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Preface

The Shivaji University, Kolhapur has established the Distance Education Centre
for external students from the year 2007-08, with the goal that, those students who are
not able to complete their studies regularly, due to unavoidable circumstances, they
must be involved in the main stream by appearing externally. The centre is trying hard
to provide notes to those aspirants by entrusting the task to experts in the subjects to
prepare the Self Instructional Material (SIM). Today we are extremely happy to present
a book on Complex Analysis for M. Sc. Mathematics students as SIM prepared by us.
The SIM is prepared strictly according to syllabus and we hope that the exposition of
the material in the book will meet the needs of all students.

This book introduces the students the most interesting and beautiful analysis viz.
Complex Analysis. As a matter of fact Complex Analysis is a hard analysis, but it is
truly a beautiful Analysis. The first topic is an introduction to Complex analysis. The
second unit deals with Mobius transformations. The third unit introduces the reader to
the notion of complex integration. Fundamental theorem of algebra and maximum
modulus theorem are the results covered in the unit four. Unit five and six cover
concept of winding number, Cauchy's integral theorem, Open mapping theorem and
Goursat theorem. Laurent series development, Residue theorem with its application
to evaluation of Real integrals, Rouche's theorem and Maximum Modulus theorem are
the results contained in last two units.

We owe a deep sense of gratitude to the Ag. Vice-Chancellor Dr. A. A. Dange who
has given impetus to go ahead with ambitious projects like the present one. Dr. S. R.
Chaudhari and Dr. U. H. Naik have to be profusely thanked for the ovation for they have
poured to prepare the SIM on Complex Analysis (M.Sc. Mathematics).

We also thank Professor M. S. Chaudhary, Head of the Department of Mathematics,
Shivaiji University, Kolhapur, Director of Distance Education Mode Dr. Mrs. Cima Yeole
and Deputy Director, Shri. Sanjay Ratnaparakhi for their help and keen interest in
completion of the SIM. Thanks are also due to Mr. Girish Shelke who had taken pains
in typing the manuscript and Mr. Sachin Kadam for providing printing copy of the
manuscript neatly and correctly.

Prof. S. R. Bhosale
Chairman BOS in Mathematics
Shivaji University, Kolhapur-416004.
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UNIT -1

COMPLEX NUMBERS

Introduction

We know that in the real number system [J , the equation x* +a =0 has no solution.

This leads to introduction of complex number system in which equations of the form

x*+a=0 , where a>0, have solutions. This chapter introduces complex numbers, their

representation and basic properties.

Definition 1 The complex numbers can be defined as pair of real numbers
U ={(x,y):x,yell}. Equipped with addition (x,y)+(a,b)=(x+a,y+b) and
multiplication being defined as (x, y)(a,b) =(xa— yb,xb+ ya).

One reason to believe that the definitions of these binary operations are “good” is that [
is an extension of [ , in the sense that the complex numbers of the form (x,0) behave just
like real numbers; that is, (x,0)+ (a,0)=(x+a,0) and (x,0)(a,0)=(xa,0). So we can think
of the real numbers being embedded in [I as those complex numbers whose second
coordinate is zero. The following basic results states the algebraic structure that we
established with our definitions. Its proof is straightforward but nevertheless a good exercise.

1. Commutative law for addition : z, +z, =z, +z,.

2. Associative law for addition : z, +(z, +z,) =(z,+z,)+ z.

3. Additive identity : There is a complex number z' such that z+z,=z for all
complex number z . The number z, is an ordered pair (0,0).

4. Additive inverse : For any complex number z there is a complex number —z such
that z+(—z)=(0,0). The number —z is (-x,—y).

5. Commutative law for multiplication : zz, = z,z, .

6. Associative law for multiplication : z,(z,z,)=(zz,)z; .

iz, | vz i ik ik



7. Multiplicative identity : There is a complex number z' such that zz'=z for all
complex number z . The number z' is an ordered pair (1,0) .

8. Multiplicative inverse : For any non-zero complex number z there is a complex

number z' such that zz™' =(1,0) . The number z™' is ( 5 al = z_y 5 j
X +y x +y

9. The distributive law : z,(z, +z,) =z z, + z,z;.
If we write xfor the complex number (x,0). This mapping x —(x,0) defines a field
isomorphism of [] into [] so we may consider [| as a subset of [] .
If we put i :(O,l), then z :(x,y) :(x,0)+(0,y) :(x,0)+(0,1)(y,0) =Xx+iy.
Let z=x+iy, x,yell ,then x and y are called the real and imaginary parts of z and denote
thisby x=Rez, y=Imz.If x=0, the complex number z is called purely imaginary and if

y=0, then z is real. Note that zero is the only number which is at once real and purely

imaginary. Two complex numbers are equal iff they have the same real part and the same

imaginary part.

Complex Plane or Argand plane : The number z = (x, y) = x+iy can be identified with the

unique point (x, y) in the plane °. The plane > representing the complex numbers is
called the complex plane. The x-axis is also called the real axis and the y-axis is called the
imaginary axis.

Timaginan‘ aixis

0y ¢ —————- * =(xy)=xtiy
|
|
|
|
; ——
o (x,0) real axis

Definition 2 Let z=x+iy, x,y el then the complex number x—iy is called the conjugate

of z and is denoted by z.
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Following are the basic properties of conjugates.

z+z z—
1. Rez=

BESH

and Imz =

2i

2. z isrealiff z=z.

3.z,+z,=2z +z

4. zz,=2zz,.

5. (ijzi if z, 0.
Z Zy

6. §=z.

Definition 3 Let z=x+iy, x,y €] then modulus or absolute value of z is a non-negative

1
real number denoted by |z| and is given by |z|= (x2 +y° )E . The number |z| is the distance

between the origin and the point (x, y).
Following are the basic properties of Modulus.
1. |z|2 =zz

2. |le2| = |Zl||22|

|Zl|

=Bl 20,
|Zz|

i

Z,

4 zz,=7 7.

5. |2=I.

5. |~ [Re(2) 1| and b im(=) <[
7. |z + 2| <z |+,

8. |z, —z,| 2|z ||z -

9. Let z, =x, +1iy,, z, = x, +iy, then

|z, —z,| = ‘(x1 -x,)+i(3 -, )‘ = [(x1 —x ) + (1 -, )2}2 which is the distance between the

points (x,,,), (x,,,). Hence distance between the points z, and z, is given by | z, -z, | .

77 AN



Polar representation of complex numbers

Consider the point z=x+iy in the complex plane [] . This point has polar co-

ordinates (r,8) where x=rcos6 and y =rsin6. Thus z=x+iy=r(cos@+isinf).

1
Clearly r=|z|= (x2 + yz)2 which is magnitude of the complex number and & ( undefined if

z=0 ) is the angle between the positive real axis and the line segment from 0 to z and is
called the argument of z, denoted by f=argz.

We note that the value of argument of z is not unique. If § =argz, then 6+27n,
where 7 is an integer is also argz. The value of argz that lies in the range —7 < 6 < 7 is
called the principal value of argz.

If z,,z, are any two non-zero complex numbers then

l. argz =-—argz

2. argz, z, =argz +argz,.

3. arg{i} =argz —argz,.

Z,

Timaginanr aixis

2={x,y)=x+iy
=rcos@+irsing

|
|
|
|
: —
0 (x,0) real axis

We shall simply state

De Moivre’s Theorem : For any real number n, cosné+isinné is one of the values of

(cos@+isinf)".
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n™ Roots of Complex Numbers.

Let z=r(cos@+isind) be a non-zero complex number, then w= p(cosg+ising) is n"
root of z if w" =z, where n is a positive integer.
Therefore, p" (cos@+ising)" =r(cosf+isino)

p" (cosng+isinng) =r(cosd+isin6)

p" =r and np=0+2krx,where k is an integer.

1
Thus p=r" and go=9+2k7Z

, where £ is an integer.
n

However, only the values of & =0,1,2,...,(n—1) will give distinct values of w. Hence z

has n distinct n™ roots and they are given by

1
W= {COS(0+2kﬂj+isin(9+2kﬂﬂ where k£ =0,1,2,...,(n—1).

n n

Some Topological aspects

Note that [ is a metric space with respect to usual metric d(z,{)=[z—-¢|.

By an open disc , we mean the set {z:| z—a|<e} and is denoted by B(a;e ). And by

closed disc, we mean, {z:| z—a |S e} and is denoted by E(a € ) Further an annulus is
defined as the set {z:r <|z—a|< R} and is denoted by ann(a;r,R). The punctured disk of
radius € centered at a is defined by, B(a ;e )—{0} :{z:O<| z—a |£e}.

Definition 4 A subset G cllis open if, for each ze€§, there is an £>0 such that
B(z;e) < G. The point z, is said to be an interior point of the set S ] if there exists an

£>0 such that B(z;e)cS. Further, interior of S, written intS, is the set
Ezﬂ{G:Gis openand G < S}. The closure of Scll , denoted by S, is the set
§=ﬂ{F :Fis closed and F o S}. The boundary of S, denoted by odSand defined by

oS :§m(X—S). Further, a subset S is dense if S=0.
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Definition 5 A metric space (X,d) is connected if the only subsets of X which are both

open and closed are X and the empty set. Further, a subset S < X is connected if the metric

space (S,d) is connected.

Definition 6 If G isanopensetin [J and f:G —I[],then f is differentiable at a point a

in G if 1imf(“+h2_f(“)

lim exists. It is denoted by f'(a) and called derivative of f at a.

Definition 7 If f is differentiable on G, then we define f':G —[ . If f' is continuous

then we say that £ is continuously differentiable.

Definition 8 A differentiable function such that each successive derivative is again

differentiable is called infinitely differentiable.

Definition 9 A function f:G —1[] is analytic if f is continuously differentiable on G .

Power series

Definition 10 A series of the form Zan (z—a)" where a,a,,..,a,,.. are constants, is
n=0

called power series about a.

. R : = 1
Ex. The geometrical series E z" is power series about 0 and for |z| <1, E z" = 2
n=0 n=0 —Z

Theorem 11 For given power series Zan(z—a)” define a number 0<R<oo by
n=0

1
n , then

l—limsu |a
R pla,

a) If |z —a| < R , the series converges absolutely.
b) If |z — a| > R , the term of series become unbounded and so series diverges.

c) If 0<r<R,then the series converges uniformly on {z : |z - a| < r} .

Moreover the number R is the only number having properties (a) and (b).

iz, o Dok



Proof. We may suppose that a =0.

a) If |z| < R, then there is an » such that |z| <r<R, (l >%j . Thus by definition of limit
r

sup, there is an integer N such that

%<l forall » > N.
r

@,

a, <Ln forall n > N.
r

E
<| =
r

n
a,z

] forall » > N.

. = . . . Z ' . . .
Thus the series Zanz” is dominated by the series Z(LJ . Since the geometric series
n=0 r
o0 Z n . 0
Z(Lj converges for |z| <r, the series Zanz” converges absolutely for each |z| <R.
n=0\_ 7 n=0

b) Suppose |z| > R, and choose r such that |z| > 7> R ,(1 < %) . Thus by definition of limit
r

Vi >l. It follows that

sup, there are infinitely many integers n such that |an
,

> (Ej for all » > N and, since (Hj >1 these terms becomes unbounded and so

n
a,z
r r

the series diverges.

c)If 0<r<R,choose p suchthat r<p<R.Asin (a) we have |an|<Ln forall m > N.

< (E] < (Lj and (Lj <1. Hence, by Weierstrass M-test, the power
yo,

Thus if |Z| <r, ‘anz”
P P

series Z a,z" converges uniformly on |z| <r.
n=0
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Definition 12 The circle |z—a| = R which includes in its interior |z—a| < R , in which the

o0
power series Zan (z—a)" converges, is called circle of convergence . Radius R of this
n=0

circle is called radius of convergence of power series and in view of above result it is given

1

n .

1
by —=lim sup|a
Y - pla,

Theorem 13 If z a,(z—a)" 1is given power series with radius of convergence R , then
n=0

al’l

R=1lim if this limit exists.

a

n+l

Proof. We assume that a=0and let a=1m @y

. Suppose that |z|<r<aand find an

n+l

" then

n

integer N such that r< for all n>N. Let B=

a

n

a

n+l

N+1 _
ro = |a1v+1

N N _
|aN+l r <|aN|r =B,

N+2

_ N+1 N+1
|aN+2|r —|aN+2|rr <|aN+1|r <B.

Continuing this way we get, |a,r"|<B foralln > N.

igB@ forall m > N.
r r

Then ‘anz” = ‘anr”

0
Since |z| <rwe get that Z‘anz”‘ is dominated by convergent series and hence converges.
n=0

Since r < o was arbitrary this gives that « <R .

Now if |z| >r>a then |an| < r|an+1| forall n > N. As above we get ‘anr”

>B= ‘aNrN‘ for

n

all » > N. This gives that

z = .
a,z'|>2B———>o as n—>o. Hence Zanz” diverges and so
r

n
n=0

R<a.Thus R=«.
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Example 14 Find radius of convergence for the series

%) 2;— b)ioz—! 5 2(_1) (z—2i)"

n

n 2

0 n 1
Solution. a) Here Zz—n and a, =—, a=0 .
—o N

1
Therefore % =lim sup|an |? = lim sup
n

iﬂ‘n =lim supl =0
n

o0 n
) ) z" .
Thus radius of convergence for the series Z—n is R=o0.
n=0 n

That is the series converges in whole complex plane.
b) Here iz—n and a, zi, a=0 .
=n! n!

an+1

0

Therefore l =1lim
R

L
(n+l)‘

0 n
. . z"
Thus radius of convergence for the series E — s R=w.
n=0 n.

=D

¢) Here Zﬂ(z—%)" and a, = , a=2i .
n=0 n

S

Lust | — Jim
a}’l

Therefore l =1lim
R

(n+1)

Thus radius of convergence for the series zﬂ(z—%)” is R=1 and circle of
n=0 n

convergence is |z — 2i| =1.
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Theorem 15 Let f(z) = Zan (z—a)" have radius of convergence R > 0. Then

n=0
a) Foreach K >1 the series Z n(n-1)...(n—k+a,(z-a)" ...(1) has
n=k
radius of convergence R .

b) The function f is infinitely differentiable on B(a,R) and furthermore, f*(z)is

given by the series (1) for all K >1 and |Z—a| <R.
1 m
c) For n>20, a, =—'f (a).
n!
Proof. With no loss of generality assume that a=0.

Therefore f(z)= ianz” ...(2)

n=0

a) We first prove the result for K =1. That is the power series Zanz" and Z:nanz”‘1 have

n=0 n=1
same radius of convergence.

L
n—1

= : | S
Let g(z)= z na,z"" have radius of convergence R' where 7 =lim sup|nan

n=1

n .

Since R is radius of convergence of f(z)= Zanz" , % =lim sup|an
n=0

Now we have to show that R =R"'.

L L logn y
log| limn"! |=lim| logn"! |=lim—=—=1im42 =0

n—1 1

R
Therefore limn"! =¢° =1.

1 L 1
el = (limn”‘l ](lim sup|an n—l)

1
n-1 j = limsup |an

Thus lim sup|nan

n-1

= 1.(1imsup|an

0 0
Therefore the series z na,z"" and z a,z"”" have same radius of convergence.

n=l1 n=l1

=lao|+| 2
n=1

If |z|<R', we write Z‘anz” a,z"'|<o.
n=0

N ___ "



That is if |z| <R', i‘anz”‘ is convergent. Hence R>R".
n=0

Also if|z|<R,wewrite i‘anz”_l‘:ﬁi‘ ‘—@_HZ‘ ‘+—<oo for z#0.
n=1 Z| n=0
That is if |z| <R, f:anz”‘l is convergent. Hence R<R'.
n=1

Thus R=R".

0 0
Thus Zanz” and Z‘nanz”*1 have same radius of convergence.

o0 o0
Similarly ) na,z"" and ) n(n—1)a,z"” have same radius of convergence R.
n=1 n=2

Therefore by method of  induction for any K>1 the series

z n(n—1)....n—k+1)a,(z—a)"" has radius of convergence R.
n=k

b) For |z|< R, let S,(z) = Zakz and R (z)= Z a,z" sothat f(2)=S5,(2)+R (z).

k=n+1

Now fix a point we B(0;R), then there is 0<r <R such that [w|<r<R.

Let & > 0 be such that E(w;é‘)g B(0;r). Let ze B(w;6).

Consider
SOOI o4 = 550 g )15, 1) - g+ REZROD 5
Z—w z—w z=w
And
Zk—W
Re-rof_| 2! )<kzl|aklz‘w

| Z—Ww |‘ Z—w

o0
k-1 k-2 k-2 k—1
:Z|ak”z + 2wtz W T w

k=n+1

Skil|ak|{|z|k_l E i I
=n+

N ___ "



< i |ak|{rk’1 +r' P +r"*l}

k=n+1

0
k-1
ZZ|ak|k”

k=n+1

o0
Since r<R, Y l|a,|k " converges.

k=n+1

Therefore for any >0, there is an integer N, >0 such that z |ak| krt < % whenever

k=n+1

n=N,.
Thus for n > N,

<% (4

‘Rn (2)-R,(W)

zZ—Ww

Since lim S '(w)= g(w), there is an integer N, >0 such that|Sn '(w)—g(w)| < % ...(5)
whenever n> N, .

Let n =max{Nl,N2}.

Since lim

Zow

=S, '(w), for given >0, we choose 6 >0 such that

<% ...(6)

S,(2)=S,(w)
Z—Ww

511(2)__ n(VV)__ 1
somse g,

whenever 0 < |Z — w| <0.
Thus for given €> 0, there is 6 >0 such that

<Sh+S4+5, =e

‘f(Z)—f(W) et
zZ—Ww

whenever 0 < |z—w| <0.

Hence f is differentiable and f'(w)=g(w) forall we B(0;R).

v __ "



Thatis f'(z)= Z:nanz’H .
n=1
Similarly f"(z) =Y n(n—1)a,z""
n=2
()= n(n-)(n-2)a,z""
n=3

o0

andsoon f*(z)=> n(n-1)(n-1)..(n—k+a,z"" .

n=k

¢) From part (b) we have

f(0)=a,, f"O0)=1.a,, f"(0)=12.qa,,..., fP0)=123...k.a,.

Thus a, :%f(“(O)

Hence for f(z)= Zan (z—a)", a, = i'f(n)(a) .
o n!

Corollary 16 If the series Zan(z—a)” has radius of convergence R >0 then,
=0

f(z)=)_a,(z—a)" is analyticin B(a,R).
n=0
Proof. By above theorem if Zan(z—a)” has radius of convergence R >0, then
=0

f(z)= z a,(z—a)" is infinitely differentiable in B(a,R).

n=0
Therefore f', f" exists in B(a,R) implies that f' is continuous in B(a,R).

Thus f is continuously differentiable. Hence f is analytic in B(a,R).

Result 17 A domain G is connected iff its open as well as closed subset is either empty

orG.
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Theorem 18 If G is open and connected and f :G —[] is differentiable with f'(z) =0 for

all z in G, then f is constant.
Proof. Fix z, in Gandlet w, = f(z,). Let 4= {z eG: f(z2)= wo} . Clearly 4=0.

If A is open as well as closed, then by connectedness of G, 4=G . (i.e. f is constant )
First we prove that 4 - is open.

Now for a € 4. Let €>0be such that B(a;e) =G .

