Shivaji University, Kolhapur

Name of Department: Physics

Name of Programme: M.Sc. Physics

Vision

To Develop the Department as a Centre for Advanced Studies in Material Science and Technology.

To integrate Physics and Engineering Courses

Mission

To Start the Courses in the Emerging Areas (as per UGC guidelines) Like Nanotechnology, Computational Physics so as to develop it as Advanced Centre of Material Science and Engineering.

Program Outcomes (PO)

- **PO1** Students are able to apply, and disseminate knowledge of physics in theoretical and experimental domains under different specializations.
- **PO2** Develop the ability to identify, formulate, analyze and solve problems in theoretical and experimental domains of physics at both curricular and research level through critical thinking.
- **PO3** Use ICT based skills and making scientific software literate to apply in academics.
- **PO4** Inculcate research culture, providing research ambience and develop related technical proficiency.
- **PO5** Develop attitude to pursue further research and finding placement avenues through it.
- **PO6** Inculcate academic and social ethical values among the students.

Program Specific Outcomes (PSO)

- **PSO1** Student are able to apply the knowledge of core concepts of physics in semester exams, in the NET, SETand GATE, national level exams as well as in the research level projects work which is suitable to communicate/present further in workshops and conferences
- **PSO2** Through assignments, NET-SET coaching workshops and research based project work in both theoreticaland experimental domains, students are able to revel analytical skills and critical thinking.
- **PSO3** In day to day access to study material, through presentations, students are capable enough to make use ofPowerPoint presentations, Moodle (LMS), Web-based academic links and can also get hands on experience of using proprietary software like Matlab, Mathematica under experiential learning.

PSO4 Through the research culture of the department and skills acquired therein, students are capable of sustaining subsequent academic progression inside the country and overseas as well.

PSO5 Regular practice of Self-declaration of the authenticity, uniqueness of project work, plagiarism check, and departmental scrutiny etc. inculcates the ethics in the research publication.

Course Outcomes		
Course code	Course title	Course Outcomes
		M.Sc. Part-I Semester-I
MSU0325MML936G1	Mathematical Physics	 Students are able to understand the basics of vector spaces and are able to solve special type of matrices that are relevant in physics. Students are able to understand the different ways of solving first and second order differential equations. Students are able to understand and solve the problems based on special functions like Hermite, Bessel, Laguerre and Legendre functions. Students are able to understand fundamentals and applications of Fourier series, Fourier and Laplace transforms, their inverse transforms etc. Students are able to apply Cauchy's theorem, Taylor's theorem and Laurent's theorem for complex analysis
MSU0325MML936G2	Classical Mechanics	 Students are able to understand and solve central force problems and understands the conservation of energy, linear momentum and angular Momentum in system Students are able to understand how to impose constraints on a system in order to simplify the methods used in solving physics problems. Students are able to understand the concept of Poisson brackets and canonical transformations and are able to solve problems on Poisson brackets and canonical transformations. Students are able to understand the concept of special theory of relativity.
MSU0325RML936G	Research Methodology	 Students are able to understand meaning, types, approaches and significance of research Students are able to understand the research designs and methods of data collection Students are able to search the research articles and carry on literature survey. Students are able to understand how to write and submit the research paper, research project and thesis. Students are able to understand applications of various pums and gauges for formation of vacuum and methods of leak detection. Students are able to understand low temperature techniques and microscopic techniques.
MSU0325MEL936G1	Semiconductor Physics	 Student will be able to create, apply, and disseminate the basic properties of semiconductors materials and Physics behind them through solving problems. Student will be able to create the ability to identify, formulate, analyze and solve problems in semiconductors physics. Student will be able to create the quantitative and qualitative understanding of semiconductors.

