

Assistant Professor School of Nanoscience and Technology (SNST), Shivaji University, Vidyanagar, Kolhapur 416004, Maharashtra, India bhattejasvinee@gmail.com

# PROFILE CLASSIFICATION

- Advanced functional nanomaterials
- Surface engineering of nanomaterials
- Optoelectronics

# Dr. Tejasvinee S. Bhat

M.Sc., Ph.D.

### **EDUCATION**

- Ph. D. (Solar cell) Shivaji University, Kolhapur
- M. Sc. (Physics) Shivaji University, Kolhapur

# EXPERIENCE

 July 2018–to date: Assistant Professor of Physics School of Nanosience & Technology, Shivaji University, Kolhapur, India.

# **RESEARCH AREAS/INTEREST**

- Synthesis, surface modifications and interface engineering of nanoparticles for various applications.
- Synthesis, characterization and testing of various coreshell, composite nanomaterials for catalysis, energy and environmental remediation applications.

## ACTIVITIES

 Attendance to various international and national conferences, webinars in India and abroad as participant.

## DETAILS OF PUBLICATION

- Articles: 48
- Citations: 1005
- ✤ H-index: 19
- i-10 Index: 28

### RESPONSIBILITIES

Actively working as reviewer for well-known scientific journals • Thesis guidance and practical assistance to graduation and masters students.

#### **PUBLICATIONS** (Data until December 2023 only)

- List of some representative publications :
- Kulkarni, A.A., Gaikwad, N.K., Salunkhe, A.P., Dahotre, R.M., **Bhat\***, **T.S.** and Patil, P.S., 2023. 2D MXene integrated strategies: A bright future for supercapacitors. Journal of Energy Storage, 71, p.107975.
- Kulkarni, A.A., Gaikwad, N.K., Salunkhe, A.P., Dahotre, R.M., Bhat\*, T.S. and Patil, P.S., 2023. An ensemble of progress and future status of piezosupercapacitors. Journal of Energy Storage, 65, p.107362.
- Kulkarni, A.A., Savekar, V.A., Bhat\*, T.S. and Patil, P.S., 2022. Recent advances in metal pyrophosphates for electrochemical supercapacitors: A review. Journal of Energy Storage, 52, p.104986.
- 4. **Bhat, T.S.,** Patil, P.S. and Rakhi, R.B., 2022. Recent trends in electrolytes for supercapacitors. Journal of Energy Storage, 50, p.104222.
- Beknalkar, S.A., Teli, A.M., Bhat, T.S., Pawar, K.K., Patil, S.S., Harale, N.S., Shin, J.C. and Patil, P.S., 2022. Mn<sub>3</sub>O<sub>4</sub> based materials for electrochemical supercapacitors: Basic principles, charge storage mechanism, progress, and perspectives. Journal of Materials Science & Technology, https://doi.org/10.1016/j.jmst.2022.03.036
- Bhat, T., Teli, A., Beknalkar, S., Mane, S., Tibile, P., Patil, P.S., Kim, H.J. and Shin, J.C., 2022. Activated Carbon Mediated Hydrothermally Synthesized CuO Thin Films for Electrochemical Supercapacitors. ECS

### COURSES

- Mechanics
- Electricity and Magnetism
- Thermal Physics and Statistical Mechanics

### **AUTHOR IDS**

#### ORCID ID

0000-0002-8966-8415

### Scopus ID

55792680500

### Vidwan ID

198480

#### Google Scholar ID

https://scholar.google.com /citations?user=-3LDeJIAAAAJ&hl=en Journal of Solid State Science and Technology, https://doi.org/10.1149/2162-8777/ac7074