If zeB(a;e) we define g:[0,1]—> G by g(t)=f[tz+(1—t)a], 0<t<1.

g(t)—g(s) :f[ tz+(l-t)a ]—f[ Sz+(1—s)a]
t_

N

Then
t—s

_f[tz+(1—t)a ]—f[sz+(l—s)a] [tz+(1—t)a]—[sz+(l—s)a]
- [tz+(1—t)a]—[sz+(1—s)a] ' t—s

f[ tz+(-1t)a ]—f[ Sz+(1—s)a]
= (z—a)
[tz+(1—t)a]—[s Z+(1—s)a]

1ij:hmf[tz+(l_t)a]—f[SZ+(l—s)a]
s f—g s [tz+(A-1)a]-[sz+(1-s)a ]

(z—a)

g')=f"[sz+(-s)a](z—a)=0.(z—a)=0

Therefore g'(s)=0 for 0<s <1 implies that g is constant.
Hence g(1) = g(0) implies that f(z)= f(a) =w,.Therefore ze 4.
Thus if z € B(a;€) then z e A4 thatis B(a;e)c= A. Thus A4 is open.

We now prove that A4 - is closed.

Let z be limit point of A , then there is a sequence {zn} in Asuch that limz =z.
n—>0

Since f is continuous, f(z)= f(lim z, ) =lim f(z,) =limw, =w,. Hence ze€ 4.

Thus A contains all its limit points hence 4 is closed.
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EXERCISES

1) Find the radius of convergence of the followings
1 n 1 n NI N
a) > —z b) Z—!z c) D (3+4i)'z
d > L -2z e) > a"z" ael ) > k"2" kel .
n=0

OO0
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UNIT -1I

MOBIUS TRANSFORMATIONS

In this unit we study Mdbius transformations and their properties. We begin with bilinear

transformation.

. ) az+b . - ) .
Definition 19 A mapping of the form S(z)= is called bilinear or linear fractional

cz+

transformation where a,b,c,d €] .

. . . az+b . . e -
Definition 20 A bilinear transformation S(z)= with ad —bc #0 is called Mdbius

cz+

map or Mobius transformation.
Remarks 21 1) Mobius transformation is one-one and onto.

az+b then S~ (w) = —dw+b '
cz+d cw—a

2)If S(z) =

3)If Sand T are Mobius transformations then So7 is also Mobius

transformation.

4) S(z)=z+a ( Translation )
S(z)=az ( Dilation/Magnification )

S(z)=¢€"z (Rotation )

S(z)= 1 ( Inversion ).
V4

Theorem 22 If S is a Mobius transformation then S is composition of translation , dilation

and inversion.

e "



Proof. Let §(z) =210

cz+

Case 1. When ¢ =0 then S(z)= (%j z+ (éj

d
a b
Let S,(z) = (gj z, S,(z)=z+ (gj

Then S, 05,(z)=S,(S,(z)) =S, [(gj zj = (%jz +(§j = 5(z)

Thus S=5,35,.

Case 2. When ¢ #0

Let S()=z+L 8,()=1, Sﬁ):Mz, S,(2)=z+2.
C z C C

Then S, 08,058, 08,(z)=5,°S, S, (5,(2))

=S4053052(z+—

o | X
~—

with ad —bc # 0 be Mdobius transformation.
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_az+b

=5(2).
cz+d @)

Thus S=S5,08,08,08,.

Theorem 23 Every Mobius transformation can have at most two fixed points.

az+b

Proof. Let S(z)= with ad —bc # 0 be Mobius transformation.

cz+d

Let z be fixed point of S(z) then S(z)=z

az+b
cz+d

cz*+(d—a)z—b=0

z

which is quadratic in z. Hence it can have at most two roots. Therefore every Mdobius

transformation can have at most two fixed points otherwise S(z) =z for all z (Identity map ).

Theorem 24 Md&bius map is uniquely determined by its action on any three distinct points in

0..
Proof. Let z,z,, z, be three distinct points in [ . Let Sand 7" be Mdbius map such that
S(z))=w, 8(z,) =w,, S(z;) =wy and T(z)) =w;, T'(z,) = wy, T(z;) = w;.

Then

Thus T7' oS is a Mdbius map having three fixed points.
Hence 7' oS =1 (Identity map). Thus 7= .

Definition 25 For zell , the map denoted by (z,z,,z;,2,) where z,,z,,z, €[]  is called

cross ratio if it maps z,,z,,z, respectively to 1,0,00.
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More precisely the map z (z, 22,23,24) is a Mobius map that maps z,,z,,z, respectively

to 1,0,00 and is given by

S(Z):(Z’Zz’zvz‘*):(i:i3 j/(?:?j

Remarks 26 1) (22,22,23,24):1,(23,22,23,24)=0,(24,22,23,24)=oo.

2) (z,l,O,oo) =z.
3) Let M be any M6bius map such that M (w,) =1, M (w,) =0, M (w,) =
then M (z)= (z, wz,w3,w4) .
Theorem 27 If z,,z,,z, are distinct points and 7 is any Mobius map then
(z,,2,,25,2,) =(T%,,1z,,Tz,,Tz,) for any point z. ( Cross-ratio is invariant under any

Mobius map )
Proof. Let S(z) =(z, 22,23,24) and T is any Mdbius map. Let M =SoT ', then MoT =S .

Now, 1=8(z,)=MoT(z,)=M(T(z,))
0=S(z)=MoT(z,) = M (T(z))
0="8(z,) =M oT(z,) =M (T(z,))

Thus M(Z)I(Z,TZZ,TZ3,TZ4) then SOTil(Z)I(Z,Tzz,TZ3,TZ4).

Let 77'(z) =z, then z=T(z,). Therefore S(ZI)I(TZl,TZZ,TZ3,TZ4).

Thus (21,22,23,24)I(TZl,TZZ,TZ3,TZ4).

Theorem 28 If z,,z,,z, are distinct points in [J and w,,w,,w,are also distinct points of

[, then is one and only one Mobius map S such that S(z,) =w,, S(z;) =w;, S(z,) =w,.

Proof. Let T(z)=(z,z,,2;,2,) and M(z)=(z,wy,w;,w,).Let S=M"'oT then
S(z))=M"oT(z,))=M"' (T(Zz)) =M (1) =w,

S(st):M_l OT(Z3):M_1(T(Z3))

M_I(O)z W,

S(z)=M" OT(Z4)=M_1(T(Z4)) M‘l(oo)z w,

it |9 D



Thus we have a Mobius map § such that S(z,) =w,, S(z;) =w;, S(z,) =w,.

Uniqueness:

Let R be another Mobius map such that R(z,) =w,, R(z,) = w;, R(z,) = w,.
Then R0 S(z,)=R" (S(Zz)) =R (wz) =2z,

R'oS(z)=R" (S(Z3)) =R (W3) =z,

R'oS(z,)=R" (S(Z4)) =R (w4) =2z,
Thus R™' oS has three fixed points z,,z,,z, implies that R oS =1,

Therefore, R=S'.

Example 29 Evaluate following cross ratios a) (7+14,1,0,00) b) (2,1-4,1,1+1)

Sol. We have, S(z):(Z,ZZ’Z3’Z4):(z—Z3j/(zz—Z3j
zZ—2z, Z,—2Z,

a) (2,22,23,00):( i j

2,72z

Therefore, (7+i,1,0,00):(7+l;0j:7+i,

b) (2’1_i’1’1+i):[2—2&1i)j/((lfli;)(;lri)j:(liij/(—_ziijzl%iﬂ”'

Example 30 Find Mobius map which maps the points z,=2,z,=i,z,=-2 onto

w, =1,w; =i,w, =—1 respectively.

Solution Let Sbe the map that takes z, > w, (i=2,3,4). Since cross ratio is invariant
under any Mébius map, (z,z,,z;,2,) =(5z,5z,,5z,,5z, ) -

Therefore, (z,z,,25,2,) = (w,w,,w;,w,) , where S(z)=w.

Thus (z, 2,0, —2) = (w,l,i,—l)

) Ea)-Ga) )
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4(z-i)  2(w-i)

(z+2)(2-i) (w+1)(1-0)

2(z-i) _ (w-i)

D2z—iz4+4-2 w—iw+l—i

2(z—i)(w—iw+1-i)=(w—i)(2z—iz+4-2i)
w(2(z=i)-2(z-i)i)+2(z=i)(1-i) = w(2z—iz+4-2i)—i(2z —iz +4-2i)

o ~2z=i)(1-0)—i(22 iz +4-2i) _(2(1-0)=i(2-i)) 2 +(2i(1-1)—i(4-27))

2(z=i)=2(z=i)i—(2z—-iz+4=2i)  (2-2i—(2-i))z+(-2i+2" —(4-2i))

(=3)z+(=2i) _3z+2i
(—i)z+(—6) iz+6

Therefore, w=

Theorem 31 Let z,,z,,z,,z, be four distinct points inl] _, then (z,,z,,z;,z,)is real number

iff all four points lie on the circle.

Proof. Let S(z)=(z,z,,2;,z,) then S is a Mdbius map from U _ to [ . To prove this

theorem we have to prove that { well , :S(w)=real } is a circle.

Suppose  S(w)=real, then S(w)=S(w).

Let S(w) = aw+b with ad —bc #0.
cwW+
Thus, aw+b _ flv_’_é
cw+d  cw+d
Therefore, (ac—ac)|w|’ +(ad —bc)w+(be —ad)w+(bd —bd) =0 (D

Case 1. When ac is real.
Therefore, ac=ac , then from (1) we have,
(ad —bc)w+ (bc — ad)w+ (bd —bd) = 0 (2

Let @ = 2(ad —bc), B =i(bd —bd) then (2) becomes,
Dz 2 iy



gw+gv_v+£:0
2 i

i(aw+$v)+2,8:0

i.2i.Im(aw)+24=0

Im(aw)-£=0 ...(3)
Let a¢=p+ig, w=x+iy then aw= px—qy+i(gx+ py).

Therefore, Im(aw)— 8 =(gx+ py)— =0. Thus (3) represents a line y = (_—qjx + 5.
p

That is, w lies on the line determined by (3) for fixed @ and . We know that straight line

may be regarded as circle with infinite radius. Therefore, w lies on the circle.

Case 2. When ac is not real.

Therefore, ac # ac , then from (1) we have,

|w|2 N (ac_i—bc) it (bc—ad)v—v_'_ (bd —bd) 0

(ac —;c) (az—;c) (az—;c)
Le ;:(QE’-E’C],(;:_(’?‘Z-EO’],
ac—ac ac—ac

Therefore, |w|2 +}_/w+ 7v_v—5 =0
wv_v+}_/w+ 7v_v+7/7_/:5+77_/

(w+ 7)(v_v+}_/) = 5+;/7_/

|w+ }/|2 =0+ }/}_/
|w+ }/|2 =0+ }/}_/
Therefore, |w+ 7/| =1 ..(4)
where 4=+ ;/;_/)% _|@dzbel
ac—ac

Since y and A are independent of w, (4) represents a circle on which w lies.
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Theorem 32 A Mobius transformation takes circles onto circles.

Proof. Let Sbe a Mobius transformation. Let I' be a circle in [1 | and z,,z,,z, are distinct
points on I' such that S(z,)=w,, S(z;)=w,,S(z,)=w,. Then w,,w,,w, determine a
circle I'".
We claim that S(T)=T":
Since cross ratio is invariant under any Mdbius transformation, for any z in [ _,
(2,22,23,24) I(SZ,SZZ,SZ3,SZ4)
:(Sz,wz,w3,w4)

Now zel' < (z,z,,2y,2,) is real.

< (Sz,wy,wy,w,) is real.

= (z) el

Thus S(T)=T".

Theorem 33 For any given circles ['and I'' in [J  there is a Mdbius transformation 7' such
that 7' (F) =I"'. Furthermore we can specify that 7' takes any three points on I" onto any
three points of I''. If we do specify 7'(z,)=w, for j=2,3,4(distinct z, in T') then T is
unique.

Proof. Let z,,z,,z, be distinct points on I' and w,,w,,w,be points on I''. Let
S(2) :(2,22,23,24) and M(z) =(Z,W2,W3,W4).

Let T=M"oS then T(z,)=M"0S(z,)=M"(S(z,))=M"(1)=w,

T(z)=M"o8(z)=M"(S(z))=M"(0)=w,
Mﬁl(S(Z4))=M’1(oo)=w4

Thus 7 is a Mobius transformation that takes I"onto I''.

T(Z4)=M7105(Z4)=

Obviously Méobius transformation is unique.
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EXERCISES

1) Find fixed points of dilation, translation and inversion on C..

az+f and Sz — az+b

2) If Iz =
yz+0 cz+d

.Provethat T=S iff a =ad, f=bA y=cl, 6=dA,

for some complex number A.

OO0
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UNIT -11I

COMPLEX INTEGRATION

In this section we shall study complex integrations of complex functions and
established fundamental theorem of calculus for line integral. We show that an analytic
function has a power series expansion as a Taylor’s theorem. Form then we established

Cauchy’s estimate to prove Cauchy’s theorem. We begin with elementary definitions

Definition 1 A path in region Gl is a continuous function y:[a,b]—> G for some
interval [a,b] in [ .

If y'(t) exists for each ¢ in [a,b] and y':[a,b]—[] is continuous then y is called smooth
path. Also y is called piecewise smooth if there is partition of [a,b], a=1,<t <..<t =b,

such that y is smooth on each subinterval [z, ,¢,], 1< j<n.

Definition 2 Let y:[a,b] > G be a path then trace of y is { 7(t):te[a,b]} and it is
denoted by {}.

ie. {7} = { y(t):tela,b] } . Note that trace of a path is always compact.

Definition 3 A function y:[a,b]—[], for [a,b]cl], is of bounded variation if there is a

constant M >0 such that for any partition P = {a =1, <t <..<t, = b} of [a,b]

0(73P) = Xlrt) -7 | <M

The  total  variation of y, denoted by V(y) is defined as

V(y)= sup{u(j/;P) : P a partition of [a,b] } .

Definition 4 A path y:[a,b] > [ isrectifiable if y is a function of bounded variation.
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Theorem S Let y:[a,b] >[I be of bounded variation. Then:
a) If P and Q are partitions of [a,b] and P — Q then u(y;P) SU(;/;Q).
b) If o:[a,b]— U is also of bounded variation and «,f €l then ay+ fo is of bounded

variation and V(a7+ ,80) < |a| V(j/) +|ﬂ| V(O‘)

Theorem 6 If y:[a,b]—[] is piecewise smooth then y is of bounded variation and
b
y)={ly@)|ar.

Proof. Firstly we assume that y is smooth so that y' is continuous. Let

P={a=t,<t <..<t,=b} then

7P Z|7(t) 7(tkl)| Z

k=1

j ¥ (t)dt

/=

i tj' |y'(t)|dt
:J'|y'(t)|dt.

b
Hence, V(y)< “ y'(t)|dt, so that  is of bounded variation.

Since y' is continuous it is uniformly continuous. Thus for given €>0 we can choose o, >0
such that | 7'(s)—y'(t) | <e whenever| s—t | <0,. Also we choose &, >0 such that if

P={a=t,<t,<..<t,=b} and |P|=max{(t,~t,_,):1<k <m} <, then

jV@m Zjhmﬂ fiot)

<€ where 7, isany pointin [¢,_ .z, ].

jV@W<e+ZJva
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I

[ 7@ -r@)]d

tf y'(t)dt

lg

+>

k=1

If |P||< & =min (5,8, ) then |y'(z,)—y'(t)] <& for ¢ in [f,_,,7,] and
[lr@ldi< exe(b-a)+ X))

= e[1+(b—a):|+u(7;P)

< e[1+(b—a)]+V(}/).

b
Letting €— 0+ we get j|7'(t)|dt£V(}/).

Thus V(y)=j|y'(t)|dz.

Theorem 7 Let f and g be continuous functions on [a,b] and let ¥ and o be functions of

bounded variation on [a,b]. Then for any scalar ¢ and £:

b b

a) [(af+Bg)dy=a| fdy+ B[ edy

b

b) [ fid (ay+po)=a| fdy+ B[ gdo.

Theorem 8 If y is piecewise smooth and f:[a,b]—0 is continuous then

[fdy=[ 1 ywar.

Proof. To prove this theorem we consider real and imaginary parts of y, we reduce the proof

to the case where y([a,b])cl. For any e>0 choose &>0 such that if

P={a=t,<t,<..<t,=b} has |P| <& then

ide—Zn: tf f(rk)[y(tk)—y(tk_l)] <§ and

k=l

i, 21 i



n

.[f(t)y'(t)dt—z Jk- F@)r'@)(t, -t.) < EE for any choice of 7, in [t,_,,Z,]

k=1 iy

Now by Mean Value Theorem

if(rk)[;/(tk)—y(tk_l)] =if(rk)7'(rk)(tk —t,_,)for some 7z, in [t,_,z,].

Combining this with above two inequalities we get

b

b b b
j fdy- j f(t) y(t)dt | < €. Since e> 0 was arbitrary we have, j fdy= j F(0) y'\()dt .

a a

Definition 9 If y:[a,b] —>[] is a rectifiable path and f is a function defined and continuous

b
on the trace of y then (line) integral of 7 along y is J' f(7(t)) dy(t). This line integral is

also denoted by J- f= .[ f(z)dz.
e 4

Definition 10 Let y:[a,b]—[] and o:[c,d]—[] be rectifiable paths. The path o is
equivalent to y if there is a continuous function ¢:[c,d]—[a,b], which is strictly
increasing, and with ¢(c)=a,@(d)=b,suchthat oc=yo¢@.

The idea is to recognize all the paths having same trace as identical. The above definition
brings about a partition of the class of all paths. Thus we are prompted to define.

A curve is an equivalence class of paths. The trace of a curve is the trace of any one of its
members. A curve is smooth (piecewise smooth) if and only if one of its representative is

smooth (piecewise smooth). A curve C is called simple if it does not cross over itself. That is

7(4,)# 7(t,) whenever ¢, #¢,. A curve C is called a simple closed curve if i) y(a)=y(b)

ii) 7(#,)#(t,) whenever ¢, #1,, except when ¢, =a and ¢, =b. It is also called Jordan

curve.
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Theorem 11 Let y be a rectifiable curve and suppose that f is a function continuous on

{7} . Then:

a) [f==[7;

b) {[

) If cell then [ f(2)dz= [ f(z-c)dz.

y+c

< [flld=| v (sup[|2)):= € 2]

We shall conclude this chapter with

Theorem 12 Let G be an open set in [J and let y be a rectifiable path in G with initial and

end points « and fF respectively. If f:G —1[] is a continuous function with primitive

F:G—0 ,then [ f=F(B)-F(a).

We now prove Leibnitz theorem:

Theorem 13 Let ¢:[a,b] x [c,d]—>[ be a continuous function. Define g:[c,d]—>[ by

g)=[o(s,0)ds , Vie[c,d]

Then,
1) g is continuous function and
. op . ) . . . .
11) If — exists and continuous, then g is continuously differentiable.

ot

b
Moreover, g'(t) = j%go(s, t)ds.

Proof : 1) Let 7, €[c,d]and €>0.

Since ¢ is continuous on [a,b]x[c,d], we have ¢ is uniformly continuous on
[a,b]x[c.d].

