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On the Interval Estimation of Stress-Strength Reliability

for Exponentiated Scale Family of Distributions

K. P. Patila and H. V. Kulkarni∗a

aDepartment of Statistics, Shivaji University, Kolhapur.
∗kulkarni.hemangi@gmail.com

Abstract

The Stress-Strength reliability R = P(X1 < X2) where X1 and X2 represent the stress applied

and strength of an equipment respectively, plays a crucial role in setting warranty periods while

launching new brands of a product. The paper addresses the issue of estimating R when X1 and

X2 belong to the exponentiated scale family which includes the popular exponentiated exponential

distribution that has proven to be an excellent model for life time distributions. The cases of

known/unknown and equal/unequal scale parameters are handled separately. For known scale

parameter, a generalized pivot quantity (GPQ) for the shape parameter and R are developed. The

interval estimates of R based on the proposed GPQ exhibited uniformly best performance. For an

unknown scale parameter a maximum scale invariant likelihood estimator (MSILE) of the shape

and an allied estimator of the scale are introduced. The parametric bootstrap interval estimates of

R based on a proposed MSILE of the shape parameter exhibited best performance among others.

An application in setting warranty periods is illustrated based on two real data sets.

Keyword: Exponentiated Exponential Distribution; Generalized Pivot Quantity; Maximal Scale

Invariant Likelihood Estimator; Warranty Period.

1 Introduction

The Stress-Strength reliability of an equipment defined by R=P(X1<X2) quantifies the probability

that the strength X2 is larger than the stress X1. This probability can be used to assess if the stress

exceeds strength, when there is a high chance of instant failure and vice versa, and has elegant

applications in the field of setting warranty periods for products to be launched in the market,
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customer usage data, reliability engineering among other applications.

A thorough review on various inferential procedures for stress-strength reliability analysis

with illustrative applications can be found in Kotz et. al.7. In the recent years, numerous articles

have addressed the problem of inference related to R, see for example Zhou15, Raqab et. al. 11,

Surles and Padgett 13, Ahmad et. al. 1, Kundu and Gupta 8 among others. Under independence

of X1 and X2,

R = P(X1 < X2) =
∫

y
G1(y)g2(y)dy, (1)

where Gi(.) and gi(.) are the cumulative distribution function (CDF) and probability distribution

function (PDF) of Xi, i = 1, 2. The inferential procedures addressed in the current literature for

R include maximum likelihood inference, some asymptotic methods, Bayesian methods among

others which are constrained by stringent assumptions and complexity in estimation. Most often,

existence of one or more nuisance parameters disturbs the quality of the underlying non Bayesian

inference.

Recently the inference based on generalized pivotal quantity (GPQ) introduced by Tsui and

Weerahandi 14 has received a wide attention in almost every discipline. GPQs have been observed

to handle the nuisance parameters efficiently and yield accurate simple inference procedures even

under small to moderate sample sizes in almost all cases were they have been used. Asymptotic

properties of the CI based on the GPQs have been discussed by Hanning et. al.6 and Roy and Bose
12. The present article exploits this technique for interval estimation of R, when X1 and X2 are

independently distributed members of the exponentiated scale family, also known as resilience or

frailty parameter family (Marshall and Olkin9):

G(
x
λ

, α) = Fα(
x
λ
) Resilience family or (2)

Ḡ(
x
λ

, α) = F̄α(
x
λ
), Frailty family x ε IR, λ, α > 0, (3)

where, λ and α, are the scale and resilience (frailty) parameters respectively, and F is a given

known distribution function.

The exponentiated scale family encompasses many popular distributions, see for example

Nadarajah and Kotz 10. Our main emphasis is on the widely applicable and recently most

popular exponentiated exponential distribution (EED) developed by Gupta and Kundu 2, (see for

example Gupta and Kundu 3−5) obtained by introducing a resilience parameter in the exponential

distribution :

G(
x
λ

, α) =
(

1− e−
x
λ

)α

x > 0, α > 0, λ > 0.
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In the sequel, section 2 outlines a unified procedure for obtaining GPQs for a resilience (frailty)

parameter and the allied interval estimation for the stress-strength reliability, when the scale

parameter is known. The proposed interval estimation of stress-strength reliability is based on

these GPQs. It is notable that the form of the GPQ for the resilience/frailty parameter remains

same within the entire scale family (F( x
λ ), λ > 0) used in equation (2) and (3). For the case of

an unknown scale parameter the performance of the approximate interval estimates obtained by

replacing unknown scale parameters by their GPQs was not found up to the mark. In this case,

a better procedure is given in section 3 based on a proposed maximal scale invariant likelihood

estimator (MSILE) of α. Section 4 reports the findings of an empirical assessment of the procedures

proposed in section 2 and section 3. The procedures are illustrated with the real-life data in section

5 in the context of setting warranty periods.

2 Confidence Interval for R Under Known Scale Parameter

2.1 A GPQ for the resilience (frailty) parameter

Let, X be a random variable with CDF Fζ(.), where ζ=(θ, δ) is the unknown parameter vector. The

interest lies in the parameter θ while δ is the nuisance parameter. A GPQ for θ is defined below:

Definition 1: Generalized Pivot Quantity

A random quantity Gθ = ψ(X; x, ζ) is said to be a generalized pivotal quantity for the parameter

of interest θ if it satisfies following two properties:

1. The probability distribution of Gθ is free from any unknown parameters.

2. The value of Gθ=ψ(X; x, ζ) at X = x does not depend on the nuisance parameter δ. For

most of the cases Gθ=θ.

Let, X = (X1, X2, ..., Xn) be n independent observations on a random variable X from the

distribution function defined in equation (2) or (3). In the following theorem we develop the main

result used for constructing the GPQs for a resilience(frailty) parameter assuming that the scale

parameter is known.

Theorem 1: Let, α̂ be the maximum likelihood estimator (MLE) of α based on the exponentiated scale

family (2) or (3). Then the distribution of α/α̂ is Gamma(n, 1)/n or equivalently χ2
2n/2n,

where χ2
2n is the Chi-square random variable with 2n degrees of freedom.
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Proof: By probability integral transform, we have,

Fα

(
Xi
λ

)
d∼Ui(0, 1),

where Ui, i = 1, 2, ..., n are independent standard uniform variates. Using standard results

and independence of X1, X2, ..., Xn we have,

−α
n

∑
i=1

log(F(
Xi
λ
))

d∼ Gamma(n, 1). (4)

Furthermore, the log-likelihood function for the exponentiated scale family is,

l(α|X) = nlog(α) + (α− 1)
n

∑
i=1

log(F(
Xi
λ
)) +

n

∑
i=1

log( f (
Xi
λ
)). (5)

Equating the derivative of l with respect to α to zero, one gets

α̂ = − n

∑n
i=1 log(F(Xi

λ ))
. (6)

Noting the result in (4),

α

α̂
=

(
n

−α ∑n
i=1 log(F(Xi

λ ))

)−1
d∼ Gamma(n, 1)

n
, which is same as

χ2
2n

2n
.

It is now clear that, the GPQ for a resilience parameter is Gα = α̂W
2n , where W ∼ χ2

2n. Exactly

similar arguments hold for a frailty parameter.

2.2 Confidence interval for R under common known scale parameter

It is easily verifiable that under common scale parameters, the reliability R for the exponentiated

scale family is:

R(α1, α2) =


α2

α1 + α2
resilience parameter family

α1

α1 + α2
frailty parameter family. (7)

Furthermore, it is easily deduced from the definition of GPQ that, if Gθ is a GPQ for θ, then

GPQ for any function π(θ) is π(Gθ). As such the GPQ for R(α1, α2) is GR = R(Gα1 , Gα2), where

Gα1 and Gα2 are GPQs of α1 and α2 respectively.

Let, X1 and X2 be independent but not identical random variables from distribution functions

G( x
λ , αi), i = 1, 2 respectively. By implementing the algorithm 1 given below an observation on GR

can be easily generated for the case of known common scale parameter.
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Algorithm 1:

Step 1. For observed data xi = {xi1, xi2, ..., xini}, compute MLEs for resilience / frailty parameters

α̂i, i = 1, 2.

Step 2. Generate independent random numbers W1 and W2 from χ2
2n1

and χ2
2n2

respectively.

Step 3. Compute GPQ for αi, Gαi =
α̂iWi
2ni

, i = 1, 2.

Step 4. For resilience parameter, compute GR =
Gα2

Gα1+Gα2
and for frailty parameter GR =

Gα1
Gα1+Gα2

.

The Algorithm 1 can be repeated B times where B is a sufficiently large number, (say 10000) to

generate B independent copies of GR. At the level of significance γ, the sample (γ/2)th and

(1− γ/2)th quantiles ξγ/2 =L and ξ1−γ/2 =U of the generated sample give the proposed interval

estimate [L, U] for R.

2.3 Confidence interval for R under unequal known scale parameters

When scale parameters are known and unequal, that is λ1 6= λ2, it is easily seen that

R = P(X1 < X2) =
∫

v
G1(ηv, α1)g2(v, α2)dv, (8)

where η = λ2
λ1

, Gi(.) and gi(.) correspond to the standard (with scale parameter equal to 1) CDF

and PDF of the scale family under consideration. This integral most often may not exist in closed

form and its numerical computations in standard packages like MATLAB and R often gave absurd

results. An easier but very closely accurate computation can be attempted noting that,

R =
∫ ∞

0
{G1(ηv, α1)g2(v, α2)ev}e−vdv,

= EV [H(V, α1, α2, η)], (9)

where H(V, α1, α2, η) = G1(ηV, α1)g2(V, α2)eV and V ∼ exp(1). This expectation can then be

evaluated empirically by simulating a large number of standard exponential random numbers vi,

i = 1, 2, ..., M and estimating R by R̄(α1, α2, η) = {∑M
i=1 H(vi, α1, α2, η)}/M. For M larger than

10000 most often R̄(.) was found close to R up to O(10−2). In algorithm 1, M independent copies

of GR can be generated using this computational procedure to produce 100(1− γ)% CI for R.

Remark 1.

When the support of X2 is the entire IR, the integral in (9) will be from −∞ to ∞. Here

use of the standard normal distribution for V is recommended instead of standard exponential

distribution in the above procedure.
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3 Confidence Intervals for R Under Unknown Scale Parameter

In case of unknown scale parameters the MLE α̂i of αi being a function of MLE λ̂i of λi, i = 1, 2 the

distributional result proved in Theorem 1 does not hold exactly and the resulting GPQs and hence

the above inferential procedures are approximate. As an alternative, four bootstrapping procedures,

namely parametric and nonparametric bootstrap techniques employed with regular MLEs and

MSILEs of the parameters under consideration were compared empirically. The MSILE is invariant

under the nuisance scale parameter and is obtained by maximizing the likelihood L∗(αi|yi) of

the transformed data y1 = (y1 1, y1 2, ..., y1 n1−1) and y2 = (y2 1, y2 2, ..., y2 n2−1) obtained by the

following transformation and integrating over yi ni , i = 1, 2:

yi j =

{ xi j/xi ni for j = 1, 2, ..., ni − 1

xi ni for j = ni; i = 1, 2.

Often computation of L∗(αi|yi) needs numerical integration which can be circumvented by the

technique suggested in section 2.3, equation(9).

3.1 Bootstrap confidence interval for R under common unknown scale param-

eter

Following algorithm is used for computing a bootstrap CI for R. In the sequel, α̃i denotes the

MSILE of αi and λ̃ is the maximizer of L∗(λ|α̃1, α̃2, x1, x2).

Algorithm 2:

For i = 1, 2 follow the following steps:

Step 1. For observed data xi = (xi1, xi2, ..., xini ) compute α̃i, note that α̃i does not depend on the

unknown λi, i = 1, 2.

Step 2. Compute λ̃ for given α̃1 and α̃2 by maximizing the likelihood L∗for the combined sample.

Step 3. Generate bootstrap samples x∗i = (x∗i1, x∗i2, ..., x∗ini
). Note that for the parametric bootstrap

x∗i is generated from Gi(λ̃, α̃i) while for the nonparametric bootstrap x∗i is a random sample

with replacement from xi.

Step 4. Obtain α̃i
∗ based on x∗i .

Step 5. Next compute λ̃∗ for given α̃i
∗ based on the combined sample (x∗1 , x∗2) as in step 2.

Step 6. Compute bootstrap estimate R∗ by replacing αi by α̃i
∗ in (7).

6



Step 7. By repeating steps 2 to 6 generate sufficiently large number (say B=1000) of copies of

bootstrap estimates, R̃boot = (R∗1 , R∗2 , ..., R∗B). The (γ/2)th and (1− γ/2)th sample quantiles

of R̃boot say L and U are the bootstrap confidence limits of R.

3.2 Bootstrap confidence interval for R under unequal unknown scale param-

eters

Confidence interval of R for unequal and unknown scale parameters λ1 6= λ2, can also be obtained

based on parametric and non-parametric bootstrap technique. In this case the estimates λ̃i in

step 2 of Algorithm 2 are to be independently computed from the respective sample for given α̃i,

i = 1, 2. The procedure to compute bootstrap estimates α̃∗i , λ̃∗i , i = 1, 2 is the same as in Algorithm

2, while the reliability estimate in Step 6 should be computed based on equation (9) by replacing η

by η̃∗ =
λ̃∗2
λ̃∗1

and αi by their bootstrap estimates α̃∗i , i = 1, 2. Rest of the procedure is same as above.

4 Empirical Assessment

EED being a widely used distribution from the exponentiated scale family, is employed for the

comparative empirical study. A comparative study is attempted among the methods discussed

in sections (2) and (3). Performances of all the methods are assessed based on the estimates

of coverage probability and average widths on 2500 simulations. The parametric combinations

considered are: sample sizes (n1, n2)=(10, 10), (10, 30), (10, 40), (30, 30), (30, 40), (40, 40). Since

the procedure is invariant under common scale parameter, the value of λ=10 is fixed while the

resilience parameter is chosen to be α1=0.5, 1, 2, 5. α2 is adjusted such that R=0.1, 0.4, 0.7, 0.9.

Under unequal scale parameters, the parameters are set to α1 = 0.5, 5, α2 = 1, 6 and for each λ1=0.5,

5 the values of η are set to 0.5, 2, 5, 10 by adjusting λ2 = ηλ1. The level of significance used is

γ = 0.05.

The following five methods are compared:

GPQ: Generalized pivotal quantity

PBMSILE: A parametric bootstrap technique employed on MSILE

PBMLE: A Parametric bootstrap technique employed on MLE

NPBMSILE: A non-parametric bootstrap technique employed on MSILE

NPBMLE: A non-parametric bootstrap technique employed on MLE

Figure 1 displays the results for known scale parameters. Figure 1 (a) and (c) display the box

plots of coverage probabilities of CI’s under equal and unequal scale parameters respectively

7



while figure 1 (b) and (d) display corresponding average widths of those procedures exhibiting

satisfactory coverage performance. Figure 2 displays the counterparts under unknown scale

parameters. Here the performance of GPQ based CI was not recommendable and is omitted.
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Figure 1: Box plots of simulated coverage probabilities and average widths of CI’s (conforming the size performance)

for R under known scale parameters.
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Figure 2: Box plots of simulated coverage probabilities and average widths of CI’s (conforming the size performance)

for R under unknown scale parameters.

For the known scale parameters, observation of Figure 1 reveals that GPQ based CI are

clearly outperforming the rest with respect to both the criteria. Here the coverages are very well

concentrated around the nominal level with shorter widths among others. For the case of unknown

scales, observation of Figure 2 reveals that PBMSILE outperforms the rest and is recommended.
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5 Real Life Applications

The data given in Table 1 (http://reliawiki.org/index.php/Stress-Strength_Analysis) reports

the miles traveled by 20 sold vehicles in a year (stress variable: X1) and miles traveled before

failure of an independent sample of 50 new vehicles of the same type (strength variable: X2).

The probability of vehicle failure during a period of one year can be estimated by using the

stress-strength reliability analysis, discussed in section 2.

Table 1: Miles traveled by vehicle per year and miles traveled before failure (In 100 miles).

Stress (X1) 100.96 111.83 115.34 121.41 125.36 137.77 125.95 138.62 125.27 109.55

(miles traveled 104.69 113.91 119.19 124.05 140.32 141.38 126.57 139.71 121.05 114.86

in a year)

Strength (X2) 135.07 161.25 148.10 167.49 155.22 174.30 139.43 163.27 149.51 168.62

(miles traveled 137.93 163.20 149.40 167.93 155.47 178.05 140.17 163.49 151.04 169.30

before failure) 141.47 164.06 152.18 169.48 160.03 185.75 143.76 166.11 153.11 170.41

143.51 165.01 153.03 170.24 160.18 188.13 145.95 166.25 154.80 172.63

155.70 178.84 159.75 185.49 160.52 189.44 147.46 166.70 154.96 173.47

The Table 2 below reports the Akaike information criterion (AIC), Bayesian information

criterion (BIC) and P-value corrosponding to Kolmogrov-Smirnov test statistics (KS test) for fitting

a best life distribution to the data presented in Table 1.

Table 2: Goodness of fit to the data given in Table 1.

Distribution
Stress Strength

P-Value AIC BIC P-Value AIC BIC

Weibull 0.5186 160.3475 162.3390 0.7497 409.8429 413.6669

Exponential 0.0000 234.4878 235.4835 0.0000 610.0452 611.9572

Gamma 0.7520 8233.1490 8235.1400 0.9781 28032.1200 28035.9400

Log-Normal 0.8076 2612.3390 2614.331 0.9611 8981.6030 8985.4270

Normal 0.7264 163.7162 162.7076 0.9646 416.6732 420.4973

Pareto 0.0956 170.2461 172.2376 0.0037 434.7542 438.5783

EED 0.9405 160.8999 162.8913 0.5319 407.5343 411.3584

The three criteria together indicate that the Weibull and EED are two almost equally best fitted

10



distributions to both the variables. To illustrate the estimation of R, using the results of previous

sections it is reasonable to assume that the data is coming from EED.

(a) (b)

Figure 3: EED Q-Q plot for Stress (X1) and Strength (X2) variables.

The Q-Q plots for the two data sets given in Figure 3 also support in favor of the EED to

both X1 and X2. MLEs of the scale parameters for (X1) and (X2) are respectively 10.8707 and

12.1455. The CI and point estimates for R = P(X1 < X2) computed by the four methods are

presented in Table 3. Based on the likelihood ratio test for equality of scales (P-value = 0.5834 ) it

seems reasonable to assume that the samples are coming from populations with common scale

parameters, so that based on the recommendations, the CI obtained by PBMSILE are most reliable.

The point estimates obtained by mean and median of bootstrap samples and confidence

intervals of stress-strength reliability for four bootstrap methods are depicted in the following

Table 3:

Table 3: Point Estimates and CI for R.

Method
Point Estimate Confidence Interval

(L, U)Mean Median

PBMSILE 0.9833 0.9964 (0.9570, 0.9986)

PBMLE 0.958 0.9597 (0.9219, 0.9824)

NPBMSILE 0.9844 0.9965 (0.9570, 0.9986)

NPBMLE 0.9567 0.959 (0.9253, 0.9803)

The confidence interval of reliability computed with PBMSILE (as well as NPBMSILE) indicates

that the probability of instantaneous failure of a vehicle within a year lies in (0.0014, 0.043), which

11



is very low. It thus follows that setting one year warranty period for a vehicle of this brand is

almost risk free.

A similar analysis for the data on number of pages printed by printers (http://www.weibull.com/

hotwire/issue163/ hottopics163.htm) also best fitted with EED. Here, the number of pages printed

by users in one year is the stress variable X1 and the number of pages printed before the compo-

nent failed during in-house testing is the strength variable X2. The resulting CI for R is (0.9859,

0.9999), indicating that the probability of failure within a year lies between (0.0001, 0.0141) which

is very small and here also one year warranty period for the printers can be set with almost no

risk.

6 Concluding Remarks

Efficient estimation of the stress-strength reliability is of prime importance in reliability appli-

cations, particularly in setting warranty period for products to be launched in the market. We

have addressed this issue when the distribution of stress and strength belongs to exponentiated

scale family. When the scale parameters are known, interval estimation of R based on GPQ

is recommended while the case of unknown scale parameters, is recommended to be handled

through the parametric bootstrap approach based on the maximum scale invariant likelihood

estimator of the shape parameter.
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This paper is a revised and expanded version of a paper entitled ‘Economic 
design of moving average control chart for non-normal data using  
ceased production process’ presented at National Seminar on Stochastic 
Modelling and Analysis organised by Department of Statistics, Cochin 
University of Science and Technology, Cochin, 25 March 2011. 

 

1 Introduction  

Control chart technique was first developed by Shewhart (1931), as an online process 
control technique to control the variability in a production process. Since then, there has 
been lot of developments taken place in the construction of control charts. This includes 
development of control chart for normal as well as non-normal process distributions. In 
the design of control chart, the decision about the sample size (n), sampling interval (h) 
and the control limit multiplier (k) of the control chart is made to monitor the 
manufacturing process in control according to statistical and/or an economic criteria. 
These three factors are generally known as control chart parameters. In statistical control 
chart, the design parameters are chosen in such a way that the chart meets some statistical 
requirements. In the economic design, the overall focus is given on the minimisation of 
the total loss cost from the process (that is maximisation of the profit). In economic-
statistical design, while minimising the production cost, some statistical constraints are 
applied to the process. 

Duncan (1956) was the first to propose an economic design for x  control chart. Since 
then, based on his foundation, many other researchers have been working on the 
economic design for different type of control charts. Montgomery (1980), Collani (1986), 
McWilliams (1989), Saniga (1989), Rahim and Banerjee (1993), Yu and Chen (2005) 
and many others have worked on the different types of economic designs. Saniga (1989) 
first considered the economic-statistical design for  x   and R chart by applying statistical 
constraints on type I and type II error probabilities and concluded that the design gives 
better performance as compared to the fully economic model at slight increase in the cost. 
Al-oraini and Rahim (2003) also concluded in the same way. Zhang and Berardi (1997), 
Chou et al. (2000), Chen and Cheng (2007) and Yeh and Chen (2010) have also worked 
on this type of design of  x   control chart. Alkhedher and Darwish (2013), Sing et al. 
(2014), Hashemi et al. (2014) have also reported optimisation procedures in various 
applications. 

Wu et al. (2008) have developed an optimum design of combined  x   and cumulative 
sum (CUSUM) chart based on extra quadratic loss and compared performance of the 
chart with single charts. Trovato et al. (2010) have economically compared several 
control strategies including Shewhart, Exponentially Weighted Moving Average 
(EWMA) and CUSUM to monitor the process dispersion in short run. They conclude that 
while monitoring short run process, production and inspection rates are to be estimated 
accurately. Wu et al. (2010) have compared performance of two CUSUM schemes for 
shift in mean and variance using optimum design. Nenes (2011) has provided unified 
approach for the economic optimisation of different variable parameter (VP) control 
charts. He has developed a single cost function to optimise the chart parameters. Mahadik 
and Shirke (2011) have compared performance of variable sampling interval (VSI), 
variable sample size and sampling interval (VSSI) and special variable sample size and 
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sampling interval (SVSSI) T2 control charts in terms of steady state average time to 
signal (SSATS). Kolli and Limam (2011) have developed an economic design for np 
control chart. Zhang Wu et al. (2011) have developed the optimisation design treating 
sampling inspection cost and in control average time to signal (ATS) as adjustable 
parameters for  x   and CUSUM chart.  

Ou et al. (2012) have proposed an optimal sequential probability ratio test (SPRT) 
control chart and compared its performance with basic SPRT chart. Lee et al. (2012) 
designed a control chart with double sampling and VSI. Khoo et al. (2013) and Tu (2013) 
have developed economic and economic-statistical designs for two unit series system  x   
chart and synthetic  x   chart. Amiri et al. (2013) provided economic statistical design of 
modified exponentially weighted moving average (MEWMA) control chart. Franco et al. 
(2014) have investigated economic-statistical design of  x   charts using skip sampling 
strategies for autocorrelated processes. A&L switching rule is provided to reduce the 
switching between sampling intervals in VSI control charts. Guo et al. (2014) have 
studied the economic design of variable parameter  x   chart with a correlated A&L 
switching rule. Rostami and Ali (2014) have provided approximation algorithm for 
minimum cost flows. Basically, in most of these studies, the quality characteristic is 
assumed to be normally distributed and hence for mean charts, the distribution of mean 
becomes normal. But, sometimes the quality characteristic may not have normal 
distribution. Considering this situation, Rahim (1985), Chou et al. (2001), Chen (2004), 
Chen and Yeh (2006) have developed economic design for  x   control chart for  
non-normal data, under different situations. 

In the literature, there are good number of research papers on economic design of  x   
control chart, but relatively less on the economic design of moving average (MA) control 
chart. Chen and Yang (2002), Chen and Yu (2003), Yu and Chen (2005) and Yu and Wu 
(2004) have reported economic design of MA control charts. These designs are also 
based on normal quality characteristics and most of them are for the continuous process. 
Patil and Rattihalli (2009) have proposed the economic design for continuous as well as 
ceased MA process control chart. In this paper, considering non-normal input quality 
characteristics, we have developed the combined loss cost function for MA control chart 
under continuous, ceased and semi-ceased process model using unified approach by 
Lorenzen and Vance (1986). While developing the cost function, the approach by Yu and 
Chen (2005) is found to be useful. The cost function is optimised with respect to design 
parameters n, h and k, and the effect on loss cost is observed particularly for continuous 
and ceased process. The sensitivity of the design is carried out by applying change in the 
input parameters. While developing the cost function we have used different input cost 
and time parameters, which may be estimated by original sampled data from trial 
production. 

The present paper consists of seven sections excluding the present one. In Section 2, 
we have introduced a process model and given definitions of notations used in the paper. 
A short description about Burr distribution is given in Section 3. Expressions for 
expected cycle length and expected loss cost are obtained in Section 4 and Section 5 
respectively. An example is given in Section 6 and the sensitivity analysis is carried out 
in Section 7. Final conclusions are presented in Section 8.  
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2 Process model and notations 

Consider the production process monitored by drawing a single unit sample at the 
interval of every ‘h’ hour. It is assumed that the time to take the sample, inspect it and to 
draw the conclusion is negligible. Let x1, x2 … ... be the sample observations collected on 
the process quality characteristic of the process and are assumed to have distribution with 
mean μ and known variance σ2. The moving average of the observations at time t is given 
by, 

t 1_
m

t i
i 0
n 1

t i
i 0

1x ;           if t  n
t

1= ;           if t  n
n

x

x

−

−
=

−

−
=

= <

≥

∑

∑
 (1) 

The process is monitored by a single assignable cause with the process target value as the 
first moment E(x) of the distribution and is denoted by μ0. The shift in the process target 
value is instantaneous and whenever, the process shifts to out of control state (assignable 
cause occurs), the target mean shifts from μ0 to μ0 + δσ, and otherwise it remains at μ0. 

The process is assumed to be start in control state and the period up to next in control 
state through an out of control state is termed to be one production cycle. That is, the time 
between start of two successive in control states is termed as a production cycle. This 
production cycle consists of in control period as well as out of control period. The model 
targets to find expected cycle length of this cycle and the total expected loss during the 
cycle, so that, expected loss per unit time from the process is obtained and optimised. The 
notations used are as follows. 

n sample size 

h sampling interval 

k control limits coefficient 

δ magnitude of shift in the process 

λ parameter of the exponential life time distribution for in control state 

c1, k1 parameters of the burr distribution 

δ1 = 0 if the process is ceased during the search of an assignable cause 

= 1 if the process is continued during the search of an assignable cause 

δ2 = 0 if the process is ceased for the rectification (repair) of an assignable cause 

= 1 if the process is continued during the rectification of an assignable cause 

α the probability of false alarm 

T0 expected time to search for an assignable cause during the false alarm 

T1 expected time to search for an assignable cause during the true alarm 

T2 expected repair time of an assignable cause during the true alarm 
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C0 expected loss cost per unit time due to the nonconformities produced when  
the process is in control 

C1 expected loss cost per unit time due to the nonconformities produced when  
the process is out of control 

C2 expected production loss cost per unit time due to ceasing of the process 

ASN average sample number to detect the shift 

N no. of samples during the cycle 

g time to sample one unit 

a, b fixed and variable costs of sampling 

V loss cost due to single false alarm 

W loss cost due to search and repair of an assignable cause. 

3 The Burr distribution  

The Burr distribution is discussed in detail by Burr (1942) to represent various types of 
non-normal distributions. The probability density function of Burr distribution with 
parameters c1 and k1 is given by, 

1

1 1

c 1
1 1

1 1c k 1
c k y

f(y) ;       y  0,  c  1,  k  1.
(1 y )

  0;                       y  0

−

+= ≥ ≥ ≥
+

= <

 (2) 

and its cumulative distribution function is given by, 

1 1 1 1c k
1F(y) 1 ;           y  0,  c  1,  k  1.

(1 y )
        0;                             y  0

= − ≥ ≥ ≥
+

= <
 (3) 

One can apply first four moments or 3rd and 4th moments of the underlying distribution, 
as the case may be, to approximate the parameters (c1, k1) of the Burr distribution. The 
resulting coefficient of skewness and kurtosis from the function cover the broad range 
within which many empirical and theoretical distribution lies. Further, the Burr 
distribution can be approximated by the normal or gamma distribution (Chen and Yeh, 
2006). 

Burr (1942) has provided two tables. In Table 2 values of the mean and standard 
deviation (S.D.) of the Burr distribution are given and in Table 3, values of skewness and 
kurtosis coefficients for different values of parameters c1 and k1 are provided. From the 
original sampled data mean 

_
(x), , variance 2

x(S ),  coefficient of skewness (α3) and 
coefficient of kurtosis (α4) can be obtained. Using Table 3 and the values of coefficient of 
skewness and kurtosis one can estimate the values of parameters (c1, k1) of the family of 
Burr distribution. Using these values of c1 and k1 and with the help of Table 2, mean (M) 
and S.D. (S) for the Burr distribution can be estimated. Using these estimated values of 
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mean and variance, the standardised transformation between Burr variable (y) and any 
other variable (x) is made by, 

_

x

Y M X x
S S
− −

=  (4) 

This transformation is useful to detect type I and type II error probabilities of the control 
chart, when the incoming data is non-normal. 

4 Expected cycle length  

The expected cycle length consists of the in control period, time for search due to false 
alarm, the out of control period, time for sampling and testing and the time for search and 
repair of an assignable cause. Assuming that, an assignable cause occurs according to the 
Poisson process of an intensity of λ occurrences per unit time (That is the distribution of 
an in control time has an exponential distribution with parameter λ), the expected in 
control time becomes 1/λ. 

The probability of false alarm is the probability that, the test statistic falls outside the 
control limits, when the process is in control. Our test statistic is based on the moving 
average and has mean μ0 and variance σ2/n. Hence,  

m 0 m 0 0

m 0 m 0 0

 P(x  –  k / n,  x   k / n);  at mean  ,

  1  P(x  –  k / n ) –  P(x   k / n) :  at mean  ,

α = < μ σ √ > μ + σ √ = μ

= + < μ σ √ < μ + σ √ = μ
 (5) 

According to standardised transformation between Burr variable (Y) and r.v. m(x ),  we 
get, 

0xmY M .
S / n

−μ−
=

σ
 

This gives, 

m 0
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S n
− σ
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Using this in (5), we get, 
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Let, s denotes expected number of samples taken during in control period, then  

( )ih (i 1)h

i 0
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h
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1 e

s e ei
∞

−λ −λ +

=
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−λ
=

−

= −∑
 (7) 

and, the expected time elapsed due to false alarm = T0αs. 
Therefore, 

1 0
1In control time  IT (1 )T s.= = + − δ α
λ

 (8) 

Let, T be expected time of occurrence of an assignable cause in ith and (i+1)th sample, 
then 

h

h
e (1 h)T

(e 1)

λ

λ

− + λ
=

λ −
 (9) 

Let, iju ,  i = 0, 1, 2 … … n–1; j = 1, 2 … ... be the mean of moving group, when an 
assignable cause occurs in ith and (i+1)th sample and is detected in j subsequent moving 
subgroup and pij be the probability that an assignable cause occurs in ith and (i+1)th 
sample and is detected in j subsequent moving subgroup, then  

0

ij 0

0

j ;i j n
i j

ju ;i j n, j n
n

;i j, j n

δ⎧μ + σ + <⎪ +⎪
δ⎪

= μ + σ + ≥ <⎨
⎪
μ + δσ + ≥⎪
⎪
⎩

 (10) 

Further, 
_

ijij m 0 m 0P  P(x  –  k / n,  x   k / n);  at mean u .= < μ σ √ > μ + σ √ =  

Hence by standardised transformation of  mx  to Burr variable, we get 

_

m 0

_

m 0

_

m 0

jx
i j ;i j n

/ i j

jY M x
nS ;i j n, j n

/ n

x
;i j, j n.

/ n

⎧ δ
−μ − σ⎪ +⎪ + <

⎪ σ +
⎪

δ− ⎪ −μ − σ=⎨
+ ≥ <⎪

σ⎪
⎪
⎪ −μ − δσ

+ ≥⎪
σ⎩
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This gives, 

 

0

_
m 0

0

j (Y M ) ; i j n
i j S i j

j (Y M )x ; i j n , j n
n S n

(Y M ) ; i j, j n.
S n

δ − σ⎧μ + σ + + <⎪ + +⎪
⎪ δ − σ⎪= μ + σ + + ≥ <⎨
⎪
⎪ − σ
μ + δσ + + ≥⎪

⎪⎩

 

Hence, 

( )

ij

i j jSY M kS ,P
n i j

i j jS   Y M kS                                     ; i j n
n i jp

jS jSP Y M kS , Y M kS ;i j n, j n
n n

P Y M kS S n , Y M kS S n ;i j, j n.

11
i j jS1 M kS

n i j

⎧ ⎛ + δ
< − −⎪ ⎜⎜ +⎪ ⎝

⎪
⎞+ δ⎪ > + − + <⎟⎪ ⎟+= ⎨ ⎠

⎪
δ δ⎛ ⎞⎪ < − − > + − + ≥ <⎜ ⎟⎪ ⎝ ⎠

⎪
⎪ < − − δ > + − δ + ≥⎩

+
⎛ + δ

+ + −
+⎝

=

11

11

11

kc

kc

kc

                                                  (11)

1                                  ; i j n
i j jS1 M kS

n i j

1 11
jS jS1 M kS 1 M kS
n n

⎡ ⎤⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎠⎣ ⎦

− + <
⎡ ⎤⎛ ⎞+ δ⎢ ⎥+ − −⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

+ −
⎡ ⎤δ δ⎛ ⎞ ⎛ ⎞+ + − + − −⎢ ⎥⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

( ) ( )

11

1 11 1

kc

k kc c

; i j n, j n

1 11 ;i j, j n.
1 M kS S n 1 M kS S n

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪ + ≥ <
⎪ ⎡ ⎤
⎪ ⎢ ⎥⎟⎪ ⎢ ⎥⎣ ⎦⎪
⎪
+ − + ≥⎪
⎡ ⎤ ⎡ ⎤⎪ + + − δ + − − δ⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦⎩

 

We have, 

ij ijq  1 –  p .=  

Also, the probability in the last case is independent of i and j, and can be taken as 
constant (P), so that Q = 1-P. 

If an assignable cause occurs in i0 and (i+1)th sample and is detected in next j samples, 
the expected number of units to detect the shift (ei) are given by, 
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i i1 i1 i2 i1 i2 i3

j 1 n 1n 1

i1 ij id id
j 2 d 1 d 1

n 1

e  p   2q p   3q q p   ..

Qp jp q q (n ) ;i n
P

e ;i n

− −−

= = =

−

= + + + …

⎧
+ + + <⎪

= ⎨
⎪

≥⎩

∑ ∏ ∏  (12) 

Hence the ASN is given by, 

( )
n 2

h (n 1) h
i n 1

i 0

ASN  1 –  e e e e .
−

−λ − − λ
−

=

= +∑  (13) 

Therefore, average out of control time (AOT) is given by, 

AOT  h *ASN –  T=  (14) 

and expected cycle length is given by, 

( ) 1 2E T   IT  AOT  g  T  T .= + + + +  (15) 

5 Expected loss cost function during the cycle 

The loss cost consists of loss during in control and out of control period, loss cost due to 
false alarm, cost for search and repair and cost of sampling and testing. 

The loss cost due to non-conformities produced is given by, 

[ ]1 0 1 1 1 2 2
1L  C C (h *ASN T) g T T⎡ ⎤= + − + + δ + δ⎢ ⎥λ⎣ ⎦

  

If, C = C1 – C0, is the overhead cost due to nonconformities produced in the out of control 
state, then 

[ ]

1 0 1 1 2 2

1 1 2 2

1L C (h *ASN T) g T T

               C (h *ASN T) g T T ,

⎡ ⎤= + − + + δ + δ⎢ ⎥λ⎣ ⎦
+ − + + δ + δ

 (16) 

The production loss cost due to ceasing of process during false alarm is, 

( )2 2 1 0L  C 1 T s= − δ α  (17) 

If V and W are the cost for search and repair when there is false alarm and true alarm 
respectively, then cost for search and repair is, 

3L  V s  W= α +  (18) 

The expected numbers of samples during the cycle are, 

( )
1 1 2 2

1 (h *ASN T) g T T
E N  

h

+ − + + δ + δ
λ=  (19) 

Therefore, cost of sampling and testing is, 
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( ) ( )4L  a  b *E N= +  (20) 

Therefore, expected total loss cost per unit time during the cycle is, 

( ) 1 2 3 4L L L L
E L  

E(T)
+ + +

=  (21) 

The above equation represents a general loss cost function derived for continued as well 
as for ceased non-normal production processes and is a function of design parameters n, h 
and k. Here, ‘n’ is integer whereas ‘h’ and ‘k’ may be positive real numbers. If we put  
δ1 = δ2 = 1, the cost function represents loss cost function for continuous process, 
whereas if we put δ1 = δ2 = 0, it represents loss cost function for ceased process. If we put 
δ1 = 1, δ2 = 0, the function represents loss cost function for (1-0) semi-ceased process, 
where the process is continued during the search of an assignable cause and ceased 
during repair of the cause, if occurred (Patil and Rattihalli, 2009). 

The cost function developed is a complicated function of three design parameters  
(n, h, k), hence to get desired values of parameters and the expected loss, we use 
algorithmic procedure instead of direct derivative method. The optimisation objective 
function to develop an algorithm is as given below, 

( ) 1 2 3 4L L L L
Min E L  

E(T)
s. t.                h  0.01,
                     k  0,
                     n  2

+ + +
=

≥
≥
≥

 

Based on this optimisation function, a MATLAB program is written to find the optimal 
values of design parameters and loss. This program works with arbitrary initial values of 
the parameters. 

6 An example  

To illustrate the comparison between the normal and non-normal process as well between 
continued and ceased process, here we consider the example by Koo and Case (1990), 
which is used by Patil and Rattihalli (2009) with some modifications and also by Yu and 
Chen (2005). Following are the values of input parameters selected. 

0 2

0 1 2

C  200,  C  4,000,  C  1,500,  V  1,000,  W  1,000,  a  b  20,
 0.02,    2,  T  T  1.25,  T  2
= = = = = = =

λ = δ = = = =
 

6.1 Comparison between normal and non-normal (Burr) process 

To investigate the accuracy of the program, here we consider the parameters of Burr 
distribution as c1 = 5 and k1 = 6, which have skewness parameter α3 = –0.013 and 
kurtosis parameter α4 = 3.010, which are very close to the normal distribution. The 
comparative values of the design parameters and the loss for Normal and Burr distributed 
process for different type of process design are given in Table 1. 
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Table 1 Loss cost for normal and Burr process for different type of process design 

Process type Input 
distribution n h k α loss 

Continuous Normal 1.75 0.7263 2.3789 0.0174 620.0820 
Burr 1.75 0.7229 2.3896 0.0171 620.0097 

Semi-ceased Normal 1.75 0.6936 2.3924 0.0167 463.5946 
Burr 1.75 0.6903 2.4031 0.0164 463.5105 

Ceased Normal 1.8750 0.5846 2.7292 0.0063 386.4249 
Burr 1.8750 0.5827 2.7305 0.0062 386.0861 

We observe that, almost all values of design parameters and expected loss for Normal 
and Burr distributed data are very close to each other. Moderate differences exist due to 
slight skewness and kurtosis in the burr data. It is also observed that, for both type of 
input data distributions, the loss for continuous process is larger as compared to ceased 
process. Also the type I error is large for continuous process and small for ceased 
process. The sampling interval is small and control limit parameter is large for ceased 
process as compared to continuous process. 

6.2 Comparison of expected loss cost between continuous and ceased process 
designs for non-normal process 

We consider some non-normal input data through coefficient of skewness (α3) and 
Kurtosis (α4). Let α3 = 0.884 and α4 = 4.122, corresponding to the parameters c1 = 2 and 
k1 = 10 of the Burr distribution with mean 0.29134 and Standard Deviation 0.16197. Let 
us consider, the two extreme procedures continued production and ceased production and 
compare the performance of the process for different values of ‘n’. Table 2 gives 
findings. 
Table 2 Comparison of loss between continuous and ceased process for different ‘n’ 

n 
Continued process 

 
Ceased process % Saving 

in the 
loss h k loss h k loss 

2 1.3936 1.9356 587.0542  1.7820 1.9318 373.58 36.36 
3 1.2318 1.9442 604.1059  1.5713 1.9378 395.52 34.53 
4 1.1547 1.9509 614.1468  1.4708 1.9425 408.32 33.51 
5 1.1005 1.9536 622.0929  1.4007 1.9443 418.37 32.75 
6 1.0608 1.9559 628.4968  1.3492 1.9458 426.42 32.15 
7 1.0289 1.9585 634.1562  1.3081 1.9476 433.48 31.64 
8 1.0046 1.9599 638.7200  1.2768 1.9485 439.15 31.25 
9 0.9837 1.9613 642.9034  1.2502 1.9493 444.32 30.89 
10 0.9663 1.9624 646.5597  1.2281 1.9500 448.81 30.58 

Table 2 shows that, the ceased process ensures near about 32% saving over the 
continuous process for a particular type of non-normal process data. Further, the loss cost 
increases with increase in ‘n’ for both the processes. The values of control limit 
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parameter (k) change in the direction of sample size (n) and that of sampling interval (h) 
changes in the opposite direction of ‘n’, this may cause increase in the loss for both the 
type of processes with increasing values of ‘n’. The percentage saving due to ceasing of 
the process during search and repair is larger for smaller values of ‘n’ and smaller for 
larger values of ‘n’. Thus, the changes in the values of sample size affects more on 
continuous process as compared to ceased process. 

6.3 Effect of non-normality on the expected loss cost of the continuous and 
ceased process designs 

To check the effect of non-normality on the design parameters and economy of the design 
we make the changes in the skewness (α3) and Kurtosis (α4) parameters of the input data 
and observe the changes in the output. We consider the three cases as follows. 

1 α4 is chosen near to 3 and α3 is varied from –0.363 to 0.329 

2 α3 is chosen near to 0 and α4 is varied from 2.866 to 3.646 

3 α3 is varied from –0.128 to 3.381 and α4 is varied from 2.92 to 27.86. 

Table 3 shows the outcomes for all the three cases for continued and ceased process. In 
the table c1 and k1 are the parameters of Burr distribution for corresponding values of 
skewness (α3) and Kurtosis (α4). 

Following are some observations:  

1 For case 1, the values of sampling interval (h) and of control limit parameter (k) 
slowly decrease and again increase for both the processes, for increase in skewness 
parameter. 

2 For case 2 and case 3, values of sampling interval (h) increase with increase in the 
values of kurtosis parameter for continuous production. The values of control limit 
parameter (k) do not show any pattern for both the processes but it appears to be 
decreasing for continuous process. 

3 The optimum sample size ‘n’ is fixed for continuous process but it changes between 
2 and 3 for ceased process. 

4 The last rows in case 3 show that, the process behaves abnormally for high increase 
in skewness and kurtosis. It is observed that for very high values of skewness and 
kurtosis the sampling interval and control limit multiplier reaches at extreme point. 

5 For case 2 and case 3, the loss from both the processes increases with increase in 
values of kurtosis parameter. 

6 The loss cost does not much affected for the change in skewness but is more affected 
by change in kurtosis. Hence, the process is much sensitive for change in kurtosis as 
compared to change in skewness. Also both the processes are more sensitive for 
extreme changes in skewness as well as kurtosis. 

7 Both the processes (continuous and ceased) behave almost in similar fashion for 
change in skewness and kurtosis. 
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Table 3 Effect of non-normality on the design parameters and expected loss from the process 
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Table 4 Effect of change in shift (δ) on the design parameters and expected loss from the 
process 
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6.4 Effect of change in shift (δ) on the design parameters and the expected loss 
cost of the continuous and ceased moving average process designs 

To check the effect of change in shift (δ) on the parameters and the minimum loss cost of 
the design, we change the values of shift from 0.1 to 1 with increment of 0.1. We 
consider Burr process with parameters c1 = 2 and k1 = 10 corresponding to α3 = 0.884 
and α4 = 4.122, we study the change in the values of design parameters (n, h, k) and 
minimum loss cost for continuous as well as for ceased processes. Table 4, gives the 
outcomes corresponding to the above settings. 

From Table 4, we observe the following. 

1 As the magnitude of the shift increases, the sample subgroup size (n) and control 
limit parameter (k) goes on decreasing, while sampling interval (h) goes on 
increasing for both the processes. 

2 As the magnitude of the shift increases, the minimum loss cost decreases for both the 
processes and the percentage saving due to ceasing increases. That is, for larger 
shifts, ceased process is more economical than continuous process. 

3 The values of sample size (n) and sampling interval (h) are larger, where as the 
values of control limit multiplier (k) are smaller, for ceased process as compared to 
the continuous process. This shows that ceased process works better than the 
continuous flow process for particular input values. 

To check the sensitivity of the design for input parameters, in the following section, we 
fix the design parameters corresponding to the magnitude of the shift 0.4 and observe the 
change in the loss cost. 

7 Sensitivity of the design  

The illustrations in the above section of the example represents that, the ceased process 
seems better as compared to continuous process, for the given input parameters of the 
particular non-normal process quality characteristics. To check the sensitivity of the 
design with respect to the input parameters, we change one of the input parameter by 25, 
50, 200 and 300 percent, by keeping other constant and observe the effect on the 
expected loss cost. In Table 5, we have chosen two optimum designs, one corresponds to 
optimum parameters of continuous process noted as Plan 1 and other for ceased process 
noted as Plan 2. Both the plans have design parameter (n, h, k) values corresponding to 
shift δ = 0.4.  
Table 5 Optimum design parameters corresponding to Plan 1 and Plan 2 used to check 

sensitivity of the design 

δ 
Continued process (Plan 1)  Ceased process (Plan 2) 

n h k loss  n h k loss 
0.4 4 0.6161 2.0432 758.159  4 0.7405 2.0043 587.781 
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Table 6 Effect on the expected loss from the continuous and ceased process due to change in 
the input parameter 
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Table 6 Effect on the expected loss from the continuous and ceased process due to change in 
the input parameter (continued) 
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Table 6 gives the sensitivity results obtained for continuous and ceased process according 
to design parameters in Table 5 and by varying the input parameter C = 4000; C0 = 200; 
C2 = 1500;V = 1000;W = 1000;a = 20;b = 20;λ = 0.02; g = 0; T0 = 1.25; T1 = 1.25; T2 = 
2. In Table 6, Cont (1), denotes results using continuous process and optimum design 
parameters of Plan 1. Ceas (1), denotes results using ceased process and optimum design 
parameters of Plan 1. Similarly, Ceas (2), denotes results using ceased process and 
optimum design parameters of Plan 2. In the column saving by ceasing, Plan 1, we 
means, percentage saving due to ceasing using Plan 1 parameters for both the process and 
Plan 1 and Plan 2, mean percentage saving due to ceasing using Plan 1 parameters for 
continuous process and Plan 2 parameters for ceased process. 

For a quick review of the sensitivity of the design, we may refer to Figures 1 to 4.  
Figures 1 and 2, reveal percentage increase in loss with respect to standard value 
(according Plan 1 or Plan 2) of the loss due to change in input values for continuous and 
ceased process respectively. Figures 3 and 4, show effect on percentage saving by 
ceasing of process due to change in input parameters respectively by using unique Plan 
for both and their own optimal plans. 

Figure 1 Increase in loss due to change in input parameters for continuous process 
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Figure 2 Increase in loss due to change in input parameters for ceased process 
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Figure 3 Percentage saving in the loss due to ceased process using Plan 1 parameters 
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Figure 4 Percentage saving in the loss due to ceased process using individual optimal plan 
parameters 
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From Table 5 and Figures 1 to 4, we have following observations. 

1 The continuous as well as ceased process is too much sensitive to the change in the 
parameters C, C0 and λ. The parameters C2 and T0 are related to only ceased process 
and shows considerable effect on the expected loss from the process. 

2 The parameter V has significant effect on both the process. The continuous process 
is sensitive with respect to T1 and T2, where as ceased process seems to be less 
sensitive. Both the processes are less sensitive to W. 

3 On an average, the continuous process is much sensitive as compared to ceased one 
with respect to changes in all the factors. 

4 There is significant effect on saving occurred by ceased process due to change in C, 
C2, λ, T0, T1 and T2. Change in the values of C0, V, W, a and b does not show much 
effect on saving due to ceasing. 

8 Conclusions 

In this paper, we have obtained an expression for expected loss cost function to control 
location for continuous and ceased moving average production processes depending on 
the non-normal input quality characteristic. The approximation based on Burr distribution 
is used to monitor with non-normality of quality characteristic. The cost function is 
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optimised with respect to the three design parameters n, h and k. The performance of two 
production modes is studied in different views and also the effect of non-normality is 
observed. Moreover, this article provides SPC practitioners the way to improve the 
process in economic view. The design is as simple as x  chart and will promote the 
application of this effective chart. Mostly, the producers prefers for continuation of the 
process during the search and repair of the process. This article provides the benefit of 
ceasing of the process to such practitioners.  

There is comparable difference in the loss due to continuous, ceased and semi-ceased 
process. The design parameters h and k are affected by non-normality also the loss cost is 
mostly affected by change in kurtosis. As the sample size ‘n’ increases, percentage saving 
due to ceasing decreases. It shows that, for very larger sample size both the  
process models become equally efficient. For the smaller values of shift (δ), the process 
model shows greater loss and also causes increase in percentage saving due to ceasing 
with increasing δ. That is, ceased process designs are more beneficial for larger  
shifts. Overall the ceased process appears to be dominant over continuous process  
and shows almost 20 to 30% saving in the loss cost. The process model is highly 
sensitive to C, C0, λ which are the major parameters of the process and is less sensitive to 
V, T1, T2 and W. The parameters C2 and T0 related to ceased production seems to be 
sensitive.  

The novelty of the study is, if the production process is affected by small shifts, the 
ceasing of process during the repair will be advisable. At the same time, if we use MA 
procedure instead of usual mean chart, we are using past sample observations, which may 
turn to be long run control of the process, which will be beneficial to the producers. 
Further, we have used input parameters from the real life data. There is scope for 
investigators to estimate the input parameters from original sampled data. The study can 
be extended further with the use of CUSUM or EWMA charts with the non-normal input 
data. 
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Confidence interval construction for the scale parameter of the half-logistic distribution is 
considered using four different methods. The first two are based on the asymptotic 
distribution of the maximum likelihood estimator (MLE) and log-transformed MLE. The 
last two are based on pivotal quantity and generalized pivotal quantity, respectively. The 
MLE for the scale parameter is obtained using the expectation-maximization (EM) 
algorithm. Performances are compared with the confidence intervals proposed by 
Balakrishnan and Asgharzadeh via coverage probabilities, length, and coverage-to-length 

ratio. Simulation results support the efficacy of the proposed approach. 
 
Keywords: Progressively Type-II censoring, EM algorithm, MLE, pivotal quantity, 
confidence interval, generalized confidence interval, coverage probability, coverage to 
length ratio, half-logistic distribution 

 

Introduction 

In many life testing situations, an experiment has to be terminated before 

completion. Because of the various limitations of time and money, testing of life 

may need to be stopped for some of the units. In day-to-day experiments, 

incomplete information about the failure times is available, or some of the units 

must be removed before completion of the experiment. A plan is necessary for 

removal of the units before the termination of an experiment to save time and cost, 

which is called the censored data. 

Type-I censoring depends on time, where the time is fixed for the 

termination of experiment. Suppose an observer continues an experiment up to 

time T; lifetimes of units will be known exactly only if these are less than T. 

https://doi.org/10.22237/jmasm/1493597880
mailto:potdarkiran.stat@gmail.com
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Failure times of units which have not failed by the time T are not observed. 

Suppose n units are being tested, but the decision is made to terminate the 

experiment at time T. In this experiment, lifetimes will be known exactly only for 

those units that fail before time T. In Type-I censoring, the number of exact 

lifetimes observed is random. 

A Type-II censoring scheme is often used in life testing experiments where 

the number of units that can be observed before the termination of the experiment 

is fixed. In this scheme, only a pre-planned number m out of n units (m < n) are 

observed. In the case of Type-II censoring, the number of exact lifetimes observed 

is fixed, but the time required for the termination of the experiment is unknown. 

In conventional Type-I and Type-II censoring, units are removed from the 

experiment at the terminal stage, while in a progressive censoring scheme, units 

are removed at different stages. Progressive censoring schemes can be applied in 

both Type-I and Type-II censoring schemes. More details about various censoring 

schemes are available in Lawless (1982). 

In an (R1, R2,…, Rm) progressive type-II censoring scheme, the number m 

and R1, R2,…, Rm are fixed before the start of the experiment and 
1

m

ii
R n m


  . 

At the first failure, R1 units are randomly removed from the remaining n – 1 units. 

At the second failure, R2 units are randomly removed from the remaining 

n − 2 − R1 units, etc. At the mth failure, all the remaining Rm units are removed. 

Here, we observe failure times of m units and the remaining n – m units are 

removed at different stages of the experiment. In a conventional Type-II 

censoring scheme, Rm = n – m and the rest of the Ri are zero. 

Consider the problem of interval estimation for the scale parameter of a 

half-logistic distribution under a progressive Type-II censoring scheme. 

Progressive Type-II censoring schemes for various lifetime distributions was 

discussed by Cohen (1963), who introduced progressive Type-II censoring 

schemes. Mann (1969, 1971), Balakrishnan, Kannan, Lin, and Ng (2003), 

Balakrishnan, Kannan, Lin, and Wu (2004), Ng (2005), and Ng, Kundu, and 

Balakrishnan (2006) discussed inference for different lifetime distributions under 

progressive Type-II censoring schemes. Balakrishnan and Aggarwala (2000) is an 

excellent reference on progressive censoring. Balakrishnan (2007) studied various 

distributions and inferential methods for the progressively censored data. Lin and 

Balakrishnan (2011) discussed the consistency and the asymptotic normality of 

Maximum Likelihood Estimators (MLEs) based on the progressive Type-II 

censored samples. Potdar and Shirke (2013, 2014) studied inference for the scale 

parameter of the half logistic and Rayleigh distribution of k-unit parallel systems 
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based on progressively Type-II censored data. Ghitany, Alqallaf, and 

Balakrishnan (2014) discussed estimation of the parameters of Gompertz 

distributions based on progressively Type-II censored samples. Sultan, Alsadat, 

and Kundu (2014) studied estimation for the inverse Weibull parameters under 

progressive Type-II censoring. 

As far as the half-logistic distribution is concerned, Balakrishnan and 

Puthenpura (1986) discussed the best linear unbiased estimation of location and 

scale parameters. Balakrishnan and Wong (1991) computed the approximate 

Maximum Likelihood Estimator (AMLE) for the location and scale parameters of 

the half-logistic distribution. Balakrishnan and Chan (1992) studied estimation for 

the scale parameter of the half-logistic distribution. Kim and Han (2010) used 

importance sampling methods to obtain a Bayes estimator for the scale parameter 

of the half-logistic distribution under progressively Type-II censored samples. 

Jang, Park, and Kim (2011) studied estimation of the scale parameter of the half-

logistic distribution with a multiply Type-II censored sample. Rastogi and 

Tripathi (2014) studied estimation of parameter and reliability for the 

exponentiated half-logistic distribution. 

The likelihood equation of a half-logistic distribution with scale parameter 

does not have a closed form solution to obtain MLE. In most of the reported work, 

an AMLE of the scale parameter is obtained. Following this approach, 

Balakrishnan and Asgharzadeh (2005) and Wang (2009) reported inference for 

the scale parameter of a half-logistic distribution based on progressive Type-II 

censored samples. 

Balakrishnan and Asgharzadeh (2005) showed that, if the relative sample 

fraction is small, then the coverage probability of the confidence interval (CI) 

based on asymptotic normality of the MLE is unsatisfactory. Wang (2009) paid 

more attention to length of CI and gave a shorter length CI. Dempster, Laird, and 

Rubin (1977) introduced the expectation-maximization (EM) algorithm to obtain 

the MLE for the incomplete data. McLachlan and Krishnan (1997) gave more 

details about the EM algorithm. Here, the MLE is computed using the EM 

algorithm, and the focus is on both the coverage probability and length of CI. 

Assume that n units having half-logistic lifetime distribution are put on test 

and failure times of 
1

m

ii
R n m


   units are censored. Lifetimes of these 

censored units are unknown. Consider the censored data as missing data and use 

the EM algorithm to compute the MLE. As indicated in Potdar and Shirke (2014), 

the EM algorithm gives improved inferential results. 
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Model and Estimation of the Scale Parameter 

Suppose progressively Type-II censored data are obtained from the scaled half-

logistic distribution with probability density function 
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 
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and cumulative distribution function 
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Suppose n units are under test and lifetimes of m units are observed under 

progressive Type-II censoring. Suppose (R1, R2,…, Rm), a progressive censoring 

scheme, is used. The observed lifetimes x(1), x(2),…, x(m) are the progressively 

Type-II censored sample. The likelihood function for the observed data is given 

by (Balakrishnan & Aggarwala, 2000) 
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where 
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Maximum Likelihood Estimation 

Suppose z1, z2,…,zm are the censored data. Note zi is a vector with Ri element 

corresponding to Ri removed units after the ith failure is observed (i = 1, 2,…., m). 

The censored data Z = (z1, z2,…, zm) can be considered to be the missing data and 

X = (x(1), x(2),…, x(m)) the observed data. W = (X, Z) is the complete data set to be 

used for drawing inference for the scale parameter. The complete log-likelihood 

function can be written as 
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By differentiating Lc with respect to λ, 
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The EM algorithm suggested by Dempster et al. (1977) was used to compute 

the MLE. For the E step in the EM algorithm, the expectation of Zij was taken. 

Hence, the above equation becomes 
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Solving equation (4) is the M step. 

The Newton-Raphson method was used to solve equation (4) by taking the 

least square estimate as an initial value. Ng (2005) discussed estimation of model 

parameters of modified Weibull distributions based on progressively Type-II 

censored data, where the empirical distribution function is computed as 
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with 
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The estimate of the parameters can be obtained by the least squares fit of 

simple linear regression 
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with β = -1/λ, 
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The least square estimate of λ is given by 
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While obtaining the MLE ˆ
n of the scale parameter λ, the above approach 

was adopted, where 0̂  was taken as an initial value of λ in the Newton-Raphson 

method. It will be shown that the MLE ˆ
n  exits and is unique. From equation (2), 
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where C is defined as above. 
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Note 
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Therefore, the MLE, a solution to g(λ) = 0, exists and is unique. 

Fisher Information 

We compute observed Fisher information using the idea of the missing 

information principle of Louis (1982). Thus, observed information = complete 

information – missing information. Write this as 
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In the following, we obtain complete and missing information given by 
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where, L is the log-likelihood function of the complete data. By differentiating L 

with respect to λ twice 
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The complete information is given by 
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Missing information is given by 
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 (9) 

Confidence Intervals Based on MLE and log-Transformed 
MLE 

Confidence Interval Based on MLE 

Let ˆ
n be the MLE of λ and 
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be the estimated asymptotic variance of ˆ
n . Therefore, a 100(1 – α)% asymptotic 

CI for λ based on asymptotic normality of ˆ
n  is given by 
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where τα/2 is the upper 100(α/2)th percentile of the standard normal distribution. 

Confidence Interval Based on log-Transformed MLE 

Meeker and Escobar (1998) reported the asymptotic CI for λ based on  ˆlog n . 

An approximate 100(1 – α)% CI for log(λ) is 
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where   2 ˆˆ log n   is the estimated asymptotic variance of  ˆlog n , which is 

approximated by 

 

   
 2

2

2

ˆˆ
ˆˆ log

ˆ

n

n

n

 
 


  

 

Hence, an approximate 100(1 – α)% CI for λ is 
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Confidence Interval Based on Pivotal and Generalized 
Pivotal Quantity 

Consider two exact CIs based on the pivotal quantities. To define these CIs, show 

that the distribution of ˆV   is free from λ, where ̂ is the MLE of λ, based on 

the complete data. In the following lemma, it is proved that V is a pivot, following 

Gulati and Mi (2006): 

 

Lemma 1: The distribution of V is free from λ. 

 

Proof:  Consider the probability density function of the half-logistic 

distribution with scale parameter λ: 
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Then the log-likelihood function becomes 
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dL/dλ = 0 gives the following equation: 

 



C. I. FOR HALF-LOGISTIC DISTRIBUTION UNDER TYPE-II CENSORING 

334 

 
1 1

e
2

1 e

i

i

xn n
i

i x
i i

x
x n









 

 


   

 

The solution of the above equation is the MLE of λ (say ̂ ). Hence 
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Let ξ = ˆ   and Yi = Xi/λ. Then 
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Note thatY1, Y2,…,Yn is a random sample from the half-logistic distribution with 

parameter λ = 1. Therefore, the distribution of ˆ   is independent of λ. Hence 

the proof. 

 

Lemma 2: The distribution of V under progressive Type-II censored data from 

the half-logistic distribution with scale parameter λ is free from λ. 

 

Proof:  This is similar to Lemma 1 and hence is omitted. 

 

This property of the MLE will be used to derive the confidence interval 

based on pivot and generalized pivot quantity methods. 

 

Remark: V is also a pivot for k-unit parallel and k-unit series systems. 

Confidence Interval Based on Pivotal Quantity 

From Lemma 2, the distribution of V is free from λ. Define a and b such that 
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  P 1a V b      

 

Therefore we obtain the following as a CI for λ: 
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 (12) 

 

The constants a and b are obtained using Monte Carlo simulation by using the 

following algorithm: 

 

Algorithm to Obtain Percentiles of V 

 

1. Input α, N, m, and progressive Type-II censoring scheme (R1, R2,…, Rm). 

2. Generate a progressive Type-II censored random sample of size m using 

censoring scheme (R1, R2,…, Rm) from the half-logistic distribution with 

parameter λ = 1. 

3. Obtain a MLE of λ (say ̂ ) using the EM algorithm. 

4. Repeat steps 2 and 3 N times so as to get 1 2
ˆ ˆ ˆ, , , N   . 

5. Arrange the ˆ
i  in an increasing order. Denote them by 

     1 2
ˆ ˆ ˆ, , ,

N
   . 

6. Compute 
  2

ˆ
N

a



  

 and 
  1 2

ˆ
N

b



  

 . 

Confidence Interval Based on Generalized Pivotal Quantity 

The concept of a generalized confidence interval (GCI) is introduced by 

Weerahandi (1993). Let x denote the observed value of X. To construct a GCI for 

λ, first define a generalized pivotal quantity (GPQ), T(X; x, λ), which is a function 

of the random variable X, its observed value x, and the parameter λ. A quantity 

T(X; x, λ) is required to satisfy the following two conditions: 

 

i) For a fixed x, the probability distribution of T(X; x, λ) is free of unknown 

parameters. 

ii) The observed value of T(X; x, λ), namely T(x; x, λ), is simply λ. 

 

Let Tα be the 100αth percentile of T. Then Tα becomes the 100(1 – α)% 

lower bound for λ. Therefore a 100(1 – α)% two-sided GCI for parameter λ is 

given by 
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  2 1 2T ,T   (13) 

 

Define the GPQ as 
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X x



 

  

 

where
0̂ is the MLE obtained using observed data. Note: 

 

i) The distribution of T(X; x, λ) is free from λ, which follows from Lemma 2, 

and 

ii) T(x; x, λ) = λ, since for the observed data, 
0

ˆ ˆ  . 

 

A GCI based on T(X; x, λ) is obtained by using following algorithm: 

 

Algorithm to Obtain CI for λ using GPQ 

 

1. Input α, N, m, and progressive Type-II censoring scheme (R1, R2,…, Rm). 

2. Generate a progressive Type-II censored random sample of size m from 

the half-logistic distribution with an unknown parameter λ. 

3. Based on the data in step 2, obtain a MLE of λ (say 0̂ ) using the EM 

algorithm. 

4. Generate a progressive Type-II censored random sample of size m from 

the half-logistic distribution with parameter λ = 1. 

5. Obtain a MLE of λ (say ˆ
i ) using the EM algorithm for step 4 data. 

6. Compute Ti =  0̂ / ˆ
i . 

7. Repeat steps 4 to 6 N times, so as to get T1, T2,…,TN. 

8. Arrange the Ti in an increasing order. Denote them by T(1), T(2),…, T(N). 

9. Compute a 100(1 – α)% CI for λ as 
      2 1 2

,
N N

T T
       

. 

Simulation Study 

The CIs given in (10) to (13) will now be compared with the CIs given by 

Balakrishnan and Asgharzadeh (2005) and Wang (2009). A simulation study was 
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carried out to study the performance of each of the CIs. Asymptotic CIs based on 

MLE, log-transformed MLE, and GPQ are compared through length and 

confidence level. Balakrishnan and Sandhu (1995) presented an algorithm for 

sample generation from progressively Type-II censored schemes. This algorithm 

was used to generate samples from a half-logistic distribution. Consider the 34 

different progressively Type-II censored schemes compiled in Table 1. 

 

Algorithm 

 

1. Generate i.i.d. observations (W1, W2,…,Wm) from U(0, 1). 

2. For censoring scheme (R1, R2,…, Rm), 
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for i = 1, 2,…, m. 

3. Set iE

i iV W  for i = 1, 2,…,m. 

4. Set Ui = 1 – (Vm∙Vm – 1∙…∙Vm – i + 1) for i = 1, 2,…,m. Then (U1, U2,…, Um) 

is the uniform (0, 1) progressively Type-II censored sample. 

5. For given values of the parameter λ, set 
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for i = 1, 2,…, m. 

 

Then (x(1), x(2),…, x(m)) is the required progressively Type-II censored 

sample from the half-logistic distribution. In Table 1, censoring scheme 

(a, b, c, d) stands for R1 = a, R2 = b, R3 = c, and R4 = d. A similar meaning holds 

for schemes described through completely specified vector, while scheme 

(10, 9*0) means R1 = 10 and remaining nine Ri are zero, i.e. 

R2 = R3 = R4 = … = R10 = 0. A simulation was carried out with λ = 1. For each 

particular progressive censoring scheme, 5,000 sets of observations are generated. 

The CIs based on asymptotic normal distributions of the MLE and log-

transformed MLE are derived. 
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Table 1. Censoring schemes 

 

Scheme No. n m m/n Scheme 

[1] 10 4 0.2500 (0, 0, 0, 6) 

[2] 10 4 0.2500 (6, 0, 0, 0) 

[3] 10 5 0.5000 (0, 0, 0, 0, 5) 

[4] 10 5 0.5000 (5, 0, 0, 0, 0) 

[5] 15 4 0.2667 (0, 0, 0, 11) 

[6] 15 4 0.2667 (11, 0, 0, 0) 

[7] 15 5 0.3333 (0, 0, 0, 0, 10) 

[8] 15 5 0.3333 (10, 0, 0, 0, 0) 

[9] 15 5 0.3333 (0, 10, 0, 0, 0) 

[10] 15 5 0.3333 (0, 0, 10, 0, 0) 

[11] 15 5 0.3333 (2, 2, 2, 2, 2) 

[12] 15 5 0.3333 (4, 4, 2, 0, 0) 

[13] 20 5 0.2500 (0, 0, 0, 0, 15) 

[14] 20 5 0.2500 (15, 0, 0, 0, 0) 

[15] 20 5 0.2500 (5, 5, 5, 0, 0) 

[16] 20 5 0.2500 (3, 3, 3, 3, 3) 

[17] 20 5 0.2500 (0, 15, 0, 0, 0) 

[18] 20 5 0.2500 (5, 10, 0, 0, 0) 

[19] 20 10 0.5000 (9*0, 10) 

[20] 20 10 0.5000 (10, 9*0) 

[21] 25 5 0.2000 (0, 0, 0, 0, 20) 

[22] 25 5 0.2000 (20, 0, 0, 0, 0) 

[23] 25 10 0.4000 (9*0, 15) 

[24] 25 10 0.4000 (15, 9*0) 

[25] 25 15 0.6000 (14*0, 10) 

[26] 25 15 0.6000 (10, 14*0) 

[27] 50 20 0.4000 (19*0, 30) 

[28] 50 20 0.4000 (30, 19*0) 

[29] 50 25 0.5000 (24*0, 25) 

[30] 50 25 0.5000 (25, 24*0) 

[31] 100 20 0.2000 (19*0, 80) 

[32] 100 20 0.2000 (80, 19*0) 

[33] 100 50 0.5000 (49*0, 50) 

[34] 100 50 0.5000 (50, 49*0) 
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Table 2. Simulated coverage probabilities for confidence intervals 

 

 

C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[1] 0.8100 0.8396  0.8108 0.8470  0.8710 0.9176  0.8944 0.9458  0.8992 0.9474 

[2] 0.8300 0.8640  0.8338 0.8676  0.8804 0.9282  0.9072 0.9514  0.8986 0.9464 

[3] 0.8288 0.8638  0.8330 0.8684  0.8768 0.9256  0.8968 0.9462  0.9025 0.9503 

[4] 0.8290 0.8688  0.8382 0.8768  0.8814 0.9286  0.9014 0.9528  0.9036 0.9494 

[5] 0.8204 0.8508  0.8160 0.8500  0.8786 0.9204  0.8978 0.9476  0.9016 0.9518 

[6] 0.8350 0.8650  0.8364 0.8706  0.8830 0.9306  0.8978 0.9528  0.8948 0.9468 

[7] 0.8194 0.8582  0.8278 0.8640  0.8736 0.9230  0.8998 0.9522  0.9058 0.9548 

[8] 0.8360 0.8686  0.8418 0.8778  0.8834 0.9284  0.9006 0.9528  0.8998 0.9482 

[9] 0.8370 0.8684  0.8398 0.8724  0.8794 0.9240  0.9050 0.9526  0.8986 0.9498 

[10] 0.8354 0.8656  0.8364 0.8666  0.8780 0.9306  0.8946 0.9456  0.8978 0.9506 

[11] 0.8262 0.8596  0.8308 0.8684  0.8822 0.9274  0.9022 0.9494  0.9050 0.9518 

[12] 0.8354 0.8650  0.8408 0.8798  0.8896 0.9336  0.9014 0.9514  0.8934 0.9486 

[13] 0.8318 0.8626  0.8418 0.8750  0.8842 0.9348  0.9002 0.9504  0.8966 0.9520 

[14] 0.8474 0.8806  0.8474 0.8834  0.8866 0.9342  0.8960 0.9474  0.8974 0.9462 

[15] 0.8368 0.8740  0.8388 0.8716  0.8752 0.9250  0.8974 0.9528  0.9008 0.9482 

[16] 0.8308 0.8632  0.8312 0.8664  0.8816 0.9260  0.9048 0.9532  0.8950 0.9496 

[17] 0.8432 0.8724  0.8492 0.8818  0.8870 0.9296  0.9004 0.9504  0.9000 0.9464 

[18] 0.8318 0.8690  0.8390 0.8756  0.8788 0.9260  0.8944 0.9488  0.8998 0.9500 

[19] 0.8592 0.8954  0.8790 0.9122  0.8902 0.9416  0.8960 0.9510  0.8950 0.9458 

[20] 0.8680 0.9068  0.8706 0.9098  0.8864 0.9358  0.9002 0.9528  0.8958 0.9418 

[21] 0.8196 0.8544  0.8280 0.8606  0.8764 0.9284  0.8990 0.9496  0.8976 0.9492 

[22] 0.8372 0.8720  0.8400 0.8712  0.8764 0.9304  0.8972 0.9542  0.8970 0.9504 

[23] 0.8640 0.9072  0.8636 0.8994  0.8858 0.9364  0.8976 0.9490  0.8980 0.9454 

[24] 0.8774 0.9128  0.8780 0.9132  0.8964 0.9434  0.8904 0.9466  0.9010 0.9512 

[25] 0.8714 0.9160  0.8770 0.9158  0.8948 0.9432  0.8926 0.9448  0.9006 0.9466 

[26] 0.8822 0.9210  0.8848 0.9242  0.8996 0.9504  0.9008 0.9492  0.8938 0.9468 

[27] 0.8844 0.9246  0.8790 0.9212  0.8914 0.9388  0.9002 0.9502  0.8970 0.9472 

[28] 0.8852 0.9302  0.8880 0.9292  0.8952 0.9470  0.9084 0.9532  0.8948 0.9496 
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Table 2, continued. 

 

 

C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[29] 0.8904 0.9276  0.8950 0.9360  0.9022 0.9494  0.9024 0.9466  0.8948 0.9504 

[30] 0.8896 0.9348  0.8918 0.9374  0.8982 0.9484  0.9044 0.9530  0.8978 0.9478 

[31] 0.8920 0.9324  0.8856 0.9248  0.8962 0.9460  0.9008 0.9526  0.8968 0.9486 

[32] 0.8864 0.9306  0.8876 0.9336  0.8972 0.9478  0.9062 0.9534  0.8958 0.9478 

[33] 0.8930 0.9374  0.8938 0.9408  0.8998 0.9454  0.8958 0.9446  0.9046 0.9530 

[34] 0.8924 0.9416  0.9010 0.9452  0.9026 0.9522  0.8948 0.9448  0.9070 0.9544 

 
 
Table 3. The expected lengths of confidence intervals 

 

 

C1  C2  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[1] 2.0913 2.7742  2.0330 2.7028  1.3723 1.6352  1.4919 1.8397  2.0003 2.6406  2.0432 2.7096 

[2] 2.0150 2.6663  1.9223 2.5345  1.3790 1.6432  1.4943 1.8403  1.9281 2.5360  1.9254 2.5328 

[3] 1.6829 2.2413  1.6495 2.1395  1.2142 1.4468  1.2952 1.5849  1.6353 2.1214  1.6562 2.1440 

[4] 1.6656 2.1061  1.5932 2.0518  1.2246 1.4592  1.3051 1.5965  1.5883 2.0467  1.5690 2.0143 

[5] 2.1526 2.8298  2.1217 2.8244  1.4289 1.7026  1.5625 1.9313  2.1204 2.8675  2.0944 2.7809 

[6] 2.0219 2.8139  1.9415 2.5615  1.3863 1.6519  1.5039 1.8530  1.9146 2.5256  1.9121 2.5117 

[7] 1.8253 2.3360  1.7234 2.2392  1.2655 1.5079  1.3562 1.6627  1.7120 2.2377  1.7132 2.2203 

[8] 1.7290 2.2818  1.6054 2.0685  1.2395 1.4770  1.3220 1.6177  1.6076 2.0631  1.5954 2.0493 

[9] 1.6816 2.1968  1.6431 2.1214  1.2488 1.4880  1.3343 1.6339  1.6136 2.0929  1.6358 2.1071 

[10] 1.8064 2.2591  1.6754 2.1675  1.2566 1.4973  1.3445 1.6474  1.6653 2.1710  1.6636 2.1482 

[11] 1.7245 2.2904  1.6782 2.1775  1.2430 1.4812  1.3285 1.6270  1.6886 2.2053  1.6426 2.1253 

[12] 1.6759 2.1434  1.6449 2.1252  1.2481 1.4872  1.3333 1.6326  1.6374 2.1200  1.6348 2.1033 

[13] 1.8299 2.4993  1.7724 2.3044  1.3030 1.5526  1.4010 1.7199  1.7660 2.2984  1.7672 2.2909 

[14] 1.6007 2.0857  1.6130 2.0789  1.2401 1.4776  1.3232 1.6194  1.5938 2.0671  1.5858 2.0396 

[15] 1.7540 2.2729  1.6768 2.1690  1.2731 1.5170  1.3625 1.6695  1.6698 2.1834  1.6496 2.1262 

[16] 1.7848 2.3377  1.7207 2.2350  1.2532 1.4933  1.3429 1.6464  1.6982 2.2097  1.7251 2.2365 

[17] 1.7424 2.1501  1.6597 2.1438  1.2722 1.5159  1.3607 1.6669  1.6277 2.1042  1.6401 2.1126 
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Table 3, continued. 

 

 

C1  C2  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[18] 1.7336 2.1373  1.6528 2.1345  1.2618 1.5035  1.3490 1.6523  1.6297 2.1138  1.6378 2.1099 

[19] 1.0242 1.2681  1.0099 1.2531  0.8758 1.0436  0.9047 1.0926  1.0153 1.2497  1.0011 2.2410 

[20] 1.0137 1.2284  0.9834 1.2145  0.8717 1.0387  0.8998 1.0864  0.9957 1.2302  0.9712 1.1978 

[21] 1.8246 2.3465  1.8066 2.3495  1.3169 1.5692  1.4194 1.7442  1.8067 2.3370  1.8018 2.3372 

[22] 1.6455 2.0421  1.6180 2.0857  1.2377 1.4748  1.3211 1.6170  1.6001 2.0816  1.5875 2.0391 

[23] 1.0462 1.2845  1.0328 1.2825  0.8884 1.0586  0.9189 1.1104  1.0393 1.2960  1.0311 1.2787 

[24] 1.0103 1.2819  0.9854 1.2171  0.8753 1.0430  0.9036 1.0911  0.9800 1.2079  0.9812 1.2099 

[25] 0.7842 0.9543  0.7775 0.9509  0.7016 0.8360  0.7165 0.8613  0.7766 0.9502  0.7754 0.9475 

[26] 0.7846 0.9490  0.7714 0.9407  0.7079 0.8435  0.7229 0.8691  0.7677 0.9354  0.7671 0.9342 

[27] 0.6895 0.8386  0.6832 0.8310  0.6328 0.7540  0.6436 0.7723  0.6820 0.8351  0.6820 0.8275 

[28] 0.6546 0.8045  0.6550 0.7944  0.6162 0.7343  0.6261 0.7510  0.6526 0.7914  0.6561 0.7941 

[29] 0.6009 0.7334  0.5902 0.7144  0.5567 0.6634  0.5640 0.6758  0.5945 0.7184  0.5879 0.7109 

[30] 0.5796 0.7047  0.5780 0.6982  0.5513 0.6569  0.5583 0.6688  0.5752 0.6973  0.5761 0.6951 

[31] 0.7042 0.8616  0.7249 0.8823  0.6713 0.7999  0.6842 0.8217  0.7312 0.8881  0.7259 0.8817 

[32] 0.6482 0.7763  0.6563 0.7960  0.6176 0.7359  0.6275 0.7526  0.6639 0.8022  0.6546 0.7929 

[33] 0.4067 0.4736  0.4067 0.4884  0.3951 0.4708  0.3977 0.4752  0.4043 0.4892  0.4047 0.4859 

[34] 0.3985 0.4815  0.3992 0.4789  0.3897 0.4644  0.3922 0.4686  0.4014 0.4818  0.3968 0.4754 

 

 
Table 4. Coverage to Length Ratio (CLR) of confidence intervals 

 

 
C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[1] 0.3873 0.3026  0.5908 0.5180  0.5838 0.4988  0.4471 0.3582  0.4401 0.3497 

[2] 0.4119 0.3240  0.6046 0.5280  0.5892 0.5044  0.4705 0.3752  0.4667 0.3737 

[3] 0.4925 0.3854  0.6860 0.6002  0.6770 0.5840  0.5484 0.4460  0.5449 0.4433 

[4] 0.4977 0.4125  0.6845 0.6009  0.6754 0.5816  0.5675 0.4655  0.5759 0.4713 

[5] 0.3811 0.3007  0.5711 0.4992  0.5623 0.4766  0.4234 0.3305  0.4305 0.3423 

[6] 0.4130 0.3074  0.6033 0.5270  0.5871 0.5022  0.4689 0.3773  0.4680 0.3770 
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Table 4, continued. 

 

 

C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[7] 0.4489 0.3674  0.6541 0.5730  0.6442 0.5551  0.5256 0.4255  0.5287 0.4300 

[8] 0.4835 0.3807  0.6791 0.5943  0.6682 0.5739  0.5602 0.4618  0.5640 0.4627 

[9] 0.4977 0.3953  0.6725 0.5863  0.6591 0.5655  0.5609 0.4552  0.5493 0.4508 

[10] 0.4625 0.3832  0.6656 0.5788  0.6530 0.5649  0.5372 0.4356  0.5397 0.4425 

[11] 0.4791 0.3753  0.6684 0.5863  0.6641 0.5700  0.5343 0.4305  0.5510 0.4478 

[12] 0.4985 0.4036  0.6737 0.5916  0.6672 0.5718  0.5505 0.4488  0.5465 0.4510 

[13] 0.4546 0.3451  0.6460 0.5636  0.6311 0.5435  0.5097 0.4135  0.5073 0.4156 

[14] 0.5294 0.4222  0.6833 0.5979  0.6700 0.5769  0.5622 0.4583  0.5659 0.4639 

[15] 0.4771 0.3845  0.6589 0.5746  0.6423 0.5541  0.5374 0.4364  0.5461 0.4460 

[16] 0.4655 0.3693  0.6633 0.5802  0.6565 0.5624  0.5328 0.4314  0.5188 0.4246 

[17] 0.4839 0.4057  0.6675 0.5817  0.6519 0.5577  0.5532 0.4517  0.5487 0.4480 

[18] 0.4798 0.4066  0.6649 0.5824  0.6514 0.5604  0.5488 0.4489  0.5494 0.4503 

[19] 0.8389 0.7061  1.0037 0.8741  0.9840 0.8618  0.8825 0.7610  0.8941 0.7621 

[20] 0.8563 0.7382  0.9987 0.8759  0.9851 0.8614  0.9041 0.7745  0.9224 0.7863 

[21] 0.4492 0.3641  0.6287 0.5484  0.6174 0.5323  0.4976 0.4063  0.4982 0.4061 

[22] 0.5088 0.4270  0.6787 0.5907  0.6634 0.5754  0.5607 0.4584  0.5650 0.4661 

[23] 0.8258 0.7063  0.9721 0.8496  0.9640 0.8433  0.8637 0.7323  0.8709 0.7393 

[24] 0.8685 0.7121  1.0031 0.8756  0.9920 0.8646  0.9085 0.7836  0.9183 0.7862 

[25] 1.1112 0.9599  1.2500 1.0955  1.2488 1.0951  1.1493 0.9943  1.1614 0.9990 

[26] 1.1244 0.9705  1.2499 1.0957  1.2444 1.0935  1.1733 1.0148  1.1651 1.0135 

[27] 1.2827 1.1026  1.3891 1.2218  1.3850 1.2156  1.3199 1.1378  1.3153 1.1447 

[28] 1.3523 1.1562  1.4411 1.2654  1.4298 1.2610  1.3920 1.2045  1.3639 1.1959 

[29] 1.4818 1.2648  1.6077 1.4109  1.5996 1.4049  1.5180 1.3177  1.5220 1.3368 

[30] 1.5349 1.3265  1.6176 1.4270  1.6088 1.4181  1.5722 1.3668  1.5584 1.3635 

[31] 1.2667 1.0822  1.3192 1.1561  1.3099 1.1513  1.2319 1.0727  1.2354 1.0759 

[32] 1.3675 1.1988  1.4372 1.2687  1.4298 1.2594  1.3651 1.1885  1.3684 1.1954 

[33] 2.1957 1.9793  2.2622 1.9983  2.2625 1.9895  2.2158 1.9311  2.2351 1.9614 

[34] 2.2394 1.9556  2.3120 2.0353  2.3014 2.0320  2.2291 1.9611  2.2857 2.0076 
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We denote by C1 the CI proposed by Balakrishnan and Asgharzadeh (2005), 

by C2 the CI proposed Wang (2009), by C3 the CI based on the MLE obtained by 

the EM algorithm, by C4 the CI based on the log-transformed MLE, by C5 the CI 

based on pivotal quantity, and by C6 the GCI. Coverage probabilities of the CIs 

for various censoring schemes are displayed in Table 2. Coverage probabilities of 

C1 are also displayed in the same table. Coverage probabilities for C2 are not 

provided by Wang (2009). Lengths of CIs for the various censoring schemes are 

given in Table 3. For comparison, lengths of C1 and C2 are given in the same table. 

For effective comparison of CIs, we compute coverage to length ratio (CLR). 

CLR for C1, C3, C4, C5, and C6 are given in Table 4. It is clear that the CIs having 

a higher value of CLR are preferred. 

Conclusion 

Coverage probabilities of C3, C4, C5, and C6 are better than coverage probabilities 

of C1. Comparing coverage probabilities of all four CIs, C5 and C6 show the best 

performance. For small and large sample sizes (n) and the smallest effective 

sample size (m), C5 and C6 show good coverage probability. For large sample 

sizes, C3, C4, C5, and C6 show good performance. As n and m increase, coverage 

probability of C3 and C4 increases rapidly as compared to C5 and C6. C6 has 

higher coverage probability for conventional censoring schemes than progressive 

censoring schemes, but C3 and C4 show higher coverage probability for 

progressive censoring schemes than conventional censoring schemes. 

C3 has smaller length than the lengths of C1 and C2. The MLE by the EM 

algorithm provides the shortest length CI among all five CIs. For large sample 

sizes, the length of C6 approaches the length of C3. Lengths of all CIs decrease as 

n and m increase. Lengths of CIs based on progressive censoring schemes are 

smaller than lengths of CIs based on conventional censoring schemes. There is a 

minor difference among lengths of C3, C4, C5, and C6 for large sample sizes. 

According to the CLR, C3 is the best among the four CIs for small sample sizes. 

C4, C5, and C6 also show higher CLR than the CLR of C1. CLRs of CIs based on 

progressive censoring schemes are better than CLRs of CIs based on conventional 

censoring. 
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Appendix A. Illustrative Examples 

Numeric Example 

Balakrishnan and Asgharzadeh (2005) gave simulated sample of size n = 50 from 

the half-logistic distribution with scale parameter λ = 25. This complete sample is 

 

1.7110, 2.0024, 2.3963, 3.9034, 4.6412, 6.4002, 6.7956, 8.5646, 8.6428, 8.8354, 

9.3518, 9.7358, 10.5080, 10.5095, 11.8015, 12.8005, 16.3451, 16.9938, 17.2101, 

18.5384, 20.3508, 21.1838, 22.1529, 22.4062, 22.4381, 23.0369, 25.8435, 

27.0574, 27.1237, 29.0360, 30.6449, 32.5713, 33.6688, 40.3890, 45.4092, 

46.4756, 49.8833, 51.1798, 53.0397, 53.8135, 64.9315, 66.1807, 69.9004, 

75.2674, 75.4427, 75.7291, 76.1571, 89.5827, 99.8525, 134.6488. 

 

Balakrishnan and Asgharzadeh (2005) and Wang (2009) derived CIs for this 

complete sample and the censored sample. We also derive CIs by using the MLE 

obtained by the EM algorithm, and the CIs based on pivot and generalized pivot. 

In Table 5, we consider two cases suggested by Wang (2009). Also we use the 

censoring schemes and samples given by Wang (2009) and derive 90% and 95% 

CIs and their lengths. For comparison, we display CIs and their lengths as stated 

by Wang (2009). 
 
