Surface Modification of Activated Carbon and its study for water born diseases

Ekta Singh¹, Manisha N. Wahale², MeenalAgrawal², Vaishnavee S.Khanzode², D.S.Ramteke²

¹RTMNU, Nagpur, ²NEERI, Nagpur, NEERI, Nagpur

EIRA Division, NEERI, Nehru Marg, Nagpur-440020, Maharashtra (India) e-mail: prashu_71@yahoo.co.in

Abstract-

Water is major component on the earth. Without water, no life can survive. Water is important for industrial as well as domestic purposes .Commonly all over the world, most of the death occurs due to waterborne diseases such as diarrhoea, typhoid, etc. Major outbreak of these occurred all over the world so it is really necessary to treat the water for the reduction of such pathogenic microorganisms such as *Salmonella Shigella*, *Ecoli*. In this Paper activated carbon synthesized from biological waste material is used for the study of microorganisms present in the water .The surface of activated carbon is modified with modifying agent which result in restricting the further growth of the bacteria. **Keywords** – Waterborne disease, MW-ACF, MFT, Activating agent.

Introduction:

The rapid development of industrialization and population growth and the long term projection of water scarcity have produced an increasing demand for clean water sources. To address this problem, various useful strategies and solutions have been adopted, including new forms of water treatment, recovery and reuse. The availability of clean water can increased by introducing low cost and highly efficient water treatment technologies and many efforts have been recently carried out in this field.

The pathogen load to the water body from different contamination sources varies strongly with time, often due to the prevalence of the disease in the population. Under epidemic conditions pathogens are excreted from many more human or animal host then endemic conditions .The estimation of pathogen load to the water body can be performed using traditional faecal indicators such as *Escherichia coli* or indicators that are applied in microbial source tracking to determine the origin of faecal contamination

Material And Method:

Sample Collection:

Samples were collected from various representative location of Nagpur region. 125ml sampling bottles with 0.025N Sodium thiosulphate were properly autoclaved at 121°C temperature and 15lbs Pressure. Samples were immediately preserved in ice box

The details are as given below:

Sample No.	Sample Type	Sampling Location
1	Surface Water	Ambazari Lake
2	Surface Water	Futala Lake
3	Surface Water	Naagnala
4	Ground Water	Dugwell
5	Ground Water	Tubewell
6	Ground Water	Tap water

Sample Preparation:

i) ASTM standard activated carbon was purchased from local market of Nagpur from Merck Suppliers and its iodine number was determined.

ii) Preparation of Microwave Activated Carbon for microbial treatment:

Activated carbon was prepared from biological waste material by muffle furnace and modern microwave technique The raw material was processed before activation for moisture removal.

iii) Surface modification of Activated Carbon for Microbial Treatment:

The raw material was impregnated with activating agent. Further this treated raw material was subjected to activation to obtain activated carbon with modified surface

The surface modified activated carbon gave higher iodine number which indicates high adsorptive capacity.

Sample Study:

i)Study of microbes in water sample at initial stage:

Microbial analysis of water samples were carried out. In this study we have discussed about Total coliform, Fecal coliform, *Salmonella* and *Shigella*, their significance and methods of analysis

Media used:

- M-Endo agar LES
- M-FC agar base
- Salmonella and Shigella agar
- · Slanetz and Bartley agar

Samples were proceeding by commonly used Membrane Filtration Technique (7). The Membrane Filter (MF)

Proceeding of International Conference SWRDM-2012 -

Technique was introduced in the late 1950s as an alternative to the Most Probable Number (MPN) procedure for microbiological analysis of water samples. The MF Technique offers the advantage of isolating discrete colonies of bacteria, whereas the MPN procedure only indicates the presence or absence of an approximate number or organisms (indicated by turbidity in test tubes)

ii) Analysis of water and its Lab-Scale treatment at initial stage

The water samples were analyzed for microbial study of the water at primary stage. The treatment sequence was followed as described below:

Step I : Collection of water samples

Step II : Sterilization of all required materials by autoclaving

Step III : Preparation of selective and differential media plates

Step IV : Microbial analysis of water sample by MFT

Step V : Incubation at 37°C and 44°C as per the respective media

Step VI : Counting of colonies after 24hrs of incubation

iii) Analysis of water and its Lab-Scale treatment with ASTM standard activated carbon

Microbial study of the water samples was done after the treatment with standard activated carbon. The treatment sequence was followed as described below:

Step I : Collection of water samples

Step II : Sterilization of all required materials by autoclaving

Step III : Preparation of selective and differential media plates

Step IV : Treatment of water samples with ASTM standard carbon

Step V : Microbial analysis of water sample by MFT

Step VI : Incubation at 37°C and 44°C as per the respective media

Step VII : Counting of colonies after 24hrs of incubation

iv) Analysis of water and its Lab-Scale treatment with Surface Modified activated carbon

The water samples were carried out with surface modified microwave activated carbon in aseptic condition and analyzed for microbial study. The treatment sequence was followed as mentioned below:

Step I	: Collection of water samples				
Step II	: Sterilization of all required materials by				
autoclavi	ng				
Step III	: Preparation of selective and differential				
illeula pia	ites				
Step IV	: Preparation of surface modified ACF				
Step V	: Treatment of water samples with surface				
modified	ACF				
Step VI	: Microbial analysis of water sample by MFT				
Step VII	: Incubation at 37°C and 44°C as per the				
respectiv	e media				
Step VIII	: Counting of colonies after 24hrs of incubation				
Result And Discussion:					
i)	Microbial analysis of water at initial stage				
(before ti	reatment) -				

Water samples were analyzed in differential and selective media for initial stage identification of microbial colonies and result in terms of CFU/100ml and CFU/1ml are as follows:

Department of Environmental Science

Proceeding of International Conference SWRDM-2012 -

Sample	Total	Faecal	Bacterial Genus		
No.	coliform	coliform	Salmonella	Shigella	Enterococci
	CFU/	100ml		CFU/ml	
1	4190	TNTC	65	32	18
2	TNTC	TNTC	28	15	19
3	6500	TNTC	90	43	100
4	TNTC	1058	1	ND	3
5	2040	TNTC	43	22	10
6	1120	TNTC	2	ND	ND

Table 1- CFU obtained after 24hrs of incubation on different media before treatment

ND- Not detected.

TNTC- Too numerous to count

ii) Analysis of water and its Lab-Scale treatment with Standard activated carbon

Water samples were first treated with Standard activated carbon and result in terms of CFU/100ml and CFU/1ml is as follows:-

Sample	Total coliform	Faecal coliform	Ba	cterial Genus	5
No.			Salmonella	Shigella	Enterococci
	CFU/	100ml		CFU/ml	
1	3100	TNTC	14	9	11
2	1870	TNTC	7	2	4
3	TNTC	TNTC	22	13	TNTC
4	310	1000	8	6	13
5	510	760	80	24	ND
6	895	157	15	ND	ND

 Table 2- CFU obtained after 24hrs of incubation on different media after treatment
 with standard activated

 carbon
 Image: CFU obtained after 24hrs of incubation on different media after treatment
 Image: CFU obtained after 24hrs of incubation on different media after treatment

iii) Analysis of water and its Lab-Scale treatment with surface modified Microwave activated carbon

Water samples after processing with surface modified MW-ACF gives following results-

Sample	Total coliform	Faecal coliform	Bacterial Genus		
No.			Salmonella	Shigella	Enterococci
	CFU/100ml			CFU/ml	
1	85	ND	ND	ND	3

Department of Environmental Science

2	56	ND	ND	ND	5
3	20	ND	ND	ND	2
4	ND	8	ND	ND	ND
5	280	305	8	ND	1
6	ND	ND	ND	ND	ND

Proceeding of International Conference SWRDM-2012

Table 3- CFU obtained after 24hrs of incubation on different media after treatment with surface modified

ACF

Comparison among the Different types of treatment

i) Comparison of commercial and Surface modified activated carbon

Sample No.	Initial	Treatment with	Treatment with surface modified
		standard	MW-ACF
1	4190	3100	85
2	TNTC	1870	56
3	6500	TNTC	20
4	TNTC	310	ND
5	2040	510	280
6	1120	895	ND

Table 4- comparison of Standard and surface modified MW-ACF colonies obtained on M-Endo Agar

Figure1- comparison of Standard and surface modified MW-ACF colonies obtained on M-Endo Agar Above figure shows CFU /100 ml in surface modified treatment was less as compared to treatment with standard.

Sample No.	Initial	Treatment with	Treatment with surface
		standard	modified MW-ACF
1	TNTC	TNTC	ND

2	TNTC	TNTC	ND			
3	TNTC	TNTC	ND			
4	1058	1000	8			
5	TNTC	760	305			
6	TNTC	157	ND			

Proceeding of International Conference SWRDM-2012

Table 5 - comparison of Standard and surface modified MW-ACF colonies obtained on M-Fc Agar

Figure2- comparison of Standard and surface modified MW-ACF colonies obtained on M-Fc Agar

Above figure show, surface modified treatment was more effective than standard and show reduced no. of colonies than both Initial and Standard.

Sample No.	Initial	Treatment with	Treatment with surface modified
		standard	MW-ACF
1	32	14	ND
2	15	7	ND
3	43	22	ND
4	ND	8	ND
5	22	18	8
6	ND	15	ND

Table 6- comparison of Standard and surface modified MW-ACF colonies obtained on SS Agar

INITIAL

STANDARD

SURFACE MD MW-ACF

Figure3- comparison of Standard and surface modified MW-ACF colonies obtained on SS Agar From above figure it was observed that, Surface modified MW-ACF treatment was more effective as colonic constantly reduced from Initial to Surface MD MW-ACF.