Therefore, there is 0 >0 such that for each s €[a,b], we have,

i, 29 D



| (z)(s,t0+h)—¢)(s,t0)| < i,whenever | ty+h—t, |<5

Now, for | h |< O we have

| gty + )= g(ty) | = | [@ls,ty+h) ds—[p(s,1;) ds

.[[ o(s,t, +h)—@(s,1,) | ds

b

b
< j|¢(s,zo+h)—¢(s,to)|ds < j

a

(S (S

g ds :b—a (b—a)

=€
Thus, | g(t,+h)-g(t,)| < €, whenever | h|<&
l.e. g iscontinuous at ¢, €[c,d]

Since ¢, is arbitrary element of [c,d], we have g is continuous on [c,d].
. op . .
i) Suppose that 2 exists and continuous
Let ¢, €[c,d] and €>0
0
Denote, ¢,(s,t)= ago(s,t)

Again since ¢,(s,?) is uniformly continuous on [a,b]x[c,d], 3 6 >0 such that for each
s €la,b], we have
| @, (s,1)—@,(s,1,) | < €, whenever | t—t, |<5

t

J-[ ®,(5,7) = ,(5,2,) ]dT

)

jedr

fy

Thus, for | t—t, |< o0 and s €[a,b], we have <

t

ie |[[ (5. 0)=p,(s.8) Jdr

)

< € |t—t0 |,whenever | t—t, |<5 and s €[a,b]

- (1)
Let®(t) = o(s,t) —t @,(s,t,) , for some fixeds €[a,b]. Then ®'(¢)=p,(s,t)—@,(s,t,)

1.e. O(¢) is primitive of @, (s,t)— @,(s,t,)
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Then by Fundamental Theorem of Calculus for Line Integrals, we have

.[[ @,(5,7) =@, (s,1,) ]dT = O@)- (1)

= [(D(S’t)_(o(s’to)]_(t_to) ¢2(Sato)

Inequality (1) becomes,
| [o(s.0)=p(s,1)] = (t=1,) s (5.8,) | <€| =1, | )

Now,

O Y

= t—ll‘o |: Ji(z)(s,t) ds_z(P(Sato)dS:|_i¢z(Sato)dS

_ j|:¢(sat)_¢(sato)_(t_to)¢2(Sat0):|ds

t—t,

jw(sz) co(st) (=1) 2250,

1, \

b

<e .[ ds = e(b—a) (By equation (2))
Thus, for each €>0, 36 > 0 such that
b
w—jgpz(s,to) ds| < e(b—a), whenever 0< | -1, <5
B0 a
1.e. g is differentiable at ¢, and hence on [c, d].
b b
Next, g'(¢,) = J-(p2 (s,t,)) ds = .[g(o(s,to)ds
/ Y Ot
op

As @,(s,t) = o is continuous, we have g' is continuous
¢

Hence, g is continuously differentiable.
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2z

Example 14 Prove that j ©  ds= 27, when | z |<1

is
0 e —Zz

2z is
Solution: Define g:[0,1]—>[] by g(t):j ¢ 5 ds,V te[0,1]
—1z
0

e is

By Leibnitz rule,

g'(t)=2f2 ¢ ds =T ze’ ds
’ o\ e —1z o(e”—tz)z

0

zi ze"
- . Then @'(s) =— 5
e — tZ (ezs _ tZ)

Let ®(s) =

Thus, g'(t)=®(27r)-®(0) (By fundamental theorem of calculus for line integrals)

zZ1i zZ1i
eZ/ri -

~tz " —tz
=0
ie.g'(r)=0, V te[0,1]

Therefore, g is constant function
In particular, we have g(1) = g(0)

2 s 27
e [—=—ds=[ ds

0

IAY

Oe—z

2z eis
1.€. j . ds=2r.

is
0 e —Zz

Exercise 15 Show that I dz =2i, when |a| <.
| =

. Z—a

(Hint: putz = ¢" and use above example) .

The following theorem is known as Cauchy Integral Formula.
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Theorem 16 Let f:G — [ be analytic and suppose E(a,r)c G(r>0).If y(t)=a+re",

0<t<2z, thenf(z):%jf(w)

Ly w—z
/e

dw , for |z—a|<r.

Proof. Without loss of generality assumea =0 and » =1

That is we may assume that E(O, HhcG

Let z € E(O,l) ; we have to show that

_ s
/(@)= 27[1”[ w—z dw
_ 1 2r f(?i‘v)eiAvi ds

2niy e’ -z

1e. 27 f(z)= f%ds

0

f(z+1t(e" —z2))e”

Let ¢(s,t) = — f(z) where 0<s<27 and 0<¢<1
Since ‘z+t(e"s—z)‘ = ‘z(l—t)+te"s‘ < (1-1)|z |+t‘ e"‘v‘ <1, ¢ is well defined and

continuously differentiable

Now define g:[0,1]—[] by

g) = [ o(s,0) ds

Then by Leibnitz rule g ha s continuous derivative

2z

g0 [ = ol ds

0
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f é(f(m(e —2)e" _ f(z)j i
) O z

= f f(z+1(e" —z2))e’ds

Let O(s)=—it" f(z+t(e" —z)) then ®'(s)= f'(z+t(e" —z))e" for0<t<1

g't)=02xr)-d(0) (By fundamental theorem of calculus for line integrals)
=—it" fz+t(@ =2)+it" f(z+t(e" —2))
=0

g'(t)y=0 for0<¢<1

Since gis continuous on [0,1] we have g'(0)=0

g')=0 for0<r<1

g is constant on [0,1]

g)=¢g(0)

j{f(”ee e )}d {f(z)" e )}d

=f(z)rf e:iizds—zf ds}

= f(2)[27-27] =0.

Lemma 17 Let y be a rectifiable curve in [ and suppose that /' and F are continuous

functions on{y} . If F=u—limF, on {y} then IleimIFn :

Proof. Since F'=u-limF, , for givene> 0 there is an integer 7, >0 such that

|F, (W)= F(w) <%(7) forall we{y}and n>n,.
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Therefore

[F-]F I(F—F),,‘

/e 7

< [|Fw) = F, (w)]|aw]

e

<e

when n2>n,.

The following theorem gives the Taylor’s series expansion of an analytic function:

Theorem 18 Let fbe analytic inB(a,R). Then f(z):Zan(z—a)” for |z—a|<R
n=0

1 . . .
wherea, =— f *(a) and this series has radius of convergence >R.
n!

Proof. Since f is analytic in B(a,R), then there is 0 <r < R such that Z_9(a,r) c B(a,R).

Let y(¢)=a+re", 0<t <2z then by Cauchy integral formula , we have

na
27l

1
e

f(z)= jmdw for |z—d|<r. (D

w—z

Now

1 1 1

11 &fz-a)
== Z( aj. .2
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Since {y} is compact and f is continuous on {y}, f bounded on {y}

Let M =sup{ |f(w)| :we{y}}

Then

| f(w)(z— a)| [fw)|(z- a)\ M |z-ay|
‘(w a)"! |(W a) ‘(W a)‘

SM(MJ"
r r

Let M, =K(Mj , then iMn <o as M<1
r r n=0

r

| (w-a)”

By Weierstrass M- test the series ngw)(—z)—ni) converges uniformly to /) for
= (w—a w—z

we{y}

In view of (1), (2) and Lemma

A (W) Jw(z-a)" ,
j 2m jz

T2 ~ (w—a)""

If (w)(z -
=0 27rz (w— a)

:g{ziif e dw}(z—a)"

L (w-a)

_N oy _ 1 S w) B
_;an(z a)' where a, 2m'J;(w—a)”” dw, |z—a|<r

Thus f has power series expansion in B(a, R)

1 . .
a,=— £ (a), so that value of a, is independent of y, hence independent of r
n!
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Moreover , as 0 <r < R 1is arbitrary , we have
f(z)=>Ya,(z—a)" for |z—a|<R
n=0

clearly radius of convergence >R.

Corollary 19 If f:G — U is analytic and a € G then f(z):Zan(z—a)” for |z—a| <R
n=0

where R = d(a,@G) .
Proof. Since R=d (a,0G)=inf{d(a,0G):z€dG}=inf{|z—a|:z2€6G}, B(a,R) =G
Since f is analyticin G, f is analytic on B(a,R)

Hence by Taylor’s theorem,

f(z):ian(z—a)” for |Z—a|<R

Corollary 20 If /:G —[] is analytic then f is infinitely differentiable.
Proof. Suppose f:G — [ is analytic, then for any a € G, f has Taylor’s series expansion

about a
f(Z):ian(z—a)” for |z—da|<R, R=d(a,0G)
n=0

Then by theorem, f is infinitely differentiable.

= !
Corollary 21 If f:G — [ is analytic and B(a,7)c G then " (a)= " j f(w) - dw
27is, (w=a)"

where y(t)=a+re", 0<t<2rx
Proof. Suppose f:G —I[] is analytic and B(a,r)cG

Let y()=a+re", 0<t<2rx .

Then by Taylor’s theorem,

f(z)= gan (z—a)" where a = 2; [ AL

n+l
J(w-a)
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We also have,
1L
a, Z—'f( "(a)
n!

(Y — S (w)
Sa)= 27[1"[(w—a)”+1 w.

Example 22 Evaluate the integral .[ e—2 dz where y(t)=re", 0<t<2r.
z

Solution: Let f(z)=e", then f is analytic function

We have

o) _1_ f(2)
R e ! -0~

. 1'
e = dz
27rz z?

jj—idz=—27r.

Example 28 Evaluate the integral I % dz where y(t)=re", 0<t<2r.

/4

Solution: Let f(z)=sinz, then f is analytic function.
We have

/e,
(Z 0)2+1

ro0)=—— j

sin z

. 1
—sin(0) = — d
©) ﬂi'[ z’

Zdz=0.

Therefore J-s1n3

z
e
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dz where y(t)=a+re", 0<t<2r.

Example 23 Evaluate the integral J. 1
z_

Solution: Let f(z)=1, then f is analytic function.
We have
/()

(Z a)0+l

1@ =—— j

Lt
27wi? z—a
V4

dz

Therefore, .[ !
Lz—a

dz =27i .

e +sinz

Example 24 Evaluate the integral I dz where y(t)=re", 0<t<2r.

Solution: Let f(z)=¢€" +sinz, then f is analytic function.
We have

f()

(0) ly
/0= 27zz~[(z O)OHd

0! e’ +sinz
e’ +sin0=——
27[1 z

dz

.
e’ +sinz
Therefore j

4

dz =27i .

z

The following theorem is known as Cauchy’s Estimate

Theorem 25 Let f be analytic in B(a, R) and suppose that |f(z)| <M forall f in B(a,R).

Then

Proof. Since f is analytic in B(a,R), then there is 0 <7 < R such that E(a, ryc B(a,R).

Then by corollary,

! ,
" (a) = T j S(w) -dw where y(t)=a+re"', 0<t<2r.
27iY (w—a)™
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fon

(W— a)n+1

Therefore ‘f(”) (a)‘ = % 2’: j
1

ol
= 73 [ov=a)™

n\M
‘"aé

Since 0 <r < Ris orbitrary , letting » > R~ we get

Cauchy’s estimate leads us to Cauchy’s Theorem:

Theorem 26 Let f be analytic in the disk B(a,R) and suppose that y is a closed rectifiable

curve in B(a,R). Then If =0.
Proof. Since f is analytic in B(a,R), it has power series expansion
f(z)=>a,(z-a)" for |z—a|<R. ..(1)
n=0

Let

j(z a)™' =(z- a)Z( j(z a)" ..(2)

F(z)= z(

Since lim (7 + 1)4 =1

1

b b
= lim Sup |an |% lim (Lj = lim Sup |an |% .
n+l

lim Sup I
n+1

Thus series (1) and (2) have same radius of convergence.

Therefore, F is defined and analytic in B(a,R).
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Hence

F'(z)= Z( jn+1 )(z—a)" —Za (z—a)" = f(2).

i.e. F is primitive of f .

If y:[a,b] >0 then

J’f :J'F' =F(y(b))-F(y(a))=0, Sincey is a closed curve y(a) = y(b).

EXERCISES

1) Evaluate the integral j la’z , where y(t)=¢e™, 0<t <2z, nis some positive integer.
z

/4

2) Evaluate the integral .[ z"dz,, where y is a closed polygonal curve
4

[1-1, 1+, -1+, -1-1, 1-].
3) Let y, 0 be polygons [1, 1+i, i] and [1, i] respectively. Evaluate the integralJ-|22|dz

overy as well as ¢ .

4) Evaluate J-e—zdz, where y(t)=¢", 0<t<2rx.
z

sin(z)

5) Evaluate j
Z

4

dz, where y(t)=e", 0<t<2rx.

6) Let G be connected set and f:G —[J be analytic function. If f(z) is real for all z in

G, the prove that f is constant function.
7) Prove above exercise for a) f(z) is imaginary number for all z and b) f(z) with

constant modulus.

OO0
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UNIT -1V

FUNDAMENTAL THEOREM OF ALGEBRA AND
MAXIMUM MODULUS THEOREM

In this unit we prove Liouville’s theorem use it to prove fundamental theorem of

algebra. We also prove maximum modulus theorem.

Definition 1 An entire (integral) function is a function which is defined and analytic in the

whole complex planel] .

Note 1. f(z)=¢",sinz,cosz are entire functions.

2. All polynomials are entire functions.

Theorem 2 If f/ is entire function then f has power series expansion f(z) = Zanz” with
n=0

infinite radius of convergence.
Proof. Forany R>0 , B(a,R)cll .Then f isanalyticin B(a,R).

By Taylor’s theorem,
f(z)=>a,z" , for|z|<R.
n=0

Since R >0 is arbitrary, radius of convergence is infinite.
Following theorem is known as Liouville’s theorem

Theorem 3 If f is bounded and entire function then f is constant.

Proof. Since f is bounded and entire function, |f (z)|SM Vzell and for ael,

R>0, f is analytic in B(a,R).

n'M
R?‘l

By Cauchy’s Estimate, we have ‘ 1 (a)‘ <
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n'M
R

In particular for n =1 we have ‘ f '(a)‘ <

Since R is arbitrary , as R — o, we get ‘f'(a)‘ <0.

Therefore, f (a)=0 forany aell .

Thus f is constant.

Thus we can prove the Fundamental theorem of Algebra:

Theorem 3 If p(z) is a non constant polynomial then there is a complex number a with

p(a)=0.

Proof. Let p(z) is a non constant polynomial and that p(z) #0 forany zell .
Let f(z)= (L) then f is entire function . (p(z) is entire and p(z) #0)
p(z

Since p(z) is non constant polynomial, assume that p(z)=z" +a,z"" +a,z" > +..++a,

lim p(z) =limz" (1 taz ' +az +.+az” ) =00
Z—0 Z—>®

=0

lim f(z) =lim
z—00 z—0 p(Z)

Therefore, for e=1 there is R >0 such that | f(2) —0| <1, whenever |z| >R.

That is| /(z)| <1, whenever |z| > R.

Since f is continuous on closed bounded disk E(O,R) cl, f is bounded on E(O, R).
Therefore, there is M >0 such that | f(z)| <M for z e B(0,R)

That is |f(z)| <M , whenever |z| <R.

Thus |f(z)| < max{l,M} , forall zelJ .

This f is bounded entire function.

Hence by Liouville’s theorem £ is constant and consequently p is constant.

Which contradicts our assumption.

Hence the theorem.
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Definition 4 Let f : G —[] be analytic and a € G satisfies f(a) =0 then a is zero of f of
multiplicity m >1 if there is an analytic function g:G —[] such that f(z)=(z—a)" g(2),

where g(a)#0.

Corollary 5 If p(z) is a polynomial and a,a,,...,a, are its zeros with a; having
multiplicity k; then p(z)=c(z— a)"..(z—a,)" for some constant ¢ andk, +k, +...+k, is
the degree of p.
Proof. Since q,,a,,...,a, are zeros of p(z)having multiplicities k,,k,,...,k, respectively,
there exists a polynomial g(z) such that p(z)=(z—q,)"...(z—a,)" g(z), where
gla)#0, (1<j<m).
Therefore by fundamental theorem of algebra, g(z) is forced to be constant.
Let g(z)=c forsome cell

p(2)=c(z—a)"..(z—a,)" .

Obviously, degree of p(z) is k, +k, +...+k, .

Theorem 6 Let G be a connected open set and let f:G —[] be analytic function. Then

the following are equivalent statements:
(a) /=0;
(b) { zeG: f(2)=0 } has limit point in G ;

(c) there is a point @ in G such that f"(a)=0 foreach n>0.

Proof.

(a) = (b)

suppose f =0, then { zeG: f(z)=0 } =G, which is open.
Hence, every point of G is a limit point of G .

Thus { zeG: f(2)=0 } has limit point in G .

(b) = (c)
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Suppose that, A={zeG: f(z)=0} has limit point @ in G, then there is a sequence {z, |
of points in 4 such that a=limz, .

Since f is continuous, f(a)=I1lim f(z,)=0 (z,ed .. f(z,)=0)

Now suppose that, there is an integer n>1 such that f(a)=f'(a)=...= f""(a)=0
and /" (a)#0.

Since f is analytic in G, there is R >0 such that f is analytic in B(a;R) cG.

By Taylor’s theorem
f(Z):Zak(Z_a)k for |z—a|<R where aq, =%f(k)(a)-
k=0 ’

Since f(a)= f'(a)=...= f" " (a)=0 and /" (a) =0 we have

f@=Y a(iz-a) =(z-a)"Y) a,(z-a)""
k=n k=n
Let g(z)=) a,(z—a)"™", then gis analytic in B(a;R)and
k=n

f(z)=(z—-a)"g(z) and g(a)=a,#0.

Since g is continuous in B(a;R), there is R >r > 0such that g(z)#0 in B(a;r).
As a is limit point of 4, B(a;r)nA—{a}#¢.

Let be B(a;r)NA—{a}, then be B(a;r) and be A—{a} c A.

Therefore, be B(a;r)= g(b)#0and be A—{a}c 4 = f(b)=0=g(b)=0

which gives the contradiction to our assumption .

Hence no such integer n >1 can be found .
Thus f"(a)=0 foreach n>0.
(b)=(c)

Suppose there is a in G such that f"(a)=0 foreach n>0.

Let H={zeG:f"(z)=0} then H #¢.
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Now we claim that H is both open and closed :

Let ae H, then there is R>0 such that B(a;R)cG R>0. Then f is analytic in
B(a;R)cG.
By Taylor’s theorem

f(2)= zan (z—a)" for |z—a| <R where a,= l'f(")(a).
i n!

Since f"(a)=0 foreach n>0,each a, =0.

f(z)=0in B(a;R) i.e. =0 in B(a;R).

f"(z)=0 in B(a;R)

B(a;R)c H

Thus for a € H, then there is R > 0 such that B(a;R)gH.

Hence H is open.

Now let z be limit point of /, then there is a sequence {z,,} in H such that z=limz,
Since £ is continuous, f"(z)=lim f"(z,)=0

Therefore " (z)=0 implies ze H .

Thus H cH.

Hence H is closed.

Thus H is open as well as closed subset of connected set G .

Hence by property of connectedness H =G .
Therefore, /" (z)=0 VzeG,n>0
Thatis f(z)=0 VzeG

Hence =0 on G.

Corollary 7 If f and g are analytic on a region G, then f=g iff { zeG:f(z)=g(z) }

has a limit point in G .

Proof. Let h(z)= f(z)—g(z) V zeG,which is analyticin G .
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Then h=0on G < {zeG:h(z)=0} has a limit pointin G .
re. f(z)—g(z)=0 onG@{zeG:f(z)—g(z)=0} has a limit pointin G .
ie. f(z)=g(z) on G & { zeG: f(z)=g(2) } has a limit point in G .

ile. f=gon G < { zeG:f(z)=g(z)} has a limit pointin G .

Corollary 8 If f is analytic on an open connected set G and f is not identically zero then
for each @ in G with f(a)=0 there is an integer » >1 and an analytic function g:G —[

such that g(a)#0and f(z)=(z—a)"g(z) for all z in G . That is each zero of f has finite
multiplicity.

Proof. Let f be analytic on an open connected set G . Since f #0 and f(a)=0

for some a in G , there is positive integer n>1 such that f(a)= f'(a)=...= f" P (a)=0
and £ (a)#0.

Now we define g:G — [, by

g(z)zM for z#a
(z—a)
:f(”)(a) for z=a ...(1)
n!

Therefore g is analytic on G —{a}.

Now to show that g is analytic on G it need only to show g is analytic in a neighborhood
of a.

Since f is analytic in G, there is R >0 such that f is analytic in B(a;R) =G .