 
Table 5. Confidence interval and its length for illustrative example: n = 50, λ = 25 

 

 
C2  C3 

Scheme 90% 95%  90% 95% 

Case 1 (24.49, 42.97) (23.37, 45.72)  (22.76, 40.26) (21.08, 41.94) 

(25*1) 18.48 22.35  17.50 20.86 

Case 2 (20.93, 34.82) (20.05, 36.81)  (19.95, 33.28) (18.67, 34.56) 

(28*0, 10,10) 13.89 16.76  13.33 15.89 

 
 C5  C6 

Scheme 90% 95%  90% 95% 

Case 1 (24.52, 42.94) (23.38, 45.67)  (24.05, 42.82) (23.18, 45.66) 

(25*1) 18.42 22.29  18.77 22.48 

Case 2 (21.21, 35.21) (20.31, 37.23)  (21.42, 34.93) (20.31, 37.24) 

(28*0, 10,10) 14.00 16.92  13.51 16.93 
 

Note: For Case 1, Sr. No. is 1 and m = 25. For Case 2, Sr. No. is 2 and m = 30. 
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Table 6. Confidence interval and its length for illustrative example: n = 50, λ = 25 

 

 

C1  C3 

Scheme 90% 95%  90% 95% 

Case 1 (19.81, 29.53) (18.90, 30.45)  (19.88, 29.48) (18.96, 30.40) 

(50*0) 9.72 11.55  9.6 11.44 

Case 2 (20.78, 32.12) (19.72, 33.18)  (18.88, 29.21) (17.89, 30.20) 

(39*0, 10) 11.34 13.46  10.33 12.31 

Case 3 (18.66, 31.16) (17.48, 32.34)  (15.92, 26.62) (14.89, 27.65) 

(29*0, 20) 12.5 14.86  10.7 12.76 

 

 

C5  C6 

Scheme 90% 95%  90% 95% 

Case 1 (20.59, 30.37) (19.85, 31.60)  (20.55, 30.26) (19.92, 31.28) 

(50*0) 9.78 11.75  9.71 11.36 

Case 2 (19.68, 30.38) (18.94, 31.81)  (19.53, 30.07) (18.95, 31.47) 

(39*0, 10) 10.7 12.87  10.54 12.52 

Case 3 (16.95, 28.23) (16.23, 29.80)  (16.90, 28.20) (16.06, 29.92) 

(29*0, 20) 11.28 13.57  11.3 13.86 
 

Note: For Case 1, Sr. No. is 1 and m = 50. For Case 2, Sr. No. is 2 and m = 40. For Case 3, Sr. No. is 3 and 
m = 30. 

 
 

Balakrishnan and Asgharzadeh (2005) considered three cases, (n = 50, 

m = 50), (n = 50, m = 40), and (n = 50, m = 30). They used progressive and 

conventional Type-II censored samples but have not provided samples. To 

compare the proposed CIs with the CI proposed by Balakrishnan and 

Asgharzadeh (2005), we considered conventional censored and complete samples 

considered by Balakrishnan and Asgharzadeh (2005). We obtained 90% and 95% 

CIs for these schemes. In Table 6, 90% and 95% CIs and their lengths are 

displayed. Also, the CIs and their length proposed by Balakrishnan and 

Asgharzadeh (2005) are displayed. 

Observe that in the illustrated example, C3 has shorter length than the 

lengths of C1, C2 and C5. C6 has shorter length than that of C1. 

Real Data Example 

Lawless (1982) presented real data which represented failure times for a specific 

type of electrical insulation that was subjected to a continuously increasing 

voltage stress. 

 

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9. 
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Table 7. Confidence interval and its length for real data: n = 12, λ = 50.50 (BLUE) 

 

 

C3  C4 

Scheme 90% 95%  90% 95% 

Case 1 (28.59, 66.24) (24.98, 69.85)  (31.88, 70.53) (29.54, 76.10) 

(12*0) 37.65 44.87  38.65 46.56 

Case 2 (25.55, 73.70) (20.94, 78.31)  (30.55, 80.61) (27.84, 88.46) 

(7*0, 4) 48.15 57.37  50.06 60.62 

Case 3 (23.35, 68.29) (19.05, 72.59)  (28.06, 74.82) (25.54, 82.19) 

(4, 7*0) 44.94 53.54  46.74 56.65 

 

 

C5  C6 

Scheme 90% 95%  90% 95% 

Case 1 (33.37, 75.18) (31.19, 82.30)  (33.65, 73.96) (31.88, 83.36) 

(12*0) 41.81 51.11  40.31 51.48 

Case 2 (33.13, 90.13) (30.73, 101.89)  (32.60, 86.50) (30.13, 94.26) 

(7*0, 4) 57 71.16  53.9 64.13 

Case 3 (30.14, 82.01) (27.78, 92.25)  (30.55, 83.15) (27.58, 92.42) 

(4, 7*0) 51.87 64.47  52.6 64.84 
 

Note: For Case 1, Sr. No. is 1 and m = 12. For Case 2, Sr. No. is 2 and m = 8. For Case 3, Sr. No. is 3 and 
m = 8. 

 
 

The half-logistic distribution fits the data extremely well (Balakrishnan & 

Chan, 1992). This dataset was used with two censoring schemes, (7*0, 4) and 

(4, 7*0), and complete data, and the CI is constructed based on the MLE, log-

MLE, pivot, and generalized pivot. These 90% and 95% CIs and their lengths are 

presented in Table 7. Observe that, for real data, C3 has shorter length than C4, C5 

and C6. 

The EM algorithm approach works well for small sample size n and the 

smallest effective sample size m. Overall, the proposed CIs perform better than 

the CIs proposed by Balakrishnan and Asgharzadeh (2005) and Wang (2009). The 

proposed CIs are superior to the other two CIs with regard to the length and the 

coverage probability. 
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ABSTRACT
The presence of a nuisance parameter may often perturb the quality
of the likelihood-based inference for a parameter of interest under
small tomoderate sample sizes. The article proposes amaximal scale
invariant transformation for likelihood-based inference for the shape
in a shape-scale family to circumvent the effect of the nuisance scale
parameter. The transformation canbeusedunder completeor type-II
censored samples. Simulation-based performance evaluation of the
proposedestimator for thepopularWeibull, GammaandGeneralized
exponential distribution exhibitsmarkedly improvedperformance in
all types of likelihood-based inference for the shape under complete
and type-II censored samples. The simulation study leads to a lin-
ear relation between the bias of the classical maximum likelihood
estimator (MLE) and the transformation-based MLE for the popular
Weibull and Gamma distributions. The linearity is exploited to sug-
gest an almost unbiased estimator of the shape parameter for these
distributions. Allied estimation of scale is also discussed.
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1. Introduction

The popular shape-scale probability models like Weibull, Gamma, Pareto, Log-normal,
Generalized exponential (GE), etc. are basically skewed in nature and have been employed
tomodel a wealth of real phenomenon in almost all disciplines. See for example, themono-
graphs by Rinne [1], Abernethy [2] and McCool [3], among other references. The shape
parameter in a shape-scale family controls the shape of a distribution without shifting
or stretching it. Often the inference related to the shape could be of prime importance,
see for example, Jiang and Murthy [4]. Krishnamoorthy et al. [5], Powar and Kulka-
rni [6], SenGupta et al. [7], Bagdonavičius et al. [8] and Patil and Kulkarni [9] among
others discussed various applications of shape-scale family of distributions and related
inferential procedures. Kulkarni and Patil [10] discussed the two sample comparisons
including zero-inflated continuous data with the applications of shape-scale as well as
location-scale distributions in the field of molecular biology. Abundant literature exists
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on the estimation of parameters of shape-scale distributions, see for example,Zaigraev and
Podraza-Karakulska [11] and Tanaka et al. [12] among others for estimation of the Gamma
shape, while theMLE still remains the most popularly used one in real applications. MLEs,
under mild-regularity conditions enjoy nice asymptotic properties, however, the quality of
their small sample performance can be often perturbed by the existence of an unknown
nuisance scale parameter. We refer to Severini [13] and Berger et al. [14] among others,
who critically addressed the problem of nuisance parameters. In the present work, we
employ the invariance principle for eliminating the scale parameter, to get a maximal scale
invariant transformation of the data coming from a shape-scale distribution.

The resulting scale invariant likelihood can be used for all kind of scale invariant infer-
ence including point and interval estimation and tests for the shape parameter. The scale
invariant likelihood-based inference turned out to be much efficient than classical pro-
cedures for the commonly encountered Weibull, Gamma and GE distribution. For the
Weibull and the Gamma distribution, Monte-Carlo studies based on a large number of
simulations, revelled an almost exact linear relation between the bias of the proposed
transformation-based MLE of shape and that of its classical MLE. Exploiting this linearity,
we propose an almost unbiased estimator of the shape parameter for these two distribu-
tions. In the sequel, Section 2 presents the proposed scale invariant transformation. The
resulting likelihoods are functions of only the shape parameter. The results are illustrated
for popular distributions, namely the Weibull, the Gamma and the GE distribution for
complete and type-II censored samples. While the proposed estimator being an MLE with
respect to a proper likelihood function, enjoys all asymptotic properties under regular con-
ditions, the Section 3 reports simulation-based small sample performance assessment of
the resulting likelihood-based inference procedures and presents further refined estima-
tion procedures. The related problem of estimation of scale is also addressed. Section 4
reports concluding remarks.

2. The proposed transformation and scale invariant inference

Throughout the article, we assume that a random sample under consideration Xn =
{X1,X2 . . . ,Xn} comes from a shape-scale family with density 1

a f ((x/a), b), a>0 where
f (., b) is indexed by a single-shape parameter b. This section employs a maximal scale
invariant transformation for eliminating the scale parameter, leading to a nuisance free
likelihood for the shape parameter. In the sequel, L∗ denotes the likelihood function for
the transformed data.

2.1. Complete data

Let xn = {x1, x2 . . . , xn} be n i. i. d. observations with the joint probability density function

1
an

f ((x/a), b) = L(a, b | x)

= 1
an

n∏
i=1

f ((xi/a), b),
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a, b, x ≥ 0, where the density f (., b) is indexed only by the shape b. Suppose the interest is
in inferring the shape parameter, the scale a being a nuisance parameter. The classicalMLE
of the shape based on L is likely to be a complex function of the nuisance scale parameter.
Consider the following transformation to eliminate the scale parameter:

yi =
{
xi/xn for i = 1, 2, . . . , n − 1,
xn for i = n.

The Jacobian of transformation is, |J| = yn−1
n , and the transformed joint density for yn ≡

{y1, y2 . . . , yn} is,

g(yn−1, (yn/a), a, b) = 1
an

n−1∏
i=1

f ((yiyn/a), b)f ((yn/a), b)|J|.

Integrating over yn, the resulting scale invariant density function for yn−1 is,

L∗(b | yn−1) = g∗(yn−1 | b)

=
∫
yn
g(yn−1, (yn/a), a, b) d(yn). (1)

Note that although the scale a is appearing in the right-hand expression, the process of
integration eliminates it rendering the final result free from a. Inference for the shape b
based on L∗ is considered in the next section. The following comments are notable:

i. Although apparently it seems as if L∗ is based on only n−1 observations yn−1, com-
putation of L∗ is based on all the n original observations, hence L∗ utilizes the entire
information in the original sample of size n.

ii. Often the integrand in the LHS of (1) may not be available in the close form and needs
to be numerically computed. In such cases sometime built-in functions in any software
for computing the integrals are observed to give absurd results. As a way out, a simple
computational trickwhen the support of yn is (0,∞) is to use the importance sampling
to evaluate the integral by writing

L∗ =
∫
yn

{g(yn−1, (yn/a), a, b)eyn}e−yn d(yn),

which is the expected value of h(yn−1,Yn) = g(yn−1, (Yn/a), a, b)eYn under Yn dis-
tributed as standard exponential distribution. Using the weak law of large numbers
(WLLN) the resulting integral is then well approximated by simulating a fairly large
number M (say M = 10, 000) of standard exponential random numbers wi, i =
1, 2, . . . ,M leading to the close approximation

L∗ ≈ 1
M

M∑
i=1

g(yn−1, (wi/a), a, b)ewi ,

for fixed observed data yn−1.
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iii. Since L∗ is also a proper likelihood function, all kind of likelihood-based inference
procedures using L∗ enjoy the asymptotic properties of regular likelihood-based
inference, for example, asymptotic normality of MLE and consistency among others,
with an additional advantage of being nuisance scale free.

2.2. Type-II censored data

Let x(r) = {x(1) ≤ x(2) ≤ · · · ≤ x(r)}, (r < n) be a type-II censored sample from a shape-
scale family (1/a)f ((x/a), b). Then the likelihood function is

LC(a, b | x(r)) = 1
ar

r∏
i=0

f ((x(i)/a), b)){F̄((x(r)/a), b)}n−r,

where F̄((x(r)/a), b) is the underlying survival function evaluated at (x(r)/a). The scale
invariant transformation to be employed here is

y(i) =
{
x(i)/x(r) for i = 1, 2, . . . , r − 1,
x(r) for i = r + 1, r + 2, . . . , n.

The Jacobian of transformation is |J| = yr−1
(r) , leading to the transformed likelihood

function

LC(a, b | y(r)) = gC(y(r−1), (y(r)/a), a, b),

= 1
ar

r−1∏
i=1

f ((y(i)y(r)/a), b)f ((y(r)/a), b){F̄((y(r)/a), b)}n−ryr−1
(r) .

Integration over y(r) leads to the scale invariant likelihood function under type-II censoring

L∗
C(b | yr−1) = g∗

C
(yr−1, b),

=
∫

(yr)
gC(yr−1, (y(r)/a), a, b) dy(r).

Here, the suffix C on L∗ indicates that the likelihood is under type-II censoring. If the
number of uncensored observations r is equal to n then the sample is considered to be a
complete sample. Comments similar to (i)–(iii) at the end of previous sub section hold for
this case also.

The next subsection derives the scale invariant likelihood for popular lifetime distribu-
tions, namely the Weibull, the Gamma and the GE distributions.

3. Inference based on the transformed likelihood

The L∗ (L∗
C) can be used for all kind of nuisance free likelihood-based inference about the

shape parameter b for complete (type-II censored) case. In the sequel, proposed maximal
scale invariant likelihood estimator (MSILE) of the shape parameter b is the maximizer
b̂∗ of the transformed likelihood L∗ (L∗

C). The transformed likelihood can also be used for
Likelihood ratio tests (LRT) related to the shape, and the resulting tests can also be inverted



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 5

Table 1. Linearity betweenbias ofMLE and that ofMSILEwith proposedAUE.

Distribution Relation Proposed AUE (b̃)

Weibull E(b̂∗ − b) ≈ 0.528E(b̂ − b) (b̂∗ − 0.528b̂)/(1 − 0.528)
Gamma E(b̂∗ − b) ≈ 0.668E(b̂ − b) (b̂∗ − 0.668b̂)/(1 − 0.668)

to form interval estimates of b in the usual manner, leading to scale invariant inference for
shape in these cases.

Most often a closed form expression does not exist for b̂∗ and commonly used numerical
methods can be employed for its computation. Note that the computational load in max-
imizing a function of a single parameter b would be much less than that of maximizing a
function of two arguments as in the regular likelihood.

3.1. An improved almost unbiased estimator (AUE)

A simulation study for the Weibull and Gamma distributions revealed an almost exact
relationship between the bias of b̂ (E(b̂ − b)) and that of b̂∗ (E(b̂∗ − b)). Exploiting this
linearity an improved almost unbiased estimator b̃ of b is suggested based on 100 000 sim-
ulated random samples from various parametric combinations of both the distributions.
The details are reported in Table 1, where the relations are not exact but were found to be
very close to exact through simulations. Moreover, it is to be noted that these relations are
between population biases and may not closely hold for a particular observed data set.

A linear relationship between the biases of the two estimators for GE distribution was
also visible but was not sharp to the extent of producing an AUE for the shape parameter.

3.2. Examples

In the sequel, we use following notation:

Ts(yn, b) =
n∑
i=1

ybi , Ts(y(r), b) =
r∑

i=1
yb(i),

Tp(yn, b) =
n∏

i=1
ybi , Tp(y(r), b) =

r∏
i=1

yb(i).

Also L and L∗ denote the classical and transformed likelihood functions, respectively. x (y)
denote the original(transformed) observations. Routine computations as per Subsection
2.1 and 2.2 yield the following transformed likelihood functions for the Weibull (W), the
Gamma (G) and the GE distributions.

3.2.1. Weibull distribution
(i) Complete sample:

Regular likelihood function:

LW(b, a | x) =
(
b
ab

)n
Tp(xn, b − 1)e−Ts(xn,b)/ab ,

xi, a, b > 0, i = 1, 2, . . . , n.



6 H. V. KULKARNI AND K. P. PATIL

Transformed likelihood function:

L∗
W(b | yn−1) = �(n)bn−1Tp(yn−1, b − 1)

(Ts(yn−1, b) + 1)n
,

yi, b > 0, i = 1, 2, . . . , n − 1.

(ii) Type-II censored sample:
Regular likelihood function:

LW_C(b, a | x) =
(
b
ab

)r
Tp(x(r), b − 1)e−Ts(x(r),b)/ab[e−Ts(x(r),b)/ab]n−r,

a, b > 0, 0 ≤ x(1) ≤ x(2) ≤ · · · ≤ x(r).

Transformed likelihood function:

L∗
W_C(b | y(r−1)) = �(r)br−1Tp(y(r−1), b − 1)

(Ts(y(r−1), b) + n − r + 1)r
,

0 ≤ y(1) ≤ · · · ≤ y(r−1) ≤ 1, b > 0.

3.2.2. Gamma distribution
(i) Complete sample:

Regular likelihood function:

LG(b, a | x) =
(

1
ab�(b)

)n
Tp(xn, b − 1)e−Ts(xn,1)/a,

xi, a, b > 0, i = 1, 2, . . . , n.

Transformed likelihood function:

L∗
G(b | yn−1) = �(nb)Tp(yn−1, b − 1)

�(b)n(Ts(yn−1, b) + 1)nb
,

yi, b > 0, i = 1, 2, . . . , n − 1.

(ii) Type-II censored sample:
Regular likelihood function:

LG_C(b, a | x) =
(

1
ab�(b)

)r
Tp(x(r), b)e−Ts(x(r),1)/a[Ḡ(x(r), b, a)]n−r,

a, b > 0, 0 ≤ x(1) ≤ · · · ≤ x(r),

where Ḡ(x(r), b, a) is the survival function of gamma (b,a) distribution evaluated at
x(r), b is shape parameter and a the scale parameter.
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Transformed likelihood function:

L∗
G_C(b | y(r−1)) = Tp(y(r−1), b − 1)

�(b)r
I1(y(r−1), b),

b > 0,

where, 0 ≤ y(1) ≤ · · · ≤ y(r−1) ≤ 1,

I1(y(r−1), b) =
∫ ∞

0
e−Ts(y(r−1),1)uurb−1[F̄(u, 1, b)]n−r du.

3.2.3. GE distribution
(i) Complete sample:

Regular likelihood function:

LGE(b, a | x) =
(
b
a

)n
e−Ts(xn,1)/a

n∏
i=1

(1 − e−(xi/a))b−1,

xi, a, b > 0, i = 1, 2, . . . n.

Transformed likelihood function:

L∗
GE(b | yn−1) = bnI2(yn−1, b),

yi > 0, i = 1, 2, . . . , n − 1.

b > 0,

where,

I2(yn−1, b) =
∫ ∞

0

n−1∏
i=1

(1 − e−uyi)b−1(1 − e−u)b−1e−Ts(yn−1,1)uun−1 du,

(ii) Type-II censored sample:
Regular likelihood function:

LGE_C(b, a | x) =
(
b
a

)r r∏
i=1

(1 − e−(x(i)/a))b−1e−Ts(x(i),1)/a[1 − (1 − e−(x(r)/a))b−1]n−r,

a, b > 0,

0 ≤ x(1) ≤ x(2) ≤ · · · ≤ x(r).

Transformed likelihood function:

L∗
GE_C(b | y(r−1)) = brI3(y(r−1), b),

b > 0,

where 0 ≤ y(1) ≤ · · · ≤ y(r−1) ≤ 1 and

I3(y(r−1), b) =
∫ ∞

0

r−1∏
i=1

(1 − e−y(i)u)b−1(1 − e−u)b−1e−Ts(y(r−1),1)u

× [1 − (1 − e−u)b]n−r ur−1 du.
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Note that, in practical usage, the integrals I1(., b), I2(., b) and I3(., b) need to be numer-
ically computed. The trick mentioned in comment (ii) of Section 2.1 can be employed for
simpler computation.

4. Empirical assessment

This section reports the results of an empirical assessment of the proposed inferential pro-
cedures in comparison to the classical MLE. A total of 100,000 samples are simulated from
the above mentioned 3 distributions. The parametric combinations considered are: sam-
ple sizes n=10,20,30,50, shape parameters b = 0.5, 1, 2, 5, scale parameters a=1,5,10 and
censoring fractions r = 0.5, 0.7, 1where [nr] observations are actually observed. The quan-
tities r∗b , r̃b, r

∗
m and r̃m defined below for quantifying the extent of reduction in bias andMSE

in comparison to MLE are computed for each sample.

r∗b =
∣∣∣∣∣ Bias b̂Bias b̂∗

∣∣∣∣∣ , r̃b =
∣∣∣∣∣Bias b̂Bias b̃

∣∣∣∣∣ , r∗m = MSE b̂

MSE b̂∗ , r̃m = MSE b̂
MSE b̃

.

4.1. Assessment of theMSILE of the shape parameter

The average bias (MSE) of the three estimators namely MLE, MSILE and AUE for the
Weibull and the Gamma distribution and MLE and MSILE of the GE distribution are
displayed in Table S1 in the supplementary material. Figure 1 displays the box plots of
the ratios r∗b (panels (a)–(c)) and r∗m (panels (d)–(f)) for the three distributions. All the
ratios are well above 1 indicating that the biases andMSEs of MSILE are uniformly smaller
than those of MLE. For GE distribution under large sample sizes with small shape param-
eter the precision of MSILE over MLE in terms of both bias and MSE was not notable
and these cases are not included in the box plots. For small samples with high-censoring
fraction a similar thing was observed with respect to MSE for the GE distribution. For
Gamma distribution the precision ofMSILE with respect toMSE for small sample size and
high-censoring fraction was markedly large in comparison to other cases and is displayed
separately in Figure 2 for better visibility. Figure 3 displays the ratios r̃b and r̃m for the

Figure 1. The extent of reduction in bias ((a)–(c)) and MSE ((d)–(f )) for MSILE in comparison to MLE:
Weibull, Gamma distribution and GE distribution. (a) Weibull distribution, (b) Gamma distribution, (c) GE
distribution, (d) Weibull distribution, (e) Gamma distribution and (f ) GE distribution.
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Figure 2. The extent of reduction in MSE for MSILE in comparison to MLE for Gamma distribution with
sample size n= 10 and r= 0.5.

Figure 3. The extent of reduction in bias ((a) and (b)) and MSE ((c) and (d)) for AUE in comparison
to MLE: Weibull and Gamma distribution. (a) Weibull distribution, (b) Gamma distribution, (c) Weibull
distribution and (d) Gamma distribution.

Weibull and Gamma distributions. A similar observation of Figure 3 reveals that the AUE
further uniformly and markedly refines the performance of MSILE by reducing the bias
to almost zero for all sample sizes and all censoring fractions for the Weibull and Gamma
distributions. The improvement was much more noticeable for the Weibull distribution.
The efficiency increases with the extent of censoring for small sample sizes. Owing to the
consistency of MLEs, the extent of the reduction in MSE reduces with increased sample
size.

Tanaka et al. [12] suggested two improved estimators of shape parameter of Gamma
distribution which exhibit superiority over MLE for the case of complete sample. In the
sequel we refer these estimators as Tanaka_1 and Tanaka_2. Figure 4 shows the box plots
of bias (a) andMSE (b) of improved estimators suggested byTanaka et al. [12],MLE,MSILE
and AUE for shape parameter of Gamma distribution. The sub-panels of each sub-figure
therein show the box plots of bias andMSE for these estimators with different sample sizes.
Figure 5 displays similar plots varying the shape parameters. The graphs reveal that the
proposed AUE has uniformly smaller bias over all the estimators. The bias of Tanaka_1
are also close to zero at small shape parameter but comparatively larger than AUE for
shape parameter greater than 2. MSEs of Tanaka_2 and AUE are comparable and reason-
ably small. However note that the estimators suggested by Tanaka et al. [12] are valid only
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Figure 4. Sample size wise Bias (a) and MSE (b) of estimators of shape parameters of Gamma distribu-
tion.

Figure 5. Shape parameter wise Bias (a) and MSE (b) of estimators of shape parameters of Gamma
distribution.

under complete sample case while AUE is available for both complete sample and type-II
censoring.

4.2. One sample test for the shape

LRT under the transformed (original) likelihood based on b̂∗ (b̂) is compared empirically
based on 100,000 simulations, for the same set of parametric combinations as in subsection
4.1 at 5% level. The absolute difference (D) between observed type-I errors and the nominal
level α = 0.05 are displayed in Table S2 of the supplementary material. The box plots of
the absolute difference (D) are displayed in Figure 6. The differences based on MSILE are
clearly very close to zero compared toMLE for all the three distributions and all parametric



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 11

Figure 6. Box plots of absolute differences (D) between simulated type-I error (size) and actual level
α = 0.05. (a) Weibull distribution, (b) Gamma distribution and (c) GE distribution.

Figure 7. Coverage probability and average widths of CI for the shape parameter. (a) Coverage proba-
bility and (b) Average width.

combinations with increasing degree of efficiency with the extent of censoring indicating
the superiority of MSILE for testing the shape parameter.

4.3. Interval estimation

The proposed LRT can be inverted to find a confidence interval (CI) for the shape param-
eter. The coverage probabilities and average widths of CI based on the MSILE and MLE
are displayed in the Figure 7. It is clear that the MSILE has uniformly well concentrated
coverages around the true confidence coefficient 0.95. The extent of benefit of MSILE with
respect to coverage probability was more prominently seen for GE distribution although
the widths in this case are little larger than those of MLE.

4.4. Assessment of the scale parameter

Note that for a fixed shape b, the MLE of the scale parameter a is a function of b. Let it be
denoted by â(b). Similarly, let âKS(b) denote the estimator obtained byminimizing theKol-
mogrov–Smirnov distance between F(., â, b) and the empirical distribution function Fn(.)
for fixed b. Let âCV(b) and âAD(b) denote similar estimators based on the Crammer–Von
Mises and the Anderson–Darling distances, respectively. We compare the following point
estimators for the scale parameter a empirically:

(1) M1–M3: â(b̂), â(b̂∗) and â(b̃), respectively.
(2) M4–M6: âKS(b̂), âKS(b̂∗), âKS(b̃), respectively.
(3) M7–M9: âCV(b̂), âCV(b̂∗), âCV(b̃), respectively.
(4) M10–M12: âAD(b̂), âAD(b̂∗), âAD(b̃), respectively.
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Figure 8. Bias and MSE of the three estimators (M1, M2 and M11) of the scale parameter in the three
distributions. (a)Weibull distribution, (b)Gammadistribution, (c)GEdistribution, (d)Weibull distribution,
(e) Gamma distribution and (f ) GE distribution.

Out of these 12 estimators, box plots of the three estimators having smallest simulated
absolute bias and MSE are given in Figure 8 for the Weibull, the Gamma and the GE
distribution. The Anderson–Darling minimum distance estimator (M11) based onMSILE
b̂∗, classical MLE based on b̂ (M1) and the one based on b̂∗ (M2) were found to exhibit the
smallest bias. TheMSE for all the 12 estimators was comparable. The performance ofM2 is
satisfactory with theWeibull andGamma distributions and is recommended for point esti-
mation of the scale. ForGE distribution a similar observation leads to the recommendation
of M1 under small samples and M11 under moderate to large samples.

The proposed procedure is illustrated with real life examples in the sequel.

4.5. Real life application

Krishnamoorthy et al. [5], Powar and Kulkarni and SenGupta et al. [7] among others dis-
cussed the importance of shape-scale family of distributions in ground water monitoring,
assessment of air pollution and prediction of environmental events as well. In the context of
ground water monitoring, Krishnamoorthy et al. [5] and Powar and Kulkarni [6] analysed
vinyl chloride concentration in micro grams per litre of water (µg/L) from 34 clean upgra-
dient wells with observed values: 5.1, 2.4, 0.4, 0.5, 2.5, 0.1, 6.8, 1.2, 0.5, 0.6, 5.3, 2.3, 1.8, 1.2,
1.3, 1.1, 0.9, 3.2, 1.0, 0.9, 0.4, 0.6, 8.0, 0.4, 2.7, 0.2, 2.0, 0.2, 0.5, 0.8, 2.0, 2.9, 0.1, 4.0. The
nominal level of vinyl chloride suggested by U.S. Environmental Protection Agency is 2.0
to 2.4µg/L. Note that increased percentage of vinyl chloride is a major cause for cancer or
liver damage. The p-values based on KS statistics for fitting Gamma andWeibull distribu-
tion are 0.9694 and 0.9366, respectively with respective Akaike Information Criteria (AIC)
values 114.8263 and 114.8992. As per the minimum AIC criteria and maximum p-value
of KS-test, the given data is best with fitted Gamma distribution. The estimated maximum
likelihood parameters are: b̂ = 1.0627; and â = 1.7685; and the proposed estimates are
b̂∗ = 1.0381;, b̃ = 0.9887; and â∗ = 1.8104;, leading to an estimate of the percentage of
wells having vinyl chloride concentration greater than the prescribed upper bound of 2.4
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is 26.16%, that is almost 1
4 th of the wells have critically large percentage of vinyl chloride,

indicating that monitoring of this wells is essential to avoid future risks.

5. Concluding remarks

Themaximal invariant transformation-based likelihood inference for the shape parameter
has exhibited uniform marked improvement over their regular likelihood-based counter-
parts under small samples and and high-censoring fractions and is recommended as a
substitute for MLE point and interval estimation as well as testing problem. The proposed
AUE for the Weibull and the Gamma distribution further improves the scenario. MLE of
the scale as a function ofMSILE of shape also turns out to be more efficient than its regular
MLE under Weibull and Gamma distributions and is recommended.
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Abstract 

The article studied the steady-state behaviour of the synthetic control chart using signed-rank statistic for 

shifts in the process median. The steady-state ATS (Average Time to Signal) values are computed using 

Markov chain approach. To compute steady-state ATS, the performance of the synthetic control chart and 

two-of-L+1 control chart can be made identical over all samples with head start features. When subgroup 

sample size n=10, the steady-state performance of the synthetic control chart is worth for small to moderate 

shifts under all considered symmetric distributions. When subgroup sample size n=5, steady-state ATS 

values are larger under normal and double exponential distributions only for small shifts. However, under 

the Cauchy distribution zero-state ATS values are larger but not significantly larger as compared to steady-

state ATS values. Usefulness of proposed control chart explored using numerical example. Proposed 

control chart is simple and easy to use for practitioners. 

Keyword: Nonparametric, signed-rank, synthetic, runs rule, steady-state and average 

time to signal. 

1. Introduction 

A control chart is one of the most useful tools for monitoring quality of the characteristic 

of an interest in a manufacturing process. Most of the control charts are based on the 

assumption that the process characteristic follows a normal distribution. Many 

researchers have pointed out that all the processes are not normally distributed; see for 

example (Chou et al. 2001) and the references cited therein. The standard control charts 

do not perform well, if the assumption of normality is not satisfied. The effects of non-

normality on the X  chart have been studied in the literature and includes among others 

(Schilling and Nelson 1976, Bradley 1973). This demands the construction of 

nonparametric control charts. A chart is said to be nonparametric if the run length 

distribution of the chart does not depend on the underlying process distribution, when 

there is no shift in the process parameter under study. Hence, the in-control Average 

Time to Signal (ATS) of nonparametric control chart does not depend on the underlying 

process distribution.  

 

In the review of literature related to the nonparametric control charts, (Bakir and 

Reynolds 1979) provided a control chart based on within group ranking. (Hackl and 

mailto:vypawar.stats@gmail.com
mailto:shashi.khilare@gmail.com
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Ledolter 1991) suggested a control chart based on ranks. (Amin et al. 1995) proposed 

nonparametric quality control charts for location and scale parameters based on the sign 

statistic. (Bakir 2004) reported a control chart based on signed-rank statistic, which was 

further improved in terms of Average Run Length (ARL) by (Chakraborti and Eryilmaz 

2007). (Bakir 2006) proposed distribution free quality control charts based on signed-

rank-like statistics. (Chakraborti and Van de Wiel 2008) proposed Mann-Whiteny 

statistic based control chart. (Human et al. 2010) studied nonparametric Shewhart-type 

sign control charts based on runs. (Khilare and Shirke 2010, 2012) developed 

nonparametric synthetic control charts using sign statistics for shifts in location and 

variability respectively. (Ho and Costa 2011) proposed monitoring a wandering mean 

with an np chart and this chart also works with sign statistic. (Yang et al. 2011) provided 

a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts 

in the process with non-normal or unknown distributions. (Majid and Neda 2013) 

developed nonparametric signed-rank control charts with variable sampling interval. 

(Abbasi et al. 2013) proposed nonparametric progressive mean control chart for 

monitoring the process target. (Liu et al. 2014) developed dual nonparametric cusum 

control chart based on ranks. (Riaz and Abbasi 2016) suggested double EWMA control 

chart for process monitoring. (Abid et al. 2016) reported the use of ranked set sampling in 

nonparametric EWMA control charts based on sign test statistic. (Abid et al. 2016) 

proposed nonparametric EWMA control chart based on Wilcoxon signed-rank statistic 

for monitoring location. (Coelho et al. 2017) reported nonparametric signed-rank control 

charts with variable sampling intervals.  

 

If process is running in an in-control state for a long period, it will reach in steady-state 

mode. In order to characterize long-term properties of a control chart, it is an appropriate 

to investigate the steady-state ARL. (Crosier 1986) suggested a technique for obtaining 

steady-state ARL of CUSUM chart using the Markov chain approach. (Saccucci and 

Lucas 1990) have given a FORTRAN computer program for the computation of ARL of 

EWMA and combined Shewhart-EWMA control schemes. The program calculates zero-

state and steady-state ARL using the Markov chain approach. (Champ 1992) computed 

steady-state ARL of Shewhart control chart with supplementary runs rules. (Davis and 

Woodall 2002) studied the steady-state properties of synthetic control chart to monitor 

shifts in process mean. (Lim and Cho 2009) developed a control charts with m-of-m runs 

rules to study the economical-statistical properties of control chart using steady-state 

ARL. (Khilare and Shirke 2015) studied the steady-state behavior of nonparametric 

control charts using sign statistic. 

 

In present article, we proposed the synthetic control chart using runs rules for monitoring 

the median of a continuous characteristic of the underlying process. The main purpose of 

the paper is to study the steady-state behavior of the synthetic control chart based on 

signed-rank statistic when process runs in an in-control state for long time. Rest of paper 

is organized as follows. 

 

Section 2 gives a control chart based on the signed-rank statistic. In section 3 conforming 

run length control chart is described briefly. Section 4 gives the operations and design 

procedure of the synthetic control chart using signed-rank statistic. Section 5 gives runs 

rule representation, Markov chain model and steady-state ATS of the synthetic control 
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chart. The steady-state performance of the synthetic control chart is given in section 6. 

Section 7 gives numerical example. Concluding remarks are given in section 8. 

2.   A Control Chart Based On the Signed-Rank Statistic: 

Let (Xt1,Xt2 , ….. , Xtn) be a random sample (subgroup) of size n>1 observed from a 

continuous process with median θ at sampling instances t =1, 2, …... It is assumed that 

the underlying process distribution is continuous symmetric and that the in-control 

process median is known or specified to be equal to θ0. We further assume that θ0 is 

known and when θ ≠ θ0 the process is out-of-control. (Bakir 2004) provided a 

nonparametric control chart based on the signed-rank statistic. For the tth subgroup 

sample (xt1, xt2, ... ,xtn), the signed- rank statistic is defined as  

0

1

( )
n

t tj tj

j

sign x R  



  ,                  t =1, 2, ...    (1) 

 

Where, sign (u) = -1, 0, 1 if  u< 0, = 0, > 0           and  

0 0

1

1 (| | | |)
n

tj ti tj

i

R I x x 



      

with  I(a < b) = 1 if a < b and 0 otherwise. 

 

We can rewrite (1) as 

( 1)
2

2
t t

n n
w  

  .        (2) 

 

Where tw
 is the well-known Wilcoxon Signed-rank Statistic (the sum of the ranks of the 

absolute values of the deviations corresponding to the positive deviations). One can 

therefore use 
tψ  given in (2) as a charting statistic instead using (1).  Let UCL be the 

upper control limit corresponding to a positive-sided control chart. The chart gives an 

out-of-control signal at the first sampling instance t for which 
tψ UCL.  In the 

following section we briefly describe conforming run length control chart. 

3.   The Conforming Run Length Control Chart 

The conforming run length (CRL) chart was originally developed for attribute quality 

control by (Bourke 1991). In 100% inspection, the CRL is the number of inspected units 

between two consecutive nonconforming units (including the ending nonconforming 

unit). The CRL chart uses the CRL as the charting statistic. The idea behind the CRL chart 

is that the conforming run length will change when the fraction nonconforming ‘p’ in the 

process changes. The CRL is shortened as p increases and lengthened as p decreases. The 

charting statistic (CRL) follows a geometric distribution with parameter p. The mean 

value of CRL (i.e. the average number of inspected units in a CRL sample) is 

p
CRL

1
 ,         (3) 

and its cumulative distribution function (c. d. f.) is given by, 

    ,...2,1;11  CRLpCRLF
CRL

p      (4) 
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If our only concern is the detection of an increase in p, the lower control limit (denoted L) 

is sufficient for the CRL chart. If CRL  is the specified/desired type I error of the CRL 

chart and 0p  is the in-control fraction nonconforming, L can be derived from the 

following equation. 

   L

pCRL pLF 011
0

 , 

which gives  
 0

ln 1

ln 1

CRLL
p





.       (5) 

 

Note that L must be rounded to the largest integer smaller than or equal to the calculated 

value in (5). If the sample CRL (i.e. the charting statistic) is smaller than or equal to L 

then it is very likely that the fraction nonconforming p has increased and therefore, an 

out-of-control signal will be given. CRLARL is the average number of CRL  samples 

required to detect change in p. The CRLARL  is given by 

   LunitsgnonconfortwobetwwenCRLgnonconforisUnitP
ARLCRL




minmin

1
, (6) 

   
.

.

1

.

1

LFpLCRLPp
ARLCRL 




 
 

Where, 

 gnonconforisUnitPp min  and    L
pLF  11 . 

 

Therefore, 

  
1

. 1 1
CRL L

ARL
p p


         (7)

 

In section 4 we briefly discuss synthetic control chart using signed-rank statistic. 

4.   A Nonparametric Synthetic Control Chart 

A nonparametric synthetic control chart proposed by (Pawar and Shirke 2010) is a 

combination of the nonparametric signed-rank statistic 
tψ  (called the 

tψ chart hereafter) 

and the CRL chart. Basically the operation of the nonparametric synthetic control chart is 

similar to that of the synthetic control chart for monitoring the process mean as was 

proposed by (Wu and Spedding 2000), except that the subgroup mean is replaced by the 

signed-rank statistic 
tψ and the upper control limit is changed accordingly. However, we 

do not follow the same design procedure due to (Wu and Spedding 2000) in order to 

ensure that the synthetic control chart is nonparametric. 
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4.1.  Operations 

The operations of the nonparametric synthetic control chart are as follows: 

1. Decide on the upper control limit of the 
tψ chart and the lower limit L of the CRL 

chart. The design of these control parameters will be described shortly. 

2. At each inspection point ‘t’ take a random sample of n observations and calculate 

tψ .      

3. If tψ <UCL, (the sample is called a conforming sample) then control flow goes 

back to step (2) (That is continue to draw random samples from the process and 

calculate the statistic
tψ ).Otherwise, the sample is called a nonconforming sample 

and control flow goes to the next step. 

4. Check the number of samples between the current and the last nonconforming 

sample (including the current sample). This number is taken as the value of the 

plotting statistic (i.e. CRL) of the CRL chart in the synthetic chart. 

5. If this CRL is larger than the lower control limit of the CRL chart, then the process 

is thought to be under control and the charting procedure is continued. Otherwise, 

the process is declared to be out of control and control flow goes to the next step. 

6. Take the necessary action to find and remove the assignable cause(s). 

4.2.  ARL of the synthetic control chart: 

The probability that a synthetic control chart produces an out-of-control signal is given 

by  

                    PpQ . , 

where, 

                ,min gnonconforissamplesamplePp   

                  0/UCLPp t , and  

               LsamplesgnonconfortwobetweenCRLPP  min , 

               LCRLPP  , 

                 L
pP   11 . 

 

Hence, ARL of synthetic control chart is given by 

       
       LS

ppQ
ARL







11

11
. 

4.3. Design 

The synthetic chart has two parameters namely, L and UCL. For given in-control ARL 

and subgroup sample size n, the parameters L and UCL are obtained as follows. 

 

Let  SARL  be the out-of-control ARL of the synthetic control chart and can be 

obtained using formula given below. 

 
     LS

pp
ARL







11

1
. 
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Here p(δ) is the probability that the sample is nonconforming, when the permanent 

upward step shift of δ units occurs in the process. When there is no shift, δ is equal to 

zero. We note that in equation (7), ‘p’ is the probability that a unit is nonconforming, 

while p(δ) defined above is the probability that the sample is nonconforming. Thus p(δ) 

plays the role of p in equation (7). 

 

We note that the in-control ARL of the synthetic chart is given by ARLs(0), where   

1
(0)

(0) (1 (1 (0)) )L
ARLs

p p


 
.      (8) 

 

Suppose the desired in-control ARL is ARL(0) and the subgroup sample size is n. We 

compute the ARLs(0) values using equation (8) for UCL=1,2,…,(n(n+1)/2) and 

L=1,2,…… and choose that pair of (L, UCL) for which the ARLs(0) is close to ARL(0). 

We may note that for a fixed value of UCL, ARLs(0) is a decreasing function of L, while 

for a fixed value of L, ARLs(0) is a non-decreasing function of UCL. Table 1 gives values 

of ARLs(0) for n =5. As an example, suppose we wish to set ARL(0) at 32. Then, from 

Table 1, we see that L=4 and UCL=10 is the required pair as the ARLs(0) corresponding 

to these values is 32.77.  

Table 1: In control ARL values for positive sided chart for various values of UCL 

and L then n=5 

L 

UCL   1 2 3 4 5 6 7 8 9 10 

1 4 2.67 2.29 2.13 2.06 2.03 2.02 2.01 2 2 

2 6.06 3.8 3.11 2.81 2.66 2.57 2.53 2.5 2.48 2.48 

3 6.06 3.8 3.11 2.81 2.66 2.57 2.53 2.5 2.48 2.48 

4 10.24 6.07 4.74 4.12 3.78 3.58 3.45 3.37 3.31 3.28 

5 10.24 6.07 4.74 4.12 3.78 3.58 3.45 3.37 3.31 3.28 

6 20.9 11.73 8.74 7.29 6.45 5.92 5.56 5.31 5.13 4.99 

7 20.9 11.73 8.74 7.29 6.45 5.92 5.56 5.31 5.13 4.99 

8 40.96 22.22 16.03 12.98 11.18 10.01 9.2 8.61 8.17 7.83 

9 40.96 22.22 16.03 12.98 11.18 10.01 9.2 8.61 8.17 7.83 

10 113.78 59.69 41.71 32.77 27.44 23.91 21.42 19.57 18.15 17.03 

11 113.78 59.69 41.71 32.77 27.44 23.91 21.42 19.57 18.15 17.03 

12 256 132.13 90.9 70.32 58.01 49.83 44.02 39.67 36.32 33.65 

13 256 132.13 90.9 70.32 58.01 49.83 44.02 39.67 36.32 33.65 

14 1024 520.13 352.23 268.32 218.01 184.49 160.58 142.67 128.75 117.64 

15 1024 520.13 352.23 268.32 218.01 184.49 160.58 142.67 128.75 117.64 
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5.   Runs Rule Representation of the Synthetic Control Chart 

The runs rule representation of synthetic control chart to detect shifts in the location 

parameter for X  control chart has been studied by (Davis and Woodall 2002).  This 

section presents the runs rule representation of a nonparametric synthetic control chart 

using signed-rank statistic. For the runs rule representation of the proposed nonparametric 

synthetic control chart using sign-rank statistic, the procedure of (Davis and Woodall 

2002) is followed. Let ‘0’ denotes conforming sample and ‘1’ denotes nonconforming 

sample. If value of signed-rank statistic falls within control limit, the sample is 

conforming and if it falls out-side the control limit then sample is nonconforming. Thus a 

sequence of 
tψ  can be represented by a string of ‘0’ and ‘1’. For example 100100 would 

indicate that in a sequence of six samples, the first and third samples are nonconforming 

samples, while the rest are conforming. For simplicity, suppose that L of CRL chart is 

equal to 4. This means that any sequence of 
tψ  with pattern 10001, 1001, 101 or 11 will 

generate an out-of-control signal for the synthetic chart. In general, such sequence also 

generates signal under the following runs rule: 

 

If two out-of- 1L  consecutive signed-rank statistics fall out-side of the control limit, 

the control chart signals an out-of-control status. 

 

On initial pattern of 0001, the synthetic control chart will signal using 4L , while two-

of- 1L control chart would not. The performance of both the control charts can be made 

identical over all the samples using head start feature in the runs rule representation; that 

is , it is assumed that the there is signed-rank statistic at time zero and that falls out-side 

of the control limit. With this head start, both control charts will signal on initial patterns 

1, 01, and 001 but not on the initial pattern 0001.Thus, performance of the synthetic and 

two-of-L+1 charts is now identical for all possible sequences of 
tψ . If CRL value is less 

than or equal to L , then declare that the process is out-of-control. Thus, the synthetic 

control chart using 
tψ  identical to the above runs rule with the head start a 

tψ  at time 

zero is observed and is nonconforming. In the following, we present the Markov chain 

model and ATS results of synthetic control chart. 

5.1. Steady-State Average Time to Signal of the Synthetic Control Chart: 

The steady-state ARL of the proposed synthetic control chart can be obtained using the 

Markov chain approach. The states of transition probability matrix (t.p.m.) are based on 

the lower control limit of the CRL chart. 

 

Consider the case where 3L . This chart is an identical to a chart which signals if two-

of-four signed-rank statistics fall out-side of the control limit, assuming that a signed-

rank statistic at time zero is out-side of control limit. 

 

Let   

A= Pr(next observed signed-rank statistic will be below upper control limit). 
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The probability of next observed signed-rank statistic will be lies below the upper control 

limit is 

,)Pr( UCLA t    

and AB 1 . 

 

Davis and Woodall (2002) suggested that the following t.p.m. would govern the Markov 

chain for the synthetic control chart.  

• The row contains ‘A’ in first column and ‘B’ in second column. 

• The last row contains ‘A’ in first column. 

• In all other rows, the entry above the diagonal is ‘A’. 

• In all other locations, the entry is zero. 

Table 2:  The transition probability matrix for the synthetic control chart using 

signed-rank statistic when L= 3 

States  000 001 010 100 Signal 

000 A B 0 0 0 

001 0 0 A 0 B 

010 0 0 0 A B 

100 A 0 0 0 B 

Signal 0 0 0 0 1 

 

With this Markov chain model, the zero-state ARL (0SARL) is  

,1)(0 1'  QIsSARL        (9) 

hence, zero-state average time to signal (0SATS) is given by  

,*)5.00(0 hSARLSATS         (10) 

where, Q  is an 1L  by 1L  matrix of probabilities obtained by deleting last row and 

last column from the above matrix, 1 is column vector of appropriate order having all 

elements unity and I is an 1L  by 1L  identity matrix, s is an initial probabilities of an 

order 1L , 1 for initial state and 0 for the rest of the cases, s'= [0, 1, 0,…, 0, 0]. A state 

‘001’ is an initial state.  

 

If the process is running smoothly for a longer time, it reaches in the steady-state. 

Therefore, it is necessary to study steady-state behaviour of the process. To study the 

steady-state performance of the proposed synthetic control chart, the measure average 

time to signal (ATS) is used. The steady-state average time to signal (SSATS) measures 

average number of samples required to signal when the effect of head start has 

disappeared. 
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Let 0Q be the stochastic matrix obtained from matrixQ . Let   be a row vector 

corresponding to the stationary probability distribution of 0Q . The SSARL of the 

synthetic chart using sign-rank statistic is given by 

.1)( 1

0

'  QISSARL 
       

(11) 

 

The  can be obtained as 

,'

0 Q  

subject to constraint  

.1
1




n

i

i  

 

Finally SSATS is given by, 

 

.
2

1








 SSARLhSSATS        (12) 

Where, sampling interval (h) is adjusted according to the desired false alarms rate.  

 

We provide steady-state performance of the synthetic control chart in the following 

section. 

6.   Steady-State Performance of the Synthetic Control Chart 

When there is a shift in the process median, the distribution of the charting statistic is 

difficult to obtain. Therefore, we use simulation to obtain the ATS values for various 

shifts in the process median. A simulation study based on 10000 runs is performed for 

sample of sizes n=5, n=10 and the corresponding in-control ATS values are 32 and 380 

respectively for computing probabilities of next observed signed-rank statistic will falls 

below upper control limit for different shifts. The simulation study is carried out for three 

continuous symmetric distributions namely the normal, double exponential and Cauchy. 

As in (Bakir 2004), the scale parameter is set to be   = 1/√2 for the double exponential 

distribution to achieve a standard deviation of 1.0. For the Cauchy distribution,   = 

0.2605 is chosen to achieve a tail probability of 0.05 above   + 1.645, the same as that of 

a normal distribution with a mean   and a standard deviation of 1.0.  These three 

distributions are continuous symmetric about their median but have different tail 

behavior.  Moreover, the tail probabilities, say above 3 are 0.0013499, 0.007185 and 

0.0275707, while the tail probabilities above 4 are 0.00003167, 0.0017467 and 

0.0207007 respectively for the normal, the double exponential and the Cauchy 

distributions. In most of times practitioners are interested only in upward shifts in the 

process median; therefore, in this paper we computed zero-state and steady-state ATS 

values only for up-ward shifts. Similarly we can compute zero-state and steady-state ATS 

values for down ward shifts and two-sided shifts in process median. Table 3 and Table 4 

give the zero-state and steady-state ATS profile of the synthetic control chart to detect 

upward shifts in the process median. 

Table 3:  Zero-state and steady-state ATS values of the synthetic control chart 

with n=5, L=4, ARL(0)= 32.77 and UCL=10. 
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 0   
Normal distribution Double exponential distribution Cauchy distribution 

0SATS SSATS 0SATS SSATS 0SATS SSATS 

0 32.77 32.77 32.77 32.77 32.77 32.77 

0.2 10.06 10.51 7.45 7.79 3.7 3.69 

0.4 4.51 4.60 3.17 3.08 1.92 1.59 

0.6 2.49 2.28 1.96 1.64 1.53 1.09 

0.8 1.74 1.36 1.52 1.08 1.36 0.87 

1 1.38 0.90 1.29 0.79 1.26 0.74 

1.2 1.19 0.66 1.16 0.62 1.22 0.69 

 

From Table 3 we observed that: 

• For normal and double exponential distributions the steady-state ATS values are 

large as compared to zero-state ATS values only for small shifts in median. 

• For Cauchy distribution zero-state ATS values are large as compared to the 

steady-state ATS values but not significantly different. 

Table 4:  Zero-state and steady-state ATS values of the synthetic control chart with 

n=10, L=8, ARL(0)= 380 and UCL=40 

 0   
Normal distribution Double exponential distribution Cauchy distribution 

0SATS SSATS 0SATS SSATS 0SATS SSATS 

0 380.00 380.00 380.00 380.00 380.00 380.00 

0.2 37.98 43.86 21.12 25.48 6.44 8.28 

0.4 7.56 9.67 4.43 5.69 2.10 2.54 

0.6 2.64 3.29 1.87 2.21 1.36 1.51 

0.8 1.32 1.46 1.13 1.21 1.12 1.19 

1 0.85 0.85 0.82 0.81 0.95 0.98 

1.2 1.15 1.18 1.17 1.21 1.38 1.50 

 

Following are the findings from Table 4: 

• When subgroup sample size n=10, the steady-state ATS performance is worth as 

compared to the zero-state ATS for all considered distributions. 

• Steady-state ATS performance of the synthetic control chart is better under 

Cauchy distribution than double exponential and normal distributions. 

• Steady-state ATS performance of the synthetic control chart is worth for normal 

distribution. 
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7. Numerical Example 

The operations of the proposed control chart can be illustrated using data related to the 

diameter of casting taken from Montgomery-2009 (Exercise example no.-6.69, page no.-

286). The data set contains 20 samples each of size five. The median of the data set is to 

be 11.7531. To have an in-control ARL equal to 32, the parameters of the upper-sided 

synthetic control chart are UCL=10 and L = 4. A sample is conforming one when

UCLt  . Table 5 depicts the values of the signed-rank statistic defined in equation (1) 

for 20 samples.  Figure 1 gives the upper-sided synthetic control chart using signed-rank 

statistic. The synthetic control chart signals an out-of-control status, if LCRL  . Figure 1 

show that the signed-rank statistic of sample two is plotted above UCL. That is sample 

two is nonconforming and CRL at this time epoch is 2 which is less than L; hence, 

synthetic control chart signals an out-of-control status at time epoch 2. The synthetic 

control chart also signals at time epochs 13, 17 and 19. 

Table 5:   Sample number and Signed-rank statistic 

Sr. No. Sign-rank statistic 

1 -11 

2 13 

3 5 

4 5 

5 -15 

6 5 

7 -15 

8 -8 

9 15 

10 -1 

11 -8 

12 -9 

13 15 

14 -15 

15 -6 

16 -9 

17 15 

18 -1 

19 15 

20 9 
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Figure 1:   The upper-sided synthetic control chart 

8. Conclusions 

In this article we studied the steady-state behaviour of the synthetic control chart using 

signed-rank statistic for shifts in the process median. The steady-state ATS values are 

computed using Markov chain approach. To compute steady-state ATS, the performance 

of the synthetic control chart and two-of-L+1 control chart can be made identical over all 

samples with head start features. When subgroup sample size n=10, the steady-state 

performance of the synthetic control chart is worth for small to moderate shifts under all 

considered symmetric distributions. When subgroup sample size n=5, steady-state ATS 

values are larger under normal and double exponential distributions only for small shifts. 

However, under the Cauchy distribution zero-state ATS values are larger but not 

significantly larger as compared to steady-state ATS values. Usefulness of proposed 

control chart explored using numerical example. Proposed control chart is simple and 

easy to use for practitioners. 
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Abstract

In the present article, we propose a nonparametric cumulative sum control

chart for process dispersion based on the sign statistic using in‐control deciles.

The chart can be viewed as modified control chart due to Amin et al,6 which

is based on in‐control quartiles. An average run length performance of the

proposed chart is studied using Markov chain approach. An effect of non‐

normality on cumulative sum S2 chart is studied. The study reveals that the

proposed cumulative sum control chart is a better alternative to parametric

cumulative sum S2 chart, when the process distribution is non‐normal. We

provide an illustration of the proposed cumulative sum control chart.

KEYWORDS

average run length, nonparametric chart, process control, sign test

1 | INTRODUCTION

Control charts are used to monitor process parameter,
such as location, dispersion, and proportion of defectives.
The widely used control charts are �X chart for process
location and R chart or S2 chart for the process dispersion;
these charts are also known as Shewhart's charts. The
main drawback of these charts is that these charts are less
efficient against small shifts. One can resolve this problem
by using runs rules. There are some operational issues
while implementing the runs rules charts. An alternative
to detect the small shift is to use memory chart, as like
cumulative sum (CUSUM) chart proposed by Page1 or
exponentially weighted moving average (EWMA) charts
proposed by Roberts.2 These charts consider the past as
well as current information about the process, which
makes charts very sensitive to small shifts in the process
parameters. In the literature, various parametric CUSUM
procedures are available for monitoring process location
and dispersion, but very few nonparametric CUSUM pro-
cedures are available to monitor the process dispersion.

The traditionally used CUSUM S and CUSUM S2

charts are based on the assumption of normality, but
when the process distribution is not normal, the false
alarm probability of the chart varies. Therefore, one of

the robust alternatives to these charts is to use the non-
parametric control charts. A control chart is said to be
nonparametric, if its in‐control average run length
(ARL) does not depend on underlying process distribu-
tion. The performance of a control chart is usually mea-
sured using the ARL, which is defined as an average
number of samples required to get an out‐of‐control
signal.

Till date, there are several parametric as well as non-
parametric Shewhart's control charts reported in the
literature for process location and dispersion. Bakir3

developed a distribution‐free Shewhart quality control
chart based on a signed‐rank like statistic for process loca-
tion. Chakraborti and Eryilmaz4 have proposed a control
chart based on a signed‐rank statistic for process center.
Khilare and Shirke5 developed a nonparametric synthetic
control chart using a sign statistic for process location.
Amin et al6 developed a nonparametric control chart
based on sign statistic for the process center and variabil-
ity. They have also developed CUSUM chart by using sign
statistic for process center and reported that it can be
extended for variability also. Rendtel7 and Reynolds et al8

described a CUSUM chart with variable sampling inter-
vals for process mean. Yang and Cheng9 have proposed
a nonparametric CUSUM mean chart based on the sign
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statistic. Das10 developed a nonparametric control chart
for variability based on the squared rank statistic. Khilare
and Shirke11 have proposed a nonparametric synthetic
control chart for the process variation. Shirke et al12

have proposed a nonparametric control chart for process
variability based on in‐control deciles. Zhou et al13

provided a nonparametric quality control chart based on
Ansari‐Bradly test statistic for variability. Chowdhury
et al14 constructed a nonparametric control chart for joint
location and scale monitoring, which is based on the
Lepage test. Guo and Wang15 have proposed a variable
sampling interval S2 chart with known or unknown in‐
control variance. Zombade and Ghute16 provided 4
nonparametric control charts for the process variation
based on Sukhatme's 2 sample test and Mood's test. In
the proposed work, we propose a CUSUM chart based
on sign statistic defined by Shirke et al.12 The sign statistic
is defined using in‐control deciles of the process
distribution.

The remaining article is organized as follows. Section 2
describes the effect of non‐normality on S2 chart, a non-
parametric CUSUM chart based on in‐control deciles,
and method for obtaining its ARL. Section 3 provides
the performance study of control charts for various pro-
cess distributions. Sections 4 and 5 provide the illustrative
example and conclusions, respectively.

2 | A NONPARAMETRIC CUSUM
CHART BASED ON IN ‐CONTROL
DECILES

Suppose we are monitoring the process for detecting
variation in the quality characteristic of interest say X.
Let variance of X is σ2 and when the process is in‐control
σ2 ¼ σ2

0. We monitor the process by drawing a random
sample of size n at fixed time epoch. Let Xij be the
jth observation at time epoch i, where i = 1, 2, ... and j =

1 , 2, …, n. In the literature, parametric CUSUM S2 chart
is used to monitor small changes in process dispersion,
where S2 be the sample variance. We have to detect a shift
in process dispersion quickly. Let σ21 be the process vari-
ance after change in the process dispersion.

The charting statistic for CUSUM S2 chart are as
follows:

Cþ
i ¼ maxð0; S2i− k þ Cþ

i−1Þ
C−
i ¼ maxð0; k−S2i þ C−

i−1Þ;
(1)

where k = [2ln(σ0/σ1)σ0σ1/(σ0−σ1)] and Cþ
0 ¼ C−

0 ¼ 0.
The statistic Cþ

i and C−
i are called as an upper and lower

CUSUM's respectively and initial values of Cþ
i and C−

i are
taken to be zero. The chart signals, if any of the Cþ

i or C−
i

exceeds a prespecified control limit h. The parameters h is
chosen to meet in‐control ARL specified by an experi-
menter. Therefore, ARL is a function of n, h, and k for
CUSUM procedure. One can use the Cþ

i to detect an
increase in the process dispersion only when correspond-
ing upper one‐sided ARL is denoted as ARL+.

The construction of CUSUM S2 chart is based on the
assumption of normality or at least approximately nor-
mality of the process quality characteristic. Amin et al6

discussed the effect of non‐normality on control charts
for location. If the process distribution deviates from nor-
mal, the ARLs obtained by assuming normality will differ.
Table 1 gives the ARL values for CUSUM S2 chart
with sample size n = 10, upper control limit h = 1.5362
and k = 1.24 for the normal, double exponential, uniform,
exponential and gamma distributions. Here double expo-
nential is the example of heavy tailed and uniform is the
example of light tailed distribution. An effect of skewed
distributions on CUSUM S2 chart is also studied. The
upper control limit only considered with various shifts
in a standard deviation that is σ = δσ0, where δ be the
extent of increase in process standard deviation. Table 1

TABLE 1 ARL+ performance of CUSUM S2 chart for n = 10

δ Normal Laplace Uniform Exponential Gamma

01 284.2 36.8 448631.0 23.6 37.1

1.2 11.8 9.2 328.6 8.6 9.3

1.4 3.9 4.3 21.2 4.6 4.3

1.6 2.4 2.7 7.9 3.0 2.8

1.8 1.7 2.1 4.8 2.3 2.0

2 1.4 1.7 3.5 1.9 1.7

3 1.0 1.1 1.7 1.2 1.1

4 1.0 1.0 1.3 1.1 1.0

5 1.0 1.0 1.1 1.0 1.0
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depicts that if the process distribution is heavy tailed or
skewed and control limit is set under normality assump-
tion, then ARLs are very small as compared with the
normal. While for light tailed distribution, the ARLs tend
to be larger as compared with normal. This implies that
for heavy tailed distribution, a false alarm will occur
frequently.

Shirke et al12 developed a sign chart for variability
based on in‐control deciles, which is a modification of a
sign chart based on in‐control quartiles given by Amin
et al.6 The chart procedure proposed by Shirke et al12 is
as follows. Consider D2 and D8 respectively be the 2nd

and 8th deciles, when the process is in‐control. We assume
that D2 and D8 are known from the past data.

Define

Wij ¼
1 Xij < D2 or Xij >D8

0 Xij ¼ D2 or Xij ¼ D8

−1 D2 < Xij <D8;

8><
>: (2)

andWi ¼ ∑n
j¼1Wij. Define a random variable Vi=(Wi+n)/2

and has binomial distribution with parameters n and p,
where p=P {Xij<D2 orXij>D8|σ=δσ0}. Moreover, when
the process is in‐control p = p0 = 0.4. The two‐sided chart
gives signal ifVi> c orVi<n− c, where c is chosen such that

α ¼ ∑
n−c−1

j¼0

n
j

� �
pj
0ð1−p0Þn− j þ ∑

n

j¼cþ1

n
j

� �
pj
0ð1−p0Þn− j: (3)

In the upper one‐sided case, c is chosen such that

α ¼ 1−∑
c

j¼0

n
j

� �
pj
0ð1−p0Þn− j; (4)

where α be the false alarm probability, when the process
is in‐control.

Shirke et al12 have shown that the chart based on
deciles outperforms chart based on quartiles proposed by
Amin et al.6 We extend this approach and provide a
nonparametric CUSUM chart to monitor the process
dispersion σ2. We define

Uij ¼
1 Xij ≤D2 or Xij ≥D8

0 Xij >D2 or Xij <D8;

(
(5)

andUi ¼ ∑n
j¼1Uij.Uihas binomial distributionwith param-

eters n and p, where p=P (Xij≤D2 orXij≥D8|σ=δσ0).
The small shifts in process dispersion can be

monitored with the help of the proportion of the
observations which falls in the tails. When there is a
change in the process variation, we denote p by p1.
Consider ψ =|p0 − p1|, ψ >0 and we wish to detect a shift
of size p1 quickly. Define a CUSUM monitoring statistic
for the ith subgroup sample,

Cþ
i ¼ maxð0;Ui − ðnp0 þ k1Þ þ Cþ

i−1Þ
C−
i ¼ maxð0; ðnp0 − k1Þ−Ui þ C−

i−1Þ;
(6)

where k1 is the reference value with k1 ¼ nψ
2
. The initial

starting values are mostly chosen as zero, that is, Cþ
0 ¼ 0

and C−
0 ¼ 0. Let H be the parameter of a nonparametric

CUSUM chart. If Cþ
i >H or C−

i >H, then the process is
thought to be out‐of‐control. Moreover, Cþ

i >H is used to
detect an increase in process dispersion, while C−

i >H for
to detect the decrease in process dispersion. It is noted that

TABLE 2 The (k1,H) values under ARLþ
0 ≈370

ARL+≈370

ψ 0.1 0.2 0.3

n k1 H k1 H k1 H

5 0.25 8.69 0.50 5.00 0.75 3.61

6 0.30 8.11 0.60 5.00 0.90 3.49

7 0.35 8.10 0.70 5.10 1.05 3.50

8 0.40 8.20 0.80 5.00 1.20 3.60

9 0.45 8.80 0.90 5.00 1.35 3.30

10 0.50 9.30 1.00 5.00 1.50 3.51

11 0.55 9.00 1.10 5.00 1.65 3.81

12 0.60 9.98 1.20 5.00 1.80 3.58

13 0.65 9.00 1.30 5.30 1.95 3.69

14 0.70 9.30 1.40 5.00 2.10 3.58

15 0.75 10.20 1.50 5.00 2.25 3.73
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the reference value k1 and control limit H can be chosen
such that they would satisfy the specified ARL.

It is easy to compute ARLs for Shewhart‐type control
chart and not so for CUSUM and EWMA control charts.
There are different methods in the literature to compute
ARLs of a CUSUM chart. Brook and Evans17 have given
Markov chain approach to obtain ARL of a CUSUM chart.
Yang and Cheng9 used Markov chain approach to
computing ARLs of a CUSUM chart based on sign
statistic. We first obtain ARL for the upper one‐sided
CUSUM chart. We divide the region (0, H) into M−1 sub-
intervals of equal width of 2w, where w = H/(2(M−1)).
Take 1st subinterval as (−∞, 0], the kth interval is (mk

−w,mk+w), where mk be the midpoints of kth subinterval
with m1=0, mk=(2k− 3)H/(2(M− 1)) for k=2,3,…,M;
and (M+1)th interval as (H,∞). These all M+1 subinter-
vals can be viewed as states of Markov chain. Moreover,
the state M+1 is the action state, which is absorbing state
and remaining M states are transient states of Markov
chain fCþ

i ; i ¼ 0; 1; :::g.
Consider the transition probability matrix corre-

sponding to transient states 1, 2, ...M be Rp ¼ ððppkjÞÞ,
(k, j=1, 2,…,M), whose kjth element represents the tran-
sition probability that statistic Cþ

i reaches state j at time
i, given that Cþ

i−1 was in state k at time (i− 1). The tran-
sition probabilities can be calculated as

ppk1 ¼ PðCþ
i ≤ 0jCþ

i−1 ¼ mkÞ ¼ PðUi − ðnp0 þ k1Þ
þ Cþ

i−1 ≤ 0jCþ
i−1 ¼ mkÞ

¼ PðUi ≤ np0 þ k −mkÞ

¼ ∑
½np0þk1−mk �

s¼0

n
s

� �
psð1− pÞn−s;

k=1, 2, .…,M; i=1, 2, 3,….

ppkj ¼ Pðmj −w≤ Cþ
i <mj þ wjCþ

i−1 ¼ mkÞ
¼ Pðmj −w≤Ui − ðnp0 þ k1Þ þ Cþ

i−1

<mj þ wjCþ
i−1 ¼ mkÞ

¼ Pðmj−mk−wþ np0 þ k1≤Ui <mj −mk

þwþ np0 þ k1Þ

¼ ∑
½ðmj−mkþwþnp0þk1Þ−�

s¼0

n
s

� �
psð1−pÞn−s

− ∑
½ðmj−mk−wþnp0þk1Þ−�

s¼0

n
s

� �
psð1−pÞn−s;

k=1, 2, .…,M, j=2, 3,…,M and i=1, 2, 3,…, where (β)−

be the largest integer not greater than β. Let b be the
M×1 vector of probabilities that the process started in
state 1, 2, ...M. In this case b=(b1, b2,…,bM)

′. Since we
considered that Cþ

0 ¼ C−
0 ¼ 0, we get b1=1 and bk=0T
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for k≠ 1. Consider Pp ¼ ððppkjÞÞ be a (M+1)×(M+1) tran-

sition probability matrix such that

Pp ¼ jRp
M×M PM×1

0′1×M 1

" #
:

Then ARL corresponding to upper one‐sided CUSUM
chart can be obtained as ARL+=b′(I−Rp)−11′, where 1′

=(1,1,…,1) be the 1×M vector with elements 1. The in‐
control ARLs can be calculated by substituting p=p0,
therefore ARLþ ¼ ARLþ

0 be the in‐control ARL and if
p=p1 then ARLþ ¼ ARLþ1 be the out‐of‐control ARL.
Similar way, one can compute ARL for lower one‐sided
CUSUM chart, which is denoted by ARL−. Then the
ARL for nonparametric CUSUM chart can be calculated
as follows:

ARL ¼ 1
1=ARLþ þ 1=ARL−: (7)

Table 2 gives values of k1 and H under ARLþ
0 ≈370 for

sample size 5 to 15 and ψ=0.1,0.2,0.3.

3 | PERFORMANCE STUDY OF THE
NONPARAMETRIC CUSUM CHART
BASED ON DECILES

The performance of control charts can be studied to
measure its ability to detect a change in the process
parameter quickly. ARL is one of the performance mea-
sures, which is used for comparison of control charts.
The chart is more efficient, when in‐control ARL is large
and corresponding out‐of‐control ARL is small. We have

studied the performance of the proposed chart for various
process distributions (normal, Laplace, uniform, exponen-
tial, and gamma). In the literature, no any standard
nonparametric CUSUM chart is available to monitor
process dispersion. Therefore, We have compared the
performance of proposed nonparametric CUSUM chart
with parametric CUSUM S2 chart.

In most of the situations, early detection of an increase
in the process dispersion is of interest and in that case, a
one‐sided control chart is desirable. The performance of
the proposed chart is reported for sample sizes n = 10,
15, 20 with shift δ in process standard deviation. Based
on 20,000 runs, the ARL for CUSUM S2 chart is com-
puted. Table 3 provide ARLs along with various shifts in
process standard deviation for Normal (0, 1), Laplace

(0, 1), Uniform ða ¼ 0; b ¼ ffiffiffiffiffi
12

p þ aÞ, Exponential (θ=1)
and Gammaða ¼ 2; b ¼ ffiffiffi

a
p Þ distribution for sample size

n=10, 15, 20. It is clear from Table 3 that an out‐of‐con-
trol ARLs for CUSUM S2 chart are smaller than nonpara-
metric CUSUM chart, which indicate that CUSUM S2

chart is more efficient than nonparametric CUSUM chart
for all distributions under study. But, such comparison is
meaningless because in‐control ARL is obtained by
using control limit which is set under normality assump-
tion (ARL∗). For example, ARL∗ is quite low (36.6) for
Laplace distribution. Suppose we are interested to
enhance ARL∗ from 36.6 to 284 using multiplicative factor
(284/36.6=7.75), we get out‐of‐control ARL to detect shift
in variation of 1.2σ as 194.5. This is significantly larger
than corresponding out‐of‐control ARL 28.2 for nonpara-
metric CUSUM chart. Here, we can see that the ARL∗ of
CUSUM S2 chart changes from 284.2 (for normal distribu-
tion) to 36.6, 448631.0, 23.8 and 37, when the process
distribution is Laplace, uniform, exponential and gamma

TABLE 4 The ARLþ
1 values under ARLþ

0 ≈ 370, ψ=0.1, and p0=0.4

p1

n 0.4 0.5 0.6 0.7 0.8 0.9

9 365.1 17.9 7.1 4.4 3.2 2.6

10 377.9 16.8 6.8 4.3 3.2 2.5

11 367.8 15.6 6.1 3.8 2.8 2.2

12 379.7 14.8 6.1 3.9 2.9 2.2

13 374.7 13.9 5.4 3.4 2.5 2.1

14 367.2 13.0 5.2 3.4 2.5 2.1

15 375.3 12.4 4.9 3.1 2.3 2.0

16 376.0 11.9 4.7 2.9 2.2 2.0

17 364.4 11.3 4.4 2.8 2.1 2.0

18 367.1 10.8 4.4 2.9 2.2 2.0

19 375.3 10.4 4.2 2.7 2.1 1.9
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TABLE 5 Piston rings data and values of charting statistic

Sample X1 X2 X3 X4 X5 V C+

1 74.030 74.002 74.019 73.992 74.008 3 0.75

2 73.995 73.992 74.001 74.011 74.004 2 0.50

3 73.988 74.024 74.021 74.005 74.002 3 1.50

4 74.002 73.996 73.993 74.015 74.009 1 0.25

5 73.992 74.007 74.015 73.989 74.014 4 3.25

6 74.009 73.994 73.997 73.985 73.993 1 2.00

7 73.995 74.006 73.994 74.000 74.005 0 1.00

8 73.985 74.003 73.993 74.015 73.988 3 4.00

9 74.008 73.995 74.009 74.005 74.004 0 1.75

10 73.998 74.000 73.990 74.007 73.995 1 2.75

11 73.994 73.998 73.994 73.995 73.990 1 2.75

12 74.004 74.000 74.007 74.000 73.996 0 1.75

13 73.983 74.002 73.998 73.997 74.012 2 3.75

14 74.006 73.967 73.994 74.000 73.984 2 3.75

15 74.012 74.014 73.998 73.999 74.007 2 3.75

16 74.000 73.984 74.005 73.998 73.996 1 2.75

17 73.994 74.012 73.986 74.005 74.007 2 3.75

18 74.006 74.010 74.018 74.003 74.000 2 3.75

19 73.984 74.002 74.003 74.005 73.997 1 2.75

20 74.000 74.010 74.013 74.020 74.003 3 4.75

21 73.982 74.001 74.015 74.005 73.996 2 4.50

22 74.004 73.999 73.990 74.006 74.009 1 3.50

23 74.010 73.989 73.990 74.009 74.014 4 6.50

24 74.015 74.008 73.993 74.000 74.010 2 6.25

25 73.982 73.984 73.995 74.017 74.013 4 8.25

26 74.012 74.015 74.030 73.986 74.000 4 10.00

27 73.995 74.010 73.990 74.015 74.001 3 10.75

28 73.987 73.999 73.985 74.000 73.990 3 11.50

29 74.008 74.010 74.003 73.991 74.006 2 11.25

30 74.003 74.000 74.001 73.986 73.997 1 10.25

31 73.994 74.003 74.015 74.020 74.004 2 11.25

32 74.008 74.002 74.018 73.995 74.005 1 10.25

33 74.001 74.004 73.990 73.996 73.998 1 10.25

34 74.015 74.000 74.016 74.025 74.000 3 12.25

35 74.030 74.005 74.000 74.016 74.012 3 13.00

36 74.001 73.990 73.995 74.010 74.024 3 13.75

37 74.015 74.020 74.024 74.005 74.019 4 15.50

38 74.035 74.010 74.012 74.015 74.026 5 18.25

39 74.017 74.013 74.036 74.025 74.026 5 21.00

40 74.010 74.005 74.029 74.000 74.020 3 21.75
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respectively for sample size n=10. Moreover, ARL∗

changes from 283.8 to 735294.2 for uniform distribution
with n=20. It means, there is very low false alarm.

The nonparametric CUSUM chart has smaller out‐
of‐control ARLs when process distributions are uniform
and normal. But it has larger ARLs when the process
distribution is heavy tailed or skewed like Laplace, expo-
nential and gamma. It is observed that from Table 3 that
out‐of‐control ARLs decreases as sample size increases. In
Table 4, one‐sided out‐of‐control ARL values for various
values of p1 and sample size n=9 to 19 are reported. It
can be observed that out‐of‐control ARLs decreases as
sample size increases and as tail proportion p1 increase,
that is shift in process dispersion is increases.

4 | EXAMPLE

Here, we illustrate the construction of a nonparametric
sign chart based on deciles and proposed CUSUM chart
based on deciles with the example inside diameter mea-
surements (mm) for automobile engine piston rings data
Montgomery.18 There are 25 primary samples and 15
additional samples each of size 5, which is described in
Table 5. Figures 1 and 2 show that a nonparametric con-
trol chart based on in‐control deciles with control limit

c=4 and a nonparametric CUSUM chart with k1=0.25
and H=8.69. We can see that a nonparametric control
chart based on in‐control deciles gives the signal on 38th

sample while a CUSUM chart gives the signal on 26th

sample.

5 | CONCLUSION

In the present article, we present a nonparametric
CUSUM chart based on in‐control deciles for detecting
small shifts in process dispersion. Since, whatever be the
process distribution the proposed nonparametric CUSUM
chart give same in‐control ARL. Therefore, the proposed
nonparametric chart is a better alternative to CUSUM S2

chart when process distribution is not known in advance.
Moreover, it does not require any distributional assump-
tion. The performance in terms of ARL of the proposed
control chart for various distributions is studied. Due to
the simplified procedure of proposed CUSUM chart, we
recommend for use of proposed CUSUM chart.
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    Abstract     Hairy roots (HRs) have been proven as a potential source of secondary 

metabolites and also, for the biotransformation of desirable metabolites. Recently, 

HRs have emerged as an effi cient  in vitro  model systems for screening the capabili-

ties of different plant species to tolerate, accumulate, and/or to remove environmen-

tal pollutants. HRs offer benefi ts of greater genotypic and phenotypic stability than 

the dedifferentiated cultures, thus providing a more reliable and a reproducible 

experimental system, and even for fl exibility of insertion of gene of interest to the 

HR gene construct for effi cient applications. Additionally, absence of soil matrix 

and microbes is the key advantage in HRs for precise removal of toxic products as 

well as for elucidating metabolic pathways for conversion of hazardous chemicals 

to non hazardous products. The feasibility of scale up of HRs in bioreactors offers 

an attractive avenue for industrial processes both for metabolite synthesis as well as 

for phytoremediation. The present review highlights current knowledge, recent 

progress, areas which need to be explored and future perspectives related to the 

application and improvement of the effi ciency of HRs for phytoremediation 

research.  

  Keywords     Hairy roots (HRs)   •   Inorganic pollutant   •   Organic pollutant   • 

  Phytoremediation  



In: Ecological Restoration ISBN: 978-1-63484-611-0 
Editor: Victor R. Squires © 2016 Nova Science Publishers, Inc. 

 
 
 
 
 
 

Chapter 5 
 
 
 

ROLE OF MICROBES AND PLANTS  

IN PHYTOREMEDIATION: POTENTIAL OF  

GENETIC ENGINEERING  

 
 

Umesh B. Jagtap1, Vishwas A. Bapat1, Gaëlle Saladin2,  
Ewa Chudzińska3, Magdalena Krzesłowska4,  

Ewa M. Pawlaczyk3, Tayyaba Komal5, Alvina Gul5,  
Irena Sherameti6 and Zeshan Ali7* 

1Department of Biotechnology, Shivaji University Vidyanagar, Kolhapur, India 
2Laboratoire de Chimie des Substances Naturelles, Université de Limoges,  

Faculté des Sciences et Techniques, Limoges Cedex, France 
3Department of Genetics, Faculty of Biology,  

Adam Mickiewicz University, Umultowska, Poznań, Poland  
4Laboratory of General Botany, Faculty of Biology,  

Adam Mickiewicz University, Poznań, Poland 
5Atta-ur-Rahman School of Applied Biosciences,  

National University of Sciences and Technology (NUST), Islamabad, Pakistan 
6Friedrich-Schiller University Jena, Institute of General Botany  

and Plant Physiology, Jena, Germany  
7National Institute of Bioremediation,  

National Agricultural Research Centre, Islamabad, Pakistan 
 
 

ABSTRACT 
 

Toxic metal pollution of soils is a major environmental problem. This review chapter 
focuses on the progress achieved in the last years to remediate soils contaminated with 
heavy metals. Genetically modified plants for metal removal, use of microbes in 
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In this article, we present a test for testing uniformity. Based on the test, we provide a test for testing
exponentiality. Empirical critical values for both the tests are computed. Both the tests are compared with the
tests proposed by Noughabi andArghami [H.Alizadeh Noughabi, and N.R.Arghami, Testing exponentiality
using transformed data, J. Statist. Comput. Simul. 81 (4) (2011), pp. 511–516] using simulation experiments
for a wide class of alternatives. The tests possess attractive power properties.

Keywords: test for uniformity; test for exponentiality; nonparametric kernel density estimation

1. Introduction

In much statistical inference and model building, there is a need to test the validity of assump-
tions made about the underlying populations from which observations have been drawn. Many
times an experimenter begins the analysis of data by proposing a probability distribution for
the observed data. If the assumption regarding underlying distribution is not tested, we may
lead to incorrect conclusions and questions may be raised on the reliability of results obtained
using the assumption. An exponential distribution is probably one of the most commonly used
distributions in statistical work after normal distribution. It has important connections with life
testing, reliability theory, theory of stochastic processes and is closely related to several other
well-known distributions with statistical applications, for example, the gamma and the Weibull
distributions.

Recently, Noughabi and Arghami [1] have provided a test for testing uniformity and using this
test they have proposed a test for testing exponentiality. We have modified the above test and our
simulation study reveals that the modified test gives better performance than the test proposed by
them. The rest of the article is organized as follows.

In Section 2, we propose a test by modifying the test for uniformity due to Noughabi and
Arghami [1] and study power of the same for various alternatives. Section 3 uses the modified
test for testing uniformity for constructing a test for testing exponentiality. Monte Carlo study to
estimate power of the test is discussed in Section 4. Section 5 gives concluding remarks.

*Corresponding author. Email: brd_stats@yahoo.in

© 2012 Taylor & Francis
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398 B.R. Dhumal and D.T. Shirke

2. Testing uniformity

Suppose a random sample X1, X2, . . . , Xn from a population with absolutely continuous density
function f (x) concentrated on the interval [0, 1] and having distribution function F(x) is available.
Consider the problem of testing the following null hypothesis,

H0: A random sample of n X-values come from uniform distribution, denoted by U(0, 1).
The test statistic proposed by Noughabi and Arghami [1] for testing H0 is

T = 1

n

n∑
i=1

|xi f̂ (xi) − F0(xi)|,

where F0(x) is the uniform distribution function. Also,

f̂ (xi) − 1

nh

n∑
j=1

K

(
xi − xj

h

)
,

where the kernel function K(·) is chosen to be the standard normal density function. The bandwidth
h is obtained from the normal optimal smoothing formula, h = 1.06sn−1/5, where s is the sample
standard deviation [2].

2.1. Test based on S statistic

To test H0, we suggest the following modified test statistic:

S = 1

n

n∑
i=1

|f̂ (xi) − f0(xi)|,

where f0(·) is the probability density function of uniform. Also,

f̂ (xi) = 1

nh

n∑
j=1

K

(
xi − xj

h

)
,

kernel function K(·) is chosen to be the standard normal density function and bandwidth h
is obtained from the normal optimal smoothing formula, h = 1.06sn−1/5, where s is the sample
standard deviation.

Large values of S indicate that the sample is from a non-uniform distribution. Therefore, we
reject the null hypothesis at the significant level α, if S ≥ C(α). The critical point C(α) is deter-
mined by the αth quantile of the distribution of the S statistic by means of Monte Carlo simulations.
In Table 1, we present the results of Monte Carlo study conducted at an α-nominal level with
10,000 replications to assess the empirical critical values for S statistic.

Table 1. Critical values of S statistic.

α

n 0.01 0.05 0.10

5 2.031 1.037 0.702
10 0.731 0.503 0.398
15 0.579 0.406 0.338
20 0.477 0.358 0.299
25 0.425 0.324 0.280
30 0.397 0.305 0.266
50 0.324 0.265 0.231
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2.2. Performance study of test based on S statistic

Noughabi and Arghami [1] have used several statistical tests that first appeared in Stephens [3].
These statistical tests are

(1) Kolmogorov–Smirnov (D) test,
(2) Kuiper’s (V) test,
(3) the Cramér–von Mises (W2) test,
(4) the Watson (U2) test,
(5) the Anderson–Darling (A2) test.

To study the performance of our test we consider the above tests, along with the test due to
Noughabi and Arghami [1].

The null hypothesis is that we have a uniform random number on the interval (0, 1). The seven
alternative distributions, which have been considered by several authors for studying power of

Table 2. Power comparisons of the tests for uniform (0, 1) with size 0.10.

n Alternative D W2 V U2 A2 T S

10 Fk=1.5 0.250 0.270 0.182 0.189 0.258 0.097 0.220
Fk=2.0 0.525 0.574 0.334 0.335 0.551 0.116 0.408
Gk=1.5 0.086 0.070 0.220 0.232 0.050 0.313 0.330
Gk=2.0 0.123 0.092 0.446 0.479 0.059 0.581 0.602
Gk=3.0 0.234 0.235 0.823 0.870 0.175 0.913 0.924
Hk=1.5 0.198 0.174 0.218 0.228 0.208 0.045 0.054
Hk=2.0 0.308 0.258 0.454 0.480 0.365 0.038 0.049

20 Fk=1.5 0.405 0.447 0.260 0.265 0.437 0.146 0.298
Fk=2.0 0.811 0.860 0.596 0.582 0.857 0.218 0.609
Gk=1.5 0.129 0.110 0.346 0.371 0.100 0.454 0.471
Gk=2.0 0.265 0.273 0.730 0.783 0.289 0.817 0.827
Gk=3.0 0.671 0.798 0.987 0.996 0.837 0.996 0.997
Hk=1.5 0.251 0.214 0.340 0.372 0.269 0.047 0.052
Hk=2.0 0.466 0.425 0.730 0.781 0.556 0.061 0.051

Table 3. Power comparisons of the tests for uniform (0, 1) with size 0.05.

n Alternative D W2 V U2 A2 T S

10 Fk=1.5 0.159 0.169 0.101 0.103 0.163 0.042 0.133
Fk=2.0 0.400 0.435 0.232 0.224 0.417 0.050 0.280
Gk=1.5 0.040 0.027 .130 0.137 0.015 0.189 0.212
Gk=2.0 0.048 0.023 0.313 0.339 0.010 0.410 0.456
Gk=3.0 0.095 0.053 0.713 0.760 0.021 0.810 0.852
Hk=1.5 0.112 0.099 0.128 0.141 0.127 0.024 0.030
Hk=2.0 0.206 0.158 0.311 0.335 0.235 0.025 0.025

20 Fk=1.5 0.281 0.316 0.167 0.164 0.318 0.068 0.184
Fk=2.0 0.699 0.770 0.468 0.440 0.761 0.094 0.468
Gk=1.5 0.056 0.039 0.224 0.246 0.035 0.324 0.321
Gk=2.0 0.122 0.101 0.591 0.651 0.103 0.707 0.714
Gk=3.0 0.411 0.508 0.969 0.984 0.561 0.987 0.988
Hk=1.5 0.149 0.122 0.225 0.243 0.162 0.023 0.025
Hk=2.0 0.310 0.248 0.593 0.652 0.378 0.054 0.045
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400 B.R. Dhumal and D.T. Shirke

various test statistics, are

F : F(x) = 1 − (1 − x)k , 0 ≤ x ≤ 1

for k equal to 1.5 and 2.

G : F(x) =
{

2(k−1)xk 0 ≤ x ≤ 0.5,

1 − 2(k−1)(1 − x)k 0.5 ≤ x ≤ 1

for k equal to 1.5, 2 and 3

H : F(x) =
{

0.5 − 2(k−1)(0.5 − x)k 0 ≤ x ≤ 0.5,

0.5 + 2(k−1)(x − 0.5)k 0.5 ≤ x ≤ 1

for k equal to 1.5 and 2.

Alternative F, G and H were first used by Stephens [3] in his study of power comparisons of
several tests for uniformity. According to Stephens, alternative F gives points closer to zero than
expected under the hypothesis of uniformity, whereas G gives points near to 0.5 and H give two
clusters (close to 0 and 1). The same were used by Noughabi and Arghami [1].

For the nominal levels 5% and 10%, Tables 2 and 3 show the power estimates of the test based
on S statistic and also for the tests mentioned above. The entries are the 10,000 Monte Carlo
samples of size n = 10, 20 that resulted in the rejection of H0.

3. Testing exponentiality using transformed data

Suppose that n independent observations are made on X with density f (x) over a non-negative
support and with mean λ−1 < ∞, the hypothesis of interest is

H0 : f (x) = f0(x) = λe−λx,

where λ is unspecified. The alternative to H0 is

H1 : f (x) �= f0(x).

Noughabi and Arghami [1] have proposed a goodness-of-fit test for testing H0. The test statistic
is based on the following theorem, which is due to Alzaid and Al-Osh [4] and is also mentioned
in [5].

Theorem 3.1 Let X1 and X2 be two independent observations from a distribution F. Then
X1/(X1 + X2) is distributed as U(0, 1) if and only if F is exponential

Let X(i), i = 1, . . . , n, be the order statistics of a random sample of size n. Furthermore, transform
the sample data to

Yij = X(i)

X(i) + X(j)
i �= j, i, j = 1, 2, . . . , n.

Using Theorem 3.1, under the null hypothesis H0, each Yi has a uniform distribution. Noughabi and
Arghami [1] used the proposed test for uniformity (introduced in Section 2) to test the uniformity
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Table 4. Critical values of U statistic.

α

n 0.01 0.05 0.10

5 1.297 0.626 0.419
10 0.636 0.388 0.287
15 0.463 0.309 0.244
20 0.384 0.265 0.215
25 0.326 0.251 0.201
30 0.315 0.228 0.188
50 0.225 0.139 0.109

of Yi’s and thus the exponentiality of Xi’s. The test statistic due to Noughabi and Arghami [1] is

T ′ = 1

n(n − 1)

n(n−1)∑
i=1

|yi f̂ (yi) − F0(yi)|.

