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Preface

Functional Analysis is a core branch of mathematical analysis which has wide application
in various branches of mathematics such as differential equations, integral equations,
approximation theory, classical theory of analytic functions etc. This subject deals with the
study of vector spaces equipped with a distance function norm and hence the study endowed
with topological structure.

In this course we study the theory of Banch spaces, functional spaces, Hilbert spaces,
theory of operators, spectral theory etc. Content of this book is developed by taking in to
account an actual classroom teaching. The material is self-explanatory and it is written
keeping in mind the requirement of distance mode students. Thus the detailed explanations
of theory provided with number of supporting examples. This self-instructional material is
written according to the syllabus of Distance Education, Shivaji University, Kolhapur.

This book is divided into seven units. In Unit 1 normed spaces and Banach spaces are
introduced. Unit 2 deals with bounded linear transformations and the well known theorems
viz. open mapping theorem, Closed graph theorem and uniform boundedness principle. In
unit 3, we study bounded linear functional, conjugate spaces, Hahn-Banach theorem and its
consequences. Unit 4 is devoted to study second conjugate space, natural imbedding,
equivalent norms and finite dimensional spaces. In unit 5, Inner product spaces are introduced.
Properties of inner product spaces along with certain examples are discussed at the beginning.
Hilbert spaces, orthogonal complements, orthonormal sets and Gram Schmidt orthogonalization
procedure is discussed along with some examples. Conjugate spaces and Riesz representation
theorem is discussed at end. Unit 6 deals with bounded operators on Hilbert spaces. Adjoint,
self adjoint operator and their properties are discussed in detail. Normal, unitary operators
and their properties are discussed along with certain examples. Projection and representation
of spaces as sum of projection is proved at the end. In unit 5 is devoted to finite dimensional
spectral theory.

This self instructional material is developed by taking into account the quarries of
students in classroom. We feel that this book will find useful for the students to learn and
understand the basic concepts in Functional Analysis.

W Editors |
Dr. Kishor D. Kucche Dr. Mrs. S. H. Thakar
Associate Professor, Professor & Head,
Department of Mathematics, Department of Mathematics,

Shivaji University, Kolhapur Shivaji University, Kolhapur
(v)



Centre for Distance and Online Education Functional Analysis
Shivaji University,
Kolhapur.

Writing Team Unit No.

Dr. Kishor D. Kucche 1,2,3,4

Dept. of Mathematics,
Shivaji University, Kolhapur

Dr. S. H. Thakar 5,6,7

Dept. of Mathematics,
Shivaji University, Kolhapur

W Editors |
Dr. Kishor D. Kucche Dr. Mrs. S. H. Thakar
Associate Professor, Professor & Head,
Department of Mathematics, Department of Mathematics,

Shivaji University, Kolhapur Shivaji University, Kolhapur



M. Sc. (Mathematics)
Functional Analysis

Contents
. Normed Spaces and Banach Spaces 1
. Bounded Liner Transformations 51
. Bounded Linear Functionals 98
. Second Conjugate Spaces, Equivalent Norms 132
. Hilbert Spaces 163
. Bounded Operators on Hilbert Spaces 198

. Finite Dimensitional Spectral Theory 223

(vii)



Each Unit begins with the section Objectives -
Objectives are directive and indicative of :
1. What has been presented in the Unit and
2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.
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UNIT -1

NORMED SPACES AND BANACH SPACES

In this unit we deal with the normed linear spaces, example and non-example of
Banach spaces, nomed quotient space is defined and proved it is complete.

1.1 LINEAR SPACES
1.1.1 Definition

A linear space (or vector space) over the field K is a nonempty set L together with
two algebraic operations.

+:LxI — L, called vector addition,
e : K x L — L, called scalar multiplication
satisfying the following conditions.
1) (L, +) i1s an abelian group.

2) Forall x,ye L andall a, § € K , we have,
(@ a-(x+y)=a-x+a-y
®) (a+B)x=a-x+p-y

(©) (af) x=a-(Bx)

(d) 1. x=x, 1 isunity element of K

1.1.2 Remark:

)] Vector addition is mapping (x,y) — x+ y which associate each pair of elements

x,y € L toanelementx + yin L, called sum ofx and y.
(1) Scalar multiplication is a mapping (¢, x ) — ax which associate each element
a c K andeach y e [ toanelement gx inL.

(1) The elements of a linear space are called vectors and the elements of the field K are
called scalars.

I (@) |




()

If L is linear space over field K then L is called a linear space if g = R (the field of

real numbers), and a complex linear space if g = C (the field of complex numbers).

1.1.3
(@)

(b)

©
(d)

1.1.4

Theorem : Let L be a linear space over field K. Then:

Ox=0, VxelL

where 0 in left side of equation is scalar zero and 0 in right side is zero vector.

a0=0, VaekK

where 0 in both side is zero vector.
(-Dx=-x, VxelL

ax =0= ¢ =0 (scalar zero) or x =0 (vector zero)

Definition : A nonempty subset M of a linear space L over the field K is said to be

a linear subspace (or simply a subspace) if the following condition is satisfied :

ax+pPyeM, Vx,yeM and Va,p K.

Note : In what follows, the remaining related concepts of linear spaces we recall whenever it

is needed.
1.2 NORMED LINEAR SPACES
1.2.1 Definition: Let g = R (or ¢ ), and X be a linear space over the field K.
A function ||||: ¥ — R 1ssaid to be normonXifforall x,y € X andall o e K, we
have,
® x>0
@ xl=0iffx=0
Gi)  [vry<Ixl+]y|  (Triangle Inequality)
)  lex] < e lxl (Homogeneity of norm)

C2)




1.2.2 Definition : Alinear space X over the field K = R (or ¢ ) withanorm |||| defined

on it is called a normed linear space over K (or simply a normed space).

We denote the normed linear space by pair (X,|) or simply by X. The normed
linear space X is called real normed linear space if K = R , and complex normed linear space
frR=C.

1.2.3 Remark : The real number ||x||, (x € X) is called the norm of vector x.

The element of field K = R (or ¢ ) will be called Scalars.
1.2.4 Example : The linear space R over the field R is normed linear space with the

norm defined by |x|| =|x|, x € R.

1.2.5 Example : The linear space ¢ over the field R (or ¢ ) is normed linear space with
the norm defined by ||z|| = |z| = \/x* + y*, z=x+iy e C.

We will see more examples of normed linear spaces in the topic Banach Spaces.

Note : Let X and Y be two linear space over the field K = R (or ).

Then the cartesian product X x Y'is again a linear space over K under the algebraic
operations given by,

(x,y)+(u,v) =(x+u,y+v)
and  a(x,y)=(ax,ay)

where (x,y), (u,v)e XxY and g e K.

1.2.6 Problem: Let (X |/, ) and (Y,|ly) are normed space. Prove that

Wb (ey)exxy (1)

defines a norm on linear space y xy .

[(x, )] = max {lxll ,

3




Proof: Let (X, |l ) and (7, |, ) are normed linear space over the same system of scalars.

Q)

(ii)

(ii)

(iii)

Letany (x,y), (u,v) € X xY and a be any scalar.
Since ], >0 and [y], 20
[ )] = max {34, } 2 0
Let (x,y)=(0,0) (zero vectorin y xy)
Then |+, )] =(0,0)] = max {lol.lol } =0
Conversely, let [(x, y)| = 0. Then,
max {lxllx [y, } =0
=[xl =0, I, =0
= x=y=0
= (x,)=(0,0), zero vectorin x xy .
o (2 ) = (@, @9} = max {laxl e, §
=max {lallxl ]y, }
=lo| max {llxlly .|y, }
=led|(x, )
e+ ull e <llell +llel

< max {||x||x ,||y||y} + max {”U”X ,”V”Y}

= ()] + e, )]

ie. e ully <[[(x )]+ ()

on the same line,

4




[+l < ]G )]+ v
Therefore,
max{”x +u||x NIhY% +v||y} < ‘ (x,y)” + | (u,v)”

:>H(x+u,y+v)”£‘

(u,v)|
(x,y)+(u,v)”£‘ (u,v)”

From (1) - (ii1), ¥ x y 1s normed space with the norm defined by (1)

(x, )] +]

=|

(x,3)]+]

Exercise : Let (X,|I,) and (¥,|l,) be two normed spaces. Prove that

(x,y)H =[xllx +[|¥|l,, (x,») € X x¥ defines normon linear space x xy .

1.2.7 Theorem : Let (X,[|) be a normed linear space. Define ¢ : X x X — R by

d(x,y)z”x—y , x,yeX.

Then d is metric on X.

Proof: Let (X, ||) beanormed linear space. Let any x, y,z € X . Then,
@ |x-y|20=>d(x,y)20
b d(xy) ==y =[-D (-
=DMy =l =y -l =d (r.%)
©  d(xy)=[x-)]
=|(x=2)+(z-y)
<lx—zl+|z-y]|

=d(x,z)+d(z,y)

Therefore, d is metric on X. Hence (X, d) is metric space.

5




1.2.8

space.

1.2.9
(@)
(b)

Proof:

(@)

(b)

1.2.10

Remark : Let (X, |l/]) be anormed linear space. A metric d on X given by,

, x,yeX

d(x,y)=[x-y
is called the metric induced by the norm.

With this metric, a normed linear space become a metric space and hence a topological

Theorem : Ametric d induced by anorm || onanormed linear space X satisfies
d(x+z,y+z)=d(x,)

d(ax,ay)=lald(x,y)

forall x,y,z e X and every scalar ¢ .

Let (X,|ll) bea normed linear space over the field K = R (or ).

Letany x,y,ze X and ¢ € K and d is metric induced by the norm ||||.

Then we have :
d(x+zy+z)=|(x+2)-(y+2)|
=[x~y
—d(x,y)
d(ax,ay)=|ax-ay|
= o (x= )| =ledlx -]

=lald (x,y)

Remark : Every norm on a normed linear space induces a metric but every metric on

a linear space cannot be obtained from a norm.

The above theorem gives the conditions under which a metric on a linear space can

be obtained by a normon it.

6




1.2.11 Example : Let X be a space ofall (bounded or unbounded) sequences of complex
numbers and define

where x={x,}” and y={y,}" belongstoX.

Then (X, d) is metric space.

If d is metric obtained from some norm then it must satisfy
d(x+z,y+z)=d(x,y) and d(ax,ay)=lald(x,y)
forany x,y,ze X and ¢ e K.

However, we see that

| |ax —ay
d , 57 Al
(ax,0y) ;2" 1+|axn—ayn

- 1 xn_ n
¢|06|Z—,,—y

=20 1+ x, =y,
=lald (x,y)

Le. d(ax,ay)#lald(x,y)

Thus metric d cannot be obtained from any norm.
1.2.12 Example :

Let d be the discrete metric on set of real numbers R . Then,

lLifx#y

d(x,y>={

0ifx=y
Then for x,y € R with x # y we have
d(5x,5y)=1,as 5x =5y

But, 5d(x,y)=5(1)=5

7




Therefore, d(5x,5y)#5d(x,y)

Thus the discrete metric on R cannot be obtained from any norm.

Exercise :
1) Let (.X,|1) be a normed space.

Define ¢: X x X — R by

%(x,y):min{l, X—y }, x,yeX

Prove that there is a no norm on X which generates metric % on X.

2) Let d be a metric induced by a norm ||| on a linear space X = {0} .
0 if x=y
x,y)= .
Define (.7) {1+d(x,y) if x#y

Prove that % cannot be obtained from a norm on X.

1.3 PROPERTIES OF NORM

As every normed linear space is metric space with induced metric, the concept of
open sets, closed sets, convergence of sequences and related concepts of metric spaces
naturally enter into normed linear spaces.

1.3.1 Definitions : Let (X, |/|) be a normed linear space.

1) Let any x, € X and » > (. Then the set S, (xo) = {x eX: ||x - X, || < r} is called
open sphere with centre x, and radius r, and the set S, [x, ] = {x € X : |x—x,| < r} is called

closed sphere with centre x, and radius r.

2) A sequence {xn} in X 1s said to be convergent to x € X if forgiven ¢ >0, 3n, € N

such that

||xn —x||<8, Vn 2 n,

We write, }gg”% —x|| =0 or limx, =x

n—0

C8)




3) A sequence {xn} in X1s said to be Cauchy sequence if for given ¢ > (0, In, e N

suchthat ||x, —x, <&, Vm,n=n,

4) Let A4c X and x e X . Then x is called limit point of A if AN S, (x)—{x} = ¢,
Vr>0.

5) A point x in a subset A of X is called an interior point of A if 3> () such that
S (x) c 4 (i.e. Ais neighbourhood ofx).

6) A subset A of normed linear space X is said to be bounded if there exists K >0 such

that |x||< K, Vxe 4.

7) Let {xn }:O: , beasequence inanormed space X. The series 2%, issaid to convergent

n=1

IfS, —xie. Sn—x||—>0 then > X, =X,
n=1

Further the series 2. X, issaid to absolutely convergent if 2|,
n=1

n=1

is convergent.

1.3.2 Theorem : Inanormed linear space every convergent sequence is a Cauchy sequence.

Proof : Proofis similar as in metric space.

1.3.3 Theorem : In a normed space (N, |),

| ||x||—||y|| |£||x—y ,forall x,ye N.

Proof: Let (N, |l/|) be a normed space and let any x, y € N . Then we have
b =[x} sl sl o
This implies,
Il - <= .. (1)

9




Interchanging role of x and y we get

A=l <l =]

=|-(x-»)|

=|(=DlJx—»]
=[x~ ]
= -y 2)

From (1) and (2), we have

=l =A<l =] <=

Therefore,

[ =1 [l =y

1.3.4 Theorem : Let (N,[]) be a normed space. Then the mapping ||: N — R is
continuous i.e. normis continuous function.

Proof : Let (N, |]) be a normed space.

Let x, = x inN. Then
H|xn|| —||x||‘ < ||xn —x|| —> 0 as n— .

= x| = llxl as 7 — o

xn

Therefore |||| onN is continuous.

1.3.5 Definition : Let (X,d,), (Y,d,) and (Z,d,) are metric spaces. A mapping
f:XxY — Z isjointly continuous if and ony if x, = x in X and y, = y inY implies

f(x,.,)—=>f(xy).

(@D




1.3.6 Remark : Iffis jointly continuous then it is continuous in each variable separately but
the converse is not true.

1.3.7 Theorem : The operations of addition and scalar multiplications in a normed space
are jointly continuous.

Proof : Let (,]]]) be a normed space over K =R (or C).

Let x, >x inN, y —y inNandlet &, > o in K.
O [+ 2) =G )= =)+ ()|
<[, =2+ v, =y >0
This gives |(x, +»,)~(x+»)| >0 as n > w0 ie. x, + 3, > x+y.
Therefore vector addition 4 : N'x N —» N is jointly continuous.

a,x, — (xx” = H(anxn —a,x)+(a,x— ax)”

(i)
<|le, (x, = x)|+||(ex, — ) %

= ez, ||x, = x[ +]et, — | lIx]
>0 asn—>oo
Thus ||anxn —ax” —01ie ax, > ax

This proves scalar multiplication « : K x N — N isjointly continuous.

1.3.8 Definition (Seminorm) : A seminorm on a linear space X over K = R (or C)isa
function 1 : X — R satisfying.

@ f(x)>0
(ii) fax) =lal f(x)

@)  fx+y)<fG)+f(y)
forall x,ye X andall ¢ e K.

@)




1.3.9 Remark : We observe that
1) f(0)=0
) -S| S(x=y), xyeX

3) If f(x)=0 impliesx =0 thenfisnormon X.
1.4 BANACH SPACES

1.4.1 Definition : A normed linear space (N ||-|) is said to be complete if each Cauchy

sequence in N converges to a point in N.

Note : The normed space (N, ||]}) is complete means it is complete in a metric space (N, d)

where d (x,y)=|x-y|, x,yeN.

1.4.2 Definition : Acomplete normed linear space (N, |||} is called a Banach Space.

The Banach Space N is called real (or complex) if the underlying field K is
R (or C).

1.4.3 Example : The real linear space R is Banach space withnorm |x||=|x|, xeR.

1.4.4 Example : The complex linear space ¢ is Banach space with norm

Izl =zl =/x* + y* , z=x+iyeC.

1.4.5 Cauchy-Schwartz Inequality (for n-tuples)

Let x:(x],xz,...,xn), y:(y],yz,...,yn)eK”,(K:R or C ), then




1.4.6 Problem : Prove that k", (K = R or C ) is Banach space with the norm
} P
I+l = [z \xﬂ |
j=l

where x = (x] ,xz,...,xn) eK".
Solution :
Part - I : To prove (K" ||) is normed space.

Let any x:(x],xz,...,xn), y :(y],yz,...,yn) in g, (K=R or C),andlet «
be any scalar.

@  Since |[x;|>0,V/ (i=1,2,...,n), we have

n
2
I

2
xj‘ 20 This gives x| > 0.

(1) x=0 <:>(x],x2,...,xn) :(0,0,....,0)
<x,=0,v (G=1,2,..,n)

<:>‘xj‘=0,VJ G=12,...,n)

L 2
< Z‘xi‘ =0
=
<=0

(11) Since x+y:(x]+y],x2+y2,...,xn+yn) we have

‘2

n
beoof =Efw, 3,

n
=2
I

xj+y.fo.f+yj‘

n
<2
I=

x‘,.+yj\(\xj\+\yj\)

13




n
=2
=1

n
x; +y.fo.f‘+Z;‘xj +yijj‘
J=

Using Cauchy-Schwartz inequality we get

1

bees <[ S o f || Sl f |

= e+ wllbel+ e+ ]
==y (Iel+{11)
This gives
[+ ¥ <[l + | ]
(v)  As ax=(ax,ax,,..,ax,) wehave

)| }

n
loexd =] >
=

r P
n
- laf S|
L

n 2 %
:|a|[z‘xj‘ }

=l lxl
We have proved that, (K" , ||||) is normed space.

Part - I1 : To prove (K" |.|) is complete.

Let {x,}” be any Cauchy sequence in [, where for each m,

X, :(xl('"),xgm),...,xim)).

Then for given ¢ > (, 3 n, € N such that

m,k > ny, =

X, —x]|<e

14




= |x,, —xk||2 <&’
= i‘x(im) —x(].k)r <g’
= .

(m)
Xp

m WP~
But ‘xj —X; ‘ < Z}
J=

Therefore,

2
m,k > n, :‘x;m) —x;k)‘ <&’V

(m) _ (k) :
:‘xj —X; ‘<g, vj

This shows that for each j (=1, 2, ...., n), {x‘(].'”)}

X.

,forall j(j=1,2,...,n)

L is a Cauchy sequence in K.

Since K = R or C is complete space, there exists x, € K such that,

(m)

X;

Define x:(x],xz,...,xn) then y e K”.

We prove that x, = x as m — .

By (1), 3n, € N such that,

—>x; as m —> o, foreach j (j=1,2,




=]

x,—x|<e
Therefore x, — x in g~ .

BypartIand I, g~ is Banach Space.

1.4.7 Minkowski Inequality (for n-tuples)

Let x:(x],xz,...,xn) and y:(y],yz,...,yn) be the elements of ", (K =R or

C ) and let p be a real number such that 1 < p < oo, then

Snr] <[ger] (5

P
v

}%)

1.4.8 Problem : Let p be a real number such that 1< p < oo, and denote by ¢', the space
K"(K =R or C), withthe norm

I, =[ £} H%’

_ n
, Where x—(x],xz,...,xn)e Kp

Prove that /', is a Banach space.
Solution : Part I : To prove /°, is normed space.
Letany x=(x,,x,,...%,), ¥ =(,¥3-Y,) in (" ,andlet o be any scalar.

@  Since |[x;|>0, V), (i=1,2,....,n), we have

Sl 20= I, 20
AU
(1) x:0<:>(x],x2,...,xn):0
<x,=0,V)
@‘x‘i‘p:& i

16




1

xj‘pjp =0

oEpp =02
J= J=
< llxl, =0

(11) As x+y:(x]+y],x2+y2,...,xn+yn)wehave

}%)

beesd, =| S+

By Minkowski inequality we have,

RENR

[i‘xﬁyj‘p}
Jj=1

P
v

Therefore, ||x+ yllp <[l + ||y||p

(iv)  As ax=(ax,ax,,..,ax,) wehave

P
ax)|

lod, {z }%’

= [|a|p ;‘xi i }%

=lelxll,

Therefore, /°, is normed space.

PartII : To prove K'; is complete.

n

,» Where for each m,

Let {x,} = be any Cauchy sequence in /

X, :(xl('"),xgm),...,xim)).

I C17)




For given ¢ > (0, 3n, € N such that

m,anO:>|

X, —x]|<e

= ||xm - X, ||p <g?

= i‘x(im) —x(].k)‘p <g?
il .

But foreachj (j=1,2,....,n)

P
Kl _ x(/_m‘

m _ 0] «x
- <
‘x.i xj ‘ - Z‘{ J
J=

Therefore,
» :
m,k >n, = ‘x;’") —x;")‘ <¢g? , for each;
= ‘x;m’ —~ x;k)‘ <¢ ,for eachj

This shows that for eachj (1< j <n), {x(.'”)

0
; } ] is Cauchy sequence in complete
/ m=

space K =R or C.
Hence 3x, € K such that,

x;’”) —x; as m — oo for each j. e (D)
Define x = (x],xz,...,xn);then xe K';.
We prove that x,, — x in £, as m — .

By (1) 3n, € N such that,

(m) €
> - —_— .
n

p &’
:‘x(.m)—x.‘ <—,Vj
J J n 4

18




n P 81’
= x| <nZi_=g”

ol J n

/=

= |x,, —x||p <&
This proves x, — x in £ as m — .

By Part Iand II, /', is a Banach space.

1.4.9 Remark : Inabove example for p =2 we have two important Banach spaces :

1

2 2
1) Unitary n-space : The space ¢» with the norm Il Z[Z‘xj‘ } ,
Jj=1

x =(x,,%,,....x, ) € C", is a Banach space. The Banach space (C”, I, ) is called unitary n-

space.

2) Similarly, the Banach space (R", |l ) is called Euclidean n-space.

1.4.10 Minkowski Inequality (for sequences) :

P <

Let {x,}” and {y " beanysequencesin K =R or ¢ suchthat 2|,
n= n= n=1

and 2.
n=1

"< , and p be a real number such that 1 < p < oo . Then,

103

Yn

1

Spenr] <[5

X

n

> Y p}%

1.4.11 Problem : Let p be a real number such that 1< p <o . Denoteby ¢, the space of

all sequences x = {xn}w , In K =R or C suchthat 2|, "< , with the norm
n= n=1

19




1, = S, }/

n=1

Prove that £, is Banach space.

Solution : Let any x={x,}” and y={y,}" in{, and ¢ be anyscalar. Weknow ¢,

is linear space with vector addition and scalar multiplication given by,

x+y:{xn+yn};°:1,

o0

and  ax={ax,}

n=1

Part-1: To Prove /, is normed space :

>0

X

n

i  Since |x,|>0 v, i

This gives [lx], > 0.

(1) x:O<:>{xn}w =0

n=1

<:>xn:0, Yn

Rt xnp=0, Yn

<Y =0
n=l1

< xl, =0

(i) ~ Since x+y={x,+y,} _,wehave

ool =[S ol ]

n=l

X, +Y,

By Minkowski inequality,

P

1

1 <[] ()

X

n

X, +Y,
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()

Thus, [x+ ], <Ixll, +[¥],.

As ax={ax,}  ,wehave

1

pr lal S, }/ lall,

00
lecxl, = [szn
n=1

Therefore, £, is anormed space.

Part - I1 : To prove ¢, is complete.

0

Let {x,}"  beany Cauchysequence in £, , where for eachm, x = { xim)}

n=l

such that 2. xim)‘ <o,
n=1

Then for given ¢ > (, 3n, € N such that
m,k > n, = ||xm —xk”p <¢

0

(m) 7 P
:>Z]xn -x,| <e¢ (1)
-
) m 0P | 0P
Since |x," = x| <> |x,"" =x,"| for each n, we have
n=l1
)4
mk>n, = x" —xP" < g”, wn
:>‘xf1m) —xf,k) <&, Vn

Thus for each n, { X }::] is Cauchy sequence in complete space K —= R or C.
Hence Jx e K such that for each n

xi’”) —>Xx, a8 m—o. (2)

Define x ={x,}" . We show that x € ¢, and x,, - x as m —> .

[@ID)




From (1), we have,

14
N0

n

m,k >n, = Y |x, <&’ foreachr,(r=1,2,3,..) ... 3)
n=l1

Letting t — oo in(3), and using (2), we get
P
x," =x,| <

n

mz2n,

g’ foreachr, (r=1,2,3,...... )

This on tending » — oo, we obtain

i P
m=n, =y |x," -x | <&’ 4)
n=1

n

This shows that x,, —x € (.

By Minkowski inequality and using (4), we obtain

Sl ] [ Sl
p}%) +—i P p}%)

=[x ==, +ll,

(m)
xn _xn

=

<e+|x,||,

=2
n=1

x| <[g+||xm||p}p <o

:>x:{xn}[;o:l eﬁp.

Finally, from (4) we have

mz2n, = ||xm —x||p <&

This gives x,, — x in £, as m — 0.
Therefore £, is complete.

ByPartIandIl, ¢, is Banach space.
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1.4.12 Remark : In above example, for p = 2 we have following two important Banach
spaces.

"< , with the norm

1. The set of all sequences x = {xn}oil in ¢ such that 2|x,
n= n=1

1

- /2
lxll, = [Z X, 2} is denoted by ¢~. Then ¢ is Banach space and it is called infinite
n=l

dimensional unitary space.

2. The infinite dimensional Euclidean space is defined similarly as above.

1.4.13 Problem: Denote by ¢” the space ", (K =R or C ) with the norm defined by
Ixll.. = maX\xj\ , where x =(x,,x,,...,x, ). Prove that ¢", is Banach space.
1<j<n 1°72 n 0
Solution : Part-1: To prove /" is normed space

Letany x=(x,X,,...,x,), ¥=(»,¥,...,y,) in £, and  be any scalar.

)  Since|x,[20 W), (i=1,2,..,n) = max|x;| 20

1< j<n
=[xl >0
(1) x:0<:>(x],xz,...,xn):(0,....,0)
<x,=0, Vj (=12,..,n)

@\xj\zo,VJ (G=1,2,..,n)

< max x.‘:O
1<j<n |/
< xl. =0

(1) Foreachj, (j=1,2,....,n)
ey v <+ [

<max

1<j<n

Xj + max

1<j<n

v

23)




= Il +{|].,
Thus [x, + | <l <[], vj (1< <n)
= {g‘lg’j‘xj +yj‘ < lxlle +]171.,
Therefore ||x+y||w <|lxl., +||y||w.

(v)  As ax=(ax,ax,,..,ax,) wehave,

leexll = supecx; | =lal sup

1<j<n 1<j<n

x|
=[x
We have proved that, /) is normed space.
Part Il : To prove /" is complete.

Let {x,}"_ beanyCauchysequence in ¢, , where for eachm, x, = ( xm L ) :

Thus for given ¢ > (0, 3 n, € N such that

m,k >n, :>|xm —xk”w <eg
— max |x\"’ —x(.")‘ <g
I<j<n I/ J
But for each,

‘x(.'”) —x(.")‘ < max|x
J J 1<j<n

m _ )
—x ‘

Therefore for eachj, (j=1,2,....,n)
m,k > n, = ‘x;m) —x;.k)‘ <&

This implies for each, {x‘(jm) }::1 is Cauchy sequence in complete space K = R or

C - Therefore 3 x; € K such that,

xﬁ,’”) —>X; a8 m—> 0.

24)




Define x:(x],xz,...,xn).Then xell.

We prove that x, = x as m — .

Let k — oo in(1) we have,

mZnO:‘x‘(].'")—xj‘<8,Vj,(j=1,2, ..... , 1)
= max x(].'”) —xj‘ <&

1<j<n
= ||xm —x” <g-
This proves x, = x in (" as m — .

BypartIand II, ¢” is Banach space.

1.4.14 Problem : Denote by /_ the space of all bounded sequences x = {xn }:O:l mgKg=R

or ¢ withthe norm

Ixl.. = sup
neN

xn

Prove that /_ is Banach space.

Solution : Partl: /_ is normed space.

We leave it for students, as it can be completed looking toward the part I of solution
of problem 1.4.13.

PartIl: 7 is complete.

0

Let {x,}  is Cauchy sequence in ¢, where for each m, x = {xnm } 1sa

n=l

bounded sequence.

Then for given ¢ > (0, 3 n, € N such that,

m,k2n0:>|

x,—x ]|, <e

(k)
n

= sup‘x(’”) - <&

n
neN

X

25)




NN

n n

But xik) forall ;e N.

<sup ‘xim) -
neN
Therefore for each € N, we have

m,k > n, :‘xim)—xik"<e ..... (1)

(m)

n

This implies for each e N, { X }::] is Cauchy sequence in complete space K.
Hence 3x, € K suchthat x\™ — x as m — .

Define x ={x,}" . Weprovethat xe /, and x,, = x as m —>oo.

Taking limit as t — oo in (1) we get,

m2n0:>‘xf1m)—xn‘<8, YneN .. 2)
(m)
:>sup‘xn -x,|<¢€
neN
= |, x|, <e

This proves x,, — x as m — .

It remains to prove x e /.

Since for eachm, x = { X }j:] is bounded sequence, 3 L, > 0 such that

x”|< L, , vn e (3)

; (m) (m) (m) (m)
Since |xn|: x,—x," +x" ‘S‘xn —-X, ‘+ X,

2

From (2) and (3), we have,
‘xn‘£g+Lm, Yn.
This prove x = {x,} " is bounded, and hence x e/, .

BypartlandII 7_ is Banach space.
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1.4.15 Problem : We denote by C the space of all convergent sequences x = {xn }:O:l in

K = R or ¢ with the norm.

Ix[l. = sup
neN

xn

2

Prove that C is Banach space.

Solution : We know every convergent sequence in K = R or C is bounded. Hence we

have Cc /.

Clearly C is subspace of complete normed space ¢ _ . Thus to prove C is complete it

is sufficient to prove that Cisclosedin /.

As C c C always, to prove C is closed we show that C < C.
Letany y ¢ C . Then there exists sequence {x,} _ inC such that,

X, —>X as n—» o,

Here for eachn, x, = { xfn”)} ] is convergent sequence in K and hence it is bounded,
-

0

e/l

m=1 o *

and x ={x, }
As x, = x ,forgiven ¢ >, 3 N e N such that,

&

nZN:>||xn—x||w < 3

(n) &
= sup X, —X, < —
meN 3

But forany ;e N,

x(n)

m

(n)_x

m m

—xm‘ésup‘x

meN

Therefore,

(n) &
m _me‘<:__a Ym

nZN:>‘x
3

(@iD)




In particular for n=N,

‘x;N)—xm‘<§’ Vm - o (1)

(N)
m

Now x, = {x }::] e C, and hence it is Cauchy sequence.

This implies 3 A/ e N such that,

£
m,kZM:xifV)—x,({N)k— _____ 2)
By triangle inequality,
(N) (N) (N) (N)
|xm—xk|S X, =X, ‘+‘xm - X, ‘+‘xk —xk‘ ..... 3)

From (1), (2) and (3) we have

£ € ¢
—x|<T+=+T=¢

|x
3

m

This proves x = {xm }::1 is Cauchy sequence in complete space K = C or R, and

hence it is convergent. Thus x e C. We have proved that C < C.

This gives C is closed subspace of complete space /_ , and hence C is also complete.

We have proved that C is Banach space.

1.4.16 Theorem : Let EcK=RorC and f, :E—>K, (n =1, 2,....). Suppose

lim £, (x)=f(x), (ye E)

Define M, =sup|/, (X)—f(x)|

Then f, — f uniformlyonEiff M, — 0.

1.4.17 Problem : Consider the space C (X) ofall bounded continuous scalar valued function
defined on topological space X with the norm,

28)




||f||:ilel)l()|f(x) ,where feC(X).

Prove that C (X) is Banach space.
Solution :

Part 1 : To prove C (X) is normed space.

Letany f,g e C(X) and o be any scalar.

@  Since|f(x)|>0, Vxe X, wehave

sup| /()20 hatis, | 7] 0.

(i) =0 f(x)=0, VxeX
<:>|f(x)|=0, Vxe X

< sup|f(x)|=0

xeX

| rl=0
(1) Foreach x e X,

(f +&) )| <] f ()] +]g (=)

<sup| f (x)|+sup|g (x)|

xeX xeX

=[./]+ell
ie. ‘(f+g)(X)‘ <|/]+|eg

» Vxe X
:su}};)‘(f+g)(X)‘5||f||+”g”
N+ gl=<lr 1+ lel-

a  lasl=suplies)|=supla-s )

:|a|sup|f(x)|

xeX
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=lal] 7]
We have proved that, C (X) is normed space.
Part II : To prove C (X) is complete.