Sample No.	Initial	Treatment with standard	Treatment with surface modified MW-ACF
1	18	11	3
2	19	4	5
3	TNTC	TNTC	2
4	3	13	ND
5	10	ND	1
6	ND	ND	ND

Table 7- comparison of Standard and surface modified MW-ACF colonies obtained on SNB Agar

INITIAL

STANDARD

SURFACE MD MW-ACF

Figure4- comparison of Standard and surface modified MW-ACF colonies obtained on SNB Agar

Above figure shows CFU/ml was very less in Surface MD MW-ACF than standard and initial.

Conclusion:

It is observed that surface of activated carbon modified by activating agent more efficiently reduces various microbial contaminants such as **total colifrom**, **faecal coliform**, *Salmonella spp.* and *Shigella spp*. of waterborne diseases causing microorganisms than these reduced from treatment with modified Standard Agent . It is further observed that severe disease causing organism of water from surface as well as ground like shigella and salmonella can more effectively removed by surface activated carbon modified by activating agent.

- If the study is carried out at large scale then it will require only one time investment
- · It is more economical. this technology is cheaper

Greener technology and do not lead to environmental pollution

Recommendation:

- § Further treatment and modification of Surface Modified ACF-MW can help to consider much more parameter affecting water quality including biologically, chemically and giving similar effective results.
- § It is cost effective and Eco-friendly.

Acknowledgement:

The author would like to thank Dr. S. R. Wate, Director, NEERI, Nagpur for his constant encouragement in carrying out the above work and permission to publish the paper.

References:

A.Farkas et.al. (2012) Opportunistic pathogens and faecal indicators in drinking water associated biofilms in Cluj, Romania. Journal Of Water and Health Vol 10.3 pp.471-476 Proceeding of International Conference SWRDM-2012 -

APHĀ, (1999). Standard Methods for the examination of water and wastewater. 20th Ed. American public health association, Washington, D.C.

Bureau of Indian Standards(1991) Drinking Water Specification.1st rev, Bureau of Indian standards, New Delhi pp1-8

EPA. "Monitoring and Assesing Water Quality: Fecal Bacteria."

Ericksen,T.H., and A. P.Dufour (1986).Methods to identify the water pathogens and indicator organisms,pp.195-214, In: Waterborne diseases in United States, G.F.Craun, Ed.,CRC press,Boca Raton, Fla.

Garcia, T *et al*(2004).; Role of activated carbon surface chemistry in the adsorption of Phenanthrene; Carbon, 42,pp. 1683-1689..

Geldreich,E.E., H.F.Clark, C.B. Huff and L.C. Best .(1965). Fecal-coliform-organism medium for the membrane filter technique. J.Amer. Water Works Assoc. 57; 208.

Hassler, J.W.(1974) "Purification with Activated Carbon"; 3rd ed., copyright publishing company, New York .

Huidobro, A. *et al.*;(2001) Preparation of activated carbon cloth from viscous rayon part IV. Chemical activation, Carbon 39, pp.389-398.

Julien, F; Baudu, M and Mazet, M.(1998), Relationship between chemical and physical surface properties of activated carbon; Water Research, 32 (11), pp. 3414-3424.

Mangun, Christian L. *et.al.*;(2001) Surface chemistry, pore sizes and adsorption properties of activated carbon fibres and precursors treated with ammonia; Carbon, 39, pp. 1809-1820.

Prachasirisakul W., Vitidsant T.,Bunyakiat K (1998) "Production of activated carbon from palm oil shell by activation with microwave energy "Proceeding of Eighth National Chemical Engineering Conference; NakomPrathum, Thailand, pp.186-196.

"Process Design Manual for Carbon Adsorption", U.S. Environmental protection agency, Technology Transfer EPA, 625, 1-71-0029, (1973).

Ramteke,D.S.;(1989) "Physico-chemical studies of pyrolysed product from Industrial wastes."; The Thesis submitted to the Nagpur University.

Rose, R.E., E.E. Geldriech and W.Litsky. (1975). Improved Membrane-Filter method for fecal coliform analysis. Appl. Microbiol.29:532.

Savwe our planet- challenges and hopes, The Status of the Environment (1972-1992), UNEP, pp.5.

Senior, B.W.(1996) Examination of water, milk, food and air. In: Mackie and McCartney. Practical Medical Microbiology (J.G.Collee, A.G.Fraser, B.P. Marmion and A. Simmons, eds.). 14th edition. Churchill livingstone, London, pp.883-921.

Suffet and Faust in "Carbon Adsorption Handbook"; P.M.Cheremisinoff and F.Ellerbusch, Eds. (Ann Arbor, MI) Science Publishers Inc.; 241-280, (1978)

U.S. Environmental protection Agency (EPA).Washington DC(2008) Analytical methods approved for drinking water compliance monitoring under total coliform Rule

WHO (2006) meeting the millennium Development Goals Drinking water and Sanitation Target: The Urban and Rural Challenge of the decade. WHO, Geneva, Swizerland.

WHO (2011) Guidelines for Drinking-Water Quality, 4th edition.World Health Organization, Geneva, pp1.

Web Resources-

http://www.epa.gov/microbes/ (EPA methods on pathogens, parasites and indicator organisms)

http://www.cdc.gov/ (Center for disease control and prevention)