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Preface
Functional Analysis is a core branch of mathematical analysis which has wide application

in various branches of mathematics such as differential equations, integral equations,
approximation theory, classical theory of analytic functions etc. This subject deals with the
study of vector spaces equipped with a distance function norm and hence the study endowed
with topological structure.

In this course we study the theory of Banch spaces, functional spaces, Hilbert spaces,
theory of operators, spectral theory etc. Content of this book is developed by taking in to
account an actual classroom teaching. The material is self-explanatory and it is written
keeping in mind the requirement of distance mode students. Thus the detailed explanations
of theory provided with number of supporting examples. This self-instructional material is
written according to the syllabus of Distance Education, Shivaji University, Kolhapur.

This book is divided into seven units. In Unit 1 normed spaces and Banach spaces are
introduced. Unit 2 deals with bounded linear transformations and the well known theorems
viz. open mapping theorem, Closed graph theorem and uniform boundedness principle. In
unit 3, we study bounded linear functional, conjugate spaces, Hahn-Banach theorem and its
consequences. Unit 4 is devoted to study second conjugate space, natural imbedding,
equivalent norms and finite dimensional spaces. In unit 5, Inner product spaces are introduced.
Properties of inner product spaces along with certain examples are discussed at the beginning.
Hilbert spaces, orthogonal complements, orthonormal sets and Gram Schmidt orthogonalization
procedure is discussed along with some examples. Conjugate spaces and Riesz representation
theorem is discussed at end. Unit 6 deals with bounded operators on Hilbert spaces. Adjoint,
self adjoint operator and their properties are discussed in detail. Normal, unitary operators
and their properties are discussed along with certain examples. Projection and representation
of spaces as sum of projection is proved at the end. In unit 5 is devoted to finite dimensional
spectral theory.

This self instructional material is developed by taking into account the quarries of
students in classroom. We feel that this book will find useful for the students to learn and
understand the basic concepts in Functional Analysis.
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Each Unit begins with the section Objectives -

Objectives are directive and indicative of :

1. What has been presented in the Unit and

2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.

(viii)
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NORMED  SPACES  AND BANACH SPACES

UNIT  -  I

In this unit we deal with the normed linear spaces, example and non-example of
Banach spaces, nomed quotient space is defined and proved it is complete.

1.1 LINEAR SPACES

1.1.1 Definition

A linear space (or vector space) over the field   is a nonempty set L together with
two algebraic operations.

:  L L L , called vector addition,

 :   L L , called scalar multiplication

satisfying the following conditions.

1) (L, +) is an abelian group.

2) For all , x y L  and all ,    , we have,

(a)       x y x y  

(b)       x x y   

(c)      x x  

(d) 1 x x , 1 is unity element of 

1.1.2 Remark :

(i) Vector addition is mapping  ,  x y x y  which associate each pair of elements

, x y L  to an element x + y in L, called sum of x and y.

(ii) Scalar multiplication is a mapping  , x  x   which associate each element

   and each x L  to an element x  in L.

(iii) The elements of a linear space are called vectors and the elements of the field  are
called scalars.
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(iv) If L is linear space over field   then L is called a linear space if    (the field of
real numbers), and a complex linear space if    (the field of complex numbers).

1.1.3 Theorem : Let L be a linear space over field  . Then :

(a) 0 0x ,  x L
where 0 in left side of equation is scalar zero and 0 in right side is zero vector.

(b) 0 0 ,   
where 0 in both side is zero vector.

(c) ( 1)  x x ,  x L

(d) 0 0  x   (scalar zero) or x = 0 (vector zero)

1.1.4 Definition : A nonempty subset M of a linear space L over the field   is said to be
a linear subspace (or simply a subspace) if the following condition is satisfied :

 x y M  , , x y M  and ,    .

Note : In what follows, the remaining related concepts of linear spaces we recall whenever it
is needed.

1.2 NORMED LINEAR SPACES

1.2.1 Definition :  Let    (or  ), and X be a linear space over the field  .

A function :  X  is said to be norm on X if for all , x y X  and all   , we
have,

(i) 0x

(ii) 0x  iff x = 0

(iii)   x y x y (Triangle Inequality)

(iv) x x  (Homogeneity of norm)
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1.2.2 Definition : A linear space X over the field    (or  ) with a norm   defined
on it is called a normed linear space over   (or simply a normed space).

We denote the normed linear space by pair  , X  or simply by X. The normed
linear space X is called real normed linear space if   , and complex normed linear space
if   .

1.2.3 Remark : The real number x ,  x X  is called the norm of vector x.

The element of field    (or  ) will be called Scalars.

1.2.4 Example : The linear space   over the field   is normed linear space with the
norm defined by x x , x .

1.2.5 Example : The linear space   over the field   (or  ) is normed linear space with

the norm defined by 2 2  z z x y ,   z x iy .

We will see more examples of normed linear spaces in the topic Banach Spaces.

Note : Let X and Y be two linear space over the field    (or  ).

Then the cartesian product X   Y is again a linear space over   under the algebraic
operations given by,

     , , ,   x y u v x u y v

and    , ,x y x y  

where  ,x y ,  ,  u v X Y  and   .

1.2.6 Problem : Let  , XX   and  , YY   are normed space. Prove that

   , max ,X Yx y x y ,  ,  x y X Y ..... (1)

defines a norm on linear space X Y .
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Proof : Let  , XX   and  , YY   are normed linear space over the same system of scalars.

Let any  ,x y ,  ,  u v X Y  and  be any scalar..

(i) Since 0Xx   and  0Yy 

   , max , 0X Yx y x y 

(ii) Let    , 0,0x y  (zero vector in X Y )

Then      , 0,0 max 0 , 0 0X Yx y   

Conversely, let  , 0x y . Then,

 max , 0X Yx y 

0Xx  , 0Yy 

0  x y

   , 0,0 x y , zero vector in X Y .

(ii)    , ,x y x y    max ,X Yx y 

    max ,X Yx y 

   max ,X Yx y

   , x y

(iii) X X Xx u x u  

    max , max ,X X YYx y u v 

    , , x y u v

i.e.    , ,Xx u x y u v  

on the same line,



5

   , ,Yy v x y u v  

Therefore,

     max , , ,x yx u y v x y u v   

     , , ,x u y v x y u v    

       , , , ,x y u v x y u v   

From (i) - (iii), X Y  is normed space with the norm defined by (1)

Exercise : Let  , XX   and  , YY   be two normed spaces. Prove that

 , X Yx y x y  ,  ,x y X Y   defines norm on linear space X Y .

1.2.7 Theorem : Let  ,X   be a normed linear space. Define :d X X   by

 ,d x y x y  , ,x y X .

Then d is metric on X.

Proof :  Let  ,X   be a normed linear space. Let any , ,x y z X . Then,

(a)  0 , 0x y d x y   

(b)     , 1d x y x y y x    

   1 ,y x y x d y x     

(c)  ,d x y x y 

   x z z y   

x z z y   

   , z ,d x d z y 

Therefore, d is metric on X. Hence (X, d) is metric space.
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1.2.8 Remark : Let  ,X   be a normed linear space. A metric d on X given by,,

 ,d x y x y  , ,x y X

is called the metric induced by the norm.

With this metric, a normed linear space become a metric space and hence a topological
space.

1.2.9 Theorem : A metric d induced  by a norm   on a normed linear space X satisfies

(a)    , x,d x z y z d y  

(b)    , x,d x y d y  

for all , ,x y z X  and every scalar  .

Proof : Let  ,X   be a normed linear space over the field    (or  ).

Let any , ,x y z X  and   and d is metric induced by the norm  .

Then we have :

(a)      ,d x z y z x z y z     

x y 

 ,d x y

(b)  ,d x y x y    

       x y x y    

       ,d x y

1.2.10 Remark : Every norm on a normed linear space induces a metric but every metric on
a linear space cannot be obtained from a norm.

The above theorem gives the conditions under which a metric on a linear space can
be obtained by a norm on it.
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1.2.11 Example : Let X be a space of all (bounded or unbounded) sequences of complex
numbers and define

 
1

1,
2 1

n n
n

n n n

x y
d x y

x y








 


where   1n nx x 


  and    1n ny y 


  belongs to X.

Then (X, d) is metric space.

If d is metric obtained from some norm then it  must satisfy

   , ,d x z y z d x y    and    , ,d x y d x y  

for any , ,x y z X  and  .

However, we see that

 
1

1,
2 1

n n
n

n n n

x y
d x y

x y
 

 
 








 


      
1

1
2 1

n n
n

n n n

x y
x y









 


       ,d x y

i.e.    , ,d x y d x y  

Thus metric d cannot be obtained from any norm.

1.2.12 Example :

Let d be the discrete metric on set of real numbers  . Then,

  1  if  
,

0  if  
x y

d x y
x y


  

Then for ,x y  with x y  we have

 5 ,5 1d x y  , as 5 5x y

But,    5 , 5 1 5d x y  
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Therefore,     5 ,5 5 ,d x y d x y

Thus the discrete metric on   cannot be obtained from any norm.

Exercise :

1) Let  ,X   be a normed space.

Define : X X 9  by

   , min 1,x y x y 9 , ,x y X

Prove that there is a no norm on X which generates metric 9 on X.

2) Let d be a metric induced by a norm   on a linear space  0X  .

Define  
 

0                 if  
,

1 ,   if  
x y

x y
d x y x y


   

9

Prove that 9 cannot be obtained from a norm on X.

1.3 PROPERTIES OF NORM

As every normed linear space is metric space with induced metric, the concept of
open sets, closed sets, convergence of sequences and related concepts of metric spaces
naturally enter into normed linear spaces.

1.3.1 Definitions : Let  ,X   be a normed linear space.

1) Let any 0x X and 0r  . Then the set    0 0:rS x x X x x r     is called

open sphere with centre 0x  and radius r, and the set    0 0:rS x x X x x r     is called

closed sphere with centre 0x  and radius r.

2) A sequence  nx  in X is said to be convergent to x X  if  for given 0  , 0 n 
such that

nx x   , 0n n 

We write, lim 0nn
x x


   or lim nn

x x


 .
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3) A sequence  nx  in X is said to be Cauchy sequence if for given 0  , 0 n 

such that m nx x   , 0,m n n 

4) Let A X  and x X . Then x is called limit point of A if    rA S x x   ,

0r  .

5) A point x in a subset A of X is called an interior point of A if  0r   such that
 rS x A  (i.e. A is neighbourhood of x).

6) A subset A of normed linear space X is said to be bounded if there exists K > 0 such
that x K , x A  .

7) Let   1n nx 


 be a sequence in a normed space X. The series 

1
n

n
x




  is said to convergent

if the sequence   1n nS 


 of the partial sums 

1

n

n j
j

S x


 , (n = 1, 2, ......) is convergent.

If nS x  i.e. 0nS x   then 
1

n
n

x x



 .

Further the series 
1

n
n

x



  is said to absolutely convergent if 

1
n

n
x




  is convergent.

1.3.2 Theorem : In a normed linear space every convergent sequence is a Cauchy sequence.

Proof : Proof is similar as in metric space.

1.3.3 Theorem : In a normed space  ,N  ,

  x y x y   , for all ,x y N .

Proof :  Let  ,N   be a normed space and let any ,x y . Then we have

 x x y y x y y     

This implies,

x y x y   ..... (1)
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Interchanging role of x and y we get

y x y x  

  x y  

  1 x y  

 x y 

      x y x y     ..... (2)

From (1) and (2), we have

x y x y x y     

Therefore,

  x y x y  

1.3.4 Theorem : Let  ,N   be a normed space. Then the mapping : N    is
continuous i.e. norm is continuous function.

Proof : Let  ,N   be a normed space.

Let nx x  in N. Then

0n nx x x x     as n  .

nx x   as n 

Therefore   on N is continuous.

1.3.5 Definition : Let  , XX d ,  , YY d  and  , ZZ d  are metric spaces. A mapping

:f X Y Z   is jointly continuous if and ony if nx x  in X and ny y  in Y implies

   , ,n nf x y f x y .
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1.3.6 Remark : If f is jointly continuous then it is continuous in each variable separately but
the converse is not true.

1.3.7 Theorem : The operations of addition and scalar multiplications in a normed space
are jointly continuous.

Proof : Let  ,N   be a normed space over    (or  ).

Let nx x  in N, ny y  in N and let n   in  .

(i)        n n n nx y x y x x y y      

         0n nx x y y    

This gives     0n nx y x y     as n   i.e. n nx y x y   .

Therefore vector addition : N N N    is jointly continuous.

(ii)    n n n n n nx x x x x x         

         n n nx x x     

      n n nx x x     

       0  as n 

Thus 0n nx x    i.e. n nx x 

This proves scalar multiplication  : N N    is jointly continuous.

1.3.8 Definition (Seminorm) : A seminorm on a linear space X over    (or  ) is a
function : Xf    satisfying.

(i)   0f x 

(ii)    f x f x 

(iii)      f x y f x f y  

for all ,x y X  and all  .
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1.3.9 Remark : We observe that

1)  0 0f 

2)      f x f y f x y   , ,x y X

3) If   0f x   implies x = 0 then f is norm on X.

1.4 BANACH SPACES

1.4.1 Definition : A normed linear space  ,N   is said to be complete if each Cauchy
sequence in N converges to a point in N.

Note : The normed space  ,N   is complete means it is complete in a metric space (N, d)

where  ,d x y x y  , ,x y N .

1.4.2 Definition :  A complete normed linear space  ,N   is called a Banach Space.

The Banach Space N is called real (or complex) if the underlying field   is
  (or  ).

1.4.3 Example : The real linear space   is Banach space with norm x x , x .

1.4.4 Example : The complex linear space   is Banach space with norm
2 2z z x y   , z x iy   .

1.4.5 Cauchy-Schwartz Inequality (for n-tuples)

Let  1 2, ,..., nx x x x ,  1 2, y ,..., y n
ny y  , (    or  ), then

1 1
2 22 2

1 1 1

n n n

j j j j
j j j

x y x y
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1.4.6 Problem :  Prove that n , (    or  ) is Banach space with the norm

1
22

1

n

j
j

x x


    
 ,

where  1 2, ,..., n
nx x x x  .

Solution :

Part - I : To prove  ,n   is normed space.

Let any  1 2, ,..., nx x x x ,  1 2, y ,..., yny y  in n , (    or  ), and let 
be any scalar.

(i) Since 0jx  , j  (j = 1, 2, ..., n), we have

2

1
0

n

j
j

x


 . This gives 0x  .

(ii)    1 20 , ,..., 0,0,....,0nx x x x  

         0jx  , j  (j = 1, 2, ..., n)

         0jx  , j  (j = 1, 2, ..., n)

         
2

1
0

n

j
j

x


 

         0x 

(iii) Since  1 1 2 2, ,..., n nx y x y x y x y      we have

2 2

1

n

j j
j

x y x y


  

1

n

j j j j
j

x y x y


  

 
1

n

j j j j
j

x y x y
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1 1

n n

j j j j j j
j j

x y x x y y
 

    

Using Cauchy-Schwartz inequality we get

1 1 1 1
2 2 2 22 2 2 2 2

1 1 1 1

n n n n

j j j j j j
j j j j

x y x y x x y y
   

                         
   

x y x x y y   

 x y x y  

This gives

x y x y  

(iv) As  1 2, ,..., nx x x x     we have

1
22

1

n

j
j

x x 


    


        
1

22 2

1

n

j
j

x


    


        
1

22

1

n

j
j

x


    


        x

We have proved that,  ,n   is normed space.

Part - II : To prove  ,n   is complete.

Let   1m mx 


 be any Cauchy sequence in n , where for each m ,

      1 2, ,...,m m m
m nx x x x .

Then for given 0  , 0 n   such that

0, m km k n x x    
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  2 2
m kx x   

  
    2 2

1

n
m k

j j
j

x x 


  

But
       2 2

1

n
m k m k

j j j j
j

x x x x


   , for all   j ( j = 1, 2, ..., n)

Therefore,

    2 2
0, m k

j jm k n x x     , j

     m k
j jx x    , j

This shows that for each  j (j = 1, 2, ...., n),   
1

m
j m

x



  is a Cauchy sequence in  .

Since   =   or   is complete space, there exists jx   such that,

 m
j jx x  as m , for each  j  (j = 1, 2, ......, n)

Define  1 2, ,..., nx x x x  then nx .

We prove that mx x  as m .

By (1), 1n   such that,

 
1

m
j jm n x x

n


    , j

 
22m

j jx x
n


   , j

 
22 2

1

n
m

j j
j

x x n
n





 
    

 


 
1

22

1

n
m

j j
j

x x 


     




16

mx x   

Therefore mx x  in n .

By part I and II, n  is Banach Space.

1.4.7 Minkowski Inequality (for n-tuples)

Let  1 2, ,..., nx x x x  and  1 2, y ,..., yny y  be the elements of n , (    or

 ) and let p be a real number such that 1 p   , then

1 1 1

1 1 1

n n np p pp p p
j j j j

j j j
x y x y

  

                 
  

1.4.8 Problem : Let p be a real number such that 1 p   , and denote by n
p  the space

n (    or  ) , with the norm

1

1

n pp
p j

j
x x



    
 , where  1 2, ,..., n

n px x x x 

Prove that n
p  is a Banach space.

Solution : Part I : To prove n
p  is normed space.

Let any  1 2, ,..., nx x x x ,  1 2, y ,..., yny y  in n
p , and let   be any scalar..

(i) Since 0jx  , j , (j = 1, 2, ...., n), we have

1
0 0

n p
pj

j
x x


  

(ii)  1 20 , ,..., 0nx x x x  

         0jx  , j

         0p
jx  , j
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1

1 1
0 0

n n pp p
j j

j j
x x

 

     
 

 

         0px 

(iii) As  1 1 2 2, ,..., n nx y x y x y x y      we have

1

1

n pp
j jp

j
x y x y



     


By Minkowski inequality we have,

1 1 1

1 1 1

n n np p pp p p
j j j j

j j j
x y x y

  

                 
  

Therefore, pp px y x y  

(iv) As  1 2, ,..., nx x x x     we have

1

1

n pp
p j

j
x x 



    


         
1

1

n pp p
j

j
x



    


         
1

1

n pp
j

j
x



    


         px

Therefore, n
p  is normed space.

Part II : To prove n
p  is complete.

Let   1m mx 


 be any Cauchy sequence in n

p , where for each m ,

      1 2, ,...,m m m
m nx x x x .
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For given 0  , 0n   such that

0, m km k n x x    

  p p
m kx x   

  
   

1

n pm k p
j j

j
x x 


  

But for each j  (j = 1, 2, ...., n)

       

1

np pm k m k
j j j j

j
x x x x


  

Therefore,

   
0,

pm k p
j jm k n x x      , for each j

  ( ) ( )m k
j jx x     , for each j

This shows that for each j  (1 j n  ),   
1

m
j m

x



 is Cauchy sequence in complete

space    or  .

Hence jx   such that,

 m
j jx x  as m  for each  j. .... (1)

Define  1 2, ,..., nx x x x ; then n
px .

We prove that mx x  in n
p  as m .

By (1) 1n   such that,

 
1 1

m
j j

p
m n x x

n


    , j

 
ppm

j jx x
n


   , j
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1

pn pm p
j j

j
x x n

n





   

m px x   

This proves mx x  in n
p  as m .

By Part I and II, n
p  is a Banach space.

1.4.9 Remark : In above example for p = 2 we have two important Banach spaces :

1) Unitary n-space :  The space n  with the norm 
1

22
2

1

n

j
j

x x


    
 ,

 1 2, ,..., n
nx x x x  , is a Banach space. The Banach space  2,n   is called unitary n-

space.

2) Similarly, the Banach space  2,n   is called Euclidean n-space.

1.4.10 Minkowski Inequality (for sequences) :

Let   1n nx 


 and   1n ny 


 be any sequences in    or   such that 

1

p
n

n
x




 

and 
1

p
n

n
y




  , and p be a real number such that 1 p   . Then,

1 1 1

1 1 1

p p pp p p
n n n n

n n n
x y x y

  

  

                 
  

1.4.11 Problem  : Let p be a real number such that 1 p   . Denote by p  the space of

all sequences   1n nx x 


  in    or   such that 

1

p
n

n
x




  , with the norm
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1

1

pp
p n

n
x x





    


Prove that p  is Banach space.

Solution : Let  any   1n nx x 


  and   1n ny y 


  in p  and   be any scalar. We know p

is linear space with vector addition and scalar multiplication given by,

  1




  n n nx y x y ,

and   1




 n nx x 

Part - I : To Prove  p  is normed space :

(i) Since 0nx   n ,  
1

0





p
n

n
x

This gives 0px .

(ii)   1
0 0


  n nx x

         0 nx ,  n

         0 p
nx , n

         
1

0



 

p
n

n
x

         0 px

(iii) Since   1




  n n nx y x y , we have

1

1





     


pp
n np

n
x y x y

By Minkowski inequality,

1 1 1

1 1 1

  

  

                 
  

p p pp p p
n n n n

n n n
x y x y
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Thus,   pp px y x y .

(iv) As   1




 n nx x  , we have

1 1

1 1

 

 

          
 

p pp p
p n n

n n
x x x    px

Therefore,  p  is a normed space.

Part - II : To prove  p  is complete.

Let   1



m mx  be any Cauchy sequence in  p , where for each m,    1




 m

m n nx x

such that 
 

1

m
n

n
x




  .

Then for given 0 , 0 n  such that

0,    m k pm k n x x 

   

1




  

pm k p
n n

n
x x  .... (1)

Since 
       

1




  

p pm k m k
n n n n

n
x x x x  for each n, we have

   
0,    

pm k p
n nm k n x x  , n

        m k
n nx x  , n

Thus for each n,  ( )
1

m
n mx




 is Cauchy sequence in complete space    or  .

Hence  x   such that for each n

  m
n nx x  as m . ...... (2)

Define   1




 n nx x . We show that   px  and mx x  as m .
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From (1), we have,

   
0

1
,


   

r pm k p
n n

n
m k n x x  , for each r, (r = 1, 2, 3, ....) ..... (3)

Letting k  in (3), and using (2), we get

 
0

1
   

r pm p
n n

n
m n x x  , for each r, (r = 1, 2, 3, ......)

This on tending r , we obtain

 
0

1




   

pm p
n n

n
m n x x  ...... (4)

This shows that  m px x .

By Minkowski inequality and using (4), we obtain

  
1 1

( )

1 1

p ppp m m
n n n n

n n
x x x x

 

 

           
 

   
1 1

1 1

 

 

           
 

p pp pm m
n n n

n n
x x x

  m mp px x x

  m px

1




       

pp
n m p

n
x x

  1




  n pnx x .

Finally, from (4) we have

0   m pm n x x 

This gives mx x  in  p  as m .

Therefore  p  is complete.

By Part I and II,  p  is Banach space.
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1.4.12 Remark :  In above example, for p = 2 we have following two important Banach
spaces.

1. The set of all sequences   1




 n nx x  in   such that 

1




 

p
n

n
x , with the norm

1
22

2
1





    
 n
n

x x is denoted by  . Then   is Banach space and it is called infinite

dimensional unitary space.

2. The  infinite dimensional Euclidean space is defined similarly as above.

1.4.13 Problem :  Denote by 
n  the space n , (    or  ) with the norm defined by

1
max
 

 jj n
x x , where  1 2, ,..., nx x x x . Prove that 

n  is Banach space.

Solution : Part - I : To prove 
n  is normed space

Let any  1 2, ,..., nx x x x ,  1 2, y ,..., y ny y  in 
n  and   be any scalar..

(i) Since 0jx  j , (j = 1, 2, ..., n) 1
max 0
 

 jj n
x

     0 x

(ii)    1 20 , ,..., 0,....,0  nx x x x

0 jx ,   j    (j = 1, 2, ..., n)

0 jx , j    (j = 1, 2, ..., n)

1
max 0
 

 jj n
x

0 x

(iii) For each j, (j = 1, 2, ...., n)

  j j j jx y x y

 1 1
max max
   

 j jj n j n
x y
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   x y

Thus    j jx y x y  j   (1 j n )

1
max   

   j jj n
x y x y

Therefore    x y x y .

(iv) As  1 2, ,..., nx x x x     we have ,

1 1
sup sup
   

 j j
j n j n

x x x  

   x

We have proved that, n
p  is normed space.

Part II :  To prove 
n  is complete.

Let   1



m mx  be any Cauchy sequence in 
n , where for each m,     1 2,..., m m

mx x x .

Thus for given 0 , 0 n   such that

0,


   m km k n x x 

   
   

1
max
 

  m k
j jj n

x x 

But for each j,

       

1
max
 

  m k m k
j j j jj n

x x x x

Therefore for each j, (j = 1, 2, ...., n)

   
0,    m k

j jm k n x x  ..... (1)

This implies for each j,   
1





m
j m

x is Cauchy sequence in complete space    or

 . Therefore  jx   such that,

  m
j jx x  as m .
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Define  1 2, ,..., nx x x x . Then  nx .

We prove that mx x  as m .

Let k  in (1) we have,

 
0   m

j jm n x x  , j , (j = 1, 2, ....., n)

           
 

1
max
 

  m
j jj n

x x 

             mx x  .

This proves mx x  in 
n  as m .

By part I and II, 
n  is Banach space.

1.4.14 Problem : Denote by   the space of all bounded sequences   1




 n nx x  in  

or   with the norm

sup





n
n

x x

Prove that   is Banach space.

Solution : Part I :   is normed space.

We leave it for students, as it can be completed looking toward the part I of solution
of problem 1.4.13.

Part II :   is complete.

Let   1



m mx  is Cauchy sequence in  , where for each m,    1




 m

m n nx x  is a

bounded sequence.

Then for given 0 , 0 n   such that,

0,


   m km k n x x 

   
   sup


  



m k
n n

n
x x 
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But 
      ( )sup


  



m k m k
n n n n

n
x x x x  for all n .

Therefore for each n , we have

  ( )
0,    m k

n nm k n x x  ..... (1)

This implies for each n ,    1




m

n mx  is Cauchy sequence in complete space  .

Hence  nx   such that   m
n nx x  as m .

Define   1




 n nx x . We prove that x  and mx x  as m .

Taking limit as k  in (1) we get,

 
0   m

n nm n x x  ,  n ..... (2)

 sup


  


m
n n

n
x x 


  mx x 

This proves mx x  as m .

It remains to prove x .

Since for each m,    1




 m

m n nx x  is bounded sequence,  0mL   such that

  m
n mx L , n .... (3)

Since             m m m m
n n n n n n nx x x x x x x ,

From (2) and (3), we have,

 n mx L , n .

This prove   1




 n nx x  is bounded, and hence x .

By part I and II   is Banach space.
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1.4.15 Problem : We denote by C the space of all convergent sequences   1




 n nx x  in

   or   with the norm.

sup





n
n

x x ,

Prove that C is Banach space.

Solution : We know every convergent sequence in    or   is bounded. Hence we
have  C .

Clearly C is subspace of complete normed space  . Thus to prove C is complete it

is sufficient to prove that C is closed in  .

As C C  always, to prove C is closed we show that C C .

Let any x C . Then there exists sequence   1



n nx  in C such that,

nx x  as n ,

Here for each n,    1




 n

n m mx x  is  convergent sequence in   and hence it is bounded,

and   1




 m mx x .

As nx x , for given 0 ,  N   such that,

3
   nn N x x 

          
 sup

3
  



n
m m

m
x x 

But for any m ,

   sup


  


n n
m m m m

m
x x x x

Therefore,

 

3
   n

m mn N x x 
, m
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In particular for  n = N,

 

3
 N

m mx x 
, m . .... (1)

Now    1




 N

N m mx x C , and hence it is Cauchy sequence.

This implies  M   such that,

  ( ),
3

   N N
m km k M x x 

..... (2)

By triangle inequality,

       N N N N
m k m m m k k kx x x x x x x x       ..... (3)

From (1), (2) and (3) we have

3 3 3
    m kx x    

This proves   1




 m mx x  is Cauchy sequence in complete space   =   or  , and

hence it is convergent. Thus x C .  We have proved that C C .

This gives C is closed subspace of complete space  , and hence C is also complete.

We have proved that C is Banach space.

1.4.16 Theorem : Let  or E      and :nf E  , (n = 1, 2,....). Suppose

   lim


nn
f x f x , ( x E )

Define    sup


 n n
x E

M f x f x

Then nf f  uniformly on E iff 0nM .

1.4.17 Problem : Consider the space C (X) of all bounded continuous scalar valued function
defined on topological space X with the norm,
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 sup



x X

f f x , where  f C X .

Prove that C (X) is Banach space.

Solution :

Part I : To prove C (X) is normed space.

Let any  , f g C X  and   be any scalar..

(i) Since   0f x ,  x X , we have

 sup 0



x X

f x , that is, 0f .

(ii)     0 0  f f x ,  x X

  0 f x ,  x X

 sup 0


 
x X

f x

0 f

(iii) For each x X ,

        f g x f x g x

           sup sup
 

 
x X x X

f x g x

         f g

i.e.     f g x f g ,  x X

  sup


   
x X

f g x f g

   f g f g .

(iv)     sup sup
x X x X

f f x f x  
 

  

         sup
x X

f x
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        f

We have proved that, C (X) is normed space.

Part II : To prove C (X) is complete.

Let   1



n nf  be any Cauchy sequence in C (X). Then for given 0 ,  N   such

that

,    m nm n N f f 

      sup


  m n
x X

f x f x 

But ,        sup


  m n m n
x X

f x f x f x f x ,  x X

Thus,    , m nm n N f x f x     ,  x X .... (1)

This implies for each x X ,    1



n nf x  is Cauchy sequence in complete space

   or  , and hence convergent.

Let    lim


nn
f x f x , x X

Letting m  in (1) we obtain

   nn N f x f x     , x X 

             sup


  n
x X

f x f x  .... (2)

Define    sup


 n n
x X

M f x f x . From (2) it follows that 0nM  as n .

Hence nf f  uniformly on X.

Since for each n, nf  is bounded continuous scalar valued function defined on X,

f  is bounded continuous scalar valued function on X, that is,  f C X .

Thus nf f  in C (X). This proves C (X) is complete space.

By part (I) and (II), C (X) is Banach space.
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EXERCISE

1. Denote by C0 the space of all sequences   1




 n nx x  in    or  converging to

zero with the norm sup





n
n

x x . Prove that C0 is a Banach space.