Based on the modified test for uniformity proposed in Section 2, we define the U statistic as

U = 1

n(n − 1)

n(n−1)∑
i=1

|f̂ (yi) − f0(yi)|.

Large values of U indicate that the sample is from a non-exponential distribution. In Table 4,
we present the results of Monte Carlo study conducted at an α-nominal level with 10,000 repli-
cations (from exponential distribution with mean one) to assess the empirical critical values for
U statistic.

4. Performance study of the test based on U statistic

For power comparisons, we considered the following alternatives:

(1) The Weibull distribution with density function

f (x) = βλβ(x)β−1 exp[−(λx)β], x ≥ 0, λ > 1, β > 0.

(2) The gamma distribution with density function

f (x, β, λ) = λβxβ−1 exp(−λx)

�(β)
, x ≥ 0, λ > 1, β > 0.

(3) The log-normal distribution with density function

f (x, v, σ 2) = 1

xσ
√

2π
exp

{
− 1

2σ 2
(ln(x) − v)2

}
, x > 0, −∞ < v < ∞, σ > 0

We choose the parameters so that E(X) = 1, i.e. λ = �(1 + 1/β) for the Weibull, λ = β for the
gamma and ν = σ2/2 for the log-normal family of distributions.

For the nominal levels 5% and 10%, Tables 5–7 show the power estimates of the test based
on U statistic and the test proposed by Noughabi and Arghami [1] for testing exponentiality. The
entries are the 10,000 Monte Carlo samples of size n = 10, 20, which resulted in the rejection
of H0.
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402 B.R. Dhumal and D.T. Shirke

Table 5. Power comparisons of the tests for exponential against
the Gamma distribution.

n β α T ′ U

10 2 0.01 0.107 0.119
0.05 0.338 0.346

3 0.01 0.301 0.335
0.05 0.662 0.672

4 0.01 0.523 0.555
0.05 0.861 0.867

20 2 0.01 0.256 0.342
0.05 0.619 0.642

3 0.01 0.714 0.794
0.05 0.946 0.953

4 0.01 0.932 0.962
0.05 0.997 0.998

Table 6. Power comparisons of the tests for exponential against
the Weibull distribution.

n β α T ′ U

10 2 0.01 0.354 0.386
0.05 0.695 0.702

3 0.01 0.858 0.878
0.05 0.981 0.983

4 0.01 0.987 0.989
0.05 1.000 1.000

20 2 0.01 0.722 0.836
0.05 0.959 0.964

3 0.01 1.000 1.000
0.05 1.000 1.000

4 0.01 1.000 1.000
0.05 1.000 1.000

Table 7. Power comparisons of the tests for exponential
against the log-normal distribution.

n ν α T ′ U

10 −0.3 0.01 0.089 0.102
0.05 0.307 0.315

−0.2 0.01 0.252 0.280
0.05 0.611 0.619

−0.1 0.01 0.761 0.790
0.05 0.970 0.972

20 −0.3 0.01 0.304 0.294
0.05 0.600 0.616

−0.2 0.01 0.713 0.735
0.05 0.941 0.944

−0.1 0.01 0.998 1.000
0.05 1.000 1.000

5. Concluding remark

Simulation results presented in Tables 2 and 3 show that for almost all alternatives the modified
test for testing uniformity performs better than the test due to Noughabi and Arghami [1] for small
and moderate sample sizes. Even though the results are less competitive than the remaining group
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of tests especially for H and F alternatives, our aim was to develop a modified test for testing
exponentiality and not for testing uniformity.

The simulation study presented in Tables 5–7 shows the superiority of the modified test for
testing exponentiality over the test proposed by Noughabi and Arghami [1] for testing exponen-
tiality for the Weibull, gamma as well as log-normal alternatives. The test possesses attractive
power properties for small and moderate sample sizes.
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a b s t r a c t

Various subset selection methods are based on the least squares
parameter estimation method. The performance of these methods
is not reasonablywell in the presence of outlier ormulticollinearity
or both. Few subset selection methods based on the M-estimator
are available in the literature for outlier data. Very few subset
selection methods account the problem of multicollinearity with
ridge regression estimator.

In this article, we develop a generalized version of Sp statistic
based on the jackknifed ridge M-estimator for subset selection
in the presence of outlier and multicollinearity. We establish the
equivalence of this statistic with the existing Cp, Sp and Rp statistics.
The performance of the proposed method is illustrated through
some numerical examples and the correct model selection ability
is evaluated using simulation study.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the multiple linear regression model

Y = Xβ + ε, (1.1)
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where Y is a vector of n observations on the response variable, X is an n × kmatrix of n observations
on (k − 1) regressor variables with 1’s in the first column, β = (β0, β1, . . . , βk−1)

′ is a vector of k
unknown regression parameters and ε is an unknown random error assumed to follow normal dis-
tribution with zero mean and constant variance σ 2. Without loss of generality, we assume that the
regressor variables are standardized in such a way that X ′X is in the form of a correlation matrix.

In the literature, various subset selection methods based on the least squares (LS) estimator are
available likeMallows’ Cp [13], stepwise selectionmethods. TheMallows’ Cp is one of themost popular
subset selection methods. It is defined as

Cp =
RSSp
σ 2

− (n − 2p), (1.2)

where RSSp is the residual sum of squares of the subsetmodel based on (p − 1) regressor variables, σ 2

is the error variance and is replaced by its suitable estimate σ̂ 2
=


Y − X β̂LS

′

(Y −X β̂LS)/(n−k), β̂LS

is the LS estimator of β of the full model based on (k − 1) regressor variables.
It is well known that, the Cp statistic is based on the LS estimator and the LS estimator is very

sensitive to the presence of outliers or the violation of the assumption of normality on the error
variable (seeHuber [9]). In the past three decades,many robust parameter estimationmethods aswell
as subset selection methods have been devised. For instance, Ronchetti [17] proposed robust version
of AIC called RAIC, Ronchetti and Statudte [18] proposed robust version of Mallows’ Cp called RCp,
Sommer and Huggins [19] proposed RT p criterion based on Wald test statistic, Kim and Hwang [12]
defined Cp(k) method, Kashid and Kulkarni [11] proposed an Sp criterion which is a more general
criterion for subset selection in the presence of outlier in the data. The Sp criterion is operationally
simple to implement as compared to the other robust subset selection methods; it is defined as

Sp =

n
i=1


Ŷik − Ŷip

2
σ 2

− (k − 2p), (1.3)

where Ŷik and Ŷip are the predicted values of Yi based on the full model and the subset model respec-
tively. The unknown σ is replaced by its suitable estimate based on the full model as σ̂ = 1.4826
median|ri − median(ri)|, where ri is the ith residual.

The presence of multicollinearity is also one of the most serious and frequently encountered
problems in multiple linear regression. Due to the presence of multicollinearity, the variance of the
LS estimator gets inflated and consequently, the LS estimator becomes unstable and gives misleading
results. To overcome such a problem, Hoerl and Kennard [5,6] proposed the ordinary ridge regression
(ORR) estimator. Recently, Dorugade and Kashid [3] proposed Rp statistic for subset selection based
on the ORR estimator of β . It is defined as

Rp =

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

H ′

RHR

+ tr


H ′

RAHRA

+ p, (1.4)

whereσ 2 is the error variance and is replacedby its suitable estimate σ̂ 2
= (Y−X β̂R)

′(Y−X β̂R)/(n−k)
and β̂R is the ORR estimator of β based on the full model. The matrix HR = X(X ′X + rI)−1X ′,
HRA = XA(X ′

AXA+rAI)−1X ′

A, r and rA are the biasing constants known as ridge parameters. Note that, the
above Sp and the Rp statistics are equivalent to Mallows’ Cp when the LS estimator is used. Though the
Cp, Sp and Rp Statistics are used for correct subset selection in different situations, the subset selection
procedure of these three statistics is same and it is given as follows.
Subset selection procedure based on Cp, Sp and Rp statistics
Step I. Compute the value of statistic for all possible subset models.
Step II. Select a subset of minimum size, for which the value of the statistic is close to ‘p’ or plot the
values of statistic vs. ‘p’ for all possible subset models and select the subset which is closer to the line
‘statistic = p’.
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Many researchers have pointed out that theM-estimator is a better alternative to the LS estimator
in the presence of outliers (see Brikes and Dodge [1]) and the ORR estimator performs better in the
presence of multicollinearity (see [5–7]). Brikes and Dodge [1], Montgomery et al. [16] have given
description of these methods in the context of parameter estimation. However, these methods give
misleading results when outlier and multicollinearity occur simultaneously in the data (see Jadhav
and Kashid [10]).

To overcome the problem of simultaneous occurrence of outlier and multicollinearity, very re-
cently, Jadhav and Kashid [10] proposed an estimator known as Jackknifed RidgeM- (JRM) estimator.
They showed that, the performance of the JRM estimator is better in the mean square error sense
when outliers and multicollinearity present in the data.

In this article, we have proposed a generalized Sp criterion, called as GSp criterion for subset selec-
tion based on the JRM estimator when outlier andmulticollinearity occurs simultaneously in the data.

The rest of the article is organized as follows. In Section 2, the effect of presence of multicollinear-
ity and outliers on the existing subset selection criteria is demonstrated. Section 3 briefly introduces
the various estimators which are used in this article. In Section 4, a motivation to propose a new
subset selection criterion is presented and a subset selection criterion based on the JRM estimator is
defined. Some results and the equivalence of GSp statistic with Cp, Rp and Sp statistics are presented
in Section 5. In Section 6, simulated data sets are considered to illustrate the performance of the pro-
posed method. Also, a correct model selection ability of the GSp statistic and the performance of var-
ious robust estimates of σ 2 are presented in Section 6. Finally, the article ends with some concluding
remarks.

2. The problem

This section illustrates the problem of outlier and multicollinearity from the viewpoint of subset
selection. The purpose of this section is to highlight the effect of simultaneous occurrence of outlier
and multicollinearity on the subset selection criteria based on the LS estimator (Cp),M-estimator (Sp)
and ORR estimator (Rp).

A simulation design given by McDonald and Galarneau [15] is used to introduce multicollinearity
in the regressor variables as follows.

xij =

1 − ρ21/2 zij + ρzi(l+1) i = 1, 2, . . . , n, j = 1, 2, . . . , l (2.1)

where zij’s are independent standard normal pseudo random numbers and ρ2 is the correlation
between any two regressor variables. Here, l = 4 and ρ = 0.999 are considered to generate n = 20
observations on the response variable Y using the regression model

Yi = 10 + 3xi1 + 5xi2 + 0xi3 + 0xi4 + εi, i = 1, 2, . . . , 20,

where εi are independent and identically normally distributedwithmean 0 and variance 0.25. A single
outlier observation is introduced in the response variable corresponding to the maximum absolute
residual value. The actual value of the response variable Y13 = 1.5363 is changed to Y13 = 30.7260.
How the outlier observation is introduced in the response variable is given in Example 6.1 of Section 6.
To identify the severity of the multicollinearity, the variance inflation factor (VIF) is considered (see
Marquardt [14], Montgomery et al. [16]). For this data, the VIF for each term are 388.5831, 772.2531,
688.8542 and 296.6157. These VIFs indicate the presence of severe multicollinearity in the data. We
compute the values of Cp, Sp and Rp statistics and are reported in Table 1. Also, we plot the values of
Cp, Sp and Rp statistics of all possible subset models in Fig. 1.

FromTable 1, it is observed that the criteriaCp, Sp andRp selectwrong subsetmodels. Consequently,
in Fig. 1, the values of Cp, Sp and Rp statistics are close to p for wrong subset models. It is clear that,
when both outlier and multicollinearity present in the data, the Cp, Sp and Rp statistics fail to select
the correct subset model or there is ambiguity concerns to the selection of correct model. This study
indicates that subset selection method based on the LS estimator, M-estimator and ORR estimator
fails to select the correct model when the outlier and multicollinearity occurs simultaneously in the
data.
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Table 1
Values of Cp, Sp and Rp statistics for all subset models.

Regressors in subset model Cp Sp Rp

X1 2.1903 5.4235 2.3993
X2 2.7501 1.0843 2.7413
X3 2.4824 5.0971 2.6124
X4 1.9387 14.6250 2.2086
X1 X2 2.9131 1.0914 2.9373
X1 X3 3.9301 3.2280 3.0330
X1 X4 3.8417 5.4157 2.8594
X2 X3 3.9397 2.5536 3.1816
X2 X4 1.7539 2.6440 2.5774
X3 X4 3.1544 5.5966 2.8219
X1 X2 X3 4.6727 3.0192 4.0344
X1 X2 X4 3.0811 3.0597 3.7427
X1 X3 X4 5.0529 4.9692 3.8366
X2 X3 X4 3.5144 4.3136 3.7644
X1 X2 X3 X4 5.0000 5.0000 5.0000

Fig. 1. Values of Cp, Sp and Rp statistics versus p.

3. The estimators

In the multiple linear regression, an important task is to estimate the unknown regression param-
eters β using an appropriate method of estimation. In this section, some of the existing estimation
methods of β are briefly discussed as follows.
Least squares (LS) estimator

For the multiple linear regression model given in Eq. (1.1), the LS estimator of the unknown re-
gression parameters β is defined as

β̂LS =

X ′X

−1 X ′Y . (3.1)
Any standard textbook of regression like Draper and Smith [4], Montgomery et al. [16] give detailed
description about the LS estimator.
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M-estimator
To handle the problem of outliers, Huber [8] proposed the M-estimator for β . It is obtained by

minimizing a sum of the function of the scaled residuals
n

i=1

ρ


Yi − X ′

iβ

s


, (3.2)

where ρ : R → R+ robust criterion function (Montgomery et al. [16]) and s is a scale parameter which
is replaced by its suitable estimate. To minimize Eq. (3.2), differentiate Eq. (3.2) partially with respect
to each parameter and equate it to zero, we get k nonlinear equations of the form

n
i=1

ψ


Yi − X ′

iβ

s


xij, j = 0, 1, 2, . . . , k − 1, (3.3)

where ψ (·) is partial derivative of ρ (·) and xij is jth entry in the ith row of matrix X with xi0 = 1.
Solution to these k equations is obtained by iterative reweighted least squares method (see Draper
and Smith [4]). At convergence,M-estimator may be given as

β̂M =

X ′WX

−1 X ′W Y , (3.4)

whereW is diagonal matrix of weight with ith diagonal element,Wi = ψ


Yi−X ′
i β

s


/


Yi−X ′
i β

s


.

Ordinary Ridge Regression (ORR) estimator
To overcome the problem of multicollinearity, various biased estimators are available in the

literature. The ORR estimator proposed by Hoerl and Kennard [5,6] is one of the most popular biased
estimators. It is defined as

β̂R =

X ′X + rI

−1 X ′Y, (3.5)

where r is a ridge parameter.
Jackknifed Ridge M (JRM) estimator

Jadhav and Kashid [10] proposed the JRM estimator of β to combat the simultaneous occurrence
of outlier and multicollinearity in the data. It is defined as

β̂JRM =


I − r2Q ′


X ′X + rI

−2 Q

β̂M

= Rβ̂M , (3.6)

where R =


I − r2Q ′


X ′X + rI

−2 Q

,Q is the matrix of eigenvectors of X ′X, β̂M is theM-estimator

of the unknown parametersβ and r is the ridge parameter. The performance of this estimator is better
in the MSE sense as compared to the LS estimator, M-estimator, and the ORR estimator when both
outliers and multicollinearity present in the data.
Selection of ridge parameter r

To implement the ORR estimator, we need to obtain the value of ridge parameter r . Various meth-
ods are available in the literature for determining a ridge parameter r . Among these, the choice of the
ridge parameter proposed by Hoerl et al. [7] is widely used to obtain the ORR estimator. It is given by

r =
(k − 1) σ̂ 2

β̂ ′

LS β̂LS
, (3.7)

where σ̂ 2
=


Y ′Y − β̂ ′

LSX
′Y

/(n−k) (see Dorugade and Kashid [3]). Jadhav and Kashid [10] obtained

the JRM estimator by replacing the values of r by r̃ and it is given by

r̃ =
(k − 1) s2

β̂ ′

M β̂M
, (3.8)
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where s = 1.4826median|ri −median(ri)| and ri is ith residual obtained usingM-estimator. Based on
the JRM estimator, we propose a generalized version of Sp statistic for subset selection in the presence
of outlier and multicollinearity.

4. Proposed method

Consider themultiple linear regressionmodel given in Eq. (1.1). Then the vector of predicted values
of Y based on the JRM estimator of β is

Ŷk = X β̂JRM

= HY (4.1)

where H = XR

X ′WX

−1 X ′W is the prediction matrix based on the full model. The full model is the
one which contains all (k − 1) regressor variables.

The model given in Eq. (1.1) can be written as

Y = XAβA + XBβB + ε (4.2)

where X and β are partitioned as X = [XA : XB] and β ′
=

β ′

A : β ′

B


. Thematrix XA is of order n×pwith

1s in the first column and thematrix XB is of order n×(k − p). βA and βB are the vectors of parameters
of order p × 1 and (k − p)× 1 respectively.

Consider the subset model based on the (p − 1) regressor variables

Y = XAβA + ε. (4.3)

Suppose, β̂AJRM be the JRM estimator of βA based on the subsetmodel given in Eq. (4.3), then the vector
of predicted values of Y based on the JRM estimator is

Ŷp = XAβ̂AJRM

= H1Y (4.4)

where H1 = XARA

X ′

AWAXA
−1 X ′

AWA denote the prediction matrix for the subset model based on the
JRM estimator.

Based on the two predicted vectors Ŷk and Ŷp of Y , we propose a generalized version of Sp statistic.
The main objective to define new criterion is that to select a subset model of size p (≤k) such that it
will predict the response variable ‘as accurate as’ the full model.

4.1. Motivation

Themotivation of the proposedmethod is similar to the Sp criterion proposed by Kashid and Kulka-
rni [11]. Let Ŷik and Ŷip be the predicted values of Yi based on the JRM estimator for the full model and

the subset model respectively. The quantity
n

i=1


Ŷik−Ŷip

2
σ 2 is small when Ŷik is close to Ŷip that is, the

prediction based on the model with (p − 1) regressors is as accurate as that based on the model with

(k−1) regressors. When the quantity
n

i=1


Ŷik−Ŷip

2
σ 2 is large then Ŷik is far away from Ŷip and it implies

that, prediction based on the model with (p − 1) regressors may not be as ‘accurate’ as that based on
themodel with (k−1) regressors. Using the same logic, we propose the following criterion for subset
selection.

4.2. Definition of GSp

The proposed generalized Sp criterion is denoted by GSp and is defined as

GSp =

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

(H − H1)

′ (H − H1)

+ p (4.5)
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where σ 2 is the unknown error variance, replaced by its suitable estimate based on the JRM estimator,
H andH1 are the predictionmatrices defined in the beginning of Section 4. The purpose of subtracting

tr

(H − H1)

′ (H − H1)


− p from the first term
n

i=1


Ŷik−Ŷip

2
σ 2 is simply to compare the GSp statistic

with the dimensions of the subset model for the selection of a correct or an adequate model. A subset
model is said to be correct or adequate, if the prediction based on the subset model is as accurate as
that based on full model.

Belowwediscuss some resultswhich are useful for implementing the proposedmethod. Here, note
that the predictionmatrix changes with respect to the change in the estimator of unknown regression
parameters and the choice of the estimator is based on the nature of the data.

5. Some results

In this section, we present some results to support the use of the proposed criterion to select the
correct subset model. Also, we have derived the equivalence of the proposed GSp statistic with the
Cp, Sp and Rp statistics.

Result 5.1. If the subset model is adequate then,

E


n

i=1


Ŷik − Ŷip

2
∼= σ 2 tr


(H − H1)

′ (H − H1)

. (5.1)

Proof. Consider, Ŷik and Ŷip be the ith predicted values of Y based on the JRM estimator for the full
model and the subset model respectively. Then, we can write,

n
i=1


Ŷik − Ŷip

2
=


Ŷk − Ŷp

′ 
Ŷk − Ŷp


= (HY − H1Y )′ (HY − H1Y )

= Y ′ (H − H1)
′
(H − H1) Y . (5.2)

Now,

E


n

i=1


Ŷik − Ŷip

2
= E


Y ′ (H − H1)

′
(H − H1) Y


.

Since

(H − H1)

′ (H − H1)

is a symmetric matrix, then using the properties of quadratic form, the

expected value of the quadratic equation given in Eq. (5.2) can be written as,

E


n

i=1


Ŷik − Ŷip

2
= σ 2 tr


(H − H1)

′ (H − H1)

+ β ′X ′


(H − H1)

′ (H − H1)

Xβ.

But, when the subset model is appropriate, the quantity β ′X ′

(H − H1)

′ (H − H1)

Xβ ∼= 0, hence,

E


n

i=1


Ŷik − Ŷip

2
∼= σ 2 tr


(H − H1)

′ (H − H1)

.

Result 5.2. If the subset model is adequate then

E

GSp


∼= p. (5.3)
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Proof. When the subset model is adequate, from Result 5.1, we can write,

E


n

i=1


Ŷik − Ŷip

2
σ 2

 ∼= tr

(H − H1)

′ (H − H1)

.

Therefore,

E

GSp


∼=

tr

(H − H1)

′ (H − H1)


−

tr

(H − H1)

′ (H − H1)


+ p
= p. (5.4)

Result 5.3.
n

i=1


Ŷik − Ŷip

2
= RSSp − RSSk − 2Y ′(H − H ′H − H ′

1 + H ′

1H)Y . (5.5)

Proof. We can write,
n

i=1


Ŷik − Ŷip

2
=


Ŷk − Ŷp

′ 
Ŷk − Ŷp


=


Ŷk − Y + Y − Ŷp

′ 
Ŷk − Y + Y − Ŷp


=


(Y − Ŷp)− (Y − Ŷk)

′ 
(Y − Ŷ p)− (Y − Ŷk)


=


Y − Ŷp

′ 
Y − Ŷp


+


Y − Ŷk

′ 
Y − Ŷk


− 2


Y − Ŷp

′ 
Y − Ŷk


=


Y − Ŷp

′ 
Y − Ŷp


+


Y − Ŷk

′ 
Y − Ŷk


− 2(Y − Ŷk + Ŷk − Ŷp)

′


Y − Ŷ k


= RSSp + RSSk − 2RSSk − 2(Ŷk − Ŷp)

′


Y − Ŷk


= RSSp − RSSk − 2Y ′(H − H ′H − H1 + H ′

1H)Y . (5.6)

The quantity in Eq. (5.6) depends on the estimator of β . It varies according to the choice of the
estimator. The following results discuss the equivalence of the GSp statistic with the Cp, Sp and Rp
statistics.

Result 5.4. When the LS estimator

β̂LS


of β is used to obtain the predicted values, then the GSp

statistic reduces to the Cp statistic.

Proof. Suppose the LS estimator

β̂LS


of β is used to obtain the predicted values of the response

variable, then the prediction matrices H and H1 becomes H = X

X ′X

−1X ′ and H1 = XA

X ′

AXA
−1X ′

A
respectively. Also, H and H1 matrices are symmetric and idempotent. When the subset model is
adequate, then the last quantity Y ′(H − H ′H − H1 + H ′

1H)Y of Eq. (5.6) becomes zero and the GSp
statistic becomes

GSp =
RSSp − RSSk

σ 2
− tr


(H − H1)

′ (H − H1)

+ p

=
RSSp − RSSk

σ 2
− tr


H ′H − H ′H1 − H ′

1H + H ′

1H1

+ p

=
RSSp − RSSk

σ 2
− tr


H ′H


+ tr


H ′H1


+ tr


H ′

1H

− tr


H ′

1H1

+ p.
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Using the idempotent property of H and H1 matrices, we can write

GSp =
RSSp
σ 2

−
RSSk
σ 2

− tr(H)+ tr (H1)+ tr

H ′

1


− tr (H1)+ p

=
RSSp
σ 2

−
RSSk
σ 2

− k + p + p − p + p

=
RSSp
σ 2

− (n − k)− (k − 2p)

where σ 2 is replaced by

RSSk
n − k


=

RSSp
σ 2

− (n − 2p)

= Cp. (5.7)

Thus, the GSp statistic reduces to the Cp when the LS estimator β̂LS of β is used.

Result 5.5. When the M-estimator

β̂M


of β is used to obtain the predicted values, then the GSp

statistic reduces to the Sp statistic.

Proof. Let β̂M be the M-estimator of β used to predict the response variable, then the prediction
matrix H reduces to H = X(X ′WX)−1X ′W and H1 reduces to H1 = XA(X ′

AWAXA)
−1X ′

AWA.
Hence,

GSp =

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

H ′H


+ tr


H ′H1


+ tr


H ′

1H

− tr


H ′

1H1

+ p.

The matrices H and H1 are idempotent matrices and are not exact but close to symmetric matrices.
Hence,

GSp ∼=

n
i=1


Ŷik − Ŷip

2
σ 2

− tr(H)+ tr (H1)+ tr

H ′

1


− tr (H1)+ p

∼=

n
i=1


Ŷik − Ŷip

2
σ 2

− k + p + p − p + p

=

n
i=1


Ŷik − Ŷip

2
σ 2

− (k − 2p)

= Sp. (5.8)

Thus, the GSp statistic is equivalent to the Sp statistic when theM-estimator of β is used.

Result 5.6. When the ORR estimator

β̂R


of β is used to obtain the predicted values, then the GSp

statistic reduces to the Rp statistic.

Proof. Suppose, β̂R is used to obtain the predicted values of the response variable, then matrix H and
H1 become HR = X(X ′X + rI)−1X ′ and HRA = XA(X ′

AXA + rAI)−1X ′

A.
Hence, the GSp statistic becomes,

GSp =

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

(HR − HRA)

′ (HR − HRA)

+ p

=

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

H ′

RHR − H ′

RHRA − H ′

RAHR + H ′

RAHRA


+ p.
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WedecomposeHR into sumofHRA andHRB such that,HRAHRB = 0 (see Chatterji andHadi [2], Dorugade
and Kashid [4]). Using this decomposition, we can write

GSp ∼=

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

H ′

RHR − H ′

RHRA − H ′

RAHR + H ′

RAHRA


+ p

∼=

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

H ′

RHR − H ′

RAHRA


+ p

=

n
i=1


Ŷik − Ŷip

2
σ 2

− tr

H ′

RHR

+ tr(H ′

RAHRA)+ p

= Rp. (5.9)

Subset selection procedure based on the GSp statistic
Using the Result 5.3, the subset selection procedure based on the GSp statistic is given as follows:

Step I. Compute the value of the GSp statistic for all possible subset models.
Step II. Select a subset of minimum size, for which the value of the GSp statistic is close to ‘p’.

In the following section, we study the correct subset selection performance of the Cp, Sp, Rp and
GSp statistics.

6. Simulation study

A simulation study is carried out to illustrate the performance of proposed method. A simulation
study is divided into three subsections. Section 6.1 illustrate the performance of the Cp, Sp, Rp and
GSp criteria through numerical examples for all combinations of absence and presence of outlier and
multicollinearity. A correctmodel selection ability of these criteria is evaluated in Section 6.2. Also, the
various choices of the estimator of σ 2 are considered in Section 6.3 and their performance is studied
through numerical example.

For the computation ofM-estimator, Huber’s robust criterion function is used. The form of ρ (·) is

ρ(z) =


1
2
z2 |z| ≤ t

|z| t −
1
2
t2 |z| > t

where z is scaled residuals and t = 1.345.

6.1. Numerical examples

In this subsection, we have considered four cases: 1. Clean data, 2. Data with outlier, 3. Data with
multicollinearity and 4. Data with outlier and multicollinearity. Example 6.1 illustrate the perfor-
mance of the Cp, Sp, Rp and GSp statistics for first two cases. However, Example 6.2 consider the last
two cases to study the correct subset selection performance of the Cp, Sp, Rp and GSp statistics.

Example 6.1. Here, we have considered the following regression model to generate n = 20
observations on the response variable Y as

Yi = 1 + 2Xi1 + 3Xi2 + 0Xi3 + 0Xi4 + εi, i = 1, 2, . . . , n

where Xij ∼ U(0, 1), i = 1, 2, . . . , n, j = 1, 2, 3, 4 and εi ∼ N(0, 0.25). A method to introduce
outlier in the response variable suggested by Jadhav and Kashid [10] is implemented. A single outlier
observation is introduced in the response variable corresponding to largest absolute residual by
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Table 2
Values of Cp, Sp, Rp and GSp statistics for all subset models.

Regressors in the model Clean data With one outlier data
Cp Sp Rp GSp Cp Sp Rp GSp

X1 41.4566 88.8442 38.9205 89.5066 6.4856 88.9771 3.9139 89.2078
X2 21.8913 59.5440 20.1670 59.8542 3.7951 63.7876 2.8164 63.7516
X3 55.3685 127.1283 57.0563 128.0798 4.5724 129.3113 3.0506 129.9719
X4 59.6552 143.6816 94.6994 144.0413 6.8399 143.4294 4.1313 143.5348
X1 X2 2.7568 3.2767 2.9584 3.1723 4.7240 3.3099 3.5026 2.9617
X1 X3 42.1485 86.6213 38.7884 87.3354 6.2909 88.7644 3.9701 88.9678
X1 X4 43.2062 91.3802 39.9829 92.1708 7.1991 91.0399 4.5070 91.3607
X2 X3 19.6384 48.3448 17.5928 48.4336 2.1995 53.3889 2.5820 53.1513
X2 X4 19.9072 57.8829 18.1727 57.8715 4.6941 65.2842 3.6406 64.9878
X3 X4 54.2756 125.7806 51.6828 126.7200 6.1055 127.9752 3.9853 128.6459
X1 X2 X3 4.3852 3.6169 4.3647 3.5583 4.0004 3.6296 3.8108 3.5170
X1 X2 X4 3.6821 5.1481 3.8975 5.0931 5.0321 5.3201 4.3798 5.1078
X1 X3 X4 43.5963 89.3993 39.5378 90.3715 7.5577 90.4398 4.8287 90.5849
X2 X3 X4 16.6383 44.2775 14.8272 44.3727 3.4836 51.8037 3.824 51.2683
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

multiplying the actual value of Y by twenty (largest absolute residual corresponds to Y19 and its actual
value and outlier value after multiplying by 20 is 4.73744 and 94.7488 respectively). The values of the
Cp, Sp, Rp and GSp statistics are computed for all possible subset models and are presented in Table 2.

It is clear that, the values of the Cp, Sp, Rp andGSp statistics for subset {X1, X2} are close to p(=3) for
clean data. This indicates that, all four methods agree upon the importance of two regressor variables
X1 and X2 and select the correct subset model. For outlier case, it seems that the Cp and Rp statistics
select the wrong subset or more than one subset models. These both criteria fail to select the correct
subset model. As a contrast, we can see that the Sp and GSp statistics select the same subset which is
selected for clean data. Therefore, the Sp and GSp statistics are immune to the presence of outlier in
the data.

Example 6.2. In this example, the simulation design given in Eq. (2.1) is used to introduce multi-
collinearity in the regressor variables. The degree of multicollinearity is set to ρ = 0.999 and n = 30
observations are generated on the response variable using the following regression model

Yi = 15 + 5xi1 + 5xi2 + 0xi3 + 0xi4 + εi,

where εi ∼ N (0, 1) , i = 1, 2, . . . , 30. The same scenario used in Example 6.1 is implemented to
introduce an outlier observation in the response variable. The VIFs corresponding to each regressor
variable are 405.0179, 441.0012, 373.2567 and 509.0688. The values of Cp, Sp, Rp and GSp statistics for
all possible subset models are computed for without and with one outlier case and are reported in the
Table 3.

Table 3 shows that in presence of multicollinearity in the data, the Rp and GSp statistics select the
subset {X1, X2} as both satisfy the criterionwhile the Cp and Sp statistics satisfy the criterion for several
subsets of different sizes and so no definite conclusion can be drawn. In other words, they fail to select
the correct subset.

In the presence of outlier as well as multicollinearity, the Rp statistic selects several subsets
while the GSp statistic selects the subset correctly namely {X1, X2}. Thus, this study shows that the
performance of GSp statistic is better than its competitors in the presence of data anomalies like
outliers and multicollinearity.

Further, to assess the performance of the GSp statistic in the presence of several outliers, we have
considered above data set (used in Example 6.2). By introducing two and three outlier observations
in the response variable, the correct model selection performance of the Cp, Sp, Rp and GSp statistics
is evaluated. The results are presented in Table 4.

Table 4 indicates similar conclusions as in case of one outlier, namely, the GSp statistic selects the
correct subset model {X1, X2} while Cp and Sp statistics select several subsets satisfying the criterion
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Table 3
Values of Cp, Sp, Rp and GSp for all subset models in the presence of multicollinearity.

Regressors in the model Without outlier With one outlier
Cp Sp Rp GSp Cp Sp Rp GSp

X1 3.0624 4.0741 4.8225 4.0673 0.0868 4.0757 1.9696 4.0402
X2 4.7698 7.1797 5.8701 7.3400 −0.0061 7.1948 1.9213 7.3243
X3 13.7610 16.7849 13.5605 16.9714 0.2235 16.7863 2.0500 16.8117
X4 16.9498 21.3865 12.9645 20.2555 0.0976 21.3939 1.9813 20.1864
X1 X2 2.7505 3.5041 3.4738 3.2757 1.7151 3.5189 2.8865 3.2695
X1 X3 3.0103 3.1471 3.7453 3.6414 1.7867 3.1461 2.8929 3.6164
X1 X4 4.4605 5.2065 4.3467 4.8318 2.0868 5.2072 2.7099 4.7966
X2 X3 3.9440 4.8946 4.1756 4.7671 1.1404 4.8960 2.8873 4.7696
X2 X4 6.2422 8.2382 5.5534 7.5530 1.7710 8.2538 2.8762 7.5054
X3 X4 14.0713 16.7995 11.4287 15.7780 1.5284 16.7907 2.9295 15.7992
X1 X2 X3 3.7495 3.8968 3.4489 3.7146 3.1025 3.8993 3.9311 3.7153
X1 X2 X4 4.7441 5.4564 4.2877 4.9393 3.6141 5.4687 3.9191 4.9174
X1 X3 X4 4.8445 4.9141 4.9912 5.5923 3.4331 4.9156 3.9596 5.5801
X2 X3 X4 5.3831 6.2449 5.5784 6.6812 3.0479 6.2465 3.9249 6.6903
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

Table 4
Values of Cp, Sp, Rp and GSp for all subset models in the presence of multicollinearity and more than one outlier.

Regressors in the model With two outliers With three outliers
Cp Sp Rp GSp Cp Sp Rp GSp

X1 0.2189 3.1665 2.0991 3.6478 −0.8819 3.1855 2.2393 3.6339
X2 0.1246 5.7824 2.0488 6.8607 −0.8933 5.7982 2.2342 6.8489
X3 0.4238 17.1435 2.2255 18.4844 −0.7931 17.1703 2.2813 18.8167
X4 0.2749 20.3236 2.1399 20.8400 −0.7848 20.3956 2.2828 20.4596
X1 X2 1.9256 2.7502 2.8969 2.7616 1.1066 2.7400 2.9518 2.7213
X1 X3 1.7165 3.1903 2.9178 3.7398 1.0853 3.1907 2.9094 3.7252
X1 X4 2.1909 4.6171 2.8028 4.5929 1.0607 4.6175 2.9481 4.5601
X2 X3 1.0655 4.7947 2.9047 4.9666 1.0642 4.8012 2.9204 4.9436
X2 X4 1.7747 7.2267 2.9031 7.2986 1.0137 7.2338 2.9766 7.3958
X3 X4 1.6978 16.9648 2.9623 17.1498 1.2064 16.9686 3.0786 17.0818
X1 X2 X3 3.0614 3.8247 3.9376 3.7411 3.0550 3.8260 3.9361 3.7317
X1 X2 X4 3.7025 4.7580 3.9313 4.5242 3.0000 4.7454 3.9879 4.4937
X1 X3 X4 3.4453 5.0073 3.9738 5.6390 3.0607 5.0082 3.9730 5.7065
X2 X3 X4 3.0068 6.2014 3.9417 6.7953 3.0130 6.2008 3.9974 6.7293
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

and thereby leading to inconclusive decision. The values of the Rp statistic corresponding to more
than one subset models are close to p and it selects correct as well as wrong subset models. Hence,
the performance of the GSp statistic is again better than the rest in the presence of multicollinearity
and more than one outlier observations in the data.

The graphical representation brings out the above facts clearly. For this purpose, the data set
exhibitingmulticollinearity and having two outliers’ given in Table 4 is considered. The values of Sp, Rp
and GSp statistics corresponding to subset models are plotted in Fig. 2. Also, from Tables 3 and 4, the
values of GSp statistic for subset models corresponding to one outlier case, two outliers case and three
outliers’ case are obtained and plotted against p in Fig. 3. These figures clearly indicate that the GSp
statistic consistently select the correct subsetmodel for the problemofmulticollinearitywith different
number of outliers in the response variable.

6.2. Model selection ability

In this subsection, the correct model selection ability of the Cp, Sp, Rp and GSp statistics is stud-
ied. A simulation design given by McDonald and Galarneau [15] in Eq. (2.1) is used to induce
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Fig. 2. Values of Sp, Rp and GSp statistics versus p.

Fig. 3. Values of GSp statistic versus p.

multicollinearity in X1 and X2 regressor variables of the following regression models.

Model I Yi = 5 + 4Xi1 + 0Xi2 + 3Xi3 + 0Xi4 + εi, i = 1, 2, . . . , 30
Model II Yi = 5 + 2Xi1 + 0Xi2 + 4Xi3 + 0Xi4 + 3Xi5 + εi, i = 1, 2, . . . , 50.
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Table 5
Model selection ability of Cp, Sp, Rp and GSp statistics.

ρ Without outlier With one outlier
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Model I

σ 2
= 0.25

Cp 72 81 74 71 23 24 20 18
Sp 63 66 63 62 63 68 62 64
Rp 72 79 72 71 25 23 20 21
GSp 63 66 64 63 63 68 64 65
σ 2

= 1
Cp 70 74 74 71 17 19 19 18
Sp 61 63 64 62 65 60 63 59
Rp 69 74 73 70 18 21 22 17
GSp 62 63 64 63 65 62 64 61

Model II

σ 2
= 0.25

Cp 81 74 76 79 16 24 21 20
Sp 75 67 69 72 59 65 70 63
Rp 81 74 75 77 17 29 21 20
GSp 76 68 69 73 62 66 72 66
σ 2

= 1
Cp 63 74 74 79 22 21 19 19
Sp 62 67 62 72 57 63 63 63
Rp 61 74 74 79 24 25 18 23
GSp 63 69 62 74 62 65 64 67

The remaining regressor variables in Model I (X3 and X4) and Model II (X3 and X5) are generated
from standard normal distribution. TomakeModel II more complicated, regressor variable X4 is taken
as a product of X2 and X3 regressor variable. The error variable εi, i = 1, 2, . . . , n is generated from
normal distribution with mean 0 and variance σ 2

= 0.25 and σ 2
= 1. The different degrees of mul-

ticollinearity are achieved by setting ρ = 0.6, 0.7, 0.8 and 0.9. The scenario used in Example 6.1 of
Section 6 is followed to introduce outlier observation in the response variable.

The simulation experiment is replicated 100 times for each model, for all combinations of degree
of multicollinearity (ρ), error variance (σ 2) and with and without outlier case. The values of the Cp,
Sp, Rp and GSp statistics are computed for all possible subset models. The number of times that the
Cp, Sp, Rp and GSp statistics selects the correct subset model is counted and reported in the Table 5.

Table 5 shows that, for without outlier case, the frequency of correct model selection of the Cp
and Rp statistics is larger than that of the Sp and GSp statistics. But, for single outlier case, the correct
model selection ability of the GSp statistic is uniformly larger than that of the Cp and Rp statistics for
both model I and model II. For one outlier case, the percentage of correct subset model selection by
the GSp statistic is larger than that of the Sp statistic when the value of ρ is large.

6.3. Choice of the estimator of σ 2

In the computation of the GSp statistic, we use a scale parameter σ 2. Since it is unknown, we need
to use its suitable estimator. Various estimators of σ 2 are available in the literature. For examining the
performance of the GSp criterion, we use four different types of estimators of σ 2 which are based on
the JRM estimator. Let ri be the ith residual based on the JRM estimator of β and it is defined as,

ri = Yi − X ′

i β̂JRM , i = 1, 2, . . . , n.

We consider the following estimator of σ 2.

1. σ̂ 2
1 = [1.4826Median |ri − Median (ri)|]2

2. σ̂ 2
2 = [1.4826Median |ri|]2

3. σ̂ 2
3 =

n
i=1 r

2
i w

2
i / (n − k)

4. σ̂ 2
4 =

n
i=1 r

2
i w

2
i /
n

i=1 |riwi|

.
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Table 6
Values of GSp statistic for all subset models with different estimates of σ 2 .

Regressors in the
model

With one outlier With two outliers

σ̂ 2
1 σ̂ 2

2 σ̂ 2
3 σ̂ 2

4 σ̂ 2
1 σ̂ 2

2 σ̂ 2
3 σ̂ 2

4
(0.9881)a (0.8478) (0.8112) (0.9949) (0.9881) (0.8478) (0.8050) (0.9901)

X1 337.5378 393.5145 411.3049 335.2256 336.6605 392.5125 413.4319 336.0047
X2 102.7412 119.8496 125.2869 102.0346 103.7496 121.0292 127.5012 103.5467
X3 615.8711 717.9162 750.3480 611.6561 615.6479 717.6772 755.8924 614.4499
X4 124.4055 145.1017 151.6793 123.5507 125.0403 145.8491 153.6430 124.7960
X1 X2 2.9559 3.2151 3.2974 2.9452 2.9414 3.2006 3.2977 2.9384
X1 X3 314.6453 366.4917 382.9694 312.5038 313.0681 364.6737 384.0026 312.4621
X1 X4 12.9300 14.8421 15.4498 12.8510 12.9644 14.8887 15.6094 12.9418
X2 X3 43.3745 50.3237 52.5323 43.0875 43.6117 50.6038 53.2227 43.5296
X2 X4 103.6550 120.5901 125.9723 102.9555 104.5139 121.5935 127.9907 104.3133
X3 X4 11.7165 13.4261 13.9695 11.6459 11.6709 13.3807 14.0210 11.6508
X1 X2 X3 3.5522 3.5621 3.5653 3.5518 3.5441 3.5539 3.5576 3.5440
X1 X2 X4 3.8178 3.8903 3.9134 3.8148 3.8174 3.8897 3.9168 3.8165
X1 X3 X4 6.9981 7.5776 7.7618 6.9741 7.0097 7.5940 7.8129 7.0029
X2 X3 X4 11.7398 13.1290 13.5705 11.6825 11.7104 13.0941 13.6124 11.6941
X1 X2 X3 X4 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000
a Figures in parenthesis indicate the estimate of σ 2

i , i = 1, 2, 3, 4.

The performance of these estimators is illustrated by using a simulated example. Here, a random
sample of size n = 30 is generated from N4(0, Σ), on X1, X2, X3 and X4, where,


=

 1 0.531 −0.850 −0.531
0.531 1 −0.401 −0.972

−0.850 −0.401 1 0.288
−0.531 −0.972 0.288 1

 .
A regression model considered to generate n = 30 observations on the response variable is given

by

Yi = 5 + 2Xi1 + 4Xi2 + 0Xi3 + 0Xi4 + εi, i = 1, 2, . . . , 30,

where εi ∼ N(0, 1). The VIFs of each term are 31.0458, 182.9686, 33.1639 and 210.6130. One and
two outlier observations are introduced in the response variable using the same procedure given in
Example 6.1. Based on the simulated data, the values of the GSp statistic for one outlier and two outlier
observations case with four different estimators of σ 2 are obtained and presented in Table 6.

From Table 6, it is clear that the GSp statistic select the same subset {X1, X2} in the presence of
multicollinearity with one outlier and two outliers case for all estimators of σ 2. The values of σ̂ 2

1 and
σ̂ 2
4 are close to true value of σ 2 as compare to the values of σ̂ 2

2 and σ̂ 2
3 . Consequently, the value of GSp

statistic corresponding to the correct subset model using σ̂ 2
1 and σ̂ 2

4 are close to p as compare to that
of the σ̂ 2

2 and σ̂ 2
3 .

7. Conclusion

We have developed a subset selection procedure based on the JRM estimator of the unknown re-
gression parameters. This method works well in subset selection for clean data or in presence of only
outlier or onlymulticollinearity or both outlier andmulticollinearity. Also, the performance of the pro-
posedmethod is evaluated for the presence of more than one outlier observations andmulticollinear-
ity in the data. The correct model selection ability of the proposed method is also obtained. It reveals
that, the performance of the proposed method is considerably better as compare to other existing
methods when the outlier observations and multicollinearity occur simultaneously in the data.
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In this article, we consider a k-unit series system with component lifetime
distribution to be a member of the scale family of distributions. We discuss
estimation of the scale parameter and estimation of reliability function of the
family based on progressively Type-II censored sample. The maximum like-
lihood estimator (MLE) of the scale parameter is derived using Expectation-
Maximization (EM) algorithm and is used to estimate reliability function.
Confidence intervals are constructed using asymptotic distribution of MLE.
β -expectation tolerance interval for lifetime of the system is obtained. We
consider half-logistic distribution as a member of the scale family and study
performance of the MLE, reliability estimate and confidence interval using
simulation experiments. Illustration through real data example is provided.

keywords: Progressively Type-II censoring, EM algorithm, MLE, confi-
dence interval, coverage probability, reliability, β-expectation tolerance in-
terval, half-logistic distribution.

1 Introduction

In industrial phenomenon series systems are widely used. Electric, automobile as well as
in chemical industry various units are connected in series. Here system is working if all
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 229

units in system are working. If any one unit is failed then system fails. Thus, system life
is smaller than unit life. Life testing under series system is more costly, because failure
of one unit reflects in system failure. Therefore, we use censoring criteria, in that; we
remove some working systems without observing its failure time. The unobserved failure
time data are called censored data.

Broadly censoring is classified into two types; Type-I and Type-II censoring. Type-I
censoring depends on time. In this type, an experiment continues up to a pre-determined
time T . Units having failure time after time T are not observed. Here, failure time will
be known exactly only if it is less than T . For example, if n units are placed on test,
but decision is made to terminate the test at time T , then failure times will be known
exactly only for those units that fail before time T . In Type-I censoring, the number of
exact failure times observed is random.

Type-II censoring scheme is often used in life testing experiment. In this scheme
only m units in a random sample of size n(m < n) are observed. Progressive Type-II
censoring is a generalization of Type-II censoring. In progressive censoring scheme, the
number m and R1, R2,...., Rm are fixed prior to the test and

∑m
i=1Ri = n−m. At the

first failure R1 units are randomly removed from remaining n− 1 units. At the second
failure, R2 units are randomly removed from remaining n− 2−R1 units and so on. At
the mth failure all remaining Rm units are removed. Here, we observe failure time of
m units and remaining n −m units are removed at different stages of experiment. In
conventional Type-II censoring scheme R1 = R2 = .... = Rm−1 = 0 and Rm = n−m. In
this article, the progressive Type-II censoring scheme is considered.

Many authors studied progressive Type-II censoring scheme for various lifetime dis-
tributions. Cohen (1963) introduced progressive Type-II censoring. Mann (1969) and
Mann (1971) considered Weibull distribution with progressive censoring. Balakrish-
nan and Asgharzadeh (2005), Balakrishnan et al. (2003) and Balakrishnan et al. (2004)
discussed inference for half-logistic, Gaussian and extreme value distribution under pro-
gressive Type-II censoring scheme respectively. Ng (2005) studied parameter estimation
for modified Weibull distribution under progressive Type-II censoring. Balakrishnan and
Aggarwala (2000) gave details about progressive censoring. Balakrishnan (2007) studied
various distributions and inferential methods for progressively censored data. Pradhan
(2007) considered point and interval estimation of a k-unit parallel system based on
progressive Type-II censoring scheme with exponential distribution as the component
life distribution.

Kim and Han (2010) discussed half-logistic distribution for Type-II progressively
censored samples. Iliopoulos and Balakrishnan (2011) studied likelihood inference for
Laplace distribution based on progressively Type-II censored samples. Asgharzadeh and
Valiollahi (2011) considered estimation of the scale parameter of the Lomax distribution
under progressive censoring scheme. Krishna and Malik (2012), Krishna and Kumar
(2011) and Krishna and Kumar (2013) studied reliability estimation in Maxwell, Lind-
ley and generalized inverted exponential distribution with progressively Type-II censored
data. Recently, Potdar and Shirke (2014) discussed inference for the scale parameter of
lifetime distribution of k-unit parallel system based on progressively Type-II censored
data. Potdar and Shirke (2012) studied inference for the distribution of a k-unit par-
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allel system with exponential distribution as the component life distribution based on
Type-II progressively censored sample. Potdar and Shirke (2013a) discussed inference
for the parameters of generalized inverted family of distributions. Potdar and Shirke
(2013b) studied reliability estimation for the distribution of a k-unit parallel system
when Rayleigh distribution as component lifetime distribution.

Dempster et al. (1977) introduced expectation-maximization (EM) algorithm. They
presented maximum likelihood estimation for incomplete data. McLachlan and Krishnan
(2007) gave more details about EM algorithm. Little and Rubin (2002) have discussed
EM algorithm for exponential family of distributions. Pradhan and Kundu (2009) used
EM algorithm to estimate parameters of generalized exponential distribution under pro-
gressive Type-II censoring scheme. Ng et al. (2002) used EM algorithm to estimate
parameters of lognormal and Weibull distributions under Type-II censoring scheme. In
this article, we use EM algorithm for estimation of the parameters of a k-unit series
system based on progressive Type-II censoring scheme when unit lifetime distribution
belongs to the scale family. Parameter estimation is based on the lifetimes of the system.
We assume that n units are put on test and failure times of

∑m
i=1Ri = n − m. units

are censored. Failure times of these censored units are unknown. We consider this data
as missing and use EM algorithm to compute MLE. We use idea of missing information
principle of Louis (1982). Asymptotic normal distribution of MLE is used to construct
confidence interval for the scale parameter. We also discuss tolerance interval for the
lifetime of the system, on the lines of Kumbhar and Shirke (2004).

The present work is different than the work reported by Pradhan (2007) in many
aspects. The first thing is that we consider scale family of distributions and exponential
distribution considered by Pradhan (2007) is a member of the family. Further, we obtain
MLE using EM algorithm instead of using Newton-Raphson method. We use Newton-
Raphson method within EM algorithm. Pradhan (2007) has considered only parameter
estimation, while we consider inference of parameter as well as reliability function. We
use missing information principle to compute Fisher information. We illustrate use of
the results developed with half-logistic distribution, which is a member of scale family.
Number of schemes that we consider are 30, which include schemes with small sample
sizes.

In Section 2, we introduce the model and obtain MLE for the scale parameter and
reliability function. We also provide an expression for Fisher information. Asymptotic
confidence interval for the scale parameter based on MLE, log-MLE and confidence in-
terval for the reliability function is discussed in the same section. Section 3 provides
β-expectation tolerance interval for the lifetime of a k-unit series system based on pro-
gressively censored data. In Section 4, we consider the half-logistic distribution as a
member of the scale family and discuss MLE, reliability function, confidence intervals
and tolerance intervals. Performance of the MLE and confidence intervals of scale param-
eter and reliability function of half-logistic distribution is investigated using simulations.
Results of simulation study have been reported in Section 5. Real data application is
discussed in Section 6. Conclusions are presented in Section 7.
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2 Model and Estimation of the Scale Parameter

Let Gλ be a scale family of lifetime distributions where λ is the parameter of the in-
terest. Consider a k-unit series system with independent and identically distributed
units having lifetimes X1, X2, ...., Xk of k units. That is, Xi is the lifetime of the ith

unit having cumulative distribution function (cdf) G
(
xi
λ

)
. The lifetime of the system is

X = Min.(X1, X2, ...., Xk). The cdf of X is

F (x;λ) = 1−
[
1−G

(x
λ

)]k
x ≥ 0, λ > 0.

The probability density function (pdf) of X is

f(x;λ) =
k

λ
g
(x
λ

) [
1−G

(x
λ

)]k−1
x ≥ 0, λ > 0.

where g(.) is the pdf of Xi when λ = 1.

2.1 Maximum Likelihood Estimation

Suppose n k-unit series systems are under test and we observe failure times of m systems
under progressive type-II censoring. Let (R1, R2, ...., Rm) be a progressive censoring
scheme.

The likelihood function for the observed data is

L(λ|x) = C
m∏
i=1

f(x(i);λ)
[
1− F (x(i);λ)

]Ri ,
where C = n

m−1∏
j=1

(
n− j −

j∑
i=1

Ri

)
.

L(λ|x) = C
m∏
i=1

k

λ
g
(x(i)
λ

) [
1−G

(x(i)
λ

)]k−1 [
1−G

(x(i)
λ

)]kRi
,

Suppose x1, x2, ...., xm is the observed data and z1, z2, ...., zm is the censored data. We
note that zi is a vector with Ri elements, which is not observable for i = 1, 2, ....,m. The
censored data Z = (z1, z2, ...., zm) can be considered as missing data.
X = (x1, x2, ...., xm) is observed data. W = (X,Z) is the complete data set. Then
complete log-likelihood function is

Lc = nlog(k)− nlog(λ) +
m∑
i=1

log
[
g
(xi
λ

)]
+ (k − 1)

m∑
i=1

log
[
1−G

(xi
λ

)]

+

m∑
i=1

Ri∑
j=1

log
[
g
(zij
λ

)]
+ (k − 1)

m∑
i=1

Ri∑
j=1

log
[
1−G

(zij
λ

)]
. (1)
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In order to obtain MLE of λ, we use EM algorithm due to Dempster et al. (1977). For
the E step in EM algorithm we take Expectation of Zij . The derivative of Lc with
respect to λ is taken for the M step, where

dLc
dλ

= −n
λ
− 1

λ2

m∑
i=1

xig
′ (xi

λ

)
g
(
xi
λ

) +
(k − 1)

λ2

m∑
i=1

xiG
′ (xi

λ

)
1−G

(
xi
λ

)
− 1

λ2

m∑
i=1

Ria(xi, k, λ
0) +

(k − 1)

λ2

m∑
i=1

Rib(xi, k, λ
0). (2)

where a(xi, k, λ) = E

Zijg′
(
Zij
λ

)
g
(
Zij
λ

) Zij > xi

 =

∞∫
xi

zg′
(
z
λ

)
g
(
z
λ

) f(z;λ)

1− F (xi;λ)
dz,

and b(xi, k, λ) = E

ZijG′
(
Zij
λ

)
1−G

(
Zij
λ

) Zij > xi

 =

∞∫
xi

zG′
(
z
λ

)
1−G

(
z
λ

) f(z;λ)

1− F (xi;λ)
dz.

We have to solve equation dLc
dλ = 0 to obtain λ1 as the solution. But this equation does

not have solution in the closed form. Therefore we use Newton-Raphson method and
compute λ1. By using λ1, we compute a(xi, k, λ

1) and b(xi, k, λ
1). This ends M-step.

We continue this procedure until convergence takes place.

In Newton-Raphson method, we have to choose initial value of λ. We use least square
estimate. Ng (2005) discussed estimation of model parameters of modified Weibull dis-
tribution based on progressively Type-II censored data where the empirical distribution
function is computed as (see Meeker and Escobar (1998))

F̂ (xi) = 1−
i∏

j=1

(1− p̂j),

with

p̂j =
1

n−
∑j

k=2Rk−1 − j + 1
for j = 1, 2, .....,m.

The estimate of the parameter can be obtained by using least square fit of simple
linear regression.

yi = βxi with β =
1

λ

yi = G−1

1−

[
1− F̂ (xi−1)

]1/k
+
[
1− F̂ (xi)

]1/k
2

 for i = 1, 2, .....,m.

F̂ (x0) = 0,



Electronic Journal of Applied Statistical Analysis 233

The least square estimates of λ is given by

λ̂0 =

∑m
i=1 x

2
i∑m

i=1 xi yi
,

We use λ̂0 as an initial value of λ to obtain the MLE λ̂n using Newton-Raphson
method. Reliability function at time t is

R(t) =

[
1−G

(
t

λ

)]k
t ≥ 0, λ > 0.

The Maximum likelihood estimator of R(t) is

R̂n(t) =

[
1−G

(
t

λ̂n

)]k
t ≥ 0.

2.2 Fisher Information

We compute observed Fisher information using the idea of missing information principle
of Louis (1982).

Thus, observed information = complete information - missing information.

Ix(λ) = Iw(λ)− Iw|x(λ),

where the complete information = Iw(λ) = −E
[
d2L
dλ2

]
and L is the log-likelihood function

based on all n observations. We obtain Iw(λ) and Iw|x(λ) in the following.

Now,

L = nlog(k)− nlog(λ) +
n∑
i=1

log
[
g
(xi
λ

)]
+ (k − 1)

n∑
i=1

log
[
1−G

(xi
λ

)]
. (3)

and
dL

dλ
= −n

λ
− 1

λ2

n∑
i=1

xig
′ (xi

λ

)
g
(
xi
λ

) +
(k − 1)

λ2

n∑
i=1

xiG
′ (xi

λ

)
1−G

(
xi
λ

) .
d2L

dλ2
=

n

λ2
+

1

λ4

n∑
i=1

x2i g
(
xi
λ

)
g′′
(
xi
λ

)
− x2i

[
g′
(
xi
λ

)]2
+ 2λxig

(
xi
λ

)
g′
(
xi
λ

)[
g
(
xi
λ

)]2
−(k − 1)

λ4

n∑
i=1

x2i
[
1−G

(
xi
λ

)]
G′′
(
xi
λ

)
+ x2i

[
G′
(
xi
λ

)]2
+ 2λxi

[
1−G

(
xi
λ

)]
G′
(
xi
λ

)[
1−G

(
xi
λ

)]2 .
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Complete information is given by

Iw(λ) = − n

λ2
− 1

λ4

n∑
i=1

E

X2
i g
(
Xi
λ

)
g′′
(
Xi
λ

)
−X2

i

[
g′
(
Xi
λ

)]2
+ 2λXig

(
Xi
λ

)
g′
(
Xi
λ

)
[
g
(
Xi
λ

)]2


+
(k − 1)

λ4

n∑
i=1

E

X2
i

[
1−G

(
Xi
λ

)]
G′′
(
Xi
λ

)
+X2

i

[
G′
(
Xi
λ

)]2
+ 2λXi

[
1−G

(
Xi
λ

)]
G′
(
Xi
λ

)
[
1−G

(
Xi
λ

)]2
 .

(4)
Missing information is given by

Iw|x(λ) =

m∑
i=1

RiI
(i)
w|x(λ) = −

m∑
i=1

Ri∑
j=1

EZ|X

[
d2log (f(Zij |xi, λ))

dλ2

]
Consider

fZ|X(zij |xi, λ) =
f(zij ;λ)

1− F (xi, λ)
=

k
λg
( zij
λ

) [
1−G

( zij
λ

)]k−1[
1−G

(
xi
λ

)]k .

Therefore,

log(f) = log(k)− log(λ) + log
[
g
(zij
λ

)]
+ (k−1)log

[
1−G

(zij
λ

)]
−klog

[
1−G

(xi
λ

)]
.

dlogf

dλ
= − 1

λ
−
zijg

′ ( zij
λ

)
λ2g

( zij
λ

) +
(k − 1)zijG

′ ( zij
λ

)
λ2
[
1−G

( zij
λ

)] − kxiG
′ (xi

λ

)
λ2
[
1−G

(
xi
λ

)] .
and

d2logf

dλ2
=

1

λ2
+
z2ijg

( zij
λ

)
g′′
( zij
λ

)
− z2ij

[
g′
( zij
λ

)]2
+ 2λzijg

( zij
λ

)
g′
( zij
λ

)
λ4
[
g
( zij
λ

)]2
−

(k − 1)
{
z2ij
[
1−G

( zij
λ

)]
G′′
( zij
λ

)
+ z2ij

[
G′
( zij
λ

)]2
+ 2λzij

[
1−G

( zij
λ

)]
G′
( zij
λ

)}
λ4
[
1−G

( zij
λ

)]2
+
k
{
x2i
[
1−G

(
xi
λ

)]
G′′
(
xi
λ

)
+ x2i

[
G′
(
xi
λ

)]2
+ 2λxiG

′ (xi
λ

) [
1−G

(
xi
λ

)]}
λ4
[
1−G

(
xi
λ

)]2 .

Hence, missing information is

Iw|x(λ) =
m∑
i=1

RiI
(i)
w|x(λ) = −

m∑
i=1

Ri∑
j=1

EZ|X

[
d2log (f(Zij |xi, λ))

dλ2

]
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= −n−m
λ2

− 1

λ4

m∑
i=1

Ri∑
j=1

E

Z2
ijg
(
Zij
λ

)
g′′
(
Zij
λ

)
− Z2

ij

[
g′
(
Zij
λ

)]2
+ 2λZijg

(
Zij
λ

)
g′
(
Zij
λ

)
[
g
(
Zij
λ

)]2


−(k − 1)

λ4

m∑
i=1

Ri∑
j=1

E

Z2
ij

[
1−G

(
Zij
λ

)]
G′′
(
Zij
λ

)
+ Z2

ij

[
G′
(
Zij
λ

)]2
[
1−G

(
Zij
λ

)]2


−2(k − 1)

λ3

m∑
i=1

Ri∑
j=1

E

Zij
[
1−G

(
Zij
λ

)]
G′
(
Zij
λ

)
[
1−G

(
Zij
λ

)]2


+
k

λ4

m∑
i=1

Ri

[
x2i
[
1−G

(
xi
λ

)]
G′′
(
xi
λ

)
+ x2i

[
G′
(
xi
λ

)]2
+ 2λxiG

′ (xi
λ

) [
1−G

(
xi
λ

)][
1−G

(
xi
λ

)]2
]
. (5)

Using expressions in equations (4) and (5) we obtain observed Fisher information.

2.3 Confidence Intervals

By using asymptotic normal distribution of MLE λ̂n, we construct confidence interval
for λ. Let σ̂2(λ̂n) = 1

I(λ̂n)
is the estimated variance of λ̂n. Therefore, 100(1 − α)%

asymptotic confidence interval for λ is given by(
λ̂n − τα/2

√
σ̂2(λ̂n), λ̂n + τα/2

√
σ̂2(λ̂n)

)
, (6)

where τα/2 is the upper 100(α/2)th percentile of standard normal distribution.

Meeker and Escobar (1998) reported that the asymptotic confidence interval for λ can
be computed using log(λ̂n). An approximate 100(1− α)% confidence interval for log(λ)
is given by (

log(λ̂n)− τα/2
√
σ̂2(log(λ̂n)), log(λ̂n) + τα/2

√
σ̂2(log(λ̂n))

)
,

where σ̂2(log(λ̂n)) is the estimated variance of log(λ̂n) which is approximated by

σ̂2(log(λ̂n)) ≈ σ̂2(λ̂n)

λ̂n
2 . Hence, an approximate 100(1 − α)% confidence interval for λ

is given by λ̂n e
(
−

τα/2

√
σ̂2(λ̂n)

λ̂n

)
, λ̂n e

(
τα/2

√
σ̂2(λ̂n)

λ̂n

) . (7)
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Let R̂n is the MLE of reliability function R(t) and σ2(R̂n) is the variance of R̂n, where

σ̂2(R̂n) ≈
k2t2

λ̂4n

[
1−G

(
t

λ̂n

)]2(k−1) [
G′
(
t

λ̂n

)]2
σ̂2(λ̂n)

Therefore, 100(1− α)% asymptotic confidence interval for R(t) is given by(
R̂n − τα/2

√
σ̂2(R̂n), R̂n + τα/2

√
σ̂2(R̂n)

)
, (8)

3 Tolerance Intervals

Kumbhar and Shirke (2004) derived the expression for β-expectation tolerance interval
for the lifetime distribution of a k-unit parallel system with component life as expo-
nential distribution. They investigated the performance of the tolerance interval based
on complete data. We study the performance of the tolerance interval for the lifetime
distribution of a k-unit series system based on progressively Type-II censored data for
the scale family of distributions. Let lβ(λ) be the lower quantile of order β of the cdf
F (x;λ). Then, we have

lβ(λ) = λG−1
[
1− (1− β)1/k

]
.

Thus, an upper β-expectation tolerance interval for F (x;λ) is obtained by

Iβ = (0, lβ(λ)) .

The maximum likelihood estimator of lβ(λ) is given by

lβ(λ̂n) = λ̂n G
−1
[
1− (1− β)1/k

]
,

yielding an approximate β- expectation tolerance interval as

Îβ =
(

0, lβ(λ̂n)
)
.

The expectation of Îβ can be obtained approximately using the approach suggested by
Atwood (1984) and given as,

E
[
F (Iβ(λ̂n);λ)

]
≈ β − 0.5 F02 σ

2(λ̂n) +
F01 σ

2(λ̂n) F11

F10
, (9)

where F10 =
dF

dx
, F01 =

dF

dλ
, F11 =

d2F

dxdλ
, F02 =

d2F

dλ2
,

F10 =
k

λ

[
1−G

(x
λ

)]k−1
g
(x
λ

)
, F01 = −kx

λ2

[
1−G

(x
λ

)]k−1
G′
(x
λ

)
,

F11 = − k

λ3

[
1−G

(x
λ

)]k−2
×
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{
x
[
1−G

(x
λ

)]
g′
(x
λ

)
+ x(k − 1)G′

(x
λ

)
g
(x
λ

)
+ λ

[
1−G

(x
λ

)]
g
(x
λ

)}
,

F02 =
kx

λ4

[
1−G

(x
λ

)]k−2
×{

x
[
1−G

(x
λ

)]
G′′
(x
λ

)
− x(k − 1)

[
G′
(x
λ

)]2
+ 2λ

[
1−G

(x
λ

)]
G′
(x
λ

)}
.

The derivatives of F are evaluated at x = lβ(λ) with λ = λ̂n. Instead of the actual value

of σ2(λ̂n) we use estimate of it.

4 Application to Half-Logistic Distribution

Consider a member of the scale family of distributions, namely half-logistic distribution
with scale parameter λ. The cdf of X is

F (x;λ) = 1−

[
2e−x/λ

1 + e−x/λ

]k
x ≥ 0, λ > 0.

The pdf of X is

f(x;λ) =
k

λ

2ke−kx/λ(
1 + e−x/λ

)k+1
x ≥ 0, λ > 0.

4.1 Maximum Likelihood Estimation

The complete log-likelihood function for half-logistic distribution with scale parameter
λ from equation (1) is

Lc = nlog(k)−nlog(λ)+

m∑
i=1

log

[
2e−xi/λ(

1 + e−xi/λ
)2
]

+(k−1)

m∑
i=1

log

[
2e−xi/λ

1 + e−xi/λ

]

+

m∑
i=1

Ri∑
j=1

log

[
2e−zij/λ(

1 + e−zij/λ
)2
]

+ (k − 1)

m∑
i=1

Ri∑
j=1

log

[
2e−zij/λ

1 + e−zij/λ

]
. (10)

In order to obtain MLE of λ, we use EM algorithm due to Dempster et al. (1977). For
the E step in EM algorithm we take Expectation of Zij . The derivative of Lc with
respect to λ is taken for the M step, where

dLc
dλ

= −n
λ

+
k

λ2

m∑
i=1

xi −
(k + 1)

λ2

m∑
i=1

xie
−xi/λ

1 + e−xi/λ
+

k

λ2

m∑
i=1

Ria(xi, k, λ
0)

−(k + 1)

λ2

m∑
i=1

Rib(xi, k, λ
0). (11)
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where a(xi, k, λ) = E (Zij) and b(xi, k, λ) = E

[
Zije

−Zij/λ

1 + e−Zij/λ

]
.

To solve this equation, we use Newton-Raphson method.

Reliability function at time t is

R(t) =

[
2e−t/λ

1 + e−t/λ

]k
t ≥ 0, λ > 0.

The Maximum likelihood estimate of R(t) is

R̂n(t) =

[
2e−t/λ̂n

1 + e−t/λ̂n

]k
t ≥ 0.

4.2 Fisher Information

The observed information = complete information - missing information.

Ix(λ) = Iw(λ)− Iw|x(λ),

Consider log-likelihood function for n observations is

L = nlog(k)− nlog(λ) +

n∑
i=1

log

[
2e−xi/λ(

1 + e−xi/λ
)2
]

+ (k − 1)

n∑
i=1

log

[
2e−xi/λ

1 + e−xi/λ

]
. (12)

Then complete information is

Iw(λ) = −E
[
d2L

dλ2

]
= − n

λ2
+

2k

λ3

n∑
i=1

E [Xi] +
(k + 1)

λ4

n∑
i=1

E

[
X2
i e
−Xi/λ

(1 + e−Xi/λ)2

]

−2(k + 1)

λ3

n∑
i=1

E

[
Xie

−Xi/λ

1 + e−Xi/λ

]
. (13)

and missing information is given by

Iw|x(λ) =

m∑
i=1

RiI
(i)
w|x(λ) = −

m∑
i=1

Ri∑
j=1

EZ|X

[
d2log (f(Zij |xi, λ))

dλ2

]

= −n−m
λ2

+
2k

λ3

m∑
i=1

Ri∑
j=1

E [Zij ] +
(k + 1)

λ4

m∑
i=1

Ri∑
j=1

E

[
Z2
ije
−Zij/λ

(1 + e−Zij/λ)2

]

−2(k + 1)

λ3

m∑
i=1

Ri∑
j=1

E

[
Zije

−Zij/λ

1 + e−Zij/λ

]
− k

λ4

m∑
i=1

[
Rix

2
i e
−xi/λ

(1 + e−xi/λ)2

]
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+
2k

λ3

m∑
i=1

[
Rixie

−xi/λ

1 + e−xi/λ

]
− 2k

λ3

m∑
i=1

Rixi. (14)

4.3 Confidence Interval and Tolerance Interval

Using equations (6) - (8) with σ̂2(λ̂n) = 1
Ix(λ̂n)

and

σ2(R̂n(t)) ≈

 kt
λ̂2n

(
2e−t/λ̂n

)k
(

1− e−t/λ̂n
)k+1


2

σ2(λ̂n)

we construct confidence intervals for scale parameter and reliability function.

Let lβ(λ) be the lower quantile of order β of the cdf F (x;λ). Then, we have

lβ(λ) = λlog

[
2− (1− β)1/k

(1− β)1/k

]
,

Thus, an upper β-expectation Tolerance Interval for F (x;λ) is obtained by

Iβ = (0, lβ(λ)) .

The maximum likelihood estimator of lβ(λ) is given by

lβ(λ̂n) = λ̂nlog

[
2− (1− β)1/k

(1− β)1/k

]
,

yielding an approximate β- expectation tolerance interval as

Îβ =
(

0, lβ(λ̂n)
)
.

The expectation of Îβ can be obtained approximately using the approach suggested and
given as,

E
[
F (Iβ(λ̂n);λ)

]
≈ β − 0.5 F02 σ

2(λ̂n) +
F01 σ

2(λ̂n) F11

F10
, (15)

where F10 =
k2k

λ

(
e−x/λ

)k(
1 + e−x/λ

)k+1
, F01 = −kx2k

λ2

(
e−x/λ

)k(
1 + e−x/λ

)k+1
,

F11 =
k2k

λ3

(
e−x/λ

)k(
1 + e−x/λ

)k+2

[
(kx− λ)− e−x/λ(x+ λ)

]
,

and F02 = −kx2k

λ4

(
e−x/λ

)k(
1 + e−x/λ

)k+2

[
(kx− 2λ)− e−x/λ(x+ 2λ)

]
.
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5 Simulation Study

A simulation study is carried out to investigate the performance of MLE, reliability es-
timate and confidence interval of the scale parameter of half-logistic distribution. We
obtain estimate of bias and MSE for various progressively Type-II censoring scheme.
Asymptotic confidence intervals based on the MLE and log-transformed MLE are com-
pared through their confidence levels. The coverage of the β- expectation tolerance
intervals is studied using simulation. Balakrishnan and Sandhu (1995) presented algo-
rithm for sample generation from progressively Type-II censored scheme. This algorithm
is used to generate progressively censored samples from half-logistic distribution of a k-
unit series system.
Algorithm

1. Generate independently and identically distributed observations
(W1,W2, .....,Wm) from U(0, 1).

2. For (R1, R2, ....., Rm) progressive Type-II censoring scheme,
set Ei = 1/(i+Rm +Rm−1 + .....+Rm−i+1) for i = 1, 2, .....,m.

3. Set Vi = WEi
i for i = 1, 2, .....,m.

4. Set Ui = 1 − VmVm−1.....Vm−i+1 for i = 1, 2, ....,m. Then (U1, U2, ....., Um) is the
U(0, 1) progressively Type-II censored sample.

5. For the given value of the parameter λ, set

xi = λ log

[
2− (1− Ui)1/k

(1− Ui)1/k

]
for i = 1, 2, .....,m. (16)

Then (x1, x2, ...., xm) is the required progressively Type-II censored sample from the
distribution of a k-unit series system with half-logistic distribution as the component life
distribution In Table 1 scheme (a, b) stands for R1 = a and R2 = b. Similar meaning
holds for schemes described through completely specified vector, while scheme (10, 4∗0)
means R1 = 10 and rest four Ris are zero. i.e. R2 = R3 = R4 = R5 = 0. A simulation
was carried out for 2-unit, 3-unit and 5-unit series system (i.e. k=2, 3 and 5) with
λ = 1. EM algorithm and Newton-Raphson method are used to compute MLE. For
each particular progressive censoring scheme, 10,000 sets of observations were generated.
The bias, MSE, confidence levels with their standard errors (SE) for the corresponding
confidence intervals for λ are displayed in Table 1 - 3 for k=2, 3 and 5 respectively.
The bias, MSE, confidence levels with their SE for the confidence intervals for reliability
function are displayed in Table 4 - 6 for k=2, 3 and 5 respectively. The simulated mean
coverage and the estimated expectation of the tolerance interval are given in Table 7 -
9. (+MSE and SE are given in parenthesis.)
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Table 1: Bias, MSE+, Confidence levels and its SE+ for MLE (k=2)

n m Scheme Scheme Bias and Level and SE-MLE Level and SE-log(MLE)
No. MSE 90% 95% 90% 95%

5 2 [1] (3,0) -0.0708 0.7481 0.7802 0.8411 0.8883
(0.3379) (0.0377) (0.0343) (0.0267) (0.0198)

[2] (0,3) -0.0654 0.7525 0.7824 0.8445 0.8934
(0.3529) (0.0372) (0.0341) (0.0263) (0.0190)

[3] (1,2) -0.0694 0.7540 0.7884 0.8489 0.8907
(0.3497) (0.0371) (0.0334) (0.0257) (0.0195)

[4] (2,1) -0.0642 0.7520 0.7868 0.8427 0.8900
(0.3559) (0.0373) (0.0335) (0.0265) (0.0196)

15 5 [5] (10, 4*0) -0.0248 0.8339 0.8656 0.8727 0.9263
(0.1425) (0.0092) (0.0078) (0.0074) (0.0046)

[6] (4*0, 10) -0.0196 0.8325 0.8693 0.8807 0.9313
(0.1624) (0.0093) (0.0076) (0.0070) (0.0043)

[7] (2,2,2,2,2) -0.0205 0.8315 0.8643 0.8777 0.9303
(0.1546) (0.0093) (0.0078) (0.0072) (0.0043)

10 [8] (5,9*0) -0.0121 0.8652 0.9041 0.8902 0.9401
(0.0702) (0.0078) (0.0058) (0.0065) (0.0038)

[9] (9*0,5) -0.0141 0.8680 0.9037 0.8941 0.9434
(0.0723) (0.0076) (0.0058) (0.0063) (0.0036)

[10] (3,2, 8*0) -0.0134 0.8694 0.9057 0.8894 0.9368
(0.0713) (0.0076) (0.0057) (0.0066) (0.0039)

20 10 [11] (10, 9*0) -0.0117 0.8669 0.9045 0.8863 0.9391
(0.0705) (0.0058) (0.0043) (0.005) (0.0029)

[12] (9*0,10) -0.0086 0.8686 0.9069 0.8936 0.9423
(0.0767) (0.0057) (0.0042) (0.0048) (0.0027)

25 10 [13] (15,9*0) -0.0167 0.8679 0.9070 0.8927 0.9398
(0.0693) (0.0046) (0.0034) (0.0038) (0.0023)

[14] (9*0,15) -0.0161 0.8613 0.8973 0.8829 0.9356
(0.0805) (0.0048) (0.0037) (0.0041) (0.0024)

[15] (5,5,5,7*0) -0.0106 0.8641 0.9033 0.8893 0.9401
(0.0733) (0.0047) (0.0035) (0.0039) (0.0023)

15 [16] (10, 14*0) -0.0099 0.8792 0.9198 0.8952 0.9455
(0.0464) (0.0042) (0.003) (0.0038) (0.0021)

[17] (14*0,10) -0.0123 0.8745 0.9160 0.8935 0.9458
(0.0499) (0.0044) (0.0031) (0.0038) (0.0021)

30 10 [18] (20, 9*0) -0.0079 0.8676 0.9070 0.8889 0.9366
(0.0725) (0.00380 (0.0028) (0.0033) (0.002)

[19] (9*0,20) -0.0100 0.8637 0.8994 0.8888 0.9389
(0.0844) (0.0039) (0.003) (0.0033) (0.0019)

15 [20] (15, 14*0) -0.0089 0.8745 0.9142 0.8865 0.9400
(0.0481) (0.0037) (0.0026) (0.0034) (0.0019)

[21] (14*0,15) -0.0087 0.8792 0.9171 0.8940 0.9460
(0.0523) (0.0035) (0.0025) (0.0032) (0.0017)

[22] (5,5,5,12*0) -0.0073 0.8777 0.9219 0.8960 0.9437
(0.0474) (0.0036) (0.0024) (0.0031) (0.0018)

20 [23] (10, 19*0) -0.0040 0.8859 0.9281 0.8942 0.9452
(0.0355) (0.0034) (0.0022) (0.0032) (0.0017)

[24] (19*0,10) -0.0064 0.8891 0.9287 0.8973 0.9460
(0.0366) (0.0033) (0.0022) (0.0031) (0.0017)

[25] (0,5,5,17*0) -0.0064 0.8839 0.9273 0.8946 0.9449
(0.0356) (0.0034) (0.0022) (0.0031) (0.0017)

50 20 [26] (30,19*0) -0.0058 0.8827 0.9245 0.8945 0.9440
(0.0360) (0.0021) (0.0014) (0.0019) (0.0011)

[27] (19*0,30) -0.0095 0.8773 0.9218 0.8892 0.9423
(0.0411) (0.0022) (0.0014) (0.002) (0.0011)

35 [28] (15,34*0) -0.0021 0.8920 0.9350 0.8950 0.9467
(0.0207) (0.0019) (0.0012) (0.0019) (0.0010)

[29] (34*0,15) -0.0054 0.8920 0.9346 0.8980 0.9473
(0.0211) (0.0019) (0.0012) (0.0018) (0.0010)

[30] (5,5,5,32*0) -0.0044 0.8898 0.9342 0.8962 0.9444
(0.0205) (0.0020) (0.0012) (0.0019) (0.0011)
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Table 2: Bias, MSE+, Confidence levels and its SE+ for MLE (k=3)

n m Scheme Scheme Bias and Level and SE-MLE Level and SE-log(MLE)
No. MSE 90% 95% 90% 95%

5 2 [1] (3,0) -0.0492 0.7498 0.7796 0.8368 0.8927
(0.3704) (0.0375) (0.0344) 0.0273 (0.0192)

[2] (0,3) -0.0535 0.7506 0.7858 0.8496 0.8980
(0.3822) (0.0374) (0.0337) (0.0256) (0.0183)

[3] (1,2) -0.0356 0.7606 0.7934 0.8535 0.9016
(0.3921) (0.0364 (0.0328) (0.0250) (0.0177)

[4] (2,1) -0.0535 0.7549 0.7849 0.8443 0.8912
(0.3774) (0.0370) (0.0338 (0.0263) (0.0194)

15 5 [5] (10, 4*0) -0.0265 0.8251 0.8630 0.8742 0.9228
(0.1503) (0.0096) (0.0079) (0.0073) (0.0047)

[6] (4*0, 10) -0.0210 0.8300 0.8662 0.8787 0.9272
(0.1705) (0.0094) (0.0077) (0.0071) (0.0045)

[7] (2,2,2,2,2) -0.0271 0.8284 0.8612 0.8767 0.9246
(0.1635) (0.0095) (0.0080) (0.0072) (0.0046)

10 [8] (5,9*0) -0.0107 0.8658 0.9070 0.8922 0.9408
(0.0733) (0.0077) (0.0056) (0.0064) (0.0037)

[9] (9*0,5) -0.0103 0.8657 0.9024 0.8868 0.9396
(0.0794) (0.0078 (0.0059) (0.0067) (0.0038)

[10] (3,2, 8*0) -0.0117 0.8685 0.9042 0.8905 0.9390
(0.0719) (0.0076) (0.0058) (0.0065) (0.0038)

20 10 [11] (10, 9*0) -0.0136 0.8676 0.9055 0.8905 0.9426
(0.0720) (0.0057) (0.0043) (0.0049) (0.0027)

[12] (9*0,10) -0.0120 0.8653 0.9043 0.8924 0.9421
(0.0818) (0.0058) (0.0043) (0.0048) (0.0027)

25 10 [13] (15,9*0) -0.0151 0.8612 0.8983 0.8815 0.9325
(0.0756) (0.0048) (0.0037) (0.0042) (0.0025)

[14] (9*0,15) -0.0098 0.8644 0.9023 0.8889 0.9385
(0.0859) (0.0047) (0.0035) (0.0040) (0.0023)

[15] (5,5,5,7*0) -0.0126 0.8639 0.9013 0.8875 0.9359
(0.0764) (0.0047) (0.0036) (0.0040) (0.0024)

15 [16] (10, 14*0) -0.0100 0.8714 0.9141 0.8881 0.9384
(0.0493) (0.0045) (0.0031) (0.0040) (0.0023)

[17] (14*0,10) -0.0098 0.8755 0.9121 0.8903 0.9407
(0.0545) (0.0044) (0.0032) (0.0039) (0.0022)

30 10 [18] (20, 9*0) -0.0139 0.8649 0.9041 0.8878 0.9385
(0.0737) (0.0039) (0.0029) (0.0033) (0.0019)

[19] (9*0, 20) -0.0045 0.8666 0.9014 0.8877 0.9377
(0.0894) (0.0039) (0.0030) (0.0033) (0.0019)

15 [20] (15, 14*0) -0.0104 0.8766 0.9156 0.8893 0.9419
(0.0493) (0.0036) (0.0026) (0.0033) (0.0018)

[21] (14*0,15) -0.0091 0.8715 0.9137 0.8876 0.9379
(0.0563) (0.0037) (0.0026) (0.0033) (0.0019)

[22] (5,5,5,12*0) -0.0110 0.8767 0.9158 0.8889 0.9419
(0.0497) (0.0036) (0.0026) (0.0033) (0.0018)

20 [23] (10, 19*0) -0.0084 0.8789 0.9245 0.8937 0.9424
(0.0369) (0.0035) (0.0023) (0.0032) (0.0018)

[24] (19*0,10) -0.0052 0.8813 0.9252 0.8942 0.9428
(0.0395) (0.0035) (0.0023) (0.0032) (0.0018)

[25] (0,5,5,17*0) -0.0043 0.8831 0.9257 0.8937 0.9437
(0.0378) (0.0034) (0.0023) (0.0032) (0.0018)

50 20 [26] (30,19*0) -0.0052 0.8821 0.9243 0.8894 0.9426
(0.0375) (0.0021) (0.0014) (0.0020) (0.0011)

[27] (19*0,30) -0.0060 0.8839 0.9248 0.8955 0.9459
(0.0438) (0.0021) (0.0014) (0.0019) (0.0010)

35 [28] (15,34*0) -0.0043 0.8865 0.9317 0.8919 0.9441
(0.0212) (0.0020) (0.0013) (0.0019) (0.0011)

[29] (34*0,15) -0.0025 0.8944 0.9404 0.8998 0.9473
(0.0223) (0.0019) (0.0011) (0.0018) (0.0010)

[30] (5,5,5,32*0) -0.0028 0.8896 0.9364 0.8965 0.9449
(0.0215) (0.0020) (0.0012) (0.0019) (0.0010)
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Table 3: Bias, MSE+, Confidence levels and its SE+ for MLE (k=5)

n m Scheme Scheme Bias and Level and SE (MLE) Level and SE
(log(MLE))

No. MSE 90% 95% 90% 95%

5 2 [1] (3,0) -0.05431 0.7545 0.7878 0.8445 0.8924
(0.3776) (0.0370) (0.0334) (0.0263) (0.0192)

[2] (0,3) -0.0283 0.7489 0.7825 0.8444 0.8959
(0.4394) (0.0376) (0.0340) (0.0263) (0.0187)

[3] (1,2) -0.0329 0.7626 0.7932 0.8498 0.9024
(0.4076) (0.0362) (0.0328) (0.0255) (0.0176)

[4] (2,1) -0.0372 0.7536 0.7861 0.8441 0.8948
(0.4153) (0.0371) (0.0336) (0.0263) (0.0188)

15 5 [5] (10, 4*0) -0.0191 0.8306 0.8668 0.8755 0.9279
(0.1563) (0.0094) (0.0077) (0.0073) (0.0045)

[6] (4*0, 10) -0.0097 0.8273 0.8608 0.8750 0.9271
(0.1875) (0.0095) (0.0080) (0.0073) (0.0045)

[7] (2,2,2,2,2) -0.0211 0.8252 0.8570 0.8703 0.9209
(0.1758) (0.0096) (0.0082) (0.0075) (0.0049)

10 [8] (5,9*0) -0.0138 0.8668 0.9050 0.8928 0.9384
(0.0761) (0.0077) (0.0057) (0.0064) (0.0039)

[9] (9*0,5) -0.0107 0.8629 0.8959 0.8868 0.9375
(0.0842) (0.0079) (0.0062) (0.0067) (0.0039)

[10] (3,2, 8*0) -0.0143 0.8562 0.8966 0.8827 0.9324
(0.0801) (0.0082) (0.0062) (0.0069) (0.0042)

20 10 [11] (10, 9*0) -0.0128 0.8641 0.9033 0.8893 0.9378
(0.0783) (0.0059) (0.0044) (0.0049) (0.0029)

[12] (9*0,10) -0.0093 0.8680 0.9027 0.8897 0.9413
(0.0870) (0.0057) (0.0044) (0.0049) (0.0028)

25 10 [13] (15,9*0) -0.0134 0.8651 0.9032 0.8893 0.9365
(0.0777) (0.0047) (0.0035) (0.0039) (0.0024)

[14] (9*0,15) -0.0133 0.8682 0.9025 0.8927 0.9419
(0.0870) (0.0046) (0.0035) (0.0038) (0.0022)

[15] (5,5,5,7*0) -0.0079 0.8670 0.9058 0.8930 0.9400
(0.0797) (0.0046) (0.0034) (0.0038) (0.0023)

15 [16] (10, 14*0) -0.0110 0.8777 0.9171 0.8914 0.9409
(0.0515) (0.0043) (0.0030) (0.0039) (0.0022)

[17] (14*0,10) -0.0093 0.8750 0.9158 0.8923 0.9426
(0.0580) (0.0044) (0.0031) (0.0038) (0.0022)

30 10 [18] (20, 9*0) -0.0138 0.8602 0.8968 0.8843 0.9362
(0.0791) (0.0040) (0.0031) (0.0034) (0.0020)

[19] (9*0,20) -0.0064 0.8660 0.9018 0.8886 0.9375
(0.0920) (0.0039) (0.0030) (0.0033) (0.0020)

15 [20] (15, 14*0) -0.0097 0.8782 0.9188 0.8932 0.9419
(0.0517) (0.0036) (0.0025) (0.0032) (0.0018)

[21] (14*0,15) -0.0022 0.8819 0.9234 0.8991 0.9468
(0.0578) (0.0035) (0.0024) (0.0030) (0.0017)

[22] (5,5,5,12*0) -0.0095 0.8808 0.9204 0.8950 0.9427
(0.0517) (0.0035) (0.0024) (0.0031) (0.0018)

20 [23] (10, 19*0) -0.0066 0.8864 0.9239 0.8936 0.9458
(0.0389) (0.0034) (0.0023) (0.0032) (0.0017)

[24] (19*0,10) -0.0071 0.8796 0.9226 0.8955 0.9445
(0.0424) (0.0035) (0.0024) (0.0031) (0.0017)

[25] (0,5,5,17*0) -0.0067 0.8841 0.9262 0.8961 0.9423
(0.0391) (0.0034) (0.0023) (0.0031) (0.0018)

