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Preface

This book in the form of "Notes of Algebra-1" is a natural outgrowth of the lectures
delivered for M. Sc. Part-l students of Shivaji University. The primary purpose of this
book is to facilitate the post graduate education in Algebra. The topics in the book will
cover the syllabus of Algebra-I in detail for M. Sc. (Part-l) external students. For the
basic ideas in Group theory and Ring theory students are advised to read in detail the
other text books of Algebra.

First chapter deals with Group theory and it covers the following articles 1)
Isomorphism theorems, 2) Soluable groups, 3) Series of Groups, 4) Sylow theorems.

The second Chapter is on Ring theory and it especially deals with polynomial
rings.

In the third chapter we discuss Module theory, where modules are the
generalization of vector spaces which students have studied in their B. Sc. course.
The list of the articles in this chapter is as follows.

1) Modules 2) Sum and direct sum of submodules 3) Noetherian and Artenian
Modules.

We owe a deep sense of gratitude to the Vice-Chancellor Dr. N. J. Pawar who has
given impetus to go ahead with ambitious projects like the present one. Dr. L. N. Katkar,
Head, Department of Mathematics, Shivaji University has to be profusely thanked for
the ovation he has poured to prepare the SIM on Algebra. We also thank the Director
of Distance Education Mode Mrs. Cima Yeole and Deputy Director Shri. S. S. Patil for
their help and keen interest in completion of the SIM.

Prof. S. R. Bhosale
Chairman BOS in Mathematics
Shivaji University, Kolhapur-416004.
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CHAPTER | - GROUPS

Unit 1 : | somorphism theorems:

1.1 Basic definitions and results

1.2 Isomorphism Theorems

1.1 Basic Definitions and Results:
Definition 1.1.1: A group (G, *) isaset G together with a binary operation = defined on G,
satisfying the following axioms.
(i) ax(x*xc)=(axb)*c
(i) Thereexistsanelemente € G suchthate xa =a = a xe.
(iii) Foreacha € G, thereisanelementa’ € G suchthata*a' =e = a’ *a.
forala,b €G.
The element e is called an identity element for = in G and the element a’ is called
the inverse of a with respectto = in G.

Generaly, weuse ‘-’ for abinary operation in agroup G and x - y isdenoted by xy simply.

Definition 1.1.2: A group G isabelian if its binary operation * is commutative.
i.e ab = ba forala, b €G

Definition 1.1.3: Let H be a subset of agroup G. If H is itself a group under the induced
binary operation defined on G, then H isasub group of G. We denotethisby H < G.
G isthe improper subgroup of G. All other subgroups of G are proper subgroups. Also {e}

isthetrivial subgroup of G. All other subgroups are non trivial.
Definition 1.1.4: Let G beagroup and let a € G. Then the subgroup H = {a™ /n € Z} of G
is called the cyclic subgroup of G generated by a and it isdenoted by < a >.

(here a®* =a-a- ... a ntimes)

Definition 1.1.5: An element a of group G generates G (or a is generator for G)
if<a>=4¢G.

Algebra Page No. 1



A group G iscyclicif thereissome element ain G that generates G.

Definition 1.1.6: A permutation of a set A is a function from A into A that is both one-one

and onto.

Definition 1.1.7: If Aisafiniteset {1, 2,...,n}, then the group of all permutations of A isthe
symmetric group of n letters and isdenoted by S,,. [ Notethat |S,,| =n!].

Definition 1.1.8: The subgroup of S, consisting of even permutations of n letters is the

|
alternating group A,, of n letters. [Note that, |[A,| = %]

Definition 1.1.9: Let G; and G, be any groups. A mapping ¢ : G; — G, isahomomorphism
if
d(xy) = p(x) - p(¥) foralx,y € G,
An isomorphism of agroup G, with agroup G, is aone to one homomorphism of

G, onto G,.

Definition 1.1.10: Let H and K be subgroups of agroup G. Thejoin H v K of H and K isthe
intersection of all subgroups of G containing HK = {hk / h € H, k € K}.
H Vv K isthe smallest subgroup of G containing both H and K.

Definition 1.1.11: Let H and K be subgroups of agroup G. G istheinterna direct product of
the subgroups H and K if the mapping ¢ : H X K — G defined by ¢(h,k) = h-k isan
isomorphism.

In this case any g € G can be uniquely writtenas g =h-k, h€ H and k € K. We

can generalize this definition for any finite n.

Definition 1.1.12: Let G begroup and let a; € G, fori € I (I isan indexing set). The smallest
subgroup of G containing {a; /i € I} is the subgroup generated by {a; /i € I}. If this
subgroup isall of G, thenwesay {a; /i € I} generates G and a;'s are the generators of G.

If there exists afinite set {a; / i € I} that generates G, then we say G isfinitely generated.
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Definition 1.1.13: Let H be subgroup of G and let a € G. The left coset aH of H is the set
{ah / h € H}. Theright coset Ha is similarly defined.

Definition 1.1.14: Let H be subgroup of group G. The number of left cosetsof H in G isthe

index of H in G and isdenoted by (G : H)

If G isfinite then (G : H) isfiniteand (G: H) = % .

Definition 1.1.15: A subgroup H of group G is anormal subgroup of G if g~*Hg = H for all
g € G. Wedenotethishy H 2 G.
Obvioudly, H isnormal iff ghg™' € H forall g € Gand h € H.

Definition 1.1.16: Two subgroups H and K of a group G are conjugate of each other if
H =g 'Kg, forsomeg € G.

Definition 1.1.17: If N isanormal subgroup of agroup G, the group of right/left cosets of

N under induced operation is the factor (quotient) group of ¢ modulo N and is denoted

G
by;.

Definition 1.1.18: A group G issimpleif it has no proper, nontrivial normal subgroups.
i.e.if H < G theneither H = {e} or H = G.

Definition 1.1.19 : An element aba™b~t inagroup G (a,b € G) is caled a commutator of

aandbingG.

Definition 1.1.20 : The kernel of a homomorphism ¢ of agroup G into agroup G' is the set
of al elements of G mapped onto the identity element of G’ by ¢. This is denoted by
ker ¢.

Thus, ker ¢ ={x € G/p(x) =e'}.

Definition 1.1.21: Let G beagroup. S isany non empty subset of G. The normalizer of Sin G

istheset N[S] = {x € G/xSx1 = S}.
The normalizer of {a} is denoted by N[a].

Algebra Page No. 3



Definition 1.1.22: Let G beagroup and a € G. The set C(a) = {xax~1/x € G} is caled the

conjugateof a inG.

Theorem 1.1.23: If H and K are subgroup of agroup G, then

_|H|- K]
|H N K|

|HK]
Proof: Let|H|=r,|K|=sand|HNK]|=t.
HK ={h-k/ he€ Hand k € K}
Then |HK|<|H|-|K|=r"s
(i) Let  hyk, = hyk, forsomeh,h, € Handk,, k, € K.
Let x=hy'hy =kykit
Then x=h'h;, = xe€eHand x=kkj! = x€K.
Thusx € H N K and further
h, = h;x™t and k, = xk,
Thus h.k; = h,k, = 3 x € HNnK suchthat h, = hyx tand k, = xk;.
(i) Suppose3 y € H N K such that
hy = hyy™! and k; = vk, for someh,h; € H and k k; € K.
But then hsks = hyy™! - yky = hyk;.
Thusgiveny € HN K, hyy~! and yk, in HK will produce the element h, k; .
From (1) and (2), we get that there exists a one-one onto correspondence between the
repeated elements in HK and the elements of H N K. Thus any element hk € HK can be
represented in theform of h;k; for h; € Hand k; € K forali, 1 <i<'t.

Hence

|H| - K|

|HK| =
|H N K|

1.2 Isomorphism Theorems:
Theorem 1.2.1: A group G istheinternal direct product of subgroups H and K if and only
if
() G=HVK
(i) hk = kh forall h € Hand k € K.
(i) HN K = {e}
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Proof : Only if part :
Let G beinternal direct product of H and K. Hence ¢p: H X K — G defined by

d(h k) = hk
is an isomorphism.
Define
H={(he)/h € H} and K ={(e, k)/k € K}.
Then H<HXK and K <H XK.
Further HVK=HxK; Hn K=1{(ee)}
(h,e)eHand(e,k)eK =  (he)(e,k) = (hk)
and (e k)(h,e) = (h k).
Hence,  (h, e)(e k) = (e, k)(h,e).
Therefore we get
() HVK=HXK
(i) (h,e)(e k) = (e, k)(h,e), forall (h,e) € Hand (e, k) € K.
(iii) H n K = {(e,e)}
As¢ : Hx K — G isanisomorphismweget ¢(H) = H and ¢(K) = K and
¢(H X K) = G. Hence we get
() G = HVK.
(i) hk=kh  foralheH andk € K.
(iii) HN K = {e}
If part :
Define ¢ : HX K — G by
d(hk) = h.k
To provethat ¢ isan isomorphism.
(i) ¢ isawell defined map.
(hy, k1) = (ha,ky) = hy = hy and ky = k;
= hik; = hyk; = ¢(hy, k1) = p(hy, k)
(i) ¢ isoneone.
Let ¢(hy, k) = ¢p(hy, ky)

Then h1 kl = hzkz
andhence  hy;' hy =k, kit
But h;'h, €H and kykileKk

andhence h;'h e HNK={e} and ky,ki'€ HNnK = {e}.

Algebra
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Thus h;'h, =e and k, k! =e,provingthat h, = h, andk; = k,.
Hence (hy, k1) = (hy, k)
This shows that ¢ is one-one.
(iii) ¢ isonto.
Let g € G. Ashk =kh foral h € H and k € K. We get HK is a subgroup of G and
hence HV K = HK. But by (i) HvV K = G. Therefore G = HK. Thus g € G can be
expressed as g = hk forsomeh € H and k € K. Andweget ¢(h, k) = g.
This shows that ¢ is onto.
(iv) ¢ isahomomorphism.
dl(hy, k) (hy, k)] = p(hihy, kiky)
= hih; kik,
= hy [ k1ha] Ky ... by (2)
= (hy. kq) (hy. k3)
= ¢(hy, ki) dp(hy, k3)

From (i), (ii), (iii) and (iv), we get ¢ isan isomorphism. Hence G = H X K.

Theorem 1.2.2: Let N be anormal subgroup of G.
Thenthemap f : G — % defined by

f(g) =Ny, forg e G
is an onto homomorphism.

Proof : f isobviously onto.

Now f(g192) = Ng,g, = (Ngl)(Ngz) = f(g91) - f(g2) foral g, g, €G
Shows that f is a homomorphism.

Hence f is an onto homomorphism.

Remark : Thismap f is called natural or canonical homomorphism.
Theorem 1.2.3: Let G and G’ beany groups. For any homomorphism ¢ : G — G', kernel of
¢ isanormal subgroup of G.
Proof :
() ker¢p={xeG|p(x)=e'}. Ase € ker¢; ker¢ isnon empty set.
(i) Letx,y € ker ¢.
pxy) =)0 ¢ is homomorphism.
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Thus ¢(xy) =e'.
Hence x.y € ker ¢.
(iii) Letx € ker ¢. Thenp(x) = €'.
Asp(x™) = [p(x)]™ = [e']7! = €' showsthat x~! € ker ¢.
From (i), (ii) and (iii) we get ker¢ isasubgroup of G.
(iv) Letn e ker ¢ and g € G. Then
P(g7'ng) = ¢(g™") p() ¢(9)
=[] - - p(9)
= e’
Hence g lng € kerg, forall g € Gandn € N.
Thus shows that ker¢ isanormal subgroup of G.

Theorem 1.2.4: Let G and G’ begroups. ¢ : G — G' isahomomorphism.
() H<G = ¢H)<GC
(i) H2 G = ¢H)2G
(i) K <G = ¢ Y(K)ZG
(iv) K26 = ¢ Y(K)=2G

Proof : Proof is obvious and hence omitted.

e First Isomorphism Theorem :
Theorem 1.2.5: Every homomorphic image of agroup isisomorphic with its suitable
guotient group.

OR Let G and G’ begroupsand let ¢p: G — G’ be an onto homomorphism.

Then G' =

kerg
Proof : Let ¢: G — G' be onto homomorphism. Then G’ = ¢(G) = {¢p(x)/x € G}.
Let N = ker¢g. Then N 2 G (Seer theorem 0.4).

Lety: G — % be canonical mapping. Then i is an onto homomorphism. (See theorem

1.2.2).

Definey : % — G' = ¢(G) by

Algebra Page No. 7



v (Ng) = o(9) .

Clam1: ¢ iswell defined map.
Let Ny, = Ny,

This shows that y iswell defined.

N,

91:N

g2

O

forge G

forsomeg,, g, €G

G197 EN

g1 95" € ker¢

¢ (g197") =¢

¢ (91) - d(gz") =¢
¢ (g91) - [p(g)] "t =¢
¢ (g1) = ¢(g2)

= v (Ng,) =v (Ng,)

Claim 2 : y isahomomorphism.

V(Ng1

) Ngz) = V(NQLQZ)

= ¢(91 92)

= ¢(91) $(g2)

= V(Ngl) ' V(Ngz)

G
forany Ny, Ny, € Y

This shows that y is a homomorphism.

Clam3:

y isonto.

: , : G
Let y € G'. ¢ being onto, there exists x € G such that ¢(x) = y. For thisx € G, N, € 5

andy(N,) = ¢(x) = y. Thisshowsthat y is onto.

Clam4:

y isone-one.

Lety(N,) =y(N,) forsomex,y € G

y(N,) =y(N,)

Thus y(N,) = y(Ny)

Hence y isone-one.

Algebra

=

A A

¢(x) = ¢(¥)
¢ ) [N =¢
) py ) =¢

¢y H=¢
xy~ 1 € kerp =N
Ny =N,

N, = N,.
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~

From claims (i) to (iv) it follows that y is an isomorphism and hence kerd

Diagrammatically we represent the theorem as follows.

G——> G' = ¢(6) g —> ¢
') '
Y 14
& N
N = kerg (N = ker¢)

e Second Isomorphism Theorem :

14

Theorem 1.2.6: H is a subgroup of group G and N is a normal subgroup of agroup G. Then

HN _ _H_
N ~  HNN
Proof : H<G and N3G = HN <G

Futhr n N <HN and N<=G = N S HN

Hence PjV—Nisdefined.
H . .
HNN<H = — isdefined.
HNN

Define¢ : HN QUL by

HNN
¢(hn)=(HNN) h forhe Handn € N
Clam1: ¢ iswell defined.
Let h,n, = hyn, for hy,h, € Handn,,n, € N.
hyn, = hyn, =  hy'h; =n,n;t

h;'h, € Handn,n;! € N.
Henceh;' h; =n,n;! =  hy;'hy€HNN
= (HNN)h; =(HNN) h,
= ¢ (ny) = ¢ (hyny)
This shows that ¢ iswell defined.

Clam?2: ¢ isahomomorphism.

¢ [(hyny)(hyn,)] . hy,h, € Handny,n, €N
= d) [h'l (nlhz) le] . N | G - hN = Nh
= d) [h'l (h2n3) le] Hencen1h2 = h2n3 fOI’ wmen3 € N
= ¢ [(h1hy)(n3ny)]

Algebra
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= (HNN) hyh,

= [(H N N) hy] [(H N N) h,]

= ¢ (hyny) ¢ (hyny)

This shows that ¢ isahomomorphism.

Clam3: ¢ isonto.
Let (HNN)h € —— Thenh € H.
HNN

AsheH = h-e€HN and ¢(he)=(HNN)h.
This shows that ¢ is onto.
From clam 1, clam 2 and clam 3, ¢ is an onto homomorphism. Hence by 1st

isomorphism theorem,
HN H

~

kerg HNN

e

Now,
ker¢p = {hn € HN / ¢(hn) = (H N N)}
={hmeHN / (HNN)h=(HnNN)}
={hme€HN/ he (HNN)}
=N ..w heHNN = heN
= h-neN forheHandn€eN

Thus ker¢p =N ... (2
From (1) and (2) we get

AN _H

N —  HNN

e Third Isomorphism Theorem :

Theorem 1.2.7: Let H and K be normal subgroups of agroup G with K < H. Then
6 ~ G/K
H =~ HJ/K
Proof : Let H and K arenormal in G and K < H. Therefore K isanormal subgroup of H.
Thus< , £ 2 are all defined.
H'K'K

U 1.4
Defmegb.G—>H/Kby

d(g) = (g) - (Ky) foreach g € G.

Algebra Page No. 10



Clam1: ¢ iswell defined.

91 =92 = Kg1 = ng

(@),
d ¢ (g1) = ¢ (g2)
Hence ¢ iswell defined.

Clam?2: ¢ ishomomorphism..

Letg,, 9, €G.

$(91 92) = (g) Ky, g,
- (%) Ky, K,

&) % HE) %0}

=¢(g1) * ¢(g2)

This shows that ¢ is homomorphism.

Clam3: ¢ isonto.

Let (%) ‘K, € (G/—K) .Thena € G. Forthisa € G weget ¢p(a) = (

H/K

Therefore ¢ is onto.

From clam 1, clam 2 and clam 3, ¢ is an onto homomorphism.

isomorphism theorem,

G
ker¢

)
~
=

IR

T
~
=

Now,

kerp ={x € G / ¢(x) = (H/K)}

={xedG / (H/K)(K) = (H/K)}

={xeG/ K, € (H/K)}
={x€eG/ x€H}
Thus ker¢p =H
From (1) and (2) we get
G o G/K

H =~ HJ/K

Algebra

) Ka.

Hence by 1st

L

)
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e ZassenhausLemma :

Theorem 1.2.8: Let H and K be subgroups of group G. H* and K* be normal subgroups of H

and K respecively. Then

(i)
(i)
(iii)
Proof :
Q)
(i)
(iii)

(iv)

Clam1:
Let
Then

Hence h;1h; = x,x;?!

H*(H n K*) isanormal subgroup of H*(H N K).
K*(H* n K) isanormal subgroup of K*(H N K).

H*(HNK) _ K*(HNK) _ HNnkK

H*(HNK*) ~— K*(H*NK) = (H*NK)-(K* N H)

HNK<H, H" 2H = H*-(HNK)<H.
HNK<K, K* <K = K*-(HNnK) <K.
HNK<SHandH" NK <K
Hence H'NK<SHNK.
Similarly, K*NnH<HNK.

Hence (H*NK)-(K*nH) 2 (HNK).

Therefore——— % s defined.
(H*NnK)(K*NH)

Put L=(H"NK):-(K*nH). ThusL < (HNK).

Define ¢ : H*(H N K) — 0K
¢(hx) = Lx
whereh € H* and x € H N K.
¢ iswell defined.
hyx; = hyx, for hy, h, e H*andx € HNK.
h3th, = xyx;t for h;'h, € H* and x,x; € HN K.

h;'h, e H*n (HNK)
h;'h, eH*NK < L
hy;'h, €L

xXx L EL

Ly, = Ly,

d @ (hix1) = ¢p(hyxy)

L

This shows that ¢ isawell defined map.

Clam2:

Algebra

¢ is homomorphism.
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Let hyx;, hox, e H*(HNK). Thenh,,h, € H*andx;,x, € HN K.
AsH* @ Handx; € Hwegetx;H* = H*x,. Thusx; h, € x;H* impliesx,h, € H*x;.

Hence x; h, = h;x, for some h; € H*. Hence we get

& [(hyx1) (hox2)] = ¢ [hy(x1h2)x,] ... By associativity.
= ¢ [hy(h3x1)x;] o X1hy = h3x;.
= ¢ [(hy h3) (%1 x2)] ... By associativity.
= Ly, x, ... By definition of ¢.
= Ly, +Ly,
= ¢ (hyxy) Pp(hax;)

This shows that ¢ is a homomorphism.

Clam3: ¢ isonto.
Let L, eHLLK.ThenernK.
Hence,e-x e H*- (HN K) and ¢ (ex) = L,. Thisshowsthat ¢ is onto.
Thus, from claim 1, claim 2 and claim 3 we get HLLK Is a homomorphic image of
H*- (HNK).

Hence, by first isomorphism theorem,

HNK H*-(HNK)

=~ Q)

L ker¢

Now,
ker¢p ={hx e H* - (HNK)/¢p(hx) = L}

={hx€eH -(HNK)/L, =L}

={hx€eH -(HNK)/x € L}

={hx /heH andx € (HNK) N L}

={hx /h € H and x € L}

={hx /hx € H" - L}

={hx /hx € H* - (H N K*)}

=H*-(HNK") . (2
[H'L=H"-(H'nK)-(HNK)=H"-(HNK*) as H*'nK < H"* ]
From (1) and (2), we get,

HNK __ H'(HNK)
L ~—  H*~(HNK®

ker¢ being anormal subgroup of H* - (H N K*), we get
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H*-(HNK*)< H*-(HNK)
(v) Asin (iv) we can prove

HNK _ K'(HNK)

L ~— K*~(H*NnK)

and K* - (H* n K) isanormal subgroup of K* - (H N K).

This completes the proof of Zassenhaus Lemma.

Theorem 1.2.9: Let G beagroup.
(i) For any non empty subset S of G, N[S] isasubgroup of G.
Further, for any subgroup H of G.
(i) N[H] isthelargest subgroup of G inwhich H isnormal.
(i) If K isasubgroup of N[H], then H isanormal subgroup of KH.
Proof :
(i) N[S] ={x € G/xSx™1 =5}. AseSe ! = Swegete € N[S].
Letx,y € N[S]
Gy S 7T =(Ty) S ()
=x 'Sy Hx
=x"1S5«x
=S
This showsthat x~1y € N[S] whenever x,y € N[S].
Hence N[S] is a subgroup of G.
(ii) Let H be a subgroup of G.
H < N[H], ashHh'=H forany h € H
Let H < K whereK isany subgroup of G. ThenkHk™* = H forany k € K.
HenceK € N[H].
Now for any g € N[H] weget gHg™! = H. Thisshowsthat H 2 N[H] andif H < K for
someK < G,thenK € N[H].
Hence N [H] isthe largest subgroup of G in which H isnormal.
(iii) K < N[H]. Hencefor al k € K, kHk™! = H. Hence HK = KH. This showsthat HK isa
subgroup of G.
H< N[H] andK < N[H] = HK < N[H]
H<N[H] = H<KH as H<HK
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Theorem 1.2.10: G isagroup and H isasubgroup of G suchthat (G: H) = 2. ThenH isa
normal subgroup of G.
Proof : Selectany g € G suchthat g € H.
Then, G=HUHg and HnNHg=¢.
Similarly, G=HUgH and HnNgH = ¢.
Hence, thisispossibleiff Hg = gH. Thusforany g ¢ H weget Hg = gH.
But, asfor any h € H, we have, Hh = hH. It followsthat Hg = gH, foreach g € G.

Hence, H < G.

Theorem 1.2.11: Let G be agroup. Then following statements are true.
(i)  Theset of conjugate classes of G isapartition of G.
(i) le(@l=[G:N(a)].
(iii) If G isfinite, |G| = X|G: N(a)|, a isrunning over exactly one element from each
conjugate class.

Proof :

(i) Definearelation'~'on G by a ~ b iff b = xax™1. Then'~'is an equivalence relation
on G and the equivalence class containing a isc(a). Hence, G = U C(a) (digoint
union). Hence, {C(a) / a € G} formsapartition of G.

(i) Toprovelc(a)| = (G:N(a)) .

Let R denote the set of all right cosets of N[a] inG.
Defineamap f : C(a) — R by
f(gag™) = N(a)g
(i) f iswell defined (obvioudly true.)
(i) f isone-one.
Leae(Ny)x= (N vy, forsomex,y € G
(NJx= Ny = xy '€N(a)

=  (y Dalxy D) 't=a

= xy la=axy™?!

= ylay=x"lax

Thus, f(x7'ax)=f@ 'ay)

= xlax = ylay

Hence, f isone-one.
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(iii) f isonto.
Let (N,)g € R. Thenfor thisg € G, g tag € C(a) and f(g~tag) = (N,)g. This
showsthat f isonto.
From (i), (ii) and (iii) we get 3 amapping f : C(a) — R which is both one-one and
onto. Hence [c(a)| = |R| = [G: N(a)] .

(iii) Let G befinite. AsG = | JC(a) (digoint union) we get |G|=>"|C(a)|=>Y(G:N(a))

a

where aruns over exactly one element from each conjugate class.
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Unit 2 : Solvable Groups:

2.1 Derived subgroup of agroup G.

2.2 Isomorphism Theorems.

2.1 Derived subgroup of agroup G :

Definition 2.1.1: Let G beagroup. DefineU = {aba™'hb~' / a,b € G}.
The subgroup generated by U i.e. (U) is called the derived subgroup of G and it is denoted
by G'.

Remarks2.1.2:
(i) U isthe set of commutatorsin G.
(i) xed = X =y, ...V, Wherenisafiniteinteger and y; € U for each i.
(iii) G isalso caled commutator subgroup of G.
(iv) G isabdianiff G' = {e}.

Theorem 2.1.3: Let G beagroup and let G' be the derived subgroup of G. Then
() G <G
(ii) Gﬁ i abelian.
(i) N<G. % is abelian iff G’ < N.
Proof :
(1) By definition, G isasubgroup of G only to prove G' isnormal in G.
LetgeGandx €G'.
Casel: x€G andx =aba bt
Then g lxg = g '(aba b 1)g
= (97'ag) (g7'bg) (g7'a™'g) (g7'b71g)
= (g97'ag) (g7*bg) (g7'ag)™' (g7 'bg)~!
This showsthat gxg~! € U and hence gxg~! € G'.
Casell : Letx € G and x = y,y, ...y, where nis finite and y; € U for each i and hence

g~ xg, being the finite product of elementsof U. isin G'.

Thus, for g € G and x € G' weget gxg~! € G’ and hence G’ isanormal subgroup of G.
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@26 <6 = %isdefined.
To prove that% is abelian.
G
Let i, Gy € . Thena,b € G.
[(G)) (Gp)] [(G) (G =1[G] [Gpal™?t ... by the definition of - ing.
= [Ggp] [G('ba)-1]

= [Gap] [thl_lb_l]

= [Gc,zba-lb-l]

=G’ asaba b7l € G’
= identity element of %
But thisshowsthat  (G,) (G}) = (G}) (Gg) -

Hence GE is abelian.

!

©)

Only if part :
% isabdian = (N)(Ny) = (N,)(Ny) fordl a,b €G.
Hence Ngp = Ny, fora,b € G
= (Nab)(Nba)_l =N for a,beaG
= (Nap)(Npay-1) = N fora,b € G
= (Nab)(Na—lb—l) =N fOI’ a,b € G
= Ngpa-1p-r =N fora,b € G
= aba b~ 'eN fora,b € G

Thisshowsthat U € N. By the definition of subgroups generated by U, we get (U) € N.
ThereforeG' < N.

If part :
Let N 2 G and G' < N. To prove that %isabelian.

AsG' € N wegetwegetaba bt € N fordla,b € G.
ThUS N(aba—lb—l) = N

ie. (Nap)(Npay-1) =N
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e (N[NNI =N
e (Ng)(Np) = (Np)(Ng)

Thus, for al a,b € G, we have (N,)(N,) = (N,)(N,) and hence %is abelian.

Example 2.1.4 : For any n, the derived subgroup S;, of S,, iISA,,.
Solution :
Casel: n=1,2

Forn=1,2weknow S;, = {e} and A,, = {e}. Hence §,, = A4,
Casell: n>2

Weknow f = (1,2) e S,andg = (1,2,3) € S,,.

Hence, fgf lg les;, v n.
Thus, (12)(123)(21)(321)€eSs, for each n.
But (12)(123)(21)(3B21) =(123)

Hence, (123) €s,.

As S}, isnormal subgroup of S,, for each n (See theorem 1.3), we get g~1xg € S, for any
g € S, andx € Sj,.
Hence, in particular
g(123)g7tes, ieg€A,
As g(123)gt=g foreachg € A,, weget 4, € S;,.
Now fgf~1g~!isan even permutation forany f,g € S,,, weget S, € A,,.

By combining both the inclusions, we get S, = A,, and this compl etes the solution.

Example2.1.5: (i) |G| =p (pisprime) = G' ={e}.
(i) |G| = p? (pisprime) = G’ = {e}.
Solution :
() |G| =p = Gisabdian.
Selectany a € G suchthat a # e.
Then (a) isasubgroup of G and O[(a)] | O[G].
Hence O[{(a)] | p.
Asa # e.Weget O[{(a)] = p.i.e.{(a) =G.
Thus G isacyclic and hence abelian.
= G' ={e}.
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(i) |G] = p?> = Gisabelian. (See ex. 2.16, result 4)
= G' ={e}.

2.2 Solvable Groups:
Definition 2.2.1: Let G be any group. For any positive integer n, we define the nt" derived
subgroup of G, written as G™ asfollows::
¢V =6,6®=6c0,.,6m=[crD] .

where G’ denotes the derived subgroup of G.

Definition 2.2.2: A group G is said to be solvable, if there exists some positive integer n such

that G™ = {e}.

Example 2.2.3:
(i) Any abelian group G issolvableas GV = G’ = {e}
(i) Letp beaprime number. The groups of order p, p? are solvable (See example 1.5)
(iii) Any finite group G with |G| <5 is solvable. (Since any group G with |G| <5 is
abelian).
(iv) S;issolvable.
S3=({(DHA2)(13)(23)(123)(132)}, °)
Then, S; = A3 = ({(1), (123), (132)}, o) ... Seeexample2.1.4
As (123)(132)(123)t(132)1
=(123)(132)(321)(231)
= (1)
Weget, A5 = {e} <« anidentity element of in S;.
Hence, 53(2) = Agl) = {e}. Thisshowsthat S; is solvable.
(v) S, isnotsolvableforn > 5.
We need the following result.
Result: If N 2 S, (n = 5) then N contains each 3-cycles.
As (S,)" isanormal subgroup of S,,. (S,)" will contain all the 3-cyclesin S,,.
Again (S,)" = (5,)@® is anormal subgroup of (S,)’ and (S,,)’ contains al the 3-cycles

inS,. Hence, (S,,)® must contain each 3-cyclesin S,,.
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Continuing this process we will get that (S,,)®) contains each 3-cycle in S,, and hence 3
no k such that (S,,)®) = {e} .

Therefore S,, isnot solvablefor n > 5.

Theorem 2.2.4 . Every subgroup of a solvable group is solvable.

Proof : Let G be a solvable group and H < G. Then by the definition of the derived
subgroup, we get H' < G'. In general H® < ¢® for any positive integer k. As G is
solvable, 3 a positive integer n such that G™ = {e}. Hence

H™ < ¢™ = (¢} =  H® = {e}. ThusH is solvable.
Remark : Converse of theorem 2.2.4 need not be true.

Theorem 2.2.5: Homomorphic image of a solvable group is solvable.

Proof : Let G, and G, be any two groups such that G, is solvable and G, is a homomorphic
image of G,. Hence 3 a positive integer k such that Gl(k) = {e;} Where e, istheidentity in
G,.
As G, isahomomorphic image of G, there exists an onto homomorphism f: G; — G,.
ThusG, = f(G,) ={f(x) / x € G}

Now f(aba™*b™") = f(a)f(D)[f (@] [f(B)]™ fora,b € G,
Define
U, =f{aba b1/ a,b € G} and
U, ={xyx 1yl / x,y € G,}.
Then U, = {f(S)fOLF IO /st € Gy} as G, = f(Gy)
={f(sts™1t™1) /s, t € G;} ... since f isahomomorphism.
= f(Uy)

But then we get (G;) = G;.

Continuing in this way we get

£(617) = [F(GI™ ... for any positive integer n.
AsG™ = (e} we get

(6 = [F(61®
= f({ed) = [f(GIW
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= {e}=6," where e, is an identity element in G,.
This showsthat G, is solvable.

Corollary 2.2.6 : Any quotient group% of asolvable group G is solvable.

Proof : Asisahomomorphic image of G under the natural / canonical mapping f : G — %

defined by f(g) = Ng, theresult follows by theorem 2.5.

Remark 2.2.7 : Converse of the corollary 2.2.6 need not be true.
For this consider the group S,, for n > 5. S, isnot solvable (See example 2.3 (5)).

A, < S, and hence j—” is defined. As =2, we geti’;—" is abelian and hence solvable.

n

Sn
An

Thus the quotient group Z—" Issolvable but S,, isnot solvable.
n

Theorem 2.2.8: LetN < G. If both N and%aresolvable, then G is solvable.

Proof : Nissolvable = 3 apositiveinteger k such that N® = {e}.

% is solvable = 3 apositiveinteger [ such that [%](D = {N}.
(N isthe identity element of )
Now (%), = thegroup generated by {N,N,N_,-1Ny,-1 / a,b € G}
= thegroup generated by {N,;,,-1,-1 / a,b € G} .. (D
Now G'2 G and N = G will imply G'N isanormal subgroup of Gand N < G'N. Hence
the quotient group G}:’N is defined.
GI:]N — (N, /x € GN = NG} )

From (1) and (2), w get,

&) =5
N/ N
Continuing in this way we get

(2)(71) _ cMN

: for any positive integer n.

N N
\® cOy N-N
Hence, () =5 =5 =W
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But then G® € N and hence [G“)](k) c N® = {e} implies G+ = {e},
establishing that G is solvable.

Combining the result of theorem 2.2.4, 2.2.8 and corollary 2.2.7 we get,

Corollary 2.2.9: Let N < G. Gissolvableif and only if both N and % are solvable.

Example2.2.10: A and B are solvable groupsiff A X B issolvable.
Solution : Only if part :
Let A and B be solvable groups.
To provethat A x B issolvable.
We know, the mapping f: A x B — A defined by f(a, b) = a isan onto homomorphism.

Hence, by fundamental theorem of homomorphism.

AXB
kerf

=A

where kerf = {e;} X B, e; denotes the identity element in A.

Thus,
AXB
{e}xB ~
. AXB
AsA issolvable, by theorem 2.2.5, issolvable. D
{e1} x B

Further the mapping g : {e;} X B — B defined by g(e;,b) =b for each b € B is
isomorphism. Hence {e;} X B = B.

As B issolvable, by theorem 2.2.5 we get, {e,} X B isasolvable group. ...(2
AXB
{e1} X B

Asboth {e;} X B and are solvable groups, by theorem 2.2.8, A X B is solvable.

If part :
Let A x B be a solvable group. As the mapping f: A x B — A defined by f(a,b) = a is

an onto homomorphism, we get A is a homomorphic image of a solvable group A X B
and hence A is solvable.

Similarly, we can prove that B is solvable.

Example 2.2.11 : H and K be normal solvable subgroups of group G. Show that HK is
solvable.

Solution : HK isasubgroup of G. By second isomorphism theorem,
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HK H
K HNK

IR

Now, any quotient group of a solvable group being solvable, we get HHW is a solvable.
(Since H is solvable). Now isomorphic image of a solvable group is solvable. Hence %

is solvable. Thus K and % both are solvable will imply HK is solvable. (See theorem

2.2.8).

