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Preface
Large numbers of students appear for M.A./M. Sc. Examinations externally every year. In

view of this, Shivaji University has introduced the Distance Education Mode for external students

from the year 2007-2008, and entrusted the task to us to prepare the Self Instructional Material

(SIM) for aspirants.

It is hoped that students must learn Mathematics not only to become competent

mathematicians but also skilled users of Mathematics in the solution of problems in the real

world. They must learn how to use their Mathematical knowledge in solving the problems of the

real world. Differential equations usually are description of physical systems. This book on

Ordinary Differential Equations consists of four chapters. Chapter one contains the complete

discussion of linear equations with constant coefficients, including the uniqueness theorem. In

chapter two linear equations with variable coefficients are trea. Equations with analytic coefficients

are introduced and series solutions are obtained by a simple formal process. A detailed treatment

of linear equations with regular singular points is discussed in chapter four. Classification of

regular singular points and regular singular points at infinity is studied. In chapter five existence

and uniqueness of solutions of first order initial value problem are established. The innumerable

examples and exercises are given at the end of each unit.

The book introduces the students to some of the abstract topics that pervade modern

analysis. The first chapter deals with the Riemann Stieltjes integration. The problems in Physics

and Chemistry which involve mass distribution that are partly discrete and partly continuous can

be solved by using Riemann Stietjes integrations. The Chapter 2 deals with convergence and

uniform convergence of sequences of functions and series where as the Chapter 3 consists of

multidimensional calculus. The Chapter 4 deals with implicit functions and extremum problems

which have wide applications in optimization theory. Line integrals, surface integrals and Volume

integrals are the subject matter of Chapter 5. This provides sufficient  background to study the

Gauss divergence Theorem and Stokes Theorem.

We owe a deep sense of gratitude to the Vice-Chancellor who has given impetus to go

ahead with ambitious projects like the present one. Dr. Sarita Thakar, Professor, Department of

Mathematics, Shivaji University has to be profusely thanked for the ovations he has poured to

prepare the SIM on Differential Equations. We also thank Prof. M. S. Chaudhary, Former Head,

Department of Mathematics, Shivaji University, Director of Centre for Distance and Online

Education for their help and keen interest in completion of the SIM.

Prof. Dr. S. H. Thakar
Head Department of Mathematics &

I/c Dean, Faculty of Science & Technology,

Shivaji University, Kolhapur
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Each Unit begins with the section Objectives -

Objectives are directive and indicative of :

1. What has been presented in the Unit and

2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.
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Differential Equations

Linear Equations with
Constant Coefficients

Chapter 1

Contents :

Unit 1 : Initial value problems for second order equations.
Unit 2 : Linear dependence and independencce
Unit 3 : The homogenous equation of order n
Unit 4 : The non-homogeneous equation of order n

Introduction :

We live in a world of interrelated changing entities. The position of the earth changes with
time, the velocity of falling body changes with distance, the bending of a beam changes with the
weight of the load placed on it, the area of circle changes with the size of the radius, the path of
projectile changes with the velocity and angle at which it is fired.

In the language of mathematics changing entities are called variables and the rate of change
of one variable with respect to another is called derivative. Equations which express a relation
among these variables and their derivatives are called differential equations.

A Linear differential equation of order n with constant coefficients is an equation of the
form

( ) ( –1) ( –2)
0 1 2 ( ),n n n

na y a y a y a y b x+ + + ⋅⋅⋅ + =

where,  0 1 20, , , , na a a a≠ ⋅⋅ ⋅  are complex constants

and b is complex valued function on an interval  : < <I a x b.

The operator L defined by

( ) ( –1) ( –2)
1 2( ) ( ) ( ) ( ) ( ) .... ( )φ φ φ φ φ= + + + +n n n

nL x x a x a x a x  is called as

differential operator of order n with constant coefficients.

The equation  L(y) = b(x) is called non-homogenous equation. If b(x) = 0 for all x in I the
corresponding equation L(y) = 0 is called a homogenous equation.

(1)



Differential Equations

Unit 1 : Initial Value Problems for Second Order Equations

Here, we are concerned with the equation

1 2( ) 0′′ ′= + + =L y y a y a y

where a1 and a2 are constants.

Theorem 1.1.1
Let, a1, a2 be constants and consider the equation L(y) = y¢¢ + a1y¢ + a2 y = 0

1. If r1, r2 are distinct roots of the characteristic polynomial
p(r) = r2 + a1r + a2

then the functions 1 2
1 2( ) and ( )φ φ= =r x r xx e x e  are solutions of L(y) = 0.

2. If r1 is a repeated root of the characteristic polynomial p(r), then the functions 1
1( ) r xx eφ =

and 1
2( ) r xx xeφ =  are solutions           of L(y) = 0.

Proof : Let f (x) = erx be a solutions of L(y) = 0.

   1 2( ) ( ) ( )rx rx rx rxL e e a e a e′′ ′= + +

    2
1 2( ) rxr a r a e= + +

   L (erx) = 0 if and only if p(r) = r2 + a1r + a2 = 0.

1. If r1 and r2 are distinct roots of p(r ) then 1 2 1
1( ) ( ) 0 ( )r x r x r xL e L e and x e andφ= = =

2
2( ) r xx eφ = are solutions of L(y) = 0.

2. If r1 is a repeated root of p(r) then

2
1 1( ) ( – ) ( ) 2( – )P r r r and p r r r′= =

( ) ( ) for all & .r x r xL e P r e r x=

( ) ( )r x rxL e P r e
r r

∂ ∂  =  ∂ ∂

[ ]( ) ( ) ( ) .′⇒ = +r x rxL xe P r xP r e

At r = r1, P(r1) = P¢(r1) = 0.

i.e. 1( ) 0r xL xe =  thus, showing that 1r xxe is a solution of L(y) = 0.

Thus if r1 is a repeated root of the characteristic polynomial P(r), then 1
1( ) r xx eφ =  and

1
2( ) = r xx xeφ are solutions of L(y) = 0.

Theorem 1.1.2 :

If f1 and f2 are two solutions of L(y) = 0 then C1 f1 + Cf2 is also a solution of L(y) = 0.
Where, C1 and C2 are any two constants.

Proof : Let f1 and f2 be two solutions of L(y) = 0

1 1 1 1 2 1( ) 0L a aφ φ φ φ′′ ′= + + =

(2)
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2 2 1 2 2 1( ) 0L a aφ φ φ φ′′ ′= + + =

Suppose C1 and C2 are any two constants then the function f defined by f = C1 f1 + C2 f2

is also a solution of L(y) = 0.

1 2 2 1 1 2 2 2 1 2 2( ) ( ) ( ) ( )L a c a a c a a cφ φ φ φ φ φ φ′′= + + + + +

   1 1 1 1 2 1 2 2 1 2 2 2( ) ( )c a a c a aφ φ φ φ φ φ′′ ′ ′′ ′= + + + + +

   1 1 2 2( ) ( )c L c Lφ φ= +
   0=

The function f which is zero for all x is also a solution called the trivial solution
of L(y) = 0.

The results of above two theorems allow us to solve all homogeneous linear second order
differential equations with constant coefficients.

Definition 1.1 :

An initial value problem L(y) = 0 is a problem of finding a solution f satisfying

0 0 0 0( ) and ( )x xφ α φ β′= =  where, x0 is some real number and a0, b0 are  given constants.

Theorem 1.1.3 : (Existence Theorem)
For any real x0 and constants a, b , there exists a solution f of the initial value problem

1 2 0 0( ) 0, ( ) , ( )L y y a y a y y x y xα β′′ ′ ′= + + = = ,   – .x∞ < < ∞

Proof : By theorem 1.1.1 there exist two solutions f1  and f2 that satisfy L(f1) = L(f2) = 0. From
theorem 1.1.2 we know that c1 f1 + c2 f2 is a solution of L(y) = 0. We show that there are

unique constants c1, c2 such that 1 1 2 2c cφ φ φ= +  satisfies 0 0( ) and  ( ) .x xφ α φ β′= =

0 1 1 0 2 2 0

0 1 1 0 2 2 0

( ) ( ) ( )

( ) ( ) ( )

x c x c x

x c x c x

φ φ φ α

φ φ φ β

= + =

′ ′′ = + =
Above system of equations will have a unique solution c1, c2 if the determinant

1 0 2 0
1 0 2 0 2 0 1 0

1 0 2 0

( ) ( )
( ) ( ) – ( ) ( ) 0.

( ) ( )

x x
x x x x

x x

φ φ
φ φ φ φ

φ φ
′ ′∆ = = ≠

′ ′

By theorem 1.1.1 (1),  1 2,
1 2( )  and ( )r x r xx e x eφ φ are two solution of 1 2( ) 0 for  L y r r= ≠

and

1 0 2 0 2 0 1 0

1 2 0

2 1

( )
2 1

–

( – ) 0.

r x r x r x r x

r r x

e r e e r e

r r e +

∆ =

= ≠

By theorem 1.1.1 (2), 1 1,
1 2( )  and ( )r x r xx e x xeφ φ= are solutions of L(y) = 0 and

1 0 1 0 1 0 1 0 1 0

1 0

0 1 0 1

2

–

0

 ∆ = + 

= ≠

r x r x r x r x r x

r x

e e x r e x e r e

e
(3)
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Thus, the determinant condition is satisfied in both the cases. Therefore, c1, c2 are  uniquely
determined. The function f  = c1 f 1 + c2 f 2 is a desired solution of the initial value problems.

Defination 1.2 :

A solution of a differential equation will be called a particular solution if it satisfies the
equation and does not contain arbitrary constants.

Theorem 1.1.4 :
Let, f  be any solution of

1 2( ) 0L y y a y a y′′ ′= + + =

on an interval I containing a point x0, Then for all x in I.

0 0– | – | | – |
0 0|| ( ) || || ( ) || || ( ) ||k x x k x xx e x x eφ φ φ≤ ≤

Where,
1

22 2
1 2( ) | ( ) | | ( ) | and  1 | | | | .φ φ φ ′= + = + + x x x k a a

Proof : Let,

 

2

2 2

( ) || ( ) ||

| ( ) | | ( ) |

( ) ( ) ( ) ( )

φ

φ φ
φ φ φ φ

=

′= +
′ ′= +

u x x

x x

x x x x

Then, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u x x x x x x x x xφ φ φ φ φ φ φ φ′ ′ ′ ′′ ′ ′ ′′= + + +
and | ( ) | 2 | ( ) | | ( ) | 2 | ( ) | | ( ) |u x x x x xφ φ φ φ′ ′ ′ ′′≤ +

as | ( ) | | ( ) |x xφ φ=

Since f  is a solution of L(y) = 0, 1 2( ) 0L a aφ φ φ φ′′ ′= + + =

i.e.  1 2( ) – ( ) – ( )x a x a xφ φ φ′′ ′=  and the above inequality becomes

  
[ ]

[ ]
1 2

2
2 1

| ( ) | 2| ( ) | | ( ) | 2 | ( ) | | || ( ) | | || ( ) |

2 1 | | | ( ) || ( ) | 2 | || ( ) |

φ φ φ φ φ

φ φ φ

′ ′ ′ ′≤ + +

′ ′≤ + +

u x x x x a x a x

a x x a x

But, 2 22| ( ) || ( ) | | ( ) | | ( ) |φ φ φ φ′ ′≤ +x x x x

Therefore,

   

( ) ( )
( )

2 2
1 2 2

2 2
1 2

| ( ) | 2 1 | | | | | ( ) | 2 1 | | | ( ) |

2 1 | | | | | ( ) | | ( ) |

2 ( )

u x a a x a x

a a x x

k u x

φ φ

φ φ

′ ′≤ + + + +
 ′≤ + + + 

≤
Thus, we get

–2 ( ) ( ) 2 ( )u x u x ku x′≤ ≤

( ) 2 ( )u x ku x′ ≤  is equivalent to ( ) – 2 ( ) 0′ ≤u x k u x since exponential functions are positive

on multiplying above inequality by e–2kx we get

(4)
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( ) ( )–2 –2( ) – 2 ( ) ( ) 0.kx kxe u x ku x e u x
′′ = ≤

Integrating above inequality between the limits x0 to x for x > x0 yields.

0–2–2
0( ) – ( ) 0kxkxe u x e u x ≤

   02 ( – )
0( ) ( )k x xu x e u x≤

Thus, 02 ( – )2 2
0|| ( ) || || ( ) ||k x xx e xφ φ≤

Similarly, for x > x0 the inequality –2k u (x) £ u¢ (x) implies

0–2 ( – )2 2
0|| ( ) || || ( ) ||k x xx e xφ φ≤

Therefore for x > x0 we get

0 0–2 ( – ) 2 ( – )2 2 2
0 0|| ( ) || || ( ) || || ( ) ||k x x k x xx e x e xφ φ φ≤ ≤ .......... (1.1.1)

For x < x0, the sign of above inequality will get changed

0 0–2 ( – ) 2 ( – )2 2 2
0 0|| ( ) || || ( ) || || ( ) ||k x x k x xx e x e xφ φ φ≥ ≥

This inequality can be written as

0 02 ( – ) –2 ( – )2 2 2
0 0 0|| ( ) || || ( ) || || ( ) ||k x x k x xe x x x eφ φ φ≤ ≤

since x < x0,   x0 – x > 0.

0 0–2 ( – ) 2 ( – )2 2 2
0 0|| ( ) || || ( ) || || ( ) ||k x x k x xe x x x eφ φ φ≤ ≤ .......... (1.1.2)

Equation (1.1.1) and (1.1.2) together can be put in the form

0 0–2 | – | 2 | – |2 2 2
0 0|| ( ) || || ( ) || || ( ) ||k x x k x xe x x x eφ φ φ≤ ≤

Since all the terms in above inequality are positive the square root of each term results
into the required inequality.

Theorem 1.1.5 (Uniqueness Theorem)
Let a, b be any two constants and let x0 be any real number. On any interval I containing

x0 there exists at most one solution f of the initial value problem

       1 2 0 0( ) 0, ( ) , ( )α β′′ ′ ′= + + = = =L y y a y a y y x y x

Proof :  Suppose f  and y are two solutions.

     
Let – . Since  ( ) ( ) 0,

( ) ( – ) ( ) – ( ) 0

L L

L L L L

θ φ ψ φ ψ
θ θ ψ θ ψ

= = =
= = =

       
0 0 0 0

0 0 0 0 0 0

Since ( ) ( ) and  ( ) ( ) ,

( ) ( ) – ( ) 0 and ( ) ( ) – ( ) 0

′ ′= = = =
′ ′= = = =

x x x x

x x x x x x

φ ψ α φ ψ β
θ φ ψ θ φ ψ

   Thus,  0 0( ) 0, ( ) 0 and  ( ) 0.θ θ θ ′= = =L x x

2 2 2
0 0 0|| ( ) || | ( ) | | ( ) | 0x x xθ θ θ ′= + = 

(5)
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By theorem (1.1.4) we see that

2 2|| ( ) || | ( ) | | ( ) | 0 for all  in  θ θ θ ′= + = x x x x I

This implies q (x) = 0 for all x in I.

But ( ) ( ) – ( ) 0 i.e.   ( ) ( )x x x x xθ θ ψ φ φ= = ≡ .

Theorem 1.1.6  :
Let f 1, f 2 be two solutions of  L(y) = 0 given by theorem 1.1.1. If c1, c2 are any two

constants the function f  = c1 f 1 + c2 f 2 is a solution of L(y) = 0 on – ¥ < x <¥.

Conversely, if f is any solution of L(y) = 0 on – ¥ < x <¥, then there are unique constants
C1 and C2 such that f  = C1 f 1+ C2 f 2.

Proof  :  First part of the theorem follows from theorem 1.1.2.

Conversely suppose f  is  any solution of L(y) = 0. Let 0 0( ) and  ( )φ α φ β′= =x x for

some constants a and b. In the proof of existence theorem 1.1.3 we showed that there is a

solution y of L(y) = 0 satisfying.

0 0( ) , ( )x xψ α ψ β′= =   of the form

1 1 2 2 1( ) ( ) ( )x c x c xψ φ φ= +  where c1 and c2 are uniquely determined by a and b . By
uniqueness theorem 1.1.5 φ ψ= , for all x.

Examples :

1. Find all solutions of the following equations.

(a)  y²– 4 y = 0 (b)  y²+ 2 i y¢  + y = 0   (c)  y²– 4y¢  + 5y = 0

Answer :

(a)  The characteristic polynomial is p(r) = r2 – 4.  r1 = 2  and  r2 = – 2 are two distinct roots of
p (r) = 0.

Therefore 2 –2
1 2( ) and ( )x xs e x eφ φ= =  are two solutions. For any constants c1 and

c2, c1e
2x + c2e

–2x is a solution. Thus the general solution is 2 –2
1 1 2( ) .x xx c e c eφ = +

(b)  The characteristic polynomial p(r) = r2 + 2ir  + 1

( )

21
( ) 0 –2 (2 ) – 4

2

1
–2 –8

2

– 2

–1 2

 = ⇒ = ±  

 = ± 

= ±

= ±

p r r i i

i

i i

i

(6)
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Thus ( ) ( )1 2–1 2 and –1– 2= + =r i r i  are two district roots of p(r) = 0.

Therefore 
( ) ( )–1 2 –1– 2

1 2( ) and ( )φ φ
+

= =
ix ix

x e x e are two solutions. Thus, for any

constants c1 and c2, 
( ) ( )–1 2 –1– 2

1 2( )
ix ix

x c e c eφ
+

= +  is a general solution.

(c)  The characteristic polynomial p(r) = r2 – 4r  + 5.   p(r) = 0 gives r1 = 2 + i and

r2 = 2 – i as two distinct roots.  f1(x) = e (2 + i) x and f2(x) = e (2 – i) x are two solutions of the

differential equation. For any constants c1 and c2, f (x) = c1e
(2 – i) x+ c2e

(2 + i) x is a general

solution. In particular for 1 2
1
2

c c= = we get,

–
2 2( ) cos .

2
φ

 += = 
 

i x i x
x xe e

x e e x and for

1 2
–1 1

and
2 2

= =c c
i i

 we get

–
2 2–

( ) sin
2

φ
 

= = 
 

i x i x
x xe e

x e e x
i

Thus, f (x) = A e2x cos x + B e2x sin x is a solution of the differential equation for any
constants A & B.

2. Find the solutions f of the following initial value problems.

(a)  – 6 0, (0) 1, (0) 0′′ ′ ′+ = = =φ φ φ φ φ

(b)  0, (0) 1, 0
2

 ′′ + = = =  
πφ φ φ φ

(c)  0,    is any constant,   (0) 0, ( ) 0′′ + = = =k kφ φ φ φ π

(d)  – 2 – 3 0, (0) 0, (0) 1′′ ′ ′= = =φ φ φ φ φ

Answer :

(a)  The characteristic polynomial  p(r) = r2 + r – 6.  r1 = 2  and  r2 = – 3 are distinct roots

2 –3
1 2( ) x xx c e c eφ = + is a general solution.

 1 2(0) 1 1c cφ = ⇒ + = .......... (1)

2 –3
1 2(0) 0 ( ) 2 – 3′ ′= ⇒ = x xx c e c eφ φ at x = 0, gives 1 2(0) 2 – 3 0φ′ = =c c .......... (2)

solving equation (1) and (2) for c1 and c2 we get c1 = 3/5 and c2 = +2/5.

Thus, the required solution is 
2 33 2

( )
5 5

φ = +
x xe e

x .

(7)
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(b)  The characteristic polynomial is  p (r) = r2 + 1.  r1 = i  and  r2 = – i are distinct roots

 1 2( ) cos sinx c x c xφ = + is a general solution.

     1 2 1(0) 1 cos 0 sin 1 gives  1c c cφ = ⇒ + = =

  1 22 2 2( ) 2 cos sin 2= ⇒ + =c cπ π πφ . gives c2 = 2.

Thus, f (x) = cos x + 2 sin x is the required solution.

(c)  The characteristic polynomial is  p (r) = r2 + k  since k is any constants, k can be positive,
negative or zero.

Case 1.    k > 0

Then   1 2and – ;r k i r k i= =  are distinct roots.

–
1 2( )∴ = +k ix k ixx c e c eφ  is a general solution

In general ( ) cos sinφ = +x A k x B k x is a solution.

 (0) 0 cos 0 sin 0 0 i.e. 0A B Aφ = ⇒ + = =
 ( ) 0 cos sin 0 i.e. 0A B Aφ π π π= ⇒ + = =

Thus, f (x) = B sin k x is a solution where B is any constant.

Case 2.    k = 0

2( ) 0 0p r r r= = ⇒ =  a repeated root.

0 0
1 2 1 2( )x c e c xe c c xφ∴ = + = +  is a solution

 1(0) 0 0= ⇒ =cφ

1 2 2( ) 0 0 0c c cφ π π= ⇒ + = ⇒ =

Therefore there is no nontrivial solution corresponding to  k = 0.

Case 3.    k < 0
for  k = 0,   p (r) = r2 + k has distinct roots

  1 2– & – – ( Since 0, – 0)r k r k k k= = < >

 – – –
1 2( ) =c ck x k xx e eφ +

    1 2(0) = c 0cφ + =

 – – –
1 2( ) 0π πφ π = + =k kc e c e

Simultaneous evaluation of above two equations give c1 = c2 = 0.

Thus, there is no non-trival solution corresponding to k < 0.

The only non-trivial solution for the given equation is ( ) sin .=x B k xφ

(d)  The characteristic polynomial p(r) = r2 – 2r – 3

r1 = 3,  r2 = 1 are two distinct roots.

(8)
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\ 3 –
1 2( ) x xx c e c eφ = +  is a general solution

1 2(0) 0 (0) 0c cφ φ= ⇒ = + =

    3 –
1 2( ) 3 –x xx c e c eφ′ =

     1 2(0) 1 (0) 1 3 –φ φ′ ′= ⇒ = = c c

Thus, c1 + c2 = 0 and 3c1 – c2 = 1 gives

1 2
1 1

and –
4 4

c c= =

Therefore 
3 –1 1

( ) –
4 4

x xx e eφ =  is the required solution.

EXERCISES

1. Fill in the blanks.

(i)  If r1, r2 are distinct roots of characteristic polynomial 2
1 2( )p r r a r a= + + then

1( ) ..............xφ =  and 2 ( ) ..............xφ =  are solutions of the differential equation

1 2 0y a y a y′′ ′+ + =

(ii) If 2
1( ) ( – )p r r r=  is a characteristic polynomial then 1 ( ) ..............xφ =  and

2 ( ) ..............xφ =  are two solutions of the differential equation 2
1 1– 2 0.′′ ′ + =y r y r y

(iii) Uniqueness theorem states that ....................

(iv) Solution of – 2 4 0y y y′′ ′ + =  are 1 2( ) ............. and ( ) .............x xφ φ= = .

(v) The general solution of – 3 2 0′′ ′ + =y y y  is.....

2. Find the gental solution of each of the following equation.

(i)  4 0y y′′ ′+ = (ii)  – 0y y′′ =    (iii) – 6 0y y y′′ ′+ =

(iv) 24 –12 0′′ ′+ =y ky k y (v)  2– 2 0y ay a y′′ ′ + =   (vi)  – 4 20 0y y y′′ ′ + =

3. Find the solution of the following initial value problems :

(i)  0, (1) 2, (1) –1′′ ′= = =y y y

(ii) 4 4 0, (0) 1, (0) 1y y y y y′′ ′ ′+ + = = =

(iii) – 2 5 0, (0) 2, (0) 4y y y y y′′ ′ ′+ = = =

(iv) ( ) ( )2 2– 4 20 0, 0, 1′′ ′ ′+ = = =y y y y yπ π

Answers :

1. (i) 1 2
1 2( ) , ( )φ φ= =r x r xx e x e (ii)  1 1

1 2( ) , ( )φ φ= =r x r xx e x xe

(iii) theorem 1.1.5 (iv)  2 2
1 2( ) , ( )x xx e x xeφ φ= =

(v) 2
1 2

x xc e c e+

(9)
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2. (i) –4
1 2

xc c e+ (ii)  –
1 2

x xc e c e+

(iii) 2 –3
1 2

x xc e c e+ (iv)  –6 2
1 2

kx kxc e c e+

(v) 1 2( )+ axc c x e (vi)  2
1 2( cos 4 sin 4 )+xe c x c x

3. (i) 3 – x (ii)  (1 + 3x) e–2x

(iii) (2cos2 sin 2 )xe x x+ (iv) 
2 –1

sin 4
4

xe xπ

Unit 2 :  Linear Dependence and Independence

Every solution of the equation L (y) = 0 is a linear combination of two solutions obtained
in theorem 1.1.1. Therefore these two solutions span the solution space of the differential equation
L(y) = 0.

Defination 1.3 : A set of n real or complex functions f1, f2,  f3,......, fn defined on an interval (a,

b) is said to be linearly independent when 1 1 2 2 3 3( ) ( ) ( ) ( ) 0n nc f x c f x c f x c f x+ + + ⋅⋅ ⋅+ =

for every x in (a, b) implies 1 2 3 0nc c c c= = = ⋅⋅⋅ = = .

Defination 1.4 : Given the functions 1, 2, 3, , nf f f f⋅ ⋅⋅  if constants 1 2 3, , , , nc c c c⋅⋅ ⋅  not all zero

exist such 1 1 2 2 3 3( ) ( ) ( ) ( ) 0n nc f x c f x c f x c f x+ + + ⋅⋅ ⋅+ =  for every x in (a, b), then these

functions are linearly dependent.

A set which is not linearly independent is said to be linearly dependent.

There are two notions of linear independence, according as we allow the coefficients
ck, k = 1, 2, 3, ...., n to assume only real values or also complex values. In the first case, one says
that the functions are linearly independent over the field of reals; in the second case, that they
are linearly independent over the complex field.

Lemma 1.2.1 : A set of real valued functions on an interval (a, b) is linearly independent over
the complex field if and only if it is linearly independent over the real field.

Proof : If the set of real valued functions on an interval (a, b) is linearly independent over
the complex field then it is linearly independent over the field of reals.

Conversely suppose the set is linearly independent over the real field. Therefore for

1 1 2 2 3 3
1

, ( ) ( ) ( ) ( ) ( ) 0α α α α α α
=

∈ ∑ = + + + ⋅⋅⋅ + =
n

j j j n n
j

R f x f x f x f x f x  for all x in (a, b)

implies aj = 0 for all  j = 1, 2, 3...., n. Let 
1

( ) 0
n

j j
j

c f x
=
∑ =  for all x in (a, b) and for some

, 1,2,3 , .∈ = ⋅⋅⋅jc C j n  Since the function fj are real valued and ( ) 0,∑ =j jc f x

*
( ) 0 ∑ = j jc f x . implies *

1
( ) 0

n

j j
j

c f x
=
∑ = . Thus, 

*

1

–
( ) 0

=

 
 ∑ =
  

n j j
j

j

c c
f x

i
. But ( )*– /j jc c i

are all real and the set is linearly independent over the real field therefore * .=j jc c  But then cj’s

(10)
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are all real therefore 
1

( ) 0
n

j j
j

c f x
=
∑ =  implies cj = 0 for j = 1, 2,....n.

A set of functions which is linearly dependent on a given domain may become linearly
independent when the functions are extended to a larger domain. However, a linearly independent
set of functions clearly remain linearly independent on the restricted domain.

Illustration  1 :  The functions f1 and f2 define by f1(x) = Cos x and f2(x) = Sin x are linearly
independet on the real line IR and therefore are linearly independent on (0, 2 p).

Illustration  2 :  The functions f1 and f2 define by f1(x) = x,  f2(x) = | x | are linearly indepent on
the interval (–1, 1) but is not linearly independent on the interval (0, 1) as on the interval
(0, 1),  f1(x) = f2(x).

Theorem 1.2.1 :

Let a1, a2 be constants and consider the equation 1 2( ) 0.′′ ′= + + =L y y a y a y  The two

solutions  of L (y) = 0 given in the theorem 1.1.1 are linearly independent on any interval I.

Proof : Let r1, r2 be the roots of characteristic polynomial p(r) = r2 + a1 r + a2.

Case 1.

If r1 ¹ r2, then 1
1( ) r xx eφ =  and 2

2( ) r xx eφ =  are two solutions of the equation L(y) = 0 on

an interval I.

Suppose 1 2,
1 2 0r x r xc e c e+ =  for all x in I.

Then 2 1( – )
1 2 0r r xc c e+ =  for all x in I.

Differentiation of above equation with respect to x gives 2 1( – )
2 2 1( – ) 0r r xc r r e = for all x in

I.

Since, r2 ¹ r1 and exponential function in non-zero, c2 is zero. But if c2 is zero then

2 1( – )
1 2 0r r xc c e+ =  implies c1 is zero. Thus, 1 2

1 2 0r x r xc e c e+ =  implies c1 = c2 = 0.

Therefore 1 2
1 2( ) and ( )r x r xx e x eφ φ= = are linearly independent.

Case 2.

If r1 = r2, then 1
1( ) r xx eφ =  and 1

2( ) = r xx xeφ are two solutions of the equation L(y) = 0 on

an interval I.

Suppose 1 2
1 2 0e x r xc e c xe+ =  then 1 2 0c c x+ =  for all x in I. Therefore 1 2 0c c= = . Thus,

f 1 and f 2 are linearly independent

Thus, in both cases the two solutions f 1 and f 2 of L(y) = 0 are linearly independent.

Defination 1.5 : Assume that each of the functions 1 2 3( ), ( ), ( ), , ( )nf x f x f x f x⋅⋅⋅ are

differentiable atleast (n – 1) times in the interval (a, b). Then the determinant

(11)
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1 2 3

1 2 3

1 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

n

n

n n n n
n

f x f x f x f x

f x f x f x f x

f x f x f x f x

f x f x f x f x

′ ′ ′ ′

′′ ′′ ′′ ′′

L

L

L

M M M M

L

denoted by 1, 2, 3,W( ...., ) ( )nf f f f x  is called the wronskian of the n functions 1, 2, 3,...., nf f f f .

Theorem 1.2.2 :
Two solutions f1, f2 of L (y) = 0 are linearly independent on an interval I if and only if

1, 2W( ) ( ) 0φ φ ≠x for all x in I.

Proof : Suppose 1 2W( , ) (x) 0≠φ φ  for all x in I

Let c1, c2 be constants such that

c1 f1 (x) + c2 f2 (x) = 0  for all x in I. Then

c1 f1¢ (x) + c2 f2¢ (x) = 0  for all x in I.

Above two equations can be written as

1 2 1

21 2

( ) ( ) 0

0( ) ( )

x x c

cx x

φ φ

φ φ

     
=     ′ ′     

Since, 1 2W( , ) ( ) 0xφ φ ≠  for all x in I, the coefficient matrix is invertible. On premultiplying

the inverse of the coefficient matrix results in c1 = c2 = 0. This proves that f1 and f2 are linearly
independent on I.

Conversely, assume that f1, f2 are linearly independent on I. Suppose that there is a point

x0 in I such that 1 1 0W( , ) ( ) 0.xφ φ =  Then  the system of equations

1 0 2 0 1

21 0 2 0

( ) ( ) 0

0( ) ( )

x x c

cx x

φ φ

φ φ

     
=     ′ ′     

has a solution c1, c2 where at least one of these numbers is not zero. Let c1, c2, be such a solution

and consider the function 1 1 2 2( ) ( ) ( ).x c x c xψ φ φ= +  Now 0 0( ) 0 and  ( ) 0, ( ) 0.L x xψ ψ ψ ′= = =

Therefore 
1

2 2 2
0 0 0|| ( ) || | ( ) | | ( ) | 0.ψ ψ ψ ′= + = x x x  By theorem 1.1.4 || ( ) || 0.ψ =x  But

2 2|| ( ) || | ( ) | | ( ) | 0.ψ ψ ψ ′= + = x x x  Therefore ( ) 0ψ =x  for all x in I and thus

1 1 2 2( ) ( ) 0c x c xφ φ+ =  for all x in I. But then f1 and f2 are linearly dependent. Thus, the

supposition 1 2 0W( , ) ( ) 0xφ φ =  must be false and therefore 1 2W( , ) ( ) 0xφ φ ≠  for all x in I.

In the next theorem we will prove that we need to compute 1 2W( , )φ φ at only one point to

test the linear independence of the solutions f1 and f2 .

(12)
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Theorem 1.2.3 :
Let f1, f2  be two solution of L(y) = 0 on an interval I and let x0 be any point in I. Then two

solutions f1 and f2  are linearly independent on I if and only if 1 2 0W( , ) ( ) 0.xφ φ ≠

Proof :   If f1 and f2 are linearly independent on I then by theorem 1.2.2, 1 2W( , ) ( ) 0xφ φ ≠  for

all x in I. In particular 1 2 0W( , ) ( ) 0xφ φ ≠  conversely, suppose 1 2 0W( , ) ( ) 0xφ φ ≠  and

suppose c1, c2 are constants such that 1 1 2 2( ) ( ) 0c x c xφ φ+ =  for all x in I. Then

1 1 0 2 2 0( ) ( ) 0c x c xφ φ+ =  and 1 1 0 2 2 0( ) ( ) 0.c x c xφ φ′ ′+ =

i.e.
1 0 2 0 1

21 0 2 0

( ) ( ) 0

0( ) ( )

x x c

cx x

φ φ

φ φ

     
=     ′ ′     

But since the determinant of the coefficient is 1 2 0W( , ) ( ) 0xφ φ ≠  we obtain c1 = c2 = 0.

Thus f1, f2 are linearly independent on I.

In the next theorem we show that the knowledge of two linearly independent solutions of
L(y) = 0 is sufficient to generate all solutions of L(y) = 0.

Theorem 1.2.4 :
Let f1, f2  be any two linearly independent solutions of L(y) = 0 on an interval I. Every

solution f of L(y) = 0 can be written uniquely as

1 1 2 2c cφ φ φ= +  where c1, c2 are constants.

Proof :  Let x0 be a point in I. Let 0 0( ) , ( ) .′= =x xφ α φ β  Since f1, f2 are linearly

independent on I we know that 1 2 0W ( , )( ) 0φ φ ≠x . Consider the two equations.

1 0 2 0 1

21 0 2 0

( ) ( )

( ) ( )

x x c

cx x

φ φ α
βφ φ

     
=     ′ ′     

Since 1 2 0W( , ) ( ) 0,xφ φ ≠  above system of equations has a unique solution c1, c2 . For

this choice of c1, c2 the function 1 1 2 2( ) ( ) ( )x c x c xψ φ φ= + satisfies 0 1 1 0 2 2 0( ) ( ) ( )x c x c xψ φ φ= +

0( )xα φ= = i.e. 0 0( ) ( )x xψ φ= similarly 0 0( ) ( ) and  ( ) 0x x Lψ φ ψ′ ′= = . From the uniqueness

theorem 1.1.5 it follows that ψ φ= on I i.e. 1 1 1 2.c cφ φ φ= +

Examples :

Q1. Show that the functions ex, e2x, e3x are linearly independent.

Ans. :

Method 1 :

Let 2 3
1 2 3 0x x xc e c e c e+ + =

then  2
1 2 3 0x xc c e c e+ + = .......... (1)

(13)
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Differentiate above equation (1) with respect to x then c2e
x + 2 c3 e

2x = 0 implies

2 32 0xc c e+ = .......... (2)

By differentiating equation (2) with respect to x we get 32 0xc e = therefore c3 = 0.

But then by equation (2) c2 = 0 and by equation (1) we get c1 = 0. Thus c1 = c2 = c3 = 0.

Therefore the functions ex, e2x, e3x are linearly independent.

Method 2 :

Let   2 3
1 2 3( ) , ( ) , ( )x x xx e x e x eφ φ φ= = =

2 3

2 3 2 3
1 2 3

2 3

1 1 1

W( , , ) 2 3 1 2 3

1 4 94 9

x

x x x

x x x x x

x x x

e e e

e e e e e e

e e e

φ φ φ = =

  = e6x [1(18–12) – 1 (9–3) + 1 (4–2)]

  = 2 e6x ¹  0.

by theorem 1.2.2 f1, f2, f3 are linearly independent.

Q2. : The functions f1, f2 are defined on – ¥ < x < ¥ . Determine whether they are linearly
dependent or independent there.

(i)  1 2( ) , ( ) ,rxx x x eφ φ= = r is a complex constant

(ii) 2 2
1 2( ) , ( ) 5x x x xφ φ= =

(iii) 1 2( ) , ( ) | |x x x xφ φ= =

(iv) 1 2( ) cos , ( ) sinx x x xφ φ= =

Ans. (i) :

Method 1 :

Let 1 1 2 2( ) ( ) 0c x c xφ φ+ =

i.e. 1 2 0+ =rxc x c e .......... (1)

if 1 20, 0 for all  implies= + = ∈r c x c x R

c1 = 0  and c2 = 0. \  f1, f2 are linearly independent if r ¹ 0,   differentiate

equation (1) with respect to x then 1 2 0rxc rc e+ =

Again differentiate above equation with respect to x then 2
2 0.rxr c e = But 0r ≠ and 0≠rxe

therefore c2 = 0 and from equation (1) we get c1 = 0. Thus f1, f2 are linearly independent.

Method 2 :

1 2
1

W( , )
11

rx
rx

rx

x e x
e

rre
φ φ = =

(14)
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  ( –1) 0 for  rxe r x x IR= ≠ ∈
\  f1, f2 are linearly independent

Method 3 :

1 2
0 1

W( , ) (0) 1 0
1 r

φ φ = = ≠  therefore by theorem 1.2.3 f1, f2 are linearly

independent.

Ans. (ii) :

Let 1 1 2 2 0c cφ φ+ =

i.e. 2 2
1 25 0+ =c x c x

if 2
1 2( 5 ) 0+ =c c x

If we choose c1 = – 5c2 ¹ 0 then the linear combination 1 1 2 2 0+ =c cφ φ  therefore by

definition 1.4, f1, f2 are linearly dependent.

Ans. (iii) :

For 1 1 2 2 1 20 ( ) as | |x c c c c x x xφ φ> + = + =

and for 1 1 2 2 1 20 ( – ) as | | –φ φ< + = =x c c c c x x x

Thus, 1 1 2 2 0 forc c x Rφ φ+ = ∈

1 2 1 2( ) 0 and  ( – ) 0c c x c c x⇒ + = =

for every x R∈  above two equations hold true if and only if c1 = c2 = 0. Thus f1, f2 defined  by

1 2( ) and ( ) | |x x x xφ φ= =  are linearly independent.

Ans. (iv) :

  1 2( ) cos ; ( ) sinx x x xφ φ= =

1 2
cos sin

W( , ) ( ) 1
– sin cos

x x
x

x x
φ φ = =

1 2 1 2W ( , ) ( ) 1 0, ,xφ φ φ φ= ≠Q  are linearly independent.

Q3. :  Let fn be any function satisfying the boundary value problem

2 0,y n y′′ + =  (0) (2 ),y y π=  (0) (2 ),y y π′ ′= 0,1,2,3,.....n =

show that 
2

0

( ) ( ) 0 if  .n mx x dx n m
π

φ φ = ≠∫

Ans. :

The characteristic polynomial 2 2( )p r r n= +  has roots 1 2in, –inr r= = and therefore the

(15)
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general solution ( ) cos sinn n nx c nx d nxφ = +

From the given boundary conditions.