		4.	Student will be able to apply quantitative and
			qualitative studies for designing the electronic
			devices under various fields
MSU0325MEL936G2	Stellar Evolution:	1.	Students are able to understand the Formation of the
	Birth. Evolution		Stars
	and Death of the	2	Students are able to understand the Stellar Evolution
	Stars	3	Students are able to get more insight about Death of the
	Star 5	2.	Stars
		4	Students are canable of correlating Neutron Stars and Black
			Holes
			nores
MSU0325MFI 036C3	Fundamontals of	1	Students are able to understand Introduction Uniform Fand
WISC0525WIEL/5005	Plasma Physics	1.	B Fields Non-uniform B Field Non-uniform F Field
	i iasina i nysics	2	Students are able to understand Introduction Relation of
		۷.	Plasma Physics to Ordinary Electromagnetics. The Eluid
			Equation of Mation Eluid Drifts Perpendicular to P
		2	Equation of Motion, Fund Diffits Perpendicular tob
		5.	Students are able to get more insight about The Meaning of $f(x)$. Equations of Kinatic Theory. Derivation of the
			Eluid Equations Diagma Oscillations and Landau
			Printic Equations, Flasma Oscillationsand Landau
		4	Students are concluded of correlating Introduction Shoothe
		4.	Students are capable of correlating introduction, Sneaths,
			Ion Acoustic Snock waves, The Ponderomotive Force,
		1	Parametric Instabilities, PlasmaEchoes
MSU0325MEL936G4	Laser	1.	Students are able to create, apply, and disseminate
	Physics	~	theoretical knowledge of laser systems
		2.	Students developed the critical thinking ability to identify
		-	and analyze laser behavior
		3.	Students are encouraged to do research in field of lasers.
		4.	Students develop related skill through practicals based on
			laser applications.
		1	Students are able to understand and coloulate errortal
WISU0325WIMP936G1	Physics	1.	Students are able to understand and calculate crystal
	LaD -1		structure of materials, and identify the different modes
		2	fattice dynamics
		Ζ.	Students are able to understand theory benind B-H curve
		2	and apply for different materials.
		з.	Students are able to understand and able to calculate heat
			capacity of material, and calculate thermal and electrical
		4	Students are able to understand concert of interformed
		4.	students are able to understand concept of interference
		5	Students are able to understand Hall offect and column
		5.	Students are able to understand Hall effect and solve
		~	problems related to it.
		6.	Students are able to analyses critically statistical data using
		7	sontware.
		/.	Students are able to understand fundamental of
			mathematica and are able to solve various problems using
		0	
		8.	Students are able to understand and design circuits of
			astable and monostable multivibrators, amplifiers etc.

MSU0325MMP936G2	Physics Lab –II	 Students are able to write and submit certified seminar reports. Students are able to present their practical seminar work. Students are able to understand the physics behind the experiment. Students are able to write the tutorial based on practicals.
		M.Sc. Part-I Semester-II
MSU0325MML936H1	Quantum Mechanics	 Students are able to understand different types of operators used in quantum mechanics and are able to use them to solve different problems. Students are able to understand and solve problems related to Variational Method and WKB Approximation. Students are able to understand Perturbation Theory, semi-classical theory of radiation. Students are able to understand and calculate Time- dependent potentials and are also able to understand time- independent potentials Students are able to understand scattering theory.
MSU0325MML936H2	Condensed MatterPhysics	 Students are able to understand different crystal structures, interaction with X-ray and also understands various properties about crystals Students are able to understand different types of crystal defects. Students are able to understand different properties of semiconducting and superconducting properties Students are able to understand theoretical background of dielectric and magnetic properties of material
MSU0325FPP936H	Field Project	 Student will be able to apply, and disseminate the basic Physics to solve the problems. Student will be able to create the ability to identify, formulate, analyze and solve problems in industry. Student will be able to create the quantitative and qualitative understanding of properties of materials and physics behind them. Student will be able to apply quantitative and qualitative studies for designing the materials and materials based devices.

