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Ballistics

Smita D. Naik®*
Armament Research & Development Establishmieashan Pune 4110241$) India.

*Corresponding author: insdnaik@yahoo.com

Dynamics is a branch of Applied Mathematics which is the studyosing bodies. It
includes effect of different causes like forces and moments affetitimgmotion.
Ballistics is related to the motion of the bodies which move \asl ft covers motion of
all types of projectiles like bullets, gravity bombs, rockets etdidBat is a branclof
Dynamics and hence thatt Applied Mathematics.

Theword ‘BALLISTICS’ has come from ba'llein , a Greek word, which means to
throw. It came from Ballista (Fig 1), a machine used to throw iron balls foagde. It
is defined as the science that deals with the motion, baharid effects of projectiles:
the science or art of designing and hurling projectilesasdo achieve a desired
performance.

Figure-1. Ballista.

Ballistics is classified according to the means used as Guntibsg]liRocket
ballistics, Torpedo dynamics, Under-water ballistics, Wound hbe#lisEpace dynamics.
Each is a subject in itself and further divided into subclassgs2)Fas Internal or
interior ballistics, External or exterior ballistics, Terminal iséis, Intermediate
ballistics and Experimental ballistics. Internal Ballistics deaith the motionof the
projectile during launch. The study involves initiation of motion of a prégeend
factors affectingit. Motion of a projectile and forces/moments arisingaltiee medium
like air or water is studied in External ballistics/underwaBallistics. Terminal
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Ballisticsis the studyat the target end. When a projectile hits the target, damadpe to t
target and rojectile is part of Terminal Ballistics. In anti-pertot® when the targes

a human being, the analyss$ woundsis coveredin wound Ballistics. Experimental
Ballistics talks about the experiments to be conducted for all Hudséranches and the
findings.

'~. A Explosive
\ / z Fragmentation
or.. SATZ
- <
- - \
& / 7/‘\,/ Armour
N

3
Intermediate l
Ballistics

Terminal Wound
Internal Ballistics Ballistics Ballistics

Figure-2. Classification of Ballistics

Ballistics study of a weapon system can be done with actual firingitbrthe
modeling and simulation approach. Complete study is carried out with thethgle
models: Gun Design, Target Definition, Gun Interior Ballistic, Externalli®ic of
Projectile and terminal Ballistic/ impact dynamics.

Target is defined in terms of its dimensions and strength. Targdassified as
point target or area target dependorgdamage required. Damage criterion defines the
critical points in Desigmof target.

Gun Design is defined to satisfy general requirements as, strong eto thee
challenges of the enemy, capable of inflicting heavy damagée target, eastp carry
and handle and needshte cost effective. Gun design model has input parameters as the
design parameters of launcher/gun tube, projectile and propellant. Outpuedeiquir
terms of pressure inside the gun, velocity, range, drift, impact energy, damége
defined target with the required accuracy. These are obtained witietp of Internal,
External and Terminal Ballistics models.

To studylInternal Ballistics: It is necessary to understand the processes taking place
inside the gun whidls called as Ballistic cycle (Fig.3). There are mainly two processes:
Burning of the propellant and Motion of the Projectile (inside the bharfidiese
processes can be mathematically modeled with either lumgradhpter or gas dynamics
model. In lumped parameter model average properties of pressure, vedadity
temperature are assumed and it results into pressure-space curvelanity-space
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curve. Gas dynamics model gives the complete history of all propeitiedime and
space. It is generally studiddr boundary layer analysisf gas and solid phases and

flame spread analysis.
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Figure-3. Ballistic cycle
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Propellant is the source of energy provided to the system. Propellant £aisist
solid chemical grains which burn at a constant rate without the usesof@xbxygen. It
follows Piobert’s law of burning i.e. burning proceeds parallel layers. Form function
relation takes caref the shape and size paramedéithe propellant definesh termsof
form function constant. There are three typésdurnings: degressive, progressive and

neutral. It is related to form function constant.

Solution of the mathematical model gives pressure variation inside the barrel and

muzzle velocity achieveby the projectile (Fig.4).
The model consistsf Variables- z, f, p, v, x ,TDesign Parameters:
Propellant :60 , D,n,B,F,b,Te,p, Y,cGun Ko, A

Projectile = m
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Figure-4. p-t, v-t curves

External ballistics is free flight dynamics of a projectile in a resisting medium (air).
Initial flight conditions are governed by the projection and acceleratiore ghasrnal
Ballistics). At the end of this phase projectile starts its uncondrdlight with certain
kinetic energy and attitude. The mathematical model is definad Newton’s Second
Law with the external forces.

In External Ballistics study along with the design parametersotber aspects are also
important.

These are:

1. Forces which influence the motion.
2. Stability of the projectile.

3. Trajectory modeling and analysis.
1. FORCES:

Forces which influence the motioof a projectile during the flighin air are —
gravitational force,aerodynamic forces and forcestduetationof earth.

1.1 GRAVITATIONAL FORCE

It is force of attraction between earth and projectile which creatasgelifect on the
projectile towardscentre of the eartthis effect produces acceleration denoted by ‘g’. It
varies inversely as the square of the distance from ceh&arth. It is maximum at the
pole and minimunatthe equator.
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1.2 AERODYNAMIC FORCES:

As a rigid body moves in the resisting medium, disturbances aredrneathe medium
and in turn forces are generated which affect the motion. When the misdaimmnthese
forces are called as aerodynamic forces. Eeffects responsible faetieeationof
aerodynamic forces are:

1. Viscous effect
2. Compressibility effect
3. Pressure effect

The Major aerodynamic forces and moments acting on a projectile in flight are of
two types: Static and dynamic.

Static forces:

Drag D/axial force k - due to axial velocity

Lift L/normal force k - due to oblique motion Static moments:

Over turning moment/yawing momevit - dueto oblique motion

Spin driving moment - due to body asymmetries like canted finsDynamic forces:
Damping force S - du cross spin

A A A

Magnus force

a. K -dueto cross velocity and axial spin

b. Q - due to cross velocity (cross spin) and axial spin
Dynamic moments:

1. Spin damping moment ldueto axial spin

2. Magnus moment

a. Tk-due to cross velocity and axial spin

b. Tg-dueto cross velocity(cross spin) and axial spin
3. Damping moment H - due to cross spin
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It is expressed as Aerodynamic force » P v d CF C; is a constant called as Aerodynamic Coefficient. The

aerodynamic coefficients are estimated using different ways like: Theoretic estimation using fluid dynamic theory,
empirical estimation using data on similar projectile shapes, Wind tunnel testing, aeroballistic range testing or firing
trials data.

Ballistic Coefficient- It is a constant defined from the design parameters of the projectile. It is also called as
carrying capacity of a projectile.

1. Standard Ballistic Coefficient C,
C m
0 = d} k
]

m - mass in |bs
d - caliber in inches
k.- shape and steadiness factor

2. Ballistic coefficient C
¢=C, £
sy DI
;)
b g V:/’ Cu
Retardation due to drag R= 8C , CD ~ CD K,
C

Larger the value of C, smaller is the retardation and in turn projectiiers more range.
Remaining velocity of the projectile is also more for higher values of Ct iSha
projectile having larger C can strike the target with higher veldbigy a projectile
having smaller valuef C but firedwith much higher muzzle velocity.

1.3 Forces due to rotation of Earth

For small ranges and low angle of launch, during trajectory computgé&ogarally
Earth’s rotation effect is ignored. For higher velocities and large angle trajectories it has
to be included. The forces due to rotation ofEarth are

1. Centrifugal force- normab Earth’s axis

2. Coriolis force-It shifts the trajectory right which produces drift towards right side
the trajectory.

1.4 Thrust

Thrust is a force coming from within the rocket as a reaction to thenguofi the
propellant. It depends onthe mass flow @tethe propellant and the efflux velocity. Itis
expressed as
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==V d_m
dt

The ability to adopt zero yaw attitude defines stable motion (&gu

STARLE FLIGH) -———
-
v - o~
e SAME CUNDITIONS » SAME PAIIL \
MA'\K|MUM'HANGI—: l HIT TARGEI
FOR GIVEN v WITH NOSE
WHAT 1S NOT REQUIRED :
_l,‘-‘h""""\- l-__'
W7 NOT ENOUGH S1ABILITY ‘ '
o'y
i TAU MUCH STARILITY 4
o e {

Figure-S. Stability of motion

Gun projectile is an axis symmetric body. Centre of pressure (C.P.) of static
aerodynamic forces is ahead of centre of gravity (C.G.). Bodies havingl@&dof
C.G. are statically unstable. The distance between C.P. and

C.G. is called static margin and is negative for statically urestaddly. When C.P.
is behind C.G,, it is statically stable body and static margin isiymsithus a gun
projectile is statically unstable and has to be made stable diighg The body is
stabilized using spior fins. Fins shift CP behind CG. Methodlsstabilization:

1.  Spin motion is imparted to projectile which makes projectile st@é#espinning
top-Gyroscopic or spin stabilization (Fig. 6(a)).

2. Mass of the projectile is so concentrated at the forward end as toGrGvahead
of C.P. Projectile is provided with flat surfaces (fireg)the rearof the body
Aerodynamicor fin stabilization (Fig.6(b)).
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statically unstable

cGg*
\ negative

slahc margin

Figure-6(a). Spin stabilized projectile

statically stable ’

PN e
¢ posiftive
static margin

Figure-6(b). Fin stabilized projectile

Static stability relateso the initial responsef a body when disturbed from equilibrium
conditions.

The oscillatory motion dampsut to minimum in short distance, then the projectile is
dynamically stable (Fig. 7).

It relatesto the time historyof the subsequent motions following the initial response
after being disturbed fromequilibrium conditions.
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Figure-7. Stability during motion
3. TRAJECTORY

It is path taken by C.G. of the projectile. It gives knowledge of range, altitudig, dri
remaining velocity, timef flight and slope.lt is requiredto define proper framef
reference like Space fixed, earth fixéddy fixed and

The complete motion is studied with the help of 6-degree of freedom niédel,
DOF). Three scalar equations for linear motion (force equations) and Thraxegidar
motion (moment equations). The mathematical model in the vectoiiggiven

d_ﬁ | =

— =t Qx F=) F

R F =),

dH oH — - o
= QxH=> H

dt ot . Z

Important aspects consideradthis study are stabilitpf the projectile and trajectory
computation. Factors affecting the trajectory and stability of theeqlilg during its

motion are projectile parameters: mass, posiib€P/CG, Momenbf Inertia, Shape
and surface design and forces and moments amtitite projectile.

Trajectoryis computed using anyf the models:
v' In vacuo model
v" Point mass model- Earth rotation effects, crosswind effects

v Modified point mass model- Equilibrium yaw, Magnus force/moment, gginping
couple
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v 6 Degreeof freedom model

N vacuo
- :
real

'In_l {} __m. .
% 6 v ", u

Figure-8. Trajectory of projectile.

Fig.8 consist®f the trajectories obtaingd vacuo and real which clearly shows ticie
to aerodynamic forces actimm the projectile the range reduces.

The model is selected for required study with given data and integrated
numerically to get the trajectory. Simulation studycarriedout to finalize the initial
conditionsin orderto reduce the dispersion and increase the accuracy and consistency.

Terminal Ballistics

Projectile is designed to reach the terminal point: beriirathe vicinity of the aircraft)

or on the ground (in the vicinity of a structure, tank, bunker etc.) in desireatation

with a desired velocity and from here the terminal phase commebaesage to the
target is achieved in differentways : Kinetic energy of the patieg bodies , chemical
energy of a high explosive and a combination of the both. Damage to the isarge
classified as : scabbing, plugging, petalling and ductile failure. Thecfil®jalso gets
damaged as: barrelling, shatter, lateral bending and compression. There are tlsreé type
KE shots: bullets, Long rod penetrator and Fragmentation shellnattiral fragments

or preformed fragments.

There are three typesdf chemical shots which use high explosizedamage
the target viz. HEATorshaped charge, HESH and Blast. The functionind®thots is
shownin Fig.8.

In HEAT, shock energy is concentrated at a single point as a jeESHHHE
is spread over the target and detonated. The tensile strength of théstavgetome and
the target material is broken. Blast warheads are mgddtonating the HEor damaging
the structure from outsid® from inside.
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HEAT HESH effect

HEAT

Figure-8. Terminal effects of HE shots

With help of the requirements and arget information, Gun design is ede@dd
improved for required effect and accuracy.

Ballistics studies can be applied for analysis of various areas fikeefgation
of the pilot in case of emergency exit, store separation from tbheafdj towedbody
dynamicsfor towing vehicles, safety/danger areas for firing ranges. An application of
projectile ricochet analysis using mathematical modeling andlation approach gives
limiting conditions to define the safety zone.
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Numerical Solution of Non-linear Impulsive
rd
Differential Equation by Simpson's % Rule

Indrayani Y. Sutar #*, Sandhyatai D. Kadam?
apr. D. Y. Patil Institute of Technology, Pimpri, Pune 411 018, (MS) India.
*Corresponding author: sutarindrayaniOl@gmail.com

ABSTRACT

Impulsive differential equations occur in many physical situations such as control
theory, mechanics, epidemiology, pharmacokinetics etc. Finding solution of such
differential equations using analytical methods is not always possible. Therefore,
numerical methods can be employed to obtain approximate solutions of these
differential equations. In the present paper, a new numerical method is proposed to
obtain the solution of nonlinear impulsive differential equation with finite number of
discontinuities. Integral term, involved in the mild solution impulsive differential

. ) ) . . 1rd . )
equation, is approximated using Simpson's = rule and then splitting the solution b
q pp 8 p 3 )4 8 y

DGJ method. Further, error in the proposed method is computed. Furthermore, the
results on error approximation and stability analysis are computed.

KEYWORDS

rd
Impulsive differential equations, Simpson's % rule, Daftardar-Gejji and Jafari

method, Numerical solution, Error.

AMS Subject Classification: 34A12, 39B82, 47GXX, 65D30.

1. INTRODUCTION

The theory of impulsive differential equation is an emerging area of research. Due to
the nature of short-term perturbation of impulsive differential equations, whose
duration is negligible as compared to the whole phenomenon, they are useful tools in
modeling of many real-life problems that are subject to sudden changes in the state.

V Laxmikantham [8], D. Bainov and Simemnov [1] developed theory of
impulsive differential equation. Many authors studied existence, uniqueness and
qualitative properties of mild solutions of impulsive problems with the help of
various fixed point theorems [3,6,11], measure of non-compactness, contraction
principal etc. But many impulsive differential equations cannot be solved analytically
or in some cases it is more confounded to tackle them.
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Approximate solutions to differential equations are often computed using
finite difference method resulting in estimated values for the solution of differential
equation at some grid points. There are many methods for developing numerical
approaches of these kinds of problems. The first stage is about substituting some
values for the integral occurring in the solution of differential equation by any
numerical quadrature based on grid point values.

V. Gejji and H. Jafari [2] developed an iterative method (Daftardar-Gejji and
Jafri (DGJ) method) for solving functional differential equations. Jhinga A. and
others [4], proposed a method for solving Volterra Integro differential equations
using trapezoidal rule along with DGJ method. Authors also studied error and
convergence of the proposed method.

To the best of our knowledge there is less contribution in the impulsive
problems by the researchers.

In the present paper, we have studied impulsive nonlinear problem with finite
number of discontinuities given by,

u'x) &= f(t,u(t)), t+7ty, t e [0,T] (D)
u(xy) = ug, (2)
Au(ty) = Ik(u(Tk)), k=12,..m 3

whetre t;,, are moments of impulse andis the sudden change of state at exgry
2. PRELIMINARIES AND HYPOTHESES
Let X be a Banach space with the nofhj|.

LetPC([0,T], X) = {u:[0,T] » X | u(t)} is piecewise continuous at 1, left
continuous at = 1y, thatis,u(zy) = hlirf,1+ u(t, —h) = u(ry) and the right limit

u(t, + 0) exists fork = 1,2, ..., m. Clearly,PC([0,T], X) is a Banach space with
the supremum norm

lullpeor ) = suplllu(Il =t € [0,T]\ {t1, 72, ... T, }}-
Definition 2.1: A function u € PC([0,T], X) satisfying the equations

u(t) = u, +Jf(t,u(t))dt+ Z I, u(ty), te (0,T],
0

0<tp<t
u(0) = u,.
is said to be the mild solution of the initial value problem.
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Definition 2.2: Let u,(h), u,(h),:-- denote the approximation obtained by a given
method using step siZzethen the method is said to be convergent if and only if

lirr})Iui(h) —u;(x))] - 0 for i =1,23,-:,N (4)
x—

ash » 0 andN - oo.

Definition 2.3: A method is said to be of ordey if k is the largest number for which
there exist a positive constansuch that

lu;(h) —u;(x;)] < ChY, i=0,123,,N;YVh>0 (5)

Hypothesis 1: Let f: R x X - X be function, there exist a positive const@rstuch
that

[ fty) = f(&OI< Chly=¢l, Véye X, 0<t<T
Hypothesis 2: Let[,: X - X be function, there exist a positive constapsuch that
11,00 — LI < hye [x =yl Vx,y € X

3. NUMERICAL METHOD
Consider an impulsive differential equation of the form

u'(x) = f(t,u(®)), t+1,, t€ [xgx] (6)
under the conditions
u(xo) = up , Au(ty) = Lu(zy). (7

Solution of equation (6) along with the conditions stated in (7) is given in [6]

ulx) =uy + jf(t,u(t))dt + Z Lu(ty). (8)

Xo <Tg <X

rd
In this section we apply Simpsopir's rule, to the integral term in equation (8), to

obtain its approximate solution. Interval is divided into equal parts with step length
h. Thus we get

x]'+h
u(xj+1) = Uy = + J f(t,u@®)de + Z Lu(ty)
xj Xj<Tp<xjth

=S+ y +§f(xj+h,u(xj+h)) +%f(xj'u(xj))
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s
+ 5 Z f(xzi_1, u(xzi—l))

+= f (20, u(xz), €))
i-1

Where' S = ZXJ'< Tk<Xj+h Iku(Tk)'
Approximating impulse term as
Ax(ty) = x(t) — x(1) = Ik(x(Tk)),
B
I(x(@)) = = (10)
k
where B, =h*(t44y; —7); N¢€ N and x =jh,  j=01,T.
u(xj +h) = u(h+h) = u(+ Dh = ujyq.
Then equation (9) becomes
-1
h 4h
U =S + +§[f(xj+1'uj+1) + f(w)] + 3 z f Cxzi-1, Uzi-1)
. i=1
1)

2h
+? Z f (20, uz;). (11)
i=1
Define

Lw=S= ) hu®
x}- <Tg <xj+h
h
N(u) = 3 £ (X1, Wi )
L
h 4h
g= 1 +§ f(xj'uj) + 3 Z f(xp-1,Upi—1)
i=1
5-1]

+2 2 [ (2)
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Where L(u) and I, are linear operatorsy(u) is a Nonlinear operator argl is a
known function.

Thus equation (11) becomes

21 [3-1]
h 4h 2h
U = S+ + gf(xj’uj) + 3 Z f(xzi-1,Upi-1 ) +? Z f(xzi,uz)
i=1 _ i=1
-

h h 4h
+§f Xjyr S + +§f(xj;uj) + 3 Z f(x2i-1,Uzi-1)
i=1

-
2h h
+ 3 Z f i, up) + §f(xi+1’uf+1)}

o i

h 4h 2h
=S5 + y +§f(xj,uj) + 3 Z f(x2i-1,Uzi-1) +? Z f (20, u2)
i=1 . i=1
L]
h h
+§f Xj+1, S + Uj +§f(xj,uj) + ? f(xzi—l’uzi—l)
i=1
o [5-1]
+ 3 D Flw)
i=1 ,
271]

h h 4h
+§f Xjv1,S + U +§f(xj;uj) + 3 Z f(xai-1,Uzi-1)
i=1

L

+% Z fCenua) | ¢ |- (13)

Let
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L]

h 4h
Ny=S+uy+ 3 f(xj;uj) + 3 Z f(x2i-1,uzi-1)
' i=1
]
+? Z f (x5, uz0), (14)
i=1

h
and N, = N, +3 £ (%41, Ny). (15)

With these notations equation (13) can be written as

h
Uiy = Np+ 3 f(xj+1,N2) (16)

Equation (16) represents an approximate solution of equation (8).

4. ERROR ANALYSIS

Theorem Assume thajf satisfies the hypothesis 1 for any positive constarthen
the proposed numerical method is of fifth order.

Proof: Let u;,, is an approximation ta(x;,). From equations (9),(14) and (16)
we obtain

h
|u(xjs1) = wjsa]| = 3 | F(0w41) = (x40, N2)| + O(RY)

Ch? ;
< T|uj+1 — Ny |+ 0(Rr®)

Ch?

3 + 0(h%

h
Ny + 3 f(xj+1'N2) - N

IA

Ch3 5
< 5 |f(xj+1'N2) - f(xj+1'N1)| + 0(h)

Cht ]
STlNZ — Nyl + 0(h>)

Ch®
S 7 |f(xj+1, N1)| + O(hs).

Hence, the proposed method is of order 5.
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COROLLARY: The numerical method (16) is convergent.

Proof: By error analysis result and definitions 2.2 and 2.3 numerical method (16) is
convergent.

5. STABILITY ANALYSIS

n

Theorem Letuf,, andv}, be the twont" approximate numerical solutions of given

impulsive differential equations, satisfying hypotheses 1 and 2, are stable if and only
if C, = 0.

Proof: Let uf,, andvj,, be the two approximate solutions. To establish the stability,
consider,

h
| u}lﬂ - vjn+1| = | Ny + 3 f(xj+1,N2) - Ny

h
3 f(xj+1: Nzl)

h
< [N; — N{| + 3 |f(xj+1:Nz) - f(xj+1:N2’)|

2

1A Ch 1A
< |N; — M| +T IN, — Nyl

I
< |N; = Nj| +——

h h
Ny + §f(xj+1,N1) —N{ — 3 f(xj+1'N1')

- 3
, Ch? . Ch? .
< [N; — N{| + T|N1 - Nj| +T|f(xj+1,N1) _f(xj+1;N1)|
C 2 21,3
< [Ny — N{| + T|N1 — Nj| +T|N1 — Nj|
n n Ch?* C?*h3 ,
|u]'+1 _vj+1| S 1 + T + 9 |N1 - Nll (17)

Using the definition ofV; and Lipschitz's condition we get
N =M< 1S =51+ =]+ 217 ) — £ )
+ % Z|f(x2j+1 Uzje1) = f(X2je1,V2j41)|
o D 1oy ) = £ (g 22|

hZ
< hilu, — vl + |uj - vj| +?|uj - vj|
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4h? 2h?
+TZ|u2j—1 = V4] +TZ|u21 = vy
2

< hglug —vol + |ug — vol +?|u0—v0|

4h? 2h?
+— ) lup — vyl +_Z|uo — Vol

7h?
S 1+hk+T |u0—170|. (18)
Substituting equation (18) in equation (17) we get

|u}l+1 _vjn+1|
< Co lug = vol, (19)

Ch? C*h3 7h?
Ce =1+ — + 1+hk+T > 0.

where

3 9
Hence two approximate solutions of given impulsive differential equations are stable.
6. RESULTS AND DISCUSSION

In this paper we have considered impulsive differential equation given by equation
(7). An integral term in the solution of impulsive differential equation is

rd
approximated using Simpsorir's rule. It is proved that the proposed method is of
order five. Stability and convergence of the method is also studied.
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ABSTRACT

A review of developments in Sturm-Liouville theory is presented. An overview of
pioneering work of Sturm, Liouville, Weyl, Dixon, Stone and Titchmarsh is
presented. Sturm-Liouville problems with separated and coupled boundary
conditions are discussed. Haupt and Richardson's extension of Sturm-Liouville
problems with indefinite weight is given. Further extension of Sturm-Liouville theory
with discontinuous weight function, transmission condition, eigenparameter
dependent boundary conditions is presented.
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1. INTRODUCTION
Swiss mathematician Jagques Sturm (1803-1855) and French mathemati-
cian Joseph Liouville (1809-1882) independently worked on the second order

differential equation in their notation

d, .dV ~ ¢ 5 o '
m(l\w) +IV=rgV on [z X]| (1.1)
with separated boundary conditions
iV
— —hV =0 for t==x (1.2)
dt
iV
— +HV =0 for t=X (1.3)
dt

K. I, g are positive functions on [z, X|, h and H are given positive numbers

and r is a real-valued parameter. The zeros r of the transcendental equation
F(r)=0 (1.4)

for which boundary value problem (BVP) (1.1-1.2) has a nontrivial solution is
called eigenvalue and the corresponding nontrivial solution is called eigenfunc-
tion.