2. Prove that the space of all sequences   1




 n nx x  in    or   such that 

1




 n
n

x  is

convergent, is a Banach space with the norm,

1
sup
 

 


n

j
n j

x x

3. Prove that the space Cn [a, b] of all n times continously differentiable scalar valued

functions x on [a, b] with the norm 
 

0



 

n
j

j
x x  is a Banach space.

1.5 INCOMPLETE NORMED LINEAR SPACES
We have seen many examples of complete normed linear spaces (Banach spaces).

But every normed linear space need not be complete. Here we provide some examples of
normed linear spaces which are not complete.

Note : If there exists a Cauchy sequence in normed space  , X  which is not convergent in

X then  , X is incomplete normed space.

1.5.1 Problem  : Let X = C [–1, 1] be the linear space of all real valued functions defined
on closed interval [–1, 1]. Define the norm on X by

 
1

1
 f f t dt , f X ,

where integral is taken in the sense of Riemann. Prove that  , X  is incomplete
normed linear space.
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Solution : Let X = C [–1, 1] be the linear space of all real valued functions defined on closed
interval [–1, 1].

Let any , f g X  and   be any  scalar. Then sum f + g and scalar multiplication
f  is defined by

        f g x f x g x

and     f x f x  , for all  1,1 x .

Part I :  To prove  , X  is normed space.

(i) Since   0f x ,  x X

 
1

1
0



 f f x dx

(ii)     0 0  f f x ,  1,1  x

  0 f x ,  1,1  x

 
1

1
0f x dx



 

0 f .

(iii)   
1

1
  f g f g x dx

     
1

1
  f x g x dx

   
1 1

1 1 

  f x dx g x dx

 f g .
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(iv)      
1 1

1 1
f f x dx f x dx  

 

  

 
1

1
  f x dx

 f .

Thus,  , X  is normed linear space.

Part II : We show that  , X  is  incomplete normed space.

Consider the sequence   1



n nf  in X = C [–1, 1] defined by,,

 

1          if    1 0
11    if    0

10          if    1

n

x

f x nx x
n

x
n

  

   


  


Let 1m n   then 
1 1
m n
 . Thus we have,

   
1

1
  m n m nf f f x f x dx

        
0 1

1 0
0



    m ndx f x f x dx

     
1 1

0 0
  m nf x dx f x dx ..... (1)

Consider,

   
11 1

10 0
1 0

n

n

n

f x dx nx dx dx    

     
1

0
1 

n
nx dx
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1

2

02
 

   

nxx n

   
1 1 1

2 2n n n
  

Similarly,

 
1

0

1
2mf x dx

m


Thus from inequality (1) we have,

1 1 1 0
2m nf f

m n
     
 

 as  , m n .

This proves   1



n nf  is Cauchy sequence in X = C [–1, 1].

The continuity of each fn and   1



n nf  is Cauchy sequence also follows from following

figures.

Let nf f  as n . Then 0 nf f  as n .

But

   
1

1
n nf f f x f x dx



  

– 1 10

(– 1, 1) (0, 1)

fn (x)

1
n

(– 1, 1)

– 1 0 1

fn (x), fm (x)

fn
fm

x
1
n

1
m

x
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10 1

11 0
1

n

n

n

f x dx f x f x dx f x dx


       ..... (2)

On the right hand side we observe that all the integrands are non-negative and hence
each integral is non-negative.

Hence from (2), 0nf f   as n  imply that

 
0

1
1 0



  f x dx ,    
1

0
0

n

nf x f x dx   and  
1

1
0

n

f x dx   as n .

This implies,

  1   if   1 0
0   if      0 1

x
f x

x
  

   

But we see that

   
0

1 0 lim 0


  
x

f f x

Therefore f is not continuous on [–1, 1], and hence  1,1 f C .

Thus the Cauchy sequence   1



n nf  in C [–1, 1] defined above is not convergent in

C [–1, 1].

We have proved that X = C [–1, 1] is incomplete w.r.t. the norm   defined above.

1.5.2 Problem :  Consider the real linear space X = C1 [0, 1] of all continuously differentiable
functions defined on [0, 1] with the norm,

 
 

0,1
sup



x

f f x .

Prove that  , X  is incomplete normed space.

Solution :  Part I :  , X  is normed space.

We omit the proof as it is similar to the part I of problem 1.4.17.
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Part II :   , X  is incomplete normed space.

Consider the sequence   1



n nf  in X = C1 [0, 1] defined by   2 1
 nf x x

n
;

 0,1x .

Then for any 1 m n ,

 

2 2

0,1

1 1sup


    m n
x

f f x x
m n  

1 1 0  
m n

 as , m n .

This proves   1



n nf  is Cauchy sequence in X = C1 [0, 1].

Note that for each  0,1x ,

  2 1lim lim
 

  nn n
f x x x

n
.

Thus  : 0,1  f , defined by   f x x ,  0,1x  is pointwise limit of   1



n nf .

Further,

 
   

0,1
sup


  n n
x

f f f x f x

 
 

2

0,1

1sup


  
x

x x
n

1 0 
n  as n .

Hence nf f  uniformly on [0, 1].

But  1 0,1f C , because f is not differentiable at x = 0.

Hence the Cauchy sequence   1



n nf  defined above is not convergent in normed

space  , X .

Hence  1 0,1X C  is incomplete.
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1.5.3 Example : Let (0,1)X  and define x x ,  0,1x .

Then  , X  is incomplete normed space.

Solution : Let 
1

nx
n . Then  nx  is Cauchy sequence in normed space  , X  but

 nx does not converges in X.

1.5.4 Example :  Let  0, 2X C  be the space of all real valued functions and define

 
2

0
 f f x dx , f X

Then  , X  is incomplete normed linear space.

Solution : Part-I :  The proof of  , X  is normed linear space is similar to the solution in
part I of problem 1.5.1.

Part - II :  To prove  , X  is incomplete normed space we must have to prove a Cauchy
sequence in X which is not convergent.

Define  : 0,2  nf , (n = 1, 2, ...) by

   ;  0 1
1   ;  1 2
  

 
 

n

n
x x

f x
x

Then clearly nf X .

Further for any , 1m n ,

   
2

0
 m n m nf f f x f x dx  

      
2 2

0 0
  m nf x dx f x dx  

   
1 1

0 0
  m nx dx x dx
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1 11 1

0 01 1

    
        

m nx x
m n

   
1 1 0

1 1
  

 m n  as , m n

That is 0 m nf f  as , m n .

This implies   1



n nf  is Cauchy sequence in X.

Suppose there exists a function  : 0,2  f  such that 0 nf f  as n .

But

   
2

0
 n nf f f x f x dx  

         
1 2

0 1
  n nf x f x dx f x f x dx    

     
1 2

0 1
  1nx f x dx f x dx    

On the right hand side all the integrands are non-negative and hence all integrands are
non-negative.

Hence 0 nf f  must imply,,

 
1

0
0  nx f x dx  as n

and  
2

1
1 0f x dx 

This is possible only if  : 0, 2  f  must be of the form,

  0  if  0 1
1  if  1 2

x
f x

x
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But we see that

   
1

1 1 lim 0
x

f f x


  

Hence  0,2 f X C .

Thus the Cauchy sequence   1



n nf  is not convergent in   0, 2X C .

Hence  , X  is incomplete normed linear space.

1.6 SUBSPACES OF A NORMED SPACES AND BANACH SPACES
1.6.1 Definition : Let N be a normed linear space. A non-empty subset M of N is said to
be a subpace of N if M is a linear subspace of N considered as a linear space and the norm

 M  of M is obtained by restricting the norm   on N. i.e. My y , y M .

The norm  M  on M is said to be induced by the norm   on N.

1.6.2 Definition : A subspace M of a Banach space B is a subspace B considered as a
normed space.

1.6.3 Remark : A subspace of a Banach space need not be complete.

1.6.4 Definition : A subspace M of a normed space N is called a closed subspace of N, if
M is closed in N considered as a metric space.

1.6.5 Theorem : Let M be a subspace of normed space N and  nx  be a sequence in M.

If  nx  is Cauchy in N then it is Cauchy in M and conversely..

Proof :  Let  ,  MM  be a subspace of normed space  , N . Then Mx x , x M .

Let  nx  be a sequence in M.

Let  nx  be a Cauchy sequence in M.
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Then for given 0  there exists 0n   such that,

 m n Mx x  , 0, m n n

  m nx x  , 0, m n n

This implies  nx  is Cauchy sequence in N. The proof of converse part follows by

replacing role of  M  and  .

1.6.6 Theorem : If M is a complete subspace of normed linear space N then M is closed.

Proof :  Let M is a complete subspace of normed space N.

Let x be a limit point of M.

Then     rS x M x  , 0 r .

Inparticular for each n (n = 1, 2, 3, ......),

   1  
n

S x M x 

Thus for each n,   nx N  such that    1 n
n

x S x M x .

Hence  nx  is a sequence in M such that nx x  and 
1

 nx x
n , n .

lim


 nn
x x  in N.

  nx  is Cauchy in N and hence in M.

But as M is complete, we must have x M .

This proved M is closed.

1.6.7 Theorem : If M is closed subspace of Banach space B then M is complete.

Proof : Let M be a closed linear subspace of a Banach space B.

Let  nx  be any Cauchy sequence in M.
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Hence  nx  is a Cauchy sequence in B.

As B is complete   x B  such that nx x .

If x M  then there is nothing to prove otherwise nx x  implies each open sphere

of x contains the point nx  other than x. Thus x is imit point of M. But M being closed, it
follows that x M .

1.6.8 Corollary : Let M be a subspace of a Banach space B. Then, M is complete iff M is
closed.

1.6.9 Problem : Let N be a non-zero normed linear space. Prove that N is a Banach space

iff  : 1 x N x  is complete.

Proof : Let N be a non-zero normed linear space.

Assume N is a Banach space. To prove  : 1  X x N x is complete, let  nx be

a Cauchy sequence in X. Then 1nx   for all n. As X N ,  nx  is Cauchy sequence in

complete normed space N, and hence   y N  such that nx y .

Since norm is continuous function we have nx y .

Therefore,

 lim lim 1 1
 

  nn n
y x

This implies y X . Hence X is complete.

Conversely let X is complete. To prove that normed space N is complete, let  ny
be a Cauchy sequence in N.

Then 0 m ny y  as , m n .... (1)

For each n (n = 1, 2, 3, .....) define  n
n

n

yx
y .
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Then 1  nn
n

n n

yyx
y y  for all n.

This gives nx X  for all n.

We prove that  nx  is Cauchy sequence in X.

For any m > n we have,

  m n
m n

m n

y yx x
y y

   
         
   

m n n n

m m m n

y y y y
y y y y

   
1 1m n

n
m m m n

y y y
y y y y

     
 

   


  n mm n
n

m m n

y yy y
y

y y y

   
m n n m

m m

y y y y
y y
 

  [   x y x y   , for all , x y N ]

Therefore

2
0


  m n

m n
m

y y
x x

y  as , m n [   By (1)]

This proves  nx  is Cauchy sequence in complete space X, and hence   x X  such
that

nx x   i.e.  n

n

y x
y .... (2)

Also note that

   0m n m ny y y y     as , m n
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This implies  ny  is Cauchy sequence in complete space  . Thus     such

that

ny   as n ..... (3)

Using (2) and (3) we have,

ny x  as n

Since  x X N  and   is a scalar. We have x N .

We proved that lim


 nn
y x N .

Hence N is complete normed space, and hence is a Banach space.

1.6.10 Problem : Let a Banach space B be the direct sum of the linear subspaces M and N,
so that  B M N . If  z = x + y is the unique expression of a vector z in B as the sum of
vectors x and y in M and N, then a new norm can be defined on the linear space B by

'  z x y . Prove that this actually a norm. If B' symbolizes the linear space B equipped
with this new norm, prove that B' is a Banach space if M and N are closed in B.

Solution : Let B be a Banach space with the norm  .

Let any z B M N    where M and N are the linear subspaces of B. Then
z = x + y is the unique expression, where x M  and y N .

Define '  on  B M N  by

'  z x y

We have to prove that :

(I)  ' , ' B B  is normed linear space.

(II)  ' , ' B B is Banach space if M and N are closed.

Part (I) : Let any ,   z w B M N  and   be any scalar. Then z = x + y and w = u + v
are unique representation where , x u M  and , y v N .

(i) Since 0x   and since 0y   we have ' 0  z x y .
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(ii) ' 0z 0  x y

0  x y

0  x y

0   z x y

(iii)    ' '    z w x y u v

    '   x u y v

   x u y v

x u y v   

      x y u v

' 'z w 

Thus ' ' '  z w z w .

(iv)  ' ' z x y 

         ' x y 

          x y 

          x y 

           x y

         ' z

We have proved that B' is normed space.

Part -II : To prove B' is complete, let  nz  be any sequence in B'. Then for each n ,

 n n nz x y  is unique expression, where nx M  and ny N .

For any 0 , 0  n  such that

0, '   m nm n n z z 
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       '    m m n nx y x y 

       'm n m nx x y y     

       m n m nx x y y 

     m nx x   and  m ny y 

Thus  nx  and  ny  are Cauchy sequences in M and N respectively. But M and N

are closed linear subspaces of complete space  , B  and hence M and N are complete

spaces. Therefore there exists x M  and y N  such that nx x  and ny y .

Define z = x + y. Then   z B M N  and

       ' ' 'n n n n nz z x y x y x x y y        

  0    n nx x y y  as n .

This proves nz z  in B'.

We have proved that  ', 'B  is complete normed space, and hence Banach space.

1.7 QUOTIENT SPACE
1.7.1 Definition : A partition of a non-empty set X is a disjoint family of non-empty subsets
of X whose union is X.

1.7.2 Theorem : Let M be a subspace of a linear space L, and let the coset of M in L
generated by x L  be defined by,   :   x M x m m M

Then the distinct cosets form a partition of  L. Let L / M denote the set of all cosets of
M in L i.e.  / :  L M x M x L .

Define addition and scalar multiplication in L / M by

          x M y M x y M

and    x M x M  ,
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Then L/M is linear space over the same field L. This space is called the quotient space
(or factor space) of M in L  (or quotient space of  L with respect to M).

Note :

(i) If m M  then m + M = M

(ii) If  x y M  then   x M y M . Thus coset of M in L have more than one
representation.

(iii) If 0 is zero vector in L, then 0 + M = M is a zero in L/M.

(iv) The negative of x + M is (–x) + M.

1.7.3 Theorem : If a Cauchy sequecne  nx  in a metric space X has convergent
subsequence having limit x then the sequence  nx  is convergent with same limit x.

1.7.4 Theorem :  Let M be a closed linear subspace of a normed linear space N. If the
norm of coset x + M in the quotient space N/M is define by

 inf :   x M x m m M ,

then N/M is a normed linear space. Further, if N is a Banach space, then N/M is a
Banach space.

Proof : Let M be a closed linear subspace of a normed linear space N.

Part - I : Firstly we prove that  : / 0,N M    defined by,,

 inf :x M x M m M    defines a norm on N/M.

Let any x + M, y + M in N/M and   be any scalar..

(i) Since 0 x m  for all m M , we have 0 x M .

(ii) Let x + M = M (a zero vector in N/M).

Then x M  and we have,

 inf :   x M x m m M

  inf : y y M [ ,      x m M y x m M ]

  = 0 [   zero vector, 0 M  and 0 0  ]
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Conversely, let 0 x M .

Then,  inf : 0  x M m M

  there exists a sequence   1n nm 


 in M such that 0 nx m  as n .

nm x    as n

Since   1




 n nm  is sequence in M and M is closed,  nm x  implies x M .

Therefore x + M = M (zero vector in N/M)

(iii)              x M y M x y M

  inf :   x y m m M

    1 2 1 2inf : ,    x m y m m m M

 1 2 1 2inf : ,    x m y m m m M

[  Triangle inequality of norm in N]

   1 1 2 2inf : inf :     x m m M x m m M

   x M y M

Therefore,    x M y M x M y M      

(iv) For 0 , we have

        x M x M 

 inf :  x m m M

 inf ' : '  x m m M  [ '   mm M


]

 inf ' : '  x m m M

 inf ' : '  x m m M

 x M
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For  0 ,

 0 0 0 0      x M x M M x M

Therefore,

   x M x M   for any scalar  .

Thus N/M is a normed linear space.

Part - II : Let N is complete (Banach) space. We prove thet N/M is complete (Banach)
space.

Let  nx M  be any Cauchy sequence in N/M.

Then it is possible to select a subsequence  
knx M  of  nx M  such that

   2 1

1
2

   n nx M x M

   3 2 2

1
2

   n nx M x M



   1

1
2

   
k kn n kx M x M



Now choose any vector 
11  ny x M  and select 

22  ny x M  such that

2 1
1
2

 y y .

We next select 33  ny x M  such that 3 2 2

1
2

 y y . Continuing in this way we

obtain a sequence   1



k ky  such that

1
1
2  k k ky y , (k = 1, 2, 3, .....)

and kn kx M y M   [  
kk ny x M ]
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Let any 0 . Choose 0 n  such that 
0 1
1

2  n  .

Then for any 0 k r n  we have,

     1 1 2 1...          k r k k k k r ry y y y y y y y

  1 1 2 1...         k k k k r ry y y y y y

  1 2

1 1 1....
2 2 2    k k r

  
 

0

1

11

11 1 12
12 2 21
2






      
  



r
jk

nr
j r



That is for given 0 , 0  n  such that  k ry y  , 0  k r n .

This proves   1



k ky  is Cauchy sequence in complete normed space N. Therefore

there exists y N  such that ky y  as k .

Now,

             
kn kx M y M y M y M

   ky y M

  inf :   ky y m m M

   ky y m ,  m M

Inparticular for 0 m M , we have

    0     
kn kx M y M y y  as k .
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We have proved that Cauchy sequence  nx M  has convergent subsequence

 
knx M  with lim


   

knk

Nx M y M
M .

We know that if a subsequence of Cauchy sequence converges, the sequence itself

converges. Hence the Cauchy sequence  nx M  converges in N/M, so N/M is complete
normed space.
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BOUNDED  LINEAR  TRANSFORMATIONS

UNIT  -  II

In this unit we study bounded linear transformation and their properties. Well known
theorem which are considered as piller of functional analysis, namely, open mapping theorem,
closed graph theorem, uniform bounded principle are proved in this unit.

2.1 LINEAR TRANSFORMATIONS

2.1.1 Definition :  Let L and V be linear spaces over the same field . A function : T L V
is said to be linear transformation if        T x y T x T y     for all , x y L  and

,    .

2.1.2 Definition : Let : T L V  be a linear transformation. Then

(a) Kernel of T is defined as

    ker : 0  T x L T x ,

which is also called null space of T and some time it is denoted as N (T).

(b) Range of T is defined as

  ( ) :T T x x L R

           :  for some    y V y T x x L

2.1.3 Theorem : Let : T L V  be a linear transformation. Then,

(a) ker ( T ) is linear subspace of L.

(b) R (T) is linear subspace of V.

(c) T (0) = 0

(d)      T x T x , x L .
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(e) T is bijective   T is invertible    ker 0 T .

(f) T–1 if exists, is a linear transformation.

Remark : For linear transformation : T L V  we always assume L and V are the linear
spaces over same field of scalar    or  .

2.1.4 Some Important linear Transformations :

(a) Identity Transformation : Let L be a linear space. The function : I L L  defined
by   I x x , x L , is a linear transformation, called identity transformation on L.

(b) Zero Transformation : Let L and V be the linear spaces over the same scalar field.
The function :O L V  defined by   0O x  , x L , is a linear transformation, called zero
transformation.

2.2 BOUNDED LINEAR TRANSFORMATION IN A NORMED SPACE

2.2.1 Definition : Let  ,  XX  and  ,  YY  be normed spaces and :T X Y  a linear
transformation. Then T is said to be bounded linear transformation if there is a real number

0K  such that,

Y XTx K x ,  x X .

If T is not bounded, then it is said to unbounded linear transformation.

2.2.2 Remark : Bounded linear transformations are not same as those of ordinary real (or
complex) bounded functions. Bounded function is one whose range is a bounded set.

e.g. consider the identity operator :  I ,   I x x , x . Then,

(i)          I x y x y I x I y     

for all , x y  and ,   .

(ii)   I x x ,  x .

If 1K  then we have

  I x K x ,  x .
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Thus identity operator is bounded linear transformation. But there does not exists
constant 0M  such that   I x M ,  x . Therefore I is not a bounded function.

2.2.3 Examples of bounded linear tranformations :

Example 1 :  Identity transformation and zero transformation are bounded linear
transformations.

Example 2 :  Consider the  normed space C [0, 1] of all real (or complex) valued functions
with supremum norm.

 
 

0,1
sup
t

x x t




Define  : 0,1  T C  by

   0T x x ,  0,1x C .

(i) Let any  , 0,1x y C  and ,   . Then

            0 0 0T x y x y x y T x T y             

This implies T is a linear transformation.

(ii) For any  0,1x C , we have,

   
 

 
0,1

0 sup
t

T x x x t x


  

Therefore,

  T x K x ,  , 0,1 x y C .

where, K =1.

We have proved that T is bounded linear transformation.

Example 3 : Consider the Banach space B = C [0,1] with the supremum norm.

 
 

0,1
sup
t

x x t


 , x B .
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Let    : 0,1 0,1  K  is continuous.

Define : T B B  by

      
1

0
, T x t K t s x s ds , x B .

(i) Let any , x y B  and  . Then

      
1

0
,  T x y t K t s x y s ds

             
1

0
,  K t s x s y s ds

                         
1 1

0 0
, ,  K t s x s ds K t s y s ds

            T x t T y t

and

      
1

0
, T x t K t s x s ds 

       
1

0
, K t s x s ds

       T x t

Thus T is linear transformation.

(ii) Since    : 0,1 0,1  K  is continuous on compact set    0,1 0,1 , there is
constant M > 0 such that

 , K t s M ,      , 0,1 0,1  s t .

Now for each  0,1t  we have,

 
 

 
0,1

sup


 
t

x t x t x , x B .
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Therefore for any x B , and  0,1t   we have,

      
1

0
, T x t K t s x s ds

      
1

0
,  K t s x s ds

  
1

0
 M x ds

   M x

Thus    T x t M x , x B ,  0,1t .

This gives

 
 

0,1
sup


 
t

Tx Tx t M x , x B .

By part (i) and (ii), T is bounded linear transformation.

2.2.4 Examples of Unbounded Linear Transformation

1. Let  0,1X P  - the set of all polynomials with real coefficients defined on [0, 1].

Then X is normed linear space with the norm,

 
 

0,1
sup



t

x x t , x X .

Define : T X X  by

     'T x t x t ,  0,1t  ,

where  ' 
dxx t
dt  .

(i) Let any , x y X  and ,   ,

Then for any  0,1t .
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      '  T x y t x y t   

    ' ' x t y t 

     Tx t Ty t 

        T x y T x T y   

Thus T is a linear transformation.

(ii) For each n (n = 1, 2, 3, .....) define    n
nx t t ,  0,1t .

Then nx X  for all n.

Also    1 n
nT x t nt

and
 

 
 0,1 0,1

sup sup 1
 

  n
n n

t t
x x t t , for all n.

Thus

 
  

0,1
sup


n n
t

Tx T x t

         

1

0,1
sup 


 n

t
nt

         

1

0,1
sup 


 n

t
n t

         1   nn n n x

Thus n nTx n x ,  n .

 n

n

Tx
n

x ,  n .

  there is no fixed number K > 0 such that,

n

n

Tx
K

x
 ,  n .
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Thus we cannot find, K > 0 such that

n nTx K x

Hence T is unbounded linear transformation.

2.2.5 Definition :

Let  ,  XX  and  ,  YY  be normed linear spaces over same field of scalar  
or  . A transformation : T X Y  (linear or not) is said to be continuous at a point 0 x X
if for given 0 , 0   such that

If x X , 0 Xx x   then 0 XTx Tx  .

Equivalently, : T X Y  is continuous at 0 x X  if and only if.

 nx X , 0nx x  in X  nTx Tx  in Y.Y.

Further, a transformation : T X Y  is said to be continuous on X if it is continuous
at each x X .

Notations :

Let X and Y be normed spaces and : T X Y a (linear) transformation. Since it is
easy to determine which space an element is in and therefore, implicitly, to which norm we
referring, we may use the same symbol   to denote the norm on both normed spaces X and
Y, when no confusion will result. When clarification is necessary we may use subsripts to
denote different norms.

e.g. Let vector spaces X and Y have norms  X  and  Y  respectively..

2.2.6 Theorem : Let N and N' be normed spaces and : 'T N N  a linear transformation.
Then, T is continuous at a point (any) in N iff T is continuous on N.

Proof : Fix any 0 x N , and let the linear transformation : 'T N N  is continuous at x0.

Let any x N .
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Let  nx  be any sequence in N such that nx x . Then  0 nx x x  is a  sequence

in N such that 0 0  nx x x x .

Therefore,  0 0nT x x x Tx   .

Thus    0 0lim 0


   nn
T x x x T x

But T is linear, hence we have

       0 0lim 0


   nn
T x T T x T xx

   lim 0


  nn
T x T x

    nT x T x .

Hence T is continuous at x.

We have proved : 'T N N  is continuous.

Conversely if : 'T N N  is continuous, then obviously it is continuous at any point
of N.

2.2.7 Theorem : Let N and N' be normed linear spaces and : 'T N N  a linear
transformation. Then, T is continuous if and only if T is bounded.

Proof :  Assume : 'T N N  is bounded.

Then 0 K  such that,

Tx K x ,  x N .

Let  nx  be any sequence in N such that 0nx  in N.

Then 0n nTx K x   as n .

0 nTx  as n .

 0 0  nTx T  as n .

Therefore T is continuous at origin in N, and hence it is continuous on N.
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Conversely, let T is continuous on N. If possible T is not bounded. Then, for each n,
(n = 1, 2, ....), 0 nx  in N. Such that,

n nTx n x

1 n

n

Tx
n x

1 n

n

Tx
n x [  Homogenity of norm]

Therefore, 1n

n

xT
n x

 
  

 
,  n . .... (1) [  Linerarity of T]

For each n, define  n
n

n

xy
n x .

Then,

1 0   nn
n

n n

xxy
n x n x n  as n .

This implies 0ny  in N.

But from (1),   1nT y , n , and hence   0nT y  as n .

Therefore T cannot be continuous at origin, which is contradiction to our assumption
that : 'T N N  is continuous.

Therefore, T must be bounded.

2.2.8 Theorem : Let N and N' be normed spaces and : 'T N N  a linear transformation.

Then, T is bounded if and only if T maps bounded sets in N into bounded sets in N'.

Proof : Let : 'T N N  is bounded linear transformation.

Then, 0 k  such that   T x k x , x N . .... (1)
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Let  :  A x N x M  be any bounded set in N. Then for any x A , we have

   T x K x KM

This proves     : T A T x x A  is bounded.

Conversely, let : 'T N N  maps bounded sets in N into bounded sets in N' .

Let  : 1  S x N x  is closed unit sphere in N. Then by assumption

    : T S T x x S  is bounded.

Thus 0 K  such that,

  T x K ,  x S . ..... (2)

We prove that T is bounded linear transformation.

Case 1 :  Let x = 0 in N. Then T (x) = 0.

Hence   T x K x  is clearly hold for 0 x N .

Case 2 : Let any 0x  in N. Then 1 
xx

x x .

Hence 
x S
x , for any 0x  in N.

Therefore by (2), for any 0x  in N, we have,

     
 

  
 

xT K
x

 1
 T x K

x

 
 

T x
K

x
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  T x K x .

Combining Cases 1 and 2, we have proved that 0 K  such that

  T x K x ,  x N .

Hence T is bounded linear transformation.

2.2.9 Theorem : Let N and N' be normed linear spaces and : 'T N N  a linear
transformation.

Then the following conditions on T are all equivalent to one another :

(a) T is continuous;

(b) T is continuous at origin, in the sense that  0 0  n nx T x ;

(c) There exists a real number 0K  with the property that,

  T x K x , for every x N .

(d) If  : 1  S x N x  is closed unit sphere in N, then its image T (S) is a bounded

set in N'.

Proof :

   a b  : Please see proof of theorem 2.2.6 with 0 0x .

   b c  : Please see proof of theorem 2.2.7.

   c d  : Please see proof of the theorem 2.2.8 with M = 1.

2.2.10 Corollary : Let N and N' be normed spaces and : 'T N N  a linear transformation.
Then following statements are equivalent.

(a) T is continuous.

(b) T is bounded.

(c) T maps bounded sets in N into bounded sets in N'.
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2.2.11 Remark : From above corollary, the two adjectives continuous and bounded can be
used interchangeably for linear transformations of one normed space to the other normed
space.

2.2.12 Theorem : Let N and N' be normed linear spaces and let : 'T N N  be a onto
linear transformation. Then T–1 exists and is a bounded linear transformation if and only if 
a constant K > 0 such that,

  T x K x , for all x N .

Proof : Let N and N' be normed spaces and let : 'T N N  be onto linear transformation.

Let 0 K  such that

  T x K x ,  x N . ...... (1)

Then from (1), if Tx = 0 then x = 0.

Therefore T is one-one. Also given that T is onto. Thus T is bijective and hence it
follows that T–1 exists in algebraic sensense.

By theorem 2.1.3, 1 : 'T N N   is a linear transformation.

It remains to prove 1 : 'T N N   is bounded.

For each y in the domain of T–1,   x N   such that,

 1   T y x Tx y

Therefore from (1),

    1 1 K T y T T y , 'y N  .

 1 1 T y y
K , 'y N  .

This implies T–1 is bounded.

Hence 1 : 'T N N   is bounded linear transformation.

Conversely let 1 : 'T N N   is exists and is a bounded linear transformation.
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Then   0M   such that,

 1 T y M y , 'y N  .

 1 T Tx M Tx , x N  .

 x M Tx ,  x X .

Therefore 
1 0  K
M  such that,

  T x K x , x N  .

This proves the theorem.

2.2.13 Definition : Let N and N' be normed spaces and : 'T N N  a bounded linear
transformation. The norm of  T, is defined as,

  sup : , 1  T T x x N x

This norm is called an operator norm.

Note : From theorem 2.2.9 :    a d  and it follows that T  is well defined.

In the next section we prove that T  is indeed norm on the space B (N, N') - the
space of all bounded linear transformation of N into N'.