(0) and   (2 ) (0) (2 )n n n n n nc cφ φ π φ φ π= = ⇒ =

and (0) and   (2 ) (0) (2 )n n n n n nnd ndφ φ π φ φ π′ ′ ′ ′= = ⇒ =

Thus, ( ) cos sinn n nx c nx d nxφ = +  satisfies the given boundary conditions.

The solution fn satisfies 2( ) ( ) 0φ φ′′ + =n nx n x  where as 2( ) ( ) 0′′ + =m mx m xφ φ  holds.

Thus, 2 2( – ) ( ) ( ) ( ) ( ) – ( ) ( )n m n m n mn m x x x x x xφ φ φ φ φ φ′′ ′′=

   ( ) ( ) – ( ) ( )n m n mx x x xφ φ φ φ ′ ′ ′=  
Integrating above equation from 0 to 2p
We get,

( )
2 2

2 2

0 0

– ( ) ( ) ( ) ( ) – ( ) ( )
π π

φ φ φ φ φ φ
′ ′ ′=  ∫ ∫n m n m n mn m x x dx x x x x dx

      
2

0
( ) ( ) – ( ) ( )n m n mx x x x

π
φ φ φ φ ′ ′=  

But , ,(0) (2 ) ; (0) (2 )n n n n n n n nc c nd ndφ φ π φ φ π′ ′= = = =

Similarly, ,(0) (2 ) ; (0) (2 )′ ′= = = =m m m m m m mc c mdφ φ π φ φ π

Thus, ( ) [ ] [ ]
2

2 2

0

– ( ) ( ) – – –n m n m n m n m n mn m x x dx nd c c md nd c c md
π

φ φ =∫

  = 0

Since,
2

0

, ( ) ( ) 0.n mn m x x dx
π

φ φ≠ =∫

Q4. (a) :  Show that fn (x) = Sin nx satisfies the boundary value problem y²  + n2y = 0,
y ( 0 ) = 0 ,  y ( p ) =  0, n = 1, 2.....

   (b) : Using (a) show that

0

sin sin 0 if  
π

= ≠∫ nx mx dx n m

Ans. 4(a) :

Method 1 :

The characteristic polynomial 2 2( )p r r n= + has roots r = ±  in  and therefore the general

solution

(16)
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( ) cos sinn n nx c nx d nxφ = +

 (0) (0) 0 (0) 0n n ny cφ φ= = ⇒ = =

 ( ) ( ) 0 ( ) (–1) 0.n
n n ny cπ φ π φ π= = ⇒ = =

Thus, ( ) sinn x nxφ =  is a solution for n = 1, 2, 3,....

Method 2 :

( ) sin , ( ) cosn nx nx x n nxφ φ ′= =

   2( ) – sinn x n nxφ ′′ =

Thus,    2 2 2( ) ( ) – sin sin 0φ φ′′ + = + =n nx n x n nx n nx .

Since, ( ) sinn x nxφ =  satisfies 2( ) ( ) 0n nx n xφ φ′′ + =

and (0) 0, ( ) 0φ φ π= =n n

( ) sinn x nxφ =  is a solution of 2 0, (0) ( ) 0.y n y y yπ′′+ = = =

Ans. 4(b) :

Working on the similar line as in example 2 we get,

2 2 2 2

0 0

( – ) ( ) ( ) ( – ) sin sin
π π

φ φ =∫ ∫n mn m x x dx n m nx mx dx

[ ]0sin (– cos ) – sin (– cos )nx m mx mx n nxπ=

 = 0  (as sin 0 = sin np  = 0)

Since
0

, ( ) ( ) 0.n mn m x x dx
π

φ φ≠ =∫

Q5 :  Suppose f1, f2 are linearly independent solutions of the constant coefficient equation

1 2 0,′′ ′+ + =y a y a y  Let W (f1, f2 ) be abbreviated to W. Show that W is constant if and

only if a1 = 0.

Ans. :

W = ( )1 2
1 2 1 2 2 1

1 2

W( , ) –
φ φ

φ φ φ φ φ φ
φ φ

′ ′= =
′ ′

Then  ( )1 2 2 1W –φ φ φ φ ′′ ′′ =

  1 2 1 2 2 1 2 1– –φ φ φ φ φ φ φ φ′′ ′ ′ ′ ′ ′′= +

  1 2 2 1–φ φ φ φ′′ ′′=

But f1 and f2  are solutions of 1 2 0.′′ ′+ + =y a y a y

(17)
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Therefore 1 1 1 2 1 1 1 1 2 10 – –φ φ φ φ φ φ′′ ′ ′′ ′+ + = ⇒ =a a a a

Similarly, 2 1 2 2 2– –a aφ φ φ′′ ′=

Thus, 1 1 2 2 2 2 1 1 2 1W (– – ) – (– – )a a a aφ φ φ φ φ φ′ ′′ =

 1 1 2 2 1– ( – )′ ′= a φ φ φ φ

 1– Wa=

Thus, 1W 0 iff    0′ = =a

Therefore  W = constant if and only if a1 = 0

Q6 :  Let f1, f2  be two different function on an interval I, which are not necessarily
solutions of an equation L(y) = 0. Prove the following

      (a) If f1, f2 are linearly dependent on I then W(f1, f2 ) (x) = 0 for all x in I

      (b) If W(f1, f2 ) (x0) ¹ 0 for some x0 in I, then f1, f2 are linearly independent on I.

      (c) W(f1, f2 )(x) = 0 for all x in I does not imply that f1, f2 are linearly dependent on I.

(d) W(f1, f2 ) (x) = 0 for all x in I and  f2 (x) ¹ 0 on I, imply that are f1, f2 linearly
dependent.

Ans. 6(a) :

Suppose f1, f2 are linearly dependent on I then 1 1 2 2( ) ( ) 0c x c xφ φ+ = for some non-zero

c1 and c2.

i.e. 2
1 2

1

( ) – ( ).
c

x x
c

φ φ=

1 2
1 2 1 2 2 1

1 2

W( , ) ( ) ( ) ( ) – ( ) ( )x x x x x
φ φ

φ φ φ φ φ φ
φ φ

′ ′= =
′ ′

    
2 2

1 2 2 2 2 2
1 1

W( , ) ( ) – ( ) ( ) – ( ) – ( ) 0
c c

x x x x x
c c

φ φ φ φ φ φ
   ′ ′∴ = =   
   

1 2W( , ) ( ) 0 for all I.x xφ φ∴ = ∈

Ans. 6(b) :

Suppose 1 1 2 2( ) ( ) 0c x c xφ φ+ =  then

1 1 2 2( ) ( ) 0c x c xφ φ′ ′+ =

Thus we have a system of equation

1 2 1

21 2

( ) ( ) 0

0( ) ( )

x x c

cx x

φ φ

φ φ

     
=     ′ ′     

(18)
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Therefore at x = x0

1 0 2 0 1

21 0 2 0

( ) ( ) 0

0( ) ( )

x x c

cx x

φ φ

φ φ

     
=     ′ ′     

Thus, c1 = c2 = 0 if and only if the coefficient matrix is invertible i.e. the determinant of
coefficient matrix is non-zero

But
1 0 2 0

1 2 0
1 0 2 0

( ) ( )
W( , ) ( ) 0

( ) ( )

x x
x

x x

φ φ
φ φ

φ φ

 
= ≠ ′ ′  

Since, 1 2 0 1 2W( , ) ( ) 0 0x c cφ φ ≠ ⇒ = =

 1 1 2 2 1 2( ) ( ) 0 0.φ φ∴ + = ⇒ = =c x c x c c

Hence f1 and f2 are linearly independent on I.

Ans. 6(c) :

Define 2
1 2( ) , ( ) | |x x x x xφ φ= =

for   2 2
1 20, | | ( ) , ( )x x x x x x xφ φ> = ∴ = =

2 2

1 2W( , ) 0.
2 2

x x

x x
φ φ∴ = =

for 1 2 1 20, ( ) ( ) 0 W( , ) 0x x xφ φ φ φ= = = ∴ =

for 2 2
1 20, | | – ( ) and ( ) –x x x x x x xφ φ< = ⇒ = =

2 2

1 2
–

W( , ) 0.
2 –2

x x

x x
φ φ∴ = =

Thus 1 2W( , ) ( ) 0 for –φ φ = ∞ < < ∞x x

Let 1 1 2 2( ) ( ) 0c x c xφ φ+ =

for 2
1 1 2 2 1 20, ( ) ( ) ( ) 0.x c x c x c c xφ φ> + = + =

1 2 0c c⇒ + = .......... (i)

for 2 2
1 1 2 2 1 20, ( ) ( ) – 0.x c x c x c x c xφ φ< + = =

1 2– 0c c⇒ = .......... (ii)

But 1 2 1 2 1 20 and – 0 0c c c c c c+ = = ⇒ = =

Thus, 1 1 2 2 1 20 0c c c cφ φ+ = ⇒ = =

Therefore f1, f2 are linearly independent.

(19)
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Ans. 6(d) :

1 2
1 2 1 2

1 2

( ) ( )
W( , ) ( ) 0 W( , ) ( ) 0

( ) ( )

φ φ
φ φ φ φ

φ φ
= ⇒ = =

′ ′

x x
x x

x x

   1 2 2 1( ) ( ) – ( ) ( ) 0x x x xφ φ φ φ′ ′⇒ =

   2 1 1 2( ) ( ) – ( ) ( ) 0x x x xφ φ φ φ′ ′⇒ =

Since  2( ) 0 Ix xφ ≠ ∀ ∈

    
2 1 1 2

2
2

( ) ( ) – ( ) ( )
0

( )

x x x x

x

φ φ φ φ
φ

′ ′
∴ =

   1 1

2 2

0 constant  = (say)k
φ φ
φ φ

′ 
⇒ = ⇒ = 

 

Therefore 1 2 1 2( ) ( ) and hence ,φ φ φ φ=x k x  are linearly dependent.

Q7 :  If f1, f2  are two solution of L(y) = 0 on an interval I containing a point x0, then

1 0
1 2 1 2 0

– ( – )W( , )( ) W( , )( ).a x xx e xφ φ φ φ=

Ans. :

Since f1, f2 are solution of L(y) = 0,

1 1 1 2 1 0a aφ φ φ′′ ′+ + =

2 1 2 2 2 0a aφ φ φ′′ ′+ + =

On multiplying the first equation by –f2, second equation by f1 and adding we obtain

1 2 2 1 1 1 2 2 1 2 1 2 2 1– ( – ) ( – ) 0φ φ φ φ φ φ φ φ φ φ φ φ′′ ′′ ′ ′+ + =a a

1 2 2 1 1 1 2 2 1( – ) ( – ) 0aφ φ φ φ φ φ φ φ′′ ′′ ′ ′+ = .......... (i)

Let
1 2

1 2
1 2

( ) ( )
W = W( , ) ( )

( ) ( )

x x
x

x x

φ φ
φ φ

φ φ
=

′ ′

Then 1 2 2 1W = ( ) ( ) – ( ) ( )x x x xφ φ φ φ′ ′

and      1 2 1 2 2 1 2 1W  = ( ) ( ) ( ) ( ) – ( ) ( ) – ( ) ( )φ φ φ φ φ φ φ φ′′ ′ ′ ′ ′ ′′ +x x x x x x x x

     1 2 2 1( ) ( ) – ( ) ( )x x x xφ φ φ φ′′ ′′=
Thus, equation (i) becomes

1W  + W = 0.a′

Thus W satisfies the first order differential equation

1W  + W = 0a′

(20)
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Hence,      1–W( ) = ⋅ a xx c e  where c is constant of integration.  At  x = x0 we get

   1 0 1 0– ,
0 0W( ) i.e. W( )a x a xx c e c e x= ⋅ =

Thus, 1 0 1–
0W( ) W( )a x a xx e x e=

1 0– ( – )
0W( )a x xe x=

Therefore 1 0– ( – )
1, 2 1 2 0W( ) ( ) W( , ) ( )a x xx e xφ φ φ φ=

EXERCISES

1. The functions f1, f2 are defined on –∞ < < ∞x

Determine whether they are linearly dependent or independent there.

(i) 1 2( ) cos , ( ) sin= =x x x xφ φ

(ii) 1 2( ) sin , ( )= = ixx x x eφ φ

(iii) 1 2( ) sin , ( ) cos= =x nx x nxφ φ

(iv) 1 2( ) 1, ( ) cos= =x x xφ φ

(v) 2 2
1 2( ) sin , ( ) cos= =x x x xφ φ

(vi)  2 2
1 2 3( ) 1, ( ) sin , ( ) cos= = =x x x x xφ φ φ

(vii) –
1 2( ) cos , ( )= = +i x i xx x x e eφ φ

2. State whether the following statements are true or false.

(a) If f1, f2 are linearly independent functions on an interval I, they are linearly independent
on any interval J contained inside I.

(b) If f1, f2 are linearly dependent on an internal I, they are linearly dependent on any internal
J contained inside I.

(c) If f1, f2 are linearly independent solutions of L (y) = 0 on an internal I, they are linearly
independent an any internal J contained inside I.

(d) If f1, f2 are linearly dependent solutions of L (y) = 0 on an interval I, they are linearly
dependent on any internal J contained inside I.

Ans. :  1.

(i) independent (ii)  independent (iii) independent

(iv) independent (v) independent (vi) dependent

(vii) dependent.

Ans. :  2.

(a) false (b) true    (c) true   (d) true

S
(21)
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Unit 3 :  The Homogeneous Equation of Order n

Everything we have done for the second order equation can be carried over to the case of
the equation of order n. Here, we are concerned with the equation

( ) ( –1) ( –2)
1 2( ) 0,= + + + ⋅⋅⋅ + =n n n

nL y y a y a y a y

where,  1 1 3, , ,......, na a a a  are constants.

Theorem 1.3.1 :
Let r 1, r2, r 3,......., rs be the distinct roots of the characteristic polynomial

–1 –2
1 2( ) = + + + ⋅⋅ ⋅+n n n

np r r a r a r a  and suppose r i has multiplicity 1 2 3( + + + ⋅⋅⋅im m m m

).+ =sm n  Then n functions

1 1 1 1 2 2 2 2–1 –1, ,...., ; , ,...., ;.....;r x r x m r x r x r x m r xe xe x e e xe x e

, –12, , ,....,s s s s sr x r x r x m r xe xe x e x e

are solutions of ( ) ( –1) ( –2)
1 2( ) 0= + + + ⋅⋅⋅ + =n n n

nL y y a y a y a y

Proof :  Suppose ri is a root of p(r) of multiplicity mi. Then ( ) ( – ) ( )= im
ip r r r q r where q is a

polynomial of degree n – mi. On differentiating p(r), (mi – 1) times we get,

–1( ) ( – ) ( ) ( – ) ( )′ ′= +i im m
i i ip r r r q r m r r q r

    [ ]–1( – ) ( )( – ) ( )im
i i ir r q r r r m q r′= +

    –1 –2( ) ( – ) ( ) 2 ( – ) ( ) ( –1) ( – ) ( )i i im m m
i i i i i ip r r r q r m r r q r m m r r q r′′ ′′ ′= + +

    
–2 2( – ) ( – ) ( ) 2 ( – ) ( ) ( –1) ( ) ′′ ′= + + 

im
i i i i i ir r r r q r m r r q r m m q r

    [ ]–2( – ) Polynomial of order –im
i ir r n m=

and so on

  [ ]–( –1)( –1)( ) ( – ) Polynomial of order –= ii i
m mm

i ip r r r n m

    [ ]( – ) Polynomial of order –i ir r n m=

Therefore, ( –1)( ) ( ) ( ) ( ) 0.im
i i i ip r p r p r p r′ ′′= = = ⋅⋅ ⋅ = =

Let erx be a solution of L(y) = 0. We see that ( ) ( )rx rxL e p r e=  where –1
1( ) = +n np r r a r

–2
2 .

n
na r a+ + ⋅⋅⋅ +

Therefore ( ) ( ) 0.i ir x r x
iL e p r e= =  Thus ir xe  is a solution of L(y) = 0.

If we differentiate ( ) ( )rx rxL e p r e k= times with respect to r we obtain

  ( )( )
k k

rx rx k rx
k k

L e L e L x e
r r

 ∂ ∂= = 
∂ ∂ 

(22)
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( ) ( –1) ( –2) 2( –1)
( ) ( ) ( ) ( )

2!
 = + + + ⋅⋅⋅ +  

k k k k rxk k
p r kp r x p r x p r x e

Thus for r  = r i and k = 0, 1, 2,.....mi – 1 we get ( ) 0.=ir xkL x e  Therefore

, 0,1,2,...... –1=ir xk
ix e k m , are solutions of L(y) = 0. This is true for every characteristic root ri

with multiplicity mi. i.e. , 0,1,2,.... –1, 1,2,3,....= =ir xk
ix e k m i sare solutions of L(y) = 0 and

the result follows.

Theorem 1.3.2 :

The n solutions of L(y) = 0 given in theorem 1.3.1 are linearly independent on any
interval I.

Proof :  We prove that functions given in theorem 1.3.1 satisfy the condition given in defination
1.3.

Suppose we have n constants , 1,2.... , 0,..... –1= =ij ic i s j m

Such that

( )1 1 1 1 1
1

–12
10 11 12 1( –1)....+ + + +r x r x r x m r x

mc e c xe c x e c x e

   +( )2 2 2 2 2
2

–12
20 21 22 2( –1)....+ + + +r x r x r x m r x

mc e c xe c x e c x e

  ( )0 1 2

–12
( –1).... .... 0.+ + + + + + =s s s s s

s

r x r x r x m r x
s s s s mc e c xe c x e c x e

Define –12
0 1 2 ( –1)( ) ....= + + + + i

i

m
i i i i i mp x c c x c x c x

Then 1 2 2
1 2 3( ) ( ) ( ) ..... ( ) 0.+ + + + =sr xr x r x r x

sp x e p x e p x e p x e

Assume that not all constants cij are zero. Then there will be at least one of the polynomials
pi which is not identically zero on I. Suppose ps(x) is not identically zero on I. On dividing above

equation by 1r xe  we get

3 1 12 1 ( – ) ( – )( – )
1 2 3( ) ( ) ( ) .... ( ) 0.sr r x r r xr r x

sp x p x e p x e p x e+ + + + =

Upon differentiating above equation sufficiently many (at most mi) times, we obtain the
expression of the form

3 1 12 1 ( – ) ( – )( – )
2 3( ) ( ) .... ( ) 0+ + + =sr r x r r xr r x

sQ x e Q x e Q x e

i.e. 3 2 2( – ) ( – )
2 3( ) ( ) .... ( ) 0+ + + =sr r x r r x

sQ x Q x e Q x e
where the Qi’s are polynomials, degree of Qi is equal to degree of Pi and Qs does not vanish
identically.

Continuing this process we finally arrive at a situation where,

( ) 0,sr x
sR x e =

on I and Rs is a polynomial, degree of Rs is equal to degree of Ps, which does not vanish

identically on I. But ( ) 0sr x
sR x e = implies ( ) 0sR x =  is a contradiction. Therefore our supposition

that ( )sP x  is not identically zero is not true. Thus ( ) 0sP x =  for all x in I.

(23)
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Thus all constants 0ijC =  proving that the n solutions given in theorem 3.1 are linearly
independent on an interval I.

* Initial value problem for nth order equations.

The problem of finding a solution f of

( ) ( –1) ( –2)
1 2( ) .... 0= + + + + =n n n

nL y y a y a y a y satisfying

–1
0 1 0 2( ) , ( ) ,......., ( )φ α φ α φ α′= = =n

nx x x  where 1 2 3, , ,......., na a a a  and

1 2 3, , ,......., nα α α α  are constants is denoted by

( –1)
0 1 0 2 0( ) 0, ( ) , ( ) ,....., ( )′= = = =n

nL y y x y x y xα α α

and is called an initial value problem.

Theorem 1.3.3  :
Let f be any solution of

( ) ( –1) ( –2)
1 2( ) .... 0n n n

nL y y a y a y a y= + + + + =

on an interval I containing a point x0. Then for all x in I

0 0– | – | ( – )
0 0|| ( ) || || ( ) || || ( ) ||k x x k x xx e x x eφ φ φ≤ ≤

where, 1 2 31 | | | | | | .... | |= + + + + + nk a a a a

and
1

2 2 ( –1) 2 2|| ( ) || | ( ) | | ( ) | .... | ( ) |nx x x xφ φ φ φ ′= + + + 
Proof : This proof is similar to the proof of theorem 1.1.4.

Let 2( ) || ( ) ||u x xφ=

   2 2 ( –1) 2| | | | .... | |nφ φ φ′= + + +

   ( –1) ( –1)....φ φ φ φ φ φ′ ′= + + + n n

Hence    ( –1) ( ) ( ) ( –1)( ) .... n n n nu x φ φ φ φ φ φ φ φ φ φ φ φ′ ′ ′ ′′ ′ ′ ′′= + + + + + +

Therefore ( –1) ( )| ( ) | 2 | ( ) | | ( ) | 2 | | | | .... 2 | | | |n nu x x xφ φ φ φ φ φ′ ′ ′ ′′≤ + + +
Since f is solution of L(y) = 0, L(f ) = 0 and therefore

( ) ( –1) ( –2) ( –3)
1 2 3– – – – .... –n n n n

na a a aφ φ φ φ φ=

On substituting the expression for ( )nφ we get

( –2) ( –1)| ( ) | 2 | | | | 2 | | | | ..... 2 | | | |n nu x φ φ φ φ φ φ′ ′ ′ ′′≤ + + +

  ( –1) 2 ( –1) ( –2) ( –1)
1 22 | | | | 2 | | | | | | ..... 2 | | | | | |n n n n

na a aφ φ φ φ φ+ + + +

2 2 2(| | – | |) 0 | | | | 2 | | | |a b a b a b ≥ ⇒ + ≥ 
2 2 2 2 ( –2) 2 ( –1) 2| ( ) | (| | | | ) (| | | | ) .... (| | | | )n nu x φ φ φ φ φ φ′ ′ ′ ′′≤ + + + + + +

  ( –1) 2 ( –1) 2 ( –1) 2 2
1| | (| | | | ) .... | | (| | | | )n n n

na aφ φ φ φ+ + + + +
(24)
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  2 2 2
–1 –2(1 | |) | | (1 1 | |) | | (2 | |) | |n n na a aφ φ φ′ ′′≤ + + + + + +

( –2) 2 ( –1) 2
2 1 2.... (2 | |) | | (1 2 | | | | .... | |) | |n n

na a a aφ φ+ + + + + + + +

Since each coefficient on the right hand side is less than 2k we have

2 2 ( –1) 2| ( ) | 2 (| | | | .... | | )φ φ φ′ ′≤ + + + nu x k

  22 || ( ) || 2 ( )φ= =k x k u x

Therefore | ( ) | 2 ( )u x ku x′ ≤
Thus, we get  –2 ( ) ( ) 2 ( )k u x u x ku x′≤ ≤

–2– 2 ( ) 0 implies ( ( )) 0kxu ku x e u x′ ′≤ ≤

Integrating above inequality between the limits  0 0to  for    yieldsx x x x>

0–2–2
0( ) – ( ) 0kxkxe u x e u x ≤

i.e. 02 ( – )
0( ) ( )k x xu x e u x≤

Thus, 0( – )
0|| ( ) || || ( ) ||k x xx e xφ φ≤

Similarly for  x > x0 the inequality

–2 ( ) ( )ku x u x′≤  implies

0– ( – )
0|| ( ) || || ( ) ||k x xx e xφ φ≤

Combining the above two inequalities we get the required result for  x > x0.
For  x < x0 interchange the role of x and x0

We get 0 0( – ) – ( – )
0 0|| ( ) || || ( ) || || ( ) || || ( ) ||≤ ⇒ ≤k x x k x xx e x x e xφ φ φ φ

0 0– ( – ) ( – )
0 0and || ( ) || || ( ) || || ( ) || || ( ) ||φ φ φ φ≤ ⇒ ≤k x x k x xx e x x e x

Thus, 0 0– ( – ) ( – )
0 0 0|| ( ) || || ( ) || || ( ) ||, ( )φ φ φ≤ ≤ <k x x k x xx e x e x x x

which is the required result for x < x0

Theorem 1.3.4  (Uniqueness theorem)

Let 1 2 3, , ,....,α α α αn  be any n constants and let x0 be any real number. On any interval I

containing x0 there exists at most one solution f of L (y) = 0 satisfying 0 1 0 2( ) , ( )′= =x xφ α φ α ,

( –1)
0,......., ( )φ α=n

nx

Proof :  Suppose f and y  were two solutions of L (y) = 0 on I satisfying the above conditions at
x = x0. i.e.

( –1) ( –1)
0 0 1 0 0 2 0 0( ) ( ) , ( ) ( ) , ...., ( ) ( )φ ψ α φ ψ α φ ψ α′ ′= = = = = =n n

nx x x x x x

Define –θ φ ψ= . Since f and y satisfy ( ) ( )L Lφ ψ=   therefore  ( ) 0θ =L  and

( –1)
0 0 0 0 0( ) ( ) – ( ) 0, ( ) 0,...., ( ) 0.θ φ ψ θ θ′= = = =nx x x x x

Thus   
1

2 2 ( –1) 2 2
0 0 0 0|| ( ) || | ( ) | | ( ) | .... | ( ) | 0θ θ θ θ ′= + + + = 

nx x x x

(25)
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Applying theorem 1.3.3 we obtain || ( ) || 0xθ =  for all x in I. This implies ( ) 0xθ =  for

all x in I.

i.e.   ( ) ( )x xφ ψ=  for all x in I.

Theorem 1.3.5

If 1 2 3, , ,.... ,nφ φ φ φ  are n solutions of L(y) = 0 on an interval I, they are linearly independent

if and only if 1 2 3W( , , ,.... ) ( ) 0φ φ φ φ ≠n x  for all x in I. (definition 1.5)

Proof : The proof is entirely similar to the proof of theorem 1.2.2

Suppose 1 2 3W( , , ,.... ) ( ) 0n xφ φ φ φ ≠  for all x in I. Let c1, c2, c3,....,cn  be constants such

that 1 1 2 2( ) ( ) .... ( ) 0n nc x c x c xφ φ φ+ + + =  for all x in I.

By differentiating above equation (n – 1) times we get a system of equations as follows.

1 2 3
1

1 2 3 2

31 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0

0( ) ( ) ( ) ( )

0( ) ( ) ( ) ( )

n

n

n

n n n n n
n

x x x x c
x x x x c

cx x x x

cx x x x

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

          ′ ′ ′ ′          =′′ ′′ ′′ ′′                   

L

L

L

M MM M M M

The coefficient matrix is invertible because the determinant of coefficient matrix is

(definition 1.5) 1 2 3W( , , ,.... ) ( ) 0.n xφ φ φ φ ≠  On premultiplying the inverse of the coefficient

matrix we get, 1 2 3..... 0.nc c c c= = = =  This proves that 1 2 3, , ,.... nφ φ φ φ  are linearly independent.

Conversely, assume that 1 2, ,.... nφ φ φ  are linearly independent on I. Suppose there is a

point x0 in I such that 1 2 3 0W( , , ,.... ) ( ) 0.=n xφ φ φ φ  Then the system of equations

1 0 2 0 3 0 0
1

1 0 2 0 3 0 0 2

31 0 2 0 3 0 0

( –1) ( –1) ( –1) ( –1)
1 0 2 0 3 0 0

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0

0( ) ( ) ( ) ( )

0( ) ( ) ( ) ( )

n

n

n

n n n n n
n

x x x x c
x x x x c

cx x x x

cx x x x

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

          ′ ′ ′ ′          =′′ ′′ ′′ ′′                   

L

L

L

M MM M M M

has a solution 1 2 3,, , ....., nc c c c  where at least one of these numbers is not zero. Let 1 2, ,....., nc c c

be such a solution and consider a function

1 1 2 2( ) ( ) ( ) .... ( ).n nx c x c x c xψ φ φ φ= + + +

Now ( ) 0L ψ =  and ( –1)
0 0 0( ) ( ) .... ( ) 0.nx x xψ ψ ψ′ ′′= = = =

Therefore 0|| ( ) || 0ψ =x . But then by theorem 1.3.3 , || ( ) || 0xψ = , for all x in I. Therefore

(26)
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by defination of || ( ) ||xψ , ( ) 0xψ =  for all x in I. But then 1 2 3, , ,.... nφ φ φ φ  are linearly dependent.

Thus the supposition 1 2 3 0W( , , ,.... ) ( ) 0n xφ φ φ φ =  must be false. Therefore

1 2 3W( , , ,.... ) ( ) 0φ φ φ φ ≠n x  for all x in I.

Theorem 1.3.6  (Existence Theorem)

Let 1 2 3, , ,...., nα α α α be any n constants and let x0 be any real number. There exists a

solution f of L(y) = 0 on – ¥ < x < ¥ satisfying

( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,...., ( )φ α φ α φ α φ α′ ′′= = = =n

nx x x x

Proof :  Let 1 2 3, , ,.... nφ φ φ φ  be any set of n linearly independent solutions of L(y) = 0 on

– ¥ < x < ¥. We will show that there exist unique constants 1 2 3, , ,....., nc c c c  such that

1 1 2 2 3 3 .... n nc c c cφ φ φ φ φ= + + + +

is a solution of L(y) = 0 satisfying the given initial conditions ( )
0( ) , 0,1,2,...., –1.φ α= =i

ix i n

These constants 1 2 3, , ,....., nc c c c  would have to sartisfy

1 0 2 0 3 0 0
1 1

1 0 2 0 3 0 0 2 2

3 31 0 2 0 3 0 0

( –1) ( –1) ( –1) ( –1)
1 0 2 0 3 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

          ′ ′ ′ ′         =′′ ′′ ′′ ′′                 

L

L

L

M MM M M M

n

n

n

n n n n n n
n

x x x x c
x x x x c

cx x x x

cx x x x

φ φ φ φ α
φ φ φ φ α

αφ φ φ φ

αφ φ φ φ






Since 1 2 3, , ,.... nφ φ φ φ  are linearly independent, by theorem 1.3.5, the determinant of the

coefficients i.e. 1 2 3 0W( , , ,.... ) ( ) 0.n xφ φ φ φ ≠  Thus the coefficient matrix is invertible. Therefore

there is a unique set of constants 1 2 3, , ,....., nc c c c  satisfying above system of equations. For this

choice of 1 2 3, , ,....., nc c c c  the function

1 1 2 2 3 3( ) ( ) ( ) ( ) .... ( )n nx c x c x c x c xφ φ φ φ φ= + + + +

will be the desired solution.

Theorem 1.3.7 :

Let 1 2 3, , ,.... nφ φ φ φ  be n linearly independent solutions of L(y) = 0 on an interval I. If

1 2 3, , ,....., nc c c c  are any constants

1 1 2 2 3 3( ) ( ) ( ) ( ) .... ( )n nx c x c x c x c xφ φ φ φ φ= + + + +

is a solution and every solution may be represented in this form.

Proof :  Since , 1, 2, 3.....i i nφ =  is solution of L(y) = 0, ( ) 0, 1, 2, 3.....iL i nφ = = .

Therefore 1 1 2 2 3 3( ) ( ) ( ) ( ) .... ( ) 0n nL c L c L c L c Lφ φ φ φ φ= + + + + =  and

     1 1 2 2 3 3 .... n nc c c cφ φ φ φ φ= + + + +  is a solution of L(f ) = 0.

(27)
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Let f be any solution of L(y) = 0 and x0 be in I.

Suppose   ( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,...., ( ) .φ α φ α φ α φ α′ ′′= = = =n

nx x x x

By existence theorem 1.3.6 there exist unique constants 1 2 3, , ,....., nc c c c  such that

    1 1 2 2 3 3 .... n nc c c cψ φ φ φ φ= + + + +
is a solution of L(y) = 0 on I satisfying

  ( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,...., ( )ψ α ψ α ψ α ψ α′ ′′= = = =n

nx x x x

The uniqueness theorem 1.3.4 implies that f  = y. Thus 1 1 2 2 3 3 .... .n nc c c cφ φ φ φ φ= + + + +

Theorem 1.3.8
Let 1 2 3, , ,.... nφ φ φ φ  be n solutions of L(y) = 0 on an interval I constaining a point x0. Then

1 0– ( – )
1 2 3 1 2 3 0W( , , ,.... ) ( ) W( , , ,.... ) ( )= a x x

n nx e xφ φ φ φ φ φ φ φ
Proof :

1 2 3

1 2 3

1 2 3 1 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

W( , , ,...., ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

′ ′ ′ ′

= ′′ ′′ ′′ ′′

L

L

L

M M M M

n

n

n n

n n n n
n

x x x x

x x x x

x x x x x

x x x x

φ φ φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ
By differentiating above determinant row-wise we get,

   

1 2 3

1 2 3

1 2 3 1 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

W ( , , ,...., ) ( )

φ φ φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ

′ ′ ′ ′

′ ′ ′ ′
′ = ′′ ′′ ′′ ′′

L

L

L

M M M M

n

n

n
n

n n n n
n

x

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

( –1) ( –1) ( –1) ( –1) ( ) ( ) ( ) ( )
1 2 3 1 2 3

....

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

′′ ′′ ′′ ′′ ′ ′ ′ ′

+ + +′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′

L L

L L

L L

M M M M M M M M

L L

n n

n n

n n

n n n n n n n n
n n

Since two rows are identical the value of first (n – 1) determinants is zero. Therefore

1 2 3

1 2 3

1 2 3 1 2 3

( ) ( ) ( ) ( )
1 2 3

W ( , , ,...., ) ( )

φ φ φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ

′ ′ ′ ′

′ = ′′ ′′ ′′ ′′

L

L

L

M M M M

n

n

n n

n n n n
n

x

(28)
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Since each , 1,2,3,....,i i nφ =  is a solution of L(y) = 0 ( ) ( –1) ( –2)
1 2– (n n n

i i ia aφ φ φ= +

( –3)
3 .... ).n

i n ia aφ φ+ +  Hence,

1 2 3

1 2 3

1 2 3
( –2) ( –2) ( –2) ( –2)

1 2 3
( –1) ( –1) ( –1) ( –1)

1 1 1 2 1 3 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

W ( , , ,..., ) ( )

( ) ( ) ( ) ( )

– ( ) – ( ) – ( ) – ( )

φ φ φ φ

φ φ φ φ
φ φ φ φ

φ φ φ φ

φ φ φ φ

′ ′ ′ ′

′ =

L

L

M M M L M

L

n

n

n
n n n n

n
n n n n

n

x x x x

x x x x

x

x x x x

a x a x a x a x

Since,
1 2 3

1 2 3

( –2) ( –2) ( –2) ( –2)
1 2 3

( – ) ( – ) ( – ) ( – )
1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

– ( ) – ( ) – ( ) – ( )

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

′ ′ ′ ′

=

L

L

M M M L M

L

n

n

n n n n
n

n k n k n k n k
k k k k n

x x x x

x x x x

x x x x

a x a x a x a x

for k = 2, 3, 4,....n, as two rows of the determinant are constant multiplies of each other are

Thus,

   

1 2 3

1 2 3

1 2 3 1 1 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

W ( , , ,..., ) ( ) – ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

φ φ φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ

′ ′ ′ ′

′ = ′′ ′′ ′′ ′′

L

L

L

M M M M

L

n

n

n n

n n n n
n

x x x x

x x x x

x a x x x x

x x x x

    1 1 2 3–  W( , , ,..., ) ( )na xφ φ φ φ=

Thus 1W Wa′ + = 0. On integrating this equation between the limits x0 to x we get ,

           1 01
0W( ) W ( )= a xa xe x e x

or          1 0– ( – )
0W( )  W( )a x xx e x=

Thus   1 0– ( – )
1 2 3 1 2 3 0W( , , ,..., ) ( ) W( , , ,..., ) ( )a x x

n nx e xφ φ φ φ φ φ φ φ=

Theorem 1.3.9

Let 1 2 3, , ,.... nφ φ φ φ  be n solutions of L(y) = 0 on an interval I containing x0. Then they are

linearly independent on I if and only if 1 2 3 0W( , , ,..., ) ( ) 0n xφ φ φ φ ≠

(29)
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Proof : By theorem 1.3.5 the solutions 1 2 3, , ,.... nφ φ φ φ of L(y) = 0 are linearly independent

on an interval I if and only if 1 2 3W( , , ,..., ) ( ) 0φ φ φ φ ≠n x  for all x in I.

But 1 0– ( – )
1 2 3 1 2 3 0W( , , ,..., ) ( ) W( , , ,..., ) ( )a x x

n nx e xφ φ φ φ φ φ φ φ= (by theorem 1.3.8.)

Therefore 1 2 3W( , , ,..., ) ( ) 0n xφ φ φ φ ≠ if and only if 1 2 3 0W( , , ,..., ) ( ) 0n xφ φ φ φ ≠ and the result

follows.

EXAMPLES

Q.1. Consider the equation

(5) (4)– – 0y y y y′ + =
(a) Compute five linearly independent solutions.

(b)Compute the wronkian of the solutions found in (a).

(c) Find that solution f satisfying
(4)(0) 1, (0) (0) (0) (0) 0.φ φ φ φ φ′ ′′ ′′′= = = = =

Ans (a) :

The characteristic equation

5 4( ) – – 1= +p r r r r

    4( –1) – ( –1)= r r r

    4( –1) ( –1)r r=

    2 2( –1)( 1) ( –1)r r r= +

    2( 1)( –1) ( 1)( –1)r r r r= + +
Thus the characteristic roots are 1, 1, –1, i, – i

Therefore –
1 2 3 4( ) , ( ) , ( ) , ( ) sinx x xx e x xe x e x xφ φ φ φ= = = =  5( ) cosφ =x x are solutions

of the given differential equation.

Ans (b) :
0– ( – )

1 2 3 4 5 1 2 3 4 5 0W( , , , , ) ( ) W( , , , , ) ( )a x xx e xφ φ φ φ φ φ φ φ φ φ=

For the given equation a1 = – 1. Let x0 = 0 then

1 2 3 4 5 1 2 3 4 5W( , , , , ) ( ) W( , , , , ) (0).xx eφ φ φ φ φ φ φ φ φ φ=
–

–

–
1 2 3 4 5

–

–

sin cos

(1 ) – cos – sin

W( , , , , ) ( ) (2 ) – sin – cos

(3 ) – – cos sin

(4 ) sin cos

+
= +

+

+

x x x

x x x

x x x

x x x

x x x

e xe e x x

e x e e x x

x e x e e x x

e x e e x x

e x e e x x

φ φ φ φ φ
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1 2 3 4 5

1 0 1 0 1

1 1 –1 1 0

W ( , , , , ) (0) 1 2 1 0 –1

1 3 –1 –1 0

1 4 1 0 1

=φ φ φ φ φ

The row transformations

2 1 3 1 4 1 5 1– , – , – , – givesR R R R R R R R

1 2 3 4 5

1 0 1 0 1

0 1 –2 1 –1

W( , , , , ) (0) 0 2 0 0 –2

0 3 –2 –1 –1

0 4 0 0 0

φ φ φ φ φ =

    

1 –2 1 –1

2 0 0 –2

3 –2 –1 –1

4 0 0 0

=

    

0 0 –2 2 0 –2 2 0 0

–2 –1 –1 2 3 –1 –1 3 –2 –1

0 0 0 4 0 0 4 0 0

= + +

2 0 0

3 –2 –1 – 32

4 0 0

+ =

Thus, 1 2 3 4 5 1 2 3 4 5W( , , , , ) W( , , , , ) (0) –32= =x xe eφ φ φ φ φ φ φ φ φ φ

Ans (c) :

The general solution f is –
1 2 3 4 5( ) sin cosφ = + + + +x x xx c e c xe c e c x c x

The initial conditions (iv)(0) 1, (0) (0) (0) (0) 0φ φ φ φ φ′ ′′ ′′′= = = = = gives the following
system of equations.