Let {f, }1] be any Cauchy sequence in C (X). Then for given ¢ > (0, 3 N e N such

that
m,nZN:>|fm—fn <&
= sup|f,, (x)- £, (x)|<e
But, fm(x)—fn(x)|£sup|fm(x)—fn(x)|’ Vye X

Thus, m,nZN:>|fm (x)—fn(x)|<8, Vxe X e (D)

This implies for each x e X, {fn (x)}

LSl . .
, 1s Cauchy sequence in complete space
_

K =R or C,and hence convergent.
Let h_l;nfn(x):f(x), xeX
Letting m — oo in(1) we obtain

n2N=lf,(x)-f(x)|<e, Vre X

= sup
xeX

fn(x)—f(x)|<8 ()

Define M, =sup|/, (X)—f(X)‘ . From (2) it follows that M, — 0 as n — oo.

xeX

Hence f, — f uniformlyonX.

Since for eachn, f, is bounded continuous scalar valued function defined on X,
J 1s bounded continuous scalar valued function on X, thatis, f e C (X).

Thus f, = f in C(X). This proves C (X) is complete space.

By part (I) and (II), C (X) is Banach space.
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EXERCISE

I.

1.5

Denote by C,, the space of all sequences x = {xn }:O:l in K = R or C converging to

zero with the norm lxll.. = sug *u|. Prove that C, is a Banach space.

Prove that the space of all sequences x ={x,}” in K =R or C such that X, s
n= n=l1

convergent, is a Banach space with the norm,

Ixl., = sup
neN

n
Sy,

j=l

Provethat the space C" [a, b] of all n times continously differentiable scalar valued

functions x on [a, b] with the norm lxl = Z(:)”x(j) ”w is a Banach space.
J=

INCOMPLETE NORMED LINEAR SPACES

We have seen many examples of complete normed linear spaces (Banach spaces).

But every normed linear space need not be complete. Here we provide some examples of
normed linear spaces which are not complete.

Note : Ifthere exists a Cauchy sequence innormed space (X, ||/|) which is not convergent in

X then (X, |} is incomplete normed space.

1.5.1 Problem : Let X=C[-1, 1] be the linear space of all real valued functions defined
on closed interval [-1, 1]. Define the norm on X by

A= {lrlar, rex.

where integral is taken in the sense of Riemann. Prove that (X, [|) is incomplete

normed linear space.

QG




Solution : Let X=C [—1, 1] be the linear space ofall real valued functions defined on closed
interval [-1, 1].

Letany f,g e X and a be any scalar. Then sumf + g and scalar multiplication
a f 1sdefined by

(f+g)x)=f(x)+g(x)

and  (af)(x)=af(x),forall xe[-1,1].

PartI: To prove (X,|/) is normed space.

@ Since |f(x)|20aneX
1A= [ ol 20

(i1) f=0& f(x)=0, Vxe[-L1]

o|r)|=0, vxe[-11]
<:>j]|f(x)|dx:0
| f]=0.

Gy el [+l

< [(1f )| +]g ) de

= (17 (e [|g () dx

=171+l

32)




W) ers]= J (e ) ()] e = j locf ()| dix

“lad ]| ()|

= o] 7
Thus, (X, |l) is normed linear space.

Part I : We show that (X, ||) is incomplete normed space.

Consider the sequence { /,}” inX=C [-1, 1] defined by,

1 if —-1<x<0

. 1
f(x)=]1-nx if 0O<x<-—
n

0 if l<x£1
n

1 1
Let > n>1 then E<; Thus we have,

1= roll= (1 = £, (D]

_ }(0)dx+i|fm (x) - f, ()| dx

<ol @lae 0
Consider,

|

b |
fn(x)|dx: j 11— nx|dx + j (0)dx
0 P

A
= [ (1-nx)dx

33)




1 1.1
n 2n 2n
Similarly,
p 1
£|fm (x)|dx=%

Thus from inequality (1) we have,

1

1(1
(= SE(ZJr;j_)O as m,n— o,

This proves { ,}” is Cauchysequence in X =C [, 1].

The continuity of each f, and { /o }11 is Cauchy sequence also follows from following

figures.
S 0 A f, (), [, X)
A
LD o, LD
é £
: S
T 0 L T of 11, 7
n m n

Let f, — f as n—oo. Then |, > f| =0 as n — 0.

But
I

fi=fl=1

-1

£ (x)—f(x)| dx

34D




0 A |
:_J']|1—f(x)|dx+£ ﬁ,(x)—f(x)|dx+;|f(x)|dx _____ )

On the right hand side we observe that all the integrands are non-negative and hence
each integral is non-negative.

Hence from (2),

f —f||—>0 as n — oo imply that

0 i ‘
- @dx=0 [|£,(x)=f(]ds -0 andyf(xﬂdx_)() 25 11—>co.

This implies,
f( ) 1 if —=1£x<0
Y70 if o<x<i
But we see that

1= £(0)# lim f(x)=0
x—0"
Therefore fis not continuous on [-1, 1], and hence f ¢ C[-1,1].

Thus the Cauchy sequence { /o }11 in C[—1, 1] defined above is not convergent in
C[-1,1].

We have proved that X = C [-1, 1] is incomplete w.r.t. the norm |||| defined above.

1.5.2  Problem: Consider the real linear space X =C! [0, 1] of all continuously differentiable
functions defined on [0, 1] with the norm,

1f]= iﬁq]lf (x)].

Prove that (X, |l/|) is incomplete normed space.

Solution : PartI: (X,[|) is normed space.

We omit the proofas it is similar to the part [ of problem 1.4.17.
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PartIl: (x,[|) is incomplete normed space.

o 1
Consider the sequence {f,}” in X = C! [0, 1] defined by £, (x)=,[x*+—;
" n

xe[0,1].

Thenforany m>n>1,

1 1
\/x2+——\/x2+— s,/i+\ﬁ—>0 as m,n —» oo,
m n m n

This proves { /,}"  is Cauchy sequence in X = clo, 1].

|7, =1,

= sup
x€[0,1]

Note that for each x €[0,1],

lim £, (x) = lim ,|x° Lo,
n—x0 n—x0 n

Thus £ :[0,1] > R, defined by £ (x) =|x|, x €[0,1] is pointwise limit of { £,}" .
Further,

£, ()= f (%)

1
,/x2+——|x|
n
1

:ﬁ_)() as n — o0.

Jy = 1f]|= sup
x€[0,1]

= sup
xe[0,1]

Hence f, — f uniformlyon [0, 1].

But f ¢ C'[0,1], because fis not differentiable at x=0.

Hence the Cauchy sequence { /o }11 defined above is not convergent in normed
space (X, [H]).

Hence X = C'[0,1] is incomplete.
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1.5.3 Example: Let X =(0,1) and define ||x| =|x|, x €(0,1).

Then (X, |l) is incomplete normed space.

1
Solution : Let X, = Then {x,} is Cauchy sequence in normed space (X, |) but

{x,} does not converges in X.

1.5.4 Example: Let X = C[0,2] be the space of all real valued functions and define

=017 Gl rex

Then (X, |ll) is incomplete normed linear space.

Solution : Part-I: The proofof (X |[]|) is normed linear space is similar to the solution in

part [ of problem 1.5.1.

Part - 11 : To prove (X, |{|) is incomplete normed space we must have to prove a Cauchy

sequence in X which is not convergent.
Define £, :[0,2] >R, (n=1,2,...)by

x";0<x<1

f"(X):{l L 1<x<2

Thenclearly f, € X .

Further for any m,n >1,

2

-]

0

11, = £l=T 1, ()= £, ()]

S} |fm(x)|dx+} fn(x)|dx

I
[

1
x"dx + jx"dx
0

Q7




1 1
xm+] xn+l
= +
m+1lly, Ln+l]y

1
=——+———>0as mn—ow
m+1 n+l

That is

Ju=1,

—>0 as m,n— o,
This implies { f,}" is Cauchy sequence in X.

Suppose there exists a function f:[0,2] > R suchthat | £, — /]| — 0 as n — co.
But

2

f=11=]

0

£, ()= f (x)|dx

:

£ = £ ldet ] £, £ (0|

[ S

x" —f(x)|dx+} |1—f(x)|dx

On the right hand side all the integrands are non-negative and hence all integrands are
non-negative.

Hence || fi=f || — 0 must imply,

1
[[¥" = f(|dx >0 as 4 o0
0

and '2[|1—f(x)|dx=0

This is possible only if f:[0,2] — R must be of the form,

0if 0<x<l1

f(X):{l if 1<x<2
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But we see that

1= (D)= lim f(x)=0

x—1"

Hence f ¢ X =C[0,2].
Thus the Cauchy sequence { f,}” isnot convergentin X = C[0,2].

Hence (X |[f]) is incomplete normed linear space.

1.6 SUBSPACES OFANORMED SPACES AND BANACH SPACES

1.6.1 Definition : Let N be a normed linear space. A non-empty subset M of N is said to
be a subpace of N if M is a linear subspace of N considered as a linear space and the norm

, yeEM.

|l,, of M is obtained by restricting the norm || onN. i.e. ||y||M = ||y

The norm |||,, on M s said to be induced by the norm ||| onN.

1.6.2 Definition : A subspace M of a Banach space B is a subspace B considered as a
normed space.

1.6.3 Remark : A subspace of a Banach space need not be complete.

1.6.4 Definition : A subspace M ofanormed space N is called a closed subspace of N, if
M is closed in N considered as a metric space.

1.6.5 Theorem : Let M be a subspace of normed space N and {xn} be a sequence in M.

If {x,} is Cauchyin N thenit is Cauchy in M and conversely.
Proof: Let (M, ) be asubspace of normed space (N, []). Then ||, =|lx||. xe M -
Let {x,} bea sequence in M.

Let {xn} be a Cauchy sequence in M.
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Then for given ¢ > () there exists n, € N such that,

=

X, —X,

m

y <&, Vm,n=n,

x,—Xx,(|<é&,Vm,n=n,

This implies {xn} is Cauchy sequence in N. The proof of converse part follows by

replacing role of |.|,, and | .

1.6.6

Proof:

1.6.7

Proof:

Theorem : IfM is a complete subspace of normed linear space N then M is closed.

Let M is a complete subspace of normed space N.

Let x be a limit point of M.

Then S, (x)NM —{x}#¢, Vr>0.

Inparticular foreachn (n=1, 2,3, ...... ),

S% ()M —{x}#¢

Thus foreachn, 3 x, € N suchthat ¥, € S% (X)NM —ix;}

1
Hence {xn} is a sequence in M such that x, # x and ||X, — X” < ;, 1.

= limx, =x jn N.

= {x,} is Cauchy in N and hence in M.

But as M is complete, we must have x e M .

This proved M is closed.

Theorem : IfM is closed subspace of Banach space B then M is complete.

Let M be a closed linear subspace of a Banach space B.

Let {xn } be any Cauchy sequence in M.
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Hence {xn} is a Cauchy sequence in B.
As Bis complete 3 x € B suchthat x, - x.

If x € M thenthere is nothing to prove otherwise x, — x implies each open sphere

of x contains the point x, other than x. Thus x is imit point of M. But M being closed, it

follows that x e Af .

1.6.8 Corollary : Let M be a subspace of a Banach space B. Then, M is complete iff M is
closed.

1.6.9 Problem : Let N be a non-zero normed linear space. Prove that N is a Banach space
iff {xe N:||x[|=1} is complete.
Proof : Let N be a non-zero normed linear space.

Assume N is a Banach space. To prove X ={x e N :[|x]| = 1} is complete, let {x, } be
a Cauchy sequence in X. Then ||xn || =1foralln.As X c N, {xn} is Cauchy sequence in

complete normed space N, and hence 3 y € N suchthat x, = y.

Since norm is continuous function we have -y

Xy
Therefore,

|y]= tim | = lim (1) =1
This implies y € X . Hence X is complete.

Conversely let X is complete. To prove that normed space N is complete, let { Y, }

be a Cauchy sequence in N.

Then |

V,—Y.||—0 as m,n— o0 e (D)

_ Y
Foreachn (n=1,2,3,.....) define *» = B

[@ID)




that

Yn
Yn

_ 1

= v, :1foralln.

Then [I*x

This gives x, € X foralln.

We prove that {xn} is Cauchy sequence in X.

For any m > n we have,

Vo Y
X, =X, | =|"5—
e D
:(ym Y, ]Jr(y,, 2 ]H
vl 1val) Uwal .
YV Y 1 1 ]
|t || ——— Y,
[ ‘(Ilymll v,
bl nl-lally
Il 1wl
1y, =2l v, =yl
= ||y || * y ” [| ||x||—||y|| |£||x—y ,forall x,ye N]
Therefore
2\, =y,
|, =, S””y—||_>0 as m,n — o [ -+ By(1)]

This proves {xn} is Cauchy sequence in complete space X, and hence 3 x ¢ X such

Y
X, —>x ie. y—n—” e (2)
Also note that
‘ ||ym||— Y S”J’m—yn — 0 as m,n — ©
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This implies { Y, } is Cauchy sequence in complete space R . Thus 3 ¢ € R such
that
yl—-aasn>0 3)
Using (2) and (3) we have,

Y, > ax as n—»oo

Since x e X < N and ¢ is a scalar. We have gx e NV .

We proved that lg{}o y,=axeN

Hence N is complete normed space, and hence is a Banach space.

1.6.10 Problem : Let a Banach space B be the direct sum of the linear subspaces M and N,
so that B =M @ N . If z=x+ yis the unique expression of a vector z in B as the sum of
vectors x and y in M and N, then a new norm can be defined on the linear space B by

Il =[lx[l+]| || . Prove that this actually a norm. If B' symbolizes the linear space B equipped

with this new norm, prove that B'is a Banach space if M and N are closed in B.
Solution : Let B be a Banach space with the norm |||

Let any ze B=M @ N where M and N are the linear subspaces of B. Then

z=x+y s the unique expression, where x ¢ Ay and ye N.
Define ||' on B=M @ N by
Izl = lxll+ ] |
We have to prove that :
@ B'=(B,|I') is normed linear space.
()  B'=(B.|')is Banachspace if M and N are closed.

Part (I) : Letany z,we B=M @ N and o be anyscalar. Thenz=x+yandw=u +v

are unique representation where x,u e M and y,ve N .

() Since ||x|| >0 and since |y| = 0 wehave |zl =|lx]|+|y]= 0.
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@ =0 < lxl+]y]=0
< lxdl=]y]=0
Sx=y=0
Sz=x+y=0

@) lz+wl=|(x+p)+G@+v)|
=[x+ )+ (y+v)
=lx+ull+[y+v]

< el leell =+ [+

= (Ixll+ ) + Claell+ w1l
=zl {lwl’
Thus [z +wl' <[]+ [w]"-

@) lad =] (x+ )
=|ax+ay|'
=[loxl+|ery|
= leelllxdl + e[|y

~larl (el + 1)

=lalll"

We have proved that B' is normed space.

Part -1 : To prove B'is complete, let {z,} be any sequence in B'. Then for each 5 ¢ N,

z, = x, +, 1s unique expression, where x, e M and y, e N .
Forany ¢ >(, 3 n, € N suchthat

'<g

m,n2zn, :>||Zm -z,
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'<¢g

:>H(xm +y,)—(x,+,)

'<¢g

:>H(xm—xn)+(ym—yn)

<&

= Hyu =2,

xm - xn

= <&

<g and|

xm_xn ym_yn

Thus {xn} and { Y, } are Cauchy sequences in M and N respectively. But M and N
are closed linear subspaces of complete space (B, |l/|) and hence M and N are complete
spaces. Therefore there exists x e A and y € N suchthat x, > x and y, = y.

Definez=x+y. Then ze B=M ® N and

2,2 = |+ 2) G ) = =)+ ()]

xn—x||+ yn—y”—)O as n—»o0.

This proves z, =z nB".

We have proved that (B, |l/|') is complete normed space, and hence Banach space.

1.7 QUOTIENT SPACE

1.7.1 Definition : A partition of a non-empty set X is a disjoint family of non-empty subsets
of X whose union is X.

1.7.2 Theorem : Let M be a subspace of a linear space L, and let the coset of M in L
generated by x ¢ [ bedefined by, x+ M ={x+m:me M}

Then the distinct cosets form a partition of L. Let L /M denote the set ofall cosets of
MinLie /M ={x+M:xeL}.

Define addition and scalar multiplication in L / M by

(x+M)+(y+M)=(x+y)+M

and  g(x+M)=ax+M,
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Then L/M is linear space over the same field L. This space is called the quotient space
(or factor space) of M in L (or quotient space of L with respect to M).

Note :
1 If me M thenm+M=M

(1) If x—yeM then x+ M = y+M . Thus coset of M in L have more than one
representation.

(1) If 0 is zero vector in L, then 0 + M =M is a zero in L/M.
(v)  The negative ofx + M is (—x) + M.

1.7.3 Theorem : If a Cauchy sequecne {xn} in a metric space X has convergent
subsequence having limit x then the sequence {xn} is convergent with same limit x.

1.7.4 Theorem : Let M be a closed linear subspace of a normed linear space N. Ifthe
norm of coset x + M in the quotient space N/M is define by

Ix+ Ml =inf{lx+mll:meMm},

then N/M is a normed linear space. Further, if N is a Banach space, then N/M is a
Banach space.

Proof : Let M be a closed linear subspace of a normed linear space N.
Part - I : Firstly we prove that [-|: N/ M —[0,00) defined by,
lx+ Ml =inf {{lx+ M| : m e M } defines a norm on N/M.
Letanyx+ M, y+ M in N/M and ¢ be any scalar.

) Since |x+m| >0 forall ;e M, wehave |x+ M| >0.
(1) Letx + M = M (a zero vector in N/M).

Then x € My and we have,
||x+M||=inf{||x+m||:meM}
:inf{”y”:yeM} [vx,meM =>y=x+meM]
=0 [ - zero vector, 0 e M and [0] =0 ]
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Conversely, let |x+ M| =0

Then, inf {|x+M|:meM}=0

— there exists a sequence {m, }” inM such that |x+m,||— 0 as n — oo,
= —m, —> X as n—> 0

Since {-m,}”  issequence in M and M is closed, —m, — x implies x e M .
Therefore x + M = M (zero vector in N/M)

(ii) H(x+M)+(y+M)H:H(x+y)+MH
:inf{H(x+y)+mH:meM}
:inf{H(x+ml)+(y+m2)H:m],m2 GM}

Sinf{||x+m]||+||y+m2||:m],m2 eM}

[-.- Triangle inequality of norm in N]
Sinf{||x+m]||:m] eM}+inf{||x+n12||:n12 eM}
=[x+ M| +]y+ M|

Therefore,

(x+ M)+ (y+M)|<llx+Ml+]y+M|
(v) For g =0, we have
||a (x+M)|| =||Otx+M||

:inf{||ax+m||:meM}

=inf{lax+am':m'e M} [wm'=—eM]

:inf{|a|||x+m'||:m'eM}
=lalinf {lx+m'l:m'e M}

=lallx+Mll
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For ¢ =0,

loCx + a0l =llox + Ml = latll = 0 =[olllx + M

Therefore,

loe G+ M)|| = lexllx + M| for any scalar o .
Thus N/M is a normed linear space.

Part - I1 : Let N is complete (Banach) space. We prove thet N/M is complete (Banach)
space.

Let {xn +M } be any Cauchy sequence in N/M.

Then it is possible to select a subsequence {xnk +M } of {x, + M} such that

H(xn2 +M)~(x, +M)H <%

H(xn3 +M)—(xn2 +M)H < 21—2

1
H(xn“1 +M)—(xnk +M)H <2—k
Now choose any vector y, €x, +M and select y, €x, +M such that
1
||y2_y1||<5.

1
We next select y; €, +M such that ||J’3 e || < e Continuing in this way we

obtain a sequence {y, }~_ such that

1
||yk+1—yk||<2—k,(k= 1,2,3,....)
and X, tM =y +M [ yeex, +M]
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1
Letany g > (. Choose n, € N such that e <&,
Then for any k > r > n, we have,

”yk _yr” = H(yk _yk—l)+(yk—l _yk—2)+”’+(yr+l _yr)H

< ”yk _yk—]||+||yk—] _yk—2||+"'+ Vi =V,
PRI U
St k2 Ty
=Y (%) 1 1
:JZ_‘;(EE = 1_1 = o S2no—1 <&
2

That is for given ¢ > (0, 3 n, € N such that ||yk —yr||<8, Vk>r=n,.

This proves { Vi }w is Cauchy sequence in complete normed space N. Therefore

k=1
there exists y € N suchthat y, -y as k > «.

Now,

‘(xnk +M)—(y+M)H:H(yk+M)—(y+M)H

= =y)+ ]

:inf{H(yk—y)+mH:meM}

<[y =»)+m||, vmem

Inparticular for 5 = (0 e M , we have

(xnk +M)—(y+M)H£||yk—y||—>0 as k — 0.
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We have proved that Cauchy sequence { x, +M } has convergent subsequence
ith li M=y+M N
{x, +M} with limx, +M =y+ Ve

We know that if'a subsequence of Cauchy sequence converges, the sequence itself

converges. Hence the Cauchy sequence { x, +M } converges in N/M, so N/M is complete

normed space.

a0
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UNIT - 11

BOUNDED LINEAR TRANSFORMATIONS

In this unit we study bounded linear transformation and their properties. Well known
theorem which are considered as piller of functional analysis, namely, open mapping theorem,
closed graph theorem, uniform bounded principle are proved in this unit.

2.1 LINEAR TRANSFORMATIONS
2.1.1 Definition : Let Land V be linear spaces over the same field K. Afunction 7: [, —

is said to be linear transformation if 7 (ax+ By)=aT (x)+ BT () forall x,y € L and
a,pek .

2.1.2 Definition : Let 7: 7, — J/ be a linear transformation. Then
(a) Kernel of T is defined as
ker(T)z{xeL:T(x)zO},
which is also called null space of T and some time it is denoted as N (T).
(b) Range of T is defined as
ﬂ(T):{T(x):xeL}

={yeV:y=T(x) for some x e L}

2.1.3 Theorem:Let 7: [ — I bealinear transformation. Then,
(a) ker ( 7") is linear subspace of L.

(b) R (T) is linear subspace of V.

© TO=0

(d) T(-x)=-T(x), xeL.
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(e) T is bijective = T isinvertible = ker (7") = {0} .
® T ! ifexists, is a linear transformation.

Remark : For linear transformation 7': [, —» J/ we always assume L and V are the linear
spaces over same field of scalar g — R or C.

2.1.4 Some Important linear Transformations :
(a) Identity Transformation : Let L be a linear space. The function 7 : 7 — [, defined

by /(x)=x, x € L ,isalinear transformation, called identity transformation on L.

(b) Zero Transformation : Let L and V be the linear spaces over the same scalar field.
The function O : [, —  definedby O(x) =0, x e L , is alinear transformation, called zero

transformation.

2.2 BOUNDED LINEAR TRANSFORMATION INANORMED SPACE

2.2.1 Definition : Let (X, |/, ) and (Y,[[l,) be normed spacesand 7 : X — Y alinear

transformation. Then T is said to be bounded linear transformation if there is a real number
K >0 suchthat,

Iy < Kllxly s Vxe X

If T 1s not bounded, then it 1s said to unbounded linear transformation.

2.2.2 Remark : Bounded linear transformations are not same as those of ordinary real (or
complex) bounded functions. Bounded function is one whose range is a bounded set.

e.g. consider the identity operator /: R —> R, /(x)=x, x e R. Then,
@) I(ax+By)=ax+py=al(x)+pI(y)

forall x,yeR and a,f € R.
(i1) |I(x)| =[x, VxeR.

If g >1 thenwe have

|I(x)|£K|x|, VxelR.
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Thus identity operator is bounded linear transformation. But there does not exists

constant Af > () suchthat |7 (x)|< M, Vx e R . Therefore I is not a bounded function.

2.2.3 Examples of bounded linear tranformations :

Example 1 : Identity transformation and zero transformation are bounded linear
transformations.

Example 2 : Consider the normed space C [0, 1] ofall real (or complex) valued functions
with supremum norm.

||x|| = sup |x(t)|

ref0.1]
Define 7: C[0,1] - R by
7(x)=x(0), xeClo,1].
@) Letany x,y e C[0,1] and «, B € R. Then
T(ax+By)=(ax+py)(0)=ax(0)+By(0)=aT(x)+BT(y)
This implies T is a linear transformation.

(ii) For any x € C[0,1], we have,

17 ()| =x(0)| < sup |x ()] = Ix]

tef0,1]
Therefore,
[T () =K Ixll, vx,y e C[0,1].
where, K=1.

We have proved that T is bounded linear transformation.

Example 3 : Consider the Banach space B=C [0,1] with the supremum norm.

Ix = sup |x(¢)

te[0,1]

», xeB.
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Let K :[0,1]x[0,1] »> R is continuous.

Define 7: B — B by
1
T(x)(t)zjK(t,s)x(s)ds, xeB.
0
(1) Letany x,y € B and ¢ ¢ R. Then

T(x+2)(0) = [ K (1.5)(x + y)(s)ds

=[K(t,5)(x(s)+y(s))ds

0

j ts x(s)ds+jKts (S)ds

=T(x)(@)+T(y)()

and

T(ax)(1) = [ K (1,5)(ax)(s)ds

= ale(t,s)x(s)ds

=aT (x)(1)

Thus T is linear transformation.

()  Since K:[0,1]x[0,1]—> R is continuous on compact set [0,1]x[0,1], there is
constant M > 0 such that

K (£,5)| <M, ¥(s,0) €[0,1]x[0,1].
Now for each 7 €[0,1] we have,

lx ()| < sup |x () =llxll, xeB.

te[0,1]
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Therefore for any x ¢ B, and 7 €[0,1] we have,

iK(t,s)x(s)ds

0

|T(x)(t)| =

SII|K(t,s)||x(S)|ds

0

1
<M ||x||jds
0

= M|«
Thus |T(X)(t)|SM”.X||a xeB, fE[O,l]
This gives

[7x] = sup |Tx(t)| <M | xe

te[0,1]

B.

By part (i) and (ii), T is bounded linear transformation.

2.2.4 Examples of Unbounded Linear Transformation
1. Let X = P[0,1] - the set of all polynomials with real coefficients defined on [0, 1].

Then X is normed linear space with the norm,

ol = sup [« _ 5

te[0,1]
Define 7: X — X by

T(x)()=x'(), te[0,1],

. dx
wherex'(t) = —
dt

(1) Letany x,ye X and o, R,

Then forany ¢ €[0,1].
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T(ax+By)(t)=(ax+pBy)' ()
:ax'(t)+ﬁy'(t)
=alx(t)+ BTy (1)

= T(ax+By)=al(x)+BT(y)

Thus T is a linear transformation.

(ii) Foreachn(n=1,2,3,....) define x, (¢)=t", t €[0,1].

Then x, € X foralln.

Also T (x,)(#)=nt""

and x,||=sup|x, (t)| = sup "] =1, for all n.
te[0,1] te[0,1]
Thus
||Txn = sup ‘T(xn)(t)‘
te0,1]
= sup |nt"”'
te[0,1]
=nsup |t
te[0,1]
=n()=n=nx,
Thus ||Txn =n|x,||, VneN.
||Txn
= =n , Vne N .

X

= there 1s no fixed number K > 0 such that,

||Txn
—=<K,VneN.
X

n
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Thus we cannot find, K > 0 such that

|Tx, || < K

xn

Hence T 1s unbounded linear transformation.

2.2.5 Definition :

Let (X, |, ) and (7, ]l ) be normed linear spaces over same field of scalar g — C

or R . Atransformation 7 ;: X — Y (linear or not) is said to be continuous at a point x, € X

iffor given ¢ > (0, 38 > ( such that

IfXEXa

x—x0||X <6 then ||Tx—Tx0||X <g.
Equivalently, 7: X — Y iscontinuous at x, € X ifand only if.

{xn}gX, x, >x,nX =>Tx —->Tx mnY.

Further, a transformation 7 : X — Y is said to be continuous on X ifit is continuous
ateach xe X .

Notations :

Let X and Y be normed spaces and 7 : X — Y a (linear) transformation. Since it is
easy to determine which space an element is in and therefore, implicitly, to which norm we
referring, we may use the same symbol || to denote the norm on both normed spaces X and

Y, when no confusion will result. When clarification is necessary we may use subsripts to
denote different norms.

e.g. Let vector spaces X and Y have norms ||, and |||, respectively.

2.2.6 Theorem : Let N and N'be normed spaces and 7 : N —» N' alinear transformation.
Then, T is continuous at a point (any) in N iff T is continuous on N.

Proof: Fix any x; € N, and let the linear transformation 7: N — N is continuous at x,.

Letany xe N.
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Let {x,} be any sequence in N such that x, — x. Then {x, —x+x,} isa sequence

in N such that x, —x+x, = x,.

of N.

Therefore, T(xn —x+x0) — Tx,.

Thus lim||T'(x, =x+x,) =T (x,)| =0

n—o

But T is linear, hence we have
ligloHT(xn)—T(x)+T(x0)—T(xO)H =0

= lim T (x,) T (x)]|=0

n—>0
=T(x,)>T(x).

Hence T is continuous at x.

We have proved 7: N — N' is continuous.

Conversely if 7: N — N' is continuous, then obviously it is continuous at any point

2.2.7 Theorem : Let N and N' be normed linear spaces and 7: N — N' a linear
transformation. Then, T is continuous ifand only if T is bounded.

Proof: Assume 7: N — N' is bounded.

Then 3K > () such that,
I7dl < K|l Vxe N -
Let {x,} beanysequence in N such that x, — 0 inN.
Then [T, | < K |, =0 as 7 — co.
=||Tx,| =0 as n— 0.
=Tx, >0=T(0) as n—> 0.

Therefore T is continuous at origin in N, and hence it is continuous on N.
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Conversely, let T is continuous on N. If possible T is not bounded. Then, for eachn,

(n=1,2,....), Ix, # 0 in N. Such that,

that 7 -

2.2.8

Proof:

||Txn >n|x,
||Txn
=>-—0>1
nl|x,
= . xn >1 [ Homogenity of norm]
xn
Therefore, |1 . >1 vn. ....(1) [+ Linerarity of T]

X

J— n
For each n, define V» =
n|x,
Then,
by X, 1
y = —n = - _) 0
n nlx, nx, n as n1— 0.

This implies y, — 0 inN.

But from (1),

T(yn)H>1, Vn,and hence T (y,) =5 0 as n — 0.
Therefore T cannot be continuous at origin, which is contradiction to our assumption
N — N is continuous.

Therefore, T must be bounded.

Theorem : Let N and N'be normed spaces and 7 : N —» N' alinear transformation.
Then, T is bounded if and only if T maps bounded sets in N into bounded sets in N'.

Let 7: N — N isbounded linear transformation.

Then, 3% > ( such that HT(x)HSk”x . xeN. (1)
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Let 4= {x eN: ||x|| < M} be any bounded set in N. Then for any x ¢ 4, we have
Ir (o)< K1 <

This proves T'(A4) = {T(x):x e A} is bounded.
Conversely, let 7: N — N' maps bounded sets in N into bounded sets in N'.
Let S={xeN:|x|<1} is closed unit sphere in N. Then by assumption
T(S)=1T(x):xe S} is bounded.
Thus 3K > 0 such that,
I7(x)|<Kk, vxes. .. Q)

We prove that T is bounded linear transformation.

Casel: Letx=0inN. Then T (x)=0.

Hence HT(X)H <K ||x|| is clearlyhold for xy=0e N .

X

|~

<l _,

I

Case2: Letany x #( in N. Then

X
Hence MES ,forany x z( inN.

Therefore by (2), for any x = ( in N, we have,

i)

<K
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=[r (=) <&
Combining Cases 1 and 2, we have proved that 3K > () such that

|7 ()] < £

, Vxe N .

Hence T 1s bounded linear transformation.

2.2.9 Theorem : Let N and N' be normed linear spaces and 7: N — N' a linear
transformation.

Then the following conditions on T are all equivalent to one another :

(a) T is continuous;
(b)  Tiscontinuous at origin, in the sense that x, > 0= T'(x,) —>0;
(c) There exists a real number K > () with the property that,

|7 ()] < £

, forevery xe N.

(d) IfS= {x eN: ||x|| < 1} is closed unit sphere in N, then its image T (S) is a bounded
setin N'.

Proof:

(a) < (b) : Please see proof of theorem 2.2.6 with x, = 0.
(b) < (c) : Please see proofoftheorem 2.2.7.

(c) = (d) : Please see proofofthe theorem 2.2.8 withM =1.

2.2.10 Corollary : Let Nand N'be normed spacesand 7 : N — N' alinear transformation.
Then following statements are equivalent.

(a) T is continuous.
(b) T is bounded.

(c) T maps bounded sets in N into bounded sets in N'.
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2.2.11 Remark : Fromabove corollary, the two adjectives continuous and bounded can be
used interchangeably for linear transformations of one normed space to the other normed
space.