		4	
MSU0325MEL936H1	Semiconductor	1.	Student will be able to apply and disseminate the basic
	Devices		properties of semiconductors materials and Physics
			behind them through solving problems.
		2	Student will be able to understand the basics of
			fabrication of Transistors and microwave devices
			Distonia devices and memory devices.
		•	Photomic devices and memory devices.
		3.	Student will be able to understand Magneto-optic
			and acousto-optic effects, Material's properties
			related to get these effects.
		4.	Student will be able to understand Piezoelectric,
			Electrostrictive and Magnetostrictive effects.
			Sensors and actuator devices
MCU0225MEL 024U2	Magnatagnharia	1	To yunderstand the earth's mean stic field and
WISUUS25WIEL950H2	Magnetospheric	1.	To understand the earth's magnetic field and
	Plasma Dynamics		magnetosphere
		2.	To understand reconnection at magnetopause
		3	To understand magnetospheric configuration
		4	To understand acome anotic storms
		4.	ro understand geomagnetic storms
MSU0325MEL936H3	Interaction of	1.	Students are able to understand and apply fundamental
	electromagnetic		Maxwell's equations in context of dispersions
	waves with		nhenomenon
	alastnan haama	n	Students are able to understand coupled mode equations
	electron beams	Ζ.	Students are able to understand coupled mode equations
	and plasmas		and the phenomenon of mode conversion very critically.
		3.	Students are able to understand basic phenomenon of
			self- focusing of laser beams in plasmas and successfully
			completed project work on it.
		4.	Students are able to understand fundamental of NLS.
			concept of soliton
MCU0225MEL 02/U/	Malaan	1	Students are able to greate apply, and discominate
WISCUS25WIEL950H4	Niolecular	1.	students are able to create, apply, and disseminate
	Spectroscopy	-	theoretical knowledge of spectroscopic techniques
		2.	Students developed the critical thinking ability to
			identify and analyse properties of Material
		3.	Students are encouraged to do research in field of
			Spectroscopy.
		4.	Students develop related skill through practicals based
			on spectroscopy
MSU0325MMP036H1	Practical Lab -	1	Students are able to understand deep knowledge of
	TTT	1.	fourier analysis, passive filters and solar call
	111	2	
		2.	Students are able to understand thermal diffusivity of
			brass, mutual inductance of coil and series and parallel
			resonant circuits.
		3.	Students are able to understand numerical solutions of
			and plotting of simple functions using python.
		4	Students are able to understand fundamental and
			programming of mathematica includes 2D and 3D plots
		5	Students are able to understand grustal structure
). (Students are able to understand divisial structure.
		0.	Students are able to understand plank's constant.
		1.	Students are able to understand deep knowledge of
			fourier analysis, passive filters and solar cell.
		8.	Students are able to understand thermal diffusivity of
			brass, mutual inductance of coil and series and parallel

		reconant circuita
		 Students are able to understand numerical solutions of and plotting of simple functions using python. Students are able to understand fundamental and programming of mathematica includes 2D and 3D plots.
MSU0325MMP936H2	Practical Lab - IV	 Students are able to write and submit certified seminar reports. Students are able to present their practical seminar work
		 Students are able to present then practical seminar work. Students are able to understand the physics behind the experiment. Students are able to write the tutorial based on practicals.
	l	M.Sc. Part-II Semester-III
MSU0325MML916I1	Statistical Mechanics	 Students are able to understand and think critically Basic concepts, Statistical Equilibrium and thermodynamic Laws and Functions Students are able to understand and solve numerical Statistical Ensembles Theory. Students are able to understand and apply Quantum distribution functions. Students are able to understand Phase Transitions and
		Critical Phenomenon.5. Students are able to understand Entropy and specific heat of a perfect gas, Entropy and probability distribution.
MSU0325MML916I2	Atomic and Molecular Physics	 Students are able to understand and distinguish Atom Model for Two Valence Electrons i. e. 1-s coupling, j-j coupling and the Pauli exclusion principle. Students are able to understand and differentiate various Zeeman Effect, Paschen-Back Effect and Stark basic effect Students are able to understand basic phenomenon of microwave spectroscopy and Classification of molecules. Students are able to understand fundamental the simple harmonic oscillator, the anharmonic oscillator instrumentation and chemical analysis by infra-red spectroscopy.
MSU0325MEL916I1	Thin solid films: Deposition and properties	 Students are able to understand the various physical deposition technique for thin film preparation Students are able to understand the different chemical methods mechanism and preparation of compound thin film. Students are able to get more insight about mechanism of nature, structure, and growth of the crystallographicfilms. Students are capable of correlating electric, magnetic and optical properties of the thin film with crystalline