   

1

2

3

4

5

1 0 1 0 1 1

1 1 –1 1 0 0

1 2 1 0 –1 0

1 3 –1 –1 0 0

1 4 1 0 1 0

+     
    
    
    =
    
    
        

c

c

c

c

c

The row transformation 2 1 3 1 4 1 5 1– , – , – , –R R R R R R R Rgives

(31)
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1

2

3

4

5

1 0 1 0 1 1

0 1 –2 1 –1 –1

0 2 0 0 –2 –1

0 3 –2 –1 –1 –1

0 4 0 0 0 –1

+     
    
    
    =
    
    
        

c

c

c

c

c

Solving the above system of equations simultaneously we get the values of c1, c2,
c3, c4, c5.

From last equation we get 4c2 = – 1 gives 2
1

–
4

c =

From the third row of the above system we get,

2 5 5
1

2 – 2 –1 gives
4

c c c= =

From second and fourth row we get,

2 3 4 5– 2 – –1c c c c+ =

2 3 4 53 – 2 – – –1=c c c c

Substitution of c2 and c5 in above equations give

3 4
1

–2 –
2

c c+ =

3 4–2 – 0=c c

Thus,   3 4
1 1

, –
8 4

c c= =

From first row we get, 1
5
8

c =

Thus, –
1 2 3 4 5( ) sin cosφ = + + + +x x xx c e c xe c e c x c x

    
–5 1 1 1 1

– – sin cos
8 4 8 4 4

x x xe xe e x x= + +

is the required solution.

Q.2. Find all solutions of the following equations.

(a) – 8 0y y′′′ = (b) (4) 16 0+ =y y     (c)  – 5 6 0y y y′′′ ′′ ′+ =

(d) ( ) –16 0ivy y = (e) – 3 – 2 0y y y′′′ ′ =     (f)  (4) 5 4 0y y y′′+ + =

Ans. (a) :

The characteristic polynomial is 3( ) – 8p r r=  and its roots are 2, –1 3 , –1– 3i i+

Thus, three linearly independent solutions are given by 2 (–1 3 ) (–1– 3 ), ,+x i x i xe e e  and any

solution f  has the form 2 (–1 3 ) (–1– 3 )
1 2 3( )φ += + +x i x i xx c e c e c e  where c1, c2, c3 are any

constants.
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Ans. (b) :  The characteristic polynomial is 4( ) 16p r r= +

 4 4 2 2 2 2( ) – (2 ) ( (2 ) ) ( – (2 ) )= = +p r r i r i r i

    2 2 2 2 2( – (2 ) ) ( – ( 2) )r i i r i=

    ( 2 ) ( – 2 ) ( 2 ) ( – 2 )= + +r i i r i i r i r i

Thus,  ( ) ( 2 ) ( – 2 ) ( 2 ) ( – 2 )= + +p r r i i r i i r i r i

  2cos sin
2 2

π
π π= + =

i
i i e

\    

1

2
2 4 cos sin

4 4

π π
π π 

 = = = +
  

i i
i e e i

Therefore     
(1 )1 –1

,
2 2 2

i ii i
i i i

++ += = =

The roots of characteristic polynomial are – 2(–1 ), 2(–1 ), 2(1 ), – 2(1 )+ + + +i i i i

Thus four linearly independent solutions are

( 2 – 2) (– 2 2 ) ( 2 2), , ,i x i x i xe e e+ +  (– 2 – 2)i xe

and every solution f  has the form

( 2 – 2) (– 2 2) ( 2 2) (– 2 – 2)
1 2 3 4( ) i x i x i x i xx c e c e c e c eφ + += + + +

Ans. (c) : The characteristic polynomial is 3 2( ) – 5 6p r r r r= +  and its roots are 0, 3, 2. Thus
three linearly independent solutions are given by 1, e3x, e2x and any solution f has the

form 3 2
1 2 3( ) x xx c e c e cφ = + +

Ans. (d) : The characteristic polynomial is 4 2 2( ) –16 ( 4)( – 4) ( 2 )( – 2 )p r r r r r i r i= = + = +

( 2) ( – 2)r r+ and its roots are 2, – 2, 2i, –2i. Thus four linearly independent solutions are

given by 2 –2, , cos 2 , sin 2x xe e x x and every solution f  has the form

2 –2
1 2 3 4( ) cos2 sin 2x xx c e c e c x c xφ = + + +

Ans. (e) : The characteristic polynomial is

3 2( ) – 3 – 2 ( 1) ) ( – – 2)= = +p r r r r r r

and its roots are 
1 5 1– 5

–1, , .
2 2

+

Thus, three linearly independent solutions are 

1– 5
(1 5) 2– 2, , ,

 
 +
 

x x
xe e e  and every solution

f has the form
1– 5

( )
2

1 5
( )– 2

1 2 3( )
xxxx c e c e c eφ

+

= + +
(33)
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Ans. (f) : The characteristic polynomial is

4 2 2 2( ) 5 4 ( 4) ( 1)p r r r r r= + + = + +
and its roots are 2i , –2i , i , –i . Thus four linearly independent solutions are

cos2 , sin 2 , cos , sinx x x x and every solution f has the form

1 2 3 4( ) cos 2 , sin 2 cos sin .x c x c x c x c xφ = + + +

Q.3. Consider the equation – 4 0y y′′′ ′ =

(a) Compute three linearly independent solutions.

(b)Compute the wronkian of the solutions found in (a).

(c) Find the solution f satisfying

(0) 0, (0) 1, (0) 0φ φ φ′ ′′= = =

Ans. (a) : The characteristic polynomial 3( ) – 4p r r r=  and its roots are 0, 2, –2. Thus, three

linearly independent solution are 2 –21, ,x xe e e° =  and every solution f has the form

2 –2
1 2 3( ) x xx c c e c eφ = + +

Ans. (b) :

0( –0)
1 2 3 1 2 3W( , , ) ( ) W( , , ) (0)xx eφ φ φ φ φ φ=

2 –2

2 –2
1 2 3

2 –2

1

W( , , ) ( ) 0 2 –2

0 4 4

x x

x x

x x

e e

x e e

e e

φ φ φ =

1 2 3

1 1 1

W( , , ) (0) 0 2 –2

0 4 4

φ φ φ =

Thus, 1 2 3W( , , ) ( ) 16xφ φ φ = .

Ans. (c) :

(0) 0, (0) 1, (0) 0,φ φ φ′ ′′= = =
2 –2

1 2 3 1 2 3( ) , (0) 0x xx c c e c e c c cφ φ= + + = + + =  and so on

1

2

3

1 1 1 0

0 2 –2 1

0 4 4 0

c

c

c

    
    =    
        

R3 – 2 R2 gives

1

2

3

1 1 1 0

0 2 –2 1

0 0 8 –2

c

c

c

    
    =    
        
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Therefore 3 2 3 2 3 2
1 1 1

– , 2 – 2 1 –
4 2 4

= = ⇒ = ⇒ =c c c c c c

1 2 3 10 0c c c c+ + = ⇒ =

Thus,  ( )2 –2 2 –2
1 2 3

1
( ) –

4
x x x xx c c e c e e eφ = + + = is the required solution.

EXERCISE

1. Are the following statements true or false ?

(a) If 1 2 3, , ,...., nφ φ φ φ  are linearly independent functions on an interval I, then any subset of

them forms a linearly independent set of functions on I.

(b) If 1 2 3, , ,...., nφ φ φ φ  are linearly dependent functions on an interval I, then any subset of

them forms a linearly dependent set of functions on I.

2. Are the following sets of functions defined on – ¥ < x < ¥ linearly independent or
dependent ? why ?

(a) 2
1 2 3( ) 1, ( ) , ( )x x x x xφ φ φ= = =

(b) 1 2 3( ) , ( ) sin , ( ) 2cosi xx e x x x xφ φ φ= = =

(c) 2
1 2 3( ) , ( ) , ( ) | |xx x x e x xφ φ φ= = =

3. Find a basis of solutions of the differential equations.

(a) 5 4 0y y′′ ′+ + = (b)  6 12 8 0y y y y′′′ ′′ ′+ + + =

(c) (4) – 0y y =

4. Find the general solution of each of the following equations.

(i)  
4

32
1 26 –11 4 0 (Ans.    ( ) )′′ ′ + = = +

xx

y y y y x c e c e

(ii)  (–1 2) (–1– 2)
1 22 – 0 (Ans.   ( ) )+′′ ′+ = = +x xy y y y x c e c e

(iii) 2 –3
1 2 3– 6 0 (Ans.   ( ) )x xy y y y x c c e c e′′′ ′′ ′+ = = + +

(iv) (4) 2 – 2
1 2 3 4– 2 0 (Ans.   ( ) )x xy y y x c c x c e c e′′ = = + + +

(v)  ( )–2 2 2
1 2 38 0 Ans.   ( )′′′ + = = + +x x xy y y x c e c e c xe

5. For each of the following equations find a particular solution which satisfies the given
initial conditions.

(i) 0, (1) 2, (1) –1y y y′′ ′= = =
(ii) 4 4 0, (0) 1, (0) 1y y y y y′′ ′ ′+ + = = =
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(iii) – 2 5 0, (0) 2, (0) 4y y y y y′′ ′ ′+ = = =

(iv) ( ) ( )2 2– 4 20 0, 0, 1′′ ′ ′+ = = =y y y y yπ π

(v)  3 5 – 0, (0) 0, (0) 1, (0) –1′′′ ′′ ′ ′ ′′+ + = = = =y y y y y y y

[Ans. :  (i)  ( ) 3 – ,y x x= (ii)  –2( ) (1 3 ) xy x x e= +    (iii)  ( ) (2cos 2 sin 2 )xy x e x x= +

(iv)  
2 –1

sin 4
4

xe xπ
(v)  –39 9

– .
16 4 16

x
xx

y e e = +   
]

Ans. 1 :

(a)  True (b)  false

Ans. 2 :

(a)  independent (b)  dependent (iii)  independent

Ans. 3 :

(a)   –4 –
1 2( ) , ( )x xx e x eφ φ= =

(b) –2 –2 2 –2
1 2 3( ) , ( ) , ( )x x xx e x xe x x eφ φ φ= = =

(c) –
1 2 3 4( ) , ( ) , ( ) cos , ( ) sinx xx e x e x x x xφ φ φ φ= = = =

Unit 4 :  The Non-Homogeneous Equation of Order n
We now return  to the nth order non-homogeneous linear differential equation with constant

coefficients. In the first part we will discuss the method of finding all solutions of the second
order non-homogeneous equation.

1 2( ) ( ),L y y a y a y b x′′ ′= + + =

Where b is some continuous function on an interval I. The general solution of the above
equation is

( ) ( ) ( ),c py x y x y x= +

where, yc(x), the complementary function is the general solution of the related homogenous
equation and yp(x) is a particular solution of the equation.

Suppose we know that yp is a particular solution of the equation L(y) = b(x) and let y be
any other solution. Then,

( – ) ( ) – ( ) ( ) – ( ) 0p pL L L b x b xψ ψ ψ ψ= = =

on I. This shows that y –yp is a solution of the homogenous equation L(y) = 0. Therefore if f 1,
f 2 are linearly independent solutions of L(y) = 0, there are unique constants c1, c2 such that
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1 1 2 2– p c cψ ψ φ φ= +
In other words every solution y of L(y) = b (x) can be written in the form

1 1 2 2p c cψ ψ φ φ= + +

The problem of finding all solutions of L(y) = b (x) reduces to finding a particular
solution yp.

Theorem 1.4.1
Let b(x) be continuous on an interval I. Every solution y of L(y) = b (x) on I can be

written as 1 1 2 2p c cψ ψ φ φ= + + .

Where yp is a particular solution, f1, f2 are two linearly independent solutions of L(y) = 0
and c1, c2 are constants. A particular solution yp is given by

0

1 2 1 2

1 2

[ ( ) ( ) – ( ) ( )] ( )
( ) .

W( , ) ( )

x

p
x

t x x t b t
x dt

t

φ φ φ φψ
φ φ

= ∫

Conversely every such y is a solutions of L(y) = b (x)

Proof :

Let y and yp be two solutions of

1 2( )L y y a y a y b′′ ′= + + =

Then ( – ) ( ) – ( ) 0p pL L Lψ ψ ψ ψ= =

This shows that – pψ ψ  is a solution of a homogeneous equation L(y) = 0. By theorem

1.1.1 there exist two linearly independent solutions f1, f2 and every solution of L(y) = 0 is of the

form  1 1 2 2c cφ φ+ where c1 and c2 are constants. Such a function 1 1 2 2c cφ φ+ cannot be a solution

of L(y) = b(x) unless b(x) = 0 on I.

Suppose 1 1 2 2( ) ( ) ( ) ( ) ( )x u x x u x xφ φ φ= +  is a solution of L(y) = b(x) on I.

(This procedure is called as the variation of constants.)

Then

1 1 2 2 1 1 1 2 2 2 1 1 2 2( ) ( ) ( ) ( )u u a u u a u u b xφ φ φ φ φ φ′′ ′+ + + + + =

     i.e. 2 1 1 2 2 1 1 1 1 1 2 2 2 2( ) ( )a u u a u u u uφ φ φ φ φ φ′ ′ ′ ′+ + + + +

1 1 1 1 1 1 2 2 1 1 2 2( 2 2 ) ( )u u u u u u b xφ φ φ φ φ φ′′ ′ ′ ′′ ′′ ′ ′ ′′+ + + + + + =

Therefore

1 1 1 1 2 1 2 2 1 2 2 2( ) ( )u a a u a aφ φ φ φ φ φ′′ ′ ′′ ′+ + + + +

     1 1 1 2 1 1 2 2 1 1 1 2 2( ) 2( ) ( ) ( )u u u u a u u b xφ φ φ φ φ φ′′ ′′ ′ ′ ′ ′ ′ ′+ + + + + + =

     i.e. 1 1 2 2 1 1 2 2 1 1 1 2 2( ) 2( ) ( ) ( )u u u u a u u b xφ φ φ φ φ φ′′ ′′ ′ ′ ′ ′ ′ ′+ + + + + =
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Observe that if

1 1 2 2u uφ φ′ ′+  = 0

then  1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( )′ ′ ′ ′ ′ ′ ′′ ′′′+ = + + +u u u u u uφ φ φ φ φ φ

   and  1 1 2 2 ( )u u b xφ φ′ ′ ′ ′+ =
Thus if we can find two functions u1(x) and u2(x) such that

1 1 2 2 0u uφ φ′ ′+ =

1 1 2 2 ( )u u b xφ φ′ ′ ′ ′+ =

Then 1 1 2 2u uφ φ+ will satisfy L(y) = b(x).

On solving above two equations for 1u ′  and 2u ′
we get,

2 1
1 2

1 2 1 2

–
( ) , ( ) ,

W( , ) W( , )

φ φ
φ φ φ φ

′ ′= =b b
u x u x

Integration of above equation between the limits x0 to x provides

0

2
1 1 0

1 2

( ) ( )
( ) – ( )

W( , ) ( )

x

x

t b t
u x dt u x

t

φ
φ φ

= +∫

and
0

1
2 2 0

1 2

( ) ( )
( ) ( ).

W( , ) ( )

x

x

t b t
u x dt u x

t

φ
φ φ

= +∫

The solution 1 1 2 2u uφ φ+ takes the form

0

2
1 1 0

1 2

( ) ( )
( ) ( ) – ( )

W( , ) ( )

x

x

t b t
x x dt u x

t

φφ φ
φ φ

 
 = +
  

∫

0

1
2 2 0

1 2

( ) ( )
( ) ( )

W( , ) ( )

φφ
φ φ

 
 + + +
  

∫
x

x

t b t
x dt u x

t

The  term 1 1 0 2 2 0( ) ( ) ( ) ( )x u x x u xφ φ+ is a complementary function or the solution of

corresponding homogeneous equation L(y) = 0 and the particular solution takes the form

0 0

2 1
1 2

1 2 1 2

( ) ( ) ( ) ( )
( ) – ( ) ( )

W( , ) ( ) W( , ) ( )

x x

p
x x

t b t t b t
x x dt x dt

t t

φ φψ φ φ
φ φ φ φ

= +∫ ∫

0

1 2 2 1

1 2

[ ( ) ( ) – ( ) ( )] ( )
( )

W( , ) ( )

x

p
x

t x t x b t
x dt

t

φ φ φ φψ
φ φ

= ∫

The function yp(x) is a solution of L(y) = b (x).

Theorem 1.4.1 provides a method to find a solution of second order non-homogeneous
differential equation with constant coefficients. The same procedure can be generalized for the
non-homogeneous equation of order n.
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Theorem 1.4.2

Let b be continuous on an interval I and let 1 2 3, , ,...., nφ φ φ φ  be n linearly independent

solutions of ( ) ( –1) ( –2)
1 2( ) .... 0n n n

nL y y a y a y a y= + + + + = on I. Every solution y of L(y) =

b(x) can be written as

  1 1 2 2 3 3 ....ψ ψ φ φ φ φ= + + + + +p n nc c c c

Where yp is a particular solution of L(y) = b(x) and 1 2 3, , ,......, nc c c c  are constants. Every
such y is a solution of L(y) = b(x). A particular solution yp is given by

01 1 2 3

( ) ( )
( ) ( ) .

W( , , ,...., ) ( )

xn
k

p k
k nx

W t b t
x x dt

t
ψ φ

φ φ φ φ=
= ∑ ∫

Proof : The proof is similar to the proof of theorem 1.4.1 Let b be continuous function on an
interval I. Consider the differential equation

( ) ( –1) ( –2)
1 2( ) .... ( )n n n

nL y y a y a y a y b x= + + + + =

where, a1,  a2, a3,..., an are constants. If yp is a particular solution of L(y) = b(x) and y  is any
other solution of L(y) = b(x), then

( – ) ( ) – ( ) ( ) – ( ) 0ψ ψ ψ ψ= = =p pL L L b x b x

and y – yp is a solution of corresponding homogeneous equation L(y) = 0. (is called subtraction
principle).

Thus any solution y of L(y) = b(x) can be written in the form

1 1 2 2 3 3 ....p n nc c c cψ ψ φ φ φ φ= + + + + +

where, yp is a particular solution of L(y) = b(x), the functions 1 2 3, , ,...., nφ φ φ φ  are n linearly

independent solutions of L(y) = 0 (determined in theorem 1.3.1) and 1 2 3, , ,..., nc c c c are constants.

To find a particular solution yp we use the variation of constants method. Suppose

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) .... ( ) ( )p n nu x x u x x u x x u x xψ φ φ φ φ= + + + +

is a solution of L(y) = b(x). Since yp is a solution it satisfies the equation i.e L(yp) = b(x).

1 1 2 2 3 3 ....p n nu u u uψ φ φ φ φ= + + + +

 
1=

= ∑
n

i i
i

u φ

Then, 1 1 1 1 2 2 2 2 ....ψ φ φ φ φ φ φ′ ′ ′ ′ ′ ′ ′= + + + + + +p n n n nu u u u u u

 1 1 2 2 3 3 1 1 2 2( .... ) ( .... )n n n nu u u u u u uφ φ φ φ φ φ φ′ ′ ′ ′ ′ ′ ′= + + + + + + + +

 
1 1

φ φ
= =

′ ′= +∑ ∑
n n

i i i i
i i

u u

Let     0i iu φ′∑ =   then  ψ φ′ ′= ∑p i iu

We have    ψ φ φ′′ ′′ ′ ′= ∑ + ∑p i i i iu u

(39)
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Suppose 0i iu φ′ ′∑ =   then   p i iuψ φ′′ ′′= ∑

Continuing the same assumptions we get,

( –2) ( –1) ( –1)

0 ;

0 ;

0 ;

0 ;

i i p i i

i i p i i

i i p i i

n n n
i i p i i

u u

u u

u u

u u

φ ψ φ

φ ψ φ

φ ψ φ

φ ψ φ

′ ′ ′∑ = = ∑

′ ′ ′′ ′′∑ = = ∑

′ ′′ ′′′ ′′′∑ = = ∑

′∑ = = ∑

M

  ( ) ( –1) ( )n n n
p i i i iu uψ φ φ′= ∑ + ∑

If  ( –1) ( )n
i iu b xφ′∑ =  then ( ) ( ) ( )n n

p i iu b xψ φ= ∑ +  and ( )pL ψ  becomes

( ) ( –1) ( –2)
1 2( ) ( ) .... .ψ φ φ φ φ = ∑ + + ∑ + ∑ + + ∑ 

n n n
p i i i i i i n i iL u b x a u a u a u

 
( ) ( –1)

1( ) .....φ φ φ = + ∑ + + + 
n n

i i i n ib x u a a

Thus, ( ) ( )pL b xψ =  and therefore yp is a solution of L(y) = b (x). Therefore the problem

is now reduced to solving the system given below for the functions u1, u2, u3,..., un.

( –2)

( –1)

0

0

0

0

( )

φ

φ

φ

φ

φ

′∑ =

′ ′∑ =

′ ′′∑ =

′∑ =

′∑ =

M

i i

i i

i i

n
i i

n
i i

u

u

u

u

u b x

Thus, we have system of equations

1 2 3
1

1 2 3 2

31 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

0

0

0

( )

n

n

n

n n n n n
n

u

u

u

u b x

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

  ′        ′ ′ ′ ′ ′       ′   =′′ ′′ ′′ ′′               ′     

L

L

L

M MM

L

By solving above system of equations by Cramer’s rule we get,

1 2 3

W ( ) ( )
( ) , 1,2,3,.....,

( , , ,...., ) ( )
k

k
n

x b x
u x k n

W xφ φ φ φ
′ = =

Where kW ( )x is the determinant obtained from 1 2 3W[ , , ,...., ]( )n xφ φ φ φ by replacing the

kth column i.e. ( –1)[ ..... ]n T
k k k kφ φ φ φ′ ′′ by [0 0 0....0 1] .T

If x0 is any point in I, we can integrate u¢k and the functions uk can be written as

(40)



Differential Equations

0 1 2 3

W ( ) ( )
( ) 1,2,3,...., .

W( , , ,...., ) ( )

x
k

k
nx

t b t dt
u x k n

tφ φ φ φ
= =∫

The particular solution yp now takes the form

    
0 1 2 3

W ( ) ( )
( ) ( )

W( , , ,...., ) ( )
ψ φ

φ φ φ φ
= ∑ ∫

x
k

p k
nx

t b t dt
x x

t

Now we are in a position to find out a solution of the non-homogenous equation of
order n.

Observe that a particular solution yp satisfies

( –1)
0 0 0 0( ) ( ) ( ) ...... ( ) 0.n

p p p px x x xψ ψ ψ ψ′ ′′= = = = =

EXAMPLES

Q.1. Compute the solution y of 1y y y y′′′ ′′ ′+ + + =  which satisfies (0) 0, (0) 1,ψ ψ ′= =

(0) 0ψ ′′ = .

Ans. : The characteristic polynomial of the corresponding homogeneous equation is
3 2( ) 1.p r r r r= + + +  The characteristic roots are i, –i, 1. The basic solutions of the

corresponding homogeneous equation are

–
1 2 3( ) cos ( ) sin ( ) xx x x x x eφ φ φ= = =

To obtain the particular solution of the form

   1 1 2 2 3 3p u u uψ φ φ φ= + +
We have to find W (f1, f2 , f3 ) (x) and Wk (t) for k = 1, 2, 3.

     

–

–
1 2 3

–

cos sin

W( , , ) ( ) – sin cos –

– cos – sin

x

x

x

x x e

x x x e

x x e

φ φ φ =

     1 0– ( – )
1 2 3 1 2 3 0W( , , ) ( ) W( , , ) ( )= a x xx e xφ φ φ φ φ φ

   –
1 2 3W( , , ) (0)xe φ φ φ=

     1 2 3

1 0 1

W( , , ) (0) 0 1 –1

–1 0 1

φ φ φ =

    = 1[1 – 0] + 1 [0 + 1] = 2

Thus –
1 2 3W( , , ) ( ) 2 xx eφ φ φ =

(41)
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–

– 3 1 – – –
1

–

0 sin

W ( ) 0 cos – (–1) [– cos – sin ] – (cos sin )

–1 – sin

+= = = +

x

x x x x

x

x e

x x e e x e x e x x

x e

  

–

– –
2

–

cos 0

W ( ) – sin 0 – (cos – sin )

– cos 1

= =

x

x x

x

x e

x x e e x x

x e

3

cos sin 0

W ( ) – sin cos 0 1

– cos – sin 1

x x

x x x

x x

= =

  
–

1
1 –

1 2 3

W ( ) ( ) (cos sin )
( ) –

W( , , ) ( ) 2

+= =∫ ∫
x x t

t

t b t e t t
u x dt dt

t eφ φ φ

 
1

– [ sin – cos ]
2

x x= +

Thus,  1
1

( ) [cos – sin ]
2

u x x x=

 
–

2
2 –

1 2 3

W ( ) ( ) (cos – sin )
( )

W( , , ) ( ) 2φ φ φ
= =∫ ∫

x x t

t

t b t e t t
u x dt dt

t e

 
1

[ sin cos ]
2

x x= + +

 
3

3 –
1 2 3

W ( ) ( ) 1
( )

W( , , )( ) 22

x x
x

t

t b t dt dt
u x e

t eφ φ φ
= = =∫ ∫

Therefore a particular solution is given by

    1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )p u x x u x x u x xψ φ φ φ= + +

     
–1 1 1

– (cos – sin )cos (cos sin )sin 1
2 2 2

= + + + =x xx x x x x x e e

The most general solution is

  1 1 2 2 3 3( ) px c c cψ ψ φ φ φ= + + +

     –
1 2 31 cos sin xc x c x c e= + + +

    1 3(0) 0 1 0c cψ = ⇒ + + =

 –
1 2 3(0) 1 ( ) – sin cos – xx c x c x c eψ ψ′ ′= ⇒ = +

Thus, y¢ (0) = c2 – c3 = 1

    –
1 2 3( ) – cos – sin′′ = + xx c x c x c eψ
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1 3(0) – 0c cψ ′′ = + =

Solving the system of equations

  1 + c1 + c3 = 0

    c2 – c3 = 1

 – c1 + c3 = 0

We get, 1 2 3
1 1 1

– , , –
2 2 2

c c c= = =

Therefore the solution of our problem is given by

      
–1

( ) 1 (sin – cos – )
2

xx x x eψ = +

Q.2. Find all solutions y  of the following equations

  (a)  –y y x′′′ ′ =

(b) –– 3 2 sin xy y y e′′ ′ + =

(c) –24 4 3 xy y y xe′′ ′+ + =

Ans. (a) : The characteristic polynimial 3( ) –p r r r= has roots 0, 1, –1 and the linearly

independent solution of the related homogeneous equation are 1 2( ) 1, ( ) ,xx x eφ φ= =
–

3( ) xx eφ =

Let     1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )p u x x u x x u x xψ φ φ φ= + +

1 2 3

W ( ) ( )
( ) 1,2,3.

W( , , ) ( )φ φ φ
= =∫

x
k

k
t b t ds

u x k
t

–

–
1 2 3

–

1

W( , , ) ( ) 0 – 2

0

φ φ φ = =

x x

x x

x x

e e

x e e

e e

 

–

–
1

–

0

( )W ( ) 0 – –2= =

x x

x x

x x

e e

b x x e e x

x e e

 

–

–
2

–

1 0

( )W ( ) 0 0 –

0

x

x x

x

e

b x x e xe

x e

= =

 3

1 0

( )W ( ) 0 0

0

x

x x

x

e

b x x e xe

e x

= =
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2

1
–2

( ) –
2 2

= =∫
x t dt x

u x

–
– –

2
1 1

( ) – (1 )
2 2 2

= = = +∫ ∫
x xt

t xte
u x dt t e dt x e

3
1 1

( ) ( –1)
2 2 2

= = =∫ ∫
x xt

t xte dt
u x t e dt x e

   
2 2

1 1 2 2 3 3
1 1

– – (1 ) ( –1) – –1
2 2 2 2

= + + = + + =p
x x

u u u x xψ φ φ φ  is the

required particular integral and the solution  –
1 2 3= + + +x x

pc c e c eψ ψ .

(b) : The characteristic polynomial 2( ) – 3 2p r r r= +  has roots +2, +1 and therefore the two

linearly independent solution of the corresponding homogeneous equation are
2

1 2( ) and ( )x xx e x eφ φ= =

Let 1 1 2 2( ) ( ) ( ) ( )p u x x u x xψ φ φ= +  be a particular integral of the given differential equation

then by method of separation of parameters we get,

1 2
1 2

1 2 1 2

W ( ) ( ) W ( ) ( )
( ) and ( )

W( , ) ( ) W( , ) ( )

x b x dx x b x dx
u x u x

x xφ φ φ φ
= =∫ ∫

where,
2

3
1 1 2 2

W ( , ) ( ) ,
2

= =
x x

x
x x

e e
x e

e e
φ φ

2
2 –

1 – 2

0
( )W ( ) – sin ,

sin 2
= =

x
x x

x x

e
b x x e e

e e

–
2 –

0
( )W ( ) sin .

sin

x
x x

x x

e
b x x e e

e e
= =

Thus,     – – –
1( ) – sin – cosx x xu x e e dx e= =∫

and     
–2 – – – –

2( ) sin – sin cos= + = +∫ x x x x xu x e e dx e e e

[ Integrate above equation with the substitution t = e–x].

Then the general solution

1 1 2 2= + + pc cψ φ φ ψ

   2 – – – – 2
1 2 (– cos ) (– sin cos )x x x x x x x xc e c e e e e e e e= + + + +

   2 2 –
1 2 – sin .x x x xc e c e e e= +

(c) : The characteristic polynomial 2( ) 4 4p r r r= + +  has roots –2, –2 and therefore the two
linearly independent solution of the corresponding homogeneous equation are

–2 –2
1 2( ) , ( )x xx e x xeφ φ= =

(44)



Differential Equations

Let 1 1 2 2( ) ( ) ( ) ( )p u x x u x xψ φ φ= +  be a particular integral of the given differential equation

then by method of separation of parameters we get,

1 2
1 2

1 2 1 2

W ( ) ( ) W ( ) ( )
( ) , ( )

W( , )( ) W( , ) ( )

x b x dx x b x dx
u x u x

x xφ φ φ φ
= =∫ ∫

where,  
–2 –2

–2 –4
1 1 2 –2 –2

( ) 3 , W ( , ) ( ) ,
–2 (1– 2 )

φ φ= = =
x x

x x
x x

e xe
b x xe x e

e x e

   

–2
2 –4

1 –2 –2

0
( )W ( ) –3 ,

3 (1– 2 )
= =

x
x

x x

xe
b x x x e

xe x e

   

2
–4

2 –2 –2

– 0
( )W ( ) 3 .

–2 3
= =

x
x

x x

e
b x x xe

e xe

Thus,       
2 –4

3
1 –4

3
( ) – – and

x

x
x e

u x dx x
e

= =∫

 
–4

2
2 –4

3 3
( )

2
= + =∫

x

x

xe
u x dx x

e

Therefore
3 –2 3 –2

1 1 2 2
3

–
2

x x
p u u x e x eψ φ φ= + = +

 
3 –21

2
xx e=

The general solution

   
–2 –2 3 –2

1 2
1
2

= + +x x xc e c xe x eψ

Q.3. Find the general solution of

tan , – .
2 2
π π′′ + = < <y y x x

Ans :  The characteristic polynimial 2( ) 1p r r= +  has roots +i, –i and  the two linearly independent

solutions are

1 2( ) cos and ( ) sinφ φ= =x x x x

Let 1 1 2 2( ) ( ) ( ) ( ) ( )p x u x x u x xψ φ φ= +  be a particular integral of the given differential equation

then by method of separation of parameters we get,

1 2
1 2

1 2 1 2

W ( ) ( ) W ( ) ( )
( ) , ( )

W( , ) ( ) W( , ) ( )

x b x dx x b x dx
u x u x

x xφ φ φ φ
= =∫ ∫

where,         b(x) = tan x
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2

1 2 1
cos sin 0 sin sin

W( , ) ( ) 1, ( )W ( ) – ,
– sin cos tan cos cos

x x x x
x b x x

x x x x x
φ φ = = = =

  2
cos 0

( )W ( ) sin .
– sin tan

= =
x

b x x x
x x

Therefore         
2

1
sin

( ) – – log (sec tan ) sin
cos

x
u x dx x x x

x
= = + +∫

   2( ) sin – cosu x x d x x= =∫

and   2– cos log (sec tan ), –
2

= + < <p x x x x ππψ

The general solution

1 2 2 2( ) cos sin – cos log(sec tan ), –= + + < <y x c x c x x x x xπ π

Note. The formula for a particular a solution yp of L(y) = b(x) makes sense for some
discontinuous functions b (x). Then yp will be a solution of L(y) = b(x) at the continuity
points of b .

Q 4. Find a particular solution of the equation.

  ( ),y y b x′′ + =
Where,      ( ) –1 (– 0) ,

1 (0 ) ,
0 (1 1 ).

b x x
x

x

= Π ≤ <
= ≤ ≤ Π
= > Π

Ans :  Let us find out the particular solution of α′′ + =y y where a  is a constant.

The characteristic polynomial is 2( ) 1p r r= +  and has roots +i, –i. Therefore the basic

solutions (linearly independent solutions) are

   1 2( ) cos , ( ) sinx x x xφ φ= =

Let 
1 1 2 2( ) ( ) ( )p u x x u xψ φ φ= +  be a particular solution of the equation α′′ + =y y . By

method of separation of parameters we get,

  
1 2

1 2
1 2 1 2

W ( ) ( ) W ( ) ( )
( ) , ( )

W( , )( ) W( , ) ( )

x b x dx x b x dx
u x u x

x xφ φ φ φ
= =∫ ∫

where, 1 2
cos sin

W( , ) ( ) 1
– sin cos

x x
x

x x
φ φ = =

     1 2
0 sin cos 0

W ( ) – sin , W ( ) cos
1 cos – sin 1

x x
x x x x

x x
= = = =

Then,    1
1

1 2

W ( ) ( ) – sin
( ) cos

W( , ) ( ) 1
α α

φ φ
= = =∫ ∫

x b x dx x
u x dx x

x
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2
2

1 2

W ( ) ( ) cos
( ) sin

W( , )( ) 1
α α

φ φ
= = =∫ ∫

x b x x
u x dx dx x

x

The particular solution

   
1

2 2
1 2 2 cos sin= + = + =p u u x xψ φ φ α α α

Thus the general solution of α′′ + =y y  is

 
1 2cos sinψ α= + +c x c x

The general solution on the real line becomes

 

1 2

3 4

5 6

7 8

( ) cos sin ; – –

cos sin –1 ; – 0

cos sin 1 ; 0

cos sin ;

= + ∞ < <
= + ≤ <
= + + ≤ ≤

= + < < ∞

x c x c x x

c x c x x

c x c x x

c x c x x

ψ π
π

π
π

The continuity of y at  – , 0,=x π π  gives 1 3 3 5 5 7– – –1, –1 1, – 1 –= = + + =c c c c c c

Since we have three equations in 4 unknown, the particular solution yp will not be unique

e.g. choose *
3 1 1c c= +   and c2 = c4 = c6 = c8 = c

Then *
1 cos sin+c x c xis a complementary function or the solution of corresponding

homogenous equation 0y y′′ + =  and particular equation will be determined as follows.

If *
3 1 1= +c c  then *

1 3 11 2c c c= + = +
*

3 1 1c c= +
* *

5 3 1 1– 2 1– 2 –1c c c c= = + =
* *

7 5 1 1–1 –1–1 – 2c c c c= = =

Thus, the particular solution becomes

 ( ) 2cos –= ∞ < <x x xψ π
cos –1 – 0
– cos 1 0
–2cos

= ≤ <
= + ≤ ≤
= < < ∞

x x
x x
x x

π
π

π

If we choose *
3 1 2c c= +  then *

1 3 1

*
3 1

*
5 3 1

*
7 5 1

1 3,

2,

– 2 ,

–1 –1,

c c c

c c

c c c

c c c

= + = +

= +

= =

= =
and the particular solution becomes

 

( ) 3cos ; – –
2cos –1 ; – 0
1 ; 0
– cos ; .

= ∞ < <
= ≤ <
= ≤ ≤
= < < ∞

x x x
x x

x
x x

ψ π
π

π
π
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Thus, we can generate infinitely many particular solutions that are piecewise continuous.

Method of undetermined coefficients :

The method described sofar is called the method of variation of parameters. Although this
method yields a solution of the non-homogeneous equation it sometimes require more labor
than necessary. We now explain a method which is often faster than a method of variation of
parameters. This method is useful to solve the non-homogeneous equation  L (y) = b (x), when
b(x) is a solution of some homogeneous equation with constant coefficients. The procedure we
are about to describe is called the method of undetermined coefficients.

For the given different equation L (y) = b (x), suppose b(x) is a solution of some
homogeneous equation M (y) = 0 with constant coefficients. Then M (b(x)) = 0. If y is a solution
of L (y) = b (x) and M (b) = 0 then

[ ]( ) ( ) 0.M L M bψ = =

Therefore y is a solution of the homogeneous equation M (L(y)) = 0 with constant
coefficients. If the order of differential operator Lis n and that of M is m then M(L(y)) = 0 is a
homogeneous differential equation of order m + n and therefore there are m + n linearly
independent solutions of  M (L(x)) = 0. Since b(x) is a particular solution of  M (y) = 0 every
linear combination of these n + m linearly independent solution will not be a solution of
L (y) = b (x). Thus, to fine the solution of L (y) = b (x) we substitute the linear combination of
solutions into L (y) = b (x) and determine the set of coefficients other than the coefficients of the
solutions corresponding to the homogeneous equation L (y) = 0.

We give an example to show the usefulness of this method. Suppose we consider
2( ) – 3 2L y y y y x′′ ′= + =

Since 2( ) 0,x ′′′ = x2 is a solution of ( ) 0.M y y′′′= =
Every solution y of L (y) = x2 is a solution of

2( ( )) ( – 3 2 ) ( ) 0.M L y M y y y M x′′′ ′= + = =
But ( – 3 2 ) ( – 3 2 ) 0M y y y y y y′′′ ′ ′′′ ′ ′′′+ = + =

i.e. ( ) ( )– 3 2 0.v ivy y y′′′+ =

The characteristic polynomial of this equation is 5 4 3( ) – 3 2p r r y r= +  (just the product

of characteristics polynomials of L and M ). The roots of p (r) are 0, 0, 0, 1, 2 and hence y  must

have the form 2 2
0 1 2 3 4

x xc c x c x c e c eψ = + + + +  observe that 2
3 4

x xc e c e+ is a solution

of L (y) = 0.

