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Ballistics 

Smita D. Naika,* 

Armament Research & Development Establishment, Pashan Pune 411021 (MS) India.  

*Corresponding author: insdnaik@yahoo.com 
 

Dynamics is a branch of Applied Mathematics which is the study of moving bodies. It 
includes effect of different causes like forces and moments affecting the motion. 
Ballistics is related to the motion of the bodies which move very fast. It covers motion of 
all types of projectiles like bullets, gravity bombs, rockets etc. Ballistics is a branch of 
Dynamics and hence that of Applied Mathematics. 

 The word ‘BALLISTICS’ has come from ba'llein , a Greek word, which means to 
throw. It came from Ballista (Fig 1), a machine used to throw iron balls for damage. It 
is defined as the science that deals with the motion, behavior, and effects of projectiles: 
the science or art of designing and hurling projectiles so as to achieve a desired 
performance. 

Figure-1. Ballista. 

Ballistics is classified according to the means used as Gun ballistics, Rocket 
ballistics, Torpedo dynamics, Under-water ballistics, Wound ballistics, Space dynamics. 
Each is a subject in itself and further divided into subclasses (Fig 2) as Internal or 
interior ballistics, External or exterior ballistics, Terminal ballistics, Intermediate 
ballistics and Experimental ballistics. Internal Ballistics deals with the motion of the 
projectile during launch. The study involves initiation of motion of a projectile and 
factors affectingit. Motion of a projectile and forces/moments arising due to the medium 
like air or water is studied in External ballistics/underwater Ballistics. Terminal 
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Ballistics is the study at the target end. When a projectile hits the target, damage to the 
target and rojectile is part of Terminal Ballistics. In anti-personal role, when the target is 
a human being, the analysis of wounds is covered in wound Ballistics. Experimental 
Ballistics talks about the experiments to be conducted for all these sub-branches and the 
findings. 

 

Figure-2. Classification of Ballistics 

Ballistics study of a weapon system can be done with actual firing or with the 
modeling and simulation approach. Complete study is carried out with the help of five 
models: Gun Design, Target Definition, Gun Interior Ballistic, External Ballistic of 
Projectile and terminal Ballistic/ impact dynamics. 

 Target is defined in terms of its dimensions and strength. Target is classified as 
point target or area target depending on damage required. Damage criterion defines the 
critical points in Design of target. 

 Gun Design is defined to satisfy general requirements as, strong to meet the 
challenges of the enemy, capable of inflicting heavy damages to the target, easy to carry 
and handle and needs to be cost effective. Gun design model has input parameters as the 
design parameters of launcher/gun tube, projectile and propellant. Output required in 
terms of pressure inside the gun, velocity, range, drift, impact energy, damage to the 
defined target with the required accuracy. These are obtained with the help of Internal, 
External and Terminal Ballistics models. 

To study Internal Ballistics: It is necessary to understand the processes taking place 
inside the gun which is called as Ballistic cycle (Fig.3). There are mainly two processes: 
Burning of the propellant and Motion of the Projectile (inside the barrel). These 
processes can be mathematically modeled with either lumped parameter or gas dynamics 
model. In lumped parameter model average properties of pressure, velocity and 
temperature are assumed and it results into pressure-space curve and velocity-space 
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curve. Gas dynamics model gives the complete history of all properties with time and 
space. It is generally studied for boundary layer analysis of gas and solid phases and 
flame spread analysis. 

 

Figure-3. Ballistic cycle 

Propellant is the source of energy provided to the system. Propellant consists of 
solid chemical grains which burn at a constant rate without the use of external oxygen. It 
follows Piobert’s law of burning i.e. burning proceeds in parallel layers. Form function 
relation takes care of the shape and size parameters of the propellant defined in terms of 
form function constant. There are three types of burnings: degressive, progressive and 
neutral. It is related to form function constant. 

Solution of the mathematical model gives pressure variation inside the barrel and 
muzzle velocity achieved by the projectile (Fig.4). 

The model consists of Variables – z, f , p, v, x ,T Design Parameters:– 

Propellant :θ , D, η , β , F , b , Te , ρ , ϒ , c Gun :– K0 , A 

Projectile :– m 
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Figure-4. p-t, v-t curves 

External ballistics is free flight dynamics of a projectile in a resisting medium (air). 
Initial flight conditions are governed by the projection and acceleration phase (Internal 
Ballistics). At the end of this phase projectile starts its uncontrolled flight with certain 
kinetic energy and attitude. The mathematical model is defined using Newton’s Second 
Law with the external forces. 

In External Ballistics study along with the design parameters few other aspects are also 
important. 

These are: 

1. Forces which influence the motion. 

2. Stability of the projectile. 

3. Trajectory modeling and analysis. 

1. FORCES: 

Forces which influence the motion of a projectile during the flight in air are – 
gravitational force, aerodynamic forces and forces due to rotation of earth. 

1.1 GRAVITATIONAL FORCE 

It is force of attraction between earth and projectile which creates pulling effect on the 
projectile towards centre of the earth. This effect produces acceleration denoted by ‘g’. It 
varies inversely as the square of the distance from centre of earth. It is maximum at the 
pole and minimum at the equator. 
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1.2 AERODYNAMIC FORCES: 

As a rigid body moves in the resisting medium, disturbances are created in the medium 
and in turn forces are generated which affect the motion. When the medium is air, these 
forces are called as aerodynamic forces. Eeffects responsible for the generation of 
aerodynamic forces are: 

1. Viscous effect 

2. Compressibility effect 

3. Pressure effect 

The Major aerodynamic forces and moments acting on a projectile in flight are of 
two types: Static and dynamic. 

Static forces: 

1. Drag D/axial force FA - due to axial velocity 

2. Lift L/normal force FN - due to oblique motion Static moments: 

1. Over turning moment/yawing moment M - due to oblique motion 

2. Spin driving moment - due to body asymmetries like canted fins Dynamic forces: 

1. Damping force S - due to cross spin 

2. Magnus force 

a. K - due to cross velocity and axial spin 

b. Q - due to cross velocity (cross spin) and axial spin  

Dynamic moments: 

1. Spin damping moment I - due to axial spin 

2. Magnus moment 

a. TK - due to cross velocity and axial spin 

b. TQ - due to cross velocity(cross spin) and axial spin 

3. Damping moment H - due to cross spin 
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Larger the value of C, smaller is the retardation and in turn projectile covers more range. 
Remaining velocity of the projectile is also more for higher values of C. That is, a 
projectile having larger C can strike the target with higher velocity than a projectile 
having smaller value of C but fired with much higher muzzle velocity. 

1.3 Forces due to rotation of Earth 

For small ranges and low angle of launch, during trajectory computation generally 
Earth’s rotation effect is ignored. For higher velocities and large angle trajectories it has 
to be included. The forces due to rotation of Earth are 

1. Centrifugal force- normal to Earth’s axis 

2. Coriolis force- It shifts the trajectory right which produces drift towards right side of 
the trajectory. 

1.4 Thrust 

Thrust is a force coming from within the rocket as a reaction to the burning of the 
propellant. It depends on the mass flow rate of the propellant and the efflux velocity.  It is 
expressed as 
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The ability to adopt zero yaw attitude defines stable motion (Figure-5). 

Figure-5. Stability of motion 

Gun projectile is an axis symmetric body. Centre of pressure (C.P.) of static 
aerodynamic forces is ahead of centre of gravity (C.G.). Bodies having C.P. ahead of 
C.G. are statically unstable. The distance between C.P. and 

C.G. is called static margin and is negative for statically unstable body. When C.P. 
is behind C.G., it is statically stable body and static margin is positive. Thus a gun 
projectile is statically unstable and has to be made stable during flight. The body is 
stabilized using spin or fins. Fins shift CP behind CG. Methods of stabilization: 

1. Spin motion is imparted to projectile which makes projectile stable like spinning 
top-Gyroscopic or spin stabilization (Fig. 6(a)). 

2. Mass of the projectile is so concentrated at the forward end as to move C.G. ahead 
of C.P. Projectile is provided with flat surfaces (fins) at the rear of the body-
Aerodynamic or fin stabilization (Fig.6(b)). 

 



 

 Page 8 

 

 

 

Figure-6(a). Spin stabilized projectile 

 

 

Figure-6(b). Fin stabilized projectile 

Static stability relates to the initial response of a body when disturbed from equilibrium 
conditions. 

The oscillatory motion damps out to minimum in short distance, then the projectile is 
dynamically stable (Fig. 7). 

It relates to the time history of the subsequent motions following the initial response 
after being disturbed from equilibrium conditions. 
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Figure-7. Stability during motion 

3. TRAJECTORY 

It is path taken by C.G. of the projectile. It gives knowledge of range, altitude, drift, 
remaining velocity, time of flight and slope. It is required to define proper frame of 
reference like Space fixed, earth fixed, body fixed and 

The complete motion is studied with the help of 6-degree of freedom model, (6-
DOF). Three scalar equations for linear motion (force equations) and Three for angular 
motion (moment equations). The mathematical model in the vector form is given 

 

Important aspects considered in this study are stability of the projectile and trajectory 
computation. Factors affecting the trajectory and stability of the projectile during its 
motion are projectile parameters: mass, position of CP/CG, Moment of Inertia, Shape 
and surface design and forces and moments acting on the projectile. 

Trajectory is computed using any of the models: 

✓ In vacuo model 

✓ Point mass model- Earth rotation effects, crosswind effects 

✓ Modified point mass model- Equilibrium yaw, Magnus force/moment, spin damping 
couple 
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✓ 6 Degree of freedom model 

 

Figure-8. Trajectory of projectile. 

Fig.8 consists of the trajectories obtained in vacuo and real which clearly shows that due 
to aerodynamic forces acting on the projectile the range reduces. 

The model is selected for required study with given data and integrated 
numerically to get the trajectory. Simulation study is carried out to finalize the initial 
conditions in order to reduce the dispersion and increase the accuracy and consistency. 

Terminal Ballistics 

Projectile is designed to reach the terminal point: be in air (in the vicinity of the aircraft) 
or on the ground (in the vicinity of a structure, tank, bunker etc.) in desired orientation 
with a desired velocity and from here the terminal phase commences. Damage to the 
target is achieved in differentways : Kinetic energy of the penetrating bodies , chemical 
energy of a high explosive and a combination of the both. Damage to the target is 
classified as : scabbing, plugging, petalling and ductile failure. The projectile also gets 
damaged as: barrelling, shatter, lateral bending and compression. There are three types of 
KE shots: bullets, Long rod penetrator and Fragmentation shell with natural fragments 
or preformed fragments. 

There are three types of chemical shots which use high explosive to damage 
the target viz. HEAT or shaped charge, HESH and Blast. The functioning of HE shots is 
shown in Fig.8. 

In HEAT, shock energy is concentrated at a single point as a jet. In HESH, HE 
is spread over the target and detonated. The tensile strength of the target is overcome and 
the target material is broken. Blast warheads are used by detonating the HE for damaging 
the structure from outside or from inside. 
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HEAT 

Figure-8. Terminal effects of HE shots 

With help of the requirements and arget information, Gun design is decided and 
improved for required effect and accuracy. 

Ballistics studies can be applied for analysis of various areas like safe ejection 
of the pilot in case of emergency exit, store separation from the aircraft, towed body 
dynamics for towing vehicles, safety/danger areas for firing ranges. An application of 
projectile ricochet analysis using mathematical modeling and simulation approach gives 
limiting conditions to define the safety zone. 
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Numerical Solution of Non-linear Impulsive 

Differential Equation by Simpson's 
𝟏𝟑𝐫𝐝 Rule 

Indrayani Y. Sutar a,*, Sandhyatai D. Kadama 
a Dr. D. Y. Patil Institute of Technology, Pimpri, Pune 411 018, (MS) India. 

*Corresponding author: sutarindrayani01@gmail.com 
 

ABSTRACT 

Impulsive differential equations occur in many physical situations such as control 

theory, mechanics, epidemiology, pharmacokinetics etc. Finding solution of such 

differential equations using analytical methods is not always possible. Therefore, 

numerical methods can be employed to obtain approximate solutions of these 

differential equations. In the present paper, a new numerical method is proposed to 

obtain the solution of nonlinear impulsive differential equation with finite number of 

discontinuities. Integral term, involved in the mild solution impulsive differential 

equation, is approximated using Simpson's 
13𝑟𝑑 rule and then splitting the solution by 

DGJ method. Further, error in the proposed method is computed. Furthermore, the 

results on error approximation and stability analysis are computed. 

KEYWORDS 

 Impulsive differential equations, Simpson's 
13𝑟𝑑 rule, Daftardar-Gejji and Jafari 

method, Numerical solution, Error. 

AMS Subject Classification: 34A12, 39B82, 47GXX, 65D30. 

…………………………………………………………………………………………. 
 

1. INTRODUCTION 

The theory of impulsive differential equation is an emerging area of research. Due to 
the nature of short-term perturbation of impulsive differential equations, whose 
duration is negligible as compared to the whole phenomenon, they are useful tools in 
modeling of many real-life problems that are subject to sudden changes in the state. 

V Laxmikantham [8], D. Bainov and Simemnov [1] developed theory of 
impulsive differential equation. Many authors studied existence, uniqueness and 
qualitative properties of mild solutions of impulsive problems with the help of 
various fixed point theorems [3,6,11], measure of non-compactness, contraction 
principal etc. But many impulsive differential equations cannot be solved analytically 
or in some cases it is more confounded to tackle them.  

mailto:sutarindrayani01@gmail.com
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Approximate solutions to differential equations are often computed using 
finite difference method resulting in estimated values for the solution of differential 
equation at some grid points. There are many methods for developing numerical 
approaches of these kinds of problems. The first stage is about substituting some 
values for the integral occurring in the solution of differential equation by any 
numerical quadrature based on grid point values.   

V. Gejji and H. Jafari [2] developed an iterative method (Daftardar-Gejji and 
Jafri (DGJ) method) for solving functional differential equations. Jhinga A. and 
others [4], proposed a method for solving Volterra Integro differential equations 
using trapezoidal rule along with DGJ method. Authors also studied error and 
convergence of the proposed method.  

To the best of our knowledge there is less contribution in the impulsive 
problems by the researchers. 

In the present paper, we have studied impulsive nonlinear problem with finite 
number of discontinuities given by,  𝑢′(𝑥) & =  𝑓(𝑡, 𝑢(𝑡)) ,   𝑡 ≠ 𝜏𝑘  ,         𝑡 ∈  [0, 𝑇]                   (1) 𝑢(𝑥0) =  𝑢0 ,                                                                                  (2) Δ 𝑢(𝜏𝑘)  =  𝐼𝑘(𝑢(𝜏𝑘)),          𝑘 = 1,2, . . 𝑚                               (3) 
where 𝜏𝑘 are moments of impulse and 𝐼𝑘 is the sudden change of state at every 𝜏𝑘. 
2. PRELIMINARIES AND HYPOTHESES 

Let 𝑋  be a Banach space with the norm  ‖⋅‖. 
Let 𝑃𝐶([0, 𝑇], 𝑋) = {𝑢: [0, 𝑇] →  𝑋 | 𝑢(𝑡)}  is piecewise continuous at 𝑡 ≠ 𝜏𝑘, left 
continuous at 𝑡 = 𝜏𝑘, that is, 𝑢(𝜏𝑘−) = limℎ→ 0+ 𝑢(𝜏𝑘 − ℎ)  = 𝑢(𝜏𝑘) and the right limit 𝑢(𝜏𝑘 + 0) exists for  𝑘 = 1,2, … ,𝑚. Clearly, 𝑃𝐶([0, 𝑇] , 𝑋) is a Banach space with 
the supremum norm ‖𝑢‖𝑃𝐶([0,𝑇] ,𝑋) =  𝑠𝑢𝑝{‖𝑢(𝑡)‖ ∶ 𝑡 ∈  [0, 𝑇] ∖ {𝜏1, 𝜏2, … , 𝜏𝑚}}. 
Definition 2.1: A function  𝑢 ∈  𝑃𝐶([0, 𝑇] , 𝑋) satisfying the equations 

𝑢(𝑡) =  𝑢0  + ∫𝑓(𝑡, 𝑢(𝑡))𝑑𝑡𝑡
0 + ∑ 𝐼𝑘 𝑢(𝜏𝑘),0<𝜏𝑘<𝑡     𝑡 ∈  (0, 𝑇], 

𝑢(0) = 𝑢0. 
is said to be the mild solution of the initial value problem. 
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Definition 2.2: Let 𝑢0(ℎ) , 𝑢1(ℎ),⋯ denote the approximation obtained by a given 
method using step size ℎ then the method is said to be convergent if and only if  lim𝑥→ 0|𝑢𝑖(ℎ) − 𝑢𝑖(𝑥𝑖)|  →  0             𝑓𝑜𝑟  𝑖 = 1,2,3,⋯ ,𝑁            (4) 
as ℎ →  0 and 𝑁 →  ∞.  
Definition 2.3: A method is said to be of order 𝑘, if 𝑘 is the largest number for which 
there exist a positive constant 𝐶 such that  |𝑢𝑖(ℎ) − 𝑢𝑖(𝑥𝑖)|    ≤  𝐶ℎ𝑘,         𝑖 = 0, 1,2,3,⋯ , 𝑁 ; ∀ ℎ > 0                 (5)  
Hypothesis 1: Let 𝑓: 𝑅 ×  𝑋 →  𝑋  be function,  there exist a positive constant 𝐶 such 
that  | 𝑓(𝑡, 𝑦)  −  𝑓(𝑡, 𝜉)| ≤  𝐶ℎ | 𝑦 − 𝜉| ,   ∀ 𝜉, 𝑦 ∈  𝑋 ,     0 ≤  𝑡 ≤  𝑇 

Hypothesis 2: Let 𝐼𝑘: 𝑋 →  𝑋 be function, there exist a positive constant ℎ𝑘 such that |𝐼𝑘(𝑥) − 𝐼𝑘(𝑦)| ≤  ℎ𝑘 |𝑥 − 𝑦|,            ∀ 𝑥, 𝑦 ∈  𝑋 

3. NUMERICAL METHOD 

Consider an impulsive differential equation of the form  𝑢′(𝑥) = 𝑓(𝑡, 𝑢(𝑡)) ,            𝑡 ≠ 𝜏𝑘 ,   𝑡 ∈  [𝑥0, 𝑥 ]                 (6) 
under the conditions 𝑢(𝑥0)  =  𝑢0  ,          Δ 𝑢(𝜏𝑘) =  𝐼𝑘𝑢(𝜏𝑘).                              (7) 
Solution of equation (6) along with the conditions stated in (7) is given in [6] 

𝑢(𝑥) = 𝑢0  +   ∫ 𝑓(𝑡, 𝑢(𝑡))𝑑𝑡𝑥
𝑥0  + ∑ 𝐼𝑘𝑢(𝜏𝑘)𝑥0 <𝜏𝑘 <𝑥 .          (8) 

In this section we apply Simpson's 
13𝑟𝑑 rule, to the integral term in equation (8), to 

obtain its approximate solution. Interval is divided into equal parts with step length ℎ. Thus we get    

𝑢(𝑥𝑗+1) =  𝑢𝑗+1 = 𝑢𝑗  + ∫ 𝑓(𝑡, 𝑢(𝑡))𝑑𝑡𝑥𝑗+ℎ
𝑥𝑗 + ∑ 𝐼𝑘𝑢(𝜏𝑘)𝑥𝑗 < 𝜏𝑘 <𝑥𝑗+ℎ   

=  𝑆 + 𝑢𝑗  + ℎ3 𝑓 (𝑥𝑗 + ℎ, 𝑢(𝑥𝑗 + ℎ)) + ℎ3  𝑓 (𝑥𝑗 , 𝑢(𝑥𝑗))  
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                                  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢(𝑥2𝑖−1))⌊𝑗2 −1 ⌋
𝑖=1

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖 , 𝑢(𝑥2𝑖))⌊𝑗2 −1 ⌋
𝑖=1 ,                     (9) where,                𝑆 = ∑ 𝐼𝑘𝑢(𝜏𝑘)𝑥𝑗< 𝜏𝑘<𝑥𝑗+ℎ .                     