50 20 [26] (30,19*0) -0.0117 0.8801 0.9221 0.8947 0.9436
(0.0389) (0.0021) (0.0014) (0.0019) 0.0011

[27] (19*0,30) -0.0057 0.8840 0.9238 0.8939 0.9455
(0.0447) (0.0021) (0.0014) (0.0019) (0.0010)

35 [28] (15,34*0) -0.0059 0.8806 0.9316 0.8891 0.9434
(0.0228) (0.0021) (0.0013) (0.0020) (0.0011)

[29] (34*0,15) -0.0030 0.8936 0.9378 0.8979 0.9468
(0.0242) (0.0019) (0.0012) (0.0018) (0.0010)

[30] (5,5,5,32*0) -0.0022 0.8887 0.9416 0.9035 0.9511
(0.0219) (0.0020) (0.0011) (0.0017) (0.0009)
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Table 4: Bias, MSE+, Confidence levels and its SE+ for R(t) (k=2)

n m Scheme Scheme Bias and Level and SE (MLE)
No. MSE 90% 95%

5 2 [1] (3,0) -0.1108 0.7909 0.8309
(0.0660) (0.0331) (0.0281)

[2] (0,3) -0.1142 0.7909 0.8350
(0.0677) (0.0331) -0.0276

[3] (1,2) -0.1088 0.7963 0.8391
(0.0657) (0.0324) (0.0270)

[4] (2,1) -0.1182 0.7861 0.8267
(0.0687) (0.0336) (0.0287)

15 5 [5] (10, 4*0) -0.0472 0.8634 0.9116
(0.0246) (0.0079) (0.0054)

[6] (4*0, 10) 0.0541 0.8580 0.9067
(0.0282) (0.0081) (0.0056)

[7] (2,2,2,2,2) -0.0499 0.8599 0.9077
(0.0270) (0.0080) (0.0056)

10 [8] (5,9*0) -0.0229 0.8826 0.9372
(0.0108) (0.0069) (0.0039)

[9] (9*0,5) -0.0260 0.8846 0.9308
(0.0117) (0.0068) (0.0043)

[10] (3,2, 8*0) -0.0226 0.8859 0.9337
(0.0108) (0.0067) (0.0041)

20 10 [11] (10, 9*0) -0.0260 0.8811 0.9316
(0.0113) (0.0052) (0.0032)

[12] (9*0,10) -0.0276 0.8884 0.9380
(0.0120) (0.0050) (0.0029)

25 10 [13] (15,9*0) -0.0239 0.8864 0.9359
(0.0109) (0.0040) (0.0024)

[14] (9*0,15) -0.0279 0.8795 0.9312
(0.0130) (0.0042) (0.0026)

[15] (5,5,5,7*0) -0.0237 0.8847 0.9345
(0.0110) (0.0041) (0.0024)

15 [16] (10, 14*0) -0.0157 0.8886 0.9409
(0.0069) (0.0040) (0.0022)

[17] (14*0,10) -0.0152 0.8943 0.9425
(0.0071) (0.0038) (0.0022)

30 10 [18] (20, 9*0) -0.0269 0.8783 0.9258
(0.0116) (0.0036) (0.0023)

[19] (9*0,20) -0.0261 0.8726 0.9253
(0.0136) (0.0037) (0.0023)

15 [20] (15, 14*0) -0.0158 0.8897 0.9394
(0.0069) (0.0033) (0.0019)

[21] (14*0,15) -0.0191 0.8841 0.9373
(0.0081) (0.0034) (0.0020)

[22] (5,5,5,12*0) -0.0155 0.8921 0.9422
(0.0069) (0.0032) (0.0018)

20 [23] (10, 19*0) -0.0107 0.8969 0.9454
(0.0049) (0.0031) (0.0017)

[24] (19*0,10) -0.0142 0.8935 0.9431
(0.0054) (0.0032) (0.0018)

[25] (0,5,5,17*0) -0.0133 0.8944 0.9457
(0.0050) (0.0031) (0.0017)

50 20 [26] (30,19*0) -0.0119 0.8903 0.9410
(0.0051) (0.0020) (0.0011)

[27] (19*0,30) -0.0159 0.8906 0.9390
(0.0060) (0.0019) (0.0011)

35 [28] (15,34*0) -0.0069 0.8969 0.9446
(0.0028) (0.0018) (0.0010)

[29] (34*0,15) -0.0076 0.8934 0.9479
(0.0029) (0.0019) (0.0010)

[30] (5,5,5,32*0) -0.0069 0.8924 0.9440
(0.0028) (0.0019) (0.0011)
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Table 5: Bias, MSE+, Confidence levels and its SE+ for R(t) (k=3)

n m Scheme Scheme Bias and Level and SE (MLE)
No. MSE 90% 95%

5 2 [1] (3,0) -0.0947 0.7412 0.7829
(0.0570) (0.0384) (0.0340)

[2] (0,3) -0.0880 0.7470 0.7823
(0.0578) (0.0378) (0.0341)

[3] (1,2) -0.0886 0.7510 0.7878
(0.0570) (0.0374) (0.0334)

[4] (2,1) -0.0896 0.7463 0.7854
(0.0570) (0.0379) (0.0337)

15 5 [5] (10, 4*0) -0.0435 0.8423 0.8914
(0.0254) (0.0089) (0.0065)

[6] (4*0, 10) -0.0455 0.8302 0.8784
(0.0287) (0.0094) (0.0071)

[7] (2,2,2,2,2) -0.0456 0.8334 0.8828
(0.0275) (0.0093) (0.0069)

10 [8] (5,9*0) -0.0247 0.8723 0.9193
(0.0128) (0.0074) (0.0049)

[9] (9*0,5) -0.0247 0.8706 0.9166
(0.0136) (0.0075) (0.0051)

[10] (3,2, 8*0) -0.0228 0.8657 0.9189
(0.0129) (0.0078) (0.0050)

20 10 [11] (10, 9*0) -0.0229 0.8650 0.9164
(0.0129) (0.0058) (0.0038)

[12] (9*0,10) -0.0244 0.8691 0.9199
(0.0140) (0.0057) (0.0037)

25 10 [13] (15,9*0) -0.0234 0.8638 0.9140
(0.0130) (0.0047) (0.0031)

[14] (9*0,15) -0.0244 0.8675 0.9146
(0.0146) (0.0046) (0.0031)

[15] (5,5,5,7*0) -0.0228 0.8703 0.9161
(0.0131) (0.0045 (0.0031)

15 [16] (10, 14*0) -0.0149 0.8772 0.9282
(0.0085) (0.0043) (0.0027)

[17] (14*0,10) -0.0174 0.8764 0.9290
(0.0093) (0.0043) nn(0.0026)

30 10 [18] (20, 9*0) -0.0240 0.8693 0.9219
(0.0127) (0.0038) (0.0024)

[19] (9*0,20) -0.0249 0.8606 0.9133
(0.0151) (0.0040) (0.0026)

15 [20] (15, 14*0) -0.015 0.8795 0.9286
(0.0085) (0.0035) (0.0022)

[21] (14*0,15) -0.0157 0.8836 0.9325
(0.0092) (0.0034) (0.0021)

[22] (5,5,5,12*0) -0.0166 0.8776 0.9279
(0.0087) (0.0036) (0.0022)

20 [23] (10, 19*0) -0.0115 0.8863 0.9389
(0.0062) (0.0034) (0.0019)

[24] (19*0,10) -0.0129 0.8887 0.9385
(0.0066) (0.0033) (0.0019)

[25] (0,5,5,17*0) -0.0127 0.8783 0.9295
(0.0064) (0.0036) (0.0022)

50 20 [26] (30,19*0) -0.0106 0.8860 0.9359
(0.0064) (0.0020) (0.0012)

[27] (19*0,30) -0.0127 0.8809 0.9323
(0.0074) (0.0021) (0.0013)

35 [28] (15,34*0) -0.0078 0.8872 0.9387
(0.0036) (0.0020) (0.0012)

[29] (34*0,15) -0.0072 0.8872 0.9408
(0.0038) (0.0020) (0.0011)

[30] (5,5,5,32*0) -0.0065 0.8909 0.9392
(0.0035) (0.0019) (0.0011)
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Table 6: Bias, MSE+, Confidence levels and its SE+ for R(t) (k=5)

n m Scheme Scheme Bias and Level and SE (MLE)
No. MSE 90% 95%

5 2 [1] (3,0) -0.0348 0.6993 0.7390
(0.0340) (0.0421) (0.0390

[2] (0,3) -0.0363 0.7000 0.7319
(0.0347) (0.0420) (0.0392)

[3] (1,2) -0.0341 0.7020 0.7344
(0.0349) (0.0418) (0.0390)

[4] (2,1) -0.0341 0.7028 0.7364
(0.0343) (0.0418) (0.0388)

15 5 [5] (10, 4*0) -0.0203 0.8093 0.8515
(0.0176) (0.0103) (0.0084)

[6] (4*0, 10) -0.0165 0.8024 0.8437
(0.0197) (0.0106) (0.0088)

[7] (2,2,2,2,2) -0.0193 0.7933 0.8396
(0.0198) (0.0109) (0.0090)

10 [8] (5,9*0) -0.0126 0.8493 0.8907
(0.0100) (0.0085) (0.0065)

[9] (9*0,5) -0.0133 0.8360 0.8808
(0.0109) (0.0091) (0.0070)

[10] (3,2, 8*0) -0.0117 0.8493 0.8956
(0.0101) (0.0085) (0.0062)

20 10 [11] (10, 9*0) -0.0124 0.8436 0.8871
(0.0104) (0.0066) (0.0050)

[12] (9*0,10) -0.0107 0.8366 0.8852
(0.0115) (0.0068) (0.0051)

25 10 [13] (15,9*0) -0.0133 0.8450 0.8931
(0.0102) (0.0052) (0.0038)

[14] (9*0,15) -0.0116 0.8465 0.8919
(0.0112) (0.0052) (0.0039)

[15] (5,5,5,7*0) -0.0123 0.8414 0.8900
(0.0105) (0.0053) (0.0039)

15 [16] (10, 14*0) -0.0089 0.8705 0.9134
(0.0069) (0.0045) (0.0032)

[17] (14*0,10) -0.0092 0.8586 0.9025
(0.0078) (0.0049) (0.0035)

30 10 [18] (20, 9*0) -0.0120 0.8492 0.8970
(0.0101) (0.0043) (0.0031)

[19] (9*0,20) -0.0106 0.8432 0.8864
(0.0116) (0.0044) (0.0034)

15 [20] (15, 14*0) -0.0095 0.8617 0.9108
(0.0070) (0.0040) (0.0027)

[21] (14*0,15) -0.0087 0.8570 0.9054
0.0079 (0.0041) (0.0029)

[22] (5,5,5,12*0) -0.0069 0.8596 0.9079
(0.0072) (0.0040) (0.0028)

20 [23] (10, 19*0) -0.0063 0.8729 0.9186
(0.0054) (0.0037) (0.0025)

[24] (19*0,10) -0.0069 0.8705 0.9182
(0.0058) (0.0038) (0.0025)

[25] (0,5,5,17*0) -0.0065 0.8717 0.9168
(0.0055) (0.0037) (0.0025)

50 20 [26] (30,19*0) -0.0077 0.8712 0.9178
(0.0054) (0.0022) (0.0015)

[27] (19*0,30) -0.0069 0.8663 0.9142
(0.0063) (0.0023) (0.0016)

35 [28] (15,34*0) -0.0045 0.8849 0.9355
(0.0031) (0.0020) (0.0012)

[29] (34*0,15) -0.0046 0.8855 0.9315
(0.0033) (0.0020) (0.0013)

[30] (5,5,5,32*0) -0.0035 0.8828 0.9311
(0.0034) (0.0020) (0.0013)
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Table 7: Simulated mean and estimated expectation of the approximate β- expectation
tolerance interval for k=2

n m Scheme Scheme Simulated Mean Estimated Expectation

No. 90% 95% 99% 90% 95% 99%

5 2 [1] (3,0) 0.7630 0.8175 0.8874 0.7916 0.8792 0.9685

[2] (0,3) 0.7612 0.8151 0.8843 0.7835 0.8738 0.9669

[3] (1,2) 0.7619 0.8163 0.8860 0.7851 0.8749 0.9672

[4] (2,1) 0.7628 0.8172 0.8869 0.7879 0.8767 0.9677

15 5 [5] (10, 4*0) 0.8430 0.8975 0.9564 0.8584 0.9228 0.9817

[6] (4*0, 10) 0.8392 0.8935 0.9530 0.8518 0.9185 0.9804

[7] (2,2,2,2,2) 0.8407 0.8949 0.9542 0.8540 0.9199 0.9809

10 [8] (5,9*0) 0.8717 0.9247 0.9758 0.8798 0.9368 0.9860

[9] (9*0,5) 0.8700 0.9232 0.9748 0.8786 0.936 0.9857

[10] (3,2, 8*0) 0.8710 0.9242 0.9755 0.8797 0.9367 0.9860

20 10 [11] (10, 9*0) 0.8716 0.9246 0.9757 0.8797 0.9367 0.9860

[12] (9*0,10) 0.8704 0.9232 0.9746 0.8774 0.9352 0.9855

25 10 [13] (15,9*0) 0.8706 0.9240 0.9755 0.8796 0.9367 0.9859

[14] (9*0,15) 0.8668 0.9203 0.9729 0.8765 0.9347 0.9853

[15] (5,5,5,7*0) 0.8711 0.9240 0.9752 0.8791 0.9364 0.9859

15 [16] (10, 14*0) 0.8806 0.9330 0.9810 0.8865 0.9412 0.9873

[17] (14*0,10) 0.8787 0.9313 0.9801 0.8854 0.9405 0.9871

30 10 [18] (20, 9*0) 0.8721 0.9248 0.9756 0.8796 0.9366 0.9859

[19] (9*0,20) 0.8676 0.9206 0.9729 0.8759 0.9342 0.9852

15 [20] (15, 14*0) 0.8803 0.9326 0.9807 0.8865 0.9412 0.9873

[21] (14*0,15) 0.8789 0.9313 0.9799 0.8849 0.9401 0.9870

[22] (5,5,5,12*0) 0.8811 0.9333 0.9811 0.8863 0.9411 0.9873

20 [23] (10, 19*0) 0.8862 0.9378 0.9836 0.8899 0.9434 0.9880

[24] (19*0,10) 0.8851 0.9370 0.9832 0.8893 0.9430 0.9879

[25] (0,5,5,17*0) 0.8855 0.9373 0.9834 0.8898 0.9434 0.9880

50 20 [26] (30,19*0) 0.8855 0.9373 0.9834 0.8899 0.9434 0.9880

[27] (19*0,30) 0.8826 0.9348 0.9821 0.8882 0.9423 0.9877

35 [28] (15,34*0) 0.8920 0.9430 0.9865 0.8943 0.9462 0.9889

[29] (34*0,15) 0.8909 0.9422 0.9862 0.8939 0.9460 0.9888

[30] (5,5,5,32*0) 0.8914 0.9426 0.9863 0.8942 0.9462 0.9889
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Table 8: Simulated mean and estimated expectation of the approximate β- expectation
tolerance interval for k=3

n m Scheme Scheme Simulated Mean Estimated Expectation

No. 90% 95% 99% 90% 95% 99%

5 2 [1] (3,0) 0.7696 0.8229 0.8900 0.7898 0.8772 0.9674

[2] (0,3) 0.7648 0.8184 0.8865 0.7807 0.8712 0.9655

[3] (1,2) 0.7713 0.8244 0.8915 0.7822 0.8722 0.9658

[4] (2,1) 0.7671 0.8209 0.8890 0.7849 0.8740 0.9664

15 5 [5] (10, 4*0) 0.8423 0.8965 0.9550 0.8577 0.9221 0.9813

[6] (4*0, 10) 0.8386 0.8926 0.9516 0.8508 0.9175 0.9799

[7] (2,2,2,2,2) 0.8381 0.8923 0.9516 0.8528 0.9188 0.9803

10 [8] (5,9*0) 0.8724 0.9250 0.9755 0.8794 0.9364 0.9858

[9] (9*0,5) 0.8705 0.9232 0.9743 0.8778 0.9353 0.9854

[10] (3,2, 8*0) 0.8724 0.9250 0.9754 0.8793 0.9363 0.9858

20 10 [11] (10, 9*0) 0.8718 0.9247 0.9754 0.8793 0.9364 0.9858

[12] (9*0,10) 0.8692 0.9221 0.9735 0.8766 0.9346 0.9852

25 10 [13] (15,9*0) 0.8701 0.9231 0.9744 0.8793 0.9363 0.9857

[14] (9*0,15) 0.8687 0.9214 0.9730 0.8759 0.9341 0.9850

[15] (5,5,5,7*0) 0.8707 0.9235 0.9745 0.8788 0.936 0.9856

15 [16] (10, 14*0) 0.8803 0.9325 0.9803 0.8863 0.9409 0.9872

[17] (14*0,10) 0.8787 0.9310 0.9794 0.8849 0.9400 0.9869

30 10 [18] (20, 9*0) 0.8711 0.9240 0.9749 0.8792 0.9363 0.9857

[19] (9*0,20) 0.8694 0.9218 0.9730 0.8753 0.9337 0.9849

15 [20] (15, 14*0) 0.8802 0.9324 0.9803 0.8863 0.9409 0.9872

[21] (14*0,15) 0.8784 0.9307 0.9792 0.8844 0.9397 0.9868

[22] (5,5,5,12*0) 0.8800 0.9323 0.9803 0.8861 0.9408 0.9871

20 [23] (10, 19*0) 0.8851 0.9369 0.9830 0.8898 0.9432 0.9879

[24] (19*0,10) 0.8852 0.9368 0.9828 0.8889 0.9427 0.9877

[25] (0,5,5,17*0) 0.8859 0.9375 0.9832 0.8897 0.9432 0.9879

50 20 [26] (30,19*0) 0.8857 0.9373 0.9831 0.8897 0.9432 0.9879

[27] (19*0,30) 0.8835 0.9353 0.9820 0.8879 0.9420 0.9875

35 [28] (15,34*0) 0.8916 0.9426 0.9862 0.8942 0.9461 0.9888

[29] (34*0,15) 0.8917 0.9427 0.9862 0.8937 0.9458 0.9887

[30] (5,5,5,32*0) 0.8919 0.9428 0.9863 0.8941 0.9461 0.9888
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Table 9: Simulated mean and estimated expectation of the approximate β- expectation
tolerance interval for k=5

n m Scheme Scheme Simulated Mean Estimated Expectation

No. 90% 95% 99% 90% 95% 99%

5 2 [1] (3,0) 0.7710 0.8250 0.8919 0.7884 0.8759 0.9665

[2] (0,3) 0.7688 0.8220 0.8888 0.7799 0.8702 0.9647

[3] (1,2) 0.7735 0.8267 0.8928 0.7811 0.8710 0.9650

[4] (2,1) 0.7706 0.824 0.8907 0.7834 0.8726 0.9655

15 5 [5] (10, 4*0) 0.8459 0.8997 0.9568 0.8569 0.9214 0.9809

[6] (4*0, 10) 0.8414 0.8950 0.9528 0.8508 0.9173 0.9797

[7] (2,2,2,2,2) 0.8399 0.8939 0.9521 0.8523 0.9183 0.9800

10 [8] (5,9*0) 0.8722 0.9250 0.9754 0.8789 0.9360 0.9856

[9] (9*0,5) 0.8704 0.9231 0.9738 0.8772 0.9348 0.9852

[10] (3,2, 8*0) 0.8706 0.9235 0.9744 0.8789 0.9360 0.9856

20 10 [11] (10, 9*0) 0.8715 0.9242 0.9747 0.8789 0.9360 0.9856

[12] (9*0,10) 0.8704 0.9231 0.9738 0.8762 0.9342 0.9850

25 10 [13] (15,9*0) 0.8715 0.9243 0.9748 0.8788 0.9359 0.9855

[14] (9*0,15) 0.8689 0.9219 0.9732 0.8757 0.9339 0.9849

[15] (5,5,5,7*0) 0.8728 0.9253 0.9753 0.8784 0.9357 0.9855

15 [16] (10, 14*0) 0.8806 0.9328 0.9804 0.8860 0.9407 0.9871

[17] (14*0,10) 0.8792 0.9314 0.9795 0.8845 0.9397 0.9867

30 10 [18] (20, 9*0) 0.8710 0.9238 0.9745 0.8788 0.9359 0.9855

[19] (9*0,20) 0.8699 0.9225 0.9734 0.8753 0.9336 0.9848

15 [20] (15, 14*0) 0.8808 0.9329 0.9804 0.8859 0.9407 0.9870

[21] (14*0,15) 0.8813 0.9330 0.9802 0.8841 0.9395 0.9867

[22] (5,5,5,12*0) 0.8810 0.9331 0.9806 0.8858 0.9406 0.9870

20 [23] (10, 19*0) 0.8858 0.9374 0.9831 0.8895 0.9430 0.9878

[24] (19*0,10) 0.8846 0.9363 0.9824 0.8886 0.9424 0.9876

[25] (0,5,5,17*0) 0.8857 0.9373 0.9831 0.8894 0.9430 0.9878

50 20 [26] (30,19*0) 0.8843 0.9363 0.9826 0.8895 0.9430 0.9878

[27] (19*0,30) 0.8843 0.9360 0.9822 0.8878 0.9419 0.9874

35 [28] (15,34*0) 0.8911 0.9423 0.9860 0.8940 0.9460 0.9887

[29] (34*0,15) 0.8915 0.9425 0.9860 0.8935 0.9457 0.9886

[30] (5,5,5,32*0) 0.8924 0.9432 0.9864 0.8940 0.9460 0.9887
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6 Real Data Application

Consider following real data which represents failure times, for a specific type of electrical
insulation that was subjected to a continuously increasing voltage stress given by Lawless
(2011).

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9.

According to Balakrishnan and Chan (1992), half-logistic distribution satisfactory fit
to this data. We consider this data as outcome for lifetime for two unit series system.
We use this data with three censoring schemes as (2,0,0,0), (0,0,0,2) and (1,1,0,0). We
obtain reliability estimate for time period t=1. MLE of reliability estimate and its MSE
is given in Table 10. We construct confidence interval based on MLE. These 90% and
95% confidence intervals and their lengths are presented in same Table.

Table 10: Bias, MSE+, Confidence intervals and its length for R(t)

n m Scheme Bias and 90% C. I. and 95% C. I. and

MSE its length its length

6 4 (2,0,0,0) -0.0084 (0.9689, 0.9970) (0.9665, 0.9970)

(0.000002) 0.0281 0.0305

(0,0,0,2) -0.0011 (0.9811, 0.9969) (0.9796, 0.9984)

(0.000075) 0.0158 0.0188

(1,1,0,0) -0.0049 (0.9747, 0.9957) (0.9737, 0.9977)

(0.00024) 0.021 0.024

Method of MLE using EM algorithm and confidence interval based on MLE of relia-
bility function gives best performance for real data. Bias is small in case of conventional
censoring scheme whereas MSE is small in case of progressive censoring scheme. Length
of confidence interval is small in case of conventional censoring scheme.

7 Conclusion and Discussion

Simulation study results indicate that, the bias, MSE of the MLE and reliability estimate
decrease with increase in sample size n and increase in the effective sample size m.
Same trend is observed in case of SE of confidence level of confidence intervals. The
MSE is relatively smaller for progressive Type-II censoring scheme as compared with
conventional Type-II censoring scheme. Confidence levels of confidence interval using
log-transformed MLE are better than the confidence levels of confidence interval using
MLE. SE for confidence levels of confidence intervals using log-transformed MLE is
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smaller than SE for confidence levels of confidence intervals using MLE. Confidence
levels of confidence intervals of reliability function are better for large sample size.

β-expectation tolerance interval shows good results. As sample size n and effective
sample size m increases the estimated expectation and simulated mean approaches to
nominal coverage. Estimated expectation and simulated mean have better coverage
for progressive Type-II censoring scheme than conventional Type-II censoring scheme,
for small sample size. As number of units in system (k) increases the simulated mean
decreases, but estimated expectation increases.

EM algorithm method works well for small sample size and for smaller effective sam-
ple size. Overall both conventional Type-II censoring scheme and progressive Type-II
censoring scheme give better results. The MSE of progressive Type-II censoring method
is smaller than the MSE of conventional censoring method, while bias, confidence in-
terval and β-expectation tolerance interval perform equally good for both the methods.
The results reported in this paper can also be applied when k is replaced by any known
positive real number.
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In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is
provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family
of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the scale parameter
based on progressively Type-II censored sample are obtained. A β-expectation tolerance interval for the
lifetime of the system is obtained. As a member of the scale family, half-logistic distribution is considered
and the performance of the MLE, confidence intervals and tolerance intervals are studied using simulation.

Keywords: progressively Type-II censoring; EM algorithm; MLE; confidence interval; coverage proba-
bility; β-expectation tolerance interval; half-logistic distribution

Mathematics Subject Classifications: 62N02; 62F10; 62F25

1. Introduction

In life testing experiments, certain units are put on test and we observe failure time for each of
these units. Sometimes it is impossible to observe failure times of all the units or we have to
terminate the experiment at some specified time. In such cases, failure times for some of the
units may not be observed. The unobserved failure time data are called censored data. Broadly,
censoring is classified into two types: Type-I and Type-II censoring. Type-I censoring depends
on time. An experiment continues up to a pre-determined time T . Units having failure time after
time T are not observed. Here, failure time will be known only if it is exactly less than T . For
example, if ‘n’ units are placed on test and the test is terminated at time T , the failure times will
be known only for those units that fail before time T . In Type-I censoring, the number of exact
failure times observed is random.

Type-II censoring scheme is often used in life testing experiment. Only m units in a random
sample of size n (m < n) are observed. Progressive Type-II censoring is a generalization of Type-II
censoring. In progressive censoring scheme, the number ‘m’ and R1, R2, . . . , Rm are fixed prior to
the test and

∑m
i=1 Ri = n − m. At the first failure, R1 units are randomly removed from remaining
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n − 1 units. At the second failure, R2 units are randomly removed from remaining n − 2 − R1

units and so on. At the mth failure, all remaining Rm units are removed. Here, we observe failure
time of ‘m’ units and remaining n − m units are removed at different stages of an experiment. In
conventional Type-II censoring scheme R1 = R2 = · · · Rm−1 = 0 and Rm = n − m. In this paper,
the progressive Type-II censoring scheme is considered.

Many authors studied progressive Type-II censoring scheme for various lifetime distributions.
Cohen [1] introduced progressive Type-II censoring. Mann [2,3] considered the Weibull distribu-
tion with progressive censoring. Balakrishnan et al. [4–6] discussed inference for half-logistic,
Gaussian and extreme value distribution under progressive Type-II censoring scheme, respectively.
Ng [7] studied parameter estimation for the modified Weibull distribution under progressively
Type-II censoring.

Balakrishnan and Aggarwala [8] described details about progressive censoring. Balakrishnan
[9] studied various distributions and inferential methods for progressively censored data. Pradhan
[10] considered point and interval estimation of a k-unit parallel system based on progressive
Type-II censoring scheme with exponential distribution as the lifetime distribution of each unit.
Kim and Han [11] discussed half-logistic distribution for Type-II progressively censored sample.
Recently Iliopoulos and Balakrishnan [12] studied likelihood inference for Laplace distribution
based on progressively Type-II censored sample.

Dempster et al. [13] introduced the expectation maximization (EM) algorithm. They presented
maximum likelihood estimation for incomplete data. Mclachlan and Krishnan [14] introduced
more details about the EM algorithm. Little and Rubin [15] discussed EM algorithm for exponen-
tial family of distributions. Pradhan and Kundu [16] used the EM algorithm to estimate parameters
of generalized exponential distribution under progressive Type-II censoring scheme. Ng et al. [17]
used the EM algorithm to estimate parameters of lognormal and Weibull distributions under the
Type-II censoring scheme. In this paper, the EM algorithm is used for the estimation of the param-
eters of a k-unit parallel system based on the progressive Type-II censoring scheme when lifetime
distribution of each unit belongs to the scale family.

Parameter estimation is based on the lifetimes of the system. We assume that n units are put on
test and failure times of

∑m
i=1 Ri = n − m units are censored. Failure times of these censored units

are unknown. These data are considered as missing and the EM algorithm is used to compute the
maximum likelihood estimator (MLE). We used idea of missing information principle of Louis
[18]. Asymptotic normal distribution of the MLE is used to construct confidence interval for the
scale parameter. We also discussed tolerance interval for the lifetime of system, on the lines of
Kumbhar and Shirke [19].

In Section 2, we introduced the model and obtained the MLE for the scale parameter. We
also provided an expression for Fisher information. Asymptotic confidence interval for the scale
parameter is discussed in the same section. Section 3 provides β-expectation tolerance interval
for the lifetime of a k-unit parallel system based on progressively censored data. In Section 4,
the half-logistic distribution is considered as a member of the scale family. The MLE, confidence
intervals and the tolerance intervals are studied. The performance of the MLE and confidence
intervals for the scale parameter of half-logistic distribution is investigated using simulations.
Results of the simulation study have been reported in Section 5. Conclusions are presented in
Section 6.

2. Model and estimation of the scale parameter

Let Gλ be a scale family of lifetime distributions, where λ is the parameter of interest. Consider
k-unit parallel system with independently and identically distributed units having lifetimes
X1, X2, . . . , Xk That is Xi is the lifetime of the ith unit having cumulative density function (cdf)
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G(xi/λ). Lifetime of system is X = Max.(X1, X2, . . . , Xk). The cdf of X is

F(x; λ) =
[
G
( x

λ

)]k
, λ > 0, x ≥ 0.

The probability density function (pdf) of X is

f (x; λ) = k

λ
g
( x

λ

) [
G
( x

λ

)]k−1
, λ > 0, x ≥ 0.

where g(·) is the pdf of Xi when λ = 1.

2.1. Maximum likelihood estimation

Suppose n k-unit parallel systems are under test and we observe failure times of m systems under
progressive Type-II censoring. Let (R1, R2, . . . , Rm) be a progressive censoring scheme.

The likelihood function for the observed data is

L(λ) = C
m∏

i=1

f (x(i); λ)[1 − F(x(i); λ)]Ri ,

where C = n
m−1∏
j=1

(
n − j −

j∑
i=1

Ri

)
.

L(λ) = C
m∏

i=1

k

λ
g
(x(i)

λ

) [
G
(x(i)

λ

)]k−1
{

1 −
[
G
(x(i)

λ

)]k
}Ri

.

Suppose x(1), x(2), . . . , x(m) is the observed data and z1, z2, . . . , zm is the censored data. We note
that zi is a vector with Ri elements, which is not observable for i = 1, 2, . . . , m. The censored
data Z = (z1, z2, . . . , zm) can be considered as the missing data. X = (x(1), x(2), . . . , x(m)) is the
observed data. W = (X , Z) is the complete data set. Then complete log-likelihood function is

Lc = n log(k) − n log(λ) +
m∑

i=1

log
[
g
(xi

λ

)]
+ (k − 1)

m∑
i=1

log
[
G
(xi

λ

)]

+
m∑

i=1

Ri∑
j=1

log
[
g
( zij

λ

)]
+ (k − 1)

m∑
i=1

Ri∑
j=1

log
[
G
( zij

λ

)]
. (1)

In order to obtain the MLE of λ, we use the EM algorithm [13]. For the E step in the EM
algorithm, we take expectation of Zij. The derivative of Lc with respect to λ is taken for the M
step, where

dLc

dλ
= −n

λ
− 1

λ2

m∑
i=1

xig′(xi/λ)

g(xi/λ)
− (k − 1)

λ2

m∑
i=1

xiG′(xi/λ)

G(xi/λ)
− 1

λ2

m∑
i=1

Ria(xi, k, λ0)

− (k − 1)

λ2

m∑
i=1

Rib(xi, k, λ0), (2)

where a(xi, k, λ0) = E

(
Zijg′(Zij/λ)

g(Zij/λ)

)
=
∫ ∞

xi

zg′ ( z
λ

)
g
(

z
λ

) f (z; λ)

1 − F(xi; λ)
dz

and b(xi, k, λ0) = E

(
ZijG′(Zij/λ)

G(Zij/λ)

)
=
∫ ∞

xi

zG′ ( z
λ

)
G
(

z
λ

) f (z; λ)

1 − F(xi; λ)
dz.
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To obtain the solution λ1, we have to solve the equation dLc/dλ = 0. But the closed form
solution does not exist for this equation. Therefore, we used the Newton–Raphson method and
computed λ1. Using this λ1, we computed a(xi, k, λ1) and b(xi, k, λ1). This ended the M-step. We
continued this procedure until convergence took place.

In the Newton–Raphson method, we have to choose the initial value of λ. Here, we used least-
square estimate of λ as an initial value. Ng [7] discussed estimation of model parameters of the
modified Weibull distribution based on progressively Type-II censored data where the empirical
distribution function is computed as [20]

F̂(x(i)) = 1 −
i∏

j=1

(1 − p̂j).

with p̂j = 1

n −∑j
k=2 Rk−1 − j + 1

for j = 1, 2, . . . , m.

The estimate of the parameters can be obtained by the least-square fit of simple linear regression

yi = βx(i) with β = −1

λ
.

yi = ln

[
1 − F̂

1
k (x(i−1)) + F̂

1
k (xi)

2

]
for i = 1, 2, . . . , m.

F̂(x(0)) = 0.

The least-square estimate of λ is given by

λ̂ = −
∑m

i=1 x2
(i)∑m

i=1 x(i)yi
.

Using this λ̂, we obtained the MLE of λ by the Newton–Raphson method.

2.2. Fisher information

According to Louis [18], the observed Fisher information is given by
observed information = complete information – missing information. That is Ix(λ) = Iw(λ) −

Iw|x(λ), where

complete information = Iw(λ) = −E[d2L/dλ2] and
L is the log-likelihood function based on all n observations. We obtain Iw(λ) and Iw|x(λ) in
the following.

Now,

L = n log(k) − n log(λ) +
n∑

i=1

log
[
g
(xi

λ

)]
+ (k − 1)

n∑
i=1

log
[
G
(xi

λ

)]
(3)

and

dL

dλ
= −n

λ
− 1

λ2

n∑
i=1

xig′(xi/λ)

g(xi/λ)
− (k − 1)

λ2

n∑
i=1

xiG′(xi/λ)

G(xi/λ)
.
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d2L

dλ2
= n

λ2
+ 1

λ4

n∑
i=1

x2
i g(xi/λ)g′′(xi/λ) − x2

i [g′(xi/λ)]2 + 2λxig(xi/λ)g′(xi/λ)

[g(xi/λ)]2

+ (k − 1)

λ4

n∑
i=1

x2
i G(xi/λ)G′′(xi/λ) − x2

i [G′(xi/λ)]2 + 2λxiG(xi/λ)G′(xi/λ)

[G(xi/λ)]2
.

Complete information is given by

Iw(λ) = − n

λ2
− 1

λ4

n∑
i=1

E

[
X2

i g(Xi/λ)g′′(Xi/λ) − X2
i [g′(Xi/λ)]2 + 2λXig(Xi/λ)g′(Xi/λ)[

g
(Xi

λ

)]2
]

− (k − 1)

λ4

n∑
i=1

E

[
X2

i G(Xi/λ)G′′(Xi/λ) − X2
i [G′(Xi/λ)]2 + 2λXiG(Xi/λ)G′(Xi/λ)

[G(Xi/λ)]2

]
. (4)

Missing information is given by

IW |X(λ) =
m∑

i=1

RiI
(i)
W |X(λ) = −

m∑
i=1

Ri∑
j=1

EZ|X
[

d2 log( f (Zij|Xi, λ))

dλ2

]
.

Consider

fz|X(Zij|Xi, λ) = f (zij; λ)

1 − F(xi; λ)
= (k/λ)g

(
zij/λ

) [
G(zij/λ)

]k−1

1 − [G(xi/λ)]k
.

Therefore,

log f = log k − log λ + log
[
g
( zij

λ

)]
+ (k − 1) log

[
G
( zij

λ

)]
− log

{
1 −

[
G
(xi

λ

)]k
}

.

d log f

dλ
= −1

λ
− zijg′ ( zij

λ

)
λ2g

( zij

λ

) − (k − 1)zijG′(zij/λ)

λ2G(zij/λ)
− kxi[G(xi/λ)]k−1G′(xi/λ)

λ2{1 − [G(xi/λ)]k}

and

d2 log f

dλ2
= 1

λ2
+ z2

ijg(zij/λ)g′′(zij/λ) − z2
ij[g′(zij/λ)]2 + 2λzi,jg(zij/λ)g′(zij/λ)

λ4[g(zij/λ)]2

+ (k − 1){z2
ijG(zij/λ)G′′(zij/λ) − z2

ij[G′(zij/λ)]2 + 2λzijG(zij/λ)G′(zij/λ)}
λ4[G(zij/λ)]2

+ kx2
i {1 − [G(xi/λ)]k}[G(xi/λ)]k−2{G(xi/λ)G′′(xi/λ) + (k − 1)[G′(xi/λ)]2}

λ4{1 − [G(xi/λ)]k}2

+ k2x2
i [G(xi/λ)]2k−2[G′(xi/λ)]2 + 2λkxi[G(xi/λ)]k−1G′(xi/λ){1 − [G(xi/λ)]k}

λ4{1 − [G(xi/λ)]k}2
.
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176 K.G. Potdar and D.T. Shirke

Hence, missing information is

IW |X(λ) =
m∑

i=1

RiI
(i)
W |X(λ) = −

m∑
i=1

Ri∑
j=1

EZ|X
[

d2 log(f (Zij|Xi, λ))

dλ2

]
.

= −n − m

λ2

− 1

λ4

m∑
i=1

Ri∑
j=1

{
E

[
Z2

ijg(Zij/λ)g′′(Zij/λ) − Z2
ij[g′(Zij/λ)]2 + 2λZijg(Zij/λ)g′(Zij/λ)

[g(Zij/λ)]2

]

+ (k − 1)E

[
Z2

ijG(Zij/λ)G′′(Zij/λ) − z2
ij[G′(Zij/λ)]2 + 2λZijG(Zij/λ)G′(Zij/λ)

[G(Zij/λ)]2

]

+ kx2
i {1 − [G(xi/λ)]k}[G(xi/λ)]k−2{G(xi/λ)G′′(xi/λ) + (k − 1)[G′(xi/λ)]2}

{1 − [G(xi/λ)]k}2

+ k2x2
i [G(xi/λ)]2k−2[G′(xi/λ)]2 + 2λkxi[G(xi/λ)]k−1G′(xi/λ){1 − [G(xi/λ)]k}

{1 − [G(xi/λ)]k}2

}
.

(5)

By using expressions in Equations (4) and (5), we obtained observed Fisher information.

2.3. Confidence intervals

Using asymptotic normal distribution of the MLE, confidence interval for λ is constructed. Let λ̂n

be the MLE of λ and σ̂ 2(λ̂n) = 1/lx(λ̂n) be the estimated variance of λ̂n. Therefore, 100(1 − α)%
asymptotic confidence interval for λ is given by(

λ̂n − τα/2

√
σ̂ 2(λ̂n), λ̂n + τα/2

√
σ̂ 2(λ̂n)

)
. (6)

where τα/2 is the upper 100(α/2)th percentile of the standard normal distribution.
Meeker and Escobar [20] reported that the asymptotic confidence interval for λ can be

computed using log(λ̂n). An approximate 100(1 − α)% confidence interval for log(λ) is(
log(λ̂n) − τα/2

√
σ̂ 2(log(λ̂n)), log(λ̂n) + τα/2

√
σ̂ 2(log(λ̂n))

)
, where σ̂ 2(log(λ̂n)) is the esti-

mated variance of log(λ̂n), which is approximated by σ̂ 2(log(λ̂n)) ≈ σ̂ 2(λ̂n)/λ̂
2
n Hence, an

approximate 100(1 − α)% confidence interval for λ is(
λ̂ne

(
− τα/2

√
σ̂2(λ̂n)

λ̂n

)
, λ̂ne

(
τα/2

√
σ̂2(λ̂n)

λ̂n

))
. (7)

3. Tolerance intervals

Kumbhar and Shirke [19] derived the expression for β-expectation tolerance interval for the
lifetime distribution of a k-unit parallel system when the lifetime distribution of each unit is
exponential. They investigated the performance of the tolerance interval based on complete data.
Pradhan [10] studied the performance of the tolerance interval based on progressively Type-II
censored data from the exponential distribution. The performance of the tolerance interval based
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on progressively Type-II censored data for the scale family of distributions is studied. Let lβ(λ)

be the lower quantile of order β of the distribution function F(x; λ). Then, we have

lβ(λ) = λG−1(β1/k).

Thus, an upper β-expectation tolerance interval for F(x; λ) is obtained by

Iβ = (0, lβ(λ)).

The maximum likelihood estimate of lβ(λ) is given by

lβ(λ̂n) = λ̂nG−1(β1/k)

yielding an approximate β-expectation tolerance interval

Îβ = (0, lβ(λ̂n)).

The expectation of Îβ can be obtained approximately using the approach suggested by Atwood
[21] and is given as

E[F(lβ(λ̂n); λ)] ≈ β − 0.5F02σ
2(λ̂n) + F01σ

2(λ̂n)F11

F10
, (8)

where F10 = ∂F

∂x
, F01 = ∂F

∂λ
, F11 = ∂2F

∂x∂λ
, F02 = ∂2F

∂λ2
,

F10 = k

λ

[
G
( x

λ

)]k−1
g
( x

λ

)
,

F01 = − kx

λ2

[
G
( x

λ

)]k−1
G′
( x

λ

)
,

F11 = − k

λ3

[
G
( x

λ

)]k−2 {
xG
( x

λ

)
g′
( x

λ

)
+ x(k − 1)G′

( x

λ

)
g
( x

λ

)
+ λG

( x

λ

)
g
( x

λ

)}
,

and F02 = kx

λ4

[
G
( x

λ

)]k−2
{

xG
( x

λ

)
G′′
( x

λ

)
+ x(k − 1)

[
G′
( x

λ

)]2 + 2λG
( x

λ

)
G′
( x

λ

)}
.

The derivatives of F are evaluated at x = lβ(λ) with λ = λ̂n. Instead of the actual value of
σ 2(λ̂), its estimate has been used.

4. Application to half-logistic distribution

Consider a member of the scale family of distributions, namely half-logistic distribution with
scale parameter λ. The cdf of X is

F(x; λ) =
[

1 − e−x/λ

1 + e−x/λ

]k

, λ > 0, x ≥ 0.

The pdf of X is

f (x; λ) = k

λ

2e−x/λ

(1 + e−x/λ)2

[
1 − e−x/λ

1 + e−x/λ

]k−1

, λ > 0, x ≥ 0.
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178 K.G. Potdar and D.T. Shirke

4.1. Maximum likelihood estimation

The complete log-likelihood function for the half-logistic distribution with scale parameter λ from
Equation (1) is

Lc = n log(k) − n log(λ) +
m∑

i=1

log

(
2e−xi/λ

(1 + e−xi/λ)2

)
+ (k − 1)

m∑
i=1

log

[
1 − e−xi/λ

1 + e−xi/λ

]

+
m∑

i=1

Ri∑
j=1

log

(
2e− zij

λ

(1 + e− zij
λ )2

)
+ (k − 1)

m∑
i=1

Ri∑
j=1

log

(
1 − e−zij/λ

1 + e−zij/λ

)
. (9)

In order to obtain the MLE of λ, we use the EM algorithm [13]. For the E step in the EM
algorithm, we take expectation of Zij. The derivative of Lc with respect to λ is taken for the M
step, where

dLc

dλ
= −n

λ
+ 1

λ2

m∑
i=1

xi(1 − e− xi
λ )

1 + e− xi
λ

− 2(k − 1)

λ2

m∑
i=1

xie− xi
λ

1 − e− 2xi
λ

− 1

λ2

m∑
i=1

Ria(xi, k, λ0) − 2(k − 1)

λ2

m∑
i=1

Rib(xi, k, λ0), (10)

where a(xi, k, λ0) = E

(
Zij(1 − e−Zij/λ)

1 + e−Zij/λ

)

and b(xi, k, λ0) = E(Zije
−Zij/λ/(1 − e−2Zij/λ)).

To solve this equation, we use the Newton–Raphson method.

4.2. Fisher information

The observed information = complete information – missing information. That is Ix(λ) =
Iw(λ) − Iw|x(λ).

Consider Iw(λ) = −E[d2L/dλ2].
Log-likelihood function for n observations is

L = n log(k) − n log(λ) +
n∑

i=1

log

(
2e−xi/λ

(1 + e−xi/λ)2

)
+ (k − 1)

n∑
i=1

log

[
1 − e−xi/λ

1 + e−xi/λ

]
. (11)

dL

dλ
= −n

λ
+ 1

λ2

m∑
i=1

xi(1 − e−xi/λ)

1 + e−xi/λ
− 2(k − 1)

λ2

n∑
i=1

xie−xi/λ

1 − e−2xi/λ

d2L

dλ2
= n

λ2
− 2

λ4

n∑
i=1

x2
i e−xi/λ

(1 + e−xi/λ)2
− 2

λ3

n∑
i=1

xi(1 − e−xi/λ)

1 + e−xi/λ

− 2(k − 1)

λ4

n∑
i=1

x2
i e−xi/λ(1 + e−2xi/λ)

(1 − e−xi/λ)2(1 + e−xi/λ)2
+ 4(k − 1)

λ3

n∑
i=1

xie−xi/λ

(1 − e−xi/λ)(1 + e−xi/λ)
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and

Iw(λ) = − n

λ2
+ 2

λ4

n∑
i=1

E

[
X2

i e−Xi/λ

(1 + e−Xi/λ)2

]
+ 2

λ3

n∑
i=1

E

[
Xi(1 − e−Xi/λ)

1 + e−Xi/λ

]

+ 2(k − 1)

λ4

n∑
i=1

E

[
X2

i e−Xi/λ(1 + e−2Xi/λ)

(1 − e−Xi/λ)2(1 + e−Xi/λ)2

]

− 4(k − 1)

λ3

n∑
i=1

E

[
Xie−Xi/λ

(1 − e−Xi/λ)(1 + e−Xi/λ)

]
. (12)

Missing information is

IW |X(λ) =
m∑

i=1

RiI
(i)
W |X(λ) = −

m∑
i=1

Ri∑
j=1

EZ|X
[

d2 log(f (Zij|Xi, λ))

dλ2

]
.

Consider

fz|X(Zij|Xi, λ) = f (zij; λ)

1 − F(xi; λ)
=

(k/λ) 2e−zij/λ

(1+e−zij/λ)2 [(1 − e−zij/λ)/(1 + e−zij/λ)]k−1

1 −
[

1−e−xi/λ

1+e−xi/λ

]k
.

Therefore,

log f = log k − log λ − log

(
2e−zij/λ

(1 + e−zij/λ)2

)

+ (k − 1) log

[
1 − e−zij/λ

1 + e−zij/λ

]
− log

{
1 −

[
1 − e−xi/λ

1 + e−xi/λ

]k
}

.

d log f

dλ
= −1

λ
+ zij(1 − e−zij/λ)

λ2(1 + e−zij/λ)
− 2(k − 1)zije−zij/λ

λ2(1 − e−2zij/λ)

− 2kxie−xi/λ[1 − e−xi/λ]k−1

λ2(1 + e−xi/λ)(k+1)

{
1 −

[
1−e−xi/λ

1+e−xi/λ

]k
}

and

d2 log f

dλ2
= 1

λ2
− 2z2

ije
− zij

λ

λ4[1 + e− zij
λ ]2

− 2zij(1 − e− zij
λ )

λ3(1 + e− zij
λ )

− 2(k − 1)z2
ije

− zij
λ (1 + e− 2zij

λ )

λ4(1 − e− zij
λ )2(1 + e− zij

λ )2

+ 4(k − 1)zije− zij
λ

λ3(1 − e− zij
λ )(1 + e− zij

λ )

+
2kx2

i e− xi
λ

[
1−e−xi/λ

1+e− xi
λ

]k−2 [2(k − 1)e− xi
λ − (1 − e− zij

λ )2]

λ4(1 + e− xi
λ )4

{
1 −

[
1−e− xi

λ

1+e− xi
λ

]k
}

+ 4k2x2
i e− 2xi

λ (1 − e− xi
λ )2k−2

λ4(1 + e− xi
λ )2k+2

{
1 −

[
1−e− xi

λ

1+e− xi
λ

]k
}2

+ 4kxie− xi
λ (1 − e− xi

λ )k−1

λ3(1 + e− xi
λ )k+1

{
1 −

[
1−e− xi

λ

1+e− xi
λ

]k
} .
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180 K.G. Potdar and D.T. Shirke

Also,

IW |X(λ) =
m∑

i=1

RiI
(i)
W |X(λ),

= −n − m

λ2
+ 2

λ4

m∑
i=1

Ri∑
j=1

E

⎡
⎣ Z2

ije
− Zij

λ

(1 + e− Zij
λ )2

⎤
⎦+ 2

λ3

m∑
i=1

Ri∑
j=1

E

[
Zij(1 − e− Zij

λ )

1 + e− Zij
λ

]

+ 2(k − 1)

λ4

m∑
i=1

Ri∑
j=1

E

⎡
⎣ Z2

ije
− Zij

λ (1 + e− 2Zij
λ )

(1 − e− Zij
λ )2(1 + e− Zij

λ )2

⎤
⎦

− 4(k − 1)

λ3

m∑
i=1

Ri∑
j=1

E

[
Zije− Zij

λ

(1 − e− Zij
λ )(1 + e− Zij

λ )

]

− 2k

λ4

m∑
i=1

Rix2
i e− xi

λ

[
1−e− xi

λ

1+e− xi
λ

]k−2
[2(k − 1)e− xi

λ − (1 − e− xi
λ )2]

(1 + e− xi
λ )4

{
1 −

[
1−e− xi

λ

1+e− xi
λ

]k
}

− 4k2

λ4

m∑
i=1

Rix2
i e− 2xi

λ (1 − e− xi
λ )2k−2

(1 + e− xi
λ )2k+2

{
1 −

[
1−e− xi

λ

1+e− xi
λ

]k
}2

− 4k

λ3

m∑
i=1

Rixie− xi
λ (1 − e− xi

λ )k−1

(1 + e− xi
λ )k+1

{
1 −

[
1−e− xi

λ

1+e− xi
λ

]k
} . (13)

4.3. Tolerance interval

Let lβ(λ) be the lower quantile of order β of the cdf F(x; λ). Then, we have

lβ(λ) = −λ log

(
1 − β1/k

1 + β1/k

)
.

Thus, an upper β-expectation tolerance interval for F(x; λ) is obtained by

Iβ = (0, lβ(λ)).

The MLE of lβ(λ) is given by

lβ(λ̂n) = −λ̂n log

(
1 − β1/k

1 + β1/k

)

yielding an approximate β-expectation tolerance interval as

Îβ = (0, lβ(λ̂n)).

The expectation of Îβ can be obtained approximately using the approach suggested and given as

E[F(lβ(λ̂n); λ)] ≈ β − 0.5F02σ
2(λ̂n) + F01σ

2(λ̂n)F11

F10
, (14)
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Table 1. Bias, MSEa, Confidence levels and its SEa for k = 2 and λ = 1.

Confidence level and SE (MLE) Confidence level and SE (log MLE)
Scheme Bias and

N m no. Scheme MSE 90% 95% 90% 95%

5 2 [1] (3, 0) −0.0195 0.8309 0.8645 0.8765 0.9233
(0.1659) (0.0281) (0.0234) (0.0216) (0.0142)

[2] (0, 3) −0.0319 0.8299 0.8639 0.8756 0.9199
(0.1421) (0.0282) (0.0235) (0.0218) (0.0147)

[3] (1, 2) −0.0325 0.8251 0.8625 0.8716 0.9200
(0.1462) (0.0289) (0.0237) (0.0224) (0.0147)

[4] (2, 1) −0.0309 0.8261 0.8597 0.8708 0.9218
(0.1503) (0.0287) (0.0241) (0.0225) (0.0144)

15 5 [5] (10, 4*0) 0.0064 0.8736 0.9114 0.8932 0.9420
(0.0714) (0.0074) (0.0054) (0.0064) (0.0036)

[6] (4*0, 10) −0.0151 0.8656 0.9075 0.8847 0.9355
(0.0570) (0.0078) (0.0056) (0.0068) (0.0040)

[7] (2, 2, 2, 2, 2) −0.0117 0.8769 0.9149 0.8946 0.9412
(0.0579) (0.0072) (0.0052) (0.0063) (0.0037)

10 [8] (5, 9*0) 0.0052 0.8869 0.9297 0.8919 0.9453
(0.0389) (0.0067) (0.0044) (0.0064) (0.0034)

[9] (9*0, 5) −0.0011 0.8887 0.9298 0.8936 0.9452
(0.0330) (0.0066) (0.0044) (0.0063) (0.0035)

[10] (3, 2, 8*0) −0.0011 0.8832 0.9275 0.8931 0.9450
(0.0381) (0.0069) (0.0045) (0.0064) (0.0035)

20 10 [11] (10, 9*0) 0.0013 0.8913 0.9340 0.8968 0.9480
(0.0373) (0.0048) (0.0031) (0.0046) (0.0025)

[12] (9*0, 10) −0.0041 0.8830 0.9283 0.8936 0.9431
(0.0307) (0.0052) (0.0033) (0.0048) (0.0027)

25 10 [13] (15, 9*0) −0.0031 0.8841 0.9294 0.8969 0.9493
(0.0373) (0.0041) (0.0026) (0.0037) (0.0019)

[14] (9*0, 15) −0.0057 0.8897 0.9318 0.8945 0.9456
(0.0284) (0.0039) (0.0025) (0.0038) (0.0021)

[15] (5, 5, 5, 7*0) −0.0001 0.8908 0.9330 0.8985 0.9484
(0.0353) (0.0039) (0.0025) (0.0036) (0.0020)

15 [16] (10, 14*0) 0.0011 0.8955 0.9399 0.9021 0.9503
(0.0250) (0.0037) (0.0023) (0.0035) (0.0019)

[17] (14*0, 10) −0.0033 0.8912 0.9362 0.8971 0.9454
(0.0209) (0.0039) (0.0024) (0.0037) (0.0021)

30 10 [18] (20, 9*0) 0.0004 0.8900 0.9320 0.8961 0.9477
(0.0369) (0.0033) (0.0021) (0.0031) (0.0017)

[19] (9*0, 20) −0.0074 0.8855 0.9291 0.8953 0.9441
(0.0278) (0.0034) (0.0022) (0.0031) (0.0018)

15 [20] (15, 14*0) 0.0001 0.8888 0.9357 0.8975 0.9440
(0.0255) (0.0033) (0.0020) (0.0031) (0.0018)

[21] (14*0, 15) −0.0063 0.8860 0.9321 0.8938 0.9444
(0.0202) (0.0034) (0.0021) (0.0032) (0.0018)

[22] (5, 5, 5, 12*0) −0.0022 0.8871 0.9354 0.8951 0.9420
(0.0249) (0.0033) (0.0020) (0.0031) (0.0018)

20 [23] (10, 19*0) 0.0008 0.8964 0.9410 0.9002 0.9517
(0.0190) (0.0031) (0.0019) (0.0030) (0.0015)

[24] (19*0, 10) −0.0023 0.8940 0.9402 0.8990 0.9484
(0.0159) (0.0032) (0.0019) (0.0030) (0.0016)

[25] (0, 5, 5, 17*0) 0.0015 0.8943 0.9390 0.8984 0.9450
(0.0191) (0.0032) (0.0019) (0.0030) (0.0017)

50 20 [26] (30, 19*0) −0.00161 0.8941 0.9392 0.8987 0.9476
(0.0188) (0.0019) (0.0011) (0.0018) (0.0010)

[27] (19*0, 30) −0.0031 0.8914 0.9390 0.8970 0.9475
(0.0145) (0.0019) (0.0011) (0.0018) (0.0010)

35 [28] (15, 34*0) 0.0005 0.8942 0.9442 0.8978 0.9496
(0.0111) (0.0019) (0.0011) (0.0018) (0.0010)

[29] (34*0, 15) −0.0017 0.8980 0.9459 0.9014 0.94800
(0.0093) (0.0018) (0.0010) (0.0018) (0.0010)

[30] (5, 5, 5, 32*0) 0.0011 0.9002 0.9458 0.9039 0.9504
(0.0106) (0.0018) (0.0010) (0.0017) (0.0009)

Note: aMSE and SE are given in parenthesis.
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where

F10 = 2ke−x/λ

λ

(1 − e−x/λ)k−1

(1 + e−x/λ)k+1
,

F01 = −2kxe−x/λ

λ2

(1 − e−x/λ)k−1

(1 + e−x/λ)k+1
,

F11 = 2k

λ3
e−x/λ (1 − e−x/λ)k−2

(1 + e−x/λ)k+2
{e−2x/λ(x + λ) − 2kxe−x/λ + x − λ},

and

F02 = −2kx

λ4
e−x/λ (1 − e−x/λ)k−2

(1 + e−x/λ)k+2
{x − 2λ + e−2x/λ(x + 2λ) − 2kxe−x/λ}.

5. Simulation study

A simulation is carried out to study the performance of the MLE when the lifetime distribution
of each unit follows the half-logistic distribution. Estimates of bias and the MSE for various
progressively Type-II censoring scheme are obtained. Asymptotic confidence intervals based on
the MLE and log-transformed MLE are compared with their confidence levels. The coverage of
the β-expectation tolerance intervals is also studied. The algorithm by Balakrishnan and Sandhu
[22] is used to generate progressively censored samples from half-logistic distribution of a k-unit
parallel system.

• Algorithm
1. Generate independently and identically distributed observations (W1, W2, . . . , Wm) from

U(0, 1).
2. For (R1, R2, . . . , Rm) censoring scheme set Ei = 1/(i + Rm + Rm−1 + · · · + Rm−i+1) for i =

1, 2, . . . , m.
3. Set Vi = WEi

i for i = 1, 2, . . . , m.
4. Set Ui = 1 − Vm Vm−1 . . . Vm−i+1 for i = 1, 2, . . . , m. Then (U1, U2, . . . , Um) is the uniform

(0,1) progressively Type-II censored sample.
5. For the given value of the parameter λ, set

x(i) = −λ log

[
1 − (Ui)

1/k

1 + (Ui)1/k

]
for i = 1, 2, . . . , m. (15)

x(1), x(2), . . . , x(m) is the required progressively Type-II-censored sample from the distribution
of a k-unit parallel system with half-logistic distribution as the distribution of each unit of the
system.

In Table 1, scheme (a, b) stands for R1 = a and R2 = b. A similar meaning holds for schemes
described through completely specified vector, while scheme (10, 4*0) means R1 = 10 and rest
four Ri’s are zero. That is R2 = R3 = R4 = R5 = 0.

Simulation is carried out for 2-unit parallel system with λ = 1. The EM algorithm and Newton–
Raphson method are used to compute the MLE. For each particular progressive censoring scheme,
10,000 sets of observations are generated. The bias, the MSE, confidence levels for the correspond-
ing approximate confidence intervals for λ along with their standard errors (SE) are displayed
in Table 1. The simulated mean coverage and the estimated expectation of the tolerance interval
along with their SE are given in Table 2.
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Table 2. Simulated mean, estimated expectation and its SEa of the approximate β-expectation tolerance interval for
k = 2 and λ = 1.

Simulated mean and SE Estimated expectation and SE
Scheme

n m no. Scheme 90% 95% 99% 90% 95% 99%

5 2 [1] (3, 0) 0.8058 0.8658 0.9375 0.8045 0.8755 0.9600
(0.0962) (0.0833) (0.0568) (0.0428) (0.0334) (0.0134)

[2] (0, 3) 0.8083 0.8694 0.9411 0.8163 0.8847 0.9637
(0.0922) (0.0792) (0.0529) (0.0374) (0.0293) (0.0118)

[3] (1, 2) 0.8097 0.8700 0.9409 0.8147 0.8834 0.9632
(0.0926) (0.0799) (0.0539) (0.0382) (0.0297) (0.0118)

[4] (2, 1) 0.8083 0.8690 0.9405 0.8119 0.8812 0.9623
(0.0930) (0.0800) (0.0535) (0.0395) (0.0307) (0.0126)

15 5 [5] (10, 4*0) 0.8592 0.9158 0.9728 0.8594 0.9183 0.9772
(0.0310) (0.0237) (0.0118) (0.0106) (0.0082) (0.0037)

[6] (4*0, 10) 0.8623 0.9190 0.9747 0.8680 0.9250 0.9799
(0.0288) (0.0219) (0.0110) (0.0082) (0.0063) (0.0026)

[7] (2, 2, 2, 2, 2) 0.8616 0.9184 0.9745 0.8663 0.9237 0.9794
(0.0290) (0.0221) (0.0106) (0.0086) (0.0068) (0.0026)

10 [8] (5, 9*0) 0.8803 0.9339 0.9826 0.8788 0.9334 0.9833
(0.0198) (0.0139) (0.0058) (0.0052) (0.0045) (0.0016)

[9] (9*0, 5) 0.8800 0.9340 0.9829 0.8817 0.9357 0.9843
(0.0190) (0.0132) (0.0052) (0.0045) (0.0037) (0.0014)

[10] (3, 2, 8*0) 0.8793 0.9331 0.9823 0.8789 0.9335 0.9834
(0.0202) (0.0141) (0.0058) (0.0052) (0.0045) (0.0016)

20 10 [11] (10, 9*0) 0.8798 0.9334 0.9824 0.8789 0.9335 0.9834
(0.0174) (0.0123) (0.0050) (0.0047) (0.0037) (0.0015)

[12] (9*0, 10) 0.8802 0.9343 0.9831 0.8830 0.9367 0.9847
(0.0160) (0.0113) (0.0045) (0.0038) (0.0030) (0.0012)

25 10 [13] (15, 9*0) 0.8800 0.9337 0.9825 0.8790 0.9336 0.9834
(0.0154) (0.0109) (0.0044) (0.0042) (0.0033) (0.0013)

[14] (9*0, 15) 0.8817 0.9355 0.9836 0.8837 0.9372 0.9849
(0.0138) (0.0096) (0.0038) (0.0033) (0.0026) (0.0010)

[15] (5, 5, 5, 7*0) 0.8814 0.9347 0.9829 0.8799 0.9343 0.9837
(0.0150) (0.0106) (0.0042) (0.0040) (0.0031) (0.0013)

15 [16] (10, 14*0) 0.8860 0.9387 0.9850 0.8858 0.9389 0.9855
(0.0123) (0.0083) (0.0031) (0.0028) (0.0022) (0.0009)

[17] (14*0, 10) 0.8873 0.9400 0.9857 0.8882 0.9408 0.9863
(0.0112) (0.0076) (0.0027) (0.0024) (0.0018) (0.0007)

30 10 [18] (20, 9*0) 0.8783 0.9324 0.9820 0.8791 0.9337 0.9834
(0.0144) (0.0102) (0.0041) (0.0037) (0.0032) (0.0012)

[19] (9*0, 20) 0.8813 0.9352 0.9835 0.8841 0.9376 0.9850
(0.0126) (0.0088) (0.0037) (0.0032) (0.0026) (0.0008)

15 [20] (15, 14*0) 0.8866 0.9391 0.9852 0.8858 0.9389 0.9856
(0.0111) (0.0075) (0.0028) (0.0026) (0.0020) (0.0008)

[21] (14*0, 15) 0.8868 0.9398 0.9857 0.8887 0.9412 0.9864
(0.0100) (0.0067) (0.0024) (0.0021) (0.0016) (0.0006)

[22] (5, 5, 5, 12*0) 0.8874 0.9397 0.9854 0.8861 0.9392 0.9857
(0.0109) (0.0074) (0.0027) (0.0025) (0.0020) (0.0008)

20 [23] (10, 19*0) 0.8895 0.9416 0.9864 0.8893 0.9416 0.9866
(0.0095) (0.0063) (0.0022) (0.0020) (0.0015) (0.0006)

[24] (19*0, 10) 0.8913 0.9430 0.9870 0.8909 0.9429 0.9871
(0.0087) (0.0057) (0.0020) (0.0017) (0.0013) (0.0005)

[25] (0, 5, 5, 17*0) 0.8900 0.9420 0.9865 0.8894 0.9418 0.9867
(0.0094) (0.0062) (0.0022) (0.0019) (0.0015) (0.0006)

50 20 [26] (30, 19*0) 0.8893 0.9415 0.9863 0.8894 0.9417 0.9867
(0.0074) (0.0049) (0.0017) (0.0015) (0.0012) (0.0005)

[27] (19*0, 30) 0.8906 0.9426 0.9869 0.8919 0.9436 0.9874
(0.0065) (0.0043) (0.0015) (0.0012) (0.0009) (0.0004)

35 [28] (15, 34*0) 0.8939 0.9452 0.9880 0.8939 0.9452 0.9881
(0.0053) (0.0035) (0.0011) (0.0009) (0.0006) (0.0002)

[29] (34*0, 15) 0.8945 0.9457 0.9882 0.8947 0.9459 0.9883
(0.0049) (0.0032) (0.0010) (0.00003) (0.0008) (0.0002)

[30] (5, 5, 5, 32*0) 0.8942 0.9454 0.9881 0.8939 0.9452 0.9881
(0.0053) (0.0035) (0.0011) (0.0009) (0.0006) (0.0003)

Note: aSE are given in parenthesis.
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6. Conclusion and discussion

Results of the simulation study reported in Table 1 indicate that bias and MSE of the MLE decrease
as the sample size and the effective sample size increase. The MSE of the MLE is smaller for
the conventional Type-II censoring scheme as compared with the progressively Type-II censoring
scheme. The coverage performance of asymptotic confidence intervals is satisfactory. Confidence
interval based on the log-transformed MLE shows better performance than the one based on
the MLE. Results of the simulation study for the β-expectation tolerance interval, which are
tabulated in Table 2, indicate that, the estimated expectation and simulated mean for small sample
size are marginally lower than the nominal value. As the sample size increases, the performance
of tolerance intervals improves. The SE of both the estimated expectation and of simulated mean
coverage of the tolerance intervals decrease as the sample size increases. The SE of the estimated
expectation is significantly smaller than that of the simulated mean coverage.

Estimation procedures reported in this paper are applicable for a wide class of lifetime dis-
tributions under progressively Type-II and conventional Type-II censoring schemes. The results
reported in this paper can also be obtained when ‘k’ in the pdf is replaced by any known positive
number greater than one.
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Abstract 

The idea of variable sampling interval and warning limits (VSIWL) is proposed for X charts. Expressions for 
the performance measures for the charts with VSIWL are developed. The methods presented are general 
and can be applied to other Shewhart control charts. The performances of VSIWL X  charts are compared 
numerically with that of VSI X  charts with and without runs rules for switching between sampling interval 
lengths. It is observed that in general the former charts perform significantly better than the later. 

Keywords: Adaptive control chart, average number of samples to signal, statistical process control, Shewhart control charts.   

Introduction 
Nowadays it has been well recognized that adaptive 
control charts are significantly more efficient than the 
static ones. Reynolds et al. (1988) were the first to 
consider the intuitive notion of adapting sampling interval 
length of a control charts according to the status of a 
process indicated by the last plotted sample point.  
They proposed variable sampling interval (VSI) X  
charts. The principle of choosing the sampling interval 
length in a VSI chart is that as the location of the current 
sample point approaches the control limits, tighten the 
control by taking the next sample more quickly.  
The in-control area of the chart is partitioned into a 
central region and one or more warning regions. Each 
region determines length of the sampling interval for the 
next sample if the current sample point falls in it. 
Reynolds et al. (1988) showed that the idea of  
VSI substantially improves the statistical performance of 
X  charts. Also, they showed that the statistical 
performance of a VSI X  chart in detecting a shift of any 
magnitude that exists initially is optimized by using the 
dual sampling interval policy consisting of the shortest 
and longest possible sampling interval lengths.  
Afterwards, Prabhuet al. (1993) and Costa (1994) 
independently proposed variable sample size X  charts. 
Prabhu et al. (1994) proposed variable sample size and 
sampling interval X  charts. Costa (1999a) proposed the 
adaptive X  charts in which all the three design 
parameters are variable. Tagaras (1998) reported an 
extensive survey of the research on adaptive control 
charts until 1997. Then also, various schemes of 
adaptive control charts have been proposed and 
extensively investigated with different perspectives. See 
for example,  Amin and Widmaier (1999), Costa(1999b), 
Aparasi and Haro (2003), Costa and Rahim (2001), 
Epprecht et al. (2003), Zimmer et al. (1998), Reynolds 

and Stoumbos (2001), Wu et al. (2005), Yu and Hou 
(2006), Celano et al. (2006), Chen (2007), Wu  
et al. (2007), Yang and Su (2007), Mahadik and Shirke 
(2007a, b), Jiang et al. (2008), Jensen et al. (2008),  
Luo et al. (2009), Wu et al. (2009), Shi et al. (2009),  
De Magalhaes et al. (2009), Celano (2009), Faraz and 
Moghadam (2009), Mahadik and Shirke (2009, 2011),  
Li and Wang (2010), Epprecht et al. (2010), Shu  
et al. (2010), Mahadik (2012a, b, 2013), Chen et al. 
(2011), Dai et al. (2011),Faraz and Saniga (2011), Nenes 
(2011), Kooli and Limam (2011) and Lee (2011). 
 
The weakness of any adaptive control chart is the 
inconvenience in its administration due to the frequent 
switches between the values of its adaptive design 
parameters. In order to reduce the frequency of switches 
between sampling interval lengths of VSI charts, Amin 
and Letsinger (1991) proposed the use runs rules for 
switching between these lengths. Amin and Hemasinha 
(1993) developed approximate expressions for the 
performance measures for VSI X  charts with such runs 
rules while Mahadik (2011a) developed the exact 
expressions. 
 
In the present study, the idea of variable warning limits is 
proposed for VSI X  charts. This significantly improves 
statistical performances of the charts in detecting small 
to moderate shifts in the process mean and also 
dramatically reduces the frequency of switches between 
sampling interval lengths.  
 
Materials and methods 
A VSIWL X Chart: Let the quality characteristic X to be 
monitored follows a normal distribution with mean and 
a known and constant standard deviation . Suppose 0
is the target value of 
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An occurrence of an assignable cause results in a shift of 
size in , where is expressed in units. It is 
assumed that remains constant following the 
occurrence of a shift until it is detected. A VSIWL X  
chart to monitor is as described below. 
 
The chart statistic is the standardized sample mean

  0 ii XnZ , where iX , i = 1, 2, …, is the 
mean of ith sample of size is n drawn on X. Note that 
when  = 0 , iZ N (0, 1), and when  = 0  + , iZ N 

( n , 1). Each control limit of the chart is at the 
distance of L units from its centerline. Let t(i) be the 
length of sampling interval between (i – 1)st and ith trials 
and w(i) be the distance of each warning limit from the 
centerline for the ith trial, i = 1, 2, …. The values of 
(t(i),w(i)) can be either ( 1t , 1w ) or ( 2t , 2w ), where 1t , 2t , 

1w , and 2w are such that maxt  1t  2t  mint  and L> 1w
 2w > 0, where  mint  and maxt  are the shortest and 
longest possible sampling intervals, respectively. When 

1iZ  falls within the control limits, the pair of values of 

(t(i),w(i)), i = 2, 3, …,between ( 1t , 1w ) and ( 2t , 2w ) is 
chosen according to the following rule 
 













,if),,(
if),,(

))(),((
2122

1111

IZwt
IZwt

iwit
i

i  

where 1I  = [−w(i), w(i)] and 2I  = (−L, −w(i)) (w(i), L) 
for the ith trial, i = 1, 2, … 
  
At start-up the values of (t(1),w(1)) can be chosen using 
an arbitrary probability distribution, as no prior sample is 
available. In practice, it is recommended to use the pair  
( 2t , 2w ) for the first trial to provide additional protection 
against the problems that may exist initially. The trial 
following an out-of-control signal is again treated to be 
the first trial and the mechanism of choosing (t(i),w(i))is 
restarted from that. The chart signals an out-of-control 
state when a sample point falls beyond the control limits. 
Figure 1 shows a typical VSIWL X  chart. 
 

Fig. 1. A VSIWL X  chart. 

 

 
In practice, only one set of the warning limits may be 
shown anywhere on the chart within the control limits to 
represent the two sets in order to avoid the complexity in 
the administration. Suppose each warning limit of this set 
is at a distance of w units from the centerline. 
When w(i) = jw , j = 1, 2, plot iZ  anywhere within  
[−w, w],(−L, −w), and (w, L), respectively, when it is 
within [− jw , jw ], (−L, − jw ), and ( jw ,L). Note that 

when 1w  = 2w , a VSIWL X chart is a VSI X chart. 
In the next section, expressions for performance 
measures for a VSIWL X  chart are derived. 
 
Performance measures: The appropriate measures of 
statistical performance of a VSIWL X chart are the 
steady-state average time to signal (SSATS) and the 
average number of samples to signal (ANSS). SSATS is 
the expected value of the time between a shift that 
occurs at some random time after the process starts and 
the time the chart signals while ANSS is the expected 
value of the number of samples taken from a shift to the 
time the chart signals. The administrative performance 
can be measured through average number of switches to 
signal (ANSW). ANSW is the expected value of the 
number of switches between two sampling interval 
lengths from a shift to the signal. 
 
Let SSATS, ANSS, and ANSWbe the SSATS, ANSS, 
and ANSW, respectively of a control chart when the 
process mean has shifted from 0  to 1  = 0  + 
In the following, first the expressions for SSATS and 
ANSS are derived using a Markov chain approach. 
Brook and Evans (1972) were the first to use this 
approach to find the average run length of a control 
chart. Henceforth, the ith trial refers to the ith trial after a 
shift when i> 0 and the last trial before the (i + 1)st trial 
when i ≤ 0.Also, iZ refers to the sample point 
corresponding to the ith trial. 
 
Define the three states 1, 2, and 3 of the Markov Chain 
corresponding to whether a sample point is plotted in 1I ,

2I  and 3I  = (− , −L] [L,  ), respectively. State 3 is 
the absorbing state, as the process of taking samples is 
restarted when a sample point falls in region 3I . 
The transition probability matrix is given by 
 


















100
232221

131211




ppp
ppp

δP , 

Where 
jkp  is the transition probability that j is the prior 

state and k is the current state, when the process mean 
has shifted by .  
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For example, 


12p  =  Pr [ iZ  2I | 1iZ  1I ] 

 Pr [ iZ  2I | w(i) = 1w ] 

= Pr [−L< iZ < − 1w ] + P[ 1w < iZ <L] 

  − 1w − n ) −  −L− n ) +  

             L− n ) −  1w − n ), 
 

Where  is the cumulative distribution function of 
standard normal variate. 
 
Then, SSATSand ANSSare given by  
SSATS

1)(  δ
1PIb t−E(U)                                 (1) 

And ANSS
1)(  δ

1PIb 1, 

Where I is the identity matrix of order 2, δ
1P  is the sub 

matrix of δP  that contains the probabilities associated 
with the transient states only, t  = ( 1t , 2t ),1  = (1, 1), 

and b  = ( 1b , 2b ), jb  being the conditional probability 

that 0Z  falls in jI  given that it falls within the control 

limits,  j = 1, 2. We note that 2b  = 1 − 1b . The Expression 

for 1b  is derived in appendix A. 
 
E(U) in equation (1) is the expected value of the time U 
between the 0th trial and the shift. Assuming that an 
assignable cause of a process shift occurs according to a 
Poisson process, it can be shown that E(U) = 2)]1(E[t . 

Hence, SSATS
1)(  δ

1PIb t− 2)]1(E[t . 

Now, to derive the expression for ANSW, let iO  be the 
number of switches between two sampling interval 
lengths following the ith trial until the signal, i = 1, 2, … 
Further, let 

)(E 1 jiii.j IZOo  
 ,i = 1, 2, … ,j = 1, 2. 

Then, the expression for ANSW is given by 
ANSW = E [ 1O ] = 

122111 .. obob  = δ
1Ob , 

Where, ),( 21  
s.s. ooδ

sO , s = 1, 2, …  

The expression for δ
1O  is derived in appendix B. 

Alternatively, the expression for ANSWcan also be 
obtained using the Markov Chain approach. For, let 
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It is easy to see that { iY , i = 1, 2, …} is a Markov Chain 
with transition probability matrix 
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Then, the expression for ANSW is given by 
ANSW ea 1)(  δ

11 QI  

Where, 1I  is the identity matrix of order 4, δ
1Q  is the sub 

matrix of δQ  that contains the probabilities associated 
with the transient states only, e = )0 0, 1, (1,  , and  
a = ), ,,( 4321  aa aa , ja being the initial probability of 
state j, j = 1, 2, 3, 4, given by 
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Results and discussion 
Performance evaluation of VSIWL X  charts:  
The performances of VSIWL X  charts are evaluated by 
comparing that with that of VSI, VSI (1, 3), and VSI (2, 3) 
X  charts, where VSI (k, m) X  charts refers to the VSI 
X  charts with runs rule (k, m) for switching between 
sampling interval lengths. When the successive  
m sample points before the ith trial fall within the control 
limits, rule (k, m) chooses sampling interval length 1t for 
the ith trial if among those m sample points, the number 
of sample points falling in each warning region is less 
than k, otherwise it chooses the sampling interval length

2t . See Mahadik (2011a) for the details of VSI (k, m) X  
charts. 
 
Among various runs rules considered by Mahadik 
(2011a), runs rule (1, 3) reduces the ANSW values of 
VSI X charts the most without affecting their SSATS 
values for small to large shifts in the process mean. 
Further, runs rule (2, 3) significantly reduces both, the 
ANSW values for shifts of all sizes and SSATS values for 
small shifts without affecting that for large shifts. Hence, 
the VSI X charts with these runs rules are chosen for 
comparison. 



 
Journal of Academia and Industrial Research (JAIR) 
Volume 2, Issue 2 July 2013                        106 
 

©Youth Education and Research Trust (YERT)                         jairjp.com                                                                        Mahadik, 2013 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 1. The SSATS values of the matched VSIWL, VSI, VSI (1, 3), and VSI (2, 3) X  charts. 

Chart 1w  2w  
SSATS for a shift of size 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 

Case 1: n= 1, 1t = 2, 2t = 0.2, L = 3 

VSIWL 1.40 0.16 369.90 267.80 129.49 55.91 24.35 5.79 2.10 1.11 0.75 0.54 

VSIWL 2.20 0.03 369.90 259.80 118.03 49.16 22.06 6.42 2.72 1.45 0.92 0.57 

VSI 0.59 

 

369.90 274.69 142.14 66.98 31.51 7.67 2.40 1.11 0.73 0.54 

VSI (1, 3) 1.18 

 

369.90 268.63 130.38 55.85 23.65 5.23 1.93 1.06 0.74 0.54 

VSI (2, 3) 0.39 

 

369.89 267.35 128.13 54.04 22.70 5.30 2.23 1.37 0.98 0.63 

Case 2: n = 2, 1t = 1.8, 2t = 0.4, L = 3 

VSIWL 1.30 0.18 369.90 209.38 71.76 24.76 9.78 2.49 1.07 0.68 0.55 0.50 

VSIWL 2.00 0.04 369.90 201.66 65.60 22.89 9.66 2.74 1.18 0.71 0.56 0.50 

VSI 0.56 

 

369.90 216.33 79.68 29.08 11.50 2.62 1.06 0.67 0.55 0.50 

VSI (1, 3) 1.16 

 

369.90 209.20 70.82 23.72 9.17 2.40 1.07 0.68 0.55 0.50 

VSI (2, 3) 0.38 

 

369.89 207.90 69.51 23.23 9.18 2.64 1.27 0.79 0.59 0.50 

Case 3: n = 3, 1t = 1.2, 2t = 0.6, L = 3 

VSIWL 1.60 0.27 369.90 175.09 50.91 16.48 6.50 1.73 0.80 0.56 0.51 0.50 

VSIWL 2.10 0.08 369.90 172.12 49.12 16.25 6.67 1.83 0.82 0.57 0.51 0.50 

VSI 0.96 

 

369.90 179.09 54.71 18.20 7.03 1.73 0.79 0.56 0.51 0.50 

VSI (1, 3) 1.52 

 

369.90 175.73 51.36 16.53 6.46 1.72 0.80 0.56 0.51 0.50 

VSI (2, 3) 0.64 

 

369.90 173.64 49.67 15.97 6.42 1.86 0.88 0.59 0.51 0.50 

Case 4: n = 4, 1t = 1.5, 2t = 0.5, L = 3 

VSIWL 1.40 0.20 369.90 140.23 32.02 9.14 3.51 1.03 0.60 0.51 0.50 0.50 

VSIWL 1.80 0.09 369.90 136.30 30.59 9.05 3.60 1.07 0.60 0.51 0.50 0.50 

VSI 0.67 

 

369.90 147.14 36.19 10.31 3.71 1.02 0.59 0.51 0.50 0.50 

VSI (1, 3) 1.26 

 

369.90 140.48 31.60 8.83 3.41 1.03 0.60 0.51 0.50 0.50 

VSI (2, 3) 0.45 

 

369.92 138.65 30.74 8.80 3.58 1.18 0.65 0.52 0.50 0.50 

Case 5: n = 5, 1t = 1.4, 2t = 0.3, L = 3 

VSIWL 1.50 0.29 369.90 115.18 20.52 4.94 1.86 0.69 0.52 0.50 0.50 0.50 

VSIWL 1.90 0.12 369.90 110.48 19.12 4.98 2.00 0.73 0.53 0.50 0.50 0.50 

VSI 0.91 

 

369.90 122.74 24.70 5.98 2.00 0.68 0.52 0.50 0.50 0.50 

VSI (1, 3) 1.47 

 

369.90 115.52 20.38 4.78 1.83 0.69 0.52 0.50 0.50 0.50 

VSI (2, 3) 0.60   369.91 111.77 18.84 4.71 2.05 0.85 0.56 0.50 0.50 0.50 
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Table 2. The ANSW values of the matched VSIWL, VSI, VSI (1, 3), and VSI (2, 3) X  charts. 

Chart 1w  2w  
ANSW for a shift of size 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 

Case 1: n = 1, 1t = 2, 2t = 0.2, L = 3 

VSIWL 1.40 0.16 52.29 40.26 22.60 11.49 5.65 1.42 0.52 0.31 0.21 0.07 

VSIWL 2.20 0.03 8.27 6.57 3.91 2.12 1.15 0.47 0.30 0.23 0.16 0.06 

VSI 0.59 

 

182.42 137.53 73.98 36.49 17.74 4.18 1.10 0.43 0.24 0.07 

VSI (1, 3) 1.18 

 

77.77 59.09 32.00 15.38 6.95 1.37 0.49 0.32 0.22 0.07 

VSI (2, 3) 0.39 

 

108.88 80.05 39.82 17.18 7.00 1.31 0.55 0.36 0.22 0.05 

Case 2: n = 2, 1t = 1.8, 2t = 0.4, L = 3 

VSIWL 1.30 0.18 60.61 37.18 14.66 5.32 1.95 0.45 0.24 0.12 0.05 0.00 

VSIWL 2.00 0.04 13.59 8.72 3.66 1.46 0.67 0.31 0.20 0.11 0.04 0.00 

VSI 0.56 

 

180.93 107.51 40.55 14.51 5.17 0.80 0.27 0.13 0.05 0.00 

VSI (1, 3) 1.16 

 

77.91 46.75 17.25 5.51 1.70 0.41 0.25 0.13 0.05 0.00 

VSI (2, 3) 0.38 

 

108.28 61.04 19.55 5.44 1.62 0.47 0.26 0.11 0.03 0.00 

Case 3: n = 3, 1t = 1.2, 2t = 0.6, L = 3 

VSIWL 1.60 0.27 52.79 29.67 10.84 3.54 1.25 0.42 0.20 0.06 0.01 0.00 

VSIWL 2.10 0.08 16.31 9.82 3.82 1.40 0.67 0.34 0.17 0.05 0.01 0.00 

VSI 0.96 

 

164.18 85.94 29.82 10.12 3.42 0.60 0.22 0.06 0.01 0.00 

VSI (1, 3) 1.52 

 

62.27 34.70 12.58 3.97 1.29 0.43 0.21 0.06 0.01 0.00 

VSI (2, 3) 0.64 

 

95.60 48.90 14.50 3.70 1.16 0.42 0.15 0.03 0.00 0.00 

Case 4: n = 4, 1t = 1.5, 2t = 0.5, L = 3 

VSIWL 1.40 0.20 58.82 25.95 6.72 1.70 0.60 0.24 0.08 0.01 0.00 0.00 

VSIWL 1.80 0.09 25.62 11.85 3.21 0.94 0.45 0.22 0.07 0.01 0.00 0.00 

VSI 0.67 

 

184.70 76.37 19.08 4.68 1.26 0.27 0.08 0.01 0.00 0.00 

VSI (1, 3) 1.26 

 

76.21 32.51 7.60 1.59 0.55 0.25 0.08 0.01 0.00 0.00 

VSI (2, 3) 0.45 

 

109.31 41.28 7.69 1.48 0.60 0.24 0.06 0.01 0.00 0.00 

Case 5: n = 5, 1t = 1.4, 2t = 0.3, L = 3 

VSIWL 1.50 0.29 61.72 25.44 6.18 1.47 0.58 0.22 0.04 0.00 0.00 0.00 

VSIWL 1.90 0.12 25.80 11.40 2.91 0.86 0.46 0.20 0.04 0.00 0.00 0.00 

VSI 0.91 

 

170.96 64.84 15.67 3.72 1.03 0.24 0.04 0.00 0.00 0.00 

VSI (1, 3) 1.47 

 

65.75 26.94 6.34 1.37 0.55 0.22 0.04 0.00 0.00 0.00 

VSI (2, 3) 0.60   99.72 35.45 6.31 1.23 0.57 0.17 0.02 0.00 0.00 0.00 
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The four charts mentioned above are designed such that 
their in-control statistical performances are matched. 
This is done by keeping the design parameters n, 1t , 2t , 
and L of all the charts the same and choosing the 
warning limits of each chart such that E[t(1)] = 0t  holds 

for each chart, where 0t is some suitable constant. 

As a VSIWL X  chart has two sets of warning limits, by 
fixing one of them this condition uniquely determines the 
other. By fixing 1w , we get  

2w  = 

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or by fixing 2w , we get 
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In the same way the warning limits of VSI, VSI (1, 3), and 
VSI (2, 3) X  charts are determined. 
 
The SSATS and ANSW values of such statistically 
matched charts are then computed for shifts of various 
sizes. Tables 1 and 2, respectively, show these values 
for five different sets of the matched charts. Note that as 
all the charts in a set use the same values of L and n, 
their ANSS values will be the same. Hence, ANSS is not 
a relevant measure to compare the statistical 
performances of the charts. Computations of the SSATS 
and ANSW values indicate the following facts in general. 
 
If the warning limits of a VSIWL X  chart are chosen 
such that its SSATS values for the large shifts match that 
of a VSI X  chart then for the small to moderate shifts, 
its SSATS values are slightly smaller than that of the VSI 
X  chart and are similar to that of a VSI (1, 3) X  chart. 
Further, the ANSW values of a VSIWL X chart are 
significantly smaller than that of the VSI and VSI (1, 3) 
X  charts. 
 
On the other hand, if the warning limits of a VSIWL X  
chart are chosen such that its SSATS values for the 
large shift are very slightly larger than that of a VSI X  
chart then for the small to moderate shifts, its SSATS 
values are significantly smaller than that of the VSI and 
VSI (1, 3) X  charts and are similar to that of a VSI (2, 3) 
X  chart. Besides, its ANSW values are dramatically 
smaller than that of the other charts and are about 5 to 
15% of that of a VSI X  chart. 
 
 
 

 
Example 
The statistically matched VSIWL, VSI (1, 3), VSI (2, 3), 
and VSI X  charts with the design parameters, viz., n= 4, 

1t = 1.5 hours, 2t = 0.5 hour, and L = 3 are implemented 
simultaneously and independently for a process.  
The process is initially in control when the 
implementation of the charts is started and a shift of size 
0.75 occurs at 5 hours after that. Table 3 shows the 
sample means taken for the two VSIWL X charts along 
with the corresponding times, sampling interval lengths, 
and the warning limits used. Table 4 shows the same for 
VSI (1, 3), VSI (2, 3), and VSI X charts. The pair ( 2t , 2w ) 
is used for the first trials for the VSIWL charts and the 
pairs for the subsequent trials are chosen according to 
the rule of the charts. Similarly, sampling interval length

2t is used for the first trial for the VSI chart and for the 
first three trials for the VSI (1, 3) and VSI (2, 3) charts. 
Sampling interval lengths for the subsequent trials for 
these charts are chosen according to the respective rules 
of the charts. Table 5 shows the performances of the five 
charts which clearly demonstrate the superiority of the 
VSIWL charts. 
 

Table 3. The details of the VSIWL X  charts for the process 
in the example. 