Since we are interested only in particular solution y p of 2( ) ,L y x=  we can assume

2
0 1 2p c c x c xψ = + +

Since y p is a solution, it should satisfy the differential equation L (y) = x2.

    [ ] [ ]2
0 1 2 1 2 2( ) – 3 2 2 – 3 2 2p p p pL c c x c x c c x cψ ψ ψ ψ′′ ′  = + = + + + + 

2( )pL xψ =  gives 2 2
2 1 2 0 1 22 (2 – 6 ) (2 – 3 2 )c x c c x c c c x+ + + =
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Since the above equation should hold for all values of x, on equating the coefficients of
equal powers of x we get ,

2 1 2 0 1 22 1, 2 – 6 0, 2 – 3 2 0.= = + =c c c c c c

By solving these equations simultaneously we get,

  2 1 0
1 3 7

, , .
2 2 4

c c c= = =

Therefore,
27 3 1

4 2 2p x xψ = + +

 
21

(2 6 7)
4

x x= + +

is a particular solution of 2( )L y x=

and   2
3 4

x x
p c e c eψ ψ= + +

  
2 2

3 4
1

(2 6 7)
4

x xx x c e c eψ = + + + +  is a general solution of – 3y y′′ ′ +

22 .y x=
This method is also called as annihilator method since to solve L (y) = b (x), we find the

operator M which annihilates b(x). i.e. M (b (x)) = 0.

Once M has been found the problem becomes algebraic in nature.

EXAMPLES

Exp. 1. Using the annihilator method find a particular solution of each of the following
equations.

(a) 4 cosy y x′′ + = (b) 2 –– 4 3 4x xy y e e′′ = +

(c) 2– – 2 cosy y y x x′′ ′ = +

Ans. (a) : cos x is a solution of 0y y′′ + =  therefore

 ( )M y y y′′= +

   ( ) 4L y y y′′= +  therefore  [ ] [ ]( ( )) ( ) ( )M L y L y L y′′= +

    [ ]( ) ( 4 ) 4′′ ′′ ′′= + + +M L y y y y y

      ( ) 5 4′′= + +ivy y y

Thus, [ ( )] 0M L y =  implies ( ) 5 4 0.ivy y y′′+ + =

The characteristic polynomial of the above equation is

   4 2 2 2( ) 5 4 ( 4) ( 1)p r r r r r= + + = + +
The root of  p(r) are i, –i, +2i, – 2i and hence the solutions y have the form
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   1 2 3 4cos sin cos 2 sin 2= + + +c x c x c x c xψ

observe that 3 4cos2 sin 2c x c x+ is a solution of ( ) 4 0.L y y y′′= + = Since we are interested only

in particular solution yp of L (y) = cos x, we can assume

 1 2( ) cos sinp x c x c xψ = +

Since yp is a solution it should satisfy the differential equation 4 cos .y y x′′ + =

       1 2 1 24 – cos – sin 4( cos sin ) cosψ ψ′′ + = + + =p p c x c x c x c x x

On equation the coefficients of cosx and sin x we get

1 23 1, 3 0c c= =   i.e.  1 2
1

and 0
3

c c= =

Thus, particular solution 
1

cos
3p xψ =

Ans. (b) :  2 –3 4x xe e+  is a solution of (D – 2) (D – 1) = 0 i.e. – – 2 0.y y y′′ ′ =

Thus,  ( ) – – 2′′ ′=M y y y y. since ( ) – 4L y y y′′= , ( )( ( )) – 4ivM L y y y′′′=
– 6 4 8y y y′′ ′+ + .

The differential equation

( ) – 4 – 6 4 8 0ivy y y y y′′′ ′′ ′+ + =

has a characteristic polynomial 4 3 2( ) – 4 – 6 4 8.p r r r r r= + +  The roots of characteristic

polynomial are 2, 2, –1, –2.

The solution y has the form

  2 2 – –2
1 2 3 4( ) x x x xx c e c xe c e c eψ = + + +

Observe that 2 –2
1 4+x xc e c e  is a solution of the homogeneous equation L(y) = 0.

Since we are only interested in particular solution assume the solution

     2 2 –
1 2 3ψ = + +x x x

p c e c xe c e

Since yp is a particular solution is should satisfy the equation 2 –– 4 3 4′′ = +x xy y e e

    [ ] 2 –
1 2 32 (1 2 ) –′ = + + x x

p c x c e c eψ

   [ ] 2 –
1 2 34 (4 4 ) x x

p c x c e c eψ ′′ = + + +

  [ ] 2 –
1 2 1 2 3– 4 4 (4 4 ) – 4 – 4 – 3x x

p p c x c c xc e c eψ ψ′′ = + +

But yp satisfies 2 –– 4 3 4x xy y e e′′ = +

Therefore [ ] 2 – 2 –
2 34 – 3 3 4x x x xc e c e e e= +

By comparing coefficient of e2x and e–x we get 4c2 = 3 and  –3c3 = 4
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Thus,   2 2 – –2
1 4

3 4
–

4 3
x x x xc e xe e c eψ = + +  and particular integral

2 –3 4
– .

4 3
x x

p xe eψ =

Ans. (c) : 2 cosx x+  is a solution of 3 2( 1) 0D D y+ =  i.e. ( ) 0.vy y′′′+ =  Thus ( )( ) vM y y y′′′= +
( ) – – 2L y y y y′′ ′=

Therefore [ ] [ ] [ ]( )
( ) – – 2 – – 2

v
M L y y y y y y y′′′′′ ′ ′′ ′= +

 (7) (6) (5) (4)– – – – 2 0.y y y y y′′′= =

The differential equation [ ]( ) 0M L y =  has a characteristic polynomial 7 6( ) –p r r r=
5 4 3– – – 2r r r .

The roots of characteristic polynomial are 
1 5 1– 5

0, 0, 0, , – , and
2 2

i i
+

.

The solution y  must have the form

  
1 5 1– 5

2 22
0 1 2 3 4 5 6( ) cos sinψ

   +
      
   

= + + + + + +
x x

x c c x c x c x c x c e c e

The expression  

1 5 1– 5

2 2

5 6

   +
      
   

+
x x

c e c e is a solution of the homogeneous equation

( ) – – 2 0.L y y y y′′ ′= =
Since we are interested in particular solution assume the solution

     2
0 1 2 3 4cos sinp c c x c x c x c xψ = + + + +

The problem is to determine the constants c0, c1, c2, c3, c4 so that 2( ) cos .pL x xψ = +

    1 2 3 42 – sin cosp c c x c x c xψ ′ = + +

    2 3 42 – cos – sinp c c x c xψ ′′ =

( ) – – 2p p p pL ψ ψ ψ ψ′′ ′=

 2
2 1 0 1 2 2 3 4(2 – – 2 ) – (2 2 ) – 2 – (3 )cosc c c c c x c x c c x= + +

3 4( – 3 )sinc c x+

 2 cosx x= +
Thus,   2 1 0 1 2 2 3 42 – – 2 0, 2 2 0, – 2 1, 3 –1c c c c c c c c= + = = + =  and 3 4– 3 0=c c

Simulataneous evaluation of above equation gives

  2 1 0 3 4 4 3
1 1 3 1 3

– , , – , 3 , – , –
2 2 4 10 10

c c c c c c c= = = = = =

Therefore
23 1 1 3 1

– – – cos – sin
4 2 2 10 10p x x x xψ = +
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EXERCISE

Exp. 1. Use the method of variation of parameters and find the general solution of each of
the following equation.

(a) 2– siny y x′′ = (b)  4 sin′′ + =y y x x

(c)  3 2 12 xy y y e′′ ′+ + = (d)  2 –2′′ ′+ + = xy y y x e

(e) 4 cosy y x′′ + = (f)  9 sin 3y y x′′ + =

(g)  – 7 6 siny y y x′′ ′ + = (h)  4 – xy y e′′ =

(i) 6 5 – 6y y y x′′ ′+ =

Exp. 2. Find the particular solution of each of the following equation using the method of
undetermined coefficients.

(a)  24 4 4 6 xy y y x e′′ ′+ + = + (b)  3– 3 2 2 3sinxy y y xe x′′ ′ + = +

(c)  –24 4 3 xy y y xe′′ ′+ + = (d)  –– 3 2 6 xy y y e′′ ′ + =

Ans.(1): (a)  
– 2

1 2
1 2

– sin –
5 5

x xy c e c e x= + (b) 2
1 2cos sin – cos sinc x c x x x x x+ +

(c)  –2 –
1 2 2x x xc e c c e+ + (d)  

4 –
– –

1 2 12

x
x x x e

c e c xe+ +

(e)  1 2
1

cos2 sin 2 cos
3

c x c x x+ + (f)  1 2
1

cos3 sin 3 – cos3
6

c x c x x x+

(g)  
6

1 2
1

(7cos 5sin )
74

x xc e c e x x+ + + (b)  
–

2 2
1 2

1
3

x x
xc e c e e+ +

(i)  
2 3

–
3 2

1 2
1 5

– – .
6 36

x x

c e c e x+

Ans.(2): (a)  
2 3 2

– 2
2 3

xx x e+ + (b)  
3 33 3 9

– sin cos
2 10 10

x xxe e x x+ +

(c)  
3 –21

2
xx e (e)  –xe

S
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Linear Equations with
Variable Coefficients

Chapter 2

Contents :

Unit 1 : Homogenous equations with variable coefficients.
 (a) Initial value problems for the homogeneous equation.
 (b) Solution�s of homogenous equation
 (c) Reduction of an order of a homogeneous equation

Unit 2 : Basis
 (a) Linear independence and Wronskian
 (b) Solution of non-homogeneous equations

Unit 3 : Homogenous equations with analytic coefficients.

Introduction
Solutions to linear equations with variables coefficients are necessary to analysis most of

the situations in science and technology. In the last chapter we have studied linear equations
with constant coefficients. In this chapter we are going to study linear equations with variable
coefficients. There is no standard procedure to find all possible solutions of a given equation.
However it is possible to construct series solution if the coefficient functions and the control
function are analytic on some open set.

Unit 1 : Homogeneous equations with variable coefficients.

A linear differential equation of order n with variable coefficients is an equation of the

form ( ) ( –1) ( –2)
0 1 2( ) ( ) ( ) ..... ( ) ( ),n n n

na x y a x y a x y a x y b x+ + + + = where 0 1 2, , , ...., ,na a a a b

are  complex valued functions defined on some interval I ⊂  R. Points where a0 (x) = 0 for x in
I are called singular points. In this chapter we assume that a0 (x) ¹ 0  on I. Since a0 is non-zero
we can divide the equation by a0 and rename functions ai (x) / a0 (x) by new ai(x) and b (x) /
a0 (x) as new b(x). Then above equation can be written as

( ) ( –1) ( –2)
1 2 ..... ( )+ + + + =n n n

ny a y a y a y b x

In this chapter we denote the left hand side of the above equation by an operator L. Thus,

( ) ( –1) ( –2)
1 2( ) ( ) ( ) .... ( )n n n

nL y y a x y a x y a x y= + + + +  and the equation becomes L(y) = b (x).

If b(x) = 0 for all x in I we call equation L(y) = 0 a, homogeneous equation whereas if
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b(x) ¹ 0 for some x in I, the equation is called a non-homogeneous equation.

A function f is a solution of L(y) = 0 on I if f is n times differentiable and satisfies
L(f ) = 0 for all x in I.

Most of the results we developed in chapter I are valid in more general case we are now
considering. The major difficulty with linear equations with variable coefficients, from a practical
point of view, is that there are very few types of equations whose solutions can be expressed in
terms of elementary functions and for which standard method of obtaining them, if they do
exist, are available. However, in case a1, a2, a3,..... an have convergent power series expansions
the solutions will have this property also and the series solutions can be obtained by a simple
formal procedure. But there is no analogue of the theorem 1.3.1 of chapter I, which gives a
procedure to find all possible solutions of given equation.

A.  Initial value problems for the homogeneous equation

Although in many cases it is not possible to find the solution, we can prove that if the

functions ( ), 1, 2, 3,.....ia x i n=  are continous functions then there is a solution to L(y) = 0.
Moreover if we know the initial values of the solution and its derivatives then the solution is
unique.

Theorem 2.1.1 :

Let  1 2 3, , , ...., nb b b b  be non-negative  constants such that for all x in I

| ( ) | 1, 2, 3, ....,i ia x b i n≤ =  and define k by

1 2 31 .... .nk b b b b= + + + + +
If x0 is a point in I and f  is a solution of L(y) = 0 on I then

0 0– | – | | – |
0 0|| ( ) || || ( ) || || ( ) ||≤ ≤k x x k x xx e x x eφ φ φ  for all x in I.

Proof : The proof of this theorem is similar to the proof of theorem 1.3.3.

Let      2 2 2 2 ( –1) 2( ) || ( ) || | | | ( ) | | | .... | |φ φ φ φ φ′ ′′= = + + + + nu x x x

   ( ) ( –1) ( –1) ( –1)....′ ′ ′′ ′′= + + + + +n n n nφ φ φ φ φ φ φ φ φ φ

Hence   ( ) ( –1) ( –1) ( )( ) ....φ φ φ φ φ φ φ φ φ φ φ φ′ ′ ′ ′′ ′ ′ ′′= + + + + + +n n n nu x

Therefore   ( –1)| ( ) | 2 | || | 2 | || | 2 | || | .... 2 | || |n nu x φ φ φ φ φ φ φ φ′ ′ ′ ′′ ′′ ′′′≤ + + + +

(for any complex variable z, | | | |z z= )

Since f  is solution of  L(y) = 0,

( ) ( –1) ( –2) ( –3)
1 2 3– ( ) – ( ) – – ..... –φ φ φ φ φ=n n n n

na x a x a a

( ) ( –1) ( –2) ( –3)
1 2 3| ( ) | | ( ) || ( ) | | ( ) || | ( ) | | .... | || |φ φ φ φ φ≤ + + + +n n n n

nx a x x a x a x a

For all x in I, | ( ) | , 1, 2, 3,.....,i ia x b i n≤ =  and therefore

( ) ( –1) ( –2) ( –3)
1 2 3| ( ) | | | | | | | .... | |φ φ φ φ φ≤ + + + +n n n n

nx b b b b

and | | 2 | || | 2 | || | 2 | || | .....′ ′ ′ ′′ ′′ ′′′≤ + + +u φ φ φ φ φ φ
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( –2) ( –1) ( –1) ( –1) ( –2)
1 22 | || | 2 | | | | | | .... | |φ φ φ φ φ φ + + + + + 

n n n n n
nb b b

The rest of the proof is on the same lines as that of theorem 1.3.3.

2 2 2(| | – | |) 0 2 | || | | | | |a b a b a b ≥ ⇒ ≤ + 
2 2 2 2 ( –2) 2 ( –1) 2| ( ) | (| | | | ) (| | | | ) ..... (| | | | )′ ′ ′ ′′≤ + + + + + +n nu x φ φ φ φ φ φ

( –1) 2 ( –1) 2 ( –1) 2 ( –2) 2
1 2(| | | | ) (| | | | ) ....+ + + + +n n n nb bφ φ φ φ

( –1) 2 2(| | | | )n
nb φ φ+ +

2 2 ( –2) 2
–1 2(1 ) | | (2 ) | | .... (2 ) | |n

n nb b bφ φ φ′≤ + + + + + +
( –1) 2

1 2 3(1 2 .... )| |n
nb b b b φ+ + + + + +

Since each coefficient on the right hand side is less than 2 k we have

| ( ) | 2 ( )′ ≤u x k u x

Consider the right inequality which can be written as
( ) – 2 ( ) 0.′ ≤u x k u x

Integrate above inequality from x0 to x with x > x0.

0–2–2
0( ) – ( ) 0k xkxe u x e u x ≤

or 02 ( – )
0( ) ( )k x xu x e u x≤

02 ( – )2 2
0|| ( ) || || ( ) ||k x xx e xφ φ≤

i.e. 0( – )
0|| ( ) || || ( ) ||k x xx e xφ φ≤

Similarly –2 ( ) ( )k u x u x′≤  gives

0– ( – )
0 0| ( ) || || ( ) || , ( )≤ >k x xx e x x xφ φ

and therefore

0 0– ( – ) ( – )
0 0 0|| ( ) || || ( ) || || ( ) ||, ( )≤ ≤ >k x x k x xx e x e x x xφ φ φ

If x < x0 repeat the same procedure and integrate the inequality from x to x0. We get

0 0– ( – ) – ( – )
0 0 0|| ( ) || || ( ) || || ( ) || ( )≤ ≤ <k x x k x xx e x x e x xφ φ φ

which is the required inequality for x < x0.

Observe that if interval I is closed and bounded interval and if ai(x) are continuous functions
on I then these functions are bounded. [continuous function on closed and bounded intervals is
bounded and the function attains it bounds ]. Since aj (x) are bounded functions on I, there

always exist finite constants bj such that | ( ) |j ja x b≤  for j = 1, 2, 3, ...., n.

Theorem 2.2.1  : (Uniqueness theorem)
Let x0 be in I and let 1 2 3, , ,....,α α α αn  be any n constants. There is at most one solution f

of L(y) = 0 on I satisfying
( –1)

0 1 0 2 0 3 0( ) , ( ) , ( ) ,....., ( ) .φ α φ α φ α φ α′ ′′= = = =n
nx x x x
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Proof : Let x be any point in I other than x0. Let J be closed and bounded interval in I containing
x0 and x. On the interval J continuous functions aj (x) are bounded, that is,

| ( ) | ( 1, 2, 3,...., ),j ja x b j n≤ =

for some constants bj (These constants bj may depend on the choice of J ⊂  I ).

Suppose f  and y are two solutions of L(y) = 0 on J satisfying the given initial conditions

i.e. ( –1) ( –1)
0 0 1 0 0 2 0 0( ) ( ) , ( ) ( ) ,......, ( ) ( )φ ψ α φ ψ α φ ψ α′ ′= = = = = =n n

nx x x x x x . Define

q  = f  – y in J. Since f  and y satisfy L(y) = 0. 0 0 0( ) ( ) – ( ) 0,x x xθ φ ψ= = and ( ) ( ) 0φ ψ= =L L

therefore by linearity L(q) = 0.  q (x0) = f (x0) – y (x0) = 0similarly 0 0( ) ( ) .....′ ′′= =x xθ θ
( –1)

0( ) 0.= =n xθ  but 2 2 2 2
0 0 0 0|| ( ) || | ( ) | | ( ) | | ( ) |x x x xθ θ θ θ′ ′′= + + +  ( –1) 2

0.... | ( ) | 0.n xθ+ =

Applying theorem 2.1.1 we obtain || ( ) || 0xθ =  for all x in J. In particular q (x) = 0 for all x in J

⊂  I. But x is any point in I and therefore q (x) = 0 for  every x in I. This proves that  ( ) ( )x xφ θ=
for every x in I.

Here we state existence theorem without proof.

Theorem 2.1.3  : (Existence Theorem)

Let 1 2 3( ), ( ), ( ),....., ( )na x a x a x a x  be continuous functions on an interval I containing the

point x0. If 1 2, ,...., nα α α  are any n constants, there exists a solution f of

( ) ( –1) ( –2)
1 2( ) ( ) ( ) ..... ( ) 0= + + + + =n n n

nL y y a x y a x y a x y  on I satisfying

( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,......, ( ) .φ α φ α φ α φ α′ ′′= = = =n

nx x x x

(B) Solutions of  homogeneous equation

Superposition principle :

If  1 2 3, , ,....,φ φ φ φm are any m solutions of the L(y) = 0 on an interval I and c1, c2,c3,..., cm

are any m constants then 1 1 2 2 3 3 ..... m mc c c cφ φ φ φ+ + + +  is also a solution of L(y) = 0.

The trivial solution is a function which is identically zero on I.

Theorem 2.1.4
There exist n linearly independent solutions (definition 1.3) of L(y) = 0 on I.

Proof : Let x0 be a point in I. According to theorem 2.1.3 and theorem 2.1.2, there is a unique
solution of L(y) = 0 satisfying given initial conditions at x0.

Let f 1 be a solution of L(y) = 0 satisfying

( –1)
1 0 1 0 1 0 1 0( ) 0, ( ) 0, ( ) 0,......, ( ) 0′ ′′= = = =nx x x xφ φ φ φ

Let f 2 be a solution of L(y) = 0 satisfying

( –1)
2 0 2 0 2 0 2 0( ) 0, ( ) 1, ( ) 0,......, ( ) 0nx x x xφ φ φ φ′ ′′= = = =

In general Let f i be a solution of L(y) = 0 with
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( –1) ( –2) ( ) ( –1)
0 0 0 0 0 0( ) 1, and ( ) ( ) ...... ( ) ( ) ...... ( ) 0φ φ φ φ φ φ′= = = = = = =i i i n

i i i i i ix x x x x x

i.e.     ( –1) ( )
0 0( ) 1, and ( ) 0, 1, 2, 3,....., –1, –1.φ φ= = = ≠i k

i ix x k n k i

We will prove that these solutions 1 2 3, , ,...., nφ φ φ φ  are linearly independent on I. Suppose

there are constants c1, c2, c3,..... cn such that

1 1 2 2 3 3( ) ( ) ( ) ..... ( ) 0n nc x c x c x c xφ φ φ φ+ + + + =  for all x in I.

Differentiating above equation (n – 1) times we get,

1 1 2 2 3 3( ) ( ) ( ) ..... ( ) 0n nc x c x c x c xφ φ φ φ′ ′ ′ ′+ + + + =

 1 1 2 2 3 3

( –1) ( –1) ( –1) ( –1)
1 1 2 2 3 3

( ) ( ) ( ) ..... ( ) 0

( ) ( ) ( ) ..... ( ) 0

n n

n n n n
n n

c x c x c x c x

c x c x c x c x

φ φ φ φ

φ φ φ φ

′′ ′′ ′′ ′′+ + + + =

+ + + + =
M M M M

Above equations hold for all values of x in I.

In particular these equations are true for x = x0.

Since ( –1)
0( ) 0 for 1, 2, 3,....., ,j

i x j n j iφ = = ≠  and  ( –1)
0( ) 1 for we get= =i

i x j iφ

1 2 3.1 .0 .0 .... .0 0nc c c c+ + + + =

1 2 3.0 .1 .0 .... .0 0nc c c c+ + + + =
In general

1 2 –1 1.0 .0 .... .0 .1 .0 ..... .0 0i i i nc c c c c c++ + + + + + + =

Thus, ci =  0 for i = 0, 1, 2, 3,...., n and therefore solutions 1 2 3, , ,...., nφ φ φ φ  are linearly
independent.

(C) Reduction of  order of  a homogeneous equation

Suppose we have found one solution of the equation 1 2( ) ( ) ( ) 0L y y a x y a x y′′ ′= + + =
then by using the variation of constants method we can reduce L(y) = 0 into  a linear differential
equation of order one and obtain the second solution of the differential equation.

Theorem 2.1.5

If f1(x) is a solution of 1 2( ) ( ) ( ) 0′′ ′= + + =L y y a x y a x y  on an interval I and f1(x) ¹ 0 on

I, the second solution f2 (x) is given by

0 0

2 1 12
1

( ) ( ) exp – ( ) .
[ ( )]

x s

x x

x x a t dt ds
s

φ φ
φ

 1  =
  

∫ ∫

The functions f1 and f2 are linearly independent.

Proof : Since f1 is a solution of L(y) = 0, L(f1) = 0.

Let 2 1( ) ( ) ( )x u x xφ φ=  be second solution of L(y) = 0.

2 1 1 1 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.L L u u a x u a x uφ φ φ φ φ′′ ′= = + + =

i.e. 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( )′ ′′′′ ′+ +u x x u x x u x xφ φ φ
(57)
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1 1 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) 0. ′ ′+ + + = a x u x x u x x a x u x xφ φ φ

Since 1 1 1 1 2 1( ) ( ) ( ) 0,L a x a xφ φ φ φ′′ ′= + + =

[ ]1 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0′′′ ′ ′+ + =u x x u x x a x u x xφ φ φ

Thus, 1 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( ) 0.φ φ φ ′′′ ′+ + = x u x x a x x u x

If v = u¢   then above equation is linear equation of order one and can always be solved

explicitly provided 1( ) 0xφ ≠  on I.

1 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( ) 0φ φ φ ′′ + + = x v x x a x x v x

1
1

1

2 ( )( )
( ) 0

( ) ( )

φ
φ

 ′′
+ + = 

  

xv x
a x

v x x

On integrating above equation between the limits x0 to x, we get

0

1
0 1

1

2 ( )
log ( ) – log ( ) ( ) dt 0

( )

φ
φ

 ′
+ + = 

  
∫
x

x

t
v x v x a t

t

[ ]
0

0 1 1 0 1log ( ) – log ( ) 2 log ( ) – log ( ) ( ) 0.
x

x

v x v x x x a t dtφ φ+ + =∫

0

2
1

12
0 1 0

( ) ( )
log – ( )

( ) ( )

x

x

v x x
a t dt

v x x

φ
φ

= ∫

 
1

0

0

– ( )2
1

12
0 1 0

( ) ( )
exp – ( )

( ) ( )

x

x

a t dt x

x

v x x
e a t dt

v x x

φ
φ

∫  
 = =
  

∫

i.e.  
0

2
0 1 0

12
1

( ) ( )
( ) exp – ( )

( )

x

x

v x x
v x a t dt

x

φ
φ

 
 =
  

∫

But 2
0 1 0( ) ( )φv x x  are the values of 2

1( ) ( )φv x x  evaluated at point x0 and therefore is constant

Let 2
0 1 0( ) ( ), thenc v x xφ=

0

12
1

( ) exp – ( )
( )

x

x

c
v x a t dt

xφ

 
 =
  

∫

But ( ) ( )v x u x′=  and therefore

    
0

12
1

( ) exp – ( ) .
( )

 
 =
  

∫ ∫
x s

x

c
u x a t dt ds

sφ

Since,    2 1( ) ( ) ( )φ φ=x u x x  we get the required result.

We can generalize above theorem for linear differential equation
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   ( ) ( –1) ( –2)
1 2( ) ( ) ( ) ..... ( ) 0.n n n

nL y y a x y a x y a x y= + + + + =

Theorem 2.1.6 :

Let 1φ be a solution of L(y) = 0 on an interval I and suppose 1( ) 0xφ ≠  on I. Then we can

reduce the order of equation L(y) = 0 by one. If v2, v3,...., vn are linearly independent solutions of

the reduced differential equation of order n – 1 and if ,′=k kv u  k = 1, 2, 3,..., n, then

1 1 1 2 2, , ,....,φ φ φ φn nu u u  are linearly independent solutions of L(y) = 0 on I.

Proof : Let 1φ  be solution of L(y) = 0 on I. we try to find a solution f of L(y) = 0 of the form

1( ) ( ),u x xφ φ=  where u(x) is n times differentiable function defined on an interval I. If

1( ) ( ) ( )x u x xφ φ=  is a solution of L(y) = 0 then  1( ( ) ( )) 0L u x xφ = .

( ) ( –1) ( –2)
1 1 1 1 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ..... ( ) 0n n n

nL u u a x u a x u a uφ φ φ φ φ= + + + + =

   ( ) ( –1) ( )
1 1 1.....n n nu nu uφ φ φ′= + + +

( –1) ( –2) ( –1)
1 1 1 1( ) ( –1) ....n n na x u n u uφ φ φ ′+ + + + 

( –2) ( –3) ( –2)
2 1 1 1( ) ( – 2) ....φ φ φ ′+ + + + 

n n na x u n u u

 +......

–1 1 1 1 1 0n na u u a uφ φ φ ′′+ + + ⋅ = 

The coefficient of u in the above expression is ( ) ( –1) ( –1)
1 1 1 2 2( ) ( )n n na x a xφ φ φ+ + +

1 1.... ( ) 0.Lφ φ+ = =  Therefore the right hand side of above equation consists of ( ), , ,...., nu u u u′ ′′ ′′′
Therefore if we substitute v = u¢  then the above equation becomes a linear homogeneous equation
of order n – 1 in v.

( ) ( –1) ( –1) ( –2)
1 1 1 1 1 1 1 –1 1( ) .... ( –1) ( ) .... 0n n n n

nu n a x u n n a x a uφ φ φ φ φ φ ′   ′+ + + + + + + =  
Since  ( ) ( )v x u x′=  we get

( –1) ( –2) ( –1) ( –2)
1 1 1 1 1 1 1 –1 1( ) .... ( –1) ( ) .... 0n n n n

nv n a x v n n a x a vφ φ φ φ φ φ ′  + + + + + + + =  

Since, 1( ) 0xφ ≠  on I we can divide above equation byf1. Thus, we can reduce the order of

differential equation by one. Suppose v2, v3, v4,..., vn are linearly independent solutions of the
differential equation in v of order n – 1. Then

( –1) ( –2) ( –1) ( –2)
1 1 1 1 1 1 1 –1 1.... ( –1) .... 0n n n n

k k n kv n a v n n a a vφ φ φ φ φ φ ′  + + + + + + + =  

But then ( ) ( ) for     2,3,4,....,k kv x u x k n′= =

and
0

( ) ( ) 2, 3, 4,....,
x

k k
x

u x v t dt k n= =∫

(59)



Differential Equations

But then by assumption 1( ) ( )ku x xφ  is a solution of L(y) = 0. Thus the functions

1 2 1 3 1 1, , ,.....,φ φ φ φnu u u  are solutions of L(y) = 0. These functions  are linearly independent.

Suppose we have constants c1, c2, c3,...., cn such that

1 1 2 2 1 3 3 1 1..... 0+ + + + =n nc c u c u c uφ φ φ φ

Since, 1( ) 0xφ ≠  on I this implies

1 2 2 3 3 .... 0n nc c u c u c u+ + + + =
Differentation above equation and substituting

k ku v′ =  for k = 2, 3,...., n   we get

2 2 3 3 4 4 .... 0.n nc v c v c v c v+ + + + =

Since v2, v3, v4,....., vn are linearly independent by definition 1.3 we get 2 3 4c c c= = =

..... 0nc= =  and therefore c1 = 0. Thus 1 2 1 3 1 1, , ,.....,φ φ φ φnu u u  are linearly independent solutions.

EXAMPLES

Q. 1. Consider the equation

2
1 1

– 0 for 0.′′ ′+ = >y y y x
x x

(a)   Show that there is a solution of the form xr, where r is a constant.

(b)  Find two linearly independent solutions for x > 0 and prove that they are linearly
independent.

(c)  Find the two solutions f1, f2 satisfying

1 2

1 2

(1) 1 ; (1) 0

(1) 0 ; (1) 1

φ φ

φ φ

= =
′ ′= =

Ans (a) :

Let ( ) rx xφ = be a solution to 2
1 1

( ) – 0L y y y y
x x

′′ ′= + =  Since f  is a solution

L(y) = 0.

Therefore  –2 –2 –2( –1) – 0+ =r r rr r x r x x

that is 2 –2( –1) 0 for      0rr x x= >

Thus,  2 –1 0 or  1, –1.r r= = +

Therefore 1 2
1

( ) and    ( )x x x
x

φ φ= =  are two solutions of  L(y) = 0.

Ans (b) :

Let 1 1 2 2 0c cφ φ+ = then 2
1 0

c
c x

x
+ = . Differentiate this equation twice with respect to
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x we get 2
3

2
0=c

x
 implies c2 = 0 and therefore c1 = 0. Thus, f1 and f2 are linearly independent.

Ans (c) :

1 1 2
1

( )φ = +x c x c
x

1 1(1) 1 and (1) 0′= =φ φ  gives

  1 2 1 21 at 1 i.e.    1c x c x c c
x
1+ = = + =

    
2

1 1 22
– 0 at 1 i.e.    – 0= = =c

c x x c c
x

Thus,      1 2 1
1 1 1

and ( )
2 2

φ  = = = +  
c c x x

x

Let,     2 1 2
1

( )x d x d
x

φ = +

     2 2(1) 0 and      (1) 1 givesφ φ ′= =

 1 2 1 2 1 2
1 1

0 and      d – 1. Then       and      –
2 2

d d d d d+ = = = =

 2
1 1

and    ( ) – . 
2

x x
x

φ  =   
Q. 2. Find two linearly independent solutions of the equation

2 1
(3 –1) (9 – 3) – 9 0 for

2
x y x y y x′′ ′+ = >

Ans. :          Put    3 –1 then 3
dy dy dt

t x y
dx dt dx

= = ⋅ = ⋅&

where  .  represents derivative with respect to t.

   
2

2
3 (3 ) 3 3 9= = ⋅ = = ⋅ =& & && &&

d y dyd d d dt
y y y y

dx dx dx dt dxdx

Therefore 29 9 – 9 0t y t y y+ =&& &

or 2 – 0t y ty y+ =&& &

Let y = tr be a solution then

( –1) – 0++ =r r rr r t rt t   implies 2( –1) 0.=rr t
But t > 0 therefore r = +1, –1

and 1( )t tφ = and 2
1

( )t
t

φ =  are solutions

But  t = 3x – 1 and therefore

1( ) 3 –1=x xφ  and 2
1

( )
3 –1

φ =x
x

 are two solutions of given equation.
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1 1 2 2( ) ( ) 0c x c xφ φ+ =  implies 2
1(3 –1) 0

3 –1
c

c x
x

+ =

On differentiating this equation two times with respect to x we get 2
2

18
– 0

(3 –1)
=c

x
 and

therefore c2 = 0. Since  3x – 1 ¹ 0, c1 = 0.

Thus f1 and f2 are linearly independent.

Q. 3. A differential equation and a function f1 are given in each of the following. Verify
that the function f1 satisfies the equation and find a second independent solution.

(a)   2 3
1– 7 15 0, ( ) , ( 0)x y xy y x x xφ′′ ′ + = = >

(b)  1– ( 1) 0, ( ) , ( 0)xxy x y y x e xφ′′ ′+ + = = >

(c)  2
1(1– ) – 2 2 0, ( ) , (0 1)φ′′ ′ + = = < <x y xy y x x x

Ans (a) : 3 2
1 1 1( ) , ( ) 3 , ( ) 6φ φ φ′ ′′= = =x x x x x x

2 2 2 3
1 1 1 1( ) – 7 15 (6 ) – 7 (3 ) 15 0.′′ ′= + = + =L x x x x x x xφ φ φ φ

Since 1 1( ) 0,L φ φ=  is a solution of L(y) = 0

To determine the second solution, since x > 0, we can divide the given equation by x2.

Consider 
2

7 15
– 0.y y y

x x
′′ ′ + =

 Let 3
1( ) ( ) ( ) ( )x u x x x u xφ φ= = be a solution. Then 

3 3 3
2

7 15
( ( )) – ( ) ( ) 0x u x x u x u

x x
′′ ′ + =

gives 3 2 3 2 3
2

7 15
( 6 6 ) – ( 3 ) ( ) 0u x x u xu x u x u x u

x x
′′ ′ ′+ + + + =  or 

3 2 26 – 7 0u x x u x u′′ ′ ′+ =

i.e.   
1

– 0
u

u x u
u x

′′′′ ′ = ⇒ =
′ (Integrate with respect to x)

                log  log log′ ′= + ⇒ =u x k u k x

But then 
2

Let 2 Then
2
x

u k k= = 2 3 5
1( ) ( ) ( ) ( )φ φ= = =x u x x x x x  is the

second solution independent of f1 as 3 5
1 2 0c x c x+ =  implies 1 2 0.c c= =

Ans (b) : 1 1 1( ) ( ) ( )xx e x xφ φ φ′ ′′= = =  Let 
1 1

( ) – (1 ) 0′′ ′= + + =L y y y y
x x

. (We can divide the

given equation by x as x > 0.)

  1 1
1 1

( ) – (1 ) 0x x xL e e e
x x

φ φ= + + = ∴  is a solution.

To determine second solution, let 1( ) ( ) ( )x u x xφ φ=  be a solution then by theorem 2.1.5

12
1

1
( ) exp – ( )

( )φ
 =   ∫ ∫

x
u x a t dt dx

x
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–2 1

exp 1
  = + +    

∫ ∫xe dx dx
x

   –2 exp[ log ]xe x x dx= +∫
   –2 –= =∫ ∫x x xe xe dx xe dx = – (1 + x) e–x

Thus, f2 (x) = – (1 + x) is a second solution of the equation L(y) = 0

–
1 1 2 2 1 2 1 2( ) ( ) (–1) (1 ) 0 (–1) (1 ) 0x xc x c x c e c x c c x eφ φ+ = + + = ⇒ + + =

But then c2 = c1 = 0 therefore f1 and f2 are linearly independent solutions.

Ans (c) : 1 1 1( ) , ( ) 1, ( ) 0.′ ′′= = =x x x xφ φ φ  Let 
2 2

22
( ) – 0.

1– 1–

yx
L y y y

x x
′′ ′= + =

1 2 2
2 2

( ) 0 – 1 0.
1– 1–

x x
L

x x
φ = + =  Therefore  f1 is a solition L(y) = 0. To determine

second solution, let f2(x) = u (x)f1(x) be a solution of L(y) = 0.

By Theorem 2.1.5.

12
1

1
( ) exp – ( )

φ
 =   ∫ ∫

x
u x a t dt dx

   2 2 2 2

–21 1 1
exp –

1– 1–

x t dt
dx dx

x t x x

 = =  
∫ ∫ ∫

   2 2 2
1 1
2 1– 2 1(1– )

dx dx dx dx
x xx x x

= = + +
+∫ ∫ ∫ ∫

   
–1 1 1

– log .
2 1–

x
x

x
+ = +   

Then 2 1
1

( ) ( ) ( ) –1 log
2 1–
x x

x x u x
x

φ φ + = = +   
 is a second solution.

Q. 4. One solution of 3 2– 3 – 6 – 6 0x y x y xy y′′′ ′′ ′ =  for x > 0 is f1 (x) = x find the remaining
two independent solutions for x > 0.

Ans  :  Let f  = xu be a solution of L (y) = 0. Then , 2 ,xu u xu uφ φ φ′ ′ ′′ ′′ ′ ′′′= + = +  3′′′ ′′= +xu u .

3 2( ) ( 3 ) – 3 ( 2 ) 6 ( ) – 6 0φ ′′′ ′′ ′′ ′ ′= + + + + =L x xu u x xu u x xu u xu  implies 4 0.′′′ =x u  Since

0, 0′′′≠ =x u gives 2
1 2 .= +u c x c x  Thus u = x  and u = x2 are two linear independent

solutions of 0′′′ =u . But f = xu  is a solution. Therefore 2
2( )x xφ =  and 3

3( )x xφ =  are

remaining two linearly independent solutions.
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Q. 5. Consider the equation 1 2 3( ) ( ) ( ) ( ) 0.L y y a x y a x y a x y′′′ ′′ ′= + + + =  Suppose f1 and f2

are given linearly independent solutions of L (y) = 0.  Let f  = uf1  and compute the

solution of order two satisfied by u¢  in order that L (f ) = 0. Show that 2

1

φ
φ

′ 
 
 

is a

solution of this equation of order two.

Ans (c) : Let f  = uf1 be a solution of L(y) = 0.