2.2.12 Theorem : Let N and N' be normed linear spaces and let 7: ;¥ — N' be a onto
linear transformation. Then T~! exists and is a bounded linear transformation if and only if 3
a constant K > 0 such that,

HT(x)HZ K||x|| ,forall ye N.

Proof: Let N and N'be normed spaces and let 7: ;¥ — N'' be onto linear transformation.

Let 3K > ( such that

7 ()= &)+, vxen. L. (1)

Then from (1), if 7x =0 thenx = 0.

Therefore T is one-one. Also given that T is onto. Thus T is bijective and hence it
follows that T~! exists in algebraic sensense.

Bytheorem2.1.3, 77! . ;y' 5 N isalinear transformation.

It remains to prove 77! - ' —» N 1s bounded.

For each y in the domain of T, 3 xe N such that,

T"(y):x<:>Tx:y

Therefore from (1),
K|r )| <]r(r )], wwen.
= HT_] (J’)HS%”J’ , VyeN'.

This implies T~! is bounded.
Hence 77! - ' — N 1s bounded linear transformation.

Converselylet 7' - ;' —  isexists and is abounded linear transformation.
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Then 3 M > 0 such that,

|7 )< a1y

, VyeN'.

= |77 (7x)|| < M |7

, Vxe N .

= <

5 Vx eX.
1
Therefore 3K = i > 0 such that,

= HT(x)H > K”x

, Vxe N .

This proves the theorem.

2.2.13 Definition : Let N and N' be normed spaces and 7: N — N' a bounded linear
transformation. The norm of T, is defined as,

||T|| = sup {HT(x)H :xeN,

X | < 1}
This norm is called an operator norm.

Note : From theorem2.2.9 : (a) = (d ) and it follows that ||T || is well defined.
In the next section we prove that ||T || is indeed norm on the space B (N, N') - the

space of all bounded linear transformation of N into N'.

2.2.14 Theorem : Let N and N' be normed spaces and 7: N — N' a bounded linear

transformation. Then,

T || can be expressed by any one of the following formulae.
O |7]=sup {7l x e N <1}

@ 7] =sup{|]:x e N = 1}
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(iii)

()

Proof:

||T|| = sup{”|| ”” xeN,x# 0}

||T||:inf{K:K >0 and ||Tx||SK||x||,VxeN}

Further,

Let N and N' be normed spaces and 7 : N — N' abounded linear transformation.

By definition of an operator norm,
||T|| = sup {”Tx” X E N,||x|| < 1}
Define,

a =sup {”Tx” X E N,||x|| = 1}

b :sup{”

:inf{K:KZ 0 and ||Tx||£K||x||,VxeN}

” ”” XEN, xiO}
X

We prove that,

[rl=a=b=c
Since {xeN:|x|=1} c{xeN:lxl<1}, we have,

(7l x e N, =1} < {Iel: x e vl < 1}

= sup{[I7]: x & N, || = 1} < sup {I7]: x e Ve < 1}

= a<|T| e (1)
By homogenity of norm and linearity of T, for any x ¢ N, x = 0 we have,

I()

7= _

&

IIXII

D)




Therefore,

b =sup M:xeN x#0
[ ’

sup{ T(i] :xeN,x;tO}
I~
X
IfyZHT, xeN, x=0 then ye N and ||y||:1,then

b=sup{lTs]: € NJy]=1} =a
Thus,

b=a e (2)
By definition of ¢, we have

|7x]| < cllxll, wx e N

=[x <c. vxe N with | <1

= sup{ITx|: x e N, |x]| <1} <c

=|7|<c . (3)

Finally

b =sup M:xeN,xiO
Il

|17
= Il <b, yxeN, x#0.

= |l <blxl, Vxe N, x#0-
Clearly ||7x|| < p|x]| forx=0inN.

Therefore |7x|| < b x||, forall xe N. e ()
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:be{K:KZO and ||Tx||£K||x||,VxeN}
:>b2inf{K:K20 and ||Tx||£K||x||,VxeN}

=>b>c ... ()
Combining (1), (2), (3) and (5) we obtain,

ITl<c<b=a<ITI

= ITl=a=b=c .. (6)
Further from (4) and (6) we have,

17l <I7xll s vx e N -
This complete the proof.

2.2.15 Problem : IfMis a closed linear subspace of a normed linear space N, and if T is the
natural mapping of N onto N/M defined by T (x) =x+ M. Show that T is a continuous linear

transformation for which ||77]| < 1.

Solution : We know that “If M is closed linear subspace of a normed space N then N/M is
normed space with the norm of coset x + M in N/M defined by

||x+M||=inf{||x+m||:meM}

Define T:N > N/Mby T(x)=x+M, xeN.
@) Tislinear: Letany x,ye N and «, 8 be any scalar.

Then,
T(ox+By)=(ax+By)+M
=(ax+M)+(By+M)
=alx+M)+B(y+M)

zaT(x)+ﬂT(y)
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T is continuous : For any x e IV, we have,
|7 GOl =lx+ M
=inf{lx+ml:meM}
S||x+m||, VYmeM .
Inparticular for m =0,

7Ol <lal, Vxen. L (1)
This implies T is bounded linear transformation with bound K= 1.
Hence T is continuous linear transformation.

From (1) it follows that

|7l = sup{I7x]: x e N,lIxl <1} <1, ie. |7 <1-

2.2.16 Problem : Let N and N' be normed spaces and 7 : N — N' a continuous linear
transformation. Prove that the null space N (T) (Kernel of T, Ker (T)) is closed.

Solution : The null-space of 7: N — N' is given by,

N (T)={xeN:Tx=0}
Letany y ¢ 1/ (7)- Then there exists a sequence {x, } in N'(T) such that x, — x.
Since T is continuous, Tx, — Tx.
But x, e A/ (T), Vn:>T(xn):0, V.
Therefore,

T(x)=1limT(x,)=1im(0)=0

n—>0 n—o0

=xe N (T)

Hence A/ (T)c AV (T)= AN (T) isclosed.
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2.2.17 Problem : If T is continuous linear transformation of a normed space N into a normed
space N', and if M s its null space, show that T induces a natural linear transformation T' of

N/M into N'and |77 = |IT||-

Solution : Let 7: ;¥ — N' be a continuous linear transformation of normed space N into

normed space N'. Thenits null space 7 = A/ (7) is closed linear subspace of N. The N/M
is normed space with norm of coset x + M in N/M defined by

||x+M||=inf{||x+m||:meM}
Define 7': N/M — N' by
T'(x+M)=T(x), xeN.

> T(x)e N'

T
xeN
\ /V
x+MeN/M

@) T'is well defined : Let x+ M = y+ M i N/M.
Then x-yeM =N (T)
=T(x-y)=0
=>T(x)-T(y)=0
=T () =T(y)
=>T'(x+M)=T"(y+M).

(i) T'is linear: Let any x, ye N and «, 8 be any scalar.

Then

T'(a(x+M)+B(y+M))

T'((ax+ﬂy)+M)
:T(ax+ﬂy)
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(i

2.3

zaT(x)+ﬂT(y)
=al'(x+M)+BT'(y+M)

Therefore T'is linear.

To prove |7 =7
17l =sup{IT"(x+ M)|: x e N, Ix+ M <1}
=sup{IT()|: x e N,inf {lx+ mll:me M} <1}
=sup {7 ()||: x e N,llx +mll <1 for some m e M }

Sil’lCGmeM:/\/(T)ST(m)ZO

Thus |7 (Ol |7 G+ 7 )| = |7 e+ )] x € N

Therefore
||T'||zsup{||T(x+m)||:xeN,||x+m||S1 for some m eM}

Forany me M, y=x+meN,Vxe N .
Thus

I71l=sup{||73]|: y € N,

Y1 =i

=71 =Tl

SPACE OF BOUNDED LINEAR TRANSFORMATIONS

Let N and N' be normed linear spaces. The collection of all bounded (or continuous)
linear transformations of N into N'is denoted by B (N, N'). The letter #B is intended to

suggest the adjective “bounded”.

Note that :

Q)

The zero operator O: N — N', O(x) =0, x € N, isbounded linear transformation,

with |0 = sup{”O(x)” :xeN,llxl < 1} =0
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(i) The identity operator 7 : N — N, I(x) = x, x € N, is bounded linear transformation
with || 7] = sup{”[(x)” :xeN,lxl < 1} =1

Therefore both zero operator O and identity operator I belongs to B (N, N') and
hence B (N, N') is nonempty.

2.3.1 Theorem : Let N and N' are normed spaces over the same field of scalar
K (CorR).
Then,

(a) 3B (N, N") is a vector space over g with respect to pointwise operation and scalar
multiplication.

(b)  The function |-|: B (N,N')— R, defined by |7 = sup {I7x[: x € N,[Ixl <1}, is
normon £ (N,N').
(c) IfN'is a Banach space then (N, N') is a Banach space.

Proof:

(a) The family L (N, N") of all linear transformations of N into N'is the vector space over
K withaddition and scalar multiplication given by

(T+U)(x)=T(x)+U(x) and (aT)(x) =T (x)
forall xe N and ¢ € K, where T,U e L(N,N").
Clearly B (N,N')c L(N,N").

Since zero linear transformation and identity linear transformations are the member of

& (N,N'),itis nonempty.

To prove B (N, N') is vector space over ¢ , we show that it is linear subspace of
L(N,N").

Letany 7,U € B(N,N') and g e K -

Then 3K, K, > 0 such that

17l < KI5l wxe N -
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and Ul <K, Ixll, wxe N

Therefore,
I(7+0) GOl =17 + U]
< |I7xll+ o
<K, Ixll+ K, lIx
=(K, +K,)llx[.
Therefore,
T+ < (K, +K,)Idl, vxeN.

—=T+UeB(N,N')
Also,

l(aT) ()] =l =lalITxll < |l &, Ixl, Wxe N .
—aTeB(N,N')

Thus % (N, N') is linear subspace of L( N, N') and hence £ (N, N') itselfis a
vector space.

(b) & (N, N') is normed space :
Define ||: & (N,N') — R, by
171l = sup {I7xl: x € N, Il < 1}
where T e #(N,N").
Letany 7, U e B(N,N') and g € K .
(i)  Since |[7(x)]|>0, Vxe N, [Ixl<1,wehave |7]|>0.

(i) ||T||=0<:>sup{%:xeN,x¢0}:0
x

T
@M:&xeN,x;tO
x|
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< |Txll=0,vxe N
& Tx=0,VxeN
=T=0
() |7 +Ul=sup{(T+0)(X)|:xe N,Ixl <1}

sup{[7x+Uxl: x e N |Ix <1}

<sup {||Tx|| +|lUx]: x e N,||x|| < 1}
<sup {||Tx|| X €E N,||x|| < 1} +sup {||Ux|| X €E N,||x|| < 1}
= ITll+ -
Thus |7+ Ul < |7+ U] -
(iv) leeT |l = sup {”(aT)(x)” cxe N,[xl < 1}
=sup{la/|7x]: x e N, lIxl| <1}
=lalsup {I7x]: x € N,lIxl| <1}
=l
We have proved that (N, N') is normed linear space.
(c) To prove B (N,N') is complete if N' is complete, let {Tn }le be any Cauchy
sequencein B (N,N").
r,-T,

Then —>0 as m,n— o,

Foreach xy e N, we have

|7, =T = (T, ~7,) )]
<||z, -7, |llx| - 0as m,n — oo,
Le. me—Tnx||—>0 as m,n —» .

Thus for each x e N, {Tn x}:O is Cauchy sequence in complete normed space N'.

=1

Thus 3 vector 7x e N suchthat 7 x — Tx.
I (72




Define T:N—)N'byT(x):li_{gE(X), xeN.

We provethat T e B(N,N')and T, - T in B(N,N").

@) Tis linear: Let any x, ye N and «, S be any scalar. Then,
T(ax+By)=lmT,(ax+By)

:lim(aTn (x)+ BT, (y)) [~ T, is linear]

n—o0

=alim7, (x)+ B limT, (»)

n—0 n—o0

—aT(x)+ BT, (»)

(i) T is bounded : Forany x e N, we have,

[7 Gl = tim

T, (x)“ [|l] is continuous]

<tim 71
n—»o0

T,

(i

il

)lell

Thus |7 < K [lx], Vx e N, where & = e

T,

< (sup
neN

T,

Hence T is bounded.

We have proved that T e B (N, N').

Finally, since {7, } is Cauchy sequence in (N, N'), foreach ¢ >0, 3 aninteger

n, € N such that,

T -T

m n

m,n2zn, = <&

Hence forany x e N,

(@ED)




m,n = n, = ||me—Tnx|| = H(Tm —Tn)(x)H

x|

<

r,-T,

<ellx-

This gives,

m,n=n, = ||me—Tnx

<&,VxeN, ”.X'”Sl

Taking m — oo, we obtain,
n2n0:>||7—;,x_Tx||<8a VXENa ”.X'”Sl

Therefore,

n2n, = sup{|(T,-T)(x):xe NIl <1} <&
Sl -T]<e

Hence T, - T is £ (N,N").

This proves % (N, N') is complete normed space.

Notations : Let N be a normed space. We call continuous linear transformation of N into

itself an operator on N. We denote normed space of all operatorson N by 38 (N) instead of

B(N,N).

2.3.2 Theorem : Let N be a normed space and 3B (N) the set of all operators on N.
Then:

(@) 3B (N) is normed space.

(b) 3B (N) is Banach space if N is Banach space.

) ITr17'eB(N,N")thenT,T'eB(N) and |77 <|TIT-

(d) Multiplication is jointly continuous in 58 (N) :

I, >T,T'">T'=>TIT'>TT'.
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Proof : Proofofpart (a) and (b) follows from the theorem 2.3.1, by taking N =N'.
() Letany 7, T'e B(N).
@) TT'is linear : Let any x, ye N and «, 8 be any scalar.

Using the linearity of T and T', we obtain,
(TT)(ax+By)=T(T'(ax+By))
=T (al'x+BT'y)
=aT(T'x)+ BT (T'y)
= a(TT)(x) + B(TT)(»)
()  TT'iscontinuous: Let x, — 0 inN. Then T"'(x, ) — T (0).
Hence TT'(x,) > T(T"(x,)) > T(0)=0.

This prove TT' is continuous at origin, and hence it is continuous.

The assertitions (i) and (i) proves 7,7'e B (N).
(11) ||TT'||zsup{”TT'(x)”:xeN,||x||£1}
—sup{[T(7'(x))]: x e N.IIxl <1
<sup {||T||||T 'x|:xe N,lx| < 1}
=ITlsup{lIT"xll: x € N,lIxl <1}
=7l
Therefore, |77 <|TlIT"]-
() Let 7, >T and 7," > T"' in B(N).
Then,

1T, =TT =|

(T,T,-T,7")+(T,T'-TT")|

<

7(T, -1 +|(7. -7)7
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<|T\I7, =T+ |7, - 7M1= 0 as n— 0.

=

TT,'-TT|—0 as n— co.

=TT'>TT"as n— .

Thus multiplication is jointly continuous in J#(N).

2.4  BANACHALGEBRA

2.4.1 Definition : An algebra A over the field g isa vector space Aover g suchthat for
each ordered pair of elements x, y € A aunique product xy € 4 is defined with the properties

0 (w)z=x(2)

@  x(y+z)=xvtxz

)  (x+y)z=xz+yz

®  a(w)=(ax)y=x(ay)

forall x,y,ze 4 and g € K -

An algebra is said to be real or complex accordingas g is R or C.

2.4.2 Definition : An algebra A is said to be commutative (or abelian) if the multiplication

in A is commutative, that is, if for all x,y € 4.

Xy =)Xx

2.4.3 Definition : An algebra A s called an algebra with identity if A contains an element e
suchthatforall x e 4,

Xe=ex=Xx

This element e is called an identity of A.
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2.4.4 Definition : Anormed algebra A is a normed space which is an algebra such that for
all x,ye 4

ey < 1l

2

and if A hasanidentity e, |¢] =1

2.4.5 Definition : A Banach algebra is a normed algebra which is complete, considered as
anormed space.

2.4.6 Theorem:If N {0} is a Banach space, then 8 (N) is a Banach algebra.
Proof: Let ) = {0} is a Banach space. Then # (N) is a Banach space.

For T,U € 8 (N), define,

(TU)(x)=T(Ux), xe N .

Then by Theorem2.3.2, T.U € B(N).

Further, forany §,7,U e £ (N) and ascalar ¢, we have,
&  s(ru)=(sT)U
i  S(T+U)=ST+SU
(i)  (S+7T)U=SU+TU
) a(ST)=(aS)T =S (al)

Further, forany 7,U € £ (N ) , we have already proved ||7U| < ||T|||U]]-

Also, an identity transformation 7 : N — N, I(x) = x € N , is an identity element
for B(N) with | 7]| =1.

From above discussion it follows that 8 (N) is a Banach algebra.
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2.5 THE OPEN MAPPING THEOREM

In this section we prove the open mapping theorem which gives condition under
which a bounded linear transformation is open mapping.

We give some basic definitions and theorems which we need subsequently.

2.5.1 Definition : Let X and Y be metric spaces.

Amapping f: X — Y issaid tobe openif f (A)is openin Y for every open set A
in X. i.e. A mapping which maps open sets into open sets is called open mapping.

2.5.2 Theorem: Let X and Y be metric spaces. Then following conditions are all equivalent,
(@) f: X — Y ishomeomorphism.

(b) f: X — Y isbijective and bicontinuous.

(©) f: X - Y isbijective, open and continuous.

(d) f: X —Y isbijective, closed and continuous.

2.5.3 Theorem : If f is one-to-one mapping of metric space X into metric space Y.

Then, f: X — Y ishomeomorphismifand onlyif f(4)= f(4), VAC X.

2.5.4 Theorem (Baire Category Theorem) :

Ifa complete metric space is the union of a sequence of its subsets, then the closure of
at least one set in the sequence must have non-empty interior.

2.5.5 Problem: Let N be anormed space, x, € N and»>0. Then:
() S.(x,)=x,+5,(0)
@ S .(0)=rS(0)

Solution : S.(x,)={xeN:|x-x|<r}
and S (0)={xeN:xl<r}
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) xeS (x)e|x—x|<r
o x-x,€8,(0)
< x,+(x-x,) ex, +85,(0)
o xex,+8S.(0)
Thus S, (x,)=x, +5,(0).

i  xeS (0)<lxl<r

= || P |

r

= 2es(0)
r

< r(ij erS,(0)
r
< xerS, (0)
Therefore S, (0) = 7S, (0).
Combining (1) and (i) we have,

S, (x,)=x,+rS,(0).

Firstly we prove the following Lemma which play a keyrole to prove the open mapping
theorem.

2.5.6 Lemma : If Band B'are Banach spaces, andif T is a continuous linear transformation
of B onto B', then the image of each open sphere centered on the origin in B contains an open
sphere centered on the origin in B'.

Proof: Let S, = {x eB:lxl < r} be the open sphere of radius » centered at origin in B.

Then by linearity of T we have,
T(S,)=T(rS,)=rT(S,).
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Therefore to prove the lemma it is sufficient to show that 7'(S, ) contains an open

sphere S; = {x e B":|xll< g} , centered at origin in B' for some ¢ > ().

To each x e B, choose e N sufficiently large so that ||x|| < . Then x € S, .

Therefore, B=UlxicUS,cB

xeB neN

=B={S,

neN

Since 7 : B — B' isonto, we have

B':T(B)zT(U Sn): ur(s,)

neN neN

As B'is complete, by Baire’s category theorem 3n, € N suchthat T (Sn0 ) has non-
empty interior.

Let y, is an interior point of 7'(S, ) suchthat y, € T (S, )-

n

Define f:B'——B'by f(y)=y-y,, yeB'.
Claim 1 : f is homeomorphism.

fisone-one:Let y,,y, € B'. Then,

f(yl):f(yz)jyl_yo:yz_yojyl:yz

fisonto: Toeach ye B', 3y =x+y, € B', such that,
F()=y=yy=(x+y,) -y, =x

fand f~1are continuous : Fixany y € B' and let { yn} < B' suchthat y, — y . Then,
f()=r=v=>r=-0=1()

)=y vy ="(»)

We have proved that £ is bijective and bicontinuous. Hence fis a homeomorphism.
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Claim 2 : ‘0’ is an interior point of (S, )~ ¥,.

Since y, is the interior point of T (Sn0 ) , 3 an open set G such that,

yoeGgT(S )

o

:f(yo)ef(G)gf(m).

But £ () =7~y =0and £(7(S,))=T(S,)-»

Therefore, 0 (G) < T(Sn0 ) — Y-

Since fis homeomorphism, it is an open map and hence f(G) is open in B'.

Hence ‘0 is an interior point of 7'(S,, ) = ¥, .

Claim 3 : T(S,,O)—yo QT(SZnO)
LetanyyeT(Sno)—yo.
Then y =T (x)—y, forsome X€S, .

Further y, €T (S

n,

0):>y0 =T(x,) forsome X, €S, .
Therefore y =T (x)-T(x,)=T(x-x,), %, % €S, .
But  x.x,€8, =lxl<n,, |xl<n,
= e =, | < lxll+ ||, | < 27,
=x-x €S,

:T(x—xo)eT(SZno)
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= yel(S,,)

Therefore, 7(S,, )= <7 (S.,) .. (1)

Claim 4 : *0” is an interior point of 7'(S, ) .

By using (1), we have,

T(S,)=%cT(S,)=T(2nS,)=21,T(S,) .. 2)

Since f is homeomorphism.

F(7(8,)) =7 (7(5.)

=ST(S,)=%=T(S,)=-»% 3)

Combining (2) and (3), we obtain,
T(S,)-vc2nr(s) (4)

Note that, the mapping g : B'— B' defined by g (x) = 2n,x is homeomorphism.

Therefore, g(T(SI )) =g(7(5)))

= 2nOT(S] ) = ZnOT(S]) ..... (5)
Using (5) in (4), we have,

T(Sno)—yo c 2n0T(S])

Since 0 is an interior point of 7' (Sn0 ) —Y,, it follows that 0 is the interior point of

2”0T(S1)'

This implies, is the interior point of 7' (S, ).

Therefore 3 an open sphere, S, ={x e B":|xl< &} centered at origin in B' such

that,
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We conclude the proof by showing that S, = T'(S,) which is equivalent to
S.,cT(S).

Letany ye S, .

Thenby (6), yeT(S,)-

= S.(y)NT(S,)#¢, Vr>0.

&
In particular for » = 5 , we have,

S;/z(y)ﬂT(Sl)¢¢

Let 3, €., ()NT(S,)-

Then [y = x| <§ and y, =T (x,) forsome x, € S, so that |x|[<1.

Hence y—y, €S,,<T(S,,) .. (7) [+ By(6)]
:S;/zz (y_y])ﬂT(S]/2)¢¢

Let y, ES‘;/ZZ (y_y])ﬂT(S]/2)'

1
Then ||y—y] —y2||<§ and y, =T (x,) forsome x, €S, so that ||x2||<5_

Again we see that y—y, — », ES;/22 = T(S]/ZZ)'
:>S;/22 (v=» _yZ)mT(S1/22)¢¢

Let v;€S . (y=2-»)NT(S, ).
€ 1
Then ||y—y, -V, —y3|| <? and y, = T(x3) forsome X; € sz so that ||X3 || <2—2.

<

Continuing in this way we get a sequence {xn} in B such that || X, and

n—-1

(€ED) |




ly=(n+y,+.t3,)

Where y, =T (x,).

Define S, = x; + x, +.....+x, . Then,

Sn

=[x, ||+ [, | + -+

X

n

1
<l+—+....+
2

Thus ||Sn|| <2, foralln.

For n>m we have,

S, - Sm” = ||xm+] +x

m+2

= N B N B
1 1 1
TRETTIE =

1

_L 1- on=m

Z
2

I 1
—2——— |50
(2’” 2"j as LR T

Therefore

Sn—Sm”—)O as m,n — oo,
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This implies {Sn} is Cauchy sequence in complete space B and hence 3y € B such

that S, — x. Using the continuity of norm, we have,
J+= tim|s, <2 <3 [+ By©)]

=>xesl,

Further, using continuity of T, we have,

T =lm7(s,)

=lim7 (x, +...+x,)

n—o0

=1lim(7(x)+...+T(x,))

n—o

=lim7(y +...+,)

=y [ By(8)]
But x e S, implies y =T (x) e T(S,).
We have proved that,

yeS;:yeT(b})

Therefore, S, < T(S3):> S, T(S] )

This complete the proof.

2.5.7 Theorem : If B and B'are Banach spaces, and T is a continuous linear transformation
of B onto B, then T is an open mapping.

Proof : Let B and B' are Banach spaces and 7: B — B' is onto, continuous linear
transformation.

Let G be any open set in B.
We prove that T (G) is openset in B'.

Casel:If 7(G)=¢,the T (G)isopeninB'
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Case2:Let T(G)#¢.
Let yeT(G).Then y =T (x) forsome xeG.
Since G isopen in B 3 anopen sphere S, (x) inBsuchthat S (x) = G.
But S, (x)=x+5,(0).

Also S, (0) is open sphere contered at origin in B, thus by lemma 2.5.6 3 an open

sphere S (0) centered at origin in B' such that
S.(0)c7(S,(0))
= y+8S.(0)c y+7(S,(0)
=5, (y)=T(x)+T(S,(0))
=S, (»)cT(x+5,(0))=T7(S, (x))
But S, (x)cG=T(S, (x))c=T(G)

Therefore S, (y) = T(G).

This implies T (G) is an open set in B'.

2.5.8 Theorem : A one-to-one continuous linear transformation of one Banach space onto
another is a homeomorphism. In particular, if a one-to-one linear transformation T ofa Banach
space onto itselfis continuous, then its inverse T~ is automatically continuous.

Proof : Let B and B' are Banach spaces and 7: B — B' is bijective, continuous linear
transformation.

To prove T is homeomorphism it remains to prove T~ is continuous.
Since 7 : B — B'isbijective, 7! - B' 5 B exists and it is linear.

Let G be any open set in B, then by open mapping theorem, T (G) is open in B'.
But (7! )_] (G)=T(G) implies (7! )‘] (G) isopeninB'.

This implies, inverse image under T of an open set G in B is open in B'.

Therefore T~ is continuous.
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2.6 PROJECTIONS ON BANACH SPACES
2.6.1 Projection on Linear Space

A projection P on a linear space L is an idempotent (P = P) linear transformation of
L into itself.

The projection on linear space described geometrically as follows :
(a) A projection P determines a pair of linear subspaces M and N scuhthat 7 = Ay @ N,
where M ={P(x): x e L}istherange of P.

and L ={xe L:P(x)=0} isnullspace of P.

(b) A pair oflinear subspaces M and N such that 7 = Ay @ N determines a projection P
whose range and null space are M and N.

Indeed, if z=x+ y isunique expression of vectorin 7, = Af @ N then P is defined
by p(z)=x-

These facts shows that the study of projections on L is equivalent to study of pairs of
linear subspaces which are disjoint and span L.

2.6.2 Projection on Banach Space :

A projection on a Banach space B is an idempotent operator on B in the algebraic
sense which is also continuous.

In other words P is projection on Banach space B if :
)] P2 =P (P is projection on B in algebraic sense).

(1) P: B — B iscontinuous (bounded).

2.6.3 Theorem:

If P is projection on a Banach space B, and if M and N are its range and null space,
then M and N are closed linear subspaces of Bsuchthat B=Af ® N .

Proof : Let P is projection on a Banach space B.

Then,
)] P is projection on B in algebraic sense i.e. P2=P.
(1) P: B — B iscontinuous (bounded).
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Thus (i) implies that B = A @ N, where M ={P(x): x e B} is therange of P.

and N ={xe B: P(x)=0} isnullspace of P.
Note that,

M:{P(x):xeB}z{xeB:P(x)zx}

:{xeB:(I—P)(x)zO}
= M isthenull space of the continuous linear transformation I —P on B.

We know the null space of any continuous linear transformation is closed (please see
problem 2.2.16). Therefore both M and N are closed linear subspaces of B.

2.6.4 Theorem:

Let B be a Banach space, and let M and N be closed linear subspaces of B such that
B=M @ N .If z=x+y isthe unique representation of vector in B as a sum of vectors in

M and N, then the mapping P defined by p( ;) = x 1s projection on B, whose range and null
space are M and N.

Proof : Let M and N are closed linear subspaces of Banach space B suchthat B=Af ® N .
Then the pair M and N determines a projection P on linear space B whose range and nullspaces
are M and N respectively.

Thus to prove P: B — B is projection on Banach space B it remains to prove P is
continuous.

Let z=x+y is unique expression of vector in B = Af @ N . Let B'is the linear

space B equipped with new norm |||' defined by,
Izl = llll + | ]

Then B'= (B, I ') is Banach space [ -+ please refer problem 1.6.10].

Note that,

P =l < llxll+ | ]| = 11"
= P: B'— B is bounded linear transformation and hence it is continuous.

It is therefore sufficient to prove that B' and B have same topology.
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Let 7: B'— B beaidentity map. Then T is bijective and

|7 ()] =Nzl = |x+ ¥ < Il + ]3] = ]
— T is bounded linear transformation and hence continuous.

By Theorem 2.5.8, 7: B' — B is homeomorphism. Hence B' and B have same
topology. This completes the proof.

2.7  CLOSED GRAPH THEOREM

In this section we give the proofofclosed graph theorem which states the sufficient
condition under which a closed linear operator on a Banach space is bounded (continuous).

We know given linear spaces X and Y over same scalar field g (C or R ), the
cartesian product X x Y is again linear space over g under the algebraic operations given

by,
(x,y)+(u,v) = (x+u,y+v) and a(x,y) = (ax,ay)

where (x,y),(u,v)e XxY and g e K .

Problem 2.7.1 : Let (x,||) and (7,|lly) be normed spaces. Prove that each one of the
following definesnormof y xy .

(a) ”(X,y)”:max{”x”,( ) y||y}, (x,y)eXxY.

(b) H(x,y)H = |lxl +||y v (x,y)e XxY.

© ) =I5 [yl < P<oo)s (ry)e X xY.

Solution : We have already discussed (a) in the first unit. Remaining we leave for students.

Problem 2.7.2 : Let X and Y are Banach spaces with norm ||.|, and |||, respectively. Prove

that y x y is Banach space with the norm |||| defined by,

o)

[(x, )] = max {lxll ,
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Solution : Let (X, ||y ) and (v[l,) are Banach spaces.

Then x x y i1s normed space with the norm |||| defined by,

o)

To prove x x Yy iscomplete, let {zn } be any Cauchy sequence in x x y , where for

[(x, )] = max {lxll ,

eachn, z, =(x,,,).

Then for given ¢ > (), 3N e N such that

mn=2N=|z —z|<&
:>max{||xm—xn oV = Va Y}<e
:>|xm—xnx<8 and|ym—yny<8

This implies {xn} and { Y, } are Cauchy sequence in complete normed linear space

X and Y respectively. Therefore 3x e X', y€Y suchthat x, > x and y, = y.
Define z =(x,y) thenclearly ; ¢ x x Y.

We prove that z — z.

Note that,

||zn—z||:max{||xn—x|x, yn—y”Y}—)O as n— .

Thus z, >z m xyxy.

Therefore y x y 1s complete normed linear space and hence Banach space.

2.7.3 Definition : Let X and Y are linear space over the same system of scalar and
T: X — Y bea linear transformation. The set givenby G (T') = {(x, Tx):xe X } is called
graph of T.

2.7.4 Remark: (i) [f X and Y are linear spaces then G (T) is linear subspace of y «y .
(i) Graph of T is also denoted by T; or G.
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2.7.5 Definition : Let X and Y be normed spacesand 7 : X — Y alinear transformation.

Then T is called closed linear transformation ifits graph G (') = {(x,7x): x € X} isclosed in

the normed space y xY .

2.7.6 Theorem : Let X and Y be normed linear spaces over the same system of scalar
K (C or R ), then the linear transformation 7 : X — Y is closed iff for every sequence

{x,} in X with x, > x and T'(x,) >y wehave xe X and T(x)=y.

Proof : Let X and Y be normed linear spaces with the norm ||, and |||, respectively.

Then y xy is normed linear space with the norm given by,

”(x,y)”zmax{”x”,( ) y||y}, (x,y)eXxY.

Let the linear transformation 7: X’ — Y 1s closed.
Then by definition its graph G(7') ={(x, Tx): x € X} is closed.
Let {xn} be any sequence in X such that,

x, = x and T(xn)—>y

Then {(xn , T (x,, ))} is sequence in G (T) such that

o (e~ 3 = ., =

T(xn)—yuy} —0

Yo
This implies {(x,, T (x, ))} is the sequence in G (T) such that (x,,7'(x, )) = (x, »).
But G (T) is closed. Thus, we must have, (x,y) e G(T).

Therefore x e X and y =T(x).