VSIWL with VSIWL with 

1w  = 1.4, 2w  = 0.2 1w  = 1.8, 2w  = 0.09 
Time 
in 
hours 

(t(i), w(i)) Zs 
Time 
in 
hours 

(t(i), w(i)) Zs 

0.5 (0.5, 0.2) -0.42 0.5 (0.5, 0.09) 1.01 
1 (0.5, 0.2) -1.35 1 (0.5, 0.09) 0.14 
1.5 (0.5, 0.2) 1.10 1.5 (0.5, 0.09) 0.50 
2 (0.5, 0.2) -1.43 2 (0.5, 0.09) 2.25 
2.5 (0.5, 0.2) 1.33 2.5 (0.5, 0.09) 0.80 
3 (0.5, 0.2) 0.46 3 (0.5, 0.09) 0.51 
3.5 (0.5, 0.2) -0.49 3.5 (0.5, 0.09) -0.66 
4 (0.5, 0.2) 0.36 4 (0.5, 0.09) 2.88 
4.5 (0.5, 0.2) 0.97 4.5 (0.5, 0.09) -0.83 
5 (0.5, 0.2) 1.88 5 (0.5, 0.09) 2.28 
5.5 (0.5, 0.2) 1.38 5.5 (0.5, 0.09) 2.82 
6 (0.5, 0.2) 2.46 6 (0.5, 0.09) 3.26 
6.5 (0.5, 0.2) 1.48    
7 (0.5, 0.2) 0.61    
7.5 (0.5, 0.2) 2.37    
8 (0.5, 0.2) 1.65    
8.5 (0.5, 0.2) 1.26    
9 (0.5, 0.2) 3.47       
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Conclusion 
The idea of variable warning limits is introduced for  
VSI X  charts. Expressions for the performance 
measures, viz., SSATS, ANSS and ANSW for VSIWL X  
charts are developed. The methods presented are 
general and can be applied to other Shewhart control 
charts. The effects of variable warning limits on the 
performances of the charts are evaluated by comparing 
the performances of VSIWL X  charts with that of  
VSI X  charts with and without runs rules for switching 
between sampling interval lengths. It is observed that the 
variable warning limits dramatically reduce the ANSW 
values of the charts. The idea is even superior to that of 
runs rules for switching between sampling interval 
lengths for reducing the ANSW values.  
 

 

 

 
Also, it significantly reduces the SSATS values of the 
charts in detecting small to moderate shifts in the 
process mean without significantly affecting that in 
detecting large shifts. It would be interesting to study the 
application of variable warning limits to the other 
adaptive control charts. 
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We propose penalized minimum φ-divergence estimator for parameter estimation and variable selection in
logistic regression. Using an appropriate penalty function, we show that penalized φ-divergence estimator
has oracle property. With probability tending to 1, penalized φ-divergence estimator identifies the true
model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known
in advance. The advantage of penalized φ-divergence estimator is that it produces estimates of nonzero
parameters efficiently than penalized maximum likelihood estimator when sample size is small and is
equivalent to it for large one. Numerical simulations confirm our findings.

Keywords: φ-divergence; logistic regression; penalized MLE; SCAD; variable selection

1. Introduction

Logistic regression is one of the widely used generalized linear models (GLM) to describe the
binary data. In logistic regression model, inference is done based on but not limited to likelihood.
Minimum divergence estimators or minimum distance estimators are also used to model the
discrete data [24]. Read and Cressie [25] and Pardo [22] outline the use and importance of the
φ-divergence measures in Statistics. Minimum φ-divergence estimator [20] in logistic regression
emerged as an attractive alternative to maximum likelihood estimator (MLE) when sample size is
small. Based on this fact, Pardo and Pardo [21] introduced a method for variable selection using
φ-divergence statistic. This method is a two-stage method which requires fitting and testing of
several models to arrive at the best sub model.

It belongs to the broad class of sequential procedures for variable selection. It is well known
that such procedures are time consuming and costly. Methods which perform estimation as well
as variable selection simultaneously have become a good choice to overcome this difficulty.
Penalized regression has evolved as a powerful tool to solve the problem of estimation and variable
selection simultaneously. Anderson and Blair [4] introduced penalized logistic regression for the
first time. Bridge regression [13] and least absolute shrinkage selection operator (LASSO) [28]
are the members of class of penalized least-squares methods. l1 type penalty of the LASSO has

∗Corresponding author: Email: dms.stats@gmail.com
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1234 D.M. Sakate and D.N. Kashid

also found applications in logistic regression [14,26,27]. Fan and Li [11] extended the idea of
penalized least squares to likelihood-based models in various statistical contexts. They introduced
a penalty function called smoothly clipped absolute deviation penalty (SCAD).

In this article, we propose a penalized minimum φ-divergence estimator to obtain estimates of
regression coefficients and simultaneous variable selection in logistic regression. We showed that
this estimator is consistent, asymptotic normal and possesses oracle property. We used SCAD for
the purpose of penalization. Our simulation study indicates that the proposed estimator performs
better than SCAD penalized MLE.

The remaining article is organized as follows. Section 2 describes φ-divergence estimation
in logistic regression. In Section 3, penalized minimum φ-divergence estimator is defined. Its
sampling properties are also described in this section. Section 4 deals with simulation study to
compare the performance of proposed method with existing ones. A real data application is also
provided. This article ends with discussion in Section 5.

2. φ-divergence estimation in logistic regression

Let Z be a response binary random variable taking value 1 or 0, generally referred to as ‘success’
or ‘failure’, respectively. Let k explanatory variables x ∈ R

k are observed along with the response
variable. π(x) = P(Z = 1|x ∈ R

k) represents the conditional probability, of the value 1 given
x ∈ R

k . Let X be the N × (k + 1) matrix with rows xi = (xi0, xi1, . . . , xik), i = 1, . . . , N where,
xi0 = 1, ∀i. The logistic regression model is defined by the conditional probability

π(xi) =
exp

{
β0 + ∑k

j=1 βjxij

}
1 + exp

{
β0 + ∑k

j=1 βjxij

} . (1)

For more discussion on logistic regression see Hosmer and Lemeshow [17] and Agresti [1].
In laboratory or controlled setting, many individuals share same values for their explanatory

variables. In other words, for each value of the explanatory variables there are several observed
values of the random variable Z . Our focus is on this situation. The notations described earlier
are required to be changed slightly. For this, we follow the notations used in [20]. Let there be
I distinct values of xi = (xi0, xi1, . . . , xik), i = 1, 2, . . . , I . We assume that for each xi we have
a binomial random variable Yi ≡ ∑ni

i=1 Zi with parameters ni and π(xi). The values ni1, . . . , nI1

are the observed values of the random variables Y1, . . . , YI , representing the number of successes
in n1, . . . , nI trials respectively when the explanatory variables are fixed. This divides the entire
sample of size N into I subgroups each of size ni so that N = ∑I

i=1 ni. Since, Z ′
i s are independent,

Y ′
i s are also independent. Thus, the likelihood function for the logistic regression model is given by

L(β0, . . . , βk) =
I∏

i=1

(
ni

ni1

)
π(xT

i β)ni1(1 − π(xT
i β))ni−ni1 , (2)

The MLE, β̂ is obtained by maximizing almost surely over

� = {β = (β0, . . . , βk) : −∞ < βj < ∞, j = 0, . . . , k},

the likelihood function given in Equation (2).
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For simplicity, we denote by πi1 = π(xT
i β) and πi2 = 1 − π(xT

i β), ni2 = ni − ni1. To maximize
(2) is equivalent to minimize the Kullback divergence measure between the probability vectors

p̂ = (p̂11, p̂12, . . . , p̂I1, p̂I2)
T =

(n11

N
,

n12

N
, . . . ,

nI1

N
,

nI2

N

)T

and

p(β) = (p11(β), p12(β), . . . , pI1(β), pI2(β))T =
(
π11

n1

N
, π12

n1

N
, . . . , πI1

nI

N
, πI2

nI

N

)T
. (3)

MLE for the GLM parameter β can be defined by

β̂ = arg min
βε�

DKullback(p̂, p(β)), (4)

where the Kullback divergence measure is given by Kullback [19]

DKullback(p̂, p(β)) =
2∑

j=1

I∑
i=1

p̂ij log

(
p̂ij

pij(β)

)
.

This measure is a particular case of the φ-divergence defined by Csiszár [8] and Ali and
Silvey [2],

Dφ(p̂, p(β)) =
2∑

j=1

I∑
i=1

pij(β)φ

(
p̂ij

pij(β)

)
; φε�, (5)

where � is the class of all convex functions φ(t), t > 0 and twice differentiable at t = 1, such
that φ(1) = φ′(1) = 0, φ′′(1) > 0 and at t = 0, 0φ(0/0) = 0 and 0φ(p/0) = p limu→∞ φ(u)/u.
For details, see Vajda [29] and Pardo [22].

Cressie and Read [7] introduced an important family of φ-divergences called as the power
divergence family,

φλ(t) = (λ(λ + 1))−1(tλ+1 − t); λ 	= 0, λ 	= −1,

φ0(t) = lim
λ→0

φλ(t) = t log(t) − t + 1, (6)

φ−1(t) = lim
λ→−1

φλ(t) = −log(t) − t − 1.

It is interesting to note that

Dφ0(p̂, p(β)) = Dkullback(p̂, p(β)). (7)

That is, for λ = 0, minimum power divergence estimator coincides to MLE. Use of power
divergence family in the log linear models has produced good results [6,23].

The minimum φ-divergence estimator [20] is given by

β̂φ = arg min
βε�

Dφ(p̂, p(β)). (8)

To obtain a natural extension of the penalized MLE for a logistic regression model, in this article,
we penalize the minimum φ-divergence estimator using appropriate penalty. The SCAD penalty
proposed by Fan and Li [11] possesses attractive properties like asymptotic unbiasedness, sparsity
and oracle property. Also, use of the SCAD penalty has yielded better performance with diverging
number of parameters [12], penalized support vector machines [32], high dimensional linear
regression models [18] and partially linear models [31]. Hence, we consider SCAD penalty for
the purpose of penalization in the next section.
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1236 D.M. Sakate and D.N. Kashid

3. Penalized minimum φ-divergence estimator and variable selection

In GLM, likelihood-based inference is most common. Consider a data on response variable and
covariates {(Yi, xi)} are collected independently. Let fi(g(xT

i β), yi), be the conditional density of
Yi given xi, where g is a known link function. Denote li = log fi, the conditional log likelihood of
Yi. Then the penalized likelihood is

I∑
i=1

li(g(xTβ), yi) − N
k∑

j=1

Jτ (|βj|). (9)

where Jτ is the penalty function and τ is the tuning parameter.
Maximizing (9) is equivalent to minimizing

−
I∑

i=1

li(g(xTβ), yi) + N
k∑

j=1

Jτ (|βj|) (10)

with respect to β. Penalized MLE of β is obtained by minimizing (10) with respect to β for some
thresholding parameter τ . Fan and Li [11] demonstrated that the good results can be obtained
when SCAD penalty is used in Equation (10). SCAD penalty is continuous and differentiable and
is defined by its derivative

J ′
τ (θ) = τ

{
I(θ ≤ τ) + (aτ − θ)+

(a − 1)τ
I(θ > τ)

}
for some a > 2 and θ > 0. (11)

For simultaneous parameter estimation and variable selection in logistic regression, we define
the penalized minimum φ-divergence estimator as follows.

Definition 3.1 Penalized minimum φ-divergence estimate of β is that value of β for which

Q (β) = Dφ(p̂, p(β)) + N
k∑

j=1

Jτ (|βj|) (12)

is minimum. As penalization by SCAD results in an estimator with good properties, we use SCAD
in Equation (12).

For brevity, we call the resulting estimator as φ SCAD estimator in the further discussion. In
the following subsection we establish some asymptotic properties of the proposed estimator.

3.1 Sampling properties and oracle properties

Assume that X matrix is standardized. Let the parameter vector β be partitioned as β =
(β1, . . . , βk)

T = (βT
1 , βT

2 )T. Similarly, true value of β that is β0 can be partitioned as β0 =
(β10, . . . , βk0)

T = (βT
10, βT

20)
T. Without loss of generality, assume that β20 = 0. Let I(β0) denotes

the Fisher information matrix and I1(β10, 0) be the Fisher information knowing β20 = 0. Let
Y1, . . . , YI be independent binomial variates with parameters ni and πi1. Since, minimizing (12)
is equivalent to maximize

M (β) = −Dφ(p̂, p (β)) − N
k∑

j=1

Jτ (|βj|), (13)

we state our theorems based on maximization of M(β).
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Theorem 1 Let φ(t) ∈ �. If max{J ′
τN

(|βj0|) : βj0 	= 0} → 0 then there exists a local maximizer

β̂ of M(β) such that ‖β̂ − β0‖ = OP(N−1/2 + aN ).

Proof Let αN = N−1/2 + aN . To prove Theorem 1, it is equivalent to show that for any given
ε > 0, there exists a large constant C such that

P

(
Sup

‖u‖=C
M(β0 + αN u) < M(β0)

)
≥ 1 − ε. (14)

That is, there exists a local maximum in the ball {β0 + αN u : ‖u‖ ≤ C} with probability at
least 1 − ε. Hence, a local maximizer exists such that ‖β̂ − β0‖ = OP (αN ).

Since, JτN (0) = 0, we have

WN (u) = M(β0 + αN u) − M(β0),

≤ −Dφ(p̂, p(β0 + αN u)) + Dφ(p̂, p(β0)) − N
s∑

j=1

{JτN (|βj0 + αN uj|) − JτN (|βj0|)},

where s is the number of components of β10. Let ∇Dφ(p̂, p(β0)) be the gradient vector of
Dφ(p̂, p(β0)). Using the Taylor expansion of the phi divergence measure,

WN (u) ≤ −αN∇Dφ(p̂, p(β0))
Tu − 1

2
uTI(β0)uNα2

N {1 + OP(1)}

− NαN

s∑
j=1

{∇JτN (|βj0|)sign(βj0)uj + Nα2
N∇2JτN

(|βj0|)u2
j }{1 + OP(1)}. (15)

Note that N−1/2∇Dφ(p̂, p(β0)) = OP(1). Thus, the first term on the right-hand side of
Equation (15) is of the order OP(N1/2αN ). Second term dominates the first term uniformly in
‖u‖ = C, for sufficiently large C. The third term in Equation (15) is bounded by Fan and Li [11]

√
sNαN aN‖u‖ + Nα2

N max{|∇2JτN (|βj0|)| : βj0 	= 0}‖u‖2.

This is also dominated by the second term of Equation (15). Hence, by choosing a sufficiently
large C, Equation (14) holds. Hence, the theorem is proved. �

Thus, by choosing a proper τN , there exists a root-N consistent penalized minimumφ-divergence
estimator. We now show that this estimator possess the sparsity property β̂2 = 0 which is stated
as follows.

Theorem 2 Let φ(t) ∈ �. Assume that

limN→∞ inf limθ→0+ inf J ′
τN

(θ)

τN
> 0. (16)

If τN → 0 and
√

NτN → ∞ as N → ∞, then with probability tending to 1, for any given β1
satisfying ‖β1 − β10‖ = OP(N−1/2) and any constant C,

M

{(
β1
0

)}
= max

‖β2‖≤CN−1/2
M

{(
β1
β2

)}
.
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1238 D.M. Sakate and D.N. Kashid

Proof To prove Theorem 2, it is sufficient to show that for some small εN = CN−1/2, with
probability tending to 1 as N → ∞, for any β1 satisfying ‖β1 − β10‖ = OP(N−1/2) and

∂M(β)

∂βj
< 0 for 0 < βj < εN

> 0 for − εN < βj < 0

; j = s + 1, . . . , k. (17)

Using Taylor’s series expansion, we have

∂M(β)

∂βj
= −∂Dφ(p, p(β))

∂βj
− NJ ′

τN
(|βj|)sign(βj)

= −∂Dφ(p, p(β0))

∂βj
+

k∑
l=1

∂2Dφ(p, p(β0))

∂βj∂βl
(βl − βl0)

+
k∑

l=1

k∑
m=1

∂3Dφ(p, p(β∗))
∂βj∂βl∂βm

(βl − βl0)(βk − βk0) − NJ ′
τN

(|βj|)sign(βj),

where β∗ lies between β and β0. Note that, (1/N)(∂Dφ(p, p(β0))/∂βj) = OP(N−1/2). By the
assumption that ‖β1 − β10‖ = OP(N−1/2), we have

∂M(β)

∂βj
= NτN

{
− 1

τN
J ′
τN

(|βj|)sign(βj) + OP

(
N−1/2

τN

)}
.

Whereas, limN→∞ inf limθ→0+ inf J ′
τN

(θ)/τN > 0 and N−1/2/τN → 0, the sign of the derivative
is completely determined by that of βj. Hence, Equation (17) holds. �

In the following theorem, we establish the oracle property of the proposed estimator. Denote
� = diag{J ′′

τN
(|β10|), . . . , J

′′
τN

(|βs0|)} and b = (J
′
τN

(|β10|)sign(β10), . . . , J
′
τN

(|βs0|)sign(βs0))
T,

where, s is the number of components of β10.

Theorem 3 (Oracle Property) Let φ(t) ∈ �. Assume that the penalty function JτN (|βj0|) satisfies
the condition in Equation (16). If τN → 0 and

√
NτN → ∞ as N → ∞, then with probability

tending to 1, the root-N consistent local maximizers β̂ =
(

β̂1

β̂2

)
in Theorem 1 must satisfy:

(a) Sparsity: β̂2 = 0
(b) Asymptotic Normality:

√
N(I1(β10) + �){β̂1 − β10 + (I1(β10) + �)−1b} → N{0, I1(β10)}

in distribution, where I1(β10) = I1(β10, 0) is the Fisher information knowing β2 = 0.

Proof The proof of the part (a) follows from Theorem 2. Now we prove part (b). The minimum
φ-divergence estimator satisfies the best asymptotic normal (BAN) decomposition and is the BAN
estimator of β [20]. It means that the asymptotic behavior of minimum φ-divergence estimator is
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same as that of MLE irrespective of the choice of the function φ. Following the same steps of the
proof of Theorem 2 in Fan and Li [11], using Slutsky’s theorem, it is easy to verify that,

√
N(I1(β10) + �){β̂1 − β10 + (I1(β10) + �)−1b} → N{0, I1(β10)}

in distribution. �

As a consequence, the asymptotic covariance matrix of β̂1 is
(1/N)(I1(β10) + �)−1I1(β10)(I1(β10) + �)−1 which approximately equals (1/N)I−1

1 (β10) for
the SCAD penalty if τN tends to 0.

3.2 Algorithm

Since, Equation (5) is continuous and twice differentiable with respect to β, minimizing
Dφ

(
p̂, p (β)

)
in respect to β is not a difficult task. This can be done using Newton–Raphson

method and the (t + 1)th step estimate, β̂
(t+1)

φ , is obtained from β̂
(t)

φ as

β̂
(t+1)

φ = β̂
(t)

φ − G
(
β̂

(t)

φ

)−1
XTDiag

((ni

N
π

(t)
i1 π

(t)
i2

)
i=1, ..., I

)
T

(
β̂

(t)

φ

)
,

where G(β) = XTDiag(((ni/N)πi1πi2)i=1,...,I)X ,

T(β) =
(

φ

(
n(1)

m(β)

)
− n(1)

m(β)
φ

′
(

n(1)

m(β)

)
− φ

(
n − n(1)

n − m(β)

)
+ n − n(1)

n − m(β)
φ

′
(

n − n(1)

n − m(β)

))

being n = (n1, . . . , nI)
T, n(1) = (ni1, . . . , nI1)

T and m(β) = (n1π11, . . . , nIπI1)
T. For details see

Pardo et al. [20].
As the SCAD penalty is singular at the origin and does not have second-order derivative, it can

be locally approximated by a quadratic function [11] as follows. Suppose that an initial value β0

is close to the minimizer of Equation (12). If β0
j is very close to 0, then set β0

j = 0. Otherwise, it
can be locally approximated by a quadratic function as

Jτ (|βj|) ≈ Jτ (|β0
j |) + 1

2

{
J ′
τ (|β0

j |)
|β0

j |

}
((βj)

2 − (β0
j )2) for βj ≈ β0

j . (18)

Thus, Equation (12) can be locally approximated by

Q(β) ≈ Dφ(p̂, p(β)) + 1

2
NβT�τ(β

0)β, (19)

where �τ(β
0) = Diag((J ′

τ (|β0
j |)/|β0

j |)j=1,...,k). To the minimization problem in Equation (12),

Newton–Raphson procedure can be applied and the (t + 1)th step estimate, β̂
(t+1)

, is obtained

from β̂
(t)

as

β̂
(t+1) = β̂

(t) − (∇2Dφ(p̂, p(β̂
(t)

)) + N�τ(β̂
(t)

))−1(∇Dφ(p̂, p(β̂
(t)

)) + NUτ (β̂
(t)

)), (20)

where ∇Dφ(p̂, p(β̂
(t)

)) = XTDiag(((ni/N)π
(t)
i1 π

(t)
i2 )i=1, ..., I)T(β̂

(t)
),

∇2Dφ(p̂, p(β̂
(t)

)) = G(β̂
(t)

) and Uτ (β̂
(t)

) = �τ(β̂
(t)

)β̂
(t)

. The iterations are terminated when the
Euclidean distance between estimates of two successive iterations is smaller than some threshold.
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1240 D.M. Sakate and D.N. Kashid

We used 10−8 as the threshold value for termination of iterations. When the iterations are stopped,
nonzero elements of β̂ approximately satisfy

∂Dφ(p̂, p(β̂))

∂βj
+ NJ

′
τ (|β̂j|)sign(β̂j) = 0.

3.3 Selection of thresholding parameters

The thresholding parameter τ plays a vital role in the performance of a procedure based on
penalized loss function. If it is not appropriately chosen, the estimates become unstable. Use of
cross validation to choose τ was the first choice to many researchers. Generalized cross validation
(GCV) was used by Tibshirani [28] and Fan and Li [11] for this purpose. Fan and Li [11] also used
V-fold cross validation but found results similar to that of GCV. Later, Wang et al. [30] showed
that GCV is not consistent for selecting τ in SCAD. They proposed a consistent criterion based
on information called Generalized information criterion of which Akaike information criterion
and Bayes information criterion (BIC) are particular cases. Their simulation study established
that BIC is a better selector. It is defined as

BIC (τ ) = 1

N
D

(
y; μ̂τ

) + 1

N
dfτ log (N) , (21)

where μ̂τ is penalized MLE of μ when threshold parameter is τ and D
(
y; μ̂τ

)
is the model

deviance. dfτ denotes number of nonzero components in β̂τ .
We used the BIC defined in Equation (21) but replaced μ̂τ by the penalized minimum

φ-divergence estimate of μ when threshold parameter is τ . Since, the form of this new selec-
tor is same as that of BIC, we call it as the BIC type selector. Our simulation study presented in
the next section indicates that τ chosen using BIC type selector gives good results. This motivates
us to use this criterion to choose tuning parameter τ in φ SCAD.

4. Simulation study

This section is divided into three subsections. In the first subsection, we present the results of
simulation study performed to choose the value of λ.A real-life application of the proposed method
for illustrative purpose is given in the second subsection. In the third subsection, we compare the
performance of proposed method with SCAD using simulation.

4.1 Selection of λ

In the simulation study of Pardo et al. [20], λ = 2
3 emerged as a good choice for λ in the minimum

φ-divergence estimator. The performance of φ SCAD also depends on the choice of λ. Hence, it
should be carefully chosen. To select the value of λ, we perform the simulation study similar to
the one in [20].

Consider the Binomial regression model in which response Yi has binomial distribution
with parameters ni and π(xi) and π(xi) = exp{β0 + ∑5

j=1 βjxij}/(1 + exp{β0 + ∑5
j=1 βjxij}). The

observations on the predictor variables are given in Table 1. The number of distinct xi’s in this
example is I = 20. A correlation of 0.5 was introduced in first two predictors. The response Yi fol-
low binomial (ni, π(xi)) and π(xi) is as defined above with β = (3, 1.5, −2, 0, 0, 0)T for Model I
and β = (1.5, −1.5, 1.5, 2, −2, 1.5)T for Model II. We simulated Models I and II, 500 times for
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Table 1. The values of xij in Example 1.

xi1 xi2 xi3 xi4 xi5 xi1 xi2 xi3 xi4 xi5

0.8451 2.4896 0.4009 −0.136 −1.9752 −1.8927 −0.3368 0.979 −1.0472 −0.4425
−0.7435 0.6849 0.0697 −0.6224 0.4119 −0.699 −0.7438 0.351 −1.9229 −0.4719

0.1647 1.1647 −1.6608 −0.8612 −1.3012 1.3177 −1.3967 0.3339 −1.1499 −0.5843
−0.4278 −0.9471 0.0422 2.3386 −0.626 −0.9127 0.41 −0.5538 0.4145 −0.1557

0.3517 −0.4363 −0.5924 1.5747 0.5404 0.9559 0.2141 1.5588 0.4653 −0.1186
−0.4791 −0.2663 −0.7643 0.3917 1.1794 0.1867 −0.0012 0.2194 0.5182 0.8995

0.523 0.9216 −0.9703 −0.9815 −1.6545 1.3932 −1.1858 −0.4565 0.0075 1.8205
0.7523 −0.271 −0.2461 −0.6377 1.4705 −1.7296 0.9468 1.9457 0.283 0.4275
1.6461 0.5777 −1.9543 −0.0331 0.6814 −0.109 0.2732 0.113 −0.2961 −0.4615

−0.1057 −1.8081 1.4955 0.8164 −0.2752 −1.0374 −0.2893 −0.3106 0.8783 0.6355

Table 2. MSE of nonzero coefficients based on 500 repetitions.

λ − 1
2 0 2

3 1 2 3

Model I
n1 .1665 .1462 .1253 .1577 .1780 .1897
n2 .1667 .1623 .1476 .1854 .2000 .2147
n3 .0998 .0953 .0805 .0808 .1114 .1218
n4 .1199 .1151 .0818 .1188 .1214 .1332
n5 .1264 .1155 .0927 .1207 .1298 .1403
Average .1358 .12688 .1055 .1326 .1481 .1599

Model II
n1 .1539 .1397 .1295 .1360 .1427 .1588
n2 .1773 .1461 .1351 .1312 .1499 .1648
n3 .1160 .0827 .0714 .0729 .0932 .1450
n4 .1233 .1003 .0994 .1067 .1125 .1219
n5 .1467 .1223 .1170 .1194 .1376 .1515
Average .1434 .1182 .1104 .1132 .1271 .1484

different values of ni’s as given below.

n1 : 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10.

n2 : 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10.

n3 : 5, 5, 5, 5, 5, 15, 15, 15, 15, 15, 30, 30, 30, 30, 30, 40, 40, 40, 40, 40.

n4 : 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 15, 15, 15, 15, 15, 20, 20, 20, 20, 20.

n5 : 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10.

For brevity, we shall denote SCAD penalized MLE as SCAD here onwards. To compute φ

SCAD estimates, we considered the power divergence measure given in Equation (6). We used
the value of a = 3.7 as suggested by Fan and Li [11] in SCAD penalty. The MSE of the (k + 1)

dimensional estimator will be a matrix. We call the trace of the MSE matrix as the total MSE
(TMSE). Here, we divide the TMSE by the number of nonzero parameters and denote it by MSE.
The MSE of φ SCAD for different values of λ is reported in Table 2.

The simulation results in Table 2 clearly indicate that the choice of λ = 2
3 yields smaller MSE.

This is not a surprise as this choice of λ is supported by simulation studies in [6,20,21,25].
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1242 D.M. Sakate and D.N. Kashid

Table 3. Frequency of zero estimates of zero coefficients for Model I based
on 500 repetitions.

λ − 1
2 0 2

3 1 2 3

n1 β̂3 485 487 490 491 493 495
β̂4 493 492 495 496 497 499
β̂5 490 494 498 498 498 499
β̂3 480 481 484 487 490 492

n2 β̂4 491 493 497 496 498 498
β̂5 488 493 497 498 498 499
β̂3 484 487 493 494 496 497

n3 β̂4 493 495 499 499 499 499
β̂5 490 496 499 499 499 499
β̂3 490 492 497 496 499 499

n4 β̂4 493 495 498 497 500 500
β̂5 491 494 497 496 500 500
β̂3 493 495 499 499 500 500

n5 β̂4 494 495 499 499 500 500
β̂5 490 495 497 499 500 500

Table 3 gives frequency of zero estimates of zero coefficients in the above example based on
500 repetitions. The frequency of zero estimates of zero coefficients for λ = 2

3 is close to 500
based on 500 repetitions. This also supports our claim. For other choices of λ, MSE is large,
however, frequency of zero estimates of zero coefficients is close to 500.

4.2 Real data application

We consider a real-life data [3, p. 171], used by Pardo and Pardo [21] to illustrate the variable
selection method based on minimum φ-divergence estimator. The data consists of observations
on six objective indicators {X1, . . . , X6} of the actual indoor climate (predictors) in 10 classrooms
of a Danish Institute. The response variable is the number of yes-answers to the question whether
they felt that the indoor climate at the moment was pleasant or not so pleasant and the number of
students in each of the 10 classrooms is also reported.

We used MLE, minimum φ-divergence estimator (λ = 2
3 ), φ SCAD (λ = 2

3 ) and SCAD to
estimate the regression coefficients. These are reported in Table 4. The method given in Pardo

Table 4. Parameter estimates for the real data.

Post variable Post variable φSCAD SCAD
Predictors MLE Mφ DEa selection Mφ DE selection MLE τ = 0.223 τ = 0.19

Intercept 4.6563 7.1557 −10.0163 −11.1599 −10.8423 5.1934
X1 1.3204 1.2987 0.9516 1.0420 0.9516 1.3160
X2 −1.1412 −1.1523 −0.6442 −0.7026 −0.6441 −1.3950
X3 20.2955 19.2891 0.0000 0.0000 0.0000 19.1100
X4 1.4486 1.4237 0.8521 0.9496 0.8521 1.4350
X5 25.3047 25.2041 16.0221 17.5313 16.0227 24.9710
X6 −0.0705 −0.077 0.0000 0.0000 0.0000 −0.0715

aMinimum φ-divergence estimator.
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Table 5. Simulation results for performance comparison.

Average number of
n Method correct zeroes TMSE MRME

n1 φ SCAD 0.9819 0.8682 (1.2278)a 0.9072
SCAD 0.9875 1.5884 (4.0638) 0.9164
Oracle 1.0000 0.8292 (1.5944) 0.8324

n2 φ SCAD 0.9900 1.4854 (1.2989) 0.8764
SCAD 0.9996 1.8369 (4.4443) 0.9152
Oracle 1.0000 0.9619 (1.7057) 0.8276

n3 φ SCAD 0.9858 0.3564 (0.2901) 0.8673
SCAD 0.9453 0.6402 (1.4743) 0.8910
Oracle 1.0000 0.2757 (0.7355) 0.8399

n4 φ SCAD 0.9745 0.7249 (0.9075) 0.8609
SCAD 0.9815 1.2071 (5.5267) 0.8943
Oracle 1.0000 0.6303 (0.8754) 0.8536

n5 φ SCAD 0.9889 0.3381 (0.3658) 0.8503
SCAD 0.9942 1.1983 (3.1253) 0.8891
Oracle 1.0000 0.2999 (0.4208) 0.8460

aFigures in parenthesis indicate corresponding standard deviation.

and Pardo [21] selects set of predictors {X1, X2, X4, X5} which coincides with that proposed by
Andersen [3]. We present the estimates corresponding to this set of predictors using minimum
φ-divergence estimator (λ = 2

3 ) and MLE in the columns 4 and 5, respectively of Table 4.
For these data, the SCAD fails to identify the correct set of predictors. φ SCAD selected the

same set of predictors proposed by Pardo and Pardo [21] and Andersen [3]. Also, estimates of
nonzero coefficients are very close to the one obtained using minimum φ-divergence estimator
(λ = 2

3 ) assuming that the predictors X3 and X6 are absent in the model.

4.3 Performance comparison

In this subsection, we compare the performance of φ SCAD with λ = 2
3 and SCAD for different

combinations of ni’s. Sample size was fixed to 20. The predictors X1, X2 and X3 were generated
from standard normal distribution such that the correlation between X1 and X2 is 0.5. The response
Yi follow binomial (ni, π(xi)) and π(xi) is as defined in Equation (1) with β = (3, 1.5, 0, 2)T. We
simulated five different models 1000 times characterized by the values of ni’s mentioned in
Section 4.3.

We report the average number of correct zeroes, TMSE and median of relative model error
(MRME) in Table 5. Box plots of TMSE are presented in Figure 1.

MRME is computed relative to the model error of full model based on the unpenalized MLE.
Oracle estimate of β = (β0, β1, β2, β3)

T is obtained by maximizing the likelihood assuming that
β2 = 0.

The average TMSE of φ SCAD and SCAD, averaged over all the five models are 0.7546
and 1.2942, respectively. TMSE and MRME of φ SCAD are close to that of oracle estimator.
Moreover, both the methods give more or less same average number of zeroes.

5. Discussion

We proposed computation ofφ SCAD using the Newton–Raphson method based on local quadratic
approximation of penalty function [11]. Even though this method is fast and efficient, it is very
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Figure 1. Box plot of TMSE (Example 3).

sensitive to starting points. Particularly, if Dφ(p̂, p(β)) is very flat near its minimizer, Newton–
Raphson algorithm may not converge if starting values are not chosen properly. Such a case is very
rare in practice. We suggest the use of Expectation–Maximization (EM) algorithm to avoid this
potential issue. The efficacy and usefulness of EM algorithm for penalized likelihood estimation
is proved by Green [15] and De Pierro [9].

We proposed the penalized φ-divergence estimation using SCAD for simultaneous estimation
and variable selection in logistic regression. It is interesting to note that SCAD and φ SCAD iden-
tify number of zeroes efficiently. Our simulation study indicates that MRME of φ SCAD is less
than that of SCAD and is close to that of oracle estimator. It is evident that φ SCAD performs

D
ow

nl
oa

de
d 

by
 [S

el
cu

k 
U

ni
ve

rs
ite

si
] a

t 0
0:

57
 0

3 
Fe

br
ua

ry
 2

01
5 



Journal of Applied Statistics 1245

as well as if β20 = 0 were known. In the language of Donoho and Johnstone [10], the result-
ing estimator performs as well as the oracle estimator, which knows in advance that β20 = 0. φ

SCAD estimates the nonzero parameters more efficiently than SCAD penalized MLE in MSE
sense. This makes φ SCAD an attractive alternative to penalized MLE when sample size is small
in logistic regression. Moreover, we theoretically showed that φ SCAD is equivalent to penalized
MLE asymptotically.

The minimum φ-divergence estimation has also emerged as a good estimation procedure in
more complex models like log linear models with multinomial sampling scheme [5,6,23] and
polytomous logistic regression [16]. As per the suggestion of one of the referees, the φ SCAD can
also be extended to such models. The detail study of the properties and performance of φ SCAD
for more complex models like polytomous logistic regression or multinomial probit models can
constitute the material for a new research paper.
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Model selection is the most persuasive problem in generalized linear models. A model selection crite-
rion based on deviance called the deviance-based criterion (DBC) is proposed. The DBC is obtained by
penalizing the difference between the deviance of the fitted model and the full model. Under certain weak
conditions, DBC is shown to be a consistent model selection criterion in the sense that with probability
approaching to one, the selected model asymptotically equals the optimal model relating response and
predictors. Further, the use of DBC in link function selection is also discussed. We compare the proposed
model selection criterion with existing methods. The small sample efficiency of proposed model selection
criterion is evaluated by the simulation study.

Keywords: GLM; deviance; model selection; consistency; observed L2 efficiency

AMS Subject Classification: 62J12

1. Introduction

Regression is the most widely used technique to model the relationship between a response vari-
able and predictors. Some of these predictors may be redundant in nature and are required to
be eliminated based on the observed data. Model selection plays an important role to identify
the necessary predictors which are related to the response variable. In classical regression, Mal-
lows’ [1] Cp is one of the most widely used model selection criteria. AIC [2], AICc [3], BIC [4],
cAIC [5] and others [6,7] are some of the model selection criteria to be noted.

Nelder and Wedderburn [8] introduced the generalized linear model (GLM) as a unification of
linear and nonlinear regression models that incorporated a rich family of normal and non-normal
distributions for the response variable. The GLM is a powerful tool to model the relationship
between predictors and the function of the mean for continuous and discrete response variables. In
practice, the GLM is used to model the various kinds of data like clinical trials data, ecological data,
meteorological data, etc. Lawless and Singhal [9,10], Nordberg [11,12] and Hosmer et al. [13]
provided methods for model selection in the GLM. If the likelihood is specified, AIC is still
applicable. Qian et al. [14] proposed a model selection criterion in the class of the GLM based on
the predictive minimum description length principle and the theory of quasi likelihood known as
a predictive least quasi-deviance (PLQD) criterion. PLQD requires fitting of sequence of models
and is computationally complex. Recently, Hu and Shao [15] proposed a model selection criterion
based on adjusted R2 which is consistent under weak conditions.

*Corresponding author. Email: dms.stats@gmail.com

© 2012 Taylor & Francis
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In this article, we propose a deviance-based criterion (DBC) which penalizes the difference in
deviance of the fitted and the full model by complexity via the number of predictors in the model.
Deviance is familiar to investigators using the GLM as a modelling tool. Moreover, the DBC is
computationally simpler as compared to PLQD. Under certain weak conditions, minimizing the
DBC results in a consistent model selection in the sense that with the probability approaching
to one model selected is asymptotically equal to the optimal model which contains no redundant
variables.

The remaining article is organized as follows. Section 2 discusses the set up of the GLM and
describes models.We propose a DBC and establish its consistency for model selection in Section 3.
Use of the DBC for the link function selection is discussed in Section 4. The performance of the
DBC is evaluated by simulation study in Section 5. Also, it is compared with existing model
selection criteria. Section 6 presents some concluding remarks.

2. Generalized linear models

The GLM is defined via a link function

g(μi) = X ′
iβ, i = 1, 2, . . . , n, (1)

where, β ∈ Rk is a vector of regression parameters, Xi = (1, X1, . . . , Xk−1) ∈ Rk and k < n. The
maximum-likelihood estimator (MLE) of β after using iteratively reweighted least squares at
convergence is

β̂ f = (X ′V−1X)−1X ′V−1z,

where, the superscript f denotes the estimate corresponding to the fitted model, X is an n × k
real matrix and V is an n × n diagonal matrix whose diagonal elements are vi = (dθi/dμi)a(φ)

and zi = g(μ̂i) + (yi − μ̂i)(dg(μi)/dμi). Following McCullagh and Nelder [16], the discrepancy
of the fitted GLM is twice the difference between the maximum log likelihood achievable in a
saturated model with n parameters L(y, φ; y) and that achieved by the model under investigation
L(μ̂, φ; y).A saturated model has n parameters, one per observation, and μi’s derived from it match
the data exactly. The saturated model consigns all the variation in yi’s to the systematic component
leaving none for the random component. Denote θ̂ f = θ(μ̂) and θ̃ = θ(y), the estimates of the
location (canonical) parameters under the fitted model and the saturated model, respectively, and
we assume ai(φ) = φ/wi. The discrepancy between the model under investigation and saturated
model is given by ∑

2wi{yi(θ̃i − θ̂
f
i ) − b(θ̃i) + b(θ̂

f
i )}

φ
= D(y, β̂ f )

φ
,

where, D(y, β̂ f ) is commonly known as the deviance of the fitted model.
In the GLM, the model selection involves identifying relevant predictors and link function. For

a GLM, we denote a model by Mα , where α = α0 ∪ αl, α0 = {0} denotes intercept and αl denotes
a non-empty subset of {1, 2, . . . , k − 1}. The model Mα , is defined as

g(μi,α) = X ′
i,αβα , (2)

where, Xi,α denotes the sub-vector of Xi containing components indexed by α, βα is a pα-vector
and pα denotes cardinality of α.

Suppose, αN denote all necessary predictors. Following Shao [17], each candidate model can
be associated with one of the following two categories.
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36 D.M. Sakate and D.N. Kashid

(1) Class of wrong models Mw = {Mα : at least one necessary predictor is missing}, i.e. Mw =
{Mα : αN � α}.

(2) Class of correct models Mc = {Mα : all necessary predictors are present}, i.e. Mc = {Mα :
αN ⊆ α}.

The models in Mc are correct models and those in Mw are the wrong models. There are more
than one correct models unless αN = α0 ∪ {1, 2, . . . , k − 1}. The optimal model is MαN .

3. Model selection using DBC

The deviance is a function of the data only and is used to define a statistic for model selection.
Let D(y, β̂) denote the deviance of the full model. If the difference in deviance of model Mα

and full model D(y, β̂α) − D(y, β̂) is small, then the model Mα can be regarded as good as the
full model for prediction. This cannot serve the purpose of the model selection criterion because
for the model Mα∗ such that α∗ ⊃ α, the difference is smaller than that for the model Mα and is
zero when α corresponds to the full model. Hence, it becomes difficult to identify the optimal
model. A good model selection criterion should take into account goodness of fit as well as the
complexity of the model [18]. A natural measure of the complexity of the model is the number of
parameters pα involved in it. Therefore, we define a model selection criterion in the GLM based
on the penalized difference between deviance of model Mα and the full model. The DBC can be
expressed as

DBC(Mα) = D(y, β̂α) − D(y, β̂)

φ
− (k − pα) + C(n, pα), (3)

where ‘φ’ is the dispersion parameter and is usually known. If it is unknown, it is replaced by
its MLE.

Under normality of the response and C(n, pα) = pα , the criterion in Equation (3) is equivalent
to Mallows’ Cp (see Lemma 3.1 for the details). Minimum Mallows’ Cp is not a consistent model
selection criterion [19]. Its inconsistency is due to the constant penalty pα which does not increase
when the sample size is increased. It is necessary to consider a complexity measure C(n, pα) which
will make the criterion consistent.

Under criterion (3), those candidate models having better goodness of fit and smaller complexity
will be preferred than the others; and the best model will be the one achieving the smallest
DBC value.

In order to establish the consistency of DBC, we require the following condition. This condition
ensures that the wrong model is asymptotically worse than any correct model.

Condition 3.1 For Mα ∈ Mw and Mα∗ ∈ MC,

lim
n−→∞ inf(I + (pα − pα∗) + C(n, pα) − C(n, pα∗)) > 0

where, I = ∑n
i=1 2wi{yi(θ̂i,α∗ − θ̂i,α) + b(θ̂i,α∗)}/φ.

If Mα is a wrong model, then the deviance of Mα is larger than that of a correct model Mα∗ .
Hence, quantity I is positive and large. Thus, the assumption in Condition 3.1 is reasonable.

The following theorem indicates that, if we choose a model by minimizing DBC over all possible
models, then asymptotically, the model selected by using DBC falls in the class of correct models.
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Theorem 3.1 Under Condition 3.1, for any correct model Mα∗ ∈ MC and any wrong model Mα

we have,

lim
n−→∞ inf Pr(DBC(Mα) > DBC(Mα∗)) = 1.

Proof The deviance of a model Mα can be expressed as

D(y, β̂α) =
n∑

i=1

2wi{yi(θ̃i − θ̂i,α∗) − b(θ̃i) + b(θ̂i,α∗)}

+
n∑

i=1

2wi{yi(θ̂i,α∗ − θ̂i,α) + b(θ̂i,α) − b(θ̂i,α∗)}

= D(y, β̂α∗) + φI .

Therefore,

Pr(DBC(Mα) − DBC(Mα∗) > 0) = Pr(I + (pα − pα∗) + C(n, pα) − C(n, pα∗) > 0).

Hence,

lim
n−→∞ inf Pr(DBC(Mα) > DBC(Mα∗))

= lim
n−→∞ inf Pr(I + (pα − pα∗) + C(n, pα) − C(n, pα∗) > 0)

≥ Pr( lim
n−→∞ inf(I + (pα − pα∗) + C(n, pα) − C(n, pα∗) > 0)).

Using Condition 3.1, we have

lim
n−→∞ inf Pr(DBC(Mα) > DBC(Mα∗)) = 1. �

It follows from the above theorem that with the probability approaching to one, value of the
DBC for a wrong model is larger than that for any correct model. Further, we state some lemmas.

Lemma 3.1 If Mα∗ is a correct model and n is large, (D(y, β̂α∗) − D(y, β̂))/φ has an approxi-
mately chi-square distribution with k − pα∗ degrees of freedom (d.f .) [20].

Condition 3.2 C(n, pα) = o(n) and C(n, pα) → ∞ as n → ∞.

Let Mn denote the model selected by using DBC when the sample size is n. Moreover, if
C(n, pα) satisfies Condition 3.2, the following theorem indicates that our model selection criterion
is consistent.

Theorem 3.2 Under Condition 3.2, with probability approaching to one, as n tends to infinity,
DBC selects the optimal model in the class of all correct models, i.e.

lim
n−→∞ Pr(Mn = MαN) = 1.

Proof In the light of Theorem 3.1, for large n model selected by the DBC falls in the class of
correct models. Therefore, we shall confine ourselves to the class of correct models only. For a
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38 D.M. Sakate and D.N. Kashid

correct model Mα∗ ∈ MC,

Pr(DBC(Mα∗) > DBC(MαN))

= Pr

(
D(y, β̂α∗) − D(y, β̂αN)

φ
> (pαN − pα∗) + C(n, pαN) − C(n, pα∗)

)

= Pr

(
D(y, β̂αN) − D(y, β̂α∗)

φ
< (pα∗ − pαN) + C(n, pα∗) − C(n, pαN)

)

Since, C(n, pα) → ∞ as n → ∞ and pα∗ > pαN for any correct model Mα∗ ∈ MC, and by
Lemma 3.1 we have,

lim
n→∞ Pr(DBC(Mα∗) > DBC(MαN)) = Pr(χ2

(pα∗ −pαN ) < ∞) = 1.

This indicates that, with probability approaching to one, asymptotically value of DBC for the
optimal model is the smallest in the class of all correct models. Moreover, the DBC selects that
model for which its value is minimum among all possible models.

Therefore,

lim
n→∞ Pr(Mn = MαN) = 1. �

This proves that, DBC is a consistent model selection criterion.

Lemma 3.2 If Mα is a correct model then E(DBC) ∼= C(n, pα).

Proof According to Lemma 3.1, distribution of the first term in Equation (3) is approximately
chi-square with k − pα d.f., we have

E(DBC) ∼= (k − pα) − (k − pα) + C(n, pα)

= C(n, pα). �

Lemma 3.3 If C(n, pα) = pα and distribution of response is normal then DBC and Mallows’Cp

are equivalent.

Proof Let Y1, Y2, . . . , Yn be independent N(μi, σ 2).
Then, D(y, β̂) = RSSk , D(y, β̂α) = RSSpα

and φ = σ 2.
Therefore,

DBC(Mα) = RSSpα
− RSSk

σ 2
− (k − 2pα).

Since, σ 2 is unkown, replace it by its OLS estimator σ̂ 2 = RSSk/n − k.
Thus, we have

DBC(Mα) = RSSpα

σ̂ 2
− (n − 2pα) = Cp. �

Remark 3.1 The term k − pα is included in Equation (3) because for the optimal and full model,
the expectation E((D(y, β̂αN ) − D(y, β̂))/φ − (k − pα)) ∼= 0 with equality for the full model and
E((D(y, β̂αN ) − D(y, β̂))/φ − (k − pα)) > 0, otherwise. Also, complexity of the full model is
larger than that of the optimal model. This indicates that the value of the DBC is small for the
optimal model. This helps to identify the optimal model easily.
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It is evident that the DBC belongs to the class of likelihood-based model selection criteria of
which AIC and BIC are widely used. They are defined as follows:

AIC(Mα) = −2L(μ̂α , φ̂; y) + 2pα , (4)

BIC(Mα) = −2L(μ̂α , φ̂; y) + pα log(n). (5)

AIC is an efficient model selection criterion [21]. It has been shown that AIC is not consis-
tent [15]. BIC is a consistent model selection criterion [19]. A recently proposed consistent model
selection criterion based on modified adjusted R2 is R̄2 [15]. It is defined as

R̄2(Mα) = 1 − n − 1

n − λnpα

∑n
i=1(yi − μ̂i,α)2∑n

i=1(yi − ȳ)2
, (6)

where, μ̂i,α is obtained by maximizing the quasi-likelihood of the model Mα and λn is a penalty
term satisfying Condition 3.2. The simulation study in [15] reveals that R̄2 performs better than
PLQD, AIC, AICc and is compatible with BIC. They used λn = log n and λn = √

n for the
simulation purpose.

Model selection in the GLM involves identification of relevant predictors and a selection of
the link function. We discussed the identification of relevant predictors, using the DBC when the
link function is known in this section. In the next section, the use of the DBC for model selection
when the true link function is unknown but belongs to a parametric family is discussed.

4. Model selection with parametric link function

When the true link function is known, the DBC defined in Equation (3) can be used as it is
for model selection. If the link function is unknown and is to be selected from a finite set G of
continuous monotone link functions, the DBC in Equation (3) cannot be used as it is because of
the presence of deviance of the full model in it. When there are more than one candidate link
functions, if the deviance of the full model is based on a respective link to compute the DBC for all
possible models corresponding to each link function, then it may happen that the minimum DBC
corresponds to a wrong model (in the sense of incorrect link as well as predictors). This can be
overcome by initial screening of all the candidate link functions using deviance. Let g ∈ G, be one
of the finitely many link functions in G and Mg

α be the GLM defined in Equation (2) when the link
function is g. Denote the mean of the response of model Mg

α by μ
g
α and the regression parameter

by β
g
α . Then the DBC for model selection when the link function is unknown is defined as

DBC(Mg
α) = D(y, β̂g

α) − D(y, β̂g∗
)

φ
− (k − pα) + C(n, pα), (7)

where D(y, β̂g) is the deviance of the full model corresponding to the link function g∗ ∈ G such that

min
g∈G

D(y, β̂g) = D(y, β̂g∗
)

The problem of parametric link selection is addressed by Pregibon [22] and later by Czado [23],
Czado and Munk [24] and Hu and Shao [15]. Pregibon [22] proposed a test for checking whether
a modification to the hypothetical link function is necessary or not. This test is based on the
reduction in deviance of the model when the modified link is used and if it is significant, then
it is necessary to modify the hypothetical link. Moreover, he emphasized that this is the first
logical step towards optimal link identification. The notion behind using the term D(y, β̂g∗

) in
Equation (7) follows from this.
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40 D.M. Sakate and D.N. Kashid

Table 1. Penalty functions.

Sr. No. Penalty function C(n, pα)

1 P1 = pα

2 P2 = 2pα

3 P3 = 2pα + 2(pα + 1)(pα + 2)

n − pα − 2
4 P4 = pα log(n)

5 P5 = pα(log(n) + 1)

Further, the first term in Equation (7) is always positive. Theorems 3.1 and 3.2 proved for DBC
in Equation (3) can also be proved for DBC defined in Equation (7) on the similar lines. Hence,
the consistency property of DBC for optimal model selection can be established when the link
function is to be selected from G.

The performance of DBC for the link function selection in the GLM is evaluated and compared
with existing methods using simulation and the results are presented in Part C of the next section.

5. Simulation results

In this section, we present the results of the simulation study. The study is divided into three parts.
In part (A), two examples are discussed. Example 5.1 uses the data given in [14] to compare the
performance of DBC with some existing model selection criteria. In Example 5.2, simulated data
are used to examine and compare the performance of DBC. Part (B) presents the small sample
observed L2 efficiency of DBC, R̄2, AIC and BIC. In Part (C), we report the findings of the
performance study of various model selection criteria for the link function selection. At the end,
we discuss the choice of the penalty function in DBC. In the entire simulation study, we use five
different penalty functions which appear in the literature and are presented in Table 1.

(A) Performance and comparison study

Example 5.1 We consider a Poisson regression model where response Y follows the Poisson dis-
tribution with mean μ and log(μ) = β0 + β1X1 + β2X2 + β3X3. The same design matrix (n = 36)

Table 2. Probabilities of selecting each model (n = 36).

DBC R̄2, R̄2,

β Model P1 P2 P3 P4 P5 λn = log(n) λn = √
n BIC

{2,1,0,0}a {0,1}{MαN } 0.703 0.827 0.872 0.922 0.972 0.764 0.881 0.868

{0,1,2}b 0.141 0.088 0.068 0.042 0.018 0.104 0.055 0.072
{0,1,3} 0.130 0.078 0.058 0.036 0.010 0.103 0.56 0.059

{0,1,2,3} 0.026 0.007 0.002 0 0 0.029 0.008 0.001
{2,1,0.5,0.35} {0,1} 0 0.001 0.003 0.003 0.009 0 0 0

{0,1,2} 0.050 0.081 0.112 0.164 0.276 0.055 0.092 0.093
{0,1,3} 0 0.004 0.003 0.008 0.028 0.004 0.008 0.007

{0,1,2,3}{MαN } 0.950 0.914 0.882 0.825 0.687 0.941 0.900 0.900
{2,3,0,0.1} {0,1} 0.381 0.510 0.580 0.675 0.808 0.312 0.399 0.596

{0,1,2} 0.059 0.039 0.032 0.022 0.012 0.092 0.085 0.040
{0,1,3} {MαN } 0.480 0.418 0.370 0.292 0.176 0.440 0.420 0.342

{0,1,2,3} 0.080 0.033 0.018 0.011 0.004 0.156 0.096 0.022

a{i, j, . . .} denote {β0, β1, β2, β3}.
b{i, j, . . .} denote suffixes of {X0, X1, X2, X3}.
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Statistics 41

and parameter structure used for the purpose of simulation in [14] is used. Model selection using
DBC is carried out. Table 2 shows the probabilities of selecting models for three different β’s
based on 1000 runs (values for BIC and R̄2 are obtained from [15]).

In the first case, where predictors X2 and X3 are redundant, performance of DBC with penalty P4

and P5 is better than BIC and R̄2. In the second case, where no predictor is redundant, performance
of DBC with penalty P1, is better than BIC and compatible with R̄2. This is obvious because a
smaller penalty will perform better when the full model itself is the optimal model. In the third
case, the parameter structure is very interesting. Predictor X2 is redundant while X3 is near to
being redundant. DBC with P1 and P2, BIC and R̄2 select evenly the optimal model and the near
to optimal model (containing intercept and X1 only). In this case, DBC (with P2 to P5) tend to select
the near to optimal model with higher probability than the optimal model, and the probability
being highest for P5. Hu and Shao [15] used the same data to compare the performance of R̄2

with existing model selection criteria and found that it performs better than PLQD, AIC and AICc
and has a performance similar to that of BIC. The above simulation study indicates that DBC
performs better than R̄2.

Example 5.2 In this example, we assessed the performance of DBC and compared it with some
existing methods by counting the frequency of selecting the optimal model based on the simu-
lated data. Five response distributions namely normal, Poisson, Bernoulli, gamma and negative
binomial are considered in this study. Four sample sizes 100, 200, 400 and 500 are used. For
each response distribution, two different parameter structures are considered. These structures
consist of discrete and continuous predictors. Table 3 gives different parameter structures and link
functions corresponding to response distributions.

The design matrix X is of the order n × 6 with the first column as ones. The columns 2–6
consist of random numbers from Normal(0, 1), Uniform(0, 1), Poisson(1), Binomial(1, 0.4) and
Normal(0, 1) distributions, respectively. The GLM involves dispersion parameter φ which is to
be estimated from the data. In the GLM, φ plays a very important role. As the expression of
DBC involves φ, its performance may differ for different values of φ. The theoretical value of
φ for Poisson and Bernoulli is one. Value of φ other than one cannot be used for the simulation
in case of these distributions. Therefore, we considered φ = 1 for the simulation from Poisson
and Bernoulli response models. For normal, gamma and negative binomial distribution, we con-
sidered four different values of φ for the simulation. We used MLE of φ in DBC, AIC and BIC.
Tables 4–6 present the frequency of selecting optimal model by DBC, R̄2, AIC and BIC over 1000
realizations for model I and II when the distribution of response is normal, gamma and negative
binomial, respectively. The frequency count of the optimal model selection by various criteria
when distribution of response is Poisson and Bernoulli are reported in Table 7.

Table 3. Parameter structure and link functions.

Distribution of response Model no. Parameter structure Link function

Normal I g(μ) = 1 + 5X1 + 5X2 Identity
II g(μ) = 1 + 5X1 + 5X2 + 5X3

Poisson I g(μ) = 1 + X2 + X3 Log
II g(μ) = 1 + X1 + 2X4

Bernoulli I g(μ) = 2 + X1 + X2 + X3 Logit
II g(μ) = 1 + X1 − 2X3

Gamma I g(μ) = 1 + 15X1 + 15X2 Log
II g(μ) = 1 + 5X1 − 5X2 + 5X3

Negative binomial I g(μ) = 1.5 + 1.5X1 − 1.5X2 Log
II g(μ) = 0.5 + 1.5X1 − 2X3
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Table 4. Frequency count of optimal model selection when response distribution is normal.

DBC R̄2

φ n P1 P2 P3 P4 P5 λn = log n λn = √
n AIC BIC

Model I
0.5 100 794 859 868 964 976 848 976 580 887

200 796 863 869 975 986 891 998 556 915
400 813 885 888 983 989 948 998 599 954
500 785 870 873 989 991 958 1000 568 969

1 100 810 875 886 970 984 861 979 594 908
200 795 879 883 983 990 915 995 581 934
400 809 894 903 987 992 958 1000 609 962
500 802 880 882 984 992 957 1000 590 965

2 100 812 881 888 967 980 853 973 579 897
200 813 880 882 984 989 921 995 576 940
400 779 862 865 991 994 945 1000 590 953
500 797 871 874 988 994 953 1000 601 960

4 100 791 864 874 958 977 850 974 585 886
200 799 878 883 980 984 900 998 596 923
400 794 876 883 982 993 947 1000 590 957
500 802 879 880 988 994 950 1000 600 959

Model II
0.5 100 831 886 901 970 983 885 974 709 922

200 830 894 903 980 987 934 997 684 949
400 845 903 906 991 997 972 1000 727 976
500 821 895 898 991 994 971 1000 704 973

1 100 840 910 919 981 987 899 976 712 937
200 815 904 906 982 988 934 997 690 951
400 813 888 890 984 992 967 1000 679 974
500 838 908 910 992 997 973 1000 720 977

2 100 855 914 927 973 982 897 976 701 937
200 810 898 905 982 988 931 995 682 952
400 853 920 925 994 998 968 1000 726 973
500 830 903 907 995 999 976 1000 696 983

4 100 829 903 911 975 986 890 983 701 927
200 825 906 914 982 991 942 997 696 953
400 831 911 918 992 997 973 1000 714 978
500 826 904 907 985 991 955 999 696 963

Note: Number of simulations for each combination is 1000.

It seems that, irrespective of values of φ and n considered, DBC with P4 and P5 and R̄2 perform
equally and are better thanAIC and BIC for the normal response distribution. Moreover, frequency
of the optimal model selection of each criterion for various values of φ is same for the respective
sample sizes in this case.

When the distribution of the response is gamma, for φ = 0.5, 1 and 2, DBC with P4 and P5

perform better than R̄2, AIC and BIC, irrespective of the sample size. For φ = 4, DBC performs
better than R̄2 and AIC for large sample sizes but its performance is lower than BIC. It means that
the value of φ plays a significant role in the performance of DBC for a gamma response.

Table 6 gives some interesting findings regarding the performance of various model selection
criteria in the GLM form of the negative binomial regression. DBC with P4 and P5 perform
better than AIC, BIC and R̄2 irrespective of sample size and the values of φ. However, for φ = 4,
performance of all model selection criteria is lower but that of DBC with P4 and P5 is moderate.

Table 7 presents the results of the performance study in the case of the Poisson and the Bernoulli
response distributions for φ = 1. For Poisson response distribution, all sample sizes considered,
the frequency of selecting the optimal model by DBC with P4 and P5 is larger than that for AIC,
BIC and R̄2. When the response distribution is Bernoulli, the DBC with P4 and P5 perform better
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Table 5. Frequency count of optimal model selection when response distribution is gamma.

DBC R̄2

φ n P1 P2 P3 P4 P5 λn = log n λn = √
n AIC BIC

Model I
0.5 100 625 796 818 960 981 206 275 596 890

200 651 824 838 975 988 235 325 627 943
400 619 796 799 986 992 213 359 592 961
500 640 799 803 986 994 203 360 620 966

1 100 653 812 839 964 980 224 298 610 907
200 656 806 817 980 992 215 326 627 939
400 684 840 844 991 996 222 377 649 967
500 644 822 828 984 989 193 351 604 957

2 100 692 817 838 931 945 184 253 638 896
200 723 856 864 983 990 205 302 658 932
400 707 856 859 989 990 189 349 651 963
500 714 864 873 995 999 183 333 653 966

4 100 235 278 282 307 312 217 259 555 695
200 338 407 408 454 455 205 265 581 788
400 527 629 631 704 706 231 332 637 894
500 576 663 665 740 744 204 301 649 900

Model II
0.5 100 739 860 879 974 987 265 324 718 934

200 743 872 885 984 992 294 383 722 965
400 751 864 870 985 991 286 418 739 971
500 760 871 876 992 996 284 404 745 982

1 100 757 877 903 971 984 272 335 725 938
200 766 890 898 990 997 275 362 738 966
400 762 883 888 990 995 246 343 731 970
500 774 881 884 994 999 246 376 750 974

2 100 766 886 903 957 969 243 279 727 927
200 792 902 910 985 993 279 361 753 963
400 777 899 904 992 998 265 352 731 974
500 789 901 908 994 998 261 358 742 982

4 100 238 275 277 298 300 198 212 447 535
200 434 479 483 514 514 253 303 623 738
400 630 703 705 748 748 215 302 723 877
500 675 758 762 813 814 232 332 730 909

Note: Number of simulations for each combination is 1000.

than AIC, BIC and R̄2 for large n. In general, the DBC with P4 and P5 performs better than R̄2,
AIC and BIC.

(B) Observed L2 efficiency

McQuarrie et al. [6] adopted the approach of Shibata [21] to define the observed L2 efficiency and
used it to compare AIC, AICc, and AICu in classical regression. Following the same approach, we
define the observed L2 efficiency of a model selection criterion in the GLM. Let M = MC ∪ Mw

be the class of all possible models and

L2(Mm) = min
M∈M

L2(M),

where, L2(M) = ‖μαN − μ̂α‖2/n. In addition, let MS denote the model selected by the specific
model selection criterion. The observed L2 efficiency of a model selection criterion in the GLM
is then defined as L2(Mm)/L2(MS). The efficiency of a model selection criterion will be high if
it selects the model which best approximates the optimal model. Hence, a good model selection
criterion will select a model which yields high efficiency. As the correct model is asymptotically
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Table 6. Frequency count of optimal model selection when response distribution is negative binomial.

DBC R̄2

φ n P1 P2 P3 P4 P5 λn = log n λn = √
n AIC BIC

Model I
0.5 100 681 785 803 868 861 112 187 320 418

200 688 801 810 958 966 99 228 202 359
400 688 809 816 966 974 84 242 86 216
500 736 824 829 973 978 92 270 56 132

1 100 600 667 676 661 624 96 161 239 325
200 654 760 771 903 891 108 188 147 259
400 705 806 808 948 956 90 241 52 131
500 668 778 779 931 940 86 228 44 100

2 100 454 498 498 425 371 70 99 174 186
200 568 666 674 688 652 82 157 121 195
400 659 752 759 872 871 96 182 42 80
500 613 731 734 911 921 87 211 34 67

4 100 279 303 306 242 224 83 103 115 84
200 406 457 460 446 416 80 135 82 69
400 469 566 571 658 644 86 151 26 31
500 504 619 620 758 759 83 187 13 21

Model II
0.5 100 489 624 656 849 889 107 194 658 869

200 536 675 689 888 922 111 225 536 796
400 569 682 689 911 940 73 220 388 689
500 593 709 713 925 948 90 248 368 642

1 100 491 627 647 833 879 93 164 528 793
200 539 670 681 865 892 100 208 444 720
400 573 694 698 904 924 82 226 318 607
500 553 688 692 897 920 78 260 278 569

2 100 476 611 631 809 853 91 168 500 750
200 512 618 632 832 860 93 204 371 676
400 484 595 603 834 856 84 259 243 532
500 537 632 635 867 898 83 250 202 474

4 100 392 504 536 720 761 96 125 450 643
200 433 544 554 769 803 103 200 342 635
400 476 568 571 814 847 99 248 223 492
500 462 563 566 815 847 91 262 204 430

Note: Number of simulations for each combination is 1000.

closest to the optimal model, according to McQuarrie et al. [6] observed L2 efficiency can also
be used as a measure of consistency. Because the small sample efficiency of the proposed model
selection criterion is vital to be noted, we present the average L2 efficiency and its standard
deviation (SD) for the sample size 50 and φ = 1 in Table 8.

In case of normal, binomial and gamma response distributions, the average L2 efficiency of
DBC, R̄2, AIC and BIC are the same. For a negative binomial response distribution, average L2

efficiency of DBC is larger than that of R̄2. Moreover, DBC with P4 and P5 is compatible with AIC
and BIC in the sense of the average L2 efficiency. In case of the Poisson response distribution, the
average L2 efficiency of DBC is larger than that of R̄2. DBC with P4 and P5 have larger average
L2 efficiency than that of AIC and BIC.

(C) Link function selection

We considered the same problem in Part A but added the selection of the link function from the
set G = {log(μ),

√
μ}. This set-up was used by Hu and Shao [15] to demonstrate the use of R̄2
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Table 7. Frequency count of optimal model selection when response distribution is Poisson and Bernoulli.

DBC R̄2

Distribution Sample

of response sizen P1 P2 P3 P4 P5 λn = log n λn = √
n AIC BIC

Poisson Model I
100 613 788 816 947 981 356 567 623 911
200 634 808 822 967 995 370 622 625 942
400 620 775 785 977 989 313 671 607 960
500 596 784 788 970 988 333 681 592 951

Model II
100 652 806 821 948 983 369 557 624 908
200 608 773 783 970 989 390 669 580 934
400 624 789 795 976 994 388 775 603 958
500 623 764 771 982 992 385 782 592 959

Bernoulli Model I
100 494 511 523 400 346 483 331 545 423
200 581 677 689 712 665 683 506 642 731
400 623 766 771 925 922 867 768 675 929
500 634 788 800 969 969 910 813 705 971

Model II
100 504 660 686 818 818 675 777 566 847
200 529 695 705 933 961 791 963 588 939
400 538 714 721 969 981 867 999 590 966
500 518 702 706 951 972 868 996 574 953

Note: Number of simulations for each combination is 1000.

for the link the function selection in the GLM. We performed the model selection when the link
function was unknown but a member of G. The results are given in Table 9.

As indicated in Hu and Shao [15], R̄2,AIC and BIC were not able to distinguish between the two
link functions when β = {2, 1, 0, 0} and n = 36. However, to some extent, the DBC with P4 and
P5 were able to do so. When the sample size is increased to 288 by generating eight independent
Poisson responses for each covariate value, all the criteria were able to identify the true link
function with a larger probability. We used one more parameter structure β = {2, 3, 0, 0} and for
the sample size 288, all the criteria were able to identify the true link function with probability
one. Moreover, the DBC with P4 and P5 selected the optimal model with probability larger than
that of R̄2, AIC and BIC. Performance of all the criteria for β = {2, 1, 0, 1.2} and sample size 36
is identical in the sense of optimal model selection to β = {2, 3, 0, 0} and sample size 288. It is
interesting to note that DBC, R̄2, AIC and BIC have more or less the same performance for the
link function selection for different parameter structures and sample sizes considered.

5.1. Choice of penalty function C(n, pα)

DBC involves a penalty term C(n, pα) which plays a vital role in its performance. The choice of
C(n, pα) is crucial and should be done carefully. The penalty functions given in Table 3 appear in
the existing model selection criteria. P1, P2 and P3 are the part of those model selection criteria
which are not consistent. Consistency is a desirable property for any model selection criterion.
Therefore, C(n, pα) should be chosen in such a way that DBC becomes consistent. It can be done
by opting for a C(n, pα) which satisfies Condition 3.2. The penalty functions P4 and P5 satisfy this
condition and are a good choice for C(n, pα) as revealed from the results of our simulation study. Of
course, P4 and P5 are not the only options for C(n, pα) and performance of DBC can be enhanced
when the optimal model is strongly identifiable by using C(n, pα) satisfying Condition 3.2 which
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Table 8. Average L2 efficiency and its SD for DBC and R̄2(n = 50).

Distribution of response
Model selection Penalty

criteria functions Normal Poisson Binomial Gamma Negative binomial

Model I
DBC P1 0.972849 0.774015 0.352249 0.193805 0.741968

(0.019354)a (0.290175) (0.01253) (0.168298) (0.285569)
P2 0.961475 0.851873 0.344588 0.194187 0.764588

(0.026567) (0.250818) (0.140035) (0.168397) (0.281524)
P3 0.957265 0.877451 0.378643 0.194085 0.778043

(0.02984) (0.228507) (0.105468) (0.168223) (0.275755)
P4 0.945188 0.91378 0.375384 0.194657 0.759611

(0.038855) (0.19038) (0.112473) (0.168456) (0.287012)
P5 0.939696 0.949129 0.378865 0.194603 0.736897

(0.043574) (0.129454) (0.100986) (0.169181) (0.297624)
R̄2 λn = log n 0.963576 0.711327 0.361127 0.233095 0.554319

(0.026336) (0.294101) (0.097766) (0.203662) (0.290255)
λn = √

n 0.947381 0.75532 0.371327 0.237309 0.560648
(0.038602) (0.28619) (0.103942) (0.208665) (0.296184)

AIC – 0.974995 0.7718 0.357816 0.194086 0.712637
(0.018244) (0.293903) (0.095089) (0.168411) (0.306414)

BIC – 0.955156 0.890916 0.371167 0.194581 0.646936
(0.032568) (0.217742) (0.102679) (0.168639) (0.326928)

Model II
DBC P1 0.972803 0.754145 0.344879 0.966541 0.699728

(0.019495) (0.324749) (0.013547) (0.046558) (0.307471)
P2 0.961191 0.846499 0.344734 0.966732 0.753929

(0.026775) (0.28119) (0.131435) (0.045103) (0.300773)
P3 0.956416 0.877996 0.379378 0.966731 0.772348

(0.029703) (0.253003) (0.105532) (0.045104) (0.293737)
P4 0.945815 0.927001 0.376473 0.966747 0.821579

(0.036612) (0.198384) (0.114783) (0.045167) (0.269755)
P5 0.940505 0.958527 0.378934 0.96676 0.844496

(0.039997) (0.133717) (0.101473) (0.045199) (0.253927)
R̄2 λn = log n 0.962823 0.627062 0.360543 0.967987 0.569977

(0.025697) (0.325587) (0.10423) (0.047582) (0.304165)
λn = √

n 0.948814 0.666999 0.368366 0.968089 0.585653
(0.03528) (0.329841) (0.109567) (0.047605) (0.309547)

AIC – 0.975469 0.747043 0.357199 0.966538 0.850013
(0.017958) (0.327994) (0.100016) (0.046554) (0.258175)

BIC – 0.954654 0.89822 0.36731 0.966723 0.888216
(0.031259) (0.235647) (0.107404) (0.045204) (0.215051)

aFigure in parenthesis indicates corresponding SD.

penalizes the difference in deviance of model Mα and the full model more than these can. See
McQuarrie et al. [6] for details on identifiability of a model.

6. Concluding remarks

We proposed a new model selection criterion based on deviance in the GLM which takes into
account goodness of fit as well as complexity of the model. The complexity of a model is quantified
by the penalty term C(n, pα). From the practical implementation point of view, C(n, pα) has to
be appropriately chosen. We studied the penalty functions given in Table 1 as typical choices of
penalty terms in the simulation study. It is quite evident that a larger penalty performs better when
the optimal model involves large number if redundant predictors. The simulation study reveals
that the DBC is an attractive alternative to the existing likelihood-based model selection criteria.
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Table 9. Probabilities of selecting each model.

DBC R̄2, R̄2,

β and n Link Model P1 P2 P3 P4 P5 λn = log(n) λn = √
n AIC BIC

{2, 1, 0, 0} log(μ) {0, 1}{MαN } 0.451 0.547 0.57 0.605 0.625 0.489 0.56 0.467 0.584
n = 36 {0, 1, 2} 0.087 0.041 0.036 0.02 0.013 0.066 0.027 0.081 0.032

{0, 1, 3} 0.081 0.049 0.037 0.021 0.013 0.075 0.048 0.082 0.029
{0, 1, 2, 3} 0.015 0.004 0.001 0 0 0.014 0.005 0.009 0.001√

μ {0, 1} 0.254 0.285 0.302 0.317 0.326 0.287 0.322 0.252 0.306
{0, 1, 2} 0.047 0.031 0.023 0.014 0.01 0.03 0.017 0.045 0.021
{0, 1, 3} 0.047 0.037 0.026 0.021 0.012 0.032 0.017 0.05 0.024

{0, 1, 2, 3} 0.018 0.006 0.005 0.002 0.001 0.007 0.004 0.014 0.003
{2, 1, 0, 0} log(μ) {0, 1}{MαN } 0.591 0.711 0.715 0.83 0.838 0.797 0.842 0.592 0.814
n = 288 {0, 1, 2} 0.122 0.06 0.058 0.006 0.003 0.017 0 0.119 0.015

{0, 1, 3} 0.109 0.068 0.068 0.013 0.008 0.028 0.001 0.113 0.02
{0, 1, 2, 3} 0.022 0.006 0.005 0 0 0 0 0.021 0.001√

μ {0, 1} 0.108 0.123 0.123 0.144 0.148 0.144 0.157 0.106 0.14
{0, 1, 2} 0.024 0.019 0.018 0.005 0.002 0.008 0 0.025 0.006
{0, 1, 3} 0.018 0.012 0.012 0.002 0.001 0.006 0 0.018 0.004

{0, 1, 2, 3} 0.006 0.001 0.001 0 0 0 0 0.006 0
{2, 3, 0, 0} log(μ) {0, 1}{MαN } 0.722 0.846 0.848 0.981 0.988 0.811 0.979 0.718 0.967
n = 288 {0, 1, 2} 0.12 0.066 0.066 0.01 0.008 0.096 0.011 0.125 0.014

{0, 1, 3} 0.134 0.081 0.079 0.009 0.004 0.087 0.01 0.131 0.019
{0, 1, 2, 3} 0.024 0.007 0.007 0 0 0.006 0 0.026 0√

μ {0, 1} 0 0 0 0 0 0 0 0 0
{0, 1, 2} 0 0 0 0 0 0 0 0 0
{0, 1, 3} 0 0 0 0 0 0 0 0 0

{0, 1, 2, 3} 0 0 0 0 0 0 0 0 0
{2, 1, 0, 1.2} log(μ) {0, 1, 2} 0 0 0 0 0 0 0 0 0
n = 36 {0, 1, 3}{MαN } 0.728 0.793 0.816 0.833 0.843 0.724 0.779 0.734 0.814

{0, 1, 2, 3} 0.141 0.075 0.048 0.03 0.019 0.145 0.089 0.135 0.051√
μ {0, 1, 2} 0 0 0 0 0 0 0 0 0

{0, 1, 3} 0.108 0.12 0.131 0.136 0.137 0.118 0.124 0.109 0.13
{0, 1, 2, 3} 0.023 0.012 0.005 0.001 0.001 0.013 0.008 0.022 0.005
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This paper introduces a modified one-sample test of goodness-of-fit based on the cumulative distribu-
tion function. Damico [A new one-sample test for goodness-of-fit. Commun Stat – Theory Methods.
2004;33:181–193] proposed a test for testing goodness-of-fit of univariate distribution that uses the con-
cept of partitioning the probability range into n intervals of equal probability mass 1/n and verifies that
the hypothesized distribution evaluated at the observed data would place one case into each interval. The
present paper extends this notion by allowing for m intervals of probability mass r/n, where r ≥ 1 and
n = m × r. A simulation study for small and moderate sample sizes demonstrates that the proposed test
for two observations per interval under various alternatives is more powerful than the test proposed by
Damico (2004).

Keywords: distribution-free; goodness-of-fit; greatest integer function; non-parametric test; one-
sample test

1. Introduction

Goodness-of-fit techniques are methods of examining how well a sample of data agrees with a
specified distribution as its population. In the formal framework of hypothesis testing, the null
hypothesis H0 is that a given random variable X follows a stated probability law F(x); the random
variable may come from a process which is under investigation. The goodness-of-fit techniques
applied to test H0 are based on measuring in some way the conformity of the sample data (a set
of x-values) to the hypothesized distribution, or equivalently, its discrepancy from it.

Some of the popular techniques discussed in literature for goodness-of-fit problem are: tests of
chi-squared type, test based on empirical distribution function; characteristic function; moment-
generating function, test based on regression, correlation, moments, test based on transformation
methods, etc. In the course of his Mathematical Contributions to the Theory of Evolution, Karl
Pearson abandoned the assumption that biological populations are normally distributed, introduc-
ing the Pearson system of distributions to provide other models. The need to test fit arose naturally
in this context, and in 1900 Pearson invented his chi-squared test. This test and others related to
it remain among the most used statistical procedures. Modern developments have increased the
flexibility of chi-squared test, especially when unknown parameters are to be estimated in the
hypothesized family. Log-likelihood ratio, Neymann modified chi-squared and Freeman–Tukey
test play classical role in chi-squared type test. The most well-known empirical distribution
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function test is introduced by Kolmogorov–Smirnov. For testing many distributional families,
Stephens [1] has given modifications for empirical distribution function statistics. A comprehen-
sive review of the theory of empirical distribution function tests is given in Durbin.[2]An extensive
review of literature on goodness-of-fit techniques is given in D’Agostino and Stephens.[3] The
rest of the article is organized as follows.

In Section 2, we discuss the test due to Damico [4] and in Section 3 we propose a modified test
for goodness-of-fit. In Section 4, a Monte Carlo study is done to estimate power of the modified
test for various alternatives. Section 5 gives concluding remarks.

2. Test based on A-statistic

For testing goodness-of-fit of a completely specified univariate distribution, Damico [4] has
proposed a one-sample test for goodness-of-fit. The test is easy to describe and compute and
so is a useful teaching tool. Damico [4] uses a simple technique where one divides the probability
range into n intervals of equal probability mass 1/n, and verifies whether the hypothesized dis-
tribution evaluated at the observed data would place one observation into each interval. Consider
the problem of testing the following null hypothesis,

H0: A random sample of n X-values comes from a completely specified distribution F(•).

The test statistic proposed by Damico [4] for testing H0 is

A =
n∑

i=1

|Gif(n × F1) − i|,

where Gif(•) is the greatest integer function and F is the cumulative distribution function.
Goodness-of-fit test based on A-statistic has been studied and simulated powers are given by

Damico.[4] In the following section, we extend Damico’s idea and obtain a modified test statistic.

3. Test based on T-statistic

While defining the A-statistic, Damico [4] assumes one observation from the sample to occur in
each of the n intervals under the null hypothesis. In the following, we have modified the A-statistic
by allowing for m intervals of probability mass r/n, where r ≥ 1 and n = m × r. Further, we verify
whether the hypothesized distribution evaluated at the observed data would place r observations
in each interval. To test H0, we suggest the following modified test statistic:

T =
m∑

k=1

|Sk − r × k|,

where | · | is an absolute function. Also,

Sk =
kr∑

i=(k−1)r+1

Gif(m ∗ F(X(i)) + 1), k = 1, 2, 3, . . . , m.

It is clear that for r equal to one, the statistics T and A are identical. The procedure of understanding
the modified test statistic is as follows:

(a) Arrange the given values in ascending order X(1), X(2), . . . , X(n).
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(b) Compute F(X(i)) and Gif(m × F(X(i)) + 1), i = 1, 2, . . . , n.
(c) Compute Sk , k = 1, 2, . . . , m.
(d) Compute the T -statistic.

Large values of T indicate that the sample is not from the hypothesized distribution. Therefore, we
reject the null hypothesis at the significant level α, if T ≥ Cα . The critical point Cα is determined
by the αth quantile of the distribution of the T -statistic by means of Monte Carlo simulations.

In Tables 1 and 2, we present the results of Monte Carlo study conducted at a α-nominal level
with 10,000 replications to assess the empirical critical values of T -statistic for r equal to 2 and 3,
respectively. In each case, the four α levels were 0.20, 0.10, 0.05 and 0.01. A code in R was written
to compute the empirical critical values.

The following example illustrates the procedure of finding the T -statistic for r equal to two.
Suppose we have a random sample comprising the following 10 values: 0.018, 0.026, 0.277,
0.306, 0.426, 0.479, 0.502, 0.551, 0.720 and 0.892. We wish to test the hypothesis that these 10
values were drawn from a uniform distribution over (0, 1). We begin by defining five equal and
non-over-lapping intervals and finding the number of observations in each. Further, we find the
number of moves required to produce the ground state (i.e. two observations per interval).

Interval Frequency First move Second move Third move

(0.0, 0.2) 2 2 2 2
(0.2, 0.4) 2 2 2 2
(0.4, 0.6) 4 3 2 2
(0.6, 0.8) 1 2 3 2
(0.8, 1.0) 1 1 1 2

Table 1. Critical values for T -statistic (r = 2).

Cr. P Cr. P Cr. P Cr. P
n value T∗ [T ≥ T∗] n value T∗ [T ≥ T∗] n value T∗ [T ≥ T∗] n value T∗ [T ≥ T∗]

4 1 0.6288 19 0.0477 56 0.0105 50 73 0.1873
2 0.1227 24 0.0089 30 34 0.1872 88 0.1013
3 0.0000 18 16 0.1784 41 0.1015 99 0.0594

6 3 0.2250 19 0.1000 47 0.0496 131 0.0096
4 0.0769 22 0.0521 61 0.0109 60 95 0.2032
5 0.0179 29 0.0092 32 37 0.1921 115 0.0978
7 0.0000 20 18 0.2061 44 0.1012 134 0.0508

8 5 0.1636 22 0.1070 52 0.0502 174 0.0094
6 0.0830 26 0.0484 67 0.0092 70 119 0.1997
7 0.0367 33 0.0105 34 41 0.2071 147 0.0921
8 0.0137 22 21 0.1951 49 0.1009 169 0.0499

10 6 0.2547 26 0.0929 58 0.0480 218 0.0103
8 0.1006 29 0.0560 75 0.0099 80 147 0.2008
9 0.0559 38 0.0118 36 44 0.1953 179 0.0986

12 0.0095 24 24 0.1971 55 0.0900 209 0.0497
12 8 0.2353 29 0.1029 63 0.0492 268 0.0104

11 0.0794 34 0.0544 81 0.0099 90 175 0.1985
12 0.0514 44 0.0112 38 48 0.1939 211 0.1014
15 0.0130 26 27 0.2004 58 0.0998 246 0.0507

14 11 0.1853 33 0.1024 67 0.0490 289 0.0167
13 0.1067 38 0.0541 87 0.0095 100 202 0.2060
15 0.0511 49 0.0098 40 52 0.1877 249 0.1002
19 0.0130 28 30 0.1985 62 0.0910 292 0.0499

16 13 0.1978 37 0.0981 73 0.0522 381 0.0100
16 0.0998 43 0.0525 95 0.0100
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Hence, the number of moves required to get two observations per interval is 3. The mathematical
method of understanding T -statistic is simple. First find Gif(m × F(X(i)) + 1), i = 1, 2, . . . , 10
and then Sk , k = 1, 2, . . . , 5. So, for our example:

i X(i) F(X(i)) Gif(m × F(X(i)) + 1) k Sk |Sk − r × k|
1 0.018 0.018 Gif(5 × 0.018 + 1) = 1 1 Gif(5 × 0.018 + 1) +

Gif(5 × 0.026 + 1) = 2
|2 − 2 × 1|

= 02 0.026 0.026 Gif(5 × 0.026 + 1) = 1

3 0.277 0.277 Gif(5 × 0.277 + 1) = 2 2 Gif(5 × 0.277 + 1) +
Gif(5 × 0.306 + 1) = 4

|4 − 2 × 2|
= 04 0.306 0.306 Gif(5 × 0.306 + 1) = 2

5 0.426 0.426 Gif(5 × 0.426 + 1) = 3 3 Gif(5 × 0.426 + 1) +
Gif(5 × 0.479 + 1) = 6

|6 − 2 × 3|
= 06 0.479 0.479 Gif(5 × 0.479 + 1) = 3

7 0.502 0.502 Gif(5 × 0.502 + 1) = 3 4 Gif(5 × 0.502 + 1) +
Gif(5 × 0.551 + 1) = 6

|6 − 2 × 4|
= 28 0.551 0.551 Gif(5 × 0.551 + 1) = 3

9 0.720 0.720 Gif(5 × 0.720 + 1) = 4 5 Gif(5 × 0.720 + 1) +
Gif(5 × 0.892 + 1) = 9

|9 − 2 × 5|
= 110 0.892 0.892 Gif(5 × 0.892 + 1) = 5

The computed value of the T -statistic is 0 + 0 + 0 + 2 + 1 = 3. The probability under the null
hypothesis that the T -statistic assumes a value ≥ 3 is 0.7275. This α-level would generally not
be considered significant, and so the null hypothesis would not be rejected.

4. Performance study of the test based on T-statistic

While studying the performance of A-statistic, Damico [4] has used several statistical tests that
first appeared in Stephens.[1] These statistical tests are Kolmogorov–Smirnov (D), Cramér–von
Mises (W2), Kuiper (V), Watson (U2), Anderson–Darling (A2), Q(= ∑

i ln Zi) and chi-square.
We have studied the performance of test based on T -statistic for r equal to 1, 2, 3, 4 and 5. The null
hypothesis is that we have a uniform random number on the interval (0, 1). The seven alternative
distributions which have been considered by Damico [4] for studying power of the test statistic
are as follows:

F : F(x) = 1 − (1 − x)k , 0 ≤ x ≤ 1

for k equal to 1.5 and 2,

G : F(x) =
{

2(k−1)xk , 0 ≤ x ≤ 0.5

1 − 2(k−1)(1 − x)k , 0.5 ≤ x ≤ 1

for k equal to 1.5, 2 and 3,

H : F(x) =
{

(0.5 − x)k , 0 ≤ x ≤ 0.5,

0.5 + 2(k−1)(x − 0.5)k , 0.5 ≤ x ≤ 1

for k equal to 1.5 and 2.

According to Stephens,[1] alternative F gives points closer to zero than expected under the hypoth-
esis of uniformity, whereas G gives points near to 0.5 and H gives two clusters (close to 0 and 1).
The same set of alternatives is used to study the performance of the test based on T -statistic. An
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Table 2. Critical values for T -statistic (r = 3).