2.2.14 Theorem : Let N and N' be normed spaces and : 'T N N  a bounded linear

transformation. Then, T  can be expressed by any one of the following formulae.

(i)  sup : , 1  T Tx x N x

(ii)  sup : , 1  T Tx x N x
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(iii) sup : , 0
     
  

Tx
T x N x

x

(iv)  inf : 0 and ,T K K Tx K x x N    

Further, Tx T x ,  x N .

Proof : Let N and N' be normed spaces and : 'T N N  a bounded linear transformation.

By definition of an operator norm,

 sup : , 1  T Tx x N x

Define,

 sup : , 1  a Tx x N x

sup : , 0
 

   
 

Tx
b x N x

x

 inf : 0 and ,    c K K Tx K x x N

We prove that,

  T a b c

Since    : 1 : 1    x N x x N x , we have,

   : , 1 : , 1    Tx x N x Tx x N x

   sup : , 1 sup : , 1     Tx x N x Tx x N x

 a T .... (1)

By homogenity of norm and linearity of T, for any x N , 0x  we have,

    
 

Tx Tx xT
x x x
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Therefore,

sup : , 0
 

   
 

Tx
b x N x

x

    sup : , 0
       

   

xT x N x
x

If 
xy
x , x N , 0x  then y N  and 1y , then

 sup : , 1   b Ty y N y a

Thus,

b = a .... (2)

By definition of c, we have

Tx c x ,  x N

Tx c  ,  x N  with 1x

 sup : , 1Tx x N x c   

T c  .... (3)

Finally

sup : , 0 
   

 

Txb x N x
x

 
Tx b
x ,  x N , 0x .

 Tx b x ,  x N , 0x .

Clearly Tx b x  for x = 0 in N.

Therefore Tx b x , for all x N . .... (4)
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 : 0 and ,     b K K Tx K x x N

 inf : 0 and ,     b K K Tx K x x N

 b c .... (5)

Combining (1), (2), (3) and (5) we obtain,

   T c b a T

   T a b c .... (6)

Further from (4) and (6) we have,

Tx T x ,  x N .

This complete the proof.

2.2.15 Problem : If M is a closed linear subspace of a normed linear space N, and if T is the
natural mapping of N onto N/M defined by  T (x) = x + M. Show that T is a continuous linear
transformation for which 1T .

Solution : We know that “If M is closed linear subspace of a normed space N then N/M is
normed space with the norm of coset x + M in N/M defined by

 inf :x M x m m M   

Define  : /T N N M by    T x x M , x N .

(i) T is linear : Let any , x y N  and ,   be any scalar..

Then,

      T x y x y M   

              x M y M 

              x M y M 

             T x T y 
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(ii) T is continuous : For any x N , we have,

   T x x M

 inf :x m m M  

x m  ,   m M .

Inparticular for m = 0,

  T x x ,  x N . ..... (1)

This implies T is bounded linear transformation with bound K = 1.

Hence T is continuous linear transformation.

From (1) it follows that

 sup : , 1 1   T Tx x N x , i.e. 1T  .

2.2.16 Problem : Let N and N' be normed spaces and : 'T N N  a continuous linear
transformation. Prove that the null space N (T) (Kernel of T, Ker (T)) is closed.

Solution : The null-space of : 'T N N  is given by,,

   : 0T x N Tx  

Let any  x T . Then there exists a sequence  nx  in  (T) such that nx x .

Since T is continuous, nTx Tx .

But  nx T ,   0  nn T x , n .

Therefore,

     lim lim 0 0
 

  nn n
T x T x

  x T

Hence       T T T    is closed.
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2.2.17 Problem : If T is continuous linear transformation of a normed space N into a normed
space N', and if M is its null space, show that T induces a natural linear transformation T' of
N/M into N' and ' T T .

Solution : Let : 'T N N  be a continuous linear transformation of normed space N into
normed space N'. Then its null space  M T  is closed linear subspace of N. The N/M
is normed space with norm of coset x + M in N/M defined by

 inf :x M x m m M   

Define ' : / 'T N M N  by

   '  T x M T x , x N .

x N   'T x N

/ x M N M

T

'T

(i) T' is well defined : Let x M y M    in N/M.

Then    x y M T

  0  T x y

    0  T x T y

    T x T y

   ' '   T x M T y M .

(ii) T' is linear : Let any , x y N  and ,   be any scalar..

Then

       ' '     T x M y M T x y M   

          T x y 
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             T x T y 

             ' '   T x M T y M 

Therefore T' is linear.

(iii) To prove 'T T :

   ' sup ' : , 1    T T x M x N x M

            sup : , inf : 1T x x N x m m M    

          sup : , 1 for some T x x N x m m M    

Since     0   m M T T m

Thus         ,    T x T x T m T x m x N

Therefore

  ' sup : , 1 for some T T x m x N x m m M     

For any m M ,   y x m N ,  x N .

Thus

 ' sup : , 1   T Ty y N y T

' T T .

2.3 SPACE OF BOUNDED LINEAR TRANSFORMATIONS

Let N and N' be normed linear spaces. The collection of all bounded (or continuous)
linear transformations of N into N' is denoted by B (N, N'). The letter B is intended to
suggest the adjective “bounded”.

Note that :

(i) The zero operator : 'O N N ,   0O x , x N , is bounded linear transformation,

with   sup : , 1 0O O x x N x   
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(ii) The identity operator : I N N ,   I x x , x N , is bounded linear transformation

with   sup : , 1 1   I I x x N x

Therefore both zero operator O and identity operator I belongs to B (N, N') and
hence B (N, N') is nonempty.

2.3.1 Theorem : Let N and N' are normed spaces over the same field of scalar
  ( or ).

Then,

(a) B (N, N') is a vector space over   with respect to pointwise operation and scalar
multiplication.

(b) The function  : , 'N N  B , defined by  sup : , 1  T Tx x N x , is

norm on  , 'N NB .

(c) If N' is a Banach space then  , 'N NB  is a Banach space.

Proof :

(a) The family L (N, N' ) of all linear transformations of N into N' is the vector space over
  with addition and scalar multiplication given by

        T U x T x U x  and     T x T x 

for all x N  and   , where  , , 'T U L N N .

Clearly    , ' , 'N N L N NB .

Since zero linear transformation and identity linear transformations are the member of

 , 'N NB , it is nonempty..

To prove  , 'N NB  is vector space over  , we show that it is linear subspace of

 , 'L N N .

Let any  , , 'T U B N N  and   .

Then 1K , 2 0K  such that

1Tx K x ,  x N .
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and 2Ux K x ,  x N .

Therefore,

       T U x Tx Ux

Tx Ux 

1 2K x K x 

 1 2 K K x .

Therefore,

     1 2  T U x K K x ,  x N .

 , '  T U B N N

Also,

   1  T x Tx Tx K x    ,  x N .

 , 'T N N B

Thus  , 'N NB  is linear subspace of  , 'L N N  and hence  , 'N NB  itself is a
vector space.

(b) B (N, N' ) is normed space :

Define  : , 'N N  B , by

 sup : , 1  T Tx x N x

where  , 'T N NB .

Let any  , , 'T U N NB  and   .

(i) Since   0T x ,  x N , 1x , we have 0T .

(ii) 0 sup : , 0 0 
     

 
TxT x N x
x

0; , 0   
Tx x N x
x
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0,   Tx x N

0,   Tx x N

0 T

(iii)    sup : , 1    T U T U x x N x

 sup : , 1   Tx Ux x N x

 sup : , 1Tx Ux x N x   

   sup : , 1 sup : , 1     Tx x N x Ux x N x

 T U .

Thus   T U T U .

(iv)    sup : , 1  T T x x N x 

         sup : , 1  Tx x N x

         sup : , 1  Tx x N x

         T

We have proved that  , 'N NB  is normed linear space.

(c) To prove  , 'N NB  is complete if N' is complete, let   1



n nT  be any Cauchy

sequence in  , 'N NB .

Then 0 m nT T  as , m n .

For each x N , we have

    m n m nT x T x T T x

      0  m nT T x as , m n .

i.e. 0 m nT x T x  as , m n .

Thus for each x N ,   1



n nT x  is Cauchy sequence in complete normed space N'.

Thus   vector Tx N  such that nT x Tx .
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Define : 'T N N  by    lim


 nn
T x T x , x N .

We prove that  , 'T N NB  and nT T  in  , 'N NB .

(i) T is linear : Let any , x y N  and ,   be any scalar. Then,

   lim


  nn
T x y T x y   

            lim n nn
T x T y 


  [ nT  is linear]

           lim lim
 

 n nn n
T x T y 

             nT x T y 

(ii) T is bounded : For any x N , we have,

   lim


 nn
T x T x [   is continuous]

lim


 nn
T x

 lim


 nn
T x

 sup





n
n

T x

Thus Tx K x ,  x N , where sup





n
n

K T .

Hence T is bounded.

We have proved that  , 'T N NB .

Finally, since  nT  is Cauchy sequence in  , 'N NB , for each 0 ,   an integer

0 n  such that,

0,    m nm n n T T 

Hence for any x N ,
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0,     m n m nm n n T x T x T T x

  m nT T x

  x .

This gives,

0,    m nm n n T x T x  ,  x N , 1x .

Taking m , we obtain,

0   nn n T x Tx  ,  x N , 1x

Therefore,

   0 sup : , 1     nn n T T x x N x 

            nT T 

Hence nT T  is  , 'N NB .

This proves  , 'N NB  is complete normed space.

Notations : Let N be a normed space. We call continuous linear transformation of N into
itself an operator on N. We denote normed space of all operators on N by B (N) instead of

 ,N NB .

2.3.2 Theorem : Let N be a normed space and B (N) the set of all operators on N.

Then :

(a) B (N) is normed space.

(b) B (N) is Banach space if N is Banach space.

(c) If  , ' , 'T T N NB  then  , 'T T NB  and ' 'TT T T .

(d) Multiplication is jointly continuous in B (N) :

nT T , ' ' ' '  n n nT T T T TT .
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Proof : Proof of part (a) and (b) follows from the theorem 2.3.1, by taking N = N'.

(c) Let any  , 'T T NB .

(i) TT' is linear : Let any , x y N  and ,   be any scalar..

Using the linearity of T and T', we obtain,

     ' '  TT x y T T x y   

    ' ' T T x T y 

      ' ' T T x T T y 

         ' ' TT x TT y 

(ii) TT' is continuous : Let 0nx  in N. Then    ' 0nT x T .

Hence       ' ' 0 0  n nTT x T T x T .

This prove TT' is continuous at origin, and hence it is continuous.

The assertitions (i) and (ii) proves  , 'T T NB .

(iii)   ' sup ' : , 1  TT TT x x N x

            sup ' : , 1  T T x x N x

          sup ' : , 1  T T x x N x

          sup ' : , 1  T T x x N x

         ' T T

Therefore, ' 'TT T T .

(d) Let nT T  and ' 'nT T  in B (N).

Then,

   ' ' ' ' ' 'n n n n n nT T TT T T T T T T TT    

           ' ' '   n n nT T T T T T
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        ' ' ' 0    n n nT T T T T T  as n .

' ' 0  n nT T TT  as n .

' ' n nT T TT  as n .

Thus multiplication is jointly continuous in B (N).

2.4 BANACH ALGEBRA

2.4.1 Definition : An algebra A over the field   is a vector space A over   such that for
each ordered pair of elements , x y A  a unique product xy A  is defined with the properties
:

(i)    xy z x yz

(ii)    x y z xy xz

(iii)    x y z xz yz

(iv)       xy x y x y  

for all , , x y z A  and   .

An algebra is said to be real or complex according as   is   or  .

2.4.2 Definition : An algebra A is said to be commutative (or abelian) if the multiplication
in A is commutative, that is, if for all , x y A .

xy yx

2.4.3 Definition : An algebra A is called an algebra with identity if A contains an element e
such that for all x A,

 xe ex x
This element e is called an identity of A.
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2.4.4 Definition : A normed algebra A is a normed space which is an algebra such that for
all , x y A

xy x y ,

and if A has an identity e, 1e .

2.4.5 Definition : A Banach algebra is a normed algebra which is complete, considered as
a normed space.

2.4.6 Theorem : If  0N  is a Banach space, then B (N) is a Banach algebra.

Proof : Let  0N  is a Banach space. Then B (N) is a Banach space.

For  ,T U NB , define,

     TU x T Ux , x N .

Then by Theorem 2.3.2,  ,T U NB .

Further, for any  , ,S T U NB  and a scalar  , we have,

(i)    S TU ST U

(ii)    S T U ST SU

(iii)    S T U SU TU

(iv)       ST S T S T  

Further, for any  ,T U NB , we have already proved TU T U .

Also, an identity transformation : I N N ,    I x x N , is an identity element

for B (N) with 1I .

From above discussion it follows that B (N) is a Banach algebra.
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2.5 THE OPEN MAPPING THEOREM

In this section we prove the open mapping theorem which gives condition under
which a bounded linear transformation is open mapping.

We give some basic definitions and theorems which we need subsequently.

2.5.1 Definition : Let X and Y be metric spaces.

A mapping : f X Y  is said to be open if  f  (A) is open in Y for every open set AA
in X. i.e. A mapping which maps open sets into open sets is called open mapping.

2.5.2 Theorem : Let X and Y be metric spaces. Then following conditions are all equivalent,

(a) : f X Y  is homeomorphism.

(b) : f X Y  is bijective and bicontinuous.

(c) : f X Y  is bijective, open and continuous.

(d) : f X Y  is bijective, closed and continuous.

2.5.3 Theorem : If  f  is one-to-one mapping of metric space X into metric space Y.

Then, : f X Y  is homeomorphism if and only if    f A f A ,  A X .

2.5.4 Theorem (Baire Category Theorem) :

If a complete metric space is the union of a sequence of its subsets, then the closure of
at least one set in the sequence must have non-empty interior.

2.5.5 Problem : Let N be a normed space, 0 x N  and r > 0. Then :

(i)    
0 0 0 r rS x x S

(ii)    
10 0rS rS

Solution :    0 0:   rS x x N x x r

and    0 :  rS x N x r
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(i)  0 0   rx S x x x r

       
0 0   rx x S

         
0 0 0 0     rx x x x S

        
0 0   rx x S

Thus    
0 0 0 r rS x x S .

(ii)  0  rx S x r

    1 
x
r

     1 0 
x S
r

     
1 0   

 
xr rS
r

                 
1 0 x rS

Therefore    
10 0rS rS .

Combining (i) and (ii) we have,

   
0 0 1 0 rS x x rS .

Firstly we prove the following Lemma which play a key role to prove the open mapping
theorem.

2.5.6 Lemma : If  B and B' are Banach spaces, and if T is a continuous linear transformation
of B on to B', then the image of each open sphere centered on the origin in B contains an open
sphere centered on the origin in B'.

Proof : Let  :  rS x B x r  be the open sphere of radius r centered at origin in B.
Then by linearity of T we have,

     1 1 rT S T rS rT S .
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Therefore to prove the lemma it is sufficient to show that  1T S  contains an open

sphere  ' ' :  S x B x  , centered at origin in B' for some 0 .

To each x B , choose n  sufficiently large so that x n . Then  nx S .

Therefore,        
 

  


  n
x B n

B x S B

      


 

 n
n

B S

Since : 'T B B  is onto, we have

     '
 

  
 
 n n

n n
B T B T S T S

As B' is complete, by Baire’s category theorem 0 n  such that  0nT S  has non-

empty interior.

Let 0y  is an interior point of  0nT S  such that  00  ny T S .

Define : ' 'f B B  by   0f y y y  , 'y B .

Claim 1 :  f  is homeomorphism.

f is one-one : Let 1 2, 'y y B . Then,

   1 2 1 0 2 0 1 2      f y f y y y y y y y

f is onto : To each 'x B , 0 '   y x y B , such that,

   0 0 0     f y y y x y y x

f and  f –1 are continuous : Fix any 'y B  and let   'ny B  such that ny y . Then,

   0 0    n nf y y y y y f y

   1 1
0 0

     n nf y y y y y f y

We have proved that  f  is bijective and bicontinuous. Hence  f is a homeomorphism.
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Claim 2 :  ‘0’ is an interior point of  0 0nT S y .

Since 0y  is the interior point of  0nT S ,   an open set G such that,

 00   ny G T S

      00   nf y f G f T S .

But  0 0 0 0  f y y y  and      0 0 0 n nf T S T S y

Therefore,    0 00 nf G T S y   .

Since f is homeomorphism, it is an open map and hence f (G) is open in B'.

Hence ‘0’ is an interior point of  0 0nT S y .

Claim 3 :    0 00 2 n nT S y T S

Let any  0 0ny T S y  .

Then  
0 y T x y  for some 0

 nx S .

Further    00 0 0  ny T S y T x  for some  00  nx S .

Therefore      0 0   y T x T x T x x , 00,  nx x S .

But 00 0,   nx x S x n , 0x n

    0 0 02    x x x x n

    00 2   nx x S

       00 2   nT x x T S



82

     02  ny T S

Therefore,    0 00 2 n nT S y T S ..... (1)

Claim 4 : ‘0’ is an interior point of  1T S .

By using (1), we have,

       
0 00 2 0 1 0 12 2   n nT S y T S T n S n T S ...... (2)

Since  f  is homeomorphism.

     0 0
n nf T S f T S

   0 00 0   n nT S y T S y ...... (3)

Combining (2) and (3), we obtain,

   
0 0 0 12 nT S y n T S ..... (4)

Note that, the mapping : ' 'g B B  defined by  
02g x n x  is homeomorphism.

Therefore,      1 1g T S g T S

   0 1 0 12 2 n T S n T S ..... (5)

Using (5) in (4), we have,

   
0 0 0 12 nT S y n T S

Since 0 is an interior point of  0 0nT S y , it follows that 0 is the interior point of

 0 12n T S .

This implies, is the interior point of  1T S .

Therefore   an open sphere,  ' ' :  S x B x    centered at origin in B' such
that,

 '
1S T S ..... (6)
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We conclude the proof by showing that  '
3S T S  which is equivalent to

 '
/3 1S T S .

Let any 'y S .

Then by (6),  1y T S .

   1
'
rS y T S   , 0 r .

In particular for 2
r 

, we have,

   '
/ 2 1 S y T S 

Let    '
1 / 2 1 y S y T S .

Then 1 2
 y y 

 and  1 1y T x  for some 1 1x S  so that 1 1x  .

Hence  '
1 / 2 1/ 2  y y S T S .... (7)  [  By (6) ]

   2
'

1 1/ 2/ 2
  S y y T S




Let    2
'

2 1 1/ 2/ 2
  y S y y T S


.

Then 1 2 22
  y y y 

 and  2 2y T x   for some 2 1/ 2x S  so that 2
1
2

x .

Again we see that  2 2
'

1 2 / 2 1/ 2
   y y y S T S

 .

   2 2
'

1 2/ 2 1/ 2
   S y y y T S




Let    2 2
'

3 1 2/ 2 1/ 2
   y S y y y T S

 .

Then 1 2 3 32
   y y y y 

 and  3 3y T x  for some 23 1/ 2
x S  so that 3 2

1
2

x .

Continuing in this way we get a sequence  nx  in B such that 1

1
2 n nx , and
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 1 2 .....
2


    n ny y y y ..... (8)

Where  n ny T x .

Define 1 2 .....   n nS x x x . Then,

1 2 .....   n nS x x x

        1

1 11 ....
2 2     n

         

11 12 2 1 21 21
2

          
 

n

n , n .

Thus 2nS , for all n. ..... (9)

For n > m we have,

1 2 .....     n m m m nS S x x x

   1 2 ....    m m nx x x

   1 1

1 1 1.....
2 2 2    m m n

   

111 2
12 1
2


  

  
 
 

n m

m

  
1 12 0

2 2
    
 m n as , m n .

Therefore 0 n mS S  as , m n .
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This implies  nS  is Cauchy sequence in complete space B and hence  x B  such

that nS x . Using the continuity of norm, we have,

lim 2 3


  nn
x S [  By (9) ]

3 x S

Further, using continuity of T, we have,

   lim


 nn
T x T S

          1lim ....


   nn
T x x

             1lim .... nn
T x T x


  

          1lim ....


   nn
T y y

         = y [   By (8)]

But 3x S  implies    3 y T x T S .

We have proved that,

 '
3  y S y T S

Therefore,    ' '
3 / 3 1  S T S S T S  .

This complete the proof.

2.5.7 Theorem : If B and B' are Banach spaces, and T is a continuous linear transformation
of B onto B', then T is an open mapping.

Proof : Let B and B' are Banach spaces and : 'T B B  is onto, continuous linear
transformation.

Let G be any open set in B.

We prove that T (G) is open set in B'.

Case 1 : If   T G  , the T (G) is open in B'.
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Case 2 : Let   T G  .

Let  y T G . Then  y T x  for some x G .

Since G is open in B   an open sphere  rS x  in B such that   rS x G .

But    0 r rS x x S .

Also  0rS  is open sphere contered at origin in B, thus by lemma 2.5.6   an open

sphere  ' 0S  centered at origin in B' such that

         ' 0 0 rS T S

    ' 0 0    ry S y T S

      ' 0   rS y T x T S

       ' 0   r rS y T x S T S x

But         r rS x G T S x T G

Therefore    ' S y T G .

This implies T (G) is an open set in B'.

2.5.8 Theorem : A one-to-one continuous linear transformation of one Banach space onto
another is a homeomorphism. In particular, if a one-to-one linear transformation T of a Banach
space onto itself is continuous, then its inverse T–1 is automatically continuous.

Proof : Let B and B' are Banach spaces and : 'T B B  is bijective, continuous linear
transformation.

To prove T is homeomorphism it remains to prove T–1 is continuous.

Since : 'T B B  is bijective, 1 : ' T B B  exists and it is linear..

Let G be any open set in B, then by open mapping theorem, T (G) is open in B'.

But      11  T G T G  implies    11 T G  is open in B'.

This implies, inverse image under T of an open set G in B is open in B'.

Therefore T–1 is continuous.
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2.6 PROJECTIONS ON BANACH SPACES

2.6.1 Projection on Linear Space

A projection P on a linear space L is an idempotent (P2 = P) linear transformation of
L into itself.

The projection on linear space described geometrically as follows :

(a) A projection P determines a pair of linear subspaces M and N scuh that   L M N ,

where   : M P x x L is the range of P..

and   : 0  L x L P x  is null space of P..

(b) A pair of linear subspaces M and N such that  L M N  determines a projection P
whose range and null space are M and N.

Indeed, if  z x y  is unique expression of vector in  L M N  then P is defined
by   P z x .

These facts shows that the study of projections on L is equivalent to study of pairs of
linear subspaces which are disjoint and span L.

2.6.2 Projection on Banach Space :

A projection on a Banach space B is an idempotent operator on B in the algebraic
sense which is also continuous.

In other words P is projection on Banach space B if :

(i) P2 = P (P is projection on B in algebraic sense).

(ii)  : P B B  is continuous (bounded).

2.6.3 Theorem :

If P is projection on a Banach space B, and if M and N are its range and null space,
then M and N are closed linear subspaces of B such that  B M N .

Proof : Let P is projection on a Banach space B.

Then,

(i) P is projection on B in algebraic sense i.e. P2 = P.

(ii) : P B B  is continuous (bounded).
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Thus (ii) implies that  B M N , where   : M P x x B  is the range of P..

and   : 0  N x B P x  is null space of P..

Note that,

     : :    M P x x B x B P x x

           : 0   x B I P x

 M  is the null space of the continuous linear transformation I – P on B.

We know the null space of any continuous linear transformation is closed (please see
problem 2.2.16). Therefore both M and N are closed linear subspaces of B.

2.6.4 Theorem :

Let B be a Banach space, and let M and N be closed linear subspaces of B such that
 B M N . If   z x y  is the unique representation of vector in B as a sum of vectors in

M and N, then the mapping P defined by   P z x  is projection on B, whose range and null
space are M and N.

Proof : Let M and N are closed linear subspaces of Banach space B such that  B M N .
Then the pair M and N determines a projection P on linear space B whose range and nullspaces
are M and N respectively.

Thus to prove : P B B  is projection on Banach space B it remains to prove P is
continuous.

Let  z x y  is unique expression of vector in  B M N . Let B' is the linear
space B equipped with new norm '  defined by,,

'  z x y

Then  ' , ' B B  is Banach space [  please refer problem 1.6.10].

Note that,

  '   P z x x y z

: ' P B B  is bounded linear transformation and hence it is continuous.

It is therefore sufficient to prove that B' and B have same topology.
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Let : 'T B B  be a identity map. Then T is bijective and

  '     T z z x y x y z

T  is bounded linear transformation and hence continuous.

By Theorem 2.5.8, : 'T B B  is homeomorphism. Hence B' and B have same
topology. This completes the proof.

2.7 CLOSED GRAPH THEOREM

In this section we give the proof of closed graph theorem which states the sufficient
condition under which a closed linear operator on a Banach space is bounded (continuous).

We know given linear spaces X and Y over same scalar field  (  or  ), the
cartesian product X   Y is again linear space over   under the algebraic operations given
by,

     , , ,   x y u v x u y v  and    , ,x y x y  

where    , , ,  x y u v X Y  and   .

Problem 2.7.1 : Let  , X  and  ,  YY  be normed spaces. Prove that each one of the
following defines norm of X Y .

(a)    , max ,X Yx y x y ,  ,  x y X Y .

(b)  ,  X Yx y x y ,  ,  x y X Y .

(c)  ,  P P
X Yx y x y ,  1  P ,  ,  x y X Y .

Solution : We have already discussed (a) in the first unit. Remaining we leave for students.

Problem 2.7.2 : Let X and Y are Banach spaces with norm  X  and  Y  respectively. Prove

that X Y  is Banach space with the norm   defined by,,

   , max , X Yx y x y
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Solution : Let  ,  XX  and  ,  YY  are Banach spaces.

Then X Y  is normed space with the norm   defined by,,

   , max , X Yx y x y

To prove X Y  is complete, let  nz  be any Cauchy sequence in X Y , where for

each n,  ,n n nz x y .

Then for given 0 ,  N  such that

, m nm n N z z    

   max ,   m n m nX Yx x y y 

    m n Xx x   and  m n Yy y 

This implies  nx  and  ny  are Cauchy sequence in complete normed linear space

X and Y respectively. Therefore  x X , y Y  such that nx x  and ny y .

Define  ,z x y  then clearly  z X Y .

We prove that nz z .

Note that,

 max , 0    n n nX Yz z x x y y  as n .

Thus nz z  in X Y .

Therefore X Y  is complete normed linear space and hence Banach space.

2.7.3 Definition : Let X and Y are linear space over the same system of scalar and

: T X Y  be a linear transformation. The set given by     , : G T x Tx x X  is called
graph of T.

2.7.4 Remark : (i) If X and Y are linear spaces then G (T) is linear subspace of X Y .

(ii) Graph of T is also denoted by TG or GT.
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2.7.5 Definition : Let X and Y be normed spaces and : T X Y  a linear transformation.

Then T is called closed linear transformation if its graph     , : G T x Tx x X  is closed in
the normed space X Y .

2.7.6 Theorem : Let X and Y be normed linear spaces over the same system of scalar
 (  or  ), then the linear transformation : T X Y  is closed iff for every sequence

 nx  in X with nx x  and  nT x y  we have x X  and   T x y .

Proof : Let X and Y be normed linear spaces with the norm  X  and  Y  respectively..

Then X Y  is normed linear space with the norm given by,,

   , max , X Yx y x y ,  ,  x y X Y .

Let the linear transformation : T X Y  is closed.

Then by definition its graph     , : G T x Tx x X  is closed.

Let  nx  be any sequence in X such that,

nx x  and  nT x y

Then    ,n nx T x  is sequence in G (T) such that

       , , max , 0    n n n nX Y
x T x x y x x T x y

This implies    ,n nx T x  is the sequence in G (T) such that     , ,n nx T x x y .

But G (T) is closed. Thus, we must have,    , x y G T .

Therefore x X  and  y T x .

Conversely, let for every sequence  nx  in X with nx x  and  nT x y  we

have, x X  and   T x y . We have to prove that T is closed i.e. its graph G (T) is closed.

Let    ,n nx T x  be any sequence in G (T) such that     , ,n nx T x x y .

Then,     , , 0 n nx T x x y  as n .
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     max , 0  n nX Y
x x T x y

But n Xx x ,     max ,n n nXY Y
T x y x x T x y    .

0  n Xx x   and    0 n Y
T x y

 nx x  and  nT x y

But by hypothesis, we must have x X  and   T x y .

Therefore,       , , x y x T x G T .

This implies G (T) is closed.

2.7.7 Theorem (Closed Graph Theorem) : If B and B' are the Banach spaces and if T is
linear transformation of B into B', then T is continuous iff its graph is closed (T is closed).

Proof : Let B and B' are Banach spaces w.r.t. norm   and '  respectively and : 'T B B
be a linear transformation.

Let T is continuous. We prove that its graph      , :G T x T x x B   is closed.

Let    ,n nx T x  be any sequence in G (T) such that     , ,n nx T x x y .

Then nx x  and  nT x y .

But continuity of T gives that

     n nx x T x T x

Therefore we must have  y T x .

Thus       , , x y x T x G T .

This proves G (T) is closed, that is T is closed.

Conversely, let G (T) is closed.

We denote by B1 the linear space B with the norm  1 ' x x T x , x B .

Then  11 , B B  is normed linear space.
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Moreover    ' '  T x x T x x , x B .

This implies, 1: 'T B B  is bounded linear transformation, hence continuous.

To prove : 'T B B  is continuous.

We must show that B and B1 have same topology that is they are homeomorphic.

Consider the identity map.

1: I B B ,   I x x , x B .

Then I is clearly bijective linear transformation.

Further,

    1'   I x x x T x x , x B .

implies I is bounded.

Thus, we have proved that I is bijective, continuous linear transformation.

Therefore, by the theorem “A one to one continuous linear transformation from one
Banach space onto other is homeomorphism”, 1: I B B  will be homeomorphism if B1 is
complete.

Thus to conclude the proof we show that B1 is complete.

Let  nx  be any Cauchy sequence in B1, then for given 0 ,  N  such that.

