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Preface

The Shivaji University, Kolhapur has established the Distance Education Centre

for external students from the year 2007-08, with the goal that, those students who are

not able to complete their studies regularly, due to unavoidable circumstances, they

must be involved in the main stream by appearing externally. The centre is trying hard

to provide notes to those aspirants by entrusting the task to experts in the subjects to

prepare the Self Instructional Material (SIM). Today we are extremely happy to present

a book on Complex Analysis for M. Sc. Mathematics students as SIM prepared by us.

The SIM is prepared strictly according to syllabus and we hope that the exposition of

the material in the book will meet the needs of all students.

This book introduces the students the most interesting and beautiful analysis viz.

Complex Analysis.  As a matter of fact Complex Analysis is a hard analysis, but it is

truly a beautiful Analysis. The first topic is an introduction to Complex analysis. The

second unit deals with Mobius transformations. The third unit introduces the reader to

the notion of complex integration. Fundamental theorem of algebra and maximum

modulus theorem are the results covered in the unit four. Unit five and six cover

concept of winding number, Cauchy's integral theorem, Open mapping theorem and

Goursat theorem. Laurent series development, Residue theorem with its application

to evaluation of Real integrals, Rouche's theorem and Maximum Modulus theorem are

the results contained in last two units.

We owe a deep sense of gratitude to the Ag. Vice-Chancellor Dr. A. A. Dange who

has given impetus to go ahead with ambitious projects like the present one. Dr. S. R.

Chaudhari and Dr. U. H. Naik have to be profusely thanked for the ovation for they have

poured to prepare the SIM on Complex Analysis (M.Sc. Mathematics).

We also thank Professor M. S. Chaudhary, Head of the Department of Mathematics,

Shivaji University, Kolhapur, Director of Distance Education Mode Dr. Mrs. Cima Yeole

and Deputy Director, Shri. Sanjay Ratnaparakhi for their help and keen interest in

completion of the SIM. Thanks are also due to Mr. Girish Shelke who had taken pains

in typing the manuscript and Mr. Sachin Kadam for providing printing copy of the

manuscript neatly and correctly.

Prof. S. R. Bhosale

Chairman BOS in Mathematics

Shivaji University, Kolhapur-416004.
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COMPLEX NUMBERS 

 

Introduction  

We know that in the real number system � , the equation 2 0x a+ =   has no solution. 

This leads to introduction of complex number system in which equations of the form 

2 0x a+ =  , where 0a > , have solutions. This chapter introduces complex numbers, their 

representation and basic properties. 

 

Definition 1 The complex numbers can be defined as pair of real numbers 

{( , ) : , }x y x y= ∈� � . Equipped with addition  ( , ) ( , ) ( , )x y a b x a y b+ = + +  and 

multiplication being defined as ( , )( , ) ( , )x y a b xa yb xb ya= − + . 

One reason to believe that the definitions of these binary operations are “good” is that �  

is an extension of � , in the sense that the complex numbers of the form ( ,0)x  behave just 

like real numbers; that is, ( ,0) ( ,0) ( ,0)x a x a+ = +  and ( ,0)( ,0) ( ,0)x a xa= . So we can think 

of the real numbers being embedded in �   as those complex numbers whose second 

coordinate is zero. The following basic results states the algebraic structure that we 

established with our definitions. Its proof is straightforward but nevertheless a good exercise. 

1. Commutative law for addition : 1 2 2 1z z z z+ = + . 

2. Associative law for addition : ( ) ( )1 2 3 1 2 3z z z z z z+ + = + + . 

3. Additive identity : There is a complex number 'z  such that   0z z z+ =  for all 

complex number z . The number 0z  is an ordered pair ( )0,0 . 

4. Additive inverse : For any complex number z  there is a complex number z−  such 

that ( ) ( )0,0z z+ − = . The number z−  is  ( ),x y− − . 

5. Commutative law for multiplication : 1 2 2 1z z z z= . 

6. Associative law for multiplication : ( ) ( )1 2 3 1 2 3z z z z z z= . 

UNIT  - I 
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7. Multiplicative identity : There is a complex number 'z  such that   'zz z=  for all 

complex number z . The number 'z  is an ordered pair ( )1,0 . 

8. Multiplicative inverse : For any non-zero complex number z  there is a complex 

number 1z−  such that ( )1 1,0zz− = . The number 1z−  is  
2 2 2 2

,
x y

x y x y

 −
 + + 

. 

9. The distributive law : ( )1 2 3 1 2 1 3z z z z z z z+ = + . 

If we write x for the complex number ( ),0x . This mapping ( ),0x x→  defines a field 

isomorphism of �  into �  so we may consider �  as a subset of � .  

If we put ( )0,1i = , then  ( ) ( ) ( ) ( ) ( ) ( ), ,0 0, ,0 0,1 ,0z x y x y x y x iy= = + = + = + .  

Let z x iy= + , ,x y∈� , then x  and y are called the real and imaginary parts of z and denote 

this by Rex z= , Imy z= . If 0x = , the complex number z  is called purely imaginary and if 

0y = ,  then z  is real. Note that zero is the only number which is at once real and purely 

imaginary. Two complex numbers are equal iff they have the same real part and the same 

imaginary part. 

 

Complex Plane or Argand plane : The number ( ),z x y x iy= = +  can be identified with the 

unique point  ( ),x y  in the plane 2
� . The plane 2

�  representing the complex numbers is 

called the complex plane. The x-axis is also called the real axis and the y-axis is called the 

imaginary axis. 

 

 Definition 2 Let z x iy= + , ,x y∈�  then the complex number x iy−  is called the conjugate 

of z  and is denoted by z  . 
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Following are the basic properties of conjugates. 

1.  Re
2

z z
z

+
=  and  Im

2

z z
z

i

−
= . 

2. z  is real iff z z= . 

3. 1 2 1 2z z z z+ = +   

4.  1 2 1 2z z z z= . 

5. 1 1

2 2

z z

z z

 
= 

 
 if 2 0z ≠ . 

6.  z z= . 

 

Definition 3 Let z x iy= + , ,x y∈�  then modulus or absolute value of z  is a non-negative 

real number denoted by z  and is given by ( )
1

2 2 2z x y= +  . The number z  is the distance 

between the origin and the point ( ),x y . 

Following are the basic properties of Modulus. 

1.  
2

z zz=  

2.  1 2 1 2z z z z=  

3.  
11

2 2

zz

z z
=  if 2 0z ≠ .  

4.  1 2 1 2z z z z= . 

5.  z z= . 

6.  ( )Rex z z= ≤  and ( )Imy z z= ≤ . 

7.  1 2 1 2z z z z+ ≤ + . 

8.  1 2 1 2z z z z− ≥ − . 

9. Let 1 1 1 2 2 2,z x iy z x iy= + = +  then 

 ( ) ( ) ( ) ( )
1

2 2 2

1 2 1 2 1 2 1 2 1 2z z x x i y y x x y y − = − + − = − + −   which is the distance between the 

points ( ) ( )1 1 2 2, , ,x y x y . Hence distance between the points 1z  and 2z  is given by 1 2z z−  . 
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Polar representation of complex numbers 

Consider the point  z x iy= +  in the complex plane � . This point has polar co-

ordinates ( ),r θ  where cosx r θ=  and siny r θ= . Thus ( )cos sinz x iy r iθ θ= + = + . 

Clearly ( )
1

2 2 2r z x y= = +  which is magnitude of the complex number and θ ( undefined if 

0z =  ) is the angle between the positive real axis and the line segment from 0  to z  and is 

called the argument of z , denoted by  arg zθ = .  

 We note that the value of argument of z  is not unique. If arg zθ = , then 2 nθ π+ , 

where n  is an integer is also arg z . The value of arg z  that lies in the range π θ π− < ≤  is 

called the principal value of arg z . 

If 1 2,z z  are any two non-zero complex numbers then  

1.  1 1arg argz z= −  

2.  1 2 1 2arg arg argz z z z= + . 

3.  1
1 2

2

arg arg arg
z

z z
z

 
= − 

 
.  

 

 

 

 We shall simply state  

De Moivre’s Theorem : For any real number n, cos sinn i nθ θ+  is one of the values of 

(cos sin )niθ θ+ .  
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n
th 

 Roots of Complex Numbers. 

Let  ( )cos sinz r iθ θ= +  be a non-zero complex number, then ( )cos sinw iρ ϕ ϕ= +  is n
th   

root of  z  if nw z= , where n is a positive integer. 

Therefore, ( ) ( )cos sin cos sin
nn i r iρ ϕ ϕ θ θ+ = +  

                ( ) ( )cos sin cos sinn n i n r iρ ϕ ϕ θ θ+ = +  

                n rρ =  and   2n kϕ θ π= + , where k  is an integer. 

Thus     
1

nrρ =  and   
2k

n

θ π
ϕ

+
=  , where k  is an integer. 

However, only the values of  ( )0,1, 2,..., 1k n= −  will give distinct values of w . Hence  z  

has n distinct n
th
 roots and they are given by   

1
2 2

cos sinn
k k

w r i
n n

θ π θ π + +    = +        
  where ( )0,1, 2,..., 1k n= − . 

 

Some Topological aspects 

Note that �  is a metric space with respect to usual metric ( , ) | |d z zζ ζ= − .  

By an open disc , we mean the set { }:z z a− <∈  and is denoted by ( );B a ∈ . And by 

closed disc, we mean, { }:z z a− ≤∈  and is denoted by ( );B a ∈ . Further an annulus is 

defined as the set { : | | }z r z a R< − <  and is denoted by ( ; , )ann a r R . The punctured disk of 

radius ∈  centered at a  is defined by, ( ) { } { }; 0 : 0B a z z a∈ − = < − ≤∈ . 

Definition 4 A subset G ⊆ � is open if, for each z S∈ , there is an 0ε >  such that 

( ; )B z Gε ⊆ . The point 0z  is said to be an interior point of the set S ⊆ �  if there exists an 

0ε >  such that ( ; )B z Sε ⊆ . Further, interior of S , written int S , is the set 

{ : }S G G is open and G S= ⊆I . The closure of S ⊆ �  , denoted by S , is the set 

{ : }S F F is closed and F S= ⊇I . The boundary of  S , denoted by S∂ and defined by 

( )S S X S∂ = ∩ − . Further, a subset S  is dense if S = � . 
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Definition 5 A metric space ( , )X d  is connected if the only subsets of X which are both 

open and closed are X  and the empty set. Further, a subset S X⊆  is connected if the metric 

space ( , )S d  is connected.  

 

Definition 6 If  G  is an open set in �  and :f G→ � , then f  is differentiable at a point a  

in G  if   
0

( ) ( )
lim
h

f a h f a

h→

+ −
 exists. It is denoted by '( )f a  and called derivative of f at a . 

 

Definition 7 If  f  is differentiable on G , then we define  ' :f G→ � . If 'f  is continuous 

then we say that  f  is continuously differentiable. 

 

Definition 8 A differentiable function such that each successive derivative is again 

differentiable is called infinitely differentiable. 

 

Definition 9 A function :f G→ �  is analytic if f  is continuously differentiable on G . 

 

Power series 

Definition 10 A series of the form  
0

( )nn

n

a z a
∞

=

−∑  where  1 2, ,..., ,...na a a  are constants, is 

called power series about a .  

Ex. The geometrical series 
0

n

n

z
∞

=
∑  is power series about 0 and for 1z < , 

0

1

1

n

n

z
z

∞

=

=
−∑ . 

Theorem 11 For given power series 
0

( )nn

n

a z a
∞

=

−∑  define a number 0 R≤ ≤ ∞  by  

11
lim sup n

na
R
=  , then  

a) If z a R− <  , the series converges absolutely. 

b) If z a R− >  , the term of series become unbounded and so series diverges. 

c) If  0 r R< < , then the series converges uniformly on { }:z z a r− ≤ . 

Moreover the number R  is the only number having properties (a) and (b). 
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Proof. We may suppose that 0a = . 

a) If  z R< , then there is an r  such that z r R< < , 
1 1

r R

 > 
 

. Thus by definition of limit 

sup, there is an integer N  such that  

            
1 1
n

na
r

<   for all n N≥ . 

                  
1

n n
a

r
<   for all n N≥ .  

                  

n

n

n

z
a z

r

 
<  
 

  for all n N≥ . 

Thus the series 
0

n

n

n

a z
∞

=
∑  is dominated by the series 

n

z

r

 
 
 

∑ . Since the geometric series 

0

n

n

z

r

∞

=

 
 
 

∑  converges for z r< , the series  
0

n

n

n

a z
∞

=
∑  converges absolutely for each z R< . 

 

b) Suppose z R> , and choose  r  such that z r R> > ,
1 1

r R

 < 
 

. Thus by definition of limit 

sup, there are infinitely many integers  n  such that 
1 1
n

na
r

> . It follows that     

n

n

n

z
a z

r

 
>  
 

  for all n N≥  and , since 1
z

r

 
> 

 
 these terms becomes unbounded and so 

the series diverges.  

 

c) If  0 r R< < , choose ρ  such that r Rρ< < . As in (a) we have  
1

n n
a

ρ
<   for all n N≥ .  

Thus if z r≤ , 

n n

n

n

z r
a z

ρ ρ
   

≤ ≤   
  

 and 1
r

ρ
 

< 
 

. Hence, by Weierstrass M-test, the power 

series 
0

n

n

n

a z
∞

=
∑  converges uniformly on z r≤ . 
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Definition 12 The circle z a R− =  which includes in its interior z a R− <  , in which the 

power series  
0

( )nn

n

a z a
∞

=

−∑  converges, is called circle of convergence . Radius  R  of this 

circle is called radius of convergence of power series and in view of above result it is given 

by 
11

lim sup n
na

R
=  . 

 

Theorem 13 If  
0

( )nn

n

a z a
∞

=

−∑   is given power series with radius of convergence R  , then  

1

lim n

n

a
R

a +

=   if this limit exists. 

Proof. We assume that 0a = and let 
1

lim n

n

a

a
α

+

= . Suppose that z r α< < and find an 

integer  N  such that 
1

n

n

a
r

a +

<  for all n N≥ . Let N

nB a r=  then 

1

1 1

N N N

N N Na r a rr a r B+
+ += < = , 

2 1 1

2 2 1

N N N

N N Na r a rr a r B+ + +
+ + += < < . 

Continuing this way we get,  n

na r B≤  for all n N≥ . 

Then 

n n

n n

n n n n

z z
a z a r B

r r
= ≤  for all n N≥ . 

Since  z r< we get that  
0

n

n

n

a z
∞

=
∑  is dominated by convergent series and hence converges. 

Since r α<  was arbitrary this gives that Rα ≤ . 

Now if z r α> >  then  1n na r a +<  for all n N≥ . As above we get n N

n Na r B a r≥ =  for 

all n N≥ . This gives that 

n

n

n n

z
a z B

r
≥ →∞  as n→∞ . Hence 

0

n

n

n

a z
∞

=
∑  diverges and so 

R α≤ . Thus R α= . 
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Example 14  Find radius of convergence for the series  

 a) 
0

n

n
n

z

n

∞

=
∑     b)

0 !

n

n

z

n

∞

=
∑     c) 

0

( 1)
( 2 )

n
n

n

z i
n

∞

=

−
−∑  

 

Solution. a) Here  
0

n

n
n

z

n

∞

=
∑  and 

1
n n
a

n
= , 0a =  . 

Therefore 

1
11 1 1

lim sup lim sup lim sup 0
n

n
n n
a

R n n
= = = =  

 

Thus radius of convergence for the series 
0

n

n
n

z

n

∞

=
∑   is R = ∞ . 

That is the series converges in whole complex plane. 

 

b) Here  
0 !

n

n

z

n

∞

=
∑  and 

1

!
na

n
= , 0a =  . 

Therefore 
( ) ( )

11 ! 1
lim lim lim 0

1 ! 1

n

n

a n

R a n n

+= = = =
+ +

 

 

Thus radius of convergence for the series 
0 !

n

n

z

n

∞

=
∑   is R = ∞ . 

c) Here  
0

( 1)
( 2 )

n
n

n

z i
n

∞

=

−
−∑  and 

( 1)n

na
n

−
= , 2a i=  . 

Therefore 
( )

11
lim lim 1

1

n

n

a n

R a n

+= = =
+

 

 

Thus radius of convergence for the series 
0

( 1)
( 2 )

n
n

n

z i
n

∞

=

−
−∑   is 1R =  and circle of 

convergence is 2 1z i− = . 
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Theorem 15 Let  
0

( ) ( )nn

n

f z a z a
∞

=

= −∑  have radius of convergence 0R > . Then 

a) For each 1K ≥  the series    ( 1)...( 1) ( )n k

n

n k

n n n k a z a
∞

−

=

− − + −∑   …(1) has 

radius of convergence R . 

b) The function f  is infinitely differentiable on ( , )B a R  and furthermore, ( ) ( )kf z is 

given by the series (1) for all 1K ≥  and z a R− < . 

c) For  0n ≥ ,   ( )1
( )

!

n

na f a
n

= . 

Proof.  With no loss of generality  assume that  0a = . 

Therefore   
0

( ) n

n

n

f z a z
∞

=

=∑         …(2) 

a) We first prove the result for 1K = . That is the power series 
0

n

n

n

a z
∞

=
∑  and  1

1

n

n

n

na z
∞

−

=
∑  have 

same radius of convergence. 

Let  1

1

( ) n

n

n

g z na z
∞

−

=

=∑  have radius of convergence 'R  where 
1

1
1

lim sup
'

n
nna

R
−=  

Since R  is radius of convergence of 
0

( ) n

n

n

f z a z
∞

=

=∑ , 
11

lim sup n
na

R
= . 

Now we have to show that 'R R= . 

1 1

1 1

1
log

log lim lim log lim lim 0
1 1

n n
n nn n

n
− −

   
= = = =   

−   
 

Therefore  
1

01lim 1nn e− = = . 

Thus  
11 1
11 1lim sup lim limsupnn n

n nna n a−− −
  =   

  
 

                                 
1

11. limsup n
na −

 =  
 

 
1

1limsup n
na −=  

Therefore the series 1

1

n

n

n

na z
∞

−

=
∑ and 1

1

n

n

n

a z
∞

−

=
∑  have same radius of convergence. 

If  'z R< , we write     1

0

0 1

n n

n n

n n

a z a z a z
∞ ∞

−

= =

= + < ∞∑ ∑ . 
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That is if 'z R< ,  
0

n

n

n

a z
∞

=
∑  is convergent. Hence  'R R≥ . 

Also if z R< , we write   
0 01

1 0 0

1 1n n n

n n n

n n n

a a
a z a z a z

z z z z

∞ ∞ ∞
−

= = =

= − ≤ + < ∞∑ ∑ ∑  for 0z ≠ . 

That is if z R< ,  1

1

n

n

n

a z
∞

−

=
∑  is convergent. Hence  'R R≤ . 

Thus 'R R= . 

Thus 
0

n

n

n

a z
∞

=
∑  and  1

1

n

n

n

na z
∞

−

=
∑  have same radius of convergence. 

Similarly 1

1

n

n

n

na z
∞

−

=
∑  and  2

2

( 1) n

n

n

n n a z
∞

−

=

−∑  have same radius of convergence R . 

Therefore by method of induction for any 1K ≥  the series    

( 1)...( 1) ( )n k

n

n k

n n n k a z a
∞

−

=

− − + −∑  has radius of convergence R . 

b) For z R< , let 
0

( )
n

k

n k

k

S z a z
=

=∑  and 
1

( ) k

n k

k n

R z a z
∞

= +

= ∑  so that ( ) ( ) ( )n nf z S z R z= + . 

Now fix a point ( )0;w B R∈ , then there is 0 r R< <  such that w r R< < . 

Let 0δ > be such that ( ) ( ); 0;B w B rδ ⊆ . Let ( );z B w δ∈ . 

Consider  

 

( ) ( ) ( ) ( )( ) ( )
( ) '( ) '( ) ( )n n n n

n n

S z S w R z R wf z f w
g w S w S w g w

z w z w z w

− −−
− = − + − +

− − −
 …(3) 

And  

( )
1

1

( ) ( )

k k

k kk

n n k n
k

k n

a z w
R z R w z w

a
z w z w z w

∞

∞
= +

= +

−
− −

= ≤
− − −

∑
∑  

                        1 2 2 1

1

...k k k k

k

k n

a z z w z w w
∞

− − − −

= +

= + + + +∑  

 

                        { }1 2 2 1

1

...
k k k k

k

k n

a z z w z w w
∞

− − − −

= +

≤ + + + +∑  
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                        { }1 2 2 1

1

...k k k k

k

k n

a r r r r r r
∞

− − − −

= +

≤ + + + +∑  

 

                        1

1

k

k

k n

a k r
∞

−

= +

= ∑  

 

Since r R< ,  1

1

k

k

k n

a k r
∞

−

= +
∑  converges. 

Therefore for any 0∈> , there is an integer 1 0N >  such that 1

1
3

k

k

k n

a k r
∞

−

= +

∈<∑  whenever 

1n N≥ . 

Thus for 1n N≥  

( ) ( )

3
n nR z R w

z w

− ∈<
−

      …(4) 

 

Since lim '( ) ( )n
n

S w g w
→∞

= , there is an integer 2 0N > such that '( ) ( )
3nS w g w ∈− <   …(5) 

whenever 2n N≥ . 

Let  { }1 2,n max N N= . 

 

Since  
( ) ( )

lim '( )n n
n

z w

S z S w
S w

z w→

−
=

−
, for given 0∈> , we choose 0δ >  such that  

   
( ) ( )

'( )
3

n n
n

S z S w
S w

z w

− ∈− <
−

      …(6) 

whenever  0 z w δ< − < . 

Thus for given 0∈> , there is 0δ >  such that   

( ) ( )
( )

3 3 3

f z f w
g w

z w

− ∈ ∈ ∈− < + + =∈
−

  

whenever 0 z w δ< − < . 

Hence f  is differentiable and '( ) ( )f w g w=  for all ( )0;w B R∈ . 
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That is 1

1

'( ) n

n

n

f z na z
∞

−

=

=∑ . 

Similarly 2

2

''( ) ( 1) n

n

n

f z n n a z
∞

−

=

= −∑   

               3

3

'''( ) ( 1)( 2) n

n

n

f z n n n a z
∞

−

=

= − −∑  

and so on ( ) ( ) ( 1)( 1)...( 1)k n k

n

n k

f z n n n n k a z
∞

−

=

= − − − +∑ . 

 

c) From part (b) we have  

 

0(0)f a= , 1''(0) 1.f a= , 2'''(0) 1.2.f a= ,…, ( )

2(0) 1.2.3.... .kf k a= . 

Thus  ( )1
(0)

!

k

ka f
k

=  

Hence for 
0

( ) ( )nn

n

f z a z a
∞

=

= −∑ ,         ( )1
( )

!

n

na f a
n

= . 

 

Corollary 16 If the series 
0

( )nn

n

a z a
∞

=

−∑  has radius of convergence 0R >  then,  

0

( ) ( )nn

n

f z a z a
∞

=

= −∑  is analytic in ( , )B a R . 

Proof. By above theorem if  
0

( )nn

n

a z a
∞

=

−∑  has radius of convergence 0R > , then  

0

( ) ( )nn

n

f z a z a
∞

=

= −∑  is infinitely differentiable in ( , )B a R . 

Therefore ' , ''f f  exists in ( , )B a R  implies that 'f is continuous in ( , )B a R . 

Thus f  is continuously differentiable. Hence f  is analytic in ( , )B a R . 

 

Result 17 A domain G  is connected iff its open as well as closed subset is either empty 

orG . 
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Theorem 18 If G  is open and connected and  :f G→ �  is differentiable with '( ) 0f z =  for 

all z  in G , then f   is constant. 

Proof.  Fix 0z  in G and let 0 0( )w f z= . Let { }0: ( )A z G f z w= ∈ = . Clearly A ≠ � . 

If  A  is open as well as closed, then by connectedness of G , A G= . ( i.e. f  is constant ) 

First we prove that A - is open. 

Now for a A∈ . Let 0∈> be such that ( );B a G∈ ⊂ . 

If  ( );z B a∈ ∈  we define  :[0,1]g G→  by [ ]( ) (1 )g t f t z t a= + − , 0 1t≤ ≤ . 

 

Then 
[ ] [ ](1 ) (1 )( ) ( ) f t z t a f s z s ag t g s

t s t s

+ − − + −−
=

− −
 

 

                            
[ ] [ ]
[ ] [ ]

[ ] [ ](1 ) (1 ) (1 ) (1 )
.

(1 ) (1 )

f t z t a f s z s a t z t a s z s a

t z t a s z s a t s

+ − − + − + − − + −
=

+ − − + − −
 

 

                            
[ ] [ ]
[ ] [ ]

(1 ) (1 )
.( )

(1 ) (1 )

f t z t a f s z s a
z a

t z t a s z s a

+ − − + −
= −

+ − − + −
 

 

[ ] [ ]
[ ] [ ]

(1 ) (1 )( ) ( )
lim lim .( )

(1 ) (1 )t s t s

f t z t a f s z s ag t g s
z a

t s t z t a s z s a→ →

+ − − + −−
= −

− + − − + −
 

[ ]'( ) ' (1 ) .( ) 0.( ) 0g s f s z s a z a z a= + − − = − =  

 

Therefore '( ) 0g s =  for 0 1s≤ ≤  implies that g   is constant. 

Hence (1) (0)g g=  implies that 0( ) ( )f z f a w= = .Therefore z A∈ . 

Thus if ( );z B a∈ ∈  then z A∈  that is  ( );B a A∈ ⊂ . Thus A  is open. 

We now prove that A - is closed. 

Let z  be limit point of A  , then there is a sequence  { }nz  in A such that lim n
n

z z
→∞

= . 

Since f  is continuous , ( ) 0 0( ) lim lim ( ) limn n
n n n

f z f z f z w w
→∞ →∞ →∞

= = = = . Hence z A∈ . 

Thus A  contains all its limit points hence A  is closed. 
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EXERCISES 

 

1) Find the radius of convergence of  the followings  

a)  
1 n

n
z

n
∑    b) 

1

!

nz
n

∑     c) (3 4 )n ni z+∑                   

d) 
2

1

1

nz
in+∑     e)  

0

n n

n

a z a
∞

=

∈∑ �   f)   
0

n n

n

k z k
∞

=

∈∑ � . 

 

 

� � � 
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MÖBIUS TRANSFORMATIONS 

 

 

In this unit we study Möbius transformations and their properties. We begin with bilinear 

transformation. 

Definition 19 A mapping of the form ( )
az b

S z
cz d

+
=

+
 is called bilinear or linear fractional 

transformation where , , ,a b c d ∈�  . 

 

Definition 20 A bilinear transformation ( )
az b

S z
cz d

+
=

+
 with 0ad bc− ≠  is called Möbius 

map or Möbius transformation. 

 

Remarks 21 1) Möbius transformation is one-one and onto. 

 

     2) If ( )
az b

S z
cz d

+
=

+
, then 1( )

dw b
S w

cw a

− − +
=

−
. 

