

```
Copyright © Registrar,
    Shivaji University,
    Kolhapur. (Maharashtra)
    First Edition 2008
    Second Edition }201
```

Prescribed for M. Sc. Part-I

All rights reserved, No part of this work may be reproduced in any form by mimeography or any other means without permission in writing from the Shivaji University, Kolhapur (MS)

Copies: 1,000

Published by:
Dr. D. V. Muley
Registrar,
Shivaji University,
Kolhapur-416 004

Printed by :
Shri. A. S. Mane,
I/c. Superintendent, Shivaji University Press, Kolhapur-416 004

ISBN-978-81-8486-080-1
\star Further information about the Centre for Distance Education \& Shivaji University may be obtained from the University Office at Vidyanagar, Kolhapur-416 004, India.
\star This material has been produced with the developmental grant from DEC-IGNOU, New Delhi.

Centre for Distance Education

Shivaji University, Kolhapur

EXPERT COMMITTEE

Prof. (Dr.) N. J. Pawar
Vice-Chancellor,
Shivaji University, Kolhapur

Dr. D. V. Muley
Registrar, Shivaji University, Kolhapur.

ADVISORY COMMITTEE

Prof. (Dr.) N. J. Pawar
Vice-Chancellor,
Shivaji University, Kolhapur.
Dr. A. B. Rajge
Director BCUD,
Shivaji University, Kolhapur.
Dr. B. M. Hirdekar
Controller of Examination Shivaji University, Kolhapur.

Dr. (Smt.) Vasanti Rasam
Dean, Faculty of Social Sciences,
Shivaji University, Kolhapur.
Prof. (Dr.) B. S. Sawant
Dean, Faculty of Commerce,
Shivaji University, Kolhapur.
Dr. T. B. Jagtap
Dean, Faculty of Science, Shivaji University, Kolhapur.
Dr. K. N. Sangale
Dean, Faculty of Education, Shivaji University, Kolhapur.

Dr. D. V. Muley
Registrar,
Shivaji University, Kolhapur.
Shri. B. S. Patil
Finance and Accounts Officer, Shivaji University, Kolhapur.
Prof. (Dr.) U. B. Bhoite
Lal Bahadur Shastri Marg,
Bharati Vidyapeeth, Pune.
Prof. (Dr.) A. N. Joshi
Director, School of Education,
Y. C. M. O. U. Nashik.

Shri. J. R. Jadhav
Dean, Faculty of Arts \& Fine Arts, Shivaji University, Kolhapur.
Prof. (Dr.) S. A. Bari
Director, Distance Education, Kuvempu University, Karnataka.
Prof. Dr. (Smt.) Cima Yeole
(Member Secretary)
Director, Centre for Distance Education, Shivaji University, Kolhapur.
B. O. S. MEMBERS OF MATHEMATICS

Chairman- Prof. S. R. Bhosale
P.D.V.P. Mahavidyalaya, Tasgaon, Dist. Sangli.

- Dr. L. N. Katkar

Head, Dept. of Mathematics, Shivaji University, Kolhapur.

- Dr. H. T. Dinde

Karmveer Bhaurao Patil College, Urun-Islampur, Tal. Walwa, Dist. Sangli.

- Dr. T. B. Jagtap Yashwantrao Chavan Institute of Science, Satara.
- Shri. L. B. Jamale

Krishna Mahavidyalaya, Rethare Bk., Karad, Dist. Satara.

- Dr. A. D. Lokhande

Yashavantrao Chavan Warana Mahavidyalaya, Warananagar.

- Prof. S. P. Patankar Vivekanand College, Kolhapur.
- Prof. V. P. Rathod

Dept. of Mathematics, Gulbarga University, Gulbarga, (Karnataka State.)

- Prof. S. S. Benchalli

Dept. of Mathematics,Karnataka University, Dharwad.

- Shri. Santosh Pawar,

1012, 'A' Ward Sadashiv Jadhav, Housing Society, Radhanagari Road, Kolhapur-416 012.

Shivaji University,
Kolhapur.

Writing Team	Unit No.
Dr. Y. S. Powar	All
Dept. of Mathematics,	
Shivaji University, Kolhapur.	

Editor

Dr. Y. S. Powar
Department of Mathematics,
Shivaji University, Kolhapur. Maharashtra.

Preface

This book in the form of "Notes of Algebra-l" is a natural outgrowth of the lectures delivered for M. Sc. Part-I students of Shivaji University. The primary purpose of this book is to facilitate the post graduate education in Algebra. The topics in the book will cover the syllabus of Algebra-I in detail for M. Sc. (Part-I) external students. For the basic ideas in Group theory and Ring theory students are advised to read in detail the other text books of Algebra.

First chapter deals with Group theory and it covers the following articles 1) Isomorphism theorems, 2) Soluable groups, 3) Series of Groups, 4) Sylow theorems.

The second Chapter is on Ring theory and it especially deals with polynomial rings.

In the third chapter we discuss Module theory, where modules are the generalization of vector spaces which students have studied in their B. Sc. course. The list of the articles in this chapter is as follows.

1) Modules 2) Sum and direct sum of submodules 3) Noetherian and Artenian Modules.

We owe a deep sense of gratitude to the Vice-Chancellor Dr. N. J. Pawar who has given impetus to go ahead with ambitious projects like the present one. Dr. L. N. Katkar, Head, Department of Mathematics, Shivaji University has to be profusely thanked for the ovation he has poured to prepare the SIM on Algebra. We also thank the Director of Distance Education Mode Mrs. Cima Yeole and Deputy Director Shri. S. S. Patil for their help and keen interest in completion of the SIM.

Prof. S. R. Bhosale
Chairman BOS in Mathematics
Shivaji University, Kolhapur-416004.

M. Sc. (Mathematics)
Algebra-I
Contents
Chapter 1 : Groups 1

1) Isomorphism Theorems
2) Solvable Groups
3) Series of A Group
4) Sylow Theorems
Chapter 2 : Ring of Polynomials 80
Chapter 3 : Theory of Modules 1231) Modules2) Sum and Direct Sum of Submodules
5) Noetherian and Artinian Modules

CHAPTER I - GROUPS

Unit 1 : Isomorphism theorems:

1.1 Basic definitions and results
1.2 Isomorphism Theorems

1.1 Basic Definitions and Results :

Definition 1.1.1: A group $\langle G, *\rangle$ is a set G together with a binary operation $*$ defined on G, satisfying the following axioms.
(i) $a *(b * c)=(a * b) * c$
(ii) There exists an element $e \in G$ such that $e * a=a=a * e$.
(iii) For each $a \in G$, there is an element $a^{\prime} \in G$ such that $a * a^{\prime}=e=a^{\prime} * a$. for all $a, b \in G$.

The element e is called an identity element for $*$ in G and the element a^{\prime} is called the inverse of a with respect to $*$ in G.

Generally, we use ' \cdot ' for a binary operation in a group G and $x \cdot y$ is denoted by $x y$ simply.

Definition 1.1.2: A group G is abelian if its binary operation * is commutative.

$$
\text { i.e. } \quad a b=b a \quad \text { for all } a, b \in G
$$

Definition 1.1.3: Let H be a subset of a group G. If H is itself a group under the induced binary operation defined on G, then H is a sub group of G. We denote this by $H \leq G$. G is the improper subgroup of G. All other subgroups of G are proper subgroups. Also $\{e\}$ is the trivial subgroup of G. All other subgroups are non trivial.

Definition 1.1.4: Let G be a group and let $a \in G$. Then the subgroup $H=\left\{a^{n} / n \in Z\right\}$ of G is called the cyclic subgroup of G generated by a and it is denoted by $\langle a\rangle$. (here $a^{n}=a \cdot a \cdot \ldots \cdot a n$ times)

Definition 1.1.5: An element a of group G generates G (or a is generator for G) if $\langle a\rangle=G$.

A group G is cyclic if there is some element a in G that generates G.

Definition 1.1.6: A permutation of a set A is a function from A into A that is both one-one and onto.

Definition 1.1.7: If A is a finite set $\{1,2, \ldots, n\}$, then the group of all permutations of A is the symmetric group of n letters and is denoted by S_{n}. [Note that $\left|S_{n}\right|=n!$].

Definition 1.1.8: The subgroup of S_{n} consisting of even permutations of n letters is the alternating group A_{n} of n letters. [Note that, $\left|A_{n}\right|=\frac{n!}{2}$]

Definition 1.1.9: Let G_{1} and G_{2} be any groups. A mapping $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism if

$$
\phi(x y)=\phi(x) \cdot \phi(y) \quad \text { for all } x, y \in G_{1}
$$

An isomorphism of a group G_{1} with a group G_{2} is a one to one homomorphism of G_{1} onto G_{2}.

Definition 1.1.10: Let H and K be subgroups of a group G. The join $H \vee K$ of H and K is the intersection of all subgroups of G containing $H K=\{h k / h \in H, k \in K\}$. $H \vee K$ is the smallest subgroup of G containing both H and K.

Definition 1.1.11: Let H and K be subgroups of a group G. G is the internal direct product of the subgroups H and K if the mapping $\phi: H \times K \rightarrow G$ defined by $\phi(h, k)=h \cdot k$ is an isomorphism.

In this case any $g \in G$ can be uniquely written as $g=h \cdot k, h \in H$ and $k \in K$. We can generalize this definition for any finite n.

Definition 1.1.12: Let G be group and let $a_{i} \in G$, for $i \in I$ (I is an indexing set). The smallest subgroup of G containing $\left\{a_{i} / i \in I\right\}$ is the subgroup generated by $\left\{a_{i} / i \in I\right\}$. If this subgroup is all of G, then we say $\left\{a_{i} / i \in I\right\}$ generates G and $a_{i}{ }^{\prime} s$ are the generators of G. If there exists a finite set $\left\{a_{i} / i \in I\right\}$ that generates G, then we say G is finitely generated.

Definition 1.1.13: Let H be subgroup of G and let $a \in G$. The left coset $a H$ of H is the set $\{a h / h \in H\}$. The right coset $H a$ is similarly defined.

Definition 1.1.14: Let H be subgroup of group G. The number of left cosets of H in G is the index of H in G and is denoted by ($G: H$) If G is finite, then $(G: H)$ is finite and $(G: H)=\frac{|G|}{|H|}$.

Definition 1.1.15: A subgroup H of group G is a normal subgroup of G if $g^{-1} H g=H$ for all $g \in G$. We denote this by $H \unlhd G$. Obviously, H is normal iff $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$.

Definition 1.1.16: Two subgroups H and K of a group G are conjugate of each other if $H=g^{-1} K g$, for some $g \in G$.

Definition 1.1.17: If N is a normal subgroup of a group G, the group of right/left cosets of N under induced operation is the factor (quotient) group of G modulo N and is denoted by $\frac{G}{N}$.

Definition 1.1.18: A group G is simple if it has no proper, nontrivial normal subgroups. i.e. if $H \leq G$ then either $H=\{e\}$ or $H=G$.

Definition 1.1.19 : An element $a b a^{-1} b^{-1}$ in a group $G(a, b \in G)$ is called a commutator of a and b in G.

Definition 1.1.20 : The kernel of a homomorphism ϕ of a group G into a group G^{\prime} is the set of all elements of G mapped onto the identity element of G^{\prime} by ϕ. This is denoted by ker ϕ.

Thus, $\operatorname{ker} \phi=\left\{x \in G / \phi(x)=e^{\prime}\right\}$.

Definition 1.1.21: Let G be a group. S is any non empty subset of G. The normalizer of S in G is the set $N[S]=\left\{x \in G / x S x^{-1}=S\right\}$.

The normalizer of $\{a\}$ is denoted by $N[a]$.

Definition 1.1.22: Let G be a group and $a \in G$. The set $C(a)=\left\{x a x^{-1} / x \in G\right\}$ is called the conjugate of a in G.

Theorem 1.1.23: If H and K are subgroup of a group G, then

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

Proof: Let $|H|=r,|K|=s$ and $|H \cap K|=t$.

$$
H K=\{h \cdot k / h \in H \text { and } k \in K\}
$$

Then $|H K| \leq|H| \cdot|K|=r \cdot s$
(i) Let $\quad h_{1} k_{1}=h_{2} k_{2} \quad$ for some $h_{1} h_{2} \in H$ and $k_{1}, k_{2} \in K$.

Let $\quad x=h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}$.
Then $\quad x=h_{2}^{-1} h_{1} \quad \Rightarrow x \in H$ and $x=k_{2} k_{1}^{-1} \quad \Rightarrow x \in K$.
Thus $x \in H \cap K$ and further

$$
h_{2}=h_{1} x^{-1} \quad \text { and } \quad k_{2}=x k_{1}
$$

Thus $h_{1} k_{1}=h_{2} k_{2} \Rightarrow \exists x \in H \cap K$ such that $h_{2}=h_{1} x^{-1}$ and $k_{2}=x k_{1}$.
(ii) Suppose $\exists y \in H \cap K$ such that

$$
h_{3}=h_{1} y^{-1} \text { and } k_{3}=y k_{1} \quad \text { for some } h_{1} h_{3} \in H \text { and } k_{1} k_{3} \in K
$$

But then $h_{3} k_{3}=h_{1} y^{-1} \cdot y k_{1}=h_{1} k_{1}$.
Thus given $y \in H \cap K, h_{1} y^{-1}$ and $y k_{1}$ in HK will produce the element $h_{1} k_{1}$.
From (1) and (2), we get that there exists a one-one onto correspondence between the repeated elements in $H K$ and the elements of $H \cap K$. Thus any element $h k \in H K$ can be represented in the form of $h_{i} k_{i}$ for $h_{i} \in H$ and $k_{i} \in K$ for all $i, 1 \leq i \leq t$.

Hence

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

1.2 Isomorphism Theorems:

Theorem 1.2.1: A group G is the internal direct product of subgroups H and K if and only if
(i) $G=H \vee K$
(ii) $h k=k h \quad$ for all $h \in H$ and $k \in K$.
(iii) $H \cap K=\{e\}$

Proof: Only if part :

Let G be internal direct product of H and K . Hence $\phi: H \times K \longrightarrow G$ defined by

$$
\phi(h, k)=h k
$$

is an isomorphism.
Define

$$
\begin{aligned}
& \quad \bar{H}=\{(h, e) / h \in H\} \quad \text { and } \quad \bar{K}=\{(e, k) / k \in K\} . \\
& \text { Then } \quad \bar{H} \leq H \times K \quad \text { and } \quad \bar{K} \leq H \times K . \\
& \text { Further } \quad \bar{H} \vee \bar{K}=H \times K ; \bar{H} \cap \bar{K}=\{(e, e)\} \\
& (h, e) \in \bar{H} \text { and }(e, k) \in \bar{K} \quad \Longrightarrow \quad(h, e)(e, k)=(h, k) \\
& \\
& \\
& \\
& \\
& \\
& \text { and } \quad(e, k)(h, e)=(h, k) .
\end{aligned}
$$

Hence, $\quad(h, e)(e, k)=(e, k)(h, e)$.
Therefore we get
(i) $\bar{H} \vee \bar{K}=H \times K$
(ii) $(h, e)(e, k)=(e, k)(h, e), \quad$ for all $(h, e) \in \bar{H}$ and $(e, k) \in \bar{K}$.
(iii) $\bar{H} \cap \bar{K}=\{(e, e)\}$

As $\phi: H \times K \rightarrow G$ is an isomorphism we get $\phi(\bar{H})=H$ and $\phi(\bar{K})=K$ and $\phi(H \times K)=G$. Hence we get
(i) $G=H \vee K$.
(ii) $h k=k h \quad$ for all $h \in H$ and $k \in K$.
(iii) $H \cap K=\{e\}$

If part :

Define $\phi: H \times K \rightarrow G$ by

$$
\phi(h, k)=h . k
$$

To prove that ϕ is an isomorphism.
(i) ϕ is a well defined map.

$$
\begin{aligned}
\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right) & \Rightarrow h_{1}=h_{2} \text { and } k_{1}=k_{2} \\
& \Rightarrow h_{1} k_{1}=h_{2} k_{2} \quad \Rightarrow \phi\left(h_{1}, k_{1}\right)=\phi\left(h_{2}, k_{2}\right)
\end{aligned}
$$

(ii) ϕ is one one.

Let $\quad \phi\left(h_{1}, k_{1}\right)=\phi\left(h_{2}, k_{2}\right)$
Then

$$
h_{1} k_{1}=h_{2} k_{2}
$$

and hence

$$
h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}
$$

But $\quad h_{2}^{-1} h_{1} \in H$
and $\quad k_{2} k_{1}^{-1} \in K$
and hence $h_{2}^{-1} h_{1} \in H \cap K=\{e\} \quad$ and $\quad k_{2} k_{1}^{-1} \in H \cap K=\{e\}$.

Thus

$$
h_{2}^{-1} h_{1}=e \quad \text { and } \quad k_{2} k_{1}^{-1}=e \text {, proving that } h_{1}=h_{2} \text { and } k_{1}=k_{2} .
$$

Hence $\quad\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right)$
This shows that ϕ is one-one.
(iii) ϕ is onto.

Let $g \in G$. As $h k=k h$ for all $h \in H$ and $k \in K$. We get HK is a subgroup of G and hence $H \vee K=H K$. But by (i) $H \vee K=G$. Therefore $G=H K$. Thus $g \in G$ can be expressed as $g=h k$ for some $h \in H$ and $k \in K$. And we get $\phi(h, k)=g$.
This shows that ϕ is onto.
(iv) ϕ is a homomorphism.

$$
\begin{align*}
\phi\left[\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right] & =\phi\left(h_{1} h_{2}, k_{1} k_{2}\right) \\
& =h_{1} h_{2} k_{1} k_{2} \\
& =h_{1}\left[k_{1} h_{2}\right] k_{2} \tag{2}\\
& =\left(h_{1} \cdot k_{1}\right)\left(h_{2} \cdot k_{2}\right) \\
& =\phi\left(h_{1}, k_{1}\right) \phi\left(h_{2}, k_{2}\right)
\end{align*}
$$

From (i), (ii), (iii) and (iv), we get ϕ is an isomorphism. Hence $G=H \times K$.

Theorem 1.2.2: Let N be a normal subgroup of G.
Then the map $f: G \rightarrow \frac{G}{N}$ defined by

$$
f(g)=N_{g}, \quad \text { for } g \in G
$$

is an onto homomorphism.
Proof : f is obviously onto.
Now $f\left(g_{1} g_{2}\right)=N_{g_{1} g_{2}}=\left(N_{g_{1}}\right)\left(N_{g_{2}}\right)=f\left(g_{1}\right) \cdot f\left(g_{2}\right), \quad$ for all $g_{1}, g_{2} \in G$
Shows that f is a homomorphism.
Hence f is an onto homomorphism.

Remark : This map f is called natural or canonical homomorphism.
Theorem 1.2.3: Let G and G^{\prime} be any groups. For any homomorphism $\phi: G \rightarrow G^{\prime}$, kernel of ϕ is a normal subgroup of G.

Proof :

(i) $\operatorname{ker} \phi=\left\{x \in G \mid \phi(x)=e^{\prime}\right\}$. As $e \in \operatorname{ker} \phi$; $\operatorname{ker} \phi$ is non empty set.
(ii) Let $x, y \in \operatorname{ker} \phi$.

$$
\phi(x y)=\phi(x) \cdot \phi(y) \quad \ldots . . \because \quad \phi \text { is homomorphism. }
$$

$$
\begin{aligned}
& =e^{\prime} \cdot e^{\prime} \\
& =e^{\prime}
\end{aligned}
$$

Thus $\phi(x y)=e^{\prime}$.
Hence $x . y \in \operatorname{ker} \phi$.
(iii) Let $x \in \operatorname{ker} \phi$. Then $\phi(x)=e^{\prime}$.

As $\phi\left(x^{-1}\right)=[\phi(x)]^{-1}=\left[e^{\prime}\right]^{-1}=e^{\prime}$ shows that $x^{-1} \in \operatorname{ker} \phi$.
From (i), (ii) and (iii) we get $\operatorname{ker} \phi$ is a subgroup of G.
(iv) Let $n \in \operatorname{ker} \phi$ and $g \in G$. Then
$\phi\left(g^{-1} n g\right)=\phi\left(g^{-1}\right) \phi(n) \phi(g)$

$$
=[\phi(g)]^{-1} \cdot e^{\prime} \cdot \phi(g)
$$

$$
=e^{\prime}
$$

Hence $\quad g^{-1} n g \in \operatorname{ker} \phi, \quad$ for all $g \in G$ and $n \in N$.
Thus shows that $\operatorname{ker} \phi$ is a normal subgroup of G.

Theorem 1.2.4: Let G and G^{\prime} be groups. $\phi: G \rightarrow G^{\prime}$ is a homomorphism.
(i) $H \leq G \Rightarrow \phi(H) \leq G^{\prime}$
(ii) $H \unlhd G \quad \Rightarrow \phi(H) \unlhd G^{\prime}$
(iii) $K^{\prime} \leq G^{\prime} \Rightarrow \phi^{-1}\left(K^{\prime}\right) \leq G$
(iv) $K^{\prime} \unlhd G^{\prime} \Rightarrow \phi^{-1}\left(K^{\prime}\right) \unlhd G$

Proof : Proof is obvious and hence omitted.

- First Isomorphism Theorem :

Theorem 1.2.5: Every homomorphic image of a group is isomorphic with its suitable quotient group.

OR Let G and G^{\prime} be groups and let $\phi: G \longrightarrow G^{\prime}$ be an onto homomorphism.
Then $\quad G^{\prime} \cong \frac{G}{\text { ker } \phi}$.
Proof : Let $\phi: G \longrightarrow G^{\prime}$ be onto homomorphism. Then $G^{\prime}=\phi(G)=\{\phi(x) / x \in G\}$.
Let $N=\operatorname{ker} \phi$. Then $N \unlhd G$ (Seer theorem 0.4).
Let $\psi: G \rightarrow \frac{G}{N}$ be canonical mapping. Then ψ is an onto homomorphism. (See theorem 1.2.2).

Define $\gamma: \frac{G}{N} \rightarrow G^{\prime}=\phi(G)$ by

$$
\gamma\left(N_{g}\right)=\phi(g), \quad \text { for } g \in G
$$

Claim 1: ϕ is well defined map.

$$
\text { Let } \begin{aligned}
& N_{g_{1}}=N_{g_{2}} \\
& \qquad \begin{aligned}
N_{g_{1}}=N_{g_{2}} & \Rightarrow g_{1} g_{2}^{-1} \in N \\
& \Rightarrow g_{1} g_{2}^{-1} \in \operatorname{ker} \phi \\
& \Rightarrow \phi\left(g_{1} g_{2}^{-1}\right)=e^{\prime} \\
& \Rightarrow \phi\left(g_{1}\right) \cdot \phi\left(g_{2}^{-1}\right)=e^{\prime} \\
& \Rightarrow \phi\left(g_{1}\right) \cdot\left[\phi\left(g_{2}\right)\right]^{-1}=e^{\prime} \\
& \Rightarrow \phi\left(g_{1}\right)=\phi\left(g_{2}\right) \\
& \Rightarrow \gamma\left(N_{g_{1}}\right)=\gamma\left(N_{g_{2}}\right)
\end{aligned}
\end{aligned}
$$

This shows that γ is well defined.
Claim 2: γ is a homomorphism.

$$
\begin{aligned}
\gamma\left(N_{g_{1}} \cdot N_{g_{2}}\right) & =\gamma\left(N_{g_{1} g_{2}}\right) \\
& =\phi\left(g_{1} g_{2}\right) \\
& =\phi\left(g_{1}\right) \phi\left(g_{2}\right) \\
& =\gamma\left(N_{g_{1}}\right) \cdot \gamma\left(N_{g_{2}}\right) \quad \text { for any } N_{g_{1}}, N_{g_{2}} \in \frac{G}{N}
\end{aligned}
$$

This shows that γ is a homomorphism.
Claim 3: γ is onto.
Let $y \in G^{\prime} . \phi$ being onto, there exists $x \in G$ such that $\phi(x)=y$. For this $x \in G, N_{x} \in \frac{G}{N}$ and $\gamma\left(N_{x}\right)=\phi(x)=y$. This shows that γ is onto.

Claim 4: γ is one-one.
Let $\gamma\left(N_{x}\right)=\gamma\left(N_{y}\right)$ for some $x, y \in G$

$$
\gamma\left(N_{x}\right)=\gamma\left(N_{y}\right) \Rightarrow \phi(x)=\phi(y)
$$

$$
\Rightarrow \quad \phi(x) \cdot[\phi(y)]^{-1}=e^{\prime}
$$

$$
\Rightarrow \quad \phi(x) \cdot \phi\left(y^{-1}\right)=e^{\prime}
$$

$$
\Rightarrow \quad \phi\left(x y^{-1}\right)=e^{\prime}
$$

$$
\Rightarrow \quad x y^{-1} \in \operatorname{ker} \phi=N
$$

$$
\Rightarrow \quad N_{x}=N_{y}
$$

Thus $\gamma\left(N_{x}\right)=\gamma\left(N_{y}\right) \quad \Rightarrow \quad N_{x}=N_{y}$.
Hence γ is one-one.

From claims (i) to (iv) it follows that γ is an isomorphism and hence $\frac{G}{\operatorname{ker} \phi} \cong G^{\prime}$.
Diagrammatically we represent the theorem as follows.

- Second Isomorphism Theorem :

Theorem 1.2.6: H is a subgroup of group G and N is a normal subgroup of a group G. Then

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

Proof : $\quad H \leq G \quad$ and $\quad N \unlhd G \quad \Rightarrow \quad H N \leq G$
Further $\quad N \leq H N \quad$ and $\quad N \unlhd G \quad \Rightarrow \quad N \unlhd H N$
Hence $\frac{H N}{N}$ is defined.
$H \cap N \unlhd H \quad \Rightarrow \frac{H}{H \cap N}$ is defined.
Define $\phi: H N \rightarrow \frac{H}{H \cap N}$ by

$$
\phi(h n)=(H \cap N) h \quad \text { for } h \in H \text { and } n \in N
$$

Claim 1: ϕ is well defined.
Let $h_{1} n_{1}=h_{2} n_{2} \quad$ for $h_{1}, h_{2} \in H$ and $n_{1}, n_{2} \in N$.
$h_{1} n_{1}=h_{2} n_{2} \quad \Rightarrow \quad h_{2}^{-1} h_{1}=n_{2} n_{1}^{-1}$
$h_{2}^{-1} h_{1} \in H$ and $n_{2} n_{1}^{-1} \in N$.
Hence $h_{2}^{-1} h_{1}=n_{2} n_{1}^{-1} \quad \Rightarrow \quad h_{2}^{-1} h_{1} \in H \cap N$
$\Rightarrow \quad(H \cap N) h_{1}=(H \cap N) h_{2}$
$\Rightarrow \quad \phi\left(h_{1} n_{1}\right)=\phi\left(h_{2} n_{2}\right)$
This shows that ϕ is well defined.
Claim 2: ϕ is a homomorphism.

$$
\begin{aligned}
& \phi\left[\left(h_{1} n_{1}\right)\left(h_{2} n_{2}\right)\right] \\
= & \phi\left[h_{1}\left(n_{1} h_{2}\right) n_{2}\right] \\
= & \phi\left[h_{1}\left(h_{2} n_{3}\right) n_{2}\right] \\
= & \ldots\left[\left(h_{1} h_{2}\right)\left(n_{3} n_{2}\right)\right]
\end{aligned}
$$

$=(H \cap N) h_{1} h_{2}$
$=\left[(H \cap N) h_{1}\right]\left[(H \cap N) h_{2}\right]$
$=\phi\left(h_{1} n_{1}\right) \phi\left(h_{2} n_{2}\right)$
This shows that ϕ is a homomorphism.
Claim 3: ϕ is onto.
Let $(H \cap N) h \in \frac{H}{H \cap N}$. Then $h \in H$.
As $h \in H \quad \Rightarrow h \cdot e \in H N \quad$ and $\quad \phi(h e)=(H \cap N) h$.
This shows that ϕ is onto.
From claim 1, claim 2 and claim 3, ϕ is an onto homomorphism. Hence by 1st isomorphism theorem,

$$
\begin{equation*}
\frac{H N}{\operatorname{ker} \phi} \cong \frac{H}{H \cap N} \tag{1}
\end{equation*}
$$

Now,

$$
\begin{array}{rlrl}
\operatorname{ker} \phi & =\{h n \in H N / \phi(h n)=(H \cap N)\} \\
& =\{h n \in H N /(H \cap N) h=(H \cap N)\} \\
& =\{h n \in H N / h \in(H \cap N)\} \\
& =N \quad & & \\
& \quad \cdots & h \in H \cap N \quad \Rightarrow h \in N \tag{2}\\
& \Rightarrow h \cdot n \in N \quad \text { for } h \in H \text { and } n \in N
\end{array}
$$

Thus $\operatorname{ker} \phi=N$
From (1) and (2) we get

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

- Third Isomorphism Theorem :

Theorem 1.2.7: Let H and K be normal subgroups of a group G with $K \leq H$. Then

$$
\frac{G}{H} \cong \frac{G / K}{H / K}
$$

Proof : Let H and K are normal in G and $K \leq H$. Therefore K is a normal subgroup of H.
Thus $\frac{G}{H}, \frac{G}{K}, \frac{H}{K}$ are all defined.
Define $\phi: G \rightarrow \frac{G / K}{H / K}$ by

$$
\phi(g)=\left(\frac{H}{K}\right) \cdot\left(K_{g}\right) \quad \text { for each } g \in G
$$

Claim 1: ϕ is well defined.
Let $g_{1}=g_{2}$ in G.

$$
\begin{aligned}
g_{1}=g_{2} & \Rightarrow \quad K_{g_{1}}=K_{g_{2}} \\
& \Rightarrow\left(\frac{H}{K}\right) \cdot K_{g_{1}}=\left(\frac{H}{K}\right) \cdot K_{g_{2}} \\
& \Rightarrow \phi\left(g_{1}\right)=\phi\left(g_{2}\right)
\end{aligned}
$$

Hence ϕ is well defined.
Claim 2: ϕ is homomorphism..
Let $g_{1}, g_{2} \in G$.

$$
\begin{aligned}
\phi\left(g_{1} g_{2}\right) & =\left(\frac{H}{K}\right) \cdot K_{g_{1} g_{2}} \\
& =\left(\frac{H}{K}\right) \cdot\left[K_{g_{1}} \cdot K_{g_{2}}\right] \\
& =\left\{\left(\frac{H}{K}\right) \cdot K_{g_{1}}\right\}\left\{\left(\frac{H}{K}\right) \cdot K_{g_{2}}\right\} \\
& =\phi\left(g_{1}\right) \cdot \phi\left(g_{2}\right)
\end{aligned}
$$

This shows that ϕ is homomorphism.
Claim 3: ϕ is onto.
Let $\left(\frac{H}{K}\right) \cdot K_{a} \in\left(\frac{G / K}{H / K}\right)$. Then $a \in G$. For this $a \in G$ we get $\phi(a)=\left(\frac{H}{K}\right) \cdot K_{a}$.
Therefore ϕ is onto.
From claim 1, claim 2 and claim 3, ϕ is an onto homomorphism. Hence by 1st isomorphism theorem,

$$
\begin{equation*}
\frac{G}{\operatorname{ker} \phi} \cong \frac{G / K}{H / K} \tag{1}
\end{equation*}
$$

Now,

$$
\begin{align*}
\operatorname{ker} \phi & =\{x \in G / \phi(x)=(H / K)\} \\
& =\left\{x \in G /(H / K)\left(K_{x}\right)=(H / K)\right\} \\
& =\left\{x \in G / K_{x} \in(H / K)\right\} \\
& =\{x \in G / x \in H\} \tag{2}
\end{align*}
$$

Thus $\operatorname{ker} \phi=H$
From (1) and (2) we get

$$
\frac{G}{H} \cong \frac{G / K}{H / K}
$$

- Zassenhaus Lemma :

Theorem 1.2.8: Let H and K be subgroups of group $G . H^{*}$ and K^{*} be normal subgroups of H and K respecively. Then
(i) $\quad H^{*}\left(H \cap K^{*}\right)$ is a normal subgroup of $H^{*}(H \cap K)$.
(ii) $\quad K^{*}\left(H^{*} \cap K\right)$ is a normal subgroup of $K^{*}(H \cap K)$.
(iii) $\frac{H^{*}(H \cap K)}{H^{*}\left(H \cap K^{*}\right)} \cong \frac{K^{*}(H \cap K)}{K^{*}\left(H^{*} \cap K\right)} \cong \frac{H \cap K}{\left(H^{*} \cap K\right) \cdot\left(K^{*} \cap H\right)}$

Proof :
(i) $\quad H \cap K \leq H, \quad H^{*} \unlhd H \quad \Rightarrow \quad H^{*} \cdot(H \cap K) \leq H$.
(ii) $\quad H \cap K \leq K, \quad K^{*} \unlhd K \quad \Rightarrow \quad K^{*} \cdot(H \cap K) \leq K$.
(iii) $\quad H^{*} \cap K \unlhd H$ and $H^{*} \cap K \leq K$

Hence $\quad H^{*} \cap K \unlhd H \cap K$.
Similarly, $K^{*} \cap H \unlhd H \cap K$.
Hence $\quad\left(H^{*} \cap K\right) \cdot\left(K^{*} \cap H\right) \unlhd(H \cap K)$.
Therefore $\frac{H \cap K}{\left(H^{*} \cap K\right) \cdot\left(K^{*} \cap H\right)}$ is defined.
Put $L=\left(H^{*} \cap K\right) \cdot\left(K^{*} \cap H\right)$. Thus $L \unlhd(H \cap K)$.
(iv) Define $\phi: H^{*}(H \cap K) \rightarrow \frac{(H \cap K)}{L}$ by

$$
\phi(h x)=L x
$$

where $h \in H^{*}$ and $x \in H \cap K$.
Claim 1: ϕ is well defined.
Let $\quad h_{1} x_{1}=h_{2} x_{2}$ for $h_{1}, h_{2} \in H^{*}$ and $x \in H \cap K$.
Then $h_{2}^{-1} h_{1}=x_{2} x_{1}^{-1} \quad$ for $h_{2}^{-1} h_{1} \in H^{*}$ and $x_{2} x_{1}^{-1} \in H \cap K$.
Hence $h_{2}^{-1} h_{1}=x_{2} x_{1}^{-1} \quad \Rightarrow \quad h_{2}^{-1} h_{1} \in H^{*} \cap(H \cap K)$
$\Rightarrow \quad h_{2}^{-1} h_{1} \in H^{*} \cap K \subseteq L$
$\Rightarrow \quad h_{2}^{-1} h_{1} \in L$
$\Rightarrow \quad x_{2} x_{1}^{-1} \in L$
$\Rightarrow \quad L_{x_{1}}=L_{x_{2}}$
$\Rightarrow \quad \phi\left(h_{1} x_{1}\right)=\phi\left(h_{2} x_{2}\right)$
This shows that ϕ is a well defined map.
Claim 2: ϕ is homomorphism.

Let $h_{1} x_{1}, h_{2} x_{2} \in H^{*}(H \cap K)$. Then $h_{1}, h_{2} \in H^{*}$ and $x_{1}, x_{2} \in H \cap K$.
As $H^{*} \unlhd H$ and $x_{1} \in H$ we get $x_{1} H^{*}=H^{*} x_{1}$. Thus $x_{1} h_{2} \in x_{1} H^{*}$ implies $x_{1} h_{2} \in H^{*} x_{1}$.
Hence $x_{1} h_{2}=h_{3} x_{1}$ for some $h_{3} \in H^{*}$. Hence we get

$$
\begin{aligned}
\phi\left[\left(h_{1} x_{1}\right)\left(h_{2} x_{2}\right)\right] & =\phi\left[h_{1}\left(x_{1} h_{2}\right) x_{2}\right] & & \ldots \text { By associativity. } \\
& =\phi\left[h_{1}\left(h_{3} x_{1}\right) x_{2}\right] & & \ldots x_{1} h_{2}=h_{3} x_{1} . \\
& =\phi\left[\left(h_{1} h_{3}\right)\left(x_{1} x_{2}\right)\right] & & \ldots \text { By associativity. } \\
& =L_{x_{1} x_{2}} & & \ldots \text { By definition of } \phi \\
& =L_{x_{1}} \cdot L_{x_{2}} & & \\
& =\phi\left(h_{1} x_{1}\right) \phi\left(h_{2} x_{2}\right) & &
\end{aligned}
$$

This shows that ϕ is a homomorphism.
Claim 3: ϕ is onto.
Let $L_{x} \in \frac{H \cap K}{L}$. Then $x \in H \cap K$.
Hence, $e \cdot x \in H^{*} \cdot(H \cap K)$ and $\phi(e x)=L_{x}$. This shows that ϕ is onto.
Thus, from claim 1, claim 2 and claim 3 we get $\frac{H \cap K}{L}$ is a homomorphic image of $H^{*} \cdot(H \cap K)$.

Hence, by first isomorphism theorem,

$$
\begin{equation*}
\frac{H \cap K}{L} \cong \frac{H^{*} \cdot(H \cap K)}{\operatorname{ker} \phi} \tag{1}
\end{equation*}
$$

Now,

$$
\begin{align*}
\operatorname{ker} \phi & =\left\{h x \in H^{*} \cdot(H \cap K) / \phi(h x)=L\right\} \\
& =\left\{h x \in H^{*} \cdot(H \cap K) / L_{x}=L\right\} \\
& =\left\{h x \in H^{*} \cdot(H \cap K) / x \in L\right\} \\
& =\left\{h x / h \in H^{*} \text { and } x \in(H \cap K) \cap L\right\} \\
& =\left\{h x / h \in H^{*} \text { and } x \in L\right\} \\
& =\left\{h x / h x \in H^{*} \cdot L\right\} \\
& =\left\{h x / h x \in H^{*} \cdot\left(H \cap K^{*}\right)\right\} \\
& =H^{*} \cdot\left(H \cap K^{*}\right) \tag{2}
\end{align*}
$$

[$H^{*} L=H^{*} \cdot\left(H^{*} \cap K\right) \cdot\left(H \cap K^{*}\right)=H^{*} \cdot\left(H \cap K^{*}\right)$ as $H^{*} \cap K \leq H^{*}$]
From (1) and (2), we get,

$$
\frac{H \cap K}{L} \cong \frac{H^{*}(H \cap K)}{H^{*} \cdot\left(H \cap K^{*}\right)}
$$

$\operatorname{ker} \phi$ being a normal subgroup of $H^{*} \cdot\left(H \cap K^{*}\right)$, we get

$$
H^{*} \cdot\left(H \cap K^{*}\right) \triangleleft H^{*} \cdot(H \cap K)
$$

(v) As in (iv) we can prove

$$
\frac{H \cap K}{L} \cong \frac{K^{*}(H \cap K)}{K^{*} \cdot\left(H^{*} \cap K\right)}
$$

and $K^{*} \cdot\left(H^{*} \cap K\right)$ is a normal subgroup of $K^{*} \cdot(H \cap K)$.
This completes the proof of Zassenhaus Lemma.

Theorem 1.2.9: Let G be a group.
(i) For any non empty subset S of $G, N[S]$ is a subgroup of G.

Further, for any subgroup H of G.
(ii) $N[H]$ is the largest subgroup of G in which H is normal.
(iii) If K is a subgroup of $N[H]$, then H is a normal subgroup of $K H$.

Proof :

(i) $N[S]=\left\{x \in G / x S x^{-1}=S\right\}$. As $e S e^{-1}=S$ we get $e \in N[S]$.

Let $x, y \in N[S]$

$$
\begin{aligned}
\left(x^{-1} y\right) S\left(x^{-1} y\right)^{-1} & =\left(x^{-1} y\right) S\left(y^{-1} x\right) \\
& =x^{-1}\left(y S y^{-1}\right) x \\
& =x^{-1} S x \\
& =S
\end{aligned}
$$

This shows that $x^{-1} y \in N[S]$ whenever $x, y \in N[S]$.
Hence $\mathrm{N}[\mathrm{S}]$ is a subgroup of G.
(ii) Let H be a subgroup of G .
$H \subseteq N[H], \quad$ as $h H h^{-1}=H \quad$ for any $h \in H$
Let $H \triangleleft K$ where K is any subgroup of G . Then $k H k^{-1}=H \quad$ for any $k \in K$.
Hence $K \subseteq N[H]$.
Now for any $g \in N[H]$ we get $g H g^{-1}=H$. This shows that $H \unlhd N[H]$ and if $H \triangleleft K$ for some $K \leq G$, then $K \subseteq N[H]$.

Hence $\mathrm{N}[\mathrm{H}]$ is the largest subgroup of G in which H is normal.
(iii) $K \leq N[H]$. Hence for all $k \in K, k H k^{-1}=H$. Hence HK $=\mathrm{KH}$. This shows that HK is a subgroup of G.

$$
\begin{aligned}
& H \triangleleft N[H] \text { and } K \leq N[H] \quad \Rightarrow \quad H K \leq N[H] \\
& H \unlhd N[H] \quad \Rightarrow \quad H \unlhd K H \quad \text { as } H \leq H K
\end{aligned}
$$

Theorem 1.2.10: G is a group and H is a subgroup of G such that $(G: H)=2$. Then H is a normal subgroup of G.

Proof : Select any $g \in G$ such that $g \notin H$.
Then, $\quad G=H \cup H g$ and $\quad H \cap H g=\phi$.
Similarly, $G=H \cup g H$ and $H \cap g H=\phi$.
Hence, this is possible iff $H g=g H$. Thus for any $g \notin H$ we get $H g=g H$.
But, as for any $h \in H$, we have, $H h=h H$. It follows that $H g=g H$, for each $g \in G$.
Hence, $H \unlhd G$.

Theorem 1.2.11 : Let G be a group. Then following statements are true.
(i) The set of conjugate classes of G is a partition of G.
(ii) $|c(a)|=[G: N(a)]$.
(iii) If G is finite, $|G|=\sum|G: N(a)|, a$ is running over exactly one element from each conjugate class.

Proof :

(i) Define a relation ' \sim ' on G by $a \sim b$ iff $b=x a x^{-1}$. Then ' \sim ' is an equivalence relation on G and the equivalence class containing a is $c(a)$. Hence, $G=\cup C(a)$ (disjoint union). Hence, $\{C(a) / a \in G\}$ forms a partition of G.
(ii) To prove $|c(a)|=(G: N(a))$.

Let \Re denote the set of all right cosets of $N[a]$ in G.
Define a map $f: C(a) \rightarrow \Re$ by

$$
f\left(g a g^{-1}\right)=N(a) g
$$

(i) f is well defined (obviously true.)
(ii) f is one-one.

$$
\begin{aligned}
& \text { Let }\left(N_{a}\right) x=\left(N_{a}\right) y \\
& \begin{array}{rll}
\left(N_{a}\right) x=\left(N_{a}\right) y & & \\
& \Rightarrow x y^{-1} \in N(a) \\
& \Rightarrow & \left(x y^{-1}\right) a\left(x y^{-1}\right)^{-1}=a \\
& \Rightarrow & x y^{-1} a=a x y^{-1} \\
& \Rightarrow & y^{-1} a y=x^{-1} a x
\end{array}
\end{aligned}
$$

Thus, $\quad f\left(x^{-1} a x\right)=f\left(y^{-1} a y\right)$
$\Rightarrow \quad x^{-1} a x=y^{-1} a y$
Hence, f is one-one.
(iii) f is onto.

Let $\left(N_{a}\right) g \in \Re$. Then for this $g \in G, g^{-1} a g \in C(a)$ and $f\left(g^{-1} a g\right)=\left(N_{a}\right) g$. This shows that f is onto.

From (i), (ii) and (iii) we get \exists a mapping $f: C(a) \longrightarrow \mathfrak{R}$ which is both one-one and onto. Hence $|c(a)|=|\mathfrak{R}|=[G: N(a)]$.
(iii) Let G be finite. As $G=\bigcup_{a} C(a)$ (disjoint union) we get $|G|=\sum_{a}|C(a)|=\sum_{a}(G: N(a))$ where a runs over exactly one element from each conjugate class.

Unit 2 : Solvable Groups :

2.1 Derived subgroup of a group G.
2.2 Isomorphism Theorems.

2.1 Derived subgroup of a group G :

Definition 2.1.1: Let G be a group. Define $U=\left\{a b a^{-1} b^{-1} / a, b \in G\right\}$.
The subgroup generated by U i.e. $\langle U\rangle$ is called the derived subgroup of G and it is denoted by G^{\prime}.

Remarks 2.1.2:

(i) U is the set of commutators in G .
(ii) $x \in G^{\prime} \quad \Rightarrow \quad x=y_{1} y_{2} \ldots y_{n}$ where n is a finite integer and $y_{i} \in U$ for each i.
(iii) G^{\prime} is also called commutator subgroup of G.
(iv) G is abelian iff $G^{\prime}=\{e\}$.

Theorem 2.1.3: Let G be a group and let G^{\prime} be the derived subgroup of G. Then
(i) $G^{\prime} \triangleleft G$
(ii) $\frac{G}{G^{\prime}}$ is abelian.
(iii) $N \unlhd G \cdot \frac{G}{N}$ is abelian iff $G^{\prime} \leq N$.

Proof :

(1) By definition, G^{\prime} is a subgroup of G only to prove G^{\prime} is normal in G.

Let $g \in G$ and $x \in G^{\prime}$.
Case I: $\quad x \in G^{\prime}$ and $x=a b a^{-1} b^{-1}$.
Then $\quad g^{-1} x g=g^{-1}\left(a b a^{-1} b^{-1}\right) g$

$$
\begin{aligned}
& =\left(g^{-1} a g\right)\left(g^{-1} b g\right)\left(g^{-1} a^{-1} g\right)\left(g^{-1} b^{-1} g\right) \\
& =\left(g^{-1} a g\right)\left(g^{-1} b g\right)\left(g^{-1} a g\right)^{-1}\left(g^{-1} b g\right)^{-1}
\end{aligned}
$$

This shows that $g x g^{-1} \in U$ and hence $g x g^{-1} \in G^{\prime}$.
Case II : Let $x \in G^{\prime}$ and $x=y_{1} y_{2} \ldots y_{n}$ where n is finite and $y_{i} \in U$ for each i and hence $g^{-1} x g$, being the finite product of elements of U . is in G^{\prime}.
Thus, for $g \in G$ and $x \in G^{\prime}$ we get $g x g^{-1} \in G^{\prime}$ and hence G^{\prime} is a normal subgroup of G.
(2) $G^{\prime} \unlhd G \quad \Rightarrow \quad \frac{G}{G^{\prime}}$ is defined.

To prove that $\frac{G}{G^{\prime}}$ is abelian.
Let $G_{a}^{\prime}, G_{b}^{\prime} \in \frac{G}{G^{\prime}}$. Then $a, b \in G$.
$\left[\left(G_{a}^{\prime}\right)\left(G_{b}^{\prime}\right)\right]\left[\left(G_{b}^{\prime}\right)\left(G_{a}^{\prime}\right)\right]^{-1}=\left[G_{a b}^{\prime}\right]\left[G_{b a}^{\prime}\right]^{-1} \quad \ldots$ by the definition of \cdot in $\frac{G}{G \prime}$.

$$
\begin{aligned}
& =\left[G_{a b}^{\prime}\right]\left[G_{(b a)^{-1}}^{\prime}\right] \\
& =\left[G_{a b}^{\prime}\right]\left[G_{a^{-1} b^{-1}}^{\prime}\right] \\
& =\left[G_{a b a^{-1} b^{-1}}^{\prime}\right] \\
& =G^{\prime} \quad \text { as } a b a^{-1} b^{-1} \in G^{\prime} \\
& =\text { identity element of } \frac{G}{G^{\prime}}
\end{aligned}
$$

But this shows that $\quad\left(G_{a}^{\prime}\right)\left(G_{b}^{\prime}\right)=\left(G_{b}^{\prime}\right)\left(G_{a}^{\prime}\right)$.
Hence $\frac{G}{G^{\prime}}$ is abelian.
(3)

Only if part :

$\frac{G}{N}$ is abelian $\quad \Rightarrow \quad\left(N_{a}\right)\left(N_{b}\right)=\left(N_{b}\right)\left(N_{a}\right) \quad$ for all $a, b \in G$.
Hence $\quad N_{a b}=N_{b a} \quad$ for $a, b \in G$
$\Rightarrow \quad\left(N_{a b}\right)\left(N_{b a}\right)^{-1}=N \quad$ for $a, b \in G$
$\Rightarrow \quad\left(N_{a b}\right)\left(N_{(b a)^{-1}}\right)=N \quad$ for $a, b \in G$
$\Rightarrow \quad\left(N_{a b}\right)\left(N_{a^{-1} b^{-1}}\right)=N \quad$ for $a, b \in G$
$\Rightarrow \quad N_{a b a^{-1} b^{-1}}=N \quad$ for $a, b \in G$
$\Rightarrow \quad a b a^{-1} b^{-1} \in N \quad$ for $a, b \in G$
This shows that $U \subseteq N$. By the definition of subgroups generated by U , we get $\langle U\rangle \subseteq N$.
Therefore $G^{\prime} \subseteq N$.

If part :

Let $N \unlhd G$ and $G^{\prime} \subseteq N$. To prove that $\frac{G}{N}$ is abelian.
As $G^{\prime} \subseteq N$ we get we get $a b a^{-1} b^{-1} \in N$ for all $a, b \in G$.
Thus $\quad N_{\left(a b a^{-1} b^{-1}\right)}=N$
i.e. $\quad\left(N_{a b}\right)\left(N_{(b a)^{-1}}\right)=N$
i.e. $\quad\left(N_{a}\right)\left(N_{b}\right)\left[\left(N_{b}\right)\left(N_{a}\right)\right]^{-1}=N$
i.e. $\quad\left(N_{a}\right)\left(N_{b}\right)=\left(N_{b}\right)\left(N_{a}\right)$

Thus, for all $a, b \in G$, we have $\left(N_{a}\right)\left(N_{b}\right)=\left(N_{b}\right)\left(N_{a}\right)$ and hence $\frac{G}{N}$ is abelian.

Example 2.1.4 : For any n, the derived subgroup S_{n}^{\prime} of S_{n} is A_{n}.

Solution :

Case I: $\mathrm{n}=1,2$
For n = 1 , 2 we know $S_{n}^{\prime}=\{e\}$ and $A_{n}=\{e\}$. Hence $S_{n}^{\prime}=A_{n}$.
Case II: $\mathrm{n}>2$
We know $f=(1,2) \in S_{n}$ and $g=(1,2,3) \in S_{n}$.
Hence, $f g f^{-1} g^{-1} \in S_{n}^{\prime} \quad \forall n$.
Thus, $\quad\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 1\end{array}\right)\left(\begin{array}{ll}3 & 2\end{array}\right) \in S_{n}^{\prime} \quad$ for each \underline{n}.
But $\quad(12)(123)(21)(321)=(123)$
Hence, (123) $\in S_{n}^{\prime}$.
As S_{n}^{\prime} is normal subgroup of S_{n} for each n (See theorem 1.3), we get $g^{-1} \mathrm{xg} \in S_{n}^{\prime}$ for any $g \in S_{n}$ and $x \in S_{n}^{\prime}$.

Hence, in particular

As $\quad g(123) g^{-1}=g \quad$ for each $g \in A_{n}$, we get $A_{n} \subseteq S_{n}^{\prime}$.
Now $f g f^{-1} g^{-1}$ is an even permutation for any $f, g \in S_{n}$, we get $S_{n}^{\prime} \subseteq A_{n}$.
By combining both the inclusions, we get $S_{n}^{\prime}=A_{n}$ and this completes the solution.

Example 2.1.5: (i) $|G|=p$ (p is prime) $\Rightarrow G^{\prime}=\{e\}$.
(ii) $|G|=p^{2} \quad(p$ is prime $) \Rightarrow G^{\prime}=\{e\}$.

Solution :

(i) $|G|=p \quad \Rightarrow \mathrm{G}$ is abelian.

Select any $a \in G$ such that $a \neq e$.
Then $\langle a\rangle$ is a subgroup of G and $O[\langle a\rangle] \mid O[G]$.
Hence $O[\langle a\rangle] \mid p$.
As $a \neq e$. We get $O[\langle a\rangle]=p$. i.e. $\langle a\rangle=G$.
Thus G is a cyclic and hence abelian.

$$
\Rightarrow G^{\prime}=\{e\} .
$$

(ii) $|G|=p^{2} \Rightarrow \mathrm{G}$ is abelian.

$$
\Rightarrow G^{\prime}=\{e\}
$$

2.2 Solvable Groups :

Definition 2.2.1: Let G be any group. For any positive integer n, we define the $n^{\text {th }}$ derived subgroup of G, written as $G^{(n)}$ as follows :

$$
G^{(1)}=G^{\prime}, G^{(2)}=G^{(1)^{\prime}}, \ldots, G^{(n)}=\left[G^{(n-1)}\right]^{\prime} \ldots
$$

where G^{\prime} denotes the derived subgroup of G.

Definition 2.2.2: A group G is said to be solvable, if there exists some positive integer n such that $G^{(n)}=\{e\}$.

Example 2.2.3:

(i) Any abelian group G is solvable as $G^{(1)}=G^{\prime}=\{e\}$
(ii) Let p be a prime number. The groups of order p, p^{2} are solvable (See example 1.5)
(iii) Any finite group G with $|G| \leq 5$ is solvable. (Since any group G with $|G| \leq 5$ is abelian).
(iv) S_{3} is solvable.
$S_{3}=\langle\{(1)(12)(13)(23)(123)(132)\}, \circ\rangle$
Then, $S_{3}^{\prime}=A_{3}=\left\langle\left\{(1),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}, \circ\right\rangle \quad .$. See example 2.1.4
As $\quad(123)(132)(123)^{-1}(132)^{-1}$
$=\left(\begin{array}{ll}1 & 2\end{array}\right)(132)(321)(231)$
$=(1)$
We get, $A_{3}^{\prime}=\{e\} \leftarrow \quad$ an identity element of in S_{3}.
Hence, $S_{3}^{(2)}=A_{3}^{(1)}=\{e\}$. This shows that S_{3} is solvable.
(v) S_{n} is not solvable for $n \geq 5$.

We need the following result.
Result: If $N \unlhd S_{n}(n \geq 5)$ then N contains each 3-cycles.
As $\left(S_{n}\right)^{\prime}$ is a normal subgroup of S_{n}. $\left(S_{n}\right)^{\prime}$ will contain all the 3-cycles in S_{n}.
Again $\left(S_{n}\right)^{\prime \prime}=\left(S_{n}\right)^{(2)}$ is a normal subgroup of $\left(S_{n}\right)^{\prime}$ and $\left(S_{n}\right)^{\prime}$ contains all the 3-cycles in S_{n}. Hence, $\left(S_{n}\right)^{(2)}$ must contain each 3-cycles in S_{n}.

Continuing this process we will get that $\left(S_{n}\right)^{(k)}$ contains each 3-cycle in S_{n} and hence \exists no k such that $\left(S_{n}\right)^{(k)}=\{e\}$.

Therefore S_{n} is not solvable for $n \geq 5$.

Theorem 2.2.4 : Every subgroup of a solvable group is solvable.
Proof : Let G be a solvable group and $H \leq G$. Then by the definition of the derived subgroup, we get $H^{\prime} \leq G^{\prime}$. In general $H^{(k)} \leq G^{(k)}$ for any positive integer k. As G is solvable, \exists a positive integer n such that $G^{(n)}=\{e\}$. Hence

$$
H^{(n)} \leq G^{(n)}=\{e\} \quad \Rightarrow \quad H^{(n)}=\{e\} \text {. Thus H is solvable. }
$$

Remark : Converse of theorem 2.2.4 need not be true.