Before the work of Sturm and Liouville the solution of differential equa-
tions are obtained as analytic expressions. They were among the first to identify

the need of discovering the properties of solutions directly from the equation.
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Though both of them worked on the same problem (1.1-1.2), there is a notewor-
thy disparity in their approach. Sturm focused on the qualitative behavior of
eigenfunctions while Liouville is directed to eigenfunction expansion in Fourier
series. They share some results in common viz, orthogonality theorem. reality
of eigenvalues and determination of Fourier series coefficients.

Sturm in his first three papers [1-3] proved that the transcendental equa-
tion (1.4) has infinite number of real simple roots which are positive. In the
joint work of Sturm and Liouville [4] these roots are arranged in increasing
order of magnitude as vy, ro. r3, --- and Vi, Vo, V3, --- are associated eigen-
functions then these eigenfunctions are orthogonal w.r.t. weight function g.
Moreover, given a function f defined on the interval [x, X] follows the series
exXpansion

o
f(x) = Z a,Vi(x)
n=1
where
N IX gtV (w) f(y)dy
SX 9(n)V2(y)dy

For more details see [84].

The widely used modern notation for Sturm- Liouville differential equation
involving the notion of gquasi-derivative is
(—pla)y' (2))' + alx)y(x) = Mo(z)y(z) for all z € (a,b) (1.5)
where
(i)—x <a<b< o,
(i) ;';, q.w:la.b] - R -:-, g.w € L}, (Local Lebesgue integration space)

(iii) w(z) >0
(iv) A€ C

Definition 1.1. Problem (1.5) satisfying (i-iv) with two separated end point
conditions
ayy(a) + agy'(a) =0, G,y(b) + By'(b) = 0
is called a regular Sturm--Liouville problem (SLP). Otherwise. it is singular.
Definition 1.2. Problem (1.5) with P{a) = p(b) satisfying (i -iv) subjected to
boundary conditions
yla) = y(b), y'(a) = ¥/'(b)

is called periodic Sturm- Liouville problem.
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In the year 1910, Herman Weyl [5] started the investigation of singular SLP.
He considered equation (1.5) with the following restrictions on the coefficients:
(i) pla), . w:[0.%) = R, w(z) =1 for x € [0.)

(ii)p(x), q(x) € [0.0¢), plz) > 0 on [0, 0)

(iii)A € C.

The proof of the general theorem for unbounded operators in Hilbert space
by Von Neumann [6] and Stone [7] together with the fundamental work of
Titchmarsh [13] created a great motivation for the stronger searches into the
spectral theory of Sturm Liouville operators.

Another significant development in Sturm- Liouville theory was done by A.
C. Dixon in the year 1912. Dixon replaced the continuity conditions on the
coefficients p. ¢. w by the Lebesgue integrability conditions. The paper [9]
considers equation (1.5) with the following assumptions:

(i) The interval (a,b) C R is compact, p~', ¢, w :la,b] = R.

(i) p~', q.w e L'a.bl. p. w > 0 a. e. on [a,b].

In this article. Dixon derived the existence of solutions and expansion theorem
with the above restrictions on the coefficients.

From 1927 onwards John Von Neumann and M. H. Stone worked indepen-
dently on the unbounded linear operators in the Hilbert space. In the year 1932,
Stone published the book |7] which deals with the properties of Sturm Liouville
differential operator in Hilbert function spaces. In the modern notation. Stone
studied equation (1.5) with:

(i) (a.b) CR, ~oc €a < b < o0.
(ii) w(x) =1 for all z € (a.b).
(iii) p. ¢: (a.b) = R, p~', g € L}, (a.b).

Titchmarsh’s [10 12| work on regular and singular Sturm- Liouville differ-
ential equation is again a remarkable contribution to the field. He applied
theory of function of single complex variable to study the Sturm Liouville
boundary value problems. His work [13,14] for singular SLP plays an impor-
tant role in the eigenfunction expansion for the singular case.

In the operator theoretic development of Sturm- Liouville theory after Stone
[7]. J. Weidmann [27], Naimark [29]. Akhiezer Glazman [26], Hellwig [85]. K.
Jorgens [86] made a remarkable contribution. In 40’s a new tool i.c. trans-
formation operator is introduced to enrich the field. Povzner (15| constructed
transformation operator for arbitrary Sturm Liouville equations, later he ap-
plied it to obtain the eigenfunction expansion for Sturm- Liouville equations
with decreasing potential. Marchenko [16| used the transformation operators
to study inverse problems and to derive the asymptotic behavior of singular
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SLP. The details of Marchenko’s work can be found in his monograph [16]. L.
M. Gelfand and B. M. Levinton utilized transformation operators to prove the
equiconvergence theorem.

After the operator theoretic development of Sturm-Liouville theory. the
problem was essentially solving the eigenvalue problem for the differential op-
erator

Ty = Ay (1.6)

with separated boundary conditions

AY{a) + BY(b) =0 where A.B € Mays(C).Y = [ ,:’,] (1.7)
where T = &=( —p(z) = +4q(x)). For the function f satisfying separated bound-
ary conditions, let

D = {f € L*(a,b) : f.pf' € AC|a.b].w ! (Tf) € L*(a,b)}.
Associated with operator T' the quadratic forms are defined as
Ly = (Ty.y) and Ry = (wy.y).

0. Haupt [17] and R. Richardson [28] were the first to notice that the spectrum

of the problem (1.5-1.7) rely upon the definiteness conditions of the forms Ly
and Ry.

2. RIGHT DEFINITE STURM-LIOUVILLE PROBLEMS

Definition 2.1. If the form Ry is definite on D i.e. ecither Ry > Oforall y £ 0
in Dor Ry < 0for all y # 0in D, then equation (1.5) with separated boundary
conditions (1.7) is called right definite.

Hilbert and his school deseribed such problems as orthogonal. When either
w>0orw < 0ae in(ab) the problem (1.5), (1.7) is right definite. The
spectrum of right definite Sturm-Liouville problems (RDSLP) with separated
boundary conditions is real, A, = o, n — 5 (see [24]). The cigenvalues are
simple and the eigenfunction y,(z) corresponding to each eigenvalue A, has

exaclty n zeros in (a,b) (see [19.20]). The finiteness of negative spetrum of
RDSLP is given by Mingarelli [87].

3. Lerr DerFiniTeE STUuRM - LiouviLLe PROBLEMS

Definition 3.1. If the form Ly is definite on D for all ¥ # 0 in D then the
problem (1.5). (1.7) is left definite (LD).
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The problem was termed as polar by Hilbert and his school. For such prob-
lems two sequence of eigenvalues {A; )} exists where A} 4 oc. The eigenvalues
can be numbered by the index set Z = {-.+,~2,-1,0,1,2,.- } such that

cve v A2, A1 gy A Agy et

and for every n € Z, the eigenfunction associated with eigenvalue A, has exactly
In| zeros in the interval (a.b). For more details on LD SLP refer 18,23 25].
Kong, Wu and Zettl [22] defined left definite SLP in terms of RD SLP.

4. INDEFINITE/ NON-DEFINITE STURM  LIOUVILLE PROBLEMS

Definition 4.1. When neither the form Ly nor Ry is definite on D, the prob-
lem (1.5). (1.7) is called indefinite.

Initially Haupt [17] and later Richardson [28] extended the work of Sturm
and Liouville by considering the sign changing (indefinite) weight function.
Further in the year 1915, Haupt in his article [30] refined the results obtained
in [17]. The first version of oscillation theorem was given by Haupt [30] whereas
the final form of oscillation theorem was due to Richardson [18].

The spectrum of indefinite Sturm - Liouville problem (1.5). (1.7) is discrete,
with doubly infinite sequence of real eigenvalue and has atmost finite and even
number of complex eigenvalues [18,23,31]. Sufficient condition for the existence
of non real eigenvalue was given by Mingarelli [32], Bound on the number of
non-real eigenvalues of indefinite SLP in terms of number of negative eigenval-
ues of the corresponding RD SLP is established in [32].

In constrast with the RD and LD SLP the spectrum of indefinite SLP is
not monotone. As a result the eigenfunction corresponding to the eigenvalue
Ap can have any number of zeros. In relation with such nature of real spectrum
Mingarelli [23] defined two types of indices namely Richardson Index (ng)and
Haupt Index (ng ), motivated by the work of Haupt and Richardson.

For each real eigenvalue there exists two numbers At and A~ called as
Richardson numbers [33]. Mingarelli noted that in the right definite case A" =
A~ = —o¢ whereas in the left definite case A* = A~ = (. Atkinson and
Jabon [33] were the first to solve the acual example of indefinite Sturm- Liouville
with sign changing weight function

-1 <0
w(z) =
| x>0
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and obtained the lower bound on the Richardson numbers efficiently. The
following theorem is due to Richardson [18] known as Richardson oscillation
theorem,

Theorem 4.1. Let w be continuous and not vanish identically in any right
neighborhood of r = a. If w(z) changes its sign precisely once in (a,b), then
the roots of the real and imaginary parts ¢ and © of any non-real eigenfunction
u = ¢+ iy, corresponding to a non-real eigenvalue. separate one another (or
interlace).

Kikonko and Mingarelli [37] extended the study of regular indefinite SLP
when the weight function w(xr) changes sign twice. In this article the lower
bound on the Richardson number A* is determined. The detailed numerical
study of SLP with Dirichlet boundary condition in two turning point case was
done by Kikonko [34]. Kikonko noted that the Richardson oscillation theorem
fails in two turning point case. In the same article Kikonko and mingarelli
discussed the difference between the number of zeros of real and imaginary
parts associated with complex eigenvalue when Richardson oscillation theorem
fails (see [34]).

When non real eigenvalue exists, the question of obtaining the bound on
real and imaginary parts of these values was raised by Mingarelli, He was
the first to notice that no bounds on these eigenvalues are obtained interms of
the coefficient function ¢ and w. This question was solved by Mingarelli [40]
by using Green’s function argument. Further it was answered by Qi, Xie and
Chen [39], Behrndt, Chen, Philip and Qi [44,45], Xie and Qi [42], Behrndt,
Philip and Trunk [43] etc. applied L? estimates together with quadratic form
argument and Krein space theory. Behrndt. Chen, Qi [41]. Kikonko, Min-
garelli [36] improved the bound on the real and imaginary part of a non-real
eigenvalue corresponding to the bound obtained by Behrndt and etal [44].
Moreover Kokonko and Mingarelli [36] derived the lower bound for the eigen-
value of smallest modulus,

In comparison with SLP with separated boundary conditions much less
is known about SLP with coupled/periodic boundary conditions. For peri-
odic boundary conditions there may exists geometrically double eigenvalues.
Oscillatory properties of regular SLP with periodic boundary conditions are
described in [19,83]. Kong, Wu and Zettl [22] analyzed left definite SLP with
periodic boundary conditions. It is noted that eigevalue of left definite SLP
may be geometrically simple or double.

Upto 2019, there is no work done on indefinite SLP with coupled boundary
condition. There is need to determine the multiplicity of eigenvalues. Moreover,

Page 26



it is interesting to see whether the Richardson Oscillation theorem holds or not
in one turning point case. All these questions are examined by Sarita Thakar
and Pratiksha Demanna [47]. Moreover, the necessary and sufficient condition
for the existece of double eigenvalue when the potential function ¢(.r) is constant
is determined.

In the early years, the SLP with discontinuous coefficient or discontinuities
in the solution or its derivative at an interior point attracted many researchers,
so the new findings have been built up in this area and enhanced the field in
IMany aspects.

Sturm- Liouville BVP with discontinnous coefficient arises in mathemat-
ical physies, natural sciences, geophysics and other fields of engineering for
e.g. modelling toroidal vibrations and free oscillations of the earth [51.52],
analysis of one dimensional photonie crystals [53,54]. Nabiev and Amirov [50]
considered SLP (1.5) with p(z) = 1 and

1 if0<r<e

w(z) = g i
o fe<r<mO0<a#l,acR

subjected to separated boundary conditions. In this article spectral proper-
ties and eigenfunction expansion theorem is established for the problem under
consideration. O. Akcay [88] considered SLP with discontinuous coefficient as
well as discontinuity conditions inside the interval. In this study asymptotic
nature of eigevalues. properties of kernel function and eigenfunction expansion
theorem are discussed. Recently Mukhtarov and Ayedemir [59] examined the
spectral properties and asymptotic behavior of discontinuous SLP subjected to
periodic boundary condition.

In the classical Sturm- Liouville problem the eigenvalue parameter appears
linearly in the differential equation. However the problems are noticed where
the eigenvalue parameter occurs both in the differential equation and bound-
ary conditions. In 1976. Fulton noted that the Titchmarsh's analysis [13] for
regular SLP on a finite interval is also applicable to the regular SLP containing
the eigenparameter in the boundary condition at one end but not both. The
operator theoretic formulation for such problems was proposed by Walter [62]
utilized by Fulton to illustrate the eigenfunction expansion theorem. Eigenval-
ues of such problems are studied in [60 67]. Belinsky and Dauer [68] obtained
the Rayleigh Ritz formula for eigenvalues.
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In recent time more and more researchers are attracted to discontinuous
Sturm-Liouville problems with eigenparameter dependent boundary and trans-
mission conditions due to its applications in physics. Such type of problems ap-
pears in heat and mass transfer [55], vibrating string problems when the string
was loaded additionally with point massex [55], thermal conduction problem
for a thin laminated plate [56], diffraction problems [90]. SLP with eigenpa-
rameter dependent boundary conditions and transmission condition condition
at one interior is studied in [73 76,79,82]. The study of Sturm- Liouville prob-
lems with eigenparameter dependent boundary conditions and finite number
of transmission conditions is extended in [70-72,77, 78]
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ABSTRACT

In this paper we have constructed cubic B-splines based Galerkin finite element
method (FEM) to compute approximate solutions of one dimensional non-
homogeneous Burgers' equation (NBE). Initially Euler's implicit technique is used to
obtain time discretization of NBE. Galerkin FEM is then applied to this discretized
form. Stability of the present method is studied by using von Neumann analysis. The
applicability and accuracy of this method is demonstrated by comparing computed

numerical solutions of some test examples by the proposed method with the exact and
numerical solutions available in the literature.
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1 INTRODUCTION

In 1915 the Borgers' eqpuation k= frstly introduced by Harry Batman [2] and teen in 1942 i was taken by
J.M. Burger as a model of turbulent flukd motion [0, Borgers” equation & a ponlinear partial differential
ciiption (PDE). The solutbon of thi=s equation exhibitz shoek wave belmvior for very small valoe of
viseosity coefficicnt | It is & ope dimensional form of Noavier-Stokes equation. This equation appears

in Fluid Dynamics, Gas Dynamics, Nonlinear Acoustics, Traffie Flow, ete. In this paper, we considor thi
e dimensional non-lomogeneous Burgers” copantion

By =+ U villg s = .I'-'|: L il L = II'. [ L1 (1)

with the initial condition

widl the boundary conditions
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where ¢ = 0 is the cocfficient of kinematic viscosity and fiz), g (8}, go(t), Fiz, t) are known funetions.
Equation (1) with Fi{x, t) = 0 is Burgers’ equation. It is parabolic (7 2 0) or hypertsolic (2 = 0) in nature.
Iin the literature it is foand that there are varous mimerieal methods which have been constructed, The
Galerkin FEM hased on cubie B-splines = constructed in 2] to obtain mumerical solutions of Burgers’
equation. This method s implicit and unconditionally stable. Galerkin finite element methods based
on dmadratic and cubic B-splines are constructed for equivalent system of partial differential equations
in [7]. Cubic B-spline and modified eubic B-spline colloeation methods are constructed in [1] and [159]
respoetively. In [7] and [17] least square algorithms with eubic and quadratic B-splines have boen sot ap
for Burgers equation, In [!] Burgerns' equation is converted to a system of nonlinear ondinary differential
equations by method of diseretization in time and space variables and then Quadratic B-spline Galerkin
FEM is employved on the resulting system. Weighted avarage differential quadrature method is developed
in [+]. Colloeation method based on Enlers implicit technique and Hanr wavelets is constructod [0, In [11]
anthors applied hiorthogonal wavelet technigue to obtain solutions of Burgers’ equation.

The Galerkin FEM for {1-3) have boen constructed in [22]. In this paper Taylor's series expansion is used
to construet second order explicit scheme and then Galerkin FEM bhased on cubic B splines i= st up.
The mumerieal solutions of system (1-3) hised on multh guadratic guisi-nterpolation operator and radial
hisls functlon network schemes are obtajsed b [ 5] T these methods the solation or its space derivative
is qquasi Interpolated by asing Hardy basis funetions. Both the methods ane conditionally stable, Stability
of both the methods depends upon the shape parameters and the number of collocation points,

In the present paper Galerkin FEM have been constructed to simulate system (1-3). This method is
haserd on euhic B-splines. For very small valwe of viscosity parameter (Lo for large Heynolds mmber)
shock is boing observed in the salution of the Burgers’ oquation, It = important o develop the nimerical
technigues that will produee sceurate solutions in the peighborbood of shock, Many seiontists have chosen
Besplines s approximation funetions for the pumerical solutions of Burgers” equation [1,4-0, 10-14, 20,00
] Bettnanin- Bona-Mahony-Burgers" equation [11], In the present work woe made an attempt to obtain
mumerien] sedutions of svstem (1-3) vin Euler time diseretization. The cubie B-spline Galerkin FEM =
then set up for this time diseretized equation. In order to haodbe nonlinear term, bts quasilinearization
has heen considered for the constmuction of the method.

We organize this paper in the following manner, In seetion 2 the Ealers implicit mothod is ased to
diseretize (1) in time and then oonlinear term s linearised by quasilincarization technigue.  Galerkin
finite cloment method based on cubic B splines i= then applicd to constrict s sohition, Yoo Neumann
Stability analy=iz of the sorresponding linearized method is discussed in section 3, Numerieal solitions of
sone test exumples obtadned by proposed method are reported in seetion 4, These solutions are cotnpeared
with exact solutions and mmerical selutions available in the literature, The concluding remarks are given
in section b

2 METHOD OF SOLUTION

We take uniform partition of the doimain o8 s 6 = 0 < 7y < 13 < ... < 25 = b jwto N mamber
of finite elements with stop length b = 552 and r; = rg + jh 3 = 0,1,2,--+ | N, Using Eulers time
deseretization, equation (1) takes the form

gl _ g
i [Vthee — uue + Fiz0)]"*".

Om simplification, above equation reduces 1o
u" ! A [l = ()" + Flr, toia)] = 0", (4]

where £, = ta + AL, ¥ = u(r, i, ). 67 = u,(r 1, ) and w7, = u,,. (e t,). The tnmeation error (T.E.} in
(4] is given by
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T'E. = PDE—-FDE

+1 __ gm
= W e u" el e = P )] - [“n‘ﬁ—,ﬂ =g’ + ™ el = Flz b))
- ?!I:I"-I e

Therefore (4) is consistent with equation (1) and is of order one o time domadn, Assume that the solution
wix, t) of the squation (1) i of the form

LS
Wz, t) =Y dumlt)dmiz), (5)
m=—1
where S0t m = —1,0.1,--- , N + 1 are the time dependent functions to be determined and &, (2);
m=—1L01: N 41 are cubic B-splines [15] given by

(x — 2m—a), [-'ln—:l'-Trli-I-J
g W43 — ) + 30—t P —Hr — 2 ) [Pt Tm]
PmiT] = 73 B+ 3 pr = 2) + A Z iy = 2)? = (Tt = 2P, [T Temsa] (G}
(Tmsaz =z [Emet1 Emsa]
i, o, 1,

Using houndary conditions (3 we obtain

d_glt) = (£) — ddalt) — & {E), {7}
Bacar(t) = galt) = a1} = 4 (1). {8)

The solution given by equation (5) now becomes

N
ulE B m gyl 11.3'}"'92“]'5‘.\!14[-7?+E5.“!ﬂ.:1’]- {9)
[ 1
whore
Bo(x) = dalx) — do_i(x), Bilx) = gulz) — d_i(x),
Bj(x) = $;(z); for j=2,3,...N -2,
By_y(r) = dn_ylz) = dye(e), Bylz) =dxir) = ddw i)
From equation (9] we have
: ; N g
“:E-"'J'=!l|l']‘ﬂ'-"-ﬂf]“'l'h“:'ﬂ‘.biﬂ.fr:'+ZE|“JB.{-1‘L {10}
(1)
- i Iv ir
!.ln-{.T.f]'=§U”]¢-IIT]+yj[f:l¢.v+|{llb+Eli.|'ﬂB| lII.T'} {11}
=il

D e

ga(t) [¢n+1(2)Bu(x)] i = N =2, N = L N, (12}

alt)[eoy (=) Bin)] 5 = 0,13,
h.{T_ 4 l =
¥ ol herwise,

Ry(x ty, tuir ) = [g1(tn) — iltnsi)]@-s(x) + At [t 6,
+ (Arght,) = 2819, (1, )g1 (tass ) Sy, (13}
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Enleitnitus) = !_!hl:f-] = FJ[r--i-i]}'-“-'-'ﬂ'[ﬂ +-3"-“SI‘JU-|+L]"I".;.'41
+ [Atgdita) = 2Atgs(t, )oa(tass)) dnardnsy. (14)

The nonlinear term (g )™ in (4) i lncarized by quasilinearization technigue

[wa )"+ = a4 0" ul — w"ul, (15}

Using equations (9)-{15) we write equation (4} oloment wise as follows, O the element [xy, ] equation
{4} hecomes

3 2
¥ [mrn - At (rﬂ.’rz: — hy(z,ty) - }:ﬁ;i-'..ltﬂ.ﬂ,}’)] Siltner)

a=l P

| 2
- [ﬂ.:r] + At (E Si(ta) BB + [hilz,t,) = Bz, 8, 1:)] Bilta)
=i}

Jm=ill
+ Bz ta tass ) + ALF(Z, bass ). (18]

Tl term Bylx iy, ey ) in equation (16) ks contribution of von-zero function ¢_(x). On the clement
Ixi 24y for f = 1,2, N — 2, evpuation (4) reduces to the following fomm.