 

     3) If S and T  are Möbius transformations then S To  is also Möbius    

                    transformation. 

 

     4) ( )S z z a= +  ( Translation ) 

                    ( )S z az=      ( Dilation/Magnification ) 

                    ( ) iS z e zθ=    ( Rotation ) 

                    
1

( )S z
z

=        ( Inversion ).     

 

Theorem 22 If S  is a Möbius transformation then S  is composition of translation , dilation 

and inversion. 

 

UNIT  - II 
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Proof. Let  ( )
az b

S z
cz d

+
=

+
  with 0ad bc− ≠  be Möbius transformation. 

Case 1. When 0c =  then  ( )
a b

S z z
d d

   = +   
   

 

Let 1 2( ) , ( )
a b

S z z S z z
d d

   = = +   
   

 

Then ( )( )2 1 2 1 2( ) ( )
a a b

S S z S S z S z z S z
d d d

      = = = + =      
      

o  

Thus 2 1S S S= o . 

 

Case 2. When 0c ≠   

Let   1( )
d

S z z
c

= + , 2

1
( )S z

z
= , 3 2

( )
bc ad

S z z
c

−
= , 4 ( )

a
S z z

c
= + . 

Then ( )4 3 2 1 4 3 2 1( ) ( )S S S S z S S S S z=o o o o o  

 4 3 2

d
S S S z

c

 = + 
 

o o  

      4 3 2

d
S S S z

c

  = +  
  

o  

     4 3

1
S S

d
z
c

 
 

=  
 +
 

o  

     4 3

1
S S

d
z
c

  
  

=   
  +   

 

       4 2

1bc ad
S

dc
z
c

  
  −

=   
  +   

 

  
( )

bc ad a

c cz d c

 −
= + + 
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   ( )
az b

S z
cz d

+
= =

+
. 

Thus 4 3 2 1S S S S S= o o o . 

 

Theorem 23 Every Möbius transformation can have at most two fixed points. 

Proof. Let  ( )
az b

S z
cz d

+
=

+
  with 0ad bc− ≠  be Möbius transformation. 

Let  z  be fixed point of ( )S z  then ( )S z z=  

                  
az b

z
cz d

+
=

+
 

2 ( ) 0cz d a z b+ − − =  

which is quadratic in z . Hence it can have at most two roots. Therefore every Möbius 

transformation can have at most two fixed points otherwise ( )S z z=  for all z (Identity map ). 

 

Theorem 24 Möbius map is uniquely determined by its action on any three distinct points in 

∞� . 

Proof. Let  1 2 3, ,z z z  be three distinct points in ∞� . Let S and T  be Möbius map such that 

1 1 2 2 3 3( ) , ( ) , ( )S z w S z w S z w= = =  and 1 1 2 2 3 3( ) , ( ) , ( )T z w T z w T z w= = = . 

Then  

( ) ( )( ) ( )1 1 1

1 1 1 1T S z T S z T w z− − −= = =o  

( ) ( )( ) ( )1 1 1

2 2 2 2T S z T S z T w z− − −= = =o  

( ) ( )( ) ( )1 1 1

3 3 3 3T S z T S z T w z− − −= = =o  

 

Thus 1T S−
o  is a Möbius map having three fixed points.  

Hence 1T S I− =o  ( Identity map). Thus T S= . 

 

Definition 25 For z ∞∈�  the map denoted by ( )2 3 4, , ,z z z z  where 2 3 4, ,z z z ∞∈�  is called 

cross ratio if it maps  2 3 4, ,z z z  respectively to 1,0,∞ . 
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More precisely the map ( )2 3 4, , ,z z z z za  is a Möbius map that maps 2 3 4, ,z z z  respectively 

to 1,0,∞  and is given by  

( ) 3 2 3
2 3 4

4 2 4

( ) , , ,
z z z z

S z z z z z
z z z z

   − −
= =    − −   

. 

Remarks 26 1) ( ) ( ) ( )2 2 3 4 3 2 3 4 4 2 3 4, , , 1, , , , 0, , , ,z z z z z z z z z z z z= = = ∞ . 

      2) ( ),1,0,z z∞ = . 

      3) Let M be any Möbius map such that  2 3 4( ) 1, ( ) 0, ( )M w M w M w= = = ∞  

           then ( )2 3 4( ) , , ,M z z w w w= .  

Theorem 27 If 2 3 4, ,z z z  are distinct points and T  is any Möbius map then 

( ) ( )1 2 3 4 1 2 3 4, , , , , ,z z z z Tz Tz Tz Tz=  for any point 1z . ( Cross-ratio is invariant under any 

Möbius map )  

Proof. Let  ( )2 3 4( ) , , ,S z z z z z=  and T  is any Möbius map. Let 1M S T −= o , then M T S=o . 

Now,    ( )2 2 21 ( ) ( ) ( )S z M T z M T z= = =o  

             ( )3 3 30 ( ) ( ) ( )S z M T z M T z= = =o  

             ( )4 4 4( ) ( ) ( )S z M T z M T z∞ = = =o   

Thus ( )2 3 4( ) , , ,M z z Tz Tz Tz=  then ( )1

2 3 4( ) , , ,S T z z Tz Tz Tz− =o . 

Let  1

1( )T z z− =  then 1( )z T z= . Therefore ( )1 1 2 3 4( ) , , ,S z Tz Tz Tz Tz= . 

Thus ( ) ( )1 2 3 4 1 2 3 4, , , , , ,z z z z Tz Tz Tz Tz= . 

 

 

Theorem 28 If 2 3 4, ,z z z  are distinct points in ∞� and 2 3 4, ,w w w are also distinct points of 

∞� , then is one and only one Möbius map S such that 2 2 3 3 4 4( ) , ( ) , ( )S z w S z w S z w= = = . 

Proof. Let  ( )2 3 4( ) , , ,T z z z z z=  and ( )2 3 4( ) , , ,M z z w w w= . Let 1S M T−= o  then   

( ) ( )1 1 1

2 2 2 2( ) ( ) ( ) 1S z M T z M T z M w− − −= = = =o  

            ( ) ( )1 1 1

3 3 3 3( ) ( ) ( ) 0S z M T z M T z M w− − −= = = =o  

            ( ) ( )1 1 1

4 4 4 4( ) ( ) ( )S z M T z M T z M w− − −= = = ∞ =o   
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Thus we have a Möbius map S  such that 2 2 3 3 4 4( ) , ( ) , ( )S z w S z w S z w= = = . 

Uniqueness: 

 Let R  be another Möbius map such that 2 2 3 3 4 4( ) , ( ) , ( )R z w R z w R z w= = = . 

Then ( ) ( )1 1 1

2 2 2 2( ) ( )R S z R S z R w z− − −= = =o  

         ( ) ( )1 1 1

3 3 3 3( ) ( )R S z R S z R w z− − −= = =o  

         ( ) ( )1 1 1

4 4 4 4( ) ( )R S z R S z R w z− − −= = =o  

Thus 1R S−
o  has three fixed points 2 3 4, ,z z z  implies that 1R S I− =o . 

Therefore, R S= .  

 

Example 29 Evaluate following cross ratios a)  ( )7 ,1,0,i+ ∞    b) ( )2,1 ,1,1i i− +  

Sol.  We have, ( ) 3 2 3
2 3 4

4 2 4

( ) , , ,
z z z z

S z z z z z
z z z z

   − −
= =    − −   

 

a) ( ) 3
2 3

2 3

, , ,
z z

z z z
z z

 −
∞ =  − 

 

Therefore,  ( ) 7 0
7 ,1,0, 7

1 0

i
i i

+ − + ∞ = = + − 
. 

b) ( )
( )

( )
( ) ( )

1 1 22 1 1
2,1 ,1,1 1

2 1 1 1 1 2 1

i i
i i i

i i i i i i

   − −− −   − + = = = = +       − + − − + − − −      
. 

 

Example 30 Find Möbius map which maps the points 2 3 42, , 2z z i z= = = −  onto 

2 3 41, , 1w w i w= = = −  respectively. 

Solution  Let S be the map that takes i iz wa  ( )2,3,4i = . Since cross ratio is invariant 

under any Möbius map, ( ) ( )2 3 4 2 3 4, , , , , ,z z z z Sz Sz Sz Sz= . 

Therefore,  ( ) ( )2 3 4 2 3 4, , , , , ,z z z z w w w w=  , where ( )S z w= . 

Thus  ( ) ( ), 2, , 2 ,1, , 1z i w i− = −  

 

2 1

2 2 2 1 1 1

z i i w i i

z w

− − − −       =       + + + +       
 



 21 

      
( )

( )( )
( )

( )( )
4 2

2 2 1 1

z i w i

z i w i

− −
=

+ − + −
 

 

     
( ) ( )2

2 4 2 1

z i w i

z iz i w iw i

− −
=

− + − − + −
       

 

     ( ) ( ) ( ) ( )2 1 2 4 2z i w iw i w i z iz i− − + − = − − + −  

 

( ) ( )( ) ( ) ( ) ( ) ( )2 2 2 1 2 4 2 2 4 2w z i z i i z i i w z iz i i z iz i− − − + − − = − + − − − + −  

 

( )( ) ( )
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )2

2 1 2 2 1 4 22 1 2 4 2

2 2 2 4 2 2 2 2 2 2 4 2

i i i z i i i iz i i i z iz i
w

z i z i i z iz i i i z i i i

− − − − + − − −− − − − − + −
= =

− − − − − + − − − − + − + − −
 

 

Therefore, 
( ) ( )
( ) ( )

3 2 3 2

6 6

z i z i
w

i z iz

− + − +
= =

− + − +
. 

 

Theorem 31 Let 1 2 3 4, , ,z z z z  be four distinct points in ∞� , then ( )1 2 3 4, , ,z z z z is real number 

iff all four points lie on the circle.  

Proof. Let  ( )2 3 4( ) , , ,S z z z z z=  then S  is a Möbius map from ∞�  to ∞� . To prove this 

theorem we have to prove that { }: ( ) realw S w∞∈ =�  is a circle.  

Suppose    ( ) realS w = , then  ( ) ( )S w S w= . 

Let ( )
aw b

S w
cw d

+
=

+
  with 0ad bc− ≠ . 

Thus, 
aw b aw b

cw d cw d

+ +
=

+ +
 

Therefore,  
2

( ) ( ) ( ) ( ) 0ac ac w ad bc w bc ad w bd bd− + − + − + − =  …(1) 

Case 1. When  ac  is real.  

          Therefore, ac ac= , then from (1) we have,  

( ) ( ) ( ) 0ad bc w bc ad w bd bd− + − + − =                                                                 …(2) 

Let 2( ), ( )ad bc i bd bdα β= − = −  then (2) becomes,  
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0
2 2
w w

i

α α β
+ + =  

 ( ) 2 0i w wα α β+ + =  

( ).2 .Im 2 0i i wα β+ =   

( )Im 0wα β− =                                                                                                    …(3) 

Let  ,p iq w x iyα = + = +  then ( )w px qy i qx pyα = − + + . 

Therefore, ( )Im ( ) 0w qx pyα β β− = + − = . Thus (3) represents a line 
q

y x
p

β
 −

= + 
 

. 

That is, w  lies on the line determined by (3) for fixed α  and β . We know that straight line 

may be regarded as circle with infinite radius. Therefore, w  lies on the circle.      

 

Case 2. When  ac  is not real.  

Therefore, ac ac≠ , then from (1) we have,  

2 ( ) ( ) ( )
0

( ) ( ) ( )

ad bc bc ad bd bd
w w w

ac ac ac ac ac ac

− − −
+ + + =

− − −
 

Let ,
ad bc bd bd

ac ac ac ac
γ δ

   − −
= = −   

− −   
. 

Therefore,  
2

0w w wγ γ δ+ + − =                

                 ww w wγ γ γ γ δ γ γ+ + + = +  

                                  ( )( )w wγ γ δ γ γ+ + = +  

                                    
2

w γ δ γ γ+ = +  

                                    
2

w γ δ γ γ+ = +  

Therefore, w γ λ+ =                                                                                            …(4) 

where ( )
1

2
0

ad bc

ac ac
λ δ γ γ

−
= + = >

−
 

Since γ  and λ  are independent of w , (4) represents a circle on which w  lies.   
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Theorem 32 A Möbius transformation takes circles onto circles.  

Proof. Let S be a Möbius transformation. Let Γ  be a circle in ∞�  and  2 3 4, ,z z z  are distinct 

points on  Γ  such that 2 2 3 3 4 4( ) , ( ) , ( )S z w S z w S z w= = = . Then  2 3 4, ,w w w   determine a 

circle 'Γ .  

We claim that  ( ) 'S Γ = Γ : 

Since cross ratio is invariant under any Möbius transformation, for any z  in ∞� ,            

( ) ( )2 3 4 2 3 4, , , , , ,z z z z Sz Sz Sz Sz=  

                    ( )2 3 4, , ,Sz w w w=  

Now z∈Γ ⇔  ( )2 3 4, , ,z z z z  is real. 

                  ⇔  ( )2 3 4, , ,Sz w w w  is real. 

                  ⇔  ( ) 'S z ∈Γ  

Thus ( ) 'S Γ = Γ . 

 

Theorem 33 For any given circles Γ and 'Γ  in ∞�  there is a Möbius transformation T  such 

that ( ) 'T Γ = Γ . Furthermore we can specify that T  takes any three points on Γ  onto any 

three points of 'Γ . If we do specify ( )j jT z w=  for 2,3,4j = (distinct jz  in Γ ) then T  is 

unique. 

Proof. Let 2 3 4, ,z z z  be distinct points on Γ  and 2 3 4, ,w w w be points on 'Γ . Let 

( )2 3 4( ) , , ,S z z z z z=  and ( )2 3 4( ) , , ,M z z w w w= . 

Let 1T M S−= o , then  ( ) ( ) ( )( ) ( )1 1 1

2 2 2 21T z M S z M S z M w− − −= = = =o  

                                    ( ) ( ) ( )( ) ( )1 1 1

3 3 3 30T z M S z M S z M w− − −= = = =o  

                                    ( ) ( ) ( )( ) ( )1 1 1

4 4 4 4T z M S z M S z M w− − −= = = ∞ =o  

Thus T  is a Möbius transformation that takes Γ onto 'Γ . 

Obviously Möbius transformation is unique. 
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EXERCISES 

 

1) Find fixed points of dilation, translation and inversion on C∞. 

2) If 
z

Tz
z

α β
γ δ

+
=

+
 and

az b
Sz

cz d

+
=

+
. Prove that T = S iff ,  a bα λ β λ= =  ,  c dγ λ δ λ= = , 

for some complex number .λ  

 

 

 

 

 

� � � 
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COMPLEX INTEGRATION 

 

 

In this section we shall study complex integrations of complex functions and 

established fundamental theorem of calculus for line integral. We show that an analytic 

function has a power series expansion   as a Taylor’s theorem. Form then we established 

Cauchy’s estimate to prove Cauchy’s theorem. We begin with elementary definitions 

 

Definition 1 A path in region G ⊂ �  is a continuous function  :[ , ]a b Gγ →  for some 

interval [ , ]a b   in � . 

If '( )tγ  exists for each t  in [ , ]a b  and ' :[ , ]a bγ → �  is continuous then γ  is called smooth 

path. Also γ  is called piecewise smooth if there is partition of [ , ]a b , 0 1 ... na t t t b= < < < = , 

such that γ  is smooth on each subinterval 1[ , ], 1j jt t j n− ≤ ≤ . 

 

Definition 2 Let  :[ , ]a b Gγ →  be a path then trace of γ  is { }( ) : [ , ]t t a bγ ∈  and it is 

denoted by { }γ . 

i.e. { } { }( ) : [ , ]t t a bγ γ= ∈ . Note that trace of a path is always compact. 

 

Definition 3 A function :[ , ]a bγ → � , for  [ , ]a b ⊂ � , is of bounded variation if there is a 

constant 0M >  such that for any partition { }0 1 ... mP a t t t b= = < < < =  of  [ , ]a b  

( ) 1

1

; ( ) ( )
m

k k

k

P t t Mυ γ γ γ −
=

= − ≤∑ . 

The total variation of γ , denoted by ( )V γ  is defined as 

( ) ( ){ }sup ; :  a partition of [a,b] V P Pγ υ γ= . 

 

Definition 4 A path :[ , ]a bγ → �  is rectifiable if γ  is a function of bounded variation. 

 

UNIT  - III 
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Theorem 5  Let :[ , ]a bγ → �  be of bounded variation. Then: 

a) If P  and Q  are partitions of  [ , ]a b  and  P Q⊂  then ( ) ( ); ;P Qυ γ υ γ≤ . 

b) If :[ , ]a bσ → �  is also of bounded variation and ,α β ∈�  then  αγ βσ+  is of bounded 

variation and   ( ) ( ) ( )V V Vαγ βσ α γ β σ+ ≤ + . 

 

Theorem 6  If :[ , ]a bγ → �  is piecewise smooth then γ  is of bounded variation and 

( ) '( )

b

a

V t dtγ γ= ∫ . 

Proof. Firstly we assume that γ  is smooth so that 'γ  is continuous. Let 

{ }0 1 ... mP a t t t b= = < < < =  then    

( )
1

1

1 1

; ( ) ( ) '( )
k

k

tm m

k k

k k t

P t t t dtυ γ γ γ γ
−

−
= =

= − =∑ ∑ ∫  

             

1
1

'( )
k

k

tm

k t

t dtγ
−

=

≤∑ ∫  

             '( )

b

a

t dtγ= ∫ . 

Hence,  ( ) '( )

b

a

V t dtγ γ≤ ∫ , so that γ  is of bounded variation. 

Since 'γ  is continuous it is uniformly continuous. Thus for given 0∈>  we can choose 1 0δ >  

such that '( ) '( )s tγ γ− <∈  whenever 1s t δ− < . Also we choose 2 0δ >  such that if  

{ }0 1 ... mP a t t t b= = < < < =  and  ( ){ }1 2max :1k kP t t k m δ−= − ≤ ≤ <  then  

( )
1

1

1

'( ) '( )
k

k

tb m

k k k

ka t

t dt t tγ γ τ
−

−
=

− − <∈∑∫ ∫  where kτ  is any point in 1[ , ]k kt t− . 

( )
1

1

1

'( ) '( )
k

k

tb m

k k k

ka t

t dt t tγ γ τ
−

−
=

≤ ∈+ −∑∫ ∫  

               

1
1

'( )
k

k

tm

k

k t

dtγ τ
−

=

=∈+∑ ∫  
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               [ ]
1 1

1 1

'( ) '( ) '( )
k k

k k

t tm m

k

k kt t

t dt t dtγ τ γ γ
− −

= =

≤∈+ − +∑ ∑∫ ∫  

If ( )1, 2minP δ δ δ< =  then '( ) '( )k tγ τ γ− <∈  for t  in  1[ , ]k kt t−  and  

( ) 1

1

'( ) ( ) ( )

b m

k k

ka

t dt b a t tγ γ γ −
=

≤ ∈+∈ − + −∑∫  

                ( ) ( )1 ;b a Pυ γ= ∈ + − +    

               ( ) ( )1 b a V γ≤ ∈ + − +   . 

Letting 0∈→ +  we get  ( )'( )

b

a

t dt Vγ γ≤∫ . 

Thus  ( ) '( )

b

a

V t dtγ γ= ∫ . 

 

Theorem 7 Let f and g be continuous functions on [ , ]a b  and let γ  and σ  be functions of 

bounded variation on [ , ]a b . Then for any scalar α  and β : 

a) ( )
b b b

a a a

f g d fd gdα β γ α γ β γ+ = +∫ ∫ ∫  

b) ( )
b b b

a a a

fd fd gdαγ βσ α γ β σ+ = +∫ ∫ ∫ . 

 

Theorem 8 If γ  is piecewise smooth and :[ , ]f a b → �  is continuous then  

( ) '( )

b b

a a

f d f t t dtγ γ=∫ ∫ . 

Proof. To prove this theorem we consider real and imaginary parts of γ , we reduce the proof 

to the case where ( )[ , ]a bγ ⊂ � . For any 0∈>  choose 0δ >  such that if 

{ }0 1 ... nP a t t t b= = < < < =  has P δ<  then  

( ) ( )
1

1

1

( )
2

k

k

tb n

k k k

ka t

f d f t tγ τ γ γ
−

−
=

∈
− − <  ∑∫ ∫  and  
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( )
1

1

1

( ) '( ) ( ) '( )
2

k

k

tb n

k k k k

ka t

f t t dt f t tγ τ γ τ
−

−
=

∈
− − <∑∫ ∫  for any choice of kτ  in  1[ , ]k kt t−  

 

Now by Mean Value Theorem  

( ) ( ) ( )1 1

1 1

( ) ( ) '( )
n n

k k k k k k k

k k

f t t f t tτ γ γ τ γ τ− −
= =

− = −  ∑ ∑ for some kτ  in  1[ , ]k kt t− . 

 

Combining this with above two inequalities we get   

( ) '( )

b b

a a

f d f t t dtγ γ− <∈∫ ∫ . Since 0∈> was arbitrary we have, ( ) '( )

b b

a a

f d f t t dtγ γ=∫ ∫ . 

 

 

Definition 9 If :[ , ]a bγ → �  is a rectifiable path and f  is a function defined and continuous 

on the trace of γ  then (line) integral of  f  along γ  is  ( ) ( )( )

b

a

f t d tγ γ∫ . This line integral is 

also denoted by ( )f f z dz
γ γ

=∫ ∫ . 

 

Definition 10 Let :[ , ]a bγ → �  and :[ , ]c dσ → � be rectifiable paths. The path σ  is 

equivalent to γ  if there is a continuous function :[ , ] [ , ]c d a bϕ → , which is strictly 

increasing, and with ( ) , ( )c a d bϕ ϕ= = , such that  σ γ ϕ= o . 

The idea is to recognize all the paths having same trace as identical. The above definition 

brings about a partition of the class of all paths. Thus we are prompted to define.  

A curve is an equivalence class of paths. The trace of a curve is the trace of any one of its 

members. A curve is smooth (piecewise smooth) if and only if one of its representative is 

smooth (piecewise smooth). A curve C is called simple if it does not cross over itself. That is  

( ) ( )1 2t tγ γ≠  whenever 1 2t t≠ . A curve C is called a simple closed curve if  i) ( ) ( )a bγ γ=  

ii) ( ) ( )1 2t tγ γ≠  whenever 1 2t t≠ , except when 1t a=  and 2t b= . It is also called Jordan 

curve.  
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Theorem 11  Let γ  be a rectifiable curve and suppose that f  is a function continuous on 

{ }γ . Then: 

a) f f
γ γ−

= −∫ ∫ ; 

b) { }( )sup ( ) :f f dz V f z z
γ γ

γ γ≤ ≤  ∈  ∫ ∫ ; 

c) If c∈�  then ( ) ( )
c

f z dz f z c dz
γ γ +

= −∫ ∫ . 

We shall conclude this chapter with 

 

Theorem 12 Let G  be an open set in �  and let γ  be a rectifiable path in G with initial and 

end points  α  and β  respectively. If :f G→ �  is a continuous function with primitive 

:F G→ � , then ( ) ( )f F F
γ

β α= −∫ . 

 

We now prove Leibnitz theorem: 

Theorem 13 Let :[ , ]  [ , ]a b c dϕ × → �  be a continuous function. Define :[ , ]g c d → �  by 

( ) ( , )

b

a

g t s t dsϕ= ∫  ,  [ , ]t c d∀ ∈    

Then, 

i) g is continuous function and 

ii) If  
t

ϕ∂
∂

 exists and continuous, then g is continuously differentiable. 

Moreover, '( ) ( , )

b

a

g t s t ds
t
ϕ

∂
=

∂∫ . 

 

Proof :  i) Let 0 [ , ]t c d∈ and 0∈> .  

Since ϕ  is continuous on [ , ] [ , ]a b c d× , we have ϕ  is uniformly continuous on 

[ , ] [ , ]a b c d× . 

Therefore, there is 0δ >  such that for each [ , ]s a b∈ , we have, 
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0 0( , ) ( , )s t h s t
b a

ϕ ϕ
∈

+ − <
−

, whenever 0 0t h t δ+ − <      

Now, for h δ<   we have 

0 0 0 0( ) ( ) ( , ) ( , )

b b

a a

g t h g t s t h ds s t dsϕ ϕ+ − = + −∫ ∫ [ ]0 0( , ) ( , )

b

a

s t h s t dsϕ ϕ= + −∫  

0 0( , ) ( , )

b

a

s t h s t dsϕ ϕ≤ + −∫
b

a

ds
b a

∈
≤

−∫ ( )b a
b a

∈
= −

−
 

=∈           

Thus, 0 0( ) ( )g t h g t+ − ≤ ∈, whenever h δ<  

i.e. g  is continuous at  0 [ , ]t c d∈  

Since 0t  is arbitrary element of [ , ]c d , we have g  is continuous on [ , ]c d . 

ii) Suppose that  
t

ϕ∂
∂

  exists and continuous 

Let   0 [ , ]t c d∈   and 0∈>  

Denote,  2 ( , ) ( , )s t s t
t

ϕ ϕ
∂

=
∂

  

Again since 2 ( , )s tϕ  is uniformly continuous on [ , ] [ , ]a b c d× , ∃ 0δ >  such that for each 

[ , ]s a b∈ , we have 

2 2 0( , ) ( , )s t s tϕ ϕ− < ∈, whenever 0t t δ− <  

Thus, for 0t t δ− <  and [ , ]s a b∈ , we have [ ]
0 0

2 2 0( , ) ( , )

t t

t t

s s t d dϕ τ ϕ τ τ− < ∈∫ ∫  

i.e  [ ]
0

2 2 0 0( , ) ( , )

t

t

s s t d t tϕ τ ϕ τ− < ∈ −∫ , whenever 0t t δ− <  and [ , ]s a b∈  

          …   (1)  

Let 2 0( ) ( , ) ( , )t s t t s tϕ ϕΦ = − , for some fixed [ , ]s a b∈ . Then  2 2 0'( ) ( , ) ( , )t s t s tϕ ϕΦ = −  

i.e. ( )tΦ  is primitive of 2 2 0( , ) ( , )s t s tϕ ϕ−  
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Then by Fundamental Theorem of Calculus for Line Integrals, we have 

[ ]
0

2 2 0 0( , ) ( , ) ( ) ( )

t

t

s s t d t tϕ τ ϕ τ− = Φ −Φ∫  

         [ ] ( )0 0 2 0( , ) ( , ) ( , )s t s t t t s tϕ ϕ ϕ= − − −  

Inequality (1) becomes, 

 

[ ] ( )0 0 2 0 0( , ) ( , ) ( , )s t s t t t s t t tϕ ϕ ϕ− − − <∈ −      …(2) 

 

Now, 

0
2 0 0 2 0

0 0

( ) ( ) 1
( , ) ( , ) ( , ) ( , )

b b b b

a a a a

g t g t
s t ds s t ds s t ds s t ds

t t t t
ϕ ϕ ϕ ϕ

 −
− = − − 

− −  
∫ ∫ ∫ ∫  

 

    
( )0 0 2 0

0

( , ) ( , ) ( , )b

a

s t s t t t s t
ds

t t

ϕ ϕ ϕ− − − 
=  − 
∫  

 

    
( )0 0 2 0

0

( , ) ( , ) ( , )b

a

s t s t t t s t
ds

t t

ϕ ϕ ϕ− − −
≤

−∫  

 

    

b

a

ds< ∈ ∫  ( )b a= ∈ −     (By equation (2)) 

Thus, for each 0∈> , 0δ∃ >  such that 

( )0
2 0

0

( ) ( )
( , )

b

a

g t g t
s t ds b a

t t
ϕ

−
− < ∈ −

− ∫ , whenever 00 t t δ< − <  

i.e. g  is differentiable at  0t  and hence on [c, d]. 