			structure
MSU0325MEL916I2	Ionospheric	1.	To understand the Physical and Chemical process in
	Physics and		Atmosphere
	Space Weather	2.	To understand Ionosphere
	•	3.	To understand Implications of Space weather effects
		4.	To understand Global Navigation Satellite System
			(GNSS)
MSU0325MEL916I3	Introduction to	1.	Students get acquainted with the geometric approachto
	General		special relativity.
	Relativity	2.	Students learned vectors and tensors and its
			importance in general relativity
		3.	Students learned elements of fluid dynamics
		4.	Students learned the concept of non-Euclidean
			geomentry
		5.	Students learned to construct field equations for a
			given matter distribution.
		6.	Students learned to solve Einstein's field equations
			forspherical mass distribution.
MSU0325MEL916I4	Nonlinear Optics	1.	To create, apply, and disseminate theoretical
	and Fiber Optics		knowledge of Nonlinear Effects
		2.	To develop the critical thinking ability to identify and
			analyse nonlinear phenomena
		3.	To encourage research in field of Non-linear optics
		4.	To develop related skill through practicals based on
			nonlinear phenomena
RP-PH1	Research Project-	1.	Students are able to do literature survey based on thrust
	Ι		area.
		2.	Students are able to design research problem and develop
			hypothesis.
		3.	Students are able to synthesis the different materials.
		4.	Students are able to characterize the materials for
		~	different applications.
		5.	Students are able to make conclusions based on results of
		1	characterizations.
MSU0325MMP91611	SOLID STATE	1.	Students are able to understand all the thin film
(SSP- V &VI)	PHYSICS LAB –	2	deposition techniques.
		2.	Students are able to understand different synthesis
		2	techniques the thin film.
		3.	Students are able to study the physical properties of thin
		4	film by ARD, FIIR and analyses them.
		4.	film by SEM EESEM and analyzed them
MSU0325MMD01411	Modorn Ontion	1	Students are able to understand Michelson Interforemeter
(MO V & VI)	IAR V & VI	1.	experiment and apply theory behind it
		2	Students are able to understand ontical absorption, theory
		۷.	behind it and application about it
		3	Students are able to calibrate optical instrument such as
		5.	the spectrograph Constant Deviation spectrograph etc
		Δ	Students are able to understand basics of different spectra
		4.	students are able to understand basics of different spectra

		and hologram as well as recording the same.
MSU0325MMP916I1 (SP- V &VI)	Space Physics LAB –V & VI	 Students are able to understand and apply programming language such as Python and MatLab Students are able to understand and apply Proton precession magnetometer. Students are able to understand and apply Amplitude Modulation. Students are able to understand and able to compute NavIC-IRNSS: Data Mining and analysis using MatLab. Students are able to understand and apply Total electron content by NavIC-IRNSS. Students are able to analyses critically Solar Data Analysis-I and II for Electromagnetic and Energetic particle respectively.
MSU0325MMP916I1 (THP- V &VI)	Theoretical Physics LAB –V & VI	 Students are able to understand Mathematica. Students are able to understand Symbolic Manipulations Students are able to understand and apply mathematica functions. Students are able to analyse mathematica plot
	I	M.Sc. Part-II Semester-IV
MSU0325MML916J1	Electrodynamics	 Students are able to understand and solve E.M. wave equations in waveguide of the arbitrary cross section: TE and TM modes. Students are able to understand and analyze Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction. Students are able to understand the applications to linear and circular motions: cyclotron and synchrotron radiations. Students are able to understand the Cerenkov radiation and Bremsstrahlung. Students are able to understand the Structure of Space time, Relativistic Mechanics. Students are able to understand and solve numerical on Relativistic Energy and Momentum, Relativistic Kinematics, Relativistic Dynamics, Relativistic Electrodynamics, Magnetism as a Relativistic Phenomenon.
MSU0325MML916J2	Nuclear and Particle Physics	 Students are able to understand the nuclear forces and their potentials to apply for experiments Students are able to analyze the single particle nuclear shell model and related phenomena Students are able to understand and apply selectionrule