42 dad

3 lﬂ.[ﬂrr—m (rﬂi'm— 0 ﬁ,{'nltﬂlﬂ,-]')] &iltusr)

i =l =1
i+2 1+1

= 3 |Bilz)+ At 3 &t ) BB | Silta) + AtF{z, tns). (17}
pud =1 J=i=1

Om [rx_y. ex] equation (4) takes the form

iy ¥
3 | By - e (rﬂ."qr]-h::.rnl- - éJtrnltﬂ,ﬂJr’)]d.mu:
=N -2

r=N-2

N N
= E l.El'.uH.m( E £,|t..;|B,B_:+[h,[:.t.,]—ﬁ,[:,:.,ﬂ]])] (ks )
imN=3 ol =g

+ Syir ta.tarr ) + ALF (2. 101 (18)

The term Sy{z, b, fppq ) 0 eguation (18} s eoptribution of pop-gero fanction gy (2], Now we obiain
Galerkin weak formulation element wise, Multiplying (16) by the welght funetlon Bi(zi k= 0,1, 2 amd
imtegrating on the interval [xg, 7] we got

[Ay + At (vCy + b} - By)] -7
= [Av+ar(Dy+ny =03t | a7+ RY + AP (19)

where 87 = (. 67, 87,
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R = o080 — g1((n + 180) Fﬂ ] L vAtg((n+1)AL) [ﬁ ]

140 | 107 .
+&![Ey|[ﬂﬁilytf[u+ 1)&t) = i (nat)] ?;
168 i |

I Flz,(n+ 1)A8) By x)ds
F_:"H = L:‘" Firx, (<4 1)A8 )8 (r)dr

oo (2, (04 1) A0 By(x)dr

y [476 644 56 . [222 108 —a4
A= [6s 1088 128 |, Cy=g (s 102w |
56 128 20 24 o4 18
1235 1586 59
ik
h;‘:% 756 1244 98 |,
-1 2% 35

and for i, = 1.2, 3 (i, §)* cloments of matrices By and [y are given by

"y &y Ty
(B = {f Ej-lﬂaﬂ.'-:"f"‘-f Br'lHLE:-Iir'j By BaB; |*f-") -8y,
P Ta Y

o 1 &
(Di)y = U’ HJ_|.B‘:1£§,-_|d_r.f H_,_1B§B,_1d'r,jr B,_.B;H'i_l,d'r) v
] sy iy

Multiply (17) by the welght function By(rh k=1=11,1+1,1+2 and integrating on the interval [, 2r4]
we obiain

[Aigr + A (#C1pr = Brga)] - 855" = [Aigr + AtDyga] - 8%, + AFRYY, (20)

where for [ =1,2,+.« N —2; 8%, = (8, 8. 80,5, 00507,

+1

FE Fle, (m 4+ 1348 B (xhds 1

i)

L Fix, (o L)AL By(r)de

Fa' =
Lrlu.- Fiz,{m + 1}A4) By (e
L5 Fiz,(n + 1)A8)Bryz(r)ds |
0 120 60 1 oI 67 3

ho (120 1188 933 60 1 |:n owe -7 -36
140 | 60 933 1188 120 |° 10h |36 -87 102 2
1 6 12 =3 =¥ 21 18

A = Cipr =
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and for i, j = 1,2,3,4; (i, /)™ clement of matrices By, and [y, are computed by
Fri

LA
(BRped iy = (J’f Bjvi-al— Bl _sdx, Bip-a BB, _sdx,

iy )

Fisg Frin
}r E,,;--_-B;+,B:+,_Id.r,f EHJ—EHH:E.'-—l—'ad"] 8-
&£y

&y

R4 h
lﬂl-l-l:ll:= (jr E_H-f !B.! |-EH-T ﬂ'i'rf J--H' !‘BJ [ J'd:r

y

)‘, BBy Bisi- E‘i'rf B i J'-Effzﬂl-ri—?d:) 8-

Om multiplying (18) hy the weight fanetion Byirp k= N — 2, N — 1, N and integrating on the interval
[ea -1, ox] wo got

[Ap + At (rCp + hYy = By)] - 6371
=[Aﬂ+ar[ﬂﬁ+h;_h;+'}]-a',:,+5;.;+mp;}+', {21)

where 8% = (8% _,. 8% _, &40,

Sh=

nimuuvm[mumn[ I vt + 130 lJ]
A0

51
1

Lo

o7

| iy  Fiz, (n+ 1)At) By _g(z)dz

F

At [2ga(ndt)ga((n + 1)AL) — gdinAt)]

168

FE-H = Af I:: | Fiz.(n + 1)AHBy _(x)dx
Lou Fle.(n+1)A1) By (x)dr

a [20 128 56 g [12 2 -2
Ay=— [128 1088 644 |, Cy= 4 192 108 |,

56 G 476 10h | oy 108 203

5§ 88 =1
hy =B log 1o 78 |,
B0 lge 1586 1235
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ool for 4,5 = 1,2, 5 (0, /)™ eboment of motriees By amd Dy are given by

XN £
'ﬂ!t”u = (f En-.'- -JE."-!H:-I-.\"—.'I'LT'-f B;-r.'- -'.I-E.'l'—lﬁ:+.?|'—:|i"-
E -

N—1

5
f Hj.,.,-.-_;.ﬂ'r..-ﬂ,'_,__.,-_idr) 53,
N

(D)= (Jr' B r.'-'—aﬂr.\'—-:ﬁ.h'-'—ilﬂ-f Bisn-aBy_Bisn-ads,
Thog L |

L
[ Brx-aByBx .;.:tr) ¥ 3

N1

Computation of matrices Cp and By for [ = 1,2,:-- | N s done using integration by parts. Sinee for
FEop

{e= 01,0 N =1 the overall contribaition of the terms B.{:}H,[:}E;,{:’H::" amel B x) Bulx)|s
vanishes o tlee assembled system, we have exeloded them from the fAnal expression. Sinee & (2) i
zoro on [r, T )il = 1,2+ N -1, HE:k = 2,3..... N arc zero vectors. Similarly dw.(z) is zero
o g, wppfil = 01, N — 2, and therefore S35k = 1,2, N — 1 are zero vectors.  Also for & =
2,3, N = 1; b are pero matrices. Combining the contribmtions from elemental equations (19), (20)
aned (21} o usaal way wiee obtain the following (N < 1) x (N + 1) system,

[A+.r_‘nr[rl:'+h“—ﬂ]]-q'li"‘“=[A+.-‘.'ut{ﬂ+h“—ﬁ““}]--ﬁ“+H‘"‘+5"‘+.M}'"”, (22)
3 STABILITY ANALYSIS

The stability of linearized scheme correspomnding to constrscted schome (22) = analyzed by von Newmann
nnnlysis, The linearized form of (22) is ebtained by assuming that the solution w in the nonlinesr term
ttlg |5 bocally constant and s equal to L7, Thus the linesr system corresponding to schemme (22) §s obtalyed
as follows

[,4 + UAIB" + m:cl L o [.4 + L-'.;irl!'] A R 4 8 4 P (23)

where B* s abtalmed by eombdning contribuations from _[:;'" Bi(x)Bix)dr In vsual way. The error
equation corresponding to the above equation is

[.-1. +UAIB" + m:{'} e = [..-l + L‘.-’.'.:E‘] €, (24)

where, " Is error in the solution at § = #,. Matriees A, B* and C are septadiagonn] matrices awd general
row of those mairioes ame

h
A (1,120, 1191, 2416, 1101, 120, 1)

1
B® : —{1, 56, M5,0, =245, <56, -1
mi )

(g %[3, 72, 45, =240, 45, 72, 3)
The I* orror equation in (24 is

r||r;"_'l_-‘I - ﬂ-_'!lr-_+; L rl_ﬂ?‘“ - uaff:'ll o+ gl + u—;lr_"']' {25)
= ok +OnE) g+ ogeE) | + 0+ ogge el + 0pgE .
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'H.l']'lt'rr'lj-'ln!i'n‘dml‘nﬁ;ut-!-ﬂﬁf.ll-\_:jEH.-IEIﬂN-:L

(g = Py o g o= 3ry, o0 m 1Hr & 56r = Try, om = 1101F) & MHire = 45my, oy = M16rp + 240ry,
ay = 1100r) — 245ry — 4573, o = 1207 = 56ry — T2rs, Gy mF) = Fy —3ry, O =y 4 Fo,

ay m 120 + 56y, o = 1191 + 245r;, ﬂ'n-z-”ﬁ":h ﬂl:’]191f|—2-|5!':1

gy = 120r, —Bbry, apu=r-r;, K=qh ra=53 =53
The Fourier growth factor is defined as

i:l o En[,-llrl'l_ {Eﬁi
where k s mode number and b = the beogth of finite clement. Using (26) equation (25) gives

i+ b) + i{e + 2403 )JE = 8+ 6], {27}
whero
a = [2oos{3kh) + 240 cos(2kh) + 2382 coa(kh ) + 2416]r,
b = |-Geos(dkh) — 14 cos{2kh) — 00 cos(Bh) + 2400 ey,

e = 416 — [2sin{3kh) + 112sin(2kh) + 400 sinkhjjr;.
From (27} the smplification factor

il + ic

£= asia+ (bs 20rs)"

It i ohserved that if (b + 240730 + 2ab + 480rse — ) = 0 then [£] < 1 and henee lnearized schome (23)
is comnlitionally stable, Sinee method b consistent and stable, by Lax equivadence theorem the method s
EOTVEEEeL.

4 NUMERICAL RESULTS AND DISCUSSIONS

In this section we Qlustrate some test examples to support the method, Mathematios 1000 software is
e to compute numerical solation and error in the solotion. The Ly asd L errors are defined as,

N
Lz = Jﬁ E l[l':'""r : u:rhﬂlﬂ'li"__

Sl

1 - TIAX Elhrnr] ur:umnr [
= k" I "R

where, U#™* and u T pe exact awl oumerieal solutions st > = r; respoctively.
Exmuple 1: In this test example we consider equation {1} with the initial condition sz, 0} = sinfzx),
houndary conditions u(0,8) = 0,u(1,¢) = 0 aged Fiz,t) = 0, The exact sobation of this probleim is

o fat ~natuty, sin{max)

o
b= huu.u + ¥ o By Ty opa| R )

whese the Fourier cocfficients ag; n=10,1,2,:-- are given by
d,}::fir_“"':' '|I—-:'\mlnll-d':n
i}

i

]
o= _"' g time) ™ (- eomteal) o)y,
L1}
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The maamerieal sohatbons obtained by the proposed method, solutions obtadned in [1] and the exact solution
for i = 003 are slown i Tabde 1. The nuimerical soluthons snd contoir for g = 0,1, 3¢ = 0001, & = 40
are plotted in Fig 1 (a) and Fig 1 (b)) mspectively. Obtained mumerical solutions by present method for
o= 0.0, Af = 0,001, N = 400 are depicted in Fig 2. It is seen that proposed method has shility to
capture shocks, From Table 1 it is observed that the produced solutions by the proposed method are less
aecurate than solutions obtained in [1] and exact solutions. It is soen in Fig 1 that the physical behavior
of ohtained sohition is correct.

Example 2: In this example we consider (1) with indtial condition w(z.0) = 4x(l — =) and boundary
complithons w0, ) = 0 w{l, t) = 0 with F(z.t) = 0. The pumerieal solution obtained by the proposed
micilod, solution obtained in 1 12, 15 20 and exact soluthon for ¢ = 001 are lsted in Table 2. 1t s
observed that the mumerieal solutions obtalned by the proposed method are better than the solutions
obtaimed in [12] even for small value of X but they are bess scearate than selutions obtabned o [1,09,27]
The numerieal soluthons for ¢ = 01, Af = 00001, N = 80 amd = 0,01, At = 0001, N = 160 are depletod
in Fig 3.

Example 3: In this example we consider (1) with the initial condition w(z,0) = 22wzl 5 ~ 1,

-roa| |

boundary conditions w0, 1) = 0; w(l,t) = 0 and Fiz, t) = 0, The exact solution of this problom s

vme "i"'il'nﬂﬂ'.r,}
4+ =" pos(wx)

The mumerical solutions and Ls, L. errors for o = 2,k = 0,025, = 1.0,0.5,0.2,0.1 and At = 0.000] at
t = 0.001 are presented in Table 3 and Table 4. From Table 3 and Table 4, it s observed that the muer-
ieal solutions obtained by the present method are slightly less aceurate than solutions obtained in [22].
The plots of ahsohite error and numerical solution for o = 2, = 0,01, At = 0,001 and N' = 100 are shown
in Fig 4 (a) and Fig 4 (b) respectively. L errors are obiained for o = 3,0 = 0.3, 4t = 0001, N = 80
and are prosented in Table 5, It is seen that L error decresses as time inereases and henoe error is
bounded. Thus proposed method produces stable solutions,

Example 4: Consider equation (1) with the initial eondition ufz, 1) = Yo T and boundary eon-

ulx. i) =

ditions u(0,) = u{1.2,t) = 0 and F(r,t) = 0. The exact solution of this example is u(x, {) =_if;_ﬁ,.
1+{E)2e

where t = ¢% . The comparison of mumerieal sohations with exact solutions for b = 0.005, v = 0,005 and
At = (001 is given in the Table 6, The Ly and Lo errors are computed for » = 0,005,k = 0.005 and
At = 0,001 at different time levels and their comparison with |14, 22 is shown in Table 7. Tables 6-7
ghows that present method produces sceurate solutions even for small value of v but for very small value
of At.

Example 5; Consider Burgers' equation (1) with F(r,t) = i k>0, 3 > 0 and the initial condi-
tion u(x,0) = kx; k > 8. The exact solution of this problem for i = 1 is obtained by Rao and Yadav [1¢]
s follows Aoz

- 2
el where =8+ +k

The boundary conditions are considered from the exact solution. In the computation region [-1,1], Ly
and L errors in the mimerical solutions obtained by proposed method for k = 5, 5 = 2 are listed in
Table & and are compared with errors in [22]. It s scen that numerical solations obtained by the present
method are less accurate than solutions given in [12].

iz, i) =
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Figure 1: (a) Numerical solutions of Ex 1. for » = 0.1, At = 0.001, N = 40, (b) Contour plot of Ex 1.
for v =01,At = 0001, N =40,0< 2 < 1,0< < 2.
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Figure 2: Numerical solutions of Ex 1 for v = 0.001, At = 0.001, N = 400.
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Figure 3: Numerical solutions of Ex 2 {a) for » = 0.1, &¢ = 0.001 and N = 80, (b} for v = 001, &t =

0,001 and N = 160,

Table 1: Comparison of numerical and exact solutions for i = 0.003, At = 0,001 and N = 64 of Ex 1.

T t {4 Present Exact

0.25 1 0.18902 0.18022 0.13901
(0468 0.04701 .04 658

0.02422 0.02423 002422

0.01631 0.01632 0.01631

.50 1 0.37623 {L37650 0.37619
5 000306 0.00400 0.09305

1y 004844 (04846 00843

15 0.03263 0.03264 0.03263

.75 1 (.50028 055067 0.55824
5 014092 0.14099 0.14095

1y (07261 0.07263 0.07260

15 004830 004840 D.04341

5 CONCLUSION

The cubic B-spline Galerkin finite element method is successfully implemented to the one dimensional
non-homogeneous Burgers' equation. Burgers’ equation is discretized in time by using Eulers implicit
technique and then Galerkin finite element method is constructed for the discretized equation. The
nonlinear term is linearized by quasilinearization technique. Five mmerical test examples are solved to
support the proposed method. It is seen that the method is reliable for solving the one dimensional

not-homogeneous Burgers” equation but computational cost i more.
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(b)

Figure 4: (a) Absolute error in pumerieal solutions of Ex 3 for o = 2,1 = 0,01, Af = 0,001 and N = 10K,

(b) Numerical solutions of Ex 3 for o = 2,0 = 0,01, & = 0,001 and N = 100,

Table 2. Comparison of mumerical and exact solution for ¢ = 001 Ex 2.

r t [13] [1] [19] [ Present Exact
At=0001 At=00001 At=00001 At=0001 At=00001
N=4 N=40 N=80 N=40 N=60
0.2 04 03625 0.36225 036218 0.36226 0,363 0.36226
06  0.28M2 0.28199 0.28107 0.28204 0.28307 0.28204
08 (L2304 0. 23039 0. 23040 0. 23045 02348 0.23045
1.0 0.]1M68 0.19463 019465 0. 19469 0.1471 0.194609
3.0 007613 007611 0.07613 007613 007614 007613
050 04  0.68368 {68371 0.68364 (68368 068371 (.68368
06  0.54532 (0.54835 0.54829 (.54832 054836 0,54832
08 045371 0.45374 0.45368 0.45371 0.45376 0.45371
1.0 38567 (158565 0.38564 (135565 038571 0. 38568
3.0 015218 0.15216 015217 015218 0.15219 0.15218
075 04 002052 092047 0.020d7 (0,904 092045 0192050
06  0.78300 0, TR302 0.78297 0. 78288 0. 78301 0.78299
08 066272 0.G662T6 066270 066267 066276 066272
1.0 0.56932 0. 36936 0.56830 0. 34931 10.565936 1.56033
3.0 022782 0.22773 0.22773 0.22774 0.22776 022774
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Table 3: Comparison of numerical and exact solutions for a = 2, h = 0,025 and At = 0.0001

at ¢ = 0,001 of Ex 3.
I =1 p=105
Present (2] Exact  Present 23 Exact
0.1 0653545 0653544 0653544 0327870 0.327870 0327870
0.2 1305540 1305533 1305534 0655060 0655060 0655060
0.3 149570 1040363 1949364 0078413 097R412 0978413
0.4 2565030 2565024 2565025 1288460 1288464  1.288463
0.5 3110750 3110738 3110739 1563070 1563063 1563064
0.6 3402800 3400665 34099866 1.756650 1.756642 1.756642
0.7 3540640 3549595 3540505 L.TST210 1.TRT206  1.7RT206
08 3060200 3050138 3050134 1537700 1537606 1.537606
0.9 1816710 1816666 1816660 0016860 0916863 0916860
Lex10' 0623 0.056 0,009 0,030
Lyx 100 0.306 0.021 0,045 0011
Table 4: Comparison of numerical and exact solutions for a = 2, h = 0025
and At = 0,0001 at £ = 0,001 of Ex 3.
1 =02 =01
Present 2]  Exact Presemt  [2]  Exact
01 013412 0131412 0131412 0065750 0.065750 0,065750
02 0262581 0262581 0262581 0131383 0.131383 0.131383
04 0392262 0302262 0302262 0.196281 0.196281 0.106281
04 0516709 0516709 0516710 0.258576 0.258576 0.258576
05 0627079 0627079 0627079 0313850 0313849 0.313849
(1.6 0705120 0.705120 0706120 035072 0352072 (0.352072
0.7 0717883 0717882 0717882 0350443 0350443 0350443
08 0618138 0618137 0618136 0.300581 0300581 0.300580
09 0368815 0368815 0368814 0184754 0084754 01847
Lox10° 0164 012 0.068 0,063
Lx10° 0642 043 025 0220
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Table 6: Comparison of mumerical and exact solutions for v = 0.005 and h = 0,005 of Ex 4.

T t Present [22] Exact
At = 0.0001 At = 0,001

0.2 1.7 0.1176490 0.1176452 01176452
25 (1. 0=0001D 00T EERa0 (0O
3.0 0. 066668T 0. GGG 00666655
35 0.0671422 00571422 00571422

(.4 L.T 0. 2351750 0. 2351677 02351677
25 0.1599530 0. 1500760 0.150076%
3.0 0. 1333260 0. 1333200 0. 1333209
35 01142820 0.1142779 01142779

.6 LY 0. 2958750 0.259101 0. 2959007
25 0.2381270 0.2381207 0.2381207
3.0 0. 1594550 0. 1904806 0. 1594505
35 01712300 0.1712242 01712242

(.8 LT 0. 0006450 0. 006465 (0006465
25 01020790 01020055 01020057
3.0 0. HI88120 0. HEE360 el 4
3.5 02145530 0.2145869 02145565

Table 5: L., errors fora= 3,0 =03, At = 0001 and N = 80 of Ex 3,

E o Lox100 t Lox10® t Lox10® t LoxIOf

0.1
0.2
0
04
0.5

0.207
0379
.38
(.68
034

0.6
0.7
08
09
L0

0.203
0.252
0.213
0.178
0.146

11
12
13
14
13

0.119
0.007
0.078
0.062
0,050

16
L7
18
19
2

0,039
0.031
0024
0.019
0.015
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Talle T: Comparison of Ly amwd Lo errors for ¢ 00006 of Ex 4,

t Present [13] ]
At = 00001, 45 = 00003 M=000000=0.006 Af=0.001H4=0005

Lo w1l Lgul0® Loxi0t Loxlt? Loox10' Lgx10!

L.7 (457 0117 0.9 0.252 URLLE LR iy
1.5 (13500 LILLY 059 0,151 0,002 AL
3.0 (209 LELEY 0414 0118 0.023 {1 (NF2D
1.5 L5712 0111 436 0117 0.572 0,075

Table & Comparizon of Ls and Lo ermors for k= 5,8 = 2, 40 = 0,01 and N = 10 of Ex 5,
L.H L’:
=5 =10 =5 t=10

Prosemt 580 = 10°% T61=1077 580x1007% Frd=10°7
[29] 481 x 107" LETEx 107 2854 x 107V 1801 x 1071
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ABSTRACT

Gender inequality has been a social issue in India for centuries. Indian society has
always been discriminating amongst men and women. Gender equality is just an
oral statement said by the influential people of the society but never seen in practice.
Be it a household work, labour work or politics, women have always been
underestimated about their efficiency and capabilities to work equally in comparison
to men. In this paper, Authors studied that the gender inequality in accordance to
male female ratio specifically related to birth rate, life expectancy, work
participation and literacy.

KEYWORDS
Inequality, literacy, Work force participation, Life expectancy, Interpolation and
extrapolation.