Next, 0 2 0 0'( ) ( , ) ( , )

b b

a a

g t s t ds s t ds
t

ϕ ϕ
∂

= =
∂∫ ∫  

As 2 ( , )s t
t

ϕ
ϕ

∂
=
∂

 is continuous, we have 'g  is continuous 

Hence, g is continuously differentiable. 
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Example 14 Prove that

2

0

2
is

is

e
ds

e z

π

π=
−∫ , when 1z <  

Solution: Define :[0,1]g → �  by 

2

0

( )
is

is

e
g t ds

e tz

π

=
−∫ , ∀ [0,1]t∈  

By Leibnitz rule, 

 

2

0

0

'( )
is

is

e
g t ds

t e tz

π  ∂
=  ∂ − 
∫   

( )

2

2

0

is

is

z e
ds

e tz

π

=
−

∫  

Let ( )
is

z i
s

e tz
Φ =

−
 . Then 

( )2
'( )

is

is

z e
s

e tz
Φ =

−
  

Thus, '( ) (2 ) (0)g t π= Φ −Φ      (By fundamental theorem of calculus for line integrals) 

             
2 0i i

z i z i

e tz e tzπ= −
− −

       

             0=  

 i.e. '( ) 0, [0,1]g t t= ∀ ∈  

Therefore, g  is constant function 

In particular, we have (1) (0)g g=  

i.e.

2 2

0 0

is

is

e
ds ds

e z

π π

=
−∫ ∫  

 

i.e.

2

0

2
is

is

e
ds

e z

π

π=
−∫ . 

 

Exercise 15 Show that 
  1

2 ,  when  < 1.
z

dz
i a

z a
π

=

=
−∫  

(Hint: put    and use above example)itz e= . 

 

The following theorem is known as Cauchy Integral Formula. 
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Theorem 16 Let :f G→ �  be analytic and suppose ( , ) ( 0)B a r G r⊂ > . If ( ) itt a reγ = + , 

0 2t π≤ ≤ ,  then
1 ( )

( )
2

f w
f z dw

i w zγπ
=

−∫  , for z a r− < . 

Proof. Without loss of generality assume 0 and  1a r= =  

That is we may assume that (0,1)B G⊂  

Let (0,1)z B∈  ; we have to show that  

1 ( )
( )

2

f w
f z dw

i w zγπ
=

−∫  

                    

2

0

1 ( )

2

is is

is

f e e i
ds

i e z

π

π
=

−∫  

i.e. 

2

0

( )
2 ( )

is is

is

f e e
f z ds

e z

π

π =
−∫  

 

i.e. 

2

0

( )
( ) 0

is is

is

f e e
f z ds

e z

π  
− = − 

∫      

 

Let 
( ( ))

( , ) ( )
is is

is

f z t e z e
s t f z

e z
ϕ

+ −
= −

−
 where 0 2s π≤ ≤  and 0 1t≤ ≤  

 

Since ( ) (1 ) (1 ) 1is is isz t e z z t te t z t e+ − = − + ≤ − + < , ϕ  is well defined and 

continuously differentiable 

Now define  :[0,1]g → �  by  

 

        

2

0

( ) ( , )g t s t ds

π

ϕ= ∫  

Then by Leibnitz rule g  ha s continuous derivative 

2

0

'( ) ( , )g t s t ds
t

π

ϕ
∂

=
∂∫  
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2

0

( ( ))
( )

is is

is

f z t e z e
f z ds

t e z

π  ∂ + −
= − ∂ − 
∫  

 

        

2

0

'( ( ))is isf z t e z e ds

π

= + −∫  

Let 1( ) ( ( ))iss i t f z t e z−Φ = − + −  then '( ) '( ( ))is iss f z t e z eΦ = + −  for 0 1t< ≤   

'( ) (2 ) (0)g t π= Φ −Φ      (By fundamental theorem of calculus for line integrals) 

             1 2 1 0( ( )) ( ( ))i ii t f z t e z i t f z t e zπ− −= − + − + + −  

             0=  

'( ) 0g t =    for 0 1t< ≤   

Since g is continuous on  [0,1]  we have  '(0) 0g =  

'( ) 0g t =    for 0 1t≤ ≤  

g  is constant on  [0,1]  

(1) (0)g g=  

 

2

0

( )
( )

is is

is

f z e z e
f z ds

e z

π  + −
− = − 

∫
2

0

( )
( )

is

is

f z e
f z ds

e z

π  
− − 

∫  

 

                                               

2 2

0 0

( )
is

is

e
f z ds ds

e z

π π 
= − − 

∫ ∫  

 

                                               [ ]( ) 2 2f z π π= − 0= .      

 

 

Lemma 17 Let γ  be a rectifiable curve in � and suppose that nF   and  F  are continuous 

functions on{ }γ  . If lim nF u F= −   on { }γ   then  lim nF F
γ γ

=∫ ∫ . 

Proof.  Since  lim nF u F= −  , for given 0∈>  there is an integer 0 0n >  such that 

  ( ) ( )
( )nF w F w

V γ
∈− <  for all { }w γ∈ and 0n n≥ . 
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Therefore ( )n n
F F F F

γ γ γ

− = −∫ ∫ ∫  

 

                        ( ) ( )nF w F w dw
γ

≤ −∫  

                        ≤∈    

when 0n n≥ . 

 

The following theorem gives the Taylor’s series expansion of an analytic function: 

 

Theorem 18 Let f be analytic in ( , )B a R . Then 
0

( ) ( )nn

n

f z a z a
∞

=

= −∑ for z a R− <    

where ( )1
( )

!

n

na f a
n

=  and this series has radius of convergence  R≥ . 

 Proof. Since f  is analytic in ( , )B a R , then there is 0 r R< <  such that ( , ) ( , )B a r B a R⊂ . 

Let ( ) itt a reγ = + , 0 2t π≤ ≤  then by Cauchy integral formula , we have  

 

     
1 ( )

( )
2

f w
f z dw

i w zγπ
=

−∫    for  z a r− < .   …(1) 

 

Now  

1 1 1 1
.

( ) ( )
1

z aw z w a z a w a

w a

= =
−− − − − −  −  − 

 

           

1

1
1

z a

w a w a

−
 −  = −  − −  

 

           

1

1
1

z a

w a w a

−
 −  = −  − −  

. 

1

w z
=

− ( ) 0

1
n

n

z a

w a w a

∞

=

− =  − − 
∑ .             …(2)  
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Since { }γ is compact and f  is continuous on { }γ , f  bounded on  { }γ  

Let { }{ }sup ( ) :M f w w γ= ∈  

 

Then  

1 1

( ) ( ) ( )( )( )

( ) ( )( ) ( )

n nn

n n n

f w z a z af w z a M

w a w aw a w a
+ +

− −−
= ≤

− −− −
 

( )
n

z aM

r r

 − 
≤  

 
 

Let 
( )

n

n

z aM
M

r r

 − 
=  

 
 , then 

0

as 1n

n

z a
M

r

∞

=

−
< ∞ <∑  

By Weierstrass M- test the series   
1

0

( )( )

( )

n

n
n

f w z a

w a

∞

+
=

−
−∑  converges uniformly to 

( )f w

w z−
   for  

{ }w γ∈  

 In view of (1), (2) and Lemma 

1
0

1 ( ) 1 ( )( )
( )

2 2 ( )

n

n
n

f w f w z a
f z dw dw

i w z i w aγ γπ π

∞

+
=

−
= =

− −∑∫ ∫ . 

 

        
1

0

1 ( )( )

2 ( )

n

n
n

f w z a
dw

i w aγπ

∞

+
=

−
=

−∑ ∫  

         
1

0

1 ( )
( )

2 ( )

n

n
n

f w
dw z a

i w aγπ

∞

+
=

 
= −  − 
∑ ∫    

 

         
0

( )nn

n

a z a
∞

=

= −∑  where  
1

1 ( )

2 ( )
n n

f w
a dw

i w aγπ +
=

−∫ , z a r− <  

 

Thus f has power series expansion in ( , )B a R  

( )1
( )

!

n

na f a
n

= , so that value of na  is independent of γ , hence independent of r  
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Moreover , as 0 r R< <  is arbitrary , we have  

0

( ) ( )nn

n

f z a z a
∞

=

= −∑ for z a R− <     

clearly radius of convergence  R≥ . 

 

Corollary 19 If :f G→ �  is analytic and a G∈  then 
0

( ) ( )nn

n

f z a z a
∞

=

= −∑  for z a R− <   

where ( ),R d a G= ∂ . 

Proof. Since ( ) ( ){ } { }, , : :R d a G inf d a G z G inf z a z G= ∂ = ∂ ∈∂ = − ∈∂ , ( , )B a R G⊂  

Since f  is analytic in G ,  f  is analytic on ( , )B a R  

Hence by Taylor’s theorem,  

0

( ) ( )nn

n

f z a z a
∞

=

= −∑      for   z a R− <    

 

Corollary 20 If :f G→ �  is analytic then f is infinitely differentiable. 

Proof. Suppose :f G→ �  is analytic, then for any a G∈ , f has Taylor’s series expansion 

about a  

0

( ) ( )nn

n

f z a z a
∞

=

= −∑      for   z a R− <  , ( ),R d a G= ∂  

Then by theorem, f  is  infinitely differentiable. 

 

Corollary 21 If :f G→ �  is analytic and ( , )B a r G⊂  then      ( )

1

! ( )
( )

2 ( )

n

n

n f w
f a dw

i w aγπ +
=

−∫  

where ( ) itt a reγ = + , 0 2t π≤ ≤    

 

Proof. Suppose :f G→ �  is analytic and ( , )B a r G⊂  

Let ( ) itt a reγ = + , 0 2t π≤ ≤  . 

Then by Taylor’s theorem, 

0

( ) ( )nn

n

f z a z a
∞

=

= −∑   where 
1

1 ( )

2 ( )
n n

f w
a dw

i w aγπ +
=

−∫  
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We also have, 

( )1
( )

!

n

na f a
n

=    

( )

1

! ( )
( )

2 ( )

n

n

n f w
f a dw

i w aγπ +
=

−∫ . 

 

Example 22 Evaluate the integral 
2

ize
dz

zγ
∫  where ( ) itt reγ = , 0 2t π≤ ≤ . 

Solution: Let ( ) izf z e= , then f  is analytic function 

We have  

 (1)

1 1

1! ( )
(0)

2 ( 0)

f z
f dz

i zγπ +
=

−∫  

 

      0

2

1!

2

iz
i e

ie dz
i zγπ

= ∫  

2
2

ize
dz

zγ

π= −∫ . 

 

Example 28 Evaluate the integral 
3

sin z
dz

zγ
∫  where ( ) itt reγ = , 0 2t π≤ ≤ . 

Solution: Let ( ) sinf z z= , then f  is analytic function. 

We have  

 (2)

2 1

2! ( )
(0)

2 ( 0)

f z
f dz

i zγπ +
=

−∫  

 

      
3

1 sin
sin(0)

z
dz

i zγπ
− = ∫  

 

Therefore 
3

sin
0

z
dz

zγ

=∫ . 
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Example 23 Evaluate the integral 
1

dz
z aγ −∫  where ( ) itt a reγ = + , 0 2t π≤ ≤ . 

Solution: Let ( ) 1f z = , then f  is analytic function. 

We have  

 (0)

0 1

0! ( )
( )

2 ( )

f z
f a dz

i z aγπ +
=

−∫  

      
1 1

1
2

dz
i z aγπ

=
−∫  

Therefore, 
1

2dz i
z aγ

π=
−∫ . 

 

Example 24 Evaluate the integral 
sinze z

dz
zγ

+
∫  where ( ) itt reγ = , 0 2t π≤ ≤ . 

Solution: Let ( ) sinzf z e z= + , then f  is analytic function. 

We have  

 (0)

0 1

1! ( )
(0)

2 ( 0)

f z
f dz

i zγπ +
=

−∫  

      0 0! sin
sin 0

2

ze z
e dz

i zγπ
+

+ = ∫  

Therefore 
sin

2
ze z

dz i
zγ

π
+

=∫ . 

 

The following theorem is known as Cauchy’s Estimate 

Theorem 25 Let f be analytic in ( , )B a R and suppose that  ( )f z M≤  for all f   in ( , )B a R . 

Then ( ) !
( )n

n

n M
f a

R
≤  

 

 Proof. Since f  is analytic in ( , )B a R , then there is 0 r R< <  such that ( , ) ( , )B a r B a R⊂ . 

Then by corollary, 

( )

1

! ( )
( )

2 ( )

n

n

n f w
f a dw

i w aγπ +
=

−∫   where ( ) itt a reγ = + , 0 2t π≤ ≤ . 
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Therefore ( )

1

! ( )
( )

2 ( )

n

n

n f w
f a dw

i w aγπ +=
−∫  

      
1

( )!

2 ( )n
f wn

dw
w aγπ

+
≤

−∫  

      
1

!

2 n

n M
dw

r γπ +
≤ ∫  

      
1

!
2

2 n

n M
r

r
π

π +≤ . 

( ) !
( )n

n

n M
f a

r
≤ . 

Since 0 r R< < is orbitrary , letting r R−→  we get 

( ) !
( )n

n

n M
f a

R
≤ . 

 

Cauchy’s estimate leads us to Cauchy’s Theorem: 

Theorem 26 Let f be analytic in the disk ( , )B a R  and suppose that  γ  is a closed rectifiable 

curve in ( , )B a R . Then 0f
γ

=∫ . 

 Proof. Since f  is analytic in ( , )B a R , it has power series expansion  

                         
0

( ) ( )nn

n

f z a z a
∞

=

= −∑            for z a R− < .          …(1) 

Let  

        1

0 0

( ) ( ) ( ) ( )
1 1

n nn n

n n

a a
F z z a z a z a

n n

∞ ∞
+

= =

   = − = − −   + +   
∑ ∑                  …(2) 

Since ( )
1

lim 1 1nn + =  

1 1
1 11

lim lim lim lim
1 1

n n
n n n

n n

a
Sup Sup a Sup a

n n

 = = + + 
. 

 Thus series (1) and (2) have same radius of convergence.   

Therefore, F  is defined and analytic in ( , )B a R . 
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Hence 

( )
0 0

'( ) 1 ( ) ( ) ( )
1

n nn
n

n n

a
F z n z a a z a f z

n

∞ ∞

= =

 = + − = − = + 
∑ ∑ . 

 

i.e. F  is primitive of f . 

If  :[ , ]a bγ → �  then 

' ( ( )) ( ( )) 0f F F b F a
γ γ

γ γ= = − =∫ ∫ , Sinceγ  is a closed curve ( ) ( )a bγ γ= . 

 

EXERCISES 

 

1) Evaluate the integral 
1
dz

zγ
∫ , where ( ) intt eγ = , 0 2t π≤ ≤ , n is some positive integer. 

2) Evaluate the integral ,nz dz
γ
∫ , where γ  is a closed polygonal curve                            

[1-i, 1+i, -1+i, -1-i, 1-i].                              

3) Let ,  γ δ  be polygons [1, 1+i, i] and [1, i] respectively. Evaluate the integral 2z dz∫  

over     as well asγ δ . 

4) Evaluate 
2

ize
dz

zγ
∫ , where ( ) itt eγ = , 0 2t π≤ ≤ . 

5) Evaluate 
3

sin( )z
dz

zγ
∫ , where ( ) itt eγ = , 0 2t π≤ ≤ . 

6) Let G be connected set and :f G→ �  be analytic function. If f(z) is real for all z in 

G, the prove that f is constant function. 

7) Prove above exercise for a) f(z) is imaginary number for all z  and b)  f(z) with 

constant modulus. 

 

 

 

 

 

� � � 
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FUNDAMENTAL THEOREM OF ALGEBRA AND 

MAXIMUM MODULUS THEOREM 
 

 

 

 In this unit we prove Liouville’s theorem use it to prove fundamental theorem of 

algebra. We also prove maximum modulus theorem. 

 

Definition 1 An entire (integral) function is a function which is defined and analytic in the 

whole complex plane� . 

 

Note 1. ( ) ,sin ,coszf z e z z=  are entire functions. 

         2. All polynomials are entire functions. 

 

Theorem 2 If f    is entire function then  f  has power series expansion
0

( ) n

n

n

f z a z
∞

=

=∑  with 

infinite radius of convergence. 

 Proof.  For any 0R >  , ( , )B a R ⊂ � .Then  f  is analytic in ( , )B a R . 

By Taylor’s theorem, 

0

( ) n

n

n

f z a z
∞

=

=∑   ,  for z R< .   

Since  0R >  is arbitrary, radius of convergence is infinite.       

 

 Following theorem is known as Liouville’s theorem 

 

Theorem 3  If f is bounded and entire function then  f  is constant. 

 Proof. Since f  is bounded and entire function, ( )f z M z≤ ∀ ∈�  and for a∈� , 

0R > , f  is analytic in ( , )B a R . 

By Cauchy’s Estimate, we have ( ) !
( )n

n

n M
f a

R
≤  

UNIT  - IV 
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In particular for 1n =  we have   ' !
( )

n M
f a

R
≤  

 

Since R is arbitrary , as R→ ∞ , we get '( ) 0f a ≤  . 

Therefore, '( ) 0f a =  for any a∈� . 

Thus f  is constant. 

 

Thus we can prove the Fundamental theorem of Algebra: 

Theorem 3  If ( )p z  is a non constant polynomial then there is a complex number a  with 

( ) 0p a = . 

 Proof. Let ( )p z  is a non constant polynomial and that ( ) 0p z ≠  for any  z∈� . 

Let 
1

( )
( )

f z
p z

=  then f  is entire function .       ( ( )p z  is entire and ( ) 0p z ≠ ) 

Since ( )p z  is non constant polynomial, assume that 1 2

1 2( ) ...n n n

np z z a z a z a− −= + + + + +  

( )1 2

1 2lim ( ) lim 1 ...n n

n
z z

p z z a z a z a z− − −

→∞ →∞
= + + + + = ∞  

1
lim ( ) lim 0

( )z z
f z

p z→∞ →∞
= =  

Therefore, for 1∈=   there is 0R >  such that  ( ) 0 1f z − < , whenever z R> . 

That is ( ) 1f z < , whenever z R> . 

Since f  is continuous on closed bounded disk (0, )B R ⊂ � , f  is bounded on (0, )B R . 

Therefore, there is 0M >  such that ( )f z M≤  for (0, )z B R∈  

That is ( )f z M≤ , whenever z R≤ . 

Thus { }( ) max 1,f z M≤ ,  for all z∈� . 

This f  is bounded entire function. 

Hence by Liouville’s theorem  f  is constant and consequently p  is constant. 

Which contradicts our assumption. 

Hence the theorem. 
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Definition 4 Let :f G→ �  be analytic and a G∈  satisfies ( ) 0f a =  then a  is zero of  f  of 

multiplicity  1m ≥  if there is an analytic function :g G→ �  such that ( ) ( ) ( )mf z z a g z= − ,  

where ( ) 0g a ≠ . 

 

Corollary 5 If  ( )p z  is a polynomial and 1 2, ,..., ma a a  are its  zeros with ja  having 

multiplicity jk  then 1

1( ) ( ) ...( ) mkk

mp z c z a z a= − −  for some constant c   and 1 2 ... mk k k+ + +  is 

the degree of  p . 

Proof. Since 1 2, ,..., ma a a  are zeros of ( )p z having multiplicities 1 2, ,..., mk k k respectively, 

there exists a polynomial  ( )g z  such that 1

1( ) ( ) ...( ) ( )mkk

mp z z a z a g z= − − ,  where  

( ) 0, (1 )jg a j m≠ ≤ ≤ . 

Therefore by fundamental theorem of algebra, ( )g z  is forced to be constant. 

Let ( )g z c=    for some  c∈�  

 1

1( ) ( ) ...( ) mkk

mp z c z a z a= − −  . 

Obviously, degree of  ( )p z  is 1 2 ... mk k k+ + + . 

 

Theorem 6 Let G  be a connected open set and let  :f G→ �  be analytic function. Then  

the following are equivalent statements: 

(a) 0f ≡ ; 

(b) { }: ( ) 0z G f z∈ =   has limit point in G ; 

(c) there is a point a  in G such that ( ) 0nf a =  for each 0n ≥ . 

 

Proof.  

( ) ( )a b⇒  

suppose 0f ≡ , then { }: ( ) 0z G f z G∈ = = , which is open. 

Hence, every point of  G  is a limit point of  G . 

Thus { }: ( ) 0z G f z∈ =   has limit point in G . 

( ) ( )b c⇒  
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Suppose that, { }: ( ) 0A z G f z= ∈ =   has limit point a  in G , then there is a sequence { }nz  

of points in A  such that lim na z= . 

Since f  is continuous ,  ( ) lim ( ) 0nf a f z= =        ( nz A∈  ∴ ( ) 0nf z =   ) 

Now suppose that, there is an integer 1n ≥  such that ( 1)( ) '( ) ... ( ) 0nf a f a f a−= = = =  

and ( ) ( ) 0nf a ≠ . 

Since f  is analytic in G , there is 0R >  such that f  is analytic in ( );B a R G⊂ . 

By Taylor’s theorem 

 
0

( ) ( )kk

k

f z a z a
∞

=

= −∑            for z a R− <       where    ( )1
( )

!

k

ka f a
k

= . 

Since ( 1)( ) '( ) ... ( ) 0nf a f a f a−= = = =  and ( ) ( ) 0nf a ≠  we have 

 

( ) ( ) ( ) ( )k n k n

k k

k n k n

f z a z a z a a z a
∞ ∞

−

= =

= − = − −∑ ∑  

Let ( ) ( )k n

k

k n

g z a z a
∞

−

=

= −∑ , then g is analytic in ( );B a R and  

( ) ( ) ( )nf z z a g z= −   and  ( ) 0ng a a= ≠ . 

Since g is continuous in ( );B a R , there is 0R r> > such that ( ) 0g z ≠  in ( );B a r . 

As a  is limit point of  A ,  ( ); { }B a r A a φ∩ − ≠ . 

Let ( ); { }b B a r A a∈ ∩ − , then ( );b B a r∈  and  { }b A a A∈ − ⊂ . 

Therefore, ( ); ( ) 0b B a r g b∈ ⇒ ≠ and  { } ( ) 0 ( ) 0b A a A f b g b∈ − ⊂ ⇒ = ⇒ =  

which gives the contradiction to our assumption . 

Hence no such integer 1n ≥  can be found . 

Thus ( ) 0nf a =  for each 0n ≥ . 

( ) ( )b c⇒  

Suppose there is  a  in G  such that  ( ) 0nf a =  for each 0n ≥ . 

 

Let { }( ): ( ) 0nH z G f z= ∈ =  then H φ≠ . 
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Now we claim that H  is both open and closed : 

Let a H∈ , then there is 0R >  such that  ( );B a R G⊂ 0R > . Then f  is analytic in 

( );B a R G⊂ . 

By Taylor’s theorem 

 
0

( ) ( )nn

n

f z a z a
∞

=

= −∑            for z a R− <       where    ( )1
( )

!

n

na f a
n

= . 

 

 Since ( ) 0nf a =  for each 0n ≥ , each 0na = . 

( ) 0f z =  in ( );B a R  i.e. 0f ≡  in ( );B a R . 

( ) 0nf z =  in ( );B a R  

( );B a R H⊆  

Thus  for a H∈ , then there is 0R >  such that  ( );B a R H⊆ . 

Hence H  is open. 

Now let  z  be limit point of H , then there is a sequence { }mz  in H  such that lim mz z=   

Since ( )nf  is continuous ,  ( ) ( )( ) lim ( ) 0n n

nf z f z= =       

Therefore ( ) ( ) 0nf z =  implies  z H∈ . 

Thus H H⊆ . 

Hence H  is closed. 

Thus H is open as well as closed subset of connected set G . 

Hence by property of connectedness H G= . 

Therefore, ( ) ( ) 0 , 0nf z z G n= ∀ ∈ ≥  

That is ( ) 0f z z G= ∀ ∈  

Hence 0f ≡  on G . 

 

Corollary 7 If f  and g  are analytic on a region G , then f g≡  iff  { }: ( ) ( )z G f z g z∈ =   

has a limit point in G . 

Proof. Let  ( ) ( ) ( )h z f z g z= −   z G∀ ∈ , which is analytic in G . 
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Then 0h ≡ on G  ⇔ { }: ( ) 0z G h z∈ =   has a limit point in G . 

i.e. ( ) ( ) 0f z g z− =  on G ⇔ { }: ( ) ( ) 0z G f z g z∈ − =   has a limit point in G . 

i.e. ( ) ( )f z g z=  on G ⇔ { }: ( ) ( )z G f z g z∈ =   has a limit point in G . 

i.e. f g≡  on G ⇔ { }: ( ) ( )z G f z g z∈ =   has a limit point in G . 

 

Corollary 8 If f  is analytic on an open connected set G and f  is not identically zero then 

for each a  in G  with ( ) 0f a =  there is an integer  1n ≥  and an analytic function :g G→ �  

such that ( ) 0g a ≠ and ( ) ( ) ( )nf z z a g z= −  for all z  in G . That is each zero of f  has finite 

multiplicity. 

Proof. Let f  be analytic on an open connected set G . Since  0f ≠  and ( ) 0f a =  

for some a  in G  , there is positive integer 1n ≥  such that ( 1)( ) '( ) ... ( ) 0nf a f a f a−= = = =  

and ( ) ( ) 0nf a ≠ . 

Now we define :g G→ � , by 

 

( )
( )

( )n
f z

g z
z a

=
−

          for z a≠  

        
( ) ( )

!

nf a

n
=            for z a=       …(1)  

Therefore  g  is analytic on { }G a− . 

Now to show that  g  is analytic on G it need only to show g  is analytic in a neighborhood 

of  a . 

 Since f  is analytic in G , there is 0R >  such that f  is analytic in ( );B a R G⊂ . 

 

By Taylor’s theorem 

 
0

( ) ( )kk

k

f z a z a
∞

=

= −∑            for z a R− <       where    ( )1
( )

!

k

ka f a
k

= . 

Since ( 1)( ) '( ) ... ( ) 0nf a f a f a−= = = =  and ( ) ( ) 0nf a ≠  we have 

( ) ( ) ( ) ( )k n k n

k k

k n k n

f z a z a z a a z a
∞ ∞

−

= =

= − = − −∑ ∑  
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Let ( ) ( )k n

k

k n

h z a z a
∞

−

=

= −∑ , then h is analytic in ( );B a R and  

( ) ( ) ( )nf z z a h z= −   and  
( ) ( )

( )
!

n

n

f a
h a a

n
= = . 