By Taylor’s theorem

f(z):gak(z—a)k for |z—a|<R  where akzéf”‘)(a).
Since f(a)= f'(a)=...= f" " (a)=0 and /" (a) # 0 we have

f(Z):iak(Z—a)k :(Z—a)”iak(z_a)kn
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Let h(z) = Zak (z—a)*™, then his analytic in B(a;R) and

f(z)=(z—a)"h(z) and h(a)zanzL@.
n!

Thus from (1) g=h in B(a;R)
Therefore g is analytic in B(a;R).

Hence g is analyticin G with f(z)=(z—-a)"g(z) and g(a)=h(a)=a, #0.

Corollary 9 If f:G —[] is analytic and not constant, ¢ € G and f(a)=0 then there is an
R >0 such that B(a;R) cG and f(z)#0 for 0< |z —a| < R . That is zeros of are isolated.
Proof. Let f:G —[] be non-constant analytic function with f(a)=0 for some aeG.
Then by corollary there is an analytic function g:G —[] and an integer n>1 such that
f(z2)=(z-a)"g(z) and g(a)#0.

Since g is analytic, g is continuous on G .

Therefore, there is R >0 such that g(z)#0 in B(a;R) =G i.e for |z—a|<R

Hence f(z)=(z-a) g(z)#0 for 0<|z—a|<R.

We now prove Maximum Modulus Theorem:

Theorem 10 Let G is a region and f:G —[] is an analytic function such that there is a

pointa in G with |f(a)|>|f(z)| forall z in G, then f is constant.

Proof. Since f:G —[] is analytic function, there is » >0 such that E(a;r) cG.

Then by Cauchy Integral formula

e If(W)

=5 dw for |z—a|<r and y(t)=a+re', 0<t<2x.
i

f(a+"e”) p
rie"dt
27z1 J- a+re’ —a

1 2r ‘
=—/ f(a+re")dt
27 ;[
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dt

/(@) si f‘f(a+reft)

slzﬂ f(a)|dt as |f(a)=|f(z)| forall z in G.
27 5,

=|f(a)|

Therefore

2z

|f(a)|£i”f(a+re”) dt£|f(a)|

/(@) =iz_f\f(a+ren) dr

1271'

[[17@|-| fa+re"

0

Since |f(a)|—| f(a+re")

}dzzo (D

27

>0 forall ¢

Therefore from (1) we have | f (a)| = ‘ f(a+re")| forall t.

Let f(a)=a,then |f(a+re")|=|a| forall t.

Since > 0is arbitrary, we have |f(z)|=|| forallz inB(a;r).

That is f maps whole disk B(a;r) =G into the circle |z|=|a| where f(a)=a .
Therefore f has constant modulus on B(a;r) and hence f is constant on B(a;r).
Let f(z)=c on B(a;r)c=G then { ze G: f(z)=c } 2 B(a;r) has a limit point in G .

Thus f(z)=c on G ,i.e. f is constanton G .

Theorem 11 If y :[0,1] [ is closed rectifiable curve a ¢ {y} , then

1

27wi? z—a
V4

dz is an integer.

Proof. Define g:[0,1] >0 by
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where y is closed rectifiable curve so that g is well defined .

1 [
Therefore g(0)=0 and g(1) =J. 7(s) ds =J. ! dz.
o v(s)—a L Z—da

Also g'(¢) = r(® for 0<¢<1.
y(t)—a

Then %[e-g“) () -a)|=e 0y (1)~ g (1) (y(t) ~a)

— e {y 0L - a)}
y(H)—a
=0
Therefore e *“ (y(¢t)—a) is constant function.
Hence e f(y(0)—a)=e*V(y(1)—a)

e’ = (7(0)=y1))

2 ik 1
wik _ ()

e ( k is integer )

Therefore g(1) =2xik

1

Therefore, 2rik = .[ dz
Sz-a
Hence L 1 dz=k .
27i SzZ—a

Definition 12 If y is a closed rectifiable curve in [] then for a ¢ { 7/} . Then the integer

L. dz is called the index of y with respect to the point a.

27wi? z—a
V4

Definition 13 A subset D of a metric space X is called component of X , if it is maximal

connected subset of X.
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Theorem 14 Let y be a closed rectifiable curve in [J . Then
a) n(y;a) is constant for a belonging to a component of G =[] — {7} .

b) n(y;a)=0 for abelonging to the unbounded component of G .

Proof. Define f:G — [ by

fla@)=— [

- dz=n(y,a) Vin G.
27i L Z—da
Claim: f is continuous.

Let aeG and r:d(a,{}/})>0.

For any >0 we choose 6 >0 such that |b—a|<5<%.

Therefore

IR
PAPTY

Now |z—a|2r>% and |z—b|:|(z—a)—(b—a)|2|Z—a|—|b—a|>r—%=é.

Thus

0= @] <=2 2a =22 ().

7

2
Therefore, for any e€>0there is 0< 0 <min { V car

2,2V(y)}, such that |f(b)- f(a)|<e,

whenever |b - a| <0.

Thus £ is continuous .
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a) Let D be component of G then D is open and connected .

Since f is continuous, f(D) is connected.
Since f is integer valued and subset of set of all integers which are connected are precisely
singleton sets .

Therefore f(D)={k} for some integer & .
Thatis f(a)=k V inD.

Hence n(y;a) is constant for a belongingto D.

b) Let U be unbounded component of G =0 —{y}, then there is R>0 such that

{zeG:|>R}cU.

For e>0 choose a such that |a|> R and |z—d|> Z(}/) forall zon {y} then
re
1 1
rol= ]

1 1 1 27 e
SZ'I|Z—a| |dz| SE Vo) .[|dz| =€

4

Therefore |n(7/; a)| <e
Since n(y;a) is an integer |n(7; a)| <e = n(y;a)=0 for some a in U .

Since f(a)=n(y;a) is constant on U , we must have n(y;a)=0 forall @ in U .
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EXERCISES

1) Let f: C [1 C be entire function. Suppose for some R > 0, lz| >R implies
| f(z) | < Mlz |n, for some constant M. Then prove that f is a polynomial of
degree at most n.

2) Letf: G []C be analytic function defined on a region G with | f(a) | < f(z) | , forall z
in G. Show that either f= 0 or f is constant function.

3) Let f and g be nalytic functions defined on the region G. If f.g = 0 on G, prove that
either f=0or g=0.

4) Show by an example that n(y;a) =k for a closed rectifiable curve yin C, where

agl{y}.

OO0
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UNIT -V

WINDING NUMBERS AND CAUCHYS
INTEGRALTHEOREM

In the last unit we prove that Lj ! dz is an integer. We shall denote this integer by

2rid z—a
v
n(y;a) and called it is a winding number or Index of a closed curve y around a. In this unit

we discuss Cauchy’s integral formulae.

Lemma 1 Let y be rectifiable curve and suppose ¢ is a function defined and continuous on

{7}. For each m>1let F,(z) :J‘((é(—w)mdw for z¢{y}. Then each F, is analytic on
L (w—z

0 —{y} and F,(z)=mF,,,(z).

Proof. Let Fm(z):jﬂ—w))yndw for zeé{}/} where ¢ is continuous function and y is
L (w—z

rectifiable curve .

First we claim that each F is continuous:

Let ae G=0 —{y} and r:d(a,{y})>0.
For any >0 we choose 6 >0 such that |z—a|<5<%.

Therefore

|F,(z)=F,(a)| =

J

/4

{ o) pw) } "
(w=2)" (w-a)’

RS U
s£|¢(w)|‘(w_z)m aT |aw] (1)

Since ¢ is continuous function on compact set {y}, we have M = sup{|¢(w)| we 7/}} .
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=(z—a)§: !

pard (W— Z)m—k (W— a)k+l

Also |w—a|2r>% and |w—z|:|(w—a)—(z—a)|2|w—a|—|z—a| >r—%zé.

Therefore % ! - | =|(z— a)z

Thus (1) gives

F(2)~F ()| < [M5 (Y] )"”l m|dw] = mbt 5 (% )"”1 V).

<(r3)”

"mM V(y)

Therefore, for any > 0there is 0 < 6 < min { % ] , such that |Fm (z2)-F, (a)| <e,

whenever |z — a| <0.
Thus F, is continuous on G =[] —{y} forany m>1.

Now to show F (z)=mF, (z) :

Consider

F (z)-F, (a)= { L jft))m 3 ( vffvz))m }zw
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=(z—- a)jmi‘i () dw

71{0 w— z)mfk(w—a)k+1

Thus
EG-F@ g g0/ ]
(z—a) k=0 (W—Z)mik '

Since a¢{y} and (Zﬁ(W)/(w—a)k+1 continuous on {y} for each k, each integral

J,[(Iﬁ(w)/(w—a)kﬂ]
(w—z)m_k

/4

dw 1s continuous .

Hence letting z —a we get

lim F (z)-F, (a) hm’”zll J-[¢(W)/ w—a k+1}

o (z—a) %0 W Z)

fim Fa2)=E@) %3 I 60D [0,

- a (Z_a) P }/ )m+1 - ’ (W_a)mH

Therefore,

F,(a)=mF,  (a) forall ael —{y}.

Thus, F is differentiable for any m>1.
Since F,,, is continuous, /', is continuous .

Therefore F, is continuously differentiable.

Hence F, is analyticon 0 —{y} .
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We now prove Cauchy* s Integral formulae:

Theorem 2 ( First Version) Let G be an open subset of the plane and f:G —[] be an

analytic function. If yis a closed rectifiable curve in G such that n(y;w)=0 for all

w in[J -G, then for a in G—{y}

n(ria) @)= [ L a:

Proof. Define ¢:GxG —[J by
S - f(2)

if z#w

P(z,w) =
= f'(2) if z=w.
Then ¢ is continuous .
Let H ={well :n(y;w)=0}. Since n(y;w) is a continuous integer valued function , H is

open. Moreover [| —-Gc H.Thus [l =GUH .
Now, define g:[J - by

g(z)=j¢(z,w)dw if zeG
.[f<w)dw if zeH.
w—1Z

If zeGN H then

I¢(Z W) dw= jf(W) f(Z) dw

ACO
L

= j SO f(2) n(y;z) 2ri
w—2Z

ZIM dw— f(z).0 2zi
Y w—2Zz

Therefore g is well defined function.

Thus by lemma g is analytic on [J , hence g is entire function.
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Since H contains neighborhood of infinity, we have lim =0 uniformly for we {7} .

e W—z
Since {y} is compact, / is bounded on {y}.

Hence there is M >0 such that |f(w)|<M forall we{y}.

Therefore, |dw|

S

S.[|f(W)|

[w=2]

1

[w—2]

< MJ- |dw|
V4

Hence limg(z)= limJ-M dw=0
Z—0 Z—0 W—Z

Therefore, there is R > 0 such that | g(z)| <1 for |Z| >R.

Since, g continuous on compact set E(O, R), gis bounded on E(O, R).
Thus g is a bounded entire function. Hence by Liouville’s Theorem g is constant.

Since lim g(z) =0 we must have g =0.

w—a

Thus dew=0 forall a in G—{y}.
jdef(a)dew forall a in G—{y}.
7W—a 7W—a

J‘M dw= f(a)2zin(y;a) forall a in G—{y}.
w—a

Thus

n(;/;a)f(a)zzim‘.[&dz for all a in G—{y}.

zZ—a
e
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Theorem 3 (Second Version) Let G be an open subset of the plane and f:G —[] be an

analytic function. If p,,7,,...,y, are closed rectifiable curves in Gsuch that

n(y;w)+n(y,;w)+...+n(y,;w)=0 forall w inl -G, then for a in G—{y}

SPYIE S  AC))]
f@Xn(ria) =3 o j —d

k=1

Proof. Define ¢: GxG —>[J by

if z#w

sy~ LT
w—z

= f'(2) if z=w.
Then ¢ is continuous .
Let H ={we|] n(yw)+n(y;w)+..+n(y,;w) = 0}. Since n(y;w) is a continuous integer

valued function , H is open. Moreover [l —-Gc H.Thus [l =GUH .
Now, define g:[J —»U by

g(Z)IiI(é(Z,W)dW if zeG

k=1 7

w—z

=ijmdw if zeH.

_ i{j% dw— f(2) n(7,:2) 27:1}
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) f(z)ZmZn(yk 2) —Z j S ~dw= f(2)27i.0

kl;,k

ng

w—

Therefore g is well defined function.

Thus by lemma g is analytic on [J , hence g is entire function.

Since H contains neighborhood of infinity, we have lim
Z—® w—2z

=0 uniformly for we{y,}.
Since each {y,} is compact, / is bounded on {y,}.

Hence limg(z)=0

Therefore, there is R > 0 such that | g(z)| <1 for |Z| >R.

Since g continuous on compact set E(O, R), gis bounded on E(O, R).
Thus g is a bounded entire function. Hence by Liouville’s Theorem g is constant.

Since lim g(z) =0 we must have g =0.

Thus ijf(w) f(“) dw=0 forall a in G-U{,}

k=1

ij-f(w)dw f(a)ZJ-—dw forall a in G- u{;/k}

k=t 5, W

[M:

J’ (W) dW f(a) 27[lzn(7k a) forall a in G- U{?/k}

w—= k=1

m

bl
Il
—_

Thus

F(@3 n(7,:a) =fzijf(z)dz forall @ in G—k(;l{yk}.

k=1 k=1
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Theorem 4 Let G be an open subset of the plane and f :G —[] be an analytic function. If
V1>74s--Y,, are closed rectifiable curves in G such that n(y;;w)+n(y,;w)+...+n(y,;w)=0

forall w inll —G, then

> [r=0

k=1 y,

Proof. Let acl] — kkal {7} and  F(z)=(z-a)f(2).

Then F' is analytic inG .

Hence by Cauchy’s integral theorem,

P nria) =3 [ 70

zZ—a
Tk

dz

Zm’.O.in(}/k;a) = Zm:I(ZLM(Z)dZ
k=1 z—da

k=1 y,

j f(2)dz=0
k=1 5,
Thus D" [f =0 .
k=1 5,

Theorem 5 Let G be an open subset of the plane and f :G —[] be an analytic function. If

V1>74s--Y,, are closed rectifiable curves in G such that n(y;;w)+n(y,;w)+...+n(y,;w)=0

forall w inl] -G, then for a in G—{y}

O @% i) =ty j 1) g

k127zz z— a

Proof. By Cauchy Integral formula we have

f@Y ) =S LD a forall ¢ in G—gjl{yk}.

- 27[1 z—a
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Hence

f(n)(a)in(}/k;(l) :ij:l: 1 J‘f(Z) dZ:l

Therefore,

f@Yntrsa) =3 = [ L.

Corollary 6 Let G be an open subset of the plane and f:G —[] be an analytic function. If

v 1s a closed rectifiable curve in G such that n(y;w)=0 for all w inlJ —G, then for a in

G-{r}

(n) N n! f(2)
/@) n(ysa)=—— j o

Definition 7 A closed polygonal path having three sides is called triangular path.
Theorem 8 Morera’s Theorem Let G be a region and let f:G —[ be a continuous
function such thatJ. f =0for every triangular path 7 in G ; then f is analyticin G .

T

Proof. To prove that f is analytic in G we have to prove that f is analytic on each open
disk contained in G . Hence without loss of generality we may assume that G = B(a;R) .
Now define F:G —[] by

F(z)= I f(w)dw where [a,z]is the line segment joining a to z.
[a-2]

Fix z, € B(a;R) ,thenforany zin G, T = [a,z, zo,a] be a triangular path inG .
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Therefore by hypothesis

jfzo:s jf+jf+jf=0
T a,z] [z,2] [zg,a]

= [r=]r+]7r
[a,z] [29.2] [a,z]

= F(z)= j Fw)dw+ F(z,)
[z9.2]

Thus
PO rey=t | rondw-r,)
z—2z, 2720 5.
1
- z—2z, [z(;‘jz] [f(W)—f(Zo)] dw

Since f is continuous in G, for any €> 0 there is 6 >0, such that

| £ (W)= f(z,)| <€ whenever [w—z,|< 5.

Therefore

F(Z)_F(ZO)—f(z)S 1

Z—2Z, |Z—

L lr=sellan <= | lavf=
01 [z,z]

0 [z9,2]
Thus
hm F(Z)_F(ZO)

Z—)ZO Z—Z

= f(z,)

0
F(zy) = f(z,)
Since z, is arbitrary , we have F''= f in G.

Since f is continuous, F' is continuous on G

Therefore F' is continuously differentiable, that is /' is analytic.

Hence F'= f isalso analyticin G.
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Singularities

Definition 9 A function f has an singularity at z=a if f is not analyticat z=a.

1 sinz < ) )
Ex. —, ,e? has an singularity at z=0.
z z
1 . . . 2
Ex. ———— has an singularity at the points z=——— ,n=0,£1,£2,...

cos( v ) (n+r

Definition 10 A function f has an isolated singularity at z=a if there is R > 0 such that f

is analytic in B(a;R)—{a} ,otherwise z=a is non-isolated singularity of /.

1 1
, z=— are isolated singularities and z =0 is non-isolated singularity.
sin(77 ) n
z
(z—=1)(z-2)

Ex.

z=1,2 are isolated singularities.

There are three kinds of isolated singularities
A) Removable singularity

B) Pole

C) Essential Singularity

Definition 11 An isolated singularity at z=a of a function f is removable singularity if

there is R>0 and an analytic function g:B(a,R)—)D such that g(z)=f(z) in

0<|z—d|<R.

Ex. f(z2)= sz has removable singularity at z=0.
z

Ex. f(z)= ZLl has removable singularity at z=0.

Theorem 12 If f has an isolated singularity at z=a, then the point z=a is removable

singularity iff lim(z—a)f(z)=0.
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Proof. Suppose z =ais removable singularity, then there is R >0 and an analytic function
g:B(a,R)—)D such that g(z) = f(z) in O<|Z—a| <R.

Therefore, lim(z—a)f(z)=lim(z-a)g(z)=0.g(a)=0. ('since g is continuous )

Conversely suppose that lim(z—a)f(z)=0. Since f has an isolated singularity at z=a,
there is R > 0 such that f is analytic in B(a;R) - {a} .

Define h(z)= {(()Z—a)f(z) 1; z#a
I z=a

Clearly # is analytic in B(a;R) - {a} and continuous at z=a.

Now to prove f has removable singularity at z=a we have to prove that % is analytic in
B(a;R).

Claim: A is analytic in B(a;R).

To prove this we use Moreras theorem. Let T be the triangle in B(a;R) and Adenote inside

of T along with T'.
Case 1: When agA.

Since 4 is analytic in B(a;R)—{a} and T 0 0= T ~0, by Cauchy theorem J.hzo.
T

Case 2: When a is vertex of T'.

Let T =[a,b,c,a] be a triangle with a as one of the vertex. For x €[a,b] and y €[a,c] let
P=[x,b,c,y,x],then P[0 and by Cauchy theorem Ih =0.
P
Let 7, =[a,x, y,a] then J.hzj‘h+J‘h =Ih.
T 7 P T

S

Since /4 is continuous and A(a)=0, for any €>0 there is 6 >0 such that |h(z)| < for
1
|Z - a| <0.
Now we choose x, y such that X,y € B(a;0). Therefore
€
h(z)dz| = || h(z)dz| < | |h(z2)||dz| < I(T).
[hz) !l() JII()II <@
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Hence Ih=0.

T
Case 3. When a lies on or inside T

In this case we can construct triangle as shown with belonging to vertex of each constructed

triangle. Therefore using case 2 we must have jh =0.
T

Thus _[ h=0 for any triangular path 7' in B(a;R). Hence by Moreras theorem / is analytic
T

n B(a;R).

Case 1 : a lies outside T Case 2 : ais vertex of T Case 3 : a lies inside T

Corollary 13 An isolated singularity of a function f at z=a is removable singularity iff
f is bounded in the neighborhood of z=a .

