#### Name of the Department : Department of Chemistry

1) From the Desk of Head in 200 Words.:

The Department of Chemistry is involved in both teaching and research. In teaching the Department is training the next generation students and enable them to lead the nation in chemistry. The training received by the students enabled them to achieve major positions in industries and research & academic institutions. The competency of the Department in research ranges from development of green synthetic methodologies, material science, solar energy harvesting, molecular modelling and cost effective methods for pollution control. The expertise available in the Department in thrust areas of research has also received recognition from funding agencies like UGC, DST, DAE and BRNS by sanctioning various major projects to the faculty. The department has also signed MoU with National and International organizations. The Department has also produced distinguished Alumni among which many have been Vice-Chancellors of various Universities. Presently about 30 Research Scholars are working in the department for their Doctoral Degree. The department has received grants from both UGC under SAP (I Phase & II Phase) programme and DST under FIST (Phase I) programme for their joint effort in current research areas. Many of our alumni are also in leading positions in foreign industries and industries.

2) Brief History of the department along with present focus in academic & research-150 words.:

The Department of Chemistry was established in 1964 with an intake of 20 students and has grown immensely during the last five decades. Presently, the department is running six M.Sc. Courses; M.Sc. in Inorganic, Organic, Physical, Analytical and self supporting courses in Applied as well as Industrial Chemistry with a combined intake of about 200 students. Along with post graduate courses in six different branches M. Phil and Ph.D. programme in Chemistry are also conducted. The number of Alumni of the department has crossed over 5000 as on today. The faculty members are actively engaged in research in Frontier Areas of Chemistry and Interdisciplinary Areas. The Department has also produced distinguished Alumni among which many have been Vice-Chancellors of various Universities. The faculty at present have international recognition and have been received awards in their recognition.

3) Vision :

Aspiring for best education in chemistry and allied sciences. Developing the department as a center of excellence in research in chemistry.

4) Mission

To train the graduates into an efficient and compatible post-graduate. To offer courses in the emerging areas in the disciplines like environmental chemistry, Agrochemistry, Photochemistry, Nano Technology, material Science and Molecular Modelling.

5) Core Values of the Department

To furnish the skilled man power to industries like Pharmaceutical, dyes, polymer and agrochemical.

Development and optimization of green synthetic methodologies for Functional materials. To be a best resource for chemistry.

Strengthen the collaboration with Institutions and Universities of International repute as well as Industries.

Absolute utilization of available facilities. Provide the analytical and consultancy services to industries.

| Sr. | Programme                      | Intake |  |
|-----|--------------------------------|--------|--|
| No. |                                |        |  |
| 1   | M. Sc. In Inorganic Chemistry  | 33     |  |
| 2   | M. Sc. In Organic Chemistry    | 33     |  |
| 3   | M. Sc. In Physical Chemistry   | 20     |  |
| 4   | M. Sc. In Analytical Chemistry | 18     |  |
| 5   | M. Sc. In Applied Chemistry    | 60     |  |
| 6   | M. Sc. In Industrial Chemistry | 40     |  |

#### 6) Academic Program offered with intake

- a) Outcome base Education :
- b) Program Education Objectives Annexure I
- c) Program Outcomes : Annexure I
- d) CBCS with course structure : Annexure II
- 7) Faculty Details ( Details of Faculty in one page): Annexure III
- 8) Details of Research Laboratories & infrastructure with photographs : Annexure IV
- 9) NET/SET Qualified Students :

|    | NET/SET               |
|----|-----------------------|
| 1  | Mr. Nitin Mhamane     |
| 2  | Mr. Pradeep Mhaldar   |
| 3  | Mr. Vikas Shinde      |
| 4  | Mr. Praveen Pharande  |
| 5  | Mr. Amol Nikam        |
| 6  | Miss. Anita Salunkhe  |
| 7  | Mr. Rohan D. Chavan   |
| 8  | Mr. Arjun Bhingare    |
| 9  | Mr. Aviraj Kuldeep    |
| 10 | Mr. Suyog Korade      |
| 11 | Mr. Sunil Zanje       |
| 12 | Miss. Anita Salunkhe  |
| 13 | Mr. Somanath Bhange   |
| 14 | Mr. Samadhan Deshmukh |
| 15 | Mr. Vinayak Gawade    |
|    |                       |

- 10) Student Placements. : Annexure V
- 11) Details of MoUs and Linkages :
  - 1. National Dong Haw University, Taiwan
  - 2. M/s Lupin Limited , Thane, Maharashtra
  - 3. Phyto Pharma Pvt. Ltd. (Gokul Shirgaon)
  - 4. Chandi Kharkhandar Association Hupari

12) Extracurricular and extension activities

- 13) List of Distinguished Alumni
  - 1. Prof. M. M. Salunkhe, Hon'ble Vice-Chancellor, Bharti Vidyapeeth, Pune
  - 2. Prof. B. P. Badgar, Former Vice-Chancellor, Solapur Vidyapeeth, Solapur.
  - 3. Prof. N. N. Maldar, Former Vice-Chancellor, Solapur Vidyapeeth, Solapur.
  - 4. Prof. P. P. Mahulikar, Hon'be Pro-Vice-Chancellor, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon.
  - 5. Dr. P. P. Wadgaonkar, Emeritus Scientist, National Chemical Laboratory, Pune.

14) Future roadmap of the department

- 1. Organization of symposia/ Conferences in thrust areas.
- 2. Construction of new building including research laboratories, practical labs and classrooms for Industrial and Applied Chemistry.
- **3.** Modification of curricula of M.Sc., M. Phil. and Ph. D. course work in consultation with experts from nearby industries and research institutes.
- 4. Research Plan of the Department in the following areas:
  - Green synthesis Nanotechnology Hydrogen generation by water splitting Hybrid solar cells Catalysis Development of new methods in separation of metals Molecular modeling Organometallic chemistry
- 15) Media coverage of the Department

# Annexure I: Course Outcome, Program Outcome and program Specific outcomes

| Semest   |        | M. Sc. in        | M So in Organia                | M. Sc. in         | M. Sc. in       |
|----------|--------|------------------|--------------------------------|-------------------|-----------------|
|          |        | Inorganic        | M. Sc. in Organic<br>Chemistry | Physical          | Analytical      |
| er       |        | U                | Chemistry                      | •                 | •               |
| T and TT | C      | Chemistry CII    | Demonstration CIL 1.2          | Chemistry CI      | Chemistry CI    |
| I and II | Course | Paper –CH-       | Paper –CH-1.2:                 | Paper –CH-        | Paper –CH-      |
|          | outcom | 1.1: Inorganic   | Organic Chemistry-             | 103: Physical     | 104:            |
|          | e      | Chemistry-I      |                                | Chemistry-I       | Analytical      |
|          |        | Students will    |                                | The course        | Chemistry-I     |
|          |        | be able to       | knowledge about                | deals with        | This course     |
|          |        | understand the   | the mechanism of               | revision and      | introduces .    |
|          |        | basic nature of  | e                              | application of    | error in        |
|          |        | inorganic        | will be given along            | thermodynami      | methods of      |
|          |        | materials, their |                                | c and statistical | analysis,       |
|          |        | spectroscopic    | benzenoid structure            | thermodynami      | fundamentals    |
|          |        | characteristics, | and stereochemistry            | c principles in   | of qualitative  |
|          |        | nomenclature,    | is given to the                | ideal and real    | analysis,       |
|          |        | reactions and    | students.                      | systems. The      | chromatograph   |
|          |        | their            |                                | chemistry and     | ic analysis and |
|          |        | applications.    |                                | physical          | electrochemica  |
|          |        |                  | Paper –CH-2.2:                 | properties of     | l analysis.     |
|          |        |                  | Organic Chemistry-             | macromolecule     |                 |
|          |        |                  | II                             | s and colloidal   |                 |
|          |        |                  | In this course                 | solutions is      |                 |
|          |        | Paper –CH-       | Students will be               | also dealt with   |                 |
|          |        | 2.1: Inorganic   | able to understand             | in this course.   | Paper –CH-      |
|          |        | Chemistry-II     | the various                    | Paper –CH-        | 204:            |
|          |        | This course      | methodologies                  | 203: Physical     | Analytical      |
|          |        | introduce the    | utilized in organic            | Chemistry-II      | Chemistry-II    |
|          |        | basic            | synthesis like                 | In this course    | This course     |
|          |        | understanding    | hydroboration,                 | basic             | introduces      |
|          |        | of               | oxidations,                    | knowledge         | various         |
|          |        | stereochemistr   | reductions and                 | about quantum     | instrumental    |
|          |        | y of inorganic   | protection of                  | -                 | methods of      |
|          |        | compounds,       | functional groups. It          | photochemistr     | analysis        |
|          |        | solid state      | also deals with                | y,                | including UV-   |
|          |        | chemistry as     | photochemistry of              | electrochemistr   | VIS, IR, NMR,   |
|          |        | well as          | organic compounds              | y and chemical    | mass, Thermal   |
|          |        | bioinorganic     | and organometallic             | kinetics will be  | and atomic      |
|          |        | chemistry.       | compounds.                     | given.            | spectroscopy.   |
|          |        | enemistry.       | compoundo.                     | Briom             | speedose op j.  |
|          |        |                  | Paper – OCH IX:                |                   |                 |
|          |        |                  | Ĩ                              |                   |                 |
|          |        |                  |                                |                   |                 |
|          |        |                  |                                |                   |                 |
|          |        |                  |                                |                   |                 |
|          |        |                  |                                |                   |                 |
|          |        |                  |                                |                   |                 |
| III and  |        | Paper –ICH-      | Paper No. OCH- IX:             | Paper No.         | Paper No.       |
| IV       |        | IX: Inorganic    | -                              | PCH- IX:          | ACH- IX:        |

| chemical<br>spectroscopy.<br>The detailed<br>knowledge<br>about group<br>theory,<br>electronic<br>absorption<br>spectroscopy,<br>IR, NMR and<br>X-ray<br>photoelectron<br>spectroscopy is<br>given.                                    | REACTION<br>MECHANISM<br>This course gives<br>very wide<br>understanding about<br>the organic reaction<br>mechanism which is<br>very helpful for<br>students in<br>preparation of NET,<br>SET and Gate<br>examination.<br>In this program,<br>Students also<br>benefited in their<br>higher study who<br>will join for PhD or<br>in R and D sector of<br>chemical industries.<br>This also helps to<br>enter for the higher<br>studies in National<br>and International<br>institute based on<br>their ability of<br>theoretical organic<br>chemistry. | Advanced<br>quantum<br>chemistry.<br>The course is<br>intended to<br>give intensive<br>learning to the<br>students about<br>fundamental<br>principles as<br>well as<br>advanced<br>methods of<br>quantum<br>chemistry like<br>variation<br>principle,<br>perturbation<br>theory, Ab<br>initio methods<br>and semi<br>empirical<br>methods. | General<br>analytical<br>techniques.<br>This course<br>introduces the<br>theoretical<br>aspects of<br>volumetric and<br>gravimetric<br>analysis as<br>well as<br>separation<br>techniques and<br>thermal<br>methods of<br>analysis. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paper –ICH-X:<br>Coordination<br>Chemistry I.<br>The valence<br>bond and<br>crystal field<br>theory,<br>structural<br>study of<br>coordination<br>complexes and<br>their catalytic<br>applications<br>are discussed<br>in this course. | Paper No. OCH -X:<br>ADVANCED<br>SPECTROSCOPIC<br>METHODS<br>This program gives<br>students a solution<br>of identification of<br>organic compounds<br>during their higher<br>studies. This offers<br>very good<br>opportunity to<br>students for their<br>bright career in<br>organic chemistry<br>based on the good<br>knowledge of this<br>program. This is<br>useful course to<br>qualify an<br>examination like                                                                                                                                   | Paper No.<br>PCH- X:<br>Electrochemist<br>ry.<br>This course<br>deals with<br>principles of<br>electrochemistr<br>y incorporating<br>the industrially<br>important<br>electrochemica<br>1 topics like<br>electrokinetic,<br>fuel cells,<br>corrosion,                                                                                      | Paper No.<br>ACH- X:<br>Organo<br>analytical<br>chemistry.<br>The analysis of<br>organic<br>compounds<br>including drug,<br>pesticide,<br>clinical, body<br>fluid, forensic<br>analysis and<br>hyphenated<br>techniques.            |