Thus from (1)  g h≡  in ( );B a R  

Therefore g  is analytic in ( );B a R . 

Hence g  is analytic in G  with ( ) ( ) ( )nf z z a g z= −  and ( ) ( ) 0ng a h a a= = ≠ . 

 

Corollary 9 If :f G→ �  is analytic and not constant,  a G∈  and  ( ) 0f a =  then there is an 

0R >   such that ( );B a R G⊂   and ( ) 0f z ≠  for 0 z a R< − < . That is zeros of are isolated. 

Proof. Let :f G→ �  be non-constant analytic function with ( ) 0f a =  for some a G∈ . 

Then by corollary  there is an analytic function :g G→ � and an integer 1n ≥  such that 

( ) ( ) ( )nf z z a g z= −  and ( ) 0g a ≠ . 

Since g  is analytic, g is continuous on  G . 

Therefore, there is 0R >  such that ( ) 0g z ≠  in  ( );B a R G⊂  i.e  for z a R− <  

 Hence ( ) ( ) ( ) 0nf z z a g z= − ≠  for 0 z a R< − < . 

 

We now prove Maximum Modulus Theorem: 

Theorem 10 Let G   is a region and :f G→ �  is an analytic function such that there is a 

point a  in G  with ( ) ( )f a f z≥  for all z  in G , then f  is constant. 

 

Proof. Since :f G→ �  is analytic function, there is 0r >  such that ( );B a r G⊂ . 

Then by Cauchy Integral formula 

    
1 ( )

( )
2

f w
f a dw

i w aγπ
=

−∫   for z a r− <  and ( ) itt a reγ = + , 0 2t π≤ ≤ . 

                                

2

0

1 ( )

2

it
it

it

f a re
rie dt

i a re a

π

π
+

=
+ −∫  

                                

2

0

1
( )

2

itf a re dt

π

π
= +∫  
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2

0

1
( ) ( )

2

itf a f a re dt

π

π
≤ +∫  

                               

2

0

1
( )

2
f a dt

π

π
≤ ∫                               as  ( ) ( )f a f z≥  for all z  in G . 

                               ( )f a=  

Therefore 

         

2

0

1
( ) ( ) ( )

2

itf a f a re dt f a

π

π
≤ + ≤∫  

         

2

0

1
( ) ( )

2

itf a f a re dt

π

π
= +∫  

       

2

0

1
( ) ( ) 0

2

itf a f a re dt

π

π
 − + = ∫    …(1) 

Since ( ) ( ) 0itf a f a re− + ≥  for all t  

Therefore from (1) we have  ( ) ( )itf a f a re= +  for all t . 

Let ( )f a α= , then  ( )itf a re α+ =  for all t . 

Since 0r > is arbitrary, we have  ( )f z α=  for all z  in ( );B a r . 

That is f  maps whole disk  ( );B a r G⊂  into the circle z α=  where ( )f a α= . 

Therefore f  has constant modulus on ( );B a r  and hence f is constant on ( );B a r . 

Let ( )f z c=  on ( );B a r G⊂  then { } ( ): ( ) ;z G f z c B a r∈ = ⊇  has a limit point in G . 

Thus ( )f z c=  on G  , i.e.  f  is  constant on G . 

 

Theorem 11 If [ ]: 0,1γ → � is closed rectifiable curve { }a γ∉ , then  

1 1

2
dz

i z aγπ −∫   is an integer. 

Proof. Define [ ]: 0,1g → �  by  

                      
0

'( )
( )

( )

t
s

g t ds
s a

γ
γ

=
−∫  
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where  γ  is closed rectifiable curve so that g  is well defined . 

Therefore  (0) 0g =  and   

1

0

'( ) 1
(1)

( )

s
g ds dz

s a z aγ

γ
γ

= =
− −∫ ∫ . 

 

Also 
'( )

'( )
( )

t
g t

t a

γ
γ

=
−

 for  0 1t≤ ≤ . 

 

Then  ( ) ( ) ( )( ( ) ) '( ) '( ) ( ( ) )g t g t g td
e t a e t e g t t a

dt
γ γ γ− − − − = − −   

 

               ( ) '( )
'( ) ( ( ) )

( )

g t t
e t t a

t a

γ
γ γ

γ
−  

= − − − 
 

  0=  

Therefore ( ) ( ( ) )g te t aγ− −  is constant function. 

Hence         (0) (1)( (0) ) ( (1) )g ge a e aγ γ− −− = −  

                                        0 (1)ge e=    ( (0) (1)γ γ=  )  

                                    2 (1)ik ge eπ =                               ( k  is integer ) 

Therefore    (1) 2g ikπ=   

 

Therefore, 
1

2 ik dz
z aγ

π =
−∫  

Hence  
1 1

2
dz k

i z aγπ
=

−∫  . 

 

Definition 12 If γ  is a closed rectifiable curve in �  then for { }a γ∉ . Then the integer  

1 1

2
dz

i z aγπ −∫  is called  the index of γ  with respect to the point a . 

  

Definition 13 A subset D of a metric space X is called component of  X ,  if it is maximal 

connected subset of  X. 

 



 51 

Theorem 14 Let γ  be a closed rectifiable curve in � . Then  

a) ( ; )n aγ  is constant for a  belonging to a component of { }G γ= −� . 

b) ( ; ) 0n aγ =  for a belonging to the unbounded component of G . 

 

Proof. Define :f G→ �  by 

 
1 1

( ) ( , )
2

f a dz n a
i z aγ

γ
π

= =
−∫  ∀  in G . 

Claim: f  is continuous. 

Let   a G∈  and { }( ), 0r d a γ= > . 

For any 0∈>  we choose 0δ >  such that  
2
rb a δ− < < . 

Therefore 

1 1 1
( ) ( )

2
f b f a dz

i z b z aγπ
 − = − − − ∫  

  

       
( )( )

1

2

b a
dz

z b z aγπ
−

≤
− −∫  

 

                   
( ) ( )2

b a dz

z b z aγπ
−

≤
− −∫  

 

Now 
2
rz a r− ≥ >   and ( ) ( )

2 2
r rz b z a b a z a b a r− = − − − ≥ − − − > − = . 

 

Thus 

2

2 2 2
( ) ( ) . ( )

2
f b f a dz V

r r rγ

δ δ
γ

π π
− < =∫ . 

Therefore, for any 0∈> there is 
2

0 min ,
2 2 ( )

rr
V

π
δ

γ
 ∈

< <  
 

,  such that ( ) ( )f b f a− <∈ , 

whenever b a δ− < . 

Thus f  is continuous . 
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a) Let D  be component of G  then D  is open and connected . 

Since f  is continuous,  ( )f D  is connected. 

Since f  is integer valued  and  subset of set of all integers which are connected are precisely 

singleton sets  . 

Therefore { }( )f D k=  for some integer k . 

That is  ( )f a k=     ∀  in D . 

Hence ( ; )n aγ  is constant for a  belonging to D . 

 

b) Let U  be unbounded component of { }G γ= −� , then there is 0R >  such that 

{ }:z G z R U∈ > ⊆ . 

For  0∈>  choose a  such that a R>  and 
( )

2

V
z a

γ
π

− >
∈
 for all z on { }γ  then  

1 1
( ; )

2
n a dz

i z aγ

γ
π

=
−∫  

 

             
1 1 1 2

2 2 ( )
dz dz

z a Vγ γ

π
π π γ

∈
≤ ≤ =∈

−∫ ∫  

 

Therefore  ( ; )n aγ <∈  

Since ( ; )n aγ  is an integer ( ; )n aγ <∈ ⇒ ( ; ) 0n aγ =  for some a  in U . 

Since ( ) ( ; )f a n aγ=  is constant on U , we must have ( ; ) 0n aγ =  for all a  in U . 
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EXERCISES 

 

1) Let f : C  C be entire function. Suppose for some R > 0,z > R  implies  

 f(z)  ≤  Mzn
,  for some constant  M. Then prove that f is a polynomial of 

degree at most n.   

2) Let f : G  C be analytic function defined on a region G with f(a) ≤ f(z), for all z 

in G. Show that either f ≡ 0 or f is constant function. 

3) Let f and g be nalytic functions defined on the region G. If f.g = 0 on G, prove that 

either f ≡ 0 or g ≡ 0. 

4) Show by an example that ( ; )n a kγ =  for a closed rectifiable curve γ in C, where 

{ }.a γ∉  

 

 

 

� � � 
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WINDING NUMBERS AND CAUCHYS 

INTEGRALTHEOREM 
 

 

In the last unit we prove that 
1 1

2
dz

i z aγπ −∫ is an integer. We shall denote this integer by 

( ; )n aγ  and called it is a winding number or Index of a closed curve   around .aγ  In this unit 

we discuss Cauchy’s integral formulae. 

 

Lemma 1 Let γ  be rectifiable curve and suppose φ  is a function defined and continuous on 

{ }γ . For each 1m ≥  let   
( )

( )
( )m m

w
F z dw

w zγ

φ
=

−∫  for { }z γ∉ . Then each mF  is analytic on 

{ }γ−�  and '

1( ) ( )m mF z mF z+= . 

Proof. Let 
( )

( )
( )m m

w
F z dw

w zγ

φ
=

−∫  for { }z γ∉  where φ  is continuous function and γ  is 

rectifiable curve . 

First we claim that each  mF  is continuous: 

Let { }a G γ∈ = −�  and { }( ), 0r d a γ= > . 

For any 0∈>  we choose 0δ >  such that  
2
rz a δ− < < . 

Therefore 

( ) ( )
( ) ( )

( ) ( )m m m m

w w
F z F a dw

w z w aγ

φ φ 
− = − 

− −  
∫  

 

                        
( ) ( )

1 1
( )

m m
w dw

w z w aγ

φ≤ −
− −∫     …(1) 

Since φ  is continuous function on compact set { }γ ,  we have { }{ }sup ( ) :M w wφ γ= ∈ . 

 

 

UNIT  - V 
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And  

( ) ( ) ( ) ( ) ( ) ( )

1

1
0

1 1 1 1 1m

m m m k k
kw z w aw z w a w z w a

−

− −
=

 
− = − 

− −− − − − 
∑  

 

         
( ) ( )

1

1
0

1
( )

m

m k k
k

z a
w z w a

−

− +
=

= −
− −

∑  

 

Also 
2
rw a r− ≥ >   and ( ) ( )

2 2
r rw z w a z a w a z a r− = − − − ≥ − − − > − = . 

 

Therefore 
( ) ( ) ( ) ( )

1

1
0

1 1 1
( )

m

m m m k k
k

z a
w z w a w z w a

−

− +
=

− = −
− − − −

∑  

 

                                                  
( ) ( )

1

1
0

1
( )

m

m k k
k

z a
w z w a

−

− +
=

≤ −
− −

∑  

 

                                                 

( ) ( )
( )

1 1

1
0

1 2

2 2

m m

m k k
k

m
rr r

δ δ
− +

− +
=

< =∑  

Thus (1) gives 

( ) ( )1 1
2 2( ) ( ) ( )

m m

m mF z F a M m dw mM V
r r

γ

δ δ γ
+ +

− < =∫ . 

Therefore, for any 0∈> there is 
( ) 1

2
0 min ,

2 ( )

m
r

r
mM V

δ
γ

+ ∈ 
< <  

 
 

,  such that ( ) ( )m mF z F a− <∈, 

whenever z a δ− < . 

Thus mF  is continuous on { }G γ= −�  for any 1m ≥ . 

Now to show '

1( ) ( )m mF z mF z+=  : 

Consider 

( ) ( )
( ) ( )

( ) ( )m m m m

w w
F z F a dw

w z w aγ

φ φ 
− = − 

− −  
∫  
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( ) ( )

1

1
0

( )
( )

m

m k k
k

w
z a dw

w z w aγ

φ+

− +
=

= −
− −

∑∫  

 

Thus 

( )

( )

1
1

0

( )( ) ( )

( )

k
m

m m

m k
k

w w aF z F a
dw

z a w zγ

φ +
+

−
=

 −−  =
− −

∑ ∫ . 

 

Since { }a γ∉  and ( ) 1
( )

k
w w aφ +

−  continuous on { }γ  for each k , each integral  

( )

( )

1
( )

k

m k

w w a
dw

w zγ

φ +

−

 − 
−∫   is continuous . 

 

Hence letting  z a→  we get 

 

( )

( )

1
1

0

( )( ) ( )
lim lim

( )

k
m

m m

m kz a z a
k

w w aF z F a
dw

z a w zγ

φ +
−

−→ →
=

 −−  =
− −

∑ ∫  

 

      
( )

( )

( )

( )

1 1
1 1

0 0

( ) ( )
lim

k k
m m

m k m kz a
k k

w w a w w a
dw dw

w z w aγ γ

φ φ+ +
− −

− −→
= =

   − −   = =
− −

∑ ∑∫ ∫  

 

( ) ( )

1

1 1
0

( ) ( ) ( ) ( )
lim

( )

m
m m

m m
z a

k

F z F a w w
dw m dw

z a w a w aγ γ

φ φ−

+ +→
=

−
= =

− − −
∑ ∫ ∫  

 

Therefore, 

'

1( ) ( )m mF a mF a+=   for all { }a γ∈ −� . 

Thus, mF  is differentiable for any  1m ≥ . 

Since 1mF +  is continuous, 'mF is continuous . 

Therefore mF  is continuously differentiable. 

Hence mF  is analytic on { }γ−�  .  
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We now prove Cauchy‘ s Integral  formulae: 

Theorem 2 ( First Version) Let G  be an open subset of the plane and  :f G→ �  be an 

analytic function. If γ is a closed rectifiable curve in G such that ( ; ) 0n wγ =  for all  

in w G−� , then for a  in { }G γ−  

1 ( )
( ; ) ( )

2

f z
n a f a dz

i z aγ

γ
π

=
−∫  

 Proof. Define :G Gφ × → �  by 

( ) ( )
( , )

f w f z
z w

w z
φ

−
=

−
   if  z w≠  

'( )f z=              if  z w= . 

Then φ  is continuous . 

Let { }: ( ; ) 0H w n wγ= ∈ =� . Since ( ; )n wγ  is a continuous integer valued function ,  H  is 

open. Moreover G H− ⊆� . Thus  G H= ∪� . 

Now, define  :g →� �  by  

( ) ( , )g z z w dw
γ

φ= ∫   if  z G∈  

        
( )f w

dw
w zγ

=
−∫     if  z H∈ . 

If z G H∈ ∩  then  

( ) ( )
( , )

f w f z
z w dw dw

w zγ γ

φ
−

=
−∫ ∫  

                   
( ) 1

( )
f w

dw f z dw
w z w zγ γ

= −
− −∫ ∫  

                   
( )

( ) ( ; ) 2
f w

dw f z n z i
w zγ

γ π= −
−∫  

                   
( )

( ). 0 .2
f w

dw f z i
w zγ

π= −
−∫  

                   
( )f w

dw
w zγ

=
−∫ . 

Therefore g  is well defined function. 

Thus by lemma g  is analytic on � , hence g is entire function. 
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Since H  contains neighborhood of infinity, we have  
1

lim 0
z w z→∞

=
−

  uniformly for { }w γ∈ . 

Since { }γ  is compact, f  is bounded on { }γ . 

Hence there is 0M >  such that  ( )f w M≤  for all { }w γ∈ . 

Therefore, 
( )( ) f wf w

dw dw
w z w zγ γ

≤
− −∫ ∫  

 

                                    
1

M dw
w zγ

≤
−∫  

 

Hence   
( )

lim ( ) lim 0
z z

f w
g z dw

w zγ
→∞ →∞

= =
−∫  

Therefore, there is  0R > such that ( ) 1g z ≤  for z R> . 

Since, g  continuous on compact set (0, )B R , g is bounded on (0, )B R . 

Thus g  is a bounded entire function. Hence by Liouville’s Theorem g  is constant. 

Since lim ( ) 0
z
g z

→∞
=  we must have 0g ≡ . 

Thus  
( ) ( )

0
f w f a

dw
w aγ

−
=

−∫  for all a  in { }G γ− . 

 

         
( ) 1

( )
f w

dw f a dw
w a w aγ γ

=
− −∫ ∫    for all a  in { }G γ− . 

 

         
( )

( ).2 . ( ; )
f w

dw f a i n a
w aγ

π γ=
−∫    for all a  in { }G γ− . 

 

Thus  

                     
1 ( )

( ; ) ( )
2

f z
n a f a dz

i z aγ

γ
π

=
−∫     for all a  in { }G γ− . 
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Theorem 3 (Second Version) Let G  be an open subset of the plane and  :f G→ �  be an 

analytic function. If 1 2, ,..., mγ γ γ  are closed rectifiable curves in G such that 

1 2( ; ) ( ; ) ... ( ; ) 0mn w n w n wγ γ γ+ + + =  for all  in w G−� , then for a  in { }G γ−  

 

1 1

1 ( )
( ) ( ; )

2
k

m m

k

k k

f z
f a n a dz

i z aγ

γ
π= =

=
−∑ ∑ ∫  

 

 Proof. Define :G Gφ × → �  by 

( ) ( )
( , )

f w f z
z w

w z
φ

−
=

−
   if  z w≠  

'( )f z=              if  z w= . 

Then φ  is continuous . 

Let { }1 2: ( ; ) ( ; ) ... ( ; ) 0mH w n w n w n wγ γ γ= ∈ + + + =� . Since ( ; )n wγ  is a continuous integer 

valued function , H  is open. Moreover G H− ⊆� . Thus  G H= ∪� . 

Now, define  :g →� �  by  

1

( ) ( , )

k

m

k

g z z w dw
γ

φ
=

=∑ ∫   if  z G∈  

 

        
1

( )

k

m

k

f w
dw

w zγ=

=
−∑ ∫     if  z H∈ . 

 

If z G H∈ ∩  then  

1 1

( ) ( )
( , )

k k

m m

k k

f w f z
z w dw dw

w zγ γ

φ
= =

−
=

−∑ ∑∫ ∫  

 

                   
1

( ) 1
( )

k k

m

k

f w
dw f z dw

w z w zγ γ=

 
= − 

− −  
∑ ∫ ∫  

 

                   
1

( )
( ) ( ; ) 2

k

m

k

k

f w
dw f z n z i

w zγ

γ π
=

 
= − 

−  
∑ ∫  
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1 1 1

( ) ( )
( )2 ( ; ) ( )2 .0

k k

m m m

k

k k k

f w f w
dw f z i n z dw f z i

w z w zγ γ

π γ π
= = =

= − = −
− −∑ ∑ ∑∫ ∫  

 

                   
1

( )

k

m

k

f w
dw

w zγ=

=
−∑ ∫ .    

Therefore g  is well defined function. 

Thus by lemma g  is analytic on � , hence g is entire function. 

Since H  contains neighborhood of infinity, we have  
1

lim 0
z w z→∞

=
−

  uniformly for { }kw γ∈ . 

Since each { }kγ  is compact , f  is bounded on { }kγ . 

Hence   lim ( ) 0
z
g z

→∞
=  

Therefore, there is  0R > such that ( ) 1g z ≤  for z R> . 

Since  g  continuous on compact set (0, )B R , g is bounded on (0, )B R . 

Thus g  is a bounded entire function. Hence by Liouville’s Theorem g  is constant. 

Since lim ( ) 0
z
g z

→∞
=  we must have 0g ≡ . 

 

Thus  
1

( ) ( )
0

k

m

k

f w f a
dw

w aγ=

−
=

−∑ ∫  for all a  in { }
1

m

k
k

G γ
=

− ∪ . 

 

         
1 1

( ) 1
( )

k k

m m

k k

f w
dw f a dw

w a w aγ γ= =

=
− −∑ ∑∫ ∫    for all a  in { }

1

m

k
k

G γ
=

− ∪ . 

 

         
1 1

( )
( ).2 ( ; )

m

m m

k

k k

f w
dw f a i n a

w aγ

π γ
= =

=
−∑ ∑∫    for all a  in { }

1

m

k
k

G γ
=

− ∪ . 

 

Thus  

                     
1 1

1 ( )
( ) ( ; )

2
k

m m

k

k k

f z
f a n a dz

i z aγ

γ
π= =

=
−∑ ∑ ∫     for all a  in { }

1

m

k
k

G γ
=

− ∪ . 
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Theorem 4 Let G  be an open subset of the plane and  :f G→ �  be an analytic function. If 

1 2, ,..., mγ γ γ  are closed rectifiable curves in G such that 1 2( ; ) ( ; ) ... ( ; ) 0mn w n w n wγ γ γ+ + + =  

for all  in w G−� , then  

1

0

k

m

k

f
γ=

=∑ ∫  

 Proof. Let { }
1

m

k
k

a γ
=

∈ − ∪�   and     ( ) ( ) ( )F z z a f z= − . 

Then F  is analytic inG . 

Hence by Cauchy’s integral theorem, 

1 1

1 ( )
( ) ( ; )

2
k

m m

k

k k

F z
F a n a dz

i z aγ

γ
π= =

=
−∑ ∑ ∫  

 

            
1 1

( ) ( )
2 .0. ( ; )

k

m m

k

k k

z a f z
i n a dz

z aγ

π γ
= =

−
=

−∑ ∑ ∫  

 

            
1

( ) 0

k

m

k

f z dz
γ=

=∑ ∫  

Thus  
1

0

k

m

k

f
γ=

=∑ ∫   . 

Theorem 5 Let G  be an open subset of the plane and  :f G→ �  be an analytic function. If 

1 2, ,..., mγ γ γ  are closed rectifiable curves in G such that 1 2( ; ) ( ; ) ... ( ; ) 0mn w n w n wγ γ γ+ + + =  

for all  in w G−� , then for a  in { }G γ−  

( )

1 1

1 ( )
( ) ( ; ) !

2
k

m m
n

k

k k

f z
f a n a n dz

i z aγ

γ
π= =

=
−∑ ∑ ∫  

 

 Proof. By Cauchy Integral formula  we have  

 

                      
1 1

1 ( )
( ) ( ; )

2
k

m m

k

k k

f z
f a n a dz

i z aγ

γ
π= =

=
−∑ ∑ ∫     for all a  in { }

1

m

k
k

G γ
=

− ∪ . 
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Hence  

                     ( )

1 1

1 ( )
( ) ( ; )

2
k

nm m
n

k n
k k

d f z
f a n a dz

da i z aγ

γ
π= =

 
=  

−  
∑ ∑ ∫  

 

                                                    
1

1 ( )

2
k

nm

n
k

f z
dz

i a z aγπ=

∂  =  ∂ − 
∑ ∫  

 

                                                   
( ) 1

1

! ( )

2
k

m

n
k

n f z
dz

i z aγπ +
=

=
−

∑ ∫  

Therefore, 

                        
1 1

1 ( )
( ) ( ; )

2
k

m m

k

k k

f z
f a n a dz

i z aγ

γ
π= =

=
−∑ ∑ ∫ . 

 

Corollary 6 Let G  be an open subset of the plane and  :f G→ �  be an analytic function. If 

γ is a closed rectifiable curve in G such that ( ; ) 0n wγ =  for all  in w G−� , then for a  in 

{ }G γ−  

( )
( )

1

! ( )
( ) ( ; )

2

n

n

n f z
f a n a dz

i z aγ

γ
π +=

−∫ . 

 

Definition 7 A closed polygonal path having three sides is called triangular path. 

 

Theorem 8  Morera’s Theorem Let G  be  a region and let :f G→ �  be a continuous 

function such that 0
T

f =∫ for every triangular path T  in G ; then f  is analytic in G . 

Proof.  To prove that f  is analytic in G we have to prove that f  is analytic on each open 

disk contained in G . Hence without loss of generality we may assume that ( ; )G B a R= . 

Now define :F G→ �  by  

[ ].

( ) ( )
a z

F z f w dw= ∫         where [ ],a z is the line segment joining a  to z . 

Fix 0 ( ; )z B a R∈  , then for any z in G , [ ]0, , ,T a z z a=  be a triangular path inG . 
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Therefore by hypothesis 

  

0
T

f =∫ ⇒
0 0[ , ] [ , ] [ , ]

0
a z z z z a

f f f+ + =∫ ∫ ∫  

 

                        ⇒   

0 0[ , ] [ , ] [ , ]a z z z a z

f f f= +∫ ∫ ∫  

                        ⇒   

0

0

[ , ]

( ) ( ) ( )
z z

F z f w dw F z= +∫  

Thus 

         

0

0
0 0

0 0 [ , ]

( ) ( ) 1
( ) ( ) ( )

z z

F z F z
f z f w dw f z

z z z z

−
− = −

− − ∫  

                                           [ ]
0

0

0 [ , ]

1
( ) ( )

z z

f w f z dw
z z

= −
− ∫  

Since  f  is continuous in G , for any 0∈>  there is 0δ > , such that   

 

0( ) ( )f w f z− <∈  whenever 0w z δ− < . 

 

Therefore  

 

0 0

0
0 0

0 0 0[ , ] [ , ]

( ) ( ) 1
( ) ( ) ( )

z z z z

F z F z
f z f w f z dw dw

z z z z z z

− ∈
− ≤ − < =∈

− − −∫ ∫  

Thus  

0

0
0

0

( ) ( )
lim ( )
z z

F z F z
f z

z z→

−
=

−
 

                   

            0 0'( ) ( )F z f z=  

Since 0z  is arbitrary , we have 'F f≡  in G . 

Since  f  is continuous, 'F  is continuous on G  

Therefore  F  is continuously differentiable, that isF  is analytic. 

Hence  'F f≡   is also analytic in G . 
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Singularities 

Definition 9 A function f  has an singularity at z a=  if f  is not analytic at  z a= .  

 

Ex. 

1
1 sin
, , z

z
e

z z
 has an singularity at 0z = . 

Ex. 

( )
1

1cos
z

  has an singularity at the points  
2

, 0, 1, 2,...
(2 1)

z n
n π

= = ± ±
+

 

 

Definition 10 A function f  has an isolated singularity at z a=  if there is 0R > such that f  

is analytic in ( ) { };B a R a− ,otherwise z a=  is non-isolated singularity of f . 

Ex. 

( )
1

sin
z

π
 ,  

1
z
n

=  are isolated singularities and 0z =  is non-isolated singularity. 

Ex. 
1

( 1)( 2)z z− −
  , 1,2z =  are isolated singularities. 

 

There are three kinds of isolated singularities 

A) Removable singularity 

B) Pole   

C) Essential Singularity 

 

Definition 11 An isolated singularity at z a=  of a function f  is removable singularity  if 

there is 0R >  and an analytic function ( ): ,g B a R → �  such that ( ) ( )g z f z=  in 

0 z a R< − < . 

Ex. 
sin

( )
z

f z
z

=  has removable singularity at 0z = . 

Ex. ( )
1z

z
f z

e
=

−
 has removable singularity at  0z = . 