Cr. P Cr. P Cr. P
n value T∗ [T ≥ T∗] n value T∗ [T ≥ T∗] n value T∗ [T ≥ T∗]

6 1 0.6914 39 33 0.1980 72 82 0.2009
2 0.2255 40 0.1030 100 0.1000
3 0.0336 47 0.0520 118 0.0504
4 0.0000 61 0.0110 152 0.0100

9 4 0.1560 42 37 0.1907 75 88 0.1991
5 0.0609 45 0.1018 106 0.0998
7 0.0061 53 0.0515 124 0.0492
8 0.0000 68 0.0099 160 0.0102

12 6 0.1719 45 41 0.2004 78 94 0.2012
7 0.0990 51 0.0960 115 0.0988
8 0.0527 58 0.0523 133 0.0493

10 0.0123 77 0.0097 172 0.0102
15 8 0.1936 48 45 0.2020 81 99 0.2028

10 0.0876 55 0.1018 121 0.0993
11 0.0576 65 0.0478 142 0.0489
14 0.0118 83 0.0098 181 0.0101

18 10 0.2205 51 49 0.1992 84 103 0.2050
13 0.0910 60 0.1018 126 0.1011
15 0.0460 71 0.0496 146 0.0492
19 0.0091 92 0.0102 194 0.0099

21 13 0.1979 54 54 0.2002 87 110 0.2000
16 0.0984 66 0.1008 134 0.1011
19 0.0428 78 0.0490 155 0.0501
24 0.0095 99 0.0104 204 0.0098

24 16 0.1890 57 58 0.2080 90 117 0.2000
19 0.1060 71 0.1017 142 0.1006
23 0.0450 82 0.0524 167 0.0494
29 0.0100 107 0.0098 214 0.0101

27 19 0.1990 60 63 0.1979 93 120 0.2015
24 0.0910 76 0.1007 148 0.0989
27 0.0540 89 0.0492 173 0.051
35 0.0100 117 0.0098 220 0.0099

30 22 0.2070 63 68 0.1971 96 128 0.2018
28 0.0920 81 0.1090 156 0.0987
32 0.0510 97 0.0498 181 0.0502
42 0.0100 126 0.0101 232 0.0101

33 26 0.1940 66 73 0.1965 99 134 0.2009
32 0.0930 88 0.1005 163 0.1015
37 0.0500 103 0.0487 190 0.0504
48 0.0090 132 0.0105 244 0.0100

36 29 0.1970 69 78 0.1977
36 0.0950 94 0.1023
41 0.0500 111 0.0497
52 0.0110 145 0.0101

empirical study was conducted for the power estimates of the test for different values of r and
sample sizes. Along with the power estimates, the mean and standard deviation of the T -statistic
were also recorded. Table 3 shows the power estimates of the test based on T -statistic for different
values of r (including r = 1) for F, G and H alternatives, respectively, for the nominal level 10%.
The mean and standard deviation of the T -statistic for different values of r (including r = 1), for
F, G and H alternatives, respectively, are given in Table 4. The entries in Tables 3 and 4 are propor-
tion of 10,000 Monte Carlo samples that resulted in rejection of H0. The sample sizes are selected
so as to cover the cases of r equal to 2, 3, 4 and 5. The performance of Kolmogorov–Smirnov (D),
Cramér–von Mises (W2), Kuiper’s (V), Watson (U2),Anderson–Darling (A2), Q(= ∑

i ln Zi) and
chi-square tests are not included in the tables as we are interested in comparing the performance
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Table 3. Power comparisons for different values of r (α-level 0.10).

r 1 2 3 4 5 r 1 2 3 4 5

n Alternative Fk=1.5 n Alternative Fk=2

12 0.317 0.353 0.332 0.327 – 12 0.664 0.703 0.649 0.656 –
18 0.411 0.429 0.404 – – 18 0.825 0.837 0.812 – –
20 0.447 0.465 – 0.448 0.419 20 0.867 0.882 – 0.861 0.842
24 0.522 0.536 0.500 0.493 – 24 0.925 0.928 0.912 0.908 –
30 0.609 0.608 0.616 – 0.604 30 0.963 0.963 0.969 – 0.961
36 0.681 0.680 0.678 0.675 – 36 0.987 0.987 0.986 0.985 –
40 0.726 0.742 – 0.738 0.727 40 0.993 0.994 – 0.993 0.992
42 0.744 0.744 0.752 – – 42 0.994 0.994 0.995 – –
48 0.804 0.808 0.802 0.803 – 48 0.997 0.997 0.997 0.996 –

n Alternative Gk=1.5 n Alternative Gk=2

12 0.078 0.117 0.090 0.101 – 12 0.134 0.197 0.148 0.190 –
18 0.092 0.114 0.102 – – 18 0.224 0.268 0.225 – –
20 0.109 0.130 – 0.130 0.111 20 0.295 0.333 – 0.316 0.245
24 0.128 0.146 0.120 0.118 – 24 0.389 0.421 0.358 0.343 –
30 0.165 0.164 0.178 – 0.130 30 0.548 0.547 0.561 – 0.435
36 0.203 0.203 0.200 0.198 – 36 0.672 0.670 0.667 0.648 –
40 0.226 0.251 – 0.248 0.230 40 0.745 0.770 – 0.753 0.730
42 0.241 0.254 0.250 – – 42 0.778 0.777 0.781 – –
48 0.291 0.308 0.296 0.292 – 48 0.857 0.866 0.857 0.855 –

n Alternative Gk=3 n Alternative Hk=1.5

12 0.424 0.510 0.341 0.501 – 12 0.159 0.162 0.138 0.149 –
18 0.736 0.776 0.689 – – 18 0.162 0.165 0.141 – –
20 0.837 0.860 – 0.816 0.655 20 0.174 0.176 – 0.149 0.126
24 0.932 0.940 0.900 0.872 – 24 0.188 0.188 0.150 0.135 –
30 0.988 0.988 0.988 – 0.955 30 0.221 0.208 0.199 – 0.140
36 0.997 0.997 0.996 0.996 – 36 0.243 0.240 0.214 0.198 –
40 0.999 0.999 0.999 0.999 – 40 0.267 0.269 – 0.250 0.226
42 0.999 0.999 0.999 0.999 – 42 0.274 0.271 0.265 – –
48 0.999 0.999 0.999 0.999 – 48 0.315 0.319 0.297 0.288 –

n Alternative Hk=2

12 0.237 0.229 0.159 0.157 –
18 0.311 0.289 0.211 – –
20 0.358 0.334 – 0.216 0.155
24 0.437 0.424 0.319 0.258 –
30 0.581 0.535 0.501 – 0.300
36 0.682 0.648 0.609 0.557 –
40 0.751 0.756 – 0.677 0.612
42 0.773 0.761 0.741 – –
48 0.848 0.848 0.826 0.805 –

of the proposed test for different values of r with the test due to Damico.[4] The power of the
T -statistic for r less than three compares very favourably with both the Kolmogorov–Smirnov
(D) statistic and the Cramer–von Mises (W2) statistic for almost all alternatives.

5. Concluding remarks

Although the technique of partitioning the range of the probability distribution is same as that of
the chi-square test, the test due to Damico [4] is superior for small samples. The test proposed
here is modified version of the test due to Damico [4] for more than one observation per interval.
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Table 4. Mean and standard deviation of T -statistic for different values of r.

r 1 2 3 4 5 r 1 2 3 4 5

n Alternative Fk=1.5 n Alternative Fk=2

12 017.26 008.26 005.23 003.67 – 12 024.68 012.00 007.69 005.44 –
(08.07) (04.15) (02.81) (02.11) – (08.78) (04.44) (02.95) (02.22) –

18 036.10 017.65 011.47 – – 18 054.68 026.99 017.67 – –
(15.84) (08.08) (05.42) – – (16.78) (08.43) (05.63) – –

20 043.61 021.71 – 010.47 008.04 20 067.57 033.32 – 016.16 012.61
(18.78) (09.77) – (04.88) (03.94) (20.08) (09.96) – (05.02) (04.03)

24 062.19 030.70 020.14 014.85 – 24 097.24 048.27 031.86 023.56 –
(25.93) (13.12) (08.81) (06.64) – (26.88) (13.48) (08.99) (06.72) –

30 094.64 047.09 031.04 – 018.03 30 150.32 075.27 049.75 – 029.14
(37.40) (18.88) (12.60) – (07.65) (37.87) (19.05) (12.47) – (07.67)

36 134.74 066.97 044.32 032.98 – 36 217.19 108.23 071.88 053.57 –
(50.59) (25.45) (17.02) (12.83) – (49.69) (24.88) (16.59) (12.46) –

40 165.01 082.11 – 040.28 032.25 40 267.23 133.77 – 066.10 052.61
(59.92) (30.54) – (14.92) (12.01) (58.63) (29.12) – (14.56) (11.67)

42 182.29 090.73 060.15 – – 42 294.66 146.99 097.69 – –
(65.45) (32.89) (21.98) – – (63.36) (31.69) (21.15) – –

48 236.35 117.75 078.17 058.35 – 48 385.45 192.40 127.95 095.61 –
(79.17) (39.75) (26.57) (19.99) – (78.63) (39.33) (26.22) (19.64) –

n Alternative Gk=1.5 n Alternative Gk=2

12 013.09 006.23 003.91 002.72 – 12 015.32 007.36 004.62 003.24 –
(04.96) (02.68) (01.88) (01.48) – (04.50) (02.42) (01.77) (01.45) –

18 025.87 012.56 008.13 – – 18 032.14 015.77 010.18 – –
(09.07) (04.75) (03.31) – – (08.35) (04.35) (03.03) – –

20 031.10 015.15 – 007.12 005.46 20 039.17 019.28 – 009.18 006.96
(10.68) (05.57) – (02.97) (02.43) (09.88) (05.13) – (02.78) (02.31)

24 042.31 020.75 013.55 009.92 – 24 054.93 027.19 017.83 013.07 –
(14.03) (07.23) (04.96) (03.84) – (13.00) (06.65) (04.57) (03.53)

30 062.05 030.74 020.22 – 011.54 30 083.44 041.49 027.37 – 015.97
(19.52) (10.10) (06.86) – (04.23) (18.37) (09.23) (06.31) – (4.01)

36 085.77 042.44 027.97 020.71 – 36 118.40 058.92 039.00 028.97 –
(26.03) (13.24) (08.96) (06.83) – (23.88) (12.07) (08.16) (06.22) –

40 103.41 051.26 – 025.12 019.80 40 144.93 072.15 – 035.55 028.12
(30.60) (15.56) – (08.00) (06.45) (28.42) (14.30) – (07.31) (06.00)

42 113.40 056.25 037.17 – – 42 158.90 079.14 052.46 – –
(33.54) (17.02) (11.48) – – (30.62) (15.41) (10.36) – –

48 143.60 071.28 047.23 035.14 – 48 206.00 102.70 068.18 050.86 –
(40.60) (20.55) (13.85) (10.46) – (37.96) (19.12) (12.82) (09.70) –

n Alternative Gk=3 n Alternative Hk=1.5

12 019.63 009.50 005.90 004.58 – 12 016.80 007.46 004.25 002.59 –
(03.88) (02.12) (01.57) (01.47) – (06.45) (03.39) (02.35) (01. 98) –

18 043.01 021.29 013.76 – – 18 027.84 013.09 008.13 – –
(07.11) (03.73) (02.61) – – (11.56) (05.94) (04.06) – –

20 052.81 026.13 – 012.80 009.31 20 033.05 015.65 – 006.87 004.98
(08.33) (04.28) – (02.54) (02.02) (13.43) (06.90) – (03.62) (02.99)

24 075.39 037.42 024.60 017.97 – 24 045.11 021.61 013.78 009.63 –
(10.96) (05.62) (03.86) (03.02) – (17.32) (08.98) (06.03) (04.63) –

30 116.74 058.02 038.39 – 022.14 30 065.76 032.05 020.62 – 011.26
(15.41) (07.90) (05.39) – (03.38) (24.14) (12.36) (08.25) – (05.12)

36 166.60 083.04 055.02 041.15 – 36 089.93 043.48 028.20 020.48 –
(20.39) (10.29) (06.96) (05.42) – (31.18) (15.84) (10.84) (08.04) –

40 205.42 102.44 – 050.63 040.40 40 108.82 053.23 – 025.31 019.63
(24.03) (12.11) – (06.21) (05.05) (36.37) (18.35) – (09.33) (07.54)

42 226.40 112.90 074.94 – – 42 117.00 057.58 037.67 – –
(25.69) (12.94) (08.73) – – (38.65) (19.52) (13.34) – –

48 293.80 146.70 097.50 072.75 – 48 148.70 073.02 047.78 034.99 –
(31.43) (15.82) (10.63) (08.05) – (47.43) (23.85) (15.97) (12.04) –

(Continued)
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Table 4. Continued.

r 1 2 3 4 5

n Alternative Hk=2

12 016.83 007.49 004.24 002.59 –
(06.41) (03.40) (02.33) (01.97) –

18 034.32 016.12 009.86 – –
(11.18) (05.86) (03.93) – –

20 041.45 019.54 – 008.29 005.94
(12.71) (06.51) – (03.43) (02.79)

24 058.24 027.76 017.52 012.25 –
(16.72) (08.33) (05.66) (04.37) –

30 087.12 042.15 027.11 – 014.64
(22.34) (11.33) (07.70) – (04.73)

36 122.22 059.63 038.56 028.00 –
(28.93) (14.55) (09.76) (07.44) –

40 148.49 072.68 – 034.45 026.61
(32.74) (16.42) – (08.26) (06.67)

42 162.19 079.82 052.08 – –
(35.92) (17.79) (12.01) – –

48 209.03 103.43 067.73 049.42 –
(43.76) (21.89) (14.51) (10.90) –

Note: Value in the bracket is the standard deviation of T -statistic.

The modification reduces computational work as compared with test proposed by Damico,[4]
as the number of observation per interval increases without further loss of power. While consider-
ing the power performance of the test for different values of r, we observe that the test performs
better for two observations per interval as compared with one observation per interval for all Fk ,
Gk and Hk alternatives except for an alternative Hk with k = 2 and sample sizes considered for the
study. The estimates of power decreases for r equal to three and above for almost all alternatives.

The test statistic is designed as a general technique for testing the goodness-of-fit of completely
specified distribution. One can study the performance of the test even if parameters are to be
estimated for a particular probability distribution. If the sample size is a prime number then
further modification of the proposed test could be a topic of future research.

Acknowledgements

The authors are grateful to the editor and the expert referee for making constructive and valuable comments that have
significantly improved the contents of this article.

References

[1] Stephens MA. EDF statistics for goodness-of-fit and some comparisons. J Am Stat Assoc. 1974;69(347):
730–737.

[2] Durbin J. Distribution theory for tests based on the sample distribution function. Philadelphia: SIAM; 1973.
[3] D’Agostino RB, Stephens MA. Goodness-of-fit techniques. New York: Marcel Dekker inc; 1986.
[4] Damico J. A new one-sample test for goodness-of-fit. Commun Stat – Theory Methods. 2004;33:181–193.

D
ow

nl
oa

de
d 

by
 [O

nd
ok

uz
 M

ay
is

 U
ni

ve
rs

ite
si

ne
] a

t 0
4:

39
 1

3 
N

ov
em

be
r 2

01
4 



Scanned by CamScanner



Production, v. 25, n. 4, p. 739-749, out./dez. 2015

http://dx.doi.org/10.1590/0103-6513.113112

 
Received: Dec. 4, 2012; Accepted: Apr. 21, 2014 

Steady-state behavior of nonparametric control 
charts using sign statistic

Shashikant Kuber Khilarea*, Digambar Tukaram Shirkeb

a*Raobahadur Narayanrao Borawake College, Shrirampur, India, shashi.khilare@gmail.com 
bShivaji University, Kolhapur, India

Abstract

If process is running for a long period in an in-control condition, it will reach in a steady-state condition. In order 
to study the long term properties of a control chart, it is appropriate to investigate the steady-state average time to 
signal. In this article, we discussed runs rules representation of a nonparametric synthetic control chart using sign 
statistic for detecting shifts in location parameter. We compared zero-state average time to signal with steady-state 
average time to signal of the synthetic control chart for symmetric and asymmetric distributions. We also present 
the m-of-m control chart using sign statistic. For comparison study, we computed average time to signal of the 
m-of-m control chart, the sign chart (1-of-1 chart) and the synthetic control chart for normal, Cauchy, double 
exponential and gamma distributions. Steady-state and zero-state performance of the m-of-m control chart with 
m = 2, 3 compared with the sign chart (1-of-1 chart) and synthetic control chart. The zero-state and steady-state 
average time to signal of the synthetic and the m-of-m control charts computed using Markov chain approach.
Keywords
Steady-state. Markov chain. Synthetic. Nonparametric. Average time to signal.

1. Introduction

In a process control environment with variables 
data, it is assumed that the process output follow 
the normal distribution. The statistical properties 
of commonly employed control charts such as the 
Shewhart X chart, the cumulative sum control chart 
and the exponentially weighted moving average control 
chart are the exact only if assumption of normality 
is satisfied. If the underlying process distribution is 
non-normal, performance of these charts are not 
up to the mark. Such considerations provide reasons 
for the development and applications of control 
charts that are not specifically designed under the 
assumption of normality or any other parametric 
distribution. When the distribution of process output 
is non-normal, distribution-free or nonparametric 
control charts can be useful.

Nonparametric control charts are used for detecting 
the changes in the process median (or mean) or changes 
in the process variability. Most of the control charts 
are based on the sample means when observations 

are taken sequentially under the normality condition. 
If the distribution of observations is non-normal then 
the central limit theorem is usually used to justify 
the assumption that the distribution of sample mean 
is approximately normal. The nonparametric control 
charts used for monitoring the process median (or 
mean) based on the signs computed within samples 
and used in place of sample means in the Shewhart 
chart. The chart is labelled to be the nonparametric 
chart if in-control average time to signal (ATS) does 
not depend on the underlying process distribution. 
In case of charts based on signs, ATS will be same 
for all distributions for which median equals to 
the target value. In nonparametric control charts 
the assumption of normality is not necessary for 
calculating the control limits. Another advantage 
is that the nonparametric control charts are usually 
more efficient than the charts based on X when the 
distribution of the observations is heavy tailed, that is 
when observations in the tails of the distribution have 
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a higher probability than for normal distribution. In 
nonparametric control charts variance of the process 
need not to be known or estimated in order to apply 
the control chart. In fact, these control charts for 
controlling median are not affected by changes in the 
variance as long as location parameter is constant. 
The nonparametric control charts may be particularly 
useful when a process is just start up. It is desirable 
to apply control charts before there is an enough 
data to get a reasonable estimate of variance and/
or assess the normality of the process.

In quality control applications McGilchrist 
& Woodyer (1975) proposed a distribution-free 
cumulative sum technique for monitoring rainfall 
amounts. Bakir (2006) developed distribution-free 
quality control charts based on signed-rank-like 
statistic. Bakir (2004) proposed a distribution-free 
Shewhart quality control chart based on signed-
ranks. Bakir & Reynolds Junior (1979) studied a 
nonparametric procedure for process control based on 
within-group ranking. Amin & Searcy (1991) studied 
the behavior of the EWMA control chart using the 
Wilcoxon signed-rank statistic. Amin et al. (1995) 
developed the nonparametric quality control charts 
based on the sign statistic. Chakraborti & Eryilmaz 
(2007) proposed control charts based on signed-
rank statistic. Chakraborti & Van de Wiel (2008) 
proposed Mann-Whiteny statistic based control 
chart. Human et al. (2010) studied nonparametric 
Shewhart-type sign control charts based on runs. Ho 
& Costa (2011) proposed monitoring a wandering 
mean with an np chart and this chart is also work with 
sign statistics. Crosier (1986) suggested a technique 
for obtaining steady-state ARL of CUSUM chart 
using the Markov chain approach. Saccucci & Lucas 
(1990) given a FORTRAN computer program for 
the computation of ARL of EWMA and combined 
Shewhart-EWMA control schemes. The program 
calculates zero-state and steady-state ARL using the 
Markov chain approach. Champ (1992) computed 
steady-state ARL of Shewhart control chart with 
supplementary runs rules. Davis & Woodall (2002) 
studied the steady-state properties of synthetic control 
chart to monitor shifts in process mean. Lim & Cho 
(2009) developed a control charts with m-of-m runs 
rules to study the economical-statistical properties 
of control chart using steady-state ARL.

The rest of article is organized as follows:
Section 2 gives the Shewhart charts using sign 

statistic. Section 3 gives conforming run length 
control chart. In Section 4, operations and design 
procedure of synthetic control chart using sign statistic 
are given and also in this we explained the Markov 
chain model and steady-state ATS of synthetic control 
chart. In Section 5, we present m-of-m runs rules 

schemes using sign statistic. In this Section, we also 
study steady-state and zero-state ATS performance 
of the m-of-m chart for process median. Section 6 
gives conclusions.

The Shewhart control chart using sign statistic is 
explained in brief in following section.

2. Shewhart chart using sign statistic

Let X be a continuous random variable with 
cumulative distribution function (c.d.f.) F(.). Let 
m and m0 be the median and target value of median 
respectively. A sample of n observations is taken 
at regular time interval from the process. Let 
Xi = (Xi1,Xi2,...,Xin) be the sample taken at the ith time 
point. At any time t, each observation from the sample 
is compared with target value µ0 and the number of 
observations above and below µ0 is recorded.

Define,

0

0 0

0

1

( ) 0

1

ij

ij ij

ij

if X

sign X if X

if X

m

m m
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− = =
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where Xij is the jth observation in the ith sample. Since 
the distribution of observations is assumed to be 
continuous, pr(Xij – m0 = 0) = 0. In practice occasional 
zero may occur which can be signed alternatively 
+1 and -1.

Let

0
1

( ) 1,2,3,...
n

i ij
j

SN sign X im
=

= − =

∑ 	 (2)

where SNi is the difference between number of 
observations above µ0 and number of observations below 
µ0 in the ith sample. A random variable Ti = SNi + n/2 
gives the number of positive signs in the sample of size 
n and has binomial distribution with parameters n and p, 
where p = P(Xij > m0). As long as median remains at m0, we 
have p = p0 = 1/2. That is, P(Xij > m0) = P(Xij < m0) = 1/2 
and E[SNi] = 0. The chart signals that shift has occurred 
if |SNi| ≥ c, where c >0 is a specified constant (upper 
control limit = c and lower control limit = -c). The chart 
signals that shift has occurred in the positive direction if  
SNi ≥ c and chart signals that the shift has occurred in 
the negative direction if SNi < –c.

The largest possible in-control average run length 
(ARL) values of symmetric one-sided and two-sided 
control chart are 2n and 2n-1 respectively, when p = 1/2 
and SNi = n. Unless ‘n’ is of a moderate size, it may 
be difficult to achieve even approximately a specified 
in-control ARL (0).

In following section we discuss conforming run 
length control chart in detail.
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nonconforming shift and be equal to the product 
of mCRL and ARLCRL.

1 1
1 (1 )

CRL CRL CRL

CRL L

ANI ARL

ANI
p p

m= ×

= ×
− −

	 (7)

For CRL chart, if a CRL value falls between lower 
and upper control limits of the CRL chart, then the 
process is considered to be under control. However, 
if CRL value is less than the lower control limit of 
CRL chart, then upward process shift is signaled 
and if CRL value greater than upper control limit of 
CRL chart, then downward process shift is signaled. 
The presentation of CRL chart usually based on 
the 100% inspection, because every unit has to be 
accounted for and classified as either conforming 
unit or nonconforming one.

In following section we explain synthetic control 
chart using sign statistic.

4. Synthetic control chart using sign 
statistic

In the literature, Wu & Spedding (2000) studied 
the synthetic control chart for detecting small shifts 
in the process mean. Wu et al. (2001) proposed the 
synthetic control chart for fraction nonconforming 
and reported that the synthetic control chart has 
higher power of detecting out-of-control signal. Wu 
& Spedding (2001) developed the synthetic control 
charts for attributes. Khilare & Shirke (2010) proposed 
a nonparametric synthetic control chart using sign 
statistic and it performs significantly better than 
the Shewhart type X and sign control charts. The 
proposed nonparametric synthetic control chart 
is a combination of the nonparametric sign chart 
and the CRL chart. Basically, the operations of the 
nonparametric synthetic control chart are similar to 
that of the synthetic control chart for process mean 
proposed by Wu & Spedding (2000), except that the 

3. The conforming run length control 
chart

The conforming run length (CRL) chart is proposed 
by Bourke (1991). The Conforming run length is the 
number of inspected units between two consecutive 
nonconforming units including ending nonconforming 
unit. In Figure 1 below, the white and black circles 
denote the conforming and nonconforming units 
respectively. Suppose process start at t=0, then the 
three samples of CRL are displayed. CRL1=4, CRL2=5, 
CRL3=3. The idea behind the CRL chart is that the 
conforming run length will change when the fraction 
nonconforming in a process p changes. Namely, the 
CRL is shortened as p increases and is lengthened as 
p decreases (Figure 1).

The random variable CRL follows a geometric 
distribution. The probability mass function of CRL is

( ) (1 ) , 1,2,3,...CRLP CRL p p CRL= − = 	 (3)

The cumulative probability function and mean 
value of CRL are respectively

( ) 1 (1 )
1

CRL

CRL

F CRL p

p
m

= − −

=

	 (4)

If CRL is less than lower control limit (L) of CRL 
chart, then an upward process shift is signaled. 
Therefore, for detection of an upward process shift 
(increase in p), a single lower control limit L of 
CRL chart is sufficient and L can be derived from 
Equation 4, we have,

( ) 1 (1 )
ln(1 )
ln(1 )0

L
CRL

CRL

F L p

L
p

a
a

= = − −

−
=

− 	 (5)

where aCRL is the type-I error probability of the CRL 
chart and p0 is the in-control fraction nonconforming. 
L must be rounded to an integer. If a sample CRL 
is a less than or equal to the L, then the fraction 
nonconforming p has increased and out-of-control 
status will be signaled.

For the CRL chart, ARLCRL, is the average number 
of CRL samples required to detect out-of-control 
fraction nonconforming p is given by

1

1
1 (1 )

CRL
CRL

CRL L

ARL

ARL
p

a
=

=
− − 	 (6)

Finally, let ANICRL be the average number of 
the inspected units required to signal a fraction 

Figure 1. Conforming Run Length.
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( ) ( )( )
1(0)

0 [1 1 0 ]
LARLs

P P
=

− − 	 (9)

and P(d) = Pr(SNi > c/m = m0 + d).
Here, P(d) is the probability that the sample is 

nonconforming when the permanent upward step 
shift of d units occurs. When there is no shift, d is 
equal to zero. We note that in Equation 7, “p” is the 
probability that a unit is nonconforming.

Suppose the desired in-control ARL is ARL(0) 
and the subgroup sample size is n. We compute the 
ARLs(0) values using Equation 9 for c = 1, 2, …,n 
and L = 1, 2, … . Now choose that pair of (L, c) for 
which the ARLs(0) is close to ARL(0). We may note 
that for a fixed value of c, ARLs(0) is a decreasing 
function of L, while for a fixed value of L, ARLs(0) is 
a non-decreasing function of c.

Table 1 gives the values of ARLs(0) for n = 10. As 
an example, suppose we wish to set ARL(0) = 1024. 
Then, from Table 1, we see that L = 9 and 8 = 10 
is the required pair as the ARLs(0) corresponding to 
these values is 1005. Due to the discrete nature of the 
charting statistic SNi, for a fixed value of L, we get 
the same value of ARLs(0) for two successive values 
of c (except for c = 1).

The complete design procedure for the synthetic 
chart can be outlined as below:

1	Specify subsample size n and ARL(0).

2	 Initialize L as 1 and 1 ≤ c ≤ n.

3	Calculate ARLs(0) from the current values of L and 
c using Equation 9.

4	 If ARLs(0) is not close to the specified in-control 
ARL, increase L by one and go to step 3.

5	 If ARLs(0) is close to the specified in-control ARL, 
take current values of L and c as final values in the 
synthetic control chart.

In following section we discuss runs rule 
representation of the synthetic control chart.

subgroup mean is replaced by the sign statistic SNi. 
However, we do not follow the same design procedure 
due to Wu & Spedding (2000) in order to ensure that 
the synthetic control chart is nonparametric.

The operations of the synthetic chart using sign 
statistic are outlined below.

1	Determine sign chart based upper control limit ‘c’ 
( > 0), sample size n and CRL based lower control 
limit (L).

2	 Take a sample of ‘n’ units for inspection and calculate 
SNi.

3	 If SNi < c, a sample is a conforming one and control 
flow goes back to step (2). Otherwise, a sample is a 
nonconforming one and control flow continues to 
the next step.

4	Check number of samples between the current and 
previous nonconforming samples. This number is 
taken as CRL value for synthetic chart.

5	 If CRL > L, then the process is said to be under 
control and control flow goes back to the step (2). 
Otherwise the process is taken as out-of-control 
and control flow continues to the next step.

6	Take action to locate and remove the assignable 
causes. Then go back to step (2).

4.1. Design of synthetic control chart

The synthetic chart has two parameters namely, L 
and c. For given in-control ARL and subgroup sample 
size n, the parameters L and c are obtained as follows:

Let ARLs(m) be the out-of-control ARL of the 
synthetic control chart and it is given by

( ) ( )( )
1( )

[1 1 ]
S LARL

P P
m

d d
=

− −
	 (8)

Let ARLs(m0) be in-control ARL of the synthetic 
control chart. If m0 = 0, then in-control ARL is

Table 1. In control ARL values for upward sided synthetic control chart for various values of c and L when n = 10.

c↓
L

1 2 3 4 5 6 7 8 9 10

1 2.58 1.87 1.70 1.64 1.62 1.61 1.61 1.61 1.61 1.61

2 7.04 4.34 3.50 3.12 2.93 2.82 2.75 2.71 2.69 2.68

3 7.04 4.34 3.50 3.12 2.93 2.82 2.75 2.71 2.69 2.68

4 33.85 18.52 13.47 10.98 9.53 8.59 7.94 7.47 7.12 6.86

5 33.85 18.52 13.47 10.98 9.53 8.59 7.94 7.47 7.12 6.86

6 334.37 171.88 117.78 90.77 74.60 63.85 56.19 50.47 46.04 42.51

7 334.37 171.88 117.78 90.77 74.60 63.85 56.19 50.47 46.04 42.51

8 8665.92 4356.36 2919.89 2201.70 1770.82 1483.60 1278.46 1124.63 1005.00 909.31

9 8665.92 4356.36 2919.89 2201.70 1770.82 1483.60 1278.46 1124.63 1005.00 909.31

10 1048576 524544 349866 262528 210125 175189 150236 131520 116964 105319
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Consider the case where L = 4. This chart is an 
identical to a chart which signals if two of the five 
consecutive sign statistics fall out-sides of the control 
limits, assuming that a sign statistic at time zero is 
out-side of control limits.

Let
A= Pr[next observed sign statistic will be within 

control limit/ limits]
The probability of next observed sign statistic will 

be within control limits for the change in location 
parameter is

A = Pr[–c < SNi < c],

and for shift in positive direction

A = Pr[SNi ≤ c],

where, ‘c’ is a specified constant (control limit of sign 
control chart) and B= 1- A.

As Davis & Woodall (2002) suggested that the 
following transition matrix would govern the Markov 
chain for the synthetic control chart.
•	 The row contains ‘A’ in first column and ‘B’ in second 

column.

•	 The last row contains ‘A’ in first column.

•	 In all other rows, the entry above the diagonal is ‘A’.

•	 In all other locations, the entry is zero.

Therefore, for example, the transition probability 
matrix for the synthetic control chart using sign 
statistic when L= 4 is (Table 2).

With this Markov chain model, the ARL for the 
zero-state case is

ARL = s’(I – R)–11	 (10)

where, R is an L+1 by L+1 matrix of probabilities 
obtained by deleting last row and last column from 
the above matrix, 1 is column vector of appropriate 
order having all elements unity and I is an (L + 1) 
by (L + 1) identity matrix, s is the order (L + 1) of 
initial probabilities, 1 for initial state and 0 for the 

4.2. Runs rule representation of the 
synthetic control chart

Davis & Woodall (2002) discussed the runs rule 
representation of synthetic control chart to detect shifts 
in the process mean. Here, we discuss the runs rule 
representation of a nonparametric synthetic control 
chart for process median using sign statistic. Suppose 
that each observed sign statistic SNi is classified as 
either ‘0’ (conforming) or 1 (nonconforming). If 
value of sign statistic falls within control limit/limits, 
the sample is conforming and if it falls out-side the 
control limit/limits then sample is nonconforming. 
A sequence of SNi can be represented by a string 
of zeros and ones. For example 10001000 would 
indicate that in a sequence of eight samples, the 
first and fifth samples are nonconforming samples.

For simplicity, suppose that L = 3. This means that 
any sequence of SNi with pattern 1001, 101 or 11 
will generate an out-of-control signal for synthetic 
chart. Note that this sequence also generate signal 
under the following runs rule:

If two successive sign statistics (SNi values) fall 
out-side of the control limits out of L + 1 sign 
statistics then the two-of-L+1 chart signals an 
out-of-control status.

On initial pattern of 001, the synthetic control 
chart will signal using L=3, while two of L + 1 chart 
would not. The performance of control charts can be 
made identical over all the samples using head start 
feature in the runs rule representation; that is , it is 
assumed that the there is an observation at time zero 
and that falls out-side of the control limits. With this 
head start, both charts will signal on initial patterns 
1, 01, and 001 but not on the initial pattern 0001.
Thus, performance of the charts is now identical for 
all possible sequences of SNi. If CRL value is less than 
or equal to L, then declare that the process is out-of-
control. Thus, the synthetic control chart using sign 
statistic is identical to the above runs rule with the 
head start a sign statistic at time zero is observed 
and is nonconforming.

In the following subsection, we present the 
Markov chain model and ARL results of synthetic 
control chart.

4.3. The Markov chain model and steady-
state ATS of synthetic control chart

The formula for ARL can be obtained by using the 
transition probability matrix (t. p. m.) of an absorbing 
Markov chain based on the states depending on a 
lower control limit of the CRL chart.

Table 2. The transition probability matrix for the synthetic 
control chart using sign statistic when L= 4 is:

States at time t+1

↓States→ 0000 0001 0010 0100 1000 Signal

States 
at 

time t

0000 A B 0 0 0 0

0001 0 0 A 0 0 B

0010 0 0 0 A 0 B

0100 0 0 0 0 A B

1000 A 0 0 0 0 B

Signal 0 0 0 0 0 1
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zero-state ATS with steady-state ATS of the synthetic 
control chart. For performance study of the synthetic 
chart, we consider symmetric distributions namely 
normal, Cauchy, double exponential distributions and 
asymmetric gamma distribution. ATS is computed for 
double exponential distribution, which is symmetric 
distribution with heavy tails. Cauchy distribution 
is used because it is symmetric distribution with 
extremely heavy tails. ATS values computed for 
each considered distributions with mean zero and 
variance one. In Bakir (2004) the scale parameter is 

set to be 1
2

 for double exponential distribution to 

achieve variance equal to one. To compute SSATS of 
Cauchy distribution, scale parameter set to be one and 
shifts in location parameter. For gamma distribution 
parameters are set to be 4 (shape parameter ) and 
1/2 ( scale parameter ) to achieve mean zero and 
variance one. Control limits for each control charts 
are found to be such that the in-control ATS equal 
to the desired ATS.

Table 3 gives the zero-state and steady-state ATS 
profile of the synthetic control chart to detect upward 
shifts in the process median. For the synthetic control 
chart sample sizes of n = 10 is used. In-control ATS 
for n =10 is 1024.

The following findings are observed from Table 3.

•	 Steady-state ATS performance of the synthetic 
control chart is poor as compare to zero-state for 
all distributions under study.

•	 Steady-state performance of the synthetic control 
chart for double exponential distribution is better 
than the other distributions under study.

Following section gives the m-of-m control chart 
using sign statistic for monitoring location parameter.

5. The m-of-m control chart

Consider a control chart with upper control limit 
(UCL= k) and lower control limit (LCL= -k). Let us 
consider three regions for the control chart:

•	 The region between upper control limit and lower 
limit (region 1).

•	 The region above upper control limit (region 2).

•	 The region below lower control limit (region 3).

The probability of a single point falls in the 
regions 1, 2, 3 are denoted by pc, pu, pl respectively 
and these probabilities can be computed as follows:

[ ]Pr ,

Pr ,
2 2

i

i

pc k SN k

k n k nT

= − < <

− + + = < <  

rest of the cases, s’= [0, 1, 0,…, 0, 0]. Here, ‘01’ 
corresponds to the initial state. For general values 
of L, the matrix R (the matrix of probability above 
with the last row and last column removed) will be 
an (L + 1) by (L + 1) matrix.

Since the Markov chain representation of the 
synthetic control chart using sign statistic has more 
than one absorbing states. The future behavior 
of the chart can be studied by using steady-state 
average time to signal (SSARL). If the process is 
running smoothly for long time, it reaches in the 
steady-state. The SSARL measures average number 
of samples required to signal when the effect of head 
start has disappeared.

Let R0 be the square matrix obtained from R 
after dividing each element by the corresponding 
row sum. Let S be a row vector corresponding to the 
stationary probability distribution of R0. The SSARL 
of the synthetic chart using sign statistic is given by

SSARL = S’(I –R0)
–11	 (11)

The S can be obtained by solving following 
equation

S = R’0S,

subject to

1
1

n

i
i

S
=

=∑

Finally steady-state average time to signal (SSATS) 
is given by,

( )1
2

SSATS SSARL h = −   	 (12)

Where, sampling interval (h) is adjusted according 
to the desired rate of false alarms rate. The SSATS 
measures the average time required to signal a process 
shift when the effect of head start has disappeared.

We provide steady-state performance of the 
synthetic control chart in the following section.

4.4. Steady-state performance of the 
synthetic control chart

The objective of control charts is to quickly detect 
changes in the parameters of the process distribution 
that are produced by special causes. The ability of 
a control chart to detect process changes can be 
measured by the ATS. Thus, the ATS can provide a 
measure of the time required to detect a special cause 
when it is present at the time that monitoring starts. 
Any signal, given when the process is still in control, 
is a false alarm. In comparison study, we compare 
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only if starting from state one, the probability of 
returning to state one after some finite length of 
time is less than one. Then the 2m × 2m transition 
probability matrix can be partitioned as

( )
0 1
Q I Q J

P
− 

=  
 

where, Q is the (2m – 1) × (2m – 1) transition 
probability matrix for the transient sates, I is the 
(2m – 1) × (2m – 1) identity matrix and J is the column 
vector of one of an order (2m – 1). The expected 
value of the run length random variable T is given by

[ ] ( ) 1E T e I Q J−= − 	 (13)

where, e1×2m–1 = (1,0,0,...,0) is the initial distribution. 
Let Mj be the expected value of the waiting time 
from state j until the first occurrence of D. Thus, 
if process is initially in-control, M1 is the ARL. Let 
M = (M1,M2,...,M2m–1) be the vector of average run 
lengths. By taking expectations conditional upon the 
result of the first subgroup these expected values can 
be found by solving the following linear system of 
equations corresponding to (I – Q)J = 1, where 1 is 
the column vector of one’s.

1 1 2 3

2 1 3 4

3 1 2 5

4 1 3 6

5 1 2 7

2 4 1 3 2 2

2 3 1 2 2 1

2 2 1
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1 . . . ,

.

.

.
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1 .

m m

m m

m
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−

= + + +
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= + + +
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i

i
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pu SN k

pl SN k

= −

= ≥
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The m-of-m sign chart signals an out-of-control 
status when a sign statistic falls out-side of the control 
limits or m-consecutive sign statistics falls beyond 
the control limits. Suppose {mm} denotes the event 
when two successive sign statistics fall in region m. 
The control chart signals an out-of-control status 

when an event 222...2,333...3
m times m times

D
− −

  =  
  
 

 occurs. To design 

this control chart we must find appropriate control 
limits to keep in-control ATS at the desired level.

Now we define states of the Markov chain as 
follows:

State 1: One point fall between both control 
limits, {1}.

State 2: One point falls above upper control 
limit, {2}.

State 3: One point falls below lower control 
limit, {3}.

State 4: Two consecutive points fall above upper 
control limit, {22}.

State 5: Two consecutive points fall below lower 
control limit, {33}.

State 6: Three consecutive points fall above upper 
control limit, {222}.

State 7: Three consecutive pints fall below lower 
control limit, {333} and so on.

Finally,
State 2m: Out-of-control (absorbing) state, with 

associated pattern given by the set D.
The Markov chain representation of chart consist 

of 2m states with the first (2m – 1) of them being 
transient. A state is said to be transient state if and 

Table 3. Zero-state and steady-state ATS profile of the synthetic chart to detect upward shifts in process median (n=10, c = 9, 
L = 9 and ATS(0) = 1024).

(m – m0)
Normal Distribution Cauchy Distribution Laplace Distribution Gamma Distribution

0SATS SSATS 0SATS SSATS 0SATS SSATS 0SATS SSATS

0 1024.59 1024.63 1024.59 1024.63 1024.59 1024.63 1024.01 1024.06

0.1 305.76 321.91 386.88 402.54 148.50 163.01 294.28 310.43

0.2 104.90 117.83 161.35 176.20 36.80 44.65 101.63 114.40

0.3 41.40 49.79 74.79 86.04 13.45 17.51 41.48 49.87

0.4 18.75 23.91 38.52 46.59 6.52 8.70 19.67 25.00

0.5 9.69 12.81 21.93 27.66 3.86 5.07 10.65 14.03

0.6 5.64 7.52 13.67 17.78 2.61 3.30 6.47 8.63

0.7 3.64 4.76 9.22 12.21 1.94 2.33 4.31 5.70

0.8 2.55 3.21 6.65 8.87 1.52 1.74 3.10 4.00

0.9 1.90 2.28 5.06 6.74 1.24 1.37 2.36 2.94

1 1.48 1.69 4.04 5.32 1.05 1.12 1.88 2.25

Since,
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By solving the above linear system of equations, 
the ARL M1 for a chart with m-of-m runs rule (m > 1) 
is given by,

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 1

1 1 . 1 1 1 1

m m

m m m m

pu pl
M

pu pl pu pl pu pl pc pu pl− −

− −
=

− − − − − − − −

The 1-of-1 chart signals an out-of-control status 
if a sign statistic falls either above upper control 
limit or below a lower control limit. The 2-of-2 chart 
signals an out-of-control status if two consecutive 
sign statistics fall either above an upper control limit 
or below lower control limit. In other words, if two 
successive sign statistics fall in the region 2 or region 
3, the 2-of-2 chart signals an out-of-control status. 
The 3-of-3 chart signals an out-of-control status if 
three consecutive sign statistics fall either above upper 
control limit or below lower control limit.

Following subsection gives steady-state average 
time to signal of the m-of-m control chart.

5.1. Steady-state average time to signal

If process is running for a long period in an 
in-control condition, it will reach in a steady-state 
condition. In order to study the long term properties 
of a control chart, it is appropriate to investigate the 
steady-state average time to signal.

Let Q0 be a square matrix obtained from Q by 
imposing the condition that no signal occurs. Let 
pT = [p1,p2,...,p2m–1] be the vector of steady-state 
probabilities for the in-control transient states. The 
steady-state probabilities can be obtained by solving 
the following equations: pTQ0 = pT and pT12m–1 = 1.

Under the in-control situation p = p0, let p1 = pc 
and u = pc = pl.

The SSARL can be obtained by

SSARL = pT ARL

and SSATS computed using Equation 12.
Steady-state performance of the m-of-m control 

chart is given in following subsection.

5.2. Steady-state performance study of the 
m-of-m control chart

For efficiency comparisons, we compare the 
proposed m-of-m chart with the synthetic, Shewhart 
type X and sign control charts in terms of their 
out-of-control steady-state ATS and zero state ATS. 
The results are shown in Tables 4-11 for subgroup 
of size 11 under normal, double exponential, Cauchy 
and gamma distributions.

Following are the findings from Tables 4 to 11:

Table 4. SSATS of the m-of-m and synthetic control charts for 
normal distribution (n=11 and SSATS(0) =1024).

(m – m0)
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.01 1024.15 1024.00 1024.11

0.25 278.48 88.47 73.12 173.04

0.5 57.40 16.05 14.53 21.52

0.75 16.40 5.38 6.05 5.22

1 6.19 2.81 4.01 2.00

1.25 2.92 2.00 3.43 1.03

1.5 1.64 1.73 3.28 0.67

1.75 1.07 1.64 3.25 0.53

2 0.79 1.62 3.25 0.48

Table 5. Steady-state ATS of the m-of-m and synthetic control 
charts for Cauchy distribution. (n=11 and SSATS(0)=1024).

(m – m0)
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.01 1024.15 1024.00 1024.11

0.25 402.90 140.07 117.07 290.00

0.5 118.47 33.63 28.43 54.00

0.75 46.41 13.10 12.21 16.66

1 23.19 7.09 7.43 7.56

1.25 13.80 4.72 5.53 4.37

1.5 9.28 3.58 4.62 2.94

1.75 6.80 2.96 4.13 2.18

2 5.29 2.58 3.84 1.73

Table 6. Steady-state ATS of the m-of-m and synthetic 
control charts for double exponential distribution. (n=11 and 
SSATS(0)=1024).

(m – m0)
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.01 1024.15 1024.00 1024.11

0.25 115.84 32.83 27.80 52.42

0.5 22.02 6.79 7.19 7.15

0.75 7.60 3.16 4.29 2.42

1 3.66 2.18 3.55 1.25

1.25 2.17 1.83 3.34 0.82

1.5 1.47 1.70 3.27 0.63

1.75 1.11 1.64 3.25 0.54

2 0.89 1.63 3.25 0.49

Table 7. Steady-state ATS of the m-of-m and synthetic control 
charts for gamma distribution. (n=11 and SSATS(0)=1024).

(m – m0)
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.00 1024.03 1024.01 1024.00

0.25 275.40 87.15 72.03 170.04

0.5 63.25 17.52 15.69 24.01

0.75 20.98 6.41 6.88 6.61

1 9.23 3.45 4.51 2.77

1.25 5.02 2.39 3.70 1.50

1.5 3.21 1.95 3.40 0.97

1.75 2.31 1.76 3.30 0.72

2 1.82 1.67 3.26 0.59
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Table 8. Zero-state ATS of the Shewhart type X, m-of-m and 
synthetic control charts for normal distribution (n=11 and 
SSATS(0)=1024).

(m – m0) X chart
1-of-1 
chart

2-of-2 
chart 

3-of-3 
chart

Synthetic 
chart

0 1024.02 1024.01 1024.22 1024.41 1024.13

0.25 146.39 278.48 88.66 73.60 160.28

0.5 19.26 57.40 16.15 14.81 17.11

0.75 4.29 16.40 5.43 6.25 3.91

1 1.47 6.19 2.85 4.17 1.62

1.25 0.75 2.92 2.03 3.58 0.94

1.5 0.55 1.64 1.76 3.43 0.66

1.75 0.51 1.07 1.67 3.40 0.55

2 0.50 0.79 1.65 3.40 0.50

Table 9. Zero-state ATS of the Shewhart type X, m-of-m and 
synthetic control charts for Cauchy distribution (n=11 and 
SSATS(0)=1024).

(m – m0) X chart
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.05 1024.01 1024.03 1024.41 1024.13

0.25 1024.04 402.90 140.27 117.61 276.18

0.5 1024.04 118.47 33.76 28.78 46.16

0.75 1024.03 46.41 13.19 12.46 13.00

1 1024.01 23.19 7.15 7.64 5.67

1.25 1023.99 13.80 4.78 5.71 3.29

1.5 1023.97 9.28 3.63 4.79 2.27

1.75 1023.94 6.80 3.00 4.29 1.75

2 1023.90 5.29 2.62 4.00 1.44

Table 10. Zero-state ATS of the Shewhart type X, m-of-m 
and synthetic control charts for Laplace distribution (n=11 
and SSATS(0)=1024).

(m – m0) X chart
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.06 1024.01 1024.03 1024.41 1024.13

0.25 218.58 115.84 32.96 28.15 44.71

0.5 32.17 22.02 6.86 7.40 5.35

0.75 6.70 7.60 3.21 4.45 1.92

1 1.96 3.66 2.21 3.70 1.10

1.25 0.87 2.17 1.86 3.48 0.78

1.5 0.58 1.47 1.73 3.42 0.63

1.75 0.51 1.11 1.68 3.40 0.55

2 0.50 0.89 1.66 3.40 0.52

Table 11. Zero-state ATS of the Shewhart type X, m-of-m 
and synthetic control charts for gamma distribution (n=11 
and SSATS(0)=1024).

(m – m0) X chart
1-of-1 
chart

2-of-2 
chart

3-of-3 
chart

Synthetic 
chart

0 1024.09 1024.00 1024.19 1024.00 1024.00

0.25 249.23 275.40 87.35 72.48 157.34

0.5 38.20 63.25 17.62 15.97 19.25

0.75 12.64 20.98 6.47 7.08 4.95

1 6.19 9.23 3.50 4.68 2.16

1.25 3.79 5.02 2.43 3.85 1.28

1.5 2.66 3.21 1.98 3.55 0.89

1.75 2.06 2.31 1.79 3.45 0.70

2 1.71 1.82 1.70 3.41 0.60

•	 For small to moderate shifts the SSATS and 0SATS 
performance of the m-of-m chart with m=2, 3 is 
significantly better than the Shewhart type X, sign 
and synthetic control charts.

•	 Performance of sign chart under normal distribution 
and double exponential distribution is better as 
compare to m-of-m chart with m=2,3 only for a few 
large shifts.

•	 Synthetic control chart performs better than the sign 
chart through-out shifts; however, its performance 
is better as compared to m-of-m chart with m=2, 3 
only for large shifts under all distributions.

•	 The SSATS performance of the 3-of-3 control chart is 
better than the 2-of-2 control chart for all distributions 
only for small shifts.

•	 The SSATS performance of all control charts under 
double exponential distribution is better than the 
gamma, Cauchy and normal distributions to monitor 
process median.

•	 It is also observed that the SSATS values and 0SATS 
values are not significantly differ.

5.3. Numerical example
We illustrate the operations of the proposed m-of-m 

control chart using data generated from standard normal 
distribution. The data set includes 21 samples each 

of 11 observations. We assumed that the in-control 
median m0 = 0. To have an in-control ARL equal to 
1024, the upper control limits of 1-of-1 chart, 2-of-2 
chart and 3-of-3 chart are 11, 8 and 6 respectively. 
The lower control limits of these control charts set to 
be zero. Table 11 gives the values of the sign statistic 
SNi for 21 samples. We have constructed 1-of-1 chart, 
2-of-2 chart and the 3-of-3 chart in Figure 2. The 
1-of-1 chart (sign chart) signals if a sign statistic falls 
above upper control limit of sign chart, the 2-of-2 
chart signals if when two consecutive sign statistics 
fall above upper control limit of the 2-of-2 chart and 
when three consecutive sign statistics fall above upper 
control limit of the 3-of-3 chart, the 3-of-3 control 
chart signals (Table 12).

From Figure 2, we see that no points exceed the 
control limits of the 1-of-1 chart and 2-of-2 chart. 
Consequently, one might regard the process as being 
in a state of statistical control. From Figure 2 it is 
also observed that the points 6, 7 and 8 fall above 
the upper control limit of the 3-of-3 chart. Therefore, 
the 3-of-3 chart signal at point 8.

6. Conclusions
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Table 12. Sample numbers and values of sign statistic.

Sample No. Sign statistic SNi

1 5

2 7

3 4

4 5

5 5

6 7

7 7

8 8

9 3

10 7

11 6

12 3

13 5

14 4

15 4

16 7

17 8

18 4

19 6

20 7

21 5

Figure 2. The m-of-m control chart with m = 1, 2, 3.

We have investigated the steady-state ATS of a 
nonparametric synthetic and the m-of-m control 
charts based on sign statistic. The proposed charts 
are used to monitor shifts in a process median. The 
SSATS values of proposed charts are computed by 
employing Markov chain approach. The steady-state 
performance of the m-of-m chart with m=2, 3 is 
significantly better than the sign chart (1-of-1 chart) 
and the synthetic control chart. Also, the steady-state 
ATS performance of the synthetic control chart is 
poor as compared to the zero-state ATS. The m-of-m 
control chart with m=2, 3 has a higher power of 

detecting out-of-control signal than the sign chart 
and the synthetic control chart.
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Abstract 

A complectly adaptive (CA) 

Hotelling‟s 
2T chart, that is a 

2T chart in 

which all the design parameters, viz, 

sampling interval, sample size, control limit, 

and warning limit are adaptive, each taking 

two values, is developed. The expressions  

for the statistical and operational 

performance measures for this chart are 

derived using a Markov chain approach. As 

any adaptive 
2T chart in which one or more 

of the design parameters are adaptive, each 

taking two values, is a particular case of the 

CA 
2T chart, the derived expressions are 

directly applicable to all such charts.These 

expressions can be used tocompute the 

performancemeasures for all such charts and 

thus to determine the most suitable adaptive 
2T chart for a given situation. 

Key words:Average number of samples to 

signal, average number of observations to 

signal, average number of switches to signal, 

Multivariate Statistical process control, 

Steady-state average time to signal. 

I. INTRODUCTION 

Hotelling‟s
2T chart is an effective on-line 

process control technique used to monitor 

simulataneouslytwo or more quality 

characteristics of a process. If all the design 

parameters of this chart are kept fixed 

throughout the period of monoitoring, it is 

called static 
2T chart while if at least one 

design parameter is variableand takes a 

value for a trial according to the location(s) 

of the sample points corresponding to the 

previous trial(s), the chart is called adaptive 
2T chart. The general principal of choosing 

values of the adaptive parameters for atrial is 

as follows. If the last plotted point(s) 

indicate possibility of a shift, choose short 

sampling interval and/or large sample size 

and/or narrow in-control limits for the next 

trial. On the other hand, if that indicate 

possibility of  safe or in-control region, 

choose long sampling interval and/or small 

sample size and/or wide in-control region for 

the next trial. It has been shown that 

adapting one or more design parameters of a 
2T chart increases its statistical, operational, 

and economic performances significantly. 

See, for example,Aparasi[1], Aparasi 

andHaro[2, 3],Faraz and 

Moghadam[4],Mahadik and Shirke[5], 

Mahadik[6-10]. 

Recently, Mahadik[11]has developed 

acomplectly adaptive (CA) X chart, that is 

an X chartin which all the design 

parameters, viz, sampling interval, sample 

size, control limits, and warning limits are 

adaptive, each taking two values. This idea 

has been extended for
2T chart in this paper.  

The following sections present the 

general description of a CA
2T

chart,derivations of the expressions for 

statistical and operationalperformance 

measures for this chart, numerical 

comparisons of the performances of various 

adaptive 
2T  charts that are the particular 

cases of the CA 
2T  chart,andconclusions. 

II. A CA 
2T CHART 

Suppose the p> 1 related quality 

characteristics X = )( 21


pX,...,X,X  to be 

monitored together, follow p-variate normal 

distribution with mean vector μ  and known 

variance covariance matrix Σ . Let 0μ  be 

http://www.springerlink.com/content/?Author=Alireza+Faraz
http://www.springerlink.com/content/?Author=M.+B.+Moghadam
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the target mean vector. An occurrence of an 

assignable cause shifts μ  from 
0μ to  

01 μμ  . A CA
2T  chart to monitor μ is as 

described below. 

The control statistic is  
2

iT  = n(i)

)(Σ)( 1

00 μXμX ii  
, where  iX , i = 1, 

2, …, is the mean vector of the ith sample of 

size n(i) drawn on X. Note that when μ  = 

0μ , 
2

iT  follows central chi-square 

distribution with p degrees of freedom, and 

when μ  = 1μ , for given n(i) = n, it follows 

non-central chi-square distribution with p 

degrees of freedom and non-centrality 

parameter  )(Σ)( 1

0101 μμμμ  n  = 2nd , 

where d = )(Σ)( 1

0101 μμμμ  
 is the 

Mahalanobis distance used to measure a 

change in the process mean vector. Let t(i) 

be the length of sampling interval between 

the (i – 1)st and ithtrials, i = 1, 2, …. Also, let 

L(i) and w(i) be the control and warning 

limits,respectively,for the ith trial.  

The values of (t(i), n(i),L(i),w(i)) can be 

either ( 1t , 1n , 1L , 1w ) or ( 2t , 2n , 2L , 2w ), 

where 1t , 2t , 1n , 2n , 1L , 2L , 1w , and 2w  

are such that maxt  1t  2t  mint , minn  ≤  1n  ≤  

2n  ≤ maxn ,∞ > 1L  2L > 0,0 < 1w < 1L ,0 < 2w

< 2L , and 1w  2w .Here, maxt  and mint  being 

the longest and shortest possible sampling 

interval lengths, respectively, while, minn  

and maxn being the smallest and largest 

possible sample sizes, respectively, 

When 
2

1iT  falls belowL(i – 1), the values 

of (t(i), n(i), L(i),w(i)), i = 2, 3, …, between 

( 1t , 1n , 1L , 1w ) and ( 2t , 2n , 2L , 2w ) are 

chosen according to the following rule. 














),1(if),,,,(

)1(if),,,,(
    

))(),(), (), ((

2

2

1i2222

1

2

11111

iITwLnt

iITwLnt

iwiLinit

i  

where 

)1(1 iI  = [0,w(i − 1)] 

and )1(2 iI  = (w(i − 1), L(i − 1). 

The chart signals an out-of-control stateat 

the ith trial, i = 1, 2, …, if 
2

iT  falls above 

L(i). 

The values of (t(1), n(1),L(1), w(1)) can 

be chosen using an arbitrary probability 

distribution. In practice, it is recommended 

to choose the quadruplet( 2t , 2n , 2L , 2w ) for 

that to provide additional protection against 

the problems that may exist initially. The 

trial following an out-of-control signal is 

again treated to be the first trial.  

In the next section, expressions for 

performance measures for a CA
2T  chart are 

derived. 

III. PERFORMANCE MEASURES 

The measures of statistical performance 

of a CA 
2T chart are steady-state average 

time to signal (SSATS),average number of 

samples to signal (ANSS), and average 

number of observations to signal (ANOS). 

SSATS is the expected value of the time 

between a shift that occurs at some random 

time after the process starts and the time the 

chart signals. ANSS and ANOS are the 

expected values of the number of samples 

and the number of observations, respectively 

taken from the time of a shift to the time the 

chart signals.Themeasure of operational 

performance is average number of switches 

to signal (ANSW), which is the expected 

value of the number of switches between the 

quadruplets of values of sampling interval 

length, sample size, control limit, and 

warning limit from a shift to the signal. 

Let SSATSd, ANSSd, ANOSd, and 

ANSWdbe the SSATS, ANSS, ANOS, and 

ANSW, respectively of a 
2T chart when the 

process mean vector has shifted from 0μ  to 

1μ in d unitsIn the following,the 

expressions for SSATSd, ANSSd, and 

ANOSdare derived using a Markov chain 

approach.  

Henceforth,theith trial refers to the ith trial 

after a shift when i> 0 and the last trial 

before the shift when i = 0.Also,
2

iT refers to 

the sample point corresponding to the ith 

trial. 
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Define the three states 1, 2, and 3 of a 

Markov chain corresponding to whether the 

sample pointcorresponding to the ith trial is 

plotted in )(1 iI , )(2 iI , and )(3 iI  = [L(i), 

), respectively,i = 1, 2, ….. Note that state 3 

is the absorbing state, as the control charting 

process is restarted when a sample point 

falls in region )(3 iI . The transition 

probability matrix is given by 



















100

232221

131211

ddd

ddd

ppp

ppp
dP , 

where
d

jkp  is the transition probability that  j 

is the prior state and k is the current state, 

when the process mean vector has shifted by 

d units. For example, 

dp12
=  dPr [

2

iT  2I (i) | 2

1iT  1I (i− 1)] 

 dPr [
2

iT  2I (i) |n(i) = 
1n , L(i) = 1L , 

w(i) = 1w ] 

 )(F 11
Lλ − )(F 11

wλ  

where )(F
1
λ is the cumulative distribution 

function of non-central chi-square 

distribution with p degrees of freedom and 

non-centrality parameter 1  = 2

1dn . 

Then, SSATSd and ANSSd are given by 

SSATSd
1)(  d

1PIb t − E(U),(1) 

ANSSd
1)(  d

1PIb 1, 

and 

ANOSd
1)(  d

1PIb n, 

where I is the identity matrix of order 2, 
d

1P  

is the submatrix of 
dP  that contains the 

probabilities associated with the transient 

states only, t = ( 1t , 2t ),1  = (1, 1), n = (
1n

,
2n ), and b  = ( 1b , 2b ), jb  being the 

conditional probability that 
2

0T  falls in 

)0(jI  given that it falls below L(0),  j = 1, 

2. We note that 
2b  = 1 −

1b . The Expression 

for 1b  is derived by Mahadik[7] and is as 

given below. 

1b  =

)(F

)(F

)(F

)(F
1

)(F

)(F

20

20

10

10

20

20

L

w

L

w

L

w



, 

where F0(.) is the cumulative distribution 

function of central chi-square distribution 

with p degrees of freedom. 

E(U) in equation (1) is the expected value 

of the time U between the 0th trial and the 

shift. Assuming that an assignable cause of a 

process shift occurs according to a Poisson 

process, it can be shown that E(U) = 

22)]1(E[ tbt . Hence, 

SSATSd
1)(  d

1PIb t  − 2tb . 

Now, to derive the expression for 

ANSWd, let 



































)( if  ,  5

))( 1),(( if  , 4

))( 1),(( if  , 3

))( 1),(( if  , 2

))( 1),(( if  , 1

2

2

2

2

2

1

1

2

1

2

1

1

2

2

2

1

2

2

1

2

1

iLT

iITiIT

iITiIT

iITiIT

iITiIT

Y

i

ii

ii

ii

ii

i
, 

i = 1, 2, … 

Note that { iY , i = 1, 2, … } is a Markov 

chain with transition probability matrix 

























10000

00

00

00

00

232221

131112

131112

232221

ddd

ddd

ddd

ddd

ppp

ppp

ppp

ppp

dQ . 

Then, ANSWd is given by 

ANSWd ea 1)(  d

11 QI 

where, 1I  is the identity matrix of order 4, 

d

1Q  is the submatrix of 
dQ  that contains the 

probabilities associated with the transient 

states only, e = )0 0, 1, (1,  ,and a = 

), ,,( 4321
 aa aa , ja being the initial 

probability of state j, j = 1, 2, 3, 4, given by 
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





















4  ,  

3  ,  

2  ,  

1  ,  

  ][Pr

222

111

212

121

1

jpb

jpb

jpb

jpb

jYa

d

d

d

d

dj . 

In the next section, the above derieved 

expressions are used to compute the 

performance measures for a CA 
2T  chart 

and for all the adaptive 
2T  charts which 

are its particular cases. 

IV. PERFORMANCE COMPARISON 

OF THE ADAPTIVE
2T  CHARTS 

In this section, we simultaneously 

evaluate a CA 
2T  chart and its all 

particular cases through numerical 

comparisons of their statistical and 

operational performances. For this, we 

have to design all these chart such that 

their in-control statistical performances 

match. Below is described the procedure 

of designing a CA 
2T  chart whose in-

control statistical performances match to 

that of a given static 
2T  chart. Note that 

this procedure is also applicable to design 

all the charts, which are particular cases of 

a CA 
2T chart,such that their in-control 

statistical performances match to that of 

the given static 
2T  chart.  

Let 0t , 0n , and 0L  be the sampling 

interval length, sample size, and control 

limit of a static 
2T  chart. Let 

SSATS0(static), ANSS0(static), and 

ANOS0(static) be the in-control SSATS, 

ANSS, and ANOS, respectively of this 

chart. Then, we have 

SSATS0(static) = 









 2

1

)(F1

1

00

0
L

t  

ANSS0(static) = 
)(F1

1

00 L
 

and 

ANOS0(static) = 
)(F1 00

0

L

n


 

Now, given 0t , 0n ,and 0L , we have to 

choose the design parameters of a CA 
2T  

chart satisfying the following 

requirements. 

SSATS0(CA) = SSATS0(static) 

ANSS0(CA) = ANSS0(static) 

and 

ANOS0(CA) = ANOS0(static) 

Here,SSATS0(CA), ANSS0(CA), and 

ANOS0(CA) are the in-control SSATS, 

ANSS, and ANOS, respectively of a CA 
2T  chart. 

Fixing any five among the design 

parameters ( 1t , 2t , 1n , 2n , 1L , 2L , 1w , and 

2w ) of a CA 
2T  chart,  the above 

nonlinear equations can be solved for the 

remaining three parameters. This can be 

done, for example, using package 

rootSolve in R or using function „fsolve‟ in 

Matlab.  

The complete set of adaptive 
2T charts 

containing a CA 
2T  chart and its all 

particular cases includes: 

1. A variable sampling interval (VSI)
2T  chart 

2. A variable sample size (VSS)
2T  

chart 

3. A variable control limits (VCL)
2T  

chart 

4. A variable sample size and 

sampling interval (VSSI)
2T  chart 

5. A variable sampling interval and 

control limits (VSICL)
2T  chart 

6. A variable sampling interval and 

warning limits (VSIWL)
2T  chart 

7. A variable sample size and control 

limits (VSSCL)
2T  chart 

8. A variable sample size and 

warning limits (VSSWL)
2T  chart 

9. A variable control limits and 

warning limits (VCWL)
2T  chart 

10. A variable sample size, sampling 

interval, and control limits 

(VSSICL)
2T  chart 

11. A variable sample size, sampling 

interval, and warning limits 

VSSIWL)
2T  chart 
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12. A variable sampling interval, 

control limits, and warning limits 

(VSICWL)
2T  chart 

13. A variable sample size, control 

limits, and warning limits 

(VSSCWL)
2T  chart 

14. A CA
2T  chart 

Fixing the values of 
0t , 

0n , and 
0L and 

applying the procedure described above, 

all the charts in above set can be designed 

such that their in-control statistical 

performances match. Table 1 shows the 

design parameters of one suchset of 

matched charts while tables 2, 3, 4, and 5, 

respectively show the SSATSd, 

ANSSd,ANOSd,and 

ANSWdperformancesfor these charts for 

various values ofd.Such tables are useful 

to determine the most suitable adaptive 
2T  

chart for a given situation. In general, one 

can see from tables 2 to 5 that CA 
2T  

chart is the best choice if one is interested 

in detecting only small shifts while VSI or 

VSIWL
2T  chartsare the best choices if the 

interest is in detecting only moderate to 

large shifts. However, in practice, one can 

choose the most suitable charts taking into 

consideration the practical constraints in 

deciding which of the design parameters of 

the charts can be adaptive. 

V. CONCLUSIONS 

The expressions for the statistical and 

operational performance measures for a 

CA 
2T  chart are developed. These 

expressions are are directly applicable to 

any adaptive 
2T  chart in which any of the 

design parameters are adaptive, each 

taking two values. The simultaneous 

numerical comparisons of the 

performances of all such charts indicate 

that in general, CA 
2T  chart is the best 

chart for detecting small shifts while VSI 

or VSIWL 
2T  charts are the best charts for 

detecting moderate to large shifts. In 

practice, such simultaneous comparisons 

guide to determine the most suitable 
2T  

chart satisfying the practical constraints in 

deciding which of the design parameters of 

the chart can be adaptive. 

Table 1: Design parameters of the matched 
2T charts 

Chart 
Design Parameters 

        

Static 5 5 1.00 1.00 14.86 14.86 0.00 0.00 

VSI 5 5 1.79 0.20 14.86 14.86 3.36 3.36 

VSS 2 10 1.00 1.00 14.86 14.86 4.21 4.21 

VCL 5 5 1.00 1.00 16.42 13.93 3.36 3.36 

VSSI 2 10 1.48 0.20 14.86 14.86 4.21 4.21 

VSICL 5 5 1.79 0.20 16.42 13.93 3.36 3.36 

VSIWL 5 5 1.79 0.20 14.86 14.86 4.03 2.75 

VSSCL 2 10 1.00 1.00 17.35 13.15 4.21 4.21 

VSSWL 2 10 1.00 1.00 14.86 14.86 4.89 3.30 

VCWL 5 5 1.00 1.00 16.42 13.93 4.04 2.75 

VSSICL 2 10 1.48 0.20 16.42 13.48 4.21 4.21 

VSSIWL 2 10 1.48 0.20 14.86 14.86 4.66 3.57 

VSICWL 5 5 1.56 0.20 16.42 13.63 4.04 3.78 

VSSCWL 2 10 1.00 1.00 16.42 13.48 4.76 3.45 

CA 2 10 1.48 0.20 16.42 13.48 4.88 3.30 

 

1n 2n 1t 2t 1w 2w 1L 2L
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Table 2: SSATSd values for the matched 
2T charts 

Chart 
d 

0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

Static 126.73 48.69 17.57 6.95 1.63 0.69 0.52 0.50 

VSI 118.98 38.10 10.52 3.21 0.78 0.54 0.50 0.50 

VSS 120.47 33.12 8.26 3.11 1.31 0.99 0.80 0.64 

VCL 123.45 44.86 15.53 6.12 1.56 0.70 0.52 0.50 

VSSI 114.09 26.14 5.01 1.76 0.87 0.67 0.58 0.53 

VSICL 115.93 35.15 9.37 2.89 0.77 0.54 0.50 0.50 

VSIWL 117.42 36.23 9.61 2.93 0.77 0.54 0.50 0.50 

VSSCL 96.98 23.09 6.24 2.66 1.31 1.05 0.88 0.71 

VSSWL 119.78 31.97 8.07 3.18 1.36 1.00 0.80 0.64 

VCWL 122.58 44.08 15.24 6.05 1.56 0.70 0.52 0.50 

VSSICL 96.27 19.74 4.17 1.65 0.87 0.67 0.59 0.54 

VSSIWL 112.70 24.66 4.75 1.83 0.93 0.69 0.58 0.53 

VSICWL 115.80 35.12 9.42 2.93 0.77 0.54 0.50 0.50 

VSSCWL 100.34 23.87 6.45 2.80 1.35 1.05 0.85 0.68 

CA 93.85 18.15 3.99 1.78 0.96 0.71 0.60 0.54 

Table 3: ANSSd values for the matched 
2T charts 

Chart 
d 

0 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

Static 200 127.23 49.19 18.07 7.45 2.13 1.19 1.02 1.00 

VSI 200 127.23 49.19 18.07 7.45 2.13 1.19 1.02 1.00 

VSS 200 120.97 33.62 8.76 3.61 1.81 1.49 1.30 1.14 

VCL 200 123.95 45.36 16.03 6.62 2.06 1.20 1.02 1.00 

VSSI 200 120.97 33.62 8.76 3.61 1.81 1.49 1.30 1.14 

VSICL 200 123.95 45.36 16.03 6.62 2.06 1.20 1.02 1.00 

VSIWL 200 127.23 49.19 18.07 7.45 2.13 1.19 1.02 1.00 

VSSCL 200 97.48 23.59 6.74 3.16 1.81 1.55 1.38 1.21 

VSSWL 200 120.28 32.47 8.57 3.68 1.86 1.50 1.30 1.14 

VCWL 200 123.08 44.58 15.74 6.55 2.06 1.20 1.02 1.00 

VSSICL 200 102.01 25.22 7.06 3.23 1.81 1.53 1.35 1.18 

VSSIWL 200 120.50 32.81 8.61 3.65 1.84 1.50 1.30 1.14 

VSICWL 200 123.12 44.42 15.54 6.42 2.04 1.21 1.02 1.00 

VSSCWL 200 100.84 24.37 6.95 3.30 1.85 1.55 1.35 1.18 

CA 200 100.61 24.22 6.94 3.32 1.86 1.55 1.35 1.18 
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Table 4: ANOSd values for the matched 
2T charts 

Chart 
d 

0 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

Static 1000 636.15 245.97 90.35 37.25 10.67 5.97 5.10 5.00 

VSI 1000 636.15 245.97 90.35 37.25 10.67 5.97 5.10 5.00 

VSS 1000 644.70 211.70 64.20 26.50 11.80 9.40 7.90 6.40 

VCL 1000 619.77 226.82 80.16 33.12 10.30 6.02 5.12 5.01 

VSSI 1000 644.70 211.70 64.20 26.50 11.80 9.40 7.90 6.40 

VSICL 1000 636.15 226.80 80.20 33.10 10.30 6.00 5.10 5.00 

VSIWL 1000 636.20 246.00 90.40 37.30 10.70 6.00 5.10 5.00 

VSSCL 1000 518.50 146.70 47.60 22.20 11.80 10.10 8.70 7.10 

VSSWL 1000 649.60 211.87 63.96 26.56 11.82 9.43 7.83 6.37 

VCWL 1000 615.40 222.90 78.70 32.80 10.30 6.00 5.10 5.00 

VSSICL 1000 542.80 157.30 50.20 22.90 11.70 9.90 8.40 6.80 

VSSIWL 1000 648.07 211.82 64.00 26.52 11.81 9.43 7.84 6.38 

VSICWL 1000 615.60 222.10 77.70 32.10 10.20 6.00 5.10 5.00 

VSSCWL 1000 542.27 156.11 50.06 22.99 11.79 9.89 8.37 6.79 

CA 1000 542.16 155.91 50.05 23.03 11.81 9.89 8.37 6.79 

 

Table 5: ANSWd values for the matched 
2T charts 

Chart 
d 

0 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 

Static 0 0 0 0 0 0 0 0 0 

VSI 99.50 62.79 22.36 6.41 1.77 0.30 0.08 0.01 0.00 

VSS 93.28 54.72 13.01 2.36 0.79 0.54 0.43 0.28 0.14 

VCL 99.75 61.39 20.77 5.80 1.66 0.34 0.11 0.02 0.00 

VSSI 93.28 54.72 13.01 2.36 0.79 0.54 0.43 0.28 0.14 

VSICL 99.75 61.39 20.77 5.80 1.66 0.34 0.11 0.02 0.00 

VSIWL 79.75 50.50 17.86 4.97 1.36 0.28 0.08 0.01 0.00 

VSSCL 93.70 44.30 9.22 1.91 0.78 0.58 0.50 0.37 0.21 

VSSWL 73.54 42.56 9.46 1.69 0.69 0.53 0.43 0.28 0.14 

VCWL 63.50 40.86 14.51 3.80 0.96 0.20 0.05 0.01 0.00 

VSSICL 93.59 46.30 9.83 1.98 0.78 0.57 0.48 0.34 0.18 

VSSIWL 79.80 46.37 10.52 1.88 0.72 0.53 0.43 0.28 0.14 

VSICWL 93.22 58.61 20.88 6.21 1.89 0.40 0.13 0.02 0.00 

VSSCWL 77.39 37.60 7.58 1.54 0.71 0.56 0.47 0.33 0.18 

CA 
74.06 35.86 7.16 1.47 0.69 0.56 0.47 0.33 0.18 
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In this paper, we have proposed two nonparametric tests for testing the
equality of location parameters of two multivariate distributions based on
the notion of data depth. The proposed tests are extensions of the M -
based test due to Li and Liu (2004). The performance of proposed tests has
been assessed for symmetric as well as skewed multivariate distributions by
simulation experiments. The tests have better performance in terms of power
as compared to the M -based test and some of their competitors. The use of
tests is illustrated with real life data.
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1 Introduction

In several situations comparison between two data sets is required for number of reasons.
The comparison can be based on the locations of these data sets. If multivariate data
follow multivariate normal distribution then the task is easy as well known tests are avail-
able in the literature. However, if data do not follow multivariate normal distribution
or we have no information about underlying distribution, nonparametric multivariate
statistical methods are used to analyze data. One of the multivariate nonparametric
statistical methods is based on the notion of the statistical data depth function, which
was first introduced by Tukey (1975).
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A data depth is a device for finding the location of multivariate data point with respect
to a given data cloud. Larger depths are associated with more central points. Data
depth gives a natural center-outward ranking to a multivariate data points with respect
to data cloud. With the help of such rankings, Li and Liu (2004) proposed two depth-
based nonparametric tests for multivariate location difference viz. T -based test and
M -based test. These tests are developed using the Depth Depth (DD) plot (Liu et al.,
1999). Dovoedo and Chakraborti (2015) have reported an extensive simulation study to
evaluate the performance of these two tests for well known family of multivariate skewed
distributions as well as multivariate symmetric distributions and compared performance
of these tests for four popular affine-invariant depth functions, namely Mahalanobis
depth, Spatial depth, Halfspace depth and Simplicial depth. We briefly discuss few of
these in this article.

Several nonparametric tests have been proposed to deal with the multivariate two
sample location problems as well as multi-sample location problems based on the concept
of data depth. See Rousson (2002), Li et al. (2011), Chenouri and Small (2012) among
others. Many of these methods are use permutation test to calculate the p-value.

In this paper we have proposed two nonparametric tests for testing equality of location
parameters of two multivariate distributions based on the data depth, which are purely
nonparametric. These tests are extensions of the M -based test introduced by Li and
Liu (2004). Li and Liu (2004) use the most deepest point of two data clouds. We
instead, consider some pre-specified number of most deepest points of the data clouds
under comparison and construct tests based on these points. The performance of the
proposed tests has been assessed by simulation experiments. The proposed tests give
better performance in terms of power as compared to the M -based test and T -based test
for symmetric as well as skewed multivariate distributions.

The rest of the paper is organized as follows. In section 2, we briefly discuss the notion
of data depth, various data depth functions with their properties and DD plot. In section
3, we review the existing T -based and M -based tests of multivariate locations proposed
by Li and Liu (2004). We describe the two new proposed nonparametric tests for testing
the equality of locations using data depth in section 4. In section 5, we report simulation
studies to compare performance of proposed tests with existing tests. In section 6, we
apply the proposed tests to real life data. Section 7 contains some concluding remarks.

2 Statistical Data Depth Functions, Its Properties and DD
Plot

2.1 Data Depth

Let (X1, X2, ..., Xm) be a data set (cloud), where each Xi ∈ Rp is assumed to follow a
continuous distribution with cumulative distribution function (CDF) F (.), i = 1, 2, ...,m.
Let D(x, F ) be the depth of a point x with respect to F . A data depth is a function
defined from Rp to [0,∞). Notion of data depth can be used to obtain the location of
a given data points with respect to a data cloud. It measures the centrality of a given
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data point with respect to a given data cloud. The deepest point using notion of data
depth has the largest depth. Data depth gives a natural center-outward ranking to a
data points with respect to data cloud. Such rankings were used for testing difference
in location or scale parameters of two or more multivariate distributions, constructing
nonparametric control charts, outlier detection and classification problem etc.

Tukey (1975) has first invented the word depth for picturing data. In literature,
many different notions of data depth functions were proposed for capturing different
probabilistic properties of multivariate data. Among them, the most popular choices
of data depth functions are Mahalanobis depth (Mahalanobis, 1936), Simplicial depth
(Liu, 1990), majority depth (Singh, 1991), half-space depth (Tukey, 1975), projection
depth (Donoho and Gasko, 1992) etc. Some of these depth functions are reviewed in the
following.

• Mahalanobis Depth

The Mahalanobis depth of a point x ∈ Rp with respect to F on Rp is defined as,

MHD(x, F ) = 1
(x−µF )′Σ−1

F (x−µF )
,

where µF is a location parameter or center and ΣF is the variance covariance matrix
or dispersion matrix of F . The sample version of Mahalanobis depth can be obtained by
replacing µF by X̄ (sample mean) and ΣF by S (sample variance covariance matrix).

• Simplicial Depth

The simplicial depth of a point x ∈ Rp with respect to F on Rp is defined as,

SD(x, F ) = PrF (s[X1, X2, ..., Xp+1] 3 x),

where X1, X2, ..., Xp+1 are independent and identically distributed observations from F
and s[X1, X2, ..., Xp+1] is a closed simplex whose vertices are X1, X2, ..., Xp+1. The Sam-
ple version of simplicial depth can be obtained by replacing F by Fm in this expression.
That is,

SD(x, Fm) =
(
m
p+1

)−1∑
∗ I(xεs[Xi1, Xi2, ..., Xip+1]),

where (∗) runs over all possible subsets of X1, X2, ..., Xm of size (p + 1). Larger the
depth SD(x, Fm) indicates x is contained in more simplices generated from the sample.

• Tukey’s Halfspace Depth

Tukey’s halfspace depth of a point x ∈ Rp with respect to probability measure P on Rp
is defined as the minimum probability mass carried by any closed half space containing
x, that is,

HSD(x, F ) = infH{P (H) : H is a closed halfspace containing x },

The sample version of HSD(x, F ) is obtained by replacing F by Fm. If k = 1 then
HSD(x, F ) = min{F (x), 1− F (x−)}.
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2.2 Properties of Depth Function

A depth function D(x, F ) is a non-negative function lies between [0,∞). According to
Zuo and Serfling (2000), the depth function should satisfy the following four properties.

1. Affine-invariance: Suppose x ∈ Rp be a any given data point. Let A be any
invertible matrix and b ∈ Rp, then depth of a point Ax + b with respect to F is
equal to the depth of a point with respect to F . That is, D(Ax+ b, F ) = D(x, F ).

2. Maximality at a center: If F is centrally symmetric about x0 ∈ Rp, then depth
of x0 is the largest depth among all data points. That is,

D(x0, F ) ≥ D(x, F ) for any x ∈ Rp

3. Monotonicity relative to any deepest point: If D(x0, F ) ≥ D(x, F ) for any
x ∈ Rp, then D(x0 + λ(x − x0), F ) is monotone non-increasing over [0,∞) for
λ ∈ [0, 1].

4. Vanishing at infinity: If ||x|| −→ ∞ then D(x, F ) −→ 0, where ||x|| is the
Euclidean norm in Rp.

In the following section, we describe DD plot.

2.3 Depth-Depth Plot (DD Plot)

Let (X1, X2, ..., Xm) and (Y1, Y2, ..., Yn) be two random samples from two continuous
distributions F and G respectively, where Xi, Yj ∈ Rp, i = 1, 2, ...,m and j = 1, 2, ..., n.
Let D(x, F ) and D(x,G) be the depths of a point x ∈ Z with respect to F and G
respectively, where Z = X ∪ Y . Let

DD(F,G) = {(D(x, F ), D(x,G)), ∀x ∈ Z}.

The empirical version of DD(F,G) based on the above described random samples is
given by,

DD(Fm, Gn) = {(D(x, Fm), D(x,Gn)), ∀x ∈ Z}.

DD plot is a two-dimensional graph, which is the plot of points in the set DD(Fm, Gn).
The DD plot can be used as a convenient diagnostic tool for graphical comparison of
two multivariate samples. Difference in locations or scales or skewness or kurtosis are
associated with different patterns observed on the DD plots. If F = G then the points
on the empirical DD Plot should fall on a 450 line segment. This is illustrated in
Figure 1(a), which is the DD plot of two multivariate samples drawn from the biariate
normal distribution with mean vector µ = 0

¯
and dispersion matrix I2, where I2 is the

identity matrix of order two. That is N2(0
¯
, I2). The departure of F from G will indicate

departure of points from 450 line segment and Figure 1(b), Figure 2(a), Figure 2(b) and
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Figure 3 reveal different patterns of DD plot that indicate the location differences, large
location differences, scale differences and skewness differences (both location and scale
differences) respectively. From Figure 1(b), the DD plot has a leaf-shaped figure with
the cusp lying on the diagonal line towards the upper right corner and the leaf steam
at the lower left corner point (0,0) when there is a shift in location parameters of two
multivariate samples. In each of these Figures, we plot DD plot of DG against DF where
F and G are chosen appropriately, where DF and DG are the depth of the points with
respect to F and G respectively. We use Simplicial depth as a depth function to plot
the DD plot in figure 1, 2 and 3. The study reported here is based on Simplicial depth
function. The DD plots have been plotted using ’depth’ package available in R (R Core
Team, 2016).

(a) (b)

Figure 1: DD plots of (a) F = G = N2(0, I2) and (b) F = N2(0, I2) and G = N2(0.5, I2).

(a) (b)

Figure 2: DD plots of (a) F = N2(0, I2) and G = N2(1.5, I2) and (b) F = N2(0, I2) and
G = N2(0, 0.5I2).
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Figure 3: DD plot of F = N2(0, I2) and G = N2(1, 0.1I2).

In the following section, we describe T -based and M -based tests due to Li and Liu
(2004).

3 T -based and M-based Tests

Li and Liu (2004) have proposed the T -based and the M -based tests for testing the
equality of location parameters of two multivariate distributions by observing the DD
plot introduced by Li and Liu (2004). These tests are completely nonparametric in
nature.

Let X = (X1, X2, ..., Xm) and Y = (Y1, Y2, ..., Yn), Xi ∈ Rp, Yj ∈ Rp, i = 1, 2, ...,m,
j = 1, 2, ..., n, be two data vectors observed from the distributions with CDF F and
G respectively. Moreover, we assume that F and G are identical except for a possible
location shift.

Let µ1 and µ2 be the location parameters of F and G respectively. The problem under
consideration is to test

H0 : µ1 = µ2 Vs H1 : µ1 6= µ2.

It is equivalent to test

H0 : θ = 0 Vs H1 : θ 6= 0,

where θ = µ1 − µ2. That is θ is the shift in location parameters of two multivariate
distributions.

3.1 The T -based Test

In the presence of location shift in two distribution, the DD plot has a leaf shaped figure
(Figure 1(b), Figure 2(a)) with the leaf stem anchoring at the lower left corner point
(0, 0) and the cusp lying on the diagonal line pointing towards the upper right corner.
On the basis of this observation, Li and Liu (2004) constructed the test statistic which



Electronic Journal of Applied Statistical Analysis 423

is the distance between the origin (0,0) and the cusp point. Li and Liu (2004) suggested
the following procedure to calculate the distance between the cusp point and the origin
(0,0).
For (a1, b1) and (a2, b2) in ∈ R2, define

(a1, b1) ≥ (a2, b2) if a1 ≥ a2 and b1 ≥ b2,
(a1, b1) < (a2, b2) otherwise.

Define the set Q as
Q = {z ∈ X ∪ Y : there does not existw ∈ X ∪ Y s. t.

(D(w,Fm), D(w,Gn)) ≥ (D(z, Fm), D(z,Gn))}.
Then the cusp point is the point (D(zc, Fm), D(zc, Gn)) that satisfies zc ∈ Q and
|D(zc, Fm) − D(zc, Gn)| ≤ |D(z, Fm) − D(z,Gn)| for all z ∈ Q. Let T = (D(zc, Fm) +
D(zc, Gn))/2. The distance between the origin (0,0) and the cusp point is approximately√

2T . Li and Liu (2004) used T as a test statistic instead of using
√

2T and smaller the
value of T indicates the larger shift in location. The p-value of the test is obtained by
using the Fisher’s permutation test. Let

P TB =

∑B
i=1 I(T∗i ≤Tobs)

B ,

where I(.) is the indicator function, Tobs is the observed value of test statistic T calculated
from the original combined sample, B is the number of times the combined sample
X ∪ Y is permuted and T ∗

i is the value of test statistic T corresponding to ith permuted
combined sample, i = 1, 2, ..., B.

3.2 The M-based Test

Li and Liu (2004) developed another test for testing the equality of location parameters
of two multivariate distributions based on the deepest point. In the theory of data
depth, the location parameter is the point having maximum depth. Therefore if the two
distributions F and G are identical then they should have the same deepest point. If
there is a shift in location then the deepest point corresponding to the distribution F
would not be the deepest point corresponding to the distribution G. In fact, the deepest
point of F will have a smaller depth value with respect to G. M -based test statistic due
to Li and Liu (2004) is given by,

M = min{D(v1, Fm), D(u1, Gn)},

where v1 is the deepest point of X ∪ Y corresponding to Gn, and u1 is the deepest
point of X ∪ Y corresponding to Fm. Here larger the location difference, smaller the
value of M . The p-value of the test is obtained by using the Fisher’s permutation test.
Let

PMB =

∑B
i=1 I(M∗i ≤Mobs)

B ,

where I(.) is the indicator function, Mobs is the observed value of test statistic M calcu-
lated from the original combined sample, B is the number of times the combined sample
X∪Y is permuted and M∗

i is the value of test statistic M corresponding to ith permuted
combined sample, i = 1, 2, ..., B.
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4 Proposed Tests

In the M -based test, Li and Liu (2004) consider only single deepest point for constructing
the M -based test statistic. The test based on single deepest point considers a single data
point. There is scope for improving the performance of this test by incorporating few
more data points while constructing the test. This can be achieved by considering more
than one deepest point. We propose the following two test statistic which are based on
k (k ≥ 2) deepest points for above hypothesis testing problem which can be considered
as extensions of the previously discussed M -based test.

Suppose the set U consists of the k deepest points in X ∪ Y with respect to Fm and
the set V consists of the k deepest points in X ∪ Y with respect to Gn. Then we define
two test statistic as follows,

• M1-based test statistic

M1 = min{ 1
k

k∑
i=1

D(ui, Gn), 1
k

k∑
i=1

D(vi, Fm)},

• M2-based test statistic

M2 = 1
k

k∑
i=1

(mini(D(ui, Gn), D(vi, Fm))),

where ui is the ith point of the set U and vi is the ith point of the set V . Here for both
of these two test statistic, larger the location difference, smaller the value of M1 as well
as of M2. Therefore we propose two tests based on the above defined two statistic. Each
test rejects H0 for smaller value of the corresponding statistic.

The p-value of the proposed tests are obtained by using the Fisher’s permutation test.
Let

PM1
B =

∑B
i=1 I(M∗1i≤M1obs)

B ,

where I(.) and B are defined as earlier, M1obs is the observed value of test statistic
M1 calculated from the original combined sample and M∗

1i is the value of test statistic
M1 corresponding to ith permuted combined sample, i = 1, 2, ..., B. Similarly, we can
calculate the p-value for test statistic M2.

5 Performance of Tests

We have carried out extensive simulation study to assess the performance of two proposed
tests, T-based, M-based and Hotelling T 2 tests for a bivariate data. The performance of
proposed tests has been evaluated in terms of power for two Bivariate symmetric distribu-
tions (Bivariate normal, Bivariate Cauchy) as well as two Bivariate skewed distributions
with pattern 1 and pattern 2 (Bivariate skew normal; Azzalini, 2005), bivariate skew-t
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distribution (Azzalini and Capitanio, 2003). In the simulation study, the number of ob-
servations generated from each distribution F and G are taken to be m=n=100 and the
original sample is permuted B=500 times. The power of T -based, M -based, Hotelling
T 2, M1-based and M2-based tests are obtained by the proportion of the simulated p-
values less than equal to the level of significance α = 0.05. Here 1000 simulations are
used for reporting the power and also results are reported for various values of k=2,3,4,5.
Distributions used in the simulation study are listed in Table-1.