Approximating impulse term as  Δ𝑥(𝜏𝑘) =  𝑥(𝜏𝑘+) − 𝑥(𝜏𝑘−) = 𝐼𝑘(𝑥(𝜏𝑘)),                   𝐼𝑘(𝑥(𝜏𝑘)) = 𝐵𝑘𝑁𝑘 ,                                                   (10) where  𝐵𝑘  = ℎ𝑘(𝜏𝑘+1 − 𝜏𝑘) ;       𝑁𝑘 ∈   ℕ   and        𝑥𝑗  =  𝑗ℎ, 𝑗 =  0,1,⋯  𝑇. ∴          𝑢(𝑥𝑗 + ℎ) =  𝑢(𝑗ℎ + ℎ) =  𝑢(𝑗 + 1)ℎ =  𝑢𝑗+1.  
Then equation (9) becomes 

𝑢𝑗+1 =  𝑆 + 𝑢𝑗 + ℎ3 [ 𝑓(𝑥𝑗+1, 𝑢𝑗+1) +  𝑓(𝑥𝑗 , 𝑢𝑗)]  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1 )⌊𝑗2 −1 ⌋
𝑖=1   

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋
𝑖=1 .                                                                 (11) 

Define 𝐿(𝑢) =  𝑆 = ∑ 𝐼𝑘𝑢(𝜏𝑘)𝑥𝑗 <𝜏𝑘 <𝑥𝑗+ℎ    
𝑁(𝑢) = ℎ3  𝑓(𝑥𝑗+1, 𝑢𝑗+1 )  

𝑔 =  𝑢𝑗  + ℎ3  𝑓(𝑥𝑗 , 𝑢𝑗) + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1 )⌊𝑗2 −1 ⌋
𝑖=1   

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋
𝑖=1 .                   (12) 
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Where 𝐿(𝑢) and 𝐼𝑘 are linear operators, 𝑁(𝑢) is a Nonlinear operator and 𝑔 is a 
known function. 

Thus equation (11) becomes 

𝑢𝑗+1 =  𝑆 + 𝑢𝑗 + ℎ3 𝑓(𝑥𝑗 , 𝑢𝑗)  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1 )⌊𝑗2 −1 ⌋
𝑖=1   + 2ℎ3  ∑ 𝑓(𝑥2𝑖 , 𝑢2𝑖)⌊𝑗2 −1 ⌋

𝑖=1
+ ℎ3𝑓( 𝑥𝑗+1, { 

 𝑆 + 𝑢𝑗 + ℎ3 𝑓(𝑥𝑗 , 𝑢𝑗)  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1 )⌊𝑗2 −1 ⌋
𝑖=1      

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋
𝑖=1 + ℎ3 𝑓(𝑥𝑗+1, 𝑢𝑗+1)} 

 
)   

   =  𝑆 + 𝑢𝑗 + ℎ3 𝑓(𝑥𝑗 , 𝑢𝑗)  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1 )⌊𝑗2 −1 ⌋
𝑖=1   + 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋

𝑖=1
+ ℎ3 𝑓( 𝑥𝑗+1, { 

 𝑆 + 𝑢𝑗 + ℎ3 𝑓(𝑥𝑗 , 𝑢𝑗)  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1)⌊𝑗2 −1 ⌋
𝑖=1   

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋
𝑖=1

+ ℎ3 𝑓( 𝑥𝑗+1, 𝑆 +  𝑢𝑗 + ℎ3 𝑓(𝑥𝑗 , 𝑢𝑗)  + 4ℎ3   ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1)⌊𝑗2 −1 ⌋
𝑖=1   

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋
𝑖=1 ) } 

 
) .                                             (13) 

Let 
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𝑁1 =  𝑆 + 𝑢𝑗 + ℎ3  𝑓(𝑥𝑗 , 𝑢𝑗) + 4ℎ3    ∑ 𝑓(𝑥2𝑖−1, 𝑢2𝑖−1)⌊𝑗2 −1 ⌋
𝑖=1

+ 2ℎ3  ∑ 𝑓(𝑥2𝑖, 𝑢2𝑖)⌊𝑗2 −1 ⌋
𝑖=1 ,                            (14) 

and 𝑁2  =  𝑁1  + ℎ3  𝑓(𝑥𝑗+1, 𝑁1).                                        (15) 
With these notations equation (13) can be written as 𝑢𝑗+1 = 𝑁1 + ℎ3  𝑓(𝑥𝑗+1, 𝑁2)                                             (16) 
Equation (16) represents an approximate solution of equation (8). 

 

 

4. ERROR ANALYSIS 

Theorem Assume that 𝑓 satisfies the hypothesis 1 for any positive constant 𝐶, then 
the proposed numerical method is of fifth order.  

Proof: Let 𝑢𝑗+1  is an approximation to 𝑢(𝑥𝑗+1). From equations (9),(14) and (16) 
we obtain |𝑢(𝑥𝑗+1) − 𝑢𝑗+1| = ℎ3 | 𝑓(𝑥𝑗+1, 𝑢𝑗+1)  −  𝑓(𝑥𝑗+1, 𝑁2)| +  𝑂(ℎ5)         ≤    𝐶ℎ23  | 𝑢𝑗+1  −  𝑁2 | +  𝑂(ℎ5)                                  ≤   𝐶ℎ23 | 𝑁1  + ℎ3  𝑓(𝑥𝑗+1, 𝑁2) − 𝑁2|  +  𝑂(ℎ5)                                       ≤   𝐶ℎ39  |𝑓(𝑥𝑗+1, 𝑁2)  −  𝑓(𝑥𝑗+1, 𝑁1)| +  𝑂(ℎ5)  ≤ 𝐶ℎ49 |𝑁2  − 𝑁1| +  𝑂(ℎ5)       ≤ 𝐶ℎ527  |𝑓(𝑥𝑗+1, 𝑁1)| +  𝑂(ℎ5). 
Hence, the proposed method is of order 5.  
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COROLLARY: The numerical method (16) is convergent. 

Proof: By error analysis result and definitions 2.2 and 2.3 numerical method (16) is 
convergent. 

5. STABILITY ANALYSIS 

Theorem Let 𝑢𝑗+1𝑛  and 𝑣𝑗+1𝑛  be the two 𝑛𝑡ℎ approximate numerical solutions of given 
impulsive differential equations, satisfying hypotheses 1 and 2, are stable if and only 
if 𝐶𝛼 ≥  0. 
Proof: Let 𝑢𝑗+1𝑛  and 𝑣𝑗+1𝑛  be the two approximate solutions. To establish the stability, 
consider, | 𝑢𝑗+1𝑛 − 𝑣𝑗+1𝑛 | = | 𝑁1  + ℎ3  𝑓(𝑥𝑗+1, 𝑁2)  − 𝑁1′− ℎ3  𝑓(𝑥𝑗+1, 𝑁2′)|                                                ≤ |𝑁1  −  𝑁1′|  +  ℎ3 |𝑓(𝑥𝑗+1, 𝑁2) −  𝑓(𝑥𝑗+1, 𝑁2′)|                      ≤ |𝑁1  −  𝑁1′|  + 𝐶ℎ23  |𝑁2  −  𝑁2′|                                                  ≤ |𝑁1 − 𝑁1′|  + 𝐶ℎ23 |𝑁1 + ℎ3 𝑓(𝑥𝑗+1, 𝑁1) − 𝑁1′ − ℎ3  𝑓(𝑥𝑗+1, 𝑁1′)|          ≤ |𝑁1  −  𝑁1′|  + 𝐶ℎ23 |𝑁1  −  𝑁1′| + 𝐶ℎ29 |𝑓(𝑥𝑗+1, 𝑁1) − 𝑓(𝑥𝑗+1, 𝑁1′)| ≤ |𝑁1 − 𝑁1′|  +  𝐶ℎ23 |𝑁1  − 𝑁1′|  + 𝐶2ℎ39 |𝑁1  −  𝑁1′|                               | 𝑢𝑗+1𝑛 − 𝑣𝑗+1𝑛 | ≤ ( 1 + 𝐶ℎ23  + 𝐶2ℎ39 ) |𝑁1  −  𝑁1′|.                                        (17) 
Using the definition of 𝑁1 and Lipschitz's condition we get | 𝑁1 − 𝑁1′| ≤  |𝑆 − 𝑆′|  +  |𝑢𝑗 − 𝑣𝑗| + ℎ3 |𝑓(𝑥𝑗  , 𝑢𝑗) − 𝑓(𝑥𝑗  , 𝑣𝑗)|+ 4ℎ3  ∑|𝑓(𝑥2𝑗+1 , 𝑢2𝑗+1) − 𝑓(𝑥2𝑗+1 , 𝑣2𝑗+1)|  + 2ℎ3  ∑|𝑓(𝑥2𝑗  , 𝑢2𝑗) − 𝑓(𝑥2𝑗  , 𝑣2𝑗)|  ≤ ℎ𝑘|𝑢𝑘  − 𝑣𝑘|  + |𝑢𝑗  −  𝑣𝑗|  + ℎ23 |𝑢𝑗  −  𝑣𝑗| 
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                    + 4ℎ23 ∑|𝑢2𝑗−1 − 𝑣2𝑗−1| + 2ℎ23 ∑|𝑢2𝑗  −  𝑣2𝑗|  ≤ ℎ𝑘|𝑢0 − 𝑣0|  +  |𝑢0 − 𝑣0|  + ℎ23 |𝑢0 − 𝑣0|         + 4ℎ23 ∑|𝑢0  −  𝑣0|  + 2ℎ23 ∑|𝑢0  −  𝑣0|                                     ≤ (1 + ℎ𝑘 + 7ℎ23 ) |𝑢0 − 𝑣0|.                                                  (18)   
Substituting equation (18) in equation (17) we get                                     | 𝑢𝑗+1𝑛  – 𝑣𝑗+1𝑛 |  ≤  𝐶𝛼 |𝑢0 –  𝑣0| ,                                                          (19) 
where   𝑐𝛼 = ( 1 + 𝐶ℎ23  + 𝐶2ℎ39 )(1 + ℎ𝑘 + 7ℎ23 ) ≥ 0. 
Hence two approximate solutions of given impulsive differential equations are stable. 

6. RESULTS AND DISCUSSION 

In this paper we have considered impulsive differential equation given by equation 
(7). An integral term in the solution of impulsive differential equation is 

approximated using Simpson's 
13𝑟𝑑 rule. It is proved that the proposed method is of 

order five. Stability and convergence of the method is also studied. 
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ABSTRACT 

A review of developments in Sturm-Liouville theory is presented. An overview of 

pioneering work of Sturm, Liouville, Weyl, Dixon, Stone and Titchmarsh is 

presented. Sturm-Liouville problems with separated and coupled boundary 

conditions are discussed. Haupt and Richardson's extension of Sturm-Liouville 

problems with indefinite weight is given. Further extension of Sturm-Liouville theory 

with discontinuous weight function, transmission condition, eigenparameter 

dependent boundary conditions is presented. 

KEYWORDS 

Sturm-Liouville theory, Eigenvalues, Eigenfunctions, eigenfunction expansions. 

AMS Subject Classification: 34B24, 34L10, 34L15 

…………………………………………………………………………………………. 
1. INTRODUCTION 
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Cubic B-spline Galerkin Finite Element Method 
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ABSTRACT 
In this paper we have constructed cubic B-splines based Galerkin finite element 

method (FEM) to compute approximate solutions of one dimensional non-

homogeneous Burgers' equation (NBE). Initially Euler's implicit technique is used to 

obtain time discretization of NBE. Galerkin FEM is then applied to this discretized 

form. Stability of the present method is studied by using von Neumann analysis. The 

applicability and accuracy of this method is demonstrated by comparing computed 

numerical solutions of some test examples by the proposed method with the exact and 

numerical solutions available in the literature. 

KEYWORDS 

Non-homogeneous Burgers' equation, Cubic B-Splines, Galerkin finite element 

method, Von neumann analysis.  
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ABSTRACT 
Gender inequality has been a social issue in India for centuries. Indian society has 

always been discriminating amongst men and women.  Gender equality is just an 

oral statement said by the influential people of the society but never seen in practice. 

Be it a household work, labour work or politics, women have always been 

underestimated about their efficiency and capabilities to work equally in comparison 

to men. In this paper, Authors studied that the gender inequality in accordance to 

male female ratio specifically related to birth rate, life expectancy, work 

participation and literacy. 

KEYWORDS 
Inequality, literacy, Work force participation, Life expectancy, Interpolation and 

extrapolation. 

…………………………………………………………………………………………. 

1. INTRODUCTION 

Gender equality is not only a fundamental human right, but a necessary foundation to 
create   a peaceful, prosperous and sustainable world to live in Gender inequality 
means that men and women are may be equal or not equal and it affects an 
individual's living experience. Gender discrimination has been a social issue in India 
for years and years. That in many parts of India, the birth of a girl child is not 
welcomed and it is a known fact. The report titled "Women, business and the law" 
revealed the world is moving to equal legal rights to both genders. Only 6 countries 
in the world give women the same legal work rights as men and prove to be gender 
equal [1]. Still women in many parts of the country have less access to education 
than men or are being denied from taking education. Many times, it has been seen 
that they are not even allowed to finish their primary education, which is a basic 
human right. Gender inequality can be seen even at the workplaces. Still women are 
being harassed mentally and physically by the higher authorities or people of the 
opposite gender at their work place. According to research from the World Bank, it 
has been observed that over one million women don’t have any kind of legal 
protection against the domestic violence [2]. 
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 According to the United Nation Development, there are 17 goals for sustainable 
development. The fifth goal is gender inequality [3]. Ending all discrimination 
against women and girls is not only a basic human right, is need of an hour; it’s 
proven that empowering women and girls can help in economic growth and 
development of the country. The number of schools going girls now is more as 
compared to the last 15 years, and most regions have reached gender parity in 
primary education. But still there are more women in the labour market, large 
inequalities in some regions, with women who are denied the same work rights as 
men.  Still women have to face sexual violence and exploitation, the unequal division 
of unpaid care and domestic work, and discrimination in public office which can be 
huge barriers for women to work in safe and secure environment. Climate change 
and disasters continue to have a disproportionate effect on women and children, as 
do conflict and migration. It is very important to give women equal rights land and 
property, sexual and reproductive health, and to technology and the internet. Today 
there are more women in public office than ever before, but encouraging more 
women leaders will help achieve greater gender equality. 

2. METHODS 

The data were obtained from the census of India 1991 and www.censusindia.net  for 
2001 and 2011[4]. The interpolation and extrapolation method are used to fill gaps 
and predict future values in the time series data[5]. To obtain the data for inter-
censual year linear interpolation has been used. We don’t have the data for the census 
year 2021 so we have been used extrapolation method for 2012 to 2019. Female 
literacy is the percentage of female literates with respect to total literate population 
similarly for male literacy. Female workforce participation is referred to percentage 
of female workforce participation with respect to total female work participation and 
similar for male work participation. Life expectancy of male is the number of years a 
male person can expect to live since birth and same for female life expectancy. The 
data of life expectancy is taken from World Bank (macro trends)[6]. Unpaired t-test 
is used to test the hypothesis.  

Table-1. Census Data 

Year 

Literacy 
Workforce 

participation Life expectancy 

Male Female Male Female Male Female 

1991 64.13 39.29 51.1 22.1 59 59.7 

2001 75.26 53.67 51.8 25.6 62.3 64.6 

2011 82.24 65.46 53.2 25.6 65.8 69.3 
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Table-2. Interpolation and extrapolation of the census data 

Year 

Literacy 
Workforce 

participation Life expectancy 

Male Female Male Female Male Female 

1991 64.13 39.29 51.1 22.1 59 59.7 

1992 65.243 40.728 51.17 22.45 59.4 60.4 

1993 66.356 42.166 51.24 22.8 59.7 60.9 

1994 67.469 43.604 51.31 23.15 60.1 61.4 

1995 68.582 45.042 51.38 23.5 60.4 61.8 

Year 

Literacy 
Workforce 

participation Life expectancy 

Male Female  Male  Female Male  Female 

1996 69.695 46.48 51.45 23.85 60.6 62.2 

1997 70.808 47.918 51.52 24.2 60.8 62.3 

1998 71.921 49.356 51.59 24.55 61.2 62.7 

1999 73.034 50.794 51.66 24.9 61.4 63.3 

2000 74.147 52.232 51.73 25.25 61.9 64 

2001 75.26 53.67 51.8 25.6 62.3 64.6 

2002 75.958 54.849 51.94 25.6 62.8 65.2 

2003 76.656 56.028 52.08 25.6 63.1 65.6 

2004 77.354 57.207 52.22 25.6 63.5 66.1 

2005 78.052 58.386 52.36 25.6 63.7 66.5 

2006 78.75 59.565 52.5 25.6 64 66.9 

2007 79.448 60.744 52.64 25.6 64.3 67.2 

2008 80.146 61.923 52.78 25.6 64.6 67.7 

2009 80.844 63.102 52.92 25.6 64.9 68.2 

2010 81.542 64.281 53.06 25.6 65.4 68.8 

2011 83.441 66.21 52.997 26.613 65.8 69.3 
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2012 84.259 67.464 53.117 26.714 66.4 69.6 

2013 85.065 68.71 53.239 26.805 65.65 69.15 

2014 85.86 69.95 53.362 26.887 65.87 69.45 

2015 86.648 71.185 53.487 26.963 66.1 69.77 

2016 87.432 72.418 53.613 27.036 66.33 70.1 

2017 88.217 73.651 53.738 27.109 66.57 70.45 

2018 89.007 74.888 53.862 27.187 66.82 70.8 

2019 89.809 76.132 53.985 27.275 67.06 71.15 
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4.  DATA ANALYSIS 

4.1. Graphical Representation of Data 

 

Figure-1. Relation between Male and Female Literacy 

The Relation between Male and Female literacy is positive correlated. There is not 
perfect positive correlation, hence we cannot say there is an equality in terms of 
literacy.  

 

Figure-2. Census year wise literacy in Male and female 
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Figure-3. Relation between Male and female Workforce participation 

The Relation between Male and Female work participation is weak positive 
correlated. There is not perfect positive correlation, hence we cannot say there is an 
equality in terms of work force participation.  

 

Figure-4. Census year wise Male and female workforce participation 
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Figure-5. Relation between Life expectancy in Male and Female 

The Relation between Male and Female life expectancy is weak positive correlated. 
There is not perfect positive correlation, hence we cannot say there is an equality in 
terms of life expectancy. 

 

Figure-6.  Census year wise Life expectancy in Male and Female 
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Figure-7. Box plot 

This figure shows that there is more variation in the male literacy and female 
literacy. There is little bit variation in the male workforce participation and female 
workforce participation. There is variation in the male life expectancy and female life 
expectancy.  