Theorem 2.2.5 : Homomorphic image of a solvable group is solvable.
Proof : Let G_{1} and G_{2} be any two groups such that G_{1} is solvable and G_{2} is a homomorphic image of G_{1}. Hence \exists a positive integer k such that $G_{1}^{(k)}=\left\{e_{1}\right\}$ where e_{1} is the identity in G_{1}.

As G_{2} is a homomorphic image of G_{1}, there exists an onto homomorphism $f: G_{1} \rightarrow G_{2}$.
Thus $G_{2}=f\left(G_{1}\right)=\left\{f(x) / x \in G_{1}\right\}$.
Now $f\left(a b a^{-1} b^{-1}\right)=f(a) f(b)[f(a)]^{-1}[f(b)]^{-1} \quad$ for $a, b \in G_{1}$
Define

$$
\begin{array}{rlrl}
U_{1} & =\left\{a b a^{-1} b^{-1} / a, b \in G_{1}\right\} \quad \text { and } & \\
U_{2} & =\left\{x y x^{-1} y^{-1} / x, y \in G_{2}\right\} . & \\
\text { Then } \quad & U_{2}=\left\{f(s) f(t)[f(s)]^{-1}[f(t)]^{-1} / s, t \in G_{1}\right\} & & \text { as } G_{2}=f\left(G_{1}\right) \\
& =\left\{f\left(s t s^{-1} t^{-1}\right) / s, t \in G_{1}\right\} & & \\
& =f\left(U_{1}\right) & \text { since } \mathrm{f} \text { is a homomorphism. }
\end{array}
$$

But then we get $f\left(G_{1}^{\prime}\right)=G_{2}^{\prime}$.
Continuing in this way we get

$$
f\left(G_{1}^{(n)}\right)=\left[f\left(G_{1}\right)\right]^{(n)} \quad \ldots \text { for any positive integer } \mathrm{n} \text {. }
$$

As $G_{1}^{(k)}=\{e\}$ we get

$$
\begin{aligned}
& f\left(G_{1}^{(k)}\right)=\left[f\left(G_{1}\right)\right]^{(k)} \\
\Rightarrow \quad & f\left(\left\{e_{1}\right\}\right)=\left[f\left(G_{1}\right)\right]^{(k)}
\end{aligned}
$$

$$
\Rightarrow \quad\left\{e_{2}\right\}=G_{2}{ }^{(k)} \quad \text { where } e_{2} \text { is an identity element in } G_{2}
$$

This shows that G_{2} is solvable.

Corollary 2.2.6 : Any quotient group $\frac{G}{N}$ of a solvable group G is solvable.
Proof : As is a homomorphic image of G under the natural / canonical mapping $f: G \rightarrow \frac{G}{N}$ defined by $f(g)=N g$, the result follows by theorem 2.5.

Remark 2.2.7 : Converse of the corollary 2.2.6 need not be true.
For this consider the group S_{n} for $n \geq 5 . S_{n}$ is not solvable (See example 2.3 (5)).
$A_{n} \triangleleft S_{n}$ and hence $\frac{S_{n}}{A_{n}}$ is defined. As $\left|\frac{S_{n}}{A_{n}}\right|=2$, we get $\frac{S_{n}}{A_{n}}$ is abelian and hence solvable.
Thus the quotient group $\frac{S_{n}}{A_{n}}$ is solvable but S_{n} is not solvable.

Theorem 2.2.8 : Let $N \unlhd G$. If both N and $\frac{G}{N}$ are solvable, then G is solvable.
Proof : N is solvable $\quad \Rightarrow \quad \exists$ a positive integer k such that $N^{(k)}=\{e\}$. $\frac{G}{N}$ is solvable $\quad \Rightarrow \quad \exists$ a positive integer l such that $\left[\frac{G}{N}\right]^{(l)}=\{N\}$. (N is the identity element of $\frac{G}{N}$)

Now $\left(\frac{G}{N}\right)^{\prime}=$ the group generated by $\left\{N_{a} N_{b} N_{a^{-1}} N_{b^{-1}} / a, b \in G\right\}$

$$
\begin{equation*}
=\text { the group generated by }\left\{N_{a b a^{-1} b^{-1}} / a, b \in G\right\} \tag{1}
\end{equation*}
$$

Now $G^{\prime} \unlhd G$ and $N \unlhd G$ will imply $G^{\prime} N$ is a normal subgroup of G and $N \unlhd G^{\prime} N$. Hence the quotient group $\frac{G^{\prime} N}{N}$ is defined.

$$
\begin{equation*}
\frac{G^{\prime} N}{N}=\left\{N_{x} / x \in G^{\prime} N=N G^{\prime}\right\} \tag{2}
\end{equation*}
$$

From (1) and (2), w get,

$$
\left(\frac{G}{N}\right)^{\prime}=\frac{G^{\prime} N}{N}
$$

Continuing in this way we get

$$
\left(\frac{G}{N}\right)^{(n)}=\frac{G^{(n)} N}{N},
$$

Hence, $\quad\left(\frac{G}{N}\right)^{(l)}=\frac{G^{(l)} N}{N}=\frac{N \cdot N}{N}=\{N\}$.

But then

$$
G^{(l)} \subseteq N \text { and hence }\left[G^{(l)}\right]^{(k)} \subseteq N^{(k)}=\{e\} \text { implies } G^{(l+k)}=\{e\}
$$ establishing that G is solvable.

Combining the result of theorem 2.2.4, 2.2.8 and corollary 2.2.7 we get,
Corollary 2.2.9 : Let $N \triangleleft G$. G is solvable if and only if both N and $\frac{G}{N}$ are solvable.

Example 2.2.10 : A and B are solvable groups iff $A \times B$ is solvable.

Solution : Only if part :

Let A and B be solvable groups.
To prove that $A \times B$ is solvable.
We know, the mapping $f: A \times B \rightarrow A$ defined by $f(a, b)=a$ is an onto homomorphism. Hence, by fundamental theorem of homomorphism.

$$
\frac{A \times B}{\text { kerf }} \cong A
$$

where $\operatorname{ker} f=\left\{e_{1}\right\} \times B, e_{1}$ denotes the identity element in A.
Thus,

$$
\begin{equation*}
\frac{A \times B}{\left\{e_{1}\right\} \times B} \cong A \tag{1}
\end{equation*}
$$

As A is solvable, by theorem 2.2.5, $\frac{A \times B}{\left\{e_{1}\right\} \times B}$ is solvable.
Further the mapping $g:\left\{e_{1}\right\} \times B \rightarrow B$ defined by $g\left(e_{1}, b\right)=b$ for each $b \in B$ is isomorphism. Hence $\left\{e_{1}\right\} \times B \cong B$.
As B is solvable, by theorem 2.2 .5 we get, $\left\{e_{1}\right\} \times B$ is a solvable group.
As both $\left\{e_{1}\right\} \times B$ and $\frac{A \times B}{\left\{e_{1}\right\} \times B}$ are solvable groups, by theorem 2.2.8, $A \times B$ is solvable.

If part :

Let $A \times B$ be a solvable group. As the mapping $f: A \times B \rightarrow A$ defined by $f(a, b)=a$ is an onto homomorphism, we get A is a homomorphic image of a solvable group $A \times B$ and hence A is solvable.

Similarly, we can prove that B is solvable.

Example 2.2.11 : H and K be normal solvable subgroups of group G. Show that $H K$ is solvable.
Solution : $H K$ is a subgroup of G. By second isomorphism theorem,

$$
\frac{H K}{K} \cong \frac{H}{H \cap K}
$$

Now, any quotient group of a solvable group being solvable, we get $\frac{H}{H \cap K}$ is a solvable. (Since H is solvable). Now isomorphic image of a solvable group is solvable. Hence $\frac{H K}{K}$ is solvable. Thus K and $\frac{H K}{K}$ both are solvable will imply HK is solvable. (See theorem 2.2.8).

Definition 2.2.12 : A finite sequence $\left\{N_{0}, N_{1}, \ldots, N_{r}\right\}$ of subgroups of a group G is called a normal series of G if

$$
\{e\}=N_{0} \triangleleft N_{1} \triangleleft N_{2} \triangleleft \cdots \triangleleft N_{r}=G .
$$

The quotient groups $\frac{N_{i}}{N_{i-1}}$ are called factors of the normal series. $(1 \leq i \leq r)$.
For detail discussion of normal series see Unit 3.2.

Theorem 2.2.13 : A group G is solvable if and only if G has a normal series with abelian factors.

Proof : Only f part :

Let G be a solvable group. Hence \exists a positive integer k such that $G^{(k)}=\{e\}$.
Consider $\left\{G^{(k)}, G^{(k-1)}, \ldots, G^{(1)}, G\right\}$. By theorem 1.6, $G^{(i)}$ is a normal subgroup of G for each $i, 1 \leq i \leq k$. Further $G^{(i+1)} \triangleleft G^{(i)}$, by theorem 1.4 (1).
Hence the sequence $\left\{G^{(k)}, G^{(k-1)}, \ldots, G^{(1)}, G\right\}$ forms a normal series

$$
\{\mathrm{e}\}=G^{(k)} \triangleleft G^{(k-1)} \triangleleft \cdots \triangleleft G^{(1)} \triangleleft G .
$$

Further the factors $\frac{G^{(i)}}{G^{(i+1)}}$ are abelian groups for each $i, 1 \leq i \leq k$ (See theorem 1.4 (2)). Thus if G is solvable, G has a normal series,

$$
\{\mathrm{e}\}=G^{(k)} \triangleleft G^{(k-1)} \triangleleft \cdots \triangleleft G^{(1)} \triangleleft G
$$

with abelian factors.

If part :

Let G has a normal series. $\left\{H_{0}, H_{1}, \ldots, H_{n}\right\}$ with $H_{0}=\{e\}$ and $H_{n}=G$ and with abelian factors. Thus

$$
\{e\}=H_{0} \triangleleft H_{1} \triangleleft H_{2} \triangleleft \cdots \triangleleft H_{n}=G
$$

and $\frac{H_{i+1}}{H_{i}}$ is an abelian group with $0 \leq i \leq n$.
Now $\quad \frac{H_{n}}{H_{n-1}}=\frac{G}{H_{n-1}}$ is abelian.
$\Rightarrow \quad G^{\prime} \subseteq H_{n-1} \quad \Rightarrow \quad G^{\prime \prime} \subseteq\left(H_{n-1}\right)^{\prime}$
Hence by transitivity,

$$
G^{\prime \prime} \subseteq\left(H_{n-2}\right) \quad \text { i.e. } \quad G^{(2)} \subseteq H_{n-2}
$$

Continuing in this way, we get

$$
G^{(n)} \subseteq H_{n-n}=H_{0}=\{e\}
$$

Hence $G^{(n)}=\{e\}$, proving that G is Solvable.

Example 2.2.14 :

(i) In S_{3} we have a normal series $\{e\} \triangleleft A_{3} \triangleleft S_{3}$ such $\frac{S_{3}}{A_{3}}$ that is abelian and such $\frac{A_{3}}{\{e\}}$ that is abelian. Hence S_{3} is solvable.
(ii) Consider the group $S_{4} . A_{4} \triangleleft S_{4}$. Define

$$
V_{4}=\{(1),(12)(34),(13)(24),(14)(23)\} .
$$

Then $V_{4} \triangleleft A_{4}$.
Consider the sequence $\left\{\{(1)\}, V_{4}, A_{4}, S_{4}\right\}$. We have $\{(1)\} \triangleleft V_{4} \triangleleft A_{4} \triangleleft S_{4} \quad$. .

The factors of the normal series are

$$
\begin{aligned}
\frac{V_{4}}{\{e\}}, \frac{A_{4}}{V_{4}} \text { and } \frac{S_{4}}{A_{4}} . & \Rightarrow \\
\left|\frac{V_{4}}{\{e\}}\right|=\frac{\left|V_{4}\right|}{|\{e\}|}=\frac{4}{1}=4 & \Rightarrow \\
\left|\frac{A_{4}}{V_{4}}\right|=\frac{\left|A_{4}\right|}{\left|V_{4}\right|}=\frac{12}{4}=3 & \frac{A_{4}}{V_{4}} \text { is abelian. } \\
\left|\frac{S_{4}}{A_{4}}\right|=\frac{\left|S_{4}\right|}{\left|A_{4}\right|}=\frac{24}{12}=2 & \Rightarrow \frac{S_{4}}{A_{4}} \text { is abelian. }
\end{aligned}
$$

(Result used : G is abelian if $|G| \leq 5$).
This shows that S_{4} has a solvable series and hence S_{4} is solvable.

Example 2.2.15 : Let G be a solvable group. Show that G contains at least one normal, abelian subgroup H.

Solution :

Case I : $\quad G$ is abelian. In this we take $H=G$.
Case II : G is non-abelian.
G is solvable $\Rightarrow \exists$ a positive integer k such that $G^{(k)}=\{e\}$.
Consider $H=G^{(k-1)}$.
Then $\{e\}=G^{(k)} \triangleleft G^{(k-1)}$. Hence $\left[G^{(k-1)}\right]^{\prime}=\{e\}$.
$\Rightarrow \quad G^{(k-1)}$ is abelian. \quad (See remark 1.2 (iv))

$$
\begin{array}{lll}
G^{(1)} \triangleleft G & \Rightarrow \quad G^{(2)} \triangleleft G & \text { (See example 1.6) } \\
G^{(2)} \triangleleft G \quad & \Rightarrow \quad G^{(3)} \triangleleft G &
\end{array}
$$

Continuing in this way we get

$$
H=G^{(k-1)} \triangleleft G
$$

Thus G contains a normal, abelian subgroup H.

Example 2.2.16 : Let G be a non-abelian group such that $|G|=p^{3}$, where p is any prime number. Show that $G^{\prime}=Z(G)$.

Solution : To solve this problem we mainly use the following result.
Let p be a prime.
Result 1: $|G|=p^{n}(n>0) \quad \Rightarrow \quad Z(G) \neq\{e\}$.
Result 2: $|G|=p \quad \Rightarrow \quad G$ is cyclic.
Result 3: $\frac{G}{Z(G)}$ is cyclic $\quad \Rightarrow \quad G$ is abelian.
Result 4: Any group of order p^{2} is abelian.
Result 5: $\frac{G}{N}$ is abelian $\quad \Rightarrow \quad G^{\prime} \subseteq N$.
Result 6: G is abelian $\quad \Leftrightarrow \quad G^{\prime}=\{e\}$.

Solution of the problem :

(i) $|G|=p^{3} \quad \Rightarrow \quad Z(G) \neq\{e\} \quad \Rightarrow \quad|Z(G)| \neq 1$.
(ii) G is non-abelian $\Rightarrow Z(G) \neq G \quad \Rightarrow \quad|Z(G)| \neq p^{3}$.
(iii) As $Z(G) \triangleleft G, \quad|Z(G)|| | G \mid=p^{3}$.

Hence, $|Z(G)|=1, p, p^{2}, p^{3}$.
From (i) and (ii),

$$
|Z(G)|=p^{2} \text { or } p
$$

(iv) $|Z(G)|=p^{2} \quad \Rightarrow \quad\left|\frac{G}{Z(G)}\right|=\frac{|G|}{|Z(G)|}=\frac{p^{3}}{p^{2}}=p$.

Thus $\left|\frac{G}{Z(G)}\right|=p$ and hence $\frac{G}{Z(G)}$ is a cyclic group. Hence G must be abelian.
As this is not true we get $|Z(G)| \neq p^{2}$.
(v) Hence, only possible value of $|Z(G)|$ is p . But in this case

$$
\left|\frac{G}{Z(G)}\right|=\frac{|G|}{|Z(G)|}=\frac{p^{3}}{p}=p^{2} .
$$

This shows that $\frac{G}{Z(G)}$ is an abelian group. But then $G^{\prime} \subseteq Z(G)$.
As $G^{\prime} \leq Z(G)$ we get $\left|G^{\prime}\right|||Z(G)|=p$ As G is non-abelian, $| G^{\prime} \mid \neq 1$.
Thus, $\left|G^{\prime}\right|=p=|Z(G)|$. This in turn shows that $G^{\prime}=Z(G)$.

Exercise

(i) Show that the groups of order $p, p^{2}, p q, p^{2} q$ where p and q are distinct primes are solvable.
(ii) Prove that any group of order $p q r$ is solvable when p, q, r are primes and $r>p q$.
(iii) Show that a group of order 4 p , where p is prime is solvable.
(iv) State whether the following statements are true or false.

1. Every finite group is solvable.
2. Every finite group of prime order is solvable.
3. S_{7} is a solvable group.
4. G is solvable if G has a normal series.
5. The property of 'being a solvable group’ is preserved under isomorphism.
(v) Prove or disprove : $S_{3} \times S_{3}$ is solvable.

Theorem 2.2.17: If $N \unlhd G$, then the derived subgroup of N is also a normal subgroup of G.
Proof : $N \unlhd G . N^{\prime}=$ derived subgroup of G.
$N^{\prime}=$ the subgroup generated by the set $\left\{n_{1} n_{2} n_{1}^{-1} n_{2}^{-1} / n_{1}, n_{2} \in N\right\}$.
Let $x \in N^{\prime}$ and $g \in G$. To prove that $g^{-1} x g \in N^{\prime}$.
It is enough to prove that $g^{-1} x g \in N^{\prime}$, when $x=n_{1} n_{2} n_{1}^{-1} n_{2}^{-1}$, for some $n_{1}, n_{2} \in N$.
Now, $\quad g^{-1}\left(n_{1} n_{2} n_{1}^{-1} n_{2}^{-1}\right) g$

$$
\begin{aligned}
& =\left(g^{-1} n_{1} g\right)\left(g^{-1} n_{2} g\right)\left(g^{-1} n_{1}^{-1} g\right)\left(g^{-1} n_{2}^{-1} g\right) \\
& =\left(g^{-1} n_{1} g\right)\left(g^{-1} n_{2} g\right)\left(g^{-1} n_{1} g\right)^{-1}\left(g^{-1} n_{2} g\right)^{-1}
\end{aligned}
$$

Now, N being a normal subgroup of $\mathrm{G}, g^{-1}\left(n_{1} n_{2} n_{1}^{-1} n_{2}^{-1}\right) g$ is finite product of the type $a b a^{-1} b^{-1}$ where $a, b \in N$.

Hence, $g^{-1}\left(n_{1} n_{2} n_{1}^{-1} n_{2}^{-1}\right) g \in N^{\prime}$.
Hence $N^{\prime} \unlhd G$.

Example 2.2.18 : True or false ? Justify.
If every proper subgroup of G is solvable, then G is solvable.
Solution : False. Let $G=A_{5}$.
Assume that A_{5} is solvable.
Then $\frac{S_{5}}{A_{5}}$ is abelian. (Since $\left|\frac{S_{5}}{A_{5}}\right|=2 \Rightarrow \frac{S_{5}}{A_{5}}$ is abelian).
Hence, by theorem 2.2.8, S_{5} is solvable; which is not true.
Hence, $G=A_{5}$ is not solvable.
Claim : All proper subgroups of A_{5} are solvable.
$O\left(A_{5}\right)=\frac{O\left(S_{5}\right)}{2}=60=2^{3} \cdot 3 \cdot 5$
(i) $\quad A_{5}$ is simple $\Rightarrow A_{5}$ does not have any subgroup of order 30 .
(ii) A_{5} may contain subgroups of order $2,2^{2}, 3,5,6=2 \cdot 3,10=2 \cdot 5,15=3 \cdot 5$, $20=2^{2} \cdot 5$.

All these subgroups of A_{5} are solvable by the following result.
Result : Let p and q be distinct primes. Then any groups of order $p q$ or $p^{2} q$ are solvable.

Example 2.2.19 : Show that the set G of all matrices of the type

$$
\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \quad a, b, c \in Z_{3}
$$

is non abelian and solvable under the multiplication.
Solution : It is easy to prove that $\langle G, \cdot\rangle$ is a group.
As $a, b, c \in Z_{3}=\{0,1,2\},|G|=27=3^{3}$. As any group of order power of a prime, is solvable, G is solvable.

Example 2.2.20 : Show that $S_{n} \supset A_{n} \supset\{e\}$ is a normal series in S_{n} for $n>4$. Deduce that S_{n} is not solvable for $n>4$.

Solution : We know that $A_{n} \triangleleft S_{n}$ and $\{e\} \triangleleft A_{n}$. Hence $\left\{\{e\}, A_{n}, S_{n}\right\}$ forms a normal series in S_{n}. Let S_{n} be solvable for $\mathrm{n}>4$. Then subgroup of solvable group being solvable, A_{n} will be a solvable. But A_{n} is not solvable for >4 as A_{n} is simple for $\mathrm{n}>4$ and a solvable group contains non-trivial normal subgroup (See theorem 2.13)

Exercise : Prove that $S_{3} \times S_{3}$ is solvable.

Unit 3: Series of A Group

3.1 Subnormal Series, Schreier’s Theorem, Jordan-Holder Theorem
3.2 Normal Series
3.3 Ascending Central Series
3.4 Nilpotent Groups

3.1 Subnormal Series:

Definition 3.1.1 : Let G be a group. A subnormal series of a group G is a finite sequence $H_{0}, H_{1}, \ldots, H_{n}$ of subgroups of G such that $H_{i} \triangleleft H_{i+1}$ for each $i, 0 \leq i<n$ with $H_{0}=\{e\}$ and $H_{n}=G$.

Remarks :

(i) Every group G has a subnormal series with $H_{0}=\{e\}$ and $H_{1}=G$.
(ii) The groups $\frac{H_{i+1}}{H_{i}}$ are called factor groups of the series $(0 \leq i<n-1)$.

Examples 3.1.2 :

(i) In a group $\langle Z,+\rangle,\{0\}<8 Z<4 Z<Z$ is a subnormal series where

$$
\begin{aligned}
& 8 Z=\{0, \pm 8, \pm 16, \pm 24, \ldots\} \\
& 4 Z=\{0, \pm 4, \pm 8, \pm 16, \pm 24, \ldots\} \\
& \{0\} \triangleleft 8 Z, 8 Z \triangleleft 4 Z \text { and } 4 Z \triangleleft Z .
\end{aligned}
$$

Hence, the finite sequence $\{\{e\}, 8 Z, 4 Z, Z\}$ of subgroups of Z form a subnormal series.
(ii) Let $G=\langle a\rangle$ where $a^{6}=e$.

Then $G=\left\{a, a^{1}, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}\right\}$ with $a^{6}=e$.
Define $H=\left\{e, a^{3}\right\}$. Then $\{\{e\}, H, G\}$ will form a subnormal series in G.
(iii) In S_{3}, $\left\{(1), A_{3}, S_{3}\right\}$ will form a subnormal series in S_{3}.
(iv) Let $G=\langle a\rangle$, where $a^{12}=e$.

Then $\quad S_{1}=\left\{\{e\},\left\langle a^{4}\right\rangle,\left\langle a^{2}\right\rangle, \mathrm{G}\right\}$
and $\quad S_{2}=\left\{\{e\},\left\langle a^{6}\right\rangle,\left\langle a^{3}\right\rangle, \mathrm{G}\right\}$
will be two subnormal series in G.

Definition 3.1.3 : A subnormal series $\left\{K_{j}\right\}$ is a refinement of a subnormal series $\left\{H_{i}\right\}$ if $\left\{H_{i}\right\} \subseteq\left\{K_{j}\right\}$ that is each $H_{i}=K_{j}$ for some j.

Example 3.1.4 :

(i) The series in Z given by

$$
\{0\} \triangleleft 72 Z \triangleleft 24 Z \triangleleft 8 Z \triangleleft 4 Z \triangleleft Z
$$

is a refinement of the series

$$
\{0\} \triangleleft 72 Z \triangleleft 8 Z \triangleleft Z
$$

(ii) Let $G=\langle a\rangle$ where $a^{12}=e$.

The subnormal series

$$
\{e\},\left\langle a^{4}\right\rangle,\left\langle a^{2}\right\rangle, \mathrm{G}
$$

is not a refinement of the series

$$
\{e\},\left\langle a^{6}\right\rangle,\left\langle a^{3}\right\rangle, \mathrm{G} \quad \text { in } G .
$$

Definition 3.1.5 : Two subnormal series $\left\{H_{i}\right\}$ and $\left\{K_{j}\right\}$ of the same group G are isomorphic if there is a one-one correspondence between the collection of factor groups $\left\{\frac{H_{i+1}}{H_{i}}\right\}$ and $\left\{\frac{K_{j+1}}{k_{j}}\right\}$ such that the corresponding factor groups are isomorphic.

Remark : The two isomorphic normal series must contain the same number of subgroups.

Example 3.1.6 : Let $G=Z_{15}$.

$$
Z_{15}=\left\langle\{0,1,2,3, \ldots, 14\}, \quad \oplus_{15}\right\rangle
$$

$<5>=$ the subgroup generated by 5 in $Z_{15}=\{0,5,10\}$
$<3>$ = the subgroup generated by 3 in $Z_{15}=\{0,3,6,9,12\}$
Consider the two subnormal series in Z_{15} given by

$$
\begin{aligned}
& S_{1}=\left\{\{0\},\langle 5\rangle, Z_{15}\right\} \\
\text { and } \quad & S_{2}=\left\{\{0\},\langle 3\rangle, Z_{15}\right\}
\end{aligned}
$$

The set of factor groups for S_{1} is

$$
T_{1}=\left\{\frac{Z_{15}}{\langle 5\rangle}, \frac{\langle 5\rangle}{\{0\}}\right\}
$$

The set of factor groups for S_{2} is

$$
T_{1}=\left\{\frac{Z_{15}}{\langle 3\rangle}, \frac{\langle 3\rangle}{\{0\}}\right\}
$$

Now, $\frac{Z_{15}}{\langle 5\rangle} \cong Z_{5} \quad$ and $\quad \frac{\langle 3\rangle}{\{0\}} \cong Z_{5}$
and $\quad \frac{Z_{15}}{\langle 3\rangle} \cong Z_{3} \quad$ and $\quad \frac{\langle 5\rangle}{\{0\}} \cong Z_{3}$
We establish one-one, onto correspondence between T_{1} and T_{2} as

$$
\frac{Z_{15}}{\langle 5\rangle} \leftrightarrow \frac{\langle 3\rangle}{\{0\}} \quad \text { and } \quad \frac{\langle 5\rangle}{\{0\}} \leftrightarrow \frac{Z_{15}}{\langle 3\rangle}
$$

Then the corresponding factor group being isomorphic we get, the two series S_{1} and S_{2} of Z_{15} are isomorphic.

- Schreier's Theorem :

Theorem 3.1.7 : Two subnormal series of a group G have isomorphic refinements.
Proof : Let G be a group and let

$$
\begin{equation*}
\{e\}=H_{0}<H_{1}<H_{2}<\cdots<H_{n}=G \tag{1}
\end{equation*}
$$

and
$\{e\}=K_{0}<K_{1}<K_{2}<\cdots<K_{m}=G$
be two subnormal series of G.
Define

$$
H_{i j}=H_{i} \cdot\left(H_{i+1} \cap K_{j}\right)
$$

As $\quad H_{i} \triangleleft H_{i+1}$ we get $H_{i} \cdot\left(H_{i+1} \cap K_{j}\right)$ is a subgroup of G for each $i, 0 \leq i \leq n-1$ and each j, $o \leq j<m$.
(i) $H_{i} \triangleleft H_{i+1}$ and $K_{j} \triangleleft K_{j+1}$. Hence by Zassenhaus Lemma,

$$
H_{i} \cdot\left(H_{i+1} \cap K_{j}\right) \triangleleft H_{i} \cdot\left(H_{i+1} \cap K_{j+1}\right)
$$

i.e. $\quad H_{i, j} \unlhd H_{i, j+1}$
(ii) $H_{i, 0}=H_{i} \cdot\left(H_{i+1} \cap K_{0}\right)$

$$
\begin{aligned}
& =H_{i} \cdot\left(H_{i+1} \cap\{e\}\right) \\
& =H_{i} \cdot\{e\}
\end{aligned}
$$

$$
=H_{i}
$$

(iii) $H_{i, m}=H_{i} \cdot\left(H_{i+1} \cap K_{m}\right)$
$=H_{i} \cdot\left(H_{i+1} \cap G\right)$
$=H_{i} \cdot H_{i+1}$

$$
=H_{i+1} \quad \text { as } H_{i} \subseteq H_{i+1}
$$

From (i), (ii) and (iii), we get a chain containing $n m+1$ elements not necessarily distinct groups which is as follows.

$$
\begin{align*}
\{e\}=H_{0}=H_{0,0} & \leq H_{0,1} \leq \cdots \leq H_{0, m}=H_{1,0}=H_{1} \\
& \leq H_{1,1} \leq \cdots \leq H_{1, m}=H_{2,0}=H_{2} \\
& \cdots \cdots \cdots \cdots \cdots \tag{3}\\
& \leq H_{n-1,1} \leq H_{n-1,2} \leq \cdots \leq H_{n-1, m}=H_{n}=G
\end{align*}
$$

This chain refines the chain in (1). The set of factor groups of the chain represented in (3) is

$$
\begin{equation*}
\left\{\frac{H_{i, j+1}}{H_{i, j}} / 1 \leq i \leq n, \quad 1 \leq j \leq m-1\right\} \tag{4}
\end{equation*}
$$

Similarly, by defining

$$
K_{j, i}=K_{j} \cdot\left(K_{j+1} \cap H_{i}\right) \quad \text { for } 0 \leq j \leq m-1 \text { and } 0 \leq i \leq n .
$$

We obtain a subnormal chain containing $\mathrm{nm}+1$ element as follows.

$$
\begin{align*}
\{e\}=K_{0}=K_{0,0} & \leq K_{0,1} \leq \cdots \leq K_{0, n}=K_{1,0}=K_{1} \\
& \leq K_{1,1} \leq \cdots \leq K_{1, n}=K_{2,0}=K_{2} \\
& \cdots \cdots \cdots \cdots \cdots \tag{5}\\
& \leq K_{m-1,1} \leq K_{m-1,2} \leq \cdots \leq K_{m-1, n}=K_{m}=G
\end{align*}
$$

Note that the two chains represented in (4) and (5) not necessarily contain distinct groups. The chain (5) refines the chain (2). The set of factor groups of the chain represented in (5) is

$$
\begin{equation*}
\left\{\frac{K_{j, i+1}}{K_{j, i}} / 0 \leq j \leq m, \quad 0 \leq i<n-1\right\} \tag{6}
\end{equation*}
$$

Again as $H_{i} \triangleleft H_{i+1}$ and $K_{j} \triangleleft K_{j+1}$, by Zassenhaus Lemma,

$$
\begin{aligned}
& \frac{H_{i} \cdot\left(H_{i+1} \cap K_{j+1}\right)}{H_{i} \cdot\left(H_{i+1} \cap K_{j}\right)} \cong \frac{K_{j} \cdot\left(K_{j+1} \cap H_{i+1}\right)}{K_{j} \cdot\left(K_{j+1} \cap H_{i}\right)} \\
& \text { i.e. } \\
& \frac{H_{i, j+1}}{H_{i, j}} \cong \frac{K_{j, i+1}}{K_{j, i}} \quad \text { for } 0 \leq i \leq n-1 \text { and } \quad 0 \leq j \leq m-1 .
\end{aligned}
$$

This isomorphism establishes one to one onto correspondence between the two sets represented in (4) and (6). Deleting the repeated groups from the chains represented in (3) and (5) we get subnormal series of distinct groups that are isomorphic refinements of the subnormal series represented in (1) and (2) respectively.

This establishes that any two subnormal series of a group G have isomorphic refinements.

Example 3.1.8 : Give the isomorphic refinements of the two subnormal series of $\langle Z,+\rangle$.
(i) $\{0\} \triangleleft 60 Z \triangleleft 20 Z \triangleleft Z$
(ii) $\{0\} \triangleleft 245 Z \triangleleft 49 Z \triangleleft Z$

Solution : Define $H_{0}=\{0\}, \quad H_{1}=60 Z, \quad H_{2}=20 Z, \quad H_{3}=Z$

$$
K_{0}=\{0\}, \quad K_{1}=245 Z, \quad K_{2}=49 Z, \quad K_{3}=Z
$$

Define $H_{i, j}=H_{i} \cdot\left(H_{i+1} \cap K_{j}\right) \quad \forall \quad 0 \leq i \leq 2, \quad 0 \leq j \leq 3$.
Then,

$$
\begin{aligned}
H_{0,0} & =H_{0}=\{0\} \\
H_{0,1} & =H_{0} \cdot\left(H_{1} \cap K_{1}\right)=H_{1} \cap K_{1}=60 \mathrm{Z} \cap 245 \mathrm{Z} \\
& =2940 \mathrm{Z} \quad \quad(2940=\text { l.c.m. }(60,245)) \\
H_{0,2} & =H_{0} \cdot\left(H_{1} \cap K_{2}\right)=H_{1} \cap K_{2}=60 \mathrm{Z} \cap 49 \mathrm{Z}=2940 \mathrm{Z} \\
H_{0,3} & =H_{0} \cdot\left(H_{1} \cap K_{3}\right)=H_{1} \cap K_{3}=H_{1}=60 \mathrm{Z} \\
H_{1,0} & =H_{1} \cdot\left(H_{2} \cap K_{0}\right)=60 Z \cdot\{0\}=60 Z \\
H_{1,1} & =H_{1} \cdot\left(H_{2} \cap K_{1}\right)=60 Z \cdot(20 Z \cap 245 Z)=60 Z \\
H_{1,2} & =H_{1} \cdot\left(H_{2} \cap K_{2}\right)=60 Z \cdot(20 Z \cap 49 Z)=60 Z \\
H_{1,3} & =H_{1} \cdot\left(H_{2} \cap K_{3}\right)=H_{1} \cdot H_{2}=60 Z \cdot 20 Z=20 Z=H_{2} \\
H_{2,0} & =H_{2} \cdot\left(H_{3} \cap K_{0}\right)=H_{2} \cdot\{0\}=H_{2}=20 Z \\
H_{2,1} & =H_{2} \cdot\left(H_{3} \cap K_{1}\right)=20 Z \cap 245 Z=5 Z \\
H_{2,2} & =H_{2} \cdot\left(H_{3} \cap K_{2}\right)=H_{2} \cdot K_{2}=20 Z \cdot 49 Z=Z \\
H_{2,3} & =H_{2} \cdot\left(H_{3} \cap K_{3}\right)=H_{2} \cdot Z=Z
\end{aligned}
$$

Hence, the refinement of the series represented in (1) is

$$
\begin{aligned}
\{0\}=H_{0,0} & \leq H_{0,1} \leq H_{0,2} \leq H_{0,3}=H_{1}=H_{1,0} \\
& \leq H_{1,1} \leq H_{1,2} \leq H_{1,3}=H_{2}=H_{2,0} \\
& \leq H_{2,1} \leq H_{2,2} \leq H_{2,3}=H_{3}
\end{aligned}
$$

$$
\{0\} \leq 2940 Z \leq 2940 Z \leq 60 Z \leq 60 Z \leq 60 Z \leq 20 Z \leq 5 Z \leq Z \leq Z .
$$

Deleting the repeated factors, we get,

$$
\{0\} \triangleleft 2940 Z \triangleleft 60 Z \triangleleft 20 Z \triangleleft 5 Z \triangleleft Z .
$$

This is refinement of the series

$$
\{0\} \triangleleft 60 Z \triangleleft 60 Z \triangleleft 20 Z \triangleleft Z .
$$

Similarly, defining $K_{i, j}=K_{j}\left(K_{j+1} \cap H_{i}\right)$, we can obtain the refinement of the series,

$$
\{0\}=K_{0} \triangleleft K_{1} \triangleleft K_{2} \triangleleft K_{3}=Z
$$

which is as follows.

$$
\{0\} \triangleleft 2940 Z \triangleleft 980 Z \triangleleft 245 Z \triangleleft 49 Z \triangleleft Z .
$$

Definition 3.1.9 : A subnormal series $\left\{H_{i}\right\}=\left\{H_{0}, \ldots, H_{n}\right\}$ of a group G is a composition series if all the factor groups $\frac{H_{i+1}}{H_{i}}$ are simple. $\left(H_{0}=\{e\}\right.$ and $\left.H_{n}=G\right)$

Remark : In a composition series $\left\{H_{i}\right\}, H_{i}$ will be a maximal normal subgroup of H_{i+1}.

Examples 3.1.10 :

(i) Consider the group S_{n} for $n \geq 5$.

The series $\{e\}<A_{n}<S_{n}$ is a composition series in S_{n}.
Here $\frac{A_{n}}{\{e\}} \cong A_{n}$ and $\left|\frac{S_{n}}{A_{n}}\right|=2 \quad \Rightarrow \frac{S_{n}}{A_{n}} \cong Z_{2}$
Now for $n \geq 5, A_{n}$ is a simple (as any normal subgroup $N \neq\{e\}$ of A_{n} will contain each
3-cycle in S_{n} and hence $N=A_{n}$).
Hence $\frac{A_{n}}{\{e\}}$ is a simple group.
Similarly, Z_{2} being simple we get $\frac{S_{n}}{A_{n}}$ is simple.
Hence $\{e\} \triangleleft A_{n} \triangleleft S_{n}$ is a composition series of S_{n} for $n \geq 5$.
(ii) Consider the group $G=Z_{15}$.

The series $\{0\}<\langle 5\rangle<Z_{15}$ is a composition series in Z_{15}.
$\{0\}<\langle 5\rangle<Z_{15}$ is a subnormal series.

$$
\begin{array}{ll}
\frac{\langle 5\rangle}{\{0\}} \cong Z_{5} & \Rightarrow \frac{\langle 5\rangle}{\{0\}} \text { is a simple group. } \\
\frac{Z_{15}}{\langle 5\rangle} \cong Z_{3} & \Rightarrow \frac{Z_{15}}{\langle 5\rangle} \text { is a simple group. }
\end{array}
$$

Hence $\{0\}<\langle 5\rangle<Z_{15}$ is a composition series in Z_{15}.
(iii) Consider the group $G=\langle a\rangle$ where $|G|=6$. Hence $a^{6}=e$.

Define $H_{1}=\left\langle a^{3}\right\rangle=\left\{e, a^{3}\right\} \quad$ and $H_{2}=\left\langle a^{2}\right\rangle=\left\{e, a^{2}, a^{4}\right\}$.
Then $\left\{\{e\}, H_{1}, G\right\}$ and $\left\{\{e\}, H_{2}, G\right\}$ will form two composition series in G.
(iv) Z has no composition series.

Let us assume that \exists a composition series

$$
\begin{array}{ll}
\{0\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=Z & \text { in } Z . \\
\{0\}<H_{1}<Z \quad \Rightarrow \quad H_{1}=n Z & \text { for some positive integer n. }
\end{array}
$$

As $\frac{H_{1}}{H_{0}} \cong n Z$, we must have $n Z$ is simple.
But this is not true as $n Z$ contains many nontrivial proper normal subgroups. Hence our assumption is wrong.

Thus Z has no composition series.

- Existence of Composition series :

Theorem 3.1.11 : Every finite group G has at least one composition series.
Proof : If G is a simple group, then $\{e\} \triangleleft G$ is a composition series in G.
If G is not simple group, then G has at least one proper normal subgroup $H \neq\{e\}$.
If H is a maximal normal subgroup then $\{e\}$ will be maximal subgroup of H.
Hence $\frac{G}{H}$ and $\frac{H}{\{e\}}$ are simple subgroups. This shows that $\{\{e\}, H, G\}$ will form a composition series in G.

Let H be not maximal in G. It means that there exists a maximal normal subgroup K such that $H \subset K \subset G$. Hence $\{\{e\}, H, K, G\}$ will form a composition series.

If H is maximal in G, but $\{e\}$ is not maximal in H then find a maximal normal subgroup L such that $\{e\} \subset L \subset H$. In this case $\{\{e\}, L, H, G\}$ will be the composition series of the group G.

Proceeding like this, we always find a composition series for G. Since G is a finite group, the number of its subgroups is also finite. Hence the composition series obtained finally contains a finite number of elements.

This proves that any finite group G has at least one composition series.

Remark : An infinite group may or may not have a composition series.
e.g. The group $\langle Z,+\rangle$ has no composition series. (See example 3.1.10 (4)).

- Jordan-Hölder Theorem :

Theorem 3.1.12 : Any two composition series of a group G are isomorphic.
Proof : Let $\left\{H_{i}\right\}$ and $\left\{K_{j}\right\}$ be any two composition series of G.
Hence $\frac{H_{i+1}}{H_{i}}$ is a simple group for each $i, 1 \leq i \leq n-1$ and

$$
\frac{K_{j+1}}{K_{j}} \text { is a simple group for each } j, 1 \leq j \leq m-1 .
$$

But we know that $\frac{G}{N}$ is a simple group if and only if N is a maximal normal subgroup of G.

Hence,
$\frac{H_{i+1}}{H_{i}}$ is a simple implies H_{i} is a maximal normal subgroup of H_{i+1}, for $1 \leq i \leq n-1$.
Thus, intersection of any normal subgroups in between implies H_{i} and H_{i+1} is not possible.
Similarly, further refinement of the of the composition series $\left\{K_{j}\right\}$ is not possible.
Thus, $\left\{H_{i}\right\}$ and $\left\{K_{j}\right\}$ must be already isomorphic and $m=n$.

Theorem 3.1.13 : If a group G has a composition series and if N is a proper normal subgroup of G then there exist a composition series containing N.

Proof : Let $\left\{H_{i}\right\}$ be a composition series of G. Then

$$
\begin{equation*}
\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=G \tag{1}
\end{equation*}
$$

and $\frac{H_{i+1}}{H_{i}}$ is a simple group for each $i, 1 \leq i \leq n-1$.
Consider the subnormal series of G given by,

$$
\begin{equation*}
\{e\} \triangleleft N \triangleleft G \tag{2}
\end{equation*}
$$

Define $\quad K_{0}=\{e\}, \quad K_{1}=N, \quad K_{2}=G$.
Define $\quad K_{i, j}=K_{i}\left(K_{i+1} \cap H_{j}\right)$
for $0 \leq i<2$ and $0 \leq j \leq n$.

Then $\{0\}=K_{0}=K_{0,0}<K_{0,1}<\cdots<K_{0, n}=K_{1}=K_{1,0}=N$

$$
\begin{equation*}
<K_{1,1}<\cdots<K_{1, n}=K_{2}=G \tag{3}
\end{equation*}
$$

The series in (3) is a refinement of the subnormal series (2). The refinement of (1) being impossible (as $\left\{H_{i}\right\}$ is a composition series) we get the two subnormal series represented by (1) and (3) must be isomorphic. As the isomorphic image of simple groups is a simple group, we get all the factor groups of the subnormal series (3) will be simple groups. Hence, the subnormal series (3) containing N is a composition series.

Example 3.1.14 : Find the composition series for $S_{3} \times S_{3}$.
Solution : $\quad H_{0}=\{e\} \times\{e\}$

$$
\begin{aligned}
H_{1} & =A_{3} \times\{e\} \\
H_{2} & =A_{3} \times A_{3} \\
H_{3} & =S_{3} \times A_{3} \\
H_{4} & =S_{3} \times S_{3}
\end{aligned}
$$

Then $\quad\{e\} \times\{e\}=H_{0} \triangleleft H_{1} \triangleleft H_{2} \triangleleft H_{3} \triangleleft H_{4}=S_{3} \times S_{3}$ is a composition series in $S_{3} \times S_{3}$.

Example 3.1.15 : Show that if $\{e\}=H_{0}<H_{1}<H_{2}<\cdots<H_{n}=G$ is a subnormal series of a group G and if $O\left(\frac{H_{i+1}}{H_{i}}\right)=S_{i+1}$ then G is of finite order $S_{1} . S_{2} \ldots . . S_{n}$.

Solution : By data

$$
O\left(\frac{H_{1}}{H_{0}}\right)=S_{1}
$$

Thus

$$
\begin{array}{lll}
\frac{O\left(H_{1}\right)}{O\left(H_{0}\right)}=S_{1} & \Rightarrow & O\left(H_{1}\right)=S_{1} \cdot O\left(H_{0}\right)=S_{1} \cdot 1=S_{1} \\
O\left(\frac{H_{2}}{H_{1}}\right)=\frac{O\left(H_{2}\right)}{O\left(H_{1}\right)}=S_{2} & \Rightarrow & O\left(H_{2}\right)=S_{2} \cdot O\left(H_{1}\right)=S_{2} \cdot S_{1}
\end{array}
$$

Continuing in this way, we get

$$
\begin{array}{rlr}
& \frac{O\left(H_{n}\right)}{O\left(H_{n-1}\right)}=O\left(\frac{H_{n}}{H_{n-1}}\right)=S_{n} \quad & \\
\Rightarrow \quad O(G) & =S_{n} \cdot O\left(H_{n-1}\right)=S_{n} \cdot O\left(H_{n-1}\right) \\
& =S_{n} \cdot S_{n-1} \cdot S_{n-2} \cdot \ldots \cdot S_{1} \\
& =S_{n} \cdot S_{n-1} \cdot S_{n-2} \cdot \ldots \cdot S_{1} & \\
& & \\
& & \left.G=H_{n}\right) \\
& &
\end{array}
$$

Hence, G is a finite group and $O(G)=S_{1} \cdot S_{2} \cdot \ldots \cdot S_{n}$.

Example 3.1.16 : Show that an abelian group has a composition series iff it is finite.

Solution : Only if part :

Let G be an abelian group. Let $\left\{H_{i}\right\}$ be a composition series of G.
Then $\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=G$ and $\frac{H_{i+1}}{H_{i}}$ is a simple group for each $i, 1 \leq i \leq$ $n-1$.

We know that if a group G is abelian then any subgroup of G is also abelian.
Hence $\frac{H_{i+1}}{H_{i}}$ is abelian for each $i, \quad 1 \leq i \leq n-1$.
Thus $\frac{H_{i+1}}{H_{i}}$ is abelian and simple group for each $i, \quad 1 \leq i \leq n-1$.
Hence $\frac{H_{i+1}}{H_{i}}$ is a cyclic group of prime order say p_{i+1}.
By example 3.1.15, we get $|G|=p_{1} . p_{2} \ldots . p_{n}$ and hence G is a finite group.

If part :

Let G be a finite group.
By theorem 3.1.11, G has a composition series.

Example 3.1.17 : Show that infinite abelian group can have no composition series.
Solution : By an example 3.1.16, if an abelian group G contains a composition series, then G must be finite. Hence no infinite abelian group will contain a composition series.

3.2. Normal Series :

Definition 3.2.1 : Let G be a group. A normal series of G is a finite sequence $N_{0}, N_{1}, \ldots, N_{k}$ of normal subgroups of G such that $N_{i}<N_{i+1}, N_{0}=\{e\}$ and $N_{k}=G$.

Remark 3.2.2 : Every normal series of a group G is a subnormal series but not conversely. For this consider the group $G=D_{4}$ where $D_{4}=\left\langle\left\{\varrho_{0}, \varrho_{1}, \varrho_{2}, \varrho_{3}, \mu_{1}, \mu_{2}, \delta_{1}, \delta_{2}\right\}, 0\right\rangle$ and

$$
\begin{array}{ll}
\varrho_{0}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right) & \mu_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \\
\varrho_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) & \mu_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) \\
\varrho_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right) & \delta_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \\
\varrho_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right) & \delta_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)
\end{array}
$$

This group D_{4} is called the group of symmetries of a square.

The series D_{4} given by

$$
\left\{\varrho_{0}\right\}<\left\{\varrho_{1}, \mu_{1}\right\}<\left\{\varrho_{0}, \varrho_{2}, \mu_{1}, \mu_{2}\right\}<D_{4}
$$

is a subnormal series but it is not a normal series as $\left\{\varrho_{1}, \mu_{1}\right\}$ is not a normal subgroup of D_{4}.

Remark 3.2.3 : As every subgroup of an abelian group is normal, every subnormal series in an abelian group will be a normal series. Thus the two concepts of normal and subnormal series coincide in an abelian group.

Example 3.2.4: $\{0\}<26 Z<13 Z<Z$
and $\{0\}<14 Z<7 Z<Z \quad$ are normal series in a group $\langle Z,+\rangle$.

Definition 3.2.5: Let $\left\{N_{i}\right\}$ be a normal series of a group G. The normal series $\left\{K_{j}\right\}$ of a group G is a refinement of the normal series $\left\{N_{i}\right\}$ if $\left\{N_{i}\right\} \subseteq\left\{K_{j}\right\}$. i.e. $N_{i}=K_{j}$ for each i.

Example 3.2.6 : The normal series

$$
\{0\}<72 Z<24 Z<8 Z<4 Z<Z
$$

is a refinement of the normal series

$$
\{0\}<72 Z<8 Z<Z
$$

in an abelian group $\langle Z,+\rangle$.

Definition 3.2.7 : Two normal series $\left\{N_{i}\right\}$ and $\left\{K_{j}\right\}$ of a group G are said to be isomorphic if there exists a one to one, onto correspondence between the collection of factor groups $\left\{\frac{H_{i+1}}{H_{i}}\right\}$ and $\left\{\frac{K_{j+1}}{K_{j}}\right\}$. So that the corresponding factor groups are abelian.

Example 3.2.8 : The two normal series

$$
\{0\}<\langle 5\rangle<Z_{15}
$$

and $\quad\{0\}<\langle 3\rangle<Z_{15}$
in a group Z_{15} are isomorphic.

Definition 3.2.9 : A normal series $\left\{N_{i}\right\}$ of a group G is principal if all the factor groups $\frac{N_{i+1}}{N_{i}}$ are simple.

Now we list the properties of normal series, the proofs of which are similar to those for subnormal series.

3.2.10 Properties of Normal Series :

(i) Two normal series of a group G are isomorphic (Schreier's Theorem).
(ii) Every finite group G has at least one principal series.
(iii)Any two principal series of a group G are isomorphic. (Jordan Hölder Theorem)
(iv)If a group G has a principal series and if N is a proper normal subgroup of G , then there exists a principal series in G containing N .

Exercise

(1) State whether the following statements are true or false.
(i) Every normal series is a principal series.
(ii) Every principal series is a composition series.
(iii) Every composition series is a principal series.
(iv) Every normal series is a subnormal series.
(v) Every subnormal series is a normal series.
(vi) Every group has a composition series.
(vii) Every group has a principal series.
(viii) Any two subnormal / normal series of the same group G are always isomorphic.
(ix) Given any two normal series we can obtain the refinements for both the series.
(x) Every abelian group has a composition series.
(2) Find all composition series for Z_{60}.

3.3 Ascending Central Series :

Definition 3.3.1 : The center of a group G is the set $\{x \in G / x g=g x \forall g \in G\}$.

Remark 3.3.2 :

(i) The center of a group G is generally denoted by Z or $\mathrm{Z}(\mathrm{G})$.
(ii) As $e \in Z(G), Z(G) \neq \phi$ or $|Z(G)| \geq 1$.
(iii) G is abelian $\Leftrightarrow \quad Z(G)=G$.
(iv) $Z(G)$ is always a normal subgroup of G.

3.3.3 Ascending Central Series :

Let $Z(G)$ denote the center of a group G. As $Z(G) \unlhd G$, the quotient group $\frac{G}{Z(G)}$ is defined. Consider the canonical / natural map $f: G \rightarrow \frac{G}{Z(G)}$. Then f is an onto homomorphism.
Consider $Z\left[\frac{G}{Z(G)}\right] . \quad Z\left[\frac{G}{Z(G)}\right]$ is a normal subgroup of the group $\frac{G}{Z(G)}$.
Hence, $f^{-1}\left[Z\left[\frac{G}{Z(G)}\right]\right]$ is a normal subgroup of G containing $Z(G)$. Denote this by $Z_{1}(G)$. Thus we have,

$$
\begin{equation*}
\{e\}<Z(G)<Z_{1}(G)<G \tag{1}
\end{equation*}
$$

Now $Z_{1}(G) \triangleleft G$ and hence the quotient group $\frac{G}{Z_{1}(G)}$ is defined.
Consider the canonical/natural map $f_{1}: G \rightarrow \frac{G}{Z_{1}(G)}$. Surely f_{1} is an onto homomorphism.
As $Z\left[\frac{G}{Z_{1}(G)}\right] \unlhd \frac{G}{Z_{1}(G)}, f^{-1}\left[Z\left[\frac{G}{Z_{1}(G)}\right]\right]$ is a normal subgroup of G. Denote it by $Z_{2}(G)$.
Thus, continuing in this process, we can construct a sequence of normal subgroups of G i.e. $\quad Z(G), Z_{1}(G), Z_{2}(G), \ldots$ such that $\{e\} \leq Z(G) \leq Z_{1}(G) \leq Z_{2}(G) \leq \cdots$.

This series is called the ascending central series of the group G.

Example 3.3.4 : Find the ascending central series for (i) S_{3} and (ii) D_{4}.

Solution :

(i) $G=S_{3} \quad \Rightarrow \quad Z(G)=\{i\}$ where i is the identity map. Hence the ascending central series of S_{3} is

$$
\{i\} \leq\{i\} \leq \cdots \leq\{i\} \leq \cdots
$$

(ii) $G=D_{4} \quad \Rightarrow \quad Z(G)=\left\{\rho_{0}, \rho_{2}\right\}$
where

$$
\begin{aligned}
& \rho_{0}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right) \\
& \rho_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Now, $\left|\frac{D_{4}}{Z\left(D_{4}\right)}\right|=\frac{8}{2}=4$

As $\quad\left|\frac{D_{4}}{Z\left(D_{4}\right)}\right| \leq 5$
we get, $\frac{D_{4}}{Z\left(D_{4}\right)}$ is abelian and hence $Z\left[\frac{D_{4}}{Z\left(D_{4}\right)}\right]=\frac{D_{4}}{Z\left(D_{4}\right)}$.
$f: D_{4} \rightarrow \frac{D_{4}}{Z\left(D_{4}\right)}$ be a canonical mapping.
f being onto, $f^{-1}\left[\frac{D_{4}}{Z\left(D_{4}\right)}\right]=D_{4}$
Thus, the ascending central series in D_{4} is

$$
\left\{\rho_{0}\right\} \leq\left\{\rho_{0}, \rho_{2}\right\} \leq D_{4} \leq D_{4} \leq \cdots
$$

3.4 Nilpotent Groups:

Thus we obtain normal subgroups $Z_{1}(G), Z_{2}(G), \ldots, Z_{n}(G), \ldots$ of G such that

$$
\frac{Z_{n}(G)}{Z_{n-1}(G)}=Z\left[\frac{G}{Z_{n-1}(G)}\right], \quad \text { for every positive integer } \mathrm{n}>1 .
$$

$Z_{n}(G)$ is called the $n^{\text {th }}$ center of G.
Define $Z_{0}(G)=\{e\}$. Then

$$
\frac{z_{n}(G)}{Z_{n-1}(G)}=Z\left[\frac{G}{z_{n-1}(G)}\right], \quad \text { for all positive integers } \mathrm{n}
$$

Again by definition,

$$
Z_{n}(G)=\left\{x \in G x y x^{-1} y^{-1} \in Z_{n-1}(G) / \text { for all } y \in G\right\}
$$

Hence,

$$
\left[Z_{n}(G)\right]^{\prime} \subseteq Z_{n-1}(G) .
$$

Definition 3.4.1: A group G is said to be nilpotent if $Z_{m}(G)=G$ for some m. The smallest m such that $Z_{m}(G)=G$ is called the class of nilpotency of G.

Remark : Every abelian group is nilpotent. If G is abelian, then $Z_{1}(G)=Z(G)$. Hence G is nilpotent.