     1 1 1 1 1 1 1 1 1, 2 , 3 3φ φ φ φ φ φ φ φ φ φ φ φ′ ′′ ′ ′′ ′ ′′ ′′′′ ′ ′′ ′ ′′′ ′′′ ′′ ′= + = + + = + + + +u u u u u u u u u

  1 1 1 1 1 1 1 1( ) 3 3 ( ) 2φ φ φ φ φ φ φ   ′ ′′ ′′′ ′ ′′′′′ ′′ ′ ′′ ′= + + + + + +   L y u u u u a x u u u

2 1 1 3 1( ) ( ) 0.φ φ φ ′′+ + + = a x u u a x u

Since f1 is a solution 1 1 1 2 1 3 1 0.a a aφ φ φ φ′′′ ′′ ′+ + + =

1 1 1 1 1 1 2 1( ) 3 3 ( ) 2 ( ) 0.L y u u u a x u u a x uφ φ φ φ φ φ ′ ′′ ′′′′ ′′ ′ ′′ ′ ′= + + + + + = 

   1 1 1 1 1 1 1 2 13 ( ) 3 2 0u a x u a a uφ φ φ φ φ φ   ′ ′′ ′′′′ ′′ ′= + + + + + =   

Thus, L(y) = 0 is an equation of order two in 2

1

.
′ ′  

 
u

φ
φ

is a solution of 1( )L v vφ ′′=

1 1 1 1 1 1 2 13 3 2 0a v a a vφ φ φ φ φ   ′ ′′ ′′+ + + + + =   
  if it satisfies the equation, L(v) = 0.

 
2

2 2 2 1 2 1 2 1 2 2 1 2 1
2 2 2 2 3

1 1 11 1 1 1 1

2
– , – – –

φ φ φ φ φ φ φ φ φ φ φ φ φ
φ φ φφ φ φ φ φ

′ ′ ′ ′′ ′ ′ ′ ′ ′′ ′ 
′= = = + 

 
v v

2
2 1 2 2 1 2 1

2 2 3
1 1 1 1

2 2
– –

′′ ′ ′ ′′ ′
′ = +v

φ φ φ φ φ φ φ
φ φ φ φ

2 3
'' 2 2 1 1 2 1 2 2 1 1 2 1 2 1

2 2 3 3 4 2
1 1 1 1 1 1 1

3 3 6 6 6
– – – –

φ φ φ φ φ φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

′′′ ′′ ′ ′′ ′ ′ ′ ′ ′′ ′ ′′′
= + +v

 1 1 1 1 1 1 1 2 1( ) 3 3 2L v v a v a a vφ φ φ φ φ φ   ′ ′′ ′′′ ′= + + + + +   

    ( ) ( )2
2 1 2 2 2 1 1 1 2 1

1

–a a a a
φφ φ φ φ φ φ
φ

′′′ ′′ ′ ′′′ ′′ ′= + + + +

Since f2 and f1 are solutions, 2 1 2 2 2 3 2 0φ φ φ φ′′′ ′′ ′+ + + =a a a  and 1 1 1 2 1
′′′ ′′ ′+ +a aφ φ φ

3 1 0a φ+ =  and therefore

( )2
3 2 3 1

1

( ) – – – 0.= =L v a a
φφ φ
φ

Thus, v = 2

1

φ
φ

′ 
 
 

is a solution of reduced equation.
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EXERCISE

Use the reduction of order method and find the general solution of each of the following
equations. Verify that f1 satisfies the equation.

(a) 2
1– 0,x y xy y xφ′′ ′ + = = 1 2(Ans. log )y c x c x x= +

(b) 12
2 2

– 0,y y y x
x x

φ′′ ′ + = = 2
1 2(Ans. )y c x c x= +

(c) 2
1(2 1) – 4 4 0,φ′′ ′+ + = =x y xy y x

2
1 2(Ans.  (2 –1))y c x c x= +

(d) 2
1( – ) – ( –1) 0,y x x y x y xφ′′ ′+ = =

3 2
–

3 2

1 2 2
(Ans.  )

x x

e
y c x c x dx

x

+

= + ∫

(e)
2

1
1

– – 0,
2
x

y y y x
x

φ ′′ ′+ = =  

2–
42 2

1 2 3
(Ans.  )= + ∫

x

e
y c x c x dx

x

(f) 2 1 2
12 3 – 0,′′ ′+ = =x y xy y xφ

1
–12

1 2(Ans.  )y c x c x= +

Unit 2 : Basis

In the course on linear algebra we learn about a vector space also called as linear space
and the basis of a linear space. Suppose S is a set of functions with the following property.

If f1, f2 Î S,  c1f1 + c2f2 Î S for any two constants c1, c2. Then the set S is called a linear

space of functions. If a linear space of functions S contains n functions 1 2 3, , ,...., nφ φ φ φ  which

are linearly independent and every function from S can be represented as a linear combination

of these functions 1 2 3, , ,...., nφ φ φ φ  then the set {1 2 3, , ,...., nφ φ φ φ } is called a basis for the linear

space S. The number n is called dimension of S.

For a given linear differential equation ( ) ( –1) ( –1)
1 2( ) ( ) ( )n n nL y y a x y a x y= + + + ⋅⋅⋅

( ) 0,na x y+ =  the collection of all solutions denoted by S of L(y) = 0 is a linear space. Every

basis of S contains n linearly independent functions and therefore dimension of solution space S
is n.

To check the linear independence of functions 1 2 3, , ,...., nφ φ φ φ , we consider the wronskian

W( 1 2 3, , ,...., nφ φ φ φ ). There is a relation between the linear indepence of functions and the

Wronskian W( 1 2 3, , ,...., nφ φ φ φ ). In chapter I we have proved this result for the linear differential
equation with constant coefficients.
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A.  Linear Independence and Wronskian

In section 1(B) we have seen that for the differential equation ( ) ( –1)
1( ) ( )n nL y y a x y= +

( –2)
2( ) 0n

na x y a y+ + ⋅⋅⋅ + =   there are n linearly independent solutions 1 2 3, , ,...., nφ φ φ φ  satisfying

the initial conditions ( –1) ( –1)
0 0( ) 1, ( ) 0, .i j

i ix x j iφ φ= = ≠ These linearly independent solutions

is a basis of solution space of L(y) = 0. Every solution of L(y) = 0 can be represented as a linear

combination of these functions 1 2 3, , ,...., nφ φ φ φ .

Theorem 2.2.1

Let 1 2 3, , ,...., nφ φ φ φ  be n solutions of L(y) = 0 on I satisfying the initial conditions.

( –1) ( –1)
0 0 0( ) 1, ( ) 0, ,i j

i ix x j i x Iφ φ= = ≠ ∈

If f is any solution of L(y) = 0 on I, there are n constants c1, c2, c3,....,cn such that

1 1 2 2 n nc c cφ φ φ φ= + + ⋅⋅⋅ +

Proof :

Let f is any solution of L(y) = 0 on I. Let 0 1, 0 2, 0 3,( ) ( ) ( )x x xφ α φ α φ α′ ′′= = =

( –1)
0( )n

nxφ α⋅⋅ ⋅ =  for some constants 1, 2, 3, .nα α α α⋅⋅ ⋅

Consider a function 1 1 2 2 3 3 n nψ α φ α φ α φ α φ= + + + ⋅⋅ ⋅ +

Since 1 2, ,...., nφ φ φ  are solutions of L(y) = 0, by superposition principle (chapter 2 unit

1(B)) y is also a solution of L(y) = 0 and clearly

    0 1 1 0 2 2 0 3 3 0 0 1( ) ( ) ( ) ( ) ( )n nx x x x xψ α φ α φ α φ α φ α= + + + ⋅⋅⋅ + =

as   1 0( ) 1 andxφ =  0( ) 0 for 2,3,4,..., .i x i nφ = =

   0 1 1 0 2 2 0 3 3 0 0 2( ) ( ) ( ) ( ) ( )n nx x x x xψ α φ α φ α φ α φ α′ ′ ′ ′′ = + + + ⋅⋅ ⋅+ =

Since,  1 0 2 0 3 0 0( ) 0, ( ) 1, ( ) 0 ( ) 0.nx x x xφ φ φ φ′ ′ ′ ′= = = ⋅⋅ ⋅ =

    0 1 1 0 2 2 0 3 3 0 0 3( ) ( ) ( ) ( ) ( )n nx x x x xψ α φ α φ α φ α φ α′′ ′′ ′′ ′′′′ = + + + ⋅ ⋅⋅ + =

Since, 1 0 2 0 3 0 0( ) 0, ( ) 1, ( ) 0 ( ) 0.nx x x xφ φ φ φ′′ ′′ ′′ ′′= = = ⋅⋅⋅ =

In general 0( ) 3,4,5,...., –1i
ix i nψ α= =

Thus, we see that

    ( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,..., ( ) .n

nx x x xψ α ψ α ψ α ψ α′ ′′= = = =

Thus, y is a solution of L(y) = 0 having  the same initial conditions at x0 as that of f . By
uniqueness theorem (chapter II Unit I theorem 2.1.2) we must have y  = f .

i.e. 1 1 2 2 3 3 .... n nφ α φ α φ α φ α φ= + + + +
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Thus, every solution of L(y) = 0, can be uniquely represented as a linear combination of

1 2, ,...., nφ φ φ . Since 1 2, ,...., nφ φ φ  are linearly independent the set {1 2 3, , ,...., nφ φ φ φ } is a basis

for the solutions L(y) = 0.

Recall that the Wronkian of n functions 1 2 3, , ,...., nφ φ φ φ  is defined as the determinant

1 2 3

1 2 3

1 2 3 1 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

W ( , , ,...., )

φ φ φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ

′ ′ ′ ′

= ′′ ′′ ′′ ′′

L

L

L

M M M M

n

n

n n

n n n n
n

Theorem 2.2.2 :

If 1 2 3, , ,...., nφ φ φ φ  are n solutions of L(y) = 0 where ( ) ( –1)
1( ) ( )n nL y y a x y= + +

( –2)
2( ) ( ) ,n

na x y a x y+ ⋅⋅⋅ +  on an interval I, then they are linearly independent on I if  and only

if  1 2 3W ( , , ,...., ) ( ) 0n xφ φ φ φ ≠ for all x in I.

Proof :

Suppose 1 2 3W ( , , ,...., ) ( ) 0n xφ φ φ φ ≠  for all x in I. We show that 1 2 3, , ,...., nφ φ φ φ are

linearly independent on I. i.e. 
n

1 2 3
i=1

0 .... 0φ = ⇒ = = = = =∑ i i nc c c c c

If there are constants c1, c2, c3,....,cn such that

1 1 2 2 3 3( ) ( ) ( ) ( ) .... ( ) 0i i n nc x c x c x c x c xφ φ φ φ φ∑ = + + + + =  for all x in I then clearly,

1 1 2 2 3 3( ) ( ) ( ) .... ( ) 0n nc x c x c x c xφ φ φ φ′ ′ ′ ′+ + + + =

1 1 2 2 3 3( ) ( ) ( ) .... ( ) 0n nc x c x c x c xφ φ φ φ′′ ′′ ′′ ′′+ + + + =
M

( –1) ( –1) ( –1) ( –1)
1 1 2 2 3 3( ) ( ) ( ) .... ( ) 0n n n n

n nc x c x c x c xφ φ φ φ+ + + + =

Thus we get a system of linear equations

1 2 3
1

1 2 3 2

31 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0

0( ) ( ) ( ) ( )

0( ) ( ) ( ) ( )

n

n

n

n n n n n
n

x x x x c
x x x x c

cx x x x

cx x x x

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

          ′ ′ ′ ′          =′′ ′′ ′′ ′′                   

L

L

L

M MM M M M
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The above system can be represented by Ax = 0. If A is invertible then we can premultiply
by A–1 and we get x = 0. The square matrix is invertible if it is non-singular i.e. determinant of
A is non-zero.

The determinant of the matrix A is 1 2 3W ( , , ,...., ) ( )n xφ φ φ φ . Therefore if

1 2 3W ( , , ,...., ) ( ) 0n xφ φ φ φ ≠  then c1= c2 = c3 =.... = cn = 0. Since 
n

i=1
0 0,i i ic cφ = ⇒ =∑

1,2,3,...., ,=i n  1 2 3, , ,..., nφ φ φ φ  are linearly independent.

Conversely, suppose 1 2 3, , ,...., nφ φ φ φ  are linearly independent solutions of L(y) = 0 defined

on I. Suppose there is an x0 in I such that 1 2 3 0W ( , , ,...., ) ( ) 0.n xφ φ φ φ =

Then system of n linear equations

1 0 2 0 3 0 0
1

1 0 2 0 3 0 0 2

31 0 2 0 3 0 0

( –1) ( –1) ( –1) ( –1)
1 0 2 0 3 0 0

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 0

0( ) ( ) ( ) ( )

0( ) ( ) ( ) ( )

n

n

n

n n n n n
n

x x x x c
x x x x c

cx x x x

cx x x x

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

          ′ ′ ′ ′          =′′ ′′ ′′ ′′                   

L

L

L

M MM M M M

has a solution c1, c2, c3,....,cn, where not all the constants c1, c2, c3,...,cn are zero. Let
c1, c2, c3,....,cn be a non-zero solution of above system of equations and consider

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ).n nx c x c x c x c xψ φ φ φ φ= + + + ⋅⋅⋅ +

Since, , 1,2,3....i i nφ =  are solution of L(y) = 0, y  is also a solution of equation L(y) = 0.

Now L(y) = 0 and from above system of equations we get

    0 1 1 0 2 2 0 3 3 0 0( ) ( ) ( ) ( ) ( ) 0n nx c x c x c x c xψ φ φ φ φ= + + + ⋅⋅⋅ + = .

   0 1 1 0 2 2 0 3 3 0 0( ) ( ) ( ) ( ) ( ) 0n nx c x c x c x c xψ φ φ φ φ′ ′ ′ ′′ = + + + ⋅⋅ ⋅ + =

In general

( ) ( ) ( ) ( ) ( )
0 1 1 0 2 2 0 3 3 0 0( ) ( ) ( ) ( ) ( ) 0i i i i i

n nx c x c x c x c xψ φ φ φ φ= + + + ⋅⋅⋅ + =

  for i = 1, 2, 3, 4,...., n –1.

Thus,    ( –1)
0 0 0 0( ) ( ) ( ) .... ( ) 0.nx x x xψ ψ ψ ψ′ ′′= = = = =

From theorem 2.1.1 it follows that ( ) 0xψ ≡ on I.

Therefore, 1 1 2 2 3 3( ) ( ) ( ) ( ) 0n nc x c x c x c xφ φ φ φ+ + + ⋅⋅⋅ + =  for all x in I. Thus, we have c1,

c2, c3,..... cn not all zero such that 1 1 2 2 3 3( ) ( ) ( ) ( ) 0n nc x c x c x c xφ φ φ φ+ + + ⋅⋅⋅ + =  for all x in I.

Therefore the set 1 2 3, , ,...., nφ φ φ φ  is not linearly independent on I. But this contradicts the fact

that 1 2 3, , ,...., nφ φ φ φ  are linearly independent on I. Therefore the assumption that there was a

point x0 in I such that 1 2 3 0W ( , , ,...., ) ( ) 0.n xφ φ φ φ =  must be false i.e. 1 2 3W ( , , ,...., ) ( ) 0n xφ φ φ φ ≠
for all x in I.
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Theorem 2.2.3

Let 1 2 3, , ,...., nφ φ φ φ  be n linearly independent solutions of ( ) ( –1)
1( ) ( )n nL y y a x y= +

( –2)
2( ) ( ) 0n

na x y a x y+ + ⋅⋅ ⋅+ =  on an interval I. If f is any solution of L(y) = 0 on I, it can be

represented in the form 1 1 2 2 3 3 .... n nc c c cφ φ φ φ φ= + + + + , where c1, c2, c3,..... cn are constants.

Thus any set of n linearly independent solutions of L(y) = 0 on I is a basis for the solution space
of L(y) = 0 on I.

Proof :

Let x0 be a point in I. Suppose f is any solution of L(y) = 0. Let 0 1, 0 2,( ) ( )x xφ α φ α′= =
( –1)

0 3, 0( ) ( )n
nx xφ α φ α′′ = ⋅⋅ ⋅ =   We show that there exist unique constants c1, c2, c3,..... cn  such

that 1 1 2 2 3 3( ) ( ) ( ) ( )n nc x c x c x c xψ φ φ φ φ= + + + ⋅⋅⋅ +  is a solution of L(y) = 0 satisfying

( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,...., ( ) .ψ α ψ α ψ α ψ α′ ′′= = = =n

nx x x x These initial conditions are

equivalent to the following equations for c1, c2, c3,..... cn (e.g. 0 1 1 0 2 2 0( ) ( ) ( )x c x c xψ φ φ= + +

0 1.... ( )n nc xφ α+ = )

1 0 2 0 3 0 0
1 1

1 0 2 0 3 0 0 2 2

3 31 0 2 0 3 0 0

( –1) ( –1) ( –1) ( –1)
1 0 2 0 3 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

φ φ φ φ α
φ φ φ φ α

αφ φ φ φ

αφ φ φ φ

          ′ ′ ′ ′         =′′ ′′ ′′ ′′                 

L

L

L

M MM M M M

n

n

n

n n n n n n
n

x x x x c
x x x x c

cx x x x

cx x x x






Since 1 2 3, , ,...., nφ φ φ φ  are linearly independent by theorem 2.2.2, 1 2 3W ( , , ,...., )nφ φ φ φ

0( ) 0.x ≠ Therefore the coefficient matrix is inversible and there is a unique solution

c1, c2, c3,..... cn of the above system of equations.
Thus we have a unique solution

1 1 2 2 3 3( ) ( ) ( ) ( )n nc x c x c x c xψ φ φ φ φ= + + + ⋅⋅⋅ +

Satisfying ( –1)
0 1 0 2 0 3 0( ) , ( ) , ( ) ,...., ( ) .ψ α ψ α ψ α ψ α′ ′′= = = =n

nx x x x  But f  is a solution

with identical initial conditions. Therefore by uniqueness theorem we have f (x) = y (x) on I.

Thus 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )n nx c x c x c x c xφ φ φ φ φ= + + + ⋅⋅ ⋅ +  on I and any solution of  L(y) = 0 can

be represented as a linear combination of n linearly independent solutions 1 2 3, , ,...., nφ φ φ φ .

In theorem 2.2.2 we have seen that the function 1 2 3, , ,...., nφ φ φ φ  are linearly independent

solutions of L(y) = 0 if and only if the Wronskian 1 2 3W ( , , ,...., ) ( ) 0n xφ φ φ φ ≠ for all x in I. In the

next theorem we show that it is sufficient to calculate the Wronskian 1 2 3W ( , , ,...., )nφ φ φ φ  at

some point x0 in I.
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Theorem 2.2.4

Let 1 2 3, , ,...., nφ φ φ φ  be n solutions of L(y) = 0 on an interval I and let x0 be any point in I.

Then

0

1 2 3 1 1 2 3 0W( , , ,..., ) ( ) exp – ( ) W( , , ,..., ) ( )
x

n n
x

x a t dt xφ φ φ φ φ φ φ φ
 
 =
  

∫

Note that since exponential function is non-zero function,

1 2 3 0W( , , ,..., ) ( ) 0n xφ φ φ φ ≠  implies 1 2 3W( , , ,..., ) ( ) 0n xφ φ φ φ ≠  for all x in I.

Proof :

Let W = 

1 2 3

1 2 3

1 2 3 1 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

W ( , , ,...., )

φ φ φ φ

φ φ φ φ
φ φ φ φ φ φ φ φ

φ φ φ φ

′ ′ ′ ′

= ′′ ′′ ′′ ′′

L

L

L

M M M M

n

n

n n

n n n n
n

On differentiating W row wise we get

1 2 31 2 3

1 2 31 2 3

1 2 31 2 3

( –1) ( –1) ( –1) ( –1)( –1) ( –1) ( –1) ( –1)
1 2 31 2 3

W ...

φ φ φ φφ φ φ φ

φ φ φ φφ φ φ φ

φ φ φ φφ φ φ φ

φ φ φ φφ φ φ φ

 ′ ′ ′ ′  
   ′′ ′′ ′′ ′′ ′ ′ ′ ′  
   ′ = + +′′ ′′ ′′ ′′′′ ′′ ′′ ′′   
   
   
     

LL

LL

LL

M M M MM M M M

nn

nn

nn

n n n nn n n n
nn

1 2 3

1 2 3

( –2) ( –2) ( –2) ( –2)
1 2 3

( ) ( ) ( ) ( )
1 2 3

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

 
 ′ ′ ′ ′ 
 +  
 
 
  

L

L

M M M L M

n

n

n n n n
n

n n n n
n

= V1 + V2 + V3 + ..... + Vn  (say)

Where Vk differs from W only in its kth row and the kth row of Vk is obtained by
differentiating the kth row of W. The first n – 1 determinants are all zero, since they each have
two identical rows. Observe that Vk has kth and (k + 1)th row identical.

Since 1 2, ,...., nφ φ φ  are solution of L(y) = 0, we have

 ( ) ( –1) ( –2) ( –3)
1 2 3– – – .... – ( 1,2,3,..., )n n n n

n ii i i ia a a a i nφ φ φ φ φ= =
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–1

( )
–

0
–

n
j

n j i
j

a φ
=

= ∑

Therefore

1 2 3

1 2 3

1 2 3

( –2) ( –2) ( –2) ( –2)
1 2 3

–1 –1 –1 –1
( ) ( ) ( ) ( )

– – – –1 2 3
0 0 0 0

W

– – – –

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ
= = = =

 
 

′ ′ 
 

′′ ′′ ′′ ′′ 
 ′ = =
 
 
 
 
 
  

∑ ∑ ∑ ∑

L

L

L

M M M M

L

n

n

n

n

n n n n
n

n n n n
j j j j

n j n j n j n j n
j j j j

V

a a a a

Elimentary row transformations do not change the value of the determinant. Perform the
transformation

1 –1 3 –3 3 2 –1... .n n n n nR a R a R a R a R+ + + + +  we get

  

1 2 3

1 2 3

( –2) ( –2) ( –2) ( –2)
1 2 3 1

( –1) ( –1) ( –1) ( –1)
1 1 1 2 1 3 1

W

– – – –

 
 ′ ′ ′ ′ 
 ′ =  
 
 
  

L

L

M M M M

L

L

n

n

n n n n

n n n n
na a a a

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

    

1 2 3

1 2 3

1 1 1 2 31 2 3

( –1) ( –1) ( –1) ( –1)
1 2 3

– – W( , , ,...., )

n

n

nn

n n n n
n

a a

φ φ φ φ

φ φ φ φ
φ φ φ φφ φ φ φ

φ φ φ φ

 
 ′ ′ ′ ′ 
 = =′′ ′′ ′′ ′′ 
 
 
  

L

L

L

M M M M

Therefore W¢  + a1 W = 0 and we get,

   1
0

– ( )

0W( ) W( )
∫

=

x

x

a t dt

x e x

i.e. 
0

1 2 3 1 1 2 3 0W( , , ,...., ) ( ) exp – ( ) W( , , ,...., ) ( ).
 
 =
  

∫
x

n n
x

x a t dt xφ φ φ φ φ φ φ φ

Corollatory : If the coefficient a1 is constant then

1 0– ( – )
1 2 3 1 2 3 0W( , , ,...., ) ( ) W( , , ,...., ) ( ).a x x

n nx e xφ φ φ φ φ φ φ φ=

From theorem 2.2.2 and theorem 2.2.4 it follows that n solutions 1 2 3, , ,...., nφ φ φ φ  of

L(y) = 0 on I are linearly independent if and only if 1 2 3 0W( , , ,..., ) ( ) 0n xφ φ φ φ ≠  for some point
x0 in I.
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B.  Solutions of non-homogeneous equation

The equation ( ) ( –1) ( –2)
1 2( ) ( ) ( ) ... ( )n n n

nL y y a x y a x y a y b x= + + + + =  where a1, a2, a3,....,

an, b are continuous functions on an interval I is a non-homogeneous linear equation of order n
with variable coefficients. The solutions of this equation can be determined by the variations of
constant method.

Theorem 2.2.5

Let b (x) be a continuous function on an interval I and let 1 2 3, , ,...., nφ φ φ φ  be a basis for the

solutions of L(y) = 0 on I. Every solution y of ( ) ( –1) ( –2)
1 2( ) ( ) ( )= + + +n n nL y y a x y a x y

... ( ) ( )+ =na x y b x  can be written as 1 1 2 2 3 3 ...p n nc c c cψ ψ φ φ φ φ= + + + + +  where is a yp is a

particular solution of L(y) = b (x) and c1, c2, c3,..... cn are constants. Every such y is a solution of
L(y) = b(x). A particular solution yp is given by

01 1 2 3

( ) ( )
( )

( , , ,..., ) ( )
ψ φ

φ φ φ φ=
= ∑ ∫

xn
k

p k
k nx

W t b t
x dt

W t

where 1 2 3W( , , ,..., )nφ φ φ φ is a wronkian of 1 2 3, , ,...., nφ φ φ φ  and Wk is the determinant obtained

from 1 2 3W( , , ,..., )nφ φ φ φ  by replacing the kth column 
( –1)( .... )φ φ φ φ′ ′′ n T

k k k k  by (0, 0, 0..., 0, 1)T.

Proof :

If yp is a particular solution of L(y) = b(x) and y  is any other solution of L(y) = b(x), then

( – ) ( ) – ( ) ( ) – ( ) 0.p pL L L b x b xψ ψ ψ ψ= = =

Therefore y  – yp is a solution of corresponding homogeneous equation L(y) = 0. Since

1 2 3, , ,...., nφ φ φ φ  is a basis for the solution of L(y) = 0 on I, every solution of L(y) = 0 can be

expressed as a linear combination of 1 2 3, , ,...., nφ φ φ φ .

   1 1 2 2 3 3– ...p n nc c c cψ ψ φ φ φ φ= + + + +

  1 1 2 2 3 3 ....p n nc c c cψ ψ φ φ φ φ= + + + + +
A particular solution yp can be found by variation of constants method. Let yp be of the

form

    1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )p n nu x x u x x u x x u x xψ φ φ φ φ= + + + +

Since yp is a solution, ( ) ( )pL b xψ = .

   1 1 2 2 3 3 1 1 2 2 3 3... ...p n n n nu u u u u u u uψ φ φ φ φ φ φ φ φ′ ′ ′ ′ ′ ′ ′′ ′= + + + + + + + + +

Choose u1, u2, u3,....un such that 1 1 2 2 3 3 ... 0n nu u u uφ φ φ φ′ ′ ′ ′+ + + + =

Then    1 1 2 2 3 3 ...p n nu u u uψ φ φ φ φ′ ′ ′ ′ ′= + + + +

   1 1 2 2 3 3 1 1 2 2 3 3... ...p n n n nu u u u u u u uψ φ φ φ φ φ φ φ φ′′ ′ ′ ′ ′ ′ ′ ′ ′′ ′′ ′′ ′′′= + + + + + + + + +

Let    1 1 2 2 3 3 ... 0φ φ φ φ′ ′ ′ ′ ′ ′ ′′+ + + + =n nu u u u  then
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   1 1 2 2 3 3 ...p n nu u u uψ φ φ φ φ′′ ′′ ′′ ′′ ′′= + + + +

In general choose ( ) ( ) ( ) ( )
1 1 2 2 3 3 ... 0k k k k

n nu u u uφ φ φ φ′ ′ ′ ′+ + + + =

Then    ( 1) ( 1) ( 1) ( 1) ( 1)
1 1 2 2 3 3 ...k k k k k

p n nu u u uψ φ φ φ φ+ + + + += + + + +

and ( ) ( –1) ( –1) ( –1) ( –1) ( ) ( ) ( )
1 1 2 2 3 3 1 1 2 2... ...n n n n n n n n

p n n n nu u u u u u uψ φ φ φ φ φ φ φ′ ′ ′ ′= + + + + + + + +

If we choose ( –1) ( –1) ( –1) ( –1)
1 1 2 2 3 3 ... ( )n n n n

n nu u u u b xφ φ φ φ′ ′ ′ ′+ + + + = . Then

      ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3 ... ( )n n n n n

p n nu u u u b xψ φ φ φ φ= + + + + +
Thus we have the following equations

1 1 2 2 3 3 ...p n nu u u uψ φ φ φ φ= + + + +

 1 1 2 2 3 3 1 1 2 2 3 3... ; ... 0p n n n nu u u u u u u uψ φ φ φ φ φ φ φ φ′ ′ ′ ′ ′ ′ ′′ ′= + + + + + + + + =

 1 1 2 2 3 3 1 1 2 2 3 3... ; ... 0′′ ′′ ′′ ′′ ′′ ′ ′ ′ ′ ′ ′ ′′= + + + + + + + + =p n n n nu u u u u u u uψ φ φ φ φ φ φ φ φ

1 1 2 2 3 3 1 1 2 2 3 3... ; ... 0′′′ ′′′ ′′′ ′′′ ′′′ ′ ′′ ′ ′′ ′ ′′ ′′′= + + + + + + + + =
M

p n n n nu u u u u u u uψ φ φ φ φ φ φ φ φ

( –1) ( –1) ( –1) ( –1) ( –2) ( –2)
1 1 2 2 1 1 2 2... ;ψ φ φ φ φ φ′ ′= + + + +n n n n n n

p n nu u u u u

( –2) ( –2)
3 3 ... 0n n

n nu uφ φ′ ′+ + + =
( ) ( ) ( ) ( ) ( ) ( –1) ( –1)

1 1 2 2 3 3 1 1 2 2... ( ) ; ′ ′= + + + + + +n n n n n n n
p n nu u u u b x u uψ φ φ φ φ φ φ

( –1) ( –1)
3 3 ... ( )′ ′+ + + =n n

n nu u b xφ φ

Adding the terms columwise on left we get

    1 1 2 2 3 3( ) ( ) ( ) ( ) ... ( ) ( )p n nL u L u L u L u L b xψ φ φ φ φ= + + + + +

Since 1 2 3, , ,...., nφ φ φ φ  are n solutions of homogeneous equation L(y) = 0, 1 2( ) ( )L Lφ φ= =

3( ) ... ( ) 0nL Lφ φ= = =  and ( ) ( ).pL b xψ =

The right hand side equations are the following system of linear equations.

  

1 2 3 1

1 2 3 2

1 2 3 3

( –1) ( –1) ( –1) ( –1)
1 2 3

0

0

0

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ φ φ

 ′       ′ ′ ′ ′  ′       =′′ ′′ ′′ ′′ ′                 ′   

L

L

L

MM M M M M

n

n

n

n n n n
n n

u

u

u

b
u

We solve the above system of equations by Cramer’s rule.

Thus, 
1 2 3W( , , ,..., )φ φ φ φ

′ = k
k

n

W
u

Where 1 2 3W( , , ,..., )φ φ φ φn  is a Wronksian of 1 2 3, , ,...,φ φ φ φn  and kW is the determinant
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obtained from 1 2 3W( , , ,..., )φ φ φ φn  by replacing kth column by (0,0,0,.....,0, )Tb . Thus

    

1 2 –1 1

1 2 –1 1

1 2 –1 1

( –1)( –1) ( –1) ( –1) ( –1)
1 2 –1 1

0

0

0

( )

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ

+

+

+

+

′ ′ ′ ′ ′

′′ ′′= ′′ ′′ ′′

L L

L

L

M M M M M M

k k n

k k n

k k k n

nn n n n
k nk

W

b x

     

1 2 –1 1

1 2 –1 1

1 2 –1 1

( –1)( –1) ( –1) ( –1) ( –1)
1 2 –1 1

0

0

( ) ( )0

1

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ

+

+

+

+

′ ′ ′ ′ ′

′′ ′′= =′′ ′′ ′′

L L

L

L

M M M M M M

k k n

k k n

kk k n

nn n n n
k nk

b x b x W

Thus,  
01 2 3 1 2 3

( ) ( ) ( )
i.e.  .

W( , , ,..., ) ( , , ,..., ) ( )
′ = = ∫

x
k k

k k
n nx

b x W b t W t
u u dt

W tφ φ φ φ φ φ φ φ

and     1 1 2 2 3 3
1

...ψ φ φ φ φ φ
=

= + + + + = ∑
n

p n n k k
k

u u u u u

 
01 1 2 3

( ) ( )
( ) .

( , , ,..., ) ( )

xn
k

k
k nx

b t W t
x dt

W t
φ

φ φ φ φ=
= ∑ ∫

EXAMPLES

Q. 1. Consider the equation 1 2( ) ( ) ( ) 0,L y y a x y a x y′′ ′= + + = where a1, a2 are continuous on
some interval I. Let f1, f2 and y1, y2 be two bases for the solution L(y) = 0. Show that

there is a non-zero constant k. Such that 1 2 1 2( , ) ( ) ( , ) ( )W x kW xψ ψ φ φ=
Ans. : Since f1, f2 is bases for the solutions of L(y) = 0 and y1, y2 are solutions of L(y) = 0.

  1 1 1 2 2 2 1 1 2 2and    c c d dψ φ φ ψ φ φ= + = +

for some constants c1, c2, d1, d2.

1 1 2 2 1 1 2 2
1 2

1 1 2 2 1 1 2 2

W( , ) ( )
+ +

=
′ ′′ ′+ +

c c d d
x

c c d d

φ φ φ φ
ψ ψ

φ φ φ φ

 
1 1 1 1 2 2 2 2 1 1 2 2

1 1 1 1 2 2 2 2 1 1 2 2

c d d c d d

c d d c d d

φ φ φ φ φ φ

φ φ φ φ φ φ

+ +
= +

′ ′ ′ ′ ′ ′+ +

 
1 1 1 1 2 2 2 1 1 2 2 2

1 2
1 1 1 1 2 2 2 1 1 2 2 2

d d d d
c c

d d d d

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

   
= + + +   

′ ′ ′ ′ ′ ′ ′ ′      

(74)



Differential Equations

 
1 2 2 1

1 2 2 1
1 2 2 1

c d c d
φ φ φ φ

φ φ φ φ

 
= + 

′ ′ ′ ′  

 
1 2

1 2 2 1 1 2 2 1 1 2
1 2

( – ) ( – ) W( , ) ( )
φ φ

φ φ
φ φ

= =
′ ′

c d c d c d c d x

Thus, 1 2 1 2 2 1 1 2W( , ) ( ) ( – ) W( , ) ( )x c d c d xψ ψ φ φ=

Since 1 2,ψ ψ  are independent 1 2 2 1– 0.c d c d ≠

Therefore there is a non-zero constant k  = c1 d2 – c2 d1 such that  1 2W( , ) ( )xψ ψ =

1 2W( , ) ( ).φ φk x

Q. 2. Consider 1 2( ) ( ) ( ) 0′′ ′= + + =L y y a x y a x y . Show that a1 and a2 are uniquely determined
by any basis f1, f2  for the solutions of L(y) = 0. Show that

  

1 2 1 2

1 2 1 2
1 2

1 2 1 2

– , –
W( , ) W( , )

a a

φ φ φ φ

φ φ φ φ
φ φ φ φ

′ ′

′′ ′′ ′′ ′′
= =

Ans. :  Since f1, f2  is basis for solutions of L(y) = 0 , f1, f2 are solutions of L(y) = 0.

 1 1 1 1 2 1( ) 0L a aφ φ φ φ′′ ′= + + =

 2 2 1 2 2 2( ) 0L a aφ φ φ φ′′ ′= + + =
Solving above two equations for a1 and a2 by Cramers rule, we get.

  

1 1 1 2

2 2 1 2
1

1 21 1

2 2

–

–
–

W( , )

φ φ φ φ

φ φ φ φ
φ φφ φ

φ φ

′′

′′ ′′ ′′
= =

′

′

a

  

1 1 1 2

2 2 1 2
2

1 21 1

2 2

–

–
–

W( , )

′ ′′ ′ ′+

′ ′′ ′′ ′′+
= =

′

′

a

φ φ φ φ

φ φ φ φ
φ φφ φ

φ φ
[ We use the elementory properties of determinants det A = det AT and if we interchange

row / column, the value of det change its sign.]

Q. 3. Consider the equation ( ) 0y x yα′′ + =  where a  is a continuous function on– x∞ < < ∞ .

Let, f1, f2 be the basis for the solutions satisfying

  1 2 1 2(0) 1, (0) 0, (0) 1, (0) 1,φ φ φ φ′ ′= = = =

Show that 1 2W( , ) ( ) 1xφ φ =  for  all x
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Ans. :  For the differential equation

1 2( ) ( ) 0,y a x y a x y′′ ′+ + = if f1 and f2  are two solutions then

   1
0

– ( )

1 2 1 2 0W( , )( ) W( , ) ( )φ φ φ φ
∫

=

x

x

a t dt

x e x

For  1( ) 0, 0y x y aα′′ + = = . Therefore 1 2 1 2W( , ) ( ) W( , ) (0)xφ φ φ φ=

     
1 2

1 2

(0) (0) 1 0
1

0 1(0) (0)

φ φ

φ φ
= = =

′ ′

Thus, 1 2W( , ) ( ) 1xφ φ =  for all x.

Q. 4. Find a general solution of 2
2

– (0 )′′ = < <y y x x a
x

Ans. : Assume that the solution of homogeneous equation 2
2

( ) – 0L y y y
x

′′= =  is of the form

xr. Then y = xr implies –2 –2( ) ( –1) – 2 0r r rL x r r x x= = gives r (r – 1) – 2 = 0. Then

r2 – r  – 2 = 0 implies r = 2 and r = – 1. Thus, f1(x) = x2 and 2
1

( )x
x

φ =  are solutions of

homogeneous equation 2
2

( ) – 0.L y y y
x

′′= =

A solution yp of the non-homogeneous equation has the form

    1 1 2 2( ) ( ) ( ) ( )p u x x u x xψ φ φ= +

 
2

1 2
1

( ) ( )= +u x x u x
x

Where, 1 2
1 2

1 2 1 2

( ) W ( ) W
and    

W( , ) W( , )

b x b x
u u

φ φ φ φ
′ ′= =

Here   b (x) = x

   

2
2

1 2

2

1
0

01
W – , W

1 2 11 –

xx
x

x x
x

= = = =

2

1 2
1 2

1 2
2

1

W( , ) –1– 2 –3
1

2 –

φ φ
φ φ

φ φ
= = = =

′ ′

x
x

x
x

 and we find that

( ) 21 3
2

1 2

– ( ) W ( )1
and    –

–3 3 W –3 3
′ ′= = = = =xx b x x x x

u u

We may take 1 3
x

u =  and 
4

2 – .
12
x

u =  We skip the constants of integration as they correspond

to the solution of corresponding homogeneous equation.
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Thus, the solution of non-homogeneous equation becomes
4 3

2 1
– .

3 12 4p
x x x

x
x

ψ = ⋅ ⋅ =

Every solution f of  L(y) = x has the form

 
3

2 2
1 1 2 2 1( ) ( ) ( )

4p
cx

x c x c x c x
x

φ ψ φ φ= + + = + +

where, c1 and c2 are constants.

Q. 5. One solution of 2 – 2 0x y y′′ = on 0 < x < ¥ is 2
1( ) .x xφ =  Find all solutions of

2 – 2 2 –1x y y x′′ =  on 0 < x < ¥.