Table 1: Distributions used in the simulation study

Distribution Parameters

Symmetric normal N2(ξ,Ω = I)

Symmetric cauchy Cauchy(ξ,Ω = I)

Skew-normal Pattern 1 SN2(ξ,Ω = I, a = (10, 4)T )

Skew-normal Pattern 2 SN2(ξ,Ω = I, a = (4, 10)T )

Skew-t Pattern 1 ST2(ξ,Ω = I, a = (10, 4)T , v = 1)

Skew-t Pattern 2 ST2(ξ,Ω = I, a = (10, 4)T , v = 3)

The parameter ξ denotes the location parameter, Ω denotes the dispersion parameter,
a denotes the shape parameter (or skewness parameter) and v denotes the degrees of
freedom. From all these distributions, the first random sample of size 100 is generated
with parameter ξ = (0, 0)T and dispersion parameter Ω is an identity matrix of order
2 and second random sample of size 100 is generated with parameter ξ = (µ, µ)T and
dispersion parameter Ω is an identity matrix of order 2. Details regarding shape param-
eter a and degrees of freedom v are provided in Table-1. We provide powers of all these
discussed tests for different values of µ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. R-software is used for
simulation studies.

Table-8 provides powers for T -based, M -based, Hotelling T 2 and proposed tests when
F is bivariate Cauchy distribution with parameters ((0, 0), I2) and G is bivariate normal
distribution with parameters ((µ1, µ2), I2) with sample sizes m=n=100 and Table-9 pro-
vides powers for T -based, M -based, Hotelling T 2 and proposed tests when F is trivariate
Cauchy distribution with parameters ((0, 0, 0), I3) and G is trivariate normal distribution
with parameters ((µ1, µ2, µ3), I3) with sample sizes m=n=50.



426 Chavan, Shirke

Table 2: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate normal with sample sizes m = n = 100 for
simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.046 0.094 0.267 0.505 0.773 0.950

M -based 0.046 0.106 0.282 0.547 0.810 0.954

Hotelling T 2 0.059 0.142 0.413 0.769 0.957 0.995

k=2
M1-based 0.051 0.099 0.310 0.567 0.846 0.972

M2-based 0.052 0.091 0.317 0.584 0.847 0.966

k=3
M1-based 0.048 0.108 0.324 0.598 0.857 0.973

M2-based 0.055 0.108 0.334 0.613 0.864 0.974

k=4
M1-based 0.046 0.110 0.317 0.609 0.851 0.976

M2-based 0.048 0.107 0.324 0.633 0.864 0.979

k=5
M1-based 0.045 0.113 0.337 0.614 0.859 0.984

M2-based 0.045 0.110 0.337 0.628 0.867 0.983

Table 3: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate cauchy with sample sizes m = n = 100 for
simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.050 0.094 0.171 0.351 0.561 0.793

M -based 0.058 0.090 0.169 0.366 0.568 0.801

Hotelling T 2 0.019 0.023 0.026 0.033 0.038 0.045

k=2
M1-based 0.057 0.093 0.189 0.396 0.587 0.818

M2-based 0.064 0.101 0.183 0.386 0.601 0.822

k=3
M1-based 0.059 0.092 0.175 0.382 0.595 0.821

M2-based 0.061 0.093 0.185 0.378 0.609 0.819

k=4
M1-based 0.057 0.097 0.185 0.393 0.601 0.816

M2-based 0.059 0.098 0.191 0.389 0.611 0.817

k=5
M1-based 0.062 0.086 0.170 0.391 0.601 0.828

M2-based 0.059 0.091 0.181 0.385 0.608 0.823
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Table 4: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-normal distribution, pattern 1 with
sample sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.051 0.156 0.517 0.905 0.995 1.000

M -based 0.051 0.176 0.587 0.914 0.992 0.999

Hotelling T 2 0.047 0.262 0.783 0.995 1.000 1.000

k=2
M1-based 0.052 0.181 0.641 0.946 0.998 1.000

M2-based 0.049 0.189 0.659 0.952 0.998 1.000

k=3
M1-based 0.049 0.189 0.644 0.959 1.000 1.000

M2-based 0.055 0.200 0.671 0.964 1.000 1.000

k=4
M1-based 0.046 0.190 0.656 0.967 1.000 1.000

M2-based 0.048 0.201 0.684 0.972 1.000 1.000

k=5
M1-based 0.044 0.202 0.667 0.962 0.999 1.000

M2-based 0.049 0.216 0.686 0.973 1.000 1.000

Table 5: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-normal distribution, pattern 2 with
sample sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.047 0.162 0.535 0.898 0.997 1.000

M -based 0.053 0.202 0.603 0.935 0.995 1.000

Hotelling T 2 0.054 0.262 0.791 0.989 1.000 1.000

k=2
M1-based 0.044 0.220 0.654 0.951 0.998 1.000

M2-based 0.044 0.231 0.670 0.954 0.998 1.000

k=3
M1-based 0.042 0.220 0.671 0.955 1.000 1.000

M2-based 0.047 0.224 0.688 0.962 1.000 1.000

k=4
M1-based 0.042 0.218 0.668 0.957 1.000 1.000

M2-based 0.044 0.237 0.685 .968 1.000 1.000

k=5
M1-based 0.049 0.214 0.673 0.957 1.000 1.000

M2-based 0.054 0.219 0.699 0.963 1.000 1.000
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Table 6: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-t distribution, pattern 1 with sample
sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.040 0.119 0.353 0.740 0.938 0.991

M -based 0.049 0.147 0.451 0.811 0.961 0.999

Hotelling T 2 0.040 0.128 0.281 0.561 0.801 0.928

k=2
M1-based 0.052 0.137 0.483 0.847 0.976 1.000

M2-based 0.050 0.158 0.499 0.854 0.976 1.000

k=3
M1-based 0.060 0.170 0.513 0.867 0.982 0.999

M2-based 0.052 0.177 0.527 0.882 0.985 0.999

k=4
M1-based 0.055 0.162 0.528 0.882 0.981 1.000

M2-based 0.053 0.168 0.536 0.889 0.986 1.000

k=5
M1-based 0.055 0.155 0.520 0.903 0.988 1.000

M2-based 0.051 0.170 0.548 0.905 0.989 1.000

Table 7: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
underlying distribution is bivariate skew-t distribution, pattern 2 with sample
sizes m = n = 100 for simplicial depth function.

µ 0.0 0.1 0.2 0.3 0.4 0.5

T -based 0.053 0.080 0.194 0.371 0.603 0.799

M -based 0.046 0.082 0.251 0.482 0.748 0.911

Hotelling T 2 0.016 0.017 0.023 0.031 0.036 0.048

k=2
M1-based 0.054 0.097 0.272 0.541 0.804 0.940

M2-based 0.052 0.092 0.274 0.537 0.805 0.944

k=3
M1-based 0.055 0.096 0.284 0.575 0.819 0.948

M2-based 0.060 0.093 0.295 0.589 0.822 0.950

k=4
M1-based 0.051 0.095 0.308 0.584 0.841 0.952

M2-based 0.055 0.085 0.300 0.593 0.840 0.955

k=5
M1-based 0.047 0.111 0.314 0.604 0.846 0.960

M2-based 0.051 0.103 0.306 0.611 0.852 0.960
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Table 8: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
F : Cauchy((0, 0), I2) and G : N2((µ1, µ2), I2) with sample sizes m = n = 100
for simplicial depth function.

(µ1, µ2) (0.1,0) (0,0.2) (0.1,0.2) (0.3,0.3)

T -based 0.057 0.078 0.074 0.160

M -based 0.087 0.107 0.135 0.277

Hotelling T 2 0.019 0.028 0.032 0.049

k=2
M1-based 0.101 0.145 0.166 0.346

M2-based 0.092 0.151 0.171 0.360

k=3
M1-based 0.115 0.151 0.185 0.402

M2-based 0.102 0.153 0.185 0.410

k=4
M1-based 0.126 0.177 0.206 0.438

M2-based 0.114 0.167 0.195 0.441

k=5
M1-based 0.129 0.190 0.221 0.469

M2-based 0.113 0.177 0.196 0.457

Table 9: Power comparison of T -based, M -based, Hotelling T 2 and proposed tests when
F : Cauchy((0, 0, 0), I3) and G : N3((µ1, µ2, µ3), I3) with sample sizes m = n =
50 for simplicial depth function.

(µ1, µ2, µ3) (0.0, 0.0, 0.1) (0.0, 0.2, 0.0) (0.0, 0.1, 0.2) (0.1, 0.2, 0.3)

T -based 0.062 0.064 0.078 0.103

M -based 0.096 0.096 0.138 0.173

Hotelling T 2 0.026 0.029 0.031 0.051

k=2
M1-based 0.107 0.143 0.151 0.221

M2-based 0.084 0.124 0.134 0.218

k=3
M1-based 0.097 0.134 0.151 0.215

M2-based 0.088 0.116 0.135 0.214

k=4
M1-based 0.107 0.120 0.148 0.197

M2-based 0.095 0.098 0.143 0.198

k=5
M1-based 0.096 0.110 0.134 0.192

M2-based 0.087 0.106 0.123 0.187

It is clear from the power comparison Table-2 to Table-9 that the proposed M1-based
and M2-based tests give better performance in terms of power as compared to the T -
based, M -based and Hotelling T 2 tests for skewed multivariate distributions as well as
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multivariate cauchy distribution with a simplicial depth function. Proposed tests also
give comparable results to Hotelling T 2, when the underlying distribution is bivariate
normal. As such there is no criterion defined to choose an optimal value of k. However
k = 5 appears to be reasonably good choice for majority of distributions. Between M1-
based and M2-based tests, we recommend M2-based test, as it has more power than
M1-based test for most of the distributions.

6 Application to Real Life Data

We consider Iris dataset (Fisher, 1936), which contains 150 observations each 50 for
setosa, versicolor and virginica with four variables sepal length, sepal width, petal length
and petal width. These are three populations corresponding to setosa, versicolor and
virginica respectively. We select only two populations namely setosa and versicolor for
illustration. The location parameters consists of values of sepal length, sepal width,
petal length and petal width in the respective populations.

We are interested in testing equality of location parameters of these two populations.
Multivariate normality test for setosa and versicolor data based on Shapiro test gives p-
value 0.07906 and 0.00574 respectively. Therefore, sepal length, sepal width, petal length
and petal width corresponding to versicolor population do not follow four variate normal
distribution and Hotelling T 2 test is not appropriate in this case. Therefore, we use
proposed tests to evaluate whether there is shift in location parameters of distribution of
setosa and versicolor. The p-values for the proposed tests based onB = 500 permutations
are reported in the following Table.

Table 10: T -based, M -based, M1-based and M2-based p-values for the Iris dataset based
on B = 500 permutations using simplicial depth function

Test p-value

T -based 0.000

M -based 0.148

k=2
M1-based 0.034

M2-based 0.036

k=3
M1-based 0.014

M2-based 0.018

k=4
M1-based 0.006

M2-based 0.008

k=5
M1-based 0.002

M2-based 0.004
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It is clear from the Table-10 that all the p-values of the proposed and T -based tests
indicates that setosa and versicolor populations do not have same location but M -based
test fails to conclude that setosa and versicolor populations do not have same location.

7 Conclusion

In this paper, we use data depth approach for comparing location parameters of two
multivariate distributions. The proposed tests are purely nonparametric tests. They
have a better performance in terms of power as compared to the existing M -Based and
T -based test for symmetric as well as skewed multivariate distributions. Notion of data
depth is useful for testing location and/or scale of two multivariate distributions.
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In the multiple linear regression, multicollinearity and outliers are commonly occurring
problems. They produce undesirable effects on the ordinary least squares estimator.
Many alternative parameter estimation methods are available in the literature which
deals with these problems independently. In practice, it may happen that the multi-
collinearity and outliers occur simultaneously. In this article, we present a new estima-
tor called as Linearized Ridge M-estimator which combats the problem of simultaneous
occurrence of multicollinearity and outliers. A real data example and a simulation study
is carried out to illustrate the performance of the proposed estimator.

Keywords Linearized ridge regression estimator; M-estimator; Mean square error;
Multicollinearity; Outlier.

Mathematics Subject Classification 62J05; 62J07.

1. Introduction

Consider the multiple linear regression model

Y = Xβ + ε (1.1)

where Y is an n × 1 vector of observations on the response variable, X is a known n × p

matrix of regressor variables, β is a p× 1 vector of unknown regression coefficients and ε
is an n× 1 vector of errors with E (ε) = 0 and Cov (ε) = σ 2I and σ 2 is an unknown error
variance. Without loss of generality, we assume that the variable Y and X are standardized
in such a way that X′Y denotes the correlation vector between the response variable and
regressor variables and X′X has the form of correlation matrix.

It is well known that, when ε ∼ N
(
0, σ 2I

)
, then the optimal estimator of the regression

parameters is the ordinary least squares estimator (OLSE) (Montgomery et al., 2010). It is
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denoted by

β̂OLSE = (X′X)−1X′Y (1.2)

The OLSE is widely used in regression analysis due to its computational ease. However,
in the presence of multicollinearity, the OLSE gives misleading information. To overcome
such a problem, several methods are available in the literature. The ordinary ridge regression
estimator (ORRE) proposed by Hoerl and Kennard (1970a, b) is one of the most popular
biased estimators. It is given by

β̂ORRE = (X′X + kI )−1X′Xβ̂OLSE (1.3)

where k > 0 is a ridge or shrinkage parameter. However, β̂ORRE is a nonlinear function
of k. To resolve such a problem, Liu (1993) proposed a new biased estimator of β called
Generalized Liu estimator (GLE)

β̂GLE = (X′X + I )−1(X′X +D)β̂OLSE (1.4)

where D = diag(d1, d2, . . . , dp), 0 < dj < 1, j = 1, 2, . . . , p (see Akdeniz and Kaciran-
lar, 1995). When d1 = d2 = . . . = dp = d, the β̂GLE reduces to the Liu estimator (LE)
(see Liu, 1993) and it is given by β̂LE = (X′X + I )−1(X′X + dI )β̂OLSE , where d is a Liu
parameter. The advantage of the LE over the ORRE is that the β̂LE is a linear function of
d. Therefore, it is easier to choose d in β̂LE than to choose k in β̂ORRE . Some authors like
Kaciranlar et al. (1999), Akdeniz and Erol (2003), Alheety and Kibriya (2009) defined the
LE for d ∈ R and the GLE for each dj ∈ R,∀j = 1, 2, . . . , p.

Motivated by the work of Liu (1993), Liu and Gao (2011) proposed a linearized ridge
regression estimator (LRRE) to combat the problem of multicollinearity. It is given by

β̂LRRE = (X′X + I )−1(X′X +QDQ′)β̂OLSE (1.5)

whereD = diag(d1, d2, . . . , dp), dj ∈ R,∀j = 1, 2, . . . , p andQ = (q1, q2, . . . , qp) is an
orthogonal matrix such thatQ′X′XQ = � = diag(λ1, λ2, . . . , λp), λ1, λ2, . . . , λp ≥ 0 are
the eigenvalues of X′X and q1, q2, . . . , qp are the corresponding eigenvectors. Range on
the value taken by the diagonal elements of the shrinkage matrixD differentiates the LRRE
from the GLE.

Gao and Liu (2011) considered a well-known class of estimators (see Groß, 2003;
Hocking et al., 1976; Obenchain, 1975) known as generalized shrinkage estimator (GSE).
This class contains OLSE, ORRE, LE, LRRE and many other shrinkage estimators. Gao
and Liu (2011) shows that the MSE of the LRRE is not larger than the MSE of any other
estimator in the class of GSE. However, by substituting the optimal values of the shrinkage
parameter in the MSE, one can obtain the lower bound of the MSE for any estimator in the
class.

Another important problem in regression analysis which has addressed by many authors
is the presence of outliers in the data. The OLSE is sensitive to the presence of outliers
in response variable (Y ) (Hampel et al., 1986; Huber, 1964; Huber, 1981). To handle this
problem, various robust estimators are put forwarded in the literature like M-estimator
(ME), least trimmed squares estimator (LTSE), least median squares estimator (LMSE)
(see Rousseeuw and Leroy, 1987). The ME is the most popular robust estimator for the
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presence of outliers in the response variable (Y ) and it is obtained by minimizing

n∑
i=1

ρ

(
Yi − x ′

iβ

s

)
(1.6)

whereρ (·) is any robust criterion function and s is an estimate of scale parameter (see
Birkes and Dodge, 1993; Groß, 2003; Huber and Ronchetti, 2009 Maronna et al., 2006
Tiku and Akkaya, 2004). To obtain the estimate of β, partially differentiate Eq. (1.6) with
respect to each parameter and equate to zero, we get p nonlinear equations of the form

n∑
i=1

ϕ

(
Yi − x ′

iβ

s

)
xij = 0, j = 1, 2, . . . , p (1.7)

where ϕ(·) is partial derivative of ρ with respect to β and xij denote the jth entry in the
ith row of matrix X. The p equations obtained in Eq. (1.7) are solved iteratively. In this
article, Huber’s ρ function (Huber, 1964) is used as a robust criterion function. The OLSE
is used as an initial estimates of regression parameters and the initial weight matrix W 0 is
set to an identity matrix of order n. For the lth iteration, the diagonal weight matrix, Wl ,
with diagonal entries wli, i = 1, 2, . . . , n is obtained as

wli =

⎧⎪⎨
⎪⎩

t∣∣∣(Yi−x ′
i β̂

(l−1)
ME

)
/S(l−1)

∣∣∣ if
∣∣∣Yi − x ′

i β̂
(l−1)
ME

∣∣∣ > t

1 if
∣∣∣Yi − x ′

i β̂
(l−1)
ME

∣∣∣ ≤ t
(1.8)

where t =1.345 and β̂(l−1)
ME denote the ME of β at (l − 1)th iteration. The estimate of scale

parameter at (l − 1)th iteration
(
S(l−1)

)
is obtained by using the formula S(l−1) = 1.4826

median |e(l−1)
i − median (e(l−1)

i )| where e(l−1)
i = Yi − x ′

i β̂
(l−1)
ME . At convergence, the iterative

reweighted least square estimator (See Montgomery et al., 2010) is known as ME and is
given by

β̂ME = (X′WX)−1X′WY (1.9)

where W is a weight matrix with diagonal entries wi , i = 1, 2, . . . , n obtained at conver-
gence of iterative reweighted least square estimator.

Several methods are available in the literature which deals with the problem of mul-
ticollinearity and outliers in the data separately. However, very few methods tackle the
problem of simultaneous occurrence of multicollinearity and outliers. Silvapulle (1991)
proposed a ridge M-estimator (RME) as a robust version of ORRE by shrinking the ME
with the robust estimate of the shrinkage parameter k. It is defined as

β̂RME = (X′X + kI )−1X′Xβ̂ME (1.10)

This estimator is also a nonlinear function of shrinkage parameterk. Arslan and Billor
(2000) proposed an alternative class of Liu-type M-estimators (LME) to handle the problem
of multicollinearity and outliers simultaneously. It is given by

β̂LME = (X′X + I )−1 (X′X + dI
)
β̂ME (1.11)
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where 0 < d < 1. Jadhav and Kashid (2011) proposed a robust version of jackknifed ridge
regression estimator known as jackknifed ridge M-estimator (JRME). It is given by

β̂JRME = (I − k2Q′(X′X + kI )−2Q)β̂ME (1.12)

where k is a shrinkage parameter to be replaced by its robust estimate (Jadhav and Kashid,
2011). This β̂JRME is also a nonlinear and complicated function of shrinkage parameter
k. In this article, we proposed a robust version of LRRE. The objective of this proposed
estimator is to combats the simultaneous occurrence of multicollinearity and outliers in the
data.

The remaining article is organized as follows. In Section 2, we propose a linearized
ridge M-estimator (LRME) which combats the simultaneous occurrence of multicollinearity
and outliers in data. Also, the asymptotic MSE of the LRME is obtained in this section.
In Section 3, the superiority of the LRME over the other estimators is presented. Also, a
robust choice of the shrinkage matrixD with an iterative form of the LRME is obtained. In
Section 4, a numerical example is presented and Section 5 covers an extensive simulation
study to illustrate the performance of estimators through estimated MSE (EMSE) sense.
Article ends with some concluding remarks.

2. Proposed Estimator—Linearized Ridge M-estimator

In this section, we propose a linearized ridge M-estimator (LRME) of unknown regression
parameters β of regression model given in Eq. (1.1). It is defined as

β̂LRME = (X′X + I )−1(X′X +QDQ′)β̂ME (2.1)

where Q is the matrix of eigenvectors (q1, q2, . . . , qp) corresponding to eigenvalues
λ1, λ2, . . . , λp of X′X matrix and D is the diagonal matrix of shrinkage parameters
(d1, d2, . . . , dp) where dj ∈ R, ∀j = 1, 2, . . . , p.

Gao and Liu (2011) studied the properties of the LRRE and recommend to use not
only theoretically but also in practice. However, this estimator is not robust to outliers in
Y , because it is obtained by shrinking a non-robust estimator (OLSE) with the shrinkage
matrix

(
X′X + I

)−1 (
X′X +QDQ′). Therefore, we define a new estimator which shrinks

the ME with the same shrinkage quantity. Thus, the proposed estimator will become a
stable estimator for the presence of both multicollinearity and outliers in the data. Using
the same motivation, we have studied the properties of the proposed estimator.

For simplicity, we use a canonical form of regression model for the further discussion
and study. The regression model given in Eq. (1.1) can be written in canonical form as

Y = Zα + ε (2.2)

where Z = XQ and α = Q′β. Then the LRME of α can be written as

α̂LRME = (�+ I )−1 (�+D) α̂ME (2.3)

where α̂ME is the ME of α in the canonical form. Note that, because of the relationα = Q′β,
any estimator α̂ of α has a corresponding β̂ = Qα̂ and MSE(β̂) = MSE(α̂) (see Sakallioglu
and Kaciranlar, 2008). Hence, it is sufficient to consider only a canonical form.

Before studying the properties like bias, variance and MSE of the proposed estimator,
one should consider the properties of the ME given in the following remark.
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Remark 2.1. Birkes and Dodge (1993) noted that ‘the distribution of the ME (α̂ME) of
α cannot be specified exactly, but for large n, under certain assumptions the distribution
is approximately normal with mean vector α and covariance matrix 
’. Arslan and Billor
(2000) studied the performance of LME using the asymptotic properties of ME. The
asymptotic unbiased estimate of 
 given by Arslan and Billor (2000) is Â2�−1 where
Â2 = s2 (n− p)−1 ∑n

i=1[ψ (ri/s)]2/[ 1
n

∑n
i=1 ψ

′ (ri/s)]2 and � = diag (λ1, λ2, . . . , λp) is
a matrix of eigenvalues of Z′Z (see for details Huber and Ronchetti, 2009).

Hence, considering the Remark 2.1, we obtain the expressions of bias, covariance, and
MSE of the LRME for large sample size as follows.

2.1. Bias

The bias of the LRME is given by

bias (α̂LRME) = E (α̂LRME) − α

= E
[
(�+ I )−1 (�+D) α̂ME

] − α

= (�+ I )−1 (�+D)α − α

= α + (�+ I )−1 (D − I )α − α

= (�+ I )−1 (D − I )α (2.4)

2.2. Covariance

The covariance of the LRME is expressed as

cov (α̂LRME) = cov((�+ I )−1 (�+D) α̂ME)

= (�+ I )−1 (�+D) cov (α̂ME) (�+D) (�+ I )−1

= (�+ I )−1 (�+D)
 (�+D) (�+ I )−1 (2.5)

2.3. MSE

The MSE of the LRME is as follows

MSE (α̂LRME) = tr(cov (α̂LRME)) + [bias (α̂LRME)]′ [bias (α̂LRME)]

= tr
{
(�+ I )−1 (�+D)
 (�+D) (�+ I )−1

}
+α′ (D − I ) (�+ I )−2 (D − I )α

MSE (α̂LRME) =
p∑
j=1

(λj + dj )2

(λj + 1)2

jj +

p∑
j=1

(dj − 1)2

(λj + 1)2
α2
j (2.6)

where 
jj is jth diagonal element of 
.
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3. Superiority of the LRME

The MSE criterion is widely used as a measure of closeness between the estimates and
the true values of the parameter. We use the MSE of the estimators for comparison
of the performance of various estimators. In the following subsections, we have obtained
the expressions for the difference in MSE of LRME and LRRE, ME, RME, JRME and
LME. The conditional superiority of LRME over the other estimators is developed. It is
observed that, under some conditions, the MSE of LRME is smaller than the MSE of other
estimators.

3.1. In the Presence of Multicollinearity

In this subsection, we compare the MSE of LRME with the MSE of the LRRE and the
condition under which the LRME shows smaller MSE than that of the LRRE is obtained.

Theorem 3.1. If 
jj < σ 2λ−1
j for every j , then MSE (α̂LRME) < MSE (α̂LRRE) for all

dj ∈, j = 1, 2, . . . , p.

Proof. The MSE of the LRRE is given by

MSE (α̂LRRE) = tr(cov (α̂LRRE)) + [bias (α̂LRRE)]′ [bias (α̂LRRE)]

= σ 2tr
{
(�+ I )−1 (�+D)�−1 (�+D) (�+ I )−1

}
+α′ (D − I ) (�+ I )−2 (D − I )α

= σ 2
p∑
j=1

(λj + dj )2

λj (λj + 1)2
+

p∑
j=1

(dj − 1)2

(λj + 1)2
α2
j (3.1)

Using Eqs. (2.6) and (3.1), the difference between the MSE of LRRE and LRME can
be given by

MSE (α̂LRRE) −MSE (α̂LRME) =
p∑
j=1

(λj + dj )2

(λj + 1)2

[
σ 2λ−1

j −
jj
]

(3.2)

Hence,

MSE (α̂LRRE) −MSE (α̂LRME) > 0

whenever

σ 2λ−1
j > 
jj, for all j = 1, 2, . . . , p.

When the problem of multicollinearity is severe, some of the λj ’s are too small. Con-
sequently, the above condition gets satisfied whenever the datasets with multicollinearity
and outlying observations are present in the data and the MSE of the LRME is smaller than
the MSE of the LRRE.
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3.2. In the Presence of Outlier

In this subsection, we compare the MSE of the LRME with the MSE of the ME. The
condition, under which the MSE of the LRME is smaller than that of the ME is obtained
and reported in the following theorem.

Theorem 3.2. If (1+2λj+dj )
(1−dj ) >

α2
j


jj
for all j = 1, 2, . . . , p, then MSE (α̂LRME) <

MSE (α̂ME).

Proof. The difference between the MSE of ME and LRME can be given by

MSE (α̂ME) −MSE (α̂LRME)

=
p∑
j=1


jj−
p∑
j=1

(λj + dj )2

(λj + 1)2

jj +

p∑
j=1

(dj − 1)2

(λj + 1)2
α2
j

=
p∑
j=1

[
1 − (λj + dj )2

(λj + 1)

]

jj+

p∑
j=1

(dj − 1)2

(λj + 1)2
α2
j

By some simplifications, it leads to,

MSE (α̂ME) −MSE (α̂LRME)

=
p∑
j=1

(1 − dj )

(λj + 1)2

{
(1 + 2λj + dj )
jj − (1 − dj )α

2
j

}
(3.3)

In order to makeMSE (α̂ME) > MSE (α̂LRME), we have (1+2λj+dj )
(1−dj ) >

α2
j


jj
for all j .

Hence the proof. �
3.3. In the Presence of Multicollinearity and Outlier

Three estimators namely, the RME, JRME and LME are considered in this subsection for
the purpose of comparison of MSE’s of these estimators with that of the LRME. The MSE
expressions of these estimators are as follows.

MSE (α̂RME) = tr (cov (α̂RME)) + [bias (α̂RME)]′ [bias (α̂RME)]

=
p∑
j=1

λ2
j

(λj + k)2

jj +

p∑
j=1

k2

(λj + k)2
α2
j (3.4)

MSE (α̂JRME) = tr (cov (α̂JRME)) + [bias (α̂JRME)]′ [bias (α̂JRME)]

=
p∑
j=1

(
1 − k2

(λj + k)2

)2


jj +
p∑
j=1

k4

(λj + k)4
α2
j (3.5)
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MSE (α̂LME) = tr (cov (α̂LME)) + [bias (α̂LME)]′ [bias (α̂LME)]

=
p∑
j=1

(λj + d)2

(λj + 1)2

jj +

p∑
j=1

(d − 1)2

(λj + 1)2
α2
j (3.6)

Based on these MSE expressions, we compare the MSE of the LRME with the MSE
of these estimators. The conditions under which the LRME shows smaller MSE than that
of the RME, JRME and LME are obtained in Theorem 3.3 as follows.

Theorem 3.3. (i) If dj < 1 − k(λj+1)
(λj+k) for everyj , then MSE (α̂LRME) < MSE (α̂RME).

(ii) If dj < 1 − k2(λj+1)
(λj+k)2 for everyj , then MSE (α̂LRME) < MSE (α̂JRME).

(iii) If each dj , j = 1, 2, . . . , p satisfy any one of the following condition

(a)
2(α2

j−λj
jj)

(
jj+α2
j )

− d < dj < d

(b) d < dj <
2(α2

j−λj
jj)

(
jj+α2
j )

− d then MSE (α̂LRME) < MSE (α̂LME).

Proof. Proof of the part (i)
The difference between the MSE of RME and LRME is given by

MSE (α̂RME) −MSE (α̂LRME)

=
p∑
j=1

[
λ2
j(

λj + k
)2 −

(
λj + dj

)2(
λj + 1

)2

]

jj +

p∑
j=1

[
k2(

λj + k
)2 −

(
dj − 1

)2(
λj + 1

)2

]
α2
j (3.7)

After simplifying (3.7), one can easily find that theMSE (α̂RME)−MSE (α̂LRME) > 0

when dj < 1 − k(λj+1)
(λj+k) for all j = 1, 2, . . . , p.

Proof of part (ii)
Consider the difference between the MSE of JRME and LRME as

MSE (α̂JRME) −MSE (α̂LRME)

=
p∑
j=1

⎡
⎣(1 − k2(

λj + k
)2

)2

−
(
λj + dj

)2(
λj + 1

)2

⎤
⎦
jj +

p∑
j=1

[
k4(

λj + k
)4 −

(
dj − 1

)2(
λj + 1

)2

]
α2
j

(3.8)
After some simplification, we observe that, MSE (α̂JRME) > MSE (α̂LRME) if dj <

1 − k2(λj+1)
(λj+k)2 for allj .

Note that, k(λj+1)

(λj+k) >
k2(λj+1)

(λj+k)2
. It clearly indicates that the MSE of LRME is less than MSE

of JRME whenever the MSE of LRME is less than MSE of RME.
Proof of part (iii)
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The difference between the MSE of LME and LRME can be given by

MSE (α̂LME) −MSE (α̂LRME)

=
p∑
j=1

[(
λj + d

)2 − (
λj + dj

)2
]


jj

(λj+1)2

+
p∑
j=1

[
(d − 1)2 − (

dj − 1
)2
]

α2
j

(λj+1)2

=
p∑
j=1

{(
d + dj + 2λj

)

jj + (

d + dj − 2
)
α2
j

}
(d−dj )
(λj+1)2

(3.9)

MSE (α̂LME) −MSE (α̂LRME) > 0

if (d + dj + 2λj )
jj + (d + dj − 2)α2
j > 0 and (d − dj ) > 0 for some or all j or

(d + dj + 2λj )
jj + (d + dj − 2)α2
j < 0 and (d − dj ) < 0 for remaining j .

After rearrangement of the terms, it can be written as

dj
(

jj + α2

j

) + (
d + 2λj

)

jj + (d − 2)α2

j > 0

and d > dj for some or all j or

dj
(

jj + α2

j

) + (
d + 2λj

)

jj + (d − 2)α2

j < 0

and d < dj for remaining j .
By simplification, we get

dj >
2
(
α2
j − λj
jj

)
(

jj + α2

j

) − d

and dj < d for some or all j or

dj <
2
(
α2
j − λj
jj

)
(

jj + α2

j

) − d

and dj > d for remaining j .
This implies that, the MSE (α̂LME) −MSE (α̂LRME) > 0 if

2
(
α2
j − λj
jj

)
(

jj + α2

j

) − d < dj < d

for some or all j or

2
(
α2
j − λj
jj

)
(

jj + α2

j

) − d < dj < d

for remaining j .
This completes the proof of Theorem 3.3.
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Remark 3.1 To obtain the LME, Arslan and Billor (2000) proposed a robust choice of d
as

d̂M = 1 − Â2

⎡
⎣ p∑
j=1

1

λj (λj + 1)
/

p∑
j=1

α2
MEj

(λj + 1)2

⎤
⎦ (3.10)

where Â2 = s2 (n− p)−1 ∑n
i=1 [ψ (ri/s)]2 /[ 1

n

∑n
i=1 ψ

′ (ri/s)]2, s = 1.4826 median |ei−
median (ei)|, ei = (Yi − Z′

i α̂ME) (see Huber and Ronchetti, 2009). Note that, it is not
guaranteed that the value of d̂M always lie between 0 and 1.

Below, we obtain the optimal value of D by minimizing the MSE of LRME. Also, an
iterative computational procedure is given to obtain the iterative LRME.

3.4. Robust Choice of D

The optimal values of d1, d2, . . . , dp are those which minimizes the MSE of LRME. To
obtain the optimal value of dj , j = 1, 2, . . . , p, we use the standard procedure.

Consider

g
(
d1, d2, . . . , dp

) = MSE (α̂LRME)

=
p∑
j=1

(
λj + dj

)2(
λj + 1

)2 
jj +
p∑
j=1

(
dj − 1

)2(
λj + 1

)2α
2
j (3.11)

Differentiate Eq. (3.11) with respect to dj and equate to zero, it follows that,

∂g
(
d1, d2, . . . , dp

)
∂dj

= 2
(
λj + dj

)
(
λj + 1

)2 
jj + 2
(
dj − 1

)
(
λj + 1

)2 α
2
j

Therefore,

∂g
(
d1, d2, . . . , dp

)
∂dj

= 0 ⇒ dj = α2
j − λj
jj


jj + α2
j

j = 1, 2, . . . , p (3.12)

Moreover,

∂2g
(
d1, d2, . . . , dp

)
∂di∂dj

=
{

2(
ii+α2
i )

(λi+1)2 when i = j

0 when i 
= j

Hence, ∂
2g(d1,d2,...,dp)

∂di∂dj
≥ 0 ∀ i = j = 1, 2, . . . , p. This implies that g(d1, d2, . . . , dp) is

minimum at dj = α2
j−λj
jj


jj+α2
j

, j = 1, 2, . . . , p.

After simplifying the expression of dj given in Eq. (3.12), one can easily get

dj = 1 − 1 + λj

1 +
(
α2
j /
jj

) (3.13)
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• From the expression given in Eq. (3.13), it is found that the value of each dj should
be less than 1 as 1+λj

1+(α2
j /
jj)

has lower bound 0.

• If λj < α2
j /
jj, then the corresponding dj lies between 0 and 1.

• If λj > α2
j /
jj, then the corresponding dj < 0.

Unfortunately, the value of dj depends on the unknown model parameters and so, for
the practical purpose, we need to replace these unknowns with their suitable estimates.
Hence, the estimator of dj is obtained as

d̂j = α̂2
MEj − λj 
̂jj


̂jj + α̂2
MEj

j = 1, 2, . . . , p (3.14)

An iterative method is also used to obtain the estimates of iterative LRME. In brief,
we explain the procedure as follows.

Consider,

β̂
(0)
LRME = β̂LRME|D=D(0) (3.15)

with D(0) = diag(d̂ (0)
1 , d̂

(0)
2 , . . . d̂ (0)

p ), where d̂ (0)
j = α̂2

MEj−λj 
̂jj


̂jj+α̂2
MEj

and 
̂jj = Â2λ−1
j . We con-

tinue to update β with β̂(0)
LRME = Qα̂

(0)
LRME to get a new updated LRME. After iterating

analogically, we get an iterative LRME as

β̂
(l)
LRME = β̂LRME|D=D(l) (3.16)

where, D(l) = diag(d̂ (l)
1 , d̂

(l)
2 , . . . d̂

(l)
p ) and d̂

(l)
j = (α̂(l−1)

LRMEj )2−λj 
̂jj


̂jj+
(
α̂

(l−1)
LRMEj

)2 , i = 1, 2, . . . , p, l =
1, 2, . . .

In order to implement the LRME in Section 4 and Section 5, we have used the estimate
of dj given in Eq. (3.14). Using the simulation study, it is found that the iterative LRME
has a very fast convergence rate.

4. Numerical Example

To illustrate the theoretical results and to evaluate the performance of various estimators,
a real data set on tobacco blends given by Myers (1990) is used. Arslan and Billor (2000)
analyzed this data to study the performance of LME and the other estimators. This data
contains 30 observations on four regressor variablesX1, X2, X3, and X4 with the response
variable Y that measure the amount of heat evolved from tobacco during the smoking
process.

It is observed that, the variance inflation factor (VIF) values for this data are 324.1412,
45.1728, 173.2577, and 138.1753. It reveals the severe problem of multicollinearity. Also,
two outliers in response variable (Y ) are pointed out by Arslan and Billor (2000). Hence,
the tobacco blends data suffers from the simultaneous occurrence of outliers and multi-
collinearity. For this dataset, the estimated MSE (EMSE) of each estimator is obtained by
replacing all unknown parameters in the corresponding theoretical MSE expression of that
estimator. For example, the EMSE of the LRME is obtained by using the expression given
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Table 1
Estimates and EMSE of estimators

Estimators α̂OLSE α̂LRRE α̂ME α̂RME α̂JRME α̂LME α̂LRME

α̂1 0.4857 0.4848 0.4888 0.4888 0.4888 0.4635 0.4883
α̂2 −0.6727 −0.5574 −0.6500 −0.6500 −0.6500 −0.4858 −0.5714
α̂3 −1.0746 −0.8784 −1.2319 −1.2319 −1.2319 −0.9172 −1.1143
α̂4 1.4436 1.0547 0.8841 0.8840 0.8841 0.6572 0.5488
EMSE 1.1032 0.7521 0.6960 0.6960 0.6960 0.4844 0.4197

in Eq. (2.6) as

EMSE =
p∑
j=1

(
λj + d̂j

)2

(
λj + 1

)2 Â
2/λj +

p∑
j=1

(
d̂j − 1

)2

(
λj + 1

)2 α̂
2
LRMEj

(4.1)

where d̂j is given in Eq. (3.14). We compare the LRME with the OLSE, LRRE, ME, RME,
JRME and LME in EMSE sense. The estimates of different estimators with their EMSE
are shown in Table 1.

From Table 1 it can be concluded that:

• The EMSE of LRME is smaller than the EMSE of other estimators. It reveals that
the LRME shows largest reduction in EMSE.

• The estimates of the OLSE and LRRE reveals that the presence of outliers and
multicollinearity affect the estimates of regression parameters.

• The estimates of unknown regression parameters and EMSE for ME, RME, and
JRME are equal. Hence, the performance of ME, RME, and JRME is same for this
data.

• The conditions obtained in Section 3 for the superiority of LRME hold for this data.

5. Simulation Study

In this section, we present a simulation study to evaluate the performance of proposed
estimator. To achieve the required degree of multicollinearity, the following simulation
design proposed by McDonald and Galarneau (1975) is used to generate regressor variables
as

xij = (
1 − ρ2

)1/2
ζij + ρζi(p+1) , i = 1, 2, . . . , n, j = 1, 2, . . . , p (5.1)

where ζij ’s are independent standard normal pseudo-random numbers, ρ2 is the correlation
between any two regressor variables. The (p =) 4 regressor variables are considered and n
observations on the response variable Y are generated using the regression model

Y = 10 + 4X1 +X2 + 6X3 + 2X4 + ε. (5.2)

where, ε ∼ Nn(0, σ 2I ). Note that, the choice of model given above is arbitrary and for
sake of illustration, it is used here. The outlier observations are introduced artificially in the
response variable by using the procedure (see Jadhav and Kashid, 2011) given as follows.
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Table 2
ASEVAR and ASESB of estimators

Without outlier With one outlier

ρ β̂ σ 2 = 1 σ 2 = 25 σ 2 = 100 σ 2 = 1 σ 2 = 25 σ 2 = 100

n = 30
0.9 OLSE ASEVAR 0.0043 0.0919 0.2567 0.4777 0.5102 0.5862

ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0031 0.0269 0.0615 0.0903 0.0906 0.0989

ASESB 0.0002 0.0045 0.0113 0.0180 0.0183 0.0201
ME ASEVAR 0.0044 0.0932 0.2611 0.5526 0.6663 0.8471

ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0042 0.0566 0.1013 0.4697 0.4179 0.4002

ASESB 0.0000 0.0038 0.0137 0.0002 0.0011 0.0022
JRME ASEVAR 0.0044 0.0870 0.2108 0.5468 0.6263 0.7272

ASESB 0.0000 0.0004 0.0044 0.0000 0.0001 0.0005
LME ASEVAR 0.0040 0.0736 1.6662 8.54E+04 6.10E+05 4.90E+05

ASESB 0.0002 0.1180 12.8339 5.75E+07 1.60E+09 1.29E+09
d̂#
M 1000 703 493 554 281 153

LMEd# ASEVAR 0.0040 0.0291 0.0653 0.0078 0.0137 0.0253
ASESB 0.0002 0.0119 0.0261 0.0027 0.0054 0.0088

LRME ASEVAR 0.0032 0.0276 0.0637 0.0087 0.0106 0.0126
ASESB 0.0002 0.0046 0.0116 0.0015 0.0019 0.0023

0.99 OLSE ASEVAR 0.0355 0.7854 2.2499 4.5109 4.8326 5.6789
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0148 0.1595 0.4375 0.7033 0.7806 0.8827
ASESB 0.0021 0.0309 0.0861 0.1471 0.1615 0.1833

ME ASEVAR 0.0363 0.8001 2.2999 7.9859 6.6982 9.1633
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.0285 0.2333 0.5597 4.8477 2.5814 3.2081
ASESB 0.0010 0.0409 0.1137 0.0041 0.0125 0.0191

JRME ASEVAR 0.0356 0.5734 1.4964 7.4119 5.2847 6.8620
ASESB 0.0000 0.0175 0.0571 0.0003 0.0037 0.0077

LME ASEVAR 0.0179 13.8958 123.6060 2.50E+07 3.52E+07 9.25E+06
ASESB 0.0071 231.4154 1.01E+04 1.35E+11 3.17E+11 5.98E+10
d̂#
M 943 473 417 444 254 165

LMEd# ASEVAR 0.0173 0.1613 0.4594 0.0316 0.0838 0.1605
ASESB 0.0049 0.0663 0.1872 0.0163 0.0322 0.0571

LRME ASEVAR 0.0150 0.1660 0.4553 0.0442 0.0602 0.0770
ASESB 0.0022 0.0320 0.0893 0.0088 0.0116 0.0145

0.999 OLSE ASEVAR 0.3526 7.7153 22.3229 45.0429 49.2971 55.4750
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0777 1.4699 4.2749 7.7741 7.9657 8.5516
ASESB 0.0149 0.2943 0.8544 1.5928 1.6400 1.7886

ME ASEVAR 0.3596 7.8720 22.6974 57.4998 55.7978 86.9774
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.1388 1.7702 5.0567 31.8218 19.3437 29.1870
ASESB 0.0185 0.3873 1.0907 0.0487 0.1195 0.1931

JRME ASEVAR 0.2916 4.8864 13.7915 51.7203 41.1841 63.7751
ASESB 0.0057 0.2024 0.5841 0.0050 0.0438 0.0845

LME ASEVAR 3.3599 1.03E+03 1.59E+03 4.37E+07 7.46E+07 7.75E+07
ASESB 31.6896 1.25E+05 1.02E+05 1.22E+11 3.91E+11 3.85E+11
d̂#
M 542 437 439 451 235 159

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)

Without outlier With one outlier

ρ β̂ σ 2 = 1 σ 2 = 25 σ 2 = 100 σ 2 = 1 σ 2 = 25 σ 2 = 100

LMEd# ASEVAR 0.0790 1.4560 4.3420 0.3583 0.6813 1.5305
ASESB 0.0324 0.6037 1.7790 0.1771 0.2885 0.6172

LRME ASEVAR 0.0812 1.5321 4.4095 0.4531 0.5816 0.7829
ASESB 0.0155 0.3040 0.8685 0.0907 0.1171 0.1529

0.9999 OLSE ASEVAR 3.5141 76.7675 223.5224 466.4939 491.7869 568.5576
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.6830 15.0387 42.5911 76.7899 80.8770 81.6369
ASESB 0.1355 2.9669 8.5278 15.8614 16.7343 17.1806

ME ASEVAR 3.5869 77.9804 228.0065 579.8510 605.2126 860.2789
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.8545 17.6523 50.5052 281.8503 242.1621 266.4587
ASESB 0.1790 3.9347 10.9946 0.5047 1.2503 2.2243

JRME ASEVAR 2.3093 47.8383 139.7290 495.1777 469.8509 603.1857
ASESB 0.0917 2.0920 5.9069 0.0574 0.4371 0.9622

LME ASEVAR 273.6035 4.52E+03 2.56E+04 7.62E+08 5.29E+08 5.25E+09
ASESB 2.17E+04 4.10E+05 3.43E+06 2.92E+12 1.59E+12 8.88E+13
d̂#
M 447 451 433 444 270 173

LMEd# ASEVAR 0.6892 15.5898 42.0141 3.5634 7.4437 16.3258
ASESB 0.2837 6.3166 17.3429 1.7641 2.9721 6.3012

LRME ASEVAR 0.7033 15.6570 44.5410 4.6181 5.8584 8.5160
ASESB 0.1380 3.0616 8.8885 0.9305 1.1422 1.6547

n = 50
0.9 OLSE ASEVAR 0.0024 0.0510 0.1442 0.2459 0.2778 0.3239

ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0019 0.0191 0.0369 0.0495 0.0533 0.0544

ASESB 0.0001 0.0029 0.0065 0.0096 0.0105 0.0110
ME ASEVAR 0.0024 0.0522 0.1473 0.6509 0.2398 0.3333

ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0024 0.0380 0.0670 0.6153 0.1802 0.1664

ASESB 0.0000 0.0018 0.0080 0.0000 0.0005 0.0013
JRME ASEVAR 0.0024 0.0509 0.1276 0.6501 0.2346 0.2970

ASESB 0.0000 0.0001 0.0016 0.0000 0.0000 0.0003
LME ASEVAR 0.0023 0.0229 0.3581 3.70E+05 3.11E+04 3.82E+05

ASESB 0.0001 0.0113 1.1358 4.54E+08 2.37E+07 1.475E+09
d̂#
M 1000 888 548 715 397 159

LMEd# ASEVAR 0.0023 0.0220 0.0423 0.0037 0.0090 0.0128
ASESB 0.0001 0.0076 0.0169 0.0010 0.0034 0.0058

LRME ASEVAR 0.0019 0.0195 0.0383 0.0052 0.0073 0.0083
ASESB 0.0001 0.0030 0.0067 0.0008 0.0012 0.0015

0.99 OLSE ASEVAR 0.0200 0.4351 1.2635 2.3310 2.5749 3.0369
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0101 0.0942 0.2541 0.3958 0.4335 0.4932
ASESB 0.0013 0.0181 0.0500 0.0810 0.0893 0.1019

ME ASEVAR 0.0205 0.4459 1.2903 5.2302 2.2697 3.3113
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.0177 0.1447 0.3128 3.9827 0.9198 0.9796
ASESB 0.0004 0.0248 0.0689 0.0007 0.0070 0.0121

JRME ASEVAR 0.0204 0.3419 0.8582 5.1094 1.8725 2.3867
(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)

Without outlier With one outlier

ρ β̂ σ 2 = 1 σ 2 = 25 σ 2 = 100 σ 2 = 1 σ 2 = 25 σ 2 = 100

ASESB 0.0000 0.0087 0.0332 0.0000 0.0022 0.0050
LME ASEVAR 0.0129 5.4266 48.6563 2.21E+07 6.85E+06 2.69E+06

ASESB 0.0026 70.5478 2.09E+03 7.66E+10 5.74E+10 1.17E+10
d̂#
M 999 514 415 599 247 143

LMEd# ASEVAR 0.0129 0.0941 0.2764 0.0155 0.0410 0.1010
ASESB 0.0026 0.0399 0.1135 0.0067 0.0180 0.0384

LRME ASEVAR 0.0103 0.0978 0.2623 0.0173 0.0304 0.0437
ASESB 0.0013 0.0186 0.0510 0.0032 0.0059 0.0081

0.999 OLSE ASEVAR 0.1979 4.3103 12.3912 22.7979 25.6685 30.2683
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0473 0.8126 2.3843 3.9627 4.2328 4.8167
ASESB 0.0089 0.1616 0.4748 0.8180 0.8673 1.0072

ME ASEVAR 0.2023 4.4211 12.7255 61.4494 21.9338 28.0873
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.0902 0.9416 2.6421 36.9321 6.8520 7.1481
ASESB 0.0104 0.2211 0.6480 0.0115 0.0660 0.1165

JRME ASEVAR 0.1751 2.7213 7.7349 56.6948 15.8073 18.6450
ASESB 0.0022 0.1161 0.3527 0.0010 0.0303 0.0575

LME ASEVAR 0.7087 1.57E+03 3.82E+02 7.66E+09 4.87E+07 1.09E+08
ASESB 2.9466 1.71E+05 1.90E+04 5.83E+14 2.85E+11 1.79E+12
d̂#
M 585 421 416 508 210 130

LMEd# ASEVAR 0.0468 0.8578 2.4414 0.1197 0.3767 0.8127
ASESB 0.0201 0.3588 1.0334 0.0583 0.1516 0.3588

LRME ASEVAR 0.0484 0.8504 2.4603 0.1362 0.2683 0.4089
ASESB 0.0091 0.1676 0.4860 0.0267 0.0531 0.0798

0.9999 OLSE ASEVAR 1.9786 42.2700 123.1427 230.3123 258.2842 295.7860
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.3855 7.9769 23.8499 39.2900 42.0808 46.2238
ASESB 0.0775 1.5890 4.7206 8.0856 8.6971 9.6184

ME ASEVAR 2.0264 43.2754 125.4728 591.0670 272.3938 295.3610
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.4734 8.9636 26.5415 326.8068 83.0566 78.3865
ASESB 0.1050 2.1803 6.4689 0.1210 0.6522 1.3010

JRME ASEVAR 1.3251 26.0572 75.8385 527.6826 194.5027 199.1760
ASESB 0.0527 1.1907 3.4579 0.0172 0.3101 0.6333

LME ASEVAR 296.5514 6.58E+03 8.66E+03 1.04E+10 1.03E+09 1.48E+08
ASESB 1.86E+04 1.46E+06 6.88E+05 1.20E+14 6.52E+12 5.19E+11
d̂#
M 429 416 435 486 196 135

LMEd# ASEVAR 0.3953 8.4799 24.5826 1.2531 4.0254 10.0493
ASESB 0.1676 3.6180 10.2417 0.6019 1.6802 3.8774

LRME ASEVAR 0.4022 8.4387 24.8891 1.3506 2.4498 4.6511
ASESB 0.0798 1.6785 4.8816 0.2647 0.4788 0.9137

n = 100
0.9 OLSE ASEVAR 0.0011 0.0246 0.0684 0.1048 0.1213 0.1494

ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LRRE ASEVAR 0.0010 0.0118 0.0207 0.0244 0.0258 0.0275

ASESB 0.0000 0.0015 0.0035 0.0044 0.0048 0.0055
ME ASEVAR 0.0012 0.0252 0.0700 0.2669 0.0603 0.1042

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)

Without outlier With one outlier

ρ β̂ σ 2 = 1 σ 2 = 25 σ 2 = 100 σ 2 = 1 σ 2 = 25 σ 2 = 100

ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RME ASEVAR 0.0012 0.0211 0.0411 0.2638 0.0510 0.0620

ASESB 0.0000 0.0006 0.0034 0.0000 0.0002 0.0006
JRME ASEVAR 0.0012 0.0250 0.0656 0.2669 0.0599 0.0978

ASESB 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001
LME ASEVAR 0.0011 0.0148 0.0481 1.39E+05 1.33E+02 3.61E+02

ASESB 0.0000 0.0036 0.0632 1.59E+08 1.44E+04 6.48E+04
d̂#
M 1000 992 693 857 701 290

LMEd# ASEVAR 0.0011 0.0149 0.0227 0.0018 0.0051 0.0059
ASESB 0.0000 0.0035 0.0093 0.0003 0.0016 0.0025

LRME ASEVAR 0.0010 0.0120 0.0209 0.0029 0.0054 0.0053
ASESB 0.0000 0.0016 0.0035 0.0004 0.0008 0.0009

0.99 OLSE ASEVAR 0.0095 0.2059 0.6013 0.9727 1.1313 1.4078
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0060 0.0491 0.1233 0.1732 0.2013 0.2334
ASESB 0.0005 0.0092 0.0244 0.0350 0.0407 0.0483

ME ASEVAR 0.0098 0.2109 0.6142 2.1696 0.6537 1.0007
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.0091 0.0880 0.1572 1.9566 0.2738 0.2630
ASESB 0.0001 0.0120 0.0347 0.0001 0.0040 0.0069

JRME ASEVAR 0.0097 0.1804 0.4308 2.1625 0.5589 0.7049
ASESB 0.0000 0.0027 0.0158 0.0000 0.0008 0.0031

LME ASEVAR 0.0079 0.7719 7.9268 3.43E+07 3.63E+05 1.22E+05
ASESB 0.0008 3.6105 112.355 3.44E+11 8.62E+08 1.47E+08
d̂#
M 1000 569 453 712 305 183

LMEd# ASEVAR 0.0079 0.0495 0.1247 0.0064 0.0263 0.0320
ASESB 0.0008 0.0215 0.0539 0.0020 0.0102 0.0145

LRME ASEVAR 0.0061 0.0508 0.1288 0.0066 0.0182 0.0252
ASESB 0.0006 0.0096 0.0251 0.0010 0.0033 0.0049

0.999 OLSE ASEVAR 0.0938 2.0446 5.8689 9.8479 11.2917 13.9890
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRRE ASEVAR 0.0279 0.4019 1.1838 1.7077 1.9036 2.2727
ASESB 0.0049 0.0802 0.2377 0.3502 0.3947 0.4730

ME ASEVAR 0.0966 2.1035 6.0232 27.2867 6.3359 8.7946
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.0574 0.4627 1.2555 18.0036 1.5887 1.8645
ASESB 0.0045 0.1161 0.3361 0.0024 0.0363 0.0612

JRME ASEVAR 0.0908 1.3643 3.7526 26.0038 4.2453 5.4684
ASESB 0.0004 0.0598 0.1822 0.0001 0.0179 0.0352

LME ASEVAR 0.0940 76.2581 1.42E+03 3.60E+09 6.91E+06 2.68E+07
ASESB 0.1472 3.16E+03 3.06E+05 8.88E+13 2.38E+10 3.87E+11
d̂#
M 746 419 432 446 212 179

LMEd# ASEVAR 0.0293 0.4190 1.1617 0.0324 0.1832 0.2643
ASESB 0.0118 0.1814 0.5003 0.0146 0.0825 0.1128

LRME ASEVAR 0.0287 0.4257 1.2378 0.0310 0.1256 0.2074
ASESB 0.0050 0.0846 0.2471 0.0059 0.0247 0.0409

0.9999 OLSE ASEVAR 0.9260 20.3834 58.2605 94.9885 109.2081 140.0409
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(Continued on next page)
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Table 2
ASEVAR and ASESB of estimators (Continued)

Without outlier With one outlier

ρ β̂ σ 2 = 1 σ 2 = 25 σ 2 = 100 σ 2 = 1 σ 2 = 25 σ 2 = 100

LRRE ASEVAR 0.1814 3.9007 11.3386 16.7707 18.9919 24.1932
ASESB 0.0365 0.7811 2.2750 3.4200 3.9128 4.9548

ME ASEVAR 0.9524 20.9470 59.7002 377.4422 63.1850 101.3495
ASESB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RME ASEVAR 0.2360 4.0166 11.8750 230.5320 12.5682 21.1476
ASESB 0.0514 1.0717 3.2486 0.0310 0.3707 0.6008

JRME ASEVAR 0.6636 12.4937 36.2461 344.7947 37.8859 62.7410
ASESB 0.0237 0.6162 1.8237 0.0080 0.2034 0.3322

LME ASEVAR 14.1861 1.48E+03 1.95E+03 1.18E+11 1.60E+07 3.63E+09
ASESB 237.0883 2.59E+05 1.06E+05 6.42E+15 2.67E+10 3.18E+14
d̂#
M 436 400 437 367 172 175

LMEd# ASEVAR 0.1733 4.0012 10.9630 0.3091 1.9067 2.2597
ASESB 0.0787 1.7132 4.7788 0.1396 0.8588 0.9917

LRME ASEVAR 0.1886 4.0459 11.9105 0.2551 1.2843 2.0431
ASESB 0.0378 0.8065 2.3676 0.0495 0.2582 0.4066

d̂#
M denote the number of times d̂M belongs to (0, 1) and the LMEd# denote the ASEVAR and

ASESB of LME based on the values of those d’s which satisfy the condition d̂M ∈ (0, 1).

Let e∗i , i = 1, 2, . . . , n be the absolute value of ith residual obtained from the least
squares fit. Next, arrange these values in increasing order of their magnitude such that e∗(1) ≤
e∗(2) ≤ . . . ≤ e∗(n). We introduce one outlier by multiplying actual value of Y corresponding
to e∗(n) by twenty. On the similar line, two outliers are introduced in the response variable Y
corresponding to e∗(n), e

∗
(n−1) and so on.

5.1. Comparison of Estimators

In this subsection, the above simulation experiment is replicated 1000 times for ρ = 0.9,
0.99, 0.999, 0.9999, sample size(n) = 30, 50, 100 and error variance

(
σ 2
) = 1, 25, 100

respectively. For each combination of n, ρ, and σ 2, the average of sum of estimated
variances (ASEVAR) and average of sum of estimated squared bias (ASESB) is obtained
by replacing the unknown parameters by their suitable estimates in the corresponding MSE
expression given in Section 2 and Section 3. For example, the ASEVAR and ASESB of
LRME is obtained by using the expression given in Eq. (2.6) as

ASEVAR = 1

1000

1000∑
i=1

p∑
j=1

(
λj + d̂j

)2

(
λj + 1

)2 Â
2/λj (5.3)

and

ASESB = 1

1000

1000∑
i=1

p∑
j=1

(
d̂j − 1

)2

(
λj + 1

)2 α̂
2
LRMEj

(5.4)
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Figure 1. Box plots of OLSE, LRRE, ME, RME, JRME, and LRME with 1 outlier.

Using the same technique, we obtain the ASEVAR and ASESB of OLSE, LRRE, ME,
RME, JRME and LME and are reported in Table 2. Note that, the LME is obtained without
considering the range bound of the estimate of d.

Table 2 indicate that,

• For without and with one outlier case and for any combination of n and σ 2, as degree
of multicollinearity (ρ) increases, the ASEVAR of each estimator goes on increases.

• For each replication with low degree of multicollinearity (ρ = 0.9) and smaller error
variance (σ 2 = 1), the value of d̂M lies in 0 and 1. But slight increase in ρ or σ 2

affects the d̂M estimator and the frequency of d̂M to lie in (0, 1) reduces.
• For without and with one outlier case, for any combination ofρ andσ 2, as sample size

increases, the ASEVAR of the OLSE, LRRE, LMEd# and LRME goes on decreases.
But for any combination of n and ρ, as error variance increases, ASEVAR of the
OLSE, LRRE, LMEd# and LRME goes on increases.
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Table 3
Descriptive statistics of EMSE’s of estimators for σ 2 = 100

ρ Estimator Mean Median SD QD

n = 50
0.9 OLSE 0.3207 0.3176 0.0877 0.0526

LRRE 0.0671 0.0611 0.0446 0.0314
ME 0.3240 0.0553 0.4527 0.2595
RME 0.1586 0.0344 0.2479 0.1136
JRME 0.2865 0.0497 0.4093 0.2231
LME 5.36E+07 0.5074 8.70E+08 4.08E+03
LMEd# 0.0190 0.0070 0.0253 0.0109
LRME 0.0092 0.0037 0.0155 0.0030

0.99 OLSE 3.0845 3.0578 0.9258 0.5896
LRRE 0.5814 0.5039 0.4258 0.2926
ME 3.1349 0.4052 4.6581 2.4810
RME 0.8580 0.1124 1.6689 0.5206
JRME 2.1862 0.2692 3.5392 1.6251
LME 9.42E+11 17.5531 2.35E+13 6.85E+04
LMEd# 0.1392 0.0319 0.2315 0.0714
LRME 0.0548 0.0137 0.1238 0.0163

0.999 OLSE 29.8001 29.5320 8.7529 5.4040
LRRE 5.7969 5.1320 4.2649 2.9787
ME 30.9913 6.7067 44.7174 24.9266
RME 8.0859 1.0130 20.1042 4.4535
JRME 20.8155 3.9466 35.8031 14.9738
LME 5.06E+09 392.7401 6.21E+10 2.11E+06
LMEd# 1.5744 0.3573 2.3581 1.1895
LRME 0.5464 0.1032 1.2958 0.1495

0.9999 OLSE 304.6856 300.4153 95.1655 57.9261
LRRE 61.3254 53.8122 42.3041 28.7499
ME 337.1994 87.1232 488.3154 258.6752
RME 81.8823 10.1306 170.5768 43.4390
JRME 219.6707 46.6097 361.7709 152.1898
LME 1.48E+11 3.82E+03 1.33E+12 2.54E+07
LMEd# 12.9488 5.1100 17.3153 8.7172
LRME 5.1813 1.1514 11.1360 1.7610

n =100
0.9 OLSE 0.1519 0.1543 0.0326 0.0183

LRRE 0.0338 0.0305 0.0218 0.0154
ME 0.1043 0.0238 0.1154 0.1011
RME 0.0636 0.0164 0.0726 0.0606
JRME 0.0983 0.0226 0.1090 0.0954
LME 8.13E+04 0.0344 1.20E+06 63.7344
LMEd# 0.0075 0.0023 0.0115 0.0025
LRME 0.0062 0.0030 0.0088 0.0025

(Continued on next page)
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Table 3
Descriptive statistics of EMSE’s of estimators for σ 2 = 100 (Continued)

ρ Estimator Mean Median SD QD

0.99 OLSE 1.4168 1.4483 0.3332 0.1793
LRRE 0.2826 0.2472 0.2046 0.1405
ME 0.9768 0.2914 1.0931 0.9431
RME 0.2712 0.0644 0.3833 0.2008
JRME 0.7038 0.2099 0.8284 0.6494
LME 1.60E+07 3.9899 2.73E+08 7.72E+03
LMEd# 0.0629 0.0187 0.0949 0.0341
LRME 0.0294 0.0080 0.0572 0.0091

0.999 OLSE 14.0989 14.3240 3.3405 1.9837
LRRE 2.9123 2.6666 2.0161 1.4101
ME 9.8044 2.2517 11.0366 9.7139
RME 2.0669 0.3490 3.2743 1.3404
JRME 6.1067 1.4803 7.6695 5.2710
LME 1.56E+10 54.5738 4.25E+11 1.19E+05
LMEd# 0.3624 0.1324 0.6303 0.1544
LRME 0.2591 0.0689 0.5157 0.0923

0.9999 OLSE 139.9973 142.6241 33.8215 19.5044
LRRE 27.4107 24.4642 19.9365 13.8322
ME 98.7998 25.2994 114.6741 92.8359
RME 20.5262 3.3328 34.9397 12.5489
JRME 60.3414 15.1822 78.5162 52.3301
LME 5.45E+09 588.5886 9.89E+10 7.64E+05
LMEd# 4.4088 1.4234 7.2430 1.8673
LRME 2.6433 0.7175 5.2797 0.9979

• The LRRE consistently shows smaller ASEVAR than that of the other estimators
(except LMEd#) for without outlier case with any combination of n, ρ and σ 2.

• For one outlier case, the ASEVAR and corresponding AMSE of the LRME is smaller
than that of the other estimators (except LMEd#). But, for larger error variance (σ 2 =
25, 100), the ASEVAR and corresponding average EMSE (AEMSE) of the LRME
is smaller than that of the LMEd#.

5.2. Comparison of EMSE of Estimators

The above simulation experiment is repeated 1000 times for one outlier case with n =
50 and 100, ρ = 0.9, 0.99, 0.999, and 0.9999 and σ 2 = 100. The EMSE’s of the OLSE,
LRRE, ME, RME, JRME, LME, and LRME are calculated by adding SEVAR and SESB
of corresponding estimators. The box plots of 1000 EMSE’s of the estimators are obtained
and shown in the following Figure 1. Some of the EMSE values of the LME are too high,
so the box plot of EMSE’s of the LME is not shown in Figurey 1.

Figure 1 clearly shows that, the performance of the LRME is superior than the perfor-
mance of the OLSE, LRRE, ME, RME and JRME for all values of n and ρ. It also reveals
that, the LRME consistently shows smaller EMSE as compare to the other estimators.
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In addition, the descriptive statistics like mean, median, standard deviation (SD) and
quartile deviation (QD) of the 1000 EMSE’s of the OLSE, LRRE, ME, RME, JRME, LME,
and LRME are obtained and reported in the Table 3.

Table 3 clearly indicates that the mean, median, SD and QD of the LRME is consistently
smaller than that of the other estimators for all combinations of n and ρ. Hence, the
performance of the LRME is good as compare to other estimators.

5.3. Comparison of EMSE for More Than One Outlier

The same simulation experiment used in the subsections 5.1 and 5.2 is repeated 1000 times
for all possible combinations of ρ = 0.9, 0.99, 0.999, 0.9999 and σ 2 = 1, 25, 100. For each
combination of ρ and σ 2 with n = 50, the EMSE of the OLSE, LRRE, ME, RME, JRME,
LME, and LRME is computed by introducing one, two and three outliers in the response
variable. The AEMSE ratio of the LRME over the all remaining estimators is obtained and
reported in Table 4.

From Table 4 it clearly seems that, for any degree of multicollinearity with different
number of outliers, the AEMSE ratio of the LRME over the OLSE, LRRE, ME, RME,
JRME and LME is less than one. Hence, the performance of the LRME is better as compare
to the other estimators for more than one outlier case.

6. Conclusion

In this article, we have introduced a new estimator for regression parameters to deal with
the problem of multicollinearity and outliers in the data. Some conditions are obtained
theoretically to study the superiority of LRME over different estimators in the MSE sense.
A Numerical example on real dataset is illustrated to support the superiority of proposed
estimator. Also, an extensive simulation study is carried out to evaluate the performance of
the LRME. It indicates that, the performance of the LRME is better than the OLSE, LRRE,
ME, RME, JRME and LME when the multicollinearity and outliers simultaneously present
in the data.
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The selection of relevant variables in the model is one of the important problems in 
regression analysis. Recently, a few methods were developed based on a model free 
approach. A multilayer feedforward neural network model was proposed for developing 
variable selection in regression. A simulation study and real data were used for evaluating 
the performance of proposed method in the presence of outliers, and multicollinearity. 
 

Keywords: Subset selection, artificial neural network, multilayer feedforward 
network, full network model and subset network model. 

 

Introduction 

The objective of regression analysis is to predict the future value of response 

variable for the given values of predictor variables. In the regression model, the 

inclusion of a large number of predictor variables leads to the problems such as i) 

decrease in prediction accuracy, and ii) increase in cost of the data collection 

(Miller, 2002). To improve the prediction accuracy of the regression model, one 

approach is to retain only a subset of relevant predictor variables in the model, 

and eliminate the irrelevant predictor variables. The problem of choosing an 

appropriate relevant set from a large number of predictor variables is called subset 

selection or variable selection in regression. 

In traditional regression analysis, the form of the regression model must be 

first specified, then fitted to the data. However, if a pre-specified form of the 

model is itself wrong, another model must be used. Searching for a correct model 

for the given data becomes difficult when complexity is present in the data. A 

better alternative approach in the above situation would be to estimate a function 

or model from the data. Such an approach is called Statistical Learning; Artificial 

mailto:tejustat@gmail.com
mailto:dnk_stats@unishivaji.ac.in
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Neural Network (ANN) and Support Vector Machine (SVM) are statistical 

learning techniques. 

ANNs have recently received a great deal to attention in many fields of 

study, such as pattern reorganization, marketing research etc. ANN is important 

because of its potential use in prediction and classification problems. Usually, 

ANN is used for prediction when form of the regression model is not specified. In 

this article, ANN is used for selection of relevant predictor variables in the model. 

Mallows’s Cp (Mallows, 1973) and Sp statistics (Kashid and Kulkarni, 2002), 

along with other existing variable selection methods, are suitable under certain 

assumptions with prior knowledge about the data. When no prior knowledge 

about the data is available, ANN is an attractive variable selection method 

(Castellano and Fanelli, 2000), because ANN is a data-based approach. ANN is 

used in this study for obtaining predicted values of the subset regression model. 

The criteria Cp and Sp are based on prediction values of subset models. Therefore, 

we propose modification in Cp and Sp based on predicted values of the ANN 

model. 

Mallows’s Cp (Mallows, 1973) is defined by 

 

  2
2

p

p

RSS
C n p


     (1) 

 

where p is the number of parameters in the subset regression model with p – 1 

regressors, RSSp is the residual sum of squares of the subset model, n is the 

number of data points used for fitting the subset regression model, and σ2 is 

replaced by its suitable estimates, usually based on the full model. In this study, 

the following cases are used. 

Case 1 

A simulation design proposed by McDonald and Galarneau (1975) is used for 

introducing multicollinearity in the regressor variables. It is given by 

 

    

1
22

1
1 , 1,2, , , 1,2, ,ij ij i J

X Z Z i n j J 


      

 

where Zij are independent standard normal pseudo-random numbers of size n, and 

ρ2 is the correlation between any two predictor variables. The response variable Y 

is generated by using the following regression model with n = 30 and ρ = 0.999: 
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1 2 31 4 5 0 , 1,2,...,30i i i i iY X X X i        

 

where εi ~ N(0,1). To identify the degree of multicollinearity, the variance 

inflation factor (VIF) is used (Montgomery, Peck, and Vining, 2006). For this 

data, the VIFs for the variables are 339.6, 572.5 and 350.1. These VIFs indicates 

the presence of severe multicollinearity in the data. We compute the value of the 

Cp statistic Cp(M) and report the results in Table 1. 

Case 2 

Data generated in Case 1 is used, and one outlier is introduced by multiplying the 

actual Y corresponding to the maximum absolute residual by 25. The value of the 

response variable Y = 8.2235 is replaced by Y = 205.5878. The value of the Cp 

statistic Cp(MO) is computed and reported in Table 1. 

Case 3 

The following nonlinear regression model is generated using the above 

Xi, i = 1,2,3 and εi which are generated in Case 1. The nonlinear regression model 

is 

 

  1 2 3exp 1 4 5 0 , 1,2,...,30i i i iY X X X i        

 

The values of the Cp statistic Cp(NL) are computed for the nonlinear regression 

model and reported in Table 1. 
 
 
Table 1. Values of Cp(M), Cp(MO), and Cp(NL). 

Regressors in subset model P Cp(M) Cp(MO) Cp(NL) 

X1 2 1.8617 3.0077 2.0726 

X2 2 2.2565 2.2510 1.0605 

X3 2 3.2585 1.9152 2.3498 

X1X2 3 2.2237 2.8740 2.0059 

X1X3 3 3.8518 3.2340 3.8492 

X2X3 3 4.1730 3.4448 3.0179 

X1X2X3 4 4.0000 4.0000 4.0000 

 
 

As seen in Table 1, the criterion Cp selects the wrong subset models for all 

the above-cited cases. The statistic fails to select the correct model in the presence 

of a) multicollinearity alone, b) both multicollinearity and outlier, and c) 
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nonlinear regression, because OLS estimation does not perform well in each case. 

Consequently, variable selection methods based on OLS estimator fail to select 

the correct model. 

Regression Model and Neural Network Model 

In general, the regression model is defined as 

 

  ,f X Y    (2) 

 

where f is any function of predictor variables X1, X2, …, Xk−1 and unknown 

regression coefficients β. If f is a non-linear function, then regression parameters 

are estimated by using nonlinear least squares method (or some other method). If f 

is linear, the regression model can be expressed as 

 

  Y X   (3) 

 

where Y is an n × 1 vector of response variables, X is a matrix of order n × k with 

1’s in the first column, β is a k × 1 vector of regression coefficients and ε is an 

n × 1 vector of random errors which are independent and identically distributed 

N(0,σ2I). The least squares estimator of β is given by (Montgomery et al., 2006) 

 

  
1ˆ 

 X X X Y    

 

The predicted value of the regression model is obtained by the fitted 

equation 

 

 ˆˆ Y X   

 

The prediction accuracy of the regression model depends on the selection of an 

appropriate model, which means the form of the function (f) must be specified 

before the regression analysis. If form of the model is not known, then one of the 

most appropriate alternative methods to handle this situation is artificial neural 

network. 
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Multilayer Feedforward Network (MFN)  

The MFN can approximate any measurable function to any desired degree of 

accuracy (Hornik, Stinchcombe, and White, 1989). This MFN model consists of 

an input layer, an output layer, and one or more hidden layer(s). We represent the 

architecture of MFN with one hidden layer consisting of J hidden nodes, and a 

single node in an output layer, as shown in Figure 1. A vector X = [X0, X1, …, 

Xk−1]' is the vector of k units in the input layer and Y is the output of the network. 
 
 

 
 
Figure 1. Multilayer feedforward network 

 

 
 

From Figure 1, each input signal is connected to each node in the hidden 

layer with weight wjm, m = 0,1,2,3,…,k – 1, j = 1,2,…,J, and hidden nodes are 

connected to a node in the output layer with weight vj, j = 1,2,…,J. The final 

output Yi for the ith data point is given by 

 

   1

2 11 0
1,2,...,

J k

i j jm imj m
Y g V g w X i n



 
    

 

where g1 and g2 denote activation functions used in the hidden layer and output 

layer respectively; it is not necessary that g1 and g2 are the same activation 

functions.  The above network model can be written as 
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  ,f XY   (4) 

 

where β = (v1, …, vJ, w0, w1, w2, …, wk−1), wm = (w1m, w2m, …, wJm), 

m = 0,1,2,…,k – 1 and f(X,β) is a nonlinear function of the inputs 

X0, X1, X2, …, Xk−1 and the weight vector β. If we add an error term in the above 

model (4), then it becomes a regression model as in Equation 2, where ε is the 

random error. 

The next step in ANN modeling is training the network. The purpose of 

training the network is to obtain weights in a neural network model using the 

training data. Various training methods or algorithms are available in the literature. 

The robust back-propagation method (see Kasko, 1992) is one such. First, two 

types of MFN models must be defined, namely the full MFN model and the 

subset MFN model, for proposing modification in Cp and Sp statistics. 

Full MFN and subset MFN model 

A full MFN model is constructed with input units X1, X2, …, Xk−1 and bias node 

X0 = −1. The MFN model in Equation 4 is a full MFN model. The network 

weights are obtained by training the network and the network output vector based 

on a full MFN model, as 

 

  ˆˆ ,f XY   (5) 

 

where ̂  is the estimated weight vector. 

A subset MFN model is constructed with a subset of input units 

XA = (X0, X1, X2, …, Xp−1)' of size p(p ≤ k) in the input layer. The subset network 

model is given by 

 

  ,A Af XY   (6) 

 

where X and β are partitioned as X = [XA : XB] and β = [βA : βB]. Similarly, the 

network output vector based on subset MFN model is 

 

  ˆˆ ,A Af XY   (7) 

 

where ˆ
A  is the estimated weight vector. 
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To implement the training procedure using network training algorithm, we 

need to select the number of hidden layers in the MFN and the number of hidden 

nodes in that hidden layer. This is discussed in the next section. 

Selection of Hidden Layer and Hidden Nodes 

The selection of learning rate parameter, initial weights and number of hidden 

layers in the MFN model and the number of hidden nodes in each hidden layer is 

an important task. The number of hidden layers is determined first. The network 

begins as a one-hidden-layer network (Lawrence, 1994). If the one-hidden-layer 

MFN network does not sufficient for training the network, then more hidden 

layers are added. In the MFN model, theoretically a single hidden layer is 

sufficient, because any continuous function defined on a compact set in Rn can be 

approximated by a multilayer ANN with one hidden layer with sigmoid activation 

function (Cybenko, 1989). Based on this result, we consider the single hidden 

layer MFN model with sigmoid activation function. 

The choice of number of hidden neurons in the hidden layer is also a 

considerable problem, and it depends on the data. Research has proposed various 

methods for selection of hidden nodes in the hidden layer (see Chang-Xue, Zhi-

Guang and Kusiak, 2005), as follows: 

 

 H1 = 2I + 1 (Hecht-Nelson, 1987) 

 H2 = (I + O)/2 (Lawrence and Fredrickson, 1998) 

 n/10 − I – O ≤ H3 ≤ n/2 − I – O (Lawrence and Fredrickson, 1998) 

 H4 = I log2n (Marchandani and Cao, 1989) 

 H5 = O(I + 1) (Lipmann, 1987) 

 

Here, I is the number of inputs, O is the number of output neurons, and n is the 

number of training data points. 

Variable Selection Methods and Proposed Methods  

In the classical linear regression, several variable selection procedures have been 

suggested by the researchers. Most methods are based on least squares (LS) 

parameter estimation procedure. The variable selection methods based on LS 

estimates of β fail to select the correct subset model in the presence of outlier, 

multicollinearity, or nonlinear relationship between Y and X. Here, we modified 

existing subset selection methods using MFN model for prediction. 
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It is demonstrated that the Mallows’s Cp statistic does not work well when 

assumptions are violated. Researchers have suggested some other methods for 

variable selection (see Ronchetti and Staudte, 1994; Sommer and Huggins, 1996). 

Also Kashid and Kulkarni (2002) have suggested a more general criterion, the Sp 

statistic for variable selection in cases of clean and outlier data. It can be defined 

as 

 

 
 

 

2

1

2

ˆ ˆ

2

n

ik ipi

p

Y Y
S k p





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

 (8) 

 

where ˆ
ikY  is the predicted value of the full model, ˆ

ipY  is the predicted value of the 

subset model based on M-estimator of the regression parameters, and k and p are 

the number of parameters in the full and subset model respectively. The σ2 is 

replaced by its suitable estimates, which usually consists of the full model. 

The subset selection procedure is same for both the methods. The Sp statistic is 

equivalent to the Cp statistic when LS method is used for estimating regression 

coefficients. The following suggests modification in both criteria using the 

complicity measure. 

MCp and MSp Criteria 

In a modified version of the Cp and Sp statistics, the network output (estimated 

values of response Y) is obtained by using the single hidden layer with a single 

output MFN model. 

The network outputs  ˆˆ ,ik iY f X   and  ˆˆ ,ip iA AY f X   denote outputs 

based on full MFN and subset MFN model, respectively. The residual sum of 

squares for the full and subset network models are defined as 

 

 
 

 

2

1

2

1

ˆ , and

ˆ

n

k i iki

n

p i ipi

RSS Y Y

RSS Y Y




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


  

 

The modified version of Cp and Sp are denoted as MCp and MSp. They are defined 

by 
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, , and

p

p

RSS
MC C n p


   (9) 
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 (10) 

 

where n is the number of data points and p is the number of inputs including bias 

node (Xo). ˆ
ikY  and ˆ

ipY  are the predicted values of Y based on the full and subset 

MFN models, respectively, C(n,p) is the penalty term, and σ2 is replaced by its 

suitable estimate if it is unknown. The motivation for proposing modified versions 

of Cp and Sp are as follows. 

In criterion MCp, we use two types of measures. The first term measures the 

discrepancy between the desired output and network output based on the subset 

MFN model. The smaller this value is, the closer to the desired output it is; the 

smallest value of this measure is smallest for the full model. Therefore, it is 

difficult to select the correct model by minimizing criterion. So, we add a 

complicity measure called the penalty function, comprised of only p, only n, or 

both n and p. 

In the second criterion MSp, we use sum of squared difference between 

network output of the full and subset MFN models. The smallest value indicates 

that a prediction based on the subset MFN model is as accurate as the full MFN 

model. When full MFN model is itself the correct model, this value is zero. It is 

difficult to select the correct model using the minimizing criterion. Therefore we 

added the penalty function similar to criterion defined in (9) and used the same 

logic for the selection of subset. The selection procedure for both methods is as 

follows. 

 

Step I: Compute the MCp for all possible subsets. 

Step II: Select the subset corresponding to the minimum value of MCp. 

Use the same procedure for MSp. 

Choice of Estimator of σ2 

An estimator of σ2 is required to implement the MCp and MSp criteria. In the 

literature of regression, various estimators of σ2 are available. What follows are 

estimators of σ2 used in MCp and MSp based on full network output, and a study of 

the effect of these estimators on the value of MCp and MSp. 
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1. 
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2.   
2

2

2
ˆ 1.4826median mediani ir r    

 

3.  
22

3
ˆ 1.4826median ir   

 

 

where n is the number of data points, k is the number of inputs in the full MFN 

model including bias node ˆ
i i ikr Y Y  , and ˆ

ikY  is the network output for the ith 

data point based on the full MFN model. 

Performances of MCp and MSp 

To evaluate the performance of MCp and MSp, we have used single hidden layer 

MFN model and robust back-propagation training method with sigmoid activation 

function in the hidden layer and output layer. In robust back-propagation, we use 

an error suppressor function s(e) by replacing the scalar squared error e (Kasko, 

1992), because s(e) = e2 is not robust. The following error suppressor functions 

are used in this study. 

 

1. E1 = s(e) = max(−c, min(c,e))  (Huber function) 

 (where c = 1.345 is bending constant) 

 

2. E2 = s(e) = 2e/(1+e2)   (Cauchy function) 

 

3. E2 = s(e) = tanh(e/2)   (Hyperbolic tangent function) 

 

The learning rate parameter (η) is selected by trial and error, and the number 

of hidden nodes in hidden layer is selected using the selection methods given 

earlier. The following seven penalty functions are used for computing MSp and 

MCp; some are available in the literature (Sakate and Kashid, 2014). 

 

1. 1 2P p   
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2.  2 log 2P p n    
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 
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4.  4 log 1P p n    

 

5. 5

2

1

pn
P

n p


 
  

 

6. 
 

6

2 1
2

1

p p
P p

n p


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 
  

 

7. 
7 logP p n   

 

The performance of the proposed methods is measured for different 

combinations of penalty functions (Pl) l = 1,2,…,7, selection methods of hidden 

nodes in the hidden layer (Hm) m = 1,2,…,5, and error suppressor functions 

(Eo) o = 1,2,3; these are denoted by (Pl, Hm, Eo). Three simulation designs are used 

for the evaluation of the performance of MSp and MCp. 

Simulation Design A 

The performance of proposed modified versions of Sp(MSp) and Cp(MCp) are 

evaluated using the following models with two error distributions. 