Theorem 3.4.2: Subgroup of a nilpotent group is nilpotent.
Proof :Let G be a nilpotent group.
Hence, \exists a positive integer m such that $Z_{m}(G)=G$. Let $H \leq G$.
To prove that H is nilpotent.
When $H=\{e\}$ or $H=G$. The result is obviously true.

Let $\{e\}<H<G$.
Now let $x \in H \cap Z(G)$. Then $g x=x g$ for all $g \in G$ will imply $h x=x h$ for all $h \in H$. Hence $x \in Z(H)$. Thus,

$$
H \cap Z(G) \subseteq Z(H)
$$

As $Z(G)=Z_{1}(G)$ and $Z(H) \leq H$ we get

$$
\begin{equation*}
H \cap Z(G) \leq Z_{1}(H) \tag{1}
\end{equation*}
$$

Now, let $x \in H \cap Z_{2}(G)$.
Then $\quad x \in Z_{2}(G)$ will imply $x y x^{-1} y^{-1} \in Z_{1}(G) \quad$ for all $y \in G$
But then $\quad x y x^{-1} y^{-1} \in Z_{1}(G) \quad$ for all $y \in H$
As $x \in H$ and $y \in H$ we get $x y x^{-1} y^{-1} \in Z_{1}(G)$ for all $y \in H$.

But this in turn will imply $x \in Z_{2}(H)$. This shows that

$$
\begin{equation*}
H \cap Z_{2}(G) \leq Z_{2}(H) \tag{2}
\end{equation*}
$$

Continuing in this way, we get

$$
H \cap Z_{n}(G) \subseteq Z_{n}(H) \quad \text { for all } \mathrm{n}
$$

Hence in particular,

$$
\begin{array}{ll}
& H \cap Z_{m}(G) \subseteq Z_{m}(H) \\
\text { i.e. } & H \cap G \subseteq Z_{m}(H) \\
\text { i.e. } & H \subseteq Z_{m}(H)
\end{array}
$$

But as always, $Z_{m}(H) \subseteq H$, we get $Z_{m}(H)=H$.
This proves that H is nilpotent.

Theorem 3.4.3: Every homomorphic image of a nilpotent group is nilpotent.
Proof : Let G be a nilpotent group. Let $\phi: G \rightarrow G_{1}$ be an onto homomorphism.
To prove that the group G_{1} is nilpotent.
As G is nilpotent, \exists a positive integer m such that $Z_{m}(G)=G$.
(i) $Z(G)=\{x \in G / x g=g x \quad \forall g \in G\}$

$$
\begin{aligned}
Z\left(G_{1}\right) & =\left\{x \in G_{1} / x g=g x \quad \forall g \in G_{1}\right\} \\
& =\left\{\phi(x) \in G_{1} / \phi(x) \cdot \phi(g)=\phi(g) \cdot \phi(x) \quad \forall \phi(g) \in G_{1}\right\} \quad \ldots \because \phi \text { in onto. }
\end{aligned}
$$

But this shows that

$$
\begin{equation*}
\phi[Z(G)] \subseteq Z\left(G_{1}\right) \tag{1}
\end{equation*}
$$

Let $x \in Z_{2}(G)$. Then $\quad x y x^{-1} y^{-1} \in Z_{1}(G)$ for all $y \in G$.

Hence,

$$
\begin{array}{ll}
& \phi\left(x y x^{-1} y^{-1}\right) \in \phi\left[Z_{1}(G)\right] \\
\text { i.e. } & \phi(x) \phi(y)[\phi(x)]^{-1}[\phi(y)]^{-1} \in \phi\left[Z_{1}(G)\right]
\end{array} \quad \text { for all } y \in G . ~ \text { for all } \phi(y) \in G_{1} .
$$

But this in turn will imply $\phi(x) \in Z_{2}\left(G_{1}\right)$.
Thus,

$$
x \in Z_{2}(G) \quad \Rightarrow \quad \phi(x) \in Z_{2}\left(G_{1}\right)
$$

Therefore,

$$
\begin{equation*}
\phi\left[Z_{2}(G)\right] \subseteq Z_{2}\left(G_{1}\right) \tag{2}
\end{equation*}
$$

Continuing in this way, we get for all n

$$
\begin{equation*}
\phi\left[Z_{n}(G)\right] \subseteq Z_{n}\left(G_{1}\right) \tag{3}
\end{equation*}
$$

Hence in particular, $\quad \phi\left[Z_{m}(G)\right] \subseteq Z_{m}\left(G_{1}\right)$
Hence, $\quad \phi(G) \subseteq Z_{m}\left(G_{1}\right)$
But ϕ being onto, $\quad \phi(G)=G_{1}$
Hence, $\quad G_{1} \subseteq Z_{m}\left(G_{1}\right) \subseteq G_{1}$
$\Rightarrow \quad Z_{m}\left(G_{1}\right)=G_{1}$
Hence, the group G_{1} in nilpotent.

Theorem 3.4.4: Any group of order p^{n} is nilpotent. OR Any p-group is nilpotent.
Proof : Let G be a group with $|G|=p^{n}$.
To prove that G is nilpotent.
If $G=Z(G)$ then we are through. Assume that $G \neq Z(G)$.
Then as $p||G|$ we get $Z(G) \neq\{e\}$. Hence $| Z(G) \mid \neq 1$.
Further $|Z(G)|||G|$ as $Z(G) \leq G$ we have $| Z(G) \mid=p^{r}$ for some $r<n$.
But then

$$
\left|\frac{G}{Z(G)}\right|=\frac{|G|}{|Z(G)|}=p^{n-r}
$$

will imply $p\left|\left|\frac{G}{Z(G)}\right|\right.$.
Hence, $Z\left[\frac{G}{Z(G)}\right]$ is non trivial. i.e. $Z\left[\frac{G}{Z(G)}\right] \neq Z(G)$.
Hence, by definition of $Z_{2}(G)$ we get $Z(G) \subset Z_{2}(G)$.
i.e. $\quad\left|Z_{1}(G)\right|<\left|Z_{2}(G)\right|$.

Continuing in this way we get,

$$
\left|Z_{1}(G)\right|<\left|Z_{2}(G)\right|<\cdots \leq|G|=p^{n}
$$

Hence, there must exists some positive integer m such that $\left|Z_{m}(G)\right|=p^{n}$.
This shows that G is nilpotent.

Theorem 3.4.5: A group G is nilpotent iff G has a normal series.

$$
\{e\}=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{k}=G
$$

such that

$$
\frac{N_{i+1}}{N_{i}} \subseteq Z\left[\frac{G}{N_{i}}\right]
$$

for all $i, \quad 1 \leq i \leq k-1$.

Proof : Only if part :

Let G be nilpotent then \exists a positive integer m such that $Z_{m}(G)=G$.
Consider the series

$$
Z_{0}(G)=\{e\}<Z_{1}(G)<Z_{2}(G)<\cdots \leq Z_{m}(G)=G
$$

Then
(i) $\quad Z_{i}(G)$ is a normal subgroup of G for each i.
(ii) $\frac{Z_{i+1}}{Z_{i}} \subseteq Z\left[\frac{G}{Z_{i}}\right] \quad$ for each $i, \quad 0 \leq i \leq m-1$.
(iii) $\quad Z_{i} \triangleleft Z_{i+1} \quad$ for each $i, \quad 0 \leq i \leq m-1$.

Hence

$$
Z_{0}(G)=\{e\}<Z_{1}(G)<Z_{2}(G)<\cdots \leq Z_{m}(G)=G
$$

will form the required series.

If part :

Let G be group and let G have a normal series

$$
\{e\}=G_{0}<G_{1}<G_{2}<\cdots \leq G_{k}=G
$$

such that

$$
\frac{G_{i+1}}{G_{i}} \subseteq Z\left[\frac{G}{G_{i}}\right]
$$

To prove that G is nilpotent.
As $\frac{G_{i+1}}{G_{i}} \subseteq Z\left[\frac{G}{G_{i}}\right]$ we get $\frac{G_{1}}{\{e\}} \subseteq Z\left[\frac{G}{\{e\}}\right]$.
Thus, $\quad G_{1} \subseteq Z[G]$
i.e. $\quad G_{1} \subseteq Z_{1}[G]$

Again by assumption, $\frac{G_{2}}{G_{1}} \subseteq Z\left[\frac{G}{G_{1}}\right]$.
Now, for any $x \in G$ we get $G_{1} x \in \frac{G_{2}}{G_{1}}$. Hence $G_{1} x \in Z\left[\frac{G}{G_{1}}\right]$.
Hence, $\quad\left[G_{1} x\right]\left[G_{1} y\right]=\left[G_{1} y\right]\left[G_{1} x\right] \quad$ for all $G_{1}, y \in \frac{G}{G_{1}}$
i.e. $\quad x y x^{-1} y^{-1} \in G_{1} \quad$ for all $y \in G$.
i.e. $\quad x y x^{-1} y^{-1} \in Z_{1}[G] \quad$.. by (1)

Thus, $\quad x \in G_{2} \quad \Rightarrow \quad x y x^{-1} y^{-1} \in Z_{1}[G]$
$\Rightarrow \quad x \in Z_{2}[G]$
Hence, $\quad G_{2} \subseteq Z_{2}[G]$
Continuing in this way we get

$$
G=G_{k} \subseteq Z_{k}(G) \subseteq G .
$$

Hence,

$$
Z_{k}(G)=G
$$

Hence G is nilpotent.

Worked Examples

Example 3.4.6: $G=S_{3}$ is not nilpotent.
Solution: For $S_{3}, Z\left(S_{3}\right)=\left\{\varrho_{0}\right\}$ where ϱ_{0} is the identity element of S_{3}.
Hence, $\quad Z_{1}\left(S_{3}\right)=\left\{\varrho_{0}\right\}$.

$$
Z\left[\frac{s_{3}}{\left\{\varrho_{0}\right\}}\right]=\left\{\left\{\varrho_{0}\right\}\right\}
$$

Hence, $\quad Z_{2}\left(S_{3}\right)=\left\{\varrho_{0}\right\}$.
Continuing in this way we get, $Z_{m}\left(S_{3}\right)=\left\{\varrho_{0}\right\} \quad$ for any $m \geq 0$.
Hence, S_{3} is not nilpotent.

Example 3.4.7: D_{4} is nilpotent.
Solution : We know that $Z_{1}\left(D_{4}\right)=\left\{\varrho_{0}, \varrho_{2}\right\}$.
Hence $\quad \frac{D_{4}}{Z\left(D_{4}\right)}=\frac{D_{4}}{\left\{\varrho_{0}, \varrho_{2}\right\}}$

As

$$
\left|\frac{D_{4}}{\left\{\varrho_{0}, \varrho_{2}\right\}}\right|=\frac{\left|D_{4}\right|}{\left|\left\{\varrho_{0}, \varrho_{2}\right\}\right|}=\frac{8}{2}=4
$$

Hence, $\frac{D_{4}}{Z\left(D_{4}\right)}$ is abelian. Therefore $Z\left[\frac{D_{4}}{Z\left(D_{4}\right)}\right]=\frac{D_{4}}{Z\left(D_{4}\right)}$
Hence, $\quad Z_{2}\left(D_{4}\right)=D_{4}$. Hence, D_{4} is nilpotent.

Example 3.4.8: Show that S_{n} is not nilpotent for $n \geq 3$.
Solution : For $n \geq 3, Z\left[S_{n}\right]=\{e\}$ where e is the identity element in S_{n}.
Thus $Z_{1}\left(S_{n}\right)=\{e\}$. But then $Z_{m}\left(S_{n}\right)=\{e\}$ for all positive integers m .
Hence S_{n} is nilpotent for $n \geq 3$.

Remark : S_{3} is solvable but S_{3} is not nilpotent. This shows that every solvable group need not be nilpotent. But converse is always true. i.e. every nilpotent group is solvable.

Theorem 3.4.9: Every nilpotent group is solvable.
Proof : Let G be nilpotent group. Then by theorem 3.4.5, there exists a normal series

$$
\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=G
$$

such that

$$
\frac{H_{i+1}}{H_{i}} \subseteq Z\left[\frac{G}{H_{i}}\right]
$$

As $Z\left[\frac{G}{H_{i}}\right]$ is abelian, we get $\frac{H_{i+1}}{H_{i}}$ is abelian.
Hence by theorem 2.2.13, G is solvable.

Worked Examples

Example 3.4.10 : Give an example of a group G such that G has a normal subgroup N with both N and $\frac{G}{N}$ nilpotent but G is non-nilpotent.

Solution: Consider $G=S_{3}$.
We know, S_{3} is not nilpotent (See example3.4.8).
$N=\{(1),(1,2,3),(1,3,2)\}$ is a normal subgroup of S_{3}.
N is an abelian subgroup of $S_{3}(\because|N|=3)$
Hence N is nilpotent.
Again $\left|\frac{S_{3}}{N}\right|=\frac{6}{3}=2 \quad \Rightarrow \quad \frac{S_{3}}{N}$ is abelian. $\quad \Rightarrow \quad \frac{S_{3}}{N}$ is nilpotent.
Thus both N and $\frac{S_{3}}{N}$ are nilpotent but S_{3} is not nilpotent.

Example 3.4.11 : Show that the product of two nilpotent groups is a nilpotent group.
Solution : Let H and K be any two nilpotent groups.

Then \exists positive integers m and n such that $Z_{m}(H)=H$ and $Z_{n}(K)=K$.
Let $G=H \times K$.

$$
\begin{array}{lll}
x \in Z(G) \quad & \Rightarrow & x g=g x \quad \text { for all } g \in G . \\
x=\left(x_{1}, x_{2}\right) \quad \text { and } & g=\left(g_{1}, g_{2}\right)
\end{array}
$$

Then $\quad x g=\left(x_{1} g_{1}, x_{2} g_{2}\right)$

$$
g x=\left(g_{1} x_{1}, g_{2} x_{2}\right)
$$

Thus, $x g=g x \quad \Rightarrow \quad x_{1} g_{1}=g_{1} x_{1}$ and $x_{2} g_{2}=g_{2} x_{2} \quad$ for all $g_{1} \in H, g_{2} \in K$
But this will imply $x_{1} \in Z(H)$ and $x_{2} \in Z(K)$.
Thus, $x=\left(x_{1}, x_{2}\right) \in Z(G)=Z(H \times K) \quad \Rightarrow \quad\left(x_{1}, x_{2}\right) \in Z(H) \times Z(K)$
Similarly, we can prove that

$$
\left(x_{1}, x_{2}\right) \in Z(H) \times Z(K) \quad \Rightarrow \quad x=\left(x_{1}, x_{2}\right) \in Z(G)=Z(H \times K)
$$

Hence,

$$
Z(H \times K)=Z(H) \times Z(K)
$$

By iteration,

$$
Z_{i}(H \times K)=Z_{i}(H) \times Z_{i}(K) \quad \text { for each positive integer } i .
$$

Hence, if $m>n$ then $Z_{n}(K)=K \quad \Rightarrow \quad Z_{m}(K)=K$.
Thus, $Z_{m}(H \times K)=Z_{m}(H) \times Z_{m}(K)=H \times K$.
This shows that $Z_{m}(G)=G$ and $G=H \times K$ is nilpotent.

Unit 4: Sylow Theorems :

4.1 Group action on a set.
4.2 Class equation of a group.
4.3 -groups
4.4 Three Sylow theorems.

4.1 Group action on a set :

Definition 4.1.1: Let G be any group and let X be any non-empty set. An action of G on X is a mapping $f: X \times G \rightarrow X$ satisfying the following conditions
(i) $f(x, e)=x \quad$ for all $x \in G$
(ii) $f\left(x, g_{1} g_{2}\right)=f\left(f\left(x, g_{1}\right), g_{2}\right) \quad$ for all $x \in G$ and $g_{1}, g_{2} \in G$

Under these conditions we say X is a G-set. Note that every G-set need not be a group.

Examples 4.1.2 :

(i) Let $X=\{1,2, \ldots, n\}$ and $G=\left\langle S_{n}, 0\right\rangle$. Define $f: X \times G \rightarrow X$ by

$$
f(x, \sigma)=\sigma(x) \quad \text { for } x \in X \text { and } \sigma \in S_{n}
$$

Then
(1) $f(x, i)=i(x)=x \quad$ where $i=$ identity map defined on X .
(2) $f\left(x, \sigma_{1} \circ \sigma_{2}\right)=\left(\sigma_{1} \circ \sigma_{2}\right)(x)=\sigma_{2}\left[\sigma_{1}(x)\right]$

$$
=f\left[f\left(x, \sigma_{1}\right), \sigma_{2}\right]
$$

From (1) and (2) we get X is a G -set.
(ii) Let G be any group and let $H \leq G$. \Re denotes the set of all right cosets of H in G .

Define $f: \Re \times H \longrightarrow \Re$ by

$$
f\left(H_{x}, h\right)=H_{x h} \quad \text { for } H_{x} \in \Re \text { and } h \in H
$$

Then
(1) $f\left(H_{x}, e\right)=H_{x e}=H_{x} \quad$ where $i=$ identity map defined on X .
(2) $f\left(H_{x}, h_{1} h_{2}\right)=H_{x\left(h_{1} h_{2}\right)}=H_{\left(x h_{1}\right) h_{2}}$

$$
=f\left[f\left(H_{x}, h_{1}\right), h_{2}\right]
$$

From (1) and (2) we get \mathfrak{R} is a H-set.
(iii) Let G be any group and X be the set of all subgroups of G . Define $f: X \times G \rightarrow G$ by

$$
f(T, g)=g^{-1} T g \quad \text { for } T \in X \text { and } g \in G
$$

Then
(1) $f(T, e)=e^{-1} T e=T$
(2) $f\left(T, g_{1} g_{2}\right)=\left(g_{1} g_{2}\right)^{-1} T\left(g_{1} g_{2}\right)$

$$
\begin{aligned}
& =g_{2}^{-1}\left[g_{1}^{-1} T g_{1}\right] g_{2} \\
& =f\left[f\left(T, g_{1}\right), g_{2}\right]
\end{aligned}
$$

Hence X is a G - set.
(iv) Let G be a group and $H \leq G$. Define $f: G \times H \rightarrow G$ by

$$
f(g, h)=h^{-1} g h \quad \text { for } g \in G \text { and } h \in H
$$

Then
(1) $f(g, e)=e^{-1} g e=g$
(2) $f\left(g, h_{1} h_{2}\right)=\left(h_{1} h_{2}\right)^{-1} g\left(h_{1} h_{2}\right)$

$$
=h_{2}^{-1}\left[h_{1}^{-1} g h_{1}\right] h_{2}
$$

$$
=f\left[f\left(g, h_{1}\right), h_{2}\right]
$$

Hence G is a H - set.
(v) Any group G is a G - set under the action $f: G \times G \rightarrow G$ defined by

$$
f\left(g_{1}, g_{2}\right)=g_{1} \cdot g_{2}, \quad \text { for all } g_{1}, g_{2} \in G
$$

Remark : Let X be a G - set. Then by definition 4.1.1, there exists $f: X \times G \rightarrow X$ satisfying the conditions,
(1) $f(x, e)=x$ and
(2) $f\left(x, g_{1} g_{2}\right)=f\left[f\left(x, g_{1}\right), g_{2}\right]$.

Here onwards we write $f(x, g)=x g$, for all $x \in X$ and $g \in G$.
Thus, $x e=x$ and $x\left(g_{1} g_{2}\right)=\left(x g_{1}\right) g_{2}, \quad$ for all $x \in X$ and $g_{1}, g_{2} \in G$.
Let X be a G - set. For a fixed $x \in X$, define

$$
G_{x}=\{g \in G / x g=x\}
$$

and for a fixed $g \in G$, define

$$
X_{g}=\{x \in X / x g=x\} .
$$

As an important property of the set G_{x}, we prove
Theorem 4.1.3 : Let X be a G - set. for any $x \in X, G_{x} \leq G$.
Proof :
(i) $x e=x \quad \Rightarrow e \in G_{x} \quad \Rightarrow G_{x} \neq \phi$.
(ii) $g_{1}, g_{2} \in G \Rightarrow x g_{1}=x$ and $x g_{2}=x$.

Hence, $x\left(g_{1} g_{2}\right)=\left(x g_{1}\right) g_{2}=x g_{2}=x$.
This shows that $g_{1} g_{2} \in G_{x}$.
(iii) Let $g \in G_{x}$. Then $x g=x \quad \Rightarrow(x g) g^{-1}=x g^{-1}$

$$
\begin{aligned}
& \Rightarrow x\left(g g^{-1}\right)=x g^{-1} \\
& \Rightarrow x \cdot e=x g^{-1} \\
& \Rightarrow x=x g^{-1}
\end{aligned}
$$

Hence $g \in G_{x} \quad \Rightarrow \quad g^{-1} \in G_{x}$
From (i), (ii) and (iii) we get G_{x} is a sub group of G.

Definition 4.1.4 : Let X be a G - set. For any $x \in X$, the subgroup G_{x} of G is called the isotropy subgroup of G.

Example 4.1.5 : Let $X=\{1,2,3\}$. Then X is a S_{3} - set. (See example 4.1.2 (1)). We have

$$
S_{3}=\left\{(1),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\}
$$

The isotropy subgroup of 2 is $\{(1),(13)\}$.

On each G-set X, the group G induces an equivalence relation. This we prove in the following theorem.

Theorem 4.1.6 : Let X be a G - set. Define a relation ' \sim ' on X by

$$
x \sim y \quad \Rightarrow \quad x=y \cdot g, \quad \text { for some } g \in G .
$$

Then the relation ' \sim ' is an equivalence relation on X.

Proof :

(i) $x e=x$ for all $x \in X \quad \Rightarrow x \sim x, \quad$ for all $x \in X$.
\Rightarrow the relation ' \sim ' is reflexive.
(ii) Let $x \sim y$. Hence $x=y g$, for some $g \in G$.
$x g^{-1}=(y g) g^{-1}=y\left(g g^{-1}\right)=y e=y$
This shows that $x \sim y \quad \Rightarrow \mathrm{y} \sim x, \quad$ for $\mathrm{x}, y \in X$.
Hence the relation ' \sim ' is symmetric.
(iii) Let $x \sim y$ and $y \sim z$.

Then $x=y g_{1}$ and $y=z g_{2} \quad$ for some $g_{1}, g_{2} \in G$.
Thus, $x=y g_{1}=\left(z g_{2}\right) g_{1}=z\left(g_{2} g_{1}\right)$.
As $g_{2}, g_{1} \in G$, we get $x \sim z$.
This shows that $x \sim y, y \sim z \Rightarrow x \sim z \quad$ for $x, y, z \in X$.
Hence the relation ' \sim ' is transitive.
From (i), (ii) and (iii) we get ' \sim ' is an equivalence relation on X .

Definition 4.1.7 : Let X be a G - set. Each equivalence class produced by the equivalence relation ' \sim ' defined on X, described in Theorem 4.1.6, is called an orbit in X under G. The equivalence class containing $x \in X$ is orbit of x and we denote it by $x G$.

$$
\text { Thus, } \begin{aligned}
x G & =\{y \in X / x \sim y\} \\
& =\{y \in X / x=y g \text { for some } g \in G\}
\end{aligned}
$$

A relation between the orbit $x G$ and the subgroup G_{x} in a $G-$ set X is as follows.
Theorem 4.1.8 : Let X be any G - set. Then $|x G|=\left(G: G_{x}\right)$, for any $x \in X$.

Proof : Fix up any $x \in X$. Let \mathfrak{R} denote the collection of all right cosets of the subgroup G_{x} in G. We will show that \mathfrak{R} is equipotent with the set $x G$.
Now $y \in x G \Rightarrow y \sim x \Rightarrow y=x g \quad$ for some $g \in G$.
Define $\phi: x G \longrightarrow \Re$ by

$$
\phi(y)=G_{x} g \quad \text { where } y=x g, \quad g \in G
$$

(i) ϕ is well defined.

Let $y_{1}=y_{2}$ in $x G$.
Then $y_{1}=x g_{1}$ and $y_{2}=x g_{2} \quad$ for some $g_{1}, g_{2} \in G$.
Thus $y_{1}=y_{2} \quad \Rightarrow \quad x g_{1}=x g_{2}$

$$
\begin{array}{rrr}
\Rightarrow & \left(x g_{1}\right) g_{1}^{-1}=\left(x g_{2}\right) g_{1}^{-1} \\
\Rightarrow & x\left(g_{1} g_{1}^{-1}\right)=x\left(g_{2} g_{1}^{-1}\right) \\
\Rightarrow & x e=x\left(g_{2} g_{1}^{-1}\right) \\
\Rightarrow & x=x\left(g_{2} g_{1}^{-1}\right) \\
\Rightarrow & g_{2} g_{1}^{-1} \in G_{x} \\
\Rightarrow & & \left(G_{x}\right) g_{1}=\left(G_{x}\right) g_{2} \\
\Rightarrow & & \phi\left(y_{1}\right)=\phi\left(y_{2}\right)
\end{array}
$$

This shows that ϕ is well defined map.
(ii) ϕ is one-one.

Let $\quad \phi\left(y_{1}\right)=\phi\left(y_{2}\right), \quad$ for some $y_{1}, y_{2} \in X$.
Let $\quad \phi\left(y_{1}\right)=\left(G_{x}\right) g_{1}, \quad$ where $y_{1}=x g_{1}$
and $\quad \phi\left(y_{2}\right)=\left(G_{x}\right) g_{2}, \quad$ where $y_{2}=x g_{2}$.
Thus,

$$
\begin{array}{ll}
& \phi\left(y_{1}\right)=\phi\left(y_{2}\right) \\
\Rightarrow \quad & \left(G_{x}\right) g_{1}=\left(G_{x}\right) g_{2} \\
\Rightarrow \quad & g_{1} g_{2}^{-1} \in G_{x} \\
\Rightarrow \quad & x\left(g_{1} g_{2}^{-1}\right)=x \\
\Rightarrow \quad & \left(x g_{1}\right) g_{2}^{-1}=x \\
\Rightarrow \quad & x g_{1}=x g_{2} \\
\Rightarrow \quad & y_{1}=y_{2}
\end{array}
$$

This shows that ϕ is one-one.
(iii) ϕ is onto.

Let $\left(G_{x}\right) g \in \mathfrak{R}$. Then $g \in G$ and for this g, consider the element $y \in X$ defined by $y=x g$.

Then $\phi(y)=\left(G_{x}\right) g$ shows that ϕ is onto.
From (i), (ii) and (iii) we get ϕ is an one-one, onto mapping. Hence,

$$
|x G|=|\Re|
$$

But $\quad|\Re|=$ Number of right cosets of G_{x} in $\mathrm{G}=\left(G: G_{x}\right)$.
Hence, $|x G|=\left(G: G_{x}\right), \quad \forall x \in X$.

Corollary 4.1.9 : Let G be a finite group and let X be a finite G-set. Then
(i) $|G|=|x G| \cdot\left|G_{x}\right|, \quad$ for any $x \in X$.
(ii) $|X|=\sum_{x \in C}\left(G: G_{x}\right), \quad$ where C denotes the subset of X containing exactly one element from each orbit.

Proof :

(i) From theorem 4.1.8, we have,

$$
|x G|=\left(G: G_{x}\right), \quad \text { for any } x \in X
$$

Hence $\quad|x G|=\frac{|G|}{\left|G_{x}\right|} \quad$... Since G is a finite group.
Hence $\quad|G|=|x G| \cdot\left|G_{x}\right|$
(ii) Let C denote the subset of X containing exactly one element from each orbit of X under G.

Then

$$
|X|=\sum_{x \in C} x G
$$

Since

$$
X=\bigcup_{x \in C} x G
$$

and this union is a disjoint union.
As by theorem 4.1.8,

$$
|x G|=\left(G: G_{x}\right)
$$

we get,

$$
|X|=\sum_{x \in C}\left(G: G_{x}\right)
$$

The following theorem gives a tool for determining the number of orbits in a G-set X under G.

- Burnside Theorem :

Theorem 4.1.10 : Let G be a finite group and let X be a finite G -set. If r is the number of orbits in X under G , then

$$
r .|G|=\sum_{g \in G}\left|X_{g}\right|
$$

Proof : Let $\mathrm{N}=$ number of ordered pairs $(x, g) \in X \times G$ for which $x g=x$. Then for a fixed $g \in G$, there are $\left|X_{g}\right|$ with pairs with g as a second member and $x g=x$. Hence

$$
\begin{equation*}
N=\sum_{g \in G}\left|X_{g}\right| \tag{1}
\end{equation*}
$$

Similarly, for a fixed $x \in X$, there are $\left|G_{x}\right|$ pairs with x as a first member and $x g=x$. Hence,

$$
\begin{equation*}
N=\sum_{x \in X}\left|G_{x}\right| \tag{2}
\end{equation*}
$$

From (1) and (2) we get,

$$
\begin{align*}
\sum_{g \in G}\left|X_{g}\right| & =\sum_{x \in X}\left|G_{x}\right| \\
& =\sum_{x \in X} \frac{|G|}{|x G|} \quad \because|x G|=\left(G: G_{x}\right)=\frac{|G|}{\left|G_{x}\right|} \\
& =|G| \sum_{x \in X} \frac{1}{|x G|} \tag{3}
\end{align*}
$$

Now, let $O_{1}, O_{2}, O_{3}, \ldots, O_{r}$ be r orbits of X under G. Then $X=\bigcup_{i=1}^{r} O_{i}$ and this union is disjoint. Hence we get,

$$
\begin{aligned}
\sum_{x \in X} \frac{1}{|x G|} & =\sum_{x \in \bigcup_{i=1}^{r} O_{i}} \frac{1}{|x G|} \\
& =\sum_{x \in O_{1}} \frac{1}{|x G|}+\sum_{x \in O_{2}} \frac{1}{|x G|}+\cdots+\sum_{x \in O_{r}} \frac{1}{|x G|}
\end{aligned}
$$

Now consider $\sum_{x \in O_{1}} \frac{1}{x G}$.
Let $O_{1}=\left\{t_{1}, t_{2}, t_{3}, \ldots, t_{n}\right\} \quad\left(O_{i}\right.$ is finite as X is finite $)$

Hence,

$$
\begin{aligned}
\sum_{x \in O_{1}} \frac{1}{|x G|}= & \frac{1}{\left|t_{1} G\right|}+\frac{1}{\left|t_{2} G\right|}+\cdots+\frac{1}{\left|t_{n} G\right|} \\
= & \frac{1}{\left|O_{1}\right|}+\frac{1}{\left|O_{1}\right|}+\cdots \\
& \quad+\frac{1}{\left|O_{1}\right|} \quad(n \text { times) } \ldots \text { by the definition of orbit } \\
& =\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n} \\
& =\frac{n}{n}=1
\end{aligned}
$$

Generalizing this result we get,

$$
\sum_{x \in o_{i}} \frac{1}{|x G|}=1 \quad \text { for each } i, 1 \leq i \leq r
$$

Hence,

$$
\begin{align*}
\sum_{x \in X} \frac{1}{|x G|} & =1+1+\cdots+1 \quad(r \text { times }) \\
& =r \tag{4}
\end{align*}
$$

From (3) and (4) we get,

$$
\sum_{g \in G}\left|X_{g}\right|=|G| \cdot r
$$

i.e. $\quad r \cdot|G|=\sum_{g \in G}\left|X_{g}\right|$

This completes the proof.

4.2 Class Equation of a Group :

As an application of the Burnside theorem, we derive an equation which is called class equation of a group.

Let G be a finite group and let X be a finite G set. Let $O_{1}, O_{2}, O_{3}, \ldots, O_{r}$ be different r orbits in X by G. Select $x_{i} \in O_{i}$ for each i. Then X being the disjoint union of $O_{1}, O_{2}, O_{3}, \ldots, O_{r}$, we get

$$
|X|=\sum_{i=1}^{r}\left|O_{i}\right|
$$

$$
\begin{equation*}
=\sum_{i=1}^{r}\left|x_{i} G\right| \tag{1}
\end{equation*}
$$

Define $X_{G}=\{x \in X / x g=g, \quad$ for all $g \in G\}$
Let O_{i} denote an one element orbit i.e. $O_{i}=\left\{x_{i}\right\}$. Then

$$
\begin{aligned}
O_{i} & =\left\{y \in X / y \sim x_{i}\right\} \\
& =\left\{y \in X / y=x_{i} g \text { for some } g \in G\right\} \\
& =\left\{x_{i} g / g \in G\right\} \\
& =\left\{x_{i}\right\} \quad \ldots \text { by assumption. }
\end{aligned}
$$

Thus, $O_{i}=\left\{x_{i}\right\}$ if and only if $x_{i}=x_{i} g$ for all $g \in G$. Hence the set X_{G} is precisely the union of one element orbit in X. Assume that there are ' s ' one element orbits in X under G.

Then,

$$
|X|=s+\sum_{i=s+1}^{r}\left|x_{i} G\right|
$$

i.e. $\quad|X|=\left|X_{G}\right|+\sum_{i=s+1}^{r}\left|x_{i} G\right|$

Again, $\quad\left|x_{i} G\right|=\left(G: G_{x_{i}}\right) \quad \ldots$ by Burnside theorem.
Hence, from (2) we get,

$$
\begin{equation*}
|X|=\left|X_{G}\right|+\sum_{i=s+1}^{r}\left(G: G_{X_{i}}\right) \tag{3}
\end{equation*}
$$

Now, for a finite group G we can consider G as a G set under conjugation.
i.e. $x g=g^{-1} x g \quad$ for $x, g \in G$.

Then by (2) we get,

$$
\begin{equation*}
|G|=\left|X_{G}\right|+\sum_{i=s+1}^{r} x_{i} G \tag{4}
\end{equation*}
$$

Consider the set X_{G} in (4)

$$
\begin{array}{rlrl}
X_{G} & =\{x \in X / x g=x, \forall \quad g \in G\} \\
& =\left\{x \in X / g^{-1} x g=x, \forall g \in G\right\} \\
& =\{x \in X / x g=g x, \forall g \in G\} \\
& =Z(G) \quad\left(\because x g=g^{-1} x g\right) \\
Z(G)=\text { center of } G
\end{array}
$$

Substituting $\left|X_{G}\right|=|Z(G)|$ in (4) we get

$$
\begin{aligned}
|G| & =|Z(G)|+\sum_{i=s+1}^{r}\left|x_{i} G\right| \\
& =|Z(G)|+\sum_{i=s+1}^{r}\left(G: G_{x_{i}}\right)
\end{aligned}
$$

Let $\quad n_{i}=\left(G: G_{x_{i}}\right) \quad$ for each i.
Then $n_{i}| | G \mid \quad$ for each i.
Hence,

$$
\begin{array}{ll}
& |G|=|Z(G)|+n_{s+1}+n_{s+2}+\ldots+n_{r} \\
\text { i.e. } & |G|=C+n_{s+1}+n_{s+2}+\ldots+n_{r} \tag{5}\\
\text { where } & C=|Z(G)|
\end{array}
$$

The equation (5) is called the class equation of the group G.
Recall that, for any $x \in G$ the set

$$
C(x)=\left\{g^{-1} x g / g \in G\right\}
$$

is called the conjugate class of x in G and the set

$$
N(x)=\left\{g \in G / g^{-1} x g=x\right\}
$$

is a normalizer of x in $\mathrm{G} . N(x)$ is a subgroup of G and $|C(x)|=(G: N(x))$. If $x G$ denote the orbit of G under conjugation of G containing the element x; then

$$
\begin{align*}
x G & =\{y \in X / y \sim x\} \\
& =\{y \in G / y=x g, \text { for some } g \in G\} \\
& =\left\{y \in G / y=g^{-1} x g, \text { for } g \in G\right\} \\
& =C(x) \tag{6}
\end{align*}
$$

Thus $|x G|=|C(x)|=(G: N(x))$
From the equation (5) we get,

$$
|G|=|Z(G)|+\sum_{i=s+1}^{r}\left|x_{i} G\right|
$$

Where $x_{i} G$ represents the orbit in G under conjugation by G, containing more than one element.

Hence, from (5) and (6) we get

$$
|G|=|Z(G)|+\sum_{x \in C}^{r}(G: N(x))
$$

where C contains exactly one element from each conjugate class with more than one element.

Example : Consider the group $G=S_{3}$. The centre of the group S_{3} contains only one element and the class equation of S_{3} is $6=1+2+3$.

With the help of class equation we derive the following important property of $|Z(G)|$.
Theorem 4.2.1 : Let G be a finite group with $|G|=p^{n}$ where p is a prime number. Then the centre of G is non trivial.

Proof: $\quad|G|=p^{n}$. to prove that $Z(G) \neq\{e\}$.
We know that the class equation of G is

$$
\begin{equation*}
|G|=C+n_{c+1}+n_{c+2}+\ldots+n_{r} \tag{1}
\end{equation*}
$$

where $n_{i}| | G \mid$ for each i and

$$
n_{i}=\text { cardinality of the conjugate class in } G \text { and } C=|Z(G)| \text {. }
$$

Now,

$$
n_{i}| | G\left|\Rightarrow \quad n_{i}\right| p^{n} \Rightarrow \quad p \mid n_{i}, \quad \text { for each } i, c+1 \leq i \leq r
$$

Hence, $p \mid n_{c+1}+n_{c+2}+\ldots+n_{r}$.
Again $p\left||G|=p^{n}\right.$.
Hence, $p \mid\left[|G|-\left(n_{c+1}+n_{c+2}+\ldots+n_{r}\right)\right]$
From (1) we get, $p \mid c$.
i.e. $\quad p||Z(G)|$.

Hence, $|Z(G)|>1$.
i.e. $\quad Z(G) \neq\{e\}$

We know that if $|G|=p$, (p is prime) then G is cyclic and hence abelian. In the next theorem we prove that if $|G|=p^{2}$ then also G is abelian.

Theorem 4.2.2 : If $O(G)=p^{2}$, (p is prime), then G is an abelian group.
Proof : Let G be a non abelian group. Then $G \neq Z(G)$.
Hence, $|Z(G)| \neq p^{2}$.
As $|G|=p^{2}$, by the theorem $2.1, Z(G) \neq\{e\}$ and hence $|Z(G)| \neq 1$.
As $Z(G)\left||G|,\left(G\right.\right.$ being finite) we get $|Z(G)|=1, p, p^{2}$.
Hence, the only possible value is $|Z(G)|=p$.
Select any $a \in G$ such that $a \notin Z(G)$. (Such a exists as $Z(G) \subset G)$.
Consider $N(a)=\left\{x \in G / x a x^{-1}=a\right\}$.
Then $\quad N(a) \leq G$. Further $x \in Z(G)$.

$$
\begin{array}{ll}
\Rightarrow x g=g x & \text { for all } g \in G . \\
\Rightarrow x a=a x & \text { as } a \in G . \\
\Rightarrow x a x^{-1}=a & \\
\Rightarrow x \in N(a) &
\end{array}
$$

Thus, $Z(G) \leq N(a)$.
But $a \in N(a)$ and $a \notin Z(G)$ gives $Z(G) \subset N(a)$.
Thus, we have $Z(G)<N(a) \leq G$.
As $N(a) \leq G$ and $|G|=p^{2}$, we must have $|N(a)|=p^{2}$.
But then $N(a)=G$. Then by definition of $N(a), a x=x a$ for all $x \in G$.
But this in turn will imply $a \in Z(G)$, a contradiction.
Hence G must be abelian.

An important property of a finite G - set is proved in the following theorem.
Theorem 4.2.3 : Let G be a finite group and X is a finite G - set. If $|G|=p^{n}(\mathrm{n}>0)$, (or if $p||G|)$ then $|X| \equiv\left|X_{G}\right|(\bmod p)$.

Proof : Let X be a G - set. X and G both are finite. We know that

$$
\begin{equation*}
|X|=\left|X_{G}\right|+\sum_{i=s+1}^{r}\left|x_{i} G\right| \tag{1}
\end{equation*}
$$

where $\quad X_{G}=\{x \in X / x g=g x$ for each $g \in G\}$
and $\quad\left|X_{G}\right|=s$.
$x_{i} G$ denotes the orbit in X under the action of G containing more than one element.
$r=$ number of orbits in X.

By theorem 4.1.8,

$$
\left|x_{i} G\right|=\left(G: G_{x}\right)
$$

Hence G being a finite group

$$
\left(G: G_{x}\right)||G| \quad \text { for each } i
$$

Thus, $\quad\left|x_{i} G\right|||G| \quad$ for each i.
As $|G|=p^{n}$ we get $p\left|\left|x_{i} G\right|\right.$ for each i. Hence

$$
\begin{equation*}
p\left|\sum_{i=s+1}^{r}\right| x_{i} G \mid \tag{2}
\end{equation*}
$$

From (1) we get,

$$
\sum_{i=s+1}^{r}\left|x_{i} G\right|=|X|-\left|X_{G}\right|
$$

Hence, by (2) we get $p\left||X|-\left|X_{G}\right|\right.$.
i.e. $\quad|X| \equiv\left|X_{G}\right|(\bmod p)$

We know that converse of Lagrange's theorem need not be true.
i.e. if G is a finite group and if $m / O(G)$ then G not necessarily contains a subgroup of order m. But if m is a prime number then surely G contains a subgroup of order m if $m /|G|$. This is proved by Cauchy in the following theorem.

- Cauchy theorem :

Theorem 4.2.4 : Let G be a finite group and p be a prime number such that $p||G|$. Then there exists an element $a \in G$ such that $a^{p}=e$.

Proof :
(i) Define $X=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) / g_{1} \cdot g_{2} \cdot \ldots \cdot g_{p}=e\right.$ and $\left.g_{i} \in G\right\}$
$g_{1} \cdot g_{2} \cdot \ldots \cdot g_{p}=e \quad \Rightarrow g_{p}^{-1}=g_{1} g_{2} \ldots g_{p-1}$.
Hence in p-tuple $\left(g_{1}, g_{2}, \ldots, g_{p}\right)$ we have a freedom to select only $p-1$ elements $g_{1}, g_{2}, \ldots, g_{p-1}$. Therefore $|X|=|G|^{p-1}$.
As $p||G|$ we get $\quad p||X|$.
(ii) Let $\sigma \in S_{p}$ given by $\sigma=(1,2, \ldots, p)$.

Define $H=\langle\sigma\rangle$. Then H is subgroup in S_{p}.
Define $f: X \times H \rightarrow X$ by

$$
f\left(\left(g_{1}, g_{2}, \ldots, g_{p}\right), \sigma^{k}\right)=\left(g_{\sigma^{k}(1)}, g_{\sigma^{k}(2)}, \ldots, g_{\sigma^{k}(p)}\right)
$$

Then
(i) $f\left(\left(g_{1}, g_{2}, \ldots, g_{p}\right), i\right)=\left(g_{i(1)}, g_{i(2)}, \ldots, g_{i(p)}\right)$

$$
=\left(g_{1}, g_{2}, \ldots, g_{p}\right)
$$

(ii) $f\left(\left(g_{1}, g_{2}, \ldots, g_{p}\right), \sigma^{k} \circ \sigma^{l}\right)=\left(g_{\sigma^{k} \circ \sigma^{l}(1)}, g_{\sigma^{k} \circ \sigma^{l}(2)}, \ldots, g_{\sigma^{k} \circ \sigma^{l}(p)}\right)$

$$
\begin{aligned}
& =\left(g_{\sigma^{l}\left[\sigma^{k}(1)\right]}, g_{\sigma^{l}\left[\sigma^{k}(2)\right]}, \ldots, g_{\sigma^{l}\left[\sigma^{k}(p)\right]}\right) \\
& =f\left[f\left(\left(g_{1}, g_{2}, \ldots, g_{p}\right), \sigma^{l}\right), \quad \sigma^{k}\right]
\end{aligned}
$$

Hence, from (1) and (2) we get X is a H - set.
Hence, by theorem 2.3, we get,

$$
|X| \equiv\left|X_{H}\right|(\bmod p)
$$

Since $O(H)=p$.
(iii) As $\quad p\left||X| \quad\left(\because|X|=|G|^{p-1}\right)\right.$
and $\quad p\left||X|-\left|X_{H}\right|\right.$ we must have $\left.p\right|\left|X_{H}\right|$.
Now $X_{H}=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) / f\left(\left(g_{1}, g_{2}, \ldots, g_{p}\right), \sigma^{l}\right)=\left(g_{1}, g_{2}, \ldots, g_{p}\right) \forall \sigma^{l} \in H\right\}$
Hence $\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X_{H}$
$\Rightarrow \quad f\left[\left(g_{1}, g_{2}, \ldots, g_{p}\right), \sigma\right]=\left(g_{1}, g_{2}, \ldots, g_{p}\right)$ as $\sigma \in H$
$\Rightarrow \quad\left(g_{\sigma(1)}, g_{\sigma(2)}, \ldots, g_{\sigma(p)}\right)=\left(g_{1}, g_{2}, \ldots, g_{p}\right)$
$\Rightarrow \quad\left(g_{2}, g_{3}, \ldots, g_{1}\right)=\left(g_{1}, g_{2}, \ldots, g_{p}\right)$
But then $g_{1}=g_{2}=\cdots=g_{p}$.
This shows that an element of the type $(a, a, \ldots, a) \in X_{H}$ i.e. $a^{p}=e$.
As $p\left|\left|X_{H}\right|\right.$ we must have $| X_{H} \mid>1$.
Hence, $\exists a \in G$ such that $a \neq e$ and $(a, a, \ldots, a) \in X_{H}$.
But then we have an element $a \in G, a \neq e$ such that $a^{p}=e$.
This completes the proof.

An immediate application of Cauchy's theorem is
Theorem 4.2.5 : Let G be a finite group and let p be any prime number. If $p||G|$, then there exists a subgroup of order p in G.

Proof : By Cauchy’s theorem, $\exists a \in G$ such that $a \neq e$ and $a^{p}=e$.
Define $H=\langle a\rangle$.
Then H will be the subgroup of G of order p.

4.3. $\quad \mathbf{p}$ - Groups :

Definition 4.3.1 : A group G is a p - group if every element in G has order a power of the prime p. A subgroup of a group G is a p-subgroup of G if the subgroup is itself a p-group.

The characterization of p-groups is given in the following theorem.
Theorem 4.3.1 : Let G be a finite group. Then G is a p-group if and only if $|G|$ is a power of prime p.

Proof: Only if part :

Let G be a p-group. Hence order of each element in G is a power of p. Let q be a prime number different from p. If $q||G|$, then by Cauchy's theorem, there exists an element $a \in G$ such that $O(a)=q$.

By assumption, $\quad O(a)=p^{k} \quad$ for some k .
Thus, $q=p^{r}$; which is impossible. Hence no prime number other than p will be a divisor of $|G|$.

Hence, $|G|=p^{n}$ for some n.

If part :

Let $|G|=p^{n}$ for some n .
For any $a \in G$, we know $O(a) \mid O(G)$.
Hence, $O(a) \mid p^{n}$ implies $O(a)$ must be p^{k} for some k.
Hence, G is a p - group.

Theorem 4.3.2 : Let G be a finite group. Let H be a p - subgroup of G . Then

$$
(N[H]: H) \equiv(G: H) \bmod p
$$

Proof: $\quad N[H]=\left\{g \in G / g H g^{-1}=H\right\}$
We know that $N[H]$ is a subgroup of G containing H.

Let \mathfrak{R} denote the set of all right cosets of H in G.
Define $f: \Re \times H \longrightarrow \Re$ by

$$
f\left(H_{x}, h\right)=H_{x h}
$$

Then, \mathfrak{R} is a H - set (See example 4.1.2 (2)).
As H is a p - subgroup $|H|=p^{n}$, for some n
As $p||H|$ we get

$$
|\mathfrak{R}| \equiv\left|\mathfrak{N}_{H}\right|(\bmod p),
$$

(See theorem 4.2.3)
But

$$
\begin{equation*}
|\Re|=(G: H) \tag{1}
\end{equation*}
$$

Hence, $\quad(G: H)=\left|\mathfrak{N}_{H}\right|(\bmod p)$
Now, $\quad \mathfrak{N}_{H}=\left\{H_{x} \in \mathfrak{R} / f\left(H_{x}, h\right)=H_{x}\right.$ for each $\left.h \in H\right\}$
$=\left\{H_{x} \in \Re / H_{x h}=H_{x}\right.$ for each $\left.h \in H\right\}$
$=\left\{H_{x} \in \Re / x^{-1} h x \in H\right.$ for each $\left.h \in H\right\}$
$=\left\{H_{x} \in \Re-x^{-1} H x=H\right\}$
$=\left\{H_{x} \in \Re / x \in N[H]\right\}$
$=$ the set of all right cosets of H in $N[H]$.
Hence, $\quad\left|\mathfrak{N}_{H}\right|=(N[H]: H)$
From (1) and (2), we get,

$$
(G: H) \equiv(N[H]: H)(\bmod p)
$$

Corollary 4.3.3 : Let H be a p - subgroup of a group G. If $p \mid(G: H)$, then $N[H] \neq H$.
Proof : By theorem 4.3.2, we get

$$
(G: H) \equiv(N[H]: H)(\bmod p)
$$

As $p \mid(G: H)$ we get $\quad p \mid(N[H]: H)$.
Hence, $\quad(N[H]: H) \neq 1$.
i.e. $\quad H \neq N[H]$

4.4. Sylow Theorems :

- First Sylow Theorem :

Theorem 4.4.1 : Let G be a finite group with $|G|=p^{n} \cdot m$ where p is a prime number and $p \nmid m$. Then
(i) $\quad G$ contains a subgroup of order p^{i} for each $i, 1 \leq i \leq n$.
(ii) Every subgroup of order p^{i} is a normal subgroup of a subgroup of order p^{i+1} for

$$
1 \leq i \leq n-1
$$

Proof :

(i) By Cauchy's theorem (see theorem 4.2.4) there exists a subgroup of order p in G as $p\left||G|\right.$. Assume that there exists a subgroup of order p^{i} for each $i<n$.

Let H be a subgroup of order p^{i}.
Now $\quad(G: H)=\frac{O(G)}{O(H)}=\frac{p^{n} \cdot m}{p^{i}}=p^{n-i} \cdot m$.
As $i<n$ we get $p \mid(G: H)$.
Hence, by theorem 4.3.2,

$$
(G: H) \equiv(N[H]: H)(\bmod p)
$$

As $p \mid(G: H)$ we get $p \mid(N[H]: H)$.
Hence, $p \left\lvert\, \frac{|N[H]|}{|H|} \quad\right.$ i.e. $\quad p \left\lvert\, O\left[\frac{N[H]}{H}\right]\right.$.
Hence, by Cauchy's theorem, $\frac{N[H]}{H}$ contains a subgroup of order p. Let it be k.
Let $\gamma: N[H] \rightarrow \frac{N[H]}{H}$ be the canonical mapping.
Then γ is an onto homomorphism.

$$
\gamma^{-1}(k)=\{x \in N[H] / \gamma(x) \in k\} \text { is the subgroup of } N[H] \text { of order } p^{i+1} .
$$

This shows that there exists a subgroup of order p^{i+1} in G.
By induction on n, the result follows.
(ii) By the construction explained in (i) we get,

$$
H<\gamma^{-1}(k) \leq N[H]
$$

where $O(H)=p^{i}$ and $O\left(\gamma^{-1}(k)\right)=p^{i+1}$.
As $H \triangleleft N[H]$. We must get $H \triangleleft \gamma^{-1}(k)$.
This shows that the subgroup of order p^{i} is normal in a subgroup of a subgroup of order p^{i+1} 。

Example 4.4.2: If $O(G)=2^{4} \cdot 3 \cdot 7$ then G contains subgroup H_{1}, H_{2}, H_{3} and H_{4} such that $O\left(H_{1}\right)=2, O\left(H_{2}\right)=2^{2}, O\left(H_{3}\right)=2^{3}$ and $O\left(H_{4}\right)=2^{4}$ and $H_{1} \triangleleft H_{2}, H_{2} \triangleleft H_{3}, H_{3} \triangleleft H_{4}$. There also exists a subgroup K of order 3 and a subgroup T of order 7 in G.

Definition 4.4.3 : A Sylow p - subgroup of a group G is a maximal p - subgroup of G.

Example 4.4.4 : In example 4.4.2,
H_{4} is a Sylow 2 - subgroup.
K is a Sylow 3 - subgroup.
T is a Sylow 7 - subgroup.

Remarks 4.4.5 :

(i) If $|G|=p^{n} \cdot m$ and $p \nmid m$ then the subgroup of order p^{n} will be a Sylow p - subgroup in G.
(ii) If P is a Sylow p - subgroup in G , then $O\left(g^{-1} \mathrm{Pg}\right)=O(\mathrm{P})$ will imply $g^{-1} \mathrm{Pg}$ is also Sylow p - subgroup of G, for any $g \in G$. i. e. any conjugate of a Sylow p - subgroup of G is also a Sylow p - subgroup of G.

Conjugate of a Sylow p - subgroup is a Sylow p - subgroup in a finite group G. But any two Sylow p - subgroups of G must be conjugates of each other. This we prove in the following theorem.

- Second Sylow Theorem :

Theorem 4.4.6 : Let G be a finite group with $|G|=p^{n} \cdot m$ where p is a prime number and $p \nmid m$. Let P_{1} and P_{2} be any two Sylow p - subgroups of G. Then P_{1} and P_{2} are conjugate subgroups of G.
Proof : Let \Re denote the set of all right cosets of P_{1} in G.
Define $f: \Re \times P_{2} \rightarrow \Re$ by

$$
f\left(P_{1 x}, y\right)=P_{1} x y .
$$

Then
(i) $f\left(P_{1 x}, e\right)=P_{1} x e=P_{1} x$
and (ii) $f\left(P_{1 x}, g h\right)=P_{1} x g h=P_{1}(x g) h=f\left(f\left(P_{1 x}, g\right), h\right) \quad$ for $g, h \in P_{2}$.
Hence \mathfrak{R} is a P_{2} set.
As P_{2} is a Sylow p - subgroup, $p\left|\left|p_{2}\right|\right.$.
Hence, by theorem 4.2.3

$$
\begin{equation*}
|\Re| \equiv\left|\Re_{P_{2}}\right|(\bmod p) \tag{1}
\end{equation*}
$$

Now $\quad \mathfrak{R}=$ the set of all right cosets of P_{1} in G.
Hence, $|\Re|=\left(G: P_{1}\right)$.
Therefore, $|\mathfrak{R}|=\left(G: P_{1}\right)=\frac{|G|}{\left|P_{1}\right|}=\frac{p^{n} \cdot m}{p^{n}}=m$ and $p \nmid m$.

Hence, $\quad\left|\Re_{P_{2}}\right| \neq 0$
Hence $\quad\left|\Re_{P_{2}}\right| \geq 1$
Now, $\quad \Re_{P_{2}}=\left\{P_{1} x \in \Re / f\left(P_{1} x, g\right)=P_{1} x \quad\right.$ for all $\left.g \in P_{2}\right\}$

$$
\begin{aligned}
& =\left\{P_{1} x \in \Re / P_{1} x g=P_{1} x \quad \text { for all } g \in P_{2}\right\} \\
& =\left\{P_{1} x \in \Re / x^{-1} g x \in P_{1} \quad \text { for all } g \in P_{2}\right\} \\
& =\left\{P_{1} x \in \Re / x^{-1} P_{2} x \subseteq P_{1}\right\} \\
& \left.=\left\{P_{1} x \in \Re / x^{-1} P_{2} x=P_{1}\right\} \quad \text { (As }\left|x^{-1} P_{2} x\right|=\left|P_{2}\right|=\left|P_{1}\right|=p^{n}\right)
\end{aligned}
$$

By (2), $\quad\left|\Re_{P_{2}}\right| \geq 1$.
Hence, there exists $x \in G$ such that $x^{-1} P_{2} x=P_{1}$. Hence the proof.

The existence and the nature of Sylow p-subgroups is proved in the First Sylow theorem and the Second Sylow theorem respectively. The third Sylow theorem deals with the number of Sylow p-subgroups in a group G.