Ans. : 2
1( )x xφ =  Let 2 1( ) ( ) ( )x u x xφ φ=  be a solution of 2 – 2 0x y y′′ = . Then

2
2 1 1 1 1( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) – 2 ( ) ( ) 0L x u x x u x x u x x u x xφ φ φ φ φ ′ ′′′′ ′= + + = 

     
2 2 22 ( ) 2 ( ) 2 – 2 ( ) 0x u x u x x u x u x x ′′ ′= + ⋅ + ⋅ = 

4 3
2

4
( ) 0 gives   4 0 i.e.   –φ ′′′′ ′= + = =

′
u

L u x u x
u x

–4
3

1
log –4log and   or   –

3
u x u x u

x
′ ′= = =

Therefore 
2

2 1 3
1 1

( ) ( ) ( ) – –
33

= = ⋅ =x u x x x
xx

φ φ

Since L(y) is a linear differential operator 2
1

( )x
x

φ =  is a second solution.

Thus, 2
1( )x xφ = and 2

1
( )x

x
φ =  are solutions of the homogenous equation

2( ) – 2 0L y x y y′′= = or 2
– 0y y

x
′′ = .

Equation 2 – 2 2 –1x y y x′′ = is the given differential equation. To reduce the equation in

standard form we have to divide the given equation by x2 we can do so since x is positive.

Therefore consider the eqution 
2 2

2 2 1
– – .y y

xx x
′′ =  Solution of this equation will be a solution

of given equation.

A solution yp of a non-homogeneous equation 
2 2

2 2 1
– –y y

xx x
′′ =  has the form

    
2

1 1 2 2 1 2
1

( ) ( ) ( ) ( ) ( ) ( )p u x x u x x u x x u x
x

ψ φ φ= + = +

Where,  1 2
1 2

1 2 1 2

( )W ( )W
( ) and   ( )

W( , ) W( , )

b x b x
u x u x

φ φ φ φ
′ ′= =

  
2

2 1

1 22 1

2 1
( ) – , W( , )= –3

2 –
x

x

x
b x

xx x
φ φ= =
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2

1 2
2

1 21

0 01
W = – , W =

1 – 2 1

x

x

x
x

x x
= =

2

1 12 3 2

2 1 1
– –

2 1 2 1 1 1
( ) – and     ( ) – – –

–3 3 33 3 2

x xxu x u x
xx x x

   
        ′ = = =       

    

2
2

2
2 2

2 1
– ( )

2 1 1 1
( ) – and     ( ) –

–3 3 3 3 3

 
  ′ = = + = +

x
x xu x x u x x x

Thus    1 1 2 2( ) ( ) ( ) ( )p u x x u x xψ φ φ= +

2
2

2
2 1 1 1

– – – .
3 3 3 26

x x
x x

x xx

  = + + + = +     

The general solution of given non-homogeneous equation is 2 2
1

1
– ,

2
c

x c x
x

ψ = + + +  where

c1 and c2 are constants.

Q. 6. One solution of 2 – 0 ( 0)x y xy y x′′ ′ + = > is 1( )x xφ = . Find the solutionsy of

2 2–x y xy y x′′ ′ + =  satisfying (1) 1, (1) 0.ψ ψ ′= =

Ans. : The given non-homogeneous equation is 
2

1 1
– 1.y y y

x x
′′ ′ + =  (We can divide the equation

by x2 as x2 is positive)

Let 2 1( ) ( ) ( ) ( )x u x x u x xφ φ= =  be an other solution.

2 2
1 1

( ) [ 2 ] – [ ] ( ) 0L u x u u x u u x x
x x

φ ′′ ′ ′= + + + = gives 0.u x u′′ ′+ = Therefore 1cu
x

′ =

and 1( ) log .u x c x=

  2 1 1( ) ( ) ( ) logx u x x c x xφ φ= =  is second solution. Without loss of generality we choose
c1 = 1.

Thus, 1( )x xφ =  and 2( ) logx x xφ =  are two solutions of homogeneous equation

2
1 1

– 0.y y y
x x

′′ ′ + =

A solution yp of a non-homogeneous equation

 
2

1 1
– 1y y y

x x
′′ ′ + =  has the form

  1 1 2 2( ) ( ) ( ) ( )p u x x u x xψ φ φ= +

Then 1 2
1 2

1 2 1 2

( )W ( )W
( ) , ( )

W( , ) W( , )

b x b x
u x u x

φ φ φ φ
′ ′= =
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where   1 2
log

( ) 1, W( , )
1 1 log

x x x
b x x

x
φ φ= = =

+

  1 2
0 log 0

W – log , W
1 1 log 1 1

x x x
x x x

x
= = = =

+

  1 1
– log

( ) – log and   ( ) – ( log – )
x x

u x x u x x x x
x

′ = = =

 2 ( ) 1x
u x

x
′ = =  and  u2 (x) = x

Therefore 2( – log ) logp x x x x x x x xψ = + ⋅ =

The general solution of given non-homogeneous equation is

    2
1 2 log= + +x c x c x xψ

Since (1) 1ψ =  and 1(1) 0, 1 1′ = + =cψ  and c1 = 0

2 2 2( ) 2 (log 1), (1) 2 0 and –2′ ′= + + = + = =x x C x c cψ ψ
Therefore the solution satisfying given initial condition is

2( ) – 2 log .x x x xψ =

Q. 7.

(a) Show that there is a basis f1, f2 for the solutions of 2 24 (2 ) 0 ( 0)′′ ′+ + + = >x y xy x y x

of the form

1 2
1 22 2

( ) ( )
( ) , ( )

x x
x x

x x

ψ ψφ φ= =

(b) Find all solutions of

2 2 24 (2 ) for  0x y xy x y x x′′ ′+ + + = > .

Ans. :

(a) Let 2
v

x
φ =  be a solution of the given homogeneous equation.

 2
4 2

( ) 1 0L y y y y
x x

 ′′ ′= + + + =  

Then,  
2 3 2 3 4

2 4 6
– , –

′ ′′ ′′ ′′= = +v v v v v

x x x x x
φ φ     and

        2 3 4 2 3 2 2
4 6 4 2 2

( ) – – 1 0.
v v v v v v

L y
xx x x x x x x

′′ ′ ′     = + + + + =          
Therefore L(y) = 0 implies 0.v v′′ + =

 1 2( ) cos and  ( ) sinx x x xψ ψ= =   are two linearly independent solutions of 0.v v′′ + =
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Thus, 1 22 2
cos sin

( ) and  ( )
x x

x x
x x

φ φ= =  are two linearly independent solutions of given

equation.

(b)        1 22 2
cos sin

( ) , ( )
x x

x x
x x

φ φ= =

2
4 2

( ) 1 1L y y y y
x x

 ′′ ′= + + + =  
A solution yp of L(y) = 1 has the form

   1 1 2 2( ) ( ) ( ) ( ).p u x x u x xψ φ φ= +

Then      1 2
1 2

1 2 1 2

( )W ( )W
( ) , ( )

W( , ) W( , )

b x b x
u x u x

φ φ φ φ
′ ′= =

where   b(x) = 1

2 2

1 2 4

2 3 2 3

cos sin

1
W( , )

sin 2cos cos 2sin
– – –

x x

x x
x x x x x

x x x x

φ φ = =

   

2 2

1 22 2

2 3 2 3

sin cos
0 0

sin cos
W – , W

cos 2sin sin 2cos
1 – – – 1

= = = =

x x

x xx x
x x x xx x

x x x x

     
2

4

–sin
2 2

1 11
( ) – sin , ( ) cos – 2 sin – 2cos

x
x

x

u x x x u x x x x x x′ = = =

    
2

4

cos
2 2

2 21
( ) cos , ( ) sin 2 cos – 2sin′ = = + = +

x
x

x

u x x x u x x x x x x

   1 1 2 2( ) ( ) ( ) ( )p u x x u x xψ φ φ= +

    
2 2

2 2
cos sin

( cos – 2 sin – 2cos ) ( sin 2 cos – 2sin )
x x

x x x x x x x x x x
x x

= + +

    2
2

1–
x

=

Therefore the general solution of non-homogeneous equation is

1 1 2 2 1 22 2 2
2 cos sin

1– .p
x x

c c c c
x x x

ψ ψ φ φ= + + = + +

Q. 8. Consider the equation ( )y y b x′′ + =  where b is a continuous function on 1 x≤ < ∞

satisfying 
1

| ( ) | .b t dt
∞

< ∞∫  show that particular solution yp is given by
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1

( ) sin ( – ) ( )
x

p x x t b t dtψ = ∫

Ans. : The homogeneous equation 0y y′′ + =  has two solutions 1 2( ) cos , ( ) sin .x x x xφ φ= =

The particular solution yp has the form

    1 1 2 2( ) ( ) ( ) ( ) ( )p x u x x u x xψ φ φ= +   where

    
1 2

1 2
1 1 2 1 1 2

( )W ( )W
( ) , ( )

W ( , ) W ( , )

b x b x
u x u x

φ φ φ φ
′ ′= =

1 2
cos sin

W ( , ) 1
– sin cos

φ φ = =
x x

x x

   1 2
0 sin cos 0

W – sin , W cos
1 cos – sin 1

x x
x x

x x
= = = =

1
1

1 21 1

( )W ( ) – ( )sin
( )

W( , ) ( ) 1

x xb t t b t t
u x dt dt

tφ φ
= =∫ ∫

2
2

1 21 1

( )W ( ) ( )cos
( )

W( , ) ( ) 1

x xb t t b t t
u x dt dt

tφ φ
= =∫ ∫

   
1 1

– cos ( )sin sin ( )cos
x x

p x b t t dt x b t t dtψ = +∫ ∫

    [ ]
1

( ) sin cos – cos sin
x

b t x t x t dt= ∫

    
1

( )sin ( – )
x

b t x t dt= ∫

EXERCISE

1. Consider the equation 1 2( ) ( ) 0y a x y a x y′′ ′+ + =  where a1(x) and a2(x) are continuous

functions on – ¥ < x < ¥ and are periodic with period q > 0 i.e. 1 1 2( ) ( ), ( )a x a x a xθ θ+ = +

2( )a x=  for all x. Let f be a non-trival solution and let ( ) ( )x xψ φ θ= + . Shown that y is

also a solution.

2. Consider the equation ( ) 0y x yα′′ + = where a  is a continuous functions on – ¥ < x < ¥
which is of period q > 0. Let f1, f2 be the basis for solution satisfying

1 2(0) 1, (0) 0φ φ= =

1 2(0) 0, (0) 1φ φ′ ′= =

 Show that there is at least one non-trival solutionf of periodq if and only if 1 2( ) ( ) 2.φ θ φ θ′+ =
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3. One solution of 
2

1
( ) 0

4
L y y y

x
′′= + =  for x > 0 is 

1
2

1 ( )x xφ = show that there is another

solution y of the form uψ φ=  where u is some function.

4. Use the method of variation of parameter and find the particular solution of the following
equations where the solutions for the related homogeneous equation are given.

(a) 2
1 22

2 2
– log , ( ) , ( )y y y x x x x x x

x x
φ φ′′ ′ + = = = 3 3

p
1 3

Ans. : log –
2 4

x x xψ =  

(b)
2 3 2

1 2 2
1

– 4 , ,x y xy y x x
x

φ φ′′ ′+ = = = 3

p 5Ans. : xψ = 

(c) 2 2 – 1
1 2– , ,x

xx y xy y x e xφ φ′′ ′+ = = = – –1
pAns. : (1 )xe xψ = + 

(d)
1

22 –1 –1
1 22 3 – ; ,φ φ′′ ′+ = = =x y xy y x x x

–11
p 3Ans. : – logψ = x x

Unit 3 : Homogeneous equations with analytic coefficients

So far we have shown how to construct solutions of various special types of differential
equations using the exponential function, polynomials and the fundamental theorem of
calculus - that is how to reduce the integration of these differential equations to one or more
quadratures. The major difficulty with linear equations with variable coefficients, from a practical
point of view, is that it is rare that we can solve equations in terms of elementary functions, such
as exponential and trignometric functions. . However in case the coefficients a1, a2, a3, ...., an,
and  b have convergent power series expansions the solutions will have this property also and
these series solutions can be obtained by a simple formal process.

An infinite series of the form 0
0

( – )nn
n

a z z
∞

=
∑ is called a power series in z – z0. Here an, z,

z0 are complex numbers. With every power series there is associated a disk, called the disk of
convergence such that a series converges absoulately for every z interior to this disk. The center
of the disk is at z0 and its radius is called the radius of convergence of the power series.

Given a power series 0
0

( – )nn
n

a z z
∞

=
∑ , let Limsup

–1
1

| | ,n
nn a rλ

λ∞= =  (where r = 0 if

λ = +∞  and r = ¥ if  0λ = ). The series converges absoulately if 0| – |z z r< and diverges if

0| – | .z z r>

If x0, x and an are real numbers the series 0
0

( – )nn
n

a x x
∞

=
∑ is called a real power series. Its

disk of convergence intersects the real axis in an interval (x0 – r, x0 + r) called the interval of
convergence.

If g is a function defined on an interval I containing point x0 we say that g is analytic at x0

if g can be expanded in a power series about x0 which has a positive radius of convergence. Thus
g is analytic at x0 if it can be representd in the form
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0
0

( ) ( – )nn
n

g x a x x
∞

=
= ∑

Where an are constants and the series converges for 0| – | , 0.< >x x r r  If g has a power

series expansion then all the derivatives of g exist on 0| – |<x x r  and they may be computed by
differentating the series term by term that is

    
–1 –2

0 0
0 0

( ) ( – ) , ( ) ( –1) ( – ) etc.
∞ ∞

= =
′ ′′= =∑ ∑n n

n n
n n

g x n a x x g x n n a x x

The differentiated series converges on 0| – | .x x r<

In calculus there are certain tests by which one could determine an interval of converge of
a real power series. A simple one and one which is frequently used is known as ratio test.

The series 
0

i
n

u
∞

=
∑  converges absolutely if  Lt 1 1.+

→∞ = <n
n

n

u
k

u

Example 1 : For the power series 
0

,
∞

=
∑

n

n

x
n

    

1

Lt Lt Lim1 1 | |
1

+
+ +

→∞ →∞ →∞= = ⋅ =
+

n

n

x
n n

n n nxn n

u n
x x

u n

Hence the series converges absoulately if | x | < |.

Example 2 : For the power series

   
–12 4 6

2 –2(–1)
1– – .... ....,

2! 4! 6! (2 – 2)!

n
nx x x

x
n

+ + + +

–1
2 –2 2

1
(–1) (–1)

and  
(2 – 2)! (2 )!

n n
n n

n nu x u x
n n+= =

Therefore

   
2 2

Lim Lim Lim1
–1 2 –2

(–1) (2 – 2)!
0 for each 

(2 )! 2 (2 –1)(–1)
+

→∞ →∞ →∞= × = =
n n

n
n n nn n

n

u x n x
x

u n n nx

Hence the series converges absoulately for all x. Its interval of convergence is the entire
real axis.

Theorem 2.3.1 : (Existence theorem)
Let x0 be a real number and suppose that the coefficients a1, a2, a3,..... an in

 ( ) ( –1) ( –2)
1 2( ) ( ) ( ) .... ( )n n n

nL y y a x y a x y a x y= + + + +

have convergent power series expansions in powers of (x – x0) on an interval 0| – | , 0.x x r r< >

If a1, a2, a3,.....an are any n constants, there exists a solution f of the problem

( –1)
0 1 0 2 0( ) 0, ( ) , ( ) ,...., ( )n

nL y y x y x y xα α α′= = = =
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with a power series expansion

0
0

( ) ( – )kk
k

x c x xφ
∞

=
= ∑

is convergent for 0| – |x x r< . We have

    1! ( 0,1,2,3,...., –1),α += =k kk c k n  and ck for k ³ n may be computed in terms of

c0, c1, c2, c3,..... cn – 1 by substituting the series into L(y) = 0.

If the coefficients a1, a2, a3,..... an are analytic at x0 then the solutions are also analytic.
The solutions can be computed by a formal algebraic process.

Illustration :

 ( ) – 0L y y xy′′= =

Here 1 2( ) 0, ( ) –a x a x x= = are analytic for all real x.

Let the solution of the equation L(y) = 0 be f  defined by

2 3
0 1 2 3

0
( ) ....φ

∞

=
= + + + + = ∑ n

n
k

x a a x a x a x a x

Then      2 3 –1
1 2 3 4

1
( ) 2 3 4 ....

∞

=
′ = + + + + = ∑ n

n
n

x a a x a x a x n a xφ

    
2 –2

2 3 4
0

( ) 2 6 12 .... ( –1)
∞

=
′′ = + + + = ∑ n

n
n

x a a x a x n n a xφ

–2

2 0
( ) – ( ) ( –1) –φ φ

∞ ∞

= =
′′ = ∑ ∑n n

n n
n n

x x x n n a x x a x

    2 3 2 3 4
2 3 4 5 0 1 2 32 6 12 20 ...– { ...}a a x a x a x a x a x a x a x= + + + + + + + +

    2 3
2 3 0 4 1 5 22 (6 – ) (12 – ) (20 – ) ...= + + + +a a a x a a x a a x

    [ ]2 2 –1
1

2 ( 2) ( 1) – n
n n

n
a n n a a x

∞
+

=
= + + +∑

f is a solutin of ( ) – 0L y y xy′′= =  if – 0 orxφ φ′′ =

[ ]2 2 –1
1

2 ( 2) ( 1) – 0n
n n

n
a n n a a x

∞
+

=
+ + + =∑

Above equation is true only if all the coefficients of the power series of x are zero. Thus,

 2 2 –12 0, ( 2)( 1) – 0, 1,2,3....n na n n a a n+= + + = =

This gives an infinite set of equations, and can be solved for an. Thus, for n = 1 we have

  
0

3 0 3(3) (2) or  
(3) (2)

⋅ ⋅ = =
⋅

a
a a a

For n = 2 we find

   
1

4 1 4(4) (3) or  
(4) (3)

⋅ = =
⋅

a
a a a
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Continuing in this way we see that

    

0 1 2

0 1 2
3 4 5

3 0 4 1
6 7 8

6 0 7 1
9 10 11

; 0

; ; 0
(3) (2) (4) (3) (5) (4)

; ; 0
(6) (5) (6) (5) (3) (2) (7) (6) (7) (6) (4) (3)

; ;
(9) (8) (9) (8) (6) (5) (3) (2) (10) (9) (10) (9) (7) (6) (4) (3)

=

= = = =
⋅ ⋅ ⋅

= = = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

a a a

a a a
a a a

a a a a
a a a

a a a a
a a a 0.

In general

 
0

3 ;
(2) (3) (5) (6) (8) (9) (3 –1) (3 )

=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅m

a
a

m m

1
3 1 3 2; 0

(3) (4) (6) (7) (9) (10) (3 ) (3 1)+ += =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +m m

a
a a

m m

Thus all the constants are determined in terms of a0 and a1. Collecting together terms
containing a0 and a1 as a factor we have

     
3 6 4 7

0 1( ) 1 ... ...
(3) (2) (2) (3) (5) (6) (4) (3) (3) (4) (6) (7)

φ
   

= + + + + + + +   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   

x x x x
x a a x

Let f1 and f2 represent the two series in the brackets.

Thus,
3

1
1

( ) 1 ,
2 3 5 6 8 9....(3 –1) (3 )

∞

=
= +

⋅ ⋅ ⋅ ⋅ ⋅∑
m

m

x
x

m m
φ

3 1

2
1

( ) .
3 4 6 7 9 10....(3 ) (3 1)

φ
+∞

=
= +

⋅ ⋅ ⋅ ⋅ ⋅ +∑
m

m

x
x x

m m

We have shown, in a formal way that f satisfies – 0y xy′′ = for any two contants a0 and a1

In particular the choice a0 = 0 and a1 = 1 implies f2 (x) satisfies the equation and a0 = 1, a1

= 0 implies f1 (x) satisfies the equation.

The only question that remains is about the convergence of the series, defining f1 (x) and
f2 (x).

3

1
1

( ) 1 ( ) 1
2 3 5 6 8 9....(3 –1) (3 )

m

m
m

x
x d x

m m
φ

∞

=
= + = +

⋅ ⋅ ⋅ ⋅ ⋅∑ ∑

     
3 3

1
3

2 3 5 6 8 9 (3 –1)(3 )
2 3 5 6 8 9 (3 ) (3 2)(3 3)

+
+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅= ×

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ + +

m
m

m

d m mx
dm m m m x

3

(3 2)(3 3)
=

+ +
x

m m

Lt sup Lt inf1 1
0.

(3 2)(3 3) (3 2) (3 3)→∞ →∞= =
+ + + +m mm m m m

The series converges if |x | < ¥.

Similarly  f2 (x) is convergent series.
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EXAMPLES

1. Find two linearly independent power series solutions (in powers of x) of the following
equations.

(a) 0y xy y′′ ′− + = (b)  23 – 0y x y xy′′ ′+ =

(c) 2– 0y x y′′ = (d)  3 23 0y x y x y′′ ′+ + =

Ans. (a) : Let 2 3
0 1 2 3

0
( ) ... ...n n

n n
n

x a a x a x a x a x a xφ
∞

=
= + + + + + + = ∑ be a solution of

( ) – 0L y y xy y′′ ′= + = . Since it is a solution it satisfies the equation L(f ) = 0.

 
2 3

0 1 2 3
0

( ) ... ...n n
n n

n
x a a x a x a x a x a xφ

∞

=
= + + + + + + = ∑

Then 2 –1 –1
1 2 3

1
( ) 2 3 ... ...n n

n n
n

x a a x a x n a x n a xφ
∞

=
′ = + + + + + = ∑

     
–2 –2

2 3
2

( ) 2 3 2 ... ( –1) ... ( –1)
∞

=
′′ = + ⋅ + + + = ∑n n

n n
n

x a a x n n a x n n a xφ

Thus,      –2 –1

2 1 0
( ) ( –1) – 0.n n n

n n n
n n n

L n n a x x n a x a xφ
∞ ∞ ∞

= = =
= + =∑ ∑ ∑

2
0 1 0

( 2) ( 1) – 0
∞ ∞ ∞

+
= = =

= + + + =∑ ∑ ∑n n n
n n n

n n n
n n a x n a x a x

2 0 2
1

(2 ) {( 2)( 1) – } 0n
n n n

n
a a n n a na a x

∞
+

=
= + + + + + =∑

 2 0 2
1

( ) (2 ) {( 2)( 1) – ( –1) } 0n
n n

n
L a a n n a n a xφ

∞
+

=
= + + + + =∑

We see that  L(f ) = 0 if and only if 2a2 + a0 = 0 and 2( 2) ( 1) – ( –1) 0++ + =n nn n a n a  for

1,2,3,....n =   2 0 2
( –1)1

– ;
2 ( 2)( 1)

n
n

n a
a a a

n n+= =
+ +

 is called recurrence relation.

0 1

0
2 3 1

02
4 5

04
6 7

0
8 9

0
10 11

;

–
; ; 0.

2 1
2

– ; .0 0
4 3 2 3 4 5 4

33
– ; 0

6 5 2 3 4 5 6
3 5

– ; 0
2 3 4 5 6 7 8
3 5 7

– ; 0
10!

= =
⋅

= = = =
⋅ ⋅ ⋅ ⋅

= = =
⋅ ⋅ ⋅ ⋅ ⋅

⋅
= =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅= =

a a

a
a a a

aa
a a

aa
a a

a
a a

a
a a
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In general 2 1 0 1,2,3,....na n+ = =

   
0

2
3 5 7 9 (2 – 3)

–
(2 )!n

n a
a

n

⋅ ⋅ ⋅ ⋅ ⋅⋅=

     0
2 3 4 5 6 7 8 9 (2 – 3) (2 – 2) (2 –1)(2 )

–
2 4 6 8 2 (2 –1) (2 )!

n n n n
a

n n n

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅=
⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅

     0
(2 ) !

–
2 !(2 –1)(2 )!n

n
a

n n n
=

0–
2 !(2 –1)n

a

n n
=

 
2 2 1

2 2 1
0 0

( ) n n
n n

n n
x a x a xφ

∞ ∞ +
+

= =
= +∑ ∑

     
20

0 1
1

–
2 !(2 –1)

∞

=
= +∑ n

n
n

a
a x a x

n n

2

0 1
1

1–
2 !(2 –1)

∞

=

 
= + 

 
∑

n

n
n

x
a a x

n n

2

1 2
1

( ) 1– and ( )
2 !(2 –1)

n

n
n

x
x x x

n n
φ φ

∞

=
= =∑   are two solutions of the equation

Let 1
0

( ) ( )φ
∞

=
= ∑ m

m
x d x

 

2( 1)

1 2
1

2

2 ( 1)!(2 1) (2 –1)
2( 1) (2 1)

2 !(2 –1)

+

+
+ + += =

+ +

n

n
n

n

n

x

d n n x n

dn n nx

n n

Lt Lt 1 (2 –1)
0

2( 1) (2 1)
+

→∞ →∞= =
+ +

n
n n

n

d n

d n n
Redius of convergence = ¥
The series converges if |x | < ¥ i.e. all values of x. Both the solutions are convergent for

all values of x.

Ans. (b) : Let   
0

( )φ
∞

=
= ∑ n

n
n

x a x  be a solution.

–1 –2

1 2
( ) , ( ) ( –1)n n

n n
n n

x na x x n n a xφ φ
∞ ∞

= =
′ ′′= =∑ ∑

 2( ) 3 –L x xφ φ φ φ′′ ′= +
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–2 2 –1

2 1 0
( –1) 3 –n n n

n n n
n n n

n n a x x n a x x a x
∞ ∞ ∞

= = =
= +∑ ∑ ∑

 ( ) 0L φ =  implies

2 2 3 4 5
2 3 4 1 2 3 42 1 3 2 4 3 3 2 3 4 ....a a x a x a x a x a x a x ⋅ + ⋅ + ⋅ + ⋅⋅⋅ + + + + + 

2 3 4
0 1 2 3– .... 0.a x a x a x a x + + + + = 

[ ] [ ]2 3
2 3 0 4 1 5 22 1 (3 2 – ) 4 3 (3 –1) 5 4 (3(2) –1)⋅ + ⋅ + ⋅ + + ⋅ +a a a x a a x a a x

[ ] 4
6 3– 6.5 (3(3) –1) 0a a x+ + ⋅⋅⋅⋅ =

[ ] 1
2 3 0 3

1
2 1 (3 2 – ) ( 3) ( 2) (3 –1) 0n

n n
n

a a a x n n a n a x
∞ +

+
=

⋅ + ⋅ + + + + =∑

Then 0
2 3 3

(3 –1)
0 ; ; –

2 3 ( 3) ( 2)
n

n
a n a

a a a
n n+= = =

⋅ + +

0 1 2

0 1
3 4 5

3 0 4 1
6 7 8

0 1
9 10 11

; ; 0

2
– ; – ; 0

2 3 4 3

8 8 11 11 2
– ; – ; 0

6 5 2 3 5 6 7 6 7 6 4 3

(18 –1) (9 –1) 20 11 2
– ; – ; 0.

9 8 6 5 3 2 10 9 7 6 4 3

a a a

a a
a a a

a a a a
a a a

a a
a a a

=

= = =
⋅ ⋅

⋅= = + = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅= = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The solution

3
1

1

(–1) (–1)8 17 (9 –1)
( ) 1

2 3 5 6 8 9 (3 –1) (3 )
φ

∞

=

⋅ ⋅⋅ ⋅= +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅

∑
m

m

m

m
x x

m m

3 1
2

1

(–1) 2 11 20 (3(3 – 2) –1)
( )

3 4 6 7 9 10 (3 )(3 1)
φ

∞
+

=

⋅ ⋅ ⋅⋅ ⋅= +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ +∑

m
m

m

m
x x x

m m

Ans. (c) : Let 
0

( ) n
n

n
x a xφ

∞

=
= ∑  be a solution of 2– 0.y x y′′ =  Since it is a solution f (x) satisfies

2( ) – 0.L xφ φ φ′′= =

 
–1 –2

0 1 2
( ) , ( ) , ( ) ( –1)n n n

n n n
n n n

x a x x n a x x n n a xφ φ φ
∞ ∞ ∞

= = =
′ ′′= = =∑ ∑ ∑

 
–2 2

2 0
( ) ( –1) – 0.n n

n n
n n

L n n a x x a xφ
∞ ∞

= =
= =∑ ∑

–2 2
2 3

4 0
2 1 3 2 ( –1) – 0

∞ ∞
+

= =
⋅ + ⋅ + =∑ ∑n n

n n
n n

a a x n n a x a x
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2 2
2 3 4

0 0
2 1 3 2 ( 4) ( 3) – 0

∞ ∞
+ +

+
= =

⋅ + ⋅ + + + =∑ ∑n n
n n

n n
a a x n n a x a x

Here we have replaced n by n + 4 and therefore the sum is from 0 to ¥.

[ ] 2
2 3 4

0
2 1 3 2 ( 4)( 3) – 0.n

n n
n

a a x n n a a x
∞ +

+
=

⋅ + ⋅ + + + =∑

Thus,  2 3 40, 0 and .
( 4) ( 3)

n
n

a
a a a

n n+= = =
+ +

0 1 2 3

0 1
4 5 6 7

0 54 1
8 9 10 11

0 1
12 13 14 15

0 0

; ; ; 0 ; 0
3 4 5 4

; ; 0 ; 0
8 7 3 4 7 8 9 8 4 5 8 9

; ; 0 ; 0
3 4 7 8 11 12 4 5 8 9 12 13

a a a a

a a
a a a a

a aa a
a a a a

a a
a a a a

= =

= = = =
⋅ ⋅

= = = = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
M M M M

Thus all the coefficients an’s are determined in terms of a0 and a1 since a2 = a3 = 0 implies
a4m+2 and a4m+3 = 0 for m = 0, 1, 2, 3,..... Therefore

 
4 1

4 4 1
0 0

( ) m m
m m

m m
x a x a xφ

∞ ∞ +
+

= =
= +∑ ∑

     
4

0
1

1
3 4 7 11 12 (4 –1) (4 )

m

m

x
a

m m

∞

=

 
= + 

⋅ ⋅ ⋅ ⋅ ⋅⋅⋅  
∑

4 1

1
14 5 8 9 12 13 (4 ) (4 1)

+∞

=

 
+ + 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ +  
∑

m

m

x
a x

m m

Therefore two linearly independent solutions are

4

1
1

( ) 1 and
3 4 7 11 12 13 (4 –1)(4 )

∞

=
= +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅∑
m

m

x
x

m m
φ

4 1

2
1

( ) .
4 5 8 9 12 13 (4 ) (4 1)

m

m

x
x x

m m
φ

+∞

=
= +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ +∑

Ans. (d) : Let 2
0

( )φ
∞

=
= ∑ n

n
n

x a x be a solution of 3 2( ) 0.L y y x y x y′′ ′= + + =  Therefore

 
–2 3 –1 2

2 1 0
( ) ( –1) 0φ

∞ ∞ ∞

= = =
= + + =∑ ∑ ∑n n n

n n n
n n n

L n n a x x n a x x a x

that is  –2 2 2

2 1 0
( –1) 0.

∞ ∞ ∞+ +

= = =
+ + =∑ ∑ ∑n n n

n n n
n n n

n n a x n a x a x
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The first term starts from x0 where as last two series start from x3 and x2 respectively. To
get the common base we write the expansion in the following form

2 –2 2 2 2
2 3 4 0

5 1 1
2 1 3 2 4 3 ( –1) 0.n n n

n n n
n n n

a a x a x n n a x na x a x a x
∞ ∞ ∞

+ +

= = =
⋅ + ⋅ + ⋅ + + + + =∑ ∑ ∑

Therefore

2 –2 2
2 3 4 0

5 1
2 1 3 2 (4 3 ) ( –1) ( 1) 0n n

n n
n n

a a x a a x n n a x n a x
∞ ∞

+

= =
⋅ + ⋅ + ⋅ + + + + =∑ ∑

We replace n by n + 4 in the first series.

[ ]2 2
2 3 4 0 4

1
2 1 3 2 (4 3 ) ( 4) ( 3) ( 1) 0.

∞
+

+
=

⋅ + ⋅ + ⋅ + + + + + + =∑ n
n n

n
a a x a a x n n a n a x

Above equation is true for all values of x and therefore

2 3 4 0 40; 0; 4 3 0; ( 4) ( 3) ( 1) 0+= = ⋅ + = + + + + =n na a a a n n a n a

0 1 2 3

0 1
4 5 6 7

0 1
8 9 10 11

0 1
12 13 14 15

0 0

– –2
; ; ; 0 ; 0

3 4 5 4
5 6 2

; ; 0 ; 0
3 4 7 8 4 5 8 9

9 5 10 6 2
– ; – ; 0 ; 0

3 4 7 8 11 12 4 5 8 9 12 13

= =

= = = =
⋅ ⋅

⋅= + = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅= = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
M M M M

a a a a

a a
a a a a

a a
a a a a

a a
a a a a

  4
(–1) 5 9 13 (4 – 3)

;
3 4 7 8 11 12 (4 –1)(4 )

m

m
m

a
m m

⋅ ⋅ ⋅ ⋅⋅=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅

4 1 4 2 4 3
(–1) 2 6 10 (4 – 2)

; 0.
4 5 8 9 (4 ) (4 1)

m

m m m
m

a a a
m m+ + +

⋅ ⋅ ⋅⋅ ⋅= = =
⋅ ⋅ ⋅ ⋅⋅ ⋅⋅ +

Therefore two linearly independent solutions are

     
4

1
1

(–1) 5 9 13 (4 – 3)
( ) 1

3 4 7 8 11 12 (4 –1) (4 )

m
m

m

m
x x

m m
φ

∞

=

⋅ ⋅ ⋅⋅ ⋅= +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅∑

     
4 1

2
1

(–1) 2 6 10 (4 – 2)
( )

4 5 8 9 (4 )(4 1)

m
m

m

m
x x x

m m
φ

∞ +

=

⋅ ⋅ ⋅⋅⋅= +
⋅ ⋅ ⋅ ⋅⋅ ⋅ +∑

2. Find the solution f of 2( –1) – ( –1) 0y x y x y′′ ′+ = in the form 
0

( ) ( –1)kk
k

x a xφ
∞

=
= ∑  which

satsfies (1) 1, (1) 0.φ φ′= =

Ans. : Let 
0

( ) ( –1)φ
∞

=
= ∑ k

k
k

x a x be a solution of 2( ) ( –1) – ( –1) 0.L y y x y x y′′ ′= + =
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–2 2 –1 1

2 1 0
( ) ( –1) ( –1) ( –1) ( –1) – ( –1) 0.k k k

k k k
k k k

L k k a x x k a x a xφ
∞ ∞ ∞

+

= = =
= + =∑ ∑ ∑

that is
–2 1 1

2 1 0
( –1) ( –1) ( –1) – ( –1) 0.k k k

k k k
k k k

k k a x k a x a x
∞ ∞ ∞+ +

= = =
+ =∑ ∑ ∑

–2 1
2 3

4 1
2 1 3 2 ( –1) ( –1) ( –1) ( –1)

∞ ∞
+

= =
⋅ + ⋅ + +∑ ∑k k

k k
k k

a a x k k a x k a x

1
0

1
– ( –1) – ( –1) 0k

k
k

a x a x
∞ +

=
=∑

In the third term replace k by k + 3 we get

[ ] [ ] 1
2 3 0 3

1
2 1 3 2 – ( –1) ( 3) ( 2) ( –1) 0.

∞
+

+
=

⋅ + ⋅ + + + + =∑ k
k k

k
a a a x k k a k a x

Thus,

0 1 2

0
3 4 5

3 0
6 7 8

6 0
9 10 11

0
3 3 1 3 2

; ; 0

; 0 ; 0
3 2

2 –2
– ; 0 ; 0

6 5 2 3 5 6

–5 5 2
; 0 ; 0.

9 8 2 3 5 6 8 9

(–1) 2 5 8 (3 –1)
; 0 for  1,2... ; 0.

2 3 5 6 8 9 (3 –1) (3 ) + +

=

= = =
⋅

= = = =
⋅ ⋅ ⋅ ⋅

⋅= = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅⋅ ⋅
= = = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅

M M M

m

m m m

a a a

a
a a a

a a
a a a

a a
a a a

m a
a a m a

m m

Corresponding to the coefficients a0 and a1 we get the following two linearly independent
solutions.

3
1

1

(–1) 2 5 8 (3 –1)
( ) 1 ( –1)

2 3 5 6 8 9 (3 –1) (3 )

m
m

m

m
x x

m m
φ

∞

=

⋅ ⋅ ⋅⋅ ⋅= +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅∑   and

1( ) ( –1)x xφ =

The general solution f  is

 
3

0 1
1

(–1) 2 5 8 (3 –1)
( ) 1 ( –1) ( –1)

2 3 5 6 (3 –1) (3 )

∞

=

 ⋅ ⋅ ⋅⋅ ⋅= + + 
⋅ ⋅ ⋅ ⋅ ⋅⋅  

∑
m

m

m

m
x a x a x

m m
φ

 1 0(1) 1 give  1aφ = =

3 –1
0 1

1

(–1) 2 5 8 (3 –1) (3 )
( ) ( –1)

2 3 5 6 (3 –1) (3 )

∞

=

⋅ ⋅ ⋅⋅ ⋅′ = +
⋅ ⋅ ⋅ ⋅ ⋅⋅∑
m

m

m

m m
x a x a

m m
φ

 1(1) 0 give  0.aφ′ = =
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Thus, the required solution is

3

1

(–1) 2 5 8 (3 –1)
( ) 1 ( –1) .

