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Preface

This book in the form of "Notes of Algebra-I" is a natural outgrowth of the lectures

delivered for M. Sc. Part-I students of Shivaji University. The primary purpose of this

book is to facilitate the post graduate education in Algebra. The topics in the book will

cover the syllabus of Algebra-I in detail for M. Sc. (Part-I) external students. For the

basic ideas in Group theory and Ring theory students are advised to read in detail the

other text books of Algebra.

First chapter deals with Group theory and it covers the following articles 1)

Isomorphism theorems, 2) Soluable groups, 3) Series of Groups, 4) Sylow theorems.

The second Chapter is on Ring theory and it especially deals with polynomial

rings.

In the third chapter we discuss Module theory, where modules are the

generalization of vector spaces which students have studied in their B. Sc. course.

The list of the articles in this chapter is as follows.

1) Modules  2) Sum and direct sum of submodules 3) Noetherian and Artenian

Modules.

We owe a deep sense of gratitude to the Vice-Chancellor Dr. N. J. Pawar who has

given impetus to go ahead with ambitious projects like the present one. Dr. L. N. Katkar,

Head, Department of Mathematics, Shivaji University has to be profusely thanked for

the ovation he has poured to prepare the SIM on Algebra. We also thank the Director

of Distance Education Mode Mrs. Cima Yeole and Deputy Director Shri. S. S. Patil for

their help and keen interest in completion of the SIM.

 Prof. S. R. Bhosale

Chairman BOS in Mathematics

Shivaji University, Kolhapur-416004.
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Unit 1 : Isomorphism theorems : 
 1.1 Basic definitions and results 

 1.2 Isomorphism Theorems 

 

1.1  Basic Definitions and Results : 

Definition 1.1.1: A group 〈𝐺, ∗〉 is a set G together with a binary operation ∗ defined on 𝐺, 

satisfying the following axioms. 

 (i)  𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 

 (ii)  There exists an element 𝑒 ∈ 𝐺 such that 𝑒 ∗ 𝑎 = 𝑎 = 𝑎 ∗ 𝑒. 

 (iii) For each 𝑎 ∈ 𝐺, there is an element 𝑎′ ∈ 𝐺 such that 𝑎 ∗ 𝑎′ = 𝑒 = 𝑎′ ∗ 𝑎. 

   for all 𝑎, 𝑏 ∈ 𝐺. 

   The element 𝑒 is called an identity element for ∗ in 𝐺 and the element 𝑎′ is called 

the inverse of 𝑎 with respect to ∗ in 𝐺. 

Generally, we use ‘ ∙ ’ for a binary operation in a group 𝐺 and 𝑥 ∙ 𝑦 is denoted by 𝑥𝑦 simply. 

 

Definition 1.1.2: A group 𝐺 is abelian if its binary operation ∗ is commutative. 

  i.e.  𝑎𝑏 = 𝑏𝑎     for all 𝑎, 𝑏 ∈ 𝐺 

 

Definition 1.1.3: Let H be a subset of a group 𝐺. If H is itself a group under the induced 

binary operation defined on 𝐺, then H is a sub group of 𝐺. We denote this by 𝐻 ≤ 𝐺.  

 𝐺 is the improper subgroup of 𝐺. All other subgroups of 𝐺 are proper subgroups. Also {𝑒} 

is the trivial subgroup of 𝐺. All other subgroups are non trivial. 

 

Definition 1.1.4: Let 𝐺 be a group and let 𝑎 ∈ 𝐺. Then the subgroup 𝐻 = {𝑎 / 𝑛 ∈ 𝑍} of 𝐺 

is called the cyclic subgroup of 𝐺 generated by 𝑎 and it is denoted by < 𝑎 >. 

 (here  𝑎 = 𝑎 ∙ 𝑎 ∙ … ∙ 𝑎  𝑛 times) 

 

Definition 1.1.5: An element 𝑎 of group 𝐺 generates 𝐺 (or 𝑎 is generator for 𝐺) 

 if < 𝑎 > = 𝐺.  

CHAPTER I - GROUPS
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      A group 𝐺 is cyclic if there is some element a in 𝐺 that generates  𝐺. 

 

Definition 1.1.6: A permutation of a set 𝐴 is a function from 𝐴 into 𝐴 that is both one-one 

and onto.  

 

Definition 1.1.7: If 𝐴 is a finite set {1, 2, . . . , 𝑛}, then the group of all permutations of 𝐴 is the 

symmetric group of 𝑛 letters and is denoted by 𝑆. [ Note that |𝑆| = 𝑛 ! ]. 
 

Definition 1.1.8: The subgroup of 𝑆 consisting of even permutations of 𝑛 letters is the 

alternating group 𝐴 of 𝑛 letters. [Note that, |𝐴| = 
!ଶ  ] 

 

Definition 1.1.9: Let 𝐺ଵ and 𝐺ଶ be any groups. A mapping 𝜙 ∶  𝐺ଵ ⟶ 𝐺ଶ is a homomorphism 

if  

       𝜙(𝑥𝑦) = 𝜙(𝑥) ∙ 𝜙(𝑦)  for all 𝑥, 𝑦 ∈ 𝐺ଵ 

  An isomorphism of a group 𝐺ଵ with a group 𝐺ଶ is a one to one homomorphism of    𝐺ଵ onto 𝐺ଶ. 

 

Definition 1.1.10: Let 𝐻 and 𝐾 be subgroups of a group 𝐺. The join 𝐻 ∨ 𝐾 of 𝐻 and 𝐾 is the 

intersection of all subgroups of 𝐺 containing 𝐻𝐾 = {ℎ𝑘 / ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}. 

 𝐻 ∨ 𝐾 is the smallest subgroup of 𝐺 containing both 𝐻 and 𝐾. 

 

Definition 1.1.11: Let 𝐻 and 𝐾 be subgroups of a group 𝐺. 𝐺 is the internal direct product of 

the subgroups 𝐻 and 𝐾 if the mapping 𝜙 ∶  𝐻 × 𝐾 ⟶ 𝐺 defined by 𝜙(ℎ, 𝑘) = ℎ ∙ 𝑘 is an 

isomorphism.  

  In this case any 𝑔 ∈ 𝐺 can be uniquely written as 𝑔 = ℎ ∙ 𝑘, ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. We 

can generalize this definition for any finite 𝑛. 

 

Definition 1.1.12: Let 𝐺 be group and let 𝑎 ∈ 𝐺, for 𝑖 ∈ 𝐼 (𝐼 is an indexing set). The smallest 

subgroup of 𝐺 containing {𝑎 / 𝑖 ∈ 𝐼} is the subgroup generated by {𝑎 / 𝑖 ∈ 𝐼}. If this 

subgroup is all of 𝐺, then we say {𝑎 / 𝑖 ∈ 𝐼} generates 𝐺 and 𝑎′𝑠 are the generators of 𝐺. 

If there exists a finite set {𝑎 / 𝑖 ∈ 𝐼} that generates 𝐺, then we say 𝐺 is finitely generated.  
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Definition 1.1.13: Let 𝐻 be subgroup of 𝐺 and let 𝑎 ∈ 𝐺. The left coset 𝑎𝐻 of 𝐻 is the set {𝑎ℎ / ℎ ∈ 𝐻}. The right coset 𝐻𝑎 is similarly defined.  

 

Definition 1.1.14: Let 𝐻 be subgroup of group 𝐺. The number of left cosets of 𝐻 in 𝐺 is the 

index of 𝐻 in 𝐺 and is denoted by (𝐺 ∶  𝐻) 

 If  𝐺 is finite, then (𝐺 ∶  𝐻) is finite and (𝐺: 𝐻) = 
|ீ||ு| . 

 

Definition 1.1.15: A subgroup 𝐻 of group 𝐺 is a normal subgroup of 𝐺 if 𝑔ିଵ𝐻𝑔 = 𝐻 for all 𝑔 ∈ 𝐺. We denote this by 𝐻 ⊴ 𝐺. 

 Obviously, 𝐻 is normal iff 𝑔ℎ𝑔ିଵ ∈ 𝐻 for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. 

 

Definition 1.1.16: Two subgroups 𝐻 and 𝐾 of a group 𝐺 are conjugate of each other if 𝐻 = 𝑔ିଵ𝐾𝑔,  for some 𝑔 ∈ 𝐺.  

 

Definition 1.1.17: If 𝑁 is a normal subgroup of a group 𝐺, the group of right/left cosets of   𝑁 under induced operation is the factor (quotient) group of 𝐺 modulo 𝑁 and is denoted  

by ேீ . 

 

Definition 1.1.18: A group 𝐺 is simple if it has no proper, nontrivial normal subgroups. 

 i.e. if 𝐻 ≤ 𝐺 then either 𝐻 = {𝑒} or 𝐻 = 𝐺. 

 

Definition 1.1.19 : An element 𝑎𝑏𝑎ିଵ𝑏ିଵ in a group G (𝑎, 𝑏 ∈ 𝐺) is called a commutator of  𝑎 and 𝑏 in 𝐺. 

 

Definition 1.1.20 : The kernel of a homomorphism 𝜙 of a group 𝐺 into a group 𝐺′ is the set 

of all elements of 𝐺 mapped onto the identity element of 𝐺′ by 𝜙. This is denoted by 𝑘𝑒𝑟 𝜙.  

 Thus, 𝑘𝑒𝑟 𝜙 = {𝑥 ∈ 𝐺/𝜙(𝑥) = 𝑒′}. 

 

Definition 1.1.21: Let 𝐺 be a group. 𝑆 is any non empty subset of 𝐺. The normalizer of 𝑆 in 𝐺 

is the set 𝑁[𝑆] = {𝑥 ∈ 𝐺/𝑥𝑆𝑥ିଵ = 𝑆}. 

 The normalizer of {𝑎} is denoted by 𝑁[𝑎].  



Algebra Page No. 4 

Definition 1.1.22: Let 𝐺 be a group and 𝑎 ∈ 𝐺. The set 𝐶(𝑎) = {𝑥𝑎𝑥ିଵ/𝑥 ∈ 𝐺} is called the 

conjugate of 𝑎 in 𝐺. 

 

Theorem 1.1.23: If 𝐻 and 𝐾 are subgroup of a group 𝐺, then 

     |𝐻𝐾| = 
|ு| ∙ |||ு ∩ |   

Proof :  Let |𝐻| = 𝑟, |𝐾| = 𝑠 and |𝐻 ∩ 𝐾| = 𝑡. 

   𝐻𝐾 = {ℎ ∙ 𝑘 /  ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾} 

 Then |𝐻𝐾| ≤ |𝐻| ∙ |𝐾| = 𝑟 ∙ 𝑠 

(i)  Let  ℎଵ𝑘ଵ = ℎଶ𝑘ଶ    for some ℎଵℎଶ  ∈ 𝐻 and 𝑘ଵ, 𝑘ଶ ∈ 𝐾. 

 Let  𝑥 = ℎଶି ଵ ℎଵ = 𝑘ଶ𝑘ଵି ଵ. 

 Then 𝑥 = ℎଶି ଵ ℎଵ     ⟹   𝑥 ∈ 𝐻 and  𝑥 = 𝑘ଶ𝑘ଵି ଵ     ⟹   𝑥 ∈ 𝐾. 

 Thus 𝑥 ∈ 𝐻 ∩ 𝐾 and further  

   ℎଶ = ℎଵ𝑥ିଵ  and    𝑘ଶ = 𝑥𝑘ଵ 

 Thus ℎଵ𝑘ଵ = ℎଶ𝑘ଶ   ⟹  ∃  𝑥 ∈ 𝐻 ∩ 𝐾 such that ℎଶ = ℎଵ𝑥ିଵ and   𝑘ଶ = 𝑥𝑘ଵ. 

(ii) Suppose ∃ 𝑦 ∈ 𝐻 ∩ 𝐾 such that  

   ℎଷ = ℎଵ𝑦ିଵ  and  𝑘ଷ = 𝑦𝑘ଵ  for some ℎଵℎଷ ∈ 𝐻 and 𝑘ଵ𝑘ଷ ∈ 𝐾. 

 But then ℎଷ𝑘ଷ = ℎଵ𝑦ିଵ ∙ 𝑦𝑘ଵ = ℎଵ𝑘ଵ. 

 Thus given 𝑦 ∈ 𝐻 ∩ 𝐾, ℎଵ𝑦ିଵ and 𝑦𝑘ଵ in HK will produce the element ℎଵ𝑘ଵ. 

 From (1) and (2), we get that there exists a one-one onto correspondence between the 

repeated elements in HK and the elements of 𝐻 ∩ 𝐾. Thus any element ℎ𝑘 ∈ 𝐻𝐾 can be 

represented in the form of ℎ𝑘 for ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾  for all 𝑖, 1 ≤ 𝑖 ≤ 𝑡. 

 Hence  

    |𝐻𝐾| = 
|ு| ∙ |||ு ∩ |   

 

1.2  Isomorphism Theorems: 

Theorem 1.2.1: A group 𝐺 is the internal direct product of subgroups 𝐻 and 𝐾 if and    only 

if  

  (i)  𝐺 = 𝐻 ⋁ 𝐾 

  (ii)  ℎ𝑘 = 𝑘ℎ    for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. 

  (iii) 𝐻 ∩ 𝐾 = {𝑒} 
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Proof :  Only if part : 

   Let G be internal direct product of H and K. Hence 𝜙: 𝐻 × 𝐾 ⟶ 𝐺 defined by  

        𝜙(ℎ, 𝑘) = ℎ𝑘 

 is an isomorphism. 

 Define  

   𝐻ഥ = {(ℎ, 𝑒)/ℎ ∈ 𝐻}  and    𝐾ഥ = {(𝑒, 𝑘)/𝑘 ∈ 𝐾}. 

 Then    𝐻ഥ ≤ 𝐻 × 𝐾   and  𝐾ഥ ≤ 𝐻 × 𝐾. 

 Further   𝐻ഥ ⋁ 𝐾ഥ = 𝐻 × 𝐾; 𝐻ഥ  ∩  𝐾ഥ = {(𝑒, 𝑒)} 

 (ℎ, 𝑒) ∈ 𝐻ഥ and (𝑒, 𝑘) ∈ 𝐾ഥ  ⟹  (ℎ, 𝑒)(𝑒, 𝑘) = (ℎ, 𝑘) 

         and  (𝑒, 𝑘)(ℎ, 𝑒) = (ℎ, 𝑘). 

 Hence,  (ℎ, 𝑒)(𝑒, 𝑘) = (𝑒, 𝑘)(ℎ, 𝑒).  

 Therefore we get 

  (i)  𝐻ഥ ⋁ 𝐾ഥ = 𝐻 × 𝐾 

  (ii)  (ℎ, 𝑒)(𝑒, 𝑘) = (𝑒, 𝑘)(ℎ, 𝑒),  for all  (ℎ, 𝑒) ∈ 𝐻ഥ and (𝑒, 𝑘) ∈ 𝐾ഥ. 

  (iii) 𝐻ഥ  ∩  𝐾ഥ = {(𝑒, 𝑒)} 

 As 𝜙 ∶  𝐻 × 𝐾 ⟶ 𝐺 is an isomorphism we get 𝜙(𝐻ഥ) = 𝐻 and 𝜙(𝐾ഥ) = 𝐾 and 

  𝜙(𝐻 × 𝐾) = 𝐺. Hence we get  

  (i)  𝐺 =  𝐻 ⋁ 𝐾. 

  (ii)  ℎ𝑘 = 𝑘ℎ  for all ℎ ∈ 𝐻  and 𝑘 ∈ 𝐾.  

  (iii) 𝐻 ∩ 𝐾 = {𝑒} 

If part :    

 Define  𝜙 ∶  𝐻 × 𝐾 ⟶ 𝐺 by 

     𝜙(ℎ, 𝑘) = ℎ. 𝑘 

 To prove that 𝜙 is an isomorphism.  

 (i) 𝜙 is a well defined map. 

  (ℎଵ, 𝑘ଵ) = (ℎଶ, 𝑘ଶ) ⟹     ℎଵ = ℎଶ and 𝑘ଵ = 𝑘ଶ 

        ⟹     ℎଵ𝑘ଵ = ℎଶ𝑘ଶ  ⟹   𝜙(ℎଵ, 𝑘ଵ) = 𝜙(ℎଶ, 𝑘ଶ) 

 (ii) 𝜙 is one one. 

  Let      𝜙(ℎଵ, 𝑘ଵ) = 𝜙(ℎଶ, 𝑘ଶ) 

  Then    ℎଵ 𝑘ଵ = ℎଶ𝑘ଶ 

  and hence   ℎଶି ଵ ℎଵ = 𝑘ଶ 𝑘ଵି ଵ 

  But   ℎଶି ଵ ℎଵ ∈ 𝐻     and  𝑘ଶ 𝑘ଵି ଵ ∈ 𝐾  

  and hence  ℎଶି ଵ ℎଵ ∈ 𝐻 ∩ 𝐾 = {𝑒}  and  𝑘ଶ 𝑘ଵି ଵ ∈ 𝐻 ∩ 𝐾 = {𝑒}. 
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  Thus   ℎଶି ଵ ℎଵ = 𝑒  and  𝑘ଶ 𝑘ଵି ଵ = 𝑒, proving that ℎଵ = ℎଶ   and 𝑘ଵ = 𝑘ଶ. 

  Hence   (ℎଵ, 𝑘ଵ) = (ℎଶ, 𝑘ଶ) 

  This shows that 𝜙 is one-one. 

 (iii)  𝜙 is onto. 

  Let 𝑔 ∈ 𝐺. As ℎ𝑘 = 𝑘ℎ for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. We get HK is a subgroup of 𝐺 and 

hence 𝐻 ∨ 𝐾 = 𝐻𝐾. But by (i) 𝐻 ∨ 𝐾 = 𝐺. Therefore 𝐺 = 𝐻𝐾. Thus 𝑔 ∈ 𝐺 can be 

expressed as 𝑔 = ℎ𝑘 for some ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. And we get 𝜙(ℎ, 𝑘) = 𝑔. 

   This shows that 𝜙 is onto. 

 (iv) 𝜙 is a homomorphism.  

   𝜙[(ℎଵ, 𝑘ଵ) (ℎଶ, 𝑘ଶ)] = 𝜙(ℎଵℎଶ, 𝑘ଵ𝑘ଶ) 

             = ℎଵℎଶ 𝑘ଵ𝑘ଶ 

             = ℎଵ [ 𝑘ଵℎଶ] 𝑘ଶ      … by (2) 

              = (ℎଵ. 𝑘ଵ) (ℎଶ. 𝑘ଶ) 

              = 𝜙(ℎଵ, 𝑘ଵ) 𝜙(ℎଶ, 𝑘ଶ) 

From (i), (ii), (iii) and (iv), we get 𝜙 is an isomorphism. Hence 𝐺 = 𝐻 × 𝐾. 

 

Theorem 1.2.2: Let 𝑁 be a normal subgroup of 𝐺.  

 Then the map 𝑓 ∶  𝐺 ⟶ ேீ defined by  

     𝑓(𝑔) = 𝑁 ,      for 𝑔 ∈ 𝐺 

 is an onto homomorphism.  

Proof :  𝑓 is obviously onto. 

 Now 𝑓(𝑔ଵ𝑔ଶ) = 𝑁భమ = ൫𝑁భ൯൫𝑁మ൯ = 𝑓(𝑔ଵ) ∙ 𝑓(𝑔ଶ)  , for all  𝑔ଵ, 𝑔ଶ ∈ 𝐺 

 Shows that 𝑓 is a homomorphism. 

 Hence 𝑓 is an onto homomorphism. 

 

Remark : This map 𝑓 is called natural or canonical homomorphism. 

Theorem 1.2.3: Let 𝐺 and 𝐺′ be any  groups. For any homomorphism 𝜙 ∶  𝐺 ⟶ 𝐺′, kernel of 𝜙 is a normal subgroup of G. 

Proof :   

(i)  𝑘𝑒𝑟 𝜙 = {𝑥 ∈ 𝐺 | 𝜙(𝑥) = 𝑒′}. As 𝑒 ∈ 𝑘𝑒𝑟𝜙; 𝑘𝑒𝑟𝜙 is non empty set. 

(ii)  Let 𝑥, 𝑦 ∈ 𝑘𝑒𝑟 𝜙. 

  𝜙(𝑥𝑦) = 𝜙(𝑥) ∙ 𝜙(𝑦)      ….. ∵     𝜙 is homomorphism. 
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     = 𝑒′ ∙ 𝑒′        ….. ∵     𝑥, 𝑦 ∈ 𝑘𝑒𝑟 𝜙 

     = 𝑒′ 
  Thus  𝜙(𝑥𝑦) = 𝑒′. 
  Hence  𝑥. 𝑦 ∈ 𝑘𝑒𝑟 𝜙. 

(iii) Let 𝑥 ∈ 𝑘𝑒𝑟 𝜙. Then 𝜙(𝑥) = 𝑒′.  
  As 𝜙(𝑥ିଵ) = [𝜙(𝑥)]ିଵ = [𝑒ᇱ]ିଵ = 𝑒′ shows that 𝑥ିଵ ∈ 𝑘𝑒𝑟 𝜙. 

  From (i), (ii) and (iii) we get 𝑘𝑒𝑟𝜙 is a subgroup of 𝐺. 

(iv)  Let 𝑛 ∈ 𝑘𝑒𝑟 𝜙 and 𝑔 ∈ 𝐺. Then  

  𝜙(𝑔ିଵ𝑛𝑔) = 𝜙(𝑔ିଵ) 𝜙(𝑛) 𝜙(𝑔)  

       = [𝜙(𝑔)]ିଵ ∙ 𝑒′ ∙ 𝜙(𝑔) 

       = 𝑒′ 
  Hence   𝑔ିଵ𝑛𝑔 ∈ 𝑘𝑒𝑟𝜙,  for all 𝑔 ∈ 𝐺 and 𝑛 ∈ 𝑁. 

  Thus shows that 𝑘𝑒𝑟𝜙 is a normal subgroup of 𝐺. 

 

Theorem 1.2.4: Let 𝐺 and 𝐺′ be groups. 𝜙 ∶ 𝐺 ⟶ 𝐺′ is a homomorphism.  

  (i) 𝐻 ≤ 𝐺   ⟹   𝜙(𝐻) ≤ 𝐺′ 
  (ii) 𝐻 ⊴ 𝐺   ⟹   𝜙(𝐻) ⊴ 𝐺′ 
  (iii) 𝐾′ ≤ 𝐺′   ⟹   𝜙ିଵ(𝐾′) ≤ 𝐺 

  (iv) 𝐾′ ⊴ 𝐺′   ⟹   𝜙ିଵ(𝐾′) ⊴ 𝐺 

Proof : Proof is obvious and hence omitted. 

 

• First Isomorphism Theorem : 

Theorem 1.2.5: Every homomorphic image of a group is isomorphic with its suitable 

quotient group.  

OR Let 𝐺 and 𝐺′ be groups and let 𝜙: 𝐺 ⟶ 𝐺′ be an onto homomorphism.  

  Then  𝐺′ ≅ 
ீథ . 

Proof : Let 𝜙: 𝐺 ⟶ 𝐺′ be onto homomorphism. Then 𝐺ᇱ = 𝜙(𝐺) = {𝜙(𝑥)/𝑥 ∈ 𝐺}. 

 Let 𝑁 = 𝑘𝑒𝑟𝜙. Then 𝑁 ⊴ 𝐺 (Seer theorem 0.4). 

 Let 𝜓 ∶ 𝐺 ⟶ ேீ be canonical mapping. Then 𝜓 is an onto homomorphism. (See theorem 

1.2.2). 

 Define 𝛾 ∶ ேீ ⟶ 𝐺ᇱ = 𝜙(𝐺) by  
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     𝛾 ൫𝑁൯ = 𝜙(𝑔) ,   for 𝑔 ∈ 𝐺  

Claim 1 : 𝜙 is well defined map. 

 Let 𝑁భ = 𝑁మ        for some 𝑔ଵ, 𝑔ଶ ∈ 𝐺  

   𝑁భ = 𝑁మ ⟹   𝑔ଵ 𝑔ଶି ଵ ∈ 𝑁  

      ⟹   𝑔ଵ 𝑔ଶି ଵ ∈ 𝑘𝑒𝑟𝜙  

      ⟹   𝜙 (𝑔ଵ 𝑔ଶି ଵ) = 𝑒′  
      ⟹   𝜙 (𝑔ଵ) ∙ 𝜙( 𝑔ଶି ଵ) = 𝑒′  
      ⟹   𝜙 (𝑔ଵ) ∙ [𝜙( 𝑔ଶ)]ିଵ = 𝑒′  
      ⟹   𝜙 (𝑔ଵ) = 𝜙( 𝑔ଶ)  

      ⟹   𝛾 ൫𝑁భ൯ = 𝛾 ൫𝑁మ൯  

 This shows that 𝛾 is well defined.  

Claim 2 : 𝛾 is a homomorphism. 𝛾൫𝑁భ ∙ 𝑁మ൯ = 𝛾൫𝑁భమ൯ 

       = 𝜙(𝑔ଵ 𝑔ଶ) 

       = 𝜙(𝑔ଵ) 𝜙(𝑔ଶ) 

       = 𝛾൫𝑁భ൯ ∙ 𝛾൫𝑁మ൯   for any  𝑁భ, 𝑁మ ∈ ேீ  

 This shows that 𝛾 is a homomorphism. 

Claim 3 :  𝛾 is onto.  

 Let 𝑦 ∈ 𝐺′. 𝜙 being onto, there exists 𝑥 ∈ 𝐺 such that 𝜙(𝑥) = 𝑦. For this 𝑥 ∈ 𝐺, 𝑁௫ ∈ ேீ  

and 𝛾(𝑁௫) = 𝜙(𝑥) = 𝑦. This shows that 𝛾 is onto. 

Claim 4 :  𝛾 is one-one. 

 Let 𝛾(𝑁௫) = 𝛾൫𝑁௬൯  for some 𝑥, 𝑦 ∈ 𝐺 

   𝛾(𝑁௫) = 𝛾൫𝑁௬൯ ⟹   𝜙(𝑥) = 𝜙(𝑦) 

        ⟹   𝜙 (𝑥) ∙ [𝜙( 𝑦)]ିଵ = 𝑒′  
        ⟹   𝜙 (𝑥) ∙ 𝜙(𝑦ିଵ) = 𝑒′  
        ⟹   𝜙 (𝑥𝑦ିଵ) = 𝑒′  
        ⟹   𝑥𝑦ିଵ ∈ 𝑘𝑒𝑟𝜙 = 𝑁 

        ⟹   𝑁௫ = 𝑁௬ 

 Thus  𝛾(𝑁௫) = 𝛾൫𝑁௬൯ ⟹   𝑁௫ = 𝑁௬. 

 Hence 𝛾 is one-one. 
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From claims (i) to (iv) it follows that 𝛾 is an isomorphism and hence  
ீథ  ≅ 𝐺′. 

Diagrammatically we represent the theorem as follows. 

 
• Second Isomorphism Theorem : 

Theorem 1.2.6: 𝐻 is a subgroup of group 𝐺 and 𝑁 is a normal subgroup of a group 𝐺. Then   ுேே   ≅   ுு∩ே  

Proof :   𝐻 ≤ 𝐺   and  𝑁 ⊴ 𝐺   ⟹   𝐻𝑁 ≤ 𝐺 

 Further  𝑁 ≤ 𝐻𝑁  and  𝑁 ⊴ 𝐺   ⟹   𝑁 ⊴ 𝐻𝑁 

 Hence  
ுேே  is defined. 

 𝐻 ∩ 𝑁 ⊴ 𝐻 ⟹   
ுு∩ே  is defined. 

 Define 𝜙 ∶ 𝐻𝑁 ⟶ 
ுு ∩ ே  by 

     𝜙(ℎ𝑛) = (𝐻 ∩ 𝑁) ℎ      for ℎ ∈ 𝐻 and 𝑛 ∈ 𝑁 

Claim 1 :  𝜙 is well defined. 

 Let ℎଵ𝑛ଵ = ℎଶ𝑛ଶ    for ℎଵ, ℎଶ ∈ 𝐻 and 𝑛ଵ, 𝑛ଶ ∈ 𝑁. 

  ℎଵ𝑛ଵ = ℎଶ𝑛ଶ   ⟹   ℎଶି ଵ ℎଵ = 𝑛ଶ𝑛ଵି ଵ  
 ℎଶି ଵ ℎଵ ∈ 𝐻 and 𝑛ଶ𝑛ଵି ଵ ∈ 𝑁.  

 Hence ℎଶି ଵ ℎଵ = 𝑛ଶ𝑛ଵି ଵ ⟹  ℎଶି ଵ ℎଵ ∈ 𝐻 ∩ 𝑁 

        ⟹  (𝐻 ∩ 𝑁) ℎଵ = (𝐻 ∩ 𝑁) ℎଶ 

        ⟹  𝜙 (ℎଵ𝑛ଵ)  = 𝜙 (ℎଶ𝑛ଶ) 

 This shows that 𝜙 is well defined. 

Claim 2 :  𝜙 is a homomorphism. 

  𝜙 [(ℎଵ𝑛ଵ)(ℎଶ𝑛ଶ)]     ....  ℎଵ, ℎଶ ∈ 𝐻 and 𝑛ଵ, 𝑛ଶ ∈ 𝑁 

  =  𝜙 [ℎଵ (𝑛ଵℎଶ) 𝑛ଶ]     ....  𝑁 ⊴ 𝐺     ⟹    ℎ𝑁 = 𝑁ℎ  

  =  𝜙 [ℎଵ (ℎଶ𝑛ଷ) 𝑛ଶ]      Hence 𝑛ଵℎଶ = ℎଶ𝑛ଷ for some 𝑛ଷ ∈ 𝑁 

  =  𝜙 [(ℎଵℎଶ)(𝑛ଷ𝑛ଶ)]  

𝜙 
g 𝜙(𝑔) 
𝑁(𝑁 = 𝑘𝑒𝑟𝜙)

 𝛾𝜓 

G 𝐺ᇱ = 𝜙(𝐺)
𝐺𝑁 = 𝑘𝑒𝑟𝜙 

𝜓 𝛾 

𝜙 
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 =  (𝐻 ∩ 𝑁) ℎଵℎଶ 

 =  [(𝐻 ∩ 𝑁) ℎଵ] [(𝐻 ∩ 𝑁) ℎଶ] 
 =  𝜙 (ℎଵ𝑛ଵ) 𝜙 (ℎଶ𝑛ଶ) 

 This shows that 𝜙 is a homomorphism. 

Claim 3 : 𝜙 is onto. 

 Let (𝐻 ∩ 𝑁) ℎ ∈ 
ுு ∩ ே . Then ℎ ∈ 𝐻. 

 As ℎ ∈ 𝐻   ⟹  ℎ ∙ 𝑒 ∈ 𝐻𝑁 and   𝜙(ℎ𝑒) = (𝐻 ∩ 𝑁) ℎ . 
 This shows that 𝜙 is onto. 

 From claim 1, claim 2 and claim 3, 𝜙 is an onto homomorphism. Hence by 1st 

isomorphism theorem, 

        
ுேథ ≅ ுு ∩ ே         . . . (1)  

 Now, 

   𝑘𝑒𝑟𝜙 = {ℎ𝑛 ∈ 𝐻𝑁  /  𝜙(ℎ𝑛) = (𝐻 ∩ 𝑁)} 

   = {ℎ𝑛 ∈ 𝐻𝑁  /  (𝐻 ∩ 𝑁)ℎ = (𝐻 ∩ 𝑁)} 

   = {ℎ𝑛 ∈ 𝐻𝑁 /   ℎ ∈ (𝐻 ∩ 𝑁)} 

   = 𝑁         ... ∵    ℎ ∈ 𝐻 ∩ 𝑁    ⟹   ℎ ∈ 𝑁    
                   ⟹   ℎ ∙ 𝑛 ∈ 𝑁    for ℎ ∈ 𝐻 and 𝑛 ∈ 𝑁 

 Thus  𝑘𝑒𝑟𝜙 = 𝑁               . . . (2) 

 From (1) and (2) we get  

      
ுேே   ≅   ுு∩ே 

 

• Third Isomorphism Theorem :  

Theorem 1.2.7: Let 𝐻 and 𝐾 be normal subgroups of a group 𝐺 with 𝐾 ≤ 𝐻. Then   

    ுீ   ≅   ீ/ு/ 

Proof :  Let 𝐻 and 𝐾 are normal in 𝐺 and 𝐾 ≤ 𝐻. Therefore 𝐾 is a normal subgroup of 𝐻. 

Thus ுீ , ீ , 
ு are all defined.  

 Define  𝜙 ∶ 𝐺 ⟶ 
ீ/ு/ by 

    𝜙(𝑔) = ቀுቁ ∙ ൫𝐾൯   for each 𝑔 ∈ 𝐺. 
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Claim 1 :   𝜙 is well defined. 

 Let 𝑔ଵ = 𝑔ଶ in 𝐺. 

 𝑔ଵ = 𝑔ଶ  ⟹   𝐾భ = 𝐾మ 

    ⟹   ቀுቁ ∙ 𝐾భ = ቀுቁ ∙ 𝐾మ 

    ⟹   𝜙 (𝑔ଵ) = 𝜙 (𝑔ଶ)  
 Hence 𝜙 is well defined. 

Claim 2 :   𝜙 is homomorphism.. 

 Let 𝑔ଵ, 𝑔ଶ ∈ 𝐺. 

  𝜙(𝑔ଵ 𝑔ଶ) = ቀுቁ ∙ 𝐾భ మ 

       = ቀுቁ ∙ ൣ𝐾భ ∙ 𝐾 మ൧ 
       = ቄቀுቁ ∙ 𝐾𝑔1 ቅ ቄቀுቁ ∙ 𝐾𝑔2 ቅ 

       = 𝜙(𝑔ଵ)  ∙  𝜙(𝑔ଶ) 

 This shows that 𝜙 is homomorphism. 

Claim 3 :   𝜙 is onto. 

 Let ቀுቁ ∙ 𝐾𝑎 ∈ ቀீ/ு/ቁ . Then 𝑎 ∈ 𝐺. For this 𝑎 ∈ 𝐺 we get 𝜙(𝑎) = ቀ𝐻𝐾ቁ ∙ 𝐾 . 
 Therefore 𝜙 is onto. 

 From claim 1, claim 2 and claim 3, 𝜙 is an onto homomorphism. Hence by 1st 

isomorphism theorem, 

        
ீథ ≅ ீ/ு/          . . . (1)  

 Now, 

   𝑘𝑒𝑟𝜙 = {𝑥 ∈ 𝐺  /  𝜙(𝑥) = (𝐻/𝐾)} 

   = {𝑥 ∈ 𝐺   /  (𝐻/𝐾)(𝐾௫) = (𝐻/𝐾)} 

   = {𝑥 ∈ 𝐺 /   𝐾௫ ∈ (𝐻/𝐾)} 

   = {𝑥 ∈ 𝐺 /   𝑥 ∈ 𝐻}    

 Thus 𝑘𝑒𝑟𝜙 = 𝐻               . . . (2) 

 From (1) and (2) we get  

      ுீ   ≅   ீ/ு/  
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• Zassenhaus Lemma :  

Theorem 1.2.8: Let 𝐻 and 𝐾 be subgroups of group 𝐺.  𝐻∗ and 𝐾∗ be normal subgroups of 𝐻 

and 𝐾 respecively. Then  

 (i)  𝐻∗(𝐻 ∩ 𝐾∗) is a normal subgroup of 𝐻∗(𝐻 ∩ 𝐾). 

 (ii)  𝐾∗(𝐻∗ ∩ 𝐾) is a normal subgroup of 𝐾∗(𝐻 ∩ 𝐾). 

 (iii) 
ு∗(ு∩)ு∗(ு∩∗)  ≅  ∗(ு∩)∗(ு∗∩)  ≅  ு ∩ (ு∗ ∩ )∙(∗ ∩ ு)  

Proof :    

 (i)  𝐻 ∩ 𝐾 ≤ 𝐻,    𝐻∗  ⊴ 𝐻 ⟹   𝐻∗ ∙ (𝐻 ∩ 𝐾) ≤ 𝐻. 

 (ii)  𝐻 ∩ 𝐾 ≤ 𝐾,    𝐾∗  ⊴ 𝐾 ⟹   𝐾∗ ∙ (𝐻 ∩ 𝐾) ≤ 𝐾. 

 (iii) 𝐻∗ ∩ 𝐾 ⊴ 𝐻 and 𝐻∗ ∩ 𝐾 ≤ 𝐾  

   Hence  𝐻∗ ∩ 𝐾 ⊴ 𝐻 ∩ 𝐾. 

   Similarly,  𝐾∗ ∩ 𝐻 ⊴ 𝐻 ∩ 𝐾. 

   Hence  (𝐻∗ ∩ 𝐾) ∙ (𝐾∗ ∩ 𝐻) ⊴ (𝐻 ∩ 𝐾). 

   Therefore 
ு ∩ (ு∗ ∩ )∙(∗ ∩ ு) is defined.  

   Put  𝐿 = (𝐻∗ ∩ 𝐾) ∙ (𝐾∗ ∩ 𝐻). Thus 𝐿 ⊴ (𝐻 ∩ 𝐾). 

 (iv)  Define 𝜙 ∶ 𝐻∗(𝐻 ∩ 𝐾)  ⟶ 
(ு∩)  by  

      𝜙(ℎ𝑥) = 𝐿𝑥 

   where ℎ ∈ 𝐻∗   and  𝑥 ∈ 𝐻 ∩ 𝐾. 

Claim 1 :  𝜙 is well defined. 

 Let  ℎଵ𝑥ଵ = ℎଶ𝑥ଶ     for  ℎଵ, ℎଶ ∈ 𝐻∗ and 𝑥 ∈ 𝐻 ∩ 𝐾. 

 Then ℎଶି ଵℎଵ = 𝑥ଶ𝑥ଵି ଵ    for  ℎଶି ଵℎଵ ∈ 𝐻∗ and 𝑥ଶ𝑥ଵି ଵ ∈ 𝐻 ∩ 𝐾. 

 Hence  ℎଶି ଵℎଵ = 𝑥ଶ𝑥ଵି ଵ   ⟹   ℎଶି ଵℎଵ ∈ 𝐻∗ ∩ (𝐻 ∩ 𝐾) 

          ⟹   ℎଶି ଵℎଵ ∈ 𝐻∗ ∩ 𝐾   ⊆   𝐿     

          ⟹   ℎଶି ଵℎଵ ∈ 𝐿 

          ⟹   𝑥ଶ𝑥ଵି ଵ ∈ 𝐿 

          ⟹   𝐿௫భ = 𝐿௫మ 

          ⟹   𝜙 (ℎଵ𝑥ଵ) = 𝜙(ℎଶ𝑥ଶ) 

 This shows that 𝜙 is a well defined map. 

Claim 2 :  𝜙 is homomorphism. 
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 Let ℎଵ𝑥ଵ, ℎଶ𝑥ଶ ∈ 𝐻∗(𝐻 ∩ 𝐾). Then ℎଵ, ℎଶ ∈ 𝐻∗ and 𝑥ଵ, 𝑥ଶ ∈ 𝐻 ∩ 𝐾. 

 As 𝐻∗ ⊴ 𝐻 and 𝑥ଵ ∈ 𝐻 we get 𝑥ଵ𝐻∗ = 𝐻∗𝑥ଵ. Thus 𝑥ଵℎଶ ∈ 𝑥ଵ𝐻∗ implies 𝑥ଵℎଶ ∈ 𝐻∗𝑥ଵ. 

 Hence 𝑥ଵℎଶ = ℎଷ𝑥ଵ for some ℎଷ ∈ 𝐻∗. Hence we get  

 𝜙 [(ℎଵ𝑥ଵ)(ℎଶ𝑥ଶ)] = 𝜙 [ℎଵ(𝑥ଵℎଶ)𝑥ଶ]      ... By associativity. 

      =  𝜙 [ℎଵ(ℎଷ𝑥ଵ)𝑥ଶ]     ... 𝑥ଵℎଶ = ℎଷ𝑥ଵ. 

      =  𝜙 [(ℎଵ ℎଷ) (𝑥ଵ 𝑥ଶ)]    ... By associativity. 

      =  𝐿௫భ ௫మ        ... By definition of 𝜙. 

      =  𝐿௫భ ∙ 𝐿 ௫మ  

      =  𝜙 (ℎଵ𝑥ଵ) 𝜙(ℎଶ𝑥ଶ) 

 This shows that 𝜙 is a homomorphism.  

Claim 3 :  𝜙 is onto. 

 Let 𝐿௫ ∈ 
ு ∩   . Then 𝑥 ∈ 𝐻 ∩ 𝐾. 

 Hence, 𝑒 ∙ 𝑥 ∈ 𝐻∗ ∙ (𝐻 ∩ 𝐾) and 𝜙 (𝑒𝑥) = 𝐿௫.   This shows that 𝜙 is onto. 

 Thus, from claim 1, claim 2 and claim 3 we get 
ு ∩   is a homomorphic image of 

 𝐻∗ ∙ (𝐻 ∩ 𝐾). 

 Hence, by first isomorphism theorem, 

      
ு∩  ≅   ு∗∙(ு∩)థ          . . . (1) 

 Now, 

  𝑘𝑒𝑟𝜙 = {ℎ𝑥 ∈ 𝐻∗ ∙ (𝐻 ∩ 𝐾)/𝜙(ℎ𝑥) = 𝐿}  

       = {ℎ𝑥 ∈ 𝐻∗ ∙ (𝐻 ∩ 𝐾)/𝐿௫ = 𝐿} 

       = {ℎ𝑥 ∈ 𝐻∗ ∙ (𝐻 ∩ 𝐾)/𝑥 ∈ 𝐿} 

       = {ℎ𝑥 / ℎ ∈ 𝐻∗ 𝑎𝑛𝑑 𝑥 ∈ (𝐻 ∩ 𝐾) ∩ 𝐿} 

       = {ℎ𝑥 / ℎ ∈ 𝐻∗ 𝑎𝑛𝑑 𝑥 ∈ 𝐿} 

       = {ℎ𝑥 / ℎ𝑥 ∈ 𝐻∗ ∙ 𝐿} 

       = {ℎ𝑥 / ℎ𝑥 ∈ 𝐻∗ ∙ (𝐻 ∩ 𝐾∗)} 

       = 𝐻∗ ∙ (𝐻 ∩ 𝐾∗)           . . . (2) 

 [  𝐻∗𝐿 = 𝐻∗ ∙ (𝐻∗ ∩ 𝐾) ∙ (𝐻 ∩ 𝐾∗) = 𝐻∗ ∙ (𝐻 ∩ 𝐾∗)  as  𝐻∗ ∩ 𝐾 ≤ 𝐻∗  ] 
 From (1) and (2), we get, 

     
ு ∩   ≅   ு∗ (ு ∩ )ு∗∙ (ு ∩ ∗)   

 𝑘𝑒𝑟𝜙 being a normal subgroup of  𝐻∗ ∙ (𝐻 ∩ 𝐾∗), we get  



Algebra Page No. 14

     𝐻∗ ∙ (𝐻 ∩ 𝐾∗) ⊲  𝐻∗ ∙ (𝐻 ∩ 𝐾) 

(v) As in (iv) we can prove  

     
ு ∩   ≅   ∗ (ு ∩ )∗∙ (ு∗ ∩ )   

 and 𝐾∗ ∙ (𝐻∗ ∩ 𝐾) is a normal subgroup of 𝐾∗ ∙ (𝐻 ∩ 𝐾). 

 This completes the proof of Zassenhaus Lemma. 

 

Theorem 1.2.9: Let 𝐺 be a group. 

(i) For any non empty subset 𝑆 of 𝐺, 𝑁[𝑆] is a subgroup of 𝐺.  

Further, for any subgroup 𝐻 of 𝐺. 

 (ii)    𝑁[𝐻] is the largest subgroup of 𝐺 in which 𝐻 is normal. 

 (iii)  If 𝐾 is a subgroup of 𝑁[𝐻], then 𝐻 is a normal subgroup of 𝐾𝐻. 

Proof :   

(i) 𝑁[𝑆] = {𝑥 ∈ 𝐺/𝑥𝑆𝑥ିଵ = 𝑆}. As 𝑒𝑆𝑒ିଵ = 𝑆 we get 𝑒 ∈ 𝑁[𝑆].  
 Let 𝑥, 𝑦 ∈ 𝑁[𝑆] 
 (𝑥ିଵ𝑦)  𝑆  (𝑥ିଵ𝑦)ିଵ = (𝑥ିଵ𝑦)  𝑆  (𝑦ିଵ𝑥)  
          = 𝑥ିଵ (𝑦 𝑆 𝑦ିଵ) 𝑥   
          = 𝑥ିଵ 𝑆 𝑥   
          = 𝑆   
 This shows that 𝑥ିଵ𝑦 ∈ 𝑁[𝑆] whenever 𝑥, 𝑦 ∈ 𝑁[𝑆]. 
 Hence N[S] is a subgroup of G. 

(ii) Let H be a subgroup of G. 

      𝐻 ⊆ 𝑁[𝐻],  as ℎ𝐻ℎିଵ = 𝐻    for any ℎ ∈ 𝐻  

      Let 𝐻 ⊲ 𝐾 where K is any subgroup of G. Then 𝑘𝐻𝑘ିଵ = 𝐻  for any 𝑘 ∈ 𝐾.  

 Hence 𝐾 ⊆ 𝑁[𝐻]. 
 Now for any 𝑔 ∈ 𝑁[𝐻] we get 𝑔𝐻𝑔ିଵ = 𝐻. This shows that 𝐻 ⊴ 𝑁[𝐻] and if 𝐻 ⊲ 𝐾 for 

some 𝐾 ≤ 𝐺, then 𝐾 ⊆ 𝑁[𝐻]. 
 Hence N [H] is the largest subgroup of G in which H is normal. 

(iii) 𝐾 ≤ 𝑁[𝐻]. Hence for all 𝑘 ∈ 𝐾,  𝑘𝐻𝑘ିଵ = 𝐻. Hence HK = KH. This shows that HK is a 

subgroup of G.  

  𝐻 ⊲ 𝑁[𝐻]  and 𝐾 ≤ 𝑁[𝐻] ⟹   𝐻𝐾 ≤ 𝑁[𝐻] 
  𝐻 ⊴ 𝑁[𝐻]   ⟹   𝐻 ⊴ 𝐾𝐻    as  𝐻 ≤ 𝐻𝐾 
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Theorem 1.2.10: 𝐺 is a group and 𝐻 is a subgroup of 𝐺 such that (𝐺: 𝐻) = 2. Then 𝐻 is a 

normal subgroup of 𝐺. 

Proof : Select any 𝑔 ∈ 𝐺 such that 𝑔 ∉ 𝐻.  

 Then, 𝐺 = 𝐻 ∪ 𝐻𝑔  and   𝐻 ∩ 𝐻𝑔 = 𝜙. 

 Similarly, 𝐺 = 𝐻 ∪ 𝑔𝐻  and  𝐻 ∩ 𝑔𝐻 = 𝜙. 

 Hence, this is possible iff  𝐻𝑔 = 𝑔𝐻. Thus for any 𝑔 ∉ 𝐻 we get 𝐻𝑔 = 𝑔𝐻.  

 But, as for any ℎ ∈ 𝐻, we have, 𝐻ℎ = ℎ𝐻. It follows that 𝐻𝑔 = 𝑔𝐻, for each 𝑔 ∈ 𝐺.  

 Hence, 𝐻 ⊴ 𝐺. 

 

Theorem 1.2.11 : Let 𝐺 be a group. Then following statements are true.  

 (i)  The set of conjugate classes of 𝐺 is a partition of 𝐺. 

 (ii)  |𝑐(𝑎)| = [𝐺: 𝑁(𝑎)]. 
 (iii) If 𝐺 is finite, |𝐺| = ∑|𝐺: 𝑁(𝑎)|, 𝑎 is running over exactly one element from each 

conjugate class. 

Proof :    

(i)  Define a relation '∼' on 𝐺 by 𝑎 ∼ 𝑏 iff 𝑏 = 𝑥𝑎𝑥ିଵ. Then '∼' is an equivalence relation 

on 𝐺 and the equivalence class containing 𝑎 is 𝑐(𝑎). Hence, 𝐺 = ⋃ 𝐶(𝑎) (disjoint 

union). Hence, {𝐶(𝑎) / 𝑎 ∈ 𝐺} forms a partition of 𝐺. 

(ii)  To prove |𝑐(𝑎)| = (𝐺: 𝑁(𝑎)) .  

  Let ℜ denote the set of all right cosets of 𝑁[𝑎] in 𝐺.  

  Define a map 𝑓 ∶ 𝐶(𝑎) ⟶ ℜ by 

      𝑓(𝑔𝑎𝑔ିଵ) = 𝑁(𝑎)𝑔 

  (i)  𝑓 is well defined (obviously true.) 

   (ii)  𝑓 is one-one. 

    Let (𝑁) 𝑥 =  (𝑁) 𝑦  ,   for some 𝑥, 𝑦 ∈ 𝐺  

    (𝑁) 𝑥 =  (𝑁) 𝑦  ⟹   𝑥𝑦ିଵ ∈ 𝑁(𝑎)  

          ⟹   (𝑥𝑦ିଵ) 𝑎 (𝑥𝑦ିଵ)ିଵ = 𝑎 

          ⟹   𝑥𝑦ିଵ𝑎 = 𝑎𝑥𝑦ିଵ 

          ⟹   𝑦ିଵ𝑎 𝑦 = 𝑥ିଵ𝑎𝑥   

  Thus , 𝑓(𝑥ିଵ𝑎𝑥) = 𝑓(𝑦ିଵ𝑎 𝑦) 

  ⟹   𝑥ିଵ𝑎𝑥 =  𝑦ିଵ𝑎 𝑦 

  Hence, 𝑓 is one-one. 
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(iii) 𝑓 is onto. 

  Let (𝑁)𝑔 ∈ ℜ. Then for this 𝑔 ∈ 𝐺, 𝑔ିଵ𝑎𝑔 ∈ 𝐶(𝑎) and 𝑓(𝑔ିଵ𝑎𝑔) = (𝑁)𝑔. This 

shows that 𝑓 is onto.  

  From (i), (ii) and (iii) we get ∃ a mapping 𝑓 ∶ 𝐶(𝑎) ⟶ ℜ which is both one-one and 

onto. Hence |𝑐(𝑎)| = |ℜ| = [𝐺: 𝑁(𝑎)] . 
(iii) Let 𝐺 be finite. As 𝐺 =

a
C aU ( )  (disjoint union) we get ( )

a a
G C a G N a= =∑ ∑( ) : ( )

 where a runs over exactly one element from each conjugate class.  
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Unit 2 : Solvable Groups : 
 2.1  Derived subgroup of a group 𝐺. 

 2.2  Isomorphism Theorems. 

 

2.1  Derived subgroup of a group G : 

Definition 2.1.1: Let G be a group. Define 𝑈 = {𝑎𝑏𝑎ିଵ𝑏ିଵ /  𝑎, 𝑏 ∈ 𝐺}.  

 The subgroup generated by 𝑈 i.e. 〈𝑈〉 is called the derived subgroup of 𝐺 and it is denoted 

by 𝐺′.  
 

Remarks 2.1.2:  

 (i) U is the set of commutators in G. 

 (ii) 𝑥 ∈ 𝐺′  ⟹   𝑥 = 𝑦ଵ𝑦ଶ … 𝑦 where n is a finite integer and 𝑦 ∈ 𝑈 for each 𝑖. 
 (iii) 𝐺′ is also called commutator subgroup of G. 

 (iv)  𝐺 is abelian iff 𝐺ᇱ = {𝑒}.  

 

Theorem 2.1.3: Let 𝐺 be a group and let 𝐺′ be the derived subgroup of 𝐺. Then  

 (i) 𝐺′ ⊲ 𝐺  

 (ii) 
ீீᇱ  is abelian. 

 (iii) 𝑁 ⊴ 𝐺.  ேீ  is abelian iff 𝐺′ ≤ 𝑁. 

Proof :   

(1) By definition, 𝐺′ is a subgroup of 𝐺 only to prove 𝐺′ is normal in 𝐺.  

 Let 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐺′. 
Case I : 𝑥 ∈ 𝐺′ and 𝑥 = 𝑎𝑏𝑎ିଵ𝑏ିଵ.  

 Then  𝑔ିଵ𝑥𝑔 = 𝑔ିଵ(𝑎𝑏𝑎ିଵ𝑏ିଵ)𝑔 

      = (𝑔ିଵ𝑎𝑔) (𝑔ିଵ𝑏𝑔) (𝑔ିଵ𝑎ିଵ𝑔) (𝑔ିଵ𝑏ିଵ𝑔) 

      = (𝑔ିଵ𝑎𝑔) (𝑔ିଵ𝑏𝑔) (𝑔ିଵ𝑎𝑔)ିଵ (𝑔ିଵ𝑏𝑔)ିଵ 

 This shows that 𝑔𝑥𝑔ିଵ ∈ 𝑈 and hence 𝑔𝑥𝑔ିଵ ∈ 𝐺′. 
Case II :  Let 𝑥 ∈ 𝐺′ and 𝑥 = 𝑦ଵ𝑦ଶ … 𝑦 where n is finite and 𝑦 ∈ 𝑈 for each 𝑖 and hence 𝑔ିଵ𝑥𝑔, being the finite product of elements of U. is in 𝐺′.  
 Thus, for 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝐺′ we get  𝑔𝑥𝑔ିଵ ∈ 𝐺′ and hence 𝐺′ is a normal subgroup of 𝐺. 
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(2) 𝐺ᇱ ⊴ 𝐺  ⟹  
ீீᇱ is defined. 

 To prove that 
ீீᇱ is abelian. 

 Let 𝐺ᇱ , 𝐺ᇱ ∈ 
ீீᇱ . Then 𝑎, 𝑏 ∈ 𝐺. 

 [(𝐺ᇱ ) (𝐺ᇱ )]  [(𝐺ᇱ ) (𝐺ᇱ )]ିଵ = [𝐺ᇱ ]  [𝐺ᇱ ]ିଵ   … by the definition of ∙ in 
ீீᇱ.  

              = [𝐺ᇱ ]  ൣ𝐺()షభᇱ ൧ 
              = [𝐺ᇱ ]  ൣ𝐺షభషభᇱ ൧ 
              = ൣ𝐺షభషభᇱ ൧  
              = 𝐺ᇱ   as 𝑎𝑏𝑎ିଵ𝑏ିଵ ∈ 𝐺ᇱ 
              =  identity element of  

ீீᇲ .  

 But this shows that  (𝐺ᇱ ) (𝐺ᇱ ) = (𝐺ᇱ ) (𝐺ᇱ ) . 
 Hence  

ீீᇲ is abelian. 

(3) 

Only if part :  

 ேீ  is abelian  ⟹   (𝑁)(𝑁) = (𝑁)(𝑁)     for all 𝑎, 𝑏 ∈ 𝐺. 

 Hence  𝑁 = 𝑁          for 𝑎, 𝑏 ∈ 𝐺 

 ⟹    (𝑁)(𝑁)ିଵ = 𝑁       for 𝑎, 𝑏 ∈ 𝐺 

 ⟹    (𝑁)൫𝑁()షభ൯ = 𝑁       for 𝑎, 𝑏 ∈ 𝐺 

 ⟹    (𝑁)(𝑁షభషభ) = 𝑁       for 𝑎, 𝑏 ∈ 𝐺 

 ⟹    𝑁షభషభ = 𝑁        for 𝑎, 𝑏 ∈ 𝐺 

 ⟹    𝑎𝑏𝑎ିଵ𝑏ିଵ ∈ 𝑁        for 𝑎, 𝑏 ∈ 𝐺 

 This shows that 𝑈 ⊆ 𝑁. By the definition of subgroups generated by U, we get 〈𝑈〉 ⊆ 𝑁. 

 Therefore 𝐺′ ⊆ 𝑁. 

If part :   

 Let 𝑁 ⊴ 𝐺 and 𝐺′ ⊆ 𝑁. To prove that  ேீ is abelian. 

 As 𝐺′ ⊆ 𝑁 we get we get 𝑎𝑏𝑎ିଵ𝑏ିଵ ∈ 𝑁  for all 𝑎, 𝑏 ∈ 𝐺.  

 Thus  𝑁൫షభషభ൯ = 𝑁 

 i.e.  (𝑁)൫𝑁()షభ൯ = 𝑁 
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 i.e.  (𝑁)(𝑁)[(𝑁)(𝑁)]ିଵ = 𝑁 

 i.e.  (𝑁)(𝑁) = (𝑁)(𝑁) 

 Thus, for all 𝑎, 𝑏 ∈ 𝐺, we have (𝑁)(𝑁) = (𝑁)(𝑁) and hence  ேீ is abelian. 

 

Example 2.1.4 : For any n, the derived subgroup 𝑆ᇱ  of 𝑆 is 𝐴. 

Solution :   

Case I :  n = 1, 2 

 For n = 1, 2 we know 𝑆ᇱ = {𝑒} and 𝐴 = {𝑒}. Hence 𝑆ᇱ = 𝐴. 

Case II :  n > 2 

 We know 𝑓 = (1, 2) ∈ 𝑆 and 𝑔 = (1, 2, 3) ∈ 𝑆.  

 Hence,   𝑓𝑔𝑓ିଵ𝑔ିଵ ∈ 𝑆ᇱ        ∀    𝑛. 

 Thus,  (1 2) (1 2 3) (2 1) (3 2 1) ∈ 𝑆ᇱ    for each n. 

 But   (1 2)(1 2 3)(2 1)(3 2 1) = (1 2 3) 

 Hence,   (1 2 3) ∈ 𝑆ᇱ . 

 As 𝑆ᇱ  is normal subgroup of 𝑆 for each n (See theorem 1.3), we get 𝑔ିଵ𝑥𝑔 ∈ 𝑆ᇱ  for any 𝑔 ∈ 𝑆 and 𝑥 ∈ 𝑆ᇱ . 

  Hence, in particular  

     𝑔(1 2 3)𝑔ିଵ ∈ 𝑆     i.e.  𝑔 ∈ 𝐴 

 As   𝑔(1 2 3)𝑔ିଵ = 𝑔     for each 𝑔 ∈ 𝐴, we get 𝐴 ⊆ 𝑆ᇱ . 

 Now 𝑓𝑔𝑓ିଵ𝑔ିଵ is an even permutation for any 𝑓, 𝑔 ∈ 𝑆, we get 𝑆ᇱ ⊆ 𝐴.  

 By combining both the inclusions, we get 𝑆ᇱ = 𝐴 and this completes the solution. 

 

Example 2.1.5 :   (i) |𝐺| = 𝑝   (p is prime)  ⟹   𝐺ᇱ = {𝑒}. 

      (ii) |𝐺| = 𝑝ଶ   (p is prime) ⟹   𝐺ᇱ = {𝑒}. 

Solution :  

 (i) |𝐺| = 𝑝 ⟹   G is abelian. 

  Select any 𝑎 ∈ 𝐺 such that 𝑎 ≠ 𝑒.  

  Then 〈𝑎〉 is a subgroup of 𝐺 and 𝑂[〈𝑎〉] | 𝑂[𝐺]. 
  Hence 𝑂[〈𝑎〉] | 𝑝. 

  As 𝑎 ≠ 𝑒. We get 𝑂[〈𝑎〉] =  𝑝. i.e. 〈𝑎〉 = 𝐺.  

  Thus 𝐺 is a cyclic and hence abelian. 

      ⟹   𝐺ᇱ = {𝑒}. 
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 (ii) |𝐺| = 𝑝ଶ ⟹   G is abelian.   (See ex. 2.16, result 4) 

      ⟹   𝐺ᇱ = {𝑒}. 

 

2.2  Solvable Groups : 

Definition 2.2.1: Let 𝐺 be any group. For any positive integer 𝑛, we define the 𝑛௧ derived 

subgroup of 𝐺, written as 𝐺() as follows : 𝐺(ଵ) = 𝐺ᇱ, 𝐺(ଶ) = 𝐺(ଵ)ᇲ, … , 𝐺() = ൣ𝐺(ିଵ)൧ᇱ  … 

 where 𝐺′ denotes the derived subgroup of 𝐺. 

 

Definition 2.2.2: A group 𝐺 is said to be solvable, if there exists some positive integer 𝑛 such 

that 𝐺() = {𝑒}. 

 

Example 2.2.3:  

 (i) Any abelian group 𝐺 is solvable as 𝐺(ଵ) = 𝐺ᇱ = {𝑒} 

 (ii) Let 𝑝 be a prime number. The groups of order p, 𝑝ଶ are solvable (See example 1.5)  

 (iii) Any finite group 𝐺 with |𝐺| ≤ 5 is solvable. (Since any group 𝐺 with |𝐺| ≤ 5 is 

abelian).  

 (iv) 𝑆ଷ is solvable. 

   𝑆ଷ = 〈 {(1)(1 2)(1 3)(2 3)(1 2 3)(1 3 2)}, ∘ 〉  
  Then, 𝑆ଷᇱ = 𝐴ଷ = 〈 {(1), (1 2 3), (1 3 2)}, ∘ 〉   … See example 2.1.4 

  As  (1 2 3)(1 3 2)(1 2 3)ିଵ(1 3 2)ିଵ 

  = (1 2 3)(1 3 2)(3 2 1)(2 3 1) 

  = (1 ) 

  We get, 𝐴ଷᇱ = {𝑒}  ⟵    an identity element of in 𝑆ଷ. 

  Hence, 𝑆ଷ(ଶ) = 𝐴ଷ(ଵ) = {𝑒}. This shows that 𝑆ଷ is solvable. 

 (v) 𝑆 is not solvable for 𝑛 ≥ 5. 

    We need the following result. 

 Result :  If 𝑁 ⊴ 𝑆  (𝑛 ≥ 5) then N contains each 3-cycles. 

 As (𝑆)ᇱ is a normal subgroup of 𝑆. (𝑆)ᇱ will contain all the 3-cycles in 𝑆. 

 Again (𝑆)ᇱᇱ = (𝑆)(ଶ) is a normal subgroup of (𝑆)ᇱ and (𝑆)ᇱ contains all the 3-cycles 

in 𝑆. Hence, (𝑆)(ଶ) must contain each 3-cycles in 𝑆. 
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 Continuing this process we will get that (𝑆)() contains each 3-cycle in 𝑆 and hence ∃ 

no k such that (𝑆)() = {𝑒} .  

 Therefore 𝑆 is not solvable for 𝑛 ≥ 5. 

 

Theorem 2.2.4 :  Every subgroup of a solvable group is solvable. 

Proof :  Let G be a solvable group and 𝐻 ≤ 𝐺. Then by the definition of the derived 

subgroup, we get 𝐻′ ≤ 𝐺′. In general 𝐻() ≤ 𝐺() for any positive integer k. As G is 

solvable, ∃ a positive integer n such that 𝐺() = {𝑒}. Hence  

    𝐻() ≤ 𝐺() = {𝑒}    ⟹    𝐻() = {𝑒}. Thus H is solvable.  

 

Remark :  Converse of theorem 2.2.4 need not be true. 

 

Theorem 2.2.5 :  Homomorphic image of a solvable group is solvable. 

Proof :  Let 𝐺ଵ and 𝐺ଶ  be any two groups such that 𝐺ଵ is solvable and 𝐺ଶ is a homomorphic 

image of 𝐺ଵ. Hence ∃ a positive integer k such that 𝐺ଵ() = {𝑒ଵ} where 𝑒ଵ is the identity in 𝐺ଵ. 

 As 𝐺ଶ is a homomorphic image of 𝐺ଵ, there exists an onto homomorphism 𝑓: 𝐺ଵ ⟶ 𝐺ଶ.  

 Thus 𝐺ଶ = 𝑓(𝐺ଵ) = {𝑓(𝑥) / 𝑥 ∈ 𝐺ଵ}.  

 Now 𝑓(𝑎𝑏𝑎ିଵ𝑏ିଵ)  =  𝑓(𝑎)𝑓(𝑏)[𝑓(𝑎)]ିଵ[𝑓(𝑏)]ିଵ    for 𝑎, 𝑏 ∈ 𝐺ଵ  

 Define  

   𝑈ଵ = {𝑎𝑏𝑎ିଵ𝑏ିଵ /  𝑎, 𝑏 ∈ 𝐺ଵ}    and  

   𝑈ଶ = {𝑥𝑦𝑥ିଵ𝑦ିଵ /  𝑥, 𝑦 ∈ 𝐺ଶ}.   

 Then 𝑈ଶ =  {𝑓(𝑠)𝑓(𝑡)[𝑓(𝑠)]ିଵ[𝑓(𝑡)]ିଵ / 𝑠, 𝑡 ∈ 𝐺ଵ}  as  𝐺ଶ = 𝑓(𝐺ଵ)  

    = {𝑓(𝑠𝑡𝑠ିଵ𝑡ିଵ) / 𝑠, 𝑡 ∈ 𝐺ଵ}       . . . since f is a homomorphism.  

    = 𝑓(𝑈ଵ) 

 But then we get 𝑓(𝐺ଵᇱ) = 𝐺ଶᇱ . 

 Continuing in this way we get 

    𝑓ቀ𝐺ଵ()ቁ = [𝑓(𝐺ଵ)]()        . . . for any positive integer n.  

 As 𝐺ଵ() = {𝑒} we get  

    𝑓ቀ𝐺ଵ()ቁ = [𝑓(𝐺ଵ)]()    

 ⟹  𝑓({𝑒ଵ}) = [𝑓(𝐺ଵ)]() 
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 ⟹  {𝑒ଶ} = 𝐺ଶ()    where 𝑒ଶ is an identity element in 𝐺ଶ. 

 This shows that 𝐺ଶ is solvable. 

