Y—}A’k)—Z(Y—f/p)/ (Y—flk>
= (v=) (v=0)+ (r=0) (v-7)
—2r =i+ V=B (v - V)
= RSS, + RSS), — 2RSSy — 2(% — ¥, (y _ f/k)
— RSS, — RSSy — 2Y'(H — H'H — Hy + H|H)Y. (5.6)

The quantity in Eq. (5.6) depends on the estimator of §. It varies according to the choice of the
estimator. The following results discuss the equivalence of the GS, statistic with the C,, S, and R,
statistics.

Result 5.4. When the LS estimator (BLS) of B is used to obtain the predicted values, then the GS,
statistic reduces to the G, statistic.

Proof. Suppose the LS estimator (BLS) of B is used to obtain the predicted values of the response

variable, then the prediction matrices H and H; becomes H = X (x/x)‘lx/ and H; = X, (XAXA)_IX/Q
respectively. Also, H and H; matrices are symmetric and idempotent. When the subset model is
adequate, then the last quantity Y'(H — H'H — H; + H{H)Y of Eq. (5.6) becomes zero and the GS,
statistic becomes

RSS,, — RSS
GSp =~ —tr[(H — H)' (H — H))] +
_ w —tr[H'H — H'Hy, — H{H + HH,] +p
o
RSS,, — RSS
_ %" —tr (H'H) + tr (H'Hy) + tr (H{H) — tr (H}H1) + p.
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Using the idempotent property of H and H; matrices, we can write

RSS,  RSSk )
GSp = —5~ — —5- — tr(H) + tr (Hy) + tr (Hy) —tr (Hy) +p
g o
RSS,  RSSy
=2 " 52 ktptp-p+tp
RSS RSS
= —2 _—(n—k) — (k—2p) (wherec?isreplaced by d
o? n—k
RSS,
= =
=G. (5.7)

Thus, the GS,, statistic reduces to the C, when the LS estimator BLs of B is used.

Result 5.5. When the M-estimator (BM) of B is used to obtain the predicted values, then the GS,
statistic reduces to the S, statistic.

Proof. Let 31\,, be the M-estimator of 8 used to predict the response variable, then the prediction
matrix H reduces to H = X(X'WX)~'X’W and H; reduces to H; = XA(XAWAXA)”XAWA.
Hence,
n N N 2
(Yik - Yip)
i=1 / / ’ /
Gp="—""g—— -1t (H'H) + tr (H'Hy) + tr (H{H) — tr (H{H;) + p.

The matrices H and H; are idempotent matrices and are not exact but close to symmetric matrices.
Hence,

n 2

_Z (917( - }A,ip)
GS, = H# — tr(H) + tr (Hy) + tr (H}) — tr (Hy) +p
n N N 2
Z (Yik - Yip)
== ———— —k+p+p—-p+p
o
n ~ ~ 2
, (Yik - Yip)
= :1# — (k—2p)
=S, (5.8)

Thus, the GS,, statistic is equivalent to the S, statistic when the M-estimator of g is used.

Result 5.6. When the ORR estimator (BR) of B is used to obtain the predicted values, then the GS,
statistic reduces to the R, statistic.
Proof. Suppose, BR is used to obtain the predicted values of the response variable, then matrix H and

H; become Hg = X(X'X 4 1) 7'X’ and Hra = Xa(X;Xa + ral) ™' X;.
Hence, the GS,, statistic becomes,

n 2

Z (917( - 91‘13)

GS, = H# — tr[(Hg — Hra)' (Hg — Hea)] +p
no. N2
> (Yik - Yip)

- lT — tr [HyHg — HyHyy — HpyHg + HpyHga] + p.
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We decompose Hg into sum of Hg4 and Hgg such that, HgaHgg = 0 (see Chatterji and Hadi [2], Dorugade
and Kashid [4]). Using this decomposition, we can write

nm /A A \2
Z (Yik - Yip)
i=1

GS, = p — tr[HyHg — HgHy, — HyaHg + HyaHpa] +p
n N A \2
Z (Yik sz
~ i=1
= — — tr[HgHg — HiyHp, | +p
n N A \2
2 (Yik - yip)
i=1 ’
= S — tr (HgH) + r(HiyHyy) +p
=R, (5.9)

Subset selection procedure based on the GS,, statistic
Using the Result 5.3, the subset selection procedure based on the GS,, statistic is given as follows:

Step 1. Compute the value of the GS,, statistic for all possible subset models.

Step 1. Select a subset of minimum size, for which the value of the GS,, statistic is close to ‘p’.
In the following section, we study the correct subset selection performance of the Cp, S, R, and
GS,, statistics.

6. Simulation study

A simulation study is carried out to illustrate the performance of proposed method. A simulation
study is divided into three subsections. Section 6.1 illustrate the performance of the Cp, S,, R, and
GS,, criteria through numerical examples for all combinations of absence and presence of outlier and
multicollinearity. A correct model selection ability of these criteria is evaluated in Section 6.2. Also, the
various choices of the estimator of o2 are considered in Section 6.3 and their performance is studied
through numerical example.

For the computation of M-estimator, Huber’s robust criterion function is used. The form of p (-) is
1zz lz| <t
2

p@) = 1
|z|t — =t
2

2 1zl >t

where z is scaled residuals and t = 1.345.
6.1. Numerical examples

In this subsection, we have considered four cases: 1. Clean data, 2. Data with outlier, 3. Data with
multicollinearity and 4. Data with outlier and multicollinearity. Example 6.1 illustrate the perfor-
mance of the Gy, Sp, R, and GS,, statistics for first two cases. However, Example 6.2 consider the last
two cases to study the correct subset selection performance of the Cp, S,, R, and GS,, statistics.

Example 6.1. Here, we have considered the following regression model to generate n = 20
observations on the response variable Y as
Yi=1+2X;1 +3Xp +0X;3 +0Xis +¢;, i=1,2,...,n

where X;; ~ U(0,1), i = 1,2,...,n, j = 1,2,3,4and & ~ N(0,0.25). A method to introduce
outlier in the response variable suggested by Jadhav and Kashid [10] is implemented. A single outlier
observation is introduced in the response variable corresponding to largest absolute residual by
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Table 2

Values of G, S, R, and GS), statistics for all subset models.
Regressors in the model ~ Clean data With one outlier data

G Sp R, GSp G Sp R, GSp

Xi 41.4566 88.8442  38.9205 89.5066  6.4856 88.9771 3.9139 89.2078
X2 21.8913 59.5440  20.1670 59.8542  3.7951 63.7876  2.8164 63.7516
X3 553685  127.1283  57.0563  128.0798 4.5724 129.3113 3.0506  129.9719
X4 59.6552 143.6816 94.6994 144.0413 6.8399 1434294 41313  143.5348
X1 X, 2.7568 3.2767 2.9584 3.1723  4.7240 33099 3.5026 2.9617
X1 X3 42.1485 86.6213  38.7884 87.3354  6.2909 88.7644  3.9701 88.9678
X1 X 43.2062 91.3802  39.9829 92.1708  7.1991 91.0399  4.5070 91.3607
X2 X3 19.6384 48.3448 17.5928 48.4336  2.1995 53.3889  2.5820 53.1513
X2 X4 19.9072 57.8829  18.1727 57.8715  4.6941 65.2842  3.6406 64.9878
X3 Xa 542756  125.7806 51.6828 1267200 6.1055 127.9752 3.9853  128.6459
X1 X2 X3 4.3852 3.6169 4.3647 3.5583  4.0004 3.6296  3.8108 3.5170
X1 X2 X4 3.6821 5.1481 3.8975 5.0931 5.0321 53201 4.3798 5.1078
X1 X3 X4 43.5963 89.3993  39.5378 90.3715  7.5577 90.4398  4.8287 90.5849
X2 X3 X4 16.6383 442775  14.8272 443727  3.4836 51.8037 3.824 51.2683
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

multiplying the actual value of Y by twenty (largest absolute residual corresponds to Y19 and its actual
value and outlier value after multiplying by 20 is 4.73744 and 94.7488 respectively). The values of the
Gy, Sp, Ry, and GS,, statistics are computed for all possible subset models and are presented in Table 2.

Itis clear that, the values of the C,, Sp, R, and GS,, statistics for subset {X;, X,} are close to p(=3) for
clean data. This indicates that, all four methods agree upon the importance of two regressor variables
X; and X, and select the correct subset model. For outlier case, it seems that the C, and R, statistics
select the wrong subset or more than one subset models. These both criteria fail to select the correct
subset model. As a contrast, we can see that the S, and GS,, statistics select the same subset which is
selected for clean data. Therefore, the S, and GS,, statistics are immune to the presence of outlier in
the data.

Example 6.2. In this example, the simulation design given in Eq. (2.1) is used to introduce multi-
collinearity in the regressor variables. The degree of multicollinearity is set to p = 0.999 and n = 30
observations are generated on the response variable using the following regression model

Y; = 15 + 5xj1 + 5X;p + 0x;3 + Oxis + &4,

whereg; ~ N0, 1),i = 1,2,...,30. The same scenario used in Example 6.1 is implemented to
introduce an outlier observation in the response variable. The VIFs corresponding to each regressor
variable are 405.0179, 441.0012, 373.2567 and 509.0688. The values of G, S, R, and GS,, statistics for
all possible subset models are computed for without and with one outlier case and are reported in the
Table 3.

Table 3 shows that in presence of multicollinearity in the data, the R, and GS,, statistics select the
subset {X;, X,} as both satisfy the criterion while the C, and S,, statistics satisfy the criterion for several
subsets of different sizes and so no definite conclusion can be drawn. In other words, they fail to select
the correct subset.

In the presence of outlier as well as multicollinearity, the R, statistic selects several subsets
while the GS,, statistic selects the subset correctly namely {X;, X,}. Thus, this study shows that the
performance of GS,, statistic is better than its competitors in the presence of data anomalies like
outliers and multicollinearity.

Further, to assess the performance of the GS,, statistic in the presence of several outliers, we have
considered above data set (used in Example 6.2). By introducing two and three outlier observations
in the response variable, the correct model selection performance of the C,, S,, R, and GS,, statistics
is evaluated. The results are presented in Table 4.

Table 4 indicates similar conclusions as in case of one outlier, namely, the GS, statistic selects the
correct subset model {X;, X,} while G, and S, statistics select several subsets satisfying the criterion
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Table 3

Values of G, S, R, and GS,, for all subset models in the presence of multicollinearity.
Regressors in the model ~ Without outlier With one outlier

G Sp R, GSp G Sp R, GSp

Xq 3.0624 4.0741 4.8225 4.0673 0.0868 4.0757 1.9696 4.0402
Xz 47698 7.1797 5.8701 7.3400  —0.0061 7.1948  1.9213 7.3243
X3 137610 167849  13.5605  16.9714 02235 167863  2.0500  16.8117
X4 16.9498  21.3865  12.9645  20.2555 0.0976 213939 19813  20.1864
X1 X2 2.7505 3.5041 3.4738 3.2757 1.7151 35189  2.8865 3.2695
X1 X3 3.0103 3.1471 37453 3.6414 1.7867 3.1461  2.8929 3.6164
X1 X4 4.4605 5.2065 4.3467 4.8318 2.0868 52072 2.7099 4.7966
X2 X3 3.9440 4.8946 4.1756 4.7671 1.1404 4.8960 2.8873 4.7696
X2 X4 6.2422 8.2382 5.5534 7.5530 1.7710 82538  2.8762 7.5054
X3 X4 140713 167995 114287  15.7780 15284 167907 29295  15.7992
X1 X2 X3 3.7495 3.8968 3.4489 3.7146 3.1025 3.8993 3.9311 3.7153
X1 X2 X4 47441 5.4564 4.2877 4.9393 3.6141 5.4687  3.9191 4.9174
X1 X3 X4 4.8445 4.9141 4.9912 5.5923 3.4331 49156  3.9596 5.5801
X2 X3 X4 5.3831 6.2449 5.5784 6.6812 3.0479 6.2465  3.9249 6.6903
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000  5.0000 5.0000

Table 4

Values of G, Sp, R, and GS,, for all subset models in the presence of multicollinearity and more than one outlier.
Regressors in the model With two outliers With three outliers

G Sp R, GSp G Sp R, GSp

X 0.2189 3.1665  2.0991 36478  —0.8819 3.1855 22393 3.6339
X3 0.1246 5.7824 2.0488 6.8607 —0.8933 5.7982 2.2342 6.8489
X3 04238  17.1435 22255 184844  —0.7931 17.1703 22813  18.8167
X4 02749 203236 2.1399  20.8400  —0.7848  20.3956 22828  20.4596
X1 X3 1.9256 2.7502 2.8969 2.7616 1.1066 2.7400 2.9518 2.7213
X1 X3 1.7165 3.1903 29178 3.7398 1.0853 3.1907  2.9094 3.7252
X1 X4 2.1909 46171  2.8028 4.5929 1.0607 46175  2.9481 4.5601
X2 X3 1.0655 47947  2.9047 4.9666 1.0642 48012  2.9204 4.9436
X2 X4 1.7747 72267  2.9031 7.2986 1.0137 7.2338  2.9766 7.3958
X3 X4 16978 169648  2.9623  17.1498 12064 169686  3.0786  17.0818
X1 X2 X3 3.0614 3.8247  3.9376 3.7411 3.0550 38260  3.9361 37317
X1 X2 X4 3.7025 4.7580 3.9313 4.5242 3.0000 4.7454 3.9879 4.4937
X1 X3 Xy 3.4453 5.0073  3.9738 5.6390 3.0607 5.0082  3.9730 5.7065
Xa X3 X4 3.0068 6.2014  3.9417 6.7953 3.0130 6.2008  3.9974 6.7293
X1 X2 X3 X4 5.0000 5.0000  5.0000 5.0000 5.0000 5.0000  5.0000 5.0000

and thereby leading to inconclusive decision. The values of the R, statistic corresponding to more
than one subset models are close to p and it selects correct as well as wrong subset models. Hence,
the performance of the GS, statistic is again better than the rest in the presence of multicollinearity
and more than one outlier observations in the data.

The graphical representation brings out the above facts clearly. For this purpose, the data set
exhibiting multicollinearity and having two outliers’ given in Table 4 is considered. The values of Sp, R,
and GS,, statistics corresponding to subset models are plotted in Fig. 2. Also, from Tables 3 and 4, the
values of GS,, statistic for subset models corresponding to one outlier case, two outliers case and three
outliers’ case are obtained and plotted against p in Fig. 3. These figures clearly indicate that the GS,
statistic consistently select the correct subset model for the problem of multicollinearity with different
number of outliers in the response variable.

6.2. Model selection ability

In this subsection, the correct model selection ability of the C,, S,, R, and GS, statistics is stud-
ied. A simulation design given by McDonald and Galarneau [15] in Eq. (2.1) is used to induce



56 N.H. Jadhav et al. / Statistical Methodology 19 (2014) 44-59

57 023
o 23 o 124
o 14 o 124
41 334
o1 013 8 133
8
=
s o1 o
2 37 +
&= 8 12
8
)
=R
2 - ] P
+Rp
o GSp
1 T T T 1
1 2 3 4 5
p
data label ij... denote the X;Xj... regressor variables
Fig. 2. Values of S,, R, and GS,, statistics versus p.
> * 23 o 124
6 34
* 14 & 124
4 - o1
£ 1 * 13 & 123
£
= o
=
£ 31
7]
£ 412
wn
24 O 1 Outlier
A 2 Outliers
x 3 Outliers
1 T T T 1
1 2 3 4 5
p

data label ij... denote the X;X;... regressor variables
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multicollinearity in X; and X, regressor variables of the following regression models.

Model I Yf=5+4Xf1+0X,»2+3Xi3+0Xf4+ei, i=1, 2,...,30
Model Il Y; =5+ 2Xi; + 0Xip + 4Xi3 + 0Xiy + 3Xis + ¢, i=1, 2,...,50.
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Table 5
Model selection ability of Cp, Sp, R, and GS), statistics.
0 Without outlier With one outlier
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

0% =025
G 72 81 74 71 23 24 20 18
Sp 63 66 63 62 63 68 62 64
R, 72 79 72 71 25 23 20 21

Model I GS, 63 66 64 63 63 68 64 65
o?=1
(e} 70 74 74 71 17 19 19 18
Sp 61 63 64 62 65 60 63 59
R, 69 74 73 70 18 21 22 17
GSp 62 63 64 63 65 62 64 61
62 =025
G 81 74 76 79 16 24 21 20
Sp 75 67 69 72 59 65 70 63
R, 81 74 75 77 17 29 21 20

Model 11 GS, 76 68 69 73 62 66 72 66
o?=1
(e% 63 74 74 79 22 21 19 19
Sp 62 67 62 72 57 63 63 63
R, 61 74 74 79 24 25 18 23
GS, 63 69 62 74 62 65 64 67

The remaining regressor variables in Model I (X5 and X4) and Model II (X5 and Xs) are generated
from standard normal distribution. To make Model Il more complicated, regressor variable X, is taken
as a product of X, and X3 regressor variable. The error variable ¢;, i = 1, 2, ..., nis generated from
normal distribution with mean 0 and variance 62 = 0.25 and o2 = 1. The different degrees of mul-
ticollinearity are achieved by setting o = 0.6, 0.7, 0.8 and 0.9. The scenario used in Example 6.1 of
Section 6 is followed to introduce outlier observation in the response variable.

The simulation experiment is replicated 100 times for each model, for all combinations of degree
of multicollinearity (), error variance (o-2) and with and without outlier case. The values of the G,
Sp, Ry and GS,, statistics are computed for all possible subset models. The number of times that the
Gy, Sp, Ry and GS,, statistics selects the correct subset model is counted and reported in the Table 5.

Table 5 shows that, for without outlier case, the frequency of correct model selection of the C,
and R, statistics is larger than that of the S, and GS,, statistics. But, for single outlier case, the correct
model selection ability of the GS,, statistic is uniformly larger than that of the C, and R, statistics for
both model I and model II. For one outlier case, the percentage of correct subset model selection by
the GS,, statistic is larger than that of the S, statistic when the value of p is large.

6.3. Choice of the estimator of o>

In the computation of the GS,, statistic, we use a scale parameter o2. Since it is unknown, we need
to use its suitable estimator. Various estimators of o2 are available in the literature. For examining the
performance of the GS,, criterion, we use four different types of estimators of o? which are based on
the JRM estimator. Let r; be the ith residual based on the JRM estimator of 8 and it is defined as,

r=Yi— X Bru, i=1,2,...,n
We consider the following estimator of o2
1. 62 = [1.4826 Median |r; — Median (1;)|]?
. 6% = [1.4826 Median |r;|]?
63 =Y riwi/ (n—k
A n n
L6 =2 rtwl/ (L Irwil).

s W N
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Table 6

Values of GS,, statistic for all subset models with different estimates of o2
Regressors in the With one outlier With two outliers
model

2 62 62 62 &2 2 62 62
(0.9881)* (0.8478)  (0.8112) (0.9949) (0.9881) (0.8478)  (0.8050)  (0.9901)

Xq 337.5378 3935145 411.3049 3352256 336.6605 392.5125 413.4319 336.0047
Xz 1027412 119.8496 125.2869 102.0346 103.7496 121.0292 127.5012 103.5467
X3 615.8711 717.9162 750.3480 611.6561 615.6479 717.6772 755.8924 614.4499
X4 1244055 145.1017 1516793 1235507 125.0403 145.8491 153.6430 124.7960
X1 Xy 2.9559 3.2151 3.2974 2.9452 2.9414 3.2006 3.2977 2.9384
X1 X3 314.6453 366.4917 382.9694 312.5038 313.0681 364.6737 384.0026 312.4621
X1 X4 12.9300 14.8421 15.4498 12.8510 12.9644 14.8887 15.6094 12.9418
X2 X3 43.3745 50.3237 52.5323 43.0875 43.6117 50.6038 53.2227 43.5296
X2 X4 103.6550 120.5901 1259723 102.9555 104.5139 1215935 127.9907 104.3133
X3 X4 117165 134261  13.9695 116459 116709  13.3807  14.0210  11.6508
X1X: X3 3.5522 3.5621 3.5653 3.5518 3.5441 3.5539 3.5576 3.5440
X1 X2 X4 3.8178 3.8903 39134 3.8148 3.8174 3.8897 3.9168 3.8165
X1 X3 X4 6.9981 7.5776 7.7618 6.9741 7.0097 7.5940 7.8129 7.0029
X2 X3 X4 11.7398 13.1290 13.5705 11.6825 11.7104 13.0941 13.6124 11.6941
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
2 Figures in parenthesis indicate the estimate of U'iz, i=1,2,3,4

The performance of these estimators is illustrated by using a simulated example. Here, a random
sample of size n = 30 is generated from N4(0, X'), on X1, X5, X3 and X4, where,

1 0.531 -0.850 —0.531

Z_ 0.531 1 —0.401 —-0.972
~ | —0.850 —0.401 1 0.288
—0.531 -0.972 0.288 1

A regression model considered to generate n = 30 observations on the response variable is given
by

Yi=54+2Xiy +4Xpp +0Xs + 0Xiu + 65, i=1, 2,...,30,

where ¢; ~ N(0, 1). The VIFs of each term are 31.0458, 182.9686, 33.1639 and 210.6130. One and
two outlier observations are introduced in the response variable using the same procedure given in
Example 6.1. Based on the simulated data, the values of the GS,, statistic for one outlier and two outlier
observations case with four different estimators of o2 are obtained and presented in Table 6.

From Table 6, it is clear that the GS, statistic select the same subset {X;, X,} in the presence of
multicollinearity with one outlier and two outliers case for all estimators of 2. The values of 67 and
6} are close to true value of o? as compare to the values of 67 and 6Z. Consequently, the value of GS,,
statistic corresponding to the correct subset model using 612 and &f are close to p as compare to that
of the 64 and 62.

7. Conclusion

We have developed a subset selection procedure based on the JRM estimator of the unknown re-
gression parameters. This method works well in subset selection for clean data or in presence of only
outlier or only multicollinearity or both outlier and multicollinearity. Also, the performance of the pro-
posed method is evaluated for the presence of more than one outlier observations and multicollinear-
ity in the data. The correct model selection ability of the proposed method is also obtained. It reveals
that, the performance of the proposed method is considerably better as compare to other existing
methods when the outlier observations and multicollinearity occur simultaneously in the data.
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In this article, we consider a k-unit series system with component lifetime
distribution to be a member of the scale family of distributions. We discuss
estimation of the scale parameter and estimation of reliability function of the
family based on progressively Type-II censored sample. The maximum like-
lihood estimator (MLE) of the scale parameter is derived using Expectation-
Maximization (EM) algorithm and is used to estimate reliability function.
Confidence intervals are constructed using asymptotic distribution of MLE.
B -expectation tolerance interval for lifetime of the system is obtained. We
consider half-logistic distribution as a member of the scale family and study
performance of the MLE, reliability estimate and confidence interval using
simulation experiments. Illustration through real data example is provided.

keywords: Progressively Type-II censoring, EM algorithm, MLE, confi-
dence interval, coverage probability, reliability, S-expectation tolerance in-
terval, half-logistic distribution.

1 Introduction

In industrial phenomenon series systems are widely used. Electric, automobile as well as
in chemical industry various units are connected in series. Here system is working if all
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units in system are working. If any one unit is failed then system fails. Thus, system life
is smaller than unit life. Life testing under series system is more costly, because failure
of one unit reflects in system failure. Therefore, we use censoring criteria, in that; we
remove some working systems without observing its failure time. The unobserved failure
time data are called censored data.

Broadly censoring is classified into two types; Type-I and Type-II censoring. Type-I
censoring depends on time. In this type, an experiment continues up to a pre-determined
time T". Units having failure time after time 7' are not observed. Here, failure time will
be known exactly only if it is less than T. For example, if n units are placed on test,
but decision is made to terminate the test at time 7', then failure times will be known
exactly only for those units that fail before time T'. In Type-I censoring, the number of
exact failure times observed is random.

Type-II censoring scheme is often used in life testing experiment. In this scheme
only m units in a random sample of size n(m < n) are observed. Progressive Type-II
censoring is a generalization of Type-II censoring. In progressive censoring scheme, the
number m and Ry, Rs....., Ry, are fixed prior to the test and Y ;| R; = n — m. At the
first failure R; units are randomly removed from remaining n — 1 units. At the second
failure, Ry units are randomly removed from remaining n — 2 — R; units and so on. At
the m" failure all remaining R,, units are removed. Here, we observe failure time of
m units and remaining n — m units are removed at different stages of experiment. In
conventional Type-II censoring scheme Ry = Ro =....= R,,,—-1 =0and R,, =n—m. In
this article, the progressive Type-II censoring scheme is considered.

Many authors studied progressive Type-II censoring scheme for various lifetime dis-
tributions. Cohen (1963) introduced progressive Type-II censoring. Mann (1969) and
Mann (1971) considered Weibull distribution with progressive censoring. Balakrish-
nan and Asgharzadeh (2005), Balakrishnan et al. (2003) and Balakrishnan et al. (2004)
discussed inference for half-logistic, Gaussian and extreme value distribution under pro-
gressive Type-II censoring scheme respectively. Ng (2005) studied parameter estimation
for modified Weibull distribution under progressive Type-II censoring. Balakrishnan and
Aggarwala (2000) gave details about progressive censoring. Balakrishnan (2007) studied
various distributions and inferential methods for progressively censored data. Pradhan
(2007) considered point and interval estimation of a k-unit parallel system based on
progressive Type-II censoring scheme with exponential distribution as the component
life distribution.

Kim and Han (2010) discussed half-logistic distribution for Type-II progressively
censored samples. Iliopoulos and Balakrishnan (2011) studied likelihood inference for
Laplace distribution based on progressively Type-II censored samples. Asgharzadeh and
Valiollahi (2011) considered estimation of the scale parameter of the Lomax distribution
under progressive censoring scheme. Krishna and Malik (2012), Krishna and Kumar
(2011) and Krishna and Kumar (2013) studied reliability estimation in Maxwell, Lind-
ley and generalized inverted exponential distribution with progressively Type-II censored
data. Recently, Potdar and Shirke (2014) discussed inference for the scale parameter of
lifetime distribution of k-unit parallel system based on progressively Type-II censored
data. Potdar and Shirke (2012) studied inference for the distribution of a k-unit par-
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allel system with exponential distribution as the component life distribution based on
Type-II progressively censored sample. Potdar and Shirke (2013a) discussed inference
for the parameters of generalized inverted family of distributions. Potdar and Shirke
(2013b) studied reliability estimation for the distribution of a k-unit parallel system
when Rayleigh distribution as component lifetime distribution.

Dempster et al. (1977) introduced expectation-maximization (EM) algorithm. They
presented maximum likelihood estimation for incomplete data. McLachlan and Krishnan
(2007) gave more details about EM algorithm. Little and Rubin (2002) have discussed
EM algorithm for exponential family of distributions. Pradhan and Kundu (2009) used
EM algorithm to estimate parameters of generalized exponential distribution under pro-
gressive Type-II censoring scheme. Ng et al. (2002) used EM algorithm to estimate
parameters of lognormal and Weibull distributions under Type-II censoring scheme. In
this article, we use EM algorithm for estimation of the parameters of a k-unit series
system based on progressive Type-II censoring scheme when unit lifetime distribution
belongs to the scale family. Parameter estimation is based on the lifetimes of the system.
We assume that n units are put on test and failure times of » ;" | R; = n — m. units
are censored. Failure times of these censored units are unknown. We consider this data
as missing and use EM algorithm to compute MLE. We use idea of missing information
principle of Louis (1982). Asymptotic normal distribution of MLE is used to construct
confidence interval for the scale parameter. We also discuss tolerance interval for the
lifetime of the system, on the lines of Kumbhar and Shirke (2004).

The present work is different than the work reported by Pradhan (2007) in many
aspects. The first thing is that we consider scale family of distributions and exponential
distribution considered by Pradhan (2007) is a member of the family. Further, we obtain
MLE using EM algorithm instead of using Newton-Raphson method. We use Newton-
Raphson method within EM algorithm. Pradhan (2007) has considered only parameter
estimation, while we consider inference of parameter as well as reliability function. We
use missing information principle to compute Fisher information. We illustrate use of
the results developed with half-logistic distribution, which is a member of scale family.
Number of schemes that we consider are 30, which include schemes with small sample
sizes.

In Section 2, we introduce the model and obtain MLE for the scale parameter and
reliability function. We also provide an expression for Fisher information. Asymptotic
confidence interval for the scale parameter based on MLE, log-MLE and confidence in-
terval for the reliability function is discussed in the same section. Section 3 provides
[B-expectation tolerance interval for the lifetime of a k-unit series system based on pro-
gressively censored data. In Section 4, we consider the half-logistic distribution as a
member of the scale family and discuss MLE, reliability function, confidence intervals
and tolerance intervals. Performance of the MLE and confidence intervals of scale param-
eter and reliability function of half-logistic distribution is investigated using simulations.
Results of simulation study have been reported in Section 5. Real data application is
discussed in Section 6. Conclusions are presented in Section 7.
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2 Model and Estimation of the Scale Parameter

Let G be a scale family of lifetime distributions where X is the parameter of the in-
terest. Consider a k-unit series system with independent and identically distributed
units having lifetimes X1, Xo, ...., X}, of k units. That is, X; is the lifetime of the ‘"
unit having cumulative distribution function (cdf) G (%). The lifetime of the system is
X = Min.(X1, Xa,...., Xi). The cdf of X is

F(x;A):1—[1—G<§)F 23>0, A> 0.

The probability density function (pdf) of X is
k (x AN L
AN (\NH_a(* > .
f(@;d) /\g<)\) [1 G(A)} z20,A>0
where ¢(.) is the pdf of X; when A = 1.

2.1 Maximum Likelihood Estimation

Suppose n k-unit series systems are under test and we observe failure times of m systems
under progressive type-II censoring. Let (Rj, Ra,...., R;,) be a progressive censoring
scheme.
The likelihood function for the observed data is
m
L) = CT] f@@s ) [1 = Flag; )],
i=1

m—1 Jj
where Can(n—j— Ri>.
j=1 1

=

i) = T4 (%2) 16 (22))" - (52)] ™

Suppose x1, T2, ...., T, is the observed data and z1, zo, ...., z;, is the censored data. We
note that z; is a vector with R; elements, which is not observable for ¢ = 1,2, ....,m. The
censored data Z = (z1, 22, ..., zm) can be considered as missing data.

X = (x1,x9,....,Ty) is observed data. W = (X, Z) is the complete data set. Then
complete log-likelihood function is

T

Le = nlog(k) — nlog(\) + ilog [9 (%)] +(k-1) Em:log [1 -G (T)}
i=1 i=1

mRi mRi

+ZZlog[g<%>}—i—(/-c—l)ZZlog[l—G(%)}. (1)

i=1 j=1 i=1 j=1
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In order to obtain MLE of A, we use EM algorithm due to Dempster et al. (1977). For
the E step in EM algorithm we take Expectation of Z;;. The derivative of L. with
respect to A is taken for the M step, where

m

dL. _ n 1 x~wig (3) (k=1 g~ 6 (3)
dA AN —~ g (%) 22 ; 1-G (%)
Ly (k—1) &
—v;Rza(%k,Ao) + ;sz(xl,k,)\o) (2)
Z; g/ Zij oo
where a(z;, k,\) = FE ’ ( ) Zij > x| = / Z9 (z/\) f(z5A) dz,
g(% g(X) 1—F(zi;A)

A
)
and b(z;, k,\) = F Z”G/(ZU§ Zii > ; :70 2G’ (52 f(zA) ds.

We have to solve equation ddL)f = 0 to obtain A! as the solution. But this equation does

not have solution in the closed form. Therefore we use Newton-Raphson method and
compute A\'. By using A!, we compute a(z;, k,A') and b(x;, k, \!). This ends M-step.
We continue this procedure until convergence takes place.

In Newton-Raphson method, we have to choose initial value of \. We use least square
estimate. Ng (2005) discussed estimation of model parameters of modified Weibull dis-
tribution based on progressively Type-II censored data where the empirical distribution
function is computed as (see Meeker and Escobar (1998))

)

F()=1-]] -5,

J=1

with ]
pj = 5 - forj=1,2,......,m.
n=> o Rr1—7+1

The estimate of the parameter can be obtained by using least square fit of simple
linear regression.

y; = Px;  with =

Flaiy)] s [1 - Fa)] e

Yi =

F (CL‘o) = O,



Electronic Journal of Applied Statistical Analysis 233

The least square estimates of A is given by

N Z:il 5512
)‘0 = m )
Zi:1 X Yq

We use 5\0 as an initial value of A to obtain the MLE Xn using Newton-Raphson
method. Reliability function at time t is

mo-fi-o(O] ezoaso

The Maximum likelihood estimator of R(t) is

Ru(t) = [1_G<5\tn>]k t>0.

2.2 Fisher Information

We compute observed Fisher information using the idea of missing information principle
of Louis (1982).

Thus, observed information = complete information - missing information.

I;(\) = L,(A) — Iw|$()‘)>

where the complete information = [,,(\) = —FE [fb\é} and L is the log-likelihood function

based on all n observations. We obtain I,,(A\) and I,,,()) in the following.

Now,

L = nlog(k) — nlog(A +Zlog[ ( )} +(k—1)zn:log {17G<%>} . (3)
=1

and




234 Potdar K.G., Shirke D.T.

Complete information is given by

Missing information is given by

d2l0 Zl.IZ,)\
e = 3 R0 = 305" g [P0 U2 )]

i=1 i=1 j=1

Consider

fesn) ke -e ()]
1— F(xz,\) [1_G(ﬁ>]k '

fz1x (zij|wi, ) =

Therefore,

dlogf 1 zwg (TJ) (k—1)z;G’ (@) ka; G (&

_ = WA A 2.
DTN () R 26 (3]
and
Plogf _ 1 z9 () 6" (X) = 1o (59))” + 2229 (5) 9 (3)
d\2 A2 Mg (32)]?
(-1 {25 [1- G ()] 6" (3) + 23 [0 (3] + 22 [1- 6 ()] & (3)}
A4[1—G(ZJ)]2

Hence, missing information is

d*log (f(Z;;|zs, A
1) = 3SR 0) = =33 g [0 U )]

=1 j=1




Electronic Journal of Applied Statistical Analysis 235

ey [zf-e(B)]e(B) sz e (3)]
Lt e (%))
ot - 1) | 710 ()] o (%)
EE L e
W iR -G ()] (%) + [1 [_Gg((ﬂ) ;+ 26 (5) [1-G (‘”x‘)]] )

Using expressions in equations (4) and (5) we obtain observed Fisher information.

2.3 Confidence Intervals

By using asymptotic normal distribution of MLE An, we construct confidence interval

for \. Let 62(\,) = I&) is the estimated variance of A,. Therefore, 100(1 — )%

asymptotic confidence interval for A is given by

<Xn — a2\ 52(An), A+ Ta/g\/é‘Q(;\n)> , (6)

where 7,9 is the upper 100(a/ 2)!" percentile of standard normal distribution.

Meeker and Escobar (1998) reported that the asymptotic confidence interval for A can

'~

be computed using log(Ay,). An approximate 100(1 — «)% confidence interval for log(\)
is given by

(zog@n)—rm 52(109(A)),  log(hn) + 7ass &2009(%))),

where 62(log(\,)) is the estimated variance of log(\,) which is approximated by

62(log(\n)) ~ % Hence, an approximate 100(1 — «)% confidence interval for A

n

is given by
<_ TQ/Q\/52(5\7L)> <ra/2vz&2(&n>>
< n ~ 3
An €

An € ,

(7)
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Let R, is the MLE of reliability function R(t) and 02(R,,) is the variance of R,,, where

. 2,2 2(k—1) 2 R
g8 (O] e (1)) o

Therefore, 100(1 — a)% asymptotic confidence interval for R(t) is given by

<Rn — Taja\|02(Ry), Ry + Tam/a%fzn)) , (8)

3 Tolerance Intervals

Kumbhar and Shirke (2004) derived the expression for S-expectation tolerance interval
for the lifetime distribution of a k-unit parallel system with component life as expo-
nential distribution. They investigated the performance of the tolerance interval based
on complete data. We study the performance of the tolerance interval for the lifetime
distribution of a k-unit series system based on progressively Type-II censored data for
the scale family of distributions. Let [3(\) be the lower quantile of order /5 of the cdf
F(x;\). Then, we have

s = G [1-(1 - 5)1/’“} .
Thus, an upper [S-expectation tolerance interval for F'(x; \) is obtained by
Ig =(0,13(})).-

The maximum likelihood estimator of [g(\) is given by
() = A G711 = (1= )],
yielding an approximate (- expectation tolerance interval as
Iy = (0, 1500)) -

The expectation of I g can be obtained approximately using the approach suggested by
Atwood (1984) and given as,

For 0%(A\n) Fi

E [F(IB(S\n)§ A)} ~ B —0.5 Fog 02(An) + s ’

9)

dF dF d’F d’F
Where F10 = %, F()l = a, Fll = m’ F02 = W’

=3[-e (D] 9(5) m--R-¢(] ¢,

Fi=-—m -6 (]
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(-0 () + a0 (D)o G) +a[ -0 ()] ()}
=t oo (2)]

—al(*\a (5 - wk — 1 (P\]? —a(®\ o (*
el-e@)e G) —o-nle QI -G ()}

The derivatives of F' are evaluated at = l[g(\) with A = An. Instead of the actual value
of 02(A,) we use estimate of it.

4 Application to Half-Logistic Distribution

Consider a member of the scale family of distributions, namely half-logistic distribution
with scale parameter . The cdf of X is

2671/)\ k
e~
The pdf of X is
k 2kefk:13/)\
f(x;A):X(1+e—ac/)\)k+1 x>0, A>0.

4.1 Maximum Likelihood Estimation

The complete log-likelihood function for half-logistic distribution with scale parameter
A from equation (1) is

Iz/)\ % —xz; /A
Lc = nlog(k)—nlog(A +Zlog (14 emi/2)? HED Zlog He—x/A]
l e %/ A l e %ij /A 10
4 .
;]Zl o 1+ e—zzj/)\) ;]Zl o9 1+ e‘zw/)‘ (10)

In order to obtain MLE of )\, we use EM algorithm due to Dempster et al. (1977). For
the E step in EM algorithm we take Expectation of Z;;. The derivative of L. with
respect to A is taken for the M step, where

dL. = n k<« (k+1) o~ zie™@/r & Zm 0
PNPNIPE Zi:l TR Zi:l Tren/ R i1 etz b2
(k+1) Z’”
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where a(x;, k,\) = E(Z;;)and b(x;,k,\) = F

Zij eiZi]‘ /A
1+ e Zii/>
To solve this equation, we use Newton-Raphson method.

Reliability function at time t is

26715/)\
1+ e t/A

k
R(t) = ] t>0, A>0.

The Maximum likelihood estimate of R(t) is

R
—t/3n
Ra(t) = 26] t>0.

1+ et/

4.2 Fisher Information

The observed information = complete information - missing information.
Ix(>‘) = Iw()‘) - Iw|a:(>‘)a

Consider log-likelihood function for n observations is

e~ Ti/A 2e~Ti/A
L = nlog(k) — nlog(X\) + lo +(k-1) log | ———~ 12
g(k) g(A Z g 1+e—xl/x) ; 9| T |- (12

Then complete information is
d’L no 2k (k+1) < X2e=Xi/A
IL,(AD)=—-F|-—|=—-——5+—= EX)|+— o i A
*) [d/\Z} JRRIPEPS X+ 5 2 (1t e X2
2(k+1) o Xe=Xi/A

e Z;E [ oot (13)

and missing information is given by

m i d2log (f(Z;|zi, A
Lyjw(A ZRIw‘x ZZEZD([ g ( C(v\21|30 ))]

i=1 j=1

m R;

—m (k + (k+1) ZZe=Zis/A
= 2 ZZE U ZZE (1+e— ij//\)2
i=1 j=1 i=1 j=1
Em:f’: Zz]e Zig/ k Rm e~ Ti/A

1+eZa/A| A 1—}-6—‘”1/)‘
1=1 j5=1 1=1
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p)
e
=1

Ril'iefxi/)‘ 2k —
=1

4.3 Confidence Interval and Tolerance Interval

Using equations (6) - (8) with 62(\,) = 7 (15\ ) and

kt (26%/ X”)k
E (1 - e—t/f\n>k+1

o (Ra(1)) = o*(An)

we construct confidence intervals for scale parameter and reliability function.
Let I3()) be the lower quantile of order § of the cdf F'(z;\). Then, we have

2—(1—6)1/’“]

Ig(\) = Alog [ -5

Thus, an upper [-expectation Tolerance Interval for F'(z; A) is obtained by

I = (0,15(N)) -

The maximum likelihood estimator of [g(\) is given by

2-(1 —6)”’“]

lﬁ(j‘n) = 5‘nl()g [ (1- ﬁ)l/k

yielding an approximate [3- expectation tolerance interval as
Iy = (0, 1500)) -
The expectation of I 3 can be obtained approximately using the approach suggested and

given as,

Fop 02(A\n) Fi

B [F(I5(n): 0| % 6 =05 Fop 0*(An) + =72 (15)
K2t (e ka2h (e
where Fig = T(lee*—x/’\)kH’ For = — 2 (1 n eix//\)k—&—lv

k2F (e ' —z/A
”_A3O+ewﬂH2WmMe @+ ).

kx2k (e_”"/A)k

and For = - At (1 + e*w//\)

- [(lm o) — e (x4 2/\)] .
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5 Simulation Study

A simulation study is carried out to investigate the performance of MLE, reliability es-
timate and confidence interval of the scale parameter of half-logistic distribution. We
obtain estimate of bias and MSE for various progressively Type-II censoring scheme.
Asymptotic confidence intervals based on the MLE and log-transformed MLE are com-
pared through their confidence levels. The coverage of the (- expectation tolerance
intervals is studied using simulation. Balakrishnan and Sandhu (1995) presented algo-
rithm for sample generation from progressively Type-II censored scheme. This algorithm
is used to generate progressively censored samples from half-logistic distribution of a k-
unit series system.

Algorithm

1. Generate independently and identically distributed observations
(W1, Wa, ..., Wy,) from U(0, 1).

2. For (Ry, Ra, ....., Ry;,) progressive Type-II censoring scheme,
set B; = 1/(Z+Rm+Rm_1—|- ..... +Rm—i+1) fori=1,2,..... , m.

3. Set V; = WZ-Ei fori=1,2,....,m.

4. Set Uy =1 =V, Vip—1..o.Vip—igq for i = 1,2, ....;m. Then (U, Uy, .....,Uy,) is the
U(0, 1) progressively Type-II censored sample.

5. For the given value of the parameter A, set

2 — (1—U;)"*
z; = Alog (—f)k fori=1,2,......,m. (16)
(1—uy)Y
Then (x1,x2,...., Ty ) is the required progressively Type-II censored sample from the

distribution of a k-unit series system with half-logistic distribution as the component life
distribution In Table 1 scheme (a,b) stands for Ry = a and Ry = b. Similar meaning
holds for schemes described through completely specified vector, while scheme (10,4 *0)
means Ry = 10 and rest four R;s are zero. i.e. Ry = R3 = R4 = R5 = 0. A simulation
was carried out for 2-unit, 3-unit and 5-unit series system (i.e. k=2, 3 and 5) with
A = 1. EM algorithm and Newton-Raphson method are used to compute MLE. For
each particular progressive censoring scheme, 10,000 sets of observations were generated.
The bias, MSE, confidence levels with their standard errors (SE) for the corresponding
confidence intervals for A are displayed in Table 1 - 3 for k=2, 3 and 5 respectively.
The bias, MSE, confidence levels with their SE for the confidence intervals for reliability
function are displayed in Table 4 - 6 for k=2, 3 and 5 respectively. The simulated mean
coverage and the estimated expectation of the tolerance interval are given in Table 7 -
9. (TMSE and SE are given in parenthesis.)
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Table 1: Bias, MSE™, Confidence levels and its SE* for MLE (k=2)

n m Scheme Scheme Bias and  Level and SE-MLE Level and SE-log(MLE)
No. MSE 90% 95% 90% 95%
5 2 [1] (3,0) -0.0708 0.7481 0.7802 0.8411 0.8883
(0.3379)  (0.0377)  (0.0343)  (0.0267) (0.0198)
2] (0,3) -0.0654 0.7525 0.7824 0.8445 0.8934
(0.3529)  (0.0372)  (0.0341)  (0.0263) (0.0190)
3] (1,2) -0.0694 0.7540 0.7884 0.8489 0.8907
(0.3497)  (0.0371)  (0.0334)  (0.0257) (0.0195)
[4] (2,1) -0.0642 0.7520 0.7868 0.8427 0.8900
(0.3559)  (0.0373)  (0.0335)  (0.0265) (0.0196)
15 5 [5] (10, 4*0) -0.0248 0.8339 0.8656 0.8727 0.9263
(0.1425)  (0.0092)  (0.0078)  (0.0074) (0.0046)
[6] (4*0, 10) -0.0196 0.8325 0.8693 0.8807 0.9313
(0.1624)  (0.0093)  (0.0076)  (0.0070) (0.0043)
[7] (2,2,2,2,2) -0.0205 0.8315 0.8643 0.8777 0.9303
(0.1546)  (0.0093)  (0.0078)  (0.0072) (0.0043)
10 [8] (5,9%0) -0.0121 0.8652 0.9041 0.8902 0.9401
(0.0702)  (0.0078)  (0.0058)  (0.0065) (0.0038)
9] (9%0,5) -0.0141 0.8680 0.9037 0.8941 0.9434
(0.0723)  (0.0076)  (0.0058)  (0.0063) (0.0036)
[10] (3,2, 8*%0) -0.0134 0.8694 0.9057 0.8894 0.9368
(0.0713)  (0.0076)  (0.0057)  (0.0066) (0.0039)
20 10 [11] (10, 9%0) -0.0117 0.8669 0.9045 0.8863 0.9391
(0.0705)  (0.0058)  (0.0043) (0.005) (0.0029)
[12] (9*0,10) -0.0086 0.8686 0.9069 0.8936 0.9423
(0.0767)  (0.0057)  (0.0042)  (0.0048) (0.0027)
25 10 [13] (15,9%0) -0.0167 0.8679 0.9070 0.8927 0.9398
(0.0693)  (0.0046)  (0.0034)  (0.0038) (0.0023)
[14] (9*0,15) -0.0161 0.8613 0.8973 0.8829 0.9356
(0.0805)  (0.0048)  (0.0037)  (0.0041) (0.0024)
[15] (5,5,5,7*0) -0.0106 0.8641 0.9033 0.8893 0.9401
(0.0733)  (0.0047)  (0.0035)  (0.0039) (0.0023)
15 [16] (10, 14*0) -0.0099 0.8792 0.9198 0.8952 0.9455
(0.0464)  (0.0042) (0.003) (0.0038) (0.0021)
[17] (14*0,10) -0.0123 0.8745 0.9160 0.8935 0.9458
(0.0499)  (0.0044)  (0.0031)  (0.0038) (0.0021)
30 10 (18] (20, 9*0) -0.0079 0.8676 0.9070 0.8889 0.9366
(0.0725)  (0.00380  (0.0028)  (0.0033) (0.002)
[19] (9%0,20) -0.0100 0.8637 0.8994 0.8888 0.9389
(0.0844)  (0.0039) (0.003) (0.0033) (0.0019)
15 [20] (15, 14*0) -0.0089 0.8745 0.9142 0.8865 0.9400
(0.0481)  (0.0037)  (0.0026)  (0.0034) (0.0019)
[21] (14*0,15) -0.0087 0.8792 0.9171 0.8940 0.9460
(0.0523)  (0.0035)  (0.0025)  (0.0032) (0.0017)
[22] (5,5,5,12*%0)  -0.0073 0.8777 0.9219 0.8960 0.9437
(0.0474)  (0.0036)  (0.0024)  (0.0031) (0.0018)
20 (23] (10, 19*0) -0.0040 0.8859 0.9281 0.8942 0.9452
(0.0355)  (0.0034)  (0.0022)  (0.0032) (0.0017)
[24] (19*0,10) -0.0064 0.8891 0.9287 0.8973 0.9460
(0.0366)  (0.0033)  (0.0022)  (0.0031) (0.0017)
[25] (0,5,5,17*0)  -0.0064 0.8839 0.9273 0.8946 0.9449
(0.0356)  (0.0034)  (0.0022)  (0.0031) (0.0017)
50 20 [26] (30,19%0) -0.0058 0.8827 0.9245 0.8945 0.9440
(0.0360)  (0.0021)  (0.0014)  (0.0019) (0.0011)
[27] (19*%0,30) -0.0095 0.8773 0.9218 0.8892 0.9423
(0.0411)  (0.0022)  (0.0014)  (0.002) (0.0011)
35 (28] (15,34*0) -0.0021 0.8920 0.9350 0.8950 0.9467
(0.0207)  (0.0019)  (0.0012)  (0.0019) (0.0010)
[29] (34*0,15) -0.0054 0.8920 0.9346 0.8980 0.9473
(0.0211)  (0.0019)  (0.0012)  (0.0018) (0.0010)
(30] (5,5,5,32*%0)  -0.0044 0.8898 0.9342 0.8962 0.9444
(0.0205)  (0.0020)  (0.0012)  (0.0019) (0.0011)
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Table 2: Bias, MSE™, Confidence levels and its SE* for MLE (k=3)
n m Scheme Scheme Bias and  Level and SE-MLE Level and SE-log(MLE)
No. MSE 90% 95% 90% 95%
5 2 [1] (3,0) -0.0492 0.7498 0.7796 0.8368 0.8927
(0.3704)  (0.0375)  (0.0344) 0.0273 (0.0192)
2] (0,3) -0.0535 0.7506 0.7858 0.8496 0.8980
(0.3822)  (0.0374)  (0.0337)  (0.0256) (0.0183)
3] (1,2) -0.0356 0.7606 0.7934 0.8535 0.9016
(0.3921)  (0.0364  (0.0328)  (0.0250) (0.0177)
4] (2,1) -0.0535 0.7549 0.7849 0.8443 0.8912
(0.3774)  (0.0370) (0.0338 (0.0263) (0.0194)
15 5 [5] (10, 4*0) -0.0265 0.8251 0.8630 0.8742 0.9228
(0.1503)  (0.0096)  (0.0079)  (0.0073) (0.0047)
[6] (4*0, 10) -0.0210 0.8300 0.8662 0.8787 0.9272
(0.1705)  (0.0094)  (0.0077)  (0.0071) (0.0045)
[7] (2.2,22,2) -0.0271  0.8284 0.8612 0.8767 0.9246
(0.1635)  (0.0095)  (0.0080)  (0.0072) (0.0046)
10 [8] (5,9%0) -0.0107 0.8658 0.9070 0.8922 0.9408
(0.0733)  (0.0077)  (0.0056)  (0.0064) (0.0037)
9] (9%0,5) -0.0103 0.8657 0.9024 0.8868 0.9396
(0.0794)  (0.0078  (0.0059)  (0.0067) (0.0038)
[10] (3,2, 8*%0) -0.0117 0.8685 0.9042 0.8905 0.9390
(0.0719)  (0.0076)  (0.0058)  (0.0065) (0.0038)
20 10 [11] (10, 9%0) -0.0136 0.8676 0.9055 0.8905 0.9426
(0.0720)  (0.0057)  (0.0043)  (0.0049) (0.0027)
[12] (9*0,10) -0.0120 0.8653 0.9043 0.8924 0.9421
(0.0818)  (0.0058)  (0.0043)  (0.0048) (0.0027)
25 10 [13] (15,9%0) -0.0151 0.8612 0.8983 0.8815 0.9325
(0.0756)  (0.0048)  (0.0037)  (0.0042) (0.0025)
[14] (9%0,15) -0.0098 0.8644 0.9023 0.8889 0.9385
(0.0859)  (0.0047)  (0.0035)  (0.0040) (0.0023)
[15] (5,5,5,7*0) -0.0126 0.8639 0.9013 0.8875 0.9359
(0.0764)  (0.0047)  (0.0036)  (0.0040) (0.0024)
15 [16] (10, 14*0) -0.0100 0.8714 0.9141 0.8881 0.9384
(0.0493)  (0.0045)  (0.0031)  (0.0040) (0.0023)
[17] (14*0,10) -0.0098 0.8755 0.9121 0.8903 0.9407
(0.0545)  (0.0044)  (0.0032)  (0.0039) (0.0022)
30 10 (18] (20, 9*0) -0.0139 0.8649 0.9041 0.8878 0.9385
(0.0737)  (0.0039)  (0.0029)  (0.0033) (0.0019)
[19] (9*0, 20) -0.0045 0.8666 0.9014 0.8877 0.9377
(0.0894)  (0.0039)  (0.0030)  (0.0033) (0.0019)
15 [20] (15, 14*0) -0.0104 0.8766 0.9156 0.8893 0.9419
(0.0493)  (0.0036)  (0.0026)  (0.0033) (0.0018)
[21] (14*0,15) -0.0091 0.8715 0.9137 0.8876 0.9379
(0.0563)  (0.0037)  (0.0026)  (0.0033) (0.0019)
[22] (5,5,5,12*%0)  -0.0110 0.8767 0.9158 0.8889 0.9419
(0.0497)  (0.0036)  (0.0026)  (0.0033) (0.0018)
20 (23] (10, 19*0) -0.0084 0.8789 0.9245 0.8937 0.9424
(0.0369)  (0.0035)  (0.0023)  (0.0032) (0.0018)
[24] (19*0,10) -0.0052 0.8813 0.9252 0.8942 0.9428
(0.0395)  (0.0035)  (0.0023)  (0.0032) (0.0018)
[25] (0,5,5,17%0)  -0.0043 0.8831 0.9257 0.8937 0.9437
(0.0378)  (0.0034)  (0.0023)  (0.0032) (0.0018)
50 20 [26] (30,19%0) -0.0052 0.8821 0.9243 0.8894 0.9426
(0.0375)  (0.0021)  (0.0014)  (0.0020) (0.0011)
[27] (19*%0,30) -0.0060 0.8839 0.9248 0.8955 0.9459
(0.0438)  (0.0021)  (0.0014)  (0.0019) (0.0010)
35 (28] (15,34*0) -0.0043 0.8865 0.9317 0.8919 0.9441
(0.0212)  (0.0020)  (0.0013)  (0.0019) (0.0011)
[29] (34*0,15) -0.0025 0.8944 0.9404 0.8998 0.9473
(0.0223)  (0.0019)  (0.0011)  (0.0018) (0.0010)
(30] (5,5,5,32*%0)  -0.0028 0.8896 0.9364 0.8965 0.9449
(0.0215)  (0.0020)  (0.0012)  (0.0019) (0.0010)
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Table 3: Bias, MSE™, Confidence levels and its SE* for MLE (k=5)
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n m Scheme Scheme Bias and Level and SE (MLE) Level and SE
(log(MLE))
No. MSE 90% 95% 90% 95%
5 2 [1] (3,0) -0.05431 0.7545 0.7878 0.8445 0.8924
(0.3776)  (0.0370)  (0.0334)  (0.0263) (0.0192)
2] (0,3) -0.0283 0.7489 0.7825 0.8444 0.8959
(0.4394)  (0.0376)  (0.0340)  (0.0263) (0.0187)
3] (1,2) -0.0329 0.7626 0.7932 0.8498 0.9024
(0.4076)  (0.0362)  (0.0328)  (0.0255) (0.0176)
[A] X)) 0.0372 07536 0.7861  0.8441 0.8948
(0.4153)  (0.0371)  (0.0336)  (0.0263) (0.0188)
15 5 [5] (10, 4*0) -0.0191 0.8306 0.8668 0.8755 0.9279
(0.1563)  (0.0094)  (0.0077)  (0.0073) (0.0045)
[6] (4*0, 10) -0.0097 0.8273 0.8608 0.8750 0.9271
(0.1875)  (0.0095)  (0.0080)  (0.0073) (0.0045)
[7] (2,2,2,2,2) -0.0211 0.8252 0.8570 0.8703 0.9209
(0.1758)  (0.0096)  (0.0082)  (0.0075) (0.0049)
10 8] (5,9%0) -0.0138 0.8668 0.9050 0.8928 0.9384
(0.0761)  (0.0077)  (0.0057)  (0.0064) (0.0039)
9] (9%0,5) -0.0107 0.8629 0.8959 0.8868 0.9375
(0.0842)  (0.0079)  (0.0062)  (0.0067) (0.0039)
[10] (3,2, 8%0) -0.0143 0.8562 0.8966 0.8827 0.9324
(0.0801)  (0.0082)  (0.0062)  (0.0069) (0.0042)
20 10 [11] (10, 9*0) -0.0128 0.8641 0.9033 0.8893 0.9378
(0.0783)  (0.0059)  (0.0044)  (0.0049) (0.0029)
[12] (9*0,10) -0.0093 0.8680 0.9027 0.8897 0.9413
(0.0870)  (0.0057)  (0.0044)  (0.0049) (0.0028)
25 10 [13] (15,9*0) -0.0134 0.8651 0.9032 0.8893 0.9365
(0.0777)  (0.0047)  (0.0035)  (0.0039) (0.0024)
[14] (9*0,15) -0.0133 0.8682 0.9025 0.8927 0.9419
(0.0870)  (0.0046)  (0.0035)  (0.0038) (0.0022)
[15] (5,5,5,7%0) -0.0079 0.8670 0.9058 0.8930 0.9400
(0.0797)  (0.0046)  (0.0034)  (0.0038) (0.0023)
15 [16] (10, 14*0) -0.0110 0.8777 0.9171 0.8914 0.9409
(0.0515)  (0.0043)  (0.0030)  (0.0039) (0.0022)
[17] (14*0,10) -0.0093 0.8750 0.9158 0.8923 0.9426
(0.0580)  (0.0044)  (0.0031)  (0.0038) (0.0022)
30 10 [18] (20, 9%0) -0.0138 0.8602 0.8968 0.8843 0.9362
(0.0791)  (0.0040)  (0.0031)  (0.0034) (0.0020)
[19] (9*0,20) -0.0064 0.8660 0.9018 0.8886 0.9375
(0.0920)  (0.0039)  (0.0030)  (0.0033) (0.0020)
15 [20] (15, 14*0) -0.0097 0.8782 0.9188 0.8932 0.9419
(0.0517)  (0.0036)  (0.0025)  (0.0032) (0.0018)
[21] (14*0,15) -0.0022 0.8819 0.9234 0.8991 0.9468
(0.0578)  (0.0035)  (0.0024)  (0.0030) (0.0017)
[22] (5,5,5,12*0) -0.0095 0.8808 0.9204 0.8950 0.9427
(0.0517)  (0.0035)  (0.0024)  (0.0031) (0.0018)
20 [23] (10, 19*0) -0.0066 0.8864 0.9239 0.8936 0.9458
(0.0389)  (0.0034)  (0.0023)  (0.0032) (0.0017)
[24] (19*0,10) -0.0071 0.8796 0.9226 0.8955 0.9445
(0.0424)  (0.0035)  (0.0024)  (0.0031) (0.0017)
[25] (0,5,5,17*%0) -0.0067 0.8841 0.9262 0.8961 0.9423
(0.0391)  (0.0034)  (0.0023)  (0.0031) (0.0018)
50 20 [26] (30,19%0) -0.0117 0.8801 0.9221 0.8947 0.9436
(0.0389)  (0.0021)  (0.0014)  (0.0019) 0.0011
[27] (19*0,30) -0.0057 0.8840 0.9238 0.8939 0.9455
(0.0447)  (0.0021)  (0.0014)  (0.0019) (0.0010)
35 [28] (15,34*0) -0.0059 0.8806 0.9316 0.8891 0.9434
(0.0228)  (0.0021)  (0.0013)  (0.0020) (0.0011)
[29] (34*0,15) -0.0030 0.8936 0.9378 0.8979 0.9468
(0.0242)  (0.0019)  (0.0012)  (0.0018) (0.0010)
[30] (5,5,5,32%0)  -0.0022 0.8887 0.9416 0.9035 0.9511
(0.0219)  (0.0020)  (0.0011)  (0.0017) (0.0009)
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Table 4: Bias, MSE™, Confidence levels and its SE* for R(t) (k=2)

n m Scheme Scheme Bias and Level and SE (MLE)

No. MSE 90% 95%

5002 1] (3,0) -0.1108  0.7909 0.8309
(0.0660)  (0.0331)  (0.0281)

2] (0,3) 0.1142  0.7909 0.8350

(0.0677)  (0.0331)  -0.0276

B (1,2) -0.1088°  0.7963 0.8391

(0.0657)  (0.0324)  (0.0270)

[] 2,1 0.1182  0.7861 0.8267

(0.0687)  (0.0336)  (0.0287)

15 5 5] (10, 450)  -0.0472  0.8634 0.9116
(0.0246)  (0.0079)  (0.0054)

[6] (4%0, 10) 0.0541  0.8580 0.9067

(0.0282)  (0.0081)  (0.0056)

[7] (22,222) -0.0499  0.8599 0.9077

(0.0270)  (0.0080)  (0.0056)

10 8] (5,9%0) 0.0229  0.8826 0.9372
(0.0108)  (0.0069)  (0.0039)

9] (9%0,5) -0.0260  0.8846 0.9308

(0.0117)  (0.0068)  (0.0043)

[10] (3,2,8%0)  -0.0226  0.8859 0.9337

(0.0108)  (0.0067)  (0.0041)

20 10 [11] (10, 9%0)  -0.0260  0.8811 0.9316
(0.0113)  (0.0052)  (0.0032)

[12] (9%0,10)  -0.0276  0.8884 0.9380

(0.0120)  (0.0050)  (0.0029)

25 10  [19] (15,9%0)  -0.0239  0.8864 0.9359
(0.0109)  (0.0040)  (0.0024)