1. INTRODUCTION

Gender equality is not only a fundamental humahtrigut a necessary foundation to
create a peaceful, prosperous and sustainabliel wotlive in Gender inequality
means that_men and women are may be equal or nml eand it affects an
individual's living experience. Gender discrimioatihas been a social issue in India
for years and years. That in many parts of Indie, birth of a girl child is not
welcomed and it is a known fact. The report tittfdomen, business and the law"
revealed the world is moving to equal legal rigistdoth genders. Only 6 countries
in the world give women the same legal work rigidsmen and prove to be gender
equal [1]. Still women in many parts of the countigve less access to education
than men or are being denied from taking educahtamy times, it has been seen
that they are not even allowed to finish their @gneducation, which is a basic
human right. Gender inequality can be seen evémeatvorkplaces. Still women are
being harassed mentally and physically by the highghorities or people of the
opposite gender at their work place. Accordingasearch from the World Bank, it
has been observed that over one million women dbaite any kind of legal
protection against the domestic violence [2].
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According to the United Nation Development, there &7 goals for sustainable
development. The fifth goal is gender inequality. [Ending all discrimination
against women and girls is not only a basic humght,ris need of an hour; it's
proven that empowering women and girls can helpeaonomic growth and
development of the country. The number of schoamg girls now is more as
compared to the last 15 years, and most regions heached gender parity in
primary education. But still there are more womenthe labour market, large
inequalities in some regions, with women who areiet the same work rights as
men. Still women have to face sexual violence exmloitation, the unequal division
of unpaid care and domestic work, and discrimimatiopublic office which can be
huge barriers for women to work in safe and seemaronment. Climate change
and disasters continue to have a disproportionfééeteon women and children, as
do conflict and migration. It is very important gove women equal rights land and
property, sexual and reproductive health, and ¢brtelogy and the internet. Today
there are more women in public office than everoteef but encouraging more
women leaders will help achieve greater genderléggua

2. METHODS

The data were obtained from the census of Indid E9@lwww.censusindia.net for
2001 and 2011[4]. The interpolation and extrapotatinethod are used to fill gaps
and predict future values in the time series dfta[6 obtain the data for inter-
censual year linear interpolation has been usedddié& have the data for the census
year 2021 so we have been used extrapolation mdtrod012 to 2019. Female
literacy is the percentage of female literates wibpect to total literate population
similarly for male literacy. Female workforce paipiation is referred to percentage
of female workforce participation with respect tval female work participation and
similar for male work participation. Life expectanaf male is the number of years a
male person can expect to live since birth and samfemale life expectancy. The
data of life expectancy is taken from World Banlkamo trends)[6]. Unpaired t-test
is used to test the hypothesis.

Table-1. Census Data

Workforce
Literacy participation Life expectancy
Year Male Female Male Female Male Female
1991 64.13 39.29 51.1 22.1 59 59.7
2001 75.26 53.67 51.8 25.6 62.3 64.6
2011 82.24 65.46 53.2 25.6 65.8 69.3
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Table-2. Interpolation and extrapolation of the census data

Workforce
Literacy participation Life expectancy
Year| Male Female Male Female Male Female
1991| 64.13 39.29 51.1 22.1 59 59.7

1992| 65.243| 40.728 51.17 22.45 59.4 60.4

1993| 66.356| 42.166 51.24 22.8 59.7 60.9

1994| 67.469| 43.604 51.31 23.15 60.1 61.4

1995| 68.582| 45.042 51.38 23.5 60.4 61.8

Workforce
Literacy participation Life expectancy
Year| Male Female Male Female Male Female
1996| 69.695| 46.48 51.45 23.85 60.6 62.2

1997| 70.808| 47.918 51.52 24.2 60.8 62.3

1998| 71.921| 49.356 51.59 24.55 61.2 62.7

1999 73.034| 50.794 51.66 24.9 61.4 63.3

2000| 74.147| 52.232 51.73 25.2% 61.9 64

2001| 75.26 53.67 51.8 25.6 62.3 64.

O

2002| 75.958| 54.849 51.94 25.6 62.8 65.2

2003| 76.656| 56.028 52.08 25.6 63.1 65.6

2004| 77.354| 57.207 52.22 25.6 63.5 66.1

2005| 78.052| 58.386 52.36 25.6 63.7 66.9

2006| 78.75 59.565 52.5 25.6 64 66.9

2007| 79.448| 60.744 52.64 25.6 64.3 67.2

2008| 80.146| 61.923 52.78 25.6 64.6 67.1

2009| 80.844| 63.102 52.92 25.6 64.9 68.2

2010| 81.542| 64.281 53.06 25.6 65.4 68.8

2011| 83.441| ©66.21 52.997 | 26.618 65.8 69.3
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2012| 84.259| 67.464 53.117 | 26.714 66.4 69.6
2013| 85.065| 68.71 53.239 | 26.805  65.65 69.15
2014| 85.86 69.95 53.362| 26.8§7  65.8] 69.45
2015| 86.648| 71.185 53.487 | 26.968 66.1 69.17
2016| 87.432| 72.418 53.613 | 27.036  66.33 70.1
2017 88.217| 73.651 53.738 | 27.109  66.57 70.45
2018| 89.007| 74.888 53.862 | 27.18f  66.82 70.8
2019| 89.809| 76.132 53.985 | 27.27b  67.06 71.15
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4. DATA ANALYSIS

4.1. Graphical Representation of Data

80
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40
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Literacy

60 80 100
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Figure-1. Relation between Male and Female Literacy

The Relation between Male and Female literacy stpe correlated. There is not
perfect positive correlation, hence we cannot $egyet is an equality in terms of

literacy.
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Figure-2. Census year wise literacy in Male and female
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Workforce participation
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Figure-3. Relation between Male and female Workforce participation

The Relation between Male and Female work particpais weak positive
correlated. There is not perfect positive correlatihence we cannot say there is an
equality in terms of work force participation.
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Figure-4. Census year wise Male and female workforce participation
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Life expectancy
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Figure-5. Relation between Life expectancy in Male and Female

The Relation between Male and Female life expegtaneveak positive correlated.
There is not perfect positive correlation, hencecaenot say there is an equality in
terms of life expectancy.
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Figure-6. Census year wise Life expectancy in Male and Female

Page 54



_n-
.

Figure-7. Box plot

This figure shows that there is more variation e tmale literacy and female
literacy. There is little bit variation in the maheorkforce participation and female
workforce participation. There is variation in timale life expectancy and female life
expectancy.

4.2. Descriptive Statistics

Table-3. Descriptive Statistics for the variables Literacy, Workforce
Participation and Life expectancy

Workforce
Literacy participation Life expectancy
Descriptive statistic§ Male | Female Male Female Malg Female
Mean 77.76| 58.21 52.41 25.36 63.44 66.04
Standard deviation 7.65 11.09 0.91 1.49 2.65 3.5p
Coefficient Variation| 9.83 19.06 1.74 5.88 4.02 3
correlation 0.99 0.91 0.99

4.3. Testing Of Hypothesis
Table-4. Table for Unpaired t-test and Decision

. Average Calculated t Table P .
Hypothesis Decision
Male | Female value value | value
Ho1 77.76| 58.21 7.81 2.048 0.00 RejecyH
Ho> 52.41| 25.36 6.77 2.048 0.00 RejectH
Hos 63.44| 66.04 -3.20 2.048 0.00 RejectH
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5. CONCLUSION

The gender equality is most important. It effeatssocial development of society as
well as country. There are different aspects taktbke gender equality. So in this
paper we study three aspects of gender equalith sc literacy, work force
participation and life expectancy. The average naalé female literacy are 77.76
and 58.21 respectively. The average male and femat& force participation are
52.41 and 25.36 respectively. The average maldeandle life expectancy are 63.44
and 66.04 respectively. The males are more consigtan females in the all aspects
of our study.

From the table for unpaired t test, that male ditgr and female literacy are
significant. For the hypothesis second, we can lcoiecthat male literacy and female
work participation are significant. For the hypdtisethird, we can conclude that
male literacy and female life expectancy are sigaift.

Male and Female literacy both differ significantlgox-plot shows as little bit
variation in literacy, small change with workforgarticipation and very little change
in life expectancy. Male literacy and female lifgpectancy are significant. Female
literacy is consistent as compare to other faditale literacy and female work
participation are significant. Male literacy andnige literacy are perfect correlated.
Male and female literacy, male and female workipigetion are differing so gender
inequity is seen now a day.
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ABSTRACT

In this article, we consider the problem of variable selection in linear regression when
multicollinearity is present in the data. The selection criterion (Rp*) is based on the
ordinary ridge estimator and it gives satisfactory results than the method based on Least
Squares estimator. Performance of Rp* is studied over the Mallow’s Cp criterion used
for variable selection, for various combinations of ridge estimators and biasing
constants.

KEYWORDS
Linear regression, Subset selection, Ridge estimator, Multicollinearity.

1. INTRODUCTION
Consider the following linear regression model:
Y=XB+¢& (2)

where, Y is a n x 1 vector of responses, X is a k fll column rank matrix of n
observations on k-1 explanatory variablgsjs a k x 1 vector of unknown parameters,
is a n x 1 vector of disturbance assumed to beillised with mean vector 0 and
variance covariance matrix?/, and | is an identity matrix of order n x n. As®ithat
the covariatesc;’s and response variable Y are standardized ih ausay thatx 'x is

a non-singular correlation matrix andlY is the correlation between X and Y. We
assume that two or more variables in X are neamlyakly dependent. Therefore, the
model in (1) suffers from the problem of multico#arity. In estimating the regression
coefficients #, the ordinary least squares (OLS) estimaforg(x X)*x'y the most

common method, is unbiased. However, it may stNeéha large mean squared error
(MSE) when the multicollinearity in the design nmatk causes unstable solutions.

One of the most frequently used statistical pracesl is variable selection in
regression. Variable selection is useful for twasans: variance reduction and
simplicity. A number of variable selection methdds/e been introduced in recent years.
Among the classical variable selection methods agiMallow's Cp (Mallow’s, [1]),
most are based on the OLS estimator. Due to podorpgance, OLS estimators are
sensitive to the presence of multicollinearity. €egquently, variable selection methods
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based on OLS estimator in turn leads to the ingpate variable selections. In an effort
to over come the problem of OLS with multicollinetata, widely used method of ridge
regression, proposed by Hoerl and Kennard [2]. &@hare various types of ridge
estimators including the ridge regression (RR)nestor (Hoerl and Kennard, [2]),
Jackknifed ridge regression (JRR) estimator (HykB) and Modified Jackknifed ridge
regression (MJR) estimator (Batah et al. [4]) uded estimation of regression
coefficients. Recently, Dorugade and Kashid [5]pmsed the generalized ordinary
Jackknife ridge regression (GOJR) estimatgy ) having the better performance than

other ridge estimators. In ridge regression, sieobf biasing constant is important.
Using ridge regression, numerous articles have ledten for suggesting different
ways of estimating the biasing constants including, Hoerl and Kennard, [6]).f,, .
Lawless and Wang, [7]).r{,;0. Masuo Nomura, [8]), 4., Khalaf and Shukur, [9]).
Dorugade and Kashid [10] gives alternative metlwaietermining biasing constant, (

) and shown the better performance &gf over other methods. In the presence of

multicollinearity standard variable selection alguns fail to select an adequate subset.
Dorugade and Kashid [11] proposed variable selearderion (Rp) in linear regression
based on ridge estimator when multicollinearitpissent in the data and shown that Rp
gives satisfactory results than Cp-criterion.

In this article we develop variable selection crite Rp*. It is proposed by
computing Rp statistic based on estimgior which is determined using biasing
constant k,’. The Rp* is compared with Cp and Rp-statistic poned by using other

biasing constants and ridge estimators. Also perdmice of Rp* is evaluated for real
and simulated datasets exhibits with multicollimtyar The rest of the article is
structured as follows:

In Section 2, we describe different ridge estimmatand biasing constants. In
Section 3, we present Rp-statistic and developed dRterion for variable selection.
Performance of Rp* is evaluated as compare toreiffiecombinations of ridge estimator
and biasing constants through real and simulatéal $kts in Section 4. Performance of

Rp* for different choice of?and also model selection ability for Rp* evaluatieaugh
simulation study in the same section. Article ewith some summary points.

2. PARAMETER ESTIMATION METHODS AND BIASING CONSTANTS

Consider the linear regression model as given jnl@t [ and T be the matrices of
eigen values and eigen vectorsxofx , respectively, satisfying'x X7 = L = diagonal
(A, Ay ... k—1), wherehi being the'f eigen value ofx'x andrT =TT = 1. We
obtain the equivalent model

Y= Zo+eg, (2)

where Z = XT , itimplies that'z =, anda =78 (see Montgomery et al., [12])

Page 58



Then Ordinary least square (OLS) estimatona$ given bya=(zz)*zy = C*'ZY.
3)
Therefore, OLS estimator ¢# is given by

B=Ta.

For the model (2), we get the ORR, OJR, MOJR andRs@stimators otr are
given respectively by Hoerl and Kennard, [6], Hek[3] ,Batah et al. [4] and Dorugade
and Kashid [5].

The ordinary ridge regression estimator (ORRyo&s

Be= 1li-m7) @ @)
Similarly, the ordinary Jackknifed ridge estimafodR) ofa is
B = T(I‘rzAr_z) a )
Modified ordinary Jackknife ridge estimator (MOJR)a is
Byr = T(I—rZA,‘Z) (-ra;t) @ (6)
and generalized ordinary Jackknifed ridge regressistimator (GOJR) and it can be
written as Beir= T(I—rzAr_z) (-miPa s=0 7

whereA, =(C+r1,) and '’ be the biasing constant.

Determination of biasing constant

Many researchers have suggested various methoddefermining the ridge
parameter. In further study, we have used sombeofvellknown methods available for
the determination of biasing constant.

D)y = (k —})5 2 (Hoerl, Kennard, [6]) (8)
aa
(2) _ (k-10? (Lawless and Wang, )7 (9)
Y YS

(3)rHM0 =(k —1)&2/0{5){ ﬁi"/{ 1+[ 1+/1[(é'i2/&2)llzj H i=12..k-1

i=1
( Masuo Nomura, [8]) (10)
(4) rks =Amas 2)/ (0 =k =2)6 2 + A a2 max
(Khalaf and Shukur, [9]) (11)
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(5)rD=ma{O, k-D6% 1 J

c?'c? ”(VIFi)maX
(Dorugade and Kashid, [10]) (12)
wherey;p -1 _ i=12..k-1 isvariance inflation factor ofiregressor. and? is

the OLS estimator ofr®i.e. sz _YY-azv,
n—k

3. PROPOSED CRITERION AND STEPWISE PROCEDURE FOR SUBSET
SELECTION

Using the fitted regression equation basedhenfull model, we have the predicted
values of Y which depends on the full set of size k

jo=xf,. 1=1,23..n (13)

wherex, = @1.x,,,X 5. X ,00)-

Now assume that a sub model ‘A’ based on a suligetlqoredictor variables (p < k) is
fitted to the data. The underlying model is givgn b

Y=X,B,+€.

where X is an n x p matrix of the observations on p-ddmtors andB, isa p x 1
vector of the regression coefficients based orfitteel submodel. We have the predicted
values of Y as

Y, =X, B j=1,2,3,...n. (14)
wherexj' = (1X 1. X 50X ) -
Where, 3,z in (13) and (14) is computed using biasing cortstgnfor full and subset

model respectively.

We propose the new subset selection criterion Rp*the similar line of Rp-
criterion. It is defined as follows:

3.1 Definition
The Rp* statistic is defined as

Zn: (?ik - ?ip )2

Rp*=2E  —1r(H, H) +1r(Hyy Hy) +p (15)
g

where, Hy =Xx(X X +rp)™tx " and Hp, =X (X4 X4 +rp)" X, . P is the number of
parameters in of the subset modetis replaced by its suitable estimate (see Seciion 4
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Stepwise Procedure for Subset Selection
Here, we present steps actually involved in sussleiction procedure.
Step- 1 Standardize regressor variables (X) and resporsgila (Y) in such

way thate x andx v are in the correlation forms.
Step- 2 Convert the model Y = ¥+ £ into the canonical form as Y =a& «¢.

Step- 3 Determineridge parameter, using the model Y =2 +¢.

Step- 4 Find the Generalized Ordinary Jackknife Ridge Regjom Estimator (GJR)
aqr Of o using ridge parameter obtained in Step- 3.

Step- 5 Convert the ridge estimator into the standardizpethfand finally, translate into
the original form. It is denoted &, ;.

Step- 6 Repeat Step 2 to Step 5 and Compute the predieled ¥, and Y for full and
all possible subset modetsspectively.

Step- 7 Compute the proposed statistic Rp* for all posstlbsets.

Step- 8 Select a subset of minimum size, for which Rp*cltsp.

4. COMPARATIVE STUDY

In this section, we compare and evaluate the pedace of Rp*-statistic through
simulation study. The simulation study is dividetbithree different parts:

A. Comparison between Rp and Rp*.

B. Performance of Rp* statistic for various estions of 2.
C. Correct model selection ability of Rp*, Rp anpl.C
Part A:

We compare the performance of the proposed proed®pit with Rp-statistic by
considering two numerical examples. We have usdd Bament data and simulated

data. The ridge regression estimatqﬁﬁ, ,[AS’JR, Byur @nd ridge parametens,;,;, 7,y
Tuwos ks @nd r,, areusedfor computing the value of Rp for all possible setis
Example 4.1 Hald Cement Data: In this example, we use Hald cement data

(Montgomery et al., [12]. The values of Rp and Rp®t computed for all possible
subsets and reported in Table 4.1(a) and 4.1(b).
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From the results mentioned in Table- 4.1 (a and iy clear that, Rp-statistic for
various ridge parameters and ridge estimators gricsgatistic agree for the same subset
{X1, X3}. It indicates that, performance of both the mehas same for subset selection
in the presence of multicollinearity.

Example 4.2 We have generated random sample frop(NX) on X3, X; and X, and
random error variableq) is generated from normal with mean 0 and varidrice

1 067 099
> =| 067 1 0698

099 0698 1

where

Response variable Y is generated using the follguwiodel.
Y = 5+3X;+ 2X; +¢€.

The values of Rp and Rp* are computed for all subsedels and reported in Table-
4.2(a) and 4.2(b).

From the Tables 4.2 (a and b), Rp* and Rp (obtainsithg various ridge
estimators and ridge parameters) pick up the sarges {X;, X,}. Rp* is close to p
when subset model is adequate as compared toro#thaod.

Part B:
Performance of Rp* -statistic using various estimators of o2

We have used four different types of estimatoradf, which are based on the LS
estimator (3) and GJR estimatorfi; ) of . These are given below.

1. 612 =(v -XB) (v - XA/ -1).

2. 522 =(v = XBom) (¥ = XBom)/(=1) -

3. 832 =(v ~XBor) (Y ~XBgyr) (0 =k =2) -

4. 6% =(Y ~XBosR) (V ~XPgr)/ (0 ~2r(Hp) +1r(HgH))

where, k is the number of parameters.

We will use these estimators offin Rp*-statistic for evaluating influence of
these estimators on Rp*. For this study, we hawsidered following example.
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Example 4.3 Here we have used Hald Cement data applied in glearhl. We have
calculated the values @f*(i =1, 2, 3, 4). The Rp*-statistis obtained using all values

of 52(i =1, 2, 3, 4) for all possible subset models. Vakies o2 are given below:

6,2= 5.98295,5,°= 6.20300,4,” = 8.27067 and,?= 4.98359.

The values of Rp*-statistiare presented in the following table.

From Table- 4.3, we observe that Rp* statistic@sl¢he same subset {XX;}
for all 5. Therefore, we suggest that, one ofghes (i =1, 2, 3, 4) can be used for
computing Rp*.

Part C:

In this part, we study the performance of Rp*. Berfance is evaluated in terms
of number of times it selects a model correctly ammbrrectly. The simulation study is
carried out for different models. Here we have uggg andr, in the determination of
Br- In this study, the performance of the proposatistic Rp*, Rp (computed using,

) and Cp is evaluated for different subset modelsdifferent sample size (n) and
variance of the error variabler{). The values n andzare taken randomly. We have
used various ridge estimators and ridge parameters.

The details about the submodel specification, sanspe and variance of the
error variable €) are given below.

where, T 067 099] and
$=| 067 1 0698
099 0698 1
1 02290 - 08240 - 02450
| 02290 1 - 0139 - 0973
171~ 08240 - 0139 1 - 0030
- 02450 - 0973 - 0030 1

We have generated 1000 samples of size n from eextel. Based on each
sample, the values of RpRp, and Cp were computed for all possible subsets.
Thereafter, the number of times a criterion selaatsrrect model and incorrect model is
counted. The results are expressed in percentabesdures are reported in Table -4.5.

From above simulation study, it can be seen théat $&pects a correct model
81% for model I, 78% for model 1l, 80% for model &ind 78% for model IV. The Rp-
statistic with ridge parameter,” selects 80%, 75%, 70% and 72% for model I, I, II
and IV respectively. Therefore, above study indidathat the performance of Rp* is
better than Rp and Cp.

Page 63



5. SUMMARY

Suggested criterion in this article for variablées@on gives satisfactory results than the
method based on LS estimator gf In this article, we have shown that how the

suggested criterion can be used to select subsatriaibles when several regressors are

highly correlated to each other. The proposed nie#®lects an appropriate subset of
variables in the same situation.
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Table-4.1(a). The values of Cp, Rp for different combinations of ridge parameter
and ridge estimators and Rp*.

Rp

Mode Br Bir
| Cp Tukp TLw Tamo Tks n Tykp T'rw Tamo Tks Iy

1) 202.549| 199.383 200.77 178.335  201.316 199/47  201.754  202.0 201.149 202.42  201.768
2 142.486| 138.468  139.994  119.687 141.21  138.965 14221  382.4 138.985 142.716  142.224
(3) 315.154| 309.287 312.218 268.886 311.391  309.476  313.149 .68I3 311.02 314.382  313.179
4) 138.731| 135481 136.643 119.775 137.542 135354  138.094 .3188 136.382  138.641  138.106
12) 2,678 3.57 3.617 3.736 3.637 3.574 3.755 3711 3.486 3.581 3.753
(13) 198.095| 200.545 206.885 180.354  198.996  200.618  198.112 .9099 203.746  198.063  198.119
(14) 5.496 6.874 6.663 9.55 8.117 6.862 6.216 6.176 7.161 16.08 6.213
(23) 62.438| 59723 60.79 54.708 61.707 59.794 62.748 62.883 63B9. 62.978 62.757
(24) 138.226| 135191 135.278  131.284  136.277 135.277 136.981 .2437 137.071  137.608  136.994
(34) 22.373| 21.066 21.597 18.529 23.148 211 22.638 22.715  780.7 22.757 22.644
(123) 3.041 4.292 4.228 4518 4.127 4.292 4.178 4.116 4271 6839 4.175
(124) 3.018 3.712 3.777 4728 3.73 3.715 3.835 3.87 3.459 3.776 3.838
(134) 3.497 4.202 4.179 5.259 8.607 4.202 4.153 4.137 3.921 363.6 4.153
(234) 7.337 7.15 9.8 8.449 14.091 7124 7.264 7.534 7.426 8.782 7.268
(1234) 5 5 5 5 5 5 5 5 5 5 5

(i,j.k,...) indicates the variable; X, X,... in the model
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Table-4.1(b). The values of Rp for different combinations of ridge parameter and
ridge estimators and Rp*.