Proof. Let z=a is removable singularity of /' then there is R >0 and an analytic function
g:B(a;R) >0 suchthat g(z)=f(z) in 0<|z—a|<R.

Since g is continuous at z=a, g(a) is finite. Hence g is bounded in neighborhood of
z=a. Therefore f is bounded in the neighborhood of z=a .

Conversely, suppose f is bounded in the neighborhood of z =a, then there is M > 0such
that | f(z)| <M in 0<|z—d|<5.
Therefore |(Z —a)f(z)| < |Z —a|M —>0asz—oa.

Thus lim(z—a) f(z) =0. Hence f has removable singularity at z=a..
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Corollary 14 An isolated singularity of a function f at z=a is removable singularity iff
lzl_rg f(z)=c .

Proof. Let z=a is removable singularity at z=a then there is R>0 and an analytic
function g:B(a;R) —>U such that g(z)= f(z) in 0<|z—d|<R.

Therefore lzlg} f(2)= 12123 g(z)=g(a)=c (say).

Conversely, suppose ll_r)ral f(z)=c then li_r)ral(z —-a)f(z)= li_r)lal(z —-a) £i_r)ralf(z) =0.c=0

Thus lim(z—a) f(z) =0. Hence f has removable singularity at z=a..

Definition 15 An isolated singularity at z=a of a function f is pole if lim| f (z)| =00,

Ex. f(z)=l has pole at z=0.
z

2

Ex. f(z)=

~ haspoleat z=1,i.

.z
(z=1)(z—-1i)

Theorem 16 If G is a region with a in G and if f is analytic on G—{a} with pole at z=a,

then there is a positive integer m and an analytic function g:G —[J such that

f(a)=EE

(z-a)"

I
S

Proof. Suppose z =a is pole of f then lim| f (z)| =o0. Therefore lim

z—a

(2)

Then

= has removable singularity at z=a. Then there is an analytic function
z

h:B(a;R)—U such that h(z) = —— when 0<|z—a|<R.
J(2)

if z#a
Now we define A(z) =4 f(z2)

0 if z=a
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Since A(a) =0, there is an analytic function /4, such that i(z)=(z—a)"h(z) and h(a)#0

for some integer m >1.

1 m
For z#a, %—(z—a) h(2)

Therefore ! =(z—a)" f(2)
1(2)

. m . 1 1
Hence lim(z—a)" f(z) =lim

ah(z)  h(a)

Then (z—a)" f(z) has removable singularity at z=a .

<0

By definition there is an analytic function g:B(a;R)—U such that g(z)=(z-a)" f(2),
z#a.

g(2)
(z—a)"’

Hence f(z)= z#a.

Definition 17 If f has pole at z=aand m is smallest positive integer such that

(z—a)" f(z) has removable singularity at z=a, then f has a pole of order m at z=a .

z

e

Ex. f(z)=

has pole of order 2.
(1-cosz)

Definition 18 An isolated singularity at z=a of a function f is essential singularity if it is

neither pole nor removable singularity.

1
Ex. f(z)=e" has essential singularity at z=0.

Ex. f(z)= sin( ! j has essential singularity at z=0.

z

Theorem 19 Casorati-Weierstrass Theorem If f has an essential singularity at z=a,

then for every & >0 f(ann(a;O,é)) =, that isf(ann(a;O,é)) is dense in [ .
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Proof. Suppose z=a is essential singularity of f, then we have to prove that for any
cell and 6 >0, cis the limit point of f(ann(a;0,5)) . In another words we have to prove
that, for any given €,0 >0, there is z € ann (a; 0,5) such that |f(z) - c| <e.

On contrary suppose the theorem is false. Then there exists €>0such that for any 6 >0,

|f(z)—c| >e , forall zeann(a;O,&).

f(2)=c

zZ—da

f(z)=c

zZ—d

Hence lim =o0. Therefore

z—a

has a pole at z=a. Let m be the order of

(f(9)-¢)

z-a)

pole, then (z—a)" has removable singularity at z=a .

Therefore lim(z—a){(z—a)m (f(z—)_c)} =0

z—a (Z—a)
That is 1i£n(z—a)m(f(z)—c)=o
Therefore lim(z—a)” f(z)=lim(z—a)" (f(z)—c+c)

=lim(z-a)"(f(z)-c)+lim(z—a)" ¢

=0
Thus f will have either removable singularity or a pole , which is a contradiction.

Hence the theorem.
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1)

2)

3)

4)

EXERCISES

Discuss the singularities of the following functions:

sin(z) cos(z) 22 +1 log(z+1)
—== .

a)f(Z)=T b)f(Z)=T C)f(z):z(z—l) d) f(2)=

Discuss the singularities of the following function and classify them

. 1
Z+1 1 =

a) 22+1 b) m C) ze?

Prove that an entire function has a pole at o« of order m if and only if it is a
polynomial of degree m.
Prove that an entire function has removable singularity if and only if it is a constant

function.

OO0
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UNIT - VI

OPEN MAPPING THEOREM AND GOURSAT
THEOREM

In this unit we shall discuss that zeros of an analytic function which are used to
evaluate some complex integrals. We prove open mapping theorem and prove that a

differentiable complex valued function defined on an open set is analytic on the set.

Definition 1 Let y,:[0,1] >0, 7,:[0,1] >0 be two closed rectifiable curves in a region
G ; then y, is homotopic toy, in G , written as y, [l y,, if there is a continuous function
I':[0,1]x[0,1]— G such that

1) I'(s,0)=y,(s) and I'(s,1)=y,(s) (0 <s< 1)

2) T(0,1)=T (L) (0<t<1).

Definition 2 A closed rectifiable curve y is homotopic to zero, if y is homotopic to a

constant curve and is writtenas ¥ [J 0.

Definition 3 A closed rectifiable curve y is homologous to zero, if n(y,w)=0 for

well -G and is writtenas y=0.

Theorem 4 Let G be a region and let /' :G — [ be an analytic function on G with zeros
a,...,a, (repeated according to multiplicity). If y is a closed rectifiable curve in G which

does not pass through any point @, andif y =0 then

1@, e
27zi-! IS dz ;n(y,ak) )
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Proof. Since a,,...,a, are zeros of [ , there exists an analytic function g such that

f(z)=(z-a))..(z—a,).g(z), where g(a,)#0 for k=1,..,m and that, g is non-vanishing
on G.

Taking logarithmic differentiation on both sides we get

/a1 1 8@
f@) (z-a) (z-a,) g(2)

Therefore
If'(Z) :i 1 J‘ dz+J'g
27iY f(2) o 27l (2 —ay) " 8
Since g is non-vanishing g1 is analytic in G . Hence J-g (2) dz=0.
2) ) e(2)

Thus

f@
mjf() 2= i)

Corollary 5 Let G be a region and let f:G —[! be an analytic function on G such that
a,...,a, satisfies f(z)=a (repeated according to multiplicity). If y is a closed rectifiable

curve in G which does not pass through any point a, and if y =0 then

S'(2)
27n~[f(z)— dz = ;n(}/ a,) .

Proof. Let F(z) = f(z) —a, which is analytic and aq,,...,a, are zeros of F .

Therefore by theorem

2m"!F( ) ;"(7 @)

Thus S1) dz = Zn(}/ a,) .

272'1'[/’(2)— k=1
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2z+1
e Z +z+1

Example 6 Evaluate dz.

Solution. Let f(z)=z"+z+1, f'(z)=2z+1.

_1+i3 _1-i3
2

and w, = 5 are lies inside |z| =2

Here zeros of f w, =

Then n(y;w,)=1 and n(y;w,)=1.

Therefore

L1 [ @), _3
2 ), 7o B

1 2z+1
27i B Z+z+1

dz=1+1

2z+1

) 224241
‘z‘—Z

dz =4ri.

Theorem 7 Suppose [ is analytic B(a,R) in and let = f(a).If f(z)—«a has a zero of
order m at z=a then there is an €>0 and 6 >0 such that for |§’ —a| < 0 ; the equation

f(z)=¢ has exactly m simple roots in B(a,€).

Proof. Let F(z)= f(z)—a, then f is analytic and z=a is zero of order minB(a,R).
Since zeros of analytic functions are isolated, there is 0<e< % such that
F(z)=f(z)-a#0in 0<|z—d|<2e and f'(z)#0 in 0<|z—a|<2€.

Let y(f)=a+ee’™, (0<t<2rx).

Let o= foy then o is a closed rectifiable curve in f(B(a,R)). Since a¢ {7/} ,
a=f(a)e {O'} , then there is 6 >0 such that B(a,(?)m{a} =¢. Thus B(a,0) lies in the
same component of [J —{0'} . Therefore for any ¢ such that 0< |a—§’ | <0,

n(o,a)=n(o;¢).
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Therefore ! I ! dw = ! I ! dw
2mis w—a 2mis w—¢

1 I f@ 1 | G
2riy f(2)~a 27y f(2)-¢

Therefore Y n(y;z, ()= n(r;:2,({)) where z(a)and z,({) are zeros of f(z)-a

k k

and f(z)—{ respectively.

Since z=a 1is zero of order m of f(z)—«a, z,(a)=a foreach k, Zn(}/;zk(a)):m.
k

Therefore Zn(y;zk (£))=m.

k
Since n(y; z, ({)) must be either 0 or 1, there are exactly m zeros of f(z)=¢ in B(a,€).
Since f'(z)#0 in 0< |Z—a| <€, all these zeros must be simple in 0 < |Z—a| <€.
Thus f(z)=¢ has exactly m zeros in B(a,€) for any { € B(O(;§)—{O‘}.

We now prove open mapping theorem:

Theorem 8 Let G be a region and suppose that f is a non-constant analytic function on G .
Then for any open set U in G, f(U) is open.
Proof. Let o= f(a)e f(U) forsome aeU .

Since U is open, there is R >0 such that B(a,R)cU and f(B(a,R))< f(U).
Since f* is analytic on G, f is analytic on B(a,R). Hence there exists €>0 and >0

such that B(a,€) < B(a, R) and that B(«,0) < f(B(a,e)) c f(B(a,R)) c f(U).

Hence forany a € f(U), thereis 6 >0 such that B(«,0) < f(U).
Therefore f(U) is open.

Theorem 9 Goursat’s Theorem Let G be an open set and f:G —[] be differentiable

function, then f is analytic.

i, 14 Do



Proof. Let f:G —[] be differentiable function, then f is continuous function onG .

To prove that f is analytic we shall use Morera’s theorem , it is sufficient to prove that

.[ f =0 for every triangular path 7' in G .
T

Let T =[a,b,c,a] be a triangular path in G. Let A denote the inside of T along with its
boundary.

Let d = diameter (A) and /= length (7).

Let 7,,7,,T;,T, be four triangle formed by midpoints of sides of T".

Then we have

[r=[r+lr+]r+]r (1)

i ) 5

Let T denote a triangle amongst 1,,T,,T,,T, such that,

1

T;

jf‘ (j=12,3,4)

7

Then <4

[r

T

J’ f‘ .2

70
Let A" denote inside of 7" along with its boundary.

Then diam (A") :%d and [(T") :%l.

Repeating above process we obtain sequence of triangular paths 7, 7® ... T such that

[r

7(m

[ rl<4

(=1

..3)

and closed sets AY,A@,..A™ such that AV 5A® 5.

diam (A™) :2—1”d and [(T™) =%1 .
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Therefore

l f

<4

If\

Since A 5 A® ... is a descending series of closed sets such that, diam (A"™) :2—1”d -0

as 7 —> ©.

Therefore by Cantor’s theorem, NA"™ ={z,} for some z,€ G .

Since f is differentiable in G, f is differentiable at z, .

Hence , given €> 0there is ¢ > 0 such that,

f(2)=f(z) _
-

2y

f'(z,)| <€ whenever 0<|z—zo| <0

Equivalently, ‘f(z)—f(zo)—(z—zo)f'(zo)‘ <e|z—zo|, 0<|z—zo|<5.

Since diam (A™) :2—1”d — 0 as n— oo, there is 1, >0 such that diam (A™) <& .

Since z, € A" for each n, z, € A™ also. Hence A™ < B(z,;9).

Hence for n > n,

If\=

7(m

[[F@=1G)~(z=2,) 1 (z) iz

7(m

< [|f&=1fG)=(2=2) 1 )]

7(m

< .[ e|z—zo||dz|

7(m

<ediam (A™) (T") =¢ %

[f

T

Thus <4 <edl nxn,,

[r

Therefore j f=0.
T

Dz
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EXERCISE

1) Let p(z) be a polynomial of degree n and let R > 0 be sufficiently large so that p never

vanishesin {z: |z|> R}.If y(1)=Re", 0<¢ <27, show that J.%Z =2rin .
p(z

OO0
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UNIT -VII

LAURENT SERIES DEVELOPMENT AND RESIDUE
THEOREM

In this unit we shall discuss Laurent’s series expansion of complex valued functions

and prove residue theorem.

Definition 1 A series of the form z a,(z—a)" s called double series about z=a.

n=-—00

Definition 2 The double series Z a,(z—a)" 1s said to be absolutely convergent, if both the

n=—o00

series a (z—a)" and a (z—a)" are absolutely convergent.
Ya,(z—a) \ y g

n=0 n=-1

Definition 3 The double series Z a,(z—a)" 1s said to be uniformly convergent, if both the

n=—o00

0 —00
series Z a,(z—a)" and z a,(z—a)" are uniformly convergent.

n=0 n=-1

Theorem 4 Let / be analytic in annulus ann(a; R, R, ). Then
f(2)=) a(z-a) (1)

n=—00

where the convergence is absolute and uniform over ann(a;r,r,) if R, <r<r, <R,.

Also coefficients a, are given by the formula

a,= 1"[ /) dz ...(2) where y is
27i

n+l
J(z—a)

the circle |z - a| =r forany r, R, <r<R,. Moreover the series is unique.

i, 18 i



Proof. We shall begin by showing that the integral in (2) is independent of 7, so that for each

integer n, a, is constant.
it it
Let R, <rn<r,<R,and y,=a+re", y,=a+ne" (0<t<2r).

Let y =y,+[z,,2z,]-r +[z.2,] then y 0 0. Since f be analytic in annulus ann(a;R,R,),

by Cauchy’s theorem we have I f(—))+d =0.
(w—a

Thereforej S W) w+ I f(w) dw I%dw+ j de:o

(w—a)"" L (w=a)’ i

Thusj S(w) j S(w) dw

(w—a)"" 5 (w=a)" il

Now let z € ann(a;r;,r,) then by Cauchy integral formula we have,

R aACO R VO
J(2)= 27i I (W Z) i j L (w— Z)

We define f(z)_—j f(w) d and f,(z )_2 jmdw
Tl

27i s (w—z)
Therefore, f(z)= f,(2)+ f,(2). ...(3)
Now
_ ACORS. S (w)
ﬁ(z)_zmj(w 2 2ﬂzj(w—a)—(z—a)
_ I Jf(w) dw
27i s (w—a){l— (z—a)}
(w—a)
f(w) ( jdw 2 %<1l on 7,
27zz (w a) o\ w—a w—a

i, 19 D



A,

(w-a)

d 1
:; {Zm‘;[

:ian(z—a)” .

ALY,

(W_Z)n+l

where a, = dw.

271 ;[
Also
S(w)

— dw} (z-a)"

(4

GO j

(w- z) 2m

fiz )—mj

f(w)

—a){l—(w_a)}

(z—a)
o (e,
(z a) o\ z—a

dw

1
- 272'1‘;‘:(2

2m J-

o0

=2

= me (z—a)™"".
m=0
where b, :L‘I(W—a)’”f(w)dw.
27i "

AL,

(w=a)™

dw

27zz J-

Dz

w—a

w
(z—a)—(w—a)

<1 on

{ j (w—a)" f(w)dw}(z @

80
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S(w)
272'1 I (W= a) - h dw

—m—1

Therefore f(z)=>Y a_, (z—a)™""

m=0

:ian(z—a)" (5)

Therefore from (3), (4) and (5) we have

f(2)= ian(z—a)” +ian(z—a)” = i a,(z—a)" for zeann(a;n,1,).

n=—o0

Uniqueness:

Let f(z2)= Z ¢,(z—a)" be another Laurent series of f where

n=-—0

J‘ f(2)
27zz L (z—a)" ot 4
1 kzi: ¢ (z— a)k
= 2 dz

2riy (2 —a)™!

1 i I( yeri g ( yd 27i if n=-1
=— z— Z z—a)'dz=
2mi =, o 0 if nz-1

:cn
Hence the uniqueness.
Corollary 5 Let z=a be an isolated singularity of a function f and let

f(z)=> a,(z—a)" be its Laurent series expansion in ann(a;0,R). Then :

n=-—0
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a) z=a is aremovable singularity iff a =0 for n<-1.
b) z=a isapole oforder m iff a  #0and a, =0 for n<—(m+1).

¢) z=a 1is an essential singularity iff a, # 0 for infinitely many negative integers.

Proof. a) Suppose z=a is removable singularity of f then there is R >0 and an analytic

function g:B(a;R)—)D such that g(z)= f(z) in 0<|Z—a|<R. Since g is analytic in

B(a;R) by Taylor’s theorem g(z) = ibn (z—a)" for |z—a|<R.

n=0

Therefore f(z)=g(z)= an (z—a)" for 0< |z - a| <R.
n=0

This is Laurent series expansion of f in ann(a;0,R) then by uniqueness of Laurent series
we must have a, =b, for alln.
Therefore, a, =0 for n<-1.

Conversely, suppose that a =0 for n<-1 then Laurent series expansion of f is

f(z)zian(z—a)” =a,+a,(z—a)+a,(z—a)’ +...+.

Therefore, lim(z—a) f(z) =lim(z — a){z a,(z— a)”} =0.a,=0.

n=0

Thus z =a is removable singularity of f .

b) Suppose z =a is a pole of order m then (z—a)" f(z) has removable singularity at z=a.

Therefore (z—a)" f(z)=(z—a)" i a,(z—a)

o0
:Zan(z_a)m+n
n=0

From part (a) a, =0 forall m+n<-1.

Thatis a , #0and a, =0 for n<—-(m+1).

Conversely, suppose a_, # 0and a, =0 for n < —(m+1) then Laurent series expansion of f
is  f(2)=Y a(z-a) =a_,(z—a)" +..+a(z-a) " +a,+a(z—-a) +....

n=—m
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Then (z—a)" f(z)=a_, +..+a_ (z—a)"" +a,(z—a)" +a,(z—a)"" +....

Thus (z—a)" f(z) has Laurent series expansion which does not contains negative powers of
(z —a) .Therefore from part (a) (z—a)” f(z) has removable singularity at z=a .

¢) (a) and (b) together implies (c).

1
Example 6 Find Laurent series expansion of f(z)=e* at z=0.

2 3
Solution: we have ¢ =1+ z+—+—+...

2! 3!
Therefore,
BHe!
\ L 2
o7 =l+—42L N2 if |2|>0.
z 2! 3!
1 1 1
=1+—+ + +...

1

Ex ample 7 Find Laurent series expansion of —————— in
z(z—-1)(z-2)

a) ann(0;0,1) b) ann(0;2,)

1

Solution: Let f(z)= m
z\Z — z—

a) Consider, ann(0;0,1) = {z 0< |z| < 1}

Here |z| <1 and z <l<1.
21 2

Therefore f (z):l[ 1 —L}

zlz=-2 z-1

i, 83 D



z

<l<1
2

b) ann(O;Z,oo):{z:2<|z| <oo}

z

Here |z| > 2 implies that

<1.

<l<1 and
2

Therefore f (z):l[ ! —L}

zlz=-2 z-1
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Definition 8 Let z=a be an isolated singularity of a function f. Then residue of f(z) at

z=ais defined to be coefficient of ( that is a_,) in Laurent series expansion of

1
()

f(z) about z=a and is denoted by Res(f;a).