| l                | NET, SET and                    | electrode       |                 |
|------------------|---------------------------------|-----------------|-----------------|
|                  | GATE.                           | reactions and   |                 |
|                  | UATE.                           | ion-solvent     |                 |
|                  | Demon No. OCH                   | interactions.   |                 |
|                  | Paper No. OCH -<br>XI: ADVANCED | interactions.   |                 |
| Dense ICH        |                                 |                 |                 |
| Paper –ICH-      | SYNTHETIC                       |                 | Danan Ma        |
| XI: Nuclear      | METHODS                         |                 | Paper No.       |
| chemistry.       | The knowledge of                |                 | ACH-XI:         |
| The generation   | the reagents helps              |                 | Electroanalytic |
| and              | students during                 |                 | al techniques.  |
| applications of  | their higher studies            | Paper No.       | The             |
| alpha, beta and  | specifically in PhD             |                 | electrochemica  |
| gamma            | and in R and D                  | Molecular       | 1 techniques    |
| radiations,      | department of                   |                 | fro analysis    |
| nuclear          | industry in                     | This course     | like cyclic     |
| reactions and    | development of new              | introduces      | voltammetry,    |
| their            | synthetic route for             | fundamental     | coulometry,     |
| significance, as | valuable                        | aspects as well | ion selective   |
| well as          | compounds by                    | as problem      | electrodes and  |
| stability of the | using suitable                  | solving         | electrophoresis |
| nucleus is       | reagents since they             |                 | is delt with in |
| deliberated in   | know the role of                | 1 1             | this course.    |
| this course.     | reagents in a                   | 1               |                 |
|                  | particular reaction.            | microwave,      |                 |
|                  | They can also                   | ,               |                 |
|                  | utilize advanced                |                 |                 |
|                  | techniques like                 |                 |                 |
|                  | microwaves, ionic               | 1 17            |                 |
|                  | liquids, ultrasound             | The prediction  |                 |
|                  | etc during their                | of .            |                 |
|                  | higher studies. In              | spectroscopic   |                 |
|                  | addition, retro-                | 1 1             |                 |
|                  | synthetic analysis              | based upon the  |                 |
|                  | technique helps for             | molecular       |                 |
|                  | the study and                   | structure and   |                 |
|                  | design of a new                 | its symmetry is | Daman           |
|                  | reaction.                       | also taught in  | Paper No.       |
| Demor ICII       | Doman No OOU                    | this course.    | ACH- XIIA:      |
| Paper –ICH-      | Paper No. OCH -                 |                 | Environmental   |
| XIIA:            | XII: DRUG AND                   |                 | chemical        |
| Environmental    | HETEROCYCLE                     |                 | analysis and    |
| chemistry.       | This basically offers           |                 | control.        |
| Various          | very good                       |                 | The sampling    |
| pollution        | opportunity to                  |                 | techniques,     |
| aspects of air   | students in                     |                 | analysis of air |
| and water,       | pharmaceutical                  |                 | and water       |
| pollution        | industries in quality           |                 | samples for     |
| monitoring,      | control and                     | Dense N         | assessment of   |
| control and      | production division.            | Paper No.       | their pollution |
| prevention       | Based on this,                  | PCH- XII A:     | level will be   |

| mathada far     | students also        | A dream and      | tomate in this |
|-----------------|----------------------|------------------|----------------|
| methods for     | students also        |                  | taught in this |
| pollution is    | entered in R and D   | chemical         | course.        |
| discussed in    | department of        |                  |                |
| this course.    | pharmaceutical       | Prediction of    |                |
|                 | industries.          | reaction         |                |
|                 |                      | mechanism on     |                |
|                 |                      | the bases of     |                |
|                 |                      | kinetic data     |                |
|                 |                      | like, effect of  | Paper No.      |
| Paper –ICH-     |                      | hydrogen ion,    | ACH- XIIB:     |
| XIIB:           |                      | nature of        | Recent         |
| Organometalli   |                      | electron         | advances in    |
| c chemistry.    |                      | transfer and     | analytical     |
| The techniques  |                      | effect of        | chemistry.     |
| of methods of   |                      | catalyst will be | The advances   |
| synthesizing    |                      | discussed in     | in analytical  |
| organometallic  |                      | this course. the | chemistry like |
| compounds       |                      | carcinogenic     | radiochemical, |
| and their       |                      | oxidant like     | electron spin  |
| application in  |                      | chromium(VI)     | resonance,     |
| various         |                      | and its          | multinuclear   |
| chemical        |                      | mechanisms       | nuclear        |
| reactions is    |                      | are also dealt   | magnetic       |
| given in this   |                      | with in this     | resonance are  |
| course.         |                      | course.          | introduced in  |
|                 | Paper No. OCH -      | Paper No.        | this course.   |
| Paper –ICH-     | XIII:                | PCH- XII B:      | Paper No.      |
| XIIC: Selected  | THEORETICAL          | Radiation and    | ACH- XIIC:     |
| topics in       | ORGANIC              | photochemistr    | Chemical       |
| inorganic       | CHEMISTRY            | y.               | analysis in    |
| chemistry.      | This gives good      | This course      | agro, food and |
| In this course, | 0 0                  | deals with the   | -              |
| industrially    | aromatic             | types of         | industries.    |
| related topics  | compounds and that   | radiation with   | The analytical |
| like catalysis, | help students to     | special          | methods used   |
| inorganic       | qualify NET, SET     | reference to     | in agro, food  |
| polymers and    | and GATE             | Lasers, basic    | and            |
| fretilizers are | examination in       | photochemistr    | pharmaceutical |
| discussed in    | future. The          | y and            | industries is  |
| reference to    | understanding of     | mechanism of     | introduced in  |
| their           | Huckel's rule help   | photochemical    | this course.   |
| production and  | students to know     | reactions.       | Paper No.      |
| characterizatio | the reactivity of    |                  | ACH- XIII:     |
| n.              | aromatic             |                  | Modern         |
|                 | compounds that can   |                  | separation     |
|                 | be very helpful in   |                  | methods in     |
| Paper –ICH-     | their higher studies |                  | analysis.      |
| XIII:           | like PhD.            |                  | The course     |
| Instrumental    | Paper No. OCH -      |                  | introduces     |
| techniques.     | XIV:                 |                  | modern         |
| aconniques.     | ZXI V .              | 1                | mouch          |

| The             | STEREOCHEMIST        |                  | concretion      |
|-----------------|----------------------|------------------|-----------------|
|                 |                      |                  | separation      |
| instrumental    | RY                   | Paper No.        | methods like    |
| techniques      | The study of         |                  | high            |
| like XRD,       | stereochemical       | Solid state      | performance     |
| Thermal         | aspects of organic   | chemistry.       | liquid          |
| analysis,       | molecules gives      | Introduction to  | chromatograph   |
| Mossbaur        | very important tool  | crystallograph   | y, ion          |
| spectroscopy,   | in assigning the     | y, solid state   | chromatograph   |
| ESR and NQR     | properties of        | reactions,       | y and gas       |
| used for        | bioactive            | preparation      | chromatograph   |
| characterizatio | molecules. Latter is | and electronic   | y.              |
| n of inorganic  | helpful in designing | properties of    | 5               |
| materials are   | of new bioactive     | materials along  |                 |
| discussed in    | molecules with       | with polymeric   |                 |
| detail.         | specific             | materials is     |                 |
| uctail.         | stereochemical       |                  |                 |
|                 |                      |                  | Donon N-        |
|                 | properties in R and  | this course.     | Paper No.       |
|                 | D department of      |                  | ACH- XIV:       |
|                 | pharmaceutical       |                  | Organic         |
|                 | chemistry and drug   |                  | industrial      |
| Paper-ICH-      | design.              |                  | analysis.       |
| XIV:            |                      |                  | The analysis of |
| Coordination    |                      | Paper No.        | oils, fats,     |
| chemistry II.   | Paper No. OCH -      | PCH- XIV:        | soaps,          |
| The reactions   | XV: CHEMISTRY        | Thermodynami     | detergents,     |
| involving       | OF NATURAL           | cs and           | paints,         |
| coordination    | PRODUCTS             | molecular        | petroleum       |
| complexes like  | The students can     |                  | products and    |
| electron        | apply their          | The              | cosmetics will  |
| transfer,       | knowledge for        | understanding    | be discussed in |
| substitution    | synthesis of various | of molecular     | this course.    |
| and             | natural products in  | interactions     | uns course.     |
|                 | -                    |                  |                 |
| strereochemistr | their research and   | from the gross   |                 |
| y as well as    | also aware about     | -                |                 |
| photochemistr   | the natural          | c properties. It |                 |
| y and their     | resources of         | also give        |                 |
| applications    | important natural    | information      |                 |
| are discussed   | products.            | regarding        |                 |
| in this course. |                      | modelling of     |                 |
|                 |                      | molecular        |                 |
|                 |                      | interactions.    |                 |
|                 |                      |                  | Paper No.       |
|                 |                      |                  | ACH- XV:        |
|                 |                      |                  | Advanced        |
|                 |                      |                  | methods in      |
|                 |                      |                  | chemical        |
|                 |                      |                  | analysis.       |
| Paper-ICH-      |                      |                  | The kinetic     |
| XV: Chemistry   | Paper No. OCH -      | Paper No.        | methods,        |
| of inorganic    | XVIA: APPLIED        | PCH- XV:         | fluorescence,   |
| 1000000000      |                      |                  |                 |

| materials.   | ORGANIC              | Chemical        | photoelectron     |
|--------------|----------------------|-----------------|-------------------|
| As the na    |                      | kinetics.       | spectroscopic     |
|              |                      |                 |                   |
|              | his This knowledge   | The course      | and X-ray         |
|              | als helps to get     |                 | spectroscopic     |
| with         | the placement to the | -               | analysis will     |
| chemical,    | students in          | fast reactions, | be dealt with     |
| magnetic,    | agrochemicals,       | theories of     | in this course.   |
| optoelectro  |                      | reaction rates, |                   |
| and          | pharmaceuticals,     | heterogeneous   |                   |
| electrolytic | dyes, polymers       | catalysis and   |                   |
| properties   | of industries.       | mechanism of    |                   |
| inorganic    |                      | organic         |                   |
| materials    | as                   | reactions.      |                   |
| well as      | the                  |                 |                   |
| inorganic n  | ano                  |                 |                   |
| materials.   |                      | Paper No.       |                   |
|              |                      | PCH- XV:        |                   |
|              |                      | Molecular       |                   |
|              |                      | structure II.   |                   |
|              |                      | This course in  | Paper No.         |
|              |                      | introduces      | ACH- XVI A:       |
|              |                      | theoretical     | Applied           |
|              |                      | aspects of      |                   |
|              |                      | electrical and  | Chemistry.        |
|              |                      | magnetic        | The course        |
|              |                      | properties of   |                   |
|              |                      | the materials   | analysis of       |
| Paper-ICH-   |                      | as well as the  | metals, alloys,   |
| XVIA:        |                      | nuclear         | soil, fertilizers |
| Separation   |                      | magnetic and    | and explosives.   |
| science.     |                      | electron spin   | and explosives.   |
| Various      |                      | 1               |                   |
|              |                      | resonance       | Paper No.         |
| separation   | ilro                 | spectroscopy.   | 1                 |
|              | ike                  | Denen Me        |                   |
| solvent      |                      | Paper No.       | Techniques in     |
| extraction,  | nh                   | PCH- XVI A:     | forensic          |
| chromatogr   | -                    | Surface         | science.          |
| ic           | and                  | chemistry.      | The analytical    |
| electrochen  |                      | The chemistry   | techniques        |
| 1 are discus |                      | of surfaces,    | used in           |
| in detail al | -                    | colloids,       | forensic          |
|              | eir                  | emulsions and   | science like      |
| applications |                      | various         | analysis of       |
|              |                      | interfaces are  | poisons and       |
| Paper-ICH-   |                      | discussed in    | analytical        |
| XVIB:Radi    | tio                  | this course.    | microbiology      |
| n chemistry  |                      |                 | will be taught    |
| Different ty |                      |                 | in this course.   |
| of isoto     | es,                  |                 |                   |
| their        |                      | Paper No.       |                   |

|        | separation and  |                       | PCH- XVI B:      |                               |
|--------|-----------------|-----------------------|------------------|-------------------------------|
|        | biological      |                       | Chemistry of     | Paper No.                     |
|        | applications of |                       | materials.       | ACH- XVIC:                    |
|        | isotopes as     |                       | The chemistry    | Computational                 |
|        | well as         |                       | of glasses,      | chemistry.                    |
|        | Principles of   |                       | ceramics,        | The course                    |
|        | tracer          |                       | composites,      | deals with                    |
|        | chemistry and   |                       | nanomaterials,   | scientific                    |
|        | radiation       |                       | superconductin   | computer                      |
|        | detection       |                       | g materials and  | languages like                |
|        | €measurement    |                       | their properties | _ ~ ~                         |
|        |                 |                       | is discussed in  | 11                            |
|        | s is dealt with |                       |                  |                               |
|        | in this course. |                       | this course.     | understanding about internet. |
|        | Paper-ICH-      |                       |                  |                               |
|        | XVIC:           |                       |                  |                               |
|        | Applied         |                       | Paper No.        |                               |
|        | bioinorganic    |                       | PCH- XVI C:      |                               |
|        | chemistry.      |                       | Biophysical      |                               |
|        | Introduction of |                       | chemistry.       |                               |
|        | characterizatio |                       | The course       |                               |
|        |                 |                       | introduces       |                               |
|        |                 |                       |                  |                               |
|        | used in         |                       | chemical         |                               |
|        | bioinorganic    |                       | understanding    |                               |
|        | chemistry,      |                       | of basic units   |                               |
|        | metalloprotein  |                       | of               |                               |
|        | s and enzymes   |                       | biomolecules     |                               |
|        | and their       |                       | like amino       |                               |
|        | applications    |                       | acids, proteins, |                               |
|        | are discussed   |                       | enzymes as       |                               |
|        | in this course. |                       | well as          |                               |
|        |                 |                       | mechanism of     |                               |
|        |                 |                       | photosynthesis   |                               |
|        |                 |                       |                  |                               |
| Progra | The M. Sc in    | The M. Sc in          | The M. Sc. in    | The M.Sc in                   |
| m      | Inorganic       | Organic chemistry     | Physical         | Analytical                    |
| outcom | chemistry       | program includes      | chemistry is     | chemistry                     |
| e      | •               | the four semesters    | designed to      | •                             |
|        | program         |                       | enable the       | program                       |
|        | includes the    | with each semester    | students to      | includes the                  |
|        | four semesters  | have four papers. In  | understand the   | four semesters                |
|        | with each       | addition to theory    | basic            | with each                     |
|        | semester have   | papers, there is also | principles of    | semester have                 |
|        |                 |                       | Physical         |                               |
|        | four papers. In | 200 marks practical   | Chemistry.       | four papers. In               |
|        | addition to     | in each semester.     | •                | addition to                   |
|        |                 | The first and second  | The program      | theory papers,                |
|        | theory papers,  | The first and second  | 0.011m0.0 -11    | meory papers,                 |
|        |                 |                       | course deals     |                               |
|        | there is also   | semester is general   | with revision    | there is also                 |
|        |                 |                       |                  |                               |