Conversely, let for every sequence {x,} in X with x, > x and T'(x,) >y we

have, x e X and T'(x) = y. We have to prove that T is closed i.e. its graph G (T) is closed.
Let (x,,7(x,)) beanysequence in G (T) such that (x,,T(x,)) = (x,»).

Then,

(xn,T(xn))—(x,y)H—>0 as n—» 0.
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max {H(xn —x)‘ v (T(xn)—y)Hy} —0

T(xn)_yHY}'

But T(x,) —yHY < max {”xn — x|

xn—x|X, v

=|x,-x|, >0 and HT(xn)—y“Y_)O

—x, »>xand T(x,) >y
But by hypothesis, we must have x ¢ X and T'(x) = y.

Therefore, (x,y)=(x,7(x)) e G(T).
This implies G (T) is closed.

2.7.7 Theorem (Closed Graph Theorem) : If B and B' are the Banach spaces and if T is
linear transformation of B into B', then T is continuous iff its graph is closed (T is closed).

Proof : Let B and B' are Banach spaces w.r.t. norm ||| and |.|' respectivelyand 7: B — B’
be a linear transformation.

Let T is continuous. We prove that its graph G(7) = {(x, T(x)):xe B} is closed.
Let {(x,, T (x, ))} be any sequence in G (T) such that (x,,7(x,)) > (x,»).

Then x, > x and T (x,) > y.
But continuity of T gives that

x, >x=>T(x,)>T(x)
Therefore we must have y =7 (x).

Thus (x,y) = (x,T(x)) eG(T).
This proves G (T) is closed, that is T is closed.
Conversely, let G (T) is closed.

'S xeB.

We denote by B, the linear space B with the norm || x|}, =||x]|+[|7(x)

Then B, = (B, |l;) is normed linear space.
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Moreover |7 ()| < [lxll+ 7 GOl =llxll, x e B-
This implies, 7" : B, — B' is bounded linear transformation, hence continuous.

To prove 7 : B — B' is continuous.
We must show that B and B have same topology that is they are homeomorphic.

Consider the identity map.

I:B,—>B, [(x)=x, xeB.
Then I is clearly bijective linear transformation.

Further,

12 GOl = lxll <l + {7 GOl = Ixlly» xe B-
implies I is bounded.
Thus, we have proved that I is bijective, continuous linear transformation.
Therefore, by the theorem “A one to one continuous linear transformation from one

Banach space onto other is homeomorphism”, 7 : B, — B will be homeomorphism if B is

complete.

Thus to conclude the proof we show that B, is complete.

Let {xn} be any Cauchy sequence in B, then for given ¢ > (0, 3N e N such that.

m,nZN:>|xm—xn [ <€&
:>||xm—xn||+HT(xm—xn) '<eg
=[x, —x,| <& and [T (x, —x,)||' <&

This implies {x,} and {T (x, )} are Cauchy sequences in complete normed linear

spaces B and B’ respectively. Hence 3 vector x € B and y € B' such that,

X, —)x” — 0 and HT(xn)—yH—> 0 . (1)

= (xn,T(xn)) —)(x,y)
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Note that, {(xn,T(xn ))} is sequence in G (T) such that (xn,T(xn )) —(x,»).

But by assumption G (T) is closed and hence (x,y) e G(T),s0 y =T (x).

Now,

%, =], =[x, =+ 7 (x,) =7 G

:||xn—x||+HT(xn)—yH'—>0 as n—ow. [ by(1)]
This proves B, is complete.

This complete the proofof the theorem.

2.8 UNIFORM BOUNDEDNESS PRINCIPLE

2.8.1 Definition : Let X and Y are norm linear spacesand # < B(X).Then # issaid
tobe:

(@) Pointwise bounded : Iffor each x ¢ X, theset {7(x):7 e #} isboundedinY.

(b) Uniformly bounded : If # is bounded set in the normed linear space B (X, Y), that
is 3K >0 suchthat |7 < K, VT e F .

2.8.2 Remark:If £ isuniformly bounded set then # ispointwise bounded but converse
need not be true.

The uniform boundedness principle which is also known as Banach-Steinhaus theorem
is one of the fundamental results in functional analysis which has significant applications in the
field of analysis. It asserts that for a family of continuous linear transformations of Banach
spaces to normed spaces, pointwise boundedness is equivalent uniform boundedness.

2.8.3 Theorem (Uniform Boundedness Principle)

Let B be a Banach space and N a normed linear space. If { 7; } is a nonempty set of
continuous linear transformation of B into N with the property that { 7} (x)] is bounded subset
of N for eachx in B, then {|[7]|} is bounded as a subset of numbers, that is, { 7} } is bounded
as a subset of B (B, N).

I (94D




OR

Let B be a Banach space, N a normed linear space and {7;} < 8 (B, N).If { T, }is
pointwise bounded than { T } is uniformly bounded.

Proof : Let B be a Banach space, N a normed linear space and {Tl} c#(B,N).

Assume that, { T; (x)} is bounded subset of N for each x e B.
We have to prove that { 7, } is bounded subset of B (B, N).

Foreach 5 e N, define,
F={xeB|r()|<nvif L. (1)
Claim : F is closed set :
Let {x,} be any sequence in , suchthat x, — x.
Then |7;(x, )| <7, foralliandallk. ... )
Now, T is continuous for each i, we have

T, (x,) > T, (x), foreachi.

Further using continuity of norm we have,

|7 Gl = [7.)

, for each .
Therefore, by (2) we get

||7} (x)” <n,Vi

This implies, x € F, . Hence F, is closed.

Now, as F, € B, VneN, we have UF,cB,
n=l1
We prove that UF, =8,
n=l1

Ifpossible U F, # B then U, © B and 3y ¢ B suchthat x& U F, .
n=1 n=1

= n=1
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=x¢l , foreachn.
— 3 isuchthat |7, (x)| > n, foreachn.

Which is contradiction to the fact that {7} (x)} is bounded subset of N for each

xeB.

Therefore we must have,

But B being complete by Baire’s category theorem 3n, € N such that ﬁo has

nonempty interior.
Since F, is closed, we have,
F, =F
0 no

= F,, has nonempty interior.
Let x, is the interior point of F, .

Then S, (xo) C F, ,forsome 7, > 0.
= |1 ()| <n,, VxS, (x,) and v;.
— Eachvectorin 7, (S,O (xo)) has norm less than or equal to 7, .

For the sake of brevity we express this fact by writting.
HZ (S,O (x))” <n,,foralli.
Note that,

S, (%) =x, +7,5,(0)

Therefore, for each i, we have

r [S,O (xroo)—xoj

I, 0)]-
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2
=, (X)HS%, Vx e S, (0) and ;.

0

2
:>||Ti(x>llﬁf, veB, [xl<1 and vi.

= sup {”Tl (x)” ‘xe B,lxll < 1} < %’ i

1 -
0

2n
=[rls 22, .

= ||Z || is bounded subset of normed space 3B (B, N).

Hence, the proof.

a0
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UNIT - 111

BOUNDED LINEAR FUNCTIONALS

This unit deals with bounded linear functional, conjugate spaces, Hahn Banach Theorem
and its consequences.

3.1 DEFINITION AND PROPERTIES OF FUNCTIONALS
3.1.1 Definition :

A bounded (or continuous) linear functional is bounded linear transformation of with
domain is normed space N and range in the scalar field g (R or ¢ )ofN.

More precisely, if N be a normed space over field g = R or ¢ thenbounded linear
transformation f: N — K iscalled bounded (or continuous) linear functional or more briefly
functional, where g — R if N is real normed space and g — ¢ if N is complex normed
space.

3.1.2 Remark:

As abounded linear functional is a special case of bounded linear transformation, all
general theorems and properties studied in Unit 2 for bounded linear transformations are true
for bounded linear functionals.

We mention here few important definitions and theorems in the form of functionals.

3.1.3 Definition :
Let N be anormed space over field g (R or ¢ ). Afunction f: N - K issaid to
be bounded if 3% > 0 such that | £ (x)| < kllxll, vxe V.

)<kl vxen -
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3.1.4 Theorem : Let fbe a functional on normed space N. Then
1 f1s continuous iff /is continuous at a point (any) in N.

(1) f1s continuous iff fis bounded.

3.1.5 Theorem

Let fbe a functional on normed space N. Then, norm of-off can be expressed by any
one of the following formulae.

(a) ||f||:sup{|f(x)|:xeN,||x||£1}
®  [f]=sup{ls :xe N Ixdl=1}

(© ”f” =sup |f”§j)| :xeN,x# O}

d  |f]=sup{k:k>0and |f(x)|<klxll,xe x|
Further |f(x)| <[ £lIxl, vxe N
(x)
Equivalently, | /]2 |J]| H |, xeN, x#0.

3.1.6 Examples of Functions

Example 1: Let R~ be the real normed space with the norm

Jxl = [z\x@ (%, ) €R".

Fix any non zero vector a = (a] I ) in R~ consider the dot product defined by

function

fR" SR, f(x)=x-a=xa +..+x,a,.

n
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Then fis functional on g, with | /] = lall.
fislinear : Let any x =(x,,...,x, ), »=(3,,...,.7,) in g" and o, B e R .
Then flax+By)=(ax, +By,.,ax, + By,)(a,....a,)
=(ax,+By)a +...+(ax,+ By, )a,
=a(xa +...+xa,)+B(na +..+ya,)
=a(x-a)+pB(y-a)

=af(x)+Bf(y)
fis bounded : By Cauchy Schwartz inequality, we have

If Q)| =lx-a <lxll-lall s vy er- L (1)

We have proved that f'is functional on R~ .
Claim | /] = lal :
By definition, | /| = sup{|f(x)| xeR"JIxll< 1}

Ssup{|x-a|:xeR",||x||£l}

Using (1) we have,

[FARS sup{llxl-lall: x e R”, Ixll <1}

<|lal
Ths, A<l @)
Further, FACS B Va2 -
f ()

:>||f||2 Il xeR" x#0.

Inparticular for x = a we have,

|f(a)| 3 la-al 3 a’+..+a’

> = -
L Idl
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”a” ” ”
"l

Hence 17] Nl 0

By (2) and (3), we have | f]|=lall .

Example 2 : Consider the Banach space B =C ([a, b], ]R) with the supremum norm

Ix = sup |x(¢)

te[a,b)

, xeB-
Define, /: B—— R, by
f(x)zjx(t)dt, xeB.
b

Then f1is functional on B and || f || =b—-a.

fislinear: Letany x,ye B and a,f e R.

Then F(ax+By)=[(ax+ By) (t)dt—j((xx(t)+ﬂy(t))dt

= afx(0)di+ B y(0)de

=af(x)+pf(»)

fis bounded : Forany x ¢ B, we have,

=[x ar

b b
< j|x(t)|dt < j||x||dt
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b
<llxlfdr =(b-a)llxl

Therefore, | f(x)|<(h-a)lxl, xeB. e (1)
This implies f1s bounded.
We have proved that fis functional on B.

Claim: = b—a.
By definition,

[7]=sup{| (0)|:x e BIxl <1}
Using (1), we have

|/ <sup{(b—a)lxl:x e B, I <1}

<b-a

Thus \fl<b-a 2)
Consider the function x, :[a,b]——> R defined by x, (1) =1, V¢ €[a,b]. Then x, € B.

We know for bounded linear functional

£ GO <[ ]I, vxe B
|/ ()

:>||f||2Wa xeB, x#0

Inparticular for x = x, we have

/()

[

IA1>

f)[xo (¢)dt

[l
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=b—a
ie. 1/]26-a .. 3)
From (2) and (3), we have

|7l=b-a.

EXERCISE :

1. Consider the Banach space B = C([a,b],R) with the supremum norm
lxll = 2?3%"‘(”' B,

Fixany x, € B,and define /: B——R by

b
f ) =[xO]x, (|dt, . p.
Prove that fis functional on B with

[£11= [l () ae

2. Let B =C([a,b],R) bea Banach space with the supremum norm

Il = sup [x(D . _ 5.

te[a,b)
Fixapoint ¢ € (a,b) . Define f,: B—— R by
£ (x)=x(), xeB.

Prove that f, isa functional on B and || / || =1.
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3.1.7 Theorem : Let N be a normed space. A linear transformation f on N is bounded
(continuous) ifand only ifker (f) is closed.

Proof:Let /: N - K (R or ¢)is bounded linear functional, and hence it is continuous.

Then ker(f)={xeN:f(x)=0}=f"({0}).
Since {0} is closed subset of g (R or C),and f:N — K is continuous, it
follows that £~'({0}) isclosed inN.

This proves ker () is closed in N.

Conversely, let ker (f) is closed set in N.

We have to prove that the linear transformation f/ : N — K is bounded.
Iff=0 thenfis clearly continuous and hence bounded.

Let f # 0 linear transformation.
Then N —ker(f)#¢.
Since ker (f) is closed, N —ker( /) is openset in N.

Fixany x, € N —ker(f).Then x, € N and x, ¢ ker( /). Hence f(x,)#0.

Vo=
Define Yo f(xo)'

Then y, € N and f(yo):f[f(xo)

Therefore y, e N —ker( f).
Since N —ker( f) isanopenset, 3> 0.
Suchthat S, (y,) = N -ker(f).
Claim : lf(x)|<1, vxes () L (1)

Ifpossible, 3x, € S, (0) s suchthat | £ (x)|>1.
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y=—
Define, /1 f(x]) .

Then y, € N and,

b=l

[l
L ()

<r

j”(yo +y1)—y0H=||y1||<r
= Vot €8S, ()

Further, f(yo +y]):f(yo)+f(yl)

:>y0+yleker(f).

Therefore,

Yo+ Eker(f)ﬂsr(yo)

=ker(f)NS, (y,) = ¢

This contradicts to the fact that

S, (») = N —ker(f)
Thus (1) must be true.
This proves (1).
Now for any x = ( in N, we have,

rx
21l

_rladl -
20xl 2
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Therefore by (1), we have,
rx
$cr)
2|l

<1

<1

2
NPT (—] I
r
Further forx =0,

|/ ()] =0=]xl

Thus |/ (x)|= (%jllxll ifx=0.

We have proved that

7 (0| < (%)”x”, VxeN.

= f isbounded linear functional.

3.1.8 Remark : The theorem 3.1.6 need not hold, in general for linear transformations
between arbitrary normed spaces.

3.2 CONJUGATE SPACE (DUAL SPACE)

We know if N and N' are normed spaces over the same field of scalar i (R or C),
then the set B (N, N') of all continuous linear transformations of N into N'is a normed space
over K (See Theorem2.3.1).

In particular if N be a normed space and N'= K theset (N, K ) ofall bounded

linear functionals on N is normed space with the norm.
| £]l= sup {|f(x)| :xeN,|xl< 1}

Since j is complete space, by theorem 2.3.1, it follows that 42 (N, K ) Banach

space over field f .
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3.2.1 Definition

If N is an arbitrary normed space, then the set of all bounded (continuous) linear
transformation of N into R or (, according as N is real or complex normed space, is the set

B (N,R) or £ (N,C) and is called conjugate space (or dual space) of N.

The dual space of N is denoted by N*. Thus N*= 2 (N,R) or B (N, C) according

as N is real or complex normed space.

3.2.2 Definition

A memberof N*=2(N,K),(K =R or C)is called bounded linear function or

more briefly it is called function.

3.3 THE HAHN-BANACH THEOREM

The theory of conjugate spaces is completely rests on the Hahn-Banach theorem,
which is most important theorem in connection with bounded linear functionals. The Hahn-
Banach theorem is an extension theorem for bounded linear functional. It asserts that a bounded
linear functional f defined on subspace M of'anormed linear space N can be extended from
M to the entire space N in a such way that the certain basic properties of f* continue to hold
good for extended functional.

For proving the Hahn-Banach theorem, firstly we prove the Hahn-Banach Lemma.

3.3.1 Lemma (Hahn-Banach Lemma)
Let M be a linear subspace of a normed linear space N, and let f'be a functional

defined on M. If x,, is a vector not in M, and if M, = M + [xo] is the linear subspace spanned
by M and x, then f'can be extended to a functional f, defined on M, such that || Jo || =]

Proof : Let M be a linear subspace of normed space N. Let f:M — K (R or C¢)bea
bounded linear functional.

Without loss of generality we may assume that || /|| = 1.
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We give the proofin two parts :
()] When N is a real normed space.
(ID' When N is a complex normed space.

Case - I : Let N be a real normed space.

Let f: M —— R be abounded linear functional.
Fix x, ¢ M andlet M, :M+[x0]:{x+ax0 xeM,a GR}
Then M, is a linear subspace of Nand M < M.
Define f,: M,—— R by,
fo(x+axo):f(x)+ar0, xeM,acR,

for any choice of the real number 7, = f (xo ) .

Jo is an extension of f:

Forany x e A/ we have,

fo(x):f(x+0(x0)):f(x)+(0)r0 = f(x)

= fo=/f onM.

Jois Linear :

Letany y,,y, € M. Then y, =x, +a,x, and y, = x, + a,x, forsome x,,x, e M

and a,,a, €R.

Then, f, (3 +3,)= /o ((x +x,)+(e +0,) %)
=f(x+x)+(a,+a,)r,
=f(x)+f(x)+(e + )7 [-- fis linear]
=(f(x)+am)+(f(x)+an)
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:f(x] +a]x0)+f(x2 +0£2x0)

=f(n)+f(») -

Further for any scalar 4 e R ,
folan) = fy (ax, +aa,x,) = f (ax,)+aayr,
=af (x,)+aory=al f(x)+ar |

=al f(x+ax,)]|=af ()

Joisbounded :
Let x,,x, € M . Then,

f(xz)_f(xl):f(xz_xl)

< ‘f(x2 - X )‘
= ||f||||x2 —x]||
=[x, = Crl=1)

=H(x2 +x,)—(x, +x0)H
S”x2 +x0||+||x] +x0||

This gives,

—f(x])—”x] +x0||£—f(x2)+||x2 +X,

Therefore,

, Vx,x,eM .

sup{—f(x)—||x+x0||:xeM}Ssup{—f(x)+||x+x0||:xeM}
Choose 7, to be any real number such that,
sup{—f(x)—||x+x0||:xeM}Sr0 Ssup{—f(x)+||x+x0||:xeM}

:>—f(x)—||x+x0||£r0 S—f(x)+||x+x0

, VxeM
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X
Forany x e M and ¢ = (e R, we have ;GM.

Thus,

—f(ij— £+x0 Sroé—f(£]+ £+x0 , VxeM
o) la o) la

If o >0 then
—f () =|x+ax,|<an, <—f () +|x+ax|, vxem
:>—||x+ax0||£f(x)+ar0 £||x+ax0 , VxeM
:>|f(x)+0¢ro|£||x+ocx0 , VxeM

Therefore,

‘fo (x+axo)‘£||x+axo

s xeM,aeR, a>0.

On the same line, one can prove that

‘fo (x+ax0)‘£||x+ocx0

,xeM,aeR, a<0.

Combining we have,

‘fo (x+ax0)‘£||x+ocx0

,forall ye M andall g eR.

Thus, ‘fo(y)‘ﬁny , VyeM,

This mplies f; : M —— R bounded (continuous).

To prove ||f0|| =1:

Using (1) and definition of norm of functional we have,

||f0||=sup{%:yeMo,y¢O}sl

ie.  |f]<1
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Further,

[7il=sup{|, (»)]: € Mo <1
>sup{|f, (»)|:y e M.y <1} (oM< M,)
=sup{|f ()] v e M|y <1} (2 f = f, onM)
=171
Thus, | /12|11

But | f]|=1 implies | f,]| >1.

Sil=1.
We have proved that £ : M — R isa functional extension of f/ : M —— R such

Sl=1r1=t1.

Therefore,

that,

Case II : Let N be a complex normed space.

Let f: M —— C bounded linear functional with || /]| =1.

Let g =Re(f)and h=Im( /). Then
fx)=g(x)+ih(x), xeM .

Where g: M —— R and p: 0y — SR

Note that ||g| < | f]|=1=|g]|<1-

)] Since /s linear, for any x, ye M and ¢ € R, we have,
flx+y)=r)+1(y)
:>g(x+y)+ih(x+y):[g(x)+ih(x)]+[g(y)+ih(y)]

=g +g(y)]+i[A()+h(y)]
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=g(x+y)=g(xX)+g(»), h(x+y)=h(x)+h(y)
and  f(ax)=af(x)
= g(ax)+ih(ax)=a(g(x)+ih(x))
=ag(x)+ioh(x)

= glax)=ag(x), h(ax)=ah(x).

Therefore g, h: M ——> R both are linear.

(1) Since f'is bounded on M and for all x e Af .

lg GO <[ £ G <[ Al [r ol < | Gl <]l -
It follows that g and 4 both are bounded on M.

By part (1) and (i1), g, #: M —— R are bounded linear functional.
As f:M ——C islinear, forall x e M ,
f(ix) =if (x)
= g (ix)+ih(ix) = i(g(x) +ih(x))
=ig(x)—h(x)

= h(x)=-g(ix) and g(x)=h(ix)

So we can write,
f(x)=g(x)+ih(x)
=g(x)-ig(ix), xeM .
Since g: M —— R is functional, by Case I, g can be extended to a functional
g,: M, - R suchthat | g| =||g0||.

Define f,: M, — C by
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fi () =g,(x)-ig,(ix), xeM, .. Q)

We prove that f is the required functional with desired property.

f, is linear :
Letany x,y € M, . Then,
folx+y)=g,(x+y)—ig, (i(x+))
= g0 () + gy (¥)-i[ g () + g, (v)]
=[ g, (x)—ig, () ]+[ g, (»)~ig, (iv) ]

=fo (D) + £, (»)
Also forany g e R,

fo (ax) = g, (ax) —ig, (iax)
=ag, (x)—iag, (ix)
=al g,(x)~ig, (ix) ]
=af, (x)

Therefore forany ¢ = g +ib, a,b € R, we have
folax) = fy(ax+ibx) =af, (x)+bf, (ix) .. 3)
But  f;(ix) = g, (ix)—ig, (i’x)
= g, (ix) —ig, (-x)
=g, (ix) +ig, (x)
=i[ g, (x)—ig, (ix) ]
=if, (x)
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Thus (3) becomes
fo lax) = af, (x)+ibf, (x)
=(a+ib) f, (x)
=af,(x)

Hence f,: M, — C islinear.

Joisbounded :

Since g, : M, — R isbounded, for any x e A , we have,
£, ()] =g, (x) —ig, (ix))
<|g, (x)] +|g, (ix))
<||go 1l + [ o | lix]
=2| g, |lxl
A< (2] g ), vx e M,

Therefore, f, : M —— C is bounded (continuous)

Jo is extension of f:

Since g, = g onM, from(2) it follows that f, = / on M.

To prove ||f0|| =1:
Let xe M, and |x|=1.
(@)  If £, (x) isreal, then £, (x)=g,(x).

Thus |f0 (x)| = |gO (x)|
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(b)

<o !

But g, =lg] <1 and x| =1

TACY ES
If £, (x) iscomplex, then
fo ) =/, (0]e”, where 6 =arg( £, (x)).
Then,
1= f, ()= 1) L 4)
[ f,: M, — C is linear]
= f, (e™x) isreal.
Moreover,

e’xeM and e x| =le[Ixl = Il =1

Therefore, by part (a),
‘fo (e"iex)‘ <t (5)

From (4) and (5),

fi(x)] <1,
Combining part (a) and (b),
£, )| <1, for x e My, 4] =1
= |fol|=sup{|f, (0] :x € My Il =1} <1
ie. A<t
Also [ £, |7] (already proved) and [ ]| =1, we have | £, 21.

Thus ||f0||:l
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Hence f,:M,— C is functional extension of f:M ——C such that

I4l=11=1.

This complete the proof.

3.3.2 Definition :

Apartially ordered set (or poset) is a pair (P, <) where Pisa set and ‘ <’ is a binary
relation on P which satisfies for allx, y and zin P.

(a) Reflexivity: x < x
(b) Antisymmetry: [f x <y and y < x thenx=y
(c) Ifx<yand y<zthen x<z.

Let (P, <) is poset. For x,y € P ifeither x <y or y < x, thenx and y are called
comparable.

Asubset C ofposet (P, <) is called chain if every pair of elements of C are comparable.
An upper bound of subset 4 = P isany x € P suchthat 4 <x, Vae 4.

An element x in poset (P, <) is called a maximal element if there is no element y in P
suchthat x<y.ie.if x<y thenx=y.

3.3.3 Lemma (Zorn’s Lemma) :

If (P, <) isapartially ordered set in which every chain has an upper bound, then P has
a maximal element.

3.3.4 Theorem (Hahn-Banach Theorem)

Let M be a linear subspace of a normed linear space N, and let f'be a functional
defined on M. Then f'can be extended to a functional £, defined on the whole space N such

that £, = /1.
Proof : Let M be a linear subspace of a normed space N. Let fbe a functional on M.
Let P is the set of all ordered pair ( f,, M, ) where f, is functional extension of f to

the subspace M, > M and |£,||=]/].
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Since ( f,M ) € P, Pis nonempty.
Define the relation ‘<’ on P by (fa,Ma)S(fﬂ,Mﬂ) iff M, c My and f, = f,
on M, . Thenclearly (P, <) is partially ordered set.

Let ¢ = {(f,,M,)} be any chain in P.

Define M '=U{M,:(f;,M,)ee}.

J

M' is subspace of N :

Letany x,yeM'. Then xe M, and y € M ; for some i and j. Since ¢is chain

either M, c M, or M, M,.
Let us suppose M, c M, . Then x,ye M .

Since M is linear subspace of N, we have ux + AyeM ; forany scalar ¢ and } .

But M, c M "implies ux+AyeM'.
Define 5': py'—— K (R or C)by
h'(x)=f,(x)if xeM, and (f;M,)ec
Clearly (h'.\M")e P.
Further, for any (fj,Mj)ec wehave M, c M 'and 2'=f, on M.
Therefore (f;, M, )<(h'\M"), V(f,.M,)eec.

This implies (4',M ') is anupper bound of C.
We have provd that every chain ¢ in P has an upper bound. Therefore by zorns lemma

P has maximal element, say ( f;, M, ).
Thus f; is functional extension of fto the subspace M, > M suchthat || /; ] =]|/].

We claimthat M, = N .
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Ifpossible M, # N, then there exists x, e N - M.
This implies x, & M, (x, € N).

Therefore by Hahn-Banach Lemma 3.3.1 f, can be extended to a functional 4,
defined on subspace M, + [xo] such that ||h0 || = || f0|| .

But then (ho,M0 + [xo]) € P and (f,,M,)< (hO,M0 +[x, ]) , which s contradiction
to maximality of ( f,, M ).
Hence we must have M, = N .

We have proved that 3 a functional f; on N suchthat | £, | =] /]

This completes the proof.

3.4 CONSEQUENCES OF HAHN BANACH THEOREM
3.4.1 Theorem : IfNisanormed linear space and x, is anon-zero vector in N, then there
exists a functional f, in N* such that f, (xo) = ||x0|| and ||ﬁ)|| =1.
Proof : Let N is a normed linear space over field g (R or ¢ )andlet x, # 0 inN.
Consider the set,
M ={ax,:aecK}
Then M, is clearly linear subspace of N spanned by x,,.
Define f: M — K by

f(ax,)=alx,
We prove that fis functional on M with desired property.

aaEK-

fislinear:Let y,y'e M . Then y=ax, and y'=a'x, forsome a,a'e K .

Then, f(y+y')=f(0£x0+0£'x0)
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=f((a+a")x,)
e

= x| +a x|

= f(ax,)+ f(a'x)
=f(»)+1(»)

and forany g e K we have,
f(ay) = f(aaxo) =aa ||x0|| = af(axo)

=af ()
Thus f7is linear.

fisbounded (Continuous) :
Letany y €e M . Then y = ax, forsome ¢ € K . Then
L7 () =1 (e )| = e oo | = e o |
=l

=[]

Therefore

()] =ly

This implies fis bounded (continuous).

, VyeM

Using (1), we have

”f”:SUP{%:yeM,yio}:l

By definition off; f (x,) = x|

(- Take g =1)
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Thus f:M — K is functional on M such that,

f(xo) :||x0|| and ||f|| =1 L ()

By Hahn-Banach theorem 3 a functional f, € N * such that,

f=fyonMand|/I=]Al e 3)
From (2) and (3), we have

fO(xo):f(xo):”xo” (v x,eM)
and 1|11

This completes the proof.

3.4.2 Corollary :

Let N be a normed space. Ifx and y are any two distinct vectors in N then there

exists a functional /e N * suchthat f(x)= f ().

OR

The conjugate space N* separates the vectors in N.

Proof: Let N be anormed space.

Letany x # y inN. Then x— y # 0 in N. By Theorem 3.4.1, 3 functional f e N *

suchthat f(x—y)= ||x—y|| #0.

This gives f(x)— f(y)20= f(x) = f(»).

3.4.3 Corollary:

Let N be a normed space.

If f(x)=0, VfeN*thenx=0.

Proof : Let N be a normed space.

Assume f(x)=0,forall feN*.
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Ifpossible x # (0 inN. Then, by Theorem3.4.1, 3 f € N * suchthat f (x) =|x] =0,

a contradiction to our assumption.

Hence we must have x=0.

3.4.4 Corollary:

Let N be a normed space and x e N . Then,

”ﬂzmmﬁm(ﬂ.f N L 0}

Proof : Let N be a normed space and x e N .

Ifx=0then |x]|=0 and f(x)=f(0)=0, V/ e N*.

Therefore,

{W(ﬂ.feN*f¢0} 0=z

Letany x » 0 inN. By Theorem 3.4.1 there exists functional f, € N * such that

£, (x) =lxlland | £;|| =1.

Therefore

(x)| |/ ()]
Il = o {
A =PI

Forany f e N*, we have,

LGl <[l

:feN*,f:éO} ..... (1)

Thus,

{WﬂfN”ﬂ% “mﬂf”fO}

=|lx
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34.5

d(x,, M

Proof:

{'T ” 2. e ne in}—”x” ..... o

From (1) and (2) we have,

||x||=sup{|m(”)| fe N*fio}

Theorem :
Let M be a subspace of normed space N and let x, € N be such that

)=d > 0. Then there exists a functional f, € N * such that,

1
f()=1, =0 and 4] =+
Let M be a linear subspace of normed space N over the field g .
Let x, € N besuchthat d(x,,M)=d>0.

Then x, ¢ M .

Consider the set,
M,=M +[x,]
={m+ax,:meM,acK}
Then M, is linear subspace of N and each y € M|, has unique expression
y=m+ax,, meM and g e K .
Define f: M, — K by

f(m+ax0):a, meM, aeck -

We prove that f'is a functional on M,y with desired property.

122)




fislinear: Letany y,y'e M. Then y =m+ax,, y'=m'+a'x, forsome m,m'e M

and a,a'e K . Then,
S(y+y)=f((m+ax,)+(m'+a'x,))
= f((m+m")+(a+a)x,)
—a+a'
=f(m+ax))+f(m'+a'x)
=f()+/(»)
and for any scalar ¢ ¢ [ .
f(ay)= 1 (a(m+ax,))
= f (am+ aax,)
= aa
_af (m+ax,)

=af ()
Thus f7is linear.

fisbounded (Continuous) :
Forall y =m+ax, mM,,
lr)=|f m+ax)=let L. (1)
Casel: Let ¢ 0. Then,

[ =l + x|

o2
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=|ald
=[r(y)d (-+ By(1))
This gives,
1
() Sg||y||

Case2: Let ¢ =0. Then,

[ =lml>0=d-(0)=dl|r(y) (- By(1))
1
S|
By Cases 1 and 2, f'is bounded (continuous).
Thus fis functional on M,,.
Further by (1),
) I
||f||=sup{|—:yeM ,y#0p<—
v ° d
. 1
ie. HE 7 e ()

Since d =inf {|jm —x,||:m € M } there exists a sequence {m, } inM such that,

m, —x)|—>das n— .
Now, —1=f(m,+(-Dx,)=f(m,-x,)

jlz‘f(mn—xo)‘
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<|71

Taking limit as n — oo, we obtain

1<| sl

m, —x0|| for all n.

1
—<
=La

From (2) and (3) we obtain,
1
I1==.
Thus f: M, — K is functional on M such that,
f(xo):f(0+(l)xo):1
f(m)=f(m+(0)x))=0, VmeM = f(M)=0

1
and ||f|| = E

By Hahn-Banach Theorem there exists a functional f, € N * suchthat f = f on
My and |7]=[14-
But then,
fo(xo):f(xo)zl (v xy €M)

foM)=f(M)=0 (M cM,)
1
and 6] =11 .

This complete the proof ofthe Theorem.