. = _L z Z
Res(f,a)_a_l_zmlf( )dz .

z z z
. 1—(1—2'+4'—6'+...] . L2
Example 9 Let f(z)=— - = - - i

z* z* 2122 41 6!

Therefore ,
Res( f;0) =a_, = coefficient of 1. 0.
zZ

We shall now prove residue theorem:

Theorem 10 Let f* be analytic in a region G except for isolated singularities a,,a,,..,a,, . If

7 1is a close rectifiable curve in G which does not pass through any of the points g, and if
1 m
y~0 in G then ij(z) dz=Y n(y:a,)Res(f3a,)
Tl k=1
/e

Proof. Let m, =n(y;a,), (1<k<m).Let r,n,.,r, be positive numbers such that no two
disks E(ak;rk) intersect, none of them intersects y and each disk is contained in G . Let
7, (1) =a, +re”™ 0<t<1,

Then foreach k=1,2,...m

n(y;a,)+n(y;a,)=m, —m, =0 and that n(yj;ak)zo for k# j.

Therefore
n(y:a,)+Y n(y;:a,)=0 k=1,2,..,m. (D)
Jj=1

Since y =0, n(y;w)=0, weG also n(y,;w)=0, weG.

Therefore for weg G

+Zri: n(y],w) ...(2)
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Thus from (1) and (2) we have

n(}/;w)+i n(}/k;w)zO for W&‘G—{al,az,...,am}.

k=1

Since f be analytic in G—{q,,a,,...,a, } , by Cauchy’s theorem we have

Now consider If(z)dz = j i b(z—a,) dz

Tk Ve /=T

where f(z)= z b.(z—a, )’ be Laurent series expansion about z=aq,

J=—00

-y b [(z—a) dz
J=e oy

=b,[(z-a,)"dz

Yk

=Res(f3a,) 27in(y,;a,)

=—2rin(y;a, ).Res(f3a,)
Thus
.[f(z)+i—2m‘ n(y;a,)-Res(f5a,)=0.

Hence,

%m‘l‘f(z)d =gn y;a,)Res(f;a,).

Dinzzizioizziizidiikkdke. 86
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Theorem 11 Suppose f has a pole of order m at z=a and g(z)=(z—a)" f(z) then

g(m—l) (a)

Res(f;a)= (m1)

Proof. Since f has a pole of order m at z=a, g(z)=(z—a)"” f(z) has removable

singularity at z=a. Then g has Laurent series expansion of the form g(z)= an (z—a)"
n=0

where b, :ﬁg(")(a) ,in 0<|z—a|<R for some R>0.
n)!
Therefore, f(z)= by —+ b — +...+h+ ibﬂ(z—a)”*’”.
(Z—a) (Z_a) (Z_a) n=m

Thus Res(f;a)=b, = (ml_l)!g(ml)(a)'
Corollary 12 If /' has a simple pole at z=a then Res(f;a)=g(a)=lim(z—a) f(z).
Proof. We have Res(f;a)= ﬁg(l_l) (a)

=g(a)

=limg(z)

:lziilal(z—a)f(z).
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h(2)

Corollary 13 If / has a simple poleat z=a and f(z)= ) then Res( f;a)= Ma)
4

k@
Proof. Since f has a simple pole at z=a, k has simple zero at z=a, k(a)=0.
So that, k(z)=(z—a)g(z), where gis analytic and non-vanishing at z=a. Moreover,

k'(a)=g(a) Thus
Res(f;a) =lzi£ral(z—a)f(z)

= lzigaq(z—a) ZZ;

=lim h(z) limﬂ
z—a z—a (Z—a)g(z)

1 h(a)

= h(a). = .
@@ *@

2

Example 14 Calculate residue of 2—2 .
(z-D(z-2)

2

z
Sol. Let f(Z) —m

then f has simple pole at z=1 and pole of order2 at z=2.

a) Res(f31)= lziil}(z—l)f(z)
. 22
ey
=1

Alternatively, Res(f;1)= L] where h(z)=z" , k(z)=(z-1)(z-2)"=2"-5z>+8z-4

k(1)

and k'(z)=3z"-10z+8

h(l) I’ 1
k'1) 3.1°-10.1+8

Therefore Res( f;1)=

i, ss D



2
z

b) z=2 is pole of order 2. Let g(z)=(z— 2)2f(z) =
(z-1)

then

B (z-1.2z-1.2° B 2’ -2z

gE) = T Ty

Therefore

1
~1)!

2
g'(2)
0.

Res(f32) = g(H)(Z)

z+1

2

Ex ample 15 Calculate residue of .
z" =2z

z+1  h(z)
22-2z k(z)
hO0) _ 0+1 1

Res(f:0) = ——~ and
S50 202 2 ™

Sol. Let f(z) =

then f has two simple polesnamely, at z=0 and z=2.

k@) _ 241 3
Res(/32) =0y " 22-2 2

Evaluation of real integrals using residue theorem:

We shall now discuss the methods of evaluating real integrals using residue calculus.

Type-I : Integration of the type J- f(x)dx where f(x)= h((x;
Cw g(x

and A(x), g(x) are
polynomials in x and deg(g(x))—deg(h(x))>2 then If(z)dz —0 as R — o, where C
C

is the semicircle |z|= R in the upper half of the plane.

['e]

Example 16 Evaluate J-
o 1+ x

Solution. Let 7 = | lzdlej L.
o 1+x 2
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1
1+z

Let f(z)=

and y =[-R,R]UC where C is the semicircle |z| = R lie in the upper half

2

of the plane. Here we choose R so that all pole in the upper half of the plane are in the

interior of y.

Here poles of f(z)=

. are z=1,—i and z =i lies in upper half of the plane .
+z

Since |Z| :|i| =1, the pole z =i lies inside y if we choose R >1.

dz =2miRes(f;i) .

2
z

Therefore by residue theorem J. f(z2)dz= J- " 1
+
4 e

Since z=1i is a simple pole of f(z)

. . ~ 1 1
Res(f;z):121£111(z—z)l+z2 =

1 1
Thus jf(z) dz=j1+22 dz=27i =7 (D
Y V4

1

Also j f(2)dz = f F(x)dx + j f(2)dz

R
1 1

T = dx + dz .2

J;eler2 ~£1+z2 @
Consider,

f 1 - T Re"

z)dz = —Re"idt =i| ————dt .

l‘f( ) '([1+R282” £1+R2621t

Since,

[1+27 21| =] 2° [H1-R* |= R* -1,

we have

j f(2)dz

R
0

i, o0 D



dz=0

. 1
—>0,as R—> oo, we get lim
-1 Roed 14z

Since

RZ 2

On taking limit as R — oo in (2), we obtain

o1
T= dx+0.
_-!;Hx2

Therefore,j ! dx:lj ! dx:%.

Example 17 Evaluate I "
Jl+x

1
1+ x?

dx .

Solution. Let / = j

2
z

1+z*

Let f(z)= and y =[-R,R]UC where C is the semicircle |z| =R lie in the upper half

of the plane. Here we choose R so that all pole lies in the upper half of the plane are in the

interior of y .

2 i 37i Sri Tri i 37i

z = == = = = .
are z=e*,e*,e*,e* and z=e*,e* are lies in upper half

Here poles of f(z)= 7
1+z

of the plane and inside y if we choose R >1.

2 i 3
Therefore by residue theorem If(z) dz = jl z T dz= 27zi.|:Res(f;e 4 j + Res(f;e 4 j:l .
+z
/4 4

i h (ei‘[‘l j (ei‘[‘l ] 1 i 1 . . (1 )

ot | _ a2t T isinl 2 282

Res(f,e j— '( m]— 11_3—4e —4[cos(4j zsm(4ﬂ—4\/E
g'le’ 4(€4J

and

42

~ 12 (37[1')_,. (37:1')}_(—1—1')
= =—e * =—|cos| — |[—isIn =
j 4 { 4 4
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Thus jf(z)dz=jl+z dz = 27:1{(1 I Z)} % (1)

PRI

Also j f(2)dz = f F(x)dx + j f(2)dz

R 2

Vs
—= dx + ...(2)
\/E J;l+x J-1+Z
Consider,

4 RZ 2it T R3 e3it
J-f(Z)dZ .[ Re idt = lj-mdt .
Since,
[1+2° 21— 2* = 1-R* [= R* ~ 1,
we have

V2 R3
j f(2)dz| < j e
C 0

3
Since —>0,as R—> o, weget lim dz=0

‘-1 Rowd 1427

On taking limit as R — o in (2) we get

r 7 ox
$:£l+x

Tdx+0.

Therefore, J- -

5, V2
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27
Type-II : Integration of the type j f(cosO,sin@)df where f(cosf,sinf) is rational
0

function of cos@ and sin@.

Here we substitute z=e¢" (0<@<27) thatis z=¢" describes the unit circle |z| =1.

i0 —i0 -1 2 0 —i0 -1 2

Also cos&’:e e _F*z = +1 and sinH:e ¢ 7z _Z _1.
2 2 2z 2i 2i 2iz
2z 2 2
Then J. f(cos@,sinH)dO = J- f z , z -1 % where y is positively oriented unit circle
0 g 2z 2iz )iz

|z| =1 can be evaluated using residue theorem.

2z

Example 18 Evaluate I —do (-1<a<l).
o 1+asind
2z 1
Solution. Let / = j — (1)
v 1+asin®
2
Put z=¢” (0<0<2r) then dz=izd® and sin6’222. 1.
iz

2r 1 1
Therefore I do =

< 1+asin® j (22—1]
"14+a

dz
— where y is unit circle |z| =1.

2iz
=—|———dz ...(2)

1 1 —i+iVl-a* —i—i\1-d*

Let f(z)= - = where z, =—— and z, =
(224_212_1) (z-z,)(z—2z,) 1 a ’ a
a
are simple poles of f(z).
Notethat|zz|—§ o1 % L+ |1| < (-1<a<1).
a a
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Since |zlzz| =1, |zl| <I.
Thus the pole z, lies inside y and z, lies outside.

1 1 a

(z—z)(z-1z2,) B (z,-2,) ) 2iv1-a?

Therefore Res( fz, ) =lim(z-z) f(z) = lim(z - z,)

Then by residue theorem

1 1 a
- - dz=Res(fiz,)n(y;z )=
Zm}[(zermzlj (f2)n(7:2) 2iN1-a’
a
Therefore j 21 dz =% -
7(zz+lz—lj I-a
a
Thus from (2) we have
i 2 ar 2z
T o ot i ol
l+asin@ (2 Z_lj aJl-a*> 1-d
a
Example 19 Evaluatej do (a>1).
o a+cos@
17 1
Solution. Let 7 = j d@:—j do. (1)
a+cos@ 2+ a+cosd

2
Put z=¢” (0<0<27) then dz=izd® and cosf =2 *1

2z

1°F 1 1 1 dz
Therefore [ :—J- de :—.[—— where y is unit circle |z| I.

, a+cost 27 (z +1j
a+
2z
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= j—l dz ..(2)

Let f(z):( 1 1 where z, =—a++a’ -1 and z,=-a—+a’ -1

zz+2az+1)_(z—zl)(z—zz)
are simple poles of f(z).
—a-~Na’-1|=a+vJa’-1>1 (asa>1).

Note that |zz| =

Since |le2| =1, |Zl| <1.

Thus the pole z, lies inside y and z, lies outside.

1 1 1

Therefore Res( f;z,) =lim(z-z)f(z) =lim(z-z) G-2)z-2) (-2 a1

Then by residue theorem

1 1
dz =R iz )y z, ) =
27zi'!-(z2 +2az+1) : es(le) n(y Zl)

2Ja* -1

Therefore J-; dz = i

(zz+2az+1) a’ =1

e

Thus from (2) we have

ool 1 1 1 7i r
df=—=-|————dz=- = :
~([a+cosl9 i'y[(zz+2az+l) : ia* -1 a* -1

it 95 i



EXERCISES

1. Show that
¢ odx 4 o fxdx w
1 =, 1 =—,
: _[01+x4 2 ) l‘l+x4 4
e ¢ dx V4 T xXdx 7w
1i1) = iv) ==
-([1+x2+x4 23 }[1+x6 6
2. Show that
i ”Jp dx oz i) T cos3xdx _ 7
* a+sin’x  2ava+1’ o S—4cosx 12
. T cosxdx V3 .. cos2xdx T 5
111 =—— 1Y =— (a <1).
) j3+4cosx 3 ) j1—2acosx+a2 12 ( )

- 0

OO0
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UNIT - VIII

ROUCHE’S THEOREM AND MAXIMUM MODULUS
THEOREM

In this unit we shall prove Argument Principle, Rouche’s theorem and Maximum modulus
theorem. Rouche’s theorem is found to be very useful in finding number of zeros inside a

given closed curve.

Definition(Meromorphic function)1. A function f that is analytic except for finite number
of points is meromorphic function.

1 .. 1
1) .
(z=2)(z+5) exp(z) -1

e.g. 1)

Theorem(Argument Principle)2. Let /' be meromorhic in G with pole py, ps, . . ., pm and
Zeros zi, 2, . . ., zy counted according to the multiplicity. If y is a closed rectifiable value in G
with y = 0 and not passing through py, p2, . . ., pmand zy, z, . . ., z, then

1 ! n m
o j %dz=;n(7jzk>—;<npk>

Proof : Since py, po, . . ., pm are poles and zj, z», . . ., z, are zeros of f, there is an analytic

function g such that

ﬂ(z—zk) 1
flz)=|tt—2(2) M
H(Z_pk)

where g is non vanishing.
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Logarithmic differention of /' gives us

G T B IR S 4(C)) 2
f(2) kZ‘(Z z) S Pk) g(2) @

Since g is non vanishing analytic function

I £ _o. Hence, (2) implies
g

f(z) < IJ' dz dz 40

27lef(Z) _k127Zl (z—-z,) k127” (Z D)

[, _%
2mjf() =23z anpk

Note 3 If y(f) = a + ré", then —J- f ((Z))d =Z,-P
1(z s

where
Zs: Number of zeros of f inside B(a; r) counted according to multiplicity
and

P : Number of poles of / inside B(a, r) counted according to multiplicity.

(z-1)'(z-4)°
(z+i)(z—=i)(z+1-0)*’

e.g f(@)= v:ilz[=2

Then .[

/4

dz 27i[3—(2+1+3)] = — 6mi.

Rouche’s theorem 4 Suppose f'and g are meromorphic in a neighborhood of B(a; R)with no
zeros or poles on the circle y = {z/ |z—al= R} I Z¢ 2y (Pg, Py) are the numbers of zeros

(poles) of f & g inside y counted according to their multiplicities and if | f(z) + g(z) | <| f{z)| +

|g(z)|on {y}, then Zy—Z, =Py— P, or Zy— Py = Z; — P,.
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Proof : If f/g = A isreal, then |f(z) + g(z) | <|f(z)| + | g(z)| gives us

/@, | 1@,
g2 | g

e | A+1]<|A|+1.

Further, if f/g=A >0 then (1) givesus, A +1 < A + 1lwhich is absurd.
Hence f/g does not take any value in [0, o). Therefore, f/ g has well defined logarithm log

(f/ g) in C — [0, ). Moreover, log (f/ g) is primitive of

(f/g) / (f/g). Hence j %dﬁo so that

(e« - 55

1 ¢/ 1 g
If g

A 27is, g

Corollary 5 If f and g are analytic in neighborhood of B(a;R) with no zeros on {y} where y
:|z—a|=Randif|f(z) +g(z) | <|f(z)|, then fand g have same number of zeros in B(a, R).

Proof : We have | g(z)| < |f(z)lon {y} = |f(z) +g(z) | <|f2)| + |f(z) + g(z) | on {y}, hence

fand f + g have same number of zeros in B(a, r).

Corollary 6 If fand g are analytic in neighborhood of B(a;R) with no zeros on {y} where y

:lz—a|=Randif| gz) | <|f(z)| on {y}, then f and f+g have same number of zeros in B(a,

R).
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Proof: We have | gz | < | f(zl on {y}. Thus we have

| f(2)+g(2)— f(2) < f(2)|+]| f(z)+g(z)|, hence, f and f+g have same number of

Z€T0S8.

Fundamental theorem of Algebra 7 Every non constant poly. has a zero. OR A polynomial

P@)=z"+az"

+ ...+ a,. has precisely n — zeros.
Proof : Consider P =z"+a" ' +... +a,
=Pl /z"=1+ai/z+... +a,/z".
hence P(z) /z" — 1 as n — . Clearly P(z) / z " is analyticin  — {0}. Hence is analytic in

the neighborhood of infinity. i.e. {z/|z|>R}.

Lety: {z/|z|=R}, then P—nz)—l

z

<lor|P(z)—z"|<|Z"|on {y} for suitable choice of R.

Hence Rouche’s theorem, P(z) & z" have same number of zeros in B(a, r). Since z" has n
zeros (counted according to multiplicities) in B(a, r). P(z) also has precisely n- zeros in B(a,

r) for some R > 0.

Example 8 Prove that there are 3 zeros of 2° — 6z + 8 in an B(0; 3).

Proof : Let fi(z) = z° — 6z + 8, We shall prove that f; has 3 zeros in B(0; 3)and no zeros in
B(0; 1).

Letf(z) = 2> and g(z)= — 6z + 8

Now, on|z|=3,|fz) |=|z =27,and | g(z) |=|-6z+8| < 6|z +8=26.

Thus | g(z) | £ 26 <27 =|f{z)|on |z |=3.

Hence fand f+ g have same nos. of zeros in B(0; 3). Since f{z) = z° has 3 zeros in B(0; 3). f

+g=2 —6z + 8 also has 3 zeros in B(0; 3).
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Now consider |z |=1.

Letf(z)= 2> + 8 and g(z) = — 62 .

Now |fiz)|=|2> +8|=8—|z] =8-1=7.
&lgi)|=]-6z|=6]z=6.

Thus | f(z)| =6 <7 < | f(z)lon |z |=1.

Hence f'and f+ g have same number of zeros in B(0; 3).

Since f{z) = z° + 8 has 3 zeros on |z | =2, f has no zeros in B(0; 1).
Hence f{z)+ g(z) = z° — 6z + 8 has no zeros in B(0; 1).

Thus all the three zeros of z° — 6z + 8 lie in of ann(0; 1,3).

Example 9 Let > 1, and show that the equation of A —z — e~ = 0 has exactly one solution in
the half plane { z/ Re(z) > 0 }. Prove that this solution must be real.

Solution Letr> 1, let f(z) =— A +z and g(z) = e . Then on [-iR, iR],

wehave,z = iy & | fiz)| = |- A +iv| = A2+ 24> 1and|g@)|=e".
= |e”=1.
Thus | g(z)| <| f(z)| on [-iR, iR].
Now consider the semi circle {z/|z | =R : Re(z) > 0}.
ie, z =Ré", -2 <t<m/2.
Here | f(z)] =| - A+ Re" |>R—A, and | gz)|=|e” || e "' <1< R=A<|f2)).
Thus | g(z)| < | f{z)| on the semi circle & [—iR, iR].
Thus fand f+ g have the same number of zeros, inside the circle
{z/|z|=R; Re(z) >0} U [-R,iR].

Since f(z) =— A + z has precisely one zero so does f(z) + g(z) =h—z—e .
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Example 10 Consider z° — 62° + 3z +1,

Solution Let flz) = 62 -3z &  glz)=2"+1
Lety:|z|=3andy={z/|z|=3}.