[14] (9%0,15)  -0.0279  0.8795 0.9312

(0.0130)  (0.0042)  (0.0026)

[15] (5,5,5,770)  -0.0237  0.8847  0.9345

(0.0110)  (0.0041)  (0.0024)

15 [106] (10, 14%0)  -0.0157  0.8886 0.9409
(0.0069)  (0.0040)  (0.0022)

[17] (14%0,10)  -0.0152 _ 0.8943 0.9425

(0.0071)  (0.0038)  (0.0022)

30 10 [18] (20, 9%0)  -0.0269  0.8783 0.9258
(0.0116)  (0.0036)  (0.0023)

[19] (9%0,20)  -0.0261  0.8726 0.9253

(0.0136)  (0.0037)  (0.0023)

15 [20] (15, 14¥0)  -0.0158  0.8897  0.9394
(0.0069)  (0.0033)  (0.0019)

[21] (14%0,15)  -0.0191  0.8841 0.9373

(0.0081)  (0.0034)  (0.0020)
22] (5,5,5,12%0)  -0.0155  0.8921 0.9422
(0.0069)  (0.0032)  (0.0018)

20 [23] (10, 19%0) _ -0.0107 _ 0.8969 0.9454
(0.0049)  (0.0031)  (0.0017)
[24] (19%0,10)  -0.0142  0.8935 0.9431

(0.0054)  (0.0032)  (0.0018)
25 (0,5,5,17%0) -0.0133  0.8944 0.9457
(0.0050)  (0.0031)  (0.0017)

50 20  [26] (30,19¥0)  -0.0119  0.8903 0.9410
(0.0051)  (0.0020)  (0.0011)

[27] (19¥0,30)  -0.0159  0.8906 0.9390
(0.0060)  (0.0019)  (0.0011)

35 28] (15,34%0)  -0.0069  0.8969 0.9446
(0.0028)  (0.0018)  (0.0010)

[29] (34%0,15)  -0.0076  0.8934 0.9479

(0.0029)  (0.0019)  (0.0010)
[B0]  (5,5,5,32%0) -0.0069  0.8924 0.9440
(0.0028)  (0.0019)  (0.0011)
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Table 5: Bias, MSE™, Confidence levels and its SE* for R(t) (k=3)

n m Scheme Scheme Bias and Level and SE (MLE)

No. MSE 90% 95%

502 1] (3,0) 0.0947  0.7412 0.7829
(0.0570)  (0.0384)  (0.0340)

2] (0,3) -0.0880  0.7470 0.7823

(0.0578)  (0.0378)  (0.0341)

B (1,2) -0.0886  0.7510 0.7878

(0.0570)  (0.0374)  (0.0334)

[] 2.1 -0.0896  0.7463 0.7854

(0.0570)  (0.0379)  (0.0337)

15 5 5] (10, 4%0)  -0.0435  0.8423 0.8914
(0.0254)  (0.0089)  (0.0065)

[6] (4%0, 10)  -0.0455  0.8302 0.8784

(0.0287)  (0.0094)  (0.0071)

[7] (22222) -00456  0.8334 0.8828

(0.0275)  (0.0093)  (0.0069)

10 [8] (5,9%0) 0.0247  0.8723 0.9193
(0.0128)  (0.0074)  (0.0049)

[9] (9%0,5) -0.0247  0.8706 0.9166

(0.0136)  (0.0075)  (0.0051)

[10] (3.2,8%0)  -0.0228  0.8657 0.9189

(0.0129)  (0.0078)  (0.0050)

20 10 [11] (10, 9%0)  -0.0229  0.8650 0.9164
(0.0129)  (0.0058)  (0.0038)

[12] (9%0,10) 0.0244  0.8691 0.9199

(0.0140)  (0.0057)  (0.0037)

25 10 [19] (15,9%0) 0.0234  0.8638 0.9140
(0.0130)  (0.0047)  (0.0031)

[14] (9%0,15) 0.0244  0.8675 0.9146

(0.0146)  (0.0046)  (0.0031)

[15] (5,5,5,770)  -0.0228  0.8703 0.9161

(0.0131)  (0.0045  (0.0031)

15 [16] (10, 14¥0) _ -0.0149  0.8772 0.9282
(0.0085)  (0.0043)  (0.0027)

[17] (14%0,10) _ -0.0174  0.8764 0.9290

(0.0093)  (0.0043)  nn(0.0026)

30 10 (18] (20, 9%0)  -0.0240  0.8693 0.9219
(0.0127)  (0.0038)  (0.0024)

[19] (9%0,20) 0.0249  0.8606 0.9133

(0.0151)  (0.0040)  (0.0026)

15 [20] (15, 14%0)  -0.015 _ 0.8795 0.9286
(0.0085)  (0.0035)  (0.0022)

21] (14%0,15)  -0.0157 _ 0.8836 0.9325

(0.0092)  (0.0034)  (0.0021)
22] (5,5,5,12%0) -0.0166  0.8776 0.9279
(0.0087)  (0.0036)  (0.0022)

20 [29] (10, 19%0)  -0.0115 _ 0.8863 0.9389
(0.0062)  (0.0034)  (0.0019)
[24] (19%0,10)  -0.0129  0.8887 0.9385

(0.0066)  (0.0033)  (0.0019)
25]  (0,5,51770) -0.0127  0.8783 0.9295
(0.0064)  (0.0036)  (0.0022)

50 20  [26] (30,19%0)  -0.0106  0.8860 0.9359
(0.0064)  (0.0020)  (0.0012)

27] (19%0,30)  -0.0127 _ 0.8809 0.9323
(0.0074)  (0.0021)  (0.0013)

35 [29] (15,34%0)  -0.0078  0.8872 0.9387
(0.0036)  (0.0020)  (0.0012)

[29] (34%0,15)  -0.0072  0.8872 0.9408

(0.0038)  (0.0020)  (0.0011)
B0]  (5,5,5,32%0) -0.0065  0.8909 0.9392
(0.0035)  (0.0019)  (0.0011)
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Table 6: Bias, MSE™, Confidence levels and its SE* for R(t) (k=5)

n m Scheme Scheme Bias and Level and SE (MLE)

No. MSE 90% 95%

5002 1] (3,0) -0.0348  0.6993 0.7390
(0.0340)  (0.0421)  (0.0390

2] (0,3) 20.0363  0.7000 0.7319

(0.0347)  (0.0420)  (0.0392)

B (1,2) -0.0341  0.7020 0.7344

(0.0349)  (0.0418)  (0.0390)

[] .1) 0.0341  0.7028 0.7364

(0.0343)  (0.0418)  (0.0388)

15 5 5] (10, 450)  -0.0203  0.8093 0.8515
(0.0176)  (0.0103)  (0.0084)

[6] (4%0,10)  -0.0165  0.8024 0.8437

(0.0197)  (0.0106)  (0.0088)

[7] (22222) -00193  0.7933 0.8396

(0.0198)  (0.0109)  (0.0090)

10 8] (5,9%0) -0.0126  0.8493 0.8907
(0.0100)  (0.0085)  (0.0065)

9] (9%0,5) -0.0133 0.8360 0.8808

(0.0109)  (0.0091)  (0.0070)

[10] (3.2,8%0)  -0.0117  0.8493 0.8956

(0.0101)  (0.0085)  (0.0062)

20 10 [11] (10, 9%0)  -0.0124  0.8436 0.8871
(0.0104)  (0.0066)  (0.0050)

[12] (9%0,10) -0.0107  0.8366 0.8852

(0.0115)  (0.0068)  (0.0051)

25 10  [19] (15,9%0) -0.0133 0.8450 0.8931
(0.0102)  (0.0052)  (0.0038)

[14] (9%0,15) -0.0116  0.8465 0.8919

(0.0112)  (0.0052)  (0.0039)

[15] (5,5,5,770)  -0.0123  0.8414 0.8900

(0.0105)  (0.0053)  (0.0039)

15 [106] (10, 14%0)  -0.0089  0.8705 0.9134
(0.0069)  (0.0045)  (0.0032)

[17] (14%0,10)  -0.0092  0.8586 0.9025

(0.0078)  (0.0049)  (0.0035)

30 10 [18] (20, 9%0)  -0.0120  0.8492 0.8970
(0.0101)  (0.0043)  (0.0031)

[19] (9%0,20) -0.0106  0.8432 0.8864

(0.0116)  (0.0044)  (0.0034)

15 [20] (15, 14¥0)  -0.0095  0.8617 0.9108
(0.0070)  (0.0040)  (0.0027)

[21] (14%0,15)  -0.0087  0.8570 0.9054

0.0079  (0.0041)  (0.0029)
22] (5,5,5,12%0) -0.0069  0.8596 0.9079
(0.0072)  (0.0040)  (0.0028)

20 [23] (10, 19%0) _ -0.0063  0.8729 0.9186
(0.0054)  (0.0037)  (0.0025)
[24] (19%0,10)  -0.0069 _ 0.8705 0.9182

(0.0058)  (0.0038)  (0.0025)
25 (0,5,5,17%0) -0.0065  0.8717 0.9168
(0.0055)  (0.0037)  (0.0025)

50 20  [26] (30,19%0)  -0.0077  0.8712 0.9178
(0.0054)  (0.0022)  (0.0015)

[27] (1970,30)  -0.0069  0.8663 0.9142
(0.0063)  (0.0023)  (0.0016)

35 28] (15,34%0)  -0.0045  0.8849 0.9355
(0.0031)  (0.0020)  (0.0012)

[29] (34%0,15)  -0.0046  0.8855 0.9315

(0.0033)  (0.0020)  (0.0013)
[B0]  (5,5,5,32%0) -0.0035  0.8828 0.9311
(0.0034)  (0.0020)  (0.0013)
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Table 7: Simulated mean and estimated expectation of the approximate - expectation
tolerance interval for k=2

n m Scheme Scheme Simulated Mean Estimated Expectation
No. 90% 95% 99% 90% 95% 99%

1] ) 0.7630 0.8175 0.8874 0.7916 0.8792 0.9685
2] ) 0.7612 0.8151 0.8843 0.7835 0.8738 0.9669
3] ) 0.7619 0.8163 0.8860 0.7851 0.8749 0.9672
4] ) 0.7628 0.8172 0.8869 0.7879 0.8767 0.9677
15 5  [5] (10, 4%0)  0.8430 0.8975 0.9564 0.8584 0.9228 0.9817
6] (4¥0,10)  0.8392 0.8935 0.9530 0.8518 0.9185 0.9804
[7] (2,2,2.2,2) 0.8407 0.8949 0.9542 0.8540 0.9199 0.9809
8] (5,9%0)  0.8717 0.9247 0.9758 0.8798 0.9368 0.9860
[9] (9%0,5)  0.8700 0.9232 0.9748 0.8786 0.936 0.9857

10

[10] (3,2, 8%0) 0.8710 0.9242 0.9755 0.8797 0.9367 0.9860

20 10 [11] (10, 9%0)  0.8716 0.9246 0.9757 0.8797 0.9367 0.9860
[12] (9%0,10)  0.8704 0.9232 0.9746 0.8774 0.9352 0.9855

25 10  [13] (15,9%0)  0.8706 0.9240 0.9755 0.8796 0.9367 0.9859
[14] (9%0,15)  0.8668 0.9203 0.9729 0.8765 0.9347 0.9853

[15]  (5,5,5,7%0) 0.8711 0.9240 0.9752 0.8791 0.9364 0.9859

15 [16] (10, 14*0) 0.8806 0.9330 0.9810 0.8865 0.9412 0.9873
[17] (14¥0,10)  0.8787 0.9313 0.9801 0.8854 0.9405 0.9871

30 10 [18] (20, 9%0)  0.8721 0.9248 0.9756 0.8796 0.9366 0.9859
[19] (9%0,20)  0.8676 0.9206 0.9729 0.8759 0.9342 0.9852

15 [20] (15, 14*0) 0.8803 0.9326 0.9807 0.8865 0.9412 0.9873
[21] (14%0,15)  0.8789 0.9313 0.9799 0.8849 0.9401 0.9870

[22]  (5,5,5,12%0) 0.8811 0.9333 0.9811 0.8863 0.9411 0.9873

20 [23] (10, 19%0) 0.8862 0.9378 0.9836 0.8899 0.9434 0.9880
[24] (19%0,10)  0.8851 0.9370 0.9832 0.8893 0.9430 0.9879

[25]  (0,5,5,17%0) 0.8855 0.9373 0.9834 0.8898 0.9434 0.9880

50 20 [26] (30,19%0)  0.8855 0.9373 0.9834 0.8899 0.9434 0.9880
27] (19%0,30)  0.8826 0.9348 0.9821 0.8882 0.9423 0.9877

35 [28] (15,34%0)  0.8920 0.9430 0.9865 0.8943 0.9462 0.9889
[29] (34%0,15)  0.8909 0.9422 0.9862 0.8939 0.9460 0.9888

[30]  (5,5,5,32%0) 0.8914 0.9426 0.9863 0.8942 0.9462 0.9889
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Table 8: Simulated mean and estimated expectation of the approximate - expectation
tolerance interval for k=3

n m Scheme Scheme Simulated Mean Estimated Expectation
No. 90% 95% 99% 90% 95% 99%

[1] ) 0.7696 0.8229 0.8900 0.7898 0.8772 0.9674
2] ) 0.7648 0.8184 0.8865 0.7807 0.8712 0.9655
[3] ) 0.7713 0.8244 0.8915 0.7822 0.8722 0.9658
[4] ) 0.7671 0.8209 0.8890 0.7849 0.8740 0.9664
15 5 [5] (10, 4*0)  0.8423 0.8965 0.9550 0.8577 0.9221 0.9813
[6] (4*0, 10)  0.8386 0.8926 0.9516 0.8508 0.9175 0.9799
[7] (2,2,2,22) 0.8381 0.8923 0.9516 0.8528 0.9188 0.9803
[8] (5,9%0) 0.8724 0.9250 0.9755 0.8794 0.9364 0.9858
[9] (9%0,5) 0.8705 0.9232 0.9743 0.8778 0.9353 0.9854

10

[10] (3,2, 8%0) 0.8724 0.9250 0.9754 0.8793 0.9363 0.9858

20 10 [11] (10, 9%0)  0.8718 0.9247 0.9754 0.8793 0.9364 0.9858
[12] (9%0,10)  0.8692 0.9221 0.9735 0.8766 0.9346 0.9852

25 10  [13] (15,9%0)  0.8701 0.9231 0.9744 0.8793 0.9363 0.9857
[14] (9%0,15)  0.8687 0.9214 0.9730 0.8759 0.9341 0.9850

[15]  (5,5,5,7%0) 0.8707 0.9235 0.9745 0.8788 0.936 0.9856

15  [16] (10, 14*0) 0.8803 0.9325 0.9803 0.8863 0.9409 0.9872
[17] (14*0,10)  0.8787 0.9310 0.9794 0.8849 0.9400 0.9869

30 10 [18] (20, 9%0)  0.8711 0.9240 0.9749 0.8792 0.9363 0.9857
[19] (9%0,20)  0.8694 0.9218 0.9730 0.8753 0.9337 0.9849

15 [20] (15, 14*0) 0.8802 0.9324 0.9803 0.8863 0.9409 0.9872
[21] (14%0,15)  0.8784 0.9307 0.9792 0.8844 0.9397 0.9868

22]  (5,5,5,12%0) 0.8800 0.9323 0.9803 0.8861 0.9408 0.9871

20 [23]  (10,19%0) 0.8851 0.9369 0.9830 0.8898 0.9432 0.9879
[24] (19%0,10)  0.8852 0.9368 0.9828 0.8889 0.9427 0.9877

[25]  (0,5,5,17%0) 0.8859 0.9375 0.9832 0.8897 0.9432 0.9879

50 20 [26] (30,19%0)  0.8857 0.9373 0.9831 0.8897 0.9432 0.9879
[27] (19%0,30)  0.8835 0.9353 0.9820 0.8879 0.9420 0.9875

35 [28] (15,34%0)  0.8916 0.9426 0.9862 0.8942 0.9461 0.9888
[29] (34*0,15)  0.8917 0.9427 0.9862 0.8937 0.9458 0.9887

[30]  (5,5,5,32%0) 0.8919 0.9428 0.9863 0.8941 0.9461 0.9888
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Table 9: Simulated mean and estimated expectation of the approximate - expectation
tolerance interval for k=>5

n m Scheme Scheme Simulated Mean Estimated Expectation
No. 90% 95% 99% 90% 95% 99%

[1] ) 0.7710 0.8250 0.8919 0.7884 0.8759 0.9665
2] ) 0.7688 0.8220 0.8888 0.7799 0.8702 0.9647
[3] ) 0.7735 0.8267 0.8928 0.7811 0.8710 0.9650
[4] ) 0.7706  0.824 0.8907 0.7834 0.8726 0.9655
15 5 [5] (10, 4*0)  0.8459 0.8997 0.9568 0.8569 0.9214 0.9809
[6] (4*0, 10)  0.8414 0.8950 0.9528 0.8508 0.9173 0.9797
[7] (2,2,2,22) 0.8399 0.8939 0.9521 0.8523 0.9183 0.9800
[8] (5,9%0) 0.8722 0.9250 0.9754 0.8789 0.9360 0.9856
[9] (9%0,5) 0.8704 0.9231 0.9738 0.8772 0.9348 0.9852

10

[10] (3,2, 8%0) 0.8706 0.9235 0.9744 0.8789 0.9360 0.9856

20 10 [11] (10, 9%0)  0.8715 0.9242 0.9747 0.8789 0.9360 0.9856
[12] (9%0,10)  0.8704 0.9231 0.9738 0.8762 0.9342 0.9850

25 10  [13] (15,9%0)  0.8715 0.9243 0.9748 0.8788 0.9359 0.9855
[14] (9%0,15)  0.8689 0.9219 0.9732 0.8757 0.9339 0.9849

[15]  (5,5,5,7%0) 0.8728 0.9253 0.9753 0.8784 0.9357 0.9855

15 [16] (10, 14*0) 0.8806 0.9328 0.9804 0.8860 0.9407 0.9871
17] (14%0,10)  0.8792 0.9314 0.9795 0.8845 0.9397 0.9867

30 10 [18] (20, 9%0)  0.8710 0.9238 0.9745 0.8788 0.9359 0.9855
[19] (9%0,20)  0.8699 0.9225 0.9734 0.8753 0.9336 0.9848

15 [20] (15, 14*0) 0.8808 0.9329 0.9804 0.8859 0.9407 0.9870
[21] (14%0,15)  0.8813 0.9330 0.9802 0.8841 0.9395 0.9867

22]  (5,5,5,12%0) 0.8810 0.9331 0.9806 0.8858 0.9406 0.9870

20 [23] (10, 19%0) 0.8858 0.9374 0.9831 0.8895 0.9430 0.9878
[24] (19%0,10)  0.8846 0.9363 0.9824 0.8886 0.9424 0.9876

[25]  (0,5,5,17%0) 0.8857 0.9373 0.9831 0.8894 0.9430 0.9878

50 20 [26] (30,19%0)  0.8843 0.9363 0.9826 0.8895 0.9430 0.9878
27] (19%0,30)  0.8843 0.9360 0.9822 0.8878 0.9419 0.9874

35 [28] (15,34%0)  0.8911 0.9423 0.9860 0.8940 0.9460 0.9887
[29] (34%0,15)  0.8915 0.9425 0.9860 0.8935 0.9457 0.9886

[30]  (5,5,5,32%0) 0.8924 0.9432 0.9864 0.8940 0.9460 0.9887
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6 Real Data Application

Consider following real data which represents failure times, for a specific type of electrical
insulation that was subjected to a continuously increasing voltage stress given by Lawless
(2011).

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9.

According to Balakrishnan and Chan (1992), half-logistic distribution satisfactory fit
to this data. We consider this data as outcome for lifetime for two unit series system.
We use this data with three censoring schemes as (2,0,0,0), (0,0,0,2) and (1,1,0,0). We
obtain reliability estimate for time period t=1. MLE of reliability estimate and its MSE
is given in Table 10. We construct confidence interval based on MLE. These 90% and
95% confidence intervals and their lengths are presented in same Table.

Table 10: Bias, MSE*, Confidence intervals and its length for R(t)

n m Scheme Bias and 90% C. I. and 95% C. I. and

MSE its length its length
6 4 (2,0,0,0) -0.0084 (0.9689, 0.9970) (0.9665, 0.9970)
(0.000002) 0.0281 0.0305
(0,0,0,2) -0.0011 (0.9811, 0.9969) (0.9796, 0.9984)
(0.000075) 0.0158 0.0188
(1,1,0,0) -0.0049 (0.9747, 0.9957)  (0.9737, 0.9977)
(0.00024) 0.021 0.024

Method of MLE using EM algorithm and confidence interval based on MLE of relia-
bility function gives best performance for real data. Bias is small in case of conventional
censoring scheme whereas MSE is small in case of progressive censoring scheme. Length
of confidence interval is small in case of conventional censoring scheme.

7 Conclusion and Discussion

Simulation study results indicate that, the bias, MSE of the MLE and reliability estimate
decrease with increase in sample size n and increase in the effective sample size m.
Same trend is observed in case of SE of confidence level of confidence intervals. The
MSE is relatively smaller for progressive Type-II censoring scheme as compared with
conventional Type-II censoring scheme. Confidence levels of confidence interval using
log-transformed MLE are better than the confidence levels of confidence interval using
MLE. SE for confidence levels of confidence intervals using log-transformed MLE is
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smaller than SE for confidence levels of confidence intervals using MLE. Confidence
levels of confidence intervals of reliability function are better for large sample size.

[-expectation tolerance interval shows good results. As sample size n and effective
sample size m increases the estimated expectation and simulated mean approaches to
nominal coverage. Estimated expectation and simulated mean have better coverage
for progressive Type-II censoring scheme than conventional Type-II censoring scheme,
for small sample size. As number of units in system (k) increases the simulated mean
decreases, but estimated expectation increases.

EM algorithm method works well for small sample size and for smaller effective sam-
ple size. Overall both conventional Type-II censoring scheme and progressive Type-11
censoring scheme give better results. The MSE of progressive Type-II censoring method
is smaller than the MSE of conventional censoring method, while bias, confidence in-
terval and (-expectation tolerance interval perform equally good for both the methods.
The results reported in this paper can also be applied when k is replaced by any known
positive real number.
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In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is
provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family
of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the scale parameter
based on progressively Type-II censored sample are obtained. A B-expectation tolerance interval for the
lifetime of the system is obtained. As a member of the scale family, half-logistic distribution is considered
and the performance of the MLE, confidence intervals and tolerance intervals are studied using simulation.

Keywords: progressively Type-II censoring; EM algorithm; MLE; confidence interval; coverage proba-
bility; B-expectation tolerance interval; half-logistic distribution

Mathematics Subject Classifications: 62N02; 62F10; 62F25

1. Introduction

In life testing experiments, certain units are put on test and we observe failure time for each of
these units. Sometimes it is impossible to observe failure times of all the units or we have to
terminate the experiment at some specified time. In such cases, failure times for some of the
units may not be observed. The unobserved failure time data are called censored data. Broadly,
censoring is classified into two types: Type-I and Type-II censoring. Type-I censoring depends
on time. An experiment continues up to a pre-determined time 7'. Units having failure time after
time T are not observed. Here, failure time will be known only if it is exactly less than 7. For
example, if ‘n’ units are placed on test and the test is terminated at time 7', the failure times will
be known only for those units that fail before time 7. In Type-I censoring, the number of exact
failure times observed is random.

Type-1II censoring scheme is often used in life testing experiment. Only m units in a random
sample of size n (m < n) are observed. Progressive Type-II censoring is a generalization of Type-II
censoring. In progressive censoring scheme, the number ‘m’ and Ry, R», . . ., R, are fixed prior to
the testand ) i | R; = n — m. At the first failure, R, units are randomly removed from remaining
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n — 1 units. At the second failure, R, units are randomly removed from remaining n — 2 — R
units and so on. At the mth failure, all remaining R, units are removed. Here, we observe failure
time of ‘m’ units and remaining n — m units are removed at different stages of an experiment. In
conventional Type-II censoring scheme Ry = R, = ---R,,_; = 0 and R,, = n — m. In this paper,
the progressive Type-II censoring scheme is considered.

Many authors studied progressive Type-II censoring scheme for various lifetime distributions.
Cohen [1] introduced progressive Type-II censoring. Mann [2,3] considered the Weibull distribu-
tion with progressive censoring. Balakrishnan et al. [4—6] discussed inference for half-logistic,
Gaussian and extreme value distribution under progressive Type-II censoring scheme, respectively.
Ng [7] studied parameter estimation for the modified Weibull distribution under progressively
Type-II censoring.

Balakrishnan and Aggarwala [8] described details about progressive censoring. Balakrishnan
[9] studied various distributions and inferential methods for progressively censored data. Pradhan
[10] considered point and interval estimation of a k-unit parallel system based on progressive
Type-1II censoring scheme with exponential distribution as the lifetime distribution of each unit.
Kim and Han [11] discussed half-logistic distribution for Type-II progressively censored sample.
Recently Iliopoulos and Balakrishnan [12] studied likelihood inference for Laplace distribution
based on progressively Type-II censored sample.

Dempster et al. [13] introduced the expectation maximization (EM) algorithm. They presented
maximum likelihood estimation for incomplete data. Mclachlan and Krishnan [14] introduced
more details about the EM algorithm. Little and Rubin [15] discussed EM algorithm for exponen-
tial family of distributions. Pradhan and Kundu [16] used the EM algorithm to estimate parameters
of generalized exponential distribution under progressive Type-II censoring scheme. Ng et al. [17]
used the EM algorithm to estimate parameters of lognormal and Weibull distributions under the
Type-1II censoring scheme. In this paper, the EM algorithm is used for the estimation of the param-
eters of a k-unit parallel system based on the progressive Type-II censoring scheme when lifetime
distribution of each unit belongs to the scale family.

Parameter estimation is based on the lifetimes of the system. We assume that # units are put on
test and failure times of ) ;- | R; = n — m units are censored. Failure times of these censored units
are unknown. These data are considered as missing and the EM algorithm is used to compute the
maximum likelihood estimator (MLE). We used idea of missing information principle of Louis
[18]. Asymptotic normal distribution of the MLE is used to construct confidence interval for the
scale parameter. We also discussed tolerance interval for the lifetime of system, on the lines of
Kumbhar and Shirke [19].

In Section 2, we introduced the model and obtained the MLE for the scale parameter. We
also provided an expression for Fisher information. Asymptotic confidence interval for the scale
parameter is discussed in the same section. Section 3 provides B-expectation tolerance interval
for the lifetime of a k-unit parallel system based on progressively censored data. In Section 4,
the half-logistic distribution is considered as a member of the scale family. The MLE, confidence
intervals and the tolerance intervals are studied. The performance of the MLE and confidence
intervals for the scale parameter of half-logistic distribution is investigated using simulations.
Results of the simulation study have been reported in Section 5. Conclusions are presented in
Section 6.

2. Model and estimation of the scale parameter

Let G, be a scale family of lifetime distributions, where X is the parameter of interest. Consider
k-unit parallel system with independently and identically distributed units having lifetimes
X1,Xa, ..., X, That is X; is the lifetime of the ith unit having cumulative density function (cdf)
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G(x;/)). Lifetime of system is X = Max.(X},X>, ..., Xx). The cdf of X is

X\ Tk
F(x;0) = [G(Xﬂ , A>0, x>0.
The probability density function (pdf) of X is

ren="5 (D] 250 x=0
where g(-) is the pdf of X; when A = 1.

2.1. Maximum likelihood estimation

Suppose n k-unit parallel systems are under test and we observe failure times of m systems under
progressive Type-II censoring. Let (R, R», . . ., R;,) be a progressive censoring scheme.
The likelihood function for the observed data is

L) = C[ [f@as M = Fxg: MI%,

i=1

m—1 J
whereC:nl_[ (n—j—ZRi).
i=1

j=1

L) = H ()] P -[e (]

R;

Suppose x(1y, X(2), - - - » X(m 15 the observed data and z1, 22, . . ., 2, is the censored data. We note
that z; is a vector with R; elements, which is not observable for i = 1,2,...,m. The censored
data Z = (z1,22,...,%n) can be considered as the missing data. X = (x(1),X2), - - . » Xom)) 15 the

observed data. W = (X, Z) is the complete data set. Then complete log-likelihood function is

L. _nlog(k)—nlog(x)Jerog[ ( )] (k—l)Zlog[ ( )]
TS els (D] k-0 E el ()] o

i=1 j=1

In order to obtain the MLE of A, we use the EM algorithm [13]. For the E step in the EM
algorithm, we take expectation of Z;. The derivative of L. with respect to A is taken for the M
step, where

dL. — n 1 xg/h) k=1 ixiG’(xi/k) 1

i Ria(x;, k, 1°)

dv a2 gu/n) 3 Gu/d Ei=1
k—1) &
- ZRib(xi,k,/\o), )
i=1

where a(x;, k, %) =

£ (Z,-,»g’(Z,»,/)»)) _ /oo ¢ (3) f@zn
e ) ") S(E) 1= Fown
ZijG’(Z—"f/k)> = /Oo G (5 f&@h)

dz.
G(Zij/») G(%) 1—=F(n) -

and b(x;, k, 1°) = E (
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To obtain the solution A!, we have to solve the equation dL./dA = 0. But the closed form
solution does not exist for this equation. Therefore, we used the Newton—Raphson method and
computed A'. Using this 1!, we computed a(x;, k, A') and b(x;, k, A!). This ended the M-step. We
continued this procedure until convergence took place.

In the Newton—Raphson method, we have to choose the initial value of A. Here, we used least-
square estimate of A as an initial value. Ng [7] discussed estimation of model parameters of the
modified Weibull distribution based on progressively Type-II censored data where the empirical
distribution function is computed as [20]

Fg) =1-[]a-pp.
j=1
1
n—>Y% R —j+1

The estimate of the parameters can be obtained by the least-square fit of simple linear regression

with p; = forj=1,2,...,m.

1
yi = ﬂX(i) with }3 = —x.

i Fi(xon) + Fi ()
Vi )

:| fori=1,2,...,m.

F(xq) =0.
The least-square estimate of X is given by

m 2
> i X
~m .
Zi:l X(i)Yi

Using this %, we obtained the MLE of A by the Newton—Raphson method.

A=—

2.2. Fisher information

According to Louis [18], the observed Fisher information is given by
observed information = complete information — missing information. That is I,(X) = I,,(A) —
L,x (1), where

complete information = I, (1) = —E[dzL/dkz] and
L is the log-likelihood function based on all n observations. We obtain /,,(A) and I, (1) in
the following.

Now,
L = nlog(k) — nlog()) + anlog [g (%)] + k=1 Xn:bg [G (%)] )
i=1 =1
and

n

db _ n 1 nxglta/a) (k—l)zxiG’(xi/k)
A e ) 22 G(xi/A)

i=1
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eL_n 1 ix?g(x,-/m”(x,-/x)—x%[g’(x,-/x)]z+2Axig<xi/x>g’<xi/x>
daz Az ¢ P

- [gCa/M)?

(k= 1) &= 260/ G (x/h) — 220G (/I + 206G (/)G (x/h)
o L [Glu/m P '

i=1

Complete information is given by

. n 1 « ng(Xi/)»)g”(Xi/)») - X,?[g/(Xi/)»)]2 +2AX;g(Xi/M) g (Xi/ M)
0= Lt [ e (%)

(k—1) ¢ X?G(X;i/MG"(Xi /1) — X7 [G'(X; /M) + 22X:G(X; /MG (Xi /1)
Y ZE[ 2 i| )
[GXi/M)]

i=1

Missing information is given by

moo m R d?log(f(Z;1Xi, 1))
Iwix(A) = ;Rilév)\x()‘) =- ZZEle |: = dkzj i| ’

i=1 j=1

Consider

Fln) /g (a/4) [Gey/m]
1= FGh) L= [Gai/mIE

fax(Zij|Xi, A) =

Therefore,

oar =tk g sl ()]« e[ ()] we - ()] |

dlogf _ 17 () *k—D5G/m)  kilGai/M 1 G i/A)
v 22 (%) 22G(z/0) A1 = [Gx/M)]Y

and

d*logf 1 758(z5i/ Mg @/ A) — 2518 2/ MY + 202182/ Mg (zij/*)

a2 T2 Mg (z/ M)
N (k — 1){Z§G(Zij/)\)G”(zij//\) - z,~2,-[G’(Zij/)»)]2 + 242;;G(z; /M) G (z; / M)}
MGz /MT?

n ko {1 =[G/ MG /MG (/MG i/ 4) + (k = DIG (/M)
AL =[G/ M
n GO/ MG i/ M + 22k [ GO /MG (/M1 =[G/ 2)1)
AL =[G/ M2 '
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Hence, missing information is

m m R;
i ’ d*log(f (Z;1Xi, 1))
Y Rilyy () =->"> EZ|X[ g(fdkz-’ ]

i=1 i=1 j=1

Iy ix (A)

n—m
)LZ
1 i & { . [Z,%g(zg/Mg”(zij/A) — 228 (Zi/ M) + zxz,»jg(zij/Mg/(zij/x)]

M s [2(Z; /)1

Z;G(Zi/ MG (Zj /M) — 751G (Z /M) + 20Z;;G(Zii /MG (Zi/ 1)
+ (k — DE
[G(Z;/MP

N ka2 {1 — [G i /MIHG (/MG (i /M) G (5 /1) + (k — DIG (xi/M)]%}
{1 — [G(xi/M)]K)?
kzxZ[G(x,/x)Fk 2[G' (i /M) + 20k [G(xi /)T G (i /){1 — [Gxi /)]
{1 = [G(xi/ M} } '

®)

By using expressions in Equations (4) and (5), we obtained observed Fisher information.

2.3. Confidence intervals

Using asymptotic normal distribution of the MLE, confidence interval for X is constructed. Let A
be the MLE of A and 6%(%,,) = 1/1(A,) be the estimated variance of A,,. Therefore, 100(1 — «)%
asymptotic confidence interval for A is given by

(in — Ta/2 v 62(241)’ in + Ta/2 V 82(5‘n)) . (6)

where 7, is the upper 100(ct/2)th percentile of the standard normal distribution.
Meeker and Escobar [20] reported that the asymptotic confidence interval for A can be
computed using log(A,). An approximate 100(1 — «)% confidence interval for log(}) is

<log(in) —ra/g,/62(log()1,,)),log():,,) +ta/2,/&2(log(in))>, where &2(10g(3»,1)) is the esti-

mated variance of log(k ), which is approximated by az(log()\n)) ~ oz(k )/k Hence, an
approximate 100(1 — «)% confidence interval for A is

(ine<_ m/z{'@> ine(mn@)) ' -

s

3. Tolerance intervals

Kumbhar and Shirke [19] derived the expression for B-expectation tolerance interval for the
lifetime distribution of a k-unit parallel system when the lifetime distribution of each unit is
exponential. They investigated the performance of the tolerance interval based on complete data.
Pradhan [10] studied the performance of the tolerance interval based on progressively Type-II
censored data from the exponential distribution. The performance of the tolerance interval based
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on progressively Type-II censored data for the scale family of distributions is studied. Let Ig(X)
be the lower quantile of order 8 of the distribution function F (x; A). Then, we have

ls(A) = 2G~1(B'5).
Thus, an upper S-expectation tolerance interval for F(x; A) is obtained by
Ig = (0,1g(1)).
The maximum likelihood estimate of /g (1) is given by
I () = 3G (BH)
yielding an approximate S-expectation tolerance interval
Iy = (0.15(hn)).

The expectation of 1 s can be obtained approximately using the approach suggested by Atwood
[21] and is given as

. ~ . Fpol(WF
ELF Uy )]~ f — 05Fno™ () + -7 200 ®)
10
here  F ad F oF F 3’F 3’F
\%% = -, = > = 5 = 5
T T T T T axans T T a2

k—1 X
)] 6 (3)
A

k=2 X\ , /X L (X x X x

)] e (G)e (5) +x-ne (7)(3) +36 ()¢ (7))
kx x\1k2 XN\ (X L (X\1? X\ ., (X

and o =32 [6(5)] {xG(x) 6'(5)+xt-vle ()] +26(3)6 (z)} :

The derivatives of F are evaluated at x = lg(A) with A = Xn. Instead of the actual value of
02():), its estimate has been used.
4. Application to half-logistic distribution

Consider a member of the scale family of distributions, namely half-logistic distribution with
scale parameter A. The cdf of X is

1 —e 7"
F(x;k):[m] , A>0, x>0.
The pdf of X is
k 2e—x/x l_e—x/k k=1
A = = ., A>0, x>0.
fesn) PR |:1+e"/*i| >0, x
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4.1. Maximum likelihood estimation

The complete log-likelihood function for the half-logistic distribution with scale parameter A from
Equation (1) is

2e~Nil*

m — e Nilk

m R; m i _ Zij /A
+3°3 log ( > >+(k—1)zzlog<1+2_w> ©)

i=1 j=1 i=1 j=1

In order to obtain the MLE of A, we use the EM algorithm [13]. For the E step in the EM
algorithm, we take expectation of Z;. The derivative of L. with respect to A is taken for the M
step, where

dL, nol Sx(l—e 1) 2(k—1) < xe

=—=+= E — — § :

2 -4 2 — 2

da A ~ et A ok
§ Ria(x;, k, A% — ( § Rib(xi,k, A%), (10)

i=1

Z;i(1 — e~%il%)
) 0y _ A
where a(x;, k,A") = E < 1+ e—Zij/*

and b(x;, k, 1°) = E(Zye %i/* /(1 — e %il%)).

To solve this equation, we use the Newton—Raphson method.

4.2. Fisher information

The observed information = complete information — missing information. That is I,(A) =
Iw()") - lex()V)~

Consider 1,,(A) = —E[d’L/d)\?].

Log-likelihood function for n observations is

2e i/ 1 —e—Xi/*

—xi/A

AL 2 1 G —e*)"/*) 2(k — 1) xie

dr A + 22 ; l4+ex/A A2 ; 1 — e—2x/%

d’L  n 2 R x;(1 — e /%)
Y Z

W22 ML (I ey 1+ e—il*

xi/A

C2k—1) Z xZe N/ (1 4 e~ 2l 4k — 1) Z xie™
( (

A4 py 1— C_X‘/)‘)z(l _’_e—x‘/A)Z A3 1— e—x,-/k)(l +e—x[/k)
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and
Xi/% 2 « X~(1—e‘X"/A):|

W=+ 5 D [ e | D M

2k — 1 X2e X/ (1 4 =2/
S [ e
24 (] —e X,/A)Z(l +e X,/A)Z

i=1

4k —1) < X;eXi/*
- ZE[(I —e_Xi/}‘)(1+C_Xf/)‘):|' (12)

i=1

Missing information is

m R; d21 Zi'Xi,)h
Iy (%) = Zm(’lxm ZZEle[ 0g(f(Z;| ))]

i=1 j=1 da?
Consider
S (@3 A) (k/k)(1+e ’iz/*)z[(l —e /M) /(1 4 ew/m) !
fax (Zi|Xi, 2) = : , '
1 - F(-xi, )") 1 1—e—%i/*
Therefore,
T
logf = logk —log A — log <m>
1 —e~wil* 1 —e—ni/x 7k
+ (k—1)log [m]—log 1_|:1+e—xi/)‘] )
dlogf _ 1 z{— e /) 2k - 1)z =%/
da AR 4ealy a1 — e ulty
zmie*xi/l[l _ e—xi/k]k—l
k
—X; _ | 1= —=x; [\
AZ(1 + e—xi/*)k+D) {1 [Hzﬁw] }
and
5 . . L
d210gf _ 1 2Z 1) - 2Zij(1 —e ) 2(k — I)Zizje F1+e )\1)

zjj

A2 al4e P 20 4ed) a1 —e TR e )2
4k — Dzje~+
Ml—e D)1 +e7)

k=2 i 4
2kale [118—/] Rk—De * —(1—e 1)
te i

: _x5 9k
et [T
14e™ %
4h2x2e= 5 (1 — e~ 3 )22

5 k)2
A4 +e—¥)2k+2 {] _ I:lfe:g] }

il

+

ke (1 — e~ )<t

A3(1+ei")k+1{ [1 C

>L~’:

yﬁ,

I+e”
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Also,

m
Tyx () =Y Rily) (),
i=1

m R; B _Z
_4(/; 1)22E Zie~ 3 }

oo Ld—e i +e )

Xi

" _x k=2 x
ok o Rie [ T Rpte—net - (- e
A

Al 5 -5k
= { +e‘x>“{1 [t ] }
14e™ %
42 & Rix2e= 7 (1 — e~ %)%2
YR . k)2
i=! (1+e—£)2k+2{1— [—H’ ] }
l+e

4k & Rixie= 7+ (1 — e~ 3 )k-!
T3 N _uqk)
i=1 (1 4 e )kt! {1 _ [1—6_31] }

13)

4.3. Tolerance interval

Let Ig(A) be the lower quantile of order 8 of the cdf F(x; A). Then, we have

1— 1/k

Thus, an upper S-expectation tolerance interval for F(x; A) is obtained by
Ig = (0,1g(1)).
The MLE of Ig () is given by

R R 1— ﬂl/k
lﬁ()"n) = —)\,n 10g W

yielding an approximate B-expectation tolerance interval as
Iy = 0,15
The expectation of 1 s can be obtained approximately using the approach suggested and given as

Fo102 () F1y

E[F(Ig(n); M1 ~ B — 0.5F 202 (A,) +
Fio

(14)
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Table 1. Bias, MSE?, Confidence levels and its SE? for k =2 and A = 1.
. Confidence level and SE (MLE) Confidence level and SE (log MLE)
Scheme Bias and
N m no. Scheme MSE 90% 95% 90% 95%
5 2 [1] (3,0) —0.0195 0.8309 0.8645 0.8765 0.9233
(0.1659)  (0.0281) (0.0234) (0.0216) (0.0142)
[2] 0, 3) —-0.0319 0.8299 0.8639 0.8756 0.9199
(0.1421)  (0.0282) (0.0235) (0.0218) (0.0147)
[3] 1,2) —0.0325 0.8251 0.8625 0.8716 0.9200
(0.1462)  (0.0289) (0.0237) (0.0224) (0.0147)
[4] 2,1 —0.0309 0.8261 0.8597 0.8708 0.9218
(0.1503)  (0.0287) (0.0241) (0.0225) (0.0144)
15 5 [5] (10, 4*0) 0.0064 0.8736 09114 0.8932 0.9420
(0.0714)  (0.0074) (0.0054) (0.0064) (0.0036)
[6] (4*0, 10) —0.0151 0.8656 0.9075 0.8847 0.9355
(0.0570)  (0.0078) (0.0056) (0.0068) (0.0040)
[7] 2,2,2,2,2) —0.0117 0.8769 0.9149 0.8946 0.9412
(0.0579)  (0.0072) (0.0052) (0.0063) (0.0037)
10 [8] (5, 9*0) 0.0052 0.8869 0.9297 0.8919 0.9453
(0.0389)  (0.0067) (0.0044) (0.0064) (0.0034)
[9] (9*0, 5) —0.0011 0.8887 0.9298 0.8936 0.9452
(0.0330)  (0.0066) (0.0044) (0.0063) (0.0035)
[10] (3,2,8%0) —0.0011 0.8832 0.9275 0.8931 0.9450
(0.0381)  (0.0069) (0.0045) (0.0064) (0.0035)
20 10 [11] (10, 9*0) 0.0013 0.8913 0.9340 0.8968 0.9480
(0.0373)  (0.0048) (0.0031) (0.0046) (0.0025)
[12] (9*0, 10) —0.0041 0.8830 0.9283 0.8936 0.9431
(0.0307)  (0.0052) (0.0033) (0.0048) (0.0027)
25 10 [13] (15, 9*0) —0.0031 0.8841 0.9294 0.8969 0.9493
(0.0373)  (0.0041) (0.0026) (0.0037) (0.0019)
[14] (9*0, 15) —0.0057 0.8897 0.9318 0.8945 0.9456
(0.0284)  (0.0039) (0.0025) (0.0038) (0.0021)
[15] (5,5,5,7*%0) —0.0001 0.8908 0.9330 0.8985 0.9484
(0.0353)  (0.0039) (0.0025) (0.0036) (0.0020)
15 [16] (10, 14*0) 0.0011 0.8955 0.9399 0.9021 0.9503
(0.0250)  (0.0037) (0.0023) (0.0035) (0.0019)
[17] (14*0,10)  —0.0033 0.8912 0.9362 0.8971 0.9454
(0.0209)  (0.0039) (0.0024) (0.0037) (0.0021)
30 10 [18] (20, 9*0) 0.0004 0.8900 0.9320 0.8961 0.9477
(0.0369)  (0.0033) (0.0021) (0.0031) (0.0017)
[19] (9*0, 20) —0.0074 0.8855 0.9291 0.8953 0.9441
(0.0278)  (0.0034) (0.0022) (0.0031) (0.0018)
15 [20] (15, 14*0) 0.0001 0.8888 0.9357 0.8975 0.9440
(0.0255)  (0.0033) (0.0020) (0.0031) (0.0018)
[21] (14*0, 15)  —0.0063 0.8860 0.9321 0.8938 0.9444
(0.0202)  (0.0034) (0.0021) (0.0032) (0.0018)
[22] (5,5,5,12*0) —0.0022 0.8871 0.9354 0.8951 0.9420
(0.0249)  (0.0033) (0.0020) (0.0031) (0.0018)
20 [23] (10, 19*0) 0.0008 0.8964 0.9410 0.9002 0.9517
(0.0190)  (0.0031) (0.0019) (0.0030) (0.0015)
[24] (19*%0, 10)  —0.0023 0.8940 0.9402 0.8990 0.9484
(0.0159)  (0.0032) (0.0019) (0.0030) (0.0016)
[25] 0, 5,5,17*0)  0.0015 0.8943 0.9390 0.8984 0.9450
(0.0191)  (0.0032) (0.0019) (0.0030) (0.0017)
50 20 [26] (30, 19*%0) —0.00161  0.8941 0.9392 0.8987 0.9476
(0.0188)  (0.0019) (0.0011) (0.0018) (0.0010)
[27] (19*0,30) —0.0031 0.8914 0.9390 0.8970 0.9475
(0.0145)  (0.0019) (0.0011) (0.0018) (0.0010)
35 [28] (15, 34*0) 0.0005 0.8942 0.9442 0.8978 0.9496
(0.0111)  (0.0019) (0.0011) (0.0018) (0.0010)
[29] (34*0,15)  —0.0017 0.8980 0.9459 0.9014 0.94800
(0.0093)  (0.0018) (0.0010) (0.0018) (0.0010)
[30] (5,5,5,32*%0) 0.0011 0.9002 0.9458 0.9039 0.9504
(0.0106)  (0.0018) (0.0010) (0.0017) (0.0009)

Note: *MSE and SE are given in parenthesis.
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where
2ke—x/k (1 _ e—x/k)k—l
A 1+ efx/)x)kJrl ’
2kxefx/)\ (1 _ efx/)»)kfl
A2 (1 + e—x/A)k-H ’
% — (1 _ e—x/)»)k—2
A3 (1 + e—x/x)k+2

10 =

Fop = —

Fiy = (e (x + A) — 2kxe ™" +x — A},
and
2kx A (1 _ e—x/A)k—Z

_ M =x/AN T iy —2x/% _ —x/A
Fp = . e S {x—21r+e (x +2A) — 2kxe™/*}.

5. Simulation study

A simulation is carried out to study the performance of the MLE when the lifetime distribution
of each unit follows the half-logistic distribution. Estimates of bias and the MSE for various
progressively Type-II censoring scheme are obtained. Asymptotic confidence intervals based on
the MLE and log-transformed MLE are compared with their confidence levels. The coverage of
the B-expectation tolerance intervals is also studied. The algorithm by Balakrishnan and Sandhu
[22] is used to generate progressively censored samples from half-logistic distribution of a k-unit
parallel system.

e Algorithm
1. Generate independently and identically distributed observations (W, W, ..., W,,) from

Uu,1).
2. For (R1,R,,...,R,,) censoring scheme setE; = 1/(i + Ry, + Ryy—1 + - - - + Ry—i1) fori =
1,2,...,m.

b

SetV;, = Wl-E" fori=1,2,...,m.

4, SetU;=1—-V, Vy1...Vy_ipgfori=1,2,...,m. Then (Uy, Uy, ..., Uy,) is the uniform
(0,1) progressively Type-II censored sample.

5. For the given value of the parameter A, set

1= (W'
H=—Alog| ———— | fori=1,2,...,m. 15
o g[1+<U,«)1/k Y " ()
X(1)>X(2), - - - » X(m) 18 the required progressively Type-II-censored sample from the distribution

of a k-unit parallel system with half-logistic distribution as the distribution of each unit of the
system.

In Table 1, scheme (a, b) stands for Ry = a and R, = b. A similar meaning holds for schemes
described through completely specified vector, while scheme (10, 4*0) means R; = 10 and rest
four R;’s are zero. Thatis R, = R3 = R4y = R; = 0.

Simulation is carried out for 2-unit parallel system with > = 1. The EM algorithm and Newton—
Raphson method are used to compute the MLE. For each particular progressive censoring scheme,
10,000 sets of observations are generated. The bias, the MSE, confidence levels for the correspond-
ing approximate confidence intervals for A along with their standard errors (SE) are displayed
in Table 1. The simulated mean coverage and the estimated expectation of the tolerance interval
along with their SE are given in Table 2.
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Table 2. Simulated mean, estimated expectation and its SE* of the approximate B-expectation tolerance interval for

k=2and A =1.
Simulated mean and SE Estimated expectation and SE
Scheme
n m no. Scheme 90% 95% 99% 90% 95% 99%
5 2 [1] (3,0) 0.8058 0.8658 0.9375 0.8045 0.8755 0.9600
(0.0962)  (0.0833)  (0.0568) (0.0428) (0.0334)  (0.0134)
[2] 0, 3) 0.8083 0.8694 0.9411 0.8163 0.8847 0.9637
(0.0922)  (0.0792)  (0.0529) (0.0374) (0.0293)  (0.0118)
[3] (1,2) 0.8097 0.8700 0.9409 0.8147 0.8834 0.9632
(0.0926)  (0.0799)  (0.0539) (0.0382) (0.0297)  (0.0118)
[4] 2,1 0.8083 0.8690 0.9405 0.8119 0.8812 0.9623
(0.0930)  (0.0800)  (0.0535) (0.0395) (0.0307)  (0.0126)
15 5 [5] (10, 4*0) 0.8592 0.9158 0.9728 0.8594 0.9183 0.9772
(0.0310)  (0.0237)  (0.0118) (0.0106) (0.0082)  (0.0037)
[6] (4*0, 10) 0.8623 0.9190 0.9747 0.8680 0.9250 0.9799
(0.0288)  (0.0219)  (0.0110) (0.0082) (0.0063)  (0.0026)
[7] (2,2,2,2,2) 0.8616 0.9184 0.9745 0.8663 0.9237 0.9794
(0.0290)  (0.0221)  (0.0106) (0.0086) (0.0068)  (0.0026)
10 [8] (5, 9*0) 0.8803 0.9339 0.9826 0.8788 0.9334 0.9833
(0.0198)  (0.0139)  (0.0058) (0.0052) (0.0045)  (0.0016)
[9] (9%0, 5) 0.8800 0.9340 0.9829 0.8817 0.9357 0.9843
(0.0190)  (0.0132)  (0.0052) (0.0045) (0.0037)  (0.0014)
[10] (3,2, 8*0) 0.8793 0.9331 0.9823 0.8789 0.9335 0.9834
(0.0202)  (0.0141)  (0.0058) (0.0052) (0.0045)  (0.0016)
20 10 [11] (10, 9*0) 0.8798 0.9334 0.9824 0.8789 0.9335 0.9834
(0.0174)  (0.0123)  (0.0050) (0.0047) (0.0037)  (0.0015)
[12] (9*0, 10) 0.8802 0.9343 0.9831 0.8830 0.9367 0.9847
(0.0160)  (0.0113)  (0.0045) (0.0038) (0.0030)  (0.0012)
25 10 [13] (15, 9*0) 0.8800 0.9337 0.9825 0.8790 0.9336 0.9834
(0.0154)  (0.0109)  (0.0044) (0.0042) (0.0033)  (0.0013)
[14] (9*0, 15) 0.8817 0.9355 0.9836 0.8837 0.9372 0.9849
(0.0138)  (0.0096)  (0.0038) (0.0033) (0.0026)  (0.0010)
[15] (5,5,5,7*0) 0.8814 0.9347 0.9829 0.8799 0.9343 0.9837
(0.0150)  (0.0106)  (0.0042) (0.0040) (0.0031)  (0.0013)
15 [16] (10, 14*0) 0.8860 0.9387 0.9850 0.8858 0.9389 0.9855
(0.0123)  (0.0083)  (0.0031) (0.0028) (0.0022)  (0.0009)
[17] (14*0, 10) 0.8873 0.9400 0.9857 0.8882 0.9408 0.9863
(0.0112)  (0.0076)  (0.0027) (0.0024) (0.0018)  (0.0007)
30 10 [18] (20, 9*0) 0.8783 0.9324 0.9820 0.8791 0.9337 0.9834
(0.0144)  (0.0102)  (0.0041) (0.0037) (0.0032)  (0.0012)
[19] (9*0, 20) 0.8813 0.9352 0.9835 0.8841 0.9376 0.9850
(0.0126)  (0.0088)  (0.0037) (0.0032) (0.0026)  (0.0008)
15 [20] (15, 14*0) 0.8866 0.9391 0.9852 0.8858 0.9389 0.9856
(0.0111)  (0.0075)  (0.0028) (0.0026) (0.0020)  (0.0008)
[21] (14*0, 15) 0.8868 0.9398 0.9857 0.8887 0.9412 0.9864
(0.0100)  (0.0067)  (0.0024) (0.0021) (0.0016)  (0.0006)
[22] (5,5,5, 12*0) 0.8874 0.9397 0.9854 0.8861 0.9392 0.9857
(0.0109)  (0.0074)  (0.0027) (0.0025) (0.0020)  (0.0008)
20 [23] (10, 19*0) 0.8895 0.9416 0.9864 0.8893 0.9416 0.9866
(0.0095)  (0.0063)  (0.0022) (0.0020) (0.0015)  (0.0006)
[24] (19*0, 10) 0.8913 0.9430 0.9870 0.8909 0.9429 0.9871
(0.0087)  (0.0057)  (0.0020) (0.0017) (0.0013)  (0.0005)
[25] 0, 5,5, 17*0) 0.8900 0.9420 0.9865 0.8894 0.9418 0.9867
(0.0094)  (0.0062)  (0.0022) (0.0019) (0.0015)  (0.0006)
50 20 [26] (30, 19%0) 0.8893 0.9415 0.9863 0.8894 0.9417 0.9867
(0.0074)  (0.0049)  (0.0017) (0.0015) (0.0012)  (0.0005)
[27] (19%*0, 30) 0.8906 0.9426 0.9869 0.8919 0.9436 0.9874
(0.0065)  (0.0043)  (0.0015) (0.0012) (0.0009)  (0.0004)
35 [28] (15, 34*0) 0.8939 0.9452 0.9880 0.8939 0.9452 0.9881
(0.0053)  (0.0035)  (0.0011) (0.0009) (0.0006)  (0.0002)
[29] (34*0, 15) 0.8945 0.9457 0.9882 0.8947 0.9459 0.9883
(0.0049)  (0.0032)  (0.0010) (0.00003) (0.0008)  (0.0002)
[30] (5,5, 5, 32%0) 0.8942 0.9454 0.9881 0.8939 0.9452 0.9881
(0.0053)  (0.0035)  (0.0011) (0.0009) (0.0006)  (0.0003)

Note: *SE are given in parenthesis.
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6. Conclusion and discussion

Results of the simulation study reported in Table 1 indicate that bias and MSE of the MLE decrease
as the sample size and the effective sample size increase. The MSE of the MLE is smaller for
the conventional Type-II censoring scheme as compared with the progressively Type-II censoring
scheme. The coverage performance of asymptotic confidence intervals is satisfactory. Confidence
interval based on the log-transformed MLE shows better performance than the one based on
the MLE. Results of the simulation study for the S-expectation tolerance interval, which are
tabulated in Table 2, indicate that, the estimated expectation and simulated mean for small sample
size are marginally lower than the nominal value. As the sample size increases, the performance
of tolerance intervals improves. The SE of both the estimated expectation and of simulated mean
coverage of the tolerance intervals decrease as the sample size increases. The SE of the estimated
expectation is significantly smaller than that of the simulated mean coverage.

Estimation procedures reported in this paper are applicable for a wide class of lifetime dis-
tributions under progressively Type-II and conventional Type-II censoring schemes. The results
reported in this paper can also be obtained when ‘k’ in the pdf is replaced by any known positive
number greater than one.
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Abstract

The idea of variable sampling interval and warning limits (VSIWL) is proposed for X charts. Expressions for
the performance measures for the charts with VSIWL are developed. The methods presented are general

and can be applied to other Shewhart control charts. The performances of VSIWL X charts are compared
numerically with that of VSI X charts with and without runs rules for switching between sampling interval

lengths. It is observed that in general the former charts perform significantly better than the later.

Keywords: Adaptive control chart, average number of samples to signal, statistical process control, Shewhart control charts.

Introduction

Nowadays it has been well recognized that adaptive
control charts are significantly more efficient than the
static ones. Reynolds et al. (1988) were the first to
consider the intuitive notion of adapting sampling interval
length of a control charts according to the status of a
process indicated by the last plotted sample point.

They proposed variable sampling interval (VSI) X
charts. The principle of choosing the sampling interval
length in a VSI chart is that as the location of the current
sample point approaches the control limits, tighten the
control by taking the next sample more quickly.
The in-control area of the chart is partitioned into a
central region and one or more warning regions. Each
region determines length of the sampling interval for the
next sample if the current sample point falls in it.
Reynolds et al. (1988) showed that the idea of
VSI substantially improves the statistical performance of

X charts. Also, they showed that the statistical

performance of a VSI X chart in detecting a shift of any
magnitude that exists initially is optimized by using the
dual sampling interval policy consisting of the shortest
and longest possible sampling interval lengths.
Afterwards, Prabhuet al. (1993) and Costa (1994)

independently proposed variable sample size X charts.
Prabhu et al. (1994) proposed variable sample size and

sampling interval X charts. Costa (1999a) proposed the

adaptive X charts in which all the three design
parameters are variable. Tagaras (1998) reported an
extensive survey of the research on adaptive control
charts until 1997. Then also, various schemes of
adaptive control charts have been proposed and
extensively investigated with different perspectives. See
for example, Amin and Widmaier (1999), Costa(1999b),
Aparasi and Haro (2003), Costa and Rahim (2001),
Epprecht et al. (2003), Zimmer et al. (1998), Reynolds

©Youth Education and Research Trust (YERT)

jairjp.com

and Stoumbos (2001), Wu et al. (2005), Yu and Hou
(2006), Celano et al. (2006), Chen (2007), Wu
et al. (2007), Yang and Su (2007), Mahadik and Shirke
(2007a, b), Jiang et al. (2008), Jensen et al. (2008),
Luo et al. (2009), Wu et al. (2009), Shi et al. (2009),
De Magalhaes et al. (2009), Celano (2009), Faraz and
Moghadam (2009), Mahadik and Shirke (2009, 2011),
Li and Wang (2010), Epprecht et al. (2010), Shu
et al. (2010), Mahadik (2012a, b, 2013), Chen et al.
(2011), Dai et al. (2011),Faraz and Saniga (2011), Nenes
(2011), Kooli and Limam (2011) and Lee (2011).

The weakness of any adaptive control chart is the
inconvenience in its administration due to the frequent
switches between the values of its adaptive design
parameters. In order to reduce the frequency of switches
between sampling interval lengths of VSI charts, Amin
and Letsinger (1991) proposed the use runs rules for
switching between these lengths. Amin and Hemasinha
(1993) developed approximate expressions for the

performance measures for VSI X charts with such runs
rules while Mahadik (2011a) developed the exact
expressions.

In the present study, the idea of variable warning limits is

proposed for VSI X charts. This significantly improves
statistical performances of the charts in detecting small
to moderate shifts in the process mean and also
dramatically reduces the frequency of switches between
sampling interval lengths.

Materials and methods

A VSIWL X Chart: Let the guality characteristic X to be
monitored follows a normal distribution with mean w, and
a known and constant standard deviation ¢. Suppose (i,

is the target value of g

Mahadik, 2013
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An occurrence of an assignable cause results in a shift of
size §in u, where §is expressed in o units. It is
assumed that & remains constant following the

occurrence of a shift until it is detected. A VSIWL X
chart to monitor u is as described below.

The chart statistic is the standardized sample mean
Z, :\/ﬁ()Ti —uo)/a, where )Ti, i=1, 2, .., is the
mean of i sample of size is n drawn on X. Note that
when p=p,, Z;~N (0, 1), and when u = i, + o, Z;~N

(\/ﬁ5 , 1). Each control limit of the chart is at the
distance of L units from its centerline. Let t(i) be the
length of sampling interval between (i — 1) and i" trials
and w(i) be the distance of each warning limit from the
centerline for the i trial, i = 1, 2, .... The values of

(t(i), w(i)) can be either (t,, W) or (t,,W,), where t,,t,,
W, and W,are suchthat t . >t >, >t and L>W,

max — min
> W,> 0, where 1t andt . are the shortest and
longest possible sampling intervals, respectively. When
Z. , falls within the control limits, the pair of values of
(@), w(@y), i = 2, 3, ...,between ({,,W,) and (t,,W,) is
chosen according to the following rule

min

. N t,w), ifzZ el
(t0). ) ‘{ (W), ifZ, el

where |, = [-w(), w(i)] and |, = (-L, —w()) U (w(), L)
for the i" trial, i =1, 2, ...