- Third Sylow Theorem :

Theorem 4.4.7 : Let G be a finite group and $p /|G|$ (p is any prime number).
Let $r=$ number of Sylow p-subgroups in G. Then
(i) $r \equiv 1(\bmod p)$
(ii) $r||G|$

Proof :

(i) Let $r=$ number of Sylow $p-$ subgroups in G.

Hence $r \neq 0 \quad$ (by First Sylow theorem)
Let \mathcal{L} denote the set of all Sylow $\mathrm{p}-$ subgroups in G . Then $|\mathcal{L}|=r$.
Fix up any Sylow $\mathrm{p}-$ subgroup say P in G. Then for any $T \in \mathcal{L}$ we have

$$
T=g^{-1} P g \quad \text { for some } g \in G \text { (by Second Sylow theorem) }
$$

Define $f: \mathcal{L} \times P \rightarrow \mathcal{L}$ by

$$
f(T, x)=x^{-1} T x \quad \text { for any } g \in G \text {. (See remark 4.4.5 (2)) }
$$

Now,

$$
\begin{array}{rlrl}
& f(T, e) & =e^{-1} T e=T & \text { and } \\
& & \\
& f(T, x y) & =(x y)^{-1} T(x y) & \\
& =y^{-1}\left(x^{-1} T x\right) y & & \\
\Rightarrow \quad & f(T, x y) & =f[f(T, x), y], & \\
& \text { for all } x, y \in P
\end{array}
$$

Hence, \mathcal{L} is a P - set.
As P is a Sylow $\mathrm{p}-$ subgroup, $p / O(P)$.

Hence, by theorem 2.3, we have,

$$
\begin{equation*}
|\mathcal{L}| \equiv\left|\mathcal{L}_{P}\right|(\bmod p) \tag{1}
\end{equation*}
$$

Consider the set \mathcal{L}_{P}.

$$
\begin{aligned}
\mathcal{L}_{P}= & \{T \in \mathcal{L} / f(T, x)=T \quad \text { for all } x \in P\} \\
& =\left\{T \in \mathcal{L} / x^{-1} T x=T \quad \text { for all } x \in P\right\} \\
& =\{T \in \mathcal{L} / x \in N[T] \quad \text { for all } x \in P\}
\end{aligned}
$$

Thus, $T \in \mathcal{L}_{P} \quad$ iff $P \subseteq N[T]$.
Thus, $T \in \mathcal{L}_{P} \quad$ iff $P \leq N[T]$.
Thus, P and T both are subgroup of $N[T]$ and hence they are $p-$ subgroups of $N[T]$.
By Second Sylow theorem, P and T are conjugates.
Hence, for some $g \in N[T], \quad g^{-1} T g=P$.
As $T \unlhd N[T], g^{-1} T g=T$. Hence $P=T$.
Thus, $T \in \mathcal{L}_{P}$ iff $P=T$. This shows that $\mathcal{L}_{P}=\{P\}$.
Hence $\quad\left|\mathcal{L}_{P}\right|=1$
From (1) and (2) we get

$$
|\mathcal{L}| \equiv 1(\bmod p)
$$

i.e. $\quad r \equiv 1(\bmod p)$
(ii) To prove $r||G|$.

Let \mathcal{L} denote the set of all Sylow p - subgroups of G. As in (i) we can prove \mathcal{L} is a G - set under the action $f: \mathcal{L} \times G \rightarrow \mathcal{L}$ defined by

$$
f(T, g)=g^{-1} T g
$$

By second Sylow theorem, elements of \mathcal{L} are conjugates of each other.
Hence, \mathcal{L} contains only one orbit.
Therefore

$$
\begin{array}{lll}
& |\mathcal{L}|=\mid \text { orbit of } \mathrm{P} \mid & (P \in \mathcal{L}) \\
\Rightarrow & |\mathcal{L}|=|P \mathcal{L}| & (\text { orbit of } P=P \mathcal{L} \text { under } \mathrm{G}) \\
\Rightarrow & r=\left(G: G_{p}\right) & (\text { theorem 1.3) } \\
\text { But } & \left(G: G_{p}\right)||G| \text { and hence } r||G| .
\end{array}
$$

Examples 4.4.8 :

(1) A Sylow 3 - subgroup of a group of order 12 has order 3 as $12=2^{2} \times 3^{1}$.
(2) A Sylow 3 - subgroup of a group of order 54 has order $3^{3}=27$ as $54=2 \times 27=2 \times 3^{3}$.
(3) By third Sylow theorem, a group of order 24 must have either 1 or 3 Sylow 2 - subgroups.

Let $r=$ number of Sylow 3 - subgroups.
(i) $r||G| \quad \Rightarrow \quad r / 24 \quad \Rightarrow \quad r=1,2,3,4,6,8,12,24$
(ii) $r \equiv 1(\bmod 2) \quad \Rightarrow \quad 2 \mid r-1 \quad \Rightarrow \quad r=1,3$
(4) A group of order 255 must have either 1 or 85 Sylow 3 - subgroups.
$255=3 \times 5 \times 17$
Let $r=$ number of Sylow $3-$ subgroups.
(i) $r||G| \quad \Rightarrow \quad r| 255 \quad \Rightarrow \quad r=1,3,5,15,17,51,85,255$
(ii) $r \equiv 1(\bmod 3) \quad \Rightarrow \quad 3 \mid r-1 \quad \Rightarrow \quad r=1$ or 85
(5) $|G|=45$. Show that G contains only one Sylow 3 - subgroups. Is G simple ?

Solution : $|G|=45=3^{2} \times 5$.
By $1^{\text {st }}$ Sylow theorem G contains Sylow $3-$ subgroups each of order $3^{2}=q$.
Let $r=$ number of Sylow 3 - subgroups in G.
By $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 3)
$$

Hence
(i) $r||G| \quad \Rightarrow \quad r| 45 \quad \Rightarrow \quad r \in\{1,3,5,9,15,45\}$
(ii) $r \equiv 1(\bmod 3) \quad \Rightarrow \quad r=1$

This shows that there exists only one Sylow 3 - subgroups of order $3^{2}=9$ say H.
By Second Sylow theorem,

$$
H=g^{-1} H g \quad \text { for any } g \in G
$$

Hence, H is a proper normal subgroup of G .
Hence, G is not simple.
(6) Show that a group of order 255 is not simple.

Solution : Let G be a group of order 255.
$|G|=255 \quad \Rightarrow \quad|G|=17 \times 5 \times 3=17 \times 15$ and $17 \nmid 15$.
Hence, By $1^{\text {st }}$ Sylow theorem there exists Sylow 17 - subgroups in G each of order 17.
Let $r=$ number of Sylow $17-$ subgroups.
Then, by $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 17)
$$

Hence,
(i) $r||G| \quad \Rightarrow \quad r \in\{1,3,5,15,17,51,85,255\}$
(ii) $r \equiv 1(\bmod 17) \Rightarrow \quad r=1$

Thus, there exists only one Sylow 17 - subgroups in G say H.
Then, by Second Sylow theorem, H must be normal in G.
As $|H|=17, \mathrm{H}$ is a proper normal subgroup of G .
Hence, G is not simple.
(7) Show that no group of order 30 is simple.

Solution : Let G be a group with $|G|=30=5 \times 3 \times 2$.
(i) Hence, By $1^{\text {st }}$ Sylow theorem, G contains Sylow 5 - subgroups each of order 5.

Let $r=$ number of Sylow $5-$ subgroups of G .
Then, by $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 5)
$$

Hence,
(i) $r||G|=30 \quad \Rightarrow \quad r \in\{1,2,3,5,6,10,15,30\}$
(ii) $r \equiv 1(\bmod 5) \quad \Rightarrow \quad 5 \mid r-1$. Hence $r=1$ or 6 .

Suppose G contains six Sylow 5 - subgroups. Let they be $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}$ and H_{6} be distinct Sylow 5 - subgroups.
Then, $O\left(H_{i}\right)=5 \quad \forall \quad i, 1 \leq i \leq 6$.
$H_{i} \cap H_{j}=\{e\} \quad$ for $i \neq j$
[If $x \in H_{i} \cap H_{j}$ and if $x \neq e$, then $\langle x\rangle=H_{i}=H_{j}$; \#]
Hence, each H_{i} contains four elements each of order 5 . Hence, there exists $6 \times 4=24$ elements in G each of order 5 .
(ii) By $1^{\text {st }}$ Sylow theorem G contains Sylow 3 - subgroups each of order 3.

Let $r=$ number of Sylow $3-$ subgroups of G .
Then, by $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 3)
$$

Hence,
(i) $r||G|=30 \quad \Rightarrow \quad r \in\{1,2,3,5,6,10,15,30\}$
(ii) $r \equiv 1(\bmod 3) \quad \Rightarrow \quad 3 \mid r-1$. Hence $r=1$ or 10 .

Suppose G contains ten Sylow 3 - subgroups each of order 3. Let $K_{1}, K_{2}, \ldots, K_{10}$ denote distinct Sylow 3 - subgroups of G. As in (i) we can prove that G contains 20 distinct elements each of order 3.
(iii)Thus, from (i) and (ii), if G contains six Sylow 5 - subgroups and ten Sylow 3 subgroups then G must contain $24+20=44$ distinct elements which is not true as $|G|=30$.

Hence, G must contain either only one Sylow 5 - subgroup or only one Sylow 3 -subgroup. Thus in either the case, G contains a proper normal subgroup by $2^{\text {nd }}$ Sylow theorem.
Hence, G is not simple.
(8) No group of order 36 is simple.

Solution : Let G be a group with $|G|=36$.
$|G|=36=3^{2} \times 2^{2}$ and $3 \nmid 4$.
By $1^{\text {st }}$ Sylow theorem, G contains Sylow 3 - subgroups each of order 9 .
Let $r=$ number of Sylow $3-$ subgroups of G .
Then, by $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 3)
$$

Hence,
(i) $r||G|=36 \Rightarrow r \in\{1,2,3,4,6,9,12,18,36\}$
(ii) $r \equiv 1(\bmod 3) \quad \Rightarrow \quad 3 \mid r-1$. Hence $r=1$ or 4 .

Suppose G contains four Sylow 3 - subgroups each of order 9 . Let H, K be any two distinct Sylow 3 - subgroups. Then $|H|=9$ and $|K|=9$.
We know that,

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

Hence, $H K \subseteq G$ implies $|H \cap K|=3$.
[$H \cap K \leq H \Rightarrow O(H \cap K)|O(H) \quad \Rightarrow \quad O(H \cap K)| 9$
$\Rightarrow \quad O(H \cap K) \in\{1,3,9\}$
But $O(H \cap K)=1 \quad \Rightarrow \quad|H K|=81 ; \quad$ impossible.
and $\quad O(H \cap K)=9 \quad \Rightarrow \quad H=K$; which is not true.]
Consider the group $N[H \cap K]$.
As 3 $\mid O(H \cap K), H \cap K<N[H \cap K]$ and hence $|N[H \cap K]| \in\{18,36\}$ as
$|N[H \cap K]|||G|=36$.
If $N(H \cap K)=18$ then index of $N(H \cap K)$ in G is 2 and then $N(H \cap K)$ is a proper normal subgroup G, proving that G is not simple.

If $|N(H \cap K)|=36$, then $N[H \cap K]=G$.
In this case, $H \cap K$ will be a proper normal subgroup of G.
Hence, G is not simple, in either the case.
(9) Show that Sylow p-subgroups of a finite group G is unique if and only if it is normal.

Solution :

Only if part :

Let G has a unique Sylow p-subgroup say H.
To prove that $H \triangleleft G$.
H is a Sylow p-subgroup $\quad \Rightarrow g \mathrm{Hg}^{-1}$ is also a Sylow subgroup of G. By uniqueness we get,

$$
H=g^{-1} H g \quad \text { for all } g \in G
$$

Hence, H is normal in G.

If part :

Let H be a Sylow p-subgroup in a group of G.
Let H be normal. If K is another Sylow p-subgroup of G then, by $2^{\text {nd }}$ Sylow theorem,

$$
K=g H g^{-1} \quad \text { for some } g \in G
$$

But H being normal,

$$
g^{-1} \mathrm{Hg}=\mathrm{H}
$$

Thus, $K=H$. This shows that H is the unique Sylow p-subgroup.
(10) Let $H \triangleleft G$ such that index of H in G is prime to p . (p is any prime number). Show that H contains every Sylow p-subgroup of G.
Solution : Let $|G|=p^{n} \cdot m, p \nmid m$. i.e. $(p, m)=1$.
By data, index of H in G is prime to p.
$\therefore \quad \frac{|G|}{|H|}$ is prime to p.
$\therefore \quad \frac{p^{n} \cdot m}{|H|}$ is prime to p and $|H| \mid p^{n} \cdot m$
Assume that $|H|=p^{n} \cdot q$ where $(p, q)=1$.
As $|H|=p^{n} \cdot q, H$ contains a Sylow p-subgroup say K.
Then $|K|=p^{n}$, hence we get K is also a Sylow p-subgroup of G. If T is another Sylow psubgroup of G we get $T=g^{-1} \mathrm{Kg}$ for some $g \in G$. Hence

$$
T=g^{-1} K g \subseteq g^{-1} H g=H \quad(\text { as } H \triangleleft G)
$$

shows that $T \subseteq H$.
Thus, H contains all the Sylow p-subgroups of G.
(11) $|G|=108$. Show that G contains a normal subgroup of order 27 or 9 .

Solution : $|G|=108=3^{3} \times 2^{2}=3^{3} \cdot 4$ and $3 \nmid 4$.
Hence, by Sylow first theorem, \exists Sylow 3-subgroups each of order 27.
Let $r=$ number of Sylow 3-subgroups in G.
Then $r||G|$ and $r \equiv 1(\bmod 3)$.
Hence, $r \in\{1,2,3,4,6,9,12,18,27,36,54,108\}$
$3 \mid r-1 \Rightarrow r=1$ or 4 .

Case I: $r=1$.

Then G contains only one Sylow subgroup of order 27 which is normal. (by second Sylow theorem).
Case II : $r=4$.
Then G contains four Sylow 3-subgroups of order 27.
Let H and K denote any two distinct Sylow 3-subgroups. Then

$$
|H K|=\frac{|H| \cdot|K|}{|H \cap K|}
$$

will imply $\quad|H K|=\frac{27 \times 27}{|H \cap K|}$ i.e. $\frac{27 \times 27}{108}<|H \cap K|$.
Further,

$$
H \cap K \leq G \quad \Rightarrow|H \cap K|| | G|\quad \Rightarrow| H \cap K| | 108
$$

Hence, $|H \cap K|=9$ or 27.
But $\quad|H \cap K|=27 \quad \Rightarrow \quad H=K$, which is not true.
Hence, $|H \cap K|=9$.
Now consider $N[H \cap K]$.
as

$$
\begin{array}{lll}
(H \cap K) \triangleleft H & \text { and } & (H \cap K) \triangleleft K \\
O(H \cap K)=3^{2} & \text { and } & O(H)=3^{3} .
\end{array}
$$

[Any subgroup of order p^{n-1} is normal in a subgroup of group of order p^{n}]
Hence, $H \subset N[H \cap K] \quad$ and $\quad K \subset N[H \cap K]$.
Hence, the normal subgroup $H K$ is properly contained in $N[H \cap K]$.
But then $|H K|=\frac{|H| \cdot|K|}{|H \cap K|}=\frac{27 \times 27}{9}=81$.
Therefore, $|N[H \cap K]|>|H K|=81$
Hence, $|N[H \cap K]|=108$ as $|N[H \cap K]|||G|$ and $| N[H \cap K] \mid>81$.
Thus, $N[H \cap K]=G$. But this shows that $H \cap K$ is normal in G.

Theorem 4.4.9 : Let G be a finite group with $|G|=p q$ where p and q are distinct primes and $p<q$.
(i) G contains a normal subgroup of order q.
(ii) G is not simple.
(iii) If $p \nmid q-1$, then G is cyclic and abelian.

Proof :

(i) $|G|=p q, q \nmid p$.

Hence, by $1^{\text {st }}$ Sylow theorem G contains Sylow q-subgroups of order q.
Let $r=$ number of Sylow q-subgroups. Then $r||G|$ and $r \equiv 1(\bmod q)$
Hence, $r \in\{1, q, p, p q\}$

$$
q \mid r-1 \Rightarrow r=1
$$

Thus, there exists only one Sylow q-subgroups of G.
As G contains only one Sylow q-subgroup say H then $O(H)=q$ and $H \unlhd G$ by $2^{\text {nd }}$ Sylow theorem.
(ii) As G contains a proper subgroup normal subgroup H, G is not simple.
(iii) $|G|=p q$ and $p \nmid q$, by ${ }^{\text {st }}$ Sylow theorem G contains Sylow p-subgroup of order p.

Let $r=$ number of Sylow p-subgroups.
Then $r\left||G|\right.$ and $r \equiv 1(\bmod p)$ by $3^{\text {rd }}$ Sylow theorem
Hence, $r \in\{1, p, q, p q\}$. As $p \mid r-1$ we get $r=1$. ($\because p \nmid q-1$ by data $)$
Thus, there exists only one Sylow p-subgroups in G of order p.
Let H denote the Sylow q-subgroup and K denote the Sylow p-subgroup of G.
Then
(i) $H \cap K=\{e\}$.

$$
\text { If } x \in H \cap K \text { and if } x \neq e \text { then } \quad \begin{aligned}
x \in H & \Rightarrow O(x)=q \\
& x \in K
\end{aligned} \quad \Rightarrow O(x)=p . ~ \$
$$

As $p \neq q$ we must have $H \cap K=\{e\}$.
(ii) $H \vee K \supseteq H$ and $H \vee K \supseteq K \quad \Rightarrow \quad H \vee K=G$

$$
[\because \quad O(H \vee K)|p q, O(H)| O(H \vee K), O(K) \mid O(H \vee K) \Rightarrow \quad O(H \vee K)=p q]
$$

Hence, $G \cong H \times K \cong Z_{q} \times Z_{p}$.
Hence, G is cyclic and abelian.

Example 4.4.10 : $|G|=15 \Rightarrow G$ is abelian and not simple.
Solution : $|G|=15=5 \cdot 3.5$ and 3 are distinct primes and $3 \nmid 5-1$.
Hence, by theorem 4.4.9, G is abelian and not simple.

Example 4.4.11 : Let G be a finite group. Prove that $\left|\frac{G}{Z(G)}\right| \neq 77$.
Solution: Assume that $\left|\frac{G}{Z(G)}\right|=77$.
$\Rightarrow \quad\left|\frac{G}{Z(G)}\right|=11 \cdot 7 \quad$ and $\quad 7 \nmid 11-1$.
Hence, by theorem, If $O(G)=p \cdot q$, where p, q are prime numbers such that $p \nmid q-1$ then G is cyclic, $\frac{G}{Z(G)}$ is cyclic.

$$
\text { But } \begin{aligned}
\frac{G}{Z(G)} \text { is cyclic } & \Rightarrow \text { G is abelian } \\
& \Rightarrow \quad Z(G)=G \\
& \Rightarrow\left|\frac{G}{Z(G)}\right|=1 \\
& \Rightarrow \text { a contradiction. }
\end{aligned}
$$

Hence $\left|\frac{G}{Z(G)}\right| \neq 77$.

Example 4.12 : Prove that $\left|\frac{G}{Z(G)}\right| \neq 33$ for any finite group.
Solution : Let $\left|\frac{G}{Z(G)}\right|=33=11 \cdot 3$ and $\quad 3 \nmid(11-1=10)$.
As $3 \nmid(11-1)$ by theorem 4.9, $\frac{G}{Z(G)}$ is abelian and Cyclic.
Hence, as $\frac{G}{Z(G)}$ is Cyclic, G is abelian.
But then $Z(G)=G$ and in this case $\left|\frac{G}{Z(G)}\right|=1$, a contradiction.
Hence, $\left|\frac{G}{Z(G)}\right| \neq 33$ for any finite group G.

Example 4.4.13 : $|G|=255 \Longrightarrow G$ is abelian and not simple.
Solution : $|G|=255=17 \times 5 \times 3=17 \times 15$ and $17 \nmid 15$.
(i) By $1^{\text {st }}$ Sylow theorem, G contains Sylow 17 - subgroups each of order 17.

Let $r=$ number of Sylow 17 - subgroups of G.
Then by $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 17)
$$

Hence, $r \in\{1,3,5,15,17,51,85,255\}$.
$17 \mid r-1 \quad \Rightarrow \quad r=1$.
Thus, there exists only one Sylow 17-subgroup in G of order 17.
Hence, by $2^{\text {nd }}$ Sylow theorem, G is not simple.
Let us denote by H the Sylow 17 - subgroups of G. $\frac{G}{H}$ is defined.
$\left|\frac{G}{H}\right|=\frac{|G|}{|H|}=\frac{255}{17}=15$.
Hence $\frac{G}{H}$ is abelian. (See theorem 4.4.10)
Hence, $G^{\prime} \subseteq H \quad$ (See theorem 2.1.5(iii))
Hence, $G^{\prime} \leq H$.
By Lagrange's theorem, $\left|G^{\prime}\right|||H|=17 \quad \Rightarrow \quad| G^{\prime} \mid=1$ or 17.
(ii) By $1^{\text {st }}$ Sylow theorem, G contains Sylow 3 - subgroups each of order 3.

Let $r=$ number of Sylow 3 - subgroups in G.
By $3^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 3)
$$

Hence, $r=1$ or 85 .
(iii)By $1^{\text {st }}$ Sylow theorem, G contains Sylow 5 - subgroups each of order 5 .

Let $r=$ number of Sylow 5 - subgroups in G.
By $3{ }^{\text {rd }}$ Sylow theorem,

$$
r||G| \quad \text { and } \quad r \equiv 1(\bmod 5)
$$

Hence, $r=1$ or 51 .
(iv) $K \unlhd G$ and hence $\frac{G}{K}$ is defined.

Now, if K is Sylow 3-subgroup then

$$
\left|\frac{G}{K}\right|=\frac{|G|}{|K|}=\frac{17 \times 5 \times 3}{3}=17 \times 5 .
$$

and if K is Sylow 5 -subgroup then

$$
\left|\frac{G}{K}\right|=\frac{|G|}{|K|}=\frac{17 \times 5 \times 3}{5}=17 \times 3
$$

Thus, in either the case by theorem 4.4.9 $\frac{G}{K}$ is abelian.
Hence, $G^{\prime} \subseteq K$.
Hence, $G^{\prime} \leq K$ and $\left|G^{\prime}\right|||K|$.
If K is Sylow 5 -subgroup then $\left|G^{\prime}\right|=1$ or 5
and if K is Sylow 3 -subgroup then $\left|G^{\prime}\right|=1$ or 3 .
As $G^{\prime} \unlhd G$ we get $\left|G^{\prime}\right| \in\{1,3,5,17\}$.
Hence, $\left|G^{\prime}\right|=1$. i.e. $G^{\prime}=\{e\}$.
But then G must be an abelian. ($\left|G^{\prime}\right|=1$ iff G is abelian).
Thus, the group of order 255 is abelian and not simple.

Example 4.4.14: Find all the Sylow 3 -subgroups of S_{4}. Verify that they are all conjugate.
Solution : Let $G=S_{4}$. Then $|G|=24=2^{3} \times 3$.
By $1^{\text {st }}$ Sylow theorem, G contains Sylow 3-subgroups of order 3.
Let $r=$ number of Sylow 3-subgroups.
Then, by $3^{\text {rd }}$ Sylow theorem,

$$
\begin{array}{ll}
r||G| \quad \text { and } & r \equiv 1(\bmod 3) \\
r||G|=r| 24 & \Rightarrow \quad r \in\{1,2,3,4,6,8,12,24\} \\
r \equiv 1(\bmod 3) & \Rightarrow 3 \mid r-1 . \text { Hence } r=1 \text { or } 4 .
\end{array}
$$

Case I: $r=1$.

Then G contains only one Sylow 3 -subgroup. It must be normal by $2^{\text {nd }}$ Sylow theorem.

Case II : $r=4$.

Let G contains four Sylow 3-subgroups each of order 3 Hence each must be a cyclic group generated by the 3-cycles

$$
(1,2,3), \quad(1,2,4), \quad(1,3,4) \quad \text { and } \quad(2,4,3)
$$

These cyclic groups are conjugate to each other and they are distinct.

Example 4.4.15: $|G|=2 p$, p is prime, show that either G is cyclic or G is generated by $\{a, b\}$ with the relation $a^{p}=e=b^{2}$ and $b a b=a^{-1}$.

Solution : $|G|=2 \times p$ and $p \nmid 2$. Hence by $1^{\text {st }}$ Sylow theorem, G contains Sylow p subgroups, each of order p.

Let $r=$ number of Sylow p-subgroups.
Then by $3^{\text {rd }}$ Sylow theorem,

$$
\begin{array}{rll}
r||G| & \text { and } & r \equiv 1(\bmod p) \\
r||G| & \Rightarrow & r \in\{1,2, p, 2 p\} \\
r \equiv 1(\bmod p) & \Rightarrow & p \mid r-1 . \text { Hence } r=1 .
\end{array}
$$

Thus, G contains only one Sylow p-subgroup say H.

$$
|H|=p \quad \Rightarrow \quad H \text { is cyclic. }
$$

Let $H=\langle a\rangle$. Then $\left|\frac{G}{H}\right|=\frac{|G|}{|H|}=\frac{2 p}{p}=2$.
Hence, $\frac{G}{H}$ is Cyclic group of order 2.

$$
O(H)=p \quad \Rightarrow \quad H \subset G
$$

Select $b \in G$ such that $b \notin H$. Then $G=\left\{e, a, \ldots, a^{p-1}, b, b a, \ldots, b a^{p-1}\right\}$.
As $b \in G, O(b) \mid O(G)$ and hence $O(b)=2$ or p.
If $O(b)=p$, then $b \in\langle a\rangle=H$ as H is the only subgroup of G of order p ; which is not true. Hence, $\quad O(b) \neq p$.

Hence, $O(b)=2$. Then $b^{2}=e$.
Thus, $\quad a^{p}=e=b^{2}$
Now, consider the element $b a b^{-1}$. As $\langle a\rangle$ is normal in $G, b a b^{-1} \in H=\langle a\rangle$.
Thus, $b a b^{-1}=a^{k} \Rightarrow b^{-1}\left(b a b^{-1}\right) b=b^{-1} a^{k} b$

$$
\Rightarrow \quad\left(b^{-1} b\right) a\left(b^{-1} b\right)=b^{-1} a^{k} b
$$

$$
\Rightarrow \quad e a e=b^{-1} a^{k} b
$$

$$
\Rightarrow \quad a=b^{-1} a^{k} b
$$

$$
\Rightarrow \quad a=\left(b^{-1} a b\right)^{k}
$$

$$
\Rightarrow \quad a=\left(a^{k}\right)^{k}
$$

$$
\Rightarrow \quad a^{k^{2}-1}=e
$$

$$
\Rightarrow \quad p \mid k^{2}-1
$$

$$
\Rightarrow \quad p \mid(k-1)(k+1)
$$

$$
\Rightarrow \quad(k-1)=p \text { or }(k+1)=p
$$

Case I: $\quad p=k-1 \quad \Longrightarrow \quad k=1+p$

$$
b a b^{-1}=a^{k}=a^{1+p}=a^{1} \cdot a^{p}=a^{1} \cdot e=a
$$

Case II: $p=k+1 \quad \Rightarrow \quad k=p-1$

$$
b a b^{-1}=a^{k}=a^{p-1}=a^{p} \cdot a^{-1}=e \cdot a^{-1}=a^{-1}
$$

Thus, $b a b^{-1}=a \quad$ or $\quad b a b^{-1}=a^{-1}$
Thus, $b a=a b \quad$ or $\quad b a b=a^{-1} \quad\left(\because b^{2}=e \quad \Rightarrow b^{-1}=b\right)$.
Thus, if $p=k-1 \quad$ i.e. $\quad k=1+p, G$ is a non abelian group generated by $\{a, b\}$ with the relations $a^{p}=e=b^{2}$ and $b a b=a^{-1}$.
If $p=k+1$ then G is abelian and $O(a b)=2 p$. i.e. G is cyclic of order $2 p$.

Example 4.4.16: $O(G)=p^{2}, p$ is a prime. Show that G is cyclic or G is isomorphic to direct product of two cyclic groups each of order p.
Solution : $O(G)=p^{2} \Rightarrow G$ is abelian.
If G is cyclic then we are through.
Let G be not cyclic.
As $p \mid O(G)$, by Cauchy's theorem $\exists a \in G$ such that $O(a)=p$. Let $H=\langle a\rangle$.
Then $O(H)=p$. Hence, $H \neq G$.
Select $b \in G$ such that $b \notin H$. As $O(b) \mid O(G)$ we get, $O(b)=1, p, p^{2}$.

As $b \notin H$ we get, $b \neq e$.
Hence $O(b) \neq 1$.
If $O(b)=p^{2}$, then G will be cyclic, not true.
Hence, $O(b)=p$. Let $K=\langle b\rangle$.

$$
H \cap K \leq H \quad O \quad O(H \cap K) \mid O(H)=p
$$

Hence, $O(H \cap K)=1$ or p.
If $O(H \cap K)=p$ will imply $H=K$, which is not true. Hence $O(H \cap K)=1$.
Now, G is abelian $\Rightarrow H \triangleleft G$ and $K \triangleleft G$. Hence $H K \triangleleft G$.

$$
|H K|=\frac{|H||K|}{|H \cap K|}=\frac{p \cdot p}{1}=p^{2}=O(G)
$$

(See theorem 1.2.6)
But $H K=G$.
As H and K are normal subgroups of G with $H \cap K=\{e\}$ and $H \vee K=G$ we get $G \cong H \times K$. (see theorem 1.2.1)

This completes the proof.

Exercise

1. Show that a group of order 148 cannot be simple.
2. Show that a group of order 108 cannot be simple.

3 Show that a group of order 144 cannot be simple.

CHAPTER II : RING OF POLYNOMIALS

Unit 1 :

1.1 Ring of Polynomials $R[x]$: Definition and Examles.
1.2 Basic Properties of $R[x]$.
1.3 Division Algorithm.
1.4 Euclidean Domain and Unique Factorization Domain.
1.5 Zero of the Polynomial.
1.6 Irreducible Polynomials in $R[x]$.
1.7 Factorization in $F[x]$ and Eisenstein Criterion.

1.1 Ring of Polynomials $\mathrm{R}[\mathrm{x}]$:

Definition 1.1.1 : Let R be a ring. A polynomial $f(x)$ with coefficients in R and in an indeterminate x is an infinite formal sum

$$
\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

where, $a_{i} \in R$ and $a_{i}=0$ for all but finite number of values of i. The a_{i} are called coefficients of $f(x)$. We simply write $f(x)$ as

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

when $a_{n+i}=0$ for all $i \geq 1$.

Examples :

(i) $f(x)=x^{2}+2 x+5$ is a polynomial with coefficients in Z.
(ii) $f(x)=x^{2}+1$ is a polynomial with coefficients in Z_{2}.
$\left(\right.$ Here $\left.f(x)=1 \cdot x^{2}+0 \cdot x+1\right)$

Definition 1.1.2: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \quad$ be \quad a polynomial with coefficients in a ring R. If there exists some $i>0$ such that $a_{i} \neq 0$, then the largest value of such i is called the degree of the polynomial $f(x)$. If no such $i>0$ exists, then we say that $f(x)$ is of zero degree.

Examples :

(i) The degree of the polynomial $f(x)=x^{5}+4 x^{4}+3 x^{2}+2 x+7$ with coefficients in Z is of degree 5 .
(ii) $f(x)=\frac{2}{3}+0 \cdot x+0 \cdot x^{2} . f(x)$ is a polynomial with coefficients in Q. The degree of $f(x)$ is zero.

Definition 1.1.3: Let R be a ring and let $R[x]$ denote the set of polynomials with coefficients in R and in an indeterminate x. Let $f(x), g(x) \in R[x]$ where
and

$$
\begin{array}{ll}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, & \left(a_{i} \in R\right) \\
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}, & \left(b_{j} \in R\right)
\end{array}
$$

We define ' ${ }^{\prime}$ ' and ' \cdot ' of $f(x)$ and $g(x)$ as follows.
(i) $f(x)+g(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}, \quad(m<n)$,
where, $c_{i}=a_{i}+b_{i}, \forall i$. $\quad\left[\right.$ Here $b_{m+i}=0$ for $i \geq 1$]
(ii) $f(x) \cdot g(x)=d_{0}+d_{1} x+d_{2} x^{2}+\cdots+d_{n+m} x^{n+m}$,
where, $\quad d_{k}=\sum_{i+j=k} a_{i} b_{j},(1 \leq i \leq n, \quad 1 \leq j \leq m)$
i.e. $\quad d_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k} b_{0}$.

Obviously,

$$
f(x)+g(x) \in R[x] \quad \text { and } \quad f(x) \cdot g(x) \in R[x] .
$$

Remark 1.1.4: $\langle R[x],+, \cdot\rangle$ is a ring where ${ }^{\prime}+^{\prime}$ and ${ }^{\prime} \cdot{ }^{\prime}$ are as defined in (i) and (ii) in the definition 1.1.3. This ring is called the polynomial ring over the ring R.

If R is a ring and x and y are two indeterminates, then we can form the ring $(R[x])(y)$, that is, the ring of polynomials in y, with coefficients that are polynomials in x.

As $(R[x])(y) \cong(R[y])(x)$, we denote this ring by $R[x, y]$, the ring of polynomials in two variables x and y with coefficients in R. We can similarly define the ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of polynomials in the ' n ' indeterminate x_{i} with coefficients in R.

1.2 Properties of $\mathrm{R}[\mathrm{x}]$:

Theorem 1.2.1:

Let R be a ring. Then R is a sub-ring of the ring of polynomials $R[x]$.

Proof : Let $a \in R$, we write

$$
f(x)=a+0 \cdot x+0 \cdot x^{2}+\cdots+0 \cdot x^{n} \quad(n \text { finite })
$$

Then $f(x) \in R[x]$ and is called a constant polynomial over the ring R.
Thus, if $a, b \in R$, then a, b are constant polynomials in $R[x]$ and as members of $R[x]$, their addition $a+b$ and multiplication $a \cdot b$ are again the constant polynomials in $R[x]$. Hence, R is a subring of $R[x]$.

Theorem 1.2.2: $R[x]$ is a ring of polynomials over a ring $R . R[x]$ is commutative iff R is commutative.

Proof : Only if part :

Let $R[x]$ be commutative. As, sub-ring of a commutative ring is commutative, we get R is commutative.

If part : Let R be commutative.
Let $\quad f(x), g(x) \in R[x]$,
where, $\quad f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, \quad\left(a_{i} \in R\right)$
and

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}
$$

$$
\left(b_{j} \in R\right) .
$$

Then,

$$
f(x) \cdot g(x)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\cdots+\left[\sum_{i+j=k} a_{i} b_{j}\right] x^{k}+\cdots+a_{n} b_{m} x^{n+m} .
$$

As R is commutative,

$$
a_{0} b_{0}=b_{0} a_{0}, a_{0} b_{1}+a_{1} b_{0}=b_{0} a_{1}+b_{1} a_{0}, \ldots, \sum_{i+j=k} a_{i} b_{j}=\sum_{j+i=k} b_{j} a_{i}, \ldots,
$$

$$
a_{1 n} b_{m}=b_{m} a_{n}
$$

Hence,

$$
\begin{aligned}
f(x) \cdot g(x) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\cdots+\left[\sum_{i+j=k} a_{i} b_{j}\right] x^{k}+\cdots+a_{n} b_{m} x^{n+m} \\
= & b_{0} a_{0}+\left(b_{0} a_{1}+b_{1} a_{0}\right) x+\cdots+\left[\sum_{j+i=k} b_{j} a_{i}\right] x^{k}+\cdots+b_{m} a_{n} x^{n+m} \\
= & g(x) \cdot f(x)
\end{aligned}
$$

This shows that $R[x]$ is commutative.

Theorem 1.2.3 : Let R be a ring. $R[x]$ has unity iff R has unity.

Proof :

Only if part :

Let $R[x]$ be a ring with unity.
Define $\quad \psi: R[x] \rightarrow R$ by

$$
\psi\left[a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right]=a_{0}
$$

is an onto homomorphism, we get R has unity. [Since homomorphic image of a ring with unity contains the unity.]

If part :

Let the ring R contain the unity element say 1 .
Then, consider the constant polynomial $1+0 \cdot x+0 \cdot x^{2}+\cdots+0 \cdot x^{n}$ (n finite) will be the unity element of $R[x]$.

Definition 1.2.4 : Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ be a non zero polynomial in $R[x]$. We say that degree of $f(x)$ is n if $a_{n} \neq 0$ and $a_{n+i}=0$ for $i \geq 1$.

We write, $\operatorname{deg} f(x)=n$.
Note that, the degree of a zero polynomial is not defined.
$\operatorname{deg} f(x)=0$ if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ with $a_{i}=0$ for $i \geq 1$ and $a_{0} \neq 0$.
i.e. $\quad \operatorname{deg} f(x)=0$ if $f(x)$ is a constant polynomial in $R[x]$.

Theorem 1.2.5 : Let R be a ring and $f(x), g(x)$ be non zero polynomials in $R[x]$, where $\operatorname{deg} f(x)=n$ and $\operatorname{deg} g(x)=m$. If $f(x)+g(x)$ and $f(x) \cdot g(x)$ are non zero polynomials in $R[x]$, then
(i) $\operatorname{deg}[f(x)+g(x)] \leq \max (m, n)$
(ii) $\operatorname{deg}[f(x) \cdot g(x)] \leq n+m$
(iii) If R is an integral domain, $\operatorname{deg}[f(x) \cdot g(x)]=n+m$

Proof : Let

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

where $a_{i} \in R$ for $0 \leq i \leq n$ and $a_{n} \neq 0$ and $a_{n+i}=0$, for each $i \geq 1$.
Let $\quad g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}$
where $b_{j} \in R$ for $0 \leq j \leq m$ and $b_{m} \neq 0$ and $b_{m+i}=0$ for each $i \geq 1$.
(i) $f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+a_{t} x^{t}$, where $t=\max (n, m)$.

Hence, $\operatorname{deg}[f(x)+g(x)] \leq t=\max (m, n)$
(ii) $f(x) \cdot g(x)=\left(a_{0} b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\cdots+\left(a_{n} b_{m}\right) x^{n+m}$.

This shows that

$$
\operatorname{deg}[f(x) \cdot g(x)] \leq t=n+m
$$

(iii) Let R be an integral domain.

$$
\text { Then, } \begin{aligned}
\operatorname{deg} f(x)=n & \Rightarrow a_{n} \neq 0 \\
\operatorname{deg} g(x)=m & \Rightarrow b_{m} \neq 0 .
\end{aligned}
$$

As R is an integral domain,

$$
\begin{equation*}
a_{n} \neq 0, b_{m} \neq 0 \Rightarrow a_{n} b_{m} \neq 0 \tag{ii}
\end{equation*}
$$

Hence, $\operatorname{deg}[f(x) \cdot g(x)]=n+m$.

Theorem 1.2.6: R is an integral domain iff $R[x]$ is an integral domain.

Proof :

Only if part :

Let R be an integral domain.
To prove that $R[x]$ is an integral domain.
Let $\quad f(x) \neq 0, g(x) \neq 0$ in $R[x] \quad$ such that $f(x) \cdot g(x)=0$.
Let $\quad f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$
and $\quad g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}$.
Let $f(x)$ and $g(x)$ both be constant polynomials.
Let $f(x)=a_{0} \quad$ and $\quad g(x)=b_{0}$.
Then, $f(x) \neq 0 \Rightarrow a_{n} \neq 0$ and $g(x) \neq 0 \Rightarrow b_{0} \neq 0$.
As R is an integral domain, $a_{0} b_{0} \neq 0$.
i.e. $\quad f(x) \cdot g(x) \neq 0$; which is not true.

Hence, one of $f(x), g(x)$ must be a non constant polynomial.
Let $f(x)$ be a non constant polynomial. Hence $\operatorname{deg} f(x) \geq 1$.
Hence, $\operatorname{deg} f(x)+\operatorname{deg} g(x) \geq 1$.
As R is an integral domain

$$
\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x) \geq 1
$$

This leads to the contradiction as $f(x) \cdot g(x)=0$.
Hence, $\quad f(x) \cdot g(x)=0 \quad \Rightarrow \quad f(x)=0$ or $g(x)=0$.
i.e. $\quad R[x]$ is an integral domain.

If part :

Let $R[x]$ be an integral domain. As the ring R is a subring of $R[x], R$ must be an integral domain.

Remark 1.2.7 : If F is a field then $F[x]$ may not be a field.
Proof : As F is a field, F is an integral domain. [Result : Every field is an integral domain.] Hence, by theorem 1.2.6, $F[x]$ is an integral domain.

Consider the non-zero polynomial $f(x) \in F(x)$ given by

$$
f(x)=0+1 \cdot x+0 \cdot x^{2}+\cdots+0 \cdot x^{n}
$$

We will prove that $f(x)$ has no multiplicative inverse in $F[x]$.
Let, if possible, $g(x) \in F[x]$ such that

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}
$$

and

$$
\begin{aligned}
f(x) \cdot g(x) & =\text { unity in } R[x] . \\
& =1+0 \cdot x+0 \cdot x^{2}+\cdots+0 \cdot x^{n}
\end{aligned}
$$

Thus, by comparing the coefficients, we get
$1=0 ; \quad$ a contradiction.
Hence, $f(x)$ does not have a multiplicative inverse in $F[x]$. Hence $F[x]$ is not a field.

Theorem 1.2.8 : Let F be a field then $F[x]$ is an Euclidian domain.

Proof :

(I) F is a field $\Rightarrow \quad F$ is an integral domain.
$\Rightarrow \quad F[x]$ is an integral domain.
... See theorem 1.2.6
(II) Let $f(x) \in F[x]$ be a non-zero polynomial. Define $d(f(x))=\operatorname{deg} f(x)$. Then, $d(f(x))$ is a non-negative integer.
(i) For $f(x) \neq 0$ and $g(x) \neq 0$ in $F[x]$, we get

$$
d(f(x) \cdot g(x))=d(f(x))+d(g(x)) \quad \ldots \text { See theorem 1.2.5 }
$$

Hence, $d(f(x)) \leq d(f(x) \cdot g(x))$ as $d(g(x)) \geq 0$.
(ii) Let $f(x), g(x)$ be non zero polynomials in $F[x]$.

To prove that $\exists q(x), r(x) \in F[x]$ such that

$$
f(x)=q(x) \cdot g(x)+r(x)
$$

where $\quad r(x)=0 \quad$ or $\quad d(r(x))<d(g(x))$.

Case I: $\quad d(f(x))<d(g(x))$. Then $f(x)=0 \cdot g(x)+f(x)$ and the result follows in this case.

Case II : $d(g(x))<d(f(x))$,
Let $\quad f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad\left(a_{i} \in F\right.$ and $\left.a_{n} \neq 0\right)$
and $\quad g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}, \quad\left(b_{i} \in F\right.$ and $\left.b_{m} \neq 0\right)$
$d(g(x))<d(f(x)) \quad \Rightarrow \quad m<n$.
Define $p(x)=f(x)-\left[a_{n} b_{m}^{-1} x^{n-m}\right] g(x)$.
Hence,

$$
p(x)=\left[a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right]-\left[b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right]\left[a_{n} b_{m}^{-1} x^{n-m}\right]
$$

shows that the coefficient of x^{n} in $p(x)$ is $a_{n}-\left(a_{n} b_{m}^{-1} \cdot b_{m}\right)=a_{n}-a_{n}=0$.
Hence, $p(x)=$ zero polynomial or $d(p(x))<\operatorname{deg} f(x)=n$.
Subcase I : $p(x)$ is a zero polynomial.
Then, $p(x)=f(x)-a_{n} b_{m}^{-1} x^{n-m} \cdot g(x)$ will imply $0=f(x)-a_{n} b_{m}^{-1} x^{n-m} \cdot g(x)$.
Hence, $f(x)=a_{n} b_{m}^{-1} x^{n-m} \cdot g(x)+0$.
Taking $q(x)=a_{n} b_{m}^{-1} x^{n-1} \quad$ and $\quad r(x)=0$, the result follows.
Subcase II: $p_{1}(x) \neq 0$ and $\operatorname{deg} p(x)<\operatorname{deg} g(x)$.
Assume that the result is true for all the non zero polynomials in $F[x]$ of degree less than the degree of $g(x)=m$.

Then, by this assumption,

$$
p(x)=q_{1}(x) \cdot g(x)+r(x),
$$

where $r(x)=0 \quad$ or $\quad \operatorname{deg} r(x)<\operatorname{deg} g(x)$.
Hence, $f(x)-a_{n} b_{m}^{-1} x^{n-m} \cdot g(x)=q_{1}(x) \cdot g(x)+r(x)$.
Thus, $\quad f(x)=\left[a_{n} b_{m}^{-1} x^{n-m}+q_{1}(x)\right] g(x)+r(x)$
i.e. $\quad f(x)=q(x) \cdot g(x)+r(x)$
where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$
This shows that the result is true in this case also.
From (I) and (II), we get $F[x]$ is an Euclidean domain.

As every Euclidean domain is a principal ideal domain we get,
Corollary 1.2.9: For a field $F, F[x]$ is a P. I. D.

1.3 Division Algorithm in $\mathrm{F}[\mathrm{x}]$:

Theorem 1.3.1 : Let F be a field. Let

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

and

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}
$$

be two polynomials in $F[x]$ with $a_{n} \neq 0$ and $b_{m} \neq 0$ with $m>0$.
Then, there are two polynomials $q(x)$ and $r(x)$ in $F[x]$ such that

$$
f(x)=q(x) \cdot g(x)+r(x) \quad \text { with } \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

These polynomials $q(x)$ and $r(x)$ are unique.
Proof : Define $S=\{f(x)-g(x) \cdot s(x) / s(x) \in F[x\}$.
Then, $S \neq \phi . \quad($ as $f(x)=f(x)-g(x) \cdot 0 \in S)$
Select $r(x) \in S$ such that $\operatorname{deg} r(x)$ is minimal.
Then, $\quad r(x) \in S \quad \Rightarrow \quad r(x)=f(x)-g(x) \cdot q(x)$, for some $q(x) \in F[x]$.
Hence, $f(x)=g(x) \cdot q(x)+r(x)$.
If $r(x)=0$ then we are through.
If $r(x) \neq 0$ then let

$$
r(x)=c_{t} x^{t}+c_{t-1} x^{t-1}+\cdots+c_{0}, \quad \text { where } c_{i} \in F \text { and } c_{t} \neq 0
$$

Hence, $\operatorname{deg} r(x)=t$.
We want to prove that $t<m$.
Let $t \nless m$. Then $t \geq m$.
Consider the following polynomial in $F[x]$.

$$
\begin{aligned}
& f(x)-q(x) \cdot g(x)-\left[c_{t} b_{m}^{-1}\right] x^{t-m} \cdot g(x) \\
& =f(x)-\left[q(x)+c_{t} b_{m}^{-1} x^{t-m}\right] \cdot g(x)
\end{aligned}
$$

As

$$
q(x)+c_{t} b_{m}^{-1} x^{t-m} \in F[x],
$$

we get, $f(x)-q(x) \cdot g(x)-\left[c_{t} b_{m}^{-1}\right] x^{t-m} \cdot g(x) \in S$
But

$$
\begin{aligned}
& f(x)-q(x) \cdot g(x)-c_{t} b_{m}^{-1} x^{t-m} \cdot g(x) \\
= & r(x)-c_{t} b_{m}^{-1} x^{t-m}\left[b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}\right] \\
= & r(x)-\left[c_{t} x^{t}+\text { terms of lower degree }\right] \\
= & {\left[c_{t} x^{t}+c_{t-1} x^{t-1}+\cdots+c_{0}\right]-\left[c_{t} x^{t}+\text { terms of lower degree }\right] }
\end{aligned}
$$

Here, $f(x)-q(x) \cdot g(x)-c_{t} b_{m}^{-1} x^{t-m} \cdot g(x)$ is a polynomial of degree $<t=$ $\operatorname{deg} r(x)$ and is a member of S.

This contradicts the fact that $r(x)$ is a polynomial in S of minimal degree.
Hence, our assumption that $t \geq m$ is wrong. Hence $t<m$. i.e. $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.

Uniqueness:

Let

$$
f(x)=g(x) \cdot q_{1}(x)+r_{1}(x)
$$

and

$$
f(x)=g(x) \cdot q_{2}(x)+r_{2}(x)
$$

where $\quad \operatorname{deg} r_{1}(x)<m$ and $\operatorname{deg} r_{2}(x)<m, q_{1}(x), q_{2}(x), r_{1}(x), r_{2}(x) \in F[x]$.
Subtracting, we get,

$$
\begin{equation*}
g(x)\left[q_{1}(x)-q_{2}(x)\right]=r_{2}(x)-r_{1}(x) \tag{1}
\end{equation*}
$$

As $\quad \operatorname{deg}\left[r_{2}(x)-r_{1}(x)\right]<\operatorname{deg} g(x)$
we get (1) holds only when

$$
\begin{array}{llll}
& q_{1}(x)-q_{2}(x)=0 & \Rightarrow q_{1}(x)=q_{2}(x) \\
\text { and } & r_{2}(x)-r_{1}(x)=0 & \Rightarrow r_{1}(x)=r_{2}(x)
\end{array}
$$

This completes the proof.

1.3.2 Examples

Ex1: Let $f(x)=x^{6}+3 x^{5}+4 x^{2}-3 x+2$ and $g(x)=x^{2}+2 x-3$ be in $Z_{7}[x]$. Find $q(x)$ and $r(x)$ in $Z_{7}[x]$ such that $f(x)=g(x) \cdot q(x)+r(x)$ with $\operatorname{deg} r(x)<2$.
Solution : Let $\quad f(x)=x^{6}+3 x^{5}+4 x^{2}-3 x+2$
and $\quad g(x)=x^{2}+2 x-3$
be in $Z_{7}[x]$.

Thus, $\quad f(x)=g(x) \cdot q(x)+r(x)$
where $\quad q(x)=x^{4}+x^{3}+x^{2}+x+5$

$$
=x^{4}+x^{3}+x^{2}+x-2 \quad \ldots\left(5=-2 \text { in } Z_{7}\right)
$$

and $\quad r(x)=4 x+3$

Ex 2 : Let $f(x)=x^{5}+x^{3}+x$ and $g(x)=x^{4}+2 x^{3}+2 x$ in $Z_{3}[x]$. Find $q(x)$ and $r(x)$ in $Z_{3}[x]$ such that $f(x)=g(x) \cdot q(x)+r(x)$ with $\operatorname{deg} r(x)<4$.

Solution :

$g(x)$	$f(x)$	$q(x)$
$x^{4}+2 x^{3}+0 \cdot x^{2}+2 x+0$	$x^{5}+0 \cdot x^{4}+x^{3}+0 \cdot x^{2}+x+0$ $x^{5}+2 \cdot x^{4} \pm 0 \cdot x^{3} \pm 2 \cdot x^{2} \pm 0 \cdot x$ $x^{4}+x^{3}+x^{2}+x+0$	$x+1$
	$-\frac{x^{4} \pm 2 x^{3} \pm 0 \cdot x^{2} \pm 2 \cdot x+0}{r(x)=2 x^{3}+x^{2}+2 x}$	

Thus, $\quad f(x)=g(x) \cdot q(x)+r(x)$,
where $\quad q(x)=x+1, r(x)=2 x^{3}+x^{2}+2 x$ and $\operatorname{deg} r(x)<4$.
Ex 3 : Let $f(x)=x^{4}+3 x^{3}+3 x^{2}+x+2$ and $g(x)=4 x^{3}+4 x^{2}+3 x+3$ in $Z_{5}[x]$. Find $q(x)$ and $r(x)$ in $Z_{5}[x]$ so that $f(x)=g(x) \cdot q(x)+r(x)$ with $\operatorname{deg} r(x)<3$.

Solution :

$g(x)$	$f(x)$	$q(x)$
$4 x^{3}+4 x^{2}+3 x+3$	$\begin{aligned} & x^{4}+3 x^{3}+3 x^{2}+x+2 \\ & x^{4}+x^{3}+2 x^{2}+2 x \end{aligned}$	$4 x+3$
	$\begin{array}{r} 2 x^{3}+x^{2}+4 x+2 \\ -2 x^{3}+2 x^{2} \pm 4 x+4 \\ \hline r(x)=4 x^{2}+3 \end{array}$	

Thus, $\quad f(x)=g(x) \cdot q(x)+r(x)$,
where $\quad q(x)=4 x+3, \quad r(x)=4 x^{2}+3$ and $\operatorname{deg} r(x)<3$.

1.4 Euclidean Domain And Unique Factorization Domain :

Definition 1.4.1 : An integral domain is a commutative ring R with unity containing no divisors of 0 .
i.e. if $a \cdot b=0 \quad$ for $a, b \in R$ then either $a=0$ or $b=0$.

Definition 1.4.2 : Let R be a commutative ring $a, b \in R, a \neq 0$. We say a divides b if \exists $c \in R$ such that $b=a c$.

We write this by a / b. In this case a is called a factor of b.

Definition 1.4.3 : Let R be a commutative ring. Let $a, b \in R$. An element $d \in R$ is called the greatest common divisor of a and b if
(i) $\quad d / a$ and d / b.
(ii) If $\exists c \in R$ such that c / a and c / b then c / d.

We denote this by $d=\operatorname{gcd}(a, b)$.

1.4.4 Remark :

(1) $\operatorname{gcd}(a, b)$ need not be unique in R.

For this consider $R=Z_{8}$. Then

$$
\begin{aligned}
& 2 \otimes_{8} 3=6 \quad \Rightarrow \quad 2 / 6 \\
& 2 \otimes_{8} 2=4 \quad \Rightarrow \quad 2 / 4
\end{aligned}
$$

Again, if $c / 6$ and $c / 4$ then $c / 6-4$. i.e $c / 2$.
Thus, $2=\operatorname{gcd}(6,4)$.
Again,
$1 \otimes_{8} 6=6$
$6 \otimes_{8} 6=4$
Hence, 6/6 and 6/4.
If $c / 6$ and $c / 4$ we get $c / 6$.
Hence, $\operatorname{gcd}(6,4)=6$.
Hence, 2 and 6 are g.c.d. in Z_{8} for the same pair (4, 6).
(2) Existence of g.c.d. for any pair a, b in a commutative ring R is not compulsory. e.g. Consider the ring R of even integers.
$4,6 \in R .2 / 4$ in R but $2 \nmid 6$ in R. As $2 \cdot 3=6$ but $3 \notin R$.
Thus, $\operatorname{gcd}(4,6)$ does not exist in R.

Definition 1.4.5 : Let R be a commutative ring with unity. $a, b \in R$ are called associates if $a=u b$ for some unit u in R.
[u is a unit in R means multiplicative inverse u^{-1} of u exists in R]

Theorem 1.4.6 : Let R be an integral domain with unity. If $d_{1}=\operatorname{gcd}(a, b)$ in R, then $d_{2}=\operatorname{gcd}(a, b)$ in R, iff d_{1} and d_{2} are associates.

Proof:

Only if part :

Let $d_{1}=\operatorname{gcd}(a, b)$ and $d_{2}=\operatorname{gcd}(a, b)$.
Then, $\quad d_{1} / a$ and d_{1} / b.

$$
d_{2} / a \text { and } d_{2} / b
$$

Hence, $\quad d_{1} / d_{2}$ and $d_{2} / d_{1} \quad \ldots$ by the definition of gcd.
Hence, $\quad d_{1}$ and d_{2} are associates.