 

Corollary 2.2.6 : Any quotient group ேீ of a solvable group G is solvable.  

Proof :  As is a homomorphic image of G under the natural / canonical mapping 𝑓 ∶  𝐺 ⟶ ேீ 

defined by 𝑓(𝑔) = 𝑁𝑔, the result follows by theorem 2.5. 

 

Remark 2.2.7 : Converse of the corollary 2.2.6 need not be true.  

 For this consider the group 𝑆 for 𝑛 ≥ 5. 𝑆 is not solvable (See example 2.3 (5)). 

 𝐴 ⊲ 𝑆 and hence  ௌ  is  defined. As ቚௌቚ = 2, we get ௌ is abelian and hence solvable.  

 Thus the quotient group ௌ is solvable but  𝑆 is not solvable.  

 

Theorem 2.2.8 :  Let 𝑁 ⊴ 𝐺. If both N and ேீ are solvable, then G is solvable. 

Proof :   N is solvable  ⟹  ∃  a positive integer 𝑘 such that 𝑁() = {𝑒}. 

   ேீ  is solvable  ⟹  ∃  a positive integer 𝑙 such that ቂேீቃ() = {𝑁}.  

         (N is the identity element of  ேீ ) 

 Now ቀேீቁᇱ
 =  the group generated by {𝑁𝑁𝑁షభ𝑁షభ /  𝑎, 𝑏 ∈ 𝐺} 

    =  the group generated by {𝑁షభషభ /  𝑎, 𝑏 ∈ 𝐺}   . . . (1) 

 Now 𝐺′ ⊴ 𝐺 and 𝑁 ⊴ 𝐺 will imply 𝐺′𝑁 is a normal subgroup of G and 𝑁 ⊴ 𝐺′𝑁. Hence 

the quotient group 
ீᇲேே  is defined. 

     
ீᇲேே   = {𝑁௫ / 𝑥 ∈ 𝐺′𝑁 = 𝑁𝐺′}  . . . (2) 

 From (1) and (2), w get, 

     ቀேீቁᇱ = ீᇲேே    
 Continuing in this way we get  

     ቀேீቁ() = ீ()ேே ,     for any positive integer n. 

 Hence,   ቀேீቁ() = ீ()ேே = ே ∙ ேே  = {𝑁}.  
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 But then  𝐺() ⊆ 𝑁 and hence ൣ𝐺()൧() ⊆ 𝑁() = {𝑒} implies 𝐺(ା) = {𝑒}, 

establishing that G is solvable. 

 

Combining the result of theorem 2.2.4, 2.2.8 and corollary 2.2.7 we get, 

Corollary 2.2.9 :  Let 𝑁 ⊲ 𝐺. G is solvable if and only if both N and ேீ are solvable. 

 

Example 2.2.10 :  𝐴 and 𝐵 are solvable groups iff 𝐴 × 𝐵 is solvable. 

Solution : Only if part :   

 Let 𝐴 and 𝐵 be solvable groups.  

 To prove that 𝐴 × 𝐵 is solvable. 

 We know, the mapping 𝑓: 𝐴 × 𝐵 ⟶ 𝐴 defined by 𝑓(𝑎, 𝑏) = 𝑎 is an onto homomorphism. 

Hence, by fundamental theorem of homomorphism.  

      
 ×    ≅ 𝐴   

 where 𝑘𝑒𝑟𝑓 = {𝑒ଵ} × 𝐵, 𝑒ଵ denotes the identity element in A.  

 Thus, 

     
 × {భ} ×   ≅ 𝐴. 

 As A is solvable, by theorem 2.2.5,  
 × {భ} ×  is solvable. . . . (1) 

 Further the mapping 𝑔 ∶  {𝑒ଵ}  × 𝐵 ⟶ 𝐵 defined by 𝑔(𝑒ଵ, 𝑏) = 𝑏  for each 𝑏 ∈ 𝐵 is 

isomorphism. Hence {𝑒ଵ} × 𝐵 ≅ 𝐵. 

 As B is solvable, by theorem 2.2.5 we get,  {𝑒ଵ} × 𝐵 is a solvable group. . . . (2) 

 As both {𝑒ଵ} × 𝐵 and 
 × {భ} ×  are solvable groups, by theorem 2.2.8, 𝐴 × 𝐵 is solvable. 

If part :   

 Let 𝐴 × 𝐵 be a solvable group. As the mapping 𝑓: 𝐴 × 𝐵 ⟶ 𝐴 defined by 𝑓(𝑎, 𝑏) = 𝑎 is 

an onto homomorphism, we get 𝐴 is a homomorphic image of a solvable group 𝐴 × 𝐵 

and hence 𝐴 is solvable. 

 Similarly, we can prove that 𝐵 is solvable. 

 
Example 2.2.11 : 𝐻 and 𝐾 be normal solvable subgroups of group 𝐺. Show that 𝐻𝐾 is 

solvable.  

Solution : 𝐻𝐾 is a subgroup of 𝐺. By second isomorphism theorem,  
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ு  ≅ ுு ∩   

 Now, any quotient group of a solvable group being solvable, we get 
ுு ∩  is a solvable. 

(Since H is solvable). Now isomorphic image of a solvable group is solvable. Hence 
ு  

is solvable. Thus K and 
ு  both are solvable will imply HK is solvable. (See theorem 

2.2.8). 

 

Definition 2.2.12 : A finite sequence {𝑁, 𝑁ଵ, … , 𝑁} of subgroups of a group G is called a 

normal series of 𝐺 if  

      {𝑒} = 𝑁 ⊲  𝑁ଵ ⊲ 𝑁ଶ ⊲ ⋯ ⊲  𝑁 = 𝐺.  

 The quotient groups 
ேேషభ are called factors of the normal series. (1 ≤ 𝑖 ≤ 𝑟). 

 For detail discussion of normal series see Unit 3.2. 

 

Theorem 2.2.13 :  A group G is solvable if and only if G has a normal series with abelian 

factors. 

Proof : Only f part :  

 Let G be a solvable group. Hence ∃  a positive integer 𝑘 such that 𝐺() = {𝑒}.  

 Consider ൛𝐺(), 𝐺(ିଵ), … , 𝐺(ଵ), 𝐺ൟ. By theorem 1.6, 𝐺() is a normal subgroup of G for 

each 𝑖, 1 ≤ 𝑖 ≤ 𝑘. Further 𝐺(ାଵ) ⊲ 𝐺(), by theorem 1.4 (1). 

 Hence the sequence ൛𝐺(), 𝐺(ିଵ), … , 𝐺(ଵ), 𝐺ൟ forms a normal series  

    {e} = 𝐺() ⊲ 𝐺(ିଵ) ⊲ ⋯ ⊲ 𝐺(ଵ) ⊲ 𝐺 . 

 Further the factors  
ீ()ீ(శభ)  are abelian groups for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘 (See theorem 1.4 (2)). 

 Thus if G is solvable, G has a normal series, 

      {e} = 𝐺() ⊲ 𝐺(ିଵ) ⊲ ⋯ ⊲ 𝐺(ଵ) ⊲ 𝐺   

 with abelian factors. 

If part :  

 Let G has a normal series. {𝐻, 𝐻ଵ, … , 𝐻} with 𝐻 = {𝑒} and 𝐻 = 𝐺 and with abelian 

factors. Thus  

      {𝑒} = 𝐻 ⊲ 𝐻ଵ ⊲ 𝐻ଶ ⊲ ⋯ ⊲  𝐻 = 𝐺   
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 and  
ுశభு  is an abelian group with 0 ≤ 𝑖 ≤ 𝑛.  

 Now  
ுுషభ = ீுషభ  is abelian.  

 ⟹    𝐺′ ⊆ 𝐻ିଵ   ⟹    𝐺′′ ⊆ (𝐻ିଵ)′  
 Hence by transitivity,  

    𝐺′′ ⊆ (𝐻ିଶ)   i.e.  𝐺(ଶ) ⊆ 𝐻ିଶ   

 Continuing in this way, we get  

    𝐺() ⊆ 𝐻ି = 𝐻 = {𝑒} 

 Hence  𝐺() = {𝑒}, proving that G is Solvable. 

 

Example 2.2.14 :   

(i) In 𝑆ଷ we have a normal series {𝑒} ⊲ 𝐴ଷ ⊲ 𝑆ଷ such  
ௌయయ  that is abelian and such  

య{}  that is 

abelian. Hence 𝑆ଷ is solvable. 

(ii) Consider the group 𝑆ସ. 𝐴ସ ⊲ 𝑆ସ. Define  

    𝑉ସ = {(1), (1  2)(3  4), (1  3)(2  4), (1  4)(2  3)}. 

 Then 𝑉ସ ⊲ 𝐴ସ.  

 Consider the sequence  ൛{(1)}, 𝑉ସ, 𝐴ସ, 𝑆ସൟ. We have {(1)} ⊲ 𝑉ସ ⊲ 𝐴ସ ⊲ 𝑆ସ  . . . 

(1) 

 The factors of the normal series are  

    
ర{}  , రర   and   

ௌరర . 

 ቚ ర{}ቚ = |ర||{}| = ସଵ = 4    ⟹    
ర{}  is abelian. 

 ቚరర ቚ = |ర||ర| = ଵଶସ  = 3    ⟹    
రర   is abelian. 

 ቚௌరరቚ = |ௌర||ర| = ଶସଵଶ = 2    ⟹    
ௌరర  is abelian. 

 (Result used : G is abelian if |𝐺| ≤ 5). 

 This shows that 𝑆ସ has a solvable series and hence 𝑆ସ is solvable. 

 

Example 2.2.15 :  Let 𝐺 be a solvable group. Show that 𝐺 contains at least one normal, 

abelian subgroup 𝐻. 

Solution :  
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Case I :  𝐺 is abelian. In this we take 𝐻 =  𝐺. 

Case II :  𝐺 is non-abelian.  

 G is solvable  ⟹   ∃ a positive integer 𝑘 such that 𝐺() = {𝑒}. 

 Consider 𝐻 = 𝐺(ିଵ). 
 Then {𝑒} = 𝐺() ⊲ 𝐺(ିଵ). Hence ൣ𝐺(ିଵ)൧ᇱ = {𝑒}. 

 ⟹   𝐺(ିଵ) is abelian.    (See remark 1.2 (iv))  

    𝐺(ଵ) ⊲ 𝐺  ⟹  𝐺(ଶ) ⊲ 𝐺  (See example 1.6) 

    𝐺(ଶ) ⊲ 𝐺  ⟹  𝐺(ଷ) ⊲ 𝐺 

 Continuing in this way we get 

    𝐻 = 𝐺(ିଵ) ⊲ 𝐺 

 Thus G contains a normal, abelian subgroup H. 

 

Example 2.2.16 : Let 𝐺 be a non-abelian group such that |𝐺| = 𝑝ଷ, where 𝑝 is any prime 

number. Show that 𝐺ᇱ = 𝑍(𝐺). 

Solution : To solve this problem we mainly use the following result. 

Let p be a prime. 

Result 1 :  |𝐺| = 𝑝  (𝑛 > 0)  ⟹   𝑍(𝐺) ≠ {𝑒}.   

Result 2 :  |𝐺| = 𝑝      ⟹   G is cyclic. 

Result 3 :  
ீ(ீ)  is cyclic   ⟹   𝐺 is abelian. 

Result 4 :  Any group of order 𝑝ଶ is abelian.  

Result 5 :  ேீ  is abelian   ⟹   𝐺′ ⊆ 𝑁. 

Result 6 :  𝐺 is abelian   ⟺   𝐺′ = {𝑒}. 

Solution of the problem :   

 (i)  |𝐺| = 𝑝ଷ    ⟹   𝑍(𝐺) ≠ {𝑒}  ⟹   |𝑍(𝐺)| ≠ 1. 

 (ii)  G is non-abelian  ⟹   𝑍(𝐺) ≠ 𝐺  ⟹   |𝑍(𝐺)| ≠ 𝑝ଷ. 

 (iii) As 𝑍(𝐺) ⊲ 𝐺, |𝑍(𝐺)| | |𝐺| = 𝑝ଷ. 

    Hence, |𝑍(𝐺)| = 1,   𝑝, 𝑝ଶ, 𝑝ଷ. 

    From (i) and (ii), 

      |𝑍(𝐺)| = 𝑝ଶ or 𝑝 
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 (iv)  |𝑍(𝐺)| = 𝑝ଶ   ⟹  ቚ ீ(ீ)ቚ = |ீ||(ீ)| =  యమ = 𝑝. 

    Thus ቚ ீ(ீ)ቚ = 𝑝 and hence 
ீ(ீ) is a cyclic group. Hence G must be abelian.  

    As this is not true we get |𝑍(𝐺)| ≠ 𝑝ଶ. 

 (v)  Hence, only possible value of |𝑍(𝐺)| is p. But in this case  

      ቚ ீ(ீ)ቚ = |ீ||(ீ)| =  య  = 𝑝ଶ. 

    This shows that 
ீ(ீ) is an abelian group. But then 𝐺′ ⊆ 𝑍(𝐺).  

    As 𝐺′ ≤ 𝑍(𝐺) we get |𝐺′| | |𝑍(𝐺)| = 𝑝 As G is non-abelian, |𝐺′| ≠ 1.  

    Thus, |𝐺′| = 𝑝 = |𝑍(𝐺)|. This in turn shows that 𝐺ᇱ = 𝑍(𝐺). 

 

Exercise ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

 (i) Show that the groups of order 𝑝, 𝑝ଶ, 𝑝𝑞, , 𝑝ଶ𝑞 where p and q are distinct primes 

are solvable. 

 (ii) Prove that any group of order 𝑝𝑞𝑟 is solvable when 𝑝, 𝑞, 𝑟 are primes and 𝑟 > 𝑝𝑞. 

 (iii) Show that a group of order 4p, where p is prime is solvable.  

 (iv) State whether the following statements are true or false. 

    1. Every finite group is solvable. 

    2. Every finite group of prime order is solvable. 

    3. 𝑆 is a solvable group. 

    4. 𝐺 is solvable if 𝐺 has a normal series.  

    5. The property of ‘being a solvable group’ is preserved under isomorphism.  

 (v)  Prove or disprove : 𝑆ଷ × 𝑆ଷ is solvable. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Theorem 2.2.17 : If 𝑁 ⊴ 𝐺, then the derived subgroup of 𝑁 is also a normal subgroup of 𝐺. 

Proof :  𝑁 ⊴ 𝐺. 𝑁ᇱ= derived subgroup of 𝐺.  

 𝑁ᇱ = the subgroup generated by the set {𝑛ଵ𝑛ଶ𝑛ଵି ଵ𝑛ଶି ଵ/ 𝑛ଵ, 𝑛ଶ ∈ 𝑁}. 

 Let 𝑥 ∈ 𝑁ᇱ and 𝑔 ∈ 𝐺. To prove that 𝑔ିଵ𝑥𝑔 ∈ 𝑁ᇱ.  
 It is enough to prove that 𝑔ିଵ𝑥𝑔 ∈ 𝑁ᇱ, when 𝑥 = 𝑛ଵ𝑛ଶ𝑛ଵି ଵ𝑛ଶି ଵ ,  for some 𝑛ଵ, 𝑛ଶ ∈ 𝑁. 

 Now,  𝑔ିଵ(𝑛ଵ𝑛ଶ𝑛ଵି ଵ𝑛ଶି ଵ)𝑔 
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   =    (𝑔ିଵ𝑛ଵ𝑔) (𝑔ିଵ𝑛ଶ𝑔) (𝑔ିଵ𝑛ଵି ଵ𝑔) (𝑔ିଵ𝑛ଶି ଵ𝑔) 

   =    (𝑔ିଵ𝑛ଵ𝑔) (𝑔ିଵ𝑛ଶ𝑔) (𝑔ିଵ𝑛ଵ𝑔)ିଵ (𝑔ିଵ𝑛ଶ𝑔)ିଵ 

 Now, N being a normal subgroup of G, 𝑔ିଵ(𝑛ଵ𝑛ଶ𝑛ଵି ଵ𝑛ଶି ଵ)𝑔 is finite product of the type  𝑎𝑏𝑎ିଵ𝑏ିଵ where 𝑎, 𝑏 ∈ 𝑁. 

 Hence, 𝑔ିଵ(𝑛ଵ𝑛ଶ𝑛ଵି ଵ𝑛ଶି ଵ)𝑔 ∈ 𝑁′.   

 Hence  𝑁′ ⊴ 𝐺. 

 

Example 2.2.18 : True or false ? Justify.  

 If every proper subgroup of 𝐺 is solvable, then 𝐺 is solvable. 

Solution : False. Let 𝐺 = 𝐴ହ. 

 Assume that 𝐴ହ is solvable.  

 Then 
ௌఱఱ  is abelian. (Since ቚௌఱఱቚ = 2  ⟹ 

ௌఱఱ is abelian). 

 Hence, by theorem 2.2.8, 𝑆ହ is solvable; which is not true.  

 Hence, 𝐺 = 𝐴ହ is not solvable.  

Claim : All proper subgroups of 𝐴ହ are solvable.  

  𝑂(𝐴ହ) = ை(ௌఱ)ଶ   = 60 = 2ଷ ∙ 3 ∙ 5 

(i)  𝐴ହ is simple  ⟹ 𝐴ହ does not have any subgroup of order 30. 

(ii)  𝐴ହ may contain subgroups of order 2, 2ଶ, 3, 5, 6 = 2 ∙ 3, 10 = 2 ∙ 5, 15 = 3 ∙ 5,  
  20 = 2ଶ ∙ 5. 

All these subgroups of 𝐴ହ are solvable by the following result. 

Result :   Let 𝑝 and 𝑞 be distinct primes. Then any groups of order 𝑝𝑞 or 𝑝ଶ𝑞 are solvable. 

 

Example 2.2.19 : Show that the set 𝐺 of all matrices of the type 

        1 𝑎 𝑏0 1 𝑐0 0 1൩     𝑎, 𝑏, 𝑐 ∈ 𝑍ଷ   

 is non abelian and solvable under the multiplication. 

Solution : It is easy to prove that 〈𝐺, ∙ 〉 is a group.  

 As 𝑎, 𝑏, 𝑐 ∈ 𝑍ଷ = {0, 1, 2},  |𝐺| = 27 = 3ଷ. As any group of order power of a prime, 

is solvable, G is solvable.  
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Example 2.2.20 : Show that 𝑆 ⊃ 𝐴 ⊃ {𝑒} is a normal series in 𝑆 for 𝑛 > 4. Deduce that 𝑆 is not solvable for 𝑛 > 4. 

Solution :  We know that 𝐴 ⊲ 𝑆 and {𝑒} ⊲ 𝐴. Hence ൛{𝑒}, 𝐴, 𝑆ൟ forms a normal series 

in 𝑆. Let 𝑆 be solvable for n > 4. Then subgroup of solvable group being solvable, 𝐴 

will be a solvable. But 𝐴 is not solvable for > 4 as 𝐴 is simple for n > 4 and a solvable 

group contains non-trivial normal subgroup (See theorem 2.13) 

 

Exercise :  Prove that 𝑆ଷ × 𝑆ଷ is solvable. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

 

Unit 3:  Series of A Group 
 3.1  Subnormal Series, Schreier’s Theorem, Jordan-Holder Theorem 

 3.2  Normal Series 

 3.3  Ascending Central Series 

 3.4  Nilpotent Groups 

 

3.1  Subnormal Series : 
Definition 3.1.1 : Let 𝐺 be a group. A subnormal series of a group 𝐺 is a finite sequence 𝐻, 𝐻ଵ, … , 𝐻 of subgroups of 𝐺 such that 𝐻 ⊲ 𝐻ାଵ for each 𝑖, 0 ≤ 𝑖 < 𝑛 with 𝐻 = {𝑒} 

and 𝐻 = 𝐺. 

Remarks : 

 (i) Every group 𝐺 has a subnormal series with 𝐻 = {𝑒} and 𝐻ଵ = 𝐺. 

 (ii) The groups 
ுశభு  are called factor groups of the series (0 ≤ 𝑖 < 𝑛 − 1). 

 

Examples 3.1.2 : 

(i)  In a group 〈𝑍, +〉, {0} < 8𝑍 < 4𝑍 < 𝑍 is a subnormal series where  

    8𝑍 = {0, ±8, ±16, ±24, … }  

    4𝑍 = {0, ±4, ±8, ±16, ±24, … }  

     {0} ⊲ 8𝑍, 8𝑍 ⊲ 4𝑍 and 4𝑍 ⊲ 𝑍.  

  Hence, the finite sequence ൛{𝑒}, 8𝑍, 4𝑍, 𝑍ൟ of subgroups of Z form a subnormal series. 

(ii)  Let 𝐺 = 〈𝑎〉 where 𝑎 = 𝑒. 
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  Then 𝐺 = {𝑎, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, 𝑎ହ, 𝑎}  with 𝑎 = 𝑒. 

  Define 𝐻 = {𝑒, 𝑎ଷ} . Then ൛{𝑒}, 𝐻, 𝐺ൟ will form a subnormal series in G. 

(iii) In 𝑆ଷ,  {(1), 𝐴ଷ, 𝑆ଷ} will form a subnormal series in 𝑆ଷ. 

(iv)  Let 𝐺 = 〈𝑎〉 , where 𝑎ଵଶ = 𝑒. 

  Then  𝑆ଵ = ൛{𝑒}, 〈𝑎ସ〉, 〈𝑎ଶ〉, Gൟ  

  and   𝑆ଶ = ൛{𝑒}, 〈𝑎〉, 〈𝑎ଷ〉, Gൟ 

  will be two subnormal series in 𝐺. 

 

Definition 3.1.3 : A subnormal series ൛𝐾ൟ is a refinement of a subnormal series {𝐻} if 

 {𝐻} ⊆ ൛𝐾ൟ that is each 𝐻 = 𝐾 for some 𝑗. 

Example 3.1.4 :   

(i) The series in 𝑍 given by  

      {0} ⊲ 72𝑍 ⊲ 24𝑍 ⊲ 8𝑍 ⊲ 4𝑍 ⊲ 𝑍  

 is a refinement of the series  

      {0} ⊲ 72𝑍 ⊲ 8𝑍 ⊲ 𝑍 

(ii) Let 𝐺 = 〈𝑎〉 where 𝑎ଵଶ = 𝑒.  

 The subnormal series  

      {𝑒}, 〈𝑎ସ〉, 〈𝑎ଶ〉, G 

 is not a refinement of the series 

      {𝑒}, 〈𝑎〉, 〈𝑎ଷ〉, G  in 𝐺. 

 

Definition 3.1.5 : Two subnormal series {𝐻} and ൛𝐾ൟ of the same group 𝐺 are isomorphic if 

there is a one-one correspondence between the collection of factor groups ቄுశభு ቅ and ൜ೕశభೕ ൠ such that the corresponding factor groups are isomorphic. 

Remark : The two isomorphic normal series must contain the same number of subgroups. 

 

Example 3.1.6 : Let 𝐺 = 𝑍ଵହ. 

     𝑍ଵହ = 〈{0, 1, 2, 3, … ,14} ,   ⊕ଵହ〉  
 < 5 >  = the subgroup generated by 5 in 𝑍ଵହ = {0, 5, 10}  

 < 3 >  = the subgroup generated by 3 in 𝑍ଵହ = {0, 3, 6, 9, 12}  

 Consider the two subnormal series in 𝑍ଵହ given by  
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     𝑆ଵ = ൛{0}, 〈5〉, 𝑍ଵହൟ  

 and   𝑆ଶ = ൛{0}, 〈3〉, 𝑍ଵହൟ  

 The set of factor groups for 𝑆ଵ is  

     𝑇ଵ = ቄ భఱ〈ହ〉 , 〈ହ〉{} ቅ  

 The set of factor groups for 𝑆ଶ is  

     𝑇ଵ = ቄ భఱ〈ଷ〉 , 〈ଷ〉{} ቅ  

 Now,  
భఱ〈ହ〉  ≅ 𝑍ହ  and    

〈ଷ〉{} ≅ 𝑍ହ 

 and   
భఱ〈ଷ〉  ≅ 𝑍ଷ  and    

〈ହ〉{} ≅ 𝑍ଷ 

 We establish one-one, onto correspondence between 𝑇ଵ and 𝑇ଶ as  

      
భఱ〈ହ〉   ⟷   〈ଷ〉{}   and   〈ହ〉{}  ⟷   భఱ〈ଷ〉    

 Then the corresponding factor group being isomorphic we get, the two series 𝑆ଵ and 𝑆ଶ of 𝑍ଵହ are isomorphic. 

 

• Schreier’s Theorem : 

Theorem 3.1.7 : Two subnormal series of a group 𝐺 have isomorphic refinements. 

Proof :  Let 𝐺 be a group and let  

     {𝑒} = 𝐻 < 𝐻ଵ < 𝐻ଶ < ⋯ < 𝐻 = 𝐺 … (1) 

 and   {𝑒} = 𝐾 < 𝐾ଵ < 𝐾ଶ < ⋯ < 𝐾 = 𝐺 … (2)   

 be two subnormal series of 𝐺. 

 Define  

    𝐻 = 𝐻 ∙ ൫𝐻ାଵ ∩ 𝐾൯ 

 As   𝐻 ⊲ 𝐻ାଵ we get 𝐻 ∙ ൫𝐻ାଵ ∩ 𝐾൯ is a subgroup of 𝐺 for each 𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1 

and each 𝑗, 𝑜 ≤ 𝑗 < 𝑚. 

(i)   𝐻 ⊲ 𝐻ାଵ and 𝐾 ⊲ 𝐾ାଵ. Hence by Zassenhaus Lemma, 

     𝐻 ∙ ൫𝐻ାଵ ∩ 𝐾൯ ⊲ 𝐻 ∙ ൫𝐻ାଵ ∩ 𝐾ାଵ൯ 

  i.e.   𝐻, ⊴ 𝐻,ାଵ 

(ii)   𝐻, = 𝐻 ∙ (𝐻ାଵ ∩ 𝐾) 

    = 𝐻 ∙ (𝐻ାଵ ∩ {𝑒}) 

    = 𝐻 ∙ {𝑒}    
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    = 𝐻 
(iii)  𝐻, = 𝐻 ∙ (𝐻ାଵ ∩ 𝐾) 

    = 𝐻 ∙ (𝐻ାଵ ∩ 𝐺) 

    = 𝐻 ∙ 𝐻ାଵ 

    = 𝐻ାଵ      as 𝐻 ⊆ 𝐻ାଵ  

 From (i), (ii) and (iii), we get a chain containing 𝑛𝑚 + 1 elements not necessarily distinct 

groups which is as follows. 

    {𝑒} = 𝐻 = 𝐻,    ≤ 𝐻,ଵ ≤ ⋯ ≤ 𝐻, = 𝐻ଵ, = 𝐻ଵ   

         ≤ 𝐻ଵ,ଵ ≤ ⋯ ≤ 𝐻ଵ, = 𝐻ଶ, = 𝐻ଶ  

         … … … … …  

         ≤ 𝐻ିଵ,ଵ ≤ 𝐻ିଵ,ଶ ≤ ⋯ ≤ 𝐻ିଵ, = 𝐻 = 𝐺  . . . (3) 

 This chain refines the chain in (1). The set of factor groups of the chain represented in (3) 

is  

      ൜ு,ೕశభு,ೕ   / 1 ≤ 𝑖 ≤ 𝑛,   1 ≤ 𝑗 ≤ 𝑚 − 1ൠ    . . . (4) 

 Similarly, by defining 

      𝐾, = 𝐾 ∙ ൫𝐾ାଵ ∩ 𝐻൯  for 0 ≤ 𝑗 ≤ 𝑚 − 1 and 0 ≤ 𝑖 ≤ 𝑛. 

 We obtain a subnormal chain containing 𝑛𝑚 + 1 element as follows. 

    {𝑒} = 𝐾 = 𝐾,    ≤ 𝐾,ଵ ≤ ⋯ ≤ 𝐾, = 𝐾ଵ, = 𝐾ଵ   

         ≤ 𝐾ଵ,ଵ ≤ ⋯ ≤ 𝐾ଵ, = 𝐾ଶ, = 𝐾ଶ  

         … … … … …  

         ≤ 𝐾ିଵ,ଵ ≤ 𝐾ିଵ,ଶ ≤ ⋯ ≤ 𝐾ିଵ, = 𝐾 = 𝐺  . . . (5) 

 Note that the two chains represented in (4) and (5) not necessarily contain distinct groups. 

 The chain (5) refines the chain (2). The set of factor groups of the chain represented in (5) 

is  

      ൜ೕ,శభೕ, / 0 ≤ 𝑗 ≤ 𝑚,   0 ≤ 𝑖 < 𝑛 − 1ൠ    . . . (6) 

 Again as 𝐻 ⊲ 𝐻ାଵ and 𝐾 ⊲ 𝐾ାଵ, by Zassenhaus Lemma, 

      
ு ∙ ൫ுశభ ∩ ೕశభ൯ு ∙ ൫ுశభ ∩ ೕ൯   ≅   ೕ ∙ ൫ೕశభ ∩ ுశభ൯ೕ ∙ ൫ೕశభ ∩ ு൯       

 i.e.    
ு,ೕశభ ு,ೕ   ≅   ೕ,శభೕ,      for 0 ≤ 𝑖 ≤ 𝑛 − 1 and   0 ≤ 𝑗 ≤ 𝑚 − 1. 
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   This isomorphism establishes one to one onto correspondence between the two sets 

represented in (4) and (6). Deleting the repeated groups from the chains represented in (3) 

and (5) we get subnormal series of distinct groups that are isomorphic refinements of the 

subnormal series represented in (1) and (2) respectively. 

   This establishes that any two subnormal series of a group G have isomorphic 

refinements. 

 

Example 3.1.8 : Give the isomorphic refinements of the two subnormal series of 〈𝑍, +〉. 
 (i) {0} ⊲ 60𝑍 ⊲ 20𝑍 ⊲ 𝑍  

 (ii) {0} ⊲ 245𝑍 ⊲ 49𝑍 ⊲ 𝑍  

Solution : Define  𝐻 = {0},      𝐻ଵ = 60𝑍,         𝐻ଶ = 20𝑍,      𝐻ଷ = 𝑍 
       𝐾 = {0},      𝐾ଵ = 245𝑍,      𝐾ଶ = 49𝑍,       𝐾ଷ = 𝑍 

 Define 𝐻, = 𝐻 ∙ ൫𝐻ାଵ ∩ 𝐾൯   ∀     0 ≤ 𝑖 ≤ 2,    0 ≤ 𝑗 ≤ 3. 

 Then, 

   𝐻, = 𝐻 = {0} 
   𝐻,ଵ = 𝐻 ∙ (𝐻ଵ ∩ 𝐾ଵ) = 𝐻ଵ ∩ 𝐾ଵ = 60𝑍 ∩ 245𝑍 

       = 2940𝑍      ( 2940 =  𝑙. 𝑐. 𝑚. (60, 245) )  

   𝐻,ଶ = 𝐻 ∙ (𝐻ଵ ∩ 𝐾ଶ) = 𝐻ଵ ∩ 𝐾ଶ = 60𝑍 ∩ 49𝑍 = 2940𝑍    𝐻,ଷ = 𝐻 ∙ (𝐻ଵ ∩ 𝐾ଷ) = 𝐻ଵ ∩ 𝐾ଷ = 𝐻ଵ = 60𝑍    𝐻ଵ, = 𝐻ଵ ∙ (𝐻ଶ ∩ 𝐾) = 60𝑍 ∙ {0} = 60𝑍 

   𝐻ଵ,ଵ = 𝐻ଵ ∙ (𝐻ଶ ∩ 𝐾ଵ) = 60𝑍 ∙ (20𝑍 ∩ 245𝑍) = 60𝑍 

   𝐻ଵ,ଶ = 𝐻ଵ ∙ (𝐻ଶ ∩ 𝐾ଶ) = 60𝑍 ∙ (20𝑍 ∩ 49𝑍) = 60𝑍 

   𝐻ଵ,ଷ = 𝐻ଵ ∙ (𝐻ଶ ∩ 𝐾ଷ) = 𝐻ଵ ∙ 𝐻ଶ = 60𝑍 ∙ 20𝑍 = 20𝑍 = 𝐻ଶ 

   𝐻ଶ, = 𝐻ଶ ∙ (𝐻ଷ ∩ 𝐾) = 𝐻ଶ ∙ {0} = 𝐻ଶ = 20𝑍 

   𝐻ଶ,ଵ = 𝐻ଶ ∙ (𝐻ଷ ∩ 𝐾ଵ) = 20𝑍 ∩ 245𝑍 = 5𝑍 

   𝐻ଶ,ଶ = 𝐻ଶ ∙ (𝐻ଷ ∩ 𝐾ଶ) = 𝐻ଶ ∙ 𝐾ଶ = 20𝑍 ∙ 49𝑍 = 𝑍 

   𝐻ଶ,ଷ = 𝐻ଶ ∙ (𝐻ଷ ∩ 𝐾ଷ) = 𝐻ଶ ∙ 𝑍 = 𝑍 

 Hence, the refinement of the series represented in (1) is 

    {0} = 𝐻,    ≤ 𝐻,ଵ ≤ 𝐻,ଶ ≤ 𝐻,ଷ = 𝐻ଵ = 𝐻ଵ,   

          ≤ 𝐻ଵ,ଵ ≤ 𝐻ଵ,ଶ ≤ 𝐻ଵ,ଷ = 𝐻ଶ = 𝐻ଶ,  

          ≤ 𝐻ଶ,ଵ ≤ 𝐻ଶ,ଶ ≤ 𝐻ଶ,ଷ = 𝐻ଷ   

    {0} ≤ 2940𝑍 ≤ 2940𝑍 ≤ 60𝑍 ≤ 60𝑍 ≤ 60𝑍 ≤ 20𝑍 ≤ 5𝑍 ≤ 𝑍 ≤ 𝑍 . 



Algebra Page No. 34

 Deleting the repeated factors, we get,  

    {0} ⊲ 2940𝑍 ⊲ 60𝑍 ⊲ 20𝑍 ⊲ 5𝑍 ⊲ 𝑍. 

 This is refinement of the series  

    {0} ⊲ 60𝑍 ⊲ 60𝑍 ⊲ 20𝑍 ⊲ 𝑍. 

 Similarly, defining 𝐾, = 𝐾൫𝐾ାଵ ∩ 𝐻൯, we can obtain the refinement of the series, 

     {0} = 𝐾 ⊲ 𝐾ଵ ⊲ 𝐾ଶ ⊲ 𝐾ଷ = 𝑍 

 which is as follows. 

    {0} ⊲ 2940𝑍 ⊲ 980𝑍 ⊲ 245𝑍 ⊲ 49𝑍 ⊲ 𝑍. 

 

Definition 3.1.9 :  A subnormal series {𝐻} = {𝐻, … , 𝐻} of a group 𝐺 is a composition 

series if all the factor groups  
ுశభு   are simple. (𝐻 = {𝑒} and 𝐻 = 𝐺) 

 

Remark :  In a composition series {𝐻}, 𝐻 will be a maximal normal subgroup of 𝐻ାଵ. 

 

Examples 3.1.10 :   

(i) Consider the group 𝑆 for 𝑛 ≥ 5.  

 The series  {𝑒} < 𝐴 < 𝑆  is a composition series in 𝑆. 

 Here  
{}  ≅ 𝐴  and  ቚௌቚ = 2     ⟹  

ௌ  ≅ 𝑍ଶ 

 Now for 𝑛 ≥ 5, 𝐴 is a simple (as any normal subgroup 𝑁 ≠ {𝑒} of 𝐴 will contain each 

3-cycle in 𝑆 and hence 𝑁 = 𝐴). 

 Hence 
{} is a simple group. 

 Similarly, 𝑍ଶ being simple we get 
ௌ is simple. 

 Hence  {𝑒} ⊲ 𝐴 ⊲ 𝑆 is a composition series of 𝑆 for 𝑛 ≥ 5. 

 

(ii) Consider the group 𝐺 = 𝑍ଵହ. 

 The series {0} < 〈5〉 < 𝑍ଵହ  is a composition series in 𝑍ଵହ . 

 {0} < 〈5〉 < 𝑍ଵହ is a subnormal series. 

     
〈ହ〉{}  ≅ 𝑍ହ    ⟹  

〈ହ〉{}  is a simple group.  

     
భఱ〈ହ〉   ≅ 𝑍ଷ    ⟹  

భఱ〈ହ〉   is a simple group.  
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  Hence {0} < 〈5〉 < 𝑍ଵହ is a composition series in 𝑍ଵହ. 

 

(iii) Consider the group 𝐺 = 〈𝑎〉 where |𝐺| = 6. Hence 𝑎 = 𝑒. 

  Define 𝐻ଵ = 〈𝑎ଷ〉 = {𝑒, 𝑎ଷ}   and  

     𝐻ଶ = 〈𝑎ଶ〉 = {𝑒, 𝑎ଶ, 𝑎ସ}. 

  Then ൛{𝑒}, 𝐻ଵ, 𝐺ൟ and ൛{𝑒}, 𝐻ଶ, 𝐺ൟ will form two composition series in 𝐺. 

 

(iv)  𝑍 has no composition series. 

  Let us assume that ∃ a composition series  

     {0} = 𝐻 ⊲ 𝐻ଵ ⊲ ⋯ ⊲ 𝐻 = 𝑍  in 𝑍.  

     {0} < 𝐻ଵ < 𝑍  ⟹    𝐻ଵ = 𝑛𝑍   for some positive integer n. 

  As 
ுభுబ  ≅ 𝑛𝑍 , we must have 𝑛𝑍 is simple. 

  But this is not true as 𝑛𝑍 contains many nontrivial proper normal subgroups. Hence our 

assumption is wrong. 

  Thus 𝑍 has no composition series. 

 

• Existence of Composition series : 

Theorem 3.1.11 :   Every finite group 𝐺 has at least one composition series. 

Proof :  If 𝐺 is a simple group, then {𝑒} ⊲ 𝐺 is a composition series in 𝐺. 

 If 𝐺 is not simple group, then 𝐺 has at least one proper normal subgroup 𝐻 ≠ {𝑒}.  

 If 𝐻 is a maximal normal subgroup then {𝑒} will be maximal subgroup of 𝐻.  

   Hence  ுீ  and  
ு{}  are simple subgroups. This shows that ൛{𝑒}, 𝐻, 𝐺ൟ will form a 

composition series in 𝐺.  

   Let 𝐻 be not maximal in 𝐺. It means that there exists a maximal normal subgroup 𝐾 

such that 𝐻 ⊂ 𝐾 ⊂ 𝐺. Hence ൛{𝑒}, 𝐻, 𝐾, 𝐺ൟ will form a composition series. 

   If 𝐻 is maximal in 𝐺, but {𝑒} is not maximal in H then find a maximal normal 

subgroup 𝐿 such that {𝑒} ⊂ 𝐿 ⊂ 𝐻. In this case ൛{𝑒}, 𝐿, 𝐻, 𝐺ൟ will be the composition 

series of the group 𝐺. 

   Proceeding like this, we always find a composition series for 𝐺. Since 𝐺 is a finite 

group, the number of its subgroups is also finite. Hence the composition series obtained 

finally contains a finite number of elements.  
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 This proves that any finite group 𝐺 has at least one composition series. 

 

Remark : An infinite group may or may not have a composition series. 

 e.g.  The group 〈𝑍, +〉 has no composition series. (See example 3.1.10 (4)). 

 

• Jordan-Hölder Theorem : 

Theorem 3.1.12 :  Any two composition series of a group 𝐺 are isomorphic. 

Proof :  Let {𝐻} and  ൛𝐾ൟ be any two composition series of 𝐺.  

 Hence  
ுశభு   is a simple group for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1 and  

    
ೕశభೕ   is a simple group for each 𝑗, 1 ≤ 𝑗 ≤ 𝑚 − 1. 

 But we know that ேீ is a simple group if and only if 𝑁 is a maximal normal subgroup       

of 𝐺. 

 Hence, 

   
ுశభு   is a simple implies 𝐻 is a maximal normal subgroup of 𝐻ାଵ, for 1 ≤ 𝑖 ≤ 𝑛 − 1. 

  Thus, intersection of any normal subgroups in between implies 𝐻 and  𝐻ାଵ is not 

possible.  

 Similarly, further refinement of the of the composition series ൛𝐾ൟ is not possible.  

 Thus, {𝐻} and  ൛𝐾ൟ must be already isomorphic and 𝑚 =  𝑛. 

 

Theorem 3.1.13 : If a group 𝐺 has a composition series and if 𝑁 is a proper normal subgroup 

of 𝐺 then there exist a composition series containing 𝑁. 

Proof :  Let {𝐻} be a composition series of 𝐺. Then  

      {𝑒} = 𝐻 ⊲ 𝐻ଵ ⊲ ⋯ ⊲ 𝐻 = 𝐺   . . . (1)  

 and   
ுశభு   is a simple group for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1. 

 Consider the subnormal series of G given by, 

      {𝑒} ⊲ 𝑁 ⊲ 𝐺    . . . (2) 

 Define   𝐾 = {𝑒},    𝐾ଵ = 𝑁,    𝐾ଶ = 𝐺. 

 Define  𝐾, = 𝐾൫𝐾ାଵ ∩ 𝐻൯   

 for 0 ≤ 𝑖 < 2  and  0 ≤ 𝑗 ≤ 𝑛. 
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 Then {0} = 𝐾 = 𝐾, < 𝐾,ଵ < ⋯ < 𝐾, = 𝐾ଵ = 𝐾ଵ, = 𝑁 

         < 𝐾ଵ,ଵ < ⋯ < 𝐾ଵ, = 𝐾ଶ = 𝐺  . . . (3) 

 The series in (3) is a refinement of the subnormal series (2). The refinement of (1) being 

impossible (as {𝐻} is a composition series) we get the two subnormal series represented 

by (1) and (3) must be isomorphic. As the isomorphic image of simple groups is a simple 

group, we get all the factor groups of the subnormal series (3) will be simple groups.  

 Hence, the subnormal series (3) containing 𝑁 is a composition series. 

 

Example 3.1.14 : Find the composition series for 𝑆ଷ × 𝑆ଷ. 

Solution :   𝐻 = {𝑒} × {𝑒}  

     𝐻ଵ = 𝐴ଷ × {𝑒} 

     𝐻ଶ = 𝐴ଷ × 𝐴ଷ 

     𝐻ଷ = 𝑆ଷ × 𝐴ଷ 

     𝐻ସ = 𝑆ଷ × 𝑆ଷ 

 Then  {𝑒} × {𝑒} = 𝐻 ⊲ 𝐻ଵ ⊲ 𝐻ଶ ⊲ 𝐻ଷ ⊲ 𝐻ସ = 𝑆ଷ × 𝑆ଷ is a composition series in 𝑆ଷ × 𝑆ଷ. 

 

Example 3.1.15 :  Show that if {𝑒} = 𝐻 < 𝐻ଵ < 𝐻ଶ < ⋯ < 𝐻 = 𝐺 is a subnormal series of 

a group G and if 𝑂 ቀுశభு ቁ = 𝑆ାଵ  then G is of finite order 𝑆ଵ. 𝑆ଶ. … . 𝑆. 

Solution : By data  

      𝑂 ቀுభுబቁ = 𝑆ଵ   

 Thus 

     
ை(ுభ)ை(ுబ) = 𝑆ଵ        ⟹  𝑂(𝐻ଵ) = 𝑆ଵ ∙ 𝑂(𝐻) = 𝑆ଵ ∙ 1 = 𝑆ଵ 

     𝑂 ቀுమுభቁ =  ை(ுమ)ை(ுభ) = 𝑆ଶ     ⟹  𝑂(𝐻ଶ) = 𝑆ଶ ∙ 𝑂(𝐻ଵ) = 𝑆ଶ ∙ 𝑆ଵ 

 Continuing in this way, we get 

     
ை(ு)ை(ுషభ) = 𝑂 ቀ ுுషభቁ = 𝑆    ⟹  𝑂(𝐻) = 𝑆 ∙ 𝑂(𝐻ିଵ)  

 ⟹   𝑂(𝐺) = 𝑆 ∙ 𝑂(𝐻ିଵ)    (∵      𝐺 = 𝐻)  

         = 𝑆 ∙ 𝑆ିଵ ∙ 𝑆ିଶ ∙ … ∙ 𝑆ଵ 

         = 𝑆 ∙ 𝑆ିଵ ∙ 𝑆ିଶ ∙ … ∙ 𝑆ଵ 

 Hence, 𝐺 is a finite group and 𝑂(𝐺) = 𝑆ଵ ∙ 𝑆ଶ ∙ … ∙ 𝑆. 
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Example 3.1.16 :  Show that an abelian group has a composition series iff it is finite. 

Solution : Only if part :   

 Let 𝐺 be an abelian group. Let {𝐻} be a composition series of 𝐺.  

 Then  {𝑒} = 𝐻 ⊲ 𝐻ଵ ⊲ ⋯ ⊲ 𝐻 = 𝐺 and  
ுశభு  is a simple group for each 𝑖, 1 ≤ 𝑖 ≤𝑛 − 1. 

 We know that if a group G is abelian then any subgroup of G is also abelian.  

 Hence  
ுశభு   is abelian for each  𝑖,     1 ≤ 𝑖 ≤ 𝑛 − 1.  

 Thus  
ுశభு   is abelian and simple group for each 𝑖,    1 ≤ 𝑖 ≤ 𝑛 − 1. 

 Hence  
ுశభு   is a cyclic group of prime order say 𝑝ାଵ. 

 By example 3.1.15, we get |𝐺| = 𝑝ଵ. 𝑝ଶ. … . 𝑝 and hence 𝐺 is a finite group. 

If part : 

 Let 𝐺 be a finite group. 

 By theorem 3.1.11, 𝐺 has a composition series. 

 

Example 3.1.17 :  Show that infinite abelian group can have no composition series. 

Solution : By an example 3.1.16, if an abelian group 𝐺 contains a composition series, then 𝐺 

must be finite. Hence no infinite abelian group will contain a composition series. 

 

3.2.  Normal Series : 

Definition 3.2.1 : Let 𝐺 be a group. A normal series of 𝐺 is a finite sequence 𝑁, 𝑁ଵ, … , 𝑁 of 

normal subgroups of 𝐺 such that 𝑁 < 𝑁ାଵ, 𝑁 = {𝑒} and 𝑁 = 𝐺. 

 

Remark 3.2.2 : Every normal series of a group G is a subnormal series but not conversely.  

 For this consider the group 𝐺 = 𝐷ସ where 𝐷ସ = 〈{𝜚, 𝜚ଵ, 𝜚ଶ, 𝜚ଷ, 𝜇ଵ, 𝜇ଶ, 𝛿ଵ, 𝛿ଶ},   0〉 and  

    𝜚 = ቀ1 2 3 41 2 3 4ቁ     𝜇ଵ = ቀ1 2 3 42 1 4 3ቁ 

    𝜚ଵ = ቀ1 2 3 42 3 4 1ቁ     𝜇ଶ = ቀ1 2 3 44 3 2 1ቁ 

    𝜚ଶ = ቀ1 2 3 43 4 1 2ቁ     𝛿ଵ = ቀ1 2 3 43 2 1 4ቁ 

    𝜚ଷ = ቀ1 2 3 44 1 2 3ቁ     𝛿ଶ = ቀ1 2 3 41 4 3 2ቁ 

 This group 𝐷ସ is called the group of symmetries of a square. 
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 The series 𝐷ସ given by  

    {𝜚} < {𝜚ଵ, 𝜇ଵ} < {𝜚, 𝜚ଶ, 𝜇ଵ, 𝜇ଶ} < 𝐷ସ 

 is a subnormal series but it is not a normal series as {𝜚ଵ, 𝜇ଵ} is not a normal subgroup of 𝐷ସ. 

 

Remark 3.2.3 : As every subgroup of an abelian group is normal, every subnormal series in 

an abelian group will be a normal series. Thus the two concepts of normal and subnormal 

series coincide in an abelian group. 

 

Example 3.2.4 :  {0} < 26𝑍 < 13𝑍 < 𝑍 

  and    {0} < 14𝑍 < 7𝑍 < 𝑍  are normal series in a group 〈𝑍, +〉. 
 

Definition 3.2.5 :  Let {𝑁} be a normal series of a group G. The normal series ൛𝐾ൟ of a 

group G is a refinement of the normal series {𝑁} if {𝑁} ⊆ ൛𝐾ൟ . i.e. 𝑁 = 𝐾 for each 𝑖.  
 

Example 3.2.6 :  The normal series  

     {0} < 72𝑍 < 24𝑍 < 8𝑍 < 4𝑍 < 𝑍 

 is a refinement of the normal series  

     {0} < 72𝑍 < 8𝑍 < 𝑍 

 in an abelian group 〈𝑍, +〉.  
 

Definition 3.2.7 :  Two normal series {𝑁} and ൛𝐾ൟ of a group G are said to be isomorphic if 

there exists a one to one, onto correspondence between the collection of factor groups  

 ቄ𝐻𝑖+1𝐻𝑖 ቅ  and  ൜𝐾𝑗+1𝐾𝑗 ൠ . So that the corresponding factor groups are abelian. 

 

Example 3.2.8 :   The two normal series  

     {0} < 〈5〉 < 𝑍ଵହ 

 and   {0} < 〈3〉 < 𝑍ଵହ 

 in a group 𝑍ଵହ are isomorphic. 

 

Definition 3.2.9 :  A normal series {𝑁} of a group G is principal if all the factor groups 
ேశభே  

are simple. 
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 Now we list the properties of normal series, the proofs of which are similar to those for 

subnormal series. 

3.2.10 Properties of Normal Series :  

(i) Two normal series of a group G are isomorphic (Schreier’s Theorem). 

(ii) Every finite group G has at least one principal series.  

(iii)Any two principal series of a group G are isomorphic. (Jordan Hölder Theorem) 

(iv) If a group G has a principal series and if N is a proper normal subgroup of G, then there 

exists a principal series in G containing N. 

 

Exercise ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––•  

(1) State whether the following statements are true or false. 

(i)  Every normal series is a principal series. 

(ii)  Every principal series is a composition series. 

(iii)  Every composition series is a principal series. 

(iv)  Every normal series is a subnormal series. 

(v)  Every subnormal series is a normal series. 

(vi)  Every group has a composition series. 

(vii)  Every group has a principal series. 

(viii) Any two subnormal / normal series of the same group G are always isomorphic. 

(ix)  Given any two normal series we can obtain the refinements for both the series.  

(x)  Every abelian group has a composition series. 

 

 (2) Find all composition series for 𝑍. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

3.3  Ascending Central Series : 

Definition 3.3.1 : The center of a group G is the set {𝑥 ∈ 𝐺 / 𝑥𝑔 = 𝑔𝑥  ∀   𝑔 ∈ 𝐺}. 

 

Remark 3.3.2 :  

 (i) The center of a group G is generally denoted by Z or Z(G). 

 (ii) As 𝑒 ∈ 𝑍(𝐺),   𝑍(𝐺) ≠ 𝜙 or |𝑍(𝐺)| ≥ 1. 

 (iii) G is abelian  ⟺  𝑍(𝐺) = 𝐺. 

 (iv) 𝑍(𝐺) is always a normal subgroup of G.  
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3.3.3 Ascending Central Series : 

   Let 𝑍(𝐺) denote the center of a group G. As 𝑍(𝐺) ⊴ 𝐺, the quotient group 
ீ(ீ)           

is defined. Consider the canonical / natural map 𝑓: 𝐺 ⟶ 
ீ(ீ) . Then 𝑓 is an onto 

homomorphism. 

 Consider 𝑍 ቂ 𝐺𝑍(𝐺)ቃ.   𝑍 ቂ 𝐺𝑍(𝐺)ቃ is a normal subgroup of the group 
ீ(ீ) .  

 Hence, 𝑓ିଵ ቈ𝑍 ቂ 𝐺𝑍(𝐺)ቃ is a normal subgroup of G containing 𝑍(𝐺). Denote this by 𝑍ଵ(𝐺). 

Thus we have, 

      {𝑒} < 𝑍(𝐺) < 𝑍ଵ(𝐺) < 𝐺  . . . (1)  

 Now 𝑍ଵ(𝐺) ⊲ 𝐺 and hence the quotient group  
ீభ(ீ)  is defined.  

 Consider the canonical/natural map 𝑓ଵ ∶ 𝐺 ⟶ 
ீభ(ீ) .  Surely 𝑓ଵ is an onto 

homomorphism. 

 As 𝑍 ቂ 𝐺𝑍1(𝐺)ቃ ⊴ 
ீభ(ீ) , 𝑓ିଵ ቈ𝑍 ቂ 𝐺𝑍1(𝐺)ቃ is a normal subgroup of G. Denote it by 𝑍ଶ(𝐺). 

 Thus, continuing in this process, we can construct a sequence of normal subgroups of G 

  i.e.   𝑍(𝐺), 𝑍ଵ(𝐺), 𝑍ଶ(𝐺), … such that {𝑒} ≤ 𝑍(𝐺) ≤ 𝑍ଵ(𝐺) ≤ 𝑍ଶ(𝐺) ≤ ⋯ . 

 This series is called the ascending central series of the group 𝐺. 

 

Example 3.3.4 : Find the ascending central series for (i) 𝑆ଷ and (ii) 𝐷ସ. 

Solution :  

 (i) 𝐺 = 𝑆ଷ  ⟹  𝑍(𝐺) = {𝑖}  where 𝑖 is the identity map.  

   Hence the ascending central series of 𝑆ଷ is  

      {𝑖} ≤ {𝑖} ≤ ⋯ ≤ {𝑖} ≤ ⋯ 

 (ii) 𝐺 = 𝐷ସ  ⟹  𝑍(𝐺) = {𝜌, 𝜌ଶ}   

   where  

    𝜌 = ቀ1 2 3 41 2 3 4ቁ  

    𝜌ଶ = ቀ1 2 3 43 4 1 2ቁ  

 Now, ቚ ర(ర)ቚ = ଶ଼  = 4 
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 As   ቚ ర(ర)ቚ  ≤ 5 

 we get, 
ర(ర) is abelian and hence 𝑍 ቂ 𝐷4𝑍(𝐷4)ቃ = 𝐷4𝑍(𝐷4) . 

 𝑓: 𝐷ସ ⟶ 
ర(ర) be a canonical mapping.  

 𝑓 being onto, 𝑓ିଵ ቂ 𝐷4𝑍(𝐷4)ቃ = 𝐷ସ 

 Thus, the ascending central series in 𝐷ସ is 

      {𝜌} ≤ {𝜌, 𝜌ଶ} ≤ 𝐷ସ ≤ 𝐷ସ ≤ ⋯ 

 

3.4  Nilpotent Groups: 

 Thus we obtain normal subgroups 𝑍ଵ(𝐺), 𝑍ଶ(𝐺), . . . , 𝑍(𝐺), . .. of 𝐺 such that  

    
(ீ)షభ(ீ) =  𝑍 ቂ ீషభ(ீ)ቃ ,  for every positive integer n > 1. 

 𝑍(𝐺) is called the 𝑛௧ center of 𝐺. 

 Define 𝑍(𝐺) = {𝑒}. Then  

    
(ீ)షభ(ீ) =  𝑍 ቂ ீషభ(ீ)ቃ ,  for all positive integers n.  

 Again by definition,  

    𝑍(𝐺) = {𝑥 ∈ 𝐺  𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ିଵ(𝐺) /  for all 𝑦 ∈ 𝐺} 

 Hence, 

    [𝑍(𝐺)]ᇱ ⊆ 𝑍ିଵ(𝐺). 

 

Definition 3.4.1: A group 𝐺 is said to be nilpotent if 𝑍(𝐺) = 𝐺 for some 𝑚. The smallest 𝑚 

such that 𝑍(𝐺) = 𝐺 is called the class of nilpotency of 𝐺. 

 

Remark : Every abelian group is nilpotent. If 𝐺 is abelian, then 𝑍ଵ(𝐺) = 𝑍(𝐺). Hence 𝐺 is 

nilpotent. 

 

Theorem 3.4.2:  Subgroup of a nilpotent group is nilpotent. 

Proof : Let 𝐺 be a nilpotent group.  

 Hence, ∃ a positive integer 𝑚 such that 𝑍(𝐺) = 𝐺.  Let 𝐻 ≤ 𝐺.  

 To prove that 𝐻 is nilpotent. 

 When 𝐻 = {𝑒} or 𝐻 = 𝐺. The result is obviously true. 



Algebra Page No. 43

 Let {𝑒} < 𝐻 < 𝐺. 

 Now let 𝑥 ∈ 𝐻 ∩ 𝑍(𝐺). Then 𝑔𝑥 = 𝑥𝑔 for all 𝑔 ∈ 𝐺 will imply ℎ𝑥 = 𝑥ℎ for all ℎ ∈ 𝐻. 

Hence 𝑥 ∈ 𝑍(𝐻). Thus , 

       𝐻 ∩ 𝑍(𝐺) ⊆ 𝑍(𝐻)    

  As 𝑍(𝐺) = 𝑍ଵ(𝐺) and 𝑍(𝐻) ≤ 𝐻 we get 

        𝐻 ∩ 𝑍(𝐺) ≤ 𝑍ଵ(𝐻)            . . . (1) 

 Now, let 𝑥 ∈ 𝐻 ∩ 𝑍ଶ(𝐺).  

 Then   𝑥 ∈ 𝑍ଶ(𝐺) will imply 𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ଵ(𝐺)     for all 𝑦 ∈ 𝐺 

 But then  𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ଵ(𝐺)           for all 𝑦 ∈ 𝐻 

 As 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐻 we get 𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ଵ(𝐺)      for all 𝑦 ∈ 𝐻. 

 But this in turn will imply 𝑥 ∈ 𝑍ଶ(𝐻). This shows that  

       𝐻 ∩ 𝑍ଶ(𝐺) ≤ 𝑍ଶ(𝐻)           . . . (2) 

 Continuing in this way, we get 

       𝐻 ∩ 𝑍(𝐺) ⊆ 𝑍(𝐻)     for all n. 

  Hence in particular,  

       𝐻 ∩ 𝑍(𝐺) ⊆ 𝑍(𝐻)    

     i.e.  𝐻 ∩ 𝐺 ⊆ 𝑍(𝐻)    

     i.e.  𝐻 ⊆ 𝑍(𝐻)   

 But as always, 𝑍(𝐻) ⊆ 𝐻, we get 𝑍(𝐻) = 𝐻. 

 This proves that H is nilpotent. 

 

Theorem 3.4.3: Every homomorphic image of a nilpotent group is nilpotent. 

Proof :  Let 𝐺 be a nilpotent group. Let 𝜙 ∶ 𝐺 ⟶  𝐺ଵ be an onto homomorphism.  

To prove that the group 𝐺ଵ is nilpotent.  

 As 𝐺 is nilpotent, ∃ a positive integer m such that 𝑍(𝐺) = 𝐺. 

(i) 𝑍(𝐺) = {𝑥 ∈ 𝐺  / 𝑥𝑔 = 𝑔𝑥   ∀   𝑔 ∈ 𝐺} 

 𝑍(𝐺ଵ) = {𝑥 ∈ 𝐺ଵ  / 𝑥𝑔 = 𝑔𝑥   ∀   𝑔 ∈ 𝐺ଵ}  

    = {𝜙(𝑥) ∈ 𝐺ଵ  / 𝜙(𝑥) ∙ 𝜙(𝑔) = 𝜙(𝑔) ∙ 𝜙(𝑥)   ∀   𝜙(𝑔) ∈ 𝐺ଵ}      … ∵  𝜙 in onto. 

 But this shows that 

        𝜙[𝑍(𝐺)] ⊆ 𝑍(𝐺ଵ)          . . . (1) 

 Let 𝑥 ∈ 𝑍ଶ(𝐺).  Then  𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ଵ(𝐺)        for all  𝑦 ∈ 𝐺. 
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 Hence, 

       𝜙 (𝑥𝑦𝑥ିଵ𝑦ିଵ) ∈ 𝜙[𝑍ଵ(𝐺)]     for all  𝑦 ∈ 𝐺. 

 i.e.     𝜙(𝑥) 𝜙(𝑦) [𝜙(𝑥)]ିଵ [𝜙(𝑦)]ିଵ ∈ 𝜙[𝑍ଵ(𝐺)]  for all 𝜙(𝑦) ∈ 𝐺ଵ. 

 But this in turn will imply 𝜙(𝑥) ∈ 𝑍ଶ(𝐺ଵ).  

 Thus,     𝑥 ∈ 𝑍ଶ(𝐺) ⟹   𝜙(𝑥) ∈ 𝑍ଶ(𝐺ଵ). 

 Therefore, 

        𝜙 [𝑍ଶ(𝐺)] ⊆ 𝑍ଶ(𝐺ଵ)          . . . (2) 

 Continuing in this way, we get for all 𝑛 

       𝜙 [𝑍(𝐺)] ⊆ 𝑍(𝐺ଵ)         . . . (3) 

      Hence in particular,  𝜙 [𝑍(𝐺)] ⊆ 𝑍(𝐺ଵ) 

 Hence,     𝜙 (𝐺) ⊆ 𝑍(𝐺ଵ)    

 But  𝜙 being onto,  𝜙 (𝐺) = 𝐺ଵ   

 Hence ,    𝐺ଵ ⊆ 𝑍(𝐺ଵ) ⊆ 𝐺ଵ   

 ⟹       𝑍(𝐺ଵ) = 𝐺ଵ 

 Hence, the group 𝐺ଵ in nilpotent. 

 

Theorem 3.4.4: Any group of order 𝑝 is nilpotent. OR Any p-group is nilpotent. 

Proof :  Let 𝐺 be a group with |𝐺| = 𝑝.  

 To prove that 𝐺 is nilpotent. 

 If 𝐺 = 𝑍(𝐺)  then we are through. Assume that 𝐺 ≠ 𝑍(𝐺). 

 Then as  𝑝| |𝐺| we get 𝑍(𝐺) ≠ {𝑒}. Hence |𝑍(𝐺)| ≠ 1 .  

 Further |𝑍(𝐺)| | |𝐺| as 𝑍(𝐺) ≤ 𝐺 we have |𝑍(𝐺)| = 𝑝 for some 𝑟 < 𝑛. 

 But then  ฬ 𝐺𝑍(𝐺)ฬ = |𝐺||𝑍(𝐺)| = 𝑝 ି  

 will imply 𝑝 | ቚ ீ(ீ)ቚ. 
 Hence, 𝑍 ቂ 𝐺𝑍(𝐺)ቃ is non trivial.   i.e. 𝑍 ቂ 𝐺𝑍(𝐺)ቃ ≠ 𝑍(𝐺). 

 Hence, by definition of 𝑍ଶ(𝐺) we get  𝑍(𝐺) ⊂ 𝑍ଶ(𝐺). 

 i.e.   |𝑍ଵ(𝐺)| < |𝑍ଶ(𝐺)|. 
 Continuing in this way we get, 
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    |𝑍ଵ(𝐺)| < |𝑍ଶ(𝐺)| < ⋯ ≤ |𝐺| = 𝑝 

 Hence, there must exists some positive integer m such that |𝑍(𝐺)| = 𝑝. 

 This shows that 𝐺 is nilpotent.  

 

Theorem 3.4.5: A group 𝐺 is nilpotent iff 𝐺 has a normal series. 

       {𝑒} = 𝑁 ⊲ 𝑁ଵ ⊲ ⋯ ⊲ 𝑁 = 𝐺 

 such that 

       
ேశభே  ⊆ 𝑍 ቂேீቃ 

 for all 𝑖,   1 ≤ 𝑖 ≤ 𝑘 − 1. 

Proof :  Only if part :  

 Let 𝐺 be nilpotent then ∃ a positive integer m such that 𝑍(𝐺) = 𝐺. 

 Consider the series 

    𝑍(𝐺) = {𝑒} < 𝑍ଵ(𝐺) < 𝑍ଶ(𝐺) < ⋯ ≤ 𝑍(𝐺) = 𝐺 

 Then  

 (i)  𝑍(𝐺) is a normal subgroup of G for each 𝑖. 
 (ii)  

శభ  ⊆ 𝑍 ቂீቃ  for each 𝑖,    0 ≤ 𝑖 ≤ 𝑚 − 1. 

 (iii) 𝑍 ⊲ 𝑍ାଵ    for each 𝑖,    0 ≤ 𝑖 ≤ 𝑚 − 1. 

 Hence  𝑍(𝐺) = {𝑒} < 𝑍ଵ(𝐺) < 𝑍ଶ(𝐺) < ⋯ ≤ 𝑍(𝐺) = 𝐺 

 will form the required series. 

If part :   

 Let 𝐺 be group and let 𝐺 have a normal series  {𝑒} = 𝐺 < 𝐺ଵ < 𝐺ଶ < ⋯ ≤ 𝐺 = 𝐺 

 such that  

       
ீశభீ  ⊆ 𝑍 ቂ ீீቃ 

 To prove that 𝐺 is nilpotent. 

 As  
ீశభீ  ⊆ 𝑍 ቂ ீீቃ  we get  

ீభ{}  ⊆ 𝑍 ቂ{ீ}ቃ. 
Thus, 𝐺ଵ ⊆ 𝑍[𝐺] 
i.e.  𝐺ଵ ⊆ 𝑍ଵ[𝐺]               . . . (1)  
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Again by assumption,  
ீమீభ ⊆ 𝑍 ቂ ீீభቃ.  

 Now, for any 𝑥 ∈ 𝐺 we get 𝐺ଵ𝑥 ∈ 
ீమீభ . Hence   𝐺ଵ𝑥 ∈ 𝑍 ቂ ீீభቃ.  