At start-up the values of (t(1), w(1)) can be chosen using
an arbitrary probability distribution, as no prior sample is
available. In practice, it is recommended to use the pair

(t,,W,) for the first trial to provide additional protection

against the problems that may exist initially. The trial
following an out-of-control signal is again treated to be
the first trial and the mechanism of choosing (t(i), w(i))is
restarted from that. The chart signals an out-of-control
state when a sample point falls beyond the control limits.

Figure 1 shows a typical VSIWL X chart.

Fig. 1. AVSIWL X chart.

" \ i
N N o \\
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In practice, only one set of the warning limits may be
shown anywhere on the chart within the control limits to
represent the two sets in order to avoid the complexity in
the administration. Suppose each warning limit of this set
is at a distance of w units from the centerline.

When w(i) = w; j =1, 2, plot Z, anywhere within
[-w, w],(-L, -w), and (w, L), respectively, when it is
within [~ Wi, W 1, (-L, - W ), and (Wj ,L). Note that

when W, = W, , a VSIWL X chart is a VSI X chart.
In the next section, expressions for performance
measures for a VSIWL X chart are derived.

Performance measures: The appropriate measures of

statistical performance of a VSIWL X chart are the
steady-state average time to signal (SSATS) and the
average number of samples to signal (ANSS). SSATS is
the expected value of the time between a shift that
occurs at some random time after the process starts and
the time the chart signals while ANSS is the expected
value of the number of samples taken from a shift to the
time the chart signals. The administrative performance
can be measured through average number of switches to
signal (ANSW). ANSW is the expected value of the
number of switches between two sampling interval
lengths from a shift to the signal.

Let SSATS;, ANSS;, and ANSW; be the SSATS, ANSS,
and ANSW, respectively of a control chart when the

process mean has shifted from gy, to y =, + éo.

In the following, first the expressions for SSATSs and
ANSS; are derived using a Markov chain approach.
Brook and Evans (1972) were the first to use this
approach to find the average run length of a control
chart. Henceforth, the i"" trial refers to the i" trial after a
shift when i> 0 and the last trial before the (i + 1)* trial

when i < 0.Also, Z, refers to the sample point
corresponding to the i trial.

Define the three states 1, 2, and 3 of the Markov Chain
corresponding to whether a sample point is plotted inl,,
I, and I, = (-0, -LJU|[L, ), respectively. State 3 is
the absorbing state, as the process of taking samples is
restarted when a sample point falls in region I, .
The transition probability matrix is given by

PL PL Ph
P =|py Pz Pu|’
0 0 1
Where pfk is the transition probability that j is the prior

state and K is the current state, when the process mean
has shifted by dc.
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For example,
pfz = Pry[Z;el,| Zi,e4]
Pry[Z;e Iyl wii) = W]
Pri[-L<Z;< -W]+P[W<Z, <L]
O -wW-n5) -D (-L- Vns ) +
@ (L-Vnd) - @ (W-/nd),

Where @ (-)is the cumulative distribution function of
standard normal variate.

Then, SSATS; and ANSS; are
SSATS; = b'(1 - P?) " t-E(U)
And ANSS; = b'(I - P?) ™1,

Where | is the identity matrix of order 2, P is the sub

given by

(1)

matrix of P° that contains the probabilities associated
with the transient states only, t'= (t;, t,),1" = (1, 1),
and b’ = (b, b,), b, being the conditional probability

that Z, falls in Ij given that it falls within the control

limits, j =1, 2. We note that b, = 1 -b,. The Expression

for bl is derived in appendix A.

E(U) in equation (1) is the expected value of the time U
between the 0" trial and the shift. Assuming that an
assignable cause of a process shift occurs according to a

Poisson process, it can be shown that E(U) = E[t(1)]/2.
Hence, SSATS; = b'(1 - P?)*t- E[t(1)]/2.
Now, to derive the expression for ANSW;, let Oi be the

number of switches between two sampling interval
lengths following the i™ trial until the signal, i = 1, 2, ...
Further, let

0} =E;(0|Zyel))i=12 .. j=12
Then, the expression for ANSW; is given by
ANSW; = E5[Q]=b,0/, +b,05,= b'O?,
Where, O? = (0, 05,) ,s=1,2, ...

The expression for Of is derived in appendix B.

Alternatively, the expression for ANSW;can also be
obtained using the Markov Chain approach. For, let

1,if(Z,€l,Z €l,)
2,if(Z,,€l,,Z €l)
3,if(Z,el,Z €l) ji=1,2 ..
4,1f (Z,,¢€l,,Z,€l,)
5,ifz,|>L
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It is easy to see that {Y;,i=1, 2, ...} is a Markov Chain
with transition probability matrix

0 p3; 0 py py

Py Py P

Q" =| p;, Py Py
0 pu 0 py Py

0 0 0 0 1|

Then, the expression for ANSW; is given by

ANSW; = a'(l, —Q?) e,

Where, |, is the identity matrix of order 4, Q? is the sub
matrix of Q8 that contains the probabilities associated
with the transient states only, e = (1,1,0,0)", and
a = (a, a,,8;, a,)', &, being the initial probability of
statej, j=1, 2, 3, 4, given by

bp), ., j=1
. bpl, j=2
a; =Prs[Y, = j]= zp? J :
b1p11 ) J:3
bngz ) j:4
Results and discussion
Performance evaluaton of VSIWL X charts:

The performances of VSIWL X charts are evaluated by
comparing that with that of VSI, VSI (1, 3), and VSI (2, 3)

X charts, where VSI (k, m) X charts refers to the VSI
X charts with runs rule (k, m) for switching between
sampling interval lengths. When the successive
m sample points before the i" trial fall within the control
limits, rule (k, m) chooses sampling interval lengtht, for

the i trial if among those m sample points, the number
of sample points falling in each warning region is less
than k, otherwise it chooses the sampling interval length

t,. See Mahadik (2011a) for the details of VSI (k, m) X
charts.

Among various runs rules considered by Mahadik
(2011a), runs rule (1, 3) reduces the ANSW values of

VSI X charts the most without affecting their SSATS
values for small to large shifts in the process mean.
Further, runs rule (2, 3) significantly reduces both, the
ANSW values for shifts of all sizes and SSATS values for
small shifts without affecting that for large shifts. Hence,

the VSI X charts with these runs rules are chosen for
comparison.
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Table 1. The SSATS values of the matched VSIWL, VSI, VSI (1, 3), and VSI (2, 3) X charts.

106

SSATS for a shift of size
Chart W W,
0 0.25¢0 0.50 0.75c lo 150 2o 250 3o 4o
Caselin=1,1=21,=02L=3
VSIWL 140 0.16 369.90 267.80 12949 5591 2435 579 210 111 0.75 0.54
VSIWL 220 0.03 369.90 259.80 118.03 49.16 22.06 6.42 272 145 0.92 0.57
VSI 0.59 369.90 274.69 14214 66.98 3151 7.67 240 111 0.73 054
VSI (1, 3) 1.18 369.90 268.63 130.38 5585 2365 523 193 106 0.74 0.54
VSI (2, 3) 0.39 369.89 267.35 128.13 54.04 2270 530 223 137 098 0.63
Case2:n=2 1,=181,=04,L=3
VSIWL 1.30 0.18 369.90 209.38 71.76 24.76 9.78 249 1.07 0.68 055 0.50
VSIWL 200 0.04 369.90 201.66 65.60 22.89 966 2.74 118 0.71 0.56 0.50
VSI 0.56 369.90 216.33 79.68 29.08 1150 262 106 0.67 0.55 0.50
VSI (1, 3) 1.16 369.90 209.20 70.82 23.72 9.17 240 1.07 0.68 0.55 0.50
VSI (2, 3) 0.38 369.89  207.90 69.51 23.23 9.18 264 127 0.79 0.59 0.50
Case3:n=3,1,=121,=06,L=3
VSIWL 1.60 0.27 369.90 175.09 50.91 16.48 650 173 080 056 051 0.50
VSIWL 210 0.08 369.90 172.12 49.12 16.25 6.67 183 0.82 057 051 0.50
VSI 0.96 369.90 179.09 54.71 18.20 7.03 1.73 0.79 056 0.51 0.50
VSI (1, 3) 1.52 369.90 175.73 51.36 16.53 6.46 172 080 056 0.51 0.50
VSI (2, 3) 0.64 369.90 173.64 49.67 15.97 6.42 1.86 088 059 051 0.50
Case4:n=4,1=151,=051L=3
VSIWL 140 0.20 369.90 140.23 32.02 9.14 3.51 1.03 0.60 051 050 0.50
VSIWL 1.80 0.09 369.90 136.30 30.59 9.05 360 107 060 051 050 0.50
VSI 0.67 369.90 147.14 36.19 10.31 3.71 1.02 059 051 050 0.50
VSI (1, 3) 1.26 369.90 140.48 31.60 8.83 341 1.03 0.60 0.51 0.50 0.50
VSI (2, 3) 0.45 369.92 138.65 30.74 8.80 3.58 1.18 0.65 0.52 0.50 0.50
Case5:n=51=141,=03L=3
VSIWL 150 0.29 369.90 115.18 20.52 4.94 186 0.69 052 050 050 0.50
VSIWL 190 0.12 369.90 110.48 19.12 4.98 200 0.73 053 050 050 0.50
VSI 0.91 369.90 122.74 24.70 5.98 200 068 052 050 050 0.50
VSI (1, 3) 1.47 369.90 115.52 20.38 4.78 183 0.69 052 050 050 0.50
VSI (2, 3) 0.60 369.91 111.77 18.84 4.71 205 085 056 050 050 0.50
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Table 2. The ANSW values of the matched VSIWL, VSI, VSI (1, 3), and VSI (2, 3) X charts.
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ANSW for a shift of size

Chart W W,
0 0.250 050 0.75c lo 15¢ 20 250 3o 4o
Caselin=11=21,=02L=3
VSIWL 1.40 0.16 5229  40.26 2260 1149 565 142 052 031 021 0.07
VSIWL 220 0.03 827 6.57 391 212 115 047 030 023 016 0.06
Vsl 0.59 182.42 13753 73.98 3649 17.74 4.18 110 043 024 0.07
VSl (1, 3) 1.18 77.77  59.09 32.00 1538 6.95 137 049 0.32 022 007
VSl (2, 3) 0.39 108.88 80.05 39.82 17.18 7.00 131 055 0.36 0.22 0.05
Case2:n=21,=181,=04,L=3
VSIWL 1.30 0.18 60.61 37.18 1466 532 195 045 024 0.12 0.05 0.00
VSIWL 200 0.04 13.59 8.72 366 1.46 067 031 020 0.11 0.04 0.00
Vsl 0.56 180.93 107.51 40.55 1451 517 0.80 027 0.13 0.05 0.00
VSl (1, 3) 1.16 7791 4675 1725 551 170 041 025 0.13 0.05 0.00
VSl (2, 3) 0.38 108.28  61.04 1955 544 162 047 026 011 0.03 0.00
Case3:n=3,1,=121,=06,L=3
VSIWL 1.60 0.27 5279  29.67 10.84 354 125 042 020 0.06 0.0l 0.00
VSIWL 210 0.08 16.31 9.82 382 140 067 034 017 005 0.01 0.00
Vsl 0.96 164.18 8594 29.82 10.12 342 0.60 022 0.06 0.01 0.00
VSl (1, 3) 1.52 62.27 3470 1258 397 129 043 021 0.06 001 0.00
VSl (2, 3) 0.64 95.60  48.90 1450 370 116 042 015 0.03 0.00 0.00
Case4:n=4,1=151,=051L=3
VSIWL 1.40 020 5882 2595 672 170 060 024 0.08 001 0.00 0.00
VSIWL 1.80 0.09 2562 1185 321 094 045 022 0.07 001 0.00 0.00
Vsl 0.67 184.70  76.37 19.08 468 126 0.27 0.08 0.01 0.00 0.00
VSl (1, 3) 1.26 7621 3251 760 159 055 0.25 008 0.01 0.0 0.00
VSl (2, 3) 0.45 109.31 4128 7.69 148 0.60 0.24 006 0.01 0.00 0.00
Case5:n=51=141,=03L=3
VSIWL 150 0.29 6172 2544 618 147 058 022 0.04 0.00 0.00 0.00
VSIWL 1.90 0.12 2580 1140 291 086 046 020 0.04 0.00 0.00 0.00
Vsl 0.91 170.96  64.84 1567 372 103 0.24 004 0.00 0.00 0.00
VSl (1, 3) 1.47 65.75 2694 634 137 055 022 004 0.00 0.00 0.00
VSl (2, 3) 0.60 99.72 3545 631 123 057 0.17 002 0.00 0.00 0.00
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The four charts mentioned above are designed such that
their in-control statistical performances are matched.

This is done by keeping the design parameters n, t,, t,,
and L of all the charts the same and choosing the
warning limits of each chart such that E[t(1)] = t, holds

for each chart, where to is some suitable constant.

As a VSIWL X chart has two sets of warning limits, by
fixing one of them this condition uniquely determines the

other. By fixing W, , we get

e {(to ~ ,)[20(L) ~1-20(W,)] + t - tz},
2(t1 - to)

or by fixingW, , we get

W, = q)l{q)(l_) + [2®(W2) _1](to — tl)} _

2(to - tz)

In the same way the warning limits of VSI, VSI (1, 3), and
VSI (2, 3) X charts are determined.

The SSATS and ANSW values of such statistically
matched charts are then computed for shifts of various
sizes. Tables 1 and 2, respectively, show these values
for five different sets of the matched charts. Note that as
all the charts in a set use the same values of L and n,
their ANSS values will be the same. Hence, ANSS is not

Example
The statistically matched VSIWL, VSI (1, 3), VSI (2, 3),

and VSI X charts with the design parameters, viz., n= 4,
t, = 1.5 hours, t,= 0.5 hour, and L = 3 are implemented
simultaneously and independently for a process.
The process is initially in control when the
implementation of the charts is started and a shift of size
0.750 occurs at 5 hours after that. Table 3 shows the

sample means taken for the two VSIWL X charts along
with the corresponding times, sampling interval lengths,
and the warning limits used. Table 4 shows the same for

VSI (1, 3), VSI (2, 3), and VSI X charts. The pair (t,, W,)
is used for the first trials for the VSIWL charts and the

pairs for the subsequent trials are chosen according to
the rule of the charts. Similarly, sampling interval length

t,is used for the first trial for the VSI chart and for the

first three trials for the VSI (1, 3) and VSI (2, 3) charts.
Sampling interval lengths for the subsequent trials for
these charts are chosen according to the respective rules
of the charts. Table 5 shows the performances of the five
charts which clearly demonstrate the superiority of the
VSIWL charts.

Table 3. The details of the VSIWL >? charts for the process
in the example.

VSIWL with
W, =14, W, =0.2

VSIWL with
W, =18, W, =0.09

a relevant measure to compare the statistical Time _ _ Time _ _
performances of the charts. Computations of the SSATS  in (t(0), w() Zs in (t(0), w(i)) Zs
and ANSW values indicate the following facts in general. hours hours
0.5 (0.5,0.2) -0.42 0.5 (0.5, 0.09) 1.01
If the warning limits of a VSIWL X chart are chosen 1 (0502) -1.35 1 (0.5, 0.09) 0.14
such that its SSATS values for the large shifts match that 1.5 (0.5,0.2) 1.10 1.5 (0.5, 0.09) 0.50
of a VSI X chart then for the small to moderate shifts, 2 (0.5,0.2) -1.43 2 (0.5, 0.09) 2.25
its SSATS values are slightly smaller than that of the VSI 5 5 (0.5,02) 1.33 25 (0.5, 0.09) 0.80
X chart and are similar to that of a VSI (1, 3) X chart. 3 (0.5,0.2) 0.46 3 (0.5, 0.09) 0.51
Further, the ANSW values of a VSIWL X chart are 35 (0.5,0.2) -0.49 3.5 (0.5, 0.09) -0.66
s;%gnlflcantly smaller than that of the VSI and VSI (1, 3) 4 (05,02 036 4 (0.5, 0.09) 2 88
charts. 4.5 (0502 097 45 (0.5,000)  -0.83
On the other hand, if the warning limits of a VSIWL X 5 (0502 188 5 (0.5,0.09) 2.28
chart are chosen such that its SSATS values for the 5.5 (0502 1.38 5.5 (0.5,0.09) 2.82
large shift are very slightly larger than that of a VSI X 6 (0.5,02) 246 6 (0.5, 0.09) 3.26
chart then for the small to moderate shifts, its SSATS 6.5 (0.5,0.2) 1.48
values are_3|gn|f|cantly smaller than that of the VSI and 7 (05,02 061
Vsl (1, 3) X charts and are similar to that of a VSI (2, 3) 75 (05,02) 237
X chart. Besides, its ANSW values are dramatically 8 (05,02 165
smaller than that of the other charts and are about 5 to D '
o 8.5 (0.5,0.2) 1.26
15% of that of a VSI X chart.
9 (0.5,0.2) 3.47
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Table 4.The details of the VSI (1, 3), VSI (2, 3), and VSI >? charts for the process in the example.

VSI (1, 3) with VSI (2, 3) with VSI with
w =126 w=0.45 w =0.67
Time in hours t(i) Zs Time in hours t(i) Zs Time in hours t(i) Zs
0.5 0.5 0.16 0.5 0.5 -0.80 0.5 0.5 -1.08
1 0.5 -0.16 1 0.5 0.72 1 0.5 1.04
1.5 0.5 -0.51 1.5 0.5 -0.66 1.5 0.5 -0.64
3 1.5 -1.09 2 0.5 1.36 3 1.5 2.30
4.5 1.5 -0.22 25 0.5 -0.97 35 0.5 -0.11
3 0.5 -0.20
6 1.5 0.85 4.5 1.5 -0.15 4 1.5 1.33
75 1.5 0.91 4.5 0.5 1.42
9 1.5 1.53 6 1.5 2.08 5 0.5 1.18
9.5 0.5 1.70 7.5 1.5 3.13 55 0.5 -0.54
10 0.5 3.59 7 1.5 2.35
7.5 0.5 0.80
8 0.5 0.58
9.5 1.5 2.37
10 0.5 0.72
10.5 0.5 1.23
11 0.5 3.08
Table 5. Performances of the charts in the example.
Time from the shift Number of switches during Total number of switches
Chart . . . : .
to the signal in-control period until the signal
VSIWL with 4 hours 0 0
W =14, W, =0.2
VSIWL with 1 hour 0 0
W, =1.8, W, =0.09
VSI (1, 3) 5 hours 1 2
VSI (2, 3) 2.5 hours 1 1
VSI 6 hours 2 8
Conclusion Also, it significantly reduces the SSATS values of the

The idea of variable warning limits is introduced for
VSI X charts. Expressions for the performance

measures, viz., SSATS, ANSS and ANSW for VSIWL X
charts are developed. The methods presented are
general and can be applied to other Shewhart control
charts. The effects of variable warning limits on the
performances of the charts are evaluated by comparing

the performances of VSIWL X charts with that of

VSI X charts with and without runs rules for switching
between sampling interval lengths. It is observed that the
variable warning limits dramatically reduce the ANSW
values of the charts. The idea is even superior to that of
runs rules for switching between sampling interval
lengths for reducing the ANSW values.

©Youth Education and Research Trust (YERT)
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charts in detecting small to moderate shifts in the
process mean without significantly affecting that in
detecting large shifts. It would be interesting to study the
application of variable warning limits to the other
adaptive control charts.
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We propose penalized minimum ¢-divergence estimator for parameter estimation and variable selection in
logistic regression. Using an appropriate penalty function, we show that penalized ¢-divergence estimator
has oracle property. With probability tending to 1, penalized ¢-divergence estimator identifies the true
model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known
in advance. The advantage of penalized ¢-divergence estimator is that it produces estimates of nonzero
parameters efficiently than penalized maximum likelihood estimator when sample size is small and is
equivalent to it for large one. Numerical simulations confirm our findings.

Keywords: ¢-divergence; logistic regression; penalized MLE; SCAD; variable selection

1. Introduction

Logistic regression is one of the widely used generalized linear models (GLM) to describe the
binary data. In logistic regression model, inference is done based on but not limited to likelihood.
Minimum divergence estimators or minimum distance estimators are also used to model the
discrete data [24]. Read and Cressie [25] and Pardo [22] outline the use and importance of the
¢-divergence measures in Statistics. Minimum ¢-divergence estimator [20] in logistic regression
emerged as an attractive alternative to maximum likelihood estimator (MLE) when sample size is
small. Based on this fact, Pardo and Pardo [21] introduced a method for variable selection using
¢-divergence statistic. This method is a two-stage method which requires fitting and testing of
several models to arrive at the best sub model.

It belongs to the broad class of sequential procedures for variable selection. It is well known
that such procedures are time consuming and costly. Methods which perform estimation as well
as variable selection simultaneously have become a good choice to overcome this difficulty.
Penalized regression has evolved as a powerful tool to solve the problem of estimation and variable
selection simultaneously. Anderson and Blair [4] introduced penalized logistic regression for the
first time. Bridge regression [13] and least absolute shrinkage selection operator (LASSO) [28]
are the members of class of penalized least-squares methods. /; type penalty of the LASSO has
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also found applications in logistic regression [14,26,27]. Fan and Li [11] extended the idea of
penalized least squares to likelihood-based models in various statistical contexts. They introduced
a penalty function called smoothly clipped absolute deviation penalty (SCAD).

In this article, we propose a penalized minimum ¢-divergence estimator to obtain estimates of
regression coefficients and simultaneous variable selection in logistic regression. We showed that
this estimator is consistent, asymptotic normal and possesses oracle property. We used SCAD for
the purpose of penalization. Our simulation study indicates that the proposed estimator performs
better than SCAD penalized MLE.

The remaining article is organized as follows. Section 2 describes ¢-divergence estimation
in logistic regression. In Section 3, penalized minimum ¢-divergence estimator is defined. Its
sampling properties are also described in this section. Section 4 deals with simulation study to
compare the performance of proposed method with existing ones. A real data application is also
provided. This article ends with discussion in Section 5.

2. ¢-divergence estimation in logistic regression

Let Z be a response binary random variable taking value 1 or 0, generally referred to as ‘success’
or “failure’, respectively. Let k explanatory variables x € R¥ are observed along with the response
variable. w(x) = P(Z = 1|x € R¥) represents the conditional probability, of the value 1 given
x € R*, Let X be the N x (k + 1) matrix with rows x; = (x;0, Xi1, ..., %), i = 1,...,N where,
xi0 = 1,Vi. The logistic regression model is defined by the conditional probability

e 5 )
1+ exp {,30 + ZJ/-CZI ,Bjxij} .

T(x;) =

(D

For more discussion on logistic regression see Hosmer and Lemeshow [17] and Agresti [1].

In laboratory or controlled setting, many individuals share same values for their explanatory
variables. In other words, for each value of the explanatory variables there are several observed
values of the random variable Z. Our focus is on this situation. The notations described earlier
are required to be changed slightly. For this, we follow the notations used in [20]. Let there be
I distinct values of x; = (X0, Xi1,...,Xik), i = 1,2,...,1. We assume that for each x; we have
a binomial random variable Y; = Z;‘;l Z; with parameters n; and 7 (x;). The values n;q,...,n;
are the observed values of the random variables Y1, . . ., Y}, representing the number of successes
in ny, ..., n; trials respectively when the explanatory variables are fixed. This divides the entire
sample of size N into I subgroups each of size n; so that N = le.zl n;. Since, Z!s are independent,
Y!s are also independent. Thus, the likelihood function for the logistic regression model is given by

I
n; n; n;—n;
Lo B0 =] (n ) 7B (1 — w (T B, @)
i1 il
The MLE, /} is obtained by maximizing almost surely over

®:{ﬂ=(ﬂ05"'9:3k):_oo<,3j<Oo,j=0,...,k},

the likelihood function given in Equation (2).
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For simplicity, we denote by ;) = 7r(x,-T Bandmp=1-— 7r(xiT B),n» = n; — n;1. To maximize
(2) is equivalent to minimize the Kullback divergence measure between the probability vectors

ny np ny nl2)T

A A A A A T_ wll e Ml e
p = Pu,P12,---,01,Pn2) <N’N’”"N’N

and

T
PB = Pu(B.pr@).....n(BpB)" = (muT M) )

MLE for the GLM parameter 8 can be defined by

A

B =arg fglicf)l Dxuitback @-P(B)), “4)

where the Kullback divergence measure is given by Kullback [19]

2 «
N N Pij
Dxuttback (B = 2 A
Kullback (@>P(B)) ZZPJ 0g (Pij(ﬂ))

j=1 i=1

This measure is a particular case of the ¢-divergence defined by Csiszar [8] and Ali and
Silvey [2],

2 1 A
Dy@.p(B) =YD pyi(B)p (pf’ (”ﬂ)) ; ed, )
i

where @ is the class of all convex functions ¢ (), t > 0 and twice differentiable at t = 1, such
that ¢ (1) = ¢'(1) = 0,¢"(1) > 0 and at t = 0,0¢(0/0) = 0 and 0¢ (p/0) = plim,_ o, ¢ (1) /u.
For details, see Vajda [29] and Pardo [22].

Cressie and Read [7] introduced an important family of ¢-divergences called as the power
divergence family,

j=1 i=1

G (1) = RO+ 1) =0 A #E0, A #E 1,
go(1) = lim (1) = 1 log(t) — 1+ 1, (6)

¢-1(1) = lim (1) = —log(®) —r — 1.
It is interesting to note that

Dy, (0.p(B)) = Dxuiback @, (B)). (7

That is, for A = 0, minimum power divergence estimator coincides to MLE. Use of power
divergence family in the log linear models has produced good results [6,23].
The minimum ¢-divergence estimator [20] is given by

B, = arg min Dy (p.p(B))- (8)

To obtain a natural extension of the penalized MLE for a logistic regression model, in this article,
we penalize the minimum ¢-divergence estimator using appropriate penalty. The SCAD penalty
proposed by Fan and Li [11] possesses attractive properties like asymptotic unbiasedness, sparsity
and oracle property. Also, use of the SCAD penalty has yielded better performance with diverging
number of parameters [12], penalized support vector machines [32], high dimensional linear
regression models [18] and partially linear models [31]. Hence, we consider SCAD penalty for
the purpose of penalization in the next section.
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3. Penalized minimum ¢-divergence estimator and variable selection

In GLM, likelihood-based inference is most common. Consider a data on response variable and
covariates {(Y;,x;)} are collected independently. Let f,-(g(xiT B),y:), be the conditional density of
Y; given x;, where g is a known link function. Denote /; = log f;, the conditional log likelihood of
Y;. Then the penalized likelihood is

1 k
> Lg&"B).y) =N Y _J(BD). ©)

i=1 j=1

where J; is the penalty function and 7 is the tuning parameter.
Maximizing (9) is equivalent to minimizing

1 k
=Y LB YN +NY T8 (10)

i=1 j=1

with respect to 8. Penalized MLE of § is obtained by minimizing (10) with respect to 8 for some
thresholding parameter t. Fan and Li [11] demonstrated that the good results can be obtained
when SCAD penalty is used in Equation (10). SCAD penalty is continuous and differentiable and
is defined by its derivative
, (at —0)4
J.0)=r1 1(957:)+W1(9>T) forsomea >2 and 6 > 0. (11
a— 1)t
For simultaneous parameter estimation and variable selection in logistic regression, we define
the penalized minimum ¢-divergence estimator as follows.

DEFINITION 3.1  Penalized minimum ¢-divergence estimate of B is that value of B for which

k
Q(B) =Dy(p.p(B) +N Y _J- (1B (12)

j=1

is minimum. As penalization by SCAD results in an estimator with good properties, we use SCAD
in Equation (12).

For brevity, we call the resulting estimator as ¢ SCAD estimator in the further discussion. In
the following subsection we establish some asymptotic properties of the proposed estimator.

3.1 Sampling properties and oracle properties

Assume that X matrix is standardized. Let the parameter vector f be partitioned as B =
Bi,.... BT = (ﬂlT,ﬁg)T. Similarly, true value of B that is B, can be partitioned as B, =
(Bi0» - - - Bro)T = (B1p» Bay) - Without loss of generality, assume that B, = 0. Let I(8,) denotes
the Fisher information matrix and /;(B,y,0) be the Fisher information knowing f,, = 0. Let
Y1,...,Y; be independent binomial variates with parameters n; and ;. Since, minimizing (12)
is equivalent to maximize

k
M (B) = —Dy(p.p (B)) =N D _ (I8, 13)

j=1

we state our theorems based on maximization of M ().
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THEOREM 1 Let ¢(t) € . If max{J;N(| Biol) : Bjo # 0} — 0O then there exists a local maximizer
B of M(B) such that | B — Byll = Op(N~"/2 + ay).

Proof Let ay = N~'/? 4+ ay. To prove Theorem 1, it is equivalent to show that for any given
& > 0, there exists a large constant C such that

P ( Sup M(By + ayu) < M(ﬂ0)> >1—e¢. (14)
lul|=C

That is, there exists a local maximum in the ball {8, + ay u : |lu|| < C} with probability at

least 1 — ¢. Hence, a local maximizer exists such that || — Byl = Op (an).
Since, J;,, (0) = 0, we have

Wy () = M(By + ayu) — M(B),

< —Dy(P.p(By + anw)) + Dy (p.p(By)) — N Z oy (B0 + anujl) — Jz, (I1BjoD)}
j=1

where s is the number of components of B,y. Let VD, (@,p(B,)) be the gradient vector of
Dy, (P,p(By)). Using the Taylor expansion of the phi divergence measure,

1
Wi (@) < —ayVDy(p,p(By)) 'u — S 1(ByuNay {1+ 0p(1)}
— Nay S (Vo (1BoDsign(Bolu + NaZ V2I (B {1+ Op(1)). (15
j=1

Note that N’1/2VD¢(ﬁ,p(ﬂ0)) = Op(1). Thus, the first term on the right-hand side of
Equation (15) is of the order Op(N'/?ay). Second term dominates the first term uniformly in
llu|| = C, for sufficiently large C. The third term in Equation (15) is bounded by Fan and Li [11]

VsNayay |lull + Noiy max{| V2., (1BjoD)| : Bjo # O}l

This is also dominated by the second term of Equation (15). Hence, by choosing a sufficiently
large C, Equation (14) holds. Hence, the theorem is proved. |

Thus, by choosing a proper ty, there exists aroot-N consistent penalized minimum ¢-divergence
estimator. We now show that this estimator possess the sparsity property 8, = 0 which is stated
as follows.

THEOREM 2 Let ¢ (t) € ®. Assume that

limy_, « inf limg_, o4 inf J7 _(6)

(16)
N

If ty — 0 and /Nty — 00 as N — 00, then with probability tending to 1, for any given B
satisfying ||B; — Bioll = Op(N~/?) and any constant C,

()} = i R
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Proof To prove Theorem 2, it is sufficient to show that for some small ey = CN~'/2, with
probability tending to 1 as N — oo, for any B, satisfying ||, — B0l = Op(N~'/?) and

M (B)
<0 for0< B <en
0p; s j=s+1,.. k. (17)
>0 for —ey < B <0
Using Taylor’s series expansion, we have
IM(B)  IDy@.pB)

0B 98, NI, (1Bj])sign(B))

0D (P (By) | x~ 9Dy (p.p(By)
=— + —
% ; pop PO

93Dy (p.p(B") o
,Z.mzi - gg’ﬁl’g ﬂﬂ (B — Bo) (Be — Bro) — NI, (1B Dsign(By),

where B* lies between B and B,. Note that, (1/N)(dDy(,p(By))/3B;) = Op(N~'/?). By the
assumption that |8, — Bl = Op(N~'/?), we have

IM(B)
B

1 N2
=Nty {——J;N(|;3j|)sign(,3j) + Op ( >} .
N T

N

Whereas, limy_, o inf limg_o1 inf J. (8)/7y > 0and N~'/2/zy — 0, the sign of the derivative
is completely determined by that of ;. Hence, Equation (17) holds. ]

In the following theorem, we establish the oracle property of the proposed estimator. Denote

T = diag(/;, (1B1oDs - - T (IBD} and b = (I, (IBioDsign(Bio)s - -, Iy, (1B Dsign(Beo))T,
where, s is the number of components of 8.

THEOREM 3 (Oracle Property) Let ¢ (t) € ®. Assume that the penalty function J., (| Bjol) satisfies
the condition in Equation (16). If vy — 0 and Nty — 00 as N — oo, then with probability

tending to 1, the root-N consistent local maximizers 8 = (f; ! ) in Theorem 1 must satisfy:
2

(a) Sparsity: Bz =0
(b) Asymptotic Normality:
VN (Big) + 2By = Bio + (1(Bro) + )b} > N{0, L1(By0))
in distribution, where I (B10) = 11 (B9, 0) is the Fisher information knowing B, = 0.
Proof The proof of the part (a) follows from Theorem 2. Now we prove part (b). The minimum

¢-divergence estimator satisfies the best asymptotic normal (BAN) decomposition and is the BAN
estimator of B [20]. It means that the asymptotic behavior of minimum ¢-divergence estimator is
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same as that of MLE irrespective of the choice of the function ¢. Following the same steps of the
proof of Theorem 2 in Fan and Li [11], using Slutsky’s theorem, it is easy to verify that,

VNI (Br) + S)B) — Bro + (i(By) + =)7'b} — N0, I;(Byo))

in distribution. [ |

As a consequence, the asymptotic covariance matrix of ﬁ, is
(1/N) 1 (B1p) + =)' 11 (B19) U1 (B10) + T)~" which approximately equals (1/N)I;" (8,0) for
the SCAD penalty if ty tends to 0.

3.2 Algorithm

Since, Equation (5) is continuous and twice differentiable with respect to B, minimizing
Dy ([J, P (/3)) in respect to B is not a difficult task. This can be done using Newton—Raphson

. A+l . ~ (1)
method and the (r + 1) step estimate, ﬁ¢ , is obtained from /3¢ as

AFD A () NO . n; NO)
By =B, -G (ﬂ¢ ) X"Diag ((ﬁni(f)ng)>i=1 1) T (ﬂ¢ ),

.....

na ny o may n—nq n—ny o n—nq
0= (¢ (i) i (i) ¢ i) a=mi® (=)
m(B) m(B) " \m(B) n—m(p) n—m()" \n—m(B)
being n = (ny,...,n)", nqy = (i, ...,nn)" and m(B) = (mmyy,...,nm)T. For details see
Pardo et al. [20].
As the SCAD penalty is singular at the origin and does not have second-order derivative, it can
be locally approximated by a quadratic function [11] as follows. Suppose that an initial value 8°

is close to the minimizer of Equation (12). If ,Bjo is very close to 0, then set ,8;) = (. Otherwise, it
can be locally approximated by a quadratic function as

e LD
T (B ~ J- (18] |)+5: 7

} ((B)* — (B for B ~ BY. (18)
Thus, Equation (12) can be locally approximated by

1
O(B) ~ Dy (p.p(B)) + ENﬂTzf(ﬁ‘))ﬂ, (19)

..... A (141
Newton—-Raphson procedure can be applied and the (¢ 4+ 1) step estimate, ﬂ(H— ), is obtained

~(1)
from B~ as

NCON

B =8 — Py p.pB") + N2 BN (VDo) + NU.BT)).  20)

~ ~ (1) . A (1)
where VD, (. p(B )):XTDlag(«ni/N)n}{)nf;)),-(:l,...,,>T(ﬂ )
NORY

~ A (1) ~ (1) ~ (1) () . . .
V2D¢ @.pB ) =GB HYandU.(B ') = Z.(B )P .Theiterations are terminated when the
Euclidean distance between estimates of two successive iterations is smaller than some threshold.
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We used 1078 as the threshold value for termination of iterations. When the iterations are stopped,
nonzero elements of B approximately satisfy

9Dy (p.p(B))

%5, + NJ,(IB;)sign(B)) = 0.

3.3 Selection of thresholding parameters

The thresholding parameter t plays a vital role in the performance of a procedure based on
penalized loss function. If it is not appropriately chosen, the estimates become unstable. Use of
cross validation to choose T was the first choice to many researchers. Generalized cross validation
(GCV) was used by Tibshirani [28] and Fan and Li [11] for this purpose. Fan and Li [11] also used
V-fold cross validation but found results similar to that of GCV. Later, Wang et al. [30] showed
that GCV is not consistent for selecting T in SCAD. They proposed a consistent criterion based
on information called Generalized information criterion of which Akaike information criterion
and Bayes information criterion (BIC) are particular cases. Their simulation study established
that BIC is a better selector. It is defined as

1
BIC(r) =+ D(y; i)+ dfrlog(N) 2y

where fi, is penalized MLE of g when threshold parameter is T and D (y; ﬁ,r) is the model

deviance. df; denotes number of nonzero components in /Air.

We used the BIC defined in Equation (21) but replaced fi, by the penalized minimum
¢-divergence estimate of u when threshold parameter is t. Since, the form of this new selec-
tor is same as that of BIC, we call it as the BIC type selector. Our simulation study presented in
the next section indicates that T chosen using BIC type selector gives good results. This motivates
us to use this criterion to choose tuning parameter t in ¢ SCAD.

4. Simulation study

This section is divided into three subsections. In the first subsection, we present the results of
simulation study performed to choose the value of A. A real-life application of the proposed method
for illustrative purpose is given in the second subsection. In the third subsection, we compare the
performance of proposed method with SCAD using simulation.

4.1 Selection of A

In the simulation study of Pardo et al. [20], L = £ emerged as a good choice for A in the minimum
¢-divergence estimator. The performance of ¢ SCAD also depends on the choice of 1. Hence, it
should be carefully chosen. To select the value of A, we perform the simulation study similar to
the one in [20].

Consider the Binomial regression model in which response Y; has binomial distribution
with parameters n; and 7 (x;) and 7 (x;) = exp{Bo + Z _1 Bixij}/ (1 + exp{Bo + ZJ | ﬂjx,]}) The
observations on the predictor variables are given in Table 1. The number of distinct x;’s in this
example is / = 20. A correlation of 0.5 was introduced in first two predictors. The response Y; fol-
low binomial (n;,  (x;)) and 7 (x;) is as defined above with 8 = (3,1.5,—2,0,0,0)T for Model I
and B = (1.5,—1.5,1.5,2,—-2,1.5)T for Model II. We simulated Models I and II, 500 times for
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Table 1. The values of x;; in Example 1.

Xil Xi2 Xi3 Xi4 Xi5 Xil Xi2 Xi3 Xi4 Xi5

0.8451  2.4896  0.4009 —0.136 —1.9752 —1.8927 —-0.3368 0979 —1.0472 —0.4425
—0.7435  0.6849  0.0697 —-0.6224  0.4119 —-0.699 —0.7438 0351 —1.9229 -0.4719
0.1647 1.1647 —1.6608 —0.8612 —1.3012 1.3177 —1.3967 0.3339 —1.1499 —0.5843
—0.4278 —0.9471 0.0422 23386 —0.626 —0.9127 041 —0.5538  0.4145 —0.1557
0.3517 —0.4363 —0.5924 1.5747 0.5404 0.9559 0.2141 1.5588 0.4653 —0.1186
—0.4791 —-0.2663 —0.7643  0.3917 1.1794  0.1867 —0.0012  0.2194 0.5182  0.8995
0.523 0.9216 —-0.9703 —0.9815 —1.6545 1.3932 —1.1858 —0.4565 0.0075  1.8205
0.7523 —0.271 —-0.2461 —0.6377 1.4705 —1.7296 0.9468 1.9457 0.283 0.4275
1.6461  0.5777 —1.9543 —-0.0331 0.6814 —0.109 0.2732  0.113 —-0.2961 -0.4615
—0.1057 —1.8081 1.4955 0.8164 —0.2752 —1.0374 —0.2893 —0.3106  0.8783  0.6355

Table 2. MSE of nonzero coefficients based on 500 repetitions.

1 2
A -1 0 Z 1 2 3
Model 1

n! .1665 1462 1253 1577 .1780 .1897
n? 1667 1623 .1476 1854 .2000 2147
n .0998 .0953 .0805 .0808 1114 1218
nt .1199 1151 .0818 .1188 1214 1332
n 1264 1155 .0927 1207 .1298 .1403
Average 1358 12688 .1055 1326 1481 .1599
Model 11

nl 1539 1397 1295 .1360 1427 1588
n? 1773 1461 1351 1312 .1499 .1648
n .1160 .0827 0714 .0729 .0932 .1450
nt 1233 .1003 .0994 1067 1125 1219
n’ 1467 1223 1170 1194 1376 1515
Average 1434 1182 1104 1132 1271 1484

different values of n;’s as given below.

n':5,5,5,5,5,10,10,10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10.
n?:5,5,5,5,5,5,5,5,5,5,10, 10, 10, 10, 10, 10, 10, 10, 10, 10.
n*:5,5,5,5,5,15,15,15,15,15, 30,30, 30, 30, 30, 40, 40, 40, 40, 40.
n*:5,5,5,5,5,10,10, 10,10, 10, 15,15, 15, 15, 15, 20, 20, 20, 20, 20.

n’ : 10,10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10.

For brevity, we shall denote SCAD penalized MLE as SCAD here onwards. To compute ¢
SCAD estimates, we considered the power divergence measure given in Equation (6). We used
the value of a = 3.7 as suggested by Fan and Li [11] in SCAD penalty. The MSE of the (k + 1)
dimensional estimator will be a matrix. We call the trace of the MSE matrix as the total MSE
(TMSE). Here, we divide the TMSE by the number of nonzero parameters and denote it by MSE.
The MSE of ¢ SCAD for different values of X is reported in Table 2.

The simulation results in Table 2 clearly indicate that the choice of A = % yields smaller MSE.
This is not a surprise as this choice of A is supported by simulation studies in [6,20,21,25].
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Table 3. Frequency of zero estimates of zero coefficients for Model I based
on 500 repetitions.

1 2
A -1 0 2 1 2 3
n! B 485 487 490 491 493 495
B4 493 492 495 496 497 499
Bs 490 494 498 498 498 499
B 480 481 484 487 490 492
n? B4 491 493 497 496 498 498

Bs 488 493 497 498 498 499
B3 484 487 493 494 496 497

n’ Pa 493 495 499 499 499 499
Bs 490 496 499 499 499 499
B3 490 492 497 496 499 499

n* B4 493 495 498 497 500 500

Bs 491 494 497 496 500 500
B3 493 495 499 499 500 500
n Ba 494 495 499 499 500 500
Bs 490 495 497 499 500 500

Table 3 gives frequency of zero estimates of zero coefficients in the above example based on
500 repetitions. The frequency of zero estimates of zero coefficients for A = % is close to 500
based on 500 repetitions. This also supports our claim. For other choices of A, MSE is large,

however, frequency of zero estimates of zero coefficients is close to 500.

4.2 Real data application

We consider a real-life data [3, p. 171], used by Pardo and Pardo [21] to illustrate the variable
selection method based on minimum ¢-divergence estimator. The data consists of observations
on six objective indicators {X1, . .., X¢} of the actual indoor climate (predictors) in 10 classrooms
of a Danish Institute. The response variable is the number of yes-answers to the question whether
they felt that the indoor climate at the moment was pleasant or not so pleasant and the number of
students in each of the 10 classrooms is also reported.

We used MLE, minimum ¢-divergence estimator (A = %), ¢ SCAD (A = %) and SCAD to
estimate the regression coefficients. These are reported in Table 4. The method given in Pardo

Table 4. Parameter estimates for the real data.

Post variable Post variable ¢SCAD SCAD
Predictors MLE Mg DE?* selection M¢ DE selection MLE 1 =0.223 7 =0.19

Intercept 4.6563  7.1557 —10.0163 —11.1599 —10.8423 5.1934
X3 1.3204  1.2987 0.9516 1.0420 0.9516 1.3160
X —1.1412 —1.1523 —0.6442 —0.7026 —0.6441 —1.3950
X3 20.2955 19.2891 0.0000 0.0000 0.0000  19.1100
X4 1.4486  1.4237 0.8521 0.9496 0.8521 1.4350
X5 25.3047 25.2041 16.0221 17.5313 16.0227  24.9710
Xe —0.0705 —0.077 0.0000 0.0000 0.0000 —0.0715

4Minimum ¢-divergence estimator.
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Table 5. Simulation results for performance comparison.

Average number of

n Method correct zeroes TMSE MRME
n! ¢ SCAD 0.9819 0.8682 (1.2278)* 0.9072
SCAD 0.9875 1.5884 (4.0638) 0.9164
Oracle 1.0000 0.8292 (1.5944) 0.8324
n? ¢ SCAD 0.9900 1.4854 (1.2989) 0.8764
SCAD 0.9996 1.8369 (4.4443) 0.9152
Oracle 1.0000 0.9619 (1.7057) 0.8276
n’ ¢ SCAD 0.9858 0.3564 (0.2901) 0.8673
SCAD 0.9453 0.6402 (1.4743) 0.8910
Oracle 1.0000 0.2757 (0.7355) 0.8399
n* ¢ SCAD 0.9745 0.7249 (0.9075) 0.8609
SCAD 0.9815 1.2071 (5.5267) 0.8943
Oracle 1.0000 0.6303 (0.8754) 0.8536
nd ¢ SCAD 0.9889 0.3381 (0.3658) 0.8503
SCAD 0.9942 1.1983 (3.1253) 0.8891
Oracle 1.0000 0.2999 (0.4208) 0.8460

“Figures in parenthesis indicate corresponding standard deviation.

and Pardo [21] selects set of predictors {X;, X7, X4, X5} which coincides with that proposed by
Andersen [3]. We present the estimates corresponding to this set of predictors using minimum
¢-divergence estimator (A = %) and MLE in the columns 4 and 5, respectively of Table 4.

For these data, the SCAD fails to identify the correct set of predictors. ¢ SCAD selected the
same set of predictors proposed by Pardo and Pardo [21] and Andersen [3]. Also, estimates of
nonzero coefficients are very close to the one obtained using minimum ¢-divergence estimator
A= %) assuming that the predictors X3 and Xg are absent in the model.

4.3 Performance comparison

In this subsection, we compare the performance of ¢ SCAD with A = % and SCAD for different
combinations of n;’s. Sample size was fixed to 20. The predictors X 1,X2 and X3 were generated
from standard normal distribution such that the correlation between X; and X, is 0.5. The response
Y; follow binomial (n;, 7w (x;)) and 7 (x;) is as defined in Equation (1) with 8 = (3,1.5,0,2)T. We
simulated five different models 1000 times characterized by the values of n;’s mentioned in
Section 4.3.

We report the average number of correct zeroes, TMSE and median of relative model error
(MRME) in Table 5. Box plots of TMSE are presented in Figure 1.

MRME is computed relative to the model error of full model based on the unpenalized MLE.
Oracle estimate of 8 = (8o, B1, B2, B3)" is obtained by maximizing the likelihood assuming that
B2 =0.

The average TMSE of ¢ SCAD and SCAD, averaged over all the five models are 0.7546
and 1.2942, respectively. TMSE and MRME of ¢ SCAD are close to that of oracle estimator.
Moreover, both the methods give more or less same average number of zeroes.

5. Discussion

We proposed computation of ¢ SCAD using the Newton—Raphson method based on local quadratic
approximation of penalty function [11]. Even though this method is fast and efficient, it is very
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Figure 1. Box plot of TMSE (Example 3).

sensitive to starting points. Particularly, if Dy (@,p(B)) is very flat near its minimizer, Newton—
Raphson algorithm may not converge if starting values are not chosen properly. Such a case is very
rare in practice. We suggest the use of Expectation—-Maximization (EM) algorithm to avoid this
potential issue. The efficacy and usefulness of EM algorithm for penalized likelihood estimation
is proved by Green [15] and De Pierro [9].

We proposed the penalized ¢-divergence estimation using SCAD for simultaneous estimation
and variable selection in logistic regression. It is interesting to note that SCAD and ¢ SCAD iden-
tify number of zeroes efficiently. Our simulation study indicates that MRME of ¢ SCAD is less
than that of SCAD and is close to that of oracle estimator. It is evident that ¢ SCAD performs
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as well as if §,, = 0 were known. In the language of Donoho and Johnstone [10], the result-
ing estimator performs as well as the oracle estimator, which knows in advance that 8,;, = 0. ¢
SCAD estimates the nonzero parameters more efficiently than SCAD penalized MLE in MSE
sense. This makes ¢ SCAD an attractive alternative to penalized MLE when sample size is small
in logistic regression. Moreover, we theoretically showed that ¢ SCAD is equivalent to penalized
MLE asymptotically.

The minimum ¢-divergence estimation has also emerged as a good estimation procedure in
more complex models like log linear models with multinomial sampling scheme [5,6,23] and
polytomous logistic regression [16]. As per the suggestion of one of the referees, the ¢ SCAD can
also be extended to such models. The detail study of the properties and performance of ¢ SCAD
for more complex models like polytomous logistic regression or multinomial probit models can
constitute the material for a new research paper.
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Model selection is the most persuasive problem in generalized linear models. A model selection crite-
rion based on deviance called the deviance-based criterion (DBC) is proposed. The DBC is obtained by
penalizing the difference between the deviance of the fitted model and the full model. Under certain weak
conditions, DBC is shown to be a consistent model selection criterion in the sense that with probability
approaching to one, the selected model asymptotically equals the optimal model relating response and
predictors. Further, the use of DBC in link function selection is also discussed. We compare the proposed
model selection criterion with existing methods. The small sample efficiency of proposed model selection
criterion is evaluated by the simulation study.

Keywords: GLM; deviance; model selection; consistency; observed L, efficiency
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1. Introduction

Regression is the most widely used technique to model the relationship between a response vari-
able and predictors. Some of these predictors may be redundant in nature and are required to
be eliminated based on the observed data. Model selection plays an important role to identify
the necessary predictors which are related to the response variable. In classical regression, Mal-
lows’ [1] C, is one of the most widely used model selection criteria. AIC [2], AICc [3], BIC [4],
cAIC [5] and others [6,7] are some of the model selection criteria to be noted.

Nelder and Wedderburn [8] introduced the generalized linear model (GLM) as a unification of
linear and nonlinear regression models that incorporated a rich family of normal and non-normal
distributions for the response variable. The GLM is a powerful tool to model the relationship
between predictors and the function of the mean for continuous and discrete response variables. In
practice, the GLM is used to model the various kinds of data like clinical trials data, ecological data,
meteorological data, etc. Lawless and Singhal [9,10], Nordberg [11,12] and Hosmer et al. [13]
provided methods for model selection in the GLM. If the likelihood is specified, AIC is still
applicable. Qian et al. [14] proposed a model selection criterion in the class of the GLM based on
the predictive minimum description length principle and the theory of quasi likelihood known as
a predictive least quasi-deviance (PLQD) criterion. PLQD requires fitting of sequence of models
and is computationally complex. Recently, Hu and Shao [15] proposed a model selection criterion
based on adjusted R? which is consistent under weak conditions.

*Corresponding author. Email: dms.stats @ gmail.com

© 2012 Taylor & Francis
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In this article, we propose a deviance-based criterion (DBC) which penalizes the difference in
deviance of the fitted and the full model by complexity via the number of predictors in the model.
Deviance is familiar to investigators using the GLM as a modelling tool. Moreover, the DBC is
computationally simpler as compared to PLQD. Under certain weak conditions, minimizing the
DBC results in a consistent model selection in the sense that with the probability approaching
to one model selected is asymptotically equal to the optimal model which contains no redundant
variables.

The remaining article is organized as follows. Section 2 discusses the set up of the GLM and
describes models. We propose a DBC and establish its consistency for model selection in Section 3.
Use of the DBC for the link function selection is discussed in Section 4. The performance of the
DBC is evaluated by simulation study in Section 5. Also, it is compared with existing model
selection criteria. Section 6 presents some concluding remarks.

2. Generalized linear models
The GLM is defined via a link function

gu) =X, i=12,...,n, (1

where, g € RK is a vector of regression parameters, X; = (1, X,...,Xx—1) € RF and k < n. The
maximum-likelihood estimator (MLE) of § after using iteratively reweighted least squares at
convergence is

f=XvIx)y'x'vlg,

where, the superscript f denotes the estimate corresponding to the fitted model, X is an n x k
real matrix and V is an n x n diagonal matrix whose diagonal elements are v; = (d6;/du;)a(¢)
and z; = g(it;) + (v; — i;)(dg(w;)/du;). Following McCullagh and Nelder [16], the discrepancy
of the fitted GLM is twice the difference between the maximum log likelihood achievable in a
saturated model with n parameters L(y, ¢;y) and that achieved by the model under investigation
L(f1, ;). A saturated model has n parameters, one per observation, and y;’s derived from it match
the data exactly. The saturated model consigns all the variation in y;’s to the systematic component
leaving none for the random component. Denote of = 0(1) and 6 = 0(y), the estimates of the
location (canonical) parameters under the fitted model and the saturated model, respectively, and
we assume «;(¢) = ¢/w;. The discrepancy between the model under investigation and saturated
model is given by

> 2wilyi(6 — 6)) — @) +b@)) _ DGy, B
¢ 2

where, D(y, Bf ) is commonly known as the deviance of the fitted model.

In the GLM, the model selection involves identifying relevant predictors and link function. For
a GLM, we denote a model by M,,, where @ = oy U oy, o9 = {0} denotes intercept and «; denotes
a non-empty subset of {1,2, ...,k — 1}. The model M,, is defined as

8(Hia) = X o Ba, @)

where, X;, denotes the sub-vector of X; containing components indexed by «, 8, is a p,-vector
and p,, denotes cardinality of «.

Suppose, ay denote all necessary predictors. Following Shao [17], each candidate model can
be associated with one of the following two categories.
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(1) Class of wrong models M,, = {M,, : at least one necessary predictor is missing},i.e. My, =
My :ax € al.

(2) Class of correct models M, = {M,, : all necessary predictors are present}, i.e. M. = {M,, :
an C a}.

The models in M, are correct models and those in M, are the wrong models. There are more
than one correct models unless an = oo U {1,2, ...,k — 1}. The optimal model is M.

3. Model selection using DBC

The deviance is a function of the data only and is used to define a statistic for model selection.
Let D(y, 3) denote the deviance of the full model. If the difference in deviance of model M,
and full model D(y, ,éa) — D(y, ;é) is small, then the model M, can be regarded as good as the
full model for prediction. This cannot serve the purpose of the model selection criterion because
for the model M, such that o, D «, the difference is smaller than that for the model M,, and is
zero when « corresponds to the full model. Hence, it becomes difficult to identify the optimal
model. A good model selection criterion should take into account goodness of fit as well as the
complexity of the model [18]. A natural measure of the complexity of the model is the number of
parameters p,, involved in it. Therefore, we define a model selection criterion in the GLM based
on the penalized difference between deviance of model M, and the full model. The DBC can be
expressed as

DBC(M,) = bo. 'Ba)¢ DoAY _ (k = po) + C(n,pa), 3)
where ‘¢’ is the dispersion parameter and is usually known. If it is unknown, it is replaced by
its MLE.

Under normality of the response and C(n, p,) = ps, the criterion in Equation (3) is equivalent
to Mallows’ C;, (see Lemma 3.1 for the details). Minimum Mallows’ C;, is not a consistent model
selection criterion [ 19]. Its inconsistency is due to the constant penalty p, which does not increase
when the sample size is increased. It is necessary to consider a complexity measure C(n, p,) which
will make the criterion consistent.

Under criterion (3), those candidate models having better goodness of fit and smaller complexity
will be preferred than the others; and the best model will be the one achieving the smallest
DBC value.

In order to establish the consistency of DBC, we require the following condition. This condition
ensures that the wrong model is asymptotically worse than any correct model.

Condition 3.1 For M, € M, and M,,, € Mc,

lim inf({ + (py — pa,) + C(n,pa) — C(11,py,)) > 0
n—-oo

where, I = Y 2wiyi(Bia, — Oia) + b(0i0)} /-

If M,, is a wrong model, then the deviance of M, is larger than that of a correct model M,,.
Hence, quantity / is positive and large. Thus, the assumption in Condition 3.1 is reasonable.

The following theorem indicates that, if we choose a model by minimizing DBC over all possible
models, then asymptotically, the model selected by using DBC falls in the class of correct models.
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THEOREM 3.1 Under Condition 3.1, for any correct model My, € M and any wrong model M,,
we have,
lim inf Pr(DBC(M,) > DBC(M,,)) = 1.

n—-0o0

Proof The deviance of a model M,, can be expressed as
n
DG, Bo) = D 2wilyi(B; — 010,) — bB) + b(B))
i=1

+ Z 2wilyi (éi,a* — éi,a) + (b)) — b(éi,a*)}

i=1
=D(. fu.) + 1.
Therefore,
Pr(DBC(M,) — DBC(M,,) > 0) = Pr(I + (pu — pa) + C(1,pa) — C(n,ps.) > 0).
Hence,

lim inf Pr(DBC(M,) > DBC(M,))
n—-00

= lim inf Pr(/ + (poy = pa,) + C(1n,pa) — C(n, pa,) > 0)
n—-o0o

> PI‘( lim inf(l + (poz —Pa*) + C(”»pa) - C(”’Pa*) > 0))
n—oo
Using Condition 3.1, we have

lim inf Pr(DBC(M,) > DBC(M,,)) = 1. ]
It follows from the above theorem that with the probability approaching to one, value of the
DBC for a wrong model is larger than that for any correct model. Further, we state some lemmas.

LEmMMA 3.1 IfM,, is a correct model and n is large, (D(y, ,éa*) — D, 3))/¢ has an approxi-
mately chi-square distribution with k — p,, degrees of freedom (d.f.) [20].

Condition 3.2 C(n,py) = o(n) and C(n,p,) — 00 asn — o0.

Let M,, denote the model selected by using DBC when the sample size is n. Moreover, if
C(n, py) satisfies Condition 3.2, the following theorem indicates that our model selection criterion
is consistent.

THEOREM 3.2 Under Condition 3.2, with probability approaching to one, as n tends to infinity,
DBC selects the optimal model in the class of all correct models, i.e.

lim Pr(M, = M,,) = 1.
n—-0o0

Proof In the light of Theorem 3.1, for large n model selected by the DBC falls in the class of
correct models. Therefore, we shall confine ourselves to the class of correct models only. For a
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correct model M, € Mc,
Pr(DBC(M,.) > DBC(M,,))
b (D(y, Ba) = DO, By

¢

_p (D(y,éau—D(y,ﬁag
= Pr ¢

> (paN _pa*) + C(n’paN) - C(”vPou))

< (pa* _paN) + C(’Lpa*) - C(H,PaN)>

Since, C(n,py) — 00 as n — 00 and p,, > pg, for any correct model M,, € Mc, and by
Lemma 3.1 we have,
lim Pr(DBC(M,,) > DBC(M,,)) = Pr(xf,, ey <00) =1
n—o00 oy —Pay
This indicates that, with probability approaching to one, asymptotically value of DBC for the
optimal model is the smallest in the class of all correct models. Moreover, the DBC selects that
model for which its value is minimum among all possible models.
Therefore,

lim Pr(M, = M,,) = 1. |

n—0o0

This proves that, DBC is a consistent model selection criterion.
LemmA 3.2 If M, is a correct model then E(DBC) = C(n, py).

Proof According to Lemma 3.1, distribution of the first term in Equation (3) is approximately
chi-square with k — p,, d.f., we have

E(DBC) = (k — py) — (k — po) + C(n,py)
= C(n’pa)' |

LemMA 3.3 If C(n,py) = po and distribution of response is normal then DBC and Mallows’ C,,
are equivalent.

Proof LetY,Ys,...,Y, be independent N (i;, o?).
Then, D(y, B) = RSS, D(y, B.) = RSS,, and ¢ = o>
Therefore,

RSS,, —RSS
DBC(M,) = ———=% — (k= 2pu).

Since, o2 is unkown, replace it by its OLS estimator 6> = RSS;/n — k.

Thus, we have

RSS
P — (n—2py) = C,.

DBC(M,) = —
o

Remark 3.1 The term k — p,, is included in Equation (3) because for the optimal and full model,
the expectation E((D(y, léow) — D(y, ,é)) /¢ — (k — py)) = 0 with equality for the full model and
E((D(y, ,éaN) — D(y,,é))/d: — (k — pg)) > 0, otherwise. Also, complexity of the full model is
larger than that of the optimal model. This indicates that the value of the DBC is small for the
optimal model. This helps to identify the optimal model easily.
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It is evident that the DBC belongs to the class of likelihood-based model selection criteria of
which AIC and BIC are widely used. They are defined as follows:

AIC(My) = —2L (e $53) + 2pas 4)
BIC(M,) = —2L(fiq, $3y) + po log(n). 5)

AIC is an efficient model selection criterion [21]. It has been shown that AIC is not consis-
tent [15]. BIC is a consistent model selection criteriorl [19]. A recently proposed consistent model
selection criterion based on modified adjusted R? is R? [15]. It is defined as

n—1 Y7 i — flia)?
n — ApDe Z?:l(yi _)_7)2 ’

where, [1;, is obtained by maximizing the quasi-likelihood of the model M, and A, is a penalty
term satisfying Condition 3.2. The simulation study in [15] reveals that R? performs better than
PLQD, AIC, AICc and is compatible with BIC. They used A, = logn and A, = /n for the
simulation purpose.

Model selection in the GLM involves identification of relevant predictors and a selection of
the link function. We discussed the identification of relevant predictors, using the DBC when the
link function is known in this section. In the next section, the use of the DBC for model selection
when the true link function is unknown but belongs to a parametric family is discussed.