4.2. Descriptive Statistics 

Table-3.  Descriptive Statistics for the variables Literacy, Workforce 

Participation and Life expectancy 

Descriptive statistics 
Literacy 

Workforce 
participation Life expectancy 

Male Female Male Female Male Female 
Mean 77.76 58.21 52.41 25.36 63.44 66.04 

Standard deviation 7.65 11.09 0.91 1.49 2.55 3.55 
Coefficient Variation 9.83 19.06 1.74 5.88 4.02 5.376 

correlation 0.99 0.91 0.99 
 
4.3. Testing Of Hypothesis 

Table-4. Table for Unpaired t-test and Decision 

Hypothesis 
Average Calculated t 

value 
Table 
value 

P 
value 

Decision 
Male Female 

H01 77.76 58.21 7.81 2.048 0.00 Reject H01 

H02 52.41 25.36 6.77 2.048 0.00 Reject H02 

H03 63.44 66.04 -3.20 2.048 0.00 Reject H03 
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5. CONCLUSION 

The gender equality is most important. It effects on social development of society as 
well as country. There are different aspects to check the gender equality. So in this 
paper we study three aspects of gender equality such as literacy, work force 
participation and life expectancy. The average male and female literacy are 77.76 
and 58.21 respectively. The average male and female work force participation are 
52.41 and 25.36 respectively. The average male and female life expectancy are 63.44 
and 66.04 respectively. The males are more consistent than females in the all aspects 
of our study. 

From the table for unpaired t test, that male literacy and female literacy are 
significant. For the hypothesis second, we can conclude that male literacy and female 
work participation are significant. For the hypothesis third, we can conclude that 
male literacy and female life expectancy are significant. 

Male and Female literacy both differ significantly. Box-plot shows as little bit 
variation in literacy, small change with workforce participation and very little change 
in life expectancy. Male literacy and female life expectancy are significant. Female 
literacy is consistent as compare to other factor. Male literacy and female work 
participation are significant. Male literacy and female literacy are perfect correlated. 
Male and female literacy, male and female work participation are differing so gender 
inequity is seen now a day. 
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ABSTRACT 
In this article, we consider the problem of variable selection in linear regression when 

multicollinearity is present in the data. The selection criterion (Rp*) is based on the 

ordinary ridge estimator and it gives satisfactory results than the method based on Least 

Squares estimator. Performance of Rp* is studied over the Mallow’s Cp criterion used 

for variable selection, for various combinations of ridge estimators and biasing 

constants.   
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1. INTRODUCTION 

Consider the following linear regression model: 

εβ += XY                         (1) 

where, Y is a n × 1 vector of responses, X is a n × k full column rank matrix of n 
observations on k-1 explanatory variables, β  is a k × 1 vector of unknown parameters,ε  
is a n × 1 vector of disturbance assumed to be distributed with mean vector 0 and 
variance covariance matrix I2σ , and I is an identity matrix of order n × n. Assume that 
the covariates  xi’s  and response variable Y are standardized in such a way that XX

'  is 
a non-singular correlation matrix and XY  is the correlation between X and Y. We 
assume that two or more variables in X are nearly linearly dependent. Therefore, the 
model in (1) suffers from the problem of multicollinearity. In estimating the regression 
coefficients β, the ordinary least squares (OLS) estimator, YX)XX(ˆ '1' '−=β  the most 

common method, is unbiased. However, it may still have a large mean squared error 
(MSE) when the multicollinearity in the design matrix X causes unstable solutions. 

 One of the most frequently used statistical procedures is variable selection in 
regression. Variable selection is useful for two reasons: variance reduction and 
simplicity. A number of variable selection methods have been introduced in recent years. 
Among the classical variable selection methods such as Mallow’s Cp (Mallow’s, [1]), 
most are based on the OLS estimator. Due to poor performance, OLS estimators are 
sensitive to the presence of multicollinearity. Consequently, variable selection methods 
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based on OLS estimator in turn leads to the inappropriate variable selections. In an effort 
to over come the problem of OLS with multicollinear data, widely used method of ridge 
regression, proposed by Hoerl and Kennard [2]. There are various types of ridge 
estimators including the ridge regression (RR) estimator (Hoerl and Kennard, [2]), 
Jackknifed ridge regression (JRR) estimator (Hinkley [3]) and Modified Jackknifed ridge 
regression (MJR) estimator (Batah et al. [4]) used for estimation of regression 
coefficients. Recently, Dorugade and Kashid [5] proposed the generalized ordinary 
Jackknife ridge regression (GOJR) estimator (GJRβ̂ ) having the better performance than 

other ridge estimators. In ridge regression, selection of biasing constant is important. 
Using ridge regression, numerous articles have been written for suggesting different 
ways of estimating the biasing constants including ( HKBr , Hoerl and Kennard, [6]), (

LWr , 

Lawless and Wang, [7]), (HMOr , Masuo Nomura, [8]), (KSr , Khalaf and Shukur, [9]). 

Dorugade and Kashid [10] gives alternative method for determining biasing constant (
Dr

) and shown the better performance of Dk  over other methods.  In the presence of 
multicollinearity standard variable selection algorithms fail to select an adequate subset. 
Dorugade and Kashid [11] proposed variable selection criterion (Rp) in linear regression 
based on ridge estimator when multicollinearity is present in the data and shown that Rp 
gives satisfactory results than Cp-criterion.  

In this article we develop variable selection criterion Rp*. It is proposed by 
computing Rp statistic based on estimator

GJRβ̂  which is determined using biasing 

constant ‘
Dk ’. The Rp* is compared with Cp and Rp-statistic computed by using other 

biasing constants and ridge estimators. Also performance of Rp* is evaluated for real 
and simulated datasets exhibits with multicollinearity.  The rest of the article is 
structured as follows: 

 In Section 2, we describe different ridge estimators and biasing constants. In 
Section 3, we present Rp-statistic and developed Rp* criterion for variable selection. 
Performance of Rp* is evaluated as compare to different combinations of ridge estimator 
and biasing constants through real and simulated data sets in Section 4. Performance of 

Rp* for different choice of 2σ̂ and also model selection ability for Rp* evaluated through 
simulation study in the same section. Article ends with some summary points. 

2. PARAMETER ESTIMATION METHODS AND BIASING CONSTANTS 

Consider the linear regression model as given in (1). Let ∧  and T be the matrices of 
eigen values and eigen vectors of XX

' , respectively, satisfying XTXT ''  =  ∧  = diagonal 
( 1λ , 2λ ,..., 1−kλ ),    where iλ  being the ith eigen value of XX

'  and TT
'  = 'TT  = Ik-1. We 

obtain the equivalent model  

Y =  Zα +ε ,                                                                      (2) 

where Z = XT , it implies that ZZ
'  = ∧ , and α = β'T    (see Montgomery et al., [12])                                           
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Then Ordinary least square (OLS) estimator of α is given by YZZZ '1' )(ˆ −=α  = 1−∧ YZ ' .                                  
(3)   

Therefore, OLS estimator of β  is given by 

                               β̂ = α̂T .      

For the model (2), we get the ORR, OJR, MOJR and GOJR estimators of α  are 
given respectively by Hoerl and Kennard, [6], Hinkley [3] ,Batah et al. [4] and Dorugade 
and Kashid [5]. 

The ordinary ridge regression estimator (ORR) of α  as  

Rβ̂ =  ( )1−− rrAIT α̂                                              (4) 

 Similarly, the ordinary Jackknifed ridge estimator (OJR) of α  is    

JRβ̂ = ( )22 −− rArIT α̂                           (5) 

Modified ordinary Jackknife ridge estimator (MOJR) of α  is                                                         

MJRβ̂  = ( )22 −− rArIT ( )1
rrAI −− α̂                                (6) 

and generalized ordinary Jackknifed ridge regression estimator (GOJR) and it can be 

written as                            GJRβ̂ = ( )22 −− rArIT ( )S1
rrAI −− α̂   s ≥ 0                        (7)         

  where rA = ( )prI+∧  and ‘r’ be the biasing constant. 

 Determination of biasing constant 

Many researchers have suggested various methods for determining the ridge 
parameter. In further study, we have used some of the wellknown methods available for 
the determination of biasing constant.   

(1)
αα
σ
ˆˆ

ˆ)1(
'

2−= k
rHKB

(Hoerl, Kennard, [6])                        (8)                                            

(2) 


−

=

−=
1

1

2

2

ˆ

ˆ)1(
k
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ii
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k
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σ      (Lawless and Wang, [7])                (9)                                 
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( Masuo Nomura, [8])        (10)  

(4) max
2

max
22

max ˆˆ)2(()ˆ( αλσσλ +−−= knrKS
 

 (Khalaf and Shukur, [9])                                                 (11) 
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 (5) Dr =


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


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σ                        

                 (Dorugade and Kashid, [10])                            (12) 

where 1,...,2,1
1

1
2 −=

−
= ki

R
VIF

i

i
    is variance inflation factor of ith regressor.  and 2σ̂  is 

the OLS estimator of 2σ i.e. 
kn

YZYY

−
−=

'''
2 ˆ

ˆ
ασ .   

3. PROPOSED CRITERION AND STEPWISE PROCEDURE FOR SUBSET 

SELECTION 

     Using the fitted regression equation based on the full model, we have the predicted 
values of Y which depends on the full set of size k-1.                 

GJRjjk XY β̂ˆ '=       j = 1, 2, 3,…,n.                        (13) 

where ),...,,,1( 121 −=′
jkjjj XXXX . 

Now assume that a sub model ‘A’ based on a subset of p-1 predictor variables (p < k) is 
fitted to the data. The underlying model is given by  

                                εβ += AAXY .      

where   XA   is an n × p matrix of the observations on p-1 predictors and  βA  is a  p × 1 
vector of the regression coefficients based on the fitted submodel. We have the predicted 
values of Y as               

GJRjjp XY β̂ˆ '=            j = 1, 2, 3,…,n.                        (14) 

where ),...,,,1( 121 −=′
jpjjj XXXX . 

Where, GJRβ̂  in (13) and (14) is computed using biasing constant Dr  for full and subset 

model respectively. 

We propose the new subset selection criterion Rp* on the similar line of Rp-
criterion. It is defined as follows:  

3.1 Definition 

The Rp* statistic is defined as 

Rp* = 
( )

2
1

2ˆˆ

σ


=

Υ−Υ
n

j

ipik

 pHHtrHHtr RARARR ++− )()( ''             (15) 

where, '1' )( XIrXXXH DR
−+=  and '1' )( ADAAARA XIrXXXH

−+= . p is the number of 

parameters in of the subset model .2σ is replaced by its suitable estimate (see Section 4). 
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Stepwise Procedure for Subset Selection 

 Here, we present steps actually involved in subset selection procedure.  

Step- 1 Standardize regressor variables (X) and response variable (Y) in such  

             way that XX
'  and YX

'  are   in the correlation forms. 

Step- 2 Convert the model Y = Xβ + ε   into the canonical form as Y = Z εα + . 

Step- 3 Determine ridge parameterDr  using the model Y = Zα  +ε . 

Step- 4 Find the Generalized Ordinary Jackknife Ridge Regression Estimator  (GJR) 

GJRα̂  of α using ridge parameter obtained in Step- 3.  

Step- 5 Convert the ridge estimator into the standardized form and finally,  translate into 
the original form. It is denoted as GJRβ̂ . 

Step- 6 Repeat Step 2 to Step 5 and Compute the predicted value ikŶ  and 
ipŶ  for full and 

all possible subset models respectively. 

Step- 7 Compute the proposed statistic Rp* for all possible subsets.  

Step- 8 Select a subset of minimum size, for which Rp*close to p. 

4.  COMPARATIVE STUDY 

 In this section, we compare and evaluate the performance of Rp*-statistic through 
simulation study. The simulation study is divided into three different parts: 

A.  Comparison between Rp and Rp*. 

B.  Performance of Rp* statistic for various estimators of 2σ . 

C. Correct model selection ability of Rp*, Rp and Cp. 

Part A:  

We compare the performance of the proposed procedure Rp* with Rp-statistic by 
considering two numerical examples. We have used Hald Cement data and simulated 

data. The ridge regression estimators Rβ̂ , JRβ̂ , 
MJRβ̂  and ridge parameters HKBr , LWr , 

HMOr , KSr  and Dr  are used for computing the value of Rp for all possible subsets. 

Example 4.1 Hald Cement Data: In this example, we use Hald cement data 
(Montgomery et al., [12]. The values of Rp and Rp* are computed for all possible 
subsets and reported in Table 4.1(a) and 4.1(b).  
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From the results mentioned in Table- 4.1 (a and b), it is clear that, Rp-statistic for 
various ridge parameters and ridge estimators and Rp* statistic agree for the same subset 
{X 1, X2}. It indicates that, performance of both the methods is same for subset selection 
in the presence of multicollinearity.  

Example 4.2 We have generated random sample from N3 (0, Σ) on X1, X2 and X3, and 
random error variable (ε ) is generated from normal with mean 0 and variance 15.  

  where 

















=Σ
1698.099.0

698.0167.0

99.067.01  

Response variable Y is generated using the following model. 

Y = 5+3X1 + 2X2 +ε . 

The values of Rp and Rp* are computed for all subset models and reported in Table- 
4.2(a) and 4.2(b).  

 

From the Tables 4.2 (a and b), Rp* and Rp (obtained using various ridge 
estimators and ridge parameters) pick up the same subset {X1, X2}.  Rp* is close to p 
when subset model is adequate as compared to other method.  

Part B:  

Performance of Rp* -statistic using various estimators of 2σ  

We have used four different types of estimator of 2σ , which are based on the LS 

estimator (β̂ ) and GJR estimator (GJRβ̂ ) of β . These are given below.  

1. )()ˆ(')ˆ(2
1ˆ knXYXY −−−= ββσ . 

2. )()ˆ()ˆ(ˆ '2
2 knXYXY GJRGJR −−−= ββσ . 

3. )2()ˆ()ˆ(ˆ '2
3 −−−−= knXYXY GJRGJR ββσ . 

4. ))()(2()ˆ()ˆ(ˆ ''2
4 RRRGJRGJR HHtrHtrnXYXY +−−−= ββσ .  

where, k is the number of parameters. 

We will use these estimators of 2σ in Rp*-statistic for evaluating influence of 
these estimators on Rp*. For this study, we have considered following example.   
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Example 4.3 Here we have used Hald Cement data applied in Example 4.1. We have 
calculated the values of 2ˆ

iσ (i =1, 2, 3, 4). The Rp*-statistic is obtained using all values 

of 2ˆ
iσ (i =1, 2, 3, 4) for all possible subset models. The values of 2σ̂ are given below: 

2
1σ̂ = 5.98295, 2

2σ̂ = 6.20300, 
2

3σ̂ = 8.27067 and 2
4σ̂ = 4.98359. 

The values of Rp*-statistic are presented in the following table. 

From Table- 4.3, we observe that Rp* statistic selects the same subset {X1, X2} 
for all 2ˆ

iσ . Therefore, we suggest that, one of the2ˆ
iσ ’s (i =1, 2, 3, 4) can be used for 

computing Rp*.  

Part C:  

In this part, we study the performance of Rp*. Performance is evaluated in terms 
of number of times it selects a model correctly and incorrectly. The simulation study is 
carried out for different models. Here we have used HKBr  and Dr  in the determination of 

Rβ̂ . In this study, the performance of the proposed statistic Rp*, Rp (computed using Rβ̂  
) and Cp is evaluated for different subset models for different sample size (n) and 
variance of the error variable (2σ ). The values n and 2σ are taken randomly. We have 
used various ridge estimators and ridge parameters.  

The details about the submodel specification, sample size and variance of the 
error variable (ε ) are given below. 

where,  

















=Σ
1698.099.0

698.0167.0

99.067.01           and         



















−−−
−−−
−−
−−

=Σ

1030.0973.02450.0

030.01139.08240.0

973.0139.012290.0

2450.08240.02290.01

1
 

We have generated 1000 samples of size n from each model. Based on each 
sample, the values of Rp*, Rp, and Cp were computed for all possible subsets. 
Thereafter, the number of times a criterion selects a correct model and incorrect model is 
counted. The results are expressed in percentage and values are reported in Table -4.5.  

From above simulation study, it can be seen that Rp* selects a correct model 
81% for model I, 78% for model II, 80% for model III and 78% for model IV. The Rp-
statistic with ridge parameter ‘

Dr ’ selects 80%, 75%, 70% and 72% for model I, II, III 
and IV respectively. Therefore, above study indicated that the performance of Rp* is 
better than Rp and Cp.  
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5.  SUMMARY 

Suggested criterion in this article for variable selection gives satisfactory results than the 
method based on LS estimator of β . In this article, we have shown that how the 
suggested criterion can be used to select subset of variables when several regressors are 
highly correlated to each other. The proposed method selects an appropriate subset of 
variables in the same situation. 
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Table-4.1(a). The values of Cp, Rp for different combinations of ridge parameter 

and ridge estimators and Rp*. 

Mode
l 
 

         Rp          
   Rβ̂      JRβ̂    

Cp HKBr  

 
LWr  

 
HMOr  

 
KSr  

 
Dr  

 
HKBr  

 
LWr  

 
HMOr  

 
KSr  

 
Dr  

 
(1) 202.549 199.383 200.77 178.335 201.316 199.47 201.754 202.011 201.149 202.42 201.768 

(2) 142.486 138.468 139.994 119.687 141.21 138.565 142.21 142.439 138.985 142.716 142.224 

(3) 315.154 309.287 312.218 268.886 311.391 309.476 313.149 313.687 311.02 314.382 313.179 

(4) 138.731 135.481 136.643 119.775 137.542 135.554 138.094 138.316 136.382 138.641 138.106 

(12) 2.678 3.57 3.617 3.736 3.637 3.574 3.755 3.711 3.486 3.581 3.753 

(13) 198.095 200.545 206.885 180.354 198.996 200.618 198.112 199.909 203.746 198.063 198.119 

(14) 5.496 6.874 6.663 9.55 8.117 6.862 6.216 6.176 7.161 6.081 6.213 

(23) 62.438 59.723 60.79 54.708 61.707 59.794 62.748 62.883 59.638 62.978 62.757 

(24) 138.226 135.191 135.278 131.284 136.277 135.277 136.981 137.243 137.071 137.608 136.994 

(34) 22.373 21.066 21.597 18.529 23.148 21.1 22.638 22.715 20.778 22.757 22.644 

(123) 3.041 4.292 4.228 4.518 4.127 4.292 4.178 4.116 4.271 3.968 4.175 

(124) 3.018 3.712 3.777 4.728 3.73 3.715 3.835 3.87 3.459 3.776 3.838 

(134) 3.497 4.202 4.179 5.259 8.607 4.202 4.153 4.137 3.921 3.636 4.153 

(234) 7.337 7.15 9.8 8.449 14.091 7.124 7.264 7.534 7.426 8.782 7.268 

(1234)  5 5 5 5 5 5 5 5 5 5 5 

(i,j,k,…) indicates the variable Xi,Xj, Xk,… in the model 
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Table-4.1(b). The values of Rp for different combinations of ridge parameter and 

ridge estimators and Rp*. 