Rp
[?MJR BGJR Rp*
Model Frks Tow Tamo Txs I Tuks Tow Tumo Txs

1) 199.029 200.389 177.542 200.761 199.116 196.6200.364 147.853 200.104 154.403

2) 138.053 139.625 117.722 140.836 138.154 133.94387.562 98.826 139.58f 105.239

3) 309.672 312.631 268.769 310.456 309.863 309.38346.446 213.703 308.17p 242.927

4) 135.098 136.256 118.327 137.11 135.172 132.0084.895 99.83 136.28Y 103.682
12) 3.59 3.66 3.841 3.718 3.595 3.283 3.426 5.428 3.588 3.044
(13) 203.271 212566 181.762 199.307 203.336 208.7Q24.445 142.875 203.463 164.152
(14) 6.909 6.675 10.29 8.378 6.894 7.418 7.045 12.44.157 6.26
(23) 59.462 60.6 55.712 61.563 59.5B38 56.718 58.9287.493 60.328 45.028
(24) 135.065 134.921 137.391 135.87 135.153 135.2383.507 130.275 135.01f 106.44
(34) 20.909 21.476 18.315 23.184 20.945 19.249 580.3 20.312 25.915 15.60p
(123) 4.337 4.286 4616 4218 4.388 4.341 4.296 5.14.261 4.283
(124) 3.678 3.774 5.189 3.761 3.682 3.84 3.857 3.74 3.801 3.784
(134) 4.196 4173 5.579 9.811 4.196 4.256 4.198 38.1 24.36 4.204
(234) 7.081 11.149 9.453 18.122 7.044 7.259 16.36210.19 26.669 6.447
(1234) 5 5 5 5 5 5 5 5 5 5

(i,j.k,...) indicates the variable; X, X,... in the model
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Table-4.2(a). The values of Rp for different combinations of ridge parameter and
ridge estimators and Rp*.

Rp
BR BJR

Model Thkp Tow s Tp Tukp Tew Tgs p

(1) 10.5551 10.6329 10.382 10.5414| 10.3357 10.409 10.2025 10.3225
(2) 48.1117 47.5435 49.2021 48.2145| 49.5303 49.1588 50.0668 49.5924
3) 9.4408 9.1305 10.2528 9.5044| 10.4371 10.0353 11.2044 10.5119
(12) 27449 29033 2.5769 2.7282 | 2.5745 2.6518 2.4861 2.5633
(13) | 10.2279 10.278 10.6022 10.2511| 10.7024 10.8115 11.1458 10.7325
(23) 45073 4.3358 5.1067 4.5516 5.294 5.0014 5.9003 5.3513
(123) 4 4 4 4 4 4 4 4

(i,j.k,...) indicates the variable; X, X,... in the model

Table-4.2(b). The values of Rp for different combinations of ridge parameter and
ridge estimators and Rp*.

Rp
Bumir BGIr Rp*

Model Thuks Trw Fks "y Thks I'tw Tgs

(2) 10.6565 10.7448 10.4387 10.6401| 10.6757 10.7632 10.3883| 10.2874

(2) 47.383 46.689 48.8845 47.5166| 45.9144 45.2366 47.5944| 44.3272

(3) 8.9054 8.5671 9.928 8.9795| 8.1577 7.9804 8.9328| 7.9222

(12) 2.8985 3.0953 2.6374 2.8745 | 3.0713 3.2568 2.6546 | 3.0327

(13) 9.9351 9.9482 10.3736 9.9621 9.589 9.6235 9.8658| 9.3089

(23) 41562 3.9818 4.8692 4.2042| 3.7745 3.6633 4.1577| 3.7526
(123) | 4 4 4 4 4 4 4 4

(i,j,k,...) indicates the variable; X, X,... in the model
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Table-4.3. Values of Rp* for 5

Model g, G, 6, G,?
(2) 204.121] 154.403| 115.804| 215.405
(2) 139.105| 105.239| 78.946 | 146.791
3 321.226| 242.927| 182.14 | 338.998
(4) | 137.046 103.682| 77.78 | 144.618
12) 3.336 3.044 2.817 3.402
(13) 216.581 164.152| 123.449| 228.481
(14) 759 | 626 | 5227 7.89
(23) 58.884| 45.028 34.271 62.029
(24) 140.397 106.44 | 80.078 148.105
(34) 19.949| 15.602 12.22f 20.936
(123) 4.353 4.283 4.229 4.368
(124) 3.848 3.784 3.734 3.862
(134) 4.263 4.204 4.158 4.276
(234) | 7.233| 6.442| 5828 7.412
(1234) 5 5 5 5

(i.J.k,...) indicates the variable; X, X, ... in the model
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Table-4.4. Submodel Specifications with sample size and error variable

Model | Sample Error Predictors
Size (n) Submodel variable ¢ | generated
specification ) generated from
from
I 25 Y = 5+3X% + 2X; +¢ N (015
Il 50 Y = 2X3+ X3 +¢ N(01) 2
1] 25 Y = 20+X3 +6 X4te N (012 2,
v 75 Y = 3% +8X; +3 N (05) %
Xste

Table-4.5. Model selection ability (in %) of Rp* Rp and Cp

Model Model status RP Rp*
Cp Trks p

Correct 38 57 80 81

Incorrect 62 43 20 19

Correct 40 63 75 78

Il Incorrect 60 37 25 22
Correct 30 65 70 80

1T Incorrect 70 35 30 20
Correct 38 68 72 78

\V; Incorrect 62 32 28 22
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ABSTRACT

A variety of parametric and non-parametric inferential procedures are available to
study inference on the parameter of interest in the presence of nuisance parameters,
but majority of these are constrained by certain limitations, as for example depicted
through a variety of examples by Berger (1999). Also, small deviations from the
underlying assumptions might often cause biased statistical inference, especially in
small to moderate size samples. Additionally, existence of the nuisance parameters
also disturbs the statistical properties of the estimation procedures of the parameter
of interest. This motivates us to take brief review on improved or efficient and
unified superior nuisance parameter-free (invariant) inferential procedures under
shape-scale and location-scale family of distributions.

KEYWORDS
Generalized variable approach, Maximal scale invariant Estimator, Integrated
likelihood, Profile likelihood.

1. INTRODUCTION

Lifetime data are often well modelled by distriloms belonging to shape-scale and
location-scale families of distributions and arelely used in almost every discipline

see for example Kulkarni and Powar (2010, 2011)) Bad Kulkarni (2011), Jones

(2015), Powar and Kulkarni (2015), Sengupta et(28l15), Rigby et. al. (2005, 2019)

and Maswadah (2013, 2022).[1-3] The characterigifca dataset can be measured
through the measures of central tendency, dispersiewness, and kurtosis, which are
usually well-defined functions of the shape, scaled location parameters. In this
context, we review some efficient or improved ieferal procedures for shape-scale and
location-scale families.[4] The widely applicableape-scale families for monitoring
lifetime data include the important skewed distiiims like Gamma distribution,
Weibull distribution, Generalized exponential disition, Pareto distribution, Log-
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logistic, Log-normal distribution, Hyperbolic digtution, Exponentiated exponential,
among others. The shape scale family of distribstis characterized by the probability
density function (PDF) of the form:

1 X
gl(x|(a,b)) = Efl (E'b)’ a,b,x > 0.

wherea andb are the scale and shape parameters respecfiMelyh) being a function
of only one parameter, namely the shape pararbeter

Distributions belonging to the location-scale famake used in hydrology, bio-
statistics, various industrial and analytical feeldmong others[5]. Normal, Logistic,
Laplace, shifted exponential, Extreme value distidn are some popular members
of the location-scale family, among others[6].

The PDF of a random variable Y from a location-eci&mily of distributions is
characterized by density function of the form:

gz(y;u)zéfz(y;u)’ y,ueR,a>0.

where n ands are the location and scale parameters respectiaalyf,(z) is the
probability density function of the standard randmariable Z having location
parameter zero and scale parameter one[7-8].

This article aims to review improved inferentialopedures, including point
estimation, interval estimation, and hypothesigirigs related to distributions be-
longing to the location-scale and shajsate families. Improved inference in the case of
point estiméion is often related to the reduction of bias aratiability of the
concerned estimator, while for the case of intemstimation and testing of the
hypotheses it concerns the attainment of nominaklleincreased coverage
probability, and elevated powers, respectively[$-11

Though often nuisance parameters are absolutegnealsfor better modeling
of the data, most often, existence of one or marsamce parameters adversely
impacts the performance of inference procedurestiier parameters of interest.
Existence of nuisance parameters may produce dldeerse impact in a variety of
ways, e.g., increased standard errors of poinimestirs, volumes/ lengths/ area of
confidence region/intervals or rate of convergeatasymptotic properties of the
parameters of interest among others[10]. A wayisw@n attempt for reducing their
impact using some well-known likelihood-bastthniques, including conditional
likelihood, integrated, profile or pseudo-likelirebéunction, and their modifications,
or through the use of pivot or generalized pivoamjities withcompletely known
probability distributions or circumventing the eeisce of nuisance parameters
through the tricky use of invariance principle[11].
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Marginal and conditional likelihoods handle the lgemm by ignoring some of
the data (marginalization) or by ignoring their iahility (conditioning). When the
number of nuisance parameters are large, then nadigition and conditioning are
pretty complex, and sacrifice a sizeable informdti@].

In this article, emphasis relies on the proced@lerinating of the impact of
nuisance parameters through the invariance pricgtd generalized variable
approach, which are expected to result in moreiefit inference procedures by use
of the entire data without losing any details [13].

The invariance principle is used to circumvent #féect of the nuisance
parameters, making use of their property of beingaiiant under a group of
transformations. The maximal scale invariant infieee under a shape-scale family
developed by Kulkarni and Patil (2018) turned aubé much efficient than classical
procedures for the commonly encountered distrilmstienjoying the scale invariance
property [14]. The generalized variable approachnsther efficient tool for exact
nuisance-parameters-free parametric inference itaineparametric families. The
generalized variable approach is based on the glerest extreme region of a test,
the generalization of a data-based extreme regica test, which depends on the
observed data and may involve all the parametengravthe associated p-value is
independent of the nuisance parameters [15-16].

In this article, the improved inferences for théemential problems including
point estimation, one sample test and intervahegtion for the parameter of interest
under the shape-scale family of distributions, sstrestrength reliability estimation
for the exponentiated-scale family of distributiptest for two-sample comparison
for two independent mixed continuous location- scat some non-location-scale
populations and test for homogeneity of variance®ray several location-scale
populations are reviewed[17-19].

In more general set-up, some basic definitions he generalized pivotal
approach are given in the following subsection.

2. PRELIMINARIES
2.1. The Generalized Variable Approach

Tsui and Weerahandi (1989) introduced the conckegeperalized p-values which is
based on the generalized pivot quantity (GPQ) aederplized test variable
(GTV)[20]. Let X be a random variable with cumulative distributfanction (CDF)
Fe(.), where§ = (0, 6) is an unknown parameter vector aid.) is a member of
the shape-scale or location-scale family of distidns. Suppose the interest lies in
the paramete® while § is the nuisance parameter. A GPQ #r GTV and
generalized p-value (GPV) for testing a one-sidgdothesisH,: 8 < 6, verses
Hy: 0 > 0, is defined below:
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Definition 1: Generalized pivot quantity (GPQ)

The GPQGy = Y(X; x,§) for 0 is a random quantity that satisfies following two
conditions:

I. The distribution ofGg for given X = x is free from any unknown
parameters.

il The value ofGy = Y(X; x,§) at X = x does not depend on any
unknown parameter, other th@&h For most of the casegy = 0 at
X = x.

The following invariance property of GPQs is anyeasnsequence of its definition:
Preposition 1: Invariance property of GPQ

If G is a GPQ fo®, then for any functiom, w(Gg) is GPQ forr ().

Definition 2: Generalized test variable (GTV)

A random quantityty = T (X; x,§) is said to be GTV for the parameter of interest
0 if it satisfies following three properties:

I. The probability distribution of, is free from any unknown parameters.

il. The value oftg = T (X; x,§) at X = x does not depend on any
unknown parameter, other th@n

iii. For fixedx, the probabilityP (T (X; x,§) = t|0), for all t> 0 is non-
decreasing i@.

Preposition 2 : Connection between GPQ and GTV

If G is a GPQ foB, thentg =Gy — 0 is a GTV for@ (Weerahandi (1995)).
Definition 3 : Generalized p-value (GPYV)

Based on the GTV defined in Definition 2 and Prepasi2, the generalized
p-value for testind/, mentioned above is defined by

p =Supgen,P(T (X; x,0,6) =t), were, t=T(x; x,0,9)

p = P(T (X; x,084,6) = t),on account of property iii definition 2.

2.2. The Invariance Principle

If X is a random variable having density functitix, 8), 8e® andG be a group of
transformation on the space of valueXahen:

i. ¢ is invariant undeé if ¢(g(x)) = ¢(x) for all x and allgeG.

il T(x) is maximal invariant undef if T(xy) = T(x3) = x1 = g(x,) for
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somegea.
Wherex is observed value &.
2.2.1 Location Invariant

Let x = (x4, x5, ..., X,,), be the random sample from location family witbdton
parameteu andG be the group transformation then

gx) = +u,x+ Wy, xy + ), —oo < pu<oo,then
T(x) = T(g(x)) = (X = X1, o) Xy — Xp—1)-
is called as maximal location invariant estimator
2.2.2 Scale Invariant

Let x = (x4, %3, ..., X,,), be the random sample from scale family with scale
parameter andG be the group transformation then

g(x) = (oxq,0%5, ....,0x,), —o0 < u < oo, then
Xn X1 Xn-1
T =T =(—,—, ., .
(x) =T(g(x)) = ( P . )

T (x) is maximal scale invariant estimator.
2.2.3 Location-Scale Invariant

Let x = (x4, x5, ..., x,,), be the random sample from location-scale family
with location parametep and scale parameter. Let G be the group
transformation then

gx)=(o(x; +p),0(x, + 1), ., 0(x, + 1)), —oo<pu<oo,then

Xp — Xp—1 Xn-1— Xn—2 Xy —X1 X1 —X
T(x) =T(g(x)) = (————, = . , i
X2 —Xq X3 — X3 Xp —Xp—1 Xp — Xq

).

T (x) is maximal location-scale invariant estimator.

The next section reviews the literature relatedtie treatment for nuisance
parameters.

3. LITERATURE REVIEW

There have been numerous articles addressing ansgst study of a variety of
methods for eliminating nuisance parameters.

3.1. Likelihood Based Approach

A pseudo-likelihood or profile likelihood is obt&d by replacing the nuisance
parameters with their maximum likelihood estimataistained by keeping the
parameters of interest fixed. After fixing the imst parameters, the MLEs of
nuisance parameters are expressed as functionsteykest parameters and after
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replacing the nuisance parameters by these fursstibe likelihood gets translated to
a function of only interest parameters. This llk®od behaves similar to the
classical likelihood. For the critical review andrious aspects of pseudo or profile
likelihood, we refer to Kalbfleish and Sprott (1984], Gong and Samaniego
(1981)[22], Fraser and Reid (1989)[23], Barndoriélsen (1985)[24], Barndorff-
Nielsen (1991)[25], Barndorff-Nielsen (1994)[26]da8everini (1998)[27].

Integrated likelihood approach is another way tmiglate nuisance parameters,
For notable analytical results in this context wéer to Berger and Wolpert (1988),
Berger et al. (1999), Severini (2000), and Seve{@®10), among others. Notable
novel recent inferential procedures based on iatedr likelihood have been
developed by SenGupta and Kulkarni (2018), Kulkami SenGupta (2021), Patil
and Kulkarni (2022), and Kulkarni and Patil (202inder directional and linear
data[23-27].

3.2. Invariance Principle Approach:

Nuisance parameters free inference can also bed basean ancillary statistic,
invariant or weighted average power criterion, atwhditional probability as
reported in Linnik and Technica (1968), Cox and kiy (1974), Engelhardt and
Bain (1977), Andrews and Ploberger (1994), and Eiar§$996)[28].

Invariance principle can be coupled with appropridata transformation to
yield nuisance parameters free transformed likekhthat is purely function of the
parameters of interest and the observed sample. dfdigraev and Podraza-
Karakulska (2008) addressed the maximal scale ismvaestimation procedure for
the shape parameter of gamma distribution. Kulkamd Patil (2018a) derived
maximal scale invariant inference for the shapeupater under shape-scale family
of distributions[29].

Tsui and Weerahandi (1989) developed the concegewnéralized test variable
(GTV) and generalized p-value (GPV) for significanesting based on a suitable
generalized extreme region where the p-value iepeddent of the nuisance
parameters[30]. Exact statistical inference basedGdV, GPV, and generalized
confidence interval (GCI) can be found in Weerahdh€95). Hannig et al. (2006)
identified an important subclass of generalizedflquantities (GPQ) which have
asymptomatically correct frequentist coverage. Mkima and Chen (2011) provide a
systematic approach to construct GPQ, GCI, and P9 location-scale family of
distributions[30].

The present work reviews univariate, two-sample amnlti-sample improved
procedures that efficiently handle the nuisanceapaters and the recommended
procedures are given in the next section.

4. IMPROVED INFERENTIAL PROCEDURES
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Kulkarni and Patil (2018a)[31] introduced the maximsaale-invariant estimation
procedure for the shape parameter of the shape-$aaiily of distributions. The
method for obtaining nuisance parameters-freeilikeld for the shape parameter
based on maximal scale-invariant transformationeloninating the nuisance scale
parameter is explained. The resulting likelihoods functions of only the shape
parameter of interest. The results are illustrédegopular shape-scale distributions,
namely the Weibull, the Gamma and the Generalizgdrential (GE) distribution
under complete and type-Il censored samples. Téy@goged maximal scale-invariant
likelihood estimator (MSILE) for the shape parameitinterest, being based on a
proper likelihood function enjoys all asymptotic operties under regular
conditions[31].

A simulation study for the Weibull and Gamma dlstitions revealed an almost
exact relationship between the bias of the MSILE #ime maximum likelihood
estimator (MLE). An improved, almost unbiased eaton (AUE) is proposed by
exploiting this linearity. The extent of reductionbias and mean square error (MSE)
of the MLE, MSILE and AUE reveals the superiorifyMSILE over MLE, and the
superiority of AUE over MSILE and MLE for Weibulhd Gamma distribution[32].
One-sample test anth0(1 — a)% confidence interval for the shape parameter is
developed, and performance is assessed with refgpted observed size of relevant
test procedures, and coverage probability and geemsidth of the associated
confidence interval. Furthermore, the MLE of thalsgarameter being a function of
the shape parameter, is obtained by replacingliapesparameter with its MSILE.
The performance of the resulting estimator was meseto be superior than its
regular MLE[33].

The interval estimation for the stress-strengthiabdity (R) under the
exponentiated-scale family of distributions is deped in the Patil and Kulkarni
(2018)[34]. The exponentiated-scale family wasadtrced by Marshall and Olkin
(2007), which is also known as resilience or fraiharameter family. The
distributional form of resilience family is:

0 (o) =r(3)

a being a resilience parameter, while the distrimai form of frailty family is:

oe0) - ).

a being a fraiIEy parametef, the scale parameter, aRd.) is a known distribution
function whileF (.) is the corresponding survival function.

The stress—strength reliability = P (X; < X,) whereX; andX, represent
the stress applied and strength of an equipmespgentively, plays a crucial role in
setting warranty periods while launching new braoflsa product, among other
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applications. Patil and Kulkarni (2018) address i#seie of estimatin®® when X,
and X, belong to the exponentiated scale family, whichludes the popular
Exponentiated-exponential distribution (EED) thaishproven to be an excellent
model for lifetime distributions. The cases of kmdwnknown and equal/unequal
scale parameters are handled separately. For scaial parameters &f andX, the
expression foR turns out to be purely function of the shape patans. When the
scale parameters are unequal the reliablitgurns out to be a function of the
underlying shape parameter and ratio of the scalanpeters. For known scale
parameter, a generalized pivot quantity for thgpsh@arameter angl are developed.
The interval estimates oR based on the proposed generalized pivot quantity
exhibited uniformly best performance. For an unkn®egale parameter, a maximum
scale invariant likelihood estimator of the shapd an allied estimator of the scale
are introduced. An extensive simulation-based commpa is performed among
following five methods:

GPQ: Generalized pivotal quantity.

PBMSILE: A parametric bootstrap technique emplogadvSILE.
PBMLE: A Parametric bootstrap technique employed/Abrt.
NPBMSILE: A nonparametric bootstrap technique erypgtbon MSILE.
NPBMLE: A nonparametric bootstrap technique empdbge MLE.

The parametric bootstrap interval estimatesRdbased on the proposed maximum
scale invariant likelihood estimator of the shaparameter exhibited best

performance among others. An application in settuagranty periods is illustrated

based on two real data sets[35].

Micro-array experiments are important fields in ewllar biology where

zero values mixed with a continuous outcome amguizatly encountered leading to a
mixed distribution with a clump at zero. Comparisgnwo mixed populations, for
example of a control and a treated group; of twougs with different types of
cancer, to name a few, are often encountered igetlwontexts. Fairly skewed
distribution of the continuous part coupled withadinsample sizes are issues of main
concern to be attended for the quality of inferentesuch situations. However,
popularly used non-parametric methods rely on asytiap distribution of the
underlying test statistics which are valid only enthrge sample sizes. Kulkarni and
Patil (2018b) address the aforementioned issues viewly proposed exact test for
location-scale family distributions and GPQ basedametric test procedures for
non-location-scale distributions. The proposed pgetedure can be used under a
best fitted continuous distribution. It consistskefl parts, where k is the number of
parameters for a specific best fitting parametriodei used for the continuous
component. More specifically, the first part tegte equality of the proportions of
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zeros while the remaining k parts test the equalitthe k corresponding individual
parameters in the two populations under considerahlote that the combined test is
equivalent to testing equality of the two entire xed populations under
consideration. The k+1 parts and their combinaporduce an overall p-value for
testing the combined hypothesis of equality of twe distributions. In order to
account for the dependency among simultaneousgesfi a large number of tests,
we calibrate the observed p-values using the Beanjahlochberg (1995)
procedure[36].

A simulation study is carried out for validationdgperformance evaluation of
the proposed exact test for location-scale or tmgdion-scale family of distributions
and GPQ based test for non-location-scale distdhat The proposed test is
compared with the popular two-part (TP) test basethe type-I error and power of
the tests. The TP test consists of two parts onétissting equality of proportions of
zeros and other non-parametric test comparing twvdirmuous data sets. Different
tests are used to compare the continuous part,Ipdfoénogorov- Smirnov, t-test,
Wilcoxon rank sum test, Ansari Bradley test, Sigekey test[37].

Simulation based assessment of the proposed eesidbdsed on invariance
principle for location-scale family distributionsné GPQ based parametric test
procedures for non-location-scale distributionsveta their superior performance
with respect to size and power in comparison toaheve popular two-part tests,
more prominently for small sample sizes[38].

A number of distributions including the Exponentigktreme value, Normal,
Double exponential, Inverse Gaussian, Weibull, areog-Normal and Gamma
distributions have been handled to illustrate thmova testing procedure for
microarray data. We could identify 1555 differelyi@xpressed genes[39].

Future scope on RNA sequence count data analysigsgh the GPQ and GTV
for Poison and Negative binomial parameters isusised, and a generalized test
procedure is suggested for two discrete populaiiossnilar lines.