3.4.6 Corollary : Let M be a subspace of normed space N and let x, € N be such that

d(x,,M)=d>0. Then there exists a functional f, € N* such that f,(x,)=d,
£, (M) =0 and | £, =1.
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Proof : Let M be a linear subspace of normed space N. Let x, € N be such that

d(x,,M)=d >0.Thenby Theorem3.4.5 3 a functional g, € N * such that

1
2(x%,)=1, g,(M)=0 and ||go||7_
Define f, =dg,. Then f, € N * suchthat,

fo(xo)ngO(xo):d(l):d

7,(M) = dg, (M) =d(0) =0

1
Ll =l =alenl=a =1

3.4.7 Problem : Let M be a closed linear subspace of anormed linear space N, and let x,
be a vector not in M. If d is the distance from x,, to M, show that there exists a functional

o € N * such that

1
fi(x) =1, £,(u) =0 and [ /5] =~
Solution : Let M be a closed linear subspace of a normed linear space N.

Let x, € N suchthat x, ¢ M andlet d =d (x,,M).
Note that,

XoeM =M & d(x),M)=0
Therefore,

X&M< d=d(x;,M)>0

By Theorem 3.4.5, 3f, € N * such that

£i(x%)=1, £,(M)=0 and ||fo||=§_

[For complete proofproceed as in the proof of Theorem 3.4.5]
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3.4.8 Theorem : If M is closed linear subspace of a normed linear space N and x, is a
vector not in M, then there exists a functional f, € N * suchthat f, (M) =0 and £, (x,)#0.

Proof 1 : Follows from Theorem 3.4.5.

Proof 2 : Let M be a closed linear subspace of a normed linear space N. Then N/M is a
normed linear space with the norm of coset.

||x+M||=inf{||x+m||:m eM}
Further a natural mapping 7 - y — s N/ M defined by

T(x)=x+M,xeN.- ... (1)
is continuous linear transformation such that |77 < 1.

By (1), we have
T(m)=m+M=M,YmeM .. )
Since x, ¢ M , x,+M # M thatis x, +M is non-zero vector in N/M.
[Note that M is zero vector in N/M]
By Theorem 3.4.1, 3 a function g € (N /M )* such that
g(xO +M) = ||x0 +M|| and ||g|| =1.
Since x, + M is non-zero vector in N/M,

g(xO+M);t0 ....... 3)

Define f,: M —— K by f,(x)=g(T(x)), xe N.

N . T S N/M
T(x)
Jo
g
g (T (x)
K
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We prove that f,, is functional on M with desired property.

f,islinear : Letany x,y € N . Then,
fix+y)=g(T(x+y))
=g(T(x)+T(y))
=g(7()+g(T(»))

= 1o+ £, (¥)

and for any scalar ¢ ¢ K we have,
fi(ax)=g(T(ax))
=g(ar(x))
=ag(T(x))

=af,(x)
Thus fo 1S linear.

Jois bounded (continuous) :

Forany xe N,
1/, ()] =g (7 ()
<[gllr ol
<|lg Tl

<||glllxl

Since g is bounded, it follows that f, is bounded (continuous).

We have proved that f, e N *.

G-l <D
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Further,
Jom)=g(T(m))=g(M)=0
(- gislinear and hence preserves the zero vector)
and fo(xo):g(T(xo)):g(xo+M)¢0 (-- By(3))

This completes the proof.

3.4.9 Definition : Let (x, d) be ametric space and 4 — X . Then, Ais said to be dense in
X (or every where dense) if 4 _ y .

3.4.10 Definition : A metric space (X, d) is said to be separable if it has a countable subset
which is dense in X.

3.4.11 Problem : Prove that a normed linear space N is separable if its conjugate space
N*is.
Solution : Let N be a normed linear space.

Let conjugate space N* of N is separable. Then there exists a countable set.

A={f eN*:n=1,23,..}

Which is dense in N*, that is, 4 — N *.
Now foreachn (n=1, 2,3, .....)

1 £, )| :x e Nxl=1}

= sup{

s

1
Therefore =
erefore -

{

Hence 3 x, € N such with

is not an upperbound of'the set,

£, )] xeNJxdl=1}

x,||=1 such that,

1

2

ANVACHS
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Let M =span{x,}

Then M is closed linear subspace of N generated by the sequence {xn} .
We claimthat M=N (i.e. pf = N )-

Ifpossible pf = N.ThenIx, e N-M .

By Theorem 3.4.8, 3 a functional f, € N * such that,
fo(xo);tO and f,(M)=0.

Since {x,} =M, f,(x,)=0 vn.
Thus from inequality (1), for each n, we have,

1

SIN<1 ()= £ ()
=|(/, = %) (x,)
=[£, = falll,
=[7, -7l AR
Thus,
fl<2s-Alve L. )
Now,
1Al =[5 = 1)+ 7,
<| -]+,
<|s=Ll+211- Al [ By()]
=301~ Al
ie. |Al<3A-A4 V00 L 3)
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On the other hand,
foeN* and Z:W:fo eA
Therefore there exists a sequence { S } c 4 suchthat f,, = fyas k — .
But from (3),
17l <3|\, = /]
Taking limit as t —s oo, we obtain,
[ 5]<0

= f,=0

= f,(x,)=0 (vx,eN)
This is contradiction to the fact f; (x,)#0.

Hence we must have M =N (i.e. s = v ), which implies N is separable.

a0
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UNIT - IV

SECOND CONJUGATE SPACE, EQUIVALENT NORMS

In this unit we study second conjugate spaces, conjugate of an operator, equivalent
norms and finite dimensional spaces.

4.1 SECOND CONJUGATE SPACE
Let N be a normed space over field K (R or C). Then N*=22(N,R) or
& (N,C) is called conjugate (dual) space of N. Since the conjugate space N* of N itselfis

normed space with the norm [lof : N* — [0, OO) defined by,

I/ =sup{|f(2)|:xeNIxl<1}, £en,
from Theorem 3.4.1, it follows that if V {0} then N* = {0} . Further N* is always complete

(see Theorem2.3.1) and hence is a Banach space. Therefore it is possible to form conjugate
space (N*)* of N*, which is denoted by N** and is called the second conjugate (dual) space
of N.

Note that N ** =2 (N*,C) or £ (N* R) is again Banach space. (see Theorem
2.3.1) withthe normof ¢ € N **, given by

[l =sup{|p(f)|: £ € N¥,

fl=<1}.

4.1.1 Definition :
Let N and N'be normed spaces. An isometric isomorphism of N into N'is a one-to-

one linear transformation 7 : N —» N' suchthat |7x| =||x| forevery xe N .

N is said to be isometrically isomorphic to N'if there exists an isometric isomorphism
of NtoN"
The importance of second conjugate space N** of normed space N lies in the fact

F =l

that to each x € N there isa unique function . € N ** having the same norm1i.e.

This fact is proved in the following theorem.
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4.1.2 Theorem : Let N be a normed space. Then each vector x in N induces a functional
F_onN* defined by,

F(f)=f(x), feN*

Such that |F.||=lx].

E,

Further the mapping 7 - N — N ** definedby 7(x) = F_, x € N, isanisometric

isomorphism of N into N**.

Proof : Let N be a normed space over field K (R or C).

Partl: Fixany ye N.Define F : N*—— K by

F(f)=f(x), feN*

We prove that F_is functional on N*.

F_is linear :
Letany f,g e N* and a, B be any scalar.
Then, F (af+pg)=(af+pg)x)
=af(x)+Bg(x)
=aF, (f)+BF,(g)

F_isbounded (continuous) :

Letany f € N *. Then,

F () =lr Gl <7l

ie. |F () <UxD|f]. vfen*
= F_ is bounded (continuous) with bound K = x|
We have proved that F, is functionalon N* 1.e. |, € N **.
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We prove that ||Fx|| = x| :
Ifx=0then F,(f)=f(0)=0, Vf e N*.Hence
|£2]|=sup{|F, (f)]: f « N*| 7] <1} = 0=]lol

Thus, =|x| ifx=0

F,

Let x (. Then 3 f, € N * such that,

£, (x) =[xl and || £;]| =1

But then,

Il =] £, (O] < sup | £ (D)|: £ e N%| £ =1}
=sup{|F, (f)]: / e N | 7]=1}
=||,

Thus,
Il <|7|
On the other hand,

F|=sup{|F,(f): f e N%| <1
=sup{|f (1)|: /e N[ £] <1}
<sup{|fldl: £ e N% | ] <1}
<l

This gives,
1] <l
From (1) and (2),
E| =llxl.
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By Cases 1-2,

=[x, vxe N

E,

PartIl: Define 7- y s N*x by T(x)=F , xe N.

X

We prove that T is an isometric isomorphism.

T is Linear :
Letany x,ye N andany g ¢ K -
We prove that

T(x+y)=T(x)+T(y) and T (ax)=aT (x)

rLe. F

x+y

=F +F and F, =aF

X

Letany f € N *. Then,
0 F.,(f)=f(x+y)
= F()+1(y)
=F (f)+F,(f)
—(F.+F,)(/)
This implies F,,, = F, + F, .
@ £, (f)=/(ax)
—af(x)
=aF,(f)
=(aF,)(f)

Therefore F, =af’,.

X

We proved that T is linear.
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T Preserves Norm :

Using definition of T and equation (3) we have

”T(x)” =

= T preserves the norm.

F

X

=llxl, vxe N

T is one-to-one :

Let x,y € N . Then,
T(x)=T(y)=>T&x)-T(y)=0
=T (x-y)=0
:>Fx_y =0

=

F H:o

x=y
=[x~ =0
:>X:y

Therefore T is one-to-one.

[-.- Tislinear]

[ 3)]

We have proved that T is an isometric isomorphism of N into N**.

This completes the proof.

4.1.3 Theorem : Anon-empty subset X of a normed space N is bounded if and only iff(x)

is bounded set of numbers for each f e N *.

Proof : Let N be a normed space over field g .
Let X be a nonempty bounded subset of N.
Then 3 K > ( such that,

Ixl<K, VxeX-

(1)

Letany fe N*. Then f:N—— K is bounded linear functional. Therefore

3L > 0 such that
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F|<Llsl, veen L )
By (1)and (2),

lf(0|< LK, Yxe X -
= f(X)={f(x):xe X} isbounded set of numbers.

Conversely, let £(.X) is bounded set of numbers for each f e N *.

For convenience we write X ={x,} .

We know to each x e N thereexists F, € N ** =B (N*, K ) defined by,
F(f)=f(&x),YfeN* . 3)

Such that,

El=ll, vxeny« - L 4)

By assumption f(X)= { f (xl. )} bounded for each " € N *. This in combination
with (3) gives that {Fx,- (f)} is bounded subset of g for each f e N*, where
{Fx,, } < B (N*,K ) and N* is Banach space. Therefore by uniform boundedness principle
{Fx[ } is bounded subset of B (N*, K ), thatis, 3)/ > 0 such that,

HF H <Mvi 5)

But (4) and (5) gives,

|x.|<M vi
= X ={x,} isbounded subset of N.

This completes the proof.
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4.2 THE NATURAL IMBEDDING OF N IN N**
4.2.1 Definition : Let N be a normed linear space and N** is second conjugate space of
N. The isometric isomorphism 7 y 5 N ** definedby T (x) = F., x e N ** is called

natural imbedding (or Canonical mapping) of N into N**,

The functional F, € N ** is called the functional induced by the vector x € N. Such

a functional often refered as induced functional.

4.3 THE CONJUGATE OF AN OPERATOR

4.3.1 Definition : Let N be a normed linear space over field K (R or C). Let
T - N——s N bea continuous linear transformation (i.e. T is an operator on N).

The mapping 7% . Ny * 5 y* defined by
T*(f)=f0T, feN*.
That is

[7*(f)](x)=f(T(x)), feN*, xeN,

is called the conjugate of operator T.

4.3.2 Theorem:

Let N be a normed linear space, T is an opeeratoronN (i.e. T ¢ £ (N)) and T* is

conjugate of T. Then:
(a) T* is operatoron N (i.e. T*ec B(N*))

() =7l

(©) The mapping 77— 7* is an isometric isomorphism of B (N) into $B (N*) which
reverses products and preserves the identity transformation.

Proof: Let N be a normed space over the field K (R or C).

Let 7- N s N be anoperator (i.e. T e B (N))
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Then conjugate of T is amapping 7% - Ny * — n* defined by,

[T =,(T(x), feN*, xeN

(a) T* is linear :
Letany f,ge N*and o, e K .
Then for all x € N we have,
[T*(as +Bg) () =(af + Bg)(T ()
zaf(T(x))+ﬂg(T(x))
—a[7+(1))00+ BT *(2)] ()
=[aT*(f)+BT*(2)](x)
This implies,
T*(af+Bg)=aT*(f)+BT*(g)
Thus T* is linear.
T*isbounded :

Letany f € N *. Then,

||T*f||:sup{‘T*(f)(x)‘:xeN,||x||Sl}

= sup{‘f(T(x))‘ :xeN,lxll < 1}
< sup{||f||||Tx|| :xe N Ixll < 1}
= AT x e N Ixl < 1

=| /Il
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|7* rl< (T

This proves T* is bounded (continuous).

, VfeN*

® Tl =sup{|T*(f)): f e N1 £ <1
=1
=1

<sup{ITll| ] £ < N%,

< ||T||sup{||f||:f e N*,

= |7l
Thus 7| <l

[By(2)]

By a consequence of Hahn-Banach theorem for any non-zero vector 7x e N,

3f € N *suchthat
F(T(x)) =7l and [|£] =1

Therefore, |7l =| £ (7(x))|
=[7*(/)])
<[l * ()|
<N [ £l
=74 x]

Tx
Hence, ||T||=sup{H:xeN,x¢0}
X

T*
Ssup{W:xeN,xiO}
X

=T+
ie |7l <7

[ By(4)]
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From (3) and (5),
\ri=lzr« .. (6)

(¢)  Define the mapping ¢ : B (N)—— B (N *) by

d(T)=T*, TeB(N).

Part I : Firstly we prove that ¢ is an isometric isomorphism.

¢ islinear: Letany T e £(N) and a0, B e K .

We have to prove that,
¢(aT, + BT, )=ag(T)+ pé(T;)
ie. (al,+ pT,)*=al,* + BT, *
Forany f e N* andany x e N we have,
[(aT,+ BL,)*(f)](x) = f (af; + BT,) (x)
= f(aT; (x) + BT, (x))
=af(T,(x))+Bf(T,(x))
=a[T*(f)](x)+B[L*(f)](x)
=[aT *(f)+BL*(f)](x)

Therefore,
(T +BL)*(f)=al *(f)+ BL*(f)
=(al *)(f)+(BL*)(f)
=(al;*+BT,*)(f)
= (aT, + BT,)*=aT,*+pT,* .. 7

This prove ¢ is linear.

(141)




¢ is one-to-one : Letany 7,7, € B (N).

Then

=(1,-1,)*=0 [ By(7)]
=|(7-%)4=0
=|1-1]=0 [~ By (7)]
=T =T,

Therefore ¢ is one-to-one.

¢ Preserves the norm :
Forany 7T e £ (N).
[o(D)]|=IT =7l [+ By(7)]

We have proved that ¢: 8 (N)——> B (N) is linear, one-to-one and norm

preserving mapping, hence it is an isometric isomorphism.

Part II : It remains to prove ¢ reverses poroducts and preserves the identity transformation

means,
$(T)=¢(T.)¢(7;) and ¢(1)=1
ie. (IT,)*=T,*T,* and J*= [,
forany7,,T, € & (N) and the identity transformation 7 ¢ 2 (N).

Letany f e N* andany xe N.
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Then,
[(15)*()]0) =1 ((T5) ()
= /(1(1,(0))
=[1*(N](1. ()
=1, *([1*()]) ()
= (L5)*(f)=L*(5 (/) =(L*T*)(f)
= (I)*=T,*T,*
and
[7+(f)](x)=r(1(x))
= £(x) (- Identity transformation 7 ¢ B (N))
=[1(f)](x) (- Identitytransformation J e (N *))
=>1*(f)=1(f)

=[*=]

This completes the proof.

4.3.3 Problem : Let T be an operator on a Banach space B. Show that T has an inverse
T !ifand only if T* has an inverse (7 *)~! and that in this case (7%) " =(77")*.
Proof : Let T be an operator on a Banach space B.

Let T has an inverse T-!. Then TT~! = T-!T =1, where I is an identity operator on B.
Therefore,

(rr )+ =(77'7)*=1%« .. (1)
On the other hand,
(rr")*=(r")sr* L )
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(rr)s=7*(r v« L. 3)
From (1), (2) and (3)

(Tﬁl)*T*:T*(Til)*:[*
This implies T* has an inverse (7*)™" and (7*)™' = (771)*.
Conversely let T* has an inverse (7#)™" and (7 %)™ = (77)*.
Then,

TH(T*) " =(T*) 'T*=1*

=T )*=(7")*T*=1*

:>(T71T)*=(TT7')*=I* ..... 4)
We know that the mapping 77— 7* is a one-to-one mapping and [* =1.
Therefore from (4), we have,

T'T=TT"=1
— Thas inverse T,

This completes the proof.

4.4 EQUIVALENT NORMS

Let (X,|) be anormed linear space. We know norm |J| on X induces a metric on

X and metric induces a topology on X. Hence norm on X induces topology on X. We call this
topology a norm topology on X.

If different norms on the same linear space induces a same topology on X, we say that
they are equivalent norms. More precisely we have the following definition.

4.4.1 Definition : Let ||| and ||||' be two norms on a linear space X. Then these norms are

said to be equivalent, written ||,|| - |||, if and only if they generate the same topology on X.
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4.4.2 Theorem : Two norms

and || onthe linear space X is said to be equivalent if

and only if there exists two positive real numbers K, and K, such that,

K Ixl<llxll < &, x> vx e X -

Proof : Let

and || be two norms on a linear space X. Then N =(X,ll) and

N'=(X,[+I') are two normed linear spaces.

Consider the identity transformation 7.y _— 5 N defined by 7(x)=x,
xeN(E=X)-
(Note that N and N' are the same linear spaces X with two different norms).

Then T is bijective, continuous linear transformation. Thus 7' . ;y'—_y ) exists,
and it is also continuous linear transformation such that,

T(x)=xoT'(x)=x, xeX.

Note that, T is continuous < T is bounded
< 3K, >0 suchthat |[T(x)|'< K, Ixll, vxe X

< 3 K, > 0such that

Ixll' < &, Ixdl, vxe X (o7 (x)=x, Vxe X) e (1)

Also, T~ is continuous < T~!is bounded
<3 M >0 suchthat [77' (x)| < M x> Vxe X

< 3K, suchthat K, [« <lx]', vx e X

.o 1
(- K]:ﬁ and 7' (x)=x,VxeX)
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Now,
T and T~! continuous

= Inverse images of open sets in N' and N under T and T~! respectively are open in N
and N'.

= Open sets in N and N' are same (- T and T~! both are identity transformations)

and ||, induces the same topology on X.

J| and ||| are equivalent on linear space X. ... 3)

Combining statements (1), (2) and (3) we obtain,

Two norms

and ||,| ona linear space X are equivalent iff 3K, K, > 0 such that

K Il <lxl < &, llxll, wx e x -

This completes the proof.

4.4.3 Remark : The relation norm equivalence ‘~’ is an equivalence relation among the
norms on X.

Cauchy-Schwartz Inequality :

Let any x:(x],...,xn), y:(y],...,yn)eK” where g (= R or C). Then,

n n 2 % n 2 %
Bpol=(Ehel ) (Sl

4.4.4 Problem : Prove that the norms |[|s|,, ||+, and |ls||, are equivalent normson g »
(K=Rorc).

Solution : Let any xz(x],...,xn) c K"(K =R or C).Weknow

(1< p<o).

I, = (ZH]/
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and ||x||oo = Illsljas)rf

5.

Inparticular for p=1, 2, we have

n n
Il = 3| ana Il = (z
J=

Since ‘xj‘ < é‘x.f , Vi (j=1,2,.....,n) we have,

Ixll.. =max

1<j<n

x|

=[x+ t|x,
< . . :
= nmax x.‘
1<j<n !/
=n|x]..

Therefore,
n
lxll. < 32|, | < mllxl
=

= lxlle <lldlh < nll.
This implies |o],, is equivalent |||, on g, thatis,|fs],, ~[|s],
Further,

n 2 %
I+l :(g\x,.\ ]
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<3| { (iaj] >%a?, aij}
S(Z} x| j (Z](l) ] [~ Cauchy-Schwartz inequality]

=l (Vn)

Thus,

n
loell, < x| < vl
=

= xll, <lxlh <</ lxl,

= |lo|l, equivalent to |||,

= e~y )
From (1) and (2) [lf., ~ [l

Since norm equivalence is an equivalence relation among the norms on a linear space,

lloll; > [ls]l, @and ||s|,, all are equivalent normon g .

4.4.5 Problem: Let ||| and ||.||' be equivalent norms on a linear space X. Prove that :

(a)  The Cauchy sequence in (X, [l|) and (X, [l[|') are the same.
(b)  The convergent sequences in (X, ||+||) and (X, [l[|') are same.
(c) (X, [l+ll) is Banach space if and only if (X, |l+||') is Banach space.

(d  Asetisbounded in (X, []) ifand only if it is bounded in (X, [+]").

Solution : Proof of part (a) and (b) is omitted as it can be given on the same line to the proof
of (c).

Let |.|| and ||«||" are two equivalent on a linear space X. Then 3 k,,k, > 0 such that,

bl <lxll' <&, 5l vxex (1)
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©

(d)

Let (X, |l+|l) is a Banach space.

Let {x,} be any Cauchy sequence in (X, [+]'). Then

x,—x,|'—>0a mn-—>o00 2
But by (1),

k, |xm —-x,| < ||xm -x,|', foralmn 3)
Combining (2) and (3), ||x,, —x,| — 0 as m,n — .

= {x,} is Cauchy sequence in complete space (X |/).

= J x e X suchthat,

x,-x|>0an—s0. L 4)
Againby (1),
bodskbod ®

From (4) and (5), we obtain
||xn —x||'—>0 as n—>oo.
This implies (X, [l+]|') is a Banach space.

The converse follows similarly by interchanging the role of ||.|| and

'

Let A be a bounded subset of (X, [l+]).

Then 3 M > 0 such that,

lxll<M, VxeA.
By (1), we have

Il < &, lxll <k, 0, x e M1
— Aisbounded subset of (X, [+]").

Converse follows by interchanging the role of ||| and

'
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4.5 FINITE DIMENSIONAL NORMED SPACES

4.5.1 Definition : Let N and N' be normed spaces over the same system of scalar
K (R or C).
A mapping is said to be :

(a) Homeomorphism if T is bijective and bicontinuous (T and T~! both are continuous).

(b) Topological isomorphism if T is linear and homeomorphism.

4.5.2 Remark : The relation of “being topologically isomorphic to” is an equivalence
relation on the set of allnormed spaces over the field g .

4.5.3 Theorem (Borel-Lebesgue) : Anon-empty subset of the normed space ( K",

:)

is compact ifand only if it is closed and bounded.

] b
Here K = R or C and for x:(xp""xn) eK"> ”x”2 :(Z‘x;"zj : )
j=1"

4.5.4 Theorem : Any n-dimensional normed space over the scalar field g (R or ¢)is
2)-

Proof : Let (X, [l+[|) be normed linear space over the field x (R or ¢ ) and dimX =n.

topologically isomorphic to ( K",

Let {e],ez,...,en} be a basis for X. Then for any x ¢ X 3 unique (a],...,an) eK"
such that,

xX= i ae;
=
Consider the mapping 7 K " — x defined by,

T(ala---aan):zajej , (O(],...,O{n)EKn.
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T is well defined :

Let (a,...a,)=(B,..8,) in k.

Then Z]a.fe.f :Z]ﬁjej =T(a0,) =T (s B,).
J= J=

T is linear :

Letany (a,,....a, ),(B-.B,) € K" andany a,be K .

Then, T(a(a],...,an)+b(ﬁ],...,ﬁn))

= T(aa] +bﬁ]3---aaan +bﬁn)

M:

= (ac, +bﬂj)ej

1

~.
Il

I
.M=

a(ae, ) +b(ﬂjej)

Jj=1

a@ajejjw(jz"]ﬁjej]

= aT(O{I,...,Oln)+bT(ﬁ| ""’ﬁn)
Thus T is linear.

T is one-to-one :

Let (a0, ). (Brseen B, ) € K"

Then, T(a],-"aan):T(ﬁ]"”’ﬁn)

n n

= a,e;=2 Pe

j=l j=t

:i(a.f _ﬂj)ej =0

J=1

st




=a;-f,=0,Y (i=1,2,....n) ("~ {e,....e,} is linearly independent)
:>06j :ﬂj’ v]

= (e, ) =(Brses B,)

Therefore T is one-to-one.

T is onto :

Forany xe X, *= Z%ajej is the unique expression, where (a,....a, ) € K ".
J=
By definition of T we have,
T(ay,...at,) = Z;ajej =X
J=

This proves T is onto.

T is continuous (bounded) :

Forany (a,...a,) e K",

I (e )| =[S e,
=
< i ae; H
J=1
= o |
Jj=1
Note that for each,
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Therefore,

LCEEN B

This gives,

) e

HT(al,...,an )H < k”((xl,...,an)

Where, k= é”elu >0,

Therefore T is bounded and hence continuous.

T-!is continuous :

Since 7 g " — 5 x isbijective linear transformation 7' - y 3 g " exists and
it is linear transformation.

Weprovethat 771 y 3 g " isbounded. Consider themapping /: K" ——R
defined by £ (x) =T (x)

s xeK"-

> T()

\ e

TG |l

Then f =]

the function f s also continuous.

Consider the closed unit sphere,

S={xeK":|xl, =1}

in (K",|lsll,). Then S is closed and bounded subset of g and hence by Borel-
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Lebesgue theorem it is compact subset of g .

Since continuous image of compact set is compact, f(S) is compact subset R .

Therefore f(S) is closed and bounded.
Let, m=inf{f(x):xeS}
=inf {|7x]: x € S}

Then 0 <m <|7x, VxeS.-

Since f1is continuous compact set,
me{f(x):xeS}ie Ix, €S
Suchthat f(x,)=m=|Tx,|=m.
If m= 0 then | Tx,[|=0.
This gives T (x,)=0=T(0) = x, =0 (-+ Tis one-to-one)

Therefore ||x0|| =0 acontradiction to the fact x, € S = ||x0|| =1.

Hence we must have 7, 20 .

Therefore,

0<m<||Tx||, VxeS-

X
Now forany y ¢ K", M X =1
X
Therefore MES, Ve K"
Hence,
T T
mST(x]:_x:”)dl
el J el | Nl

= mxll, <|Tx|, vxe K"
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= m|ry|, <7 (7)) =y, vvex

_ 1
Sl <L, vy e x

—, 7! is bounded and hence continuous.

We have prove that 7. g » 5 x islinear, bijective and bicontinuous.

Therefore 7:(K",|loll,)— (x.IM) is a topological isomorphism and hence

(X, I) is topologically isomorphic to (& " |ls[, ) . This completes the proof.

4.5.5 Theorem : On a finite dimensional space allnorms are equivalent.

Proof: Let X be any finite dimensional space with dim X =n.

Let

and || be any normon X..

Then by Theorem4.5.4 (X |/|) and (_x,[|]I') both are topologically isomorphic to

(K" llell,). Therefore (X, [-]) is topologically isomorphic to (X, [|').
This implies ||| and ||| induce the same topology on X.
Therefore ||.|| and |.||' are equivalent on X.

4.5.6 Remark : The convergence or divergence of a sequence or a series in a finite
dimensional space does not depend on the particular choice of a norm on that space.

4.6 EQUIVALENTNORMSAND FINITE DIMENSIONALSPACE
4.6.1 Theorem : A finite dimensional normed linear space is Banach space.

Proof : Let N be a normed space over the field g (R or ¢ ) equipped with the norm ||
Let {¢,e,.....e,} be abasis for N.

Then, forany x e N, 3 unique (..., ) € K", a,,...,a, suchthat,
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Define ||+, : N——> R by,

lxlly = max

1<j<n

0‘1‘, xeN

Then ( N, ||.||0) is a normed space (verify). Since N is finite dimensional space,

and |«|, are equivalent norm on N.

Therefore, to prove (N, [ls]]) is complete it will sufficient to show that (N, [|«[l, ) is

complete.

Let {y,}”  beany Cauchy sequencein (N, ).

Then for eachm, (m=1,2, ....), 3 unique (a("”),...,a(’”))e K " such that,

1 n
z” (m)
m
Ym = a.f ej .
j=1

Since {y,,} is Cauchy sequence in (N, [}, ) -

Foreach; (j=1,2,...,n)

Vo=V |—0as myr—>ec (1)

a('m) _a('r)

<
S max j j

1<j<n

=lv-» .. )

J J

‘a('m) _a('r)
From (1) and (2), foreachj (j=1, 2, ...., n)

m) _ ()
i T

‘a —0 as m,r > ©

(m)

0
; } ] is Cauchy sequence in complete
/ m=

This implies for eachj (= 1,2, ..., n), {at

space K (R or C). Therefore 3 6, € K such that,

" ——8 asm—>o  (j=1,2,..,n) - (3)

Define V = Z}‘S]’e]’ .
=
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Then Vn —¥ = Z( -5 e,

Therefore by (3), we have,

This implies y,, — y in (N [l+l,) -

(m)

Vo — y|| = max|a 5‘—)0 as m—> oo

1<j<n

We have proved that (N, |||, ) is complete normed space (Banach space).

4.6.2 Corollary : A finite dimensional subspace M of normed space N is closed subset
of N.

Proof : Let M be a finite dimensional subspace of anormed space N.
Then M is finite normed space with the norm induced by N.

But finite dimensional normed spaces are Banach spaces. Therefore M is itself a
Banach space. Hence M is closed subset of N.

4.6.3 Corollary : In a finite dimensional normed space every non-empty closed bounded
set is compact.

4.6.4 Theorem : A linear transformation on a finite dimensional space is continuous.

Proof : Let (N, [+|l) be a n-dimensional normed space over the field x (R or ) and

(N Ll ') be any normed linear space.

Let 7. N ——> N bealinear transformation. We have to prove that T is continuous.

Let {ee,,...,e,} beabasis forN. Thento eachx 3 unique (a,,...,a, ) € K " such
that,

=
I
=
R
Q
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Define a new norm |+, : N—> R by,

lxlly = max

<j<n

ocj‘
Then (N, |+ll,) is a normed space.

Since on a finite dimensional space all norms are equivalent, ||| and |||, are equivalent

onN. Thus 3 k,,k, > 0 such that,

kel <llxlly <&, Ixll, vx e & e (1)

Now by linearity of T, we have,
T(x)= T(;ajejj = jZ::]ajT(ej)for any X = ]Z:;ajej inN.
By triangle inequality we have,

Il < E e 7 ()

= ]Z:% aj‘HT(ej)H' ...... (2)
Notethat foreach j(j=1, 2, ..... n)
\aj\sgg a,|=lxl,

Therefore from (2) we have,
I7Coll < 3l |7 (e, )|
=
This implies,
I7COll'< K lxll» Yxe N, e (3)

where, KZ%HT(?;)H'> 0
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From (1) and (3) we have,

IT (' < KK, Ixl, wxe N

Therefore 7: y — N ' is bounded linear transformation and hence continuous.

4.6.5 Theorem: Let (X,[|) and (X, ||') be two Banach spaces with same underlying
linear space X. Suppose 3 k > 0 such that ||x]| < K||x]', Vxe X -

Then

and ||, are equivalent norms.

Proof: Let (X, |l]l) and (X |[]I') be two Banach spaces with the same underlying space X.

Let 3 aconstant K> 0 such that,

I <kl vxex. . (1)

Consider the identity transformation.

LX) —— (X ), 1) =x, xe X
Then I is bijective and linear. Further by (1),

||1(X)|| =[xl <Klxl's Vxe X .
= I :(X,I-1")—— (X, |l is bounded linear transformation.

Bytheorem?2.5.8, 1" : (X, |ll) —— (X, |]') is continuous linear transformation and

hence bounded.

Therefore 3 7, > (0 such that,
”1_] (X)”' <Llxl, vxe X

=|xl'<Llxl, vxex .. )
Combing (1) and (2) we obtain,

1
<l < Zlxl, v e x

Hence |||| and ||||' are equivalent norm on X.
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4.6.6 Lemma (Riesz Lemma): Let M be a closed proper subspace of a normed linear

space N, the for every () < ¢ <1 there existsa vector x, € N such that,

|x,|=1and d(x,,M)>e
Proof : Let M be a closed proper subspace of a normed linear space N.

Then 3 x e N suchthat x ¢ M .
Let d=d(x,M)
:inf{”x—m”:meM}
We know
xeM <d(x,M)=0
Since M is closed, 37 — 1y

Therefore, x ¢ M <> d(x,M ) > 0. This gives d> 0.