 

Theorem 12 If f  has an isolated singularity at z a= , then the point z a=  is removable 

singularity iff  lim( ) ( ) 0
z a

z a f z
→

− = . 
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Proof. Suppose z a= is removable singularity, then there is 0R >  and an analytic function 

( ): ,g B a R → �  such that ( ) ( )g z f z=  in 0 z a R< − < . 

Therefore,  lim( ) ( ) lim( ) ( ) 0. ( ) 0
z a z a

z a f z z a g z g a
→ →

− = − = = .           ( since g  is continuous ) 

 

Conversely suppose that  lim( ) ( ) 0
z a

z a f z
→

− = . Since f  has an isolated singularity at z a= , 

there is 0R > such that f  is analytic in ( ) { };B a R a− . 

Define   
( ) ( ) if

( )
0                    if  

z a f z z a
h z

z a

− ≠
= 

=
 

Clearly h  is analytic in ( ) { };B a R a−  and continuous at z a= . 

Now to prove f  has removable singularity at z a=  we have to prove that h  is analytic in 

( );B a R .   

Claim: h  is analytic in ( );B a R . 

To prove this we use Moreras theorem. Let T  be the triangle in ( );B a R  and ∆denote inside 

of T  along with T .  

Case 1: When  a∉∆ . 

Since h  is analytic in ( ) { };B a R a−  and 0 0T T⇒ ≈� , by Cauchy theorem 0
T

h =∫ . 

Case 2: When a  is vertex of T . 

Let [ , , , ]T a b c a=  be a triangle with a as one of the vertex. For [ , ]x a b∈  and [ , ]y a c∈  let 

[ , , , , ]P x b c y x= , then 0P �  and by Cauchy theorem 0
P

h =∫ . 

Let 1 [ , , , ]T a x y a=  then 

1 1T T P T

h h h h= + =∫ ∫ ∫ ∫ . 

Since h  is continuous and ( ) 0h a = , for any 0∈>  there is 0δ >  such that 
1

( )
( )

h z
l T

∈
<  for 

z a δ− < . 

Now we choose ,x y such that , ( ; )x y B a δ∈ . Therefore  

1 1

1

1

( ) ( ) ( ) ( )
( )

T T T

h z dz h z dz h z dz l T
l T

∈
= ≤ <∫ ∫ ∫ . 
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Hence  0
T

h =∫ . 

Case 3. When a  lies on or inside T  

In this case we can construct triangle as shown with  belonging to vertex of each constructed 

triangle. Therefore using case 2 we must have 0
T

h =∫ . 

Thus 0
T

h =∫  for any triangular path T  in ( );B a R . Hence by Moreras theorem h  is analytic 

in ( );B a R .  

 

    

 

Corollary 13  An isolated singularity of a function f   at z a=  is removable singularity iff  

f  is bounded in the neighborhood of z a=  . 

Proof. Let z a=  is removable singularity of f  then there is 0R >  and an analytic function 

( ): ;g B a R → �  such that ( ) ( )g z f z=  in 0 z a R< − < . 

Since g  is continuous at z a= , ( )g a  is finite. Hence g  is bounded in neighborhood of 

z a= . Therefore f  is bounded in the neighborhood of z a=  . 

 Conversely, suppose f  is bounded in the neighborhood of z a= , then there is  0M > such 

that ( )f z M≤  in 0 z a δ< − < . 

Therefore ( ) ( ) 0z a f z z a M− ≤ − →  as z a→ . 

Thus lim( ) ( ) 0
z a

z a f z
→

− = . Hence f  has removable singularity at z a= . 

   

Case 3 : a lies inside T 

T 

a 
a 

Case 2 : a is vertex of T 

T 
x 

y 

a 

Case 1 : a lies outside T 

T 
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Corollary 14 An isolated singularity of a function f   at z a=  is removable singularity iff 

lim ( )
z a
f z c

→
=   . 

Proof. Let z a=  is removable singularity at z a=  then there is 0R >  and an analytic 

function ( ): ;g B a R → �  such that ( ) ( )g z f z=  in 0 z a R< − < . 

Therefore lim ( ) lim ( ) ( )
z a z a
f z g z g a c

→ →
= = =  (say). 

Conversely, suppose  lim ( )
z a
f z c

→
=  then lim( ) ( ) lim( ) lim ( ) 0. 0

z a z a z a
z a f z z a f z c

→ → →
− = − = =  

Thus lim( ) ( ) 0
z a

z a f z
→

− = . Hence f  has removable singularity at z a= . 

 

Definition 15 An isolated singularity at z a=  of a function f  is pole if lim ( )
z a

f z
→

= ∞ . 

Ex. 
1

( )f z
z

=  has pole at 0z = . 

Ex. 
2

2
( )

( 1)( )

z
f z

z z i
=

− −
 has pole at  1,z i= . 

 

 

Theorem 16 If G  is a region with a  in G and if f  is analytic on { }G a− with pole at z a= , 

then there is a positive integer m  and an analytic function :g G→ �  such that 

  
( )

( )
( )m
g z

f z
z a

=
−

. 

Proof. Suppose z a=  is pole of f  then  lim ( )
z a

f z
→

= ∞ . Therefore 
1

lim 0
( )z a f z→

= . 

Then 
1

( )f z
 has removable singularity at z a= . Then there is an analytic function  

( ): ;h B a R → �  such that  
1

( )
( )

h z
f z

=   when 0 z a R< − < . 

Now we define 

1
if

( )( )

0          if  

z a
f zh z

z a

 ≠
= 
 =
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Since ( ) 0h a = , there is an analytic function  1h  such that 1( ) ( ) ( )
m

h z z a h z= −  and 1( ) 0h a ≠  

for some integer 1m ≥ . 

For z a≠ ,  1

1
( ) ( )

( )

mz a h z
f z

= −  

Therefore 
1

1
( ) ( )

( )

mz a f z
h z

= −  

Hence 
1 1

1 1
lim( ) ( ) lim

( ) ( )

m

z a z a
z a f z

h z h a→ →
− = = < ∞  

Then ( ) ( )mz a f z−  has removable singularity at z a= . 

By definition there is an analytic function  ( ): ;g B a R → �  such that  ( ) ( ) ( )mg z z a f z= − , 

z a≠ . 

Hence  
( )

( )
( )m
g z

f z
z a

=
−

, z a≠ . 

 

Definition 17 If f  has pole at z a= and m  is smallest positive integer such that  

( ) ( )mz a f z−  has removable singularity at z a= , then f  has a pole of order m  at z a=  . 

Ex. ( )
(1 cos )

ze
f z

z
=

−
 has pole of order 2. 

 

Definition 18 An isolated singularity at z a=  of a function f  is essential singularity  if it is 

neither pole nor removable singularity. 

 

Ex. 

1

( ) zf z e=  has essential singularity at 0z = . 

Ex. 
1

( ) sinf z
z

 =  
 

 has essential singularity at  0z = . 

 

Theorem 19 Casorati-Weierstrass Theorem  If f  has an essential singularity at z a= , 

then for every 0δ >  ( )( );0,f ann a δ = � , that is ( )( );0,f ann a δ  is dense in � . 
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Proof. Suppose z a=  is essential singularity of f , then we have to prove that for any 

c∈� and 0δ > , c is the limit point of  ( )( );0,f ann a δ . In another words we have to prove 

that, for any given , 0δ∈ > , there is  ( );0,z ann a δ∈  such that  ( )f z c− <∈ . 

On contrary suppose the theorem is false. Then there exists 0∈> such that for any 0δ > , 

( )f z c− ≥∈   , for all  ( );0,z ann a δ∈ . 

 

Hence  
( )

lim
z a

f z c

z a→

−
= ∞

−
. Therefore 

( )f z c

z a

−
−

 has a pole at z a= . Let m  be the order of 

pole, then  ( ) ( )
( )
( )m f z c

z a
z a

−
−

−
  has removable singularity at z a= . 

Therefore ( ) ( ) ( )
( )
( )

lim 0
m

z a

f z c
z a z a

z a→

 −
− − = 

− 
 

 

That is      ( ) ( )lim ( ) 0
m

z a
z a f z c

→
− − =  

 

Therefore ( ) ( ) ( )lim ( ) lim ( )
m m

z a z a
z a f z z a f z c c

→ →
− = − − +  

 

                                             ( ) ( ) ( )lim ( ) lim
m m

z a z a
z a f z c z a c

→ →
= − − + −  

 

                                             0=  

Thus f  will have either removable singularity or a pole , which is a contradiction. 

Hence the theorem. 
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EXERCISES 

 

1) Discuss the singularities of the following functions:  

 a) 
sin( )

( )
z

f z
z

=        b) 
cos( )

( )
z

f z
z

=    c) 
2 1

( )
( 1)

z
f z

z z

+
=

−
   d) 

2

log( 1)
( )

z
f z

z

+
= . 

2) Discuss the singularities of the following function and classify them 

 a) 
2 1

z i

z

+
+

  b) 
2

1

( 1)( 6)z z+ −
   c) 

2

1

zze  

3) Prove that an entire function has a pole at ∞  of order m if and only if it is a 

polynomial of degree m. 

4) Prove that an entire function has removable singularity if and only if it is a constant 

function. 

 

 

 

 

 

� � � 



 71 

 

 

OPEN MAPPING THEOREM AND GOURSAT 

THEOREM 
 

 

 

In this unit we shall discuss that zeros of an analytic function which are used to 

evaluate some complex integrals. We prove open mapping theorem and prove that a 

differentiable complex valued function defined on an open set is analytic on the set. 

 

Definition 1 Let [ ]1 : 0,1γ → � , [ ]2 : 0,1γ → �  be two closed rectifiable curves in a region 

G ; then 1γ  is homotopic to 2γ   in G  , written as 1 2γ γ� , if there is a continuous function  

[ ] [ ]: 0,1 0,1 GΓ × →  such that  

1) 1( ,0) ( )s sγΓ =  and  2( ,1) ( )s sγΓ =         ( )0 1s≤ ≤   

2)  (0, ) (1, )t tΓ = Γ    ( )0 1t≤ ≤ . 

 

Definition 2 A closed  rectifiable curve γ  is homotopic to zero, if γ  is homotopic to a 

constant curve and is written as   0γ � . 

 

Definition 3 A closed  rectifiable curve γ  is homologous  to zero, if ( , ) 0n wγ =  for 

w G∈ −�  and  is written as   0γ ≈ . 

 

Theorem 4 Let G  be  a region and let :f G→ �  be an analytic function on G with zeros 

1,..., ma a (repeated according to multiplicity). If γ  is a closed  rectifiable curve in G  which 

does not pass through any point  ka  and if 0γ ≈  then 

1

1 '( )
( ; )

2 ( )

m

k

k

f z
dz n a

i f zγ

γ
π =

=∑∫ . 

UNIT  - VI 
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Proof.  Since  1,..., ma a  are zeros of  f  , there exists an analytic function g  such that 

1( ) ( )...( ). ( )mf z z a z a g z= − − , where ( ) 0kg a ≠  for 1,...,k m=  and that, g  is non-vanishing 

on G . 

Taking logarithmic differentiation on both sides we get  

 

1

'( ) 1 1 '( )
...

( ) ( ) ( ) ( )m

f z g z

f z z a z a g z
= + + +

− −
 

 

Therefore  

1

1 '( ) 1 1 '( )

2 ( ) 2 ( ) ( )

m

k k

f z g z
dz dz dz

i f z i z a g zγ γ γπ π=

= +
−∑∫ ∫ ∫  

 

Since g  is non-vanishing 
'( )

( )

g z

g z
 is analytic in G . Hence 

'( )
0

( )

g z
dz

g zγ

=∫ . 

Thus 

1

1 '( )
( ; )

2 ( )

m

k

k

f z
dz n a

i f zγ

γ
π =

=∑∫ . 

 

Corollary 5 Let G  be  a region and let :f G→ �  be an analytic function on G such that  

1,..., ma a  satisfies ( )f z α=  (repeated according to multiplicity). If γ  is a closed  rectifiable 

curve in G  which does not pass through any point  ka  and if 0γ ≈  then 

1

1 '( )
( ; )

2 ( )

m

k

k

f z
dz n a

i f zγ

γ
π α =

=
− ∑∫ . 

 

Proof. Let ( ) ( )F z f z α= − , which is analytic and  1,..., ma a  are zeros of F . 

Therefore by theorem 

     
1

1 '( )
( ; )

2 ( )

m

k

k

F z
dz n a

i F zγ

γ
π =

=∑∫  

           Thus     
1

1 '( )
( ; )

2 ( )

m

k

k

f z
dz n a

i f zγ

γ
π α =

=
− ∑∫ . 
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Example 6 Evaluate 
2

2

2 1

1
z

z
dz

z z=

+
+ +∫ . 

Solution. Let 2( ) 1f z z z= + +  , '( ) 2 1f z z= + . 

Here zeros of f   1

1 3

2

i
w

− +
=  and 2

1 3

2

i
w

− −
=  are lies inside 2z =  

Then 1( ; ) 1n wγ =  and 2( ; ) 1n wγ = . 

Therefore 

                  
2

12

1 '( )
( ; )

2 ( )
k

kz

f z
dz n a

i f z
γ

π ==

=∑∫  

 

                       
2

2

1 2 1
1 1

2 1
z

z
dz

i z zπ =

+
= +

+ +∫  

 

                         
2

2

2 1
4

1
z

z
dz i

z z
π

=

+
=

+ +∫ . 

 

Theorem 7 Suppose f  is analytic ( , )B a R   in  and let ( )f aα = . If   ( )f z α−  has a zero of 

order m  at z a=  then there is an  0∈>  and 0δ >  such that for aζ δ− < ; the equation 

( )f z ζ=  has exactly m  simple roots in ( , )B a ∈ . 

 

Proof.  Let ( ) ( )F z f z α= − , then f  is  analytic and z a=  is zero of order m in ( , )B a R . 

Since zeros of analytic functions are isolated, there is 0
2

R<∈< such that 

( ) ( ) 0F z f z α= − ≠  in    0 2z a< − < ∈  and '( ) 0f z ≠  in 0 2z a< − < ∈ . 

Let 2( ) itt a e πγ = +∈ , ( )0 2t π≤ ≤ . 

Let foσ γ=  then σ  is a closed rectifiable curve in ( )( , )f B a R . Since { }a γ∉ , 

{ }( )f aα σ= ∉ , then there is 0δ > such that { }( , )B α δ σ φ∩ = . Thus  ( , )B α δ  lies in the 

same component of { }σ−� . Therefore for any ζ such that 0 α ζ δ< − < ,  

( ; ) ( ; )n nσ α σ ζ= . 
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Therefore  
1 1 1 1

2 2
dw dw

i w i wσ σπ α π ζ
=

− −∫ ∫  

 

         
1 '( ) 1 '( )

2 ( ) 2 ( )

f z f z
dz dz

i f z i f zγ γπ α π ζ
=

− −∫ ∫  

   

Therefore  ( ) ( ); ( ) ; ( )k k

k k

n z n zγ α γ ζ=∑ ∑  where ( )kz α and ( )kz ζ  are zeros of ( )f z α−  

and ( )f z ζ−  respectively. 

Since z a=  is zero of order m  of ( )f z α− , ( )kz aα =  for each k , ( ); ( )k

k

n z mγ α =∑ .  

Therefore  ( ); ( )k

k

n z mγ ζ =∑ . 

Since ( ); ( )kn zγ ζ  must be either 0 or 1, there are exactly m  zeros of ( )f z ζ=  in ( , )B a ∈ . 

Since '( ) 0f z ≠  in 0 z a< − <∈, all these zeros  must be simple in 0 z a< − <∈. 

Thus ( )f z ζ=  has exactly m  zeros in ( , )B a ∈  for any { }( ; )Bζ α δ σ∈ − . 

 We now prove open mapping theorem: 

 

Theorem 8 Let G  be a region and suppose that f  is a non-constant analytic function on G . 

Then for any open set U  in G , ( )f U  is open.    

Proof.  Let ( ) ( )f a f Uα = ∈  for some a U∈ . 

Since U  is open, there is 0R >  such that ( , )B a R U⊆  and  ( )( , ) ( )f B a R f U⊆ . 

Since f  is analytic on G , f  is analytic on  ( , )B a R . Hence there exists 0∈>  and 0δ >  

such that ( , ) ( , )B a B a R∈ ⊆  and that ( ) ( )( , ) ( , ) ( , ) ( )B f B a f B a R f Uα δ ⊆ ∈ ⊆ ⊆ . 

 

Hence for any ( )f Uα ∈ , there is  0δ >  such that ( , ) ( )B f Uα δ ⊆ . 

Therefore ( )f U  is open.    

 

Theorem 9 Goursat’s Theorem Let G  be an open set and  :f G→ �  be differentiable 

function, then  f  is analytic.    
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Proof. Let :f G→ �  be differentiable function, then f  is continuous function onG .    

To prove that f  is analytic we shall use Morera’s theorem , it is sufficient to prove that 

0
T

f =∫  for every triangular path T  in G . 

Let  [ , , , ]T a b c a=  be a triangular path in G . Let ∆  denote the inside of T along with its 

boundary. 

Let  diameter ( )d = ∆  and  length ( )l T= . 

Let 1 2 3 4, , ,T T T T  be four triangle formed by midpoints of sides of T . 

Then we have  

                     

                      

1 2 3 4T T T T T

f f f f f= + + +∫ ∫ ∫ ∫ ∫     …(1) 

Let (1)T  denote a triangle amongst 1 2 3 4, , ,T T T T  such that, 

 

(1)
jT T

f f≤∫ ∫                           ( 1,2,3, 4)j =  

 

Then  
(1)

4
T T

f f≤∫ ∫        …(2) 

 

Let (1)∆  denote inside of (1)T  along with its boundary. 

Then (1) 1
diam ( )

2
d∆ =  and (1) 1

( )
2

l T l= . 

 

Repeating above process we obtain sequence of triangular paths (1) (2) ( ), ,..., nT T T  such that  

            
( 1) ( )

4
n nT T

f f
−

≤∫ ∫       …(3) 

and closed sets  (1) (2) ( ), ,... n∆ ∆ ∆   such that (1) (2) ...∆ ⊇ ∆ ⊇  

  ( ) 1
diam ( )

2

n

n
d∆ =  and  ( ) 1

( )
2

n

n
l T l= . 
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Therefore  

             
( )

4
n

n

T T

f f≤∫ ∫  

Since (1) (2) ...∆ ⊇ ∆ ⊇  is a descending series of closed sets such that, ( ) 1
diam ( ) 0

2

n

n
d∆ = →  

as n→∞ . 

Therefore by Cantor’s theorem,  ( )

0{ }n

n
z∩∆ =  for some 0z G∈  . 

Since f  is differentiable in G , f  is differentiable at 0z . 

Hence , given 0∈> there is 0δ > such that, 

0
0

0

( ) ( )
'( )

f z f z
f z

z z

−
− <∈

−
 whenever 00 z z δ< − <  

Equivalently, ( )0 0 0 0( ) ( ) '( )f z f z z z f z z z− − − <∈ − , 00 z z δ< − < . 

Since ( ) 1
diam ( ) 0

2

n

n
d∆ = →  as n→∞ , there is 0 0n >  such that ( )diam ( )n δ∆ < . 

Since ( )

0

nz ∈∆  for each n , 0( )

0

n
z ∈∆ also. Hence 0( )

0( ; )
n

B z δ∆ ⊆ . 

Hence for 0n n≥   

( )
( ) ( )

0 0 0( ) ( ) '( )
n nT T

f f z f z z z f z dz= − − −  ∫ ∫  

 

( )
( )

0 0 0( ) ( ) '( )
nT

f z f z z z f z dz≤ − − −∫  

 

( )

0
nT

z z dz≤ ∈ −∫  

( ) ( )diam ( ) ( )
4

n n

n

dl
l T≤∈ ∆ =∈  

Thus 
( )

4
n

n

T T

f f d l≤ ≤∈∫ ∫            0n n≥ , 

 

Therefore 0
T

f =∫ . 
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EXERCISE 

 

1) Let p(z) be a polynomial of degree n and let R > 0 be sufficiently large so that p never 

 vanishes in  { :  | | }z z R≥ . If ( ) Re ,ittγ = 0 2t π≤ ≤ , show that 
'( )

2
( )

p z
dz in

p zγ

π=∫ . 

 

 

 

 

� � � 
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LAURENT SERIES DEVELOPMENT AND RESIDUE 

THEOREM 
 

 

In this unit we shall discuss Laurent’s series expansion of complex valued functions 

and prove residue theorem. 

 

Definition 1  A series of the form ( )nn

n

a z a
∞

=−∞

−∑ is called double series about z a= . 

 

Definition 2 The double series ( )nn

n

a z a
∞

=−∞

−∑  is said to be absolutely convergent, if both the 

series  
0

( )nn

n

a z a
∞

=

−∑ and 
1

( )nn

n

a z a
−∞

=−

−∑  are absolutely convergent. 

 

Definition 3 The double series ( )nn

n

a z a
∞

=−∞

−∑  is said to be uniformly convergent, if both the 

series  
0

( )nn

n

a z a
∞

=

−∑ and 
1

( )nn

n

a z a
−∞

=−

−∑  are uniformly convergent. 

 

 

Theorem 4 Let f  be analytic in annulus ( )1 2; ,ann a R R . Then  

 ( ) ( )nn

n

f z a z a
∞

=−∞

= −∑                      …(1) 

 where the convergence is absolute and uniform over ( )1 2; ,ann a r r  if 1 1 2 2R r r R< < < . 

Also coefficients na  are given by the formula  

 
1

1 ( )

2 ( )
n n

f z
a dz

i z aγπ +
=

−∫                          …(2) where γ  is 

the circle z a r− =  for any r , 1 2R r R< < . Moreover the series is unique. 

UNIT  - VII 
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Proof. We shall begin by showing that the integral in (2) is independent of r , so that for each 

integer n , na  is constant. 

Let 1 1 2 2R r r R< < <  and 1 1

ita reγ = + , 2 2

ita r eγ = +   (0 2t π≤ ≤ ). 

Let [ ] [ ]2 2 1 1 1 2, ,z z r z zγ γ= + − +  then 0γ � . Since f  be analytic in annulus ( )1 2; ,ann a R R , 

by Cauchy’s theorem we have 
1

( )
0

( )n
f w

dw
w aγ

+
=

−∫ . 

Therefore 

2 2 1 1 1 2

1 1 1 1

[ , ] [ , ]

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )n n n n

z z z z

f w f w f w f w
dw dw dw dw

w a w a w a w aγ γ
+ + + +

−

+ + + =
− − − −∫ ∫ ∫ ∫  

 

Thus 

2 1

1 1

( ) ( )

( ) ( )n n

f w f w
dw dw

w a w aγ γ
+ +

=
− −∫ ∫ . 

 

Now let ( )1 2; ,z ann a r r∈  then by Cauchy integral formula we have, 

 

2 1

1 ( ) 1 ( )
( )

2 ( ) 2 ( )

f w f w
f z dw dw

i w z i w zγ γπ π
= −

− −∫ ∫  

 

We define   

1

1

1 ( )
( )

2 ( )

f w
f z dw

i w zγπ
−

=
−∫  and 

2

2

1 ( )
( )

2 ( )

f w
f z dw

i w zγπ
=

−∫ . 

 

Therefore, 1 2( ) ( ) ( )f z f z f z= + .      …(3) 

Now  

2 2

2

1 ( ) 1 ( )
( )

2 ( ) 2 ( ) ( )

f w f w
f z dw dw

i w z i w a z aγ γπ π
= =

− − − −∫ ∫  

 

          

2

1 ( )

2 ( )
( ) 1

( )

f w
dw

i z a
w a

w a

γπ
=

 −
− − − 

∫  

 

             

2
0

1 ( )

2 ( )

n

n

f w z a
dw

i w a w aγπ

∞

=

− =  − − 
∑∫             1

z a

w a

−
<

−
 on   2γ  
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2

1
0

1 ( )
( )

2 ( )

n

n
n

f w
dw z a

i w aγπ

∞

+
=

  
= − 

−  
∑ ∫  

 

             
0

( )nn

n

a z a
∞

=

= −∑ .       …(4)  

 

where 

2

1

1 ( )

2 ( )
n n

f w
a dw

i w zγπ +
=

−∫ . 

Also  

1 1

1

1 ( ) 1 ( )
( )

2 ( ) 2 ( ) ( )

f w f w
f z dw dw

i w z i z a w aγ γπ π
−

= =
− − − −∫ ∫  

 

          

1

1 ( )

2 ( )
( ) 1

( )

f w
dw

i w a
z a

z a
γπ

=
 −

− − − 

∫  

 

             

1
0

1 ( )

2 ( )

m

m

f w w a
dw

i z a z aγπ

∞

=

− =  − − 
∑∫             1

w a

z a

−
<

−
 on   1γ  

 

             

1

1

0

1
( ) ( ) ( )

2

m m

m

w a f w dw z a
i γπ

∞
− −

=

  
= − − 

  
∑ ∫  

 

             1

0

( ) m

m

m

b z a
∞

− −

=

= −∑ . 

 

where 

1

1
( ) ( )

2

m

mb w a f w dw
i γπ

= −∫ . 

 

               

1

1 ( )

2 ( ) m

f w
dw

i w aγπ −
=

−∫  
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1

( 1) 1

1 ( )

2 ( ) m

f w
dw

i w aγπ − − +
=

−∫  

                 1ma− −=  

Therefore  1

1 1

0

( ) ( ) m

m

m

f z a z a
∞

− −
− −

=

= −∑  

                          
1

( )nn

n

a z a
−∞

=−

= −∑       ...(5) 

 

Therefore from (3), (4) and (5) we have    

1 0

( ) ( ) ( ) ( )n n n

n n n

n n n

f z a z a a z a a z a
−∞ ∞ ∞

=− = =−∞

= − + − = −∑ ∑ ∑  for ( )1 2; ,z ann a r r∈ . 

 

Uniqueness:  

Let   ( ) ( )nn

n

f z c z a
∞

=−∞

= −∑  be another Laurent series of f  where 

 

1

1 ( )

2 ( )
n n

f z
a dz

i z aγπ +
=

−∫  

 

     

1

1

( )
1

2 ( )

k

k

k

n

c z a

dz
i z aγπ

∞

=−∞
+

−
=

−

∑
∫                

 

     

1

11
( )

2

k n

k

k

c z a dz
i γπ

∞
− −

=−∞

= −∑ ∫                         
2   if  1

( )
0     if  1

n

z a r

i n
z a dz

n

π

− =

 = −
− = 

≠ −  
∫  

     nc=  

Hence the uniqueness. 

 

Corollary 5 Let z a=  be an isolated singularity of a function f  and let  

( ) ( )nn

n

f z a z a
∞

=−∞

= −∑  be its Laurent series expansion in ( );0,ann a R . Then : 

 



 82 

a) z a=  is a removable singularity iff  0na =  for 1n ≤ − . 

b) z a=  is a pole of order  m  iff  0ma− ≠ and 0na =  for ( 1)n m≤ − + . 

c) z a=  is an essential singularity iff 0na ≠  for infinitely many negative integers. 