Patil and Kulkarni (2022) developed a unified agoto for testing homogeneity of
variances among k (k > 2) independent locationespapulations. The proposed test
is based on a generalized test variable. The GRVtdsting homogeneity of
variances is obtained by constructing GPQs forkthestinct scale parameters of the
k populations. The performance of the proposedisestsessed through an extensive
simulation study on popular location-scale familiascomparison to the existing
tests. The proposed test is uniformly superior @xsting popularly used parametric
and non-parametric tests in terms of typarbrs and power functiolA systematic
study to assess the impact of the extent of kwtasd skewness fisade through
simulation studies under the Generalized Normal &kw Normal distributions
respectively[40-41].
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A uniformly implementable small sample integratéelihood ratio test for one
way and two-way ANOVA under heteroscedasticity aodmality is developed by
Patil and Kulkarni (2021) which has an asymptotii-sguare distribution up to
second order accuracy. Simple ad hoc correctivesadents recommended for
improving the small sample distributional perforroamake the test usable even for
very small group sizes. Empirical assessment ofdbereveals that the test exhibits
uniformly well-concentrated sizes at the desiredelleand the maximal power,
particularly under very small size groups. In saniines, Patil and Kulkarni (2022)
develop a test for analysis of medians for BirnbaBaunders distributed response to
assess the impact of two interacting factors on rttezlian, where no any test
available in the literature.

Ma et. al. (2022) studied the statistical inferemee the location parameter
vector in the multivariate skew-normal model withknown scale parameter and
known shape parameter. Based on the distributicheofyeneralized HotellingB?
statistic, confidence regions and hypothesis testghe location parametgrare
obtained[42].

S.  RECOMMENDATIONS

The GPQ or Fiducial approach-based proceduresvariance-based procedures are
recommended as the best alternative to classicabopularly used inferential
procedures in the presence of nuisance parametdrsefeen work well even under
small sample sizes. A maximal scale invariant reriee for shape and allied
inference on scale parameter is a substitute fmsatal maximum likelihood point
and interval estimation as well as testing problemder shape-scale and
exponentiated-scale family of distributions. Gefieea variable approach and a
maximal scale invariant transformation-based infeeeis recommended for the
stress-strength reliability under exponentiatedestaamily of distributions. Exact test
based on fiducial inference is recommended for Gompn of two continuous
populations mixed with point mass at zero and b tiee homogeneity of variances
among several independent location-scale populatioWhen GPQ/invariance
principle-based procedures are not available, antomd¢jkelihood-based procedures,
the integrated likelihood principle works the best.
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ABSTRACT

Two parameter Exponentiated Gumbel (EG) distribution is a right skewed
unimodal distribution. We discuss point and interval estimation of parameters of EG
distribution by the method of maximum likelihood and provide an expression for the
Fisher information matrix. A bootstrap method to obtain confidence interval is also
discussed. Inference for R=P(Y<X) is provided when X and Y are independently but
not identically EG distributed random variables. Testing for R based on exact and
asymptotic distribution is discussed along with simulation study.

KEYWORDS
Maximum likelihood estimator, Fisher information matrix, uniformly minimum
variance unbiased estimator and Bayes’ estimator.

1. INTRODUCTION

In literature, exponentiated family of distributiaefined in two ways. If F(8) is
cumulative distribution function (c.d.f.) of based distribution then by adding one
more parameter (say), the c.d.f. of exponentiated base line distrifmutis G(xB,a)
given by

(@) G(xB,a)=[ F(xM)1* ,0>0,8@ andxIR.
(b) G(xB,0)=1-[1- F(xB) ]* ,0>0,08@ and xIR.

Gupta et al. (1998) introduced the Exponentiatedpobential (EE)
distribution as a generalization of the standarghdevential distribution. The two
parameter EE distribution associated with definit{a) above, have been studied in
detail by Gupta and Kundu (2001) which is a sub-ehcof the Exponentiated
Weibull distribution, introduced by Mudholkar antirvastava (1993). S. Nadarajah
(2006) introduced Exponentiated Gumbel (EG) distidn using (b) above.
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The cumulative distribution function of the EG disttion is defined by

a

Fepo)=Gho)f = exr{—e_”

,a, 0>0 , -0c0<x<0o (1.1)
which is simply thex™ power of c.d.f. of the Gumbel distribution.
The Probability density function (p.d.f.) corresgorg to (1.1) is

(24

a
flhoo)=—|exp—e ° e
o

Q =

, 0, 0>0 , 00<X<0co (1.2)

Exponentiated Gumbel p.d.f. for a=1,2,4,.6

1(x)

=

Figure-1. Probability density function.

We shall write x ~ EG{,0) to denote an absolutely continuous random
variable X having the EG distribution with shapeal atale parameters ameando
respectively whose p.d.f. is given by (1.2). Thepsds of p.d.f. for EG distribution
with scale parameter=1 and various values of parametief=1, 2, 4, 0.6) are shown
in the above Figures. Fig. 1 shows that it is ammodal and right skewed density
function.

2. MAXIMUM LIKELIHOOD ESTIMATOR AND THE FISHER
INFORMATION MATRIX

Suppose XX,.....X, is a random sample from E&G6). Therefore, the log-
likelihood function L for the observed sample is

L=nlna —nlna—lzn: X, —aZn:e% (2.1)

i=1 i=1
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Therefore, to obtain the MLE’s af ando , either we can maximize (2.1) directly
with respect tm ando or we can solve the non-linear normal equationshvare

oL =2-Ye 7 =0 (2.2)
o

From (2.2), we obtain the MLE’s of as a function o, saya(c) as

n

n _X

Ye©

i=1

Case 1: If the scale parameter is known ( s&y1), the MLE of the parameter can
be obtained directly from (2.4).

a(o) = (2.4)

Lemma (2.1): For known scale parameter ( s&yl) the p.d.f. ofa is

n+l _na
£y =2 (W] L L ys0  (2.5)
n oaly

Proof : SupposeW :(— 2(12 In(expee’xi)))then W has chi-square distribution
with 2n d.f., since(expee‘xi))a is c.d.f. of standard EG distribution and follows
uniform distribution over (0,1). Let = 2;:/_0: , then c.d.f. of Y is given as

P(r<y)= P(Z"“s y) =1—P(W 52”"‘] (2.6)
w y

Using Chi-square distribution , the p.d.f. correspondin(?.6) is

no

1 n+l _na
fy(y,a)=("a] e ? y>0
nlal\ y

Lemma (2.2): For known scale parameter ( sayl) , the 100(18)% confidence
interval of a is given by

[ Y e Y e j
- 2n,012, - 2n,1-012
n n _
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Case 2: If both the parameters are unknown, first thenestie of the scale parameter
can be obtained by using maximum likelihood estiomainethod

L (a(0),0)= c- nlnzn: e_% —nlnc—lzn:xi (2.7)
i=L Gi=1

With respect too. Here C is a constant independent @f Once ¢ is
obtained, acan be obtained from (2.4) as(c). Therefore, it reduces the two-
dimensional problem to a one-dimensional problem.

In this situation we use the asymptotic normaligsuit to obtain the
asymptotic confidence interval. We can state tialtas follows.

x/ﬁ(é -0) - N, (O, 1710)) where 10) is the Fisher Information matrix.

g o] o’ A
(== Loa?) TLows and6 = (a,5) , 8=(a,0),
“n| (9 %L
E[MJ E[(,sz

2 _ 2 n
g2t |=2n, L P of STATRY
a(x o 3(13(5 (52Ot i=1
’L)_n 2@ 20° & o 2
2= 2 S Einv) -2 S Ednuy) -—2 - Y E(ny,
[662] 62 Gzé (nvi) 2(162; (n) ZGGZE ()

where y and v has gamma distribution with parametersifand (1¢) respectively.
Since® is unknown, 1(8) is estimated by replacirwith its MLE and this can be
used to obtain the asymptotic confidence intergts ando.

2.1. Bootstrap Confidence Interval:

In this subsection, we propose a percentile bagistnethod (Efron, 1982) for
constructing confidence interval afando which is as follows.

Step-1: Generate random samplegxy,.....x, from EG(@,0) and computez and ¢
using maximum likelihood method.

Step-2: Using ¢ and 6 generate a bootstrap sampig ,x5,.....x, from ES(d ,

¢). Based on bootstrap samples compute bootsttbtpa&e&* ands .
Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000).
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Step-4: Compute cumulative distribution function af ands say H(x) and G(x)
respectively , where H(x)= Fﬁf < x) and &Bom_p(x) = H‘l(x) and G(x)= P{s*s
X) and Gggot—p (X) = G }(x) for a given x. The approximate 10@)R% bootstrap
confidence intervals fan ando are given by
Gsoo-p ©12) s Gpooi—p @=612))  and (5 goor p(3/2) , Spoot-p 1~3/2))
respectively.
3. POINT AND INTERVAL ESTIMATION OF R

Now we consider the problem of estimating R=P(Y<Xhen X and Y are
independent EG random variables with shape, scalenpetersa , 0 andf3 , o

respectively then  R=P(Y<X)

_a
o+

B

Case 1: When scale parameter 0 is unknown.

Suppose XXa,.....Xn is a random sample from EG6) and VY,Y,,....Yn is a
random sample from EQ4,0). Therefore, the log-likelihood function L of, 3 and
o for the observed sample is

— n % Y En:xl +iy/)
L= ina —aYe +minf-pYe ° —(m+n)|na—{"lcr"l, (3.1)
-~ n ~ m
hence MLE's ofa and 3 as « Se— and f=— —
X m y;
D expt) > expt--7)
=1 o -1 o
Therefore, the MLE of R namel1§1 is given by I%l =— 2 (3.2)
o+

Now to obtain asymptotic distribution of R, we firebtain the asymptotic

distribution of (&,,@,&). Based on the asymptotic distribution &, we obtain
asymptotic confidence interval of R. Let us denbi Fisher Information matrix of
(a,B,0) as 1@,B,0) where
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_ o) e
I(a,B,0) = E[G/B’aa] E[O,BZJ

Iy
=\ 1y Iy Say.
I

MOI’GOVGI’Eﬂ :_l and Eﬁ :_ﬂ1 E| azL =F aZL =0
9a.? 2 ap2 2 dadp 0pda

o
2 n 2 2 m 2
YL % S gy =6 9L | f OL )= P Spgnyy=5 9L
0ado | 5 2% 0oda 0poc | 428 =1 J do0a

2 n 2 n 2 n
L n 2 a o 2
E| — Z———E E(lnw-)—ig E(lnu-)—ig E(Inu;)
[ ] o? 2 Yog2 o0t = Y22t i=1 '

[S%)

do 2 (2B

m 2 m 2 m
%_AZEU“Z])_ / D Elnv)) - 4 > Eliny;)*
. '::L

2 2 of1 2 p
o o A o277 o 2% 3

where yand yhas gamma (2) and (23) and w and z has exponentiakt and 3
distribution respectively.

Theorem 1: As m, n - c and n . p then
n

((& —a),(,é —,B), (5 —0)) - N3 (0A(a,B,0)),

a;p; 0 a3

where A@BO)=| 0 ay ay| and elements of A( B, o) are the
a3y dzp daszs

corresponding elements of the inverse of the Fisifermation matrix I, 3, o).

Proof : Proof follows from asymptotic properties of MLEsder regularity
conditions and multivariate central limit theorem.

Theorem 2: As m, n - « and . p then \/Z(IQ -R) - N(O,B), where
m
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- 1
u(a+p)*

B (/fz(a 24133 ‘“53)‘2“5\/;“&‘31"'“21’(“ 1#33‘“123))

and u=a @ % 33a 19 26 32~ A1 2431

Proof : Proof follows from invariance property of CAN esttor under continuous
transformation, and omitted for brevity.

Using Theorem 2, we can obtain asymptotic confidanterval of R as

I VB (3.3)

—_—, R+Z_ -
1—6/2\/5 15/2Jﬁ

Remark (3.1): To estimate variance B, the empirical Fisher'sinfation matrix and
MLEs of a, B ando may be used. However simulation study due to Kuadd
Gupta (2005) for EE distribution indicates thahfidence interval defined in (3.3)
has comparatively low coverage probability. Theyehauggested bootstrap method
to get a better confidence interval with respeacdeerage probability.

R-Z

Bootstrap confidence interval:

Step-1: Generate random samplegx,.....x, from ES@,0) and y,y»,....ym from
ES@,0) and computexr, § ands using maximum likelihood method.

Step-2: Using ¢ and 6 generate a bootstrap sampleI xzxn from ES(a ,0)

and similarly using,@ and ¢ generate a bootstrap sampfp,y;,....,y:ﬂ from ES(ﬁ
, ). Based on these bootstrap samples compute apestimate of R,

R'=—2__ whered and " are the MLEs ofua and B obtained from the
o +p
corresponding bootstrap samples.

Step-3: Repeat step-2 NBOOT times (usually NBOOT=1000).

Step-4: Compute cumulative distribution function af | say H(x), where

H(X)= P(R" < x) and Rpg,,—,(x) = H (x) for a given x. The approximate
100(19)% bootstrap confidence interval is given by
(I’éB()ot—p (5 /2) ’ I’-\;Boot—p (1_ Y /2)) (34)

Case 2: When scale parameter o is known.
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Without loss of generality, we can assume tball. Suppose XX,.....Xn IS a

random sample from EG(1) and ¥,Y,,....Yynis a random sample from H&L)
and based on the samples we want to estimate RdRasthe above sample, it is

clear that , the MLE of R namelly2 isgivenby g = a_ where
a+p
Ge and jo_m
D exp-x;) > expty;)
i=1 j=

Lemma (3.1) : The p.d.f. ofR,is given by

o T
o= (5) e

mf3
o<r<1 (3.5)
Proof : R, can be expressedas , _ 1 Where
Ry = mW
v

=-> In(exp(—e“f)) andV =-) In(exp(—e_"")). We see that €W and -BV are
two independent chi-square random variables witra2d 2m degrees of freedom

(d.f.) respectively. ThereforeR, can be rewritten as ,QZ:(“/?Z)_I, where Z
(44

W has F distribution with (2n, 2m) degrees of freed@l.f.). Therefore
- m

p.d.f. of R2 can be obtained easily and is as given in equéBiat).

Lemma (3.2) : An exact 100(3)% confidence interval of R is

1+F, , |21 71,1+F N ) ’ (3.6)
(renerlt A foronal )

Lemma (3.3) : The asymptotic 100($)%6 confidence interval of R is

[[z%z—zmm 1%2(1—1%2))(1%2+ZH,2 men ,gz(l_,gz)D (3.7)

where 4.z is the (1y/2)™ quantile of the standard normal distribution.

Proof : The MLE 1%2 Is asymptotically normal with mean R and variance
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2 R aR
00; 69

where 01,62) = (@,8) and 77} is the (i,j" element of the

i=1j=1
inverse of the Fisher’s information matrixi|B) about the parameters,) and

n

I(a,B)= - | «®
0

, (See Rao (1965)). It can be seen thﬁt _( JR 1-R)>.
mn

£

Therefore the asymptotic 100¢)% confidence interval of R can be obtained using
standardized statistic as a pivotal quantity. Weaee ‘R’ in the asymptotic variance
by its MLE.

We perform some simulation experiments using pétleebootstrap method
when scale parameter is unknown to observe the behavior of the MLE and
confidence intervals for various sample sizes andvarious values ofa|, 3). We
consider the sample sizes (n, m)= (10,10), (10, @), 20), (20, 40), (40, 40) and
the parameter values= 2, 0=4 andf} = 2, 3, 6 and 8. Average biases and mean
squared errors (MSEs) of R are reported over 1@flcations for 1000 bootstrap
samples. We compute 95% confidence intervals u@m) and estimate coverage
percentages and average lengths of confidencevahtérhe results are reported in
Table 1.

We also perform some simulation experiments vwduahe parameter is known
(0=1). We consider the sample sizes (n, m)= (10(10), 20), (20, 20), (20, 40), (40,
40) and the parameter values 2 andp = 2, 3, 6 and 8. Average biases and mean
squared errors (MSEs) of R are reported over 108plcations. We compute 95%
confidence intervals and estimate coverage pergestand average lengths of both
asymptotic and exact confidence interval. The tssare reported in Table 2.

Table-1. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. 1.

Sample 2 3 6 8
Si1ze

- -0.0005 -0.0096 -0.0054

(10,10) | 0.0058(0.0131) (0.0124) (0.0077) (0.0061)
0.4273(93.00) | 0.4139 (93.00)| 0.3286 (90.70)| 0.2899 (91.40)

0.0125 0.0095 0.0088 0.0011

(10, 20) (0.0109) (0.0097) (0.0067) (0.0050)
’ 0.3748 (92.40)| 0.3672 0.3052 (93.10)| 0.2643 (92.90)

(0.9410)
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-0.0018 -0.0018 -0.0044 -0.0062

(20, 20) | (0.0067) (0.0070) (0.0046) (0.0031)
0.3120 (93.70)| 0.3013 (92.80)| 0.2454 (91.50)| 0.2144 (92.30)
0.0057 0.0067 0.0031 -0.0001

(20, 40) | (0.0050) (0.0050) (0.0033) (0.0026)
0.2706 (94.00)| 0.2630 (93.50)| 0.2175 (93.90)| 0.1909 (93.40)
0.0012 -0.0032 -0.0049 -0.0028

(40, 40) | (0.0033) (0.0031) (0.0021) (0.0016)
0.2205 (94.20)| 0.2134 (94.40)| 0.1762 (93.90)| 0.1567 (93.60)

(The first row represent the average biases anddViSécond row represent the
average length, coverage percentages of the comdsyy asymptotic bootstrap

confidence interval.)

Table-2. Biases, MSEs, Confidence Lengths and Coverage Percentages of C. 1.

Sample
size

2

3

6

8

(10, 10)

0.0003(0.0119
0.4174(91.47)
0.4058(94.83)

0.0033(0.0110
0.4027(91.86)
0.3935(95.22)

0.0087(0.0073)
0.3237(91.77)
0.3258(95.30)

0.0098(0.0056)
0.2810(91.50)
0.2876(94.93)

(10, 20)

0.0042(0.0090
0.3659(92.60)
0.3581(94.70)

0.0093(0.0086
0.3542(92.30)
0.3507(94.46)

0.0120(0.0057)
0.2851(93.52)
0.2927(94.72)

0.0105(0.0043)
0.2459(92.90)
0.2572(94.74)

(20, 20)

0.0018(0.0060
0.3024(93.45)
0.2977(95.02)

0.0016(0.0057
0.2909(93.11)
0.2872(94.78)

0.0056(0.0037)
0.2313(93.15)
0.2323(94.61)

0.0045(0.0026)
0.1984(93.49)
0.2012(95.18)

(20, 40)

0.0025(0.0045
0.2636(94.03)
0.2605(95.15)

0.0040(0.0043
0.2539(93.83)
0.2527(94.98)

0.006290.0027
0.2017994.220
0.2048(94.910

0.0056(0.0021)
0.1732(94.10)
0.1776(94.92)

(40, 40)

0.0016(0.0028

) 0.0018(0.001

B)

0.0021(03)0
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0.0009(0.0030] 0.2082(94.25) | 0.1636(94.22) | 0.1402(94.40)
0.2165(94.57) | 0.2068(95.15) | 0.1640(95.04) | 0.1413(95.23)
0.2147(95.39)

(The first rows represent the average biases anddiresponding MSEs are
reported within brackets. Second and third rowsasgnt the average lengths and the
corresponding coverage percentages of the asymaiiadi exact confidence intervals

respectively.)

Based on the proposed Bootstrap and exact methedyvierall findings in Tables 1
and 2 are satisfactory. When sample sizes areaseds bias and MSE decrease for
each parameter value, demonstrating the consisteihtye method. In each case's
coverage probability closely

approximates the confidence coefficient, and theraye length of the confidence
interval is small and finite.

4. TESTING OF HYPOTHESIS

The EG distribution is ordered with respect to tiklihood ratio’ ordering (X< |
Y). Sincea andf3 both are unknown, it will be of interest to knovinethera<(3 or
not. We put this as a problem of hypothesis testlg consider test for hypothesis
Ho:a < against H:a >p. Equivalently we cantest (sR<0.5 against H
R > 0.5. Using Lemma (3.3), an asymptotic testioé g rejects the null hypothesis

i, [,a _1]> min (4.1)
22 16mn

where Z.,is the (1y)™ quantile of the standard normal distribution. Ao exact
test of sizey for the above problem, using lemma (3.2), rejdogsnull hypothesis if
(152 ]> Fyponay (4.2) where Fom; 1y is the (1y) ™ quantile

2
of F distribution with (2n, 2m) d.f. As an indepemd interest, we can also obtain an

asymptotic and exact test of the desired sizelferratives H;: R<0.5 and H’i: R#
0.5.

Through simulation study, comparison of power hesnomade for two test given in
(5.1) and (5.2). The power was determined by geingrd 000 random samples of
sizes (n, m)=(10,10), (10,20), (20,20), (20,40) &4@40). The results for the tests at
the significance levely=0.01 and 0.05 are presented in Table 3 and Table 4
respectively. Pand B are referred to as power based on asymptotic aact éast as
defined in (5.1) and (5.2) respectively.
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Table 3 : Power of the test based on asymptotic and exatritmition of Ry=0.01.

R (10, 10) (10, 20) (20, 20) (20, 40) (40, 40)
P, P, P, P, P P, P, P, Py P,
0.500| 0.006| 0.089| 0.010| 0.020| 0.007| 0.009| 0.012| 0.017| 0.009| 0.010
0.526| 0.011| 0.016| 0.018| 0.034| 0.019| 0.022| 0.030| 0.040| 0.027 | 0.030
0.555| 0.021| 0.029| 0.039| 0.066| 0.048| 0.042| 0.063| 0.085| 0.082| 0.087
0.588| 0.039| 0.057| 0.072| 0.113| 0.098| 0.109| 0.142| 0.181| 0.210]| 0.223
0.625| 0.079| 0.105| 0.137| 0.203| 0.208 | 0.227| 0.307| 0.368 | 0.464 | 0.478
0.666 | 0.159| 0.208| 0.257| 0.347| 0.408| 0.434| 0.556| 0.620| 0.766| 0.777
0.714| 0.301| 0.366 | 0.460| 0.567| 0.675| 0.701| 0.839| 0.876 | 0.955| 0.958
0.769| 0.539| 0.606| 0.744| 0.827| 0.914| 0.924| 0.980| 0.987| 0.998| 0.999
0.833| 0.840| 0.879| 0.956| 0.978| 0.995| 0.996| 0.999| 0.999 1 1
0.909| 0.992| 0.995| 0.999| 0.999| 1 1 1 1 1 1
Table 4 : Power of the test based on asymptotic and exatthiition of R)y=0.05.
R (10, 10) (10, 20) (20, 20) (20, 40) (40, 40)
P, P, | P, P, P, P, P, P, P,
0.500 | 0.046/ 0.050 0.05/ 0.043 0.046 0.047 0.057 0/065 0.04047(
0.526 | 0.069 0.073 0.088 0.109 0.085 0.087 0.114 0J/129 (.11B16(
0.555| 0.119 0.12% 0.148 0.1/9 0.1y1 0.175 0.207 0{229 0.25258(
0.588 | 0.178 0.189 0.240 0.2748 0.293 0.298 0.370 0/402 0.47/982(
0.625| 0.282] 0.293 0.376 0.422 0.4f/9 0485 0.591 0/622 0.72830(
0.666 | 0.431] 0.444 0.564 0.610 0.697 0.702 0.815 0/837 0.92021(
0.714| 0.627, 0.639 0.765 0.804 0.881 0.884 0.959 0J967 (.99292(
0.769 | 0.830 0.840 0.931 0.945 0.981 0.982 0.997 0/998 1
0.833 | 0.966/ 0.968 0.995 0.996 0.999 0.999 i il 1
0.909 | 0.999 0.999 1 1 1 1 1 1 1 1
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It is observed from the simulation study that (gttb the tests perform well with
respect to the power. (ii) Power of the test baseéxact test is slightly higher than
that of asymptotic test. (iii) Both the tests aomgistent in the sense that as sample
sizes increase, their power show improvement. Aivgomparison with the usual
nonparametric Wilcoxon Mann Whitney test fog: HP(Y<X)=0.5 was made. It is
found that parametric procedure (i.e., exact aryinpsotic test) have better power
than the more general WMW-test.