Fix any ¢ suchthat 0 < ¢ <1.
d
Then —>d .
€
By definition of infimum there exists m, € M such that,

d <[, —my| <L
E

.- X —m,
Define e ||x—m0||'
[ =m|
= =1
Then X ”x g ” .
For any s e M , we have,
ol = X2
KR ey
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4.6.7

_[x=m=mls—m]

| el

_ Hx — (mo + m||x — m0||)H

Joe=m|

e =m

2

| —m,
where m'=m, +m||x—m0|| eM.
By definition of dand (1) we have,

&

||xg—m||2||x—m'||£2d(
d d

j:g’ VYmeM

ie. ||xg —m|| 2&, VmeM
=>d(x.m)=¢

This completes the proof.

Theorem (Riesz) :

A normed space N is finite dimensional if and only if the closed unit sphere in N is

compact.

Proof: Let N be a finite dimensional normed space.

Let S,[0]={xe N:llx| <1} beaclosed unit sphere in N.

Then S,[0] is closed bounded set in N.

But in a finite dimensional normed space every non-empty closed bounded set is

compact (Corollary 4.6.3)

Therefore S, [0] is compact.

Conversely suppose the closed unit sphere S, [0] in a normed space N is compact.
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We have to prove that N is finite dimensional.

Ifpossible N is not finite dimensional.
Choose x, € S and let M be the subspace spanned by {x, } .
Then M, is proper subspace of N.

Further M, is finite dimensional, hence it is closed. Therefore by Riesz Lemma 3 a

vector x, € N such that
1
||X2|| =1 and ||X] —X, || 2 5 .

Let M, be the closed subspace spanned by {x, ,xz} . Then as discussed above 3 a

vector x, € N such that,
1
[ =1 and e, = x| = 5
Continuing in this way, we obtain the sequence {x, } in S, [0] such that,

1
>_
2,VkeN-

||xk _xk+]

Therefore, the sequence {xn} c S, [0] has no convergent subsequence.

But this contradicts to the assumption S, [0] is compact in N.

Hence N must be finite dimensional space.

a0
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UNIT -V

HILBERT SPACES

This unit aims at providing a geometric structure to a linear space. The basic concept
of'an inner product is introduced in section 5.1. An inner product induces a normon the linear
space. If such a space is complete, then it is known as Hibert Space. A Hilbert Space is a
special type of Banach Space which possesses additional structure enabling us to tell when
two vectors are orthogonal. Just as we were able to embed any normed linear space in a
complete normed linear space, we shall be able to embed any inner product space in a complete
inner product space or Hibert space. Some examples and simple properties of Hibert spaces
are discussed in section 5.2. Some theorems about orthogonal complements are proved in
section 5.3. In section 5.4 we discuss Bessel’s inequality, Gram Schmidt orthogonalization
process, some examples and properties of orthonormal sets. The natural correspondance
between the vectors in H and conjugate space H* is established in section 5.5.

5.1 INNER PRODUCT SPACES

Suppose X is areal or complex vector space; i.e. suppose the underlying scalar field
is either real or complex numbers R or C. We now make the following definition.

Definition 5.1.1:

An inner product on X is a mapping from x x x , the Cartesian product space, into
the scalar field, which we shall denote generally by F.

XxX>F
(x,7) = (x,»)

[ <x, y> represents only the ordered pair whereas (x, y) denotes the inner product of

two vectors]
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With the following properties :

1) Let x,y € X then (x,y)=(y,x) where the bar denotes complex conjugation.

2) If a, p arescalars and z, ), z are vectors then
(ax+py,z)=a(x,z)+B(r,2)

3) (x,x)>0, Vx e X and equal to zero iffx is the zero vector.

Definition 5.1.2 :

A real or a complex vector space with an inner product defined on it will be called an
inner product space or pre-Hilbert space.

Proposition 5.1.1 :
Ifa vector y has the property that (x,y)=0, Vx e X theny=0.
Proof:

Suppose (x,y)=0, Vx e X then(); y) =0 but then by property (3) of inner product
space definition 5.1.1, y=0.

Example 5.1.1:

(x3)=2ap

¢ with this inner product is referred to as complex Euclidean n-space. With R in
place of C we get real Euclidean n-space.
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Example 5.1.2:
Let X = C|[a,b] be aset of complex valued continuous functions on [a, b]. For

continuous functionsfand g, ( / + g)(x) = f(x)+ g(x) andfor o e C, (@ f)(x) = f(x).
An inner product of f'and g is defined as,

(f.2)=[ /() g

Iffand g are real valued functions

(f.2)=[ () gdr

Example 5.1.3 :
Let X =/, set at sequences of complex / real numbers (a] N7 N S

)y |al. |2 < oo, the mner product of two vectors

We shall define (x,y) = Zaﬁ- .

i=

Example 5.1.4:

Let Y =[a, b] and S be the set of Lebesgue measurable setsin'Y, u be Lebsesgue
measure. For the equivalence classes of square integrable functions on [a, b] define inner
product between two classes [ /] and [g] as

(L 1le]) = £ (0 s

a

Where the integral is Lebesgue integral. This space is usually referred to as L, (a, b).
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Theorem 5.1.1 : (Cauchy Schwarz inequality or Schwarz inequality)

Let X be an inner product space and let x, y € X . Then ‘(x,y)‘ <Ill]|] -

Proof-1:
Wheny =0, (x,»)=(x,0)=(x,5 = y)=(x)=-(x)=0
Thus (x,y)=0 and |y| =0 . Since both sides vanish the result is true wheny=0.

When y#0,

¥|# 0 the inequality.

|(x,y)|s||x||||y||:»m|(x,y)|snxn

i
(R RY

Thus it is sufficient to show that if | y| =1,

:‘(l]‘ <l g !

Jl

(o) <l wrex

We know that Hx— (x,y)yH >0.

Consider Hx - (x, y) sz = (x - (x, y)y,x —(x,y) y)

= (o, x) = (%, ) (%, ) = (x,2) (3, x) + (%, ¥) (%, ) (3, 7)

=(2.20) = (x.2) (%)~ (6. 2) (@ y) +(xy)(x.¥) G (p.2) =]y =D
=l = )f
Since x—(x,)y[ 20, I ~|(x,»)] 0.
Proof2 : Let x,y € X and consider z =y, y)x—(x,)y.

Then 0<(z,2z) =((3.¥)x—(x,3)3.(3.¥)x—(x,»)¥)

=(1.3)(3,2)(x,3) = (7, 2) (%, ) (x,2) = (x,2) (3, 2) (¥, x) + (%, ) (x,9) (¥, »)
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()] (% 2) = (%) (3 ) (3,%)
~ o) (2) (6 2) = (6,0) (%) |
= () ) (wx) =[x ) ]

If (y,y) >0, then it follows that (y,y)(x,x)—‘(x,y)‘2 >0= ‘(x,y)‘2 <[] |-

2

If (y,») =0 theny=0and hence (x,y)=0.So (x,x)(y,y)= ‘(x,y)‘ :

Let ‘(x,y)‘z =(x,x)(»,y) then we have (z,z)=0 so that z = 0, that is

(v,)x=(x,y)y.Hencetheset {x, y} is linearly dependent. Converselyif {x, y} is linearly

dependent then either x = ky or y = kx for some scalar £. In this case

e )| = o) = (ko) (o o) = K (2, x) K ()

~ T ) (x0) = () (k) = (x,) (31).

Corollary 5.1.1:

The inner product is jointly continuous function [i.e. given ¢ > (), 35 > ( such that

‘(x],y])—(xz,yz)‘<e whenever ||y, —,[ <3, [|x —x,[ <5 ]

Proof:

Let x, =x —x, and y, = y, — y,. Consider
) = (s 20| = (2 + 3002 +03) = (2,22
=[5 )+ (625 ) + (335 ) + (3,05 ) = (3,22
=‘(xz,y3)+(x3,y2)+(x3,y3)‘

<o )|+ |2 )|+ (3|
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<l sl el e bl s oy Setiware inequatiy)

<[l =yl # vl =l + s = - =2

and continuity of the mapping is evident.

Theorem 5.1.2 : (Polarization identity)

Let X be a real inner product space and let x, y € X . Then

(x.9) =l ol ==l
Proof: |+ o~ x
T4 4
—l(x+ x+ )—l(x— x=y)
—4 Y, y 4 Y, y

Z%[(X’X)+(x,y)+(y,X)+(y,y)]—%[(x,x)—(x,y)—(y,x)+(y,y)]

:%[2(x,y)]—%[—2(x,y)] ((x,5) =(y,x)=(x,y) since X is real)

=(x,)

Theorem 5.1.3 : (Polarization Identity)

Let X be a complex inner product space and let x, y € X . Then

1 > 1 2 Iy L2 Iy .
(5.) =gl ol ==yl + 5o =S|
Proof: —|x+ |~y + e+ i — - v
" 4 4 4 4

T BEREAR——
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:%{(X’x)+(x’y)+(y,x)+(y,y)—[(x,x)—(x,y)—(y,x)+(y,y)]
+i (%) + 7 (x,9) +i(p.x) +iT (9,3) =i (x.x) =7 (x,9) = i(y.x) +iT (y.9)]}
=2 0) 200+ 27 (1) 420 () )

:%{2(x,y)+2(y,X)+2(x,J’)_2(y9x)}

=(x,)

Theorem 5.4 : (Parallelogram Law)

Law X be an inner product space and x, y € X . Then,
e+ 2 e = A = 20+ 2]
Proof : [x+ [+ v =y = (x+ yxt p) +(x -y -)
= (x,x)+(x, )+ (,x) + (. ) = (x,x) = (x, ) = (3,%) + (1. »)

=2(x,x)+2(y,y) = 2|x|” +2||)’||2

Theorem 5.1.5:

The mapping of X into F defined by 1 (x)= (x,x)% is anorm on X and will be
denoted by ||x|-

Proof : Since (x,x) >0, [|x]>0-

(x,x)=0iff x=0=|x| =0 iffx=0.
loexll = (ozx,ocx)% :[oco_c(x,x)]y2 = [|oc|2 (x,x)]%
= Lo (x.x) =lall]
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Jx+ 3 = (x+y,x+)
= (x5, x)+(x, )+ (3. x)+ (3, y)
=[xl + 2Re (x, )+ [
<[l + 2|, )|+ [l

<IxlP + 20l + oA (Schwarz inequality)

< (Il +[A)°

Thus, x+y|| < ||x||+||J’||

5.2 The Definition and Some Simple Properties

The Banach spaces are little more than linear spaces provided with a resonable notion
of'the length of'a vector. The theory of Hilbert spaces talks about the orthogonality of vectors.

Definition 5.2.1:

An inner product space which is complete in the norm induced by the inner product is
called a Hilbert space.

Definition 5.2.2 :

Hibert space is a complete normed linear space in which the norm satisfies the
parallelogram law.

Definition 5.2.3 :

A Hilbert space is a complex Banach space whose norm arises from an inner product
1.e. in which there is defined a complex function (x, y) of vectors x and y with the following
properties.

1) (ax+ﬂy,z)=a(x,z)+ﬁ(y,z)

2 (xny)=(yx)
3)  (nx)=lkl’

Observe that (x,ay+pBz)=a(x,y)+pB(x,z) is a direct consequence of
properties (1) and (2).
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Examples of Hilbert Spaces :

Example 1 : The space ¢ with the inner product of two vectors x =(x,,x,,....., X, ),

Let x,yeC", (J’ax):;yifi-

(y’x) =2 X =2 VX = (x’y)
i=1
If o, B arescalarsand x, y,z € C" then

(axi +ﬁyi)Ei =aXxzZ,+BLyz

1

(ax+By,z)=

n

1

za(x,z)+ﬁ(y,z)

xl.|220 VxeC”

(xx)=2x% =3

i1
and X|x,[ =0 iff x, =0 vj ie.x=0.
Thus ¢~ with inner product defined by (x, y) = X x,, is an inner product space.
Let { xm} be a Cauchy sequence in ¢ ie. given ¢>(0 IN e N such that
me —po <&,Vp,m>N.
Let x,, :(xm],xmz, ..... ,

%, —x,| <&

:>(X —-X ,X —xp)<e

m p>m

Vp,m>N
=2(x, —xp)i (x, —xp)i <g

=2

2
‘<g

X

mi

— xpi

(@¥iD)




:‘xmi—xpi‘<e Vm,p>N vi=1,2,3,.., n.
= {x,,}._ is Cauchy sequence in C.

Since C iscomplete x,, > x,, 1<i<n.

)E(C"

Define x:(x],xz,x3, ..... X

n

Then x, > xeC". - ¢ is complete with respect to the norm induced by inner
product.
Thus, ¢~ is a Hilbert space with inner product defined by

(x,9)=2x7, i=1,2.3, .1
i=1

Example 2 :

The space 7, = {{xn} |2 |xl.|2 < oo} , the space of square summable sequences with

inner product two vectors x ={x,}, y={y,} defined by (¥,»)=2 X3, is Hilbert space.
i-1

& 2
¢, is a Banach space with Ix] = Z |Xl-| .

i=l

@  (ax+py.z)=2(ax+py)Z

:azxzzi +ﬁzyi7i
za(x,z)+ﬁ(y,z)

where x={x,}, y={y,} and z={z,} .
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@ (xy)=Zx3

(31,%)=Z 3% = (1 3) = ZrE = 2T = (x.¥)

Thus (y,x):(x,y).

Thus 7, with inner product defined by (x, y) =2.X,¥; is complete and therefore is
i=l1

a Hilbert space.
Example 3 :

The space ¢,, p#2, 1< p <o isnotaHilbert space.
Suppose £, p # 2 ,is aHilbert space. Then ¢ ,, p # 2, is an inner product space.
Inner product space satisfies parallelogram law |x + y||2 +[x— y||2 =2 (||x||2 +| y||2 ) .

Letx=(1,0,0,0,...)andy=(0,1,0,0,0, .....), then,

x4, =27,

I, =1 o], =1.
||x—J’||p =0 ifp is odd.

- 2%7 if p is even.
Then x+y[ +[x -] = 277 if pisodd.

_ 2'*% if pis even.

oIk bl ) =4
Observe that if p is odd 2% + 4 for peven, 2'*% _ 4 onlywhenp=2.
Thus ¢,, p #2 donot satisfy parallelogram law.
- £, isnot an inner product space for p # 2.

~.L,, p#2isnota Hilbert space.
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Theorem 5.2.1 :

A closed convex subset C ofa Hilbert space H contains a unique vector of smallest
norm.

Proof:

Since C is closed convex subset of a Hilbert space H, for x,yeC,

Ax+(1-2)yeC where 0< 1 <1.

+yeC

X
In particular

Let d = inf {||x||: x € C} . By property of infimum there is a sequence x, in C such

+X, X, +Xx,

n

that |x,|| = d . Since C is convex €C and 2d je. |x, +x,[|>2d.

Since H is a Hilbert space, parallelogram holds.

||xm—xn 2+||xm+xn ’ :2||xm||2+2 X, ’
||xm - X, ’ :2||xm||2 +2||xn||2 —Ix, +x,, ’
<2|x, | +2|x, | - 44 (Ix, +x,[|=2d)

But 2|x,, | +2|x, | - 44> - 2d* +2d* —4d* =0
Thus given ¢ > (0, 3N e N such that

2
<&, Vnm>N.

[, =,

It follows that {xn} is Cauchy sequence in C.

Since H is Hilbert space, H is complete. Since C is closed subset at H, C is complete.
Therefore each Cauchy sequence in C converges in C. But {xn} is Cauchy sequence in C.
Therefore x, - x mC.

Il =||tim x, | = lim x,

=d  (--|| is continuous function)

It means that x is a vector in C with smallest norm.
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To show that x is unique, suppose x'is also in C other thanx which also has || x| = ¢ .

x+x'
2

Since C is convex, € C and applying parallelogram law to x and x' we get,

W12 2 W12 W12
X+ X X X X—X
2 [ 2 ] ( 2 ] 2
1 1 1
PRV N LML L
2 2 2 2
x+x'
Thus, > <d.

But dis infimum of ||x|| for x e C.

Clx+x

> X d acontradiction. Therefore, x = x'.

Theorem 5.2.2 :
If B is a complex Banach space whose norm obeys the parallelogram law and if an
mner product is defined on B by
4(x.y) = et sl == il i =il
Then B is a Hilbert space.

Proof: Since B is a Banach space, B is complete. Thus if B satisfies three properties for inner
product space then B is Hilbert space. We shall prove the following.

@O (x+3.2)=(x2)+(r.2)
@ (ax,y)=a(xy)

@ (x,»)=(y.x)
™ (xx)=lxl’
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) 4(x,x)=lx+ 2 =l =2l +ille+ixl’ —illx—ixl
= 4llxll” + i+ i el = il =l [l
=4l +i 4+ DA= DI =i (=) 1+ Dl
= 4]«
Thus (x,x) =||x| and (iv) holds.
Now  4(x,y)=|x+y[" == =illxc+ i +ilpx =i e (1)
4(y.x) =yl =y = + iy +inl =iy -
S R [ ey
=2l e A il oo =i =il i
=+ == +ilx—i| —i|x+iy| e (2)
From equation (1) and (2) we have (x, ) = (5, x) - This proves (iii).
To prove (i) and (i), let u, v, w € B . Since norm on B obeys parallelogram law,

I+ )+ + e+ v =l =20+ v + 20w e (3)

||(u —v)+ w||2 + ||(u —v)— w||2 = 20— +2[lwlf C)

Equations (3) — (4) gives,

G+ w) | =[G+ w) = = w) = =[G =)= =2 (e + vl =l =)

.. Real <u+w,v>+Re<u—w,v>=2Re<u,v> ... (6)
Similarly,

||(u +iv) + w||2 + ||(u +iv)— w||2 =2Mu+ivl’ + 2wl e (7)
||(u —iv)+ w||2 + ||(u —iv)— w||2 =2l —ivl* + 2wl e (8)
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Equations (7) — (8) gives

||(u +w)+ iv||2 — ||(u +w)— iv||2 + ||(u —w)+ iv||2 — ||(u —w)— iv”2 =2Mu+ivl’ =2[u—ivl

~Im{u+wvy+Im(u-w,v)=2Im{uw,v) .. ©)
From equation (6) and (9) we have,

(u+w,v)+{u—w,vy=2(u,v)

Foru =wwehave (2u,v)=2(u,v) .. (10)
Foru +w=ux, u—w=y, v=2zwe have
(x.2)+(y.2)=2(u,z) = (2u,z) = (x + y, z)

Thus, <x,z>+<y,z>=<x+y,z> ..... (11)
Equation (10) and (11) proves (i1) and (1)
Since all the conditions (i), (i1), (i1i), (iv) are satisfied, B is a Hilbert space.

5.3 ORTHOGONALCOMPLEMENTS
Existence ofparallelogram law provide a geometric insight into the place Hilbert spaces.
Definition 5.3.1 :

Two vectory x, y in a Hilbert space H are said to be orthogonal if (x, ) = 0 and

writtenas x L y.

Note :

Q)
(ii)
(iii)

()

Since (x,y)=(»,x),if (x,y)=0, (y,x)=0ie. x Ly=y Lx.
Since (x,0)=0, x L 0 forevery xe H .
Since (x,x) =[x]”, (x,x) =0=> x =0 i.e. 0is the only vector orthogonal to itself.

If x L y then ||x+y||2 = ||x—y||2 =l + ||y||2

e 2 = Cet ot y) = () + () + () + (09) = Il + o]
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Similarly,
O =y =(x=yx =) =(ex) = (x5, 0) = (3.x) + (ry) = Ixl + o]

Thus |x + y||2 =|x- y||2 =|Ixl* + ||y||2 is the parallelogram theorem.

Definition 5.3.2 :

A vector x 1s said to be orthogonal to a non-empty set S (Notation: x | §)if x L y,
VyeSsS.

Definition 5.3.3 :
Orthogonal complement of S denoted by g+ is the set of all vectors perpendicular to
S.
Note :
() o) =H
@ 7 ={0}

i)  SNS" <{0}
(v) S,cS, =8 S

v) S+ isaclosed linear subspace of H.

Theorem 5.3.1 :

Let M be a closed linear subspace of'a Hilbert space H. Letx be a vector not in M
and let d be the distance from x to M. Then there exists a unique vector y,, in M such that

[x=yol=d.
Proof : Since M is subspace ofa Hilbert space H, for x,y e M, ax+ fy € M i particular

ax+(1-a)yeM .ie. Misconvex. Thus the set C =x + M is a closed convex set.
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Since d is distance fromx to M, d is distance from origin to x + M = C. By theorem

5.2.1 there exist a unique vector z, in C such that ||zO || =d (- disdistance from0 to x + M).
Since zyeC=x+M . C=x+M

Sz, =x—y, forsome y, e M

\‘d

butthen y, =x—z, and x—z, e M .

Now [x=y,| =z =d- e

Thus ||x—y0|| =d.

Ify, is another vector in M such that y, # y,; and ||x -V || =d then z, =x-y isa

vector in C such that z, # z, and ||z] || =d.

Which contradicts the uniqueness of z .

Theorem 5.3.2 :
IfM is a proper closed linear subspace of a Hilbert space H then there exists a non-

zero vector z, inHsuchthat z) 1 M .

Proof : Let x ¢ )/ and let d be the distance from.x to M.
By theorem 5.3.1, there exists a vector y, inM suchthat |x—y | =4
Define z, = x— ¥, .
Since d>0, z, #0.
Now we shall prove that if y € M then y L z.
Consider 2, ~ay] =[x~ )~ ay| =[x~ (3 +av)|2d =]

So [z~ | 20.

(z0 -ay,z, —ocy)—”ZO”2 >0
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:>(Zo,Zo)_a(zo’y)_a(y,zo)+|a|2 (y’y)_”ZO“2 20

= —a(zy,y)—a(zgy) +lel |y 20

Put a = 3(z,,y) for an arbitary real number S then

~B(20:3) (20 %)= B(20:9) (70:3) + B (7o) I 20

2 =2B|(z0 0 + B (20 ) oA 20

Let a= ‘(zo,y)‘z and b =)y thenwe have

—2Ba+ B*ab>0= Ba(Bb-2)>0 forallreal 3.

Ifa is strictly positive, we can chooe /3 sufficiently small such that Ba (b -2)<0.
Therefore, a cannot be strictly positive but g > 0= ¢ = 0. But a =|(z,, )| -

Therefore, (zo, y) =0 thatmeans z, L y.

Definition 5.3.4 (Orthogonal Sets) :

Two non-empty sets S, and S, ofa Hilbert space H are said to be orthogonal (S, L S,)
if x L y forallxinS, andyinS,.

Theorem 5.3.3 :

IfM and N are closed linear subspaces of a Hilbert space H such that 37 | N then
the linear space M + N is closed in H.
Proof : Let z be a limit point of M + N. Then there is a sequence {z,}in M + N that
converges to z. Since A/ | N, Mand N are disjoint. Therefore each z, is uniquely written as

z,=x,+y, forx, eM and y, e N.
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that

[If x L y then ||x+y||2 = ||x—y||2 =l + ||y||2 is called Pythagorean theorem.
(x+y,x+y)z(x,x)+(x,y)+(y,x)+(y,y) Since x Ly, (x,y)=0.

el =l + [y Similarly ey =l +

2

=] (x, ) - (x, +,)

|2, ==,

2

=[x, =)+ (5, -2.)
Since M and N are subspaces of H,
x,,x, eM=>x —-x €M and y,y, eN=>y -y N

But A/ | N.

Since z, — z, {z, } is a Cauchy sequence. Therefore given ¢ >0, IN e N such

2

.-,

(x, =) + (=2 V| = %0~ x,

zn—zm||<8, Vn,m> N .

2

2
+ yn—ym” <e.

2
Thus |z, —z,| =|x, —x,

= <& and

X, —X, yn—ym||<8

= { X, } and { Y, } are cauchy sequences in M and N respectively. But M and N are

closed subspaces of H. Therefore {x,} ->xeM and y, > ye N.

Since xyeM and ye N, x+yeM+N .

sz=limz, =lim(x,+y,)=x+yeM+N

n—x0

Thus M + N is closed subspace of a Hilbert space H.
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Theorem 5.3.4 :
IfM is a closed linear subspace ofa Hilbert space H, then 7 = py @ As -

Proof: Since M and js! are orthogonal closed subspaces of a Hilbert space H, by theorem
5.3.3, Az + p+t is closed subspace of H. Suppose 37 + A7+ = g then pp 4 pst — g then

by theorem 5.3.2, there exists a non-zero vector Z inH suchthat z; | (M +M* ) .

Then 7, E(M_FML)L le.zpe M NM**.
Since M is closed subspace of H, 371+ — 37 .
Thus z, e M* M but M+ N\ M ={0}.
Therefore z, =0.But z, #0.

SM+M =H-

Since MNM*={0}, MOM* =H -

5.4 ORTHONORMALSETS
Definition 5.4.1 :

An orthonormal set in a Hilbert space H is a non-empty subset of H which consists of
mutually orthogonal unit vectors.

Non-empty set {el.} of H is said to be orthonormal if

()fori=j,e Le, (ii) e ]| =1 vi.

1

Example 5.4.1:

The set {e,e,,e;,.....e, } of £, where each e, is n-tuple with 1 in the i place and 0

elsewhere is an orthonormal set.
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Example 5.4.2 :

The set {¢,e,,€;,€,,....,€,,....} Where e, is a sequence have 1 at n' position and

zero otherwise is orthonormalsetin 7, .

Example 5.4.3 :

Consider a Hilbert space L, associated with the measure space [0, 2 77 ], where
measure is Lebesgue measure and integrals are Lebesgue integrals.

Lzz{f|2f|f(x)|2dx<oo}

The norm and inner product are defined by,

||f||=(2f G de and (1) = [ /() g

2r
Since I e€™e ™ dx=0 if m#n
0
=2 if m=n
einx
Functions e, (x) defined by ¢, (x)= Tix forman orthonormal setin L.
m

Theorem 5.4.1 :

Let {e,e,,e;,....,e,} be a finite orthonormal set in a Hilbert space H. Ifx is any

vector in H, then i‘(x, el-)‘z <|xlf and x—i(x, e)e L ev, .
i=1

i-1
Proof : |x—X(x, el.)el.H2 >0

= (v-X(w.¢)e,x—X(xe)e)2 0
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n

(x,el.)(el.,x)+ > (x,el.)(x,ej)(ei,ej)z 0

i,j=1

M:
M:

= (x,x)-

(x,el.)(x,el.)—_

1 i

:(x,x)—Z‘(x,ei) —Z(x,el.)@+Z(x,ei)(x,ej)(ei,ej)20

‘2
= x|’ —Z‘(x,el. )‘2 —Z‘(x,el. )‘2 + i‘(x,ei)‘z >0 [ (ee,)=5,]

= [|xII —Z‘(x,el.) >0

‘2
= X|(xe) <l

Observe that,

=(x.e;)=(x.¢)) [{e,} isorthonormal set]
0

Since (x—Z(x,el.)ei,ej) =0=>x-X(x,¢)e Le,

Theorem 5.4.2 :

If {el.} is an orthonormal set in a Hilbert space H and ifx is any vector in H then the
set S ={e, |(x,e)# 0} is either empty or countable.
Proof : Ifx =0, there is nothing to prove. The set S = ¢.

Let x+0.Forj=1,2,3, ... let,

E, ={e,:Ixl<jl(x.e,)}

J

Fix j, suppose E; contains distinct elements e, ¢,,,....,€,,, -

2

(x, e, ) )

Then 0 < mlxl’ < >

n=1
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(x, €,, )‘2 < ||X||2 . This shows that

But by theorem 5.4.1, 2.
n=1

mlx’ < 2« = m < j?

Thus m < j* and therefore each Ej contains at most /2 elements. But S =JE ; and

countable union of countable set is countable. Thus S is countable.

Theorem 5.4.3 (Bessel’s inequality) :

If {e,} is an orthonormal set in a Hilbert space H then
(e, )| <l VxeH

Proof: Let S = {el. |(x,el.) # 0} . If S 1s empty then (x,el.) =0 v; and Z‘(x,ej)r =0.
Therefore result holds.

Suppose S # ¢ thenby theorem 5.4.2, S is countable. IfS is finite,

S={e,e,,e,,.....e,} forsome integer .

M:

2‘(?@ Q,—)r = (x, ej)‘z and by theorem 5.4.1 result holds.

J=1

Let S = {e],ez,e3,....,en,...}.

If i\(x, e,
n=1

also converges and all such series have the same sum.

converges then every series obtained from rearrangement of terms

Therefore Z‘(x, el-)‘z = i‘(x, ¢ )‘2 and i‘(x, el-)‘z only depends on S and not not
i= i=1

the arrangement of {el.} . Inthis case
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Since i‘(x, el-)‘z <[, all partial sums ofi‘(xa el-)‘z are bounded by ||x||’ -
i=1 i=1

23 |(xe) <l

i=1

Theorem 5.4.4 :

If {e,} is an orthonormal set in a Hilbert space H and ifx is an arbitrary vector in H
then

x-2(xe)e Le, V)
Proof : Let S ={e,|(x,¢,) # 0} . Then by theorem 5.4.2 either S = ¢ or S is countable. If

S = ¢ then (x,¢,) =0 V;.ie.xisorthogonal to each e, .

Suppose S # ¢ . Then Sis countable. Let S ={e,,e,, €. ....,e,,...} .

TR

Define S, = {e],ez,e3,....,en} .InS_,

=

L

(x.¢,)e, =2(x.¢)e . Bytheorem 5.4.1,

1 i

1

x-Y(xe)eLe | j=1,2,3,...n

i=

n

Put 5, =2.(x.¢)e .

i=l

Observe that

2
O |

2 ; 5
| £ e el
i=m+l

n
> (x, e, )el.
i=m+1

n
=2 ‘(x’ei)
i=m+1

But by Bessels inequality i ‘(X, e )‘2 <[l
i=l
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i 2
3 ‘( X, € )‘ is convergent series. Therefore, partial sum forma convergent sequence.
i=1

Every convergent sequence is Cauchy.

Therefore for n,m > N , i (x, el-)‘z <&,

i=m+1

Since

s, =5, =[Z(x.e )‘2 <&, {s,} is Cauchy sequence in H. Since H is

complete, the sequence s, > s H 1e. = Z(x, €1-)€1- .

(x_z(x’ei)ei’ei) :(x_s’ei):(‘x’ei)_(s’ei)

(x,el.)—(limsn,el.)

:(x,el.)—lim(s e )

n>vi
n—»om

:(x,el.)—lim(i(x,ej)ej,ei]

n—o | 57

= ()~ im (v, )(¢,.¢)
:(x,el.)—(x’ei):o

Let the vectors in S be rearranged in any manner,

S={fisfor Foreeoms frinon)

n

Put 5, =2.(x,/;) ;. Then {5} is aconvergent sequence and

i=l1
)

s, —)s':Z(x,fl.)fl.

i=l

Now we show that s=3¢".

Let & >0 be given and let n\, be a positive integer so large that if n>n, then

: S 2 _ 2
||sn —s|| <¢ and Hsn —S'H <eand 2 ‘(x, ei)‘ <& . For some positive integer m, > n,,

i=ngy+1
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all terms of s, occur among those of s,, ,so s, —s, isa finite sumof terms of the form

m()’

'
Sﬂ’lo - Sn 0

<Y (e <6

i=ngp+1

(x.,e)e, for i=n,+1,n,+2,...... This gives

A

SO + my no

s;ﬂ0 =5, <€ and [s'- S||SHS'— s;no +Hsn0 —s” <3¢

Since ¢ i1s arbitrary s'=s. Thus rearrangement of series gives same limit.

Theorem 5.4.5 :

Every non-zero Hilbert space contains a complete orthonormal set.
Proof : Let H be anon-zero Hilbert space. Let S be the class of all its orthonormal sets. This
class is a partially ordered set with respect to set inclusion. An orthonomal set {el.} inH is said

to be complete if it is maximal in this partially ordered set. Every chain in S has upper bound
(union of'the chain). Since every chain in S has upper bound, by Zorn’s lemma S has maximal
elements. This maximal element of S is complete orthonormal set.

Theorem 5.4.6 :

Let H be a Hilbert space and let { e } be an orthonormal set in H. Then the following

conditions are all equivalent to one another.

1. {e,} is complete

2. xL1l{e}=>x=0

3. Ifx is an arbitrary vector in H then x = X(x,¢, )¢, .

4. If x is an arbitrary vector in H then [ x| = T|(x.e )‘2 :

Proof: Weprovethat(1) = 2) = 3) = (4) = (1)

X
Suppose (2) is not true. Then there is x # 0 such that x L {e,} . Define €= Tl then

lell = 1. Observe that {e, e, } is an orthonormal setand {e, } = {e,e,} . Observe that {e, e, } is

orthonormal set which contradicts the completeness of {el.} .
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(2) = (3) Bytheorem 5.4.4, x—X(x,¢,)e, L e, Vj.
Therefore by (2) we have x— Y (x,¢,)e, =0=>x =2 (x,¢)e, .