RPM,) =1-— (6)

4. Model selection with parametric link function

When the true link function is known, the DBC defined in Equation (3) can be used as it is
for model selection. If the link function is unknown and is to be selected from a finite set G of
continuous monotone link functions, the DBC in Equation (3) cannot be used as it is because of
the presence of deviance of the full model in it. When there are more than one candidate link
functions, if the deviance of the full model is based on a respective link to compute the DBC for all
possible models corresponding to each link function, then it may happen that the minimum DBC
corresponds to a wrong model (in the sense of incorrect link as well as predictors). This can be
overcome by initial screening of all the candidate link functions using deviance. Let g € G, be one
of the finitely many link functions in G and M$ be the GLM defined in Equation (2) when the link
function is g. Denote the mean of the response of model M} by 1§ and the regression parameter
by /3§ . Then the DBC for model selection when the link function is unknown is defined as
pey pet
DBC(M{) = Db ) ¢D(y’ﬁ ) (k = pa) + C(n, po), (N

where D(y, ,3g ) is the deviance of the full model corresponding to the link function g* € G such that

min D(y, B%) = D(y, B*")
8€g

The problem of parametric link selection is addressed by Pregibon [22] and later by Czado [23],
Czado and Munk [24] and Hu and Shao [15]. Pregibon [22] proposed a test for checking whether
a modification to the hypothetical link function is necessary or not. This test is based on the
reduction in deviance of the model when the modified link is used and if it is significant, then
it is necessary to modify the hypothetical link. Moreover, he emphasized that this is the first
logical step towards optimal link identification. The notion behind using the term D(y, ég*) in
Equation (7) follows from this.
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Table 1. Penalty functions.

Sr. No. Penalty function C(n, py)
1 Py =py
2 Py =2py

2 1 2
3 Py =2y + 2Pt DO +2)

n—py—2
P4 = pe log(n)

5 Ps = py(log(n) + 1)

Further, the first term in Equation (7) is always positive. Theorems 3.1 and 3.2 proved for DBC
in Equation (3) can also be proved for DBC defined in Equation (7) on the similar lines. Hence,
the consistency property of DBC for optimal model selection can be established when the link
function is to be selected from G.

The performance of DBC for the link function selection in the GLM is evaluated and compared
with existing methods using simulation and the results are presented in Part C of the next section.

5. Simulation results

In this section, we present the results of the simulation study. The study is divided into three parts.
In part (A), two examples are discussed. Example 5.1 uses the data given in [14] to compare the
performance of DBC with some existing model selection criteria. In Example 5.2, simulated data
are used to examine and compare the performance of DBC. Part (B) presents the small sample
observed L, efficiency of DBC, R2, AIC and BIC. In Part (C), we report the findings of the
performance study of various model selection criteria for the link function selection. At the end,
we discuss the choice of the penalty function in DBC. In the entire simulation study, we use five
different penalty functions which appear in the literature and are presented in Table 1.

(A) Performance and comparison study

Example 5.1 We consider a Poisson regression model where response Y follows the Poisson dis-
tribution with mean p and log(w) = By + B1X1 + B2X> + B3X3. The same design matrix (n = 36)

Table 2. Probabilities of selecting each model (n = 36).

DBC R%, R?,

,3 Model P1 Pz P3 P4 P5 )»,l = log(n) )\,,, = \/H BIC
{2,1,0,0}2 {0,1}{Mq, } 0.703 0.827 0872 0922 0.972 0.764 0.881 0.868
{0,1,2}° 0.141  0.088 0.068 0.042 0.018 0.104 0.055 0.072
{0,1,3} 0.130  0.078 0.058 0.036 0.010 0.103 0.56 0.059
{0,1,2,3} 0.026 0.007 0.002 0 0 0.029 0.008 0.001

{2,1,0.5,0.35} {0,1} 0 0.001  0.003 0.003 0.009 0 0 0
{0,1,2} 0.050 0.081 0.112 0.164 0.276 0.055 0.092 0.093
{0,1,3} 0 0.004  0.003 0.008 0.028 0.004 0.008 0.007
{0,1,2,3}{My,} 0950 0914 0.882 0.825 0.687 0.941 0.900 0.900
{2,3,0,0.1} {0,1} 0.381 0510 0.580 0.675 0.808 0.312 0.399 0.596
{0,1,2} 0.059 0.039 0.032 0.022 0.012 0.092 0.085 0.040
{0,1,3} {Moy} 0480 0418 0370 0.292 0.176 0.440 0.420 0.342
{0,1,2,3} 0.080 0.033 0.018 0.011 0.004 0.156 0.096 0.022

*i,j, ...} denote {Bo, B1, B2, B3}
b{i,j, ...} denote suffixes of {Xo, X}, X2, X3}.
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and parameter structure used for the purpose of simulation in [14] is used. Model selection using
DBC is carried out. Table 2 shows the probabilities of selecting models for three different 8’s
based on 1000 runs (values for BIC and R? are obtained from [15]).

In the first case, where predictors X, and X3 are redundant, performance of DBC with penalty Py
and Ps is better than BIC and R2. In the second case, where no predictor is redundant, performance
of DBC with penalty Py, is better than BIC and compatible with R2. This is obvious because a
smaller penalty will perform better when the full model itself is the optimal model. In the third
case, the parameter structure is very interesting. Predictor X, is redundant while X3 is near to
being redundant. DBC with P; and P>, BIC and R” select evenly the optimal model and the near
to optimal model (containing intercept and X; only). In this case, DBC (with P, to Ps) tend to select
the near to optimal model with higher probability than the optimal model, and the probability
being highest for Ps. Hu and Shao [15] used the same data to compare the performance of R?
with existing model selection criteria and found that it performs better than PLQD, AIC and AICc
and has a performance similar to that of BIC. The above simulation study indicates that DBC
performs better than R”.

Example 5.2 In this example, we assessed the performance of DBC and compared it with some
existing methods by counting the frequency of selecting the optimal model based on the simu-
lated data. Five response distributions namely normal, Poisson, Bernoulli, gamma and negative
binomial are considered in this study. Four sample sizes 100, 200, 400 and 500 are used. For
each response distribution, two different parameter structures are considered. These structures
consist of discrete and continuous predictors. Table 3 gives different parameter structures and link
functions corresponding to response distributions.

The design matrix X is of the order n x 6 with the first column as ones. The columns 2-6
consist of random numbers from Normal(0, 1), Uniform(0, 1), Poisson(1), Binomial(1, 0.4) and
Normal(0, 1) distributions, respectively. The GLM involves dispersion parameter ¢ which is to
be estimated from the data. In the GLM, ¢ plays a very important role. As the expression of
DBC involves ¢, its performance may differ for different values of ¢. The theoretical value of
¢ for Poisson and Bernoulli is one. Value of ¢ other than one cannot be used for the simulation
in case of these distributions. Therefore, we considered ¢ = 1 for the simulation from Poisson
and Bernoulli response models. For normal, gamma and negative binomial distribution, we con-
sidered four different values of ¢ for the simulation. We used MLE of ¢ in DBC, AIC and BIC.
Tables 4—6 present the frequency of selecting optimal model by DBC, R, AIC and BIC over 1000
realizations for model I and II when the distribution of response is normal, gamma and negative
binomial, respectively. The frequency count of the optimal model selection by various criteria
when distribution of response is Poisson and Bernoulli are reported in Table 7.

Table 3. Parameter structure and link functions.

Distribution of response Model no. Parameter structure Link function
Normal 1 g(u) =145X1 +5X> Identity
I g(w) =145X1 +5X2 + 5X3
Poisson 1 g =1+X2+X3 Log
o g(uw) =1+X; +2Xy
Bernoulli 1 guw)=24+X1+X2+X3 Logit
I g(w)=14+X; —2X3
Gamma I g(w) =14+ 15X; + 15X, Log
)il g(pw) = 145X, —5X + 5X3
Negative binomial 1 g(u) =154+ 15X —1.5X, Log

II g(w) = 0.5+ 1.5X; — 2X3
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Table 4. Frequency count of optimal model selection when response distribution is normal.

DBC R?
) n Py P, Ps Py Ps An =logn I = A/10 AIC BIC
Model I
0.5 100 794 859 868 964 976 848 976 580 887
200 796 863 869 975 986 891 998 556 915
400 813 885 888 983 989 948 998 599 954
500 785 870 873 989 991 958 1000 568 969
1 100 810 875 886 970 984 861 979 594 908
200 795 879 883 983 990 915 995 581 934
400 809 894 903 987 992 958 1000 609 962
500 802 880 882 984 992 957 1000 590 965
2 100 812 881 888 967 980 853 973 579 897
200 813 880 882 984 989 921 995 576 940
400 779 862 865 991 994 945 1000 590 953
500 797 871 874 988 994 953 1000 601 960
4 100 791 864 874 958 977 850 974 585 886
200 799 878 883 980 984 900 998 596 923
400 794 876 883 982 993 947 1000 590 957
500 802 879 880 988 994 950 1000 600 959
Model II
0.5 100 831 886 901 970 983 885 974 709 922
200 830 894 903 980 987 934 997 684 949
400 845 903 906 991 997 972 1000 727 976
500 821 895 898 991 994 971 1000 704 973
1 100 840 910 919 981 987 899 976 712 937
200 815 904 906 982 988 934 997 690 951
400 813 888 890 984 992 967 1000 679 974
500 838 908 910 992 997 973 1000 720 977
2 100 855 914 927 973 982 897 976 701 937
200 810 898 905 982 988 931 995 682 952
400 853 920 925 994 998 968 1000 726 973
500 830 903 907 995 999 976 1000 696 983
4 100 829 903 911 975 986 890 983 701 927
200 825 906 914 982 991 942 997 696 953
400 831 911 918 992 997 973 1000 714 978
500 826 904 907 985 991 955 999 696 963

Note: Number of simulations for each combination is 1000.

It seems that, irrespective of values of ¢ and n considered, DBC with P4 and Ps5 and R? perform
equally and are better than AIC and BIC for the normal response distribution. Moreover, frequency
of the optimal model selection of each criterion for various values of ¢ is same for the respective
sample sizes in this case.

When the distribution of the response is gamma, for ¢ = 0.5, 1 and 2, DBC with P4 and Ps
perform better than R?, AIC and BIC, irrespective of the sample size. For ¢ = 4, DBC performs
better than R? and AIC for large sample sizes but its performance is lower than BIC. It means that
the value of ¢ plays a significant role in the performance of DBC for a gamma response.

Table 6 gives some interesting findings regarding the performance of various model selection
criteria in the GLM form of the negative binomial regression. DBC with P4 and Ps perform
better than AIC, BIC and R? irrespective of sample size and the values of ¢. However, for ¢ = 4,
performance of all model selection criteria is lower but that of DBC with P4 and Ps is moderate.

Table 7 presents the results of the performance study in the case of the Poisson and the Bernoulli
response distributions for ¢ = 1. For Poisson response distribution, all sample sizes considered,
the frequency of selecting the optimal model by DBC with P4 and Ps is larger than that for AIC,
BIC and R?. When the response distribution is Bernoulli, the DBC with P, and Ps perform better
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Table 5. Frequency count of optimal model selection when response distribution is gamma.

DBC R?
) n Py P, Ps Py Ps An = logn A = A/10 AIC BIC
Model I
0.5 100 625 796 818 960 981 206 275 596 890
200 651 824 838 975 988 235 325 627 943
400 619 796 799 986 992 213 359 592 961
500 640 799 803 986 994 203 360 620 966
1 100 653 812 839 964 980 224 298 610 907
200 656 806 817 980 992 215 326 627 939
400 684 840 844 991 996 222 377 649 967
500 644 822 828 984 989 193 351 604 957
2 100 692 817 838 931 945 184 253 638 896
200 723 856 864 983 990 205 302 658 932
400 707 856 859 989 990 189 349 651 963
500 714 864 873 995 999 183 333 653 966
4 100 235 278 282 307 312 217 259 555 695
200 338 407 408 454 455 205 265 581 788
400 527 629 631 704 706 231 332 637 894
500 576 663 665 740 744 204 301 649 900
Model IT
0.5 100 739 860 879 974 987 265 324 718 934
200 743 872 885 984 992 294 383 722 965
400 751 864 870 985 991 286 418 739 971
500 760 871 876 992 996 284 404 745 982
1 100 757 877 903 971 984 272 335 725 938
200 766 890 898 990 997 275 362 738 966
400 762 883 888 990 995 246 343 731 970
500 774 881 884 994 999 246 376 750 974
2 100 766 886 903 957 969 243 279 727 927
200 792 902 910 985 993 279 361 753 963
400 777 899 904 992 998 265 352 731 974
500 789 901 908 994 998 261 358 742 982
4 100 238 275 277 298 300 198 212 447 535
200 434 479 4383 514 514 253 303 623 738
400 630 703 705 748 748 215 302 723 877
500 675 758 762 813 814 232 332 730 909

Note: Number of simulations for each combination is 1000.

than AIC, BIC and R? for large n. In general, the DBC with P4 and Ps performs better than R?,
AIC and BIC.

(B) Observed L, efficiency

McQuarrie et al. [6] adopted the approach of Shibata [21] to define the observed L, efficiency and
used it to compare AIC, AICc, and AICu in classical regression. Following the same approach, we
define the observed L, efficiency of a model selection criterion in the GLM. Let M = M U M,,
be the class of all possible models and

Ly(My,) = AI};I/{IA Ly,(M),

where, Ly(M) = ||itay — fe||*/n. In addition, let Ms denote the model selected by the specific
model selection criterion. The observed L, efficiency of a model selection criterion in the GLM
is then defined as L,(M,,)/L,(Ms). The efficiency of a model selection criterion will be high if
it selects the model which best approximates the optimal model. Hence, a good model selection
criterion will select a model which yields high efficiency. As the correct model is asymptotically
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Table 6. Frequency count of optimal model selection when response distribution is negative binomial.

DBC R?
) n Py P, Ps Py Ps An =logn I = A/10 AIC BIC
Model I
0.5 100 681 785 803 868 861 112 187 320 418
200 688 801 810 958 966 99 228 202 359
400 688 809 816 966 974 84 242 86 216
500 736 824 829 973 978 92 270 56 132
1 100 600 667 676 661 624 96 161 239 325
200 654 760 771 903 891 108 188 147 259
400 705 806 808 948 956 90 241 52 131
500 668 778 779 931 940 86 228 44 100
2 100 454 498 498 425 371 70 99 174 186
200 568 666 674 688 652 82 157 121 195
400 659 752 759 872 871 96 182 42 80
500 613 731 734 911 921 87 211 34 67
4 100 279 303 306 242 224 83 103 115 84
200 406 457 460 446 416 80 135 82 69
400 469 566 571 658 644 86 151 26 31
500 504 619 620 758 759 83 187 13 21
Model II
0.5 100 489 624 656 849 889 107 194 658 869
200 536 675 689 888 922 111 225 536 796
400 569 682 689 911 940 73 220 388 689
500 593 709 713 925 948 90 248 368 642
1 100 491 627 647 833 879 93 164 528 793
200 539 670 681 865 892 100 208 444 720
400 573 694 698 904 924 82 226 318 607
500 553 688 692 897 920 78 260 278 569
2 100 476 611 631 809 853 91 168 500 750
200 512 618 632 832 860 93 204 371 676
400 484 595 603 834 856 84 259 243 532
500 537 632 635 867 898 83 250 202 474
4 100 392 504 536 720 761 96 125 450 643
200 433 544 554 769 803 103 200 342 635
400 476 568 571 814 847 99 248 223 492
500 462 563 566 815 847 91 262 204 430

Note: Number of simulations for each combination is 1000.

closest to the optimal model, according to McQuarrie et al. [6] observed L, efficiency can also
be used as a measure of consistency. Because the small sample efficiency of the proposed model
selection criterion is vital to be noted, we present the average L, efficiency and its standard
deviation (SD) for the sample size 50 and ¢ = 1 in Table 8.

In case of normal, binomial and gamma response distributions, the average L, efficiency of
DBC, R?, AIC and BIC are the same. For a negative binomial response distribution, average L,
efficiency of DBC is larger than that of R?. Moreover, DBC with P4 and Ps is compatible with AIC
and BIC in the sense of the average L, efficiency. In case of the Poisson response distribution, the
average L, efficiency of DBC is larger than that of R>. DBC with P4 and Ps have larger average
L, efficiency than that of AIC and BIC.

(C) Link function selection

We considered the same problem in Part A but added the selection of the link function from the
set G = {log(u), \/it}. This set-up was used by Hu and Shao [15] to demonstrate the use of R?
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Table 7. Frequency count of optimal model selection when response distribution is Poisson and Bernoulli.

o DBC R?
Distribution Sample
of response size” P Py Ps Py Ps An =logn I = A/10 AIC BIC
Poisson Model I
100 613 788 816 947 981 356 567 623 911
200 634 808 822 967 995 370 622 625 942
400 620 775 785 977 989 313 671 607 960
500 596 784 788 970 988 333 681 592 951
Model IT
100 652 806 821 948 983 369 557 624 908
200 608 773 783 970 989 390 669 580 934
400 624 789 795 976 994 388 775 603 958
500 623 764 771 982 992 385 782 592 959
Bernoulli Model I
100 494 511 523 400 346 483 331 545 423
200 581 677 689 712 665 683 506 642 731
400 623 766 771 925 922 867 768 675 929
500 634 788 800 969 969 910 813 705 971
Model IT
100 504 660 686 818 818 675 777 566 847
200 529 695 705 933 961 791 963 588 939
400 538 714 721 969 981 867 999 590 966
500 518 702 706 951 972 868 996 574 953

Note: Number of simulations for each combination is 1000.

for the link the function selection in the GLM. We performed the model selection when the link
function was unknown but a member of G. The results are given in Table 9.

Asindicated in Hu and Shao [15], R2, AIC and BIC were not able to distinguish between the two
link functions when 8 = {2, 1,0, 0} and n = 36. However, to some extent, the DBC with P4 and
Ps were able to do so. When the sample size is increased to 288 by generating eight independent
Poisson responses for each covariate value, all the criteria were able to identify the true link
function with a larger probability. We used one more parameter structure 8 = {2, 3,0, 0} and for
the sample size 288, all the criteria were able to identify the true link function with probability
one. Moreover, the DBC with P4 and Ps selected the optimal model with probability larger than
that of R?, AIC and BIC. Performance of all the criteria for B =1{2,1,0, 1.2} and sample size 36
is identical in the sense of optimal model selection to 8 = {2, 3,0, 0} and sample size 288. It is
interesting to note that DBC, R?, AIC and BIC have more or less the same performance for the
link function selection for different parameter structures and sample sizes considered.

5.1. Choice of penalty function C(n,p,)

DBC involves a penalty term C(n, p,) which plays a vital role in its performance. The choice of
C(n, py) is crucial and should be done carefully. The penalty functions given in Table 3 appear in
the existing model selection criteria. Py, P, and Pj are the part of those model selection criteria
which are not consistent. Consistency is a desirable property for any model selection criterion.
Therefore, C(n, py) should be chosen in such a way that DBC becomes consistent. It can be done
by opting for a C(n, p,) which satisfies Condition 3.2. The penalty functions P4 and Ps satisfy this
condition and are a good choice for C(n, p,) as revealed from the results of our simulation study. Of
course, P4 and Ps are not the only options for C(n, p,) and performance of DBC can be enhanced
when the optimal model is strongly identifiable by using C(n, p,) satisfying Condition 3.2 which
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Table 8. Average L, efficiency and its SD for DBC and R?(n = 50).

Distribution of response

Model selection Penalty
criteria functions Normal Poisson Binomial Gamma Negative binomial
Model I
DBC Py 0.972849 0.774015 0.352249 0.193805 0.741968
(0.019354)* (0.290175) (0.01253) (0.168298) (0.285569)
P, 0.961475 0.851873 0.344588 0.194187 0.764588
(0.026567) (0.250818) (0.140035) (0.168397) (0.281524)
Ps3 0.957265 0.877451 0.378643 0.194085 0.778043
(0.02984) (0.228507) (0.105468) (0.168223) (0.275755)
Py 0.945188 0.91378 0.375384 0.194657 0.759611
(0.038855) (0.19038) (0.112473) (0.168456) (0.287012)
Ps 0.939696 0.949129 0.378865 0.194603 0.736897
(0.043574) (0.129454) (0.100986) (0.169181) (0.297624)
R? Ap =logn 0.963576 0.711327 0.361127 0.233095 0.554319
(0.026336) (0.294101) (0.097766) (0.203662) (0.290255)
A= /n 0.947381 0.75532 0.371327 0.237309 0.560648
(0.038602) (0.28619) (0.103942) (0.208665) (0.296184)
AIC - 0.974995 0.7718 0.357816 0.194086 0.712637
(0.018244) (0.293903) (0.095089) (0.168411) (0.306414)
BIC - 0.955156 0.890916 0.371167 0.194581 0.646936
(0.032568) (0.217742) (0.102679) (0.168639) (0.326928)
Model IT
DBC Py 0.972803 0.754145 0.344879 0.966541 0.699728
(0.019495) (0.324749) (0.013547) (0.046558) (0.307471)
P, 0.961191 0.846499 0.344734 0.966732 0.753929
(0.026775) (0.28119) (0.131435) (0.045103) (0.300773)
P3 0.956416 0.877996 0.379378 0.966731 0.772348
(0.029703) (0.253003) (0.105532) (0.045104) (0.293737)
Py 0.945815 0.927001 0.376473 0.966747 0.821579
(0.036612) (0.198384) (0.114783) (0.045167) (0.269755)
Ps 0.940505 0.958527 0.378934 0.96676 0.844496
(0.039997) (0.133717) (0.101473) (0.045199) (0.253927)
R? An =logn 0.962823 0.627062 0.360543 0.967987 0.569977
(0.025697) (0.325587) (0.10423) (0.047582) (0.304165)
0= /N 0.948814 0.666999 0.368366 0.968089 0.585653
(0.03528) (0.329841) (0.109567) (0.047605) (0.309547)
AIC - 0.975469 0.747043 0.357199 0.966538 0.850013
(0.017958) (0.327994) (0.100016) (0.046554) (0.258175)
BIC - 0.954654 0.89822 0.36731 0.966723 0.888216
(0.031259) (0.235647) (0.107404) (0.045204) (0.215051)

“Figure in parenthesis indicates corresponding SD.

penalizes the difference in deviance of model M,, and the full model more than these can. See
McQuarrie et al. [6] for details on identifiability of a model.

6. Concluding remarks

We proposed a new model selection criterion based on deviance in the GLM which takes into
account goodness of fit as well as complexity of the model. The complexity of a model is quantified
by the penalty term C(n, p,). From the practical implementation point of view, C(n, p,) has to
be appropriately chosen. We studied the penalty functions given in Table 1 as typical choices of
penalty terms in the simulation study. It is quite evident that a larger penalty performs better when
the optimal model involves large number if redundant predictors. The simulation study reveals
that the DBC is an attractive alternative to the existing likelihood-based model selection criteria.
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Table 9. Probabilities of selecting each model.

DBC R?, R?,
Bandn Link Model P Py P3 Py Ps A =log(n) A, =+m AIC BIC
{2,1,0,0}  log(w) {0,1H{Myy} 0451 0547 057 0.605 0.625 0.489 0.56 0.467 0.584
n=236 {0, 1,2} 0.087 0.041 0.036 0.02 0.013 0.066 0.027  0.081 0.032
{0, 1, 3} 0.081 0.049 0.037 0.021 0.013 0.075 0.048  0.082 0.029
{0,1,2,3}  0.015 0.004 0.001 0 0 0.014 0.005  0.009 0.001
N/ {0, 1} 0.254 0.285 0302 0.317 0.326 0.287 0322 0252 0.306
{0,1,2} 0.047 0.031 0.023 0.014 0.01 0.03 0.017  0.045 0.021
{0, 1,3} 0.047 0.037 0.026 0.021 0.012 0.032 0.017 0.05 0.024
{0,1,2,3}  0.018 0.006 0.005 0.002 0.001 0.007 0.004  0.014 0.003
{2,1,0,0}  log(w) {0,14{My} 0591 0711 0.715 0.83 0.838 0.797 0.842 0592 0814
n =288 {0, 1,2} 0.122 0.06 0.058 0.006 0.003 0.017 0 0.119 0.015
{0, 1,3} 0.109 0.068 0.068 0.013 0.008 0.028 0.001  0.113 0.02
{0,1,2,3}  0.022 0.006 0.005 0 0 0 0 0.021  0.001
N/ {0, 1} 0.108 0.123 0.123 0.144 0.148 0.144 0.157 0.106 0.14
{0,1,2} 0.024 0.019 0.018 0.005 0.002 0.008 0 0.025 0.006
{0, 1,3} 0.018 0.012 0.012 0.002 0.001 0.006 0 0.018 0.004
{0,1,2,3}  0.006 0.001 0.001 0 0 0 0 0.006 0
{2,3,0,0}  log(n) {0,1}{Ms} 0.722 0.846 0.848 0.981 0.988 0.811 0.979  0.718 0.967
n =288 {0, 1,2} 0.12  0.066 0.066 0.01 0.008 0.096 0.011  0.125 0.014
{0, 1,3} 0.134 0.081 0.079 0.009 0.004 0.087 0.01 0.131 0.019
{0,1,2,3}  0.024 0.007 0.007 0 0 0.006 0 0.026 0
N/ {0, 1} 0 0 0 0 0 0 0 0 0
{0,1,2} 0 0 0 0 0 0 0 0 0
{0, 1,3} 0 0 0 0 0 0 0 0 0
{0,1,2,3} 0 0 0 0 0 0 0 0 0
{2,1,0,1.2} log(u) {0,1,2} 0 0 0 0 0 0 0 0 0
n=236 {0,1,3}{My,} 0.728 0.793 0.816 0.833 0.843 0.724 0.779  0.734 0.814
{0,1,2,3}  0.141 0.075 0.048 0.03 0.019 0.145 0.089  0.135 0.051
N/ {0, 1,2} 0 0 0 0 0 0 0 0 0
{0, 1, 3} 0.108 0.12 0.131 0.136 0.137 0.118 0.124  0.109 0.13
{0,1,2,3}  0.023 0.012 0.005 0.001 0.001 0.013 0.008  0.022 0.005
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This paper introduces a modified one-sample test of goodness-of-fit based on the cumulative distribu-
tion function. Damico [A new one-sample test for goodness-of-fit. Commun Stat — Theory Methods.
2004;33:181-193] proposed a test for testing goodness-of-fit of univariate distribution that uses the con-
cept of partitioning the probability range into n intervals of equal probability mass 1/n and verifies that
the hypothesized distribution evaluated at the observed data would place one case into each interval. The
present paper extends this notion by allowing for m intervals of probability mass r/n, where r > 1 and
n=mx r. A simulation study for small and moderate sample sizes demonstrates that the proposed test
for two observations per interval under various alternatives is more powerful than the test proposed by
Damico (2004).

Keywords: distribution-free; goodness-of-fit; greatest integer function; non-parametric test; one-
sample test

1. Introduction

Goodness-of-fit techniques are methods of examining how well a sample of data agrees with a
specified distribution as its population. In the formal framework of hypothesis testing, the null
hypothesis Hy is that a given random variable X follows a stated probability law F (x); the random
variable may come from a process which is under investigation. The goodness-of-fit techniques
applied to test Hy are based on measuring in some way the conformity of the sample data (a set
of x-values) to the hypothesized distribution, or equivalently, its discrepancy from it.

Some of the popular techniques discussed in literature for goodness-of-fit problem are: tests of
chi-squared type, test based on empirical distribution function; characteristic function; moment-
generating function, test based on regression, correlation, moments, test based on transformation
methods, etc. In the course of his Mathematical Contributions to the Theory of Evolution, Karl
Pearson abandoned the assumption that biological populations are normally distributed, introduc-
ing the Pearson system of distributions to provide other models. The need to test fit arose naturally
in this context, and in 1900 Pearson invented his chi-squared test. This test and others related to
it remain among the most used statistical procedures. Modern developments have increased the
flexibility of chi-squared test, especially when unknown parameters are to be estimated in the
hypothesized family. Log-likelihood ratio, Neymann modified chi-squared and Freeman-Tukey
test play classical role in chi-squared type test. The most well-known empirical distribution
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© 2013 Taylor & Francis
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function test is introduced by Kolmogorov—-Smirnov. For testing many distributional families,
Stephens [1] has given modifications for empirical distribution function statistics. A comprehen-
sive review of the theory of empirical distribution function tests is given in Durbin.[2] An extensive
review of literature on goodness-of-fit techniques is given in D’ Agostino and Stephens.[3] The
rest of the article is organized as follows.

In Section 2, we discuss the test due to Damico [4] and in Section 3 we propose a modified test
for goodness-of-fit. In Section 4, a Monte Carlo study is done to estimate power of the modified
test for various alternatives. Section 5 gives concluding remarks.

2. Test based on A-statistic

For testing goodness-of-fit of a completely specified univariate distribution, Damico [4] has
proposed a one-sample test for goodness-of-fit. The test is easy to describe and compute and
so is a useful teaching tool. Damico [4] uses a simple technique where one divides the probability
range into n intervals of equal probability mass 1/n, and verifies whether the hypothesized dis-
tribution evaluated at the observed data would place one observation into each interval. Consider
the problem of testing the following null hypothesis,

Ho: A random sample of n X-values comes from a completely specified distribution F(s).

The test statistic proposed by Damico [4] for testing Hy is

n
A= |Gif(nx F1) —il,
i=1
where Gif(e) is the greatest integer function and F is the cumulative distribution function.

Goodness-of-fit test based on A-statistic has been studied and simulated powers are given by
Damico.[4] In the following section, we extend Damico’s idea and obtain a modified test statistic.

3. Test based on T-statistic

While defining the A-statistic, Damico [4] assumes one observation from the sample to occur in
each of the nintervals under the null hypothesis. In the following, we have modified the A-statistic
by allowing for mintervals of probability massr /n, wherer > 1andn = m x r. Further, we verify
whether the hypothesized distribution evaluated at the observed data would place r observations
in each interval. To test Hp, we suggest the following modified test statistic:

T=) |S—rxKk|

k=1
where | - | is an absolute function. Also,

kr
S = Z Gifm*F(X;) +1), k=1,23,...,m
i=(k—1r+1

Itis clear that for r equal to one, the statistics T and Aare identical. The procedure of understanding
the modified test statistic is as follows:

(a) Arrange the given values in ascending order X1y, X2y, - - ., Xm)-
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(b) Compute F (X)) and Gif(mx F(X4) + 1), i=1,2,...,n.
(c) Compute S, k=1,2,...,m.
(d) Compute the T-statistic.

Large values of T indicate that the sample is not from the hypothesized distribution. Therefore, we
reject the null hypothesis at the significant level «, if T > C,. The critical point C, is determined
by the «th quantile of the distribution of the T-statistic by means of Monte Carlo simulations.

In Tables 1 and 2, we present the results of Monte Carlo study conducted at a «-nominal level
with 10,000 replications to assess the empirical critical values of T-statistic for r equal to 2 and 3,
respectively. In each case, the four « levels were 0.20, 0.10, 0.05 and 0.01. A code in Rwas written
to compute the empirical critical values.

The following example illustrates the procedure of finding the T-statistic for r equal to two.
Suppose we have a random sample comprising the following 10 values: 0.018, 0.026, 0.277,
0.306, 0.426, 0.479, 0.502, 0.551, 0.720 and 0.892. We wish to test the hypothesis that these 10
values were drawn from a uniform distribution over (0, 1). We begin by defining five equal and
non-over-lapping intervals and finding the number of observations in each. Further, we find the
number of moves required to produce the ground state (i.e. two observations per interval).

Interval Frequency  Firstmove  Second move  Third move
(0.0,0.2) 2 2 2 2
(0.2,0.4) 2 2 2 2
(0.4, 0.6) 4 3 2 2
(0.6, 0.8) 1 2 3 2
(0.8, 1.0 1 1 1 2

Table 1. Critical values for T-statistic (r = 2).

Cr. P Cr. P Cr. P Cr. P
n valueT* [T>T* n wvalueT* [T>T*] n valueT* [T =>T%] n  valueT* [T >T%]
4 1 0.6288 19 0.0477 56 0.0105 50 73 0.1873
2 0.1227 24 0.0089 30 34 0.1872 88 0.1013
3 0.0000 18 16 0.1784 41 0.1015 99 0.0594
6 3 0.2250 19 0.1000 47 0.0496 131 0.0096
4 0.0769 22 0.0521 61 0.0109 60 95 0.2032
5 0.0179 29 0.0092 32 37 0.1921 115 0.0978
7 0.0000 20 18 0.2061 44 0.1012 134 0.0508
8 5 0.1636 22 0.1070 52 0.0502 174 0.0094
6 0.0830 26 0.0484 67 0.0092 70 119 0.1997
7 0.0367 33 0.0105 34 41 0.2071 147 0.0921
8 0.0137 22 21 0.1951 49 0.1009 169 0.0499
10 6 0.2547 26 0.0929 58 0.0480 218 0.0103
8 0.1006 29 0.0560 75 0.0099 80 147 0.2008
9 0.0559 38 0.0118 36 44 0.1953 179 0.0986
12 0.0095 24 24 0.1971 55 0.0900 209 0.0497
12 8 0.2353 29 0.1029 63 0.0492 268 0.0104
11 0.0794 34 0.0544 81 0.0099 90 175 0.1985
12 0.0514 44 0.0112 38 48 0.1939 211 0.1014
15 0.0130 26 27 0.2004 58 0.0998 246 0.0507
14 11 0.1853 33 0.1024 67 0.0490 289 0.0167
13 0.1067 38 0.0541 87 0.0095 100 202 0.2060
15 0.0511 49 0.0098 40 52 0.1877 249 0.1002
19 0.0130 28 30 0.1985 62 0.0910 292 0.0499
16 13 0.1978 37 0.0981 73 0.0522 381 0.0100

16 0.0998 43 0.0525 95 0.0100
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Hence, the number of moves required to get two observations per interval is 3. The mathematical
method of understanding T-statistic is simple. First find Gif(m x F(X4) +1),1=1,2,...,10
andthen S, k=1,2,...,5. So, for our example:

i X(i) F(X(i)) Glf(m X F(X(i)) + 1) k S< |S< —I X k|
1 0018 0018 Gif(5x0018+1)=1 1 Gif(5x 0.018 + 1) + 2-2x 1|
2 0.026 0.026 Gif(6x0026+1)=1 Gif(5 x 0.026 +1) =2 =0

3 0277 0277 Gif5x0277+1)=2 2 Gif(5x 0277 +1) + 14 -2 x 2|
4 0306 0306 Gif(65x0306+1)=2 Gif(6x0.306+1) =4 =0

5 0426 0426 Gif(5x0426+1)=3 3 Gif(5x 0426 + 1) + 16— 2 x 3|
6 0479 0479 Gif6x0479+1)=3 Gif(6x0.479+1) =6 =0

7 0502 0502 Gif(65x0502+1)=3 4 Gif(5x0.502+1)+ |6 —2 x 4]
8 0551 0551 Gif6x0551+1)=3 Gif(6bx0551+1)=6 =2

9 0720 0720 Gif(5x0720+1)=4 5 Gif(5x 0.720 + 1) + 19— 2 x5
10 0.892 0.892 Gif(5x0892+1)=5 Gif(5x0.892+1)=9 =1

The computed value of the T-statistic is0 + 0 + 0 4+ 2 + 1 = 3. The probability under the null
hypothesis that the T-statistic assumes a value > 3 is 0.7275. This a-level would generally not
be considered significant, and so the null hypothesis would not be rejected.

4. Performance study of thetest based on T-statistic

While studying the performance of A-statistic, Damico [4] has used several statistical tests that
first appeared in Stephens.[1] These statistical tests are Kolmogorov—Smirnov (D), Cramér—von
Mises (W2), Kuiper (V), Watson (U?), Anderson-Darling (A?), Q(= Y, In Z) and chi-square.
We have studied the performance of test based on T-statistic for r equal to 1, 2, 3, 4 and 5. The null
hypothesis is that we have a uniform random number on the interval (0, 1). The seven alternative
distributions which have been considered by Damico [4] for studying power of the test statistic
are as follows:

F:F)=1-(1-x% 0<x<1
forkequalto1l.5and 2,

20=Dxk, 0<x<05
G:Fx) = )li 1 " =X=
1-26Da—xk 05<x<1
forkequalto 1.5, 2and 3,
ok
H:Fo0 = (0.5 — x)X, <x <05
05+2kD(x—-05)% 05<x<1

forkequalto 1.5and 2.

According to Stephens,[1] alternative F gives points closer to zero than expected under the hypoth-
esis of uniformity, whereas G gives points near to 0.5 and H gives two clusters (close to 0 and 1).
The same set of alternatives is used to study the performance of the test based on T-statistic. An
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Table 2. Critical values for T-statistic (r = 3).

Cr. P Cr. P Cr. P
n value T* [T>T% n value T* [T>T* n value T* [T>T*
6 1 0.6914 39 33 0.1980 72 82 0.2009
2 0.2255 40 0.1030 100 0.1000
3 0.0336 47 0.0520 118 0.0504
4 0.0000 61 0.0110 152 0.0100
9 4 0.1560 42 37 0.1907 75 88 0.1991
5 0.0609 45 0.1018 106 0.0998
7 0.0061 53 0.0515 124 0.0492
8 0.0000 68 0.0099 160 0.0102
12 6 0.1719 45 41 0.2004 78 94 0.2012
7 0.0990 51 0.0960 115 0.0988
8 0.0527 58 0.0523 133 0.0493
10 0.0123 77 0.0097 172 0.0102
15 8 0.1936 48 45 0.2020 81 99 0.2028
10 0.0876 55 0.1018 121 0.0993
11 0.0576 65 0.0478 142 0.0489
14 0.0118 83 0.0098 181 0.0101
18 10 0.2205 51 49 0.1992 84 103 0.2050
13 0.0910 60 0.1018 126 0.1011
15 0.0460 71 0.0496 146 0.0492
19 0.0091 92 0.0102 194 0.0099
21 13 0.1979 54 54 0.2002 87 110 0.2000
16 0.0984 66 0.1008 134 0.1011
19 0.0428 78 0.0490 155 0.0501
24 0.0095 99 0.0104 204 0.0098
24 16 0.1890 57 58 0.2080 90 117 0.2000
19 0.1060 71 0.1017 142 0.1006
23 0.0450 82 0.0524 167 0.0494
29 0.0100 107 0.0098 214 0.0101
27 19 0.1990 60 63 0.1979 93 120 0.2015
24 0.0910 76 0.1007 148 0.0989
27 0.0540 89 0.0492 173 0.051
35 0.0100 117 0.0098 220 0.0099
30 22 0.2070 63 68 0.1971 96 128 0.2018
28 0.0920 81 0.1090 156 0.0987
32 0.0510 97 0.0498 181 0.0502
42 0.0100 126 0.0101 232 0.0101
33 26 0.1940 66 73 0.1965 99 134 0.2009
32 0.0930 88 0.1005 163 0.1015
37 0.0500 103 0.0487 190 0.0504
48 0.0090 132 0.0105 244 0.0100
36 29 0.1970 69 78 0.1977
36 0.0950 94 0.1023
41 0.0500 111 0.0497
52 0.0110 145 0.0101

empirical study was conducted for the power estimates of the test for different values of r and
sample sizes. Along with the power estimates, the mean and standard deviation of the T-statistic
were also recorded. Table 3 shows the power estimates of the test based on T-statistic for different
values of r (including r = 1) for F, G and H alternatives, respectively, for the nominal level 10%.
The mean and standard deviation of the T-statistic for different values of r (including r = 1), for
F, Gand H alternatives, respectively, are given in Table 4. The entries in Tables 3 and 4 are propor-
tion of 10,000 Monte Carlo samples that resulted in rejection of Hy. The sample sizes are selected
S0 as to cover the cases of r equal to 2, 3, 4 and 5. The performance of Kolmogorov—Smirnov (D),
Cramér-von Mises (W?), Kuiper’s (V), Watson (U?), Anderson-Darling (A?), Q(= >_; In Z) and
chi-square tests are not included in the tables as we are interested in comparing the performance
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Table 3. Power comparisons for different values of r («-level 0.10).

r 1 2 3 4 5 r 1 2 3 4 5
n Alternative Fx_1 5 n Alternative Fyx_»
12 0.317 0.353 0.332 0.327 - 12 0.664 0.703 0.649 0.656 -

18 0.411 0.429 0.404 - - 18 0.825 0.837 0.812 - -
20 0.447 0.465 - 0.448 0.419 20 0.867 0.882 - 0.861 0.842
24 0.522 0.536 0.500 0.493 24 0.925 0.928 0.912 0.908

0.604 30 0.963 0.963 0.969 0.961

30 0.609 0.608 0.616 - -

36 0.681 0.680 0.678 0.675 - 36 0.987 0.987 0.986 0.985 -
40 0.726 0.742 - 0.738 0.727 40 0.993 0.994 - 0.993 0.992
42 0.744 0.744 0.752 - - 42 0.994 0.994 0.995 - -
48 0.804 0.808 0.802 0.803 - 48 0.997 0.997 0.997 0.996 -

n Alternative Gy—1 5 n Alternative Gy—»

12 0.078 0.117 0.090 0.101 - 12 0.134 0.197 0.148 0.190 -
18 0.092 0.114 0.102 - - 18 0.224 0.268 0.225 - -
20 0.109 0.130 - 0.130 0.111 20 0.295 0.333 - 0.316 0.245
24 0.128 0.146 0.120 0.118 - 24 0.389 0.421 0.358 0.343 -
30 0.165 0.164 0.178 - 0.130 30 0.548 0.547 0.561 - 0.435
36 0.203 0.203 0.200 0.198 - 36 0.672 0.670 0.667 0.648 -
40 0.226 0.251 - 0.248 0.230 40 0.745 0.770 - 0.753 0.730
42 0.241 0.254 0.250 - - 42 0.778 0.777 0.781 - -
48 0.291 0.308 0.296 0.292 - 48 0.857 0.866 0.857 0.855 -

n Alternative Gx_3 n Alternative He—1 5

12 0.424 0.510 0.341 0.501 - 12 0.159 0.162 0.138 0.149 -
18 0.736 0.776 0.689 - - 18 0.162 0.165 0.141 - -
20 0.837 0.860 - 0.816 0.655 20 0.174 0.176 - 0.149 0.126
24 0.932 0.940 0.900 0.872 - 24 0.188 0.188 0.150 0.135 -
30 0.988 0.988 0.988 - 0.955 30 0.221 0.208 0.199 - 0.140
36 0.997 0.997 0.996 0.996 - 36 0.243 0.240 0.214 0.198 -
40 0.999 0.999 0.999 0.999 - 40 0.267 0.269 - 0.250 0.226
42 0.999 0.999 0.999 0.999 - 42 0.274 0.271 0.265 - -
48 0.999 0.999 0.999 0.999 - 48 0.315 0.319 0.297 0.288 -

n Alternative Hx_»

12 0.237 0.229 0.159 0.157 -
18 0.311 0.289 0.211 - -
20 0.358 0.334 - 0.216 0.155
24 0.437 0.424 0.319 0.258

30 0.581 0.535 0.501 -
36 0.682 0.648 0.609 0.557 -
40 0.751 0.756 0.677 0.612

42 0.773 0.761 0.741 -
48 0.848 0.848 0.826 0.805 -

of the proposed test for different values of r with the test due to Damico.[4] The power of the
T-statistic for r less than three compares very favourably with both the Kolmogorov-Smirnov
(D) statistic and the Cramer—von Mises (W?) statistic for almost all alternatives.

5. Concluding remarks

Although the technique of partitioning the range of the probability distribution is same as that of
the chi-square test, the test due to Damico [4] is superior for small samples. The test proposed
here is modified version of the test due to Damico [4] for more than one observation per interval.
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Table 4. Mean and standard deviation of T-statistic for different values of r.

B.R. Dhumal and D.T. Shirke

r 1 2 3 4 5 r 1 2 3 4 5
n Alternative Fy—_1 5 n Alternative Fyx_»
12 017.26 008.26  005.23  003.67 - 12 024.68 012.00 007.69  005.44 -
(08.07) (04.15) (02.81)  (02.11) - (08.78)  (04.44) (02.95) (02.22) -
18 036.10 017.65 011.47 - - 18  054.68 026.99 017.67 - -
(15.84) (08.08) (05.42) - - (16.78)  (08.43)  (05.63) - -
20 04361 02171 - 010.47 008.04 20 067.57 033.32 - 016.16  012.61
(18.78)  (09.77) - (04.88)  (03.94) (20.08)  (09.96) - (05.02)  (04.03)
24 062.19 030.70 020.14 014.85 - 24 097.24 048.27 031.86 023.56 -
(25.93) (13.12) (08.81) (06.64) - (26.88)  (13.48) (08.99)  (06.72) -
30 094.64 047.09 031.04 - 018.03 30 150.32 075.27  049.75 - 029.14
(37.40) (18.88)  (12.60) - (07.65) (37.87)  (19.05) (12.47) - (07.67)
36 134.74 066.97 044.32 032.98 - 36 217.19 108.23 071.88 053.57 -
(50.59) (25.45) (17.02) (12.83) - (49.69) (24.88) (16.59)  (12.46) -
40 165.01 082.11 - 040.28 032.25 40 267.23 133.77 - 066.10 052.61
(59.92)  (30.54) - (14.92)  (12.01) (58.63)  (29.12) - (14.56)  (11.67)
42 182.29 090.73 060.15 - - 42 294.66 146.99 097.69 - -
(65.45) (32.89) (21.98) - - (63.36) (31.69) (21.15) - -
48 236.35 117.75 078.17  058.35 - 48 38545 19240 127.95  095.61 -
(79.17)  (39.75) (26.57)  (19.99) - (78.63) (39.33) (26.22)  (19.64) -
n Alternative Gy_1 5 n Alternative Gy—»
12 013.09 006.23 003.91 002.72 - 12 015.32 007.36 004.62 003.24 -
(04.96) (02.68) (01.88) (01.48) - (04.50) (02.42) (01.77)  (01.45) -
18 02587 01256 008.13 - - 18 03214 01577 010.18 - -
(09.07) (04.75) (03.31) - - (08.35)  (04.35)  (03.03) - -
20 03110 015.15 - 007.12 00546 20 039.17 019.28 - 009.18  006.96
(10.68)  (05.57) - (02.97)  (02.43) (09.88)  (05.13) - (02.78)  (02.31)
24 042.31 020.75 013.55 009.92 - 24 054.93 027.19 017.83 013.07 -
(14.03) (07.23) (04.96) (03.84) - (13.00) (06.65) (04.57)  (03.53)
30 062.05 030.74 020.22 - 01154 30 083.44 04149 027.37 - 015.97
(19.52)  (10.10)  (06.86) - (04.23) (18.37)  (09.23)  (06.31) - (4.01)
36  085.77 042.44 027.97 020.71 - 36 118.40 058.92 039.00 028.97 -
(26.03) (13.24) (08.96)  (06.83) - (23.88) (12.07) (08.16)  (06.22) -
40 103.41  051.26 - 025.12 019.80 40 144.93 072.15 - 035.55  028.12
(30.60)  (15.56) - (08.00)  (06.45) (28.42)  (14.30) - (07.31)  (06.00)
42 113.40 056.25 037.17 - - 42 158.90 079.14 052.46 - -
(33.54) (17.02) (11.48) - - (30.62) (15.41) (10.36) - -
48 14360 071.28 047.23 035.14 - 48 206.00 102.70 068.18  050.86 -
(40.60) (20.55) (13.85)  (10.46) - (37.96) (19.12) (12.82)  (09.70) -
n Alternative Gy_3 n Alternative Hy—1 5
12 019.63 009.50 005.90 004.58 - 12 016.80 007.46 004.25 002.59 -
(03.88) (02.12) (01.57) (01.47) - (06.45)  (03.39) (02.35) (01.98) -
18 043.01 021.29 013.76 - - 18  027.84 013.09 008.13 - -
(07.11) (03.73)  (02.61) - - (11.56) (05.94) (04.06) - -
20 05281 026.13 - 012.80 009.31 20 033.05 015.65 - 006.87 004.98
(08.33)  (04.28) - (02.54)  (02.02) (13.43)  (06.90) - (03.62)  (02.99)
24 075.39 037.42 024.60 017.97 - 24 045.11 021.61 013.78 009.63 -
(10.96) (05.62) (03.86)  (03.02) - (17.32)  (08.98) (06.03)  (04.63) -
30 116.74 058.02 038.39 - 022.14 30 065.76 032.05 020.62 - 011.26
(15.41) (07.90) (05.39) - (03.38) (24.14) (12.36) (08.25) - (05.12)
36 166.60 083.04 055.02 041.15 - 36 089.93 043.48 028.20  020.48 -
(20.39)  (10.29) (06.96)  (05.42) - (31.18)  (15.84) (10.84)  (08.04) -
40 205.42 102.44 - 050.63 040.40 40 108.82  053.23 - 025.31  019.63
(24.03) (12.11) - (06.21)  (05.05) (36.37) (18.35) - (09.33) (07.54)
42 226.40 112.90 074.94 - - 42 117.00 057.58 037.67 - -
(25.69) (12.94) (08.73) - - (38.65) (19.52)  (13.34) - -
48 293.80 146.70 097.50 072.75 - 48  148.70 073.02 047.78  034.99 -
(31.43) (15.82) (10.63) (08.05) - (47.43) (23.85) (15.97) (12.04) -

(Continued)



Downloaded by [Ondokuz Mayis Universitesing] at 04:39 13 November 2014

Journal of Satistical Computation and Smulation 429

Table 4. Continued.

r 1 2 3 4 5
n Alternative Hx—»
12 016.83 007.49 004.24 002.59 -
(06.41) (03.40) (02.33) (01.97) -
18 034.32 016.12 009.86 - -
(11.18) (05.86) (03.93) - -
20 041.45 019.54 - 008.29 005.94
(12.71) (06.51) - (03.43) (02.79)
24 058.24 027.76 017.52 012.25 -
(16.72) (08.33) (05.66) (04.37) -
30 087.12 042.15 027.11 - 014.64
(22.34) (11.33) (07.70) - (04.73)
36 122.22 059.63 038.56 028.00 -
(28.93) (14.55) (09.76) (07.44) -
40 148.49 072.68 - 034.45 026.61
(32.74) (16.42) - (08.26) (06.67)
42 162.19 079.82 052.08 - -
(35.92) (17.79) (12.01) - -
48 209.03 103.43 067.73 049.42 -
(43.76) (21.89) (14.51) (10.90) -

Note: Value in the bracket is the standard deviation of T-statistic.

The modification reduces computational work as compared with test proposed by Damico,[4]
as the number of observation per interval increases without further loss of power. While consider-
ing the power performance of the test for different values of r, we observe that the test performs
better for two observations per interval as compared with one observation per interval for all Fy,
Gy and Hy alternatives except for an alternative Hy with k = 2 and sample sizes considered for the
study. The estimates of power decreases for r equal to three and above for almost all alternatives.

The test statistic is designed as a general technique for testing the goodness-of-fit of completely
specified distribution. One can study the performance of the test even if parameters are to be
estimated for a particular probability distribution. If the sample size is a prime number then
further modification of the proposed test could be a topic of future research.
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Abstract

1f process is running for a long period in an in-control condition, it will reach in a steady-state condition. In order
to study the long term properties of a control chart, it is appropriate to investigate the steady-state average time to
signal. In this article, we discussed runs rules representation of a nonparametric synthetic control chart using sign
statistic for detecting shifts in location parameter. We compared zero-state average time to signal with steady-state
average time to signal of the synthetic control chart for symmetric and asymmetric distributions. We also present
the m-of-m control chart using sign statistic. For comparison study, we computed average time to signal of the
m-of-m control chart, the sign chart (1-of-1 chart) and the synthetic control chart for normal, Cauchy, double
exponential and gamma distributions. Steady-state and zero-state performance of the m-of-m control chart with
m = 2, 3 compared with the sign chart (1-of-1 chart) and synthetic control chart. The zero-state and steady-state

average time to signal of the synthetic and the m-of-m control charts computed using Markov chain approach.

Keywords

Steady-state. Markov chain. Synthetic. Nonparametric. Average time to signal.

1. Introduction

In a process control environment with variables
data, it is assumed that the process output follow
the normal distribution. The statistical properties
of commonly employed control charts such as the
Shewhart X chart, the cumulative sum control chart
and the exponentially weighted moving average control
chart are the exact only if assumption of normality
is satisfied. 1f the underlying process distribution is
non-normal, performance of these charts are not
up to the mark. Such considerations provide reasons
for the development and applications of control
charts that are not specifically designed under the
assumption of normality or any other parametric
distribution. When the distribution of process output
is non-normal, distribution-free or nonparametric
control charts can be useful.

Nonparametric control charts are used for detecting
the changes in the process median (or mean) or changes
in the process variability. Most of the control charts
are based on the sample means when observations

are taken sequentially under the normality condition.
If the distribution of observations is non-normal then
the central limit theorem is usually used to justify
the assumption that the distribution of sample mean
is approximately normal. The nonparametric control
charts used for monitoring the process median (or
mean) based on the signs computed within samples
and used in place of sample means in the Shewhart
chart. The chart is labelled to be the nonparametric
chart if in-control average time to signal (ATS) does
not depend on the underlying process distribution.
In case of charts based on signs, ATS will be same
for all distributions for which median equals to
the target value. In nonparametric control charts
the assumption of normality is not necessary for
calculating the control limits. Another advantage
is that the nonparametric control charts are usually
more efficient than the charts based on X when the
distribution of the observations is heavy tailed, that is
when observations in the tails of the distribution have
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a higher probability than for normal distribution. In
nonparametric control charts variance of the process
need not to be known or estimated in order to apply
the control chart. In fact, these control charts for
controlling median are not affected by changes in the
variance as long as location parameter is constant.
The nonparametric control charts may be particularly
useful when a process is just start up. It is desirable
to apply control charts before there is an enough
data to get a reasonable estimate of variance and/
or assess the normality of the process.

In quality control applications McGilchrist
& Woodyer (1975) proposed a distribution-free
cumulative sum technique for monitoring rainfall
amounts. Bakir (2006) developed distribution-free
quality control charts based on signed-rank-like
statistic. Bakir (2004) proposed a distribution-free
Shewhart quality control chart based on signed-
ranks. Bakir & Reynolds Junior (1979) studied a
nonparametric procedure for process control based on
within-group ranking. Amin & Searcy (1991) studied
the behavior of the EWMA control chart using the
Wilcoxon signed-rank statistic. Amin et al. (1995)
developed the nonparametric quality control charts
based on the sign statistic. Chakraborti & Eryilmaz
(2007) proposed control charts based on signed-
rank statistic. Chakraborti & Van de Wiel (2008)
proposed Mann-Whiteny statistic based control
chart. Human et al. (2010) studied nonparametric
Shewhart-type sign control charts based on runs. Ho
& Costa (2011) proposed monitoring a wandering
mean with an np chart and this chart is also work with
sign statistics. Crosier (1986) suggested a technique
for obtaining steady-state ARL of CUSUM chart
using the Markov chain approach. Saccucci & Lucas
(1990) given a FORTRAN computer program for
the computation of ARL of EWMA and combined
Shewhart-EWMA control schemes. The program
calculates zero-state and steady-state ARL using the
Markov chain approach. Champ (1992) computed
steady-state ARL of Shewhart control chart with
supplementary runs rules. Davis & Woodall (2002)
studied the steady-state properties of synthetic control
chart to monitor shifts in process mean. Lim & Cho
(2009) developed a control charts with m-of-m runs
rules to study the economical-statistical properties
of control chart using steady-state ARL.

The rest of article is organized as follows:

Section 2 gives the Shewhart charts using sign
statistic. Section 3 gives conforming run length
control chart. In Section 4, operations and design
procedure of synthetic control chart using sign statistic
are given and also in this we explained the Markov
chain model and steady-state ATS of synthetic control
chart. In Section 5, we present m-of-m runs rules

Khilare, S. K. et al.

schemes using sign statistic. In this Section, we also
study steady-state and zero-state ATS performance
of the m-of-m chart for process median. Section 6
gives conclusions.

The Shewhart control chart using sign statistic is
explained in brief in following section.

2. Shewhart chart using sign statistic

Let X be a continuous random variable with
cumulative distribution function (c.d.f.) F(.). Let
u and p, be the median and target value of median
respectively. A sample of n observations is taken
at regular time interval from the process. Let
X, = (X, X,,....X, ) be the sample taken at the i'" time
point. At any time t, each observation from the sample
is compared with target value p, and the number of
observations above and below p is recorded.

Define,

1 if Xy > g
sign(Xy; — ) =14 0 if X =y (1)
-1 iff Xy <y

where X, is the j* observation in the i sample. Since
the distribution of observations is assumed to be
continuous, pr(XU - 1, = 0) = 0. In practice occasional
zero may occur which can be signed alternatively
+1 and -1.

Let
SN, = {ZSign(Xij -1 i=123,.. )
j=1

where SN, is the difference between number of
observations above i, and number of observations below
u, in the i™ sample. A random variable T, = SN, + n/2
gives the number of positive signs in the sample of size
n and has binomial distribution with parameters n and p,
where p = P[Xij > ). As long as median remains at p, we
have p = p, = 1/2. That is, P(Xij >u) = P[Xu <p)=1/2
and E[SN] = 0. The chart signals that shift has occurred
if [SN| > ¢, where ¢ >0 is a specified constant (upper
control limit = ¢ and lower control limit = -c). The chart
signals that shift has occurred in the positive direction if
SN, > ¢ and chart signals that the shift has occurred in
the negative direction if SN, < -c.

The largest possible in-control average run length
(ARL) values of symmetric one-sided and two-sided
control chart are 2"and 2™ respectively, when p = 1/2
and SN, = n. Unless ‘n’ is of a moderate size, it may
be difficult to achieve even approximately a specified
in-control ARL (0).

In following section we discuss conforming run
length control chart in detail.



Khilare, S. K. et al.

Steady-state behavior of nonparametric control charts using sign statistic. Production, v. 25, n. 4, p. 739-749, out./dez. 2015

3. The conforming run length control
chart

The conforming run length (CRL) chart is proposed
by Bourke (1991). The Conforming run length is the
number of inspected units between two consecutive
nonconforming units including ending nonconforming
unit. In Figure 1 below, the white and black circles
denote the conforming and nonconforming units
respectively. Suppose process start at t=0, then the
three samples of CRL are displayed. CRL1=4, CRL2=5,
CRL3=3. The idea behind the CRL chart is that the
conforming run length will change when the fraction
nonconforming in a process p changes. Namely, the
CRL is shortened as p increases and is lengthened as
p decreases (Figure 1).

The random variable CRL follows a geometric
distribution. The probability mass function of CRL is

P(CRL) = p(1- p)°*=, CRL=1,2,3,... (3)

The cumulative probability function and mean
value of CRL are respectively

F(CRL)=1-(1-p)™** (4)
1

Hcre =
p

1f CRL is less than lower control limit (L) of CRL
chart, then an upward process shift is signaled.
Therefore, for detection of an upward process shift
(increase in p), a single lower control limit L of
CRL chart is sufficient and L can be derived from
Equation 4, we have,

AcRe :F(L)zl—(l—P)L

_In(l—ace,)
(1~ p,) (5)
where o, is the type-1 error probability of the CRL

chart and p, is the in-control fraction nonconforming.
L must be rounded to an integer. If a sample CRL
is a less than or equal to the L, then the fraction
nonconforming p has increased and out-of-control
status will be signaled.

For the CRL chart, ARL,, , is the average number
of CRL samples required to detect out-of-control
fraction nonconforming p is given by

1

ARL gy =——
CRL AcrL
1
e = amur ©
Finally, let ANI . be the average number of

the inspected units required to signal a fraction

CRL1 CRLZ

d > |+ L

_ CRL3

000
t=0

(ONONONG) C 0 0

0O - Conforming Unit
@ - Nonconforming Unit

Figure 1. Conforming Run Length.

nonconforming shift and be equal to the product
of p, and ARL, .

ANI gy, = picp, X ARLcpy

1 1

AMew = 0 F

For CRL chart, if a CRL value falls between lower
and upper control limits of the CRL chart, then the
process is considered to be under control. However,
if CRL value is less than the lower control limit of
CRL chart, then upward process shift is signaled
and if CRL value greater than upper control limit of
CRL chart, then downward process shift is signaled.
The presentation of CRL chart usually based on
the 100% inspection, because every unit has to be
accounted for and classified as either conforming
unit or nonconforming one.

In following section we explain synthetic control
chart using sign statistic.

(7)

4. Synthetic control chart using sign
statistic

In the literature, Wu & Spedding (2000) studied
the synthetic control chart for detecting small shifts
in the process mean. Wu et al. (2001) proposed the
synthetic control chart for fraction nonconforming
and reported that the synthetic control chart has
higher power of detecting out-of-control signal. Wu
& Spedding (2001) developed the synthetic control
charts for attributes. Khilare & Shirke (2010) proposed
a nonparametric synthetic control chart using sign
statistic and it performs significantly better than
the Shewhart type X and sign control charts. The
proposed nonparametric synthetic control chart
is a combination of the nonparametric sign chart
and the CRL chart. Basically, the operations of the
nonparametric synthetic control chart are similar to
that of the synthetic control chart for process mean
proposed by Wu & Spedding (2000), except that the
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subgroup mean is replaced by the sign statistic SN..
However, we do not follow the same design procedure
due to Wu & Spedding (2000) in order to ensure that
the synthetic control chart is nonparametric.

The operations of the synthetic chart using sign
statistic are outlined below.

1 Determine sign chart based upper control limit ‘¢’
(> 0), sample size n and CRL based lower control
limit (L).

2 Take a sample of ‘n’ units for inspection and calculate
SN..

3 1 SN, < ¢, a sample is a conforming one and control
flow goes back to step (2). Otherwise, a sample is a
nonconforming one and control flow continues to
the next step.

4 Check number of samples between the current and
previous nonconforming samples. This number is
taken as CRL value for synthetic chart.