 Hence,  [𝐺ଵ𝑥] [𝐺ଵ𝑦] = [𝐺ଵ𝑦] [𝐺ଵ𝑥]     for all 𝐺ଵ, 𝑦 ∈  
ீீభ  

 i.e.   𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝐺ଵ       for all 𝑦 ∈ 𝐺. 

 i.e.   𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ଵ[𝐺]       … by (1) 

 Thus,  𝑥 ∈ 𝐺ଶ   ⟹  𝑥𝑦𝑥ିଵ𝑦ିଵ ∈ 𝑍ଵ[𝐺] 
        ⟹   𝑥 ∈ 𝑍ଶ[𝐺] 
 Hence,  𝐺ଶ ⊆ 𝑍ଶ[𝐺]               . . . (2) 

 Continuing in this way we get 

     𝐺 = 𝐺 ⊆ 𝑍(𝐺) ⊆ 𝐺. 

 Hence,   𝑍(𝐺) = 𝐺 

  Hence 𝐺 is nilpotent. 

 

Worked Examples   –––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 3.4.6 : 𝐺 = 𝑆ଷ is not nilpotent. 

Solution:  For 𝑆ଷ, 𝑍(𝑆ଷ) = {𝜚} where 𝜚 is the identity element of 𝑆ଷ.  

 Hence,  𝑍ଵ(𝑆ଷ) = {𝜚}. 

     𝑍 ቂ ௌయ{దబ}ቃ = ൛{𝜚}ൟ 

 Hence,  𝑍ଶ(𝑆ଷ) = {𝜚}. 

 Continuing in this way we get, 𝑍(𝑆ଷ) = {𝜚}    for any 𝑚 ≥ 0. 

 Hence, 𝑆ଷ is not nilpotent. 

 

Example 3.4.7:  𝐷ସ is nilpotent. 

Solution :  We know that 𝑍ଵ(𝐷ସ) = {𝜚,  𝜚ଶ}.  

 Hence    
ర(ర) = ర{దబ, దమ} 

 As     ቚ ర{దబ, దమ}ቚ = |ర||{దబ, దమ}| = ଶ଼ = 4  

 Hence,  
ర(ర)  is abelian. Therefore 𝑍 ቂ 𝐷4𝑍(𝐷4)ቃ = 𝐷4𝑍(𝐷4)   

 Hence,  𝑍ଶ(𝐷ସ) = 𝐷ସ. Hence, 𝐷ସ is nilpotent. 
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Example 3.4.8 : Show that 𝑆 is not nilpotent for 𝑛 ≥ 3. 

Solution :  For 𝑛 ≥ 3, 𝑍[𝑆] = {𝑒} where e is the identity element in 𝑆.  

 Thus 𝑍ଵ(𝑆) = {𝑒}. But then 𝑍(𝑆) = {𝑒} for all positive integers m.  

 Hence 𝑆 is nilpotent for 𝑛 ≥ 3. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Remark :  𝑆ଷ is solvable but 𝑆ଷ is not nilpotent. This shows that every solvable group need 

not be nilpotent. But converse is always true. i.e. every nilpotent group is solvable. 

 

Theorem 3.4.9: Every nilpotent group is solvable. 

Proof :   Let 𝐺 be nilpotent group. Then by theorem 3.4.5, there exists a normal series  

        {𝑒} = 𝐻 ⊲ 𝐻ଵ ⊲ ⋯ ⊲ 𝐻 = 𝐺 

 such that  

        
ுశభு  ⊆ 𝑍 ቂுீ ቃ 

 As 𝑍 ቂுீ ቃ is abelian, we get 
ுశభு  is abelian. 

 Hence by theorem 2.2.13, G is solvable. 

 

 Worked Examples   –––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 3.4.10 : Give an example of a group G such that G has a normal subgroup N with 

both N and  ேீ nilpotent but G is non-nilpotent.  

Solution:  Consider 𝐺 = 𝑆ଷ.  

 We know, 𝑆ଷ is not nilpotent (See example3.4.8). 

 𝑁 =  {(1), (1, 2, 3), (1, 3, 2)} is a normal subgroup of 𝑆ଷ.  

 N is an abelian subgroup of 𝑆ଷ ( ∵    |𝑁| = 3 )  

 Hence N is nilpotent.  

 Again      ቚௌయே ቚ = ଷ = 2    ⟹    
ௌయே   is abelian. ⟹   

ௌయே   is nilpotent. 

 Thus both N and 
ௌయே  are nilpotent but 𝑆ଷ is not nilpotent. 

 

Example 3.4.11 : Show that the product of two nilpotent groups is a nilpotent group. 

Solution :  Let 𝐻 and 𝐾 be any two nilpotent groups.  
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 Then ∃ positive integers m and n such that 𝑍(𝐻) = 𝐻 and 𝑍(𝐾) = 𝐾.  

 Let 𝐺 = 𝐻 × 𝐾. 

     𝑥 ∈ 𝑍(𝐺)   ⟹   𝑥𝑔 = 𝑔𝑥    for all 𝑔 ∈ 𝐺.  

    𝑥 = (𝑥ଵ, 𝑥ଶ)  and  𝑔 = (𝑔ଵ, 𝑔ଶ)  

 Then  𝑥𝑔 = (𝑥ଵ𝑔ଵ, 𝑥ଶ𝑔ଶ) 

    𝑔𝑥 = (𝑔ଵ𝑥ଵ, 𝑔ଶ𝑥ଶ) 

 Thus, 𝑥𝑔 = 𝑔𝑥   ⟹   𝑥ଵ𝑔ଵ = 𝑔ଵ𝑥ଵ  and  𝑥ଶ𝑔ଶ = 𝑔ଶ𝑥ଶ  for all 𝑔ଵ ∈ 𝐻,   𝑔ଶ ∈ 𝐾 

 But this will imply 𝑥ଵ ∈ 𝑍(𝐻) and 𝑥ଶ ∈ 𝑍(𝐾). 

 Thus,  𝑥 = (𝑥ଵ, 𝑥ଶ) ∈ 𝑍(𝐺) = 𝑍(𝐻 × 𝐾)   ⟹   (𝑥ଵ, 𝑥ଶ) ∈ 𝑍(𝐻) × 𝑍(𝐾) 

 Similarly, we can prove that 

     (𝑥ଵ, 𝑥ଶ) ∈ 𝑍(𝐻) × 𝑍(𝐾)   ⟹   𝑥 = (𝑥ଵ, 𝑥ଶ) ∈ 𝑍(𝐺) = 𝑍(𝐻 × 𝐾) 

 Hence, 

     𝑍(𝐻 × 𝐾) = 𝑍(𝐻) × 𝑍(𝐾).  

 By iteration, 

     𝑍(𝐻 × 𝐾) = 𝑍(𝐻) × 𝑍(𝐾)    for each positive integer 𝑖.  
 Hence, if 𝑚 > 𝑛 then 𝑍(𝐾) = 𝐾  ⟹   𝑍(𝐾) = 𝐾. 

 Thus, 𝑍(𝐻 × 𝐾) = 𝑍(𝐻) × 𝑍(𝐾) = 𝐻 × 𝐾. 

 This shows that 𝑍(𝐺) = 𝐺 and 𝐺 = 𝐻 × 𝐾 is nilpotent. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Unit 4 :  Sylow Theorems : 
 4.1 Group action on a set. 

 4.2 Class equation of a group. 

 4.3 𝑝-groups 

 4.4 Three Sylow theorems. 

 
4.1  Group action on a set : 

Definition 4.1.1:  Let 𝐺 be any group and let 𝑋 be any non-empty set. An action of 𝐺 on 𝑋 is 

a mapping 𝑓: 𝑋 × 𝐺 ⟶ 𝑋 satisfying the following conditions  

 (i) 𝑓(𝑥, 𝑒) = 𝑥       for all 𝑥 ∈ 𝐺 

 (ii) 𝑓(𝑥, 𝑔ଵ𝑔ଶ) = 𝑓(𝑓(𝑥, 𝑔ଵ), 𝑔ଶ)           for all 𝑥 ∈ 𝐺  and   𝑔ଵ , 𝑔ଶ ∈ 𝐺 

 Under these conditions we say 𝑋 is a 𝐺-set. Note that every 𝐺-set need not be a group. 
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Examples 4.1.2 : 

(i)  Let 𝑋 = {1, 2, … , 𝑛} and 𝐺 = 〈𝑆, 0〉. Define 𝑓 ∶ 𝑋 × 𝐺 ⟶ 𝑋 by 

       𝑓(𝑥, 𝜎) = 𝜎(𝑥)     for 𝑥 ∈ 𝑋 and 𝜎 ∈ 𝑆. 

  Then  

  (1) 𝑓(𝑥, 𝑖) = 𝑖(𝑥) = 𝑥 where 𝑖 = identity map defined on X. 

  (2) 𝑓(𝑥, 𝜎ଵ ∘ 𝜎ଶ) = (𝜎ଵ ∘ 𝜎ଶ)(𝑥) = 𝜎ଶ[𝜎ଵ(𝑥)] 
       = 𝑓[𝑓(𝑥, 𝜎ଵ), 𝜎ଶ]  
    From (1) and (2) we get X is a G-set. 

 

(ii)  Let G be any group and let 𝐻 ≤ 𝐺. ℜ denotes the set of all right cosets of H in G.  

  Define 𝑓 ∶ ℜ × 𝐻 ⟶ ℜ by 

       𝑓(𝐻௫, ℎ) = 𝐻௫     for 𝐻௫ ∈ ℜ and ℎ ∈ 𝐻. 

  Then 

  (1) 𝑓(𝐻௫, 𝑒) = 𝐻௫ = 𝐻௫ where 𝑖 = identity map defined on X. 

  (2) 𝑓(𝐻௫, ℎଵℎଶ) = 𝐻௫(భమ) = 𝐻(௫భ)మ 

       = 𝑓[𝑓(𝐻௫, ℎଵ), ℎଶ]  
    From (1) and (2) we get ℜ is a H-set. 

 

(iii) Let G be any group and X be the set of all subgroups of G. Define 𝑓: 𝑋 × 𝐺 ⟶ 𝐺 by  

       𝑓(𝑇, 𝑔) = 𝑔ିଵ𝑇𝑔   for 𝑇 ∈ 𝑋 and 𝑔 ∈ 𝐺. 

  Then 

  (1) 𝑓(𝑇, 𝑒) = 𝑒ିଵ𝑇𝑒 = 𝑇   

  (2) 𝑓(𝑇, 𝑔ଵ𝑔ଶ) = (𝑔ଵ𝑔ଶ)ିଵ𝑇(𝑔ଵ𝑔ଶ) 

         = 𝑔ଶି ଵ [𝑔ଵି ଵ𝑇𝑔ଵ] 𝑔ଶ 

         = 𝑓[𝑓(𝑇, 𝑔ଵ), 𝑔ଶ]  
    Hence X is a G - set. 

 

(iv)  Let 𝐺 be a group and  𝐻 ≤ 𝐺. Define 𝑓: 𝐺 × 𝐻 ⟶ 𝐺 by  

      𝑓(𝑔, ℎ) = ℎିଵ𝑔ℎ   for 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. 

  Then 

  (1) 𝑓(𝑔, 𝑒) = 𝑒ିଵ𝑔𝑒 = 𝑔   

  (2) 𝑓(𝑔, ℎଵℎଶ) = (ℎଵℎଶ)ିଵ 𝑔 (ℎଵℎଶ) 

         = ℎଶି ଵ [ℎଵି ଵ 𝑔 ℎଵ] ℎଶ 
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         = 𝑓[𝑓(𝑔, ℎଵ), ℎଶ]  
    Hence G is a H - set. 

 

(v)  Any group 𝐺 is a G – set under the action 𝑓: 𝐺 × 𝐺 ⟶ 𝐺 defined by  

      𝑓(𝑔ଵ, 𝑔ଶ) = 𝑔ଵ ∙ 𝑔ଶ ,  for all 𝑔ଵ, 𝑔ଶ ∈ 𝐺. 

 

Remark :  Let 𝑋 be a 𝐺 – set. Then by definition 4.1.1, there exists 𝑓 ∶ 𝑋 × 𝐺 ⟶ 𝑋 

satisfying the conditions, 

   (1)  𝑓(𝑥, 𝑒) = 𝑥     and  

   (2)  𝑓(𝑥, 𝑔ଵ𝑔ଶ) = 𝑓[𝑓(𝑥, 𝑔ଵ), 𝑔ଶ]. 
 Here onwards we write 𝑓(𝑥, 𝑔) = 𝑥𝑔 ,   for all 𝑥 ∈ 𝑋  and   𝑔 ∈ 𝐺. 

 Thus, 𝑥𝑒 = 𝑥 and  𝑥(𝑔ଵ𝑔ଶ) = (𝑥𝑔ଵ)𝑔ଶ,  for all 𝑥 ∈ 𝑋  and   𝑔ଵ, 𝑔ଶ ∈ 𝐺. 

 Let 𝑋 be a 𝐺 – set. For a fixed 𝑥 ∈ 𝑋, define  

      𝐺௫ = {𝑔 ∈ 𝐺 /  𝑥𝑔 = 𝑥}  

 and for a fixed 𝑔 ∈ 𝐺, define 

      𝑋 = {𝑥 ∈ 𝑋 /  𝑥𝑔 = 𝑥}. 

 

As an important property of the set 𝐺௫, we prove  

Theorem 4.1.3 :  Let 𝑋 be a 𝐺 – set. for any 𝑥 ∈ 𝑋, 𝐺௫ ≤ 𝐺. 

Proof :   

 (i)  𝑥𝑒 = 𝑥   ⟹  𝑒 ∈ 𝐺௫    ⟹   𝐺௫ ≠ 𝜙. 

 (ii)  𝑔ଵ, 𝑔ଶ ∈ 𝐺 ⟹  𝑥𝑔ଵ = 𝑥  and     𝑥𝑔ଶ = 𝑥. 

   Hence, 𝑥(𝑔ଵ 𝑔ଶ) = (𝑥𝑔ଵ)𝑔ଶ = 𝑥𝑔ଶ = 𝑥. 

   This shows that 𝑔ଵ𝑔ଶ ∈ 𝐺௫. 

 (iii) Let  𝑔 ∈ 𝐺௫. Then 𝑥𝑔 = 𝑥 ⟹  (𝑥𝑔)𝑔ିଵ = 𝑥𝑔ିଵ 

           ⟹  𝑥(𝑔𝑔ିଵ) = 𝑥𝑔ିଵ 

           ⟹  𝑥 ∙ 𝑒 = 𝑥𝑔ିଵ 

           ⟹  𝑥 = 𝑥𝑔ିଵ 

   Hence 𝑔 ∈ 𝐺௫   ⟹    𝑔ିଵ ∈ 𝐺௫   

 From (i), (ii) and (iii) we get 𝐺௫ is a sub group of G. 

 

Definition 4.1.4 : Let X be a G – set. For any 𝑥 ∈ 𝑋, the subgroup 𝐺௫ of 𝐺 is called the 

isotropy subgroup of 𝐺. 
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Example 4.1.5 : Let 𝑋 = {1, 2, 3}. Then X is a 𝑆ଷ - set. (See example 4.1.2 (1)). We have  

     𝑆ଷ = {(1), (1  2), (1  3), (2  3), (1  2  3), (1  3  2)} 

 The isotropy subgroup of 2 is {(1), (1  3)}. 

 

On each 𝐺-set 𝑋, the group 𝐺 induces an equivalence relation. This we prove in the following 

theorem. 

Theorem 4.1.6 :  Let 𝑋 be a 𝐺 – set. Define a relation ‘~’ on 𝑋 by 

        𝑥 ~ 𝑦      ⟹  𝑥 = 𝑦 ∙ 𝑔 , for some 𝑔 ∈ 𝐺. 

 Then the relation ‘~’ is an equivalence relation on 𝑋. 

Proof :   

(i)  𝑥𝑒 = 𝑥  for all 𝑥 ∈ 𝑋    ⟹   𝑥 ~ 𝑥 , for all 𝑥 ∈ 𝑋. 

  ⟹  the relation ‘~’ is reflexive. 

(ii)  Let  𝑥 ~ 𝑦. Hence 𝑥 = 𝑦𝑔 ,  for some 𝑔 ∈ 𝐺. 

  𝑥𝑔ିଵ = (𝑦𝑔) 𝑔ିଵ = 𝑦(𝑔𝑔ିଵ) = 𝑦𝑒 = 𝑦   
  This shows that 𝑥 ~ 𝑦   ⟹   y ~ 𝑥 , for x, 𝑦 ∈ 𝑋. 

  Hence the relation ‘~’ is symmetric. 

(iii) Let 𝑥 ~ 𝑦 and 𝑦 ~ 𝑧. 

  Then 𝑥 = 𝑦𝑔ଵ and 𝑦 = 𝑧𝑔ଶ    for some  𝑔ଵ, 𝑔ଶ ∈ 𝐺. 

  Thus, 𝑥 = 𝑦𝑔ଵ = (𝑧𝑔ଶ)𝑔ଵ = 𝑧(𝑔ଶ𝑔ଵ). 

  As 𝑔ଶ, 𝑔ଵ ∈ 𝐺, we get 𝑥 ~ 𝑧. 

  This shows that  𝑥 ~ 𝑦, 𝑦 ~ 𝑧   ⟹  𝑥 ~ 𝑧  for 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

  Hence the relation ‘~’ is transitive.  

 From (i), (ii) and (iii) we get ‘~’ is an equivalence relation on X. 

 

Definition 4.1.7 :  Let X be a 𝐺 – set. Each equivalence class produced by the equivalence 

relation ‘~’ defined on 𝑋, described in Theorem 4.1.6, is called an orbit in 𝑋 under 𝐺. 

 The equivalence class containing 𝑥 ∈ 𝑋 is orbit of 𝑥 and we denote it by 𝑥𝐺. 

 Thus,  𝑥𝐺 = {𝑦 ∈ 𝑋 / 𝑥 ~ 𝑦} 

      = {𝑦 ∈ 𝑋  / 𝑥 = 𝑦𝑔   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑔 ∈ 𝐺} 

 

A relation between the orbit 𝑥𝐺 and the subgroup 𝐺௫ in a 𝐺 – set 𝑋 is as follows. 

Theorem 4.1.8 : Let 𝑋 be any 𝐺 – set. Then |𝑥𝐺| = (𝐺: 𝐺௫), for any 𝑥 ∈ 𝑋. 
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Proof :  Fix up any 𝑥 ∈ 𝑋. Let ℜ denote the collection of all right cosets of the subgroup 𝐺௫ in 𝐺. We will show that ℜ is equipotent with the set 𝑥𝐺. 

 Now 𝑦 ∈ 𝑥𝐺 ⟹  𝑦 ~ 𝑥  ⟹  𝑦 = 𝑥𝑔   for some 𝑔 ∈ 𝐺. 

 Define 𝜙 ∶ 𝑥𝐺 ⟶ ℜ by  

      𝜙(𝑦) = 𝐺௫ 𝑔     where 𝑦 = 𝑥𝑔,    𝑔 ∈ 𝐺. 

(i) 𝜙 is well defined.  

 Let 𝑦ଵ = 𝑦ଶ in 𝑥𝐺. 

 Then  𝑦ଵ = 𝑥𝑔ଵ    and  𝑦ଶ = 𝑥𝑔ଶ   for some 𝑔ଵ, 𝑔ଶ ∈ 𝐺. 

 Thus  𝑦ଵ = 𝑦ଶ    ⟹  𝑥𝑔ଵ = 𝑥𝑔ଶ 

        ⟹  (𝑥𝑔ଵ) 𝑔ଵି ଵ = (𝑥𝑔ଶ) 𝑔ଵି ଵ  

        ⟹  𝑥(𝑔ଵ𝑔ଵି ଵ)  = 𝑥(𝑔ଶ𝑔ଵି ଵ)   
        ⟹       𝑥𝑒 = 𝑥(𝑔ଶ𝑔ଵି ଵ)   
        ⟹     𝑥 = 𝑥(𝑔ଶ𝑔ଵି ଵ)   
        ⟹         𝑔ଶ𝑔ଵି ଵ ∈ 𝐺௫   
        ⟹        (𝐺௫)𝑔ଵ = (𝐺௫)𝑔ଶ   
        ⟹         𝜙(𝑦ଵ) = 𝜙(𝑦ଶ) 

  This shows that 𝜙 is well defined map. 

(ii)  𝜙 is one-one. 

  Let   𝜙(𝑦ଵ) = 𝜙(𝑦ଶ)  ,   for some 𝑦ଵ, 𝑦ଶ ∈ 𝑋 . 

  Let   𝜙(𝑦ଵ) = (𝐺௫)𝑔ଵ ,   where 𝑦ଵ = 𝑥 𝑔ଵ 

  and    𝜙(𝑦ଶ) = (𝐺௫)𝑔ଶ ,   where 𝑦ଶ = 𝑥 𝑔ଶ. 

  Thus,   

     𝜙(𝑦ଵ) = 𝜙(𝑦ଶ) 

  ⟹  (𝐺௫)𝑔ଵ = (𝐺௫)𝑔ଶ 

  ⟹  𝑔ଵ𝑔ଶି ଵ ∈ 𝐺௫ 

  ⟹  𝑥 (𝑔ଵ𝑔ଶି ଵ)  = 𝑥  

  ⟹  (𝑥𝑔ଵ) 𝑔ଶି ଵ  = 𝑥  

  ⟹  𝑥𝑔ଵ = 𝑥𝑔ଶ  

  ⟹  𝑦ଵ = 𝑦ଶ  

  This shows that 𝜙 is one-one. 

(iii) 𝜙 is onto. 

  Let  (𝐺௫)𝑔 ∈ ℜ. Then 𝑔 ∈ 𝐺 and for this 𝑔, consider the element 𝑦 ∈ 𝑋 defined by 𝑦 = 𝑥𝑔.  
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 Then 𝜙(𝑦) = (𝐺௫)𝑔 shows that 𝜙 is onto. 

 From (i), (ii) and (iii) we get 𝜙 is an one-one, onto mapping. Hence , 

       |𝑥𝐺| = |ℜ| 
 But  |ℜ|= Number of right cosets of 𝐺௫ in G = (𝐺 ∶ 𝐺௫). 

 Hence, |𝑥𝐺| = (𝐺 ∶ 𝐺௫),   ∀   𝑥 ∈ 𝑋.  

 

Corollary 4.1.9 : Let 𝐺 be a finite group and let 𝑋 be a finite 𝐺-set. Then  

 (i) |𝐺| = |𝑥𝐺| ∙ |𝐺௫| ,  for any 𝑥 ∈ 𝑋.  

 (ii) |𝑋| = ( )x
x C

G : G
∈
∑ ,  where 𝐶 denotes the subset of 𝑋 containing exactly one 

element from each orbit. 

Proof :   

(i)   From theorem 4.1.8, we have,  

     |𝑥𝐺| = (𝐺: 𝐺௫)  ,    for any 𝑥 ∈ 𝑋. 

  Hence  |𝑥𝐺| = 
|ீ||ீೣ|     … Since G is a finite group.  

  Hence   |𝐺| = |𝑥𝐺| ∙ |𝐺௫| 
(ii)  Let C denote the subset of X containing exactly one element from each orbit of X under 

G. 

  Then 

      |𝑋| =
x C

xG
∈
∑  

 Since  𝑋 = ራ 𝑥𝐺௫∈  

 and this union is a disjoint union. 

 As by theorem 4.1.8,  

      |𝑥𝐺| = (𝐺: 𝐺௫) 

 we get, 

   |𝑋| = ( )x
x C

G : G
∈
∑  
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 The following theorem gives a tool for determining the number of orbits in a G-set X 

under G. 

• Burnside Theorem : 

Theorem 4.1.10 : Let G be a finite group and let X be a finite G-set. If 𝑟 is the number of 

orbits in X under G, then  

     𝑟. |𝐺| = g
g G

X
∈
∑

   
 

Proof :   Let N = number of ordered pairs (𝑥, 𝑔) ∈ 𝑋 × 𝐺 for which 𝑥𝑔 = 𝑥. Then for a 

fixed 𝑔 ∈ 𝐺, there are ห𝑋ห with pairs with 𝑔 as a second member and 𝑥𝑔 = 𝑥. Hence  

     g
g G

N X
∈

= ∑    . . . (1)  

 Similarly, for a fixed 𝑥 ∈ 𝑋, there are |𝐺௫| pairs with 𝑥 as a first member and 𝑥𝑔 = 𝑥. 

Hence, 

      x
x X

N G
∈

= ∑    . . . (2) 

 From (1) and (2) we get,  ห𝑋ห ∈ ீ   =     |𝐺௫|௫ ∈   

=     |𝐺||𝑥𝐺|௫ ∈                                   ∵    |𝑥𝐺| = (𝐺: 𝐺௫) = |𝐺||𝐺௫| 
=    |𝐺|  1|𝑥𝐺|௫ ∈                                                                                           . . . (3) 

 Now, let 𝑂ଵ, 𝑂ଶ, 𝑂ଷ, … , 𝑂 be r orbits of X under G. Then 
1

r

i
i

X O
=

=U and this union is 

disjoint. Hence we get,  1|𝑥𝐺|௫ ∈    =   1|𝑥𝐺|
1

r

i
i

x O
=

∈U

 

=  1|𝑥𝐺|௫ ∈ ைభ  +    1|𝑥𝐺|௫ ∈ ைమ  + ⋯ +   1|𝑥𝐺|௫ ∈ ைೝ  

 Now consider  
1

1

x O xG∈
∑ .  

 Let 𝑂ଵ = {𝑡ଵ, 𝑡ଶ, 𝑡ଷ, … , 𝑡}     ( 𝑂 is finite as X is finite ) 
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 Hence,   1|𝑥𝐺|௫ ∈ ைభ  =  1|𝑡ଵ 𝐺| + 1|𝑡ଶ 𝐺| + ⋯ + 1|𝑡 𝐺| 
= 1|𝑂ଵ| + 1|𝑂ଵ| + ⋯

+ 1|𝑂ଵ|                (𝑛 times) … by the definition of orbit 
= 1𝑛 + 1𝑛 + ⋯ + 1𝑛                                           … 𝑛 times  = 𝑛𝑛  = 1 

 Generalizing this result we get,  1|𝑥𝐺|௫ ∈ ை = 1                       for each 𝑖,   1 ≤ 𝑖 ≤ 𝑟 

 Hence,   1|𝑥𝐺|௫ ∈  = 1 + 1 + ⋯ + 1                 (𝑟 times) 

        = 𝑟    . . . (4) 

 From (3) and (4) we get,  ห𝑋ห ∈ ீ = |𝐺| ∙ 𝑟 

 i.e.   𝑟 ∙ |𝐺| = g
g G

X
∈
∑  

 This completes the proof. 

 

4.2  Class Equation of a Group : 

  As an application of the Burnside theorem, we derive an equation which is called class 

equation of a group. 

  Let 𝐺 be a finite group and let 𝑋 be a finite 𝐺 set. Let 𝑂ଵ, 𝑂ଶ, 𝑂ଷ, … , 𝑂 be different 𝑟-

orbits in 𝑋 by 𝐺. Select 𝑥 ∈ 𝑂 for each 𝑖. Then 𝑋 being the disjoint union of 𝑂ଵ, 𝑂ଶ, 𝑂ଷ, … , 𝑂, we get  |𝑋| = |𝑂|
 ୀ ଵ  
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= |𝑥𝐺|
 ୀ ଵ                                                                                            … (1) 

 Define  𝑋ீ = {𝑥 ∈ 𝑋  / 𝑥𝑔 = 𝑔,        for all 𝑔 ∈ 𝐺} 

 Let 𝑂 denote an one element orbit i.e. 𝑂 = {𝑥}. Then 

     𝑂 = {𝑦 ∈ 𝑋  / 𝑦 ~ 𝑥}  

     = {𝑦 ∈ 𝑋 /  𝑦 = 𝑥 𝑔   for some 𝑔 ∈ 𝐺}  

     = {𝑥 𝑔   /  𝑔 ∈ 𝐺}  

     = {𝑥}     … by assumption. 

 Thus, 𝑂 = {𝑥} if and only if  𝑥 = 𝑥 𝑔 for all 𝑔 ∈ 𝐺. Hence the set 𝑋ீ is precisely the 

union of one element orbit in 𝑋. Assume that there are ‘s’ one element orbits in 𝑋 under 𝐺.  

 Then, 

     |𝑋| = 𝑠 +
1

r

i
i s

x G
= +
∑  

 i.e.    |𝑋| = |𝑋ீ| +
1

r

i
i s

x G
= +
∑  . . . (2) 

 Again,    |𝑥𝐺| = ൫𝐺: 𝐺௫൯   … by Burnside theorem. 

 Hence, from (2) we get, 

     |𝑋| = |𝑋ீ| + ( )
1

r

ii s
G : Gx

= +
∑  . . . (3) 

 Now, for a finite group 𝐺 we can consider 𝐺 as a 𝐺 set under conjugation. 

 i.e. 𝑥𝑔 = 𝑔ିଵ𝑥𝑔   for 𝑥, 𝑔 ∈ 𝐺.  

 Then by (2) we get, 

     |𝐺| = |𝑋ீ| +
1

r

i
i s

x G
= +
∑  … (4) 

 Consider the set 𝑋ீ in (4) 

   𝑋ீ = {𝑥 ∈ 𝑋 / 𝑥𝑔 = 𝑥,   ∀     𝑔 ∈ 𝐺} 

    = {𝑥 ∈ 𝑋 /  𝑔ିଵ𝑥𝑔 = 𝑥,   ∀    𝑔 ∈ 𝐺}  ( ∵     𝑥𝑔 = 𝑔ିଵ𝑥𝑔)  

    = {𝑥 ∈ 𝑋 /  𝑥𝑔 = 𝑔𝑥,   ∀    𝑔 ∈ 𝐺}      

    = 𝑍(𝐺)         𝑍(𝐺) = center of 𝐺 

 Substituting |𝑋ீ| = |𝑍(𝐺)| in (4) we get 
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   |𝐺| = |𝑍(𝐺)| +
1

r

i
i s

x G
= +
∑

 

    = |𝑍(𝐺)| + ( )
1

r

ii s
G : Gx

= +
∑        

 Let  𝑛 = ൫𝐺: 𝐺௫൯   for each 𝑖. 
 Then   𝑛 | |𝐺|       for each 𝑖. 
 Hence, 

   |𝐺| = |𝑍(𝐺)| + 𝑛௦ାଵ + 𝑛௦ାଶ+. . . +𝑛  

 i.e.  |𝐺| = 𝐶 + 𝑛௦ାଵ + 𝑛௦ାଶ+. . . +𝑛  . . . (5)  

 where 𝐶 = |𝑍(𝐺)| 
 The equation (5) is called the class equation of the group 𝐺. 

 Recall that, for any 𝑥 ∈ 𝐺 the set  

   𝐶(𝑥) = {𝑔ିଵ𝑥𝑔  /  𝑔 ∈ 𝐺} 

 is called the conjugate class of x in G and the set  

   𝑁(𝑥) = {𝑔 ∈ 𝐺  /  𝑔ିଵ𝑥𝑔 = 𝑥} 

 is a normalizer of x in G. 𝑁(𝑥) is a subgroup of G and |𝐶(𝑥)| = ൫𝐺 ∶  𝑁(𝑥)൯. If 𝑥𝐺 

denote the orbit of G under conjugation of G containing the element x; then  

   𝑥𝐺 = {𝑦 ∈ 𝑋 / 𝑦 ~ 𝑥} 

    = {𝑦 ∈ 𝐺 / 𝑦 = 𝑥𝑔,   for some 𝑔 ∈ 𝐺}  

    = {𝑦 ∈ 𝐺 / 𝑦 = 𝑔ିଵ𝑥𝑔,   for 𝑔 ∈ 𝐺}  

    = 𝐶(𝑥) 

 Thus |𝑥𝐺| = |𝐶(𝑥)| = (𝐺: 𝑁(𝑥))  . . . (6) 

 From the equation (5) we get, |𝐺| = |𝑍(𝐺)| +  |𝑥𝐺|
ୀ௦ାଵ  

 Where 𝑥𝐺 represents the orbit in 𝐺 under conjugation by 𝐺, containing more than one 

element.  

 Hence, from (5) and (6) we get   |𝐺| = |𝑍(𝐺)| + (𝐺: 𝑁(𝑥))
௫ ∈  



Algebra Page No. 58

 where 𝐶 contains exactly one element from each conjugate class with more than one 

element. 

 

Example :  Consider the group 𝐺 = 𝑆ଷ. The centre of the group 𝑆ଷ contains only one element 

and the class equation of 𝑆ଷ is 6 = 1 + 2 + 3.  

 

With the help of class equation we derive the following important property of |𝑍(𝐺)|.  
Theorem 4.2.1 : Let 𝐺 be a finite group with |𝐺| = 𝑝 where 𝑝 is a prime number. Then the 

centre of 𝐺 is non trivial. 

Proof :  |𝐺| = 𝑝. to prove that 𝑍(𝐺) ≠ {𝑒}. 

 We know that the class equation of G is  

   |𝐺| = 𝐶 + 𝑛ାଵ + 𝑛ାଶ+. . . +𝑛      . . . (1) 

 where 𝑛 |  |𝐺|  for each 𝑖 and 

   𝑛 = cardinality of the conjugate class in 𝐺 and 𝐶 = |𝑍(𝐺)|.  
 Now, 

   𝑛 |  |𝐺|    ⟹   𝑛 |  𝑝  ⟹   𝑝 |  𝑛  ,          for each 𝑖, 𝑐 + 1 ≤ 𝑖 ≤ 𝑟. 

 Hence,  𝑝 |  𝑛ାଵ + 𝑛ାଶ+. . . +𝑛 . 
 Again  𝑝 |  |𝐺| = 𝑝. 

 Hence, 𝑝 | [|𝐺| − (𝑛ାଵ + 𝑛ାଶ+. . . +𝑛)] 
 From (1) we get,  𝑝 | 𝑐.  

 i.e.  𝑝 | |𝑍(𝐺)|. 
 Hence, |𝑍(𝐺)| > 1. 

 i.e.  𝑍(𝐺) ≠ {𝑒} 

 

 We know that if |𝐺| = 𝑝,  (p is prime) then 𝐺 is cyclic and hence abelian. In the next 

theorem we prove that if |𝐺| = 𝑝ଶ then also 𝐺 is abelian. 
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Theorem 4.2.2 : If 𝑂(𝐺) = 𝑝ଶ, (p is prime), then 𝐺 is an abelian group. 

Proof :  Let 𝐺 be a non abelian group. Then 𝐺 ≠ 𝑍(𝐺). 

 Hence, |𝑍(𝐺)| ≠ 𝑝ଶ.  

 As  |𝐺| = 𝑝ଶ, by the theorem 2.1,  𝑍(𝐺) ≠ {𝑒} and hence |𝑍(𝐺)| ≠ 1. 

 As  𝑍(𝐺) | |𝐺|, (𝐺 being finite) we get |𝑍(𝐺)| = 1, 𝑝, 𝑝ଶ. 

 Hence, the only possible value is |𝑍(𝐺)| = 𝑝. 

 Select any 𝑎 ∈ 𝐺 such that 𝑎 ∉ 𝑍(𝐺). (Such 𝑎 exists as 𝑍(𝐺) ⊂ 𝐺). 

 Consider 𝑁(𝑎) = {𝑥 ∈ 𝐺 / 𝑥𝑎𝑥ିଵ = 𝑎}. 

 Then  𝑁(𝑎) ≤ 𝐺. Further 𝑥 ∈ 𝑍(𝐺). 

  ⟹   𝑥𝑔 = 𝑔𝑥    for all 𝑔 ∈ 𝐺. 

  ⟹   𝑥𝑎 = 𝑎𝑥    as 𝑎 ∈ 𝐺. 

  ⟹   𝑥𝑎𝑥ିଵ = 𝑎    

  ⟹   𝑥 ∈ 𝑁(𝑎) 

 Thus, 𝑍(𝐺) ≤ 𝑁(𝑎).  

 But 𝑎 ∈ 𝑁(𝑎) and 𝑎 ∉ 𝑍(𝐺) gives 𝑍(𝐺) ⊂ 𝑁(𝑎). 

 Thus, we have 𝑍(𝐺) < 𝑁(𝑎) ≤ 𝐺. 

 As 𝑁(𝑎) ≤ 𝐺 and |𝐺| = 𝑝ଶ, we must have |𝑁(𝑎)| = 𝑝ଶ. 

 But then 𝑁(𝑎) = 𝐺. Then by definition of 𝑁(𝑎), 𝑎𝑥 = 𝑥𝑎 for all 𝑥 ∈ 𝐺.  

 But this in turn will imply 𝑎 ∈ 𝑍(𝐺), a contradiction. 

 Hence 𝐺 must be abelian. 

 

An important property of a finite 𝐺 – set is proved in the following theorem. 

Theorem 4.2.3 : Let 𝐺 be a finite group and 𝑋 is a finite 𝐺 – set. If |𝐺| = 𝑝 (n > 0), (or if    𝑝 | |𝐺| ) then |𝑋| ≡ |𝑋ீ| (mod 𝑝). 

Proof :  Let 𝑋 be a 𝐺 - set. 𝑋 and 𝐺 both are finite. We know that  

    |𝑋| = |𝑋ீ| +
1

r

i
i s

x G
= +
∑         . . . (1) 

 where  𝑋ீ = {𝑥 ∈ 𝑋 / 𝑥𝑔 = 𝑔𝑥  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑔 ∈ 𝐺} 

 and   |𝑋ீ| = 𝑠. 

 𝑥𝐺 denotes the orbit in X under the action of 𝐺 containing more than one element. 

 𝑟 = number of orbits in X.  
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 By theorem 4.1.8, 

    |𝑥𝐺| = (𝐺 ∶ 𝐺௫) 

 Hence 𝐺 being a finite group  

    (𝐺 ∶ 𝐺௫) | |𝐺|    for each 𝑖. 
 Thus,   |𝑥𝐺| | |𝐺|                for each 𝑖. 
 As |𝐺| = 𝑝 we get 𝑝 | |𝑥𝐺| for each 𝑖. Hence  

      𝑝 | 
1

r

i
i s

x G
= +
∑              . . . (2) 

 From (1) we get, 

      
1

r

i G
i s

x G X X
= +

= −∑  

 Hence, by (2) we get 𝑝 |  |𝑋| − |𝑋ீ|. 
 i.e.   |𝑋| ≡ |𝑋ீ| (mod 𝑝) 

 

We know that converse of Lagrange’s theorem need not be true. 

i.e. if 𝐺 is a finite group and if 𝑚/𝑂(𝐺) then 𝐺 not necessarily contains a subgroup of order 𝑚. But if 𝑚 is a prime number then surely 𝐺 contains a subgroup of order 𝑚 if 𝑚/|𝐺|. 
This is proved by Cauchy in the following theorem. 

 

• Cauchy theorem : 

Theorem 4.2.4 :  Let G be a finite group and 𝑝 be a prime number such that 𝑝 | |𝐺|. Then 

there exists an element 𝑎 ∈ 𝐺 such that 𝑎 = 𝑒. 

Proof :  

(i) Define 𝑋 = ൛൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯ / 𝑔ଵ ∙  𝑔ଶ ∙ … ∙ 𝑔 = 𝑒   𝑎𝑛𝑑  𝑔 ∈ 𝐺ൟ  

 𝑔ଵ ∙  𝑔ଶ ∙ … ∙ 𝑔 = 𝑒   ⟹   𝑔ି ଵ = 𝑔ଵ 𝑔ଶ … 𝑔ିଵ. 

 Hence in p-tuple ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯ we have a freedom to select only 𝑝 − 1 elements 𝑔ଵ, 𝑔ଶ, … , 𝑔ିଵ. Therefore |𝑋| = |𝐺|ିଵ. 

 As  𝑝 ||𝐺|  we get        𝑝 ||𝑋|. 
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(ii) Let  𝜎 ∈ 𝑆  given by   𝜎 = (1,2, … , 𝑝).  

 Define  𝐻 = 〈𝜎〉. Then H is subgroup in 𝑆.  

 Define 𝑓 ∶ 𝑋 × 𝐻 ⟶ 𝑋  by 

    𝑓 ቀ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯,   𝜎ቁ = ൫𝑔ఙೖ(ଵ), 𝑔ఙೖ(ଶ), … , 𝑔ఙೖ()൯ 

 Then  

 (i)  𝑓 ቀ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯,   𝑖ቁ = ൫𝑔(ଵ), 𝑔(ଶ), … , 𝑔()൯ 

         = ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯  

 (ii)  𝑓 ቀ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯,   𝜎 ∘ 𝜎ቁ = ൫𝑔ఙೖ∘ఙ(ଵ), 𝑔ఙೖ∘ఙ(ଶ), … , 𝑔ఙೖ∘ఙ()൯    

        = ቀ𝑔ఙൣఙೖ(ଵ)൧, 𝑔ఙൣఙೖ(ଶ)൧, … , 𝑔ఙൣఙೖ()൧ቁ 

        = 𝑓 ቂ𝑓 ቀ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯, 𝜎ቁ,   𝜎ቃ 
 Hence, from (1) and (2) we get X is a H – set.  

 Hence, by theorem 2.3, we get, 

     |𝑋| ≡ |𝑋ு| (mod 𝑝) 

 Since 𝑂(𝐻) = 𝑝. 

(iii) As  𝑝||𝑋|    (∵    |𝑋| = |𝐺|ିଵ) 

 and  𝑝| |𝑋| − |𝑋ு| we must have 𝑝| |𝑋ு|. 
 Now 𝑋ு = ቄ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯ / 𝑓 ቀ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯, 𝜎ቁ = ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯   ∀   𝜎 ∈ 𝐻ቅ  

 Hence ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯ ∈ 𝑋ு 

 ⟹   𝑓ൣ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯, 𝜎൧ = ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯   as 𝜎 ∈ 𝐻 

 ⟹   ൫𝑔ఙ(ଵ), 𝑔ఙ(ଶ), … , 𝑔ఙ()൯ = ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯ 

 ⟹   (𝑔ଶ, 𝑔ଷ, … , 𝑔ଵ) = ൫𝑔ଵ, 𝑔ଶ, … , 𝑔൯ 

 But then 𝑔ଵ =  𝑔ଶ = ⋯ = 𝑔. 

 This shows that an element of the type (𝑎, 𝑎, … , 𝑎) ∈ 𝑋ு  i.e. 𝑎 = 𝑒. 

 As 𝑝||𝑋ு|  we must have |𝑋ு| > 1. 

 Hence, ∃   𝑎 ∈ 𝐺 such that 𝑎 ≠ 𝑒 and (𝑎, 𝑎, … , 𝑎) ∈ 𝑋ு. 

 But then we have an element 𝑎 ∈ 𝐺, 𝑎 ≠ 𝑒  such that 𝑎 = 𝑒. 

 This completes the proof. 
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An immediate application of Cauchy’s theorem is  

Theorem 4.2.5 :  Let 𝐺 be a finite group and let 𝑝 be any prime number. If 𝑝||𝐺|, then there 

exists a subgroup of order 𝑝 in 𝐺. 

Proof : By Cauchy’s theorem, ∃  𝑎 ∈ 𝐺 such that 𝑎 ≠ 𝑒 and 𝑎 = 𝑒. 

 Define 𝐻 = 〈𝑎〉.  
 Then 𝐻 will be the subgroup of 𝐺 of order 𝑝. 

 

4.3. p – Groups : 

Definition 4.3.1 : A group 𝐺 is a 𝑝 – group if every element in 𝐺 has order a power of the 

prime 𝑝. A subgroup of a group 𝐺 is a p-subgroup of 𝐺 if the subgroup is itself a 𝑝-group. 

 

The characterization of 𝑝-groups is given in the following theorem. 

Theorem 4.3.1 : Let 𝐺 be a finite group. Then 𝐺 is a p-group if and only if |𝐺| is a power of 

prime p.   

Proof : Only if part :  

 Let 𝐺 be a 𝑝-group. Hence order of each element in 𝐺 is a power of 𝑝. Let 𝑞 be a prime 

number different from 𝑝. If 𝑞||𝐺|, then by Cauchy’s theorem, there exists an element 𝑎 ∈ 𝐺 such that 𝑂(𝑎) = 𝑞. 

 By assumption,  𝑂(𝑎) = 𝑝    for some k. 

 Thus, 𝑞 = 𝑝; which is impossible. Hence no prime number other than 𝑝 will be a divisor 

of |𝐺|.  
 Hence,  |𝐺| = 𝑝 for some n. 

If part : 

 Let |𝐺| = 𝑝 for some n.  

 For any 𝑎 ∈ 𝐺, we know 𝑂(𝑎)|𝑂(𝐺).  

      Hence, 𝑂(𝑎)| 𝑝 implies 𝑂(𝑎) must be 𝑝 for some 𝑘.  

 Hence, 𝐺 is a 𝑝 – group. 

 

Theorem 4.3.2 :  Let G be a finite group. Let H be a p – subgroup of G. Then  

    (𝑁[𝐻] ∶ 𝐻) ≡ (𝐺 ∶ 𝐻) 𝑚𝑜𝑑 𝑝 

Proof :   𝑁[𝐻] = {𝑔 ∈ 𝐺 / 𝑔𝐻𝑔ିଵ = 𝐻} 

 We know that 𝑁[𝐻] is a subgroup of 𝐺 containing H.  
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 Let ℜ denote the set of all right cosets of 𝐻 in 𝐺.  

 Define 𝑓 ∶  ℜ × 𝐻 ⟶ ℜ by  

    𝑓(𝐻௫, ℎ) = 𝐻௫ 

 Then, ℜ is a H – set (See example 4.1.2 (2)).  

 As H is a p – subgroup |𝐻| = 𝑝,   for some 𝑛 

 As 𝑝||𝐻| we get 

    |ℜ| ≡ |𝔑ு| (mod 𝑝) ,   (See theorem 4.2.3) 

 But   |ℜ| =  (𝐺: 𝐻)    

 Hence,  (𝐺: 𝐻) = |𝔑ு| (mod 𝑝)       . . . (1) 

 Now,  𝔑ு = {𝐻௫ ∈ ℜ / 𝑓(𝐻௫, ℎ) = 𝐻௫   for each  ℎ ∈ 𝐻} 

     = {𝐻௫ ∈ ℜ / 𝐻௫ = 𝐻௫   for each  ℎ ∈ 𝐻}  

     = {𝐻௫ ∈ ℜ  / 𝑥ିଵℎ𝑥 ∈ 𝐻   for each  ℎ ∈ 𝐻}  

     = ቄ𝐻௫ ∈ ℜ 𝑥ିଵ𝐻𝑥 = 𝐻ቅ  

     = {𝐻௫ ∈ ℜ  / 𝑥 ∈ 𝑁[𝐻]}  

     = the set of all right cosets of H in 𝑁[𝐻]. 
 Hence,   |𝔑ு| = (𝑁[𝐻] ∶ 𝐻)        . . . (2) 

 From (1) and (2), we get, 

   (𝐺: 𝐻) ≡ (𝑁[𝐻] ∶ 𝐻) (mod 𝑝) 

 

Corollary 4.3.3 : Let 𝐻 be a 𝑝 – subgroup of a group 𝐺. If 𝑝|(𝐺: 𝐻), then 𝑁[𝐻] ≠ 𝐻. 

Proof : By theorem 4.3.2, we get  

    (𝐺: 𝐻) ≡ (𝑁[𝐻] ∶ 𝐻) (mod 𝑝) 

 As  𝑝 | (𝐺: 𝐻) we get  𝑝 | (𝑁[𝐻] ∶ 𝐻). 

 Hence,  (𝑁[𝐻] ∶ 𝐻) ≠ 1. 

 i.e.   𝐻 ≠ 𝑁[𝐻] 
 
4.4. Sylow Theorems :  

• First Sylow Theorem : 

Theorem 4.4.1 : Let G be a finite group with |𝐺| = 𝑝 ∙ 𝑚 where 𝑝 is a prime number and 𝑝 ∤ 𝑚. Then  

 (i)  𝐺 contains a subgroup of order 𝑝 for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 (ii)  Every subgroup of order 𝑝 is a normal subgroup of a subgroup of order 𝑝ାଵ for  
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  1 ≤ 𝑖 ≤ 𝑛 − 1. 

Proof :   

(i) By Cauchy’s theorem (see theorem 4.2.4) there exists a subgroup of order 𝑝 in 𝐺 as 𝑝||𝐺|. Assume that there exists a subgroup of order 𝑝 for each  𝑖 < 𝑛. 

 Let 𝐻 be a subgroup of order 𝑝.  
 Now  (𝐺 ∶ 𝐻) = 

ை(ீ)ை(ு) =  ∙  = 𝑝ି ∙ 𝑚. 

 As 𝑖 < 𝑛 we get 𝑝|(𝐺 ∶ 𝐻). 

 Hence, by theorem 4.3.2, 

    (𝐺: 𝐻) ≡ (𝑁[𝐻] ∶ 𝐻) (mod 𝑝) 

 As 𝑝|(𝐺: 𝐻)  we get 𝑝|(𝑁[𝐻] ∶ 𝐻). 

 Hence,  𝑝 | 
|ே[ு]||ு|     i.e. 𝑝 | 𝑂 ቂ𝑁[𝐻]𝐻 ቃ. 

 Hence, by Cauchy’s theorem,  
ே[ு]ு   contains a subgroup of order 𝑝. Let it be 𝑘. 

 Let 𝛾 ∶ 𝑁[𝐻]  ⟶ 
ே[ு]ு  be the canonical mapping.  

 Then 𝛾 is an onto homomorphism. 

   𝛾ିଵ(𝑘) = {𝑥 ∈ 𝑁[𝐻] /  𝛾(𝑥) ∈ 𝑘} is the subgroup of 𝑁[𝐻] of order 𝑝ାଵ. 

 This shows that there exists a subgroup of order 𝑝ାଵ in 𝐺. 

 By induction on 𝑛, the result follows. 

(ii)  By the construction explained in (i) we get,  

    𝐻 < 𝛾ିଵ(𝑘) ≤ 𝑁[𝐻] 
 where 𝑂(𝐻) = 𝑝  and  𝑂൫𝛾ିଵ(𝑘)൯ = 𝑝ାଵ. 

 As 𝐻 ⊲ 𝑁[𝐻]. We must get 𝐻 ⊲ 𝛾ିଵ(𝑘). 

 This shows that the subgroup of order 𝑝 is normal in a subgroup of a subgroup of order 𝑝ାଵ. 

 

Example 4.4.2 :  If 𝑂(𝐺) = 2ସ ∙ 3 ∙ 7 then 𝐺 contains subgroup 𝐻ଵ, 𝐻ଶ, 𝐻ଷ and 𝐻ସ such that 𝑂(𝐻ଵ) = 2, 𝑂(𝐻ଶ) = 2ଶ, 𝑂(𝐻ଷ) = 2ଷ and 𝑂(𝐻ସ) = 2ସ and 𝐻ଵ ⊲ 𝐻ଶ, 𝐻ଶ ⊲ 𝐻ଷ, 𝐻ଷ ⊲ 𝐻ସ. 

There also exists a subgroup 𝐾 of order 3 and a subgroup 𝑇 of order 7 in G. 

 

Definition 4.4.3 :  A Sylow p – subgroup of a group 𝐺 is a maximal p – subgroup of 𝐺. 
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Example 4.4.4 : In example 4.4.2, 

  𝐻ସ is a Sylow 2 – subgroup. 

  𝐾 is a Sylow 3 – subgroup. 

  𝑇 is a Sylow 7 – subgroup. 

 

Remarks 4.4.5 : 

(i) If |𝐺| = 𝑝 ∙ 𝑚 and 𝑝 ∤ 𝑚 then the subgroup of order 𝑝 will be a Sylow p – subgroup in 

G. 

(ii) If P is a Sylow p – subgroup in G, then 𝑂(𝑔ିଵ𝑃𝑔) = 𝑂(𝑃) will imply 𝑔ିଵ𝑃𝑔 is also 

Sylow  p – subgroup of 𝐺, for any 𝑔 ∈ 𝐺. i. e. any conjugate of a Sylow p – subgroup of 𝐺 is also a Sylow p – subgroup of 𝐺. 

 

 Conjugate of a Sylow p – subgroup is a Sylow p – subgroup in a finite group 𝐺. But any 

two Sylow p – subgroups of 𝐺 must be conjugates of each other. This we prove in the 

following theorem. 

• Second Sylow Theorem : 

Theorem 4.4.6 : Let G be a finite group with |𝐺| = 𝑝 ∙ 𝑚 where 𝑝 is a prime number and 𝑝 ∤ 𝑚. Let 𝑃ଵ and 𝑃ଶ be any two Sylow p – subgroups of 𝐺. Then 𝑃ଵ and 𝑃ଶ are conjugate 

subgroups of 𝐺.  

Proof : Let ℜ denote the set of all right cosets of  𝑃ଵ in 𝐺. 

 Define 𝑓 ∶  ℜ × 𝑃ଶ ⟶ ℜ by  

    𝑓(𝑃ଵ௫, 𝑦) = 𝑃ଵ𝑥𝑦. 

 Then  

   (i) 𝑓(𝑃ଵ௫, 𝑒) = 𝑃ଵ𝑥𝑒 = 𝑃ଵ𝑥 

 and  (ii) 𝑓(𝑃ଵ௫, 𝑔ℎ) = 𝑃ଵ𝑥𝑔ℎ = 𝑃ଵ(𝑥𝑔)ℎ = 𝑓(𝑓(𝑃ଵ௫, 𝑔), ℎ)    for 𝑔, ℎ ∈  𝑃ଶ. 

 Hence  ℜ is a 𝑃ଶ set. 

 As 𝑃ଶ is a Sylow p – subgroup,  𝑝||𝑝ଶ|. 
 Hence, by theorem 4.2.3 

   |ℜ| ≡ หℜమห (mod 𝑝)        . . . (1) 

 Now  ℜ = the set of all right cosets of  𝑃ଵ in 𝐺. 

 Hence, |ℜ| = (𝐺 ∶ 𝑃ଵ). 

 Therefore, |ℜ| = (𝐺 ∶ 𝑃ଵ) = 
|ீ||భ| = ∙  = 𝑚 and 𝑝 ∤ 𝑚.  
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 Hence,  หℜమห ≠ 0     … by (1) 

 Hence  หℜమห ≥ 1        … (2) 

 Now,  ℜమ = {𝑃ଵ𝑥 ∈ ℜ / 𝑓(𝑃ଵ𝑥, 𝑔) = 𝑃ଵ𝑥     for all 𝑔 ∈ 𝑃ଶ}  

          = {𝑃ଵ𝑥 ∈ ℜ / 𝑃ଵ𝑥𝑔 = 𝑃ଵ𝑥     for all 𝑔 ∈ 𝑃ଶ}  

          = {𝑃ଵ𝑥 ∈ ℜ / 𝑥ିଵ𝑔𝑥 ∈ 𝑃ଵ     for all 𝑔 ∈ 𝑃ଶ}  

          = {𝑃ଵ𝑥 ∈ ℜ / 𝑥ିଵ𝑃ଶ𝑥 ⊆ 𝑃ଵ}  

          = {𝑃ଵ𝑥 ∈ ℜ/𝑥ିଵ𝑃ଶ𝑥 = 𝑃ଵ}             (As |𝑥ିଵ𝑃ଶ𝑥| = |𝑃ଶ| = |𝑃ଵ| = 𝑝 ) 

 By (2),  หℜమห ≥ 1. 

 Hence, there exists 𝑥 ∈ 𝐺 such that 𝑥ିଵ𝑃ଶ𝑥 = 𝑃ଵ. Hence the proof. 

 

 The existence and the nature of Sylow 𝑝 – subgroups is proved in the First Sylow theorem 

and the Second Sylow theorem respectively. The third Sylow theorem deals with the number 

of Sylow 𝑝 – subgroups in a group 𝐺. 

• Third Sylow Theorem : 

Theorem 4.4.7 : Let 𝐺 be a finite group and 𝑝/|𝐺| (p is any prime number).  

 Let 𝑟 = number of Sylow 𝑝 – subgroups in 𝐺. Then 

 (i) 𝑟 ≡ 1(mod 𝑝)    (ii)   𝑟||𝐺| 
Proof :   

(i) Let 𝑟 = number of Sylow 𝑝 – subgroups in 𝐺. 

 Hence 𝑟 ≠ 0   (by First Sylow theorem) 

 Let ℒ denote the set of all Sylow p – subgroups in G. Then |ℒ| = 𝑟. 

 Fix up any Sylow p – subgroup say 𝑃 in 𝐺. Then for any 𝑇 ∈ ℒ we have  

      𝑇 = 𝑔ିଵ𝑃𝑔   for some 𝑔 ∈ 𝐺 (by Second Sylow theorem) 

 Define 𝑓: ℒ × 𝑃 ⟶ ℒ by 

      𝑓(𝑇, 𝑥) = 𝑥ିଵ𝑇𝑥  for any 𝑔 ∈ 𝐺. (See remark 4.4.5 (2)) 

 Now, 

   𝑓(𝑇, 𝑒) = 𝑒ିଵ𝑇𝑒 = 𝑇   and  

   𝑓(𝑇, 𝑥𝑦) = (𝑥𝑦)ିଵ𝑇(𝑥𝑦)  

      = 𝑦ିଵ(𝑥ିଵ𝑇𝑥)𝑦  

 ⟹  𝑓(𝑇, 𝑥𝑦) = 𝑓[𝑓(𝑇, 𝑥), 𝑦] ,  for all 𝑥, 𝑦 ∈ 𝑃 

 Hence, ℒ is a P – set.  

 As 𝑃 is a Sylow p – subgroup, 𝑝/𝑂(𝑃). 
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 Hence, by theorem 2.3, we have,  

    |ℒ| ≡ |ℒ|  (mod  𝑝)        . . . (1)  

 Consider the set ℒ. 

   ℒ = {𝑇 ∈ ℒ / 𝑓(𝑇, 𝑥) = 𝑇    for all 𝑥 ∈ 𝑃} 

      = {𝑇 ∈ ℒ / 𝑥ିଵ𝑇𝑥 = 𝑇    for all 𝑥 ∈ 𝑃}  

      = {𝑇 ∈ ℒ / 𝑥 ∈ 𝑁[𝑇]    for all 𝑥 ∈ 𝑃}  

 Thus, 𝑇 ∈ ℒ  iff 𝑃 ⊆ 𝑁[𝑇]. 
 Thus, 𝑇 ∈ ℒ  iff 𝑃 ≤ 𝑁[𝑇]. 
 Thus, 𝑃 and  𝑇 both are subgroup of 𝑁[𝑇] and hence they are 𝑝 – subgroups of 𝑁[𝑇]. 
 By Second Sylow theorem, P and T are conjugates.  

 Hence, for some 𝑔 ∈ 𝑁[𝑇],  𝑔ିଵ𝑇𝑔 = 𝑃. 

 As 𝑇 ⊴ 𝑁[𝑇],  𝑔ିଵ𝑇𝑔 = 𝑇. Hence 𝑃 = 𝑇. 

 Thus, 𝑇 ∈ ℒ iff  𝑃 = 𝑇. This shows that ℒ = {𝑃}.  

 Hence   |ℒ| = 1          . . . (2) 

 From (1) and (2) we get  

    |ℒ| ≡ 1 (mod  𝑝) 

 i.e.    𝑟 ≡ 1 (mod  𝑝)  

 

(ii) To prove 𝑟||𝐺|. 
 Let ℒ denote the set of all Sylow 𝑝 – subgroups of 𝐺. As in (i) we can prove ℒ is a 𝐺 – set  

 under the action 𝑓 ∶  ℒ × 𝐺 ⟶ ℒ defined by  

    𝑓(𝑇, 𝑔) = 𝑔ିଵ𝑇𝑔 

 By second Sylow theorem, elements of ℒ are conjugates of each other. 

 Hence, ℒ contains only one orbit. 

 Therefore 

   |ℒ| = | orbit of P |   (𝑃 ∈ ℒ)  

 ⟹    |ℒ| = | 𝑃ℒ |     ( orbit of 𝑃 = 𝑃ℒ under G) 

 ⟹    𝑟 = ൫𝐺 ∶  𝐺൯     ( theorem 1.3 ) 

 But  ൫𝐺 ∶  𝐺൯||𝐺|  and hence  𝑟||𝐺|. 
 

Examples 4.4.8 :   (𝟏)  A Sylow 3 – subgroup of a group of order 12 has order 3 as 12 =  2ଶ × 3ଵ. 
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(2)  A Sylow 3 – subgroup of a group of order 54 has order 3ଷ = 27 as 

  54 =  2 × 27 = 2 × 3ଷ. 

(3)  By third Sylow theorem, a group of order 24 must have either 1 or 3 Sylow  

  2 – subgroups.  

 Let 𝑟 = number of Sylow 3 – subgroups. 

 (i)  𝑟||𝐺|   ⟹   𝑟/24    ⟹   𝑟 = 1, 2,3, 4, 6, 8, 12, 24 

 (ii)  𝑟 ≡ 1(mod 2)   ⟹   2|𝑟 − 1   ⟹  𝑟 = 1, 3 

 

(4) A group of order 255 must have either 1 or 85 Sylow 3 - subgroups. 

 255 = 3 × 5 × 17 

 Let 𝑟 = number of Sylow 3 – subgroups. 

 (i)  𝑟||𝐺|     ⟹   𝑟|255   ⟹  𝑟 = 1, 3, 5, 15, 17, 51, 85, 255 

 (ii)  𝑟 ≡ 1(mod 3)  ⟹   3|𝑟 − 1   ⟹  𝑟 = 1 or 85 

 

(5) |𝐺| = 45. Show that G contains only one Sylow 3 – subgroups. Is 𝐺 simple ? 

Solution : |𝐺| = 45 = 3ଶ × 5. 

 By 1st Sylow theorem G contains Sylow 3 – subgroups each of order 3ଶ = 𝑞.  

 Let 𝑟 = number of Sylow 3 – subgroups in G. 

 By 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 3) 

 Hence  

 (i)  𝑟||𝐺|     ⟹   𝑟|45   ⟹  𝑟 ∈ {1, 3, 5, 9, 15, 45} 

 (ii)  𝑟 ≡ 1(mod 3)  ⟹   𝑟 = 1  

 This shows that there exists only one Sylow 3 – subgroups of order 3ଶ = 9 say H. 

 By Second Sylow theorem, 

    𝐻 = 𝑔ିଵ𝐻𝑔   for any 𝑔 ∈ 𝐺 

 Hence, H is a proper normal subgroup of G.  

 Hence, G is not simple. 
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(6) Show that a group of order 255 is not simple. 

Solution : Let G be a group of order 255. 

 |𝐺| = 255  ⟹   |𝐺| = 17 × 5 × 3 = 17 × 15 and 17 ∤ 15. 

 Hence, By 1st Sylow theorem there exists Sylow 17 – subgroups in G each of order 17. 

 Let 𝑟 = number of Sylow 17 – subgroups. 

 Then, by 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 17) 

 Hence,  

 (i)  𝑟||𝐺|     ⟹   𝑟 ∈ {1, 3, 5, 15, 17,51, 85, 255} 

 (ii)  𝑟 ≡ 1(mod 17)  ⟹   𝑟 = 1  

 Thus, there exists only one Sylow 17 – subgroups in G say H. 

 Then, by Second Sylow theorem, H must be normal in G.  

 As |𝐻| = 17, H is a proper normal subgroup of G.  

 Hence, G is not simple. 

 

(7) Show that no group of order 30 is simple. 

Solution :  Let G be a group with |𝐺| = 30 = 5 × 3 × 2. 

(i) Hence, By 1st Sylow theorem, G contains Sylow 5 – subgroups each of order 5. 

 Let 𝑟 = number of Sylow 5 – subgroups of G. 

 Then, by 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 5) 

 Hence,  

 (i)  𝑟||𝐺| = 30  ⟹   𝑟 ∈ {1, 2, 3, 5, 6, 10, 15, 30} 

 (ii)  𝑟 ≡ 1(mod 5)  ⟹   5|𝑟 − 1. Hence 𝑟 = 1 or 6. 

 Suppose G contains six Sylow 5 – subgroups. Let they be 𝐻ଵ, 𝐻ଶ, 𝐻ଷ, 𝐻ସ, 𝐻ହ and 𝐻 be 

distinct Sylow 5 – subgroups.  

 Then, 𝑂(𝐻) = 5    ∀       𝑖, 1 ≤ 𝑖 ≤ 6. 

    𝐻 ∩ 𝐻 = {𝑒}   for 𝑖 ≠ 𝑗  

 [ If 𝑥 ∈ 𝐻 ∩ 𝐻 and if 𝑥 ≠ 𝑒, then 〈𝑥〉 = 𝐻 = 𝐻;   # ] 

 Hence, each 𝐻 contains four elements each of order 5. Hence, there exists 6 × 4 = 24 

elements in G each of order 5.  
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(ii) By 1st Sylow theorem G contains Sylow 3 – subgroups each of order 3. 

 Let 𝑟 = number of Sylow 3 – subgroups of G. 

 Then, by 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 3) 

 Hence,  

 (i)  𝑟||𝐺| = 30  ⟹   𝑟 ∈ {1, 2, 3, 5, 6, 10, 15, 30} 

 (ii)  𝑟 ≡ 1(mod 3)  ⟹   3|𝑟 − 1. Hence 𝑟 = 1 or 10. 

 Suppose G contains ten Sylow 3 – subgroups each of order 3. Let 𝐾ଵ, 𝐾ଶ, … , 𝐾ଵ denote 

distinct Sylow 3 – subgroups of G. As in (i) we can prove that 𝐺 contains 20 distinct 

elements each of order 3.  

(iii)Thus, from (i) and (ii), if 𝐺 contains six Sylow 5 – subgroups and ten Sylow 3 – 

subgroups then 𝐺 must contain 24 + 20 = 44 distinct elements which is not true as |𝐺| = 30. 