| each semester.<br>The first and<br>second<br>semester is<br>general one<br>giving<br>significant<br>importance to<br>all the<br>branches of<br>Chemistry to<br>make a good<br>theoretical<br>background of                                                                                                                                                        | importance to all<br>the branches of<br>Chemistry to make<br>a good theoretical<br>background of<br>students.<br>The semester<br>third and fourth<br>totally assigned on<br>organic chemistry<br>and it deeply<br>covered most of the<br>aspects of modern<br>organic chemistry. | thermodynami<br>c and statistical<br>thermodynami<br>c principles<br>The chemistry<br>and physical<br>properties of<br>macromolecule<br>s and colloidal<br>solutions.<br>The<br>knowledge<br>about quantum<br>chemistry,<br>photochemistr<br>y,                                                                                                                                             | each semester.<br>The first and<br>second<br>semester is<br>general one<br>giving<br>significant<br>importance to<br>all the<br>branches of<br>Chemistry to<br>make a good<br>theoretical<br>background of                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| chemistry and<br>it deeply<br>covered most<br>of the aspects<br>of modern<br>inorganic<br>chemistry. In<br>this program,<br>students<br>trained in such<br>a way that they<br>can gain good<br>knowledge of<br>theoretical and<br>practical skill<br>of inorganic<br>chemistry<br>experimentatio<br>n. It helps to<br>build their<br>career in<br>various fields. | experimentation. It<br>helps to build their<br>career in various<br>fields.                                                                                                                                                                                                      | quantum<br>chemistry like<br>variation<br>principle,<br>perturbation<br>theory, Ab<br>initio methods<br>and semi<br>empirical<br>methods.<br>The detailed<br>acquaintance<br>with<br>Electrochemist<br>ry<br>incorporating<br>the industrially<br>important<br>electrochemica<br>1 topics like<br>electrokinetic,<br>fuel cells,<br>corrosion,<br>electrode<br>reactions and<br>ion-solvent | chemistry and<br>it deeply<br>covered most<br>of the aspects<br>of modern<br>organic<br>chemistry. In<br>this program,<br>students<br>trained in such<br>a way that they<br>can gain good<br>knowledge of<br>theoretical and<br>practical skill<br>of organic<br>chemistry<br>experimentatio<br>n. It helps to<br>build their<br>career in<br>various fields. |

| interactions.                 |
|-------------------------------|
|                               |
| The                           |
| fundamental                   |
| aspects as well               |
| as problem                    |
| solving                       |
| approach for                  |
| spectroscopic                 |
| techniques like               |
| microwave,                    |
| infrared,                     |
| Raman and                     |
| electronic                    |
| spectroscopy.                 |
|                               |
| The prediction<br>of          |
|                               |
| spectroscopic                 |
| properties                    |
| based upon the                |
| molecular                     |
| structure and                 |
| its symmetry is               |
| also taught in                |
| this course.                  |
| The insight of                |
| reaction                      |
| mechanisms of                 |
| carcinogen like               |
| chromium(VI).                 |
| The types of                  |
| radiation with                |
| special                       |
| reference to                  |
| Lasers, basic                 |
| photochemistr                 |
| y and                         |
| mechanism of                  |
| photochemical                 |
| reactions.                    |
|                               |
| Crystallograph                |
| y, solid state                |
| reactions,                    |
|                               |
| preparation<br>and electronic |
|                               |
| properties of                 |
| materials along               |
| with polymeric                |
| materials is                  |

| discussed in     |
|------------------|
| this course.     |
|                  |
| The              |
| understanding    |
| of molecular     |
| interactions     |
| from the gross   |
|                  |
| thermodynami     |
| c properties. It |
| also give        |
| information      |
| regarding        |
| modelling of     |
| molecular        |
| interactions.    |
| Fast reactions,  |
| theories of      |
| reaction rates,  |
| heterogeneous    |
|                  |
|                  |
| mechanism of     |
| organic          |
| reactions.       |
| The theoretical  |
| aspects of       |
| electrical and   |
| magnetic         |
| properties of    |
| the materials    |
| as well as the   |
| nuclear          |
|                  |
| e                |
| electron spin    |
| resonance        |
| spectroscopy.    |
| The chemistry    |
| of surfaces,     |
| colloids,        |
| emulsions and    |
| various          |
| interfaces.      |
| The chemistry    |
| of glasses,      |
| ceramics,        |
|                  |
| composites,      |
| nanomaterials,   |
| superconductin   |
| g materials and  |
| their            |