If part :

Let d_{1} and d_{2} be associates and $d_{1}=\operatorname{gcd}(a, b)$.
$d_{1}=u d_{2} \quad$ for some unit u in R.
Hence, d_{2} / d_{1}.
But $\quad d_{1} / a$ and d_{1} / b.
Hence, d_{2} / a and d_{2} / b.
Let $x \in R$ such that x / a and x / b.
Then $d_{1}=\operatorname{gcd}(a, b) \quad \Rightarrow \quad d_{1} / x$.
$\Rightarrow \quad x=d_{1} t, \quad$ for some $t \in R$.
$=\left(u^{-1} d_{2}\right) t$
$=d_{2}\left(u^{-1} t\right)$
But this shows that d_{2} / x.
Hence, $\quad d_{2}=\operatorname{gcd}(a, b)$.

Definition 1.4.7 : Let D be UFD. A non constant polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

in $D[x]$ is primitive if the only common divisors of all the a_{i} are units of D.

1.4.8 Examples :

(i) $4 x^{2}+7 x+3$ is primitive in $Z[x]$.
(ii) $3 x^{2}+6 x+9$ is not primitive in $Z[x]$ as 3 is not a unit in Z.
(iii) Any non constant irreducible in $D[x]$, where D is UFD, is primitive.

Theorem 1.4.9 : Let D be a UFD. Let $f(x) \in D[x]$ be a non constant polynomial.
Then, $f(x)=(c) \cdot g(x)$, where $g(x)$ is a primitive in $D[x]$. The element c is unique upto a unit factor in D and the polynomial $g(x)$ is unique up to a unit factor in D.

Proof : Let $f(x)=a_{0}++a_{1} x+\cdots+a_{n} x^{n},\left(a_{n} \neq 0\right)$ be a nonconstant polynomial in $D[x]$. The coefficients $a_{0}, a_{1}, \ldots, a_{n}$ in D can be factored into a finite product of irreducible in D, uniquely upto order and associates.

Assume that each coefficient of $f(x)$ is factorized in this way. Let p_{i} denote the irreducible in D appearing in the factorization of one coefficient. If P_{i} divides all coefficients, then p_{i} will be in the factorization of all coefficients. Assume that no other associates of p_{i} appears in the factorization of any coefficient of $f(x)$.
Define

$$
c=\prod_{i} p_{i}^{\alpha_{i}}
$$

where α_{i} is the greatest integer such that $p_{i}^{\alpha_{i}}$ divides all the coefficients of $f(x)$.
In this case $f(x)=(c) g(x)$ where $c \in D$ and $g(x) \in D[x]$ is primitive by construction.

Uniqueness :

Let if possible,

$$
\begin{array}{ll}
f(x)=(c) g(x) & \text { and } \\
f(x)=(d) h(x) & \\
\text { in } D[x] .
\end{array}
$$

where $g(x)$ and $h(x)$ are primitive in $D[x]$ and $c, d \in D$.
Now, (c) $g(x)=(d) h(x)$ implies each irreducible factor in c must divide the irreducible factor in d and conversely.

By cancelling the irreducible factors from c and d, we get,

$$
(u) g(x)=(v) h(x)
$$

where u and v are units in D.

But this shows that c is unique up to the unit factors and the primitive polynomial $g(x)$ is also unique up to unit factors.

Theorem (Gauss) 1.4.10 : Let D be UFD. $f(x), g(x) \in D[x]$ be primitive polynomials. Then $f(x) \cdot g(x)$ is also primitive in $D[x]$.

Proof : Let $\quad f(x)=a_{0}++a_{1} x+\cdots+a_{n} x^{n}, \quad\left(a_{n} \neq 0\right) \quad$ and

$$
g(x)=b_{0}++b_{1} x+\cdots+b_{m} x^{m}, \quad\left(b_{m} \neq 0\right)
$$

be two primitive polynomials in $D[x]$.
Let

$$
h(x)=f(x) \cdot g(x)
$$

Then, $h(x)=\left(a_{0} b_{0}\right)+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\cdots+\sum_{i+j=k}\left(a_{i} b_{j}\right) x^{k}+\cdots+\left(a_{n} b_{n}\right) x^{n+m}$
Select any irreducible p in $D . f(x)$ and $g(x)$ being primitive in $D[x], p \nmid a_{i}$ for some i and $p \nmid b_{j}$ for some j.
Let a_{r} be the first coefficient in $f(x)$ such that $p \nmid a_{r}$.
ie. $p / a_{0}, p / a_{1}, \ldots, p / a_{r-1}$.
Let b_{s} be the first coefficient in $g(x)$ such that $p \nmid b_{s}$.
ie. $p / b_{0}, p / b_{1}, \ldots, p / b_{s-1}$.
The coefficient of x^{r+s} in $h(x)=f(x) \cdot g(x)$ is
$=\left(a_{0} b_{r+s}+a_{1} b_{r+s-1}+\cdots+a_{r-1} b_{s+1}\right)+a_{r} b_{s}+\left(a_{r+1} b_{s-1}+a_{r+2} b_{s-2}+\cdots+\right.$
$a_{r+s} b_{0}$)
As $p / a_{0}, p / a_{1}, \ldots, p / a_{r-1}$ we get

$$
p /\left(a_{0} b_{r+s}+a_{1} b_{r+s-1}+\cdots+a_{r-1} b_{s+1}\right) .
$$

Similarly, $p / b_{0}, p / b_{1}, \ldots, p / b_{s-1}$ will imply

$$
p /\left(a_{r+1} b_{s-1}+a_{r+2} b_{s-2}+\cdots+a_{r+s} b_{0}\right)
$$

But $p \nmid a_{r}$ and $p \nmid b_{s}$ imply $p \nmid a_{r} b_{s}$. (See result ****).
Hence, $p \nmid$ coefficient of x^{r+s} in $h(x)$.
Thus, we have proved that any irreducible $p \in D$ will not divide all the coefficients of $h(x)=f(x) \cdot g(x)$.

Hence, $h(x)=f(x) \cdot g(x)$ is a primitive polynomial in $D[x]$.

Generalization of the statement of Gauss's theorem is as follows.
Corollary 1.4.11: Let D be UFD. The finite product of primitive polynomials in $D[x]$ is again a primitive polynomial.

Proof : Let $f_{1}(x), f_{2}(x), \ldots, f_{n}(x) \in D[x]$ be primitive polynomials.

Let $f(x)=f_{1}(x) \cdot f_{2}(x) \cdot \ldots \cdot f_{n}(x)$.
Then, $f(x) \in D[x]$.
We will prove the result by induction on ' n '.
The result is true for $n=2$ by Gauss's theorem.
Let the result be true for $n=r$ say.
i.e. $\quad f_{1}(x) \cdot f_{2}(x) \cdot \ldots \cdot f_{r}(x)$ is a primitive polynomials.

Consider $f_{1}(x) \cdot f_{2}(x) \cdot \ldots \cdot f_{r}(x) \cdot f_{r+1}(x)$ then this will be the product of two primitive polynomials $\left(f_{1}(x) \cdot f_{2}(x) \cdot \ldots \cdot f_{r}(x)\right)$ and $f_{r+1}(x)$, and hence a primitive polynomial in $D[x]$ by Gauss's theorem.
By principle of mathematical induction, the result follows.

1.5 Zero of the Polynomials :

Definition 1.5.1 : Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ be in $F[x]$ where F is a field. If $a \in F$ such that $f(a)=a_{0}+a_{1} a+a_{2} a^{2}+\cdots+a_{n} a^{n}=0$ (zero in F) then a is called a zero of $f(x)$ in F.

Example 1.5.2 : Find all zeros of $x^{5}+3 x^{3}+x^{2}+2 x$ in $Z_{5}[x]$.
Solution : Let $f(x)=x^{5}+3 x^{3}+x^{2}+2 x$ and $Z_{5}=\{0,1,2,3,4\}$.
(i) $\quad f(0)=0 \quad \Longrightarrow \quad 0$ is a zero of $f(x)$.
(ii) $f(1)=1+3+1+2=1 \neq 0 \quad \Rightarrow \quad 1$ is not a zero of $f(x)$ in Z_{5}.
(iii) $f(2)=4 \neq 0 \quad \Longrightarrow \quad 2$ is not a root of $f(x)$ in Z_{5}.
(iv) $f(3)=f(-2) \neq 0$
(v) $\quad f(4)=f(-1)=-1-3+1-2=0$. Hence 4 is root of $f(x)$ in Z_{5}.

Thus, $x=0$ and $x=4(=-1)$ are roots of $f(x)$ in Z_{5}.

Definition 1.5.3 : Let $f(x), g(x) \in F[x]$ where F is a field. We say $g(x)$ is a factor of $f(x)$ if $f(x)=g(x) \cdot q(x)$ for some $q(x) \in F[x]$.

In this case we also say that $g(x)$ divides $f(x)$ in $F[x]$.

Example : $x+1$ is a factor of $x^{2}+1$ in $Z_{2}[x]$.

Solution :

$g(x)$	$f(x)$	$q(x)$
$x+1$	$x^{2}+1$	$x+1$
	$\frac{x^{2}+x}{}$	
	$\frac{-x+1}{r(x)=0}$	

Thus,

$$
f(x)=g(x) \cdot q(x), \quad \text { where } \quad q(x)=x+1 \in Z_{2}[x] .
$$

Hence, $\quad x+1$ is a factor of $x^{2}+1$ in $Z_{2}[x]$.

Theorem 1.5.4 : Let F be a field. An element $a \in F$ is a zero of $f(x) \in F[x]$ iff $x-a$ is a factor of $f(x)$ in $F[x]$.

Proof :

Only if part :

Let $a \in F$ be a zero of $f(x) \in F[x]$.
Hence, by definition $f(a)=0$. By division algorithm, $\exists q(x), r(x) \in F[x]$ such that

$$
f(x)=(x-a) \cdot q(x)+r(x), \quad \text { where } \operatorname{deg} r(x)<1
$$

Hence, $r(x)$ must be a constant polynomial in $F[x]$. Let $r(x)=c, c \in F$.
Thus, $\quad f(x)=(x-a) \cdot q(x)+c$.
Therefore, $\quad f(a)=(a-a) \cdot q(a)+c$.
$\Rightarrow \quad 0=0+c \quad \Rightarrow \quad c=0$
Hence, $\quad f(x)=(x-a) \cdot q(x), \quad q(x) \in F[x]$.
This shows that $(x-a)$ is a factor of $f(x)$.

If part :

Let $f(x)=(x-a) \cdot q(x) \quad$ for some $q(x) \in F[x]$.
Then, $f(a)=(a-a) \cdot q(a)$.
$\Rightarrow \quad f(a)=0$.
Hence, a is a zero of $f(x)$.

Theorem 1.5.5 : Let F be a field and let $f(x) \in F[x]$ be a non zero polynomial of degree $n . f(x)$ has at most n roots in F.

Proof : If $f(x)$ has no zero in F then the result is obviously true.

Let $a_{1} \in F$ be a zero of $f(x)$. Then by theorem 1.5.4,

$$
f(x)=\left(x-a_{1}\right) q_{1}(x), \quad \text { where } \operatorname{deg} q_{1}(x)=n-1
$$

If $q_{1}(x)$ has no zeros in F, then $f(x)$ has only one one zero in F and in this case the result is true.

If $a_{2} \in F$ is a zero of $q_{1}(x)$, then

$$
q_{1}(x)=\left(x-a_{2}\right) q_{2}(x), \quad \text { where } \operatorname{deg} q_{2}(x)=n-2 .
$$

Continuing in this way, we get,

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{r}\right) q_{r}(x),
$$

where $q_{r}(x) \in F[x]$ such that $q_{r}(x)$ has no zeros in F.
Clearly, $r \leq n$.
Claim : $\quad b \in F$ such that $b \neq a_{i} \quad \forall \quad i, 1 \leq i \leq n$ will not be a zero of $f(x)$.
i.e. no element of F other than a_{i} will be a zero of $f(x)$.

$$
f(b)=\left(b-a_{1}\right)\left(b-a_{2}\right) \ldots\left(b-a_{r}\right) q_{r}(b),
$$

As $b \neq a_{i}$ we get $b-a_{i} \neq 0 \quad \forall \quad i, 1 \leq i \leq r$.
$q_{r}(b) \neq 0$ as $q_{r}(x)$ has no zero in F.
As F is an integral domain (F being a field) we get,

$$
\left(b-a_{1}\right)\left(b-a_{2}\right) \ldots\left(b-a_{r}\right) q_{r}(b) \neq 0
$$

i.e. $\quad f(b) \neq 0$.

Hence, no element $b \in F$ other than a_{i} will be a zero of $f(x)$.
Thus, $\quad a_{1}, a_{2}, \ldots, a_{r}(r \leq n)$ are the only zeros of $f(x)$.
Hence $f(x)$ has at most n zeros in F.

1.5.6 Example

Ex 1 : Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}+2 x+4
$$

in $Z_{5}[x]$.
As

$$
f(1)=1 \oplus_{5} 3 \oplus_{5} 2 \oplus_{5} 4=0 \quad \text { in } Z_{5}
$$

we get, $\quad 1 \in Z_{5}$ is a root of $f(x)$.
Hence, $\quad f(x)=(x-1) \cdot q_{1}(x)$

To find $q_{1}(x)$:

Hence, $\quad q_{1}(x)=x^{3}+4 x^{2}+4 x+1$
Again $\quad q_{1}(1)=0$ in Z_{5}.
Hence, 1 is a zero of $q_{1}(x) \in Z_{5}(x)$.
Hence, $\quad q_{1}(x)=(x-1) q_{2}(x)$

To find $q_{2}(x)$:

	$q_{1}(x)$	$q_{2}(x)$
$x-1$	$x^{3}+4 x^{2}+4 x+1$ $x^{3}-x^{2}$	$x^{2}+4$
$\frac{4 x+1}{+4 x-4}+$		
$\frac{-{ }^{2}+}{0}$		

Thus, $\quad q_{2}(x)=x^{2}+4$
Again $\quad q_{2}(1)=0$.
Hence, $1 \in Z_{5}$ is a zero of $q_{2}(x) \in Z_{5}(x)$.
Hence, $\quad q_{2}(x)=(x-1) q_{3}(x)$

To find $q_{3}(x)$:

	$q_{2}(x)$	$q_{3}(x)$
$x-1$	$\begin{aligned} & x^{2}+0 x+4 \\ & -x^{2}=x \end{aligned}$	$x+1$
	$\begin{array}{r} x+4 \\ -\quad x-1 \end{array}$	
	0	

Thus, $\quad q_{3}(x)=x+1$
Thus, from (1), (2) and (3), we get

$$
\begin{aligned}
f(x) & =(x-1)(x-1)(x-1)(x+1) \\
& =(x-1)^{3} \cdot(x+1) .
\end{aligned}
$$

Ex 2 : Let $f(x)$ and $g(x)$ be in $Z_{5}[x]$, where

$$
\begin{aligned}
& f(x)=4 x^{3}+4 x^{2}+3 x+3 \quad \text { and } \\
& g(x)=4 x^{2}+3
\end{aligned}
$$

Show that $g(x)$ is a factor of $f(x)$ in $Z_{5}[x]$ (or $g(x)$ divides $f(x)$ in $Z_{5}[x]$).

Solution :

$g(x)$	$f(x)$	$q(x)$
$4 x^{2}+3$	$4 x^{3}+4 x^{2}+3 x+3$ $-4 x^{3} \pm 0 x^{2} \pm 3 x$	$x+1$
	$4 x^{2}+3$ $-4 x^{2}+3$	

Thus, $\quad f(x)=g(x) \cdot(x+1)$
This shows that $g(x)$ is a factor of $f(x)$.

Ex 3 : Find all the zeros of the following polynomial $f(x)=x^{3}+2 x+3$ in $Z_{5}[x]$.
Solution : $f(1) \neq 0$. Hence 1 is not a zero of $f(x)$.

$$
f(-1)=0 \text {. Hence }-1 \text { is a zero of } f(x) \text { in } Z_{5} \text {. }
$$

i.e. $\quad 4$ is a zero of $f(x)$.
$\therefore(x-4)$ is a factor of $f(x)$ in $Z_{5}[x]$.

		$q_{1}(x)$
$x+1$	$x^{3}+2 x+3$ $x^{3}+4 x^{2}$	$x^{2}+4 x+3$
	$4 x^{2}+2 x$	
	$-4 x^{2} \pm 4 x$	
	$3 x+3$	
	- $3 x+3$	
	0	

$\therefore \quad f(x)=(x+1) \cdot\left(x^{2}+4 x+3\right)$.
Let $q_{1}(x)=x^{2}+4 x+3$.
Again $q_{1}(-1)=0$. Hence -1 is a root of $q_{1}(x)$ and hence $f(x)$ in $Z_{5}[x]$.

		$q_{2}(x)$
$x+1$	$x^{2}+4 x+3$	$x+3$
	${ }_{-} x^{2} \pm x$	
	$3 x+3$	
	- $3 x+3$	
	0	

Thus, $f(x)=(x+1)(x+1) \cdot(x+3)$.
Hence, -1 and -3 are zeros of $f(x)$ in Z_{5}.
i.e. $\quad 4$ and 2 are zeros of $f(x)$ in Z_{5}.
[Since additive inverse of 1 in Z_{5} is 4 and additive inverse of 3 in Z_{5} is 2].

Ex 4 : Show that the polynomial $f(x)=x^{4}+4$ can be factorized into linear factors in $Z_{5}[x]$.

Solution : Let $f(x)=x^{4}+4$. Then $f(1)=0$ in Z_{5}.
Hence, $1 \in Z_{5}$ is a zero of $f(x)$.

Thus, $\quad f(x)=(x-1)\left(x^{3}+x^{2}+x+1\right)$
Let $q_{1}(x)=x^{3}+x^{2}+x+1$.
Then, $q_{1}(x) \in Z_{5}[x]$ and $q_{1}(-1)=0$ i.e. $q(4)=0$.
Hence, $(x-4)=(x+1) \in Z_{5}[x]$ is a factor of $q_{1}(x)$.

$x+1$	$x^{3}+x^{2}+x+1$ $x^{3}+x^{2}$	$x^{2}+1$
$x+1$		
$\frac{x+1}{0}$		

Thus, $f(x)=(x-1)(x+1) \cdot\left(x^{2}+1\right)$.
Let $q_{2}(x)=x^{2}+1, \quad q_{2}(x) \in Z_{5}[x] \quad$ and $\quad q_{2}(2)=0$.
Hence, 2 is a zero of $q_{2}(x)$.

$$
\begin{array}{l|c|l}
& & \\
\hline x-2 & x^{2}+1 & x+2 \\
& \begin{aligned}
-x^{2}-2 x
\end{aligned} \\
& \begin{aligned}
2 x+1 \\
-2 x-4
\end{aligned} &
\end{array}
$$

Thus, $f(x)=(x-1)(x+1)(x-2)(x+2)$.

1.6 Irreducible Polynomials in R[x]:

Throughout R denotes an integral domain with unity.
Definition 1.6.1: Let $f(x) \in R[x]$ and $\operatorname{deg} f(x) \geq 1 . f(x)$ is said to be irreducible polynomial over R, if it cannot be expressed as a product of two polynomials $g(x)$ and $h(x) \in R[x]$ such that

$$
0<\operatorname{deg} g(x)<\operatorname{deg} f(x) \quad \text { and } \quad 0<\operatorname{deg} h(x)<\operatorname{deg} f(x)
$$

1.6.2 Remarks:

(i) If $f(x)=g(x) \cdot h(x)$ and if $f(x) \in R[x]$ is irreducible, then $\operatorname{deg} f(x)=0$ or $\operatorname{deg} h(x)=0$.
(ii) A polynomial of positive degree which is not irreducible is said to be reducible.
(iii) The polynomial $\left(x^{2}+1\right) \in Z[x]$ is irreducible over Z but it is reducible over \mathbb{C} as $\left(x^{2}+1\right) \in \mathbb{C}[x]$ and $\left(x^{2}+1\right)=(x+i)(x-i)$.
(iv) Any polynomial of degree 1 over R is irreducible over R.
(v) The units in R and $R[x]$ are the same.

Theorem 1.6.3 : Every irreducible polynomial in $R[x]$ is an irreducible element in $R[x]$.
Proof : Let $f(x) \in R[x]$ be an irreducible element in $R[x]$.
To prove that $f(x)$ is an irreducible polynomial in $R[x]$.
Let, if possible, $f(x)$ be reducible over R.
Let $\quad f(x)=g(x) \cdot h(x), \quad$ where $g(x), h(x) \in R[x]$
with $\quad 0<\operatorname{deg} g(x)<\operatorname{deg} f(x) \quad$ and
$0<\operatorname{deg} h(x)<\operatorname{deg} f(x)$.
As $\operatorname{deg} g(x)>0$ and $\operatorname{deg} h(x)>0, g(x)$ and $h(x)$ are not constant polynomials and $g(x), h(x) \notin R$. Hence they are not units in R.

By lemma, $f(x)$ and $g(x)$ are not units in $R[x]$. Hence $f(x)$ is not an irreducible element in $R[x]$.

Thus, $f(x)$ is not an irreducible polynomial.
$\Rightarrow \quad f(x)$ is not an irreducible element.
This shows that irreducible element in $R[x]$ is an irreducible polynomial in $R[x]$.

Remark 1.6.4 : Converse of the above theorem need not be true.
i.e. Irreducible polynomial in $R[x]$ need not be an irreducible element in $R[x]$.

Consider, the polynomial $3 x^{2}+3 \in Z[x]$.
Then $3 x^{2}+3$ is an irreducible polynomial in $Z[x]$.
But $\quad 3 x^{2}+3=3\left(x^{2}+1\right)$
$=$ Product of two polynomials in $Z[x]$ which are non units in $Z[x]$.
(Since the units in $Z[x]$ are the units in Z which are 1 and -1).
Thus, $3 x^{2}+3$ is expressed as a product of two non zero, non unit polynomials in $Z[x]$.
Hence, $3 x^{2}+3$ is not an irreducible element in $Z[x]$.

Remark 1.6.5 : Primitive polynomial $f(x) \in R[x]$ may be reducible or irreducible over R.
Example : $f(x)=x^{2}-3 x+2 \in Z[x]$ is a primitive and reducible as $x^{2}-3 x+2=(x-2)(x-1)$ but $f(x)=x^{2}-2 \in Z[x]$ is a primitive and irreducible over Z.

Theorem 1.6.6 : Let R be UFD and $f(x) \in R[x] . f(x)$ is an irreducible element in $R[x]$ iff either f is an irreducible element of R or f is an irreducible primitive polynomial in $R[x]$.

Proof :

Only if part :

Let $f(x) \in R[x]$ be an irreducible element of $R[x]$. If $f \in R$, then f will be a constant polynomial and it will be an irreducible element in R.
Hence, if $f \notin R$, we have to prove that $f(x)$ is irreducible over R and $f(x)$ is a primitive polynomial.
(i) To prove $f(x)$ is irreducible over R.

Let $f(x)$ be reducible over R.
Let $f(x)=g(x) \cdot h(x) ; \quad g(x), h(x) \in R[x]$.
As $f(x)$ is an irreducible element in $R[x]$ either $g(x)$ or $h(x)$ must be unit in $R[x]$. As units in R and $R[x]$ are the same, either $g(x)$ or $h(x)$ is a unit in R.
Hence, $\operatorname{deg} g(x)=0$ or $\operatorname{deg} h(x)=0$ (being constant polynomial in $R[x]$).
But this in turn shows that $f(x)$ is an irreducible polynomial in $R[x]$.
(ii) Let $f(x)=c f_{1}(x)$ where $c=$ content of $f(x)$ and $f_{1}(x)$ is a primitive polynomial in $R[x]$.

As $\operatorname{deg} f(x)=\operatorname{deg} f_{1}(x)$, we get $\operatorname{deg} f_{1}(x) \geq 1$ and hence $f_{1}(x) \notin R$.
Hence, $f_{1}(x)$ is not a unit in $R[x]$ and c is a unit in R.
Hence, $f(x)$ is a primitive polynomial in $R[x]$.
Thus, if a non constant polynomial $f(x) \in R[x]$ is an irreducible element in $R[x]$ then it is an irreducible, primitive polynomial in $R[x]$.

If part :

Let $f(x) \in R[x]$.
If $f(x)$ is an irreducible element in $R[x]$ then $f(x)$ is an irreducible polynomial in $R[x]$ (See theorem 1.6.3).

Let $f(x) \in R[x]$ be primitive irreducible polynomial in $R[x]$.
To prove that $f(x)$ is an irreducible element in $R[x]$.
Let $\quad f(x)=g(x) \cdot h(x) \quad$ for some $g(x), h(x) \in R[x]$.
As $f(x)$ is an irreducible polynomial,

$$
\operatorname{deg} g(x)=0 \quad \text { or } \quad \operatorname{deg} h(x)=0
$$

Let $\operatorname{deg} g(x)=0$. Then $g(x)$ is a constant polynomial in $R[x]$. Let $g(x)=b_{0}$.
Hence, $g(x) \in R$.
Now, $c(f)=c(g h)=c(g) \cdot c(h)$.
f is primitive $\quad \Rightarrow \quad c(f)=$ unit in R.
Hence, $g(x)$ is unit in $R[x]$.
Thus,

$$
f(x)=g(x) \cdot h(x) \quad \Longrightarrow g(x) \text { is unit in } R[x] .
$$

This in turn shows that $f(x)$ is an irreducible element in $R[x]$.

Theorem 1.6.7 : Let R be UFD. Let $p(x) \in R[x]$ be a primitive polynomial in $R[x] . p(x)$ can be factored in a unique way as a product of irreducible elements in $R[x]$.

Proof : Let F be a field of quotients of R. Then $F[x]$ is an Euclidean domain.
Hence, $F[x]$ is a PID and therefore $F[x]$ is UFD .
(i) To prove that $p(x) \in R[x]$ can be factored as a product of irreducible elements in $R[x]$. $p(x) \in R[x] \Rightarrow p(x) \in F[x]$.
As $F[x]$ is UFD, we can write

$$
p(x)=p_{1}(x) \cdot p_{2}(x) \cdot \ldots \cdot p_{n}(x)
$$

where $p_{i}(x) \in F[x]$ and $p_{i}(x)$ is an irreducible polynomial in $F[x]$
for each $i, 1 \leq i \leq n$.
$p_{i}(x) \in F[x] \quad \Rightarrow \quad p_{i}(x)=\frac{1}{a_{i}} f_{i}[x], \quad$ where $a_{i} \in R$ and $f_{i}(x) \in R[x]$.
Further, $p_{i}(x)$ is an irreducible polynomial in $F[x] \Rightarrow p_{i}(x)$ is an irreducible element in $F[x]$.
$\Rightarrow \quad f_{i}(x)$ is an irreducible element in $F[x]$ for each $i, 1 \leq i \leq n$.
Now,

$$
\begin{aligned}
p_{i}(x) & =\frac{1}{a_{i}} f_{i}[x] \\
& =\frac{1}{a_{i}}\left[c_{i} f_{i}^{*}(x)\right]
\end{aligned}
$$

where $c_{i}=c\left(f_{i}\right)=$ constant of f_{i} and $f_{i}^{*}(x)$ is a primitive polynomial in $R[x]$.

$$
p_{i}(x)=\frac{c_{i}}{a_{i}} f_{i}^{*}(x), \quad \forall \quad i, 1 \leq i \leq n
$$

Thus, $p(x)=\frac{c_{1} c_{2} \ldots c_{n}}{a_{1} a_{2} \ldots a_{n}} f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)$
Hence, $\left(a_{1} a_{2} \ldots a_{n}\right) p(x)=\left(c_{1} c_{2} \ldots c_{n}\right) f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)$.
As each $p_{i}(x)$ is an irreducible polynomial in $F[x]$, we get $f_{i}^{*}(x)$ is also an irreducible polynomial and hence irreducible element in $F[x]$.
Thus, $f_{i}^{*}(x)$ is an irreducible element in $R[x]$.
Equating the content on both sides, we get, $a_{1} a_{2} \ldots a_{n}=\left(c_{1} c_{2} \ldots c_{n}\right) u$, where u is a unit in R.

Hence,

$$
\begin{aligned}
p(x) & =u^{-1}\left[f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)\right] \\
& =\left[u^{-1} f_{1}^{*}(x)\right] f_{2}^{*}(x) \ldots f_{n}^{*}(x) \\
& =\text { Product of irreducible elements in } R[x] .
\end{aligned}
$$

This shows that $p(x) \in R[x]$ is factored into a product of irreducible elements in $R[x]$.
(ii) Uniqueness:

Let $p(x)=f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)$
and $\quad p(x)=r_{1}(x) r_{2}(x) \ldots r_{n}(x)$
be two factorization of $p(x)$ as a product of irreducible elements in $R[x]$.

As R is a UFD, the number n will remain the same as $F[x]$ is a UFD, $r_{i}(x)$ is uniquely determined upto associates in $F[x]$.

Hence, $\quad r_{i}(x)=u_{i} f_{i}^{*}(x), \quad$ where u_{i} is a unit in F.
Hence, $\quad u_{i}=\frac{a_{i}}{b_{i}}, \quad$ for some $a_{i}, b_{i} \in R, \quad \forall i, 1 \leq i \leq n$.
Thus,

$$
r_{i}(x)=\frac{a_{i}}{b_{i}} f_{i}^{*}(x) \quad \forall \quad i, 1 \leq i \leq n
$$

Hence, $\quad b_{i} r_{i}(x)=a_{i} f_{i}^{*}(x) \quad \forall i, 1 \leq i \leq n$.
As $r_{i}(x)$ and $f_{i}^{*}(x)$ are primitive polynomials, equating the contents on both sides we get $b_{i}=v_{i} a_{i}$ where v_{i} is a unit in R.

Hence, $r_{i}(x)$ is associate of $f_{1}^{*}(x)$ in $R[x]$.
Thus the uniqueness follows.

Theorem 1.6.8 : R is UFD $\Rightarrow R[x]$ is UFD.
Proof : Let $f(x) \in R[x]$ be a non zero non unit element in $R[x]$.
Let $f(x)=c p(x) \quad$ where $c=$ content of f and $p(x)$ is a primitive polynomial in x.
By theorem 1.6.7,

$$
p(x)=f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)
$$

where $f_{i}^{*}(x)$ is an irreducible element in $R[x]$ and this representation is unique up to associates.

Also $c \in R$ and R is UFD imply
(i) c is unit in R or
(ii) c can be expressed as $c=c_{1} c_{2} \ldots c_{k}$ where c_{r} are irreducible elements in $R, \forall r$, $1 \leq r \leq k$

Case (i): c is a unit in R.

$$
\text { Then, } \begin{aligned}
f(x)= & c p(x) \\
= & c\left[f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)\right] \\
= & c\left[f_{1}^{*}(x)\right]\left[f_{2}^{*}(x) \ldots f_{n}^{*}(x)\right] \\
= & \text { Finite product of irreducible elements in } R[x] \text { and the representation is } \\
& \text { unique upto associates. }
\end{aligned}
$$

Case (ii) : c is non unit.
Then $c=c_{1} c_{2} \ldots c_{k}$ where each c_{i} is an irreducible elements in R.

As c_{i} is an irreducible element in R, c_{i} is an irreducible element in $R[x]$.
Thus, $f(x)=c_{1} c_{2} \ldots c_{k} f_{1}^{*}(x) f_{2}^{*}(x) \ldots f_{n}^{*}(x)$
$=$ Finite product of irreducible elements in $R[x]$ and the representation is
unique upto associates.

Thus, from case (i) and case (ii), we get $R[x]$ is UFD.
1.6.9 Example : $Z[x]$ is UFD as Z is UFD. $Z[x]$ is UFD but not PID.
[If $Z[x]$ is PID then Z must be a field which is not so.]

Now onwards F denotes a field.

1.6.10 Remarks :

(i) $\operatorname{Let} f(x) \in F[x]$ be irreducible over F. But note that, at the same time it may be reducible over the field E. $(E \supseteq F)$.
(ii) Any polynomial of degree 1 in $F[x]$ is irreducible over F.

Example 1.6.11 : $x^{3}-3 \in Q[x]$ is irreducible over Q.
But it is reducible over \mathbb{R} where $Q=$ the field of quotients and $\mathbb{R}=$ the field of reals.

For the polynomials of degree 2 or 3 particularly we have
Theorem 1.6.12 : Let F be a field and $f(x) \in F[x]$. Let $\operatorname{deg} f(x)=2$ or 3 . Then $f(x)$ is reducible over F if and only if $f(x)$ has a zero in F.

Proof :

Only if part :

Let f be reducible over F.
Then

$$
f(x)=g(x) \cdot h(x)
$$

where $\quad g(x), h(x) \in F[x], \operatorname{deg} g(x)<\operatorname{deg} f(x)$ and $\operatorname{deg} h(x)<\operatorname{deg} f(x)$.

$$
f(x)=g(x) \cdot h(x)
$$

$\Rightarrow \quad \operatorname{deg} f(x)=\operatorname{deg} g(x)+\operatorname{deg} h(x) \quad[\because F$ is an integral domain $]$
As $\operatorname{deg} f(x)=2 / 3$, the $\operatorname{deg} g(x)=1$ or $\operatorname{deg} h(x)=1$.
Thus, let us assume that $\operatorname{deg} g(x)=1$.
Then, $g(x)=x-a$ say, for some $a \in F$.

But then $f(x)=(x-a) \cdot h(x) \quad \Rightarrow \quad f(a)=0$ and hence $a \in F$ will be a zero of $f(x) \in F[x]$.

If part :

Let $f(x) \in F[x]$ has a zero in F say ' a '. Then $(x-a)$ is a factor of $f(x)$.
Hence, $\quad f(x)=(x-a) \cdot g(x)$.
Hence, $\operatorname{deg} f=\operatorname{deg}(x-a)+\operatorname{deg} g(x)$
where $\quad \operatorname{deg} g(x)=2<\operatorname{deg} f(x)=1+\operatorname{deg} g(x), \quad$ if $\operatorname{deg} f(x)=3$
or $\quad \operatorname{deg} g(x)=1<\operatorname{deg} f(x), \quad$ if $\operatorname{deg} f(x)=2$.
Hence, $f(x) \in F[x]$ is a reducible polynomial over the field F.

More generally we get

Theorem 1.6.13: Let $f(x) \in F[x]$ be any polynomial of degree > 1 . If $a \in F$ is a zero of $f(x)$ in F, then $f(x)$ is reducible over F.

Proof: (As $f(x)$ and $(x-a)$ are in $F[x]$) By division algorithm, we get,

$$
f(x)=(x-a) \cdot g(x)+r(x)
$$

where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} f(x)$.

$$
f(a)=0+r(x) \Rightarrow 0=r(a) . \quad \ldots \text { as } a \text { is a zero of } f(x), f(a)=0
$$

Thus, $\quad f(x)=(x-a) \cdot g(x)$.
Therefore,

$$
\operatorname{deg} f(x)=\operatorname{deg}(x-a)+\operatorname{deg} g(x)
$$

Therefore, $\quad \operatorname{deg} g(x)=\operatorname{deg} f(x)-1>0$.
This shows that $f(x)$ is reducible.

We know that every ideal in $F[x]$ is a principle ideal. (Being an Euclidean domain, $F[x]$ is PID.) Using this fact we prove
Theorem 1.6.14: If F is a field, then the ideal $\langle p(x)\rangle \neq\{0\}$ of $F[x]$ is maximal iff $p(x)$ is irreducible over F.

Proof :

Only if part :

Let $\langle p(x)\rangle \neq\{0\}$ be a maximal ideal in $F[x]$.
To prove that $p(x)$ is irreducible over F. Let if possible $p(x)$ be reducible.
Hence, $\exists g(x)$ and $h(x)$ in $F[x]$ such that $p(x)=g(x) \cdot h(x)$ where
and $\quad 0<\operatorname{deg} h(x)<\operatorname{deg} p(x)$.
Now, $p(x) \in\langle p(x)\rangle \quad \Rightarrow \quad g(x) \cdot h(x) \in\langle p(x)\rangle$.
As $\langle p(x)\rangle$ is a maximal ideal in $F[x]$, it is a prime ideal in $F[x]$
Hence, either $g(x) \in\langle p(x)\rangle$ or $h(x) \in\langle p(x)\rangle$.
But then $g(x)=p(x) \cdot q_{1}(x)$ or $h(x)=p(x) \cdot q_{2}(x)$, for some $q_{1}(x), q_{2}(x) \in F[x]$.
But then we can't have $\operatorname{deg} g(x)$ or $\operatorname{deg} h(x)$ less than the $\operatorname{deg} p(x)$.
Hence our assumption is wrong i.e. $p(x)$ is irreducible.

If part :

Let $p(x)$ be irreducible polynomial in $F[x]$.
To prove that $\langle p(x)\rangle$ is maximal.
Let A be an ideal in $F[x]$ such that $\langle p(x)\rangle \subseteq A \subseteq F[x]$. As $F[x]$ is PID, $A=\langle f(x)\rangle$ for some $f(x) \in F[x]$.

As $p(x) \in\langle p(x)\rangle$ we get $p(x) \in\langle f(x)\rangle$.
Hence $p(x)=f(x) \cdot g(x)$, for some $g(x) \in F[x]$.

As $p(x)$ is irreducible, we get

$$
\operatorname{deg} g(x)=0 \quad \text { or } \quad \operatorname{deg} f(x)=0
$$

Case 1: $\operatorname{deg} g(x)=0$
Then, $g(x)$ is a constant polynomial in $F[x]$.
Let $\quad g(x)=c \quad$ for some $c \in F$
Then, $\quad p(x)=f(x) \cdot c \quad$ implies $\quad f(x)=c^{-1} \cdot p(x)$.
[c^{-1} exists in F as c is a non zero element in F.]
Hence, $\quad f(x)=c^{-1} \cdot p(x)$ implies $g(x) \in\langle p(x)\rangle$ and hence $A=\langle g(x)\rangle=\langle p(x)\rangle$.
Case 2: $\quad \operatorname{deg} f(x)=0$
Then, $f(x)$ is a non zero constant polynomial in $F[x]$.
Hence, $f(x)$ is a non zero element in F and hence $f(x)$ is a unit in F.
But then $\langle f(x)\rangle=A=F[x]$. This shows that there exists no proper ideal A in $F[x]$ such that $\langle p(x)\rangle \subset A \subset F[x]$.
Hence, $\langle p(x)\rangle$ is a maximal ideal in $F[x]$.

1.6.15 Examples :

(i) $x^{2}-3 \in Q[x]$ is an irreducible polynomial. Hence $\left\langle x^{2}-3\right\rangle$ in $Q[x]$ is a maximal ideal in $F[x]$ and hence $\frac{Q[x]}{x^{2}-3}$ is a field.
(ii) $\frac{Q[x]}{I}$ where $I=\left\langle x^{2}-5 x+6\right\rangle$ is not a field as $x^{2}-5 x+6=(x-2)(x-3)$ shows that $x^{2}-5 x+6$ is a reducible polynomial in $Q[x]$ and hence I is not a maximal ideal in $Q[x]$.

If R is an integral domain with unity then every irreducible element in $R[x]$ is an irreducible polynomial in $R[x]$ (See Theorem 1.6.3). The converse need not be true. But it is true if R is a field.

Theorem 1.6.16: Let F be a field. $f(x) \in F[x]$ is an irreducible polynomial in $F[x]$ iff $f(x)$ is an irreducible element in $F[x]$.

Proof :

Only if part :

Let $f(x) \in F[x]$ be irreducible polynomial in $F[x]$.
Let $f(x)=g(x) \cdot h(x)$ for $g(x), h(x) \in F[x]$.
f being irreducible, either $\operatorname{deg} g(x)=0$ or $\operatorname{deg} h(x)=0$.
Suppose, $\operatorname{deg} g(x)=0$. Then $g(x)$ is a constant polynomial in $F[x]$.
Let $g(x)=a(a \in R)$.
Then $a \neq 0$ and $a \in F$.
Hence, a^{-1} exists in F. But this shows $g(x)=a$ is a unit in $F[x]$.
Hence, $f(x)$ is an irreducible element in $F[x]$.

If part :

Let $f(x) \in F[x]$ be an irreducible element in $F[x]$.
Then every field being an integral domain with unity, the result follows by Theorem 2.6.3 in 5. [Every irreducible element in $R[x]$ is an irreducible polynomial in $R[x]$.]

Theorem 1.6.17 : Let D be UFD and let F be a field of quotients of D. Let $f(x) \in D[x]$ where degree of $f(x)>0$. Then
(i) $f(x)$ is irreducible in $D[x] \Rightarrow f(x)$ is irreducible in $F[x]$.
(ii) $f(x)$ is primitive in $D[x]$ and $f(x)$ is irreducible in $F[x] \Rightarrow f(x)$ is irreducible in $D[x]$.

Proof :

(i) Degree of $f(x)>0 \Rightarrow f(x)$ is non constant polynomial in $D[x]$.

Let $f(x)=g(x) \cdot h(x)$, where $g(x)$ and $h(x)$ are polynomials of lower degree in $F[x]$. As F is a field of quotients of D, the coefficients in $g(x)$ and $h(x)$ are of the form $\frac{a}{b}$ for some $a, b \in D$. By clearing the denominators we get

$$
\begin{equation*}
\text { (d) } f(x)=g_{1}(x) h_{1}(x) \tag{1}
\end{equation*}
$$

where $d \in D$ and $g_{1}(x), h_{1}(x) \in D[x]$ such that

$$
\begin{aligned}
& \text { degree of } g_{1}(x)=\text { degree of } g(x) \quad \text { and } \\
& \text { degree of } h_{1}(x)=\text { degree of } h(x)
\end{aligned}
$$

Now, by theorem 1, $f(x)=(c) \cdot p(x), g_{1}(x)=\left(c_{1}\right) \cdot p_{1}(x)$ and $h_{1}(x)=\left(c_{2}\right) \cdot p_{2}(x)$ where $c, c_{1}, c_{2} \in D$ and $p(x), p_{1}(x), p_{2}(x) \in D[x]$ are primitive polynomials in $D[x]$.
Thus, from (1), we get,

$$
\begin{equation*}
(d c) p(x)=\left(c_{1} c_{2}\right) p_{1}(x) p_{2}(x) \tag{2}
\end{equation*}
$$

By theorem 1.4.10, the product $p_{1}(x) \cdot p_{2}(x)$ is also a primitive polynomials in $D[x]$. But then $c_{1} c_{2}=(d c) u$ for some unit u in D.

Hence, from (2), we get,

$$
(d c) p(x)=(d c u) p_{1}(x) p_{2}(x)
$$

Hence,

$$
\text { (c) } p(x)=(c u) p_{1}(x) p_{2}(x)
$$

i.e.

$$
f(x)=(c u) p_{1}(x) p_{2}(x)
$$

This shows that $f(x)$ has a factorization in $D[x]$.
Thus, we have proved that $f(x)$ has a factorization in $F[x] \Rightarrow f(x)$ has a factorization in $D[x]$.
Hence, $f(x) \in D[x]$ is irreducible in $D[x]$, then it is irreducible in $F[x]$.
(ii) Let $f(x) \in D[x]$. As $D[x] \subseteq F[x]$.

We get, if $f(x)$ is reducible in $D[x]$ then $f(x)$ is reducible in $F[x]$.
Hence the result.

Corollary 1.6.18: Let D be a UFD and let F be the field of quotients in D.
Let $f(x) \in D[x]$ be a non constant polynomial. Then $f(x)$ factors into the product of two polynomials of lower degree in $F[x]$ if an only if it has a factorization into
polynomials of same degree in $D[x]$.

Proof :

Only if part :

Let $f(x)=g(x) h(x)$ be a factorization of $f(x)$ in $F[x]$ where degree of $g(x)=r$ and degree of $h(x)=s$. As in the proof of the theorem 4(1) we can prove

$$
f(x)=(a) p_{1}(x) p_{2}(x)
$$

where degree of $p_{1}(x)=$ degree of $g(x)=r \quad$ and
degree of $p_{2}(x)=$ degree of $h(x)=s \quad$ and
$p_{1}(x), p_{2}(x) \in D[x]$.

If part :

Let $f(x)=g(x) h(x), \quad$ where $g(x), h(x) \in D[x]$.
Then, $g(x), h(x) \in F[x]$, since $D[x] \subseteq F[x]$, and the result follows.

1.7 Factorization in $\mathbf{F}[\mathrm{x}]$:

Throughout F denotes a field.
Definition 1.7.1 : Let $f(x), g(x) \in F[x]$. We say $g(x)$ divides $f(x)$ in $F[x]$ if there exists $q(x) \in F[x]$ such that $f(x)=g(x) \cdot q(x)$.

Example 1.7.2: Let $f(x)=4 x^{3}+4 x^{2}+3 x+3$ and

$$
g(x)=4 x^{2}+3
$$

$f(x), g(x) \in Z_{5}[x]$ and $f(x)=g(x) \cdot(x+1)$ in $Z_{5}[x]$.
Hence, $g(x)$ divides $f(x)$ in $Z_{5}[x]$.

$g(x)$	$f(x)$	$q(x)$
$4 x^{2}+0 \cdot x+3$	$4 x^{3}+4 x^{2}+3 x+3$ $-4 x^{3} \pm 0 x^{2} \pm 3 x$	$x+1$
	$4 x^{2}+3$ $-4 x^{2}+3$	
	$\frac{}{0}$	

Theorem 1.7.3 : Let $p(x)$ be an irreducible polynomial in $F[x]$. If $p(x)$ divides $r(x) \cdot s(x)$ for $r(x), s(x) \in F[x]$, then either $p(x) / r(x)$ or $p(x) / s(x)$.

Proof : $\quad p(x) / r(x) \cdot s(x) \quad \Rightarrow \quad r(x) \cdot s(x)=p(x) \cdot q(x)$ for some $q(x) \in F[x]$.

But this implies that $r(x) \cdot s(x) \in\langle p(x)\rangle$.
$p(x)$ being an irreducible polynomial in $F[x],\langle p(x)\rangle$ is a maximal ideal in $F[x]$.
As $F[x]$ is a commutative ring with unity, $\langle p(x)\rangle$ is a prime ideal.
Hence, $r(x) \cdot s(x) \in\langle p(x)\rangle$ implies $r(x) \in\langle p(x)\rangle$ or $s(x) \in\langle p(x)\rangle$.
Hence, either $p(x)$ divides $r(x)$ or $p(x)$ divides $s(x)$ in $F[x]$.

Using the mathematical induction we get,
Corollary 1.7.4 : Let $p(x) \in F[x]$ be an irreducible polynomial. If $p(x) / r_{1}(x)$.
$r_{2}(x) \ldots r_{n}(x)$. for $r_{i}(x) \in F[x]$. Then $p(x) / r_{i}(x)$ for at least one i.

Theorem 1.7.5 : Let $f(x) \in F[x]$ be a non constant polynomial. Then $f(x)$ can be factored into a product of irreducible polynomials in $F[x]$. The irreducible polynomials will be unique except for order and for unit factors in F.

Proof : Let $f(x) \in F[x]$ be a non constant polynomial.
Case (I): $f(x)$ is irreducible.
Then there is nothing to prove.
Case (II): $f(x)$ is not irreducible.
Let $\quad f(x)=g(x) \cdot h(x)$
where degree of $g(x)<$ degree of $f(x)$ and
degree of $h(x)<$ degree of $r(x)$.
If $g(x)$ and $h(x)$ both are irreducible then we are through.
If $g(x)$ and $h(x)$ both are not irreducible then at least one of them factors into polynomials of lower degree. Continuing this process, we get,

$$
f(x)=p_{1}(x) \cdot p_{2}(x) \cdot \ldots \cdot p_{n}(x)
$$

where each $p_{i}(x)$ is an irreducible polynomial in $F[x]$.
This completes the proof of the first part.
Now, let us assume that

$$
\begin{align*}
& f(x)=p_{1}(x) \cdot p_{2}(x) \cdot \ldots \cdot p_{r}(x) \tag{1}\\
& f(x)=q_{1}(x) \cdot q_{2}(x) \cdot \ldots \cdot q_{s}(x) \tag{2}
\end{align*}
$$

be two factorizations of $f(x)$ into the irreducible polynomials in $F[x]$.
Now,

$$
p_{1}(x) / p_{1}(x) \cdot p_{2}(x) \cdot \ldots \cdot p_{r}(x) \quad \text { implies }
$$

$$
p_{1}(x) / q_{1}(x) \cdot q_{2}(x) \cdot \ldots \cdot q_{s}(x)
$$

As $p_{1}(x)$ is an irreducible polynomial in $F[x], p_{1}(x) / q_{j}(x)$, for some j.
Take $q_{j}(x)=q_{1}(x)$.
Since $q_{1}(x)$ is irreducible and $p_{1}(x) / q_{1}(x)$ we get, $q_{1}(x)=u_{1} p_{1}(x)$ where $u_{1} \neq 0$.
Hence, $u_{1} \in F$ is a unit in F.
Thus,

$$
\begin{aligned}
& p_{1}(x) \cdot p_{2}(x) \cdot \ldots \cdot p_{r}(x)=q_{1}(x) \cdot q_{2}(x) \cdot \ldots \cdot q_{s}(x) \quad \text { will imply } \\
& p_{1}(x) \cdot p_{2}(x) \cdot \ldots \cdot p_{r}(x)=u_{1} p_{1}(x) \cdot q_{2}(x) \cdot \ldots \cdot q_{s}(x)
\end{aligned}
$$

Cancelling $p_{1}(x)$ from both side, we get,

$$
p_{2}(x) \cdot \ldots \cdot p_{r}(x)=u_{1} \cdot q_{2}(x) \cdot \ldots \cdot q_{s}(x)
$$

Arguing as above, we get, $p_{2}(x)=u_{2} q_{2}(x)$, where $u_{2} \neq 0$ is a unit in F.
Substituting this value in the above expression and cancelling $p_{2}(x)$ from both sides, we get,

$$
p_{3}(x) \cdot \ldots \cdot p_{r}(x)=u_{1} \cdot u_{2} \cdot q_{3}(x) \cdot \ldots \cdot q_{s}(x)
$$

Continuing in this way we arrive at

$$
1=u_{1} \cdot u_{2} \cdot \ldots \cdot u_{r} \cdot q_{r+1}(x) \cdot q_{r+2}(x) \cdot \ldots \cdot q_{s}(x) .
$$

But this is possible only when $s=r$. Hence,

$$
1=u_{1} \cdot u_{2} \cdot \ldots \cdot u_{r}
$$

This shows that the irreducible factors $p_{i}(x)$ and $q_{j}(x)$ are the same except for order and unit factors.

1.7.6 Examples

Ex 1 : Let $f(x)=x^{4}+3 x^{3}+2 x+4 \in Z_{5}[x]$.
$x=1 \quad \Rightarrow \quad f(1)=1+3+2+4=10=0$ in $Z_{5}[x]$.
Hence, $x=1$ is a root / zero of $f(x)$.

$$
f(x)=(x-1) \cdot g(x)
$$

$g(x)$	$f(x)$	$q(x)$
$x-1$	$\begin{aligned} & x^{4}+3 x^{3}+2 x+4 \\ & -x^{4}-x^{3} \end{aligned}$	$x^{3}+4 x^{2}+4 x+1$
	$4 x^{3}+2 x$	
	$-^{4 x^{3}}+4 x^{2}$	
	$4 x^{2}+2 x$	
	$-4 x^{2}-4 x$	
	$x+4$	
	${ }_{-}{ }_{+}+1$	
	$5=0$ in	$\mathrm{Z}_{5}[\mathrm{x}]$

Thus, $x=1$ is a zero of $f(x)$ and $f(x)=\left(x^{3}+4 x^{2}+4 x+1\right)(x-1)$.
Let $\quad g(x)=\left(x^{3}+4 x^{2}+4 x+1\right)$.
Then, $\quad g(x) \in Z_{5}(x)$ and

$$
g(1)=10 \equiv 0(\bmod 5)
$$

$\therefore \quad(x-1)$ is a factor of $g(x)$.

$x-1$	$x^{3}+4 x^{2}+4 x+1$ $-x^{3}-x^{2}$ $\frac{0+0+4 x+1}{}$
$\frac{x^{2}+4}{+}$	

This shows that $(x-1)$ is a factor of $x^{3}+4 x^{2}+4 x+1$ and hence $x-1$ is also a factor of $f(x)$.
Again, $x=1 \Rightarrow x^{2}+4=0$ in Z_{5}.
Hence, $(x-1)$ is a factor of $x^{2}+4$.

$x-1$	$x^{2}+4$ $-^{2}+x$	$x+1$
$x+4$		
$\frac{-x-1}{+}$		

This shows that $(x-1)$ is a factor of $\left(x^{2}+4\right)$ and hence $(x-1)$ is a factor of $f(x)$.
Thus, we get,

$$
f(x)=x^{4}+3 x^{3}+2 x+4=(x-1)^{3} \cdot(x+1) \text { in } Z_{5}[x] .
$$

This shows that $f(x)$ is factored as a product of irreducible polynomials in $Z_{5}[x]$.
These irreducible factors in $Z_{5}[x]$ are defined upto units in $Z_{5}[x]$.
e.g.

$$
(x-1)^{3} \cdot(x+1)=(x-1)^{2} \cdot(2 x-2)(3 x+3)
$$

Ex 2 : Show that the polynomial $\left(x^{4}+4\right)$ can be factored into linear factors in $Z_{5}[x]$.
Solution : Let $f(x)=x^{4}+4$ in $Z_{5}[x]$.
Then $f(1)=1+4=0$ in Z_{5}.
Hence, $x-1$ is a factor of $f(x)$.

$x-1$	$x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x+4$ $-x^{4}-x^{3}$	$x^{3}+x^{2}+x+1$
$\frac{x^{3}+0 \cdot x^{2}}{x^{3}-x^{2}}+x^{2}+0 \cdot x$		
$\frac{-x^{2}-x}{+}$		
$\frac{x+4}{x-1}$		
$0+0$		

Thus, $f(x)=(x-1)\left(x^{3}+x^{2}+x+1\right)$
Consider $g(x)=\left(x^{3}+x^{2}+x+1\right)$ in $Z_{5}[x]$.
Then $g(-1)=-1+1-1+1=0$.
Hence, $(x+1)$ is a factor of $g(x)$ in $Z_{5}[x]$.

$x+1$	$x^{3}+x^{2}+x+1$	$x^{2}+1$
	$x^{3} \pm x^{2}$ $x+1$	
	$\frac{x+1}{0+0}$	

Thus, $g(x)=\left(x^{3}+x^{2}+x+1\right)=(x+1)\left(x^{2}+1\right)$

Hence, from (1), we get,

$$
\text { Let } \quad \begin{aligned}
f(x) & =(x-1)(x+1)\left(x^{2}+1\right) \\
h(x) & =\left(x^{2}+1\right) \text { in } Z_{5}[x] . \\
h(2) & =4+1=0 .
\end{aligned}
$$

Hence, $(x-2)$ is a factor of $h(x)$ in $Z_{5}[x]$.

$x-2$	$x^{2}+1$ $-x^{2}-2 x$	$x+2$
$\frac{2 x+1}{2 x-4}$		
	$-{ }^{2}+$ 0	

We know that, ' Q ' the field of rational numbers is the field of quotients of an integral domain Z.

Hence applying theorem 1.6 .6 to Q in particular, we get,
Result : Let $f(x) \in Z[x]$. If $f(x)$ is primitive an irreducible over Z then $f(x)$ is irreducible over Q.