 Hence, 𝐺 must contain either only one Sylow 5 – subgroup or only one Sylow                

3–subgroup. Thus in either the case, 𝐺 contains a proper normal subgroup by 2nd Sylow 

theorem.  

 Hence, 𝐺 is not simple. 

 

(8) No group of order 36 is simple. 

Solution :  Let G be a group with |𝐺| = 36. 

 |𝐺| = 36 = 3ଶ × 2ଶ and 3 ∤ 4. 

 By 1st Sylow theorem, G contains Sylow 3 – subgroups each of order 9. 

 Let 𝑟 = number of Sylow 3 – subgroups of G. 

 Then, by 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 3) 

 Hence,  

 (i)  𝑟||𝐺| = 36  ⟹   𝑟 ∈ {1, 2, 3, 4, 6, 9, 12, 18, 36} 

 (ii)  𝑟 ≡ 1(mod 3)  ⟹   3|𝑟 − 1. Hence  𝑟 = 1 or 4. 

 Suppose 𝐺 contains four Sylow 3 – subgroups each of order 9. Let 𝐻, 𝐾 be any two 

distinct Sylow 3 – subgroups. Then |𝐻| = 9 and |𝐾| = 9. 

 We know that, 
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     |𝐻𝐾| = 
|ு| ∙ |||ு ∩ |    

 Hence, 𝐻𝐾 ⊆ 𝐺 implies |𝐻 ∩ 𝐾| = 3. 

 [  𝐻 ∩ 𝐾 ≤ 𝐻   ⟹   𝑂(𝐻 ∩ 𝐾)|𝑂(𝐻)    ⟹  𝑂(𝐻 ∩ 𝐾)|9   

      ⟹   𝑂(𝐻 ∩ 𝐾) ∈ {1, 3, 9}  

  But  𝑂(𝐻 ∩ 𝐾) = 1   ⟹   |𝐻𝐾| = 81;  impossible.  

  and  𝑂(𝐻 ∩ 𝐾) = 9  ⟹   𝐻 = 𝐾; which is not true.  ]  

 Consider the group 𝑁[𝐻 ∩ 𝐾]. 
 As 3|𝑂(𝐻 ∩ 𝐾), 𝐻 ∩ 𝐾 < 𝑁[𝐻 ∩ 𝐾] and hence |𝑁[𝐻 ∩ 𝐾]| ∈ {18, 36} as  

 |𝑁[𝐻 ∩ 𝐾]|||𝐺| = 36. 

  If 𝑁(𝐻 ∩ 𝐾) = 18 then index of 𝑁(𝐻 ∩ 𝐾) in G is 2 and then 𝑁(𝐻 ∩ 𝐾) is a proper 

normal subgroup G, proving that G is not simple.  

 If |𝑁(𝐻 ∩ 𝐾)| = 36, then 𝑁[𝐻 ∩ 𝐾] = 𝐺.  

 In this case, 𝐻 ∩ 𝐾 will be a proper normal subgroup of G.  

 Hence, G is not simple, in either the case. 

 

(9)  Show that Sylow p-subgroups of a finite group G is unique if and only if it is normal. 

Solution : 

Only if part : 

 Let G has a unique Sylow p-subgroup say 𝐻. 

 To prove that 𝐻 ⊲ 𝐺. 

 H is a Sylow p-subgroup  ⟹    𝑔𝐻𝑔ିଵ is also a Sylow subgroup of G. By uniqueness 

we get,  

      𝐻 = 𝑔ିଵ𝐻𝑔     for all 𝑔 ∈ 𝐺. 

 Hence, H is normal in 𝐺.  

If part : 

 Let 𝐻 be a Sylow p-subgroup in a group of 𝐺. 

 Let 𝐻 be normal. If 𝐾 is another Sylow p-subgroup of G then, by 2nd Sylow theorem,  

      𝐾 = 𝑔𝐻𝑔ିଵ     for some 𝑔 ∈ 𝐺. 

 But 𝐻 being normal, 

      𝑔ିଵ𝐻𝑔 =H   

 Thus, 𝐾 = 𝐻. This shows that H is the unique Sylow p-subgroup. 
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(10) Let 𝐻 ⊲ 𝐺 such that index of 𝐻 in 𝐺 is prime to p. (p is any prime number). Show that 𝐻 

contains every Sylow p-subgroup of 𝐺. 

Solution :  Let |𝐺| = 𝑝 ∙ 𝑚,  𝑝 ∤ 𝑚. i.e. (𝑝, 𝑚) = 1. 

 By data, index of 𝐻 in 𝐺 is prime to 𝑝. 

 ∴   
|ீ||ு|  is prime to p. 

 ∴   
∙|ு|   is prime to p and |𝐻||𝑝 ∙ 𝑚 

 Assume that |𝐻| = 𝑝 ∙ 𝑞 where (𝑝, 𝑞) = 1. 

 As |𝐻| = 𝑝 ∙ 𝑞, 𝐻 contains a Sylow p-subgroup say 𝐾. 

 Then |𝐾| = 𝑝, hence we get 𝐾 is also a Sylow p-subgroup of 𝐺. If T is another Sylow p-

subgroup of 𝐺 we get 𝑇 = 𝑔ିଵ𝐾𝑔  for some 𝑔 ∈ 𝐺. Hence  

     𝑇 = 𝑔ିଵ𝐾𝑔 ⊆ 𝑔ିଵ𝐻𝑔 = 𝐻      (as 𝐻 ⊲ 𝐺) 

 shows that 𝑇 ⊆ 𝐻. 

 Thus, 𝐻 contains all the Sylow p-subgroups of 𝐺. 

 

(11) |𝐺| = 108. Show that 𝐺 contains a normal subgroup of order 27 or 9. 

Solution : |𝐺| = 108 = 3ଷ × 2ଶ = 3ଷ ∙ 4 and 3 ∤ 4. 

 Hence, by Sylow first theorem, ∃ Sylow 3-subgroups each of order 27. 

 Let 𝑟 = number of Sylow 3-subgroups in G. 

 Then 𝑟||𝐺| and 𝑟 ≡ 1(mod  3). 

 Hence, 𝑟 ∈ {1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108} 

 3|𝑟 − 1  ⟹   𝑟 = 1 or 4.  

Case I : 𝑟 = 1. 

 Then G contains only one Sylow subgroup of order 27 which is normal. (by second 

Sylow theorem). 

Case II : 𝑟 = 4. 

 Then G contains four Sylow 3-subgroups of order 27. 

 Let 𝐻 and 𝐾 denote any two distinct Sylow 3-subgroups. Then 

     |𝐻𝐾| = 
|ு| ∙ |||ு ∩ |    

 will imply   |𝐻𝐾| = 
ଶ × ଶ|ு ∩ |  i.e. 

ଶ × ଶଵ଼  < |𝐻 ∩ 𝐾|. 
 Further, 
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     𝐻 ∩ 𝐾 ≤ 𝐺    ⟹  |𝐻 ∩ 𝐾|||𝐺| ⟹  |𝐻 ∩ 𝐾||108. 

 Hence, |𝐻 ∩ 𝐾| = 9 or 27.  

 But  |𝐻 ∩ 𝐾| = 27  ⟹   𝐻 = 𝐾, which is not true. 

 Hence, |𝐻 ∩ 𝐾| = 9. 

 Now consider 𝑁[𝐻 ∩ 𝐾]. 
    (𝐻 ∩ 𝐾) ⊲ 𝐻    and  (𝐻 ∩ 𝐾) ⊲ 𝐾 

 as   𝑂(𝐻 ∩ 𝐾) = 3ଶ and  𝑂(𝐻) = 3ଷ. 

 [ Any subgroup of order 𝑝ିଵ is normal in a subgroup of group of order 𝑝 ] 

 Hence, 𝐻 ⊂ 𝑁[𝐻 ∩ 𝐾]  and  𝐾 ⊂ 𝑁[𝐻 ∩ 𝐾] . 
 Hence, the normal subgroup 𝐻𝐾 is properly contained in 𝑁[𝐻 ∩ 𝐾].  
 But then  |𝐻𝐾| = 

|ு| ∙ |||ு ∩ | = ଶ × ଶଽ   = 81. 

 Therefore, |𝑁[𝐻 ∩ 𝐾]| > |𝐻𝐾| = 81 

 Hence, |𝑁[𝐻 ∩ 𝐾]| = 108 as |𝑁[𝐻 ∩ 𝐾]|||𝐺|  and   |𝑁[𝐻 ∩ 𝐾]| > 81. 

 Thus, 𝑁[𝐻 ∩ 𝐾] = 𝐺. But this shows that 𝐻 ∩ 𝐾 is normal in 𝐺. 

 

Theorem 4.4.9 : Let 𝐺 be a finite group with |𝐺| = 𝑝𝑞 where 𝑝 and 𝑞 are distinct primes and 𝑝 < 𝑞.  

 (i) 𝐺 contains a normal subgroup of order 𝑞. 

  (ii) 𝐺 is not simple.  

 (iii)  If 𝑝 ∤ 𝑞 − 1, then 𝐺 is cyclic and abelian.  

Proof :   

(i) |𝐺| = 𝑝𝑞,   𝑞 ∤ 𝑝.  

 Hence, by 1st Sylow theorem 𝐺 contains Sylow 𝑞-subgroups of order 𝑞. 

 Let 𝑟 = number of Sylow 𝑞-subgroups . Then 𝑟||𝐺| and 𝑟 ≡ 1(mod  𝑞)  

 Hence, 𝑟 ∈ {1, 𝑞, 𝑝, 𝑝𝑞} 

   𝑞|𝑟 − 1  ⟹   𝑟 = 1.  

 Thus, there exists only one Sylow 𝑞-subgroups of 𝐺. 

 As 𝐺 contains only one Sylow 𝑞-subgroup say 𝐻 then 𝑂(𝐻) = 𝑞 and 𝐻 ⊴ 𝐺 by 2nd 

Sylow theorem. 

(ii) As 𝐺 contains a proper subgroup normal subgroup 𝐻, 𝐺 is not simple. 

(iii) |𝐺| = 𝑝𝑞 and  𝑝 ∤ 𝑞, by 1st Sylow theorem 𝐺 contains Sylow 𝑝-subgroup of order 𝑝.  
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 Let 𝑟 = number of Sylow 𝑝-subgroups.  

 Then 𝑟||𝐺| and 𝑟 ≡ 1(mod  𝑝) by 3rd Sylow theorem 

 Hence, 𝑟 ∈ {1, 𝑝, 𝑞, 𝑝𝑞}. As 𝑝 | 𝑟 − 1 we get  𝑟 = 1. ( ∵   𝑝 ∤ 𝑞 − 1 by data) 

 Thus, there exists only one Sylow 𝑝-subgroups in 𝐺 of order 𝑝. 

 Let 𝐻 denote the Sylow 𝑞-subgroup and 𝐾 denote the Sylow p-subgroup of 𝐺. 

 Then   

 (i)  𝐻 ∩ 𝐾 = {𝑒}.  

   If 𝑥 ∈ 𝐻 ∩ 𝐾 and if 𝑥 ≠ 𝑒 then 𝑥 ∈ 𝐻    ⟹   𝑂(𝑥) = 𝑞 

           𝑥 ∈ 𝐾    ⟹   𝑂(𝑥) = 𝑝. 

   As 𝑝 ≠ 𝑞 we must have 𝐻 ∩ 𝐾 = {𝑒}. 

 (ii) 𝐻 ∨ 𝐾 ⊇ 𝐻 and 𝐻 ∨ 𝐾 ⊇ 𝐾  ⟹  𝐻 ∨ 𝐾 = 𝐺  

  [ ∵    𝑂(𝐻 ∨ 𝐾)|𝑝𝑞,  𝑂(𝐻)|𝑂(𝐻 ∨ 𝐾),  𝑂(𝐾)|𝑂(𝐻 ∨ 𝐾)   ⟹  𝑂(𝐻 ∨ 𝐾) = 𝑝𝑞  ] 

 Hence, 𝐺 ≅  𝐻 × 𝐾 ≅ 𝑍 × 𝑍. 

 Hence, 𝐺 is cyclic and abelian. 

 

Example 4.4.10 :  |𝐺| = 15  ⟹ 𝐺 is abelian and not simple. 

Solution :   |𝐺| = 15 = 5 ∙ 3. 5 and 3 are distinct primes and 3 ∤ 5 − 1.  

 Hence, by theorem 4.4.9, 𝐺 is abelian and not simple. 

 

Example 4.4.11 : Let 𝐺 be a finite group. Prove that ቚ ீ(ீ)ቚ ≠ 77. 

Solution:  Assume that ቚ ீ(ீ)ቚ = 77. 

 ⟹   ቚ ீ(ீ)ቚ = 11 ∙ 7  and  7 ∤ 11 − 1 . 

 Hence, by theorem, If 𝑂(𝐺)  = 𝑝 ∙ 𝑞, where 𝑝, 𝑞 are prime numbers such that 𝑝 ∤ 𝑞 − 1 

then 𝐺 is cyclic,  
ீ(ீ) is cyclic. 

 But 
ீ(ீ) is cyclic  ⟹  G is abelian    

        ⟹  𝑍(𝐺) = 𝐺  

         ⟹  ቚ ீ(ீ)ቚ = 1  

        ⟹  a contradiction. 
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 Hence ቚ ீ(ீ)ቚ ≠ 77. 

 

Example 4.12 : Prove that ቚ ீ(ீ)ቚ ≠ 33 for any finite group. 

Solution : Let ቚ ீ(ீ)ቚ = 33 = 11 ∙ 3  and  3 ∤ (11 − 1 = 10) . 

 As 3 ∤ (11 − 1) by theorem 4.9, 
ீ(ீ) is abelian and Cyclic. 

 Hence, as 
ீ(ீ) is Cyclic, G is abelian. 

 But then 𝑍(𝐺) = 𝐺 and in this case ቚ ீ(ீ)ቚ = 1, a contradiction. 

 Hence, ቚ ீ(ீ)ቚ ≠ 33 for any finite group 𝐺. 

 

Example 4.4.13 :  |𝐺| = 255  ⟹ 𝐺 is abelian and not simple. 

Solution :   |𝐺| = 255 = 17 × 5 × 3 = 17 × 15 and 17 ∤ 15. 

 (i) By 1st Sylow theorem, G contains Sylow 17 – subgroups each of order 17. 

 Let 𝑟 = number of Sylow 17 – subgroups of G. 

 Then by 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 17) 

 Hence, 𝑟 ∈ {1, 3, 5, 15, 17, 51, 85, 255}. 

 17|𝑟 − 1  ⟹   𝑟 = 1. 

 Thus, there exists only one Sylow 17-subgroup in 𝐺 of order 17.  

 Hence, by 2nd Sylow theorem, 𝐺 is not simple. 

 Let us denote by 𝐻 the Sylow 17 – subgroups of G.  ுீ is defined. 

 ቚுீቚ = |ீ||ு| =  ଶହହଵ  = 15. 

 Hence  ுீ is abelian.  (See theorem 4.4.10) 

 Hence, 𝐺′ ⊆ 𝐻   (See theorem 2.1.5(iii)) 

 Hence, 𝐺′ ≤ 𝐻. 

 By Lagrange’s theorem, |𝐺′|||𝐻| = 17  ⟹   |𝐺′| = 1 or 17. 

(ii) By 1st Sylow theorem, G contains Sylow 3 – subgroups each of order 3. 
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 Let 𝑟 = number of Sylow 3 – subgroups in G. 

 By 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 3) 

 Hence, 𝑟 = 1 or 85. 

(iii)By 1st Sylow theorem, G contains Sylow 5 – subgroups each of order 5. 

 Let 𝑟 = number of Sylow 5 – subgroups in G. 

 By 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 5) 

 Hence, 𝑟 = 1 or 51. 

(iv)  𝐾 ⊴ 𝐺 and hence  ீ is defined.  

 Now, if 𝐾 is Sylow 3-subgroup then  

   ቚீቚ = |ீ||| =  ଵ×ହ×ଷଷ  = 17 × 5. 

 and if 𝐾 is Sylow 5-subgroup then 

   ቚீቚ = |ீ||| =  ଵ×ହ×ଷହ  = 17 × 3. 

 Thus, in either the case by theorem 4.4.9  ீ is abelian.  

 Hence, 𝐺′ ⊆ 𝐾. 

 Hence, 𝐺′ ≤ 𝐾 and |𝐺′|||𝐾| . 
 If 𝐾 is Sylow 5-subgroup then |𝐺′| = 1  or  5 

 and if 𝐾 is Sylow 3-subgroup then |𝐺′| = 1  or  3. 

 As 𝐺′ ⊴ 𝐺 we get |𝐺′| ∈ {1, 3, 5, 17}. 

 Hence, |𝐺′| = 1.   i.e. 𝐺ᇱ = {𝑒}. 

 But then G must be an abelian. ( |𝐺′| = 1 iff G is abelian). 

 Thus, the group of order 255 is abelian and not simple. 

 

Example 4.4.14: Find all the Sylow 3-subgroups of 𝑆ସ. Verify that they are all conjugate. 

Solution :  Let 𝐺 = 𝑆ସ. Then |𝐺| = 24 = 2ଷ × 3. 

 By 1st Sylow theorem, G contains Sylow 3-subgroups of order 3. 

 Let 𝑟 =  number of Sylow 3-subgroups. 

 Then, by 3rd Sylow theorem,  
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   𝑟||𝐺|   and   𝑟 ≡ 1(mod 3) 

   𝑟||𝐺| = 𝑟|24  ⟹   𝑟 ∈ {1, 2, 3, 4, 6, 8, 12, 24} 

   𝑟 ≡ 1(mod 3)  ⟹   3|𝑟 − 1. Hence  𝑟 = 1 or 4. 

Case I : 𝑟 = 1.  

 Then 𝐺 contains only one Sylow 3-subgroup. It must be normal by 2nd Sylow theorem. 

Case II :  𝑟 = 4.  

 Let 𝐺 contains four Sylow 3-subgroups each of order 3 Hence each must be a cyclic 

group generated by the 3-cycles 

  (1, 2, 3), (1, 2, 4),  (1, 3, 4) and  (2, 4, 3) 

 These cyclic groups are conjugate to each other and they are distinct. 

 

Example 4.4.15:  |𝐺| = 2𝑝, p is prime, show that either 𝐺 is cyclic or 𝐺 is generated by {𝑎, 𝑏} with the relation 𝑎 = 𝑒 = 𝑏ଶ and 𝑏𝑎𝑏 = 𝑎ିଵ. 

Solution :  |𝐺| = 2 × 𝑝 and 𝑝 ∤ 2. Hence by 1st Sylow theorem, 𝐺 contains Sylow 𝑝-

subgroups, each of order 𝑝. 

 Let 𝑟 =  number of Sylow 𝑝-subgroups. 

 Then by 3rd Sylow theorem,  

   𝑟||𝐺|   and   𝑟 ≡ 1(mod 𝑝) 

             𝑟||𝐺|   ⟹   𝑟 ∈ {1, 2, 𝑝, 2𝑝} 

 𝑟 ≡ 1(mod 𝑝)  ⟹   𝑝|𝑟 − 1. Hence  𝑟 = 1. 

 Thus, 𝐺 contains only one Sylow p-subgroup say 𝐻.  

   |𝐻| = 𝑝   ⟹  𝐻 is cyclic. 

 Let 𝐻 = 〈𝑎〉. Then ቚுீቚ = |ீ||ு| =  ଶ  = 2. 

 Hence,  ுீ is Cyclic group of order 2. 

   𝑂(𝐻) = 𝑝    ⟹   𝐻 ⊂ 𝐺. 

 Select 𝑏 ∈ 𝐺 such that 𝑏 ∉ 𝐻. Then 𝐺 = {𝑒, 𝑎, … , 𝑎ିଵ, 𝑏, 𝑏𝑎, … , 𝑏𝑎ିଵ}. 

 As 𝑏 ∈ 𝐺,  𝑂(𝑏)|𝑂(𝐺) and hence 𝑂(𝑏) = 2 or 𝑝. 

 If 𝑂(𝑏) = 𝑝, then 𝑏 ∈ 〈𝑎〉 = 𝐻 as 𝐻 is the only subgroup of 𝐺 of order p; which is not 

true. Hence,  𝑂(𝑏) ≠ 𝑝.  
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 Hence,  𝑂(𝑏) = 2. Then 𝑏ଶ = 𝑒. 

 Thus,  𝑎 = 𝑒 = 𝑏ଶ          . . . (1)  

 Now, consider the element 𝑏𝑎𝑏ିଵ. As 〈𝑎〉 is normal in 𝐺, 𝑏𝑎𝑏ିଵ ∈ 𝐻 = 〈𝑎〉. 
 Thus, 𝑏𝑎𝑏ିଵ = 𝑎 ⟹   𝑏ିଵ(𝑏𝑎𝑏ିଵ)𝑏 = 𝑏ିଵ𝑎𝑏  

       ⟹   (𝑏ିଵ𝑏) 𝑎 (𝑏ିଵ𝑏) = 𝑏ିଵ𝑎𝑏 

       ⟹   𝑒 𝑎 𝑒 = 𝑏ିଵ𝑎𝑏 

       ⟹   𝑎 = 𝑏ିଵ𝑎𝑏 

       ⟹   𝑎 = (𝑏ିଵ𝑎 𝑏) 

       ⟹   𝑎 = (𝑎) 

       ⟹   𝑎మିଵ = 𝑒 

       ⟹   𝑝|𝑘ଶ − 1 

       ⟹   𝑝|(𝑘 − 1)(𝑘 + 1) 

       ⟹   (𝑘 − 1) = 𝑝  or  (𝑘 + 1) = 𝑝 

Case I :  𝑝 = 𝑘 − 1  ⟹   𝑘 = 1 + 𝑝 

   𝑏𝑎𝑏ିଵ = 𝑎 = 𝑎ଵା   = 𝑎ଵ ∙ 𝑎 = 𝑎ଵ ∙ 𝑒 = 𝑎  

Case II :  𝑝 = 𝑘 + 1  ⟹   𝑘 = 𝑝 − 1 

   𝑏𝑎𝑏ିଵ = 𝑎 = 𝑎ିଵ   = 𝑎 ∙ 𝑎ିଵ = 𝑒 ∙ 𝑎ିଵ = 𝑎ିଵ  

 Thus, 𝑏𝑎𝑏ିଵ = 𝑎  or   𝑏𝑎𝑏ିଵ = 𝑎ିଵ  

 Thus, 𝑏𝑎 = 𝑎𝑏   or   𝑏𝑎𝑏 = 𝑎ିଵ            (∵    𝑏ଶ = 𝑒   ⟹   𝑏ିଵ = 𝑏). 

 Thus, if 𝑝 = 𝑘 − 1  i.e.   𝑘 = 1 + 𝑝, 𝐺 is a non abelian group generated by {𝑎, 𝑏} 

with the relations 𝑎 = 𝑒 = 𝑏ଶ and 𝑏𝑎𝑏 = 𝑎ିଵ.  

 If 𝑝 = 𝑘 + 1 then 𝐺 is abelian and 𝑂(𝑎𝑏) = 2𝑝. i.e. 𝐺 is cyclic of order 2𝑝. 

 

Example 4.4.16 :  𝑂(𝐺) = 𝑝ଶ, 𝑝 is a prime. Show that G is cyclic or G is isomorphic to 

direct product of two cyclic groups each of order 𝑝. 

Solution :  𝑂(𝐺) = 𝑝ଶ  ⟹  𝐺 is abelian.  

 If G is cyclic then we are through. 

 Let G be not cyclic.  

 As 𝑝|𝑂(𝐺), by Cauchy’s theorem ∃ 𝑎 ∈ 𝐺 such that 𝑂(𝑎) = 𝑝. Let 𝐻 = 〈𝑎〉.  
 Then 𝑂(𝐻) = 𝑝. Hence, 𝐻 ≠ 𝐺.  

 Select 𝑏 ∈ 𝐺 such that 𝑏 ∉ 𝐻. As 𝑂(𝑏)|𝑂(𝐺) we get, 𝑂(𝑏) = 1, 𝑝, 𝑝ଶ.  
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 As 𝑏 ∉ 𝐻 we get, 𝑏 ≠ 𝑒.  

 Hence 𝑂(𝑏) ≠ 1.  

 If 𝑂(𝑏) = 𝑝ଶ, then 𝐺 will be cyclic, not true.  

 Hence, 𝑂(𝑏) = 𝑝. Let 𝐾 = 〈𝑏〉. 
   𝐻 ∩ 𝐾 ≤ 𝐻   ⟹   𝑂(𝐻 ∩ 𝐾)|𝑂(𝐻) = 𝑝. 

 Hence, 𝑂(𝐻 ∩ 𝐾) = 1 or 𝑝. 

 If 𝑂(𝐻 ∩ 𝐾) = 𝑝 will imply 𝐻 = 𝐾, which is not true. Hence 𝑂(𝐻 ∩ 𝐾) = 1. 

 Now, 𝐺 is abelian ⟹ 𝐻 ⊲ 𝐺 and 𝐾 ⊲ 𝐺. Hence 𝐻𝐾 ⊲ 𝐺. 

    |𝐻𝐾| = |ு| |||ு ∩ | =   ∙ ଵ  = 𝑝ଶ = 𝑂(𝐺)  (See theorem 1.2.6) 

 But 𝐻𝐾 = 𝐺. 

 As 𝐻 and 𝐾 are normal subgroups of 𝐺 with 𝐻 ∩ 𝐾 = {𝑒} and 𝐻 ∨ 𝐾 = 𝐺 we get 𝐺 ≅ 𝐻 × 𝐾. (see theorem 1.2.1) 

 This completes the proof. 

 

Exercise ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

 1. Show that a group of order 148 cannot be simple. 

 2. Show that a group of order 108 cannot be simple. 

 3    Show that a group of order 144 cannot be simple.  

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 



 

Algebra Page No. 80 

 

Unit 1 : 

 1.1  Ring of Polynomials 𝑅[𝑥] : Definition and Examles. 

 1.2  Basic Properties of 𝑅[𝑥]. 
 1.3  Division Algorithm. 

 1.4  Euclidean Domain and Unique Factorization Domain. 

 1.5  Zero of the Polynomial. 

 1.6  Irreducible Polynomials in 𝑅[𝑥]. 
 1.7  Factorization in 𝐹[𝑥] and Eisenstein Criterion. 

 

1.1 Ring of Polynomials R[x] : 

Definition 1.1.1 : Let 𝑅 be a ring. A polynomial 𝑓(𝑥) with coefficients in 𝑅 and in an 

indeterminate 𝑥 is an infinite formal sum  

 𝑎𝑥ஶ
ୀ = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 + ⋯ 

 where, 𝑎 ∈ 𝑅 and 𝑎 = 0 for all but finite number of values of 𝑖. The 𝑎 are called 

coefficients of 𝑓(𝑥). We simply write 𝑓(𝑥) as  𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 

 when 𝑎ା = 0 for all 𝑖 ≥ 1. 

 

Examples : 

 (i)  𝑓(𝑥) = 𝑥ଶ + 2𝑥 + 5 is a polynomial with coefficients in 𝑍. 

 (ii) 𝑓(𝑥) = 𝑥ଶ + 1 is a polynomial with coefficients in 𝑍ଶ.  

   ( Here 𝑓(𝑥) = 1 ∙ 𝑥ଶ + 0 ∙ 𝑥 + 1 ) 

 

Definition 1.1.2: Let 𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 be a polynomial with 

coefficients in a ring 𝑅. If there exists some 𝑖 > 0 such that 𝑎 ≠ 0, then the largest 

value of such 𝑖 is called the degree of the polynomial 𝑓(𝑥). If no such 𝑖 > 0 exists, then 

we say that 𝑓(𝑥) is of zero degree. 

 

 

CHAPTER II : RING OF POLYNOMIALS 
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Examples : 

 (i) The degree of the polynomial 𝑓(𝑥) = 𝑥ହ + 4𝑥ସ + 3𝑥ଶ + 2𝑥 + 7 with coefficients 

in 𝑍 is of degree 5. 

 (ii) 𝑓(𝑥) = ଶଷ + 0 ∙ 𝑥 + 0 ∙ 𝑥ଶ. 𝑓(𝑥) is a polynomial with coefficients in 𝑄. The degree 

of 𝑓(𝑥) is zero.  

 

Definition 1.1.3:  Let 𝑅 be a ring and let 𝑅[𝑥] denote the set of polynomials with coefficients 

in 𝑅 and in an indeterminate 𝑥. Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅[𝑥] where 

      𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥,    (𝑎 ∈ 𝑅)  

 and    𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥,     ൫𝑏 ∈ 𝑅൯ 

 We define ′ + ′ and ′ ∙ ′ of 𝑓(𝑥) and 𝑔(𝑥) as follows. 

 (i)  𝑓(𝑥) + 𝑔(𝑥) = 𝑐 + 𝑐ଵ𝑥 + 𝑐ଶ𝑥ଶ + ⋯ + 𝑐𝑥,       (𝑚 < 𝑛), 

   where, 𝑐 = 𝑎 + 𝑏,   ∀   𝑖.   [ Here 𝑏ା = 0 for 𝑖 ≥ 1 ] 

 (ii) 𝑓(𝑥) ∙ 𝑔(𝑥) = 𝑑 + 𝑑ଵ𝑥 + 𝑑ଶ𝑥ଶ + ⋯ + 𝑑ା𝑥ା,     

   where,  𝑑 = i j
i j k

a b
+ =
∑ ,   (1 ≤ 𝑖 ≤ 𝑛,   1 ≤ 𝑗 ≤ 𝑚)   

   i.e.  𝑑 = 𝑎𝑏 + 𝑎ଵ𝑏ିଵ + ⋯ + 𝑎𝑏. 

   Obviously,  

      𝑓(𝑥) + 𝑔(𝑥) ∈ 𝑅[𝑥]  and    𝑓(𝑥) ∙ 𝑔(𝑥) ∈ 𝑅[𝑥]. 
 

Remark 1.1.4 :  〈𝑅[𝑥], +, ∙ 〉 is a ring where ′ + ′ and ′ ∙ ′ are as defined in (i) and (ii) in the 

definition 1.1.3. This ring is called the polynomial ring over the ring 𝑅. 

  If 𝑅 is a ring and 𝑥 and 𝑦 are two indeterminates, then we can form the ring (𝑅[𝑥])(𝑦), that is, the ring of polynomials in 𝑦, with coefficients that are polynomials in 𝑥.  

  As (𝑅[𝑥])(𝑦) ≅ (𝑅[𝑦])(𝑥), we denote this ring by 𝑅[𝑥, 𝑦], the ring of polynomials in 

two variables 𝑥 and 𝑦 with coefficients in 𝑅. We can similarly define the ring 𝑅[𝑥ଵ, 𝑥ଶ, … , 𝑥] of polynomials in the ′𝑛′ indeterminate 𝑥 with coefficients in 𝑅. 

 

1.2 Properties of 𝐑[𝐱] :   
Theorem 1.2.1:  

 Let 𝑅 be a ring. Then 𝑅 is a sub-ring of the ring of polynomials 𝑅[𝑥]. 
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Proof :  Let 𝑎 ∈ 𝑅, we write 

   𝑓(𝑥) = 𝑎 + 0 ∙ 𝑥 + 0 ∙ 𝑥ଶ + ⋯ + 0 ∙ 𝑥     ( 𝑛 finite) 

 Then 𝑓(𝑥) ∈ 𝑅[𝑥] and is called a constant polynomial over the ring 𝑅.  

 Thus, if 𝑎, 𝑏 ∈ 𝑅, then 𝑎, 𝑏 are constant polynomials in 𝑅[𝑥] and as members of 𝑅[𝑥], 
their addition 𝑎 + 𝑏 and multiplication 𝑎 ∙ 𝑏 are again the constant polynomials in 𝑅[𝑥].  

 Hence, 𝑅 is a subring of 𝑅[𝑥]. 
 

Theorem 1.2.2 : 𝑅[𝑥] is a ring of polynomials over a ring 𝑅. 𝑅[𝑥] is commutative iff R is 

commutative. 

Proof : Only if part :  

  Let 𝑅[𝑥] be commutative. As, sub-ring of a commutative ring is commutative, we get 𝑅 is commutative. 

If part :  Let 𝑅 be commutative.  

 Let  𝑓(𝑥), 𝑔(𝑥) ∈ 𝑅[𝑥] , 
 where,  𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥,    (𝑎 ∈ 𝑅)  

 and  𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥,     ൫𝑏 ∈ 𝑅൯. 

 Then, 

   𝑓(𝑥) ∙ 𝑔(𝑥) = 𝑎𝑏 + (𝑎𝑏ଵ + 𝑎ଵ𝑏) 𝑥 + ⋯ +  i j
i j k

a b
+ =
∑  𝑥 + ⋯ + 𝑎𝑏𝑥ା. 

 As 𝑅 is commutative, 

 𝑎𝑏 = 𝑏𝑎, 𝑎𝑏ଵ + 𝑎ଵ𝑏 = 𝑏𝑎ଵ + 𝑏ଵ𝑎 ,  … , i j j i
i j k j i k

a b b a
+ = + =

=∑ ∑  , …,  

 𝑎ଵ𝑏 = 𝑏𝑎. 

 Hence, 

 𝑓(𝑥) ∙ 𝑔(𝑥) = 𝑎𝑏 + (𝑎𝑏ଵ + 𝑎ଵ𝑏)𝑥 + ⋯ +  i j
i j k

a b
+ =
∑  𝑥 + ⋯ + 𝑎𝑏𝑥ା 

    = 𝑏𝑎 + (𝑏𝑎ଵ + 𝑏ଵ𝑎)𝑥 + ⋯ +  j i
j i k

b a
+ =
∑  𝑥 + ⋯ + 𝑏𝑎𝑥ା 

    = 𝑔(𝑥) ∙ 𝑓(𝑥) 

 This shows that 𝑅[𝑥] is commutative. 
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Theorem 1.2.3 : Let 𝑅 be a ring. 𝑅[𝑥] has unity iff 𝑅 has unity. 

Proof :  

Only if part :  

 Let 𝑅[𝑥] be a ring with unity. 

 Define 𝜓 ∶  𝑅[𝑥] ⟶ 𝑅 by 

    𝜓 [𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥] = 𝑎  

 is an onto homomorphism, we get 𝑅 has unity. [ Since homomorphic image of a ring 

with unity contains the unity. ] 

If part :  

 Let the ring 𝑅 contain the unity element say 1.  

 Then, consider the constant polynomial 1 + 0 ∙ 𝑥 + 0 ∙ 𝑥ଶ + ⋯ + 0 ∙ 𝑥 ( 𝑛 finite) will 

be the unity element of 𝑅[𝑥]. 
 

Definition 1.2.4 : Let 𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 be a non zero polynomial in 𝑅[𝑥]. We say that degree of 𝑓(𝑥) is 𝑛 if 𝑎 ≠ 0 and 𝑎ା = 0 for 𝑖 ≥ 1. 

 We write, deg 𝑓(𝑥) = 𝑛. 

 Note that, the degree of a zero polynomial is not defined.  

 deg 𝑓(𝑥) = 0 if 𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 with 𝑎 = 0 for 𝑖 ≥ 1 and 𝑎 ≠ 0. 

 i.e. deg 𝑓(𝑥) = 0 if 𝑓(𝑥) is a constant polynomial in 𝑅[𝑥]. 
 

Theorem 1.2.5 : Let 𝑅 be a ring and 𝑓(𝑥), 𝑔(𝑥) be non zero polynomials in 𝑅[𝑥], where deg 𝑓(𝑥) = 𝑛 and deg 𝑔(𝑥) = 𝑚. If 𝑓(𝑥) + 𝑔(𝑥) and 𝑓(𝑥) ∙ 𝑔(𝑥) are non zero 

polynomials in 𝑅[𝑥], then  

 (i) deg  [𝑓(𝑥) + 𝑔(𝑥)] ≤ max(𝑚, 𝑛)  

 (ii) deg  [𝑓(𝑥) ∙ 𝑔(𝑥)] ≤ 𝑛 + 𝑚  

 (iii) If 𝑅 is an integral domain, deg  [𝑓(𝑥) ∙ 𝑔(𝑥)] = 𝑛 + 𝑚 

Proof : Let  

   𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥  

 where 𝑎 ∈ 𝑅 for 0 ≤ 𝑖 ≤ 𝑛 and 𝑎 ≠ 0 and  𝑎ା = 0, for each 𝑖 ≥ 1. 

 Let 𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥  

 where 𝑏 ∈ 𝑅 for 0 ≤ 𝑗 ≤ 𝑚 and 𝑏 ≠ 0 and  𝑏ା = 0 for each 𝑖 ≥ 1. 
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(i) 𝑓(𝑥) + 𝑔(𝑥) = (𝑎 + 𝑏) + (𝑎ଵ + 𝑏ଵ)𝑥 + ⋯ + 𝑎௧𝑥௧, where 𝑡 = max (𝑛, 𝑚). 

 Hence,  deg  [𝑓(𝑥) + 𝑔(𝑥)] ≤ 𝑡 = max(𝑚, 𝑛) 

(ii) 𝑓(𝑥) ∙ 𝑔(𝑥) = (𝑎𝑏) + (𝑎𝑏ଵ + 𝑎ଵ𝑏)𝑥 + ⋯ + (𝑎𝑏)𝑥ା. 

 This shows that 

   deg  [𝑓(𝑥) ∙ 𝑔(𝑥)] ≤ 𝑡 = 𝑛 + 𝑚 

(iii) Let 𝑅 be an integral domain.   

 Then, deg 𝑓(𝑥) = 𝑛   ⟹   𝑎 ≠ 0. 

   deg 𝑔(𝑥) = 𝑚  ⟹   𝑏 ≠ 0. 

 As 𝑅 is an integral domain, 

   𝑎 ≠ 0, 𝑏 ≠ 0  ⟹   𝑎𝑏 ≠ 0. 

 Hence, deg  [𝑓(𝑥) ∙ 𝑔(𝑥)] = 𝑛 + 𝑚.     … See (ii)  

 

Theorem 1.2.6 : 𝑅 is an integral domain iff 𝑅[𝑥] is an integral domain. 

Proof :    

Only if part :   

 Let 𝑅 be an integral domain. 

 To prove that 𝑅[𝑥] is an integral domain. 

 Let   𝑓(𝑥) ≠ 0, 𝑔(𝑥) ≠ 0 in 𝑅[𝑥]    such that  𝑓(𝑥) ∙ 𝑔(𝑥) = 0. 

 Let   𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥  

 and  𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥. 

 Let 𝑓(𝑥) and 𝑔(𝑥) both be constant polynomials.  

 Let 𝑓(𝑥) = 𝑎  and   𝑔(𝑥) = 𝑏.  

 Then,  𝑓(𝑥) ≠ 0 ⟹  𝑎 ≠ 0  and    𝑔(𝑥) ≠ 0 ⟹  𝑏 ≠ 0. 

 As 𝑅 is an integral domain, 𝑎𝑏 ≠ 0. 

 i.e.  𝑓(𝑥) ∙ 𝑔(𝑥) ≠ 0; which is not true. 

 Hence, one of 𝑓(𝑥), 𝑔(𝑥) must be a non constant polynomial. 

 Let 𝑓(𝑥) be a non constant polynomial. Hence deg 𝑓(𝑥) ≥ 1. 
 Hence, deg 𝑓(𝑥) + deg 𝑔(𝑥) ≥ 1.  

 As 𝑅 is an integral domain 

    deg(𝑓(𝑥) ∙ 𝑔(𝑥)) = deg 𝑓(𝑥) + deg 𝑔(𝑥) ≥ 1 

 This leads to the contradiction as 𝑓(𝑥) ∙ 𝑔(𝑥) = 0.  

 Hence,  𝑓(𝑥) ∙ 𝑔(𝑥) = 0   ⟹   𝑓(𝑥) = 0  or  𝑔(𝑥) = 0. 
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 i.e.  𝑅[𝑥] is an integral domain.  

If part :  

 Let 𝑅[𝑥] be an integral domain. As the ring 𝑅 is a subring of 𝑅[𝑥], 𝑅 must be an integral 

domain. 

 

Remark 1.2.7 : If 𝐹 is a field then 𝐹[𝑥] may not be a field. 

Proof : As 𝐹 is a field, 𝐹 is an integral domain. [ Result : Every field is an integral domain. ] 

Hence, by theorem 1.2.6, 𝐹[𝑥] is an integral domain.  

 Consider the non-zero polynomial 𝑓(𝑥) ∈ 𝐹(𝑥) given by  

     𝑓(𝑥) = 0 + 1 ∙ 𝑥 + 0 ∙ 𝑥ଶ + ⋯ + 0 ∙ 𝑥. 

 We will prove that 𝑓(𝑥) has no multiplicative inverse in 𝐹[𝑥]. 
 Let, if possible, 𝑔(𝑥) ∈ 𝐹[𝑥] such that 

     𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥 

 and   𝑓(𝑥) ∙ 𝑔(𝑥) =  unity in 𝑅[𝑥]. 
          = 1 + 0 ∙ 𝑥 + 0 ∙ 𝑥ଶ + ⋯ + 0 ∙ 𝑥   

 Thus, by comparing the coefficients, we get  

      1 = 0;  a contradiction. 

 Hence, 𝑓(𝑥) does not have a multiplicative inverse in 𝐹[𝑥]. Hence 𝐹[𝑥] is not a field. 

 

Theorem 1.2.8 : Let 𝐹 be a field then 𝐹[𝑥] is an Euclidian domain. 

Proof :    

(I) 𝐹 is a field  ⟹  𝐹 is an integral domain. 

     ⟹  𝐹[𝑥] is an integral domain.   … See theorem 1.2.6 

(II) Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a non-zero polynomial. Define 𝑑൫𝑓(𝑥)൯ = deg 𝑓(𝑥).  

 Then, 𝑑൫𝑓(𝑥)൯ is a non-negative integer. 

 (i)   For 𝑓(𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0 in 𝐹[𝑥], we get 

      𝑑൫𝑓(𝑥) ∙ 𝑔(𝑥)൯ = 𝑑൫𝑓(𝑥)൯ + 𝑑൫𝑔(𝑥)൯    … See theorem 1.2.5 

   Hence, 𝑑൫𝑓(𝑥)൯ ≤ 𝑑൫𝑓(𝑥) ∙ 𝑔(𝑥)൯ as 𝑑൫𝑔(𝑥)൯ ≥ 0. 

 (ii) Let 𝑓(𝑥), 𝑔(𝑥) be non zero polynomials in 𝐹[𝑥]. 
  To prove that ∃  𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that  

     𝑓(𝑥) = 𝑞(𝑥) ∙ 𝑔(𝑥) + 𝑟(𝑥)   

  where   𝑟(𝑥) = 0   or   𝑑൫𝑟(𝑥)൯ < 𝑑൫𝑔(𝑥)൯. 
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 Case I :  𝑑൫𝑓(𝑥)൯ < 𝑑൫𝑔(𝑥)൯. Then 𝑓(𝑥) = 0 ∙ 𝑔(𝑥) + 𝑓(𝑥) 

   and the result follows in this case.  

 Case II :  𝑑൫𝑔(𝑥)൯ < 𝑑൫𝑓(𝑥)൯,  

  Let   𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥,     ( 𝑎 ∈ 𝐹 and 𝑎 ≠ 0 ) 

  and  𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + ⋯ + 𝑏𝑥,     ( 𝑏 ∈ 𝐹 and 𝑏 ≠ 0 ) 

  𝑑൫𝑔(𝑥)൯ < 𝑑൫𝑓(𝑥)൯  ⟹   𝑚 < 𝑛. 

  Define  𝑝(𝑥) = 𝑓(𝑥) − [𝑎𝑏ିଵ𝑥ି] 𝑔(𝑥). 

  Hence, 

    𝑝(𝑥) = [𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥] − [𝑏 + 𝑏ଵ𝑥 + ⋯ + 𝑏𝑥]  [𝑎𝑏ିଵ𝑥ି] 
  shows that the coefficient of  𝑥 in 𝑝(𝑥) is 𝑎 − (𝑎𝑏ିଵ ∙ 𝑏) = 𝑎 − 𝑎 = 0. 

  Hence, 𝑝(𝑥) = zero polynomial or 𝑑൫𝑝(𝑥)൯ < deg 𝑓(𝑥) = 𝑛. 

 Subcase I :  𝑝(𝑥) is a zero polynomial.  

  Then, 𝑝(𝑥) = 𝑓(𝑥) − 𝑎𝑏ିଵ𝑥ି ∙ 𝑔(𝑥) will imply 0 = 𝑓(𝑥) − 𝑎𝑏ିଵ𝑥ି ∙ 𝑔(𝑥). 

  Hence, 𝑓(𝑥) = 𝑎𝑏ିଵ𝑥ି ∙ 𝑔(𝑥) + 0. 

  Taking 𝑞(𝑥) = 𝑎𝑏ିଵ𝑥ିଵ  and  𝑟(𝑥) = 0, the result follows. 

 Subcase II :  𝑝ଵ(𝑥) ≠ 0 and deg 𝑝(𝑥) < deg 𝑔(𝑥). 

  Assume that the result is true for all the non zero polynomials in 𝐹[𝑥] of degree less 

than the degree of 𝑔(𝑥) = 𝑚. 

   Then, by this assumption, 

     𝑝(𝑥) = 𝑞ଵ(𝑥) ∙ 𝑔(𝑥) + 𝑟(𝑥), 

  where 𝑟(𝑥) = 0  or  deg 𝑟(𝑥) < deg 𝑔(𝑥). 

  Hence,  𝑓(𝑥) − 𝑎𝑏ିଵ𝑥ି ∙ 𝑔(𝑥) = 𝑞ଵ(𝑥) ∙ 𝑔(𝑥) + 𝑟(𝑥). 

  Thus,   𝑓(𝑥) = [𝑎𝑏ିଵ𝑥ି + 𝑞ଵ(𝑥)] 𝑔(𝑥) + 𝑟(𝑥) 

  i.e.  𝑓(𝑥) = 𝑞(𝑥) ∙ 𝑔(𝑥) + 𝑟(𝑥) 

  where 𝑟(𝑥) = 0  or  deg 𝑟(𝑥) < deg 𝑔(𝑥) 

 This shows that the result is true in this case also.  

 From (I) and (II), we get 𝐹[𝑥] is an Euclidean domain. 

 

As every Euclidean domain is a principal ideal domain we get, 

Corollary 1.2.9:  For a field 𝐹, 𝐹[𝑥] is a P. I. D. 
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1.3 Division Algorithm in 𝐅[𝐱]:  
Theorem 1.3.1 : Let 𝐹 be a field. Let  

    𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥  

 and  𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏𝑥 

 be two polynomials in 𝐹[𝑥] with 𝑎 ≠ 0 and 𝑏 ≠ 0 with 𝑚 > 0.  

 Then, there are two polynomials 𝑞(𝑥) and 𝑟(𝑥) in 𝐹[𝑥] such that  

    𝑓(𝑥) = 𝑞(𝑥) ∙ 𝑔(𝑥) + 𝑟(𝑥)   with  deg 𝑟(𝑥) < deg 𝑔(𝑥).  

 These polynomials 𝑞(𝑥) and 𝑟(𝑥) are unique.  

Proof : Define 𝑆 = {𝑓(𝑥) − 𝑔(𝑥) ∙ 𝑠(𝑥) / 𝑠(𝑥) ∈ 𝐹[𝑥}.  

 Then,  𝑆 ≠ 𝜙.  ( as 𝑓(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) ∙ 0 ∈ 𝑆 ) 

 Select 𝑟(𝑥) ∈ 𝑆 such that deg 𝑟(𝑥) is minimal.  

 Then,  𝑟(𝑥) ∈ 𝑆   ⟹    𝑟(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) ∙ 𝑞(𝑥),  for some 𝑞(𝑥) ∈ 𝐹[𝑥]. 
 Hence , 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥). 

 If 𝑟(𝑥) = 0 then we are through. 

 If 𝑟(𝑥) ≠ 0 then let 

    𝑟(𝑥) = 𝑐௧𝑥௧ + 𝑐௧ିଵ𝑥௧ିଵ + ⋯ + 𝑐 ,   where 𝑐 ∈ 𝐹 and 𝑐௧ ≠ 0. 

 Hence, deg 𝑟(𝑥) = 𝑡. 

 We want to prove that 𝑡 < 𝑚. 

 Let 𝑡 ≮ 𝑚. Then 𝑡 ≥ 𝑚. 

 Consider the following polynomial in 𝐹[𝑥]. 
   𝑓(𝑥) − 𝑞(𝑥) ∙ 𝑔(𝑥) − [𝑐௧𝑏ିଵ]𝑥௧ି  ∙ 𝑔(𝑥)   

   =  𝑓(𝑥) − [𝑞(𝑥) + 𝑐௧𝑏ିଵ𝑥௧ି]  ∙ 𝑔(𝑥)   

 As  𝑞(𝑥) + 𝑐௧𝑏ିଵ𝑥௧ି ∈ 𝐹[𝑥] ,  

 we get, 𝑓(𝑥) − 𝑞(𝑥) ∙ 𝑔(𝑥) − [𝑐௧𝑏ିଵ]𝑥௧ି  ∙ 𝑔(𝑥)    ∈   𝑆 

 But  𝑓(𝑥) − 𝑞(𝑥) ∙ 𝑔(𝑥) − 𝑐௧𝑏ିଵ𝑥௧ି  ∙ 𝑔(𝑥) 

   =  𝑟(𝑥) − 𝑐௧𝑏ିଵ𝑥௧ି[𝑏𝑥 + 𝑏ିଵ𝑥ିଵ + ⋯ + 𝑏]  
   =  𝑟(𝑥) − [𝑐௧𝑥௧ + terms of lower degree] 
   =  [𝑐௧𝑥௧ + 𝑐௧ିଵ𝑥௧ିଵ + ⋯ + 𝑐] − [𝑐௧𝑥௧ + terms of lower degree] 
 Here,  𝑓(𝑥) − 𝑞(𝑥) ∙ 𝑔(𝑥) − 𝑐௧𝑏ିଵ𝑥௧ି  ∙ 𝑔(𝑥) is a polynomial of degree < 𝑡 =deg 𝑟(𝑥) and is a member of S. 

 This contradicts the fact that 𝑟(𝑥) is a polynomial in S of minimal degree.  

 Hence, our assumption that 𝑡 ≥ 𝑚 is wrong. Hence 𝑡 < 𝑚. i.e. deg 𝑟(𝑥) < deg 𝑔(𝑥). 
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Uniqueness : 

 Let   𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞ଵ(𝑥) + 𝑟ଵ(𝑥) 

 and  𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞ଶ(𝑥) + 𝑟ଶ(𝑥) 

 where  deg 𝑟ଵ(𝑥) < 𝑚  and  deg 𝑟ଶ(𝑥) < 𝑚,  𝑞ଵ(𝑥), 𝑞ଶ(𝑥), 𝑟ଵ(𝑥), 𝑟ଶ(𝑥) ∈ 𝐹[𝑥]. 
 Subtracting, we get, 

    𝑔(𝑥)[𝑞ଵ(𝑥) − 𝑞ଶ(𝑥)] = 𝑟ଶ(𝑥) −  𝑟ଵ(𝑥)         . . . (1) 

 As   deg[𝑟ଶ(𝑥) − 𝑟ଵ(𝑥)] < deg 𝑔(𝑥)  

 we get (1) holds only when 

    𝑞ଵ(𝑥) − 𝑞ଶ(𝑥) = 0             ⟹     𝑞ଵ(𝑥) = 𝑞ଶ(𝑥). 

 and  𝑟ଶ(𝑥) −  𝑟ଵ(𝑥) = 0              ⟹     𝑟ଵ(𝑥) = 𝑟ଶ(𝑥).  

 This completes the proof. 

 

1.3.2 Examples  ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Ex1 : Let 𝑓(𝑥) = 𝑥 + 3𝑥ହ + 4𝑥ଶ − 3𝑥 + 2 and 𝑔(𝑥) = 𝑥ଶ + 2𝑥 − 3 be in 𝑍[𝑥]. Find 𝑞(𝑥) and 𝑟(𝑥) in 𝑍[𝑥] such that 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥) with deg 𝑟(𝑥) < 2. 

Solution : Let  𝑓(𝑥) = 𝑥 + 3𝑥ହ + 4𝑥ଶ − 3𝑥 + 2  

   and  𝑔(𝑥) = 𝑥ଶ + 2𝑥 − 3  

   be in 𝑍[𝑥]. 

 

2 2 3x x+ − 6 5 4 3 2

6 5 4

3 0 0 4 3 2

2 3

x x x x x x

x x x

+ + ⋅ + ⋅ + − +

+ −− − +

4 3 2 5x x x x+ + + +

5 4 3

5 4 3

3 0

2 3

x x x

x x x

+ + ⋅

+ −− − +
4 3 2

4 3 2

3 4

2 3

x x x

x x x

+ +

+ −− − +
3 2

3 2

0 3

2 3

x x x

x x x

+ ⋅ −

+ −− − +
2

2

5 0 2

5 3 1

x x

x x

+ ⋅ +

+ −− − +

( ) 4 3r x x= +

g(x) f(x) q(x) 
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 Thus,  𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥)  

 where  𝑞(𝑥) = 𝑥ସ + 𝑥ଷ + 𝑥ଶ + 𝑥 + 5  

        = 𝑥ସ + 𝑥ଷ + 𝑥ଶ + 𝑥 − 2    . . .  (5 = −2 in 𝑍). 

 and   𝑟(𝑥) = 4𝑥 + 3  

 

Ex 2 :  Let 𝑓(𝑥) = 𝑥ହ + 𝑥ଷ + 𝑥 and 𝑔(𝑥) = 𝑥ସ + 2𝑥ଷ + 2𝑥 in 𝑍ଷ[𝑥]. Find 𝑞(𝑥) and 𝑟(𝑥) in 𝑍ଷ[𝑥] such that 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥) with deg 𝑟(𝑥) < 4. 

Solution : 

 
 Thus,  𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥) , 

 where  𝑞(𝑥) = 𝑥 + 1 ,  𝑟(𝑥) = 2𝑥ଷ + 𝑥ଶ + 2𝑥  and  deg 𝑟(𝑥) < 4. 

Ex 3 : Let 𝑓(𝑥) = 𝑥ସ + 3𝑥ଷ + 3𝑥ଶ + 𝑥 + 2 and 𝑔(𝑥) = 4𝑥ଷ + 4𝑥ଶ + 3𝑥 + 3 in 𝑍ହ[𝑥]. Find 𝑞(𝑥) and 𝑟(𝑥) in 𝑍ହ[𝑥] so that 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥) with deg 𝑟(𝑥) < 3. 

Solution : 

 
 Thus,  𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) + 𝑟(𝑥) , 

 where  𝑞(𝑥) = 4𝑥 + 3 ,  𝑟(𝑥) = 4𝑥ଶ + 3 and  deg 𝑟(𝑥) < 3. 
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1.4 Euclidean Domain And Unique Factorization Domain :  

Definition 1.4.1 : An integral domain is a commutative ring 𝑅 with unity containing no 

divisors of 0.  

 i.e. if 𝑎 ∙ 𝑏 = 0   for 𝑎, 𝑏 ∈ 𝑅  then either 𝑎 = 0 or 𝑏 = 0. 

 

Definition 1.4.2 : Let 𝑅 be a commutative ring 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. We say 𝑎 divides 𝑏 if ∃ 𝑐 ∈ 𝑅 such that 𝑏 = 𝑎𝑐.  

 We write this by 𝑎/𝑏. In this case 𝑎 is called a factor of  𝑏. 

 

Definition 1.4.3 : Let 𝑅 be a commutative ring. Let 𝑎, 𝑏 ∈ 𝑅. An element 𝑑 ∈ 𝑅 is called the 

greatest common divisor of 𝑎 and 𝑏 if  

 (i)  𝑑/𝑎 and 𝑑/𝑏. 

  (ii) If ∃ 𝑐 ∈ 𝑅 such that 𝑐/𝑎 and 𝑐/𝑏 then 𝑐/𝑑. 

 We denote this by 𝑑 = gcd(𝑎, 𝑏). 

 

1.4.4  Remark : 

(1) gcd(𝑎, 𝑏) need not be unique in 𝑅. 

 For this consider 𝑅 = 𝑍଼. Then  

  2 ⊗଼ 3 = 6 ⟹   2/6 

  2 ⊗଼ 2 = 4 ⟹   2/4  

 Again, if 𝑐/6 and 𝑐/4 then 𝑐/6 − 4.  i.e 𝑐/2. 

 Thus,  2 = gcd(6, 4). 

 Again,  

  1 ⊗଼ 6 = 6 

  6 ⊗଼ 6 = 4  

 Hence, 6/6 and 6/4. 

 If  𝑐/6 and 𝑐/4 we get 𝑐/6. 

 Hence,  gcd(6, 4) = 6. 

 Hence, 2 and 6 are g.c.d. in 𝑍଼ for the same pair (4, 6). 

 

(2) Existence of g.c.d. for any pair 𝑎, 𝑏 in a commutative ring 𝑅 is not compulsory. 

 e.g. Consider the ring 𝑅 of even integers.  
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  4, 6 ∈ 𝑅. 2/4 in 𝑅 but 2 ∤ 6 in 𝑅. As 2 ∙ 3 = 6 but 3 ∉ 𝑅. 

  Thus, gcd(4, 6) does not exist in 𝑅. 

 

Definition 1.4.5 : Let 𝑅 be a commutative ring with unity. 𝑎, 𝑏 ∈ 𝑅 are called associates if 𝑎 = 𝑢𝑏 for some unit 𝑢 in 𝑅. 

  [ 𝑢 is a unit in 𝑅 means multiplicative inverse 𝑢ିଵ of 𝑢 exists in 𝑅 ] 

 

Theorem 1.4.6 : Let 𝑅 be an integral domain with unity. If 𝑑ଵ = gcd(𝑎, 𝑏) in 𝑅, then 𝑑ଶ = gcd(𝑎, 𝑏) in 𝑅, iff 𝑑ଵ and 𝑑ଶ are associates. 

Proof :  

Only if part : 

 Let 𝑑ଵ = gcd(𝑎, 𝑏) and 𝑑ଶ = gcd(𝑎, 𝑏). 

 Then,  𝑑ଵ/𝑎  and   𝑑ଵ/𝑏. 

    𝑑ଶ/𝑎  and   𝑑ଶ/𝑏. 

 Hence,  𝑑ଵ/𝑑ଶ  and   𝑑ଶ/𝑑ଵ   … by the definition of gcd. 

 Hence, 𝑑ଵ and 𝑑ଶ are associates. 

If part : 

 Let 𝑑ଵ and 𝑑ଶ be associates and 𝑑ଵ = gcd(𝑎, 𝑏). 

  𝑑ଵ = 𝑢 𝑑ଶ    for some unit 𝑢 in 𝑅. 

 Hence, 𝑑ଶ/𝑑ଵ.   

 But   𝑑ଵ/𝑎   and   𝑑ଵ/𝑏. 

 Hence, 𝑑ଶ/𝑎  and   𝑑ଶ/𝑏.             . . . (1) 

 Let 𝑥 ∈ 𝑅 such that 𝑥/𝑎 and 𝑥/𝑏. 

 Then 𝑑ଵ = gcd(𝑎, 𝑏)  ⟹  𝑑ଵ/𝑥. 

 ⟹ 𝑥 = 𝑑ଵ𝑡 ,    for some 𝑡 ∈ 𝑅. 

      = (𝑢ିଵ𝑑ଶ) 𝑡 

      = 𝑑ଶ(𝑢ିଵ𝑡)  
 But this shows that 𝑑ଶ/𝑥. 

 Hence,  𝑑ଶ = 𝑔𝑐𝑑(𝑎, 𝑏).               . . . (2) 

 

Definition 1.4.7 :  Let 𝐷 be UFD. A non constant polynomial  

    𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥  
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 in 𝐷[𝑥] is primitive if the only common divisors of all the 𝑎 are units of 𝐷. 

 

1.4.8 Examples :  

 (i)  4𝑥ଶ + 7𝑥 + 3 is primitive in 𝑍[𝑥]. 
 (ii) 3𝑥ଶ + 6𝑥 + 9 is not primitive in 𝑍[𝑥] as 3 is not a unit in 𝑍. 

 (iii) Any non constant irreducible in 𝐷[𝑥], where 𝐷 is UFD, is primitive.  

 

Theorem 1.4.9 :  Let 𝐷 be a UFD. Let 𝑓(𝑥) ∈ 𝐷[𝑥] be a non constant polynomial.  

 Then, 𝑓(𝑥) = (𝑐) ∙ 𝑔(𝑥), where 𝑔(𝑥) is a primitive in 𝐷[𝑥]. The element 𝑐 is unique 

upto a unit factor in 𝐷 and the polynomial 𝑔(𝑥) is unique up to a unit factor in 𝐷.  

Proof : Let 𝑓(𝑥) = 𝑎 + +𝑎ଵ𝑥 + ⋯ + 𝑎𝑥,   (𝑎 ≠ 0) be a nonconstant polynomial in 𝐷[𝑥]. The coefficients 𝑎, 𝑎ଵ, … , 𝑎 in 𝐷 can be factored into a finite product of 

irreducible in 𝐷, uniquely upto order and associates. 

  Assume that each coefficient of 𝑓(𝑥) is factorized in this way. Let 𝑝 denote the 

irreducible in 𝐷 appearing in the factorization of one coefficient. If 𝑃 divides all 

coefficients, then 𝑝 will be in the factorization of all coefficients. Assume that no other 

associates of 𝑝 appears in the factorization of any coefficient of 𝑓(𝑥).  

 Define  𝑐 = ෑ 𝑝ఈ  

 where 𝛼 is the greatest integer such that 𝑝ఈ divides all the coefficients of 𝑓(𝑥).  

 In this case 𝑓(𝑥) = (𝑐) 𝑔(𝑥) where 𝑐 ∈ 𝐷 and 𝑔(𝑥) ∈ 𝐷[𝑥] is primitive by construction. 

Uniqueness :  

 Let if possible, 

     𝑓(𝑥) = (𝑐) 𝑔(𝑥)    and  

     𝑓(𝑥) = (𝑑) ℎ(𝑥)    in 𝐷[𝑥].  
 where 𝑔(𝑥) and ℎ(𝑥) are primitive in 𝐷[𝑥] and 𝑐, 𝑑 ∈ 𝐷.  

 Now,  (𝑐) 𝑔(𝑥) = (𝑑) ℎ(𝑥) implies each irreducible factor in 𝑐 must divide the 

irreducible factor in 𝑑 and conversely. 

 By cancelling the irreducible factors from 𝑐 and 𝑑, we get,  

     (𝑢) 𝑔(𝑥) = (𝑣) ℎ(𝑥)  

 where 𝑢 and 𝑣 are units in 𝐷.  
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 But this shows that 𝑐 is unique up to the unit factors and the primitive polynomial 𝑔(𝑥) 

is also unique up to unit factors. 

 

Theorem (Gauss) 1.4.10 : Let 𝐷 be UFD. 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐷[𝑥]  be primitive polynomials. 

Then 𝑓(𝑥) ∙ 𝑔(𝑥) is also primitive in 𝐷[𝑥]. 
Proof : Let 𝑓(𝑥) = 𝑎 + +𝑎ଵ𝑥 + ⋯ + 𝑎𝑥,   (𝑎 ≠ 0)  and  

    𝑔(𝑥) = 𝑏 + +𝑏ଵ𝑥 + ⋯ + 𝑏𝑥,   (𝑏 ≠ 0) 

 be two primitive polynomials in 𝐷[𝑥]. 
 Let   ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥). 

 Then, ℎ(𝑥) = (𝑎𝑏) + (𝑎ଵ𝑏 + 𝑎𝑏ଵ)𝑥 + ⋯ + ( )i j
i j k

a b
+ =
∑ 𝑥 + ⋯ + (𝑎𝑏)𝑥ା 

 Select any irreducible 𝑝 in 𝐷. 𝑓(𝑥) and 𝑔(𝑥) being primitive in 𝐷[𝑥], 𝑝 ∤ 𝑎 for some 𝑖 
and 𝑝 ∤ 𝑏 for some 𝑗. 

 Let 𝑎 be the first coefficient in 𝑓(𝑥) such that 𝑝 ∤ 𝑎.   ie. 𝑝/𝑎, 𝑝/𝑎ଵ,…, 𝑝/𝑎ିଵ. 

 Let 𝑏௦ be the first coefficient in 𝑔(𝑥) such that 𝑝 ∤ 𝑏௦.   ie. 𝑝/𝑏, 𝑝/𝑏ଵ, …, 𝑝/𝑏௦ିଵ. 

 The coefficient of 𝑥ା௦ in ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) is  

 = (𝑎𝑏ା௦ + 𝑎ଵ𝑏ା௦ିଵ + ⋯ + 𝑎ିଵ𝑏௦ାଵ) + 𝑎𝑏௦ + (𝑎ାଵ𝑏௦ିଵ + 𝑎ାଶ𝑏௦ିଶ + ⋯ +𝑎ା௦𝑏)  

 As 𝑝/𝑎, 𝑝/𝑎ଵ,…, 𝑝/𝑎ିଵ we get 

      𝑝/(𝑎𝑏ା௦ + 𝑎ଵ𝑏ା௦ିଵ + ⋯ + 𝑎ିଵ𝑏௦ାଵ). 

 Similarly,  𝑝/𝑏, 𝑝/𝑏ଵ, …, 𝑝/𝑏௦ିଵ will imply  

      𝑝/(𝑎ାଵ𝑏௦ିଵ + 𝑎ାଶ𝑏௦ିଶ + ⋯ + 𝑎ା௦𝑏). 

 But 𝑝 ∤ 𝑎 and 𝑝 ∤ 𝑏௦ imply 𝑝 ∤ 𝑎𝑏௦. (See result ****). 