1

(3) = (4) Let x=2(x.¢,)e, then || =(x,x)-

and (x,x)= (;(x,ej)ej,g(x,ei)ei) = Z(x,ej)m(ej,ei)

i,j

3 (s G, = e )
Thus |x]* = Z‘(x,el. )‘2 :

(4) = (1), Suppose (1) is not true. If {el.} is not complete then it is a proper subset

of an orthonormal set {el. , e} . Since e is orthonormal to all the el.’s, then

2
lel” = (e.e) = Z‘(e,el.)‘ =0=e=0 3 contractionto ||| =1.

Thus (4) = (1).

Theorem 5.4.7 : Let {ea } be an orthonormal set in a Hilbert space H. Then the following

conditions are equivalent.

Q)
(ii)

(iii)

{e,} is anorthonormal basis for H.

(Fourier Expansion) for every x e f we have,
xX= Z(x, e, )ea
where {¢,e,,€,,....} = {ea |(x,e,)# 0} (This set is countable)

(Parseval formula) for every x e H we have,

I =% |(xe,)

2

where {e],ez,...} = {ea |(x,ea) * 0}
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V)

Proof:

Span {ea } is dense in H.

If ye H and (x,e,)=0, Vg thenx=0.

()= (ii) : Let {e, } beamaximal orthonormal set in H.
Consider x e H, Bytheorem 5.4.2 and theorem 5.4.4,

Z(x,el.)el. converges to y forsome ye H and x—y Le;, Vj.

—x)

_W
Ify;tx,lete—”

then |le| =1 and e L e. Vj so that
=] lell =1 ;Y

{e,}Ule} ={e,} isan orthonormalset in H but {e, } is a basis.

Therefore, {e,}Ule} ={e,} ie. x=y ie. x=Z(x¢))e,

(1) = (111) follows from theorem 5.4.6.

m

(ii)=> (iv) Since 2(%¢,)¢; < span {e,} foreachm=1,2,3, ....
J=

and x:%:(x,ej)ej , xespan {e,}.Thus {e,} isdensein H.
(iv)= (v) : Let x ¢ H be such that (x,ea)z 0 V¢ andlet

x, — x where x, espan{e,} . Consider (x,,x).

m?

m?

:(i)aiei’szzai(ei’x): 0  Thus (x x) =0.

oLt (xm,x):( Lt xm,x)z(x,x)=0:x=0

(v)= (1) Let E be an orthonormal set in H containing {ea } .
If ec E and e# e, V thenby orthonormality,

(e, e, ) =0 V¢ butthenby(v)e=0.But ¢ e E and E is orthonormal.
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Sl =1
This contradiction shows that E={e, }.

Thus E is maximal orthonormal set in H i.e. an orthonormal basis for H.

Example 5.4.4 : Consider the Hilbert space L, associated with Lebesgue measurable space

on [0,27 ] and integrals are Lebesgue integrals.

Then L, :{f| f|f(x)|2 dx<oo}

1

2 5 A 2r -
||f||=(J|f(x>| dx] and (/>8)= ] f(x)g(x)dx

inx

Let u, =e™ forn=0, + 1, + 2, + 3, ...

2r
[e™e™dx=0 if m=n
0

=2 ifm=n

"

.. Define € = N then the set {en} forman orthonormal set in L,.

1 2r —inx
For any felL,, & :(faen):—ﬂ I f(x)e dx are its classical Fourier
0

coefficients and by Bessel’s inequality we have,

)

n=—0

cn

e 1 ar

Theorem 5.4.6 and 5.4.7 proves the importance of orthonormal basis.
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Theorem 5.4.8 : (Gram-Schmidt Orthonormalization)

Let {xl 3 Xy 5 X35 Xy, } be a linearly independent subset of an inner product space X.
_ N
Define y, = x, and & = ||y ” and forn=2,3,4, .....
1

=
v, =x,—(x,.¢)e—-(x,.¢,)e,—....—(x,,e,, )e,, and & = :

Then {e,e,,e,....} isanorthonormal set in X and forn=1,2,3, .....

span{e,,e,,e;,...; =span{x,x,,x;,...} .

Proof : We shall prove this result by Methematical induction.

Y
n=1.As {x} is linearly independent set, y, =x, #0 and = :H =1 and
1

span{x,} =span{e,}.
For 5 >1, assume that we have defined y, and e, as stated in the statement of
theorem and {e],ez,e3,...,en} is an orthonormal set satifying span{e],ez,%,...,en} =

span{x],xz,...,xn}.

Deﬂne yn+l = xn+] _(xn+]’e] )e] _(xn+]’e2)e2 """ _(‘xn+]’en)en

As {x,,%,,%;,.....X,,,} is a linearly independent set, x,,, does not belong to

n+l

span{x],xz,x3,...,xn} =span{e],ez,e3,...,en} , therefore y ., #0.

Let = 2 Then
(e

e .. [=1andforall j<n we have,

(yn+]’ej):(xn+]’ej)_i('xnﬂ’ek)(ek’ej)

k=

:(xn+]’ej)_(xn+l’ej):0 as (ek’ej) :5@'
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1
Thus (€1-¢)) :( iﬁj ,ej]:y—](y,m,ej) =0

Hence {e.e,,e;,....¢,,e,,, } isan orthonormal set.

span {e,,€,,e;,....€,.,} =span {x,,%,,...X,, V.. }

=span {x,,x,,X;,...., X, X, }

>V n+l

Example 5.4.5:

Let y —¢>Forn=123,... letx, =(1,1,1,...... ,1,0,0, ....) where 1 occurs only
in first n entries. By Gram-Schmidt orthonormalization processes.

x, =(1,1,0,0,0.....)

¥ =% —(%,6)¢ = (1,1,0,0,0....) — (1.1+1.0+ 0)(1,0,0....)
=(1,1,0,0,0,..)—(1,0,0,...)=(0, 1,0, .....)

x, =(1,1,1,0,0,....)

V3 =X _(x3’el)el _(xs’ez)ez

Thus in general Gram Schmidt orthonormalization process yields e, =(0,0....,0,1,0,...)

where 1 occur only in n? entry.

5.5 CONJUGATE SPACE H*

Fundamental properties of a Hilbert space is that there is a natural correspondence
between the vectors in H and the functionals in dual space H*. In this section the features of
this correspondence are discussed.
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Theorem 5.5.1 :

Themap 7:H > H*, y— fy defined by fy (x)= (x,y) 1S a norm preserving

mapping of H into H*.

Proof: Lety be afixrd vector in H and consider function f, on H defined by f, (x)= (x, y) .

Then,

Lo+ 2) = (x4 25,9) = (0, 0) + (50, 0) = f, () + , (%)
f,(ax)=(ax,y)=a(x,y)=af,(x)
Thus f, is linear map. Further f, is continuous as

£, o] =[x, )| < 5l o] (by Schwarz inequality)
Thus /, is functional defined on H.

Observe that ‘fy (x)‘ < ||fy|| |l . But ‘fy (X)‘ < xl- ||J’|| .

Ify=0then |y|=0 and nyH=0 and nyHZHyH

(II IIJ

=il =

Suppose y = 0, then,

Hf H—sup{‘f (x)‘ ||x||—1}

e e )

Thus,
Therefore H /s H =||»|| and hence f. , isnorm preserving map.

[

|7 =¥

Theorm 5.5.2 (Riesz Representation Theoem)

Let H be a Hilbert space and let /' be an arbitrary functional in H*. Then there exists

aunique vector y in Hsuch that f(x)=(x,y) Vxe H -
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Proof : Uniquencess

Suppose fis an arbitrary functional in H* and y and y' are two vectors in H such that,
F&)=(xy)=(xy)=(xr)-(xr)=0=(x,y-y)=0, vxe H

Since (x,y'-y)=0, Vx e H therefore y'—=y=01ie. y'=y

Existence :

If /=0 then choose y = 0. Suppose f #0.

Let M = {x | f(x)= 0} . Then M is proper closed linear subspace of H. By theorem
5.3.2 there exists a non-zero vector y, which is orthogonal to M. Now we shall show that if

o is suitably chosen, then the vector y = a y, satisfy f(x)=(x,y), Vxe H .
If £(x)=0 then (x,y)=(x,ay,)=a(x,»,)=0. Since y, L M.

Now we choose ¢ insuchawaythat f(x)=(x,y) holdsfor x = y,.

_f(yo)
(%)= (3-23,)=@(¥4o 7, )=&|y,|" - Choose O‘_W and thus

£ (x)=(x,y) is true for every x in M and for x = y, also.

Since y, € M observe that each x in H can be written as x = m+ 8y, for some

m e M . Now choose 8 insuch a way that f(x—ﬁyo)zf(m)zo.

But f(X—ﬁyo)Zf(x)—ﬁf(yo)zozﬁ:f

F)=f(m+Byy)=f(m)+Bf(v,)=(my)+B (¥ )

=(m+Byy.y)=(x,)
Thus norm preserving mapping of H into H* defined by y — f, where

f, (x)=(x,y) isamapping of H onto H*.
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The mapping y — f, constitutes one-one onto isometric mapping from a Hilbert

space H to its conjugate H*.

Theorem 5.5.3 :
Let H be a Hilbert space.

(a) For f e H* let y, be the representer of /' in H. Then the mapping 7 : H* — H

givenby T'(f) = y, is onto conjugate linear isometry.

(b)  For f,g e H*, define (f,g)*=(T(f).T(g)).

Then ( f,g)* isaninner product on H*, (f,f)*:”f”2 forall £ € H* and H* is
a Hilbert space.

(c0  For yeH define j,:H*—>K by j (f)=/(y), feH*. Then j, is a
continuous linear functional on H* and the map J: i — H ** defined by J ( y) =7, for
y € H isonto linear isometry i.e. H is reflexive.

Proof:

(@) For f,g e H* wehave,
(f+g)x)=f(x)+g(x)
=(%y )t (x2,)= (%2, +5,). vxeH
Hence y, +y, isarepresenterof f+ge H*ie. T(f+g)=T(f)+T(g)
Similarly for f e H* and ke K
(k) (x)=kf (x) = k(x,)%/) = (x’];yf)’ VxeH .
Hence ky, isarepresenter of kf in H*. i.e. T (kf) = kT (f)
Thus themap 7 : F* — H is conjugate linear.

To show that T is onto consider y € H andlet f(x)=(x,y), Vxe X -

Then y =T ( /). We have proved that ||yf ” = ||f|| = ”T(f)” so that T is an isometry.
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(b)

©

VxeH then:

Forall f e H*,wehave (f,f)*=(T(f).T(f))>0.

and (/. f)*=0 [T ()=, | =/1=0 e s =0.
For f,g,he H* and ke K,
(f+g.h)*=(T(0).T(f+g))=(T(h),T(f))+(T(g).T(f))
=(f.h)*+(f.8)*
(kf,h)* = (T (h), T (k) = (T (k) kT (1))
=k(T(W.T(f))=k(f.h)*
Similarly ( £, h)*=(h,f)*. Thus( , )* isan inner product space on H*.

Since H is complete and 7 : i/* — [ is onto isometry H* is complete.

Thus H* is Hilbert space.

Let ye H . j,:H* > Kislinearand |j, (/)| =]/ (»)|< I/ Iyl vf e H*.

Therefore /, is continuous and ijH <|y|. tfwe define /€ H * by £ (x)=(x,y),

5 (O =10 =) = so that |,]| =111

Amap J:H — H** islinearas, J (3, +,)=j,.,,-
But jy1+yz (f):f(yl +y2):f(y])+f(y2):jyl (f)+jy2 (f)

and J(ay)=j,, and j,, (f)=f(ay)=af(y)=aj (f)=al(y)

To show that J is onto, consider ¢ € H ** then by theorem4.5.2 there exist a unique

representer g € H * of ¢. Then ¢(f)=(f,g)*=(yg,yf)zf(yg)zJ(yg)(f)forall

e H*.Thus ¢ =J(y,).Also Jis an isometry,
g

since |7 ()] = [, = 1.

a0
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UNIT - VI

BOUNDED OPERATORS ON HILBERT SPACES

This chapter presents a detailed study of bounded linear maps from a Hilbert space to
itself. The adjoint of such a bounded operator is introduced in section 6.1. It corresponds to
the conjugate transpose of a matrix in a finite dimensional situation. Selfadjoint operators and
their properties are discussed in section 6.2. In section 6.3, normal and unitary operators are
discussed. The properties of normal and unitary operator and relation between these operators
are proved. Section 6.3 is devoted to Projections. The projections whose range and null
spaces are orthogonal are of much use. Since in certain circumstances sum of projections is
also a projections.

6.1 ADJOINT OF AN OPERATOR
By an operator T on an inner product space X over K we mean a linear map T from
X to X. The map is said tobe bounded if | 7x| < o || x|, Vx € X (In working with operators it

is common practice to omit parentheses whenever it seems convenient. 7x = 7'(x) ). Abounded

operator is uniformly continuous on X, since for allx, yin X,

Tx—Ty| < aljx-y| . Conversely
iflinear map T from X to X is continuous at 0 then T is bounded operator on X.

The set ofall bounded linear operators on X is denoted by B (X). It can be proved
thatif 4, B e B(X) and f e K then A+ B and kA and AB belong to B (X). The operator A
is invertible if there is some B ¢ B( x) suchthat AB=1=BA, where I is identity operator on
X. For 7e B(X). ITl=sup{|Tx|:x € X,|lx|<1}. Then || is a norm on B (X) and
|7l <) -Ixll» Wx € X - 1f {4, } and {B,} are sequences in B (X)suchthat 4, — 4 and

B, — B then A, +B, > A+B and 4,B, > AB,

since (4, +8,)=(4+B)|<|4, - 4| +|B, - B and
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|4,B, — AB|<|4,B,— 4,B+ A,B— AB|

<[[4.]l12, - 8] +15l]4, - 4]

Theorem 6.1.1 :
If {e,e,,e,,....} isan orthonormal basis for a Hilbert space H, then each operator
T e B(H) 1s defined by a matrix (T e;,e ) with respect to this basis.

Proof : Consider the fourier expansion (theorem 6.4.6)
= %:(x,ej)ej . xeH
Since the linear operators are continuous, we have,
(Tx,e) = (Z(x,ej)T(ej),ei) = Z(x,ej)T(ej,ei) = f(x) (say)
j j
Thus we have a Fourier expansion,

Tx=Y(Tx,¢)e =Zfl.(x)el. » xeH

Thus T is defined by a matrix (T e.e ) with respect to basis {e] ,€,,€5, } .

Note : If an orthonormal set {e] ,€,,€5, } 1S not an orthonormal basis for H, then there is

some T e B(#) whichis not defined by a matrix with respect to {e,,,,e;,....} .

Theorem 6.1.2 :
Let H be a Hilbert space and 4 ¢ (7). Then thereis aunique g ¢ p(f) such
that forall x,y e H, (4x,y)=(x,By).

Proof : Fix y € H and consider themap f, : H — K deﬂnedbyfy(x) =(A4x,y), xe H.
f, (ax, + Bx,)= (A(ax] +ﬁx2),y)

=(adx, + BAx,,y)
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za(Axl,y)+ﬂ(Ax2,y)
=af,(x)+Bf, (%)

Thus f, is alinear functional. Also since

1, )| =[x, )| < -] < Dbl

, VxeH ,
each f, is continuous. By Riesz representation theorem (6.5.2), there is a unique
~ e H such that fy(x) =(x,z), VxeH.
Define By =z. Then B is an operator on H. Also since
|8y|=lzl = £, | <l l]y
the operator B is continuous.
(dx,y)=f, (x)=(x,2)=(x,By)

For each fixed y € H , this condition determines the element z= By of H. Suppose B'

, VyeH,

is another map that satisfy (Ax, ) =(x,B'y) then,

(4x,y)=(x,B'y)=(x,By)=(x,(B'-B)y)=0= B=B'

Hence the map B is unique.

Definition 6.1.1 : Let H be a Hilbert space and let 4 ¢ g (7). The unique element B of

B(H) which satisfies ( Ax, y) =(x,By), Vx,y € H iscalled the adjoint of A and is denoted
by A*.

Remark : If mner product space X is not complete then for each 4 ¢ p( x) there may not
exist B ¢ B(x) suchthat (Ax,y)=(x,By), x,ye X .

Let X =set of all scalar sequences having only finite number of non-zero entries. For

0

x:{xi} , y:{yl.} in X define (an’):inJ_’i .For xye X let AXZ{Zﬁ,O,O,...} then
1 ]:] j

AeB(X)-
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1

o0 1 A T

4l < (Z—J.z] Z—\/g .Forn=1,2,3, ..., let e, =(0,0,...,1,0) where 1 occurs
=

only innM entry. If B < B(x) and (4x,y) =(x,By), Vx,y € X then,

= 1
(Be])n :(enaBe]):(Aenae]):;;éO. n= 1,2, 3,

But then Be, ¢ X (since all entries Be, inare non-zero).

Theorem 6.1.3 : Let T be an operator on a Hilbert space H. Then T* (defined by 6.1.1) is
an operator.

Proof: Forany y,ze H andall x ¢ H we have
(x,T*(y+z2))=(Tx,y+z)=(Tx,y)+(Tx,2)
=(x,T*y)+(x,T*z)=(x,T*y+T *z)
Thus, T*(y+z)=T*y+T*z
(x,7*(ay))=(Tv.ay)=a(Tx,y)=a(x,T*y)=(x,aT*y)
Thus 7*(ay) = aT *y. SoT* is linear. Now we shall prove that T* is continuous.

[7 A" = (T %y, 7 ) = (17 * y, ) < [TT* Yy < I * -]

Thus we have |7 * y| < |Tll|y

, Vy e H .So |1+ <|T]-

Definition 6.1.2 : The mapping 7" — 7'* defined on B (H) by (7x, y)=(x,T * y), where
H is a Hilbert space is called the adjoint operation on B (H).

Theorem 6.1.4 : Let H be a Hilbert space. The adjoint operation 7 — 7 * on B (H) has the
following properties.

D (L +T)*=T,*+T,*

2) (aT)*=aT*
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3)
4)
5)
6)

Proof:

1)

2)
3)
4)

5)

6)

(17,)*=T,*T,*

T**=T
I = Il
I+l =17

Let H be a Hilbert space and x,y € H .
(. (T +%)*y)=((T+ 1) x.y) = (Tx+ T, y) = (Tx, ) + (T, )

= (T *p) (T *y) = (R T *y+ 1% y) = (x,(T *+T,%) )
(x,(al)*y)=(aTx,y)=a(Tx,y)=a(x,T*y)=(x,al *y)
(% (T5)*y) = ([T y) = (Lx T *y) = (R T, * T *y)
(Tx,y)=(x,T*y)=(T**x,y)

In theorem 6.1.3 we have proved |7 | <||7||- Therefore |7+ <||7 *| but by (4)
T** =T and we have || <|T*|-

Thus |7 = {74

I+l <l lrl =717l =71 (by (5)) - (1)
I7xll” = (72, Tx) = (7% Toe, x) < 7 * Tl | < I 71l

Taking supremum over all x ¢ / with ||x|| <1 we find that

ITI? <llT*T| ee. (1)

From (1) and (i1) result follows.

Definition 6.1.3 : Let H be a Hilbert space in T be a bounded operator on H. The subspace,

R(T)={yeH/Tx=y forsomex e H}

of H is called the range space of T. The subspace Z (7)) ={x e H/Tx =0} of His called
zero space of T. If Z (T) =H we write T =0.
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Definition 6.1.4 : Alinear map 7': H — H is boundedbelow if 8 |x[| <[ 7x|, vx e H and
some £ >0.

Theorem 6.1.5 : Let H be a Hilbert space and T is bounded linear operator on H.

@  z(r)=R(T*)" and Z(7*) = R(T)"

®)  R(1)=z(r*)" and R(7%)=z(T)"
(c) R(T) = H if and only if T* is bounded below and R(T*) = H if and only if T is
bounded below.

Proof : Observe that above results are symmetric in T and T* since T** =T. Therefore it is
sufficient to prove one part second part follows immediately.

(@  Let xeH.Then y¢ z(7) ie. Tx =0 if and only if (x,7*y)=(Tx,y)=0,

VyeH ie. yec R(T*)".

(b) Let g = r(7) and note that g+ _ p(7)". Since F is closed subspace of H,
1

F=F" :[R(T)L] = Z(T*)*

(c) Suppose R(T) = H. Suppose T* is not bounded below. Then there is a sequence

X n

{x,} in H such that |7*x,| <™ forn=1,2,3, .... Let Vu :”_,so that [Ty, [ <1.

n
n xn

We show that the sequence { yn} isbounded in H. Consider y € H . Since Tisonto 3y ¢ H
such that 7x =y. Then,

((3,2) =[5, T6)| = (T *,.)| < |7 % p, [ Ixll < 1]

=n-—>o,.

Thus ‘(y,,, y)‘ <|lx]l and therefore y, must be bounded in H. But ||y,

This contradiction proves that T* is bounded below.

6.2 SELFADJOINT OPERAORS ON HILBERT SPACE H

Definition 6.2.1 : Consider those operators A on a Hilbert space H for which A=A*, such
an operator A is called self adjoint operator.
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Theorem 6.2.1 : Zero operator and identity operator are self adjoint operators.
Proof: Let Ax=0, Vx e H . Then,

0=(x,4x)=(A4*x,x)=> A*x=0, Vxe H => A= A*

Thus ifAis zero operator, A=A*1.e. 0*=0.

Let Ax=x, Vxe H . Then,

I = (x,x)=(x,Ax)=(A*x,x) = A*x=x

Thus 4x = x = A* x = x therefore [* =1 where I represents identity map.

Theorem 6.2.2 :
The self adjoint operators in B (H) form a closed real linear subspace of B (H)and
therefore a real Banach space which contains identity tranformation.

Proof: Let § = B(# ) is aset of selfadjoint operation. Suppoe A, and A, are self adjoint

operators and «, § are real numbers. Then,
(aAlJrﬂAz)*:O_CAI*JrEAz*:(XAI+[)’A2 (o, B arereal)

Thus if A, A, are selfadjoint and ¢, B are real numbers then a4, + B 4, are self

adjoint operator. Thus S is linear subspace of B (H).
Let { A, } be a sequence of selfadjoint operators which converges to A.
i.e. {4,} isasequencein S that converges to A.
Consider,
la-A*l=|4-4,+4,—4,*+4,*—4%

<[ d=4,[+]4, -4, 4 +]4,* -4

<l +|(4, - 4)7

<2|4-4,|—>0 as n— .

Thus |4 - A*|=0= 4= 4*1¢c. 4e S . ThusSisclosed real linear subspace of

B(H). By theorem 6.2.1, S contains identity transformation.
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Theorem 6.2.3 : IfA and A, are selfadjoint operators on Hilbert space H then their product
A A, is selfadjoint if and only if A| A, = A, A,.
Proof : Suppose A, A, and A A, are selfadjoint.

Then (A44,)*= A4, e ()
But  (Ad,)*=A,*A*=dAd .. (ii)
Thus (A4,4,)*= 4,4, ifandonlyif 44, = 4,4,, (by equation (i) and (ii))

Theorem 6.2.4 : If T is an operator on H for which (Tx,x) =0 Vxe H thenT=0.
Proof : We will show that (7x,y)=0 foranyx and any y.
(T (ax+By),ax+ By)=(alx+ BIy,ax+By)
= ad (Tx,x)+ BB (Ty,y)+af (Tx,y) + pa (Ty,x)
= (T (ax+By).ax+ By)-lal (Tx.x)=|B[ (Ty.y) = aB (Tx.y)+ Ba (Iy.x)
Since (7x,x)=0, Vxe H ,
afB(Tx,y)+ Ba(Ty,x)=0, Va,f3.
For a =1=f,wehave (Tx,y)+(Ty,x)=0 .. ()
For ¢ = and =1 wehave i(Tx,y)—i(Ty,x)=0 ... (ii)

From equation (i) and (ii) we have (7x,y)=0.

Theorem 6.2.5 : An operator T on H is selfadjoint if and only if (7, x ) isrealforall x e /.

Proof : Suppoe T iselfadjoint then,
(Tx,x) =(x,Tx)=(x,T*x)=(Tx,x)

Since (Tx,x) =(Tx,x), (Tx,x) is real for all x.

Q05)




Conversely suppoe (Tx, x) is real for all.x in H.

(Tx,x) =(T,x) = (%, T*x) = (T *x,x) ie.

(Tx-T*x,x)=((T =T*)x,x)=0 forallxinH.
Thus by theorem 6.2.4 we have T—-T*=01e. T =T*.

Definition 6.2.2 : Suppose A and A, are self adjoint operators on a Hilbert pace H. We
write 4, < A4, if(A]x,x) < (Azx,x) , Vxe H .

Theorem 6.2.6 : The real Banach pace of all self adjoint operators on Hilbert space H is a
partially ordered set whose linear structure and order structure are related by the following
properties.

1))
2)

Proof :

if 4 <A, then 4 +A<A4,+4 forevery 4e B(H)-

if 4 <4, and o >0 then a4, < a4,.

A <4, as (Ax,x)<(A4x,x), VxeH .

- < isreflexive.

Suppose 4, < 4, and 4, < 4, , then (Ax,x)<(4,x,x)

and (4,x,x) <(Ax,x) = (4x,x) < (4x,x) = 4 < 4

Thus ‘<’ is transitive.

Let 4, <4, and 4, < 4. (A4x,x)<(4,x,x) and (A4,x,x)<(Ax,x)
= (4%, %) = (4yx,x) = (Ax— Ayx,x) =0
=((4-4)xx)=0=>4-4,=0=4 =4,

Thuss ‘ <’ is antisymmetric.

Since ‘ <’ isreflective, antisymmetric and transitive, the real Banach space of all self

adjoint operators on H with © <’ relation is a partially ordered set.
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1) Suppose 4, < 4, then (A4,x,x)<(4,x,x) and therefore
(Ax,x)+(Ax,x) < (4,x,x)+(A4x,x)
= (4 +A4)x,x)<((4, + 4)x,x)
=> A +A<A4,+4

2) Suppose A4, < 4, then (A4,x,x)<(4,x,x) andfor ¢ >0,

a(Ax,x)<a(4,x,x)= ad <ad,

Definition 6.2.3 : A self adjoint operator A is said tobe positive if 4> 0 i.e. (4x,x)>0

Vx.
Note : O, [, T*T, TT* are positive operators for an arbitrary operator T as

(Ox,x)=0>0, (x,x):”x”2 >0,
(T*Tx,x)=(Tx,Tx) =|ITxlf >0
(TT*x,x)=(T*x,T*x)=T*x >0

Theorem 6.2.7 : If A is a positive operator on H, then I + A is non-singular. In particular
[+ T*T and I+ TT* are non-singular for an arbitrary operator T on a Hilbert space H.

Proof : First, we must show that I + A is one to one and onto as a mapping of H into itself.
Suppose (/ + A)x=0= Ax =—x = (Ax,x) =(-x,x) =[x’
Since A is positive operator (Ax, x) > 0 therefore _||x|* >0

But thenx=0

Define pf ={(/+ A)x/xec H}-

Let { Y, } be a Cauchy sequence in M.

Observe that (7 +4) x| = (x+ Ax, x + Ax)-
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=(x,x)+(x, Ax) +(Ax, x) +( Ax, Ax)

=[x + 1 4xl +2(4x, x)

Since A is positive operator ( 4x,x) >0 and we have

Ixl? <7+ ) .. (i)
Since { Y, } is a Cauchy sequence in M,

y,=(I+4)x, for x, e H and

x, x| <[+ D (x, -x,)| by (i)

Vo=l

= ||xn -X, ||2 <

Since { Y, } is cauchy in M, {xn} is Cauchy sequence in H. Since H is Hilbert space,

Hiscompleteand x, > xe H .Butthen (/ + A)x=ye M and y, > ye€ H. ThusM s
complete and therefore closed in H.

Now we will prove that M = H. Suppose not then there would exist a non-zero

vector x, orthogonal to M.

(I+A)x,eM and x, LM .
Therefore (x,,(1+4)x,) =0,
:>(x0,x0)+(x0,Ax0):0:>||x0||2 =—(Ax0,x0)£0

= x, = 0. Contradiction to x, # 0. Thus M=H.

Thus I + A is one-one and onto and therefore non-singular.

Theorem 6.2.8 : (Generalized Schwarz inequality)

Let 4 < B(H) be self adjoint. Then A or — A is positive operator if and only if

‘(Ax,y)‘2 < (Ax,x)(Ay,y), Vx,yeH .
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Proof : Suppose A is positive operator i.e. (Ax,x)>0for x,ye H, define
(x.), =(4x.»).

Observe that (x,x)A >0, Vx e H andthe function ( , ): H x H — K islinear in

the first variable and is conjugate symmetric since A is self adjoint.

Consider z=(y,y),x—(x,»),y where x,ye H.

OS(Z,Z)A =((y,y)Ax—(x,y)A y’(y9y),4x_(x’y),4 y)

=(3.y), (xx) = (1), (2.¥), (x.), = (x.), (3.3), (.%),

+(x.p), (x.), (3.9),

=(y’y)A [(y’y)A ('x’x)A _('x’y)A (y’x)A:I
:(yaY)A [(y,y)A (x’x)A _‘(x’y)A‘z}

Thus if (,y), >0 then |(4x, )| <(dy,»)(4x,x)  (as (x.y), =(4x,))
If (y,y),=0but (x,x), # 0, then we can interchange x and y and obtain the result.
Assume that (x,x), =0 and (»,»), =0. Then,
(x+yx+y), +(x=pyx-y), =(xx), +(xy), +(r.x), +(».»),
+(x.x), = (%), = (3.x), +(3.3),

=2(x,x),+2(»,»),=0
Butsince, (x,x), >0 xeH,(x+y,x+y),20,(x-y,x-y),>0and
therefore (x+ y,x+y), =(x=y,x—y),=0. Similarly

(x+iy,x+iy)/4 :(x—iy,x—iy)A =0
Therefore,

0:(x+y,x+y)/4 —(x—y,x—y)A +i(x+iy,x+iy)A —i(x—iy,x—iy)A
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:2(x,y)A +2(y,x)A +i[2(x,iy)A +2(iy,x)A]
=2(x,»),+2(r.x), +2(x,y)=2(y.x),
:4(x,y)A = 4(Ax,y)

Thus we have (A4x,) =0 if (x,x), =0=(y,»), and

2
Cev), | =[(4x,p)] < (x,%),, (33),, = (4x,x)(4y, )
forall x, y € H, provided Ais positive operator.

In case — A is positive then,

(A, )| =|(~4x, ) < (~Ax,x)(~4y, ») = (4x,x)( 4y, »)

forall x,ye H.
Conversely assume that ‘(Ax,y)‘z <(Ax,x)(Ay,y) forall x,y e H.

Then (Ax,x)20, Vxe H or (Ax,x)<0, Vxe H -

That is Aor — A is a positive operator.

6.3 NORMALAND UNITARY OPERATORS ON HILBERT SPACE H
Definition :

An operator N of H is said to be normal if NN* = N*N where N* is adjoint of N.

Theorem 6.3.1 :

The set ofall normal operators on H is closed subset of B (H) which contains the set
of all selfadjoint operators and is closed under scalar multiplication.

Proof: If 4 c p(pH) 1sselfadjoint then A* =Aand AA* =A*A=AZ. Therefore every self
adjoint operator is normal operator. [f N is normal operator then NN* =N*N. If ¢ is any
scalar then

lal’ NN*=lal’ N*N = (aN)(aN)*=(aN)*(aN)
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Thus if N is normal operator and ¢ is any scalar then ¢ N is normal. Therefore the
set ofall normal operators on H is closed under scalar multiplication.

Suppose {N f } is a sequence of normal operators on H that converges to A.
If N, > A4 then N; — A* and
| 44%—4* All=||44*~N,N; + N.N; =N;N, + NN, — 4* 4|

<||44*-N N;|+|N;N, = 4* 4| >0 as k 5 oo.

= |AA*—A* A= 0= AA*= A* 4

Thus the set of all normal operators on H is closed subset of B (H).

Theorem 6.3.2 :
IfN, and N, are normal operators on Hilbert space H and if N, N, = N,N, or
N,N, = N,N, then N, + N, and N,N, arenormal operators.

Proof :
NN, = N;N, & (NN, )*=(N; N, ) *
< N, N, =N,N, < N,N, =N/,N,
So N,N, =N,N, < N,N, =N, N,
Consider,
(N, +N,)(N,+N,)*=(N, +N,)(N; +N;)
= N,N; + N,N, + N,N; + N,N, ()
(N, +N,)* (N, + N, ) =(N] + N, ) (N, + )
=N,N,+N N, +N,N,+N,N,
= N,N, + N,N, + NN, + N,N, een (i)

From (i) and (ii) we have (N, + N, ) is normal if

Qi




N,N, = N,N, (same as N,N, = N, N,)

Similarly,

(N]Nz)(N]NZ)*:(N,Nz)(N;N]*)=N] (N2N;)Nl*
= N,(N;N,)N; = N;N,N; N,
= N,N,N,N, =(N,N,)*(N,N,)

Thus N,N, isnormal operator.