1,    m nm n N x x 

    '    m n m nx x T x x 

  m nx x   and   ' m nT x x 

This implies  nx  and   nT x  are Cauchy sequences in complete normed linear

spaces B and B’ respectively. Hence   vector x B  and 'y B  such that,

0 nx x  and   0 nT x y .... (1)

    , , n nx T x x y
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Note that,    ,n nx T x  is sequence in G (T) such that     , ,n nx T x x y .

But by assumption G (T) is closed and hence    , x y G T , so  y T x .

Now,

   
1

'    n n nx x x x T x T x

    ' 0n nx x T x y      as n . [   by (1) ]

This proves B1 is complete.

This complete the proof of the theorem.

2.8 UNIFORM  BOUNDEDNESS  PRINCIPLE

2.8.1 Definition : Let X and Y are norm linear spaces and   B X . Then   is said
to be :

(a) Pointwise bounded : If for each x X , the set   : T x T   is bounded in Y.Y.

(b) Uniformly bounded : If   is bounded set in the normed linear space B (X, Y), that
is 0K   such that T K ,  T  .

2.8.2 Remark : If   is uniformly bounded set then   is pointwise bounded but converse
need not be true.

The uniform boundedness principle which is also known as Banach-Steinhaus theorem
is one of the fundamental results in functional analysis which has significant applications in the
field of analysis. It asserts that for a family of continuous linear transformations of Banach
spaces to normed spaces, pointwise boundedness is equivalent uniform boundedness.

2.8.3 Theorem (Uniform Boundedness Principle)

Let B be a Banach space and N a normed linear space. If { Ti } is a nonempty set of
continuous linear transformation of B into N with the property that { Ti (x)] is bounded subset
of N for each x in B, then  Ti  is bounded as a subset of numbers, that is, { Ti } is bounded
as a subset of B (B, N).
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OR

Let B be a Banach space, N a normed linear space and    ,iT B N B . If  { Ti }is
pointwise bounded than { Ti } is uniformly bounded.

Proof : Let B be a Banach space, N a normed linear space and    ,iT B N B .

Assume that, { Ti (x)} is bounded subset of N for each x B .

We have to prove that { Ti } is bounded subset of B (B, N).

For each n , define,

  : ,n iF x B T x n i    ...... (1)

Claim :  Fn is closed set :

Let  kx  be any sequence in Fn such that kx x .

Then  i kT x n , for all i and all k. ...... (2)

Now, Ti is continuous for each i, we have

   
i k iT x T x , for each i.

Further using continuity of norm we have,

   i k iT x T x , for each i.

Therefore, by (2) we get

  ,iT x n i 

This implies, nx F . Hence Fn is closed.

Now, as nF B ,  n , we have 
1

n
n

F B



 .

We prove that 
1

n
n

F B



 .

If possible 
1

n
n

F B



  then 

1
n

n
F B




  and  x B  such that 

1
n

n
x F




 .
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nx F  , for each n.

   i such that  iT x n , for each n.

Which is contradiction to the fact that   iT x  is bounded subset of N for each

x B .

Therefore we must have,

1
n

n
B F




 

But B being complete by Baire’s category theorem 0 n  such that 
0nF  has

nonempty interior.

Since 0nF  is closed, we have,

0 0n nF F

0nF  has nonempty interior..

Let 0x  is the interior point of 0nF .

Then  0 00r nS x F , for some 0 0r .

  0iT x n  ,  0 0  rx S x  and i .

  Each vector in   0 0i rT S x  has norm less than or equal to 0n .

For the sake of brevity we express this fact by writting.

  0 0i rT S x n , for all i.

Note that,

   
0 0 0 0 1 0 rS x x r S

Therefore, for each i, we have

   
0 0 0

1
0

0 r
i i

S x x
T S T

r
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0 0 0

0

1
i r iT S x T x

r
 

       
0 0 0

0

1
i r iT S x T x

r
   

    0 0
0

1
 n n

r

    
0

0

2


n
r

  0

0

2
i

nT x
r

  ,  
1 0 x S  and i .

  0

0

2
i

nT x
r

  , x B , 1x  and i .

   0

0

2sup : , 1i
nT x x B x
r

    , i .

0

0

2
i

nT
r

  , i .

iT  is bounded subset of normed space B (B, N).

Hence, the proof.
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BOUNDED  LINEAR  FUNCTIONALS

UNIT  -  III

This unit deals with bounded linear functional, conjugate spaces, Hahn Banach Theorem
and its consequences.

3.1 DEFINITION AND PROPERTIES OF FUNCTIONALS

3.1.1 Definition :

A bounded (or continuous) linear functional is bounded linear transformation of with
domain is normed space N and range in the scalar field   (  or  ) of N.

More precisely, if N be a normed space over field  =   or   then bounded linear
transformation : f N   is called bounded (or continuous) linear functional or more briefly
functional, where    if N is real normed space and    if N is complex normed
space.

3.1.2 Remark :

As a bounded linear functional is a special case of bounded linear transformation, all
general theorems and properties studied in Unit 2 for bounded linear transformations are true
for bounded linear functionals.

We mention here few important definitions and theorems in the form of functionals.

3.1.3 Definition :

Let N be a normed space over field   (  or  ). A function : f N   is said to

be bounded if 0 k  such that   f x k x ,  x N .

  f x k x ,  x N  .
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3.1.4 Theorem : Let f be a functional on normed space N. Then

(i) f is continuous iff f is continuous at a point (any) in N.

(ii) f is continuous iff f is bounded.

3.1.5 Theorem

Let f be a functional on normed space N. Then, norm of-of f can be expressed by any
one of the following formulae.

(a)   sup : , 1  f f x x N x

(b)   sup : , 1  f f x x N x

(c)
 

sup : , 0
 

   
 

f x
f x N x

x

(d)   sup : 0 and ,   f k k f x k x x X

Further   f x f x ,  x N .

Equivalently,
 


f xf

x
, x N , 0x .

3.1.6 Examples of Functions

Example 1 :  Let n  be the real normed space with the norm

1
22

1

    

n

j
j

x x ,  1,..., n
nx x x .

Fix any non zero vector  1,..., na a a  in n  consider  the dot product defined by
function

:  nf ,  
1 1 ....     n nf x x a x a x a .
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Then f is functional on n , with f a .

f is linear : Let any  1,..., nx x x ,  1,..., ny y y  in n  and ,   .

Then               1 1 1,...., ,...,n n nf x y x y x y a a         

                     1 1 1 ....    n n nx y a x y a   

         1 1 1 1.... ...     n n n nx a x a y a y a 

            x a y a 

          f x f y 

f is bounded : By Cauchy Schwartz inequality, we have

     f x x a x a ,  nx . ...... (1)

We have proved that f is functional on n .

Claim f a  :

By definition,   sup : , 1  nf f x x x

        sup : , 1   nx a x x

Using (1) we have,

 sup : , 1   nf x a x x

       a

Thus, f a ..... (2)

Further,    f x f x ,  nx .

 f xf
x

  , nx , 0x  .

Inparticular for x = a we have,

  2 2
1 .... 

   nf a a aa af
a a a
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2

 
a a
a

Hence f a .... (3)

By (2) and (3), we have f a .

Example 2 :  Consider the Banach space   , , B C a b  with the supremum norm

 
 

,
sup



t a b

x x t , x B .

Define, : f B , by

    
a

b
f x x t dt , x B .

Then f is functional on B and  f b a .

f is linear : Let any , x y B  and ,   .

Then               
b b

a a
f x y x y t dt x t y t dt     

             
b b

a a
x t dt y t dt 

           f x f y  

f is bounded : For any x B , we have,

    
b

a
f x x t dt

   
b b

a a
x t dt x dt



102

   
b

a
x dt b a x

Therefore,     f x b a x , x B . .... (1)

This implies f is bounded.

We have proved that f is functional on B.

Claim :  f b a .

By definition,

  sup : , 1  f f x x B x

Using (1), we have

  sup : , 1   f b a x x B x

       b a

Thus  f b a ..... (2)

Consider the function  0 : , x a b defined by  
0 1x t ,  , t a b . Then 0 x B .

We know for bounded linear functional

   f x f x ,  x B

 
 

f xf
x

, x B , 0x

Inparticular for 0x x  we have

 0

0


f x

f
x

      
 

0

0



b

a
x t dt

x
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b

a
dt

      b a

i.e.  f b a .... (3)

From (2) and (3), we have

 f b a .

EXERCISE :

1. Consider the Banach space   , , B C a b  with the supremum norm

 
 

,
sup



t a b

x x t , x B .

Fix any 0 x B , and define : f B  by

     0 
b

a
f x x t x t dt , x B .

Prove that f is functional on B with

 0 
b

a
f x t dt .

2. Let   , , B C a b  be a Banach space with the supremum norm

 
 

,
sup



t a b

x x t , x B .

Fix a point  ,t a b . Define : tf B  by

   tf x x t , x B .

Prove that tf  is a functional on B and 1tf .
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3.1.7 Theorem : Let N be a normed space. A linear transformation f on N is bounded
(continuous) if and only if ker (f) is closed.

Proof : Let : f N  (  or  ) is bounded linear functional, and hence it is continuous.

Then        1ker : 0 0   f x N f x f .

Since  0  is closed subset of   (  or  ), and : f N   is continuous, it

follows that   1 0f  is closed in N.

This proves ker (f) is closed in N.

Conversely, let ker (f) is closed set in N.

We have to prove that the linear transformation : f N   is bounded.

If f = 0 then f is clearly continuous and hence bounded.

Let 0f  linear transformation.

Then  ker N f  .

Since ker (f) is closed,  kerN f  is open set in N.

Fix any  0 ker x N f . Then 0 x N  and  0 kerx f . Hence  0 0f x .

Define  
0

0
0


xy

f x .

Then 0 y N  and    
 
 

00
0

0 0

1    
 

f xxf y f
f x f x .

Therefore  0 ker y N f .

Since  kerN f  is an open set,  0r  .

Such that    0 ker rS y N f .

Claim :   1f x ,  0  rx S ..... (1)

If possible,  
1 0rx S  s such that   1f x .
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Define,  
1

1
1




xy
f x .

Then 1y N  and,

   
11

1
1 1


  

xxy r
f x f x .

 0 1 0 1    y y y y r

 0 1 0   ry y S y

Further,      0 1 0 1  f y y f y f y

       
1

1

1     
 

xf
f x

      
 
 

1

1

1 
f x
f x

       = 1 – 1 = 0

 0 1 ker  y y f .

Therefore,

   0 1 0ker   ry y f S y

   0ker  rf S y 

This contradicts to the fact that

   0 ker rS y N f

Thus (1) must be true.

This proves (1).

Now for any 0x  in N, we have,

2 2 2
  

rx r x r r
x x
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Therefore by (1), we have,

1
2

   
 

rxf
x

  1
2

 
r f x
x

  2    
 

f x x
r

Further for x = 0,

  0 f x x

Thus   2   
 

f x x
r  if x = 0.

We have proved that

  2   
 

f x x
r ,  x N .

 f  is bounded linear functional.

3.1.8 Remark : The theorem 3.1.6 need not hold, in general for linear transformations
between arbitrary normed spaces.

3.2 CONJUGATE SPACE (DUAL SPACE)
We know if N and N' are normed spaces over the same field of scalar   (  or  ),

then the set B (N, N') of all continuous linear transformations of N into N' is a normed space
over   (See Theorem 2.3.1).

In particular if N be a normed space and ' N   the set  ,N B  of all bounded
linear functionals on N is normed space with the norm.

  sup : , 1  f f x x N x

Since   is complete space, by theorem 2.3.1, it follows that  ,N B  Banach
space over field  .
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3.2.1 Definition

If N is an arbitrary normed space, then the set of all bounded (continuous) linear
transformation of N into   or  , according as N is real or complex normed space, is the set

 ,N B  or  ,N B  and is called conjugate space (or dual space) of N.

The dual space of N is denoted by N*. Thus  * ,N N B  or  ,N B  according
as N is real or complex normed space.

3.2.2 Definition

A member of  * ,N N B , (  =   or  ) is called bounded linear function or
more briefly it is called function.

3.3 THE HAHN-BANACH THEOREM
The theory of conjugate spaces is completely rests on the Hahn-Banach theorem,

which is most important theorem in connection with bounded linear functionals. The Hahn-
Banach theorem is an extension theorem for bounded linear functional. It asserts that a bounded
linear functional  f  defined on subspace M of a normed linear space N can be extended from
M to the entire space N in a such way that the certain basic properties of  f  continue to hold
good for extended functional.

For proving the Hahn-Banach theorem, firstly we prove the Hahn-Banach Lemma.

3.3.1 Lemma (Hahn-Banach Lemma)

Let M be a linear subspace of a normed linear space N, and let f be a functional

defined on M. If x0 is a vector not in M, and if  0 0 M M x  is the linear subspace spanned

by M and x0, then f can be extended to a functional  f0 defined on M0 such that 0 f f .

Proof : Let M be a linear subspace of normed space N. Let : f M   (  or  ) be a
bounded linear functional.

Without loss of generality we may assume that 1f .
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We give the proof in two parts :

(I) When N is a real normed space.

(II) When N is a complex normed space.

Case - I : Let N be a real normed space.

Let : f M  be a bounded linear functional.

Fix 0 x M  and let    0 0 0 : ,     M M x x x x M 

Then M0 is a linear subspace of N and 0M M .

Define 0 0: f M  by,,

   
0 0 0  f x x f x r  , x M ,  ,

for any choice of the real number  0 0r f x .

f0 is an extension of f :

For any x M  we have,

          
0 0 00 0    f x f x x f x r f x

0 f f  on M.

f0 is Linear :

Let any 1 2 0, y y M . Then 1 1 1 0 y x x  and 2 2 2 0 y x x  for some 1 2, x x M

and 1 2,   .

Then,       0 1 2 0 1 2 1 2 0    f y y f x x x 

         1 2 1 2 0f x x r    

          1 2 1 2 0f x f x r     [   f is linear]

          1 1 0 2 2 0   f x r f x r 
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   1 1 0 2 2 0   f x x f x x 

   1 2 f y f y  .

Further for any scalar a ,

     0 1 0 1 1 0 1 1 0   f ay f ax a x f ax a r 

    1 1 0 1 1 0af x a r a f x r      

    1 1 0 1a f x x af y    

f0 is bounded :

Let 1 2, x x M . Then,

     2 1 2 1  f x f x f x x

 2 1 f x x

2 1 f x x

2 1 x x ( 1 f )

   2 0 1 0   x x x x

2 0 1 0   x x x x

This gives,

   1 1 0 2 2 0f x x x f x x x       , 1 2, x x M .

Therefore,

     0 0sup : sup :f x x x x M f x x x x M        

Choose 0r  to be any real number such that,

     0 0 0sup : sup :         f x x x x M r f x x x x M

   
0 0 0 ,           f x x x r f x x x x M
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For any x M  and 0  , we have 
x M


.

Thus,

0 0 0 ,                 
   

x x x xf x r f x x M
   

If 0  then

   
0 0 0 ,           f x x x r f x x x x M  

 
0 0 0 ,  x x f x r x x x M         

  0 0 ,       f x r x x x M 

Therefore,

 0 0 0  f x x x x  ,  x M ,  , 0 .

On the same line, one can prove that

 0 0 0  f x x x x  , x M ,  , 0  .

Combining we have,

 0 0 0  f x x x x  , for all x M  and all  .

Thus,  0 f y y , 0 y M ...... (1)

This implies 0 :f M   bounded (continuous).

To prove 0 1f :

Using (1) and definition of norm of functional we have,

 0
0 0sup : , 0 1

  
    

  

f y
f y M y

y

i.e. 0 1f
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Further,

  0 0 0sup : , 1  f f y y M y

         0sup : , 1  f y y M y ( 0M M )

         sup : , 1  f y y M y ( 0 f f  on M)

       f

Thus, 0 f f .

But 1f  implies 0 1f .

Therefore, 0 1f .

We have proved that 0 0: f M  is a functional extension of : f M such

that, 0 1 f f .

Case II : Let N be a complex normed space.

Let : f M  bounded linear functional with 1f .

Let  Reg f and  Imh f . Then

      f x g x ih x , x M .

Where : g M  and : h M .

Note that 1 1   g f g .

(i) Since f is linear, for any , x y M  and  , we have,

       f x y f x f y

                     g x y ih x y g x ih x g y ih y

                  g x g y i h x h y
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        g x y g x g y ,        h x y h x h y

and    f x f x 

           g x ih x g x ih x  

           g x i h x 

    g x g x  ,    h x h x  .

Therefore , : g h M   both are linear..

(ii) Since f is bounded on M and for all x M .

    g x f x f x ,     h x f x f x .

It follows that g and h both are bounded on M.

By part (i) and (ii), , : g h M  are bounded linear functional.

As : f M  is linear, for all x M ,

   f ix if x

           g ix ih ix i g x ih x

        ig x h x

     h x g ix  and    g x h ix

So we can write,

      f x g x ih x

             g x ig ix , x M .

Since : g M  is functional, by Case I, g can be extended to a functional

0 0: g M  such that 0g g .

Define 0 0: f M  by
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0 0 0 f x g x ig ix , 0x M ...... (2)

We prove that 0f  is the required functional with desired property..

f0 is linear :

Let any 0, x y M . Then,

      0 0 0    f x y g x y ig i x y

           0 0 0 0     g x g y i g ix g iy

           0 0 0 0g x ig ix g y ig iy         

       0 0 f x f y

Also for any a ,

     
0 0 0 f ax g ax ig iax

   
0 0 ag x iag ix

   0 0    a g x ig ix

 
0 af x

Therefore for any  a ib , , a b , we have

       
0 0 0 0   f x f ax ibx af x bf ix ..... (3)

But       2
0 0 0 f ix g ix ig i x

   
0 0  g ix ig x

   
0 0 g ix ig x

   0 0    i g x ig ix

 
0 if x
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Thus (3) becomes

     
0 0 0 f x af x ibf x

   
0 a ib f x

 
0 f x

Hence 0 0: f M  is linear..

f0 is bounded :

Since 0 0: g M  is bounded, for any x M , we have,

     0 0 0 f x g x ig ix

   0 0 g x g ix

0 0 g x g ix

02 g x

   0 02 f x g x , 0 x M

Therefore, 0 : f M  is bounded (continuous)

f0 is extension of f :

Since 0 g g  on M, from (2) it follows that 0 f f  on M.

To prove 0 1f  :

Let 0x M  and 1x .

(a) If  
0f x  is real, then    

0 0f x g x .

Thus    0 0f x g x
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0 g x

But 0 1g g   and 1x

 0 1 f x .

(b) If  
0f x  is complex, then

   0 0 if x f x e  , where   0arg f x .

Then,

     
0 0 0

  i if x e f x f e x  ..... (4)

[ 0 0:  f M  is linear]

 
0

 if e x  is real.

Moreover,

 ie x M  and 1   i ie x e x x 

Therefore, by part (a),

 
0 1 if e x ..... (5)

From (4) and (5),  0 1f x .

Combining part (a) and (b),

 0 1f x , for 0x M , 1x .

  0 0 0sup : , 1 1    f f x x M x

i.e. 0 1f

Also 0 f f  (already proved) and 1f , we have 0 1f .

Thus 0 1f .
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Hence 0 0: f M  is functional extension of : f M  such that

0 1 f f .

This complete the proof.

3.3.2 Definition :

A partially ordered set (or poset) is a pair (P,  ) where P is a set and ‘ ’ is a binary
relation on P which satisfies for all x, y and z in P.

(a) Reflexivity : x x

(b) Antisymmetry : If x y  and y x  then x = y

(c) If x y  and y z  then x z .

Let (P,  ) is poset. For , x y P if either x y  or y x , then x and y are called
comparable.

A subset C of poset (P,  ) is called chain if every pair of elements of C are comparable.

An upper bound of subset A P  is any x P  such that a x ,  a A .

An element x in poset (P,  ) is called a maximal element if there is no element y in P
such that x y . i.e. if x y  then x y .

3.3.3 Lemma (Zorn’s Lemma) :

If (P,  ) is a partially ordered set in which every chain has an upper bound, then P has
a maximal element.

3.3.4 Theorem (Hahn-Banach Theorem)

Let M be a linear subspace of a normed linear space N, and let f be a functional
defined on M . Then f can be extended to a functional  f0 defined on the whole space N such

that 0 f f .

Proof : Let M be a linear subspace of a normed space N. Let f be a functional on M.

Let P is the set of all ordered pair ( ,f M  ) where f  is functional extension of  f  to

the subspace M M  and f f .
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Since  , f M P , P is nonempty..

Define the relation ‘ ’ on P by    , ,f M f M     iff M M   and f f 

on M . Then clearly  (P,  ) is partially ordered set.

Let   ,j jf Mc  be any chain in P..

Define   ' : ,j j j
j

M M f M  c .

M' is subspace of N :

Let any , 'x y M . Then  ix M  and  jy M  for some i and j. Since c is chain

either i JM M  or j iM M .

Let us suppose i jM M . Then ,  jx y M .

Since jM  is linear subspace of N, we have   jx y M   for any scalar   and  .

But 'jM M  implies ' x y M  .

Define ' : 'h M  (  or  ) by

   '  jh x f x  if  jx M  and  j jf M  c

Clearly  ', ' h M P .

Further, for any  ,j jf M  c  we have 'jM M  and '  jh f  on jM .

Therefore    , ', 'j jf M h M ,  ,j jf M  c .

This implies  ', 'h M  is an upper bound of C.

We have provd that every chain c in P has an upper bound. Therefore by zorns lemma

P has maximal element, say  0 0,f M .

Thus  f0 is functional extension of f to the subspace 0 M M  such that 0 f f .

We claim that 0 M N .
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If possible 0 M N , then there exists 0 0x N M  .

This implies  0 0 0x M x N  .

Therefore by Hahn-Banach Lemma 3.3.1  f0 can be extended to a functional h0

defined on subspace  0 0M x  such that 0 0h f .

But then   0 0 0,  h M x P  and     0 0 0 0 0, , f M h M x , which is contradiction

to maximality of  0 0,f M .

Hence we must have 0 M N .

We have proved that   a functional  f0 on N such that 0 f f .

This completes the proof.

3.4 CONSEQUENCES OF HAHN BANACH THEOREM

3.4.1 Theorem : If N is a normed linear space and 0x  is a non-zero vector in N, then there

exists a functional 0f  in N* such that  0 0 0f x x  and 0 1f .

Proof : Let N is a normed linear space over field   (  or  ) and let 0 0x  in N.

Consider the set,

 0 : M x  
Then M, is clearly linear subspace of N spanned by x0.

Define : f M   by

 0 0f x x  ,   .

We prove that f is functional on M with desired property.

f is linear : Let , 'y y M . Then 0y x  and 0' 'y x  for some , '   .

Then,    0 0' '  f y y f x x 
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      0' f x 

     
0'  x 

    0 0' x x 

       0 0' f x f x 

       ' f y f y

and for any a   we have,

     0 0 0  f ay f a x a x af x  

            af y

Thus f is linear.

f is bounded (Continuous) :

Let any y M . Then 0y x  for some   . Then

   0 0 0  f y f x x x  

       0 x

        y

Therefore

  f y y ,  y M ..... (1)

This implies f is bounded (continuous).

Using (1), we have

 
sup : , 0 1

f y
f y M y

y
  

    
  

By definition of f,  0 0f x x (  Take 1 )
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Thus : f M   is functional on M such that,

 0 0f x x  and 1f ..... (2)

By Hahn-Banach theorem   a functional 0 *f N  such that,

0f f  on M and 0f f ...... (3)

From (2) and (3), we have

   0 0 0 0 f x f x x ( 0  x M )

and 0 1 f f .

This completes the proof.

3.4.2  Corollary :

Let N be a normed space. If x and y are any two distinct vectors in N then there
exists a functional *f N  such that    f x f y .

OR

The conjugate space N* separates the vectors in N.

Proof :  Let N be a normed space.

Let any x y  in N. Then 0 x y  in N. By Theorem 3.4.1,   functional *f N

such that   0   f x y x y .

This gives        0   f x f y f x f y .

3.4.3 Corollary :

Let N be a normed space.

If   0f x , * f N  then x = 0.

Proof : Let N be a normed space.

Assume   0f x , for all *f N .
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If possible 0x  in N. Then, by Theorem 3.4.1,  *f N   such that   0 f x x ,
a contradiction to our assumption.

Hence we must have x = 0.

3.4.4 Corollary :

Let N be a normed space and x N . Then,

 
sup : *, 0

 
   

 

f x
x f N f

f

Proof : Let N be a normed space and x N .

If x = 0 then 0x  and    0 0 f x f , * f N .

Therefore,

 
sup : *, 0 0

 
    

 

f x
f N f x

f

Let any 0x  in N. By Theorem 3.4.1 there exists functional 0 *f N  such that

 
0 f x x and 0 1f .

Therefore

   0

0

sup : *, 0
 

    
 

f x f x
x f N f

f f ..... (1)

For any *f N , we have,

  f x f x .

Thus,

 
sup : *, 0 sup : *, 0

   
       

   

f x f x
f N f f N f

f f

 x
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i.e.
 

sup : *, 0
 

   
 

f x
f N f x

f ..... (2)

From (1) and (2) we have,

 
sup : *, 0

 
   

 

f x
x f N f

f

3.4.5 Theorem :

Let M be a subspace of normed space N and let 0 x N  be such that

 0 , 0 d x M d . Then there exists a functional 0 *f N  such that,

 0 0 1f x ,  
0 0f M  and 0

1
f

d .

Proof : Let M be a linear subspace of normed space N over the field  .

Let 0 x N  be such that  0 , 0 d x M d .

Then 0 x M .

Consider the set,

 0 0 M M x

        0 : ,   m x m M  

Then M0 is linear subspace of N and each 0y M  has unique expression

0 y m x , m M  and   .

Define 0: f M   by

 0 f m x  , m M ,   .

We prove that f is a functional on M0 with desired property.
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f is linear :  Let any 0, 'y y M . Then 0 y m x , 0' ' ' y m x  for some , 'm m M
and , '   . Then,

      0 0' ' '    f y y f m x m x 

        0' '   f m m x 

    '  

       0 0' '   f m x f m x 

        ' f y f y

and for any scalar a  .

    0 f ay f a m x

 0 f am a x

 a

 0 af m x

  af y

Thus f is linear.

f is bounded (Continuous) :

For all 0 y m x  in M0,

   0  f y f m x  ...... (1)

Case 1 :  Let 0 . Then,

0 y m x

      0
     
 

m x
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      0
    
 

m x


       0inf :  x x x M

       d

        f y d (  By (1))

This gives,

  1f y y
d



Case 2 :  Let 0 . Then,

   0 0    y m d d f y (  By (1))

  1
 f y y

d

By Cases 1 and 2, f is bounded (continuous).

Thus f is functional on M0.

Further by (1),

 
0

1sup : , 0
  

    
  

f y
f y M y

y d

i.e.
1

f
d ..... (2)

Since  0inf :  d m x m M  there exists a sequence  nm  in M such that,

0 nm x d as n .

Now,     0 01 1n nf m x f m x     

 01 nf m x  
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     0 nf m x  for all n.

Taking limit as n , we obtain

1 f d

1
  f

d ...... (3)

From (2) and (3) we obtain,

1
f

d .

Thus 0: f M   is functional on M0 such that,

    0 00 1 1  f x f x

    00 0  f m f m x ,   0   m M f M

and 
1

f
d .

By Hahn-Banach Theorem there exists a functional 0 *f N  such that 0 f f  on

M0 and 0f f .

But then,

   0 0 0 1 f x f x ( 0 0 x M )

   
0 0 f M f M ( 0M M )

and 0
1

 f f
d .

This complete the proof of the Theorem.

3.4.6 Corollary : Let M be a subspace of normed space N and let 0 x N  be such that

 0 , 0 d x M d . Then there exists a functional 0 *f N  such that  0 0 f x d ,

 
0 0f M  and 0 1f .
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Proof : Let M be a linear subspace of normed space N. Let 0 x N  be such that

 0 , 0 d x M d . Then by Theorem 3.4.5   a functional 0 *g N  such that

 0 0 1g x ,  
0 0g M  and 0

1
g

d .

Define 0 0f dg . Then 0 *f N  such that,

     
0 0 0 0 1  f x dg x d d

     
0 0 0 0  f M dg M d

0 0 0
1 1    f dg d g d
d .

3.4.7 Problem : Let M be a closed linear subspace of a normed linear space N, and let 0x

be a vector not in M. If d is the distance from 0x  to M, show that there exists a functional

0 *f N  such that

 0 0 1f x ,  
0 0f M  and 0

1
f

d .

Solution : Let M be a closed linear subspace of a normed linear space N.

Let 0 x N  such that 0x M  and let  0 ,d d x M .

Note that,

 0 0 , 0   x M M d x M

Therefore,

 0 0 , 0x M d d x M   

By Theorem 3.4.5, 0 * f N  such that

 0 0 1f x ,  
0 0f M  and 0

1
f

d .

[For complete proof proceed as in the proof of Theorem 3.4.5]
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3.4.8 Theorem : If M is closed linear subspace of a normed linear space N and 0x  is a

vector not in M, then there exists a functional 0 *f N  such that  
0 0f M  and  0 0 0f x .

Proof 1 :  Follows from Theorem 3.4.5.

Proof 2 :  Let M be a closed linear subspace of a normed linear space N. Then N/M is a
normed linear space with the norm of coset.

 inf :   x M x m m M

Further a natural mapping : /T N N M  defined by

   T x x M , x N . ....... (1)

is continuous linear transformation such that 1T .

By (1), we have

    T m m M M ,  m M ..... (2)

Since 0 x M , 0  x M M  that is 0 x M  is non-zero vector in N/M.

[Note that M is zero vector in N/M]

By Theorem 3.4.1,   a function  / *g N M  such that

 0 0  g x M x M  and 1g .

Since 0 x M  is non-zero vector in N/M,

 0 0 g x M ....... (3)

Define 0 : f M   by     0 f x g T x , x N .

x T
T( )x

g

N/MN

f0

g x (T ( ))

K
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We prove that  f0 is functional on M with desired property.

f0 is linear : Let any , x y N . Then,

    0   f x y g T x y

        g T x T y

         g T x g T y

      0 0 f x f y

and for any scalar    we have,

    0 f x g T x 

   g T x

   g T x

 
0 f x

Thus  f0 is linear.

f0 is bounded (continuous) :

For any x N ,

    0 f x g T x

  g T x

 g T x

 g x ( 1 T )

Since g is bounded, it follows that  f0 is bounded (continuous).