5 1f CRL > L, then the process is said to be under
control and control flow goes back to the step (2).
Otherwise the process is taken as out-of-control
and control flow continues to the next step.

6 Take action to locate and remove the assignable
causes. Then go back to step (2).

4.1. Design of synthetic control chart

The synthetic chart has two parameters namely, L
and c. For given in-control ARL and subgroup sample
size n, the parameters L and c are obtained as follows:

Let ARL (u) be the out-of-control ARL of the
synthetic control chart and it is given by

ARL(u) = S (8)

P(3)1-(1-P(5))"]

Let ARL (u,) be in-control ARL of the synthetic
control chart. If p = 0, then in-control ARL is

1
oo g

and P(8) = Pr(SN, > ¢/ =, + 3).

Here, P(8) is the probability that the sample is
nonconforming when the permanent upward step
shift of 6 units occurs. When there is no shift, & is
equal to zero. We note that in Equation 7, “p” is the
probability that a unit is nonconforming.

Suppose the desired in-control ARL is ARL(0)
and the subgroup sample size is n. We compute the
ARL (0) values using Equation 9 for ¢ = 1, 2, ...,n
and L =1, 2, ... . Now choose that pair of (L, c) for
which the ARL(0) is close to ARL(0). We may note
that for a fixed value of ¢, ARL(0) is a decreasing
function of L, while for a fixed value of L, ARL (0) is
a non-decreasing function of c.

Table 1 gives the values of ARL (0) for n = 10. As
an example, suppose we wish to set ARL(0) = 1024.
Then, from Table 1, we see that L = 9 and 8 = 10
is the required pair as the ARL (0) corresponding to
these values is 1005. Due to the discrete nature of the
charting statistic SN, for a fixed value of L, we get
the same value of ARLS(O] for two successive values
of ¢ (except for ¢ = 1).

The complete design procedure for the synthetic
chart can be outlined as below:

1 Specify subsample size n and ARL(0).
2 Initialize Las 1and 1 <c<n.

ARL(0) =

3 Calculate ARL (0) from the current values of L and
¢ using Equation 9.

4 1f ARLS(O) is not close to the specified in-control
ARL, increase L by one and go to step 3.

5 1f ARL (0) is close to the specified in-control ARL,
take current values of L and c as final values in the
synthetic control chart.

In following section we discuss runs rule

representation of the synthetic control chart.

Table 1. In control ARL values for upward sided synthetic control chart for various values of ¢ and L when n = 10.

L

o

1 2 3 4 5 6 7 8 9 10
1 2.58 1.87 1.70 1.64 1.62 1.61 1.61 1.61 1.61 1.61
2 7.04 4.34 3.50 3.12 2.93 2.82 2.75 2.71 2.69 2.68
3 7.04 4.34 3.50 3.12 2.93 2.82 2.75 2.71 2.69 2.68
4 33.85 18.52 13.47 10.98 9.53 8.59 7.94 7.47 7.12 6.86
5 33.85 18.52 13.47 10.98 9.53 8.59 7.94 7.47 7.12 6.86
6 334.37 171.88 117.78 90.77 74.60 63.85 56.19 50.47 46.04 42.51
7 334.37 171.88 117.78 90.77 74.60 63.85 56.19 50.47 46.04 42.51
8 8665.92 4356.36 2919.89 2201.70 1770.82 1483.60 1278.46 1124.63 1005.00 909.31
9 8665.92 4356.36 2919.89 2201.70 1770.82 1483.60 1278.46 1124.63 1005.00 909.31
10 1048576 524544 349866 262528 210125 175189 150236 131520 116964 105319
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4.2. Runs rule representation of the
synthetic control chart

Davis & Woodall (2002) discussed the runs rule
representation of synthetic control chart to detect shifts
in the process mean. Here, we discuss the runs rule
representation of a nonparametric synthetic control
chart for process median using sign statistic. Suppose
that each observed sign statistic SN, is classified as
either ‘0’ (conforming) or 1 (nonconforming). 1f
value of sign statistic falls within control limit/limits,
the sample is conforming and if it falls out-side the
control limit/limits then sample is nonconforming.
A sequence of SN, can be represented by a string
of zeros and ones. For example 10001000 would
indicate that in a sequence of eight samples, the
first and fifth samples are nonconforming samples.

For simplicity, suppose that L = 3. This means that
any sequence of SN, with pattern 1001, 101 or 11
will generate an out-of-control signal for synthetic
chart. Note that this sequence also generate signal
under the following runs rule:

If two successive sign statistics (SN, values) fall
out-side of the control limits out of L + 1 sign
statistics then the two-of-L+1 chart signals an
out-of-control status.

On initial pattern of 001, the synthetic control
chart will signal using L=3, while two of L + 1 chart
would not. The performance of control charts can be
made identical over all the samples using head start
feature in the runs rule representation; that is , it is
assumed that the there is an observation at time zero
and that falls out-side of the control limits. With this
head start, both charts will signal on initial patterns
1, 01, and 001 but not on the initial pattern 0001.
Thus, performance of the charts is now identical for
all possible sequences of SN.. 1f CRL value is less than
or equal to L, then declare that the process is out-of-
control. Thus, the synthetic control chart using sign
statistic is identical to the above runs rule with the
head start a sign statistic at time zero is observed
and is nonconforming.

In the following subsection, we present the
Markov chain model and ARL results of synthetic
control chart.

4.3. The Markov chain model and steady-
state ATS of synthetic control chart

The formula for ARL can be obtained by using the
transition probability matrix (t. p. m.) of an absorbing
Markov chain based on the states depending on a
lower control limit of the CRL chart.

Consider the case where L = 4. This chart is an
identical to a chart which signals if two of the five
consecutive sign statistics fall out-sides of the control
limits, assuming that a sign statistic at time zero is
out-side of control limits.

Let

A= Pr[next observed sign statistic will be within
control limit/ limits]

The probability of next observed sign statistic will
be within control limits for the change in location
parameter is

A =Pr[-c < SN, <],
and for shift in positive direction
A = Pr[SN, < d,

where, ‘¢’ is a specified constant (control limit of sign
control chart) and B= 1- A.

As Davis & Woodall (2002) suggested that the
following transition matrix would govern the Markov
chain for the synthetic control chart.

e The row contains ‘A’ in first column and ‘B’ in second
column.

e The last row contains ‘A’ in first column.

® 1n all other rows, the entry above the diagonal is ‘A’

® In all other locations, the entry is zero.

Therefore, for example, the transition probability
matrix for the synthetic control chart using sign
statistic when L= 4 is (Table 2).

With this Markov chain model, the ARL for the
zero-state case is

ARL = s’(1 - R)"1 (10)
where, R is an L+1 by L+1 matrix of probabilities
obtained by deleting last row and last column from
the above matrix, 1 is column vector of appropriate
order having all elements unity and 1is an (L + 1)
by (L + 1) identity matrix, s is the order (L + 1) of
initial probabilities, 1 for initial state and 0 for the

Table 2. The transition probability matrix for the synthetic
control chart using sign statistic when L= 4 is:

States at time t+1

IStates—> 0000 0001 0010 0100 1000 Signal
0000 A B 0 0 0 0
0001 0 0 A 0 0 B
States g1 0 0 0 A 0 B
ti;tet 0100 0 0 0 0 A B
1000 A 0 0 0 0 B
Signal 0 0 0 0 0 1
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rest of the cases, s’= [0, 1, O,..., 0, 0]. Here, ‘01’
corresponds to the initial state. For general values
of 1, the matrix R (the matrix of probability above
with the last row and last column removed) will be
an (L + 1) by (L + 1) matrix.

Since the Markov chain representation of the
synthetic control chart using sign statistic has more
than one absorbing states. The future behavior
of the chart can be studied by using steady-state
average time to signal (SSARL). If the process is
running smoothly for long time, it reaches in the
steady-state. The SSARL measures average number
of samples required to signal when the effect of head
start has disappeared.

Let R, be the square matrix obtained from R
after dividing each element by the corresponding
row sum. Let S be a row vector corresponding to the
stationary probability distribution of R . The SSARL
of the synthetic chart using sign statistic is given by

SSARL = S'(1 -R )1 (1)
The S can be obtained by solving following

equation

S=R'S,

subject to

M:

5 =1

i=1

Finally steady-state average time to signal (SSATS)
is given by,

SSATS:(SSARL%)(h) (12)

Where, sampling interval (h) is adjusted according
to the desired rate of false alarms rate. The SSATS
measures the average time required to signal a process
shift when the effect of head start has disappeared.

We provide steady-state performance of the
synthetic control chart in the following section.

4.4, Steady-state performance of the
synthetic control chart

The objective of control charts is to quickly detect
changes in the parameters of the process distribution
that are produced by special causes. The ability of
a control chart to detect process changes can be
measured by the ATS. Thus, the ATS can provide a
measure of the time required to detect a special cause
when it is present at the time that monitoring starts.
Any signal, given when the process is still in control,
is a false alarm. In comparison study, we compare

Khilare, S. K. et al.

zero-state ATS with steady-state ATS of the synthetic
control chart. For performance study of the synthetic
chart, we consider symmetric distributions namely
normal, Cauchy, double exponential distributions and
asymmetric gamma distribution. ATS is computed for
double exponential distribution, which is symmetric
distribution with heavy tails. Cauchy distribution
is used because it is symmetric distribution with
extremely heavy tails. ATS values computed for
each considered distributions with mean zero and
variance one. In Bakir (2004) the scale parameter is

set to be % for double exponential distribution to
2

achieve variance equal to one. To compute SSATS of
Cauchy distribution, scale parameter set to be one and
shifts in location parameter. For gamma distribution
parameters are set to be 4 (shape parameter ) and
1/2 ( scale parameter ) to achieve mean zero and
variance one. Control limits for each control charts
are found to be such that the in-control ATS equal
to the desired ATS.

Table 3 gives the zero-state and steady-state ATS
profile of the synthetic control chart to detect upward
shifts in the process median. For the synthetic control
chart sample sizes of n = 10 is used. In-control ATS
forn =10 is 1024.

The following findings are observed from Table 3.

e Steady-state ATS performance of the synthetic
control chart is poor as compare to zero-state for
all distributions under study.

o Steady-state performance of the synthetic control
chart for double exponential distribution is better
than the other distributions under study.

Following section gives the m-of-m control chart
using sign statistic for monitoring location parameter.

5. The m-of-m control chart

Consider a control chart with upper control limit
(UCL= k) and lower control limit (LCL= -k). Let us
consider three regions for the control chart:

® The region between upper control limit and lower
limit (region 1).

e The region above upper control limit (region 2).
e The region below lower control limit (region 3).

The probability of a single point falls in the
regions 1, 2, 3 are denoted by pc, pu, pl respectively
and these probabilities can be computed as follows:

pe=Pr[-k < SN, <k,

—pr —k+n<7;<k+n ’
2 2
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Table 3. Zero-state and steady-state ATS profile of the synthetic chart to detect upward shifts in process median (n=10, ¢ = 9,

L =9 and ATS(0) = 1024).

Normal Distribution

Cauchy Distribution

Laplace Distribution

Gamma Distribution

(1= 0SATS SSATS 0SATS SSATS 0SATS SSATS 0SATS SSATS

0 1024.59 1024.63 1024.59 1024.63 1024.59 1024.63 1024.01 1024.06
0.1 305.76 321.91 386.88 402.54 148.50 163.01 294.28 310.43
0.2 104.90 117.83 161.35 176.20 36.80 44.65 101.63 114.40
0.3 41.40 49.79 74.79 86.04 13.45 17.51 41.48 49.87
0.4 18.75 23.91 38.52 46.59 6.52 8.70 19.67 25.00
0.5 9.69 12.81 21.93 27.66 3.86 5.07 10.65 14.03
0.6 5.64 7.52 13.67 17.78 2.61 3.30 6.47 8.63
0.7 3.64 476 9.22 12.21 1.94 233 431 5.70
0.8 2.55 3.21 6.65 8.87 1.52 1.74 3.10 4.00
0.9 1.90 2.28 5.06 6.74 1.24 1.37 236 2.94
1 1.48 1.69 4.04 5.32 1.05 1.12 1.88 2.25

Since,

SN, =2T, —n, only if starting from state one, the probability of

pu= Pr[SN[ > k],
pl=Pr[SN, <-k].

The m-of-m sign chart signals an out-of-control
status when a sign statistic falls out-side of the control
limits or m-consecutive sign statistics falls beyond
the control limits. Suppose {mm} denotes the event
when two successive sign statistics fall in region m.
The control chart signals an out-of-control status

when an event D= {2_2&423_3&3} occurs. To design
m—times m—times

this control chart we must find appropriate control
limits to keep in-control ATS at the desired level.

Now we define states of the Markov chain as
follows:

State 1: One point fall between both control
limits, {1}.

State 2: One point falls above upper control
limit, {2}.

State 3: One point falls below lower control
limit, {3}.

State 4: Two consecutive points fall above upper
control limit, {22}.

State 5: Two consecutive points fall below lower
control limit, {33}.

State 6: Three consecutive points fall above upper
control limit, {222}.

State 7: Three consecutive pints fall below lower
control limit, {333} and so on.

Finally,

State 2m: Out-of-control (absorbing) state, with
associated pattern given by the set D.

The Markov chain representation of chart consist
of 2m states with the first (2m - 1) of them being
transient. A state is said to be transient state if and

returning to state one after some finite length of
time is less than one. Then the 2m x 2m transition
probability matrix can be partitioned as

P:[Q (I—Q)J}
0 1

where, Q is the (2m - 1) x (2m - 1) transition
probability matrix for the transient sates, 1 is the
(2m - 1) x (2m - 1) identity matrix and J is the column
vector of one of an order (2m - 1). The expected
value of the run length random variable T is given by

E[T]=e(1-0)"J (13)

where, e, =(1,0,0,...,0) is the initial distribution.
Let M. be the expected value of the waiting time
from state j until the first occurrence of D. Thus,
if process is initially in-control, M is the ARL. Let
M= (M,M,...M, ) be the vector of average run
lengths. By taking expectations conditional upon the
result of the first subgroup these expected values can
be found by solving the following linear system of
equations corresponding to (1 - Q)J = 1, where 1 is
the column vector of one’s.

M, =1+ pc. M, + puM, + pl.M;,
M, =1+ pc.M, + pu.M; + pl.M,,
M5 =1+ pc.M, + pu.M, + pl. M,
M, =1+ pc.M, + puM; + pl. M,
My =1+ pc.M, + pu.M, + pl. M,

M,,, _4=1+pcM +pl.M;s+...+ pu,, ,,
M,, 3 =1+ pc.M, + pu.M, +..+ pl.M,, ,,
M,,,_, =1+ pc.M, + pl.M;,
M,, =1+ pc.M, + puM,.
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By solving the above linear system of equations,
the ARL M, for a chart with m-of-m runs rule (m > 1)
is given by,

(-]

M= (1 7pu)(1 7pl) 7pu.pl(1 7pu'"’l)(l 7pl""])fpc(l 71714’")(1 7plm)

The 1-of-1 chart signals an out-of-control status
if a sign statistic falls either above upper control
limit or below a lower control limit. The 2-of-2 chart
signals an out-of-control status if two consecutive
sign statistics fall either above an upper control limit
or below lower control limit. In other words, if two
successive sign statistics fall in the region 2 or region
3, the 2-0f-2 chart signals an out-of-control status.
The 3-o0f-3 chart signals an out-of-control status if
three consecutive sign statistics fall either above upper
control limit or below lower control limit.

Following subsection gives steady-state average
time to signal of the m-of-m control chart.

5.1. Steady-state average time to signal

If process is running for a long period in an
in-control condition, it will reach in a steady-state
condition. In order to study the long term properties
of a control chart, it is appropriate to investigate the
steady-state average time to signal.

Let Q, be a square matrix obtained from Q by
imposing the condition that no signal occurs. Let
n' = [n,m,,...,m, ] be the vector of steady-state
probabilities for the in-control transient states. The
steady-state probabilities can be obtained by solving
the following equations: n'Q, = n" and n'1, = 1.

Under the in-control situation p = p,, let p, = pc
and u = pc = pl.

The SSARL can be obtained by

SSARL = n" ARL

and SSATS computed using Equation 12.
Steady-state performance of the m-of-m control
chart is given in following subsection.

5.2. Steady-state performance study of the
m-of-m control chart

For efficiency comparisons, we compare the
proposed m-of-m chart with the synthetic, Shewhart
type X and sign control charts in terms of their
out-of-control steady-state ATS and zero state ATS.
The results are shown in Tables 4-11 for subgroup
of size 11 under normal, double exponential, Cauchy
and gamma distributions.

Following are the findings from Tables 4 to 11:

Table 4. SSATS of the m-of-m and synthetic control charts for
normal distribution (n=11 and SSATS(0) =1024).

(- p) 1-of-1 2-0f-2 3-of-3 Synthetic

chart chart chart chart

0 1024.01 1024.15 1024.00 1024.11

0.25 278.48 88.47 73.12 173.04
0.5 57.40 16.05 14.53 21.52
0.75 16.40 5.38 6.05 5.22
1 6.19 2.81 4.01 2.00
1.25 2.92 2.00 3.43 1.03
1.5 1.64 1.73 3.28 0.67
1.75 1.07 1.64 3.25 0.53
2 0.79 1.62 3.25 0.48

Table 5. Steady-state ATS of the m-of-m and synthetic control
charts for Cauchy distribution. (n=11 and SSATS(0)=1024).

(-n) 1-of-1 2-of-2 3-of-3 Synthetic

chart chart chart chart

0 1024.01 1024.15 1024.00 1024.11

0.25 402.90 140.07 117.07 290.00
0.5 118.47 33.63 28.43 54.00
0.75 46.41 13.10 12.21 16.66
1 23.19 7.09 7.43 7.56
1.25 13.80 4.72 5.53 4.37
1.5 9.28 3.58 4.62 2.94
1.75 6.80 2.96 4.13 2.18
2 5.29 2.58 3.84 1.73

Table 6. Steady-state ATS of the m-of-m and synthetic
control charts for double exponential distribution. (n=11 and
SSATS(0)=1024).

(-n) 1-of-1 2-of-2 3-of-3 Synthetic

chart chart chart chart

0 1024.01 1024.15 1024.00 1024.11
0.25 115.84 32.83 27.80 52.42
0.5 22.02 6.79 7.19 7.15
0.75 7.60 3.16 4.29 2.42
1 3.66 2.18 3.55 1.25
1.25 2.17 1.83 3.34 0.82
1.5 1.47 1.70 3.27 0.63
1.75 1.1 1.64 3.25 0.54
2 0.89 1.63 3.25 0.49

Table 7. Steady-state ATS of the m-of-m and synthetic control
charts for gamma distribution. (n=11 and SSATS(0)=1024).

(-p) 1-of-1 2-0f-2 3-of-3 Synthetic
chart chart chart chart
0 1024.00 1024.03 1024.01 1024.00
0.25 275.40 87.15 72.03 170.04
0.5 63.25 17.52 15.69 24.01
0.75 20.98 6.41 6.88 6.61
1 9.23 3.45 4.51 2.77
1.25 5.02 2.39 3.70 1.50
1.5 3.21 1.95 3.40 0.97
1.75 2.31 1.76 3.30 0.72
2 1.82 1.67 3.26 0.59
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® For small to moderate shifts the SSATS and 0SATS
performance of the m-of-m chart with m=2, 3 is
significantly better than the Shewhart type X, sign
and synthetic control charts.

o Performance of sign chart under normal distribution
and double exponential distribution is better as
compare to m-of-m chart with m=2,3 only for a few
large shifts.

o Synthetic control chart performs better than the sign
chart through-out shifts; however, its performance
is better as compared to m-of-m chart with m=2, 3
only for large shifts under all distributions.

® The SSATS performance of the 3-of-3 control chart is

better than the 2-of-2 control chart for all distributions
only for small shifts.

The SSATS performance of all control charts under
double exponential distribution is better than the
gamma, Cauchy and normal distributions to monitor
process median.

® 1t is also observed that the SSATS values and 0SATS
values are not significantly differ.

5.3. Numerical example

We illustrate the operations of the proposed m-of-m
control chart using data generated from standard normal
distribution. The data set includes 21 samples each

Table 8. Zero-state ATS of the Shewhart type )_(, m-of-m and
synthetic control charts for normal distribution (n=11 and
SSATS(0)=1024).
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of 11 observations. We assumed that the in-control
median p, = 0. To have an in-control ARL equal to
1024, the upper control limits of 1-of-1 chart, 2-of-2
chart and 3-of-3 chart are 11, 8 and 6 respectively.
The lower control limits of these control charts set to
be zero. Table 11 gives the values of the sign statistic
SN, for 21 samples. We have constructed 1-of-1 chart,
2-0f-2 chart and the 3-of-3 chart in Figure 2. The
1-of-1 chart (sign chart) signals if a sign statistic falls
above upper control limit of sign chart, the 2-of-2
chart signals if when two consecutive sign statistics
fall above upper control limit of the 2-of-2 chart and
when three consecutive sign statistics fall above upper
control limit of the 3-of-3 chart, the 3-of-3 control
chart signals (Table 12).

From Figure 2, we see that no points exceed the
control limits of the 1-of-1 chart and 2-of-2 chart.
Consequently, one might regard the process as being
in a state of statistical control. From Figure 2 it is
also observed that the points 6, 7 and 8 fall above
the upper control limit of the 3-of-3 chart. Therefore,
the 3-of-3 chart signal at point 8.

6. Conclusions

Table 10. Zero-state ATS of the Shewhart type )_(, m-of-m
and synthetic control charts for Laplace distribution (n=11
and SSATS(0)=1024).

bow) Xeart G g e e Wow) Xewt G W Cqan e
0 1024.02  1024.01 1024.22  1024.41 1024.13 0 1024.06  1024.01  1024.03  1024.41 1024.13
0.25 146.39 278.48 88.66 73.60 160.28 0.25 218.58 115.84 32.96 28.15 44.71
0.5 19.26 57.40 16.15 14.81 17.11 0.5 32.17 22.02 6.86 7.40 5.35
0.75 4.29 16.40 5.43 6.25 3.91 0.75 6.70 7.60 3.21 4.45 1.92
1 1.47 6.19 2.85 4.17 1.62 1 1.96 3.66 2.21 3.70 1.10
1.25 0.75 2.92 2.03 3.58 0.94 1.25 0.87 217 1.86 3.48 0.78
1.5 0.55 1.64 1.76 3.43 0.66 1.5 0.58 1.47 1.73 3.42 0.63
1.75 0.51 1.07 1.67 3.40 0.55 1.75 0.51 1.1 1.68 3.40 0.55
2 0.50 0.79 1.65 3.40 0.50 2 0.50 0.89 1.66 3.40 0.52

Table 9. Zero-state ATS of the Shewhart type )_(, m-of-m and
synthetic control charts for Cauchy distribution (n=11 and
SSATS(0)=1024).

Table 11. Zero-state ATS of the Shewhart type )_(, m-of-m
and synthetic control charts for gamma distribution (n=11
and SSATS(0)=1024).

(- 1) X i 1-of-1 2-of-2  3-0f-3  Synthetic (0= 1) X i 1-of-1 2-of-2  3-0f-3  Synthetic
chart chart chart chart o chart chart chart chart
0 1024.05 1024.01 1024.03 1024.41 1024.13 0 1024.09 1024.00 1024.19 1024.00 1024.00
0.25 1024.04 402.90 140.27 117.61 276.18 0.25 249.23 275.40 87.35 72.48 157.34
0.5 1024.04 118.47 33.76 28.78 46.16 0.5 38.20 63.25 17.62 15.97 19.25
0.75 1024.03 46.41 13.19 12.46 13.00 0.75 12.64 20.98 6.47 7.08 4.95
1 1024.01 23.19 7.15 7.64 5.67 1 6.19 9.23 3.50 4.68 2.16
1.25 1023.99 13.80 4.78 5.71 3.29 1.25 3.79 5.02 2.43 3.85 1.28
1.5 1023.97 9.28 3.63 4.79 2.27 1.5 2.66 3.21 1.98 3.55 0.89
1.75 1023.94 6.80 3.00 4.29 1.75 1.75 2.06 2.31 1.79 3.45 0.70
2 1023.90 5.29 2.62 4.00 1.44 2 1.71 1.82 1.70 3.41 0.60




UCTION

Khilare, S. K. et al.

748
J PROQ Steady-state behavior of nonparametric control charts using sign statistic. Production, v. 25, n. 4, p. 739-749, out./dez. 2015

Them-of-m control chart withm =1, 2 and 3
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1-of-1 chart UCL
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Figure 2. The m-of-m control chart with m = 1, 2, 3.

Table 12. Sample numbers and values of sign statistic.

Sample No. Sign statistic SN,
1 5
2 7
3 4
4 5
5 5
6 7
7 7
8 8
9 3
10 7
11 6
12 3
13 5
14 4
15 4
16 7
17 8
18 4
19 6
20 7
21 5

We have investigated the steady-state ATS of a
nonparametric synthetic and the m-of-m control
charts based on sign statistic. The proposed charts
are used to monitor shifts in a process median. The
SSATS values of proposed charts are computed by
employing Markov chain approach. The steady-state
performance of the m-of-m chart with m=2, 3 is
significantly better than the sign chart (1-of-1 chart)
and the synthetic control chart. Also, the steady-state
ATS performance of the synthetic control chart is
poor as compared to the zero-state ATS. The m-of-m
control chart with m=2, 3 has a higher power of

detecting out-of-control signal than the sign chart
and the synthetic control chart.
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Abstract

A complectly adaptive (CA)

Hotelling’s T *chart, that is a T?chart in
which all the design parameters, viz,
sampling interval, sample size, control limit,
and warning limit are adaptive, each taking
two values, is developed. The expressions
for the statistical and  operational
performance measures for this chart are
derived using a Markov chain approach. As

any adaptive T ?chart in which one or more
of the design parameters are adaptive, each
taking two values, is a particular case of the

CA TZchart, the derived expressions are
directly applicable to all such charts.These
expressions can be used tocompute the
performancemeasures for all such charts and
thus to determine the most suitable adaptive

T 2 chart for a given situation.

Key words:Average number of samples to
signal, average number of observations to
signal, average number of switches to signal,
Multivariate Statistical process control,
Steady-state average time to signal.

I.  INTRODUCTION

Hotelling’s T ? chart is an effective on-line
process control technique used to monitor
simulataneouslytwo  or  more  quality
characteristics of a process. If all the design
parameters of this chart are kept fixed
throughout the period of monoitoring, it is

called static T*chart while if at least one
design parameter is variableand takes a
value for a trial according to the location(s)
of the sample points corresponding to the
previous trial(s), the chart is called adaptive

T?chart. The general principal of choosing
values of the adaptive parameters for atrial is

ISSN: 2278 — 7798

as follows. If the last plotted point(s)
indicate possibility of a shift, choose short
sampling interval and/or large sample size
and/or narrow in-control limits for the next
trial. On the other hand, if that indicate
possibility of safe or in-control region,
choose long sampling interval and/or small
sample size and/or wide in-control region for
the next trial. It has been shown that
adapting one or more design parameters of a

T2 chart increases its statistical, operational,
and economic performances significantly.
See, for example,Aparasi[l], Aparasi
andHaro|[2, 3],Faraz and
Moghadam[4],Mahadik ~ and  Shirke[5],
Mahadik[6-10].

Recently, Mahadik[11]has developed
acomplectly adaptive (CA) X chart, that is
an X chartin  which all the design
parameters, viz, sampling interval, sample
size, control limits, and warning limits are
adaptive, each taking two values. This idea

has been extended for T  chart in this paper.

The following sections present the

general  description of a CAT?
chart,derivations of the expressions for
statistical and  operationalperformance
measures  for this chart, numerical
comparisons of the performances of various

adaptive T charts that are the particular
cases of the CA T2 chart,andconclusions.

II. ACAT?CHART

Suppose the p> 1 related quality
characteristics X = (X,X;,...X,)" to be

monitored together, follow p-variate normal
distribution with mean vector # and known

variance covariance matrix X. Let u, be
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the target mean vector. An occurrence of an
assignable cause shifts u from u,to

u, # py. A CAT? chart to monitor g is as
described below.

The control statistic is T = n(i)

1
(X =)= (X, = 5) , where X, i =1,
2, ..., is the mean vector of the i sample of
size n(i) drawn on X. Note that when u =
H,, T, follows central chi-square
distribution with p degrees of freedom, and
when @ = u,, for given n(i) = n, it follows
non-central chi-square distribution with p
degrees of freedom and non-centrality

parameter n(a, — po)'’E " (p, — ) = nd?,

where d = /(, — ) (i, — y) s the
Mahalanobis distance used to measure a
change in the process mean vector. Let t(i)
be the length of sampling interval between
the (i — 1)* and i™trials, i = 1, 2, .... Also, let
L(i) and w(i) be the control and warning
limits,respectively,for the i trial.

The values of (t(i), n(i),L(i), w(i)) can be
either (t,,n, L, wy) or (t,,n,, L,, wW,),
where t, t,, n, n,, L, L,, w, and w,
are such thatt,, >t >t, >t
o>L 2>1,>00<w,<L,0<w,
<L,,andw, > w,.Here, t . and t_, being
the longest and shortest possible sampling
interval lengths, respectively, while, n_,,
and n._ being the smallest and largest

possible sample sizes, respectively,

When T2 falls belowL(i — 1), the values
of (t(i), n(i), L(i), w(i)), i=2, 3, ..., between
(t,, n, L, w)and (t,, n,, L,, w,) are
chosen according to the following rule.

(t(D), n(i), LD w(D))

_ { (t, Ny, Low,), if T2 el (i-1)
(t Ny, Lywy), i T e 1,3 -1),

minvnmin < r]l <

n,<n

max 2

where
1,(i-1) = [0.w(i — 1)]
and 1,(i—1) = (w(i— 1), L(i—1).
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The chart signals an out-of-control stateat
the i" trial, i = 1, 2, ..., if T falls above
L(i).

The values of (t(1), n(1), L(1), w(1)) can
be chosen using an arbitrary probability
distribution. In practice, it is recommended
to choose the quadruplet(t,,n,, L,, w,) for

that to provide additional protection against
the problems that may exist initially. The
trial following an out-of-control signal is
again treated to be the first trial.

In the next section, expressions for

performance measures for a CAT? chart are
derived.

I1l. PERFORMANCE MEASURES

The measures of statistical performance

of a CA TZ?chart are steady-state average
time to signal (SSATS),average number of
samples to signal (ANSS), and average
number of observations to signal (ANOS).
SSATS is the expected value of the time
between a shift that occurs at some random
time after the process starts and the time the
chart signals. ANSS and ANOS are the
expected values of the number of samples
and the number of observations, respectively
taken from the time of a shift to the time the
chart signals.Themeasure of operational
performance is average number of switches
to signal (ANSW), which is the expected
value of the number of switches between the
quadruplets of values of sampling interval
length, sample size, control limit, and
warning limit from a shift to the signal.

Let SSATSys, ANSS; ANOSy and
ANSWbe the SSATS, ANSS, ANOS, and
ANSW, respectively of a T?chart when the
process mean vector has shifted from g, to

M. in d units. In  the following,the

expressions for SSATSy, ANSSy and
ANOSgare derived using a Markov chain
approach.

Henceforth, theit” trial refers to the it" trial
after a shift when i> 0 and the last trial
before the shift when i = 0.Also, T,” refers to

the sample point corresponding to the i
trial.
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Define the three states 1, 2, and 3 of a
Markov chain corresponding to whether the
sample pointcorresponding to the i trial is

plotted in 1,(i), 1,(i), and 1;(i) = [L(i),
), respectively,i =1, 2, ..... Note that state 3

is the absorbing state, as the control charting
process is restarted when a sample point

falls in region I,(). The transition
probability matrix is given by
Pn P P
P = pgl pgz pg3 '
0 o0 1

where pj-’k is the transition probability that j

is the prior state and k is the current state,
when the process mean vector has shifted by
d units. For example,

ph= PrIT el ()| T4 el (- D]
Pr,[T2el,() In() = n,, L() = Ly,
w(i) = w,]

F, (L)~ F, (W)

where F, () is the cumulative distribution

function  of  non-central  chi-square
distribution with p degrees of freedom and

non-centrality parameter 4, = nd?.
Then, SSATSy and ANSSg are given by
SSATSy = b'(I -P{) 't — E(U),(1)

ANSSs= b'(I -P{) ™1,
and
ANOSg= b'(1-P])™"n,

where 1 is the identity matrix of order 2, P

is the submatrix of P? that contains the
probabilities associated with the transient

states only, t'=(t,, t,),1' =(1,1), n"=(n,
.n,), and b’ = (b, b,), b; being the
conditional probability that T/ falls in
I,(0) given that it falls below L(0), j =1,
2. We note that b, =1 —b,. The Expression

for b, is derived by Mahadik[7] and is as
given below.

ISSN: 2278 — 7798

Fo(w,)
S (O
L Rolw) | F(w,)
RL) RL)
where Fo(.) is the cumulative distribution

function of central chi-square distribution
with p degrees of freedom.

E(V) in equation (1) is the expected value
of the time U between the 0™ trial and the
shift. Assuming that an assignable cause of a
process shift occurs according to a Poisson
process, it can be shown that E(U) =

E[t(1)]/2=b"t/2. Hence,
SSATSq = b'(I-P!)'t —b't/2.

Now, to derive the expression for
ANSWy, let
1, if (T2 el (i-1),T? el,(i))
2, if (T2 el,(i-1),T el,(i)
Y, =<3, if (T, e 1,(i-1),T> e 1,(i))
4, if (T2 e l,(i-1),T% e 1,(i)
5, if T? > L(i)

i=1,2,...
Note that {Y,,1=1,2, ... } is a Markov
chain with transition probability matrix
(0 ph O ph P

P 0 pi O py
Q'=p, 0 pi 0 p3lf
0 py 0 Pz Pa
0O 0 0 O 1

Then, ANSWj is given by
ANSW, = a'(l, - QN e,

where, |, is the identity matrix of order 4,

4 is the submatrix of Qd that contains the
1

probabilities associated with the transient
states only, e = (1,1,0,0)',and a =

(&, a,,a;, @,)", a;being the initial
probability of state j, j = 1, 2, 3, 4, given by
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blple ) j:]-

- |bpd . j=2
a:Pr[Y:J]: 221 ] i
: o blpldl , 1=3
bngz ) j:4

In the next section, the above derieved
expressions are used to compute the

performance measures for a CA T? chart

and for all the adaptive T2 charts which
are its particular cases.

IV. PERFORMANCE COMPARISON

OF THE ADAPTIVET? CHARTS

In this section, we simultaneously

evaluate a CA T? chart and its all
particular  cases through  numerical
comparisons of their statistical and
operational performances. For this, we
have to design all these chart such that
their in-control statistical performances
match. Below is described the procedure
of designing a CA T? chart whose in-
control statistical performances match to
that of a given static T> chart. Note that
this procedure is also applicable to design
all the charts, which are particular cases of
a CA T?chart,such that their in-control
statistical performances match to that of
the given static T> chart.

Let t,,n,, and L, be the sampling
interval length, sample size, and control
limit of a static T? chart. Let
SSATS(static), ANSSy(static), and
ANOS,(static) be the in-control SSATS,
ANSS, and ANOS, respectively of this
chart. Then, we have

SSATSy(static) = t{; - 1}
1-R(-L) 2

ANSSo(static) = ——~
1-R (L)
and
ANOS,(static) = — o
=R (L)

Now, given t;, ny,and L,, we have to
choose the design parameters of a CA T°

ISSN: 2278 — 7798

chart satisfying the
requirements.

SSATSy(CA) = SSATSy(static)
ANSSy(CA) = ANSSy(static)

following

and
ANOSH(CA) = ANOSy(static)

Here,SSATSo(CA), ANSSy(CA), and
ANOSy(CA) are the in-control SSATS,
ANSS, and ANOS, respectively of a CA

T2 chart.

Fixing any five among the design
parameters (t,, t,, n,, n,, L, L,, w;, and

w,) of a CA T? chart, the above

nonlinear equations can be solved for the
remaining three parameters. This can be
done, for example, wusing package
rootSolve in R or using function ‘fsolve’ in
Matlab.

The complete set of adaptive T?charts
containing a CA T? chart and its all
particular cases includes:

1. A variable sampling interval (VSI)

T? chart

2. A variable sample size (VSS)T?
chart

3. A variable control limits (VCL)T?
chart

4. A variable sample size and
sampling interval (VSSI)T? chart

5. A variable sampling interval and
control limits (VSICL)T? chart

6. A variable sampling interval and
warning limits (VSIWL) T? chart

7. A variable sample size and control
limits (VSSCL)T? chart

8. A variable sample size and
warning limits (VSSWL) T? chart

9. A variable control limits and
warning limits (VCWL) T? chart

10. A variable sample size, sampling
interval, and control limits
(VSSICL)T? chart

11. A variable sample size, sampling
interval, and warning limits
VSSIWL)T? chart
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12. A variable sampling interval,
control limits, and warning limits
(VSICWL)T? chart

13. A variable sample size, control
limits, and  warning limits
(VSSCWL)T? chart

14. A CAT? chart

Fixing the values of t,, n,, and L,and

applying the procedure described above,
all the charts in above set can be designed
such that their in-control statistical
performances match. Table 1 shows the
design parameters of one suchset of
matched charts while tables 2, 3, 4, and 5,
respectively ~ show  the SSATSq,
ANSS4,ANOSg,and

ANSWjy performancesfor these charts for
various values ofd.Such tables are useful
to determine the most suitable adaptive T2
chart for a given situation. In general, one
can see from tables 2 to 5 that CA T?
chart is the best choice if one is interested
in detecting only small shifts while VVSI or
VSIWLT? chartsare the best choices if the
interest is in detecting only moderate to

large shifts. However, in practice, one can
choose the most suitable charts taking into
consideration the practical constraints in
deciding which of the design parameters of
the charts can be adaptive.

V. CONCLUSIONS

The expressions for the statistical and
operational performance measures for a

CA T? chart are developed. These
expressions are are directly applicable to
any adaptive T? chart in which any of the
design parameters are adaptive, each
taking two values. The simultaneous
numerical comparisons of the
performances of all such charts indicate
that in general, CA T? chart is the best
chart for detecting small shifts while VSI

or VSIWL T? charts are the best charts for
detecting moderate to large shifts. In
practice, such simultaneous comparisons

guide to determine the most suitable T?
chart satisfying the practical constraints in
deciding which of the design parameters of
the chart can be adaptive.

Table 1: Design parameters of the matched T?charts

Design Parameters

Chart

1 n2 tl tZ Wl W2 L:L I‘2
Static 5 5 100 100 1486 14.86 0.00 0.00
VSI 5 5 179 020 1486 1486 3.36 3.36
VSS 2 10 100 100 1486 1486 421 4.21
VCL 5 5 100 100 16.42 1393 3.36 3.36
VSSI 2 10 148 020 1486 1486 421 4.21
VSICL 5 5 179 020 1642 1393 3.36 3.36
VSIWL 5 5 179 020 1486 1486 4.03 2.75
VSSCL 2 10 100 100 1735 1315 421 421
VSSWL 2 10 100 100 1486 1486 489 3.30
VCWL 5 5 100 100 16.42 1393 404 275
VSSICL 2 10 148 0.20 16.42 1348 421 421
VSSIWL 2 10 148 020 1486 1486 4.66 3.57
VSICWL 5 5 156 020 16.42 13.63 4.04 3.78
VSSCWL 2 10 100 100 16.42 1348 4.76 3.45
CA 2 10 148 0.20 16.42 1348 488 3.30
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Table 2: SSATS, values for the matched T?charts

d

Chart

025 050 075 100 150 200 250 3.00
Static 126.73 48.69 1757 695 163 069 052 0.50
VSI 11898 38.10 1052 321 078 054 050 0.50
VSS 120.47 3312 826 311 131 099 080 0.64
VCL 123.45 4486 1553 6.12 156 070 052 0.50
VSSI 114.09 26.14 501 176 087 0.67 058 0.53
VSICL 11593 3515 937 289 077 054 050 0.50
VSIWL 117.42 36.23 9.61 293 077 054 050 0.50
VSSCL 96.98 23.09 624 266 131 105 088 0.71
VSSWL 119.78 3197 8.07 318 136 100 0.80 0.64
VCWL 122.58 44.08 1524 6.05 156 0.70 052 0.50
VSSICL 96.27 19.74 417 165 087 0.67 059 0.54
VSSIWL 11270 2466 475 183 093 069 058 0.53
VSICWL 11580 3512 942 293 077 054 050 0.50
VSSCWL 100.34 2387 645 280 135 1.05 0.85 0.68
CA 93.85 1815 399 178 09 071 0.60 0.54
Table 3: ANSSy values for the matched T?charts

d

Chart

0 025 050 075 100 150 200 250 3.00
Static 200 127.23 49.19 18.07 745 213 119 102 1.00
VSI 200 127.23 49.19 18.07 745 213 119 102 1.00
VSS 200 120.97 3362 876 361 181 149 130 114
VCL 200 12395 4536 16.03 6.62 206 120 1.02 1.00
VSSI 200 120.97 3362 876 361 181 149 130 114
VSICL 200 12395 4536 16.03 6.62 206 120 1.02 1.00
VSIWL 200 127.23 49.19 18.07 745 213 119 102 1.00
VSSCL 200 97.48 2359 6.74 316 181 155 138 121
VSSWL 200 120.28 3247 857 368 186 150 130 1.14
VCWL 200 123.08 4458 1574 655 206 120 1.02 1.00
VSSICL 200 102.01 2522 7.06 323 181 153 135 1.18
VSSIWL 200 12050 3281 861 365 184 150 130 114
VSICWL 200 123.12 4442 1554 642 204 121 102 1.00
VSSCWL 200 100.84 2437 695 330 18 155 135 1.18
CA 200 100.61 2422 694 332 18 155 135 1.18
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Table 4: ANOS values for the matched T?charts

d

Chart

0 025 050 0.75 1.00 150 200 250 3.00
Static 1000 636.15 24597 90.35 37.25 10.67 5.97 5.10 5.00
VSI 1000 636.15 24597 90.35 37.25 10.67 5.97 5.10 5.00
VSS 1000 644.70 211.70 64.20 2650 11.80 9.40 7.90 6.40
VCL 1000 619.77 226.82 80.16 33.12 10.30 6.02 5.12 5.01
V/SSI 1000 644.70 211.70 64.20 2650 11.80 9.40 7.90 6.40
VSICL 1000 636.15 226.80 80.20 33.10 10.30 6.00 5.10 5.00
VSIWL 1000 636.20 246.00 90.40 37.30 10.70 6.00 5.10 5.00
VSSCL 1000 518.50 146.70 4760 22.20 11.80 10.10 8.70 7.10
VSSWL 1000 649.60 211.87 6396 26.56 11.82 9.43 7.83 6.37
VCWL 1000 615.40 22290 78.70 32.80 10.30 6.00 5.10 5.00
VSSICL 1000 542.80 157.30 50.20 22.90 11.70 9.90 8.40 6.80
VSSIWL 1000 648.07 211.82 64.00 26.52 11.81 9.43 7.84 6.38
VSICWL 1000 615.60 222.10 77.70 32.10 10.20 6.00 5.10 5.00
VSSCWL 1000 542.27 156.11 50.06 22.99 11.79 9.89 8.37 6.79
CA 1000 542.16 15591 50.05 23.03 11.81 9.89 8.37 6.79

Table 5: ANSW4 values for the matched T ?charts
d

Chart

0 025 050 0.75 1.00 150 200 250 3.00
Static 0 0 0 0 0 0 0 0 0
VSI 99.50 62.79 22.36 6.41 1.77 030 008 0.01 0.0
VSS 93.28 54.72 13.01 236 079 054 043 028 0.14
VCL 99.75 61.39 20.77 5.80 166 034 011 0.02 0.00
VSSI 93.28 54.72 13.01 236 079 054 043 028 0.14
VSICL 99.75 61.39 20.77 5.80 166 034 011 0.02 0.00
VSIWL 79.75 5050 17.86 4.97 136 028 008 0.01 0.0
VSSCL 93.70 4430 9.22 191 078 058 050 037 021
VSSWL 73.54 4256 9.46 169 069 053 043 028 0.14
VCWL 63.50 4086 1451 380 09 020 005 0.01 0.0
VSSICL 93.59 46.30 9.83 198 078 057 048 034 0.18
VSSIWL 79.80 46.37 10.52 188 072 053 043 028 0.14
VSICWL 93.22 58.61 20.88 6.21 1.89 040 013 0.02 0.00
VSSCWL 77.39 3760 7.58 154 071 056 047 0.33 0.18
CA 74.06 35.86 7.16 147 069 056 047 0.33 0.18
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In this paper, we have proposed two nonparametric tests for testing the
equality of location parameters of two multivariate distributions based on
the notion of data depth. The proposed tests are extensions of the M-
based test due to Li and Liu (2004). The performance of proposed tests has
been assessed for symmetric as well as skewed multivariate distributions by
simulation experiments. The tests have better performance in terms of power
as compared to the M-based test and some of their competitors. The use of
tests is illustrated with real life data.

keywords: Data depth, DD plot, Multivariate nonparametric tests, Loca-
tion parameter, Permutation test.

1 Introduction

In several situations comparison between two data sets is required for number of reasons.
The comparison can be based on the locations of these data sets. If multivariate data
follow multivariate normal distribution then the task is easy as well known tests are avail-
able in the literature. However, if data do not follow multivariate normal distribution
or we have no information about underlying distribution, nonparametric multivariate
statistical methods are used to analyze data. One of the multivariate nonparametric
statistical methods is based on the notion of the statistical data depth function, which
was first introduced by Tukey (1975).
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A data depth is a device for finding the location of multivariate data point with respect
to a given data cloud. Larger depths are associated with more central points. Data
depth gives a natural center-outward ranking to a multivariate data points with respect
to data cloud. With the help of such rankings, Li and Liu (2004) proposed two depth-
based nonparametric tests for multivariate location difference viz. T-based test and
M-based test. These tests are developed using the Depth Depth (DD) plot (Liu et al.,
1999). Dovoedo and Chakraborti (2015) have reported an extensive simulation study to
evaluate the performance of these two tests for well known family of multivariate skewed
distributions as well as multivariate symmetric distributions and compared performance
of these tests for four popular affine-invariant depth functions, namely Mahalanobis
depth, Spatial depth, Halfspace depth and Simplicial depth. We briefly discuss few of
these in this article.

Several nonparametric tests have been proposed to deal with the multivariate two
sample location problems as well as multi-sample location problems based on the concept
of data depth. See Rousson (2002), Li et al. (2011), Chenouri and Small (2012) among
others. Many of these methods are use permutation test to calculate the p-value.

In this paper we have proposed two nonparametric tests for testing equality of location
parameters of two multivariate distributions based on the data depth, which are purely
nonparametric. These tests are extensions of the M-based test introduced by Li and
Liu (2004). Li and Liu (2004) use the most deepest point of two data clouds. We
instead, consider some pre-specified number of most deepest points of the data clouds
under comparison and construct tests based on these points. The performance of the
proposed tests has been assessed by simulation experiments. The proposed tests give
better performance in terms of power as compared to the M-based test and T-based test
for symmetric as well as skewed multivariate distributions.

The rest of the paper is organized as follows. In section 2, we briefly discuss the notion
of data depth, various data depth functions with their properties and DD plot. In section
3, we review the existing T-based and M-based tests of multivariate locations proposed
by Li and Liu (2004). We describe the two new proposed nonparametric tests for testing
the equality of locations using data depth in section 4. In section 5, we report simulation
studies to compare performance of proposed tests with existing tests. In section 6, we
apply the proposed tests to real life data. Section 7 contains some concluding remarks.

2 Statistical Data Depth Functions, Its Properties and DD
Plot

2.1 Data Depth

Let (X1, X9,...,X;n) be a data set (cloud), where each X; € RP is assumed to follow a
continuous distribution with cumulative distribution function (CDF) F(.),i =1,2,...,m.
Let D(x, F') be the depth of a point x with respect to F. A data depth is a function
defined from R? to [0,00). Notion of data depth can be used to obtain the location of
a given data points with respect to a data cloud. It measures the centrality of a given
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data point with respect to a given data cloud. The deepest point using notion of data
depth has the largest depth. Data depth gives a natural center-outward ranking to a
data points with respect to data cloud. Such rankings were used for testing difference
in location or scale parameters of two or more multivariate distributions, constructing
nonparametric control charts, outlier detection and classification problem etc.

Tukey (1975) has first invented the word depth for picturing data. In literature,
many different notions of data depth functions were proposed for capturing different
probabilistic properties of multivariate data. Among them, the most popular choices
of data depth functions are Mahalanobis depth (Mahalanobis, 1936), Simplicial depth
(Liu, 1990), majority depth (Singh, 1991), half-space depth (Tukey, 1975), projection
depth (Donoho and Gasko, 1992) etc. Some of these depth functions are reviewed in the
following.

e Mahalanobis Depth

The Mahalanobis depth of a point z € RP with respect to F' on RP? is defined as,

— 1
MHD(z,F) = i) T (ompir)’

where pr is a location parameter or center and X is the variance covariance matrix
or dispersion matrix of F'. The sample version of Mahalanobis depth can be obtained by
replacing pup by X (sample mean) and Xy by S (sample variance covariance matrix).

e Simplicial Depth
The simplicial depth of a point x € RP with respect to F' on RP is defined as,
SD(.T, F) = P?“F(S[Xl, XQ, ey Xp+1] > .1‘),
where X1, X, ..., X,41 are independent and identically distributed observations from F
and s[X1, X9, ..., Xpt1] is a closed simplex whose vertices are X1, Xo, ..., Xp+1. The Sam-

ple version of simplicial depth can be obtained by replacing F' by F,, in this expression.
That is,

SD(:U, Fm) = (pTl)_l Z* I(.TES{XH, Xig, '--7Xip+1]),

where () runs over all possible subsets of X, Xo, ..., X;;, of size (p + 1). Larger the
depth SD(z, F,,) indicates z is contained in more simplices generated from the sample.

e Tukey’s Halfspace Depth

Tukey’s halfspace depth of a point « € R? with respect to probability measure P on R?
is defined as the minimum probability mass carried by any closed half space containing
x, that is,

HSD(z,F)=infy{P(H) : H is a closed halfspace containing x },

The sample version of HSD(z, F) is obtained by replacing F' by F,,. If Kk = 1 then
HSD(z,F) =min{F(x),1 — F(z7)}.
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2.2 Properties of Depth Function

A depth function D(z, F') is a non-negative function lies between [0, 00). According to
Zuo and Serfling (2000), the depth function should satisfy the following four properties.

1. Affine-invariance: Suppose r € RP be a any given data point. Let A be any
invertible matrix and b € RP, then depth of a point Ax + b with respect to F' is
equal to the depth of a point with respect to F. That is, D(Az + b, F) = D(z, F).

2. Maximality at a center: If F' is centrally symmetric about x¢ € RP, then depth
of xq is the largest depth among all data points. That is,

D(zo, F) > D(x, F) for any x € RP

3. Monotonicity relative to any deepest point: If D(xo, F') > D(x, F') for any
x € RP) then D(zp + A(z — x0), F) is monotone non-increasing over [0,00) for
A€ 0,1].

4. Vanishing at infinity: If ||z|| — oo then D(z,F') — 0, where ||z|| is the
Euclidean norm in RP.

In the following section, we describe DD plot.

2.3 Depth-Depth Plot (DD Plot)

Let (X1, X2,...,Xyn) and (Y1, Y2,...,Y,) be two random samples from two continuous
distributions F' and G respectively, where X;, Y; € RP, i =1,2,....m and j = 1,2,...,n.
Let D(z,F) and D(z,G) be the depths of a point x € Z with respect to F' and G
respectively, where Z = X UY. Let

DD(F,G) = {(D(z, F), D(z,G)), Vx € Z}.

The empirical version of DD(F,G) based on the above described random samples is
given by,

DD(Fp,Gy) = {(D(x, Fy), D(z,Gr)), Va € Z}.

DD plot is a two-dimensional graph, which is the plot of points in the set DD(F,,, Gy,).
The DD plot can be used as a convenient diagnostic tool for graphical comparison of
two multivariate samples. Difference in locations or scales or skewness or kurtosis are
associated with different patterns observed on the DD plots. If F' = G then the points
on the empirical DD Plot should fall on a 45° line segment. This is illustrated in
Figure 1(a), which is the DD plot of two multivariate samples drawn from the biariate
normal distribution with mean vector p = 0 and dispersion matrix I», where I5 is the

identity matrix of order two. That is N2(0, I3). The departure of F' from G will indicate
departure of points from 45° line segment and Figure 1(b), Figure 2(a), Figure 2(b) and
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Figure 3 reveal different patterns of DD plot that indicate the location differences, large
location differences, scale differences and skewness differences (both location and scale
differences) respectively. From Figure 1(b), the DD plot has a leaf-shaped figure with
the cusp lying on the diagonal line towards the upper right corner and the leaf steam
at the lower left corner point (0,0) when there is a shift in location parameters of two
multivariate samples. In each of these Figures, we plot DD plot of DG against DF where
F and G are chosen appropriately, where DF and DG are the depth of the points with
respect to F' and G respectively. We use Simplicial depth as a depth function to plot
the DD plot in figure 1, 2 and 3. The study reported here is based on Simplicial depth
function. The DD plots have been plotted using ’depth’ package available in R (R Core
Team, 2016).

oe
0.15 020 025

0.10

0.05

0.00

o10 015 o020 025

DF DF

(a) (b)

Figure 2: DD plots of (a) F' = N3(0,I2) and G = Na(1.5,13) and (b) F' = N»(0, [2) and
G = N5(0,0.51,).
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Figure 3: DD plot of F' = N3(0,I3) and G = Na(1,0.11).

In the following section, we describe T-based and M-based tests due to Li and Liu
(2004).

3 T-based and M-based Tests

Li and Liu (2004) have proposed the T-based and the M-based tests for testing the
equality of location parameters of two multivariate distributions by observing the DD
plot introduced by Li and Liu (2004). These tests are completely nonparametric in
nature.

Let X = (X1, Xo,...,Xp) and Y = (Y1,Y5,...,Y,), X; e RP,Y; e RP, ¢ =1,2,...,m,
7 =1,2,...,n, be two data vectors observed from the distributions with CDF F and
G respectively. Moreover, we assume that F' and G are identical except for a possible
location shift.

Let p1 and po be the location parameters of F' and G respectively. The problem under
consideration is to test

Ho:pi=p2 Vs Hy:pg # po.
It is equivalent to test
Hy:0=0 Vs H;:0+#0,

where 8 = p; — po. That is 0 is the shift in location parameters of two multivariate
distributions.

3.1 The T-based Test

In the presence of location shift in two distribution, the DD plot has a leaf shaped figure
(Figure 1(b), Figure 2(a)) with the leaf stem anchoring at the lower left corner point
(0,0) and the cusp lying on the diagonal line pointing towards the upper right corner.
On the basis of this observation, Li and Liu (2004) constructed the test statistic which
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is the distance between the origin (0,0) and the cusp point. Li and Liu (2004) suggested
the following procedure to calculate the distance between the cusp point and the origin

(0,0).

For (ay,b1) and (ag,b2) in € R?, define
(al,bl) Z (CLQ,bQ) if al Z a9 and b1 Z bg,
(a1,b1) < (az,b2) otherwise.

Define the set Q as
Q={z€ XUY :theredoesnotexistw € X UY s.t.

(D(w, Fi), D(w,Gy)) > (D(z, Fy), D(z,Gy)) }

Then the cusp point is the point (D(zc, Fp,), D(2¢,Gr)) that satisfies z. € @ and
|D(2¢, Frn) — D(z¢, Gy)| < |D(z, Fp) — D(2,Gy)| for all z € Q. Let T' = (D(z, Fp,) +
D(z.,Gy))/2. The distance between the origin (0,0) and the cusp point is approximately
V2T. Li and Liu (2004) used T as a test statistic instead of using v/27" and smaller the
value of T indicates the larger shift in location. The p-value of the test is obtained by
using the Fisher’s permutation test. Let
Y Iy <r,,,)

B 9
where I(.) is the indicator function, Typs is the observed value of test statistic 7' calculated
from the original combined sample, B is the number of times the combined sample
X UY is permuted and 7} is the value of test statistic 1" corresponding to it" permuted
combined sample, : = 1,2, ..., B.

PL =

3.2 The M-based Test

Li and Liu (2004) developed another test for testing the equality of location parameters
of two multivariate distributions based on the deepest point. In the theory of data
depth, the location parameter is the point having maximum depth. Therefore if the two
distributions F' and G are identical then they should have the same deepest point. If
there is a shift in location then the deepest point corresponding to the distribution F
would not be the deepest point corresponding to the distribution G. In fact, the deepest
point of F' will have a smaller depth value with respect to G. M-based test statistic due
to Li and Liu (2004) is given by,

M = min{D(vi, Fy,,), D(u1,Gp)},

where v is the deepest point of X UY corresponding to G,,, and u; is the deepest
point of X UY corresponding to Fj,. Here larger the location difference, smaller the
value of M. The p-value of the test is obtained by using the Fisher’s permutation test.
Let

B I
Pg{ _ >it1 (Igi <M_p) ’
where I(.) is the indicator function, M is the observed value of test statistic M calcu-
lated from the original combined sample, B is the number of times the combined sample
X UY is permuted and M is the value of test statistic M corresponding to ith permuted
combined sample, : = 1,2, ..., B.
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4 Proposed Tests

In the M-based test, Li and Liu (2004) consider only single deepest point for constructing
the M-based test statistic. The test based on single deepest point considers a single data
point. There is scope for improving the performance of this test by incorporating few
more data points while constructing the test. This can be achieved by considering more
than one deepest point. We propose the following two test statistic which are based on
k (k > 2) deepest points for above hypothesis testing problem which can be considered
as extensions of the previously discussed M-based test.

Suppose the set U consists of the k£ deepest points in X UY with respect to F;, and
the set V' consists of the k deepest points in X UY with respect to G,,. Then we define
two test statistic as follows,

e Mi-based test statistic
ol 1
My = min{} 3> D(us, Gu), 2 32 D(vi, Fin)},
i=1 i=1

e Ms-based test statistic

My =

=

é(mini(D(ui, Grn),D(vi, Fi))),

where u; is the i point of the set U and v; is the i** point of the set V. Here for both
of these two test statistic, larger the location difference, smaller the value of M; as well
as of Ms. Therefore we propose two tests based on the above defined two statistic. Each
test rejects Hy for smaller value of the corresponding statistic.

The p-value of the proposed tests are obtained by using the Fisher’s permutation test.
Let

ZB []\/I* <M
i=1"( 14> 1obs)

My _
PB - B ’

where I(.) and B are defined as earlier, M, is the observed value of test statistic
M; calculated from the original combined sample and M7; is the value of test statistic
M, corresponding to i" permuted combined sample, i = 1,2, ..., B. Similarly, we can
calculate the p-value for test statistic Ms.

5 Performance of Tests

We have carried out extensive simulation study to assess the performance of two proposed
tests, T-based, M-based and Hotelling T tests for a bivariate data. The performance of
proposed tests has been evaluated in terms of power for two Bivariate symmetric distribu-
tions (Bivariate normal, Bivariate Cauchy) as well as two Bivariate skewed distributions
with pattern 1 and pattern 2 (Bivariate skew normal; Azzalini, 2005), bivariate skew-t
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distribution (Azzalini and Capitanio, 2003). In the simulation study, the number of ob-
servations generated from each distribution F and G are taken to be m=n=100 and the
original sample is permuted B=500 times. The power of T-based, M-based, Hotelling
T2, M;i-based and Ms-based tests are obtained by the proportion of the simulated p-
values less than equal to the level of significance o = 0.05. Here 1000 simulations are
used for reporting the power and also results are reported for various values of k=2,3,4,5.
Distributions used in the simulation study are listed in Table-1.

Table 1: Distributions used in the simulation study

Distribution Parameters
Symmetric normal No(&,2=1)
Symmetric cauchy Cauchy(§,Q=1)

Skew-normal Pattern 1 SN2(&,Q = I,a = (10,4)T)
Skew-normal Pattern 2 SN2(&,Q = I,a = (4,10)T)
Skew-t Pattern 1 STy(¢,Q=1,a=(10,4)T,v=1)
Skew-t Pattern 2 STy(¢,Q=1,a=(10,4)T,v =3)

The parameter £ denotes the location parameter, {2 denotes the dispersion parameter,
a denotes the shape parameter (or skewness parameter) and v denotes the degrees of
freedom. From all these distributions, the first random sample of size 100 is generated
with parameter ¢ = (0,0)” and dispersion parameter ) is an identity matrix of order
2 and second random sample of size 100 is generated with parameter ¢ = (u, 1) and
dispersion parameter {2 is an identity matrix of order 2. Details regarding shape param-
eter a and degrees of freedom v are provided in Table-1. We provide powers of all these
discussed tests for different values of p = 0.0,0.1,0.2,0.3,0.4,0.5. R-software is used for
simulation studies.

Table-8 provides powers for T-based, M-based, Hotelling 72 and proposed tests when
F is bivariate Cauchy distribution with parameters ((0,0), I2) and G is bivariate normal
distribution with parameters ((u1, p2), I2) with sample sizes m=n=100 and Table-9 pro-
vides powers for T-based, M-based, Hotelling 7% and proposed tests when F is trivariate
Cauchy distribution with parameters ((0,0,0), I3) and G is trivariate normal distribution
with parameters ((u1, p2, 13), I3) with sample sizes m=n=>50.
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Table 2: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
underlying distribution is bivariate normal with sample sizes m = n = 100 for
simplicial depth function.