			of elementary particles and fission, fusion reactions.
		4.	Students are able to understand and apply the
			Gellmann Nishijima formula to solve numerical
			problems.
RP-PH2	Research Project-	1.	Students are able to pursue further research in the
	II		subject related to project work.
		2.	Students are able to submit satisfactory prototype and
			thesis/ Dissertation.
		3.	Students are able think critically to analyse the given
		0.	problem for getting its solution.
MSU0325MEL916.I1	Physical	1.	Students are able to understand electrical conductivity
	Properties of		of metals
	solids	2	Students are able to understand transport properties of
		2.	metals
		3	Students are able to understand concepts of Phonons
		5.	Plasmons Polaritons and Polarons
		4	Students are able to understand concepts of Point
		ч.	defects and Luminescence
MSU0325MEI 91612	Astronbysics of	1	Students are able to understand the basic structure of sun
10150052510121271052	the Sun	1.	and get briefly accounted with Helioseismology.
	the Sun	2.	Students are able to understand the various data
			analysis techniques to drag the information.
		3.	Students are able understand real environment of thesun
			with various field at its surface.
		4.	Students are able to understand the surface structure of
			sun and various models regarding its theories.
MSU0325MEL916J3	Introduction to	1.	Students will learn the classical field theory
	Quantum Field	2.	Students will learn the canonical quantization of
	Theory		classical fields for spin-0, spin-1 and spin-1/2 particles
		3.	Students will learn to use Feynman diagram tool to
			solve scattering problems in particle physics
		4.	Students will learn to quantize the electromagnetic
			field with path integral approach
		5.	Students will learn to do the tree-level computation of
			cross- sections and decay processes
		6.	Students will learn radiative corrections in QFT,
			namely vacuum polarization, vert ex correction and
			self-energy.
MSU0325MEL916J4	Holography and	1.	To create, apply, and disseminate theoretical
	Its applications		knowledge of Holography
		2.	To develop the critical thinking ability to apply
			holographic techniques in various fields
		3.	To encourage research in field of Holography
		4	To develop related skill through practicals based on
			holography
MSU0325MMP916.11	SOLID STATE	1	Students are able to do synthesis different metal oxides
(SSP- VII)	PHYSICS LAB –	1.	using different techniques
	VII		using unrerent teeninques.

		2.	Students are able to do characterization of thin films.
		3.	Students are able to analysis results of thin films.
		4.	Students are expertise in the preparation and
			characterization of thin film.
MSU0325MMP916J1	SPACE	1.	Students are able to know about radar system.
(SP- VII)	PHYSICS LAB -	2.	Students are able to understand and to handle IRNSS.
	VII	3.	Students are able understand the constellations.
		4.	Students are able to understand structure of ionosphere
			& magnetoshpere.
MSU0325MMP916J1	THEORETICAL	1.	Students are able to set experiential learning of
(TH- VII)	PHYSICS LAB –		Theoretical aspects.
	VII	2.	Students are able to modify and design the setup the
			experiments.
		3.	Students are able to interpret the experimental findings
			using existing Theoretical framework.
MSU0325MMP916J1	MODERN	1.	Students are able to calculate vibrational parameters of
(MO- VII)	OPTICS LAB –		CN, AlO, C2
	VII	2.	Students are able to understand the theory of molecular
			transitions and apply it to analyze mixtures.
		3.	Students are able to measure Brewster angle and apply
			it to measure optical behavior of materials like glass.
		4.	Students are able to demonstrate optical phenomenon
			to determine the wavelength of light by grating