 

Proof. a) Suppose z a=  is removable singularity of f  then there is 0R >  and an analytic 

function ( ): ;g B a R → �  such that ( ) ( )g z f z=  in 0 z a R< − < . Since g  is analytic in 

( );B a R  by Taylor’s theorem  
0

( ) ( )nn

n

g z b z a
∞

=

= −∑  for  z a R− < . 

Therefore  
0

( ) ( ) ( )nn

n

f z g z b z a
∞

=

= = −∑  for  0 z a R< − < .  

This is Laurent series expansion of f  in ( );0,ann a R  then by uniqueness of Laurent series 

we must have n na b=  for all n .  

Therefore,  0na =  for 1n ≤ − . 

Conversely, suppose that 0na =  for 1n ≤ −  then Laurent series expansion of f  is 

2

0 1 2

0

( ) ( ) ( ) ( ) ...n

n

n

f z a z a a a z a a z a
∞

=

= − = + − + − + +∑ .  

Therefore, 0

0

lim( ) ( ) lim( ) ( ) 0. 0n

n
z a z a

n

z a f z z a a z a a
∞

→ →
=

 
− = − − = = 

 
∑ . 

Thus z a=  is removable singularity of f . 

b) Suppose z a=  is a pole of order m  then ( ) ( )mz a f z−  has removable singularity at z a= . 

Therefore  
0

( ) ( ) ( ) ( )m m n

n

n

z a f z z a a z a
∞

=

− = − −∑  

                                      
0

( )m n

n

n

a z a
∞

+

=

= −∑  

From part (a)  0na =  for all 1m n+ ≤ −  . 

That is 0ma− ≠ and 0na =  for ( 1)n m≤ − + . 

Conversely, suppose 0ma− ≠ and 0na =  for ( 1)n m≤ − +  then Laurent series expansion of f       

is     1 1

1 0 1( ) ( ) ( ) ... ( ) ( ) ...n m

n m

n m

f z a z a a z a a z a a a z a
∞

− −
− −

=−

= − = − + + − + + − +∑ .  
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Then 1 1

1 0 1( ) ( ) ... ( ) ( ) ( ) ...m m m m

mz a f z a a z a a z a a z a− +
− −− = + + − + − + − + . 

Thus ( ) ( )mz a f z−  has Laurent series expansion which does not contains negative powers of 

( )z a− .Therefore from part (a) ( ) ( )mz a f z−  has removable singularity at z a= . 

c) (a) and (b) together implies (c). 

 

Example 6 Find Laurent series expansion of  
1

( ) zf z e=  at 0z = . 

Solution: we have 
2 3

1 ...
2! 3!

z z z
e z= + + + +  

Therefore, 

            

2 3

1

1 1

1
1 ...

2! 3!
z z z
e

z

   
   
   = + + + +   if 0z > . 

 

                
2 3

1 1 1
1 ...

2! 3!z z z
= + + + +  . 

 

           
1

0

1

!
z

n
n

e
n z

∞

=

=∑   for ( )0;0,ann ∞ . 

 

Ex ample 7 Find Laurent series expansion of   
1

( 1)( 2)z z z− −
 in  

a) ( )0;0,1ann                             b) ( )0;2,ann ∞  

Solution: Let 
1

( )
( 1)( 2)

f z
z z z

=
− −

. 

a) Consider, ( ) { }0;0,1 : 0 1ann z z= < <  

    Here 1z <  and 
1

1
2 2

z
< < . 

Therefore 
1 1 1

( )
2 1

f z
z z z

 = − − − 
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( ) ( )
1 1 1

12 1
2
zz z

 
 = +
 −− −
 

 

                       

 ( ) ( )
1 11 1

1 1
22
z z

z

− − = − + − − 
 

                        

( ) ( )
0 0

1 1

22

n n

n n

z z
z

∞ ∞

= =

 
= + 

−  
∑ ∑  ,      1z <  and 

1
1

2 2

z
< <  

                         

1
1

0

11
2

n
n

n

z
∞

−
+

=

 = −  ∑ . 

 

b) ( ) { }0;2, : 2ann z z∞ = < < ∞  

   Here 2z >  implies that 
1 1

1
2z

< <   and 
2

1
z
< . 

   Therefore 
1 1 1

( )
2 1

f z
z z z

 = − − − 
 

 

                            

( ) ( )
1 1 1

2 11 1z z z
z z

 
 = −
 − −
 

 

 

                           ( ) ( )1 1

2

1 2 11 1
z zz

− − = − − −  
 

 

                          ( ) ( )2
0 0

1 2 1
n n

n n
z zz

∞ ∞

= =

 
= − 

 
∑ ∑  

 

                           ( ) 2
0

1
2 1n

n
n z

∞

+
=

= −∑ . 
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Definition 8 Let z a=  be an isolated singularity of a function f . Then residue of ( )f z  at 

z a= is defined to be coefficient of  
( )

1

z a−
 ( that is 1a− ) in Laurent series expansion of 

( )f z  about z a=  and is denoted by  ( )Res ;f a . 

( ) 1

1
Res ; ( )

2
f a a f z dz

i γπ−= = ∫ . 

Example 9 Let 

2 4 6

2

4 4 2

1 1 ...
2! 4! 6!1 cos 1 1

( ) ...
2! 4! 6!

z z z

z z
f z

z z z

 
− − + − + 

−  = = = − + −  

Therefore , 

( ) 1

1
Res ;0 coefficient of = 0 f a

z
−= = . 

We shall  now prove residue theorem: 

 

Theorem 10 Let f  be analytic in a region G  except for isolated singularities 1 2, ,.., ma a a . If 

γ  is a close rectifiable curve in G  which does not pass through any of the points ka  and if 

0γ ≈  in G  then ( ) ( )
1

1
( ) ; .Res ;

2

m

k k

k

f z dz n a f a
i γ

γ
π =

=∑∫  

Proof. Let   ( );k km n aγ= , ( )1 k m≤ ≤ . Let  1 2, ,.., mr r r  be positive numbers such that no two 

disks ( );k kB a r  intersect, none of them intersects  γ  and each disk is contained in G . Let  

( ) 2 kim t

k k kt a r e
πγ −= +    0 1t≤ ≤ . 

Then for each  1, 2,...,k m= , 

( ) ( ); ; 0k k k k kn a n a m mγ γ+ = − =  and that  ( ); 0j kn aγ =  for k j≠ . 

Therefore   

( ) ( )
1

; ; 0
m

k j k

j

n a n aγ γ
=

+ =∑   1, 2,...,k m= .    …(1) 

Since 0γ ≈ , ( ); 0,n w w Gγ = ∉  also  ( ); 0,kn w w Gγ = ∉ . 

Therefore for w G∉  

( ) ( )
1

; ; 0
m

j

j

n w n wγ γ
=

+ =∑ .                …(2) 
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Thus from (1) and (2) we have  

( ) ( )
1

; ; 0
m

k

k

n w n wγ γ
=

+ =∑  for { }1 2, ,..., mw G a a a∉ − . 

 

Since f  be analytic in { }1 2, ,..., mG a a a− , by Cauchy’s theorem we have  

1

0

k

m

k

f f
γ γ−

+ =∑∫ ∫ . 

Now consider ( ) ( )

k k

j

j k

j

f z dz b z a dz
γ γ

∞

=−∞

= −∑∫ ∫  

 

 where ( ) ( ) jj k

j

f z b z a
∞

=−∞

= −∑  be Laurent series expansion about  kz a=  

                                      ( )

k

j

j k

j

b z a dz
γ

∞

=−∞

= −∑ ∫  

 

                                      1

1 ( )

k

kb z a dz
γ

−
−= −∫  

  ( ) ( )Res ; 2 ;k k kf a in aπ γ=  

 

( ) ( )2 ; .Res ;k kin a f aπ γ= −  

Thus  

( ) ( )
1

( ) 2 ; .Res ; 0
m

k k

k

f z i n a f a
γ

π γ
−

+ − =∑∫ . 

 

Hence, 

 

( ) ( )
1

1
( ) ; .Res ;

2

m

k k

k

f z dz n a f a
i γ

γ
π =

=∑∫ . 
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Theorem 11 Suppose f  has a pole of order m  at z a=  and  ( ) ( ) ( )mg z z a f z= −  then  

                 ( )
( )

( ) ( )11
Res ;

1 !

m
f a g a

m

−=
−

 

Proof. Since f  has a pole of order m  at z a= , ( ) ( ) ( )mg z z a f z= −  has removable 

singularity at z a= . Then g  has Laurent series expansion of the form 
0

( ) ( )nn

n

g z b z a
∞

=

= −∑  

where 
( )

( ) ( )1

!

n

nb g a
n

= , in 0 z a R< − <  for some 0R > . 

Therefore, 
( ) ( ) ( )

0 11

1
( ) ... ( )n mm

nm m
n m

b bb
f z b z a

z az a z a

∞
−−

−
=

= + + + + −
−− −

∑ . 

Thus   ( )
( )

( ) ( )1

1

1
Res ;

1 !

m

mf a b g a
m

−
−= =

−
. 

Corollary 12 If f  has a simple pole at z a=  then ( ) ( ) ( )Res ; lim ( )
z a

f a g a z a f z
→

= = − . 

Proof. We have ( )
( )

( ) ( )1 11
Res ;

1 1 !
f a g a

−=
−

 

                                           ( )g a=  

                                           ( )lim
z a

g z
→

=  

                                           ( )lim ( )
z a

z a f z
→

= − . 

2a  

1a  

3a  

G 

γ  
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Corollary 13 If f  has a simple pole at z a=   and 
( )

( )
( )

h z
f z

k z
=  then ( ) ( )

Res ;
'( )

h a
f a

k a
= . 

Proof. Since f  has a simple pole at z a= , k has simple zero at z a= , ( ) 0k a = . 

So that, ( ) ( ) ( )k z z a g z= − , where g is analytic and non-vanishing at z a= . Moreover, 

'( ) ( )k a g a=  Thus  

          ( ) ( )Res ; lim ( )
z a

f a z a f z
→

= −  

 

                          ( ) ( )
lim

( )z a

h z
z a

k z→
= −  

 

                          
( )

lim ( ) lim
( ) ( )z a z a

z a
h z

z a g z→ →

−
=

−
 

 

                          
1 ( )

( ).
( ) '( )

h a
h a

g a k a
= = . 

 

Example 14 Calculate residue of 
2

2( 1)( 2)

z

z z− −
. 

Sol. Let 
2

2
( )

( 1)( 2)

z
f z

z z
=

− −
  then f  has simple pole at 1z =  and pole of order 2 at 2z = . 

 

a) ( ) ( )
1

Res ;1 lim 1 ( )
z

f z f z
→

= −  

   ( )
2

21
lim 1

( 1)( 2)z

z
z

z z→
= −

− −
 

   1=  

Alternatively, ( ) (1)
Res ;1

'(1)

h
f

k
=  where 2( )h z z=  , 2 3 2( ) ( 1)( 2) 5 8 4k z z z z z z= − − = − + −  

and 2'( ) 3 10 8k z z z= − +  

 

Therefore ( )
2

2

(1) 1
Res ;1 1

'(1) 3.1 10.1 8

h
f

k
= = =

− +
. 
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b) 2z =  is pole of order 2. Let  
2

2( ) ( 2) ( )
( 1)

z
g z z f z

z
= − =

−
 then    

   
2 2

2 2

( 1).2 1. 2.
'( )

( 1) ( 1)

z z z z z
g z

z z

− − −
= =

− −
 

Therefore  

                   ( )
( )

( ) ( )2 11
Res ;2 2

2 1 !
f g

−=
−

 

                        ( )' 2g=  

                        0= . 

 

Ex ample 15 Calculate residue of 
2

1

2

z

z z

+
−

. 

Sol. Let 
2

1 ( )
( )

2 ( )

z h z
f z

z z k z

+
= =

−
  then f  has two simple polesnamely, at 0z =  and 2z = . 

( ) (0) 0 1 1
Res ;0

'(0) 2.0 2 2

h
f

k

+
= = = −

−
  and 

   

( ) (2) 2 1 3
Res ;2

'(2) 2.2 2 2

h
f

k

+
= = =

−
. 

 

Evaluation of real integrals using residue theorem: 

We shall now discuss the methods of evaluating real integrals using residue calculus. 

Type-I : Integration of the type ( )f x dx

∞

−∞
∫  where 

( )
( )

( )

h x
f x

g x
=   and ( )h x , ( )g x  are 

polynomials in x  and ( ) ( )deg ( ) deg ( ) 2g x h x− ≥   then ( ) 0
C

f z dz→∫  as R→∞ , where C  

is the semicircle z R=  in the upper half of the plane. 

 

Example 16 Evaluate 
2

0

1

1
dx

x

∞

+∫ . 

Solution. Let 
2 2

0

1 1 1

1 2 1
I dx dx

x x

∞ ∞

−∞

= =
+ +∫ ∫ . 
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Let 
2

1
( )

1
f z

z
=

+
 and [ , ]R R Cγ = − ∪  where  C  is the semicircle z R=  lie in the upper half 

of the plane. Here we choose R  so that all pole in the upper half of the plane are in the 

interior of γ . 

Here poles of  
2

1
( )

1
f z

z
=

+
 are ,z i i= −  and z i=  lies in upper half of the plane . 

Since 1z i= = , the pole z i=  lies inside γ  if we choose 1R > . 

Therefore by residue theorem ( )2

1
( ) 2 .Res ;

1
f z dz dz i f i

zγ γ

π= =
+∫ ∫ . 

Since z i=  is a simple pole of ( )f z  

( ) 2

1 1
Res ; lim( )

1 2z i
f i z i

z i→
= − =

+
 

Thus 
2

1 1
( ) 2 .

1 2
f z dz dz i

z iγ γ

π π= = =
+∫ ∫      …(1) 

 

Also ( ) ( ) ( )

R

R C

f z dz f x dx f z dz
γ −

= +∫ ∫ ∫  

 

2 2

1 1

1 1

R

R C

dx dz
x z

π
−

= +
+ +∫ ∫          …(2) 

 

Consider,  

 
2 2 2 2

0 0

1 e
( ) e

1 1

it
it

it it

C

R
f z dz R idt i dt

R e R e

π π

= =
+ +∫ ∫ ∫ .  

 

Since,  

2 2 2 2|1 | ||1| | || |1 | 1z z R R+ ≥ − = − = − , 

 

we have 

2

0

( )
1

C

R
f z dz dt

R

π

≤
−∫ ∫ . 
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Since   
2

0
1

R

R
→

−
, as R→∞ , we get  

2

1
lim 0

1R
C

dz
z→∞

=
+∫  

On taking limit as R→∞  in (2), we obtain  

2

1
0

1
dx

x
π

∞

−∞

= +
+∫ . 

Therefore,  
2 2

0

1 1 1

1 2 1 2
dx dx

x x

π∞ ∞

−∞

= =
+ +∫ ∫ . 

 

Example 17 Evaluate 
2

41

x
dx

x

∞

−∞ +∫ . 

Solution. Let 
2

1

1
I dx

x

∞

−∞

=
+∫ . 

Let 
2

4
( )

1

z
f z

z
=

+
 and [ , ]R R Cγ = − ∪  where  C  is the semicircle z R=  lie in the upper half 

of the plane. Here we choose R  so that all pole lies in the upper half of the plane are in the 

interior of γ . 

Here poles of  
2

4
( )

1

z
f z

z
=

+
 are 

3 5 7

4 4 4 4, , ,
i i i i

z e e e e
π π π π

=  and 
3

4 4,
i i

z e e
π π

=  are lies in upper half 

of the plane and inside γ  if we choose 1R > . 

Therefore by residue theorem 
32

4 4
4

( ) 2 . Res ; Res ;
1

i i
z

f z dz dz i f e f e
z

π π

γ γ

π
    

= = +    
+      

∫ ∫ . 

2

4 4

4 4
3

4 4

1 1 (1 )
Res ; cos sin

4 4 4 4 4 2
' 4

i i

i i

i i

h e e
i i i

f e e i

g e e

π π

π π

π π

π π−

   
   

    −      = = = = − =              
   
   

 

and  

2
3 3

4 4

3 3

4 4
33 3

4 4

1 1 3 3 ( 1 )
Res ; cos sin

4 4 4 4 4 2
' 4

i i

i i

i i

h e e
i i i

f e e i

g e e

π π

π π

π π

π π−

   
   

    − −      = = = = − =              
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Thus 
2

4

(1 ) ( 1 )
( ) 2 .

1 4 2 4 2 2

z i i
f z dz dz i

zγ γ

π
π

− − − 
= = + = +  

∫ ∫    …(1) 

 

Also ( ) ( ) ( )

R

R C

f z dz f x dx f z dz
γ −

= +∫ ∫ ∫  

 

2 2

4 41 12

R

R C

x z
dx dz

x z

π

−

= +
+ +∫ ∫         …(2) 

 

Consider,  

 
2 2 3 3

4 4 4 4

0 0

e e
( ) e

1 1

it it
it

it it

C

R R
f z dz R idt i dt

R e R e

π π

= =
+ +∫ ∫ ∫ .  

 

Since,  

4 4 4 4|1 | ||1| | || |1 | 1z z R R+ ≥ − = − = − , 

 

we have 

3

4

0

( )
1

C

R
f z dz dt

R

π

≤
−∫ ∫ . 

 

Since   
3

4
0

1

R

R
→

−
, as R→∞ , we get  

2

4
lim 0

1R
C

z
dz

z→∞
=

+∫  

 

On taking limit as R→∞  in (2) we get  

 
2

4
0

12

x
dx

x

π ∞

−∞

= +
+∫ . 

 

Therefore,   
2

41 2

x
dx

x

π∞

−∞

=
+∫ . 
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Type-II : Integration of the type 

2

0

(cos ,sin )f d

π

θ θ θ∫  where (cos ,sin )f θ θ  is rational 

function of  cosθ  and sinθ . 

Here we substitute iz e θ=  ( )0 2θ π≤ ≤   that is iz e θ=  describes the unit circle 1z = . 

 

Also  
1 2 1

cos
2 2 2

i ie e z z z

z

θ θ

θ
− −+ + +

= = =  and 
1 2 1

sin
2 2 2

i ie e z z z

i i iz

θ θ

θ
− −− − −

= = = . 

 

Then 

2 2 2

0

1 1
(cos ,sin ) ,

2 2

z z dz
f d f

z iz iz

π

γ

θ θ θ
 + −

=  
 

∫ ∫   where γ  is positively oriented unit circle 

1z =  can be evaluated using residue theorem. 

 

Example 18 Evaluate 

2

0

1

1 sin
d

a

π

θ
θ+∫  ( )1 1a− < < . 

Solution. Let 

2

0

1

1 sin
I d

a

π

θ
θ

=
+∫ .      …(1) 

Put iz e θ=  ( )0 2θ π≤ ≤  then   dz izdθ=   and 
2 1

sin
2

z

iz
θ

−
= . 

Therefore 

2

2

0

1 1

1 sin 1
1

2

dz
d

a izz
a

iz

π

γ

θ
θ

=
+  −

+  
 

∫ ∫  where γ  is unit circle 1z = . 

 

                                        
2

2 1

2
1

dz
ia

z z
a

γ

=
 + − 
 

∫              …(2)  

Let 
2 1 2

1 1
( )

2 ( )( )
1

f z
i z z z z

z z
a

= =
− − + − 

 

  where 
2

1

1i i a
z

a

− + −
=  and 

2

2

1i i a
z

a

− − −
=  

are simple poles of ( )f z . 

Note that 
2 2

2

1 1 1
1

i i a a
z

a a

− − − + −
= = >   ( )1 1a− < < . 
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Since 1 2 1z z = , 1 1z < . 

Thus the pole 1z  lies inside γ  and 2z  lies outside. 

Therefore ( )
1 1

1 1 1
2

1 2 1 2

1 1
Res ; lim( ) ( ) lim( )

( )( ) ( ) 2 1z z z z

a
f z z z f z z z

z z z z z z i a→ →
= − = − = =

− − − −
 

Then by residue theorem 

 

 ( ) ( )1 1
2

2

1 1
Res ; . ;

22 2 11

a
dz f z n z

ii i az z
a

γ

γ
π

= =
  −+ − 
 

∫  

 

Therefore   
2

2

1

2 11

a
dz

i az z
a

γ

π
=

  −+ − 
 

∫  

 

Thus from (2) we have  

 

2

2 2
20

1 2 1 2 2

21 sin 1 11

a
d dz

ia a a a az z
a

π

γ

π π
θ

θ
= = =

+   − −+ − 
 

∫ ∫ . 

 

Example 19 Evaluate 
0

1

cos
d

a

π

θ
θ+∫  ( )1a > . 

 

Solution. Let 

2

0 0

1 1 1

cos 2 cos
I d d

a a

π π

θ θ
θ θ

= =
+ +∫ ∫ .    …(1) 

 

Put iz e θ=  ( )0 2θ π≤ ≤  then   dz izdθ=   and 
2 1

cos
2

z

z
θ

+
= . 

 

Therefore 

2

2

0

1 1 1 1

2 cos 2 1

2

dz
I d

a izz
a

z

π

γ

θ
θ

= =
+  +

+  
 

∫ ∫  where γ  is unit circle 1z = . 
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( )2

1 1

2 1
dz

i z azγ

=
+ +∫              …(2)  

 

Let 
( )2

1 2

1 1
( )

( )( )2 1
f z

z z z zz az
= =

− −+ +
  where 2

1 1z a a= − + −  and 2

2 1z a a= − − −  

are simple poles of ( )f z . 

 

Note that 2 2

2 1 1 1z a a a a= − − − = + − >   ( )as 1a > . 

 

Since 1 2 1z z = , 1 1z < . 

 

Thus the pole 1z  lies inside γ  and 2z  lies outside. 

Therefore ( )
1 1

1 1 1
2

1 2 1 2

1 1 1
Res ; lim( ) ( ) lim( )

( )( ) ( ) 2 1z z z z
f z z z f z z z

z z z z z z a→ →
= − = − = =

− − − −
 

Then by residue theorem 

 

 
( )

( ) ( )1 12 2

1 1 1
Res ; . ;

2 2 1 2 1
dz f z n z

i z az aγ

γ
π

= =
+ + −

∫  

 

Therefore   
( )2 2

1

2 1 1

i
dz

z az aγ

π
=

+ + −
∫  

 

Thus from (2) we have  

 

( )2 2 2
0

1 1 1 1

cos 2 1 1 1

i
d dz

a i iz az a a

π

γ

π π
θ

θ
== = =

+ + + − −
∫ ∫ . 
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EXERCISES 

 

1. Show that   

i)  
41 2

dx

x

π∞

−∞

=
+∫ ,       ii)  

4

0
1 4

xdx

x

π∞

=
+∫ , 

 iii)  
2 4

0
1 2 3

dx

x x

π∞

=
+ +∫    iv)  

2

6

0
1 6

x dx

x

π∞

=
+∫  

2. Show that           

i)       

/ 2

2

0
sin 2 1

dx

a x a a

π π
=

+ +∫ ,    ii)  

2

0

cos3

5 4cos 12

xdx

x

π π
=

−∫  

iii)     
cos

3 4cos 3

xdx

x

π

π

π

−

= −
+∫   iv)  2

2

0

cos 2
( 1)

1 2 cos 12

xdx
a

a x a

π π
= <

− +∫ . 

 

 

 

 

� � � 
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ROUCHE’S THEOREM AND MAXIMUM MODULUS 

THEOREM 
 

 

 

In this unit we shall prove Argument Principle, Rouche’s theorem and Maximum modulus 

theorem. Rouche’s theorem is found to be very useful in finding number of zeros inside a 

given closed curve. 

 

Definition(Meromorphic function)1. A function f that is analytic except for finite number 

of points is meromorphic function. 

e.g. i)  
1

( 2)( 5)z z− +
  ii)  

1

exp( ) 1z −
. 

 

Theorem(Argument Principle)2.  Let f be meromorhic in G with pole p1, p2, . . . , pm and 

zeros z1, z2, . . ., zn counted according to the multiplicity. If γ is a closed rectifiable value in G 

with γ ≅ 0 and not passing through p1, p2, . . . , pm and  z1, z2, . . ., zn then 

1 1

1 ( )
( ) ( )

2 ( )

n m

j k j k

k ki

f z
dz n z p

f zγ

γ γ
π = =

′
= −∑ ∑∫  

Proof : Since p1, p2, . . . , pm are poles and  z1, z2, . . ., zn are zeros of f, there is an analytic 

function g such that  

   
1

1

( )

( ) ( )

( )

n

k

k

n

k

k

z z

f z g z

z p

=

=

 
− 

 = ⋅
 −  

∏

∏

    (1) 

where g is non vanishing. 

 

 

UNIT  - VIII 
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Logarithmic differention of f gives us 

  
1 1

( ) 1 1 ( )

( ) ( ) ( ) ( )

n n

k kk k

f z g z

f z z z z p g z= =

′ ′
= − +

− −∑ ∑      (2) 

Since g is non vanishing analytic function  

0
g

gγ

′
=∫ . Hence, (2) implies  

1 1

1 ( ) 1 1
0

2 ( ) 2 ( ) 2 ( )

n n

k kk k

f z dz dz
dz

i f z i z z i z pγ γ γπ π π= =

′
= − +

− −∑ ∑∫ ∫ ∫  

1 1

1 ( )
( ; ) ( ; )

2 ( )

n n

k k

k k

f z
dz n z n p

i f zγ

γ γ
π = =

′
= −∑ ∑∫ . 

 

Note 3 If γ(t) = a + reit, then 
1 ( )

2 ( )
f f

f z
dz Z P

i f zπ
′

= −∫  

where  

Zf : Number of zeros of f  inside B(a; r) counted according to multiplicity 

and   

Pf : Number of poles of f  inside B(a; r) counted according to multiplicity. 

e. g.  
3 4

2 3

( 1) ( 4)
( )

( ) ( ) ( 1 )

z z
f z

z i z i z i

− −
=

+ − + −
, γ : | z | = 2 

Then          
( )

2 [3 (2 1 3)]
( )

f z
dz i

f zγ

π
′

= − + +∫  = – 6πi.   

Rouche’s theorem 4 Suppose f and g are meromorphic in a neighborhood of ( ; )B a R with no 

zeros or poles on the circle { }/ | |z z a Rγ = − = . If Zf ,Zg  (Pf, Pg) are the numbers of zeros 

(poles) of f & g inside γ counted according to their multiplicities and if | f(z) + g(z) | < | f(z)| +  

| g(z)| on {γ}, then Zf – Zg  = Pf – Pg or Zf – Pf  = Zg – Pg. 
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Proof : If f/g = λ  is real, then | f(z) + g(z) | < | f(z)| + | g(z)| gives us 

                             
( ) ( )

1 1
( ) ( )

f z f z

g z g z
+ < +  i.e. | λ + 1 | < | λ | + 1. 

Further, if  f/g = λ  ≥ 0 then (1) gives us, λ + 1  <  λ  + 1which is absurd.  