| Progra<br>mThe student<br>can<br>getThe student<br>get<br>in various<br>industries like<br>poportunities<br>in various<br>industries like<br>paints,<br>instrumental<br>analysis.The student<br>method<br>poportunities<br>in various<br>industries like<br>paints,<br>instrumental<br>analysis.The student<br>method<br>poportunities<br>in various<br>industries like<br>poportunities<br>in various<br>industries like<br>poportunities<br>paints,<br>instrumental<br>analysis.The student<br>method<br>progress<br>in<br>the students<br>progress in<br>the students<br>progress in<br>the students<br>progress in<br>field our<br>students are<br>podod<br>good<br>shown good<br>progress in<br>field our<br>students are<br>field our<br>students are<br>phododegradati<br>on anomaterials<br>and<br>their applications<br>field of<br>students are<br>phododegradati<br>on anomaterials<br>and their<br>applications<br>like<br>in source of<br>on anomaterials<br>and their<br>applications<br>field of<br>students are<br>phododegradati<br>on anomaterials<br>and their<br>applications<br>like<br>energy<br>conversion.<br>Some of ourThe student<br>students<br>analysis.The student<br>analysis.<br>the students<br>the applications<br>the students<br>the anomaterials<br>the students are<br>the students are<br>doing very<br>good in the<br>field of<br>the applications<br>like<br>the applica                                                                                                                                                                                                                                              | I      | · · · · · · · · · · · · · · · · · · · |                     |                  |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|---------------------|------------------|---------------|
| Progra<br>mThe student<br>can get<br>employment<br>outcom<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.<br>the students have<br>progress in<br>the students<br>have also<br>shown good<br>field of<br>field our<br>students are<br>progress in<br>in tescarch fields.<br>In<br>the students are doing<br>good<br>employability<br>in teaching and<br>the iteroplating<br>in tescarch fields.<br>In<br>the students are doing<br>good<br>shown good<br>field our<br>students are<br>progress in<br>in tescarch fields.<br>In<br>the students are doing<br>good<br>students are<br>offield our<br>students are<br>progress in<br>the students<br>the students<br>the students<br>the students<br>the students have also<br>shown good<br>the students are doing<br>good<br>students are doing<br>good<br>employability<br>in teaching and<br>field our<br>tike<br>field our<br>students are<br>progress in<br>the students are doing<br>good<br>employability<br>in teaching and<br>their applications<br>field our<br>students are<br>prododegradation<br>their applications<br>their applications<br>and solar energy<br>good in the<br>prododegradat<br>ion and solar<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy <br< td=""><td></td><td></td><td></td><td>properties.</td><td></td></br<>                                                                                                                                  |        |                                       |                     | properties.      |               |
| Progra<br>m<br>can<br>get<br>specific<br>outcom<br>outcom<br>outcom<br>opportunities<br>in<br>various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student<br>can get<br>employment<br>opportunities<br>paints,<br>instrumental<br>analysis.The student<br>can get<br>employment<br>opportunities<br>industries<br>paints,<br>instrumental<br>analysis.The student<br>can get<br>employment<br>opportunities<br>industries<br>paints,<br>instrumental<br>analysis.<br>the students have<br>good<br>instrumental<br>analysis.<br>the students have<br>good in the<br>field our<br>students are<br>doing very<br>doing very<br>good in the<br>field of<br>in research fields.<br>In research field our<br>students are<br>doing very<br>doing very<br>good in the<br>field of<br>in anomaterials<br>and their<br>applications<br>like<br>encoversion.<br>Some of ourof of of<br>biomolecules<br>intervental<br>analysis.<br>the students<br>have also<br>shown good<br>progress in<br>in teaching and<br>tesearch field.<br>In research field.<br>In research field our<br>students are<br>doing very<br>good in the<br>field our<br>students are<br>doing very<br>good in the<br>field of<br>in anomaterials<br>and their<br>applications<br>like<br>phododegradati<br>on and solar<br>energy<br>conversion.<br>Some of ourof of our<br>of our central<br>and solar<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>energy<br>e                                                                                                                                                                                                                                              |        |                                       |                     |                  |               |
| Progra<br>m<br>can<br>can<br>specific<br>outcomThe student<br>to<br>can<br>getThe student<br>employment<br>opportunities<br>intex<br>various<br>industries<br>point<br>industries<br>industries<br>industries<br>industries<br>industries<br>esThe student<br>to<br>the student<br>can<br>opportunitiesThe student<br>can<br>get<br>opportunities<br>in various<br>industries<br>industries<br>paints,<br>the students have<br>analysis.<br>The students<br>instrumental<br>analysis.<br>The students<br>instrumental<br>analysis.<br>The students<br>have also<br>shown good<br>to<br>field out<br>students are<br>doing<br>very good in the<br>field out<br>students are<br>doing very<br>good in the<br>field out<br>students are<br>doing very<br>good in the<br>field out<br>students are<br>progress in<br>anomaterials<br>and version.<br>field of<br>field of<br>field of<br>field of<br>field of<br>field of<br>field of<br>in research fields.<br>In research field out<br>students are<br>doing very<br>good in the<br>students are<br>progress in<br>doing very<br>good in the<br>involved in central<br>and their<br>applications<br>good in the<br>involved in central<br>and their<br>applications<br>biblic<br>phododegradat<br>ion and solar<br>energy<br>enversion.<br>Some of ourbib output<br>some of ou                                                                                                                                                                                                                           |        |                                       |                     | understanding    |               |
| Progra<br>mThe student<br>can<br>opportunities<br>in<br>various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>paints,<br>instrumental<br>analysis.The student<br>electroplating,<br>paints,<br>instrumental<br>analysis.The students have<br>paints,<br>instrumental<br>analysis.The students have<br>paints,<br>instrumental<br>analysis.The students<br>have also<br>shown good<br>they also have<br>good<br>employability<br>very good in the<br>field our<br>students are<br>doing very<br>good in the<br>field our<br>students are<br>doing very<br>good in the<br>field our<br>students are<br>doing very<br>good in the<br>invandentarials<br>and their<br>applications<br>likelike<br>manomaterials<br>and their<br>applications<br>like<br>phododegradation<br>and their<br>applications<br>like<br>phododegradation<br>and their<br>applications<br>like<br>phododegradation<br>and solar<br>energy<br>conversion.<br>Some of ourlike<br>manomaterials<br>and their<br>applications<br>a source of<br>phododegradati<br>on and solar<br>energy<br>conversion.<br>Some of ourlike<br>manomaterials<br>a fully<br>conversion.<br>Some of ourProgra<br>in anomaterials<br>and<br>conversion.<br>Some of ourmanomaterials<br>and<br>a source of<br>phododegradat<br>ion and solar<br>energy<br>conversion.<br>Some of ourmanomaterials<br>and<br>a source of<br>phododegradat<br>ion and solar<br>energy<br>conversion.<br>Some of ourmanomaterials<br>and <br< td=""><td></td><td></td><td></td><td>of of</td><td></td></br<>                                                                                                                                                                                                                                                            |        |                                       |                     | of of            |               |
| Progra<br>m<br>can<br>specific<br>outcom<br>esThe student<br>student<br>can<br>get<br>employment<br>opportunitiesThe student<br>employment<br>opportunities<br>in<br>various<br>like<br>electroplating,<br>paints,<br>The students are<br>analysis.The student<br>research fields.<br>In<br>research fields.<br>In<br>research fields.The students<br>employability<br>in teaching and<br>research fields.<br>In<br>research fields.The students<br>research field<br>in<br>their applications<br>in cresearch<br>fieldacids, proteins,<br>employment<br>opportunities<br>in<br>paints,<br>analysis.The students<br>research field<br>in<br>their applications<br>fieldThe students<br>research field<br>in<br>their applications<br>fieldThe students<br>research field<br>in<br>their applications<br>fieldThe students<br>research field<br>in<br>their applications<br>in canomaterials<br>and their<br>applications<br>inversion.<br>Some of ourThe students<br>research<br>fieldThe students<br>research fields.<br>in research<br>field<br>our<br>students are<br>students are<br>and their<br>applications<br>like<br>bododegradat<br>                                                                                                                                                                                                                                                                                     |        |                                       |                     | biomolecules     |               |
| Progra<br>m<br>can<br>esThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>employment<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe student<br>can<br>get<br>opportunitiesThe students<br>can<br>get<br>opportunitiesThe students<br>analysis.<br>The students have<br>also shown good<br>good employability<br>in teaching and<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research fieldsThe students<br>ana<br>research fields.<br>in<br>their applications<br>field<br>or<br>students are<br>phododegradation<br>doing very<br>good in the<br>field of<br>field of<br>nanomaterials<br>and<br>students are<br>shown good in the<br>field of<br>nanomaterials<br>and<br>tesearch fields.<br>In<br>students are<br>shown good in the<br>field of<br>nanomaterials<br>and<br>their applications<br>field of<br>nanomaterials<br>and their<br>applications<br>involved in central<br>and their<br>application splitting reaction as<br>a source of<br>conversion.<br>Some of ourscitch applications<br>and their<br>applications<br>involved in central<br>and their<br>applications<br>involved in central<br>and their<br>applications<br>involved in central<br>and their<br>application splitting reaction as<br>a source of<br>conversion.<br>S                                                                                                                                                                                                                                                                                            |        |                                       |                     | like amino       |               |
| Progra<br>mThe student<br>can get<br>employment<br>opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>opportunities<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student shave<br>also shown good<br>instrumental<br>analysis.The student<br>can get<br>opportunities<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student shave<br>also shown good<br>instrumental<br>analysis.The students<br>paints,<br>instrumental<br>analysis.The students<br>instrumental<br>analysis.The students<br>instrumental<br><td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                         |        |                                       |                     |                  |               |
| Progra<br>mThe student<br>can<br>can<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                       |                     | -                |               |
| Progra<br>mThe student<br>can get<br>employment<br>opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student can get<br>employment<br>opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>mstrumental<br>analysis.The student shave<br>also shown good<br>instrumental<br>analysis.The student shave<br>analysis.<br>mode employment opportunities<br>instrumental<br>analysis.The students have<br>also shown good<br>instrumental<br>analysis.The students<br>analysis.<br>mode employment opportanities<br>instrumental<br>analysis.The students<br>analysis.The students<br>analysis.The students<br>have also<br>shown goodThe students<br>progress in<br>good employability<br>very good in the<br>field of<br>field of<br>nanomaterials<br>and<br>tesearch fields.<br>In research<br>field of<br>students are doing<br>good in the<br>in teaching and<br>research fields.<br>In research fields.<br>In research field of<br>field of<br>students are doing<br>good in the<br>in teaching and<br>research fields.<br>In research field of<br>field of<br>field of<br>students are doing<br>good in the<br>in teaching and<br>research fields.<br>In research fields.<br>In research fields.<br>In research fields.<br>In research field of<br>field of<br>students are<br>doing very<br>good in the<br>good in the<br>good in the<br>good in the<br>good in the<br>field of<br>field of<br>students are<br>doing very<br>good in the<br>good                                                                                                                                                                                                                                                                 |        |                                       |                     | •                |               |
| Progra<br>m<br>can<br>specific<br>outcom<br>outcom<br>outcom<br>industries like<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The student<br>opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The students have<br>instrumental<br>analysis.The students<br>research fields.The students<br>instrumental<br>analysis.The students<br>instrumental<br>analysis.The students<br>research field our<br>in teaching and<br>research fields.The students<br>instrumental<br>analysis.The students<br>instrumental<br>analysis. <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                       |                     |                  |               |
| Progra<br>mThe student<br>can<br>can<br>getThe student<br>employment<br>opportunitiesThe student can get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>can<br>get<br>employment<br>opportunitiesThe student<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.<br>The students<br>have alsoThe students<br>cells.The students<br>analysis.<br>the students<br>development of fuel<br>cells.The students<br>the students<br>have also<br>shown good<br>progress in<br>good employability<br>in teaching and<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research fields.<br>In<br>research field<br>or<br>in teaching and<br>research fields.<br>In<br>research fields.<br>In<br>research field.<br>In<br>research field.<                                                                                                                                                                                                                                                                                                                         |        |                                       |                     |                  |               |
| mcangetemploymentcangetcangetspecificemploymentopportunitiesinvariousindustriesinvariousintustrieslikeelectroplating,paints, instrumentalindustriesinvariousindustrieslikeelectroplating,paints, instrumentalindustriesinstrumentalinstrumentalanalysis.Thestudentshavealsoshown goodinstrumentalanalysis.Thestudentsdevelopment of fuelThestudentshavealsohavealsoodThey also haveshown goodshown goodshown goodprogressingoodemployabilityprogressinthey also havegoodfuel cells.research fields.nof fuel cells.They also havegoodgoodresearch field ourin teaching andresearch fields.research fields.Inresearch fields.nresearch fields.nresearch fields.Inresearch fieldinresearch fields.nresearch field.fieldofSmem of ourstudents aredoingverygood in thegoverin conversion.good in thegood in thefieldoffieldoffieldoffieldinresearchfieldfieldofininsudentsareanomaterialsandingoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       |                     | photosynthesis   |               |
| mcangetemploymentcangetcangetspecificemploymentopportunitiesinvariousindustriesinvariousindustrieslikeelectroplating,paints, instrumentalindustriesinvariousindustrieslikeelectroplating,paints, instrumentalindustriesinstrumentalanalysis.Thestudentshavealsoshown goodinstrumentalanalysis.Thestudentsdevelopment of fuelThestudentshavealsohavealsoodThey also haveshown goodshown goodshown goodshown goodshown goodshown goodporgressingoodemployabilityprogressintheevelopmentof fuel cells.They also havegoodgoodgoodresearch fields.nanomaterials andin researchfieldoffieldofinresearch fields.nanomaterialsnanomaterialsnanomaterialsnanomaterialsnanomaterialsikedigngverygoodstudents aredoingverydoingverygoodin teaching andfieldoffieldoffieldofikedasolareenergygoodin teaching andin teaching andin teaching andfieldoffieldoffieldofin teaching andfieldoffieldoffield <td>Drogro</td> <td>The student</td> <td>The student can get</td> <td>·<br/>The student</td> <td>The student</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drogro | The student                           | The student can get | ·<br>The student | The student   |
| specific<br>outcom<br>esemployment<br>opportunities<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      |                                       | -                   |                  |               |
| outcom<br>esopportunities<br>in variousvarious industries<br>like electroplating,<br>paints,<br>instrumental<br>analysis.<br>The students have<br>analysis.<br>The students have<br>analysis.<br>The students have<br>analysis.<br>The students<br>have also<br>shown good<br>progress in<br>of fuel cells.opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.<br>The students<br>have also<br>shown good<br>progress in<br>of fuel cells.opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.<br>The students<br>have also<br>shown good<br>progress in<br>good employability<br>in teaching and<br>of fuel cells.opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.opportunities<br>in various<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.opportunities<br>industries like<br>electroplating,<br>paints,<br>instrumental<br>analysis.The students<br>have also<br>shown good<br>progress in<br>development<br>of fuel cells.The students<br>research field.<br>nanomaterials and<br>their applications<br>field our<br>students are<br>phododegradation<br>doing very<br>good in the<br>field of<br>nanomaterials<br>and their<br>applications<br>likeopportunities<br>in various<br>in teaching and<br>research field.<br>In research<br>field of<br>nanomaterials<br>and their<br>applications<br>likeopportunities<br>and their<br>applications<br>dealing with<br>applications<br>likeopportunities<br>and their<br>applications<br>a source of<br>hydrogen as fuel.opportunities<br>phododegradat<br>ion and solar<br>energy<br>conversion.<br>Some of ouropportunities<br>and their<br>applications<br>a source of<br>hydrogen as fuel.oppo                                                                                                                                                                                                                                                                                                            |        | -                                     |                     | U                | U             |
| es in various<br>industries like electroplating,<br>paints, instrumental<br>analysis. The students have<br>instrumental<br>analysis. The students have<br>instrumental<br>analysis. The students have<br>analysis. The students have<br>analysis. The students<br>have also<br>shown good<br>progress in<br>development<br>of fuel cells. The advert<br>good students are doing<br>employability<br>in teaching and<br>research fields. In<br>field our<br>students are doing<br>good in the<br>field of<br>field of<br>students are<br>doing very<br>good in the<br>field of<br>nanomaterials<br>and their<br>applications<br>like<br>phododegradat<br>ion and solar<br>energy<br>conversion.<br>Some of our<br>Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      |                                       | 11                  |                  |               |
| industries like<br>electroplating,<br>paints,paints, instrumental<br>analysis.industries like<br>electroplating,<br>paints,paints,<br>instrumental<br>analysis.The students have<br>paints,paints,<br>paints,paints,<br>paints,The students<br>have<br>analysis.The students<br>rogressinstrumental<br>analysis.instrumental<br>analysis.The students<br>have<br>also<br>shown goodThey also have<br>goodShown good<br>they also have<br>goodThe students<br>the students<br>the studentsMevelopment<br>of fuel cells.The student<br>research fields.In teaching and<br>development<br>of fuel cells.of fuel cells.They also have<br>goodstudents are doing<br>tresearch field our<br>fieldThey also have<br>goodgood<br>students are doing<br>goodgood<br>goodIn research<br>field our<br>students are<br>doing very<br>good in the<br>field our<br>students are<br>doing very<br>good in the<br>field ofIn research<br>field our<br>students are<br>doing very<br>doing very<br>good in the<br>field ofIn research<br>field of<br>field of<br>field<                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 11                                    |                     |                  |               |
| electroplating,<br>paints,analysis.electroplating,<br>paints,<br>instrumental<br>analysis.electroplating,<br>paints,<br>instrumental<br>analysis.electroplating,<br>paints,<br>instrumental<br>analysis.The students<br>have<br>alsoprogress<br>cells.instrumental<br>analysis.instrumental<br>analysis.The students<br>have<br>alsodevelopment of fuel<br>thave<br>alsoThe students<br>have<br>alsoThe students<br>have<br>alsoShown<br>goodThey also have<br>in teaching and<br>of fuel cells.maysis.The students<br>analysis.They also have<br>goodresearch fields. In<br>field officiel dour<br>field our<br>field officiel central<br>and solar energy<br>good in the<br>field officiel central<br>and their<br>anpomaterials<br>and their<br>anpomaterials<br>and their<br>applications<br>likestudents are<br>phododegradation<br>good in the<br>good in the<br>field officiel central<br>and their<br>applications<br>likestudents are<br>field officiel<br>students are<br>phododegradation<br>and their<br>applications<br>likeanomaterials<br>and their<br>applications<br>applications<br>bilting reaction as<br>splitting reaction as<br>phododegradat<br>ion and solar<br>energyelectroplating,<br>paints,<br>instrumental<br>and their<br>applications<br>applications<br>as source of<br>hydrogen as afuel.electroplating,<br>paints,<br>instrumental<br>applications<br>as source of<br>hydrogen as afuel.Nome of oursource of<br>phododegradat<br>ion and solar<br>energysource of<br>energyNome of oursource of<br>phododegradat                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es     |                                       |                     |                  |               |