Definition 2.2.12 : A finite sequence {N,, N;, ..., N,.} of subgroups of a group G is caled a
normal seriesof G if

{e}=Ny< N;<N,<--< N, =G.

Nj

The quotient groups
Ni_4

are called factors of the normal series. (1 <i <r).

For detail discussion of normal series see Unit 3.2.

Theorem 2.2.13: A group G is solvable if and only if G has a normal series with abelian

factors.

Proof : Only f part :
Let G be asolvable group. Hence 3 apositive integer k such that 6% = {e}.

Consider {¢®,c*=1,...,¢W, G}. By theorem 1.6, G is a normal subgroup of G for
eachi, 1 <i < k. Further G(+D < G@, by theorem 1.4 (1).
Hence the sequence {G®), G *=D, .., 6D, G} forms anormal series

{e} — G(k) P G(k_l) G eee g G(l) aG.

®

GC(;i o are abelian groupsfor eachi, 1 < i < k (Seetheorem 1.4 (2)).

Further the factors
Thusif G issolvable, G has anormal series,
{e} = CH qcl-D g...qa6® a¢
with abelian factors.
If part :
Let G has a norma series. {H,, Hy, ..., H,} with H, = {e} and H,, = G and with abelian
factors. Thus

{e}=Hy<H <9H; << H, =G
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Hit1 . . .
and —= isan abelian group with 0 < i < n.

l

Hp

Now T = o is abelian.
= G' € H,, = G"' < (H,_y)'
Hence by transitivity,

G" < (H,_,) iee G@cH,,

Continuing in thisway, we get
GM ¢ Hy_n = Hy = {e}
Hence G(™ = {e}, proving that G is Solvable.

Example 2.2.14 :

(i) InS; we haveanormal series{e} < A; < S5 such j—s that is abelian and such % that is
3

abelian. Hence S5 is solvable.
(ii) Consider thegroup S,. A, < S,. Define
V, ={(1),(1 2)3 4),(1 3)2 4,1 H(2 3}

Then V, < A,.
Consider the sequence {{(1)}, V,, A,, Su}. Wehave{(1)} <V, <4, <S5,
1)
The factors of the normal series are
v, A S
2 24 ond 2%
{e} "'V, Ay
V4- |V4-| 4 V4_ . .
—=—=-=4 = — isabdian.
{e} lfe}l 1 {e}
A A Ay . )
_4=M:E=3 = =2 isabdian.
Vy Va4l 4 Va
Sa| _ 1Sal _ 24 _ — 2 isabdian.
Ay [A4] 12 Ay

(Result used : Gisabelianif |G| < 5).

This shows that S, has a solvable series and hence S, is solvable.

Example2.2.15: Let G be a solvable group. Show that G contains at least one normal,
abelian subgroup H.
Solution :
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Casel : Gisabdian. InthiswetakeH = G.

Casell : G isnon-abelian.

Gissolvable = 3 apositiveinteger k such that G = {e}.

Consider H = &1,

Then {e} = 6® < ¢*~D, Hence [¢ D] = {e}.

= G* D isabelian. (Seeremark 1.2 (iv))
WaG = G@ag6 (See example 1.6)

Do = 6®ag

Continuing in this way we get

H=6*Dag

Thus G contains a normal, abelian subgroup H.

Example2.2.16: Let G be a non-abelian group such that |G| = p3, where p is any prime
number. Show that G’ = Z(G).

Solution : To solve this problem we mainly use the following result.

Let p be aprime.

Result 1:
Result 2:

Result 3:

Result 4 :
Result 5:

Result 6:

|G| =p™ n>0) = Z(G) # {e}.

|Gl =p =  Giscycdlic.
G . . . .
% iscyclic = G isabelian.

Any group of order p? is abelian.
~ is abefian — G'cN.

G isabelian = G' = {e}.

Solution of the problem :

(i) |G]l=p? = Z(G) #{e} = |1Z(G)| # 1.

(i) Gisnon-abedian = Z(G) + G = |Z(G)] # p3.

(i) AsZ(G) <G, 1z@®1]I6]=p*

Hence, |Z(G)| =1, p, p? P>
From (i) and (ii),

Algebra

1Z(&)| =p? orp
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(iv) 1Z2(6)] =

G| _ l6l _ p?
L

z@&l 1z p?

Thus |— = p and henceﬁ isacyclic group. Hence G must be abelian.

Asthisisnot true we get |Z(G)| # p2.
(v) Hence, only possible value of |Z(G)| isp. But in this case

ol == =
zl 1zl p

This shows that ﬁ isan abelian group. But then G' € Z(G).

AsG' < Z(G) weget |G| | |Z(6)| = p As G isnon-abdlian, |G'| # 1.

Thus, |G'| = p = |Z(G)]. Thisin turn showsthat G’ = Z(G).

Exercise o

(i) Show that the groups of order p, p?, pq, , p*q where p and g are distinct primes
are solvable.
(ii) Provethat any group of order pqr is solvable when p, g, r are primesand r > pq.
(iif) Show that a group of order 4p, where p isprimeis solvable.
(iv) State whether the following statements are true or false.
1. Every finite group is solvable.
2. Every finite group of prime order is solvable.
3. S, isasolvable group.
4. G issolvableif G hasanormal series.
5. The property of ‘being a solvable group’ is preserved under isomorphism.

(v) Proveordisprove: S; X S; issolvable.

Theorem 2.2.17: If N 2 G, then the derived subgroup of N isalso anormal subgroup of G.
Proof : N 2 G. N'= derived subgroup of G.

N' =the subgroup generated by the set {n;n,n;n;/ n;,n, € N}.

Letx € N'and g € G. Toprovethat g~xg € N'.

It is enough to provethat g~txg € N, when x = n;n,n;n;?, for somen,,n, € N.

Now, g~ (nynynitnyHg
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= (97'n19) (97'n29) (g7'n1'g) (97'nz"9)

= (97'n19) (97'n29) (g7 'y g) ! (g7 )™
Now, N being a normal subgroup of G, g~1(n;n,nyn;1)g is finite product of the type
aba~'h~1 wherea,b € N.
Hence, g ' (n;n,nyn;1)g € N'.

Hence N' 2 G.

Example2.2.18 : True or false ? Justify.
If every proper subgroup of G is solvable, then G is solvable.
Solution : False. Let G = As.

Assume that As is solvable.

Ss . . s Ss . .
Then=2 isabelian. (Slnce|—5| =2 = =jsabdian).
As As As

Hence, by theorem 2.2.8, S is solvable; which is not true.
Hence, G = A¢ isnot solvable.

Claim : All proper subgroups of A< are solvable.

0(4s) =2 =60=2%-3-5

(i) Asissimple = A doesnot have any subgroup of order 30.

(i) As may contain subgroups of order 2, 22, 3,5, 6 =2-3, 10=2-5, 15=3"5,
20 = 22.5.

All these subgroups of A< are solvable by the following result.

Result : Letp and g be distinct primes. Then any groups of order pq or p?q are solvable.

Example 2.2.19 : Show that the set G of all matrices of the type

1 a b
0 1 ¢ a, b, c €Z;
0 0 1

is non abelian and solvable under the multiplication.
Solution : It iseasy to provethat (G, - ) isagroup.
Asa, b, c€Z3 =10, 1, 2}, |G| = 27 = 33. As any group of order power of a prime,

issolvable, G is solvable.
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Example 2.2.20 : Show that S,, © A, © {e} isanormal seriesin S, for n > 4. Deduce that
S, isnot solvablefor n > 4.

Solution : We know that A, < S, and {e} < 4,. Hence {{e}, A,, S,}formsanormal series
in S,. Let S, be solvable for n > 4. Then subgroup of solvable group being solvable, 4,,
will be a solvable. But A,, is not solvable for > 4 as A4,, issimple for n > 4 and a solvable

group contains non-trivial normal subgroup (See theorem 2.13)

Exercise: Provethat S; x S5 is solvable.

Unit 3: Seriesof A Group
3.1 Subnormal Series, Schreier’s Theorem, Jordan-Holder Theorem
3.2 Norma Series
3.3 Ascending Central Series

3.4 Nilpotent Groups

3.1 Subnormal Series:

Definition 3.1.1: Let G be a group. A subnormal series of a group G is a finite sequence

Hy, Hy, ..., H,, of subgroups of G suchthat H; < H;,, foreachi, 0 <i < nwith H, = {e}
and H, = G.
Remarks:

(i) Every group G has asubnormal serieswith H, = {e} and H; = G.

Hiyq
H;

(it) The groups are called factor groups of the series (0 < i <n —1).

Examples3.1.2:
(i) Inagroup(Z,+), {0} <8Z < 4Z < Z isasubnormal serieswhere
8Z = {0, +8, +16, +24, ..}
47 = {0, +4, +8, +16, +24, ..}
{0}<8Z, 8Z<4Zand4Z < Z.
Hence, the finite sequence {{e}, 8Z,4Z, Z} of subgroups of Z form a subnormal series.

(i) LetG = (a) wherea® = e.
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Then G = {a, a',a? a3 a* a® a®} witha® = e.

Define H = {e,a®} . Then {{e}, H, G} will form asubnormal seriesin G.
(iii) InS3, {(1), A3, S5} will form asubnormal seriesin S;.
(iv) LetG =(a), whereal? =e.

Then S5, ={{e}, (a*),(a?) G}

and S, = {{e},(a®),(a®), G}

will be two subnormal seriesin G.

Definition 3.1.3: A subnormal series {K;} isarefinement of a subnormal series {H,} if
{H;} < {K;} that iseach H; = K; for some .
Example 3.1.4:
(i) Theseriesin Z given by
{(0}<72Z <242 <82 <4Z <7
isarefinement of the series
{0}<72Z<8Z<Z
(ii) Let G = (a) where al? = e.
The subnormal series
{e},(a*),(a®),G
is not arefinement of the series
{e},(a®),(a®),G inG.

Definition 3.1.5: Two subnormal series {H;} and {K;} of the same group G are isomorphic if

L

. i H:
there is a one-one correspondence between the collection of factor groups {f} and

K B
{—”:1} such that the corresponding factor groups are isomorphic.
]

Remark : The two isomorphic normal series must contain the same number of subgroups.

Example3.1.6: LetG = Z;s.
Zis =({0,1,2,3,...,14}, @q5)
< 5 > =thesubgroup generated by 5inZ;;  ={0, 5, 10}
< 3 > =thesubgroup generated by 3inZ;s ={0, 3, 6, 9, 12}

Consider the two subnormal seriesin Z; < given by
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Sl = {{0}, (5); Z15}
and S, ={{0}, (3), Zys5}
The set of factor groupsfor S; is

Zi5  (5)
h= {<5> {0}}
The set of factor groupsfor S, is
Zi5  (3)
h= {<3> {0}}

(3)

Now, ) =7 and 0 =7
Zis 5

and 3 = Zs and ok Zs

We establish one-one, onto correspondence between T; and T, as
Zys (3) (5) Zys
—2 -~ d - —2
G e T T

Then the corresponding factor group being isomorphic we get, the two series S; and S, of
Z,5 areisomorphic.

e Schreler’sTheorem :
Theorem 3.1.7 : Two subnormal series of agroup G have isomorphic refinements.
Proof : Let G beagroup and let
{fe}=Hy<H,<H,<--<H,=G .. (D
and {fe}=Ky, <K, <K, < <Kp=G .. (2
be two subnormal seriesof G.
Define
Hi = H; - (Hiz1 N K;)
As H;< H;.,wegetH,: (Hl-+1 n Kj) isasubgroup of G foreachi, 0 <i<n-1
andeachj, o <j <m.
(i) H; < Hyy, andK; < K;,.1. Hence by Zassenhaus Lemma,
H; - (Hisa NK;) < H; - (Hioq 0 Kjys)
i.e. H;j S H;jiq
(i) Hio=H;- (Hiyq N Kp)
= H; - (Hiz1 n{e})
= H; - {e}
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= H;
(i) Him = Hi - (Heea 0 K
=H;- (Hi;1 N G)
=H; - Hiyq
= Hi1q asH; € Hiiq
From (i), (ii) and (iii), we get a chain containing nm + 1 elements not necessarily distinct
groups which is asfollows.
{e}=Hy=Hoo <Hyy <+ <Hypm=Hyo=H

< H1,1 < < Hl,m = Hz,o = H,

<Hp1p<Hp 1< <Hyym=H,=G )
This chain refines the chain in (1). The set of factor groups of the chain represented in (3)
is

H. .
{ﬂ /1Si£n,1£j£m—1} . (4
L
Similarly, by defining
Kii=K; - (K41 N H;) for0<j<m-1and0<i<n.
We obtain a subnormal chain containing nm + 1 element as follows.
{e} =K, = Koo =Ko1<=<Kon=Kipo=K

S K]_']_ S S Kl,n = KZ,O = Kz

S Km—l,l S Km_l’z S S Km—l,n = Km - G e (5)
Note that the two chains represented in (4) and (5) not necessarily contain distinct groups.
The chain (5) refines the chain (2). The set of factor groups of the chain represented in (5)
IS

K..
{ﬁ/osj'smosmnﬂ} ...(6)

AgainasH; < H;,; and K; < K, by Zassenhaus Lemma,

Hi-(Hipg NKjyq1) ~ Kj- (Kjp1 N Hipy)

Hi-(HH_lﬂKj) - Kj‘(Kj.HﬂHi)

. Hijt1 Kji+1 . .

ie. = = = foro<i<n-—1and 0<j<m-—1.
Hjj Kji
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This isomorphism establishes one to one onto correspondence between the two sets
represented in (4) and (6). Deleting the repeated groups from the chains represented in (3)
and (5) we get subnormal series of distinct groups that are isomorphic refinements of the
subnormal series represented in (1) and (2) respectively.

This establishes that any two subnormal series of a group G have isomorphic
refinements.

Example 3.1.8 : Give the isomorphic refinements of the two subnormal series of (Z, +).
(i) {0} <60Z<20Z<Z
(i) {0} <2452 <49Z < Z
Solution : Define  Hy, = {0}, H,; =60Z, H,=20Z, H;=1Z7
K,={0}, K, =245Z, K,=49Z, Ky=1Z

Define H;; = H; - (Hiy1 N K;) V 0<i<2 0<j<3.
Then,
Hyo = Hy = {0}
Hy, =Hy - (H NK,) = H NK, = 60Z N 245Z
= 29407 (2940 = l.c.m.(60,245))

Hy, = Hy-(HiNK,) =H; NK, = 60ZN49Z = 2940Z

Hyo3 =Hy-(HiNK3) =H;NKz =H; = 60Z

Hio=H;-(H,NKy) =60Z-{0} =60Z

Hi; =H;-(H,NnK;)=60Z-(20Z N 245Z) = 60Z

Hi, =H;-(H,nK,) =60Z-(20ZN49Z) = 60Z

Hi3=H;-(H,NK;) =H;-H,=60Z-20Z =20Z=H,

Hyo = Hy - (H3 N Ky) = Hp - {0} = H, = 20Z

H,, =H,-(H3 NK;) =20ZN245Z =57

H,, =H,-(H;NK;)=H,-K,=20Z-49Z = Z

Hy3=H,-(H3NK3)=H,-Z=1Z

Hence, the refinement of the seriesrepresented in (1) is
{0} =Hoo <Hpy <Hyy<Hoz=H =Hy,

<Hy1<H,;<Hj3z=H=H
<H,, <H,, <H,3=H;

{0} <2940Z <2940Z <60Z<60Z<60Z<20Z<5Z7<Z<Z.
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Deleting the repeated factors, we get,
{0} <2940Z <« 60Z<20Z<5Z < Z.
Thisisrefinement of the series
{0} <60Z <60Z<20Z<Z.
Similarly, defining K; ; = K;(K;4+, N H;), we can obtain the refinement of the series,
{0}=K, <K, <K,<K;=1Z
which is asfollows.
{0} ©2940Z <9807 < 245Z <497 < Z.

Definition 3.1.9: A subnorma series {H;} = {H,, ..., H,} of a group G is a composition
seriesif all the factor groups % aresmple. (Hy = {e} and H,, = G)

i
Remark : Inacomposition series {H;}, H; will be amaximal normal subgroup of H; .

Examples3.1.10:
(i) Consider the group S,, forn > 5.
Theseries {e} < A,, < S,, isacomposition seriesin S,,.

S. S
—=l=2 = -==7
An

A
Here —= =4, and
An

{e}
Now for n = 5, A,, isasimple (as any normal subgroup N # {e} of A,, will contain each

3-cyclein S, and hence N = A,).

An . .
— jsasimple group.

H
ence e}

. o Sn. .
Similarly, Z, being simple we getA—" iIssmple.
n
Hence {e} < 4,, < S,, isacomposition series of S,, forn > 5.
(if) Consider thegroup G = Z;s.

The series {0} < (5) < Z;5 isacomposition seriesin Z; .

{0} < (5) < Z,5 isasubnormal series.

) = 7 = 5) Isasimple group.
{0} {0}
Z15 =~ 7, = L isasimple group.

(5) (5)
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Hence {0} < (5) < Z,5 isacomposition seriesin Z;s.

(iii) Consider thegroup G = (a) where |G| = 6. Hence a® = e.
Define H, = (a3) = {e,a®} and
H, = (a?) = {e,a? a*}.

Then{{e}, H,, G} and {{e}, H,, G} will form two composition seriesinG.

(iv) Z hasno composition series.
L et us assume that 3 a composition series
{0} =Hy<H,<--<H,=7 inZ.
{0}<H, <Z = H,=nZ for some positive integer n.

H .
AsH—1 = nZ ,wemust havenZ issmple.
0

But thisis not true asnZ contains many nontrivial proper normal subgroups. Hence our
assumption iswrong.

Thus Z has no composition series.

e Existence of Composition series:
Theorem 3.1.11: Every finite group G has at |east one composition series.
Proof : If G isasimple group, then {e} < G isacomposition seriesinG.
If G isnot simple group, then G has at least one proper normal subgroup H # {e}.

If H isamaximal normal subgroup then {e} will be maximal subgroup of H.

Hence % and {% are simple subgroups. This shows that {{e}, H,G} will form a

composition seriesin G.

Let H be not maximal in G. It means that there exists a maximal normal subgroup K
suchthat H ¢ K < G. Hence {{e}, H, K, G} will form acomposition series.

If H is maxima in G, but {e} is not maximal in H then find a maximal normal
subgroup L such that {e} < L c H. In this case {{e},L, H,G} will be the composition
series of the group G.

Proceeding like this, we always find a composition series for G. Since G is a finite
group, the number of its subgroups is aso finite. Hence the composition series obtained

finally contains afinite number of elements.
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This proves that any finite group G has at |east one composition series.

Remark : Aninfinite group may or may not have a composition series.
e.g. Thegroup (Z,+) hasno composition series. (See example 3.1.10 (4)).

e Jordan-Hélder Theorem:
Theorem 3.1.12: Any two composition series of agroup G are isomorphic.
Proof :  Let{H;}and {K;} beany two composition series of G.

Hip1 . . . .
Hence % isasimplegroup foreachi, 1 <i <n—1and
i

K.
2 isasimplegroupforeachj, 1 <j<m-—1.

J

But we know that % is a simple group if and only if N is a maximal normal subgroup

of G.
Hence,

Hiyq

isasimpleimplies H; isamaximal normal subgroup of H;,,,for1 <i<n-—1.

i
Thus, intersection of any normal subgroups in between implies H; and H;,, is not
possible.

Similarly, further refinement of the of the composition series{K;} is not possible.

Thus, {H;} and {K;} must be already isomorphicand m = n.

Theorem 3.1.13: If agroup G has a composition seriesand if N isa proper normal subgroup
of G then there exist acomposition series containing N.
Proof : Let {H;} be acomposition seriesof G. Then
{fe}=Hy<H <--<H,=G ... (1)
Hipq

and isasmplegroupforeachi, 1<i<n-1.

Consider the subnormal series of G given by,

{fe}<N<G ... (2
Define K,={e}, K;=N, K, =G.
Define  K;; = K;(Ki+1 N Hj)

for0<i<2and 0<j<n.
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Then {0} = Ky = Koo < K1 < <Ko =K, =Ko =N

<K, <<Kin=K =G ... (9
The seriesin (3) is a refinement of the subnormal series (2). The refinement of (1) being
impossible (as {H;} is a composition series) we get the two subnormal series represented
by (1) and (3) must be isomorphic. As the isomorphic image of simple groupsis a simple
group, we get all the factor groups of the subnormal series (3) will be simple groups.

Hence, the subnormal series (3) containing N is a composition series.

Example 3.1.14 : Find the composition seriesfor S5 X S;.
Solution : H, = {e} x {e}

H, = A; x {e}
Hy=A; X A,
Hy =S, X As
H, =S, X S,

Then {e}x{e}=H,<H, <H,<H;<H,=S5;X5; is a composition series in
S3 X S3.

Example 3.1.15: Show that if {e} = Hy < H; < H, < - < H, = G isasubnormal series of

agroup G and if O (h) = S;,1 thenGisof finiteorder S;.S,. ....S,,.

1

Solution : By data

Hi\ _
0 (HO) =51
Thus
0(H,)
O(H;) =51 = OH)=S8,-0Hy)=85,-1=5;
Hp\ _ O0(Hy) _ e o
0 (Hl) = oty 2 = 0(H) =S5,-0(H)) =5,

Continuing in thisway, we get

O(Hn) _ Hp \ _ _ .
O(Hn_1) 0 (Hn_l) =Sy = O0H,)=S,-0H1)

= 0(6G) =S, 0(Hp-1) (+ G=Hpy)
=Sp Spc1Spez 0 Sy
=8, Sp1Sp_p S

Hence, G isafinitegroupand 0(G) =S, - S, - ...- S,,.
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Example 3.1.16 : Show that an abelian group has a composition seriesiff it isfinite.

Solution : Only if part :
Let G be an abelian group. Let {H;} be acomposition series of G.

Then {e}=H,<H,<--<H,=G and % is a simple group for each i,1 <i <
l

n—1.

We know that if agroup G is abelian then any subgroup of G isalso abelian.

Hiq

Hence isabelianforeach i, 1<i<n-1.

i

Hiyq . . .
Thus ;I—“ isabelian and smplegroupforeachi, 1<i<n-—1.

i

Hit1 . . .
Hence —=2 isacyclic group of prime order say p;. 1.

i
By example 3.1.15, we get |G| = p;.p,. .... b, @nd hence G is afinite group.
If part :
Let G be afinite group.

By theorem 3.1.11, G has a composition series.

Example 3.1.17 : Show that infinite abelian group can have no composition series.
Solution : By an example 3.1.16, if an abelian group G contains a composition series, then G

must be finite. Hence no infinite abelian group will contain a composition series.

3.2. Normal Series:
Definition 3.2.1: Let G beagroup. A normal series of G isafinite sequence Ny, N4, ..., Nj, of
normal subgroups of G suchthat N; < N;,;, Ny = {e}and N, =G.

Remark 3.2.2 : Every normal series of agroup G isasubnormal series but not conversely.

For this consider the group G = D, where D, = ({04, 01, 02, 03, 41, U2, 51,65}, 0) and

=1 2 3 4 w=( 1 4 3
e=(; 3 4 ) =3 2 1)
=3 4 1 2 5=(3 7 1 4
0=y 1 2 ) =(1 4 3 2

Thisgroup D, is called the group of symmetries of a square.
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The series D, given by

{oo} <{o1, 11} < {00, 02 11, 2} < D,
is a subnormal series but it is not a normal series as {o,, 11} is not a normal subgroup of

D,.

Remark 3.2.3 : As every subgroup of an abelian group is normal, every subnormal seriesin
an abelian group will be a normal series. Thus the two concepts of normal and subnormal

series coincide in an abelian group.

Example3.24: {0} <26Z<13Z<7Z
and {0}<14Z<7Z<Z are normal seriesin agroup (Z, +).

Definition 3.25: Let {N;} be a normal series of a group G. The normal series {K]} of a

group G is arefinement of the normal series {N;} if {N;} < {K;} .i.e. N; = K; for each .

Example3.2.6: Thenormal series
{0} <722 <242 <8Z<4Z<Z
isarefinement of the normal series
{0}<72Z<8Z<Z
in an abelian group (Z, +).

Definition 3.2.7 : Two normal series {N;} and {K]} of agroup G are said to be isomorphic if

there exists a one to one, onto correspondence between the collection of factor groups

. K;
{%} and {I’(—“} . So that the corresponding factor groups are abelian.
i ]

Example 3.2.8 : The two normal series
{0} <(5) < Zjs
and {0} < (3) < Z;s

inagroup Z; s areisomorphic.

Definition 3.2.9: A normal series {N;} of agroup G is principal if all the factor groups%

l

aresmple.

Algebra Page No. 39



Now we list the properties of normal series, the proofs of which are similar to those for
subnormal series.
3.2.10 Propertiesof Normal Series:
(i) Two normal series of agroup G are isomorphic (Schreier’s Theorem).
(i1) Every finite group G has at least one principal series.
(iii)Any two principal series of agroup G are isomorphic. (Jordan Holder Theorem)
(iv)If agroup G has a principal series and if N is a proper normal subgroup of G, then there

existsaprincipal seriesin G containing N.

Exercise o

(1) State whether the following statements are true or false.
(i) Every normal seriesisaprincipal series.
(i) Every principal seriesisacomposition series.
(iii) Every composition seriesisaprincipal series.
(iv) Every normal seriesisasubnormal series.
(v) Every subnormal seriesisanormal series.
(vi) Every group has a composition series.
(vii) Every group has aprincipal series.
(viii) Any two subnormal / normal series of the same group G are aways isomorphic.
(ix) Given any two normal series we can obtain the refinements for both the series.

(xX) Every abelian group has a composition series.

(2) Find all composition seriesfor Z.

3.3 Ascending Central Series:
Definition 3.3.1: The center of agroup Gistheset{x e G /xg =gx V g € G}.

Remark 3.3.2:
(i) The center of agroup G isgenerally denoted by Z or Z(G).
(i) Ase€eZ(G), Z(G) #por|Z(G)| = 1.
(iii) Gisabdian & Z(G) =G.
(iv) Z(G) isawaysanormal subgroup of G.
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3.3.3 Ascending Central Series:

Let Z(G) denote the center of a group G. As Z(G) =2 G, the quotient group — 20

is defined. Consider the canonical / natural map f:G — % . Then f is an onto

homomorphism.

Consider Z [Z( (;)] Z [ ] isanormal subgroup of the group — ( -

Z(6)
Hence, f~1 [Z [%]l isanormal subgroup of G containing Z(G). Denote this by Z; (G).

Thus we have,
fe}<Z(G)<Z,(G)<G .. (D

Now Z,(G) < G and hence the quotient group is defined.

G
Z1(G)

Consider the canonical/natural map f; : G Surely f; is an onto

Z1(G)

homomorphism.

G G
. _
rszlrGl 2 lZ PG

isanormal subgroup of G. Denoteit by Z,(G).

Thus, continuing in this process, we can construct a sequence of normal subgroups of G
i.e.  Z(G),Z,(G),Z,(G),..suchthat {e} < Z(G) < Z;(G) < Z,(G) < -

This seriesis called the ascending central series of the group G.

Example 3.3.4 : Find the ascending central seriesfor (i) S5 and (ii) D,.
Solution :
) G=S8; = Z(G) = {i} wherei istheidentity map.
Hence the ascending central series of S5 is
{ij<{i}s--<{i} <
(iYc=D, = Z(G) ={po, P2}

where
/1 2 3 4
po_(1 2 3 4)
/1 2 3 4
pz—(3 4 1 z)
Now, |D4 —§=4
Z(Dy) 2
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D
As |4

Z(Dy)

( ) Z(D4) )

f:D, — ( 3 —— be a canonical mapping.

: [ D
f being onto, £~ [ﬁi)] =

Thus, the ascending central seriesin D, is

{po} < {po,p2} <D, <D, <

3.4 Nilpotent Groups:
Thus we obtain normal subgroups Z,(G), Z,(G), ..., Z,(G), ... of G such that

Z,(G)
Zn-1(G) z [

Z,(G) iscalled the nt" center of G.
Define Zy(G) = {e}. Then

Zn(G)
Zn-1(G) z [

Again by definition,

Z,(G)={x€G xyx 'ty tez, ,(G)/ forally € G}
Hence,

[Z, (@] € Z;-1(6).

TR o1
Zn-1(®])’ for every positive integer n > 1

Zn-a (@)1 for al positive integers n.

Definition 3.4.1: A group G issaid to be nilpotent if Z,,,(G) = G for somem. The smallest m
such that Z,,,(G) = G iscaled the class of nilpotency of G.

Remark : Every abelian group is nilpotent. If G is abelian, then Z;(G) = Z(G). Hence G is

nilpotent.

Theorem 3.4.2:  Subgroup of a nilpotent group is nilpotent.

Proof :Let G be anilpotent group.
Hence, 3 apositive integer m suchthat Z,,(G) = G. LetH <G.
To provethat H is nilpotent.
When H = {e} or H = G. Theresult is obvioudly true.
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Let{e} < H <G.
Now let x € HN Z(G). Then gx = xg for dl g € G will imply hx = xh for all h € H.
Hencex € Z(H). Thus,

HNZ(G) S Z(H)
AsZ(G) =Z,(G) and Z(H) < H we get

HNZ(G) < Z,(H) )
Now, letx € H N Z,(G).

Then x € Zy(G) will imply xyx~1y~1 € Z,(G) foralyeG
Butthen xyx~ly~!e Z,(G) forally e H
Asx e Handy € Hweget xyx 1yt € Z,(G) foraly € H.

But thisin turn will imply x € Z,(H). This shows that
H N Z,(G) < Z,(H) )
Continuing in thisway, we get
HNnZ,(G) < Z,(H) for al n.
Hence in particular,
HNZy(G) S Zp(H)
ie. HNGCSZ,H
ie. HCSZ,H)
But asaways, Z,,(H) € H,weget Z,,(H) = H.
This proves that H is nilpotent.

Theorem 3.4.3: Every homomorphic image of a nilpotent group is nilpotent.
Proof : Let G beanilpotent group. Let ¢ : G — G, be an onto homomorphism.
To prove that the group G, is nilpotent.

As G isnilpotent, 3 a positive integer m such that Z,,,(G) = G.
() ZG)={xeG /xg=gx V gEG}

Z(G) ={x€G, /xg=gx ¥V gE€E G}

={p() €G /P(x)-P(g) =d(9) - d(x) V ¢(g) €6} ...~ ¢inonto.
But this shows that
¢lZ(6)] < Z(Gy) ... (D)
Letx € Z,(G). Then xyx~lyle Z (G) foral y € G.
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Hence,

¢ (xyx~ty™1) € ¢[Z,(G)] fordl y €G.
ie. () () [~ [N € $[Z1(6)] foral ¢(y) € G;.
But thisin turn will imply ¢(x) € Z,(G,).
Thus, X€Z,(G) =  ¢p(x) € Z,(Gy).
Therefore,
¢ [Z2(6)] € Z,(Gy) ... (2
Continuing in thisway, we get for all n
¢ [Zn(G)] € Z,,(G1) ... (3
Hencein particular, ¢ [Z,,(G)] € Z,,(G,)
Hence, ¢ (@) € Z,(Gy)
But ¢ beingonto, ¢ (G) =G,
Hence, Gy S Zn(Gy) S Gy
= Zn(Gy) = Gy

Hence, the group G, in nilpotent.

Theorem 3.4.4: Any group of order p™ is nilpotent. OR Any p-group is nilpotent.
Proof : Let G beagroup with |G| = p™.

To provethat G is nilpotent.

If G = Z(G) then we arethrough. Assumethat G # Z(G).

Then as pl |G| weget Z(G) + {e}. Hence |Z(G)| # 1.
Further |Z(G)]| | |G| asZ(G) < G wehave |Z(G)| = p" for somer < n.

But then

|Z<GG)| - |Z|<GG|)| =

will imply » | |%|

Hence, Z [ isnon trivial. e Z [%] * 7(G).

G
76
Hence, by definition of Z,(G) weget Z(G) c Z,(G).
e 1Z(®)]<1Z6).

Continuing in thisway we get,
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1Z1(6)] < |Z(G)| < - < |Gl =p"
Hence, there must exists some positive integer m such that |Z,,,(G)| = p™.

This shows that G is nilpotent.

Theorem 3.4.5: A group G isnilpotent iff G has anormal series.
fe}=Ny< N, <N, =G
such that
Ns ¢ 7 [€]
N; N;
forali, 1<i<k-1.
Proof : Only if part :
Let G be nilpotent then 3 a positive integer m such that Z,,,(G) = G.
Consider the series
Zy(G) ={e} < Z1(G) < Z,(G) < -+ < Z,(G) =G
Then
() Z;(G) isanormal subgroup of G for each i.

(i) @gz[ﬁ] foreachi, 0<i<m-—1.
Zi Zi

(i) Z;<Ziyq foreachi, 0 <i<m-—1.
Hence
Z,(6) ={e} < Z,(G) < Z,(G) < -+ < Z,,(G) = G
will form the required series.
Ifpart :
Let G be group and let G have anormal series

{e}=60<G1<G2<SGk=G

such that
Gi+1 c7 [E]
Gi Gi
To provethat G is nilpotent.
Git1 G Gy G
AS—QZ[—] weet—QZ[—.
G; ol "% g e}
Thus, G; € Z[G]
i.e. G, € Z,[G] .. (1)
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G

Again by assumption, “2cz7 [ :
G Gy

1

G G
Now, for any x € G we get G,x € G—z .Hence G,xe€Z [G—]
1 1

Hence,  [G,x] [G1y] = [G1y] [Gyx] foral G,y € Gi
1

i.e. xyx ty~le G, foraly € G.

i.e. xyx~ly~1 e Z,[G] .. by (2)

Thus, x € G, = xyx ly 1leZ[G]
= X € Z,[G]
Hence, G, € Z,[G]
Continuing in this way we get
G =G, S Z(G)SG.
Hence, Z(G) =G

Hence G is nilpotent.

Worked Examples

)

Example 3.4.6 : G = S5 isnot nilpotent.
Solution: For S5, Z(S3) = {0,} Where g, isthe identity element of S;.
Hence,  Z;(S3) = {00}

z| 2] = {teo})
Hence, Z,(S3) = {00}

Continuing in thisway we get, Z,,(S3) = {00} forany m > 0.

Hence, S5 is not nilpotent.

Example 3.4.7: D, isnilpotent.
Solution : Weknow that Z,(D,) = {0, 02}

D, D,
Hence =
Z(Dy) {00, 02}
Dy | D4 8
{00, 02} [{e0, 02} 2
D4 . . D4 _ D4
Hence, 700 is abelian. Therefore Z [Z (D4)] =705

Hence, Z,(D,) = D,. Hence, D, isnilpotent.
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Example 3.4.8 : Show that S,, is not nilpotent for n > 3.