Hence  f / g  does not take any value in [0, ∞). Therefore,  f / g has well defined logarithm log 

(f / g) in C – [0, ∞). Moreover, log (f / g) is primitive of  

(f / g)′ / (f / g).  Hence 
( )

0
( )

f z
dz

f zγ

′
=∫  so that 

2
0

gf g f g

g fγ

′ ′  −
=  

  
∫    ⇒  0

f g

f gγ

′ ′ 
− = 

 
∫  

⇒   
1 1

2 2

f g

i f i gγ γπ π
′ ′

=∫ ∫  

⇒ Zf – Pf  = Zg – Pg. 

 

Corollary 5 If f and g are analytic in neighborhood of ( ; )B a R  with no zeros on {γ} where γ 

: | z – a | = R and if | f(z) + g(z) | < | f(z)|, then f and g have same number of zeros in B(a; R). 

Proof : We have  | g(z)| <  | f(z)| on {γ} ⇒ | f(z) + g(z) | < | f(z)| +  | f(z) + g(z) | on {γ}, hence 

f and f + g have same number of zeros in B(a; r). 

 

Corollary 6 If f and g are analytic in neighborhood of ( ; )B a R  with no zeros on {γ} where γ 

: | z – a | = R and if | g(z) | < | f(z)| on {γ}, then f and f+g have same number of zeros in B(a; 

R). 
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Proof: We have | g(z) | < | f(z)| on {γ}. Thus we have 

| ( ) ( ) ( ) | | ( ) | | ( ) ( ) |f z g z f z f z f z g z+ − < + + , hence, f  and f g+  have same number of 

zeros. 

 

Fundamental theorem of Algebra 7 Every non constant poly. has a zero. OR A polynomial 

P(z) = z 
n
 + a1z

n – 1
 + . . . + an.  has precisely n – zeros. 

Proof : Consider   P(z) = z 
n
 + a1z

n – 1
 + . . . + an   

          ⇒ P(z) / z 
n
 = 1 + a1/z + . . . + an /z

n
 . 

hence P(z) / z 
n
 → 1 as n → ∞. Clearly P(z) / z n is analytic in ____ – {0}. Hence is analytic in 

the neighborhood of infinity. i.e. {z / | z | ≥ R}. 

Let γ : {z / | z | = R}, then 
( )

1 1
n

P z

z
− < or | P(z) – z

n
 | < | z

n
 | on {γ} for suitable choice of R. 

Hence Rouche’s theorem, P(z)  &  z
n
 have same number of zeros in B(a; r). Since z

n
 has n 

zeros (counted according to multiplicities) in B(a; r). P(z) also has precisely n- zeros in B(a; 

r) for some R > 0. 

 

Example 8 Prove that there are 3 zeros of z
3
 – 6z + 8 in an B(0; 3). 

Proof : Let f1(z) =  z
3
 – 6z + 8, We shall prove that f1  has 3 zeros in B(0; 3)and no zeros in 

B(0; 1).  

Let f(z) =  z
3
 and  g(z) =  – 6z + 8  

Now, on | z | = 3, | f(z) | = | z |
3  
= 27, and  | g(z) | = | – 6z + 8 |

 
 ≤  6 | z| + 8 = 26. 

Thus | g(z) | ≤  26 < 27 = | f(z)| on | z | = 3. 

Hence f and f + g have same nos. of zeros in B(0; 3). Since f(z) =  z
3 
 has 3 zeros in 

 
B(0; 3).  f 

+ g = z
3 
 – 6z + 8 also has 3 zeros in 

 
B(0; 3). 
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Now consider | z | = 1 . 

Let f(z) =  z
3
 + 8  and g(z) =  – 6z . 

Now | f(z)| = | z
3
 + 8 | ≥ 8 – | z |3   = 8 – 1 = 7. 

& | g(z) | = | – 6z  |
 
 =  6 | z| = 6. 

Thus | f(z)| = 6 < 7 ≤  | f(z)| on | z | = 1. 

Hence f and f + g have same number of zeros in B(0; 3).  

Since f(z) =  z
3 
 + 8 has 3 zeros on 

 
| z | = 2, f  has no zeros in B(0; 1).  

Hence f(z)+ g(z) =  z
3
 – 6z + 8 has no zeros in B(0; 1). 

Thus all the three zeros of z
3
 – 6z + 8 lie in  of ann(0; 1,3). 

 

Example 9 Let > 1, and show that the equation of  λ – z – e–z = 0 has exactly one solution in 

the half plane { z / Re(z) > 0 }. Prove that this solution must be real. 

Solution Let r > 1, let  f(z) = – λ + z  and g(z) =  e–z. Then on [–iR, iR],  

we have, z  =  iy & | f(z)| = | – λ + iy |  = 2 2yλ +  ≥ λ > 1 and | g(z)| = e–z. 

           =  | e
–iy
| = 1.  

Thus | g(z)| < | f(z)| on [–iR, iR]. 

Now consider the semi circle { z / | z | = R :  Re(z) > 0}. 

i.e.,  z  = Re
it
 ,           – π/2 < t < π/2. 

Here | f(z)| = | – λ + Reit | ≥ R – λ, and | g(z)| = | e–z | | e–R cos t |  ≤ 1 ≤  R – λ ≤ | f(z)|. 

Thus | g(z)| < | f(z)| on the semi circle & [–iR, iR]. 

Thus f and  f + g have the same number of zeros, inside the circle  

{ z / | z | = R ;  Re(z) > 0} ∪ [–iR, iR]. 

Since f(z) = – λ + z  has precisely one zero so does  f(z) + g(z) = λ – z – e–z. 
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Example 10 Consider z
3
 – 6z

2
 + 3z +1, 

Solution Let f(z) =  6z
2
 – 3z  &  g(z) = z

3
 + 1 

Let γ : | z | = 3 and γ = { z / | z | = 3 } . 

Now | f(z) | = | 6z
2
 – 3z | ≥  6| z |2  – 3| z | = 6×9 – 3×3 = 45 

& | g(z) | = | z
3
 – 1 | =  | z |

3
  + 1 = 28 

Thus | g(z) | = | f(z) | for   z ∈ { γ } 

Hence f and f + g have the same no of zeros in B(0; 3) 

Since  f(z)  = 3z( 2z – 1) both the zeros viz., 0 and ½ of f  lies inside | z | = 3 

Hence  z
3
 – 6z

2
 + 3z + 1 = 0 has precisely 2 zeros in B(0 ; 3).  

 

Example 11 Prove that e
–iz
 = 2 + z

2
 has only one root in the upper half plane. 

Solution Let f(z)  = 2 + z
2
 & g(z)  = e

–iz
 , 

Consider γ = [–R, R] ∪ {z / Re(z) > 0, | z | = R} 

for z ∈ [–R, R],  z = x real, 

   f(z)  = f( x)  = 2 + x
2
 > 1, 

  = | e
–ix
 |  

  = | e
–iz
 |  

  = | g(z) |  

∴ g(z)  < f( z) for z ∈ [–R, R],   

∴ let z  = Re
–it
   0 ≤ t ≤ 2π 

Then | f(z) | = | 2z + z
2
 | ≥  R2

 – 2 

By choosing R > √3 we have  

| f(z) | ≥ R2
 – 2 > 1 >  e

–Rsin t
 = 

(cos sin )iR t i te +
 

    = | e
–iz
 | on {z / Re(z) > 0, | z | = R} 



 103 

Thus  | g(z) | ≤ | f( z) | 

Hence by Rouches theorem f and f + g have the same no of zeros in γ, 

Since f has only one zero viz.  √2i inside γ and above real axis i.e. upper half plane f + g has 

precisely one zero in the upper half plane.  

 

Maximum Modulus Theorems 

Theorem 12 If f is analytic in a region G and a is a point in G with | f(x) |  ≥ | g(x) | ∀ z ∈ G, 

then f must be a constant function. 

Proof : Let α = f(a)  & Ω  = f (G). By hypothesis  

| f(a) |  ≥  | f(z) | ∀ z ∈ G  ⇒ | α | ≥  | ξ | ∀ z ∈ Ω. Hence  Ω ∩ ∂Ω    ≠ φ, since α | ≥  | ξ |  ∀ ξ 

∈ Ω  ⇒ α ∈ Ω.  Therefore, Ω cannot be an open set. Since f is analytic and non constant Ω  

= f (G) is necessarily open by open mapping theorem. Hence f must be a constant. 

 

Maximum Modulus Theorem 13 (2
nd
 version) : Let G be a neighbourhood open set in G  

and suppose F is continuous function onG which is analytic in G. Then max  

{| f(z) | : z∈G } = {| f(z) | : z ∈∂G}. 

Proof : Since G is bounded,  G id bounded closed set. Hence,G is compact. Since f is 

continuous on compact set G, it attains maximum at some a ∈ G, i.e., there is a∈ G such 

that  | f(z) | ≤  | f(a) | ∀ z ∈ G. If  f were non-constant and a ∈ G, then we are lead to 

contradiction by 1
st
 version of MMT, hence a ∈ G but a ∉ G i.e., a ∈∂G. 

Definition 14 Let f  be real valued function G ⊆ **. Let a ∈ G or a = ∞ then the limit 

superior of f(z) as z → ∞ is defined as  

  limsup ( ) lim sup ( ) / ( ; )
r a r o

f z f z z G B a r
→ → +

= ∈ ∩ .  
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Similarly, liminf ( ) lim inf ( ) / ( ; )
r a r o

f z f z z G B a r
→ → +

= ∈ ∩ . 

By ∂∞G, we mean extended boundary of G defined as ∂∞G = ∂G ∪ {∞ }, if g is unbounded & 

∂∞G = ∂G if G is bounded. 

 

Maximum Modulus Theorem 15 (3
rd
 version) : Let G be region in C & f an analytic 

function on G. Suppose there is constant M s. t. limsup | ( ) |
r a

f z M
→

≤ ∀ a ∈ G. Then | f(z) | ≤ M  

∀ z ∈ G.  

Proof: Let 0δ >  be arbitrary and { :| ( ) | }H z G f z M δ= ∈ > + . Now, it is enough to prove 

that H φ= . Since f  is analytic, its real and imaginary parts are continuous and hence | |f , 

is continuous. Therefore, H  is open . Now, given that limsup | ( ) |
r a

f z M a G∞→
≤ ∀ ∈∂ . 

Hence, there is 0r >  such that | ( ) | ( ; )f z M z G B a rδ< + ∀ ∈ ∩ . Hence, H G φ∞∩∂ = . In 

other words, H G⊆ , regardless of whether G  is bounded or unbounded. Hence, by 2
nd
 

version of MMT, there is z H∈∂ , such that | ( ) |f z M δ= + , which is absurd, hence, H φ=  

or f  is constant. Now if f  is constant, H φ=  is hypothesis. Thus in any case H φ= . 

 

Schwarz’ Lemma 16 Let { :| | 1}D z z= <  and suppose f  is analytic in D  with  

(a)   | ( ) | 1f z ≤  for z D∈  

(b)   (0) 0f = . 

Then | '(0) | 1, | ( ) | | |f f z z z D≤ ≤ ∀ ∈ . 

Moreover, if | '(0) | 1f =  or | ( ) | | |f z z=  for some 0z ≠ . Then there is a constant ,| | 1c c =  such 

that ( ) ,f w cw w D= ∀ ∈ . 
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Proof. Define :g D→ �  by 
( )

( ) 0
f z

g z if z
z

= ≠  and (0) '(0)g f= . Note that 

0 0 0

( ) ( ) (0)
lim ( ) lim lim '(0).

0z z z

f z f z f
g z f

z z→ → →

−
= = =

−
Thus g  is continuous at 0z =  and 

consequently g  is analytic in D . Now by maximum modulus theorem, for any 1r < , there is 

a point 0z such that 0| | 1z r= <  and 0

0

( )( ) 1
| ( ) |

f zf z
g z

z z r
= ≤ ≤ . Letting 1r −→ , we obtain 

| ( ) | 1g z z D≤ ∀ ∈ . Hence, 
( )

1
f z

z
≤  or | ( ) | | |f z z≤  for all 0z ≠  and | (0) | | '(0) | 1g f= ≤ . 

Since (0) 0f = , we have | ( ) | | |f z z≤  for all z D∈  and | '(0) | 1f ≤ . Let | '(0) | 1f = , then 

| (0) | 1g = , which implies that g attains maximum in the disc D. Therefore, g must be 

constant. Therefore, there is c∈�  such that ( )g z c= . That is, 
( )f z

c
z

=  or ( )f z cz= , since 

( )f z cz=  holds trivially for 0z = , we have ( )f z cz=  for all z D∈ . Further, | | | ( ) | 1c g z= = . 

In other words | | 1 ic c e θ= ⇒ = for some real θ . Hence, ( ) if z e zθ=  for all z D∈ . 

 

EXERCISES 

1. Find the number of zeros of the following polynomials 

i)       4 26 2z z z+ + +  in the unit disk and in the (0;1,3)ann  

ii) 5 212 14z z− +  in (0;1,5 / 2)ann  and also in { :| | 2}z z <  

2. Suppose 0R > , is sufficiently large, then if p  is a polynomial of degree n>0. Then 

| |

'( )
2

( )
z R

p z
dz i n

p z
π

=

=∫ . 

 

� � � 
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We, the authors, are not claiming any originality of the content of this book. The 

content is taken form the following references. 
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SCHWARZ’S   LEMMA    AND   ITS   CONSEQUENCES

UNIT  -  IX

Theorem 9.1 (Schwarz’s Lemma)

Let { }: 1= <D z z  and suppose f  is analytic on D with

(a) ( ) 1≤f z  for z in D

(b) ( )0 0=f

Then ( )' 0 1≤f  and ( ) ≤f z z  for all z in the disk D. Moreover if ( )' 0 1=f  or if

( ) =f z z  for some 0≠z  then there is a constant c, 1=c , such that ( ) =f w cw  for all w in D.

Proof :  Let { }: 1= <D z z  and  : → £f D  is analytic with

(a) ( ) 1≤f z  for ∈z D

(b) ( )0 0=f

Define : → £g D  by

( )
( )

( )

 for 0

' 0  for 0

f z
z

g z z
f z


≠

= 
 =

Then g is analytic in D, and hence analytic on ( ) { }0; :=B r z z r  for every 0 1< <r .

Applying maximum modulus theorem to g on B (0, r), for all ( )0,∈z B r  we have

( ) ( ) ( )max max
≤ =

≤ =
z r z r

g z g z g z

( ) 1
max

=
= ≤

z r

f z
z r

, by condition (a).

Letting 1→r  we have

( ) 1≤g z , for all ( )0,1∈ =z B D         .... (1)

( )
1⇒ ≤

f z
z

, ∀ ∈z D , 0≠z
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Since ( )0 0=f , we have

( ) ≤f z z , ∀ ∈z D

Further, from (1) we have

( ) ( )' 0 0 1= ≤f g

Now, if ( )' 0 1=f  or ( ) ( )=f z f z  for some 0≠z  in D then

( ) ( )0 ' 0 1= =g f

or ( )
( )

1= =
f z

g z
z

, for some 0≠z in D.

Thus by (1)

( ) ( )0≤g w g , ∀ ∈w D

or ( ) ( )≤g w g z ; ∀ ∈w D  and some 0≠z  in D.

Therefore by maximum modulus theorem g must be constant function on D.

This implies ( ) =g w c , ∀ ∈w D  and some constant c.

( )
⇒ =

f w
c

w
, ∀ ∈w D , 0≠w .

( )⇒ =f w cw , ∀ ∈w D , 0≠w .

Since ( ) ( )0 0 0= =f c , we have

( ) =f w cw , ∀ ∈w D

where ( ) ( )0 ' 0 1= = =c g f

Theorem 9.2 :

Let { } ( ): 1 0,1= < =D z z B  be the unit disk, and { }: 1∂ = <D z z .

Fix ∈£a  such that 1<a . Define the Mobius transformation.

1
−

=
−a

z a
z

az
φ
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Then :

(a) aφ  is a one-one map of D onto itself,

(b) aφ  is analytic in an open disk containing the closure of D,

(c) the inverse of aφ  is −aφ ,

(d) aφ  maps ∂D  onto ∂D ,

(e) ( ) 0=a aφ , ( )0 = −a aφ

(f) ( ) 0=a aφ , ( ) 2' 0 1= −a aφ  and ( )'
2

1

1
a a

a
φ =

−
.

Proof :

Let { }: 1= <D z z  and { }: 1∂ = =D z z .

Fix ∈£a  such that 1<a .

Consider the Mobius transformation

( )
1a
z a

z
az

φ
−

=
−

(a) We know Mobius transformation is composition of translations, dilations and the inversion.

Since each function involved in the composition of Mobius transformation is bijective on ∞£ ,

it follows that aφ  is bijective on D.

(b) The function aφ  is well defined everywhere except at 
1

=z
a

.

As 1<a , we have 
1 1

1= >
a a

.

This implies aφ  is well defined on an open disk at the origin containing not only D but ∂D  also.

Thus aφ  is analytic in an open disk containing the closure of D, as = ∂∪D D D .

(c) If 1<a  then 1− <a . For any ∈z D

( )( )
1− −

− =  
− a a a
z a

z
az

φ φ φ

       

( )

( )

1

1
1

−  − − 
− =

− − −  
− 

z a
a

az
z a

a
az
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1

1
1

−  + 
− =

− +  
− 

z a
a

az
z a

a
az

        
1

− + −
=

− + −
z a a aaz

az az aa

        
( )2 2

2 2

1

1 1

− −
= =

− −

z a z z a

a a

        = z

Similarly one can show that

( )( )− =a a z zφ φ

Thus

( )( ) ( )( )− −= =a a a az z zφ φ φ φ

This proves the inverse of aφ  is −aφ . Further aφ  maps D onto itself in a  one-one fashion.

(d) Let any ∈∂z D , then 1=z .

Let = iz e θ , for some real θ .

Then

( ) ( )= i
a az e θφ φ

1

i i

i i i

e a e a
ae e e a

θ θ

θ θ θ−

− −
= =

− −

( )
1

−
= =

−

i

i

e a

e a

θ

θ [ w w=∵   for any w∈£ ]

( )⇒ ∈a z Dφ

This proves aφ  maps ∂D  on to ∂D .

(e) From the definition of aφ , it follows that ( ) 0a aφ = , ( )0a aφ = − .

(f) Already we have proved that aφ  is analytic in an open disk containing the closure of D.
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Thus,

( )'
1

− =  
− a

d z a
z

dz az
φ

( ) ( ) ( )

( )2
1 (1)

1

− − − −
=

−

az z a a

az

( )

2

2
1

1

− + −
=

−

az az a

az

( )

2

2
1

1

−
=

−

a

az

In particular,

( ) 2' 0 1= −a aφ

( )
( ) ( )

2 2

2 2 22

1 1 1
'

1 11

− −
= = =

− −−
a

a a
a

aa aa
φ

The following theorem help to find an upper bound for ( )'f z  of any analytic map : →f D D ,

{ }: 1D z z= < .

Theorem 9.3 : Let f is analytic on D with ( ) 1≤f z  and let ( ) =f a α  for

{ }: 1∈ = <a D z z  then ( )
2

2
1

'
1

f a
a

α−
≤

−

Furthermore if ( )
2

2
1

'
1

f a
a

α−
=

−
 then there is a constanmt c with 1=c  and

( ) ( )( )−= af z c zαφ φ  for ∈z D .

Proof :  Let f is analytic on D with ( ) 1≤f z .

Let { }: 1∈ = <a D z z  and ( ) =f a α , so 1<α  unless f is constant.

Define ag fαφ φ−= o o . Then g maps D into D and also satisfies
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  ( ) ( ) ( )0 0ag fαφ φ−= o o

( )( )( )0afαφ φ−=

( )( )= f aαφ

( )= αφ α

= 0

Thus by applying Schwarz’s Lemma we obtain

( )' 0 1≤g

Now by applying chain rule

  ( ) ( )( )' 0 0ag fαφ φ−= o o

( ) ( )( ) ( )' 0 ' 0a afαφ φ φ− −= o

( ) ( ) ( )2' 1= −o f a aαφ

( )( ) ( ) ( )2' ' 1= −f a f a aαφ

( ) ( ) ( )2' ' 1= −f a aαφ α

( )( )2
2

1
' 1

1
= −

−
f a a

α

Therefore,

( ) ( )
2

2
1

' ' 0
1

−
=

−
f a g

a

α

Using the fact ( )' 0 1≤g , we obtain

( )
2

2
1

'
1

−
≤

−
f a

a

α
, ∈a D .

Further observe that, equality holds exactly when ( )' 0 1=g .

Thus applying Schwarz’s Lemma to a function g, there is a constant c, 1=c , such that.

( ) =g z cz  for all ∈z D .
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( )( ) ,af z cz z Dαφ φ−⇒ = ∀ ∈o o

af cIαφ φ−⇒ =o o  where : →I D D , ( ) =I z z

f cI cα αφ φ φ∞⇒ = =o o

( )af cαφ φ−⇒ = o

( ) ( )( )af z c zαφ φ−⇒ =  for ∈z D

Theorem  9.4 :  Let : →f D D , be a one-one analytic map of { }: 1= <D z z  onto itself and

suppose ( ) 0=f a . Then there is a complex number c with 1=c  such that f c αφ= .

Proof :  Let : →f D D  be a bijective map, where { }: 1= <D z z .

Then there is an analytic function : →g D D  such that

( )( ) =g f z z  for ∀ ∈z D .... (1)

Let ( ) 0=f a . Then by Theorem 9.3

( )
2

2 2
1 0 1

'
1 1

f a
a a

−
≤ =

− −
..... (2)

Further by (1), we have

( )( ) =g f a a

( )0⇒ =g a , as ( ) 0=f a

Again applying the Theorem 9.3 to g we obtain

( )
2

2
2

1
' 0 1

1 0

−
≤ = −

−

a
g a

Differentiating (1), we get

( )( ) ( )' ' 1=g f z f z

Therefore,

( )( ) ( )1 ' '= g f a f a

   ( ) ( )' 0 '= g f a ( )[ ]0=∵ f a
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( )
( ) 2
1 1

'
' 0 1

⇒ = ≥
−

f a
g a

.... (3)

By (2) and (3) we have

( )
2

2 2
1 1 0

'
1 1

−
= =

− −
f a

a a

Therefore by Theorem 9.3, there is a complex number c with 1=c  such that

   ( ) ( )( )0 af z c zφ φ−=

( )( )0 ac zφ φ=

( )ac zφ= ,  ∈z D

af cφ⇒ =

Problem  9.1 :  Let : → £f D  is analytic with Re ( ) 0≥f z  for all z in { }: 1= <D z z , and ( )0 1=f .

Show that Re ( ) 0>f z .

and ( )1 1
1 1

− +
≤ ≤

+ −
z z

f z
z z

, ∈z D

Solution : Let { }: 1= <D z z , : → £f D  is analytic with Re ( ) 0≥f z  for all ∈z D , and ( )0 1=f .

Define ( ) 1
1

−
=

+
z

z
z

φ . Then φ  maps { }:Re 0>z z  onto D, so the function = og fφ  maps D

to itself and

( ) ( )( ) ( )0 0 1 0= = =g fφ φ

Applying Schwarz’s Lemma to g, we obtain

( ) ≤g z z , ∀ ∈z D

( )( )⇒ ≤f z zφ , ∀ ∈z D

( )
( )

1
1

−
⇒ ≤

+
f z

z
f z ; ∀ ∈z D
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Therefore

( )
( )

( )
( )

1 1
11

− −
≤ ≤

++
f z f z

z
f zf z , ∀ ∈z D

( ) ( )1⇒ − ≤ +f z z f z z

( ) ( )1 1⇒ − ≤ +f z z z

( ) 1
1

+
⇒ ≤

−
z

f z
z

;∀ ∈z D

On the same line

( )
( )

( )
( )

1 1
11

f z f z
z

f zf z
− −

⇒ ≤ ≤
++ , ∀ ∈z D

implies ( )1
1

−
≤

+
z

f z
z

, ∀ ∈z D

Therefore

( )1 1
1 1

− +
≤ ≤

+ −
z z

f z
z z

, ∀ ∈z D

Problem 9.2 :  Suppose ( ) 1≤f z  for 1<z  and f is analytic. Prove that

( ) ( )
( )

0
1 0

f z
f z

f z
+

≤
+  for 1<z ,

Proof :  Let  ( ) 1≤f z  for 1<z  and f is analytic on { }: 1= <D z z .

Let ( )0 =f a  and consider the function ag fφ= o .

Then ( ) ( )( ) ( )0 0 0a ag f aφ φ= = =

Thus by applying Schwarz’s Lemma, we have

( ) ≤g z z , ∀ ∈z D  ..... (1)

( )( )a f z zφ⇒ ≤ ; ∀ ∈z D

( )
( )1
−

⇒ ≤
−
f z a

z
af z ; ∀ ∈z D
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For any ∈z D , ( )
( )

( )1
−

=
−

f z a
g z

af z

( ) ( ) ( ) ( )⇒ − = −g z ag z f z f z a

( ) ( ) ( )( )1⇒ + = +g z a f z ag z

( )
( )
( )1

+
⇒ =

+
a g z

f z
ag z

Thus ( )f z  is obtained from ( )=w g z  by a bilinear transformation, which maps circles onto

circles and centre of a circle onto centre of its image. From (1) we see that for any ∈z D , ( )g z  is in

the disk ( )0,B z . This disk is mapped on a disk 1 ⊆D D  with centre ( ) =f a a .

That is, ( ) 1∈f z D  and  ( ) 0≤ −f z p , where p is the point on the closure of 1D .

Then P is given by  
1

+
=

+

it

it

a z e
P

a z e

Therefore, ( )
1

+
≤

+

it

it
a z e

f z
a z e

1
+

≤
+
a z

a z
[ ]=∵ a a

( )
( )

0
1 0

+
=

+
f z

f z ,  for 1<z

EXERCISE :

1. Suppose ( ) 1≤f z  for 1<z  and f is analytic on { }: 1= <D z z .

Prove that :

(a) ( ) ( )
( )

0
1 0

f z
f z

f z
+

≤
− , for 1<z .

(b)
( )
( )

( )1 0
1 0

−
≤

+
f z

f z
f z , for 1<z .

❁ ❁ ❁
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The Space of Continuous Functions :

Let G is an open set in £  and ( ),dΩ  is a complete metric space then ( ),C G Ω  denotes the

set of all continuous function from G to Ω .

The set ( ),C G Ω  is non-empty, as it always contains the constant functions.

Theoerm 10.1 : If G is an open set in £  then there is a sequence { }nK  of compact subsets of G such

that 
1

n
n

G K
∞

=
= ∪ .

Moreover, the sets can nK  be chosen to satisfy the following conditions :

(a) 1n nK K +⊆ ;

(b) K G⊂  and K compact implies nK K⊂  for some n;

(c) Every component of nK∞ −£  contains a component of G∞ −£ .

Definition 10.1 :

Let 
1

n
n

G K
∞

=
= ∪ , where each nK  is compact and 1intn nK K +⊂ .

Define, ( ) ( ) ( )( ){ }n , sup , : nf g d f z g z z Kσ = ∈

for all functions f and g in ( ),C G Ω .