| paints,<br>instrumental<br>analysis.The students have<br>also shown good<br>progresspaints,<br>instrumental<br>analysis.paints,<br>instrumental<br>analysis.The students<br>have<br>also<br>shown goodprogressin<br>in<br>the students<br>have<br>progressThe students<br>have<br>also<br>shown goodShown<br>progressin<br>development<br>in<br>teaching<br>and<br>of fuel cells.The students<br>have<br>also<br>shown good<br>progressThey also have<br>goodresearch fields.<br>teaching and<br>of fuel cells.The students<br>have<br>shown good<br>progressThey also have<br>goodresearch field our<br>students are doing<br>good<br>teaching and<br>research field.<br>In<br>research field<br>In<br>research field.<br>In<br>research field.<br>In<br>research field.<br>In<br>research field<br>In<br>research field<br>In<br>In<br>research<br>research<br>field<br>In<br>research<br>field<br><td></td> <td></td> <td>-</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                               |        |                                       | -                   |                  |               |
| instrumental<br>analysis.also<br>progressinstrumental<br>analysis.instrumental<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                       |                     |                  | 1 0           |
| analysis.progressin<br>analysis.analysis.analysis.The students<br>have<br>alsodevelopment of fuel<br>have<br>alsohave<br>alsohave<br>alsohave<br>alsoshown<br>goodThey<br>also<br>have<br>developmentin<br>teaching<br>and<br>of fuel cells.The<br>students<br>in<br>teaching and<br>of fuel cells.The<br>students<br>of fuel cells.The<br>students<br>of fuel cells.They also have<br>goodresearch field.<br>students<br>are<br>goodin<br>teaching and<br>fieldof<br>fuel cells.of<br>tuel cells.They also have<br>goodstudents are doing<br>goodgoodgoodgoodemployability<br>in teaching and<br>fieldresearch field.<br>in teaching and<br>fieldof<br>in teaching and<br>in teaching and<br>fieldin<br>teaching and<br>in teaching and<br>in teaching and<br>in teaching and<br>fieldresearch fields.<br>fieldIn<br>goodresearch<br>fieldinke<br>students<br>are<br>phododegradation<br>fieldin<br>teaching<br>and<br>students<br>are<br>doingvery<br>good in the<br>good in the<br>fieldanomaterials<br>anomaterials<br>and<br>applications<br>splitting reactions<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | - ·                                   |                     | <b>-</b>         | ± ·           |
| The students<br>have alsodevelopment of fuel<br>cells.The students<br>have alsoThe students<br>have alsoshown good<br>progress in<br>developmentThey also have<br>good employabilityThey also have<br>progress in<br>developmentThey also have<br>good employabilityThey also have<br>good employabilityThey also have<br>good employabilityThey also have<br>good employabilityThey also have<br>goodresearch fields.In<br>research fieldThey also have<br>goodThey also have<br>goodThey also have<br>goodIn research<br>fieldfieldof<br>nanomaterialsIn research<br>fieldIn rese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | instrumental                          | also shown good     | instrumental     | instrumental  |
| havealsocells.havealsohavealsoshowngoodTheyalsohaveshowngoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | analysis.                             |                     | analysis.        | analysis.     |
| shown good<br>progress in<br>development<br>of fuel cells.They also have<br>good employability<br>in teaching and<br>research fields. In<br>research field our<br>goodshown good<br>progress in<br>development<br>of fuel cells.shown good<br>progress in<br>development<br>of fuel cells.They also have<br>goodresearch field our<br>students are doing<br>goodThey also have<br>goodgoodgoodemployability<br>in teaching and<br>research fields.research fieldThey also have<br>of fuel cells.They also have<br>goodin teaching and<br>research fields.nanomaterials<br>and<br>research fields.nanomaterials<br>research fields.in teaching and<br>research fields.In research<br>fieldnanomaterials<br>and<br>researchnanomaterials<br>researchin research<br>fieldin research<br>fieldof<br>researchfieldour<br>students<br>and<br>students<br>and<br>studentsstudents<br>are<br>anomaterials<br>and<br>their<br>applicationsgood in the<br>fieldgood in the<br>fieldin anomaterials<br>and<br>their<br>applicationsstudents<br>are<br>anomaterials<br>and<br>their<br>applicationsgood in the<br>fieldgood in the<br>fieldin anomaterials<br>and<br>tikestudents<br>are<br>applicationsand<br>applicationsnanomaterials<br>and<br>their<br>applicationsnanomaterials<br>and<br>their<br>applicationsnanomaterials<br>and<br>their<br>applicationsin and solar<br>energy<br>conversion.a source of<br>a source of<br>energyphododegradat<br>ion and solar<br>energyion and solar<br>energyin and solar<br>energya source of<br>energy </td <td></td> <td>The students</td> <td>development of fuel</td> <td>The students</td> <td>The students</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | The students                          | development of fuel | The students     | The students  |
| progressingoodemployabilityprogressinprogressindevelopmentof fuel cells.research fields. Inof fuel cells.of fuel cells.of fuel cells.They also haveresearch field ourThey also havegoodgoodgoodemployabilityvery good in theemployabilityemployabilityemployabilityin teaching andfieldofin teaching andresearch fields.Inresearchfield.nanomaterialsandresearch fields.fieldourlikefieldourfieldourstudentsarephododegradationstudentsarestudentsaredoingveryand solarenergygoodin thegoodin thefieldourlikefieldourfieldourfieldourstudentsarephododegradationstudentsarenanomaterialsnanomaterialsandtheirapplicationsgovernment projectgoodin thegoodin theion and solarenergya sourceofin and solarapplicationsapplicationslikedalingwithphododegradation and solarion and solarion and solarenergya sourceofenergyenergyenergyenergyconversion.Some of ourSome of ourSome of ourSome of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | have also                             | cells.              | have also        | have also     |
| development<br>of fuel cells.in<br>teaching and<br>research fields. In<br>research fields. In<br>of fuel cells.development<br>of fuel cells.development<br>of fuel cells.They also have<br>goodstudents are doing<br>goodgoodgoodgoodemployability<br>in teaching and<br>research fields.research field our<br>in teaching and<br>fieldThey also have<br>goodgoodIn<br>research fields.nanomaterials<br>and<br>fieldand<br>research fields.in teaching and<br>in teaching and<br>research fields.research fields.In<br>research fieldnanomaterials<br>and<br>studentsand<br>researchin research<br>fieldin research<br>fieldIn<br>origodresearch<br>fieldlikefieldour<br>fieldin research<br>fieldfieldour<br>studentsare<br>and solar energy<br>good in the<br>field of<br>studentsstudents<br>are<br>and solar energy<br>good in the<br>good in the<br>involved in central<br>and<br>their<br>applications<br>likeand<br>dealingmanomaterials<br>and<br>their<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>applications<br>application<br>applications<br>applications<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>application<br>applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | shown good                            | They also have      | shown good       | shown good    |
| development<br>of fuel cells.inteaching<br>research fields.development<br>of fuel cells.development<br>of fuel cells.They also have<br>goodresearch field our<br>students are doing<br>goodThey also have<br>goodThey also have<br>goodThey also have<br>goodemployability<br>in teaching and<br>research fields.research fieldThey also have<br>goodgoodin teaching and<br>research fields.fieldof<br>in teaching and<br>fieldof<br>in teaching and<br>research fields.They also have<br>goodInresearch fields.nanomaterialsand<br>research fields.Inresearch fields.Inresearch<br>fieldtheir<br>applicationsstudentsare<br>fieldof<br>in teachinggoodin the<br>researchconversion.good in the<br>fieldof<br>of<br>in teachinggoodin the<br>researchconversion.good in the<br>fieldof<br>fieldgoodin the<br>ronversion.good in the<br>fieldgood in the<br>fieldfieldfieldof<br>nanomaterialsstudentsare<br>and<br>torversion.nanomaterials<br>and<br>their<br>applicationsnanomaterials<br>and<br>their<br>applicationsand<br>their<br>applicationslike<br>phododegradat<br>ion and solar<br>energy<br>conversion.government project<br>application water<br>applicationsphododegradat<br>ion and solar<br>energy<br>conversion.phododegradat<br>ion and solar<br>energy<br>conversion.phododegradat<br>ion and solar<br>energy<br>conversion.conversion.<br>Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | progress in                           | good employability  | progress in      | progress in   |
| of fuel cells.research fields. In<br>research field our<br>students are doing<br>goodof fuel cells.of fuel cells.They also have<br>goodstudents are doing<br>students are doing<br>in teaching and<br>research fields.of fuel cells.They also have<br>goodmay also have<br>goodemployability<br>in teaching and<br>research fields.nanomaterials and<br>research fields.manomaterials and<br>research fields.manomaterials and<br>research fields.manomaterials and<br>research fields.manomaterials<br>research fields.manomaterials<br>research fields.fieldour<br>studentslikefieldour<br>fieldmanomaterials<br>researchmanomaterials<br>researchfieldour<br>studentsare<br>phododegradation<br>anomaterialsstudents<br>researchmanomaterials<br>researchmanomaterials<br>researchgoodin<br>the<br>researchconversion.<br>researchgood<br>researchmanomaterials<br>researchmanomaterials<br>researchand<br>their<br>applicationsstudents<br>researchand<br>researchmanomaterials<br>researchmanomaterials<br>researchand<br>their<br>applicationsgovernment project<br>researchand<br>researchmanomaterials<br>researchmanomaterials<br>researchand<br>their<br>applicationsapplication<br>researchmanomaterials<br>researchmanomaterials<br>researchand<br>their<br>applicationsapplication<br>researchmanomaterials<br>researchmanomaterials<br>researchand<br>their<br>researchapplication<br>researchphododegradat<br>research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                       |                     |                  |               |
| Image: Second                                                      |        | -                                     |                     |                  | -             |
| goodstudents are doing<br>employability<br>in teaching and<br>research fields.goodgoodInresearch fields.in anomaterials and<br>nanomaterials and<br>research field.in teaching and<br>research fields.in teaching and<br>research fields.Inresearch fields.innanomaterials and<br>research fieldin research<br>fieldin research<br>fieldSudentsare<br>doing<br>very<br>good in the<br>fieldourstudents are<br>phododegradationstudents are<br>students are<br>and solar energy<br>doing<br>very<br>doingstudents are<br>students are<br>and solar energy<br>doingstudents are<br>good in the<br>fieldstudents are<br>our<br>students<br>are<br>and solar energy<br>doingstudents are<br>good in the<br>fieldstudents<br>are<br>anomaterials<br>and<br>their<br>applications<br>likestudents<br>are<br>applications<br>likeand<br>their<br>applications<br>and<br>some of ourstudents<br>are<br>anomaterials<br>and<br>their<br>applications<br>a source of<br>a source of<br>energy<br>conversion.good<br>some of our<br>phododegradat<br>a source of<br>energy<br>conversion.good<br>some of our<br>some of ourNome of ourwery<br>some of oursome of our<br>some of oursome of our<br>some of oursome of our<br>some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       |                     |                  |               |
| employability<br>in teaching and<br>research fields.very good in the<br>fieldemployability<br>in teaching and<br>research fields.employability<br>in teaching and<br>research fields.Inresearch fields.nanomaterialsand<br>research fields.research fields.In<br>research fields.Inresearchlikefieldourfieldourstudentsare<br>phododegradationstudentsarestudentsaredoingvery<br>goodand<br>solarsolarenergy<br>gooddoingvery<br>goodgoodin the<br>fieldfieldof<br>nanomaterialsSomeof<br>ourfieldoffieldofnanomaterials<br>andtheir<br>applicationsstudentsare<br>andnanomaterials<br>andnanomaterials<br>andnanomaterials<br>andnanomaterials<br>andnanomaterials<br>andlikegovernment project<br>applicationsgovernment project<br>applicationsapplications<br>applicationslikephododegradat<br>ion and solar<br>energy<br>conversion.phododegradat<br>a sourceon and solar<br>energy<br>conversion.energy<br>conversion.conversion.<br>Some of ourSome of ourwith<br>hydrogen as a fuel.Some of our<br>some of ourSome of ourSome of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -                                     |                     |                  | •             |
| in teaching and<br>research fields.<br>In research fields.<br>In research field our<br>students are<br>doing very<br>good in the<br>field of<br>some of our<br>like<br>applications<br>like<br>dealing with<br>by bododegradat<br>ion and solar<br>energy<br>conversion.<br>Some of our<br>some of our<br>by bododegradat<br>ion and solar<br>energy<br>conversion.<br>Some of our<br>conversion.<br>Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 0                                     | 6                   | 0                | -             |
| research fields.<br>In research fields.<br>In research their applications<br>field our like field our field our field our<br>students are phododegradation students are students are<br>doing very and solar energy doing very doing very<br>good in the conversion.<br>field of Some of our field of field of<br>nanomaterials students are nanomaterials nanomaterials<br>and their involved in central and their and their<br>applications government project applications<br>like dealing with like like<br>phododegradat splitting reaction as ion and solar energy<br>conversion.<br>Some of our field of and their and solar energy a source of energy energy<br>conversion.<br>Some of our Some of our Some of our phododegradat on and solar energy a source of energy energy conversion.<br>Some of our Some of our Some of our Some of our Some of our source of energy energy conversion.<br>Some of our Some of o |        |                                       |                     | 1 2 2            |               |
| InresearchtheirapplicationsInresearchInresearchfieldourlikefieldourfieldourstudentsarephododegradationstudentsarestudentsaredoingveryandsolarenergydoingverydoingverygoodintheconversion.goodinthegoodinthefieldofSomeofourfieldoffieldofnanomaterialsstudentsarenanomaterialsnanomaterialsnanomaterialsandtheirinvolved in centralandtheirapplicationsapplicationslikedealingwithlikelikelikelikephododegradatapplicationwaterphododegradationand solarenergyasourceofenergyenergyenergyconversion.Some of ourSome of ourSome of oursource                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | U                                     |                     | 0                | -             |
| fieldourlikefieldourfieldourstudentsarephododegradationstudentsarestudentsaredoingveryandsolarenergydoingverydoingverygoodintheconversion.goodinthegoodinfieldofSomeofourfieldoffieldofnanomaterialsstudentsarenanomaterialsnanomaterialsnanomaterialsandtheirinvolved in centralandtheirapplicationsapplicationslikedealingwithlikelikelikephododegradatapplicationwaterphododegradation and solarphododegradationandsolarsplitting reaction asionand solarionand solarenergyasourceofenergyenergyconversion.conversion.Someofoursourceofsourceofenergyconversion.Someofoursourcesourceof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                       |                     |                  |               |
| studentsarephododegradationstudentsarestudentsaredoingveryand solar energydoingverydoingverygoodintheconversion.goodinthefieldofSomeofourfieldofnanomaterialsstudentsarenanomaterialsnanomaterialsandtheirinvolved in centralandtheirapplicationsgovernment projectapplicationsapplicationslikedealingwithlikelikephododegradatsplitting reaction asion and solarion and solarenergyasourceofenergyenergyconversion.hydrogen as a fuel.Some of ourSome of ourSomeofourSome of ourSome of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       |                     |                  |               |
| doingveryandsolarenergydoingverydoingverygoodintheconversion.goodinthegoodinthefieldofSomeofourfieldoffieldofnanomaterialsstudentsarenanomaterialsnanomaterialsnanomaterialsandtheirinvolved in centralandtheirandtheirapplicationsgovernment projectapplicationsapplicationsapplicationslikedealingwithlikelikephododegradatapplicationwaterphododegradationon and solarsplitting reaction asionand solarenergyconversion.hydrogen as a fuel.conversion.conversion.Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                       |                     |                  |               |
| good in the<br>fieldconversion.good in the<br>fieldgood in the<br>fieldgood in the<br>fieldgood in the<br>fieldand<br>and<br>theirstudents<br>involved in central<br>government projectand<br>and<br>theirnanomaterials<br>and<br>theirnanomaterials<br>and<br>and<br>theirinvolved in central<br>applicationsgovernment project<br>government projectand<br>applicationstheir<br>applicationslike<br>phododegradat<br>energy<br>conversion.application water<br>splitting reaction as<br>a source of<br>hydrogen as a fuel.phododegradat<br>energy<br>conversion.phododegradat<br>some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                       |                     |                  |               |
| fieldofSomeofourfieldoffieldofnanomaterialsstudentsarenanomaterialsnanomaterialsnanomaterialsandtheirinvolved in centralandtheirandtheirapplicationsgovernment projectapplicationsapplicationsapplicationslikedealingwithlikelikelikephododegradatapplicationwaterphododegradatphododegradationandsolarsplitting reaction asionandsolarenergyasourceofenergyenergyconversion.SomeofourSomeofourSomeof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | •                                     |                     |                  |               |
| nanomaterialsstudentsarenanomaterialsnanomaterialsandtheirinvolved in centralandtheirandtheirapplicationsgovernment projectapplicationsapplicationsapplicationslikedealingwithlikelikephododegradatapplicationwaterphododegradatphododegradationandsplitting reaction asionandsolarenergyasourceofenergyenergyconversion.hydrogen as a fuel.conversion.conversion.Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | U                                     |                     |                  | -             |
| andtheirinvolved in centralandtheirandtheirapplicationsgovernment projectapplicationsapplicationsapplicationslikedealingwithlikelikephododegradatapplicationwaterphododegradatphododegradationandsplitting reaction asionandsolarenergyasourceofenergyenergyconversion.hydrogen as a fuel.conversion.conversion.Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                       |                     |                  |               |
| applicationsgovernment projectapplicationsapplicationslikedealingwithlikelikephododegradatapplicationwaterphododegradatphododegradationandsolarsplitting reaction asionandenergyasourceofenergyenergyconversion.hydrogen as a fuel.conversion.conversion.conversion.SomeofourSomeofour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                       |                     |                  |               |
| likedealingwithlikelikephododegradatapplicationwaterphododegradatphododegradationandsolarsplittingreactionasenergyasourceofenergyenergyconversion.hydrogenasfuel.conversion.SomeofourSomeofour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                       |                     |                  |               |
| phododegradat<br>ion and solar<br>energyapplication water<br>splitting reaction as<br>a source of<br>hydrogen as a fuel.phododegradat<br>ion and solar<br>energy<br>conversion.phododegradat<br>ion and solar<br>energy<br>conversion.outputphododegradat<br>splitting reaction as<br>a source of<br>hydrogen as a fuel.phododegradat<br>ion and solar<br>energy<br>conversion.phododegradat<br>ion and solar<br>energy<br>conversion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                       | • •                 |                  |               |
| ion and solar splitting reaction as ion and solar ion and solar energy a source of energy conversion.<br>Some of our bydrogen as a fuel. Some of our Some of our conversion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                       | 0                   |                  |               |
| energy<br>conversion.<br>Some of oura source of<br>hydrogen as a fuel.<br>Some of ourenergy<br>conversion.<br>Some of ourenergy<br>conversion.<br>Some of ourenergy<br>conversion.<br>Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                       |                     |                  |               |
| conversion.hydrogen as a fuel.conversion.conversion.Some of ourSome of ourSome of ourSome of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | ion and solar                         |                     | ion and solar    | ion and solar |
| Some of our Some of our Some of our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | energy                                |                     | energy           | energy        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | conversion.                           | hydrogen as a fuel. | conversion.      | conversion.   |
| students are students are students are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Some of our                           |                     | Some of our      | Some of our   |
| students are students are students are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | students are                          |                     | students are     | students are  |
| involved in involved in involved in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | involved in                           |                     | involved in      | involved in   |