Solution : Forn > 3, Z[S,] = {e} where eistheidentity elementin S,,.
Thus Z,(S,) = {e}. But then Z,,,(S,,) = {e} for all positive integers m.
Hence S,, is nilpotent for n > 3.

Remark : S5 is solvable but S5 is not nilpotent. This shows that every solvable group need

not be nilpotent. But converseis alwaystrue. i.e. every nilpotent group is solvable.

Theorem 3.4.9: Every nilpotent group is solvable.
Proof :  Let G be nilpotent group. Then by theorem 3.4.5, there exists anormal series
{e}=Hy<H < <H, =G
such that

Hivya ~ Z[E]
H; —  lH;

AsZ [Hi] is abelian, Weget% is abelian.

Hence by theorem 2.2.13, G is solvable.

Worked Examples )
Example 3.4.10 : Give an example of a group G such that G has a normal subgroup N with
both N and % nilpotent but G is non-nilpotent.

Solution: Consider G = S;.
We know, S5 isnot nilpotent (See example3.4.8).
N = {(1),(1,2,3),(1,3,2)} isanormal subgroup of S;.
N isan abelian subgroup of S; (+ |[N| =3)
Hence N is nilpotent.

S3

S 6 Ss . . .
Bl —°%_» = = jsabelian. = = isnilpotent.
3 N N

N

Again

S . . .
Thus both N and FB are nilpotent but S5 is not nilpotent.

Example 3.4.11 : Show that the product of two nilpotent groups is a nilpotent group.
Solution : Let H and K be any two nilpotent groups.
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Then 3 positiveintegersm and n such that Z,,(H) = H and Z,,(K) = K.
LetG =HXK.

x €Z(G) =  xg =gx foral g € G.

x=(x, x;) and g =(g1, g2)
Then xg = (X191, x292)

gx = (g1X1, g2%2)
Thus, xg =gx = X191 = g1x, and x,g, = g,x, foralg, €H, g, €K
But thiswill imply x;, € Z(H) and x, € Z(K).
Thus, x = (xy, x,) € Z(G) = Z(H X K) = (x4, x3) € Z(H) X Z(K)
Similarly, we can prove that

(x1, x,) EZH)XZ(K) = x=(x, x3) €Z(G)=Z(H XK)
Hence,

Z(H %K) = Z(H) X Z(K).
By iteration,

Z;(HXK)=2Z;(H) X Z;(K) for each positive integer i.
Hence if m >nthen Z,,(K) =K = Zn(K) =K.
Thus, Z,,(H X K) = Z,,(H) X Z,,(K) = H X K.
Thisshowsthat Z,,,(G) = G and G = H X K isnilpotent.

Unit4: Sylow Theorems:

4.1 Group action on a set.
4.2 Class equation of agroup.
4.3 p-groups

4.4 Three Sylow theorems.

4.1 Group action on a set :

Definition 4.1.1: Let G be any group and let X be any non-empty set. An action of G on X is
amapping f: X X G — X satisfying the following conditions
) flx,e)=x fordlx € G

(i) f(x, 9192) = F(f (%, 91), 92) foralxeG and g1, g, €6
Under these conditions we say X isa G-set. Note that every G-set need not be a group.
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Examples4.1.2:
() LetX={1,2,..,n}andG =(S,,, 0). Definef : X X G — X by
f(x,0) = 0(x) forxeXando € S,,.
Then
(1) f(x, i) =i(x) =x wherei = identity map defined on X.
(@ f(x, 0100;) = (01 °0,)(x) = 03[04(x)]
= flf(x,01), 03]
From (1) and (2) we get X isa G-set.

(i) LetGbeanygroupandlet H < G. R denotesthe set of al right cosets of Hin G.
Definef : R X H — R by
f(Hy, h) = Hyp, forH, e Rand h € H.
Then
(1) f(Hy, e)=Hy, =H, wherei=identity map definedon X.
() f(Hy, hihy) = Hyn,n,) = Hixnpn,
= ff (Hy, hy), h;]
From (1) and (2) we get R isaH-s¢t.

(iii) Let G beany group and X be the set of al subgroups of G. Define f: X X G — G by
f(T,9) =g Ty forTeEXandg € G.

Then

() f(T,e)=e Te=T

(2 f(T, 9192) = (9192)7'T(9192)
= 97" [91'T91] 92
= fIf (T, g1), 9]

Hence X isaG - set.

(iv) LetG beagroupand H < G.Definef:G x H— G by
f(g,h) = h™1gh forge Gandh € H.
Then
(1) flge)=e'ge=g
(2 f(g hihy) = (hihy)™ g (hihy)
= hy' [ g ] hy

Algebra Page No. 49



= fIf(g,h1), h;]
HenceGisaH - set.

(v) Anygroup G isaG — set under the action f: G X G — G defined by
f(91,92) =91+ 92, foral g1, 9, € G.

Remark : Let X be a G — set. Then by definition 4.1.1, there exists f: X X G — X

satisfying the conditions,
D flx,e)=x and
) f(x,9192) = fIf (x, g1), 2.

Here onwards we write f(x, g) = xg , foralxe X and g €G.

Thus, xe = x and x(g,19,) = (xg1)92, foradlxe X and g4,9, €G.

Let X beaG —set. For afixed x € X, define
Gy ={9€G/ xg=x}

and for afixed g € G, define
Xg={x€X/ xg=x}.

As an important property of the set G,., we prove

Theorem4.1.3: LetXbeaG —set.foranyx € X, G, <G.

Proof :
(i) xe=x = e € G, = G, * .
(i) g1, 92€G6 = xg, =x and Xg, = X.

Hence, x(g1 92) = (xg1)g2 = xg, = x.
This showsthat g, g, € G,.

(iii) Let g€ G,. Thenxg =x = (xg)g ' =xg7?
= x(gg™") =xg7"
= x-e=xg"!
= x=xg"!

Hencege G, = g lea,
From (i), (ii) and (iii) we get G, isasub group of G.

Definition 4.1.4 : Let X be a G — set. For any x € X, the subgroup G, of G is called the

isotropy subgroup of G.
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Example4.1.5: Let X = {1,2,3}. Then X isaS; - set. (Seeexample 4.1.2 (1)). We have

S3={(1),(1 2),(13),(23),123)0132)}
The isotropy subgroup of 2is{(1), (1 3)}.

On each G-set X, the group G induces an equivalence relation. This we prove in the following
theorem.
Theorem4.1.6: Let X beaG —set. Definearelation ‘~' on X by
x~y = x=y-g, forsomegE€GQaG.
Then therelation *~ is an equivalence relation on X.
Proof :
(i) xe=x foradlxeX = x~x, forall x € X.
= therelation '~ isreflexive.
(i) Let x~y.Hencex =yg, forsomeg € G.
xgt=0g) gt =ygg ) =ye=y
Thisshowsthatx ~y = y~x, forx,y€X.
Hencethe relation ‘~' is symmetric.
(iii) Letx~yandy ~ z.
Thenx = yg, andy = zg, for some g,, g, € G.
Thus, x = yg, = (292)91 = 2(9291)-
Asg,, g1 € G,wegetx ~ z.
Thisshowsthat x ~y, y~z = x~z forx,y,z € X.
Hencetherelation ‘~' istransitive.

From (i), (ii) and (iii) we get ‘~" isan equivalence relation on X.

Definition 4.1.7 : Let X be a G — set. Each equivalence class produced by the equivalence
relation ‘~' defined on X, described in Theorem 4.1.6, iscalled an orbit in X under G.
The equivalence class containing x € X isorbit of x and we denoteit by xG.
Thus, xG={yeX/x~y}
={yeX /x=yg forsomeg€E G}

A relation between the orbit xG and the subgroup G, ina G —set X isasfollows.
Theorem 4.1.8: Let X beany G —set. Then |xG| = (G: G,), forany x € X.
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Proof :  Fix up any x € X. Let R denote the collection of all right cosets of the subgroup
G, in G. We will show that R is equipotent with the set xG.

Nowy eExG = y~x = y=2xg for someg € G.
Define ¢ : xG — R by
o(y) =G, g wherey = xg, g €G.

(i) ¢ iswell defined.
Lety, =y, inxG.

Then y;, =xg; and vy, =xg, for someg;,g, €G.
Thus y, =y, = xg;=1x9,

= (xg) 91" = (xg2) 91"

= x(g1g1") =x(g297")

= xe = x(g291")

= x =x(g291")

= 9297" € Gy

= (G g1 = (G g

U

d(r1) = d(2)
This shows that ¢ iswell defined map.

(i) ¢ isone-one.

Let  ¢d(y1) =002 , for somey,, y, € X .
Let  ¢(y1) = (G, wherey, = x g4

and @ (y2) = (Gr) g2, wherey, = x g,.
Thus,

(1) = d(y2)

= (Gg: = (GYg.

= 0197 € Gy

= x(g192") =x

= (xg) g;"' =x

= Xg1 = X9

= V1=

This shows that ¢ is one-one.
(iii) ¢ isonto.

Let (G,)g €R. Then g € G and for this g, consider the element y € X defined by
y=Xg.
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Then ¢(y) = (G,)g showsthat ¢ is onto.

From (i), (ii) and (iii) we get ¢ is an one-one, onto mapping. Hence,
IxG| = |R|

But  |R|= Number of right cosets of G, inG = (G : G,).

Hence, |xG| = (G : G,), vV x €X.

Corollary 4.1.9: Let G beafinitegroup and let X be afinite G-set. Then
() 1G] = |xG| - |G| forany x € X.

(i) |1X| = Z (G:G,), where C denotes the subset of X containing exactly one
xeC

element from each orbit.
Proof :

(i) Fromtheorem 4.1.8, we have,

|xG| = (G:G,) , forany x € X.
Hence |xG| = % ... Since G is afinite group.
X
Hence |G| = |xG| - |G, |
(i) Let C denote the subset of X containing exactly one element from each orbit of X under
G.
Then
IX|= > xG
xeC
Since
X = UxG
xX€C
and thisunion is adigjoint union.
As by theorem 4.1.8,
|xG| = (G: G,)
we get,

IXI= D, (G:G,)

xeC
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The following theorem gives a tool for determining the number of orbits in a G-set X
under G.
e Burnside Theorem:
Theorem 4.1.10 : Let G be afinite group and let X be afinite G-set. If r is the number of
orbitsin X under G, then
rlcl= Y \Xg\
geG
Proof :  Let N = number of ordered pairs (x,g) € X X G for which xg = x. Then for a
fixed g € G, there are |X,;| with pairs with g as a second member and xg = x. Hence
N=3 ‘Xg‘ (D
geG

Similarly, for afixed x € X, there are |G,| pairs with x as a first member and xg = x.

Hence,

N=>"G,| - (2

xe X

From (1) and (2) we get,

D 1%l = )l

G| |G
E — v X6 = (G:Gy) = —
G Ix I ( x) |Gx|

Z%‘ .(3)

Now, let 04,0,,0s,...,0, be r orbits of X under G. Then X:UOZ- and this union is
i=1

digoint. Hence we get,

leGl - Z ﬁ

x€X p

= E L Lo E !
- |xG| |xG| |xG|
XEOZ

x601 xEOT
Now consider _G
xe Oy X
Let 0, = {t;, t,, ts, ..., t,} (0; isfiniteas X isfinite)
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Hence,

Z 1 _ 1 N 1 - 1
IxG| |t G| |t; G |tn G|
x601

L 1y
1041~ 1041
1
+m (n times) ... by the definition of orbit
1
1 1 1 _
=—+—4-+—- .. times
n n n
n
= — = 1
n
Generalizing this result we get,
1
—=1 foreachi, 1<i<r
|xG|
X €O0;
Hence,
> P R t
Gl (r times)
X €
=r ..(d

From (3) and (4) we get,

> Kl =161-r

gEG
ie r-|G|= Z‘Xg‘
geCG

This compl etes the proof.

4.2 ClassEquation of aGroup :
As an application of the Burnside theorem, we derive an equation which is called class
equation of a group.
Let G be afinite group and let X be afinite G set. Let 04, 0,, 05, ..., O, be different r-
orbits in X by G. Select x; € 0; for each i. Then X being the digoint union of
04,0,,04, ..., 0,, we get

r

X1 = 10

i=1
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= ilxiGl (1)

Define X ={x €X /xg =g, forall g € G}
Let 0; denote an one element orbiti.e. 0; = {x;}. Then
0, ={yeX /y~x}

={yeX/ y=x;g forsomeg € G}

={x;g / g€G}

= {x;} ... by assumption.
Thus, 0; = {x;} if and only if x; = x; g for all g € G. Hence the set X;; is precisely the
union of one element orbit in X. Assume that there are ‘s’ one element orbits in X under
G.

Then,
r
Xl =s+ 2 %G|
i=s+1
r
ie X = X1+ 2, %G e
i=s+1
Again, Ix,Gl = (G: Gy,) ... by Burnside theorem.
Hence, from (2) we get,
.
X1 =1%1+ 3 (GG | e
i=s+1

Now, for afinite group G we can consider G asa G set under conjugation.

i.e.xg =g lxg forx,g € G.
Then by (2) we get,
p
61 = Xl + 2. %G @
i=s+1

Consider the set X in (4)
Xe={x€eX/xg=x, V gE€G}

={x€eX/glxg=x, V gE€G} (v xg=g""x9)
={x€eX/xg=gx, YV g€G}
=7(G) Z(G) = center of G

Substituting |X;| = |Z(G)| in (4) we get
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r

6] = 1z(&)| + 2. |xG]

i=s+1

_iz@i+ Y (6:6y )

i=s+1

Let n;=(G:G,) foreachi.
Then n; ||G| for eachi.

Hence,
1G] = 1Z(G)] + g1 + Nyt 41,
i.e. |G| = C +ngyq + ngypt... 40, ... (5
where C = |Z(G)]
The equation (5) is called the class equation of the group G.
Recall that, for any x € G the set
Cx)={g7'xg / g € G}
is called the conjugate class of x in G and the set
N(x)={g€G / g~'xg = x}
is a normalizer of x in G. N(x) is a subgroup of G and |C(x)| = (G : N(x)). If xG
denote the orbit of G under conjugation of G containing the element x; then
xG={yeX/y~x}
={yeG/y =xg, forsomeg € G}
={yeG/y =g lxg, forg € G}
=C(x)
Thus [xG| = |C(x)| = (G: N(x)) ...(6)
From the equation (5) we get,

61 =1Z@] + ) 1%l

i=s+1
Where x;G represents the orbit in G under conjugation by G, containing more than one
element.

Hence, from (5) and (6) we get

61 =121 + ) (G:NG)

x €EC
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where C contains exactly one element from each conjugate class with more than one

element.

Example: Consider the group G = S5. The centre of the group S5 contains only one element

and the class equation of S; is6=1+2+ 3.

With the help of class equation we derive the following important property of |Z(G)|.
Theorem 4.2.1 : Let G be afinite group with |G| = p™ where p is a prime number. Then the
centre of G isnontrivial.
Proof : |G| = p™.toprovethat Z(G) # {e}.
We know that the class equation of G is
|G| = C+ngypq +npppt+... 40, .. (1)

where n; | |G| foreachi and

n; = cardinality of the conjugate classin G and C = |Z(G)].

Now,

n | 1G] = n|lp" = pln, foreachi, c+1<i<r.

Hence, p | neyq + gy t+... 10,

Agan p| |G| =p™

Hence, p | (1G] — (noys + nesst.. +1,)]
From (1) we get, p |c.

ie p ||Z(G)|.

Hence, |Z(G)| > 1.
i.e.  Z(G) # {e}

We know that if |G| = p, (pis prime) then G is cyclic and hence abelian. In the next
theorem we provethat if |G| = p? then aso G is abelian.
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Theorem 4.2.2: I1f 0(G) = p?, (pisprime), then G is an abelian group.
Proof : Let G beanon abelian group. Then G # Z(G).

Hence, |Z(G)| # p2.

As |G| = p?, by thetheorem 2.1, Z(G) # {e} and hence |Z(G)| # 1.

As Z(G) | |G|, (G being finite) we get |Z(G)| = 1, p, p2.

Hence, the only possible valueis|Z(G)| = p.

Selectany a € G suchthat a € Z(G). (Such a existsas Z(G) < G).
Consider N(a) = {x € G / xax™! = a}.

Then N(a) < G. Further x € Z(G).

= Xxg = gx foral g € G.
= xa =ax asa€Qq.

= xax'=a

= x € N(a)

Thus, Z(G) < N(a).

Buta € N(a) anda ¢ Z(G) givesZ(G) c N(a).

Thus, wehave Z(G) < N(a) < G.

AsN(a) < G and |G| = p?, we must have |[N(a)| = p2.

But then N(a) = G. Then by definition of N(a), ax = xa foral x € G.
But thisin turn will imply a € Z(G), a contradiction.

Hence G must be abelian.

Animportant property of afinite G — set is proved in the following theorem.
Theorem 4.2.3 : Let G be afinite group and X is afinite G — set. If |G| = p™ (n > 0), (or if

p |161) then [X| = [X;| (mod p).

Proof : Let X bea¢ - set. X and G both are finite. We know that

r

IX| = X1+ 2, %G )

i=s+1
where Xe={x€X/xg=gx foreachg € G}
and |X;| =s.
x;G denotesthe orbit in X under the action of G containing more than one el ement.

r = number of orbitsin X.
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By theorem 4.1.8,
lx:G| = (G : Gy)

Hence G being afinite group

(G:Gy) | 1G] for each i.

Thus, lx;G| | 1G] for each i.

As|G| =p™wegetp | |x;G| for each i. Hence

r

p| X %] .

i=s+1
From (1) we get,

,
2. [xiG|=|X]~|Xg]

i=s+1

Hence, by (2) we get p | |X]| — [ X¢].
i.e. |X| = |X;| (mod p)

We know that converse of Lagrange’ s theorem need not be true.
i.e. if G isafinite group and if m/0(G) then G not necessarily contains a subgroup of order
m. But if m is a prime number then surely G contains a subgroup of order m if m/|G|.

Thisis proved by Cauchy in the following theorem.

e Cauchy theorem :

Theorem 4.2.4: Let G be afinite group and p be a prime number such that p | |G|. Then
there exists an element a € G such that a? = e.

Proof :

(i) DefineX ={(91,92 . 9p)/ g1+ go* - gp =€ and g; € G}
G1° 92 Gp=€ = Gy =192 Gp-1-
Hence in p-tuple (g4, 92, ...,9,) We have a freedom to select only p — 1 elements

91, 92s » Gp—1- Therefore |X| = |G[P7.

as p |6l weget  p|ixI.
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(i) Let o €S, givenby o= (1,2,...,p).
Define H = (o). Then H issubgroup in S,,.
Definef : X XxH — X by
f((glugz""'gp)' Uk) = (9okry Goky 1 Iokp)
Then
0 £ (9192 190): ©) = (9100 G2y = i)
= (91,92 9p)

(ii) f((gl,gz, v Gp), ko al) = (gakmz(l),ggkmz(z), ...,go.koo.l(p))

= (gdl[ak(l)],ggl[ak(z)], ,gaz[ak(p)])

= £ ((91.92 - 9p). @), ¥
Hence, from (1) and (2) we get X isaH — set.
Hence, by theorem 2.3, we get,
|X| = |Xy| (mod p)
SinceO(H) = p.

iinAs  p|ix] ¢ 1X] = IGIP~Y)
and  p| IX] - X, wemust have p | 1X,,1.

Now X;; = {(91. 92 - 9p) / (91,92 -, 8p) 0*) = (91,92 . 9p) V o' € H]
Hence (gl,gz, ...,gp) € Xy

= fl(9192 - 9p) 0] =(91,92 -.9y) asog €H

= (9ot Yo+ 9ow)) = (91,92, -+ Ip)

= (92' 93, ---:gl) = (gl' 92, "'rgp)
Buttheng, = g, = = gp.

This shows that an element of thetype (a, a, ...,a) € X, i.e.a? =e.

Asp||Xy| wemust have |X,| > 1.

Hence,3 a € G suchthata # eand (a,q, ...,a) € Xy.
But then we havean element a € G, a # e suchthat aP = e.

This compl etes the proof.
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Animmediate application of Cauchy’stheoremis

Theorem 4.2.5: Let G beafinite group and let p be any prime number. If p| |G|, then there
exists asubgroup of order p inG.

Proof : By Cauchy’stheorem, 3 a € G suchthat a # e and aP = e.
DefineH = (a).
Then H will be the subgroup of G of order p.

43. p-Groups:
Definition 4.3.1: A group G isap — group if every element in G has order a power of the

prime p. A subgroup of agroup G isap-subgroup of G if the subgroup isitself ap-group.

The characterization of p-groupsis given in the following theorem.

Theorem 4.3.1: Let G be afinite group. Then G isap-group if and only if |G| is a power of
prime p.

Proof : Only if part :
Let G be ap-group. Hence order of each element in G is a power of p. Let g be aprime

number different from p. If q||G|, then by Cauchy’s theorem, there exists an element
a € G suchthat 0(a) = q.
By assumption,  0(a) = p* for somek.
Thus, g = p™; which isimpossible. Hence no prime number other than p will be a divisor
of |G|.
Hence, |G| = p™ for somen.
lfpart :
Let |G| = p™ for somen.

Forany a € G, weknow 0(a) |0(G).

Hence, 0(a)| p™ implies 0(a) must be p* for some k.

Hence, G isap — group.

Theorem 4.3.2: Let G beafinite group. Let H be ap — subgroup of G. Then
(N[H]:H)=(G:H)modp
Proof: N[H]={g€G/gHg!=H}
We know that N[H] isasubgroup of G containing H.
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Let R denote the set of all right cosetsof H inG.
Definef : Rx H — R by

f(Hyx, h) = Hyp,
Then, R isaH — set (See example 4.1.2 (2)).

AsHisap-subgroup |H| = p™, for somen

Asp||H| we get
|R| = |Ny| (mod p), (Seetheorem 4.2.3)

But |R| = (G:H)
Hence, (G:H) = |9y| (mod p) (D
Now, Ny ={H, €eR/f(Hy, h) =H, foreach h € H}

={H, €R/H,, = H, foreach h € H}

={H, €R /x 'hx € H foreach h € H}

= {H, € % —x"'Hx = H}

={H, €R /x € N[H]}

=the set of al right cosetsof H in N[H].
Hence, |yl = (N[H]: H) ..(2
From (1) and (2), we get,

(G:H) = (N[H] : H) (mod p)

Corollary 4.3.3: Let H beap —subgroup of agroup G. If p| (G: H), then N[H] # H.
Proof : By theorem 4.3.2, we get
(G:H) = (N[H] : H) (mod p)
As p| (G:H)weget p | (N[H]:H).
Hence, (N[H]:H) # 1.
ie. H # N[H]

4.4. Sylow Theorems:

e First Sylow Theorem:

Theorem 4.4.1 : Let G be afinite group with |G| = p™ - m where p is a prime number and
p t m. Then
(i) G contains a subgroup of order p’ foreachi, 1 <i < n.

(i)  Every subgroup of order p* isanormal subgroup of a subgroup of order p*** for
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1<i<n-—-1.
Proof :

(i) By Cauchy’s theorem (see theorem 4.2.4) there exists a subgroup of order p in G as

p||G|. Assume that there exists a subgroup of order p! for each i < n.

Let H be asubgroup of order p.

0(G n.
Now (G:H)=%= ppim

=p"t-m.

Asi < nwegetpl(G : H).
Hence, by theorem 4.3.2,
(G:H) = (N[H] : H) (mod p)

ASpl(G:H) we get pl(N[H] : H).

Hence, p % e p | 0 [%}

Hence, by Cauchy’ s theorem, % contains a subgroup of order p. Let it be k.

Lety: N[H] — % be the canonical mapping.

Then y is an onto homomorphism.
y~1(k) = {x € N[H] / y(x) € k} isthe subgroup of N[H] of order p***.

This shows that there exists a subgroup of order p*** inG.

By induction on n, the result follows.
(i) By the construction explained in (i) we get,

H <y (k) < N[H]

where 0(H) = p* and 0(y (k) = p'*™.

AsH < N[H]. Wemust get H < y~1(k).

This shows that the subgroup of order p* is normal in a subgroup of a subgroup of order

pitl,
Example4.4.2: If 0(G) = 2*-3 -7 then G contains subgroup H,, H,, H; and H, such that

O0(H)) =2,0(H,) =2%0(H;) =23 and O(H,) = 2* and H, < H,,H, < H;,H; < H,.

There also exists a subgroup K of order 3 and a subgroup T of order 7 in G.

Definition 4.4.3: A Sylow p —subgroup of agroup G isamaximal p— subgroup of G.
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Example4.4.4: In example 4.4.2,
H, isaSylow 2 — subgroup.
K isaSylow 3 — subgroup.
T isa Sylow 7 — subgroup.

Remarks4.4.5:

@) If |G| =p™-m and p + m then the subgroup of order p™ will be a Sylow p — subgroup in
G.

(i) If P is a Sylow p — subgroup in G, then 0(g~'Pg) = 0(P) will imply g~1Pg is aso
Sylow p —subgroup of G, for any g € G. i. e. any conjugate of a Sylow p — subgroup of
G isalso aSylow p —subgroup of G.

Conjugate of a Sylow p — subgroup is a Sylow p — subgroup in afinite group G. But any
two Sylow p — subgroups of G must be conjugates of each other. This we prove in the
following theorem.

e Second Sylow Theorem:

Theorem 4.4.6 : Let G be afinite group with |G| = p™ - m where p is a prime number and
p t m. Let P; and P, be any two Sylow p — subgroups of G. Then P, and P, are conjugate
subgroups of G.

Proof : Let R denote the set of al right cosetsof P, inG.

Definef : R x P, — R by

f(Prx,y) = Pixy.
Then
() f(Py,e) = Pixe = P,x
and (i) f(Pix, gh) = Pyxgh = Py(xg)h = f(f(Pix,g), h) forg,h € P,.
Hence RisaP, set.

As P, isa Sylow p —subgroup, p||p,|.
Hence, by theorem 4.2.3
1R = |Rp, | (mod p) (D)
Now R =theset of al right cosetsof P, inG.
Hence, |R| = (G : P,).

G n.
Therefore, |R| = (G : P,) = % = pp:l =mandp t m.
1
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Hence, |Rp|#0 ... by (2)
Hence  |Rp| =1 )
Now, Rp, ={Pix €R/f(Px, g) =Pix forallg € P,}

={Pix €eR/P;xg =P,x forallg€ P,}

={PxeER/x1gxeP, forallgEe€P,}

={Pix €R/x1P,x C P}

= {Pix € R/x 1P,x = P;} (As|x 1Px| = |P,| = |Py| = p™)
By (2, |Rp|=>1.

Hence, there exists x € G such that x~1P,x = P,. Hence the proof.

The existence and the nature of Sylow p — subgroupsis proved in the First Sylow theorem
and the Second Sylow theorem respectively. The third Sylow theorem deals with the number
of Sylow p —subgroupsin agroup G.

e Third Sylow Theorem :
Theorem 4.4.7 : Let G be afinite group and p/|G| (p isany prime number).

Let r = number of Sylow p —subgroupsin G. Then

() r = 1(mod p) @iy r|laG|
Proof :
(i) Letr =number of Sylow p —subgroupsinG.
Hencer # 0 (by First Sylow theorem)
Let £ denote the set of all Sylow p—subgroupsinG. Then |£]| = r.
Fix up any Sylow p—subgroupsay P in G. Thenfor any T € £ we have
T =g1Pg for some g € G (by Second Sylow theorem)
Definef: LX P — L by
f(T, x) =x"Tx forany g € G. (Seeremark 4.4.5 (2))

Now,
f(T, e)=e Te=T and
f(T, xy) = (xy) ' T (xy)
=y (x 7' Tx)y
= f(T, xy) = flf(T,x),y], foralx, y€P

Hence, L isaP —set.
As P isaSylow p —subgroup, p/0(P).
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Hence, by theorem 2.3, we have,
I£] = |£p| (mod p) .. (D)
Consider the set L.
L, ={TeL/f(T, x)=T forallx € P}
={TeL/x Tx =T forallx € P}
={T €L /x€N|[T] forallx € P}
Thus, T e L, iff P S NJT].
Thus, Te L, iff P <N|T].
Thus, P and T both are subgroup of N[T] and hence they are p — subgroups of N[T].
By Second Sylow theorem, P and T are conjugates.
Hence, for some g € N[T], g Tg = P.
AsST 2 N[T], g 'Tg =T.HenceP =T.
Thus, T € L, iff P =T. Thisshowsthat £, = {P}.

Hence |Lp] =1 .. (2
From (1) and (2) we get

|£] =1 (mod p)
i.e. r =1 (mod p)

(ii) To prover||G|.
Let £ denote the set of all Sylow p —subgroupsof G. Asin (i) we can prove L isaG — set
under theaction f : £ X G — L defined by
f(T, 9 =9"'Tg
By second Sylow theorem, elements of £ are conjugates of each other.

Hence, £ contains only one orbit.

Therefore

|£| = | orbit of P | (P €L
= |£] = | PL| (orbit of P = PL under G)
= r=(G6:Gp) (theorem 1.3)

But (G: Gp)llGI and hence r||G]|.

Examples4.4.8:
(1) A Sylow 3 —subgroup of agroup of order 12 hasorder 3as 12 = 22 x 31.
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(2) A Sylow 3 —subgroup of agroup of order 54 has order 33 = 27 as
54 = 2x27=2x33.

(3) By third Sylow theorem, agroup of order 24 must have either 1 or 3 Sylow
2 — subgroups.

Let r = number of Sylow 3 — subgroups.
M rlic] = r/24 = r=1,23,4,6,812,24

(i) r = 1(mod 2) = 2|r—1 = r=1,3

(4) A group of order 255 must have either 1 or 85 Sylow 3 - subgroups.
255 =3x5x%x17

Let r = number of Sylow 3 — subgroups.
i r|ic] = r|2s5 = r=1,351517,5185255

(i) r=1(mod3) = 3|r—1 = r=10r85

(5) |G| = 45. Show that G contains only one Sylow 3 — subgroups. Is G simple ?
Solution : |G| = 45 = 32 x 5.
By 1% Sylow theorem G contains Sylow 3 — subgroups each of order 32 = g.
Let r = number of Sylow 3 —subgroupsin G.
By 3" Sylow theorem,

rlIGI and r = 1(mod 3)

Hence

i r|icl — rl4s = ref1,350915 45}
(i) r=1(mod3) = r=1
This shows that there exists only one Sylow 3 — subgroups of order 32 = 9 say H.
By Second Sylow theorem,
H=g'Hg forany g € G
Hence, H is a proper normal subgroup of G.

Hence, G isnot ssimple.
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(6) Show that a group of order 255 is not ssimple.
Solution : Let G be agroup of order 255.
|G| = 255 = |G| =17x5%x3=17x15and 17 t 15.
Hence, By 1% Sylow theorem there exists Sylow 17 — subgroupsin G each of order 17.
Let » = number of Sylow 17 — subgroups.
Then, by 3 Sylow theorem,

rlisl  and v =1(mod17)
Hence,
i r|icl —  ref1,3,51517,51,85,255)
(i) r=1(mod 17) = r=1
Thus, there exists only one Sylow 17 — subgroups in G say H.
Then, by Second Sylow theorem, H must be normal in G.
As|H| = 17, H isaproper normal subgroup of G.

Hence, G isnot smple.

(7) Show that no group of order 30 issimple.

Solution : Let G beagroupwith |G| =30 =5 X% 3 x 2.

(i) Hence, By 1% Sylow theorem, G contains Sylow 5 — subgroups each of order 5.
Let r = number of Sylow 5 — subgroups of G.
Then, by 3" Sylow theorem,

rlIGI and r = 1(mod5)

Hence,
i) r|licl=30 = re{1,2,35610,1530)

(i) r=1(mod5) = 5|r—1.Hencer = 1oré6.
Suppose G contains six Sylow 5 — subgroups. Let they be H,, H,, H;, H,, Hs and Hy be
distinct Sylow 5 — subgroups.
Then, O(H) =5 V i, 1<i<e6.
HinHj={e} fori=+j
[Ifx € H;nH;andif x # e, then(x) = H; = H;; #]
Hence, each H; contains four elements each of order 5. Hence, there exists 6 X 4 = 24

elementsin G each of order 5.
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(ii) By 1% Sylow theorem G contains Sylow 3 — subgroups each of order 3.
Let r = number of Sylow 3 — subgroups of G.
Then, by 3™ Sylow theorem,

rlIGI and r = 1(mod 3)
Hence,

i) r|licl=30 = re{1,2,35610,1530)

(i) r=1(mod3) = 3|r — 1. Hencer = 1 or 10.

Suppose G contains ten Sylow 3 — subgroups each of order 3. Let K, K5, ..., K;, denote
distinct Sylow 3 — subgroups of G. Asin (i) we can prove that G contains 20 distinct
elements each of order 3.

(ii)Thus, from (i) and (ii), if G contains six Sylow 5 — subgroups and ten Sylow 3 —
subgroups then G must contain 24 + 20 = 44 distinct elements which is not true as
|G| = 30.

Hence, G must contain either only one Sylow 5 — subgroup or only one Sylow
3-subgroup. Thus in either the case, G contains a proper normal subgroup by 2™ Sylow
theorem.

Hence, G isnot simple.

(8) No group of order 36 issimple.
Solution : Let G beagroup with |G| = 36.
|G| =36 =3%2x%x2%2and 3} 4.
By 1% Sylow theorem, G contains Sylow 3 — subgroups each of order 9.
Let r = number of Sylow 3 — subgroups of G.
Then, by 3 Sylow theorem,

rlIGI and r = 1(mod 3)
Hence,
(i) r||G| =36 = re{1,2346,912 18,36}
(i) r=1(mod3) = 3|r—1.Hence r = 1or4.
Suppose G contains four Sylow 3 — subgroups each of order 9. Let H,K be any two

distinct Sylow 3 — subgroups. Then |[H| = 9 and |K| = 9.
We know that,
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|H| - K|

|HK| =
|H N K|

Hence, HK < G implies|H N K| = 3.

[ HNK<H = OHNK)|0(H) = OHNK)|9
= O0(HNK)€{1,3,9}
BuuOHNK)=1 = |HK| = 81,; impossible.
and OHNK)=9 = H = K; whichisnot true. ]
Consider thegroup N[H N K].

As3|o( nK), HnK < N[H n K] and hence N[H n K]| € {18, 36} as

IN[H n K11| 161 = 36.

If N(HN K) =18 then index of N(HNK) in G is 2 and then N(H N K) is a proper
normal subgroup G, proving that G is not simple.

If IN(HNK)| =36,thenN[HNK]=G.

Inthiscase, H N K will be a proper normal subgroup of G.