Now |flz) | =] 62" =3z |> 6|z —3|z|=6x9 —3x3 =45
&lg) =12 -1]=|z[' +1=28

Thus [g(z) | =[flz) | for z e {v}

Hence f'and f+ g have the same no of zeros in B(0; 3)
Since f(z) =3z(2z— 1) both the zeros viz., 0 and 2 of f lies inside |z | =3

Hence z° — 62> + 3z + 1 = 0 has precisely 2 zeros in B(0 ; 3).

Example 11 Prove that e “ =2 + Z* has only one root in the upper half plane.
Solution Let f{z) =2 +2* & g(z) =¢ =,

Consider y =[-R, R] U {z/Re(z) >0, | z| =R}

forz € [-R, R], z=xreal,

fl) =flx) =2+x">1,

. g(z) <flz)forz e [-R, R],

. letz =Re™ 0<t<2n
Then |flz) |=|2z+2*|> R*=2
By choosing R > V3 we have

iR(cost+isint)

‘f(Z)|2R2_2>1> e—RSintz‘e

=le”“|on {z/Re(z)>0,|z|=R}
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Thus [ g(2) [<|A(2)|

Hence by Rouches theorem f'and f+ g have the same no of zeros in y,
Since f has only one zero viz. V2i inside y and above real axis i.e. upper half plane £+ g has

precisely one zero in the upper half plane.

Maximum Modulus Theorems

Theorem 12 If /'is analytic in a region G and a is a point in G with |f{x) | > | g(x) |V z € G,
then /' must be a constant function.

Proof : Let o = fla) & Q =f(G). By hypothesis

[fla)| 2 |flz)|[VzeG = |a|> |E§|Vze Q. Hence QN oQ =#¢,sincea|> |E| VE
€ Q = a € Q. Therefore, (2 cannot be an open set. Since f is analytic and non constant Q

= f(G) is necessarily open by open mapping theorem. Hence f must be a constant.

Maximum Modulus Theorem 13 (2™ version) : Let G be a neighbourhood open set in G
and suppose F is continuous function on G which is analytic in G. Then max

{f(z)|:ze G}={f(z)|:z €dG}.

Proof : Since G is bounded, G id bounded closed set. Hence, G is compact. Since f is
continuous on compact set E}, it attains maximum at some a € E}, i.e., there is ae G such
that |Az) |< |fa) |V z € G.If fwere non-constant and a € G, then we are lead to
contradiction by 1% version of MMT, hence a < Gbuta ¢ G 1.e., a €0G.

Definition 14 Let /' be real valued function G < **. Let a € G or a = o then the limit
superior of f(z) as z — oo is defined as

limsup f(z)=limsup f(z)/ ze GNB(a;r).
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Similarly, liminf f(z) = liminf f(z)/ze G B(ar).

By 0,G, we mean extended boundary of G defined as 0.,G = 0G U { }, if g is unbounded &

0-G = 0G if G is bounded.

Maximum Modulus Theorem 15 (3" version) : Let G be region in C & f an analytic

function on G. Suppose there is constant M s. t. limsup| f(z)|<M V a € G. Then |fiz) | <M

VzeG.
Proof: Let 6 >0 be arbitrary and H ={ze G| f(z)|> M +6}. Now, it is enough to prove
that H =¢. Since f is analytic, its real and imaginary parts are continuous and hence | |,

is continuous. Therefore, H 1is open . Now, given that limsup| f(z)|<M Vaed,G.

Hence, there is » >0 such that | f(z)|[<x M +6 VzeGn B(a;r). Hence, Eﬁ&mGz ¢. In
other words, ﬁg G, regardless of whether G is bounded or unbounded. Hence, by nd

version of MMT, there is z € 0H , such that | f(z)|= M + 6, which is absurd, hence, H = ¢

or f is constant. Now if f is constant, H = ¢ is hypothesis. Thus in any case H =¢ .

Schwarz’ Lemma 16 Let D ={z:|z|<1} and suppose f is analytic in D with
(@ |f(z)|lfor zeD
(b) f(0)=0.
Then | £'(0)|<1, | f(2)[Kz| VzeD.
Moreover, if | f'(0)|=1 or | f(z)|= z| for some z # 0. Then there is a constant ¢,|c|=1 such

that f(w)=cw,VweD.
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Proof. Define g:D—I[] by g(z):M if z#0 and g(0)= f'(0). Note that
z

ling g(2)= linolM = hn(}f(z);(j;(()) = f'(0). Thus g is continuous at z=0 and
Z—>! Z—>! z Z—> z—
consequently g is analytic in D . Now by maximum modulus theorem, for any » <1, there is

1 . _ .
—. Letting » > 17, we obtain
Z, r

/) |G
AN

a point z,such that |z, |=7r <1 and | g(z) |:|

|g(z)|£1 VzeD. Hence,

pACH]
z

<1 or | f(2)|8z]| for all z#0 and |g(0)H f'(0)|<1.

Since f(0)=0, we have | f(z)|<|z| for all zeD and | f'(0)|<1. Let | f'(0)|=1, then
|2(0)|=1, which implies that g attains maximum in the disc D. Therefore, g must be

f()

z

constant. Therefore, there is ¢ €[] such that g(z)=c. That is,

=c or f(z)=cz, since

f(z)=cz holds trivially for z=0, we have f(z)=cz for all ze D. Further, |c|H g(z)|=1.

In other words |c|=1=> ¢ = € for some real @. Hence, f(z)=e"z forall zeD.

EXERCISES
1.  Find the number of zeros of the following polynomials
1) z* +62° + z+2 in the unit disk and in the ann(0;1,3)
i) 2z —12z*+14 in ann(0;1,5/2) and also in {z:| z|< 2}
2. Suppose R >0, is sufficiently large, then if p is a polynomial of degree n>0. Then

LG
. D(2)

2inn.

OO0
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UNIT - IX

SCHWARZ'S LEMMA AND ITS CONSEQUENCES

Theorem 9.1 (Schwarz' sLemma)

Let p={z:|zl<1} andsupposef isandytic on D with

@ |f(2]£1forzinD

(b) f(0)=0

Then |f'(0)|£1 and |f (2)| £]2 for dl z in the disk D. Moreover if |f'(0)|=1 or if
|f (z)| =|Z for some z1t Q thenthereisacongant ¢, || =1, suchthat f (w) = cw for al winD.
Proof : Let p={z:|z|]<1} and f:D ® C isandyticwith

@ |f(2)|£1for 21 D

() f(0)=0

Define g:D ® C by

i f(2)
9(2=1"z
{£'(0) forz=0

forz1 0

Then g isandyticin D, and hence andyticon B(0;r) ={z:|Zr} forevery 0<r <1.

Applying maximum modulus theoremto g on B (O, r), for dl z1 B(0,r) wehave

|9(2) £ mex|g(2)] =max|g(2)

f(2)

1 -
. £—, Dby condition (a).

r

= max
|4=r

Letting r ® 1 wehave

lg(2)|£1,fordl 21 B(0,2)=D e (D)

f(2)

D‘ £1, ;i D,z 0
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Since f (0) =0, we have

11 (2)£l4." 21 D
Further, from (1) we have

|£(0)|=|g(0)| £1
Now, if | f'(0)| =1 or | f ()| =|f (2)| for some z1 0 inD then
lg(0) =|f ()] =1

1@
R

or |g(2) 1, for some z1 QinD.

Thus by (1)
lg(w)|£]g (0)], " wi D

o |g(w)|£|g(2)]; *wi D andsome z1 0 inD.
Therefore by maximum modulus theorem g must be congtant function on D.

Thisimplies g(w) =c, " wl D and some constant c.

b f(w)=cw,"wl D, wtO.
Snce 0= f (0) =c(0), wehave
f(w=cw,"wl D

where |cl=|g(0)| =f'(0)] =1

Theorem 9.2:
Let D={z:|4<1} =B(0,1) betheunitdisk, and §D ={z:|4<1} -
Fx al C suchthat |g] < 1. Define the Mobius transformation.

z-a
1- az

folzl=
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Then:

@
(b)
(©
(d)
(€

()

Proof :

@

(b)

(©

f 5 iIsaone-one map of D onto itself,

f 5 isandytic in an open disk containing the closure of D,
theinverseof f _ isf_,,

f . maps gD onto gD,

f,(a=0,f,(0)=-a

f.(@)=0,f,(0)=1-|a? and 4 (a) = .
1- lal

Let D={z:|zl<1} ad D ={z:|4=1} -

Fx al C suchthat |g|<1.

Congder the Mobius transformation

z-a

1- az

We know Mobius transformation is composition of trandations, dilations and the inversion.
Since each function involved in the composition of Mobius transformation isbijectiveon Cy

f,(2)=

it followsthet f , isbijectiveon D.

1
Thefunction f , iswell defined everywhere except at Z :E .

EHE
al |a

Thisimpliesf , iswell defined on an open disk at the origin containing not only D but D aso.

As |al <1, we have >1.

Thusf , isanaytic in an open disk containing the closureof D, as p =D D -

If ]aj <1 then |- g <1. Forany zi D

_, @®z-ad
f_a(fa(z))—f_agl_ —




&z-aob
—+ta

_ &1- azp
an-aQ

1+a :
1- azo

_z-a+a- aaz
1-az+az- aa

_z-laz _2(1-1aP)
-l 1-ld

=z
Smilarly one can show that
fa(f.a(2))=z
Thus
faf.a(2)=2z=f_,(f,(2)
Thisprovestheinverseof f , isf_ . Further f , mapsD onto itself in a one-one fashion.
(d  Letany z[ D, then |7 =1.
Let =g, for somered (.
Then
. (2|=]f, ()

_|é-a|_ le"-a
- 2| |ellei@- 7

iq _
= |e a| =1

(d9-a)

[-- =Wl forany wi C]

pf,(2)1 D
Thisprovesf , maps gD onto qD.
(e  Fromthedefinitionof f, it followsthat f ,(a)=0, f, (0) =- a.

® Already we have proved that f , isanaytic in an open disk containing the closure of D.
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Thus,

daz-ad

fald) = o8 a5

1-a2)@- (z- a)(-a)
(1- a@)?

_1-az+az-laf
(1- &)’

_1-af
(1- &)’

In particular,

f,'(0)=1-|af

, 1-la*  1-]af 1
fa'(a)= —\2 2= 2
(1-2)" (1. ]gp)" 1-1d

Thefollowing theorem helptofind an upper bound for | f *(z)| of any andlyticmep f :D ® D,
D={z:lz<1.

Theorem 9.3 : Let f isandytic on D with |f (z)| £1landlet f(a)=a for

1- laf?

i D={z: then | f '(2)| £
al D={z:lz1<1 | | 1- 1P

1-lal®
a2 then there is a constanmt ¢ with |¢/=1 and

Furthermore if |f'(a)=

f(2=f_,(d,(2) for 21 D.
Proof : LetfisanayticonD with | (z)| £1.

Let aT D={z:|zl<1} and f(a)=a,s0 |a|<1 unlessf is constant.

Define g =f , o f of ;. Then g mapsD into D and dso stifies
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g(0) =(f, o fof_,)(0)
=fa (1 (1.2 (0))
=f, (f(a))
=f, (a)
=0
Thus by applying Schwarz s Lemmawe obtain
lg'(0)|£1
Now by applying chain rule
9'(0) =(f, o f of .,)(0)

=(fao f)'(f 2 (0)f_,'(0)
= (f, o )'(a)(1- 1a?)
=f,'(f(a) f'(a)(1- la?)

=t, @) f'(a)(1- laP)

-1 @118

1- la P

Therefore,

2
t(a) =22 5(g)
YRR

Using the fact |g*(0)| £1, we obtain

: 1-laf®
|f (a)|£ >,al D.
1- |4l

Further observe that, equality holds exactly when |g'(0)| =1.
Thus gpplying Schwarz's Lemmato afunction g, thereisa constant ¢, |¢| =1, such that.

g(z) =cz fordl 2] D.

112



P (faofof o)(2=cz"zl D
Pfofof ,=cl whee |:D® D, |(2)=z2

b f,of =clof, =dy

b f(2)=f_, (d,(2)for 21 D

Theorem 94: Let f:D® D, beaoneoneandytic mapof p={z:|z/<1} onto itsdf and
suppose f (a) =0. Then thereisacomplex number cwith |¢| =1 suchthat f =df , .

Proof: Let f :D® D beabijectivemap, where p ={z:|z|<1}
Thenthereisan andytic function g: D ® D such that
g(f(2))=zfor"z D e (1)
Let f (a) =0. Then by Theorem 9.3

1-loF 1

f'(a)£ =
| | 1-lal® 1-laf

Further by (1), we have
g(f(a)=a
P g(0)=a,as f(a)=0

Again applying the Theorem 9.3 to g we obtain

. 1- lal® _ 2
g'(0) £ —=5=1-1al
1- ol

Differentiating (1), we get
9'(f(2)f (=1
Therefore,
1=g'(f(a)f (@)

=g'(0) f'(a) [ f(a)=0]
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() =L |
P |]c (a)|_|g-(0)| 1- |a|2 .. (3

By (2) and (3) we have

_1- lo?
1- |a| 1- |al?

|£(a)|=

Therefore by Theorem 9.3, there is acomplex number ¢ with |g| =1 such that
f(2=f_o(cf,(2)
=fo(cf o (2))
=d,(2), ;

pf=d,

Problem 9.1: Let f :D ® C isamdyticwithRe f (z) 3 0 fordlzinp ={z:|z <1} ,and f (0)=1.
Show that Re f (z) >0.

1- |7 1+|7
and £lf(g=—= 5
1412 1(2) 1-14° %' D

Solution: Let p={z:|z|<1} ., f :D ® C isamdyticwithRe f (z) 3 0 fordl z] p,and f (0)=1.

Define f (Z)=%.Thenf maps{ z:Rez > 0} ontoD, sothefunction g =f o f mapsD
toitsdf and
g(0)=f (£ (0))=f (D=0
Applying SchwarZ s Lemmato g, we obtain
l9(2| £, " 21 D

pIf(f(2)|£ld,"21 D

f -1
e

f(2)+1
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Therefore

11 (2)]-1_|1(2)-1]
[f (2)|+1 7| (2)+1]

£|Z|, "zl D

b |f(2)- 1£14| f (2)|+|4
b |f(2)(1-12) £1+/4

1+4
D|f()|£ |§| 21 D

Onthesameline

1- (2] |1 (2)-1

" L [f

£|Z|’ n ZT D

implies —£|f (2)], »
Therefore

1- |7 1+|7
£lf (== 5
1+ 1 (2] 1-14° "2 b

Problem 9.2 Suppose | (z)| £1 for |7 <1 and f is analytic. Prove that

| (0)|+12]

|f (Z)|£W for |z|<]_

Proof : Let |f(z)|£1for |4 <1 andfisandyticon p={z:|z|<1 .
Let f (0)=a and consider thefunction g =f o f .
Then g(0) =f ,( f (0)) =f ,(a) =0
Thus by gpplying Schwarz' s Lemma, we have
924, "2 0 . @)

b lf.(f(2D)£ld; 21 D

f(z)-a
1-af (2)

P LD
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A (Z)_f(z)-a
Forany 21 D, 97175 ()

P g(z)-ag(2 f(2=1(2)- a
b g(z)+a=f(2)(1+ag(2))
b 1(=210(2
1+ag(z)
Thus f (z) isobtainedfrom w=g(z) by ahbilinear transformation, which mapscircles onto
circlesand centre of acircle onto centre of itsimage. From (1) we seethat for any zi p,g(z) isin

thedisk B(0,|2]). Thisdisk ismapped onadisk D, i D withcentre f (a) =

Thatis, f (2)T Dy and |f (2)| £]p- 0], where pisthe point on the closure of D; .

a+|7et

ThenPisgivenby P= 1+ 2!

a+|Zét

Theref f(z)|£l——=—
reors, | | 1+ alze"

lal +|2]
1+|allZ

_ |1 (0)|+I4
“1+[f (o)4 forld<1

[ lal =[al]

EXERCISE :

1. Suppose | f (2)| £1 for |4 <1 and fisanayticon D ={z:|z|<1} .

Provethat :
f(0)|+4
@ If( )|£1| i |O)|| 7 for 2 <1.
1- [f (0)|I4

W£|f(2)|,for|z|<1.

HRERN
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UNIT - X

SPACES OF ANALYTIC FUNCTIONS AND THE RIEMANN
MAPPING THEOREM

The Space of Continuous Functions:

LetGisanopensetin ¢ and (W,d) isacomplete metric spacethen C(G, W) denotesthe
st of dl continuous function from G to .

Theset C(G, W) isnon-empty, asit dways contains the constant functions.

Theoerm 10.1: If Gisanopensetin ¢ then thereisasequence{ Kn} of compact subsetsof G such

¥
tha G={JK,.

n=1

Moreover, the setscan K, be chosen to satisfy the following conditions::
@) Kol Kpags
(b) K1 G andK compactimplies K1 K, for somen;

(© Every component of Cy, - K, containsacomponentof Cy - G.

Definition 10.1:

¥
Let G =| JK,  whereeach K, iscompactand K, 1 intK,;.
n=1

Define, s (f.9) =sup{d(f(2),g (2)):21 K}

for dl functionsf and gin C(G,W)..

(1 )_é‘aeld“ s (f.9)

' 9)=aAdC5* 7o 7+ o
Also define, n=182 pl+s_ (f.9)" e (1)
t 3 oo
As—£1lfordl t 3 0,theseriesin(1) isdominated by A 8—+ and henceit isconvergen.
1+t €20

Theorem 10.2: (C(G,W),s ) isacomplete metric space
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Spaces of Analytic Functions:

L et G be an open subset of thecomplex plane. Let H (G) isthecollection of andytic functions
on G. Then we consder H (G) asasubset of C(G,C), and the metricon H (G) is the metric
whichit inherits as subset of C(G,C).

Theoerm 10.3: If { f,} isasequenceinH (G) andf belongsto C(G,C) suchthat f,® f then
f isandyticand f, 0 ® f &) for eachinteger k2 1.

Proof : Let{ f}isasequencein H(G) and f1 C(G,C) suchthat f,® f .

To prove f is anaytic we use Morerd s theorem. Let T be a triangle contained insde a disk
DI G.

Since T iscompact, f,,® f uniformly over T.

Therefore,

limgofp=of )
T T

Aseach f, isandyticon G and T is a closd rectifidble curve in a disk D, by Cauchy’s

theorem.
Of, =0, foreachn.
T
Therefore from (1) we have,

of =0
(

Thusf must beandyticinevery disk D| G, by Morera stheorem, and hencef isandyticin
G. Now we provethat .0 ® &) for eachinteger k2 1.
Let D=B(a;r)i G.ChooseR>rsuchthat B(a;R)1 G.

Let g isthecirde|z- g| = R, then by Cauchy’sintegrd formula, for each integer k 3 1, and
each n, we have

ki f(w)- f(w)
fn(k)(Z)‘ f(k)(Z): 2p|9 (V\CI_ Z)k+1W dW, ZT D (2)

Since{g} iscompact, uniformly on {g} .

Let M, =sup{|f, (w)- f(w)|:wi {g}},
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then M, ® 0,as f,® f.
Further for 2§ p and wi {g}, we have
lw- z| =|(w- a) +(a- 2)|
3 |lw- al- |z- all
3 |w- al- |z- 4
3 R-r

1 1
b~ £~
lw- 2 R-r - (3

Thusfrom (2) and (3), for 2] D, we have

|fn(k)(z)_ f(k)(z)|£%gfnl(w)- :+(1W)|Idw|

w- Z
KIM, .
2p(R‘ r_)k+1 ddVVI
KIM ,
:2p(R- r)k“)(ZIOR
__kIM,R
(R-r)*?

Thereforeforesch 71 D,

|
lim|£,%(2)- 10 (2] =—<%__jimm, =0
ne ¥ (R-r) " re¥

Hence f,0 ® f® uniformlyon D=B(a,r).