S. CONCLUSIONS

In this paper we estimate reliability R for Expatiated Gumbel distribution
with different shape parameters and same scalengéea The performance of the
MLE is quite satisfactory in terms of biases andBdSIt is observed that when
sample sizes increase the MSEs decreases. ltegetifé consistency property of the
MLE of R. The exact distribution of MLE of R is @ed and used for constructing
confidence interval. The asymptotic confidencerwdebased on the MLE of R also
works well for samples of sizes greater than oraédqo 20. The exact as well as
asymptotic test for testing reliability R has begven. The performances of both the
tests are satisfactory with respect to the powan thsual nonparametric Wilcoxon
Mann Whitney test.

REFERENCES

1. Efron, B. (1982) CBMS-NSF Regional Conference seri;mm Applied
Mathematics, 38, SIAM, Philadelphia, PA.
2. Ferguson, T.S., 1967, Mathematical Statistics, Aiflen Theoretic Approach,
Academic Press, New York.
3. Gupta R.C., Gupta P.L. AND Gupta R.D. (1998) Comivation Statistics-
Theory and Methods, 27, 887-904.
4. Kundu D., Gupta R. D. (2005) Metrika, 6, 291-308.
5. Mudholkar G. S., Srivastava D., Freimer M. (199®chAnometrics, 37(4), 436-
445,
. Nadarajah S. (2005) Environmetrics, 17, 13-23.
. Rao, C.R. (1965) New York: John Wiley and Songl55-480.
. Ragab, M.Z., Kundu, D. (2005) Communication in Stats-Computations and
Simulations, 34, 465-483

00 ~N O

Page 93



On the Performance of Different Robust Criterion
Functions based M-Estimators and RM-Estimators

in the presence of Multicollinearity and Outliers

Nileshkumar H. Jadhav®*, Dattatray N. Kashidb®
®Deshbhakta Ratnappa Kumbhar College of Commerckaiiar 416 002 (MS) India.

Department of Statistics, Shivaji University, Kogha 416 004 (MS) India.
*Corresponding author: n.nil08@gmail.com

ABSTRACT

A simultaneous occurrence of multicollinearity and outliers is one of the important
problems in regression analysis. It dramatically affects not only the least squares
estimator (LSE) but also the ridge regression estimator (RRE) as well as M-
estimator (ME). Consequently, the inference based on the LSE, RRE and ME gives
misleading results. To deal with the problem of multicollinearity and outliers,
Silvapulle (1991) proposed and studied the performance of Huber’s robust criterion
function-based ridge M-estimator (RME). However, there are various robust
criterion functions available in the literature. In this article, we have obtained the
ME and RME based on the different robust criterion functions. An extensive
simulation study is performed to compare the ME and RME through mean squared
error sense when data suffers from the problem of only multicollinearity, only
outliers and both, multicollinearity and outliers.

KEYWORDS

Multicollinearity, Outliers, Ridge M-estimator, Robust criterion functions, MSE.

1. INTRODUCTION

In real-life data analysis, while applying a mukidinear regression model, the
violations of classical assumptions like linearibgn-normality, independence of
covariates are commonly occurring problems[l]. Téweurrence of such data
anomalies adversely affects the well-known and lyidsed least square estimation
method.

The near linear dependency between the set of ied@aiknown as collinearity
or multicollinearity is one of the important probis while estimating the unknown
model parameters. Many researchers have considei®groblem and proposed
various alternative biased estimation methods[2S8)me notable references are
Hoerl and Kennard (1970a, b), Hoerl et al. (19Hg¢king et al. (1976), Liu (1993,
2003), Troskie and Chalton (1996), Alkhamisi andii&lr (2007), Al-Hassan (2010),
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Dorugade (2014). The ridge regression estimatorERproposed by Hoerl and
Kennard (1970a, b) is the most commonly used estimahen multicollinearity
presents in the data[1-7].

The presence of outliers is also one of the impbdgpaoblems which occur more
frequently in real examples. Various robust estorsatare put forward by many
researchers to handle the problem of outliers énrésponse variable. Some notable
references are Huber (1964, 1972)[8], Hample €08B6)[9], Rousseeuw and Leroy
(1987), Maronna et al. (2006) and Huber and Roicf®09). The M-estimator
(ME) based on Huber robust criterion function ($&éer, 1972)[10] is the most
popular estimator which dampens the effect of erdlipresent in the response
variable. In the literature, various robust cris@rfunctions (see Holland et al., 1977;
Montgomery, et al., 2003)[11-12] are available tatain ME. The ME obtained
using different robust criterion functions have ithewn advantages and
disadvantages.

Some researchers have considered the simultamecusrence of outliers and
multicollinearity in the data to propose alternativobust parameter estimation
methods. Some notable references are Silvapull®1j1®8], Arslon and Billor
(2000), Jadhav and Kashid (2011, 2016)[14-15]. &iltle (1991) has considered
Huber robust criterion-based ME instead of LSE iRERto propose ridge M-
estimator (RME). This RME tackles the simultaneocsurrence of multicollinearity
and outliers in the data.

In this article, we have considered different rdlargerion functions to develop
ME and RME. A simulation study is carried out takwate the performance of the
different ME and RME in the presence of only mullimearity, only outliers and
both, multicollinearity and outliers. The artickearganized as follows[16].

In Section 2, we introduce a multiple linear regres model and review some
existing estimators which are available in therditere to tackle the problem of
multicollinearity and/or outliers. Also, we sumnmithe various robust criterion
functions available in the literature. In Sectiona® extensive simulation study is
carried out to evaluate the performance of the LSHE and proposed RME
developed using different robust criterion funcio8ection 4 considers the real data
set to study the effect of simultaneous occurrefaaulticollinearity and outlier on
the different estimators. The article ends with @efbsummary and overall
conclusion in Section 5.

2. REGRESSION MODEL AND SOME ESTIMATORS

The multiple linear regression model is the mosteli and commonly used
regression technique to model the linear relatigmbhtween the variables. The form
of multiple linear regression model can be given as

Y =XB+9 (1)

where Y is ann x 1 vector of the response variabke,is ann x p matrix of
covariates8 = (B, 2, .- Bp) IS ap x 1 vector of unknown regression coefficients
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andd is ann x 1 vector of random errors supposed to follow a némistribution
with constant but unknown varianeé. Without loss of generality, we consider that
the response variableand covariateX are standardized in such a way thatXhg

is in the form of a correlation matrix ardY is the correlation vector between
variablesX andY .

It is well known that the least squares estimat®@H) is widely used to estimate the
unknown model parameters. The form of LSE is given

Bise = X'X)7IX'Y ()

As the LSE is unbiased, the covariance and meaaredwerror (MSE) of the LSE is
given by

Cov(BLsg) = Cov((X'X)7X'Y)

= g2(X'X) (3)
MSE(BLse) = tr (COV(:@LSE))
=o23h_ 1% (4)

where 4;, j = 1,2,..p are the eigenvalues of'X matrix. In the presence of
multicollinearity, some of thd;’s are too small and consequently, the MSE of LSE

becomes large. Due to inflated MSE, the LSE may gimreliable and misleading
results.

2.1. Ridge Regression Estimator (RRE) in the Presence of Multicollinearity

To tackle the problem of multicollinearity, Hoemd Kennard (1970a, b) proposed
ridge regression estimator (RRE). The RRE is wideted due to its optimality
properties (Vinod and Ullah, 1981). The RRE is ot#d by simply adding positive
constantk’ to the(X'X)~! matrix of LSE. Hence the form of RRE is given by

Brre = (X'X + kI)T'X'Y
= (X'X + kD)7'X'XBsk (5)

wherek > 0 is a biasing constant known as shrinkage paraméteious choices of
shrinkage parametdk) are available in the literature. The choicegtgbroposed by
Hoerl, Kennard and Baldwin (1975) is widely used &ns given by

L

wherea? andp are the unknown model parameters to be replacebdiyestimates
based on the LSE.

2.2. M-estimator (ME) in the Presence of Outliers

To tackle the problem of outliers in the responagable, various robust estimation
methods like M-estimator (ME), least median squagssmator (LMSE), least
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trimmed squares estimator (LTSE) (see Rousseeuviemny, 1987) are available in
the literature. The ME is the most popular estimatioich is obtained by minimizing

rop (A5E) )

g

wherep(-) is any robust criterion function and is a scale parameter. After
differentiating above equations partially with respto each parametgy, we getp
nonlinear equations of the form

Yi-X{B

map ()X =0, j=1,2..p (8)

wherey (+) is partial derivative op(-) with respect tg8 (See Huber, 1972). To find
the estimate off, we solve the above nonlinear equations by ustegative
reweighted least squares method. The flowchartngind=-ig. 1 shows the process of
estimation of ME. At convergence, the form of MEjigen by

Bur = X'WX)IX'WY (9)

In the literature, various robust criterion funcigsoare available to develop ME. The
Table 1 represents some robust criterion functignsalong with their first order
derivatives(y), weights(W) and ranges (Holland et al., 1977). Among the cbffie
robust criterion functions, the Huber’s robust emitin function is most popularly
used.

2.3. Ridge M-estimator (RME) in the Presence of Qutliers and Multicollinearity

To tackle the problem of simultaneous occurrenceutfiers and multicollinearity,
various robust alternative methods are availablehia literature like ridge M-
estimator (Silvapulle, 1991)[12], Liu-type M-estitnes (Arslon and Billor,
2000)[17], jackknifed ridge M-estimator (Jadhav dtashid, 2011)[18], linearized
ridge M-estimator (Jadhav and Kashid, 2016)[19]. ol these, the ridge M-
estimator (RME) proposed by silvapulle (1991)[28]widely used. The form of
RME is given by

Brue = (X'X + kD)™'X'X By g (10)
wherek is shrinkage parameter obtained robustly by repiathe unknown model
parameters with their robust estimates in the esgioe of choice given by Hoerl,
Kennard and Baldwin (1975)[21-26] thatks= ps?/(BysPue ), fue denote the M-
estimator of 8 and s is a robust estimate af obtained by using the formula
s =1.4826mediarjr; —mediar(r,)|, ; = (Y; — X{fur) (see Silvapulle, 1991).
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Table-1. Robust criterion functions

Name p) W(r) Range
|r] <A
A (Andrews {Az[l — cos(r/A)] {(r/A)_1 sin(r/A) {lrl > A
et. al., 1972) 242 0 A =1.339
r] < B
B@ammaM{aﬂﬁnl—u—ovmﬂﬂ Vu—oymﬂz {u—ovmﬂz hHZB
Tukey, 1974) | B2/2 0 0 B = 4.685
GO (C/loglt + /O] LA G/ONT [ /O € =2.385
F (Fair, 1974)  F[|r|/F — log[1 + Ir|/F]1]  r[1+|r|/F]™ [1+|r|/F]7! F =1.400
|rl <H
H (Huber {rZ/Z , {1 {Irl >H
1964) Hlr| — H?/2 H = sign (r) H)™ H =1.345
L (Logistic)  I2lo (/L =
glcosh(r/L)] L tanh (r/L) tanh (r/L) L =1.205
- 2 rl<T
T (Hinich and {r /2 {1 {|r| >T
Talwar, 1975) (12,2 0 T =2.795
W (Dennis
and Welsch,  (W?2/2) [1—exp[-(r/W)?]] rexp[—(r/W)?] exp[—(r/W)?] W = 2.985

1976)
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START

v

INPUT X, Y, W =1

B =X'WX)"*x'wy

v
rn=(Y,—X8), i = 1.2.....n
5 = 1.4826 median |r; — median (r;)|
_ lry/s)
- Wi = rifs '
‘o W =diag(w;), i = 1.2.....n
I
comy
v Y
“ B = (X'WX)™*X'WY
A max|Bf — f| ==
(7 iz 2 small prespecified valoe)

Figure-1. Flowchart showing the process of estimation of M-estimator (ME)
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While estimating the ME or RME, various researchease used Huber's robust
criterion function. However, different choices abbust criterion functions are
available in the literature. We have tabulated shene in Table 1. There are no
significant contributions available in the litereguo evaluate the performance of ME
or RME developed using different robust criteriamdtions. By considering this
perspective, in this article, we have developed 8t RME based on different
robust criterion functions and the performance led ME and RME is evaluated
through MSE sense. The main approach of this ariscto compare the performance
of ME and RME developed using different robustesidn functions when data
suffers from the problem of only multicollinearitgnly outliers and simultaneous
occurrence of outliers and multicollinearity. Antexsive simulation study is carried
out in the following section to evaluate the periance of the ME and RME
developed using different robust criterion function

3. SIMULATION STUDY

In this section, we consider the simulation stumylltstrate the performance of
the different estimators. To evaluate the perforeaof an estimator (sa§), the
Average MSE (AMSE) criterion is used. For differeoimbinations of sample sizes
(n), degree of multicollinearity(p) and error varianc€c?), the experiment is
repeated10,000 times and the AMSE of each estimator is obtaingdusing the
formula

AMSE = — 310000 {5®_ (4, — g)*} (11)

10000 “!=1

wherep; denote the trué"jregression coefficient ang} denote the estimate 6.

The one outlier, two outliers etc. in the respomnsgiable are introduced by
multiplying actual value o¥ by twenty corresponding to largest absolute resjdu
second largest absolute residual etc.

To distinguish between the ME and RME obtained guslifferent robust criterion
functions, the capital letters of robust criterfanctions given in Table 1 are used. In
the simulation study, LSE, RRE, ME with differemtbust criterion functions and
RME with different robust criterion functions arensidered to evaluate the
performance in AMSE sense.

The simulation study is divided into three part$cdiows.

1. Performance of LSE and different robust criterfonctions based ME in the
presence of outliers

2. Performance of LSE, RRE and different robusedon functions based ME and
RME in the presence of multicollinearity and ondlieu

3. Performance of LSE, RRE and different robugedon functions based ME and
RME in the presence of multicollinearity and ond amore than one outlier

3.1. Performance of LSE and different robust criterion functions based ME in
the presence of outliers

Page 100



In this subsection, we evaluate the performandeSat and different robust criterion
functions based ME through AMSE. The following eggion models are used to
generater observations on the response varidbhbes

Model I ¥; = 0.3 + 0.2X;; + 0.7X;5 + 0.4X;3 + 01X, +9;,i = 1,2,..,n  (12)
Model I1 Y, = 5+ 2X;; + 1X;, + 4X;3 + 3X;s +9;, i = 1,2,..,n (13)
whereX;;~N(0,1), i = 1,2,..,n, j =1,2,3,4,9;~N(0,02).

For n = 30,50,100 ando? = 1,25,100, the experiment is repeated 10,000 times
and the AMSE of LSE and ME based on different robargerion functions is
obtained for Model | and Model Il and the results eeported in Table 2 and Table 3
respectively.

From Table 2 and Table 3, it is observed that:

« The AMSE of LSE is smaller than that of the othdf Bbtained using different
robust criterion functions for all combinations fand¢? with no outlier or zero
outlier case. As soon as, the outlier introducedhi@ data, the AMSE of LSE
increases considerably as compare to the AMSE féreint robust criterion
functions based ME.

+ Foro? =100 andn = 100, the AMSE of ME obtained using robust criterion
function given by Fair (1974) (ME_F) is smaller fare, two and three outliers cases
of both models.

+ Forg? =1, the AMSE of ME obtained using Cauchy robust digte function

is smaller than that of the others for Model | wéth values o and one and more
than one outlier. However, the AMSE of ME obtainsthg robust criterion function
given by Hinich and Talwar (1975) (ME_T) is smaller Model Il with all values of
n and one, two and three outliers exceptrfer 30 and three outliers case of Model
Il.

* No single specific robust criterion function hastée performance than the
others for all combinations of a2 and the presence of different number of outliers.

3.2. Performance of LSE, RRE and different robust criterion functions based
ME and RME in the presence of multicollinearity and one outlier

The simulation design given by McDonald and Galatngl975) is used to achieve
the required degree of multicollinearity in the agates as

Xij=Q—-p)DY%Zij+ pZipery, = 12,..m j=1,2,..,p (14)
whereZ;;’s are independent standard normal pseudo-randonbens,p? is the

correlation between any two covariate variables Tlobservations on the response
variableY are generated using the following regression model

Yi =14+ 1Xi1 + 1Xi2 + 1Xi3 + 1Xi4 + l9i, i = 1, 2, e, n (15)
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whered;~N (0, c?). In this study, the simulation experiment is regpied 10000
times forn = 30,50, 100, p = 0.9,0.99,0.999,0.9999, ¢2 = 1,100 and the AMSE
of each estimator is obtained. The results of thrilgtion study for differenk are
reported in Table 4 to Table 6.

From Table 4 to Table 6, it is observed that:

* For without outlier case with any degree of mullicearity and different
sample sizes, the AMSE of the RRE is smaller theat bf the other estimators.
Hence the performance of RRE is good in the presehonly multicollinearity. As
soon as we introduce the outlier in the responsaha, the AMSE of RRE inflates
and consequently, the RRE shows poor performance.

* Inthe presence of multicollinearity with and witheutlier cases, the AMSE of
ME obtained through different robust criterion ftions is more than the AMSE of
RME obtained through respective different robugedon functions.

» Foro? = 1 with one outlier case, the AMSE of the RME obtdinsing Hinich
and Talwar (1975) robust criterion function (RME_8hows smaller AMSE than
that of the other estimators for any degree of icnlltnearity.

« Forog? =100 with one outlier case, the AMSE of the RME obtdinsing the
Logistic robust criterion function (RME_L) has shealvalue except fon = 100
andp = 0.9, 0.999,0.9999.

3.3. Performance of LSE, RRE and different robust criterion functions based
ME and RME in the presence of multicollinearity and one and more than one
outlier

In this subsection, the simulation design giversubsection 3.2 is used to generate
n = 50 observations on the response variable. The onieuivo outliers and three
outliers are introduced in the response variablenitiplying actual value oY by
twenty corresponding to largest absolute residsetond largest absolute residual
and third largest absolute residual.

The AMSE of LSE, RRE, ME and RME based on differestbust criterion
functions are obtained for = 50, p = 0.9,0.99,0.999,0.9999, 52 = 25 with one
outlier, two outliers and three outliers’ cases #raresults are reported in the Table
7.

From Table 7, it is seen that the AMSE of LSE,ER&d ME obtained using
different robust criterion functions is more thdratt of the RME obtained using
different robust criterion functions. The RME oloted using different robust
criterion functions shows smaller AMSE value. ThBIRR obtained using Logistic
robust criterion function has smaller AMSE valuarththat of the other existing
estimators when data suffers from the problem ofticollinearity with one and
more than one outlier.
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Table-2. The AMSE of LSE and different robust criterion functions based ME
in the presence of outliers for Model I

n =30 n =50 n =100
02=1 0¢2=25 ¢2=100| 6%2=1 0%2=25 0¢?2=100| 02=1 0%2=25 02=100
0 outlier
LSE 1.1956 6.1765 21.4937 1.1106 3.7901 12.2885 537.0 2.3065 6.3265
ME_A 1.2107 6.5578 23.031p 1.1175 3.9643 12.9630 0576 2.3788 6.6198
ME_B 1.2103 6.5486 22.9979 1.1174 3.9614 12.9540 0578 2.3784 6.6182
ME_C 1.2052 6.4025 22.4028 1.1163 3.9224 12.8282 0571.  2.3727 6.5974
ME_F 1.2050 6.3890 22.3566 1.1161 3.9193 12.8134 0570.  2.3721 6.5998
ME_H 1.2047 6.3873 22.3465 1.1162 3.9185 12.8[142 0571L 2.3719 6.5954
ME_L 1.2034 6.3732 22.270R2 1.1160 3.9096 12.7B13 0570 2.3712 6.5831
ME_T 1.1991 6.3347 21.9919 1.1148 3.9031 12.7R42 057D 2.3649 6.5625
ME_W 1.2075 6.4733 22.6808 1.1168 3.9402 12.8842 0578 2.3753 6.6061
1 outlier
LSE 18.6007 270.9271 1070.9082 8.2675 120.1806 96%3. 3.3177 37.1397 143.0293
ME_A 1.2538 7.4147 26.4555 1.1375 4.3074 14.0[782 0600 2.4508 6.8684
ME_B 1.2537 7.4121 26.4472 1.1375 4.3062 14.0[764 060D 2.4508 6.8685
ME_C 1.2417 7.1615 25.4320 1.1318 4.2414 13.8467 057B  2.4430 6.8452
ME_F 1.2753 6.4530 22.4832 1.1432 3.9559 12.6340 0610.  2.3652 6.5363
ME_H 1.2506 6.3868 22.2375 1.1355 3.9587 12.6[703 0590 2.3703 6.5553
ME_L 1.2466 6.3780 22.274p 1.1345 3.9575 12.6p96 058 2.3677 6.5498
ME_T 1.2460 7.2428 25.7892 1.1338 4.2377 13.8R41 058B 2.4230 6.7479
ME_W 1.2525 7.3957 26.3677 1.1373 4.3041 14.0[752 060D 2.4533 6.8791
2 outliers
LSE 31.8878 393.8836 1534.02Y4 14.2929 181.8152 .8263 5.3962 61.0072 232.7821
ME_A 1.2745 7.8281 27.7360 1.1370 45124 14.93891 0683 2.5179 7.1872
ME_B 1.2745 7.8260 27.7286 1.1369 45122 14.9375 0688 2.5179 7.1873
ME_C 1.2622 7.4410 26.3142 1.1276 4.3985 14.5278 063D.  2.4982 7.1248
ME_F 1.3929 6.6215 23.1675 1.1657 3.9501 12.7759 0750.  2.3644 6.5627
ME_H 1.3163 6.3927 22.1814 1.1449 3.9409 12.7236 0696 2.3705 6.5982
ME_L 1.3079 6.3925 22.1785 1.1425 3.9433 12.7341 0691 2.3705 6.5987
ME_T 1.2695 7.6457 27.1035 1.1343 4.4274 14.6480 0671L 2.4852 7.0485
ME_W 1.2742 7.8246 27.7261 1.1367 4.5187 14.9545 0688 2.5215 7.2036
3 outliers
LSE 46.7004 473.9135 1804.5054 19.9245 228.1007 .83B8 7.2714 77.8247 300.1968
ME_A 1.2804 8.0381 28.5673 1.1444 4.5988 15.4P098 0616 2.5873 7.3707
ME_B 1.2803 8.0352 28.5609 1.1443 4.5982 15.4085 0616 2.5873 7.3706
ME_C 1.2715 7.5114 26.6833 1.1326 4.4406 14.8308 054B.  2.5549 7.2653
ME_F 1.6073 6.9292 24.2211 1.2117 3.9704 12.7422 075B  2.3759 6.5683
ME_H 1.4066 6.4085 22.1602 1.1721 3.9126 12.5[784 0658 2.3828 6.5887
ME_L 1.3883 6.3923 22.1399 1.1669 3.9142 12.6D46 0648 2.3844 6.5875
ME_T 1.2792 7.8748 28.4414 1.1418 4.5139 15.0884 060b 2.5494 7.2271
ME_W 1.2801 8.0404 28.5863 1.1440 4.6059 15.4406 0614 2.5916 7.3874
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Table-3. The AMSE of LSE and different robust criterion functions based ME
in the presence of Outliers for Model 11