| central       |    | central         | central         |
|---------------|----|-----------------|-----------------|
| government    |    | government      | government      |
| project deali | ng | project dealing | project dealing |
| with          |    | with            | with            |
| application   |    | application     | application     |
| water splitti | ng | water splitting | water splitting |
| reaction as   | a  | reaction as a   | reaction as a   |
| source        | of | source of       | source of       |
| hydrogen as   | a  | hydrogen as a   | hydrogen as a   |
| fuel.         |    | fuel.           | fuel.           |
|               |    |                 |                 |

#### Annexure II

## Structure of Choice Based Credit System

### M. Sc. Part – I (Inorganic, Organic, Physical, Analytical, Applied and Industrial Chemistry)

|      | Course code | Paper |         | Title of course          |                 |
|------|-------------|-------|---------|--------------------------|-----------------|
|      |             | No.   |         |                          |                 |
|      | CC-101      | Ι     | CH.1.1  | Inorganic Chemistry - I  | All courses are |
| CGPA | CC-102      | II    | CH.1.2  | Organic Chemistry - I    | compulsory.     |
|      | CC-103      | III   | CH.1.3  | Physical Chemistry - I   |                 |
|      | CC-104      | IV    | CH.1.4  | Analytical Chemistry - I |                 |
|      | CCPR-105    |       | CHP.1.1 | Practical- I             |                 |
| Non- | AEC -106    |       |         |                          |                 |
| CGPA |             |       |         |                          |                 |

#### Semester I

#### Semester II

|      | Course code | Paper |         | Title of course           |                 |
|------|-------------|-------|---------|---------------------------|-----------------|
|      |             | No.   |         |                           |                 |
|      | CC-201      | V     | CH.2.1  | Inorganic Chemistry – II  | All courses are |
|      | CC-202      | VI    | CH.2.2  | Organic Chemistry – II    | compulsory.     |
| CGPA | CC-203      | VII   | CH.2.3  | Physical Chemistry – II   |                 |
|      | CC-204      | VIII  | CH.2.4  | Analytical Chemistry - II |                 |
|      | CCPR-205    |       | CHP.2.1 | Practical -II             |                 |
| Non- | SEC - 206   |       |         |                           |                 |
| CGPA |             |       |         |                           |                 |

#### M. Sc. Part – II (Inorganic Chemistry)

#### **Semester III**

|      | Course code | Paper  |          | Title of course            |                |
|------|-------------|--------|----------|----------------------------|----------------|
|      |             | No.    |          |                            |                |
|      | CC-301      | IX     | ICH 3.1  | Inorganic Chemical         | Compulsory     |
|      |             |        |          | Spectroscopy               | course         |
| CGPA | CCS-302     | Х      | ICH 3.2  | Coordination Chemistry - I | Compulsory     |
| Non- |             |        |          |                            | course         |
| CGPA | CCS-303     | XI     | ICH 3.3  | Nuclear Chemistry          | Compulsory     |
|      |             |        |          |                            | course         |
|      | DSE-304(A)  | XII(A) | ICH      | Organometallic and         | Choose any one |
|      |             |        | 3.4(A)   | Bioinorganic Chemistry     |                |
|      | DSE-304(B)  | XII(B) | ICH      | Selected Topics in         | Choose any one |
|      |             |        | 3.4(B)   | Inorganic Chemistry        |                |
|      | CCPR-305    |        | ICHP 3.1 | Practical -III             | Compulsory     |
|      |             |        |          |                            | course         |

|  | AEC-306      |  |  |
|--|--------------|--|--|
|  | EC(SWMMOOC)- |  |  |
|  | 307          |  |  |

#### Semester IV

|      | Course code | Paper<br>No. |               | Title of course                       |                      |
|------|-------------|--------------|---------------|---------------------------------------|----------------------|
|      | CC-401      | XIII         | ICH 4.1       | Instrumental Techniques               | Compulsory<br>course |
| CGPA | CCS-402     | XIV          | ICH 4.2       | Coordination Chemistry II             | Compulsory<br>course |
|      | CCS-403     | XV           | ICH 4.3       | Chemistry of Inorganic<br>Materials   | Compulsory<br>course |
|      | DSE-404(A)  | XVI(A)       | ICH<br>4.4(A) | Energy and Environmental<br>Chemistry | Choose any one       |
|      | DSE-404(B)  | XVI(B)       | ICH<br>4.4(B) | Radiation Chemistry                   | Choose any one       |
|      | CCPR-405    |              | ICHP 4.1      | Practical –IV                         | Compulsory<br>course |
| Non- | SEC-406     |              |               |                                       |                      |
| CGPA | GE-407      |              |               |                                       |                      |

## M. Sc. Part – II (Organic Chemistry)

#### Semester III

|      | Course code         | Paper<br>No. |               | Title of course                   |                      |
|------|---------------------|--------------|---------------|-----------------------------------|----------------------|
|      | CC-301              | IX           | OCH 3.1       | Organic Reaction<br>Mechanism     | Compulsory<br>course |
| CGPA | CCS-302             | Х            | OCH 3.2       | Advanced Spectroscopic<br>Methods | Compulsory<br>course |
|      | CCS-303             | XI           | OCH 3.3       | Advanced Synthetic<br>Methods     | Compulsory<br>course |
|      | DSE-304(A)          | XII(A)       | OCH<br>3.4(A) | Drugs and Heterocycles            | Choose any one       |
|      | DSE-304(B)          | XII(B)       | OCH<br>3.4(B) | Polymer Chemistry                 | Choose any one       |
|      | CCPR-305            |              | OCHP 3.1      | Practical –III                    | Compulsory<br>course |
| Non- | AEC-306             |              |               |                                   |                      |
| CGPA | EC(SWMMOOC)-<br>307 |              |               |                                   |                      |

| Course code | Paper<br>No. |         | Title of course     |            |
|-------------|--------------|---------|---------------------|------------|
| CC-401      | XIII         | OCH 4.1 | Theoretical Organic | Compulsory |

|      |            |        |          | Chemistry                     | course         |
|------|------------|--------|----------|-------------------------------|----------------|
| CGPA | CCS-402    | XIV    | OCH 4.2  | Stereochemistry               | Compulsory     |
|      |            |        |          |                               | course         |
|      | CCS-403    | XV     | OCH 4.3  | Chemistry of Natural Products | Compulsory     |
|      |            |        |          |                               | course         |
|      | DSE-404(A) | XVI(A) | OCH      | Applied Organic Chemistry     | Choose any one |
|      |            |        | 4.4(A)   |                               |                |
|      | DSE-404(B) | XVI(B) | OCH      | Bioorganic Chemistry          | Choose any one |
|      |            |        | 4.4(B)   |                               |                |
|      | CCPR-405   |        | OCHP 4.1 | Practical –IV                 | Compulsory     |
|      |            |        |          |                               | course         |
| Non- | SEC-406    |        |          |                               |                |
| CGPA | GE-407     |        |          |                               |                |

## M. Sc. Part – II (Physical Chemistry)

### Semester III

|      | Course code         | Paper<br>No. |               | Title of course                 |                      |
|------|---------------------|--------------|---------------|---------------------------------|----------------------|
|      | CC-301              | IX           | PCH 3.1       | Advanced Quantum<br>Chemistry   | Compulsory<br>course |
| CGPA | CCS-302             | Х            | PCH 3.2       | Electrochemistry                | Compulsory<br>course |
|      | CCS-303             | XI           | PCH 3.3       | Molecular Structure – I         | Compulsory<br>course |
|      | DSE-304(A)          | XII(A)       | PCH<br>3.4(A) | Solid State Chemistry           | Choose any one       |
|      | DSE-304(B)          | XII(B)       | PCH<br>3.4(B) | Advanced Chemical<br>Kinetics   | Choose any one       |
|      | DSE-304(C)          | XII(C)       | PCH<br>3.4(C) | Radiation and<br>Photochemistry |                      |
|      | CCPR-305            |              | PCHP 3.1      | Practical –III                  | Compulsory<br>course |
| Non- | AEC-306             |              |               |                                 |                      |
| CGPA | EC(SWMMOOC)-<br>307 |              |               |                                 |                      |

|      | Course code | Paper |         | Title of course          |            |
|------|-------------|-------|---------|--------------------------|------------|
|      |             | No.   |         |                          |            |
|      | CC-401      | XIII  | PCH 4.1 | Thermodynamics and       | Compulsory |
|      |             |       |         | Molecular Modeling       | course     |
| CGPA | CCS-402     | XIV   | PCH 4.2 | Chemical Kinetics        | Compulsory |
|      |             |       |         |                          | course     |
|      | CCS-403     | XV    | PCH 4.3 | Molecular Structure - II | Compulsory |
|      |             |       |         |                          | course     |

|      | DSE-404(A) | XVI(A) | РСН      | Surface Chemistry      | Choose any one |
|------|------------|--------|----------|------------------------|----------------|
|      |            |        | 4.4(A)   |                        |                |
|      | DSE-404(B) | XVI(B) | PCH      | Chemistry of Materials | Choose any one |
|      |            |        | 4.4(B)   |                        |                |
|      | DSE-404(B) | XVI(C) | РСН      | Biophysical Chemistry  |                |
|      |            |        | 4.4(C)   |                        |                |
|      | CCPR-405   |        | PCHP 4.1 | Practical –IV          | Compulsory     |
|      |            |        |          |                        | course         |
| Non- | SEC-406    |        |          |                        |                |
| CGPA | GE-407     |        |          |                        |                |

## M. Sc. Part – II (Analytical Chemistry)

#### Semester III

|      | Course code         | Paper<br>No. |               | Title of course                                         |                      |
|------|---------------------|--------------|---------------|---------------------------------------------------------|----------------------|
|      | CC-301              | IX           | ACH 3.1       | Advanced Analytical<br>Techniques                       | Compulsory course    |
| CGPA | CCS-302             | Х            | ACH 3.2       | Organo Analytical<br>Chemistry                          | Compulsory<br>course |
|      | CCS-303             | XI           | ACH 3.3       | Electroanalytical<br>Techniques in Chemical<br>Analysis | Compulsory<br>course |
|      | DSE-304(A)          | XII(A)       | ACH<br>3.4(A) | Environmental Chemical<br>Analysis and Control          | Choose any one       |
|      | DSE-304(B)          | XII(B)       | ACH<br>3.4(B) | Recent Advances in<br>Analytical Chemistry              | Choose any one       |
|      | CCPR-305            |              | ACHP 3.1      | Practical –III                                          | Compulsory<br>course |
| Non- | AEC-306             |              |               |                                                         |                      |
| CGPA | EC(SWMMOOC)-<br>307 |              |               |                                                         |                      |

|      | Course code | Paper<br>No. |            | Title of course                          |                      |
|------|-------------|--------------|------------|------------------------------------------|----------------------|
|      | CC-401      | XIII         | ACH 4.1    | Modern Separation Methods in<br>Analysis | Compulsory<br>course |
| CGPA | CCS-402     | XIV          | ACH 4.2    | Organic Industrial Analysis              | Compulsory<br>course |
|      | CCS-403     | XV           | ACH 4.3    | Advanced Methods in Chemical Analysis    | Compulsory<br>course |
|      | DSE-404(A)  | XVI(A)       | ACH 4.4(A) | Industrial Analytical Chemistry          | Choose any one       |
|      | DSE-404(B)  | XVI(B)       | ACH 4.4(B) | Quality Assurance and                    | Choose any           |

|      |          |          | Accreditation | one        |
|------|----------|----------|---------------|------------|
|      | CCPR-405 | ACHP 4.1 | Practical –IV | Compulsory |
|      |          |          |               | course     |
| Non- | SEC-406  |          |               |            |
| CGPA | GE-407   |          |               |            |