2 3 5 6 (3 –1)(3 )

m
m

m

m
x x

m m
φ

∞

=

⋅ ⋅ ⋅ ⋅⋅= +
⋅ ⋅ ⋅ ⋅⋅⋅∑

3. Compute the solution f of – 0y xy′′′ = which satisfies (0) 1, (0) 0, (0) 0.φ φ φ′ ′′= = =

Ans. : Let 
0

( ) n
n

k
x a xφ

∞

=
= ∑ be a solution of ( ) – 0.L y y xy′′′= = Then

 
–3

3 0
( ) ( –1) ( – 2) – 0n n

n n
n n

L n n n a x x a xφ
∞ ∞

= =
= =∑ ∑

Then –3 1
3

4 0
3 2 1 ( –1) ( – 2) – 0n n

n n
n n

a n n n a x a x
∞ ∞ +

= =
⋅ ⋅ + =∑ ∑

In the first sum replace n by n + 4, then

[ ] 1
3 4

0
3 2 1 ( 4)( 3)( 2) – 0n

n n
n

a n n n a a x
∞ +

+
=

⋅ ⋅ + + + + =∑

Thus, 3 40 and .
( 4) ( 3)( 2)

n
n

a
a a

n n n+= =
+ + +

0 1 2 3

0 1 2
4 5 6 7

0 1 2
8 9 10 11

; ; 0

; ; ; 0
4 3 2 5 4 3 6 5 4

; ; ; 0
8 7 6 4 3 2 9 8 7 5 4 3 10 9 8 6 5 4

=

= = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

a a a a

a a a
a a a a

a a a
a a a a

0
12 2 3 4 6 7 8 10 11 12

=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

a
a           ; 1

13 3 4 5 7 8 9 11 12 13
=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
a

a ; 2
14 4 5 6 8 9 10 12 13 14

=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

a
a

  ;a15 = 0
M M M M

0 1
4 4 1;

2 3 4 6 7 8 (4 – 2) (4 –1) (4 ) 3 4 5 (4 –1) (4 ) (4 1)m m
a a

a a
m m m m m m+= =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅⋅ +

2
4 2 4 3; ; 0

4 5 6 8 9 10 (4 ) (4 1) (4 2)m m
a

a a
m m m+ += =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ + +

The general solution f (x) of the given equation contains three parameters a0, a1, a2.
The solution f (x) becomes

 
4

0
1

( ) 1
2 3 4 6 7 8 (4 – 2) (4 –1)(4 )

m

m

x
x a

m m m
φ

∞

=

 
= + 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅  
∑

 
4 1

1
1 3 4 5 7 8 9 (4 –1)(4 ) (4 1)

m

m

x
a x

m m m

+∞

=

 
+ + 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ +  
∑
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4 2
2

2
1 4 5 6 8 9 10 (4 )(4 1)(4 2)

m

m

x
a x

m m m

+∞

=

 
+ + 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ + +  
∑

  0(0) 1 gives 1aφ = =

 
(4 –1)

0
1

4
( )

2 3 4 6 7 8 (4 – 2)(4 –1) (4 )

m

m

mx
x a

m m m
φ

∞

=
′ =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅∑

 
4

1
1

(4 1)
1

3 4 5 7 8 9 (4 –1)(4 ) (4 1)

∞

=

 ++ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ +  
∑

m

m

m x
a

m m m

 
4 1

2
1

(4 2)
2

3 4 5 7 8 9 (4 –1) (4 )(4 1)

+∞

=

 ++ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ +  
∑

m

m

m x
a x

m m m

1(0) 0 gives 0.aφ′ = =

Similarly 2(0) 0 gives 0.aφ′′ = =
Thus, the required solution is

 
4

1
( ) 1 .

2 3 4 6 7 8 (4 – 2)(4 –1)(4 )

m

m

x
x

m m m
φ

∞

=
= +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅∑

4. Legendre equation is an important differential equation occur in physical problems. The
equation

 2( ) (1– ) – 2 ( 1) 0L y x y xy yα α′′ ′= + + =
wherea  is constant is called Legendre equation.

If we write this equation as

2 2

( 1)2
– 0,

1– 1–

x
y y y

x x

α α +′′ ′ + =

we see that a1, a2 are given by

1 22 2

( 1)2
( ) and  ( ) .

1– 1–

x
a x a x

x x

α α += =

Both these functions are analytic at x = 0. Indeed, 2
2

0

1

1–
k

k
x

x

∞

=
= ∑ and the series converges

for | x | < |.

Thus, a1(x) and a2(x) have the series expansions. Both there series converge for |x | < | .
Thus by existence theorem the solution L(y) = 0 on |x | < | have convergent power series
expansions.

Let f be any solution of L(y) = 0 on |x | < |.

Suppose  
0

( ) n
n

k
x a xφ

∞

=
= ∑  then

 
2 –2 –1

2 1 0
( ) (1– ) ( –1) – 2 ( 1)n n n

n n n
n n n

L x n n a x x na x a xφ α α
∞ ∞ ∞

= = =
= + +∑ ∑ ∑
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–2

2 2 1 0
( –1) – ( –1) – 2 ( 1)α α

∞ ∞ ∞ ∞

= = = =
= + +∑ ∑ ∑ ∑n n n n

n n n n
n n n n

n n a x n n a x na x a x

     [ ]2
0

( 2) ( 1) –{ ( –1) 2 – ( 1)} n
n n

n
n n a n n n a xα α

∞
+

=
= + + + +∑

For f  to satisfy L(f ) = 0 we must have all the coefficients of the powers of x equal to zero.

Hence, [ ]2( 2) ( 1) – ( 1) – ( 1) 0, 0,1,2,3,...n nn n a n n a nα α++ + + + = =

This is a recurrance relation which gives an +2 in terms of an.

 2
( 1) – ( 1)

( 1)( 2)n n
n n

a a
n n

α α
+

+ +=
+ +

– ( 1) ( – )
.

( 1) ( 2)

+ +=
+ + n
n n

a
n n

α α

for n = 0 we get

 2 0
( 1)

–
2

a a
α α +=

 3 1
( 2) ( –1)

–
2 3

a a
α α+=

⋅
Similarly,

   

4 2 5 3

0 1

( 3) ( – 2) ( 4) ( – 3)
– ; –

3 4 4 5

( 1) ( 3)( – 2) ( 4)( 2)( –1) ( – 3)
2 3 4 2 3 4 5

+ += =
⋅ ⋅

+ + + += + = +
⋅ ⋅ ⋅ ⋅ ⋅

a a a a

a a

α α α α

α α α α α α α α

In general

  2 0
( 2 –1) ( 2 – 3) ( 1) ( – 2) ( – 2 2)

(–1)
(2 )!

m
m

m m m
a a

m

α α α α α α+ + ⋅⋅⋅ + ⋅ ⋅⋅ +=

       2 1 1
( 2 ) ( 2 – 2) ( 2)( – 1)( – 3) ( – 2 1)

(–1)
(2 1)!

α α α α α α
+

+ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +=
+

m
m

m m m
a a

m

All the coefficients are determined in terms of a0 and a1 and we have

 0 1 1 2( ) ( ) ( )x a x a xφ φ φ= +

where, 2
1

1

(–1) ( 2 –1)( 2 – 3) ( – 2) ( – 2 2)
( ) 1

(2 )!

m
m

m

m m m
x x

m

α α α α αφ
∞

=

+ + ⋅⋅ ⋅ ⋅ ⋅⋅ += + ∑

2 1
2

1

(–1) ( 2 )( 2 – 2) ( 2) ( –1)( – 3) ( – 2 1)
( )

(2 1)!

∞ +

=

+ + ⋅⋅⋅ + ⋅⋅ ⋅ += +
+∑

m
m

m

m m m
x x x

m

α α α α α αφ

Both f1 and f2 are solutions of Legendre equation, corresponding to the choices

 0 1 0 11, 0 and        0, 1,c c c c= = = =
respectively. They form a basis for the solutions, since

 1 2 1 2(0) 1, (0) 0 ; (0) 0, (0) 1φ φ φ φ′ ′= = = =
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1 2
1 2 1 2 2 1

1 2

(0) (0)
W( , ) (0) (0) (0) – (0) (0) 1

(0) (0)

φ φ
φ φ φ φ φ φ

φ φ
′ ′∴ = = =

′ ′

Since Wronkian 1 2 1 2W( , ) (0), ,φ φ φ φ≠ are linearly independent and therefore forms a basis.

If a is a non-negativ even integer a = 2n, then f1 has only a finite number of non-zero
terms. In this case f1 is a polynomial of degree 2n containing only even powers of x. for example,

 1 00, ( ) 1 ( )α φ= = =x p x

 
2 2

1 2
(–1) (2 1)

2, ( ) 1 1– 3 ( )
2

α φ α+= = + = =x x x p x

or the recurrance relation

 2
( 1) – ( 1)

( 1) ( 2)n n
n n

a a
n n

α α
+

+ +=
+ +   implies

2 0 0
0(0) – 2(3)

–3
1 2

a a a= =
⋅

4 2
2(3) – 2(3)

0
3 4

a a= =
⋅

with a0 = 1 we get 2
1 2( ) 1– 3 ( )x x p xφ = =

for a  = 4,      2 0 0
0(0) – 4(5)

–10
1 2

a a a= =
⋅

 4 2
2(3) – 4(5)

3 4
a a=

⋅

 0
6 – 20

(–10 )
12

a=

 0
140
12

a= +

 0
35
3

a=

 6
4(5) – 4(5)

5 6
a =

⋅
 = 0

2 4
1 0 0

3 5
( ) 1–10   with  1

3
x a x x aφ  = + =  

2 4
1 4

3 5
( ) 1–10 ( )

3
x x x p xφ = + =

The solution f2 is not a polynomial in this case since none of the coefficients in the series
of f2 vanish.

A similar situation occurs when a  is a positive odd integer n. Then f2 is a polynomial of
degree n having only odd powers of x and f1 is not a polynomial.

(95)



Differential Equations

for example

(a = 1)  2
( 1) – ( 1)

( 1) ( 2)n n
n n

a a
n n

α α
+

+ +=
+ +

 3 1
1(2) –1(2)

0
2 3

a a= =
⋅

2 1( ) ( )x x p xφ = = (say)

(a = 3)      3 1
1(2) – 3(4)

2 3
a a=

⋅

1
5

–
3

a=

 5 3
3(4) – 3(4)

4 5
a a=

⋅  =  0

3
2 3

5
( ) – ( )

3
x x x p xφ = = (say)

(a = 5)      3 1
1(2) – 5 6

2 3
a a

⋅=
⋅

1
14

–
3

a=

5 3
3(4) – 5 6

4 5
a a

⋅=
⋅

1
18 14

– –
20 3

a =   

1
21
5

a=

7 5
5 6 – 5 6

0.
6 7

a a
⋅ ⋅= =

⋅

     
3 5

2 5
14 21

( ) – ( )
3 5

x x x x p xφ = + = (say)

Definition : 2.1.3

A polynomial solution pn of degree n of 2(1– ) – 2 ( 1) 0,x y xy n n′′ ′ + + =

Satisfying Pn (1) = 1 is called the nth Legendre polynomial and the differential equation is
called Legendre equation.

Let f  be a polynomial of degree n defined by

 
2( ) ( –1)

n
n

n
d

x x
dx

φ =

 2( ) ( –1)nu x x=  implies 2 –1( ) ( –1) 2nu x n x x′ =  gives

2( –1) ( ) – 2 ( ) 0x u x n x u x′ =
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Differentiate this equation (n + 1) times.

First differentiation gives

2( –1) ( ) 2 (1– ) ( ) – 2 ( ) 0x u x x n u x n u x′′ ′+ =
Second differentiation gives

[ ] [ ]2( –1) ( ) 2 (1 1) – 2 (1– ) (0 – ) ( ) 0x u x x n u n n u x′′′ ′′ ′+ + + + =

Third differentiation gives

[ ] [ ]2 ( )( –1) 2 (1 1 1) – 2 (2 – ) (1– ) (0 – ) 0.′′′ ′′+ + + + + + =ivx u x n u n n n u

i.e. [ ]2 ( )( –1) 2 (3 – ) – 2 ( – 2) ( –1) 0.ivx u x n u n n n u′′′ ′′+ + + =

In general (n + 1)th differentiation gives

[ ]2 ( 2) ( 1) ( )( –1) 2 (( 1) – ) – 2 1 2 3 4 ... ( –1) 0.n n nx u x n n u n n u+ ++ + + + + + + + =

i.e. 2 ( 2) ( 1) ( )( –1) 2 – ( 1) 0.n n nx u x u n n u+ ++ + =     or

2 ( 2) ( 1) ( )(1– ) – 2 ( 1) 0.n n nx u x u n n u+ + + + =

Since    
2 ( )( ) ( –1) ( ) ( ),

n n
n n

n n
d d

x x u x u x
dx dx

φ = = =

2(1– ) – 2 ( ) ( 1) ( ) 0x x x n n xφ φ φ′′ ′ + + =

Thus the function 2( ) ( –1)
n

n
n

d
x x

dx
φ = is a solution of Legendre equation.

  
2( –1) ( 1) ( –1)

n n
n n n

n n
d d

x x x
dx dx

 = + 

  
–1

–1
( –1) ( 1) ( –1) ( 1) ...

       = + + + +          

n n
n n n n

n n
d d d

x x x x
dxdx dx

  ( –1) ( – 2)....2 1( 1)= ⋅ + +nn n n x  terms containing (x – 1) as factor.

   = n ! (x + 1)n + terms containing (x – 1) as factor.
Thus, at x = 1,

  
2( –1) 2 !

n
n n

n
d

x n
dx

= ⋅

Define 21 1
( ) ( ) ( –1)

2 ! 2 !

n
n

n n n n
d

P x x x
n n dx

φ= =  then Pn (x) is a solution of Legendre

equation witha = n  1
(1) 2 ! 1.

2 !
n

n n
P n

n
 = ⋅ =   Thus, Pn(x) is a Legendre polynomial of degreen.

Supposey is a polynomial solution of Legendre equation with a  = n. Since f1 and f2  are

basic solutions of Legendre equation 1 1 2 2c cψ φ φ= +  on |x | < | for some constants c1 and c2 is

a solution. If n is even f1 is polynomial solution and f2 is not a polynomial 1 1–cψ φ  is polynomial
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where as c2 f2 is not a polynomial and therefore c2 = 0. In particular the function Pn satisfies

1 1( ) ( )nP x c xφ= for some constant c1 if n is even. Since 1 1(1) 1 (1)nP c φ= =  therefore 1(1) 0.φ ≠
Thus no nontrivial polynomial solution of Legendre equation can be zero at x = 1. A similar
result is valid for n odd.

The formula

21
( ) ( –1)

2 !
=

n
n

n n n
d

P x x
n dx

is known as Rodriges formula. This expression can be used to prove properties of Legendre
polynomials.

EXERCISES

1. The equation 2 2(1– ) – 0x y xy yα′′ ′ + =  where a is a constant is called the Chebyshev

equation.

(a) Compute two linearly independent series solutions for |x | < |.

(b) Show that for every non negative integer a = n there is a polynomial solution of
     degree n.

2. The equation – 2 2 0,y xy yα′′ ′ + = where a  is a constant, is called the Hermite equation.

(a) Find two linearly independent solutions on – ¥ < x < ¥.

(b) Show that there is a polynomial solution of degree n, in case a = n is a non-negative
integer.

3. Find the general solution valid near the origin

(i) 3 3 0y xy y′′ ′+ + = (ii)   2(1 4 ) – 8 0x y y′′+ =

(iii) 2(1 ) – 4 6 0x y xy y′′ ′+ + = (iv)  2 – 4 0y xy y′′ ′+ =

(v)   2 0y x y′′ + =

Answers :

1. (a)
2 2 2 2 2

2
1

1

(– ) (2 – ) (2 – 2) –
( ) 1

(2 )!
m

m

m
x x

m

α α α
φ

∞

=

 ⋅⋅ ⋅  = + ∑

2 2 2 2 2 2
2 1

2
1

(1 – ) (3 – ) (2 –1) –
( )

(2 1)!
m

m

m
x x x

m

α α α
φ

∞ +

=

 ⋅⋅ ⋅  = +
+∑

(b) f1 is a polynomial if a is an even integer,

f2 is a polynomial if a is an odd integer.
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2. (a) 2
1

1

2 (– ) (2 – ) (2 – 2 – )
( ) 1

(2 )!

∞

=

⋅⋅ ⋅= + ∑
m

m

m

m
x x

m

α α αφ

2 1
2

1

2 (1– ) (3 – ) (2 –1– )
( )

(2 1)!

m
m

m

m
x x x

m

α α αφ
∞ +

=

⋅⋅ ⋅= +
+∑

(b) f1 is a polynomial if a is an even integer, f2 is a polynomial if a  is an odd integer.

 3. (i)     
2

0
1

(–3)
( ) 1

2 !

k k

k
k

x
y x a

k

∞

=

 
= + 

  
∑

   
2 1

1
1

(–3)
3 5 7, (2 1)

k k

m

x
a x

k

+∞

=

 
+ + 

⋅ ⋅ ⋅⋅ ⋅ +  
∑

(ii)
1 2 2 1

2
0 1 2

0

(–1) 2
(1 4 )

4 –1

k k k

k

x
y a x a

k

+ +∞

=
= + + ∑

(iii)
3

2
0 1( ) (1– 3 ) –

3
x

y x a x a x
 

= +  
 

(iv)
2 1

2 4
0 1 2

0

3(–1)1
( ) 1

12 2 !(2 – 3) (2 –1) (2 1)

+∞

=

 = + + +   +
∑

k k

k
k

x
y x a x x a

k k k k

(v)
4

0 2
1

(–1)
( ) 1

2 ! 3 7 11 (4 –1)

k k

k
k

x
y x a

k k

∞

=

 
= + 

⋅ ⋅ ⋅ ⋅⋅  
∑

   
4 1

1 2
1

(–1)

2 ! 5 9 13 (4 1)

k k

k
k

x
a x

k k

+∞

=

 
+ + 

⋅ ⋅ ⋅ ⋅⋅ +  
∑

S
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Linear Equations with
Regular Singular Points

Chapter 3

Contents :

Unit 1 : Euler equation

Unit 2 : Second order equations with regular singular points
Unit 3 : The Bessel equation
Unit 4 : Regular singular points at infinity

Introduction

For a linear differential equation ( ) ( –1) ( –2)
0 1 2( ) ( ) ( ) .... ( ) 0,n n n

na x y a x y a x y a x y+ + + + =
where the coefficient functions a0, a1, a2, a3,..... an are analytic at some point x0, the point x0 is
called an ordinary point of the equation if a0 (x0) ¹ 0. In the last chapter we have obtain power
series solutions valid near an ordinary point of a linear equation.

A singular point of the above linear equation is any point x = x1 for which a0 (x1) = 0. In
this chapter we shall get power series solutions valid near a certain kind of singular points of the
equation. It is usually difficult to determine the nature of the solutions in the vicinity of singular
points. However there is a large class of equations for which the singularity is rather weak in the
sense that slight modification of the methods used for solving equations with analytic coefficients
discussed in chapter II unit 3, serve to yield solutions near the singularities.

Definition 3.1.1 (a)

A point x = x0 is a regular singular point of ( ) ( –1) ( –2)
0 1 2( ) ( ) ( ) ( )n n nL y a x y a x y a x y= + +

( ) 0na x y+ ⋅⋅⋅ + =  if the equation can be written in the form ( )
0 1( ) ( – ) ( )n nL y x x y b x= +

( –1) ( –1)
0( – ) ( ) 0+ ⋅⋅⋅ + =n n

nx x y b x y  where b1, b2, b3,..., bn are analytic at x0.

If the functions b1, b2, b3,..., bn can be written in the form

0( ) ( – ) ( )β= k
k kb x x x x k = 1, 2, 3,.......,n

Where b1, b2, b3,..., bn are analytic at x0 then L(y) = 0  becomes

( ) ( –1) ( –2)
1 2( ) ( ) ..... ( ) 0β β β+ + + + =n n n

ny x y x y x y
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Definition 3.1.1 (b)

A equation of the form ( ) –1 ( –1) ( –2)
0 0 1 0 2 0( ) ( – ) ( ) ( – ) ( ) ( – )+ +n n n y nc x x x y c x x x y c x x x

( –2) .... ( ) 0n
ny c x y+ + = has a regular singular point at x0 if c0, c1, c2, c3,..... cn are analytic at

x = x0 and c0(x0) ¹ 0.

Definition 3.1.2

If x = x0 is a singular point but is not a regular singular point, then it is called irregular
singular point. For example, consider the equation

2 3
– – 0.

4
x y y y′′ ′ =

The origin x = 0is a singular point but not regular therefore x = 0 is irregular singular
point. The coefficient of y¢  is not of the form xb1(x) where b1(x) analytic.

In the first unit we study the differential equation that has a regular singular point at origin
and all the analytic functions b1, b2, b3,..., bn are constants.

Unit 1 :  The Euler Equation

The simplest example of a second order equation that follows defination 3.1.1(a) is the
Euler equation

2( ) 0L y x y a x y b y′′ ′= + + =
where a, b are constants.

Theorem 3.1.1

Consider the second order Euler equation

 2( ) 0 ( , constants),L y x y a x y b y a b′′ ′= + + =
and the polynomial q given by

 ( ) ( –1)q r r r ar b= + +
A basis for the solutions of the Euler equation on any interval not containing x = 0 is given

by

1 2
1 2( ) | | , ( ) | | ,r rx x x xφ φ= =

in case r1, r2 are distinct roots of q and by

1 1
1 2( ) | | , ( ) | | log| |,r rx x x x xφ φ= =

if r1 is a root of equation q of multiplicity two.

Proof :

Case 1 : r1 ¹ r2

(a)  We first consider the equation for x > 0. Let xr be a solution of Euler equation

 2( ) 0L y x y a x y b y′′ ′= + + =

    
2 –2 –1( ) ( –1) 0r r r rL x x r r x a x rx bx   = + + =   

(101)



Differential Equations

implies [ ]( –1) 0rr r ar b x + + = 
q is a polynomial defined by ( ) ( –1)q r r r a r b= + +

Thus, we have

( ) ( )r rL x q r x=

If r1 is a root of q(x) then q(r1) = 0 and therefore 1( ) 0.rL x =  i.e. 1
1( ) rx xφ = is a solution of

L(y) = 0. If r2 is another root of q and r2 ¹ r1 then 2
2( ) rx xφ = is another solution of

L(y) = 0. Thus, 1
1( ) rx xφ = and 2

2( ) rx xφ =  is a basis for the solution of the Euler equation
as f1 and f2  are linearly independent.

(b)  If x < 0, Let (–x)r be a solution (if x < 0, –x > 0).

–1 –2(– ) – (– ) , (– ) ( –1) (– )′ ′′   = =   
r r r rx r x x r r x

–1(– ) (– )(– ) (– )r r rx x r x x r x
′  = =   and

( ) ( –1)(– ) (– ) (– ) ( )(– )r r r rL y r r x a r x b x q r x= + + =
if r1 ¹ r2 then

1 2
1 2( ) (– ) , ( ) (– )r rx x x xφ φ= =  are solutions of L(y) = 0. If r1 and r2 are complex

roots of q(r) = 0, we define xr for r complex by

log ( 0)r r xx e x= >

then       
log –1( ) ( log )r r x r rr

x r x e x r x
x

′ ′= ⋅ ⋅ = ⋅ =  and the result follows on the same lines

for complex roots also.

Thus, we have proved that if (x > 0) r1 ¹ r2   1
1( ) rx xφ = and 2

2( ) rx xφ =  are solutions of

L(y) = 0 and for x < 0, r1 ¹ r2 we have 1
1( ) (– )rx xφ =  and 2

2( ) (– )rx xφ =  are solution of L(y) = 0.

Since |x | = x for x > 0 and |x | = – x for x < 0 1
1( ) | |rx xφ = and 2

2( ) | |rx xφ = are solutions of
L(y) = 0 if r1, r2 are distinct roots of q(r) = 0.

We prove that f1 and f2 are linearly independent.

Let 1 1 2 2 0c cφ φ+ =  i.e. 1 2
1 2| | | | 0r rc x c x+ =  then 2 1–

1 2 | | 0r rc c x+ =  for every x ÎR.

Differentiating above equation w.r.t. x for x > 0 or x < 0 we get,

2 1–
2 2 1( – )| | 0r rc r r x =

But r1 ¹ r2 and x ¹ 0 therefore c2 = 0 and 1 1 2 2 0c cφ φ+ = for all x implies c1 = 0 since

c2 = 0 and 1( ) 0xφ ≠ .

Thus, f1 and f2 are linearly independent solutions.

Therefore if r1 and r2 are distinct roots of q(x) = 0,  then 1
1( ) | |rx xφ = and 2

2( ) | |rx xφ =
forms a basis for the solutions of L(y) = 0.
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Case 2 : r1 = r2

(a)  x > 0 : If r1 = r2 then q(r1) = 0 and q¢ (r1) = 0. We have proved that if r1 is a root of q(x) = 0

then 1( ) rx xφ =  is a solution. To construct second solution consider

 ( ) ( )
∂ ∂  =  ∂ ∂

r rL x q r x
r r

[ ]( ) ( ) log′= + rq r q r x x

Since,    log
∂ =
∂

r rx x x
r

But if r1 = r2 = r then q (r) = 0 and q¢ (r) = 0 and  we have

   ( ) 0
∂   = ∂

rL x
r

.

   ( ) ( log )
∂ ∂   = =  ∂ ∂ 

r r rL x L x L x x
r r

Thus, ( log ) 0rL x x =  implies xr log x is a solution of L(y) = 0.

If r1 is a root of q (r) = 0 of multiplicity two then 1
1( ) rx xφ = and 1

2( ) logrx x xφ = are two
solutions of L(y) = 0.

(b)  x < 0 :  If x < 0, then – x > 0 and 1
1( ) (– )rx xφ = and 1

2( ) (– ) log (– )φ = rx x x are solution of

L(y) = 0.

Thus 1 1
1 2( ) | | and ( ) | | log | – |= =r rx x x x xφ φ are two solution of L(y) = 0.

1 1 2 2 0c cφ φ+ =  implies c1 + c2 log |x | = 0 for all x and therefore c1 = c2 = 0  and f1, f2  are

linearly independent.

Thus if r1 is a repeated root of q(r) = 0 then 1 1
1 2( ) | | and  ( ) | | log | |φ φ= =r rx x x x x  is a

basis for solutions of the Euler equation 2( ) 0.L y x y a xy by′′ ′= + + =
Illustration :

2 0x y xy y′′ ′+ + =  for x ¹ 0 is Euler equation with a = b = 1.

The polynomial 2( ) ( –1) 1 1q r r r r r= + + = +  and r = +i, – i are roots of q(r). A basis for

the solutions by theorem 3.1.1 are

   –
1 2( ) | | and  ( ) | | ( 0)φ φ= = ≠i ix x x x x

log| || | cos(log | |) sin(log | |)= = +i i xx e x i x

Thus 1( ) cos (log | |)x xψ = and 2( ) sin (log | |)x xψ = is another basis for solution of
2( ) 0.′′ ′= + + =L y x y xy y

Theorem  3.1.2
Consider the Euler equation of order n.

 ( ) –1 ( –1) –2 ( –2)
1 2( ) ... 0,= + + + + =n n n n n n

nL y x y a x y a x y a y
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where a1, a2, a3,..., an are constants. Let r1, r2,..., rs be distinct roots of the indicial polynomial

 1( ) ( –1) ( – 2)...( – 1) ( –1)...( – 2) ... nq r r r r r n a r r r n a= + + + + +  and suppose

ri has multiplicity mi. Then the n functions

1 1 1 1 2 2 2 2–1 –1| | , | | log | |,....,| | (log | |) ; | | ,| | log | |,...,| | (log | |) ;...;r r r m r r r mx x x x x x x x x x

   –1| | , | | log | |,...., | | (log | |)s s s sr r r mx x x x x

form a basis for the solution of  L(y) = 0 on any interval not containing zero.

Proof : Let |x |r be a solution of L(y) = 0.

  –1 –2(| | ) | | , (| | ) ( –1) | | ,....r r r rx r x x r r x′ ′′= =
( ) –(| | ) ( –1)( – 2)...( – 1)| |r n r nx r r r r n x= +

Hence, 1(| | ) ( –1) ( – 2)...( – 1)| | ( –1) ( – 2)r rL x r r r r n x a r r r= + +

...( – 2) | | ... | |r r
nr n x a x+ + +

   ( ) | |= rq r x

where      1( ) ( ) ( –1) ( – 2)...( – 1) ( –1)( – 2)...( – 2) ... .= + + + + + nq r r r r r n r r r r n a a

The polynomial q(r) is called indicial polynomial. Thus, |x |r is a solution of L(y) = 0 if
q (r) = 0 i.e. if r is a root of indicial polynomial then |x |r is a solution of L(y) = 0.

Differentiating (| | ) ( ) | |r rL x q r x=  with respect to ‘r ’ we get

  (| | ) | |r rL x L x
r r

∂ ∂ =  ∂ ∂ 
   ( )( ) ( ) log | | | |rq r q r x x′= +

In general k times differentiation gives

(| | ) | |
k k

r r
k k

L x L x
r r

 ∂ ∂=  
∂ ∂ 

 
( ) ( –1) ( –2) 2( ) ( ) log | | ( –1) ( ) (log | |) ... ( ) (log | |) | | .k r k k rq r kq r x k k q x x q r x x = + + + + 

If r is a root of q (r) with multiplicity (k + 1) then ( ) 0, ( ) 0, ( ) 0...,q r q r q r′ ′′= = =

( ) ( ) 0kq r = and therefore | | 0 for 1,2,3,...., .
i

r
i

L x i k
r

 ∂ = = 
∂ 

Thus ( ) | | , 1,2,3,...., .
i

r
i

x x i k
r

φ ∂= =
∂

 are solution of L(y) = 0.

If r1 is a root of q(r) of multiplicity m1 then
1

1 1 1 1 1 1

1

–12
2

2 –1
1 1 1

| | , | | | | log | |, | | | | (log| |) ,..., | |
m

r r r r r r
m

x x x x x x x x
r r r

∂ ∂ ∂= =
∂ ∂ ∂

1 1–1| | (log | |)r mx x=  are solutions of L(y) = 0.

Repeating this process for each root of q(r) we obtain all the solution and the result follows.
All these solutions are linearly independent and therefore form a basis for the solutions of

L(y) = 0 on any interval not containing zero.
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EXAMPLES

Q. 1. Find all solutions of the following equations for x > 0

(a)  2 2 – 6 0x y xy y′′ ′+ = (b)  22 – 0′′ ′+ =x y xy y

(c) 2 – 4 0x y xy y′′ ′+ = (d)  2 3– 5 9x y xy y x′′ ′ + =

(e) 3 22 – ' 0.′′′ ′′+ + =x y x y xy y

Ans.:

(a) The indicial equation

2( ) ( –1) 2 – 6 – 6q r r r r r r= + = +  has root r = 3, – 2.

Therefore 3
1( )x xφ = and –2

2( )x xφ = are basic solutions and 3 –2
1 2( )φ = +x c x c x

is general solution for constants c1, c2.

(b) The indicial equation
2( ) 2 ( –1) –1 2 – –1q r r r r r r= + =  has root r = 1, 1

2
–  and 

1
–

2
1 2( ) , ( )x x x xφ φ= =

are basic solution, 
1

–
2

1 2( )x c x c xφ = +  is general solution for constants c1, c2.

(c) The indicial equation
2( ) ( –1) – 4 – 4q r r r r r= + =  has root 2, – 2 Then 2

1( )x xφ = and –2
2( )x xφ = are

basic solution, 2 –2
1 2( )x c x c xφ = + is general solution.

(d) The indicial equation
2( ) ( –1) – 5 9 – 6 9= + = +q r r r r r r  has root 3, 3. Since the root 3 is repeated root

of multiplicity two 3
1( )x xφ = and 3

2( ) logx x xφ =  are basic solution of

corresponding homogeneous equation 2 – 5 9 0.x y xy y′′ ′ + =
 The particular solution will be determined by using variation of constant method.

Let  1 1 2 2( ) ( ) ( ) ( )u x x u x xψ φ φ= +  be a solution of equation

2
5 9

–y y y x
x x

′′ ′ + =  then

1 2

W ( ) ( )
( )

W( , )φ φ
= ∫ k

k
t b t dt

u x   Here b(t) = t,

3 3
5

1 2 2 2 2

log
W ( , ) ,

3 3 log
φ φ = =

+

x x x
x

x x x x

   

3
3

1 2 2

0 log
W – log ,

1 3 log

x x
x x

x x x
= =

+
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3
3

2 2

0
W ,

3 1
= = +

x
x

x

3
2

1 5

– log log 1
( ) – – (log )

2
x x x x

u x dx dx x
xx

⋅= = =∫ ∫

     
3

2 5
( ) log

⋅= = =∫ ∫
x x dx dx

u x x
xx

1 1 2 2( ) ( ) ( ) ( ) ( )x u x x u x xψ φ φ= +

2 3 3 3 21 1
– (log ) (log ) log (log )

2 2
x x x x x x x= + =

The general solution

  
3 3 3 2

1 1 2 2 1 2
1

log (log ) .
2

c c c x c x x x xφ φ φ ψ= + + = + +

(e) The indicial equation

  ( ) ( –1) ( – 2) 2 ( –1) – 1= + +q r r r r r r r

2 2( –1) – 2 2 –1 ( –1) ( –1)r r r r r r = + =   has root 1, 1, –1.

Since one is a root of multiplicity two, 1 2( ) , ( ) logx x x x xφ φ= = and corresponding

to –1, –1
3( )φ =x x .

The general solution

 –1
1 2 3( ) log .x c x c x x c xφ = + +

Q. 2. Find all solutions of the following equations for | | 0.>x

(a)  2 4 1x y xy y′′ ′+ + = (b)  2 – 3 5 0x y xy y′′ ′ + =

(c) 2 – 4′′ ′+ =x y xy y xπ
Ans.:

(a) The indicial equation ( ) ( –1) 4q r r r r= + +  has root 2= ±r i .

Since both the roots are distinct, 2
1 ( ) | | ix xφ =  and –2

2 ( ) | | ix xφ = . The general
solution of  homogeneous equation is

 2 –2
1 2( ) | | | |i ix c x c xφ = +

The particular solution will be calculated by variation of constant method.

Case 1 : x > 0,
If x > 0 then |x | = x

2 –2
1 2( ) and  ( )i ix x x xφ φ= =

Let 1 1 2 2( ) ( ) ( ) ( ) ( )x u x x u x xψ φ φ= +  be a solution of
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2 4 1.x y xy y′′ ′+ + =  then 1
1

1 2

W ( ) ( )
( ) and

W( , )

x b x dx
u x

φ φ
= ∫

2
2 2

1 2

W ( ) ( ) 1
( ) where ( ) ,

W( , )

x b x
u x dx b x

xφ φ
= =∫

2 –2
–1 –1

1 2 2 –1 –2 –1

4
W( , ) –2 – 2 –

2 –2

i i

i i

x x i
i x i x

xi x ix
φ φ = = =

    

–2 2
–2 2

1 2–2 –1 2 –1

0 0
W ( ) – ; W

1 –2 2 1

i i
i i

i i

x x
x x x

ix i x
= = = =

–2
–2 –2 1 –2 –22

1

1
–

( )
4 4 4 (–2 ) 8

–

i
i i ix

x x xxu x dx dx
i i i i

x

+
 
  = = = =

 
  

∫ ∫

2
2 –2 1 2 22

2

1

( ) .
4 – 4 – 4 ( 2 ) 8

–

+
 
  = = = =

+ 
  

∫ ∫

i
i i ix

x x xxu x dx dx
i i i i

x

Thus, 
–2 2

2 –2
1 1 2 2

1
( ) ( ) ( ) ( ) ( )

8 8 4

i i
i ix x

x u x x u x x x xψ φ φ= + = ⋅ + ⋅ = . For x > 0,

2
1( ) ix c xφ = –2

2
1
4

ic x+ +  is a solution of given equation.

Case 2 : x < 0

If x < 0 then | | –x x=  and 2 –2
1 2( ) (– ) and ( ) (– )i ix x x xφ φ= =

Let 1 1 2 2( ) ( ) ( ) ( ) ( )x u x x u x xψ φ φ= +  be a solution of the given differential equation.

2 –2

1 2 2 –1 –2 –1

(– ) (– ) 2 2 4
W( , )

(– ) (– ) ––2 (– ) 2 (– )
φ φ = = + =

+

i i

i i

x x i i i

x x xi x i x

   

–2 2
–2 2

1 2–2 –1 2 –1

0 (– ) (– ) 0
W –(– ) , W (– ) ,

1 2 (– ) –2 (– ) 1

+= = = =
i i

i i
i i

x x
x x

i x i x

 2
1

( )b x
x

=

–2
2 –2 –2

1
1

1 2

1
–(– )

W ( ) ( ) ( ) (– ) (– )1
( ) – .

4W( , ) 4 2 8
(– )

⋅
+= = = =∫ ∫

i
i i

x
x b x x x x

u x dx dx
i i i
x

φ φ
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2

2 2 2
2

2
1 2

(– )

W ( ) ( ) (– ) (– ) (– )1
( )

4W( , ) 4 –2 8
(– )

+ +
= = = =∫ ∫

i

i i
x

x b x x x x
u x dx dx

i i i
x

φ φ

 1 1 2 2( ) ( ) ( ) ( ) ( )x u x x u x xψ φ φ= +

 
–2 2

2 –2(– ) (– ) 1
( ) (– ) (– )

8 8 4
= ⋅ + = ⋅

i i
i ix x

x x xψ

for x < 0,    2 –2
1 2

1
( ) (– ) (– )

4
i ix c x c xφ = + +  is a solution of the given differential equation.

Thus 2 –2
1 2

1
( ) | | | |

4
i ix c x c xφ = + +  is a solution of the given differential equation if x ¹ 0.

(b) The indical equation ( ) ( –1) – 3 5q r r r r= + has roots 2 + i, 2 – i. Since both the roots are

distinct 2 2–
1 2( ) | | and ( ) | |φ φ+= =i ix x x x are two independent solutions. The general

solution

  ( )2 2– 2 –
1 1 2 2 1 2 1 2( ) ( ) | | | | | | | |i i i ic x c x c x c x x c x c xφ φ φ += + = + = + .

(c) The indical equation ( ) ( –1) – 4q r r r r π= + has roots 2 π and –2 π . Since both the

roots are distinct 2
1( ) | |x x πφ = and –2

2 ( ) | |x x πφ = are two solutions. The general

solution of corresponding homogeneous equation is 2 –2
1 2( ) | | | | .x c x c xπ πφ = +

We solve the non-homogeneous equation using the variation of constants method.

Case 1 : x > 0

If x > 0 then 2 2 –2 –2| | , | |x x x xπ π π π= =

Let 1 1 2 2( ) ( ) ( ) ( ) ( )x u x x u x xψ φ φ= + be a solution of given equation then

2 –2

1 2
2 –1 –2 –1

– 4–2 2
W( , ) –

2 –2

π π

π π

ππ πφ φ
π π

= = =
x x

x x xx x

    

–2 2
–2 2

1 2
–2 –1 2 –1

0 0
W ( ) – , W ( )

1 –2 2 1

π π
π π

π ππ π +
= = = =

+

x x
x x x x

x x

 
1

( ) ,=b x
x

 since the given equation is 1 4 1
– .y y y

x x x
π′′ ′+ =

  

–2
–2 1

–2 –1 11
1

1 2

1
–

W ( ) ( ) 1 1
( )

W( , ) – 4 4 4 (–2 1)

π
π

π
φ φ π π π π

+
+

 
  = = = + = +

+∫ ∫ ∫
x

x b x xxu x dx dx x dx

x

Thus,      
–2 1

1( )
4 (1– 2 )

π

π π

+
= + x

u x
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2
2 1

2
2

1 2

1
W ( ) ( ) 1

( ) –
1W( , ) 4 2 1–4

π
π

φ φ π ππ

+⋅
= = =

+⋅
∫ ∫

xx b x xxu x dx dx

x

 
–2 1 2 1

2 1
( ) –

4 (1– 2 ) 4 2 1

+ +
= + ⋅

+
x x

x x
π π

πψ
π π π π

     
1 1 4

–
1– 4 1– 44 1– 2 2 1 4

π
π ππ π π π

 = + = ⋅ = + 
x x x

For x > 0, 2 –2
1 2( )

1– 4
= + + x

x c x c xπ πφ
π

 is a solution of given equation. For x < 0

also we get ( )
1– 4

x
xψ

π
= .

Thus the general solution of the given equation is 2 –2
1 2( ) | | | | .

1– 4
= + + x

x c x c xπ πφ
π

Till now we have considered Euler equation having a regular singular point at origin. At
the beginning of this chapter we defined singular points, regular singular points and irregular
singular points. We present some definitions of singularities which can be used to classify the
singularities of the given differential equation.