 Model 

 

        Rp         

  MJRβ̂      GJRβ̂   Rp* 

HKBr  

 

LWr  

 

HMOr  

 

KSr  

 

Dr  

 

HKBr  

 

LWr  

 

HMOr  

 

KSr  

  

(1) 199.029 200.389 177.542 200.761 199.116 196.641 200.364 147.853 200.104 154.403 

(2) 138.053 139.625 117.722 140.836 138.154 133.944 137.562 98.826 139.587 105.239 

(3) 309.672 312.631 268.769 310.456 309.863 309.354 316.446 213.703 308.179 242.927 

(4) 135.098 136.256 118.327 137.11 135.172 132.004 134.895 99.83 136.287 103.682 

(12) 3.59 3.66 3.841 3.718 3.595 3.283 3.426 5.428 3.588 3.044 

(13) 203.271 212.566 181.762 199.307 203.336 208.703 224.445 142.875 203.463 164.152 

(14) 6.909 6.675 10.29 8.378 6.894 7.418 7.045 12.4 14.157 6.26 

(23) 59.462 60.6 55.712 61.563 59.538 56.718 58.922 57.493 60.328 45.028 

(24) 135.065 134.921 137.391 135.87 135.153 135.235 133.507 130.275 135.017 106.44 

(34) 20.909 21.476 18.315 23.184 20.945 19.249 20.355 20.312 25.915 15.602 

(123) 4.337 4.286 4.616 4.218 4.338 4.341 4.296 5.1 4.261 4.283 

(124) 3.678 3.774 5.189 3.761 3.682 3.84 3.857 6.743 3.801 3.784 

(134) 4.196 4.173 5.579 9.811 4.196 4.256 4.198 8.13 24.36 4.204 

(234) 7.081 11.149 9.453 18.122 7.044 7.259 16.362 10.19 26.669 6.442 

(1234) 5 5 5 5 5 5 5 5 5 5 

(i,j,k,…) indicates the variable Xi,Xj, Xk,… in the model 
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Table-4.2(a). The values of Rp for different combinations of ridge parameter and 

ridge estimators and Rp*. 

 Model 

 

      Rp     

  Rβ̂    JRβ̂    

HKBr  

 

LWr  

 

KSr  

 

Dr  

 

HKBr  

 

LWr  

 

KSr  

 

Dr  

 

(1) 10.5551 10.6329 10.382 10.5414 10.3357 10.409 10.2025 10.3225 
(2) 48.1117 47.5435 49.2021 48.2145 49.5303 49.1588 50.0668 49.5924 
(3) 9.4408 9.1305 10.2528 9.5044 10.4371 10.0353 11.2044 10.5119 

(12) 2.7449 2.9033 2.5769 2.7282 2.5745 2.6518 2.4861 2.5633 

(13) 10.2279 10.278 10.6022 10.2511 10.7024 10.8115 11.1458 10.7325 
(23) 4.5073 4.3358 5.1067 4.5516 5.294 5.0014 5.9003 5.3513 
(123) 4 4 4 4 4 4 4 4 

(i,j,k,…) indicates the variable Xi,Xj, Xk,… in the model 

 

Table-4.2(b). The values of Rp for different combinations of ridge parameter and 

ridge estimators and Rp*. 

  
Model 
 

       Rp        

 MJRβ̂     GJRβ̂   Rp*  

HKBr  

 
LWr  

 
KSr  

 
Dr  

 
HKBr  

 
LWr  

 
KSr  

  
(1) 10.6565 10.7448 10.4387 10.6401 10.6757 10.7632 10.3883 10.2874 
(2) 47.383 46.689 48.8845 47.5166 45.9144 45.2366 47.5944 44.3272 
(3) 8.9054 8.5671 9.928 8.9795 8.1577 7.9804 8.9328 7.9222 

(12) 2.8985 3.0953 2.6374 2.8745 3.0713 3.2568 2.6546 3.0327 

(13) 9.9351 9.9482 10.3736 9.9621 9.589 9.6235 9.8658 9.3089 
(23) 4.1562 3.9818 4.8692 4.2042 3.7745 3.6633 4.1577 3.7526 
(123) 4 4 4 4 4 4 4 4 

(i,j,k,…) indicates the variable Xi,Xj, Xk,… in the model 
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Table-4.3. Values of Rp* for  2ˆ
iσ  

Model 2
1σ̂  2

2σ̂  2
3σ̂  2

4σ̂  

(1) 204.121 154.403 115.804 215.405 

(2) 139.105 105.239 78.946 146.791 

(3) 321.226 242.927 182.14 338.998 

(4) 137.046 103.682 77.78 144.619 

(12) 3.336 3.044 2.817 3.402 

(13) 216.581 164.152 123.449 228.481 

(14) 7.59 6.26 5.227 7.892 

(23) 58.884 45.028 34.271 62.029 

(24) 140.397 106.44 80.078 148.105 

(34) 19.949 15.602 12.227 20.936 

(123) 4.353 4.283 4.229 4.368 

(124) 3.848 3.784 3.734 3.862 

(134) 4.263 4.204 4.158 4.276 

(234) 7.233 6.442 5.828 7.412 

(1234) 5 5 5 5 

(i,j,k,…) indicates the variable Xi,Xj, Xk,… in the model 
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Table-4.4. Submodel Specifications with sample size and error variable 

Model Sample 
Size (n) 

 

Submodel 
specification 

Error 
variable (ε
) generated 

from 

Predictors 
generated 

from 

I 25 Y =  5+3X1 + 2X2 +ε  )15,0(N  Σ  

II 50 Y = 2X1+ X3 +ε  1,0(N ) Σ  

III 25 Y =  20+X3 +6 X4+ε  )12,0(N  
1Σ  

IV 75 Y =  3X2 +8X4 +3 
X5+ε  

)5,0(N  
1Σ  

 

Table-4.5. Model selection ability (in %) of Rp*, Rp and Cp 

  

Model 

 

Model status 
 

 

Cp 

Rp  Rp* 

 
HKBr  

Dr  

 

I 

Correct 38 57 80 81 

Incorrect 62 43 20 19 

 

II 

Correct 40 63 75 78 

Incorrect 60 37 25 22 

  

III 

Correct 30 65 70 80 

Incorrect 70 35 30 20 

  

IV 

Correct 38 68 72 78 

Incorrect 62 32 28 22 
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ABSTRACT 
A variety of parametric and non-parametric inferential procedures are available to 

study inference on the parameter of interest in the presence of nuisance parameters, 

but majority of these are constrained by certain limitations, as for example depicted 

through a variety of examples by Berger (1999). Also, small deviations from the 

underlying assumptions might often cause biased statistical inference, especially in 

small to moderate size samples.   Additionally, existence of the nuisance parameters 

also disturbs the statistical properties of the estimation procedures of the parameter 

of interest.  This motivates us to take brief review on improved or efficient and 

unified superior nuisance parameter-free (invariant) inferential procedures under 

shape-scale and location-scale family of distributions. 

KEYWORDS 
 Generalized variable approach, Maximal scale invariant Estimator, Integrated 

likelihood, Profile likelihood. 

………………………………………………………………………………............... 

1. INTRODUCTION 

Lifetime data are often well modelled by distributions belonging to shape-scale and 
location-scale families of distributions and are widely used in almost every discipline, 
see for example Kulkarni and Powar (2010, 2011), Patil and Kulkarni (2011), Jones 
(2015), Powar and Kulkarni (2015), Sengupta et. al. (2015), Rigby et. al. (2005, 2019) 
and Maswadah (2013, 2022).[1-3] The characteristics of a dataset can be measured 
through the measures of central tendency, dispersion, skewness, and kurtosis, which are 
usually well-defined functions of the shape, scale, and location parameters. In this 
context, we review some efficient or improved inferential procedures for shape-scale and 
location-scale families.[4] The widely applicable shape-scale families for monitoring 
lifetime data include the important skewed distributions like Gamma distribution, 
Weibull distribution, Generalized exponential distribution, Pareto distribution, Log-
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logistic, Log-normal distribution, Hyperbolic distribution, Exponentiated exponential, 
among others. The shape scale family of distributions is characterized by the probability 
density function (PDF) of the form: 

�������, 	
� = 1
� �� ��

� , 	� ,      �, 	, � > 0.  

where � and 	 are the scale and shape parameters respectively, ���. , 	
 being a function 
of only one parameter, namely the shape parameter 	. 

Distributions belonging to the location-scale family are used in hydrology, bio- 
statistics, various industrial and analytical fields, among others[5]. Normal, Logistic, 
Laplace, shifted exponential, Extreme value distribution are some popular members 
of the location-scale family, among others[6]. 

The PDF of a random variable Y from a location-scale family of distributions is 
characterized by density function of the form: 

�� �� − �
� � = 1

� �� �� − �
� � ,        �, � � ℛ, � > 0.   

where µ and σ are the location and scale parameters respectively, and ����
 is the 
probability density function of the standard random variable Z having location 
parameter zero and scale parameter one[7-8]. 

This article aims to review improved inferential procedures, including point 
estimation, interval estimation, and hypothesis testing, related to distributions be- 
longing to the location-scale and shape-scale families. Improved inference in the case of 
point estimation is often related to the reduction of bias and variability of the 
concerned estimator, while for the case of interval estimation and testing of the 
hypotheses it concerns the attainment of nominal level, increased coverage 
probability, and elevated powers, respectively[9-11].  

Though often nuisance parameters are absolutely essential for better modeling 
of the data, most often, existence of one or more nuisance parameters adversely 
impacts the performance of inference procedures for the parameters of interest. 
Existence of nuisance parameters may produce their adverse impact in a variety of 
ways, e.g., increased standard errors of point estimators, volumes/ lengths/ area of 
confidence region/intervals or rate of convergence of asymptotic properties of the 
parameters of interest among others[10]. A way-out is an attempt for reducing their 
impact using some well-known likelihood-based techniques, including conditional 
likelihood, integrated, profile or pseudo-likelihood function, and their modifications, 
or through the use of pivot or generalized pivot quantities with completely known 
probability distributions or circumventing the existence of nuisance parameters 
through the tricky use of invariance principle[11]. 
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Marginal and conditional likelihoods handle the problem by ignoring some of 
the data (marginalization) or by ignoring their variability (conditioning). When the 
number of nuisance parameters are large, then marginalization and conditioning are 
pretty complex, and sacrifice a sizeable information[12]. 

In this article, emphasis relies on the procedures eliminating of the impact of 
nuisance parameters through the invariance principle and generalized variable 
approach, which are expected to result in more efficient inference procedures by use 
of the entire data without losing any details [13]. 

The invariance principle is used to circumvent the effect of the nuisance 
parameters, making use of their property of being invariant under a group of 
transformations. The maximal scale invariant inference under a shape-scale family 
developed by Kulkarni and Patil (2018) turned out to be much efficient than classical 
procedures for the commonly encountered distributions enjoying the scale invariance 
property [14]. The generalized variable approach is another efficient tool for exact 
nuisance-parameters-free parametric inference in certain parametric families. The 
generalized variable approach is based on the generalized extreme region of a test, 
the generalization of a data-based extreme region of a test, which depends on the 
observed data and may involve all the parameters, where the associated p-value is 
independent of the nuisance parameters [15-16]. 

In this article, the improved inferences for the inferential problems including 
point estimation, one sample test and interval estimation for the parameter of interest 
under the shape-scale family of distributions, stress- strength reliability estimation 
for the exponentiated-scale family of distributions, test for two-sample comparison 
for two independent mixed continuous location- scale or some non-location-scale 
populations and test for homogeneity of variances among several location-scale 
populations are reviewed[17-19]. 

In more general set-up, some basic definitions in the generalized pivotal 
approach are given in the following subsection. 

2.  PRELIMINARIES 

2.1. The Generalized Variable Approach 

Tsui and Weerahandi (1989) introduced the concept of generalized p-values which is 
based on the generalized pivot quantity (GPQ) and generalized test variable 
(GTV)[20]. Let � be a random variable with cumulative distribution function (CDF)  
���. 
, where � = � , !
 is an unknown parameter vector and ���. 
 is a member of 
the shape-scale or location-scale family of distributions. Suppose the interest lies in 
the parameter   while ! is the nuisance parameter. A GPQ for  , GTV and 
generalized p-value (GPV) for testing a one-sided hypothesis "#:   ≤   # verses 
"�:   >   # is defined below: 
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Definition 1: Generalized pivot quantity (GPQ) 

The GPQ & =  '��;  ), �
 for θ is a random quantity that satisfies following two 
conditions: 

i. The distribution of &  for given � =  ) is free from any unknown 
parameters. 

ii.  The value of & =  '��;  ), �
  at � =  ) does not depend on any 
unknown parameter, other than  . For most of the cases, &  =    at 
� =  ). 

The following invariance property of GPQs is an easy consequence of its definition: 

Preposition 1: Invariance property of GPQ 

If &  is a GPQ for θ, then for any function *, *�& 
 is GPQ for *� 
. 
Definition 2: Generalized test variable (GTV) 

A random quantity +  =  , ��;  ), �
 is said to be GTV for the parameter of interest 
θ if it satisfies following three properties: 

i. The probability distribution of +  is free from any unknown parameters. 

ii.  The value of +  =  , ��;  ), �
  at X = x does not depend on any 
unknown parameter, other than θ. 

iii.  For fixed x, the probability - �, ��;  ), �
    ≥  /| 
, for all t ≥ 0 is non- 
decreasing in θ. 

Preposition 2 : Connection between GPQ and GTV 

If &  is a GPQ for θ, then +  = &  − θ is a GTV for θ (Weerahandi (1995)). 

Definition 3 : Generalized p-value (GPV) 

Based on the GTV defined in Definition 2 and Preposition 2, the generalized 

p-value for testing "# mentioned above is defined by 

1 = 231  4 56-�, ��;  ),  , 7
 ≥ /
,   were,  / = , �);  ),  , 7
 

1 = -�, ��;  ),  8, 7
 ≥ /
, on account of property iii of Definition 2. 

2.2. The Invariance Principle 

If X is a random variable having density function ��),  
,  �9 and & be a group of 
transformation on the space of values of X then: 

i. : is invariant under & if :���)
� = :�)
 for all ) and all ��&. 
ii.  ,�)
 is maximal invariant under & if ,�);
 = ,�)<
 ⟹ ); = ��)<
 for 
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some ��&. 
Where ) is observed value of X. 

2.2.1 Location Invariant 

Let � = ���, ��, … , �?
, be the random sample from location family with location 
parameter � and & be the group transformation then  

���
 = ��� + �, �� + �, … . , �? + �
 ,    −∞ < � < ∞, then 

,��
 = ,����
� = ��? − ��, … , �? − �?C�
. 
is called as maximal location invariant estimator.  

2.2.2 Scale Invariant 

Let � = ���, ��, … , �?
, be the random sample from scale family with scale 
parameter � and & be the group transformation then  
���
 = ����, ���, … . , ��?
 ,    −∞ < � < ∞, then 

,��
 = ,����
� = ��?
��

, ��
��

, … , �?C�
�?


. 

,��
 is maximal scale invariant estimator. 

2.2.3 Location-Scale Invariant 

Let � = ���, ��, … , �?
, be the random sample from location-scale family 
with location parameter � and scale parameter �. Let & be the group 
transformation then  
���
 = ����� + �
, ���� + �
, … . , ���? + �

 ,    −∞ < � < ∞, then 

,��
 = ,����
� = ��? − �?C�
�� − ��

, �?C� − �?C�
�D − ��

, … , �� − ��
�? − �?C�

, �� − �?
�? − ��


. 

,��
 is maximal location-scale invariant estimator.  

The next section reviews the literature related to the treatment for nuisance 
parameters.  

3. LITERATURE REVIEW 

There have been numerous articles addressing a systematic study of a variety of 
methods for eliminating nuisance parameters. 

3.1. Likelihood Based Approach 

A pseudo-likelihood or profile likelihood is obtained by replacing the nuisance 
parameters with their maximum likelihood estimators obtained by keeping the 
parameters of interest fixed. After fixing the interest parameters, the MLEs of 
nuisance parameters are expressed as functions of interest parameters and after 
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replacing the nuisance parameters by these functions, the likelihood gets translated to 
a function of only interest parameters.   This likelihood behaves similar to the 
classical likelihood. For the critical review and various aspects of pseudo or profile 
likelihood, we refer to Kalbfleish and Sprott (1989)[21], Gong and Samaniego 
(1981)[22], Fraser and Reid (1989)[23], Barndorff-Nielsen (1985)[24], Barndorff-
Nielsen (1991)[25], Barndorff-Nielsen (1994)[26] and Severini (1998)[27]. 

Integrated likelihood approach is another way to eliminate nuisance parameters, 
For notable analytical results in this context we refer to Berger and Wolpert (1988), 
Berger et al. (1999), Severini (2000), and Severini (2010), among others. Notable 
novel recent inferential procedures based on integrated likelihood have been 
developed by SenGupta and Kulkarni (2018), Kulkarni and SenGupta (2021), Patil 
and Kulkarni (2022), and Kulkarni and Patil (2021) under directional and linear 
data[23-27]. 

3.2. Invariance Principle Approach: 

Nuisance parameters free inference can also be based on an ancillary statistic, 
invariant or weighted average power criterion, and conditional probability as 
reported in Linnik and Technica (1968), Cox and Hinkley (1974), Engelhardt and 
Bain (1977), Andrews and Ploberger (1994), and Hansen (1996)[28]. 

Invariance principle can be coupled with appropriate data transformation to 
yield nuisance parameters free transformed likelihood that is purely function of the 
parameters of interest and the observed sample only. Zaigraev and Podraza- 
Karakulska (2008) addressed the maximal scale invariant estimation procedure for 
the shape parameter of gamma distribution. Kulkarni and Patil (2018a) derived 
maximal scale invariant inference for the shape parameter under shape-scale family 
of distributions[29]. 

Tsui and Weerahandi (1989) developed the concept of generalized test variable 
(GTV) and generalized p-value (GPV) for significance testing based on a suitable 
generalized extreme region where the p-value is independent of the nuisance 
parameters[30]. Exact statistical inference based on GTV, GPV, and generalized 
confidence interval (GCI) can be found in Weerahandi (1995). Hannig et al. (2006) 
identified an important subclass of generalized pivotal quantities (GPQ) which have 
asymptomatically correct frequentist coverage. Nkurnziza and Chen (2011) provide a 
systematic approach to construct GPQ, GCI, and GPV for a location-scale family of 
distributions[30]. 

The present work reviews univariate, two-sample, and multi-sample improved 
procedures that efficiently handle the nuisance parameters and the recommended 
procedures are given in the next section.  

4. IMPROVED INFERENTIAL PROCEDURES 
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Kulkarni and Patil (2018a)[31] introduced the maximal scale-invariant estimation 
procedure for the shape parameter of the shape-scale family of distributions. The 
method for obtaining nuisance parameters-free likelihood for the shape parameter 
based on maximal scale-invariant transformation for eliminating the nuisance scale 
parameter is explained. The resulting likelihoods are functions of only the shape 
parameter of interest. The results are illustrated for popular shape-scale distributions, 
namely the Weibull, the Gamma and the Generalized exponential (GE) distribution 
under complete and type-II censored samples. The proposed maximal scale-invariant 
likelihood estimator (MSILE) for the shape parameter of interest, being based on a 
proper likelihood function enjoys all asymptotic properties under regular 
conditions[31]. 

A simulation study for the Weibull and Gamma distributions revealed an almost 
exact relationship between the bias of the MSILE and the maximum likelihood 
estimator (MLE). An improved, almost unbiased estimator (AUE) is proposed by 
exploiting this linearity. The extent of reduction in bias and mean square error (MSE) 
of the MLE, MSILE and AUE reveals the superiority of MSILE over MLE, and the 
superiority of AUE over MSILE and MLE for Weibull and Gamma distribution[32]. 
One-sample test and 100�1 −  E
% confidence interval for the shape parameter is 
developed, and performance is assessed with respect to the observed size of relevant 
test procedures, and coverage probability and average width of the associated 
confidence interval. Furthermore, the MLE of the scale parameter being a function of 
the shape parameter, is obtained by replacing the shape parameter with its MSILE. 
The performance of the resulting estimator was observed to be superior than its 
regular MLE[33].  