 

Model I: Y = β0 + β1X1 + β2X2 + β3X3 + ε, where β = (1,5,10,0), 

 

Model II: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4  + ε, where β = (1,5,10,0,0) 

The regressor variables were generated from U(0,1) and the error term was 

generated from N(0,1) and Laplace (0,1). The response variable Y was generated 

using Models I and II for sample sizes 20 and 30, respectively. This experiment is 

repeated 100 times and ability of these methods to select the correct model is 

measured using learning parameter (η) = 0.1 and 2

1̂ . The results are reported in 

Tables 2 through 5. 
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Table 2. Model selection ability of MSp and MCp in 100 replications for Model I of size 20 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 79 66   84 77   72 75   73 64   77 71 

P2 86 81 
 

92 82 
 

81 87 
 

84 77 
 

87 84 

P3 88 86 
 

94 90 
 

90 92 
 

89 86 
 

93 89 

P4 88 85 
 

94 88 
 

88 90 
 

87 81 
 

90 87 

P5 86 81 
 

92 85 
 

82 87 
 

85 79 
 

88 85 

P6 86 81 
 

92 85 
 

82 87 
 

85 79 
 

88 85 

P7 85 79 
 

92 82 
 

79 87 
 

82 77 
 

87 84 

                

Cauchy 

P1 78 58 
 

77 32 
 

76 52 
 

67 57 
 

63 69 

P2 91 71 
 

85 35 
 

83 72 
 

79 68 
 

80 76 

P3 93 79 
 

85 34 
 

86 77 
 

87 80 
 

84 83 

P4 92 74 
 

85 36 
 

84 77 
 

84 74 
 

83 81 

P5 91 71 
 

85 36 
 

83 72 
 

79 69 
 

82 76 

P6 91 71 
 

85 36 
 

83 72 
 

79 69 
 

82 76 

P7 91 70 
 

85 35 
 

82 72 
 

79 66 
 

79 75 

                

Hyperbolic 
Tangent 

P1 79 66 
 

74 77 
 

75 79 
 

75 79 
 

77 83 

P2 86 81 
 

86 84 
 

85 87 
 

85 87 
 

86 91 

P3 88 86 
 

91 89 
 

87 90 
 

87 90 
 

92 91 

P4 88 85 
 

88 86 
 

86 89 
 

86 89 
 

89 91 

P5 86 81 
 

86 84 
 

85 88 
 

85 88 
 

87 91 

P6 86 81 
 

86 84 
 

85 88 
 

85 88 
 

87 91 

P7 85 79   85 84   85 87   85 87   85 91 

                 

Laplace 

Huber 

P1 69 67 
 

75 66 
 

75 69 
 

77 34 
 

78 66 

P2 83 81 
 

86 80 
 

87 73 
 

89 36 
 

79 79 

P3 86 86 
 

91 84 
 

89 80 
 

94 35 
 

80 81 

P4 87 83 
 

88 82 
 

89 76 
 

93 36 
 

81 81 

P5 84 81 
 

86 80 
 

87 73 
 

91 36 
 

80 79 

P6 84 81 
 

86 80 
 

87 73 
 

91 36 
 

80 79 

P7 81 81 
 

86 77 
 

85 73 
 

88 35 
 

79 79 

                

Cauchy 

P1 74 54 
 

77 52 
 

68 67 
 

70 51 
 

71 62 

P2 83 75 
 

81 60 
 

80 77 
 

80 66 
 

78 74 

P3 86 85 
 

86 67 
 

84 80 
 

85 76 
 

80 81 

P4 86 84 
 

84 65 
 

82 79 
 

84 72 
 

79 78 

P5 84 77 
 

82 60 
 

80 77 
 

82 67 
 

78 74 

P6 84 77 
 

82 60 
 

80 77 
 

82 67 
 

78 74 

P7 83 74 
 

80 60 
 

79 77 
 

79 65 
 

75 73 

                

Hyperbolic 
Tangent 

P1 70 67 
 

76 69 
 

85 76 
 

85 76 
 

82 63 

P2 83 81 
 

82 82 
 

90 85 
 

90 85 
 

88 75 

P3 86 86 
 

87 88 
 

92 89 
 

92 89 
 

93 75 

P4 87 84 
 

86 87 
 

92 88 
 

92 88 
 

93 78 

P5 84 81 
 

83 83 
 

90 85 
 

90 85 
 

88 76 

P6 84 81 
 

83 83 
 

90 85 
 

90 85 
 

88 76 

P7 82 81   82 82   90 84   90 84   87 74 
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Table 3. Model selection ability of MSp and MCp in 100 replications for Model I of size 30 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 78 72  78 74  71 69  76 62  74 72 

P2 89 81  89 88  83 85  90 74  90 92 

P3 93 87  92 92  92 87  94 96  92 94 

P4 88 77  84 84  78 82  92 72  85 80 

P5 87 77  82 82  77 79  92 66  80 79 

P6 87 77  82 82  77 79  92 66  80 78 

P7 89 81  88 88  83 85  90 74  88 92 

                

Cauchy 

P1 72 59  74 71  77 59  76 52  70 50 

P2 85 73  81 88  84 74  86 68  86 76 

P3 94 82  87 93  88 81  94 80  94 80 

P4 80 66  83 83  83 69  84 62  80 68 

P5 79 65  82 79  81 68  84 60  80 66 

P6 79 65  82 79  81 68  84 61  80 66 

P7 84 73  81 88  84 74  86 68  86 68 

                

Hyperbolic 
Tangent 

P1 83 74  82 71  78 74  74 62  78 76 

P2 89 82  93 88  92 87  82 72  90 88 

P3 94 87  96 92  94 91  86 68  96 92 

P4 85 81  91 81  88 83  86 72  84 83 

P5 85 81  88 79  86 82  82 70  85 82 

P6 85 81  88 79  86 82  82 71  84 82 

P7 88 92  93 88  91 86  82 74  90 86 

                 

Laplace 

Huber 

P1 73 56  77 70  72 54  80 58  78 62 

P2 82 75  91 85  91 80  80 78  88 80 

P3 89 81  92 87  90 84  86 86  90 86 

P4 82 70  85 81  82 75  81 70  90 76 

P5 81 66  84 77  82 72  81 64  91 72 

P6 81 66  84 77  82 73  81 65  84 72 

P7 82 74  91 85  88 80  80 72  88 80 

                

Cauchy 

P1 62 33  74 47  77 66  76 56  77 60 

P2 78 43  83 66  86 78  86 66  85 76 

P3 87 58  87 73  90 80  92 80  87 84 

P4 75 40  81 58  84 77  80 62  84 70 

P5 73 38  80 56  82 75  78 62  84 66 

P6 73 38  80 56  82 75  78 62  84 66 

P7 77 43  83 64  86 78  86 66  84 74 

                

Hyperbolic 
Tangent 

P1 72 77  72 71  78 68  78 60  82 50 

P2 85 90  89 84  85 86  82 78  96 76 

P3 88 93  91 89  90 88  86 86  97 84 

P4 82 87  84 83  84 83  78 78  94 70 

P5 82 86  83 80  82 80  78 78  94 62 

P6 82 86  83 80  82 80  78 78  94 62 

P7 84 90  89 84  85 87  80 80  98 76 
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Table 4. Model selection ability of MSp and MCp in 100 replications for Model II of size 20 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 60 33 

 

60 43 

 

62 50 

 

62 38 
 

68 60 

P2 79 53 

 

77 59 

 

72 72 

 

76 60 
 

74 72 

P3 85 68 

 

83 78 

 

82 82 

 

85 72 
 

78 85 

P4 82 64 

 

83 65 

 

83 78 

 

80 78 
 

76 80 

P5 80 57 

 

79 60 

 

72 74 

 

76 64 
 

74 76 

P6 80 57 

 

79 60 

 

72 74 

 

76 64 
 

74 76 

P7 77 53 

 

76 59 

 

72 70 

 

76 58 
 

74 72 

                

Cauchy 

P1 54 40 

 

51 24 

 

60 22 

 

48 32 
 

60 43 

P2 68 40 

 

72 46 

 

70 38 

 

76 49 
 

70 56 

P3 72 43 

 

80 68 

 

82 50 

 

80 56 
 

76 65 

P4 71 45 

 

75 64 

 

80 46 

 

80 52 
 

76 63 

P5 69 51 

 

73 46 

 

70 38 

 

78 49 
 

78 58 

P6 69 63 

 

73 46 

 

70 38 

 

78 49 
 

78 58 

P7 66 50 

 

71 42 

 

68 38 

 

74 49 
 

70 56 

                

Hyperbolic 
Tangent 

P1 63 42 

 

69 60 

 

50 50 

 

61 44 
 

68 70 

P2 74 72 

 

78 72 

 

68 74 

 

88 65 
 

84 84 

P3 82 85 

 

82 78 

 

74 82 

 

88 78 
 

94 86 

P4 79 83 

 

82 74 

 

74 78 

 

88 78 
 

90 86 

P5 75 76 

 

78 74 

 

70 78 

 

88 78 
 

89 85 

P6 75 76 

 

79 74 

 

70 76 

 

88 68 
 

88 84 

P7 72 70 

 

79 74 

 

66 70 

 

89 68 
 

80 84 

                 

Laplace 

Huber 

P1 40 44 

 

54 32 

 

56 35 

 

68 48 
 

41 40 

P2 62 58 

 

68 52 

 

67 56 

 

76 72 
 

62 60 

P3 76 66 

 

88 78 

 

74 75 

 

74 65 
 

70 74 

P4 70 65 

 

72 63 

 

76 73 

 

82 76 
 

64 70 

P5 65 59 

 

68 52 

 

66 60 

 

76 72 
 

60 60 

P6 65 59 

 

68 52 

 

66 60 

 

76 72 
 

61 60 

P7 58 58 

 

67 50 

 

66 54 

 

76 70 
 

60 56 

                

Cauchy 

P1 59 29 

 

50 32 

 

52 32 

 

44 22 
 

44 49 

P2 61 40 

 

64 48 

 

74 50 

 

56 45 
 

64 62 

P3 64 53 

 

65 56 

 

78 60 

 

58 53 
 

73 72 

P4 65 50 

 

64 52 

 

76 58 

 

56 52 
 

67 68 

P5 64 43 

 

65 48 

 

74 50 

 

56 48 
 

64 64 

P6 64 43 

 

65 48 

 

75 50 

 

56 48 
 

64 64 

P7 61 40 

 

62 44 

 

75 46 

 

54 43 
 

62 58 

                

Hyperbolic 
Tangent 

P1 54 44 

 

58 44 

 

56 35 

 

52 38 
 

60 60 

P2 78 60 

 

78 70 

 

67 57 

 

60 53 
 

74 72 

P3 74 66 

 

84 76 

 

74 74 

 

61 56 
 

87 81 

P4 74 66 

 

83 76 

 

78 76 

 

62 54 
 

83 80 

P5 72 60 

 

78 70 

 

66 60 

 

61 52 
 

74 74 

P6 72 60 

 

78 70 

 

66 60 

 

61 52 
 

74 74 

P7 70 60 

 

78 78 

 

66 54 

 

61 50 
 

72 76 
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Table 5. Model selection ability of MSp and MCp in 100 replications for Model II of size 30 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 69 36 

 

64 55 

 

64 30 

 

72 46 
 

66 46 

P2 82 77 

 

83 64 

 

76 60 

 

84 70 
 

84 66 

P3 83 87 

 

86 73 

 

78 80 

 

86 76 
 

84 88 

P4 80 66 

 

80 63 

 

76 43 

 

82 64 
 

80 64 

P5 78 85 

 

72 60 

 

74 40 

 

78 60 
 

78 62 

P6 78 58 

 

72 61 

 

74 39 

 

78 60 
 

77 62 

P7 83 77 

 

82 64 

 

75 60 

 

84 70 
 

80 66 

                

Cauchy 

P1 45 25 

 

51 44 

 

52 30 

 

52 23 
 

44 34 

P2 68 58 

 

65 68 

 

71 60 

 

72 40 
 

62 52 

P3 79 68 

 

74 74 

 

78 66 

 

79 58 
 

78 62 

P4 56 51 

 

64 64 

 

68 44 

 

66 32 
 

54 42 

P5 57 38 

 

64 64 

 

66 45 

 

65 30 
 

46 42 

P6 57 38 

 

64 64 

 

66 44 

 

64 30 
 

46 42 

P7 66 54 

 

64 68 

 

70 58 

 

65 40 
 

62 52 

                

Hyperbolic 
Tangent 

P1 68 36 

 

70 57 

 

52 53 

 

72 44 
 

56 35 

P2 82 76 

 

80 78 

 

70 69 

 

84 72 
 

76 62 

P3 82 86 

 

80 86 

 

80 82 

 

86 76 
 

86 80 

P4 80 66 

 

78 72 

 

70 74 

 

81 64 
 

68 52 

P5 76 60 

 

76 68 

 

66 69 

 

80 62 
 

68 48 

P6 76 60 

 

76 69 

 

66 69 

 

79 62 
 

68 48 

P7 82 76 

 

81 76 

 

70 69 

 

84 70 
 

32 63 

                 

Laplace 

Huber 

P1 56 36 

 

54 48 

 

52 56 

 

48 52 
 

52 36 

P2 86 50 

 

72 70 

 

74 84 

 

70 74 
 

76 70 

P3 92 54 

 

78 74 

 

84 92 

 

74 80 
 

84 70 

P4 74 46 

 

66 64 

 

69 80 

 

66 72 
 

70 50 

P5 74 46 

 

64 64 

 

62 70 

 

64 72 
 

66 46 

P6 74 46 

 

63 64 

 

62 70 

 

64 72 
 

66 46 

P7 86 50 

 

72 68 

 

74 84 

 

68 74 
 

76 70 

                

Cauchy 

P1 32 36 

 

60 24 

 

50 34 

 

40 21 
 

36 21 

P2 52 60 

 

80 42 

 

60 62 

 

74 45 
 

56 48 

P3 64 74 

 

86 48 

 

74 70 

 

84 56 
 

64 60 

P4 40 54 

 

68 32 

 

52 54 

 

62 32 
 

45 36 

P5 40 52 

 

66 30 

 

50 48 

 

56 28 
 

42 32 

P6 40 52 

 

66 31 

 

50 48 

 

56 28 
 

42 33 

P7 48 60 

 

80 40 

 

61 62 

 

72 42 
 

42 42 

                

Hyperbolic 
Tangent 

P1 66 44 

 

52 46 

 

50 81 

 

60 46 
 

52 36 

P2 80 72 

 

80 66 

 

72 68 

 

81 70 
 

79 64 

P3 84 80 

 

84 79 

 

76 80 

 

86 79 
 

86 82 

P4 74 66 

 

71 62 

 

74 68 

 

81 66 
 

60 56 

P5 72 30 

 

64 56 

 

72 68 

 

75 62 
 

60 48 

P6 72 61 

 

64 56 

 

72 68 

 

76 62 
 

60 48 

P7 80 70 

 

76 66 

 

72 68 

 

83 70 
 

74 74 

 
 

From Tables 2 through 5, it can be observed that the overall performance of the 

MSp statistic is better than the MCp statistic. The performance of penalties P2 

through P7 is better than penalty P1, with H1 through H5, for Models I and II. 

Based on these simulations, it is recommended that any hidden node selection 

method be used with penalty P2 through P7 and Huber or Hyperbolic Tangent 

error suppressor function. 
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Simulation Design B 

The experiment was repeated 100 times using the simulation design A. The 

performance of MSp and MCp were compared with Mallows’s Cp for Models I and 

II with sample sizes of 20 and 30. MSp and MCp were computed using (P3,H1,E1), 

and learning parameters (η) = 0.1 and 
2

1̂ . The results are reported in Table 6. 

 
 
Table 6. Model selection ability of correct model for 100 repetitions 

 

Error 
Distribution 

Sample sizes 
Model I 

 
Model II 

MSp MCp Cp 
 

MSp MCp Cp 

Normal 
20 94 90 82   83 78 76 

30 92 92 79 
 

86 73 70 

         

Laplace 
20 91 84 81 

 
88 78 77 

30 92 87 84   78 74 75 

 
 

From Table 6, it is clear that the model selection ability of MSp and MCp is better 

than Cp (based on LS estimates) for sample sizes 20 and 30 for both error 

distributions. The model selection ability of MSp is uniformly larger than that of 

MCp or Cp. 

Simulation Design C 

Three further models based on MFN are used to evaluate the performance of MSp 

and MCp: 

 

Model III: 2 2 2 2

0 1 1 2 2 3 3 4 4Y X X X X           , 

 

Model IV: 
2 2 2 2

0 1 1 2 2 3 3 4 4Y X X X X           , 

 

Model V: 
2 2 2 2

0 1 1 2 2 3 3 4 4X X X X
Y e

        
  , 

 

where β = (1,5,10,0,0). 

In this simulation, Xi = (i = 1,2,3,4) were generated from U(0,1) and error 

was generated from N(0,1) and Laplace(0,1). The response variable Y was 

generated using Models III, IV and V. MSp and MCp were computed using (P1 –
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 P7,H1,E1), learning parameters (η) = 0.1 and 
2

1̂ . The ability of these methods to 

select the correct model over 100 replications is reported in Table 7. 
Table 7. Correct model selection ability over 100 replications 

 

 
 

Model III 
 

Model IV 
 

Model V 

Error 

distribution 

 
n = 20 n = 30 

 
n = 20 n = 30 

 
n = 20 n = 30 

Pn MSp MCp MSp MCp 
 

MSp MCp MSp MCp 
 

MSp MCp MSp MCp 

Normal 

P1 50 40 78 25   71 57 89 65   04 07 72 76 

P2 55 35 89 48 
 

78 70 91 73 
 

05 06 90 91 

P3 55 24 93 58 
 

83 78 88 60 
 

04 07 90 95 

P4 60 38 80 34 
 

80 76 82 56 
 

05 07 91 85 

P5 54 37 77 32 
 

79 72 83 56 
 

05 07 83 82 

P6 55 40 77 35 
 

79 72 85 65 
 

05 06 89 82 

P7 54 34 90 42 
 

76 69 90 70 
 

05 06 75 90 

                

Laplace 

P1 20 16 60 40 
 

15 16 89 70 
 

07 05 89 19 

P2 21 14 80 66 
 

12 14 93 80 
 

07 04 99 18 

P3 25 15 86 80 
 

7 11 82 65 
 

06 04 100 13 

P4 22 14 75 56 
 

12 15 80 52 
 

05 03 96 10 

P5 20 14 75 50 
 

13 16 80 52 
 

05 04 90 16 

P6 20 15 75 50 
 

13 16 90 70 
 

08 05 90 16 

P7 18 14 80 64   13 14 91 72   04 06 99 14 

 
 

From Table 7, it is clear that performance of MSp is better than MCp for all models 

and sample size 30. The performance of both criteria MSp and MCp is very poor 

for all models when error distribution is Laplace for small samples: the sample 

size must be moderate to large for selection of relevant variables when regression 

model is nonlinear. 

Performance of MCp and MSp in the presence of multicolinearity and 

outlier 

The performance of MSp and MCp is studied using the Hald data (Montgomery et. 

al, 2006). The variance inflation factors (VIF) corresponding to each term are 

38.5, 254.4, 46.9, and 282.5. The VIF values indicate that multicollinearity exists 

in the data. Consider the following cases: 

 

Case I: Data with multicolinearity (original data) 

Case II: Data with multicolinearity and single outlier (Y6 = 109.2 is 

replaced by 150) 

Case III: Data with multicolinearity and two outliers (Y2 = 73.4 and 

Y6 = 109.2 are replaced by 150 and 200 respectively) 
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MSp and MCp was computed for all possible subset models with different 

penalty functions and estimators of σ2. The selected subset model, by various 

combinations of (Pl,
2ˆ
s ), l = 1,2,...,7, s = 1,2,3 is reported in Table 8. For training 

the network, the simulation employs the Huber error suppressor function, number 

of hidden neurons H1, and learning parameter (η) = 0.1. The results are reported in 

Table 8. 
 
 
Table 8. Selected subset by MSp and MCp for Cases I – III 

 

  
Case I 

 
Case II 

 
Case III 

Statistic Pn 
2

1   
2

2  
2

3  

 

2

1   
2

2  
2

3  

 

2

1   
2

2  
2

3  

MSp 

P1 x1x2 x1x2 x1x2   x1x2 x1x2 x1x2   x1x2 x1x2 x1x2 

P2 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 

P3 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 

P4 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

P5 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

P6 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

P7 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

             

MCp 

P1 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x1x2 x1x4 x1x4 

P2 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x1x2 x1x4 x1x4 

P3 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x1x2 x1x4 x1x4 

P4 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x2 x1x4 x1x4 

P5 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x2 x1x4 x1x4 

P6 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x2 x1x4 x1x4 

P7 x1x4 x1x4 x1x4   x1x4 x1x4 x1x4   x2 x1x4 x1x4 

 
 

This data is analyzed in the connection of multicolinearity and outlier (see 

Ronchetti and Staudte, 1994; Sommer and Huggins, 1996; and Kashid and 

Kulkarni, 2002). They have suggested {X1, X2} is the best subset model for clean 

data and outlier data. The MSp statistic selects the same subset model for all 

combinations of (Pl,
2ˆ
s ), l = 1,2,...,7, s = 1,2,3, for Case I and II. In Case III, MSp 

fails to select correct model for penalty P4 – P7 with 
2

1̂ . Conclusion: the MSp 

statistic performs better than MCp for all cases with all penalty functions and 

estimators of σ2, excluding few cases. 
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Conclusion 

The proposed modified methods are model-free. It is clear that the performance of 

proposed MSp statistic is better than classical regression methods in the presence 

of multicollinearity, outlier, or both simultaneously. The MSp statistic selects the 

correct model in cases of nonlinear model for moderate to large sample sizes. 

From the simulation study, it can be observed that MFN is useful when there is no 

idea about the functional relationship between response and predictor variables. 

The MSp statistic is also useful for selection of inputs from a large set of inputs in 

a network model, in order to find which network output is closest to the desired 

output. 
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Appendix

See Tables 10.2 and 10.3.

Table 10.2

Monte Carlo rejection proportion, sample size m = 15, n = 18
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Distribution δ , δ U M WRS T  

Bivariate normal 0.00, 0.00 0.0545 0.046 0.0445 0.0485  

 0.10, 0.07 0.176 0.065 0.098 0.3875  

 0.30, 0.10 0.3885 0.0905 0.145 0.7405  

 0.70, 0.50 0.8995 0.367 0.81 1  

 1.20, 1.00 0.99 0.659 0.9995 1  

 2.40, 3.00 1 0.9375 1 1  

BVN mixture P = 0.5 0.00, 0.00 0.055 0.0505 0.0475 0.0505  

 0.10, 0.07 0.2115 0.068 0.066 0.112  

 0.30, 0.10 0.4735 0.152 0.1725 0.213  

 0.70, 0.50 0.8975 0.523 0.845 0.8705  

 1.20, 1.00 1 0.855 1 1  

 2.40, 3.00 1 0.9995 1 1  

BVN mixture P = 0.9 0.00, 0.00 0.047 0.0495 0.0475 0.044  

 0.10, 0.07 0.295 0.067 0.061 0.0615  

 0.30, 0.10 0.546 0.152 0.125 0.135  

 0.70, 0.50 0.9575 0.447 0.687 0.682  

 1.20, 1.00 0.9985 0.798 0.9975 0.995  

 2.40, 3.00 1 0.9995 1 1  

1 2
2
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Distribution δ , δ U M WRS T  

Type VII 0.00, 0.00 0.0515 0.0515 0.0445 0.0495  

 0.10, 0.07 0.266 0.0725 0.154 0.098  

 0.30, 0.10 0.699 0.193 0.49 0.5965  

 0.70, 0.50 1 0.8855 0.9985 1  

 1.20, 1.00 1 0.9885 1 1  

 2.40, 3.00 1 0.999 1 1  

Type II 0.00, 0.00 0.0455 0.035 0.051 0.039  

 0.10, 0.07 0.393 0.058 0.1505 0.1515  

 0.30, 0.10 0.785 0.2105 0.5135 0.716  

 0.70, 0.50 1 0.685 1 1  

 1.20, 1.00 1 0.7655 1 1  

 2.40, 3.00 1 0.8655 1 1  

Population 6 0.00, 0.00 0.05 0.0535 0.0585 0.044  

 0.10, 0.07 0.5935 0.069 0.519 0.1825  

 0.30, 0.10 0.891 0.0705 0.8635 0.714  

 0.70, 0.50 1 0.2755 1 1  

 1.20, 1.00 1 0.4225 1 1  

 2.40, 3.00 1 0.5110 1 1  
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Distribution δ , δ U M WRS T  

Population 7 0.00, 0.00 0.053 0.0535 0.049 0.0495  

 0.10, 0.07 0.2135 0.071 0.062 0.0575  

 0.30, 0.10 0.368 0.1165 0.1115 0.105  

 0.70, 0.50 0.7785 0.3495 0.422 0.4645  

 1.20, 1.00 0.9735 0.803 0.927 0.9605  

 2.40, 3.00 1 1 1 1  

Table 10.3

Monte Carlo rejection proportion, sample size m = 25, n = 28
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Distribution δ , δ U M WRS T  

Bivariate normal 0.00, 0.00 0.0525 0.046 0.0445 0.0485  

 0.10, 0.07 0.0905 0.0585 0.058 0.183  

 0.30, 0.10 0.3855 0.0905 0.145 0.7405  

 0.70, 0.50 0.888 0.367 0.81 1  

 1.20, 1.00 1 0.659 0.9995 1  

 2.40, 3.00 1 0.9375 1 1  

BVN mixture P = 0.5 0.00, 0.00 0.0535 0.0505 0.0445 0.05  

 0.10, 0.07 0.1715 0.0725 0.075 0.0815  

 0.30, 0.10 0.387 0.2325 0.2395 0.347  

 0.70, 050 1 0.736 0.948 0.991  

 1.20, 1.00 1 0.993 1 1  

 2.40, 3.00 1 1 1 1  

BVN mixture P = 0.9 0.00, 0.00 0.045 0.051 0.058 0.0515  

 0.10, 0.07 0.1655 0.0785 0.0795 0.0775  

 0.30, 0.10 0.381 0.2085 0.1965 0.2375  

 0.70, 0.50 0.995 0.5915 0.833 0.9165  

 1.20, 1.00 1 0.9105 1 1  

 2.40, 3.00 1 1 1 1  

1 2
2
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Distribution δ , δ U M WRS T  

Type VII 0.00, 0.00 0.0445 0.0425 0.047 0.0525  

 0.10, 0.07 0.4095 0.0725 0.3285 0.2525  

 0.30, 0.10 1 0.353 0.6985 0.9445  

 0.70, 0.50 1 0.9995 1 1  

 1.20, 1.00 1 1 1 1  

 2.40, 3.00 1 1 1 1  

Type II 0.00, 0.00 0.048 0.046 0.043 0.046  

 0.10, 0.07 0.3205 0.0835 0.1925 0.219  

 0.30, 0.10 1 0.416 0.611 0.914  

 0.70, 0.50 1 0.825 1 1  

 1.20, 1.00 1 0.858 1 1  

 2.40, 3.00 1 0.9985 1 1  

Population 6 0.00, 0.00 0.0506 0.057 0.049 0.051  

 0.10, 0.07 0.899 0.0685 0.7225 0.275  

 0.30, 0.10 1 0.0975 0.921 0.8975  

 0.70, 0.50 1 0.2345 1 1  

 1.20, 1.00 1 0.4775 1 1  

 2.40, 3.00 1 0.5655 1 1  
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Distribution δ , δ U M WRS T  

Population 7 0.00, 0.00 0.051 0.0465 0.047 0.0585  

 0.10, 0.07 0.323 0.0715 0.0655 0.0725  

 0.30, 0.10 0.536 0.2005 0.125 0.145  

 0.70, 0.50 0.941 0.604 0.6025 0.762  

 1.20, 1.00 0.999 0.9815 0.99 0.9995  

 2.40, 3.00 1 1 1 1  
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1. 	 INTRODUCTION
Today, we leave in an era surrounded by digital sea of 

information. Owing to the availability of vast array of unfiltered 
information on a given topic, the process of identifying and 
selecting peculiar e-information has become complex. In this 
circumstance E-Information literacy directs the users towards 
authentic and reliable sources of information available online 
useful for their informed judgements against the quest for 
information. E-Information literacy is the ability to properly 
use and evaluate electronic resources, tools and services and 
apply it for lifelong learning process. E-information literacy 
among the university teachers contributes towards their 
learning process and brings in overall change in the way how 
they collect and use information. 

The present study intends to define the e-information 
literacy rank amongst the university teachers in tech savvy 
environment considering their awareness, use and retrieval of 
e-information from e-resources in the form of an index value. 
E-information literacy index is a statistical measure used to 
determine how university teachers are making best use of 
e-information for their teaching and research purposes. The 
index values were determined against the responses given by 
teachers for proposed and defined clusters of components/
indicators mentioned in Appendix A. The exercise helped to 
enlist the qualities of e-information literate teachers in the vast 

and changing digital sea of information. It has been found 
that the formulated index values differ amongst teachers and 
the universities under study depending upon their ability, 
performance in regard to the use and searching techniques 
applied for getting e-information.    

2.	 LITERATURE REVIEW 
Hargittai1 recommend for the creation of an index variable 

as proxies for web-oriented digital literacy measures on 
Internet use and methodology based on verifying the validity 
of the measures derived from their relationship with actual skill 
measures. She again revisited her survey measures with new 
terms in order to assess the change in digital literacy measures 
of the respondents and found discrepancy older Internet terms 
and new web-based concepts thus resulting in change in the 
index values2. Thornbush3 suggested S-E index that provides 
a broader classification of weathering processes based on 
visible surface forms in the field of archaeogeomorphological 
research. Katz & others4 conducted a survey to measure the 
cumulative, holistic impact of discrete ICT (Information and 
Communication Technologies) and a composite digitisation. 
An index was developed based on six overarching components, 
viz. affordability, infrastructure investment, network access, 
capacity, usage, and human capital. The findings showed 
that proper ICT infrastructure and attention towards digital 
technology usage is required for better flow and awareness 
of digital literacy. Alguliyev & Others5 explore an index for 
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evaluating the quality of research output of researchers with 
the 25 indices which shows that the weighted index may serve 
as a supplement to h-index and its variants. Sahoo6 propose 
the I-index which states that an author’s percentage shares in 
the total citations that his/her papers have attracted. The index 
is useful to know comprehensive idea of an author’s overall 
research performance.

3. 	 OBJECTIVES
The core objectives of the study :

(i)	 To know the level of awareness of e-resources and 
searching techniques applied by the university teachers in 
retrieving e-information

(ii)	 To study the availability of ICT facilities for the use of 
internet services by the university teachers; and

(iii)	 To formulate an e-information literate index of university 
teachers.

4. 	 METHODOLOGY
For the present study, descriptive method of research 

has been used. The data was collected through structured 
questionnaire distributed to targeted sample of 360 
university teachers of 43 different departments working in 
the 10 state universities of Maharashtra, India in the faculties 
of sciences, social sciences and humanities (languages). A total 
of 347 teachers responded (96.38 per cent) to the survey. Their 
literacy levels were tested based on their self-perceived skills 
and skills learnt with the help of others.

4.1 	Methodology Used
Keeping in mind the search for e-information, access 

and retrieval techniques applied by a normal user, a common 
strategy in terms of methodological (measuring) indicators 
were suggested that defines the qualities of e-information 
literate user with an index value against suggested cut-off value. 
These methodological indicators were applied for the targeted 
group of teachers working in the universities under study. The 
proposed index is based on analysis of indicators against the 
clusters which results in certain startling outcomes. 

The suggested clusters and their indicators may also be 
applied to other teachers working in different disciplines /
universities by changing the clustered framework in regard to 
the ICT advancement and its searching techniques. To formulate 
an e-information literacy index of university teachers a series 
of questions were designed which comprised of 65 indicators 
comprising of tick marked and five point scale questions, 
which were equally weighted (0.33) Table 1 and grouped in 
3 clusters of components viz. Awareness of e-resources (23 
indicators); Availability of ICT facilities and Use of Internet 
Services (14 indicators) and the search techniques to retrieve 
e-information (28 indicators) to measure the e-information 
literate characteristics of the teachers, enlisted in Appendix A. 
The equal weight is calculated as 1/3 = 0.33 to represent the 
index value as ‘0’ and ‘1’ receptively. The resulted measures 
depend on the aspects related to e-information awareness and 
use, ICT facilities and searching skills which help in assessing 
their e-information literacy skills.

The proposed measuring indicators were tested with 

responses given by the university teachers. However, before 
calculating the index except tick marked questions all the five 
point question response values were converted between 0 and 
1 as 0, 0.25, 0.50, 0.75 and 1 in order to show the similarity that 
will be useful for calculating an index by proposing a cut-off 
value at 0.5. 

Table 1. Weightage criteria 

Components Weightage 
A.    Awareness of e-resources
        [23 Indicators]

0.33 [0.33/23=
@0.0143/ per Question]

B.     Availability of ICT facilities 
and use of internet services [14 
Indicators]

0.33 [0.33/14=
@0.023/ per Question]

C.     Searching techniques to retrieve 
e-information [28 Indicators]

0.33 [0.33/28=
@0.011/ per Question]

Table 2. E-information literate index of the teacher

A B C D E F G 
(Index)

H (Literate/ 
Illiterate)

10 10 13.25 0.4348 0.7143 0.4732 0.5408 * 1

*1 = Literate and 0 = Illiterate

Table 3. Summary of an Index

Statistics Value
Mean 0.5381
Standard error 0.0091
Median 0.5527
Mode 0.7222
Standard deviation 0.1704
Sample variance 0.0290
Kurtosis -0.4425
Skewness -0.2648
Range 0.8401
Minimum 0.0766
Maximum 0.9167
Sum 186.7232
Count 347.0000

As a sample, the index of first teacher was calculated in 
the following way:

A = Sum of response value of first component  
B = Sum of response value of second component 
C = Sum of response value of third component 
D = A/23,  E= B/14, F= C/28 
G = Index (Average of D, E and F)
H = The first teacher suppose to be e-information literate 

considering cut-off value at 0.5 value and the index is above 
cut-off value. 

Accordingly, an index was calculated for all the teachers 
under study (shown in histogram) to represent whether they are 
e-information literate or illiterate.

 It is clear from Fig. 1 and Table 3 the lowest index observed 
was 0.0766 and highest was 0.9167. Majority of the teachers 
are having e-information literacy index between 0.3 and 0.8. 
The index level was highest between the ranges 0.6 and 0.7. 
Out of 347 respondents, 23% (79) of university teachers are 
having e-information literacy index between 0.6 and 0.7. About 
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74% (257) teachers are having e-information literacy index 
between 0.4 and 0.8. It has been found that the distribution of 
e-information literacy index is not symmetric owing to differing 
skill levels of teachers. Further, e-information literacy index 
has negatively skewed and it shows relatively flat distribution. 
210 (60.52%) teachers were found to be e-information literate 
and remaining 137 (39.48%) were not e-information literate. 

5. 	 FINDINGS
From Tables 4 and 5, we may draw following findings; 

	 It is found that 210 (60.52%) teachers were e-information 
literate based on index value. 

	 When looked across the disciplines of sciences, social 
sciences and arts and humanities, it is proved that Science 
faculties (0.5835) are more e-information literate than 
Social Science (0.5427) and Arts and Humanities (0.4616) 
faculties.

	 From the gender based analysis, it was found that the 
index is high in case of female teachers (0.5516) than the 
male teachers (0.5309).

	 In addition, from the designation wise analysis it was 
found that index for Assistant Professors was highest 
(0.5621) followed by Professors (0.5338) and Associate 
Professors (0.4975). 

Table 4. E-Information literate Index ratio

Index

Faculty Science 0.5835
Social Science 0.5427

Arts and Humanities 0.4616
Gender Female 0.5516

Male 0.5309
Designation Assistant Professor 0.5621

Associate Professor 0.4975
Professor 0.5338

 Regarding university wise e-information literacy index, 

Figure 1.	 Histogram of an e-information literacy index of 
teachers.

Table 5. University wise e-information literate Index ratio

University Index

Sant Gadge Baba Amravati University, Amravati 0.5865

Dr Babasaheb Ambedkar Marathwada Uni, Aurangabad 0.4324

North Maharashtra University, Jalgaon 0.5645
University of Mumbai, Mumbai 0.5466
Rashtrasant Tukadoji Maharaj Nagpur Uni, Nagpur 0.4978
Swami Ramanand Teerth Marathwada Uni, Nanded 0.5716
University of Pune, Pune 0.5274
Shivaji University, Kolhapur 0.6093
SNDT (Smt. Nathibai Damodar Thackersey) Women’s 
University, Mumbai 0.5097

Solapur University, Solapur 0.5338
Grand Total 0.5381

it was observed that the e-information literate index 
was higher in case of Shivaji University, Kolhapur 
(0.6093), followed by Sant Gadge Baba Amravati 
University, Amravati (0.5865), Swami Ramanand 
Teerth Marathwada University, Nanded (0.5716), North 
Maharashtra University, Jalgaon (0.5645), University of 
Mumbai, Mumbai (0.5466), Solapur University, Solapur 
(0.5338), University of Pune, Pune (0.5274), SNDT (Smt. 
Nathibai Damodar Thackersey) Women’s University, 
Mumbai (0.5097), Rashtrasant Tukadoji Maharaj Nagpur 
University, Nagpur (0.4978), Dr Babasaheb Ambedkar 
Marathwada University, Aurangabad (0.4324).
Thus from the above detailed explanations it is revealed 

that depending upon the ICT/self skills of university teachers in 
handling e-information, awareness about different e-resources, 
tools and techniques for searching, accessing and retrieving 
e-information either from the internet or from subscribed 
e-resources and availability of sufficient infrastructure at 
the universities, the e-information literacy index of teachers 
calculated varies from teacher to teacher amongst the faculties 
and universities. The awareness and use of Web 2.0 along 
with the internet services by the university teachers was an 
additional verifying criteria used to measure the e-information 
literacy level of the teachers in terms of an index value.  

6. 	 CONCLUSIONS
The difference in e-information literacy index among 

the institutions and groups may be attributed to the efforts 
taken by each of the universities in building the required ICT 
infrastructure, training teachers in the effective retrieval and use 
of e-information and teachers self skills. The poor index value 
of university teachers needs to be accounted with sufficient 
awareness campaigns, ICT facilities and online training about 
searching techniques by the universities/ university libraries. 
Further academic/learning and research tasks of the university 
teachers may be strengthened by arranging discipline specific 
user awareness programmes and also by allocating certain 
hours per week in the time-table especially for searching and 
seeking e-information from different sources. This also may be 
made as part of the continued education programme for faculty 
members to become independent learners.
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Appendix A
  

Measuring indicators for E-Information Literacy of the Teacher

Components Indicators Type of 
Questions

Weightage 

A. Awareness of 
e-resources

 

Citation Indexes: Web of Science [SCI, SSCI, AHCI] SCOPUS etc1.	
Digital Libraries/E-Print Archives/Institutional Repositories2.	
Discussion forums/ Groups3.	
E-Books4.	
E-Journals (including Open Access/Free Journals)5.	
Electronic Abstracting and Indexing Databases 6.	
Electronic Theses and Dissertations 7.	
E-Newspapers8.	
General Search Engines 9.	
Journal contents alert services10.	
Scholarly Search Engines 11.	
Subject Gateways and portals12.	
Subject Specific Search Engines 13.	
E-resources from INFLIBNET consortium 14.	
Open access online databases/resources15.	
Web 2.0 tools- Blogs16.	
Chatting 17.	
Micro-blogs [Twitter]18.	
Phone 19.	
Reference management tools like Zotero, Mendeley etc20.	
RSS feeds21.	
Social Networking sites 22.	
Wikis 23.	

All Tick  
[√ ] 
Marked 
questions 

0.33
[0.33/23=
@0.0143/ per 
Question]
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B. Availability 
of ICT 
facilities 
and use of 
internet 
services

 

Computer 1.	
Internet connection2.	
Multimedia Projector3.	
Photocopying Machines4.	
Printer5.	
Scanner/Fax6.	
CD-ROM/DVD databases7.	
Communication i.e. e-mail, chatting, phone etc8.	
Downloading information i.e. articles, reports, forms etc9.	
Links to abstract, Full Text, Citation (reference) and other useful e- resources in 10.	
the field
Listening to music and watching videos (Ex: You tube)11.	
Reading online newspapers, newsletters, blogs etc12.	
Searching information13.	
Watching video lectures from academic/research organization 14.	

All Tick  
[√ ] 
Marked 
questions 

0.33
[0.33/14=
@0.023/ per 
Question]

C.  Searching 
techniques to 
retrieve 

     e-information
 

Directly going to source of information [Knowing web address from references]1.	
E-Journals/Databases, websites2.	
E-Resources linked through library website3.	
General Search engines 4.	
Guided Search/FAQ/Help5.	
Meta Search Engines 6.	
Scholarly Search Engines 7.	
Subject Directories/Gateways 8.	
Subject Specific Search engines 9.	
Use Subject bookmarking sites 10.	
Just enter keywords in simple search box11.	
Just enter title or author in simple search box12.	
Make use of Advance search options13.	
Make use of Boolean operators [and, or and not] along with keywords14.	
Make use of mathematical operators [+, -, *] along with keywords15.	
Make use of Phrase search by putting content in “   ”16.	
Make use of proximity operators [near, between etc]17.	
Make search for content within specific domains [.edu, ac.in, co. in etc]18.	
Make search for content within specific languages [English, Hindi, French etc]19.	
Make search for content within the files [PDF, HTML, DOC, Xls etc]20.	
Browsing Content from E-Print archives/Digital Library/ Institutional Repository21.	
By browsing journal articles from Journal homepages22.	
Search for articles using Google23.	
Search for articles using Google Scholar24.	
Search for articles using Journals database Search options 25.	
Through Abstracting and Indexing Databases 26.	
Through library OPAC [Article Indexing]27.	
Through links provided in e-mail table of contents alerts28.	

All 5 Point 
Scales 
questions

0.33
[0.33/28=
@0.011/ per 
Question]
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In this paper we consider Pareto-Rayleigh distribution as an example of a
Transformed-Transformer family of distributions defined by Alzaatreh et al.
(2013b). We construct confidence intervals (CIs) and tolerance intervals (TIs)
using generalized variable approach due to Weerahandi (1993) by using max-
imum likelihood estimator and modified maximum likelihood estimator of
the scale parameter. Performance of both the intervals is studied using sim-
ulation and compared with the existing ones to exhibit superiority of the
proposed intervals. Proposed confidence intervals and tolerance intervals are
illustrated through real life data.
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1 Introduction

Pareto distribution has been widely used in modeling heavy-tailed distributions, such
as income distribution. Many applications of the Pareto distribution in economics, bi-
ology and physics can be found in the literature. Schroeder et al. (2010) presented an
application of the Pareto distribution in modeling disk drive sector errors. Mahmoudi
(2011) discusses the beta generalized Pareto distribution with application to life time
data. The Pareto distribution has been recognized as a suitable model for many non-
negative socio-economic variables. Pareto distribution is useful in individual income,
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family income and income before taxes etc. In literature various generalizations of the
Pareto distribution have been derived such as Beta-Pareto distribution Akinsete et al.
(2008).

Raqab and Kundu (2005) introduced the Rayleigh distribution in connection with a
problem in the field of acoustics. An important characteristic of the Rayleigh distribu-
tion is that its hazard function is an increasing function of time. It means that when the
failure times are distributed according to the Rayleigh law, an intense aging of the item
takes place. Estimations, predictions and inferential issues for one parameter Rayleigh
distribution have been extensively studied by several authors. Rayleigh distributions
are useful in modeling and predicting tools in a wide variety of socio-economic contexts.
The Rayleigh distribution has a wide range of applications including life testing exper-
iments, reliability analysis, applied statistics and clinical studies. Potdar and Shirke
(2013) have provided reliability estimation for the distribution of a k-unit parallel sys-
tem with Rayleigh distribution as the component life distribution.

In many applied sciences such as medicine, engineering and finance amongst others,
modeling and analyzing lifetime data are crucial. Several life time distributions have
been used to model such kinds of data. The quality of the procedures used in a statisti-
cal analysis depends heavily on the assumed probability model or distributions. Because
of this, considerable effort has been expended in the development of large classes of
standard probability distributions along with relevant statistical methodologies. How-
ever there still remains many important problems, where the real data does not follow
any of the classical or standard probability models. Pareto-Rayleigh is an example
of Transformed-Transformer family (T-X family) of distributions, defined by Alzaatreh
et al. (2013b). Also Alzaatreh et al. (2012) and Alzaatreh et al. (2013a) derived Gamma-
Pareto distribution, Weibull-Pareto distribution and its applications.

In the present work, our focus is to provide confidence intervals and tolerance intervals
based on maximum likelihood estimator (MLE) and modified maximum likelihood esti-
mator (MMLE) of the parameter of Pareto-Rayleigh distribution. MLE in the present
case is not available in the closed form and is to be obtained by using a suitable iterative
method. Tiku (1967) obtained modified maximum likelihood (MML) equations which
have explicit solutions by replacing the intractable terms by their linear approximations.
Tiku and Suresh (1992) used the Taylor series expansion of the intractable terms in esti-
mating the location and scale parameters in a symmetric family of distributions, which
includes a number of well-known distributions such as normal, Students t etc. They
also showed that the MML estimators, thus derived are asymptotically fully efficient for
small samples. One may refer to Vaughan (1992), Suresh (1997) and Tiku (1967, 1968)
for more details. In this article we use MLE and MML estimator to construct CIs and
TIs.

A (β,1-γ) TI based on a sample is constructed so that it would include at least a pro-
portion β of the sampled population with confidence 1-γ. Such a TI is usually referred
to as β-content-(1-γ) coverage TI or simply (β, 1-γ) TI. A (β, 1-γ) upper tolerance
limit (TL) is simply an (1-γ)th upper confidence limit for the (100γ)th percentile of
the population and a (β, 1-γ) lower TL is an (1-γ)th lower confidence limit for the
(100(1-γ))th percentile of the population. In this article, we are mainly concerned with
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one-sided TI using large sample (LS) approach and generalized variable (GV) approach
for Pareto-Rayleigh distribution. Kumbhar and Shirke (2004) described TIs for lifetime
distribution of k-unit parallel system, when component lifetime distribution is exponen-
tial. Liao et al. (2005) have proposed a method for constructing TIs in one-way random
model based on the GV approach due to Weerahandi (1993).

Concept of GV has recently become popular in small sample inferences for complex
problems such as Behrens-Fisher problem. These techniques have been shown to be
efficient in specific distributions by using MLEs. The GV method was motivated by
the fact that the small sample optimal CIs in statistical problems involving nuisance
parameters may not be available. The method of generalized confidence interval (GCI)
based on GV is used whenever standard pivotal quantities either do not exist or are
difficult to obtain. Weerahandi (1993) introduced the concept of GCI. As described
in the cited papers, GCI is based on the so-called generalized pivotal quantity (GPQ).
For some problems, where the classical procedures are not optimal, GCI performs well.
Krishnamoorthy and Mathew (2003) developed exact CI and tests for single lognormal
mean using ideas of generalized p-values and GCIs. Guo and Krishnamoorthy (2005)
explained a problem of interval estimation and testing for the difference between the
quantiles of two populations using GV approach. Krishnamoorthy et al. (2006) explained
generalized p-values and CIs with a novel approach for analyzing lognormal distributed
exposure data. Krishnamoorthy et al. (2007) explained a problem of hypothesis testing
and interval estimation of the reliability parameter in a stress-strength model involving
two-parameter exponential distribution using GV approach. Verrill and Johnson (2007)
considered confidence bounds and hypothesis tests for coefficient of variation of normal
distribution. Kurian et al. (2008) have provided GCI for process capability indices in
one-way random model. Krishnamoorthy and Lian (2012) derived generalized TIs for
some general linear models based on GV approach. The literature survey reveals that
during last ten years number of researchers have reported inference for the well known
models using GV approach, which motivated us to consider the problem of generalized
CI and generalized TI for Pareto-Rayleigh distribution. Rest of the paper is organized
as follows.

In Section 2, the Pareto-Rayleigh distribution is considered and MLE and MMLE
of the scale parameter are obtained. Section 3, provides CIs based on MLE and MMLE
using LS procedure and GV approach. Section 4, provides TIs using LS procedure and
GV approach. In section 5, the performance of the CIs and TIs using LS and GV ap-
proaches based on MLE and MMLE for small samples is investigated using simulations.
Results of the simulation study have been reported in same section. In section 6, a real
data set has been analyzed as an illustration.

2 Model and estimation of the scale parameter

Let F(.) be the cumulative distribution function (cdf) of any random variable X de-
fined on [0,∞) and f (.) be the probability density function (pdf) of a random variable
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T, defined on [0,∞). The cdf of the T-X family of distributions defined by Alzaatreh
et al. (2013b) is given by

G(x) =

∫ −log(1−F (x))

0
f(t)dt (1)

Alzaatreh et al. (2013b) named this family of distributions the Transformed-Transformer
family (or T-X family) of distributions. If a random variable T follows the Pareto
distribution type IV with parameter α then pdf of T is given by,

f(t) = α(1 + t)−(α+1) t > 0, α > 1 (2)

If a random variable X follows the Rayleigh distribution with parameter σ then cdf of
X is given by,

F (x) = 1− exp(−x2/2σ2) σ > 0, x > 0 (3)

Using (1), (2) and (3), the cdf of Pareto-Rayleigh distribution (as a member of T-X
family) is given by,

G(x) =

∫ x2/2σ2

0
α(1 + t)(−α+1)dt = 1−

(
1 +

x2

2σ2

)−α
x > 0, α > 1, σ > 0 (4)

The pdf of Pareto-Rayleigh distribution is given by,

g(x) =
α

σ2
x

(
1 +

x2

2σ2

)(−α−1)
x > 0, α > 1, σ > 0, (5)

where α is the known shape parameter and σ is the unknown scale parameter. In this
article, we are mainly concerned with CIs and TIs of Pareto-Rayleigh distribution using
MLE and MMLE of the scale parameter σ .

2.1 Maximum Likelihood Estimation

The pdf of the Pareto-Rayleigh distribution with scale parameter σ and shape param-
eter α is given by (5).
Let X1, X2, ..., Xn be a random sample of size n obtained from Pareto-Rayleigh distribu-
tion. By taking the derivative of log likelihood equation, the MLE of the scale parameter
σ is the solution of the following equation.

∂lnL

∂σ
= 0 = −2n+

α+ 1

σ2

n∑
i=1

x2i

(1 +
x2i
2σ2 )

= 0.

This equation shows that maximum likelihood estimator of σ(σ̂n) is an iterative solution
which can be obtained by suitable iterative method like bisection method. Then Fisher
information about σ is given by

I = −nE
[
∂2lnf(x, α, σ)

∂σ2

]
=

2n(3α+ 2)

σ2(α+ 2)
− 2n

σ2
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2.2 Modified Maximum Likelihood Estimation

We have seen that MLE of scale parameter σ is not in the closed form as the likelihood
equation is intractable. To overcome this difficulty, we use MML method of estimation
(Tiku and Suresh (1992)) to find the estimate of scale parameter σ. This can be done by
first expressing the maximum likelihood equation in terms of order statistics and then
replacing the intractable terms by their linear approximation.
Maximum likelihood equation can be written as

∂lnL

∂σ
= 0 = −2n+ (α+ 1)

n∑
i=1

z2i

1 +
z2i
2

= 0 (6)

where
zi =

xi
σ
.

The maximum likelihood equation (6) does not have explicit solution for scale parameter
σ. This is due to the fact that the term

g(zi) =
z2i

1 +
z2i
2

is intractable. To formulate MML equation, which has explicit solution, we express this
equation in terms of order statistics that is

∂lnL

∂σ
= 0 = −2n+ (α+ 1)

n∑
i=1

z2(i)

1 +
z2
(i)

2

= 0 (7)

where z(i) is the order statistic of the sample observations xi,(i=1,2,...,n). The second
step is to linearize equation (7) by using Taylor series expansion around the quantile
point of G. The linearization is done in such a way that the derived MMLE retains all
the desirable asymptotic properties of the MLEs. Thus we have,

g(z(i)) =
z2(i)

1 +
z2
(i)

2

= ai + biz(i) (8)

The third step is to obtain the modified maximum likelihood equation by incorporating
(8) in (7), that is

∂lnL

∂σ
= 0 =

∂lnL∗

∂σ
= −2n+ (α+ 1)

∑
(ai + biz(i)) (9)

The solution to equation (9) is the MMLE, which is given by

σ̂ =

∑
bix(i)

n
α+1 −

∑
ai

(10)

where
bi = g

′
(z(i)), ai = g(z(i))− biz(i)



34 Godase, Shirke, Kashid

One may refer to Tiku and Suresh (1992) and Suresh (2004) for more details.
In the following, we shall see two methods of finding confidence intervals for scale pa-
rameter σ using MLE and MMLE.
Lemma 2.1: Distribution of ( σ̂nσ ) and ( σ̂σ ) , both are free from σ where σ̂n is MLE and
σ̂ is MMLE of σ.
Proof: The proof is similar to the one given by Gulati and Mi (2006). This lemma can
be used to find GPQ.

3 Confidence Intervals

3.1 Large sample confidence interval

Theorem: As n→∞, √
n(σ̂ − σ) −→ N2(0, I

−1)

where I is the Fisher information given in section (2.1).
Proof: Proof follows from asymptotic properties of MLEs under regularity conditions.
Since σ is unknown, I is estimated by replcing σ by its MLE or MMLE and this can be
used to obtain the asymptotic CI of σ.
The approximate 100(1− τ)% asymptotic confidence interval (ACI) for σ is given by(

σ̂ ± z1−τ/2

√
I−1

n

)
(11)

where z1−τ/2 is the (1− τ/2)th quantile of the standard normal distribution.
According to Tiku and Suresh (1992) the derived MMLEs retain all the desirable

asymptotic properties of the MLEs. Hence simply by replacing MLEs with MMLEs we
can obtain confidence interval using large sample approach based on MMLE. We denote
this interval by I1.

3.2 Generalized variable approach

The concept of a generalized confidence interval is due to Weerahandi (1993). One may
also refer to Weerahandi (2013) for a detailed discussion along with numerous examples.
Consider a random variable X (scalar or vector) whose distribution g(x, σ, δ) depends
on a scalar parameter of interest σ and a nuisance parameter (parameter that is not
of direct inferential interest)δ, where δ could be a vector. Suppose we are interested
in computing a confidence interval for scale parameter σ. Let, x denotes the observed
value of X. To construct a GCI for σ, we first define a GPQ, T (X;x, σ, δ) which is a
function of random variable X, its observed data x, the parameters σ and δ. A quantity
T (X;x, σ, δ) is required to satisfy the following two conditions.
i) For a fixed x, the probability distribution of T (X;x, σ, δ) is free of unknown parameters
σ and δ;
ii) The observed value of T (X;x, σ, δ), namely T (x;x, σ, δ) is simply σ.
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The percentiles of T (X;x, σ, δ) can then be used to obtain confidence intervals for σ.
Such confidence intervals are referred to as generalized confidence intervals. For example,
if T1−τ denotes the 1001−τ th percentile of T (X;x, σ, δ), then T1−τ is a generalized upper
confidence limit for σ. Therefore 100(1 − τ)% two-sided GCI for parameter σ is given
by

(Tτ/2, T1−τ/2).

Define GPQ as

T1(X;x, σ) =
σ̂o
σ̂
σ

,

where σ̂o is the MLE obtained using observed data. We note the following:
i) Distribution of T1(X;x, σ) is free from σ, which follows from Lemma (2.1) and
ii) T1(X;x, σ) = σ, since for observed data, σ̂ = σ̂o. A GCI based on T1(X;x, σ) is
obtained by using the following algorithm. The GCI is denoted by I2.

I. Algorithm to obtain GCI for σ using GPQ

1. Input n, N, α, σ, τ .
2. Generate independently and identically distributed observations (U1, U2, ..., Un) from
U(0,1).
3. For the given value of the parameter σ , set

xi =
√

2σ2((1− Ui)−1/α − 1) for i = 1, 2, ..., n.

Then (x1, x2, ..., xn) is random sample of size n from Pareto-Rayleigh distribution with
parameter σ.
4. Based on observations in step 3, obtain MLE of σ (say σ̂o), using bisection method.
5. Generate random sample of size n from Pareto-Rayleigh distribution with parameter
σ=1.
6. Based on observations in step 5, obtain MLE of σ (say σ̂)using bisection method.
7. Compute GPQ, T1 = σ̂o

σ̂
8. Repeat steps (5) to (7) N times, so as to get T11, T12, ..., T1N .
9. Arrange T s1i in an ascending order. Denote them by T(11), T(12), ..., T(1N).
10. Compute a 100(1− τ)% GCI for σ as (T(1,([(τ2)N ]), T(1,([(1−τ2)N ]))).

Extending above algorithm one can estimate coverage probability of the proposed GCI.
In the above algorithm, we can replace MLE by MMLE and obtain GCI based on MMLE.
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4 Tolerance Intervals

4.1 Large Sample Tolerance Intervals

There are two types of tolerance intervals namely β-expectation tolerance interval (TI)
and β-content-(1-γ) coverage tolerance interval.

4.1.1 β-expectation TI for the distribution function G (.; σ)

Let Xβ(σ) be the lower quantile of order β of the distribution function G (.; σ). Then,
we have

Xβ(σ) =
√

2σ2{(1− β)−1/α − 1}

Since σ is unknown, we replace it by its MLE. Hence maximum likelihood estimate of
Xβ(σ) is given by

Xβ(σ̂) =
√

2σ̂2{(1− β)−1/α − 1} (12)

having an approximate upper β-expectation TI for G (.; σ) as

J1(X) = (0, Xβ(σ̂)) (13)

We approximate E[G(Xβ(σ);σ)] using Atwood (1984) and is given as

E[G(Xβ(σ̂);σ)] ≈ β − 0.5F02V ar(σ̂) +
F01V ar(σ̂)F11

F10
(14)

where F10 = ∂G(x;σ)
∂x , F01 = ∂G(x;σ)

∂σ , F11 = ∂2G(x;σ)
∂x∂σ , F02 = ∂2G(x;σ)

∂σ2 with x = Xβ(σ)
and all the derivatives are evaluated at Xβ and σ. We can replace MLE by MMLE and
obtain β-expectation TI for G (.; σ) based on MMLE. Simulated and approximate values
of expected coverage of J1(X) using MLE and MMLE have been reported in section 5
for different values of n, β and α.

4.1.2 β-content-(1-γ) coverage Tolerance Interval

Let J2(X) = (0, Dσ̂) be an upper β-content-(1-γ) coverage TI for the distribution
having distribution function (4). The constant D(> 0) for βε(0, 1), γε(0, 1) is to be
determined such that

P{G(Dσ̂;σ) ≤ β} = 1− γ

That is

P

{
σ̂ ≤ σ

√
2{(1− β)−1/α − 1}

D

}
= 1− γ (15)

Using asymptotic normality of σ̂ equation (15) can be equivalently written as

P

{
Z ≤ (

σ

var(σ)
)

√
2{(1− β)−1/α − 1}

D
− 1

}
= 1− γ,
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where Z follows N(0,1). This gives

D =

√
2{(1− β)−1/α − 1}

1 + var(σ)
σ z1−γ

Hence, an upper tolerance limit of β-content-(1-γ) coverage tolerance interval (J2(X))
is given by

U(X) = σ̂

{√
2{(1− β)−1/α − 1}

1 + var(σ)
σ z1−γ

}
(16)

4.2 Generalized Tolerance Intervals

The problem of computing a one-sided tolerance limit reduces to that of computing a
one-sided confidence limit for the percentile of the relevant probability distribution. That
is a (β, (1− γ)) upper tolerance limit is simply an (1-γ)th upper confidence limit for the
(100β)th percentile of the population. It is easily seen that a (β, (1−γ)) upper tolerance
limit for G (.; σ) is simply a 100(1-γ)% upper confidence limit for

√
2σ2[(1− β)−1/α − 1].

We use the GV approach for obtaining the aforementioned upper confidence limit.
Let σ̂o is the MLE obtained using observed data. The GPQ for constructing a confidence
interval for σ is given by T1(X;x, σ) = σ̂o

σ̂i/σ
,i=1,2,...,N. The GPQ for

√
2σ2[(1− β)−1/α − 1]

is given by

T2 =
σ̂o
σ̂i/σ

√
2[(1− β)−1/α − 1], i = 1, 2, ..., N.

The (1 − γ)th quantile of T2 is a (1 − γ)th generalized upper confidence bound for√
2σ2[(1− β)−1/α − 1]. Hence (β, (1−γ)) upper tolerance limit for G(.;σ) is (0, T2,1−γ).

A generalized tolerance interval based on T2(X;x, σ)is obtained by using the following
algorithm.

II. Algorithm to obtain Generalized Tolerance Interval for G(.;σ) using GPQ

1. Input n, N, α, σ, β, γ.
2. Input random sample of size n from Pareto-Rayleigh distribution with an unknown
parameter σ.
3. Based on observations in step 2, obtain MLE of σ (say σ̂o), using bisection method.
4. Generate random sample of size n from Pareto-Rayleigh distribution with parameter
σ = 1.
5. Based on observations in step 4, obtain MLE of σ (say σ̂), using bisection method.
6. Compute GPQ,
T2 = σ̂o

σ̂i/σ

√
2[(1− β)−1/α − 1], i = 1, 2, ..., N.

7. Repeat steps (4) to (6) N times, so as to get T21, T22, ..., T2N .
8. Arrange T ′2is in an ascending order. Denote them by T21, T22, ..., T2N
9. Compute an upper tolerance limit of generalized TI J2(X) = (0, T2,1−γ).
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Extending above algorithm one can estimate coverage probability of the proposed gener-
alized TI. In the above algorithm, we can replace MLE by MMLE and obtain generalized
TI, based on MMLE.

5 Numerical and simulation study

We conduct extensive simulation experiments to evaluate performance of CIs (LS
approach and GV approach) based on MLE and MMLE. We choose different values of
σ, β, n and α. Results are tabulated in Tables 1-2. Figures in the 1st row are based on
MLE, while figures in the 2nd row are based on MMLE. From Tables 1-2, we observe that
simulated coverage of GCI does not differ significantly whether it can be computed from
MLE as well as MMLE. However, large sample approach underestimates the coverage
probabilities for most of the scenarios, especially when the sample size is small and (or)
the parameter σ is large. Also the performance of the proposed GCI does not depend on
σ. As the sample size is large, the two estimators (MLE, MMLE) are equally efficient.

We investigate coverage (numerical and simulation) of β-expectation TI for Pareto-
Rayleigh distribution with α = 3 and β= 0.90, 0.95,0.99 by using MLE and MMLE.
Figures in the 1st row are based on MLE, while figures in the 2nd row are based on
MMLE. An upper β-expectation tolerance limit is given in equation (12). Results of the
simulation study for the β-expectation tolerance interval, which is tabulated in Table 3,
indicate that, the estimated expectation and simulation mean for small sample size are
marginally lower than the nominal value. As the sample size increases, the performance
of tolerance intervals improves. We observe the following from Table 3.
The estimated expectation of the coverage of the approximate β-expectation tolerance
intervals shows satisfactory result for large n. Estimated expectation and simulated
mean of the coverage increase as sample size n increase. Estimated expectation and
simulated mean of the coverage remains same as shape parameter increases. Simulated
mean of the coverage for small sample size is below nominal level.
A simulation study of an upper β-content- (1- γ) coverage TI, having an upper limit (16)
is also conducted, for σ=1, 2 and for known values of n, β, α and γ. In this simulation
study 5000 samples from G (.; σ) were generated and for each of the samples U(X)
was computed, for different combinations of β, σ , γ. The proportion of samples for
which

√
2σ2[(1− β)−1/α − 1] exceeded U(X) was computed 100 times and the mean of

these 100 proportions is taken as simulated value of γ. The simulation study for the
generalized TI was carried out as algorithm (II). Tables 5-6 give the simulated values of
confidence level γ when σ=1, 2 respectively. The proposed confidence interval performs
satisfactory for small to moderate sample sizes. These intervals are superior to the
asymptotic confidence intervals.
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Table 1: Mean coverage of Confidence Intervals (using MLE and MMLE) for trans-
formed transformer (Pareto-Rayleigh) distribution I1) Large Sample procedure
I2) Generalized variable approach when σ=1.0, α=2.0

coverage 0.90 0.95 0.99

n I1 I2 I1 I2 I1 I2

0.8604 0.9012 0.8962 0.9445 0.931 0.9887
2

0.8652 0.9004 0.8932 0.9434 0.9291 0.9894

0.8723 0.9024 0.8931 0.9552 0.9458 0.9947
3

0.8651 0.8994 0.9162 0.9558 0.9454 0.9990

0.8741 0.9025 0.9041 0.9537 0.9548 0.9889
4

0.8735 0.9036 0.9217 0.9534 0.9634 0.9910

0.8811 0.9028 0.9147 0.9502 0.9615 0.9963
5

0.8879 0.9047 0.9181 0.9532 0.9664 0.9924

0.8805 0.9022 0.9251 0.9534 0.9538 0.9917
6

0.8898 0.9019 0.9352 0.9564 0.9644 0.9934

0.8841 0.9047 0.9284 0.9521 0.9665 0.9937
7

0.8897 0.9024 0.9294 0.9588 0.9724 0.9918

0.8889 0.9068 0.9281 0.9588 0.9735 0.9919
8

0.8962 0.9088 0.9462 0.9531 0.9654 0.9934

0.8771 0.9021 0.9354 0.9529 0.9814 0.9935
9

0.8981 0.9011 0.9381 0.9574 0.9684 0.9928

0.8910 0.9024 0.9474 0.9534 0.9715 0.9915
10

0.8907 0.9024 0.9474 0.9538 0.9764 0.9966

0.8888 0.9008 0.9364 0.9536 0.9775 0.9919
15

0.8946 0.9064 0.9464 0.9587 0.9814 0.9921

0.8947 0.9055 0.9484 0.9537 0.9865 0.9926
30

0.9014 0.9027 0.9562 0.9564 0.984 0.9987

0.8932 0.9064 0.9314 0.9528 0.9845 0.9928
50

0.9016 0.9033 0.9414 0.9508 0.9894 0.9980
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Table 2: Mean coverage of Confidence Intervals (using MLE and MMLE) for trans-
formed transformer (Pareto-Rayleigh) distribution I1) Large Sample procedure
I2) Generalized variable approach when σ=2.0, α=2.0

coverage 0.90 0.95 0.99

n I1 I2 I1 I2 I1 I2

0.8605 0.8992 0.8894 0.9487 0.9312 0.9887
2

0.8625 0.8988 0.8905 0.9425 0.9219 0.9805

0.8736 0.8989 0.9008 0.9432 0.9448 0.9928
3

0.8715 0.9080 0.9020 0.9485 0.9321 0.9865

0.8781 0.9030 0.9172 0.9506 0.9504 0.9889
4

0.8724 0.9053 0.9251 0.9538 0.9603 0.9932

0.8921 0.9021 0.9204 0.9524 0.9614 0.9962
5

0.8829 0.9026 0.9148 0.9519 0.9668 0.9937

0.8938 0.9062 0.9224 0.9522 0.9534 0.9932
6

0.8905 0.9028 0.9321 0.9537 0.9617 0.9919

0.8908 0.9081 0.9318 0.9540 0.9624 0.9984
7

0.8842 0.9024 0.9304 0.9531 0.9724 0.9941

0.8921 0.9061 0.9326 0.9565 0.9735 0.9958
8

0.8955 0.9008 0.9428 0.9528 0.9625 0.9935

0.8881 0.9073 0.9306 0.9535 0.9814 0.9931
9

0.8918 0.9026 0.9325 0.9522 0.9757 0.9984

0.8962 0.9083 0.9341 0.9557 0.9795 0.9922
10

0.8925 0.9034 0.9487 0.9565 0.9743 0.9957

0.8994 0.9043 0.9412 0.9548 0.9724 0.9943
15

0.8997 0.9050 0.9427 0.9566 0.9817 0.9980

0.8934 0.9018 0.9474 0.9541 0.9887 0.9957
30

0.8906 0.9024 0.9438 0.9564 0.9814 0.9972

0.8956 0.9028 0.9518 0.9561 0.9822 0.9964
50

0.8941 0.9084 0.958 0.9534 0.9878 0.9955
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Table 3: Simulated mean and estimated expectation of the coverage of approximate β-
expectation TI using MLE and MMLE for transformed transformer (Pareto-
Rayleigh) distribution.

α = 3

β(σ = 1.0) β(σ=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

2 0.8112 0.8595 0.9065 0.9515 0.8315 0.8712 0.9172 0.9521

(0.8251) (0.8459) (0.8902) (0.9625) (0.8451) (0.8652) (0.9251) (0.9534)

0.0.7921 0.8888 0.9127 0.9318 0.8298 0.8585 0.9275 0.9434

(0.7912) (0.8892) (0.9021) (0.9425) (0.8329) (0.8625) (0.9265) (0.9547)

3 0.8568 0.8996 0.9384 0.9592 0.8436 0.9118 0.9418 0.9637

(0.8495) (0.8825) (0.9365) (0.9469) (0.8492) (0.9028) (0.9356) (0.9645)

0.8465 0.9124 0.9386 0.9544 0.8494 0.8917 0.9374 0.9568

(0.8520) (0.9062) (0.9255) (0.9528) (0.8574) (0.9054) (0.9487) (0.9534)

4 0.8716 0.9142 0.9499 0.9756 0.8333 0.9014 0.9375 0.9725

(0.8724) (0.9028) (0.9589) (0.9728) (0.8365) (0.9124) (0.9425) (0.9824)

0.0.8588 0.8923 0.9491 0.9693 0.8514 0.9151 0.9438 0.9695

(0.8459) (0.8902) (0.9425) (0.9714) (0.8495) (0.9024) (0.9457) (0.9748)

5 0.8632 0.9151 0.9454 0.9737 0.8697 0.9222 0.9537 0.9786

(0.8794) (0.9215) (0.9316) (0.9722) (0.8724) (0.9365) (0.9633) (0.9748)

0.0.8610 0.9244 0.9558 0.9611 0.8712 0.9023 0.9449 0.9659

(0.8705) (0.9145) (0.9420) (0.9784) (0.8790) (0.9124) (0.9584) (0.9721)

6 0.8754 0.9359 0.9565 0.9859 0.8725 0.9179 0.9539 0.9791

(0.8715) (0.9302) (0.9536) (0.9850) (0.8837) (0.9274) (0.9521) (0.9701)

0.0.8665 0.9197 0.9523 0.9750 0.8774 0.9178 0.9494 0.9814

(0.8714) (0.9028) (0.9577) (0.9815) (0.8791) (0.9154) (0.9524) (0.9825)

7 0.8668 0.9417 0.9647 0.9847 0.8839 0.9346 0.9689 0.9817

(0.8628) (0.9459) (0.9619) (0.9824) (0.8829) (0.9435) (0.9752) (0.9932)

0.0.8577 0.9278 0.9569 0.9794 0.8746 0.9244 0.9516 0.9735

(0.8459) (0.9160) (0.9654) (0.9728) (0.8859) (0.9284) (0.9654) (0.9849)

8 0.8889 0.9296 0.9692 0.9859 0.8654 0.9328 0.9614 0.9872

(0.8749) (0.9239) (0.9628) (0.9822) (0.8735) (0.9475) (0.9672) (0.9824)

0.0.8945 0.9344 0.9674 0.9765 0.8747 0.9325 0.9577 0.9840

(0.8891) (0.9385) (0.9587) (0.9711) (0.8815) (0.9425) (0.9657) (0.9864)
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Table 4: Simulated mean and estimated expectation of the coverage of approximate β-
expectation TI using MLE and MMLE for transformed transformer (Pareto-
Rayleigh) distribution. Continued

α = 3

β(σ = 1.0) β(σ=2.0)

n 0.90 0.95 0.97 0.99 0.90 0.95 0.97 0.99

9 0.8787 0.9277 0.9616 0.9872 0.8781 0.9342 0.9645 0.9896

(0.8892) (0.9258) (0.9621) (0.9826) (0.8724) (0.9451) (0.9754) (0.9833)

0.0.8914 0.9389 0.9647 0.9813 0.8790 0.9294 0.9592 0.98140

(0.8928) (0.9225) (0.9618) (0.9837) (0.8739) (0.9321) (0.9625) (0.9802)

10 0.8856 0.9265 0.9588 0.9885 0.8838 0.9416 0.9671 0.9829

(0.8821) (0.9368) (0.9548) (0.9814) (0.8902) (0.9478) (0.9784) (0.9820)

0.0.8831 0.9314 0.9692 0.9848 0.8765 0.9333 0.9664 0.9817

(0.8834) (0.9425) (0.9664) (0.9834) (0.8834) (0.9401) (0.9725) (0.9849)

15 0.8919 0.9346 0.9631 0.9914 0.8769 0.9314 0.9657 0.9885

(0.8940) (0.9365) (0.9748) (0.9889) (0.8729) (0.9365) (0.9781) (0.9804)

0.0.8994 0.9475 0.9715 0.9886 0.8836 0.9379 0.9698 0.9851

(0.8921) (0.9428) (0.9708) (0.9948) (0.8924) (0.9425) (0.9748) (0.9834)

30 0.8837 0.9428 0.9779 0.9927 0.8993 0.9517 0.9685 0.9952

(0.9024) (0.9458) (0.9645) (0.9917) (0.9028) (0.9538) (0.9677) (0.9889)

0.0.9016 0.9492 0.9737 0.9879 0.8865 0.9495 0.9769 0.9826

(0.9099) (0.9359) (0.9721) (0.9950) (0.8949) (0.9584) (0.9780) (0.9887)

50 0.9028 0.9492 0.9695 0.9987 0.9014 0.9532 0.9746 0.9949

(0.9082) (0.9584) (0.9635) (0.9980) (0.9147) (0.9502) (0.9722) (0.9924)

0.0.9092 0.9514 0.9753 0.9914 0.8916 0.9534 0.9753 0.99140

(0.9158) (0.9506) (0.9748) (0.9940) (0.9025) (0.9524) (0.9824) (0.9914)
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Table 5: Coverage probabilities of Tolerance Intervals for Pareto-Rayleigh distribution
I1) Large sample procedure I2) Generalized variable approach σ=1.0, α=2.0

γ=0.90 γ=0.95

coverage β=0.90 β=0.95 β=0.90 β=0.95

n I1 I2 I1 I2 I1 I2 I1 I2

0.6672 0.9021 0.6432 0.8924 0.5549 0.9448 0.5521 0.9449
2

0.6451 0.9028 0.6544 0.8920 0.5441 0.9459 0.5549 0.9428

0.7984 0.8992 0.7971 0.8935 0.7231 0.9432 0.7461 0.9452
3

0.7846 0.9021 0.7869 0.8922 0.7266 0.9458 0.7361 0.9488

0.8156 0.9034 0.8194 0.9031 0.8224 0.9538 0.8564 0.9468
4

0.8356 0.9038 0.8347 0.8977 0.8319 0.9458 0.8479 0.9585

0.8448 0.9049 0.8435 0.9028 0.8815 0.9562 0.8714 0.9562
5

0.8544 0.9028 0.8539 0.9024 0.8819 0.9564 0.8854 0.9534

0.8639 0.9125 0.8556 0.9034 0.8901 0.9537 0.9032 0.9538
6

0.8634 0.9037 0.8619 0.9021 0.9034 0.9538 0.9035 0.9566

0.8644 0.9028 0.8598 0.9055 0.8974 0.9539 0.9074 0.9533
7

0.8664 0.8997 0.8686 0.9029 0.9096 0.9532 0.9083 0.9580

0.8492 0.9064 0.8429 0.9064 0.9087 0.9654 0.9097 0.9582
8

0.8706 0.9035 0.8695 0.9068 0.9144 0.9538 0.9157 0.9534

0.8493 0.9038 0.8239 0.9031 0.9124 0.9587 0.9015 0.9524
9

0.8716 0.9028 0.8714 0.9024 0.9188 0.9458 0.9183 0.9531

0.8614 0.9034 0.8497 0.9124 0.9235 0.9482 0.9032 0.9654
10

0.8744 0.9046 0.8724 0.8992 0.9203 0.533 0.9240 0.9587

0.8718 0.9029 0.8544 0.8997 0.9114 0.9588 0.9225 0.9528
15

0.8798 0.9029 0.8792 0.9034 0.9272 0.9526 0.9284 0.9575

0.8790 0.9184 0.8831 0.9024 0.9278 0.9537 0.9315 0.9521
30

0.8890 0.9088 0.8872 0.9098 0.9352 0.9538 0.9361 0.9648

0.9031 0.9028 0.8951 0.9089 0.9445 0.9526 0.9294 0.9588
50

0.8924 0.9090 0.8905 0.9044 0.9449 0.9524 0.9482 0.9584
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Table 6: Coverage probabilities of Tolerance Intervals for Pareto-Rayleigh distribution
I1) Large sample procedure I2) Generalized variable approach σ=2.0, α=2.0

γ=0.90 γ=0.95

coverage β=0.90 β=0.95 β=0.90 β=0.95

n I1 I2 I1 I2 I1 I2 I1 I2

0.6431 0.8925 0.6831 0.8902 0.5621 0.9485 0.5331 0.9487
2

0.6401 0.8959 0.6598 0.8988 0.5741 0.9458 0.5521 0.9415

0.7811 0.8933 0.8032 0.8953 0.7378 0.9428 0.7394 0.9458
3

0.7822 0.8954 0.7852 0.8954 0.7451 0.9462 0.7421 0.9402

0.8180 0.9024 0.8394 0.8934 0.8584 0.9521 0.8441 0.9567
4

0.8370 0.9024 0.8350 0.9028 0.8566 0.9532 0.8504 0.9435

0.8334 0.9028 0.8532 0.9028 0.8893 0.9439 0.9012 0.9548
5

0.8537 0.9058 0.8569 0.8937 0.8920 0.9531 0.9135 0.9520

0.8521 0.9024 0.8421 0.9054 0.9132 0.9511 0.9035 0.9448
6

0.8629 0.9034 0.8694 0.9024 0.9230 0.9489 0.9127 0.9537

0.8592 0.9022 0.8584 0.9027 0.8894 0.9560 0.9136 0.9580
7

0.8645 0.9031 0.8651 0.9037 0.8904 0.9518 0.9198 0.9582

0.8754 0.9065 0.8725 0.9013 0.9052 0.9538 0.9158 0.9502
8

0.8779 0.9157 0.8633 0.9026 0.9124 0.9588 0.9230 0.9531

0.8531 0.9021 0.8649 0.9157 0.9012 0.9528 0.8869 0.9531
9

0.8732 0.9055 0.8724 0.9027 0.9124 0.9575 0.8920 0.9565

0.8421 0.9128 0.8564 0.9024 0.8954 0.9582 0.9117 0.9521
10

0.8724 0.9071 0.8734 0.9147 0.9280 0.9548 0.9228 0.9533

0.8621 0.9034 0.8697 0.8948 0.9235 0.9489 0.9174 0.9587
15

0.8799 0.9028 0.8788 0.9088 0.9284 0.9521 0.9257 0.9502

0.8674 0.9089 0.8587 0.9028 0.9151 0.9568 0.9239 0.9654
30

0.8854 0.9021 0.8876 0.9056 0.9329 0.9588 0.9360 0.9536

0.8981 0.9080 0.8879 0.9027 0.9294 0.9586 0.9487 0.9537
50

0.8952 0.9072 0.8991 0.9076 0.9428 0.9548 0.9510 0.9531
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6 Real life Data Analysis

In this section we present a data analysis of the strength data reported by Bader and
Priest (1982). It is already observed by Durham and Padgett (1997) that Weibull model
does not work well in this case. Surles and Padgett (1998), Surles and Padgett (2001)
and Raqab and Kundu (2005) observed that generalized Rayleigh works quite well for
this strength data. Also Raqab and Kundu (2005) observed goodness of fit of the three-
parameter generalized exponential distribution to this data set based on modified MLEs.

For illustrative purpose we also consider the same transformed data set as considered
by Raqab and Kundu (2005), the single fibers of 10 mm in gauge length with sample
size 63. Data set is presented below:
0.101,0.332,0.403,0.428,0.457,0.550,0.561,0.596,0.597,0.645,0.654,0.674,0.718,0.722,
0.725,0.732,0.775,0.814,0.816,0.818,0.824,0.859,0.875,0.938,0.940,1.056,1.117,1.128,
1.137,1.137,1.177,1.196,1.230,1.325,1.339,1.345,1.420,1.423,1.435,1.443,1.464,1.472,
1.494,1.532,1.546,1.577,1.608,1.635,1.693,1.701,1.737,1.754,1.762,1.828,2.052,2.071,
2.086,2.171,2.224,2.227,2.425,2.295,3.220.

First we would like to compute the MLEs of the unknown parameters. The MLE
of σ is obtained as 2.036426 and the MLE of α becomes 5.036467 with the associated
log-likelihood value as -57.67675. We plot the empirical survival function and the fitted
survival function. We used the Kolmogorov-Smirnov (K-S) test for this data set. K-
S distance between the fitted Pareto-Rayleigh and empirical cumulative distribution
function is 0.094377 and the associated p-value is 0.8431. Therefore, it indicates that
the Pareto-Rayleigh model provides reasonable fit to this data set.
Based on the estimates of α and σ, the confidence intervals (using LS and GV approach)
are given in the Table 7.
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Table 7: Confidence intervals (using LS and GV approach) for strength data.

Coverage Using Estimator Using LS approach(ACI) Using GV approach(GCI)

(1.787754,2.285098) (1.914382,2.197766)
90% MLE

Length=0.4973437 Length=0.283384

(1.786463,2.283543) (1.402121,1.805491)
MMLE

Length=0.4970807 Length=0.4033698

(1.711940,2.360913) (1.893224,2.246205)
95% MLE

Length=0.6489728 Length=0.3496253

(1.737967,2.332039) (1.366712,1.836193)
MMLE

Length=0.594072 Length=0.4694808

(1.645223,2.427629) (1.852753,2.313607)
99% MLE

Length=0.7824065 Length=0.4608534

(1.644007,2.425999) (1.884905,2.698532)
MMLE

Length=0.7819927 Length=0.713627
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Therefore, in this case it is clear that the GV approach provides confidence interval
having shortest length than the LS approach.
We also evaluated (0.90, 0.90) and (0.95, 0.95) upper tolerance limits for this data set
using LS and GV approach. They are 2.921123 (2.875510) and 3.694097(3.56269) re-
spectively. Bracketed tolerance limit is using GV approach.

Table 8: The maximum likelihood estimates and Kolmogorov-Smirnov statistics and p-
values for strength data.

The model MLEs of the parameters Log-likelihood K-S statistic p-value

Generalized Rayleigh β̂=1.4216,λ̂=0.8598 −50.22 0.12 0.2845

Three parameter GE β̂=4.3586,λ̂=1.8303,α̂=6.5469 −110.01 0.0933 0.643

Pareto- Rayleigh α̂=5.036467,σ̂=2.036426 −57.67675 0.094377 0.8431

It is clear from the Table 8 that based on the K-S statistic, the proposed Pareto-
Rayleigh model provides a better fit than generalized Rayleigh and three parameter
generalized Exponential models to this specific data set. Although, it is not guaranteed
that the proposed model always provides a better fit than the other models.

7 Conclusions

In this paper we have considered interval estimation (confidence interval and tolerance
interval) using maximum likelihood estimator and modified maximum likelihood estima-
tor in Pareto-Rayleigh distribution (Transformed-Transformer family) based on general-
ized variable approach. We have compared these generalized intervals with asymptotic
intervals. The proposed confidence intervals perform satisfactory for small to moderate
sample sizes. These intervals are superior to the asymptotic intervals. The performance
of the interval estimation using modified maximum likelihood estimators are also quite
satisfactory. One real data analysis has been performed and it is observed that the pro-
posed model provides a better fit than some of the existing models.

8 Acknowledgement

We thank referee for the valuable comments and suggestions. The second and third
authors would like to acknowledge the support of University Grants Commission, New



48 Godase, Shirke, Kashid

Delhi under Special Assistance Programme to carry out the research work.

References

Akinsete, A., Famoye, F., and Lee, C. (2008). The beta-pareto distribution. Statistics,
42(6):547–563.

Alzaatreh, A., Famoye, F., and Lee, C. (2012). Gamma-pareto distribution and its
applications. Journal of Modern Applied Statistical Methods, 11(1):7.

Alzaatreh, A., Famoye, F., and Lee, C. (2013a). Weibull-pareto distribution and its
applications. Communications in Statistics-Theory and Methods, 42(9):1673–1691.

Alzaatreh, A., Lee, C., and Famoye, F. (2013b). A new method for generating families
of continuous distributions. Metron, 71(1):63–79.

Atwood, C. L. (1984). Approximate tolerance intervals, based on maximum likelihood
estimates. Journal of the American Statistical Association, 79(386):459–465.

Bader, M. and Priest, A. (1982). Statistical aspects of fibre and bundle strength in hybrid
composites. Progress in science and engineering of composites, pages 1129–1136.

Durham, S. and Padgett, W. (1997). Cumulative damage models for system failure with
application to carbon fibers and composites. Technometrics, 39(1):34–44.

Gulati, S. and Mi, J. (2006). Testing for scale families using total variation distance.
Journal of Statistical Computation and Simulation, 76(9):773–792.

Guo, H. and Krishnamoorthy, K. (2005). Comparison between two quantiles: The normal
and exponential cases. Communications in StatisticsSimulation and Computation R©,
34(2):243–252.

Krishnamoorthy, K. and Lian, X. (2012). Closed-form approximate tolerance intervals for
some general linear models and comparison studies. Journal of Statistical Computation
and Simulation, 82(4):547–563.

Krishnamoorthy, K. and Mathew, T. (2003). Inferences on the means of lognormal
distributions using generalized p-values and generalized confidence intervals. Journal
of statistical planning and inference, 115(1):103–121.

Krishnamoorthy, K., Mathew, T., and Ramachandran, G. (2006). Generalized p-values
and confidence intervals: A novel approach for analyzing lognormally distributed ex-
posure data. Journal of occupational and environmental hygiene, 3(11):642–650.

Krishnamoorthy, K., Mukherjee, S., and Guo, H. (2007). Inference on reliability in
two-parameter exponential stress–strength model. Metrika, 65(3):261–273.

Kumbhar, R. and Shirke, D. (2004). Tolerance limits for lifetime distribution of k-unit
parallel system. Journal of Statistical Computation and Simulation, 74(3):201–213.

Kurian, K., Mathew, T., and Sebastian, G. (2008). Generalized confidence intervals for
process capability indices in the one-way random model. Metrika, 67(1):83–92.

Liao, C., Lin, T., and Iyer, H. (2005). One-and two-sided tolerance intervals for general
balanced mixed models and unbalanced one-way random models. Technometrics,
47(3):323–335.



Electronic Journal of Applied Statistical Analysis 49

Mahmoudi, E. (2011). The beta generalized pareto distribution with application to
lifetime data. Mathematics and computers in Simulation, 81(11):2414–2430.

Potdar, K. and Shirke, D. (2013). Reliability estimation for the distribution of a k-
unit parallel system with rayleigh distribution as the component life distribution.
In International Journal of Engineering Research and Technology, volume 2. ESRSA
Publications.

Raqab, M. Z. and Kundu, D. (2005). Comparison of different estimators of p [y¡ x]
for a scaled burr type x distribution. Communications in StatisticsSimulation and
Computation R©, 34(2):465–483.

Schroeder, B., Damouras, S., and Gill, P. (2010). Understanding latent sector errors and
how to protect against them. ACM Transactions on storage (TOS), 6(3):9.

Suresh, R. (1997). On approximate likelihood estimators in censored normal samples.
Gujarat Statistical Review, 24:21–28.

Suresh, R. (2004). Estimation of location and scale parameters in a two-parameter
exponential distribution from a censored sample.

Surles, J. and Padgett, W. (1998). Inference for p (y¡ x) in the burr type x model.
Journal of Applied Statistical Science, 7(4):225–238.

Surles, J. and Padgett, W. (2001). Inference for reliability and stress-strength for a
scaled burr type x distribution. Lifetime Data Analysis, 7(2):187–200.

Tiku, M. (1967). Estimating the mean and standard deviation from a censored normal
sample. Biometrika, 54(1-2):155–165.

Tiku, M. (1968). Estimating the parameters of normal and logistic distributions from
censored samples. Australian & New Zealand Journal of Statistics, 10(2):64–74.

Tiku, M. and Suresh, R. (1992). A new method of estimation for location and scale
parameters. Journal of Statistical Planning and Inference, 30(2):281–292.

Vaughan, D. C. (1992). On the tiku-suresh method of estimation. Communications in
Statistics-theory and Methods, 21(2):451–469.

Verrill, S. and Johnson, R. A. (2007). Confidence bounds and hypothesis tests for
normal distribution coefficients of variation. Communications in StatisticsTheory and
Methods, 36(12):2187–2206.

Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Sta-
tistical Association, 88(423):899–905.

Weerahandi, S. (2013). Exact statistical methods for data analysis. Springer Science &
Business Media.



9/10/2018 A new test for two-sample location problem based on empirical distribution function: Communications in Statistics - Theory and Meth…

https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1295158 1/5



Volume 46, 2017 - Issue 24

Journal

Communications in Statistics - Theory and Methods 

120
Views  

0
CrossRef citations 

0
Altmetric

Original Articles

A new test for two-sample location
problem based on empirical distribution
function

 &S. K. Mathur D. M. Sakate 
Pages 12345-12355 | Received 05 Jul 2016, Accepted 09 Feb 2017, Accepted author version posted online: 21 Feb 2017,
Published online: 31 Aug 2017

 Download citation   https://doi.org/10.1080/03610926.2017.1295158  

Select Language  ▼

Translator disclaimer

     

 

 Full Article  Figures & data  References  Citations Metrics

  Reprints & Permissions Get access

ABSTRACT

We propose a new test for testing the equality of location parameter of two

populations based on empirical distribution function (ECDF). The test statistics is

obtained as a power divergence between two ECDFs. The test is shown to be

distribution free, and its null distribution is obtained. We conducted empirical

power comparison of the proposed test with several other available tests in the

literature. We found that the proposed test performs better than its competitors

considered here under several population structures. We also used two real

datasets to illustrate the procedure.

 Log in  |  Register



https://www.tandfonline.com/action/showCart
https://www.tandfonline.com/toc/lsta20/46/24
https://www.tandfonline.com/toc/lsta20/current
https://www.tandfonline.com/author/Mathur%2C+S+K
https://www.tandfonline.com/author/Sakate%2C+D+M
https://www.tandfonline.com/action/showCitFormats?doi=10.1080%2F03610926.2017.1295158
https://doi.org/10.1080/03610926.2017.1295158
https://crossmark.crossref.org/dialog?doi=10.1080%2F03610926.2017.1295158&domain=www.tandfonline.com&uri_scheme=https%3A&cm_version=v2.0
javascript:void(0)
https://www.tandfonline.com/action/clickThrough?id=3310&url=%2Fpage%2Fterms-and-conditions%23googletranslate&loc=%2Fdoi%2Fabs%2F10.1080%2F03610926.2017.1295158&pubId=51445615&placeholderId=1084&productId=2797
https://www.tandfonline.com/doi/full/10.1080/03610926.2017.1295158?scroll=top&needAccess=true
https://www.tandfonline.com/doi/figure/10.1080/03610926.2017.1295158?scroll=top&needAccess=true
https://www.tandfonline.com/doi/ref/10.1080/03610926.2017.1295158?scroll=top
https://www.tandfonline.com/doi/citedby/10.1080/03610926.2017.1295158?scroll=top&needAccess=true
https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1295158?tab=permissions&scroll=top
https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1295158
https://www.tandfonline.com/
https://www.tandfonline.com/action/showLogin?uri=%2Fdoi%2Fabs%2F10.1080%2F03610926.2017.1295158
https://www.tandfonline.com/action/registration?redirectUri=%2F

	Introduction
	Confidence Interval for R Under Known Scale Parameter 
	A GPQ for the resilience (frailty) parameter
	Confidence interval for R under common known scale parameter
	Confidence interval for R under unequal known scale parameters

	Confidence Intervals for R Under Unknown Scale Parameter 
	Bootstrap confidence interval for R under common unknown scale parameter
	Bootstrap confidence interval for R under unequal unknown scale parameters

	Empirical Assessment
	 Real Life Applications
	Concluding Remarks
	Journal of Modern Applied Statistical Methods
	5-1-2017

	Confidence Intervals for the Scaled Half-Logistic Distribution under Progressive Type-II Censoring
	Kiran Ganpati Potdar
	D. T. Shirke
	Recommended Citation

	Confidence Intervals for the Scaled Half-Logistic Distribution under Progressive Type-II Censoring
	Cover Page Footnote


	Confidence Intervals for the Scaled Half-Logistic Distribution under Progressive Type-II Censoring
	1. Introduction
	2. The proposed transformation and scale invariant inference
	2.1. Complete data
	2.2. Type-II censored data

	3. Inference based on the transformed likelihood
	3.1. An improved almost unbiased estimator (AUE)
	3.2. Examples
	3.2.1. Weibull distribution
	3.2.2. Gamma distribution
	3.2.3. GE distribution


	4. Empirical assessment
	4.1. Assessment of the MSILE of the shape parameter
	4.2. One sample test for the shape
	4.3. Interval estimation
	4.4. Assessment of the scale parameter
	4.5. Real life application

	5. Concluding remarks
	Acknowledgments
	Disclosure statement
	Funding
	References
	Introduction
	Testing uniformity
	Test based on S statistic
	Performance study of test based on S statistic

	Testing exponentiality using transformed data
	Performance study of the test based on U statistic
	Concluding remark
	Subset selection in multiple linear regression in the presence of outlier and multicollinearity
	Introduction
	The problem
	The estimators
	Proposed method
	Motivation
	Definition of  GSp 

	Some results
	Simulation study
	Numerical examples
	Model selection ability
	Choice of the estimator of  σ2 

	Conclusion
	Acknowledgments
	References

	Introduction
	-divergence estimation in logistic regression
	Penalized minimum -divergence estimator and variable selection
	Sampling properties and oracle properties
	Algorithm
	Selection of thresholding parameters

	Simulation study
	Selection of 
	Real data application
	Performance comparison

	Discussion
	Acknowledgements
	References
	Introduction
	Test based on A-statistic
	Test based on T-statistic
	Performance study of the test based on T-statistic
	Concluding remarks
	Journal of Modern Applied Statistical Methods
	5-1-2016

	Variable Selection in Regression using Multilayer Feedforward Network
	Tejaswi S. Kamble
	Dattatraya N. Kashid
	Recommended Citation

	Variable Selection in Regression using Multilayer Feedforward Network
	Cover Page Footnote


	Introduction
	Regression Model and Neural Network Model
	Conclusion
	Acknowledgements
	References