[ 00 01 02 03 04 05

T-based 0.046 0.094 0.267 0.505 0.773 0.950
M-based 0.046 0.106 0.282 0.547 0.810 0.954
Hotelling 72 0.059 0.142 0.413 0.769 0.957 0.995
Mi-based 0.0561 0.099 0.310 0.567 0.846 0.972
M>-based 0.052 0.091 0.317 0.584 0.847 0.966
Mi-based 0.048 0.108 0.324 0.598 0.857 0.973
My-based 0.055 0.108 0.334 0.613 0.864 0.974
M;i-based 0.046 0.110 0.317 0.609 0.851 0.976
My-based 0.048 0.107 0.324 0.633 0.864 0.979
Mi-based 0.045 0.113 0.337 0.614 0.859 0.984
My-based 0.045 0.110 0.337 0.628 0.867 0.983

Table 3: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
underlying distribution is bivariate cauchy with sample sizes m = n = 100 for
simplicial depth function.

" 00 01 02 03 04 05
T-based 0.050 0.094 0.171 0.351 0.561 0.793
M-based 0.058 0.090 0.169 0.366 0.568 0.801

Hotelling 72 0.019 0.023 0.026 0.033 0.038 0.045
Mi-based 0.057 0.093 0.189 0.396 0.587 0.818
My-based 0.064 0.101 0.183 0.386 0.601 0.822
Mi-based 0.059 0.092 0.175 0.382 0.595 0.821
My-based 0.061 0.093 0.185 0.378 0.609 0.819
Mi-based 0.057 0.097 0.18 0.393 0.601 0.816
M>-based 0.059 0.098 0.191 0.389 0.611 0.817
Mi-based 0.062 0.086 0.170 0.391 0.601 0.828
M>-based 0.059 0.091 0.181 0.385 0.608 0.823
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Table 4: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
underlying distribution is bivariate skew-normal distribution, pattern 1 with
sample sizes m = n = 100 for simplicial depth function.

[ 00 01 02 03 04 05

T-based 0.051 0.156 0.517 0.905 0.995 1.000
M-based 0.051 0.176 0.587 0.914 0.992 0.999
Hotelling 72 0.047 0.262 0.783 0.995 1.000 1.000

L, Mi-based 0.052 0.181 0.641 0.946 0.998 1.000
My-based 0.049 0.189 0.659 0.952 0.998 1.000

(g Mi-based 0.049 0.189 0.644 0.959 1.000 1.000
My-based 0.055 0.200 0.671 0.964 1.000 1.000
Ly Mi-based 0.046 0.190 0.656 0.967 1.000 1.000
My-based 0.048 0.201 0.684 0.972 1.000 1.000
Ly Mi-based 0.044 0.202 0.667 0.962 0.999 1.000
My-based 0.049 0.216 0.686 0.973 1.000 1.000

Table 5: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
underlying distribution is bivariate skew-normal distribution, pattern 2 with
sample sizes m = n = 100 for simplicial depth function.

" 00 01 02 03 04 05
T-based 0.047 0.162 0.535 0.898 0.997 1.000
M-based 0.053 0.202 0.603 0.935 0.995 1.000
Hotelling 72 0.054 0.262 0.791 0.989 1.000 1.000

L_p Mvbased  0.044 0220 0.654 0951 0998 1.000
Ms-based ~ 0.044 0231 0.670 0.954 0.998 1.000

f_g Mibased 0042 0220 0671 0955 1000 1.000
My-based  0.047 0.224 0.688 0.962 1.000 1.000

i, Mvbased  0.042 0218 0.668 0.957 1.000 1.000
Ms-based  0.044 0.237 0.685 .968 1.000 1.000

L_s Mibased  0.049 0214 0.673 0.957 1.000 1000
Mo-based  0.054 0.219 0.699 0.963 1.000 1.000
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Table 6: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
underlying distribution is bivariate skew-t distribution, pattern 1 with sample
sizes m = n = 100 for simplicial depth function.

[ 00 01 02 03 04 05

T-based 0.040 0.119 0.353 0.740 0.938 0.991
M-based 0.049 0.147 0.451 0.811 0.961 0.999
Hotelling 72 0.040 0.128 0.281 0.561 0.801 0.928
Mi-based 0.052 0.137 0.483 0.847 0.976 1.000
M>-based 0.050 0.158 0.499 0.854 0.976 1.000
Mi-based 0.060 0.170 0.513 0.867 0.982 0.999
My-based 0.052 0.177 0.527 0.882 0.985 0.999
M;i-based 0.055 0.162 0.528 0.882 0.981 1.000
My-based 0.053 0.168 0.536 0.889 0.986 1.000
Mi-based 0.055 0.155 0.520 0.903 0.988 1.000
My-based 0.061 0.170 0.548 0.905 0.989 1.000

Table 7: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
underlying distribution is bivariate skew-t distribution, pattern 2 with sample
sizes m = n = 100 for simplicial depth function.

" 00 01 02 03 04 05
T-based 0.053 0.080 0.194 0.371 0.603 0.799
M-based 0.046 0.082 0.251 0.482 0.748 0.911

Hotelling 72 0.016 0.017 0.023 0.031 0.036 0.048
Mi-based 0.0564 0.097 0.272 0.541 0.804 0.940
My-based 0.052 0.092 0.274 0.537 0.805 0.944
Mi-based 0.055 0.096 0.284 0.575 0.819 0.948
My-based 0.060 0.093 0.295 0.589 0.822 0.950
Mi-based 0.0561 0.095 0.308 0.584 0.841 0.952
M>-based 0.055 0.085 0.300 0.593 0.840 0.955
Mi-based 0.047 0.111 0.314 0.604 0.846 0.960
M>-based 0.0561 0.103 0.306 0.611 0.852 0.960
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Table 8: Power comparison of T-based, M-based, Hotelling 72 and proposed tests when
F : Cauchy((0,0), ) and G : No((p1, p2), I2) with sample sizes m = n = 100
for simplicial depth function.

(41, p12) (0.1,0) (0,02) (0.1,0.2) (0.3,0.3)
T-based 0.057 0078  0.074  0.160
M-based 0.087 0.107 0135  0.277
Hotelling 72 0.019  0.028  0.032  0.049
Ly Mi-based 0.101 0.145 0166  0.346
Ma-based 0.092 0151 0171  0.360
(g Mi-based 0.115 0.151  0.185  0.402
My-based 0102 0153 0185  0.410
L, Mi-based 0126 0.177  0.206  0.438
My-based 0114 0.167 0195  0.441
(s Mi-based 0120 0.190  0.221  0.469
My-based 0113  0.177 0196  0.457

Table 9: Power comparison of T-based, M-based, Hotelling T2 and proposed tests when
F : Cauchy((0,0,0),I3) and G : N3((u1, p2, p3), Is) with sample sizes m =n =
50 for simplicial depth function.

(1, p2,is)  (0.0,0.0,0.1)  (0.0,0.2,0.0) (0.0,0.1,0.2) (0.1,0.2,0.3)
T-based 0.062 0.064 0.078 0.103
M-based 0.096 0.096 0.138 0.173
Hotelling 72 0.026 0.029 0.031 0.051
Ly Mi-based 0.107 0.143 0.151 0.221
My-based 0.084 0.124 0.134 0.218
Ly Mibased 0.097 0.134 0.151 0.215
M;-based 0.088 0.116 0.135 0.214
Ly Mi-based 0.107 0.120 0.148 0.197
My-based 0.095 0.098 0.143 0.198
(s Mi-based 0.096 0.110 0.134 0.192
My-based 0.087 0.106 0.123 0.187

It is clear from the power comparison Table-2 to Table-9 that the proposed M;-based
and Ms-based tests give better performance in terms of power as compared to the 7T-
based, M-based and Hotelling T2 tests for skewed multivariate distributions as well as



430 Chavan, Shirke

multivariate cauchy distribution with a simplicial depth function. Proposed tests also
give comparable results to Hotelling 72, when the underlying distribution is bivariate
normal. As such there is no criterion defined to choose an optimal value of k. However
k = 5 appears to be reasonably good choice for majority of distributions. Between M;-
based and Ms-based tests, we recommend Ms-based test, as it has more power than
Mi-based test for most of the distributions.

6 Application to Real Life Data

We consider Iris dataset (Fisher, 1936), which contains 150 observations each 50 for
setosa, versicolor and virginica with four variables sepal length, sepal width, petal length
and petal width. These are three populations corresponding to setosa, versicolor and
virginica respectively. We select only two populations namely setosa and versicolor for
illustration. The location parameters consists of values of sepal length, sepal width,
petal length and petal width in the respective populations.

We are interested in testing equality of location parameters of these two populations.
Multivariate normality test for setosa and versicolor data based on Shapiro test gives p-
value 0.07906 and 0.00574 respectively. Therefore, sepal length, sepal width, petal length
and petal width corresponding to versicolor population do not follow four variate normal
distribution and Hotelling T2 test is not appropriate in this case. Therefore, we use
proposed tests to evaluate whether there is shift in location parameters of distribution of
setosa and versicolor. The p-values for the proposed tests based on B = 500 permutations
are reported in the following Table.

Table 10: T-based, M-based, Mi-based and Ms-based p-values for the Iris dataset based
on B = 500 permutations using simplicial depth function

Test p-value

T-based  0.000
M-based 0.148
Mi-based 0.034

k=2
Ms-based 0.036
—3 Mi-based 0.014
Ms-based 0.018
A Mi-based 0.006
Ms-based  0.008
5 Mi-based 0.002

Msy-based 0.004
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It is clear from the Table-10 that all the p-values of the proposed and T-based tests
indicates that setosa and versicolor populations do not have same location but M-based
test fails to conclude that setosa and versicolor populations do not have same location.

7 Conclusion

In this paper, we use data depth approach for comparing location parameters of two
multivariate distributions. The proposed tests are purely nonparametric tests. They
have a better performance in terms of power as compared to the existing M-Based and
T-based test for symmetric as well as skewed multivariate distributions. Notion of data
depth is useful for testing location and/or scale of two multivariate distributions.
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In the multiple linear regression, multicollinearity and outliers are commonly occurring
problems. They produce undesirable effects on the ordinary least squares estimator.
Many alternative parameter estimation methods are available in the literature which
deals with these problems independently. In practice, it may happen that the multi-
collinearity and outliers occur simultaneously. In this article, we present a new estima-
tor called as Linearized Ridge M-estimator which combats the problem of simultaneous
occurrence of multicollinearity and outliers. A real data example and a simulation study
is carried out to illustrate the performance of the proposed estimator.

Keywords Linearized ridge regression estimator; M-estimator; Mean square error;
Multicollinearity; Outlier.

Mathematics Subject Classification 62J05; 62J07.

1. Introduction

Consider the multiple linear regression model
Y=XB+¢ (1.1)

where Y is an n x 1 vector of observations on the response variable, X is a known n x p
matrix of regressor variables, 8 is a p x 1 vector of unknown regression coefficients and ¢
is an n x 1 vector of errors with E (¢) = 0 and Cov (¢) = 021 and o' is an unknown error
variance. Without loss of generality, we assume that the variable Y and X are standardized
in such a way that X'Y denotes the correlation vector between the response variable and
regressor variables and X’X has the form of correlation matrix.

Itis well known that, whene ~ N (0, o2l ) , then the optimal estimator of the regression
parameters is the ordinary least squares estimator (OLSE) (Montgomery et al., 2010). It is
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denoted by
Borse = (X'X)"'X'Y (1.2)

The OLSE is widely used in regression analysis due to its computational ease. However,
in the presence of multicollinearity, the OLSE gives misleading information. To overcome
such a problem, several methods are available in the literature. The ordinary ridge regression
estimator (ORRE) proposed by Hoerl and Kennard (1970a, b) is one of the most popular
biased estimators. It is given by

Borre = (X'X +kI)"'X'XBorsk (1.3)

where k > 0 is a ridge or shrinkage parameter. However, BO rRE 1S a nonlinear function
of k. To resolve such a problem, Liu (1993) proposed a new biased estimator of 8 called
Generalized Liu estimator (GLE)

Bore = (X'X + D7X'X + D)Borsk (1.4)

where D = diag(dy,d>,...,d,),0<d; <1,j=1,2,..., p (see Akdeniz and Kaciran-
lar, 1995). When d; =d, = ... =d, =d, the BGLE reduces to the Liu estimator (LE)
(see Liu, 1993) and it is given by B,z = (X'X + I)"'(X'X + dI)BoLsk, where d is a Liu
parameter. The advantage of the LE over the ORRE is that the B, ¢ is a linear function of
d. Therefore, it is easier to choose d in B, ¢ than to choose k in BorgEe. Some authors like
Kaciranlar et al. (1999), Akdeniz and Erol (2003), Alheety and Kibriya (2009) defined the
LE for d € R and the GLE foreachd; e R,Vj =1,2,..., p.

Motivated by the work of Liu (1993), Liu and Gao (2011) proposed a linearized ridge
regression estimator (LRRE) to combat the problem of multicollinearity. It is given by

Brrre = (X'X +1)"'(X'X + Q0D Q"Borsk (1.5)

where D = diag(d,d>,...,d)),dj e R,Vj=1,2,...,pand Q = (q1,42,...,qp)isan
orthogonal matrix such that O'X'X Q = A = diag(Ai, A2, ..., Ap), A1, A2, ..., A, > Oare
the eigenvalues of X'X and g1, g2, ..., g, are the corresponding eigenvectors. Range on
the value taken by the diagonal elements of the shrinkage matrix D differentiates the LRRE
from the GLE.

Gao and Liu (2011) considered a well-known class of estimators (see Grof3, 2003;
Hocking et al., 1976; Obenchain, 1975) known as generalized shrinkage estimator (GSE).
This class contains OLSE, ORRE, LE, LRRE and many other shrinkage estimators. Gao
and Liu (2011) shows that the MSE of the LRRE is not larger than the MSE of any other
estimator in the class of GSE. However, by substituting the optimal values of the shrinkage
parameter in the MSE, one can obtain the lower bound of the MSE for any estimator in the
class.

Another important problem in regression analysis which has addressed by many authors
is the presence of outliers in the data. The OLSE is sensitive to the presence of outliers
in response variable (¥) (Hampel et al., 1986; Huber, 1964; Huber, 1981). To handle this
problem, various robust estimators are put forwarded in the literature like M-estimator
(ME), least trimmed squares estimator (LTSE), least median squares estimator (LMSE)
(see Rousseeuw and Leroy, 1987). The ME is the most popular robust estimator for the
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presence of outliers in the response variable (Y) and it is obtained by minimizing

n

Yi — xiB
ZP (T) (1.6)

i=1

wherep (-) is any robust criterion function and s is an estimate of scale parameter (see
Birkes and Dodge, 1993; Grof3, 2003; Huber and Ronchetti, 2009 Maronna et al., 2006
Tiku and Akkaya, 2004). To obtain the estimate of g, partially differentiate Eq. (1.6) with
respect to each parameter and equate to zero, we get p nonlinear equations of the form

n

Y, —x/p .
e = )x=0j=12....p (1.7)

i=I

where ¢(-) is partial derivative of p with respect to 8 and x;; denote the jth entry in the
ith row of matrix X. The p equations obtained in Eq. (1.7) are solved iteratively. In this
article, Huber’s p function (Huber, 1964) is used as a robust criterion function. The OLSE
is used as an initial estimates of regression parameters and the initial weight matrix W9 is
set to an identity matrix of order n. For the /th iteration, the diagonal weight matrix, Wi,

with diagonal entries wf, i=1,2,...,nis obtained as
t . rpU=1)
—t— if |Y; —x ’ >t
-1 _ J i"ME
w! = § [t l (1.8)
1 it |v - 2By <

where ¢ =1.345 and ,B,(\ffEl) denote the ME of 8 at (I — 1)th iteration. The estimate of scale
parameter at (I — 1)th iteration (S/~") is obtained by using the formula S~V = 1.4826
median |e§l_1)— median (el(,l_]))| where eﬁl_]) =Y, —x] ,31(&}]). At convergence, the iterative
reweighted least square estimator (See Montgomery et al., 2010) is known as ME and is
given by

Bur = (X' WX)'X'WY (1.9)

where W is a weight matrix with diagonal entries w;, i = 1,2, ..., n obtained at conver-
gence of iterative reweighted least square estimator.

Several methods are available in the literature which deals with the problem of mul-
ticollinearity and outliers in the data separately. However, very few methods tackle the
problem of simultaneous occurrence of multicollinearity and outliers. Silvapulle (1991)
proposed a ridge M-estimator (RME) as a robust version of ORRE by shrinking the ME
with the robust estimate of the shrinkage parameter k. It is defined as

Prue = (X'X + kD)™ X'X By (1.10)
This estimator is also a nonlinear function of shrinkage parameterk. Arslan and Billor

(2000) proposed an alternative class of Liu-type M-estimators (LME) to handle the problem
of multicollinearity and outliers simultaneously. It is given by

Bume = (X'X + D7 (X'X +dI) Bue (1.11)
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where 0 < d < 1. Jadhav and Kashid (2011) proposed a robust version of jackknifed ridge
regression estimator known as jackknifed ridge M-estimator (JRME). It is given by

Birme = — kK Q' (X'X +kD)"*Q)Bur (1.12)

where k is a shrinkage parameter to be replaced by its robust estimate (Jadhav and Kashid,
2011). This B JrME 1s also a nonlinear and complicated function of shrinkage parameter
k. In this article, we proposed a robust version of LRRE. The objective of this proposed
estimator is to combats the simultaneous occurrence of multicollinearity and outliers in the
data.

The remaining article is organized as follows. In Section 2, we propose a linearized
ridge M-estimator (LRME) which combats the simultaneous occurrence of multicollinearity
and outliers in data. Also, the asymptotic MSE of the LRME is obtained in this section.
In Section 3, the superiority of the LRME over the other estimators is presented. Also, a
robust choice of the shrinkage matrix D with an iterative form of the LRME is obtained. In
Section 4, a numerical example is presented and Section 5 covers an extensive simulation
study to illustrate the performance of estimators through estimated MSE (EMSE) sense.
Article ends with some concluding remarks.

2. Proposed Estimator—Linearized Ridge M-estimator

In this section, we propose a linearized ridge M-estimator (LRME) of unknown regression
parameters § of regression model given in Eq. (1.1). It is defined as

Birme = (X'X + D7'(X'X + QD Q)Bue 2.1)
where Q is the matrix of eigenvectors (gi, q2, ..., q,) corresponding to eigenvalues
A, A2, ..., Ap of X'X matrix and D is the diagonal matrix of shrinkage parameters

(d\,do,...,d,)whered; e R,Vj=1,2,...,p.

Gao and Liu (2011) studied the properties of the LRRE and recommend to use not
only theoretically but also in practice. However, this estimator is not robust to outliers in
Y, because it is obtained by shrinking a non-robust estimator (OLSE) with the shrinkage
matrix (X 'X+1 )71 (X 'X+QDQ’ ) Therefore, we define a new estimator which shrinks
the ME with the same shrinkage quantity. Thus, the proposed estimator will become a
stable estimator for the presence of both multicollinearity and outliers in the data. Using
the same motivation, we have studied the properties of the proposed estimator.

For simplicity, we use a canonical form of regression model for the further discussion
and study. The regression model given in Eq. (1.1) can be written in canonical form as

Y=Za+¢ 2.2)
where Z = X Q and o = Q’B. Then the LRME of « can be written as
Grrme = (A + D7 (A + D)aue (2.3)

where &y £ is the ME of « in the canonical form. Note that, because of the relatione = Q’8,
any estimator & of « has a corresponding B = Q& and MSE(B) = MSE(&) (see Sakallioglu
and Kaciranlar, 2008). Hence, it is sufficient to consider only a canonical form.

Before studying the properties like bias, variance and MSE of the proposed estimator,
one should consider the properties of the ME given in the following remark.
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Remark 2.1. Birkes and Dodge (1993) noted that ‘the distribution of the ME (&) of
a cannot be specified exactly, but for large n, under certain assumptions the distribution
is approximately normal with mean vector « and covariance matrix 2’. Arslan and Billor
(2000) studied the performance of LME using the asymptotic properties of ME. The
asymptotic unbiased estimate of € given by Arslan and Billor (2000) is A2A~! where

AP =52 = p) " L W i/ /L Xy ¥ i/9)) and A = diag (A1, A, ., k) S
a matrix of eigenvalues of Z'Z (see for details Huber and Ronchetti, 2009).

Hence, considering the Remark 2.1, we obtain the expressions of bias, covariance, and
MSE of the LRME for large sample size as follows.

2.1. Bias
The bias of the LRME is given by

bias (L rme) = E (GLrME) — @
=E[A+D'"(A+D)aye| —«a
=A+D)""(A+D)a—a
a+A+D'"(D-Da—a
=A+D"(D-Da 2.4

2.2. Covariance

The covariance of the LRME is expressed as

cov (@rrmEe) = cov(A + D7 (A + D)ayer)
=(A+I1)""(A+ D)cov(@ur)(A+D)(A+ 1)
=(A+D'"A+D)QA+D)(A+D7! (2.5)

2.3. MSE
The MSE of the LRME is as follows

MSE (@rrmE) = tr(cov(@rrme)) + [bias (@rrme)) [bias (@rrmE)]
=tr {(A+ D" (A+D)QA+D)(A+ D)7}
+o'(D—D)(A+1)2(D—-Da
14 2 p 2
A +dj) d; -1
T4 g Z j 2

MSE (&rrmE) = s
JZZ; (A +1)? (A + 10>

(2.6)
j=1

where ;; is jth diagonal element of 2.
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3. Superiority of the LRME

The MSE criterion is widely used as a measure of closeness between the estimates and
the true values of the parameter. We use the MSE of the estimators for comparison
of the performance of various estimators. In the following subsections, we have obtained
the expressions for the difference in MSE of LRME and LRRE, ME, RME, JRME and
LME. The conditional superiority of LRME over the other estimators is developed. It is
observed that, under some conditions, the MSE of LRME is smaller than the MSE of other
estimators.

3.1. In the Presence of Multicollinearity

In this subsection, we compare the MSE of LRME with the MSE of the LRRE and the
condition under which the LRME shows smaller MSE than that of the LRRE is obtained.

Theorem 3.1. [fQJJ < 0'2)»;1 for every j, then MSE (&LRME) < MSE (&LRRE)fUr all
die j=1,2,....p

Proof. The MSE of the LRRE is given by

MSE (&prre) = tr(cov(@rrre)) + [bias (@rrre)] [bias (@LrrE)]
=o’tr{(A+D"(A+D)AT" (A+D)y(A+ D"}
+a' (D=D)(A+D2(D-Da

() +d;)? d; =1 o2
Zx(x + 1)? Z(x + 12 ©-1)

Using Eqs. (2.6) and (3.1), the difference between the MSE of LRRE and LRME can
be given by

. . 5O +d) o
MSE(@QLrre) — MSE (GLruE) = Z m[a Al - Qi (3.2)
j=r

Hence,
MSE (@Qrrre) — MSE (G@Lrme) > 0
whenever
02A;1 > Qj, forall j=1,2,..., p.
When the problem of multicollinearity is severe, some of the A ;’s are too small. Con-
sequently, the above condition gets satisfied whenever the datasets with multicollinearity

and outlying observations are present in the data and the MSE of the LRME is smaller than
the MSE of the LRRE.
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3.2. In the Presence of Outlier

In this subsection, we compare the MSE of the LRME with the MSE of the ME. The
condition, under which the MSE of the LRME is smaller than that of the ME is obtained
and reported in the following theorem.

(1421, +4))

Theorem 3.2. If D)

MSE (k).

2
> % for all j=1,2,...,p, then MSE (QrpmE) <
1)

Proof. The difference between the MSE of ME and LRME can be given by

MSE (@yEg) — MSE (QLrME)
P 2
_ B (A +4dj) (d; — 1)
_ZQH Z()\‘ +1)29 +Z(k +1)2 J
p 2 p 2
. _()\j—f‘dj) - (dj_l) 2
‘Z[l (j+1) ]Q“+,»;<M+ DR

By some simplifications, it leads to,

MSE (@yg) — MSE (QrrME)

1—
Z((,\ 1’))2 {422, +dpQj — (A —dj)er) (3.3)
j=1

d o?
In order to make M SE (@yg) > MSE (@ rpuE), We have W > o for all j.

—dj ]
Hence the proof. m|

3.3. In the Presence of Multicollinearity and Outlier

Three estimators namely, the RME, JRME and LME are considered in this subsection for
the purpose of comparison of MSE’s of these estimators with that of the LRME. The MSE
expressions of these estimators are as follows.

MSE (Grmp) = tr (cov(@rmEg)) + [bias (@rme)) [bias (@ruE)]

14 )\2 p
Q 4
;(x + k) ”Jr;(,\ + k)? % G4

MSE (&yrmE) = tr (cov (@ rmE)) + [bias (@ rmE)] [bias (@ rmE)]

14 k2 2 14
Z( (A; +k)2> Z:: A +k)4 % (3-5)

J=1
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MSE (GrmE) = tr (cov(@rmE)) + [bias (@rme)) [bias (@rmE)]

p 2 P )
Gy +d) @=12 .
; (A; + 1)? 2 Zl O+ 1)? o; (3.6)

Based on these MSE expressions, we compare the MSE of the LRME with the MSE
of these estimators. The conditions under which the LRME shows smaller MSE than that
of the RME, JRME and LME are obtained in Theorem 3.3 as follows.

Theorem 3.3. (i) Ifd; < k((/\ ’+k) foreveryj, then MSE (&rrme) < MSE (QrmE)-
(ii) Ifd; <1 — K (A *+ )forevery], then MSE (& rme) < MSE (Q@yrMmE)-
(iii) If each d;, j = 1, 2, ..., p satisfy any one of the following condition
2021, )
(a) (QMMZ)“ —d<d;<d
2a2—n Qs
(b)d < d; < 2% _ g then MSE (G pur) < MSE (Gme).

(ij+0t/2-)

Proof.  Proof of the part (i)
The difference between the MSE of RME and LRME is given by

MSE (@rye) — MSE (GLrME)

=Xp:[( & _(A"er");}szjﬁi[( i 2—(dj_1)zi|a? (3.7)

AR (g +1) AR (g +1)

After simplifying (3.7), one can easily find that the MSE (Ggrpyp)—MSE (@Lrme) > 0

k(nj+1 .
whend; <1 — ((Aj:k)) forall j =1,2,...,p
Proof of part (ii)

Consider the difference between the MSE of JRME and LRME as

MSE (&jrme) — MSE (QrLrME)

_ RN mra) | ”[ Kt _(d‘i—1)2:|az
Z <1 ( 2) QJJ+;( 4 J

2 2
o Aj +k) (A +1) Ak (A +1)
3.8)
After some simplification, we observe that, M SE (& ;rpe) > MSE (Qrrme) if d; <
Ry +1)
for all j
(0 a

Note that, “%*0 - “%i*D Tt clearly indicates that the MSE of LRME is less than MSE

’ Gy +A) O j+k2 "
of JRME Whenever the MSE of LRME is less than MSE of RME.
Proof of part (iii)
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The difference between the MSE of LME and LRME can be given by

MSE (@pyg) — MSE (GLrmE)
2 £
1[(A +d)’ = (h + ;)] o
2 3.9

o

p e
Y [@ =17 = (4= 1)’]
(d—d;)

P
=X {(d—i—d +24;) Qj + (d + d; —2)a§} o)

j

+

MSE (Qpyg)— MSE (Qrrme) > 0

if (d+d;+21)Q5 + (d+d; —2)0:12 >0 and (d —d;) >0 for some or all j or
(d+d;j+21)Qi+(d+d; — 2)0(12 < 0 and (d — d;) < 0 for remaining j.

After rearrangement of the terms, it can be written as

d; (2 +aj2.) + (d+21;) @ +(d—2)a_§ >0

and d > d; for some or all j or
dj (Qj +o3) + (d+22;) Q + (d—2)af <0

and d < d; for remaining j.
By simplification, we get

and d; < d for some or all j or

and d; > d for remaining j.
This implies that, the MSE (&ryg) — MSE (Grpme) > 0if

2 (o2 = 22
—d<dj<d
(ij-i—()[J)
for some or all j or
2( — )
—d<dj <d
(ete)

for remaining j.
This completes the proof of Theorem 3.3.
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Remark 3.1 To obtain the LME, Arslan and Billor (2000) proposed a robust choice of d
as

p

p a?
dy =1— A2 ME; 3.10
" ZA(A+ X::AJrl)z G109

where A2 =s%(n — p)™' Y1 [V (ri /) /1L S0, ¥/ (ri/5)P, s = 1.4826 median |e;—
median (¢;)|, ¢, = (Y; — Z!@uyE) (see Huber and Ronchetti, 2009). Note that, it is not
guaranteed that the value of dy; always lie between 0 and 1.

Below, we obtain the optimal value of D by minimizing the MSE of LRME. Also, an
iterative computational procedure is given to obtain the iterative LRME.

3.4. Robust Choice of D

The optimal values of di, d5, ..., d, are those which minimizes the MSE of LRME. To
obtain the optimal value of d;, j = 1,2, ..., p, we use the standard procedure.
Consider

8 (d], dz, ey dp) = MSE (&LRME)

1

Zi:,\er) zi:d—)

Differentiate Eq. (3.11) with respect to d; and equate to zero, it follows that,

o? (3.11)

dg(di o, ..., dy) 2(/\j+d,)Q” 2(d; - 1) ,

= i :
9d; (1 +1)° (ay+1)"
Therefore,
dg (di, o, ..., d,) o — A
=0=4d; = i=1,2,..., 3.12
od; ! Qi + Olj2 / u ( )
Moreover,

g (d.do,....dp) Mwhenizj
od;ad; 0 wheni # j

2
Hence, "84t > 0 = j = 1,2, p. This implies that g(dy. db. ... d,) is

2

o2 =A%
T e
o Jj=12,...,p

After simplifying the expression of d; given in Eq. (3.12), one can easily get

minimum at d; =

1+

1+ (o3/2)

dj=1- (3.13)
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e From the expression given in Eq. (3.13), it is found that the value of each d; should

be less than 1 as has lower bound 0.

1+( 2/Qﬂ)
o If); < oe? / $2jj, then the corresponding d; lies between 0 and 1.
o Ifh; > “?/ Qj;, then the corresponding d; < 0.

Unfortunately, the value of d; depends on the unknown model parameters and so, for

the practical purpose, we need to replace these unknowns with their suitable estimates.
Hence, the estimator of d; is obtained as

d=— T 12, p (3.14)

An iterative method is also used to obtain the estimates of iterative LRME. In brief,
we explain the procedure as follows.

Consider,
Brawe =P 3.15
LemE = BLRME|p=p® (3.15)
with D© = dlag(d(o) 70 _3(0)) where d© — OM and € = AZA | We con.
/ QJJ+aMF/

tinue to update 8 with ,B(LOI)e ME = Q&g}}e ue to get a new updated LRME. After iterating

analogically, we get an iterative LRME as

A l A
(L;eME = BLrRME|Dp=DW (3.16)
oD A ~ MGy
where, D® = diag(@", d’,...a?) and " = —(“LRME”, S i=12. . pl=

QJJ+("‘LRMEJ)2 ’
1,2,...
In order to implement the LRME in Section 4 and Section 5, we have used the estimate
of d; given in Eq. (3.14). Using the simulation study, it is found that the iterative LRME
has a very fast convergence rate.

4. Numerical Example

To illustrate the theoretical results and to evaluate the performance of various estimators,
a real data set on tobacco blends given by Myers (1990) is used. Arslan and Billor (2000)
analyzed this data to study the performance of LME and the other estimators. This data
contains 30 observations on four regressor variablesX, X, X3, and X, with the response
variable Y that measure the amount of heat evolved from tobacco during the smoking
process.

It is observed that, the variance inflation factor (VIF) values for this data are 324.1412,
45.1728, 173.2577, and 138.1753. It reveals the severe problem of multicollinearity. Also,
two outliers in response variable (Y) are pointed out by Arslan and Billor (2000). Hence,
the tobacco blends data suffers from the simultaneous occurrence of outliers and multi-
collinearity. For this dataset, the estimated MSE (EMSE) of each estimator is obtained by
replacing all unknown parameters in the corresponding theoretical MSE expression of that
estimator. For example, the EMSE of the LRME is obtained by using the expression given



1012 Jadhav and Kashid

Table 1
Estimates and EMSE of estimators
Estimators ~ &orse Q1 RRE amE ARME QjRME ArmE QrRME
a 0.4857 0.4848 0.4888 0.4888 0.4888 0.4635 0.4883
> —0.6727 —-0.5574 —-0.6500 —-0.6500 —-0.6500 —0.4858 —-0.5714
a3 —1.0746 —-0.8784 —1.2319 —-1.2319 -1.2319 -0.9172 —1.1143
A4 1.4436 1.0547 0.8841 0.8840 0.8841 0.6572 0.5488
EMSE 1.1032 0.7521 0.6960 0.6960 0.6960 0.4844 0.4197

in Eq. (2.6) as

P +d) P (@ -1)
EMSE=Y ~ 2L A%/ + ! 6% prrr 4.1)
; i+ ;(MH)Z e

where d ; is given in Eq. (3.14). We compare the LRME with the OLSE, LRRE, ME, RME,
JRME and LME in EMSE sense. The estimates of different estimators with their EMSE
are shown in Table 1.

From Table 1 it can be concluded that:

e The EMSE of LRME is smaller than the EMSE of other estimators. It reveals that
the LRME shows largest reduction in EMSE.

e The estimates of the OLSE and LRRE reveals that the presence of outliers and
multicollinearity affect the estimates of regression parameters.

e The estimates of unknown regression parameters and EMSE for ME, RME, and
JRME are equal. Hence, the performance of ME, RME, and JRME is same for this
data.

e The conditions obtained in Section 3 for the superiority of LRME hold for this data.

5. Simulation Study

In this section, we present a simulation study to evaluate the performance of proposed
estimator. To achieve the required degree of multicollinearity, the following simulation
design proposed by McDonald and Galarneau (1975) is used to generate regressor variables
as

1/2 : .
xij:(l_/?z) Cij +plipry Si=1,2,...,n,j=1,2,...,p (5.1

where £;;’s are independent standard normal pseudo-random numbers, p? is the correlation
between any two regressor variables. The (p =) 4 regressor variables are considered and n
observations on the response variable Y are generated using the regression model

where, ¢ ~ N, (0, 021). Note that, the choice of model given above is arbitrary and for
sake of illustration, it is used here. The outlier observations are introduced artificially in the
response variable by using the procedure (see Jadhav and Kashid, 2011) given as follows.
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Table 2
ASEVAR and ASESB of estimators
Without outlier With one outlier
P B o2=1 o¢2=25 o¢2=100 o2=1 62=25 ¢2=100
n =230
0.9 OLSE ASEVAR 0.0043 0.0919 0.2567 0.4777 0.5102 0.5862
ASESB 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0031 0.0269 0.0615 0.0903 0.0906 0.0989
ASESB 0.0002 0.0045 0.0113 0.0180 0.0183 0.0201
ME ASEVAR 0.0044 0.0932 0.2611 0.5526 0.6663 0.8471
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0042 0.0566 0.1013 0.4697 0.4179 0.4002
ASESB 0.0000 0.0038 0.0137 0.0002 0.0011 0.0022
JRME ASEVAR 0.0044  0.0870 0.2108 0.5468 0.6263 0.7272
ASESB 0.0000 0.0004 0.0044 0.0000 0.0001 0.0005
LME ASEVAR 0.0040 0.0736 1.6662 8.54E+04 6.10E+05 4.90E+05
ASESB 0.0002 0.1180 12.8339 5.75E407 1.60E+09 1.29E+4+09
QX/, 1000 703 493 554 281 153
LMEs: ASEVAR 0.0040  0.0291 0.0653 0.0078 0.0137 0.0253
ASESB 0.0002 0.0119 0.0261 0.0027 0.0054 0.0088
LRME ASEVAR 0.0032  0.0276 0.0637 0.0087 0.0106 0.0126
ASESB 0.0002 0.0046 0.0116 0.0015 0.0019 0.0023
0.99 OLSE ASEVAR 0.0355 0.7854 2.2499 4.5109 4.8326 5.6789
ASESB 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0148 0.1595 0.4375 0.7033 0.7806 0.8827
ASESB 0.0021 0.0309 0.0861 0.1471 0.1615 0.1833
ME ASEVAR 0.0363 0.8001 2.2999 7.9859 6.6982 9.1633
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0285 0.2333 0.5597 4.8477 2.5814 3.2081
ASESB 0.0010 0.0409 0.1137 0.0041 0.0125 0.0191
JRME ASEVAR 0.0356 0.5734 1.4964 7.4119 5.2847 6.8620
ASESB 0.0000 0.0175 0.0571 0.0003 0.0037 0.0077
LME ASEVAR 0.0179 13.8958 123.6060  2.50E+07 3.52E+07 9.25E+406
ASESB 0.0071 231.4154 1.01E+04 1.35E+11 3.17E+11 5.98E+10
at, 943 473 417 444 254 165
LMEg ASEVAR 0.0173 0.1613 0.4594 0.0316 0.0838 0.1605
ASESB 0.0049 0.0663 0.1872 0.0163 0.0322 0.0571
LRME ASEVAR 0.0150 0.1660 0.4553 0.0442 0.0602 0.0770
ASESB 0.0022 0.0320 0.0893 0.0088 0.0116 0.0145
0.999 OLSE ASEVAR 0.3526 7.7153 22.3229 45.0429 49.2971 55.4750
ASESB 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0777 1.4699 4.2749 7.7741 7.9657 8.5516
ASESB 0.0149 0.2943 0.8544 1.5928 1.6400 1.7886
ME ASEVAR 0.3596 7.8720 22.6974 57.4998 55.7978 86.9774
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.1388 1.7702 5.0567 31.8218 19.3437 29.1870
ASESB 0.0185 0.3873 1.0907 0.0487 0.1195 0.1931
JRME ASEVAR 0.2916 4.8864 13.7915 51.7203 41.1841 63.7751
ASESB 0.0057 0.2024 0.5841 0.0050 0.0438 0.0845
LME ASEVAR 3.3599 1.03E403 1.59E+03 4.37E+07 7.46E+07 7.75E+407
ASESB 31.6896 1.25E4+05 1.02E4+05 1.22E+11 3.91E+11 3.85E+11
at, 542 437 439 451 235 159

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)

Without outlier

With one outlier

P B ot=1 62=25 ¢2=100 o2=1 62=25 ¢2=100
LMEg ASEVAR 0.0790 1.4560 43420 0.3583 0.6813 1.5305
ASESB  0.0324 0.6037 1.7790 0.1771 0.2885 0.6172
LRME ASEVAR 0.0812 1.5321 4.4095 0.4531 0.5816 0.7829
ASESB  0.0155 0.3040 0.8685 0.0907 0.1171 0.1529
0.9999 OLSE ASEVAR 3.5141 767675 2235224 4664939 491.7869  568.5576
ASESB  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.6830 150387 425911  76.7899  80.8770  81.6369
ASESB  0.1355 2.9669 8.5278 158614 167343 17.1806
ME ASEVAR  3.5869 77.9804  228.0065 579.8510 605.2126 860.2789
ASESB  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.8545 17.6523  50.5052  281.8503 242.1621 266.4587
ASESB  0.1790 3.9347 10.9946  0.5047 1.2503 2.2243
JRME ASEVAR 23093 47.8383  139.7290 495.1777 469.8509  603.1857
ASESB  0.0917 2.0920 5.9069 0.0574 0.4371 0.9622
LME ASEVAR 273.6035 4.52E+03 2.56E4+04 7.62E+08 5.29E+08 5.25E+09
ASESB  2.17E4+04 4.10E4+05 3.43E+06 2.92E+12 1.59E+12 8.88E+13
at, 447 451 433 444 270 173
LMEg ASEVAR 0.6892 155898  42.0141  3.5634 7.4437 16.3258
ASESB  0.2837 6.3166 17.3429  1.7641 29721 6.3012
LRME ASEVAR 0.7033 156570 445410  4.6181 5.8584 8.5160
ASESB  0.1380 3.0616 8.8885 0.9305 1.1422 1.6547
n =50
0.9 OLSE ASEVAR 0.0024 0.0510 0.1442 0.2459 0.2778 0.3239
ASESB  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0019 0.0191 0.0369 0.0495 0.0533 0.0544
ASESB  0.0001 0.0029 0.0065 0.0096 0.0105 0.0110
ME ASEVAR  0.0024 0.0522 0.1473 0.6509 0.2398 0.3333
ASESB  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0024 0.0380 0.0670 0.6153 0.1802 0.1664
ASESB  0.0000 0.0018 0.0080 0.0000 0.0005 0.0013
JRME ASEVAR 0.0024 0.0509 0.1276 0.6501 0.2346 0.2970
ASESB  0.0000 0.0001 0.0016 0.0000 0.0000 0.0003
LME ASEVAR 0.0023 0.0229 0.3581 3.70E4+05 3.11E+04 3.82E405
ASESB  0.0001 0.0113 1.1358 454E+08 237E+07 1.475E+09
at 1000 888 548 715 397 159
LMEg ASEVAR  0.0023 0.0220 0.0423 0.0037 0.0090 0.0128
ASESB  0.0001 0.0076 0.0169 0.0010 0.0034 0.0058
LRME ASEVAR 0.0019 0.0195 0.0383 0.0052 0.0073 0.0083
ASESB  0.0001 0.0030 0.0067 0.0008 0.0012 0.0015
099 OLSE ASEVAR 0.0200 0.4351 1.2635 23310 2.5749 3.0369
ASESB  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0101 0.0942 0.2541 0.3958 0.4335 0.4932
ASESB  0.0013 0.0181 0.0500 0.0810 0.0893 0.1019
ME ASEVAR  0.0205 0.4459 1.2903 5.2302 2.2697 3.3113
ASESB  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0177 0.1447 03128 3.9827 0.9198 0.9796
ASESB  0.0004 0.0248 0.0689 0.0007 0.0070 0.0121
JRME ASEVAR 0.0204 0.3419 0.8582 5.1094 1.8725 2.3867

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)
Without outlier With one outlier
P B ol=1 62=25 02=100 o2=1 62=25 ¢2=100
ASESB 0.0000 0.0087 0.0332 0.0000 0.0022 0.0050
LME ASEVAR 0.0129 5.4266 48.6563 221E407 6.85E+06 2.69E+06
ASESB 0.0026 70.5478 2.09E403 7.66E+10 5.74E+10 1.17E4+10
a, 999 514 415 599 247 143
LMEg;: ASEVAR 0.0129 0.0941 0.2764 0.0155 0.0410 0.1010
ASESB 0.0026 0.0399 0.1135 0.0067 0.0180 0.0384
LRME ASEVAR 0.0103 0.0978 0.2623 0.0173 0.0304 0.0437
ASESB 0.0013 0.0186 0.0510 0.0032 0.0059 0.0081
0.999 OLSE ASEVAR 0.1979 4.3103 12.3912 22.7979 25.6685 30.2683
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0473 0.8126 2.3843 3.9627 4.2328 4.8167
ASESB 0.0089 0.1616 0.4748 0.8180 0.8673 1.0072
ME ASEVAR 0.2023 44211 12.7255 61.4494 21.9338 28.0873
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME  ASEVAR 0.0902 0.9416 2.6421 36.9321 6.8520 7.1481
ASESB 0.0104 0.2211 0.6480 0.0115 0.0660 0.1165
JRME ASEVAR 0.1751 2.7213 7.7349 56.6948 15.8073 18.6450
ASESB 0.0022 0.1161 0.3527 0.0010 0.0303 0.0575
LME ASEVAR 0.7087 1.57E+03 3.82E+02 7.66E+09 4.87E4+07 1.09E+4-08
ASESB 2.9466 1.71E4+05 1.90E+04 5.83E+14 2.85E+11 1.79E+12
a, 585 421 416 508 210 130
LME;: ASEVAR 0.0468 0.8578 2.4414 0.1197 0.3767 0.8127
ASESB 0.0201 0.3588 1.0334 0.0583 0.1516 0.3588
LRME ASEVAR 0.0484 0.8504 2.4603 0.1362 0.2683 0.4089
ASESB 0.0091 0.1676 0.4860 0.0267 0.0531 0.0798
0.9999 OLSE ASEVAR 1.9786 42.2700 123.1427  230.3123  258.2842  295.7860
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.3855 7.9769 23.8499 39.2900 42.0808 46.2238
ASESB 0.0775 1.5890 4.7206 8.0856 8.6971 9.6184
ME ASEVAR 2.0264 43.2754 125.4728  591.0670  272.3938  295.3610
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME  ASEVAR 0.4734 8.9636 26.5415 326.8068  83.0566 78.3865
ASESB 0.1050 2.1803 6.4689 0.1210 0.6522 1.3010
JRME ASEVAR 1.3251 26.0572 75.8385 527.6826  194.5027  199.1760
ASESB 0.0527 1.1907 3.4579 0.0172 0.3101 0.6333
LME ASEVAR 296.5514 6.58E4+03 8.66E4+03 1.04E+10 1.03E409 1.48E+08
ASESB 1.86E4+04 1.46E+406 6.88E+05 1.20E+14 6.52E+12 5.19E+11
a, 429 416 435 486 196 135
LME;: ASEVAR 0.3953 8.4799 24.5826 1.2531 4.0254 10.0493
ASESB 0.1676 3.6180 10.2417 0.6019 1.6802 3.8774
LRME ASEVAR 0.4022 8.4387 24.8891 1.3506 2.4498 4.6511
ASESB 0.0798 1.6785 4.8816 0.2647 0.4788 0.9137
n =100
0.9 OLSE ASEVAR 0.0011 0.0246 0.0684 0.1048 0.1213 0.1494
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0010 0.0118 0.0207 0.0244 0.0258 0.0275
ASESB 0.0000 0.0015 0.0035 0.0044 0.0048 0.0055
ME ASEVAR 0.0012 0.0252 0.0700 0.2669 0.0603 0.1042

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)

Without outlier

With one outlier

P B 6l=1 02=25 ¢2=100 o2=1 62=25  ¢2=100
ASESB  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.0012 0.0211 0.0411 0.2638 0.0510 0.0620
ASESB  0.0000  0.0006 0.0034 0.0000 0.0002 0.0006

JRME ASEVAR 0.0012 0.0250 0.0656 0.2669 0.0599 0.0978
ASESB  0.0000  0.0000 0.0003 0.0000 0.0000 0.0001
LME ASEVAR 0.0011 0.0148 0.0481 1.39E4+05 1.33E+02 3.61E4+02
ASESB  0.0000 0.0036 0.0632 1.59E4+08 1.44E+04 6.48E+04

at, 1000 992 693 857 701 290
LMEg ASEVAR 0.0011 0.0149 0.0227 0.0018 0.0051 0.0059
ASESB  0.0000  0.0035 0.0093 0.0003 0.0016 0.0025
LRME ASEVAR 0.0010 0.0120 0.0209 0.0029 0.0054 0.0053
ASESB  0.0000 0.0016 0.0035 0.0004 0.0008 0.0009

099  OLSE ASEVAR 0.0095 0.2059 0.6013 0.9727 1.1313 1.4078
ASESB  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0060 0.0491 0.1233 0.1732 0.2013 0.2334
ASESB  0.0005  0.0092 0.0244 0.0350 0.0407 0.0483

ME ASEVAR  0.0098 0.2109 0.6142 2.1696 0.6537 1.0007
ASESB  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000

RME  ASEVAR 0.0091 0.0880 0.1572 1.9566 0.2738 0.2630
ASESB  0.0001  0.0120 0.0347 0.0001 0.0040 0.0069

JRME ASEVAR 0.0097 0.1804 0.4308 2.1625 0.5589 0.7049
ASESB  0.0000  0.0027 0.0158 0.0000 0.0008 0.0031
LME  ASEVAR 0.0079 0.7719 7.9268 3.43E4+07 3.63E405 1.22E+05
ASESB  0.0008 3.6105 112355  3.44E+11 8.62E+08 1.47E+408

at, 1000 569 453 712 305 183
LMEg ASEVAR 0.0079  0.0495 0.1247 0.0064 0.0263 0.0320
ASESB  0.0008 0.0215 0.0539 0.0020 0.0102 0.0145
LRME ASEVAR 0.0061 0.0508 0.1288 0.0066 0.0182 0.0252
ASESB  0.0006 0.0096 0.0251 0.0010 0.0033 0.0049

0999 OLSE ASEVAR 0.0938 2.0446 5.8689 9.8479 11.2917  13.9890
ASESB  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0279 04019 1.1838 1.7077 1.9036 22727
ASESB  0.0049  0.0802 0.2377 0.3502 0.3947 0.4730

ME ASEVAR  0.0966 2.1035 6.0232 272867  6.3359 8.7946
ASESB  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000

RME  ASEVAR 0.0574 0.4627 1.2555 18.0036  1.5887 1.8645
ASESB  0.0045 0.1161 0.3361 0.0024 0.0363 0.0612

JRME ASEVAR 0.0908 1.3643 3.7526 26.0038  4.2453 5.4684
ASESB  0.0004 0.0598 0.1822 0.0001 0.0179 0.0352
LME ASEVAR 0.0940 76.2581 1.42E4+03 3.60E4+09 6.91E4+06 2.68E++07
ASESB  0.1472 3.16E+03 3.06E4+05 8.88E+13 238E+10 3.87E+11

at, 746 419 432 446 212 179
LMEg ASEVAR 0.0293  0.4190 1.1617 0.0324 0.1832 0.2643
ASESB  0.0118 0.1814 0.5003 0.0146 0.0825 0.1128

LRME ASEVAR 0.0287 0.4257 1.2378 0.0310 0.1256 0.2074
ASESB  0.0050  0.0846 0.2471 0.0059 0.0247 0.0409
0.9999 OLSE ASEVAR 0.9260 20.3834 582605  94.9885 109.2081  140.0409
ASESB  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)
Without outlier ‘With one outlier
P B ol=1 62=25 ¢2=100 o%=1 62=25 ¢2=100
LRRE ASEVAR 0.1814 3.9007 11.3386 16.7707 18.9919 24.1932
ASESB 0.0365 0.7811 2.2750 3.4200 3.9128 4.9548

ME ASEVAR  0.9524 20.9470 59.7002 377.4422  63.1850 101.3495
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR  0.2360 4.0166 11.8750 230.5320  12.5682 21.1476
ASESB 0.0514 1.0717 3.2486 0.0310 0.3707 0.6008
JRME  ASEVAR 0.6636 12.4937 36.2461 3447947  37.8859 62.7410
ASESB 0.0237 0.6162 1.8237 0.0080 0.2034 0.3322
LME ASEVAR  14.1861 1.48E+03  1.95E+03 1.18E+11 1.60E+07  3.63E+09
ASESB 237.0883 2.59E4+05 1.06E4+05 6.42E+15 2.67E+10 3.18E+14

a, 436 400 437 367 172 175
LMEg& ASEVAR 0.1733  4.0012 109630  0.3091 1.9067 22597

ASESB 00787 17132 47788 0.1396 0.8588 0.9917
LRME ASEVAR 0.1886  4.0459 119105 0.2551 1.2843 2.0431

ASESB 0.0378 0.8065 2.3676 0.0495 0.2582 0.4066

[ij& denote the number of times aM belongs to (0, 1) and the LMEy; denote the ASEVAR and
ASESB of LME based on the values of those d’s which satisfy the condition EZM e (0, 1).

Let e, i =1,2,...,n be the absolute value of i" residual obtained from the least
squares fit. Next, arrange these values in increasing order of their magnitude such that e}, <
e < ... < (). We introduce one outlier by multiplying actual value of ¥ corresponding
to e, by twenty. On the similar line, two outliers are introduced in the response variable ¥
corresponding to e?‘n), ezknfl) and so on.

5.1. Comparison of Estimators

In this subsection, the above simulation experiment is replicated 1000 times for p = 0.9,
0.99, 0.999, 0.9999, sample size(n) = 30, 50, 100 and error variance (02) =1, 25, 100
respectively. For each combination of n, p, and o2, the average of sum of estimated
variances (ASEVAR) and average of sum of estimated squared bias (ASESB) is obtained
by replacing the unknown parameters by their suitable estimates in the corresponding MSE
expression given in Section 2 and Section 3. For example, the ASEVAR and ASESB of
LRME is obtained by using the expression given in Eq. (2.6) as

1000 p
1 (h+d)
ASEVAR = - > A%/ (5.3)
i=1 j=I1 )
and
1 1000 d _ 1
ASESB = - > Z 8] rmE, (5.4)

i o (k1)
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n=50,p=0.9,62 =100 n=100,p = 0.9,6° = 100
i +
+ 05 +
3 +
+ L 04 +
w w
o’ z & 03
= =
w w o2
1
+ i L
0 = -+ 0 i
OISE LRRE ME RME JRME LRME OISE LRRE ME RME JRME LRME
Estimators Estimators
n=50,p =0.99,6% = 100 n=100,p = 0.99,62 = 100
+ 5 +
+
“ N + 4
w 30 + w s
+ +
E 20 + = E 2
0 % = % 0 £
OLSE  LRRE ME RME JRME LRME OLSE  LRRE ME RME JRME LRME
Estimators Estimators
n=50,p =0.999,6° = 100 n=100,p = 0.999,6% = 100
600 * + 50 i
g +
500 X “ N
400
w w
u W30
= 300 =
w i w 20
200
0 % == —+ 0 i
OISE LRRE ME RME JRME LRME OISE LRRE ME RME JRME LRME
Estimators Estimators
n=50,p = 0.9999,62 = 100 n=100,p = 0.9999,62 = 100
T 800
4000 ¥ -
* + o0
3000
3 £ oL 3 oLt
2 o i 2 wo +
w ¢ w .
Jow é;l 200 % 5:
0 % = -+ 0 ; E
OLSE LRRE ME RME JRME LRME OLSE  LRRE ME RME JRME LRME
Estimators Estimators

Figure 1. Box plots of OLSE, LRRE, ME, RME, JRME, and LRME with 1 outlier.

Using the same technique, we obtain the ASEVAR and ASESB of OLSE, LRRE, ME,
RME, JRME and LME and are reported in Table 2. Note that, the LME is obtained without
considering the range bound of the estimate of d.

Table 2 indicate that,

e For without and with one outlier case and for any combination of n and o2, as degree
of multicollinearity (p) increases, the ASEVAR of each estimator goes on increases.

e For each replication with low degree of multicollinearity (o = 0.9) and smaller error
variance (62 = 1), the value of dy lies in 0 and 1. But slight increase in p or o?
affects the dj; estimator and the frequency of dj, to lie in (0, 1) reduces.

e For without and with one outlier case, for any combination of p and o2, as sample size
increases, the ASEVAR of the OLSE, LRRE, LMEy; and LRME goes on decreases.
But for any combination of n and p, as error variance increases, ASEVAR of the
OLSE, LRRE, LME4 and LRME goes on increases.
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Table 3
Descriptive statistics of EMSE’s of estimators for o2 = 100
0 Estimator Mean Median SD QD
n =50

0.9 OLSE 0.3207 0.3176 0.0877 0.0526
LRRE 0.0671 0.0611 0.0446 0.0314
ME 0.3240 0.0553 0.4527 0.2595
RME 0.1586 0.0344 0.2479 0.1136
JRME 0.2865 0.0497 0.4093 0.2231
LME 5.36E4-07 0.5074 8.70E+08 4.08E+4-03
LME4 0.0190 0.0070 0.0253 0.0109
LRME 0.0092 0.0037 0.0155 0.0030

0.99 OLSE 3.0845 3.0578 0.9258 0.5896
LRRE 0.5814 0.5039 0.4258 0.2926
ME 3.1349 0.4052 4.6581 2.4810
RME 0.8580 0.1124 1.6689 0.5206
JRME 2.1862 0.2692 3.5392 1.6251
LME 9.42E+11 17.5531 2.35E+13 6.85E4-04
LMEy 0.1392 0.0319 0.2315 0.0714
LRME 0.0548 0.0137 0.1238 0.0163

0.999 OLSE 29.8001 29.5320 8.7529 5.4040
LRRE 5.7969 5.1320 4.2649 2.9787
ME 30.9913 6.7067 447174 24.9266
RME 8.0859 1.0130 20.1042 4.4535
JRME 20.8155 3.9466 35.8031 14.9738
LME 5.06E4-09 392.7401 6.21E+10 2.11E4-06
LME 4 1.5744 0.3573 2.3581 1.1895
LRME 0.5464 0.1032 1.2958 0.1495

0.9999 OLSE 304.6856 300.4153 95.1655 57.9261
LRRE 61.3254 53.8122 42.3041 28.7499
ME 337.1994 87.1232 488.3154 258.6752
RME 81.8823 10.1306 170.5768 43.4390
JRME 219.6707 46.6097 361.7709 152.1898
LME 1.48E+11 3.82E+4-03 1.33E+12 2.54E+407
LMEy 12.9488 5.1100 17.3153 8.7172
LRME 5.1813 1.1514 11.1360 1.7610

n =100

0.9 OLSE 0.1519 0.1543 0.0326 0.0183
LRRE 0.0338 0.0305 0.0218 0.0154
ME 0.1043 0.0238 0.1154 0.1011
RME 0.0636 0.0164 0.0726 0.0606
JRME 0.0983 0.0226 0.1090 0.0954
LME 8.13E4-04 0.0344 1.20E+4-06 63.7344
LME44 0.0075 0.0023 0.0115 0.0025
LRME 0.0062 0.0030 0.0088 0.0025

(Continued on next page)
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Table 3
Descriptive statistics of EMSE’s of estimators for o2 = 100 (Continued)

0 Estimator Mean Median SD QD

0.99 OLSE 1.4168 1.4483 0.3332 0.1793
LRRE 0.2826 0.2472 0.2046 0.1405
ME 0.9768 0.2914 1.0931 0.9431
RME 0.2712 0.0644 0.3833 0.2008
JRME 0.7038 0.2099 0.8284 0.6494
LME 1.60E+07 3.9899 2.73E+08 7.72E4+03
LME g4 0.0629 0.0187 0.0949 0.0341
LRME 0.0294 0.0080 0.0572 0.0091

0.999 OLSE 14.0989 14.3240 3.3405 1.9837
LRRE 2.9123 2.6666 2.0161 1.4101
ME 9.8044 2.2517 11.0366 9.7139
RME 2.0669 0.3490 3.2743 1.3404
JRME 6.1067 1.4803 7.6695 5.2710
LME 1.56E+10 54.5738 4.25E+11 1.19E+05
LME s 0.3624 0.1324 0.6303 0.1544
LRME 0.2591 0.0689 0.5157 0.0923

0.9999 OLSE 139.9973 142.6241 33.8215 19.5044
LRRE 27.4107 24.4642 19.9365 13.8322
ME 98.7998 25.2994 114.6741 92.8359
RME 20.5262 3.3328 34.9397 12.5489
JRME 60.3414 15.1822 78.5162 52.3301
LME 5.45E+09 588.5886 9.89E+10 7.64E4-05
LME g4 4.4088 1.4234 7.2430 1.8673
LRME 2.6433 0.7175 5.2797 0.9979

e The LRRE consistently shows smaller ASEVAR than that of the other estimators
(except LMEg4) for without outlier case with any combination of n, p and o2.

e For one outlier case, the ASEVAR and corresponding AMSE of the LRME is smaller
than that of the other estimators (except LMEgy). But, for larger error variance (o> =
25, 100), the ASEVAR and corresponding average EMSE (AEMSE) of the LRME

is smaller than that of the LMEy4.

5.2. Comparison of EMSE of Estimators

The above simulation experiment is repeated 1000 times for one outlier case with n =
50 and 100, p = 0.9, 0.99, 0.999, and 0.9999 and o> = 100. The EMSE’s of the OLSE,
LRRE, ME, RME, JRME, LME, and LRME are calculated by adding SEVAR and SESB
of corresponding estimators. The box plots of 1000 EMSE’s of the estimators are obtained
and shown in the following Figure 1. Some of the EMSE values of the LME are too high,
so the box plot of EMSE’s of the LME is not shown in Figurey 1.
Figure 1 clearly shows that, the performance of the LRME is superior than the perfor-
mance of the OLSE, LRRE, ME, RME and JRME for all values of n and p. It also reveals
that, the LRME consistently shows smaller EMSE as compare to the other estimators.
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In addition, the descriptive statistics like mean, median, standard deviation (SD) and
quartile deviation (QD) of the 1000 EMSE’s of the OLSE, LRRE, ME, RME, JRME, LME,
and LRME are obtained and reported in the Table 3.

Table 3 clearly indicates that the mean, median, SD and QD of the LRME is consistently
smaller than that of the other estimators for all combinations of n and p. Hence, the
performance of the LRME is good as compare to other estimators.

5.3. Comparison of EMSE for More Than One Outlier

The same simulation experiment used in the subsections 5.1 and 5.2 is repeated 1000 times
for all possible combinations of p = 0.9, 0.99, 0.999, 0.9999 and 0% = 1,25, 100. For each
combination of p and ¢ with n = 50, the EMSE of the OLSE, LRRE, ME, RME, JRME,
LME, and LRME is computed by introducing one, two and three outliers in the response
variable. The AEMSE ratio of the LRME over the all remaining estimators is obtained and
reported in Table 4.

From Table 4 it clearly seems that, for any degree of multicollinearity with different
number of outliers, the AEMSE ratio of the LRME over the OLSE, LRRE, ME, RME,
JRME and LME is less than one. Hence, the performance of the LRME is better as compare
to the other estimators for more than one outlier case.