We have proved that 0 *f N .
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Further,

      
0 0  f m g T m g M

(  g is linear and hence preserves the zero vector)

and       0 0 0 0 0   f x g T x g x M (  By (3))

This completes the proof.

3.4.9 Definition : Let (x, d) be a metric space and A X . Then, A is said to be dense in
X (or every where dense) if A X .

3.4.10 Definition : A metric space (X, d) is said to be separable if it has a countable subset
which is dense in X.

3.4.11 Problem : Prove that a normed linear space N is separable if its conjugate space
N* is.

Solution : Let N be a normed linear space.

Let conjugate space N* of N is separable. Then there exists a countable set.

 *: 1, 2,3,....  nA f n

Which is dense in N*, that is, *A N .

Now for each n (n = 1, 2, 3, .....)

  sup : , 1  n nf f x x N x

Therefore 
1
2 nf  is not an upperbound of the set,

  : , 1 nf x x N x

Hence  nx N   such with 1nx  such that,

 1
2

n n nf f x ...... (1)
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Let  span nM x

Then M is closed linear subspace of N generated by the sequence  nx .

We claim that M = N (i.e. M N  ).

If possible M N . Then 0 x N M   .

By Theorem 3.4.8,   a functional 0 *f N  such that,

 0 0 0f x  and  
0 0f M .

Since  nx M ,  0 0nf x   n .

Thus from inequality (1), for each n, we have,

   0
1
2

 n n n nf f x f x

   0 n nf f x

0 n nf f x

0 nf f [ 1 nx ]

Thus,

02 n nf f f , n ..... (2)

Now,

 0 0  n nf f f f

        0  n nf f f

        0 02   n nf f f f [  By (2)]

        03 nf f

i.e. 0 03 nf f f    n ..... (3)
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On the other hand,

0 *f N  and 0*  A N f A

Therefore there exists a sequence  knf A  such that 0
knf f  as k .

But from (3),

0 03 
knf f f

Taking limit as k , we obtain,

0 0f

0 0 f

 0 0 0 f x ( 0  x N )

This is contradiction to the fact  0 0 0f x .

Hence we must have M = N (i.e. M N  ), which implies N is separable.





132

SECOND CONJUGATE SPACE, EQUIVALENT NORMS

UNIT  -  IV

In this unit we study second conjugate spaces, conjugate of an operator, equivalent
norms and finite dimensional spaces.

4.1 SECOND CONJUGATE SPACE

Let N be a normed space over field   (  or  ). Then  * ,N N B  or

 ,N B  is called conjugate (dual) space of N. Since the conjugate space N* of N itself is

normed space with the norm  : * 0,  N  defined by,,

  sup : , 1  f f x x N x , *f N ,

from Theorem 3.4.1, it follows that if  0N  then  * 0N . Further N* is always complete
(see Theorem 2.3.1) and hence is a Banach space. Therefore it is possible to form conjugate
space (N*)* of N*, which is denoted by N** and is called the second conjugate (dual) space
of N.

Note that  ** *,N N B  or  *,N B  is again Banach space. (see Theorem

2.3.1) with the norm of **N , given by

  sup : *, 1  f f N f  .

4.1.1 Definition :

Let N and N' be normed spaces. An isometric isomorphism of N into N' is a one-to-
one linear transformation : 'T N N  such that Tx x  for every x N .

N is said to be isometrically isomorphic  to N' if there exists an isometric isomorphism
of N to N'.

The importance of second conjugate space N** of normed space N lies in the fact

that to each x N  there is a unique function **xF N  having the same norm i.e. xF x .
This fact is proved in the following theorem.



133

4.1.2 Theorem : Let N be a normed space. Then each vector x in N induces a functional

xF  on N* defined by,,

   xF f f x , *f N

Such that xF x .

Further the mapping : **T N N  defined by    xT x F , x N , is an isometric
isomorphism of N into N**.

Proof : Let N be a normed space over field   (  or  ).

Part I :  Fix any x N . Define : *xF N   by

   xF f f x , *f N

We prove that xF is functional on N*.

Fx is linear :

Let any , *f g N  and ,   be any scalar..

Then,        xF f g f g x   

    f x g x 

    x xF f F g 

Fx is bounded (continuous) :

Let any *f N . Then,

    xF f f x f x

i.e.    xF f x f ,  * f N

 xF  is bounded (continuous) with bound K x .

We have proved that xF  is functional on N* i.e. **xF N .
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We prove that xF x  :

If x = 0 then    
0 0 0 F f f , * f N . Hence

  0 0sup : *, 1 0 0F F f f N f    

Thus, xF x  if x = 0

Let 0x . Then 0 *f N   such that,

 
0 f x x  and 0 1f

But then,

    0 sup : *, 1   x f x f x f N f

          sup : *, 1  xF f f N f

         xF

Thus,

 xx F ....... (1)

On the other hand,

  sup : *, 1  x xF F f f N f

         sup : *, 1  f x f N f

        sup : *, 1  f x f N f

        x

This gives,

xF x ...... (2)

From (1) and (2),

xF x .
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By Cases 1-2,

xF x ,  x N . ...... (3)

Part II :  Define : **T N N  by    xT x F , x N .

We prove that T is an isometric isomorphism.

T is Linear :

Let any , x y N  and any   .

We prove that

       T x y T x T y  and    T x T x 

i.e.   x y x yF F F  and x xF F 

Let any *f N . Then,

(i)      x yF f f x y

      f x f y

      x yF f F f

     x yF F f

This implies   x y x yF F F .

(ii)    xF f f x 

   f x

   xF f

    xF f

Therefore x xF F  .

We proved that T is linear.
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T Preserves Norm :

Using definition of T and equation (3) we have

   xT x F x ,  x N

T  preserves the norm.

T is one-to-one :

Let , x y N . Then,

        0   T x T y T x T y

           0  T x y [  T is linear]

         0 x yF

         0 x yF

         0  x y [  (3)]

          x y

Therefore T is one-to-one.

We have proved that T is an isometric isomorphism of N into N**.

This completes the proof.

4.1.3 Theorem : A non-empty subset X of a normed space N is bounded if and only if f (x)
is bounded set of numbers for each *f N .

Proof : Let N be a normed space over field  .

Let X be a nonempty bounded subset of N.

Then  0K   such that,

x K ,  x X . .... (1)

Let any *f N . Then : f N   is bounded linear functional. Therefore

0 L  such that
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 f x L x ,  x N ..... (2)

By (1) and (2),

  f x LK ,  x X .

    :f X f x x X    is bounded set of numbers.

Conversely, let  f X  is bounded set of numbers for each *f N .

For convenience we write   iX x .

We know to each x N  there exists  ** *,xF N N  B   defined by,,

   xF f f x , * f N ...... (3)

Such that,

xF x ,  x N ....... (4)

By assumption     if X f x  bounded for each *f N . This in combination

with (3) gives that   ixF f  is bounded subset of   for each *f N , where

   *,
ixF N B   and N* is Banach space. Therefore by uniform boundedness principle

 ixF  is bounded subset of  *,NB  , that is, 0 M  such that,

 
ixF M i  ..... (5)

But (4) and (5) gives,

 ix M i 

   iX x  is bounded subset of N.

This completes the proof.
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4.2 THE NATURAL IMBEDDING OF N IN N**
4.2.1 Definition : Let N be a normed linear space and N** is second conjugate space of

N. The isometric isomorphism : **T N N  defined by    xT x F , **x N  is called
natural imbedding (or Canonical mapping) of N into N**.

The functional **xF N  is called the functional induced by the vector x N . Such
a functional often refered  as induced functional.

4.3 THE CONJUGATE OF AN OPERATOR
4.3.1 Definition : Let N be a normed linear space over field   (  or  ). Let

: T N N  be a continuous linear transformation (i.e. T is an operator on N).

The mapping *: * *T N N  defined by

 * 0T f f T , *f N .

That is

      *   T f x f T x , *f N , x N ,

is called the conjugate of operator T.

4.3.2 Theorem :

Let N be a normed linear space, T is an opeerator on N (i.e.  T NB ) and T* is
conjugate of  T. Then :

(a) T* is operator on N (i.e.  * *T NB  )

(b) * T T

(c) The mapping *T T  is an isometric isomorphism of B (N) into B (N*) which
reverses products and preserves the identity transformation.

Proof : Let N be a normed space over the field   (  or  ).

Let : T N N  be an operator (i.e.  T NB )
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Then conjugate of T is a mapping *: * *T N N  defined by,,

      *   T f x f T x , *f N , x N ..... (1)

(a) T* is linear :

Let any , *f g N  and ,    .

Then for all x N  we have,

        *    T f g x f g T x   

              f T x g T x 

               * *       T f x T g x 

              * *   T f T g x 

This implies,

     * * *  T f g T f T g   

Thus T* is linear.

T* is bounded :

Let any *f N . Then,

   * sup * : , 1  T f T f x x N x

   sup : , 1  f T x x N x

 sup : , 1  f Tx x N x

 : , 1  f Tx x N x

 f T
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Thus

 * T f T f , * f N ..... (2)

This proves T* is bounded (continuous).

(b)   * sup * : *, 1  T T f f N f

         sup : *, 1  T f f N f [ By (2)]

         sup : *, 1  T f f N f

         T

Thus * T T . ...... (3)

By a consequence of Hahn-Banach theorem for any non-zero vector Tx N ,
 *f N  such that

   f T x Tx  and 1f ...... (4)

Therefore,   Tx f T x

          *   T f x

        * T f x

       * T f x

       * T x [  By (4)]

Hence, sup : , 0 
   

 
TxT x N x
x

      
*sup : , 0 

   
 

T x x N x
x

     * T

i.e. *T T ..... (5)
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From (3) and (5),

*T T ...... (6)

(c) Define the mapping    : *N N B B  by

  *T T ,  T NB .

Part I : Firstly we prove that   is an isometric isomorphism.

  is linear : Let any  T NB  and ,    .

We have to prove that,

     1 2 1 2  T T T T    

i.e.  1 2 1* * T T T    + 2 *T

For any *f N  and any x N  we have,

        1 2 1 2*    T T f x f T T x   

     1 2 f T x T x 

      1 2f T x f T x  

        1 2* *       T f x T f x 

      1 2* *   T f T f x 

Therefore,

       1 1 2 2 1 2* * *  T T f T f T f   

           1 2* * T f T f 

        1 2* * T T f 

 1 2 1 2* * *   T T T T    ...... (7)

This prove   is linear..
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  is one-to-one : Let any  
1 2,T T NB .

Then

     1 2 1 2* *  T T T T 

1 2* * 0  T T

 1 2 * 0  T T [  By (7)]

 1 2 * 0  T T

1 2 0  T T [  By (7)]

1 2 T T

Therefore   is one-to-one.

  Preserves the norm :

For any  T NB .

  * T T T [  By (7)]

We have proved that    : N N B B  is linear, one-to-one and norm
preserving mapping, hence it is an isometric isomorphism.

Part II : It remains to prove   reverses poroducts and preserves the identity transformation
means,

     1 2 2 1T T T T    and   I I

i.e.  1 2 2 1* * *TT T T  and * I I ,

for any  
1 2,T T NB  and the identity transformation  I NB .

Let any *f N  and any x N .
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Then,

         1 2 1 2*   TT f x f T T x

       1 2 f T T x

        1 2*   T f T x

       2 1* *   T T f x

         1 2 2 1 2 1* * * * *  TT f T T f T T f

 1 2 2 1* * * TT T T

and

      *   I f x f I x

          f x (  Identity transformation  I NB )

              I f x (  Identity transformation  *I NB )

   * I f I f

* I I
This completes the proof.

4.3.3 Problem : Let T be an operator on a Banach space B. Show that T has an inverse
T–1 if and only if  T* has an inverse (T *)–1 and that in this case    1 1* * T T .

Proof : Let T be an operator on a Banach space B.

Let T has an inverse T–1. Then TT–1 = T–1T = I, where I is an identity operator on B.
Therefore,

   1 1* * *  TT T T I ..... (1)

On the other hand,

   1 1* * * TT T T ..... (2)
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   1 1* * * T T T T ..... (3)

From (1), (2) and (3)

   1 1* * * * *  T T T T I

This implies T* has an inverse   1* T  and    1 1* * T T .

Conversely let T* has an inverse   1* T  and    1 1* * T T .

Then,

   1 1* * * * *  T T T T I

   1 1* * * * *   T T T T I

   1 1* * *   T T TT I ..... (4)

We know that the mapping *T T  is a one-to-one mapping and I* = I.

Therefore from (4), we have,
1 1  T T TT I

  T has inverse T–1.

This completes the proof.

4.4 EQUIVALENT NORMS

Let  , X  be a normed linear space. We know norm   on X induces a metric on
X and metric induces a topology on X. Hence norm on X induces topology on X. We call this
topology a norm topology on X.

If different norms on the same linear space induces a same topology on X, we say that
they are equivalent norms. More precisely we have the following definition.

4.4.1 Definition : Let   and '  be two norms on a linear space X. Then these norms are

said to be equivalent, written    , if and only if they generate the same topology on X.
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4.4.2 Theorem : Two norms   and   on the linear space X is said to be equivalent if
and only if there exists two positive real numbers K1 and K2 such that,

1 2
'K x x K x  ,  x X .

Proof : Let   and   be two norms on a linear space X. Then  , N X  and

 ' , ' N X  are two normed linear spaces.

Consider the identity transformation : 'T N N  defined by   T x x ,

  x N X .

(Note that N and N' are the same linear spaces X with two different norms).

Then T is bijective, continuous linear transformation. Thus 1 : ' T N N  exists,
and it is also continuous linear transformation such that,

   1  T x x T x x , x X .

Note that, T is continuous   T is bounded

    2 0K   such that   2'T x K x ,  x X

    2 0K  such that

     2'x K x ,  x X   (   T x x ,  x X ) ..... (1)

Also, T–1 is continuous   T–1 is bounded

 0M   such that  1 ' T x M x ,  x X

1 K  such that 1 'K x x ,  x X        ..... (2)

( 1
1

K
M  and  1 T x x ,  x X  )
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Now,

T and T–1 continuous

 Inverse images of open sets in N' and N under T and T–1 respectively are open in N
and N'.

 Open sets in N and N' are same (  T and T–1 both are identity transformations)

   and   induces the same topology on X.

   and   are equivalent on linear space X. ...... (3)

Combining statements (1), (2) and (3) we obtain,

Two norms   and  on a linear space X are equivalent iff f 1 2, K K 0 such that

1 2' K x x K x ,  x X .

This completes the proof.

4.4.3 Remark : The relation norm equivalence ‘~’ is an equivalence relation among the
norms on X.

Cauchy-Schwartz Inequality :

Let any  1,..., nx x x ,  1,...,  n
ny y y �  where  (=   or  ). Then,

1 1
2 22 2

1 1 1  

       
   

  
n n n

j j j j
j j j

x y x y

4.4.4 Problem : Prove that the norms 1 , 2  and   are equivalent norms on n�
( =   or  ).

Solution : Let any  1,..., nx x x  n� ( =   or  ) . We know

1

1

   
 

n pp

p j
j

x x , (1  p ).
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and 1
max
 

 jj n
x x .

Inparticular for p = 1, 2, we have

1
1


n

j
j

x x  and 
1

22
2

1

   
 

n

j
j

x x

Since 
1


n

j j
j

x x , j  (j = 1, 2, ....., n) we have,

1
max
 

 jj n
x x

        
1


n

j
j

x

       1 .....   nx x

       1 1
max ... max
   

  j jj n j n
x x  (n times)

       1
max
 

 jj n
n x

        n x

Therefore,

1
 


 

n

j
j

x x n x

1   x x n x

This implies   is equivalent 1  on n , that is, 1   ..... (1)

Further,

1
22

2
1

   
 

n

j
j

x x
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1

1



n

j
j

x
2

2

1 1
,   0

n n

j j j
j j

a a a
 

      
  
 

         
1 1

2 22 2

1 1
1

 

       
   
 
n n

j
j j

x [  Cauchy-Schwartz inequality]

          2 x n

Thus,

2 2
1

 
n

j
j

x x n x

2 1 2  x x n x

1   equivalent to 2 .

1 2    ...... (2)

From (1) and (2) 2  

Since norm equivalence is an equivalence relation among the norms on a linear space,

1 , 2  and   all are equivalent norm on n .

4.4.5 Problem : Let   and '  be equivalent norms on a linear space X. Prove that :

(a) The Cauchy sequence in  , X  and  , 'X  are the same.

(b) The convergent sequences in  , X  and  , 'X are same.

(c)  , X  is Banach space if and only if  , 'X  is Banach space.

(d) A set is bounded in  , X  if and only if it is bounded in  , 'X .

Solution : Proof of part (a) and (b) is omitted as it can be given on the same line to the proof
of (c).

Let   and '  are two equivalent on a linear space X. Then 1 2 , 0k k   such that,

1 2' k x x k x ,  x X ..... (1)



149

(c) Let  , X  is a Banach space.

Let  nx  be any Cauchy sequence in  , 'X . Then

' 0 m nx x  as , m n ..... (2)

But by (1),

1 'm n m nk x x x x   , for all m, n ..... (3)

Combining (2) and (3), 0 m nx x  as , m n .

  nx  is Cauchy sequence in complete space  , X .

 x X   such that,

0 nx x  as n . ....... (4)

Again by (1),

2'n nx x k x x   ....... (5)

From (4) and (5), we obtain

' 0 nx x  as  n .

This implies  , 'X  is a Banach space.

The converse follows similarly by interchanging the role of   and ' .

(d) Let A be a bounded subset of  , X .

Then  0M   such that,

x M ,  x A .

By (1), we have

2 2'  x k x k M ,  x M .

  A is bounded subset of  , 'X .

Converse follows by interchanging the role of   and ' .
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4.5 FINITE DIMENSIONAL NORMED SPACES
4.5.1 Definition : Let N and N' be normed spaces over the same system of scalar
 (  or  ).

A mapping is said to be :

(a) Homeomorphism if T is bijective and bicontinuous (T and T–1 both are continuous).

(b) Topological isomorphism if T is linear and homeomorphism.

4.5.2 Remark : The relation of  “being topologically isomorphic to” is an equivalence
relation on the set of all normed spaces over the field  .

4.5.3 Theorem (Borel-Lebesgue) : A non-empty subset of the normed space  2, n
is compact if and only if it is closed and bounded.

Here   =   or   and for  1,..., nx x x   n� , 
1

22
2

1

   
 

n

j
j

x x .

4.5.4 Theorem : Any n-dimensional normed space over the scalar field  (  or  ) is

topologically isomorphic to  2, n .

Proof : Let  , X  be normed linear space over the field  (  or  ) and dimX = n.

Let  1 2, ,..., ne e e  be a basis for X. Then for any x X    unique  1,...,  n
n  �

such that,

1


n

j j
j

x e

Consider the mapping : nT X�  defined by,,

 1
1

,...,



n

n j j
j

T e   ,  1,...,  n
n  � .
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T is well defined :

Let    1 1,..., ,...,n n     in n� .

Then    1 1
1 1

,..., ,...,
n n

j j j j n n
j j

e e T T     
 

    .

T is linear :

Let any    1 1,..., , ,...,  n
n n    �  and any , a b  .

Then,     1 1,..., ,...,n nT a b   

 1 1,...,  n nT a b a b   

 
1

 
n

j j j
j

a b e 

   
1

 
n

j j j j
j

a e b e 

1 1 

       
   
 
n n

j j j j
j j

a e b e 

   1 1,..., ,..., n naT bT   

Thus T is linear.

T is one-to-one :

Let    1 1,..., , ,...,  n
n n    �

Then,    1 1,..., ,...,n nT T   

1 1 
  

n n

j j j j
j j

e e 

 
1

0


  
n

j j j
j

e 
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0  j j  , j  (j = 1, 2, ....., n) (  1,..., ne e  is linearly independent)

 j j  ,  j

   1 1,..., ,..., n n   

Therefore T is one-to-one.

T is onto :

For any x X , 
1


n

j j
j

x e  is the unique expression, where  1,...,  n
n  � .

By definition of  T we have,

 1
1

,...,


 
n

n j j
j

T e x   .

This proves T is onto.

T is continuous (bounded) :

For any  1,...,  n
n  � ,

 1
1

,...,


 
n

n j j
j

T e  

1


n

j j
j

e

1


n

j j
j

e

Note that for each j,

   
11 22 22

1 21
,...,



    
 

n

j j j n
j
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Therefore,

   1 1 21
,..., ,...,




n

n n j
j

T e   

This gives,

   1 1 2
,..., ,...,n nT k   

Where, 
1

0


 
n

j
j

k e .

Therefore T is bounded and hence continuous.

T–1 is continuous :

Since : nT X�  is bijective linear transformation 1 :  nT X �  exists and
it is linear transformation.

We prove that 1 :  nT X �  is bounded. Consider the mapping : nf �
defined by    f x T x ,  nx � .

x T
T( )x

f

|| T( ) ||x

||  || on X

Then f    of  (f is composition of   and T). Since   and T both are continuous,
the function f  is also continuous.

Consider the closed unit sphere,

 2: 1  nS x x�

in  2, n . Then S is closed and bounded subset of n  and hence by Borel-
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Lebesgue theorem it is compact subset of n .

Since continuous image of compact set is compact, f (S) is compact subset  .

Therefore f (S) is closed and bounded.

Let,   inf : m f x x S

     inf : Tx x S

Then 0  m Tx ,  x S .

Since f is continuous compact set,

  : m f x x S  i.e. 0 x S 

Such that  0 0  f x m Tx m .

If m = 0 then 0 0Tx .

This gives    
0 00 0 0   T x T x (  T is one-to-one)

Therefore 0 0x  a contradiction to the fact 0 0 1  x S x .

Hence we must have 0m .

Therefore,

0  m Tx ,  x S .

Now for any  nx � , 
2 2

1x
x .

Therefore 
2


x S
x ,   nx � .

Hence,

2 2 2

    
 

x Tx Txm T
x x x

2 m x Tx ,    nx �
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 1 1
2

   m T y T T y y ,  y X

1
2

1 T y y
m  ,  y X

1 T  is bounded and hence continuous.

We have prove that : nT X�  is linear, bijective and bicontinuous.

Therefore    2: , , nT X  is a topological isomorphism and hence

 , X  is topologically isomorphic to  2, n . This completes the proof.

4.5.5 Theorem : On a finite dimensional space all norms are equivalent.

Proof :  Let X be any finite dimensional space with dim X = n.

Let   and   be any norm on X..

Then by Theorem 4.5.4  , X  and  , 'X  both are topologically isomorphic to

 2, n . Therefore  , X  is topologically isomorphic to  , 'X .

This implies   and '  induce the same topology on X.

Therefore   and '  are equivalent on X.

4.5.6 Remark : The convergence or divergence of a sequence or a series in a finite
dimensional space does not depend on the particular choice of a norm on that space.

4.6 EQUIVALENT NORMS AND  FINITE DIMENSIONAL SPACE
4.6.1 Theorem : A finite dimensional normed linear space is Banach space.

Proof : Let N be a normed space over the field  (  or  ) equipped with the norm  .

Let  1 2, ,..., ne e e  be a basis for N.

Then, for any x N ,   unique  1,...,  n
n  � , 1,..., n   such that,

1


n

i i
i

x e
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Define 0 : N    by,,

0
1
max
 

 jj n
x  , x N

Then  0, N  is a normed space (verify). Since N is finite dimensional space, 
and 0  are equivalent norm on N.

Therefore, to prove  , N is complete it will sufficient to show that  0, N  is
complete.

Let   1



m my  be any Cauchy sequence in  0, N .

Then for each m, (m = 1, 2, ....),   unique     1 ,..., m m n
n  �  such that,

 

1


n
m

m j j
j

y e .

Since  my  is Cauchy sequence in  0, N .

0 m ry y  as , m r ...... (1)

For each j   ( j = 1, 2, ...., n)

       

01
max
 

    m r m r
j j j j m rj n

y y    ...... (2)

From (1) and (2), for each j (j = 1, 2, ...., n)

    0 m r
j j   as , m r

This implies for each j (j = 1, 2, ..., n),   
1





m
j m

  is Cauchy sequence in complete

space  (  or  ). Therefore  j   such that,

  m
j j   as m (j = 1, 2, ..., n) .... (3)

Define 
1


n

j j
j

y e .
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Then 
  

1
  

n
m

m j j j
j

y y e  .

Therefore by (3), we have,

 

0 1
max 0
 

   m
m j jj n

y y    as  m

This implies my y  in  0, N .

We have proved that  0, N  is complete normed space (Banach space).

4.6.2 Corollary : A finite dimensional subspace M of normed space N is closed subset
of  N.

Proof :  Let M be a finite dimensional subspace of a normed space N.

Then M is finite normed space with the norm induced by N.

But finite dimensional normed spaces are Banach spaces. Therefore M is itself a
Banach space. Hence M is closed subset of N.

4.6.3 Corollary : In a finite dimensional normed space every non-empty closed bounded
set is compact.

4.6.4 Theorem : A linear transformation on a finite dimensional space is continuous.

Proof :  Let  , N  be a n-dimensional normed space over the field  (  or  ) and

 ', 'N  be any normed linear space.

Let : 'T N N  be a linear  transformation. We have to prove that T is continuous.

Let  1 2, ,..., ne e e  be a basis for N. Then to each x   unique  1,...,  n
n  �  such

that,

1


n

j j
j

x e .
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Define a new norm 0 :  N  by,,

0
1
max
 

 jj n
x 

Then  0, N  is a normed space.

Since on a finite dimensional space all norms are equivalent,   and 0  are equivalent

on N. Thus 1 2 , 0k k   such that,

01 2 k x x k x ,  x N .... (1)

Now by linearity of T, we have,

   
1 1 

   
 
 
n n

j j j j
j j

T x T e T e  for any 
1


n

j j
j

x e  in N.

By triangle inequality we have,

   
1

'



n

j j
j

T x T e

 
1

'



n

j j
j

T e ...... (2)

Note that for each  j (j = 1, 2, ..... n)

0
1
max
 

 j jj n
x 

Therefore from (2) we have,

   0
1

' '



n

j
j

T x x T e

This implies,

  0' T x K x ,  x N , .... (3)

where,  
1

' 0


 
n

j
j

K T e .
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From (1) and (3) we have,

  2' T x KK x ,  x N

Therefore : 'T N N  is bounded linear transformation and hence continuous.

4.6.5 Theorem : Let  , X  and  , 'X  be two Banach spaces with same underlying

linear space X. Suppose  0k   such that 'x K x ,  x X .

Then   and   are equivalent norms.

Proof : Let  , X  and  , 'X  be two Banach spaces with the same underlying space X.

Let   a constant K > 0 such that,

'x K x ,  x X . ..... (1)

Consider the identity transformation.

   : , ' ,  I X X ,   I x x , x X .

Then I is bijective and linear. Further by (1),

  ' I x x K x ,  x X .

   : , ' ,   I X X  is bounded linear transformation.

By theorem 2.5.8,    1 : , , '   I X X  is continuous linear transformation and
hence bounded.

Therefore  0L   such that,

 1 ' I x L x ,  x X

' x L x ,  x X ..... (2)

Combing (1) and (2) we obtain,

1 ' x x L x
K ,  x X

Hence   and '  are equivalent norm on X.
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4.6.6 Lemma (Riesz Lemma ) : Let M be a closed proper subspace of a normed linear
space N, the for every 0 1   there exists a vector x N  such that,

1x  and  , d x M 

Proof :  Let M be a closed proper subspace of a normed linear space N.

Then  x N   such that x M .

Let    ,d d x M

 inf :  x m m M

We know

 , 0  x M d x M

Since M is closed, M M

Therefore,  , 0  x M d x M . This gives d > 0.

Fix any   such that 0 1  .

Then 
d d

 .

By definition of infimum there exists 0m M  such that,

0 0
dd x m


   ...... (1)

Define
0

0

x mx
x m



 .

Then
0

0

1
x m

x
x m


 

 .

For any m M , we have,

0

0

x mx m m
x m
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0 0

0

x m m x m
x m

  




 0 0

0

x m m x m
x m

  




0

'x m
x m



 ,

where 0 0'm m m x m M    .

By definition of d and (1) we have,

'x m x m d
d d
 

      
 

, m M 

i.e. x m   ,  m M 

 d x m  

This completes the proof.

4.6.7 Theorem (Riesz) :

A normed space N is finite dimensional if and only if the closed unit sphere in N is
compact.

Proof : Let N be a finite dimensional normed space.

Let    1 0 : 1S x N x    be a closed unit sphere in N.

Then  1 0S  is closed bounded set in N.

But in a finite dimensional normed space every non-empty closed bounded set is
compact (Corollary 4.6.3)

Therefore  1 0S  is compact.

Conversely suppose the closed unit sphere  1 0S  in a normed space N is compact.
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We have to prove that N is finite dimensional.

If possible N is not finite dimensional.

Choose 1x S  and let M1 be the subspace spanned by  1x .

Then M1 is proper subspace of N.

Further M1 is finite dimensional, hence it is closed. Therefore by Riesz Lemma   a
vector 2x N  such that

2 1x   and  1 2
1
2

x x  .

Let M2 be the closed subspace spanned by  1 2,x x . Then as discussed above   a

vector 3x N  such that,

3 1x   and 2 3
1
2

x x 

Continuing in this way, we obtain the sequence  nx  in  1 0S  such that,

1
1
2k kx x   ,  k  .

Therefore, the sequence    1 0nx S  has no convergent subsequence.

But this contradicts to the assumption  1 0S  is compact in N.

Hence N must be finite dimensional space.





163

HILBERT  SPACES

UNIT  -  V

This unit aims at providing a geometric structure to a linear space. The basic concept
of an inner product is introduced in section 5.1. An inner product induces a norm on the linear
space. If such a space is complete, then it is known as Hibert Space. A Hilbert Space is a
special type of Banach Space which possesses additional structure enabling us to tell when
two vectors are orthogonal. Just as we were able to embed any normed linear space in a
complete normed linear space, we shall be able to embed any inner product space in a complete
inner product space or Hibert space. Some examples and simple properties of Hibert spaces
are discussed in section 5.2. Some theorems about orthogonal complements are proved in
section 5.3. In section 5.4 we discuss Bessel’s inequality, Gram Schmidt orthogonalization
process, some examples and properties of orthonormal sets. The natural correspondance
between the vectors in H and conjugate space H* is established in section 5.5.