# M. Sc. Part – I (Applied Chemistry)

### Semester I

|              | Course code | Paper<br>No. |         | Title of course          |                 |
|--------------|-------------|--------------|---------|--------------------------|-----------------|
|              | CC-101      | Ι            | CH.1.1  | Inorganic Chemistry - I  | All courses are |
| CGPA         | CC-102      | II           | CH.1.2  | Organic Chemistry - I    | compulsory.     |
|              | CC-103      | III          | CH.1.3  | Physical Chemistry - I   |                 |
|              | CC-104      | IV           | CH.1.4  | Analytical Chemistry - I |                 |
|              | CCPR-105    |              | CHP.1.1 | Practical- I             |                 |
| Non-<br>CGPA | AEC -106    |              |         |                          |                 |

#### Semester II

|      | Course code | Paper<br>No. |         | Title of course           |             |
|------|-------------|--------------|---------|---------------------------|-------------|
|      | CC-201      | V            | CH.2.1  | Inorganic Chemistry – II  | All courses |
|      | CC-202      | VI           | CH.2.2  | Organic Chemistry – II    | are         |
| CGPA | CC-203      | VII          | CH.2.3  | Physical Chemistry – II   | compulsory. |
|      | CC-204      | VIII         | CH.2.4  | Analytical Chemistry - II |             |
|      | CCPR-205    |              | CHP.2.1 | Practical -II             |             |
| Non- | SEC - 206   |              |         |                           |             |
| CGPA |             |              |         |                           |             |

## M. Sc. Part – II (Applied Chemistry)

### Semester III

|      | Course code | Paper<br>No. |          | Title of course                |         |
|------|-------------|--------------|----------|--------------------------------|---------|
|      | CC-301      | IX           | APCH 3.1 | Applied Inorganic Chemistry –  | Compuls |
|      |             |              |          | Ι                              | ory     |
| CGPA |             |              |          |                                | course  |
|      | CCS-302     | X            | APCH 3.2 | Applied Organic Chemistry - I  | Compuls |
|      |             |              |          |                                | ory     |
|      |             |              |          |                                | course  |
|      | CCS-303     | XI           | APCH 3.3 | Applied Physical Chemistry - I | Compuls |
|      |             |              |          |                                | ory     |
|      |             |              |          |                                | course  |

|      | DSE-304(A) | XII(A) | APCH 3.4(A) | Advanced Organic Chemistry   | Choose  |
|------|------------|--------|-------------|------------------------------|---------|
|      |            |        |             | - I                          | any one |
|      | DSE-304(B) | XII(B) | APCH 3.4(B) | Applied Analytical Chemistry | Choose  |
|      |            |        |             | - I                          | any one |
|      | DSE-304(C) | XII(C) | APCH 3.4(C) | Bioorganic Chemistry - I     |         |
|      | CCPR-305   |        | APCHP 3.1   | Practical –III               | Compuls |
|      |            |        |             |                              | ory     |
|      |            |        |             |                              | course  |
| Non- | AEC-306    |        |             |                              |         |
| CGPA | EC(SWMMOOC |        |             |                              |         |
|      | )- 307     |        |             |                              |         |

### Semester IV

|      | Course code | Paper  |           | Title of course                     |                   |
|------|-------------|--------|-----------|-------------------------------------|-------------------|
|      |             | No.    |           |                                     |                   |
|      | CC-401      | XIII   | APCH 4.1  | Applied Inorganic Chemistry<br>– II | Compulsory course |
| CGPA | CCS-402     | XIV    | APCH 4.2  | Applied Organic Chemistry –<br>II   | Compulsory course |
|      | CCS-403     | XV     | APCH 4.3  | Applied Physical Chemistry -<br>II  | Compulsory course |
|      | DSE-404(A)  | XVI(A) | APCH      | Inorganic Chemical Industries       | Choose any one    |
|      |             |        | 4.4(A)    |                                     |                   |
|      | DSE-404(B)  | XVI(B) | APCH      | Pollution and Monitoring and        | Choose any one    |
|      |             |        | 4.4(B)    | Control                             |                   |
|      | DSE-404(B)  | XVI(C) | APCH      | Applied Analytical                  |                   |
|      |             |        | 4.4(C)    | Chemistry- II                       |                   |
|      | CCPR-405    |        | APCHP 4.1 | Practical –IV                       | Compulsory course |
| Non- | SEC-406     |        |           |                                     |                   |
| CGPA | GE-407      |        |           |                                     |                   |

# M. Sc. Part – I (Industrial Chemistry)

|  | Course code | Paper | Title of course |  |
|--|-------------|-------|-----------------|--|
|  |             | No.   |                 |  |

|      | CC-101   | Ι   | CH.1.1  | Inorganic Chemistry - I  | All courses |
|------|----------|-----|---------|--------------------------|-------------|
| CGPA | CC-102   | II  | CH.1.2  | Organic Chemistry - I    | are         |
|      | CC-103   | III | CH.1.3  | Physical Chemistry - I   | compulsory. |
|      | CC-104   | IV  | CH.1.4  | Analytical Chemistry - I |             |
|      | CCPR-105 |     | CHP.1.1 | Practical- I             |             |
| Non- | AEC -106 |     |         |                          |             |
| CGPA |          |     |         |                          |             |

|      | Course code | Paper<br>No. |         | Title of course           |                 |
|------|-------------|--------------|---------|---------------------------|-----------------|
|      | CC-201      | V            | CH.2.1  | Inorganic Chemistry – II  | All courses are |
|      | CC-202      | VI           | CH.2.2  | Organic Chemistry – II    | compulsory.     |
| CGPA | CC-203      | VII          | CH.2.3  | Physical Chemistry – II   |                 |
|      | CC-204      | VIII         | CH.2.4  | Analytical Chemistry - II |                 |
|      | CCPR-205    |              | CHP.2.1 | Practical -II             |                 |
| Non- | SEC - 206   |              |         |                           |                 |
| CGPA |             |              |         |                           |                 |

|      | Course code          | Paper<br>No. |               | Title of course                                                   |                      |
|------|----------------------|--------------|---------------|-------------------------------------------------------------------|----------------------|
|      | CC-301               | IX           | IND 3.1       | Organic Chemical Industries – I                                   | Compulsory<br>course |
| CGPA | CCS-302              | Х            | IND 3.2       | Inorganic Chemical Industries -<br>I                              | Compulsory<br>course |
|      | CCS-303              | XI           | IND 3.3       | Methods of Analysis in<br>Industries                              | Compulsory course    |
|      | DSE-304(A)           | XII(A)       | IND<br>3.4(A) | General Chemical Technology                                       | Choose any one       |
|      | DSE-304(B)           | XII(B)       | IND 3.4(B)    | Advanced Analytical<br>Techniques in Industry                     | Choose any one       |
|      | DSE-304(C)           | XII(C)       | IND 3.4(C)    | Chemical Analysis in Agro,<br>Food and Pharmaceutical<br>Industry |                      |
|      | CCPR-305             |              | INDP 3.1      | Practical –III                                                    | Compulsory<br>course |
| Non- | AEC-306              |              |               |                                                                   |                      |
| CGPA | EC(SWMMOO<br>C)- 307 |              |               |                                                                   |                      |

## M. Sc. Part – II (Industrial Chemistry)

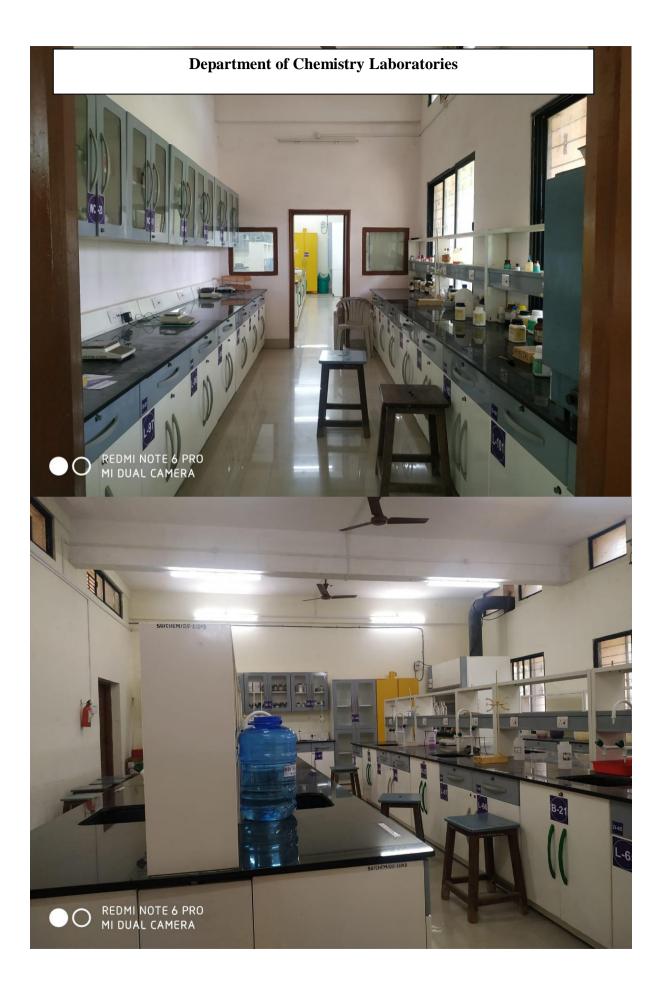
### Semester III

|      | Course code | Paper  |          | Title of course               |                |
|------|-------------|--------|----------|-------------------------------|----------------|
|      |             | No.    |          |                               |                |
|      | CC-401      | XIII   | IND 4.1  | Drugs and Pharmaceuticals     | Compulsory     |
|      |             |        |          |                               | course         |
| CGPA | CCS-402     | XIV    | IND 4.2  | Inorganic Chemical Industries | Compulsory     |
|      |             |        |          | - II                          | course         |
|      | CCS-403     | XV     | IND 4.3  | Selected Topics in Industrial | Compulsory     |
|      |             |        |          | Chemistry                     | course         |
|      | DSE-404(A)  | XVI(A) | IND      | Environmental Chemistry       | Choose any one |
|      |             |        | 4.4(A)   |                               |                |
|      | DSE-404(B)  | XVI(B) | IND      | Pharmaceutical Chemistry      | Choose any one |
|      |             |        | 4.4(B)   |                               |                |
|      | DSE-404(B)  | XVI(C) | IND      | Chemistry of Industrially     |                |
|      |             |        | 4.4(C)   | Important Materials           |                |
|      | CCPR-405    |        | INDP 4.1 | Practical –IV                 | Compulsory     |
|      |             |        |          |                               | course         |
| Non- | SEC-406     |        |          |                               |                |
| CGPA | GE-407      |        |          |                               |                |

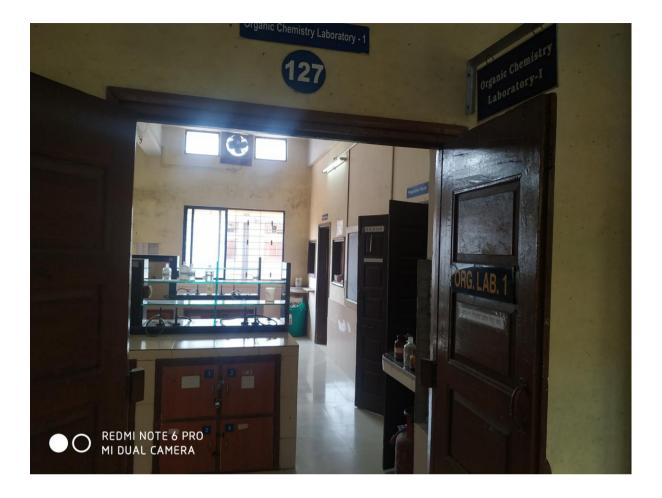
# Annexure III: Faculty Details (Details of Faculty in one page)

|        | Name                     | Designa<br>tion                | Qualificati<br>ons | Specialization          | Areas of<br>Research                                                                     | Number<br>of<br>Publicat<br>ions/ h-<br>index | Teachi<br>ng<br>Experie<br>nce |
|--------|--------------------------|--------------------------------|--------------------|-------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|
| 1      | Prof. G. S.<br>Gokavi    | Profess<br>or                  | M. Sc.,<br>Ph. D   | Physical<br>Chemistry   | Catalysis,<br>Membrane<br>Separations and<br>Kinetics                                    | 76/13                                         | 31                             |
| 2      | Prof. G. B.<br>Kolekar   | Profess<br>or                  | M. Sc.,<br>Ph. D   | Physical<br>Chemistry   | Photocatalysis,<br>Sensors and<br>nanomaterials.                                         | 116/19                                        | 26                             |
| 3      | Prof. S. S.<br>Kolekar   | Profess<br>or                  | M. Sc.,<br>Ph. D   | Inorganic<br>Chemistry  | Supercapacitors<br>, Water<br>Splitting,                                                 | 86/25                                         | 25                             |
| 4      | Prof. S. S.<br>Chavan    | Profess<br>or                  |                    | Inorganic<br>Chemistry  | Coordination<br>Chemistry,<br>Organometallic<br>s and non linear<br>optical<br>materials | 47/12                                         | 25                             |
| 5      | Prof. K. M.<br>Garadkar  | Profess<br>or                  | M. Sc.,<br>Ph. D   | Physical<br>Chemistry   | Photcatalysis,<br>Photodegradati<br>on and<br>nanomaterials                              | 112/28                                        | 26                             |
| 6      | Prof. P. V.<br>Anbhule   | Profess<br>or                  | M. Sc.,<br>Ph. D   | Organic<br>Chemistry    | Synthetic<br>Organic<br>Chemistry,<br>heterocyclic<br>chemistry and<br>sensors           | 76/13                                         | 17                             |
| 7      | Prof. S. D.<br>Delekar   | Profess<br>or                  | M. Sc.,<br>Ph. D   | Inorganic<br>Chemistry  | Photocatalysis,<br>Sensors and<br>nanomaterials.                                         | 61/20                                         | 15                             |
| 8      | Prof. D. M. Pore         | Profess<br>or                  | M. Sc.,<br>Ph. D   | Organic<br>Chemistry    | Synthetic<br>Organic<br>Chemistry and<br>catalysis                                       | 59/20                                         | 17                             |
| 9      | Prof. A. V. Ghule        | Profess<br>or                  | M. Sc.,<br>Ph. D   | Analytical<br>Chemistry | Analytical<br>Methods and<br>supercapacitors                                             | 108/25                                        | 10                             |
| 1<br>0 | Dr. S. P.<br>Hangirgekar | Associa<br>te<br>Profess<br>or | M. Sc.,<br>Ph. D   | Organic<br>Chemistry    | Synthetic<br>Organic<br>Chemistry,<br>heterocyclic<br>chemistry and<br>sensors           | 5                                             | 10                             |