=30 n =50 n =100
o?=1 02=25 ¢%2=100 c2=1 0?=25 ¢?=100| ¢%=1 0?2 =25 ¢%=100
0 outlier
LSE 1.1994 6.1115 21.396 1.1107 3.8101 12.2386  524.0 2.3285 6.2948
ME_A 1.2165 6.5186 22.897 1.1175 3.9882 12.9934 055R 2.4106 6.5863
ME_B 1.2161 6.5116 22.872 1.1174 3.9852 12.9812 055R 2.4103 6.5845
ME_C 1.2100 6.3806 22.330 1.1162 3.9482 12.8p38 055D 2.4041 6.5627
ME_F 1.2092 6.3646 22.266 1.1160 3.9432 12.8029 0551 2.4033 6.5612
ME_H 1.2094 6.3653 22.270 1.1161 3.9435 12.8p59 054B 2.4033 6.5609
ME_L 1.2088 6.3456 22.208 1.1156 3.9401 12.7Y95 0546 2.4001 6.5489
ME_T 1.2049 6.2392 21.964 1.1150 3.9220 12.7p97 055L 2.4004 6.5523
ME_W 1.2131 6.4525 22.587 1.1167 3.9651 12.8937 055D 2.4069 6.5719
1 outlier
LSE 161.3698 417.3674 1227.5165 61.9998 174.3699 0.6806 18.0252 51.2266 155.1078
ME_A 1.2629 7.3292 26.5304 1.1303 4.2872 14.1187 0584 2.4517 7.0268
ME_B 1.2628 7.3268 26.522p 1.1302 4.2868 14.1171 0584 2.4516 7.0269
ME_C 1.2662 7.1814 25.4666 1.1326 4.2395 13.8R95 0597T. 2.4382 6.9820
ME_F 1.4636 7.1922 23.0958 1.2274 4.1928 12.7649 1011 24131 6.6516
ME_H 1.3734 6.8779 22.696p 1.1873 4.1149 12.7688 0841 24011 6.6810
ME_L 1.3612 6.8242 22.6624 1.1815 4.0964 12.7615 082D 2.3977 6.6749
ME_T 1.2566 7.1864 25.920p 1.1282 4.2197 13.8877 058D 2.4235 6.9275
ME_W 1.2622 7.3101 26.438b 1.1302 4.2876 14.1136 058b 2.4534 7.0359
2 outliers
LSE 377.4864 751.0592 1885.7093 137.9229 314.0009 37.7866 39.1978 95.1373 263.0477
ME_A 1.2617 7.8365 28.0390 1.1384 4.4540 14.9573 063 2.5204 7.1870
ME_B 1.2616 7.8345 28.0274 1.1384 4.4533 14.9544 063 2.5204 7.1870
ME_C 1.2726 7.7281 26.5378 1.1441 4.3849 14.4739 0662 2.4952 7.0852
ME_F 1.7666 9.0764 24.806b 1.3488 45213 13.0p76 1521 2.4917 6.5692
ME_H 15132 7.8799 23.282b 1.2600 4.2927 12.9850 117b 2.4529 6.5946
ME_L 1.4843 7.7350 23.1895 1.2475 4.2569 129158 1124 2.4473 6.5906
ME_T 1.2559 7.7127 27.3884 1.1353 4.3847 14.6567 0621L 2.4900 7.0594
ME_W 1.2618 7.8294 27.9721L 1.1387 4.4557 14.9y15 063B 2.5233 7.2010
3 outliers
LSE 633.6189 1067.9714 2410.9629 234.5688 449.6685 1095.4769 64.7617 135.9063 351.0168
ME_A 1.2713 8.0774 28.9696 1.1456 4.6061 15.4874 0656 2.5724 7.3990
ME_B 1.2713 8.0753 28.957p 1.1456 4.6057 15.4854 065B 2.5724 7.3987
ME_C 1.2874 8.0521 27.2627 1.1542 4.5386 14.8p88 06956. 2.5390 7.2383
ME_F 3.6413 12.6932 28.1444 1.4878 5.0297 13.5120 .202# 2.5946 6.5973
ME_H 1.6999 9.1034 24.5104 1.3381 4.5745 13.0p44 148B 2.5157 6.6073
ME_L 1.6479 8.8018 24.2736 1.3170 4.5093 13.0627 14QR 2.5048 6.6059
ME_T 6.9569 8.2496 28.681p 1.1429 4.5388 15.1695 063B 2.5390 7.2593
ME_W 1.2719 8.0911 28.953D 1.1460 4.6134 15.5p79 065B 2.5759 7.4145
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Table-4. AMSE of LSE, RRE ME and RME obtained using different robust
criterion functions for n = 30

Without outliers

With one outlier

p 0.9 0.99 0.999 0.9999 0.9 0.99 0.999 0.9999
g% =1
LSE 1.713 7.288 63.465 631.539 | 151.485 1392.441 13844.643 136365.238
RRE 1.482 3.430 17.011 152.679 38.402 285.214  2636.170  25676.256
ME_A 1.774  7.749 68.406  677.976 1.894 8.833 78.304 778.415
ME_B 1.773 7.741 68.312 677.131 1.894 8.828 78.263 778.029
ME_C 1.750  7.567 66.270  659.155 1.892 8.775 77.546 772.935
ME_F 1.747  7.549 66.051 657.183 2.048 9.600 85.474 848.939
ME_H 1.747  7.548 66.069 657.290 1.942 8.871 78.381 778.452
ME_L 1.746  7.526 65.893 655.488 1.927 8.763 77.340 769.514
ME_T 1.734  7.472 65.103 652.388 1.873 8.635 76.433 764.285
ME_W 1.762 7.651 67.271 668.022 1.891 8.802 77.933 776.297
RME_A 1578 4234 24744  227.253 1.684 4.962 30.395 282.557
RME_B  1.577  4.228 24.670  226.703 1.683 4.958 30.355 282.196
RME_C  1.559  4.113 23.261 213.821 1.685 4.945 30.047 281.214
RME_F 1558  4.124  23.277 213.670 1.829 5.546 35.214 332.878
RME_H  1.557  4.107 23.172 212.817 1.735 5.050 30.761 288.693
RME_L  1.549  4.027 22.511 207.103 1.715 4.903 29.420 276.618
RME.T  1.533 3.926 21.513 201.122 1.657 4.729 28.193 264.111
RME_W 1568  4.166 23.926  220.103 1.682 4.946 30.166 281.533
o? =100
LSE 71.150 635.399 6309.948 62171.052 | 3717.824 32298.429 326455.412 3189295.807
RRE 20.705 156.897 1534.162 14913.509 | 791.471 5817.139 57769.521 551325.960
ME_A  76.718 682.393 6784.330 67582.283 88.635 784.520 7816.332 77854.621
ME_B  76.619 681.506 6774.984 67476.272 88.581 783.988 7810.620  77835.474
ME_C 74508 662.322 6595.824 65527.316 | 84.913 754.403 7491.177  74882.114
ME_F 74212 660.283 6575.657 65284.233 75.132 670.728 6653.431 65599.293
ME_H  74.278 660.358 6574.485 65315.724 | 74.124  662.088 6562.540  65134.877
ME_L 74.109 657.802 6552.966 65013.813 74.146  661.363 6559.707  65056.778
ME_T 73.224 655.759 6516.344 64184.962 85.725 765.262 7591.581 75814.077
ME_W  75.529 671.678 6688.823 66529.729 | 88.240  781.942 7779.404  77601.632
RME_A 29.491 230.533 2263.589 22718.111 36.610  290.158 2855.635 28414.177
RME_B 29.417 229.797 2256.435 22636.973 36.557 289.691 2850.547  28389.635
RME_C 27.945 216.344 2136.855 21227.988 34.363 273.193 2672.677  26744.680
RME_F 27.945 216.371 2133.894 21206.983 27.689 217.938 2127.522 20907.360
RME_H 27.839 215.387 2125.351 21114.147 27.601 217.168 2117.036  21002.880
RME_L 27.045 208.540 2059.458 20419.193 26.974  211.528 2063.036  20431.361
RME_T 25.889 202.201 1983.654 19459.365 33.519 267.534  2606.574  26111.666
RME_W 28.620 222.820 2201.366 21943.978 36.335 288.667 2832.361 28237.383
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Table-5. AMSE of LSE, RRE ME and RME obtained using different robust
criterion functions for n = 50

Without outliers With one outlier
0.9 0.99 0.999 0.9999 0.9 0.99 0.999 0.9999
o 1
LSE 1.388 4.436 35.279 347.054 60.195 519.631 BEP2. 52164.533
RRE 1.289 2.646 10.204 84.377 17.437 111.811 1620.3 10761.119
ME_A 1.413 4,653 37.499 370.838 1.453 5.062 41.191 407.315
ME_B 1.413 4.650 37.460 370.337 1.453 5.061 41.186 407.164
ME_C 1.408 4.606 36.980 365.416 1.454 5.060 41.222 406.877
ME_F 1.407 4,602 36.911 364.928 1.509 5.277 43.122 423.278
ME_H 1.407 4.602 36.923 364.940 1.474 5.072 41.203 405.003
ME_L 1.406 4,592 36.847 363.969 1.468 5.034 40.869 401.675
ME_T 1.404 4,565 36.592 359.480 1.446 4,988 40.359 398.637
ME_W 1.410 4.625 37.196 367.487 1.453 5.062 41.196 407.078
RME_A 1.324 2.946 12.941 111.581 1.360 3.211 14.927 130.307
RME_B 1.324 2.943 12.912 111.199 1.360 3.210 14,922 130.148
RME_C 1.319 2.917 12.623 108.072 1.362 3.220 15.022 130.488
RME_F 1.319 2.920 12.615 108.140 1.415 3.399 16.279 142.245
RME_H 1.319 2.917 12.604 107.907 1.382 3.250 15.097 130.850
RME_L 1.316 2.889 12.395 105.860 1.375 3.199 14.703 126.958
RME_T 1.312 2.849 12.120 102.072 1.351 3.127 14.089 122.074
RME_W 1.321 2.927 12.742 109.277 1.360 3.214 14,948 130.128
0% =100
LSE 39.892 346.811 3452.683 33793.357 1618.081 8332 138432.106 1367440.751
RRE 12.445 85.443 832.234 7874.837 372.131 2661.4126415.532 256428.775
ME_A 42.454  367.732 3675.145 35941.967 46.512 A%.7 4045.994 39680.356
ME_B 42.413 367.450 3672.405 35907.605 46.499 £3.6 4045.239 39668.640
ME_C 41.855 363.780 3631.637 35460.327 45.627 398.7 3975.466 38918.397
ME_F 41.730 363.559 3624.967 35374.367 41.558 282.5 3612.679 35236.315
ME_H 41.779 363.454 3626.647 35402.378 41.663 353.7 3625.710 35401.365
ME_L 41.742 362.200 3618.117 35376.028 41.691 3@3.2 3621.281 35438.925
ME_T 41.434 359.884 3599.965 35178.121 45.496 326.3 3963.095 38898.870
ME_W 42.107 365.344 3650.248 35659.769 46.469 £05.6 4045.192 39642.505
RME_A 15.654 110.555 1091.822 10335.632 17.928 6B630. 1285.689 12243.232
RME_B 15.620 110.343 1090.021  10309.958 17.915 5B6R0. 1285.123 12232.576
RME_C 15.286 108.200 1066.668 10072.018 17.466 4127. 1253.056 11886.558
RME_F 15.272 108.521 1067.436  10082.493 15.086 2B67. 1051.786 9950.884
RME_H 15.259 108.165 1065.365 10058.7131 15.175 4778, 1064.044 10063.479
RME_L 15.035 105.869 1043.960 9866.914 14.982 B¥%6.5 1044.977 9900.576
RME_T 14.715 103.137 1022.353 9669.994 16.990 BP1.8 1209.640 11485.496
RME_W 15.420 109.008 1076.043 10162.312 17.910 67730. 1286.098 12225.762
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Table-6. AMSE of LSE, RRE ME and RME obtained using different robust
criterion functions for n = 100

Without outliers

With one outlier

0.9 0.99 0.999 0.999p 0.9 0.99 0.999 0.9999
o?=1
LSE 1.186 2.624 16.921 159.862 16.880 143.698 1979. 14269.387
RRE 1.150 2.008 5.818 39.020 6.167 33.822 310.504 975873
ME_A 1.196 2.721 17.818 168.425 1.206 2.814 18.786 177.421
ME_B 1.196 2.720 17.813 168.379 1.206 2.814 18.786 177.430
ME_C 1.195 2.711 17.729 167.645 1.207 2.820 18.823 177.855
ME_F 1.195 2.710 17.725 167.595 1.226 2.858 19.021 179.774
ME_H 1.195 2.710 17.718 167.557 1.216 2.816 18.667 176.343
ME_L 1.194 2.706 17.696 167.3716 1.214 2.804 18.584 175.764
ME_T 1.196 2.709 17.667 167.169 1.204 2.785 18.472 174.908
ME_W 1.195 2.715 17.766 167.977 1.206 2.816 18.809 177.692
RME_A 1.161 2.107 6.648 46.292 1.171 2.173 7.142 .68M
RME_B 1.161 2.107 6.644 46.260 1.171 2.173 7.142 .6&0
RME_C 1.160 2.101 6.604 45.8%9 1.172 2.180 7.178 .0131
RME_F 1.160 2.102 6.611 45.8%2 1.191 2.217 7.338 2152
RME_H 1.160 2.101 6.602 45.828 1.181 2.182 7.126 .3A0
RME_L 1.159 2.094 6.545 45.440 1.178 2.169 7.033 TU®
RME_T 1.160 2.092 6.503 45.306 1.168 2.145 6.907 .838B
RME_W 1.160 2.103 6.618 46.026 1.171 2.175 7.159 88D
o? =100

LSE 19.374 163.836 1581.939 16031.977 485.056 4394. 42827.017 424174.632
RRE 6.750 40.901 368.324 3716.063 116.988 924.146 607.890 84283.164
ME_A 20.437 172.737 1674.173 16958.090 21.559 20.8 1771.272 17775.257
ME_B 20.432 172.686 1673.585 16950.649 21.560 040.9 1771.346 17775.166
ME_C 20.349 172.003 1660.739 16850.174 21.453 820.0 1758.590 17670.261
ME_F 20.339 172.032 1656.706 16833.850 20.259 870.4 1651.471 16638.959
ME_H 20.339 171.935 1658.331 16836.124 20.379 ¥Bl.0 1663.115 16741.038
ME_L 20.316 171.512 1659.402 16812.204 20.371 8.7 1665.503 16734.919
ME_T 20.233 171.034 1666.561 16825.035 21.185 ¥wr.5 1745.327 17508.300
ME_W 20.385 172.294 1667.234 16897.216 21.589 1.1 1772.507 17794.442
RME_A 7.789 48.846 446.532 4513.201 8.427 52.985 4.0 4911.195
RME_B 7.785 48.810 446.079 4508.045 8.427 52.982 4.022 4910.680
RME_C 7.743 48.496 439.082 4448.649 8.380 52.705 8.608 4863.160
RME_F 7.750 48.565 437.570 4436.364 7.689 47.750 3.558 4337.690
RME_H 7.742 48.490 438.096 4441.1)/6 7.760 48.131 0.444 4397.138
RME_L 7.680 47.862 434.834 4402.581 7.705 47.531 7.98%7 4365.010
RME_T 7.600 47.316 437.720 4394.9p0 8.134 50.581 5.997 4704.227
RME_W 7.757 48.599 442.346 4475.1118 8.449 53.169 4,804 4921.300
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Table-7. AMSE of LSE, RRE ME and RME obtained using different robust
criterion functions for n = 50 with multicollinearity and one and more than one

outlier

1 outlier 2 outliers 3 outliers 1 outlier 2 outker 3 outliers
Estimators p=09 p=0.99
LSE 429.232 681.533 887.913 3910.242 6040.036 2290.
RRE 102.285 146.668 183.379 783.243 1107.667 1380.9
ME_A 12.549 13.271 13.714 102.544 107.449 113.471
ME_B 12.547 13.269 13.71p 102.511 107.434 113.456
ME_C 12.321 12.884 13.160 100.409 104.253 109.467
ME_F 11.347 11.479 11.821 91.753 93.028 97.868
ME_H 11.368 11.407 11.510 91.971 91.967 95.279
ME_L 11.346 11.400 11.50p 91.965 91.815 95.009
ME_T 12.290 12.952 13.466 100.209 105.207 111.122
ME_W 12.544 13.283 13.72;7 102.406 107.503 113.661
RME_A 5.966 6.481 6.767 35.007 37.664 41.223
RME_B 5.963 6.479 6.765 34.976 37.648 41.209
RME_C 5.839 6.251 6.420 33.947 36.050 39.158
RME_F 5.235 5.300 5.54p 29.049 29.771 32.002
RME_H 5.248 5.296 5.389 29.319 29.380 30.989
RME_L 5.169 5.226 5.324 28.849 28.836 30.308
RME_T 5.694 6.169 6.521 32.851 35.573 39.016
RME_W 5.970 6.498 6.782 34.941 37.728 41.420

p = 0.999 p = 0.9999

LSE 37915.185 60239.346 76044.160 377658.812 602887 762099.846
RRE 7233.452 10658.626 11995.423 73109.284 103112.7 120817.548
ME_A 1017.312 1060.452 1114.439 10043.999 10560.141 11075.158
ME_B 1017.077 1060.205 1114.228 10042.606 10559.166 11074.421
ME_C 998.590 1029.555 1068.266 9851.718 10238.498 0648.625
ME_F 915.241 921.960 938.951 9065.915 9099.276 8882
ME_H 916.455 910.887 918.395 9063.035 9009.942 8828
ME_L 913.763 908.929 918.783 9049.744 9021.569 g8/
ME_T 993.117 1034.443 1086.330 9867.499 10323.164 0832.473
ME_W 1016.811 1061.686 1115.4%3 10038.424 10564.390 11097.481
RME_A 320.204 348.210 380.5Q7 3140.625 3443.448 232D
RME_B 319.994 348.009 380.314 3139.224 3442.547 1304
RME_C 310.702 333.168 355.017 3052.308 3281.872 4.3556
RME_F 263.745 271.085 278.583 2626.989 2621.221 8.2802
RME_H 266.117 268.286 271.731 2636.898 2599.655 8275
RME_L 260.804 263.803 268.081 2585.465 2573.462 5262
RME_T 298.148 326.404 357.481 2970.362 3239.857 3336
RME_W 319.995 349.548 381.306 3140.817 3450.310 3219
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4. REAL DATA APPLICATION: TOBACCO BLENDS DATA

In this section, we consider the real data setairadco blends given by Myers
(1990)[28] to evaluate the performance of the LRRE, ME and RME obtained
using different robust criterion functions. The @bo blends data contains 30
observations on the amount of heat evolved fromadob during the smoking
process (response variablg) and percentage concentration of four important
components (covariatek;, X,,X; and X,). The canonical form of the model is
considered to model the data (Arslon and BillorD@0Jadhav and Kashid, 2016).
Myers (1990), Arslon and Billor (2000)[29], Jadhawd Kashid (2016)[30] pointed
out that, this data suffers from the simultaneowsuoence of outliers and
multicollinearity. For this data, we estimate th8H, RRE, ME and RME obtained
using different robust criterion functions with theaorm of the estimates and
estimates of the respective shrinkage parametbesrdsults are reported in Table 8.

Table 8: Estimates of LSE, RRE ME and RME obtained using different robust
criterion functions with norm of the estimates and estimates of respective
shrinkage parameters

Estimates Estimate of

Estimators Shrinkage Norm of the
@, @, @5 @, Parameter Estimates

LSE 0.4857 -0.6727 -1.0746 1.4436 - 3.9272
RRE 0.4855 -0.6142 -0.8510 0.8097 0.0017 1.9927
ME_A 0.4894 -0.6601 -1.1181 -0.5346 - 2.2112
ME_B 0.4894 -0.6599 -1.1193 -0.5290 - 2.2076
ME_C 0.4886 -0.6559 -1.1720 0.2251 - 2.0932
ME_F 0.4872 -0.6754 -1.1789 0.8892 - 2.8741
ME_H 0.4864 -0.6509 -1.1805 0.3566 - 2.1812
ME_L 0.4873 -0.6639 -1.1787 0.6075 - 2.4366
ME_T 0.4858 -0.6831 -1.0584 -0.9285 - 2.6851
ME_W 0.4899 -0.6543 -1.1362 -0.3728 - 2.0979
RME_A 0.4892 -0.6141 -0.9267 -0.3310 0.0013 1.5847
RME_B 0.4892 -0.6141 -0.9285 -0.3281 0.0013 1.5863
RME_C 0.4885 -0.6344 -1.0722 0.1762 0.0006 1.8218
RME_F 0.4871 -0.6688 -1.1476 0.8223 0.0002 2.6778
RME_H 0.4863 -0.6323 -1.0919 0.2872 0.0005 1.9111
RME_L 0.4873 -0.6525 -1.1244 0.5312 0.0003 2.2098
RME_T 0.4857 -0.6364 -0.8805 -0.5796 0.0013 1.7522
RME_W 0.4897 -0.6149 -0.9659 -0.2444 0.0011 1.6105

Form Table 8, it can be seen that the simultanpoesence of multicollinearity and
outliers affects the estimates as well as normhef dstimates. It is expected and
observed that, the norm of LSE is larger than tiidhe other existing estimators. It
is also observed that the norm of RME obtained guslifferent robust criterion
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functions is smaller than that of ME obtained ushegpective robust criterion
functions. Based on the norm of the estimate’sadh, the RME obtained using
robust criterion function given by Andrews et @d972) shows smaller value than
that of the other estimators.

S. SUMMARY AND CONCLUSIONS

In this article, we have compared the performanicéhe least squares estimator
(LSE), ridge regression estimator (RRE) and M-eston(ME) as well as ridge M-
estimator (RME) obtained using different robustesion functions. A real data set
and simulation study were considered to evaluateprformance using the mean
squared error (MSE) criterion. It is observed it RME obtained using different
robust criterion functions has smaller average M&E compare to the other
estimators. It seems that the no RME obtained uamg specific robust criterion
function shows uniformly better performance whea diata suffers from the problem
of simultaneous occurrence of multicollinearity amatliers. More specifically, for
large error variance with large sample size, theERMNtained using Logistic robust
criterion function shows smaller average MSE.
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