5.1 INNER PRODUCT SPACES

Suppose X is a real or complex vector space;  i.e. suppose the underlying scalar field
is either real or complex numbers   or  . We now make the following definition.

Definition 5.1.1 :

An inner product on X is a mapping from X X , the Cartesian product space, into
the scalar field, which we shall denote generally by F.

 X X F

 , ,x y x y

[ ,x y  represents only the ordered pair whereas (x, y) denotes the inner product of
two vectors]
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With the following properties :

1) Let , x y X  then    , ,x y y x  where the bar denotes complex conjugation.

2) If ,   are scalars and z, y, z are vectors then

     , , ,  x y z x z y z   

3)   , 0x x ,  x X and equal to zero iff f x is the zero vector.

Definition 5.1.2 :

A real or a complex vector space with an inner product defined on it will be called an
inner product space or pre-Hilbert space.

Proposition 5.1.1 :

If a vector y has the property that  , 0x y ,  x X  then y = 0.

Proof :

Suppose  , 0x y ,  x X  then (y, y) = 0 but then by property (3) of inner product
space definition 5.1.1, y = 0.

Example 5.1.1 :

Let nX . An inner product of two vectors  1 2 3, , ,....., nx      and

 1 2 3, , ,....., ny      where ,i i  , i = 1, 2, 3, ....., n are complex numbers, define

 
1

,



n

i i
i

x y  

n  with this inner product is referred to as complex Euclidean  n-space. With   in
place of   we get real Euclidean n-space.
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Example 5.1.2:

Let  ,X C a b  be a set of complex valued continuous functions on [a, b]. For

continuous functions f and g,   ( ) ( ) ( )  f g x f x g x  and for C ,   ( ) ( )f x f x  .
An inner product of f and g is defined as,

     ,  
b

a
f g f x g x dx

If f and g are real valued functions

     ,  
b

a
f g f x g x dx .

Example 5.1.3 :

Let 2 X  set at sequences of complex / real numbers  1 2 3, , ,....., ,....na a a a  with
2  ia , the inner product of two vectors

 1 2 3, , ,....., ,.... nx      and  1 2 3, , ,....., ,.... ny    

We shall define  
1

,



 i i

i
x y   .

Example 5.1.4 :

Let Y = [a, b] and S be the set of Lebesgue measurable sets in Y,   be Lebsesgue
measure. For the equivalence classes of square integrable functions on [a, b] define inner
product between two classes [ f ] and [g] as

        ,  
b

a
f g f x g x dx

Where the integral is Lebesgue integral. This space is usually referred to as L2 (a, b).
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Theorem 5.1.1 : (Cauchy Schwarz inequality or Schwarz inequality)

Let X be an inner product space and let , x y X . Then  , x y x y .

Proof-1 :

When y = 0,           1 1 1 1, , 0 , , , 0     x y x x y y x y x y

Thus  , 0x y  and 0y . Since both sides vanish the result is true when y = 0.

When 0y , 0y  the inequality..

   1, ,  x y x y x y x
y

,   
 

yx x
y  and 1 

yy
y y

Thus it is sufficient to show that if 1y ,

 , x y x  x X

We know that  , 0 x x y y .

Consider       2
, , , ,   x x y y x x y y x x y y

           , , , , , , , ,   x x x y x y x y y x x y x y y y

          , , , , , , ,   x x x y x y x y x y x y x y     (   2, 1  y y y )

  22 , x x y

Since   2
, 0 x x y y ,   22 , 0 x x y .

Proof 2 : Let , x y X  and consider    , , z y y x x y y .

Then           0 , , , , , ,   z z y y x x y y y y x x y y

                          , , , , , , , , , , , ,   y y y y x x y y x y x y x y y y y x x y x y y y
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         2
, , , , , y y x x x y y y y x

       , , , , ,   y y y y x x x y x y

       2
, , , ,   y y y y x x x y

If  , 0y y , then it follows that       2 2
, , , 0 ,    y y x x x y x y x y .

If  , 0y y  then y = 0 and hence  , 0x y . So      2
, , ,x x y y x y .

Let      2
, , ,x y x x y y  then we have  , 0z z  so that z = 0, that is

   , ,y y x x y y . Hence the set  ,x y  is linearly dependent. Conversely if  ,x y  is linearly

dependent then either x ky  or y kx  for some scalar k. In this case

          2 2
, , , , , ,  x y x kx x kx x kx k x x k x x

         , , , , , ,   k k x x x x x x kx kx x x y y .

Corollary 5.1.1 :

The inner product is jointly continuous function [i.e. given 0 , 0  such that

   1 1 2 2, , x y x y   whenever 1 2 y y  , 1 2 x x   ]

Proof :

Let 3 1 2 x x x  and 3 1 2 y y y . Consider

       1 1 2 2 2 3 2 3 2 2, , , ,    x y x y x x y y x y

             2 2 2 3 3 2 3 3 2 2, , , , ,    x y x y x y x y x y

         2 3 3 2 3 3, , ,  x y x y x y

         2 3 3 2 3 3, , ,  x y x y x y
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    2 3 3 2 3 3     x y x y x y      (by Schwarz inequality)

    2 1 2 2 1 2 1 2 1 2        x y y y x x x x y y

and continuity of the mapping is evident.

Theorem 5.1.2 : (Polarization identity)

Let X be a real inner product space and let , x y X . Then

  2 21 1,
4 4

   x y x y x y

Proof :  
2 21 1

4 4
  x y x y

   1 1, ,
4 4

     x y x y x y x y

               1 1, , , , , , , ,
4 4
             x x x y y x y y x x x y y x y y

   1 12 , 2 ,
4 4
        x y x y (      , , , x y y x x y  since X is real)

 , x y

Theorem 5.1.3 : (Polarization Identity)

Let X be a complex inner product space and let , x y X . Then

  2 2 2 21 1,
4 4 4 4

       
i ix y x y x y x iy x iy

Proof :
2 2 2 21 1

4 4 4 4
      

i ix y x y x iy x iy

        1 , , , ,
4

           x y x y x y x y i x iy x iy i x iy x iy
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               1 , , , , , , , ,
4

         x x x y y x y y x x x y y x y y

                           , , , , , , , ,             i x x i x y i y x ii y y i x x i x y i y x ii y y

        1 2 , 2 , 2 , 2 ,
4

     x y y x i i x y i y x

        1 2 , 2 , 2 , 2 ,
4

   x y y x x y y x

 , x y

Theorem 5.4 : (Parallelogram Law)

Law X be an inner product space and , x y X . Then,

2 2 2 22 2    x y x y x y

Proof :    2 2 , ,        x y x y x y x y x y x y

               , , , , , , , ,       x x x y y x y y x x x y y x y y

    2 22 , 2 , 2 2   x x y y x y

Theorem 5.1.5 :

The mapping of X into F defined by    
1

2,f x x x  is a norm on X and will be

denoted by x .

Proof : Since  , 0x x , 0x .

 , 0x x  iff 0 0  x x  iff x = 0.

     
111 2 222, , ,       x x x x x x x    

       
1

2, x x x 
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 2 ,   x y x y x y

        , , , ,   x x x y y x y y

 2 22Re ,  x x y y

 2 22 ,  x x y y

2 22  x x y y (Schwarz inequality)

 2
 x y

Thus,   x y x y

5.2 The Definition and Some Simple Properties
The Banach spaces are little more than linear spaces provided with a resonable notion

of the length of a vector. The theory of Hilbert spaces talks about the orthogonality of vectors.
Definition 5.2.1:

An inner product space which is complete in the norm induced by the inner product is
called a Hilbert space.
Definition 5.2.2 :

Hibert space is a complete normed linear space in which the norm satisfies the
parallelogram law.
Definition 5.2.3 :

A Hilbert space is a complex Banach space whose norm arises from an inner product
i.e. in which there is defined a complex function (x, y) of vectors x and y with the following
properties.

1)      , , ,  x y z x z y z   

2)    , ,x y y x

3)   2, x x x

Observe that      , , ,  x y z x y x z     is a direct consequence of
properties (1) and (2).
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Examples of Hilbert Spaces :

Example 1 : The space n  with the inner product of two vectors  1 2, ,....., nx x x x ,

 1 2 3, , ,....., ny y y y y  defined by  
1

,



n

i i
i

x y x y  is Hilbert space.

Let , nx y ,  
1

,



n

i i
i

y x y x .

   
1

, ,


   
n

i i i i
i

y x y x y x x y

If ,   are scalars and , , nx y z  then

   
1

,


      
n

i i i i i i i
i

x y z x y z x z y z     

             , , x z y z 

  2

1 1
, 0

 
   

n n

i i i
i i

x x x x x  nx

and 2 0 ix  iff 0ix  i  i.e. x = 0.

Thus n  with inner product defined by  ,   i ix y x y  is an inner product space.

Let  mx  be a  Cauchy sequence in n  i.e.  given 0   N  such that

 m px x  , , p m N .

Let  1 2, ,.....,m m m mnx x x x  and  1 2, ,.....,p p p pnx x x x .

 m px x 

  2,   m p m px x x x  , p m N

    2   m p m pi i
x x x x 

2 2  mi pix x 
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  mi pix x  , m p N i  = 1, 2, 3, ..., n.

  1




 mi mx  is Cauchy sequence in  .

Since   is complete mi ix x , 1 i n .

Define  1 2 3, , ,....., n
nx x x x x

Then  n
nx x . n  is complete with respect to the norm induced by inner

product.

Thus, n  is a Hilbert space with inner product defined by

 
1

,



n

i i
i

x y x y i = 1, 2, 3, ...., n.

Example 2 :

The space   2
2 |    n ix x , the space of square summable sequences with

inner product two vectors   nx x ,   ny y  defined by  
1

,



 i i

i
x y x y  is Hilbert space.

2  is a Banach space with 
2

1




 i

i
x x .

(i)   2

1 1
, 0

 

 
   i i i

i i
x x x x x

(ii)    
1

,



   i i i

i
x y z x y z   

           i i i ix z y z 

            , , x z y z 

where   nx x ,   ny y  and   nz z .
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(iii)  ,   i ix y x y

     
1

, , ,



      i i i i i i

i
y x y x y x y x y x x y

Thus    , ,y x x y .

Thus 2  with inner product defined by  
1

,



 i i

i
x y x y  is complete and therefore is

a Hilbert space.

Example 3 :

The space  p , 2p , 1  p  is not a Hilbert space.

Suppose  p , 2p , is a Hilbert space. Then  p , 2p , is an inner product space.

Inner product space satisfies parallelogram law  2 2 2 22    x y x y x y .

Let x = (1, 0, 0, 0, .....) and y = (0, 1, 0, 0, 0, .....), then,

1px , 1py , 
1

2  p
px y ,

0 px y  if p is odd.

 1
2 p   if p is even.

Then 
22 2 2    p

p px y x y  if  p is odd.

  21
2


 p  if  p is even.

 2 22 4 p px y p

Observe that if p is odd 2
2 4p , for p even, 21

2 4


p   only when p = 2.

Thus  p , 2p  do not satisfy parallelogram law..

 p  is not an inner product space for 2p .

 p , 2p is not a Hilbert space.
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Theorem 5.2.1 :

A closed convex subset C of a Hilbert space H contains a unique vector of smallest
norm.

Proof :

Since C is closed convex subset of a Hilbert space H, for , x y C ,

 1  x y C   where 0 1  .

In particular 2



x y C .

Let  inf : d x x C . By property of infimum there is a sequence xn in C such

that nx d . Since C is convex 2


n mx x C  and 2


n mx x d  i.e. 2 n mx x d .

Since H is a Hilbert space, parallelogram holds.

    2 2 2 22 2    m n m n m nx x x x x x

2 2 2 22 2     m n m n n mx x x x x x

       2 2 22 2 4  m nx x d ( 2 m nx x d )

But 2 2 2 2 2 22 2 4 2 2 4 0     m nx x d d d d

Thus given 0 ,  N  such that

2 m nx x  , , n m N .

It follows that  nx  is Cauchy sequence in C.

Since H is Hilbert space, H is complete. Since C is closed subset at H, C is complete.

Therefore each Cauchy sequence in C converges in C. But  nx  is Cauchy sequence in C.

Therefore nx x  in C.

lim lim  n nx x x d (   is continuous function)

It means that x is a vector in C with smallest norm.



175

To show that x is unique, suppose x' is also in C other than x which also has ' x d .

Since C is convex, 
'

2



x x C  and applying parallelogram law to x and x' we get,

2 2 2 2' ' '2 2
2 2 2 2

    
     

   
x x x x x x

   
2 2 2 2 21 1 1 1'

2 2 2 2
    x x d d d

Thus, 
'

2



x x d .

But d is infimum of x  for x C .

'
2


 
x x d a contradiction. Therefore, 'x x .

Theorem 5.2.2 :

If B is a complex Banach space whose norm obeys the parallelogram law and if an
inner product is defined on B by

  2 2 2 24 ,        x y x y x y i x iy i x iy

Then B is a Hilbert space.

Proof : Since B is a Banach space, B is complete. Thus if B satisfies three properties for inner
product space then B is Hilbert space. We shall prove the following.

(i)      , , ,  x y z x z y z

(ii)    , ,x y x y 

(iii)    , ,x y y x

(iv)   2, x x x
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(iv)   2 2 2 24 ,        x x x x x x i x ix i x ix

2 2 2 2 24 1 1    x i i x i i x

     2 2 24 1 1 1 1      x i i i x i i i x

24 x

Thus   2, x x x  and (iv) holds.

Now   2 2 2 24 ,        x y x y x y i x iy i x iy .... (1)

  2 2 2 24 ,        y x y x y x i y ix i y ix

      2 2 22
         y x x y i i x iy i i x iy

2 2 2 2 2 2        y x x y i i x iy i i x iy

2 2 2 2       x y x y i x iy i x iy .... (2)

From equation (1) and (2) we have    , ,x y y x . This proves (iii).

To prove (i) and (ii), let , , u v w B . Since norm on B obeys parallelogram law,,

  2 2 2 22 2       u v w u v w u v w .... (3)

   2 2 2 22 2       u v w u v w u v w .... (4)

Equations (3) – (4) gives,

                2 2 2 2 2 22              u w v u w v u w v u w v u v u v

Real , Re , 2Re ,    u w v u w v u v .... (6)

Similarly,

   2 2 2 22 2       u iv w u iv w u iv w .... (7)

   2 2 2 22 2       u iv w u iv w u iv w .... (8)
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Equations (7) – (8) gives

        2 2 2 2 2 22 2              u w iv u w iv u w iv u w iv u iv u iv

Im , Im , 2 Im ,    u w v u w v u v ..... (9)

From equation (6) and (9) we have,

, , 2 ,   u w v u w v u v

For u = w we have 2 , 2 ,u v u v ..... (10)

For u + w = x, u – w = y, v = z we have

, , 2 , 2 , ,    x z y z u z u z x y z

Thus, , , ,  x z y z x y z ..... (11)

Equation (10) and (11) proves (ii) and (i)

Since all the conditions (i), (ii), (iii), (iv) are satisfied, B is a Hilbert space.

5.3 ORTHOGONAL COMPLEMENTS

Existence of parallelogram law provide a geometric insight into the place Hilbert spaces.

Definition 5.3.1 :

Two vectory x, y in a Hilbert space H are said to be orthogonal if (x, y) = 0 and
written as x y .

Note :

(i) Since    , ,x y y x , if  , 0x y ,  , 0y x  i.e.   x y y x .

(ii) Since  ,0 0x , 0x  for every x H .

(iii) Since   2, x x x ,  , 0 0  x x x  i.e. 0 is the only vector orthogonal to itself.

If x y  then 2 2 2 2    x y x y x y .

(iv)          2 2 2, , , , ,         x y x y x y x x x y y x y y x y
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Similarly,

(v)          2 2 2, , , , ,         x y x y x y x x x y y x y y x y

Thus 2 2 2 2    x y x y x y  is the parallelogram theorem.

Definition 5.3.2 :

A vector x is said to be orthogonal to a non-empty set S (Notation : x S ) if x y ,
 y S .

Definition 5.3.3 :

Orthogonal complement of S denoted by S  is the set of all vectors perpendicular to
S.

Note :

(i)  0   H

(ii)  0 H

(iii)  0 S S

(iv) 1 2 2 1
   S S S S

(v) S  is a closed linear subspace of H.

Theorem 5.3.1 :

Let M be a closed linear subspace of a Hilbert space H. Let x be a vector not in M
and let d be the distance from x to M. Then there exists a unique vector y0 in M such that

0 x y d .

Proof : Since M is subspace of a Hilbert space H, for , x y M ,  x y M   in particular

 1  x y M  . i.e. M is convex. Thus the set C = x + M is a closed convex set.
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Since d is distance from x to M, d is distance from origin to x + M = C. By theorem

5.2.1 there exist a unique vector z0 in C such that 0 z d .(  d is distance from 0 to x + M).

Since 0   z C x M .

0 0  z x y  for some 0 y M

but then 0 0 y x z  and 0 x z M .

Now 0 0  x y z d .

Thus 0 x y d .

If y1 is another vector in M such that 1 0y y  and 1 x y d   then 1 1 z x y  is a

vector in C such that 1 0z z  and 1 z d .

Which contradicts the uniqueness of 0z .

Theorem 5.3.2 :

If M is a proper closed linear subspace of a Hilbert space H then there exists a non-
zero vector 0z  in H such that 0 z M .

Proof : Let x M  and let d be the distance from x to M.

By theorem 5.3.1, there exists a vector 0y  in M such that 0 x y d .

Define 0 0 z x y .

Since d > 0, 0 0z .

Now we shall prove that if y M  then 0y z .

Consider    0 0 0 0        z y x y y x y y d z  

So 2 2
0 0 0  z y z .

  2
0 0 0, 0   z y z y z 

0z 0y
x

d

C = x + M
M
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       2 2
0 0 0 0 0, , , , 0     z z z y y z y y z  

    2 2
0 0, , 0    z y z y y  

Put  0 , z y   for an arbitary real number   then

         2 22
0 0 0 0 0, , , , , 0   z y z y z y z y z y y  

   2 2 22
0 02 , , 0  z y z y y 

Let   2
0 ,a z y  and 2b y  then we have

 22 0 2 0     a ab a b     for all real  .

If a is strictly positive, we can chooe   sufficiently small such that  2 0   a b .

Therefore, a cannot be strictly positive but 0 0  a a . But   2
0 ,a z y .

Therefore,  0 , 0z y  that means 0 z y .

Definition 5.3.4 (Orthogonal Sets) :

Two non-empty sets S1 and S2 of a Hilbert space H are said to be orthogonal ( 1 2S S )

if x y  for all x in S1 and y in S2.

Theorem 5.3.3 :

If M and N are closed linear subspaces of a Hilbert space H such that M N  then
the linear space M + N is closed in H.

Proof : Let z be a limit point of M + N. Then there is a sequence  nz in M + N that

converges to z. Since M N , M and N are disjoint. Therefore each zn is uniquely written as

 n n nz x y  for nx M  and ny N .
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[If x y  then 2 2 2 2    x y x y x y  is called Pythagorean theorem.

         , , , , ,     x y x y x x x y y x y y   Since x y ,  , 0x y .

2 2 2   x y x y    Similarly 2 2 2  x y x y .]

    22    m n m m n nz z x y x y

         2
   m n m nx x y y

Since M and N are subspaces of H,

,    m n m nx x M x x M  and  ,    n m m ny y N y y N

But M N .

    2 22 2       m n m n m n m nx x y y x x y y

Since nz z ,  nz is a Cauchy sequence. Therefore given 0 ,  N  such

that  n mz z , , n m N .

Thus 2 2 2      m n m n n mz z x x y y .

  m nx x   and  n my y 

  nx  and  ny  are cauchy sequences in M and N respectively. But M and N are

closed subspaces of H. Therefore   nx x M  and  ny y N .

Since x M  and y N ,   x y M N .

 lim lim
 

       n n nn n
z z x y x y M N

Thus M + N is closed subspace of a Hilbert space H.
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Theorem 5.3.4 :

If M is a closed linear subspace of a Hilbert space H, then  H M M .

Proof :  Since M and M  are orthogonal closed subspaces of a Hilbert space H, by theorem
5.3.3, M M  is closed subspace of H. Suppose  M M H  then  M M H   then

by theorem 5.3.2, there exists a non-zero vector z0 in H such that  
0

 z M M .

Then  
0

 z M M  i.e. 0
  z M M .

Since M is closed subspace of H,  M M .

Thus 0
 z M M  but  0 M M .

Therefore 0 0z . But 0 0z .

  M M H .

Since  0 M M ,  M M H .

5.4 ORTHONORMAL SETS

Definition 5.4.1 :

An orthonormal set in a Hilbert space H is a non-empty subset of H which consists of
mutually orthogonal unit vectors.

Non-empty set  ie  of H is said to be orthonormal if

(i) for i j , i je e (ii) 1ie  i .

Example 5.4.1 :

The set  1 2 3, , ,...., ne e e e of 2
n  where each ie  is n-tuple with 1 in the ith place and 0

elsewhere is an orthonormal set.
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Example 5.4.2 :

The set  1 2 3 4, , , ,...., ,....ne e e e e  where ne  is a sequence have 1 at nth position and

zero otherwise is orthonormal set in 2 .

Example 5.4.3 :

Consider a Hilbert space L2 associated with the measure space [0, 2 ], where
measure is Lebesgue measure and integrals are Lebesgue integrals.

 
2 2

2
0

|    
 

L f f x dx


The norm and inner product are defined by,

 
1

2 22

0

   
 
f f x dx


  and      
2

0
,  f g f x g x dx



Since 
2

0
0  imx inxe e dx



 if  m n

      = 2 if  m = n

Functions  ne x  defined by  
2


inx

n
ee x


 form an orthonormal set in L2.

Theorem 5.4.1 :

Let  1 2 3, , ,...., ne e e e  be a finite orthonormal set in a Hilbert space H. If x is any

vector in H, then   2 2

1
,




n

i
i

x e x  and  
1

,


  
n

i i j j
i

x x e e e .

Proof :   2
, 0 i ix x e e

    , , , 0   i i i ix x e e x x e e
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1 1 , 1

, , , , , , , , 0
  

      
n n n

i i i i i j i j
i i i j

x x x e x e x e e x x e x e e e

          2
, , , , , , , 0    i i i i j i jx x x e x e x e x e x e e e

     
02 2 22

1
, , , 0


    i i i

i
x x e x e x e [  ,  i j ije e  ]

  22 , 0  ix x e

  2 2, ix e x

Observe that,

       
1 1

, , , , ,
 

    
 

 
n n

i i j j i i j
i i

x x e e e x e x e e e

          , , j jx e x e [ ie  is orthonormal set]

       = 0

Since     , , 0 ,    i i j i i jx x e e e x x e e e

Theorem 5.4.2 :

If  ie  is an orthonormal set in a Hilbert space H and if x is any vector in H then the

set   | , 0 i iS e x e  is either empty or countable.

Proof : If x = 0, there is nothing to prove. The set S  .

Let 0x . For j = 1, 2, 3, ..... let,

  : | , jE e x j x e 

Fix j, suppose Ej contains distinct elements 1 2, ,...., me e e   .

Then   22 2

1
0 , 


   n

m

n
m x j x e .
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But by theorem 5.4.1,    2 2

1
, 


 n

m

n
x e x . This shows that

2 22 2  m x j x m j

Thus 2m j  and therefore each Ej contains at most j2 elements. But  jS E  and
countable union of countable set is countable. Thus S is countable.

Theorem 5.4.3 (Bessel’s inequality) :

If  ie  is an orthonormal set in a Hilbert space H then

  2 2, jx e x  x H

Proof :  Let   | , 0 i iS e x e . If S is empty then  , 0ix e   i  and   2
, 0 jx e .

Therefore result holds.

Suppose S   then by theorem 5.4.2, S is countable. If S is finite,

 1 2 3, , ,...., nS e e e e  for some integer n.

   2 2

1
, ,


 

n

j j
j

x e x e and by theorem 5.4.1 result holds.

Let  1 2 3, , ,...., ,... nS e e e e .

If   2

1
,




 n
n

x e  converges then every series obtained from rearrangement of terms

also converges and all such series have the same sum.

Therefore    2 2

1
, ,




 i i

i
x e x e  and   2

1
,




 i
i

x e  only depends on S and not not

the arrangement of  ie . In this case

   2 2

1
, ,




 i i

i
x e x e
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Since   2 2

1
,




n

i
i

x e x , all partial sums of   2

1
,




 i
i

x e  are bounded by 2x .

  2 2

1
,




  i

i
x e x

Theorem 5.4.4 :

If  ie  is an orthonormal set in a Hilbert space H and if x is an arbitrary vector in H
then

  , i i jx x e e e j

Proof : Let   | , 0 i iS e x e . Then by theorem 5.4.2 either S  or S is countable. If

S   then  , 0ix e  i . i.e. x is orthogonal to each ie .

Suppose S  . Then S is countable. Let  1 2 3, , ,...., ,... nS e e e e .

Define  1 2 3, , ,....,n nS e e e e . In Sn,

   
1 1

, ,


 
 

n

i i i i
i i

x e e x e e . By theorem 5.4.1,

 
1

,


 
n

i i j
i

x x e e e ,  j = 1, 2, 3, ...., n

Put  
1

,



n

n i i
i

s x e e .

Observe that

     
2

2 2

1 1 1
, , ,

     
     

n n n

n m i i i i i
i m i m i m

s s x e e x e e x e

But by Bessels inequality   2 2

1
,




 i

i
x e x .
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  2

1
,




 i

i
x e  is convergent series. Therefore, partial sum form a convergent sequence.

Every convergent sequence is Cauchy.

Therefore for , n m N ,   2

1
,

 


n

i
i m

x e  .

Since   2
,    n m is s x e ,  ns   is Cauchy sequence in H. Since H is

complete, the sequence  ns s H  i.e.  
1

,



 i i

i
s x e e .

        , , , , ,    i i i i i ix x e e e x s e x e s e

        , lim , i n ix e s e

        , lim ,


 i n in
x e s e

        
1

, lim , ,
 

    
 

n

i j j in j
x e x e e e

        
1

, lim , ,
 

  
n

i j j in j
x e x e e e

       , , 0  i ix e x e

Let the vectors in S be rearranged in any manner,

 1 2 3, , ,...., ,...nS f f f f

Put  '

1
,




n

n i i
i

s x f f . Then  '
ns  is a convergent sequence and

 '

1
' ,




 n i i

i
s s x f f

Now we show that  s = s'.

Let 0  be given and let n0 be a positive integer so large that if 0n n  then

 ns s  and ' '  ns s  and  
0

2 2

1
, 



 
 i

i n
x e . For some positive integer 0 0m n ,
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all terms of 0ns  occur among those of 0

'
ms , so 0 0

' m ns s  is a finite sum of terms of the form

 , i ix e e  for 0 01, 2,.....  i n n . This gives  
0 0

0

2 2' 2

1
, 



 
  m n i

i n
s s x e

So 
0 0

'  m ns s  and  
0 0 0 0

' '' ' 3       m m n ns s s s s s s s

Since   is arbitrary s' = s. Thus rearrangement of series gives same limit.

Theorem 5.4.5 :

Every non-zero Hilbert space contains a complete orthonormal set.

Proof : Let H be a non-zero Hilbert space. Let S be the class of all its orthonormal sets. This

class is a partially ordered set with respect to set inclusion. An orthonomal set  ie  in H is said
to be complete if it is maximal in this partially ordered set. Every chain in S has upper bound
(union of the chain). Since every chain in S has upper bound, by Zorn’s lemma S has maximal
elements. This maximal element of S is complete orthonormal set.

Theorem 5.4.6 :

Let H be a Hilbert space and let  ie  be an orthonormal set in H. Then the following
conditions are all equivalent to one another.

1.  ie  is complete

2.   0  ix e x

3. If x is an arbitrary vector in H then  ,  i ix x e e .

4. If x is an arbitrary vector in H then   22 ,  ix x e .

Proof :  We prove that (1)   (2)   (3)   (4)   (1)

Suppose (2) is not true. Then there is 0x  such that   ix e . Define 
xe
x  then

1e . Observe that  , ie e  is an orthonormal set and    ,i ie e e . Observe that  , ie e  is

orthonormal set which contradicts the completeness of  ie .
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(2)   (3) By theorem 5.4.4,  , i i jx x e e e , j .

Therefore by (2) we have    , 0 ,    i i i ix x e e x x e e .

(3)   (4) Let  ,  i ix x e e  then  2 ,x x x .

and            
,

, , , , , , ,   j j i i j i j i
i j i j

x x x e e x e e x e x e e e

         2

,
, , ,   j i ij i

i j
x e x e x e

Thus   22 ,  ix x e .

(4)   (1), Suppose (1) is not true. If  ie  is not complete then it is a proper subset

of an orthonormal set  ,ie e . Since e is orthonormal to all the ei’s, then

    22 , , 0 0     i
i

e e e e e e  a contraction to 1e .

Thus (4)   (1).

Theorem 5.4.7 :  Let  e  be an orthonormal set in a Hilbert space H. Then the following
conditions are equivalent.

(i)  e  is an orthonormal basis for H.

(ii) (Fourier Expansion) for every x H  we have,

 ,  x x e e

where     1 2 3, , ,.... | , 0 e e e e x e   (This set is countable)

(iii) (Parseval formula) for every x H  we have,

  22 , n
n

x x e

where     1 2, ,... | , 0 e e e x e 
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(iv) Span  e  is dense in H.

(v) If x H  and  , 0x e ,   then x = 0.

Proof : (i) (ii) : Let  e  be a maximal orthonormal set in H.

Consider x H , By theorem 5.4.2 and theorem 5.4.4,

 , i ix e e  converges to y for some y H  and   jx y e   j .

If y x , let 
 




y x
e

y x  then 1e  and  je e  j  so that

     e e e   is an orthonormal set in H but  e  is a basis.

Therefore,      e e e   i.e. x y  i.e.  ,  j jx x e e

(ii) (iii) follows from theorem 5.4.6.

(ii) (iv) Since  
1

,


m

j j
j

x e e    span  e  for each m = 1, 2, 3, .....

and  , j j
j

x x e e ,  x  span e . Thus  e  is dense in H.