The interval estimation for the stress-strength reliability (R) under the 
exponentiated-scale family of distributions is developed in the Patil and Kulkarni 
(2018)[34]. The exponentiated-scale family was introduced by Marshall and Olkin 
(2007), which is also known as resilience or frailty parameter family. The 
distributional form of resilience family is: 

& �G
H , E� = �I �G

H�, 

E being a resilience parameter, while the distributional form of frailty family is: 

&̅ �G
H , E� = �KI �G

H�, 

E being a frailty parameter, L the scale parameter, and � �. 
 is a known distribution 
function while �K �. 
 is the corresponding survival function. 

The stress–strength reliability M =  - �N�  <  N�
 where N� and N� represent 
the stress applied and strength of an equipment, respectively, plays a crucial role in 
setting warranty periods while launching new brands of a product, among other 
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applications. Patil and Kulkarni (2018) address the issue of estimating M when N� 
and N� belong to the exponentiated scale family, which includes the popular 
Exponentiated-exponential distribution (EED) that has proven to be an excellent 
model for lifetime distributions. The cases of known/unknown and equal/unequal 
scale parameters are handled separately. For equal scale parameters of N� and N� the 
expression for M turns out to be purely function of the shape parameters. When the 
scale parameters are unequal the reliability M turns out to be a function of the 
underlying shape parameter and ratio of the scale parameters. For known scale 
parameter, a generalized pivot quantity for the shape parameter and M are developed. 
The interval estimates of M based on the proposed generalized pivot quantity 
exhibited uniformly best performance. For an unknown scale parameter, a maximum 
scale invariant likelihood estimator of the shape and an allied estimator of the scale 
are introduced. An extensive simulation-based comparison is performed among 
following five methods: 

GPQ: Generalized pivotal quantity. 

PBMSILE: A parametric bootstrap technique employed on MSILE. 

PBMLE: A Parametric bootstrap technique employed on MLE.  

NPBMSILE: A nonparametric bootstrap technique employed on MSILE.  

NPBMLE: A nonparametric bootstrap technique employed on MLE. 

The parametric bootstrap interval estimates of M based on the proposed maximum 
scale invariant likelihood estimator of the shape parameter exhibited best 
performance among others. An application in setting warranty periods is illustrated 
based on two real data sets[35].  

Micro-array experiments are important fields in molecular biology where 
zero values mixed with a continuous outcome are frequently encountered leading to a 
mixed distribution with a clump at zero. Comparison of two mixed populations, for 
example of a control and a treated group; of two groups with different types of 
cancer, to name a few, are often encountered in these contexts. Fairly skewed 
distribution of the continuous part coupled with small sample sizes are issues of main 
concern to be attended for the quality of inference in such situations. However, 
popularly used non-parametric methods rely on asymptotic distribution of the 
underlying test statistics which are valid only under large sample sizes. Kulkarni and 
Patil (2018b) address the aforementioned issues via a newly proposed exact test for 
location-scale family distributions and GPQ based parametric test procedures for 
non-location-scale distributions. The proposed test procedure can be used under a 
best fitted continuous distribution. It consists of k+1 parts, where k is the number of 
parameters for a specific best fitting parametric model used for the continuous 
component. More specifically, the first part tests the equality of the proportions of 
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zeros while the remaining k parts test the equality of the k corresponding individual 
parameters in the two populations under consideration. Note that the combined test is 
equivalent to testing equality of the two entire mixed populations under 
consideration. The k+1 parts and their combination produce an overall p-value for 
testing the combined hypothesis of equality of the two distributions. In order to 
account for the dependency among simultaneous testing of a large number of tests, 
we calibrate the observed p-values using the Benjamini–Hochberg (1995) 
procedure[36]. 

A simulation study is carried out for validation and performance evaluation of 
the proposed exact test for location-scale or log-location-scale family of distributions 
and GPQ based test for non-location-scale distributions. The proposed test is 
compared with the popular two-part (TP) test based on the type-I error and power of 
the tests. The TP test consists of two parts one is of testing equality of proportions of 
zeros and other non-parametric test comparing two continuous data sets. Different 
tests are used to compare the continuous part, namely Kolmogorov- Smirnov, t-test, 
Wilcoxon rank sum test, Ansari Bradley test, Sigel-Tukey test[37]. 

Simulation based assessment of the proposed exact test based on invariance 
principle for location-scale family distributions and GPQ based parametric test 
procedures for non-location-scale distributions showed their superior performance 
with respect to size and power in comparison to the above popular two-part tests, 
more prominently for small sample sizes[38]. 

A number of distributions including the Exponential, Extreme value, Normal, 
Double exponential, Inverse Gaussian, Weibull, Pareto, Log-Normal and Gamma 
distributions have been handled to illustrate the above testing procedure for 
microarray data. We could identify 1555 differentially expressed genes[39]. 

Future scope on RNA sequence count data analysis through the GPQ and GTV 
for Poison and Negative binomial parameters is discussed, and a generalized test 
procedure is suggested for two discrete populations in similar lines.  

Patil and Kulkarni (2022) developed a unified approach for testing homogeneity of 
variances among k (k > 2) independent location-scale populations. The proposed test 
is based on a generalized test variable. The GPV for testing homogeneity of 
variances is obtained by constructing GPQs for the k distinct scale parameters of the 
k populations. The performance of the proposed test is assessed through an extensive 
simulation study on popular location-scale families in comparison to the existing 
tests. The proposed test is uniformly superior over existing popularly used parametric 
and non-parametric tests in terms of type-I errors and power function. A systematic 
study to assess the impact of the extent of kurtosis and skewness is made through 
simulation studies under the Generalized Normal and Skew Normal distributions 
respectively[40-41].  
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A uniformly implementable small sample integrated likelihood ratio test for one 
way and two-way ANOVA under heteroscedasticity and normality is developed by 
Patil and Kulkarni (2021) which has an asymptotic chi-square distribution up to 
second order accuracy. Simple ad hoc corrective adjustments recommended for 
improving the small sample distributional performance make the test usable even for 
very small group sizes. Empirical assessment of the test reveals that the test exhibits 
uniformly well-concentrated sizes at the desired level and the maximal power, 
particularly under very small size groups. In similar lines, Patil and Kulkarni (2022) 
develop a test for analysis of medians for Birnbaum–Saunders distributed response to 
assess the impact of two interacting factors on the median, where no any test 
available in the literature.  

Ma et. al. (2022) studied the statistical inference on the location parameter 
vector in the multivariate skew-normal model with unknown scale parameter and 
known shape parameter. Based on the distribution of the generalized Hotelling’s ,� 
statistic, confidence regions and hypothesis tests on the location parameter � are 
obtained[42].  

5. RECOMMENDATIONS  

The GPQ or Fiducial approach-based procedures or invariance-based procedures are 
recommended as the best alternative to classical or popularly used inferential 
procedures in the presence of nuisance parameters and often work well even under 
small sample sizes.  A maximal scale invariant inference for shape and allied 
inference on scale parameter is a substitute for classical maximum likelihood point 
and interval estimation as well as testing problem under shape-scale and 
exponentiated-scale family of distributions. Generalized variable approach and a 
maximal scale invariant transformation-based inference is recommended for the 
stress-strength reliability under exponentiated-scale family of distributions. Exact test 
based on fiducial inference is recommended for Comparison of two continuous 
populations mixed with point mass at zero and to test the homogeneity of variances 
among several independent location-scale populations. When GPQ/invariance 
principle-based procedures are not available, among the likelihood-based procedures, 
the integrated likelihood principle works the best. 
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ABSTRACT 

Two parameter Exponentiated Gumbel (EG) distribution is a right skewed 

unimodal distribution. We discuss point and interval estimation of parameters of EG 

distribution by the method of maximum likelihood and provide an expression for the 

Fisher information matrix. A bootstrap method to obtain confidence interval is also 

discussed. Inference for R=P(Y<X) is provided when X and Y are independently but 

not identically EG distributed random variables. Testing for R based on exact and 

asymptotic distribution is discussed along with simulation study.  

KEYWORDS  
Maximum likelihood estimator, Fisher information matrix, uniformly minimum 

variance unbiased estimator and Bayes’ estimator. 

………………………………………………………………………………………….

1. INTRODUCTION 

In literature, exponentiated family of distribution defined in two ways. If F(x/θ) is 
cumulative distribution function (c.d.f.) of base line distribution then by adding one 
more parameter (say α), the c.d.f. of exponentiated base line distribution is G(x/θ,α) 
given by 

(a) G(x/θ,α)= [ F(x/θ) ]α    , α>0 , θ∈Θ  and x∈ R. 

(b) G(x/θ,α)= 1-[1- F(x/θ) ] α    , α>0 , θ∈Θ  and x∈ R. 

Gupta et al. (1998) introduced the Exponentiated Exponential (EE) 
distribution as a generalization of the standard Exponential distribution. The two 
parameter EE distribution associated with definition (a) above, have been studied in 
detail by Gupta and Kundu (2001) which is a sub-model of the Exponentiated 
Weibull distribution, introduced by Mudholkar and Shrivastava (1993). S. Nadarajah 
(2006) introduced Exponentiated Gumbel (EG) distribution using (b) above.  
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The cumulative distribution function of the EG distribution is defined by   
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which is simply the αth power of c.d.f. of the Gumbel distribution.  

The Probability density function (p.d.f.) corresponding to (1.1) is  
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Figure-1. Probability density function. 

We shall write x ~ EG(α,σ) to denote an absolutely continuous random 
variable X having the EG distribution with shape and scale parameters are α and σ 
respectively whose p.d.f. is given by (1.2). The shapes of p.d.f. for EG distribution 
with scale parameter σ=1 and various values of parameter α (=1, 2, 4, 0.6) are shown 
in the above Figures. Fig. 1 shows that it is an unimodal and right skewed density 
function. 

2. MAXIMUM LIKELIHOOD ESTIMATOR AND THE FISHER 

INFORMATION MATRIX 

Suppose X1,X2,…..Xn is a random sample from EG(α,σ). Therefore, the log-
likelihood function L for the observed sample is 

L= (2.1)    
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Therefore, to obtain the MLE’s of α and σ , either we can maximize (2.1) directly 
with respect to α and σ or we can solve the non-linear normal equations which are  
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From (2.2), we obtain the MLE’s of α as a function of σ, say )σ(α̂  as 
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Case 1: If the scale parameter is known ( say σ=1), the MLE of the parameter α can 
be obtained directly from (2.4).  

Lemma (2.1): For known scale parameter ( say σ=1) the p.d.f. of α̂ is  
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Proof : Suppose ( ) −−−= ))eln(exp(α2W ix then W has  chi-square distribution 

with 2n d.f., since ( )αx )eexp( i−− is c.d.f. of standard EG distribution and follows  

uniform distribution  over (0,1). Let 
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Using Chi-square distribution , the p.d.f. corresponding to (2.6) is  
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Lemma (2.2): For known scale parameter ( say σ=1) , the 100(1-δ)% confidence 
interval  of  α is given by   









− 2/1,2

2
2/,2

2

2
,

2
δδ χχ nn

n

Y

n

Y

.
  



 Page 84 

 

 

Case 2: If both the parameters are unknown, first the estimate of the scale parameter 
can be obtained by using maximum likelihood estimation method   

L ( )σ(α̂ ,σ)= 
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  (2.7) 

With respect to σ. Here C is a constant independent of σ. Once  is 
obtained, α̂can be obtained from (2.4) as )σ(α̂ . Therefore, it reduces the two-
dimensional problem to a one-dimensional problem. 

In this situation we use the asymptotic normality result to obtain the 
asymptotic confidence interval. We can state the result as follows. 
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where ui  and vi has gamma distribution with parameters (2,α) and (1,α) respectively. 
Since θ is unknown, I-1(θ) is estimated by replacing θ with its MLE and this can be 
used to obtain the asymptotic confidence intervals of α and σ. 

2.1. Bootstrap Confidence Interval: 

In this subsection, we propose a percentile bootstrap method (Efron, 1982) for 
constructing confidence interval of α and σ which is as follows. 

Step-1: Generate random samples x1,x2,…..xn from EG(α,σ) and compute α̂  and σ̂   
using maximum likelihood method. 

Step-2: Using α̂  and   generate a bootstrap sample **
2

*
1 ,....,, nxxx  from ES(α̂ ,

σ̂ ).  Based on bootstrap samples compute bootstrap estimate *̂α  and *
σ̂ .  

Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000). 

σ̂

σ̂
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Step-4: Compute cumulative distribution function of  *̂α  and *
σ̂ , say H(x) and G(x) 

respectively , where  H(x)= P( *̂α  ≤ x) and )()(ˆ 1
xHxα pBoot

−
− =   and   G(x)= P( *

σ̂ ≤ 

x) and )x(G)x(σ̂
1

pBoot
−

− =    for a given x. The approximate 100(1-δ)% bootstrap 

confidence intervals for α and σ are given by  

   ( ))2/1(ˆ,)2/(ˆ δαδα pBootpBoot −−−  and ( ))2/δ1(σ̂,)2/δ(σ̂ pBootpBoot −−−   

respectively. 

3. POINT AND INTERVAL ESTIMATION OF R 

Now we consider the problem of estimating R=P(Y<X) when X and Y are 
independent EG random variables with shape, scale parameters α , σ and β , σ 

respectively then      R=P(Y<X)  =
βα
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+
   

Case 1:  When scale parameter σσσσ is unknown. 

Suppose X1,X2,…..Xn is a random sample from EG(α,σ) and  Y1,Y2,….Ym is a  
random sample from EG( β,σ). Therefore, the log-likelihood function L of α, β and 
σ for the observed sample is 
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 Therefore, the MLE of R namely 1R̂  is given by        
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Now to obtain asymptotic distribution of R, we first obtain the asymptotic 

distribution of )ˆ,ˆ,ˆ( σβα . Based on the asymptotic distribution of R̂ , we obtain 
asymptotic confidence interval of R. Let us denote the Fisher Information matrix of 
(α,β,σ) as I(α,β,σ) where 
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where ui and vj has gamma (2,α) and (2,β) and wi and zj has exponential α and β 
distribution respectively. 

Theorem 1: As m, n ∞→  and  p
n

m →   then 

( ) ( ) ( )( ) )),,,(,0(ˆ,ˆ,ˆ 3 σβαANσσββαα →−−−     
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θβαA   and  elements of A(α ,β, σ) are the 

corresponding elements of the inverse of the Fisher Information matrix I(α, β, σ). 

Proof : Proof follows from asymptotic properties of MLEs under regularity 
conditions and multivariate central limit theorem. 

Theorem 2: As m, n ∞→  and  p
m

n →   then     ),0()ˆ( BNRRn →− ,        where 
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Proof : Proof follows from invariance property of CAN estimator under continuous 
transformation, and omitted for brevity. 

Using Theorem 2, we can obtain asymptotic confidence interval of R as 
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  (3.3)            

Remark (3.1): To estimate variance B, the empirical Fisher’s information matrix and 
MLEs of α, β and σ may be used. However simulation study due to Kundu and 
Gupta (2005) for  EE distribution indicates that confidence interval defined in (3.3) 
has comparatively low coverage probability. They have suggested bootstrap method 
to get a better confidence interval with respect to coverage probability.  

Bootstrap confidence interval: 

Step-1: Generate random samples x1,x2,…..xn from ES(α,σ) and  y1,y2,….ym  from 
ES(β,σ) and compute α̂ , β̂  and σ̂   using maximum likelihood method. 

Step-2: Using α̂ and σ̂generate a bootstrap sample **
2

*
1 ,....,, nxxx  from ES(α̂ , σ̂ )  

and similarly using  β̂  and σ̂  generate a bootstrap sample **
2

*
1 ,....,, myyy  from ES(β̂  

, σ̂ ). Based on these bootstrap samples compute bootstrap estimate of R,  

**

*
*

ˆˆ

ˆˆ
βα

α
R

+
= ,  where *α̂  and *β̂  are the MLEs of α and β obtained from the 

corresponding bootstrap samples.     

Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000). 

Step-4: Compute cumulative distribution function of *R̂ , say H(x), where 

H(x)= P( *
R̂ ≤ x) and )()(ˆ 1

xHxR pBoot
−

− =  for a given x. The approximate              

100(1-δ)% bootstrap confidence interval is given by  

 ( ))2/1(ˆ,)2/(ˆ δRδR pBootpBoot −−−        (3.4) 

Case 2: When scale parameter σσσσ is known. 
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Without loss of generality, we can assume that σ=1. Suppose X1,X2,…..Xn is a 
random sample from EG(α,1) and  Y1,Y2,….Ym is a  random sample from EG(β,1) 
and based on the samples we want to estimate R. Based on the above sample, it is 
clear that , the MLE of R namely 2R̂  is given by 
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 Lemma (3.1) : The p.d.f. of 2R̂ is given by 
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Proof : 2R̂  can be expressed as   
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  Where 

( ) −−−= )exp(ln ix
eW  and ( )

−−−= )exp(ln jy
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−=  has F distribution with (2n, 2m) degrees of freedom (d.f.). Therefore 

p.d.f. of 2R̂ can be obtained easily and is as given in equation (3.7). 

Lemma (3.2) : An exact 100(1-γ)% confidence interval of R is 
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Lemma (3.3) : The asymptotic 100(1-γ)% confidence interval of R is 
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where Z1-γ/2 is the (1-γ/2)th quantile of the standard normal distribution. 

Proof : The MLE 2R̂  is asymptotically normal with mean R and variance  
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Therefore the asymptotic 100(1-γ)% confidence interval of R can be obtained using 
standardized statistic as a pivotal quantity. We replace ‘R’ in the asymptotic variance 
by its MLE. 

We perform some simulation experiments using percentile bootstrap method 
when scale parameter σ is unknown to observe the behavior of the MLE and 
confidence intervals for various sample sizes and for various values of (α, β). We 
consider the sample sizes (n, m)= (10,10), (10, 20), (20, 20), (20, 40), (40, 40)  and 
the parameter values α= 2, σ=4 and β = 2, 3, 6 and 8. Average biases and mean 
squared errors (MSEs) of R are reported over 1000 replications for 1000 bootstrap 
samples. We compute 95% confidence intervals using (3.4) and estimate coverage 
percentages and average lengths of confidence interval. The results are reported in 

Table 1. 

  We also perform some simulation experiments when scale parameter σ is known 
(σ=1). We consider the sample sizes (n, m)= (10,10), (10, 20), (20, 20), (20, 40), (40, 
40) and the parameter values α= 2 and β = 2, 3, 6 and 8. Average biases and mean 
squared errors (MSEs) of R are reported over 10000 replications. We compute 95% 
confidence intervals and estimate coverage percentages and average lengths of both 
asymptotic and exact confidence interval. The results are reported in Table 2. 

Table-1. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. I. 

Sample 

size 
2 3 6 8 

(10, 10) 

-
0.0058(0.0131) 

0.4273(93.00) 

-0.0005 
(0.0124) 

0.4139 (93.00) 

-0.0096 
(0.0077) 

0.3286 (90.70) 

-0.0054 
(0.0061) 

0.2899 (91.40) 

(10, 20) 

0.0125 
(0.0109) 

0.3748 (92.40) 

0.0095 
(0.0097) 

0.3672 
(0.9410) 

0.0088 
(0.0067) 

0.3052 (93.10) 

0.0011 
(0.0050) 

0.2643 (92.90) 
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(20, 20) 
-0.0018 
(0.0067) 

0.3120 (93.70) 

-0.0018 
(0.0070) 

0.3013 (92.80) 

-0.0044 
(0.0046) 

0.2454 (91.50) 

-0.0062 
(0.0031) 

0.2144 (92.30) 

(20, 40) 

0.0057 
(0.0050) 

0.2706 (94.00) 

0.0067 
(0.0050) 

0.2630 (93.50) 

0.0031 
(0.0033) 

0.2175 (93.90) 

-0.0001 
(0.0026) 

0.1909 (93.40) 

(40, 40) 

0.0012 
(0.0033) 

0.2205 (94.20) 

-0.0032 
(0.0031) 

0.2134 (94.40) 

-0.0049 
(0.0021) 

0.1762 (93.90) 

-0.0028 
(0.0016) 

0.1567 (93.60) 

(The first row represent the average biases and MSEs. Second row represent the 
average length, coverage percentages of the corresponding asymptotic bootstrap 

confidence interval.) 