- Eisenstein Criteria for Irreducibility over \boldsymbol{Q} :

Theorem 1.7.7 : Let $p \in Z$ be a prime. Let $f(x) \in Z[x]$, where

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad\left(a_{n} \neq 0\right)
$$

such that $a_{n} \not \equiv 0(\bmod p)$ but $a_{i} \equiv 0(\bmod p)$, for $i<n$, with $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$. Then $f(x)$ is irreducible over Q.
[p is a prime number such that $p / a_{0}, p / a_{1}, \ldots, p / a_{n-1}$ and $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$].
Proof : Assume that $f(x)$ is reducible in $Z[x]$.
Let

$$
f(x)=g(x) \cdot h(x),
$$

where $g(x), h(x)$ are non-constant polynomials in $Z[x]$ with degree $<\mathrm{n}$.
Let

$$
\begin{aligned}
& g(x)=b_{0}+b_{1} x+\cdots+b_{r} x^{r}, \quad\left(b_{r} \neq 0\right) \\
& h(x)=c_{0}+c_{1} x+\cdots+c_{s} x^{s}, \quad\left(c_{s} \neq 0\right)
\end{aligned}
$$

and
(i) $p^{2} \nmid a_{0} \Rightarrow p^{2} \nmid b_{0} c_{0}$.

If p / b_{0} and p / c_{0} then $p^{2} / b_{0} c_{0}$.
Hence, either $p \nmid b_{0}$ or $p \nmid c_{0}$ exclusively.
Assume that $p \nmid b_{0}$ but p / c_{0}.
(ii) $p \nmid a_{n} \Rightarrow p \nmid b_{r} c_{s} \Rightarrow p \nmid b_{r}$ and $p \nmid c_{s}$.
(iii) Thus, p / c_{0} and $p \nmid c_{s}$.

Find the smallest k such that $p \nmid c_{k}$. Thus $p \nmid b_{0}$ and $p \nmid c_{k} \Rightarrow p \nmid b_{0} c_{k}$.
But $b_{0} c_{k}+b_{1} c_{k-1}+\cdots+b_{k} c_{0}$ is a coefficient of x^{k} in $g(x) h(x)$.
As $f(x)=g(x) \cdot h(x)$, equating the coefficients of x^{k}, we get,

$$
a_{k}=b_{0} c_{k}+b_{1} c_{k-1}+\cdots+b_{k} c_{0}
$$

As $p \nmid b_{0} c_{k}$, we get $p \nmid a_{k}$.
But then, by data, as $p / a_{0}, p / a_{1}, \ldots, p / a_{n-1}$ and $p \nmid a_{n}$ we must have $k=n$.
Hence, consequently we must have $s=n$. This contradicts our assumption that $s<n$.
Hence, $f(x)$ does not factor into polynomials in $Z[x]$.
By result 1,
$f(x)$ has no factorization as a product of two polynomials, both of lower degree in $Q[x]$.

Hence, $f(x)$ is irreducible over Q.
[Result 1 : Let $f(x) \in Z[x] . f(x)$ factors into a product of two polynomials of lower degrees r and s in $Q[x]$ if and only if it has such a factorization with polynomials of same degrees r and s in $Z(x)$.]

Remark 1.7.8: $f(x)=g(x) \cdot h(x) \quad \Leftrightarrow \quad f(x+1)=g(x+1) \cdot h(x+1)$,
for $f(x), g(x), h(x) \in Z[x]$.
Hence, $f(x)$ is reducible iff $f(x+1)$ is reducible and $f(x)$ is irreducible iff $f(x+1)$ is irreducible.

Note that, we can take any integer in place of 1.
When the constant term in a polynomial $f(x) \in Z[x]$ is ± 1, we cannot apply Eisenstein criterion to check the irreducibility of $f(x)$ over Q. In such cases we find suitable $t \in Z$ such that $f(x+t)$ is irreducible over Q (if possible).

To illustrate this, consider the following polynomial

$$
f(x)=x^{3}+x^{2}-2 x-1 \in Z[x] .
$$

As there exists no prime in Z that divides 1, we cannot apply the criterion directly in this case.

$$
\begin{aligned}
f(x+1) & =(x+1)^{3}+(x+1)^{2}-2(x+1)-1 \\
& =x^{3}+4 x^{2}+3 x-1
\end{aligned}
$$

Again, we cannot apply the criterion in this case.

$$
\begin{aligned}
f(x-1) & =(x-1)^{3}+(x-1)^{2}-2(x-1)-1 \\
& =x^{3}-2 x^{2}-x+1
\end{aligned}
$$

We cannot apply the criterion for $f(x-1)$ also.

$$
f(x+2)=x^{3}+7 x^{2}+14 x+7
$$

Here, take $p=8$. Then $p / a_{0}, p / a_{1}, p / a_{2}$ and $p \nmid a_{3}$ and $p^{2} \nmid a_{0}$.
Hence, by Eisenstein criterion, $f(x+2)$ is irreducible over Q.
Hence, $f(x)$ is irreducible over Q.

1.7.9 Example

Ex $1: f(x)=8 x^{3}-6 x-1$ is irreducible over Q.
Solution : Here $a_{0}=-1, a_{1}=-6, a_{2}=0, a_{3}=8$.
As $a_{0}=-1$, Eisenstein criterion cannot be applied.
Hence, consider $f(x+1)$.

$$
\begin{aligned}
f(x+1) & =8(x+1)^{3}-6(x+1)-1 \\
& =8\left[x^{3}+3 x^{2}+3 x+1\right]-6 x-6-1 \\
& =8 x^{3}+24 x^{2}+24 x+8-6 x-6-1 \\
& =8 x^{3}+24 x^{2}+18 x+1
\end{aligned}
$$

Again, we cannot apply the criterion for $f(x+1)$.
Hence, consider $f(x-1)$.

$$
\begin{aligned}
f(x-1) & =8(x-1)^{3}-6(x-1)-1 \\
& =8\left[x^{3}-3 x^{2}+3 x-1\right]-6 x+6-1 \\
& =8 x^{3}-24 x^{2}+24 x-8-6 x+6-1 \\
& =8 x^{3}-24 x^{2}+18 x-3
\end{aligned}
$$

Take $p=3$.
Then, by Eisenstein criterion, $f(x-1)$ is irreducible over Q.
Hence, $f(x)$ is irreducible over Q.

Ex 2 : $f(x)=x^{4}+x^{3}+x^{2}+x+1 \in Z[x]$ is irreducible over Q.
Solution : As the constant term in $f(x)$ is 1 we cannot apply Eisenstein criterion for $f(x)$.
Consider $f(x+1)$.
Then, $\quad f(x+1)=(x+1)^{4}+(x+1)^{3}+(x+1)^{2}+(x+1)+1$

$$
\begin{aligned}
= & \left(x^{4}+4 x^{3}+6 x^{2}+4 x+1\right)+\left(x^{3}+3 x^{2}+3 x+1\right)+ \\
& \left(x^{2}+2 x+1\right)+x+2 \\
= & x^{4}+5 x^{3}+10 x^{2}+10 x+5
\end{aligned}
$$

For $f(x+1), \quad a_{0}=5, a_{1}=10, a_{2}=10, a_{3}=5, a_{4}=1$.
Take $p=5$.
Then, $p / a_{0}, p / a_{1}, p / a_{2}, p / a_{3}$ and $p^{2} \nmid a_{0}$ and $p \nmid a_{4}$.
Hence, by Eisenstein criterion, $f(x+1)$ is irreducible over Q.
Hence, $f(x)$ is irreducible over Q.

Ex 3 : Show that the polynomial $2 x^{5}-5 x^{4}+5$ is irreducible over Q.
Solution : Let

$$
\begin{aligned}
f(x) & =2 x^{5}-5 x^{4}+5 \\
& =5+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}-5 x^{4}+2 x^{5}
\end{aligned}
$$

Hence, $\quad a_{0}=5, a_{1}=0, a_{2}=0, a_{3}=0, a_{4}=-5, a_{5}=2$.
Take $p=5, p$ is prime in Z.
$p / a_{0}, p / a_{1}, p / a_{3}, p / a_{4}$ and $p^{2} \nmid a_{0}$ and $p \nmid a_{5}$.
Hence, by Eisenstein criterion, $f(x)$ is irreducible over Q.

Ex 4 : The cyclotomic polynomial

$$
\phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is irreducible over Q for any prime p.
Solution : Let

$$
\begin{aligned}
g(x) & =\phi_{p}(x+1) \\
& =\frac{(x+1)^{p}-1}{(x+1)-1} \\
& =\frac{x^{p}+{ }^{p} C_{1} x^{p-1}+\cdots+{ }^{p} C_{p} x^{p-1}-1}{x} \\
& =x^{p-1}+{ }^{p} C_{1} x^{p-2}+\cdots+p
\end{aligned}
$$

Let $g(x)=a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1}$. Then $a_{0}=p, a_{1}={ }^{p} C_{p-1}, a_{n}=1$.
Then, for prime number p, we get $p / a_{0}, \ldots, p / a_{p-1}$ and $p^{2} \nmid a_{0}$ and $p \nmid a_{p}=1$.
Hence, by Eisenstein criterion, $g(x)$ is irreducible over Q.
Now, if $\phi_{p}(x)=h_{1}(x) h_{2}(x)$ in $Z[x]$, then $\phi_{p}(x+1)=h_{1}(x+1) h_{2}(x+1)$ would be a factorization of $g(x)$ in $Z[x]$ and hence by result 1 , we get $\phi_{p}(x+1)$ has factorization in $Q[x]$ which is not possible by Eisenstein criterion.

Hence, $\phi_{p}(x)$ is irreducible over Q.

Extra :

Applying the theory in particular for $Z[x]$, we get the following result.

Particular case of theorem 1.2.16 (ii) :

Theorem 1.7.10 : Let $f(x) \in Z[x]$ be primitive. If $f(x)$ is reducible over Q, then $f(x)$ is reducible over Z.

Proof : $f(x)$ is reducible over Q. Hence $f(x)=g(x) \cdot h(x)$ where $g(x), h(x) \in Q[x]$ and $g(x), h(x)$ are non constant. Then $f(x)=\left(\frac{a}{b}\right) g_{1}(x) \cdot h_{1}(x)$, where $g_{1}(x)$ and $h_{1}(x)$ are primitive polynomials in $Z[x]$. But then

$$
b[f(x)]=(a)\left[g_{1}(x) \cdot h_{1}(x)\right]
$$

$f(x)$ being primitive in $Z[x], b$ is the g.c.d. of coefficients in $b f(x)$.
As the product of two primitive polynomials is a primitive polynomial in $a\left[g_{1}(x) \cdot h_{1}(x)\right]$. Hence a and b are unique upto the units.

As the units in Z are ± 1, we get $b= \pm a$.
Hence, $f(x)= \pm g_{1}(x) \cdot g_{2}(x)$. This shows that $f(x)$ is reducible in $Z[x]$.

Particular case of theorem 1.4.10:

Theorem 1.7.11 : If $f(x)$ and $g(x)$ are primitive polynomials in $Z[x]$ then so is their product.

Proof : Suppose $f(x) \cdot g(x)$ is not primitive. Let p be a prime integer in Z such that p divides all the coefficients of $f(x) \cdot g(x)$.

Let

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

and

$$
g(x)=b_{0}++b_{1} x+\cdots+b_{n} x^{n} .
$$

$f(x)$ is primitive, hence p does not divide all $a_{0}, a_{1}, \ldots, a_{n}$.
Let a_{s} be the first coefficient of f such that $p \nmid a_{s}$.
Similarly, let b_{t} be the first coefficient in $g(x)$ such that $p \nmid b_{t}$.
Now, the coefficient of x^{s+t} in $f(x) \cdot g(x)$ is

$$
\left[a_{0} b_{s+t}+a_{1} b_{s+t-1}+\cdots+a_{s-1} b_{t+1}\right]+a_{s} b_{t}+\left[a_{s+1} b_{t-1}+a_{s+2} b_{t-2}+\cdots+a_{s+t} b_{0}\right]
$$

As

$$
p / a_{0}, \quad p / a_{1}, \ldots, \quad p / a_{s-1}
$$

and $\quad p / b_{0}, p / b_{1}, \ldots, p / b_{t-1}$,
we get,

$$
p /\left[a_{0} b_{s+t}+a_{1} b_{s+t-1}+\cdots+a_{s-1} b_{t+1}\right]
$$

and $\quad p /\left[a_{s+1} b_{t-1}+a_{s+2} b_{t-2}+\cdots+a_{s+t} b_{0}\right]$
As $p \nmid a_{s}$ and $p \nmid b_{t}$ and p is prime, we get $p \nmid a_{s} b_{t}$.
Hence, $p \nmid$ coefficient of x^{s+t} in $f(x) \cdot g(x)$, which is a contradiction.
This in turn shows that $f(x) \cdot g(x)$ is primitive.

Theorem 1.7.12 : If $f(x) \in Z[x]$ is reducible over Q then it is also reducible over Z.
Proof : $\quad f(x) \in Z[x]$ is reducible over Q.
Let $f(x)=(c) f_{1}(x)$. Where $c=$ g.c.d. of the coefficient of $f(x)$, and $f_{1}(x)$ is a primitive polynomial in $Z[x]$.
Then $f_{1}(x)$ is reducible over Z and hence $f(x)$ is reducible over Z.

Theorem 1.7.13: $f(x) \in Z[x] . f(x)$ is reducible over Q iff $f(x)$ is reducible over Z.
Proof : $f(x)$ is reducible over Z implies $f(x)$ is reducible over Q as $Z[x] \subseteq Q[x]$.
Conversely,
If $f(x)$ is reducible over Q then, $f(x)$ is reducible over Z.

Theorem 1.7.14 : Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n} \in Z[x]$ be a monic polynomial. If $f(x)$ has a root $a \in Q$, then $a \in Z$ and a / a_{0}.
Proof : $\quad a \in Q \Rightarrow a=\frac{b}{c}$ for some relatively prime elements $b, c \in Z$.

$$
\begin{aligned}
f(a)=0 & \Rightarrow f\left(\frac{b}{c}\right)=0 \\
& \Rightarrow a_{0}+a_{1}\left(\frac{b}{c}\right)+\cdots+a_{n-1}\left(\frac{b}{c}\right)^{n-1}+\left(\frac{b}{c}\right)^{n}=0
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow \quad a_{0}+a_{1}\left(\frac{b}{c}\right)+\cdots+a_{n-1}\left(\frac{b}{c}\right)^{n-1}=-\left(\frac{b}{c}\right)^{n} \\
& \Rightarrow \quad a_{0} c^{n-1}+a_{1} b c^{n-2}+\cdots+a_{n-1} b^{n-1}=-\frac{b^{n}}{n} \tag{1}\\
& \Rightarrow \quad a_{0} c^{n-1}+a_{1} b c^{n-2}+\cdots+a_{n-1} b^{n-1} \in Z
\end{align*}
$$

we get, $-\frac{b^{n}}{n} \in Z$. Hence $c= \pm 1$.
Hence, by (1), we get,

$$
a_{0}+a_{1} b+\cdots+a_{n-1} b^{n-1}= \pm b^{n}
$$

Hence, $a_{0}=-b\left[a_{1}+a_{2} b+\cdots \pm b^{n-1}\right]$.
This shows that b / a_{0}.
As

$$
\begin{equation*}
a=\frac{b}{c}=\frac{b}{ \pm 1}= \pm b \tag{2}
\end{equation*}
$$

From (1), (2) and (3), we get a / a_{0} and $a \in Z$.

CHAPTER III : THEORY OF MODULES

Unit 1 : Modules :

1.1 Modules - Definition and examples.
1.2 Submodules.
1.3 Homomorphism
1.4 Fundamental theorem of homomorphism and its applications.

1.1 MODULES - Definition and Examples :

Definition 1.1.1 : Let R be a ring and let $\langle M,+\rangle$ be an abelian group. Let $(r, m) \longrightarrow r m$ be a mapping of $R \times M$ into M such that
i) $r\left(m_{1}+m_{2}\right)=r m_{1}+r m_{2}$
ii) $\left(r_{1}+r_{2}\right) m=r_{1} m+r_{2} m$
iii) $\left(r_{1} r_{2}\right) m=r_{1}\left(r_{2} m\right)$
iv) $1 . m=m \quad$ if $1 \in R$
for all $m, m_{1}, m_{2} \in M$ and $r, r_{1}, r_{2} \in R$. Then M is called a left R -module.

Remarks 1.1.2 :

a) $r m$ is called is called the scalar multiplication or just multiplication of m by r on the left.
b) Right R-modules can also be defined similarly.
c) If R is a commutative ring, every left module will be a right module or vice versa.
d) In a commutative ring R we will not distinguish between left and right R -modules and we and we simply call them R -modules.
e) If R is a field, the R-module is called a vector space.

Examples 1.1.3 :

1. Any ring R can be regarded as a left R -module.

Define the scalar multiplication $r m$ for $r, m \in R$ as usual multiplication in R.
2. Any additive abelian group G is a left $\mathrm{L}-$ module. For an abelian group $\langle G,+\rangle$ define

$$
n a=a+a+\ldots+a \text { (n times) }, \quad \text { for } \mathrm{n}>0
$$

$$
0 \cdot a=0
$$

and

$$
(-n) a=(-a)+(-a)+\ldots+(-a)(\mathrm{n} \text { times }), \quad \text { for } \mathrm{n}>0
$$

Then G is a L-module.
3. Let $\langle G,+\rangle$ be an abelian group.

$$
R=\{f / f: G \rightarrow G \text { is a group homomorphism. }\}
$$

$\langle R,+, \circ\rangle$ is a ring, where $f+g$ and f o g are defined by

$$
(f+g)(x)=f(x)+g(x) \quad \forall x \in G
$$

and $\quad(f \circ g)(x)=f[g(x)]$
G is a left R -module where the scalar product $f x$ is defined by

$$
f x=f(x) \quad \text { for } f \in R \text { and } x \in G
$$

4. Let $R[x]$ denote a polynomial ring over the ring R in an indeterminate x. Then $R[x]$ is a left R-module under the scalar multiplication defined by

$$
\begin{aligned}
r \cdot f(x) & =r\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \\
& =\left(r a_{0}\right)+\left(r a_{1}\right) x+\cdots+\left(r a_{n}\right) x^{n} \quad \text { for } r \in R \text { and } f(x) \in R[x]
\end{aligned}
$$

where $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
5. Let R be any ring and let I be a left ideal in R. Then $\langle I,+\rangle$ is an abelian group and for any $r \in R$ and $a \in I, r a \in I$ and this scalar multiplication $(r, a) \longrightarrow r a$ from $R \times$ $I \rightarrow I$ satisfies all the conditions stated in the definition. Hence I is a left R-module.

Exercise

1. Define right R-module M.
2. Give some examples of right R-modules.
3. Find an example of a left R-module which is not a right R-module.
4. Find an example of a right R -module which is not a left R -module.

Simple Properties :

Here onwards all modules are left modules otherwise stated.
Theorem 1.1.4 : Let M be any R-module. Then
for all $m \in M$
for all $r \in R$
for all $r \in R$
i) $0 \cdot m=0$
ii) $r \cdot 0=0$
iii) $(-r) \cdot m=(-r m)=r \cdot(-m)$

Proof :

i) $r \cdot m=(r+0) \cdot m$

Hence, $r m+0=r m+0 \cdot m$
This shows that $0 \cdot m=0$
ii) $r \cdot m=r \cdot(m+0)$

Thus, $r m+0=r m+r \cdot 0$
But then $r \cdot 0=0$
iii) $0=0 \cdot m$,

$$
=[r+(-r)] m
$$

$$
=r m+(-r) m
$$

Hence, $-(r m)=(-r) m$

Also,

$$
\begin{aligned}
& \qquad \begin{aligned}
0 & =r \cdot 0, \\
& =r(m+(-m)) \\
& =r m+r(-m)
\end{aligned} \\
& \text { Hence }, \quad-(r m)=r(-m)
\end{aligned}
$$

From (1) and (2), we get,

$$
(-r) m=-(r m)=r(-m), \quad \text { for all } r \in R \text { and } m \in M
$$

Worked Examples

Example 1.1.5 : Let M be an R-module. Show that the set $\{x \in R / x M=\{0\}\}$ is an ideal of R , where $x M=\{x m / m \in M\}$.

Solution : Let $I=\{x \in R / x M=\{0\}\}$.
(i) By theorem
$m(1), 0 \cdot m=0$, $0 \cdot M=\{0\}$
imply

$$
0 \in I
$$

Thus, $\quad I \neq \phi$.
(ii) Let $x, y \in I$
$x, y \in I \quad \Rightarrow \quad x M=\{0\}$ and $y M=\{0\}$
Now, for any $m \in M$, we have
$(x-y) m=[x+(-y)] m$

$=x m+(-y) m$	
$=x m-y m$	
$=0-0$	
(by definition) theorem 1.1.4 (iii)	
$=0 x, y \in R$ imply xm $=0$ and $\mathrm{ym}=0$	

Thus, $\quad(x-y) m=0$ for all $m \in M$.
Hence, $(x-y) M=\{0\}$.
This shows that $x-y \in I$, for all $x, y \in I$.
(iii) Let $r \in R$ and $x \in I$.

$$
\begin{array}{rlrl}
x \in I \quad & & x M=\{0\} & \\
& \Rightarrow \quad x \cdot m=0, & & \text { for each } m \in M . \\
\text { Hence, } & & \{r x\} m=(r)(x m)=r .0=0, & \\
\text { (by theorem 1.1.4) }
\end{array}
$$

Hence, for $r \in R$ and $x \in I$, we get $r x \in I$.
Similarly,

$$
(x r) m=x(r m)=0, \quad \text { as } x \in I \text { and } r m \in M \text {, for any } r \in R .
$$

Hence, given $x \in I$ and $r \in R, r x \in I$ and $x r \in I$.
From (i), (ii) and (iii), we get,
I is an ideal in R.

Remark : Let M be an R-module.
If the ideal $\{x \in R / x M=\{0\}\}$ is the zero ideal in R.
i.e., if $\{x \in R / x M=\{0\}\}=\{0\}$, then M is called a faithful module.

Example 1.1.6 : Let M and N be an R-modules. Define ' + ' in $M \times N$ by

$$
(x, y)+(z, t)=(x+z, y+t) \quad \text { for }(x, y),(z, t) \in M \times N
$$

and the scalar multiplication ${ }^{\prime} \cdot$ by

$$
r \cdot(x, y)=(r \cdot x, r \cdot y) \quad \text { for all } r \in R,(x, y) \in R \times R
$$

Then, it can easily verified that $M \times N$ is an R-module.

Remarks 1.1.7:

(1) The R-module $M \times N$ is called the direct product (external) of R-modules M and N.
(2) On the same line we can define the direct product (external) of any finite number of Rmodules.

Example 1.1.8 : Let R be a ring. Define

$$
R^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) / x_{i} \in R\right\} \quad \text { for } n \in N .
$$

Then show that R^{n} is a R -module.
Solution : We know that every ring R is an R-module. Hence every ring R is an R -module.
Hence, $R^{n}=R \times R \times \ldots \times R$ is an R-module (being the direct product of n R -modules) by Example 1.1.6.
[Here in R^{n}, for $x, y \in R^{n}$ and where,

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad x_{i} \in R
$$

and

$$
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \quad y_{i} \in R
$$

we have,

$$
\begin{array}{ll}
& x+y=\left(x_{1}+y_{1}, x_{2}+y_{2} \ldots, x_{n}+y_{n}\right) \\
\text { and } & \left.r \cdot x=x=\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right)\right]
\end{array}
$$

Exercise

1. Let R be a field. Let $V=\{f f: R \rightarrow R$ be a ring homomorphism $\}$ show that V is a vector space over R.
2. Let M be a left R-module. Define $(m, r) \rightarrow r m$ for each $m \in M$ and $r \in R$ as a mapping from $M \times R$ to M. Show that M is a right module.
3. Let M be an R-module. For $x \in M$, show that $\{r \in R / r x=0\}$ is a left ideal in R.

1.2 SUBMODULES :

Definition 1.2.1: Let M be an R-module. A non empty subset N of an R-module M is called R-submodule (or submodule) of M if
(i) $a-b \in N$,
for all $a, b \in N$
(ii) $r \cdot a \in N$, for all $r \in R, a \in N$

Remark 1.2.2 :

(i) Not every subset of an R-module M is a submodule of M.
(ii) If N is a R-submodule of an R -module M then $\langle N,+\rangle$ is a (normal) subgroup of $\langle M,+\rangle$ which is closed under scalar multiplication.
(iii) If N is a R-submodule of an R -module of M, then N itself is a R-module.
(iv) $\{0\}$ and M are trivial submodule of an R-module M.

Examples 1.2.3 :

1. Let R be a ring. Then we know that the ring R is an R-module. Any left ideal I of R is a R-submodule.
2. Let M be any R-module. Let $x_{1}, x_{2}, \ldots, x_{n} \in M$ (n is finite). Then the set

$$
N=\left\{\sum_{i=1}^{n} r_{i} x_{i} / r_{i} \in R\right\}
$$

is a submodule of M.
Solution : Let $a, b \in N \Rightarrow a=\sum_{i=1}^{n} r_{i} x_{i}$ and $b=\sum_{i=1}^{n} r_{i}{ }_{i} x_{i}$ where $r_{i}, r_{i}^{\prime} \in R$.
(i) $a-b=\sum_{i=1}^{n} r_{i} x_{i}-\sum_{i=1}^{n} r^{\prime}{ }_{i} x_{i}$

Hence, $\quad a-b=\sum_{i=1}^{n}\left(r_{i}-r^{\prime}{ }_{i}\right) x_{i}$
as

$$
\begin{array}{ll}
r_{i}-r_{i}^{\prime} \in R, & \text { for each } i, \text { we get } \\
a-b \in N &
\end{array}
$$

(ii) $r \cdot a=r \cdot \sum_{i=1}^{n} r_{i} x_{i}$

Hence, $r \cdot a=\sum_{i=1}^{n}\left(r \cdot r_{i}\right) x_{i}$
as

$$
\begin{array}{ll}
r, r_{i} \in R, & \text { for each } i, \text { we get } \\
r \cdot a \in N &
\end{array}
$$

Thus, for any $a, b \in N$ and $r \in R$, we have,

$$
a-b \in N \quad \text { and } \quad r \cdot a \in N .
$$

Hence, N is a submodule of R -module M .

Remarks 1.2.4 :

(i) As a special case for example 2 we get for any R-module M , the set

$$
R x=\{r x / r \in R\}
$$

is a R -module of M , for any $x \in R$.
(ii) If $1 \in R$, then the submodule Rx will contains the element x as $x=1 \cdot x$.

Example 1.2.5 : Let M be an R-module and $x \in M$.
Define $\quad N=\{r x+n x / r \in R$ and $n \in Z\}$.
Then, N is a R-submodule of M containing x.
Solution : Obviously, $\langle N,+\rangle$ is a (abelian) subgroup of $\langle M,+\rangle$.
Hence, only to check that $a(r x+n x) \in N$ for any $a \in R$ and $(r x+n x) \in N$.

Case I: $n>0$

$$
\begin{array}{rll}
a(r x+n x) & =a[r x+(x+x+\cdots+x n \text { times })] & \\
= & a(r x)+(a x+a x+\cdots+\text { ax } n \text { times })] & \ldots \text { by the definition of module } \\
= & (a r) x+(a+a+\cdots+a n \text { times }) x] & \ldots \text { by the definition of module } \\
= & {[a r+(a+a+\cdots+a n \text { times })] x} & \ldots \text { by the definition of module } \\
= & u \cdot x \quad \ldots \ldots \text { where } u=[a r+(a+a+\cdots+a n \text { times })]
\end{array}
$$

As $u \in R$, we get $a(r x+n x) \in N$.
Case II: $n<0$.

$$
\begin{aligned}
a(r x+n x) & =a[r x+((-x)+(-x)+\cdots+(-x) n \text { times })] \\
= & a(r x)+a(-x)+a(-x)+\cdots+a(-x) n \text { times }) \\
= & (a r) x+(-a) x+(-a) x+\cdots+(-a) x n \text { times }) x]
\end{aligned}
$$

... by the property of the module Theorem 1.1.4

$$
\begin{aligned}
& =[(a r)+(-a)+(-a)+\cdots+(-a)] x \ldots \text { by the definition of module } \\
& =t \cdot x \quad \ldots \ldots . \text { where } t=\operatorname{ar}+[(-a)+(-a)+\cdots+(-a)(n \text { times })]
\end{aligned}
$$

As $t \in R$ we get $a(r x+n x) \in N$ when $\mathrm{n}<0$.
Case III: $n=0$

$$
\begin{array}{rlrl}
a(r x+n x) & =a[r x+0 \cdot x] & \ldots \text { since } \mathrm{n}=0 \\
& =a[r x+0] & \ldots \text { since } 0 \cdot x=0 \\
& =a(r x)+a \cdot 0 & & \\
& =(a r) x+0 \cdot x \in N & & \\
& =(a r) x+0 &
\end{array}
$$

Thus, from all the cases we get $a(r x+n x) \in N$.
Hence, N is a R-submodule of the module M.
Now selecting $r=0$ and $n=1(1 \in Z)$ we get

$$
0 \cdot x+1 \cdot x=x \in N
$$

Thus, the R-submodule N contains the element x.

Remarks 1.2.6:

(1) If k is a submodule of M containing x, then $N \subseteq K$. For any $r \in R, r x \in K$ and for any $n \in Z$,

$$
n x=x+x+\cdots+x(n \text { times }) \in K, \quad K \text { being a submodule of } M .
$$

But then $(r x+n x) \in K$ for any $r \in R$ and $n \in Z$.
Hence, $N \subseteq K$.
Thus, N is the smallest submodule of M containing x. Generally we denote N by $\langle x\rangle$.
(2) If $1 \in R$, then for $r \in R$ and $n \in N$

$$
\begin{aligned}
r x+n x & =\{r+[1+\ldots+1(n \text { times })]\} x \\
& =t x \quad \text { where } t=r+(1+\ldots+1) n \text { times }
\end{aligned}
$$

as $t \in R$ we get $r x+n x \in R x$
Hence, $N \subseteq R x$. But $x \in N$ implies $R x \subseteq N$.
Thus, $N=R x=\langle x\rangle ; \quad$ if $1 \in R$.

Example 1.2.7 : Let M be an R-module. Define

$$
R M=\left\{\sum_{i=1}^{n} r_{i} m_{i} / r_{i} \in R, m \in M \text { and } n \text { is finite }\right\}
$$

Then RM is a submodule of M.
Solution : Let $a, b \in R M$ and $r \in R$.
Then, $\quad a=\sum_{i=1}^{n} r_{i} m_{i}, \quad \quad r_{i} \in R, m_{i} \in M$ and n is finite.
and $\quad b=\sum_{i=1}^{k} s_{i} t_{i}, \quad s_{i} \in R, t_{i} \in M$ and k is finite.
(i) $a-b=\sum_{i=1}^{n} r_{i} m_{i}-\sum_{i=1}^{k} s_{i} t_{i}$
$=r_{1} m_{1}+r_{2} m_{2}+\cdots+r_{n} m_{n}+\left(-s_{1}\right) t_{1}+\left(-s_{2}\right) t_{2}+\cdots+\left(-s_{k}\right) t_{k}$
$\in R M \quad$ as $r_{i} \in R,\left(-s_{i}\right) \in R$ and the sum contains at most $n+k$ elements.
(ii) $r \cdot a=r\left(\sum_{i=1}^{n} r_{i} m_{i}\right)$
$=\sum_{i=1}^{n} r\left(r_{i} m_{i}\right)$
$=\sum_{i=1}^{n}\left(r r_{i}\right) m_{i}$
as $r r_{i} \in R$ (for each i) we get $r \cdot a \in R M$.
Thus, from (i) and (ii), we get, RM is a R-submodule of M.

Theorem 1.2.8 : Let M be an R-module. For any two submodules N_{1} and N_{2} of M, $N_{1}+N_{2}$ is a submodule of M , containing N_{1} and N_{2} both.
Proof: $\quad N_{1}+N_{2}=\left\{n_{1}+n_{2} / n_{1} \in N_{1}, n_{2} \in N_{2}\right\}$.
Obviously, if $a, b \in N_{1}+N_{2}$ then $a-b \in N_{1}+N_{2}$. (as $\left\langle N_{1},+\right\rangle$ and $\left\langle N_{2},+\right\rangle$ are subgroups of an abelian group $\langle M,+\rangle$).
Hence, $\left\langle N_{1}+N_{2},+\right\rangle$ is a normal subgroup of $\langle M,+\rangle$.
Let $\quad a \in R$ and $x \in N_{1}+N_{2}$.

$$
\begin{aligned}
& x \in N_{1}+N_{2} \quad \Rightarrow \quad x=n_{1}+n_{2} \quad \text { for } n_{1} \in N_{1}, n_{2} \in N_{2} \\
& a x=a\left(n_{1}+n_{2}\right)=a n_{1}+a n_{2} \quad\left(\text { Since } n_{1}, n_{2} \in M \text { and } M \text { is a R-module }\right)
\end{aligned}
$$

Now, as N_{1} is a R-submodule, a $n_{1} \in N_{1}$.
Similarly,

$$
N_{2} \text { is a R-submodule will imply that } a n_{2} \in N_{2} \text {. }
$$

Therefore, $a n_{1}+a n_{2} \in N_{1}+N_{2}$.
Thus,

$$
a x=a n_{1}+a n_{2} \in N_{1}+N_{2}, \quad \text { for any } a \in R \text { and } x \in N_{1}+N_{2} .
$$

This shows that $N_{1}+N_{2}$ is a submodule of an R-module M. $n_{1} \in N_{1}$ can be written as $n_{1}=n_{1}+0,0 \in N_{2}$.

Hence, $N_{1} \subseteq N_{1}+N_{2}$.

Similarly, $N_{2} \subseteq N_{1}+N_{2}$.

More generally, we get,
If $\left\{N_{i}\right\}, 1 \leq i \leq k$ is the family of submodules of a module M . Then

$$
\sum_{i=1}^{k} N_{i}=\left\{x_{1}+x_{2}+\cdots+x_{k} / x_{i} \in N_{i}, 1 \leq i \leq k\right\}
$$

is the smallest submodule of m containing each $N_{i},(1 \leq i \leq k)$
Proof: Let $S=\left\{x_{1}+x_{2}+\cdots+x_{k} / x_{i} \in N_{i}, 1 \leq i \leq k\right\}$. Then $S \neq \phi$ as $N_{i} \neq \phi \quad \forall i$.
(I) (i)If $x_{1}+x_{2}+\cdots+x_{k}$ and $y_{1}+y_{2}+\cdots+y_{k}$ are elements of S , then

$$
\begin{aligned}
& \left(x_{1}+x_{2}+\cdots+x_{k}\right)-\left(y_{1}+y_{2}+\cdots+y_{k}\right) \\
& \quad=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\cdots+\left(x_{k}-y_{k}\right) \\
& \in S \quad \text { as }\left(x_{i}-y_{i}\right) \in N_{i} \text { for each } i, 1 \leq i \leq k
\end{aligned}
$$

(ii) Further if $r \in R$ and $x_{1}+x_{2}+\cdots+x_{k} \in S$ then

$$
\begin{aligned}
r \cdot\left(x_{1}+x_{2}+\cdots+x_{k}\right) & =r \cdot x_{1}+r \cdot x_{2}+\cdots+r \cdot x_{k} \\
\in S, & \text { as } r \cdot x_{i} \in N_{i} \text { for each } i, 1 \leq i \leq k
\end{aligned}
$$

Thus, from (i) and (ii), S is a submodule of M .
(II) Let $x \in N_{i}$ then $x=0+0+\cdots+0+x+0+\cdots+0$

$$
\uparrow i^{t h} \text { place }
$$

Hence, $x \in S$. This shows that $N_{i} \subseteq S$.
Thus, we get, $N_{i} \subseteq S$

$$
\forall i, 1 \leq i \leq k
$$

Hence, $\sum_{i=1}^{k} N_{i} \subseteq S$, S being a submodule of M .
(III) Let T is any other submodules o M containing each $N_{i}, 1 \leq i \leq k$. Then obviously $S \subseteq T$.

From (I), (II) and (III) we get, S is the smallest submodule of M containing each N_{i}, $1 \leq i \leq k$.
Hence, $\quad S=\sum_{i=1}^{k} N_{i}$.

Theorem 8.2.9 : Let M be an R-module. If N_{1} and N_{2} are R-submodules of M , then $N_{1} \cap N_{2}$ is a submodule of M .

Proof : As $0 \in N_{1} \cap N_{2}$, we get $N_{1} \cap N_{2} \neq \phi$.

Let $x, y \in N_{1} \cap N_{2}$ then $x, y \in N_{1}$ and N_{1} is a submodule of M will give $x-y \in N_{1}$. Similarly,
$x, y \in N_{2}$ and N_{2} is a submodule of M will give $x-y \in N_{2}$.
Thus, $x, y \in N_{1} \cap N_{2} \Rightarrow x-y \in N_{1} \cap N_{2}$
Again, for any $r \in R$ and any $x \in N_{1} \cap N_{2}$, we get, $r x \in N_{1}$ and $r x \in N_{2}$, as N_{1} and N_{2} are submodules of M.

But then $r x \in N_{1} \cap N_{2}$.
Thus, $\quad x-y \in N_{1} \cap N_{2}, \quad$ for all $x, y \in N_{1} \cap N_{2}$
and $\quad r x \in N_{1} \cap N_{2}, \quad$ for all $x \in N_{1} \cap N_{2}, r \in R$
Hence, $N_{1} \cap N_{2}$ is a R-submodules of M.

Remark 1.2.10 : More generally, any arbitrary intersection of R-submodules of a given Rmodule M is a R -submodules of M .
i.e. if $\left\{N_{\alpha} / \alpha \in \Delta\right\}$ is a family of R -submodules of a given R -submodule M , then
$\bigcap_{\alpha \in \Delta} N_{\alpha}$ is a R - submodule of M.

Theorem 1.2.11 : A, B, C are R -submodules of an R -submodule M such that $A \subseteq B$. Then

$$
A+(B \cap C)=B \cap(A+C)
$$

Proof : As $A \subseteq B$ and $A \subseteq A+C$, we get,

$$
\begin{equation*}
A \subseteq B \cap(A+C) \tag{1}
\end{equation*}
$$

Again, $B \cap C \subseteq B$ and $B \cap C \subseteq C$ and $C \subseteq A+C$ will imply

$$
\begin{equation*}
B \cap C \subseteq B \cap(A+C) \tag{2}
\end{equation*}
$$

From (1) and (2), we get,

$$
\begin{equation*}
A+(B \cap C) \subseteq B \cap(A+C) \tag{I}
\end{equation*}
$$

(Since A and $B \cap C$ are normal subgroups of $\langle M,+\rangle$)
Now, let $x \subset B \cap(A+C)$ then $x \subset B$ and $x \subset A+C$.
Hence,

$$
\begin{array}{llll}
x=a+c, & & \text { for some } a \subset A \text { and } c \subset C \\
a \in A \text { and } & A \subseteq B & \Rightarrow & a \in B \\
x \in B \text { and } & a \in B & \Rightarrow & x-a \in B \text { (Since B is submodule) }
\end{array}
$$

Thus, $\mathrm{c}=\mathrm{x}-\mathrm{a}$ will imply $c \in B$. But then $\mathrm{x}=\mathrm{a}+\mathrm{c}$ will imply $x \in A+(B \cap C)$.
As $a \in A$ and $c \in B \cap C$.

This shows that

$$
\begin{equation*}
B \cap(A+C) \subseteq A+(B \cap C) \tag{II}
\end{equation*}
$$

From (I) and (II), we get

$$
A+(B \cap C)=B \cap(A+C)
$$

Worked Examples 1.2.12

Example 1 : Show by an example that union of any two submodules of an R-module need not be a submodule.

Solution : Consider Z as Z-module and let

$$
\begin{aligned}
& N_{1}=<2>=\{0, \pm 2, \pm 4, \ldots\} \\
& N_{2}=<3>=\{0, \pm 3, \pm 6, \ldots\}
\end{aligned}
$$

Then N_{1} and N_{2} are submodules of the Z-module Z but $N_{1} \cup N_{2}$ is not a Z-module.

Example 2 : Show that union of any chain of submodules of a given R-module M is a Rsubmodule of M .

Solution : Let $N_{1} \subseteq N_{2} \subseteq \cdots$ be any chain of submodules of a given R-module M. to prove that $\bigcup_{i=1} N_{i}$ is a submodule of M.
(i) Obviously, $\bigcup_{i=1} N_{i} \neq \phi$.
(ii) Let $a, b \in \bigcup_{i=1} N_{i}$. Then $a \in N_{i}$ and $b \in N_{j}$ for some i and j.

If $i \leq j$ then $N_{i} \subseteq N_{j}$ and hence $a, b \in N_{j}$ is a submodule of $\mathrm{M}, a-b \in N_{j}$ and hence

$$
a-b \in \bigcup_{i=1} N_{i} .
$$

(iii) Let $r \in R$ and $a \in \bigcup_{i=1} N_{i}$ implies $a \in N_{i}$ for some i.

As N_{i} is a submodule of $\mathrm{M}, r a \in N_{j}$ and hence $r a \in \bigcup_{i=1} N_{i}$.
From (i), (ii) and (iii) we get $\bigcup_{i=1} N_{i}$ is a submodule of M.

Example 3 : Give examples of three R-submodules A, B, C such that

$$
A \cap(B+C) \neq(A \cap B)+(A \cap C)
$$

Solution : Consider the module $\mathbb{R}^{(2)}$ over $\mathbb{R} .\left[\mathbb{R}^{(2)}\right.$ is a vector space over the field $\left.\mathbb{R}\right]$.
Let $B=\{(x, 0) / x \in \mathbb{R}\}, C=\{(0, y) / y \in \mathbb{R}\}$ and $A=\{(z, z) / z \in \mathbb{R}\}$
Clearly, A, B, C are submodules of the R -module $\mathbb{R}^{(2)}$.
Then, $\quad B+C=\mathbb{R}^{(2)}$
and $\quad A \cap(B+C)=A \cap \mathbb{R}^{(2)}=A$
Now, $\quad A \cap B=(0,0) \quad$ and $\quad A \cap C=(0,0)$
Hence,

$$
\begin{equation*}
(A \cap B)+(A \cap C)=\{(0,0)\} \tag{II}
\end{equation*}
$$

Hence, from (I) and (II), we get,

$$
A \cap(B+C) \neq(A \cap B)+(A \cap C)
$$

Definition 1.2.13 : Simple Module :

A R-module M is called simple if its only submodules are $\{0\}$ and M .

Theorem 1.2.14 : Let R be a ring with unity. Let $M \neq\{0\}$, be am R-module. Then M is simple iff $M=R x$ for any $x \neq 0$ in M.

Proof: Only if part :

Let M be a simple R-module. Let $x \neq 0$. Then $R x=\{r x / r \in R\}$ is a submodule of M containing x. (See remark (1) of example 2).

As $R x \neq\{0\}$ and as M is a simple module, $R x=M$. Thus $M=R x$ for any $x \neq 0$ in M.

If part :

Let $M=R x$ for each $x \neq 0$ in M.
To prove that M is a simple module.
Let N be a nonzero submodule of M . Select any $x \neq 0$ in N .
Then by assumption, $M=R x$. As $x \in N$ we get $R x \subseteq N$
i.e. $\quad M \subseteq N$ and hence $N=M$.

This shows that M is a simple module.

We know that intersection of any number of submodules of a given R-module M is a submodule of M. as any non-empty subset S of an R-module M need not be a R-module, we introduce the concept of submodule generated by S.

Definition 1.2.15: Let S be any nonempty subset of an R-module M. The submodule generated by S in M is the smallest submodule of M containing S.

This is denoted by $\langle S\rangle$.
Thus,

$$
\langle S\rangle=\cap\{N / N \text { is a submodule containing } \mathrm{S}\}
$$

If $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a finite set, then $\langle S\rangle$ is also written as $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.

Definition 1.2.16 : An R-module M is called finitely generated if $M=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ for each $x_{i} \in M, 1 \leq i \leq n$.
The elements $x_{1}, x_{2}, \ldots, x_{n}$ are said to generate M.

Definition 1.2.17 : An R-module M is called a cyclic module if $M=\langle x\rangle$, for some $x \in M$.

Theorem 1.2.18: Let M be an R-module. Let $M=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. Then

$$
M=\left\{r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n} / r_{i} \in R, 1 \leq i \leq n\right\}
$$

In this case we write $M=\sum_{i=1}^{n} R x_{i}$.
Proof: Let $S=\left\{r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n} / r_{i} \in R, 1 \leq i \leq n\right\}$ then S is a submodule of M.

$$
1 \in R \quad \Rightarrow \quad 1 \cdot x_{i} \in R x_{i} \quad \text { for each } i, 1 \leq i \leq n
$$

Again $R x_{i} \subseteq S$ for each $i, 1 \leq i \leq n$.
Hence $\quad x_{i} \in S \quad$ for each $i, 1 \leq i \leq n$.
If N is any other submodule containing $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ then by the definition of submodule it follows that

$$
r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n} \in N \text { for } r_{i} \in R
$$

This will imply $S \subseteq N$.
Thus, we have proved that S is the submodule of M containing $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Hence, $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle=S$.
Hence, by data $M=S$.

Remark 1.2.19 : The set of generators of a module need not be unique.
Let $M=\{f(x) \in F[x] /$ degree of $f(x) \leq n\}$. Then M is a vector space over the field. Then both $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ and $\left\{1,1+x, x^{2}, \ldots, x^{n}\right\}$ will generate M.

Definition 1.2.20 : Quotient Modules :

Let M be an R-module and N be a submodule of M. Then $\langle N,+\rangle$ is a normal subgroup of $\langle M,+\rangle$ and hence consider

$$
\begin{aligned}
\frac{M}{N} & =\text { the set of cosets [right/left] of } \mathrm{N} \text { in } \mathrm{M} \\
& =\{m+n / m \in M\}
\end{aligned}
$$

Define addition and the Scalar multiplication on $\frac{M}{N}$ by
(i) $\left(m_{1}+N\right)+\left(m_{2}+N\right)=\left(m_{1}+m_{2}\right)+N$
(ii) $r \cdot(m+N)=r \cdot m+N$ for $m_{1}, m_{2}, m \in M$ and $r \in R$.
Then it can be easily verified that $\left\langle\frac{M}{N},+, \cdot\right\rangle$ is a R-module. This R-module is called the quotient module of M by the submodule N.

Definition 1.2.21 : Submodule Generated by A :

Let M be an R-module and let $A \subseteq M$. The smallest submodule of M containing the set A is called the submodule generated by A and is denoted by $\langle A\rangle$. Thus,

$$
\begin{equation*}
\langle A\rangle=\cap\{N / N \text { is a submodule of } \mathrm{M} \text { such that } A \subseteq N\} \tag{1}
\end{equation*}
$$

As M is a submodule of M containing A the family of sets representing R.H.S. of (1) is non empty.

1.3 Homomorphism :

Definition 1.3.1 : Let M and N be R-modules. A mapping $f: M \rightarrow N$ is called Rhomorphism or a module homorphism if it satisfy the following conditions.
(i) $f(x+y)=f(x)+f(y)$
(ii) $f(r x)=r \cdot f(x)$
for all $x, y \in M$ and $r \in R$.

Remarks 1.3.2:

(i) If $f: M \rightarrow N$ is a module homorphism, then $f(0)=0, f(-x)=-f(x)$ and hence

$$
f(x-y)=f(x)-f(y), \quad \text { for } x, y \in M
$$

(ii) The collection of all R-homorphisms $f: M \rightarrow N$ is denoted by $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$.
(iii) A R-homorphism $f: M \rightarrow M$ is called an endomorphism on M and the set of
endomorphism on M is denoted by $\operatorname{end}_{R}(M, M)$.

Examples 1.3.3 :

Ex 1. Let M and N be R-modules and define $f: M \rightarrow N$ by $f(\mathrm{~m})=0$ for each $m \in M$. Then f is an R-homomorphism and is called a zero homorphism.

Ex 2. Let M be an R-module. Define $i: M \rightarrow M$ by $i(m)=m$ for each $m \in M$. Then the identity map is an R-endomorphism.
Ex 3. Let R be a commutative ring and let M be an R-module. Fix up any $r \in R$. Define the $\operatorname{map} f: M \rightarrow M$ by

$$
f(m)=r \cdot m, \quad \text { for each } m \in M
$$

Then f is an endomorphism.
Solution : Let $m_{1}, m_{2} \in M$.
Then $f\left(m_{1}+m_{2}\right)=r \cdot\left(m_{1}+m_{2}\right)$

$$
=r m_{1}+r m_{2}
$$

Thus, $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$
Again for $m_{1} \in M$ and $r_{1} \in R$ we get,

$$
\begin{aligned}
f\left(r_{1} m_{1}\right) & =r \cdot\left(r_{1} m_{1}\right) \\
& =\left(r \cdot r_{1}\right) m_{1} \\
& =\left(r_{1} \cdot r\right) m_{1} \\
& =r_{1} \cdot\left(r m_{1}\right) \\
& =r_{1} \cdot f\left(m_{1}\right)
\end{aligned}
$$

$$
=\left(r_{1} \cdot r\right) m_{1} \quad \ldots \text { Since } \mathrm{R} \text { is commutative. }
$$

Thus, $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$
and $\quad f\left(r_{1} m_{1}\right)=r_{1} \cdot f\left(m_{1}\right) \quad$... for all $m_{1}, m_{2} \in M, r_{1} \in R$
Hence, f is an R-endomorphism.

Ex 4. Let R be a ring. Consider the module $R^{(n)}$ over R and the ring R as an R -module. (See 1.1.4 problem 4). Define $f: R^{(n)} \rightarrow R$ by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i} \quad \text { for a fixed } i, 1 \leq i \leq n
$$

Then f is a R-homomorphism.
Solution : Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{(n)}$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{(n)}$.
Then

$$
\begin{gathered}
f\left[\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]=f\left[\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)\right] \\
=x_{i}+y_{i}
\end{gathered}
$$

$$
=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+f\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Further for any $r \in R$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{(n)}$ we get

$$
\begin{gathered}
f\left[r \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]=f\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right) \\
=r \cdot x_{i} \\
=r \cdot f(x)
\end{gathered}
$$

Thus,

$$
f\left[\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right]=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+f\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

and $\quad f\left[r \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]=r \cdot f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\ldots \text { for all }\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{(n)}, r \in R
$$

Hence, f is a R-homomorphism.

Ex 5. Let M be R-module and N be R-submodule of M . Define $f: M \rightarrow \frac{M}{N}$ by

$$
f(m)=m+N
$$

Then f is an epimorphism.
Solution : For $m_{1}, m_{2} \in M$ we get

$$
\begin{aligned}
f\left(m_{1}+m_{2}\right) & =\left(m_{1}+m_{2}\right)+N & & \ldots \text { by definition of } f \\
& =\left(m_{1}+N\right)+\left(m_{2}+N\right) & & \ldots \text { by definition of }+ \text { in } \frac{M}{N} \\
& =f\left(m_{1}\right)+f\left(m_{2}\right) & & \ldots \text { by definition of } f
\end{aligned}
$$

Further, for any $r \in R$ and $m \in M$ we get

$$
\begin{aligned}
f(r m) & =r m+N & & \ldots \text { by definition of } f \\
& =r(m+N) & & \ldots \text { by definition of } \cdot \mathrm{i} \\
& =r f(m) & & \ldots \text { by definition of } f
\end{aligned}
$$

Thus, $\quad f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$
and $\quad f(r m)=r f(m) \quad$... for all $m_{1}, m_{2}, m \in M, r \in R$
Hence, f is a R-homomorphism.
Clearly, f is onto as for $m+N \in \frac{M}{N}$, we get $m \in M$ and $f(m)=m+N$.
Thus, f is an epimorphism.

Remark :

(i) This epimorphism $f: M \rightarrow \frac{M}{N}$ defined by $f(m)=m+N$ is called a natural or
canonical homomorphism.
(ii) Any quotient module $\frac{M}{N}$ of M by the submodule N is always a homomorphic image of M under the canonical mapping.

Theorem 1.3.4 : Let M be an R -module and let N be R -submodule of M . The submodules of the quotient module $\frac{M}{N}$ are of the form $\frac{U}{N}$, where U is a submodule of M containing N.

Proof: Let $f: M \rightarrow \frac{M}{N}$ be the canonical mapping. We know that f is an onto homomorphism (1.2, example 5). Hence $\frac{M}{N}=f(M)=\{f(m) / m \in M\}$.

Let T be an R-submodule of $\frac{M}{N}$. Define

$$
U=\{x \in M / f(x) \in T\}
$$

Claim 1: U is a R -submodule of M .
(i) $U \neq \phi$ as $T \neq \phi$.
(ii) Let $x, y \in U$. Then $f(x), f(y) \in T$.

As T is a submodule of $\frac{M}{N}, f(x)-f(y) \in T$.
f being a homomorphism,

$$
f(x)-f(y) \in T \quad \Rightarrow \quad f(x-y) \in T
$$

By the definition of U , we get $x-y \in U$.
(iii) Let $r \in R$ and $x \in U$. Then $f(x) \in T$.
f being an homomorphism,

$$
f(r x)=r f(x)
$$

As $f(x) \in T$ and $r \in R$

$$
r \cdot f(x) \in T, \quad \text { T being a submodule of } \frac{M}{n} .
$$

i.e. $\quad f(r x) \in T$.

This gives $r x \in U$.
Form (i), (ii) and (iii) it follows that U is a R-submodule of M .

Claim 2: $N \subseteq U$.

Let $n \in N$. Then $f(n)=n+N=N \in T$. (Since N is the identity element of $\frac{M}{N}$ and T
is a submodule of $\frac{M}{n}$).
But then, by the definition of $\mathrm{U}, n \in U$ and hence $N \subseteq U$.

Claim 3: $\mathrm{T}=\mathrm{f}(\mathrm{U})$

Let $\quad x+N \in T$.
As $\quad x \in M$ and $f(x)=x+N \in T$, we get $x \in U$.
But this shows $f(x) \in f(U)$.
Thus,

$$
x+N \in T \quad \Rightarrow \quad f(x) \in T \quad \Rightarrow \quad f(x) \in f(U)
$$

Hence $\quad T \subseteq f(U)$.
As $\quad f(U) \subseteq T$,
By the definition of U, we get $T=f(U)$.
From claims 1, 2 and 3, for any submodule T of the quotient module M , there exists a submodule U of the module M, containing N and with $f(U)=T$.

But f being a canonical mapping, $f(U)=U+N$.
Hence, $\quad T=f(U) \Rightarrow T=U+N$.
Thus, any submodule T of $\frac{M}{N}$ is of the form $\frac{U}{N}$, where U is a submodule of M containing N.

This completes the proof.

Definition 1.3.5 : Let M and N be R-modules. Let $f: M \rightarrow N$ be a R-homomorphism.
The set

$$
\operatorname{ker} f=\{m \in M / f(m)=0\}
$$

is called the kernel of the homomorphism f and the set

$$
\operatorname{im} f=\{f(m) \in N / m \in M\}
$$

is called the image of f.

Theorem 1.3.6 : For any module homomorphism $f: M \rightarrow N$, kerf is a submodule of the module M and im f is a submodule of the module N .