(iv) (v) :  Let x H  be such that  , 0x e    and let

mx x  where  spanmx e . Consider  ,mx x .

 
0

, , 0


     
 

m

i i i i
j

a e x a e x  . Thus  , 0mx x .

     Lt , Lt , , 0 0
 

     m mm m
x x x x x x x

(v) (i) Let E be an orthonormal set in H containing  e .

If e E  and e e    then by orthonormality,,

 , 0e e    but then by (v) e = 0. But e E  and E is orthonormal.



191

1 e

This contradiction shows that  =E e .

Thus E is maximal orthonormal set in H i.e. an orthonormal basis for H.

Example 5.4.4 : Consider the Hilbert space L2 associated with Lebesgue measurable space

on  0, 2  and integrals are Lebesgue integrals.

Then  
2 2

2
0

|    
 

L f f x dx


 
1

2 22

0

   
 
f f x dx


 and      
2

0
,  f g f x g x dx



Let  inx
nu e  for n = 0,   1,   2,   3, ......

2

0
0  imx inxe e dx



if  m n

         = 2 if  m = n

  Define 2
 n

n
ue  then the set  ne  form an orthonormal set in L2.

For any 2f L ,    
2

0

1,
2




   inx

n nc f e f x e dx  are its classical Fourier

coefficients and by Bessel’s inequality we have,

 
2 22

0




 n

n
c f x dx

Theorem 5.4.6 and 5.4.7 proves the importance of orthonormal basis.
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Theorem 5.4.8 : (Gram-Schmidt Orthonormalization)

Let  1 2 3 4, , , ,....x x x x  be a linearly  independent subset of an inner product space X.

Define 1 1y x  and 
1

1
1


ye
y  and for n = 2, 3, 4, .....

     1 1 2 2 1 1, , ..... ,      n n n n n n ny x x e e x e e x e e  and  n
n

n

ye
y

Then  1 2 3, , ,...e e e  is an orthonormal set in X and for n = 1, 2, 3, .....

   1 2 3 1 2 3span , , ,... span , , ,...e e e x x x .

Proof : We shall prove this result by Methematical induction.

n = 1. As  1x  is linearly independent set, 1 1 0 y x  and 
1

1
1

1 
y

e
y  and

span 1x  = span 1e .

For 1n , assume that we have defined ny  and ne  as stated in the statement of

theorem and  1 2 3, , ,..., ne e e e  is an orthonormal set satifying span 1 2 3, , ,..., ne e e e  =

span 1 2, ,..., nx x x .

Define      1 1 1 1 1 1 2 2 1, , ..... ,       n n n n n n ny x x e e x e e x e e

As  1 2 3 1, , ,...., nx x x x  is a linearly independent set, 1nx  does not belong to

span 1 2 3, , ,..., nx x x x  = span 1 2 3, , ,..., ne e e e  , therefore 1 0 ny .

Let 
1

1
1






 n
n

n

ye
y . Then 1 1 ne  and for all j n  we have,

       1 1 1
1

, , , ,  


 
n

n j n j n k k j
k

y e x e x e e e

      1 1, , 0   n j n jx e x e  as  , k j kje e 
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Thus    1
1 1

1 1

1, , , 0
 

 

    
 

n
n j j n j

n n

ye e e y e
y y

Hence  1 2 3 1, , ,..., , n ne e e e e  is an orthonormal set.

span  1 2 3 1, , ,..., ne e e e  = span  1 2 1, ,..., ,n nx x x y 

 = span  1 2 3 1, , ,..., , n nx x x x x

Example 5.4.5 :

Let 2 X  For n = 1,2 ,3, .... let xn = (1, 1, 1, ......, 1, 0, 0, ....) where 1 occurs only
in first n entries. By Gram-Schmidt orthonormalization processes.

1 1 (1,0,0,0.....) y x  and 
1

1
1

(1,0,0,0.....) 
ye
y

2 (1,1,0,0,0.....)x

 2 2 2 1 1, (1,1,0,0,0.....) (1.1 1.0 0)(1,0,0....)     y x x e e

      = (1, 1, 0, 0, 0, ...) – (1, 0, 0, ....) = (0, 1, 0, .....)

3 (1,1,1,0,0,....)x

   3 3 3 1 1 3 2 2, ,  y x x e e x e e

     = (1, 1, 1, 0, 0, 0, ......) – 1 (1, 0, 0, 0, ....) – 1 (0, 1, 0, 0,.....)

     = (0, 0, 1, 0, ......)

Thus in general Gram Schmidt orthonormalization process yields ne  = (0,0,...,0,1,0,...)
where 1 occur only in nth entry.

5.5 CONJUGATE  SPACE H*

Fundamental properties of a Hilbert space is that there is a natural correspondence
between the vectors in H and the functionals in dual space H*. In this section the features of
this correspondence are discussed.
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Theorem 5.5.1 :

The map : *T H H ,  yy f  defined by    ,yf x x y  is a norm preserving
mapping of H into H*.

Proof :  Let y be a fixrd vector in H and consider function yf  on H defined by    ,yf x x y .
Then,

           1 2 1 2 1 2 1 2, , ,      y y yf x x x x y x y x y f x f x

       , ,  y yf x x y x y f x   

Thus yf  is linear map. Further yf  is continuous as

   ,  yf x x y x y (by Schwarz inequality)

Thus yf  is functional defined on H.

Observe that    y yf x f x . But    yf x x y .

Thus by definition of yf , yf y .

If y = 0 then 0y  and 0yf  and yf y .

Suppose 0y , then,

  sup : 1      
 

y y y
yf f x x f
y

 1, ,        
   

y
y yf y y y y
y y y

Thus, yf y . But yf y .

Therefore yf y  and hence yf  is norm preserving map.

Theorm 5.5.2 (Riesz Representation Theoem)

Let H be a Hilbert space and let f be an arbitrary functional in H*. Then there exists

a unique vector y in H such that    ,f x x y   x H .
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Proof : Uniquencess

Suppose f is an arbitrary functional in H* and y and y' are two vectors in H such that,

           , ' , , ' , 0 , ' 0       f x x y x y x y x y x y y ,  x H

Since  , ' 0 x y y ,  x H  therefore ' 0 y y  i.e. ' y y

Existence :

If f = 0 then choose y = 0. Suppose 0f .

Let   | 0 M x f x . Then M is proper closed linear subspace of H. By theorem

5.3.2 there exists a non-zero vector 0y  which is orthogonal to M. Now we shall show that if

  is suitably chosen, then the vector 0y y  satisfy    ,f x x y ,  x H .

If   0f x  then      0 0, , , 0  x y x y x y  .  Since 0 y M .

Now we choose   in such a way that    ,f x x y  holds for 0x y .

      2
0 0 0 0 0 0, ,    f y y y y y y . Choose 

 0
2

0

 
f y
y  and thus

   ,f x x y  is true for every x in M and for 0x y  also.

Since 0
y M  observe that each x in H can be written as 0 x m y  for some

m M . Now choose   in such a way that    
0 0  f x y f m .

But      
 

 0 0
0

0     
f xf x y f x f y
f y

   .

           0 0 0, ,     f x f m y f m f y m y y y  

            0 , ,  m y y x y

Thus norm preserving mapping of H into H* defined by  yy f  where

   ,yf x x y  is a mapping of H onto H*.
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The mapping  yy f  constitutes one-one onto isometric mapping from a Hilbert
space H to its conjugate H*.

Theorem 5.5.3 :

 Let H be a Hilbert space.

(a) For *f H  let fy  be the representer of f in H. Then the mapping : *T H H

given by    fT f y  is onto conjugate linear isometry..

(b) For , *f g H , define       , * ,f g T f T g .

Then  , *f g  is an inner product on H*,   2, * f f f  for all *f H  and H* is
a Hilbert space.

(c) For y H  define : *yj H K  by    yj f f y , *f H . Then yj  is a

continuous linear functional on H* and the map : **J H H  defined by    yJ y j  for

y H  is onto linear isometry i.e. H is reflexive.

Proof :

(a) For , *f g H  we have,

        f g x f x g x

           , , ,   f g f gx y x y x y y ,  x H

Hence f gy y  is a representer of * f g H  i.e.        T f g T f T g

Similarly for *f H  and k K

        , ,  f fkf x kf x k x y x ky ,  x H .

Hence fky  is a representer of kf  in H*.  i.e.    T kf kT f

Thus the map : *T H H  is conjugate linear..

To show that T is onto consider y H  and let    ,f x x y ,  x X .

Then  y T f . We have proved that   fy f T f  so that T is an isometry..
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(b) For all *f H , we have       , * , 0 f f T f T f .

and  , * 0f f  iff   0  fT f y f  i.e. 0f .

For , , *f g h H  and k K ,

                , * , , ,    f g h T h T f g T h T f T g T f

          , * , * f h f g

           , * , , kf h T h T kf T h kT f

        , , * k T h T f k f h

Similarly    , * , f *f h h . Thus (   ,   )*  is an inner product space on H*.

Since H is complete and : *T H H  is onto isometry H* is complete.

Thus H* is Hilbert space.

(c) Let y H . : *yj H K is linear and       yj f f y f y , * f H .

Therefore yj  is continuous and yj y . If we define *f H  by    ,f x x y ,

 x H  then,       2,  yj f f y y y y  so that yj y .

A map : **J H H  is linear as,  
1 21 2   y yJ y y j .

But            
1 2 1 21 2 1 2      y y y yj f f y y f y f y j f j f

and    yJ y j   and             y yj f f y f y j f J y    

To show that J is onto, consider **H  then by theorem 4.5.2 there exist a unique

representer *g H  of  .  Then           , * ,   g f g gf f g y y f y J y f for all

*f H . Thus   gJ y . Also J is an isometry,,

since    yJ y j y .
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BOUNDED OPERATORS ON HILBERT SPACES

UNIT  -  VI

This chapter presents a detailed study of bounded linear maps from a Hilbert space to
itself. The adjoint of such a bounded operator is introduced in section 6.1. It corresponds to
the conjugate transpose of a matrix in a finite dimensional situation. Self adjoint operators and
their properties are discussed in section 6.2. In section 6.3, normal and unitary operators are
discussed. The properties of normal and unitary operator and relation between these operators
are proved. Section 6.3 is devoted to Projections. The projections whose range and null
spaces are orthogonal are of much use. Since in certain circumstances sum of projections is
also a projections.

6.1 ADJOINT OF  AN OPERATOR

By an operator T on an inner product space X over K we mean a linear map T from
X to X. The map is said tobe bounded if Tx x ,  x X  (In working with operators it

is common practice to omit parentheses whenever it seems convenient. ( )Tx T x ). A bounded

operator is uniformly continuous on X, since for all x, y in X,   Tx Ty x y  . Conversely
if linear map T from X to X is continuous at 0 then T is bounded operator on X.

The set of all bounded linear operators on X is denoted by B (X). It can be proved
that if  , A B B X  and k K  then A + B and kA and AB belong to B (X). The operator AA

is invertible if there is some  B B X  such that AB = I = BA, where I is identity operator on

X. For  T B X ,  sup : , 1  T Tx x X x . Then   is a norm on B (X) and

 Tx T x ,  x X . If  nA and  nB  are  sequences in B (X) such that nA A  and

nB B  then   n nA B A B  and n nA B AB ,

since          n n n nA B A B A A B B  and
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    n n n n n nA B AB A B A B A B AB

            n n nA B B B A A

Theorem 6.1.1 :

If  1 2 3, , ,....e e e  is an orthonormal basis for a Hilbert space H, then each operator

 T B H  is defined by a matrix  ,j iTe e  with respect to this basis.

Proof : Consider the fourier expansion (theorem 6.4.6)

 , j j
j

x x e e , x H

Since the linear operators are continuous, we have,

            , , , , ,i j j i j j i i
j j

Tx e x e T e e x e T e e f x      (say)

Thus we have a Fourier expansion,

   , i i i i
i i

Tx Tx e e f x e   , x H

Thus T is defined by a matrix  ,j iTe e  with respect to basis  1 2 3, , ,....e e e .

Note :  If an orthonormal set  1 2 3, , ,....e e e  is not an orthonormal basis for H, then there is

some  T B H  which is not defined by a matrix with respect to  1 2 3, , ,....e e e .

Theorem 6.1.2 :

Let H be a Hilbert space and  A B H . Then there is a unique  B B H  such

that for all , x y H ,    , ,Ax y x By .

Proof :  Fix y H  and consider the map : yf H K  defined by    ,yf x Ax y , x H .

    1 2 1 2 ,  yf x x A x x y   

 1 2 , Ax Ax y 
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   1 2, , Ax y Ax y 

   1 2 y yf x f x 

Thus yf  is a linear functional. Also since

   ,   yf x Ax y Ax y A x y ,  x H ,

each yf  is continuous. By Riesz representation theorem (6.5.2), there is a unique

z H  such that    ,yf x x z ,  x H .

Define By = z. Then B is an operator on H. Also since

  yBy z f A y ,  y H ,

the operator B is continuous.

       , , ,  yAx y f x x z x By

For each fixed y H , this condition determines the element z = By of H. Suppose B'

is another map that satisfy    , , 'Ax y x B y  then,

        , , ' , , ' 0 'Ax y x B y x By x B B y B B      

Hence the map B is unique.

Definition 6.1.1 : Let H be a Hilbert space and let  A B H . The unique element B of

B(H) which satisfies    , ,Ax y x By , ,x y H   is called the adjoint of A and is denoted
by A*.

Remark :  If inner product space X is not complete then for each  A B X  there may not

exist  B B X  such that    , ,Ax y x By , , x y X .

Let X = set of all scalar sequences having only finite number of non-zero entries. For

  ix x ,   iy y  in X define  ,  i i
i

x y x y . For x X  let 
1

,0,0,....j

j

x
Ax

j





 
  
 
  then

 A B X .
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1
2

2
1

1
6j

A
j





   
 
 . For n = 1, 2, 3, ....., let  0,0,...,1,0ne  where 1 occurs

only in nth entry. If  B B X  and    , ,Ax y x By , , x y X  then,

     1 1 1
1, , 0   n nnBe e Be Ae e
n . n = 1,2, 3, ....

But then 1 Be X  (since all entries Be1 in are non-zero).

Theorem 6.1.3 : Let T be an operator on a Hilbert space H. Then T* (defined by 6.1.1) is
an operator.

Proof : For any , y z H  and all x H  we have

        , * , , ,    x T y z Tx y z Tx y Tx z

     ,T* ,T* , * *   x y x z x T y T z

Thus,  T* * *  y z T y T z

          , * , , , * , *x T y Tx y Tx y x T y x T y       

Thus  * *T y T y  . So T* is linear. Now we shall prove that T* is continuous.

   2* * , * * , * *    T y T y T y TT y y TT y y T T y y

Thus we have * T y T y ,  y H . So * T T .

Definition 6.1.2 : The mapping *T T  defined on B (H) by    , , *Tx y x T y , where
H is a Hilbert space is called the adjoint operation on B (H).

Theorem 6.1.4 : Let H be a Hilbert space. The adjoint operation *T T  on B (H) has the
following properties.

1)  1 2 1 2* * *  T T T T

2)  * *T T 
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3)  1 2 2 1* * *TT T T

4) **T T

5) T*  T

6) 2T*T  T

Proof :  Let H be a Hilbert space and , x y H .

1)            1 2 1 2 1 2 1 2, * , , , ,x T T y T T x y T x T x y T x y T x y      

          1 2 1 2 1 2, * , * , * * , * *     x T y x T y x T y T y x T T y

2)           , * , , , * , *   x T y Tx y Tx y x T y x T y    

3)         1 2 1 2 2 1 2 1, * , , * , * *  x TT y TT x y T x T y x T T y

4)      , , * ** , Tx y x T y T x y

5) In theorem 6.1.3 we have proved * T T . Therefore ** *T T  but by (4)
T** = T and we have *T T .

Thus *T T .

6) 2* *   T T T T T T T (by (5)) .... (i)

   2 2, * , * *   Tx Tx Tx T Tx x T Tx x T T x

Taking supremum over all x H  with 1x  we find that

2 *T T T .... (ii)

From (i) and (ii) result follows.

Definition 6.1.3 : Let H be a Hilbert space in T be a bounded operator on H. The subspace,

   /  for some    R T y H Tx y x H

of H is called the range space of T. The subspace    / 0  Z T x H Tx  of H is called
zero space of T. If  Z (T) = H we write T = 0.
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Definition 6.1.4 : A linear map :T H H  is bounded below if x Tx  , x H   and

some 0  .

Theorem 6.1.5 : Let H be a Hilbert space and T is bounded linear operator on H.

(a)    *Z T R T   and    *Z T R T 

(b)    *R T Z T   and    *R T Z T 

(c) R(T) = H if and only if  T* is bounded below and R(T*) = H if and only if T is
bounded below.

Proof :  Observe that above results are symmetric in T and T*  since T** = T. Therefore it is
sufficient to prove one part second part follows immediately.

(a) Let x H . Then  x Z T  i.e. Tx = 0 if and only if    , * , 0x T y Tx y  ,

y H   i.e.  *x R T  .

(b) Let  F R T  and note that  F R T   . Since F is closed subspace of H,

  ( *)F F R T Z T
      .

(c) Suppose R(T) = H. Suppose T* is not bounded below. Then there is a sequence

 nx  in H such that * n
n

x
T x

n
  for n = 1, 2, 3, .... Let 

n
n

n

nxy
x

 , so that * 1nT y  .

We show that the sequence  ny  is bounded in H. Consider y H . Since T is onto x H 
such that Tx = y. Then,

     , , * , *n n n ny y y Tx T y x T y x x   

Thus  ,ny y x  and therefore ny  must be bounded in H. But ny n  .

This contradiction proves that T* is bounded below.

6.2 SELF ADJOINT OPERAORS ON HILBERT SPACE H

Definition 6.2.1 : Consider those operators A on a Hilbert space H for which A = A*, such
an operator A is called self adjoint operator.
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Theorem 6.2.1 : Zero operator and identity operator are self adjoint operators.

Proof :  Let Ax = 0, x H  . Then,

   0 , * , * 0x Ax A x x A x    , *x H A A   

Thus  if A is zero operator, A = A* i.e. 0* = 0.

Let Ax = x ,  x H . Then,

     2 , , * , *    x x x x Ax A x x A x x

Thus *  Ax x A x x  therefore I* = I where I represents identity map.

Theorem 6.2.2 :

The self adjoint operators in B (H) form a closed real linear subspace of B (H)and
therefore a real Banach space which contains identity tranformation.

Proof :  Let  S B H  is a set of self adjoint operation. Suppoe AA1 and A2 are self adjoint
operators and ,   are real numbers. Then,

 1 2 1 2 1 2* * *    A A A A A A       ( ,   are real)

Thus if A1, A2 are self adjoint and ,   are real numbers then 1 2A A   are self
adjoint operator. Thus S is linear subspace of B (H).

Let  nA  be a sequence of self adjoint operators which converges to A.

i.e.  nA  is a sequence in S that converges to A.

Consider,

* * * *      n n n nA A A A A A A A

   * * *     n n n nA A A A A A

    *   n nA A A A

   2 0  nA A  as n .

Thus * 0 *   A A A A  i.e. A S . Thus S is closed real linear subspace of
B(H). By theorem 6.2.1, S contains identity transformation.
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Theorem 6.2.3 : If A1 and A2 are self adjoint operators on Hilbert space H then their product
A1A2 is self adjoint if and only if A1A2 = A2A1.

Proof :  Suppose A1, A2 and A1A2 are self adjoint.

Then  1 2 1 2* A A A A .... (i)

But  1 2 2 1 2 1* * * A A A A A A ..... (ii)

Thus  1 2 1 2* A A A A  if and only if 1 2 2 1A A A A , (by equation (i) and (ii))

Theorem 6.2.4 : If T is an operator on H for which  , 0Tx x   x H  then T = 0.

Proof : We will show that  , 0Tx y  for any x and any y.

    , ,    T x y x y Tx Ty x y       

       , , , ,   Tx x Ty y Tx y Ty x   

          2 2, , , , ,T x y x y Tx x Ty y Tx y Ty x             

Since  , 0Tx x ,  x H ,

   , , 0 Tx y Ty x  , 1  .

For 1   , we have    , , 0 Tx y Ty x ... (i)

For  i  and 1  we have    , , 0 i Tx y i Ty x ... (ii)

From equation (i) and (ii) we have  , y 0Tx .

Theorem 6.2.5 : An operator T on H is self adjoint if and only if  ,Tx x  is real for all x H .

Proof : Suppoe T i self adjoint then,

       , , , * ,  Tx x x Tx x T x Tx x

Since    , ,Tx x Tx x ,  ,Tx x  is real for all x.
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Conversely suppoe  ,Tx x  is real for all x in H.

       , , , * * ,  Tx x Tx x x T x T x x i.e.

    * , * , 0   Tx T x x T T x x  for all x in H.

Thus by theorem 6.2.4 we have T – T* = 0 i.e. T = T*.

Definition 6.2.2 : Suppose A1 and A2 are self adjoint operators on a Hilbert pace H. We

write 1 2A A  if    1 2, ,A x x A x x ,  x H .

Theorem 6.2.6 : The real Banach pace of all self adjoint operators on Hilbert space H is a
partially ordered set whose linear structure and order structure are related by the following
properties.

1) if 1 2A A  then 1 2  A A A A  for every  A B H .

2) if 1 2A A  and 0  then 1 2A A  .

Proof : 1 2A A  as    1 2, ,A x x A x x ,  x H .

  is reflexive.

Suppose 1 2A A  and 2 3A A , then    1 2, ,A x x A x x

and        2 3 1 3 1 3, , , ,    A x x A x x A x x A x x A A

Thus ‘ ’ is transitive.

Let 1 2A A  and 2 1A A .    1 2, ,A x x A x x  and    2 1, ,A x x A x x

     1 2 1 2, , , 0    A x x A x x A x A x x

  1 2 1 2 1 2, 0 0       A A x x A A A A

Thuss ‘ ’ is antisymmetric.

Since ‘ ’ is reflective, antisymmetric and transitive, the real Banach space of all self
adjoint operators on H with ‘ ’ relation is a partially ordered set.
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1) Suppose 1 2A A  then    1 2, ,A x x A x x  and therefore

       1 2, , , ,  A x x Ax x A x x Ax x

     1 2, ,   A A x x A A x x

1 2   A A A A

2) Suppose 1 2A A  then    1 2, ,A x x A x x  and for 0 ,

   1 2 1 2, ,  A x x A x x A A   

Definition 6.2.3 : A self adjoint operator A is said tobe positive if 0A  i.e.  , 0Ax x
x .

Note : O, I, T*T, TT* are positive operators for an arbitrary operator T as

 , 0 0 Ox x ,   2, 0 x x x ,

    2* , , 0  T Tx x Tx Tx Tx

    2* , * , * * 0  TT x x T x T x T x

Theorem 6.2.7 : If A is a positive operator on H, then I + A is non-singular. In particular
I + T*T  and I + TT* are non-singular for an arbitrary operator T on a Hilbert space H.

Proof :  First, we must show that I + A is one to one and onto as a mapping of H into itself.

Suppose       20 , ,         I A x Ax x Ax x x x x

Since A is positive operator  , 0Ax x  therefore 2 0 x

But then x = 0

Define   /  M I A x x H .

Let  ny  be a Cauchy sequence in M.

Observe that    2
,I A x x Ax x Ax    .
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       , , , ,   x x x Ax Ax x Ax Ax

 2 2 2 ,  x Ax Ax x

Since A is positive operator  , 0Ax x  and we have

  22  x I A x ... (i)

Since  ny  is a Cauchy sequence in M,

  n ny I A x  for nx H   and

   22   n m n mx x I A x x by (i)

2 2   n m n mx x y y

Since  ny  is cauchy in M,  nx  is Cauchy sequence in H. Since H is Hilbert space,

H is complete and  nx x H . But then    I A x y M  and  ny y H . Thus M is
complete and therefore closed in H.

Now we will prove that M = H. Suppose not then there would exist a non-zero
vector 0x  orthogonal to M.

 
0 I A x M  and 0 x M .

Therefore   0 0, 0 x I A x .

     2
0 0 0 0 0 0 0, , A 0 , 0      x x x x x Ax x

0 0 x . Contradiction to 0 0x . Thus M = H.

Thus I + A is one-one and onto and therefore non-singular.

Theorem 6.2.8 : (Generalized Schwarz inequality)

Let  A B H  be self adjoint. Then A or – A is positive operator if and only if

    2
, , ,Ax y Ax x Ay y , , x y H .
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Proof : Suppose A is positive operator i.e.  , 0Ax x for , x y H , define

   , ,Ax y Ax y .

Observe that  , 0Ax x ,  x H  and the function    ,  : H H K   is linear in
the first variable and is conjugate symmetric since A is self adjoint.

Consider    , ,A Az y y x x y y   where , x y H .

          0 , , , , , ,A A A A Az z y y x x y y y y x x y y   

                    2, y , , , , , , ,A AA A A A A Ay x x y y x y x y x y y y y x  

     , , , AA Ax y x y y y

             , y , , , ,   AA A A Ay y y x x x y y x

             2
, y , , ,   AA A Ay y y x x x y

Thus if  , y 0Ay  then     2
, , ,Ax y Ay y Ax x          (as    , y ,Ax Ax y )

If  , y 0Ay but  , 0Ax x , then we can interchange x and y and obtain the result.

Assume that  , 0Ax x  and  , 0Ay y . Then,

           , , , , , ,        AA A A A Ax y x y x y x y x x x y y x y y

             , , , ,   A A A Ax x x y y x y y

    2 , 2 , 0  A Ax x y y

But since,  , 0Ax x    x H ,  , 0Ax y x y   ,  , 0Ax y x y   and

therefore    , , 0     A Ax y x y x y x y . Similarly

   , , 0     A Ax iy x iy x iy x iy

Therefore,

       0 , , , ,           A A A Ax y x y x y x y i x iy x iy i x iy x iy
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          2 , 2 , 2 , 2 ,A A A Ax y y x i x iy iy x     

          2 , 2 , 2 , 2 ,   A A Ax y y x x y y x

       4 , 4 , Ax y Ax y

Thus we have  , 0Ax y  if    , 0 , A Ax x y y  and

          2
, , , , , ,  AA Ax y Ax y x x y y Ax x Ay y

for all , x y H , provided A is positive operator..

In case – A is positive then,

         2 2
, , , , , ,     Ax y Ax y Ax x Ay y Ax x Ay y

for all , x y H .

Conversely assume that     2
, , ,Ax y Ax x Ay y  for all , x y H .

Then  , 0Ax x ,  x H  or  , 0Ax x ,  x H .

That is A or – A is a positive operator.

6.3 NORMAL AND UNITARY OPERATORS ON HILBERT SPACE H

Definition :

An operator N of H is said to be normal if NN* = N*N where N* is adjoint of N.

Theorem 6.3.1 :

The set of all normal operators on H is closed subset of B (H) which contains the set
of all self adjoint operators and is closed under scalar multiplication.

Proof :  If  A B H  is self adjoint then A* = A and AA* = A*A = AA2. Therefore every self
adjoint operator is normal operator. If N is normal operator then NN* = N*N. If   is any
scalar then

      2 2* * * *  NN N N N N N N     
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Thus if N is normal operator and   is any scalar then N  is normal. Therefore the
set of all normal operators on H is closed under scalar multiplication.

Suppose  kN  is a sequence of normal operators on H that converges to A.

If kN A  then * *kN A  and

* * * ** * * *      k k k k k k k kAA A A AA N N N N N N N N A A

* ** * 0    k k k kAA N N N N A A  as k .

* * 0 * *    AA A A AA A A
Thus the set of all normal operators on H is closed subset of B (H).

Theorem 6.3.2 :

If N1 and N2 are normal operators on Hilbert space H and if * *
1 2 2 1N N N N  or

* *
1 2 2 1N N N N  then 1 2N N  and 1 2N N  are normal operators.

Proof :

   * * * *
1 2 2 1 1 2 2 1* *  N N N N N N N N

** * * ** * *
2 1 1 2 2 1 1 2N N N N N N N N   

So * * * *
1 2 2 1 2 1 1 2  N N N N N N N N

Consider,

     * *
1 2 1 2 1 2 1 2*    N N N N N N N N

* * * *
1 1 1 2 2 1 2 2   N N N N N N N N .... (i)

      * *
1 2 1 2 1 2 1 2*    N N N N N N N N

* * * *
1 1 1 2 2 1 2 2   N N N N N N N N

* * * *
1 1 2 1 1 2 2 2   N N N N N N N N .... (ii)

From (i) and (ii) we have  1 2N N  is normal if
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* *
1 2 2 1N N N N  (same as * *

2 1 1 2N N N N )

Similarly,

       * * * *
1 2 1 2 1 2 2 1 1 2 2 1*N N N N N N N N N N N N 

    * * * *
1 2 2 1 2 1 1 2 N N N N N N N N

      * *
2 1 1 2 1 2 1 2* N N N N N N N N

Thus 1 2N N  is normal operator..

Theorem 6.3.3 :

An opertor T on H is normal if and only if * T x Tx ,  x H .

Proof :
2 2* *  T x Tx T x Tx

       * , * , * , * ,   T x T x Tx Tx TT x x T Tx x

   * , * , 0  TT x x T Tx x

  * * , 0  TT T T x x

* * TT T T  i.e. T is normal.

Thus T is normal if and only if *Tx T x ,  x H .

Theorem 6.3.4 :

If N is a normal operator on H then 22 N N .

Proof :

   2 * N x N Nx N Nx (by there 6.3.3)

            * N Nx ,  x H .

Thus 2 *N N N . But since *N N , 2* N N N  and we have
22N N .
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For an arbitrary operator T on H, define 1
*

2



T TA  and 2

*
2



T TA

i . Observe

that 1 1
* ** **

2 2
 

  
T T T TA A .

Similarly 2 2* A A . Thus 1A  and 2A  are both self adjoint operators. Moreover

1 2 T A iA  and 1 2*  T A iA . The self adjoint operators AA1 and AA2 are called real and
imaginary part of T.

Theorem 6.3.5 :

If T is an operator on H then T is normal if and only if its real and imaginary parts
commute.

Proof :

Suppose A1 and A2 are real and imaginary parts of T then 1 2 T A iA  and

1 2*  T A iA .