6. Conclusion

In this article, we have introduced a new estimator for regression parameters to deal with
the problem of multicollinearity and outliers in the data. Some conditions are obtained
theoretically to study the superiority of LRME over different estimators in the MSE sense.
A Numerical example on real dataset is illustrated to support the superiority of proposed
estimator. Also, an extensive simulation study is carried out to evaluate the performance of
the LRME. It indicates that, the performance of the LRME is better than the OLSE, LRRE,
ME, RME, JRME and LME when the multicollinearity and outliers simultaneously present
in the data.
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Variable Selection in Regression using
Multilayer Feedforward Network

Tejaswi S. Kamble Dattatraya N. Kashid
Shivaji University Shivaji University
Kolhapur, Maharashtra, India Kolhapur, Maharashtra, India

The selection of relevant variables in the model is one of the important problems in
regression analysis. Recently, a few methods were developed based on a model free
approach. A multilayer feedforward neural network model was proposed for developing
variable selection in regression. A simulation study and real data were used for evaluating
the performance of proposed method in the presence of outliers, and multicollinearity.

Keywords: Subset selection, artificial neural network, multilayer feedforward
network, full network model and subset network model.

Introduction

The objective of regression analysis is to predict the future value of response
variable for the given values of predictor variables. In the regression model, the
inclusion of a large number of predictor variables leads to the problems such as i)
decrease in prediction accuracy, and ii) increase in cost of the data collection
(Miller, 2002). To improve the prediction accuracy of the regression model, one
approach is to retain only a subset of relevant predictor variables in the model,
and eliminate the irrelevant predictor variables. The problem of choosing an
appropriate relevant set from a large number of predictor variables is called subset
selection or variable selection in regression.

In traditional regression analysis, the form of the regression model must be
first specified, then fitted to the data. However, if a pre-specified form of the
model is itself wrong, another model must be used. Searching for a correct model
for the given data becomes difficult when complexity is present in the data. A
better alternative approach in the above situation would be to estimate a function
or model from the data. Such an approach is called Statistical Learning; Artificial

Ms. Kamble is a Junior Research Fellow in the Department of Statistics. Email her at
tejustat@gmail.com. Dr. Kashid is a Professor in the Department of Statistics. Email him
at dnk_stats@unishivaji.ac.in.
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Neural Network (ANN) and Support Vector Machine (SVM) are statistical
learning techniques.

ANNSs have recently received a great deal to attention in many fields of
study, such as pattern reorganization, marketing research etc. ANN is important
because of its potential use in prediction and classification problems. Usually,
ANN is used for prediction when form of the regression model is not specified. In
this article, ANN is used for selection of relevant predictor variables in the model.

Mallows’s Cp (Mallows, 1973) and S, statistics (Kashid and Kulkarni, 2002),
along with other existing variable selection methods, are suitable under certain
assumptions with prior knowledge about the data. When no prior knowledge
about the data is available, ANN is an attractive variable selection method
(Castellano and Fanelli, 2000), because ANN is a data-based approach. ANN is
used in this study for obtaining predicted values of the subset regression model.
The criteria Cp and Sp are based on prediction values of subset models. Therefore,
we propose modification in Cp, and Sp based on predicted values of the ANN
model.

Mallows’s Cp (Mallows, 1973) is defined by

RSS
C,=—3"+(n-2p) (1)

where p is the number of parameters in the subset regression model with p—1
regressors, RSSy is the residual sum of squares of the subset model, n is the
number of data points used for fitting the subset regression model, and &2 is
replaced by its suitable estimates, usually based on the full model. In this study,
the following cases are used.

Casel

A simulation design proposed by McDonald and Galarneau (1975) is used for
introducing multicollinearity in the regressor variables. It is given by
X, =(1=p7) Z,+ 0250 1 =020, ] =120,

(3+1)°
where Z;jj are independent standard normal pseudo-random numbers of size n, and

p? is the correlation between any two predictor variables. The response variable Y
is generated by using the following regression model with n = 30 and p = 0.999:
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Y, =1+4X,, +5X,, +0X,, +&, i=12,...,30

where &~ N(0,1). To identify the degree of multicollinearity, the variance
inflation factor (VIF) is used (Montgomery, Peck, and Vining, 2006). For this
data, the VIFs for the variables are 339.6, 572.5 and 350.1. These VIFs indicates
the presence of severe multicollinearity in the data. We compute the value of the
Cp statistic Co(M) and report the results in Table 1.

Case 2

Data generated in Case 1 is used, and one outlier is introduced by multiplying the
actual Y corresponding to the maximum absolute residual by 25. The value of the
response variable Y =8.2235 is replaced by Y =205.5878. The value of the C,
statistic Cp(MO) is computed and reported in Table 1.

Case 3

The following nonlinear regression model is generated using the above
Xi,i =1,2,3 and ¢ which are generated in Case 1. The nonlinear regression model
is

Y —exp(L+4X,, +5X,, +0X;;)+4, 1=12,...,30

The values of the C, statistic Cp(NL) are computed for the nonlinear regression
model and reported in Table 1.

Table 1. Values of Cp(M), Cp(MO), and Cp(NL).

Regressors in subset model P Cp(M) Cp(MO) Cp(NL)
X1 2 1.8617 3.0077 2.0726
X2 2 2.2565 2.2510 1.0605
X3 2 3.2585 1.9152 2.3498
X1X2 3 2.2237 2.8740 2.0059
X1X3 3 3.8518 3.2340 3.8492
X2X3 3 4.1730 3.4448 3.0179
X1X2X3 4 4.0000 4.0000 4.0000

As seen in Table 1, the criterion Cp selects the wrong subset models for all
the above-cited cases. The statistic fails to select the correct model in the presence
of a) multicollinearity alone, b) both multicollinearity and outlier, and c)
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nonlinear regression, because OLS estimation does not perform well in each case.
Consequently, variable selection methods based on OLS estimator fail to select
the correct model.

Regression Model and Neural Network Model

In general, the regression model is defined as
Y="f(X,B)+e ()

where f is any function of predictor variables Xi, Xz, ..., Xk-1 and unknown
regression coefficients . If f is a non-linear function, then regression parameters
are estimated by using nonlinear least squares method (or some other method). If f
is linear, the regression model can be expressed as

Y =XB+¢g (3)

where Y isan n x 1 vector of response variables, X is a matrix of order n x k with
1I’s in the first column, P is a k x 1 vector of regression coefficients and ¢ is an
n x 1 vector of random errors which are independent and identically distributed
N(0,6°1). The least squares estimator of g is given by (Montgomery et al., 2006)

B=(XX)"XY

The predicted value of the regression model is obtained by the fitted
equation

Y =X

The prediction accuracy of the regression model depends on the selection of an
appropriate model, which means the form of the function (f) must be specified
before the regression analysis. If form of the model is not known, then one of the
most appropriate alternative methods to handle this situation is artificial neural
network.

673



VARIABLE SELECTION IN REGRESSION USING MFN

Multilayer Feedforward Network (MFN)

The MFN can approximate any measurable function to any desired degree of
accuracy (Hornik, Stinchcombe, and White, 1989). This MFN model consists of
an input layer, an output layer, and one or more hidden layer(s). We represent the
architecture of MFN with one hidden layer consisting of J hidden nodes, and a
single node in an output layer, as shown in Figure 1. A vector X = [Xo, X1, ...,
Xk-1]" is the vector of k units in the input layer and Y is the output of the network.

( = b w|m
w0 S .

N\ S — O Y
X, \ b—
X 2
X
Input layer Hidden layer Output layer

Figure 1. Multilayer feedforward network

From Figure 1, each input signal is connected to each node in the hidden
layer with weight wjm, m=0,1,2,3,...k—-1,j=1,2,...,J, and hidden nodes are
connected to a node in the output layer with weight v;, j=1,2,...,J. The final
output Y; for the it" data point is given by

Y=g, (Zj_lvj gl(zfn_lowjmxim)) i=12,...n

where g: and g» denote activation functions used in the hidden layer and output
layer respectively; it is not necessary that g and g, are the same activation
functions. The above network model can be written as
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Y =1f(X,B) (4)

where B =(v1, ..., V3, Wo, W1, Wo, ..., Wk-1), Wm = (Wim, Wom, ..., Wim),
m=0,1,2,...k—1 and f(X,8) is a nonlinear function of the inputs
Xo, X1, X2, ..., Xk-1 and the weight vector p. If we add an error term in the above
model (4), then it becomes a regression model as in Equation 2, where g is the
random error.

The next step in ANN modeling is training the network. The purpose of
training the network is to obtain weights in a neural network model using the
training data. Various training methods or algorithms are available in the literature.
The robust back-propagation method (see Kasko, 1992) is one such. First, two
types of MFN models must be defined, namely the full MFN model and the
subset MFN model, for proposing modification in Cp and S, statistics.

Full MFN and subset MFN model

A full MFN model is constructed with input units Xi, Xz, ..., Xk-1 and bias node
Xo=-1. The MFN model in Equation 4 is a full MFN model. The network
weights are obtained by training the network and the network output vector based
on a full MFN model, as

Y:f(x,ﬁ) (5)

where B is the estimated weight vector.

A subset MFN model is constructed with a subset of input units
Xa = (Xo, X1, X2, ..., Xp-1)' of size p(p <K) in the input layer. The subset network
model is given by

Y = f(XA1BA) (6)

where X and B are partitioned as X = [Xa: Xg] and B = [Ba: Bg]. Similarly, the
network output vector based on subset MFN model is

Y = f(XA’ﬁA) (7)

where B, is the estimated weight vector.
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To implement the training procedure using network training algorithm, we
need to select the number of hidden layers in the MFN and the number of hidden
nodes in that hidden layer. This is discussed in the next section.

Selection of Hidden Layer and Hidden Nodes

The selection of learning rate parameter, initial weights and number of hidden
layers in the MFN model and the number of hidden nodes in each hidden layer is
an important task. The number of hidden layers is determined first. The network
begins as a one-hidden-layer network (Lawrence, 1994). If the one-hidden-layer
MFN network does not sufficient for training the network, then more hidden
layers are added. In the MFN model, theoretically a single hidden layer is
sufficient, because any continuous function defined on a compact set in R" can be
approximated by a multilayer ANN with one hidden layer with sigmoid activation
function (Cybenko, 1989). Based on this result, we consider the single hidden
layer MFN model with sigmoid activation function.

The choice of number of hidden neurons in the hidden layer is also a
considerable problem, and it depends on the data. Research has proposed various
methods for selection of hidden nodes in the hidden layer (see Chang-Xue, Zhi-
Guang and Kusiak, 2005), as follows:

o H1 =21 + 1 (Hecht-Nelson, 1987)

o H> = (1 + O)/2 (Lawrence and Fredrickson, 1998)

o n/10 — 1 -0 <Hz <n/2 —1 - O (Lawrence and Fredrickson, 1998)
o Has = Ilogzon (Marchandani and Cao, 1989)

o Hs = O(l + 1) (Lipmann, 1987)

Here, | is the number of inputs, O is the number of output neurons, and n is the
number of training data points.

Variable Selection Methods and Proposed Methods

In the classical linear regression, several variable selection procedures have been
suggested by the researchers. Most methods are based on least squares (LS)
parameter estimation procedure. The variable selection methods based on LS
estimates of B fail to select the correct subset model in the presence of outlier,
multicollinearity, or nonlinear relationship between Y and X. Here, we modified
existing subset selection methods using MFN model for prediction.
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It is demonstrated that the Mallows’s C;, statistic does not work well when
assumptions are violated. Researchers have suggested some other methods for
variable selection (see Ronchetti and Staudte, 1994; Sommer and Huggins, 1996).
Also Kashid and Kulkarni (2002) have suggested a more general criterion, the Sp
statistic for variable selection in cases of clean and outlier data. It can be defined
as

S =

p

Zinzl(YAik _YAip
o2

) +(k-2p) (8)

where Y, is the predicted value of the full model, \fip Is the predicted value of the
subset model based on M-estimator of the regression parameters, and k and p are
the number of parameters in the full and subset model respectively. The ¢° is
replaced by its suitable estimates, which usually consists of the full model.

The subset selection procedure is same for both the methods. The Sy statistic is
equivalent to the C, statistic when LS method is used for estimating regression
coefficients. The following suggests modification in both criteria using the

complicity measure.

MCp and MSp Criteria

In a modified version of the C, and Sy statistics, the network output (estimated
values of response Y) is obtained by using the single hidden layer with a single
output MFN model.

The network outputs Y, = f (X,B) and Y, = f(XiA,fﬁA) denote outputs

based on full MFN and subset MFN model, respectively. The residual sum of
squares for the full and subset network models are defined as

RSS, = Zin:l(Yi -Y, )2, and
RSS, = Zinzl(Yi _YAip )2

The modified version of C, and Sy are denoted as MCp and MS,. They are defined
by
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RSS
MC, =

2
P O

. +C(n,p), and (9)

MS, = ") +C(n, p) (10)

p

2 (Y
o2

where n is the number of data points and p is the number of inputs including bias
node (Xo). \fik and \fip are the predicted values of Y based on the full and subset

MFN models, respectively, C(n,p) is the penalty term, and o2 is replaced by its
suitable estimate if it is unknown. The motivation for proposing modified versions
of Cp and Sp are as follows.

In criterion MC,, we use two types of measures. The first term measures the
discrepancy between the desired output and network output based on the subset
MFN model. The smaller this value is, the closer to the desired output it is; the
smallest value of this measure is smallest for the full model. Therefore, it is
difficult to select the correct model by minimizing criterion. So, we add a
complicity measure called the penalty function, comprised of only p, only n, or
both n and p.

In the second criterion MS,, we use sum of squared difference between
network output of the full and subset MFN models. The smallest value indicates
that a prediction based on the subset MFN model is as accurate as the full MFN
model. When full MFN model is itself the correct model, this value is zero. It is
difficult to select the correct model using the minimizing criterion. Therefore we
added the penalty function similar to criterion defined in (9) and used the same
logic for the selection of subset. The selection procedure for both methods is as
follows.

Step I: Compute the MC,, for all possible subsets.
Step II:  Select the subset corresponding to the minimum value of MC,.
Use the same procedure for MS;.

Choice of Estimator of o?

An estimator of o2 is required to implement the MC, and MS, criteria. In the
literature of regression, various estimators of o2 are available. What follows are
estimators of o2 used in MC, and MS;, based on full network output, and a study of
the effect of these estimators on the value of MC, and MS,.
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2. 6; =(1.4826median|r, —median(ri)‘)2

3. 63 =(1.4826median |ri|)2

where n is the number of data points, k is the number of inputs in the full MFN
model including bias node r. =Y, -Y,, and Y, is the network output for the it
data point based on the full MFN model.

Performances of MCp and MSp

To evaluate the performance of MC, and MSp, we have used single hidden layer
MFN model and robust back-propagation training method with sigmoid activation
function in the hidden layer and output layer. In robust back-propagation, we use
an error suppressor function s(e) by replacing the scalar squared error e (Kasko,
1992), because s(e) = e? is not robust. The following error suppressor functions
are used in this study.

1. E1 = s(e) = max(—c, min(c,e)) (Huber function)
(where ¢ = 1.345 is bending constant)

2. E2 =s(e) = 2e/(1+€?) (Cauchy function)

3. E> = s(e) = tanh(e/2) (Hyperbolic tangent function)

The learning rate parameter () is selected by trial and error, and the number
of hidden nodes in hidden layer is selected using the selection methods given
earlier. The following seven penalty functions are used for computing MS, and

MC,; some are available in the literature (Sakate and Kashid, 2014).

1. P=2p
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2. P, =plog(n+2)

2(p+1)(p+2)

3. P=2p+
3=¢P n—p-2

4. P, = p(logn+1)

5. P - 2pn
n-p-1
2 1
6_ P6:2p+p(—p_'_)
n-p-1
7. P, =plogn

The performance of the proposed methods is measured for different
combinations of penalty functions (P))1=1,2,...,7, selection methods of hidden
nodes in the hidden layer (Hw)m=1,2,...,5, and error suppressor functions
(Eo) 0 = 1,2,3; these are denoted by (Pi, Hm, Eo). Three simulation designs are used
for the evaluation of the performance of MS, and MC,.

Simulation Design A

The performance of proposed modified versions of Sp(MSp) and Cp(MCy) are
evaluated using the following models with two error distributions.

Model I: Y = fo + f1X1 + f2Xo + B3X3 + &, where B = (1,5,10,0),

Model 11: Y = fo + p1X1 + f2Xo + faXs + faXa + &, where g = (1,5,10,0,0)
The regressor variables were generated from U(0,1) and the error term was
generated from N(0,1) and Laplace (0,1). The response variable Y was generated
using Models I and Il for sample sizes 20 and 30, respectively. This experiment is
repeated 100 times and ability of these methods to select the correct model is
measured using learning parameter () = 0.1 and &/ . The results are reported in

Tables 2 through 5.
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Table 2. Model selection ability of MSp and MCp in 100 replications for Model | of size 20

Error Error suppressor H1 H2 Hs Ha Hs
distribution function Pn  MS, MC, MS, MC, MS, MC, MS, MC, MS, MC,

PL 79 66 84 77 72 75 73 64 77 71

P2 8 81 92 82 81 87 84 77 87 84

P; 8 86 94 90 90 92 89 86 93 89

Huber P 8 85 94 88 88 90 87 81 90 87

Ps 8 81 92 85 82 87 85 79 88 85

P 86 81 92 85 82 87 85 79 88 85

P, 85 79 92 82 79 87 82 77 87 84

PL 78 58 7 32 76 52 67 57 63 69

P 91 71 85 35 83 72 79 68 80 76

Ps 93 79 85 34 86 77 87 80 84 83

Normal Cauchy Ps 92 74 85 36 84 77 84 74 83 81

Ps 91 71 85 36 83 72 79 69 82 76

Ps 91 71 85 36 83 72 79 69 82 76

P; 91 70 85 35 82 72 79 66 79 75

PL 79 66 74 77 75 79 75 79 77 83

P2 8 81 86 84 85 87 85 87 8 91

) P: 8 86 91 89 87 90 87 90 92 o1

Hyperbolic Ps 8 85 88 86 86 89 86 89 89 91
Tangent

Ps 86 81 86 84 85 88 85 88 87 901

P 86 81 86 84 85 88 85 88 87 901

P, 8 79 85 84 85 87 85 87 85 01

PL 69 67 75 66 75 69 7 34 78 66

P2 83 81 86 80 87 73 89 36 79 79

P; 8 86 91 84 89 80 94 35 80 81

Huber Ps 87 83 88 82 89 76 93 36 81 81

Ps 84 81 86 80 87 73 91 36 80 79

Ps 84 81 86 80 87 73 91 36 80 79

P; 81 81 86 77 85 73 88 35 79 79

P1 74 54 77 52 68 67 70 51 71 62

P, 83 75 81 60 80 77 80 66 78 74

P; 8 85 86 67 84 80 85 76 80 81

Laplace Cauchy Ps 8 84 84 65 82 79 84 72 79 78

Ps 84 77 82 60 80 77 82 67 78 74

Ps 84 77 82 60 80 77 82 67 78 74

P; 83 74 80 60 79 77 79 65 75 73

PL 70 67 76 69 85 76 85 76 82 63

P. 83 81 82 82 9 85 90 85 88 75

) P; 8 86 87 88 92 89 92 89 93 75

H%’_perbo"c P. 87 84 86 87 92 88 92 88 93 78
angent

Ps 84 81 83 83 9 85 90 85 88 76

Ps 84 81 83 83 9 85 90 85 88 76

P; 8 81 82 82 90 84 90 84 87 74
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Table 3. Model selection ability of MSp and MCp in 100 replications for Model | of size 30

Error Error suppressor H1 H2 Hs Ha Hs
distribution function Pn  MS, MC, MS, MC, MS, MC, MS, MC, MS, MC,
Pr 78 72 78 74 71 69 76 62 74 72
P2 89 81 89 88 83 85 90 74 90 92
Ps 93 87 92 92 92 87 94 96 92 94
Huber Ps 88 77 84 84 78 82 92 72 85 80
Ps 87 77 82 82 77 79 92 66 80 79
Ps 87 77 82 82 77 79 92 66 80 78
P; 89 81 88 88 83 85 90 74 88 92
PL 72 59 74 71 77 59 76 52 70 50
P, 85 73 81 88 84 74 86 68 86 76
P; 94 82 87 93 88 81 94 80 94 80
Normal Cauchy Ps 80 66 83 83 83 69 84 62 80 68
Ps 79 65 82 79 81 68 84 60 80 66
Ps 79 65 82 79 81 68 84 61 80 66
Pr 84 73 81 88 84 74 86 68 86 68
PL 83 74 82 71 78 74 74 62 78 76
P2 89 82 93 88 92 87 82 72 90 88
) Ps 94 87 96 92 94 91 86 68 96 92
Hyperbolic — p g5 g1 91 81 g8 83 g6 72 84 83
Tangent
Ps 85 81 88 79 86 82 82 70 85 82
Ps 85 81 88 79 86 82 82 71 84 82
P; 88 92 93 88 91 86 82 74 90 86
PL 73 56 77 70 72 54 80 58 78 62
P2 82 75 91 85 91 80 80 78 88 80
Ps 89 81 92 87 90 84 86 86 90 86
Huber Ps 82 70 85 81 82 75 81 70 90 76
Ps 81 66 84 77 82 72 81 64 91 72
Ps 81 66 84 77 82 73 81 65 84 72
P, 82 74 91 85 88 80 80 72 88 80
PL 62 33 74 47 77 66 76 56 77 60
P, 78 43 83 66 86 78 86 66 85 76
Ps 87 58 87 73 90 80 92 80 87 84
Laplace Cauchy Ps 75 40 81 58 84 77 80 62 84 70
Ps 73 38 80 56 82 75 78 62 84 66
Ps 73 38 80 56 82 75 78 62 84 66
P; 77 43 83 64 86 78 86 66 84 74
PL 72 77 72 71 78 68 78 60 82 50
P, 85 90 89 84 85 86 82 78 96 76
) P; 88 93 91 89 90 88 86 86 97 84
Hyperbolic = g5 g7 84 83 84 83 78 78 94 70
Tangent
Ps 82 86 83 80 82 80 78 78 94 62
Ps 82 86 83 80 82 80 78 78 94 62
P; 84 90 89 84 85 87 80 80 98 76
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Table 4. Model selection ability of MSp and MCp in 100 replications for Model I1 of size 20

Error Error suppressor H1 H2 Hs Ha Hs
distribution function Pn  MS, MC, MS, MC, MS, MC, MS, MC, MS, MC,

P1 60 33 60 43 62 50 62 38 68 60

P2 79 53 77 59 ) 76 60 74 72

P; 8 68 83 78 82 82 85 72 78 85

Huber Ps 82 64 83 65 83 78 80 78 76 80

Ps 80 57 79 60 72 74 76 64 74 76

P 80 57 79 60 72 74 76 64 74 76

P, 77 53 76 59 72 70 76 58 4 712

P 54 40 51 24 60 22 48 32 60 43

P. 68 40 72 46 70 38 76 49 70 56

Ps 72 43 80 68 82 50 80 56 76 65

Normal Cauchy Ps 71 45 75 64 80 46 80 52 76 63

Ps 69 51 73 46 70 38 78 49 78 58

Ps 69 63 73 46 70 38 78 49 78 58

P; 66 50 71 42 68 38 74 49 70 56

P1 63 42 69 60 50 50 61 44 68 70

P 74 T2 78 72 68 74 88 65 84 84

) P; 8 85 82 78 74 82 88 78 9 86

Hyperbolic P+ 79 83 82 74 74 78 88 78 90 86
Tangent

Ps 75 76 78 74 70 78 88 78 89 85

Ps 75 76 79 74 70 76 88 68 88 84

P; 72 70 79 74 66 70 89 68 80 84

P1 40 44 54 32 56 35 68 48 41 40

P2 62 58 68 52 67 56 7% 72 62 60

Ps 76 66 88 78 74 75 74 65 70 74

Huber P+ 70 65 72 63 76 73 82 76 64 70

Ps 65 59 68 52 66 60 7% 72 60 60

Ps 65 59 68 52 66 60 7% 72 61 60

P; 58 58 67 50 66 54 7% 70 60 56

PL 59 29 50 32 52 32 44 22 44 49

P2 61 40 64 48 74 50 56 45 64 62

P 64 53 65 56 78 60 58 53 73 72

Laplace Cauchy P4 65 50 64 52 76 58 56 52 67 68

Ps 64 43 65 48 74 50 56 48 64 64

Ps 64 43 65 48 75 50 56 48 64 64

P; 61 40 62 44 75 46 54 43 62 58

P 54 44 58 44 56 35 52 38 60 60

P2 78 60 78 70 67 57 60 53 4 72

) Ps 74 66 84 76 74 74 61 56 87 81

H%’_perbo"c Pa 74 66 83 76 78 76 62 54 83 80
angent

Ps 72 60 78 70 66 60 61 52 74 74

Ps 72 60 78 70 66 60 61 52 74 74

P; 70 60 78 78 66 54 61 50 72 76
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Table 5. Model selection ability of MSp and MCyp in 100 replications for Model Il of size 30

Error Error suppressor H1 H2 Hs Ha Hs
distribution function Pn  MS, MC, MS, MC, MS, MC, MS, MC, MS, MC,

P1 69 36 64 55 64 30 72 46 66 46

P, 8 77 83 64 76 60 84 70 84 66

P; 83 87 86 73 78 80 86 76 84 88

Huber P 80 66 80 63 76 43 82 64 80 64

Ps 78 85 72 60 74 40 78 60 78 62

Ps 78 58 72 61 74 39 78 60 77 62

P, 83 77 82 64 75 60 84 70 80 66

P1 45 25 51 44 52 30 52 23 44 34

P. 68 58 65 68 71 60 72 40 62 52

Ps 79 68 74 74 78 66 79 58 78 62

Normal Cauchy P+ 56 51 64 64 68 44 66 32 54 42

Ps 57 38 64 64 66 45 65 30 46 42

Ps 57 38 64 64 66 44 64 30 46 42

P; 66 54 64 68 70 58 65 40 62 52

PL 68 36 70 57 52 53 72 44 56 35

P, 8 76 80 78 70 69 84 72 76 62

) P: 8 86 80 86 80 82 86 76 8 80

Hyperbolic P+ 80 66 78 72 70 74 81 64 68 52
Tangent

Ps 76 60 76 68 66 69 80 62 68 48

Pe 76 60 76 69 66 69 79 62 68 48

P, 82 76 81 76 70 69 84 70 32 63

PL 56 36 54 48 52 56 48 52 52 36

P2 8 50 72 70 74 84 70 74 76 70

Ps 92 54 78 74 84 92 74 80 84 70

Huber Ps 74 46 66 64 69 80 66 72 70 50

Ps 74 46 64 64 62 70 64 72 66 46

Pe 74 46 63 64 62 70 64 72 66 46

P; 8 50 72 68 74 84 68 74 76 70

PL 32 36 60 24 50 34 40 21 36 21

P2 52 60 80 42 60 62 74 45 56 48

Ps 64 74 86 48 74 70 84 56 64 60

Laplace Cauchy Ps 40 54 68 32 52 54 62 32 45 36

Ps 40 52 66 30 50 48 56 28 42 32

Ps 40 52 66 31 50 48 56 28 42 33

P; 48 60 80 40 61 62 72 42 42 42

P1 66 44 52 46 50 81 60 46 52 36

P2 80 72 80 66 72 68 81 70 79 64

) P; 84 80 84 79 76 80 86 79 86 82

H¥perb°"° Pa 74 66 71 62 74 68 81 66 60 56
angent

Ps 72 30 64 56 72 68 75 62 60 48

Ps 72 61 64 56 72 68 76 62 60 48

P; 80 70 76 66 72 68 83 70 74 74

From Tables 2 through 5, it can be observed that the overall performance of the
MS, statistic is better than the MC, statistic. The performance of penalties P
through P7 is better than penalty P;, with Hy through Hs, for Models | and II.
Based on these simulations, it is recommended that any hidden node selection
method be used with penalty P, through P7; and Huber or Hyperbolic Tangent
error suppressor function.
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Simulation Design B

The experiment was repeated 100 times using the simulation design A. The
performance of MS, and MCp were compared with Mallows’s C, for Models | and
Il with sample sizes of 20 and 30. MS, and MC,, were computed using (Ps,H1,Ez1),

and learning parameters () = 0.1 and &12 . The results are reported in Table 6.

Table 6. Model selection ability of correct model for 100 repetitions

Error . Model | Model Il
Distribution Sample sizes
IS MS, MC, Cp MS, MC, Cp
N | 20 94 90 82 83 78 76
orma
30 92 92 79 86 73 70
20 91 84 81 88 78 7
Laplace
30 92 87 84 78 74 75

From Table 6, it is clear that the model selection ability of MS, and MC, is better
than Cp (based on LS estimates) for sample sizes 20 and 30 for both error
distributions. The model selection ability of MSy, is uniformly larger than that of
MC,; or Cp.

Simulation Design C

Three further models based on MFN are used to evaluate the performance of MS,
and MCy:

Model HIl: Y =\, + BXZ+ B X2+ X2+ B, XE +&,
Model IV: Y =+ BX] +B,X3 + B XS+ B X[ +e,
Model V: Y = eﬁo+ﬂle+ﬂzxzz+ﬂgx§+ﬁ4x§ te

where g = (1,5,10,0,0).

In this simulation, X; = (i = 1,2,3,4) were generated from U(0,1) and error
was generated from N(0,1) and Laplace(0,1). The response variable Y was
generated using Models 111, 1V and V. MS, and MC,, were computed using (P1 —
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P7,H1,E1), learning parameters (») = 0.1 and 612. The ability of these methods to

select the correct model over 100 replications is reported in Table 7.
Table 7. Correct model selection ability over 100 replications

Model Il Model IV Model V
n=20 n =30 n=20 n=30 n=20 n =30

distlfirt;(;;ion P, MS, MC, MS, MC, MS, MC, MS, MC, MS, MC, MS, MC,
P1 50 40 78 25 71 57 89 65 04 07 72 76

P2 55 35 89 48 78 70 91 73 05 06 90 91

P3 55 24 93 58 83 78 88 60 04 07 90 95

Normal P4 60 38 80 34 80 76 82 56 05 07 91 85
Ps 54 37 77 32 79 72 83 56 05 07 83 82

Pe 55 40 77 35 79 72 85 65 05 06 89 82

P7 54 34 90 42 76 69 90 70 05 06 75 90

P1 20 16 60 40 15 16 89 70 07 05 89 19

P2 21 14 80 66 12 14 93 80 07 04 99 18

P3 25 15 86 80 7 11 82 65 06 04 100 13

Laplace Pa 22 14 75 56 12 15 80 52 05 03 96 10
Ps 20 14 75 50 13 16 80 52 05 04 90 16

Pe 20 15 75 50 13 16 90 70 08 05 90 16

P7 18 14 80 64 13 14 91 72 04 06 99 14

From Table 7, it is clear that performance of MS, is better than MC,, for all models
and sample size 30. The performance of both criteria MSp, and MC, is very poor
for all models when error distribution is Laplace for small samples: the sample
size must be moderate to large for selection of relevant variables when regression
model is nonlinear.

Performance of MCp and MSp in the presence of multicolinearity and
outlier

The performance of MS, and MC,, is studied using the Hald data (Montgomery et.
al, 2006). The variance inflation factors (VIF) corresponding to each term are
38.5, 254.4, 46.9, and 282.5. The VIF values indicate that multicollinearity exists
in the data. Consider the following cases:

Case I: Data with multicolinearity (original data)

Case ll:  Data with multicolinearity and single outlier (Ye=109.2 is
replaced by 150)

Case lll: Data with multicolinearity and two outliers (Y2=73.4 and

Ye=109.2 are replaced by 150 and 200 respectively)
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MSp, and MCp, was computed for all possible subset models with different
penalty functions and estimators of ¢2. The selected subset model, by various

combinations of (P.,&f), 1=1,2,..,7,5=1,2,3 is reported in Table 8. For training

the network, the simulation employs the Huber error suppressor function, number
of hidden neurons H1, and learning parameter () = 0.1. The results are reported in
Table 8.

Table 8. Selected subset by MSp and MCp for Cases | — llI

Case | Caselll Casellll
o 2 2 2 2 2 2 2 2 2
Statistic Py 01 02 0'3 O'l 02 03 01 O'Z 0'3
P1 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2
P2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2
P3 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2
MS, P4 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X2 X1X2 X1X2
Ps X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X2 X1X2 X1X2
Ps X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X2 X1X2 X1X2
P7 X1X2 X1X2 X1X2 X1X2 X1X2 X1X2 X2 X1X2 X1X2
P1 X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X1X2 X1X4 X1X4
P2 X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X1X2 X1X4 X1X4
Ps X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X1X2 X1X4 X1X4
MC, Pa X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X2 X1X4 X1X4
Ps X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X2 X1X4 X1X4
Ps X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X2 X1X4 X1X4
P7 X1X4 X1X4 X1X4 X1X4 X1X4 X1X4 X2 X1X4 X1X4

This data is analyzed in the connection of multicolinearity and outlier (see
Ronchetti and Staudte, 1994; Sommer and Huggins, 1996; and Kashid and
Kulkarni, 2002). They have suggested {X1, X2} is the best subset model for clean
data and outlier data. The MS, statistic selects the same subset model for all

combinations of (P|,c952), 1=12,..,7,s=1,23, for Case | and II. In Case IlI, MSp

fails to select correct model for penalty Ps— P7 with 612. Conclusion: the MS,

statistic performs better than MC, for all cases with all penalty functions and
estimators of &2, excluding few cases.
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Conclusion

The proposed modified methods are model-free. It is clear that the performance of
proposed MS;, statistic is better than classical regression methods in the presence
of multicollinearity, outlier, or both simultaneously. The MS, statistic selects the
correct model in cases of nonlinear model for moderate to large sample sizes.
From the simulation study, it can be observed that MFN is useful when there is no
idea about the functional relationship between response and predictor variables.
The MS, statistic is also useful for selection of inputs from a large set of inputs in
a network model, in order to find which network output is closest to the desired
output.
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See Tables 10.2 and 10.3.
Table 10.2

Monte Carlo rejection proportion, sample size m = 15, n = 18
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Distribution 5,,6,

U

M WRS T?

Bivariate normal 0.00, 0.00 0.0545 0.046 0.0445 0.0485

0.10, 0.07

0.30, 0.10

0.70, 0.50

1.20, 1.00

2.40, 3.00

BVN mixture P = 0.5 0.00, 0.00

0.10, 0.07

0.30, 0.10

0.70, 0.50

1.20, 1.00

2.40, 3.00

BVN mixture P = 0.9 0.00, 0.00

0.10, 0.07

0.30, 0.10

0.70, 0.50

1.20, 1.00

2.40, 3.00

0.176

0.3885

0.8995

0.99

0.055

0.2115

0.4735

0.8975

0.047

0.295

0.546

0.9575

0.9985

0.065 0.098 0.3875

0.0905 0.145 0.7405

0.367 0.81 1

0.659 0.9995 1

0.9375 1 1

0.0505 0.0475 0.0505

0.068 0.066 0.112

0.152 0.1725 0.213

0.523 0.845 0.8705

0.855 1 1

0.99905 1 1

0.0495 0.0475 0.044

0.067 0.061 0.0615

0.152 0.125 0.135

0.447 0.687 0.682

0.798 0.9975 0.995

0.99905 1 1

https://link.springer.com/chapter/10.1007/978-3-319-39065-9_10
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Distribution 5,06 U M WRS T

Type VII 0.00, 0.00 0.0515 0.0515 0.0445 0.0495
0.10, 0.07 0.266 0.0725 0.154 0.098 _
0.30,0.10 0.699 0.193 0.49 0.5965 _
0.70,0.50 1 0.8855 0.9985 1 _
1.20,1.00 1 0.9885 1 1 _
2.40, 3.00 1 0.999 1 1 _

Type II 0.00, 0.00 0.0455 0.035 0.051 0.039 _
0.10, 0.07 0.393 0.058 0.1505 0.1515 _
0.30,0.10 0.785 0.2105 0.5135 0.716 _
0.70,0.50 1 0.685 1 1 _
1.20,1.00 1 0.7655 1 1 _
2.40,3.00 1 0.8655 1 1 _

Population 6 0.00, 0.00 0.05 0.0535 0.0585 0.044 _
0.10, 0.07 0.5935 0.069 0.519 0.1825 _
0.30, 0.10 0.891 0.0705 0.8635 0.714 _
0.70,0.50 1 0.2755 1 1 _
1.20,1.00 1 0.4225 1 1 _
2.40, 3.00 1 0.5110 1 1 _
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Distribution 5,06 U M WRS T

Population 7 0.00, 0.00 0.053 0.0535 0.049 0.0495

0.10, 0.07 0.2135 0.071 0.062 0.0575

0.30, 0.10 0.368 0.1165 0.1115 0.105

0.70, 0.50 0.7785 0.3495 0.422 0.4645

1.20,1.00 0.9735 0.803 0.927 0.9605

2.40, 3.00 1 1 1 1

Table 10.3

Monte Carlo rejection proportion, sample size m = 25, n = 28
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Distribution 5,,6, U M WRS T?2

Bivariate normal 0.00, 0.00 0.0525 0.046 0.0445 0.0485

0.10, 0.07 0.0905 0.0585 0.058 0.183

0.30, 0.10 0.3855 0.0905 0.145 0.7405

0.70,0.50 0.888 0.367 0.81 1

1.20,1.00 1 0.659 0.9995 1

2.40, 3.00 1 0.9375 1 1

BVN mixture P = 0.5 0.00, 0.00 0.0535 0.0505 0.0445 0.05

0.10, 0.07 0.1715 0.0725 0.075 0.0815

0.30,0.10 0.387 0.2325 0.2395 0.347

0.70,050 1 0.736 0.948 0.991
1.20,1.00 1 0.993 1 1
2.40, 3.00 1 1 1 1

BVN mixture P = 0.9 0.00, 0.00 0.045 0.051 0.058 0.0515

0.10, 0.07 0.1655 0.0785 0.0795 0.0775

0.30,0.10 0.381 0.2085 0.1965 0.2375

0.70,0.50 0.995 0.5915 0.833 0.9165

1.20,1.00 1 0.9105 1 1

2.40, 3.00 1 1 1 1

https://link.springer.com/chapter/10.1007/978-3-319-39065-9_10 6/14
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Distribution 5,6 M WRS T

Type VII 0.00, 0.00 0.0445 0.0425 0.047 0.0525
0.10, 0.07 0.4095 0.0725 0.3285 0.2525 _
0.30,0.10 1 0.353 0.6985 0.9445 _
0.70,0.50 1 0.9995 1 1 _
1.20,1.00 1 1 1 1 _
2.40, 3.00 1 1 1 1 _

Type I1 0.00, 0.00 0.048 0.046 0.043 0.046 _
0.10, 0.07 0.3205 0.0835 0.1925 0.219 _
0.30,0.10 1 0.416 0.611 0.914 _
0.70, 0.50 1 0.825 1 1 _
1.20,1.00 1 0.858 1 1 _
2.40,3.00 1 0.9985 1 1 _

Population 6 0.00, 0.00 0.0506 0.057 0.049 0.051 _
0.10, 0.07 0.899 0.0685 0.7225 0.275 _
0.30,0.10 1 0.0975 0.921 0.8975 _
0.70, 0.50 1 0.2345 1 1 _
1.20,1.00 1 0.4775 1 1 _
2.40,3.00 1 0.5655 1 1 _

https://link.springer.com/chapter/10.1007/978-3-319-39065-9_10
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Distribution 5,06 U M WRS T
Population 7 0.00, 0.00 0.051 0.0465 0.047 0.0585
0.10, 0.07 0.323 0.0715 0.0655 0.0725
0.30,0.10 0.536 0.2005 0.125 0.145
0.70,0.50 0.941 0.604 0.6025 0.762

1.20,1.00 0.999 0.9815 0.99 0.9995

2.40, 3.00 1 1 1 1
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ABSTRACT

The purpose of this paper is to propose an e-information literacy index that provides realistic values to distinguish
whether university teachers are literate in regard to awareness and use of e-information resources by explaining the
characteristics of e-information literate teacher. The present survey attempts to formulate e-information literacy index
of university teachers by taking into consideration three components viz. awareness of e-resources, availability of
ICT facilities and use of internet services and search techniques to retrieve e-information. The findings shows that
60.52 per cent teachers are e-information literate. Amongst the teachers, the index for Assistant Professors is highest
followed by Professors and Associate Professors. It indicates that Assistant Professors are more e-information literate
than their superiors. Amongst the universities, the index of Shivaji University, Kolhapur is highest. As far as author’s
consciousness, there are several indices meant for different purposes but in the higher education sector to define the
characteristics of e-information literate university teacher in terms of an index is unique and special.

Keywords: E-information literacy; University teachers; Information literacy; Indicators

1. INTRODUCTION

Today, we leave in an era surrounded by digital sea of
information. Owing to the availability of vast array of unfiltered
information on a given topic, the process of identifying and
selecting peculiar e-information has become complex. In this
circumstance E-Information literacy directs the users towards
authentic and reliable sources of information available online
useful for their informed judgements against the quest for
information. E-Information literacy is the ability to properly
use and evaluate electronic resources, tools and services and
apply it for lifelong learning process. E-information literacy
among the university teachers contributes towards their
learning process and brings in overall change in the way how
they collect and use information.

The present study intends to define the e-information
literacy rank amongst the university teachers in tech savvy
environment considering their awareness, use and retrieval of
e-information from e-resources in the form of an index value.
E-information literacy index is a statistical measure used to
determine how university teachers are making best use of
e-information for their teaching and research purposes. The
index values were determined against the responses given by
teachers for proposed and defined clusters of components/
indicators mentioned in Appendix A. The exercise helped to
enlist the qualities of e-information literate teachers in the vast
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and changing digital sea of information. It has been found
that the formulated index values differ amongst teachers and
the universities under study depending upon their ability,
performance in regard to the use and searching techniques
applied for getting e-information.

2. LITERATURE REVIEW

Hargittai' recommend for the creation of an index variable
as proxies for web-oriented digital literacy measures on
Internet use and methodology based on verifying the validity
of the measures derived from their relationship with actual skill
measures. She again revisited her survey measures with new
terms in order to assess the change in digital literacy measures
of the respondents and found discrepancy older Internet terms
and new web-based concepts thus resulting in change in the
index values®. Thornbush® suggested S-E index that provides
a broader classification of weathering processes based on
visible surface forms in the field of archaecogeomorphological
research. Katz & others* conducted a survey to measure the
cumulative, holistic impact of discrete ICT (Information and
Communication Technologies) and a composite digitisation.
An index was developed based on six overarching components,
viz. affordability, infrastructure investment, network access,
capacity, usage, and human capital. The findings showed
that proper ICT infrastructure and attention towards digital
technology usage is required for better flow and awareness
of digital literacy. Alguliyev & Others® explore an index for
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evaluating the quality of research output of researchers with
the 25 indices which shows that the weighted index may serve
as a supplement to h-index and its variants. Sahoo® propose
the I-index which states that an author’s percentage shares in
the total citations that his/her papers have attracted. The index
is useful to know comprehensive idea of an author’s overall
research performance.

3. OBJECTIVES

The core objectives of the study :
(i) To know the level of awareness of e-resources and
searching techniques applied by the university teachers in
retrieving e-information
To study the availability of ICT facilities for the use of
internet services by the university teachers; and
To formulate an e-information literate index of university
teachers.

(i1)
(iii)

Table 1. Weightage criteria

Components Weightage
A. Awareness of e-resources 0.33[0.33/23=
[23 Indicators] @0.0143/ per Question]

B. Availability of ICT facilities
and use of internet services [14
Indicators]

0.33[0.33/14=
@0.023/ per Question]

C. Searching techniques to retrieve
e-information [28 Indicators]

0.33[0.33/28=
@0.011/ per Question]

responses given by the university teachers. However, before
calculating the index except tick marked questions all the five
point question response values were converted between 0 and
1 as 0,0.25,0.50,0.75 and 1 in order to show the similarity that
will be useful for calculating an index by proposing a cut-off
value at 0.5.

Table 2. E-information literate index of the teacher

4. METHODOLOGY
For the present study, descriptive method of research

has been used. The data was collected through structured

A B C D E F G H (Literate/
(Index) Illiterate)
10 10 13.25 0.4348 0.7143 0.4732  0.5408 *1

questionnaire distributed to targeted sample of 360
university teachers of 43 different departments working in
the 10 state universities of Maharashtra, India in the faculties
of sciences, social sciences and humanities (languages). A total
of 347 teachers responded (96.38 per cent) to the survey. Their
literacy levels were tested based on their self-perceived skills
and skills learnt with the help of others.

4.1 Methodology Used

Keeping in mind the search for e-information, access
and retrieval techniques applied by a normal user, a common
strategy in terms of methodological (measuring) indicators
were suggested that defines the qualities of e-information
literate user with an index value against suggested cut-off value.
These methodological indicators were applied for the targeted
group of teachers working in the universities under study. The
proposed index is based on analysis of indicators against the
clusters which results in certain startling outcomes.

The suggested clusters and their indicators may also be
applied to other teachers working in different disciplines /
universities by changing the clustered framework in regard to
the ICT advancement and its searching techniques. To formulate
an e-information literacy index of university teachers a series
of questions were designed which comprised of 65 indicators
comprising of tick marked and five point scale questions,
which were equally weighted (0.33) Table 1 and grouped in
3 clusters of components viz. Awareness of e-resources (23
indicators); Availability of ICT facilities and Use of Internet
Services (14 indicators) and the search techniques to retrieve
e-information (28 indicators) to measure the e-information
literate characteristics of the teachers, enlisted in Appendix A.
The equal weight is calculated as 1/3 = 0.33 to represent the
index value as ‘0’ and ‘1’ receptively. The resulted measures
depend on the aspects related to e-information awareness and
use, ICT facilities and searching skills which help in assessing
their e-information literacy skills.

The proposed measuring indicators were tested with

*1 = Literate and 0 = Illiterate

As a sample, the index of first teacher was calculated in
the following way:

A = Sum of response value of first component

B = Sum of response value of second component

C = Sum of response value of third component

D =A/23, E=B/14, F=C/28

G = Index (Average of D, E and F)

H = The first teacher suppose to be e-information literate
considering cut-off value at 0.5 value and the index is above
cut-off value.

Accordingly, an index was calculated for all the teachers
under study (shown in histogram) to represent whether they are
e-information literate or illiterate.

Itis clear from Fig. 1 and Table 3 the lowest index observed
was 0.0766 and highest was 0.9167. Majority of the teachers
are having e-information literacy index between 0.3 and 0.8.
The index level was highest between the ranges 0.6 and 0.7.
Out of 347 respondents, 23% (79) of university teachers are
having e-information literacy index between 0.6 and 0.7. About

Table 3. Summary of an Index

Statistics Value
Mean 0.5381
Standard error 0.0091
Median 0.5527
Mode 0.7222
Standard deviation 0.1704
Sample variance 0.0290
Kurtosis -0.4425
Skewness -0.2648
Range 0.8401
Minimum 0.0766
Maximum 0.9167
Sum 186.7232
Count 347.0000
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Figure 1. Histogram of an e-information literacy index of
teachers.

74% (257) teachers are having e-information literacy index
between 0.4 and 0.8. It has been found that the distribution of
e-information literacy index is not symmetric owing to differing
skill levels of teachers. Further, e-information literacy index
has negatively skewed and it shows relatively flat distribution.
210 (60.52%) teachers were found to be e-information literate
and remaining 137 (39.48%) were not e-information literate.

5. FINDINGS
From Tables 4 and 5, we may draw following findings;

= [t is found that 210 (60.52%) teachers were e-information
literate based on index value.

= When looked across the disciplines of sciences, social
sciences and arts and humanities, it is proved that Science
faculties (0.5835) are more e-information literate than
Social Science (0.5427) and Arts and Humanities (0.4616)
faculties.

=  From the gender based analysis, it was found that the
index is high in case of female teachers (0.5516) than the
male teachers (0.5309).

= In addition, from the designation wise analysis it was
found that index for Assistant Professors was highest
(0.5621) followed by Professors (0.5338) and Associate
Professors (0.4975).

Table 4. E-Information literate Index ratio

Index

Faculty Science 0.5835
Social Science 0.5427

Arts and Humanities  0.4616

Gender Female 0.5516
Male 0.5309

Designation  Assistant Professor 0.5621

Associate Professor 0.4975
Professor 0.5338

= Regarding university wise e-information literacy index,
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Table 5. University wise e-information literate Index ratio

University Index
Sant Gadge Baba Amravati University, Amravati 0.5865
Dr Babasaheb Ambedkar Marathwada Uni, Aurangabad ~ 0.4324
North Maharashtra University, Jalgaon 0.5645
University of Mumbai, Mumbai 0.5466
Rashtrasant Tukadoji Maharaj Nagpur Uni, Nagpur 0.4978
Swami Ramanand Teerth Marathwada Uni, Nanded 0.5716
University of Pune, Pune 0.5274
Shivaji University, Kolhapur 0.6093

SNDT (Smt. Nathibai Damodar Thackersey) Women’s

University, Mumbai 0.5097
Solapur University, Solapur 0.5338
Grand Total 0.5381

it was observed that the e-information literate index

was higher in case of Shivaji University, Kolhapur

(0.6093), followed by Sant Gadge Baba Amravati

University, Amravati (0.5865), Swami Ramanand

Teerth Marathwada University, Nanded (0.5716), North

Mabharashtra University, Jalgaon (0.5645), University of

Mumbai, Mumbeai (0.5466), Solapur University, Solapur

(0.5338), University of Pune, Pune (0.5274), SNDT (Smt.

Nathibai Damodar Thackersey) Women’s University,

Mumbeai (0.5097), Rashtrasant Tukadoji Maharaj Nagpur

University, Nagpur (0.4978), Dr Babasaheb Ambedkar

Marathwada University, Aurangabad (0.4324).

Thus from the above detailed explanations it is revealed
that depending upon the ICT/self skills of university teachers in
handling e-information, awareness about different e-resources,
tools and techniques for searching, accessing and retrieving
e-information either from the internet or from subscribed
e-resources and availability of sufficient infrastructure at
the universities, the e-information literacy index of teachers
calculated varies from teacher to teacher amongst the faculties
and universities. The awareness and use of Web 2.0 along
with the internet services by the university teachers was an
additional verifying criteria used to measure the e-information
literacy level of the teachers in terms of an index value.

6. CONCLUSIONS

The difference in e-information literacy index among
the institutions and groups may be attributed to the efforts
taken by each of the universities in building the required ICT
infrastructure, training teachers in the effective retrieval and use
of e-information and teachers self skills. The poor index value
of university teachers needs to be accounted with sufficient
awareness campaigns, ICT facilities and online training about
searching techniques by the universities/ university libraries.
Further academic/learning and research tasks of the university
teachers may be strengthened by arranging discipline specific
user awareness programmes and also by allocating certain
hours per week in the time-table especially for searching and
seeking e-information from different sources. This also may be
made as part of the continued education programme for faculty
members to become independent learners.
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Appendix A
Measuring indicators for E-Information Literacy of the Teacher
Components Indicators Type of Weightage
Questions
A. Awareness of 1. Citation Indexes: Web of Science [SCI, SSCI, AHCI] SCOPUS etc All Tick 0.33
e-resources 2. Digital Libraries/E-Print Archives/Institutional Repositories V] [0.33/23=
3. Discussion forums/ Groups Marked @0.0143/ per
4. E-Books questions Question]
5. E-Journals (including Open Access/Free Journals)
6.  Electronic Abstracting and Indexing Databases
7. Electronic Theses and Dissertations
8. E-Newspapers
9. General Search Engines
10. Journal contents alert services
11. Scholarly Search Engines
12. Subject Gateways and portals
13. Subject Specific Search Engines
14. E-resources from INFLIBNET consortium
15. Open access online databases/resources
16. Web 2.0 tools- Blogs
17. Chatting
18. Micro-blogs [Twitter]
19. Phone
20. Reference management tools like Zotero, Mendeley etc
21. RSS feeds
22. Social Networking sites
23. Wikis
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B. Availability

C.

of ICT
facilities
and use of
internet
services

Searching
techniques to
retrieve
e-information

S0 RN
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Computer All Tick
Internet connection V1
Multimedia Projector Marked
Photocopying Machines questions
Printer

Scanner/Fax

CD-ROM/DVD databases

Communication i.e. e-mail, chatting, phone etc

Downloading information i.e. articles, reports, forms etc

Links to abstract, Full Text, Citation (reference) and other useful e- resources in
the field

Listening to music and watching videos (Ex: You tube)

. Reading online newspapers, newsletters, blogs etc

Searching information

. Watching video lectures from academic/research organization

Directly going to source of information [Knowing web address from references] ~ All 5 Point
E-Journals/Databases, websites Scales
E-Resources linked through library website questions
General Search engines

Guided Search/FAQ/Help

Meta Search Engines

Scholarly Search Engines

Subject Directories/Gateways

Subject Specific Search engines

. Use Subject bookmarking sites

Just enter keywords in simple search box

. Just enter title or author in simple search box

. Make use of Advance search options

. Make use of Boolean operators [and, or and not] along with keywords
. Make use of mathematical operators [+, -, *] along with keywords

. Make use of Phrase search by putting content in
. Make use of proximity operators [near, between etc]

. Make search for content within specific domains [.edu, ac.in, co. in etc]

. Make search for content within specific languages [English, Hindi, French etc]

. Make search for content within the files [PDF, HTML, DOC, XIs etc]

. Browsing Content from E-Print archives/Digital Library/ Institutional Repository
. By browsing journal articles from Journal homepages

[T3EEL]

Search for articles using Google
Search for articles using Google Scholar
Search for articles using Journals database Search options

. Through Abstracting and Indexing Databases
. Through library OPAC [Article Indexing]
. Through links provided in e-mail table of contents alerts

0.33
[0.33/14=
@0.023/ per
Question]

0.33
[0.33/28=
@0.011/ per
Question]

436


https://www.researchgate.net/publication/321097587

b, Download citation ~ Share v

tolerance intervals for the lifetime distribution of K-unit parallel system based on generalized variable

mber 2017 with 10 Reads

Digambar Shirke

S.S. Godase 1118.83 - Shivaji University, Kolhapur

D.N. Kashid

icle, we consider the problem of setting prediction interval for future sample, when lifetime

in of a unit in a k-unit parallel system has exponential distribution based on generalized

3V) approach. We also discuss one sided tolerance limits and tolerance intervals based on GV
. Performance of both intervals are studied using simulation and compared them with existing
xhibit superiority of the proposed method. The prediction interval is illustrated through real life

int to read the rest of this article?