Let k bean arbitrary compact subset of G. Let 0<r <d (K, G), thenthereare &, a,,
a, inK suchtha

Ki OB(aj;r)

since f,® ® f & uniformly oneach B(&;;r), the convergenceis uniform on K.

AsK isan arbitrary compact subset of G, .0 ® &) unifomly onG.
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Corollary 10.1: H (G) isacomplete metric space.

Proof : As H(G) is collection of andytic functionson G and C(G, C) isthe set of &l continuous
functions, H (G) issubset of C(G,C).

Thus H (G) isasubspace of comlete metric space C (G, C) withmetricinduced on H (G)
by metricon C(G,C).

Toprove H (G) iscompletemetric spaceit sufficestoshowthat H (G) isclosedin C(G,C).

Let{ f,} beany sequencein H (G) convergingtof, f1 C(G,C).
By Theorem10.3 f : G® C isandyticon G, andhence f1 H (G).

Thisproves H (G) isclosed in complete metric space C(G, C), hence H (G) iscomplete.

Corollary 10.2 :

¥
If f,:G® C isandyticand é. fn(2) converges uniformly on compact setsto f (z) then
n=1

¥
10 (2)=8 1,0 (2)

n=1

Proof : Let f,:G® C isquddic

¥
Let é fn(2) converges uniformly on compact sststo f (z) .
n=1

n
[¢}

Define Sn(z)qufj (Z),thmbyaswmption S, ® f uniformly on compact sets.
J_

Therefore, by Theorem 10.3

S ® f® uniformly on compact set.

n ¥
&) (2) =1 ®(2) =limA f.(2)=] f.
p f%(z) lims, (2) rIé@h;:jaflf,(z) jazlfj(z)
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Theoerm 104 (Hurwitz's Theorem) :

Let G be aregion and suppose the sequence { f,} in H(G) convergesto f.If f >0,
B(a;R)1 G,and f(2)* 0 for |z- g = R thenthereisaninteger N such that for n3 N, f and

f, have the same number of zerosin B(a; R).

Proof : Let G bearegion and let the sequence { f,} in H (G) convergestof.
Let f 20, B(a;R)I G and f(2)t 0O for |z- a|=R-
Define d =inf{|f (2):Iz- al =R}

As f(z)t 0 for |z- gl >R, Wwehaved >0.

d
Since f,® f unifomlyon {z:|z- a|= R}, corrosponding to 5 thereisan N7 N such

thetif n2 N and |z- al = R then
1t (2)- £,(D]<L<de|f (D]t (D] +]f, ()|
2

Therefore, by Rouche' stheorem f and f,, have the same number of zero'sin B(a;R).

Corollary 10.3:

If { f,} 1 H(G) convergesto fin H(G) andeach f,, never vanishes on G then either
f © 0 or f never vanishes.

Proof : Let{f}i H(G), fi H(G) ad f,® f.
Leteach f,, never vanisheson G..

If f isnot identicaly zero, then f (a) =0 for some a] G. Sincezerosof an andytic function
areisolated, thereisR >0 suchthat B(a,R) [ G suchthat f 90 on B(a,R).

Therefore by Hurwitz' s Theorem thereisaninteger N suchthet forns N, fand f,, havethe

same number of zerosin B(a; R).
Thisis contradiction to the assumption each f,, never vanisheson G..

Definition 10.3 (Normal Family) : Asst F 1 C(G,C) isnormd if each sequencein # has a

subsequence which convergesto afunction f in C(G,C) .
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Definition 10.4 (Equicontinuous Family) :

Ast F 1 C(G,C) isequicontinuousat apaint z, inGiff forevery e >0 thereisa d >0
such that

if |z- 2| <d then d(f (2),f(z))<e, fordl fT F.
Wesay that £ isequicontinuouson E| G if forevary e >0 thereisad >0 such that

if zwl E and |z- wi<d then d(f (2), f (w))<e,fordl fin F.

Remark 10.1:

1 If 7 condstsof anglefunction f then the tatement that & isequicontinuouséat z, isonly the
Statement that f is continuous at z,.

2. F ={ f} isequicontinuous over E is equivalent to saying that f is uniformly continuous on E.

Definition 10.5 (Locally bounded family) :

Afamily 7] H(G) islocdly bounded if for eech al G, there are constantsM and r >0
suchthatfordl f1 F,

[T (2|EM ,for |2- g <r.
Alternatively, 7 islocdly bounded if thereisanr > 0 such that,
sup{|f (2)|:1z- d<r, T F}<¥.

Thatis, F islocdly bounded if about each point ain G there is a disk on which £ is
uniformly bounded.

We date few theorems without proof which are required to prove Montd’s theorem and its
CONSequUENCES.

Theorem 10.5:
Ast F1 C(G,C) isnormd iff its dlosure is compact.
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Theorem 10.6 (Arzela-Ascoli Theorem) :

Asset F 1 C(G,C) isnormd iff the following two conditions are satisfied.
@  foreachzinG {f(2): f1 F} hascompact closurein wy;
(b) JF isequicontinuous at each point of G..

Theorem 10.7: A st F inH (G) islocaly bounded iff for eech compact set K| G thereisa
constant M such that |f (Z)|£M fordl f1 7 andzinK.

Theorem 10.8 (Montel’s Theorem) : A family 7 inH (G) isnormd iff £ islocaly bounded.

Proof : Let £ H(G).
Let £ isnormd.

We haveto provethat F islocaly bounded. If possble = isnot localy bounded, then there
isacompact set K | G suchtha

sup{|f (2|:21 K, fT F} =¥
Thisimpliesfor each n, thereis f,1 F suchthat | f, (2|2 n foreach 2 Kk . Thatis, there
isasequence{ f,} in & suchtha
sup{|fn(z)|:zT K}3 n e (1)
But as & isnormd thereisafunction f1 H (G) and asubsequence{fnk} of { f,} such
tha f, ® f.

Snce Ki G and f1 H(G), fiscontinuousoncompact set K, and hencef isbounded on
K. ThusthereisM > 0 such that

sup{|f (2)]:2T K} £M e
From (1) and (2) we have
nk£sup{|fnk(2)|:ZT K}
£sup{|fy (2)- 1(2)]:21 K}+sup{|f (2)]:21 K}
£sup{|fnk(2)- t(2)):21 K}+|v| e (3)
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Since f, ® f wehave
ll(i@n;wp“fn(z)- f(2)]:21 K}:O o (4
Usince (4) we have

[imn, £EM i~ limn, =¥
oy K , acontradiction to the fact @y K .

Therefore 7 must be locally bounded.
Conversdy, let 7 islocdly bounded.
To prove £ isnormd we use Arzea-Ascoli theorem.
@ As F isnormd, for eech ] G there are constantsM and r > O such that for al 1 F,
[T (2)|£M ,fordl zi B(a,r).

Inparticular, |f (@) EM, " fT 7.

p A={f(a): f1 F}i B(OM)

b Al B(0O;M)
Thus " isclosed bounded subset of ¢ and hence compact by Heine Bordl theorem.
We have proved that for each ai G, { f (a): f 1 F} has compact dlosurein ¢ .

(b) We now provetha F isequicontinuous a each point of G..

Fixay al G.
Let e >0 begiven.

Since £ is localy bounded there are constants M and r > 0 such that B(a;r)i G and
|f (2)|EM fordl zi B(a;r),anddl f1 7.

' A .
Let |z- a|<§ and f1 F then using Cauchy'sformulawith g(t) =a+re', O£t £2p ,
we have

1 ‘f(W)dw- 1 ‘f(W)dw

f(a)_f(Z)ZZpi(?w-a 2pi(?w-z

1 é1 14
- -2 Yt w)d
2pi(?€w-a w- zH (w)dw
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normd.

_ 1 &w- 2)- (w- a)u

ZpI%(W w2l f( w) dw
1 . (a-2)
207 0w ) (- )f(w)dw

Therefore,

f (a)- f(z)|£%qw|172||f(w)||dV\/|

Choose d <[§ me] thenfor |a- 7 <d , wehave |f (a)- f(2)|<e fordl fT F

Thus F isequicontinuousat each af G.
We have proved that & satisfies the conditions of Arzela-Ascoli theorem. Therefore £ is

Corollary 104 : Ast £ H(G) iscompect iff it isclosed and localy bounded.

Proof : We know the theorems

1)

2)

Ast F1 C(G,C) isnomd iff = iscompact.

F1 H(G) isnomd iff F islocdly bounded.

Therefore F islocdly bounded iff 7 is compact.
Thisimplies F closed and locally bounded iff £ =7 iscompact.
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The Riemann Mapping Theorem
Definition 10.6 :

A region G, isconformaly equivaent totheregion G, if thereisandyticfunction f :G, ® C
suchthat f isone-oneand f (G,)=G,.

Thisis an equivaence reation.

Definition 10.7 :

An open sat Gissmply connected if G isconnected and every closed rectifidble curvein G is
homotopic to zero.

Theorem 10.9 : Let G be an open connected subset of ¢ . Then the following are equivaent.

@ G issmply connected.

(b) n(g;q) =0 for every closed rectifiable curve g in G and every pointain G- C .

(© Cy - Gisconnected.

(d Forany fT H(G) suchthat f (z)t 0 fordl zinG, thereisafunction gT H (G) such

that 1 (2)=[g(2)]*.

Theorem 10.10 (Open M apping Theorem)

Let G be aregion and suppose that f is a non-congtant andytic function on G. Then for any
opens=t U inG, f (U) isopen.

Theorem 10.11 (Identity Theorem)

Let Gbeaconnected opensetandlet f : G® C beanandytic function. Then thefollowing
are equivaent statements.

@ foo
(b) thereisapointain G suchtha f™ (a)=0 foreach n3 0.
© {zl G:f (2)=0} hesalimitpointinG.

With this basicsin our hand we prove the well known Riemann mapping theorem.
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Theorem 10.12 (Riemann Mapping Theorem)

Let G beasimply connected region whichisnot thewholeplaneand let a1 G. Thenthereis
aunigue andytic function f : G® C having the properties

@ f(a)=0and f'(a)>0;

(b) f isone-one.

©  f(e)={z:ld<1.

Proof : Let G beasmply connected region which is not the whole planeand let a1 G.
Define,
F={f1 H(G): f isone-one, f (a)=0,f'(a) >0and f (G)1 D}
where D ={z:|z|<1}
We give the proof in the following steps.

Step 1: F isnonempty.

Step2: F=r {0}, thatisif fT F theneither T F or f°0 onG.

Step 3: Thereexists f1 F suchthat f (G)=D.

Setp 4: fisunique satisfying the conditionsin (), (b) and ().

Let us proceed towards the first step.

Step 1: Weprove £ isnon-empty. As Gt C, Gisproper subset of ¢ . Thusthereis b C such
that bl G.

Since G issmply connected, z- pi H (G) and z- bt 0 fordl zin G, thereis afunction
gl H(G) suchtha
[ =2-b
If z, and z, be any point in G then

2

9(z)=%g(z,)P ég(zl)flzzég(zz)ﬁl
P z-b=2-Db

P z=z2
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In particular, g is one-one and
9(z)=-9(z)p z=2,"2,21 G e (D)
Asg is non congtant analytic function on G, by open mapping theorem, g(G) isopenin ¢ .
Further, al G implies g(a)T g(G).
Therefore there exists r > 0 such that
B(g();r)i g L. )
Wedamthat [g(z)+g(a)|3 r, "zl G ,thatis,
B(- g(@:r)Ng(G) =t
If B(-g(a);r)Ng(G) f ,thereis z1 G suchthat g(2)7 B(- g(d;r), thatis,
lg(2)+g(a)|<r
b |-g(2)- g(a) <r
b -g(2)1 B(g(a);r)
p -g(21 g(G) [ By (2)]
Therefore, $wi G suchtha - g(z) = g(w).
But (1) impliesthat z=w.
Thus g(z) = g(w) =- g(2).
P 2g(2)=0
b [g(2)]° =0
P z-b=0
P z=b

But z=w givesthat b =wi G, acontradiction.
Thus we must have

B(-g(a);r)Ng(G)=f

plog(@+g(a)lzr."z1 G (3
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Inparticular for z=a] G, wehave

lg(@)+g(a)zrp 2[g(a)lr

b |g(a))? % (@

Define, h:G® C by

H=rlo@| g@ g(2)-g(a)

¢ . 3
4 9'@ |g(a) 9@D+g@ 2e ©

As gl H(G),wehave hi H (G)-
Further h(a) =0-

Let ,2,1 G and h(z) =h(z,)

9(z)- 9(a) _g(z)- g(a)
9(z)+g(a 9(z)+g(a)

b g(z)=9(z)

b z =1z,,asgisone-one

then

This proves h is one-one.
From (3), we have

LJg'(a)| _g(a) y(g(z)+g(a))g'(z)- (9(2)- g(a))g'(2)
4 9'@) |g(a)’ [0(2)+g(a)]

h'lz =

rJg (a) _gla) _2g9'(2)g(2)
4 g'(a) |g(a)| [g(z)+g(a)]

Therefore,

h(a) = Ja@l 9@ 20'@)g (@)
4 g'a) g 4[g(a)]’

|g (a)|
i Ig(a)l

Thus h'(a) >0
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Now

h(z]="l9@)] Jo(@) |9(2)- g(a)]
4'1g'@) |g(a) 19(2)+g(a)]

_r_ 1 1g9(2)- g(a)
4 |g(a)||g(2) +g(a)|

1| g(@-g(a |
4|g(@)[g(2) +g(a)]|

r|[o(2)+g(a)]- 29(a)
4| g(@)[g(2)+g()] |

r.1 2
4/g(a) g(2)+g(a)|

ree 1 + 2 o
4§lg(a)] |g(2)+g(all,

)
£5§+?g [ - By (3) and (4]

=1
Thus|h(2) £1, " 2T G.
But h being non consant andytic function G, it cannot atainsits maximum on G.
Hence |h(z)| <1, " z1 G.
b h(G)1 D
Wehave provedthat h H (G), hisone-one h(a) =0, h'(a)>0 ad h(G)i D-
Theefore hi £, and consequently, F isnonempty.

Step 2: Inthisstep we provethat £ = 7 ({0} -
Letany f1 F.

Then thereisasequence { f,} in 7 suchthat f,® f onG.
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Therefore,
f (a) =lim f.(a) ang f'(a) =lim f,"(a)
Butforeach n, f,1 F implies f,(a)=0 and f,'(a) >0.
Thus f (a)=0 and f '(a)3 0 e (5)
Wedamthat f ‘(a)? 0.
Fixany z1 G andlet z,1 G suchtha z ! z,.
Then $e >0 suchthat z i B(z;e) =K.
Let f(z)=x and f,(z)=x,,foreachn.
Snce f, isone-oneforeach n, f, - X, isnever vanishing on K.
As f,® f, f,-x,® f-x onK.

AsK iscompact f,, - x,® f - x uniformly onK, so Hurwitz stheoremgivesthat f (z) - x

never vanishesonK or f (z)-x ° 0.
If f(z)-x°0onKthen f(z)=x onG,thais, fisthecongtant function x throughout G.
Since f (a)=0b x =0, and hencewehave f °© 0 nG.
Ontheother handif f (z)- x isnever vanishing on K, then
z1zb f(z)-xtf(z)-x
P f(z)? f(z)
Thusf isone-one
Butif f isone-onethan f’ can never vanish, so (5) implies f '(a) > 0.
Next, for each n, f,1 F implies f,(G)1 D, thatis|f,(2)|<1.
Therefore,

|fn(z)|:“i®rg fn(z)‘:n|(i®r9|fn(z)|£1

If |f (z)| =1 for some zi G, maximum modulus theorem forcesf to be constant.

131



Thus we must have
[T (2)|<1, "zl G
p f(G)i D
Thereforef isandyticon G, f (a) =0, f '(a)>0, fisoneoneand f (G)I D.

Thisproves f1 F.

Wehaveproved tha forany f1 F,etherf=0or f1 F.

Hence 7 = 7 J{q} -

Step 3: Weprovethat thereexists f1 F such f (G)=D.
Consider thefunction f : H(G) ® C, defined by
f(f)=1f"(a)
Let { f,} beany ssquencein H (G) and f1 H (G)suchthat f, ® f thenfisandyticand
f.09® f® foreechinteger k 3 1.
Inparticular f,'® f'p f,'(a)® f'(a).
pf(f,)®f(f)
Thisprovesf iscontinuous.
Further, f (G)1 D, "f1 F impliestha
sup{|f (2)]:z1 D,"f1 F} £1
Hence, F islocaly bounded an consequently, by Montel’stheorem £ is compact.

Asf iscontinuous on compact set 7 , thereis f 1 F such that
f (1) =madf (9)):o1 7}
p |f(a)=max{|g'(a)|: gT F}
p f'(a)=max{g(a):gl F}

b f'(a)s g'(a), "gl F ... (6)

AsF1f and F = F{q} implies fT F.
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For thisf we provethat f (G)=D.
If f(G) D,thenthereis wj D suchthat wi f (G).
Thuswt f(2), " z1 G.

f(z)-w10 A
1- wf (2) for 21 G-

Therefore, thereisan andytic function h: G ® C such that

f(z2)-w-.

Thisimplies ml H(G) ad

f(z)-w
h(2]? =22 %
[h(2)] W e 7
_X-W
Since the Mobius transformation TX = 1- Wx mapsD on D, wehave h(G)i D-

Define g:G® C by

_[h'(a) h(2)- h(a)
92 = T n@n(

thengisandyticand g(G)1 D.

Further g(a) =0, g isone-oneand

02 _Ih(@)l_(1- h@h(2)h'(2)- (h(z)- h(2))h@h'(2)

h'(a) &- h(@h(D
_ @) n(2)(1- h(@)h(2) - h(2)h(a) +h(a)h(a))
h(a) 8- (@) H
Therefore,
| o .
0(a) = |E'Ea;| h (,a)8l- |h(at)2| H
Y g2’
Ih'(a)|
1_ |h(a)|2 (8)
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But,

2 |f(a)-w|_ _
Ih(a)|” = o (a)‘—I-WI—IWI e (9)
Differentiating (7) we obtain
2h(z)h'(z)=[1' wt (2] (f'(2)- [ (2)- w](-wf (D)
[1- wf (2]

_1(28- wf (2)+# (2)- [wif
[1- wf (2)]°

, fra)é- Wl _ .. g :
b 2h(a) h(a) = [;‘Wf(z)]z =1 () 8- M8 45 f (o) =0

f(a)(1- [wP)
2h(a)

P h'(a)= ... (10)

Usng (9), (10) in (8) we obtain,

. _f'(a)(1-|V\42)y 1
0@ = W)

_ (a) (1 Iwl)(2+Iw)
o 1- 1w

ad+w 6
E2W 5

Thus g'(a) >0 and g'(a) > f '(a).

g'(a)=1'(a) >f'(a)>0

Thisgivesthat g1 F and contradicts to the choice of f, givenin (6).
Hence, wemust have f (G)=D.
Step 4: We provethat f is unique satisfying conditions (a), (b) and (c).
Suppose thereisandytic function g:G ® C satisfying the conditions (8), (b) and ().

Then fog™!: D ® D isandytic, one-one and onto.
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Also (fog *)(0) = f (g 2(0)) = f (a) =0.

Hence, by Schwartz's lemma, there is a congtant ¢ with |¢| =1 and fog™!(z) =cz for dl

As g(G)=D, zl Gp g(2)1 D.

Ths  (fog %) (g(2))=cg(2), " 21 G
b f(g0(2))=cg(2)," 21 G
p f(z)=cg(2)," 2zl G

b 0<f'(a)=cg'(a).

But g'(a) >0 impliesc > 0.

Thus1=|d =c-

Therefore from (11) we have,

f(2=9g(2)," 21 G.

Hence f = g on G. This provesthe uniqueness.
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