    2 2
1 2 1 2 1 2 2 1 1 2*       TT A iA A iA A A i A A A A .... (i)

    2 2
1 2 1 2 1 2 1 2 2 1*       T T A iA A iA A A i A A A A .... (ii)

From (i) and (ii) we have if 2 1 1 2A A A A   then TT* = T*T..

Conversely if  TT* = T*T  then 2 1 1 2 1 2 2 1  A A A A A A A A ,

So 2 1 1 22 2A A A A  or 1 2 2 1A A A A .

Thus T is normal if and only if 1 2 2 1A A A A .

Definition 6.3.2 :

An operator U on a Hilbert space H is said to be unitary if * * UU U U I .
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Theorem 6.3.6 :

A is unitary operator on H if and only if Ax x ,  x H  and A is onto. In that

case 1 A x x ,  x H  and 1 1 A A .

Proof :

For x H , we have

   2 2 , ,  Ax x Ax Ax x x

          * , , A Ax x x x

         * , A A I x x

We know that if  , 0Ax x ,  x H  then A = 0.

Therefore 2 2 0 Ax x  iff * 0 A A I

i.e. Ax x  iff * A A I .

Thus if Ax x ,  x H  and A is onto then A*A = I and A is bijective so that

    1 1 1* * *     AA AA AA A A A A AA I
Thus AA* = A*A = I  i.e. A is unitary operator.

Conversely if A is unitary then A*A = I and A–1 = A*.

Since A*A = I, A*A – I = 0 i.e.   * , 0 A A I x x

   * , , 0  A Ax x x x

    2 2, , 0    Ax Ax x x Ax x

Thus if A is unitary Ax x ,  x H .

And A is onto. In that case 1 A x x ,  x H .

And we have 1 1 A A .
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Theorem 6.3.7 :

If T is an operator on H, then the following conditions are all equivalent.

1) T*T = I

2)    , ,Tx Ty x y ,  , x y H .

3) Tx x ,  x H .

Proof : (1)   (2)

Suppose T*T = I then    * , ,T Tx y x y  i.e.    , ,Tx Ty x y

(2)   (3)

   , ,Tx Ty x y , , x y H   therefore for x = y we have

    2 2, ,    Tx Tx x x Tx x Tx x     x

(3)   (1)

   2 2 , ,    Tx x Tx x Tx Tx x x

   * , , *   T Tx x x x T T I

Example : Consider 2 H  and 2 2:  T  is defined by,,

   1 2 3 1 2 3, , ,.... 0, , , ,....T x x x x x x

then 2 2Tx x  but T do not have inverse as T is not onto map.

Theorem 6.3.8 :  An operator T on H is unitary if and only if it is an isometric isomorphism of
H onto itself.

Proof : If T is unitary then T is onto. Since Tx x   x H  (theorem 6.3.7), T is an
isometric isomorphism of H onto itself.

Conversely, if T is an isometric isomorphim of H onto itself then T–1 exist and by
theorem 6.3.7 we have T*T = I.

  1 1 1* *     T T T I T T T  and * * TT T T I
Thus T is unitary operator.
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Problem :  If T is an arbitrary operator on H and if ,   are scalars such that   , show

that *T T   is normal.

Answer :   * * * T T T T   

  * *  T T T T   

 2 2 22* * *   TT T T T T   

  2 22* * *   TT T T T T ..... (i)

      * * * * *    T T T T T T T T       

      2 22 2* * *   T T T T TT   

       2 2 2* * *   T T T T TT ..... (ii)

From (i) and (ii) we have

      * * * * * *    T T T T T T T T       

Thus *T T   is normal.

6.4 PROJECTIONS ON HILBERT SPACE H

Definition 6.4.1 : Operator P on H with the property that P2 = P is called projection.

Definition 6.4.2 : A projection on H whose range and null space are orthogonal is called
perpendicular projection.

Definition 6.4.3 : Two projections P and Q are said to be orthogonal if PQ = 0.

Theorem 6.4.1 : If P is a projection on a Hilbert space H with range M and null space N then
M N  if  and only if P is self adjoint and in this case N M .
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Proof : Since M is range and N is null space H M N  .

Therefore each z H  can be uniquely written in the form z = x + y with x M  and
y N  . If M N  then x y  . Consider,,

             * , , , , , , ,      P z z z Pz z x x y x x x y x x x

           , , , , , y ,     Pz z x z x x y x x x x x

Thus we have    * , ,P z z Pz z ,  z H .

i.e.   * P , 0 P z z ,  *   z H P P

Conversely suppose P = P* then for x M  and y N

         , , , * , ,0 0      x y Px y x P y x Py x x y

Thus for any x M  and y N , x y  i.e. M N .

Now we will show that N M . Observe that N M . If N is proper subset of
M  then N is closed linear subspace of M  therefore by theorem 5.3.2 there exists a non-

zero vector z0 in M  such that 0z N . Since 0z M  , 0z M  and 0z N  therefore

0z M N H   i.e. 0z H .

This is impossible therefore N M .

The only projections considered in the theory of Hilbert spaces are those operators
which are self adjoint.

Definition 6.4.4 : A projection on a Hilbert space H is an operator P which satisfies the
conditions P2 = P and P* = P.

Let P be a projection on a Hilbert space H. Let  : M Px x H  is a closed linear
subspace of H.

Conversely to each closed linear space M there corresponds the projection P with

range M defined by   P x y x  where x M  and y M .

Observe that P os projection on M iff I – P is projection on M . If P is projection on
M then,
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    x M Px x Px x

For every x H  we have,

   2 22 2     x Px I P x Px I P x

 Px x ,  x H    i.e. 1P
2 2 2 2 0     Px x Px x Px x

       , , 0 * , , 0     Px Px x x P Px x x x

     , , 0 , 0       Px x x x Px x x Px x

If x H  is an arbitrary vector then,

        22, , , * , 0    Px x P x x Px P x Px Px Px

Thus the projection operator is positive operator.

Definition 6.4.5 :

A self adjoint operator A on a Hilbert space H is said to be positive if  , 0Ax x ,

 x H and we write 0A .

Theorem 6.4.2 :

If P is projection on a Hilbert space H then I–P is also a projection.

Proof :  (I – P) (I – P) = I – P – P + P2 = I – P – P + P = I – P

(I – P)* = I* – P* = I – P

  I – P is projection.

Since I – P is projection, I – P   0 i.e. I   P..

Thus 0  P I .

Definition 6.4.6 : Let T be an operator on a Hilbert space H. A closed linear subspace M of
H is said to be invariant under T if  T M M .
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Definition 6.4.7 :  If both M and M  are invariant under T, we say that M reduces T or TT
is reduced by M.

Theorem 6.4.3 : A closed linear subspace M of H is invariant under an operator T if and only
if M  is invariant under T*.

Proof : Suppose M is invariant under T. Since M is invariant under T, Tz M   z M  .
Suppose y M  then  , 0Tz y   z M

i.e.  , * 0z T y , *    z M T y M

Thus if y M  then * T y M  and therefore M  is invariant under T*.

Conversely suppose M  is invariant under T*. Therefore * T z M ,  z M .
But  M M . Let y M  then  * , 0T z y ,  y M . i.e.  , ** 0z T y ,  y M .

i.e. ** T y M . But T** = T therefore Ty M . Thus  , 0z Ty ,  Ty M . i.e. for

y M , Ty M and therefore M is invariant under T.T.

Theorem 6.4.4 : A closed linear subspace M of H reduces an operator T if and only if M is
invariant under both T and T*.

Proof : A closed linear subspace M of H reduces an operator T iff both M and M  are
invariant under T. By theorem 6.4.3 M is invariant under T iff M  is invariant under T*. Thus

M  is invariant under T and T*. Since M  is invariant under T then by theorem 6.4.3 M
is invariant under T*. But  M M . Therefore M is invariant under T and T*.

Conversely if M is invariant under T* then M  is invariant under T** = T. Thus M
and M  are invariant under T. Therefore M reduces T..

Theorem 6.4.5 : If P is the projection on a closed linear subspace M of H then M is invariant
under an operator T if and only if TP = PTP.

Proof : Suppose M is invariant under an operator T. Let x H  then Px M  and
   T Px TPx M .
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Since TPx M  and P is projection on M, PTPx = TPx. But x H  is arbitrary
vector. Therefore PTP = TP.

Conversely suppose TP = PTP. Let x M . Since P is projection on M, x = Px i.e.
  Tx TPx PTPx M . Thus for x M , Tx M . Therefore M is invariant under T.T.

Theorem 6.4.6 : If P is the projection on a closed linear subspace M of H then M reduces an
operator T if and only if TP = PT.

Proof : M reduces T iff M is invariant under T and T* (by theorem 6.4.4) iff TP = PTP (by
theorem 6.4.5) and T*P = PT*P.

   * * * , * ,  T P PT P T Px y PT Px y , x y H

   , * , Px Ty T Px Py ( * P P )

   , , Px Ty Px TPy

   , , x PTy x PTPy ( * P P )

 PT PTP
Thus we have TP PTP  and   PT PTP TP PT .

Theorem 6.4.7 : If P and Q are the projections on closed linear subspaces M and N of H
then M Q  iff PQ = 0 iff QP = 0.

Proof :   0 * 0 * * 0 0      PQ PQ Q P QP  (  Q* = Q and P* = P since P
and Q are projections). Therefore we shall prove that if P and Q are the projections on closed
linear subspaces M and N of H then M N  iff PQ = 0. If M N  then N M . But for
every x H , Qx N  and N M  therefore 0PQx . So PQ = 0,  x H .

Conversely if PQ = 0 then for every x N , 0 Px PQx .

Since 0Px ,  x N , N M  and therefore M N .

Definition 6.4.8 : Two projections P and Q are orthogonal if PQ = 0.
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Theorem 6.4.8 : If P1, P2, P3, ....., Pn are the projections on closed linear subspaces M1,
M2, M3, ...., Mn of H then P = P1 + P2 + P3 + .... + Pn is a projection iff the Pi’s are pairwise

orthogonal (i.e. 0i jPP ,  i j ) and P is projection on M = M1 + M2 + M3 + .... + Mn.

Proof : Since Pi is projection for each i, Pi* = Pi therefore

1 2 3 1 2 3* * * * ...... * .....          n nP P P P P P P P P P

Thus * P P P  is self adjoint. Now P is projection iff P2 = P.

  2
1 2 3 1 2..... .....       n nP P P P P P P P

      
2 2 2 2

1 2 3 ..... 2


      n i j
i j

P P P P PP

      1 2 3 ..... 0     nP P P P ( 0 i jPP ,  i j )

      = P

Thus P2 = P and * P P P  is a projection. We have proved that If Pi’s are
pairwise orthogonal then P is projection.

Conversely assume that P is projection i.e. P* = P and P2 = P.

Let x be a vector in the range of Pi, so that  ix Px  . Then,

     2 2 2 * 2

1 1 1 1
, , ,

n n n n

i j j j j j j
j j j j

x Px P x P x P x P P x x P x x
   

       

                    2 22

1
, , , , * ,

n

j
j

P x x Px x P x x Px P x Px Px Px x


        
 


Observe that equality must hold all along the line.

i.e. 
2 2 2

1
 

n

i j
j

x Px P x

Since 2 2

1
0

n

j i j
j

P x Px P x


   ,  j i .

Thus range of iP  is contained in the null space of jP  for all j i , i.e. i jM M  ,

 j i . i.e. i jM M ,  j i . Therefore by theorem 6.4.7, Pi’s are pairwise orthogonal.
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Now we shall prove that P is projection on M. Observe that Px x ,   ix M , each Mi
is contained in the range of P and therefore M is contained in the range of P. If x is a vector in
the range of P then 1 2 3 ......      nx Px P x P x P x P x M .

Thus P is projection on M.

Above theorem plays a very important role in the spectral theorem.
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FINITE  DIMENSIONAL  SPECTRAL  THEORY

UNIT  -  VII

The aim of this chapter is to prove finite dimensional spectral theorem. In this chapter
we assume that the Hilbert space H is finite dimensional i.e. dim H = n.

In section 7.1 we consider linear transformation defined from H to H. The relation
between these operators and the corresponding matrices are discussed. Section 6.2 is devoted
to define spectrum of an operator and in section 6.3 the spectral theorem is proved for finite
dimensional Hilbert spaces.

7.1 LINEAR OPERATORS AND MATRICES

The discussion in this section is independent of the Hilbert space character of H and
applies equally well to any non-trival finite dimensional linear space. All the theorems discussed
in this section are covered in linear algebra. Here we revise certain correspondence between
linear transformation from H to H and An, the set of all n   n matrices.

Let  1 2 3, , ,....., nB e e e e  be an ordered basis for H. So that each vector in H is

uniquely expressible as linear combination of ei’s. If : T H H  is an operator then for each

je B , jTe H , B is basis therefore each jTe  can be expressed as linear combination of
vectors from B.

1


n

j ij i
i

Te e

The n2 scalars ij  which are determined in this way by T form a matrix of T relative
to the ordered basis B. We denote this matrix by [T] or [T]B.

It is customary to write out a matrix as a square array,
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11 12 13 1

21 22 23 2

1 2 3

 
 
      
 
 







n

n
ij

n n n nn

T

   
   



   

Thus the construction of [T] is as follows. Write Tej as a linear combination of

1 2 3, , ,....., ne e e e  and use the resulting coefficients to form jth column of [T].

Theorem 7.1.1 : If   iB e  is an ordered basis for H, then the mapping  T T , which
assigns to each operator T on H its matrix relative to base B, (i.e. [T]) is an isomorphism of
the algebra B (H) onto the total matrix algerba An where An is set of all n   n matrices.

Proof : Since 
1


n

j ij i
i

Te e ,   ij  is the matrix of T.T.

If x H  then 
1


n

j j
j

x e  and

1 1 1 1 1 1     

                
     
n n n n n n

j j j j j ij i ij j i
j j j i i j

Tx T e Te e e     

Thus   ij  determines Tx for every x H  and  T T  is one one map.

 If   ij  is any n   n matrix then 
1


n

j ij i
i

Te e defines T for every vector je B .

Since B is basis, every element in H can be expressed as linear combination of vectors in B
and therefore T is extended on H.

The resulting operator T has   ij  as its matrix. Thus the mapping  T T  is onto.

Now to show that  T T  preserve the algebraic structure.

Let T1, T2  B H  and let   ij  and   ij  be the matrices of TT1 and TT2 respectively..
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 1 2 1 2  j j jT T e T e T e

      
1 1 

  
n n

ij i ij i
i i

e e 

       
1

 
n

ij ij i
i

e 

Thus if we define addition of two matrices by

            ij ij ij ij     then      1 2 1 2  T T T T

Similarly if       ij ij    then    1 1T T 

Finally    1 2 1 2 1
1

    
 

n

j j kj k
k

TT e T T e T e

   1
1

 
n

kj k
k

T e

  
1 1 

   
 

 
n n

kj ik i
k j

e 

  
1 1 

   
 

 
n n

ik kj i
i k

e 

Thus if we define multiplication for matrices by,

1
       

n

ij ij ik kj
k

     then     1 2 1 2TT T T

Thus  T T  preserves the algebraic structure.

Note :

(i)  The image of the zero operator under the mapping  T T  is the zero matrix, all of
whose entries are zero.

(ii) The image of the identity operator is identity matrix.
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Theorem 7.1.2 : Let B be a basis of H and T an operator whose matrix relative to B is

ij   . Then T is non-singular iff ij   is non-singular and  1 1
ij T     .

Proof :  A matrix ij    is said to be non-singular if there exists a matrix ij    such that,

ij ij ij ij ij                       

where ij    is identity matrix. If such matrix exists then it i unique and is denoted by 
1

ij


  

and it is called inverse of ij   .

Suppose ij    is the matrix of an operator T relative to basis B. Since T is non-

singular T–1 exists. Moreover TT–1 = T–1T = I. By theorem 6.1.1 we have

       1 1T T T T I  

   1 1
ij ij ijT T              

Thus  1 1
ij T

     .

Theorem 7.1.3 : Two matrices in An are similar if and only if they are the matrices of a single
operator on H relative to different basis.

Proof : If T is a fixed operator on H then its matrix  BT  relative to basis B depends on the
choice of basis.

Let  1 2 3, , ,...., nB e e e e  be a basis of H and suppose  1 2 3' , , ,...., nB f f f f is
another basis of H.

Suppose ij    and ij    are the matrices of T relative to the basis B and B'

respectively. Define a non-singular operator A on H by i iAe f , i = 1, 2,3, ..., n.

Let ij    be the matrix of A relative to B so that 
1

n

j ij i
i

Ae e


 .

By theorem 6.12 matrix ij    is non-singular..
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Consider,   
1

n

j kj k
k

Tf f


 

1

n

kj k
k

Ae


 

1 1

n n

kj ik i
k i

e 
 

   
 

 

1 1

n n

ik kj i
i k

e 
 

   
 

  ..... (i)

      j jTf TAe

1

n

kj k
k

T e


   
 


1

n

kj k
k

Te


 

1 1

n n

kj ik i
k i

e 
 

   
 

 

1 1

n n

ik kj i
i k

e 
 

   
 

  ..... (ii)

From equation (i) and (ii) we have,

1 1

n n

ik kj ik kj
k k
   

 
  ,i j

ij ij ij ij                 

        
1

ij ij ij ij   


              

                1
'B B B BT A T A

Definition 7.1.1 : Two matrices ij    and ij    are said to be similar if there exists a non-

singular matrix ij    such that 
1

ij ij ij ij   


               .
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We have seen that a given operator on H may have many different matrices relative to
different basis. These matrices are related to each other given by definition 7.1.1. Thus working
with operators is equivalent to working with square matrices.

7.2 THE SPECTRUM OF AN OPERATOR

Definition 7.2.1 : Let T be an operator on H. Let [T] be the matrix representing T. The
scalar   is said to be an eigen value of an operator T if there exists a non-zero vector x H
such that    0T I x  . A non-zero vector x H  is called eigen vector..

Definition 7.2.2 : Let T be an operator on H. The set of eigen values of T is called spectrum
of T and is denoted by  T .

In definition 7.2.1, a non-zero vector x H  for which    0T I x   exists if det

  det 0T I  . Here we list some properties of determinants.

Let ij    be an n   n matrix. The determinant of this matrix which we denote by det

ij    is a scalar associated with it in such a way that

1)    det det 1ij I    

2)      det det detij ij ij ij                 

3)  det 0ij     if and only if ij    is non-singular..

4)  det ij ij         is a polynomial with complex.

Coefficients of degree n in the variable  .

The determinant is a scalar valued function of matrices which has certain properties.

1)  det 1I 

2)      1 2 1 2det det detT T T T

3)  det 0T   iff T is non-singular..

4)  det T I  is a polynomials of degree n in  .
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Suppose :T H H  is an operator. Suppose B and B' are basis of H. Suppose

ij    and ij    are matrices representing the transformation T with respect to basis B and

B' respectively. By theorem 7.1.3 there exists a non-singular matrix ij    such that

1

ij ij ij ij   


              

1
det det det detij ij ij ij   


              

    1
det det detij ij ij  


           

 det ij   

Thus determinant of an operator relative to any basis is same, where we define
determinant of an operator T as determinant of its matrix relative to any basis.

Theorem 7.2.1 :  If T is an arbitrary operator on H, then the eigenvalues of T constitute a
non-empty finite subset of the complex plane. Furthermore the number of points in this set
doesnot exceed the dimension n of the space H.

Proof : Let T be an operator on H. A scalar   is an eigenvalue of T if and only if there exists
a non-zero vector x H  such that   0T I x  . Non-zero x H satisfy   0T I x 

if and only if det   0T I  . Thus the eigen values of T are precisely the distinct roots of the
equation.

 det 0T I  ..... (1)

Equation (1) is a polynomial equation of degree n in  . By fundamental theorem of
algebra, a polynomial of degree n has exactly n roots. Some of these roots may be repeated,
in which case there may be fewer than n distinct roots.

In section 7.1 and 7.2 we briefly state certain properties of operators because operator
is a linear transformation from H to H where H is finite dimensional vector space. Therefore
the theory of linear transformations on vector spaces holds for operators defined on H. In
addition since T is an operator corresponding matrices are square matrices.
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7.3 THE SPECTRAL THEOREM

If T is an operator on a finite dimensional Hilbert space H then the scalar   and non-
zero vector x H  satisfying   0T I x   are called eigen value and eigen vector of T
respectively. Each eigen value has one or more eigen vectors associated with it.

Let   be an eigen value of T and consider the set M of all its corresponding eigen
vectors together with the vector 0. (note that 0 is not an eigen vector). Thus M is the set of all
vectors x which satisfy the equation.

  0T I x 

The space M is closed subspace of H. We call M the eigen space of T corresponding
to  .

Lemma 7.3.1 : The space M is invariant under T i.e.  T M M .

Proof : Let x M  then Tx x M  . Since M is subspace for x M , x M  .

Thus  T M M .

Let  T be an arbitrary operator on H. Let 1 2 3, , ,..., m     are distinct eigenvalues of
T and M1, M2, M3, ...., Mm be their corresponding eigenspaces. Now we shall prove certain
results related to subspaces Mi, i = 1, 2, 3, ..., m.

Theorem 7.3.1 : If T is normal operator on a finite dimensional Hilbert space H, then x is
an eigen vector of T with eigen values   if and only if x is an eigenvector of T* with eigen
values   .

Proof :  Since T is normal operatir T*T = TT*.

      * * * *T I T I T I T I T T T T I              

     ** * *TT T T I T I T I T I T I               

Therefore if T is normal operator then T I  is normal. We know that if T is normal
operator then *Tx T x  and therefore,

   * *T I x T I x T x x       , x H 
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This we have, *Tx x T x x   

If  0 * 0 *Tx x Tx x T x T x x           

Thus x is an eigen vector of T with eigen value   iff x is an eigen vector of T* with
eigen value  .

Theorem 7.3.2: If T is normal operator with eigen values 1 2, ,..., m    and

1 2 3, , ,..., mM M M M  their corresponding eigenspaces, then Mi’s are pairwise orthogonal.

Proof : Let ,i jx x  be vectors in Mi and Mj for i j .

Then i i iTx x  and j j jTx x .

           , , , , * , ,i i j i i j i j i j i j j j i jx x x x Tx x x T x x x x x       

Thus    , ,i i j j i jx x x x   for i j  .

Therefore  , 0i jx x  .

Hence for i j , i jM M .

Theorem 7.3.3 : If T is normal then each Mi reduces T.

Proof : In lemma 7.3.1 we have seen that each Mi is invariant under T. It is sufficient to show
that each Mi is invariant under T*. If i ix M  then i i i iTx x M  . Since Mi is subspace of
H.

But * i i i iT x x M  . Thus  * i iT M M .

Since Mi is invariant under T and T*, Mi reduces T.

Theorem 7.3.4 : If T is normal then Mi’s span H.

Proof : Let T be a normal operator on Hilbert space. Let 1 2 3, , ,..., m     be eigenvalues and

1 2 3, , ,..., mM M M M  are corresponding eigen spaces. By theoem 7.3.2, all these eigen spaces
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are pairwise orthogonal. Let Pi denote the projections on closed linear subspaces Mi. Since

i jM M , i j  , by theorem 6.4.7, 0i jPP  , i j  . Since all Mi’s are closed linear

subspaces of H, 1 2 ... mM M M M     is also a closed linear subspace of H and its

associated projection 1 2 3 ... mP P P P P      (by theorem 6.4.8).

Since each Mi reduces T, and Pi is projection on Mi, by theorem 6.4.6, i iTP PT ,

 i = 1, 2, 3, ...., ,m. Therefore TP = PT where 1 2 3 ... mP P P P P      is projection on

1 2 3 ... mM M M M M     . Since TP = PT where P is projection on M, by theorem

6.4.6, M reduces an operator T. Consequently M   is invariant under T. If  0M    then
since all eigenvectors of T are contained in M, the restriction of T to M   is an operator on a
non-trival finite dimensional Hilbert space which has no eigenvectors and therefore no eigenvales.
But by theorem 7.2.1 eigenvalues of T constitute non-empty finite subset of the complex
plane. Therefore T on M   donot have any eigenvalue is imposible. Hence  0M   . But
then M = H and the Mi’s span H.

Thus we have seen that if T is normal operator, there are finitely many eigenvalues

1 2 3, , ,..., m     which are distinct with corresponding eigenspaces 1 2 3, , ,..., mM M M M .

There eigen spaces are pairwise orthogonal i.e. i jM M , i j   and these Mi’s spane H.

H = 1 2 3 ... mM M M M   

Since  H = 1 2 3 ... mM M M M     , each vectory x H  can be expressed
uniquely in the form

1 2 3 ... mx x x x x       where i ix M  for i = 1, 2, 3, ..., m

Since i jM M  for i j , i jx x  for i j  and

 1 2 3 ... mTx T x x x x    

    1 2 3 ... mTx Tx Tx Tx    

    1 1 2 2 3 3 ... m mx x x x       

Suppose Pi are projections on H with range Mi. Since i jM M . Pi’s are pairwise

orthogonal and i iPx x .
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Thus  1 2 3 ... mIx x x x x x     

1 2 3 .... mP x P x P x P x    

 1 2 3 .... mP P P P x     , x H  .

Hence 1 2 3 ... mI P P P P    

Since 1 1 2 2 3 3 ... m mTx x x x x       

     1 1 1 2 2 2 3 3 3 ... m mPx P x P x P x       

       1 1 2 2 3 3 ... m mP P P P x        , x H  .

Thus we have, 1 1 2 2 3 3 ... m mT P P P P        .... (*)

The expression (*) for T is called the spectral resolution of T.

We have shown that if T is normal then it has a spectral resolution.

1 1 2 2 3 3 ... m mT P P P P       

Thus we have a spectral theorem.

Theorem 7.3.5 : Spectral Theorem

Let T be an arbitrary operator on Hilbert space H. Then distinct eigenvalues of T
form a non-empty finite set of complex numbers 1 2 3, , ,..., m     with corresponding

eigenspaces 1 2 3, , ,..., mM M M M . Let 1 2 3, , ,..., mP P P P  be the projections on

1 2 3, , ,..., mM M M M  respectively. Then following statements are equivalent.

(I) The Mi’s are pairwise orthogonal and span H.

(II) The Pi’s are pairwise orthogonal, 
1

m

i
i

I P


  and 
1

m

i i
i

T P


 .

(III) T is normal operator.

Theorem 7.3.6 : If T is normal operator on Hilbert space H then the spectral resolution,

1 1 2 2 3 3 ... m mT P P P P         is unique.
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Proof : In theorem 7.3.4 we have seen that if T is normal operator on H then T ha a spectral
resolution

1 1 2 2 3 3 ... m mT P P P P        ..... (1)

Since Pi’s are orthogonal.

 22
1 1 2 2 ... m mT P P P     

      2 2 2 2 2 2
1 1 2 2 1 2 1 2... 2 ...m m m m m mP P P PP P P            

     2 2 2 2 2 2
1 1 2 2 ... m mP P P      ( 0i jPP   as i jP P )

In general if n is any positive integer then,

1

m
n n

i i
i

T P


 .... (2)

Sinc
1

m

i
i

I P


 , equation (2) holds for n = 0.

Let p(z) be any polynomial with complex coefficients in the complex variable z. Then
by equation (2) we have

   
1

m

i i
i

p T p P


 ..... (3)

Define polynomials

 
         

       
1 2 1 1

1 2 1 1

.... ....
.... ....

j j m
j

j j j j j j j m

z z z z z
p z

    

         
 

 

    


    

Since jp  is a polynomial and since  j i ijp   .

From equation (3) we have,

   
1

m

j j i i j
i

p T p P P


  ..... (4)

The projections Pj, j = 1, 2,...., m are uniquely determined as polynomials in T.

Assume that there is another expression for T similar to (1)

1 1 2 2 3 3 .... k kT Q Q Q Q        .... (5)
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Which is also a spectral resolution of T. i.e. i ’s are distinct complex numbers, Qi’ss

are non-zero pairwise orthogonal projections and 
1

k

i
i

I Q


 . We shall show that (5) is identical

to (1).

First we shall show that i ’s are eigenvalues of T. Since 0iQ   there exists a non-

zero vector x in the range of Qi and for this x, Qix = x and for j i , 0jQ x   (Since Qi’s are
pairwise orthogonal) from equation (5) we have for x in range of Qi,

 1 1 2 2 .... m m i i iTx Q Q Q x Q x x         

Thus iTx x  for some non-zero x. So each i  is eigenvalue of T. Next we shall

prove that if   is an eigenvalue of T then i   for some i, suppose   is an eigenvalue of
T. So that Tx x  for some non-zero x H . Then,

1 1

m m

i i
i i

Tx x Ix Q x Q x   
 

    

But since 
1

m

i i
i

T Q


 , 
1

m

i i
i

Tx Q x




Thus  
1 1 1

0
m m m

i i i i i
i i i

Tx Q x Q x Q x   
  

      

Since Qix are pairwise orthogonal, non-zero vectors among Qix are linearly
independent. Therefore,

  0 0i i i iQ x             for some i.

Thus the set i  is the set of all eigen values of T..

In particular equation (5) is in the form,

1 1 2 2 ... m mT Q Q Q      ..... (6)

But then as discussed earlier,

 
j jQ p T  for every j .... (7)

On compairing (7) with (4) we see that j jQ P , j = 1, 2, ... m.

Thus the spectral resolution of T is unique.
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In section 7.1 we have seen that the matrix representation of an operator T dependents
upon the choice of basis for a Hilbert space H. From spectral theorem we have

1 2 ... mH M M M     where Mi’s are pairwise orthogonal. If for each Mi we choose
orthogonal basis, then we have orthogonal basis for H and relative to this basis the matrix of
operator T denoted by [T] has the following form,

 

1

2

0 0
0 0

0 0 m

I
I

T

I






 
 
 
 
 
  







Where each iI   and 0 are matrices i.e. [T] is partition matrix. Order of iI
dependents upon the dimension of Mi.

Thus there exist an orthogonal basis for H and relative to this basis, the matrix of T is
diagonal.

In this chapter we have proved that a normal operator T on finite dimensional Hilbert
space H has spectral resolution i.e. there exist distinct complex numbers 1 2 3, , ,..., m     and

non-zero pairwise orthogonal projections 1 2 3, , ,..., mP P P P , such that 
1

m

i
i

P I


  and

1

m

i i
i

T P


 . This theorem is generalized for the infinite dimensional case by analytic approach

and by algebraic or topological approach.
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