Hence, G isnot simple, in either the case.

(9) Show that Sylow p-subgroups of afinite group G isuniqueif and only if it is normal.
Solution :
Only if part :

Let G has aunique Sylow p-subgroup say H.

Toprovethat H < G.

H isa Sylow p-subgroup = gHg ! isalso a Sylow subgroup of G. By uniqueness

we get,
H=g'Hg forall g € G.
Hence, Hisnormal inG.
lfpart :

Let H be a Sylow p-subgroup in agroup of G.

Let H benormal. If K isanother Sylow p-subgroup of G then, by 2" Sylow theorem,
K=gHg! for someg € G.

But H being normal,
g 'Hg =H

Thus, K = H. This showsthat H is the unique Sylow p-subgroup.
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(10) Let H < G such that index of H in G isprimeto p. (p isany prime number). Show that H
contains every Sylow p-subgroup of G.

Solution : Let |G| =p™-m, ptm.ie (p,m) = 1.
By data, index of H in G isprimeto p.

Ll iIsprimeto p
|H| '

p™m
|H|

Assumethat |H| = p™ - q where (p,q) = 1.

isprimetopand |H||p™ - m

As|H| = p™ - q, H contains a Sylow p-subgroup say K.
Then |K| = p™, hence we get K is also a Sylow p-subgroup of G. If T isanother Sylow p-
subgroup of G weget T = g~1Kg for some g € G. Hence
T=g'Kg<g'Hg=H (asH < G)
showsthat T < H.
Thus, H contains all the Sylow p-subgroups of G.

(12) |G| = 108. Show that G contains a normal subgroup of order 27 or 9.
Solution : |G| = 108 =33 x 22 =3%-4and3 ¢ 4.
Hence, by Sylow first theorem, 3 Sylow 3-subgroups each of order 27.

Let r = number of Sylow 3-subgroupsin G.

Thenrl |G| and r = 1(mod 3).
Hence, r €{1,2,3,4,6,9,12,18,27,36,54,108}

3|r—1 = r=1or4.
Casel :r =1.
Then G contains only one Sylow subgroup of order 27 which is normal. (by second
Sylow theorem).
Casell : r = 4.
Then G contains four Sylow 3-subgroups of order 27.
Let H and K denote any two distinct Sylow 3-subgroups. Then

|H| - K|

|HK| =
|H N K|

27X27 . 27%X27
i.e.
|H N K| 108

will imply |HK| = < |HNK].

Further,
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HNK <G = |HNK|||G] = |HNK||108.
Hence, |H N K| = 9 or 27.
But |[HnK|=27 = H = K, whichisnot true.
Hence, |[H N K| = 9.
Now consider N[H N K].
(HNK)< H and (HNK)<K

as OHNK)=3% and O(H) =33.
[ Any subgroup of order p™~! isnormal in a subgroup of group of order p™ ]
Hence, H c N[H N K] and Kc N[HNnK].

Hence, the normal subgroup HK is properly contained in N[H N K].
|H|-|K| _ 27 %27
I[HNK| 9

Therefore, IN[H N K]| > |[HK| = 81

But then |HK| = = 81.

Hence, IN[H N K]| = 108 as|N[H n K]|||G|] and |N[H nK]| > 81.
Thus, N[H N K] = G. But thisshowsthat H N K isnormal in G.

Theorem 4.4.9 : Let G be afinite group with |G| = pq where p and q are distinct primes and
p <q.
(i) G containsanormal subgroup of order q.
(i) G isnotsimple.
(@iii) 1fp+tq—1,then G iscyclicand abelian.
Proof :
(i) 1Gl=pq qtp.
Hence, by 1% Sylow theorem G contains Sylow g-subgroups of order q.

Let r = number of Sylow g-subgroups. Thenr | |G| and r = 1(mod q)
Hence, r € {1,q,p,pq}
qlr—-1 = r=1.
Thus, there exists only one Sylow g-subgroups of G.
As G contains only one Sylow g-subgroup say H then O(H) = q and H < G by 2™
Sylow theorem.

(i) AsG contains aproper subgroup normal subgroup H, G isnot simple.

(iii) |G| = pq and p t q, by 1% Sylow theorem G contains Sylow p-subgroup of order p.
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Let r = number of Sylow p-subgroups.

Thenr||G| and r = 1(mod p) by 3 Sylow theorem
Hence, r € {1,p,q,pq}. Asp |r —1weget r=1.(~ p+tq—1bydaa)
Thus, there exists only one Sylow p-subgroupsin G of order p.
Let H denote the Sylow g-subgroup and K denote the Sylow p-subgroup of G.
Then
() HnK ={e}.

IfxeHNKandifx#ethen xe€eH = 0(kx)=q

x€EK = 0(x)=p.

Asp # q wemust have H N K = {e}.

(i) HYK2HandHVK 2K = HVK=G

[+ oV |pg, oun]owvio, o |owviy =  owvK) =pq ]
Hence, G = H X K = Z; X Z,,.

Hence, G iscyclic and abelian.

Example4.4.10: |G| = 15 = G isabdian and not simple.
Solution: |G| =15 =5-3.5and 3aredistinct primesand 3 + 5 — 1.

Hence, by theorem 4.4.9, G is abelian and not smple.

. G
Example4.4.11: Let G be afinite group. Prove that |ﬁ| * 77.
Solution: Assume that |L| =77.
Z(G)

G
|%|—11-7 and 7+11—-1.

Hence, by theorem, If 0(G) = p - q, where p, g are prime numbers such that p t g — 1
, . G . ,
then G iscyclic, 720 iscyclic.
Butiiscyclic = Gisabelian
Z(G)
= Z(6G)=G
G
— |TG)| =1

=  acontradiction.
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Hence *77.

7w

Example4.12: Provethat |%| # 33 for any finite group.

. G
Solutlon:Let|%|:33:11-3 and 3+(11-1=10).

As3 t (11 — 1) by theorem 4.9, % isabelian and Cyclic.

G . . . .
Hence, as% isCyclic, G isabelian.

o G -
But then Z(G) = G and in this case |TG)| = 1, acontradiction.

Hence, + 33 for any finitegroup G.

il

Example4.4.13: |G| = 255 = G isabelian and not simple.
Solution: |G| =255=17%x5x%x3=17x15and 17 } 15.
(i) By 1% Sylow theorem, G contains Sylow 17 — subgroups each of order 17.
Let r = number of Sylow 17 — subgroups of G.
Then by 3 Sylow theorem,
rlIGI and r =1(mod17)
Hence,r € {1,3,5,15,17,51,85,255}.
17 |r -1 = r=1.

Thus, there exists only one Sylow 17-subgroup in G of order 17.

Hence, by 2™ Sylow theorem, G is not simple.

Let us denote by H the Sylow 17 — subgroups of G. % is defined.

H

G
|H| 17
G . .
Hence 1S abelian. (Seetheorem 4.4.10)

Hence, ¢' € H (See theorem 2.1.5(iii))

Hence, ¢' < H.

By Lagrange stheorem, |G'|||H| =17 = |G'| = 1or17.

(ii) By 1% Sylow theorem, G contains Sylow 3 — subgroups each of order 3.
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Let r = number of Sylow 3 —subgroupsin G.
By 3" Sylow theorem,
|G| and r = 1(mod 3)
Hence, r = 1 or 85.
(iii)By 1% Sylow theorem, G contains Sylow 5 — subgroups each of order 5.
Let r = number of Sylow 5 — subgroupsin G.
By 3" Sylow theorem,
|G| and r = 1(mod5)
Hence,r = 1 or 51.
(iv) K 2 G and hence %is defined.

Now, if K is Sylow 3-subgroup then

| | |G| 17X5%3

=17 X 5.
K|

and if K is Sylow 5-subgroup then

| | |G| 17X5%3

=17 x 3.
K|

Thus, in either the case by theorem 4.4.9 % is abelian.
Hence, G' € K.

Hence, ¢' < K and |G'| | |K] .

If K is Sylow 5-subgroup then |G'| =1 or 5

and if K is Sylow 3-subgroup then |G| = 1 or 3.

AsG' 2 G weget |G'| € {1,3,5,17}.

Hence, |G'| = 1. i.e.G' = {e}.

But then G must be an abelian. (|G’| = 1 iff Gisabelian).
Thus, the group of order 255 is abelian and not simple.

Example 4.4.14: Find all the Sylow 3-subgroups of S,. Verify that they are all conjugate.
Solution: Let G = S,. Then |G| = 24 = 23 x 3.

By 1% Sylow theorem, G contains Sylow 3-subgroups of order 3.

Let r = number of Sylow 3-subgroups.

Then, by 3" Sylow theorem,
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r||G| and r = 1(mod 3)
rlici=rl2a = re@234681224

r=1(mod3) = 3|r—1.Hence r =1 or4.

Casel :r =1.

Then G contains only one Sylow 3-subgroup. It must be normal by 2™ Sylow theorem.
Casell: r=4.
Let G contains four Sylow 3-subgroups each of order 3 Hence each must be a cyclic
group generated by the 3-cycles
1,2,3), (1,24, (1,34 and (2,4,3)

These cyclic groups are conjugate to each other and they are distinct.

Example 4.4.15. |G| = 2p, p is prime, show that either G is cyclic or G is generated by
{a, b} withtherelation a? = e = b? and bab = a™ 1.

Solution: |G| =2 xp and p t 2. Hence by 1% Sylow theorem, G contains Sylow p-
subgroups, each of order p.
Let r = number of Sylow p-subgroups.
Then by 3" Sylow theorem,

r||G| and r = 1(modp)
r||G| = re{l,2,p?2p}

r=1(modp) = plr—l.Hencer=1.
Thus, G contains only one Sylow p-subgroup say H.
|Hl=p =  Hiscydlic.

G G 2
Let H = (a). Then |—| _led_z_,
H [H| P

Hence, % is Cyclic group of order 2.
OH)=0p = H cG.
Select b € G suchthat b ¢ H. ThenG = {e,qa, ...,a?~ 1, b, ba, ..., baP~1}.
Asb € G, 0(b)|0(G) and hence O(b) = 2 or p.
If O(b) =p, then b € (a) = H as H is the only subgroup of G of order p; which is not
true. Hence, 0(b) # p.
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Hence, 0(b) = 2. Then b? = e.

Thus, a? = e = b?

Now, consider the element bab™'. As{a) isnorma in G, bab~! € H = {a).

Thus, bab*=a* = b Y(bab V)b = b 1a*b
=  (b™'h) a(b~'h) = b takp
= eae=b1ld"b
= a=b1ld*b
= a= (b tab)k
=  a=(ab)Fk
= g l=e¢
= plk2 -1
= plek-DK+D
= (k—1)=por(k+1)=p

Cael: p=k—-1 = k=1+p

bab™! = gk = q1*P

=al aP=al-e=a

Q)

Casell: p=k+1 = k=p—-1
bab™'=ak=aP™! =aP-al=e-al=qat
Thus, bab™'=a or bab ! =q7?
Thus, ba = ab or bab = a1t (+ b2=e = b 1=b).
Thus,ifp=k—1 e k=1+p, G isanon abelian group generated by {a, b}

with therelationsa? = e = b? and bab = a™ 1.

If p = k + 1then G isabelianand 0(ab) = 2p.i.e. G iscyclic of order 2p.

Example4.4.16: 0(G) = p?, p is a prime. Show that G is cyclic or G is isomorphic to

direct product of two cyclic groups each of order p.

Solution : 0(G) = p? = G isabdian.
If G iscyclic then we are through.
Let G be not cyclic.

Asp|0(G), by Cauchy’stheorem 3 a € G suchthat O(a) = p. Let H = (a).

Then O(H) = p. Hence, H # G.

Select b € G suchthat b € H. As0(b) |0(G) weget, 0(b) = 1,p, p?.
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Asb & Hweget, b + e.
Hence 0(b) # 1.
If 0(b) = p?, then G will be cyclic, not true.
Hence, 0(b) = p. Let K = (b).
HNK<H = OHNK)|0O(H) =p.
Hence, O(H N K) = 1 orp.
If O(HN K) =pwillimply H = K, whichisnot true. HenceO(H N K) = 1.
Now, G isabelian= H < G and K < G. Hence HK < G.

|HK| _ HIIKI _p'D = pz = O(G) (Seetheorem 126)

T Hokl 1
But HK = G.
As H and K are norma subgroups of G with HNK ={e} and HVK = G we get
G = H X K. (seetheorem 1.2.1)
This compl etes the proof.

Exercise o

1. Show that agroup of order 148 cannot be simple.
2. Show that a group of order 108 cannot be simple.
3 Show that agroup of order 144 cannot be simple.
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CHAPTERII : RING OF POLYNOMIALS

Unit1:
1.1 Ring of Polynomials R[x] : Definition and Examles.
1.2 Basic Propertiesof R[x].
1.3 Division Algorithm.
1.4 Euclidean Domain and Unique Factorization Domain.
1.5 Zero of the Polynomial.
1.6 lrreducible Polynomiasin R[x].

1.7 Factorization in F[x] and Eisenstein Criterion.

1.1 Ring of Polynomials R[X] :
Definition 1.1.1 : Let R be aring. A polynomia f(x) with coefficients in R and in an

indeterminate x is an infinite formal sum

Z a;ixt =ag+ ax + ax? 4+ -+ apgx™ + -
i=0
where, a; € R and a; = 0 for al but finite number of values of i. The a; are called
coefficients of f(x). We simply write f(x) as
f(x) =ag+ayx + azx® + -+ a,x"

whena,,; = 0forali > 1.

Examples:
(i) f(x) =x2+2x+ 5isapolynomial with coefficientsin Z.
(i) f(x) = x?+ 1isapolynomial with coefficientsin Z,.
(Heref(x) =1-x24+0-x+1)

Definition 1.1.2: Let f(x) =ag+ a;x + ax?+ -+ a,x™ be a polynomia with
coefficients in aring R. If there exists some i > 0 such that a; # 0, then the largest
value of such i is called the degree of the polynomia f(x). If no such i > 0 exists, then
we say that f(x) isof zero degree.
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Examples:
(i) The degree of the polynomia f(x) = x> + 4x* + 3x2? + 2x + 7 with coefficients
in Z isof degree5.
(i) fx)= g +0-x+0-x2 f(x) isapolynomia with coefficientsin Q. The degree

of f(x) iszero.

Definition 1.1.3: Let R bearing and let R[x] denote the set of polynomials with coefficients
in R and in anindeterminate x. Let f(x), g(x) € R[x] where
f(x) =ag+ ajx + ax? + - + ax™, (a; ER)
and g(x) = by + byx + byx? + -+ + by x™, (b; €R)
Wedefine’ +"and’ -’ of f(x) and g(x) asfollows.
(i) fO)+g(x)=co+cix+cx?+-+cx™,  (m<n),
where, ¢c; = a; + b;, V i. [ Here by, =0fori > 1]

(i) f(x)-g(x) =dy+dix+dx?+ -+ dpymx™™,

where, d,= Y, gbj, 1<i<n, 1<j<m)
i+j=k

i.e. dy = agby + a1by_1 + -+ ayby.
Obviousdly,
f(x) + g(x) € R[x] and f(x) - g(x) € R[x].

Remark 1.1.4: (R[x], +, - )isaringwhere’ +"and ' -’ areasdefined in (i) and (ii) in the
definition 1.1.3. Thisring is called the polynomial ring over thering R.
If R isaring and x and y are two indeterminates, then we can form the ring
(R[x])(y), that is, the ring of polynomialsin y, with coefficients that are polynomialsin
X.
As (R[x])(y) = (R[y]D(x), we dencte thisring by R[x, y], the ring of polynomiasin
two variables x and y with coefficients in R. We can similarly define the ring

R[xq, x5, ..., x,] of polynomiasinthe 'n’ indeterminate x; with coefficientsin R.
1.2 Propertiesof R[x] :

Theorem 1.2.1:
Let R bearing. Then R isasub-ring of the ring of polynomials R[x].

Algebra Page No. 81



Proof : Leta € R, wewrite
fX)=a+0-x+0-x24+--4+0-x" (n finite)
Then f(x) € R[x] and is called a constant polynomial over thering R.
Thus, if a,b € R, then a, b are constant polynomials in R[x] and as members of R[x],
their addition a + b and multiplication a - b are again the constant polynomialsin R[x].

Hence, R isasubring of R[x].

Theorem 1.2.2 : R[x] isaring of polynomials over aring R. R[x] is commutative iff R is
commutative.
Proof : Only if part :
Let R[x] be commutative. As, sub-ring of a commutative ring is commutative, we get
R iscommutative.

If part : Let R becommutative.
Let f(x), g(x) € R[x] ,

where, f(x) =ay+ ayx + a,x? + -+ a,x", (a; ER)
and g(x) = by + byx + byx? + -+ + by x™, (b; €R).
Then,

f(x) - g(x) = agby + (aghy + ayby) x + - + Z abj | xk 4 -+ apbpx™™,
i+j=k

AS R iscommutative,

aobo:boao,a0b1+a1bo:b0a1+b1a0, cen Z alb] = Z bja1 g seny
i+ =k jrizk

Aypbm = bpay.
Hence,

f(x) - g(x) = aghy + (aghy + ajby)x + - + Z abj | xk 4 -+ apby ™™
i+j=k

= boao + (boay + byag)x + -+ | Y, bjg | x* + -+ bpa,x™™
jri=k

=g() - f(x)

This shows that R[x] is commutative.
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Theorem 1.2.3: Let R bearing. R[x] has unity iff R has unity.
Proof :
Only if part :
Let R[x] be aring with unity.
Define ¥ : R[x] — R by
Y [ag + ayx + a,x? + -+ a,x"] = a,
is an onto homomorphism, we get R has unity. [ Since homomorphic image of a ring
with unity contains the unity. |
If part ©
Let thering R contain the unity element say 1.
Then, consider the constant polynomial 1+ 0-x +0-x? + -+ 0 - x™ ( n finite) will

be the unity element of R[x].

Definition 1.2.4 : Let f(x) = ay + a;x + a,x? + --- + a,x™ be a non zero polynomia in
R[x]. We say that degree of f(x) isnifa, # 0 and a,,,; = 0 fori > 1.
Wewrite, deg f(x) = n.
Note that, the degree of a zero polynomial is not defined.
degf(x) =0 if f(x)=ay+ax+ax*+--+a,x"™ with ¢ =0 for i >1 and
ap # 0.

i.e. degf(x)=0if f(x)isaconstant polynomia in R[x].

Theorem 1.25: Let R be aring and f(x), g(x) be non zero polynomias in R[x], where
degf(x) =n and degg(x) =m. If f(x)+gkx) and f(x)- -g(x) are non zero
polynomialsin R[x], then
(i) deg [f(x) + g(x)] < max(m,n)

(i) deg [f(x)-g(x)]=n+m
(iii) If R isanintegral domain, deg [f(x) - g(x)]=n+m
Proof : Let
f(x) =ay+ aix + a,x? + -+ a,x"
whereq; e Rfor0 <i<nanda, # 0and a,,; =0, foreachi > 1.
Let g(x) =by+ byx + byx? + -+ + by x™

whereb; € R for 0 < j <mandb,, # 0 and b,,; = 0foreachi > 1.
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(i) fx)+gx) =(ay+by) + (a; + by)x + -+ a,xt, wheret = max (n, m).
Hence, deg [f(x) + g(x)] <t = max(m,n)
(i) f(x)-g(x) = (agho) + (aphy + arbo)x + -+ + (@nby)x™™.
This shows that
deg [f(x) - g()]<t=n+m
(iii) Let R bean integral domain.
Then,deg f(x) =n = a, #0.
degg(x)=m = b, #0.
AsR isanintegral domain,
a, #0, b, #0 = a,b,, #0.
Hence, deg [f(x) - g(x)] = n + m. ... See (i)

Theorem 1.2.6: R isan integral domain iff R[x] isan integral domain.
Proof :
Only if part :

Let R be an integral domain.

To provethat R[x] isanintegral domain.

Let f(x) #0,9(x) # 0inR[x] suchthat f(x)-g(x) =0.
Let f(x) =ay+ a;x + ax? + -+ a,x™
and g(x) = by + byx + byx? + «++ + by x™.

Let f(x) and g(x) both be constant polynomials.
Letf(x)=a, and g(x) = b,.
Then, f(x) #0 = a, #0 and g(x) #0= b, # 0.
AsR isanintegral domain, a,b, # 0.
i.e.  f(x)-g(x) # 0; whichisnot true.
Hence, one of f(x), g(x) must be anon constant polynomial.
Let f(x) beanon constant polynomial. Hence deg f (x) = 1.
Hence, deg f(x) + degg(x) = 1.
AsR isanintegral domain

deg(f(x) - g(x)) = deg f(x) + degg(x) = 1
Thisleadsto the contradiction as f (x) - g(x) = 0.
Hence, f(x)-g(x) =0 = f(x)=0 or g(x)=0.
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i.e.  R[x]isanintegral domain.
If part :
Let R[x] be an integral domain. Asthering R isasubring of R[x], R must be an integral

domain.

Remark 1.2.7 : If F isafield then F[x] may not be afield.

Proof : AsF isafield, F isan integral domain. [ Result : Every field is an integral domain. ]
Hence, by theorem 1.2.6, F[x] is an integral domain.
Consider the non-zero polynomia f(x) € F(x) given by

fX)=0+1-x+0-x%+--+0-x".
We will provethat f(x) has no multiplicativeinversein F[x].
Let, if possible, g(x) € F[x] such that

g(x) = by + byx + byx? + -+ + bp,x"
and f(x) - g(x) = unity in R[x].

=14+0-x+0-x24+--4+0-x"
Thus, by comparing the coefficients, we get
1=0; acontradiction.

Hence, f (x) does not have amultiplicative inversein F[x]. Hence F[x] isnot afield.

Theorem 1.2.8: Let F be afield then F[x] is an Euclidian domain.
Proof :
() Fisafidd = F isan integral domain.
= F[x] isan integral domain. ... Seetheorem 1.2.6
(1) Let f(x) € F[x] beanon-zero polynomial. Define d(f (x)) = deg f(x).
Then, d(f(x)) isanon-negative integer.
(i) Forf(x)# 0and g(x) # 0inF[x], we get
d(f(x) - g(x) =d(f(x)) +d(g(x)) ... Seetheorem 1.2.5
Hence, d(f(x)) < d(f(x) - g(x)) asd(g(x)) = 0.
(i) Let f(x), g(x) benon zero polynomialsin F[x].
Toprovethat 3 q(x),r(x) € F[x] such that
fO) =qx) - g(x) +7r(x)
where r(x) =0 or d(r(x)) < d(g(x)).
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Casel: d(f(x)) <d(g(x)).Thenf(x) =0-g(x) + f(x)
and the result followsin this case.

Casell: d(g(x)) <d(f(x)),
Let f(x)=ao+ax+ -+ a,x", (a;eFanda, #0)

and g(x)=bg+ bix+ -+ b,x™, (b;e Fandb,, #0)
d(g(x) <d(f(x)) = m<n.
Define p(x) = f(x) — [anby'x"™] g (x).
Hence,
p(x) =[ag + a;x + -+ a,x™] — [bg + byx + - + bpyx™]| [aybtx™™]
shows that the coefficient of x™ inp(x) isa, — (a,b;;! - by) = a, —a, = 0.
Hence, p(x) = zero polynomial or d(p(x)) < deg f(x) = n.
Subcasel : p(x) isazero polynomial.
Then, p(x) = f(x) — a,b;tx™ ™« g(x) will imply 0 = f(x) — a,b;}x™ ™ - g(x).
Hence, f(x) = a,blx™ ™ - g(x) + 0.
Taking q(x) = a,b;'x™ 1 and r(x) =0, theresult follows.
Subcasell : p;(x) # 0 and degp(x) < deg g(x).
Assume that the result is true for all the non zero polynomialsin F[x] of degree less
than the degree of g(x) = m.
Then, by this assumption,
p(x) = q1(x) - g(x) + 7 (x),
wherer(x) =0 or degr(x) < degg(x).
Hence, f(x) — apbp!x™ ™™ - g(x) = q1(x) - g(x) + ().
Thus,  f(x) = [anby'x™™™ + q1(x)] g(x) + (%)
e, fO)=q()-g)+7r(x)
wherer(x) =0 or degr(x) < degg(x)
This shows that the result is true in this case a so.

From (1) and (I1), we get F[x] is an Euclidean domain.

Asevery Euclidean domain isa principal idea domain we get,
Corollary 1.2.9: For afield F, F[x] isaP. 1. D.
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1.3 Division Algorithm in F[x]:
Theorem 1.3.1: Let F beafield. Let
f(x) =ag+ayx + azx® + -+ a,x"
and g(x) = by + byx + byx? + -+ + by x™
be two polynomialsin F[x] with a,, # 0 and b,,, # 0 withm > 0.
Then, there are two polynomials q(x) and r(x) in F[x] such that
fx)=q(x) -gx)+r(x) with degr(x) < deg g(x).
These polynomials g(x) and r(x) are unique.
Proof : DefineS = {f(x) — g(x) - s(x) / s(x) € F[x}.
Then, S#¢. (asf(x)=f(x)—gkx)-0€S)
Select r(x) € S such that degr(x) isminimal.
Then, rx)e€S = r(x) = f(x) —g(x) - q(x), for someq(x) € Flx].
Hence, f(x) =g()-qx)+r).
If r(x) = 0 thenwe arethrough.
If r(x) # 0 thenlet
r(x) = cext + ceqxt 1+ + ¢, wherec; € F and ¢; # 0.
Hence, degr(x) =t.
We want to provethat t < m.
Lett « m. Thent > m.
Consider the following polynomial in F[x].
fG) = q(x) - g(x) — [eebp'1xt ™™ - g(x)
= f(x) —[q() + ctby'x*™] - g(x)
As q(x) + cbptxt™™ € F[x],
weget, f(x) —q(x)-g(x) = [cby'lxt™™ -gx) € S
But ) —q(x) - g(x) — ccby'x*™™ - g(x)
= 1(x) — bt xt T by x™ + by x™ 1 + o+ by
= r(x) — [c;x* + terms of lower degree]
= [cxt + ceoqxt™ 1+ -+ ¢g] — [c;xt + terms of lower degree]
Here, f(x) — q(x) - g(x) — ¢;btxt™™ - g(x) isapolynomial of degree < t =
degr(x) and isamember of S.
This contradicts the fact that r(x) isapolynomial in S of minimal degree.

Hence, our assumption that t > m iswrong. Hencet < m. i.e. degr(x) < deg g(x).
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Unigueness:
Let fO)=g9(x) - q1(x) + 11 (x)
and fO) =g() - qz(x) +12(x)
where degri(x) <m and degry(x) <m, q,(x),q,(x),1r(x),rp(x) € F[x].

Subtracting, we get,

9(0)[g1(x) — g2(x)] = rp(x) — 711(x) .. (D)
As deg[r,(x) — 11 (x)] < degg(x)
we get (1) holds only when

q1(x) — q2(x) = 0 = q,(x) = g (x).
and r(x) — r(x) =0 = nrnx)=rk).

This compl etes the proof.

1.3.2 Examples o

Ex1: Let f(x) =x%+3x°+4x?2—-3x+2 and g(x) =x?+2x—3 be in Z,[x]. Find
q(x) andr(x) in Z;[x] suchthat f(x) = g(x) - q(x) + r(x) withdegr(x) < 2.
Solution: Let  f(x) = x®+3x>+4x2—-3x+2
and g(x)=x*>+2x-3
bein Z,[x].
9(x) f(X) | q(x)

XP+2X-3| X+ +0- X 0 X3+ 4x2=3x+2 | X} + X3+ X2+ X+5

_XGi- 2x5;3x4

x°+3x*+0-x°

X2 + 2x4; 3x°3

x* +3x3 + 4x?

x* +2x34—_3x2

x3+0-x% —3x

X2 + 2x% —3x
- = +

5x°+ 0-X + 2

5x% + 3x —1
- - +

r(x)=4x+3
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Thus,  f(x) =g(x)-qx) +7r(x)
where q(x) =x*+x3+x2+x+5

=xt+x3+x2+x-2 ... (6=-2inZ,).
and r(x) =4x+3

Ex2: Let f(x) =x°>+x3+x and g(x) = x* + 2x3 + 2x in Z3[x]. Find g(x) and r(x) in

Zs[x] suchthat f(x) = g(x) - q(x) + r(x) withdegr(x) < 4.
Solution :

969 9 A

P23 +0-x%+2x+0| X+0-x* + xX®+0-x%+x +0 | x+1

X+ 2-x* +0-x3+2-x240-x

3

x4+ 3+ X2+ x40

_x“i2x3 iO-leL 2-x_+0

r(x) = 2x3+x%+2x

Thus,  f(x) =g(x)-q(x) +r(k),
where q(x) =x+1, r(x) =2x3 +x? + 2x and degr(x) < 4.
Ex3: Let f(x) =x*+3x3 4+ 3x% + x + 2 and g(x) = 4x3 + 4x? 4+ 3x + 3 in Zg[x]. Find
q(x) andr(x) inZs[x] sothat f(x) = g(x) - q(x) + r(x) withdegr(x) < 3.
Solution :

9(x) f(x) | a(x)

Ax3+4x%+3x+3 x* + 3x343x% + x+ 2 ‘ 4x+3

x* +x342x%+2x

2x3 4 X2 +4x+2

_2x34_r2x24_r4x_+4

r(x)=4x%+3

Thus,  f(x) =g(x)-qx) +7r(x),
where q(x) =4x+3, r(x) =4x?2+3and degr(x) < 3.
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1.4 Euclidean Domain And Unique Factorization Domain :
Definition 1.4.1 : An integral domain is a commutative ring R with unity containing no
divisors of O.

ie. ifa-b=0 fora,b € R theneithera =0o0rb = 0.

Definition 1.4.2: Let R be a commutative ring a,b € R,a # 0. We say a divides b if 3
c € Rsuchthat b = ac.
We writethisby a/b. Inthiscase a is caled afactor of b.

Definition 1.4.3: Let R be acommutativering. Let a,b € R. Anelement d € R is called the
greatest common divisor of a and b if
(i) d/aandd/b.
(i) 1f3ce€Rsuchthat c/aandc/bthenc/d.
We denote thisby d = gcd(a, b).

1.4.4 Remark :
(1) gcd(a, b) need not be uniquein R.
For thisconsider R = Zg. Then
2®s3=6 = 2/6
2@g2=4 = 2/4
Again,if c/6 and c/4 thenc/6 — 4. i.e c/2.
Thus, 2 = gcd(6,4).
Again,
1®56=6
6®g6=14
Hence, 6/6 and 6 /4.
If ¢/6andc/4 wegetc/6.
Hence, gcd(6,4) = 6.

Hence, 2 and 6 are g.c.d. in Zg for the same pair (4, 6).

(2) Existenceof g.c.d. for any pair a, b in acommutativering R is not compulsory.

e.g. Consider thering R of even integers.
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4,6 €R.2/4inRbut2t6inR.As2-3=6but3 ¢R.
Thus, gcd(4, 6) does not existin R.

Definition 1.4.5 : Let R be a commutative ring with unity. a, b € R are called associates if
a = ub for someunitu in R.

[ uisaunitin R means multiplicativeinverseu™?! of u existsinR |

Theorem 1.4.6 : Let R be an integra domain with unity. If d, = gcd(a,b) in R, then
d, = gcd(a, b) inR, iff d; and d, are associates.
Proof :
Only if part :
Letd, = gcd(a, b) and d, = gcd(a, b).
Then, d;/a and d,/b.
d,/a and  d,/b.
Hence, d,/d, and d,/d; ... by the definition of gcd.
Hence, d; andd, are associates.

If part :
Let d, and d, be associatesand d; = gcd(a, b).

d, =ud, for someunitu inR.

Hence, d,/d;.

But d,/a and d,/b.

Hence, d,/a and d,/b. .. (D

Let x € R such that x/a and x/b.
Then d; = gcd(a,b) =  dy/x.
= x =dt, for somet € R.
=@wldy)t
=d,(u™'t)
But this shows that d, /x.
Hence, d, = gcd(a,b). .. (2

Definition 1.4.7 : Let D be UFD. A non constant polynomial
f(x)=ag+ax+ -+ ax"
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in D[x] is primitiveif the only common divisors of al the a; are units of D.

1.4.8 Examples:
(i) 4x%+ 7x + 3isprimitivein Z[x].
(i) 3x%+ 6x + 9isnot primitivein Z[x] as3isnot aunitin Z.

(iii) Any non constant irreducible in D[x], where D isUFD, is primitive.

Theorem 1.4.9: Let D beaUFD. Let f(x) € D[x] be anon constant polynomial.

Then, f(x) = (¢) - g(x), where g(x) is a primitive in D[x]. The element ¢ is unique
upto aunit factor in D and the polynomial g(x) isunique up to aunit factor in D.

Proof : Let f(x) =ay+ +ayx + -+ a,x", (a, # 0) be a nonconstant polynomia in
D[x]. The coefficients ay, a4, ...,a, in D can be factored into a finite product of
irreduciblein D, uniquely upto order and associ ates.

Assume that each coefficient of f(x) is factorized in this way. Let p; denote the
irreducible in D appearing in the factorization of one coefficient. If P; divides all
coefficients, then p; will be in the factorization of all coefficients. Assume that no other

associates of p; appears in the factorization of any coefficient of f(x).

Define
a;
[T
i

where a; isthe greatest integer such that pf‘i divides al the coefficients of f(x).
Inthiscase f(x) = (c) g(x) wherec € D and g(x) € D[x] is primitive by construction.
Unigueness:

Letif possible,
fx) = (c) g(x) and
f(x) = (d) h(x) in D[x].

where g(x) and h(x) are primitivein D[x] and c,d € D.
Now, (c)g(x) = (d)h(x) implies each irreducible factor in ¢ must divide the
irreducible factor in d and conversely.
By cancelling the irreducible factors from ¢ and d, we get,
(W) g(x) = (v) h(x)

whereu and v are unitsin D.
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But this shows that ¢ is unique up to the unit factors and the primitive polynomia g(x)

isalso unique up to unit factors.

Theorem (Gauss) 1.4.10 : Let D be UFD. f(x),g(x) € D[x] be primitive polynomials.
Then f(x) - g(x) isaso primitivein D[x].
Proof : Let f(x) =a¢++a;x+ -+ a,x" (a,#0) and
g(x) = by + +byx + -+ by x™, (b, #0)
be two primitive polynomiasin D[x].

Let h(x) = f(x) - g(x).