Also define, ( )
( )

( )1

n

n

,1
,

2 1 ,

n

n

f g
f g

f g

σ
σ

σ

∞

=

 =  
  +∑ Z ....... (1)

As 1
1

t
t

≤
+

 for all 0t ≥ , the series in (1) is dominated by 
1

1
2

n

n

∞

=

 
 
 ∑ and hence it is convergent.

Theorem 10.2 :  ( )( ), ,C G σΩ  is a complete metric space.

SPACES  OF  ANALYTIC  FUNCTIONS  AND  THE  RIEMANN
MAPPING  THEOREM

UNIT  -  X
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Spaces of Analytic Functions :

Let G be an open subset of the complex plane. Let ( )H G  is the collection of analytic functions

on G. Then we consider ( )H G  as a subset of ( ),C G £ , and  the metric on ( )H G  is the metric

which it inherits as subset of ( ),C G £ .

Theoerm 10.3 : If  { }nf  is a sequence in H (G) and f  belongs to ( ),C G £  such that nf f→  then

f  is analytic and ( ) ( )k k
nf f→  for each integer 1k ≥ .

Proof :  Let { }nf is a sequence in ( )H G  and ( ),f C G∈ £  such that nf f→ .

To prove f is analytic we use Morera’s theorem. Let T be a triangle contained inside a disk

D G⊂ .

Since T is compact, nf f→  uniformly over T..

Therefore,

lim n
n

T T

f f
→∞

=∫ ∫ ...... (1)

As each nf  is analytic on G and T is a closed rectifiable curve in a disk D, by Cauchy’ss

theorem.

0n
T

f =∫ , for each n.

Therefore from (1) we have,

0
T

f =∫

Thus f must be analytic in every disk D G⊂ , by  Morera’s theorem, and hence f is analytic in

G. Now we prove that ( ) ( )k k
nf f→  for each integer 1k ≥ .

Let ( );D B a r G= ⊂ . Choose R > r such that ( );B a R G⊂ .

Let γ  is the circle z a R− = , then by Cauchy’s integral formula, for each integer 1k ≥ , and

each n, we have

( ) ( )
( ) ( )

( )
( ) ( )

1
!

2
k k n

n k
r

f w f wk
f z f z dw

i w zπ +

−
− =

−
∫ , z D∈ ...... (2)

Since { }γ  is compact, uniformly on { }γ .

Let ( ) ( ) { }{ }sup :n nM f w f w w γ= − ∈ ,



119  

then 0nM → , as nf f→ .

Further for z D∈  and { }w γ∈ , we have

( ) ( )w z w a a z− = − + −

w a z a≥ − − −

w a z a≥ − − −

R r≥ −

1 1
w z R r

⇒ ≤
− − .... (3)

Thus from (2) and (3), for z D∈ , we have

( ) ( )
( ) ( )( ) ( )

1

!
2

nk k
n K

r

f w f wk
f z f z dw

w zπ +

−
− ≤

−
∫

( ) 1

!

2
n

k
r

k M
dw

R rπ +
≤

−
∫

( ) 1

!
2

2
n

k

k M
R

R r
π

π +
= ⋅

−

( ) 1

! n
k

k M R

R r +
=

−

Therefore for each Z D∈ ,

( ) ( )
( )

( ) ( )
1

!
lim lim 0k k

n nkn n

k R
f z f z M

R r +→∞ →∞
− = =

−

Hence ( ) ( )k k
nf f→  uniformly on ( ),D B a r= .

Let k be an arbitrary compact subset of G. Let ( )0 ,r d K G< < ∂ , then there are 1a , 2a , ....,

na   in K such that

( )
1

;
n

j
j

K B a r
=

⊆ ∪

Since ( ) ( )k k
nf f→  uniformly on each ( );jB a r , the convergence is uniform on K.

As K is an arbitrary compact subset of G, ( ) ( )k k
nf f→  uniformly on G..
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Corollary 10.1 : ( )H G  is a complete metric space.

Proof :  As ( )H G  is  collection of analytic functions on G and ( ),C G £  is the set of all continuous

functions, ( )H G  is subset of ( ),C G £ .

Thus ( )H G  is a subspace of comlete metric space ( ),C G £  with metric induced on ( )H G

by metric on ( ),C G £ .

To prove ( )H G  is complete metric space it suffices to show that ( )H G  is closed in ( ),C G £ .

Let { }nf  be any  sequence in ( )H G  converging to f, ( ),f C G∈ £ .

By Theorem 10.3 :f G → £  is analytic on G, and hence ( )f H G∈ .

This proves ( )H G  is closed in complete metric space ( ),C G £ , hence ( )H G  is complete.

Corollary 10.2  :

If :nf G → £  is analytic and ( )
1

n
n

f z
∞

=
∑  converges uniformly on compact sets to ( )f z  then

( ) ( )( ) ( )

1

k k
n

n

f z f z
∞

=
= ∑

Proof : Let :nf G → £  is qualatic

Let ( )
1

n
n

f z
∞

=
∑  converges uniformly on compact sets to ( )f z .

Define ( ) ( )
1

n

n j
j

S z f z
=

= ∑ , then by assumption nS f→  uniformly on compact sets.

Therefore, by Theorem 10.3

( ) ( )k k
nS f→  uniformly on compact set.

( ) ( ) ( ) ( )( ) ( )

1 1
lim lim

n
k k

n j j
n n j j

f z S z f z f z
∞

→∞ →∞ = =
⇒ = = =∑ ∑
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Theoerm 10.4  (Hurwitz’s Theorem) :

Let G be a region and suppose the sequence { }nf  in ( )H G  converges to f. If 0f ≡ ,

( );B a R G⊂ , and ( ) 0f z ≠  for z a R− =  then there is an integer N such that for n N≥ ,  f and

nf  have the same number of zeros in ( );B a R .

Proof :  Let G be a region and let the sequence { }nf  in ( )H G  converges to f.

Let 0f ≡ , ( );B a R G⊂  and ( ) 0f z ≠  for z a R− = .

Define  ( ){ }inf :f z z a Rδ = − =

As ( ) 0f z ≠  for z a R− > , we have 0δ > .

Since nf f→  uniformly on { }:z z a R− = , corrosponding to 
2
δ

 there is an N ∈ ¥  such

that if n N≥  and z a R− =  then

( ) ( ) ( ) ( ) ( )
2n nf z f z f z f z f z
δ

δ− < < ≤ ≤ +

Therefore, by Rouche’s theorem f and nf  have the same number of zero’s in ( );B a R .

Corollary 10.3 :

If { } ( )nf H G⊂  converges to f in ( )H G  and each nf  never vanishes on G then either

0f ≡  or f never vanishes.

Proof :  Let { } ( )nf H G⊆ , ( )f H G∈  and nf f→ .

Let each nf  never vanishes on G..

If f is not identically zero, then ( ) 0f a =  for some a G∈ . Since zeros of an analytic function

are isolated, there is R > 0 such that ( ),B a R G⊆  such that 0f ≡  on ( ),B a R .

Therefore by Hurwitz’s Theorem there is an integer N such that for n N≥ , f and nf  have the

same number of zeros in ( );B a R .

This is contradiction to the assumption each nf  never vanishes on G..

Definition 10.3 (Normal Family) : A set ( ),C G⊂ £F  is normal if each sequence in F  has a

subsequence which converges to a function  f  in ( ),C G £ .
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Definition 10.4  (Equicontinuous Family) :

A set ( ),C G⊆ £F  is equicontinuous at a point 0z  in G iff for every 0ε >  there is a  0δ >

such that

if 0z z δ− <  then ( ) ( )( )0,d f z f z ε< , for all f ∈ F .

We say that F  is equicontinuous on E G⊂  if for every 0ε >  there is a 0δ > such that

if ,z w E∈  and z w δ− <  then ( ) ( )( ),d f z f w ε< , for all f in F .

Remark 10.1 :

1. If F  consists of single function f then the statement that F  is equicontinuous at 0z  is only the

statement that f is continuous at 0z .

2. { }f=F  is equicontinuous over E is equivalent to saying that f is uniformly continuous on E.

Definition 10.5  (Locally bounded family) :

A family ( )H G⊂F  is locally bounded if for each a G∈ , there are constants M and r > 0

such that for all f ∈ F ,

( )f z M≤ , for z a r− < .

Alternatively, F  is locally bounded if there is an r > 0 such that,

( ){ }sup : ,f z z a r f− < ∈ < ∞F .

That is, F  is locally bounded if about each point a in G there is a disk on which F  is
uniformly bounded.

We state few theorems without proof which are required to prove Montel’s theorem and its
consequences.

Theorem 10.5 :

A set ( ),C G⊂ £F  is normal iff its closure is compact.
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Theorem 10.6 (Arzela-Ascoli Theorem) :

As set ( ),C G⊆ £F  is normal iff the following two conditions are satisfied.

(a) for each z in G, ( ){ }:f z f ∈ F  has compact closure in Ω ;

(b)  F  is equicontinuous at each point of G..

Theorem 10.7 :  A set F  in H (G) is locally bounded iff for each compact set K G⊂  there is a

constant M such that ( )f Z M≤  for all f ∈ F  and z in K.

Theorem 10.8 (Montel’s Theorem) : A family F  in H (G) is normal iff F  is locally bounded.

Proof :  Let ( )H G⊆F .

Let F  is normal.

We have to prove that F  is locally bounded. If possible F  is not locally bounded, then there
is a compact set K G⊂  such that

( ){ }sup : ,f z z K f∈ ∈ = ∞F

This implies for each n, there is nf ∈F  such that ( )
nf z n≥  for each z K∈ . That is, there

is a sequence { }nf  in F  such that

( ){ }sup :nf z z K n∈ ≥ .... (1)

But as F  is normal there is a function ( )f H G∈  and a subsequence { }knf of { }nf  such

that knf f→ .

Since K G⊂  and ( )f H G∈ ,  f is continuous on compact set K, and hence f is bounded on

K. Thus there is M > 0 such that

( ){ }sup :f z z K M∈ ≤ .... (2)

From (1) and (2) we have

( ){ }sup :
kk nn f z z K≤ ∈

     ( ) ( ){ } ( ){ }sup : sup :
knf z f z z K f z z K≤ − ∈ + ∈

     ( ) ( ){ }sup :
knf z f z z K M≤ − ∈ + .... (3)
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Since knf f→ , we have

( ) ( ){ }lim sup : 0n
k

f z f z z K
→∞

− ∈ = .... (4)

Usince (4) we have

lim k
k

n M
→∞

≤ , a contradiction to the fact lim k
k

n
→∞

= ∞ .

Therefore F  must be locally bounded.

Conversely, let F  is locally bounded.

To prove F  is normal we use Arzela-Ascoli theorem.

(a) As F  is normal, for each a G∈  there are constants M and r > 0 such that for all f ∈ F ,

( )f z M≤ , for all ( ),z B a r∈ .

In particular, ( )f a M≤ , f∀ ∈F .

( ){ } ( ): 0;A f a f B M⇒ = ∈ ⊆F

( )0;A B M⇒ ⊆

Thus A  is closed bounded subset of  £  and hence compact by Heine Borel theorem.

We have proved that for each a G∈ , ( ){ }:f a f ∈F has compact closure in £ .

(b) We now prove that F  is equicontinuous at each point of G..

Fix any a G∈ .

Let 0ε >  be given.

Since F  is locally bounded there are constants M and r > 0 such that ( );B a r G⊂  and

( )f z M≤  for all ( );z B a r∈ , and all f ∈ F .

Let 
2
r

z a− <  and f ∈ F  then using Cauchy’s formula with ( ) itt a reγ = + , 0 2t π≤ ≤ ,

we have

( ) ( ) ( ) ( )1 1
2 2

f w f w
f a f z dw dw

i w a i w z
γ γ

π π
− = −

− −∫ ∫

( )1 1 1
2

f w dw
i w a w z

γ
π

 = − − − ∫
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( ) ( )
( ) ( )

( )1
2

r

w z w a
f w dw

i w a w zπ
 − − − 

=  − − ∫

( )
( ) ( )

( )1
2

r

a z
f w dw

i w a w zπ
−

=
− −∫

Therefore,

( ) ( ) ( )1
2

r

a z
f a f z f w dw

w a w zπ
−

− ≤
− −∫

1
2

2
2 2

M a z
r

r r
π

π
−

≤
⋅

4M
a z

r
= −

Choose { },
2 4
r r

M
δ ε< , then for a z δ− < , we have ( ) ( )f a f z ε− <  for all f ∈ F .

Thus F  is equicontinuous at each a G∈ .

We have proved that F  satisfies the conditions of Arzela-Ascoli theorem. Therefore F  is
normal.

Corollary 10.4  : A set ( )H G⊂F  is compact iff it is closed and locally bounded.

Proof :  We know the theorems

1) A set ( ),C G⊂ £F  is normal iff F  is compact.

2) ( )H G⊂F  is normal iff F  is locally bounded.

Therefore F  is locally bounded iff F  is compact.

This implies F  closed and locally bounded iff =F F  is compact.
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The Riemann Mapping Theorem

Definition 10.6 :

A region G1 is conformally equivalent to the region G2 if there is analytic function 1:f G → £
such that f is one-one and ( )1 2f G G= .

This is an equivalence relation.

Definition 10.7 :

An open set G is simply connected if G is connected and every closed rectifiable curve in G is
homotopic to zero.

Theorem 10.9 : Let G be an open connected subset of £ . Then the following are equivalent.

(a) G is simply connected.

(b) ( ); 0n qγ =  for every closed rectifiable curve γ  in G and every point a in G −£ .

(c) G∞ −£ is connected.

(d) For any ( )f H G∈  such that ( ) 0f z ≠  for all z in G , there is a function ( )g H G∈  such

that ( ) ( )[ ]2
f z g z= .

Theorem 10.10 (Open Mapping Theorem)

Let G be a region and suppose that f is a non-constant analytic function on G. Then for any
open set U in G,  f (U) is open.

Theorem 10.11 (Identity Theorem)

Let G be a connected open set and let :f G → £  be an analytic function. Then the following

are equivalent statements.

(a) 0f ≡

(b) there is a point a in G such that ( )( ) 0nf a =  for each 0n ≥ .

(c) ( ){ }: 0z G f z∈ =  has a limit point in G..

With this basics in our hand we prove the well known Riemann mapping theorem.
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Theorem 10.12 (Riemann Mapping Theorem)

Let G be a simply connected region which is not the whole plane and let a G∈ . Then there is
a unique analytic function :f G → £  having the properties :

(a) ( ) 0f a =  and ( )' 0f a > ;

(b) f is one-one.

(c) ( ) { }: 1f G z z= < .

Proof :  Let G be a simply connected region which is not the whole plane and let a G∈ .

Define,

( ) ( ) ( ) ( ){ }:  is one-one, 0, ' 0 and f H G f f a f a f G D= ∈ = > ⊂F

where { }: 1D z z= <

We give the proof in the following steps.

Step 1 :  F  is nonempty..

Step 2 : { }0= ∪F F , that is, if f ∈ F  then either f ∈ F  or 0f ≡  on G....

Step 3 :  There exists f ∈ F  such that ( )f G D= .

Setp 4 :  f is unique satisfying the conditions in (a), (b) and (c).

Let us proceed towards the first step.

Step 1 :  We prove F  is non-empty. As G ≠ £ , G is proper subset of £ . Thus there is b∈£  such
that b G∉ .

Since G is simply connected, ( )z b H G− ∈  and 0z b− ≠  for all z in G, there is a function

( )g H G∈  such that

( )[ ]2
g z z b= −

If z1 and z2 be any point in G then

( ) ( ) ( ) ( )2 2
1 2 1 2g z g z g z g z= ± ⇒ =      

1 2z b z b⇒ − = −

1 2z z⇒ =
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In particular, g is one-one and

( ) ( )1 2 1 2g z g z z z= − ⇒ = , 1 2,z z G∀ ∈ .... (1)

As g is non constant analytic function on G, by open mapping theorem, ( )g G  is open in £ .

Further, a G∈  implies ( ) ( )g a g G∈ .

Therefore there exists r > 0 such that

( )( ) ( );B g a r g G⊂ ..... (2)

We claim that ( ) ( )g z g a r+ ≥ , z G∀ ∈  , that is,

( )( ) ( );B g a r g G φ− =∩

If ( )( ) ( );B g a r g G φ− ≠∩ , there is z G∈  such that ( ) ( )( );g z B g a r∈ − , that is,

     ( ) ( )g z g a r+ <

( ) ( )g z g a r⇒ − − <

( ) ( )( );g z B g a r⇒ − ∈

( ) ( )g z g G⇒ − ∈ [∵  By (2)]

Therefore, w G∃ ∈  such that ( ) ( )g z g w− = .

But (1) implies that z = w.

Thus ( ) ( ) ( )g z g w g z= = − .

( )2 0g z⇒ =

( )[ ]2
0g z⇒ =

0z b⇒ − =

z b⇒ =

But z = w gives that b w G= ∈ , a contradiction.

Thus we must have

( )( ) ( );B g a r g G φ− =∩

( ) ( )g z g a r⇒ + ≥ , z G∀ ∈ .... (3)
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Inparticular for z a G= ∈ , we have

( ) ( ) ( )2g a g a r g a r+ ≥ ⇒ ≥

( )
2
r

g a⇒ ≥ .... (4)

Define, :h G → £  by

( ) ( )
( )

( )

( )

( ) ( )
( ) ( )2

'
4 '

g ar g a g z g a
h z

g a g z g ag a

−
= ⋅ ⋅ ⋅

+
,  z G∈ ..... (3)

As ( )g H G∈ , we have ( )h H G∈ .

Further ( ) 0h a = .

Let 1 2,z z G∈  and ( ) ( )1 2h z h z=

then 
( ) ( )

( ) ( )
( ) ( )

( ) ( )
1 2

1 2

g z g a g z g a
g z g a g z g a

− −
=

+ +

( ) ( )1 2g z g z⇒ =

1 2z z⇒ = , as g is one-one.

This proves h is one-one.

From (3), we have

( )
( )

( )

( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )[ ]2 2
' ' '

'
4 '

g a g z g a g z g z g a g zr g a
h z

g a g a g z g a

+ − −
= ⋅ ⋅ ⋅

+

         
( )
( )

( )

( )

( ) ( )

( ) ( )[ ]2 2
' 2 '

4 '
g ar g a g z g z
g a g a g z g a

= ⋅ ⋅ ⋅
+

Therefore,

( )
( )
( )

( )

( )

( ) ( )

( )[ ]2 2
' 2 '

'
4 ' 4

g ar g a g a g a
h a

g a g a g a
= ⋅ ⋅ ⋅

         
( )

( ) 2
'

0
8

g ar

g a
= ⋅ >

Thus ( )' 0h a > .
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Now

( ) ( )
( )

( )

( )

( ) ( )
( ) ( )2

'
4 '

g a g ar g z g a
h z

g z g ag a g a

−
= ⋅ ⋅ ⋅

+

         ( )
( ) ( )
( ) ( )

1
4
r g z g a

g z g ag a
−

= ⋅
+

        
( ) ( )

( ) ( ) ( )[ ]4
r g z g a

g a g z g a
−

=
+

        
( ) ( )[ ] ( )
( ) ( ) ( )[ ]

2
4

g z g a g ar
g a g z g a

+ −
=

+

        ( ) ( ) ( )
1 2

4
r

g a g z g a
= −

+

        ( ) ( ) ( )
1 2

4
r

g a g z g a
 ≤ + + 

       
2 2

4
r

r r
 ≤ + 
 

[ ∵  By (3) and (4)]

       =  1

Thus ( ) 1h z ≤ , z G∀ ∈ .

But h being non consant analytic function G, it cannot attains its maximum on G.

Hence ( ) 1h z < , z G∀ ∈ .

( )h G D⇒ ⊂

We have  proved that ( )h H G∈ , h is one-one, ( ) 0h a = , ( )' 0h a >  and ( )h G D⊂ .

Therefore h ∈F , and consequently, F  is nonempty..

Step 2 : In this step we prove that { }0= ∪F F .

Let any f ∈ F .

Then there is a sequence { }nf  in F  such that nf f→  on G..
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Therefore,

( ) ( )lim n
h

f a f a
→∞

=  and ( ) ( )' lim 'n
h

f a f a
→∞

=

But for each n, nf ∈F  implies ( ) 0nf a =  and ( )' 0nf a > .

Thus ( ) 0f a =  and ( )' 0f a ≥ .... (5)

We claim that ( )' 0f a ≠ .

Fix any 1z G∈  and let 2z G∈  such that 1 2z z≠ .

Then 0ε∃ >  such that ( )1 2;z B z Kε∉ = .

Let ( )1f z ξ=  and ( )1n nf z ξ= , for each n.

Since nf  is one-one for each n, n nf ξ−  is never vanishing on K.

As nf f→ , n nf fξ ξ− → −  on K.

As K is compact n nf fξ ξ− → −  uniformly on K, so Hurwitz’s theorem gives that ( )f z ξ−

never vanishes on K or ( ) 0f z ξ− ≡ .

If ( ) 0f z ξ− ≡  on K then ( )f z ξ=  on G, that is, f is the constant function ξ  throughout G..

Since ( ) 0 0f a ξ= ⇒ = , and hence we have 0f ≡  on G..

On the other hand if ( )f z ξ−  is never vanishing on K, then

( ) ( )1 2 1 2z z f z f zξ ξ≠ ⇒ − ≠ −

( ) ( )1 2f z f z⇒ ≠

Thus f is one-one

But if f is one-one than f ’ can never vanish, so (5) implies ( )' 0f a > .

Next, for each n, nf ∈F  implies ( )nf G D⊂ , that is ( ) 1nf z < .

Therefore,

( ) ( ) ( )lim lim 1n n n
n n

f z f z f z
→∞ →∞

= = ≤

If ( ) 1f z =  for some z G∈ , maximum modulus theorem forces f to be constant.
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Thus we must have

( ) 1f z < , z G∀ ∈

( )f G D⇒ ⊂

Therefore f is analytic on G, ( ) 0f a = , ( )' 0f a > , f is one-one and ( )f G D⊂ .

This proves f ∈ F .

We have proved that for any f ∈ F , either f = 0 or f ∈ F .

Hence { }0= ∪F F .

Step 3 :  We prove that there exists f ∈ F  such ( )f G D= .

Consider the function ( ): H Gφ → £ , defined by

( ) ( )'f f aφ =

Let { }nf  be any sequence in ( )H G  and ( )f H G∈ such that nf f→  then f is analytic and

( ) ( )k k
nf f→  for each integer 1k ≥ .

Inparticular ( ) ( )' ' ' 'n nf f f a f a→ ⇒ → .

( ) ( )nf fφ φ⇒ →

This proves φ  is continuous.

Further, ( )f G D⊂ , f∀ ∈F  implies that

( ){ }sup : , 1f z z D f∈ ∀ ∈ ≤F

Hence, F  is locally bounded an consequently, by Montel’s theorem F  is compact.

As φ  is continuous on compact set F , there is f ∈ F  such that

( ) ( ){ }max :f g gφ φ= ∈F

( ) ( ){ }' max ' :f a g a g⇒ = ∈ F

( ) ( ){ }' max ' :f a g a g⇒ = ∈ F

( ) ( )' 'f a g a⇒ ≥ ,  g∀ ∈ F .... (6)

As φ≠F  and { }0= ∪F F  implies f ∈ F .
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For this f we prove that ( )f G D= .

If ( )f G D≠ , then there is w D∈  such that ( )w f G∉ .

Thus ( )w f z≠ , z G∀ ∈ .

This implies 
( )

( )
( )

1
f z w

H G
wf z

−
∈

−   and 
( )

( )
0

1
f z w

wf z
−

≠
−  for z G∈ .

Therefore, there is an analytic function :h G → £  such that

( )[ ] ( )
( )

2

1
f z w

h z
wf z

−
=

− ..... (7)

Since the Mobius transformation 1
w

T
w

ξ
ξ

ξ
−

=
−  maps D on D, we have ( )h G D⊂ .

Define :g G → £  by

( ) ( )
( )

( ) ( )
( ) ( )

'
' 1

h a h z h a
g z

h a h a h z

−
= ⋅

−

then g is analytic and ( )g G D⊂ .

Further ( ) 0g a = , g is one-one and

( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )
2

' 1 ' '
'

' 1

h a h a h z h z h z h a h a h z
g z

h a h a h z

− − −
= ⋅

 − 

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

2
' ' 1
' 1

h a h z h a h z h z h a h a h a
h a h a h z

− − +
= ⋅

 − 

Therefore,

( )
( )
( )

( ) ( )

( )

2

22

' ' 1
'

'
1

h a h a h a
g a

h a
h a

 − = ⋅
 − 

( )

( ) 2
'

1

h a

h a−
.... (8)
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But,

( ) ( )
( )

2

1
f a w

h a w w
wf a

−
= = − =

− .... (9)

Differentiating (7) we obtain

( ) ( )
( )[ ] ( )( ) ( )[ ] ( )( )

( )[ ]2
1 ' '

2 '
1

wf z f z f z w wf z
h z h z

wf z

− − − −
=

−

       
( ) ( ) ( )

( )[ ]

2

2
' 1

1

f z wf z wf z w

wf z

 − + − =
−

( ) ( ) ( )

( )[ ]
( )

2
2

2
' 1

2 ' ' 1
1

f a w
h a h a f a w

wf z

 −   ⇒ = = − 
−

, as ( ) 0f a =

( ) ( ) ( )
( )

2' 1
'

2
f a w

h a
h a

−
⇒ = .... (10)

Using (9), (10) in (8) we obtain,

( ) ( )( )
( )

2' 1 1
'

12

f a w
g a

ww

−
= ⋅

−

( ) ( ) ( )' 1 1
12

f a w w
ww

− +
= ⋅

−

( ) ( ) ( )1
' ' ' 0

2

w
g a f a f a

w

 + 
= > > 

 

Thus ( )' 0g a >  and ( ) ( )' 'g a f a> .

This gives that g ∈ F  and contradicts to the choice of f, given in (6).

Hence, we must have ( )f G D= .

Step 4 :  We prove that f is unique satisfying conditions (a), (b) and (c).

Suppose there is analytic function :g G → £  satisfying the conditions (a), (b) and (c).

Then 1 :fog D D− →  is analytic, one-one and onto.
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Also ( ) ( ) ( )( ) ( )1 10 0 0fog f g f a− −= = = .

Hence, by Schwartz’s lemma, there is a constant c with 1c =  and ( )1fog z cz− =  for all

z D∈ .

As ( )g G D= , ( )z G g z D∈ ⇒ ∈ .

Thus ( ) ( )( ) ( )1fog g z cg z− = , z G∀ ∈

( )( )( ) ( )1f g g z cg z−⇒ = , z G∀ ∈

( ) ( )f z cg z⇒ = , z G∀ ∈ ..... (11)

⇒  ( ) ( )0 ' 'f a cg a< = .

But ( )' 0g a >  implies c > 0.

Thus 1 c c= = .

Therefore from (11) we have,

( ) ( )f z g z= , z G∀ ∈ .

Hence f g=  on G. This proves the uniqueness.

❁ ❁ ❁
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