- Bhat, T.S., Shinde, A.V., Alat, A.A. and Patil, P.S., 2022. Nanoarchitectonics of hierarchical PbS material for allsolid-state asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 33(13), pp.10368-10378.
- Teli, A.M., Beknalkar, S.A., Mane, S.M., Bhat, T.S., Kamble, B.B., Patil, S.B., Sadale, S.B. and Shin, J.C., 2022. Electrodeposited crumpled MoS<sub>2</sub> nanoflakes for asymmetric supercapacitor. Ceramics International, https://doi.org/10.1016/j.ceramint.2022.04.208
- Bhat, T.S., Jadhav, S.A., Beknalkar, S.A., Patil, S.S. and Patil, P.S., 2022. MnO<sub>2</sub> core-shell type materials for high-performance supercapacitors: A short review. Inorganic Chemistry Communications, p.109493.
- 10. Teli, A.M., Bhat, T.S., Beknalkar, S.A., Mane, S.M., Chaudhary, L.S., Patil, D.S., Pawar, S.A., Efstathiadis, H. and Shin, J.C., 2022. Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor. Chemical Engineering Journal, 430, p.133138.
- 11. Deshpande, S.V., Bhiungade, R.A., Deshpande, M.P., Pawar, K.K., **Bhat, T.S.,** Kulkarni, S.K. and Sheikh, A.D., 2021. Rapid detoxification of polluted water using ultrastable TiO2 encapsulated CsPbBr3 QDs in collected sunlight. Materials Research Bulletin, 142, p.111433.
- 12. Patil, S.S., Bhat, T.S., Teli, A.M., Beknalkar, S.A., Dhavale, S.B., Faras, M.M., Karanjkar, M.M. and Patil, P.S., 2020. Hybrid solid state supercapacitors (HSSC's) for high energy & power density: an overview. Engineered Science, 12(4), pp.38-51.
- 13. Bhat, T.S., Mali, S.S., Patil, J.V., Killedar, S.T., Desai, T.R., Patil, A.N., Hong, C.K., Dongale, T.D. and Patil, P.S., 2020. Nanogranular Cadmium Sulfoselenide Thin

Films Grown by Successive Ionic Layer Adsorption and Reaction Method for Optoelectronic Applications. *physica status solidi* (a), 217(15), p.2000002.

- 14. Pawar, K.K., Chaudhary, L.S., Mali, S.S., **Bhat, T.S.,** Sheikh, A.D., Hong, C.K. and Patil, P.S., 2020. In<sub>2</sub>O<sub>3</sub> nanocapsules for rapid photodegradation of crystal violet dye under sunlight. *Journal of colloid and interface science*, 561, pp.287-297.
- 15. Sakhare, P.A., Pawar, S.S., Bhat, T.S., Yadav, S.D., Patil, G.R., Patil, P.S. and Sheikh, A.D., 2020. Magnetically recoverable BiVO<sub>4</sub>/NiFe<sub>2</sub>O<sub>4</sub> nanocomposite photocatalyst for efficient detoxification of polluted water under collected sunlight. *Materials Research Bulletin*, 129, p.110908.
- 16. Bhat, T.S., Mali, S.S., Sheikh, A.D., Tarwal, N.L., Korade, S.D., Hong, C.K., Kim, J.H. and Patil, P.S., 2018. ZnS passivated PbSe sensitized TiO<sub>2</sub> nanorod arrays to suppress photocorrosion in photoelectrochemical solar cells. *Materials Today Communications*, 16, pp.186-193.
- 17. Bhat, T.S., Shinde, A.V., Devan, R.S., Teli, A.M., Ma, Y.R., Kim, J.H. and Patil, P.S., 2018. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films. *Applied Physics A*, 124(1), pp.1-7.
- 18. Bhat, T.S., Mali, S.S., Sheikh, A.D., Korade, S.D., Pawar, K.K., Hong, C.K., Kim, J.H. and Patil, P.S., 2017. TiO<sub>2</sub>/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route. *Optical Materials*, 73, pp.781-792.
- 19. Phaltane, S.A., Vanalakar, S.A., Bhat, T.S., Patil, P.S., Sartale, S.D. and Kadam, L.D., 2017. Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. *Journal of Materials Science: Materials in Electronics*, 28(11), pp.8186-8191.

- 20. Bhat, T.S., Mali, S.S., Korade, S.D., Shaikh, J.S., Karanjkar, M.M., Hong, C.K., Kim, J.H. and Patil, P.S., 2017. Mesoporous architecture of TiO<sub>2</sub> microspheres via controlled template assisted route and their photoelectrochemical properties. *Journal of Materials Science: Materials in Electronics*, 28(1), pp.304-316.
- 21. Bhat, T.S., Devan, R.S., Mali, S.S., Kamble, A.S., Pawar, S.A., Kim, I.Y., Ma, Y.R., Hong, C.K., Kim, J.H. and Patil, P.S., 2014. Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods. *Journal of Materials Science: Materials in Electronics*, 25(10), pp.4501-4511.
- 22. Pawar, S.A., Devan, R.S., Patil, D.S., Burungale, V.V., Bhat, T.S., Mali, S.S., Shin, S.W., Ae, J.E., Hong, C.K., Ma, Y.R. and Kim, J.H., 2014. Hydrothermal growth of photoelectrochemically active titanium dioxide cauliflower-like nanostructures. *Electrochimica Acta*, 117, pp.470-479.