Then, h(x) = (agbo) + (arbg + aoh)x + -+ Y. (abj)xk + -+ (a;by)x™™
i+j=k

Select any irreducible p in D. f(x) and g(x) being primitivein D[x], p t a; for some i
andp t b; for some.
Let a, bethefirst coefficient in f(x) suchthat p t a,. ie.p/ag, p/ai,...,0/Ar_q.
Let b, bethefirst coefficient in g(x) suchthat p t by. ie.p/by, p/b1,s ..., /bs_q.
The coefficient of x™** in h(x) = f(x) - g(x) is
= (aobrys + a1brys_1 + -+ ar_1bsy1) + arbg + (ary1bs_1 + apyobg_3 + -+
Ar+sbo)
Asp/ay,p/as,..., p/ar—, We get

p/(@obrys + a1bypys—1 + -+ A1 bsy1).
Similarly, p/by, p/b1, ..., p/bs_1 Will imply

P/(@ry1bs_1 + ryabs_z + -+ arys5bo).
Butp t a, andp t by imply p t a,b,. (Seeresult ****),
Hence, p t coefficient of x™*5 in h(x).
Thus, we have proved that any irreducible p € D will not divide all the coefficients of
h(x) = f(x) - g(x).
Hence, h(x) = f(x) - g(x) isaprimitive polynomia in D[x].

Generalization of the statement of Gauss's theorem is as follows.
Corollary 1.4.11: Let D be UFD. The finite product of primitive polynomials in D[x] is
again a primitive polynomial.

Proof : Let f;(x), f2(x), ..., fn(x) € D[x] be primitive polynomials.
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Let f() = fi(x) - fo(x) - s fu(0).

Then, f(x) € D[x].

We will prove the result by induction on ‘n’.

Theresultistruefor n = 2 by Gauss' s theorem.

Let the result be true for n = r say.

e fi(x) - fo(x) - ... fr(x) isaprimitive polynomials.

Consider f;(x) - fo(x)+...- fr(x) * fry1(x) then this will be the product of two
primitive polynomials (fi(x) - fo(x) - ... f(x)) and f,,1(x), and hence a primitive
polynomial in D[x] by Gauss's theorem.

By principle of mathematical induction, the result follows.

1.5 Zero of the Polynomials:
Definition 1.5.1: Let f(x) = ay + a;x + a,x? + --- + a,x™ bein F[x] where F isafield. If
a € F suchthat f(a) = ay + a;a + aya® + -+ a,a™ = 0 (zeroin F ) then a iscaled

azeroof f(x)inF.

Example1.5.2: Findal zerosof x5 + 3x3 + x? + 2x in Zs[x].

Solution : Let f(x) = x> + 3x3 + x2 + 2x and Z; = {0, 1, 2, 3,4}.
i fO=0 = Oisazeroof f(x).
i) f)=1+3+14+2=1+#0 = lisnotazeroof f(x)inZs.
@iy f2)=4=+0 = 2isnotaroot of f(x)inZs.
(iv) fBO=f(=2)#0
v) fAO=f(-1)=-1-3+4+1-2=0.Hencedisrootof f(x)inZs.
Thus, x = 0 and x = 4(= —1) arerootsof f(x) in Zs.

Definition 1.5.3: Let f(x), g(x) € F[x] where F isafield. We say g(x) is afactor of f(x)
if f(x) =g(x)-q(x)for someq(x) € F[x].

In this case we also say that g(x) divides f(x) in F[x].

Example: x + 1 isafactor of x* + 1in Z,[x].
Solution :

Algebra Page No. 94



g(x) f(x) | a)

X+1 x2+1 ‘ X+1

Thus,
f(x)=g(x)-qx), where q(x) =x +1 € Z,[x] .

Hence, x + 1isafactor of x2 + 1inZ,[x].

Theorem 1.5.4: Let F beafield. Anelementa € F isazeroof f(x) € F[x] iff x —aisa
factor of f(x) in F[x].

Proof :

Only if part :
Leta € F beazeroof f(x) € F[x].
Hence, by definition f(a) = 0. By division algorithm, 3 q(x), r(x) € F[x] such that

f(x)=((x—a) -qlx)+rl), wheredegr(x) < 1.
Hence, r(x) must be a constant polynomial in F[x]. Letr(x) = c,c € F.
Thus, f(x)=(x—a) qlx) +c.
Therefore, f(a) =(a—a)-q(a) +c.
= 0=0+c = c=0
Hence, f&) =& —a)- q), q(x) € Flx].
This showsthat (x — a) isafactor of f(x).
If part :
Letf(x) =(x—a)-q(x) for some q(x) € F[x].
Then, f(a) = (a — a) - q(a).
= f(a) =0.

Hence, a isazero of f(x).
Theorem 1.55: Let F beafield and let f(x) € F[x] beanon zero polynomial of degree

n. f(x) hasat most n rootsin F.

Proof : If f(x) hasno zero in F then the result is obvioudly true.
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Leta, € F beazero of f(x). Then by theorem 1.5.4,
f(x)=(x—a) q.(x), wheredegq,(x) =n—1.
If g,(x) has no zeros in F, then f(x) has only one one zero in F and in this case the
result istrue.
If a, € F isazeroof q;(x), then
g (x) = (x—ay) q,(x), wheredegq,(x) = n — 2.
Continuing in thisway, we get,
fO) =& —a)(x—az)..(x —a,) q-(x),
where g,-(x) € F[x] such that g,-(x) hasno zerosin F.
Clearly, r < n.
Clam: beFsuchthatb+#a; V i, 1<i<nwillnotbeazeroof f(x).
i.e. no element of F other than a; will be azero of f(x).
fb)=(®b-a)b-ay)..(b—a) q.(b),
Asb #a;wegethb—aq; #0 V i, 1<i<r.
qr(b) # 0 asq,(x) hasno zeroin F.
AsF isanintegra domain (F being afield) we get,
(b—-a))(b—-ay)..(b—a,) q,(b) #0
i.e. f(b) # 0.
Hence, no element b € F other than a; will be azero of f(x).
Thus, a4,a,,..,a, (r <n)aetheonly zerosof f(x).

Hence f(x) has at most n zerosin F.

1.5.6 Example o

Ex 1: Consider the polynomial
fx)=x*+3x3+2x+4

inZs[x].

As f()=10:3@:2@:4=0  inZs,

we get, 1 € Zs isaroot of f(x).

Hence, fx)=(x—-1)-q,(x) .. (1)
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Tofind q4(x) :

f(x) q:1(x)

x—1 x* + 3x3+ 0-X° +2x+ 4 G+ AX2 + Ax+1
3

x* —x
-7+

4x3+ 0-x2

a4x3— 4x?
— +

4x% + 2x

4x% — 4x
- +

6x +4

X -1
-+

0

Hence, q,;(x) =x3+4x?+4x+1
Again g;(1) =0inZ;s.
Hence, 1isazero of q;(x) € Zs(x).

Hence, g1 (x) = (x—1) g, (x) )

Tofind g, (x) :

@) |
x—1 X3+ 4x% + 4x+1 ‘x2+4
X3 — X2
-7+
4x +1
4x — 4
-+
0

Thus, q,(x) =x*+4
Again  g,(1) =0.
Hence, 1 € Z; isazero of g,(x) € Zs(x).

Hence, g, (x) = (x —1) qg5(x) ... (3
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Tofind gq3(x) :

7:(x) | q3(x)
X+1

x-1 X%+ Ox+4

X2— X
-7+

X+ 4

X -1
-+

0

Thus, gq3(x)=x+1
Thus, from (1), (2) and (3), we get
fO=-Dx-DE-Dx+1)
=(x-1)3 -(x+1).

Ex2: Let f(x) and g(x) bein Z5[x] , where
f(x) =4x3+4x>+3x+3 and
g(x) = 4x? + 3.
Show that g(x) isafactor of f(x) in Zg[x] (or g(x) divides f(x) in Z5[x] ).
Solution :

9 f®) e
A% +3 | 43+ 4x2+3x+3 x+1

_4x3 + Ox 2j::"»x

4%°+3

_4x%+3

0

Thus, fx)=gx) - (x+1)
This showsthat g(x) isafactor of f(x).

Ex 3: Find all the zeros of the following polynomial f(x) = x3 + 2x + 3 in Zg[x].
Solution : f(1) # 0. Hence 1isnot azero of f(x).
f(=1) = 0.Hence—1isazeroof f(x)inZs.
i.e. 4isazeroof f(x).

. (x —4) isafactor of f(x) inZs[x].

Algebra Page No. 98



| q1(x)
X+1 X3+ 2x+3 X +4x+3
_x3J_r4x2

4X% + 2%
_4x2J_r4x

3xX+3

_3x J_r3

0

fx)=(x+1)-(x*+4x+3).
Let g,(x) = x? + 4x + 3.

Again q;(—1) = 0. Hence-1isaroot of g, (x) and hence f (x) in Zg[x].

|QZ(x)
X+1 W24 Ax+3 ‘x+3
_Xzi’X
3X+3
3x+3
0

Thus, f(x) = (x+ D(x+1) - (x+3).
Hence, -1 and -3 are zeros of f(x) in Zs.
i.e. 4and2arezerosof f(x)inZs.

[Since additiveinverseof 1 in Z; is4 and additiveinverseof 3inZs is2].

Ex 4: Show that the polynomial f(x) = x* + 4 can be factorized into linear factors in
Zs[x].
Solution : Let f(x) =x*+ 4. Then f(1) = 0in Zs.

Hence, 1 € Z; isazero of f(x).
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=11 x4y 4 X+ X2+ x+1
x4 —x3
-7+
X2+ 0x?
X3 — x?
-~ +
X2+ 0x
X2 — X
.
X+4
x-1
"+
0
Thus, f()=@G-DE3+x2+x+1) ... (1)

Letq,(x) = x3+x%+x + 1.
Then, q;(x) € Zg[x] and ¢q,(—1) =0 i.e. q(4) = 0.
Hence, (x — 4) = (x + 1) € Zs[x] isafactor of g, (x).

X+1 x3

+X24x+1 x2+1

X3-|-X2

X+1
x+1

0

Thus, f(x) = (x — 1D)(x + 1) - (x? + 1).
Letq,(x) =x*>+1, q(x) €Zs[x] and q,(2) =0.
Hence, 2 isazero of g,(x).

X—2 x2+1 X+2

Thus, f(x) = (x — D(x+ 1)(x —2)(x + 2).
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1.6 Irreducible Polynomialsin R[X] :

Throughout R denotes an integral domain with unity.

Definition 1.6.1: Let f(x) € R[x] and degf(x) =1. f(x) is sad to be irreducible
polynomial over R, if it cannot be expressed as a product of two polynomials g(x) and
h(x) € R[x] such that

0 <degg(x) <degf(x) and 0 < degh(x) < deg f(x).

1.6.2 Remarks:
O If f(x)=g)- -h(x) and if f(x) € R[x] is irreducible, then degf(x) =0 or
degh(x) = 0.

(i) A polynomial of positive degree which isnot irreducible is said to be reducible.

(iii) The polynomial (x? + 1) € Z[x] isirreducible over Z but it is reducible over C as
(x?2+1)eC[x]and (x? + 1) = (x + i) (x — 0).

(iv) Any polynomial of degree 1 over R isirreducible over R.

(v) TheunitsinR and R[x] are the same.

Theorem 1.6.3: Every irreducible polynomial in R[x] isan irreducible element in R[x].
Proof : Let f(x) € R[x] beanirreducible element in R[x].

To prove that f(x) isan irreducible polynomial in R[x].

Let, if possible, f(x) bereducible over R.

Let f(x) =gx) - h(x), where g(x),h(x) € R[x]

with 0 <degg(x) <degf(x) and

0 < degh(x) < deg f(x).

As degg(x) >0 and degh(x) >0, g(x) and h(x) are not constant polynomials

and g(x), h(x) & R. Hence they are not unitsin R.

By lemma, f(x) and g(x) are not units in R[x]. Hence f(x) is not an irreducible

element in R[x].

Thus, f(x) isnot an irreducible polynomial.

=  f(x) isnot an irreducible element.

This shows that irreducible element in R[x] is an irreducible polynomial in R[x].
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Remark 1.6.4 : Converse of the above theorem need not be true.
i.e. Irreducible polynomia in R[x] need not be an irreducible element in R[x].
Consider, the polynomia 3x2 + 3 € Z[x].
Then 3x2 + 3 isan irreducible polynomial in Z[x].
But 3x2+3=3(x%+1)
= Product of two polynomialsin Z[x] which are non unitsin Z[x].
(Sincethe unitsin Z[x] arethe unitsin Z which are 1 and -1).
Thus, 3x% + 3 is expressed as a product of two non zero, non unit polynomialsin Z[x].

Hence, 3x2 + 3 isnot anirreducible element in Z[x].

Remark 1.6.5 : Primitive polynomia f(x) € R[x] may be reducible or irreducible over R.
Example: f(x) = x? — 3x + 2 € Z[x] isaprimitive and reducible as
x2=3x+2=(x—-2)(x—1) but f(x) =x%>—-2€Z[x] is a primitive and

irreducible over Z.

Theorem 1.6.6: Let R be UFD and f(x) € R[x]. f(x) isanirreducible element in R[x] iff
either f is an irreducible element of R or f is an irreducible primitive polynomial in
R[x].

Proof :

Only if part :

Let f(x) € R[x] be an irreducible element of R[x]. If f € R, then f will be a constant
polynomial and it will be an irreducible element in R.

Hence, if f € R, we have to provethat f(x) isirreducible over R and f(x) isaprimitive
polynomial.

(i) Toprove f(x) isirreducible over R.

Let f(x) bereducible over R.

Let f(x) = g(x) - h(x); g(x),h(x) € R[x].

As f(x) isanirreducible element in R[x] either g(x) or h(x) must be unitin R[x].
Asunitsin R and R[x] are the same, either g(x) or h(x) isaunitinR.

Hence, deg g(x) = 0 or deg h(x) = 0 (being constant polynomial in R[x] ).

But thisin turn showsthat f(x) isanirreducible polynomial in R[x].
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(i) Let f(x) = ¢ fi(x) where ¢ = content of f(x) and f;(x) is a primitive polynomial in

R[x].

Asdeg f(x) = deg f;(x), weget deg f;(x) = 1 and hence f; (x) € R.

Hence, f;(x) isnotaunitin R[x] and c isaunitin R.

Hence, f(x) isaprimitive polynomial in R[x].

Thus, if anon constant polynomial f(x) € R[x] isanirreducible element in R[x] then it

isan irreducible, primitive polynomial in R[x].

If part :

Let f(x) € R[x].
If £(x) isanirreducible element in R[x] then f(x) is an irreducible polynomial in R[x]
(Seetheorem 1.6.3).
Let f(x) € R[x] be primitive irreducible polynomial in R[x].
To provethat f(x) isanirreducible element in R[x].
Let f(x) =g) - h(x) for some g(x), h(x) € R[x].
As f(x) isanirreducible polynomial,
degg(x) =0 or degh(x) =0

Let deg g(x) = 0. Then g(x) isaconstant polynomial in R[x]. Let g(x) = by.
Hence, g(x) € R.
Now, ¢ (f) = ¢ (gh) = c(g) - c(h).
f isprimitive = c (f) =unitinR.
Hence, g(x) isunitin R[x].
Thus,

f(x)=gkx)-h(x) = g(x)isunitinR[x].
Thisin turn showsthat f(x) isanirreducible element in R[x].

Theorem 1.6.7: Let R be UFD. Let p(x) € R[x] be a primitive polynomial in R[x]. p(x)

can be factored in a unique way as a product of irreducible elementsin R[x].

Proof : Let F beafield of quotients of R. Then F[x] is an Euclidean domain.

(i)

Hence, F[x] isaPID and therefore F[x] isUFD .
To provethat p(x) € R[x] can be factored as a product of irreducible elementsin R[x].
p(x) € R[x] = p(x) € Flx].

AsF[x] isUFD, we can write
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p(x) = p1(x) - p2(x) - ... pp(x)
where p;(x) € F[x] and p;(x) isan irreducible polynomial in F[x]
foreachi, 1 <i<n.

1

p;(x) EF[x] = p;(x) =— filx], wherea; € R and f;(x) € R[x].
Further, p;(x) isan irreducible polynomial in F[x] = p;(x) isan irreducible element in
Flx].
=  fi;(x) isanirreducible element in F[x] foreachi, 1 <i <n.

Now,

m@)=§ﬁm

== [a f; )]

L

where ¢; = c(f;) = constant of f; and f;"(x) isaprimitive polynomia in R[x].

pi(x) =%fi*(x), V i 1<i<n.
Thus p(r) =220 1) 00 - ()

Hence, (a;a; .. a)p(x) =(ci¢y ... ¢) fi () f5 (%) ... fr (%).
As each p;(x) is an irreducible polynomia in F[x], we get f;"(x) is also an irreducible
polynomial and hence irreducible element in F[x].
Thus, f;*(x) isanirreducible element in R[x].
Equating the content on both sides, we get, a, a, ... a, = (¢; ¢; ... ¢) u, whereu isa
unitinR.
Hence,
p() =u ' [fr (x) f7(x) o fi7 ()]
=TI - ()
= Product of irreducible elementsin R[x].
This showsthat p(x) € R[x] isfactored into a product of irreducible elementsin R[x].
(i) Unigueness:
Let p(x) =f1 () fF(x0) .. f (%)
and  p(x) =1y (x) (%) ... 7(x)
be two factorization of p(x) asaproduct of irreducible elementsin R[x].

Algebra Page No. 104



As R isaUFD, the number n will remain the same as F|[x] isa UFD, r;(x) is uniquely

determined upto associatesin F[x].

Hence, r;(x)=u; fi"(x), whereu; isaunitinF.
Hence, ui=Z—z, for somea;, b; € R, V i, 1<i<n.
Thus,
7;(x) =% fi7 (o) V i, 1<i<n.
i
Hence, b;ri(x) =a; f;"(x) V i, 1<i<n.

Asr;(x) and f;"(x) are primitive polynomials, equating the contents on both sides we
get b; = v; a; wherev; isaunitinR.
Hence, r;(x) isassociate of f;"(x) in R[x].

Thus the uniqueness follows.

Theorem 1.6.8: RisUFD = R[x] isUFD.
Proof : Let f(x) € R[x] beanon zero non unit element in R[x].
Let f(x) = cp(x) wherec = content of f and p(x) isaprimitive polynomial in x.
By theorem 1.6.7,
p(x) = fi () f2(x) ... fir (%)
where f;*(x) is an irreducible element in R[x] and this representation is unique up to
associates.
Alsoc € R and R isUFD imply
(i) cisunitinR or
(i) ccanbeexpressedasc = c; ¢, ... ¢, Wherec, areirreducible elementsinR, Vr,
1<r<k
Case (i) : cisaunitinR.
Then, f(x) = c p(x)
=c[ff ) 5 () o fr (0]
= c [ f2(x) - fir (x)]
= Finite product of irreducible elements in R[x] and the representation is
unique upto associ ates.
Case (ii) : ¢ isnon unit.

Then ¢ = ¢; ¢, ...c, Where each ¢; isan irreducible elementsin R.
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Asc; isanirreducible element in R, ¢; isan irreducible element in R[x].
Thus, f(x) = ¢1 ¢z . cx f7 () 5 () ... fr (%)
= Finite product of irreducible elements in R[x] and the representation is
unigue upto associates.

Thus, from case (i) and case (ii), we get R[x] is UFD.

1.6.9 Example: Z[x] isUFD asZ isUFD. Z[x] is UFD but not PID.
[ If Z[x] isPID then Z must be afield which isnot so.]

Now onwards F denotes afield.
1.6.10 Remarks:
(i) Letf(x) € F[x] be irreducible over F. But note that, at the same time it may be
reducible over thefield E. (E 2 F).
(i) Any polynomial of degree 1in F[x] isirreducible over F.

Example1.6.11: x3 — 3 € Q[x] isirreducible over Q.
But it isreducible over R where Q = thefield of quotientsand R = the field of reals.

For the polynomials of degree 2 or 3 particularly we have
Theorem 1.6.12: Let F be a field and f(x) € F[x]. Let degf(x) = 2or3. Then f(x) is
reducible over F if and only if f(x) hasazeroinF.
Proof :
Only if part :
Let f bereducible over F.
Then  f(x) = g(x) - h(x)
where  g(x),h(x) € F[x],degg(x) < degf(x) and degh(x) < degf(x).
f(x) =g(x) - h(x)
= degf(x) =degg(x)+degh(x) [+ F isanintegral domain]
As degf(x) =2/3,thedegg(x) =1ordegh(x) = 1.
Thus, let us assumethat deg g(x) = 1.

Then, g(x) = x —a say, for somea € F.
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Butthen f(x) =(x—a)-h(x) = f(a) =0 and hence a € F will be a zero of
f(x) € Flx].
If part :
Let f(x) € F[x] hasazeroin F say 'a’. Then (x — a) isafactor of f(x).
Hence, f(x) =(x—a)-g(x).
Hence, deg f = deg(x — a) + deg g(x)
where degg(x) =2 <degf(x)=1+degg(x), if degf(x) =3
or degg(x) =1<degf(x), if deg f(x) = 2.
Hence, f(x) € F[x] isareducible polynomial over thefield F.

More generally we get
Theorem 1.6.13: Let f(x) € F[x] be any polynomia of degree > 1. If a € F is a zero of
f(x)inF,then f(x) isreducible over F.
Proof :  (Asf(x) and (x —a) arein F[x] ) By division algorithm, we get,
fG)=@(x—-a) gk)+r(x)
where r(x) = 0 or degr(x) < deg f(x).

f@=0+r(x) = 0=r(a). ...as aisazeroof f(x), f(a) = 0.
Thus, f(x)=x&—-a)- -gx).
Therefore,

deg f(x) = deg(x — a) + deg g(x)
Therefore, degg(x) =deg f(x) —1 > 0.
This showsthat f(x) isreducible.

We know that every ideal in F[x] is a principle ideal. (Being an Euclidean domain, F[x] is
PID.) Using thisfact we prove
Theorem 1.6.14: If F isafield, then the ideal (p(x)) # {0} of F[x] is maximal iff p(x) is
irreducible over F.
Proof :
Only if part :
Let (p(x)) # {0} beamaximal ideal in F[x].
To provethat p(x) isirreducible over F. Let if possible p(x) be reducible.
Hence, 3 g(x) and h(x) in F[x] such that p(x) = g(x) - h(x) where
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0 < deg g(x) < deg p(x)
and 0 < deg h(x) < deg p(x).
Now, p(x) € (p(x)) = g():h(x) € (p(x)).
As(p(x))isamaximal ideal in F[x], itisaprimeidea in F[x]
Hence, either g(x) € (p(x)) or h(x) € (p(x)).
But then g(x) = p(x) - q1(x) or h(x) = p(x) - g2 (x), for some g, (x), g (x) € Fx].
But then we can’'t have deg g(x) or deg h(x) lessthan the deg p(x).
Hence our assumption iswrong i.e. p(x) isirreducible.
lfpart:
Let p(x) beirreducible polynomial in F[x].
To provethat (p(x)) ismaximal.
Let A beanided in F[x] such that (p(x)) € A € F[x]. AsF[x] isPID, A = (f(x)) for
some f(x) € F[x].
Asp(x) € (p(x)) weget p(x) € (f(x)).
Hencep(x) = f(x) - g(x) , for some g(x) € F[x].
Asp(x) isirreducible, we get
deg g(x) =0 or deg f(x) =0
Casel: deg g(x)=0
Then, g(x) isaconstant polynomial in F[x].
Let glx)=c for somec € F
Then, p(x)=f(x)-c implies f(x)=c1-pX).
[ c™! existsin F asc isanon zero elementin F. |
Hence, f(x) =c!:p(x)impliesg(x) € (p(x)) and hence A = (g(x)) = (p(x)).
Case2: deg f(x)=0
Then, f(x) isanon zero constant polynomial in F|x].
Hence, f(x) isanon zero element in F and hence f(x) isaunitin F.
But then (f (x)) = A = F[x]. This shows that there exists no proper ideal A in F[x] such
that (p(x)) € A c F[x].
Hence, (p(x)) isamaximal ideal in F[x].
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1.6.15 Examples::
(i) x%—3 € Q[x] isanirreducible polynomial. Hence (x? — 3) in Q[x] is a maximal ideal
Q[x]

x2-3

in F[x] and hence isafield.

(i) 22 where 1 = (x* — 5x +6) is not a field as x? — 5x + 6 = (x — 2)(x — 3) shows

that x2 — 5x + 6 isareducible polynomial in Q[x] and hence I is not amaximal ideal in

Qlx].

If R is an integral domain with unity then every irreducible element in R[x] is an
irreducible polynomial in R[x] (See Theorem 1.6.3). The converse need not be true. But it is
trueif R isafield.

Theorem 1.6.16: Let F beafield. f(x) € F[x] isan irreducible polynomial in F[x] iff f(x)

isan irreducible element in F[x].

Proof :
Only if part :

Let f(x) € F[x] beirreducible polynomial in F[x].

Let f(x) = g(x) - h(x) for g(x), h(x) € F[x].

f beingirreducible, either deg g(x) = 0 or deg h(x) = 0.

Suppose, deg g(x) = 0. Then g(x) isaconstant polynomia in F[x].

Let g(x) = a (a €R).

Thena #0anda € F.

Hence, a™! existsin F. But thisshows g(x) = a isaunitin F[x].

Hence, f(x) isanirreducible element in F[x].
lfpart :

Let f(x) € F[x] beanirreducible element in F[x].

Then every field being an integral domain with unity, the result follows by Theorem

2.6.3in5. [ Every irreducible element in R[x] isan irreducible polynomial in R[x]. ]
Theorem 1.6.17: Let D be UFD and let F be a field of quotients of D. Let f(x) € D[x]

where degree of f(x) > 0. Then
() f(x)isirreducibleinD[x] = f(x) isirreduciblein F[x].
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(i) f(x) isprimitivein D[x] and f(x) isirreducible in F[x] = f(x) isirreducible
inD[x].
Proof :
(i) Degreeof f(x) > 0= f(x) isnon constant polynomial in D[x].
Let f(x) = g(x) - h(x), where g(x) and h(x) are polynomials of lower degreein F[x].

AsF isafield of quotients of D, the coefficientsin g(x) and h(x) are of the form % for

somea, b € D. By clearing the denominators we get

(@) f(x) = g1(x) hy(x) ... (D)
whered € D and g, (x), hy(x) € D[x] such that

degree of g,(x) = degreeof g(x) and

degree of h,(x) = degree of h(x).
Now, by theorem 1, f(x) = (c) - p(x), g1(x) = (c1) - p1(x) and hy (x) = (c2) - P2 (%)
wherec, ¢y, c, € D and p(x), p,(x), p,(x) € D[x] are primitive polynomialsin D[x].
Thus, from (1), we get,

(dc) p(x) = (c1 ¢2) p1(x) P2 (%) )
By theorem 1.4.10, the product p, (x) - p,(x) is aso a primitive polynomials in D[x].
But then c¢; ¢, = (dc) u for someunit u in D.
Hence, from (2), we get,

(dc) p(x) = (dew) p1 (x) p2(x)
Hence, (0) p(x) = (cw) p1(x) p2(x)
ie. f(x) = (cw) p1(x) p2(x)
This showsthat f(x) has afactorization in D[x].
Thus, we have proved that f(x) has a factorization in F[x] = f(x) has a
factorizationin D[x].
Hence, f(x) € D[x] isirreduciblein D[x], thenitisirreduciblein F[x].
(i) Let f(x) € D[x]. AsD[x] < F[x].

We get, if f(x) isreduciblein D[x] then f(x) isreduciblein F[x].

Hence the result.
Corollary 1.6.18: Let D beaUFD and let F bethefield of quotientsin D.

Let f(x) € D[x] be a non constant polynomial. Then f(x) factors into the product of

two polynomials of lower degreein F[x] if an only if it has afactorization into
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polynomials of same degreein D|[x].
Proof :

Only if part :
Let f(x) = g(x) h(x) be afactorization of f(x) in F[x] where degree of g(x) = r and

degree of h(x) = s. Asin the proof of the theorem 4(1) we can prove
f(x) = (a) p1(x) p2(x)

where degree of p;(x) = degreeof g(x) =r and
degree of p,(x) = degreeof h(x) =s and
p1(x), p2(x) € Dx].

If part :
Let f(x) = g(x) h(x), where g(x), h(x) € D[x].
Then, g(x), h(x) € F[x] , since D[x] € F[x], and the result follows.

1.7 Factorizationin F[x] :

Throughout F denotes afield.

Definition 1.7.1 : Let f(x),g(x) € F[x]. We say g(x) divides f(x) in F[x] if there exists
q(x) € F[x] suchthat f(x) = g(x) - q(x).

Example1.7.2: Let f(x) =4x3+4x>+3x+3 and
gx) =4x%+3
f(x),g(x) € Zs[x] and f (x) = g(x) - (x + 1) in Zs[x].
Hence, g(x) divides f(x) in Zs[x].

g(x) f(x) q(x)
4x% +0-x+3 453+ 4x%+3x+3 x+1

_4x3 + 0x2j3x

4%°+3
4x%+3

0

Theorem 1.7.3: Let p(x) be anirreducible polynomial in F[x]. If p(x) dividesr(x) - s(x)
for r(x), s(x) € F[x], then either p(x)/r(x) or p(x)/s(x).
Proof :  p(x)/r(x) - s(x) = r(x) - s(x) = p(x) - q(x) for some q(x) € F[x].
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But thisimpliesthat r(x) - s(x) € (p(x)).

p(x) being an irreducible polynomial in F[x], (p(x)) isamaximal ideal in F[x].
As F[x] isacommutative ring with unity, (p(x)) isaprimeideal.

Hence, r(x) - s(x) € (p(x)) impliesr(x) € (p(x)) or s(x) € (p(x)).

Hence, either p(x) dividesr(x) or p(x) dividess(x) in F[x].

Using the mathematical induction we get,
Corollary 1.7.4: Let p(x) € F[x] be anirreducible polynomial. If p(x)/r; (x) -
ry(x) .1, (x). for r;(x) € F[x]. Then p(x)/r;(x) for at least onei.

Theorem 1.7.5: Let f(x) € F[x] be anon constant polynomial. Then f(x) can be factored
into a product of irreducible polynomials in F[x]. The irreducible polynomials will be
unigue except for order and for unit factorsin F.

Proof : Let f(x) € F[x] beanon constant polynomial.

Case(l) : f(x) isirreducible.

Then there is nothing to prove.
Case(ll) : f(x) isnotirreducible.
Let f(x) =g(x) - h(x)
where  degreeof g(x) < degreeof f(x) and
degree of h(x) < degreeof r(x).
If g(x) and h(x) both are irreducible then we are through.
If g(x) and h(x) both are not irreducible then at least one of them factors into
polynomials of lower degree. Continuing this process, we get,
f) =p1(x) - p2 (%)« oo P ()
where each p; (x) isan irreducible polynomial in F[x].
This completes the proof of the first part.
Now, let us assume that
fx) =p1(x) - p2(x) - .- pr (%) (D)
fO) =q1(x) - qa(x) - .. q5(x) (2
be two factorizations of f(x) into the irreducible polynomialsin F[x].

Now,

p1(x)/p1(x) - P2 (x) - ..o pr(x) implies
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P1(x)/q1(x) - q2(x) + ... qs(x)
Asp, (x) isanirreducible polynomial in F[x], p;(x)/q;(x), for some;.
Take q;(x) = q1(x).
Since q, (x) isirreducible and p; (x)/q, (x) we get, q; (x) = u; p;(x) whereu, # 0.
Hence, u, € F isaunitinF.
Thus,
p1(x) - P2 (%) + o r(x) = g1 (%) - g2 (x) - .. s g5 (%) will imply
P1(X) - p2(X) - oo pr(X) = ug P1(%) - G2(%) + .. g5 (x)
Cancelling p; (x) from both side, we get,
P2(x) « o P (%) = Up - g2(X) - v qs(X)
Arguing as above, we get, p,(x) = u, q,(x), whereu, # 0 isaunitin F.
Substituting this value in the above expression and cancelling p, (x) from both sides, we
get,
P3(x) + o pr(X) = Uy - Uy - q3(X) - s g5(x)
Continuing in thisway we arrive at
L=u Uy o Uy Gy ()~ Gy (X) - o g5 ().
But thisis possible only when s = r. Hence,
l=u uy .- u,
This shows that the irreducible factors p;(x) and q;(x) are the same except for order

and unit factors.

1.7.6 Examples )

Ex1: Let f(x) =x*+3x3+ 2x +4 € Zs[x].
x=1 = f(1)=14+3+2+4=10=0inZ[x].
Hence, x = 1 isaroot / zero of f(x).

fO)=kx-1)-g(x)
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g(x) f(x) q(x)
x-1 x4 3x342x+4 | X3+ 4xP+ax+1
x*— x3
-t
4x3 +2x
4x3— 4x?
-+
4%% + 2X
4x% — 4x
-7+
X+4
x-1
"+
5=0inZg[X]
Thus, x = lisazeroof f(x) and f(x) = (x3 + 4x? + 4x + 1) (x — 1). ... (1
Let gx) = (x3 + 4x? + 4x + 1).
Then, g(x) € Zs(x) and

g(1) =10 = 0(mod 5)
(x — 1) isafactor of g(x).

x-1 X4 AxP44x+1 | X4

x3— x?
="+

0+0+4x+1
4x—-4
- T+

0

Thisshowsthat (x — 1) isafactor of x3 + 4x% + 4x + 1 and hencex — 1lisasoa
factor of f(x).

Agan,x =1 = x2+4=0inZs.

Hence, (x — 1) isafactor of x? + 4.

X—1 x24 4 X+1

X2—X
+

X+4
x-=1
-+

0
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This showsthat (x — 1) isafactor of (x2 + 4) and hence (x — 1) isafactor of f(x).

Thus, we get,

f@X)=x*+3x3+2x+4=(x—-1)3 - (x+1)inZg[x].
This showsthat f(x) isfactored as a product of irreducible polynomialsin Zg[x].

Theseirreducible factorsin Z[x] are defined upto unitsin Zs[x].

e.g.

x—-13 - (x+1D)=(0x—-1)2%-2x—-2)Bx+3)

Ex 2: Show that the polynomial (x* + 4) can be factored into linear factorsin Zs[x].

Solution : Let f(x) = x* + 4 in Zs[x].
Thenf(1) =1+4=0inZs.

Hence, x — 1 isafactor of f(x).

x-1 x*+0-x3+0- x%+0- x+ 4

o4
-7+

x3+0-x2

x24+0-%
X2 — X
-+

X+4
x—1
-+

0+0
Thus, f(x) =(x— D3 +x2+x+1)
Consider g(x) = (x3 +x? + x + 1) in Zs[x].
Theng(-1) =-14+1-1+1=0.
Hence, (x + 1) isafactor of g(x) in Zs[x].

3,2

X +X“+X+1

.

x+1 x3+x2+x+1

3

X+X2

X+1
x+1

0+0

Thus, g(x) = (3 +x?2+x+1) =+ 1>+ 1)

Algebra

x%+1

Page No. 115



Hence, from (1), we get,

fG) =(x—-Dx+1*+1) )
Let h(x) = (x?+1)inZs[x].

h(2)=4+1=0.