Theorem 6.3.3 :
Anopertor T on H is normal ifand only if |7 * x| = || 7|, Vx € H -

Proof:
|7 * x| = ITxll <= 17l = 17
< (T*x,T*x)=(Tx,Tx) < (TT *x,x) = (T *Tx, x)
< (TT*x,x)—(T*Tx,x) =0
< ((TT*-T*T)x,x)=0
& TT*=T*T ie.Tisnormal.

Thus T is normalifand only if | 7| = |7 * x|, Vx € H -

Theorem 6.3.4 :
IfN is a normal operator on H then || 2| = | ;|-
Proof:
IVl =V ()l =[N *(W)] - (by there 6.3.3)
=[|N*Nxl, VxeH -
Thus | N =[N *N]. But since [N =[IN*|, [~ *N]|=[n]" and we have

IV = IIVIF -
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T* T-TF%*
and 4, = — .
21

For an arbitrary operator T on H, define 4, = Observe

T*+T** T*+T
2 2

A

1.

that 4,* =

Similarly 4,* = A,. Thus 4, and A, are both self adjoint operators. Moreover

T = A +id, and T*= 4 —iA, . The self adjoint operators A and A, are called real and
imaginary part of T.

Theorem 6.3.5 :

If T 1s an operator on H then T is normal if and only if its real and imaginary parts
commute.

Proof:

Suppose A, and A, are real and imaginary parts of T then 7' = 4 +i4, and

T*= 4, —id, .
TT* = (A4 +id, ) (A —idy) = A% + A2 +i( 4,4, — 4,4, (D)
THT = (4 —id, )(A +idy) = 47 + A2 +i (A4, - 4,4) ... (i)

From (1) and (i1) we have if 4,4, = A4 A, then TT*=T*T.
Converselyif TT*=T*T then 4,4 — A4, = A4, — A, 4,
So 24,4, =24 A4, or A A, =A4,4,.

Thus Tisnormalifandonly if 4,4, = 4,4,

Definition 6.3.2 :
An operator U on a Hilbert space H is said to be unitary if yU/*=U*U =] .
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Theorem 6.3.6 :

Ais unitary operator on H ifand only if || 4x| = | x||, Vx € H and Ais onto. In that
case |47 x| =|xll, vx e # and | 4] =] 4] =1-
Proof:

For x € [, we have
[ (Ax, Ax)—(x,x)
=(A* Ax,x)—(x,x)
=((4*4-1)x,x)
We know that if ( 4x,x) =0, Vx € H thenA=0.
Therefore || g4x|* —||x|> =0 iff A¥4-1T=0
i x| = Ixll #f 4*4=1-
Thus if | Ax|| = |x||, Vx € H and Ais onto then A¥*A=1and A is bijective so that

Ad* =(AA)(A4") = A(A* A) A = A4 =1
Thus AA* =A*A=1 ie. Aisunitary operator.
Conversely if A is unitary then A*A=Tand A~ =A*.

Since A*A=1, A*A—~1=0ie. ((4*A-1)x,x)=0
< (A* Ax,x)—(x,x)=0

< (Ax, Ax)—(x,x) =0 < I Ax]® =lx]

Thus if Ais unitary || 4x|| = || x|, Vx e H -

AndAis onto. In that case || 47 x| = ||x[|, Vx e H -

And we have | 4] =] 47| =1-
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Theorem 6.3.7 :
If T 1s an operator on H, then the following conditions are all equivalent.
1)  T*T=I
2) (Tx,Ty)=(x,y), Vx,yeH.
3) I =lxls vxen -
Proof: (1) = (2)
Suppose T*T =1then (7 *Tx,y)=(x,y) i.e. (Tx,Ty) =(x, )
2)=03)
(Tx,Tv)=(x,y), Vx,y € H therefore forx =y we have
(7x,Tx) = (x,x) = |7l =[xl” = |7l =l v
3)= 1)
17l = lxl = 173" =Ixll” = (73, 7x) = (x, x)

= (T*Tx,x)=(x,x)=>T*T=1

Example : Consider H =/, and T : ¢, — ¢, 1s defined by,
T{xl,xz,x3,....} = {O,xl,xz,x3,....}

then ||7x|, = x||, but T do not have inverse as T is not onto map.

Theorem 6.3.8 : Anoperator T on H is unitary ifand only if it is an isometric isomorphism of

H onto itself.

Proof : If T is unitary then T is onto. Since ||7x| =|x| Vxe H (theorem 6.3.7), T is an

isometric isomorphism of H onto itself.

Conversely, if T is an isometric isomorphim of H onto itself then T-! exist and by

theorem 6.3.7 we have T*T =1.

(r*7T)T ' =1-.T'=>Tr*=T"and Tr*=T*T =

Thus T is unitary operator.
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Problem : IfT is an arbitrary operatoron Hand if o, 8 are scalars such that la| = | B, show

that o7 + BT * is normal.
Answer : (aT + BT *)(aT + BT *)*
=(al + BT *)(aT*+BT)
=lal’ TT*+aBT? + pa(T*) +|p] T*T
—la (rT*+7? +(T®* +T*T) (i)
(aT + BT *)*(aT + BT*) =(&T *+BT)(aT + BT *)
=lal T*T +@pr* +BaT? +|p| TT *

= (T*T+T* +T* +TT*) .. (ii)
From (1) and (i1) we have
(aT + BT *)(aT + BT *)*=(aT + BT *)*(aT + BT *)

Thus aT + BT * is normal.

6.4 PROJECTIONS ON HILBERT SPACE H
Definition 6.4.1 : Operator P on H with the property that P2 =P is called projection.

Definition 6.4.2 : A projection on H whose range and null space are orthogonal is called
perpendicular projection.

Definition 6.4.3 : Two projections P and Q are said to be orthogonal if PQ = 0.

Theorem 6.4.1 : If P is a projection on a Hilbert space H with range M and null space N then
M 1 N if and only if P is self adjoint and in this case = p7+.
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Proof : Since M is range and N isnull space /f = M + N .

Therefore each , ¢ f7 canbe uniquely written in the formz=x+y with x e Ay and

yveN .If o 1 N thenx L y . Consider,
(P*z,z)=(z,Pz)=(z,x)=(x+y,x)=(x,x)+(,x) = (x,x)
(Pz,z)=(x,2)=(x,x+y)=(x,x)+(x,y)=(x,x)
Thus we have (P*z,z)=(Pz,z), Vz e H -

ie. (P*~P)z,z)=0, Vze H = P*=P

Conversely suppose P=P* thenfor xye s/ and ye N

(x,y) = (Px,y) = (x,P*y) = (x,Py) = (x,O) =0=xLly

Thus forany xe A/ and ye N, x Lyie. M 1L N.

Now we will show that p7 = 7 +. Observe that ;¥ — M+ . IfN is proper subset of
M+ thenN is closed linear subspace of ps+ therefore by theorem 5.3.2 there exists a non-

zero vector zyin psL suchthat z, L N. Since zy e M~, z, L M and z, L N therefore
ZyLM+N=Hie z, LH.

This 1s impossible therefore = p7+.

The only projections considered in the theory of Hilbert spaces are those operators
which are selfadjoint.

Definition 6.4.4 : A projection on a Hilbert space H is an operator P which satisfies the
conditions P2 =P and P* =P,

Let P be a projection on a Hilbert space H. Let A ={Px:x e H} is aclosed linear
subspace of H.

Conversely to each closed linear space M there corresponds the projection P with
range M defined by P(x+ y)=x where xe M and ye M*.

Observe that P os projection on M iff I - P is projection on j,+ . IfP is projection on
M then,
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xXeM &S Px=x& ||Px|| = ||x||

Forevery x e H we have,

I =1Px+ (2= P = IPxl + 17 - Pl
=P <llxl, vxe H ie |Pl<1

[Pl =l = 1Pl = Ixl” = [l [l = 0

= (Px,Px)—(x,x)=0=(P*Px,x)—(x,x)=0
= (Px,x)—(x,x)=0=(Px—x,x)=0= Px=x
If x ¢ H is anarbitrary vector then,

(Px,x)= (sz,x) =(Px,P*x)=(Px,Px)= IPxl? >0

Thus the projection operator is positive operator.

Definition 6.4.5 :

A selfadjoint operator A on a Hilbert space H is said to be positive if ( 4x,x) >0,

Vx e H and we write 4>0).

Theorem 6.4.2 :
If P is projection on a Hilbert space H then I-P is also a projection.
Proof: I-P)(I-P)=I-P—-P+P2=]-P-P+P=I-P
I-P)y*=1*-P*=1-P
-. I—=Pisprojection.
Since I — P is projection, [-P > O1e. 1 > P.

Thus o< P<1T.

Definition 6.4.6 : Let T be an operator on a Hilbert space H. A closed linear subspace M of
H is said to be invariant under T if 7(A) c M .
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Definition 6.4.7 : Ifboth M and A/ are invariant under T, we say that M reduces T or T
is reduced by M.

Theorem 6.4.3 : A closed linear subspace M of H is invariant under an operator T if and only
if M+ isinvariant under T*.
Proof : Suppose M is invariant under T. Since M is invariantunder T, 7> c \f Vz e M -

Suppose y e M* then (7z,y)=0 vz e M
1.e. (Z,T*y)ZO, ‘v’zeM:>T*yeML
Thusif y e M* then T*y e M* and therefore A/ is invariant under T*.

Conversely suppose M is invariant under T*. Therefore 7%, ¢ pft, Vz e M*-
But g7t —p7.Let ye M then (T*z,y)=0, Vye M .ie. (z,T**y)=0, VyeM.
ie. T**ye M . But T** =T therefore Ty e M . Thus (z,7y)=0, VIye M . ie. for
yeM , Ty e M and therefore M is invariant under T.

Theorem 6.4.4 : A closed linear subspace M of H reduces an operator T if and only if M is
invariant under both T and T*.

Proof : A closed linear subspace M of H reduces an operator T iff both M and M+ are
invariant under T. By theorem 6.4.3 M is invariant under T iff A7+ is invariant under T*. Thus

M isinvariant under T and T*. Since A * is invariant under T then by theorem 6.4.3 5,
is invariant under T*. But ps+t — ps . Therefore M is invariant under T and T*.

Conversely if M is invariant under T* then M is invariant under T** =T. Thus M

and M* are invariant under T. Therefore M reduces T.

Theorem 6.4.5 : If P is the projection on a closed linear subspace M of H then M is invariant
under an operator T if and only if TP =PTP.

Proof : Suppose M is invariant under an operator T. Let x ¢ /# then Pxe M and

T(Px)=TPxe M -
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Since 7Px e M and P is projection on M, PTPx = TPx. But x ¢ | is arbitrary
vector. Therefore PTP = TP.

Conversely suppose TP = PTP. Let x ¢ M . Since P is projection on M, x = Px 1.e.
Tx =TPx = PTPx e M . Thus for x e M , Tx € M . Therefore M is invariant under T.

Theorem 6.4.6 : If P is the projection on a closed linear subspace M of H then M reduces an
operator T if and only if 7P = PT.

Proof : M reduces T iff M is invariant under T and T* (by theorem 6.4.4) ift TP = PTP (by
theorem 6.4.5) and 7*P = PT*P.

T*P=PT*P=(T*Px,y)=(PT*Px,y) Vx,y e H
& (Px,Ty)=(T*Px,Py) (- P*=P)
< (Px,Ty)=(Px,TPy)
< (x, PTy)=(x, PTPy) (-+P*=PpP)

< PT =PTP
Thus we have 7p — prp and PT = PTP < TP = PT .

Theorem 6.4.7 : If P and Q are the projections on closed linear subspaces M and N of H
then M 1 Q iffPQ=0iff QP =0.

Proof: PO=0< (PQ)*=0< Q*P*=0< QP =0 (-- Q*=Q and P* =P since P
and Q are projections). Therefore we shall prove that if P and Q are the projections on closed
linear subspaces M and N of Hthen Ay | N iffPQ=0.1f Aoy | N then )y — ps* . But for

every xe H, Oxe N and N | M therefore POx=0.So PO=0, Vxe H -
Conversely if PO =0 then forevery xe N, Px=PQOx=0.

Since Px =0, Vxe N, N — M+ andtherefore Af | N.

Definition 6.4.8 : Two projections P and Q are orthogonal it PO =0.
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Theorem 6.4.8 : IfP, P,, P, ....., P are the projections on closed linear subspaces M,,
M,, M;, ..., M, of Hthen P=P, + P, +P; + ...+ P isaprojection iff the Pi’s are pairwise

orthogonal (i.e. FP, =0, Vi# j)and P is projectiononM=M; + M, + M +.... + M.
Proof : Since P, is projection for each i, P;* = P, therefore
P*=B*+P*+P*+....+P*=B+P+P+..+P =P
Thus p* = p — P is selfadjoint. Now P is projection iff P2 = P.

P’=(B+P+P+...+P)(B+P+...+P)

=R’ +P'+PB’+...+ B’ +2} PP,

i%f
=B+P+P+...+P +0 (wBP=0,Vi#j)
=P
Thus P2 =P and p*= p— P is a projection. We have proved that If Pi’s are
pairwise orthogonal then P is projection.
Conversely assume that P is projection i.e. P* =P and P2=P.
Let x be a vector in the range of P;, so that x = P.x . Then,
X(FBx) =3 (Prex)

j=

I =B’ < SJpaf =3P Pr) =

<.

« 2 2
_ (z pjx,xj _ (Px,x) = (P2x, x) = (Px, P*x) = (Px, Px) <Pl <]

Jj=1

Observe that equality must hold all along the line.
ie I =B = iHP]tz
J=
Since Y[ Paf =[P = [P]=0. v =i.
Y=

Thus range of P, is contained in the null space of P, forall j#i,ie. M, c M].L ,

Vji#i.ie. M; LM, Vj=#i.Therefore by theorem 6.4.7, P;’s are pairwise orthogonal.
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Now we shall prove that P is projection on M. Observe that | Px|| = [|x||, Vx € M,, each M;
is contained in the range of P and therefore M is contained in the range of P. Ifx isa vector in

the range of P then x = Px=Bx+ Px+ Px+.....+ PxeM .

Thus P is projection on M.

Above theorem plays a very important role in the spectral theorem.

a0
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UNIT - VII

FINITE DIMENSIONAL SPECTRAL THEORY

The aim of this chapter is to prove finite dimensional spectral theorem. In this chapter
we assume that the Hilbert space H is finite dimensional i.e. dim H=n.

Insection 7.1 we consider linear transformation defined from H to H. The relation
between these operators and the corresponding matrices are discussed. Section 6.2 is devoted
to define spectrum of an operator and in section 6.3 the spectral theorem is proved for finite
dimensional Hilbert spaces.

7.1 LINEAR OPERATORS AND MATRICES

The discussion in this section is independent of the Hilbert space character of H and
applies equally well to any non-trival finite dimensional linear space. All the theorems discussed
in this section are covered in linear algebra. Here we revise certain correspondence between
linear transformation from H to H and A, the set of alln x n matrices.

Let B={e,,e,,e;,......e,} be an ordered basis for H. So that each vector in H is
uniquely expressible as linear combination ofe;’s. If 7: H — H is anoperator then for each
e, €B,Te, € H,Bisbasis therefore each Te; canbe expressed as linear combination of

vectors from B.

The n? scalars a; which are determined in this way by T form a matrix of T relative
to the ordered basis B. We denote this matrix by [T] or [T].

It is customary to write out a matrix as a square array,
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Thus the construction of [T] is as follows. Write Tej as a linear combination of

e, e,,e;,.....,e, and use the resulting coefficients to form jth columnof[T].

Theorem 7.1.1: If B={e,} is an ordered basis for H, then the mapping 7 — [7'], which

assigns to each operator T on H its matrix relative to base B, (i.e. [ T]) is an isomorphism of
the algebra B (H) onto the total matrix algerba 4, where 4, is set ofalln x nmatrices.

Proof : Since Te; =2 a;¢; , [ o, | is the matrix of T.
i-1
If ye H then *= Z}ﬂjej and
J=

Tx:T(iﬂjejj: iﬂjTej = Zn%ﬂj (i%%):i(i%ﬂjj%

j=1 j j i=1\_j=I

Thus [%] determines 7 for every x ¢ H and 7 —[77] is one one map.

If [%] isany n x nmatrix then 7e; = g%ei defines T for every vector e; € B

Since B is basis, every element in H can be expressed as linear combination of vectors in B

and therefore T is extended on H.

The resulting operator T has [061-] ] as its matrix. Thus the mapping 7 — [7°] is onto.
Now to show that 7 _ [ 7] preserve the algebraic structure.

LetT,, T, € B(H) andlet [% ] and [ B; ] be the matrices of T and T, respectively.
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Note :
@

(ii)

(T +T,)e; =Te, + e,

=

n
=2.0,6+ > ﬁijei
1 i=l

1

I
M:

(o +B;)e

1

Thus if we define addition of two matrices by
[%‘]+[ﬂﬁ = [% +ﬂl-j] then [T] +T2] :[ﬂ]+[];]

Similarly if @[ @; |=[ aa, | then [aT; | = a[T}]

Finally (Tsz)e] =T (Tzej) =T (kz_%ﬂkfek)

= i(i aikﬂlg‘ ) €
i=1 \ k=1
Thus if we define multiplication for matrices by,
L@ |15, ]= Zewby then [T1,]=[T][T,]

Thus 7 — [ 7] preserves the algebraic structure.

The image of the zero operator under the mapping 7 s [77] 1s the zero matrix, all of
whose entries are zero.

The image of the identity operator is identity matrix.
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Theorem 7.1.2 : Let B be a basis of H and T an operator whose matrix relative to B is

[alj] . Then T is non-singular iff [ag ] is non-singular and [ag T =[],

Proof : Amatrix [0‘1;; ] is said to be non-singular if there exists a matrix [ ﬂg ] such that,

[0‘4‘/ ] [ﬂi‘:l - [ﬁii ] [O‘zy‘] - [54'1]

-1
where [517 ] is identity matrix. If such matrix exists then it i unique and is denoted by [% }

and it is called inverse of [al_j ] .

Suppose [%] is the matrix of an operator T relative to basis B. Since T is non-

singular T-! exists. Moreover TT ! = T-1T =I. By theorem 6.1.1 we have
[rilr]=[r1r]=[1]
Lo, JIT]=[1"][ e =] 5, ]

Thus [%} =[7"].

Theorem 7.1.3 : Two matrices in A_ are similar if and only if they are the matrices of a single
operator on H relative to different basis.

Proof : If T is a fixed operator on H then its matrix [7'], relative to basis B depends on the

choice of basis.

Let B={e,,e,,e;,....e,} be a basis of H and suppose B'={1,, f;, fys-rr [, } I8

another basis of H.

Suppose [%] and [ ﬂlﬂ] are the matrices of T relative to the basis B and B'

respectively. Define a non-singular operator AonHby Ae, = f;,i=1,2,3, ..., n.
Let [7/17] be the matrix of A relative to B so that 4e; =2 7,€; .
’ i=l1

By theorem 6.12 matrix [7/{7 ] is non-singular.
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Consider, If; =2 B,/
k=1

Z 7ikﬁkj = l; OV i Vi, j

[ﬂi'] = [VUT [aij}[%]
[T]B' = [A]Za] [T]B [A]B

Definition 7.1.1 : Two matrices [%] and [ ﬂij] are said to be similar if there exists a non-

singular matrix [yij ] such that [ﬁij } = [7’1-; T [% } [7’1-,- ] .
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We have seen that a given operator on H may have many different matrices relative to
different basis. These matrices are related to each other given by definition 7.1.1. Thus working
with operators is equivalent to working with square matrices.

7.2 THE SPECTRUM OFAN OPERATOR

Definition 7.2.1 : Let T be an operator on H. Let [T] be the matrix representing T. The
scalar , is said to be an eigen value of an operator T if there exists a non-zero vector x ¢ i

suchthat ([7]— A7) x = 0. Anon-zero vector x e H is called eigen vector.

Definition 7.2.2 : Let T be an operator on H. The set of eigen values of T is called spectrum
of T and is denoted by & (7).

In definition 7.2.1, anon-zero vector x € H forwhich ([7]— A7) x = 0 existsif det

det([7]- AI) =0 . Here we list some properties of determinants.

Let [ag ] be ann x nmatrix. The determinant of this matrix which we denote by det

[al_j ] is a scalar associated with it in such a way that

1) det([&ij}):det(l)zl

2) det([aij}[ﬁﬁ}):det([aij])det([ﬁij])

3) det ([% D # 0 ifand only if [0‘1;; ] is non-singular.

4) det ([aij } -1 [51-]- D is a polynomial with complex.
Coefficients of degree n in the variable J .
The determinant is a scalar valued function of matrices which has certain properties.
1) det(7)=1
2) det (7,7, ) = det (7, )det(7})
3) det (7)) = 0 T is non-singular.

4) det(7 — AJ) is apolynomials of degreenin .
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Suppose T : H — H 1s an operator. Suppose B and B' are basis of H. Suppose

[0‘1;; ] and [ B; ] are matrices representing the transformation T with respect to basis B and

B' respectively. By theorem 7.1.3 there exists a non-singular matrix [ 7, | such that
[8:]=0n] L]
det[ g, |=det[y, ] det[a, Jdet[ 7, ]
=(det[7, ])_] det| a; |det] 7, |

= det [0‘1;; ]
Thus determinant of an operator relative to any basis is same, where we define
determinant of an operator T as determinant of'its matrix relative to any basis.

Theorem 7.2.1 : IfT is an arbitrary operator on H, then the eigenvalues of T constitute a
non-empty finite subset of the complex plane. Furthermore the number of points in this set
doesnot exceed the dimension » of the space H.

Proof : Let T be an operator on H. Ascalar j} isaneigenvalue of T if and only if there exists
anon-zero vector x ¢  suchthat (7—A7)x=0.Non-zero x ¢ H satisty (7 —AI)x=0
ifand onlyifdet(7 — A7) = 0 . Thus the eigen values of T are precisely the distinct roots of the

equation.

det(r—-A0)=0 .. (1)

Equation (1) is a polynomial equation of degree 7 in j . By fundamental theorem of
algebra, a polynomial of degree n has exactly n roots. Some of these roots may be repeated,
in which case there may be fewer than » distinct roots.

Insection 7.1 and 7.2 we briefly state certain properties of operators because operator
is a linear transformation from H to H where H is finite dimensional vector space. Therefore
the theory of linear transformations on vector spaces holds for operators defined on H. In
addition since T is an operator corresponding matrices are square matrices.
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7.3 THE SPECTRAL THEOREM

If T is an operator on a finite dimensional Hilbert space H then the scalar ), and non-
zero vector y e H satisfying (7 — A1) x = 0 are called eigen value and eigen vector of T

respectively. Each eigen value has one or more eigen vectors associated with it.

Let 1 bean eigen value of T and consider the set M of all its corresponding eigen
vectors together with the vector 0. (note that 0 is not an eigen vector). Thus M is the set of all
vectors x which satisfy the equation.

(T-AI)x=0

The space M is closed subspace of H. We call M the eigen space of T corresponding
to 1.

Lemma 7.3.1 : The space M is invariant under T i.e. 7(M) c M .
Proof: Let x e A/ then Tx = Ax e M . Since M is subspace for xye M , Axe M .

Thus 7(M)c M -

Let T be an arbitrary operator onH. Let 4,,4,,4,,..., 4, are distinct eigenvalues of

Tand M, M,, M5, ...., M, be their corresponding eigenspaces. Now we shall prove certain
results related to subspaces M,,i=1,2,3, ..., m.

Theorem 7.3.1 : If T is normal operator on a finite dimensional Hilbert space H, thenx is
an eigen vector of T with eigen values } ifand only ifx is an eigenvector of T* with eigen

values } .
Proof : Since T is normal operatir T*T =TT*.
(T=AD (T=AD) =(T" = ZI(T = A1) =T*T = AT *~AT + AL1

—TT*AT* AT+ A0 =(T = 2T *-21) = (T = 2D(T = A1)
Therefore if T is normal operator then 77— 4] is normal. We know that if T is normal

operator then ||7x|| = |7 * x|| and therefore,

7= 2D x| =|(T*-ZD) x| =T *x - 7xl, vxeH
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This we have, |T7x — Ax]| = |7 *x = 1 x|

If |7x-Ax|l=0 Tx=Ax < ||T*—Zx|| =0 T*x=Ax
Thus x is an eigen vector of T with eigen value ; iffx is an eigen vector of T* with

eigen value } .

Theorem 7.3.2: If T is normal operator with eigen values 4,4,,..,4, and

M, ,M,,M,,...,M, their corresponding eigenspaces, then M,’s are pairwise orthogonal.
Proof: Let x;,x; be vectors in M, ande fori#j.
Then Tx; = A.x; and Tx, = A ,x;.

li(xi,xj):(/lx X,

(A ER

= (Txi’x_j) = (x,',T*x.‘) = (xl.,/ljxj) =4, (xl.,xj)

)
Thus 2 (x,,%;) = 2; (%, x;) for 4, # 4,.

J J
Therefore (x;,x;)=0.

Hence for i= j, M, L M.

Theorem 7.3.3 : If T is normal then each M ; reduces T.

Proof : In lemma 7.3.1 we have seen that eachMl. 1s invariant under T. It is sufficient to show
that each M; is invariant under T*. If x; € M, then Tx; = A.x; € M. Since M; is subspace of
H.

But T*x, = Ax, € M,. Thus T*(M,) = M, .

Since M; is invariant under T and T*, M, reduces T.

Theorem 7.3.4 : If T is normal then M;’s span H.

Proof : Let T be a normal operator on Hilbert space. Let 4,,4,,4,,...,4,, be eigenvalues and

M, M,,M,,.... M, arecorresponding eigen spaces. By theoem 7.3.2, all these eigen spaces
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are pairwise orthogonal. Let P; denote the projections on closed linear subspaces M,. Since
M, 1M, Vi# j,bytheorem6.4.7, BP, =0, Vi= j. Since all M;’s are closed linear
subspaces of H, M =M +M, +...+ M, is also a closed linear subspace of H and its

associated projection P=F, + P, + P, +...+ P, (bytheorem 6.4.8).

Since each M; reduces T, and P; is projection on M}, by theorem 6.4.6, TF, = PT,
vi=1,2,3, ..., ,m. Therefore TP =PT where P=F + P, + P, +...+ P, is projection on
M=M+M,+M,+..+M, . Since TP = PT where P is projection on M, by theorem
6.4.6, M reduces an operator T. Consequently 3, is invariant under T. If A7+ = {0} then

since all eigenvectors of T are contained in M, the restriction of T to p4+ is an operatorona
non-trival finite dimensional Hilbert space which has no eigenvectors and therefore no eigenvales.
But by theorem 7.2.1 eigenvalues of T constitute non-empty finite subset of the complex

plane. Therefore T on 44+ donot have any eigenvalue is imposible. Hence A7+ = {0} . But
then M =H and the M;’s span H.

Thus we have seen that if T is normal operator, there are finitely many eigenvalues

A2y, Ay, A, which are distinct with corresponding eigenspaces M, M ,,M,,...M .

There eigen spaces are pairwise orthogonali.e. M, L M, Vi# j and these M;’s spane H.
H=M+M,+M,+..+ M,

Since H= M, +M,+M,+..+M, , each vectory x e H can be expressed

uniquely in the form
X=X +x,+x;+...+x, where x, e M, fori=1,2,3,....,m
Since M, L M, fori# j, x, L x, for i # j and
Tx=T(x+X,+x,+..4x,)
=Tx, +Tx, +Tx; +...+1x,,
=Ax +Ax, + x5+ .+ x,
Suppose P; are projections on H with range M. Since M, L M ;. P/’s are pairwise

orthogonaland Px = x,.
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Thus Ix=x=x+x,+x+...4+x,
=Fx+Px+Px+..+Px
=(B+P,+P+..+P,)x, VxeH -

Hence I=FR+P +P+..+P,

Since Tx=Ax +Ax, +x;+...+4 x,

=ABx, + A, Px, + L,Px; +..+ 4 P x

m- m

=(AB+M4,B + AP +..+ A, P,)x, Yxec H .

Thuswehave, T = AR +A,P, + AP +...+ 4 P, e ()

The expression (*) for T is called the spectral resolution of T.

We have shown that if T is normal then it has a spectral resolution.
T=AB+_LP+AP+...+1 P

Thus we have a spectral theorem.

Theorem 7.3.5 : Spectral Theorem

Let T be an arbitrary operator on Hilbert space H. Then distinct eigenvalues of T
form a non-empty finite set of complex numbers 4,,4,,4,,...,4, with corresponding
eigenspaces M, M,,M,,...M, . Let F,P.P,..,P, be the projections on
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M ,M,,M,,... M, respectively. Then following statements are equivalent.

q)) The M;’s are pairwise orthogonal and span H.

(I)  The P;’s are pairwise orthogonal, / =2 F, and T =2 A F, .
i=1

i=l

(I) T isnormal operator.

Theorem 7.3.6 : If T is normal operator on Hilbert space H then the spectral resolution,

T=ALB+AP+A4P+...+A P isunique.
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Proof : Intheorem 7.3.4 we have seen that if T is normal operator on H then T ha a spectral
resolution

Ir=AB+ALP+AP+..+AP L (1)
Since P;’s are orthogonal.
T? =(AP+ AP +..+ /”Lum)2
=A'P+ 2, P} +..+ 4, P +2(AABP +..+ 4, A, PP, )
=A'P’+ AP +..+ 1P} (PP =0as P LP)

In general if  is any positive integer then,

T" =Y A"P e 2)

Sinc ! =2 P, equation (2) holds for n=0.
i-1

Let p(z) be any polynomial with complex coefficients in the complex variable z. Then
by equation (2) we have

p(D=2p(x)5 L 3)
Define polynomials

(z—ﬂ,,)(z —lz)....(z—/lj_,)(z =i )....(z— Am)
(5= 2) (2 =2 ) By = 2 ) g = ) = )

p;(z)=

Since p; is a polynomial and since p; (4, )=, .

From equation (3) we have,
p,(T)=%p (X)B=FP . 4)
i=1

The projections Pj, j=1,2,....,mareuniquely determined as polynomials in T.

Assume that there is another expression for T similar to (1)

T'=00 +0,0, +a;0,+...+a, 0, ...(®
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Which is also a spectral resolution of T. i.e. «,’s are distinct complex numbers, Q;’s

k
are non-zero pairwise orthogonal projections and / = 2 O, . We shall show that (5) is identical
i=1
to (1).
First we shall show that «,’s are eigenvalues of T. Since O, # 0 there exists a non-

zero vector x in the range of O, and for this x, Q;x=xand for j#i, O,x =0 (Since Q;’s are

pairwise orthogonal) from equation (5) we have for x inrange of O,
Tx=(a,0, + 2,0, +...4 2,0, ) x =a,0x =a,x

Thus Tx = a;x for some non-zero x. So each ¢; is eigenvalue of T. Next we shall

prove that if ) is an eigenvalue of T then A = ¢¢; for some i, suppose 2 is an eigenvalue of

T. So that 73 = 1x forsome non-zero y e i . Then,

Tx=Ax=Alx=13 0x=3 A0x
i=l i=1
Butsince 7 =2.a,0,, Tx=2 a,0x
i=1 i=1

Thus Tx:ZAQix :ZaiQiX: Z(}‘_ai)Qix: 0
i=1 i=1 in1

Since Qyx are pairwise orthogonal, non-zero vectors among Q;x are linearly
independent. Therefore,

Y(A-¢,)0x=0=>1-a,=0=A=q, forsomei.

Thus the set ¢, is the set of all eigen values of T.

In particular equation (5) is in the form,
r=10+AL0,+.+40 .. (6)

But then as discussed earlier,
0 =p, (T) forevery; )]

On compairing (7) with (4) we see that O, = P,,j=1,2, ... m.

Thus the spectral resolution of T is unique.
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In section 7.1 we have seen that the matrix representation of an operator T dependents
upon the choice of basis for a Hilbert space H. From spectral theorem we have

H=M+M,+..+ M, where M;’s are pairwise orthogonal. If for each M; we choose

orthogonal basis, then we have orthogonal basis for H and relative to this basis the matrix of
operator T denoted by [T] has the following form,

A0 - 0

0 A - 0
[T]= 2

0 0 - AT

m

Where each 4/ and 0 are matrices i.e. [T] is partition matrix. Order of A/

dependents upon the dimension of M.

Thus there exist an orthogonal basis for H and relative to this basis, the matrix of T 1s
diagonal.
In this chapter we have proved that a normal operator T on finite dimensional Hilbert

space H has spectral resolution i.e. there exist distinct complex numbers 4,,4,, 4,,...,4, and

non-zero pairwise orthogonal projections B,P,,P,,...,P,, such that > £, =1 and
i=1

m?

T =% AF, . This theorem is generalized for the infinite dimensional case by analytic approach

i=l

and by algebraic or topological approach.

a0
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