 Hence, 𝑝 ∤ coefficient of  𝑥ା௦ in ℎ(𝑥). 

 Thus, we have proved that any irreducible 𝑝 ∈ 𝐷 will not divide all the coefficients of ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥). 

 Hence, ℎ(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) is a primitive polynomial in 𝐷[𝑥]. 
 

Generalization of the statement of Gauss’s theorem is as follows. 

Corollary 1.4.11: Let 𝐷 be UFD. The finite product of primitive polynomials in 𝐷[𝑥] is 

again a primitive polynomial.  

Proof : Let 𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓(𝑥) ∈ 𝐷[𝑥] be primitive polynomials. 
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 Let 𝑓(𝑥) = 𝑓ଵ(𝑥) ∙  𝑓ଶ(𝑥) ∙ … ∙ 𝑓(𝑥). 

 Then, 𝑓(𝑥) ∈ 𝐷[𝑥]. 
 We will prove the result by induction on ‘n’.  

 The result is true for 𝑛 = 2  by Gauss’s theorem. 

 Let the result be true for 𝑛 = 𝑟 say. 

 i.e. 𝑓ଵ(𝑥) ∙  𝑓ଶ(𝑥) ∙ … ∙ 𝑓(𝑥) is a primitive polynomials.  

 Consider 𝑓ଵ(𝑥) ∙  𝑓ଶ(𝑥) ∙ … ∙ 𝑓(𝑥) ∙ 𝑓ାଵ(𝑥) then this will be the product of two 

primitive polynomials ൫𝑓ଵ(𝑥) ∙  𝑓ଶ(𝑥) ∙ … ∙ 𝑓(𝑥)൯ and 𝑓ାଵ(𝑥), and hence a primitive 

polynomial in 𝐷[𝑥] by Gauss’s theorem. 

 By principle of mathematical induction, the result follows. 

 

1.5 Zero of the Polynomials : 

Definition 1.5.1 :  Let 𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎𝑥 be in 𝐹[𝑥] where 𝐹 is a field. If 𝑎 ∈ 𝐹 such that 𝑓(𝑎) = 𝑎 + 𝑎ଵ𝑎 + 𝑎ଶ𝑎ଶ + ⋯ + 𝑎𝑎 = 0 ( zero in 𝐹 ) then 𝑎 is called 

a zero of 𝑓(𝑥) in 𝐹. 

 

Example 1.5.2 :  Find all zeros of 𝑥ହ + 3𝑥ଷ + 𝑥ଶ + 2𝑥 in 𝑍ହ[𝑥]. 
Solution : Let 𝑓(𝑥) = 𝑥ହ + 3𝑥ଷ + 𝑥ଶ + 2𝑥 and 𝑍ହ = {0, 1, 2, 3,4}. 

 (i)  𝑓(0) = 0   ⟹   0 is a zero of 𝑓(𝑥). 

 (ii) 𝑓(1) = 1 + 3 + 1 + 2 = 1 ≠ 0   ⟹   1 is not a zero of 𝑓(𝑥) in 𝑍ହ. 

 (iii) 𝑓(2) = 4 ≠ 0   ⟹   2 is not a root of 𝑓(𝑥) in 𝑍ହ. 

 (iv) 𝑓(3) = 𝑓(−2) ≠ 0  

 (v) 𝑓(4) = 𝑓(−1) = −1 − 3 + 1 − 2 = 0 . Hence 4 is root of 𝑓(𝑥) in 𝑍ହ. 

 Thus, 𝑥 = 0 and 𝑥 = 4(= −1) are roots of 𝑓(𝑥) in 𝑍ହ. 

 

Definition 1.5.3 : Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥] where 𝐹 is a field. We say 𝑔(𝑥) is a factor of 𝑓(𝑥)      

if 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥]. 
 In this case we also say that 𝑔(𝑥) divides 𝑓(𝑥) in 𝐹[𝑥]. 
 

Example : 𝑥 + 1 is a factor of 𝑥ଶ + 1 in 𝑍ଶ[𝑥]. 
Solution :  
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 Thus,  

    𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥) ,   where  𝑞(𝑥) = 𝑥 + 1 ∈ 𝑍ଶ[𝑥] . 
 Hence, 𝑥 + 1 is a factor of 𝑥ଶ + 1 in 𝑍ଶ[𝑥]. 
 

Theorem 1.5.4 :  Let 𝐹 be a field. An element 𝑎 ∈ 𝐹 is a zero of 𝑓(𝑥) ∈ 𝐹[𝑥] iff 𝑥 − 𝑎 is a 

factor of 𝑓(𝑥) in 𝐹[𝑥]. 
Proof :  

Only if part :  

 Let 𝑎 ∈ 𝐹 be a zero of 𝑓(𝑥) ∈ 𝐹[𝑥]. 
 Hence, by definition 𝑓(𝑎) = 0. By division algorithm, ∃ 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that 

     𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥) + 𝑟(𝑥) ,   where deg 𝑟(𝑥) < 1. 

 Hence, 𝑟(𝑥) must be a constant polynomial in 𝐹[𝑥]. Let 𝑟(𝑥) = 𝑐, 𝑐 ∈ 𝐹.  

 Thus ,   𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥) + 𝑐. 

 Therefore,  𝑓(𝑎) = (𝑎 − 𝑎) ∙ 𝑞(𝑎) + 𝑐. 

 ⟹    0 = 0 + 𝑐    ⟹   𝑐 = 0  

 Hence,    𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥),   𝑞(𝑥) ∈ 𝐹[𝑥]. 
 This shows that (𝑥 − 𝑎) is a factor of 𝑓(𝑥).  

If part : 

 Let 𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑞(𝑥)    for some 𝑞(𝑥) ∈ 𝐹[𝑥]. 
 Then, 𝑓(𝑎) = (𝑎 − 𝑎) ∙ 𝑞(𝑎). 

 ⟹    𝑓(𝑎) = 0. 

 Hence, 𝑎 is a zero of 𝑓(𝑥). 

 

Theorem 1.5.5 :  Let 𝐹 be a field and let 𝑓(𝑥) ∈ 𝐹[𝑥]  be a non zero polynomial of degree 𝑛. 𝑓(𝑥) has at most 𝑛 roots in 𝐹. 

Proof : If 𝑓(𝑥) has no zero in 𝐹 then the result is obviously true.  
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 Let 𝑎ଵ ∈ 𝐹 be a zero of 𝑓(𝑥). Then by theorem 1.5.4, 

    𝑓(𝑥) = (𝑥 − 𝑎ଵ) 𝑞ଵ(𝑥) ,  where deg 𝑞ଵ(𝑥) = 𝑛 − 1. 

 If 𝑞ଵ(𝑥) has no zeros in 𝐹, then 𝑓(𝑥) has only one one zero in 𝐹 and in this case the 

result is true. 

 If 𝑎ଶ ∈ 𝐹 is a zero of 𝑞ଵ(𝑥),  then 

    𝑞ଵ(𝑥) = (𝑥 − 𝑎ଶ) 𝑞ଶ(𝑥) ,   where deg 𝑞ଶ(𝑥) = 𝑛 − 2. 

 Continuing in this way, we get, 

    𝑓(𝑥) = (𝑥 − 𝑎ଵ)(𝑥 − 𝑎ଶ) … (𝑥 − 𝑎)  𝑞(𝑥),    

 where 𝑞(𝑥) ∈ 𝐹[𝑥]  such that 𝑞(𝑥) has no zeros in 𝐹. 

 Clearly, 𝑟 ≤ 𝑛.  

Claim :  𝑏 ∈ 𝐹 such that 𝑏 ≠ 𝑎    ∀    𝑖, 1 ≤ 𝑖 ≤ 𝑛 will not be a zero of 𝑓(𝑥). 

 i.e.  no element of 𝐹 other than 𝑎 will be a zero of 𝑓(𝑥). 

    𝑓(𝑏) = (𝑏 − 𝑎ଵ)(𝑏 − 𝑎ଶ) … (𝑏 − 𝑎)  𝑞(𝑏), 

 As 𝑏 ≠ 𝑎 we get 𝑏 − 𝑎 ≠ 0    ∀    𝑖, 1 ≤ 𝑖 ≤ 𝑟.  

 𝑞(𝑏) ≠ 0 as 𝑞(𝑥) has no zero in 𝐹.  

 As 𝐹 is an integral domain (𝐹 being a field) we get, 

    (𝑏 − 𝑎ଵ)(𝑏 − 𝑎ଶ) … (𝑏 − 𝑎)  𝑞(𝑏) ≠ 0 

 i.e.   𝑓(𝑏) ≠ 0. 

 Hence, no element 𝑏 ∈ 𝐹 other than 𝑎 will be a zero of 𝑓(𝑥).  

 Thus,  𝑎ଵ, 𝑎ଶ, … , 𝑎  (𝑟 ≤ 𝑛) are the only zeros of 𝑓(𝑥).  

 Hence 𝑓(𝑥) has at most 𝑛 zeros in 𝐹. 

 

1.5.6 Example  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Ex 1 : Consider the polynomial 

     𝑓(𝑥) = 𝑥ସ + 3𝑥ଷ + 2𝑥 + 4  

 in 𝑍ହ[𝑥]. 
 As    𝑓(1) = 1 ⨁ହ 3 ⨁ହ 2 ⨁ହ 4 = 0   in 𝑍ହ,  

 we  get,   1 ∈ 𝑍ହ   is a root of 𝑓(𝑥). 

 Hence,  𝑓(𝑥) = (𝑥 − 1) ∙ 𝑞ଵ(𝑥)             . . . (1)  
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 To find 𝒒𝟏(𝒙) :  

  
 Hence, 𝑞ଵ(𝑥) = 𝑥ଷ + 4𝑥ଶ + 4𝑥 + 1  

 Again  𝑞ଵ(1) = 0 in 𝑍ହ. 

 Hence, 1 is a zero of 𝑞ଵ(𝑥) ∈ 𝑍ହ(𝑥). 

 Hence,  𝑞ଵ(𝑥) = (𝑥 − 1) 𝑞ଶ(𝑥)            . . . (2) 

 

To find 𝒒𝟐(𝒙) :  

  
 Thus,  𝑞ଶ(𝑥) = 𝑥ଶ + 4  

 Again  𝑞ଶ(1) = 0. 

 Hence, 1 ∈ 𝑍ହ is a zero of 𝑞ଶ(𝑥) ∈ 𝑍ହ(𝑥). 

 Hence,  𝑞ଶ(𝑥) = (𝑥 − 1) 𝑞ଷ(𝑥)            . . . (3) 
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To find 𝒒𝟑(𝒙) :  

  
 Thus,  𝑞ଷ(𝑥) = 𝑥 + 1  

 Thus, from (1), (2) and (3), we get 

    𝑓(𝑥) = (𝑥 − 1)(𝑥 − 1)(𝑥 − 1)(𝑥 + 1) 

        = (𝑥 − 1)ଷ ∙ (𝑥 + 1). 

 

Ex 2 :  Let 𝑓(𝑥) and 𝑔(𝑥) be in 𝑍ହ[𝑥] , where 

    𝑓(𝑥) = 4𝑥ଷ + 4𝑥ଶ + 3𝑥 + 3   and  

    𝑔(𝑥) = 4𝑥ଶ + 3.   

 Show that 𝑔(𝑥) is a factor of 𝑓(𝑥) in 𝑍ହ[𝑥] (or 𝑔(𝑥) divides 𝑓(𝑥) in 𝑍ହ[𝑥] ). 
Solution :   

  
 Thus,  𝑓(𝑥) = 𝑔(𝑥) ∙ (𝑥 + 1)  

 This shows that 𝑔(𝑥) is a factor of 𝑓(𝑥). 

 

Ex 3 :  Find all the zeros of the following polynomial 𝑓(𝑥) = 𝑥ଷ + 2𝑥 + 3 in 𝑍ହ[𝑥]. 
Solution :   𝑓(1) ≠ 0. Hence 1 is not a zero of 𝑓(𝑥). 

   𝑓(−1) = 0. Hence −1 is a zero of 𝑓(𝑥) in 𝑍ହ. 

 i.e. 4 is a zero of 𝑓(𝑥). 

 ∴  (𝑥 − 4) is a factor of 𝑓(𝑥) in 𝑍ହ[𝑥]. 
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 ∴  𝑓(𝑥) = (𝑥 + 1) ∙ (𝑥ଶ + 4𝑥 + 3). 

 Let 𝑞ଵ(𝑥) = 𝑥ଶ + 4𝑥 + 3. 

 Again 𝑞ଵ(−1) = 0. Hence -1 is a root of 𝑞ଵ(𝑥) and hence 𝑓(𝑥) in 𝑍ହ[𝑥]. 

 
 Thus, 𝑓(𝑥) = (𝑥 + 1)(𝑥 + 1) ∙ (𝑥 + 3). 

 Hence, -1 and -3 are zeros of 𝑓(𝑥) in 𝑍ହ. 

 i.e. 4 and 2 are zeros of 𝑓(𝑥) in 𝑍ହ. 

 [Since additive inverse of 1 in 𝑍ହ is 4 and additive inverse of 3 in 𝑍ହ is 2 ]. 

 

Ex 4 :  Show that the polynomial 𝑓(𝑥) = 𝑥ସ + 4 can be factorized into linear factors in 𝑍ହ[𝑥]. 
Solution :  Let 𝑓(𝑥) = 𝑥ସ + 4. Then 𝑓(1) = 0 in 𝑍ହ.  

 Hence, 1 ∈ 𝑍ହ is a zero of 𝑓(𝑥). 
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 Thus,  𝑓(𝑥) = (𝑥 − 1)(𝑥ଷ + 𝑥ଶ + 𝑥 + 1)          . . . (1)  

 Let 𝑞ଵ(𝑥) = 𝑥ଷ + 𝑥ଶ + 𝑥 + 1. 

 Then, 𝑞ଵ(𝑥) ∈ 𝑍ହ[𝑥] and  𝑞ଵ(−1) = 0 i.e. 𝑞(4) = 0. 

  Hence, (𝑥 − 4) = (𝑥 + 1) ∈ 𝑍ହ[𝑥] is a factor of 𝑞ଵ(𝑥). 

 
 Thus, 𝑓(𝑥) = (𝑥 − 1)(𝑥 + 1) ∙ (𝑥ଶ + 1). 

 Let 𝑞ଶ(𝑥) = 𝑥ଶ + 1,  𝑞ଶ(𝑥) ∈ 𝑍ହ[𝑥]  and  𝑞ଶ(2) = 0.  

 Hence, 2 is a zero of 𝑞ଶ(𝑥). 

 
 Thus, 𝑓(𝑥) = (𝑥 − 1)(𝑥 + 1)(𝑥 − 2)(𝑥 + 2). 
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1.6 Irreducible Polynomials in R[x] : 

Throughout 𝑅 denotes an integral domain with unity. 

Definition 1.6.1:  Let 𝑓(𝑥) ∈ 𝑅[𝑥] and deg 𝑓(𝑥) ≥ 1. 𝑓(𝑥) is said to be irreducible 

polynomial over 𝑅, if it cannot be expressed as a product of two polynomials 𝑔(𝑥) and ℎ(𝑥) ∈ 𝑅[𝑥] such that 

    0 < deg 𝑔(𝑥) < deg 𝑓(𝑥)  and   0 < deg ℎ(𝑥) < deg 𝑓(𝑥). 

 

1.6.2 Remarks:   

 (i) If 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) and if 𝑓(𝑥) ∈ 𝑅[𝑥] is irreducible, then deg 𝑓(𝑥) = 0 or deg ℎ(𝑥) = 0. 

 (ii) A polynomial of positive degree which is not irreducible is said to be reducible. 

 (iii) The polynomial (𝑥ଶ + 1) ∈ 𝑍[𝑥] is irreducible over 𝑍 but it is reducible over ℂ as (𝑥ଶ + 1) ∈ ℂ[𝑥] and (𝑥ଶ + 1) = (𝑥 + 𝑖)(𝑥 − 𝑖). 

 (iv) Any polynomial of degree 1 over 𝑅 is irreducible over 𝑅. 

 (v) The units in 𝑅 and  𝑅[𝑥] are the same. 

 

Theorem 1.6.3 :  Every irreducible polynomial in 𝑅[𝑥] is an irreducible element in 𝑅[𝑥]. 
Proof : Let 𝑓(𝑥) ∈ 𝑅[𝑥] be an irreducible element in 𝑅[𝑥]. 
 To prove that 𝑓(𝑥) is an irreducible polynomial in 𝑅[𝑥]. 
 Let, if possible, 𝑓(𝑥) be reducible over 𝑅.  

 Let   𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥),    where  𝑔(𝑥), ℎ(𝑥) ∈ 𝑅[𝑥]    

 with    0 < deg 𝑔(𝑥) < deg 𝑓(𝑥)   and  

    0 < deg ℎ(𝑥) < deg 𝑓(𝑥). 

 As  deg 𝑔(𝑥) > 0  and  deg ℎ(𝑥) > 0, 𝑔(𝑥) and ℎ(𝑥) are not constant polynomials 

and 𝑔(𝑥), ℎ(𝑥) ∉ 𝑅. Hence they are not units in 𝑅.  

 By lemma, 𝑓(𝑥) and 𝑔(𝑥) are not units in 𝑅[𝑥]. Hence 𝑓(𝑥) is not an irreducible 

element in 𝑅[𝑥].  
 Thus, 𝑓(𝑥) is not an irreducible polynomial. 

 ⟹ 𝑓(𝑥) is not an irreducible element.  

 This shows that irreducible element in 𝑅[𝑥] is an irreducible polynomial in 𝑅[𝑥]. 
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Remark 1.6.4 : Converse of the above theorem need not be true. 

 i.e. Irreducible polynomial in 𝑅[𝑥] need not be an irreducible element in 𝑅[𝑥]. 
 Consider, the polynomial 3𝑥ଶ + 3 ∈ 𝑍[𝑥].  
 Then 3𝑥ଶ + 3 is an irreducible polynomial in 𝑍[𝑥]. 
 But   3𝑥ଶ + 3 = 3(𝑥ଶ + 1)  

         = Product of two polynomials in 𝑍[𝑥] which are non units in 𝑍[𝑥]. 
 (Since the units in 𝑍[𝑥] are the units in 𝑍 which are 1 and -1). 

 Thus, 3𝑥ଶ + 3 is expressed as a product of two non zero, non unit polynomials in 𝑍[𝑥]. 
Hence, 3𝑥ଶ + 3 is not an irreducible element in 𝑍[𝑥]. 

 

Remark 1.6.5 : Primitive polynomial 𝑓(𝑥) ∈ 𝑅[𝑥] may be reducible or irreducible over 𝑅. 

Example : 𝑓(𝑥) = 𝑥ଶ − 3𝑥 + 2 ∈ 𝑍[𝑥] is a primitive and reducible as 

   𝑥ଶ − 3𝑥 + 2 = (𝑥 − 2)(𝑥 − 1) but 𝑓(𝑥) = 𝑥ଶ − 2 ∈ 𝑍[𝑥] is a primitive and 

irreducible over 𝑍. 

 

Theorem 1.6.6 :  Let 𝑅 be UFD and 𝑓(𝑥) ∈ 𝑅[𝑥]. 𝑓(𝑥) is an irreducible element in 𝑅[𝑥] iff 
either 𝑓 is an irreducible element of 𝑅 or 𝑓 is an irreducible primitive polynomial in 𝑅[𝑥]. 

Proof :  

Only if part :  

 Let 𝑓(𝑥) ∈ 𝑅[𝑥] be an irreducible element of 𝑅[𝑥]. If 𝑓 ∈ 𝑅, then 𝑓 will be a constant 

polynomial and it will be an irreducible element in 𝑅.  

 Hence, if 𝑓 ∉ 𝑅, we have to prove that 𝑓(𝑥) is irreducible over 𝑅 and 𝑓(𝑥) is a primitive 

polynomial. 

(i) To prove 𝑓(𝑥) is irreducible over 𝑅. 

 Let 𝑓(𝑥) be reducible over 𝑅.  

 Let 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥);   𝑔(𝑥), ℎ(𝑥) ∈ 𝑅[𝑥].  
 As 𝑓(𝑥) is an irreducible element in 𝑅[𝑥] either 𝑔(𝑥) or ℎ(𝑥) must be unit in 𝑅[𝑥].  
 As units in 𝑅 and 𝑅[𝑥] are the same, either 𝑔(𝑥) or ℎ(𝑥) is a unit in 𝑅.  

 Hence, deg 𝑔(𝑥) = 0 or deg ℎ(𝑥) = 0 (being constant polynomial in 𝑅[𝑥] ). 
 But this in turn shows that 𝑓(𝑥) is an irreducible polynomial in 𝑅[𝑥]. 
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(ii) Let 𝑓(𝑥) = 𝑐 𝑓ଵ(𝑥) where 𝑐 = content of 𝑓(𝑥) and 𝑓ଵ(𝑥) is a primitive polynomial in 𝑅[𝑥].  
 As deg 𝑓(𝑥) = deg 𝑓ଵ(𝑥), we get deg 𝑓ଵ(𝑥) ≥ 1 and hence 𝑓ଵ(𝑥) ∉ 𝑅.  

 Hence, 𝑓ଵ(𝑥) is not a unit in 𝑅[𝑥] and 𝑐 is a unit in 𝑅.  

 Hence, 𝑓(𝑥) is a primitive polynomial in 𝑅[𝑥]. 
 Thus, if a non constant polynomial 𝑓(𝑥) ∈ 𝑅[𝑥] is an irreducible element in 𝑅[𝑥] then it 

is an irreducible, primitive polynomial in 𝑅[𝑥]. 
If part : 

 Let 𝑓(𝑥) ∈ 𝑅[𝑥].  
 If 𝑓(𝑥) is an irreducible element in 𝑅[𝑥] then 𝑓(𝑥) is an irreducible polynomial in 𝑅[𝑥] 

(See theorem 1.6.3). 

 Let 𝑓(𝑥) ∈ 𝑅[𝑥] be primitive irreducible polynomial in 𝑅[𝑥]. 
 To prove that 𝑓(𝑥) is an irreducible element in 𝑅[𝑥]. 
 Let  𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥)  for some  𝑔(𝑥), ℎ(𝑥) ∈ 𝑅[𝑥]. 
 As 𝑓(𝑥) is an irreducible polynomial, 

    deg 𝑔(𝑥) = 0  or   deg ℎ(𝑥) = 0  

 Let deg 𝑔(𝑥) = 0. Then 𝑔(𝑥) is a constant polynomial in 𝑅[𝑥]. Let 𝑔(𝑥) = 𝑏. 

 Hence, 𝑔(𝑥) ∈ 𝑅. 

 Now, 𝑐 (𝑓) = 𝑐 (𝑔ℎ) = 𝑐(𝑔) ∙ 𝑐(ℎ). 

 𝑓 is primitive  ⟹    𝑐 (𝑓) = unit in 𝑅. 

 Hence, 𝑔(𝑥) is unit in 𝑅[𝑥]. 
 Thus , 

   𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) ⟹   𝑔(𝑥) is unit in 𝑅[𝑥].  
 This in turn shows that 𝑓(𝑥) is an irreducible element in 𝑅[𝑥]. 
  

Theorem 1.6.7 : Let 𝑅 be UFD. Let 𝑝(𝑥) ∈ 𝑅[𝑥] be a primitive polynomial in 𝑅[𝑥]. 𝑝(𝑥) 

can be factored in a unique way as a product of irreducible elements in 𝑅[𝑥].  
Proof : Let 𝐹 be a field of quotients of 𝑅. Then 𝐹[𝑥] is an Euclidean domain. 

 Hence, 𝐹[𝑥] is a PID and therefore 𝐹[𝑥] is UFD .  

(i) To prove that 𝑝(𝑥) ∈ 𝑅[𝑥] can be factored as a product of irreducible elements in 𝑅[𝑥]. 
 𝑝(𝑥) ∈ 𝑅[𝑥]  ⟹ 𝑝(𝑥) ∈ 𝐹[𝑥]. 
 As 𝐹[𝑥] is UFD, we can write  
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     𝑝(𝑥) = 𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥)  

 where 𝑝(𝑥) ∈ 𝐹[𝑥] and 𝑝(𝑥) is an irreducible polynomial in 𝐹[𝑥]  
 for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

  𝑝(𝑥) ∈ 𝐹[𝑥] ⟹  𝑝(𝑥) = 
ଵ  𝑓[𝑥] ,  where 𝑎 ∈ 𝑅 and  𝑓(𝑥) ∈ 𝑅[𝑥]. 

 Further, 𝑝(𝑥) is an irreducible polynomial in 𝐹[𝑥] ⟹ 𝑝(𝑥) is an irreducible element in 𝐹[𝑥].  
 ⟹  𝑓(𝑥) is an irreducible element in 𝐹[𝑥] for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 Now, 

   𝑝(𝑥) = 
ଵ  𝑓[𝑥] 

     = 
ଵ  [𝑐 𝑓∗(𝑥)]     

 where 𝑐 = 𝑐(𝑓) = constant of 𝑓 and 𝑓∗(𝑥) is a primitive polynomial in 𝑅[𝑥]. 
   𝑝(𝑥) = 

  𝑓∗(𝑥) ,     ∀    𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 Thus, 𝑝(𝑥) = 
భ మ … భ మ …   𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥) 

 Hence,  (𝑎ଵ 𝑎ଶ  … 𝑎) 𝑝(𝑥) = (𝑐ଵ 𝑐ଶ  … 𝑐) 𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥).  

 As each 𝑝(𝑥) is an irreducible polynomial in 𝐹[𝑥], we get 𝑓∗(𝑥) is also an irreducible 

polynomial and hence irreducible element in 𝐹[𝑥].  
 Thus, 𝑓∗(𝑥) is an irreducible element in 𝑅[𝑥]. 
 Equating the content on both sides, we get, 𝑎ଵ 𝑎ଶ  … 𝑎 = (𝑐ଵ 𝑐ଶ  … 𝑐) 𝑢, where 𝑢 is a 

unit in 𝑅. 

 Hence, 

  𝑝(𝑥) = 𝑢ିଵ[𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥)] 
      = [𝑢ିଵ𝑓ଵ∗(𝑥)] 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥) 

      = Product of irreducible elements in 𝑅[𝑥]. 
 This shows that 𝑝(𝑥) ∈ 𝑅[𝑥] is factored into a product of irreducible elements in 𝑅[𝑥]. 
(ii) Uniqueness : 

 Let  𝑝(𝑥) = 𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥)  

 and  𝑝(𝑥) = 𝑟ଵ(𝑥) 𝑟ଶ(𝑥) … 𝑟(𝑥)  

 be two factorization of 𝑝(𝑥) as a product of irreducible elements in 𝑅[𝑥].  
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 As 𝑅 is a UFD, the number 𝑛 will remain the same as 𝐹[𝑥] is a UFD, 𝑟(𝑥) is uniquely 

determined upto associates in 𝐹[𝑥].  
 Hence,  𝑟(𝑥) = 𝑢 𝑓∗(𝑥),    where 𝑢 is a unit in 𝐹. 

 Hence,  𝑢 = 
 ,      for some 𝑎, 𝑏 ∈ 𝑅,   ∀    𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 Thus, 

   𝑟(𝑥) = 
  𝑓∗(𝑥)      ∀    𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 Hence, 𝑏 𝑟(𝑥) = 𝑎 𝑓∗(𝑥)      ∀    𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 As 𝑟(𝑥) and  𝑓∗(𝑥) are primitive polynomials, equating the contents on both sides we 

get 𝑏  = 𝑣 𝑎 where 𝑣 is a unit in 𝑅.  

 Hence, 𝑟(𝑥) is associate of 𝑓ଵ∗(𝑥) in 𝑅[𝑥].  
 Thus the uniqueness follows. 

 

Theorem 1.6.8 : 𝑅 is UFD   ⟹ 𝑅[𝑥] is UFD. 

Proof :  Let 𝑓(𝑥) ∈ 𝑅[𝑥] be a non zero non unit element in 𝑅[𝑥].  
 Let 𝑓(𝑥) = 𝑐 𝑝(𝑥)  where 𝑐 = content of 𝑓 and 𝑝(𝑥) is a primitive polynomial in 𝑥. 

 By theorem 1.6.7,  

    𝑝(𝑥) = 𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥) 

 where 𝑓∗(𝑥) is an irreducible element in 𝑅[𝑥] and this representation is unique up to 

associates. 

 Also 𝑐 ∈ 𝑅 and 𝑅 is UFD imply  

 (i)  𝑐 is unit in 𝑅  or  

 (ii) 𝑐 can be expressed as 𝑐 = 𝑐ଵ 𝑐ଶ … 𝑐 where 𝑐 are irreducible elements in 𝑅,   ∀ 𝑟, 
   1 ≤ 𝑟 ≤ 𝑘 

Case (i) : 𝑐 is a unit in 𝑅. 

 Then, 𝑓(𝑥) = 𝑐 𝑝(𝑥) 

       = 𝑐 [𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥)]  
       = 𝑐 [𝑓ଵ∗(𝑥)][ 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥)]  
       = Finite product of irreducible elements in 𝑅[𝑥] and the representation is 

unique upto associates. 

Case (ii) : 𝑐 is non unit. 

 Then  𝑐 = 𝑐ଵ 𝑐ଶ … 𝑐 where each 𝑐 is an irreducible elements in 𝑅.  
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 As 𝑐 is an irreducible element in 𝑅, 𝑐 is an irreducible element in 𝑅[𝑥]. 
 Thus, 𝑓(𝑥) = 𝑐ଵ 𝑐ଶ … 𝑐 𝑓ଵ∗(𝑥) 𝑓ଶ∗(𝑥) … 𝑓∗(𝑥) 

       = Finite product of irreducible elements in 𝑅[𝑥] and the representation is 

unique upto associates. 

 Thus, from case (i) and case (ii), we get 𝑅[𝑥] is UFD. 

 

1.6.9 Example : 𝑍[𝑥] is UFD as 𝑍 is UFD. 𝑍[𝑥] is UFD but not PID. 

  [ If 𝑍[𝑥] is PID then 𝑍 must be a field which is not so.] 

 

Now onwards 𝐹 denotes a field. 

1.6.10 Remarks :  

 (i) Let𝑓(𝑥) ∈ 𝐹[𝑥] be irreducible over 𝐹. But note that, at the same time it may be 

reducible over the field 𝐸. (𝐸 ⊇ 𝐹). 

 (ii) Any polynomial of degree 1 in 𝐹[𝑥] is irreducible over 𝐹. 

 

Example 1.6.11 : 𝑥ଷ − 3 ∈ 𝑄[𝑥] is irreducible over 𝑄.  

 But it is reducible over ℝ where 𝑄 = the field of quotients and ℝ = the field of reals. 

 

For the polynomials of degree 2 or 3 particularly we have 

Theorem 1.6.12 :  Let 𝐹 be a field and 𝑓(𝑥) ∈ 𝐹[𝑥]. Let deg 𝑓(𝑥) = 2 or 3. Then 𝑓(𝑥) is 

reducible over 𝐹 if and only if 𝑓(𝑥) has a zero in 𝐹. 

Proof :   

Only if part : 

 Let 𝑓 be reducible over 𝐹.  

 Then   𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥)  

 where  𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥] , deg 𝑔(𝑥) <  deg 𝑓(𝑥) and deg ℎ(𝑥) <  deg 𝑓(𝑥). 

   𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥)  

 ⟹  deg 𝑓(𝑥) = deg 𝑔(𝑥) + deg ℎ(𝑥)        [∵ 𝐹 is an integral domain] 

 As  deg 𝑓(𝑥) = 2/3, the deg 𝑔(𝑥) = 1 or deg ℎ(𝑥) = 1. 

 Thus, let us assume that deg 𝑔(𝑥) = 1.  

 Then, 𝑔(𝑥) = 𝑥 − 𝑎 say, for some 𝑎 ∈ 𝐹.  
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 But then  𝑓(𝑥) = (𝑥 − 𝑎) ∙ ℎ(𝑥)  ⟹  𝑓(𝑎) = 0 and hence 𝑎 ∈ 𝐹 will be a zero of 𝑓(𝑥) ∈ 𝐹[𝑥]. 
If part : 

 Let 𝑓(𝑥) ∈ 𝐹[𝑥] has a zero in 𝐹 say ′𝑎′. Then (𝑥 − 𝑎) is a factor of 𝑓(𝑥). 

 Hence,  𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑔(𝑥).  

 Hence, deg 𝑓 = deg(𝑥 − 𝑎) + deg 𝑔(𝑥) 

 where  deg 𝑔(𝑥) = 2 < deg 𝑓(𝑥) = 1 + deg 𝑔(𝑥) ,   if deg 𝑓(𝑥) = 3 

 or   deg 𝑔(𝑥) = 1 < deg 𝑓(𝑥) ,       if deg 𝑓(𝑥) = 2. 

 Hence, 𝑓(𝑥) ∈ 𝐹[𝑥] is a reducible polynomial over the field 𝐹. 

 

More generally we get  

Theorem 1.6.13:  Let 𝑓(𝑥) ∈ 𝐹[𝑥] be any polynomial of degree > 1. If 𝑎 ∈ 𝐹 is a zero of 𝑓(𝑥) in 𝐹, then 𝑓(𝑥) is reducible over 𝐹. 

Proof :  (As 𝑓(𝑥) and (𝑥 − 𝑎) are in 𝐹[𝑥] ) By division algorithm, we get, 

    𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑔(𝑥) + 𝑟(𝑥) 

 where  𝑟(𝑥) = 0 or deg 𝑟(𝑥) < deg 𝑓(𝑥). 

    𝑓(𝑎) = 0 + 𝑟(𝑥)  ⟹  0 = 𝑟(𝑎).   … as  𝑎 is a zero of 𝑓(𝑥), 𝑓(𝑎) = 0. 

 Thus,  𝑓(𝑥) = (𝑥 − 𝑎) ∙ 𝑔(𝑥). 

 Therefore,  

     deg 𝑓(𝑥) = deg(𝑥 − 𝑎) + deg 𝑔(𝑥)   

 Therefore, deg 𝑔(𝑥) = deg  𝑓(𝑥) − 1 > 0. 

 This shows that 𝑓(𝑥) is reducible. 

 

We know that every ideal in 𝐹[𝑥] is a principle ideal. (Being an Euclidean domain, 𝐹[𝑥] is 

PID.) Using this fact we prove 

Theorem 1.6.14:  If 𝐹 is a field, then the ideal 〈𝑝(𝑥)〉 ≠ {0} of 𝐹[𝑥] is maximal iff 𝑝(𝑥) is 

irreducible over 𝐹. 

Proof :  

Only if part : 

 Let 〈𝑝(𝑥)〉 ≠ {0} be a maximal ideal in 𝐹[𝑥].  
 To prove that 𝑝(𝑥) is irreducible over 𝐹. Let if possible 𝑝(𝑥) be reducible. 

 Hence, ∃ 𝑔(𝑥) and ℎ(𝑥) in 𝐹[𝑥] such that 𝑝(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) where 
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    0 < deg 𝑔(𝑥) < deg 𝑝(𝑥)  

 and  0 < deg  ℎ(𝑥) < deg  𝑝(𝑥). 

 Now, 𝑝(𝑥) ∈ 〈𝑝(𝑥)〉   ⟹  𝑔(𝑥) ∙ ℎ(𝑥) ∈ 〈𝑝(𝑥)〉. 
 As 〈𝑝(𝑥)〉 is a maximal ideal in 𝐹[𝑥], it is a prime ideal in 𝐹[𝑥] 
 Hence, either 𝑔(𝑥) ∈ 〈𝑝(𝑥)〉 or ℎ(𝑥) ∈ 〈𝑝(𝑥)〉.  
 But then 𝑔(𝑥) = 𝑝(𝑥) ∙ 𝑞ଵ(𝑥) or ℎ(𝑥) = 𝑝(𝑥) ∙ 𝑞ଶ(𝑥), for some 𝑞ଵ(𝑥), 𝑞ଶ(𝑥) ∈ 𝐹[𝑥].  
 But then we can’t have deg 𝑔(𝑥) or deg ℎ(𝑥) less than the deg 𝑝(𝑥).  

 Hence our assumption is wrong i.e. 𝑝(𝑥) is irreducible. 

If part : 

 Let 𝑝(𝑥) be irreducible polynomial in 𝐹[𝑥].  
 To prove that 〈𝑝(𝑥)〉 is maximal. 

 Let 𝐴 be an ideal in 𝐹[𝑥] such that 〈𝑝(𝑥)〉 ⊆ 𝐴 ⊆ 𝐹[𝑥]. As 𝐹[𝑥] is PID, 𝐴 = 〈𝑓(𝑥)〉 for 

some 𝑓(𝑥) ∈ 𝐹[𝑥]. 
 As 𝑝(𝑥) ∈ 〈𝑝(𝑥)〉 we get 𝑝(𝑥) ∈ 〈𝑓(𝑥)〉.  
 Hence 𝑝(𝑥) = 𝑓(𝑥) ∙ 𝑔(𝑥) ,    for some 𝑔(𝑥) ∈ 𝐹[𝑥]. 
 As 𝑝(𝑥) is irreducible, we get  

   deg 𝑔(𝑥) = 0  or   deg 𝑓(𝑥) = 0 

Case 1 : deg 𝑔(𝑥) = 0 

 Then, 𝑔(𝑥) is a constant polynomial in 𝐹[𝑥]. 
 Let  𝑔(𝑥) = 𝑐   for some 𝑐 ∈ 𝐹 

 Then,  𝑝(𝑥) = 𝑓(𝑥) ∙ 𝑐  implies  𝑓(𝑥) = 𝑐ିଵ ∙ 𝑝(𝑥). 

 [ 𝑐ିଵ exists in 𝐹 as 𝑐 is a non zero element in 𝐹. ] 

 Hence,  𝑓(𝑥) = 𝑐ିଵ ∙ 𝑝(𝑥) implies 𝑔(𝑥) ∈ 〈𝑝(𝑥)〉 and hence 𝐴 = 〈𝑔(𝑥)〉 = 〈𝑝(𝑥)〉. 
Case 2 : deg 𝑓(𝑥) = 0 

 Then, 𝑓(𝑥) is a non zero constant polynomial in 𝐹[𝑥].  
 Hence, 𝑓(𝑥) is a non zero element in 𝐹 and hence 𝑓(𝑥) is a unit in 𝐹. 

 But then 〈𝑓(𝑥)〉 = 𝐴 = 𝐹[𝑥]. This shows that there exists no proper ideal 𝐴 in 𝐹[𝑥] such 

that 〈𝑝(𝑥)〉 ⊂ 𝐴 ⊂ 𝐹[𝑥]. 
 Hence, 〈𝑝(𝑥)〉 is a maximal ideal in 𝐹[𝑥]. 
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1.6.15 Examples : 

(i) 𝑥ଶ − 3 ∈ 𝑄[𝑥] is an irreducible polynomial. Hence 〈𝑥ଶ − 3〉 in 𝑄[𝑥] is a maximal ideal 

in 𝐹[𝑥] and hence 
ொ[௫]௫మିଷ is a field.  

(ii) 
ொ[௫]ூ  where 𝐼 = 〈𝑥ଶ − 5𝑥 + 6〉 is not a field as 𝑥ଶ − 5𝑥 + 6 = (𝑥 − 2)(𝑥 − 3) shows 

that 𝑥ଶ − 5𝑥 + 6 is a reducible polynomial in 𝑄[𝑥] and hence 𝐼 is not a maximal ideal in 𝑄[𝑥].  
 

 If 𝑅 is an integral domain with unity then every irreducible element in 𝑅[𝑥] is an 

irreducible polynomial in 𝑅[𝑥] (See Theorem 1.6.3). The converse need not be true. But it is 

true if 𝑅 is a field. 

Theorem 1.6.16: Let 𝐹 be a field. 𝑓(𝑥) ∈ 𝐹[𝑥] is an irreducible polynomial in 𝐹[𝑥] iff 𝑓(𝑥) 

is an irreducible element in 𝐹[𝑥]. 
Proof : 

Only if part : 

 Let 𝑓(𝑥) ∈ 𝐹[𝑥] be irreducible polynomial in 𝐹[𝑥].  
 Let 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) for 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥].  
 𝑓 being irreducible, either deg 𝑔(𝑥) = 0 or deg ℎ(𝑥) = 0. 

 Suppose, deg 𝑔(𝑥) = 0. Then 𝑔(𝑥) is a constant polynomial in 𝐹[𝑥].  
 Let 𝑔(𝑥) = 𝑎 (𝑎 ∈ 𝑅).  

 Then 𝑎 ≠ 0 and 𝑎 ∈ 𝐹.  

 Hence, 𝑎ିଵ exists in 𝐹. But this shows 𝑔(𝑥) = 𝑎 is a unit in 𝐹[𝑥]. 
 Hence, 𝑓(𝑥) is an irreducible element in 𝐹[𝑥]. 
If part : 

 Let 𝑓(𝑥) ∈ 𝐹[𝑥] be an irreducible element in 𝐹[𝑥].  
 Then every field being an integral domain with unity, the result follows by Theorem 

2.6.3 in 5. [ Every irreducible element in 𝑅[𝑥] is an irreducible polynomial in 𝑅[𝑥]. ] 
 

Theorem 1.6.17 :  Let 𝐷 be UFD and let 𝐹 be a field of quotients of 𝐷. Let 𝑓(𝑥) ∈ 𝐷[𝑥] 
where degree of 𝑓(𝑥) > 0. Then  

 (i)  𝑓(𝑥) is irreducible in 𝐷[𝑥]  ⟹  𝑓(𝑥) is irreducible in 𝐹[𝑥]. 
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 (ii)  𝑓(𝑥) is primitive in 𝐷[𝑥] and 𝑓(𝑥) is irreducible in 𝐹[𝑥]  ⟹  𝑓(𝑥) is irreducible 

in 𝐷[𝑥]. 
Proof :   

(i) Degree of 𝑓(𝑥) > 0 ⟹  𝑓(𝑥) is non constant polynomial in 𝐷[𝑥]. 
 Let 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥), where 𝑔(𝑥) and ℎ(𝑥) are polynomials of lower degree in 𝐹[𝑥]. 
 As 𝐹 is a field of quotients of 𝐷, the coefficients in 𝑔(𝑥) and ℎ(𝑥) are of the form 

 for 

some 𝑎, 𝑏 ∈ 𝐷. By clearing the denominators we get   

     (𝑑) 𝑓(𝑥) = 𝑔ଵ(𝑥) ℎଵ(𝑥)             . . . (1) 

 where 𝑑 ∈ 𝐷 and 𝑔ଵ(𝑥), ℎଵ(𝑥) ∈ 𝐷[𝑥] such that  

     degree of 𝑔ଵ(𝑥)  =  degree of 𝑔(𝑥)    and  

     degree of ℎଵ(𝑥)  =  degree of ℎ(𝑥). 

 Now, by theorem 1, 𝑓(𝑥) = (𝑐) ∙ 𝑝(𝑥), 𝑔ଵ(𝑥) = (𝑐ଵ) ∙ 𝑝ଵ(𝑥) and ℎଵ(𝑥) = (𝑐ଶ) ∙ 𝑝ଶ(𝑥) 

where 𝑐, 𝑐ଵ, 𝑐ଶ ∈ 𝐷 and 𝑝(𝑥), 𝑝ଵ(𝑥), 𝑝ଶ(𝑥) ∈ 𝐷[𝑥] are primitive polynomials in 𝐷[𝑥]. 
 Thus, from (1), we get, 

     (𝑑𝑐) 𝑝(𝑥) = (𝑐ଵ 𝑐ଶ) 𝑝ଵ(𝑥) 𝑝ଶ(𝑥)          . . . (2) 

 By theorem 1.4.10, the product 𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) is also a primitive polynomials in 𝐷[𝑥]. 
But then 𝑐ଵ 𝑐ଶ = (𝑑𝑐) 𝑢 for some unit 𝑢 in 𝐷. 

 Hence, from (2), we get, 

    (𝑑𝑐) 𝑝(𝑥) = (𝑑𝑐𝑢) 𝑝ଵ(𝑥) 𝑝ଶ(𝑥)   

 Hence,   (𝑐) 𝑝(𝑥) = (𝑐𝑢) 𝑝ଵ(𝑥) 𝑝ଶ(𝑥)  

 i.e.   𝑓(𝑥) = (𝑐𝑢) 𝑝ଵ(𝑥) 𝑝ଶ(𝑥) 

 This shows that 𝑓(𝑥) has a factorization in 𝐷[𝑥]. 
 Thus, we have proved that 𝑓(𝑥) has a factorization in 𝐹[𝑥]   ⟹   𝑓(𝑥) has a 

factorization in 𝐷[𝑥]. 
 Hence, 𝑓(𝑥) ∈ 𝐷[𝑥] is irreducible in 𝐷[𝑥], then it is irreducible in 𝐹[𝑥]. 
(ii) Let  𝑓(𝑥) ∈ 𝐷[𝑥]. As 𝐷[𝑥] ⊆ 𝐹[𝑥].  
 We get, if 𝑓(𝑥) is reducible in 𝐷[𝑥] then 𝑓(𝑥) is reducible in 𝐹[𝑥]. 
 Hence the result. 

 

Corollary 1.6.18 :  Let 𝐷 be a UFD and let 𝐹 be the field of quotients in 𝐷.  

 Let 𝑓(𝑥) ∈ 𝐷[𝑥] be a non constant polynomial. Then 𝑓(𝑥) factors into the product of 

two polynomials of lower degree in 𝐹[𝑥] if an only if it has a factorization into 
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  polynomials of same degree in 𝐷[𝑥]. 
Proof :  

Only if part :  

 Let 𝑓(𝑥) = 𝑔(𝑥) ℎ(𝑥) be a factorization of 𝑓(𝑥) in 𝐹[𝑥] where degree of 𝑔(𝑥) = 𝑟 and 

degree of ℎ(𝑥) = 𝑠. As in the proof of the theorem 4(1) we can prove  

     𝑓(𝑥) = (𝑎) 𝑝ଵ(𝑥) 𝑝ଶ(𝑥) 

 where   degree of 𝑝ଵ(𝑥)  =  degree of 𝑔(𝑥) = 𝑟    and  

     degree of 𝑝ଶ(𝑥)  =  degree of ℎ(𝑥) = 𝑠  and  

     𝑝ଵ(𝑥), 𝑝ଶ(𝑥) ∈ 𝐷[𝑥]. 
If part : 

 Let 𝑓(𝑥) = 𝑔(𝑥) ℎ(𝑥),    where 𝑔(𝑥), ℎ(𝑥) ∈ 𝐷[𝑥]. 
 Then, 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥] , since 𝐷[𝑥] ⊆ 𝐹[𝑥], and the result follows. 

 

1.7 Factorization in 𝐅[𝐱] : 
Throughout 𝐹 denotes a field. 

Definition 1.7.1 : Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. We say 𝑔(𝑥) divides 𝑓(𝑥) in 𝐹[𝑥] if there exists 𝑞(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑞(𝑥). 

 

Example 1.7.2: Let 𝑓(𝑥) = 4𝑥ଷ + 4𝑥ଶ + 3𝑥 + 3   and  

      𝑔(𝑥) = 4𝑥ଶ + 3    

 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑍ହ[𝑥] and 𝑓(𝑥) = 𝑔(𝑥) ∙ (𝑥 + 1) in 𝑍ହ[𝑥]. 
 Hence, 𝑔(𝑥) divides 𝑓(𝑥) in 𝑍ହ[𝑥]. 

 
 

Theorem 1.7.3 : Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥]. If 𝑝(𝑥) divides 𝑟(𝑥) ∙ 𝑠(𝑥) 

for 𝑟(𝑥), 𝑠(𝑥) ∈ 𝐹[𝑥], then either 𝑝(𝑥)/𝑟(𝑥) or 𝑝(𝑥)/𝑠(𝑥). 

Proof :    𝑝(𝑥)/𝑟(𝑥) ∙ 𝑠(𝑥)  ⟹   𝑟(𝑥) ∙ 𝑠(𝑥) = 𝑝(𝑥) ∙ 𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥]. 
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 But this implies that 𝑟(𝑥) ∙ 𝑠(𝑥) ∈ 〈𝑝(𝑥)〉. 
 𝑝(𝑥) being an irreducible polynomial in 𝐹[𝑥], 〈𝑝(𝑥)〉 is a maximal ideal in 𝐹[𝑥].  
 As 𝐹[𝑥] is a commutative ring with unity, 〈𝑝(𝑥)〉 is a prime ideal. 

 Hence, 𝑟(𝑥) ∙ 𝑠(𝑥) ∈ 〈𝑝(𝑥)〉 implies 𝑟(𝑥) ∈ 〈𝑝(𝑥)〉 or 𝑠(𝑥) ∈ 〈𝑝(𝑥)〉. 
 Hence, either 𝑝(𝑥) divides 𝑟(𝑥) or 𝑝(𝑥) divides 𝑠(𝑥) in 𝐹[𝑥]. 
 

Using the mathematical induction we get, 

Corollary 1.7.4 : Let 𝑝(𝑥) ∈ 𝐹[𝑥] be an irreducible polynomial. If 𝑝(𝑥)/𝑟ଵ(𝑥) ∙𝑟ଶ(𝑥) … 𝑟(𝑥). for 𝑟(𝑥) ∈ 𝐹[𝑥]. Then 𝑝(𝑥)/𝑟(𝑥) for at least one 𝑖. 
 

Theorem 1.7.5 :  Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a non constant polynomial. Then 𝑓(𝑥) can be factored 

into a product of irreducible polynomials in 𝐹[𝑥]. The irreducible polynomials will be 

unique except for order and for unit factors in 𝐹. 

Proof : Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a non constant polynomial. 

Case (I) : 𝑓(𝑥) is irreducible. 

 Then there is nothing to prove. 

Case (II) : 𝑓(𝑥) is not irreducible. 

 Let   𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥)  

 where   degree of 𝑔(𝑥)  <  degree of 𝑓(𝑥)  and  

    degree of ℎ(𝑥)  <  degree of 𝑟(𝑥). 

 If 𝑔(𝑥) and ℎ(𝑥) both are irreducible then we are through. 

 If 𝑔(𝑥) and ℎ(𝑥) both are not irreducible then at least one of them factors into 

polynomials of lower degree. Continuing this process, we get, 

     𝑓(𝑥) = 𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥) 

 where each 𝑝(𝑥) is an irreducible polynomial in 𝐹[𝑥]. 
 This completes the proof of the first part.  

 Now, let us assume that  

     𝑓(𝑥) = 𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥)          . . . (1)  

     𝑓(𝑥) = 𝑞ଵ(𝑥) ∙ 𝑞ଶ(𝑥) ∙ … ∙ 𝑞௦(𝑥)          . . . (2)  

 be two factorizations of 𝑓(𝑥) into the irreducible polynomials in 𝐹[𝑥]. 
 Now, 

     𝑝ଵ(𝑥)/𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥)    implies  
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     𝑝ଵ(𝑥)/𝑞ଵ(𝑥) ∙ 𝑞ଶ(𝑥) ∙ … ∙ 𝑞௦(𝑥) 

 As 𝑝ଵ(𝑥) is an irreducible polynomial in 𝐹[𝑥], 𝑝ଵ(𝑥)/𝑞(𝑥),  for some 𝑗. 

 Take 𝑞(𝑥) = 𝑞ଵ(𝑥).  

 Since 𝑞ଵ(𝑥) is irreducible and 𝑝ଵ(𝑥)/𝑞ଵ(𝑥) we get, 𝑞ଵ(𝑥) = 𝑢ଵ 𝑝ଵ(𝑥) where 𝑢ଵ ≠ 0.  

 Hence, 𝑢ଵ ∈ 𝐹 is a unit in 𝐹. 

 Thus, 

     𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥) = 𝑞ଵ(𝑥) ∙ 𝑞ଶ(𝑥) ∙ … ∙ 𝑞௦(𝑥)   will imply  

     𝑝ଵ(𝑥) ∙ 𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥) = 𝑢ଵ 𝑝ଵ(𝑥) ∙ 𝑞ଶ(𝑥) ∙ … ∙ 𝑞௦(𝑥) 

 Cancelling 𝑝ଵ(𝑥) from both side, we get, 

     𝑝ଶ(𝑥) ∙ … ∙ 𝑝(𝑥) = 𝑢ଵ ∙ 𝑞ଶ(𝑥) ∙ … ∙ 𝑞௦(𝑥) 

 Arguing as above, we get, 𝑝ଶ(𝑥) = 𝑢ଶ 𝑞ଶ(𝑥), where 𝑢ଶ ≠ 0 is a unit in 𝐹.  

 Substituting this value in the above expression and cancelling 𝑝ଶ(𝑥) from both sides, we 

get, 

     𝑝ଷ(𝑥) ∙ … ∙ 𝑝(𝑥) = 𝑢ଵ ∙ 𝑢ଶ ∙ 𝑞ଷ(𝑥) ∙ … ∙ 𝑞௦(𝑥) 

 Continuing in this way we arrive at  

     1 = 𝑢ଵ ∙ 𝑢ଶ ∙ … ∙ 𝑢 ∙ 𝑞ାଵ(𝑥) ∙ 𝑞ାଶ(𝑥) ∙ … ∙ 𝑞௦(𝑥). 

 But this is possible only when 𝑠 = 𝑟. Hence,  

     1 = 𝑢ଵ ∙ 𝑢ଶ ∙ … ∙ 𝑢 

 This shows that the irreducible factors 𝑝(𝑥)  and 𝑞(𝑥) are the same except for order 

and unit factors. 

 

1.7.6  Examples –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Ex 1 :  Let 𝑓(𝑥) = 𝑥ସ + 3𝑥ଷ + 2𝑥 + 4 ∈ 𝑍ହ[𝑥]. 
    𝑥 = 1  ⟹   𝑓(1) = 1 + 3 + 2 + 4 = 10 = 0 in 𝑍ହ[𝑥]. 
 Hence, 𝑥 = 1 is a root / zero of 𝑓(𝑥). 

   𝑓(𝑥) = (𝑥 − 1) ∙ 𝑔(𝑥)  
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 Thus,  𝑥 = 1 is a zero of 𝑓(𝑥) and 𝑓(𝑥) = (𝑥ଷ + 4𝑥ଶ + 4𝑥 + 1) (𝑥 − 1).   . . . (1) 

 Let  𝑔(𝑥) = (𝑥ଷ + 4𝑥ଶ + 4𝑥 + 1).  

 Then,  𝑔(𝑥) ∈ 𝑍ହ(𝑥)     and  

    𝑔(1) = 10 ≡ 0(𝑚𝑜𝑑 5) 

 ∴    (𝑥 − 1) is a factor of 𝑔(𝑥). 

 
 This shows that (𝑥 − 1) is a factor of 𝑥ଷ + 4𝑥ଶ + 4𝑥 + 1 and hence 𝑥 − 1 is also a 

factor of 𝑓(𝑥). 

 Again, 𝑥 = 1  ⟹ 𝑥ଶ + 4 = 0 in 𝑍ହ.  

 Hence, (𝑥 − 1) is a factor of 𝑥ଶ + 4.  
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 This shows that (𝑥 − 1) is a factor of (𝑥ଶ + 4) and hence (𝑥 − 1) is a factor of 𝑓(𝑥).  

 Thus, we get, 

    𝑓(𝑥) = 𝑥ସ + 3𝑥ଷ + 2𝑥 + 4 = (𝑥 − 1)ଷ ∙ (𝑥 + 1) in 𝑍ହ[𝑥]. 
 This shows that 𝑓(𝑥) is factored as a product of irreducible polynomials in 𝑍ହ[𝑥].  
 These irreducible factors in 𝑍ହ[𝑥] are defined upto units in 𝑍ହ[𝑥]. 
 e.g.   (𝑥 − 1)ଷ ∙ (𝑥 + 1) = (𝑥 − 1)ଶ ∙ (2𝑥 − 2)(3𝑥 + 3) 

 

Ex 2 :  Show that the polynomial (𝑥ସ + 4) can be factored into linear factors in 𝑍ହ[𝑥]. 
Solution : Let 𝑓(𝑥) = 𝑥ସ + 4 in 𝑍ହ[𝑥]. 
 Then 𝑓(1) = 1 + 4 = 0 in 𝑍ହ. 

 Hence, 𝑥 − 1 is a factor of 𝑓(𝑥). 

 
 Thus,  𝑓(𝑥) = (𝑥 − 1)(𝑥ଷ + 𝑥ଶ + 𝑥 + 1)            . . . (1) 

 Consider  𝑔(𝑥) = (𝑥ଷ + 𝑥ଶ + 𝑥 + 1) in 𝑍ହ[𝑥]. 
 Then 𝑔(−1) = −1 + 1 − 1 + 1 = 0.  

 Hence, (𝑥 + 1) is a factor of 𝑔(𝑥) in 𝑍ହ[𝑥]. 

 
 Thus,  𝑔(𝑥) = (𝑥ଷ + 𝑥ଶ + 𝑥 + 1) = (𝑥 + 1)(𝑥ଶ + 1)   
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 Hence, from (1), we get, 

   𝑓(𝑥) = (𝑥 − 1)(𝑥 + 1)(𝑥ଶ + 1)            . . . (2) 

 Let   ℎ(𝑥) = (𝑥ଶ + 1) in 𝑍ହ[𝑥]. 
   ℎ(2) = 4 + 1 = 0. 

 Hence, (𝑥 − 2) is a factor of ℎ(𝑥) in 𝑍ହ[𝑥]. 

        
 

We know that, ‘𝑄’ the field of rational numbers is the field of quotients of an integral domain 𝑍.  

Hence applying theorem 1.6.6 to 𝑄 in particular, we get, 

Result : Let 𝑓(𝑥) ∈ 𝑍[𝑥]. If 𝑓(𝑥) is primitive an irreducible over 𝑍 then 𝑓(𝑥) is irreducible 

over 𝑄. 

 

• Eisenstein Criteria for Irreducibility over 𝑸 : 

Theorem 1.7.7 : Let 𝑝 ∈ 𝑍 be a prime. Let 𝑓(𝑥) ∈ 𝑍[𝑥], where  

    𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥,   (𝑎 ≠ 0)  

 such that 𝑎 ≢ 0 (𝑚𝑜𝑑 𝑝) but 𝑎 ≡ 0 (𝑚𝑜𝑑 𝑝), for 𝑖 < 𝑛, with 𝑎 ≢ 0 (𝑚𝑜𝑑 𝑝ଶ). Then 𝑓(𝑥) is irreducible over 𝑄. 

 [ 𝑝 is a prime number such that 𝑝/𝑎, 𝑝/𝑎ଵ,…, 𝑝/𝑎ିଵ and 𝑝 ∤ 𝑎 and 𝑝ଶ ∤ 𝑎]. 

Proof : Assume that 𝑓(𝑥) is reducible in 𝑍[𝑥]. 
 Let  

       𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) , 

 where 𝑔(𝑥), ℎ(𝑥) are non-constant polynomials in 𝑍[𝑥] with degree < n. 

 Let  

       𝑔(𝑥) = 𝑏 + 𝑏ଵ𝑥 + ⋯ + 𝑏𝑥,   (𝑏 ≠ 0) 

 and    ℎ(𝑥) = 𝑐 + 𝑐ଵ𝑥 + ⋯ + 𝑐௦𝑥௦,   (𝑐௦ ≠ 0) 
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(i) 𝑝ଶ ∤ 𝑎  ⟹   𝑝ଶ ∤ 𝑏𝑐. 

 If 𝑝/𝑏 and 𝑝/𝑐 then 𝑝ଶ/𝑏𝑐.  

 Hence, either 𝑝 ∤ 𝑏 or  𝑝 ∤ 𝑐 exclusively. 

 Assume that 𝑝 ∤ 𝑏 but  𝑝/𝑐. 

(ii) 𝑝 ∤ 𝑎  ⟹   𝑝 ∤ 𝑏𝑐௦   ⟹  𝑝 ∤ 𝑏 and  𝑝 ∤ 𝑐௦. 

(iii) Thus, 𝑝/𝑐 and 𝑝 ∤ 𝑐௦. 

 Find the smallest 𝑘 such that 𝑝 ∤ 𝑐. Thus 𝑝 ∤ 𝑏 and 𝑝 ∤ 𝑐  ⟹  𝑝 ∤ 𝑏𝑐. 

 But 𝑏𝑐 + 𝑏ଵ𝑐ିଵ + ⋯ + 𝑏𝑐 is a coefficient of 𝑥 in 𝑔(𝑥)ℎ(𝑥).  

 As 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥), equating the coefficients of 𝑥, we get, 

       𝑎 = 𝑏𝑐 + 𝑏ଵ𝑐ିଵ + ⋯ + 𝑏𝑐  

 As 𝑝 ∤ 𝑏𝑐, we get 𝑝 ∤ 𝑎.  

 But then, by data, as 𝑝/𝑎, 𝑝/𝑎ଵ,…, 𝑝/𝑎ିଵ and 𝑝 ∤ 𝑎 we must have 𝑘 = 𝑛. 

 Hence, consequently we must have 𝑠 = 𝑛. This contradicts our assumption that 𝑠 < 𝑛. 

 Hence, 𝑓(𝑥) does not factor into polynomials in 𝑍[𝑥]. 
 By result 1, 

    𝑓(𝑥) has no factorization as a product of two polynomials, both of lower degree in 𝑄[𝑥]. 
 Hence, 𝑓(𝑥) is irreducible over 𝑄. 

[ Result 1 : Let 𝑓(𝑥) ∈ 𝑍[𝑥]. 𝑓(𝑥) factors into a product of two polynomials of lower degrees 𝑟 and 𝑠 in 𝑄[𝑥] if and only if it has such a factorization with polynomials of same 

degrees 𝑟 and 𝑠 in 𝑍(𝑥). ] 

 

Remark 1.7.8 :  𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥)     ⟺       𝑓(𝑥 + 1) = 𝑔(𝑥 + 1) ∙ ℎ(𝑥 + 1), 

 for  𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ 𝑍[𝑥]. 
 Hence, 𝑓(𝑥) is reducible iff 𝑓(𝑥 + 1) is reducible and 𝑓(𝑥) is irreducible iff 𝑓(𝑥 + 1) is 

irreducible. 

 Note that, we can take any integer in place of 1. 

 When the constant term in a polynomial 𝑓(𝑥) ∈ 𝑍[𝑥] is ±1, we cannot apply Eisenstein 

criterion to check the irreducibility of 𝑓(𝑥) over 𝑄. In such cases we find suitable 𝑡 ∈ 𝑍 

such that 𝑓(𝑥 + 𝑡) is irreducible over 𝑄 (if possible). 

 To illustrate this, consider the following polynomial  

      𝑓(𝑥) = 𝑥ଷ + 𝑥ଶ − 2𝑥 − 1 ∈ 𝑍[𝑥]. 
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 As there exists no prime in 𝑍 that divides 1, we cannot apply the criterion directly in this 

case. 

    𝑓(𝑥 + 1) = (𝑥 + 1)ଷ + (𝑥 + 1)ଶ − 2(𝑥 + 1) − 1 

          = 𝑥ଷ + 4𝑥ଶ + 3𝑥 − 1 

 Again, we cannot apply the criterion in this case. 

    𝑓(𝑥 − 1) = (𝑥 − 1)ଷ + (𝑥 − 1)ଶ − 2(𝑥 − 1) − 1 

          = 𝑥ଷ − 2𝑥ଶ − 𝑥 + 1 

 We cannot apply the criterion for 𝑓(𝑥 − 1) also. 

    𝑓(𝑥 + 2) = 𝑥ଷ + 7𝑥ଶ + 14𝑥 + 7 

 Here, take 𝑝 = 8. Then 𝑝/𝑎, 𝑝/𝑎ଵ, 𝑝/𝑎ଶ and 𝑝 ∤ 𝑎ଷ and 𝑝ଶ ∤ 𝑎. 

 Hence, by Eisenstein criterion, 𝑓(𝑥 + 2) is irreducible over 𝑄. 

 Hence, 𝑓(𝑥) is irreducible over 𝑄. 

 

1.7.9  Example –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Ex 1 : 𝑓(𝑥) = 8𝑥ଷ − 6𝑥 − 1 is irreducible over 𝑄. 

Solution : Here 𝑎 = −1, 𝑎ଵ = −6, 𝑎ଶ = 0, 𝑎ଷ = 8. 

 As 𝑎 = −1, Eisenstein criterion cannot be applied.  

 Hence, consider 𝑓(𝑥 + 1). 

    𝑓(𝑥 + 1) = 8(𝑥 + 1)ଷ − 6(𝑥 + 1) − 1 

          = 8[𝑥ଷ + 3𝑥ଶ + 3𝑥 + 1] − 6𝑥 − 6 − 1 

               = 8𝑥ଷ + 24𝑥ଶ + 24𝑥 + 8 − 6𝑥 − 6 − 1 

               = 8𝑥ଷ + 24𝑥ଶ + 18𝑥 + 1 

 Again, we cannot apply the criterion for 𝑓(𝑥 + 1). 

 Hence, consider 𝑓(𝑥 − 1). 

    𝑓(𝑥 − 1) = 8(𝑥 − 1)ଷ − 6(𝑥 − 1) − 1 

          = 8[𝑥ଷ − 3𝑥ଶ + 3𝑥 − 1] − 6𝑥 + 6 − 1 

               = 8𝑥ଷ − 24𝑥ଶ + 24𝑥 − 8 − 6𝑥 + 6 − 1 

               = 8𝑥ଷ − 24𝑥ଶ + 18𝑥 − 3 

 Take 𝑝 = 3.  

 Then, by Eisenstein criterion, 𝑓(𝑥 − 1) is irreducible over 𝑄. 

 Hence, 𝑓(𝑥) is irreducible over 𝑄. 
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Ex 2 : 𝑓(𝑥) = 𝑥ସ + 𝑥ଷ + 𝑥ଶ + 𝑥 + 1 ∈ 𝑍[𝑥] is irreducible over 𝑄. 