Hence, (x — 2) isafactor of h(x) in Zs[x].

X—2 X241 X+2

X% — 2x
+

2X+1
2x—4
+

0

We know that, ‘ Q" the field of rational numbersisthe field of quotients of an integral domain

Z.

Hence applying theorem 1.6.6 to Q in particular, we get,

Result : Let f(x) € Z[x]. If f(x) isprimitive an irreducible over Z then f(x) isirreducible
over Q.

e Eisenstein Criteriafor Irreducibility over Q :
Theorem 1.7.7: Let p € Z beaprime. Let f(x) € Z[x], where
fx) =ay+a;x+ -+ ax", (a,#0)
such that a,, Z 0 (mod p) but a; = 0 (mod p), for i < n, withay, £ 0 (mod p?). Then
f(x) isirreducible over Q.
[ p isaprime number such that p/ay, p/ay,...,p/a,—, andp t a, and p? t a,].
Proof : Assumethat f(x) isreduciblein Z[x].
Let
fx) =g(x) - h(x),
where g(x), h(x) are non-constant polynomialsin Z[x] with degree < n.
Let
g(x) =by+byx+ -+ b.x", (b #0)
and h(x) =cy+c1x + -+ csx®, (cs #0)
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(i) p*tay = p*1tboco.
If p/b, and p/c, then p?/byc,.
Hence, either p t by or p t ¢, exclusively.
Assumethat p { by but p/c,.
(i) pta, = ptbc, = pth.and ptc,.
(iii) Thus, p/c, andp ¢t c,.
Find the smallest k suchthat p t ¢,. Thusp + by andp + ¢, = p t bycy.
But bocy + byci_q + - + bico isacoefficient of x* in g(x)h(x).
Asf(x) = g(x) - h(x), equating the coefficients of x*, we get,
ay = bocy + bicx_1 + -+ brcy
Asp t byc,, wegetp t ay.
But then, by data, asp/a,, p/a4,..., p/an_1 @dp t a,, we must have k = n.
Hence, consequently we must have s = n. This contradicts our assumption that s < n.
Hence, f (x) does not factor into polynomialsin Z[x].
By result 1,
f (x) has no factorization as a product of two polynomials, both of lower degreein
Qlx].
Hence, f(x) isirreducible over Q.
[Result 1: Let f(x) € Z[x]. f(x) factorsinto a product of two polynomials of lower degrees
r and s in Q[x] if and only if it has such a factorization with polynomials of same
degreesr and s in Z(x). |

Remark 1.7.8: f(x)=gx)-h(x) <& flx+1)=gkx+1) -h(x+1),
for f(x), g(x), h(x) € Z[x].
Hence, f(x) isreducibleiff f(x + 1) isreducible and f (x) isirreducible iff f(x + 1) is
irreducible.
Note that, we can take any integer in place of 1.
When the constant term in a polynomia f(x) € Z[x] is 1, we cannot apply Eisenstein
criterion to check the irreducibility of f(x) over Q. In such cases we find suitable t € Z
such that f(x + t) isirreducible over Q (if possible).
Toillustrate this, consider the following polynomial

fx) =x3+x%—-2x—1€ Z[x].
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Asthere exists no primein Z that divides 1, we cannot apply the criterion directly in this

case.
fx+D=Cx+1D3+x+1)2-2(x+1) -1
=x3+4x?2+3x—1
Again, we cannot apply the criterion in this case.
fx-1D=x-13+x-1)?-2(x-1) -1
=x3—-2x?—x+1
We cannot apply the criterion for f(x — 1) also.
flx+2)=x3+7x*+14x+7

Here, takep = 8. Thenp/a,, p/a,, p/a, andp t a; and p? t a,.

Hence, by Eisenstein criterion, f (x + 2) isirreducible over Q.

Hence, f(x) isirreducible over Q.

1.7.9 Example

Ex1: f(x) = 8x3 — 6x — 1isirreducible over Q.
Solution : Hereay = —1,a; = —6,a, = 0,a; = 8.
Asa, = —1, Eisenstein criterion cannot be applied.
Hence, consider f(x + 1).
fx+1)=8x+1)3—-6(x+1)—1
=8[x3+3x2+3x+1]—-6x—-6-1
=8x3+24x?>+24x+8—-6x—6—1
=8x3 + 24x% +18x + 1
Again, we cannot apply the criterion for f(x + 1).
Hence, consider f(x — 1).
fx—1)=8(x—-1)3—-6(x—-1)—-1
=8[x3—-3x*+3x—-1]—-6x+6—1
=8x3—24x?>+24x—-8—-6x+6—1
= 8x3 —24x% +18x — 3
Takep = 3.
Then, by Eisenstein criterion, f(x — 1) isirreducible over Q.

Hence, f(x) isirreducible over Q.
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Ex2: f(x) =x*+x3+x?+x+ 1€ Z[x] isirreducible over Q.
Solution : Asthe constant termin f(x) is 1 we cannot apply Eisenstein criterion for f(x).
Consider f(x + 1).
Then, flx+D)=C+D*+Cx+1D3+x+1)?+(x+1)+1
=(x*+4x3+6x>+4x+ 1)+ (x> +3x2+3x+1) +
(x2+2x+1)+x+2
=x%*+5x3 + 10x% + 10x + 5
For f(x+1), ay=5a=10,a, =10,a;3 =5,a, = 1.
Takep = 5.
Then, p/ay, p/ay, p/az, p/as andp®  ag andp t ay.
Hence, by Eisenstein criterion, f(x + 1) isirreducible over Q.

Hence, f (x) isirreducible over Q.

Ex 3 : Show that the polynomial 2x> — 5x* + 5 isirreducible over Q.
Solution : Let
f(x) =2x>—5x*+5
=5+0-x+0-x24+0-x3—5x*+ 2x°
Hence, ay,=5,a;, =0,a, =0,a3 =0,a, = =5,as = 2.
Takep =5, pisprimein Z.
p/ay, p/ay, p/as, p/as andp® f ap andp { as.
Hence, by Eisenstein criterion, f(x) isirreducible over Q.

Ex 4 : The cyclotomic polynomial

o) (x)=ﬁ:xp‘1+xp‘2+---+x+1
p x-1

isirreducible over Q for any primep.
Solution : Let
g(x) = pp(x + 1)
e+ 1DP -1
x+1)-1

xP + PCp xPr 4+ Py P -1

X

= xp_l + pCI xp_z + .+ p
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Let g(x) = ap + a;x + -+ ap,_1xP 2. Thenay =p, a; = PCy_y, a, = 1.

Then, for prime number p, weget p/ay, ... ,p/ay,_, andp? t ag andp t a, = 1.
Hence, by Eisenstein criterion, g(x) isirreducible over Q.

Now, if ¢, (x) = hy (x)h,(x) in Z[x], then ¢,(x + 1) = hy(x + Dh,(x + 1) would be
afactorization of g(x) in Z[x] and hence by result 1, we get ¢,,(x + 1) has factorization
in Q[x] whichis not possible by Eisenstein criterion.

Hence, ¢, (x) isirreducible over Q.

Extra:
Applying the theory in particular for Z[x], we get the following result.

Particular case of theorem 1.2.16 (ii) :

Theorem 1.7.10 : Let f(x) € Z[x] be primitive. If f(x) is reducible over Q, then f(x) is
reducible over Z.

Proof : f(x) isreducible over Q. Hence f(x) = g(x) - h(x) where g(x), h(x) € Q[x] and

g(x), h(x) are non constant. Then f(x) = (%) 91(x) - hy(x), where g, (x) and h, (x)

are primitive polynomialsin Z[x]. But then

blf (x)] = (@) [g1(x) - hy (x)]
f(x) being primitivein Z[x], b isthe g.c.d. of coefficientsin b f(x).
As the product of two primitive polynomialsis a primitive polynomial in
a [g,(x) - hy(x)]. Hence a and b are unique upto the units.
AstheunitsinZ are +1, weget b = +a.
Hence, f(x) = +g9,(x) - g,(x). Thisshowsthat f (x) isreduciblein Z[x].

Particular case of theorem 1.4.10:
Theorem 1.7.11 : If f(x) and g(x) are primitive polynomias in Z[x] then so is their
product.
Proof : Suppose f(x) - g(x) is not primitive. Let p be a prime integer in Z such that p
divides al the coefficients of f(x) - g(x).
Let
fx) =ay+a;x+ -+ ax"
and g(x) = by + +byx + -+ + bpyx™.
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f(x) isprimitive, hence p doesnot divide adl ay, ay, ..., a,.
Let a, bethefirst coefficient of f suchthat p + a.
Similarly, let b, bethefirst coefficient in g(x) such that p + b;.
Now, the coefficient of x5t in f(x) - g(x) is
[aobsit + A1bgyrq + -+ + Ag_1bp 1] + ashy + [ag1bi—q + Agy2bp_g + -+ + asitby]
As
p/ag, p/ay, ..., p/as—1
and p/bo, p/by, ... P/bt-q,
we get,
p/laohsst + arbgiq + -+ as_1b14]
and  p/lagi1be_1 + Asp2brz + -+ + Asyebo]
Asp tasandp t b, and p isprime, weget p t a;b,.
Hence, p + coefficient of x** in f(x) - g(x), which isacontradiction.

Thisin turn showsthat f(x) - g(x) is primitive.

Theorem 1.7.12: If f(x) € Z[x] isreducible over Q thenitisalso reducible over Z.

Proof :  f(x) € Z[x] isreducible over Q.
Let f(x) = (c) fi(x). Where ¢ = g.c.d. of the coefficient of f(x), and f;(x) is a
primitive polynomial in Z[x].

Then f; (x) isreducible over Z and hence f (x) isreducible over Z.

Theorem 1.7.13: f(x) € Z[x]. f(x) isreducible over Q iff f(x) isreducible over Z.
Proof : f(x) isreducible over Z implies f (x) isreducible over Q as Z[x] < Q[x].
Conversdly,
If f(x) isreducible over Q then, f(x) isreducible over Z.

Theorem 1714 : Let f(x) =ap+a;x+ -+ a,_1x"1+x"€Z[x] be a monic
polynomial. If f(x) hasaroota € Q,thena € Z and a/a,.
b . .
Proof: a€Q = a= - for some relatively prime elements b, c € Z.

b

f=0 = f(—)zo

c

= ap, +a; (2) +tap (b)n_l + (é)n =0
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b b n-—1 b n
= wta(g)rran) =-0)

Cc

bn

= a4+ abc™ %+t a, b = - (D
=  aoc" '+ abc™ %+ +a, b"1EZ
bn
we get, y € Z.Hencec = £+ 1.
Hence, by (1), we get,
aO + alb + -+ an_lbn_l == i bn.
HenCe, ag = _b[al + azb + .- i bn_l].
Thisshowsthat b/a,. ... (2
b b
As a=—=—=+1=b ...(3
c +1
From (1), (2) and (3), wegeta/a, anda € Z.
[ 4 [ J
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CHAPTERIII : THEORY OF MODULES

Unit1: Modules:

1.1 Modules — Definition and examples.
1.2 Submodules.
1.3 Homomorphism

1.4 Fundamental theorem of homomorphism and its applications.

1.1 MODULES- Definition and Examples:
Definition 1.1.1 : Let R be a ring and let (M, +) be an abelian group. Let (r,m) — rmbe a
mapping of R X M into M such that
i) r(m; +my) =rmy +rm,
i) (n+rp,)m=rrm+nr,m
iii) (ryrp)m = 1y (r,m)
iv)Ilm=m if 1€R

forallm, my, m, € Mandr, r;, r, € R. Then M is called a left R-module.

Remarks1.1.2:
a) rm is called is called the scalar multiplication or just multiplication of m by r on the
left.
b) Right R-modules can also be defined similarly.
c) If R is a commutative ring, every left module will be a right module or vice versa.
d) In a commutative ring R we will not distinguish between left and right R-modules and
we and we simply call them R-modules.

e) IfR is a field, the R-module is called a vector space.
Examples1.1.3:
1. Any ring R can be regarded as a left R-module.

Define the scalar multiplication rm for r,m € R as usual multiplication in R.

2. Any additive abelian group G is a left L-module. For an abelian group (G, +) define
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na = a + a+...+ a(ntimes),

0-a=0

forn>0

and (—m)a = (—a) + (—a)+...+(—a) (ntimes), forn>0
Then G is a L-module.
3. Let (G, +) be an abelian group.

R ={f/f:G — G is a group homomorphism. }

(R, +,0) is a ring, where f + g and f o g are defined by
F+a)=f®+ g &) V x €G

and (f e 9) () =flg ()]

G is a left R-module where the scalar product fx is defined by
fx=f(x) forf ERandx € G

4. Let R[x] denote a polynomial ring over the ring R in an indeterminate x. Then R[x] is

a left R-module under the scalar multiplication defined by

r-f(x) =r(ag+ax + -+ ayx™)

= (ray) + (ra;)x + -+ (ra,)x™ forr € R and f(x) € R[x]

where f(x) = ay + a;x + -+ + a,x™

5. Let R be any ring and let I be a left ideal in R. Then (I, +) is an abelian group and for

any r €ER and a €1, ra € [ and this scalar multiplication (r,a) — ra from R X

I — [ satisfies all the conditions stated in the definition. Hence | is a left R-module.

Exercise o
1. Define right R-module M.
2. Give some examples of right R-modules.
3. Find an example of a left R-module which is not a right R-module.
4. Find an example of a right R-module which is not a left R-module.
°
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Simple Properties:

Here onwards all modules are left modules otherwise stated.

Theorem 1.1.4: Let M be any R-module. Then

) 0-m=0
iy r-0=0

iii) (-=r)-m=(—rm)=r-(—m)

Proof :

i) rm=@+0)-m
Hence, rm+0=rm+0-m
This shows that 0 - m = 0

i) r-m=r-(m+0)
Thus, rm+0=rm+r-0
Butthenr-0=20

i) 0=0-m ,
=[r+(-r))m
=rm+ (—r)m

Hence, —(rm) = (-r) m

Also,
O0=r-0,
=r(m+ (—m))
=rm+r(—m)
Hence, —(rm) =r(—m)

From (1) and (2), we get,

(=r)ym = —=(rm) = r(-m),

forall me M
forall r € R
forall r € R

forall reRandme M
(see definition)
forall me M
forall reRandme M
(see definition)

for all r € R as M is a group.
by (i)

(1)

by (i)

Q)

forallr ERand me M

Worked Examples

Example 1.1.5 : Let M be an R-module. Show that the set {x ER/xM = {O}} is an ideal of

R, where xM = {xm / m € M}.
Solution : LetI = {x € R / xM = {0}}.
(i) Bytheorem (1), 0-m =0,

imply 0-M = {0}
and hence 0el
Algebra

forallm € M.
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Thus, I # ¢.

(i) Letx,y €l
X,y €l = xM = {0} and yM = {0}
Now, for any m € M, we have

(x=y)m =[x +(=y)]m

=xm + (=y)m (by definition)
=xm—ym (by theorem 1.1.4 (iii)
=0-0 (* x,y € Rimply xm=0and ym=0

Thus, (x—y)m = Oforallm € M.
Hence, (x—y)M = {0}.
This shows that x —y € [, forall x,y € I.

(ii1)) Let r € Rand x € I.
x €1 = xM = {0}

= xm=0, for eachm € M.
Hence, frx;m=r)yxm=r.0=0, (by theorem 1.1.4)
Hence, forr € R and x € [, we getrx € I.
Similarly,

(xrym=x(@m) =0, asx € [ andrm € M, forany r € R.

Hence, givenx € [ andr € R,rx € [ and xr € I.
From (i), (i1) and (iii), we get,

I is an ideal in R.

Remark : Let M be an R-module.
If the ideal {x ER/xM = {0}} is the zero ideal in R.
ie., if {x ER/xM = {O}} = {0}, then M is called a faithful module.

Example1.1.6 : Let M and N be an R-modules. Define ‘ +’in M X N by
xy)+ @t =x+zy+1t) for (x,y),(z,t) € M XN
and the scalar multiplication ' - ' by
r-(x,y)=0-x, r-y) forallr €R,(x,y) € RXR

Then, it can easily verified that M X N is an R-module.
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Remarks1.1.7:
(1) The R-module M X N is called the direct product (external) of R-modules M and N.
(2) On the same line we can define the direct product (external) of any finite number of R-

modules.

Example1.1.8: Let R be aring. Define
R™ = {(x4,%5, ..., x,) / x; ER} forn €N.
Then show that R™ is a R-module.
Solution : We know that every ring R is an R-module. Hence every ring R is an R-module.
Hence, R* = R X R X ... X R is an R-module (being the direct product of n R-modules)
by Example 1.1.6.
[Here in R™, for x,y € R™ and where,
X = (X1, Xg, ) Xn), X;i €ER
and ¥y = (1Y Yn) ViER
we have,
x+y=0q+y,%+ Y0 X0+ V)

and 71T-x=x=(x, X, ..., TXy)]

Exercise °

1. Let R be a field. Let V. ={f f: R — R be a ring homomorphism} show that V is a
vector space over R.

2. Let M be a left R-module. Define (m,r) — rm for each m € M and r € R as a mapping
from M X R to M. Show that M is a right module.

2. Let M be an R-module. For x € M, show that {r € R / rx = 0} is a left ideal in R.

1.2 SUBMODULES:
Definition 1.2.1: Let M be an R-module. A non empty subset N of an R-module M is called
R-submodule (or submodule) of M if
(i) a—beN, for alla,b € N

(i) r-a€N, for allr€R, a €N
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Remark 1.2.2:
(i) Not every subset of an R-module M is a submodule of M.

(i) If N is a R-submodule of an R-module M then (N, +) is a (normal) subgroup of (M, +)

which is closed under scalar multiplication.
(i) If N is a R-submodule of an R-module of M, then N itself is a R-module.

(iv) {0} and M are trivial submodule of an R-module M.

Examples 1.2.3:

1. Let R be a ring. Then we know that the ring R is an R-module. Any left ideal ] of R is a

R-submodule.

2. Let M be any R-module. Let x4, x5, ..., x;, € M (n is finite). Then the set

N={i Tixl'/ T ER}

i=l

1s a submodule of M.

Solution: Leta,b E N = a

T X and b = Z T"i X

n n
i=1 i=1

where 1;,1"; € R.

n n

(i) a=b=> rx—> rix

i=l i=1

as r,—r';€ER, for each i, we get

n
(i) r-a=r-> nrx

S

Hence,r-a = (r -mn)x;
i=1
as r, E€ER, for each i, we get
r-a€N

Thus, forany a,b € N andr € R, we have,
a—beN and r-a€N.

Hence, N is a submodule of R-module M.
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Remarks1.2.4:
(1) Asa special case for example 2 we get for any R-module M, the set
Rx ={rx /r €R}
is a R-module of M, for any x € R.

(i) If1 € R, then the submodule Rx will contains the element Xas x = 1 - x.

Example 1.2.5: Let M be an R-module and x € M.
Define N ={rx+nx/r € Randn € Z}.
Then, N is a R-submodule of M containing x.
Solution : Obviously, (N, +) is a (abelian) subgroup of (M, +).
Hence, only to check that a(rx + nx) € N forany a € R and (rx + nx) € N.

Cael:n > 0

a(rx+nx)=al[rx+ (x+x+ -+ xntimes)]

= a(rx) + (ax + ax + -+ ax n times)] ... by the definition of module

=(ar)x+(a+a+--+antimes)x | ... by the definition of module
=lar+ (a+a+:-+antimes)| x ... by the definition of module
=u-x where u = [ar + (a + a + -+ + a n times)]

Asu € R,we geta (rx + nx) € N.
Casell:n < 0.
a(@rx+nx)=al[rx+ ((—x) + (—x) + -+ (—x) n times)]
=a(rx)+a(—x)+a(—x) + -+ a (—x) n times)
=(ar)x+ (—a) x+ (—a) x + -+ + (—a) x n times)x |
... by the property of the module Theorem 1.1.4
= [(ar) + (—a) + (—a) + - + (—a)] x... by the definition of module
=t-x ... where t = ar + [(—a) + (—a) + -+ (—a) (n times)]
Ast €R wegeta (rx +nx) € N whenn <0.

Caselll:n =0

a(rx+nx)=a[rx+0-x] ... sincen=0
=a[rx+0] ...since0-x =0
=a(rx)+a-0
=(ar)x+0-x €N ...asar ERand0 € Z
=(ar)x+0
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Thus, from all the cases we get a (rx + nx) € N.

Hence, N is a R-submodule of the module M.

Now selectingr = 0andn =1 (1 € Z) we get
O-x+1-x=x€N

Thus, the R-submodule N contains the element x.

Remarks 1.2.6:
(1) If k is a submodule of M containing x, then N € K. For any r € R, rx € K and for any
necz,
nx=x+x+:-+x(ntimes) €K, K being a submodule of M.
But then (rx + nx) € K foranyr € R andn € Z.
Hence, N € K.

Thus, N is the smallest submodule of M containing x. Generally we denote N by (x).

(2) If1€R,thenforr e Randn € N
rx + nx = {r +[1+ ..+ 1I(ntimes)]}x
= tx wheret =r + (1 + ... + 1) ntimes
ast € R we getrx + nx € Rx
Hence, N € Rx. But x € N implies Rx € N.
Thus, N = Rx = (x); if1l€R.

Example 1.2.7: Let M be an R-module. Define
RM={Z r,m; / 1; ER, mEMandnisfinite}
i=1
Then RM is a submodule of M.
Solution : Leta,b € RM and r € R.

n

Then, a= Z rm;, 17 € R, m; € M and n s finite.
i=1

and b= z S; ti, s; €R, t; € M and k is finite.

i=1
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n K
(1) a—b=z rm; — Z siti
i=1

i=1
=romy+r,my+-+nm,+ (—s) t; +(=sy) ty + -+ (—s) ty

€ RM as 1; €R, (—s;) € R and the sum contains at most n + k elements.

n
) r-a=r z rm;
i=1

asr 1; € R (for each i) we getr - a € RM.
Thus, from (i) and (i1), we get, RM is a R-submodule of M.

Theorem 1.2.8: Let M be an R-module. For any two submodules N; and N, of M,
N; + N, is a submodule of M, containing N; and N, both.
Proof: N;+ N, ={n; +n,/n; € N;,n, € N, }.
Obviously, if a,b € N; + N, then a—b € Ny + N,. (as (N;,+) and (N, +) are
subgroups of an abelian group (M, +)).
Hence, (N; + N,, +) is a normal subgroup of (M, +).
Let a€Randx € N; + N,.
x €Ny + N, = x=n,+n, for ny €EN;,n, €N,
ax =a(n; +n,) = an, +an, (Since nq, n, € M and M is a R-module)
Now, as N; is a R-submodule, an; € N;.
Similarly,
N, is a R-submodule will imply that a n, € N,.
Therefore, an, + an, € N; + N,.
Thus,
ax = any +an, € Ny + N,, foranya € R and x € N; + N,.
This shows that N; + N, is a submodule of an R-module M. n; € N; can be written as
ny=n,+0, 0€EN,.
Hence, N; € N; + N,.
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Similarly, N2 c N1 + Nz.

More generally, we get,
If{N;}, 1 <i < k is the family of submodules of a module M. Then

k
D Nj={x1+ x,+ - +x/x;, EN;, 1< i<k}
i=1

is the smallest submodule of m containing each N;, (1 <i < k)
Proof: LetS={x;+ x,+-+x,/x;€EN;, 1<i<k}.ThenS+#¢dasN;, ¢ V i.
@O OIf x4 + x, + -+ x, and y; + y, + -+ + y; are elements of S, then
e+ xp++x) =1+ y2+ -+ )
= (g =y + Gz —y2) + -+ (e — yi)
E S as (x; —y;) € N; foreachi, 1<i<k
(i1)) Furtherifr € R and x; + x, + -+ + x;, € S then
re(+ X+ +x)=r-x,+1r X+ o+ T X
€S, asr-x; € N;foreachi, 1<i<k
Thus, from (i) and (i), S is a submodule of M.
(I) Letx € N;thenx=0+0+-+-+0+x+0+--+0
T it" place

Hence, x € S. This shows that N; € S.

Thus, we get, N; © S V i,1<i<k.
k

Hence, ZNi C S, S being a submodule of M.
i=1

(III) Let T is any other submodules o M containing each N;, 1 < i < k. Then obviously
ScT.
From (I), (II) and (III) we get, S is the smallest submodule of M containing each N;,
1<i<k.

k
Hence, S = ZNi.
=1

Theorem 829: Let M be an R-module. If N; and N, are R-submodules of M, then
N; N N, is a submodule of M.
Proof : As0 € N; N N,, we get N; N N, # ¢.
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Letx,y € N; N N, then x,y € N; and N; is a submodule of M will give x —y € Nj.
Similarly,
x,y € N, and N, is a submodule of M will give x —y € N,.
Thus,x,y € NyNN, = x—y€EN; NN,
Again, for any r € R and any x € N; N N,, we get,
rx € N; andrx € N, , as N; and N, are submodules of M.
But then rx € N; N N,.
Thus, x—y€EN; NN, , forallx,y € Ny NN,
and rx EN;NN, , forallx e NNyNN,, r€R
Hence, N; N N, is a R-submodules of M.

Remark 1.2.10: More generally, any arbitrary intersection of R-submodules of a given R-
module M is a R-submodules of M.
ie. if{N, /a € A}is a family of R-submodules of a given R-submodule M, then

ﬂ N, isaR — submodule of M.

aEA

Theorem 1.2.11: A, B, C are R-submodules of an R-submodule M such that A € B. Then
A+(BnNnC)=BnNn(A+0)
Proof: AsACBandAC A+ C, we get,

ASBNA+C0C) (D)
Again,BNC S BandBNC S Cand C € A + C will imply

BNC<SBN(A+0C) .. (2
From (1) and (2), we get,

A+(BNnC)<S BNn(A+0) .. (D

(Since A and B N C are normal subgroups of (M, +) )
Now,letx € BN(A+C)thenx c Bandx c A+ C.
Hence, x = a+c, forsomeac Aandc c C
a€A and ACB = a€B
XEB and a€ B = x —a € B (Since B is submodule)
Thus, ¢ =x —a will imply ¢ € B. Butthenx =a+ ¢ will imply x € A + (B n C).
Asa€Aandc e BNC.
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This shows that

BN(A+C)SA+(BNC) ..
From (I) and (II), we get

A+(BNnC)=Bn(A+0)

Worked Examples 1.2.12 o

Example 1 : Show by an example that union of any two submodules of an R-module need
not be a submodule.
Solution : Consider Z as Z-module and let
N, =<2>={0, £2, +4, ...}
N, =<3 >={0, £3, %6, ...}
Then N; and N, are submodules of the Z-module Z but N; UN, is not a Z-module.

Example 2 : Show that union of any chain of submodules of a given R-module M is a R-
submodule of M.
Solution : Let Ny € N, C - be any chain of submodules of a given R-module M. to prove

that U N; is a submodule of M.
i=l1

(i) Obviously, | J N; # ¢.
i=l1

(i) Leta,b € U N;. Then a € N; and b € N; for some i and j.
i=l1

If i <j then N; © N; and hence a,b € N; is a submodule of M, a —b € N; and

hence

a—bEU Ni'
i=l1

(iii)) Letr e Randa € U N; implies a € N; for some i.
i=l1

As N; is a submodule of M, ra € N; and hence ra € U N;.
i=l1

From (i), (ii) and (iii) we get | ] N; is a submodule of M.
i=1

Example3: Give examples of three R-submodules A, B, C such that
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AN(B+C)#(ANnB)+(ANnC)

Solution : Consider the module R® over R. [R® is a vector space over the field R ].
Let B={(x,0)/x€R}, C={(0,y)/y€ER} and A={(z,z)/z€ R}
Clearly, A, B, C are submodules of the R-module R®).

Then, B+ C=R®

and ANB+C)=AnR® =4 . (D
Now, ANnB=(0,0) and ANnC=(0,0)
Hence,

(AnB)+ (AnC) =1{(0,0)} ... (D)

Hence, from (I) and (II), we get,
ANB+C)+#(ANB)+(ANnC)

Definition 1.2.13: Simple Module:
A R-module M is called simple if its only submodules are {0} and M.

Theorem 1.2.14: Let R be a ring with unity. Let M # {0}, be am R-module. Then M is
simple iff M = Rx for any x # 0 in M.
Proof : Only if part :
Let M be a simple R-module. Let x # 0. Then Rx = {rx /r € R} is a submodule of M
containing X. (See remark (1) of example 2).
As Rx # {0} and as M is a simple module, Rx = M. Thus M = Rx for any x # 0 in M.
If part :
Let M = Rx for each x # 0 in M.
To prove that M is a simple module.
Let N be a nonzero submodule of M. Select any x # 0 in N.
Then by assumption, M = RX. Asx € N we get Rx & N
1.e. M € N and hence N= M.

This shows that M is a simple module.
We know that intersection of any number of submodules of a given R-module M is a

submodule of M. as any non-empty subset S of an R-module M need not be a R-module, we

introduce the concept of submodule generated by S.
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Definition 1.2.15: Let S be any nonempty subset of an R-module M. The submodule
generated by S in M is the smallest submodule of M containing S.
This is denoted by (S).
Thus,
(S) = N{N / N is a submodule containing S}

If S = {xq, x5, ..., x,,} is a finite set, then (S) is also written as (x;, X5, ..., X,).

Definition 1.2.16: An R-module M is called finitely generated if M = (xq, x5, ..., x,,) for
eachx; EM, 1<i<n.

The elements x4, x5, ..., X;, are said to generate M.
Definition 1.2.17:  An R-module M is called a cyclic module if M = (x), for some x € M.

Theorem 1.2.18: Let M be an R-module. Let M = (x4, x5, ..., X;,). Then

M={rx +nx,++nrx,/rn€ER1<i<n}

n
In this case we write M = z Rx; .
=1

Proof : LetS = {rjx; + rpx, + -+ 1nrx, /1 €ER,1<i<n}thenS is a submodule of M.

1eER = 1-x; €Rx; foreachi,1 <i <n.
Again Rx; € S foreachi,1 <i <n.
Hence x; €S foreachi,1 <i <n.

If N is any other submodule containing {xi,x,,...,Xx,} then by the definition of
submodule it follows that
71Xy + Xy + -+ 1%, €EN forr; ER
This will imply S € N.
Thus, we have proved that S is the submodule of M containing {x;, x5, ..., X, }.
Hence, (xq, X5, ..., X,) = S.

Hence, by data M = S.
Remark 1.2.19: The set of generators of a module need not be unique.

Let M = {f(x) € F[x] / degree of f(x) < n}. Then M is a vector space over the field.
Then both {1,x,x2,...,x"}and {1,1 + x,x?, ..., x™} will generate M.
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Definition 1.2.20 : Quotient Modules:
Let M be an R-module and N be a submodule of M. Then (N, +) is a normal subgroup of

(M, +) and hence consider
% = the set of cosets [right / left] of Nin M
={m+n/ meM}
Define addition and the Scalar multiplication on % by

i m+N)+(my,+N)=(my +my,)+N
(i)r-(m+N)=r-m+N

form;, m,,m € M andr € R.

Then it can be easily verified that (%, +, -) is a R-module. This R-module is called the

quotient module of M by the submodule N.

Definition 1.2.21 : Submodule Generated by A :
Let M be an R-module and let A € M. The smallest submodule of M containing the set A
is called the submodule generated by A and is denoted by (A). Thus,
(A) = N {N / N is a submodule of M such that A € N} (D)
As M is a submodule of M containing A the family of sets representing R.H.S. of (1) is

non empty.

1.3 Homomor phism :
Definition 1.3.1 : Let M and N be R-modules. A mapping f:M — N is called R-
homorphism or a module homorphism if it satisfy the following conditions.
@O fx+y)=f)+ f»
(i) frx)=r-fx)
forallx,y € Mandr €R.

Remarks 1.3.2:
(i) Iff:M — N is a module homorphism, then f(0) =0, f(—=x) = — f(x) and hence

fx=m=f)-f»), forx,y € M.
(i1))  The collection of all R-homorphisms f: M — N is denoted by Hom (M, N).
(iii)) A R-homorphism f: M — M is called an endomorphism on M and the set of
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endomorphism on M is denoted by endr (M, M).

Examples 1.3.3:
Ex 1. Let M and N be R-modules and define f: M — N by f(m) = 0 for each m € M. Then f
is an R-homomorphism and is called a zero homorphism.
Ex 2. Let M be an R-module. Define i : M — M by i(m) = m for each m € M. Then the
identity map is an R-endomorphism.
Ex 3. Let R be a commutative ring and let M be an R-module. Fix up any r € R. Define the
map f : M — M by
f(m) = r-m, foreachm € M
Then f is an endomorphism.
Solution : Let my,m, € M.
Then f(m,;+ my) =r-(my + m,)
=rm; +1rm,
Thus, f(my + my) = f(my) + f(my)
Again for m; € M and 7; € R we get,
flrimy) =71-(ry my)
=(r-n)m
= -rm ... Since R is commutative.
=1 - (rmy)
=1 - f(my)
Thus, f(my+ my) = f(my) + f(my)
and  f(rymy) =1 - f(my) ... forallm;,m, € M,r, ER

Hence, f is an R-endomorphism.

Ex 4. Let R be a ring. Consider the module R™ over R and the ring R as an R-module. (See

1.1.4 problem 4). Define f : R™ — R by

f(xe, X9, oy Xp) = X; forafixedi, 1<i<n

Then f is a R-homomorphism.
Solution:  Let (x4, X3, ..., X,) € R™ and (y,v,, ..., V) € R™.

Then

f G xa, 0 x0) + V1, Y20 o Y1 = f (e + 1,22 + Y2, 0, X + 7))
=Xty
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= f (e %2 s X)) + F (1, Y20 s Vn)
Further for any r € R and (x4, X, ..., X,,) € R™ we get

flre(xg,xg, ., x,)] = f(rxg, rxy, ..., 7X,)

Thus,
f G x2, 0 x0) + V1, Y20 o V)1 = f (g, % 0, x0) + F (Y1, Y20 000 V)
and [ [r-(xy, X0, ., x)] =1 F(xq, x5, 00, Xp)
.. for all (x4, %5, e, %), (V1, V20 s V) ERM™, r €R

Hence, f is a R-homomorphism.

M
Ex 5. Let M be R-module and N be R-submodule of M. Define f: M — N by

f(m)=m+N
Then f is an epimorphism.

Solution : For my,m, € M we get

f(m1 + mz) = (m1 + mz) + N by deﬁnition Off
M
=(my+N)+ (m, +N) ..by definition 0f+in;
= f(my) + f(m,) ... by definition of f
Further, for any r € R and m € M we get
frm) =rm+ N ... by definition of f
.. .M
=r(m+N) ... by definition of - in N
=r f(m) ... by definition of f
Thus, f(my +my) = f(my) + f(my)
and frm) =r f(m) ... forallm;, m,,m €M, r€eR

Hence, f is a R-homomorphism.
M
Clearly, f is onto as form + N € Vo e get m € M and f(m) =m + N.