Table-2. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. I. 

Sample 

size 
2 3 6 8 

(10, 10) 

-
0.0003(0.0119) 

0.4174(91.47) 

0.4058(94.83) 

0.0033(0.0110) 

0.4027(91.86) 

0.3935(95.22) 

0.0087(0.0073) 

0.3237(91.77) 

0.3258(95.30) 

0.0098(0.0056) 

0.2810(91.50) 

0.2876(94.93) 

(10, 20) 

0.0042(0.0090) 

0.3659(92.60) 

0.3581(94.70) 

0.0093(0.0086) 

0.3542(92.30) 

0.3507(94.46) 

0.0120(0.0057) 

0.2851(93.52) 

0.2927(94.72) 

0.0105(0.0043) 

0.2459(92.90) 

0.2572(94.74) 

(20, 20) 

-
0.0018(0.0060) 

0.3024(93.45) 

0.2977(95.02) 

0.0016(0.0057) 

0.2909(93.11) 

0.2872(94.78) 

0.0056(0.0037) 

0.2313(93.15) 

0.2323(94.61) 

0.0045(0.0026) 

0.1984(93.49) 

0.2012(95.18) 

(20, 40) 

0.0025(0.0045) 

0.2636(94.03) 

0.2605(95.15) 

0.0040(0.0043) 

0.2539(93.83) 

0.2527(94.98) 

0.006290.0027) 

0.2017994.220 

0.2048(94.910 

0.0056(0.0021) 

0.1732(94.10) 

0.1776(94.92) 

(40, 40) - 0.0016(0.0028) 0.0018(0.0018) 0.0021(0.0013) 
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0.0009(0.0030) 

0.2165(94.57) 

0.2147(95.39) 

0.2082(94.25) 

0.2068(95.15) 

0.1636(94.22) 

0.1640(95.04) 

0.1402(94.40) 

0.1413(95.23) 

(The first rows represent the average biases and the corresponding MSEs are 
reported within brackets. Second and third rows represent the average lengths and the 
corresponding coverage percentages of the asymptotic and exact confidence intervals 

respectively.) 

Based on the proposed Bootstrap and exact method, the overall findings in Tables 1 
and 2 are satisfactory. When sample sizes are increased, bias and MSE decrease for 
each parameter value, demonstrating the consistency of the method. In each case's 
coverage probability closely  

approximates the confidence coefficient, and the average length of the confidence 
interval is small and finite. 

4. TESTING OF HYPOTHESIS 

The EG distribution is ordered with respect to the ‘likelihood ratio’ ordering (X ≤ lr 
Y). Since α and β both are unknown, it will be of interest to know whether α<β or 
not. We put this as a problem of hypothesis testing. We consider test for hypothesis   
H0:α ≤ β   against   H1 : α > β.   Equivalently we can test    H0: R ≤ 0.5   against   H1: 
R > 0.5. Using Lemma (3.3), an asymptotic test of size γ rejects the null hypothesis 

if,  
γ−

+>






 − 12 162

1ˆ Z
mn

nm
R        (4.1) 

where Z1-γ is the (1-γ)th quantile of the standard normal distribution. Also an exact 
test of size γ for the above problem, using lemma (3.2), rejects the null hypothesis if 

γ−>









− 1;2,2

2

2

ˆ1

ˆ
mnF

R

R  ,       (4.2)                   where F2n, 2m; 1-γ   is the (1-γ) th  quantile 

of F distribution with (2n, 2m) d.f. As an independent interest, we can also obtain an 
asymptotic and exact test of the desired size for alternatives H’1: R<0.5 and H’’1: R ≠ 
0.5. 

Through simulation study, comparison of power has been made for two test given in 
(5.1) and (5.2). The power was determined by generating 1000 random samples of 
sizes (n, m)=(10,10), (10,20), (20,20), (20,40) and (40,40). The results for the tests at 
the significance level γ=0.01 and 0.05 are presented in Table 3 and Table 4 
respectively. P1 and P2 are referred to as power based on asymptotic and exact test as 
defined in (5.1) and (5.2) respectively.  
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Table 3 : Power of the test based on asymptotic and exact distribution of R, γ=0.01. 

R 
(10, 10) (10, 20) (20, 20) (20, 40) (40, 40) 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

0.500

0 

0.006

0 

0.089 0.010

3 

0.020

1 

0.007

6 

0.009

3 

0.012

3 

0.017

7 

0.009

4 

0.010

5 0.526

3 

0.011

9 

0.016

0 

0.018

7 

0.034

9 

0.019

9 

0.022

0 

0.030

1 

0.040

3 

0.027

9 

0.030

5 0.555

6 

0.021

3 

0.029

7 

0.039

9 

0.066

0 

0.048

1 

0.042

2 

0.063

4 

0.085

1 

0.082

1 

0.087

3 0.588

2 

0.039

9 

0.057

8 

0.072

7 

0.113

4 

0.098

1 

0.109

9 

0.142

8 

0.181

8 

0.210

3 

0.223

3 0.625

0 

0.079

9 

0.105

7 

0.137

3 

0.203

1 

0.208

1 

0.227

2 

0.307

4 

0.368

3 

0.464

0 

0.478

7 0.666

7 

0.159

3 

0.208

5 

0.257

2 

0.347

9 

0.408

3 

0.434

9 

0.556

0 

0.620

3 

0.766

7 

0.777

9 0.714

3 

0.301

8 

0.366

6 

0.460

0 

0.567

5 

0.675

6 

0.701

0 

0.839

2 

0.876

5 

0.955

0 

0.958

3 0.769

2 

0.539

1 

0.606

5 

0.744

8 

0.827

9 

0.914

1 

0.924

3 

0.980

8 

0.987

2 

0.998

8 

0.999

1 0.833

3 

0.840

4 

0.879

3 

0.956

9 

0.978

7 

0.995

6 

0.996

4 

0.999

9 

0.999

9 

1 1 

0.909

1 

0.992

9 

0.995

5 

0.999

7 

0.999

9 

1 1 1 1 1 1 

Table 4 : Power of the test based on asymptotic and exact distribution of R, γ=0.05. 

R 
(10, 10) (10, 20) (20, 20) (20, 40) (40, 40) 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

0.500 0.046 0.050 0.057 0.073 0.046 0.047 0.057 0.065 0.047 0.047

0.526 0.069 0.073 0.088 0.109 0.085 0.087 0.114 0.129 0.116 0.116

0.555 0.119 0.125 0.148 0.179 0.171 0.175 0.207 0.229 0.257 0.258

0.588 0.178 0.189 0.240 0.278 0.293 0.298 0.370 0.402 0.479 0.482

0.625 0.282 0.293 0.376 0.422 0.479 0.485 0.591 0.622 0.728 0.730

0.666 0.431 0.444 0.564 0.610 0.697 0.702 0.815 0.837 0.920 0.921

0.714 0.627 0.639 0.765 0.804 0.881 0.884 0.959 0.967 0.992 0.992

0.769 0.830 0.840 0.931 0.945 0.981 0.982 0.997 0.998 1 1 

0.833 0.966 0.968 0.995 0.996 0.999 0.999 1 1 1 1 

0.909 0.999 0.999 1 1 1 1 1 1 1 1 
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It is observed from the simulation study that (i) both the tests perform well with 
respect to the power. (ii) Power of the test based on exact test is slightly higher than 
that of asymptotic test. (iii) Both the tests are consistent in the sense that as sample 
sizes increase, their power show improvement. (iv) A comparison with the usual 
nonparametric Wilcoxon Mann Whitney test for H0: P(Y<X)=0.5 was made. It is 
found that parametric procedure (i.e., exact and asymptotic test) have better power 
than the more general WMW-test. 

5. CONCLUSIONS 

 In this paper we estimate reliability R for Exponentiated Gumbel distribution 
with different shape parameters and same scale parameter. The performance of the 
MLE is quite satisfactory in terms of biases and MSEs. It is observed that when 
sample sizes increase the MSEs decreases. It verifies the consistency property of the 
MLE of R. The exact distribution of MLE of R is obtained and used for constructing 
confidence interval. The asymptotic confidence interval based on the MLE of R also 
works well for samples of sizes greater than or equal to 20. The exact as well as 
asymptotic test for testing reliability R has been given. The performances of both the 
tests are satisfactory with respect to the power than usual nonparametric Wilcoxon 
Mann Whitney test. 
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ABSTRACT 
A simultaneous occurrence of multicollinearity and outliers is one of the important 

problems in regression analysis. It dramatically affects not only the least squares 

estimator (LSE) but also the ridge regression estimator (RRE) as well as M-

estimator (ME). Consequently, the inference based on the LSE, RRE and ME gives 

misleading results. To deal with the problem of multicollinearity and outliers, 

Silvapulle (1991) proposed and studied the performance of Huber’s robust criterion 

function-based ridge M-estimator (RME). However, there are various robust 

criterion functions available in the literature. In this article, we have obtained the 

ME and RME based on the different robust criterion functions. An extensive 

simulation study is performed to compare the ME and RME through mean squared 

error sense when data suffers from the problem of only multicollinearity, only 

outliers and both, multicollinearity and outliers. 

KEYWORDS 

Multicollinearity, Outliers, Ridge M-estimator, Robust criterion functions, MSE. 

........................................................................................................................................

1. INTRODUCTION 

In real-life data analysis, while applying a multiple linear regression model, the 
violations of classical assumptions like linearity, non-normality, independence of 
covariates are commonly occurring problems[1]. The occurrence of such data 
anomalies adversely affects the well-known and widely used least square estimation 
method.  

The near linear dependency between the set of covariates known as collinearity 
or multicollinearity is one of the important problems while estimating the unknown 
model parameters. Many researchers have considered this problem and proposed 
various alternative biased estimation methods[2-3]. Some notable references are 
Hoerl and Kennard (1970a, b), Hoerl et al. (1975), Hocking et al. (1976), Liu (1993, 
2003), Troskie and Chalton (1996), Alkhamisi and Shukur (2007), Al-Hassan (2010), 
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Dorugade (2014). The ridge regression estimator (RRE) proposed by Hoerl and 
Kennard (1970a, b) is the most commonly used estimator when multicollinearity 
presents in the data[1-7]. 

The presence of outliers is also one of the important problems which occur more 
frequently in real examples. Various robust estimators are put forward by many 
researchers to handle the problem of outliers in the response variable. Some notable 
references are Huber (1964, 1972)[8], Hample et al. (1986)[9], Rousseeuw and Leroy 
(1987), Maronna et al. (2006) and Huber and Ronchetti (2009). The M-estimator 
(ME) based on Huber robust criterion function (see Huber, 1972)[10] is the most 
popular estimator which dampens the effect of outliers present in the response 
variable. In the literature, various robust criterion functions (see Holland et al., 1977; 
Montgomery, et al., 2003)[11-12] are available to obtain ME. The ME obtained 
using different robust criterion functions have their own advantages and 
disadvantages.  

 Some researchers have considered the simultaneous occurrence of outliers and 
multicollinearity in the data to propose alternative robust parameter estimation 
methods. Some notable references are Silvapulle (1991)[13], Arslon and Billor 
(2000), Jadhav and Kashid (2011, 2016)[14-15]. Silvapulle (1991) has considered 
Huber robust criterion-based ME instead of LSE in RRE to propose ridge M-
estimator (RME). This RME tackles the simultaneous occurrence of multicollinearity 
and outliers in the data. 

In this article, we have considered different robust criterion functions to develop 
ME and RME. A simulation study is carried out to evaluate the performance of the 
different ME and RME in the presence of only multicollinearity, only outliers and 
both, multicollinearity and outliers. The article is organized as follows[16]. 

In Section 2, we introduce a multiple linear regression model and review some 
existing estimators which are available in the literature to tackle the problem of 
multicollinearity and/or outliers. Also, we summarize the various robust criterion 
functions available in the literature. In Section 3, an extensive simulation study is 
carried out to evaluate the performance of the LSE, ME and proposed RME 
developed using different robust criterion functions. Section 4 considers the real data 
set to study the effect of simultaneous occurrence of multicollinearity and outlier on 
the different estimators. The article ends with a brief summary and overall 
conclusion in Section 5. 

2.  REGRESSION MODEL AND SOME ESTIMATORS 

The multiple linear regression model is the most widely and commonly used 
regression technique to model the linear relationship between the variables. The form 
of multiple linear regression model can be given as 

� = �� + �                     (1) 

where � is an � × 1 vector of the response variable, � is an � × � matrix of 
covariates, � = (��, ��, … ��) is a � × 1 vector of unknown regression coefficients 
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and � is an � × 1 vector of random errors supposed to follow a normal distribution 
with constant but unknown variance ��. Without loss of generality, we consider that 
the response variable � and covariates � are standardized in such a way that the ��� 
is in the form of a correlation matrix and ��� is the correlation vector between 
variables � and �. 

It is well known that the least squares estimator (LSE) is widely used to estimate the 
unknown model parameters. The form of LSE is given by 

����� = (���)�����              (2) 

As the LSE is unbiased, the covariance and mean squared error (MSE) of the LSE is 
given by 

Cov �����! = Cov((���)�����) 

   = ��(���)��                     (3) 

          MSE �����! = %& 'Cov �����!( 

   = �� ∑ �
*+

�
,-�                       (4) 

where /, , 0 = 1, 2, … � are the eigenvalues of ��� matrix. In the presence of 
multicollinearity, some of the /, ’s are too small and consequently, the MSE of LSE 
becomes large. Due to inflated MSE, the LSE may give unreliable and misleading 
results.  

2.1. Ridge Regression Estimator (RRE) in the Presence of Multicollinearity 

To tackle the problem of multicollinearity, Hoerl and Kennard (1970a, b) proposed 
ridge regression estimator (RRE). The RRE is widely used due to its optimality 
properties (Vinod and Ullah, 1981). The RRE is obtained by simply adding positive 
constant ‘3’ to the (���)�� matrix of LSE. Hence the form of RRE is given by 

��55� = (��� + 36)����� 

 = (��� + 36)����������                   (5) 

where 3 > 0 is a biasing constant known as shrinkage parameter. Various choices of 
shrinkage parameter (3) are available in the literature. The choice of 3 proposed by 
Hoerl, Kennard and Baldwin (1975) is widely used and it is given by 

3 = �9:
;<;                       (6) 

where �� and � are the unknown model parameters to be replaced by their estimates 
based on the LSE. 

2.2. M-estimator (ME) in the Presence of Outliers 

To tackle the problem of outliers in the response variable, various robust estimation 
methods like M-estimator (ME), least median squares estimator (LMSE), least 
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trimmed squares estimator (LTSE) (see Rousseeuw and Leroy, 1987) are available in 
the literature. The ME is the most popular estimator which is obtained by minimizing  

∑ = '>?�@?<;
9 (AB-�                      (7) 

where =(∙) is any robust criterion function and � is a scale parameter. After 
differentiating above equations partially with respect to each parameter �,, we get � 
nonlinear equations of the form 

∑ D '>?�@?<;
9 (AB-� �B, = 0, 0 = 1, 2, … , �                  (8) 

where D(∙) is partial derivative of =(∙) with respect to � (See Huber, 1972). To find 
the estimate of �, we solve the above nonlinear equations by using iterative 
reweighted least squares method. The flowchart given in Fig. 1 shows the process of 
estimation of ME. At convergence, the form of ME is given by 

��E� = (�′G�)���′G�                    (9) 

In the literature, various robust criterion functions are available to develop ME. The 
Table 1 represents some robust criterion functions (=) along with their first order 
derivatives (D), weights (G) and ranges (Holland et al., 1977). Among the different 
robust criterion functions, the Huber’s robust criterion function is most popularly 
used. 

2.3. Ridge M-estimator (RME) in the Presence of Outliers and Multicollinearity 

To tackle the problem of simultaneous occurrence of outliers and multicollinearity, 
various robust alternative methods are available in the literature like ridge M-
estimator (Silvapulle, 1991)[12], Liu-type M-estimators (Arslon and Billor, 
2000)[17], jackknifed ridge M-estimator (Jadhav and Kashid, 2011)[18], linearized 
ridge M-estimator (Jadhav and Kashid, 2016)[19]. Among these, the ridge M-
estimator (RME) proposed by silvapulle (1991)[20] is widely used. The form of 
RME is given by 

��5E� = (��� + 36)�������E�              (10) 

where 3 is shrinkage parameter obtained robustly by replacing the unknown model 
parameters with their robust estimates in the expression of choice given by Hoerl, 
Kennard and Baldwin (1975)[21-26] that is, 3 = �H�  ��E�� ��E�!I , ��E� denote the M-
estimator of � and H is a robust estimate of � obtained by using the formula 
H =1.4826 median|&B −median(&B)|, &B =  �B − �B���E�! (see Silvapulle, 1991).  

 

 

 

 

 



  Page 98 

 

 

 

Table-1. Robust criterion functions 

Name L(M) N(M) O(M) Range 

A (Andrews 
et. al., 1972) PQ�R1 − STH(& Q⁄ )V

2Q�                           WQ HX�(& Q⁄ )
0                   W(& Q⁄ )�� HX�(& Q⁄ )

0                   
P|&| ≤ ZQ
|&| ≥ ZQ 

Q = 1.339 

B (Beaton and 
Tukey, 1974) P(\�/2)R1 − R1 − (& \⁄ )�V^V

 \� 2⁄                                         W&R1 − (& \⁄ )�V�
0                           WR1 − (& \⁄ )�V�

0                        
P|&| ≤ \
|&| ≥ \ 

\ = 4.685 

C (Cauchy or 
t likelihood) (_�/2) `TaR1 + (& _⁄ )�V &R1 + (& _⁄ )�V�� R1 + (& _⁄ )�V�� _ = 2.385 

F (Fair, 1974) b�c|&| b⁄ − `TaR1 + |&| b⁄ Vd &R1 + |&| b⁄ V�� R1 + |&| b⁄ V�� b = 1.400 

H (Huber 
1964) P&�/2               

e|&| − e� 2⁄  W &                    
e ∗ HXa� (&) P1           

e(&)�� 
P|&| ≤ e
|&| ≥ e 

e = 1.345 

L (Logistic) g�`TaRSTHℎ(& g⁄ )V g %i�ℎ (& g⁄ ) 
(& g⁄ )�� 
%i�ℎ (& g⁄ ) 

g = 1.205 

T (Hinich and 
Talwar, 1975) P&�/2

j�/2 W&
0 W1

0 
P|&| ≤ j
|&| ≥ j 

j = 2.795 

W (Dennis 
and Welsch, 
1976) 

(G�/2) c1 − kl�R−(& G⁄ )�Vd & kl�R−(& G⁄ )�V kl�R−(& G⁄ )�V G = 2.985 
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Figure-1. Flowchart showing the process of estimation of M-estimator (ME)
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While estimating the ME or RME, various researchers have used Huber’s robust 
criterion function. However, different choices of robust criterion functions are 
available in the literature. We have tabulated the same in Table 1. There are no 
significant contributions available in the literature to evaluate the performance of ME 
or RME developed using different robust criterion functions. By considering this 
perspective, in this article, we have developed ME and RME based on different 
robust criterion functions and the performance of the ME and RME is evaluated 
through MSE sense. The main approach of this article is to compare the performance 
of ME and RME developed using different robust criterion functions when data 
suffers from the problem of only multicollinearity, only outliers and simultaneous 
occurrence of outliers and multicollinearity. An extensive simulation study is carried 
out in the following section to evaluate the performance of the ME and RME 
developed using different robust criterion functions. 