https://googleads.g.doubleclick.net/aclk?sa=L&ai=C14dvouYQXJPHMsGT9QPPnZGgDMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5QJP0BH_pNDVftM6vm3xC75-TFBMdU5UkcyoG93k6adZUB9uRtDElGw9mNUw9FC6WXa8Pns1KTPfRb0cka0Jiwc-ULKGR0-dfEZQbkSFD6Nalk9OsAaF6HUzf0KIh4TK103-fHwtRrcRhSVb5uwUgU05ZpKJ2_g8U72Ek0CmqvSl8zbLTNgjfQ4upEsK1cDq6ATp4ZjbfkMF0ZzvBJCJYsrlsJRBb_KszcWKi7WYjnlmJ0f1EqFqXjnx1xInSNEov-xfGUxemCfhXyw2UjELUzV4Ph41b9RVIqNGAp-eOxhRIGaNSJtx33gz1lAfgwCfNt9jDXwslziDK5KmG1JzwG35RYTCUJth_lNLuiw7Z8gRH_oCKQQraKGn8xz1u-uTzFCiieBr3El7bz4UOZFzUxf3apbYVRDFds_ZCKiyGayHW_HD4egENlJh-Qtg_idGgmkFBuQt788X5cwyzoLpqNsXXeQwMcvgBAGgBlGAB6uFxi-oB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJ60LJnGemSTeACgPYEwI&ae=1&num=1&sig=AOD64_34FuXvm4DD7sVT7Js_XI0ADQGk6A&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C14dvouYQXJPHMsGT9QPPnZGgDMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5QJP0BH_pNDVftM6vm3xC75-TFBMdU5UkcyoG93k6adZUB9uRtDElGw9mNUw9FC6WXa8Pns1KTPfRb0cka0Jiwc-ULKGR0-dfEZQbkSFD6Nalk9OsAaF6HUzf0KIh4TK103-fHwtRrcRhSVb5uwUgU05ZpKJ2_g8U72Ek0CmqvSl8zbLTNgjfQ4upEsK1cDq6ATp4ZjbfkMF0ZzvBJCJYsrlsJRBb_KszcWKi7WYjnlmJ0f1EqFqXjnx1xInSNEov-xfGUxemCfhXyw2UjELUzV4Ph41b9RVIqNGAp-eOxhRIGaNSJtx33gz1lAfgwCfNt9jDXwslziDK5KmG1JzwG35RYTCUJth_lNLuiw7Z8gRH_oCKQQraKGn8xz1u-uTzFCiieBr3El7bz4UOZFzUxf3apbYVRDFds_ZCKiyGayHW_HD4egENlJh-Qtg_idGgmkFBuQt788X5cwyzoLpqNsXXeQwMcvgBAGgBlGAB6uFxi-oB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJ60LJnGemSTeACgPYEwI&ae=1&num=1&sig=AOD64_34FuXvm4DD7sVT7Js_XI0ADQGk6A&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C14dvouYQXJPHMsGT9QPPnZGgDMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5QJP0BH_pNDVftM6vm3xC75-TFBMdU5UkcyoG93k6adZUB9uRtDElGw9mNUw9FC6WXa8Pns1KTPfRb0cka0Jiwc-ULKGR0-dfEZQbkSFD6Nalk9OsAaF6HUzf0KIh4TK103-fHwtRrcRhSVb5uwUgU05ZpKJ2_g8U72Ek0CmqvSl8zbLTNgjfQ4upEsK1cDq6ATp4ZjbfkMF0ZzvBJCJYsrlsJRBb_KszcWKi7WYjnlmJ0f1EqFqXjnx1xInSNEov-xfGUxemCfhXyw2UjELUzV4Ph41b9RVIqNGAp-eOxhRIGaNSJtx33gz1lAfgwCfNt9jDXwslziDK5KmG1JzwG35RYTCUJth_lNLuiw7Z8gRH_oCKQQraKGn8xz1u-uTzFCiieBr3El7bz4UOZFzUxf3apbYVRDFds_ZCKiyGayHW_HD4egENlJh-Qtg_idGgmkFBuQt788X5cwyzoLpqNsXXeQwMcvgBAGgBlGAB6uFxi-oB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJ60LJnGemSTeACgPYEwI&ae=1&num=1&sig=AOD64_34FuXvm4DD7sVT7Js_XI0ADQGk6A&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C14dvouYQXJPHMsGT9QPPnZGgDMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5QJP0BH_pNDVftM6vm3xC75-TFBMdU5UkcyoG93k6adZUB9uRtDElGw9mNUw9FC6WXa8Pns1KTPfRb0cka0Jiwc-ULKGR0-dfEZQbkSFD6Nalk9OsAaF6HUzf0KIh4TK103-fHwtRrcRhSVb5uwUgU05ZpKJ2_g8U72Ek0CmqvSl8zbLTNgjfQ4upEsK1cDq6ATp4ZjbfkMF0ZzvBJCJYsrlsJRBb_KszcWKi7WYjnlmJ0f1EqFqXjnx1xInSNEov-xfGUxemCfhXyw2UjELUzV4Ph41b9RVIqNGAp-eOxhRIGaNSJtx33gz1lAfgwCfNt9jDXwslziDK5KmG1JzwG35RYTCUJth_lNLuiw7Z8gRH_oCKQQraKGn8xz1u-uTzFCiieBr3El7bz4UOZFzUxf3apbYVRDFds_ZCKiyGayHW_HD4egENlJh-Qtg_idGgmkFBuQt788X5cwyzoLpqNsXXeQwMcvgBAGgBlGAB6uFxi-oB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJ60LJnGemSTeACgPYEwI&ae=1&num=1&sig=AOD64_34FuXvm4DD7sVT7Js_XI0ADQGk6A&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C14dvouYQXJPHMsGT9QPPnZGgDMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5QJP0BH_pNDVftM6vm3xC75-TFBMdU5UkcyoG93k6adZUB9uRtDElGw9mNUw9FC6WXa8Pns1KTPfRb0cka0Jiwc-ULKGR0-dfEZQbkSFD6Nalk9OsAaF6HUzf0KIh4TK103-fHwtRrcRhSVb5uwUgU05ZpKJ2_g8U72Ek0CmqvSl8zbLTNgjfQ4upEsK1cDq6ATp4ZjbfkMF0ZzvBJCJYsrlsJRBb_KszcWKi7WYjnlmJ0f1EqFqXjnx1xInSNEov-xfGUxemCfhXyw2UjELUzV4Ph41b9RVIqNGAp-eOxhRIGaNSJtx33gz1lAfgwCfNt9jDXwslziDK5KmG1JzwG35RYTCUJth_lNLuiw7Z8gRH_oCKQQraKGn8xz1u-uTzFCiieBr3El7bz4UOZFzUxf3apbYVRDFds_ZCKiyGayHW_HD4egENlJh-Qtg_idGgmkFBuQt788X5cwyzoLpqNsXXeQwMcvgBAGgBlGAB6uFxi-oB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJ60LJnGemSTeACgPYEwI&ae=1&num=1&sig=AOD64_34FuXvm4DD7sVT7Js_XI0ADQGk6A&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://www.researchgate.net/scientific-contributions/2128062915_SS_Godase
https://www.researchgate.net/scientific-contributions/2128062915_SS_Godase
https://www.researchgate.net/profile/Digambar_Shirke
https://www.researchgate.net/profile/Digambar_Shirke
https://www.researchgate.net/institution/Shivaji_University_Kolhapur
https://www.researchgate.net/profile/Digambar_Shirke
https://www.researchgate.net/scientific-contributions/2012305929_DN_Kashid
https://www.researchgate.net/scientific-contributions/2012305929_DN_Kashid
https://www.researchgate.net/lite.publication.PublicationRequestFulltextPromo.requestFulltext.html?publicationUid=322338958&ev=su_requestFulltext
https://www.googleadservices.com/pagead/aclk?sa=L&ai=CCNGvsOYQXPvlBNmYrQG3zKKYCIaZ66dU7Meo2rIIs-KFj84NEAEgh8neH2DlwuaDvA6gAd_2ko8DyAEG4AIAqAMByAMCqgTsAk_QGHpaYNU7uO6QcL-n3O2jNTmCyLAxya0KsgvbK9pw-PN4aHcivf7l8iNfTBF-UbFPacSKLkSbpVuzlBR8CXy6fjiHAxTlrWwCXgW5CvsX2pFobdANsORGJ58A6-aK3BbtZenFQtc69iLFOdiYkftZWRns_ly6ejNa-v_gDLGtqafhMu4ZqPt0Hcu24GZX2KdWsdYRi6FGQqUpcFUAwXWwOmV_B4_NL7kPF-TA3qKIF5un_yd2xshZc1oENh2R4I5aajTR8wDyJXS9esHTNXawuL3LG8cP8VKmRRqsVWwqXkRLap40aWD2HBbam1YVJbqjPQtcIDZIcKAMAI0CGnYSpBmmkV8EVCv0ihWqdjKOMizCk42V_YIGjrKYO4G89QKQoGEijPrH4zMqShdEyc2Ajpvva5W_xV2A-J8STiXUaApU3uCo4MeEu9T_wNMkGrn36MkAyYAWlnwJwHRE1x3rVW0pysdmvrqcqcngBAGgBjeAB4mJ7XCoB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJV3oWNRElnFCACgPYEww&ae=1&num=1&cid=CAASEuRoxf862X11ZRQvSOvJfQbmvw&sig=AOD64_3zXQgtj3kPyy5Fw76r-WykHnEvXQ&client=ca-pub-6333297774357117&adurl=https://www.ketto.org/stories/supportrahul%3Futm_source%3Dexternal_Ketto%26utm_medium%3Dgoogle-display%26utm_campaign%3DInd_Desk_DA_Resp%26utm_term%3DCA_babyproducts%26utm_content%3Dsupportrahul_Resp_Eng%26utm_placement%3Df8b6835074b654c3.anonymous.google%26gclid%3DEAIaIQobChMI-_2QoI6a3wIVWUwrCh03pgiDEAEYASAAEgKmh_D_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=CCNGvsOYQXPvlBNmYrQG3zKKYCIaZ66dU7Meo2rIIs-KFj84NEAEgh8neH2DlwuaDvA6gAd_2ko8DyAEG4AIAqAMByAMCqgTsAk_QGHpaYNU7uO6QcL-n3O2jNTmCyLAxya0KsgvbK9pw-PN4aHcivf7l8iNfTBF-UbFPacSKLkSbpVuzlBR8CXy6fjiHAxTlrWwCXgW5CvsX2pFobdANsORGJ58A6-aK3BbtZenFQtc69iLFOdiYkftZWRns_ly6ejNa-v_gDLGtqafhMu4ZqPt0Hcu24GZX2KdWsdYRi6FGQqUpcFUAwXWwOmV_B4_NL7kPF-TA3qKIF5un_yd2xshZc1oENh2R4I5aajTR8wDyJXS9esHTNXawuL3LG8cP8VKmRRqsVWwqXkRLap40aWD2HBbam1YVJbqjPQtcIDZIcKAMAI0CGnYSpBmmkV8EVCv0ihWqdjKOMizCk42V_YIGjrKYO4G89QKQoGEijPrH4zMqShdEyc2Ajpvva5W_xV2A-J8STiXUaApU3uCo4MeEu9T_wNMkGrn36MkAyYAWlnwJwHRE1x3rVW0pysdmvrqcqcngBAGgBjeAB4mJ7XCoB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJV3oWNRElnFCACgPYEww&ae=1&num=1&cid=CAASEuRoxf862X11ZRQvSOvJfQbmvw&sig=AOD64_3zXQgtj3kPyy5Fw76r-WykHnEvXQ&client=ca-pub-6333297774357117&adurl=https://www.ketto.org/stories/supportrahul%3Futm_source%3Dexternal_Ketto%26utm_medium%3Dgoogle-display%26utm_campaign%3DInd_Desk_DA_Resp%26utm_term%3DCA_babyproducts%26utm_content%3Dsupportrahul_Resp_Eng%26utm_placement%3Df8b6835074b654c3.anonymous.google%26gclid%3DEAIaIQobChMI-_2QoI6a3wIVWUwrCh03pgiDEAEYASAAEgKmh_D_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=CCNGvsOYQXPvlBNmYrQG3zKKYCIaZ66dU7Meo2rIIs-KFj84NEAEgh8neH2DlwuaDvA6gAd_2ko8DyAEG4AIAqAMByAMCqgTsAk_QGHpaYNU7uO6QcL-n3O2jNTmCyLAxya0KsgvbK9pw-PN4aHcivf7l8iNfTBF-UbFPacSKLkSbpVuzlBR8CXy6fjiHAxTlrWwCXgW5CvsX2pFobdANsORGJ58A6-aK3BbtZenFQtc69iLFOdiYkftZWRns_ly6ejNa-v_gDLGtqafhMu4ZqPt0Hcu24GZX2KdWsdYRi6FGQqUpcFUAwXWwOmV_B4_NL7kPF-TA3qKIF5un_yd2xshZc1oENh2R4I5aajTR8wDyJXS9esHTNXawuL3LG8cP8VKmRRqsVWwqXkRLap40aWD2HBbam1YVJbqjPQtcIDZIcKAMAI0CGnYSpBmmkV8EVCv0ihWqdjKOMizCk42V_YIGjrKYO4G89QKQoGEijPrH4zMqShdEyc2Ajpvva5W_xV2A-J8STiXUaApU3uCo4MeEu9T_wNMkGrn36MkAyYAWlnwJwHRE1x3rVW0pysdmvrqcqcngBAGgBjeAB4mJ7XCoB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJV3oWNRElnFCACgPYEww&ae=1&num=1&cid=CAASEuRoxf862X11ZRQvSOvJfQbmvw&sig=AOD64_3zXQgtj3kPyy5Fw76r-WykHnEvXQ&client=ca-pub-6333297774357117&adurl=https://www.ketto.org/stories/supportrahul%3Futm_source%3Dexternal_Ketto%26utm_medium%3Dgoogle-display%26utm_campaign%3DInd_Desk_DA_Resp%26utm_term%3DCA_babyproducts%26utm_content%3Dsupportrahul_Resp_Eng%26utm_placement%3Df8b6835074b654c3.anonymous.google%26gclid%3DEAIaIQobChMI-_2QoI6a3wIVWUwrCh03pgiDEAEYASAAEgKmh_D_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=CCNGvsOYQXPvlBNmYrQG3zKKYCIaZ66dU7Meo2rIIs-KFj84NEAEgh8neH2DlwuaDvA6gAd_2ko8DyAEG4AIAqAMByAMCqgTsAk_QGHpaYNU7uO6QcL-n3O2jNTmCyLAxya0KsgvbK9pw-PN4aHcivf7l8iNfTBF-UbFPacSKLkSbpVuzlBR8CXy6fjiHAxTlrWwCXgW5CvsX2pFobdANsORGJ58A6-aK3BbtZenFQtc69iLFOdiYkftZWRns_ly6ejNa-v_gDLGtqafhMu4ZqPt0Hcu24GZX2KdWsdYRi6FGQqUpcFUAwXWwOmV_B4_NL7kPF-TA3qKIF5un_yd2xshZc1oENh2R4I5aajTR8wDyJXS9esHTNXawuL3LG8cP8VKmRRqsVWwqXkRLap40aWD2HBbam1YVJbqjPQtcIDZIcKAMAI0CGnYSpBmmkV8EVCv0ihWqdjKOMizCk42V_YIGjrKYO4G89QKQoGEijPrH4zMqShdEyc2Ajpvva5W_xV2A-J8STiXUaApU3uCo4MeEu9T_wNMkGrn36MkAyYAWlnwJwHRE1x3rVW0pysdmvrqcqcngBAGgBjeAB4mJ7XCoB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJV3oWNRElnFCACgPYEww&ae=1&num=1&cid=CAASEuRoxf862X11ZRQvSOvJfQbmvw&sig=AOD64_3zXQgtj3kPyy5Fw76r-WykHnEvXQ&client=ca-pub-6333297774357117&adurl=https://www.ketto.org/stories/supportrahul%3Futm_source%3Dexternal_Ketto%26utm_medium%3Dgoogle-display%26utm_campaign%3DInd_Desk_DA_Resp%26utm_term%3DCA_babyproducts%26utm_content%3Dsupportrahul_Resp_Eng%26utm_placement%3Df8b6835074b654c3.anonymous.google%26gclid%3DEAIaIQobChMI-_2QoI6a3wIVWUwrCh03pgiDEAEYASAAEgKmh_D_BwE
https://www.googleadservices.com/pagead/aclk?sa=L&ai=CCNGvsOYQXPvlBNmYrQG3zKKYCIaZ66dU7Meo2rIIs-KFj84NEAEgh8neH2DlwuaDvA6gAd_2ko8DyAEG4AIAqAMByAMCqgTsAk_QGHpaYNU7uO6QcL-n3O2jNTmCyLAxya0KsgvbK9pw-PN4aHcivf7l8iNfTBF-UbFPacSKLkSbpVuzlBR8CXy6fjiHAxTlrWwCXgW5CvsX2pFobdANsORGJ58A6-aK3BbtZenFQtc69iLFOdiYkftZWRns_ly6ejNa-v_gDLGtqafhMu4ZqPt0Hcu24GZX2KdWsdYRi6FGQqUpcFUAwXWwOmV_B4_NL7kPF-TA3qKIF5un_yd2xshZc1oENh2R4I5aajTR8wDyJXS9esHTNXawuL3LG8cP8VKmRRqsVWwqXkRLap40aWD2HBbam1YVJbqjPQtcIDZIcKAMAI0CGnYSpBmmkV8EVCv0ihWqdjKOMizCk42V_YIGjrKYO4G89QKQoGEijPrH4zMqShdEyc2Ajpvva5W_xV2A-J8STiXUaApU3uCo4MeEu9T_wNMkGrn36MkAyYAWlnwJwHRE1x3rVW0pysdmvrqcqcngBAGgBjeAB4mJ7XCoB47OG6gH1ckbqAeoBqgHudIbqAfZyxuoB8_MG6gHpr4b2AcB0ggHCIBhEAEYAbEJV3oWNRElnFCACgPYEww&ae=1&num=1&cid=CAASEuRoxf862X11ZRQvSOvJfQbmvw&sig=AOD64_3zXQgtj3kPyy5Fw76r-WykHnEvXQ&client=ca-pub-6333297774357117&adurl=https://www.ketto.org/stories/supportrahul%3Futm_source%3Dexternal_Ketto%26utm_medium%3Dgoogle-display%26utm_campaign%3DInd_Desk_DA_Resp%26utm_term%3DCA_babyproducts%26utm_content%3Dsupportrahul_Resp_Eng%26utm_placement%3Df8b6835074b654c3.anonymous.google%26gclid%3DEAIaIQobChMI-_2QoI6a3wIVWUwrCh03pgiDEAEYASAAEgKmh_D_BwE
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C9lZ_u-YQXOjtKsOQrQGB3qWACMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5wJP0OnaeRvnHhK_v7uZDth7p1vYpFZOzDxdlubq1LwvFzsH7XuohWza4PqrqBTmz-cJH4oFGkpVy8PY9Cd6s1ILxYzN1THm3Dt02TJjW0j86cnx8_9ZYR6LOy59jgNpgSgsKemR9BKwHpcXI8QmdEE3dhvT70A_E54zES2wXfKz9k9iXnpfKEOyoITIq6lFTVtHyHP30fRXAETodOMJHJO70itM0JWKxlMT3Z_sfxENFRgXUlbK_bt53X9dSVIjp0Q4W_4Lkbo7LMNkrqumtb0myFy5g-ZDin5JVou4eoBDEifEvfHPr7Fg2EV1CRGeD6CgzQzF0Kflem843eUR8x9ehLYN-yh_VSn8GYIsj3Jieog5BTS1R7TG2iUz0R8UnyduqBb2ChgM_QNu478PQSOUlBPWEPBdFxdtm_g2wYR8DDcltZaPoMf4Z1pSzj-M1yju105WfYwsaXuJ9ycslRBRg8yTa4gCmuAEAaAGUYAHq4XGL6gHjs4bqAfVyRuoB6gGqAe50huoB9nLG6gHz8wbqAemvhvYBwHSCAcIgGEQARgBsQnrQsmcZ6ZJN4AKA9gTAg&ae=1&num=1&sig=AOD64_3J5-J-Ald3ElapzOW6SDGH-fv6iA&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C9lZ_u-YQXOjtKsOQrQGB3qWACMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5wJP0OnaeRvnHhK_v7uZDth7p1vYpFZOzDxdlubq1LwvFzsH7XuohWza4PqrqBTmz-cJH4oFGkpVy8PY9Cd6s1ILxYzN1THm3Dt02TJjW0j86cnx8_9ZYR6LOy59jgNpgSgsKemR9BKwHpcXI8QmdEE3dhvT70A_E54zES2wXfKz9k9iXnpfKEOyoITIq6lFTVtHyHP30fRXAETodOMJHJO70itM0JWKxlMT3Z_sfxENFRgXUlbK_bt53X9dSVIjp0Q4W_4Lkbo7LMNkrqumtb0myFy5g-ZDin5JVou4eoBDEifEvfHPr7Fg2EV1CRGeD6CgzQzF0Kflem843eUR8x9ehLYN-yh_VSn8GYIsj3Jieog5BTS1R7TG2iUz0R8UnyduqBb2ChgM_QNu478PQSOUlBPWEPBdFxdtm_g2wYR8DDcltZaPoMf4Z1pSzj-M1yju105WfYwsaXuJ9ycslRBRg8yTa4gCmuAEAaAGUYAHq4XGL6gHjs4bqAfVyRuoB6gGqAe50huoB9nLG6gHz8wbqAemvhvYBwHSCAcIgGEQARgBsQnrQsmcZ6ZJN4AKA9gTAg&ae=1&num=1&sig=AOD64_3J5-J-Ald3ElapzOW6SDGH-fv6iA&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C9lZ_u-YQXOjtKsOQrQGB3qWACMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5wJP0OnaeRvnHhK_v7uZDth7p1vYpFZOzDxdlubq1LwvFzsH7XuohWza4PqrqBTmz-cJH4oFGkpVy8PY9Cd6s1ILxYzN1THm3Dt02TJjW0j86cnx8_9ZYR6LOy59jgNpgSgsKemR9BKwHpcXI8QmdEE3dhvT70A_E54zES2wXfKz9k9iXnpfKEOyoITIq6lFTVtHyHP30fRXAETodOMJHJO70itM0JWKxlMT3Z_sfxENFRgXUlbK_bt53X9dSVIjp0Q4W_4Lkbo7LMNkrqumtb0myFy5g-ZDin5JVou4eoBDEifEvfHPr7Fg2EV1CRGeD6CgzQzF0Kflem843eUR8x9ehLYN-yh_VSn8GYIsj3Jieog5BTS1R7TG2iUz0R8UnyduqBb2ChgM_QNu478PQSOUlBPWEPBdFxdtm_g2wYR8DDcltZaPoMf4Z1pSzj-M1yju105WfYwsaXuJ9ycslRBRg8yTa4gCmuAEAaAGUYAHq4XGL6gHjs4bqAfVyRuoB6gGqAe50huoB9nLG6gHz8wbqAemvhvYBwHSCAcIgGEQARgBsQnrQsmcZ6ZJN4AKA9gTAg&ae=1&num=1&sig=AOD64_3J5-J-Ald3ElapzOW6SDGH-fv6iA&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C9lZ_u-YQXOjtKsOQrQGB3qWACMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5wJP0OnaeRvnHhK_v7uZDth7p1vYpFZOzDxdlubq1LwvFzsH7XuohWza4PqrqBTmz-cJH4oFGkpVy8PY9Cd6s1ILxYzN1THm3Dt02TJjW0j86cnx8_9ZYR6LOy59jgNpgSgsKemR9BKwHpcXI8QmdEE3dhvT70A_E54zES2wXfKz9k9iXnpfKEOyoITIq6lFTVtHyHP30fRXAETodOMJHJO70itM0JWKxlMT3Z_sfxENFRgXUlbK_bt53X9dSVIjp0Q4W_4Lkbo7LMNkrqumtb0myFy5g-ZDin5JVou4eoBDEifEvfHPr7Fg2EV1CRGeD6CgzQzF0Kflem843eUR8x9ehLYN-yh_VSn8GYIsj3Jieog5BTS1R7TG2iUz0R8UnyduqBb2ChgM_QNu478PQSOUlBPWEPBdFxdtm_g2wYR8DDcltZaPoMf4Z1pSzj-M1yju105WfYwsaXuJ9ycslRBRg8yTa4gCmuAEAaAGUYAHq4XGL6gHjs4bqAfVyRuoB6gGqAe50huoB9nLG6gHz8wbqAemvhvYBwHSCAcIgGEQARgBsQnrQsmcZ6ZJN4AKA9gTAg&ae=1&num=1&sig=AOD64_3J5-J-Ald3ElapzOW6SDGH-fv6iA&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://googleads.g.doubleclick.net/aclk?sa=L&ai=C9lZ_u-YQXOjtKsOQrQGB3qWACMqZgutNuP2DqaEGwI23ARABIIfJ3h9g5cLmg7wOyAEB4AIAqAMByAObBKoE5wJP0OnaeRvnHhK_v7uZDth7p1vYpFZOzDxdlubq1LwvFzsH7XuohWza4PqrqBTmz-cJH4oFGkpVy8PY9Cd6s1ILxYzN1THm3Dt02TJjW0j86cnx8_9ZYR6LOy59jgNpgSgsKemR9BKwHpcXI8QmdEE3dhvT70A_E54zES2wXfKz9k9iXnpfKEOyoITIq6lFTVtHyHP30fRXAETodOMJHJO70itM0JWKxlMT3Z_sfxENFRgXUlbK_bt53X9dSVIjp0Q4W_4Lkbo7LMNkrqumtb0myFy5g-ZDin5JVou4eoBDEifEvfHPr7Fg2EV1CRGeD6CgzQzF0Kflem843eUR8x9ehLYN-yh_VSn8GYIsj3Jieog5BTS1R7TG2iUz0R8UnyduqBb2ChgM_QNu478PQSOUlBPWEPBdFxdtm_g2wYR8DDcltZaPoMf4Z1pSzj-M1yju105WfYwsaXuJ9ycslRBRg8yTa4gCmuAEAaAGUYAHq4XGL6gHjs4bqAfVyRuoB6gGqAe50huoB9nLG6gHz8wbqAemvhvYBwHSCAcIgGEQARgBsQnrQsmcZ6ZJN4AKA9gTAg&ae=1&num=1&sig=AOD64_3J5-J-Ald3ElapzOW6SDGH-fv6iA&client=ca-pub-6333297774357117&adurl=http://506.xg4ken.com/trk/v1%3Fprof%3D142%26camp%3D101447%26affcode%3Dcr416807%26kct%3Dgoogle%26kchid%3D4459654079%26cid%3D220879019517%7C3152811%7C%252Bpcr%2520%252Bapplication%26mType%3D%26networkType%3Dcontent%26kdv%3Dc%26criteriaid%3Dkwd-77777191147%26adgroupid%3D35833278186%26campaignid%3D228686227%26locphy%3D1007783%26adpos%3Dnone%26url%3Dhttp://www.bio-rad.com/en-us/category/digital-pcr%3FWT.mc_id%3D170125000650%26WT.srch%3D1%26WT.knsh_id%3D_kenshoo_clickid_
https://www.researchgate.net/
https://www.researchgate.net/signup.SignUp.html?hdrsu=1&_sg%5B0%5D=wh0C01Qr0U-ZjmsLjx-qQWUZKWUGRI2KBK848KbwNideCeuUSO2Cz_7aU19zuWjZTTLijpGn_tplSghN_0KgsgFbgRg
https://www.researchgate.net/lite.publication.PublicationResourcesSummary.requestFulltext.html?publicationUid=322338958&ev=su_requestFulltext

Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index
e-ISSN: 2070-5948

DOI: 10.1285/i20705948v10n1p29

Tolerance intervals and confidence intervals for
the scale parameter of Pareto-Rayleigh distribu-
tion

By Godase, Shirke, Kashid

Published: 26 April 2017

This work is copyrighted by Universita del Salento, and is licensed un-
der a Creative Commons Attribuzione - Non commerciale - Non opere derivate
3.0 Italia License.

For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/




Electronic Journal of Applied Statistical Analysis
Vol. 10, Issue 01, April 2017, 29-49
DOTI: 10.1285/i20705948v10n1p29

Tolerance intervals and confidence
intervals for the scale parameter of
Pareto-Rayleigh distribution

Godase S.S.**, Shirke D.T.", and Kashid D.N.P

aDepartment of Statistics, S. G. M. College, Karad, India
> Department of Statistics, Shivagji university, Kolhapur, India

Published: 26 April 2017

In this paper we consider Pareto-Rayleigh distribution as an example of a
Transformed-Transformer family of distributions defined by Alzaatreh et al.
(2013b). We construct confidence intervals (CIs) and tolerance intervals (TIs)
using generalized variable approach due to Weerahandi (1993) by using max-
imum likelihood estimator and modified maximum likelihood estimator of
the scale parameter. Performance of both the intervals is studied using sim-
ulation and compared with the existing ones to exhibit superiority of the
proposed intervals. Proposed confidence intervals and tolerance intervals are
illustrated through real life data.

keywords: Transformed-transformer (T-X) family, Pareto-Rayleigh distri-
bution, generalized pivotal quantity, confidence intervals and tolerance inter-
vals.

1 Introduction

Pareto distribution has been widely used in modeling heavy-tailed distributions, such
as income distribution. Many applications of the Pareto distribution in economics, bi-
ology and physics can be found in the literature. Schroeder et al. (2010) presented an
application of the Pareto distribution in modeling disk drive sector errors. Mahmoudi
(2011) discusses the beta generalized Pareto distribution with application to life time
data. The Pareto distribution has been recognized as a suitable model for many non-
negative socio-economic variables. Pareto distribution is useful in individual income,
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family income and income before taxes etc. In literature various generalizations of the
Pareto distribution have been derived such as Beta-Pareto distribution Akinsete et al.
(2008).

Ragab and Kundu (2005) introduced the Rayleigh distribution in connection with a
problem in the field of acoustics. An important characteristic of the Rayleigh distribu-
tion is that its hazard function is an increasing function of time. It means that when the
failure times are distributed according to the Rayleigh law, an intense aging of the item
takes place. Estimations, predictions and inferential issues for one parameter Rayleigh
distribution have been extensively studied by several authors. Rayleigh distributions
are useful in modeling and predicting tools in a wide variety of socio-economic contexts.
The Rayleigh distribution has a wide range of applications including life testing exper-
iments, reliability analysis, applied statistics and clinical studies. Potdar and Shirke
(2013) have provided reliability estimation for the distribution of a k-unit parallel sys-
tem with Rayleigh distribution as the component life distribution.

In many applied sciences such as medicine, engineering and finance amongst others,
modeling and analyzing lifetime data are crucial. Several life time distributions have
been used to model such kinds of data. The quality of the procedures used in a statisti-
cal analysis depends heavily on the assumed probability model or distributions. Because
of this, considerable effort has been expended in the development of large classes of
standard probability distributions along with relevant statistical methodologies. How-
ever there still remains many important problems, where the real data does not follow
any of the classical or standard probability models. Pareto-Rayleigh is an example
of Transformed-Transformer family (T-X family) of distributions, defined by Alzaatreh
et al. (2013b). Also Alzaatreh et al. (2012) and Alzaatreh et al. (2013a) derived Gamma-
Pareto distribution, Weibull-Pareto distribution and its applications.

In the present work, our focus is to provide confidence intervals and tolerance intervals
based on maximum likelihood estimator (MLE) and modified maximum likelihood esti-
mator (MMLE) of the parameter of Pareto-Rayleigh distribution. MLE in the present
case is not available in the closed form and is to be obtained by using a suitable iterative
method. Tiku (1967) obtained modified maximum likelihood (MML) equations which
have explicit solutions by replacing the intractable terms by their linear approximations.
Tiku and Suresh (1992) used the Taylor series expansion of the intractable terms in esti-
mating the location and scale parameters in a symmetric family of distributions, which
includes a number of well-known distributions such as normal, Students t etc. They
also showed that the MML estimators, thus derived are asymptotically fully efficient for
small samples. One may refer to Vaughan (1992), Suresh (1997) and Tiku (1967, 1968)
for more details. In this article we use MLE and MML estimator to construct Cls and
TIs.

A (B,1-y) TI based on a sample is constructed so that it would include at least a pro-
portion B of the sampled population with confidence 1-y. Such a TT is usually referred
to as f-content-(1-vy) coverage TI or simply (8, 1-y) TL. A (5, 1-y) upper tolerance
limit (TL) is simply an (1-y)th upper confidence limit for the (100v)th percentile of
the population and a (3, 1-y) lower TL is an (1-y)th lower confidence limit for the
(100(1-))th percentile of the population. In this article, we are mainly concerned with
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one-sided TT using large sample (LS) approach and generalized variable (GV) approach
for Pareto-Rayleigh distribution. Kumbhar and Shirke (2004) described TIs for lifetime
distribution of k-unit parallel system, when component lifetime distribution is exponen-
tial. Liao et al. (2005) have proposed a method for constructing TIs in one-way random
model based on the GV approach due to Weerahandi (1993).

Concept of GV has recently become popular in small sample inferences for complex
problems such as Behrens-Fisher problem. These techniques have been shown to be
efficient in specific distributions by using MLEs. The GV method was motivated by
the fact that the small sample optimal Cls in statistical problems involving nuisance
parameters may not be available. The method of generalized confidence interval (GCI)
based on GV is used whenever standard pivotal quantities either do not exist or are
difficult to obtain. Weerahandi (1993) introduced the concept of GCI. As described
in the cited papers, GCI is based on the so-called generalized pivotal quantity (GPQ).
For some problems, where the classical procedures are not optimal, GCI performs well.
Krishnamoorthy and Mathew (2003) developed exact CI and tests for single lognormal
mean using ideas of generalized p-values and GCIs. Guo and Krishnamoorthy (2005)
explained a problem of interval estimation and testing for the difference between the
quantiles of two populations using GV approach. Krishnamoorthy et al. (2006) explained
generalized p-values and Cls with a novel approach for analyzing lognormal distributed
exposure data. Krishnamoorthy et al. (2007) explained a problem of hypothesis testing
and interval estimation of the reliability parameter in a stress-strength model involving
two-parameter exponential distribution using GV approach. Verrill and Johnson (2007)
considered confidence bounds and hypothesis tests for coefficient of variation of normal
distribution. Kurian et al. (2008) have provided GCI for process capability indices in
one-way random model. Krishnamoorthy and Lian (2012) derived generalized TIs for
some general linear models based on GV approach. The literature survey reveals that
during last ten years number of researchers have reported inference for the well known
models using GV approach, which motivated us to consider the problem of generalized
CI and generalized TT for Pareto-Rayleigh distribution. Rest of the paper is organized
as follows.

In Section 2, the Pareto-Rayleigh distribution is considered and MLE and MMLE
of the scale parameter are obtained. Section 3, provides Cls based on MLE and MMLE
using LS procedure and GV approach. Section 4, provides TlIs using LS procedure and
GV approach. In section 5, the performance of the Cls and TIs using LS and GV ap-
proaches based on MLE and MMLE for small samples is investigated using simulations.
Results of the simulation study have been reported in same section. In section 6, a real
data set has been analyzed as an illustration.

2 Model and estimation of the scale parameter

Let F(.) be the cumulative distribution function (cdf) of any random variable X de-
fined on [0,00) and f (.) be the probability density function (pdf) of a random variable
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T, defined on [0,00). The cdf of the T-X family of distributions defined by Alzaatreh
et al. (2013b) is given by

—log(1—F(x))
Gla) = /0 f(t)dt (1)

Alzaatreh et al. (2013b) named this family of distributions the Transformed-Transformer
family (or T-X family) of distributions. If a random variable T follows the Pareto
distribution type IV with parameter « then pdf of T is given by,

f)=a(l+t)~@) > 0a>1 (2)

If a random variable X follows the Rayleigh distribution with parameter ¢ then cdf of
X is given by,
F(x) =1 — exp(—2?/20?) o>0,2>0 (3)
Using (1), (2) and (3), the cdf of Pareto-Rayleigh distribution (as a member of T-X
family) is given by,

z2 /202 2\ —«
G(x):/ a(l+t) g =1 — <1+;2> z>0,a>1,0>0 (4)
0 g
The pdf of Pareto-Rayleigh distribution is given by,
a 22\ (o)
g(x):ﬁa; 1—}-@ z>0,aa>1,0>0, (5)

where « is the known shape parameter and o is the unknown scale parameter. In this
article, we are mainly concerned with Cls and TIs of Pareto-Rayleigh distribution using
MLE and MMLE of the scale parameter o .

2.1 Maximum Likelihood Estimation

The pdf of the Pareto-Rayleigh distribution with scale parameter o and shape param-
eter « is given by (5).
Let X1, X3, ..., X;; be a random sample of size n obtained from Pareto-Rayleigh distribu-
tion. By taking the derivative of log likelihood equation, the MLE of the scale parameter
o is the solution of the following equation.
n 2

alnL:():ianLoH;lZ :Bi2

do e

202

=0.

This equation shows that maximum likelihood estimator of o(d,) is an iterative solution
which can be obtained by suitable iterative method like bisection method. Then Fisher
information about o is given by

I B [82lnf(:v, a, O'):| _ 2n(3a+2) 2n

do? T o2(a+2) o2
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2.2 Modified Maximum Likelihood Estimation

We have seen that MLE of scale parameter o is not in the closed form as the likelihood
equation is intractable. To overcome this difficulty, we use MML method of estimation
(Tiku and Suresh (1992)) to find the estimate of scale parameter o. This can be done by
first expressing the maximum likelihood equation in terms of order statistics and then
replacing the intractable terms by their linear approximation.

Maximum likelihood equation can be written as

olnL " 22
=0=-2n+(a+1 t =0 6
. @03 (6)
=1 P}
where

T;

Zy = —.

o

The maximum likelihood equation (6) does not have explicit solution for scale parameter
o. This is due to the fact that the term
2
z4
g(z) = —1,
I+
is intractable. To formulate MML equation, which has explicit solution, we express this
equation in terms of order statistics that is

olnL
oo

n
—0=-2n+(a+1 Z
i=1 1+ ()

(7)

where z(;) is the order statistic of the sample 0bservat1ons x;,(i=1,2,...,n). The second
step is to linearize equation (7) by using Taylor series expansion around the quantile
point of G. The linearization is done in such a way that the derived MMLE retains all
the desirable asymptotic properties of the MLEs. Thus we have,

g(Z(Z-)) = =a; + b; i Z(4) (8)

1+ “’

The third step is to obtain the modified maximum likelihood equation by incorporating
(8) in (7), that is
olnL dlnL*

The solution to equation (9) is the MMLE, which is given by

Yo bz
T

o=

where



34 Godase, Shirke, Kashid

One may refer to Tiku and Suresh (1992) and Suresh (2004) for more details.

In the following, we shall see two methods of finding confidence intervals for scale pa-
rameter ¢ using MLE and MMLE.

Lemma 2.1: Distribution of (%") and (%) , both are free from o where 6, is MLE and
¢ is MMLE of o.

Proof: The proof is similar to the one given by Gulati and Mi (2006). This lemma can
be used to find GPQ.

3 Confidence Intervals

3.1 Large sample confidence interval

Theorem: As n — oo,
V(6 — o) — No(0,I71)

where [ is the Fisher information given in section (2.1).

Proof: Proof follows from asymptotic properties of MLEs under regularity conditions.
Since o is unknown, [ is estimated by replcing o by its MLE or MMLE and this can be
used to obtain the asymptotic CI of o.

The approximate 100(1 — 7)% asymptotic confidence interval (ACI) for ¢ is given by

. !
(U + Z1—71/2 n) (11)

where 2,_, /9 is the (1 —7/ 2)! quantile of the standard normal distribution.

According to Tiku and Suresh (1992) the derived MMLEs retain all the desirable
asymptotic properties of the MLEs. Hence simply by replacing MLEs with MMLEs we
can obtain confidence interval using large sample approach based on MMLE. We denote
this interval by I;.

3.2 Generalized variable approach

The concept of a generalized confidence interval is due to Weerahandi (1993). One may
also refer to Weerahandi (2013) for a detailed discussion along with numerous examples.
Consider a random variable X (scalar or vector) whose distribution g(z,0,d) depends
on a scalar parameter of interest o and a nuisance parameter (parameter that is not
of direct inferential interest)d, where ¢ could be a vector. Suppose we are interested
in computing a confidence interval for scale parameter o. Let, x denotes the observed
value of X. To construct a GCI for o, we first define a GPQ, T'(X;x,0,d) which is a
function of random variable X, its observed data x, the parameters o and . A quantity
T(X;x,0,0) is required to satisfy the following two conditions.

i) For a fixed x, the probability distribution of T'(X; x, 0, d) is free of unknown parameters
o and d;
ii) The observed value of T'(X;z,0,0), namely T'(z;x,0,d) is simply o.
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The percentiles of T'(X;z,0,d) can then be used to obtain confidence intervals for o.
Such confidence intervals are referred to as generalized confidence intervals. For example,
if 71 denotes the 100;_, th percentile of T'(X;x, 0, ), then T} _, is a generalized upper
confidence limit for 0. Therefore 100(1 — 7)% two-sided GCI for parameter o is given
by

(TT/Qa Tl—T/Q)'

Define GPQ as

&

T(X;z,0) = -,

SIS

where 6, is the MLE obtained using observed data. We note the following:

i) Distribution of T} (X;z, o) is free from o, which follows from Lemma (2.1) and

ii) T1(X;xz,0) = o, since for observed data, 6 = 6,. A GCI based on T1(X;z,0) is
obtained by using the following algorithm. The GCI is denoted by Is.

I. Algorithm to obtain GCI for ¢ using GPQ

1. Input n, N, «, o, 7.

2. Generate independently and identically distributed observations (Uy, Us, ..., U,) from
U(0,1).

3. For the given value of the parameter o , set

T = \/202((1 —U;)~Vea —1) for i=1,2,...n.

Then (x1, 2, ...,x,) is random sample of size n from Pareto-Rayleigh distribution with
parameter o.

4. Based on observations in step 3, obtain MLE of o (say d,), using bisection method.
5. Generate random sample of size n from Pareto-Rayleigh distribution with parameter
o=1.

6. Based on observations in step 5, obtain MLE of ¢ (say ¢)using bisection method.

7. Compute GPQ, T = %

8. Repeat steps (5) to (7) N times, so as to get T11, T2, ..., T1N-

9. Arrange T7; in an ascending order. Denote them by T{;1y, T{12) ---s T(13)-

10. Compute a 100(1 - 7')% GCI for o as (T(L([(D)N])’T(17([(1—T2)N])))‘

Extending above algorithm one can estimate coverage probability of the proposed GCI.
In the above algorithm, we can replace MLE by MMLE and obtain GCI based on MMLE.
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4 Tolerance Intervals

4.1 Large Sample Tolerance Intervals

There are two types of tolerance intervals namely S-expectation tolerance interval (TT)
and [-content-(1-y) coverage tolerance interval.
4.1.1 p-expectation TI for the distribution function G (.; o)

Let X3(o) be the lower quantile of order /3 of the distribution function G (.; o). Then,
we have

Xs(0) = \/202{(1 - )~/ — 1}
Since o is unknown, we replace it by its MLE. Hence maximum likelihood estimate of
Xps(o) is given by

X5(6) = \/262{(1 - B)~ Ve — 1} (12)

having an approximate upper S-expectation TI for G (.; o) as
J1(X) = (0, X3(5)) (13)
We approximate E[G(X3(0);0)| using Atwood (1984) and is given as

+ F01Var(&)F11

E[G(X5(6);0)] = B — 0.5FpVar(5) Fio

(14)

where F10 = %, F01 = %, FH = aQG(I;U), F02 = % with x = Xﬁ(O’)
and all the derivatives are evaluated at X3 and 0. We can replace MLE by MMLE and
obtain -expectation TT for G (.; o) based on MMLE. Simulated and approximate values
of expected coverage of Ji(X) using MLE and MMLE have been reported in section 5

for different values of n, 8 and a.

4.1.2 (-content-(1-v) coverage Tolerance Interval

Let J2(X) = (0,Dé) be an upper [-content-(1-v) coverage TI for the distribution
having distribution function (4). The constant D(> 0) for £e(0,1), v¢(0,1) is to be
determined such that

P{G(Ds;0) < By =1-v

P{&SU\/2{(1_B)_1/Q_1}}—1—")/ (15)

That is

D

Using asymptotic normality of 6 equation (15) can be equivalently written as

o VAL-p)e-13
var(a)) D 1}_1 7

P{Zg(
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where Z follows N(0,1). This gives

VA= p) )
1+ vmc’r(cr) 21y

Hence, an upper tolerance limit of S-content-(1-v) coverage tolerance interval (J2(X))

is given by
V2{(1 - p)~1/e 1}
UX) = { -~ W(g) o } (16)

4.2 Generalized Tolerance Intervals

The problem of computing a one-sided tolerance limit reduces to that of computing a
one-sided confidence limit for the percentile of the relevant probability distribution. That
isa (B, (1 —+)) upper tolerance limit is simply an (1-y)th upper confidence limit for the
(1008)th percentile of the population. It is easily seen that a (3, (1 —-y)) upper tolerance
limit for G (.; o) is simply a 100(1-y)% upper confidence limit for v/202[(1 — §)~1/a — 1].
We use the GV approach for obtaining the aforementioned upper confidence limit.

Let 6, is the MLE obtained using observed data The GPQ for constructing a confidence

interval for o is given by T (X; z,0) = =1,2,...,N. The GPQ for \/202[(1 — B)~1/a — 1]
is given by

0/07

\/2 1—p)~Va—1], i=1,2,..,N.

O'Z/O'

The (1 — v)th quantile of T is a (1 — «y)th generalized upper confidence bound for
V/202[(1 — B)~1/e —1]. Hence (8, (1—1)) upper tolerance limit for G(.; o) is (0, T2,1— ).
A generalized tolerance interval based on T5(X;x,0)is obtained by using the following
algorithm.

II. Algorithm to obtain Generalized Tolerance Interval for G(.;0) using GPQ

1. Input n, N, o, 0, 53, 7.
2. Input random sample of size n from Pareto-Rayleigh distribution with an unknown
parameter o.
3. Based on observations in step 2, obtain MLE of ¢ (say d,), using bisection method.
4. Generate random sample of size n from Pareto-Rayleigh distribution with parameter
o=1
5. Based on observations in step 4, obtain MLE of ¢ (say &), using bisection method.
6 Compute GPQ,

U/U\/2 (1—B)~ Ve —1], i=1,2, .., N.
7. Repeat steps (4) (6) N times, so as to get To1, a2, ..., Ton.
8. Arrange T7 s in an ascending order. Denote them by Tb1, The, ..., Ton
9. Compute an upper tolerance limit of generalized TT Jo(X) = (0,75 1—~).
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Extending above algorithm one can estimate coverage probability of the proposed gener-
alized TI. In the above algorithm, we can replace MLE by MMLE and obtain generalized
TI, based on MMLE.

5 Numerical and simulation study

We conduct extensive simulation experiments to evaluate performance of CIs (LS
approach and GV approach) based on MLE and MMLE. We choose different values of
o, B, n and a. Results are tabulated in Tables 1-2. Figures in the 1st row are based on
MLE, while figures in the 2nd row are based on MMLE. From Tables 1-2, we observe that
simulated coverage of GCI does not differ significantly whether it can be computed from
MLE as well as MMLE. However, large sample approach underestimates the coverage
probabilities for most of the scenarios, especially when the sample size is small and (or)
the parameter o is large. Also the performance of the proposed GCI does not depend on
o. As the sample size is large, the two estimators (MLE, MMLE) are equally efficient.

We investigate coverage (numerical and simulation) of -expectation TI for Pareto-
Rayleigh distribution with a = 3 and = 0.90, 0.95,0.99 by using MLE and MMLE.
Figures in the 1st row are based on MLE, while figures in the 2nd row are based on
MMLE. An upper f-expectation tolerance limit is given in equation (12). Results of the
simulation study for the S-expectation tolerance interval, which is tabulated in Table 3,
indicate that, the estimated expectation and simulation mean for small sample size are
marginally lower than the nominal value. As the sample size increases, the performance
of tolerance intervals improves. We observe the following from Table 3.

The estimated expectation of the coverage of the approximate [-expectation tolerance
intervals shows satisfactory result for large n. Estimated expectation and simulated
mean of the coverage increase as sample size n increase. Estimated expectation and
simulated mean of the coverage remains same as shape parameter increases. Simulated
mean of the coverage for small sample size is below nominal level.

A simulation study of an upper S-content- (1- ) coverage TI, having an upper limit (16)
is also conducted, for c=1, 2 and for known values of n, 5, « and ~. In this simulation
study 5000 samples from G (.; o) were generated and for each of the samples U(X)
was computed, for different combinations of 3, ¢ , «. The proportion of samples for
which 1/202[(1 — )~/ — 1] exceeded U(X) was computed 100 times and the mean of
these 100 proportions is taken as simulated value of 7. The simulation study for the
generalized TI was carried out as algorithm (II). Tables 5-6 give the simulated values of
confidence level v when o=1, 2 respectively. The proposed confidence interval performs
satisfactory for small to moderate sample sizes. These intervals are superior to the
asymptotic confidence intervals.
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Table 1: Mean coverage of Confidence Intervals (using MLE and MMLE) for trans-
formed transformer (Pareto-Rayleigh) distribution I) Large Sample procedure
I5) Generalized variable approach when 0=1.0, a=2.0

coverage 0.90 0.95 0.99
n Il IQ Il 12 Il 12
9 0.8604 0.9012 0.8962 0.9445 0.931 0.9887
0.8652 0.9004 0.8932 0.9434 0.9291 0.9894
3 0.8723 0.9024 0.8931 0.9552 0.9458 0.9947
0.8651 0.8994 0.9162 0.9558 0.9454 0.9990
4 0.8741 0.9025 0.9041 0.9537 0.9548 0.9889
0.8735 0.9036 0.9217 0.9534 0.9634 0.9910
5 0.8811 0.9028 0.9147 0.9502 0.9615 0.9963
0.8879 0.9047 0.9181 0.9532 0.9664 0.9924
6 0.8805 0.9022 0.9251 0.9534 0.9538 0.9917
0.8898 0.9019 0.9352 0.9564 0.9644 0.9934
7 0.8841 0.9047 0.9284 0.9521 0.9665 0.9937
0.8897 0.9024 0.9294 0.9588 0.9724 0.9918
3 0.8889 0.9068 0.9281 0.9588 0.9735 0.9919
0.8962 0.9088 0.9462 0.9531 0.9654 0.9934
9 0.8771 0.9021 0.9354 0.9529 0.9814 0.9935
0.8981 0.9011 0.9381 0.9574 0.9684 0.9928
10 0.8910 0.9024 0.9474 0.9534 0.9715 0.9915
0.8907 0.9024 0.9474 0.9538 0.9764 0.9966
15 0.8888 0.9008 0.9364 0.9536 0.9775 0.9919
0.8946 0.9064 0.9464 0.9587 0.9814 0.9921
20 0.8947 0.9055 0.9484 0.9537 0.9865 0.9926
0.9014 0.9027 0.9562 0.9564  0.984 0.9987
50 0.8932 0.9064 0.9314 0.9528 0.9845 0.9928
0.9016 0.9033 0.9414 0.9508 0.9894 0.9980
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Table 2: Mean coverage of Confidence Intervals (using MLE and MMLE) for trans-
formed transformer (Pareto-Rayleigh) distribution I) Large Sample procedure
I5) Generalized variable approach when 0=2.0, a=2.0

coverage 0.90 0.95 0.99

0.8605 0.8992 0.8894 0.9487 0.9312 0.9887

2 0.8625 0.8988 0.8905 0.9425 0.9219 0.9805
3 0.8736  0.8989 0.9008 0.9432 0.9448 0.9928
0.8715 0.9080 0.9020 0.9485 0.9321 0.9865
4 0.8781 0.9030 0.9172 0.9506 0.9504 0.9889
0.8724 0.9053 0.9251 0.9538 0.9603 0.9932
5 0.8921 0.9021 0.9204 0.9524 0.9614 0.9962
0.8829 0.9026 0.9148 0.9519 0.9668 0.9937
6 0.8938 0.9062 0.9224 0.9522 0.9534 0.9932
0.8905 0.9028 0.9321 0.9537 0.9617 0.9919
7 0.8908 0.9081 0.9318 0.9540 0.9624 0.9984
0.8842 0.9024 0.9304 0.9531 0.9724 0.9941
3 0.8921 0.9061 0.9326 0.9565 0.9735 0.9958
0.8955 0.9008 0.9428 0.9528 0.9625 0.9935
9 0.8881 0.9073 0.9306 0.9535 0.9814 0.9931
0.8918 0.9026 0.9325 0.9522 0.9757 0.9984
10 0.8962 0.9083 0.9341 0.9557 0.9795 0.9922
0.8925 0.9034 0.9487 0.9565 0.9743 0.9957
15 0.8994 0.9043 0.9412 0.9548 0.9724 0.9943
0.8997 0.9050 0.9427 0.9566 0.9817 0.9980
30 0.8934 0.9018 0.9474 0.9541 0.9887 0.9957
0.8906 0.9024 0.9438 0.9564 0.9814 0.9972
50 0.8956 0.9028 0.9518 0.9561 0.9822 0.9964

0.8941 0.9084 0.958 0.9534 0.9878 0.9955
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Table 3: Simulated mean and estimated expectation of the coverage of approximate (-
expectation TT using MLE and MMLE for transformed transformer (Pareto-
Rayleigh) distribution.

B(e =1.0) B(e=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

2 08112 08595 09065 09515 0.8315 0.8712 09172  0.9521
(0.8251) (0.8459) (0.8902) (0.9625) (0.8451) (0.8652) (0.9251) (0.9534)
0.0.7921  0.8888  0.9127  0.9318  0.8298  0.8585  0.9275  0.9434
(0.7912) (0.8892) (0.9021) (0.9425) (0.8329) (0.8625) (0.9265) (0.9547)

3 0.8568 0.8996 09384 09592  0.8436  0.9118  0.9418  0.9637
(0.8495) (0.8825) (0.9365) (0.9469) (0.8492) (0.9028) (0.9356) (0.9645)
0.8465  0.9124  0.9386  0.9544  0.8494  0.8917  0.9374  0.9568
(0.8520) (0.9062) (0.9255) (0.9528) (0.8574) (0.9054) (0.9487) (0.9534)

4 08716 09142 09499 009756  0.8333  0.9014  0.9375  0.9725
(0.8724) (0.9028) (0.9589) (0.9728) (0.8365) (0.9124) (0.9425) (0.9824)
0.0.8588  0.8923  0.9491  0.9693  0.8514  0.9151  0.9438  0.9695
(0.8459) (0.8902) (0.9425) (0.9714) (0.8495) (0.9024) (0.9457) (0.9748)

5 0.8632 09151 009454 09737  0.8697  0.9222  0.9537  0.9786
(0.8794) (0.9215) (0.9316) (0.9722) (0.8724) (0.9365) (0.9633) (0.9748)
0.0.8610  0.9244  0.9558  0.9611  0.8712  0.9023  0.9449  0.9659
(0.8705) (0.9145) (0.9420) (0.9784) (0.8790) (0.9124) (0.9584) (0.9721)

6 08754 09359 009565 09859  0.8725  0.9179  0.9539  0.9791
(0.8715) (0.9302) (0.9536) (0.9850) (0.8837) (0.9274) (0.9521) (0.9701)
0.0.8665  0.9197  0.9523  0.9750  0.8774 09178  0.9494  0.9814
(0.8714) (0.9028) (0.9577) (0.9815) (0.8791) (0.9154) (0.9524) (0.9825)

7 0.8668  0.9417  0.9647  0.9847  0.8839  0.9346  0.9689  0.9817
(0.8628) (0.9459) (0.9619) (0.9824) (0.8829) (0.9435) (0.9752) (0.9932)
0.0.8577  0.9278  0.9569  0.9794  0.8746  0.9244  0.9516  0.9735
(0.8459) (0.9160) (0.9654) (0.9728) (0.8859) (0.9284) (0.9654) (0.9849)

8 0.8889 09296 09692 09859  0.8654  0.9328  0.9614  0.9872
(0.8749) (0.9239) (0.9628) (0.9822) (0.8735) (0.9475) (0.9672) (0.9824)
0.0.8945  0.9344  0.9674  0.9765  0.8747  0.9325  0.9577  0.9840
(0.8891) (0.9385) (0.9587) (0.9711) (0.8815) (0.9425) (0.9657) (0.9864)
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Table 4: Simulated mean and estimated expectation of the coverage of approximate (-
expectation TT using MLE and MMLE for transformed transformer (Pareto-
Rayleigh) distribution. Continued

Blo

1.0)

B(c=2.0)

0.90

0.95

0.97

0.99

0.90

0.95

0.97

0.99

9

10

15

30

50

0.8787
(0.8892)
0.0.8914
(0.8928)

0.8856
(0.8821)
0.0.8831
(0.8834)

0.8919
(0.8940)
0.0.8994
(0.8921)

0.8837
(0.9024)
0.0.9016
(0.9099)

0.9028
(0.9082)
0.0.9092
(0.9158)

0.9277
(0.9258)
0.9389
(0.9225)
0.9265
(0.9368)
0.9314
(0.9425)
0.9346
(0.9365)
0.9475
(0.9428)
0.9428
(0.9458)
0.9492
(0.9359)
0.9492
(0.9584)
0.9514
(0.9506)

0.9616
(0.9621)
0.9647
(0.9618)
0.9588
(0.9548)
0.9692
(0.9664)
0.9631
(0.9748)
0.9715
(0.9708)
0.9779
(0.9645)
0.9737
(0.9721)
0.9695
(0.9635)
0.9753
(0.9748)

0.9872
(0.9826)
0.9813
(0.9837)
0.9885
(0.9814)
0.9848
(0.9834)
0.9914
(0.9889)
0.9886
(0.9948)
0.9927
(0.9917)
0.9879
(0.9950)
0.9987
(0.9980)
0.9914
(0.9940)

0.8781
(0.8724)
0.8790
(0.8739)
0.8838
(0.8902)
0.8765
(0.8834)
0.8769
(0.8729)
0.8836
(0.8924)
0.8993
(0.9028)
0.8865
(0.8949)
0.9014
(0.9147)
0.8916
(0.9025)

0.9342
(0.9451)
0.9294
(0.9321)
0.9416
(0.9478)
0.9333
(0.9401)
0.9314
(0.9365)
0.9379
(0.9425)
0.9517
(0.9538)
0.9495
(0.9584)
0.9532
(0.9502)
0.9534
(0.9524)

0.9645
(0.9754)
0.9592
(0.9625)
0.9671
(0.9784)
0.9664
(0.9725)
0.9657
(0.9781)
0.9698
(0.9748)
0.9685
(0.9677)
0.9769
(0.9780)
0.9746
(0.9722)
0.9753
(0.9824)

0.9896
(0.9833)
0.98140
(0.9802)
0.9829
(0.9820)
0.9817
(0.9849)
0.9885
(0.9804)
0.9851
(0.9834)
0.9952
(0.9889)
0.9826
(0.9887)
0.9949
(0.9924)
0.99140
(0.9914)
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Table 5: Coverage probabilities of Tolerance Intervals for Pareto-Rayleigh distribution
I) Large sample procedure I5) Generalized variable approach 0=1.0, a=2.0

v=0.90 v=0.95
coverage £5=0.90 £5=0.95 £=0.90 £5=0.95
n Il _[2 Il [2 [1 IQ Il IQ
9 0.6672 0.9021 0.6432 0.8924 0.5549 0.9448 0.5521 0.9449
0.6451 0.9028 0.6544 0.8920 0.5441 0.9459 0.5549 0.9428
3 0.7984 0.8992 0.7971 0.8935 0.7231 0.9432 0.7461 0.9452
0.7846 0.9021 0.7869 0.8922 0.7266 0.9458 0.7361 0.9488
4 0.8156 0.9034 0.8194 0.9031 0.8224 0.9538 0.8564 0.9468
0.8356 0.9038 0.8347 0.8977 0.8319 0.9458 0.8479 0.9585
5 0.8448 0.9049 0.8435 0.9028 0.8815 0.9562 0.8714 0.9562
0.8544 0.9028 0.8539 0.9024 0.8819 0.9564 0.8854 0.9534
6 0.8639 0.9125 0.8556 0.9034 0.8901 0.9537 0.9032 0.9538
0.8634 0.9037 0.8619 0.9021 0.9034 0.9538 0.9035 0.9566
- 0.8644 0.9028 0.8598 0.9055 0.8974 0.9539 0.9074 0.9533
0.8664 0.8997 0.8686 0.9029 0.9096 0.9532 0.9083 0.9580
3 0.8492 0.9064 0.8429 0.9064 0.9087 0.9654 0.9097 0.9582
0.8706 0.9035 0.8695 0.9068 0.9144 0.9538 0.9157 0.9534
9 0.8493 0.9038 0.8239 0.9031 0.9124 0.9587 0.9015 0.9524
0.8716 0.9028 0.8714 0.9024 0.9188 0.9458 0.9183 0.9531
10 0.8614 0.9034 0.8497 0.9124 0.9235 0.9482 0.9032 0.9654
0.8744 0.9046 0.8724 0.8992 0.9203 0.533 0.9240 0.9587
15 0.8718 0.9029 0.8544 0.8997 0.9114 0.9588 0.9225 0.9528
0.8798 0.9029 0.8792 0.9034 0.9272 0.9526 0.9284 0.9575
20 0.8790 0.9184 0.8831 0.9024 0.9278 0.9537 0.9315 0.9521
0.8890 0.9088 0.8872 0.9098 0.9352 0.9538 0.9361 0.9648
50 0.9031 0.9028 0.8951 0.9089 0.9445 0.9526 0.9294 0.9588
0.8924 0.9090 0.8905 0.9044 0.9449 0.9524 0.9482 0.9584
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Table 6: Coverage probabilities of Tolerance Intervals for Pareto-Rayleigh distribution
I) Large sample procedure I5) Generalized variable approach 0=2.0, a=2.0

v=0.90 v=0.95

coverage £5=0.90 £5=0.95 £=0.90 £5=0.95

n Il 12 Il IQ Il IQ Il 12

0.6431 0.8925 0.6831 0.8902 0.5621 0.9485 0.5331 0.9487

2 0.6401 0.8959 0.6598 0.8988 0.5741 0.9458 0.5521 0.9415
3 0.7811 0.8933 0.8032 0.8953 0.7378 0.9428 0.7394 0.9458
0.7822 0.8954 0.7852 0.8954 0.7451 0.9462 0.7421 0.9402
4 0.8180 0.9024 0.8394 0.8934 0.8584 0.9521 0.8441 0.9567
0.8370 0.9024 0.8350 0.9028 0.8566 0.9532 0.8504 0.9435
5 0.8334 0.9028 0.8532 0.9028 0.8893 0.9439 0.9012 0.9548
0.8537 0.9058 0.8569 0.8937 0.8920 0.9531 0.9135 0.9520
6 0.8521 0.9024 0.8421 0.9054 0.9132 0.9511 0.9035 0.9448
0.8629 0.9034 0.8694 0.9024 0.9230 0.9489 0.9127 0.9537
7 0.8592 0.9022 0.8584 0.9027 0.8894 0.9560 0.9136 0.9580
0.8645 0.9031 0.8651 0.9037 0.8904 0.9518 0.9198 0.9582
3 0.8754 0.9065 0.8725 0.9013 0.9052 0.9538 0.9158 0.9502
0.8779 0.9157 0.8633 0.9026 0.9124 0.9588 0.9230 0.9531
9 0.8531 0.9021 0.8649 0.9157 0.9012 0.9528 0.8869 0.9531
0.8732 0.9055 0.8724 0.9027 0.9124 0.9575 0.8920 0.9565
10 0.8421 0.9128 0.8564 0.9024 0.8954 0.9582 0.9117 0.9521
0.8724 0.9071 0.8734 0.9147 0.9280 0.9548 0.9228 0.9533
15 0.8621 0.9034 0.8697 0.8948 0.9235 0.9489 0.9174 0.9587
0.8799 0.9028 0.8788 0.9088 0.9284 0.9521 0.9257 0.9502
20 0.8674 0.9089 0.8587 0.9028 0.9151 0.9568 0.9239 0.9654
0.8854 0.9021 0.8876 0.9056 0.9329 0.9588 0.9360 0.9536
50 0.8981 0.9080 0.8879 0.9027 0.9294 0.9586 0.9487 0.9537

0.8952 0.9072 0.8991 0.9076 0.9428 0.9548 0.9510 0.9531
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6 Real life Data Analysis

In this section we present a data analysis of the strength data reported by Bader and
Priest (1982). It is already observed by Durham and Padgett (1997) that Weibull model
does not work well in this case. Surles and Padgett (1998), Surles and Padgett (2001)
and Ragab and Kundu (2005) observed that generalized Rayleigh works quite well for
this strength data. Also Ragab and Kundu (2005) observed goodness of fit of the three-
parameter generalized exponential distribution to this data set based on modified MLEs.

For illustrative purpose we also consider the same transformed data set as considered
by Ragab and Kundu (2005), the single fibers of 10 mm in gauge length with sample
size 63. Data set is presented below:
0.101,0.332,0.403,0.428,0.457,0.550,0.561,0.596,0.597,0.645,0.654,0.674,0.718,0.722,
0.725,0.732,0.775,0.814,0.816,0.818,0.824,0.859,0.875,0.938,0.940,1.056,1.117,1.128,
1.137,1.137,1.177,1.196,1.230,1.325,1.339,1.345,1.420,1.423,1.435,1.443,1.464,1.472,
1.494,1.532,1.546,1.577,1.608,1.635,1.693,1.701,1.737,1.754,1.762,1.828,2.052,2.071,
2.086,2.171,2.224,2.227,2.425,2.295,3.220.

First we would like to compute the MLEs of the unknown parameters. The MLE
of o is obtained as 2.036426 and the MLE of o becomes 5.036467 with the associated
log-likelihood value as -57.67675. We plot the empirical survival function and the fitted
survival function. We used the Kolmogorov-Smirnov (K-S) test for this data set. K-
S distance between the fitted Pareto-Rayleigh and empirical cumulative distribution
function is 0.094377 and the associated p-value is 0.8431. Therefore, it indicates that
the Pareto-Rayleigh model provides reasonable fit to this data set.

Based on the estimates of o and o, the confidence intervals (using LS and GV approach)
are given in the Table 7.
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Table 7: Confidence intervals (using LS and GV approach) for strength data.

Coverage Using Estimator

Using LS approach(ACI)

Using GV approach(GCI)

(1.787754,2.285098)
Length=0.4973437

(1.786463,2.283543)
Length=0.4970807

(1.914382,2.197766)
Length=0.283384

(1.402121,1.805491)
Length=0.4033698

(1.711940,2.360913)
Length=0.6489728

(1.737967,2.332039)
Length=0.594072

(1.893224,2.246205)
Length=0.3496253

(1.366712,1.836193)
Length=0.4694808

90% MLE
MMLE
95% MLE
MMLE
99% MLE
MMLE

(1.645223,2.427629)
Length=0.7824065

(1.644007,2.425999)
Length=0.7819927

(1.852753,2.313607)
Length=0.4608534

(1.884905,2.698532)
Length=0.713627
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Therefore, in this case it is clear that the GV approach provides confidence interval
having shortest length than the LS approach.
We also evaluated (0.90, 0.90) and (0.95, 0.95) upper tolerance limits for this data set

using LS and GV approach. They are 2.921123 (2.875510) and 3.694097(3.56269) re-
spectively. Bracketed tolerance limit is using GV approach.

Table 8: The maximum likelihood estimates and Kolmogorov-Smirnov statistics and p-
values for strength data.

The model MLEs of the parameters  Log-likelihood K-S statistic p-value
Generalized Rayleigh $=1.4216,A=0.8598 —50.22 0.12  0.2845
Three parameter GE 32443586,5\21.83037(35:6.5469 —110.01 0.0933 0.643

Pareto- Rayleigh &=>5.036467,6=2.036426 —57.67675 0.094377  0.8431

It is clear from the Table 8 that based on the K-S statistic, the proposed Pareto-
Rayleigh model provides a better fit than generalized Rayleigh and three parameter
generalized Exponential models to this specific data set. Although, it is not guaranteed
that the proposed model always provides a better fit than the other models.

7 Conclusions

In this paper we have considered interval estimation (confidence interval and tolerance
interval) using maximum likelihood estimator and modified maximum likelihood estima-
tor in Pareto-Rayleigh distribution (Transformed-Transformer family) based on general-
ized variable approach. We have compared these generalized intervals with asymptotic
intervals. The proposed confidence intervals perform satisfactory for small to moderate
sample sizes. These intervals are superior to the asymptotic intervals. The performance
of the interval estimation using modified maximum likelihood estimators are also quite
satisfactory. One real data analysis has been performed and it is observed that the pro-
posed model provides a better fit than some of the existing models.
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