| 1      | Dr. D. H. Dagade       | Assista<br>nt<br>Profess<br>or  | M. Sc.,<br>Ph. D | Physical<br>Chemistry  | Thermodynami<br>cs of solutions,<br>physical<br>properties of<br>Ionic liquids<br>and simulation. | 50/16  | 15 |
|--------|------------------------|---------------------------------|------------------|------------------------|---------------------------------------------------------------------------------------------------|--------|----|
| 1<br>2 | Dr. G. S.<br>Rashinkar | Assista<br>nt<br>Profess<br>or  | M. Sc.,<br>Ph. D | Organic<br>Chemistry   | Synthetic<br>Organic<br>Chemistry and<br>catalysis                                                | 54/14  | 16 |
| 1<br>3 | Dr. S. A.<br>Sankapal  | Assista<br>nt<br>Profess<br>or  | M. Sc.,<br>Ph. D | Organic<br>Chemistry   | Synthetic<br>Organic<br>Chemistry and<br>catalysis                                                | 13/5   | 12 |
| 1<br>4 | Dr. D. S. Bhange       | Assista<br>nt<br>Profess<br>or  | M. Sc.,<br>Ph. D | Inorganic<br>Chemistry | Photocatalysis,<br>water splitting<br>and batteries                                               | 34/14  | 10 |
| 1<br>5 | Dr. S. N. Tayade       | Asiisat<br>ant<br>Profess<br>or | M. Sc.,<br>Ph. D | Physical<br>Chemistry  | Electrochemistr<br>y and graphene<br>supported<br>electrodes                                      | 3/1    | 06 |
| 1<br>6 | Prof. P. N.<br>Bhosale | B. S. R.<br>Faculty             | M. Sc.,<br>Ph. D | Inorganic<br>Chemistry | Thin films and<br>their<br>applications.                                                          | 155/28 | 32 |


### **Department of Chemistry Class Rooms**
















# New Department of Chemistry Building



|     | Number of students placed   | Name of the     | Doologo             | Drogramma                      |
|-----|-----------------------------|-----------------|---------------------|--------------------------------|
|     | Number of students placed   | employer with   | Package<br>received | Programme<br>graduated from    |
|     |                             | contact details | leceiveu            | graduated from                 |
| 1   | Mr. Ashish Bore             | SITEC Labs,     |                     | M.Sc. Organic                  |
| 1   | WII. ASIIISII DOIC          | Mumbai          |                     | Chemistry                      |
| 2   | Mr. Ajinkya Kadakane        | Encube,         | Rs. 1,68,000/-      | M. Sc.                         |
| 2   | Wii. Ajinkya Kadakane       | Mumbai          | Ks. 1,00,000/-      | Analytical                     |
|     |                             | Widinoai        |                     | Chemistry                      |
| 3   | Miss Nikita S. Mangale      | Micro Labs,     |                     | M. Sc. Inorganic               |
| 5   | Wilss Wikita S. Waligate    | Bangalore       |                     | Chemistry                      |
| 4   | Mr. Laksmikant D. Gangnale  | Anthem          | Rs. 3,30,000/-      | M. Sc. Organic                 |
|     | The Laksminut D. Gunghare   | Biosciences     | 10. 5,50,000/       | Chemistry                      |
|     |                             | Ltd., Bangalore |                     | Chemistry                      |
| 5   | Mr. Nagesh R. Sutrave       | Raichem         |                     | M. Sc. Organic                 |
| _   | 6                           | Medicare Ltd.   |                     | Chemistry                      |
|     |                             | Raichur,        |                     | 5                              |
|     |                             | Karnataka       |                     |                                |
| 6   | Miss Bhagyashree J          | do              |                     | M. Sc. Organic                 |
|     | Chimanna                    |                 |                     | Chemistry                      |
| 7   | Mr. Somanath M. Gurav       | do              |                     | M. Sc. Organic                 |
|     |                             |                 |                     | Chemistry                      |
| 8   | Miss Snehal M. Patil        | do              |                     | M. Sc. Organic                 |
|     |                             |                 |                     | Chemistry                      |
| 9   | Mr. Namdev V. Patil         | do              |                     | M. Sc. Organic                 |
|     |                             |                 |                     | Chemistry                      |
| 10  | Mr. Shubham A. Deshmukh     | do              |                     | M. Sc. Organic                 |
|     |                             |                 |                     | Chemistry                      |
| 11  | Miss Bhagyashree N. Patil   | do              |                     | M. Sc. Organic                 |
|     |                             |                 |                     | Chemistry                      |
| 12  | Miss. Anuradha P. Phadatare | do              |                     | M. Sc. Organic                 |
|     |                             |                 |                     | Chemistry                      |
| 13  | Mr. Pravin N. Bhavare       | do              |                     | M. Sc.                         |
|     |                             |                 |                     | Analytical                     |
|     |                             |                 |                     | Chemistry                      |
| 14  | Miss Poonam R. Jamadar      | do              |                     | M. Sc.                         |
|     |                             |                 |                     | Analytical                     |
|     |                             |                 |                     | Chemistry                      |
| 15  | Miss Shivani R. Pol         | do              |                     | M. Sc.                         |
|     |                             |                 |                     | Analytical                     |
| 1.0 | M' G ID D ''                | 1               |                     | Chemistry                      |
| 16  | Miss Sonal B. Patil         | do              |                     | M. Sc.                         |
|     |                             |                 |                     | Analytical                     |
| 17  | Mias Aishers and C. V.      | - 1.            |                     | Chemistry                      |
| 17  | Miss Aishwaraya S. Kore     | do              |                     | M. Sc.                         |
|     |                             |                 |                     | Analytical                     |
| 10  | Miss Sanal S. Varian        | da              |                     | Chemistry<br>M. So. Industrial |
| 18  | Miss. Sonal S. Kavare       | do              |                     | M. Sc. Industrial              |

# Annexure V: Placement of outgoing students for the year 2018-2019

|    |                          |                 |                | Chemistry         |
|----|--------------------------|-----------------|----------------|-------------------|
| 19 | Mr. Shrikant S. Khedge   | do              |                | M. Sc. Industrial |
|    |                          |                 |                | Chemistry         |
| 20 | Mr. Onkar J. Ingawale    | do              |                | M. Sc. Organic    |
| 20 | in onkar s. ingaware     | ů               |                | Chemistry         |
| 21 | Mr. Siddeshwar J. Kote   | do              |                | M. Sc. Organic    |
| 21 | Wit: Biddesitwar 5. Kote | uo              |                | Chemistry         |
| 22 | Mr. Sagar G. Kalagonda   | do              |                | M. Sc. Organic    |
|    | Mit. Bugui O. Kulugoliuu | uo              |                | Chemistry         |
| 23 | Mr. Shubam J. Pujari     | do              |                | M. Sc. Organic    |
| 23 | in ondouin 5. 1 ajun     | uo              |                | Chemistry         |
| 24 | Mr. Suresh H. Pukale     | do              |                | M. Sc. Organic    |
| 27 | With Suresh II. I ukate  | uo              |                | Chemistry         |
| 25 | Mr. Shubham E. Harale    | do              |                | M. Sc. Organic    |
| 23 | Wit: Shubham E. Haraic   |                 |                | Chemistry         |
| 26 | Miss Najmin A. Mullani   | SRL             |                | M. Sc. Organic    |
| 20 | Wiss Najilili A. Wullali | Daignostics,    |                | Chemistry         |
|    |                          | Pune            |                | Chemisuy          |
| 27 | Mr. P. S. Pawar          | Lupin Pune      | Rs. 3,40,000/- | M. Sc. Inorganic  |
| 21 | WII. 1 . 5. 1 awai       |                 | KS. 5,40,000/- | Chemistry         |
| 28 | Miss Vijayata K. Jagtap  | NCL, Project    |                | M. Sc. Inorganic  |
| 20 | Wiss Vijayata K. Jagtap  | Assistant       |                | Chemistry         |
| 29 | Mr. Swapnil Bansode      | Glenmark        |                | M. Sc. Physical   |
| 29 | Mi. Swapini Bansode      | Nashik          |                | Chemistry         |
| 30 | Mr. Mohin Jamadar        | Lupin Pune      |                | M. Sc. Physical   |
| 30 |                          |                 |                | Chemistry         |
| 31 | Mr. Santosh Pednekar     | Glenmark Goa    |                | M. Sc.            |
| 51 | WII. Santosh Fednekai    | Ofeninark Oba   |                | Analytical        |
|    |                          |                 |                | Chemistry         |
| 32 | Mr. Shubham Ghatge       | MSN             |                | M. Sc. Inorganic  |
| 52 | Wir. Shubham Ghatge      | Hyderabad       |                | Chemistry         |
| 33 | Mr. Ramachandra          | Serum Institute |                | M. Sc. Inorganic  |
| 55 | Bhavadhane               | Pune            |                | Chemistry         |
| 34 | Mr. Dayanand Mole        | Lupin Goa       |                | M. Sc. Industrial |
| 54 | Wir. Dayanand Worc       |                 |                | Chemistry         |
| 35 | Mr. Mahesh Jadhav        | Cipla Baramati  |                | M. Sc.            |
| 55 |                          |                 |                | Analytical        |
|    |                          |                 |                | Chemistry         |
| 36 | Mr. Vinayak Patil        | Lupin Goa       |                | M. Sc.            |
| 50 |                          |                 |                | Analytical        |
|    |                          |                 |                | Chemistry         |
| 37 | Mr. Sagar Kumbhar        | Lupin Goa       |                | M. Sc. Inorganic  |
| 51 | Tin. Sagai Kunionai      |                 |                | Chemistry         |
| 38 | Mr. Abhijit Patil        | Glenmark Goa    |                | M. Sc. Industrial |
| 50 |                          |                 |                | Chemistry         |
| 39 | Mr. Madhav K. Londhe     | GeoChem,        |                | M. Sc. Organic    |
| 37 |                          | Mumbai          |                | Chemistry         |
| 40 | Mr. Avinash Kadam        | Aurobindo       |                | M. Sc. Industrial |
| 40 |                          | Pharma          |                | Chemistry         |
| L  |                          | 1 11a1111a      |                | Chemistry         |

|    |                         | Hyderabad       |                   |
|----|-------------------------|-----------------|-------------------|
| 41 | Mr. Maqsood Zari        | Aurobindo       | M. Sc. Industrial |
|    | -                       | Pharma          | Chemistry         |
|    |                         | Hyderabad       | -                 |
| 42 | Mr. Mayur Shirtode      | Aurobindo       | M. Sc. Industrial |
|    |                         | Pharma          | Chemistry         |
|    |                         | Hyderabad       |                   |
| 43 | Mr. Subham Harale       | Marcson         | M. Sc. Industrial |
|    |                         | Pharma Goa      | Chemistry         |
| 44 | Mr. Suresh Pukale       | Arti Insustries | M. Sc. Industrial |
|    |                         | Boisar          | Chemistry         |
| 45 | Mr. Ashish Ghanwat      | Melody          | M. Sc. Industrial |
|    |                         | Healthcare      | Chemistry         |
|    |                         | Boisar          |                   |
| 46 | Miss Anuradha Jarag     | Flamingo        | M. Sc. Industrial |
|    |                         | Pharma Mumbai   | Chemistry         |
| 47 | Miss Shivani Tawar      | Myster Health   | M. Sc. Industrial |
|    |                         | and Hygine      | Chemistry         |
| 48 | Miss Reshma Gholap      | Saphire Pharma  | M. Sc. Industrial |
|    |                         | Palghar         | Chemistry         |
| 49 | Miss Swati Kalkundrikar | BEE Phrama      | M. Sc. Industrial |
|    |                         | Pvt. Ltd.       | Chemistry         |
| 50 | Miss Vidya Sutar        | Pratap Organics | M. Sc. Industrial |
|    |                         | Mumbai          | Chemistry         |
| 51 | Mr. Prashant V. Mali    | Nichino         | M. Sc. Applied    |
|    |                         | Chemical India  | Chemistry         |
|    |                         | Pvt. Ltd.,      |                   |
|    |                         | Hyderabad       |                   |
| 52 | Mr. Ravidra B. Daphale  | Nichino         | M. Sc. Applied    |
|    |                         | Chemical India  | Chemistry         |
|    |                         | Pvt. Ltd.,      |                   |
|    |                         | Hyderabad       |                   |