3.  SIMULATION STUDY 

In this section, we consider the simulation study to illustrate the performance of 
the different estimators. To evaluate the performance of an estimator (say ��), the 
Average MSE (AMSE) criterion is used. For different combinations of sample sizes 
(�), degree of multicollinearity (=) and error variance (��), the experiment is 
repeated 10,000 times and the AMSE of each estimator is obtained by using the 
formula  

AMSE = �
�nnnn ∑ W∑  ��, − �,!��

,-n o�nnnnp-�           (11) 

where �, denote the true jth regression coefficient and ��, denote the estimate of �,.  

The one outlier, two outliers etc. in the response variable are introduced by 
multiplying actual value of � by twenty corresponding to largest absolute residual, 
second largest absolute residual etc.  

To distinguish between the ME and RME obtained using different robust criterion 
functions, the capital letters of robust criterion functions given in Table 1 are used. In 
the simulation study, LSE, RRE, ME with different robust criterion functions and 
RME with different robust criterion functions are considered to evaluate the 
performance in AMSE sense. 

The simulation study is divided into three parts as follows. 

1. Performance of LSE and different robust criterion functions based ME in the 
presence of outliers 

2. Performance of LSE, RRE and different robust criterion functions based ME and 
RME in the presence of multicollinearity and one outlier  

3. Performance of LSE, RRE and different robust criterion functions based ME and 
RME in the presence of multicollinearity and one and more than one outlier  

3.1. Performance of LSE and different robust criterion functions based ME in 

the presence of outliers 
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In this subsection, we evaluate the performance of LSE and different robust criterion 
functions based ME through AMSE. The following regression models are used to 
generate � observations on the response variable � as 

Model I  �B = 0.3 + 0.2�B� + 0.7�B� + 0.4�B^ + 0.1�Bu + �B , X =  1, 2, … , �  (12) 

Model II  �B = 5 + 2�B� + 1�B� + 4�B^ + 3�Bu + �B,  X =  1, 2, … , �          (13) 

where �B,~x(0, 1),   X =  1, 2, … , �,   0 = 1, 2, 3, 4, �B~x(0, ��).  

For � = 30, 50, 100 and �� = 1, 25, 100, the experiment is repeated 10,000 times 
and the AMSE of LSE and ME based on different robust criterion functions is 
obtained for Model I and Model II and the results are reported in Table 2 and Table 3 
respectively. 

From Table 2 and Table 3, it is observed that:  

•  The AMSE of LSE is smaller than that of the other ME obtained using different 
robust criterion functions for all combinations of � and �� with no outlier or zero 
outlier case. As soon as, the outlier introduced in the data, the AMSE of LSE 
increases considerably as compare to the AMSE of different robust criterion 
functions based ME.  

•  For �� = 100 and � = 100, the AMSE of ME obtained using robust criterion 
function given by Fair (1974) (ME_F) is smaller for one, two and three outliers cases 
of both models. 

•  For �� = 1, the AMSE of ME obtained using Cauchy robust criterion function 
is smaller than that of the others for Model I with all values of � and one and more 
than one outlier. However, the AMSE of ME obtained using robust criterion function 
given by Hinich and Talwar (1975) (ME_T) is smaller for Model II with all values of 
� and one, two and three outliers except for � = 30 and three outliers case of Model 
II. 

•  No single specific robust criterion function has better performance than the 
others for all combinations of n, �� and the presence of different number of outliers.   

3.2. Performance of LSE, RRE and different robust criterion functions based 

ME and RME in the presence of multicollinearity and one outlier  

The simulation design given by McDonald and Galarneau (1975) is used to achieve 
the required degree of multicollinearity in the covariates as 

�B, = (1 − =�)� �⁄ yB, + =yB(�z�),  X =  1, 2, … , �,   0 =  1, 2, … , �            (14) 

where yB, ’s are independent standard normal pseudo-random numbers, =� is the 
correlation between any two covariate variables. The � observations on the response 
variable � are generated using the following regression model  

�B = 1 + 1�B� + 1�B� + 1�B^ + 1�Bu + �B,   X =  1, 2, … , �  (15) 
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where �B~x(0, ��). In this study, the simulation experiment is replicated 10000 
times for � = 30, 50, 100, = = 0.9, 0.99, 0.999, 0.9999, �� = 1, 100 and the AMSE 
of each estimator is obtained. The results of the simulation study for different � are 
reported in Table 4 to Table 6.  

From Table 4 to Table 6, it is observed that: 

•  For without outlier case with any degree of multicollinearity and different 
sample sizes, the AMSE of the RRE is smaller than that of the other estimators. 
Hence the performance of RRE is good in the presence of only multicollinearity. As 
soon as we introduce the outlier in the response variable, the AMSE of RRE inflates 
and consequently, the RRE shows poor performance. 

•  In the presence of multicollinearity with and without outlier cases, the AMSE of 
ME obtained through different robust criterion functions is more than the AMSE of 
RME obtained through respective different robust criterion functions. 

•  For �� = 1 with one outlier case, the AMSE of the RME obtained using Hinich 
and Talwar (1975) robust criterion function (RME_T) shows smaller AMSE than 
that of the other estimators for any degree of multicollinearity.  

•  For �� = 100 with one outlier case, the AMSE of the RME obtained using the 
Logistic robust criterion function (RME_L) has smaller value except for � = 100 
and = = 0.9, 0.999, 0.9999.  

3.3. Performance of LSE, RRE and different robust criterion functions based 

ME and RME in the presence of multicollinearity and one and more than one 

outlier  

In this subsection, the simulation design given in Subsection 3.2 is used to generate 
� = 50 observations on the response variable. The one outlier, two outliers and three 
outliers are introduced in the response variable by multiplying actual value of � by 
twenty corresponding to largest absolute residual, second largest absolute residual 
and third largest absolute residual. 

The AMSE of LSE, RRE, ME and RME based on different robust criterion 
functions are obtained for � = 50, = = 0.9, 0.99, 0.999, 0.9999, �� = 25 with one 
outlier, two outliers and three outliers’ cases and the results are reported in the Table 
7.  

  From Table 7, it is seen that the AMSE of LSE, RRE and ME obtained using 
different robust criterion functions is more than that of the RME obtained using 
different robust criterion functions. The RME obtained using different robust 
criterion functions shows smaller AMSE value. The RME obtained using Logistic 
robust criterion function has smaller AMSE value than that of the other existing 
estimators when data suffers from the problem of multicollinearity with one and 
more than one outlier.   
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Table-2. The AMSE of LSE and different robust criterion functions based ME 

in the presence of outliers for Model I 

 

� = 30 � = 50 � = 100 

�� = 1 �� = 25 �� = 100 �� = 1 �� = 25 �� = 100 �� = 1 �� = 25 �� = 100 

0 outlier 

LSE 1.1956 6.1765 21.4937 1.1106 3.7901 12.2885 1.0537 2.3065 6.3265 
ME_A 1.2107 6.5578 23.0312 1.1175 3.9643 12.9630 1.0575 2.3788 6.6198 
ME_B 1.2103 6.5486 22.9979 1.1174 3.9614 12.9540 1.0575 2.3784 6.6182 
ME_C 1.2052 6.4025 22.4028 1.1163 3.9224 12.8282 1.0571 2.3727 6.5974 
ME_F 1.2050 6.3890 22.3566 1.1161 3.9193 12.8134 1.0570 2.3721 6.5998 
ME_H 1.2047 6.3873 22.3465 1.1162 3.9185 12.8142 1.0571 2.3719 6.5954 
ME_L 1.2034 6.3732 22.2702 1.1160 3.9096 12.7813 1.0570 2.3712 6.5831 
ME_T 1.1991 6.3347 21.9919 1.1148 3.9031 12.7242 1.0570 2.3649 6.5625 
ME_W 1.2075 6.4733 22.6808 1.1168 3.9402 12.8842 1.0573 2.3753 6.6061 

 
1 outlier 

LSE 18.6007 270.9271 1070.9032 8.2675 120.1806 452.9613 3.3177 37.1397 143.0293 
ME_A 1.2538 7.4147 26.4555 1.1375 4.3074 14.0782 1.0600 2.4508 6.8684 
ME_B 1.2537 7.4121 26.4472 1.1375 4.3062 14.0764 1.0600 2.4508 6.8685 
ME_C 1.2417 7.1615 25.4320 1.1318 4.2414 13.8467 1.0578 2.4430 6.8452 
ME_F 1.2753 6.4530 22.4832 1.1432 3.9559 12.6340 1.0610 2.3652 6.5363 
ME_H 1.2506 6.3868 22.2375 1.1355 3.9587 12.6703 1.0590 2.3703 6.5553 
ME_L 1.2466 6.3780 22.2742 1.1345 3.9575 12.6696 1.0587 2.3677 6.5498 
ME_T 1.2460 7.2428 25.7892 1.1338 4.2377 13.8241 1.0588 2.4230 6.7479 
ME_W 1.2525 7.3957 26.3677 1.1373 4.3041 14.0752 1.0600 2.4533 6.8791 

 
2 outliers 

LSE 31.8878 393.8836 1534.0274 14.2929 181.8152 705.8253 5.3962 61.0072 232.7821 
ME_A 1.2745 7.8281 27.7360 1.1370 4.5124 14.9391 1.0683 2.5179 7.1872 
ME_B 1.2745 7.8260 27.7286 1.1369 4.5122 14.9375 1.0683 2.5179 7.1873 
ME_C 1.2622 7.4410 26.3142 1.1276 4.3985 14.5278 1.0639 2.4982 7.1248 
ME_F 1.3929 6.6215 23.1675 1.1657 3.9501 12.7759 1.0750 2.3644 6.5627 
ME_H 1.3163 6.3927 22.1814 1.1449 3.9409 12.7236 1.0696 2.3705 6.5982 
ME_L 1.3079 6.3925 22.1785 1.1425 3.9433 12.7341 1.0691 2.3705 6.5987 
ME_T 1.2695 7.6457 27.1035 1.1343 4.4274 14.6480 1.0671 2.4852 7.0485 
ME_W 1.2742 7.8246 27.7261 1.1367 4.5187 14.9545 1.0683 2.5215 7.2036 

 
3 outliers 

LSE 46.7004 473.9135 1804.5054 19.9245 228.1007 858.8484 7.2714 77.8247 300.1968 
ME_A 1.2804 8.0381 28.5673 1.1444 4.5988 15.4098 1.0616 2.5873 7.3707 
ME_B 1.2803 8.0352 28.5609 1.1443 4.5982 15.4085 1.0616 2.5873 7.3706 
ME_C 1.2715 7.5114 26.6833 1.1326 4.4406 14.8308 1.0549 2.5549 7.2653 
ME_F 1.6073 6.9292 24.2211 1.2117 3.9704 12.7422 1.0753 2.3759 6.5683 
ME_H 1.4066 6.4085 22.1602 1.1721 3.9126 12.5784 1.0659 2.3828 6.5887 
ME_L 1.3883 6.3923 22.1399 1.1669 3.9142 12.6046 1.0648 2.3844 6.5875 
ME_T 1.2792 7.8748 28.4414 1.1418 4.5139 15.0884 1.0605 2.5494 7.2271 
ME_W 1.2801 8.0404 28.5863 1.1440 4.6059 15.4406 1.0614 2.5916 7.3874 
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Table-3. The AMSE of LSE and different robust criterion functions based ME 

in the presence of Outliers for Model II 

 

� = 30 � = 50 � = 100 
�� = 1 �� = 25 �� = 100 �� = 1 �� = 25 �� = 100 �� = 1 �� = 25 �� = 100 

0 outlier 
LSE 1.1994 6.1115 21.3961 1.1107 3.8101 12.2386 1.0524 2.3285 6.2948 

ME_A 1.2165 6.5186 22.8974 1.1175 3.9882 12.9934 1.0552 2.4106 6.5863 

ME_B 1.2161 6.5116 22.8723 1.1174 3.9852 12.9812 1.0552 2.4103 6.5845 

ME_C 1.2100 6.3806 22.3304 1.1162 3.9482 12.8238 1.0550 2.4041 6.5627 

ME_F 1.2092 6.3646 22.2666 1.1160 3.9432 12.8029 1.0551 2.4033 6.5612 

ME_H 1.2094 6.3653 22.2701 1.1161 3.9435 12.8059 1.0549 2.4033 6.5609 

ME_L 1.2088 6.3456 22.2085 1.1156 3.9401 12.7795 1.0546 2.4001 6.5489 

ME_T 1.2049 6.2392 21.9642 1.1150 3.9220 12.7097 1.0551 2.4004 6.5523 

ME_W 1.2131 6.4525 22.5872 1.1167 3.9651 12.8937 1.0550 2.4069 6.5719 

 
1 outlier 

LSE 161.3698 417.3674 1227.5165 61.9998 174.3699 500.6006 18.0252 51.2266 155.1078 

ME_A 1.2629 7.3292 26.5304 1.1303 4.2872 14.1187 1.0584 2.4517 7.0268 

ME_B 1.2628 7.3268 26.5229 1.1302 4.2868 14.1171 1.0584 2.4516 7.0269 

ME_C 1.2662 7.1814 25.4666 1.1326 4.2395 13.8295 1.0597 2.4382 6.9820 

ME_F 1.4636 7.1922 23.0958 1.2274 4.1928 12.7649 1.1011 2.4131 6.6516 

ME_H 1.3734 6.8779 22.6969 1.1873 4.1149 12.7688 1.0847 2.4011 6.6810 

ME_L 1.3612 6.8242 22.6624 1.1815 4.0964 12.7615 1.0820 2.3977 6.6749 

ME_T 1.2566 7.1864 25.9202 1.1282 4.2197 13.8877 1.0580 2.4235 6.9275 

ME_W 1.2622 7.3101 26.4386 1.1302 4.2876 14.1136 1.0585 2.4534 7.0359 

 
2 outliers 

LSE 377.4864 751.0592 1885.7093 137.9229 314.0009 837.7166 39.1978 95.1373 263.0477 

ME_A 1.2617 7.8365 28.0390 1.1384 4.4540 14.9573 1.0637 2.5204 7.1870 

ME_B 1.2616 7.8345 28.0274 1.1384 4.4533 14.9544 1.0637 2.5204 7.1870 

ME_C 1.2726 7.7281 26.5378 1.1441 4.3849 14.4739 1.0662 2.4952 7.0852 

ME_F 1.7666 9.0764 24.8065 1.3488 4.5213 13.0976 1.1521 2.4917 6.5692 

ME_H 1.5132 7.8799 23.2825 1.2600 4.2927 12.9350 1.1175 2.4529 6.5946 

ME_L 1.4843 7.7350 23.1895 1.2475 4.2569 12.9158 1.1124 2.4473 6.5906 

ME_T 1.2559 7.7127 27.3884 1.1353 4.3847 14.6567 1.0621 2.4900 7.0594 

ME_W 1.2618 7.8294 27.9721 1.1387 4.4557 14.9715 1.0638 2.5233 7.2010 

 
3 outliers 

LSE 633.6189 1067.9714 2410.9629 234.5688 449.6685 1095.4769 64.7617 135.9063 351.0168 

ME_A 1.2713 8.0774 28.9696 1.1456 4.6061 15.4874 1.0656 2.5724 7.3990 

ME_B 1.2713 8.0753 28.9579 1.1456 4.6057 15.4854 1.0656 2.5724 7.3987 

ME_C 1.2874 8.0521 27.2627 1.1542 4.5386 14.8288 1.0695 2.5390 7.2383 

ME_F 3.6413 12.6932 28.1444 1.4878 5.0297 13.5120 1.2024 2.5946 6.5973 

ME_H 1.6999 9.1034 24.5104 1.3381 4.5745 13.0944 1.1483 2.5157 6.6073 

ME_L 1.6479 8.8018 24.2736 1.3170 4.5093 13.0627 1.1402 2.5048 6.6059 

ME_T 6.9569 8.2496 28.6810 1.1429 4.5388 15.1695 1.0638 2.5390 7.2593 

ME_W 1.2719 8.0911 28.9530 1.1460 4.6134 15.5079 1.0659 2.5759 7.4145 
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Table-4. AMSE of LSE, RRE ME and RME obtained using different robust 

criterion functions for | = 30 

 = 

Without outliers With one outlier 

0.9 0.99 0.999 0.9999 0.9 0.99 0.999 0.9999 

�� = 1 

LSE 1.713 7.288 63.465 631.539 151.485 1392.441 13844.643 136365.238 

RRE 1.482 3.430 17.011 152.679 38.402 285.214 2636.170 25676.256 

ME_A 1.774 7.749 68.406 677.976 1.894 8.833 78.304 778.415 

ME_B 1.773 7.741 68.312 677.131 1.894 8.828 78.263 778.029 

ME_C 1.750 7.567 66.270 659.155 1.892 8.775 77.546 772.935 

ME_F 1.747 7.549 66.051 657.183 2.048 9.600 85.474 848.939 

ME_H 1.747 7.548 66.069 657.290 1.942 8.871 78.381 778.452 

ME_L 1.746 7.526 65.893 655.488 1.927 8.763 77.340 769.514 

ME_T 1.734 7.472 65.103 652.388 1.873 8.635 76.433 764.285 

ME_W 1.762 7.651 67.271 668.022 1.891 8.802 77.933 776.297 

RME_A 1.578 4.234 24.744 227.253 1.684 4.962 30.395 282.557 

RME_B 1.577 4.228 24.670 226.703 1.683 4.958 30.355 282.196 

RME_C 1.559 4.113 23.261 213.821 1.685 4.945 30.047 281.214 

RME_F 1.558 4.124 23.277 213.670 1.829 5.546 35.214 332.878 

RME_H 1.557 4.107 23.172 212.817 1.735 5.050 30.761 288.693 

RME_L 1.549 4.027 22.511 207.103 1.715 4.903 29.420 276.618 

RME_T 1.533 3.926 21.513 201.122 1.657 4.729 28.193 264.111 

RME_W 1.568 4.166 23.926 220.103 1.682 4.946 30.166 281.533 

 
�� = 100 

LSE 71.150 635.399 6309.948 62171.052 3717.824 32298.429 326455.412 3189295.807 

RRE 20.705 156.897 1534.162 14913.509 791.471 5817.139 57769.521 551325.960 

ME_A 76.718 682.393 6784.330 67582.283 88.635 784.520 7816.332 77854.621 

ME_B 76.619 681.506 6774.984 67476.272 88.581 783.988 7810.620 77835.474 

ME_C 74.508 662.322 6595.824 65527.316 84.913 754.403 7491.177 74882.114 

ME_F 74.212 660.283 6575.657 65284.233 75.132 670.728 6653.431 65599.293 

ME_H 74.278 660.358 6574.485 65315.724 74.124 662.088 6562.540 65134.877 

ME_L 74.109 657.802 6552.966 65013.813 74.146 661.363 6559.707 65056.778 

ME_T 73.224 655.759 6516.344 64184.962 85.725 765.262 7591.581 75814.077 

ME_W 75.529 671.678 6688.823 66529.729 88.240 781.942 7779.404 77601.632 

RME_A 29.491 230.533 2263.589 22718.111 36.610 290.158 2855.635 28414.177 

RME_B 29.417 229.797 2256.435 22636.973 36.557 289.691 2850.547 28389.635 

RME_C 27.945 216.344 2136.855 21227.988 34.363 273.193 2672.677 26744.680 

RME_F 27.945 216.371 2133.894 21206.983 27.689 217.938 2127.522 20907.360 

RME_H 27.839 215.387 2125.351 21114.147 27.601 217.168 2117.036 21002.880 

RME_L 27.045 208.540 2059.458 20419.193 26.974 211.528 2063.036 20431.361 

RME_T 25.889 202.201 1983.654 19459.365 33.519 267.534 2606.574 26111.666 

RME_W 28.620 222.820 2201.366 21943.978 36.335 288.667 2832.361 28237.383 
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Table-5. AMSE of LSE, RRE ME and RME obtained using different robust 

criterion functions for | = 50 

 = 

Without outliers With one outlier 

0.9 0.99 0.999 0.9999 0.9 0.99 0.999 0.9999 

�� = 1 
LSE 1.388 4.436 35.279 347.054 60.195 519.631 5112.862 52164.533 
RRE 1.289 2.646 10.204 84.377 17.437 111.811 1020.359 10761.119 
ME_A 1.413 4.653 37.499 370.838 1.453 5.062 41.191 407.315 
ME_B 1.413 4.650 37.460 370.337 1.453 5.061 41.186 407.164 
ME_C 1.408 4.606 36.980 365.416 1.454 5.060 41.222 406.877 
ME_F 1.407 4.602 36.911 364.928 1.509 5.277 43.122 423.278 
ME_H 1.407 4.602 36.923 364.940 1.474 5.072 41.203 405.003 
ME_L 1.406 4.592 36.847 363.969 1.468 5.034 40.869 401.675 
ME_T 1.404 4.565 36.592 359.480 1.446 4.988 40.359 398.637 
ME_W 1.410 4.625 37.196 367.487 1.453 5.062 41.196 407.078 
RME_A 1.324 2.946 12.941 111.581 1.360 3.211 14.927 130.307 
RME_B 1.324 2.943 12.912 111.199 1.360 3.210 14.922 130.148 
RME_C 1.319 2.917 12.623 108.072 1.362 3.220 15.022 130.488 
RME_F 1.319 2.920 12.615 108.140 1.415 3.399 16.279 142.245 
RME_H 1.319 2.917 12.604 107.907 1.382 3.250 15.097 130.850 
RME_L 1.316 2.889 12.395 105.860 1.375 3.199 14.703 126.958 
RME_T 1.312 2.849 12.120 102.072 1.351 3.127 14.089 122.074 
RME_W 1.321 2.927 12.742 109.277 1.360 3.214 14.948 130.128 