Thus, f is an epimorphism.

Remark :

M
(i) This epimorphism f: M — N defined by f(m) = m + N is called a natural or
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canonical homomorphism.
M
(1))  Any quotient module N of M by the submodule N is always a homomorphic

image of M under the canonical mapping.

Theorem 1.3.4: Let M be an R-module and let N be R-submodule of M. The submodules

M U
of the quotient module — are of the form " where U is a submodule of M containing

N.

M
Proof: Let f:M — v be the canonical mapping. We know that f is an onto
. M
homomorphism (1.2, example 5). Hence i fM) ={f(m)/ m e M}.

M
Let T be an R-submodule of ﬁ Define

U={xeM/f(x)ET}
Claim1: U is a R-submodule of M.
1) U+*dasT # ¢.
(i) Letx,y € U.Then f(x),f(y) €T.
As T is a submodule of %, f(x)— f(y) €T.
f being a homomorphism,
f) - fy) €T =  flx-y)eT
By the definition of U, we getx —y € U.
(ii1)) Letr e Rand x € U. Then f(x) €T.

f being an homomorphism,
flx) =rfx)
Asf(x)€Tandr €R

M
r-f(x) €T, T being a submodule of P

ie. f(x)€T.
This givesrx € U .
Form (i), (i1) and (iii) it follows that U is a R-submodule of M.

Clam?2: NcU.

M
Letn € N. Then f(n) =n+ N = N € T. (Since N is the identity element of v and T
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. M
is a submodule of - ).

But then, by the definition of U, n € U and hence N € U.
Clam3: T=f(U)

Let x+NE€eT.

As X€EMand f(x) = x+N €T,wegetx € U.
But this shows f(x) € f(U).

Thus,

x+NeET = f(x)eET = f(x)e€f).
Hence T c f(U).
As f(UCT,
By the definition of U, we get T = £ (U).
From claims 1, 2 and 3, for any submodule T of the quotient module M, there exists a
submodule U of the module M, containing N and with f (U) =T.
But f being a canonical mapping, f (U) = U + N.
Hence, T=fWU) = T=U+N.

M U
Thus, any submodule T of v is of the form e where U is a submodule of M containing

N.
This completes the proof.

Definition 1.3.5: Let M and N be R-modules. Let f: M — N be a R-homomorphism.
The set
kerf ={meM/f(m) =0}
is called the kernel of the homomorphism f and the set
imf ={f(m)€eN/me M}

is called the image of f.

Theorem 1.3.6 : For any module homomorphism f: M — N, kerf is a submodule of the
module M and im f is a submodule of the module N.
Proof :
(I) To prove that kerf is a submodule of the module M.
(i) kerf # ¢ as f(0) = 0implies 0 € kerf.
(i) Letm,, m, € kerf. Then f(m;) =0, f(m,) =0.
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fmy —my) = f(my + (—my))

= f(my) + f(—my) ... » fis a homomorphism

= f(my) — f(my) o f(=x) = =f(x) forallx € M
=0-0 ..w my, m, € kerf

=0

But f(m; —m,) =0 implies my —m, € kerf.
Thus, my — m, € kerf, form,, m, € kerf.

(iii)) Letm € kerf andr € R.

Then,
frm)=r-f(m) ... w fis a homomorphism
=7r-0 ..wmE€kerf
=0 ... See 1.1.3 theorem 1

Thus, f(r m) = 0 implies rm € kerf.
Thus, rm € kerf,forr € R and m € M.

From (i), (ii) and (iii), we get kerf is a R-submodule of M.

(IT) To prove that imf is a submodule of N.
(1) imf # ¢ asM # ¢.
(ii) Let f(my,), f(my) €imf.
fmy) eimf = my EM.
fmy) eimf = m,€EM.
As M is a module, m; —m, € M. But then f(m; —m,) € imf.
f being an homomorphism,
f(my —my) = f(my) — f(my)
Thus, f(my,), f(my) € im f will imply f(m,) — f(m,) €im f
(iii) Let f(m) €im f andr € R. Butthenrm € M asm € M, r € R and M is an R-
module.
Hence, f(rm) € im f.
As f'is a homomorphism, fGm) =r f(m).
Thus, given f(m) € im f andr € R we get
rf(m) eimf.

From (i), (ii) and (iii), we get, im f is a R-submodule of N.

Algebra Page No. 142



Theorem 1.3.7 : Let M and N be R-modules and let f: M — N be R-homomorphism. Then
f is one-one iff kerf = {0}.
Proof : Only if part :
Let f be one-one.
To prove that ker f = {0}. Let x € ker f. Then
x € ker f = f(x)=0
= f(x) =f(0)
= x=0 ... as f is one-one.
Thus, ker f = {0}.
If part :
Let f: M — N be R-homomorphism such that ker f = {0}.
To prove that f is one-one.
Let f(x) = f(y) for some x,y € M.
fO=f» = fO-f)=0
=  fx=y)=0

= xX—y€Ekerf
= x —y € {0}
= x—y=0
= x=y
Thus, f(x) = f(y) = xX=y

Hence, f'is one-one.

Definition 1.3.8: Let f : M — N be a module homomorphism. If f is both one-one and

onto we say f is an R-isomorphism or module isomorphism.

Remark 1.3.9:
(i) If f:M — M is an module isomorphism then f~1: N — M is also a module
isomorphism.
(1)) Any two R-modules M and N are said to be isomorphic if there exists an module
isomorphism f: M — N. In this case we write M = N.
(ii1)) The relation = (being isomorphic) defined on the set of all R-modules is an

equivalence relation.

Algebra Page No. 143



Theorem 1.3.10 : Let M be a simple R-module. Any non zero homomorphism defined on M
is an isomorphism.
Proof :Let f: M — M be R-homomorphism where M is a simple R-module.
To prove that f is an isomorphism.
() We know that ker f is a sub module of M.
M being simple, ker f = {0} or ker f = M.
As f is a non zero homomorphism, kerf # M.
Therefore, ker f = {0}.
But then f is one-one. (see Theorem 2).
(I) By Theorem 1, im f is a submodule of M.
M being simple, im f = {0} or im f = M.
As f is a non zero homomorphism, im f # {0}.
Therefore, im f = M.
But then in this case f is onto.
From (I) and (IT), we get the non zero homomorphism is both one-one and onto.

Hence, f is an isomorphism.

e Shur'sLemma:
Theorem 1.3.11: Let M be a simple R-module. Then
Homgy(M,M) = {f:M — M / f isa R — homomorphism}
is a division ring.
Proof :

(1) To prove Homg(M, M) is a ring under  + ’ and * - * defined by

F+9) =) +g9x), V xeM

and f-9&) =flgk)] . vV xeM
forall f, g € Homg(M, M).

(i) f+g€Homzg(M, M), for f, g € Homg(M, M)

f:M — Mand g:M — M. Hence, f + g : M — M and is well defined map.
Let x, y € M. Then, we have

F+gax+y)=fx+y)+gx+y) .... By definition of f + g.
=[fC)+ O]+ [g(x) + 9]

.... Since f and g are R-homomorphism.

=[f() + g1+ [f(¥) + 9]
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.... Since < M, +> is an abelian group.

=(f+g9))+F+9)W») ... By definition of f + g.
Again, letr € R and x € M.
f+g)lx)=f(x)+g (rx) .... By definition of f + g.
=r[f(x)]+r[g(x)] ...Since f and g are R-homomorphism.
=7 [f(x) +g(x)]
=r(f+9) (®)

Thus, we get,
F+dx+y)=F+9)+F+90)
and (f+g)(rx) =7 (f+g) (x)
forall x,y € M andr € R.
This shows that (f + g) is a R- homomorphism and hence (f + g) € Homz(M, M), for
f,g € Homg(M, M).
(i) To prove f o g € Homgz(M, M) for f,g € Homz(M, M)
f o giswell definedmap. f+g: M — M.
Let x, y € M. Then we have

(Feg)x+y)=flglx+y)] .... By definition of f o g.
=flg()+g®)] .... Since g is a homomorphism.
=flg]+ flgO] .... Since f is a homomorphism.
=([feg))+ (o)) ... By definition of f + g.

Again for any r € R and f € Homgz(M, M), we get

(feg)lrx) = f [g (rx)] ... By definition of f + g.
=fr-gx)] .... Since g is a R-homomorphism.
=7 - [f(g(x))] .... Since f is a R-homomorphism.
=71 (feog) (x)

Thus, we get

(fegx+y)=(fog)x)+(feg)¥)
and (feg)lrx) =r[(f°g) (x)]
forall x,y € M andr € R.
Hence, (f o g) € Homgz(M, M).
(iii) < Homg(M, M), +> is an abelian group where the zero mapping 0: M — M defined by
0(x) = 0 will be the ideal element w. r. t. ‘+” in Homz (M, M).
Let f € Homgz(M, M).
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Define (-f): M — M by
(=) = =[f(x], vV xeM
Then, it can be easily verified that (— f ) is a R-homomorphism defined on M and (—f)
will be additive inverse of f in Homgz(M, M).
(iv) (feg)eh=fo(geh), vV f,g.h € Homg(M, M)
(v) Letf,g,h € Homg(M,M) let x € M, then
felg+hl(x)=/f[(g+h )]
= fl9(x) + h(x)]
= flg()] + f [h(x)]
=(feg)(x) +(feh)()]
=[(feg)+(fen]k), V x €M
Hence ,
folg+hl =(feg)+(feoh)
Similarly, (g+h)of =(gef)+(heof) V f,g h € Homzg(M,M)
From (i), (ii), (iii) and (iv), we get, (Homg (M, M), +,0) is a ring.
(I1) The identity mapping i: M — M defined by
i(x) = x, forallx e M

will be the unity element in Homgz (M, M).

(I'1) Let ¥ be any non-zero element in Homgz (M, M).
i.e. Y is a non-zero R-homomorphism from M into M, where M is a simple module.
Hence, 1 must be a bijective and hence i is an isomorphism.
But this will show that =1 € Homy (M, M).
Thus, we have proved that, any non-zero R-homomorphism defined on M will have a
multiplicative inverse in Homg (M, M).

From (I), (II) and (III), we get, Homgz (M, M) is a division ring.

Theorem 1.3.12 : Let M be a R-module and x € M such that rx = 0, r € R implies r = 0.
Then Rx = R as R-module.

Proof :  We know that Rx is a R-submodule and hence Rx is a R-module (See 2.2 example
2). Further R is also an R-module (See 1.2 example 1).
Define f:R — Rx by f(r) =1 - x.
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(I) Then,

D flr+7r)=0+1)®)
= 1 (x) + (%)
= fOr) +f(r2)

(i) fOr-r)=00r)®)
= 1 (rx)
=71 f(n)

Forallr,r, 1, €R.

Hence, f is a R-homomorphism.

(I) f1is onto obviously.

(IIT) Letr € ker f. Then f(r) =0.1.e.7-x =0.Butbydatar-x=0 = r=0.

Hence, ker f = {0}. But this will imply f is one-one (See Theorem 2).

Form (I), (I) and (III), f is an isomorphism.

Hence, R = Rx as R-module.

1.4 Fundamental Theorem for R-homomorphism and It's Application :

1.4.1 Fundamental Theorem for R-homomor phism :

Any homomorphic image of an R-module M is isomorphic with its suitable quotient

module.

Proof :  Let M and N be R-module and let N be a homomorphic image of M. Hence there

exists an onto homomorphism f : M — N. As fis onto N = f(M). Let K = ker f.

M
Then K is a submodule of M. (See Theorem 1.3.4) and hence the quotient R-module %

1s defined.

M
Definea g : ;—>N=f(M)by

gm+k) = f(m),
(I) g is well defined.
M
Letm; + k =m, +k1n;.

Then ml, mz E M Wlll lmply m1 - m2 E M.

Asm; +k=m, +kwegetm; —m, € M. ie.

Hence f(my—my) =0

= fm) = f(my) =0,

Algebra

M
foreachm+k€;

my; —m, € ker f.

... Since f is homomorphism.
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= f(my) = f(my)

Thus, we get,
.M
m +K=m,+K 1n;1mp11es gim; +K) =g(m, +K)

This shows that g is well defined.
(IT) g is a R-homomorphism.

M
(i) Letm1+ke%andm2+kEE.
Then,

M
glm; + K)+ (m, + K)] = g [(my + m,) K] .... by the definition of ‘+” in e

= f (my +my,) ... by the definition of g.
= f (my) + f(my) ... f is homomorphism.
=g(my + K) + g(m, + K) .... by the definition of g.

M
(i1) LetrERandm+K€;.Then,

. .M
glrm+K)] =g [rm+K] .... by the definition of ‘-’ in e
= f (rm) ... by the definition of g.
=r-f (m) .... f 1s homomorphism.
=r-g(m+K) .... by the definition of g.

From (i) and (ii), we get, g is a R-homomorphism.

(IIT) g is one-one.
M
Let g(my+K)=g(m,+K) forsomem; + k,m, +k E;.

Then g (m1 +K) = g(mz +K)

= f (my) = f(my) .... by the definition of g.
= f(m) —f(my) =0

= fimy—my) =0 ... f is homomorphism.
= m;—m, Ekerf =K ... f 1s homomorphism.
= m;+K=m,+K

Thus, g (my + K) = g(m, +K) = my + K =m, + K and hence g is one-one.
(IV) g is onto.
Let n € N. As N = f(M), there exists some m € M such that f(m) = n. But for this

M
me M, m+KE;andwegetg(m+K)=f(m)=n.
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This shows that g is onto.

M
From (1), (II), (III) and (IV), we get, g is an isomorphism. Hence ~ = N.
This completes the proof.
A+B B
Theorem 1.4.2: Let A and B be R-submodules of an R-module M. Then e = AnE

Proof: A+B={a+b/a€A, beB}isaR-module of Mand B € A + B. Hence B is
a submodule of A + B. (See Theorem 1.2.8).

+
Hence e is defined.
B
A N B is a R-module of M (See 2.3 theorem 2) and A N B € B. Hence B is defined.

B
Define f:A + B Hﬁby

f@a+b)=b+(ANB), fora+b €A+ B.
(D f is well defined map.
Let a;+b;=a,+b, fora,, a, € Aand by, b, €B.
Then,a; —a, = b, —b; EANB.
Asb, —b; EANBwehave b, + (ANB)=b; + (ANB)
Thus, a; + b; = a, + b, will imply b; + (A N B) = b, + (A N B) and hence
f(a; + by) = f(a, + by).
This shows that f is well defined map.
(I) To prove that f is R-homomorphism.
(1) Let a; + by and a, + b, be any element of 4 + B.
fl(a; + by) + (a, + by)] = fl(a; + a,) + (by + by)]
... {M, +) is an abelian group.
= (b, +b,) + (ANB) ... by the definition of f.
=[b; + (ANB)]+ [b, + (AN B)]
= f(a; + by) + f(a; + by)
(ii) Letr € Rand a, + by € A + B. Then

flr (a, + b)) = flra; +7b] ..ay,by E Mandr € R.
=rb, + (ANB) ..Ta; € Aandrb, € B.
=r[b; + (AN B)]
=r f(ay + by)
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From (i) and (ii), it follows that f is a R-homomorphism.

(III) f is an onto mapping.
B
Letb+ (ANB) € —— . Thenb € B.
ANB

Consider 0 + b.
Then,as 0 € Aweget0+b€A+Band f(0+b) =b+ (ANB)
But this shows that f is onto.

From (I), (II) and (III), f is onto homomorphism.

B
Hence, the R-module B is a homomorphic image of the R-module A + B under the

homomorphism f.

Hence, by fundamental theorem of homomorphism (See 1.4 theorem 5)

A+B _ B

— (D)

kerf ~ ANB

Now
kerf ={x€e A+B/f(x) =0}
={a+b €A+B/f(a+b)=0}
={a+b €A+B/b+(ANB)=ANB}
=f{a+b €A+B/be(ANB)}
={a+b/a€Aandb€eEB}=A

Thus, kerf =A ... (2)
From (1) and (2), we get,
A+B ~ B
A~ ANB

This completes the proof of the theorem.

Theorem 1.4.3: Let A and B be submodule of R-module M and N respectively. Then
MXN M N

~

AXB A B
Proof : M X N is an R-module (See 1.4, problem 2). A is a submodule of an R-module M

M N
and hence the quotient R-module n is defined. Similarly the quotient R-module 3 is
M N
defined. Hence 1 X 5 isan R-module.

M N
Define the map f : MXN_)ZXEby
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f(m,n) =(m+ A, n+B), for all (m,n) € M X N
(D f is well defined.
Let (my,ny) = (my,n,)in M X N.
Then, m; = m, and ny = n,.
Therefore,
my—m,=0€Aandn; —n,=0€B
But then
m +A=m,+A4 and n,+B=n,+B
This shows that (m; + A, n; + B) = (m, + A, n, + B)
ie.  f(my,ng) = f(myny)
Hence, f is a well defined map.
(II) f is a homomorphism.
(i) Let (my,ny), (Mmy,n,) EM XN
flmqy, ny) + (my,ny)]
= fl(m; + my,ny +ny)] ... by the definition of + in M X N
= [(my + my) + A, (n; +n,) + B] ... by the definition of f
= [(my + A) + (m; + 4), (ny + B) + (n, + B)]

. . M N
.. by the definition of + in " and 3

M N
=(m;+A4, n,+B)+ (m,+ A, n,+B) ... by the definition of + in; X z
= f(my,ny) + f(my,n,) ... by the definition of f
(ii) Letr € Rand (m,n) € M X N. Then
flr (m,n)] = f[(rm,rn)] ... by the definition of - in M X N
=(m+A, rm+B) ... by the definition of f
M N
=(r(m+A), rn+B)) ... by the definition of - in " and 3
=r(m+A4, n+B) ... by the definition of - in M X N
=rf(m, n) ... by the definition of f

From (i) and (i1), we get f is homomorphism.

(IIT) f is onto.
M N
Let(m+A, n+B)eE—X—.
A B

Then obviously, (m,n) € M X N and f(m,n) = (m+ A, n+ B).
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But this shows that f is onto.
, M_ N. .
From (I), (II) and (III), it follows that " X 5 isa homomorphic image of M X N.

Hence, by the fundamental theorem of homomorphism,

MXN M N
>~ — X — (D

kerf — A B

Now,
kerf ={(m,n) e M X N / f(m,n) = 0}
={mn)eEMxXxN/(m+A4, n+B) =(4B)}
={(m,n) EMXN/m+A=A andn + B = B}
={(m,n) EM XN /me€A andn € B}

Thus, kerf=AXB .. (2
From (1) and (2), we have,
MXN M N
=—X-—=
AXB A B

This completes the proof.

Let M be an R-module. We know that, if there exists x € M such that M = Rx then M is
called cyclic module generated by x. Here Rx = {rx /r € R}.
e.g. Thering R is a R-module. As R = R - 1, we get R is a cyclic module.

Theorem 1.4.4: Let an R-module M be a cyclic module Rx. Then M = p—

Proof : M =Rx ={rx/r € R}.
Define f: R — Rx by
fr)y=r-x, foreachr € R

[Here the ring R is considered as an R-module]. Then f is an epimorphism (See 1.3,

theorem 5). Hence by the fundamental theorem of homomorphism,

R =R 1
kerf = X .. (D

Now,
kerf ={reR/f(r) =0}
={reRrR/rx=0}
ker f is a submodule of an R-module R and hence it is a left ideal of R. This ideal is

called the annihilator ideal of x in R and it is denoted by ann x.
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Hence, for a cyclic module M = Rx, we get,
R

ann x’

Rx =M =

R
Theorem 1.4.5: Let R be a ring such that 1 € R. An R-module M is cyclic iff M = T for

some left ideal [ of R.

Proof : Only if part :
Let M be cyclic.

Hence, M = Rx for some x € M. By Theorem 1.4.4, M =

where ann x is a left
ann x

R
ideal in R and thus we get M = T for left ideal I = ann x in R.

If part :

R
LetM = Ik where I is left ideal of R.

R
1€ER = 1+1€7.

Further, R(1+1)={r(1+1)/r €R}
={r+1/r €R}
R

1

R R R
This shows that, 7 is a cyclic module generated by (1 +1). As M = T and T is cyclic,

we get, M is a cyclic module (Since isomorphic image of a cyclic module is a cyclic

module).

Theorem 1.4.6: Let R be a ring with unity 1. Let M # (0) be an R-module. Then M is

R
simple iff M = T where [ is a maximal left ideal of R.

Proof : Only if part :
Let M be a simple R-module.

As M # (0) and M is we get M = Rx for any x # 0 in M.

R
As M = Rx, a cyclic module then M = n where | is a left ideal of R. by theorem 1.4.4.

R
As isomorphic image of a simple module is a simple module, we get T is a simple
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module. Now the submodules of ? are of the form % where U is a submodule of the
module R containing /. But the submodules of an R-module R are the left ideals in R.
Hence ? being simple there do not exists any left ideal in R containing I. But this shows
that I is a maximal left ideal in R. Hence M is a simple module and M # {0} will imply

R
M = It where [ is a maximal left ideal in R.

If part :
R
Let M = T where [ is a maximal left ideal in R. But this in turn will imply that there

R R
does not exists any proper ideal in Ik Hence 7 must be a simple R-module.

R
As M = 7o we get M is a simple r-module (since isomorphic image of a simple module

is a simple module).
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Unit 2: SUM AND DIRECT SUM OF SUBMODULES:

2.1  Sum of modules

2.2 Direct sum of modules
2.3 Free modules

2.4 Completely reducible modules

2.1 Sum of submodules:

Definition 2.1.1: Let M be an R-module. Let My, M,, ..., M, (k finite) be R-submodules of M.

k
The submodule generated by J Mi is called the sum of submodules M;, 1 <i<k
i=1

k
and is denoted by M; + --- + M, or simply ZM,- .

=1

k
Note that the submodule generated by | Mi is the smallest R-submodule of M,

=1

containingeach M;, 1 <i<k.

Theorem 2.1.2: For the submodules My, M5, ..., M, of an R-module M
k
ilei :{x1+x2+...+xk/xi € Mi}
Proof :  LetT = {x; + x,+...+x3./x; € M;}.
(I) T +# ¢ as M; # ¢ for each .
(I) Letx,y € T. Then
X=x1+x,+...+x;, and y=y; +y,+...+y,, wherex;, y; €M; for eachi.
Now,
X—=y =@+ x4+ +x) — (1 + Yo+ +Yr)
= (1 —y1) + Gz —y2) + -+ (o — i)
... Since x;, y; € M; for all i and <M, +> is an abelian group.
But as M; is a submodule of M, x; — y; € M; for each .
Hence, x —y €T.
This shows that x,y €T = x-—yE€T.
(IIl) Letx e Tandr € R. Then x = x; + x5 + - + xp, x; EM;, V i

Now rx =1(x; +x, + -+ xp)

Algebra Page No. 155



=T1Xx1 +TX; + -+ TXy ... By the definition of module
As M; is a R-submodule of M, r € R and x; € M; will imply r - x; € M; for each i.
Hence, rx € T.
Thus, foranyr E Randx € T we getrx € T.
From (I), (IT) and (III), we get, T is a R-submodule of M.

(IV) Let x; € M;. Then 0 € M; for each i will imply,
X =04+0+-4x+0+-+0 €T

T ith place

Hence, M; € T, foreachi,1<i<k.

k
Therefore, U Mi cT.

i=1

k
(V) Let] be any other submodule of M containing |J Mi . Then each M; € J.

i=1
Letx € T. Then x = x; + x, + -+ x;, where x; € M; foreachi, 1 <i<k.AsM; S ]
we get, x; € J foreachi, 1 <i<k.
Hence, ] being a submodule of a module M,
Xy +x,++x, €], lLe.x €]
This shows that T € J.

k
Thus, we have proved that T is a submodule of an R-module M containing |J Mi and

i=1

k
is the smallest submodule of M containing (J M. .

i=1
k
Hence, by the definition, 7" = ZM ;-

i=1

Therefore,

k
iE]Mi ={x1+x2+...+xk/xie Mi}

Definition 2.1.3: Let {M, / @ € A} be any family of submodules of an R-module M. The

submodule generatedby | M o is called the sum of submodules M, and is denoted
ae A
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by ZMH.

acA

Remark 2.1.4: Z M, is the smallest submodule of an R-module M containing each
acA

submodule M,,.

Theorem 2.1.5: Let{M, / a € A} be a family of R-submodules of an R-module M. Then
> Ma =< ¥ x/ xi € Mi
oeA finite

Where Y X denotes any finite sum of elements of M;, [ €A.
finite

Pr oof : Define

il R i
finite

As in theorem 1, we can prove that T is a submodule of M containing each M,, (a € A)
and is the smallest submodule of an R-module M containing each M,, (a € A).

Hence, T= Y Ma'

ae A

2.1.6 Worked Examples o

Examplel1: Let V = R3 be a vector space over the field R. Let x; = (1,0,0),x, = (1,1,0),

x5 = (1,1,1). Show that V = Rx; + Rx, + Rx;.

Solution : We know that Rx;, Rx, and Rx; are submodules of an R-module R3. (Note that
every vector space is a module). Hence Rx; + Rx, + Rx; is a submodule of R3 = V.
Hence, Rx; + Rx, + Rx; € V. Let x € V then (a,b,c) € V = R3.

Further, (a,b,c)=(a—b)x;+(b—c)x, +cCcx;
willimply x = (a,b,c) € Rx; + Rx, + Rxs.

By theorem 1.3.4, (as a,b,c € R wegeta —b,b —c €R.
Hence, (a — b) x; € Rx,,

(b —c) x, € Rx, and x5 € Rx3 ).

But this shows that V' € Rx; + Rx, + Rx;.
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Combining both the inclusions, we get,
V=IR3 =IRX1+RX'2+IRX3

2.2 Direct Sum of Submodules:

Definition 2.2.1: Let M be an R-module. Let M;, M,, ..., M}, be submodules of the module

K K
M. The sum Z M; is a direct sum if each element xe Z M;j can be uniquely expressed

asx = x; + x, + -+ x5, , where x; € M; foreachi, 1 <i < k.

k
In this case we write @ Z Mj or M{® M,® ... ® M.
i=1

Each M; is called the direct summand of the direct sum M; ® M, ® ... ® M,,.

Theorem 2.2.2: Let M be an R-module and let M = M;® M,.

M M
Then M, EM—ansz EM—.
2 1

Proof : Let M = M;® M,. Hence, any x € M has a unique representation as x = x; + X,
where x; € M; and x, € M,.
Define f: M — M; by
f&x) =x,
ie. fOq +x3) = xq, for each x € M.
By the uniqueness of the expression, f is a well defined map.
(1) Letx,y € M.Letx =x; +x, and y = y; + y, where x4, y; € M; and x,, y, € M, be
unique expressions of x and y.

fx+y)=flx+y1+x,+y2)

=f(x;+x, +y; +y2) ... Since <M, +> is an abelian group
=x1+y . X, VTEM; = x1+y, €My,
M; being a submodule.
=f(x)+f(y) ... By definition of f.
Thus, f(x +y) = f(x) + f(y) ... forallx, y € M.
(1)) Now, let x € M and r € R. Assume that x = x; + x, where x; € M; and x, € M,.

Then,

rx =r(x; +x3) =1rx +71x,5
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As M; and M, are submodules of M, we get rx; € M; and rx, € M,.
Hence, by the definition of f,
fax) =rx; =71 f(x)
Thus, f(rx) =r f(x) foreachr € R and x € X.
From (i) and (i1), we get, f is a R-homomorphism.

Hence, by the fundamental theorem of homomorphism,

M
=M, ... (D
kerf

Now,
kerf ={xe M/ f(x) =0}
={x+x, €M/ f(x;+x,) =0, x;, E My, x, € M,}
={x;+x, €M/ x; =0,x; € My, x, € My}
={0+x, EM/ x, € My}

=M,
Thus, kerf = M, ... (ID)
From (I) and (II), we get,
L =M,
M3

M
Similarly, we can prove that I = M,.
1

This completes the proof of the theorem.

Theorem 2.2.3: Let M be an R-module. Let M contains submodules M;, M,, ..., M) having
the property,
Foreachi,1<i <k,
M;n[M;+ M, + -4+ M_;+ M+ + M] = {0} ... (A)

k
Then, the sum ZM ; 1s a direct sum.

i=1
k

Proof : Let xe Z M; , have two expressions say
=1

X=X +x; + -+ x
and X=y1+ty,+-+yi

where x;, y; € M; foreachi, 1 <i < k.
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Then, 0 = (x; — y1) + (xz — y2) + -+ (X — Yi)-
But this shows that

k
_(xi_yi):Z(xj_]/j) (1)

j=1
j#l

As M; is a submodule of M,

—(xi, —yi) €EM; )
k
Now, Z(xj—yj) e Mi+My+..+M;_+M; +..+ M
i=1
j #1
From (1), we get,
—(xp,—Y)EM{ + My + -+ M_;+M 1+ +M,...(3)

From (2) and (3), we have,

—(xj—y;)eM; () ile ={0} ... by (A)
e
Hence, x; =y;.
As this is true for each i, 1 < i < k, we get the expression for x is unique.

k
Hence, the sum ZM ; 1s a direct sum.
i=l1

Theorem 2.2.4: Let M be an R-module and let M;, ..., M; be submodules of an R-module

M. The following statements are equivalent.

k
(i)  The sum ZM ; 1s a direct sum.

1=l
(i) Foranyi,1<i<k,
M;N[My+My+ -+ M_q;+ M+ -+ M] = {0}
Proof :
i) = (ii) :
Letx € M;n[My+ My + -+ M;_y + M;, 1 + -+ My]. Then x € M; and
X=yY1+y,+ -+ Vi1 +Yig1 + -+ Y wherey; € M;, 1 <j<k.
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Thus, we have
Yityat+ ot YVieat () + Y+t Y =0

k k
As Oe ZMI and ZM,- is a direct sum, the expression 0 = 0 + 0 + ... + 0 of

=1 1=l

k
Oe ZM ; must be unique.

=1
Hence, -x =0, i.e. x = 0. This shows that
M;n[M;+My+ -+ M_q+ Mg+ -+ M ] = {0}
i)= (i) :
Proof of this implication follows from theorem 1.3.10.

Hence, (1) & (i1).

Theorem 2.2.5: Let M be an R-module. Let M;, M,, ..., M, be submodules of an R-module

M. The following statements are equivalent.

k
(1) ZM ; 1s a direct sum.

i=1
(i) 0=>x;, x, EM; Vi, 1<i<k

= x;=0 foreachi,1<i<k

k
(i) M;N| D M;|={0}
j=1
j#l
Proof :
)= (ii) :
The implication (i) = (ii) follows directly by the definition of the direct sum.

i) = (iii) :

k
Letx € M;N| > M;

j=1

j #1
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Then, x € M; and € .ile .
i;tl

Hence, x =y, +y, + -+ ¥i_1 +Yiy1 + -+ Yy, where y; € M; for 1 <j <k and
R
Therefore,

yityatootyiaa+t 0+ Y+ v =0
by (i), we get, —x =0. 1ie. x=0.
But this shows that

k
=1

The implication (iii)) = (i) follows by the theorem 1.3.10.

Thus, (i) = (i1) = (ii1)) = (i) and this completes the proof.

2.2.6 Worked Examples )

Example 1 : Let M be an R-module and let M;, M,, ..., M; be submodules of M such that

M= 3 Mi and the triangular set of conditions
i=1

M; n M, = {0},
(M; + M) n M5 = {0},
My + -+ My_1) N M, = {0}

k
hold. Show that M =@ > M, .

i=1
Solution : By corollary 6, it is enough to prove that if x; € M; for each i, 1 <i < k and if
Xy +x3+ -+ x, =0thenx; =0 foreachi, 1<i<k.
X +x,++x, =0 .. (D
Hence, —x;, = x1 + x5 + -+ X4

k-1
As —x € My and xq + x5 + -+ X1 € Z Mi
i=1
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We get, —x, € M, N [My + My + -+ My_4]
Hence, —x, € {0} ...bydata
Thus, X, =0 .. (2)
Substituting x;,, = 0 in (1), we get,
X +x,++x,_1.=0
Therefore, - (x4_1) € [M; + M, + -+ M,_,] N M;,_, = {0}

Hence, Xp—q1 =0 ... (3)
Continuing in this way, we get,
Xp =X, =+=x,=0
k

Hence, the sum Z Mi is a direct sum.
i=1

ie. M=® ) M,

Example2: Let V =R3 be a vector space over the field R. Let x; = (1,0,0),x, =
(1,1,0),

3
x3=(1,1,1). Show that V' =® > Rx;.
i=1
3
Solution : We have proved that V' = z Rx; .
i=1
3
Hence, only to prove that V' =@ Z Rx;.
i=1

Let0 =rx; + mpxy +13%3, forsomery, 1y, r3 €ER.
Then,

(0,0,0) =7r,(1,0,0) +1,(1,1,0) + r3(1,1,1)
Hence, (0,0,0) = (ry + 1,413, 15+ 713, 13).
This shows,

r3 =0, r,+13 =0, nt+rn+r=0
Solving the three equations, we get,

T1=0, T2=0, T‘3=0.
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Thus, 0 =rx + 1%, + 133 = T =1r,=13=0.
Hence, by corollary 6, we get
V = Rxl + sz + Rx?}

Example3: Let M be an R-module. Let K € N € M be submodules of M. Show that if N
M
is a direct summand of M, then % is a direct summand of 2

Solution: LetM =N @ N'. K € N.
M_N + N’_N N’

K-k K'x

N N NnN {0}

K"K~k Tk %
as NN N’ = {0}. Hence,

M_N@M

K KK

Example4: Let M be an R-module. Let K € N ¢ M. If K is a direct summand of N and N
is a direct summand of M then K is a direct summand of M.

Solution: Let N =K@ K',andM =N ® N'.
Hencee M =K ® K @ N'.

Hence, K is a direct summand of M.

Example5: M is a R-module. K € N © M are submodules of M. If K is a direct summand
of M, then K is direct summand of N.
Solution: Let M =K@ K'.N=MnNnN=(K®K)NN.
Claim: N =K ® (K'nN)
i) N=K+ (K'nN)
LetxeM = x=K+K/, where k € K and k' € K.
Then,k e K=KnNN
k' =K'
x—k=k = Kk E€EN
Hence, k' € K' N N.
Thus,x =k+ k', ke Kandk' e K'nN
= x€K+ (K'nN).
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Thus, N € K + (K' N N).
Obviously, K + (K'nN) € N.
Hence, N = K + (K' N N)

()KNn(K'NnN) =¢
Kn(K'nN)=(KNK')NN=¢NK' NN = ¢.
Since (KNK')=¢as M=K®K'.