Solution : As the constant term in 𝑓(𝑥) is 1 we cannot apply Eisenstein criterion for 𝑓(𝑥). 

 Consider 𝑓(𝑥 + 1). 

 Then,  𝑓(𝑥 + 1) = (𝑥 + 1)ସ + (𝑥 + 1)ଷ + (𝑥 + 1)ଶ + (𝑥 + 1) + 1 

          = (𝑥ସ + 4𝑥ଷ + 6𝑥ଶ + 4𝑥 + 1) + (𝑥ଷ + 3𝑥ଶ + 3𝑥 + 1) + 

          (𝑥ଶ + 2𝑥 + 1) + 𝑥 + 2 

               = 𝑥ସ + 5𝑥ଷ + 10𝑥ଶ + 10𝑥 + 5 

 For 𝑓(𝑥 + 1),  𝑎 = 5, 𝑎ଵ = 10, 𝑎ଶ = 10, 𝑎ଷ = 5, 𝑎ସ = 1. 

 Take 𝑝 = 5.  

 Then, 𝑝/𝑎, 𝑝/𝑎ଵ, 𝑝/𝑎ଶ,  𝑝/𝑎ଷ and 𝑝ଶ ∤ 𝑎 and 𝑝 ∤ 𝑎ସ. 

 Hence, by Eisenstein criterion, 𝑓(𝑥 + 1) is irreducible over 𝑄. 

 Hence, 𝑓(𝑥) is irreducible over 𝑄. 

 

Ex 3 : Show that the polynomial 2𝑥ହ − 5𝑥ସ + 5 is irreducible over 𝑄. 

Solution : Let 

     𝑓(𝑥) = 2𝑥ହ − 5𝑥ସ + 5  

         = 5 + 0 ∙ 𝑥 + 0 ∙ 𝑥ଶ + 0 ∙ 𝑥ଷ − 5𝑥ସ + 2𝑥ହ 

 Hence,  𝑎 = 5, 𝑎ଵ = 0, 𝑎ଶ = 0, 𝑎ଷ = 0, 𝑎ସ = −5, 𝑎ହ = 2. 

 Take 𝑝 = 5, 𝑝 is prime in 𝑍. 

 𝑝/𝑎, 𝑝/𝑎ଵ, 𝑝/𝑎ଷ, 𝑝/𝑎ସ and 𝑝ଶ ∤ 𝑎 and 𝑝 ∤ 𝑎ହ. 

 Hence, by Eisenstein criterion, 𝑓(𝑥) is irreducible over 𝑄.  

 

Ex 4  : The cyclotomic polynomial 

      𝜙(𝑥) = 
௫ିଵ௫ିଵ  = 𝑥ିଵ + 𝑥ିଶ + ⋯ + 𝑥 + 1  

 is irreducible over 𝑄 for any prime 𝑝. 

Solution : Let 

     𝑔(𝑥) = 𝜙(𝑥 + 1)  = (𝑥 + 1) − 1(𝑥 + 1) − 1  

= 𝑥 + 𝐶ଵ 𝑥ିଵ + ⋯ + 𝐶 𝑥ିଵ − 1𝑥  

      = 𝑥ିଵ + 𝐶ଵ 𝑥ିଶ + ⋯ + 𝑝 
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 Let 𝑔(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎ିଵ𝑥ିଵ. Then 𝑎 = 𝑝, 𝑎ଵ = 𝐶ିଵ , 𝑎 = 1.  

 Then, for prime number 𝑝, we get 𝑝/𝑎, … , 𝑝/𝑎ିଵ and 𝑝ଶ ∤ 𝑎 and 𝑝 ∤ 𝑎 = 1. 

 Hence, by Eisenstein criterion, 𝑔(𝑥) is irreducible over 𝑄. 

 Now, if 𝜙(𝑥) = ℎଵ(𝑥)ℎଶ(𝑥) in 𝑍[𝑥], then 𝜙(𝑥 + 1) = ℎଵ(𝑥 + 1)ℎଶ(𝑥 + 1) would be 

a factorization of 𝑔(𝑥) in 𝑍[𝑥] and hence by result 1, we get 𝜙(𝑥 + 1) has factorization 

in 𝑄[𝑥] which is not possible by Eisenstein criterion.  

 Hence, 𝜙(𝑥) is irreducible over 𝑄. 

 

Extra : 

 Applying the theory in particular for 𝑍[𝑥], we get  the following result.  

Particular case of theorem 1.2.16 (ii) : 

Theorem 1.7.10 : Let 𝑓(𝑥) ∈ 𝑍[𝑥] be primitive. If 𝑓(𝑥) is reducible over 𝑄, then 𝑓(𝑥) is 

reducible over 𝑍. 

Proof : 𝑓(𝑥) is reducible over 𝑄. Hence 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) where 𝑔(𝑥), ℎ(𝑥) ∈ 𝑄[𝑥] and 𝑔(𝑥), ℎ(𝑥) are non constant. Then 𝑓(𝑥) = ቀቁ 𝑔ଵ(𝑥) ∙  ℎଵ(𝑥), where 𝑔ଵ(𝑥) and ℎଵ(𝑥) 

are primitive polynomials in 𝑍[𝑥]. But then  

     𝑏[𝑓(𝑥)] = (𝑎) [𝑔ଵ(𝑥) ∙ ℎଵ(𝑥)]  
 𝑓(𝑥) being primitive in 𝑍[𝑥], 𝑏 is the g.c.d. of coefficients in 𝑏 𝑓(𝑥).  

 As the product of two primitive polynomials is a primitive polynomial in 

 𝑎 [𝑔ଵ(𝑥) ∙ ℎଵ(𝑥)]. Hence 𝑎 and 𝑏 are unique upto the units.  

 As the units in 𝑍 are ±1, we get 𝑏 = ±𝑎.  

 Hence, 𝑓(𝑥) = ±𝑔ଵ(𝑥) ∙ 𝑔ଶ(𝑥). This shows that 𝑓(𝑥) is reducible in 𝑍[𝑥]. 
 

Particular case of theorem 1.4.10: 

Theorem 1.7.11 : If 𝑓(𝑥) and 𝑔(𝑥) are primitive polynomials in 𝑍[𝑥] then so is their 

product.  

Proof : Suppose 𝑓(𝑥) ∙ 𝑔(𝑥) is not primitive. Let 𝑝 be a prime integer in 𝑍 such that 𝑝 

divides all the coefficients of 𝑓(𝑥) ∙ 𝑔(𝑥). 

 Let  

    𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥     

 and  𝑔(𝑥) = 𝑏 + +𝑏ଵ𝑥 + ⋯ + 𝑏𝑥. 
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 𝑓(𝑥) is primitive, hence 𝑝 does not divide all 𝑎, 𝑎ଵ, … , 𝑎. 

 Let 𝑎௦ be the first coefficient of 𝑓 such that 𝑝 ∤ 𝑎௦.  

 Similarly, let 𝑏௧ be the first coefficient in 𝑔(𝑥) such that 𝑝 ∤ 𝑏௧.  

 Now, the coefficient of 𝑥௦ା௧ in 𝑓(𝑥) ∙ 𝑔(𝑥) is  

  [𝑎𝑏௦ା௧ + 𝑎ଵ𝑏௦ା௧ିଵ + ⋯ + 𝑎௦ିଵ𝑏௧ାଵ] + 𝑎௦𝑏௧ + [𝑎௦ାଵ𝑏௧ିଵ + 𝑎௦ାଶ𝑏௧ିଶ + ⋯ + 𝑎௦ା௧𝑏] 
 As  

    𝑝/𝑎,   𝑝/𝑎ଵ,  …,    𝑝/𝑎௦ିଵ    

 and  𝑝/𝑏,   𝑝/𝑏ଵ,   …,   𝑝/𝑏௧ିଵ,    

 we get, 

    𝑝/[𝑎𝑏௦ା௧ + 𝑎ଵ𝑏௦ା௧ିଵ + ⋯ + 𝑎௦ିଵ𝑏௧ାଵ] 
 and  𝑝/[𝑎௦ାଵ𝑏௧ିଵ + 𝑎௦ାଶ𝑏௧ିଶ + ⋯ + 𝑎௦ା௧𝑏] 
 As 𝑝 ∤ 𝑎௦ and 𝑝 ∤ 𝑏௧ and 𝑝 is prime, we get 𝑝 ∤ 𝑎௦𝑏௧. 

 Hence, 𝑝 ∤ coefficient of 𝑥௦ା௧ in 𝑓(𝑥) ∙ 𝑔(𝑥), which is a contradiction. 

 This in turn shows that 𝑓(𝑥) ∙ 𝑔(𝑥) is primitive. 

 

Theorem 1.7.12 : If 𝑓(𝑥) ∈ 𝑍[𝑥] is reducible over 𝑄 then it is also reducible over 𝑍. 

Proof :  𝑓(𝑥) ∈ 𝑍[𝑥] is reducible over 𝑄. 

 Let 𝑓(𝑥) = (𝑐) 𝑓ଵ(𝑥). Where 𝑐 = g.c.d. of the coefficient of 𝑓(𝑥), and 𝑓ଵ(𝑥) is a 

primitive polynomial in 𝑍[𝑥].  
 Then 𝑓ଵ(𝑥) is reducible over 𝑍 and hence 𝑓(𝑥) is reducible over 𝑍. 

 

Theorem 1.7.13 : 𝑓(𝑥) ∈ 𝑍[𝑥]. 𝑓(𝑥) is reducible over 𝑄 iff 𝑓(𝑥) is reducible over 𝑍. 

Proof :  𝑓(𝑥) is reducible over 𝑍 implies 𝑓(𝑥) is reducible over 𝑄 as 𝑍[𝑥] ⊆ 𝑄[𝑥]. 
 Conversely, 

  If 𝑓(𝑥) is reducible over 𝑄 then, 𝑓(𝑥) is reducible over 𝑍. 

 

Theorem 1.7.14 : Let 𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎ିଵ𝑥ିଵ + 𝑥 ∈ 𝑍[𝑥] be a monic 

polynomial. If 𝑓(𝑥) has a root 𝑎 ∈ 𝑄, then 𝑎 ∈ 𝑍 and 𝑎/𝑎.  

Proof :  𝑎 ∈ 𝑄 ⟹  𝑎 = 
  for some relatively prime elements 𝑏, 𝑐 ∈ 𝑍. 

 𝑓(𝑎) = 0  ⟹   𝑓 ቀቁ = 0 

     ⟹   𝑎 + 𝑎ଵ ቀ𝑏𝑐ቁ + ⋯ + 𝑎ିଵ ቀ𝑏𝑐ቁିଵ + ቀ𝑏𝑐ቁ = 0 
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     ⟹   𝑎 + 𝑎ଵ ቀ𝑏𝑐ቁ + ⋯ + 𝑎ିଵ ቀ𝑏𝑐ቁିଵ = − ቀ𝑏𝑐ቁ
 

     ⟹   𝑎𝑐ିଵ + 𝑎ଵ𝑏𝑐ିଶ + ⋯ + 𝑎ିଵ𝑏ିଵ = −       . . . (1)  

     ⟹   𝑎𝑐ିଵ + 𝑎ଵ𝑏𝑐ିଶ + ⋯ + 𝑎ିଵ𝑏ିଵ ∈ 𝑍   

 we get, −  ∈ 𝑍. Hence 𝑐 = ± 1. 

 Hence, by (1), we get, 

    𝑎 + 𝑎ଵ𝑏 + ⋯ + 𝑎ିଵ𝑏ିଵ = ± 𝑏. 

 Hence, 𝑎 = −𝑏[𝑎ଵ + 𝑎ଶ𝑏 + ⋯ ± 𝑏ିଵ]. 
 This shows that 𝑏/𝑎.                . . . (2) 

 As    𝑎 = 
 = ±ଵ = ±𝑏             . . . (3) 

 From (1), (2) and (3), we get 𝑎/𝑎 and 𝑎 ∈ 𝑍. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––•  
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Unit 1 : Modules : 
 1.1 Modules – Definition and examples.  

 1.2 Submodules. 

 1.3 Homomorphism 

 1.4 Fundamental theorem of homomorphism and its applications. 

 

1.1 MODULES – Definition and Examples : 

Definition 1.1.1  : Let 𝑅 be a ring and let 〈𝑀, +〉 be an abelian group. Let (𝑟, 𝑚) ⟶ 𝑟𝑚 be a 

mapping of 𝑅 × 𝑀 into 𝑀 such that 

i) 𝑟(𝑚ଵ + 𝑚ଶ) = 𝑟𝑚ଵ + 𝑟𝑚ଶ 

ii) (𝑟ଵ + 𝑟ଶ)𝑚 = 𝑟ଵ𝑚 + 𝑟ଶ𝑚 

iii) (𝑟ଵ𝑟ଶ)𝑚 = 𝑟ଵ(𝑟ଶ𝑚) 

iv) 1. 𝑚 = 𝑚      𝑖𝑓  1 ∈ 𝑅 

 for all 𝑚, 𝑚ଵ, 𝑚ଶ  ∈ 𝑀 and 𝑟, 𝑟ଵ, 𝑟ଶ  ∈ 𝑅. Then M is called a left R-module. 

 

Remarks 1.1.2 : 

a) 𝑟𝑚 is called is called the scalar multiplication or just multiplication of 𝑚 by 𝑟 on the 

left. 

b) Right R-modules can also be defined similarly. 

c) If 𝑅 is a commutative ring, every left module will be a right module or vice versa. 

d) In a commutative ring 𝑅 we will not distinguish between left and right R-modules and 

we and we simply call them R-modules. 

e) If 𝑅 is a field, the R-module is called a vector space. 

 

Examples 1.1.3 : 

1. Any ring 𝑅 can be regarded as a left R-module. 

Define the scalar multiplication 𝑟𝑚 for 𝑟, 𝑚 ∈ 𝑅 as usual multiplication in R. 

 

2. Any additive abelian group 𝐺 is a left L-module. For an abelian group 〈𝐺, +〉 define  

CHAPTER III : THEORY OF MODULES  
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   𝑛 𝑎 =  𝑎 +  𝑎 + . . . + 𝑎 (n times) ,   for n > 0 

   0 ⋅ 𝑎 =  0 

and    (−𝑛) 𝑎 =  (− 𝑎)  + (− 𝑎) + . . . + (− 𝑎)  (n times) , for n > 0 

Then 𝐺 is a L-module. 

 

3. Let 〈𝐺, +〉 be an abelian group. 

   𝑅 = {𝑓/𝑓: 𝐺 ⟶ 𝐺 is a group homomorphism. } 〈𝑅, +,∘〉 is a ring, where 𝑓 + 𝑔 and 𝑓 o g are defined by  

   (𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) +  𝑔 (𝑥)      ∀    𝑥 ∈ 𝐺  

and   (𝑓 ∘  𝑔) (𝑥) = 𝑓 [𝑔 (𝑥)]  
G is a left R-module where the scalar product 𝑓𝑥 is defined by  

   𝑓𝑥 = 𝑓 (𝑥)     for 𝑓 ∈ 𝑅 and 𝑥 ∈ 𝐺 

 

4. Let 𝑅[𝑥] denote a polynomial ring over the ring 𝑅 in an indeterminate 𝑥. Then 𝑅[𝑥] is 

a left R-module under the scalar multiplication defined by  

   𝑟 ∙ 𝑓(𝑥) = 𝑟 (𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥) 

            = (𝑟𝑎) + (𝑟𝑎ଵ)𝑥 + ⋯ + (𝑟𝑎)𝑥      for 𝑟 ∈ 𝑅 and 𝑓(𝑥) ∈ 𝑅[𝑥] 
where 𝑓(𝑥) = 𝑎 + 𝑎ଵ𝑥 + ⋯ + 𝑎𝑥 

 

5. Let 𝑅 be any ring and let 𝐼 be a left ideal in 𝑅. Then 〈𝐼, +〉 is an abelian group and for 

any 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼, 𝑟𝑎 ∈ 𝐼 and this scalar multiplication (𝑟, 𝑎) ⟶ 𝑟𝑎 from 𝑅 ×𝐼 ⟶ 𝐼 satisfies all the conditions stated in the definition. Hence I is a left R-module. 

 

Exercise ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

 1. Define right R-module M. 

 2. Give some examples of right R-modules. 

 3. Find an example of a left R-module which is not a right R-module. 

 4. Find an example of a right R-module which is not a left R-module. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 
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Simple Properties : 

 Here onwards all modules are left modules otherwise stated. 

Theorem 1.1.4 : Let 𝑀 be any R-module. Then  

i)  0 ∙ 𝑚 = 0              for all  𝑚 ∈ 𝑀 

ii)  𝑟 ∙ 0 = 0       for all  𝑟 ∈ 𝑅 

iii) (−𝑟) ∙ 𝑚 = (−𝑟𝑚) = 𝑟 ∙ (−𝑚  )  for all  𝑟 ∈ 𝑅  

Proof :   

i)  𝑟 ∙ 𝑚 = (𝑟 + 0) ∙ 𝑚             for all  𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 

  Hence, 𝑟𝑚 + 0 = 𝑟𝑚 + 0 ∙ 𝑚   (see definition) 

  This shows that 0 ∙ 𝑚 = 0   for all  𝑚 ∈ 𝑀 

ii) 𝑟 ∙ 𝑚 = 𝑟 ∙ (𝑚 + 0)             for all  𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 

  Thus,  𝑟𝑚 + 0 = 𝑟𝑚 + 𝑟 ∙ 0    (see definition) 

  But then 𝑟 ∙ 0 = 0    for all  𝑟 ∈ 𝑅 as M is a group. 

iii) 0 = 0 ∙ 𝑚  ,            by (i) 

     = [𝑟 + (−𝑟)] 𝑚  

     = 𝑟𝑚 + (−𝑟)𝑚  

  Hence,  −(𝑟𝑚) = (−𝑟) 𝑚       . . . (1) 

  Also, 

    0 = 𝑟 ∙ 0 ,      by (ii) 

       = 𝑟(𝑚 + (−𝑚)) 

       = 𝑟𝑚 + 𝑟(−𝑚) 

  Hence,   −(𝑟𝑚) = 𝑟(−𝑚)       . . . (2) 

  From (1) and (2), we get, 

    (−𝑟) 𝑚 = −(𝑟𝑚) = 𝑟(−𝑚),  for all 𝑟 ∈ 𝑅 and  𝑚 ∈ 𝑀 

 

Worked Examples ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 1.1.5 : Let M be an R-module. Show that the set ൛𝑥 ∈ 𝑅 / 𝑥𝑀 = {0}ൟ is an ideal of 

R, where 𝑥𝑀 = {𝑥𝑚 / 𝑚 ∈ 𝑀}. 

Solution :  Let 𝐼 = ൛𝑥 ∈ 𝑅 / 𝑥𝑀 = {0}ൟ. 

(i) By theorem (1), 0 ∙ 𝑚 = 0,   for all 𝑚 ∈ 𝑀. 

 imply    0 ∙ 𝑀 = {0} 

 and hence   0 ∈ 𝐼 
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 Thus,    𝐼 ≠ 𝜙. 

(ii) Let 𝑥, 𝑦 ∈ 𝐼  

 𝑥, 𝑦 ∈ 𝐼    ⟹     𝑥𝑀 = {0}  and  𝑦𝑀 = {0} 

 Now, for any 𝑚 ∈ 𝑀, we have  

 (𝑥 − 𝑦) 𝑚 = [𝑥 + (−𝑦)] 𝑚 

    = 𝑥𝑚 +  (−𝑦) 𝑚   (by definition) 

    = 𝑥𝑚 − 𝑦𝑚    (by theorem 1.1.4 (iii) 

    = 0 −  0    (∵   𝑥, 𝑦 ∈ 𝑅 imply xm = 0 and ym = 0 

 Thus,  (𝑥 − 𝑦) 𝑚 =  0 for all 𝑚 ∈ 𝑀. 

 Hence,  (𝑥 − 𝑦) 𝑀 =  {0}. 

 This shows that 𝑥 − 𝑦 ∈ 𝐼, for all 𝑥, 𝑦 ∈ 𝐼. 

 

(iii) Let  𝑟 ∈ 𝑅 and  𝑥 ∈ 𝐼. 

 𝑥 ∈ 𝐼  ⟹   𝑥𝑀 = {0} 

      ⟹   𝑥 ∙ 𝑚 = 0 ,    for each 𝑚 ∈ 𝑀. 

 Hence,  {r x} m = (r) (x m) = r . 0 = 0,  (by theorem 1.1.4) 

 Hence, for 𝑟 ∈ 𝑅  and  𝑥 ∈ 𝐼, we get 𝑟𝑥 ∈ 𝐼. 

 Similarly, 

     (𝑥𝑟) 𝑚 = 𝑥 (𝑟𝑚) = 0 , as 𝑥 ∈ 𝐼 and 𝑟𝑚 ∈ 𝑀, for any 𝑟 ∈ 𝑅. 

 Hence, given 𝑥 ∈ 𝐼 and 𝑟 ∈ 𝑅, 𝑟𝑥 ∈ 𝐼 and 𝑥𝑟 ∈ 𝐼. 

From (i), (ii) and (iii), we get, 𝐼 is an ideal in 𝑅. 

 

Remark : Let 𝑀 be an R-module.  

 If the ideal ൛𝑥 ∈ 𝑅 / 𝑥𝑀 = {0}ൟ is the zero ideal in 𝑅. 

 i.e., if ൛𝑥 ∈ 𝑅 / 𝑥𝑀 = {0}ൟ = {0} , then M is called a faithful module. 

 

Example 1.1.6 : Let 𝑀 and 𝑁 be an R-modules. Define ‘ + ’ in 𝑀 × 𝑁 by  

   (𝑥, 𝑦)  + (𝑧, 𝑡)  =  (𝑥 +  𝑧, 𝑦 +  𝑡)  for (𝑥, 𝑦), (𝑧, 𝑡)  ∈  𝑀 × 𝑁 

 and the scalar multiplication ′ ∙ ′ by 

   𝑟 ∙ (𝑥, 𝑦) = (𝑟 ∙ 𝑥, 𝑟 ∙ 𝑦)    for all 𝑟 ∈ 𝑅, (𝑥, 𝑦)  ∈  𝑅 × 𝑅 

 Then, it can easily verified that 𝑀 × 𝑁 is an R-module. 
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Remarks 1.1.7 :  

(1) The R-module 𝑀 × 𝑁 is called the direct product (external) of R-modules 𝑀 and 𝑁. 

(2) On the same line we can define the direct product (external) of any finite number of R-

modules. 

 

Example 1.1.8 : Let 𝑅 be a ring. Define  

    𝑅 = {(𝑥ଵ, 𝑥ଶ, … , 𝑥) / 𝑥 ∈ 𝑅} for 𝑛 ∈ 𝑁.  

 Then show that 𝑅 is a R-module. 

Solution : We know that every ring 𝑅 is an R-module. Hence every ring 𝑅 is an R-module.  

 Hence, 𝑅 = 𝑅 × 𝑅 × … × 𝑅 is an R-module (being the direct product of n R-modules) 

by Example 1.1.6.  

 [Here in 𝑅, for 𝑥, 𝑦 ∈ 𝑅 and where, 

   𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥),        𝑥 ∈ 𝑅 

 and  𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦),        𝑦 ∈ 𝑅 

 we have,  

    𝑥 + 𝑦 = (𝑥ଵ + 𝑦ଵ, 𝑥ଶ + 𝑦ଶ … , 𝑥 + 𝑦) 

 and  𝑟 ∙ 𝑥 = 𝑥 = (𝑟𝑥ଵ, 𝑟𝑥ଶ, … , 𝑟𝑥)] 

 

Exercise  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

1. Let 𝑅 be a field. Let 𝑉 = {𝑓  𝑓 ∶ 𝑅 ⟶ 𝑅 be a ring homomorphism} show that 𝑉 is a 

vector space over 𝑅. 

2.  Let 𝑀 be a left R-module. Define (𝑚 , 𝑟) ⟶ 𝑟𝑚 for each 𝑚 ∈ 𝑀 and 𝑟 ∈ 𝑅 as a mapping 

from 𝑀 × 𝑅 to 𝑀. Show that 𝑀 is a right module.  

2.  Let 𝑀 be an R-module. For 𝑥 ∈ 𝑀, show that {𝑟 ∈ 𝑅 / 𝑟𝑥 = 0} is a left ideal in 𝑅. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

1.2 SUBMODULES : 

Definition 1.2.1:  Let 𝑀 be an R-module. A non empty subset 𝑁 of an R-module 𝑀 is called 

R-submodule (or submodule) of 𝑀 if  

 (i)  𝑎 − 𝑏 ∈ 𝑁 ,  for  all 𝑎, 𝑏 ∈ 𝑁 

 (ii) 𝑟 ∙ 𝑎 ∈ 𝑁 ,   for  all 𝑟 ∈ 𝑅,   𝑎 ∈ 𝑁 
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Remark 1.2.2 :  

(i)  Not every subset of an R-module 𝑀 is a submodule of 𝑀. 

(ii) If 𝑁 is a R-submodule of an R-module 𝑀 then 〈𝑁, +〉 is a (normal) subgroup of 〈𝑀, +〉 
which is closed under scalar multiplication. 

(iii) If 𝑁 is a R-submodule of an R-module of 𝑀,  then 𝑁 itself is a R-module. 

(iv) {0} and 𝑀 are trivial submodule of an R-module 𝑀. 

 

Examples 1.2.3 : 

1. Let 𝑅 be a ring. Then we know that the ring 𝑅 is an R-module. Any left ideal 𝐼 of 𝑅 is a 

R-submodule. 

2. Let 𝑀 be any R-module. Let 𝑥ଵ, 𝑥ଶ, … , 𝑥 ∈ 𝑀 (𝑛 is finite). Then the set  

      𝑁 = ቊ
1

n

i=
∑ 𝑟 𝑥 /   𝑟  ∈ 𝑅ቋ 

 is a submodule of 𝑀. 

Solution : Let 𝑎, 𝑏 ∈ 𝑁  ⟹ 𝑎 =
1

n

i=
∑ 𝑟 𝑥  and  𝑏 =

1

n

i=
∑ 𝑟′ 𝑥 

 where 𝑟, 𝑟′ ∈ 𝑅. 

(i) 𝑎 − 𝑏 =
1

n

i=
∑ 𝑟 𝑥 −

1

n

i=
∑ 𝑟′ 𝑥  

 Hence, 𝑎 − 𝑏 =
1

n

i=
∑ (𝑟 − 𝑟ᇱ) 𝑥 

 as   𝑟 − 𝑟ᇱ ∈ 𝑅 ,    for each i, we get 

     𝑎 − 𝑏 ∈ 𝑁 

(ii) 𝑟 ∙ 𝑎 = 𝑟 ∙
1

n

i=
∑ 𝑟 𝑥 

 Hence, 𝑟 ∙ 𝑎 =
1

n

i=
∑ (𝑟 ∙ 𝑟) 𝑥 

 as   𝑟, 𝑟 ∈ 𝑅 ,    for each i, we get 

     𝑟 ∙ 𝑎 ∈ 𝑁   

 Thus, for any 𝑎, 𝑏 ∈ 𝑁 and 𝑟 ∈ 𝑅, we have, 

      𝑎 − 𝑏 ∈ 𝑁  and  𝑟 ∙ 𝑎 ∈ 𝑁. 

 Hence, N is a submodule of R-module M. 
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Remarks 1.2.4 :  

(i) As a special case for example 2 we get for any R-module M, the set  

    𝑅𝑥 = {𝑟𝑥 / 𝑟 ∈ 𝑅}    

 is a R-module of M, for any 𝑥 ∈ 𝑅. 

(ii) If 1 ∈ 𝑅, then the submodule Rx will contains the element x as 𝑥 = 1 ∙ 𝑥. 

 

Example 1.2.5 : Let 𝑀 be an R-module and 𝑥 ∈ 𝑀. 

 Define  𝑁 = {𝑟𝑥 + 𝑛𝑥 / 𝑟 ∈ 𝑅 𝑎𝑛𝑑 𝑛 ∈ 𝑍}. 

 Then, 𝑁 is a R-submodule of 𝑀 containing 𝑥. 

Solution : Obviously, 〈𝑁, +〉 is a (abelian) subgroup of 〈𝑀, +〉.  
 Hence, only to check that 𝑎(𝑟𝑥 + 𝑛𝑥) ∈ 𝑁 for any 𝑎 ∈ 𝑅 and (𝑟𝑥 + 𝑛𝑥) ∈ 𝑁. 

Case I : 𝑛 >  0 

 𝑎 (𝑟𝑥 + 𝑛𝑥) = 𝑎 [ 𝑟𝑥 + (𝑥 + 𝑥 + ⋯ + 𝑥 𝑛 𝑡𝑖𝑚𝑒𝑠)] 
     = 𝑎(𝑟𝑥) + (𝑎𝑥 + 𝑎𝑥 + ⋯ + 𝑎𝑥 𝑛 𝑡𝑖𝑚𝑒𝑠)]  ... by the definition of module 

     = (𝑎𝑟)𝑥 + (𝑎 + 𝑎 + ⋯ + 𝑎 𝑛 𝑡𝑖𝑚𝑒𝑠)𝑥 ]  ... by the definition of module 

     = [𝑎𝑟 + (𝑎 + 𝑎 + ⋯ + 𝑎 𝑛 𝑡𝑖𝑚𝑒𝑠)] 𝑥  ... by the definition of module 

     = 𝑢 ∙ 𝑥           ……. where 𝑢 = [𝑎𝑟 + (𝑎 + 𝑎 + ⋯ + 𝑎 𝑛 𝑡𝑖𝑚𝑒𝑠)] 
 As 𝑢 ∈ 𝑅, we get 𝑎 (𝑟𝑥 + 𝑛𝑥) ∈ 𝑁. 

Case II : 𝑛 <  0. 

 𝑎 (𝑟𝑥 + 𝑛𝑥) = 𝑎 [ 𝑟𝑥 + ((−𝑥) + (−𝑥) + ⋯ + (−𝑥) 𝑛 𝑡𝑖𝑚𝑒𝑠)] 
     = 𝑎(𝑟𝑥) + 𝑎 (−𝑥) + 𝑎 (−𝑥) + ⋯ + 𝑎 (−𝑥) 𝑛 𝑡𝑖𝑚𝑒𝑠)   

     = (𝑎𝑟)𝑥 + (−𝑎) 𝑥 + (−𝑎) 𝑥 + ⋯ + (−𝑎) 𝑥 𝑛 𝑡𝑖𝑚𝑒𝑠)𝑥 ]   

         ... by the property of the module Theorem 1.1.4 

   = [(𝑎𝑟) + (−𝑎) + (−𝑎) + ⋯ + (−𝑎)] 𝑥... by the definition of module 

     = 𝑡 ∙ 𝑥     ……. where 𝑡 = 𝑎𝑟 + [(−𝑎) + (−𝑎) + ⋯ + (−𝑎) (𝑛 𝑡𝑖𝑚𝑒𝑠)] 
 As 𝑡 ∈ 𝑅  we get 𝑎 (𝑟𝑥 + 𝑛𝑥) ∈ 𝑁 when n < 0.  

Case III : 𝑛 =  0 

 𝑎 (𝑟𝑥 + 𝑛𝑥) = 𝑎 [ 𝑟𝑥 + 0 ∙ 𝑥]    … since n = 0 

     = 𝑎 [ 𝑟𝑥 + 0]     … since 0 ∙ 𝑥 = 0 

     = 𝑎 (𝑟𝑥) + 𝑎 ∙ 0  

     = (𝑎𝑟)𝑥 + 0 ∙ 𝑥 ∈ 𝑁    … as 𝑎𝑟 ∈ 𝑅 and 0 ∈ 𝑍     

     = (𝑎𝑟)𝑥 + 0 
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 Thus, from all the cases we get 𝑎 (𝑟𝑥 + 𝑛𝑥) ∈ 𝑁. 

 Hence, 𝑁 is a R-submodule of the module 𝑀. 

 Now selecting 𝑟 = 0 and 𝑛 = 1 (1 ∈ 𝑍) we get 

      0 ∙ 𝑥 + 1 ∙ 𝑥 = 𝑥 ∈ 𝑁 

 Thus, the R-submodule 𝑁 contains the element 𝑥. 

 

Remarks 1.2.6:  

(1) If 𝑘 is a submodule of 𝑀 containing 𝑥, then 𝑁 ⊆ 𝐾. For any 𝑟 ∈ 𝑅, 𝑟𝑥 ∈ 𝐾 and for any 𝑛 ∈ 𝑍, 

     𝑛𝑥 = 𝑥 + 𝑥 + ⋯ + 𝑥 (𝑛 𝑡𝑖𝑚𝑒𝑠) ∈ 𝐾,        K being a submodule of 𝑀. 

 But then (𝑟𝑥 + 𝑛𝑥) ∈ 𝐾 for any 𝑟 ∈ 𝑅 and 𝑛 ∈ 𝑍.  

 Hence, 𝑁 ⊆ 𝐾. 

 Thus, 𝑁 is the smallest submodule of 𝑀 containing 𝑥. Generally we denote 𝑁 by 〈𝑥〉. 
 

(2) If 1 ∈ 𝑅, then for 𝑟 ∈ 𝑅 and 𝑛 ∈ 𝑁 

      𝑟𝑥 +  𝑛𝑥 =  { 𝑟 +  [1 + … +  1(𝑛 𝑡𝑖𝑚𝑒𝑠) ] } 𝑥  

        =  𝑡𝑥     where 𝑡 =  𝑟 +  (1 +  … +  1) 𝑛 times 

 as 𝑡 ∈ 𝑅 we get 𝑟𝑥 + 𝑛𝑥 ∈ 𝑅𝑥 

 Hence, 𝑁 ⊆ 𝑅𝑥. But 𝑥 ∈ 𝑁 implies 𝑅𝑥 ⊆ 𝑁. 

 Thus, 𝑁 = 𝑅𝑥 = 〈𝑥〉; if 1 ∈ 𝑅. 

 

Example 1.2.7 : Let M be an R-module. Define 

      𝑅𝑀 = ቊ
1

n

i=
∑ 𝑟 𝑚  /  𝑟 ∈ 𝑅, 𝑚 ∈ 𝑀 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒 ቋ 

 Then RM is a submodule of M. 

Solution : Let 𝑎, 𝑏 ∈ 𝑅𝑀 and 𝑟 ∈ 𝑅. 

 Then,    𝑎 =
1

n

i=
∑ 𝑟 𝑚,     𝑟  ∈ 𝑅,   𝑚 ∈ 𝑀 and n is finite. 

 and     𝑏 =
1

k

i=
∑ 𝑠 𝑡,     𝑠  ∈ 𝑅,   𝑡 ∈ 𝑀 and k is finite. 
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(i) 𝑎 − 𝑏 =
1

n

i=
∑ 𝑟 𝑚  −   

1

k

i=
∑ 𝑠 𝑡   

 = 𝑟ଵ 𝑚ଵ + 𝑟ଶ 𝑚ଶ + ⋯ + 𝑟 𝑚 + (−𝑠ଵ) 𝑡ଵ + (−𝑠ଶ) 𝑡ଶ + ⋯ + (−𝑠) 𝑡   

 ∈   𝑅𝑀     as   𝑟  ∈ 𝑅,   (−𝑠) ∈ 𝑅 and the sum contains at most 𝑛 +  𝑘 elements. 

 (ii) 𝑟 ∙ 𝑎 = 𝑟 ቌ
1

n

i=
∑ 𝑟 𝑚 ቍ 

   =
1

n

i=
∑ 𝑟 (𝑟 𝑚)   

   =
1

n

i=
∑ ( 𝑟 𝑟) 𝑚   

 as 𝑟 𝑟 ∈ 𝑅 (for each i) we get 𝑟 ∙ 𝑎 ∈ 𝑅𝑀.  

 Thus, from (i) and (ii), we get, RM is a R-submodule of M. 

 

Theorem 1.2.8 :  Let M be an R-module. For any two submodules 𝑁ଵ and  𝑁ଶ of M, 𝑁ଵ + 𝑁ଶ is a submodule of M, containing 𝑁ଵ and  𝑁ଶ both. 

Proof :  𝑁ଵ + 𝑁ଶ = {𝑛ଵ + 𝑛ଶ / 𝑛ଵ ∈ 𝑁ଵ, 𝑛ଶ ∈ 𝑁ଶ}. 

 Obviously, if 𝑎, 𝑏 ∈ 𝑁ଵ + 𝑁ଶ then 𝑎 − 𝑏 ∈ 𝑁ଵ + 𝑁ଶ. (as 〈𝑁ଵ, +〉 and 〈𝑁ଶ, +〉 are 

subgroups of an abelian group 〈𝑀, +〉). 
 Hence, 〈𝑁ଵ + 𝑁ଶ, +〉 is a normal subgroup of 〈𝑀, +〉. 
 Let  𝑎 ∈ 𝑅 and 𝑥 ∈ 𝑁ଵ + 𝑁ଶ. 

    𝑥 ∈ 𝑁ଵ + 𝑁ଶ   ⟹     𝑥 = 𝑛ଵ + 𝑛ଶ     for  𝑛ଵ ∈ 𝑁ଵ, 𝑛ଶ ∈ 𝑁ଶ 

    𝑎𝑥 = 𝑎 (𝑛ଵ + 𝑛ଶ) =  𝑎 𝑛ଵ + 𝑎𝑛ଶ          (Since  𝑛ଵ, 𝑛ଶ ∈ 𝑀 and M is a R-module) 

 Now, as 𝑁ଵ is a R-submodule,  𝑎 𝑛ଵ ∈ 𝑁ଵ. 

 Similarly, 

    𝑁ଶ is a R-submodule will imply that 𝑎 𝑛ଶ ∈ 𝑁ଶ. 

 Therefore, 𝑎𝑛ଵ + 𝑎𝑛ଶ ∈ 𝑁ଵ + 𝑁ଶ. 

 Thus, 

    𝑎𝑥 =  𝑎 𝑛ଵ + 𝑎𝑛ଶ ∈ 𝑁ଵ + 𝑁ଶ,     for any 𝑎 ∈ 𝑅 and 𝑥 ∈ 𝑁ଵ + 𝑁ଶ. 

 This shows that 𝑁ଵ + 𝑁ଶ is a submodule of an R-module M. 𝑛ଵ ∈ 𝑁ଵ can be written as 𝑛ଵ = 𝑛ଵ + 0, 0 ∈ 𝑁ଶ.  

 Hence, 𝑁ଵ ⊆ 𝑁ଵ + 𝑁ଶ.  
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 Similarly, 𝑁ଶ ⊆ 𝑁ଵ + 𝑁ଶ. 

 

More generally, we get, 

 If {𝑁}, 1 ≤ 𝑖 ≤ 𝑘 is the family of submodules of a module M. Then  

    
k

i
i=1

N∑ = {𝑥ଵ +  𝑥ଶ + ⋯ + 𝑥/𝑥 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑘} 

 is the smallest submodule of m containing each 𝑁, (1 ≤ 𝑖 ≤ 𝑘) 

Proof :  Let 𝑆 = {𝑥ଵ +  𝑥ଶ + ⋯ + 𝑥/𝑥 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑘}. Then 𝑆 ≠ 𝜙 as 𝑁 ≠ 𝜙    ∀  𝑖. 
(I) (i) If  𝑥ଵ +  𝑥ଶ + ⋯ + 𝑥 and 𝑦ଵ +  𝑦ଶ + ⋯ + 𝑦 are elements of S, then  

   (𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥) − (𝑦ଵ +  𝑦ଶ + ⋯ + 𝑦) 

     =   (𝑥ଵ − 𝑦ଵ) + (𝑥ଶ − 𝑦ଶ) + ⋯ + (𝑥 − 𝑦) 

     ∈    𝑆   as (𝑥 − 𝑦) ∈ 𝑁 for each 𝑖,   1 ≤ 𝑖 ≤ 𝑘 

 (ii) Further if 𝑟 ∈ 𝑅 and 𝑥ଵ +  𝑥ଶ + ⋯ + 𝑥 ∈ 𝑆 then  

    𝑟 ∙ (𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥) = 𝑟 ∙ 𝑥ଵ + 𝑟 ∙ 𝑥ଶ + ⋯ + 𝑟 ∙ 𝑥 

                   ∈ 𝑆 ,  as 𝑟 ∙ 𝑥 ∈ 𝑁  for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘 

   Thus, from (i) and (ii), S is a submodule of M. 

(II) Let 𝑥 ∈ 𝑁 then 𝑥 = 0 + 0 + ⋯ + 0 + 𝑥 + 0 + ⋯ + 0 

         ↑ 𝑖௧ place 

 Hence, 𝑥 ∈ 𝑆. This shows that 𝑁 ⊆ 𝑆. 

 Thus, we get, 𝑁 ⊆ 𝑆  ∀   𝑖, 1 ≤ 𝑖 ≤ 𝑘. 

 Hence, 
k

i
i=1

N∑  ⊆ 𝑆, S being a submodule of M. 

(III) Let T is any other submodules o M containing each 𝑁, 1 ≤ 𝑖 ≤ 𝑘. Then obviously 𝑆 ⊆ 𝑇. 

 From (I), (II) and (III) we get, S is the smallest submodule of M containing each 𝑁, 
 1 ≤ 𝑖 ≤ 𝑘. 

 Hence,  𝑆 = 
k

i
i=1

N∑ . 

 

Theorem 8.2.9 :  Let M be an R-module. If 𝑁ଵ and  𝑁ଶ are R-submodules of M, then  𝑁ଵ ∩ 𝑁ଶ is a submodule of M.  

Proof :  As 0 ∈ 𝑁ଵ ∩ 𝑁ଶ, we get 𝑁ଵ ∩ 𝑁ଶ ≠ 𝜙.  
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 Let 𝑥, 𝑦 ∈ 𝑁ଵ ∩ 𝑁ଶ then 𝑥, 𝑦 ∈ 𝑁ଵ and 𝑁ଵ is a submodule of M will give 𝑥 − 𝑦 ∈ 𝑁ଵ. 

 Similarly, 

    𝑥, 𝑦 ∈ 𝑁ଶ and 𝑁ଶ is a submodule of M will give 𝑥 − 𝑦 ∈ 𝑁ଶ. 

 Thus, 𝑥, 𝑦 ∈ 𝑁ଵ ∩ 𝑁ଶ  ⟹  𝑥 − 𝑦 ∈ 𝑁ଵ ∩ 𝑁ଶ 

 Again, for any 𝑟 ∈ 𝑅 and any 𝑥 ∈ 𝑁ଵ ∩ 𝑁ଶ, we get, 

     𝑟𝑥 ∈ 𝑁ଵ and 𝑟𝑥 ∈ 𝑁ଶ , as 𝑁ଵ and 𝑁ଶ are submodules of M.  

 But then 𝑟𝑥 ∈ 𝑁ଵ ∩ 𝑁ଶ. 

 Thus,   𝑥 − 𝑦 ∈ 𝑁ଵ ∩ 𝑁ଶ  ,   for all 𝑥, 𝑦 ∈ 𝑁ଵ ∩ 𝑁ଶ 

 and   𝑟𝑥 ∈ 𝑁ଵ ∩ 𝑁ଶ  ,    for all 𝑥 ∈ 𝑁ଵ ∩ 𝑁ଶ,   𝑟 ∈ 𝑅 

 Hence, 𝑁ଵ ∩ 𝑁ଶ is a R-submodules of M. 

 

Remark 1.2.10 : More generally, any arbitrary intersection of R-submodules of a given R-

module M is a R-submodules of M. 

 i.e.  if {𝑁ఈ / 𝛼 ∈ Δ} is a family of R-submodules of a given R-submodule M, then ሩ 𝑁ఈఈ∈Δ   is a R − submodule of M. 
 

Theorem 1.2.11 : 𝐴, 𝐵, 𝐶 are R-submodules of an R-submodule 𝑀 such that 𝐴 ⊆ 𝐵. Then  𝐴 + (𝐵 ∩ 𝐶) =  𝐵 ∩ (𝐴 + 𝐶) 

Proof :  As 𝐴 ⊆ 𝐵 and 𝐴 ⊆ 𝐴 + 𝐶, we get, 

      𝐴 ⊆ 𝐵 ∩ (𝐴 + 𝐶)        . . . (1) 

 Again, 𝐵 ∩ 𝐶 ⊆ 𝐵 and 𝐵 ∩ 𝐶 ⊆ 𝐶 and 𝐶 ⊆ 𝐴 + 𝐶 will imply  

      𝐵 ∩ 𝐶 ⊆ 𝐵 ∩ (𝐴 + 𝐶)      . . . (2) 

 From (1) and (2), we get, 

      𝐴 + (𝐵 ∩ 𝐶) ⊆  𝐵 ∩ (𝐴 + 𝐶)      . . . (I) 

 (Since 𝐴 and 𝐵 ∩ 𝐶 are normal subgroups of 〈𝑀, +〉 ) 
 Now, let 𝑥 ⊂  𝐵 ∩ (𝐴 + 𝐶) then 𝑥 ⊂  𝐵 and 𝑥 ⊂  𝐴 + 𝐶. 

 Hence, 𝑥 =  𝑎 + 𝑐,     for some 𝑎 ⊂ 𝐴 and 𝑐 ⊂ 𝐶 

     𝑎 ∈ 𝐴  and  𝐴 ⊆  𝐵  ⟹  𝑎 ∈ 𝐵 

     𝑥 ∈ 𝐵  and  𝑎 ∈  𝐵   ⟹  𝑥 − 𝑎 ∈ 𝐵  (Since B is submodule)  

 Thus, c = x – a will imply 𝑐 ∈  𝐵. But then x = a + c will imply 𝑥 ∈ 𝐴 + (𝐵 ∩ 𝐶). 

 As 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐵 ∩ 𝐶. 
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 This shows that  

      𝐵 ∩ (𝐴 + 𝐶) ⊆ 𝐴 + (𝐵 ∩ 𝐶)       . . . (II)  

 From (I) and (II), we get 

      𝐴 + (𝐵 ∩ 𝐶) =  𝐵 ∩ (𝐴 + 𝐶) 

 

Worked Examples 1.2.12 –––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 1 : Show by an example that union of any two submodules of an R-module need 

not be a submodule. 

Solution :  Consider Z as Z-module and let 

      𝑁ଵ =< 2 > = {0, ±2, ±4, … } 

      𝑁ଶ =< 3 > = {0, ±3, ±6, … } 

 Then 𝑁ଵ and 𝑁ଶ are submodules of the Z-module Z but 𝑁ଵ⋃𝑁ଶ is not a Z-module. 

 

Example 2 :  Show that union of any chain of submodules of a given R-module M is a R-

submodule of M. 

Solution :  Let 𝑁ଵ  ⊆  𝑁ଶ  ⊆ ⋯  be any chain of submodules of a given R-module M. to prove 

that 
1i=
U 𝑁 is a submodule of M. 

 (i)  Obviously, 
1i=
U 𝑁 ≠ 𝜙. 

 (ii)  Let 𝑎, 𝑏 ∈ 
1i=
U 𝑁. Then 𝑎 ∈ 𝑁 and 𝑏 ∈ 𝑁 for some i and j. 

   If 𝑖 ≤ 𝑗 then 𝑁 ⊆ 𝑁 and hence 𝑎, 𝑏 ∈ 𝑁 is a submodule of M, 𝑎 − 𝑏 ∈ 𝑁 and 

hence 

       𝑎 − 𝑏 ∈
1i=
U 𝑁. 

 (iii)  Let 𝑟 ∈ 𝑅 and 𝑎 ∈ 
1i=
U 𝑁  implies 𝑎 ∈ 𝑁 for some i. 

   As 𝑁 is a submodule of M, 𝑟𝑎 ∈ 𝑁 and hence 𝑟𝑎 ∈ 
1i=
U 𝑁. 

   From (i), (ii) and (iii) we get 
1i=
U 𝑁 is a submodule of M. 

 

Example 3 : Give examples of three R-submodules A, B, C such that   
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       𝐴 ∩ (𝐵 + 𝐶) ≠ (𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶) 

Solution : Consider the module ℝ(ଶ) over ℝ. [ℝ(ଶ) is a vector space over the field ℝ ].  

 Let 𝐵 = {(𝑥, 0)/ 𝑥 ∈ ℝ},  𝐶 = {(0, 𝑦)/ 𝑦 ∈ ℝ}  and  𝐴 = {(𝑧, 𝑧) / 𝑧 ∈ ℝ}  

 Clearly, A, B, C are submodules of the R-module ℝ(ଶ). 
 Then,  𝐵 + 𝐶 = ℝ(ଶ) 
 and   𝐴 ∩ (𝐵 + 𝐶) = 𝐴 ∩ ℝ(ଶ) = 𝐴      . . . (I) 

 Now,  𝐴 ∩ B = (0, 0)  and   𝐴 ∩ 𝐶 = (0, 0) 

 Hence,    

    (𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶) = {(0, 0)}     . . . (II) 

 Hence, from (I) and (II), we get, 

    𝐴 ∩ (𝐵 + 𝐶) ≠ (𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶) 

 

Definition 1.2.13 : Simple Module : 

 A R-module M is called simple if its only submodules are {0} and M. 

 

Theorem 1.2.14 : Let R be a ring with unity. Let 𝑀 ≠ {0}, be am R-module. Then M is 

simple iff M = Rx for any 𝑥 ≠ 0 in M. 

Proof : Only if part : 

  Let M be a simple R-module. Let 𝑥 ≠ 0. Then  𝑅𝑥 = {𝑟𝑥 / 𝑟 ∈ 𝑅} is a submodule of M 

containing x. (See remark (1) of example 2). 

  As 𝑅𝑥 ≠ {0} and as M is a simple module, Rx = M. Thus M = Rx for any 𝑥 ≠ 0 in M. 

If part :  

 Let M = Rx for each 𝑥 ≠ 0 in M. 

 To prove that M is a simple module.  

 Let N be a nonzero submodule of M. Select any 𝑥 ≠ 0 in N.  

 Then by assumption, M = Rx. As 𝑥 ∈ 𝑁 we get 𝑅𝑥 ⊆ 𝑁 

  i.e.   𝑀 ⊆ 𝑁 and hence N = M. 

 This shows that M is a simple module. 

  

 We know that intersection of any number of submodules of a given R-module 𝑀 is a 

submodule of 𝑀. as any non-empty subset 𝑆 of an R-module 𝑀 need not be a R-module, we 

introduce the concept of submodule generated by 𝑆. 
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Definition 1.2.15 : Let 𝑆 be any nonempty subset of an R-module 𝑀. The submodule 

generated by 𝑆 in 𝑀 is the smallest submodule of 𝑀 containing 𝑆.  

 This is denoted by 〈𝑆〉.  
 Thus,   

      〈𝑆〉 = ⋂{𝑁 / 𝑁 is a submodule containing S} 

 If 𝑆 = {𝑥ଵ, 𝑥ଶ, … , 𝑥} is a finite set, then 〈𝑆〉 is also written as 〈𝑥ଵ, 𝑥ଶ, … , 𝑥〉. 
 

Definition 1.2.16 : An R-module 𝑀 is called finitely generated if 𝑀 = 〈𝑥ଵ, 𝑥ଶ, … , 𝑥〉 for 

each 𝑥 ∈ 𝑀, 1 ≤ 𝑖 ≤ 𝑛. 

 The elements 𝑥ଵ, 𝑥ଶ, … , 𝑥 are said to generate 𝑀. 

 

Definition 1.2.17 : An R-module 𝑀 is called a cyclic module if 𝑀 = 〈𝑥〉, for some 𝑥 ∈ 𝑀. 

 

Theorem 1.2.18 :   Let 𝑀 be an R-module. Let 𝑀 = 〈𝑥ଵ, 𝑥ଶ, … , 𝑥〉. Then  

     𝑀 = {𝑟ଵ𝑥ଵ + 𝑟ଶ𝑥ଶ + ⋯ + 𝑟𝑥 / 𝑟 ∈ 𝑅, 1 ≤ 𝑖 ≤ 𝑛} 

 In this case we write 𝑀 = n
i

i=1
Rx∑ . 

Proof :   Let 𝑆 = {𝑟ଵ𝑥ଵ + 𝑟ଶ𝑥ଶ + ⋯ + 𝑟𝑥 / 𝑟 ∈ 𝑅, 1 ≤ 𝑖 ≤ 𝑛} then S is a submodule of M. 

    1 ∈ 𝑅      ⟹     1 ∙ 𝑥 ∈ 𝑅𝑥   for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛.  

 Again  𝑅𝑥 ⊆ 𝑆      for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 Hence  𝑥 ∈ 𝑆      for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 If 𝑁 is any other submodule containing {𝑥ଵ, 𝑥ଶ, … , 𝑥} then by the definition of 

submodule it follows that  

     𝑟ଵ𝑥ଵ + 𝑟ଶ𝑥ଶ + ⋯ + 𝑟𝑥 ∈ 𝑁  for 𝑟 ∈ 𝑅 

 This will imply 𝑆 ⊆ 𝑁.  

 Thus, we have proved that S is the submodule of M containing {𝑥ଵ, 𝑥ଶ, … , 𝑥}.  

 Hence, 〈𝑥ଵ, 𝑥ଶ, … , 𝑥〉 = 𝑆. 

 Hence, by data 𝑀 = 𝑆. 

 

Remark 1.2.19 : The set of generators of a module need not be unique.  

 Let 𝑀 = {𝑓(𝑥) ∈ 𝐹[𝑥] / degree of 𝑓(𝑥) ≤ 𝑛}. Then M is a vector space over the field. 

Then both {1, 𝑥, 𝑥ଶ, … , 𝑥} and {1, 1 + 𝑥, 𝑥ଶ, … , 𝑥} will generate M. 
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Definition 1.2.20 : Quotient Modules : 

 Let 𝑀 be an R-module and N be a submodule of 𝑀. Then 〈𝑁, +〉 is a normal subgroup of 〈𝑀, +〉 and hence consider  

      
ெே = the set of cosets [right / left]  of N in M 

          = {𝑚 + 𝑛 /  𝑚 ∈ 𝑀} 

 Define addition and the Scalar multiplication on 
ெே by 

 (i)  (𝑚ଵ + 𝑁) + (𝑚ଶ + 𝑁) = (𝑚ଵ + 𝑚ଶ) + 𝑁  

 (ii)  𝑟 ∙ (𝑚 + 𝑁) = 𝑟 ∙ 𝑚 + 𝑁  

    for 𝑚ଵ, 𝑚ଶ, 𝑚 ∈ 𝑀 and 𝑟 ∈ 𝑅. 

 Then it can be easily verified that 〈𝑀𝑁 , +, ∙〉 is a R-module. This R-module is called the 

quotient module of 𝑀 by the submodule 𝑁. 

 

Definition 1.2.21 : Submodule Generated by A : 

 Let 𝑀 be an R-module and let 𝐴 ⊆ 𝑀. The smallest submodule of 𝑀 containing the set 𝐴 

is called the submodule generated by 𝐴 and is denoted by 〈𝐴〉. Thus, 

      〈𝐴〉 =  ⋂  {𝑁 / 𝑁 is a submodule of M such that 𝐴 ⊆ 𝑁} . . . (1) 

 As 𝑀 is a submodule of 𝑀 containing 𝐴 the family of sets representing R.H.S. of (1) is 

non empty. 

 

1.3 Homomorphism :  

Definition 1.3.1 : Let 𝑀 and 𝑁 be R-modules. A mapping 𝑓: 𝑀 ⟶ 𝑁 is called R-

homorphism or a module homorphism if it satisfy the following conditions. 

 (i)   𝑓(𝑥 + 𝑦) = 𝑓(𝑥) +  𝑓(𝑦) 

 (ii)   𝑓(𝑟𝑥) = 𝑟 ∙ 𝑓(𝑥) 

     for all 𝑥, 𝑦 ∈ 𝑀 and 𝑟 ∈ 𝑅. 

  

Remarks 1.3.2: 

 (i)  If 𝑓: 𝑀 ⟶ 𝑁 is a module homorphism, then f(0) = 0, 𝑓(−𝑥)  =  − 𝑓(𝑥) and hence  

        𝑓(𝑥 − 𝑦) = 𝑓(𝑥) − 𝑓(𝑦) ,  for 𝑥, 𝑦 ∈ 𝑀. 

 (ii)  The collection of all R-homorphisms  𝑓: 𝑀 ⟶ 𝑁 is denoted by Hom (M, N). 

 (iii) A R-homorphism 𝑓: 𝑀 ⟶ 𝑀 is called an endomorphism on 𝑀 and the set of  
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       endomorphism on 𝑀 is denoted by 𝑒𝑛𝑑ோ(𝑀, 𝑀). 

 

Examples 1.3.3 :  

Ex 1. Let 𝑀 and 𝑁 be R-modules and define 𝑓: 𝑀 ⟶ 𝑁 by f(m) = 0 for each 𝑚 ∈ 𝑀. Then f 

is an R-homomorphism and is called a zero homorphism. 

Ex 2. Let 𝑀 be an R-module. Define 𝑖 ∶ 𝑀 ⟶ 𝑀 by i(m) = m for each 𝑚 ∈ 𝑀. Then the 

identity map is an R-endomorphism. 

Ex 3. Let 𝑅 be a commutative ring and let 𝑀 be an R-module. Fix up any 𝑟 ∈ 𝑅. Define the 

map 𝑓 ∶ 𝑀 ⟶ 𝑀 by  

      𝑓(𝑚) =  𝑟 ∙ 𝑚,   for each 𝑚 ∈ 𝑀 

   Then f is an endomorphism. 

Solution :  Let 𝑚ଵ, 𝑚ଶ  ∈ 𝑀. 

 Then  𝑓(𝑚ଵ + 𝑚ଶ) = 𝑟 ∙ (𝑚ଵ + 𝑚ଶ) 

         = 𝑟𝑚ଵ + 𝑟𝑚ଶ 

 Thus,  𝑓(𝑚ଵ + 𝑚ଶ) = 𝑓(𝑚ଵ) + 𝑓(𝑚ଶ) 

 Again for 𝑚ଵ ∈ 𝑀 and  𝑟ଵ ∈ 𝑅 we get,  

   𝑓(𝑟ଵ𝑚ଵ) = 𝑟 ∙ (𝑟ଵ 𝑚ଵ) 

         = (𝑟 ∙ 𝑟ଵ) 𝑚ଵ 

         = (𝑟ଵ ∙ 𝑟) 𝑚ଵ   ... Since R is commutative. 

         = 𝑟ଵ ∙ (𝑟 𝑚ଵ) 

         = 𝑟ଵ ∙ 𝑓(𝑚ଵ) 

 Thus, 𝑓(𝑚ଵ + 𝑚ଶ) = 𝑓(𝑚ଵ) + 𝑓(𝑚ଶ) 

 and  𝑓(𝑟ଵ𝑚ଵ) = 𝑟ଵ ∙ 𝑓(𝑚ଵ)    ... for all 𝑚ଵ, 𝑚ଶ  ∈ 𝑀, 𝑟ଵ ∈ 𝑅 

 Hence, f is an R-endomorphism. 

 

Ex 4.  Let R be a ring. Consider the module 𝑅() over R and the ring R as an R-module. (See 

1.1.4 problem 4). Define 𝑓 ∶  𝑅() ⟶ 𝑅 by  

      𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥) = 𝑥   for a fixed 𝑖, 1 ≤ 𝑖 ≤ 𝑛 

 Then f is a R-homomorphism. 

Solution :   Let (𝑥ଵ, 𝑥ଶ, … , 𝑥) ∈ 𝑅() and (𝑦ଵ, 𝑦ଶ, … , 𝑦) ∈ 𝑅(). 
 Then  

   𝑓 [(𝑥ଵ, 𝑥ଶ, … , 𝑥) + (𝑦ଵ, 𝑦ଶ, … , 𝑦)] = 𝑓 [(𝑥ଵ + 𝑦ଵ, 𝑥ଶ + 𝑦ଶ, … , 𝑥 + 𝑦)] 
            = 𝑥 + 𝑦 
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            = 𝑓 (𝑥ଵ, 𝑥ଶ, … , 𝑥) + 𝑓(𝑦ଵ, 𝑦ଶ, … , 𝑦) 

 Further for any 𝑟 ∈ 𝑅 and (𝑥ଵ, 𝑥ଶ, … , 𝑥) ∈ 𝑅() we get 

   𝑓 [𝑟 ∙ (𝑥ଵ, 𝑥ଶ, … , 𝑥)] = 𝑓(𝑟𝑥ଵ, 𝑟𝑥ଶ, … , 𝑟𝑥) 

           = 𝑟 ∙ 𝑥 
            = 𝑟 ∙ 𝑓(𝑥) 

 Thus, 

   𝑓 [(𝑥ଵ, 𝑥ଶ, … , 𝑥) + (𝑦ଵ, 𝑦ଶ, … , 𝑦)] = 𝑓 (𝑥ଵ, 𝑥ଶ, … , 𝑥) + 𝑓(𝑦ଵ, 𝑦ଶ, … , 𝑦) 

 and  𝑓 [𝑟 ∙ (𝑥ଵ, 𝑥ଶ, … , 𝑥)] = 𝑟 ∙ 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥)  

               ... for all (𝑥ଵ, 𝑥ଶ, … , 𝑥), (𝑦ଵ, 𝑦ଶ, … , 𝑦) ∈ 𝑅(),   𝑟 ∈ 𝑅 

 Hence, f is a R-homomorphism. 

 

Ex 5. Let M be R-module and N be R-submodule of M. Define 𝑓: 𝑀 ⟶  
ெே  by 

     𝑓(𝑚) = 𝑚 + 𝑁 

   Then f is an epimorphism. 

Solution : For 𝑚ଵ, 𝑚ଶ  ∈ 𝑀 we get 

     𝑓(𝑚ଵ + 𝑚ଶ) = (𝑚ଵ + 𝑚ଶ) +  𝑁  ... by definition of f 

              = (𝑚ଵ + 𝑁) + (𝑚ଶ + 𝑁) ... by definition of + in 
ெே 

                = 𝑓(𝑚ଵ) + 𝑓(𝑚ଶ)  ... by definition of f 

 Further, for any 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 we get 

     𝑓(𝑟𝑚) = 𝑟𝑚 +  𝑁    ... by definition of f 

      = 𝑟 (𝑚 + 𝑁)    ... by definition of ∙ in 
ெே 

      = 𝑟 𝑓(𝑚)    ... by definition of f 

 Thus,  𝑓(𝑚ଵ + 𝑚ଶ) = 𝑓(𝑚ଵ) + 𝑓(𝑚ଶ) 

 and   𝑓(𝑟𝑚) = 𝑟 𝑓(𝑚)           ... for all 𝑚ଵ,  𝑚ଶ, 𝑚 ∈ 𝑀,   𝑟 ∈ 𝑅 

 Hence, 𝑓 is a R-homomorphism. 

 Clearly, 𝑓 is onto as for 𝑚 + 𝑁 ∈ 
ெே , we get  𝑚 ∈ 𝑀 and 𝑓(𝑚) = 𝑚 + 𝑁. 

 Thus, f  is an epimorphism. 

 

Remark :  

 (i)  This epimorphism 𝑓: 𝑀 ⟶ 
ெே defined by 𝑓(𝑚) = 𝑚 + 𝑁 is called a natural or  
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   canonical homomorphism. 

 (ii) Any quotient module 
ெே of M by the submodule N is always a homomorphic  

   image of M under the canonical mapping. 

 

Theorem 1.3.4 : Let M be an R-module and let N be R-submodule of M. The submodules 

of the quotient module 
ெே are of the form 

ே, where U is a submodule of M containing 

N. 

Proof :  Let 𝑓: 𝑀 ⟶ 
ெே be the canonical mapping. We know that f is an onto 

homomorphism (1.2, example 5). Hence 
ெே = 𝑓(𝑀) = {𝑓(𝑚)/ 𝑚 ∈ 𝑀}.  

 Let T be an R-submodule of  
ெே. Define 

       𝑈 = {𝑥 ∈ 𝑀 / 𝑓(𝑥) ∈ 𝑇} 

Claim 1 :  U is a R-submodule of M. 

(i)  𝑈 ≠ 𝜙 as 𝑇 ≠ 𝜙. 

(ii) Let 𝑥, 𝑦 ∈ 𝑈. Then 𝑓(𝑥), 𝑓(𝑦)  ∈ 𝑇.  

  As T is a submodule of ெே, 𝑓(𝑥) −  𝑓(𝑦)  ∈ 𝑇.   

  f  being a homomorphism, 

      𝑓(𝑥) −  𝑓(𝑦)  ∈ 𝑇   ⟹  𝑓(𝑥 − 𝑦) ∈ 𝑇 

  By the definition of U, we get 𝑥 − 𝑦 ∈ 𝑈. 

(iii) Let 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑈. Then 𝑓(𝑥) ∈ 𝑇. 

  f  being an homomorphism, 

      𝑓(𝑟𝑥) = 𝑟 𝑓(𝑥) 

  As 𝑓(𝑥) ∈ 𝑇 and 𝑟 ∈ 𝑅 

       𝑟 ∙ 𝑓(𝑥) ∈ 𝑇,    T being a submodule of 
ெ .  

  i.e.     𝑓(𝑟𝑥) ∈ 𝑇. 

  This gives 𝑟𝑥 ∈ 𝑈 . 

  Form (i), (ii) and (iii) it follows that U is a R-submodule of M. 

Claim 2 :  𝑁 ⊆ 𝑈. 

  Let 𝑛 ∈ 𝑁. Then 𝑓(𝑛) = 𝑛 + 𝑁 = 𝑁 ∈ 𝑇. (Since N is the identity element of  
ெே  and T  
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 is a submodule of  
ெ  ). 

 But then, by the definition of U, 𝑛 ∈ 𝑈 and hence 𝑁 ⊆ 𝑈. 