 �� = 100 
LSE 39.892 346.811 3452.683 33793.357 1618.081 13748.432 138432.106 1367440.751 
RRE 12.445 85.443 832.234 7874.837 372.131 2661.419 26415.532 256428.775 
ME_A 42.454 367.732 3675.145 35941.967 46.512 405.783 4045.994 39680.356 
ME_B 42.413 367.450 3672.405 35907.605 46.499 405.683 4045.239 39668.640 
ME_C 41.855 363.780 3631.637 35460.327 45.627 398.757 3975.466 38918.397 
ME_F 41.730 363.559 3624.967 35374.367 41.558 362.529 3612.679 35236.315 
ME_H 41.779 363.454 3626.647 35402.378 41.663 363.795 3625.710 35401.365 
ME_L 41.742 362.200 3618.117 35376.028 41.691 363.274 3621.281 35438.925 
ME_T 41.434 359.884 3599.965 35178.121 45.496 396.373 3963.095 38898.870 
ME_W 42.107 365.344 3650.248 35659.769 46.469 405.687 4045.192 39642.505 
RME_A 15.654 110.555 1091.822 10335.632 17.928 130.651 1285.689 12243.232 
RME_B 15.620 110.343 1090.021 10309.958 17.915 130.550 1285.123 12232.576 
RME_C 15.286 108.200 1066.668 10072.018 17.466 127.412 1253.056 11886.558 
RME_F 15.272 108.521 1067.436 10082.493 15.086 107.235 1051.786 9950.884 
RME_H 15.259 108.165 1065.365 10058.731 15.175 108.427 1064.044 10063.479 
RME_L 15.035 105.869 1043.960 9866.914 14.982 106.587 1044.977 9900.576 
RME_T 14.715 103.137 1022.353 9669.994 16.990 121.880 1209.640 11485.496 
RME_W 15.420 109.008 1076.043 10162.312 17.910 130.671 1286.098 12225.762 
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Table-6. AMSE of LSE, RRE ME and RME obtained using different robust 

criterion functions for | = 100 

 = 

Without outliers With one outlier 

0.9 0.99 0.999 0.9999 0.9 0.99 0.999 0.9999 

�� = 1 
LSE 1.186 2.624 16.921 159.862 16.880 143.698 1419.197 14269.387 
RRE 1.150 2.008 5.818 39.020 6.167 33.822 310.504 2975.673 
ME_A 1.196 2.721 17.818 168.425 1.206 2.814 18.786 177.421 
ME_B 1.196 2.720 17.813 168.379 1.206 2.814 18.786 177.430 
ME_C 1.195 2.711 17.729 167.645 1.207 2.820 18.823 177.855 
ME_F 1.195 2.710 17.725 167.595 1.226 2.858 19.021 179.774 
ME_H 1.195 2.710 17.718 167.557 1.216 2.816 18.667 176.343 
ME_L 1.194 2.706 17.696 167.376 1.214 2.804 18.584 175.764 
ME_T 1.196 2.709 17.667 167.169 1.204 2.785 18.472 174.908 
ME_W 1.195 2.715 17.766 167.977 1.206 2.816 18.809 177.692 
RME_A 1.161 2.107 6.648 46.292 1.171 2.173 7.142 50.686 
RME_B 1.161 2.107 6.644 46.260 1.171 2.173 7.142 50.687 
RME_C 1.160 2.101 6.604 45.859 1.172 2.180 7.178 51.011 
RME_F 1.160 2.102 6.611 45.852 1.191 2.217 7.338 52.217 
RME_H 1.160 2.101 6.602 45.828 1.181 2.182 7.126 50.377 
RME_L 1.159 2.094 6.545 45.440 1.178 2.169 7.033 49.716 
RME_T 1.160 2.092 6.503 45.306 1.168 2.145 6.907 48.835 
RME_W 1.160 2.103 6.618 46.026 1.171 2.175 7.159 50.852 

 �� = 100 
LSE 19.374 163.836 1581.939 16031.977 485.056 4384.449 42827.017 424174.632 
RRE 6.750 40.901 368.324 3716.053 116.988 924.146 8607.990 84283.164 
ME_A 20.437 172.737 1674.173 16958.090 21.559 180.899 1771.272 17775.257 
ME_B 20.432 172.686 1673.585 16950.649 21.560 180.901 1771.346 17775.166 
ME_C 20.349 172.003 1660.739 16850.174 21.453 180.082 1758.590 17670.261 
ME_F 20.339 172.032 1656.706 16833.850 20.259 170.487 1651.471 16638.959 
ME_H 20.339 171.935 1658.331 16836.124 20.379 171.076 1663.115 16741.038 
ME_L 20.316 171.512 1659.402 16812.204 20.371 170.706 1665.503 16734.919 
ME_T 20.233 171.034 1666.561 16825.035 21.185 177.577 1745.327 17508.300 
ME_W 20.385 172.294 1667.234 16897.216 21.589 181.178 1772.507 17794.442 
RME_A 7.789 48.846 446.532 4513.201 8.427 52.985 494.041 4911.195 
RME_B 7.785 48.810 446.079 4508.045 8.427 52.982 494.024 4910.680 
RME_C 7.743 48.496 439.082 4448.649 8.380 52.705 488.604 4863.160 
RME_F 7.750 48.565 437.570 4436.354 7.689 47.750 433.558 4337.690 
RME_H 7.742 48.490 438.096 4441.176 7.760 48.131 440.477 4397.138 
RME_L 7.680 47.862 434.834 4402.581 7.705 47.531 437.937 4365.010 
RME_T 7.600 47.316 437.720 4394.920 8.134 50.581 475.997 4704.227 
RME_W 7.757 48.599 442.346 4475.118 8.449 53.169 494.891 4921.300 
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Table-7. AMSE of LSE, RRE ME and RME obtained using different robust 

criterion functions for | = 50 with multicollinearity and one and more than one 

outlier 

 
Estimators 

1 outlier 2 outliers 3 outliers 1 outlier 2 outliers 3 outliers 

= = 0.9 = = 0.99 

LSE 429.232 681.533 887.913 3910.242 6040.036 7790.447 
RRE 102.285 146.668 183.379 783.243 1107.667 1320.946 
ME_A 12.549 13.271 13.714 102.544 107.449 113.471 
ME_B 12.547 13.269 13.712 102.511 107.434 113.456 
ME_C 12.321 12.884 13.160 100.409 104.253 109.467 
ME_F 11.347 11.479 11.821 91.753 93.028 97.868 
ME_H 11.368 11.407 11.510 91.971 91.967 95.279 
ME_L 11.346 11.400 11.506 91.965 91.815 95.009 
ME_T 12.290 12.952 13.466 100.209 105.207 111.122 
ME_W 12.544 13.283 13.727 102.406 107.503 113.661 
RME_A 5.966 6.481 6.767 35.007 37.664 41.223 
RME_B 5.963 6.479 6.765 34.976 37.648 41.209 
RME_C 5.839 6.251 6.420 33.947 36.050 39.158 
RME_F 5.235 5.300 5.546 29.049 29.771 32.002 
RME_H 5.248 5.296 5.389 29.319 29.380 30.989 
RME_L 5.169 5.226 5.324 28.849 28.836 30.308 
RME_T 5.694 6.169 6.521 32.851 35.573 39.016 
RME_W 5.970 6.498 6.782 34.941 37.728 41.420 

 
= = 0.999 = = 0.9999 

LSE 37915.185 60239.346 76044.160 377658.812 602087.286 762099.846 
RRE 7233.452 10658.626 11995.423 73109.284 103112.711 120817.548 
ME_A 1017.312 1060.452 1114.439 10043.999 10560.141 11075.158 
ME_B 1017.077 1060.205 1114.228 10042.606 10559.166 11074.421 
ME_C 998.590 1029.555 1068.266 9851.718 10238.498 10648.625 
ME_F 915.241 921.960 938.951 9065.915 9099.276 9382.889 
ME_H 916.455 910.887 918.395 9063.035 9009.942 9168.882 
ME_L 913.763 908.929 918.783 9049.744 9021.569 9187.706 
ME_T 993.117 1034.443 1086.330 9867.499 10323.164 10832.473 
ME_W 1016.811 1061.686 1115.453 10038.424 10564.390 11097.481 
RME_A 320.204 348.210 380.507 3140.625 3443.448 3772.520 
RME_B 319.994 348.009 380.314 3139.224 3442.547 3771.404 
RME_C 310.702 333.168 355.017 3052.308 3281.872 3554.506 
RME_F 263.745 271.085 278.583 2626.989 2621.221 2808.262 
RME_H 266.117 268.286 271.751 2636.898 2599.655 2728.275 
RME_L 260.804 263.803 268.081 2585.465 2573.462 2695.232 
RME_T 298.148 326.404 357.481 2970.362 3239.857 3563.930 
RME_W 319.995 349.548 381.306 3140.817 3450.310 3793.217 
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4.  REAL DATA APPLICATION: TOBACCO BLENDS DATA 

In this section, we consider the real data set on tobacco blends given by Myers 
(1990)[28] to evaluate the performance of the LSE, RRE, ME and RME obtained 
using different robust criterion functions. The tobacco blends data contains 30 
observations on the amount of heat evolved from tobacco during the smoking 
process (response variable, �) and percentage concentration of four important 
components (covariates ��, ��, �^ and �u). The canonical form of the model is 
considered to model the data (Arslon and Billor, 2000; Jadhav and Kashid, 2016). 
Myers (1990), Arslon and Billor (2000)[29], Jadhav and Kashid (2016)[30] pointed 
out that, this data suffers from the simultaneous occurrence of outliers and 
multicollinearity. For this data, we estimate the LSE, RRE, ME and RME obtained 
using different robust criterion functions with their norm of the estimates and 
estimates of the respective shrinkage parameters. The results are reported in Table 8. 

Table 8: Estimates of LSE, RRE ME and RME obtained using different robust 

criterion functions with norm of the estimates and estimates of respective 

shrinkage parameters  

Estimators 
 

Estimates Estimate of 
Shrinkage 
Parameter 

Norm of the 
Estimates }~� }~� }~^ }~u 

LSE 0.4857 -0.6727 -1.0746 1.4436 - 3.9272 

RRE 0.4855 -0.6142 -0.8510 0.8097 0.0017 1.9927 

ME_A 0.4894 -0.6601 -1.1181 -0.5346 - 2.2112 

ME_B 0.4894 -0.6599 -1.1193 -0.5290 - 2.2076 

ME_C 0.4886 -0.6559 -1.1720 0.2251 - 2.0932 

ME_F 0.4872 -0.6754 -1.1789 0.8892 - 2.8741 

ME_H 0.4864 -0.6509 -1.1805 0.3566 - 2.1812 

ME_L 0.4873 -0.6639 -1.1787 0.6075 - 2.4366 

ME_T 0.4858 -0.6831 -1.0584 -0.9285 - 2.6851 

ME_W 0.4899 -0.6543 -1.1362 -0.3728 - 2.0979 

RME_A 0.4892 -0.6141 -0.9267 -0.3310 0.0013 1.5847 

RME_B 0.4892 -0.6141 -0.9285 -0.3281 0.0013 1.5863 

RME_C 0.4885 -0.6344 -1.0722 0.1762 0.0006 1.8218 

RME_F 0.4871 -0.6688 -1.1476 0.8223 0.0002 2.6778 

RME_H 0.4863 -0.6323 -1.0919 0.2872 0.0005 1.9111 

RME_L 0.4873 -0.6525 -1.1244 0.5312 0.0003 2.2098 

RME_T 0.4857 -0.6364 -0.8805 -0.5796 0.0013 1.7522 

RME_W 0.4897 -0.6149 -0.9659 -0.2444 0.0011 1.6105 

 

Form Table 8, it can be seen that the simultaneous presence of multicollinearity and 
outliers affects the estimates as well as norm of the estimates. It is expected and 
observed that, the norm of LSE is larger than that of the other existing estimators. It 
is also observed that the norm of RME obtained using different robust criterion 
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functions is smaller than that of ME obtained using respective robust criterion 
functions. Based on the norm of the estimate’s criterion, the RME obtained using 
robust criterion function given by Andrews et al. (1972) shows smaller value than 
that of the other estimators. 

5.  SUMMARY AND CONCLUSIONS 

In this article, we have compared the performance of the least squares estimator 
(LSE), ridge regression estimator (RRE) and M-estimator (ME) as well as ridge M-
estimator (RME) obtained using different robust criterion functions. A real data set 
and simulation study were considered to evaluate the performance using the mean 
squared error (MSE) criterion. It is observed that the RME obtained using different 
robust criterion functions has smaller average MSE as compare to the other 
estimators. It seems that the no RME obtained using any specific robust criterion 
function shows uniformly better performance when the data suffers from the problem 
of simultaneous occurrence of multicollinearity and outliers. More specifically, for 
large error variance with large sample size, the RME obtained using Logistic robust 
criterion function shows smaller average MSE. 

 

REFERENCES 

1. Al-Hassan, Y. (2010) Journal of the Association of Arab Universities for Basic 
and Applied Sciences 9, 23–26. 

2. Alkhamisi, M.A. and Shukur, G. (2007) Communications in Statistics–
Simulation and Computation 36, 535–547. 

3. Andrews, D., Bickel, P., Hampel, F., Huber, P., Rogers, W. and Tukey, J. 
(1972). Robust Estimates of Location: Survey and Advances. Princeton: 
Princeton University Press. 

4. Arslan, O. and Billor, N. (2000) Journal of Applied Statistics, 27, 39–47. 

5. Beaton, A.E. and Tukey, J.W. (1974) Technometrics, 16, 147–85. 

6. Dennis, J.E. and Welsch, R.E. (1976) American Statistical Association,22, 83–
87. 

7. Dorugade, A.V. (2014) Journal of the Association of Arab Universities for Basic 
and Applied Sciences 15, 94–99.  

8. Fair, R.C. (1974) Annals of Economic and Social Measurement, 2, 667–778. 

9. Hampel, F.R., Ronchetti, E.M., Rousseeuvw, P.J. Stahel, W.A. (1986) Robust 
Statistics: The Approach Based on Influence Function. New York: Wiley, 1-77. 

10. Hinich, M.J. and Talwar, P.P. (1975) Journal of the American Statistical 
Association 70, 113–19. 

11. Hocking, R.R., Speed, F.M. and Lynn, M.J. (1976) Technometrics, 18(4), 425–
437.  



 

 Page 111 

 

 

 

12. Hoerl, A.E. and Kennard, R.W. (1970) Ridge regression: biased estimation for 
nonorthogonal problems. Technometrics 12, 55–67. 

13. Hoerl, A.E. and Kennard, R.W. (1970) Ridge regression: applications to 
nonorthogonal problems. Technometrics 12, 69–82. 

14. Hoerl, A.E., Kennard, R.W. and Baldwin, K.F. (1975) Ridge regression: some 
simulations. Communication in Statistics 4,105–123. 

15. Holland, P.W., Roy E. and Welsch, R.E. (1977) Communications in Statistics–
Theory and Methods 6, 813–827. 

16. Huber, P.J. (1964) Annals of Mathematical Statistics 35, 73-101. 

17. Huber, P.J. (1972) Annals of Mathematical Statistics 43, 1041–1067. 

18. Huber, P.J., Ronchetti, E.M. (2009) Robust Statistics. 2nd Edition, New York: 
John Wiley. 

19. Jadhav, N.H., Kashid, D.N. (2011) Journal of Statistical Theory and Practice 45, 
1001–1024. 

20. Jadhav, N.H., Kashid, D.N. (2016) Communication in Statistics–Simulation and 
Computation 45, 1001–1024. 

21. Liu, K. (1993) Communications in Statistics–Theory and Methods, 22, 393–402. 

22. Liu, K. (2003) Communications in Statistics–Theory and Methods 32, 1009–
1020. 

23. Maronna, R.A., Martin, D.R. and Yohai, V.J. (2006) Robust Statistics: Theory 
and Methods. New York: John Wiley. 

24. McDonald, G.C., Galarneau, D.I. (1975) Journal of the American Statistical 
Association 70, 407–416. 

25. Montgomery, D.C., Peck, E.A., Vining, G.G. (2003) Introduction to Linear 
Regression Analysis. 3rd ed. New York: Wiley. 

26. Myers, R. H. (1990). Classical and Modern Regression with Applications. 2nd 
ed. Boston: MA Duxbury. 

27. Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier 
Detection. New York: Wiley. 

28. Silvapulle, M.J. (1991) Australian Journal of Statistics 33, 319–333.  

29. Troskie, C.G. and Chalton, D.O. (1996) South African Statistical Journal 30, 
119–137. 

30. Vinod, H.D., Ullah, A. (1981) Recent Advance in Regression Methods. New 
York: Marcel Dekker. 

 
 






	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