Proof :

(I) To prove that kerf is a submodule of the module M.
(i) $\operatorname{ker} f \neq \phi$ as $f(0)=0$ implies $0 \in \operatorname{kerf}$.
(ii) Let $m_{1}, m_{2} \in \operatorname{kerf}$. Then $f\left(m_{1}\right)=0, f\left(m_{2}\right)=0$.

$$
\begin{array}{rlrl}
f\left(m_{1}-m_{2}\right) & =f\left(m_{1}+\left(-m_{2}\right)\right) & & \\
& =f\left(m_{1}\right)+f\left(-m_{2}\right) & & \ldots \mathrm{f} \text { is a homomorphism } \\
& =f\left(m_{1}\right)-f\left(m_{2}\right) & & \ldots f(-x)=-f(x) \text { for all } x \in M \\
& =0-0 & \ldots \because m_{1}, m_{2} \in \operatorname{kerf} \\
& =0 & &
\end{array}
$$

But $f\left(m_{1}-m_{2}\right)=0$ implies $m_{1}-m_{2} \in \operatorname{kerf}$.
Thus, $m_{1}-m_{2} \in \operatorname{kerf}$, for $m_{1}, m_{2} \in \operatorname{kerf}$.
(iii) Let $m \in \operatorname{kerf}$ and $r \in R$.

Then,

$$
\begin{aligned}
f(r m) & =r \cdot f(m) & \ldots & \ldots \mathrm{f} \text { is a homomorphism } \\
& =r \cdot 0 & \ldots & \ldots m \in \operatorname{ker} f \\
& =0 & & \ldots \text { See } 1.1 .3 \text { theorem } 1
\end{aligned}
$$

Thus, $f(r m)=0$ implies $r m \in \operatorname{kerf}$.
Thus, $r m \in \operatorname{kerf}$, for $r \in R$ and $m \in M$.
From (i), (ii) and (iii), we get kerf is a R-submodule of M.
(II) To prove that imf is a submodule of N .
(i) $\operatorname{imf} \neq \phi \quad$ as $M \neq \phi$.
(ii) Let $f\left(m_{1},\right), f\left(m_{2}\right) \in \operatorname{im} f$.
$f\left(m_{1}\right) \in \operatorname{imf} \quad \Rightarrow \quad m_{1} \in M$.
$f\left(m_{2}\right) \in \operatorname{imf} \quad \Rightarrow \quad m_{2} \in M$.
As M is a module, $m_{1}-m_{2} \in M$. But then $f\left(m_{1}-m_{2}\right) \in \operatorname{imf}$.
f being an homomorphism,

$$
f\left(m_{1}-m_{2}\right)=f\left(m_{1}\right)-f\left(m_{2}\right)
$$

Thus, $f\left(m_{1},\right), f\left(m_{2}\right) \in \operatorname{im} f$ will imply $f\left(m_{1}\right)-f\left(m_{2}\right) \in \operatorname{im} f$
(iii) Let $f(m) \in \operatorname{im} f$ and $r \in R$. But then $r m \in M$ as $m \in M, r \in R$ and M is an Rmodule.

Hence, $f(r m) \in \operatorname{im} f$.
As f is a homomorphism, $\quad f(r m)=r f(m)$.
Thus, given $f(m) \in \operatorname{im} f$ and $r \in R$ we get

$$
r f(m) \in \operatorname{im} f
$$

From (i), (ii) and (iii), we get, $\operatorname{im} f$ is a R -submodule of N .

Theorem 1.3.7 : Let M and N be R-modules and let $f: M \rightarrow N$ be R-homomorphism. Then f is one-one iff $\operatorname{kerf}=\{0\}$.

Proof : Only if part :

Let f be one-one.
To prove that $\operatorname{ker} f=\{0\}$. Let $x \in \operatorname{ker} f$. Then

$$
\begin{aligned}
x \in \operatorname{ker} f & \Rightarrow f(x)=0 \\
& \Rightarrow f(x)=f(0) \\
& \Rightarrow x=0
\end{aligned}
$$

Thus, $\operatorname{ker} f=\{0\}$.

If part :

Let $f: M \rightarrow N$ be R-homomorphism such that $\operatorname{ker} f=\{0\}$.
To prove that f is one-one.
Let $f(x)=f(y)$ for some $x, y \in M$.

$$
\begin{aligned}
f(x)=f(y) & \Rightarrow f(x)-f(y)=0 \\
& \Rightarrow \\
& \Rightarrow \quad f(x-y)=0 \\
& \Rightarrow \quad x-y \in \operatorname{ker} f \\
& \Rightarrow \quad x-y \in\{0\} \\
& \Rightarrow \\
& \quad x-y=0 \\
& x=y
\end{aligned}
$$

Thus, $f(x)=f(y) \quad \Rightarrow \quad x=y$
Hence, f is one-one.

Definition 1.3.8 : Let $f: M \rightarrow N$ be a module homomorphism. If f is both one-one and onto we say f is an R -isomorphism or module isomorphism.

Remark 1.3.9 :

(i) If $f: M \rightarrow M$ is an module isomorphism then $f^{-1}: N \rightarrow M$ is also a module isomorphism.
(ii) Any two R-modules M and N are said to be isomorphic if there exists an module isomorphism $f: M \longrightarrow N$. In this case we write $M \cong N$.
(iii) The relation \cong (being isomorphic) defined on the set of all R-modules is an equivalence relation.

Theorem 1.3.10 : Let M be a simple R-module. Any non zero homomorphism defined on M is an isomorphism.

Proof :Let $f: M \rightarrow M$ be R-homomorphism where M is a simple R-module.
To prove that f is an isomorphism.
(I) We know that $\operatorname{ker} f$ is a sub module of M.
M being simple, $\operatorname{ker} f=\{0\}$ or $\operatorname{ker} f=M$.
As f is a non zero homomorphism, $\operatorname{ker} f \neq M$.
Therefore, $\operatorname{ker} f=\{0\}$.
But then f is one-one.
(see Theorem 2).
(II) By Theorem 1, im f is a submodule of M .
M being simple, $\operatorname{im} f=\{0\}$ or $\operatorname{im} f=M$.
As f is a non zero homomorphism, $\operatorname{im} f \neq\{0\}$.
Therefore, $\operatorname{im} f=M$.
But then in this case f is onto.
From (I) and (II), we get the non zero homomorphism is both one-one and onto.
Hence, f is an isomorphism.

- Shur's Lemma :

Theorem 1.3.11 : Let M be a simple R-module. Then

$$
\operatorname{Hom}_{R}(M, M)=\{f: M \rightarrow M / f \text { is a } \mathrm{R}-\text { homomorphism }\}
$$

is a division ring.

Proof :

(I) To prove $\operatorname{Hom}_{R}(M, M)$ is a ring under ' + ' and ' \cdot ' defined by

$\quad(f+g)(x)=f(x)+g(x)$,	$\forall x \in M$
and $\quad(f \cdot g)(x)=f[g(x)]$,	$\forall x \in M$
for all $f, g \in \operatorname{Hom}_{R}(M, M)$.	

(i) $f+g \in \operatorname{Hom}_{R}(M, M), \quad$ for $f, g \in \operatorname{Hom}_{R}(M, M)$ $f: M \rightarrow M$ and $g: M \rightarrow M$. Hence, $f+g: M \rightarrow M$ and is well defined map.

Let $x, y \in M$. Then, we have

$$
\begin{aligned}
(f+g)(x+y) & =f(x+y)+g(x+y) \quad \ldots . \text { By definition of } f+g . \\
& =[f(x)+f(y)]+[g(x)+g(y)] \\
& \ldots . \text { Since } f \text { and } g \text { are R-homomorphism. } \\
& =[f(x)+g(x)]+[f(y)+g(y)]
\end{aligned}
$$

.... Since $<M,+>$ is an abelian group.

$$
=(f+g)(x)+(f+g)(y) \quad \text {.... By definition of } f+g \text {. }
$$

Again, let $r \in R$ and $x \in M$.

$$
\begin{aligned}
(f+g)(r x) & =f(r x)+g(r x) \\
& =r[f(x)]+r[g(x)] \quad \text {.... Since definition of } f \text { and } g \text { are R-homomorphism. } \\
& =r[f(x)+g(x)] \\
& =r(f+g)(x)
\end{aligned}
$$

Thus, we get,

$$
(f+g)(x+y)=(f+g)(x)+(f+g)(y)
$$

and $(f+g)(r x)=r(f+g)(x)$

$$
\text { for all } x, y \in M \text { and } r \in R .
$$

This shows that $(f+g)$ is a R - homomorphism and hence $(f+g) \in \operatorname{Hom}_{R}(M, M)$, for $f, g \in \operatorname{Hom}_{R}(M, M)$.
(ii) To prove $f \circ g \in \operatorname{Hom}_{R}(M, M)$ for $f, g \in \operatorname{Hom}_{R}(M, M)$ $f \circ g$ is well defined map. $f+g: M \longrightarrow M$.

Let $x, y \in M$. Then we have

$$
\begin{aligned}
(f \circ g)(x+y) & =f[g(x+y)] & & \ldots . \text { By definition of } f \circ g . \\
& =f[g(x)+g(y)] & & \ldots . \text { Since } g \text { is a homomorphism. } \\
& =f[g(x)]+f[g(y)] & & \ldots \text { Since } f \text { is a homomorphism. } \\
& =(f \circ g)(x)+(f \circ g)(y) & & \ldots . \text { By definition of } f+g .
\end{aligned}
$$

Again for any $r \in R$ and $f \in \operatorname{Hom}_{R}(M, M)$, we get

$$
\begin{aligned}
(f \circ g)(r x) & =f[g(r x)] & & \ldots . \text { By definition of } f+g . \\
& =f[r \cdot g(x)] & & \ldots . \text { Since } g \text { is a R-homomorphism. } \\
& =r \cdot[f(g(x))] & & \ldots . \text { Since } f \text { is a R-homomorphism. } \\
& =r(f \circ g)(x) & &
\end{aligned}
$$

Thus, we get

$$
(f \circ g)(x+y)=(f \circ g)(x)+(f \circ g)(y)
$$

and $\quad(f \circ g)(r x)=r[(f \circ g)(x)]$
for all $x, y \in M$ and $r \in R$.
Hence, $(f \circ g) \in \operatorname{Hom}_{R}(M, M)$.
(iii) $<\operatorname{Hom}_{R}(M, M),+>$ is an abelian group where the zero mapping $0: M \rightarrow M$ defined by $0(x)=0$ will be the ideal element w. r. t. ' + ' in $\operatorname{Hom}_{R}(M, M)$.

Let $f \in \operatorname{Hom}_{R}(M, M)$.

Define $(-f): M \rightarrow M$ by

$$
(-f)(x)=-[f(x], \quad \forall x \in M
$$

Then, it can be easily verified that $(-f)$ is a R -homomorphism defined on M and $(-f)$ will be additive inverse of f in $\operatorname{Hom}_{R}(M, M)$.
(iv) $(f \circ g) \circ h=f \circ(g \circ h), \quad \forall f, g, h \in \operatorname{Hom}_{R}(M, M)$
(v) Let $f, g, h \in \operatorname{Hom}_{R}(M, M)$ let $x \in M$, then
$f \circ[g+h](x)=f[(g+h)(x)]$
$=f[g(x)+h(x)]$
$=f[g(x)]+f[h(x)]$
$=(f \circ g)(x)+(f \circ h)(x)]$
$=[(f \circ g)+(f \circ h)](x), \quad \forall x \in M$
Hence,

$$
f \circ[g+h]=(f \circ g)+(f \circ h)
$$

Similarly,

$$
(g+h) \circ f=(g \circ f)+(h \circ f) \quad \forall f, g, h \in \operatorname{Hom}_{R}(M, M)
$$

From (i), (ii), (iii) and (iv), we get, $\left\langle\operatorname{Hom}_{R}(M, M),+, \circ\right\rangle$ is a ring.
(II) The identity mapping $i: M \rightarrow M$ defined by

$$
i(x)=x, \quad \text { for all } x \in M
$$

will be the unity element in $\operatorname{Hom}_{R}(M, M)$.
(III) Let ψ be any non-zero element in $\operatorname{Hom}_{R}(M, M)$.
i.e. ψ is a non-zero R -homomorphism from M into M, where M is a simple module. Hence, ψ must be a bijective and hence ψ is an isomorphism.
But this will show that $\psi^{-1} \in \operatorname{Hom}_{R}(M, M)$.
Thus, we have proved that, any non-zero R-homomorphism defined on M will have a multiplicative inverse in $\operatorname{Hom}_{R}(M, M)$.

From (I), (II) and (III), we get, $\operatorname{Hom}_{R}(M, M)$ is a division ring.

Theorem 1.3.12 : Let M be a R-module and $x \in M$ such that $r x=0, r \in R$ implies $r=0$. Then $R x \cong R$ as R-module.
Proof: We know that Rx is a R -submodule and hence Rx is a R -module (See 2.2 example 2). Further R is also an R -module (See 1.2 example 1).

Define $f: R \rightarrow R x$ by $f(r)=r \cdot x$.
(I) Then,
(i) $f\left(r_{1}+r_{2}\right)=\left(r_{1}+r_{2}\right)(x)$

$$
\begin{aligned}
& =r_{1}(x)+r_{2}(x) \\
& =f\left(r_{1}\right)+f\left(r_{2}\right)
\end{aligned}
$$

(ii) $f\left(r \cdot r_{1}\right)=\left(r r_{1}\right)(x)$

$$
\begin{aligned}
& =r\left(r_{1} x\right) \\
& =r \cdot f\left(r_{1}\right)
\end{aligned}
$$

For all $r, r_{1}, r_{2} \in R$.
Hence, f is a R -homomorphism.
(II) f is onto obviously.
(III) Let $r \in \operatorname{ker} f$. Then $f(r)=0$. i.e. $r \cdot x=0$. But by data $r \cdot x=0 \quad \Rightarrow r=0$.

Hence, $\operatorname{ker} f=\{0\}$. But this will imply f is one-one (See Theorem 2).
Form (I), (II) and (III), f is an isomorphism.
Hence, $R \cong R x$ as R-module.

1.4 Fundamental Theorem for R-homomorphism and It's Application :

1.4.1 Fundamental Theorem for R-homomorphism :

Any homomorphic image of an R -module M is isomorphic with its suitable quotient module.

Proof : Let M and N be R-module and let N be a homomorphic image of M. Hence there exists an onto homomorphism $f: M \rightarrow N$. As f is onto $N=f(M)$. Let $K=\operatorname{ker} f$. Then K is a submodule of M. (See Theorem 1.3.4) and hence the quotient R-module $\frac{M}{K}$ is defined.

Define a $g: \frac{M}{K} \rightarrow N=f(M)$ by

$$
g(m+k)=f(m), \quad \text { for each } m+k \in \frac{M}{K}
$$

(I) g is well defined.

Let $m_{1}+k=m_{2}+k$ in $\frac{M}{K}$.
Then $m_{1}, m_{2} \in M$ will imply $m_{1}-m_{2} \in M$.
As $m_{1}+k=m_{2}+k$ we get $m_{1}-m_{2} \in M$.i.e. $\quad m_{1}-m_{2} \in \operatorname{ker} f$.
Hence $\quad f\left(m_{1}-m_{2}\right)=0$
$\Rightarrow \quad f\left(m_{1}\right)-f\left(m_{2}\right)=0, \quad$.... Since f is homomorphism.

$$
\Rightarrow \quad f\left(m_{1}\right)=f\left(m_{2}\right)
$$

Thus, we get,

$$
m_{1}+K=m_{2}+K \text { in } \frac{M}{K} \text { implies } g\left(m_{1}+K\right)=g\left(m_{2}+K\right)
$$

This shows that g is well defined.
(II) g is a R-homomorphism.
(i) Let $m_{1}+k \in \frac{M}{K}$ and $m_{2}+k \in \frac{M}{K}$.

Then,

$$
\begin{array}{rlrl}
g\left[\left(m_{1}+K\right)\right. & \left.+\left(m_{2}+K\right)\right]=g\left[\left(m_{1}+m_{2}\right) K\right] & \ldots . \text { by the definition of ' }+ \text { ' in } \frac{M}{K} . \\
& =f\left(m_{1}+m_{2}\right) & & \ldots . \text { by the definition of } g . \\
& =f\left(m_{1}\right)+f\left(m_{2}\right) & & \ldots . f \text { is homomorphism. } \\
& =g\left(m_{1}+K\right)+g\left(m_{2}+K\right) & & \ldots . \text { by the definition of } g .
\end{array}
$$

(ii) Let $r \in R$ and $m+K \in \frac{M}{K}$. Then,

$$
g[r(m+K)]=g[r m+K]
$$

$$
=f(r m) \quad \ldots . . \text { by the definition of } g .
$$

$$
=r \cdot f(m) \quad . . . f \text { is homomorphism. }
$$

$$
=r \cdot g(m+K) \quad \text {.... by the definition of } g .
$$

From (i) and (ii), we get, g is a R-homomorphism.
(III) g is one-one.

Let $g\left(m_{1}+K\right)=g\left(m_{2}+K\right)$ for some $m_{1}+k, m_{2}+k \in \frac{M}{K}$.
Then $\quad g\left(m_{1}+K\right)=g\left(m_{2}+K\right)$
$\Rightarrow \quad f\left(m_{1}\right)=f\left(m_{2}\right) \quad$.... by the definition of g.
$\Rightarrow f\left(m_{1}\right)-f\left(m_{2}\right)=0$
$\Rightarrow \quad f\left(m_{1}-m_{2}\right)=0 \quad$.... f is homomorphism.
$\Rightarrow \quad m_{1}-m_{2} \in \operatorname{ker} f=K \quad$.... f is homomorphism.
$\Rightarrow \quad m_{1}+K=m_{2}+K$
Thus, $g\left(m_{1}+K\right)=g\left(m_{2}+K\right) \quad \Rightarrow \quad m_{1}+K=m_{2}+K$ and hence g is one-one.
(IV) g is onto.

Let $n \in N$. As $N=f(M)$, there exists some $m \in M$ such that $f(m)=n$. But for this $m \in M, m+K \in \frac{M}{K}$ and we get $g(m+K)=f(m)=n$.

This shows that g is onto.
From (I), (II), (III) and (IV), we get, g is an isomorphism. Hence $\frac{M}{k} \cong N$.
This completes the proof.

Theorem 1.4.2: Let A and B be R -submodules of an R-module M . Then $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
Proof : $\quad A+B=\{a+b / a \in A, b \in B\}$ is a R-module of M and $B \subseteq A+B$. Hence B is a submodule of A + B. (See Theorem 1.2.8).
Hence $\frac{A+B}{A}$ is defined.
$A \cap B$ is a R-module of M (See 2.3 theorem 2) and $A \cap B \subseteq B$. Hence $\frac{B}{A \cap B}$ is defined.
Define $f: A+B \rightarrow \frac{B}{A \cap B}$ by

$$
f(a+b)=b+(A \cap B), \quad \text { for } a+b \in A+B
$$

(I) f is well defined map.

Let $a_{1}+b_{1}=a_{2}+b_{2} \quad$ for $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$.
Then, $a_{1}-a_{2}=b_{2}-b_{1} \in A \cap B$.
As $b_{2}-b_{1} \in A \cap B$ we have $b_{2}+(A \cap B)=b_{1}+(A \cap B)$
Thus, $a_{1}+b_{1}=a_{2}+b_{2}$ will imply $b_{1}+(A \cap B)=b_{2}+(A \cap B)$ and hence
$f\left(a_{1}+b_{1}\right)=f\left(a_{2}+b_{2}\right)$.
This shows that f is well defined map.
(II) To prove that f is R -homomorphism.
(i) Let $a_{1}+b_{1}$ and $a_{2}+b_{2}$ be any element of $A+B$.

$$
\begin{aligned}
f\left[\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)\right] & =f\left[\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)\right] \\
& =\left(b_{1}+b_{2}\right)+(A \cap B) \quad \ldots\langle M,+\rangle \text { is an abelian group. } \\
& =\left[b_{1}+(A \cap B)\right]+\left[b_{2}+(A \cap B)\right] \\
& =f\left(a_{1}+b_{1}\right)+f\left(a_{2}+b_{2}\right)
\end{aligned}
$$

(ii) Let $r \in R$ and $a_{1}+b_{1} \in A+B$. Then

$$
\begin{aligned}
f\left[r\left(a_{1}+b_{1}\right)\right] & =f\left[r a_{1}+r b_{1}\right] & & \ldots a_{1}, b_{1} \in M \text { and } r \in R . \\
& =r b_{1}+(A \cap B) & & \ldots r a_{1} \in A \text { and } r b_{2} \in B . \\
& =r\left[b_{1}+(A \cap B)\right] & & \\
& =r f\left(a_{1}+b_{1}\right) & &
\end{aligned}
$$

From (i) and (ii), it follows that f is a R -homomorphism.
(III) f is an onto mapping.

Let $b+(A \cap B) \in \frac{B}{A \cap B}$. Then $b \in B$.
Consider $0+b$.
Then, as $0 \in A$ we get $0+b \in A+B$ and $f(0+b)=b+(A \cap B)$
But this shows that f is onto.
From (I), (II) and (III), f is onto homomorphism.
Hence, the R-module $\frac{B}{A \cap B}$ is a homomorphic image of the R -module $A+B$ under the homomorphism f.

Hence, by fundamental theorem of homomorphism (See 1.4 theorem 5)

$$
\begin{equation*}
\frac{A+B}{\text { kerf }} \cong \frac{B}{A \cap B} \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\text { ker } f & =\{x \in A+B / f(x)=0\} \\
& =\{a+b \in A+B / f(a+b)=0\} \\
& =\{a+b \in A+B / b+(A \cap B)=A \cap B\} \\
& =\{a+b \in A+B / b \in(A \cap B)\} \\
& =\{a+b / a \in A \text { and } b \in B\}=A
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\operatorname{kerf}=A \tag{2}
\end{equation*}
$$

From (1) and (2), we get,

$$
\frac{A+B}{A} \cong \frac{B}{A \cap B}
$$

This completes the proof of the theorem.

Theorem 1.4.3: Let A and B be submodule of R-module M and N respectively. Then

$$
\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}
$$

Proof : $\quad M \times N$ is an R-module (See 1.4, problem 2). A is a submodule of an R-module M and hence the quotient R-module $\frac{M}{A}$ is defined. Similarly the quotient R-module $\frac{N}{B}$ is defined. Hence $\frac{M}{A} \times \frac{N}{B}$ is an R-module.
Define the map $f: M \times N \rightarrow \frac{M}{A} \times \frac{N}{B}$ by

$$
f(m, n)=(m+A, n+B), \quad \text { for all }(m, n) \in M \times N
$$

(I) f is well defined.

Let $\left(m_{1}, n_{1}\right)=\left(m_{2}, n_{2}\right)$ in $M \times N$.
Then, $m_{1}=m_{2}$ and $n_{1}=n_{2}$.
Therefore,

$$
m_{1}-m_{2}=0 \in A \text { and } n_{1}-n_{2}=0 \in B
$$

But then

$$
m_{1}+A=m_{2}+A \quad \text { and } \quad n_{1}+B=n_{2}+B
$$

This shows that $\left(m_{1}+A, n_{1}+B\right)=\left(m_{2}+A, n_{2}+B\right)$
i.e. $\quad f\left(m_{1}, n_{1}\right)=f\left(m_{2}, n_{2}\right)$

Hence, f is a well defined map.
(II) f is a homomorphism.
(i) Let $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in M \times N$

$$
\begin{aligned}
& f\left[\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)\right] \\
& =f\left[\left(m_{1}+m_{2}, n_{1}+n_{2}\right)\right] \\
& =\left[\left(m_{1}+m_{2}\right)+A,\left(n_{1}+n_{2}\right)+B\right] \quad \ldots \text { by the definition of }+ \text { in } M \times N \\
& =\left[\left(m_{1}+A\right)+\left(m_{2}+A\right),\left(n_{1}+B\right)+\left(n_{2}+B\right)\right]
\end{aligned}
$$

\ldots by the definition of + in $\frac{M}{A}$ and $\frac{N}{B}$
$=\left(m_{1}+A, n_{1}+B\right)+\left(m_{2}+A, n_{2}+B\right) \quad \ldots$ by the definition of + in $\frac{M}{A} \times \frac{N}{B}$
$=f\left(m_{1}, n_{1}\right)+f\left(m_{2}, n_{2}\right)$
\ldots by the definition of f
(ii) Let $r \in R$ and $(m, n) \in M \times N$. Then

$$
\begin{aligned}
f[r(m, n)] & =f[(r m, r n)] & & \ldots \text { by the definition of } \cdot \text { in } M \times N \\
& =(r m+A, r n+B) & & \ldots \text { by the definition of } f \\
& =(r(m+A), r(n+B)) & & \ldots \text { by the definition of } \cdot \text { in } \frac{M}{A} \text { and } \frac{N}{B} \\
& =r(m+A, n+B) & & \ldots \text { by the definition of } \cdot \text { in } M \times N \\
& =r f(m, n) & & \ldots \text { by the definition of } f
\end{aligned}
$$

From (i) and (ii), we get f is homomorphism.
(III) f is onto.

Let $(m+A, n+B) \in \frac{M}{A} \times \frac{N}{B}$.
Then obviously, $(m, n) \in M \times N$ and $f(m, n)=(m+A, n+B)$.

But this shows that f is onto.
From (I), (II) and (III), it follows that $\frac{M}{A} \times \frac{N}{B}$ is a homomorphic image of $M \times N$.
Hence, by the fundamental theorem of homomorphism,

$$
\begin{equation*}
\frac{M \times N}{k e r f} \cong \frac{M}{A} \times \frac{N}{B} \tag{1}
\end{equation*}
$$

Now,

$$
\begin{align*}
\operatorname{ker} f & =\{(m, n) \in M \times N / f(m, n)=0\} \\
& =\{(m, n) \in M \times N /(m+A, n+B)=(A, B)\} \\
& =\{(m, n) \in M \times N / m+A=A \text { and } n+B=B\} \\
& =\{(m, n) \in M \times N / m \in A \text { and } n \in B\} \tag{2}
\end{align*}
$$

Thus, $\quad \operatorname{kerf}=A \times B$
From (1) and (2), we have,

$$
\frac{M \times N}{A \times B} \cong \frac{M}{A} \times \frac{N}{B}
$$

This completes the proof.

Let M be an R-module. We know that, if there exists $x \in M$ such that $M=R x$ then M is called cyclic module generated by x . Here $R x=\{r x / r \in R\}$.
e.g. The ring R is a R -module. As $R=R \cdot 1$, we get R is a cyclic module.

Theorem 1.4.4 : Let an R-module M be a cyclic module Rx . Then $M \cong \frac{R}{a n n x}$.
Proof: $\quad M=R x=\{r x / r \in R\}$.
Define $f: R \rightarrow R x$ by

$$
f(r)=r \cdot x, \quad \text { for each } r \in R
$$

[Here the ring R is considered as an R -module]. Then f is an epimorphism (See 1.3, theorem 5). Hence by the fundamental theorem of homomorphism,

$$
\begin{equation*}
\frac{R}{\text { kerf }} \cong R x \tag{1}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\operatorname{ker} f & =\{r \in R / f(r)=0\} \\
& =\{r \in R / r x=0\}
\end{aligned}
$$

ker f is a submodule of an R -module R and hence it is a left ideal of R. This ideal is called the annihilator ideal of x in R and it is denoted by ann x.

Hence, for a cyclic module $M=R x$, we get,

$$
R x=M \cong \frac{R}{\text { ann } x}
$$

Theorem 1.4.5 : Let R be a ring such that $1 \in R$. An R-module M is cyclic iff $M \cong \frac{R}{I}$ for some left ideal I of R.

Proof : Only if part :

Let M be cyclic.
Hence, $M=R x$ for some $x \in M$. By Theorem 1.4.4, $M \cong \frac{R}{a n n x}$ where ann x is a left ideal in R and thus we get $M \cong \frac{R}{I}$ for left ideal $I=\operatorname{ann} x$ in R.

If part :

Let $M \cong \frac{R}{I}$, where I is left ideal of R .

$$
\begin{aligned}
& 1 \in R \quad \Rightarrow \quad 1+I \in \frac{R}{I} \text {. } \\
& \text { Further, } \quad R(1+I)=\{r(1+I) / r \in R\} \\
& =\{r+I / r \in R\} \\
& =\frac{R}{I}
\end{aligned}
$$

This shows that, $\frac{R}{I}$ is a cyclic module generated by $(1+I)$. As $M \cong \frac{R}{I}$ and $\frac{R}{I}$ is cyclic, we get, M is a cyclic module (Since isomorphic image of a cyclic module is a cyclic module).

Theorem 1.4.6 : Let R be a ring with unity 1 . Let $M \neq(0)$ be an R-module. Then M is simple iff $M \cong \frac{R}{I}$ where I is a maximal left ideal of R.

Proof : Only if part :

Let M be a simple R-module.
As $M \neq(0)$ and M is we get $M=R x$ for any $x \neq 0$ in M.
As $M=R x$, a cyclic module then $M \cong \frac{R}{I}$ where I is a left ideal of R . by theorem 1.4.4.
As isomorphic image of a simple module is a simple module, we get $\frac{R}{I}$ is a simple
module. Now the submodules of $\frac{R}{I}$ are of the form $\frac{U}{I}$ where U is a submodule of the module R containing I. But the submodules of an R-module R are the left ideals in R. Hence $\frac{R}{I}$ being simple there do not exists any left ideal in R containing I. But this shows that I is a maximal left ideal in R. Hence M is a simple module and $M \neq\{0\}$ will imply $M \cong \frac{R}{I}$, where I is a maximal left ideal in R.

If part :

Let $M \cong \frac{R}{I}$, where I is a maximal left ideal in R. But this in turn will imply that there does not exists any proper ideal in $\frac{R}{I}$. Hence $\frac{R}{I}$ must be a simple R-module.
As $M \cong \frac{R}{I}$, we get M is a simple r-module (since isomorphic image of a simple module is a simple module).

Unit 2 : SUM AND DIRECT SUM OF SUBMODULES :

2.1 Sum of modules
2.2 Direct sum of modules
2.3 Free modules
2.4 Completely reducible modules

2.1 Sum of submodules :

Definition 2.1.1: Let M be an R-module. Let $M_{1}, M_{2}, \ldots, M_{k}$ (k finite) be R-submodules of M. The submodule generated by $\bigcup_{i=1}^{k} M_{i}$ is called the sum of submodules $M_{i}, 1 \leq i \leq k$ and is denoted by $M_{1}+\cdots+M_{k}$ or simply $\sum_{i=1}^{k} M_{i}$.

Note that the submodule generated by $\bigcup_{i=1}^{k} M_{i}$ is the smallest R-submodule of M, containing each $M_{i}, \quad 1 \leq i \leq k$.

Theorem 2.1.2: For the submodules $M_{1}, M_{2}, \ldots, M_{k}$ of an R-module M

$$
\sum_{i=1}^{k} M_{i}=\left\{x_{1}+x_{2}+\ldots+x_{k} / x_{i} \in M_{i}\right\}
$$

Proof : Let $T=\left\{x_{1}+x_{2}+\ldots+x_{k} / x_{i} \in M_{i}\right\}$.
(I) $T \neq \phi$ as $M_{i} \neq \phi$ for each i.
(II) Let $x, y \in T$. Then

$$
x=x_{1}+x_{2}+\ldots+x_{k} \text { and } y=y_{1}+y_{2}+\ldots+y_{k}, \quad \text { where } x_{i}, y_{i} \in M_{i} \text { for each } i .
$$

Now,

$$
\begin{aligned}
x-y & =\left(x_{1}+x_{2}+\ldots+x_{k}\right)-\left(y_{1}+y_{2}+\ldots+y_{k}\right) \\
& =\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\cdots+\left(x_{k}-y_{k}\right)
\end{aligned}
$$

... Since $x_{i}, y_{i} \in M_{i}$ for all i and $<\mathrm{M},+>$ is an abelian group.
But as M_{i} is a submodule of $\mathrm{M}, x_{i}-y_{i} \in M_{i}$ for each i.
Hence, $x-y \in T$.
This shows that $x, y \in T \quad \Rightarrow \quad x-y \in T$.
(III) Let $x \in T$ and $r \in R$. Then $x=x_{1}+x_{2}+\cdots+x_{n}, \quad x_{i} \in M_{i}, \forall i$

Now $\quad r x=r\left(x_{1}+x_{2}+\cdots+x_{n}\right)$

$$
=r x_{1}+r x_{2}+\cdots+r x_{n} \quad \ldots \text { By the definition of module }
$$

As M_{i} is a R-submodule of $\mathrm{M}, r \in R$ and $x_{i} \in M_{i}$ will imply $r \cdot x_{i} \in M_{i}$ for each i.
Hence, $r x \in T$.
Thus, for any $r \in R$ and $x \in T$ we get $r x \in T$.
From (I), (II) and (III), we get, T is a R-submodule of M.
(IV) Let $x_{i} \in M_{i}$. Then $0 \in M_{i}$ for each i will imply,

$$
\begin{gathered}
x_{i}=0+0+\cdots+x_{i}+0+\cdots+0 \in T \\
\uparrow i^{\text {th }} \text { place }
\end{gathered}
$$

Hence, $M_{i} \subseteq T$, for each $i, 1 \leq i \leq k$.
Therefore, $\bigcup_{i=1}^{k} M_{i} \subseteq T$.
(V) Let J be any other submodule of M containing $\bigcup_{i=1}^{k} M_{i}$. Then each $M_{i} \subseteq J$.

Let $x \in T$. Then $x=x_{1}+x_{2}+\cdots+x_{k}$ where $x_{i} \in M_{i}$ for each $i, 1 \leq i \leq k$. As $M_{i} \subseteq J$ we get, $x_{i} \in J$ for each $i, 1 \leq i \leq k$.

Hence, J being a submodule of a module M,

$$
x_{1}+x_{2}+\cdots+x_{n} \in J, \quad \text { i.e. } x \in J
$$

This shows that $T \subseteq J$.
Thus, we have proved that T is a submodule of an R-module M containing $\bigcup_{i=1}^{k} M_{i}$ and is the smallest submodule of M containing $\bigcup_{i=1}^{k} M_{i}$.

Hence, by the definition, $T=\sum_{i=1}^{k} M_{i}$.
Therefore,

$$
\sum_{i=1}^{k} M_{i}=\left\{x_{1}+x_{2}+\ldots+x_{k} / x_{i} \in M_{i}\right\}
$$

Definition 2.1.3: Let $\left\{M_{\alpha} / \alpha \in \Delta\right\}$ be any family of submodules of an R-module M. The submodule generated by $\underset{\alpha \in \Delta}{ } M_{\alpha}$ is called the sum of submodules M_{α} and is denoted
by $\sum_{\alpha \in \Delta} M_{\alpha}$.

Remark 2.1.4: $\quad \sum_{\alpha \in \Delta} M_{\alpha}$ is the smallest submodule of an R-module M containing each submodule M_{α}.

Theorem 2.1.5 : Let $\left\{M_{\alpha} / \alpha \in \Delta\right\}$ be a family of R-submodules of an R-module M. Then

$$
\sum_{\alpha \in \Delta} M_{\alpha}=\left\{\sum_{\text {finite }} x_{i} / x_{i} \in M_{i}\right\}
$$

Where $\sum_{\text {finite }} x_{i}$ denotes any finite sum of elements of $M_{i}, \quad i \in \Delta$.
Proof: Define

$$
T=\left\{\sum_{\text {finite }} x_{i} / x_{i} \in M_{i}\right\}
$$

As in theorem 1, we can prove that T is a submodule of M containing each $M_{\alpha},(\alpha \in \Delta)$ and is the smallest submodule of an R -module M containing each $M_{\alpha},(\alpha \in \Delta)$.

Hence, $T=\sum_{\alpha \in \Delta} M_{\alpha}$.

2.1.6 Worked Examples

Example 1 : Let $V=\mathbb{R}^{3}$ be a vector space over the field \mathbb{R}. Let $x_{1}=(1,0,0), x_{2}=(1,1,0)$, $x_{3}=(1,1,1)$. Show that $V=\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}$.
Solution : We know that $\mathbb{R} x_{1}, \mathbb{R} x_{2}$ and $\mathbb{R} x_{3}$ are submodules of an R -module \mathbb{R}^{3}. (Note that every vector space is a module). Hence $\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}$ is a submodule of $\mathbb{R}^{3}=V$. Hence, $\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3} \subseteq V$. Let $x \in V$ then $(a, b, c) \in V=\mathbb{R}^{3}$.
Further, $\quad(a, b, c)=(a-b) x_{1}+(b-c) x_{2}+c x_{3}$
will imply $\quad x=(a, b, c) \in \mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}$.
By theorem 1.3.4, (as $a, b, c \in R$ we get $a-b, b-c \in R$.
Hence, $(a-b) x_{1} \in \mathbb{R} x_{1}$,
$(b-c) x_{2} \in \mathbb{R} x_{2}$ and $\left.x_{3} \in \mathbb{R} x_{3}\right)$.
But this shows that $V \subseteq \mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}$.

Combining both the inclusions, we get,

$$
V=\mathbb{R}^{3}=\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}
$$

2.2 Direct Sum of Submodules :

Definition 2.2.1: Let M be an R-module. Let $M_{1}, M_{2}, \ldots, M_{k}$ be submodules of the module M. The sum $\sum_{i=1}^{k} M_{i}$ is a direct sum if each element $x \in \sum_{i=1}^{k} M_{i}$ can be uniquely expressed as $x=x_{1}+x_{2}+\cdots+x_{k}$, where $x_{i} \in M_{i}$ for each $i, 1 \leq i \leq k$.

In this case we write $\oplus \sum_{i=1}^{k} M_{i}$ or $M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$.
Each M_{i} is called the direct summand of the direct sum $M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$.

Theorem 2.2.2 : Let M be an R-module and let $M=M_{1} \oplus M_{2}$.
Then $M_{1} \cong \frac{M}{M_{2}}$ and $M_{2} \cong \frac{M}{M_{1}}$.
Proof : Let $M=M_{1} \oplus M_{2}$. Hence, any $x \in M$ has a unique representation as $x=x_{1}+x_{2}$, where $x_{1} \in M_{1}$ and $x_{2} \in M_{2}$.
Define $\quad f: M \rightarrow M_{1}$ by

$$
f(x)=x_{1}
$$

i.e. $\quad f\left(x_{1}+x_{2}\right)=x_{1}, \quad$ for each $x \in M$.

By the uniqueness of the expression, f is a well defined map.
(i) Let $x, y \in M$. Let $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$ where $x_{1}, y_{1} \in M_{1}$ and $x_{2}, y_{2} \in M_{2}$ be unique expressions of x and y .

$$
\begin{array}{rlrl}
f(x+y) & =f\left(x_{1}+y_{1}+x_{2}+y_{2}\right) & & \\
& =f\left(x_{1}+x_{2}+y_{1}+y_{2}\right) & & \ldots \text { Since }<\mathrm{M},+>\text { is an abelian group } \\
& =x_{1}+y_{1} & & \ldots x_{1}, y_{1} \in M_{1} \Rightarrow x_{1}+y_{1} \in M_{1}, \\
& M_{1} \text { being a submodule. } \\
& =f(x)+f(y) & & \ldots \text { By definition of } f . \\
\text { Thus, } f(x+y) & =f(x)+f(y) & & \ldots \text { for all } x, y \in M .
\end{array}
$$

(ii) Now, let $x \in M$ and $r \in R$. Assume that $x=x_{1}+x_{2}$ where $x_{1} \in M_{1}$ and $x_{2} \in M_{2}$. Then,

$$
r x=r\left(x_{1}+x_{2}\right)=r x_{1}+r x_{2}
$$

As M_{1} and M_{2} are submodules of M , we get $r x_{1} \in M_{1}$ and $r x_{2} \in M_{2}$.
Hence, by the definition of f,

$$
f(r x)=r x_{1}=r f(x)
$$

Thus, $f(r x)=r f(x)$ for each $r \in R$ and $x \in X$.
From (i) and (ii), we get, f is a R-homomorphism.
Hence, by the fundamental theorem of homomorphism,

$$
\begin{equation*}
\frac{M}{\text { kerf }} \cong M_{1} \tag{I}
\end{equation*}
$$

Now,

$$
\begin{align*}
\operatorname{kerf} & =\{x \in M / f(x)=0\} \\
& =\left\{x_{1}+x_{2} \in M / f\left(x_{1}+x_{2}\right)=0, x_{1} \in M_{1}, x_{2} \in M_{2}\right\} \\
& =\left\{x_{1}+x_{2} \in M / x_{1}=0, x_{1} \in M_{1}, x_{2} \in M_{2}\right\} \\
& =\left\{0+x_{2} \in M / x_{2} \in M_{2}\right\} \\
& =M_{2} \tag{II}
\end{align*}
$$

Thus, $\quad \operatorname{ker} f=M_{2}$
From (I) and (II), we get,

$$
\frac{M}{M_{2}} \cong M_{1}
$$

Similarly, we can prove that $\frac{M}{M_{1}} \cong M_{2}$.
This completes the proof of the theorem.

Theorem 2.2.3: Let M be an R-module. Let M contains submodules $M_{1}, M_{2}, \ldots, M_{k}$ having the property,

For each $i, 1 \leq i \leq k$,

$$
\begin{equation*}
M_{i} \cap\left[M_{1}+M_{2}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{k}\right]=\{0\} \tag{A}
\end{equation*}
$$

Then, the sum $\sum_{i=1}^{k} M_{i}$ is a direct sum.
Proof : Let $x \in \sum_{i=1}^{k} M_{i}$, have two expressions say

$$
\begin{aligned}
& x \\
& =x_{1}+x_{2}+\cdots+x_{k} \\
\text { and } \quad & x=y_{1}+y_{2}+\cdots+y_{k}
\end{aligned}
$$

where $x_{i}, y_{i} \in M_{i}$ for each $i, 1 \leq i \leq k$.

Then, $0=\left(x_{1}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\cdots+\left(x_{k}-y_{k}\right)$.
But this shows that

$$
\begin{equation*}
-\left(x_{i}-y_{i}\right)=\sum_{\substack{\mathrm{j}=1 \\ \mathrm{j} \neq 1}}^{k}\left(x_{\mathrm{j}}-y_{\mathrm{j}}\right) \tag{1}
\end{equation*}
$$

As M_{i} is a submodule of M ,

$$
\begin{equation*}
-\left(x_{i},-y_{i}\right) \in M_{i} \tag{2}
\end{equation*}
$$

Now, $\sum_{\substack{\mathrm{j}=1 \\ \mathrm{j} \neq 1}}^{k}\left(x_{\mathrm{j}}-y_{\mathrm{j}}\right) \in M_{1}+M_{2}+\ldots+M_{i-1}+M_{i+1}+\ldots+M_{k}$
From (1), we get,

$$
\begin{equation*}
-\left(x_{i},-y_{i}\right) \in M_{1}+M_{2}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{k} \ldots \tag{3}
\end{equation*}
$$

From (2) and (3), we have,

$$
\begin{equation*}
-\left(x_{i}-y_{i}\right) \in M_{i} \cap\left[\sum_{\substack{\mathrm{j}=1 \\ \mathrm{j} \neq 1}}^{k} M_{\mathrm{j}}\right]=\{0\} \tag{A}
\end{equation*}
$$

Hence, $\quad x_{i}=y_{i}$.
As this is true for each $i, 1 \leq i \leq k$, we get the expression for x is unique.
Hence, the sum $\sum_{i=1}^{k} M_{i}$ is a direct sum.

Theorem 2.2.4: Let M be an R-module and let M_{1}, \ldots, M_{k} be submodules of an R-module M. The following statements are equivalent.
(i) The sum $\sum_{i=1}^{k} M_{i}$ is a direct sum.
(ii) For any $i, 1 \leq i \leq k$,

$$
M_{i} \cap\left[M_{1}+M_{2}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{k}\right]=\{0\}
$$

Proof :

(i) \Rightarrow (ii) :

Let $x \in M_{i} \cap\left[M_{1}+M_{2}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{k}\right]$. Then $x \in M_{i}$ and $x=y_{1}+y_{2}+\cdots+y_{i-1}+y_{i+1}+\cdots+y_{k}$ where $y_{j} \in M_{j}, 1 \leq j \leq k$.

Thus, we have

$$
y_{1}+y_{2}+\cdots+y_{i-1}+(-x)+y_{i+1}+\cdots+y_{k}=0
$$

As $0 \in \sum_{i=1}^{k} M_{i}$ and $\sum_{i=1}^{k} M_{i}$ is a direct sum, the expression $0=0+0+\ldots+0$ of $0 \in \sum_{i=1}^{k} M_{i}$ must be unique.

Hence, $-x=0, \quad$ i.e. $\quad x=0$. This shows that

$$
M_{i} \cap\left[M_{1}+M_{2}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{k}\right]=\{0\}
$$

(ii) \Rightarrow (i):

Proof of this implication follows from theorem 1.3.10.
Hence, (i) \Leftrightarrow (ii).

Theorem 2.2.5 : Let M be an R-module. Let $M_{1}, M_{2}, \ldots, M_{k}$ be submodules of an R-module M. The following statements are equivalent.
(i) $\quad \sum_{i=1}^{k} M_{i}$ is a direct sum.
(ii) $0=\sum_{i=1}^{k} x_{i}, \quad x_{i} \in M_{i} \forall i, 1 \leq i \leq k$
$\Rightarrow \quad x_{i}=0 \quad$ for each $i, 1 \leq i \leq k$
(iii) $M_{i} \cap\left[\sum_{\substack{\mathrm{j}=1 \\ \mathrm{j} \neq 1}}^{k} M_{\mathrm{j}}\right]=\{0\}$

Proof :

(i) \Rightarrow (ii) :

The implication (i) \Rightarrow (ii) follows directly by the definition of the direct sum.

(ii) \Rightarrow (iii) :

Let $x \in M_{i} \cap\left[\sum_{\substack{\mathrm{j}=1 \\ \mathrm{j} \neq 1}}^{k} M_{\mathrm{j}}\right]$

Then, $x \in M_{i}$ and $\in \sum_{\mathrm{j}=1}^{k} M_{\mathrm{j}}$.
$j \neq 1$
Hence, $x=y_{1}+y_{2}+\cdots+y_{i-1}+y_{i+1}+\cdots+y_{k}$ where $y_{i} \in M_{j}$ for $1 \leq j \leq k$ and $j \neq i$.
Therefore,

$$
y_{1}+y_{2}+\cdots+y_{i-1}+(-x)+y_{i+1}+\cdots+y_{k}=0
$$

by (ii), we get, $\quad-x=0$. i.e. $x=0$.
But this shows that

$$
M_{i} \cap \sum_{i=1}^{k} M_{i}=\{0\}
$$

(iii) \Rightarrow (i) :

The implication (iii) \Rightarrow (i) follows by the theorem 1.3.10.
Thus, (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i) and this completes the proof.

2.2.6 Worked Examples

Example 1: Let M be an R-module and let $M_{1}, M_{2}, \ldots, M_{k}$ be submodules of M such that

$$
M=\sum_{i=1}^{k} M_{i} \text { and the triangular set of conditions }
$$

$$
\begin{aligned}
& M_{1} \cap M_{2}=\{0\}, \\
& \left(M_{1}+M_{2}\right) \cap M_{3}=\{0\}, \\
& \ldots \\
& \left(M_{1}+\cdots+M_{k-1}\right) \cap M_{k}=\{0\}
\end{aligned}
$$

hold. Show that $M=\oplus \sum_{i=1}^{k} M_{i}$.
Solution : By corollary 6 , it is enough to prove that if $x_{i} \in M_{i}$ for each $i, 1 \leq i \leq k$ and if $x_{1}+x_{2}+\cdots+x_{k}=0$ then $x_{i}=0$ for each $i, 1 \leq i \leq k$.

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k}=0 \tag{1}
\end{equation*}
$$

Hence, $-x_{k}=x_{1}+x_{2}+\cdots+x_{k-1}$
As $-x_{k} \in M_{k}$ and $x_{1}+x_{2}+\cdots+x_{k-1} \in \sum_{i=1}^{k-1} M_{i}$

We get, $-x_{k} \in M_{k} \cap\left[M_{1}+M_{2}+\cdots+M_{k-1}\right]$
Hence, $-x_{k} \in\{0\} \quad \ldots$ by data
Thus, $\quad x_{k}=0$
Substituting $x_{k}=0$ in (1), we get,

$$
x_{1}+x_{2}+\cdots+x_{k-1}=0
$$

Therefore,

$$
\begin{equation*}
-\left(x_{k-1}\right) \in\left[M_{1}+M_{2}+\cdots+M_{k-2}\right] \cap M_{k-1}=\{0\} \tag{3}
\end{equation*}
$$

Hence, $\quad x_{k-1}=0$
Continuing in this way, we get,

$$
x_{1}=x_{2}=\cdots=x_{k}=0
$$

Hence, the sum $\sum_{i=1}^{k} M_{i}$ is a direct sum.
i.e. $\quad M=\oplus \sum_{i=1}^{k} M_{i}$

Example 2 : Let $V=\mathbb{R}^{3}$ be a vector space over the field \mathbb{R}. Let $x_{1}=(1,0,0), x_{2}=$ $(1,1,0)$,
$x_{3}=(1,1,1)$. Show that $V=\oplus \sum_{i=1}^{3} \mathbb{R} x_{i}$.
Solution : We have proved that $V=\sum_{i=1}^{3} \mathbb{R} x_{i}$.
Hence, only to prove that $V=\oplus \sum_{i=1}^{3} \mathbb{R} x_{i}$.
Let $0=r_{1} x_{1}+r_{2} x_{2}+r_{3} x_{3}, \quad$ for some $r_{1}, r_{2}, r_{3} \in \mathbb{R}$.
Then,

$$
\begin{aligned}
(0,0,0) & =r_{1}(1,0,0)+r_{2}(1,1,0)+r_{3}(1,1,1) \\
\text { Hence, } \quad(0,0,0) & =\left(r_{1}+r_{2}+r_{3}, r_{2}+r_{3}, r_{3}\right) .
\end{aligned}
$$

This shows,

$$
r_{3}=0, \quad r_{2}+r_{3}=0, \quad r_{1}+r_{2}+r_{3}=0
$$

Solving the three equations, we get,

$$
r_{1}=0, r_{2}=0, r_{3}=0
$$

Thus,

$$
0=r_{1} x_{1}+r_{2} x_{2}+r_{3} x_{3} \quad \Rightarrow \quad r_{1}=r_{2}=r_{3}=0
$$

Hence, by corollary 6 , we get

$$
V=\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}
$$

Example 3 : Let M be an R -module. Let $K \subset N \subset M$ be submodules of M . Show that if N is a direct summand of M , then $\frac{N}{k}$ is a direct summand of $\frac{M}{K}$.

Solution : Let $M=N \oplus N^{\prime} . K \subseteq N$.

$$
\begin{aligned}
& \frac{M}{K}=\frac{N+N^{\prime}}{K}=\frac{N}{K}+\frac{N^{\prime}}{K} \\
& \frac{N}{K} \cap \frac{N^{\prime}}{K}=\frac{N \cap N^{\prime}}{K}=\frac{\{0\}}{K}=\{K\}
\end{aligned}
$$

as $N \cap N^{\prime}=\{0\}$. Hence,

$$
\frac{M}{K}=\frac{N}{K} \oplus \frac{N^{\prime}}{K}
$$

Example 4 : Let M be an R -module. Let $K \subset N \subset M$. If K is a direct summand of N and N is a direct summand of M then K is a direct summand of M.

Solution : Let $N=K \oplus K^{\prime}$, and $M=N \oplus N^{\prime}$.
Hence, $M=K \oplus K^{\prime} \oplus N^{\prime}$.
Hence, K is a direct summand of M .

Example 5: $\quad M$ is a R-module. $K \subset N \subset M$ are submodules of M. If K is a direct summand of M, then K is direct summand of N.

Solution : Let $M=K \oplus K^{\prime} . N=M \cap N=\left(K \oplus K^{\prime}\right) \cap N$.
Claim : $N=K \oplus\left(K^{\prime} \cap N\right)$
(i) $N=K+\left(K^{\prime} \cap N\right)$

Let $x \in M \Rightarrow x=K+K^{\prime}, \quad$ where $k \in K$ and $k^{\prime} \in K$.
Then, $k \in K=K \cap N$

$$
k^{\prime}=K^{\prime}
$$

$x-k=k^{\prime} \quad \Rightarrow \quad k^{\prime} \in N$
Hence, $k^{\prime} \in K^{\prime} \cap N$.
Thus, $x=k+k^{\prime}, \quad k \in K$ and $k^{\prime} \in K^{\prime} \cap N$
$\Rightarrow \quad x \in K+\left(K^{\prime} \cap N\right)$.

Thus, $N \subseteq K+\left(K^{\prime} \cap N\right)$.
Obviously, $K+\left(K^{\prime} \cap N\right) \subseteq N$.
Hence, $N=K+\left(K^{\prime} \cap N\right)$
(ii) $K \cap\left(K^{\prime} \cap N\right)=\phi$
$K \cap\left(K^{\prime} \cap N\right)=\left(K \cap K^{\prime}\right) \cap N=\phi \cap K^{\prime} \cap N=\phi$.
Since $\left(K \cap K^{\prime}\right)=\phi$ as $M=K \oplus K^{\prime}$.
From (i) and (ii), we get,

$$
N=K \oplus\left(K^{\prime} \cap N\right)
$$

This shows that K is a direct summand of N.

Example 6 : Let M be a R-module. Let $K \subset N \subset M$. If K is a direct summand of M and if $\frac{N}{K}$ is a direct summand of $\frac{M}{K}$ then N is direct summand of M.

Solution : As K is a direct summand of M, we have

$$
\begin{align*}
& M=K \oplus K^{\prime} . \\
\Rightarrow \quad & \frac{N}{K} \cong K \tag{1}
\end{align*}
$$

By example (5), $N=K \oplus\left(K^{\prime} \cap N\right)$

$$
\begin{equation*}
\Rightarrow \quad \frac{N}{K} \cong K^{\prime} \cap N \tag{2}
\end{equation*}
$$

From (1) and (2), we get, if $\frac{N}{K}$ is a direct summand of $\frac{M}{K}$, then $K^{\prime} \cap N$ must be the direct summand of K^{\prime}. Hence let us assume that

$$
\begin{equation*}
K^{\prime}=\left(K^{\prime} \cap N\right) \oplus L \tag{3}
\end{equation*}
$$

Again $M=K \oplus K^{\prime}$ will imply

$$
M=K \oplus\left(K^{\prime} \cap N\right) \oplus L
$$

Hence, $\quad M=N \oplus L, \quad$ (Since $N=K \oplus\left(K^{\prime} \cap N\right)$)
This shows that N is a direct summand of M.

Example 7 : Let $M=K \oplus K^{\prime}=M=L \oplus L^{\prime}$. If $\mathrm{K}=\mathrm{L}$, then show that $K^{\prime} \cong L^{\prime}$.
Solution : Let $m \in M$. Then m can be uniquely expressed by $m=k+s$ where $k \in K$ and $s \in S$

Then,

$$
s=m-k \in K^{\prime} .
$$

As $K=L$ we get $m-k \in L^{\prime}$.
Define $f: K^{\prime} \rightarrow L^{\prime}$ by

$$
f(s)=m-k
$$

(i) f is well defined.
$s_{1}=s_{2}$
Then, $\quad m_{1}=k_{1}+s_{1}$.
Let $f\left(s_{1}\right)=m_{1}-k_{1} \quad$ and $\quad f\left(s_{2}\right)=m_{2}-k_{2}$.
Then, $m_{1}=k_{1}+s_{1}$ is the unique representation of m_{1}.
Hence, $s_{1}=\left(m_{1}-k_{1}\right)=s_{2}=m_{2}-k_{2}$ will imply $f\left(s_{1}\right)=f\left(s_{2}\right)$.

Definition 2.2.7: The sum $\sum_{\alpha \in \Delta} M_{\alpha}$ of the family $\left\{M_{\alpha} / \alpha \in \Delta\right\}$ of submodules of an Rmodule M is a direct sum if each $x \in \sum_{\alpha \in \Delta} M_{\alpha}$ can be uniquely expressed as $x=\sum x_{i}$ where $x_{i} \in M$ and $x_{i}=0$ for almost all i.