Claim 3 :  T = f (U) 

 Let   𝑥 + 𝑁 ∈ 𝑇.  

 As   𝑥 ∈ 𝑀 and 𝑓(𝑥) =  𝑥 + 𝑁 ∈ 𝑇, we get 𝑥 ∈ 𝑈.  

 But this shows 𝑓(𝑥) ∈ 𝑓(𝑈).  

 Thus, 

    𝑥 + 𝑁 ∈ 𝑇   ⟹   𝑓(𝑥) ∈ 𝑇     ⟹      𝑓(𝑥) ∈ 𝑓(𝑈). 

 Hence   𝑇 ⊆ 𝑓(𝑈). 

 As    𝑓(𝑈) ⊆ 𝑇, 

 By the definition of U, we get T = f (U). 

 From claims 1, 2 and 3, for any submodule T of the quotient module M, there exists a 

submodule U of the module M, containing N and with f (U) = T. 

 But 𝑓 being a canonical mapping, f (U) = U + N.  

 Hence,   𝑇 =  𝑓 (𝑈)    ⟹    𝑇 = 𝑈 + 𝑁. 

     Thus, any submodule T of  
ெே is of the form 

ே, where U is a submodule of M containing 

N.  

 This completes the proof. 

 

Definition 1.3.5 : Let 𝑀 and 𝑁 be R-modules. Let 𝑓: 𝑀 ⟶ 𝑁 be a R-homomorphism.  

 The set 

    ker 𝑓 = {𝑚 ∈ 𝑀 / 𝑓(𝑚) = 0} 

 is called the kernel of the homomorphism f and the set  

    im 𝑓 = {𝑓(𝑚) ∈ 𝑁 / 𝑚 ∈ 𝑀} 

 is called the image of f. 

 

Theorem 1.3.6 : For any module homomorphism 𝑓: 𝑀 ⟶ 𝑁, 𝑘𝑒𝑟𝑓 is a submodule of the 

module M and im f is a submodule of the module N. 

Proof : 

(I) To prove that 𝑘𝑒𝑟𝑓 is a submodule of the module M. 

 (i)  𝑘𝑒𝑟𝑓 ≠ 𝜙  as 𝑓(0) = 0 implies 0 ∈  𝑘𝑒𝑟𝑓. 

 (ii) Let 𝑚ଵ, 𝑚ଶ ∈ 𝑘𝑒𝑟𝑓. Then 𝑓(𝑚ଵ) = 0,   𝑓(𝑚ଶ) = 0. 
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   𝑓(𝑚ଵ − 𝑚ଶ) = 𝑓(𝑚ଵ + (−𝑚ଶ)) 

     = 𝑓(𝑚ଵ) + 𝑓(−𝑚ଶ)   ... ∵  f is a homomorphism 

     = 𝑓(𝑚ଵ) − 𝑓(𝑚ଶ)   ... 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 ∈ 𝑀  

     = 0 − 0    ... ∵   𝑚ଵ, 𝑚ଶ ∈ 𝑘𝑒𝑟𝑓 

     = 0 

   But   𝑓(𝑚ଵ − 𝑚ଶ) = 0  implies  𝑚ଵ − 𝑚ଶ ∈ 𝑘𝑒𝑟𝑓. 

   Thus, 𝑚ଵ − 𝑚ଶ ∈ 𝑘𝑒𝑟𝑓,  for 𝑚ଵ, 𝑚ଶ ∈ 𝑘𝑒𝑟𝑓. 

 (iii)  Let 𝑚 ∈ 𝑘𝑒𝑟𝑓 and 𝑟 ∈ 𝑅. 

   Then, 

     𝑓(𝑟 𝑚) = 𝑟 ∙ 𝑓(𝑚)     ... ∵  f is a homomorphism 

      = 𝑟 ∙ 0      ... ∵ 𝑚 ∈ 𝑘𝑒𝑟𝑓 

      = 0      ... See 1.1.3 theorem 1 

  Thus, 𝑓(𝑟 𝑚) = 0 implies  𝑟𝑚 ∈ 𝑘𝑒𝑟𝑓. 

  Thus, 𝑟𝑚 ∈ 𝑘𝑒𝑟𝑓, for 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀. 

  From (i), (ii) and (iii), we get 𝑘𝑒𝑟𝑓 is a R-submodule of M. 

 

(II) To prove that imf is a submodule of N. 

 (i)  𝑖𝑚𝑓 ≠ 𝜙  as 𝑀 ≠ 𝜙.  

 (ii) Let 𝑓(𝑚ଵ, ),   𝑓(𝑚ଶ) ∈ 𝑖𝑚 𝑓. 

   𝑓(𝑚ଵ) ∈ 𝑖𝑚 𝑓     ⟹     𝑚ଵ ∈ 𝑀. 

   𝑓(𝑚ଶ) ∈ 𝑖𝑚 𝑓     ⟹     𝑚ଶ ∈ 𝑀. 

   As M is a module, 𝑚ଵ − 𝑚ଶ ∈ 𝑀. But then 𝑓(𝑚ଵ − 𝑚ଶ) ∈ 𝑖𝑚𝑓. 

   𝑓 being an homomorphism,  

     𝑓(𝑚ଵ − 𝑚ଶ) = 𝑓(𝑚ଵ) − 𝑓(𝑚ଶ) 

  Thus, 𝑓(𝑚ଵ, ),   𝑓(𝑚ଶ) ∈ 𝑖𝑚 𝑓 will imply 𝑓(𝑚ଵ) − 𝑓(𝑚ଶ) ∈ 𝑖𝑚 𝑓  

 (iii)  Let 𝑓(𝑚) ∈ 𝑖𝑚 𝑓 and 𝑟 ∈ 𝑅. But then 𝑟𝑚 ∈ 𝑀 as 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅 and M is an R-

module.  

  Hence, 𝑓(𝑟𝑚) ∈ 𝑖𝑚 𝑓. 

  As f is a homomorphism, 𝑓(𝑟𝑚) = 𝑟 𝑓(𝑚). 

  Thus, given  𝑓(𝑚) ∈ 𝑖𝑚 𝑓 and 𝑟 ∈ 𝑅 we get  

     𝑟 𝑓(𝑚) ∈ 𝑖𝑚 𝑓. 

  From (i), (ii) and (iii), we get, 𝑖𝑚 𝑓 is a R-submodule of N. 
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Theorem 1.3.7 : Let 𝑀 and 𝑁 be R-modules and let 𝑓: 𝑀 ⟶ 𝑁 be R-homomorphism. Then 𝑓 is one-one iff 𝑘𝑒𝑟𝑓 = {0}. 

Proof : Only if part :  

 Let f be one-one. 

 To prove that ker 𝑓 = {0}. Let 𝑥 ∈ ker 𝑓. Then  

  𝑥 ∈ ker 𝑓     ⟹    𝑓(𝑥) = 0  

       ⟹    𝑓(𝑥) = 𝑓(0)   

            ⟹   𝑥 = 0      ... as 𝑓 is one-one. 

 Thus, ker 𝑓 = {0}. 

If part :   

 Let 𝑓: 𝑀 ⟶ 𝑁 be R-homomorphism such that ker 𝑓 = {0}. 

 To prove that f is one-one. 

 Let 𝑓(𝑥) = 𝑓(𝑦) for some 𝑥, 𝑦 ∈ 𝑀. 

 𝑓(𝑥) = 𝑓(𝑦)         ⟹    𝑓(𝑥) − 𝑓(𝑦) = 0 

    ⟹    𝑓(𝑥 − 𝑦) = 0 

    ⟹    𝑥 − 𝑦 ∈ 𝑘𝑒𝑟 𝑓 

    ⟹    𝑥 − 𝑦 ∈ {0} 

    ⟹    𝑥 − 𝑦 = 0 

    ⟹    𝑥 = 𝑦 

 Thus,  𝑓(𝑥) = 𝑓(𝑦)    ⟹    𝑥 = 𝑦 

 Hence, f is one-one. 

 

Definition 1.3.8 :  Let 𝑓 ∶  𝑀 ⟶ 𝑁 be a module homomorphism. If 𝑓 is both one-one and 

onto we say 𝑓 is an R-isomorphism or module isomorphism. 

 

Remark 1.3.9 : 

 (i) If 𝑓 ∶ 𝑀 ⟶ 𝑀 is an module isomorphism then 𝑓ିଵ ∶ 𝑁 ⟶ 𝑀 is also a module 

isomorphism. 

 (ii) Any two R-modules M and N are said to be isomorphic if there exists an module 

isomorphism 𝑓: 𝑀 ⟶ 𝑁. In this case we write 𝑀 ≅ 𝑁. 

 (iii) The relation ≅ (being isomorphic) defined on the set of all R-modules is an 

equivalence relation. 
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Theorem 1.3.10 : Let 𝑀 be a simple R-module. Any non zero homomorphism defined on 𝑀 

is an isomorphism. 

Proof : Let 𝑓: 𝑀 ⟶ 𝑀 be  R-homomorphism where 𝑀 is a simple R-module.  

To prove that 𝑓 is an isomorphism. 

(I) We know that 𝑘𝑒𝑟 𝑓 is a sub module of 𝑀.  

 𝑀 being simple, 𝑘𝑒𝑟 𝑓 = {0} or 𝑘𝑒𝑟 𝑓 = 𝑀.  

 As f is a non zero homomorphism, 𝑘𝑒𝑟𝑓 ≠ 𝑀.  

 Therefore, 𝑘𝑒𝑟 𝑓 = {0}.  

 But then 𝑓 is one-one.   (see Theorem 2). 

(II) By Theorem 1, 𝑖𝑚 𝑓 is a submodule of M.  

 𝑀 being simple, 𝑖𝑚 𝑓 = {0} or 𝑖𝑚 𝑓 = 𝑀.  

 As f is a non zero homomorphism, 𝑖𝑚 𝑓 ≠ {0}.  

 Therefore, 𝑖𝑚 𝑓 = 𝑀.  

 But then in this case 𝑓  is onto. 

From (I) and (II), we get the non zero homomorphism is both one-one and onto.  

Hence, 𝑓 is an isomorphism. 

 

• Shur’s Lemma : 

Theorem 1.3.11 : Let 𝑀 be a simple R-module. Then 

    𝐻𝑜𝑚ோ(𝑀, 𝑀) = {𝑓: 𝑀 ⟶ 𝑀 / 𝑓 is a R − homomorphism} 

 is a division ring. 

Proof :   

(I) To prove 𝐻𝑜𝑚ோ(𝑀, 𝑀) is a ring under ‘ + ’ and ‘ ∙ ’ defined by  

    (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) ,    ∀    𝑥 ∈ 𝑀 

 and   (𝑓 ∙ 𝑔)(𝑥) = 𝑓 [𝑔(𝑥)]  ,   ∀    𝑥 ∈ 𝑀 

   for all 𝑓, 𝑔 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀). 

(i) 𝑓 + 𝑔 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀),  for 𝑓, 𝑔 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀) 

 𝑓: 𝑀 ⟶ 𝑀 and 𝑔: 𝑀 ⟶ 𝑀. Hence, 𝑓 + 𝑔 ∶ 𝑀 ⟶ 𝑀 and is well defined map. 

 Let 𝑥, 𝑦 ∈ 𝑀. Then, we have  

 (𝑓 + 𝑔)(𝑥 + 𝑦) = 𝑓(𝑥 + 𝑦) + 𝑔(𝑥 + 𝑦)     .... By definition of 𝑓 + 𝑔. 

     = [𝑓(𝑥) + 𝑓(𝑦)] +  [𝑔(𝑥) + 𝑔(𝑦)]   

         .... Since 𝑓 and 𝑔 are R-homomorphism. 

     = [𝑓(𝑥) + 𝑔(𝑥)] +  [𝑓(𝑦) + 𝑔(𝑦)]   



 

Algebra Page No. 145

         .... Since < 𝑀, +> is an abelian group. 

     = (𝑓 + 𝑔)(𝑥) + (𝑓 + 𝑔)(𝑦)   .... By definition of 𝑓 + 𝑔. 

 Again, let 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑀. 

      (𝑓 + 𝑔)(𝑟𝑥) = 𝑓 (𝑟𝑥) + 𝑔 (𝑟𝑥)  .... By definition of 𝑓 + 𝑔. 

     = 𝑟 [𝑓(𝑥)] + 𝑟 [𝑔(𝑥)] .... Since 𝑓 and 𝑔 are R-homomorphism. 

     = 𝑟 [𝑓(𝑥) + 𝑔(𝑥)] 
     = 𝑟 (𝑓 + 𝑔) (𝑥) 

 Thus, we get,  

   (𝑓 + 𝑔)(𝑥 + 𝑦) = (𝑓 + 𝑔)(𝑥) + (𝑓 + 𝑔)(𝑦)     

 and  (𝑓 + 𝑔)(𝑟𝑥) = 𝑟 (𝑓 + 𝑔) (𝑥)     

    for all 𝑥, 𝑦 ∈ 𝑀 and 𝑟 ∈ 𝑅. 

 This shows that (𝑓 + 𝑔) is a R- homomorphism and hence (𝑓 + 𝑔) ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀), for 𝑓, 𝑔 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀). 

(ii) To prove 𝑓 ∘ 𝑔 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀) for 𝑓, 𝑔 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀) 

 𝑓 ∘ 𝑔 is well defined map. 𝑓 + 𝑔 ∶ 𝑀 ⟶ 𝑀. 

 Let  𝑥, 𝑦 ∈ 𝑀. Then we have  

 (𝑓 ∘ 𝑔)(𝑥 + 𝑦) = 𝑓[𝑔(𝑥 + 𝑦)]      .... By definition of  𝑓 ∘ 𝑔. 

     = 𝑓 [𝑔(𝑥) + 𝑔(𝑦)]    .... Since 𝑔 is a homomorphism. 

     = 𝑓 [𝑔(𝑥)] +  𝑓 [𝑔(𝑦)]    .... Since 𝑓 is a homomorphism. 

     = (𝑓 ∘ 𝑔)(𝑥) + (𝑓 ∘ 𝑔)(𝑦)   .... By definition of 𝑓 + 𝑔. 

 Again for any 𝑟 ∈ 𝑅 and 𝑓 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀), we get 

      (𝑓 ∘ 𝑔)(𝑟𝑥) = 𝑓 [𝑔 (𝑟𝑥)]    .... By definition of 𝑓 + 𝑔. 

     = 𝑓 [𝑟 ∙ 𝑔(𝑥)]   .... Since 𝑔 is a R-homomorphism. 

     = 𝑟 ∙ [𝑓(𝑔(𝑥))]   .... Since 𝑓 is a R-homomorphism. 

     = 𝑟 (𝑓 ∘ 𝑔) (𝑥) 

 Thus, we get  

    (𝑓 ∘ 𝑔)(𝑥 + 𝑦) = (𝑓 ∘ 𝑔)(𝑥) + (𝑓 ∘ 𝑔)(𝑦)     

 and   (𝑓 ∘ 𝑔)(𝑟𝑥) = 𝑟[ (𝑓 ∘ 𝑔) (𝑥)]     

   for all 𝑥, 𝑦 ∈ 𝑀 and 𝑟 ∈ 𝑅. 

 Hence, (𝑓 ∘ 𝑔) ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀). 

(iii) < 𝐻𝑜𝑚ோ(𝑀, 𝑀), +> is an abelian group where the zero mapping 0: 𝑀 ⟶ 𝑀 defined by 0(𝑥) = 0 will be the ideal element w. r. t. ‘+’ in 𝐻𝑜𝑚ோ(𝑀, 𝑀).  

 Let 𝑓 ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀).  
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 Define  (– 𝑓) ∶ 𝑀 ⟶ 𝑀 by 

     (−𝑓)(𝑥) = −[𝑓(𝑥],     ∀    𝑥 ∈ 𝑀 

 Then, it can be easily verified that ൫– 𝑓൯ is a R-homomorphism defined on M and (−𝑓) 

will be additive inverse of f in 𝐻𝑜𝑚ோ(𝑀, 𝑀).  

(iv) (𝑓 ∘ 𝑔) ∘ ℎ = 𝑓 ∘ (𝑔 ∘ ℎ) ,     ∀    𝑓, 𝑔, ℎ ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀) 

(v) Let 𝑓, 𝑔, ℎ ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀) let 𝑥 ∈ 𝑀, then 𝑓 ∘ [𝑔 + ℎ] (𝑥) = 𝑓 [(𝑔 + ℎ) (𝑥)] 
    = 𝑓 [𝑔(𝑥) + ℎ(𝑥)] 
    = 𝑓 [𝑔(𝑥)] + 𝑓 [ℎ(𝑥)] 
    = (𝑓 ∘ 𝑔)(𝑥)  + (𝑓 ∘ ℎ)(𝑥)] 
    = [(𝑓 ∘ 𝑔) + (𝑓 ∘ ℎ)](𝑥),   ∀    𝑥 ∈ 𝑀 

 Hence , 

    𝑓 ∘ [𝑔 + ℎ]  = (𝑓 ∘ 𝑔) + (𝑓 ∘ ℎ) 

 Similarly,  (𝑔 + ℎ) ∘ 𝑓 = (𝑔 ∘ 𝑓) + (ℎ ∘ 𝑓)  ∀    𝑓, 𝑔, ℎ ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀) 

 From (i), (ii), (iii) and (iv), we get, 〈𝐻𝑜𝑚ோ(𝑀, 𝑀), +,∘〉 is a ring. 

(II) The identity mapping 𝑖: 𝑀 ⟶ 𝑀 defined by  

    𝑖(𝑥) = 𝑥,     for all 𝑥 ∈ 𝑀 

 will be the unity element in 𝐻𝑜𝑚ோ(𝑀, 𝑀). 

 

(III) Let 𝜓 be any non-zero element in 𝐻𝑜𝑚ோ(𝑀, 𝑀).  

 i.e. 𝜓 is a non-zero R-homomorphism from 𝑀 into 𝑀, where 𝑀 is a simple module. 

Hence, 𝜓 must be a bijective and hence 𝜓 is an isomorphism.  

 But this will show that 𝜓ିଵ ∈ 𝐻𝑜𝑚ோ(𝑀, 𝑀). 

 Thus, we have proved that, any non-zero R-homomorphism defined on M will have a 

multiplicative inverse in 𝐻𝑜𝑚ோ(𝑀, 𝑀). 

 From (I), (II) and (III), we get, 𝐻𝑜𝑚ோ(𝑀, 𝑀) is a division ring. 

 

Theorem 1.3.12 : Let M be a R-module and  𝑥 ∈ 𝑀 such that 𝑟𝑥 = 0, 𝑟 ∈ 𝑅 implies 𝑟 = 0. 

Then 𝑅𝑥 ≅ 𝑅 as R-module. 

Proof :  We know that Rx is a R-submodule and hence Rx is a R-module (See 2.2 example 

2). Further R is also an R-module (See 1.2 example 1).  

 Define 𝑓: 𝑅 ⟶ 𝑅𝑥 by 𝑓(𝑟) = 𝑟 ∙ 𝑥. 
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(I) Then, 

 (i)  𝑓(𝑟ଵ + 𝑟ଶ) = (𝑟ଵ + 𝑟ଶ) (𝑥)  

     =  𝑟ଵ(𝑥) + 𝑟ଶ(𝑥) 

     =  𝑓(𝑟ଵ) + 𝑓(𝑟ଶ) 

 (ii) 𝑓(𝑟 ∙  𝑟ଵ) = (𝑟 𝑟ଵ) (𝑥)  

     =  𝑟 (𝑟ଵ𝑥) 

     =  𝑟 ∙ 𝑓(𝑟ଵ) 

   For all 𝑟, 𝑟ଵ, 𝑟ଶ ∈ 𝑅. 

 Hence, 𝑓 is a R-homomorphism. 

(II) f is onto obviously. 

(III) Let 𝑟 ∈ 𝑘𝑒𝑟 𝑓. Then 𝑓(𝑟) = 0. i.e. 𝑟 ∙ 𝑥 = 0. But by data 𝑟 ∙ 𝑥 = 0     ⇒   𝑟 = 0.  

 Hence, 𝑘𝑒𝑟 𝑓 = {0}. But this will imply 𝑓 is one-one (See Theorem 2).  

 Form (I), (II) and (III), f is an isomorphism.  

 Hence, 𝑅 ≅ 𝑅𝑥 as R-module. 

 

1.4 Fundamental Theorem for R-homomorphism and It's Application : 

1.4.1 Fundamental Theorem for R-homomorphism : 

  Any homomorphic image of an R-module M is isomorphic with its suitable quotient 

module. 

Proof :  Let M and N be R-module and let N be a homomorphic image of M. Hence there 

exists an onto homomorphism  𝑓 ∶ 𝑀 ⟶ 𝑁. As f is onto 𝑁 = 𝑓(𝑀). Let 𝐾 = 𝑘𝑒𝑟 𝑓. 

Then K is a submodule  of M. (See Theorem 1.3.4) and hence the quotient R-module 
ெ  

is defined. 

 Define a  𝑔 ∶  ெ  ⟶ 𝑁 = 𝑓(𝑀) by 

     𝑔(𝑚 + 𝑘) = 𝑓(𝑚),    for each 𝑚 + 𝑘 ∈ 
ெ  

(I) 𝑔 is well defined. 

 Let 𝑚ଵ + 𝑘 = 𝑚ଶ + 𝑘 in 
ெ .  

 Then 𝑚ଵ, 𝑚ଶ ∈ 𝑀 will imply 𝑚ଵ − 𝑚ଶ ∈ 𝑀. 

 As 𝑚ଵ + 𝑘 = 𝑚ଶ + 𝑘 we get 𝑚ଵ − 𝑚ଶ ∈ 𝑀. i.e. 𝑚ଵ − 𝑚ଶ ∈ 𝑘𝑒𝑟 𝑓.  

 Hence  𝑓(𝑚ଵ − 𝑚ଶ) = 0 

 ⟹      𝑓(𝑚ଵ) − 𝑓(𝑚ଶ) = 0 ,   .... Since f is homomorphism. 
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 ⟹    𝑓(𝑚ଵ) = 𝑓(𝑚ଶ) 

 Thus, we get, 

   𝑚ଵ + 𝐾 = 𝑚ଶ + 𝐾 in 
ெ  implies 𝑔(𝑚ଵ + 𝐾) = 𝑔(𝑚ଶ + 𝐾) 

 This shows that 𝑔 is well defined. 

(II) 𝑔 is a R-homomorphism.  

 (i)  Let 𝑚ଵ + 𝑘 ∈ 𝑀𝐾 and 𝑚ଶ + 𝑘 ∈ 
ெ  . 

   Then, 

   𝑔 [(𝑚ଵ + 𝐾) + (𝑚ଶ + 𝐾)] = 𝑔 [(𝑚ଵ + 𝑚ଶ) 𝐾]  .... by the definition of ‘+’ in 
ெ .  

     = 𝑓 (𝑚ଵ + 𝑚ଶ)     .... by the definition of 𝑔.  

     = 𝑓 (𝑚ଵ) + 𝑓(𝑚ଶ)     .... 𝑓 is homomorphism.  

     = 𝑔(𝑚ଵ + 𝐾) + 𝑔(𝑚ଶ + 𝐾)  .... by the definition of 𝑔. 

 (ii) Let 𝑟 ∈ 𝑅 and 𝑚 + 𝐾 ∈ 
ெ  . Then, 

   𝑔 [𝑟 (𝑚 + 𝐾)] = 𝑔 [𝑟𝑚 + 𝐾]     .... by the definition of ‘∙’ in 
ெ .  

     = 𝑓 (𝑟𝑚)      .... by the definition of 𝑔.  

     = 𝑟 ∙ 𝑓 (𝑚)      .... 𝑓 is homomorphism.  

     = 𝑟 ∙ 𝑔 (𝑚 + 𝐾)     .... by the definition of 𝑔. 

 From (i) and (ii), we get, 𝑔 is a R-homomorphism. 

(III) 𝑔 is one-one. 

 Let  𝑔 (𝑚ଵ + 𝐾) = 𝑔(𝑚ଶ + 𝐾) for some 𝑚ଵ + 𝑘, 𝑚ଶ + 𝑘 ∈ 
ெ  . 

 Then  𝑔 (𝑚ଵ + 𝐾) = 𝑔(𝑚ଶ + 𝐾) 

 ⟹           𝑓 (𝑚ଵ) = 𝑓(𝑚ଶ)     .... by the definition of 𝑔. 

 ⟹   𝑓 (𝑚ଵ) − 𝑓(𝑚ଶ) = 0 

 ⟹      𝑓 (𝑚ଵ − 𝑚ଶ) = 0     .... 𝑓 is homomorphism. 

 ⟹      𝑚ଵ − 𝑚ଶ ∈ 𝑘𝑒𝑟 𝑓 = 𝐾     .... 𝑓 is homomorphism. 

 ⟹   𝑚ଵ + 𝐾 = 𝑚ଶ + 𝐾 

 Thus, 𝑔 (𝑚ଵ + 𝐾) = 𝑔(𝑚ଶ + 𝐾)     ⟹     𝑚ଵ + 𝐾 = 𝑚ଶ + 𝐾 and hence 𝑔 is one-one. 

(IV) 𝑔 is onto. 

 Let 𝑛 ∈ 𝑁. As 𝑁 = 𝑓(𝑀), there exists some 𝑚 ∈ 𝑀 such that 𝑓(𝑚) = 𝑛. But for this 𝑚 ∈ 𝑀, 𝑚 + 𝐾 ∈ 
ெ  and we get 𝑔(𝑚 + 𝐾) = 𝑓(𝑚) = 𝑛. 
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 This shows that 𝑔 is onto.  

 From (I), (II), (III) and (IV), we get, 𝑔 is an isomorphism. Hence 
ெ  ≅ 𝑁.  

 This completes the proof. 

 

Theorem 1.4.2: Let A and B be R-submodules of an R-module M. Then 
ା ≅ ⋂. 

Proof :  𝐴 + 𝐵 = {𝑎 + 𝑏 / 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is a R-module of M and 𝐵 ⊆ 𝐴 + 𝐵. Hence B is 

a submodule of A + B. (See Theorem 1.2.8).  

 Hence 
ା  is defined. 

 𝐴 ∩ 𝐵 is a R-module of M (See 2.3 theorem 2) and 𝐴 ∩ 𝐵 ⊆ 𝐵. Hence 
∩ is defined.  

 Define 𝑓: 𝐴 + 𝐵 ⟶ 
∩ by 

      𝑓(𝑎 + 𝑏) = 𝑏 + (𝐴 ∩ 𝐵), for 𝑎 + 𝑏 ∈ 𝐴 + 𝐵. 

(I) 𝑓 is well defined map. 

 Let 𝑎ଵ + 𝑏ଵ = 𝑎ଶ + 𝑏ଶ   for 𝑎ଵ, 𝑎ଶ  ∈ 𝐴 and 𝑏ଵ, 𝑏ଶ  ∈ 𝐵. 

 Then, 𝑎ଵ − 𝑎ଶ = 𝑏ଶ − 𝑏ଵ ∈ 𝐴 ∩ 𝐵. 

 As 𝑏ଶ − 𝑏ଵ ∈ 𝐴 ∩ 𝐵 we have  𝑏ଶ + (𝐴 ∩ 𝐵) = 𝑏ଵ + (𝐴 ∩ 𝐵) 

 Thus, 𝑎ଵ + 𝑏ଵ = 𝑎ଶ + 𝑏ଶ will imply 𝑏ଵ + (𝐴 ∩ 𝐵) = 𝑏ଶ + (𝐴 ∩ 𝐵) and hence 

 𝑓(𝑎ଵ + 𝑏ଵ) = 𝑓(𝑎ଶ + 𝑏ଶ). 

 This shows that 𝑓 is well defined map. 

(II) To prove that 𝑓 is R-homomorphism. 

 (i)  Let 𝑎ଵ + 𝑏ଵ and 𝑎ଶ + 𝑏ଶ be any element of 𝐴 + 𝐵. 

   𝑓[(𝑎ଵ + 𝑏ଵ) + (𝑎ଶ + 𝑏ଶ)] = 𝑓[(𝑎ଵ + 𝑎ଶ) + (𝑏ଵ + 𝑏ଶ)]     

           ... 〈𝑀, +〉 is an abelian group. 

                 = (𝑏ଵ + 𝑏ଶ) + (𝐴 ∩ 𝐵)     ... by the definition of 𝑓. 

                = [𝑏ଵ + (𝐴 ∩ 𝐵)] + [𝑏ଶ + (𝐴 ∩ 𝐵)]   
                = 𝑓(𝑎ଵ + 𝑏ଵ) + 𝑓(𝑎ଶ + 𝑏ଶ) 

 (ii) Let 𝑟 ∈ 𝑅 and 𝑎ଵ + 𝑏ଵ ∈ 𝐴 + 𝐵. Then 

   𝑓[𝑟 (𝑎ଵ + 𝑏ଵ)] = 𝑓[𝑟𝑎ଵ + 𝑟𝑏ଵ]        ... 𝑎ଵ, 𝑏ଵ ∈ 𝑀 and 𝑟 ∈ 𝑅. 

       = 𝑟𝑏ଵ + (𝐴 ∩ 𝐵)        ... 𝑟𝑎ଵ ∈ 𝐴 and 𝑟𝑏ଶ ∈ 𝐵. 

        = 𝑟[𝑏ଵ + (𝐴 ∩ 𝐵)] 
           = 𝑟 𝑓(𝑎ଵ + 𝑏ଵ) 
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 From (i) and (ii), it follows that 𝑓 is a R-homomorphism. 

(III) 𝑓 is an onto mapping. 

 Let 𝑏 + (𝐴 ∩ 𝐵) ∈ 
∩ . Then 𝑏 ∈ 𝐵. 

 Consider 0 + 𝑏.  

 Then, as 0 ∈ 𝐴 we get 0 + 𝑏 ∈ 𝐴 + 𝐵 and 𝑓(0 + 𝑏) = 𝑏 + (𝐴 ∩ 𝐵) 

 But this shows that 𝑓 is onto. 

 From (I), (II) and (III), 𝑓 is onto homomorphism.  

 Hence, the R-module 
∩ is a homomorphic image of the R-module 𝐴 + 𝐵 under the 

homomorphism 𝑓. 

 Hence, by fundamental theorem of homomorphism (See 1.4 theorem 5) 

      
ା ≅ ∩        . . . (1) 

 Now 

   𝑘𝑒𝑟𝑓 = {𝑥 ∈ 𝐴 + 𝐵 / 𝑓(𝑥) = 0} 
       = {𝑎 + 𝑏 ∈ 𝐴 + 𝐵 / 𝑓(𝑎 + 𝑏) = 0} 

         = {𝑎 + 𝑏 ∈ 𝐴 + 𝐵 / 𝑏 + (𝐴 ∩ 𝐵) = 𝐴 ∩ 𝐵} 
         = {𝑎 + 𝑏 ∈ 𝐴 + 𝐵 / 𝑏 ∈ (𝐴 ∩ 𝐵)} 

         = {𝑎 + 𝑏/𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = 𝐴 

 Thus,   𝑘𝑒𝑟𝑓 = 𝐴          . . . (2) 

 From (1) and (2), we get, 

     
ା ≅ ∩ 

 This completes the proof of the theorem. 

 

Theorem 1.4.3: Let A and B be submodule of R-module M and N respectively. Then  

       
ெ×ே× ≅ ெ × ே  

Proof :  𝑀 × 𝑁 is an R-module (See 1.4, problem 2). A is a submodule of an R-module M 

and hence the quotient R-module 
ெ  is defined. Similarly the quotient R-module 

ே is 

defined. Hence 
ெ × ே is an R-module.  

 Define the map 𝑓 ∶  𝑀 × 𝑁 ⟶ 
ெ × ே by  
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     𝑓(𝑚, 𝑛) = (𝑚 + 𝐴, 𝑛 + 𝐵),     for all (𝑚, 𝑛) ∈ 𝑀 × 𝑁 

(I) 𝑓 is well defined. 

 Let (𝑚ଵ, 𝑛ଵ) = (𝑚ଶ, 𝑛ଶ) in  𝑀 × 𝑁. 

 Then,  𝑚ଵ = 𝑚ଶ and 𝑛ଵ = 𝑛ଶ.  

 Therefore, 

    𝑚ଵ − 𝑚ଶ = 0 ∈ 𝐴 and 𝑛ଵ − 𝑛ଶ = 0 ∈ 𝐵 

 But then  

    𝑚ଵ + 𝐴 = 𝑚ଶ + 𝐴  and 𝑛ଵ + 𝐵 = 𝑛ଶ + 𝐵 

 This shows that (𝑚ଵ + 𝐴, 𝑛ଵ + 𝐵) =  (𝑚ଶ + 𝐴, 𝑛ଶ + 𝐵) 

 i.e. 𝑓(𝑚ଵ, 𝑛ଵ) = 𝑓(𝑚ଶ, 𝑛ଶ) 

 Hence, 𝑓 is a well defined map. 

(II) 𝑓 is a homomorphism. 

 (i)  Let (𝑚ଵ, 𝑛ଵ), (𝑚ଶ, 𝑛ଶ)  ∈ 𝑀 × 𝑁  

   𝑓[(𝑚ଵ, 𝑛ଵ) + (𝑚ଶ, 𝑛ଶ)] 
   = 𝑓[(𝑚ଵ + 𝑚ଶ, 𝑛ଵ + 𝑛ଶ)]   … by the definition of + in 𝑀 × 𝑁 

   = [(𝑚ଵ + 𝑚ଶ) + 𝐴, (𝑛ଵ + 𝑛ଶ) + 𝐵]  ... by the definition of 𝑓 

   = [(𝑚ଵ + 𝐴) + (𝑚ଶ + 𝐴), (𝑛ଵ + 𝐵) + (𝑛ଶ + 𝐵)] 
          … by the definition of + in 

ெ  and 
ே 

   = (𝑚ଵ + 𝐴, 𝑛ଵ + 𝐵) + (𝑚ଶ + 𝐴, 𝑛ଶ + 𝐵) … by the definition of + in 
ெ × ே 

   = 𝑓(𝑚ଵ, 𝑛ଵ) + 𝑓(𝑚ଶ, 𝑛ଶ)   … by the definition of 𝑓 

 (ii) Let 𝑟 ∈ 𝑅 and (𝑚, 𝑛) ∈ 𝑀 × 𝑁. Then  

   𝑓[𝑟 (𝑚, 𝑛)] = 𝑓[(𝑟𝑚, 𝑟𝑛)]          … by the definition of ∙ in 𝑀 × 𝑁 

      = (𝑟𝑚 + 𝐴, 𝑟𝑛 + 𝐵)     … by the definition of 𝑓 

      = (𝑟(𝑚 + 𝐴), 𝑟(𝑛 + 𝐵))       … by the definition of ∙ in 
ெ  and 

ே 

      = 𝑟 (𝑚 + 𝐴, 𝑛 + 𝐵)        … by the definition of ∙ in 𝑀 × 𝑁 

      = 𝑟 𝑓 (𝑚, 𝑛)          … by the definition of 𝑓  

  From (i) and (ii), we get 𝑓 is homomorphism. 

 

(III) 𝑓 is onto. 

 Let (𝑚 + 𝐴, 𝑛 + 𝐵) ∈ 
ெ × ே . 

 Then obviously, (𝑚, 𝑛) ∈ 𝑀 × 𝑁 and 𝑓(𝑚, 𝑛) = (𝑚 + 𝐴, 𝑛 + 𝐵).  
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 But this shows that 𝑓 is onto. 

 From (I), (II) and (III), it follows that 
ெ × ே is a homomorphic image of 𝑀 × 𝑁. 

 Hence, by the fundamental theorem of homomorphism, 

     
ெ×ே ≅ ெ × ே       . . . (1) 

 Now,  

   𝑘𝑒𝑟𝑓 = {(𝑚, 𝑛) ∈ 𝑀 × 𝑁 / 𝑓(𝑚, 𝑛) = 0} 
       = {(𝑚, 𝑛) ∈ 𝑀 × 𝑁 / (𝑚 + 𝐴, 𝑛 + 𝐵) = (𝐴, 𝐵)} 

         = {(𝑚, 𝑛) ∈ 𝑀 × 𝑁 / 𝑚 + 𝐴 = 𝐴  and 𝑛 + 𝐵 = 𝐵} 
         = {(𝑚, 𝑛) ∈ 𝑀 × 𝑁 / 𝑚 ∈ 𝐴  and 𝑛 ∈ 𝐵} 

 Thus,  𝑘𝑒𝑟𝑓 = 𝐴 × 𝐵          . . . (2) 

 From (1) and (2), we have, 

     
ெ×ே× ≅ ெ × ே 

 This completes the proof. 

 

 Let M be an R-module. We know that, if there exists 𝑥 ∈ 𝑀 such that 𝑀 = 𝑅𝑥 then M is 

called cyclic module generated by x.  Here 𝑅𝑥 = {𝑟𝑥 / 𝑟 ∈ 𝑅}. 

e.g. The ring R is a R-module. As  𝑅 = 𝑅 ∙ 1, we get R is a cyclic module.  

 

Theorem 1.4.4 : Let an R-module M be a cyclic module Rx. Then 𝑀 ≅ 
ோ ௫.  

Proof :  𝑀 = 𝑅𝑥 = {𝑟𝑥 / 𝑟 ∈ 𝑅}. 

 Define 𝑓: 𝑅 ⟶ 𝑅𝑥 by 

     𝑓(𝑟) = 𝑟 ∙ 𝑥,     for each 𝑟 ∈ 𝑅 

 [Here the ring R is considered as an R-module]. Then f is an epimorphism (See 1.3, 

theorem 5). Hence by the fundamental theorem of homomorphism, 

      
ோ ≅ 𝑅𝑥        . . . (1) 

 Now,  

   𝑘𝑒𝑟𝑓 = {𝑟 ∈ 𝑅 / 𝑓(𝑟) = 0} 
       = {𝑟 ∈ 𝑅 / 𝑟𝑥 = 0} 

 𝑘𝑒𝑟 𝑓 is a submodule of an R-module 𝑅 and hence it is a left ideal of 𝑅. This ideal is 

called the annihilator ideal of 𝑥 in 𝑅 and it is denoted by 𝑎𝑛𝑛 𝑥.  
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 Hence, for a cyclic module 𝑀 = 𝑅𝑥, we get, 

     𝑅𝑥 = 𝑀 ≅ ோ ௫. 

 

Theorem 1.4.5 : Let 𝑅 be a ring such that 1 ∈ 𝑅. An R-module 𝑀 is cyclic iff 𝑀 ≅ ோூ  for 

some left ideal 𝐼 of 𝑅. 

Proof :  Only if part :  

 Let 𝑀 be cyclic.  

 Hence, 𝑀 = 𝑅𝑥 for some 𝑥 ∈ 𝑀. By Theorem 1.4.4, 𝑀 ≅ 
ோ ௫  where 𝑎𝑛𝑛 𝑥 is a left 

ideal in 𝑅 and thus we get  𝑀 ≅  
ோூ   for left ideal  𝐼 = 𝑎𝑛𝑛 𝑥 in 𝑅. 

If part :  

 Let 𝑀 ≅ 
ோூ  , where I is left ideal of R.  

 1 ∈ 𝑅      ⟹     1 + 𝐼 ∈ 
ோூ  . 

 Further,  𝑅(1 + 𝐼) = {𝑟(1 + 𝐼) / 𝑟 ∈ 𝑅} 

           = {𝑟 + 𝐼 / 𝑟 ∈ 𝑅} 

           =  
ோூ  

 This shows that,  
ோூ  is a cyclic module generated by (1 + 𝐼). As  𝑀 ≅  

ோூ   and 
ோூ  is cyclic, 

we get, 𝑀 is a cyclic module (Since isomorphic image of a cyclic module is a cyclic 

module). 

 

Theorem 1.4.6 : Let 𝑅 be a ring with unity 1. Let 𝑀 ≠ (0) be an R-module. Then 𝑀 is 

simple iff 𝑀 ≅ 
ோூ  where 𝐼 is a maximal left ideal of 𝑅. 

Proof :  Only if part :  

 Let 𝑀 be a simple R-module. 

 As 𝑀 ≠ (0) and M is we get 𝑀 = 𝑅𝑥 for any 𝑥 ≠ 0 in M.  

 As 𝑀 = 𝑅𝑥, a cyclic module then 𝑀 ≅ 
ோூ  where I is a left ideal of R. by theorem 1.4.4.  

 As isomorphic image of a simple module is a simple module, we get 
ோூ  is a simple  
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 module. Now the submodules of 
ோூ  are of the form 

ூ  where U is a submodule of the 

module 𝑅 containing 𝐼. But the submodules of an R-module 𝑅 are the left ideals in 𝑅. 

Hence 
ோூ  being simple there do not exists any left ideal in 𝑅 containing I. But this shows 

that 𝐼 is a maximal left ideal in 𝑅. Hence 𝑀 is a simple module and 𝑀 ≠ {0} will imply 𝑀 ≅ 
ோூ ,  where 𝐼 is a maximal left ideal in 𝑅. 

If part :  

 Let 𝑀 ≅ 
ோூ ,  where 𝐼 is a maximal left ideal in 𝑅. But this in turn will imply that there 

does not exists any proper ideal in 
ோூ  . Hence 

ோூ  must be a simple R-module. 

 As 𝑀 ≅ 
ோூ , we get 𝑀 is a simple r-module (since isomorphic image of a simple module 

is a simple module). 
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Unit 2 : SUM AND DIRECT SUM OF SUBMODULES : 
 2.1 Sum of modules  

 2.2 Direct sum of modules 

 2.3 Free modules  

 2.4 Completely reducible modules 

 

2.1 Sum of submodules : 

Definition 2.1.1: Let 𝑀 be an R-module. Let 𝑀ଵ, 𝑀ଶ, … , 𝑀 (k finite) be R-submodules of 𝑀. 

The submodule generated by 
1

k
Mii =

U  is called the sum of submodules 𝑀, 1 ≤ 𝑖 ≤ 𝑘 

and is denoted by 𝑀ଵ + ⋯ + 𝑀 or simply 
1=

∑
k ii M . 

  Note that the submodule generated by
1

k
Mii =

U is the smallest R-submodule of 𝑀, 

containing each 𝑀,   1 ≤ 𝑖 ≤ 𝑘.  

 

Theorem 2.1.2 : For the submodules 𝑀ଵ, 𝑀ଶ, … , 𝑀 of an R-module M 

     { ... / }1 21

k
M x x x x Mi k i ii

= + + + ∈∑
=

 

Proof :  Let 𝑇 = {𝑥ଵ + 𝑥ଶ+. . . +𝑥/𝑥 ∈ 𝑀}. 

(I) 𝑇 ≠ 𝜙 as 𝑀 ≠ 𝜙 for each i. 

(II) Let 𝑥, 𝑦 ∈ 𝑇. Then 

  𝑥 = 𝑥ଵ + 𝑥ଶ+. . . +𝑥   and  𝑦 = 𝑦ଵ + 𝑦ଶ+. . . +𝑦 , where 𝑥, 𝑦 ∈ 𝑀 for each i. 

 Now, 

    𝑥 − 𝑦 = (𝑥ଵ + 𝑥ଶ+. . . +𝑥) − (𝑦ଵ + 𝑦ଶ+. . . +𝑦) 

    = (𝑥ଵ − 𝑦ଵ) + (𝑥ଶ − 𝑦ଶ) + ⋯ + (𝑥 − 𝑦) 

       ... Since 𝑥, 𝑦 ∈ 𝑀 for all i and <M, +> is an abelian group. 

 But as 𝑀 is a submodule of M, 𝑥 − 𝑦 ∈ 𝑀 for each i.  

 Hence,  𝑥 − 𝑦 ∈ 𝑇.  

 This shows that  𝑥, 𝑦 ∈ 𝑇     ⟹     𝑥 − 𝑦 ∈ 𝑇. 

(III) Let 𝑥 ∈ 𝑇 and 𝑟 ∈ 𝑅. Then 𝑥 = 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥,     𝑥 ∈ 𝑀,   ∀   𝑖 
 Now    𝑟𝑥 = 𝑟(𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥) 
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     = 𝑟𝑥ଵ + 𝑟𝑥ଶ + ⋯ + 𝑟𝑥   … By the definition of module 

 As 𝑀 is a R-submodule of M, 𝑟 ∈ 𝑅   and  𝑥 ∈ 𝑀 will imply 𝑟 ∙ 𝑥 ∈ 𝑀 for each i. 

Hence, 𝑟𝑥 ∈ 𝑇. 

 Thus, for any 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑇 we get 𝑟𝑥 ∈ 𝑇. 

 From (I), (II) and (III), we get, T is a R-submodule of 𝑀.  

 

(IV) Let 𝑥 ∈ 𝑀. Then 0 ∈ 𝑀 for each i will imply, 

   𝑥 = 0 + 0 + ⋯ + 𝑥 + 0 + ⋯ + 0   ∈ 𝑇 

          ↑ 𝑖௧ place 

 Hence, 𝑀 ⊆ 𝑇, for each i, 1 ≤ 𝑖 ≤ 𝑘. 

 Therefore, 
1

k
Mii =

U  ⊆ 𝑇. 

(V) Let 𝐽 be any other submodule of 𝑀 containing
1

k
Mii =

U . Then each 𝑀 ⊆ 𝐽.  

 Let 𝑥 ∈ 𝑇. Then 𝑥 = 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥 where 𝑥 ∈ 𝑀 for each i, 1 ≤ 𝑖 ≤ 𝑘. As 𝑀 ⊆ 𝐽 

we get, 𝑥 ∈ 𝐽 for each i, 1 ≤ 𝑖 ≤ 𝑘.  

 Hence, 𝐽 being a submodule of a module 𝑀, 

      𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥 ∈ 𝐽 ,  i.e. 𝑥 ∈ 𝐽 

 This shows that 𝑇 ⊆ 𝐽. 

 Thus, we have proved that T is a submodule of an R-module M containing 
1

k
Mii =

U  and 

is the smallest submodule of M containing 
1

k
Mii =

U . 

 Hence, by the definition, 
1=

= ∑
k iiT M  . 

 Therefore,  

      
{ ... / }1 21

k
M x x x x Mi k i ii

= + + + ∈∑
=

 

 

Definition 2.1.3: Let {𝑀ఈ / 𝛼 ∈ ∆} be any family of submodules of an R-module M. The 

submodule generated by Mαα ∈ Δ
U  is called the sum of submodules 𝑀ఈ and is denoted  
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 by 
∈Δ
∑ αα M .  

 

Remark 2.1.4: 
∈Δ
∑ αα M  is the smallest submodule of an R-module M containing each 

submodule 𝑀ఈ. 

 

Theorem 2.1.5 :  Let {𝑀ఈ / 𝛼 ∈ ∆}  be a family of R-submodules of an R-module M. Then 

       /M x x Mi i ifiniteαα

⎧ ⎫⎪ ⎪= ∈∑ ∑⎨ ⎬
⎪ ⎪∈ Δ ⎩ ⎭

 

 Where xifinite
∑  denotes any finite sum of elements of 𝑀,    𝑖 ∈ ∆ . 

Proof :  Define  

       /T x x Mi i ifinite

⎧ ⎫⎪ ⎪= ∈∑⎨ ⎬
⎪ ⎪⎩ ⎭

 

 As in theorem 1, we can prove that T is a submodule of M containing each 𝑀ఈ, (𝛼 ∈ ∆)  

and is the smallest submodule of an R-module M containing each 𝑀ఈ, (𝛼 ∈ ∆). 

 Hence,  T M
α

α
∈ Δ

= ∑ . 

 

2.1.6  Worked Examples   ––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 1 : Let 𝑉 = ℝଷ be a vector space over the field ℝ. Let 𝑥ଵ = (1, 0, 0), 𝑥ଶ = (1, 1, 0),  

 𝑥ଷ = (1, 1, 1). Show that 𝑉 = ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ.  

Solution :  We know that  ℝ𝑥ଵ, ℝ𝑥ଶ and ℝ𝑥ଷ are submodules of an R-module ℝଷ. (Note that 

every vector space is a module). Hence ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ is a submodule of ℝଷ = 𝑉. 

Hence, ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ ⊆ 𝑉. Let 𝑥 ∈ 𝑉 then (𝑎, 𝑏, 𝑐) ∈ 𝑉 = ℝଷ.  

 Further,  (𝑎, 𝑏, 𝑐) = (𝑎 − 𝑏) 𝑥ଵ + (𝑏 − 𝑐) 𝑥ଶ + 𝑐 𝑥ଷ  

 will imply  𝑥 = (𝑎, 𝑏, 𝑐) ∈ ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ. 

 By theorem 1.3.4, (as 𝑎, 𝑏, 𝑐 ∈ 𝑅 we get 𝑎 − 𝑏, 𝑏 − 𝑐 ∈ 𝑅.  

 Hence, (𝑎 − 𝑏) 𝑥ଵ ∈ ℝ𝑥ଵ, 

 (𝑏 − 𝑐) 𝑥ଶ ∈ ℝ𝑥ଶ and 𝑥ଷ ∈ ℝ𝑥ଷ ). 

 But this shows that 𝑉 ⊆ ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ.  
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 Combining both the inclusions, we get, 

      𝑉 = ℝଷ = ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

2.2 Direct Sum of Submodules : 

Definition 2.2.1: Let 𝑀 be an R-module. Let 𝑀ଵ, 𝑀ଶ, … , 𝑀 be submodules of the module 

𝑀. The sum 
1

k
i

i
M

=
∑  is a direct sum if each element 

1

k
i

i
x M

=
∈ ∑ can be uniquely expressed 

as 𝑥 = 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥 , where 𝑥 ∈ 𝑀 for each i, 1 ≤ 𝑖 ≤ 𝑘. 

 In this case we write 
1

k
i

i
M

=
⊕ ∑  or 𝑀ଵ⨁ 𝑀ଶ⨁ … ⨁ 𝑀. 

 Each 𝑀 is called the direct summand of the direct sum 𝑀ଵ ⨁ 𝑀ଶ ⨁ … ⨁ 𝑀. 
 

Theorem 2.2.2 : Let M be an R-module and let 𝑀 = 𝑀ଵ⨁ 𝑀ଶ.  

  Then 𝑀ଵ ≅ 
ெெమ and 𝑀ଶ ≅ 

ெெభ .  

Proof : Let 𝑀 = 𝑀ଵ⨁ 𝑀ଶ. Hence, any 𝑥 ∈ 𝑀 has a unique representation as 𝑥 = 𝑥ଵ + 𝑥ଶ, 

where 𝑥ଵ ∈ 𝑀ଵ and 𝑥ଶ ∈ 𝑀ଶ. 

 Define  𝑓 ∶  𝑀 ⟶ 𝑀ଵ  by 

      𝑓(𝑥) = 𝑥ଵ 

 i.e.  𝑓(𝑥ଵ + 𝑥ଶ) = 𝑥ଵ,   for each 𝑥 ∈ 𝑀. 

 By the uniqueness of the expression, 𝑓 is a well defined map. 

(i) Let 𝑥, 𝑦 ∈ 𝑀. Let 𝑥 = 𝑥ଵ + 𝑥ଶ and 𝑦 = 𝑦ଵ + 𝑦ଶ where 𝑥ଵ, 𝑦ଵ ∈ 𝑀ଵ and  𝑥ଶ, 𝑦ଶ ∈ 𝑀ଶ be 

unique expressions of x and y.  

    𝑓(𝑥 + 𝑦) = 𝑓(𝑥ଵ + 𝑦ଵ + 𝑥ଶ + 𝑦ଶ) 

       = 𝑓(𝑥ଵ + 𝑥ଶ + 𝑦ଵ + 𝑦ଶ)  … Since  <M, +> is an abelian group 

      = 𝑥ଵ + 𝑦ଵ    …  𝑥ଵ, 𝑦ଵ ∈ 𝑀ଵ   ⟹   𝑥ଵ + 𝑦ଵ ∈ 𝑀ଵ,  

             𝑀ଵ being a submodule. 

      = 𝑓(𝑥) + 𝑓(𝑦)    …  By definition of  𝑓. 

 Thus, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)    … for all 𝑥, 𝑦 ∈ 𝑀. 

(ii) Now, let 𝑥 ∈ 𝑀 and 𝑟 ∈ 𝑅. Assume that 𝑥 = 𝑥ଵ + 𝑥ଶ where 𝑥ଵ ∈ 𝑀ଵ and  𝑥ଶ ∈ 𝑀ଶ.  

 Then, 

     𝑟𝑥 = 𝑟(𝑥ଵ + 𝑥ଶ)   = 𝑟𝑥ଵ + 𝑟𝑥ଶ 
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 As 𝑀ଵ and 𝑀ଶ are submodules of M, we get 𝑟𝑥ଵ ∈ 𝑀ଵ and 𝑟𝑥ଶ ∈ 𝑀ଶ.  

 Hence, by the definition of 𝑓,  

      𝑓(𝑟𝑥) = 𝑟𝑥ଵ = 𝑟 𝑓(𝑥) 

 Thus, 𝑓(𝑟𝑥) = 𝑟 𝑓(𝑥) for each 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑋.  

 From (i) and (ii), we get, 𝑓 is a R-homomorphism.  

 Hence, by the fundamental theorem of homomorphism, 

       
ெ ≅ 𝑀ଵ        . . . (I) 

 Now,  

   𝑘𝑒𝑟𝑓 = {𝑥 ∈ 𝑀 / 𝑓(𝑥) = 0}  

       = {𝑥ଵ + 𝑥ଶ ∈ 𝑀 / 𝑓(𝑥ଵ + 𝑥ଶ) = 0, 𝑥ଵ ∈ 𝑀ଵ, 𝑥ଶ ∈ 𝑀ଶ}  

       = {𝑥ଵ + 𝑥ଶ ∈ 𝑀 /  𝑥ଵ = 0, 𝑥ଵ ∈ 𝑀ଵ, 𝑥ଶ ∈ 𝑀ଶ}  

       = {0 + 𝑥ଶ ∈ 𝑀 /  𝑥ଶ ∈ 𝑀ଶ}  

       = 𝑀ଶ 

 Thus,  𝑘𝑒𝑟𝑓 = 𝑀ଶ         . . . (II) 

 From (I) and (II), we get, 

       
ெெమ ≅ 𝑀ଵ 

 Similarly, we can prove that  
ெெభ ≅ 𝑀ଶ. 

 This completes the proof of the theorem. 

 

Theorem 2.2.3 : Let 𝑀 be an R-module. Let 𝑀 contains submodules 𝑀ଵ, 𝑀ଶ, … , 𝑀 having 

the property, 

 For each i, 1 ≤ 𝑖 ≤ 𝑘, 

      𝑀 ∩ [𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଵ + 𝑀ାଵ + ⋯ + 𝑀] = {0}  . . . (A) 

 Then, the sum 
1=

∑
k ii M  is a direct sum.  

Proof :  Let 
1=

∈ ∑
k ii Mx  , have two expressions say 

     𝑥 = 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥 

 and  𝑥 = 𝑦ଵ + 𝑦ଶ + ⋯ + 𝑦 

 where 𝑥, 𝑦 ∈ 𝑀 for each i, 1 ≤ 𝑖 ≤ 𝑘. 
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 Then, 0 = (𝑥ଵ −  𝑦ଵ) + (𝑥ଶ −  𝑦ଶ) + ⋯ + (𝑥 −  𝑦).  

 But this shows that  

      
j = 1

j 1

j j( ) ( )

≠

− − = −∑
ki ix y x y         . . . (1) 

 As 𝑀 is a submodule of M, 

      −(𝑥, − 𝑦) ∈ 𝑀        . . . (2) 

 Now, 
j = 1

j 1

j j 1 2 1 1( )

≠

− +− ∈ + + + + + +∑
k i i kM M M M Mx y ... ...   

 From (1), we get, 

      −(𝑥, − 𝑦) ∈ 𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଵ + 𝑀ାଵ + ⋯ + 𝑀 . . . (3) 

 From (2) and (3), we have, 

      
j = 1

j 1

j( ) ={0}

≠

⎡ ⎤
⎢ ⎥
⎢ ⎥− − ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑Ii ix y
kiM M       … by (A) 

 Hence,  𝑥 = 𝑦. 
 As this is true for each i, 1 ≤ 𝑖 ≤ 𝑘,  we get the expression for x is unique.  

 Hence, the sum 
1=

∑
k ii M  is a direct sum. 

 

Theorem 2.2.4 : Let 𝑀 be an R-module and let 𝑀ଵ, … , 𝑀 be submodules of an R-module 𝑀. The following statements are equivalent. 

 (i)  The sum 
1=

∑
k ii M  is a direct sum. 

 (ii) For any i, 1 ≤ 𝑖 ≤ 𝑘, 

      𝑀 ∩ [𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଵ + 𝑀ାଵ + ⋯ + 𝑀] = {0} 

Proof :   

(i) ⟹ (ii) :  

 Let 𝑥 ∈  𝑀 ∩ [𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଵ + 𝑀ାଵ + ⋯ + 𝑀]. Then 𝑥 ∈  𝑀 and  

   𝑥 = 𝑦ଵ + 𝑦ଶ + ⋯ + 𝑦ିଵ + 𝑦ାଵ + ⋯ + 𝑦  where 𝑦 ∈ 𝑀, 1 ≤ 𝑗 ≤ 𝑘. 



 

Algebra Page No. 161

 Thus, we have  

      𝑦ଵ + 𝑦ଶ + ⋯ + 𝑦ିଵ + (−𝑥) + 𝑦ାଵ + ⋯ + 𝑦 = 0 

 As 
1

0
=

∈∑
k ii M  and 

1=
∑
k ii M  is a direct sum, the expression 0 = 0 + 0 + … + 0 of 

1
0

=
∈∑

k ii M  must be unique. 

 Hence,  – 𝑥 = 0 ,  i.e.    𝑥 = 0. This shows that  

      𝑀 ∩ [𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଵ + 𝑀ାଵ + ⋯ + 𝑀] = {0} 

(ii) ⟹ (i) :  

 Proof of this implication follows from theorem 1.3.10. 

 Hence, (i) ⟺ (ii). 

 

Theorem 2.2.5 : Let 𝑀 be an R-module. Let 𝑀ଵ, 𝑀ଶ, … , 𝑀 be submodules of an R-module 𝑀. The following statements are equivalent. 

 (i)  
1=

∑
k ii M  is a direct sum. 

 (ii) 
1

0
=

= ∑ x
k ii  ,   𝑥 ∈ 𝑀   ∀  𝑖,  1 ≤ 𝑖 ≤ 𝑘  

    ⟹    𝑥 = 0   for each i, 1 ≤ 𝑖 ≤ 𝑘 

 (iii) 
j = 1

j 1

j ={0}

≠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑I
kiM M  

Proof :   

(i) ⟹ (ii) :  

 The implication (i) ⟹ (ii) follows directly by the definition of the direct sum. 

(ii) ⟹ (iii) :  

 Let 𝑥 ∈
j = 1

j 1

j

≠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑I
kiM M    
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 Then, 𝑥 ∈ 𝑀  and ∈
j = 1

j 1

j

≠

∑
k M  .  

 Hence, 𝑥 = 𝑦ଵ + 𝑦ଶ + ⋯ + 𝑦ିଵ + 𝑦ାଵ + ⋯ + 𝑦 where 𝑦 ∈ 𝑀 for 1 ≤ 𝑗 ≤ 𝑘 and 𝑗 ≠ 𝑖.  
 Therefore,  

     𝑦ଵ + 𝑦ଶ + ⋯ + 𝑦ିଵ + (−𝑥) + 𝑦ାଵ + ⋯ + 𝑦 = 0 

 by (ii), we get,  −𝑥 = 0.     i.e.  𝑥 = 0. 

 But this shows that 

     {0}
1

k
M Mi ii

=∑
=

I    

(iii) ⟹ (i) :  

 The implication (iii) ⟹ (i) follows by the theorem 1.3.10. 

 Thus, (i) ⟹ (ii) ⟹ (iii) ⟹ (i) and this completes the proof. 

 

2.2.6 Worked Examples   –––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 1 : Let 𝑀 be an R-module and let 𝑀ଵ, 𝑀ଶ, … , 𝑀 be submodules of 𝑀 such that 

1

k
M Mii

= ∑
=

 and the triangular set of conditions 

      𝑀ଵ ∩ 𝑀ଶ = {0}, 

     (𝑀ଵ + 𝑀ଶ) ∩ 𝑀ଷ = {0}, 

     ……………………..………… 

     (𝑀ଵ + ⋯ + 𝑀ିଵ) ∩ 𝑀 = {0} 

 hold. Show that 
1

= ⊕
=
∑ i

i

kM M .    

Solution :  By corollary 6, it is enough to prove that if 𝑥 ∈ 𝑀 for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘 and if 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥 = 0 then 𝑥 = 0 for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘. 

      𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥 = 0       … (1) 

 Hence, −𝑥 = 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥ିଵ  

 As −𝑥 ∈ 𝑀 and 𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥ିଵ ∈ 1

1

−

=
∑ i

i

k M    
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 We get, −𝑥 ∈ 𝑀 ∩ [𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଵ] 
 Hence, −𝑥 ∈ {0}    … by data 

 Thus,   𝑥 = 0         … (2) 

 Substituting 𝑥 = 0 in (1), we get, 

     𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥ିଵ = 0 

 Therefore,  – (𝑥ିଵ) ∈ [𝑀ଵ + 𝑀ଶ + ⋯ + 𝑀ିଶ] ∩ 𝑀ିଵ = {0} 

 Hence,   𝑥ିଵ = 0        … (3) 

 Continuing in this way, we get, 

     𝑥ଵ = 𝑥ଶ = ⋯ = 𝑥 = 0 

 Hence, the sum 
1=

∑ i
i

k M  is a direct sum.  

 i.e.   
1

= ⊕
=
∑ i

i

kM M   

 

Example 2 : Let 𝑉 = ℝଷ be a vector space over the field ℝ. Let 𝑥ଵ = (1, 0, 0), 𝑥ଶ =(1, 1, 0),  

 𝑥ଷ = (1, 1, 1). Show that  3

1
= ⊕

=
∑

i
V ℝ𝑥 . 

Solution :  We have proved that   3

1
=

=
∑

i
V ℝ𝑥 . 

 Hence, only to prove that   3

1
= ⊕

=
∑

i
V ℝ𝑥. 

 Let 0 = 𝑟ଵ𝑥ଵ + 𝑟ଶ𝑥ଶ + 𝑟ଷ𝑥ଷ , for some 𝑟ଵ, 𝑟ଶ, 𝑟ଷ ∈ ℝ. 

 Then,  

    (0, 0, 0) = 𝑟ଵ(1, 0, 0) + 𝑟ଶ(1, 1, 0) + 𝑟ଷ(1, 1, 1) 

 Hence, (0, 0, 0) = (𝑟ଵ + 𝑟ଶ + 𝑟ଷ,   𝑟ଶ + 𝑟ଷ, 𝑟ଷ). 

 This shows, 

    𝑟ଷ = 0,  𝑟ଶ + 𝑟ଷ = 0,    𝑟ଵ + 𝑟ଶ + 𝑟ଷ = 0 

 Solving the three equations, we get, 

    𝑟ଵ = 0, 𝑟ଶ = 0, 𝑟ଷ = 0. 
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 Thus,   0 = 𝑟ଵ𝑥ଵ + 𝑟ଶ𝑥ଶ + 𝑟ଷ𝑥ଷ  ⟹ 𝑟ଵ = 𝑟ଶ = 𝑟ଷ = 0. 

 Hence, by corollary 6, we get 

    𝑉 = ℝ𝑥ଵ + ℝ𝑥ଶ + ℝ𝑥ଷ 

 

Example 3 : Let M be an R-module. Let 𝐾 ⊂ 𝑁 ⊂ 𝑀 be submodules of M. Show that if N 

is a direct summand of M, then ே is a direct summand of  
ெ .  

Solution :  Let 𝑀 = 𝑁 ⊕ 𝑁ᇱ.  𝐾 ⊆ 𝑁. 𝑀𝐾 = 𝑁 +  𝑁ᇱ𝐾 = 𝑁𝐾 + 𝑁ᇱ𝐾  𝑁𝐾  ∩ 𝑁ᇱ𝐾 = 𝑁 ∩ 𝑁ᇱ𝐾 = {0}𝐾 = {𝐾} 

 as 𝑁 ∩ 𝑁ᇱ = {0}. Hence, 𝑀𝐾 = 𝑁𝐾 ⊕ 𝑁ᇱ𝐾  

 

Example 4 :  Let M be an R-module. Let 𝐾 ⊂ 𝑁 ⊂ 𝑀. If K is a direct summand of N and N 

is a direct summand of M then K is a direct summand of M. 

Solution : Let 𝑁 = 𝐾 ⊕ 𝐾ᇱ, and 𝑀 = 𝑁 ⊕ 𝑁ᇱ. 
 Hence, 𝑀 = 𝐾 ⊕ 𝐾′ ⊕ 𝑁′. 
 Hence, K is a direct summand of M. 

 

Example 5 : 𝑀 is a R-module. 𝐾 ⊂ 𝑁 ⊂ 𝑀 are submodules of 𝑀. If 𝐾 is a direct summand 

of 𝑀, then 𝐾 is direct summand of 𝑁. 

Solution : Let 𝑀 = 𝐾 ⊕ 𝐾′. 𝑁 = 𝑀 ∩ 𝑁 = (𝐾 ⊕ 𝐾′) ∩ 𝑁. 

Claim : 𝑁 = 𝐾 ⊕ (𝐾ᇱ ∩ 𝑁) 

 (i) 𝑁 = 𝐾 + (𝐾ᇱ ∩ 𝑁) 

   Let 𝑥 ∈ 𝑀   ⟹   𝑥 = 𝐾 + 𝐾′,   where 𝑘 ∈ 𝐾 and 𝑘′ ∈ 𝐾. 