From (i) and (i1), we get,
N=K®K'nN)

This shows that K is a direct summand of N.

Example6: Let M be a R-module. Let K € N € M. If K is a direct summand of M and if
N M
E is a direct summand of ; then N is direct summand of M.

Solution : As K is a direct summand of M, we have
M=K®K'.

NN
= I= ()

By example (5), N =K ® (K' N N)

— gEK’nN Q)

N M
From (1) and (2), we get, if % is a direct summand of P then K’ N N must be the direct

summand of K'. Hence let us assume that

K'=(K ' nNnN)®L ...(3)
AgainM = K @ K’ will imply

M=K®K NnN)®L
Hence, M= N®L, (Since N =K @ (K' n N))

This shows that N is a direct summand of M.

Example7: LetM =K®K' =M =L@ L' .IfK=L, then show that K" = L'.

Solution : Let m € M. Then m can be uniquely expressed by m = k + s where k € K and
SES
Then,

s=m-kekK'.
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AsK = Lwegetm—k el
Define f:K'— L' by
f(s)=m—k
(1) f is well defined.
S1= 52
Then, my =ky + 5.
Let f(sy) =m; —k; and  f(sy,) =m, —k,.
Then, m; = k; + s; is the unique representation of m;.
Hence, s; = (my — ky) = s, = m, — k, will imply f(s;) = f(s3).

Definition 2.2.7 : The sum Y M, of the family {M, / a € A} of submodules of an R-
ae A

module M is a direct sum if each xe Y M, can be uniquely expressed as x = Y x;
ae A

where x; € M and x; = 0 for almost all i.

Generalizing the result of Theorem 2.2.5, we get the following theorem.
Theorem 2.2.8: Let {M, / a € A} be a family of submodules of an R-module M. The
following statements are equivalent.

(1) > M, isadirect sum.
ae A

(i1) O:ine ZMa,:> x; =0, forall i
I

acA

k
iy M;N| D, M;|={0}
i#]
i, jeA

e Fundamental Structure Theorem for Finitely generated Modulesover P. 1. D. :
Result 2.2.9: Let D be P.I.D. Any submodule K of the free module D™ is free with base of

m < n elements.
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Result 2.2.10: If A is any m X n matrix with entries in p.i.d. D, then there exits an invertible
matrix P of order m X m with entries in D and an invertible matrix Q with entries in D

such that PAQ = diag {d4,d;, ...,d,,0,0,...,0} whered; # 0 and d;/d; if i < j.

e  Fundamental Structure Theorem:
Theorem 2.2.11: Let M # 0 be a finitely generated module over a p.i.d. D. M is a direct sum
of cyclic modules.
M=DZ, ®DZ,® ..® DZ;
such that the order ideals ann Z; satisty
annZ, D annZ, D - D ann Z, where ann Z,, # D.
Proof : M # (0) is a finitely generated D-module. Let {x;, x,, ..., X, } be the set of generators
of M.
Then, M = Dx; + Dx, + --- + Dx,,.

n
i.e. M = Z Dx;
i=1

We know that, D™ = {(r,1,,..,7,,) /1; €D} is a free D-module with base
(eq,€5,...,e,), where g; = (0,0,...,0,1,0,...,0).

T ith place
Define f : D™ — M by

gx)=g <Zn: Ti ei)

i=1
n
=Zrixi, r; €D, foreachi, 1<i<n

Claim 1 : g is an epimorphism.
(i) g is obviously well defined as (e, e,, ...,e,) is a base for D™ any x € D™ can be

n
uniquely expressed as Z r;e; wherer; € D foreachi, 1 <i<n.
i=1

(i) g is a homomorphism.

Letx,y € D™, Then,

n n
x=2riel- and ]/=Z”'i€i
i=1 i=1

Algebra Page No. 167



where r;, 1/ € D for each i.

r n n
gx+y)=g Zri e + Zﬂ"ei]

= Z(Ti +1) %, (by the definition of g)

i=1

n
Z T X +
i=1

=gx)+g9®)

4

i X

n
i=1

n
Now, letr € D and X = Zri e; € DM with r; € D.
=1

n
r ZTi ei]

i=1
;(T ‘1) ei]

= Z(r ‘) X, (by the definition of g)

gr-x) =g

=9
n

Thus, for any x,y € D™ and r € D, we get

gx+y)=9gx)+g») and g(r-x)=r-g(x)
Hence, g is a homomorphism.
As g is obviously onto, we get g is an epimorphism.
Thus, the D-module M is a homomorphic image of the D-module D™,
Hence, by fundamental theorem of homomorphism,

DM
M =
kerg

Let K = kerg. Then K is a submodule of the free module D™,
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Hence, by Result 2.2.9, K is a free module with base containing m elements, where
m<n.
Let {f,, fo) ..., fn} be the set of generators in term of the base {e;, e,, ..., e,} (as f; € D™
foreachi, 1 <i<n).

fi = ajie11 + appe; + o+ aggey

f2 = azie1 + aze; + -+ azey,

Define A = (a;5).

Then, A is a matrix of order m X n with entries in D.

Hence, there exists an invertible matrix P = (p;;) of order n X n and an invertible
matrix Q@ = (q;;) of order m X m such that QAP is a diagonal matrix given by,

diag {d,,d,, ...,d,,0,0,..,03 ... By result 2.2.10

n
Define e} = z pij €j . Then {e'y, €5, ..., €'y} will form an another base for D™,
j=1

m
Define [ = 26] fIf Q_1=(q* j,then
k=1 kI 1 ki

qklfk=k2q g f =f

=k kI r

But this shows that {fi,f,,...,f,} is contained in the submodule generated by
' f 2 s f'm}. Hence {f'y, f', .-, f'm} generates K.

Now,
| m * !
fo= 2yt = qul A€ = qul A Pi¢
k=1 Lj Lji
_1_ *
where P —( pl,/.).
Hence, the new relation matrix is A’ = QAP 1.
But by the choice of P and Q,
QAP = diag {dy, d,, ..., d,, 0,0, ...,0}

Hence ,

fi =die;, f, =dse;, ..., fi =d,e,
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frai =0, frea =0, ., fm =0 - (D)

n
Define y. = Zpijx]..
j=1

n
Then > P Y, = Zprk Py X; =, where P_1=( pl.j); shows that the submodule
j=1

generated by {y;, 5, ..., ¥} contains {x,, x5, ..., x, }.
Hence, {y;,y5, ..., Vo } generates M.
Thus, M = Dy, + Dy, + ---+ Dy,

n
ie. M=) Dy, .. (2)
k=1
n
Let Zbiyl.:o for b; € D, foreachi, 1 <i <n.
=1
Consider g(e;).

n

n
= Z pl.]. x]. , by the definition of g.
j=1
=DYi-
Thus, g(e;) =y, foreachi, 1<i<n. ...(3)

n n
Hence, Zbiyi:O = Zbig(eli)zo
i=1 i=1

n
= g{Zbi 611=0 ... g is a homomorphism
i=1
L 1
= Zbieiek
i=1
Ask = (fi, fo, ) fm) We get
L ! m 1
Z;biei = Z;cl.fl. , forc;eD, Vi, 1<i<m.
i= i=
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i=1 ,
n m
Thus, Zbi e;. = Z(ci dl.)e;.
i=1 i=1
n
Z(bi—c d )e =0

(v fi =die’y)

As{e';, e, ..., e’} forms a base for D™ we must have

b; —c;d; = 0.
But  b; = ¢;d; for each i will imply
b y; = (¢; dy) i
=¢; (d; yi)
=G (di g(e,i))
=¢; [g(di€’)]

= ¢ [g(f')]
=¢ - 0
=0

Hence, b; y; = 0 for each i.

1e. bi = Cidi ,

fori, 1<i<n.

. by2, g(e'y) =y

.. Since g is a homomorphism.
.. by 1.

.. Since f'; € kerf

n
Thus, we have proved that z bi y, = 0 then b; y; = 0,foreachi, 1 <i<n.

i=1

n
But this in turn shows that the sum M = Z Dy is a direct sum.

i=1

n
i.e. M=o Z Dy,
i=1

Thus, M =Dy, ® Dy, ® ... ® Dy,.

Now, by =cd; = b;e(dy).
Againb;y; =0 = (¢ dy) b € (dy)
= ¢ diy)=0
= d;y;=0
anny; = (d;).
Asd,/d,, d,/d;, ... we get,
(dy) 2 (d2) 2 -2 (dy)

Hence,
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If d; is aunit element in D, thend; y;, =0 = y; =0. (* D is adomain)
Hence, drop those elements y; from the set {y;, ¥5, ..., ¥, } for which y; = 0.
Assume without loss of generality, d;, d>, ..., d; are units and d;, 1, d¢4o, ... are not units
inD.PutZ; =yeiq, s Znt = Yn- We get,
M=DZ, ®DZ,® ..® DZ,_;
where DZ; = (0) and
annZ; D annZ, O - D ann Zy

where s =n —tand ann Z,, # D.

2.3 FreeModule:
Throughout this section R denotes a ring with unity 1.

Definition 2.3.1: Let M be an R-module. A finite sequence Xx;, X, ...,x, of distinct

elements of M is said to be linearly independent if for any a4, a,, ..,a, in R,
n
> ax; =0 impliesa; =a, = =a, =0.
i=1
A finite sequence x;, X5, ...,Xx, of distinct elements in M is said to be linearly

dependent if it is not linearly independent.
A subset S of an R-module is called linearly independent if for every finite
sequence of distinct elements of S is linearly independent. Otherwise S is called linearly

dependent.

Definition 2.3.2: Let M be an R-module. 4 subset B of M is called a basis if
(i) M is generated by B.

(i) B is linearly independent set.

Example 2.3.3 : Let R be a ring with unity 1. Define R™ = {(x,, x,, ...,x,) /x;i ER }.
Then R™ is an R-module with {eq, ey, ..., e, } as a base, where
e; = (0,0,...,1,0,...,0)
T it" place.
Solution : R™ = {(x;, x,, ...,x,) /x; € R}. Define addition, O-element and scalar
multiplication in R as

(X1, Xz s X)) + V1, V2o s ¥n) = (1 + Y1, X2 + Y2, s X+ V)

Algebra Page No. 172



0=(0,0,..,0)
re (X1, Xgp vy Xp) = (e Xy, T+ Xy oy * X))
forr € R and (x;, X3, .., %), (Y1, Voo ) V) € RM.
Then, it can be easily verified that (R(™, +, -) is a module over R.
Put e; =(0,0,..,1,0,..,0), foreachi, 1 <i<n.
T ith place.

n
(i) Leta; €ER,foreachi, 1<i<nand ) ae¢=0.
=1

n
But Y a;e;=(a,a,....a,)
i=1

n
Hence, D a;¢;=0 = (a1,a5,..,a,)=(0,0,..,0).

i=1
= a;=0,a,=0, ..,a, =0
(ii) Again any x € R™ can be written as x = (x4, X5, ..,%,) Wherex; ER, V i, 1<i<

n. In this case,
X = X161 + X6y + -+ xp€, as x; ¢; = (0,0, ...,x;,0,..,0)
T it" place.
But this in turn shows that, the set B = {e,, e,, ..., e, } generates RV,

From (i) and (ii), we get, B is a base for an R-module R(.

Theorem 2.3.4: Let M be an R-module (1 € R). Let {uy, u,, ..., u,} be a base for M. Then
M =R™,
Proof : We know that, R is an R-module with base {e;, e, ..., e,,}, where
e; = (0,0, ...,1,0, ..., 0)
T it" place.

foreachi, 1 <i<n.

n
Hence, any x € R™ can be expressed as x = »_r;¢; wherer; €R, V i, 1<i<n.
i=1
n
As {uy, uy, ..., uy,} is a base for M, Z r; u; where r; € R is an element of M.
i=1

Define f: R™ — M by
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=f[zrieiJ:Z”i“i
i=1 i=1

(D f is well defined map.
Letx = yin R™.

n n
Then, let x = Zri e;and y = Zr'i e; wherer;, ', ER, V i.

=1 =1
n n
x=y = Zrl e = Z
=1 =1
n
= D re - Zr e;j=0
=1

= n—-r;=0 Vi l<i<n.
As{e;, ey, ...,e,} is abase for R,

Asr; =71';foreachi, 1 <i <n we get

n n
Z riu = Z riu
i=1 i=1

x=y = yrnhe=yrig = yrnu =y riuy =) =)

This shows that f is well defined.
(II) f is a R-homomorphism.

n n
()Letx, y € R™. Let x=Y g and y= re
i=1 i=1

fory) =f| S ey + Z]
=1 =1

=f i(fz‘”i’)eiJ

i=1

n
= Z(I’i +ri’)ui

i=1
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n n
= Zi’i Uu; +Z?’i’ u;
i=1 =1

= f(x) + f(y)
Thus, f(x +y) = f(x) + f(y) forall x,y € R,

n
(i) Letr € Randx € R™.Let x= Y rig, reR
i=1

firo) = f (r inei]
i=1

=f[ > (”i)ez}
i=1

n

(”i)”i
1

1

n
r Z 1 Ug
i=1

=1 flx)
Thus, f(rx) = r f(x) forallr € R and x € R™.
From (i) and (i1), we get, f is a R- homomorphism.
(ITI) f is an onto mapping.
As f(e;) = u; for each i,1 <i <n, we get im f = {f(x)/ x € R™} contains u; for
eachi,1 <i<n.
Thus, im f is a submodule of M containing uq, u,, ..., uy.
By data {u;, u,, ...,u,} is a base for M and hence it generates M.
Thus, im f = M. But this shows that f is onto.
(IV) f is one-one.
Let x € kerf then f(x) = 0.

n
Let x = Zri e; . Then
=1

fix) - f(in ei]
=1
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n
As {u,, uy,...,u,}is a base for M, Z”i uj=0 = r,=0 foreachi,1<i<n.
i=1

n

But this in turn shows that x = Z r;e; =0. Thus kerf = {0}.
i=1

This shows that f is one-one. (See 1.3, theorem 3).

From (1), (II), (III) and (IV) we get,

f:RM™ — M is an isomorphism and hence R™ = M.

Remark 2.3.5: Thus existence of a base of n-elements for an R-module implies that

M = R™ _In this case we shall say that M is a free R-module of rank n.

Theorem 2.3.6: If M is a module over commutative ring R with unity 1 and if M has bases
of m and n elements, then m = n.

Proof : Assume thatm < n.
Let {e1, ey, ...,en} and {f1, f2,...,f;m} be basis for M. As f; € M and {¢; /1 < i < n}

is a base for M, we get

n
fi= Zaﬁ e where a;; € R. (D)
i=1

Similarly, as e; € M and {f;, f5, ..., f;m} is a base for M, we get

m
e = Zbljf] where bij € R. ... (2
j=1

From (1) and (2) ,we get,

fi= 2 2 by fp .. 03)
i=1 j'=1
m n
and e = z Z bij ajj ep .@
=1 i'=1

But{f; /1 <j<m}and{e; /1 < i < n} are bases for M and hence
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n 1 ifj=j
2. aji by eiv={ fi=] for1 <j,j’<m. .. (5)
i=1

0 ifj #j"’
and
d 1 i i=i -
Zbijaﬁ.:{o i for1 <ii <n. ... (6)
j=1

From (1) and (2), we obtain the two n X m matrices A and B defined as follows.

r11 Q12 0 Qan
Az1 Q22 Ao
A= An1 Amz  *° Opn
0 0 0
) 0 0 m
and
bi1 by bim O 0
B = by1 by by, O 0
0 0
bnl bnz bnm 0 - 0 nxm

But form (6), we get, BA = 1.

Since R is commutative, BA = 1 = AB = 1.

But AB = 1 is impossible as the matrix AB contains last n - m rows zero.
Hence our assumption m < n is wrong. Therefore m > n.

Similarly, we can prove that m < n.

Hencem = n.

Corollary 2.3.7: If R is commutative, R™ = R(™ impliesm = n.

Proof : We know that any free module M with a base containing m elements is isomorphic
with R(™ (See theorem 3.3.4). Thus, if R™ = R™ then we have a free module M
which has bases of m and n elements. By theorem 3.3.6 it follows that, m = n and we

are through.

Theorem 2.3.8: Given one ordered base eq, e,,..,e, for a free module over a

commutative ring R, we obtain another ordered base {f;, f5, ..., f,} by applying the
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n
matrices A = L, (R) to (eq, €y, ...,€,) in the sence that szz ajj e; » A = (a;;) and
i=1

conversely. Here L,,(R) denotes the group of n X n invertible matrices with entries in
R.
Proof :  Let (e, ey, ...,e,) and (fi, f2, ..., fn) be a bases for a free module M. As f; € M

and (e;, ey, ..., e,) is a base for M, we get
n
fi=2 ajie Vj 1<j<n a;€R Vj i
i=1
Similarly, e; € M and (f;, f, ..., fn) 1s a base for M, will give

n
=1

Define A = (a;;) and B = (b;;).

Then, A,B € L,,(R), as AB=1 and BA = 1 imply A and B are invertible.
Conversely, suppose that (e;, e, ..., e,) be a base for a free module M and
A = (a;5) € Ly(R).

n
Define fj=2aﬁei , Vj, 1S]S1’l
i=1

Claim: (f1, f2, ..., fn) 1s a base for M.
(i) Now A € L,(R). Hence A™! exists. Let A= = B. Then AB = 1 = BA and let B =

(i) nxn-

n
Consider Z byj fj - Then,
j=1

n n n
Zbk]f] ZZ Z bk]-ajl-ei = ey asBA=1.
j=1 i=1 j=1

As {e;, ey, ..., e, } generate M we get {f3, f2, ..., fn} generate M.

n
(i) Let Zr]- fj=0 forsomer; €R, 1 <i<n.Then
=1
n n
A _lrj[aﬁei}=0

j=1 1
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n n
1.€. |:1’] a]-i]ei =0

1

~

1j

As {eq, e,, ..., e, } 1s a base for M, we get

n
erﬂ]’iZO , V ,1<i<n
j=1

M=

Hence

1

n
Zr]-a]-ibih=0 , v h,lShSTl
1 j=1

But AB=1andhence 1, =0forallj, 1<i<n.

n
Thus, erjf]-=0 = r]-=0 foreach j, 1 <i<n.
]=

From (1) and (2), we get {f1, f>, ---, f} 1S a base for M.

Theorem 2.3.9: Let D be a p. i. d. and let D™ be the free module of rank n over D. Then
every submodule K of D™ is free with base of m < n elements.
Proof :
Casel : n=0.
If K =(0), then K is a free module with rank 0 (with empty base). Hence the result is
trivially true for n = 0.
Casell: n=1.
D™ = D. Hence any submodule of D is an ideal in D, which is a principal ideal. Hence
K = (f) for some f € D. Obviously {f} generates K.
If f =0, then K = (0) and the result follows as rank of K = 0.
Let f # 0. Then af = 0 for some a € D will imply a = 0 as D is an integral domain.
Thus, {f} will form a base for K = (f).
Hence, K is a free module with rank < 1.
Caselll : n>1.
Let K be any submodule of D™
We prove the result my induction on n. Let {e;, e,, ..., e,,} be a base for D™, Let D=1

denote a submodule of D™ generated by {e,, €3, ..., en_1,€,}. Then D™~V is a free
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p™ - pm
is a free module of rank 1. The base for is

module of rank n — 1. Hence is

pn-1) pn-1)
{él} Where él = 61 + D(n_l).
k+p™-1 pm
: m XD . 2
As K is a submodule of D'V, P submodule ofD(n_l) .
Let
—  K+p(®m 1 — pM
K = = and D = oD

(I) IfK = (0), then k + D™V € D™V and hence K € D™V,
By induction, K will be a free module with base containing m < n — 1 elements
and hence the result is true in this case.

(I) If K = {0}, then as in case (I), K will contain a base consisting of one element say

K+p(M~1)

fiwhere fi=f; + D"V AsK = oD

we select f; € K.

Subcasel : K n D™V % (0).

Then K N D™D % (0) is a submodule of D™~ Hence by induction hypothesis,

K n D™V hasabasesay {f;, fo, o, fn} With0 <m—1<n—1.

Claim: {f;, f5, ..., fm} Will form a base for K.

Lety € K. Theny = y + DV € K. Hence y = b, f; for some b; € D.

But this means that

Yy —bifi =byf + b3fs + -+ bufim
Yy =Dbifi + bofa + bafz + -+ binfin (D)
m m
Now, let us assume that i_zldifi = (0 ford; € D. Hence d;f; = — j;djfj .

This implies
fa— m f—
df == d;f; .
j=2

n
But {f5, f3, .., fm} is a base for K n D™ Y. Hence Zdjf]. =0 and therefore
=2

d1f;=0.But {f;} is a base for K will imply d; = 0.

Thus,
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m _ m _
Zd]-szo (SincedlfI:—Zdjfj
=2 =2

As {fs, fs) s fim}isabase for KN D™D we getd, = d3 = -~ = d,,, = 0. Thus
m
defk=0 = dk=0 V k,1<k<m
k=1

Hence, {f1, f2, ..., fm} Will form a base K.
Subcasell : K n D™V = {0}
If K n D™D = {0}, then {f;} will form a base for K.
fiekK = (f1) €K, where (f;) =Df;.
Lety € K. Theny =y + D™V €K,
Hence, ¥ = b, f; for some b; € D.
=  y—b,f, eDOD,
Asfi €EKandy € K,wegety — b,f; €EK.
Thus, y — by f; € Kn D™D = {0},
Hence, y = b, f;. This shows that K < (f;).
Hence, K = (f;) = Df;.
Further, b;f; =0and f; #0 = b; =0.
Hence, {f;} will form a base for K.
Thus in either cases, K is a free module with base consisting of m elements, where

m<n.

2.4 Completely Reducible Modules:
Definition 2.4.1: An R-module M is called completely reducible if M = ), M, where M,, are

simple R-modules.

Theorem 2.4.2: Let M be a completely reducible R-module. Let M = Z M, where M,

aclA

is a simple R-modules of M. For any submodule K of M, 3 a subset A" and A such that
Z M, is a direct sum and

ach'

M=K® Y M,.

acl'
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Proof : K=5AcA/ ZMaisadirectsumandKn ZMQ = {0} ;.

acA achA

Then XK is a non empty set as ¢ € K.

As,
> M, = {0)

acgp
(K, <) is partially ordered set.

Let C be a chain in K. Then

UCEJC

cecC
Hence, by Zorn’s lemma, K contains a maximum element say B.

Thus, z M, is a direct sum and K N Z M, = {0}

achlB acA

LtN=K® > M,.

ach

Claim that M = N. i.e. to prove that ® Z M,=K® Z M, .

aeA aelB
Let B € A. Then Mg is a direct sum and of M and Mg is simple. Hence Mg N N is a
submodule of Mg will imply Mg N N = Mg or Mg N N = {0}.
Let Mg NN = {0} then Mg D" M, < MgN ={0} .

achB

This implies that Mz Y M, ={0} .

ac B

But then Z M, is a direct sum and

ae BU{ B}
Kn Z M,|= KnZMa U [K n Mg]
a€BU{p} a€EB
= {0} u {0} = {0} (asMgp NN = {0} = Mg nK = {0}

Thus, BU {8} € K.
B being a maximal element of X we get a contradiction.
Hence, MpNN = Mg Le. Mg & N vV [ €A

But this will imply
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Z MgCN. ieMCN.
PeA

Hence, M = N.

Thus, M=K ® Z M, where B € A such that z M, is a direct sum.

achB achB

Corollary 24.3: Let M= Z M, where M, is a simple R-submodule of M. Then 3 a
aeA

subfamily A’ of A such that M =® ' M, .

acA'

Proof :  We know that for any submodule K of M, 3 A’ € A such that M =K @ Z M,

acA'
and Z M, is a direct sum.
acA'
Now, take K = {0}. Then M =@ Z M, .
acA'
2.4.4 Worked Examples )

Example1: Let M be a completely reducible module and let K be a nonzero submodule of
M. Show that K is completely reducible. Also show that K is completely reducible.

Also show that K is a direct summand of M.

Solution : Let M = z M, where each M, is a simple submodule.

acA

By theorem 2, M=K @ Z M, ,A'C A shows that K is a direct summand of M.

acA'
) M
Again, —= z M,
K |
acA
M
and =K
2 My
acA'
Thus ,
o DM@ Y M,
K = = acA' ac A" = z Ma’
Mll Z Mﬂ’ acA"
acA' acA'
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M . . :
v = Z M, is a submodule of M. Hence again applying theorem 1, we get,

aeA'

K= { Z Ma} (—B{ z Ma] , for some A" € A.

acA' acA"
Y My+ > M,
M —  aeA’ acA" = Z Ma
Z Ma’ Z Ma’ acA"
acA acA'
Thus ,

K= > M, (A"cA

acA"

As each M,, a € A" is simple we get Z M, is completely reducible module. Hence
aeA"

K is completely reducible being an isomorphic image of a completely reducible module.

Example2: Let M be a completely reducible module and let K be a submodule of M. If

M
K # M then show that % is completely reducible.

Solution : M be completely reducible. Hence M = z M, where each M, is simple. K is a

acA

submodule of M. Therefore by theorem 1, M =K ® Z M, forsome A’ € A.

acA'

But then %E Z M, .

acA'

M
As z M, is completely reducible, we get % is completely reducible.
acA'
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Unit 3: NOETHERIAN AND ARTINIAN MODULES:

3.1 Noetherian and Artinian module

3.2 Artinian module

3.1 Noetherian Modules:
Definition 3.1.1: Let M be an R-module. If for every ascending sequence of R-submodules
of M, M; € M, € --- C --- there exists a positive integer n such that M,, = M,, ., = -+,

then M is called Noetherian module.

Remark 3.1.2 : If M is a Noetherian module, we say that ascending chain condition (acc) for

submodules hold in M or M has acc.

3.1.3 Examples )

Example 1 : Let Z denote a Z-module and n € Z. we know that (n) is a submodule of Z.
Consider the ascending chain of submodules in Z given below.
(m) c(ny) c(ny) < -
Then, mMchn) = ng|n
() c(ny) = ny|m
Hence, the ascending chain of submodules in Z, starting with (n) will have atmost n
distinct elements.

This shows that Z as a Z-module is a Noetherian module.

Example 2 : Let V be an n-dimensional vector space over a field F. Then any ascending
chain of subspaces of V cannot have more than n + 1 elements. Hence V' must be

Noetherian.

Theorem 3.1.4: Let M an R-module. The following statements are equivalent.
(i) M is Noetherian.
(i1))  Every submodule of M is finitely generated.

(i)  Any non-empty family of submodules of M has a maximal element.
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Proof :
)= (ii) :
Let N be a submodule of a Noetherian module M.
Assume that N is not finitely generated.
Select a; € N. Then N # (a,), by assumption.
Hence, select a, € N such that a, € (a;) . (This is possible as (a;) € N ).
Then, by assumption,
N # (a4, ay) and (a4) € (a4, a;) © N.
Hence, select a; € N such that a; € (a;, a,) .
Then N # (aq, a,, as), by assumption and
(a1) € (a1, az) € (a1, az, az) © N.
Continuing in this way, we get an infinite ascending chain of submodules of N and
hence of M.
But this contradicts the fact that M is Noetherian module.
Hence, N must be finitely generated.
i) = (iii) :
Let K denote the non empty family of submodules of the module M.
Let Ny € K.
If N, is a maximal ideal of K, then we are through.
If N, is not a maximal element of K, then there exist N; € K such that N, € N;.
If N; is a maximal element of K, then we are through.
If N; is not a maximal element of K, then there exist N, € K such that Ny € N; € N,.
Thus, if K does not contain a maximal element, we get an infinite chain of submodules
of M as below
Noc N, cN, C - ..(D

Define N = U N; .
i=1

Then, N is a submodule of M. By assumption N must be finitely generated.

Let (xq,x2,...,Xk), wherex; EN, Vi<i<K.

The finite number of elements Xxq,xy,...,x; must belong to the finite number of
submodules. N; (this number < k), by the definition of N.

Hence, select a positive integer s such that x;,x,,...,x, € Ny and s is the smallest

positive integer satisfying this property. Thus,
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X1, X2,..., X, € Ng implies (xq,x5,...,x;) € Ng
and hence N € N C N.
This shows that N = N;.
For the infinite chain in I we have s > 0 such that
Ny = Nsy13 = Ngyp =...=N
This in turn shows that N will be the maximal element in K and the implication follows.
i) = (i) :
Let M; € M, c... be any ascending sequence of submodules of an R-module M.
Consider the family K = {M;, M,,...}.
Then, K is the family of submodules of M and hence by assumption, K contains a
maximal element say M,,. But then M,, = M,,,; =....
This in turn shows that M is Noetherian.
Thus, we have proved 1 = 2 = 3 = 1.

Hence, all the statements are equivalent.

Theorem 3.1.5: Every submodule of a Noetherian module is a Noetherian module.
Proof :Let M be Noetherian module. Let N be submodule of M.
To prove N is Noetherian.
Let K be any non empty family of submodules of N.
Then obviously, K is a any non empty family of submodules of M.
M being Noetherian, X contains a maximal element (See theorem 3.1.4).

But this in turn will imply N is Noetherian.

Theorem 3.1.6: Every quotient module of a Noetherian module is Noetherian.

Proof :  Let M be a Noetherian module. Let N be any submodule of M.

M . .
To prove that v s Noetherian.

M
Let K denote a non-empty family of submodules of a module e

U U U
Let?(={—1 =2 3

U; M
NN N } As Fl is a submodule of e by theorem 1 in 1.3, we get

U; is a submodule of M containing N.
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Consider the family F = {N, U;,U,, ...}. Then F is a nonempty family of submodule
on M (since N € F). As M is Noetherian, the family F contains a maximal element say

Up.

U
Then Wk will be the maximal element of the family K.

M
Hence, v is Noetherian module, by theorem 3.1.4.

Theorem 3.1.7: Every homomorphic image of a Noetherian module is Noetherian.
Proof :  Let f: M; — M, be R-homomorphism of an R-module M; onto the R-module
M,.
Claim 1: If N is a submodule of M; then f(N) is a submodule of M,.
1) f(N)#=¢asN+¢
(i) x,y € f(N).Hence3 a,b € N suchthatx = f(a) and y = f(b).
Then x —y = f(a) — f(b)
=f(a—b) , ... Since f is homomorphism.
This shows that x —y € f(N) asa — b € N, N being a module in M;.
(i) Letr e Randx € f(N). Then x = f(a) for some a € N.
As N is a submodule of My, r-a€N = f(r-a)€ f(N).
But as f'is an R- homomorphism, f(r-a) =r- f(a) =r-x € f(n).
From (i), (i1) and (iii), we get, f (N) is a submodule of M,.
Claim 2: If X is a submodule of M,, then f ~1(X) is a submodule of M;.
0O X #dasX#¢
(i) a,b € f71(X). Then f(a) € X, f(b) € X.
As X is a submodule, f(a) — f(b) €X
f being homomorphism, f(a) — f(b) = f(a — b).
Thus, f(a — b) € X and hence a — b € f~1(X).
(iii) Letr € Randa € f~1(X).
Then f(a) € X, X being a submodule of M, r - f(a) € X.
As f is a homomorphism f(r-a) =1 - f(a).
Thus, 7 - a € f~1(X).
From (i), (ii) and (iii), we get, f~1(X) is a submodule of M.
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Claim 3: M, is a Noetherian module.
Let X' = {N{, N, ...} be any nonempty family of submodules of the module M,.
Then the family, X' = {f "1(N{), f~1(N;), ...} is a non empty family of submodules of
the module M, (by claim 2).
As M, is Noetherian, K contains a maximal element (by theorem 3.1.4).
Let it be f~1(NR).
Then, Ny will be maximal element in K’ (by claim 1). This in turn shows that M, is
Noetherian (See theorem 3.1.4).

Thus, homomorphic image of a Noetherian module is Noetherian.

Theorem 3.1.8: Let M be an R-module and let N be a submodule of M. M is Noetherian iff
both N and % are Noetherian.

Proof : Only if part :
Let M be Noetherian. Then both N and % are Noetherian (See theorem 3.1.5 and

theorem 3.1.6).
If part :

M
Let N and N both be Noetherian.

To prove that M is Noetherian.
N is Noetherian implies N is finitely generated (See theorem 3.1.4).

Let N = (X1, X, o) Xi).

M . ... M .

s Noetherian implies s finitely generated (See theorem 3.1.4).
M

Let v (y1+N,y, +N,..,ys + N)

Then M = (xq, %3, -\, Xp, V1, V2, » Vs)

As M is a finitely generated module, M is Noetherian (See theorem 3.1.4).

Theorem 3.1.9: Let M be an R-module. Let M; and M, be submodules of M such that
M = M;® M,. If M; and M, are Noetherian, then M is Noetherian.

M M
Proof : We know that M = M;® M, will imply M; = 7a and M, = IR (See theorem 3.1.6).
2 1
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. ) M
Now, M, is Noetherian and M; = I
2

M
Hence, by theorem 3.1.7, YN 1s Noetherian.
2

M
As M, and YR both are Noetherian we get M is Noetherian (by theorem 3.1.8).
2

Corollary 3.1.10: Let M be an R-module and let M;, M,, ..., M), be Noetherian submodules
of M such that
M=M, @M, ® ..® M,
Then, M is Noetherian.
Proof : The result is true for n = 2 by theorem 3.1.9.
[Hence by induction on n, we get, if M = M; @ M, @ ... ® M, then M is Noetherian
when each M; is a Noetherian module].
Let the result be true for all k < n.
Then [M; @ M, ® ... M,,_,] = N is Noetherian module.
Butin thiscase M = N @ M,,.
As N and M,, both are noertherian, we get M is Noetherian.

3.2 Artinian Module:
Definition 3.2.1: An R-module M is called Artinian if for every decreasing sequence of
R-submodules of M
My2M,2- 2

there exists a positive integer n such that M, = M,,,; = ---.

Remark 3.2.2: If M is Artinian module, we say that descending chain condition (dcc) for
submodules hold in M or M has dcc.

Example3.2.3: Any finite dimensional vector space over the field F is an Artinian module.
Remark 3.2.4: Any finite dimensional vector space over the filed F is both Noetherian

and Artinian module. But Z as Z-module is a Noetherian module which is not Artinian

as the decreasing sequence
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(M) > n?) > -
is an infinite properly decreasing sequence in Z.
Now we only mention the characterizing properties of Artinian modules, the proof being

similar to the proof of theorem 3.1.4.

Theorem 3.2.5: Let M be an R-module. Following statements are equivalent.
(i) M is Artinian.
(i1))  Every submodules of M is finitely generated.

(i) Every non-empty set X of submodules of M has a minimal element.

Exercise: Show that every submodule and every homomorphic image of an Artinian module
is Artinian.

[Hint : See 3.1, theorem 3.1.5 and theorem 3.1.7].
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