Generalizing the result of Theorem 2.2.5, we get the following theorem.
Theorem 2.2.8 : Let $\left\{M_{\alpha} / \alpha \in \Delta\right\}$ be a family of submodules of an R-module M. The following statements are equivalent.
(i) $\sum_{\alpha \in \Delta} M_{\alpha}$ is a direct sum.
(ii) $0=\sum_{i} x_{i} \in \sum_{\alpha \in \Delta} M_{\alpha}, \Rightarrow x_{i}=0, \quad$ for all i
(iii) $\quad M_{i} \cap\left[\sum_{\substack{\mathrm{i} \neq \mathrm{j} \\ \mathrm{i}, \mathrm{j} \in \Delta}}^{k} M_{\mathrm{j}}\right]=\{0\}$

- Fundamental Structure Theorem for Finitely generated Modules over P. I. D. :

Result 2.2.9 : Let D be P.I.D. Any submodule K of the free module $D^{(n)}$ is free with base of $m \leq n$ elements.

Result 2.2.10 : If A is any $m \times n$ matrix with entries in p.i.d. D, then there exits an invertible matrix P of order $m \times m$ with entries in D and an invertible matrix Q with entries in D such that $P A Q=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{r}, 0,0, \ldots, 0\right\}$ where $d_{i} \neq 0$ and d_{i} / d_{j} if $i \leq j$.

- Fundamental Structure Theorem :

Theorem 2.2.11 : Let $M \neq 0$ be a finitely generated module over a p.i.d. $D . M$ is a direct sum of cyclic modules.

$$
M=D Z_{1} \oplus D Z_{2} \oplus \ldots \oplus D Z_{s}
$$

such that the order ideals ann Z_{i} satisfy

$$
\text { ann } Z_{1} \supset \operatorname{ann} Z_{2} \supset \cdots \supset \operatorname{ann} Z_{s}, \quad \text { where } \text { ann } Z_{k} \neq D .
$$

Proof : $M \neq(0)$ is a finitely generated D-module. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of generators of M.

Then, $\quad M=D x_{1}+D x_{2}+\cdots+D x_{n}$.
i. e. $\quad M=\sum_{i=1}^{n} D x_{i}$

We know that, $D^{(n)}=\left\{\left(r_{1}, r_{2}, \ldots, r_{n}\right) / r_{i} \in D\right\}$ is a free D-module with base $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, where $e_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)$.
$\uparrow i^{\text {th }}$ place
Define $f: D^{(n)} \rightarrow M$ by

$$
\begin{array}{rlr}
g(x) & =g\left(\sum_{i=1}^{n} r_{i} e_{i}\right) & \\
& =\sum_{i=1}^{n} r_{i} x_{i}, \quad r_{i} \in D, &
\end{array}
$$

Claim 1: g is an epimorphism.
(i) g is obviously well defined as $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a base for $D^{(n)}$ any $x \in D^{(n)}$ can be uniquely expressed as $\sum_{i=1}^{n} r_{i} e_{i}$ where $r_{i} \in D$ for each $i, 1 \leq i \leq n$.
(ii) g is a homomorphism.

Let $x, y \in D^{(n)}$. Then,

$$
x=\sum_{i=1}^{n} r_{i} e_{i} \quad \text { and } \quad y=\sum_{i=1}^{n} r_{i}^{\prime} e_{i}
$$

where $r_{i}, r_{i}^{\prime} \in D$ for each i.

$$
\begin{aligned}
g(x+y) & =g\left[\sum_{i=1}^{n} r_{i} e_{i}+\sum_{i=1}^{n} r_{i}^{\prime} e_{i}\right] \\
& =g\left[\sum_{i=1}^{n}\left(r_{i}+r_{i}^{\prime}\right) e_{i}\right] \\
& =\sum_{i=1}^{n}\left(r_{i}+r_{i}^{\prime}\right) x_{i}, \quad \text { (by the definition of } g \text {) } \\
& =\sum_{i=1}^{n} r_{i} x_{i}+\sum_{i=1}^{n} r_{i}^{\prime} x_{i} \\
& =g(x)+g(y)
\end{aligned}
$$

Now, let $r \in D$ and $x=\sum_{i=1}^{n} r_{i} e_{i} \in D^{(n)}$ with $r_{i} \in D$.

$$
\begin{aligned}
g(r \cdot x) & =g\left[r \cdot \sum_{i=1}^{n} r_{i} e_{i}\right] \\
& =g\left[\sum_{i=1}^{n}\left(r \cdot r_{i}\right) e_{i}\right] \\
& =\sum_{i=1}^{n}\left(r \cdot r_{i}\right) x_{i}, \quad \quad \text { (by the definition of } g \text {) } \\
& =r \cdot \sum_{i=1}^{n} r_{i} x_{i} \\
& =r \cdot g(x)
\end{aligned}
$$

Thus, for any $x, y \in D^{(n)}$ and $r \in D$, we get

$$
g(x+y)=g(x)+g(y) \quad \text { and } \quad g(r \cdot x)=r \cdot g(x)
$$

Hence, g is a homomorphism.
As g is obviously onto, we get g is an epimorphism.
Thus, the D-module M is a homomorphic image of the D-module $D^{(n)}$.
Hence, by fundamental theorem of homomorphism,

$$
M \cong \frac{D^{(n)}}{\operatorname{kerg}}
$$

Let $K=\operatorname{kerg}$. Then K is a submodule of the free module $D^{(n)}$.

Hence, by Result $2.2 .9, K$ is a free module with base containing m elements, where $m \leq n$.

Let $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be the set of generators in term of the base $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ (as $f_{i} \in D^{(n)}$ for each $i, \quad 1 \leq i \leq n$).

$$
\begin{aligned}
& f_{1}=a_{11} e_{11}+a_{12} e_{2}+\cdots+a_{1 n} e_{n} \\
& f_{2}=a_{21} e_{1}+a_{22} e_{2}+\cdots+a_{2 n} e_{n} \\
& \cdots \cdots \cdots \\
& f_{m}=a_{m 1} e_{1}+a_{m 2} e_{2}+\cdots+a_{m n} e_{n}
\end{aligned}
$$

Define $A=\left(a_{i j}\right)$.
Then, A is a matrix of order $m \times n$ with entries in D.
Hence, there exists an invertible matrix $P=\left(p_{i j}\right)$ of order $n \times n$ and an invertible matrix $Q=\left(q_{i j}\right)$ of order $m \times m$ such that $Q A P^{-1}$ is a diagonal matrix given by,

$$
\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{r}, 0,0, \ldots, 0\right\}
$$

By result 2.2.10
Define $\quad e_{i}^{\prime}=\sum_{j=1}^{n} p_{i j} e_{j}$. Then $\left\{e^{\prime}{ }_{1}, e^{\prime}{ }_{2}, \ldots, e^{\prime}\right\}$ will form an another base for $D^{(n)}$.
Define $\quad f_{k}^{\prime}=\sum_{i=1}^{m} q_{k l} f_{l}$. If $Q^{-1}=\binom{q^{*}}{k l}$, then

$$
q_{k l}^{*} f_{k}^{\prime}=\sum_{k=1}^{m} q_{r k}^{*} q_{k l} f_{l}=f_{r}
$$

But this shows that $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is contained in the submodule generated by $\left\{f^{\prime}{ }_{1}, f^{\prime}{ }_{2}, \ldots, f^{\prime}{ }_{m}\right\}$. Hence $\left\{f^{\prime}{ }_{1}, f^{\prime}{ }_{2}, \ldots, f^{\prime}{ }_{m}\right\}$ generates K .

Now,

$$
f_{k}^{\prime}=\sum_{k=1}^{m} q_{k l} f_{l}=\sum_{l, j} q_{k l} a_{l j} e_{j}=\sum_{l, j, i} q_{k l} a_{l j} p_{j l}^{*} e_{i}^{\prime}
$$

where $\quad P^{-1}=\left(p_{i j}^{*}\right)$.
Hence, the new relation matrix is $A^{\prime}=Q A P^{-1}$.
But by the choice of P and Q ,

$$
Q A P^{-1}=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{r}, 0,0, \ldots, 0\right\}
$$

Hence,

$$
f_{1}^{\prime}=d_{1} e_{1}^{\prime}, \quad f_{2}^{\prime}=d_{2} e_{2}^{\prime}, \quad \ldots ., \quad f_{r}^{\prime}=d_{r} e_{r}^{\prime}
$$

$$
\begin{equation*}
f_{r+1}^{\prime}=0, \quad f_{r+2}^{\prime}=0, \quad \ldots, \quad f_{m}^{\prime}=0 \tag{1}
\end{equation*}
$$

Define $\quad y_{i}=\sum_{j=1}^{n} p_{i j} x_{j}$.
Then $\quad \sum_{j=1}^{n} p_{r k}^{*} y_{k}=\sum p_{r k}^{*} p_{k i} x_{i}=x_{i}$; where $P^{-1}=\left(p_{i j}^{*}\right)$; shows that the submodule generated by $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ contains $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

Hence, $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ generates M.
Thus, $M=D y_{1}+D y_{2}+\cdots+D y_{n}$
i.e. $\quad M=\sum_{k=1}^{n} D y_{k}$

Let $\quad \sum_{i=1}^{n} b_{i} y_{i}=0$ for $b_{i} \in D, \quad$ for each $i, 1 \leq i \leq n$.
Consider $g\left(e_{i}^{\prime}\right)$.

$$
\begin{align*}
f\left(e_{i}^{\prime}\right) & =g\left[\sum_{j=1}^{n} p_{i j} e_{j}\right] \\
& =\sum_{j=1}^{n} p_{i j} x_{j} \\
& =y_{i} \tag{3}
\end{align*}
$$

Thus, $\quad g\left(e_{i}^{\prime}\right)=y_{i}$, for each $i, 1 \leq i \leq n$.

Hence, $\quad \sum_{i=1}^{n} b_{i} y_{i}=0 \quad \Rightarrow \sum_{i=1}^{n} b_{i} g\left(e_{i}^{\prime}\right)=0$

$$
\begin{aligned}
& \Rightarrow g\left[\sum_{i=1}^{n} b_{i} e_{i}^{\prime}\right]=0 \quad \ldots g \text { is a homomorphism } \\
& \Rightarrow \sum_{i=1}^{n} b_{i} e_{i}^{\prime} \in k
\end{aligned}
$$

As $k=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ we get

$$
\sum_{i=1}^{n} b_{i} e_{i}^{\prime}=\sum_{i=1}^{m} c_{i} f_{i}^{\prime}, \quad \text { for } c_{i} \in D, \quad \forall i, 1 \leq i \leq m
$$

$$
=\sum_{i=1}^{m} c_{i}\left(d_{i} e_{i}^{\prime}\right), \quad\left(\because \quad f_{i}^{\prime}=d_{i} e_{i}^{\prime}\right)
$$

Thus, $\quad \sum_{i=1}^{n} b_{i} e_{i}^{\prime}=\sum_{i=1}^{m}\left(c_{i} d_{i}\right) e_{i}^{\prime}$
$\therefore \quad \sum_{i=1}^{n}\left(b_{i}-c_{i} d_{i}\right) e_{i}^{\prime}=0$
As $\left\{e^{\prime}{ }_{1}, e^{\prime}{ }_{2}, \ldots, e^{\prime}{ }_{n}\right\}$ forms a base for $D^{(n)}$ we must have

$$
b_{i}-c_{i} d_{i}=0 . \quad \text { i.e. } b_{i}=c_{i} d_{i}, \quad \text { for } i, 1 \leq i \leq n .
$$

But $\quad b_{i}=c_{i} d_{i}$ for each i will imply

$$
\begin{aligned}
b_{i} y_{i} & =\left(c_{i} d_{i}\right) y_{i} & & \\
& =c_{i}\left(d_{i} y_{i}\right) & & \\
& =c_{i}\left(d_{i} g\left(e_{i}^{\prime}\right)\right) & & \ldots \text { by } 2, \quad g\left(e_{i}^{\prime}\right)=y_{i} \\
& =c_{i}\left[g\left(d_{i} e^{\prime}\right)\right] & & \ldots \text { Since } g \text { is a homomorphism. } \\
& =c_{i}\left[g\left(f^{\prime}\right)\right] & & \ldots \text { by } 1 . \\
& =c_{i} \cdot 0 & & \ldots \text { Since } f^{\prime}{ }_{i} \in \operatorname{ker} f \\
& =0 & &
\end{aligned}
$$

Hence, $b_{i} y_{i}=0$ for each i.
Thus, we have proved that $\sum_{i=1}^{n} b_{i} y_{i}=0$ then $b_{i} y_{i}=0$, for each $i, 1 \leq i \leq n$.
But this in turn shows that the sum $M=\sum_{i=1}^{n} D y_{i}$ is a direct sum.
i.e. $\quad M=\oplus \sum_{i=1}^{n} D y_{i}$

Thus, $\quad M=D y_{1} \oplus D y_{2} \oplus \ldots \oplus D y_{n}$.
Now, $\quad b_{i}=c_{i} d_{i} \quad \Rightarrow \quad b_{i} \in\left(d_{i}\right)$.
Again $b_{i} y_{i}=0 \quad \Rightarrow \quad\left(c_{i} d_{i}\right) b_{i} \in\left(d_{i}\right)$
$\Rightarrow \quad c_{i}\left(d_{i} y_{i}\right)=0$
$\Rightarrow \quad d_{i} y_{i}=0$
Hence, ann $y_{i}=\left(d_{i}\right)$.
As $d_{1} / d_{2}, d_{2} / d_{3}, \ldots$ we get,

$$
\left(d_{1}\right) \supset\left(d_{2}\right) \supset \cdots \supset\left(d_{n}\right)
$$

If d_{i} is a unit element in D, then $d_{i} y_{i}=0 \quad \Rightarrow \quad y_{i}=0 .(\because D$ is a domain $)$
Hence, drop those elements y_{i} from the set $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ for which $y_{i}=0$.
Assume without loss of generality, $d_{1}, d_{2}, \ldots, d_{t}$ are units and d_{t+1}, d_{t+2}, \ldots are not units in D. Put $Z_{1}=y_{t+1}, \ldots, Z_{n-t}=y_{n}$. We get,

$$
M=D Z_{1} \oplus D Z_{2} \oplus \ldots \oplus D Z_{n-t}
$$

where $D Z_{t}=(0)$ and

$$
\operatorname{ann} Z_{1} \supset \operatorname{ann} Z_{2} \supset \cdots \supset \operatorname{ann} Z_{s}
$$

where $s=n-t$ and $a n n Z_{k} \neq D$.

2.3 Free Module :

Throughout this section R denotes a ring with unity 1 .
Definition 2.3.1: Let M be an R-module. A finite sequence $x_{1}, x_{2}, \ldots, x_{n}$ of distinct elements of M is said to be linearly independent if for any $a_{1}, a_{2}, \ldots, a_{n}$ in R, $\sum_{i=1}^{n} a_{i} x_{i}=0$ implies $a_{1}=a_{2}=\cdots=a_{n}=0$.

A finite sequence $x_{1}, x_{2}, \ldots, x_{n}$ of distinct elements in M is said to be linearly dependent if it is not linearly independent.

A subset S of an R-module is called linearly independent if for every finite sequence of distinct elements of S is linearly independent. Otherwise S is called linearly dependent.

Definition 2.3.2 : Let M be an R-module. A subset B of M is called a basis if
(i) $\quad M$ is generated by B.
(ii) B is linearly independent set.

Example 2.3.3 : Let R be a ring with unity 1. Define $R^{(n)}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) / x_{i} \in R\right\}$. Then $R^{(n)}$ is an R-module with $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ as a base, where

$$
\begin{aligned}
e_{i}=(0,0, \ldots, & 1,0, \ldots, 0) \\
& \uparrow i^{\text {th }} \text { place. }
\end{aligned}
$$

Solution : $R^{(n)}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) / x_{i} \in R\right\}$. Define addition, 0 -element and scalar multiplication in $R^{(n)}$ as

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
$$

$0=(0,0, \ldots, 0)$
$r \cdot\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(r \cdot x_{1}, r \cdot x_{2}, \ldots, r \cdot x_{n}\right)$
for $r \in R$ and $\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in R^{(n)}$.
Then, it can be easily verified that $\left\langle R^{(n)},+, \cdot\right\rangle$ is a module over R.
Put $\quad e_{i}=(0,0, \ldots, 1,0, \ldots, 0)$, for each $i, 1 \leq i \leq n$. $\uparrow i^{t h}$ place.
(i) Let $a_{i} \in R$, for each $i, 1 \leq i \leq n$ and $\sum_{i=1}^{n} a_{i} e_{i}=0$.

But $\sum_{i=1}^{n} a_{i} e_{i}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
Hence, $\sum_{i=1}^{n} a_{i} e_{i}=0 \Rightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right)=(0,0, \ldots, 0)$.
$\Rightarrow \quad a_{1}=0, a_{2}=0, \ldots, a_{n}=0$
(ii) Again any $x \in R^{(n)}$ can be written as $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $x_{i} \in R, \quad \forall i, 1 \leq i \leq$ n. In this case,

$$
\begin{array}{r}
x=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} \quad \text { as } x_{i} e_{i}=(0,0, \ldots, \\
\left.x_{i}, 0, \ldots, 0\right) \\
\uparrow i^{\text {th }} \text { place. }
\end{array}
$$

But this in turn shows that, the set $B=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ generates $R^{(n)}$.
From (i) and (ii), we get, B is a base for an R-module $R^{(n)}$.

Theorem 2.3.4: Let M be an R-module $(1 \in R)$. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a base for M. Then $M \cong R^{(n)}$.
Proof: We know that, $R^{(n)}$ is an R-module with base $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, where

$$
\begin{aligned}
e_{i}=(0,0, \ldots, & 1,0, \ldots, 0) \\
& \uparrow i^{t h} \text { place. }
\end{aligned}
$$

for each $i, \quad 1 \leq i \leq n$.
Hence, any $x \in R^{(n)}$ can be expressed as $x=\sum_{i=1}^{n} r_{i} e_{i}$ where $r_{i} \in R, \quad \forall i, 1 \leq i \leq n$.
As $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a base for $\mathrm{M}, \sum_{i=1}^{n} r_{i} u_{i}$ where $r_{i} \in R$ is an element of M .
Define $f: R^{(n)} \rightarrow M$ by

$$
f(x)=f\left(\sum_{i=1}^{n} r_{i} e_{i}\right)=\sum_{i=1}^{n} r_{i} u_{i}
$$

(I) f is well defined map.

Let $x=y$ in $R^{(n)}$.
Then, let $x=\sum_{i=1}^{n} r_{i} e_{i}$ and $y=\sum_{i=1}^{n} r_{i} e_{i} \quad$ where $r_{i}, r_{i}^{\prime} \in R, \forall i$.

$$
\begin{aligned}
x=y \quad & \sum_{i=1}^{n} r_{i} e_{i}=\sum_{i=1}^{n} r_{i}^{\prime} e_{i} \\
& \Rightarrow \quad \sum_{i=1}^{n} r_{i} e_{i}-\sum_{i=1}^{n} r_{i}^{\prime} e_{i}=0 \\
& \Rightarrow \quad \sum_{i=1}^{n}\left(r_{i}-r_{i}^{\prime}\right) e_{i}=0 \\
& \Rightarrow \quad r_{i}-r_{i}^{\prime}=0
\end{aligned} \quad \forall i, 1 \leq i \leq n .
$$

As $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a base for $R^{(n)}$.
As $r_{i}=r_{i}^{\prime}$ for each $i, 1 \leq i \leq n$ we get

$$
\sum_{i=1}^{n} r_{i} u_{i}=\sum_{i=1}^{n} r_{i}^{\prime} u_{i}
$$

Thus ,

$$
x=y \quad \Rightarrow \sum_{i=1}^{n} r_{i} e_{i}=\sum_{i=1}^{n} r_{i}^{\prime} e_{i} \quad \Rightarrow \sum_{i=1}^{n} r_{i} u_{i}=\sum_{i=1}^{n} r_{i}^{\prime} u_{i} \quad \Rightarrow f(x)=f(y)
$$

This shows that f is well defined.
(II) f is a R-homomorphism.
(i)Let $x, y \in R^{(n)}$. Let $x=\sum_{i=1}^{n} r_{i} e_{i}$ and $y=\sum_{i=1}^{n} r_{i}^{\prime} e_{i}$

$$
\begin{aligned}
f(x+y) & =f\left(\sum_{i=1}^{n} r_{i} e_{i}+\sum_{i=1}^{n} r_{i}^{\prime} e_{i}\right) \\
& =f\left(\sum_{i=1}^{n}\left(r_{i}+r_{i}^{\prime}\right) e_{i}\right) \\
& =\sum_{i=1}^{n}\left(r_{i}+r_{i}^{\prime}\right) u_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} r_{i} u_{i}+\sum_{i=1}^{n} r_{i}^{\prime} u_{i} \\
& =f(x)+f(y)
\end{aligned}
$$

Thus, $f(x+y)=f(x)+f(y)$ for all $x, y \in R^{(n)}$.
(ii) Let $r \in R$ and $x \in R^{(n)}$. Let $x=\sum_{i=1}^{n} r_{i} e_{i}, \quad r_{i} \in R$

$$
\begin{aligned}
f(r x)= & f\left(r \sum_{i=1}^{n} r_{i} e_{i}\right) \\
& =f\left(\sum_{i=1}^{n}\left(r r_{i}\right) e_{i}\right) \\
& =\sum_{i=1}^{n}\left(r r_{i}\right) u_{i} \\
& =r \sum_{i=1}^{n} r_{i} u_{i} \\
& =r f(x)
\end{aligned}
$$

Thus, $f(r x)=r f(x)$ for all $r \in R$ and $x \in R^{(n)}$.
From (i) and (ii), we get, f is a R-homomorphism.
(III) f is an onto mapping.

As $f\left(e_{i}\right)=u_{i}$ for each $i, 1 \leq i \leq n$, we get $\operatorname{im} f=\left\{f(x) / x \in R^{(n)}\right\}$ contains u_{i} for each $i, 1 \leq i \leq n$.

Thus, $\operatorname{im} f$ is a submodule of M containing $u_{1}, u_{2}, \ldots, u_{n}$.
By data $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a base for M and hence it generates M.
Thus, $\operatorname{im} f=M$. But this shows that f is onto.
(IV) f is one-one.

Let $x \in \operatorname{kerf}$ then $f(x)=0$.
Let $x=\sum_{i=1}^{n} r_{i} e_{i}$. Then

$$
f(x)=f\left(\sum_{i=1}^{n} r_{i} e_{i}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} r_{i} u_{i} \\
& =0
\end{aligned}
$$

As $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a base for $\mathrm{M}, \sum_{i=1}^{n} r_{i} u_{i}=0 \Rightarrow r_{i}=0 \quad$ for each $i, 1 \leq i \leq n$.
But this in turn shows that $x=\sum_{i=1}^{n} r_{i} e_{i}=0$. Thus $\operatorname{ker} f=\{0\}$.
This shows that f is one-one. (See 1.3, theorem 3).
From (I), (II), (III) and (IV) we get,
$f: R^{(n)} \longrightarrow M$ is an isomorphism and hence $R^{(n)} \cong M$.

Remark 2.3.5 : Thus existence of a base of n-elements for an R-module implies that $M \cong R^{(n)}$. In this case we shall say that M is a free R -module of rank n .

Theorem 2.3.6 : If M is a module over commutative ring R with unity 1 and if M has bases of m and n elements, then $m=n$.

Proof : Assume that $m<n$.
Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ be basis for M. As $f_{j} \in M$ and $\left\{e_{i} / 1 \leq i \leq n\right\}$ is a base for M , we get

$$
\begin{equation*}
f_{j}=\sum_{i=1}^{n} a_{j i} e_{i} \quad \text { where } a_{j i} \in R \tag{1}
\end{equation*}
$$

Similarly, as $e_{i} \in M$ and $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ is a base for M, we get

$$
\begin{equation*}
e_{i}=\sum_{j=1}^{m} b_{i j} f_{j} \quad \text { where } b_{i j} \in R \tag{2}
\end{equation*}
$$

From (1) and (2), we get,

$$
\begin{align*}
& f_{j}=\sum_{i=1}^{n} \sum_{j^{\prime}=1}^{m} a_{j i} b_{i j^{\prime}} f_{j^{\prime}} \tag{3}\\
& \text { and } \quad e_{i}=\sum_{j=1}^{m} \sum_{i^{\prime}=1}^{n} b_{i j} a_{j i^{\prime}} e_{i^{\prime}} \tag{4}
\end{align*}
$$

But $\left\{f_{i} / 1 \leq j \leq m\right\}$ and $\left\{e_{i} / 1 \leq i \leq n\right\}$ are bases for M and hence

$$
\sum_{i=1}^{n} a_{j i} b_{i j^{\prime}} e_{i^{\prime}}=\left\{\begin{array}{ll}
1 & \text { if } j=j^{\prime} \tag{5}\\
0 & \text { if } j \neq j^{\prime}
\end{array}, \quad \text { for } 1 \leq j, j^{\prime} \leq m\right.
$$

and

$$
\sum_{j=1}^{m} b_{i j} a_{j i^{\prime}}=\left\{\begin{array}{ll}
1 & \text { if } i=i^{\prime} \tag{6}\\
0 & \text { if } i \neq i^{\prime}
\end{array}, \quad \text { for } 1 \leq i, i^{\prime} \leq n\right.
$$

From (1) and (2), we obtain the two $n \times m$ matrices A and B defined as follows.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} \\
0 & 0 & \cdots & 0 \\
\vdots & \cdots & \cdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]_{n \times m}
$$

and

$$
B=\left[\begin{array}{ccccccc}
b_{11} & b_{12} & \cdots & b_{1 m} & 0 & \cdots & 0 \\
b_{21} & b_{22} & \cdots & b_{2 n} & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & 0 & \cdots & 0 \\
b_{n 1} & b_{n 2} & \cdots & b_{n m} & 0 & \cdots & 0
\end{array}\right]_{n \times m}
$$

But form (6), we get, $B A=1$.
Since R is commutative, $B A=1 \Rightarrow A B=1$.
But $A B=1$ is impossible as the matrix $A B$ contains last $n-m$ rows zero.
Hence our assumption $m<n$ is wrong. Therefore $m \geq n$.
Similarly, we can prove that $m \leq n$.
Hence $m=n$.

Corollary 2.3.7: If R is commutative, $R^{(m)} \cong R^{(n)}$ implies $m=n$.
Proof : We know that any free module M with a base containing m elements is isomorphic with $R^{(m)}$ (See theorem 3.3.4). Thus, if $R^{(m)} \cong R^{(n)}$ then we have a free module M which has bases of m and n elements. By theorem 3.3.6 it follows that, $m=n$ and we are through.

Theorem 2.3.8: Given one ordered base $e_{1}, e_{2}, \ldots, e_{n}$ for a free module over a commutative ring R , we obtain another ordered base $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ by applying the
matrices $A=L_{n}(R)$ to $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ in the sence that $f_{j}=\sum_{i=1}^{n} a_{i j} e_{i}, A=\left(a_{i j}\right)$ and conversely. Here $L_{n}(R)$ denotes the group of $n \times n$ invertible matrices with entries in R.

Proof: Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ be a bases for a free module M. As $f_{j} \in M$ and $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a base for M , we get

$$
f_{j}=\sum_{i=1}^{n} a_{j i} e_{i} \quad \forall j, 1 \leq j \leq n, a_{i j} \in R \quad \forall j, i .
$$

Similarly, $e_{i} \in M$ and $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is a base for M , will give

$$
e_{i}=\sum_{j=1}^{n} b_{i j} e_{j}, \quad \forall i, 1 \leq i \leq n, b_{i j} \in R \quad \forall i, j .
$$

Define $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$.
Then, $A, B \in L_{n}(R)$, as $\mathrm{AB}=1$ and $\mathrm{BA}=1$ imply A and B are invertible.
Conversely, suppose that $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a base for a free module M and $A=\left(a_{i j}\right) \in L_{n}(R)$.

Define

$$
f_{j}=\sum_{i=1}^{n} a_{j i} e_{i}
$$

$$
\forall j, \quad 1 \leq j \leq n .
$$

Claim : $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is a base for M.
(i) Now $A \in L_{n}(R)$. Hence A^{-1} exists. Let $A^{-1}=B$. Then $\mathrm{AB}=1=\mathrm{BA}$ and let $B=$ $\left(b_{i j}\right)_{n \times n}$.

Consider $\sum_{j=1}^{n} b_{k j} f_{j}$. Then ,

$$
\sum_{j=1}^{n} b_{k j} f_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{k j} a_{j i} e_{i}=e_{k} \text { as } \mathrm{BA}=1
$$

As $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ generate M we get $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ generate M .
(ii) Let $\sum_{i=1}^{n} r_{j} f_{j}=0$ for some $r_{i} \in R, 1 \leq i \leq n$. Then

$$
\sum_{j=1}^{n} \sum_{i=1}^{n} r_{j}\left[a_{j i} e_{i}\right]=0
$$

i.e. $\quad \sum_{i=1}^{n} \sum_{j=1}^{n}\left[r_{j} a_{j i}\right] e_{i}=0$

As $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a base for M, we get

$$
\sum_{j=1}^{n} r_{j} a_{j i}=0 \quad, \quad \forall i, 1 \leq i \leq n
$$

Hence $\sum_{i=1}^{n} \sum_{j=1}^{n} r_{j} a_{j i} b_{i h}=0, \quad \forall h, 1 \leq h \leq n$.
But $\mathrm{AB}=1$ and hence $r_{j}=0$ for all $j, 1 \leq i \leq n$.
Thus, $\sum_{j=1}^{n} r_{j} f_{j}=0 \Rightarrow r_{j}=0$ for each $j, 1 \leq i \leq n$.
From (1) and (2), we get $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is a base for M .

Theorem 2.3.9 : Let D be a p. i. d. and let $D^{(n)}$ be the free module of rank n over D. Then every submodule K of $D^{(n)}$ is free with base of $m \leq n$ elements.

Proof :

Case I : $\mathrm{n}=0$.
If $\mathrm{K}=(0)$, then K is a free module with rank 0 (with empty base). Hence the result is trivially true for $\mathrm{n}=0$.
Case II: $\mathrm{n}=1$.
$D^{(n)}=D$. Hence any submodule of D is an ideal in D , which is a principal ideal. Hence $K=(f)$ for some $f \in D$. Obviously $\{f\}$ generates K. If $f=0$, then $K=(0)$ and the result follows as rank of $K=0$.

Let $f \neq 0$. Then $a f=0$ for some $a \in D$ will imply $a=0$ as D is an integral domain. Thus, $\{f\}$ will form a base for $K=(f)$.

Hence, K is a free module with rank ≤ 1.
Case III: $\mathrm{n}>1$.
Let K be any submodule of $D^{(n)}$.
We prove the result my induction on n . Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a base for $D^{(n)}$. Let $D^{(n-1)}$ denote a submodule of $D^{(n)}$ generated by $\left\{e_{2}, e_{3}, \ldots, e_{n-1}, e_{n}\right\}$. Then $D^{(n-1)}$ is a free
module of rank $\mathrm{n}-1$. Hence $\frac{D^{(n)}}{D^{(n-1)}}$ is a free module of rank 1. The base for is $\frac{D^{(n)}}{D^{(n-1)}}$ is $\left\{\bar{e}_{1}\right\}$ where $\bar{e}_{1}=e_{1}+D^{(n-1)}$.
As K is a submodule of $D^{(n)}, \frac{k+D^{(n-1)}}{D^{(n-1)}}$ is a submodule of $\frac{D^{(n)}}{D^{(n-1)}}$.
Let
$\bar{K}=\frac{K+D^{(n-1)}}{D^{(n-1)}} \quad$ and $\quad \bar{D}=\frac{D^{(n)}}{D^{(n-1)}}$
(I) If $\bar{K}=(0)$, then $k+D^{(n-1)} \subseteq D^{(n-1)}$ and hence $K \subseteq D^{(n-1)}$.

By induction, K will be a free module with base containing $m \leq n-1$ elements and hence the result is true in this case.
(II) If $\bar{K}=\{0\}$, then as in case (I), \bar{K} will contain a base consisting of one element say \bar{f}_{1} where $\bar{f}_{1}=f_{1}+D^{(n-1)}$. As $\bar{K}=\frac{K+D^{(n-1)}}{D^{(n-1)}}$ we select $f_{1} \in K$.

Subcase I: $K \cap D^{(n-1)} \neq(0)$.
Then $K \cap D^{(n-1)} \neq(0)$ is a submodule of $D^{(n-1)}$. Hence by induction hypothesis, $K \cap D^{(n-1)}$ has a base say $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ with $0<m-1<n-1$.

Claim : $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ will form a base for K .
Let $y \in K$. Then $\bar{y}=y+D^{(n-1)} \in \bar{K}$. Hence $\bar{y}=b_{1} \bar{f}_{1}$ for some $b_{1} \in D$.
But this means that

$$
\begin{align*}
y-b_{1} f_{1} & =b_{2} f_{2}+b_{3} f_{3}+\cdots+b_{m} f_{m} \\
y & =b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+\cdots+b_{m} f_{m}
\end{align*}
$$

Now, let us assume that $\sum_{i=1}^{m} d_{i} f_{i}=0$ for $d_{i} \in D$. Hence $d_{1} f_{1}=-\sum_{j=2}^{m} d_{j} f_{j}$.
This implies

$$
d_{1} \bar{f}_{1}=-\sum_{j=2}^{m} d_{j} \bar{f}_{j} .
$$

But $\left\{f_{2}, f_{3}, \ldots, f_{m}\right\}$ is a base for $K \cap D^{(n-1)}$. Hence $\sum_{j=2}^{n} d_{j} \bar{f}_{j}=0$ and therefore $d_{1} \bar{f}_{1}=0$. But $\left\{\bar{f}_{1}\right\}$ is a base for \bar{K} will imply $d_{1}=0$.

Thus,

As $\left\{f_{2}, f_{3}, \ldots, f_{m}\right\}$ is a base for $K \cap D^{(n-1)}$ we get $d_{2}=d_{3}=\cdots=d_{m}=0$. Thus

$$
\sum_{k=1}^{m} d_{k} f_{k}=0 \quad \Rightarrow \quad d_{k}=0 \quad \forall k, 1 \leq k \leq m
$$

Hence, $\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$ will form a base K.
Subcase II : $K \cap D^{(n-1)}=\{0\}$.
If $K \cap D^{(n-1)}=\{0\}$, then $\left\{f_{1}\right\}$ will form a base for K.
$f_{1} \in K \quad \Rightarrow \quad\left(f_{1}\right) \subseteq K$, where $\left(f_{1}\right)=D f_{1}$.
Let $y \in K$. Then $\bar{y}=y+D^{(n-1)} \in \bar{K}$.
Hence, $\bar{y}=b_{1} \bar{f}_{1} \quad$ for some $b_{1} \in D$.
$\Rightarrow \quad y-b_{1} f_{1} \in D^{(n-1)}$.
As $f_{1} \in K$ and $y \in K$, we get $y-b_{1} f_{1} \in K$.
Thus, $y-b_{1} f_{1} \in K \cap D^{(n-1)}=\{0\}$.
Hence, $y=b_{1} f_{1}$. This shows that $K \subseteq\left(f_{1}\right)$.
Hence, $K=\left(f_{1}\right)=D f_{1}$.
Further, $b_{1} f_{1}=0$ and $f_{1} \neq 0 \quad \Rightarrow b_{1}=0$.
Hence, $\left\{f_{1}\right\}$ will form a base for K.
Thus in either cases, K is a free module with base consisting of m elements, where $m \leq n$.

2.4 Completely Reducible Modules :

Definition 2.4.1 : An R-module M is called completely reducible if $M=\sum M_{\alpha}$ where M_{α} are simple R-modules.

Theorem 2.4.2 : Let M be a completely reducible R-module. Let $M=\sum_{\alpha \in \Delta} M_{\alpha}$ where M_{α} is a simple R-modules of M. For any submodule K of M, \exists a subset Δ^{\prime} and Δ such that

$$
\begin{aligned}
& \sum_{\alpha \in \Delta^{\prime}} M_{\alpha} \text { is a direct sum and } \\
& \qquad M=K \oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha} .
\end{aligned}
$$

Proof : $\mathcal{K}=\left\{A \subseteq \Delta / \sum_{\alpha \in A} M_{\alpha}\right.$ is a direct sum and $\left.K \cap \sum_{\alpha \in \Delta} M_{\alpha}=\{0\}\right\}$.
Then \mathcal{K} is a non empty set as $\phi \in \mathcal{K}$.
As,

$$
\sum_{\alpha \in \phi} M_{\alpha}=\{0\}
$$

$\langle\mathcal{K}, \subseteq\rangle$ is partially ordered set.
Let \mathcal{C} be a chain in \mathcal{K}. Then

$$
\bigcup_{c \in \mathcal{C}} c \in \mathcal{K}
$$

Hence, by Zorn's lemma, \mathcal{K} contains a maximum element say B.
Thus, $\sum_{\alpha \in B} M_{\alpha}$ is a direct sum and $K \cap \sum_{\alpha \in \Delta} M_{\alpha}=\{0\}$
Let $N=K \oplus \sum_{\alpha \in B} M_{\alpha}$.
Claim that $\mathrm{M}=\mathrm{N}$. i.e. to prove that $\oplus \sum_{\alpha \in \Delta} M_{\alpha}=K \oplus \sum_{\alpha \in B} M_{\alpha}$.
Let $\beta \in \Delta$. Then M_{β} is a direct sum and of M and M_{β} is simple. Hence $M_{\beta} \cap N$ is a submodule of M_{β} will imply $M_{\beta} \cap N=M_{\beta}$ or $M_{\beta} \cap N=\{0\}$.
Let $M_{\beta} \cap N=\{0\}$ then $M_{\beta} \cap \sum_{\alpha \in B} M_{\alpha} \subseteq M_{\beta} \cap N=\{0\}$.
This implies that $M_{\beta} \cap \sum_{\alpha \in B} M_{\alpha}=\{0\}$.
But then $\sum_{\alpha \in B \cup\{\beta\}} M_{\alpha}$ is a direct sum and

$$
\begin{aligned}
& K \cap\left[\sum_{\alpha \in B \cup\{\beta\}} M_{\alpha}\right]=\left[K \cap \sum_{\alpha \in B} M_{\alpha}\right] \cup\left[K \cap M_{\beta}\right] \\
& \quad=\{0\} \cup\{0\}=\{0\} \quad\left(\text { as } M_{\beta} \cap N=\{0\} \Rightarrow M_{\beta} \cap K=\{0\}\right.
\end{aligned}
$$

Thus, $B \cup\{\beta\} \in \mathcal{K}$.
B being a maximal element of \mathcal{K} we get a contradiction.
Hence,

$$
M_{\beta} \cap N=M_{\beta}
$$

i.e. $M_{\beta} \subseteq N$
$\forall \beta \in \Delta$.
But this will imply

$$
\sum_{\beta \in \Delta} M_{\beta} \subseteq N . \quad \text { i.e. } M \subseteq N
$$

Hence, $\mathrm{M}=\mathrm{N}$.
Thus, $M=K \oplus \sum_{\alpha \in B} M_{\alpha}$ where $B \subseteq \Delta$ such that $\sum_{\alpha \in B} M_{\alpha}$ is a direct sum.

Corollary 2.4.3 : Let $M=\sum_{\alpha \in \Delta} M_{\alpha}$ where M_{α} is a simple R-submodule of M. Then \exists a subfamily Δ^{\prime} of Δ such that $M=\oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$.
Proof : We know that for any submodule K of M, $\exists \Delta^{\prime} \subseteq \Delta$ such that $M=K \oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$ and $\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$ is a direct sum.

Now, take $K=\{0\}$. Then $M=\oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$.

2.4.4 Worked Examples

Example 1 : Let M be a completely reducible module and let K be a nonzero submodule of M. Show that K is completely reducible. Also show that K is completely reducible. Also show that K is a direct summand of M.
Solution : Let $M=\sum_{\alpha \in \Delta} M_{\alpha}$ where each M_{α} is a simple submodule.
By theorem $2, M=K \oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}, \Delta^{\prime} \subseteq \Delta$ shows that K is a direct summand of M .
Again, $\quad \frac{M}{K} \cong \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$
and

$$
\frac{M}{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}} \cong K
$$

Thus,

$$
K \cong \frac{M}{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}} \cong \frac{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha} \oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}}{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}} \cong \sum_{\alpha \in \Delta^{\prime \prime}} M_{\alpha}
$$

$$
\begin{aligned}
& \frac{M}{K} \cong \sum_{\alpha \in \Delta^{\prime}} M_{\alpha} \text { is a submodule of M. Hence again applying theorem 1, we get, } \\
& K=\left[\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}\right] \oplus\left[\sum_{\alpha \in \Delta^{\prime \prime}} M_{\alpha}\right], \\
& \frac{M}{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}}=\frac{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}+\sum_{\alpha \in \Delta^{\prime \prime}} M_{\alpha}}{\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}} \cong \sum_{\alpha \in \Delta^{\prime \prime}} M_{\alpha}
\end{aligned}
$$

Thus,

$$
K \cong \sum_{\alpha \in \Delta^{\prime \prime}} M_{\alpha} \quad\left(\Delta^{\prime \prime} \subseteq \Delta .\right.
$$

As each $M_{\alpha}, \alpha \in \Delta^{\prime \prime}$ is simple we get $\sum_{\alpha \in \Delta^{\prime \prime}} M_{\alpha}$ is completely reducible module. Hence K is completely reducible being an isomorphic image of a completely reducible module.

Example 2 : Let M be a completely reducible module and let K be a submodule of M . If $K \neq M$ then show that $\frac{M}{K}$ is completely reducible.

Solution : M be completely reducible. Hence $M=\sum_{\alpha \in \Delta} M_{\alpha}$ where each M_{α} is simple. K is a submodule of M. Therefore by theorem $1, M=K \oplus \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$ for some $\Delta^{\prime} \subseteq \Delta$.

But then $\frac{M}{K} \cong \sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$.
As $\sum_{\alpha \in \Delta^{\prime}} M_{\alpha}$ is completely reducible, we get $\frac{M}{K}$ is completely reducible.

Unit 3: NOETHERIAN AND ARTINIAN MODULES :

3.1 Noetherian and Artinian module

3.2 Artinian module

3.1 Noetherian Modules :

Definition 3.1.1 : Let M be an R-module. If for every ascending sequence of R -submodules of $M, M_{1} \subseteq M_{2} \subseteq \cdots \subseteq \cdots$ there exists a positive integer n such that $M_{n}=M_{n+1}=\cdots$, then M is called Noetherian module.

Remark 3.1.2 : If M is a Noetherian module, we say that ascending chain condition (acc) for submodules hold in M or M has acc.

3.1.3 Examples

Example 1 : Let Z denote a Z-module and $n \in Z$. we know that (n) is a submodule of Z. Consider the ascending chain of submodules in Z given below.

$$
(n) \subset\left(n_{1}\right) \subset\left(n_{2}\right) \subset \cdots
$$

Then,
$(n) \subset\left(n_{1}\right) \quad \Rightarrow n_{1} \mid n$
$\left(n_{1}\right) \subset\left(n_{2}\right) \quad \Rightarrow n_{2} \mid n_{1}$
Hence, the ascending chain of submodules in Z, starting with (n) will have atmost n distinct elements.

This shows that Z as a Z -module is a Noetherian module.

Example 2: Let V be an n-dimensional vector space over a field F. Then any ascending chain of subspaces of V cannot have more than $n+1$ elements. Hence V must be Noetherian.

Theorem 3.1.4 : Let M an R-module. The following statements are equivalent.
(i) $\quad M$ is Noetherian.
(ii) Every submodule of M is finitely generated.
(iii) Any non-empty family of submodules of M has a maximal element.

Proof :

(i) \Rightarrow (ii) :

Let N be a submodule of a Noetherian module M.
Assume that N is not finitely generated.
Select $a_{1} \in N$. Then $N \neq\left(a_{1}\right)$, by assumption.
Hence, select $a_{2} \in N$ such that $a_{2} \notin\left(a_{1}\right)$. (This is possible as $\left.\left(a_{1}\right) \subset N\right)$.
Then, by assumption,

$$
N \neq\left(a_{1}, a_{2}\right) \quad \text { and } \quad\left(a_{1}\right) \subset\left(a_{1}, a_{2}\right) \subset N .
$$

Hence, select $a_{3} \in N$ such that $a_{3} \notin\left(a_{1}, a_{2}\right)$.
Then $N \neq\left(a_{1}, a_{2}, a_{3}\right)$, by assumption and

$$
\left(a_{1}\right) \subset\left(a_{1}, a_{2}\right) \subset\left(a_{1}, a_{2}, a_{3}\right) \subset N .
$$

Continuing in this way, we get an infinite ascending chain of submodules of N and hence of M.

But this contradicts the fact that M is Noetherian module.
Hence, N must be finitely generated.

(ii) \Rightarrow (iii) :

Let \mathcal{K} denote the non empty family of submodules of the module M.
Let $N_{0} \in \mathcal{K}$.
If N_{0} is a maximal ideal of \mathcal{K}, then we are through.
If N_{0} is not a maximal element of \mathcal{K}, then there exist $N_{1} \in \mathcal{K}$ such that $N_{0} \subset N_{1}$.
If N_{1} is a maximal element of \mathcal{K}, then we are through.
If N_{1} is not a maximal element of \mathcal{K}, then there exist $N_{2} \in \mathcal{K}$ such that $N_{0} \subset N_{1} \subset N_{2}$. Thus, if \mathcal{K} does not contain a maximal element, we get an infinite chain of submodules of M as below

$$
\begin{equation*}
N_{0} \subset N_{1} \subset N_{2} \subset \cdots \tag{I}
\end{equation*}
$$

Define $N=\bigcup_{i=1} N_{i}$.
Then, N is a submodule of M. By assumption N must be finitely generated.
Let $\left(x_{1}, x_{2}, \ldots, x_{k}\right), \quad$ where $x_{i} \in N, \quad \forall i \leq i \leq K$.
The finite number of elements $x_{1}, x_{2}, \ldots, x_{k}$ must belong to the finite number of submodules. N_{i} (this number $\leq k$), by the definition of N.

Hence, select a positive integer s such that $x_{1}, x_{2}, \ldots, x_{k} \in N_{s}$ and s is the smallest positive integer satisfying this property. Thus,

$$
x_{1}, x_{2}, \ldots, x_{k} \in N_{s} \text { implies }\left(x_{1}, x_{2}, \ldots, x_{k}\right) \subseteq N_{s}
$$

and hence $N \subseteq N_{s} \subseteq N$.
This shows that $N=N_{s}$.
For the infinite chain in I we have $s>0$ such that

$$
N_{s}=N_{s+1}=N_{s+2}=\ldots=N
$$

This in turn shows that N will be the maximal element in \mathcal{K} and the implication follows.

(iii) \Rightarrow (i) :

Let $M_{1} \subset M_{2} \subset \ldots$ be any ascending sequence of submodules of an R-module M.
Consider the family $\mathcal{K}=\left\{M_{1}, M_{2}, \ldots\right\}$.
Then, \mathcal{K} is the family of submodules of M and hence by assumption, \mathcal{K} contains a maximal element say M_{n}. But then $M_{n}=M_{n+1}=\ldots$

This in turn shows that M is Noetherian.
Thus, we have proved $1 \Rightarrow 2 \Longrightarrow 3 \Longrightarrow 1$.
Hence, all the statements are equivalent.

Theorem 3.1.5 : Every submodule of a Noetherian module is a Noetherian module.
Proof :Let M be Noetherian module. Let N be submodule of M.
To prove N is Noetherian.
Let \mathcal{K} be any non empty family of submodules of N.
Then obviously, \mathcal{K} is a any non empty family of submodules of M.
M being Noetherian, \mathcal{K} contains a maximal element (See theorem 3.1.4).
But this in turn will imply N is Noetherian.

Theorem 3.1.6 : Every quotient module of a Noetherian module is Noetherian.
Proof : Let M be a Noetherian module. Let N be any submodule of M .
To prove that $\frac{M}{N}$ is Noetherian.
Let \mathcal{K} denote a non-empty family of submodules of a module $\frac{M}{N}$.
Let $\mathcal{K}=\left\{\frac{U_{1}}{N}, \frac{U_{2}}{N}, \frac{U_{3}}{N}, \ldots\right\}$. As $\frac{U_{i}}{N}$ is a submodule of $\frac{M}{N}$, by theorem 1 in 1.3 , we get U_{i} is a submodule of M containing N .

Consider the family $\mathcal{F}=\left\{N, U_{1}, U_{2}, \ldots\right\}$. Then \mathcal{F} is a nonempty family of submodule on M (since $N \in \mathcal{F}$). As M is Noetherian, the family \mathcal{F} contains a maximal element say U_{k}.

Then $\frac{U_{k}}{N}$ will be the maximal element of the family \mathcal{K}.
Hence, $\frac{M}{N}$ is Noetherian module, by theorem 3.1.4.

Theorem 3.1.7 : Every homomorphic image of a Noetherian module is Noetherian.
Proof : Let $f: M_{1} \rightarrow M_{2}$ be R-homomorphism of an R-module M_{1} onto the R-module M_{2}.

Claim 1: If N is a submodule of M_{1} then $f(N)$ is a submodule of M_{2}.
(i) $\quad f(N) \neq \phi$ as $N \neq \phi$
(ii) $\quad x, y \in f(N)$. Hence $\exists a, b \in N$ such that $x=f(a)$ and $y=f(b)$.

Then $x-y=f(a)-f(b)$
$=f(a-b), \quad \ldots$ Since f is homomorphism.
This shows that $x-y \in f(N)$ as $a-b \in N, N$ being a module in M_{1}.
(iii) Let $r \in R$ and $x \in f(N)$. Then $x=f(a)$ for some $a \in N$.

As N is a submodule of $M_{1}, \quad r \cdot a \in N \Rightarrow f(r \cdot a) \in f(N)$.
But as f is an R-homomorphism, $f(r \cdot a)=r \cdot f(a)=r \cdot x \in f(n)$.
From (i), (ii) and (iii), we get, $f(N)$ is a submodule of M_{2}.
Claim 2: If X is a submodule of M_{2}, then $f^{-1}(X)$ is a submodule of M_{1}.
(i) $f^{-1}(X) \neq \phi$ as $X \neq \phi$
(ii) $\quad a, b \in f^{-1}(X)$. Then $f(a) \in X, f(b) \in X$.

As X is a submodule, $f(a)-f(b) \in X$
f being homomorphism, $f(a)-f(b)=f(a-b)$.
Thus, $f(a-b) \in X$ and hence $a-b \in f^{-1}(X)$.
(iii) Let $r \in R$ and $a \in f^{-1}(X)$.

Then $f(a) \in X, X$ being a submodule of $\mathrm{M}, r \cdot f(a) \in X$.
As f is a homomorphism $f(r \cdot a)=r \cdot f(a)$.
Thus, $r \cdot a \in f^{-1}(X)$.
From (i), (ii) and (iii), we get, $f^{-1}(X)$ is a submodule of M_{1}.

Claim 3: M_{2} is a Noetherian module.
Let $\mathcal{K}^{\prime}=\left\{N_{1}^{\prime}, N_{2}^{\prime}, \ldots\right\}$ be any nonempty family of submodules of the module M_{2}.
Then the family, $\mathcal{K}^{\prime}=\left\{f^{-1}\left(N_{1}^{\prime}\right), f^{-1}\left(N_{2}^{\prime}\right), \ldots\right\}$ is a non empty family of submodules of the module M_{1} (by claim 2).

As M_{1} is Noetherian, \mathcal{K} contains a maximal element (by theorem 3.1.4).
Let it be $f^{-1}\left(N_{k}^{\prime}\right)$.
Then, N_{k}^{\prime} will be maximal element in \mathcal{K}^{\prime} (by claim 1). This in turn shows that M_{2} is Noetherian (See theorem 3.1.4).

Thus, homomorphic image of a Noetherian module is Noetherian.

Theorem 3.1.8 : Let M be an R -module and let N be a submodule of M . M is Noetherian iff both N and $\frac{M}{N}$ are Noetherian.

Proof : Only if part :

Let M be Noetherian. Then both N and $\frac{M}{N}$ are Noetherian (See theorem 3.1.5 and theorem 3.1.6).

If part :

Let N and $\frac{M}{N}$ both be Noetherian.
To prove that M is Noetherian.
N is Noetherian implies N is finitely generated (See theorem 3.1.4).
Let $N=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$.
$\frac{M}{N}$ is Noetherian implies $\frac{M}{N}$ is finitely generated (See theorem 3.1.4).
Let $\frac{M}{N}=\left(y_{1}+N, y_{2}+N, \ldots, y_{s}+N\right)$
Then $M=\left(x_{1}, x_{2}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{s}\right)$
As M is a finitely generated module, M is Noetherian (See theorem 3.1.4).

Theorem 3.1.9 : Let M be an R-module. Let M_{1} and M_{2} be submodules of M such that $M=M_{1} \oplus M_{2}$. If M_{1} and M_{2} are Noetherian, then M is Noetherian.
Proof : We know that $M=M_{1} \oplus M_{2}$ will imply $M_{1} \cong \frac{M}{M_{2}}$ and $M_{2} \cong \frac{M}{M_{1}}$ (See theorem 3.1.6).

Now, M_{1} is Noetherian and $M_{1} \cong \frac{M}{M_{2}}$.
Hence, by theorem 3.1.7, $\frac{M}{M_{2}}$ is Noetherian.
As M_{2} and $\frac{M}{M_{2}}$ both are Noetherian we get M is Noetherian (by theorem 3.1.8).

Corollary 3.1.10 : Let M be an R-module and let $M_{1}, M_{2}, \ldots, M_{k}$ be Noetherian submodules of M such that

$$
M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}
$$

Then, M is Noetherian.
Proof : The result is true for $n=2$ by theorem 3.1.9.
[Hence by induction on n, we get, if $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$ then M is Noetherian when each M_{i} is a Noetherian module].

Let the result be true for all $k \leq n$.
Then $\left[M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n-1}\right]=N$ is Noetherian module.
But in this case $M=N \oplus M_{n}$.
As N and M_{n} both are noertherian, we get M is Noetherian.

3.2 Artinian Module :

Definition 3.2.1 : An R-module M is called Artinian if for every decreasing sequence of R-submodules of M

$$
M_{1} \supseteq M_{2} \supseteq \cdots \supseteq \cdots
$$

there exists a positive integer n such that $M_{n}=M_{n+1}=\cdots$.

Remark 3.2.2 : If M is Artinian module, we say that descending chain condition (dcc) for submodules hold in M or M has dcc.

Example 3.2.3 : Any finite dimensional vector space over the field F is an Artinian module.

Remark 3.2.4 : Any finite dimensional vector space over the filed F is both Noetherian and Artinian module. But Z as Z -module is a Noetherian module which is not Artinian as the decreasing sequence

$$
(n) \supset\left(n^{2}\right) \supset \cdots
$$

is an infinite properly decreasing sequence in Z.
Now we only mention the characterizing properties of Artinian modules, the proof being similar to the proof of theorem 3.1.4.

Theorem 3.2.5 : Let M be an R-module. Following statements are equivalent.
(i) $\quad M$ is Artinian.
(ii) Every submodules of M is finitely generated.
(iii) Every non-empty set \mathcal{K} of submodules of M has a minimal element.

Exercise : Show that every submodule and every homomorphic image of an Artinian module is Artinian.
[Hint : See 3.1, theorem 3.1.5 and theorem 3.1.7].