   Then, 𝑘 ∈ 𝐾 = 𝐾 ∩ 𝑁 

      𝑘ᇱ = 𝐾′ 
   𝑥 − 𝑘 = 𝑘ᇱ    ⟹    𝑘′ ∈ 𝑁 

   Hence, 𝑘′ ∈ 𝐾′ ∩ 𝑁. 

   Thus, 𝑥 = 𝑘 + 𝑘ᇱ,   𝑘 ∈ 𝐾 and 𝑘ᇱ ∈ 𝐾ᇱ ∩ 𝑁 

   ⟹     𝑥 ∈ 𝐾 + (𝐾′ ∩ 𝑁). 
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   Thus, 𝑁 ⊆ 𝐾 + (𝐾′ ∩ 𝑁). 

   Obviously,  𝐾 + (𝐾′ ∩ 𝑁) ⊆ 𝑁. 

   Hence, 𝑁 = 𝐾 + (𝐾′ ∩ 𝑁) 

 (ii) 𝐾 ∩ (𝐾ᇱ ∩ 𝑁) = 𝜙 

   𝐾 ∩ (𝐾ᇱ ∩ 𝑁) = (𝐾 ∩ 𝐾ᇱ) ∩ 𝑁 = 𝜙 ∩ 𝐾ᇱ ∩ 𝑁 = 𝜙. 

   Since (𝐾 ∩ 𝐾ᇱ) = 𝜙 as  𝑀 = 𝐾 ⊕ 𝐾′. 
   From (i) and (ii), we get, 

     𝑁 = 𝐾 ⊕ (𝐾ᇱ ∩ 𝑁) 

 This shows that 𝐾 is a direct summand of 𝑁. 

 

Example 6 : Let 𝑀 be a R-module. Let 𝐾 ⊂ 𝑁 ⊂ 𝑀. If 𝐾 is a direct summand of 𝑀 and if  ே  is a direct summand of 
ெ  then 𝑁 is direct summand of 𝑀. 

Solution : As K is a direct summand of M, we have  

    𝑀 = 𝐾 ⊕ 𝐾ᇱ.   
   ⟹     ே ≅ 𝐾             . . . (1) 

 By example (5), 𝑁 = 𝐾 ⊕ (𝐾ᇱ ∩ 𝑁) 

   ⟹     ே ≅ 𝐾ᇱ ∩ 𝑁            . . . (2) 

 From (1) and (2), we get, if 
ே is a direct summand of 

ெ , then 𝐾ᇱ ∩ 𝑁 must be the direct 

summand of 𝐾′. Hence let us assume that  

    𝐾ᇱ = (𝐾ᇱ ∩ 𝑁) ⊕ 𝐿          . . . (3) 

 Again 𝑀 = 𝐾 ⊕ 𝐾′ will imply  

    𝑀 = 𝐾 ⊕ (𝐾ᇱ ∩ 𝑁) ⊕ 𝐿 

 Hence,  𝑀 =  𝑁 ⊕ 𝐿 ,   (Since 𝑁 = 𝐾 ⊕ (𝐾ᇱ ∩ 𝑁)) 

 This shows that 𝑁 is a direct summand of 𝑀. 

 

Example 7 : Let 𝑀 = 𝐾 ⊕ 𝐾ᇱ = 𝑀 = 𝐿 ⊕ 𝐿′ . If K = L, then show that 𝐾′ ≅ 𝐿′. 
Solution :  Let 𝑚 ∈ 𝑀. Then m can be uniquely expressed by 𝑚 = 𝑘 + 𝑠 where 𝑘 ∈ 𝐾 and 𝑠 ∈ 𝑆 

 Then, 

    𝑠 = 𝑚 − 𝑘 ∈ 𝐾′. 
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 As 𝐾 =  𝐿 we get 𝑚 − 𝑘 ∈ 𝐿′. 
 Define 𝑓 ∶ 𝐾ᇱ ⟶ 𝐿ᇱ by  

     𝑓(𝑠) = 𝑚 − 𝑘 

(i)  𝑓 is well defined. 

    𝑠ଵ = 𝑠ଶ 

 Then,  𝑚ଵ = 𝑘ଵ + 𝑠ଵ. 

 Let  𝑓(𝑠ଵ) = 𝑚ଵ − 𝑘ଵ  and  𝑓(𝑠ଶ) = 𝑚ଶ − 𝑘ଶ. 

 Then, 𝑚ଵ = 𝑘ଵ + 𝑠ଵ is the unique representation of 𝑚ଵ.  

 Hence, 𝑠ଵ = (𝑚ଵ − 𝑘ଵ) = 𝑠ଶ = 𝑚ଶ − 𝑘ଶ will imply 𝑓(𝑠ଵ) = 𝑓(𝑠ଶ). 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Definition 2.2.7 :  The sum ∑
∈ Δ

Mαα  of the family {𝑀ఈ / 𝛼 ∈ ∆} of submodules of an R-

module M is a direct sum if each ∈ ∑
∈ Δ

x Mαα  can be uniquely expressed as 𝑥 = ∑ 𝑥 
where 𝑥 ∈ 𝑀 and 𝑥 = 0 for almost all 𝑖.  

 

Generalizing the result of Theorem 2.2.5, we get the following theorem. 

Theorem 2.2.8 : Let {𝑀ఈ / 𝛼 ∈ ∆} be a family of submodules of an R-module 𝑀. The 

following statements are equivalent. 

 (i)  ∑
∈ Δ

Mαα  is a direct sum. 

 (ii) 0
∈Δ

= ∈∑ ∑xi αi α M  ,  ⟹    𝑥 = 0  , for all  𝑖 
 (iii) 

i j

i, j

j ={0}
≠

∈Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑I
kiM M    

 

• Fundamental Structure Theorem for Finitely generated Modules over P. I. D. : 

Result 2.2.9 : Let 𝐷 be P.I.D. Any submodule 𝐾 of the free module 𝐷() is free with base of  𝑚 ≤ 𝑛 elements. 
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Result 2.2.10 : If 𝐴 is any 𝑚 × 𝑛 matrix with entries in p.i.d. 𝐷, then there exits an invertible 

matrix 𝑃 of order 𝑚 × 𝑚 with entries in 𝐷 and an invertible matrix 𝑄 with entries in 𝐷 

such that 𝑃𝐴𝑄 =  𝑑𝑖𝑎𝑔 {𝑑ଵ, 𝑑ଶ, … , 𝑑, 0,0, … ,0}  where 𝑑 ≠ 0 and 𝑑/𝑑 if 𝑖 ≤ 𝑗. 

 

• Fundamental Structure Theorem : 

Theorem 2.2.11 : Let 𝑀 ≠ 0 be a finitely generated module over a p.i.d. 𝐷. 𝑀 is a direct sum 

of cyclic modules. 

       𝑀 = 𝐷𝑍ଵ ⊕ 𝐷𝑍ଶ ⊕ … ⊕ 𝐷𝑍௦ 

 such that the order ideals 𝑎𝑛𝑛 𝑍 satisfy  

       𝑎𝑛𝑛 𝑍ଵ ⊃ 𝑎𝑛𝑛 𝑍ଶ ⊃ ⋯ ⊃ 𝑎𝑛𝑛 𝑍௦,      where 𝑎𝑛𝑛 𝑍 ≠ 𝐷. 

Proof : 𝑀 ≠ (0) is a finitely generated D-module. Let {𝑥ଵ, 𝑥ଶ, … , 𝑥} be the set of generators 

of 𝑀.  

 Then,      𝑀 = 𝐷𝑥ଵ + 𝐷𝑥ଶ + ⋯ + 𝐷𝑥. 

i. e.                     𝑀 =  𝐷𝑥
ୀଵ  

 We know that, 𝐷() = {(𝑟ଵ, 𝑟ଶ, … , 𝑟) / 𝑟 ∈ 𝐷} is a free D-module with base (𝑒ଵ, 𝑒ଶ, … , 𝑒),  where 𝑒 = (0, 0, … , 0, 1, 0, … , 0). 

       ↑   𝑖௧ place 

 Define 𝑓 ∶ 𝐷() ⟶ 𝑀 by  

𝑔(𝑥) = 𝑔 ൭ 𝑟 𝑒
ୀଵ ൱ 

=  𝑟 𝑥
ୀଵ ,       𝑟 ∈ 𝐷,                             for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛 

Claim 1 : 𝑔 is an epimorphism. 

(i) 𝑔 is obviously well defined as (𝑒ଵ, 𝑒ଶ, … , 𝑒) is a base for 𝐷() any 𝑥 ∈ 𝐷() can be 

uniquely expressed as 
n

i i
i=1

r e∑ where 𝑟 ∈ 𝐷 for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

(ii) 𝑔 is a homomorphism.  

 Let 𝑥, 𝑦 ∈ 𝐷(). Then, 

    
n

i i
i=1

x = r e∑   and  
n

i i
i=1

y = r' e∑   
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 where 𝑟, 𝑟ᇱ ∈ 𝐷 for each 𝑖. 
𝑔(𝑥 + 𝑦) = 𝑔  𝑟 𝑒

ୀଵ  +   𝑟ᇱ 𝑒
ୀଵ ൩ 

= 𝑔 (𝑟 + 𝑟ᇱ) 𝑒
ୀଵ ൩ 

= (𝑟 + 𝑟ᇱ) 𝑥
ୀଵ  ,                                 (by the definition of 𝑔) 

=  𝑟 𝑥
ୀଵ +  𝑟ᇱ 𝑥

ୀଵ  

= 𝑔(𝑥) + 𝑔(𝑦) 

 Now, let 𝑟 ∈ 𝐷 and 
n

i i
i=1

x = r e∑ ∈ 𝐷() with 𝑟 ∈ 𝐷. 

𝑔(𝑟 ∙ 𝑥) = 𝑔 𝑟 ∙   𝑟 𝑒
ୀଵ ൩ 

= 𝑔 (𝑟 ∙ 𝑟) 𝑒
ୀଵ ൩ 

= (𝑟 ∙ 𝑟) 𝑥
ୀଵ   ,                                (by the definition of 𝑔) 

= 𝑟 ∙  𝑟 𝑥
ୀଵ  

= 𝑟 ∙ 𝑔(𝑥) 

 Thus, for any 𝑥, 𝑦 ∈ 𝐷() and 𝑟 ∈ 𝐷, we get  

    𝑔(𝑥 + 𝑦) = 𝑔(𝑥) + 𝑔(𝑦)  and  𝑔(𝑟 ∙ 𝑥) = 𝑟 ∙ 𝑔(𝑥) 

 Hence, 𝑔 is a homomorphism.  

 As 𝑔 is obviously onto, we get 𝑔 is an epimorphism. 

 Thus, the D-module 𝑀 is a homomorphic image of the D-module 𝐷().  
 Hence, by fundamental theorem of homomorphism,  𝑀 ≅ 𝐷()𝑘𝑒𝑟𝑔 

 Let 𝐾 = 𝑘𝑒𝑟𝑔. Then 𝐾 is a submodule of the free module 𝐷().  
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 Hence, by Result 2.2.9, 𝐾 is a free module with base containing 𝑚 elements, where 𝑚 ≤ 𝑛.  

 Let {𝑓ଵ, 𝑓ଶ, … , 𝑓} be the set of generators in term of the base {𝑒ଵ, 𝑒ଶ, … , 𝑒} (as 𝑓 ∈ 𝐷() 
for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛). 

     𝑓ଵ = 𝑎ଵଵ𝑒ଵଵ + 𝑎ଵଶ𝑒ଶ + ⋯ + 𝑎ଵ𝑒 

     𝑓ଶ = 𝑎ଶଵ𝑒ଵ + 𝑎ଶଶ𝑒ଶ + ⋯ + 𝑎ଶ𝑒 

     … … … 

     𝑓 = 𝑎ଵ𝑒ଵ + 𝑎ଶ𝑒ଶ + ⋯ + 𝑎𝑒 

 Define 𝐴 = (𝑎).  

 Then, 𝐴 is a matrix of order 𝑚 × 𝑛 with entries in 𝐷.  

 Hence, there exists an invertible matrix 𝑃 = (𝑝) of order 𝑛 × 𝑛 and an invertible 

matrix 𝑄 = (𝑞) of order 𝑚 × 𝑚 such that 𝑄𝐴𝑃ିଵ is a diagonal matrix given by, 

     𝑑𝑖𝑎𝑔 {𝑑ଵ, 𝑑ଶ, … , 𝑑, 0,0, … ,0}     …… By result 2.2.10 

 Define 
n

i ij j
j=1

e' p e= ∑ . Then {𝑒′ଵ, 𝑒′ଶ, … , 𝑒′} will form an another base for 𝐷().  
 Define  

m
'

k kl li=1
f = q f∑ . If 1 *

kl
Q = q− ⎛ ⎞

⎜ ⎟
⎝ ⎠

, then  

     
m

* ' *
rkl k rk kl lk=1

q f  =  q q f f=∑  

 But this shows that {𝑓ଵ, 𝑓ଶ, … , 𝑓} is contained in the submodule generated by {𝑓′ଵ, 𝑓′ଶ, … , 𝑓′}. Hence {𝑓′ଵ, 𝑓′ଶ, … , 𝑓′} generates K. 

 Now, 

     
m

' * '
k kl l kl lj j kl lj jl i

k=1 l,j l,j,i
f  =  q f q a e q a p e= =∑ ∑ ∑  

 where  ( )1 *P = pij− . 

 Hence, the new relation matrix is 𝐴ᇱ = 𝑄𝐴𝑃ିଵ. 

 But by the choice of P and Q, 

     𝑄𝐴𝑃ିଵ = 𝑑𝑖𝑎𝑔 {𝑑ଵ, 𝑑ଶ, … , 𝑑, 0,0, … ,0}   

 Hence , 

     𝑓ଵᇱ = 𝑑ଵ𝑒ଵᇱ ,  𝑓ଶᇱ = 𝑑ଶ𝑒ଶᇱ ,    ….,  𝑓ᇱ = 𝑑𝑒ᇱ  
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     𝑓ାଵᇱ = 0,  𝑓ାଶᇱ = 0,    ….,  𝑓ᇱ = 0      … (1) 

 Define  
n

i ij j
j=1

y  = p x∑ .  

 Then  
n

* *
rk k rk ki i i

j=1
p y p p x  = x=∑ ∑ ; where ( )1 *P = pij− ; shows that the submodule 

generated by {𝑦ଵ, 𝑦ଶ, … , 𝑦} contains {𝑥ଵ, 𝑥ଶ, … , 𝑥}. 

 Hence, {𝑦ଵ, 𝑦ଶ, … , 𝑦} generates M. 

 Thus, 𝑀 = 𝐷𝑦ଵ + 𝐷𝑦ଶ + ⋯ + 𝐷𝑦 

 i.e. 
n

k
k=1

M = Dy∑           … (2) 

 Let 0
n

i i
i=1

b y =∑  for 𝑏 ∈ 𝐷,   for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 Consider 𝑔(𝑒ᇱ). 

   𝑓(𝑒ᇱ) = 𝑔  n

ij j
j=1

p e∑  

        = n

ij j
j=1

p x∑  ,     by the definition of 𝑔. 

          = 𝑦. 
 Thus,  𝑔(𝑒ᇱ) = 𝑦 ,     for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. … (3) 

 Hence,  0
n

i i
i=1

b y =∑  ⟹ ( ) 0
n

'
i i

i=1
b g e =∑  

         ⟹ 0
n

'
i i

i=1
g b e

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∑   … 𝑔 is a homomorphism 

         ⟹ 
n

'
i i

i=1
b e k∈∑  

 As 𝑘 = (𝑓ଵ, 𝑓ଶ, … , 𝑓) we get 

     
n m

' '
i i i i

i=1 i=1
b e c f=∑ ∑  ,  for 𝑐 ∈ 𝐷,    ∀  𝑖,   1 ≤ 𝑖 ≤ 𝑚. 
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         ( )
m

'
i i i

i=1
c d e= ∑

,
  ( ∵     𝑓ᇱ = 𝑑𝑒′) 

 Thus,  ( )
n m

' '
i i i i i

i=1 i=1
b e c d e=∑ ∑  

 ∴    ( ) 0
n

'
i i i i

i=1
b c d e− =∑   

 As {𝑒′ଵ, 𝑒′ଶ, … , 𝑒′} forms a base for 𝐷() we must have 

     𝑏 − 𝑐𝑑 = 0.   i.e. 𝑏 = 𝑐𝑑 ,   for 𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 But  𝑏 = 𝑐𝑑  for each 𝑖 will imply 

    𝑏 𝑦 = (𝑐 𝑑) 𝑦 
        = 𝑐 (𝑑 𝑦) 

        = 𝑐 ൫𝑑  𝑔(𝑒′)൯      … by 2,     𝑔(𝑒′) = 𝑦 
        = 𝑐 [𝑔(𝑑𝑒′)]      … Since 𝑔 is a homomorphism. 

        = 𝑐 [𝑔(𝑓′)]      … by 1. 

        = 𝑐  ∙ 0       … Since 𝑓′ ∈ 𝑘𝑒𝑟𝑓 

        = 0   

 Hence, 𝑏 𝑦 = 0 for each 𝑖. 
 Thus, we have proved that 0

n

i i
i=1

 b  y =∑  then 𝑏 𝑦 = 0, for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛.  

 But this in turn shows that the sum 
n

i
i=1

M =  Dy∑  is a direct sum. 

 i.e.  
n

i
i=1

M =  Dy⊕ ∑   

 Thus,   𝑀 = 𝐷𝑦ଵ ⊕ 𝐷𝑦ଶ ⊕ … ⊕ 𝐷𝑦. 

 Now,   𝑏 = 𝑐 𝑑     ⟹     𝑏 ∈ (𝑑). 

 Again  𝑏 𝑦 = 0    ⟹     (𝑐 𝑑) 𝑏 ∈ (𝑑) 

         ⟹     𝑐 (𝑑 𝑦) = 0 

         ⟹     𝑑 𝑦 = 0 

 Hence, 𝑎𝑛𝑛 𝑦 = (𝑑). 

 As 𝑑ଵ/𝑑ଶ,  𝑑ଶ/𝑑ଷ, … we get, 

      (𝑑ଵ) ⊃ (𝑑ଶ) ⊃ ⋯ ⊃ (𝑑) 
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 If 𝑑 is a unit element in 𝐷, then 𝑑 𝑦 = 0    ⟹     𝑦 = 0.   ( ∵  𝐷 is a domain) 

 Hence, drop those elements 𝑦 from the set {𝑦ଵ, 𝑦ଶ, … , 𝑦} for which 𝑦 = 0.   

 Assume without loss of generality, 𝑑ଵ, 𝑑ଶ, … , 𝑑௧ are units and 𝑑௧ାଵ, 𝑑௧ାଶ, … are not units 

in 𝐷. Put 𝑍ଵ = 𝑦௧ାଵ, … . , 𝑍ି௧ = 𝑦. We get, 

      𝑀 = 𝐷𝑍ଵ ⊕ 𝐷𝑍ଶ ⊕ … ⊕ 𝐷𝑍ି௧ 

 where 𝐷𝑍௧ = (0) and  

      𝑎𝑛𝑛 𝑍ଵ ⊃ 𝑎𝑛𝑛 𝑍ଶ ⊃ ⋯ ⊃ 𝑎𝑛𝑛 𝑍௦ 

 where 𝑠 = 𝑛 − 𝑡 and 𝑎𝑛𝑛 𝑍 ≠ 𝐷. 

 

2.3  Free Module : 

Throughout this section 𝑅 denotes a ring with unity 1. 

Definition 2.3.1 : Let 𝑀 be an R-module. A finite sequence 𝑥ଵ, 𝑥ଶ, … , 𝑥 of distinct 

elements of 𝑀 is said to be linearly independent if for any 𝑎ଵ, 𝑎ଶ, … , 𝑎 in 𝑅, 

0
n

i i
i=1

a x =∑  implies 𝑎ଵ = 𝑎ଶ = ⋯ = 𝑎 = 0 . 

   A finite sequence 𝑥ଵ, 𝑥ଶ, … , 𝑥 of distinct elements in M is said to be linearly 

dependent if it is not linearly independent. 

   A subset S of an R-module is called linearly independent if for every finite 

sequence of distinct elements of S is linearly independent. Otherwise S is called linearly 

dependent. 

 

Definition 2.3.2 : Let 𝑀 be an R-module. 𝐴 subset 𝐵 of 𝑀 is called a basis if  

 (i)  𝑀 is generated by 𝐵.  

 (ii) 𝐵 is linearly independent set. 

 

Example 2.3.3 : Let 𝑅 be a ring with unity 1. Define 𝑅() = {(𝑥ଵ, 𝑥ଶ, … , 𝑥) / 𝑥 ∈ 𝑅 }. 

Then 𝑅() is an R-module with {𝑒ଵ, 𝑒ଶ, … , 𝑒} as a base, where  

   𝑒 = (0, 0, … , 1, 0, … , 0) 

           ↑ 𝑖௧  place. 

Solution :  𝑅() = {(𝑥ଵ, 𝑥ଶ, … , 𝑥) / 𝑥 ∈ 𝑅 }. Define addition, 0-element and scalar 

multiplication in 𝑅() as 

 (𝑥ଵ, 𝑥ଶ, … , 𝑥) + (𝑦ଵ, 𝑦ଶ, … , 𝑦) = (𝑥ଵ + 𝑦ଵ, 𝑥ଶ + 𝑦ଶ, … , 𝑥 + 𝑦) 
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0 = (0, 0, … , 0) 

 𝑟 ∙  (𝑥ଵ, 𝑥ଶ, … , 𝑥) = (𝑟 ∙ 𝑥ଵ, 𝑟 ∙ 𝑥ଶ, … , 𝑟 ∙ 𝑥) 

         for 𝑟 ∈ 𝑅 and (𝑥ଵ, 𝑥ଶ, … , 𝑥), (𝑦ଵ, 𝑦ଶ, … , 𝑦) ∈ 𝑅(). 
 Then, it can be easily verified that 〈𝑅(), +, ∙〉 is a module over 𝑅. 

 Put  𝑒 = (0, 0, … , 1, 0, … , 0),  for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

           ↑ 𝑖௧  place. 

(i) Let 𝑎 ∈ 𝑅, for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛 and 
n

i i
i=1

a e 0=∑ . 

 But ( )
n

i i 1 2 n
i=1

a e = a ,a ,..., a∑     

 Hence, ( ) ( )0 0 0 0
n

i i 1 2 n
i=1

a e = a ,a ,..., a , ,...,⇒ =∑ . 

 ⟹    𝑎ଵ = 0, 𝑎ଶ = 0, … , 𝑎 = 0 

(ii) Again any 𝑥 ∈ 𝑅() can be written as 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥) where 𝑥 ∈ 𝑅,    ∀   𝑖, 1 ≤ 𝑖 ≤𝑛. In this case, 

  𝑥 = 𝑥ଵ𝑒ଵ + 𝑥ଶ𝑒ଶ + ⋯ + 𝑥𝑒    as 𝑥 𝑒 = (0, 0, … , 𝑥, 0, … , 0) 

                     ↑ 𝑖௧  place. 

 But this in turn shows that, the set 𝐵 = {𝑒ଵ, 𝑒ଶ, … , 𝑒} generates 𝑅().  
 From (i) and (ii), we get, B is a base for an R-module 𝑅(). 
 

Theorem 2.3.4 : Let 𝑀 be an R-module (1 ∈ 𝑅). Let {𝑢ଵ, 𝑢ଶ, … , 𝑢} be a base for 𝑀. Then 𝑀 ≅ 𝑅(). 
Proof :  We know that, 𝑅() is an R-module with base {𝑒ଵ, 𝑒ଶ, … , 𝑒}, where 

    𝑒 = (0, 0, … , 1, 0, … , 0)   

                 ↑ 𝑖௧  place. 

 for each 𝑖,   1 ≤ 𝑖 ≤ 𝑛. 

 Hence, any 𝑥 ∈ 𝑅() can be expressed as 
n

i i
i=1

x = r e∑ where 𝑟 ∈ 𝑅,     ∀  𝑖, 1 ≤ 𝑖 ≤ 𝑛.  

 As {𝑢ଵ, 𝑢ଶ, … , 𝑢} is a base for M, 
n

i i
i=1

r u∑ where 𝑟 ∈ 𝑅 is an element of M. 

 Define 𝑓: 𝑅() ⟶ 𝑀 by 
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      ( )
n n

i i i i
i=1 i=1

f x  = f r e r u
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑  

(I) 𝑓 is well defined map.  

 Let 𝑥 = 𝑦 in 𝑅().  
 Then, let 

n
i i

i=1
x = r e∑ and 

n
i i

i=1
y = r' e∑    where 𝑟, 𝑟′ ∈ 𝑅, ∀  𝑖. 

    𝑥 = 𝑦  ⟹ 
n n

i i i i
i=1 i=1

r e r' e=∑ ∑   

       ⟹ 0
n n

i i i i
i=1 i=1

r e r' e− =∑ ∑  

       ⟹ ( ) 0
n

i i i
i=1

r r' e− =∑  

       ⟹ 𝑟 − 𝑟′ = 0    ∀  𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 As {𝑒ଵ, 𝑒ଶ, … , 𝑒} is a base for 𝑅().  
 As 𝑟 = 𝑟′ for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛 we get  

      
n n

i i i i
i=1 i=1

r u r' u=∑ ∑   

 Thus , 

   𝑥 = 𝑦  ⟹  
n n

i i i i
i=1 i=1

r e r' e=∑ ∑   ⟹  
n n

i i i i
i=1 i=1

r u r' u=∑ ∑       ⟹ 𝑓(𝑥) = 𝑓(𝑦) 

 This shows that 𝑓 is well defined. 

(II) 𝑓 is a R-homomorphism. 

 (i) Let 𝑥, 𝑦 ∈ 𝑅(). Let and
n n

,
i i ii

i=1 i=1
x = r e y = r e∑ ∑  

   
n n

,
i i ii

i=1 i=1
f(x+y) = f r e r e

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

     ( )
n

,
i ii

i=1
= f r r e

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

     ( )
n

,
i ii

i=1
= r r u+∑  
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n n

,
i i ii

i=1 i=1
= r u r u+∑ ∑  

     =  f(x) + f(y)  

 Thus, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑅(). 
(ii) Let 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑅(). Let ,

n
i i i

i=1
x = r e r R∈∑   

   
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
n

i i
i=1

f(rx) = f r r e  

     ( )
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑
n

i i
i=1

= f r r e  

     ( )∑
n

i i
i=1

= r r u  

     ∑
n

i i
i=1

=  r r u  

     =  r  f(x)  

 Thus, 𝑓(𝑟𝑥) = 𝑟 𝑓(𝑥) for all 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑅().  
 From (i) and (ii), we get, 𝑓 is a R- homomorphism. 

(III) 𝑓 is an onto mapping. 

 As 𝑓(𝑒) = 𝑢 for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛, we get 𝑖𝑚 𝑓 = {𝑓(𝑥)/ 𝑥 ∈ 𝑅()} contains 𝑢 for 

each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 Thus, 𝑖𝑚 𝑓 is a submodule of M containing 𝑢ଵ, 𝑢ଶ, … , 𝑢.  

 By data {𝑢ଵ, 𝑢ଶ, … , 𝑢} is a base for 𝑀 and hence it generates 𝑀.  

 Thus, 𝑖𝑚 𝑓 = 𝑀. But this shows that 𝑓 is onto. 

(IV) 𝑓 is one-one. 

 Let 𝑥 ∈ 𝑘𝑒𝑟𝑓 then 𝑓(𝑥) = 0. 

 Let 
n

i i
i=1

x = r e∑  . Then  

   
n

i i
i=1

f(x) =  f r e
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑  
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n

i i
i=1

=  r u∑  

      = 0 

 As {𝑢ଵ, 𝑢ଶ, … , 𝑢} is a base for M, 0
n

i i i
i=1

r u r =0= ⇒∑  for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 But this in turn shows that 0
n

i i
i=1

x = r e =∑ . Thus 𝑘𝑒𝑟𝑓 = {0}.  

 This shows that 𝑓 is one-one. (See 1.3, theorem 3). 

 From (I), (II), (III) and (IV) we get, 

 𝑓: 𝑅() ⟶ 𝑀 is an isomorphism and hence 𝑅() ≅ 𝑀. 

 

Remark 2.3.5 : Thus existence of a base of n-elements for an R-module implies that 𝑀 ≅ 𝑅(). In this case we shall say that M is a free R-module of rank n. 

 

Theorem 2.3.6 : If 𝑀 is a module over commutative ring 𝑅 with unity 1 and if 𝑀 has bases 

of 𝑚 and 𝑛 elements, then 𝑚 =  𝑛. 

Proof :   Assume that 𝑚 <  𝑛. 

 Let {𝑒ଵ, 𝑒ଶ, … , 𝑒} and {𝑓ଵ, 𝑓ଶ, … , 𝑓}  be basis for M. As 𝑓 ∈ 𝑀 and {𝑒 / 1 ≤ 𝑖 ≤ 𝑛} 

is a base for M, we get 

     
n

j ji i
i=1

f  =  a e∑    where 𝑎 ∈ 𝑅.   … (1) 

 Similarly, as 𝑒 ∈ 𝑀 and {𝑓ଵ, 𝑓ଶ, … , 𝑓} is a base for M, we get 

     
m

i ij j
j=1

e  =  b f∑    where 𝑏 ∈ 𝑅.   … (2) 

 From (1) and (2) ,we get, 

     
n m

j ji ij' j'
i=1 j'=1

f  =  a b  f∑ ∑        . . . (3) 

 and    
m n

i ij ji' i'
j=1 i'=1

e  = b a  e∑ ∑        . . . (4) 

 But {𝑓 / 1 ≤ 𝑗 ≤ 𝑚} and {𝑒 / 1 ≤ 𝑖 ≤ 𝑛} are bases for M and hence  
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n

ji ij' i'
i=1

1       if j = j'
a  b  e =

0       if j j'
⎧
⎨ ≠⎩

∑  ,  for 1 ≤ 𝑗, 𝑗′ ≤ 𝑚. . . . (5) 

 and  

     
m

ij ji'
j=1

1       if   i = i'
 b  a  = 

0       if   i i'
⎧
⎨ ≠⎩

∑  ,  for 1 ≤ 𝑖, 𝑖′ ≤ 𝑛. . . . (6) 

  

 From (1) and (2), we obtain the two 𝑛 × 𝑚 matrices A and B defined as follows. 

𝐴 =
⎣⎢⎢
⎢⎢⎢
⎡ 𝑎ଵଵ 𝑎ଵଶ ⋯ 𝑎ଵ𝑎ଶଵ 𝑎ଶଶ ⋯ 𝑎ଶ⋯ ⋯ ⋯ ⋯𝑎ଵ 𝑎ଶ ⋯ 𝑎0 0 ⋯ 0⋮ ⋯ ⋯ ⋮0 0 ⋯ 0 ⎦⎥⎥

⎥⎥⎥
⎤

×
 

 and  
𝐵 = ൦𝑏ଵଵ 𝑏ଵଶ ⋯ 𝑏ଵ 0 ⋯ 0𝑏ଶଵ 𝑏ଶଶ ⋯ 𝑏ଶ 0 ⋯ 0⋯ ⋯ ⋯ ⋯ 0 ⋯ 0𝑏ଵ 𝑏ଶ ⋯ 𝑏 0 ⋯ 0൪

×
 

 But form (6), we get, 𝐵𝐴 =  1.  

 Since R is commutative, 𝐵𝐴 =  1  ⟹   𝐴𝐵 =  1.  

 But 𝐴𝐵 =  1 is impossible as the matrix 𝐴𝐵 contains last 𝑛 –  𝑚 rows zero. 

 Hence our assumption 𝑚 <  𝑛 is wrong. Therefore 𝑚 ≥ 𝑛.  

 Similarly, we can prove that 𝑚 ≤ 𝑛.  

 Hence 𝑚 =  𝑛. 

 

Corollary 2.3.7 : If 𝑅 is commutative, 𝑅() ≅ 𝑅() implies 𝑚 =  𝑛. 

Proof : We know that any free module 𝑀 with a base containing m elements is isomorphic 

with 𝑅() (See theorem 3.3.4). Thus, if 𝑅() ≅ 𝑅() then we have a free module 𝑀 

which has bases of 𝑚 and 𝑛 elements. By theorem 3.3.6 it follows that, 𝑚 =  𝑛 and we 

are through. 

  

Theorem 2.3.8 : Given one ordered base 𝑒ଵ, 𝑒ଶ, … , 𝑒 for a free module  over a 

commutative ring R, we obtain another ordered base {𝑓ଵ, 𝑓ଶ, … , 𝑓} by applying the 
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matrices 𝐴 = 𝐿(𝑅) to (𝑒ଵ, 𝑒ଶ, … , 𝑒) in the sence that 
n

j ij i
i=1

f = a e∑ , 𝐴 = (𝑎) and 

conversely. Here 𝐿(𝑅) denotes the group of 𝑛 × 𝑛 invertible matrices with entries in 

R. 

Proof :  Let (𝑒ଵ, 𝑒ଶ, … , 𝑒) and (𝑓ଵ, 𝑓ଶ, … , 𝑓) be a bases for a free module M. As 𝑓 ∈ 𝑀 

and (𝑒ଵ, 𝑒ଶ, … , 𝑒) is a base for M, we get  

      
n

j ji i
i=1

f = a e∑    ∀  𝑗,   1 ≤ 𝑗 ≤ 𝑛, 𝑎 ∈ 𝑅   ∀  𝑗, 𝑖. 
 Similarly, 𝑒 ∈ 𝑀 and (𝑓ଵ, 𝑓ଶ, … , 𝑓) is a base for M, will give  

      
n

i ij j
j=1

e  = b e∑ ,   ∀  𝑖,   1 ≤ 𝑖 ≤ 𝑛,   𝑏 ∈ 𝑅   ∀  𝑖, 𝑗. 

 Define 𝐴 = (𝑎) and 𝐵 = (𝑏). 

 Then, 𝐴, 𝐵 ∈ 𝐿(𝑅), as AB = 1 and BA = 1 imply A and B are invertible. 

 Conversely, suppose that (𝑒ଵ, 𝑒ଶ, … , 𝑒) be a base for a free module M and 

 𝐴 = (𝑎) ∈ 𝐿(𝑅). 

 Define  
n

j ji i
i=1

f = a e∑
 
 ,  ∀  𝑗,   1 ≤ 𝑗 ≤ 𝑛. 

Claim : (𝑓ଵ, 𝑓ଶ, … , 𝑓) is a base for M. 

(i) Now 𝐴 ∈ 𝐿(𝑅). Hence 𝐴ିଵ exists. Let 𝐴ିଵ = 𝐵. Then AB = 1 = BA and let 𝐵 =(𝑏)×.  

 Consider 
n

kj j
j=1

b f∑  . Then , 

       
n n n

kj j kj ji i k
j=1 i=1 j=1

b f b a e  = e=∑ ∑ ∑  as BA = 1. 

 As {𝑒ଵ, 𝑒ଶ, … , 𝑒} generate M we get {𝑓ଵ, 𝑓ଶ, … , 𝑓} generate M. 

(ii) Let 0
n

j j
i=1

r f =∑  for some 𝑟 ∈ 𝑅, 1 ≤ 𝑖 ≤ 𝑛. Then  

    
n n

j ji i
j=1 i=1

r a e  = 0⎡ ⎤
⎣ ⎦∑ ∑   
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 i.e.  
n n

j ji i
i=1 j=1

r a e  = 0⎡ ⎤
⎣ ⎦∑ ∑   

 As {𝑒ଵ, 𝑒ଶ, … , 𝑒} is a base for M, we get 

    0
n

j ji
j=1

r a =∑   ,  ∀    𝑖, 1 ≤ 𝑖 ≤ 𝑛. 

 Hence 
n n

j ji ih
i=1 j=1

r a b  = 0∑ ∑   , ∀    ℎ, 1 ≤ ℎ ≤ 𝑛. 

 But AB = 1 and hence   𝑟 = 0 for all 𝑗, 1 ≤ 𝑖 ≤ 𝑛.  

 Thus, 
n

j j j
j=1

r f  = 0 r  = 0⇒∑  for each  𝑗, 1 ≤ 𝑖 ≤ 𝑛. 

 From (1) and (2), we get {𝑓ଵ, 𝑓ଶ, … , 𝑓} is a base for M. 

 

Theorem 2.3.9 : Let D be a p. i. d. and let 𝐷() be the free module of rank n over D. Then 

every submodule K of 𝐷() is free with base of 𝑚 ≤ 𝑛 elements. 

Proof  :  

Case I :  n = 0. 

 If  K = (0), then K is a free module with rank 0 (with empty base). Hence the result is 

trivially true for n = 0.  

Case II : n = 1. 

 𝐷() = 𝐷. Hence any submodule of D is an ideal in D, which is a principal ideal. Hence 𝐾 = (𝑓) for some 𝑓 ∈ 𝐷. Obviously {𝑓} generates K.  

 If f = 0, then K = (0) and the result follows as rank of K = 0. 

 Let 𝑓 ≠ 0. Then 𝑎𝑓 = 0 for some 𝑎 ∈ 𝐷 will imply 𝑎 = 0 as D is an integral domain. 

Thus, {𝑓} will form a base for 𝐾 = (𝑓). 

 Hence, K is a free module with rank ≤ 1. 

Case III : n > 1. 

 Let K be any submodule of 𝐷(). 
 We prove the result my induction on n. Let {𝑒ଵ, 𝑒ଶ, … , 𝑒} be a base for 𝐷(). Let 𝐷(ିଵ) 

denote a submodule of 𝐷() generated by {𝑒ଶ, 𝑒ଷ, … , 𝑒ିଵ, 𝑒}. Then 𝐷(ିଵ) is a free 
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module of rank n – 1. Hence 
()(షభ) is a free module of rank 1. The base for is  

()(షభ) is {�̅�ଵ} where �̅�ଵ = 𝑒ଵ + 𝐷(ିଵ). 
 As K is a submodule of 𝐷(), ା(షభ)(షభ)  is a submodule of 

()(షభ) .  
 Let  

   𝐾ഥ = ା(షభ)(షభ)   and  𝐷ഥ = ()(షభ)  
 (I) If 𝐾ഥ = (0), then 𝑘 + 𝐷(ିଵ) ⊆ 𝐷(ିଵ) and hence 𝐾 ⊆ 𝐷(ିଵ). 
  By induction, K will be a free module with base containing 𝑚 ≤ 𝑛 − 1 elements 

and hence the result is true in this case.  

 (II) If 𝐾ഥ = {0}, then as in case (I), 𝐾ഥ will contain a base consisting of one element say 𝑓ଵ̅ where 𝑓ଵ̅ = 𝑓ଵ + 𝐷(ିଵ). As 𝐾ഥ = ା(షభ)(షభ)  we select 𝑓ଵ ∈ 𝐾. 

 Subcase I :  𝐾 ∩  𝐷(ିଵ) ≠ (0). 

   Then 𝐾 ∩  𝐷(ିଵ) ≠ (0) is a submodule of 𝐷(ିଵ). Hence by induction hypothesis, 𝐾 ∩  𝐷(ିଵ) has a base say {𝑓ଵ, 𝑓ଶ, … , 𝑓} with 0 < 𝑚 − 1 < 𝑛 − 1.  

 Claim : {𝑓ଵ, 𝑓ଶ, … , 𝑓} will form a base for K. 

   Let 𝑦 ∈ 𝐾. Then 𝑦ത = 𝑦 + 𝐷(ିଵ) ∈ 𝐾ഥ. Hence 𝑦ത = 𝑏ଵ𝑓ଵ̅ for some 𝑏ଵ ∈ 𝐷.  

   But this means that 

      𝑦 − 𝑏ଵ𝑓ଵ = 𝑏ଶ𝑓ଶ + 𝑏ଷ𝑓ଷ + ⋯ + 𝑏𝑓 

              𝑦 = 𝑏ଵ𝑓ଵ + 𝑏ଶ𝑓ଶ + 𝑏ଷ𝑓ଷ + ⋯ + 𝑏𝑓    . . . (1) 

   Now, let us assume that 
m

i i
i=1

d f  = 0∑  for 𝑑 ∈ 𝐷. Hence 
m

1 1 j j
j=2

d f d f= − ∑ .  

   This implies 

     
m

1 j1 j
j=2

d f d f= − ∑ . 

   But {𝑓ଶ, 𝑓ଷ, … , 𝑓} is a base for 𝐾 ∩  𝐷(ିଵ). Hence 0
n

j j
j=2

d f =∑  and therefore 

01 1d f = . But {𝑓ଵ̅} is a base for 𝐾ഥ will imply 𝑑ଵ = 0. 

   Thus, 
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      0
m

j j
j=2

d f =∑     (Since 
m

1 j1 j
j=2

d f d f= − ∑  

   As {𝑓ଶ, 𝑓ଷ, … , 𝑓} is a base for 𝐾 ∩ 𝐷(ିଵ) we get 𝑑ଶ = 𝑑ଷ = ⋯ = 𝑑 = 0. Thus  

      
m

k k k
k=1

d f  = 0 d  = 0⇒∑   ∀    𝑘, 1 ≤ 𝑘 ≤ 𝑚 

   Hence, {𝑓ଵ, 𝑓ଶ, … , 𝑓} will form a base K. 

 Subcase II :  𝐾 ∩  𝐷(ିଵ) = {0}. 

   If 𝐾 ∩  𝐷(ିଵ) = {0}, then {𝑓ଵ} will form a base for K. 

   𝑓ଵ ∈ 𝐾     ⟹       (𝑓ଵ) ⊆ 𝐾, where (𝑓ଵ) = 𝐷𝑓ଵ.  

   Let 𝑦 ∈ 𝐾. Then 𝑦ത = 𝑦 + 𝐷(ିଵ) ∈ 𝐾ഥ.  

   Hence, 𝑦ത = 𝑏ଵ𝑓ଵ̅  for some 𝑏ଵ ∈ 𝐷. 

   ⟹  𝑦 − 𝑏ଵ𝑓ଵ ∈ 𝐷(ିଵ). 
   As 𝑓ଵ ∈ 𝐾 and 𝑦 ∈ 𝐾, we get 𝑦 − 𝑏ଵ𝑓ଵ ∈ 𝐾. 

   Thus,  𝑦 − 𝑏ଵ𝑓ଵ ∈ 𝐾 ∩  𝐷(ିଵ) = {0}. 

   Hence, 𝑦 = 𝑏ଵ𝑓ଵ. This shows that 𝐾 ⊆ (𝑓ଵ).  

   Hence, 𝐾 = (𝑓ଵ) = 𝐷𝑓ଵ. 

   Further, 𝑏ଵ𝑓ଵ = 0 and 𝑓ଵ ≠ 0     ⟹   𝑏ଵ = 0. 

   Hence, {𝑓ଵ} will form a base for K.  

 Thus in either cases, K is a free module with base consisting of m elements, where 𝑚 ≤ 𝑛. 

 

2.4  Completely Reducible Modules : 

Definition 2.4.1 : An R-module M is called completely reducible if 𝑀 = ∑ 𝑀ఈ where 𝑀ఈ are 

simple R-modules.  

 

Theorem 2.4.2 : Let M be a completely reducible R-module. Let ααM MΔ∈
= ∑ where 𝑀ఈ  

 is a simple R-modules of M. For any submodule K of M, ∃ a subset ∆′ and ∆ such that  

 
'

αα MΔ∈
∑ is a direct sum and  

     𝑀 = 𝐾 ⊕
'

αα MΔ∈
∑ . 
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Proof :   𝒦 = ቐ𝐴 ⊆ ∆  / αα A M
∈
∑ is a direct sum and 𝐾 ∩ αα MΔ∈

∑ = {0} ቑ. 

 Then 𝒦 is a non empty set as 𝜙 ∈ 𝒦. 

 As,  𝑀ఈఈ∈థ = {0} 

 〈𝒦, ⊆〉 is partially ordered set. 

 Let 𝒞 be a chain in 𝒦. Then  ራ 𝑐 ∈ 𝒞 ∈ 𝒦 

 Hence, by Zorn’s lemma, 𝒦 contains a maximum element say 𝐵. 

 Thus, αα B M
∈
∑ is a direct sum and 𝐾 ∩ αα MΔ∈

∑ = {0} 

 Let 𝑁 = 𝐾 ⊕ αα B M
∈
∑ . 

 Claim that M = N. i.e. to prove that α αα α BM K M
∈Δ ∈

⊕ = ⊕∑ ∑ .  

 Let 𝛽 ∈ ∆. Then 𝑀ఉ is a direct sum and of M and 𝑀ఉ is simple. Hence 𝑀ఉ ∩ 𝑁 is a 

submodule of 𝑀ఉ will imply 𝑀ఉ ∩ 𝑁 = 𝑀ఉ or 𝑀ఉ ∩ 𝑁 = {0}. 

 Let 𝑀ఉ ∩ 𝑁 = {0} then { }0β α βα BM M M N
∈

⊆ =∑I I  .  

 This implies that { }0β αα BM M
∈

=∑I  . 

 But then 
{ }

αα B β M
∈
∑
U

 is a direct sum and  

𝐾 ∩   𝑀ఈఈ∈∪{ఉ}  = 𝐾 ∩  𝑀ఈఈ ∈  ൩ ∪ ൣ𝐾 ∩ 𝑀ఉ൧ 
             = {0} ∪ {0} = {0}            (as 𝑀ఉ ∩ 𝑁 = {0}  ⟹  𝑀ఉ ∩ 𝐾 = {0} 

 Thus, 𝐵 ∪ {𝛽} ∈ 𝒦. 

 B being a maximal element of 𝒦 we get a contradiction. 

 Hence,  𝑀ఉ ∩ 𝑁 = 𝑀ఉ  i.e. 𝑀ఉ ⊆ 𝑁  ∀   𝛽 ∈ ∆. 

 But this will imply  
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    ββ M
∈Δ
∑ ⊆ 𝑁.

 
  i.e. 𝑀 ⊆ 𝑁. 

 Hence, M = N. 

 Thus, αα BM K M
∈

= ⊕ ∑  where 𝐵 ⊆ ∆ such that αα B M
∈
∑  is a direct sum. 

 

Corollary 2.4.3 : Let ααM M
∈Δ

= ∑  where 𝑀ఈ is a simple R-submodule of M. Then ∃ a 

subfamily ∆′ of ∆ such that 
'

ααM M
∈Δ

= ⊕ ∑  . 

Proof :  We know that for any submodule K of M, ∃   ∆′ ⊆ ∆ such that 
'

ααM K M
∈Δ

= ⊕ ∑
 

and 
'

αα M
∈Δ
∑  is a direct sum. 

 Now, take 𝐾 = {0}. Then 
'

ααM M
∈Δ

= ⊕ ∑  . 

 

2.4.4  Worked Examples   –––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 1 : Let 𝑀 be a completely reducible module and let 𝐾 be a nonzero submodule of 𝑀. Show that 𝐾 is completely reducible. Also show that 𝐾 is completely reducible. 

Also show that 𝐾 is a direct summand of 𝑀. 

Solution : Let ααM M
∈Δ

= ∑  where each 𝑀ఈ is a simple submodule.  

 By theorem 2, 
'

ααM K M
∈Δ

= ⊕ ∑  , ∆ᇱ⊆ ∆ shows that K is a direct summand of M. 

 Again,   
'

ααM MK ∈Δ
≅ ∑  

 and   

'
αα

M KM
∈Δ

≅
∑

 

 Thus ,  

    ' "

"
' '

α αα α αα α αα α
M MMK MM M∈Δ ∈Δ

∈Δ
∈Δ ∈Δ

⊕
≅ ≅ ≅

∑ ∑
∑∑ ∑
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'

ααM MK ∈Δ
≅ ∑ is a submodule of M. Hence again applying theorem 1, we get, 

    
' "

α αα αK M M
∈Δ ∈Δ

⎡ ⎤ ⎡ ⎤
= ⊕⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  ,    for some ∆" ⊆ ∆. 

    ' "

"
'

α αα α αα α αα α
M MM MM M∈Δ ∈Δ

∈Δ
∈Δ ∈Δ

+
= ≅

∑ ∑
∑∑ ∑

   

 Thus , 

    
"

ααK M
∈Δ

≅ ∑  (∆" ⊆ ∆. 

 As each 𝑀ఈ, 𝛼 ∈ ∆" is simple we get 
"

αα M
∈Δ
∑  is completely reducible module. Hence 

K is completely reducible being an isomorphic image of a completely reducible module. 

 

Example 2 : Let M be a completely reducible module and let K be a submodule of M. If 𝐾 ≠ 𝑀 then show that 
ெ  is completely reducible. 

Solution : M be completely reducible. Hence ααM M
∈Δ

= ∑ where each 𝑀ఈ is simple. K is a 

submodule of M. Therefore by theorem 1, 
'

ααM K M
∈Δ

= ⊕ ∑  for some ∆′ ⊆ ∆. 

 But then 
'

ααM MK ∈Δ
≅ ∑ . 

 As 
'

αα M
∈Δ
∑ is completely reducible, we get 

ெ  is completely reducible. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 
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Unit 3:  NOETHERIAN AND ARTINIAN MODULES : 

 3.1 Noetherian and Artinian module 

 3.2 Artinian module 

 

3.1 Noetherian Modules : 

Definition 3.1.1 : Let 𝑀 be an R-module. If for every ascending sequence of R-submodules  

 of 𝑀, 𝑀ଵ ⊆ 𝑀ଶ ⊆ ⋯ ⊆ ⋯ there exists a positive integer 𝑛 such that 𝑀 = 𝑀ାଵ = ⋯, 

then 𝑀 is called Noetherian module. 

 

Remark 3.1.2 : If 𝑀 is a Noetherian module, we say that ascending chain condition (acc) for 

submodules hold in 𝑀 or 𝑀 has acc. 

 

3.1.3 Examples   –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 

Example 1 : Let 𝑍 denote a Z-module and 𝑛 ∈ 𝑍. we know that (n) is a submodule of 𝑍. 

Consider the ascending chain of submodules i𝑛 𝑍 given below.  

     (𝑛) ⊂ (𝑛ଵ) ⊂ (𝑛ଶ) ⊂ ⋯  

 Then,   (𝑛) ⊂ (𝑛ଵ)     ⟹   𝑛ଵ | 𝑛  

     (𝑛ଵ) ⊂ (𝑛ଶ)     ⟹   𝑛ଶ | 𝑛ଵ 

 Hence, the ascending chain of submodules in Z, starting with (n) will have atmost 𝑛 

distinct elements.  

 This shows that Z as a Z-module is a Noetherian module. 

 

Example 2 : Let 𝑉 be an n-dimensional vector space over a field 𝐹. Then any ascending 

chain of subspaces of 𝑉 cannot have more than 𝑛 +  1 elements. Hence 𝑉 must be 

Noetherian. 

 

Theorem 3.1.4 : Let 𝑀 an R-module. The following statements are equivalent. 

 (i)  𝑀 is Noetherian. 

 (ii) Every submodule of 𝑀 is finitely generated. 

 (iii) Any non-empty family of submodules of 𝑀 has a maximal element. 
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Proof : 

(i) ⟹ (ii) :  

 Let 𝑁 be a submodule of a Noetherian module 𝑀. 

 Assume that N is not finitely generated.  

 Select 𝑎ଵ ∈ 𝑁. Then 𝑁 ≠ (𝑎ଵ), by assumption.  

 Hence, select 𝑎ଶ ∈ 𝑁 such that 𝑎ଶ ∉ (𝑎ଵ) . (This is possible as (𝑎ଵ) ⊂ 𝑁 ). 

 Then, by assumption, 

      𝑁 ≠ (𝑎ଵ, 𝑎ଶ)  and  (𝑎ଵ) ⊂ (𝑎ଵ, 𝑎ଶ) ⊂ 𝑁. 

 Hence, select 𝑎ଷ ∈ 𝑁 such that 𝑎ଷ ∉ (𝑎ଵ, 𝑎ଶ) .  

 Then 𝑁 ≠ (𝑎ଵ, 𝑎ଶ, 𝑎ଷ), by assumption and  

      (𝑎ଵ) ⊂ (𝑎ଵ, 𝑎ଶ) ⊂ (𝑎ଵ, 𝑎ଶ, 𝑎ଷ) ⊂ 𝑁. 

 Continuing in this way, we get an infinite ascending chain of submodules of 𝑁 and 

hence of 𝑀.  

 But this contradicts the fact that 𝑀 is Noetherian module.   

 Hence, 𝑁 must be finitely generated. 

(ii) ⟹ (iii) : 

 Let 𝒦 denote the non empty family of submodules of the module 𝑀.  

 Let 𝑁 ∈ 𝒦.  

 If 𝑁 is a maximal ideal of 𝒦, then we are through.  

 If 𝑁 is not a maximal element of 𝒦, then there exist 𝑁ଵ ∈ 𝒦 such that 𝑁 ⊂ 𝑁ଵ.  

 If 𝑁ଵ is a maximal element of 𝒦, then we are through.  

 If 𝑁ଵ is not a maximal element of 𝒦, then there exist 𝑁ଶ ∈ 𝒦 such that 𝑁 ⊂ 𝑁ଵ ⊂ 𝑁ଶ. 

Thus, if 𝒦 does not contain a maximal element, we get an infinite chain of submodules 

of 𝑀 as below 

       𝑁 ⊂ 𝑁ଵ ⊂ 𝑁ଶ ⊂ ⋯       … (I) 

 Define U i
i=1

N = N  .  

 Then, 𝑁 is a submodule of 𝑀. By assumption 𝑁 must be finitely generated.  

 Let (𝑥ଵ, 𝑥ଶ, . . . , 𝑥),   where 𝑥 ∈ 𝑁,    ∀  𝑖 ≤ 𝑖 ≤ 𝐾.  

 The finite number of elements 𝑥ଵ, 𝑥ଶ, . . . , 𝑥 must belong to the finite number of 

submodules. 𝑁 (this number ≤ 𝑘), by the definition of 𝑁.  

 Hence, select a positive integer 𝑠 such that 𝑥ଵ, 𝑥ଶ, . . . , 𝑥 ∈ 𝑁௦ and 𝑠 is the smallest 

positive integer satisfying this property. Thus,  
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      𝑥ଵ, 𝑥ଶ, . . . , 𝑥 ∈ 𝑁௦ implies (𝑥ଵ, 𝑥ଶ, . . . , 𝑥) ⊆ 𝑁௦ 

 and hence 𝑁 ⊆ 𝑁௦ ⊆ 𝑁. 

 This shows that 𝑁 = 𝑁௦.  

 For the infinite chain in 𝐼 we have 𝑠 > 0 such that  

      𝑁௦ = 𝑁௦ାଵ = 𝑁௦ାଶ = . . . = 𝑁 

 This in turn shows that 𝑁 will be the maximal element in 𝒦 and the implication follows. 

(iii) ⟹ (i) :  

 Let 𝑀ଵ ⊂ 𝑀ଶ ⊂ . .. be any ascending sequence of submodules of an R-module 𝑀.  

 Consider the family 𝒦 = {𝑀ଵ, 𝑀ଶ, . . . }.  

 Then, 𝒦 is the family of submodules of 𝑀 and hence by assumption, 𝒦 contains a 

maximal element say 𝑀. But then 𝑀 = 𝑀ାଵ = . ...  
 This in turn shows that 𝑀 is Noetherian. 

Thus, we have proved 1 ⟹ 2 ⟹ 3 ⟹ 1.  

Hence, all the statements are equivalent. 

 

Theorem 3.1.5 : Every submodule of a Noetherian module is a Noetherian module. 

Proof : Let 𝑀 be Noetherian module. Let 𝑁 be submodule of 𝑀.  

 To prove 𝑁 is Noetherian. 

  Let 𝒦 be any non empty family of submodules of 𝑁.  

  Then obviously, 𝒦 is a any non empty family of submodules of 𝑀. 

  𝑀 being Noetherian, 𝒦 contains a maximal element (See theorem 3.1.4).  

  But this in turn will imply 𝑁 is Noetherian. 

 

Theorem 3.1.6 : Every quotient module of a Noetherian module is Noetherian. 

Proof :  Let M be a Noetherian module. Let N be any submodule of M.  

 To prove that  
ெே  is Noetherian. 

 Let 𝒦 denote a non-empty family of submodules of a module 
ெே .  

 Let 𝒦 = ቄ 𝑈1𝑁 , 𝑈2𝑁 , 𝑈3𝑁 , … ቅ. As 
ே  is a submodule of  

ெே , by theorem 1 in 1.3, we get 𝑈 is a submodule of M containing N. 
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 Consider the family ℱ = {𝑁, 𝑈ଵ, 𝑈ଶ, … }. Then ℱ is a nonempty family of submodule 

on M (since 𝑁 ∈ ℱ). As M is Noetherian, the family ℱ contains a maximal element say 𝑈.  

 Then 
ೖே  will be the maximal element of the family 𝒦.  

 Hence, 
ெே  is Noetherian module, by theorem 3.1.4. 

 

Theorem 3.1.7 : Every homomorphic image of a Noetherian module is Noetherian. 

Proof :  Let 𝑓 ∶  𝑀ଵ  ⟶  𝑀ଶ be R-homomorphism of an R-module 𝑀ଵ onto the R-module 𝑀ଶ. 

Claim 1 :  If 𝑁 is a submodule of 𝑀ଵ then 𝑓(𝑁) is a submodule of 𝑀ଶ.  

 (i)  𝑓(𝑁) ≠ 𝜙 as 𝑁 ≠ 𝜙 

 (ii)  𝑥, 𝑦 ∈ 𝑓(𝑁). Hence ∃   𝑎, 𝑏 ∈ 𝑁 such that 𝑥 = 𝑓(𝑎) and 𝑦 = 𝑓(𝑏). 

    Then 𝑥 − 𝑦 = 𝑓(𝑎) − 𝑓(𝑏) 

          = 𝑓(𝑎 − 𝑏) ,    … Since 𝑓 is homomorphism. 

    This shows that 𝑥 − 𝑦 ∈ 𝑓(𝑁) as 𝑎 − 𝑏 ∈ 𝑁, N being a module in 𝑀ଵ. 

 (iii) Let 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑓(𝑁). Then 𝑥 = 𝑓(𝑎) for some 𝑎 ∈ 𝑁.  

    As N is a submodule of 𝑀ଵ,  𝑟 ∙ 𝑎 ∈ 𝑁   ⟹   𝑓(𝑟 ∙ 𝑎) ∈ 𝑓(𝑁). 

    But as f is an R- homomorphism, 𝑓(𝑟 ∙ 𝑎) = 𝑟 ∙ 𝑓(𝑎) = 𝑟 ∙ 𝑥 ∈ 𝑓(𝑛). 

 From (i), (ii) and (iii), we get, 𝑓(𝑁) is a submodule of 𝑀ଶ. 

Claim 2 :  If 𝑋 is a submodule of 𝑀ଶ, then 𝑓ିଵ(𝑋) is a submodule of 𝑀ଵ. 

 (i)  𝑓ିଵ(𝑋) ≠ 𝜙 as 𝑋 ≠ 𝜙 

 (ii)  𝑎, 𝑏 ∈ 𝑓ିଵ(𝑋). Then 𝑓(𝑎) ∈ 𝑋,   𝑓(𝑏) ∈ 𝑋.  

    As X is a submodule,  𝑓(𝑎) − 𝑓(𝑏) ∈ 𝑋 

    𝑓 being homomorphism, 𝑓(𝑎) − 𝑓(𝑏) = 𝑓(𝑎 − 𝑏).  

    Thus, 𝑓(𝑎 − 𝑏) ∈ 𝑋 and hence 𝑎 − 𝑏 ∈ 𝑓ିଵ(𝑋).  

 (iii) Let 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝑓ିଵ(𝑋).  

    Then 𝑓(𝑎) ∈ 𝑋, 𝑋 being a submodule of M, 𝑟 ∙ 𝑓(𝑎) ∈ 𝑋.  

    As 𝑓 is a homomorphism 𝑓(𝑟 ∙ 𝑎) = 𝑟 ∙ 𝑓(𝑎).  

    Thus, 𝑟 ∙ 𝑎 ∈ 𝑓ିଵ(𝑋). 

 From (i), (ii) and (iii), we get,  𝑓ିଵ(𝑋) is a submodule of 𝑀ଵ. 
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Claim 3 :  𝑀ଶ is a Noetherian module.  

 Let 𝒦ᇱ = {𝑁ଵᇱ, 𝑁ଶᇱ, … } be any nonempty family of submodules of the module 𝑀ଶ.  

 Then the family, 𝒦ᇱ = {𝑓ିଵ(𝑁ଵᇱ), 𝑓ିଵ(𝑁ଶᇱ), … } is a non empty family of submodules of 

the module 𝑀ଵ(by claim 2).  

 As 𝑀ଵ is Noetherian, 𝒦 contains a maximal element (by theorem 3.1.4).  

 Let it be 𝑓ିଵ(𝑁ᇱ ).  

 Then, 𝑁ᇱ  will be maximal element in 𝒦ᇱ (by claim 1). This in turn shows that 𝑀ଶ is 

Noetherian (See theorem 3.1.4). 

 Thus, homomorphic image of a Noetherian module is Noetherian. 

 

Theorem 3.1.8 : Let M be an R-module and let N be a submodule of M. M is Noetherian iff 

both 𝑁 and 
ெே are Noetherian. 

Proof :  Only if part : 

 Let 𝑀 be Noetherian. Then both 𝑁 and 
ெே are Noetherian (See theorem 3.1.5 and 

theorem 3.1.6). 

If part :  

 Let 𝑁 and  
ெே both be Noetherian.  

To prove that 𝑀 is Noetherian.  

 𝑁 is Noetherian implies 𝑁 is finitely generated (See theorem 3.1.4).  

 Let 𝑁 = (𝑥ଵ, 𝑥ଶ, … , 𝑥). 

 
ெே is Noetherian implies 

ெே is finitely generated (See theorem 3.1.4). 

 Let  
ெே = (𝑦ଵ + 𝑁, 𝑦ଶ + 𝑁, … , 𝑦௦ + 𝑁) 

 Then 𝑀 = (𝑥ଵ, 𝑥ଶ, … , 𝑥, 𝑦ଵ, 𝑦ଶ, … , 𝑦௦)     

 As M is a finitely generated module, M is Noetherian (See theorem 3.1.4). 

 

Theorem 3.1.9 :  Let 𝑀 be an R-module. Let 𝑀ଵ and  𝑀ଶ be submodules of 𝑀 such that 

  𝑀 =  𝑀ଵ⨁ 𝑀ଶ. If 𝑀ଵ and  𝑀ଶ are Noetherian, then 𝑀 is Noetherian. 

Proof :  We know that 𝑀 =  𝑀ଵ⨁ 𝑀ଶ will imply 𝑀ଵ ≅ 
ெெమ and 𝑀ଶ ≅ 

ெெభ (See theorem 3.1.6). 
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 Now, 𝑀ଵ is Noetherian and 𝑀ଵ ≅ 
ெெమ .  

 Hence, by theorem 3.1.7, 
ெெమ is Noetherian.  

 As 𝑀ଶ and 
ெெమ both are Noetherian we get 𝑀 is Noetherian (by theorem 3.1.8). 

 

Corollary 3.1.10 : Let 𝑀 be an R-module and let 𝑀ଵ, 𝑀ଶ, … , 𝑀 be Noetherian submodules 

of 𝑀 such that  

     𝑀 = 𝑀ଵ ⊕ 𝑀ଶ ⊕ … ⊕ 𝑀 

 Then, 𝑀 is Noetherian. 

Proof :  The result is true for 𝑛 = 2 by theorem 3.1.9.  

 [Hence by induction on 𝑛, we get, if 𝑀 = 𝑀ଵ ⊕ 𝑀ଶ ⊕ … ⊕ 𝑀 then 𝑀 is Noetherian 

when each 𝑀 is a Noetherian module]. 

 Let the result be true for all 𝑘 ≤ 𝑛.  

 Then [𝑀ଵ ⊕ 𝑀ଶ ⊕ … ⊕ 𝑀ିଵ] = 𝑁 is Noetherian module.  

 But in this case 𝑀 = 𝑁 ⊕ 𝑀.  

 As 𝑁 and 𝑀 both are noertherian, we get 𝑀 is Noetherian. 

 

3.2 Artinian Module :   

Definition 3.2.1 : An R-module 𝑀 is called Artinian if for every decreasing sequence of      

R-submodules of 𝑀 

       𝑀ଵ ⊇ 𝑀ଶ ⊇ ⋯ ⊇ ⋯  

 there exists a positive integer 𝑛 such that 𝑀 = 𝑀ାଵ = ⋯. 

 

Remark 3.2.2 : If 𝑀 is Artinian module, we say that descending chain condition (dcc) for 

submodules hold in 𝑀 or M has dcc. 

 

Example 3.2.3 : Any finite dimensional vector space over the field 𝐹 is an Artinian module. 

 

Remark 3.2.4 : Any finite dimensional vector space over the filed 𝐹 is both Noetherian 

and Artinian module. But 𝑍 as Z-module is a Noetherian module which is not Artinian 

as the decreasing sequence  
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      (𝑛) ⊃ (𝑛ଶ) ⊃ ⋯ 

 is an infinite properly decreasing sequence in 𝑍.  

 Now we only mention the characterizing properties of Artinian modules, the proof being 

similar to the proof of theorem 3.1.4. 

 

Theorem 3.2.5 : Let 𝑀 be an R-module. Following statements are equivalent. 

 (i)  𝑀 is Artinian. 

 (ii) Every submodules of 𝑀 is finitely generated. 

 (iii) Every non-empty set 𝒦 of submodules of 𝑀 has a minimal element. 

 

Exercise : Show that every submodule and every homomorphic image of an Artinian module 

is Artinian. 

 [Hint : See 3.1, theorem 3.1.5 and theorem 3.1.7]. 

•––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––• 