Definition 3.1.3 (a) :

A second order differential equation

( ) ( ) 0,y p z y q z y′′ ′+ + =

analytic for 0 < |z – z0 | < r, has a regular singular point at z0 when p(z) has at worst a simple pole
at z = z0 and q(z) has at worst a double pole at z = z0.

Definition 3.1.3 (b) :

For a second order differential equation

( ) ( ) 0,y p x y q x y′′ ′+ + =
if x = x0 is a singular point and if the denominator of p (x) does not contain the factor (x – x0) to
a power higher than one and if the denominator of q (x) does not contain the factor (x – x0) to a
power higher than two, then x – x0 is called a regular singular point.

EXAMPLES

Q. 1. Classify the singular points, in the finite plane, of the equation

2 2 3( –1) ( 2) – ( 2 –1) 0x x x y x y x x y′′ ′+ + + =

Ans.: 2
0( ) ( –1) ( 2) 0a x x x x= + =  gives x = 0, 1, –2

Thus the singular points in a finite plane are at x = 0, 1, –2.

Given equation can be written as
32

2 2
( 2 –1)

– 0
( –1) ( 2) ( –1) ( 2)

x xx
y y y

x x x x x x

+′′ ′+ =
+ +
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therefore    
3

2 2
–( 2 –1)

( ) and  ( )
( –1) ( 2) ( –1) ( 2)

x xx
p x q x

x x x x x

+= =
+ +

Since the denominator of p(x) does not contain the factor (x – 0) and the denominator of
q (x) does not contain a factor (x – 0)p for p > 2 . Hence, x = 0 is a regular singular point. Now
consider x = 1. Since the denominator of p(x) contains the factor (x – 1)p where p = 2 > 1
therefore x = 1 is not a regular singular point i.e. x = 1 is irregular singular point.

At x = –2, the factor (x + 2) appears to the first power in the denominator of p(x) which is
not higher than 1 and the factor (x + 2) appears to the first power in the denominator of q(x)
which is not higher than 2. so x = – 2 is a regular singular point.

Q. 2. Classify the singular points in the finite plane  for the equation

4 2 2 3( 1) ( –1) 4 ( –1) ( 1) 0x x x y x x y x y′′ ′+ + + + =

Ans.: 4 2 2
0( ) ( 1)( –1) 0a x x x x= + = gives x = 0, ,x i= ± x = 1 are roots of a0 (x) = 0.

Thus, the singular points in a finite plane are at x = 0, + i, – i, 1.

Given equation is of the form

2 4 2 2
( 1)4

0.
( 1) ( –1) ( 1)( –1)

x
y y y

x x x x x x

+′′ ′+ + =
+ +

Here    
2

4
( )

( 1) ( –1)
p x

x x x
=

+
  and 

4 2 2
1

( )
( 1) ( –1)

x
q x

x x x

+=
+

(i)  x = 0

The denominator of p(x) contains a factor (x – 0)r where r = 1 >/  1 and the denominator
of q(x) contains a factor (x – 0)r where r = 4 > 2. Therefore x = 0 is an irregular
singular point.

(ii)  x =  i

The denominator of p(x) contains a factor (x – i)r where r = 1 >/  1 and the denominator
of q(x) contains a factor (x – i)r where r = 1 >/  2. Therefore x = i is a regular singular
point.

(iii)  x = – i

The denominator of p(x) contains a factor (x + i)r where r = 1 >/  1 and the denominator
of q(x) contains a factor (x + i)r where r = 1 >/  2. Therefore x = –i is a regular
singular point.

(iv)  x = 1

The denominator of p(x) contains a factor (x – 1)r where r = 1 >/  1 and the denominator
of q(x) contains a factor (x – 1)r where r = 2 >/  2. Therefore x = 1 is a regular singular
point.

Thus x = i, – i, 1 are regular singular points and x = 0 is an irregular singular point.
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Q. 3. For each equation, locate and classify all its singular points in the finite plane.

(a)  3( –1) ( –1) 4 0.x x y x y xy′′ ′+ + = (b)  2 2 3( – 4) 2 3 0x x y x y y′′ ′+ + =
(c) 0y xy′′ + = (d)  2 2( – 4) 3 – ( – 4) 0x x y x y x y′′ ′+ =

Ans.:

(a) 3
0 0( ) ( –1), ( ) 0a x x x a x= = give x = 0, x = 1. Therefore x = 0 and x = 1 are singularities.

Given equation can be put in the form

3 2
1 4

0
( –1)

y y y
x x x

′′ ′+ + =

for x = 0, denominator of p (x) contains a factor xr where r = 3 > 1 and therefore x = 0
is irregular singular point.  For x = 1, denominator of p(x) contains a factor (x – 1)r

where r = 0 >/  1 and the denominator of q(x) contains a factor (x – 1)r where r = 1>/  2.

Therefore x = 1 is a regular singular point.

(b) 2 2 2
0( ) ( – 4) ( 2)( – 2)a x x x x x x= = + . a0 (x) = 0 gives x = 0, 2, –2.  Therefore 0, 2, –2

are singular points. Given equation is

2
2 3

0.
( 2) ( – 2) ( 2) ( – 2)

x
y y y

x x x x x
′′ ′+ + =

+ +

For x = 0, the denominator of p (x) contains a factor xr where r = 0 >/  1 and denominator
of q(x) contains a factor xr for r = 2 >/  2. Therefor x = 0 is a regular singular point.

For x = 2, the denominator of p (x) contains a factor ( x – 2)r for r = 1>/  1 and the
denominator of q(x) contains a factor ( x – 2)r for r = 1 >/  2. Therefor x = 1 is a regular
singular point.

For x = – 2, the denominator of p (x) contains a factor ( x + 2)r for r = 1>/  1 and the
denominator of q(x) contains a factor ( x + 2)r for r = 1 >/  2. Therefor x = –2 is a regular
singular point.

Thus, all the singular points are regular.

(c)   a0 (x) = 1 ¹ 0 for any x therefore equation do not have any finite singular point.

(d) 2 2
0 0( ) ( – 4) . ( ) 0= =a x x x a x  gives x = 0, 4. x = 0, 4 are singular point of the given

equation. Given equation is

2 2
3 1

– 0
( – 4) ( – 4)

y y y
x x x x

′′ ′+ =

For x = 0, the denominator of p (x) contains a factor xr for r = 1>/  1 and the denominator
of q(x) contains a factor  xr for r = 2 >/  2. Therefor x = 0 is a regular singular point.

For x = 4, the denominator of p (x) contains a factor ( x – 4)r for r = 2 > 1 therefor x =
4 is not a regular singular point.

Thus x = 0 is regular and x = 4 is irregular singular point.
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EXERCISE

 1. For each equation, locate and classify all its singular points in the finite plane

(a)  2 0x y y′′ + = (Ans.:  x = 0 is regular, no irregular)

(b) 2 2 2( 1)( – 4) ( – 4) 0x x y x y y′′ ′+ + + = (Ans.:  x = i, – i regular, x = 4 irregular)

(c) 2( – 2) 3( – 2) 0′′ ′+ + =x x y x y y (Ans.:  x = 2 is regular, x = 0 irregular)

(d) 2 2 2(1 4 ) 6 (1 4 ) – 9 0x y x x y y′′ ′+ + + = (Ans.: 
2
i

x = ±  are regular)

2. Find all solutions of the following equations.

(a)  2 2 –12 0x y xy y′′ ′+ = (Ans.:  3 –4
1 2y c x c x= + )

(b) 2 – 9 0x y xy y′′ ′+ = (Ans.:  3 –3
1 2y c x c x= + )

(c) 2 – 4x y xy y x′′ ′+ = (Ans.:  x = 
2 –2

1 2 –
3
x

c x c x+ )

(d) 2 – 3 4 0′′ ′ + =x y xy y (Ans.:  2
1 2( ln )y x c c x= + )

(e) 2 5 5 0x y xy y′′ ′+ + = (Ans.:  [ ]–2
1 2cos(ln ) sin(ln )= +y x c x c x )

3. Find all solutions of the following equations.

(a)  2 – 5 9 0x y xy y′′ ′ + = (Ans.:  3
1 2| | ( ln | |)y x c c x= + )

(b) 29 2 0′′ + =x y y (Ans.:  
1 2

3 3
1 2| | | |= +y c x c x )

(c) 22 – 3 2 0x y xy y′′ ′ + = (Ans.:  
1

2 2
1 2| | | |y c x c x= + )

Unit  2 :  Second order equation with Regular Singular Points

A second order equation with a regular singular point at x0 has the form

   2
0 0( ) ( – ) ( – ) ( ) ( ) 0,L y x x y x x a x y b x y′′ ′= + + =

where a(x), b(x) are analytic functions at x0 i.e. they have power series expansions

0 0
0 0

( ) ( – ) and ( ) ( – )α β
∞ ∞

= =
= =∑ ∑k k

k k
k k

a x x x b x x x

which are convergent on some interval |x – x0| < r0 for some r0 > 0.

Without loss of generality we assume x0 = 0. Then

   2( ) ( ) ( ) 0L y x y x a x y b x y′′ ′= + + =  and

0 0
( ) , ( )k k

k k
k k

a x x b x xα β
∞ ∞

= =
= =∑ ∑  which are convergent on an interval

| x | < r0 , r0 > 0. The Euler equation is a particular case of L(y) = 0 with a, b constants.
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A second order equation with regular singular point has a power series solution. If functions
a (x), b (x) have power series expansion on some interval |x | < r0 then the power series solution
converges on the interval |x | < r0.

Theorem 3.2.1
Consider the equation

2 ( ) ( ) 0,′′ ′+ + =x y a x xy b x y

where a and b have convergent power series expansions for |x | < r0,  r0 > 0. Let r1, r2
(Re r1 ³ Re r2 ) be the roots of the indicial polynomial

( ) ( –1) (0) (0)q r r r a r b= + +
for 0 < |x | < r0 there is a solution f1 of the form

  
1

1 0
0

( ) | | ( 1),r k
k

k
x x c x cφ

∞

=
= =∑

where the series converges for |x | < r0. If r1 – r2 is not zero or a positiove integer, there is a
second solution f2 for 0 < |x | < r0 of the form

  
2

2 0
0

( ) | | ( 1),φ
∞

=
= =∑

: :
r k

k
k

x x c x c

where the series converge for |x | < r0.

The coefficients ,
:

k kc c can be obtained by substitution of the solution into the differential

equation.

Proof :

Suppose we have a solution f of the form

    0
0

( ) ( 0, 0)r k
k

k
x x c x c xφ

∞

=
= ≠ >∑

for the equation  2( ) ( ) ( ) 0.L y x y a x xy b x y′′ ′= + + =

Where       
0

( ) k
k

k
a x xα

∞

=
= ∑ and  

0
( ) k

k
k

b x xβ
∞

=
= ∑  for  |x | < r0. Then

    
0 0

( ) ,r k k r
k k

k k
x x c x c xφ

∞ ∞ +

= =
= =∑ ∑

   
–1 –1

0 0
( ) ( ) ( ) ,k r r k

k k
k k

x k r c x x k r c xφ
∞ ∞

+

= =
′ = + = +∑ ∑

  
–2 –2

0 0
( ) ( ) ( –1) ( ) ( –1)k r r k

k k
k k

x k r k r c x x k r k r c xφ
∞ ∞+

= =
′′ = + + = + +∑ ∑

 
0 0

( ) ( ) k r k
k k

k k
b x x x x c xφ β

∞ ∞

= =

   
=          

∑ ∑
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0

r k
k

k
x xβ

∞

=
= ∑

:

  where  –
0

β β
=

= ∑
: k

j k jk
j

c

     
–1

0 0
( ) ( ) ( )

∞ ∞

= =

   
′ = +         

∑ ∑k r k
k k

k k
xa x x x x x k r c xφ α

  
0 0

( )r k k
k k

k k
x x k r c xα

∞ ∞

= =

   
= +         

∑ ∑

   
0

r k
k

k
x xα

∞

=
= ∑

:

 where  –
0
( )α α

=
= +∑

: k
k j k j

j
j r c

    
2

0
( ) ( ) ( –1) .r k

k
k

x x x k r k r c xφ
∞

=
′′ = + +∑

Thus,   
0 0 0

( ) ( ) ( ) ( –1)r k r k r k
kk k

k k k
L x x k r k r c x x x x xφ α β

∞ ∞ ∞

= = =
= + + + +∑ ∑ ∑

: :

  
0

( ) ( –1)
∞

=

 
= + + + + 

 
∑

: :
r k

kk k
k

x k r k r c xα β

L(f ) = 0 implies  [ ] ( ) ( –1) ) 0α β
 

= + + + + = 
 

: :

kk k kk r k r c

k = 0, 1, 2, 3,....
Using the definitions of ,k kα β

: :

 we can write [  ]k as

  – –
0 0

[ ] ( ) ( –1) ( )
= =

= + + + + +∑ ∑
k k

k k j k j j k j
j j

k r k r c j r c cα β

  [ ]
–1

0 0 – –
0

( )( –1) ( ) ( )α β α β
=

 = + + + + + + + + ∑
k

k k j k j j
j

k r k r k r c j r c

for k = 0 we must have

0 0( –1) 0.r r r α β+ + =
Since c0 ¹ 0 the second degree polynomial q given by

    0 0( ) ( –1)q r r r r α β= + +

is called the indicial polynomial and the only admissible values of r are the roots of q.

  [ ] ( ) 0 ( 1,2,3,....) ......(3.2.1)k k kq r k c d k= + + = =

where         
–1

– –
0

( ) ( 1,2,3,....) ......(3.2.2)
k

k k j k j j
j

d j r c kα β
=

 = + + = ∑

Note that dk is a linear combination of c0, c1, c2,..... ck–1 with coefficients involving the
known functions a, b and r. Leaving r and c0 indeterminant for the moment we solve equations
(3.2.1) and (3.2.2) successively in terms of c0 and r. The solutions we denote by Ck (r) and the
corresponding dk by Dk(r). Thus,

  
1

1 1 1 0 1
( )

( ) ( ) , ( ) – ,
( 1)

D r
D r r c C r

q r
α β= + =

+
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and in general

 
–1

– –
0

( )
( ) ( ) ( ), ( ) – ( 1,2,3,...)

( )=
 = + + = =  +∑

k
k

k k j k j j k
j

D r
D r j r C r C r k

q r k
α β

The Ck thus, determined are rational functions of r, and the only points where they cease
to exist are the points r for which the denominator q(r + k) = 0 for some k = 1, 2, 3,.... Only two
such possible points exist.

Define F by

0
0

( , ) ( ) ....(3.2.3)r r k
k

k
x r c x x C r x

∞

=
Φ = + ∑

If the series converges for 0 < x  < r0, then clearly

0( ) ( , ) ( ) ,rL x r c q r xΦ =

since ( )kC r  satisfies equation 3.2.1 for every k = 1, 2, 3....

Thus if the function 
0

r k
k

k
x C xφ

∞

=
= ∑  is a solution of L(y) = 0 then r must be a root of the

indicial polynomial

    0 0( ) ( –1)q r r r r α β= + +

and ck (k ³ 1) are determined uniquely in terms of r and c0 given by equation (3.2.2), provided
q(r + k) ¹ 0  k = 1, 2, 3,... Conversely if r is a root of q and if Ck(r) can be determined then the
function f given by equation (3.2.3) is a solution of L(y) = 0 for any choice of c0, provided the
series in equation (3.2.3) is convergent.

Let r1, r2 be two roots of q and suppose Re r1 ³ Re r2. Then q(r1 + k) ¹ 0 for all k = 1, 2, 3,...
Thus, Ck(r1) exists for all k = 1, 2, 3,... and for c0 = C0 (r) = 1 we get a solution.

   
1

1 1 1 0
0

( ) ( , ) ( ) ( ( ) 1),φ
∞

=
= Φ = =∑r k

k
k

x x r x C r x C r

is a solution of L(y) = 0, provided the series converges.

If r2 is a root of q distinct from r1 and q(r2 + k) ¹ 0 for k = 1, 2, 3,..., then clearly Ck(r2) is
defined for k = 1, 2, 3,.... and the function F2 defined by

 
2

2 2 2 0 2
0

( ) ( , ) ( ) ( ( ) 1)
∞

=
Φ = Φ = =∑r k

k
k

x x r x C r x C r

is another solution of L(y) = 0, provided the series is convergent. The condition q(r2 + k) ¹ 0 for
k = 1, 2, ... is same as r2 + k ¹ r1 for any k = 1, 2, 3,.... or r1 – r2  ¹ k  i.e. r1 – r2 is not a positive
integer and the result follows.

Illustration :

Consider the equation

   
2 3

( ) 0
2

L y x y xy xy′′ ′= + + =

As per theorem 3.2.1 we assume the solution f of the equation L(y) = 0 as

(115)



Differential Equations

   
0

( )
∞

=
= ∑r k

k
k

x x c xφ

  
–1

0
( ) ( )

∞

=
′ = +∑r k

k
k

x x k r c xφ

and   
–2

0
( ) ( ) ( –1)

∞

=
′′ = + +∑r k

k
k

x x k r k r c xφ

   
1

0 0 0

3
( ) ( ) ( –1) ( )

2

∞ ∞ ∞+

= = =
= + + + + +∑ ∑ ∑r k r k r k

k k k
k k k

L x k r k r c x x k r c x x c xφ

  
1

0 1 0
3 3

( –1) ( 1) ( ) ( 1)
2 2

r rr r r c x r r r c c x +    = + + + + + +        

2
2 1

3
( 2) ( 1) ( 2) ....

2
rr r r c c x +  + + + + + + +    

          
3

( ) ( –1)
2

q r r r r= +   is the indicial polynomial

   [ ] [ ]1 2
0 1 0 2 1( ) ( ) ( 1) ( 2) .....r r rL q r c x q r c c x q r c c xφ + += + + + + + + +

  [ ]0 –1
1

( ) ( )r r k
k k

k
q r c x x q r k c c x

∞

=
= + + +∑

   ( ) 0L φ = implies q(r) = 0 and –1( ) 0k kq r k c c+ + =

    3 1
( ) ( –1) 0

2 2
q r r r r r r = + = + =  

 implies 
1

0, –
2

r =

(Re r1 > Re r2 ) Define 1 2
1

0, –
2

r r= =

–1( ) 0k kq r k c c+ + =  gives –1– , ( 1,2,3,...)
( )

= =
+

k
k

c
c k

q r k

Thus,      0
1 1 1 1

– – – .... –
( ) ( –1) ( – 2) ( 1)

       
=        + + + +       

kc c
q r k q r k q r k q r

In the above expression ck–1 is written in terms of ck–2 , ck–2 is expressed in terms of
ck–3 and so on.

 
(–1)

, 1,2,3.....
( ) ( –1) ( – 2)..... ( 1)

= =
+ + + +

k

kc k
q r k q r k q r k q r

Since 1 2 1 2
1

0, – , –
2

r r r r= =  is non zero and is not an integer. Therefore we apply theorem

3.2.1. For r = r1 = 0, c0 = 1 we get

  1
1

(–1)
( ) 1

( ) ( –1) ( – 2)..... (1)

∞

=
= + ∑

k k

k

x
x

q k q k q k q
φ
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   and for c0 = 1, r = r2 = – 1/2 we obtain another solution

 

1 1
– –

2 2
2

1

(–1)
( ) .

1 3 5 1
– – – .....

2 2 2 2

k k

k

x
x x x

q k q k q k q
φ

∞

=
= +

       
              

∑

These functions f1, f2 will be solutions provided the series converge on some interval
containing 0.

 1
0

( ) ( ).k
k

Let x d xφ
∞

=
= ∑

Using the ratio test we obtain

  1( ) | | | |
0 as

3( ) | ( 1) | ( 1)
2

+ = = → → ∞
+  + +  

k

k

d x x x
k

d x q k k k

 provided |x | < ¥. Thus

the series defining f1 is convergent for all finite x. The same is true for f2.

To obtain solutions for x < 0, all the above calculations are valid if xr replaced by | | ,rx

where log| || |r r xx e=

Thus two solutions which are valid for all x ¹ 0 are

  1
1

(–1)
( ) 1

( ) ( –1) ( – 2).... (1)

k k

k

x
x

q k q k q k q
φ

∞

=
= + ∑   and

  

1
–

2
2

1

(–1)
( ) | | 1 ,

1 3 1
– – ....

2 2 2

φ
∞

=

 
 

= + 
                  

∑
k k

k

x
x x

q k q k q

where 

1
2| |x  is a positive square root of |x |.

Thus we have seen that if the roots of indicial polynomials are distinct and the difference
between these two roots is not an integer then the solutions of L(y) = 0 will be constructed by
using power series method.

In the next theorem we prove that if the roots are identical or the difference between the
roots is an integer still the power series solution exist.

Theorem  3.2.2
Consider the equation

   2( ) ( ) ( ) 0,′′ ′= + + =L y x y a x xy b x y

where a, b have power series expansions which are convergent for |x | < r0, r0 > 0 . Let r1, r2

(Re r1 ³ Re r2) be the roots of the indicial polynomial

    ( ) ( –1) (0) (0).q r r r a r b= + +
If r1 = r2 there are two linearly independent solutions f1, f2  for 0 < |x | < r0 of the form

  1 1 1
1 1 2 2 1( ) | | ( ), ( ) | | ( ) (log | |) ( ),+= = +r rx x x x x x x xφ σ φ σ φ
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where s1, s2 have power series expansions which are convergent for |x | < r0 and s1(0) ¹ 0.

If r1 – r2 is a positive integer there are two linearly independent solutions f1, f2 for
0 < |x | < r0 of the form

   1
1 1( ) | | ( ),= rx x xφ σ

  2
2 2 1( ) | | ( ) (log | |) ( ),= +rx x x c x xφ σ φ

where s1, s2  have power series expansions which are convergent for 0 1| | , (0) 0,σ< ≠x r

2(0) 0,σ ≠  and c is a constant. It may happen that c = 0.

Proof :

For x > 0, suppose we have a solution f of the form

    
0

( ) .r k
k

k
x x c xφ

∞

=
= ∑

   
0

( ) ( ) ( ) ( –1)r k
k k k

k
L x x k r k r c xφ α β

∞

=

 
= + + + + 

 
∑

: :

where       – –
0 0
( ) and   α α β β

= =
= + =∑ ∑

: :k k

k j k j k j k j
j j

j r c c

    
0 0

( ) , ( ) .k k
k k

k k
a x x b x xα β

∞ ∞

= =
= =∑ ∑

   ( ) ( ) 0L xφ =  implies

   [ ] ( ) ( –1) 0, 0,1,2,3,...k k k kk r k r c kα β
 

= + + + + = = 
 

: :

   – –
0 0

( ) ( –1) ( )
= =

 
= + + + + + 

  
∑ ∑
k k

k j k j j k j
j j

k r k r c j r c cα β

  [ ]0 0( ) ( –1) ( )= + + + + +k kk r k r c k r cα β
–1

– –
0

( )
k

k j k j j
j

j r cα β
=

 + + + ∑

For k = 0 we must have

0 0( ) ( –1) 0q r r r r α β= + + =
Then

  [ ] ( ) 0 .... 3.2.4k k kq r k c d= + + =

where           
–1

– –
0

( ) .... 3.2.5
k

k k j k j j
j

d j r cα β
=

 = + + ∑

Here, we are going to consider two cases according as the roots r1, r2  (Re r1 ³ Re r2) of the
indicial polynomial q(r) satisfy.
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Case (i) r1 = r2

Case (ii) r1 – r2 is a positive integer.

Since, Re r1 ³ Re r2, q(r1 + k) ¹ 0  for k = 1, 2, 3,.... and we can solve equation (3.2.4) and
(3.2.5) for ck and dk. Let the solutions of ck be denoted by Ck(r) and solution for dk be denoted by
Dk(r) . Then

    0( ) ( , ) ( ) rL x r c q r xΦ = .....3.2.6

where F is given by

   0
0

( , ) ( )r r k
k

k
x r c x x C r x

∞

=
Φ = + ∑

The Ck(r) are determined recursively by the formulas

0 0( ) 0,C r c= ≠

 ( ) ( ) – ( )k kq r k C r D r+ =

     
–1

– –
0

( ) ( ) ( ), 1,2,3,....
=

 = + + = ∑
k

k k j k j j
j

D r j r C r kα β

In case (i) i.e. 1 2 1 1, ( ) 0, ( ) 0.′= = =r r q r q r

On differentiating equation (3.2.6) with respect to r

We get

( ) ( , ) ( , )L x r L x r
r r

∂ Φ∂  Φ =  ∂ ∂ 

 [ ]0 ( ) (log ) ( ) rC q r x q r x′= +
and we see that if r = r1 = r2 and C0 = 1, then

 [ ] 1
1 0 1 1( , ) ( ) (log ) ( ) rL x r c q r x q r x

r

∂ Φ  ′= + ∂ 
 = 0.

Since 1 1( , ) 0, ( , )L x r x r
r r

∂ Φ ∂ Φ   =   ∂ ∂   
 is a solution of L(f ) = 0. Thus the term by term

differentiation of equation (3.2.3) gives the second solution

1 1
2 1 1

0 0
( ) ( ) (log ) ( )r rk k

k k
k k

x x C r x x x C r xφ
∞ ∞

= =
′= +∑ ∑

1
1 1( ) (log ) ( ).r k

kx C r x x xφ′= +∑
where f1 is the solution already obtained in (3.2.3)

 
1

1 1
0

( ) ( ) , ( (0) 1)
∞

=
= =∑r k

k k
k

x x C r x Cφ

Case (ii) :  Suppose r1 = r2 + m, where m is a positive integer. If C0 is given,

1 2 2 2 –1( ), ( ),....., ( )mC r C r C r
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all exist as finite numbers, but since

( ) ( ) – ( ),m mq r m C r D r+ =  the coefficient of Cm(r) becomes zero at r = r2.

    1 2( ) ( – )( – )q r r r r r=

and hence,

  1 2( ) ( – ) ( – )q r m r m r r m r+ = + +

  2 2( – – ) ( – )r m r m r m r= + +

  2 2( – ) ( – )r r r m r= +

If Dm(r) also has (r1 – r2) as a factor (i.e. Dm(r2) = 0 ), then it will get cancel from both the
sides of equation q(r + m) Cm(r) = – Dm(r) and would give Cm(r2) as a finite number. Then

1 2 2 2( ), ( ),.....m mC r C r+ +

all exist. In this special situation we will have a solution f2 of the form

  
2

2 2 0 2
0

( ) ( ) ( ( ) 1)r k
k

k
x x C r x C rφ

∞

=
= =∑

If we choose C0(r) = r – r2 then Dm(r2) = 0, as Dm(r) is linear homogeneous in C0(r) ,
C1(r)....   Cm – 1(r)  and hence Dm(r) has C0 (r) as a factor.

Let

     0 2
0

( , ) ( ) ( ( ) ( – )),r k
k

k
x r x C r x C r r rψ

∞

=
= =∑

 2( ) ( , ) ( – ) ( ) rL x r r r q r xψ =

Therefore 2( ) ( , ) 0L x rψ =  and

   2( ) ( , )x x rψ ψ=
is the second solution of  L(y) = 0

Since 0 2 1 2 –1 2( ) ( ) ..... ( ) 0,= = = =mC r C r C r  the series y actually starts with the m-th power

in x.

To get a solution associated with r2 differentiate

 2( ) ( , ) ( – ) ( ) rL x r r r q r xψ =
with respect to r then

       [ ]( ) ( , ) ( , )L x r L x r
r r

ψψ ∂∂  =  ∂ ∂ 

  [ ]2( ) ( – ) ( ) (log ) ( )r rq r x r r q x x q r x′= + +

and      20 at  L r r
r

ψ∂  = = ∂ 

and        2 2( ) ( , )x x r
r
ψφ ∂=

∂
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is a solution provided the series involved is convergent and

  
2 2

2 2 2
0 0

( ) ( ) (log ) ( )
∞ ∞

= =
′= +∑ ∑r rk k

k k
k k

x x C r x x x C r xφ

where C0 (r) = (r – r2) and

     0 2 1 2 2 2 –1 2( ) ( ) ( ) .... ( ) 0= = = = =mC r C r C r C r

Thus,

  
2 2

2 2 2
0

( ) ( ) (log ) ( )r rk k
k k

k k m
x x C r x x x C r xφ

∞ ∞

= =
′= +∑ ∑

  
2 2

2 2
0 0

( ) (log ) ( )r rk k m
k k m

k m
x C r x x x C r x

∞ ∞
+

+
= =

′= +∑ ∑

  
2 2

2
0 0

( ) (log ) ( – )
∞ ∞+

+
= =

′= +∑ ∑r r kk m
k k m

k m
x C r x x x C r m x

  
2 1

2 1
0 0

( ) (log ) ( )
∞ ∞

= =
′= +∑ ∑r rk m
k m

k m
x C r x x x C C r x

  
2

2 2 1
0

( ) ( ) (log ) ( )
∞

=
′= + ⋅ ⋅∑r k
k

k
x x C r x x c xφ φ

Where c is constant.

For x < 0, we replace 1 2,r rx x , log x everywhere by 1 2| | ,| |r rx x , log |x| respectively and the result

follows.

The method used in the theorem 3.2.2 is called the Frobenius method. The solutions f1, f2

are linearly independent. Thus, if the roots are equal or they differ by an integer then theorem
3.2.2 gives two linearly independent solutions of the differential equation

   2( ) ( ) ( ) 0.L y x y xa x y b x y′′ ′= + + =

EXAMPLES

Q. 1. Find all solutions f  of the form

  
0

( ) | | (| | 0),r k
k

k
x x C x x

∞

=
Φ = >∑

for the following equations.

(a) 23 5 3 0x y x y x y′′ ′+ + =
(b) 2 (1 ) – 2 0xy x y y′′ ′+ + =

Test each of the series involved for convergence

Answer (a) : For x > 0 suppose we have a solution f of the form
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   0
0

( ) , 0
∞

=
= ≠∑r k

k
k

x x c x cφ

then   
–1

0
( ) ( )

∞

=
′ = +∑r k

k
k

x x k r c xφ  and  
–2

0
( ) ( ) ( –1)

∞

=
′′ = + +∑r k

k
k

x x k r k r c xφ

Let    2( ) 3 5 3′′ ′= + +L y x y xy xy therefore

     [ ] 1

0 0
( ) ( ) 3( ) ( –1) 5( ) 3r k r k

k k
k k

L x x k r k r k r c x x c xφ
∞ ∞ +

= =
= + + + + + ⋅∑ ∑

  [ ] [ ]{ } 1
0 1 03 ( –1) 5 3( 1) 5( 1) 3r rr r r c x r r r c c x += + + + + + +

[ ]{ } 2
2 13( 2) ( 1) 5( 2) 3 ...rr r r c c x ++ + + + + + +

Let     ( ) 3 ( –1) 5 (3 2)q r r r r r r= + = +  then

[ ] [ ]1 2
0 1 0 2 1( ) ( , ) ( ) ( 1) 3 ( 2) 3 ....r r rL x r q r c x q r c c x q r c c xφ + += + + + + + + +

  [ ]0 –1
1

( ) ( ) 3r r k
k k

k
q r c x q r k c c x

∞
+

=
= + + +∑

( ) ( , ) 0L x rφ =  only if q(r) = 0 and

–1( ) 3 0k kq r k c c+ + =   for  k = 1, 2, 3,.....

The indicial equation q (r) = 0 implies r (3r + 2) = 0 that is 
2

0, – .
3

r =  Let r1 = 0, 2
2

–
3

r = .

(By choice r1 > r2)

Since ( ) (3 2), ( ) ( ) (3( ) 2) ( ) (3 3 2)q r r r q r k r k r k r k r k= + + = + + + = + + +

–1( ) 3 0+ + =k kq r k c c  gives

  
–1–3

, 1,2,3...
( )

= =
+
k

k
c

c k
q r k

  
0(–3)

( ) ( –1) ( – 2)..... ( 1)

k c

q r k q r k q r k q r
=

+ + + +

Case 1 :  r1 = 0

For c0 = 1 we obtain 0(–3)

( ) ( –1)..... (1)
=

k

k
c

c
q k q k q

   
(–3)

(3 2)( –1)(3 –1)( – 2) (3 – 4).....1 5

k

k k k k k k
=

+ ⋅

  
(–3)

! 5 8 11 (3 – 4)(3 –1)(3 2)

k

k k k k
=

⋅ ⋅ ⋅ ⋅⋅⋅ +
Thus,

   1
1

(–3)
( ) 1

! 5 8 11 (3 – 4) (3 –1) (3 2)

k k

k

x
x

k k k k
φ

∞

=
= +

⋅ ⋅ ⋅ ⋅⋅ ⋅ +∑
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Case 2 :  2
2

–
3

=r

For c0 = 1 we obtain  0(–3)
2 5 7 1

– – – .....
3 3 3 3

=
       
              

k

k
c

c
q k q k q k q

Since      q(r) = r (3r + 2)

  
0(–3)

2 5 8 1
– (3 ) – (3 – 3) – (3 – 6) ..... 3

3 3 3 3

=
      ⋅          

k

k
c

c
k k k k k k

  
0(–3)

!1 4 7 (3 – 8)(3 – 5)(3 – 2)

k c

k k k k
=

⋅ ⋅ ⋅ ⋅⋅
Thus,

  

2
–

3
2

1

(–3)
( ) 1

! 1 4 7 (3 – 8) (3 – 5) (3 – 2)
φ

∞

=

 
= + ⋅ ⋅ ⋅⋅⋅ ⋅  

∑
k k

k

x
x x

k k k k

To obtain solutions for x < 0, we replace xr by |x |r. Thus,

   1
1

(–3)
( ) 1

! 5 8 11 (3 – 4)(3 –1)(3 2)

k k

k

x
x

k k k k
φ

∞

=
= +

⋅ ⋅ ⋅ ⋅⋅ ⋅ +∑

and   

2
–

3
2

(–3)
( ) | | 1

! 1 4 7 (3 – 8) (3 – 5) (3 – 2)

k kx
x x

k k k k
φ

 
= + ⋅ ⋅ ⋅ ⋅⋅ ⋅ 

∑

These functions f1 and f2 will be solutions for x ¹ 0, provided both the series converges
on some interval containing x = 0.

Let         1
0

( ) ( )k
k

x d xφ
∞

=
= ∑

Using ratio test we obtain

  
1( ) (–3) 3 | |

0
( ) ( 1) (3 5) ( 1) (3 5)

k

k

d x x x
d x k k k k

+ = = →
+ + + +

as k ® ¥ provided |x | < ¥. Thus, series defining f1  is convergent for all finite x.

Let   2
1

( ) ( )k
k

x d xφ
∞

=
= ∑

Using ratio test we obtain

1( ) –3 3 | |
0

1( ) (3 1) ( 1)3 ( 1)
3

k

k

d x x x
d x k kk k

+ = = →
+ + + +  

as k ® ¥ provided |x | < ¥. Thus, series defining f2  is convergent for all finite x.

Thus f1, f2 are solutions of the given equation.
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(b)  Suppose for x > 0 we have a solution f of the form

   0
0

( ) , 0r k
k

k
x x C x cφ

∞

=
= ≠∑

Let    ( ) 2 (1 ) – 2 0L y xy x y y′′ ′= + + =  then

  
–1 –1

0 0
( ) ( , ) 2( ) ( –1) ( )φ

∞ ∞+ +

= =
= + + + +∑ ∑k r k r

k k
k k

L x r k r k r C x k r C x

0 0
( ) – 2k r k r

k k
k k

k r C x C x
∞ ∞

+ +

= =
+ +∑ ∑

  [ ] –1

0 0
2( ) ( –1) ( ) ( – 2)k r k r

k k
k k

k r k r k r C x k r C x
∞ ∞+ +

= =
= + + + + + +∑ ∑

  [ ] [ ]{ }–1
0 1 02 ( –1) 2( 1) ( ) ( 1) ( – 2)= + + + + + +r rr r r c x r r r c r c x

[ ]{ } 1
2 12( 2) ( 1) ( 2) ( –1) rr r r c r c x ++ + + + + + +⋅⋅⋅ ⋅

  [ ]–1
0 –1

1
( ) ( ) ( – 3)

∞ +

=
= + + + +∑r k r

k k
k

q r c x q r k C r k C x

The indicial equation q(r) = 0 implies 2r2 – 2r + r = 0,  r (2r – 1) = 0 gives 
1

0,
2

r =

Let 1 2
1

and  0.
2

r r= =

Observe that r1 ¹ r2 and r1 – r2 is not a positive integer. L(f ) (x, r) = 0 if and only if
q(r) = 0  and

–1( ) ( – 3) 0+ + + =k kq r k C r k C   or

  
–1( – 3)

– for  1,2,3
( )

k
k

r k C
C k

q r k

+= =
+

Since ( ) (2 –1)q r r r= therefore ( ) ( ) (2 2 –1)+ = + +q r k r k r k  and

  0
( – 3) ( – 4) ( – 5) ( – 2)

– – – .......... –
( ) ( –1) ( – 2) ( 1)

       + + += +        + + + +       
k

r k r k r k r
C C

q r k q r k q r k q r

  
0(–1) ( – 3) ( – 4) ( – 5) ( – 2)

( ) (2 2 –1) ( –1) (2 2 – 3).....( 1)(2 1)

k r k r k r k r C

r k r k r k r k r r

+ + + ⋅⋅⋅=
+ + + + + +

Case 1 : 1 0
1

, 1
2

= =r C

      

5 7 9 3
(–1) – – – –

2 2 2 2
1 1 3 3

(2 ) – (2 – 2) – (2 – 4) (2)
2 2 2 2

      ⋅⋅ ⋅⋅            =
     + ⋅⋅ ⋅⋅          

k

k

k k k
C

k k k k k k

  
(–1) (2 – 5) (2 – 7) (2 – 9) 3 (–1)(–3)

2 !(2 1) (2 –1) (2 – 3) (3)

⋅⋅ ⋅⋅=
+ ⋅⋅⋅⋅

k

k

k k k

k k k k
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(–1) (3)

2 !(2 1) (2 –1) (2 – 3)

k

k k k k k
=

+
and

   

1

2
1

1

3(–1)
( ) 1 .

2 !(2 1) (2 –1) (2 – 3)

k k

k
k

x
x x

k k k k
φ

∞

=

 
= + = 

+  
∑

Case 2 : r2 = 0,  C0 = 1

  
(–1) ( – 3) ( – 4) ( – 5) (–1)(–2)

(2 –1)( –1) (2 – 3) (1)

k

k
k k k

C
k k k k

⋅⋅ ⋅⋅=
⋅⋅ ⋅⋅

for k = 3, C3 = 0 therefore Ck = 0 for k = 1, 2, 3,...

   
0

1
(–2)

– 2
(1)

= =C
C

   1
2

(–1) 2 1
– .

2 3 6 3
= = =

⋅
C

C

and    2
2 0 1 2( )x c c x c xφ = + +

   
21

1 2
3

x x= + +

Thus, for x ¹  0 we get two solutions

   

1

2
1

1

3(–1)
( ) | | 1

2 !(2 1) (2 –1)(2 – 3)

k k

k
k

x
x x

k k k k
φ

∞

=

 
= + 

+  
∑

  
2

2( ) 1 2
3

φ = + + x
x x

Check that series in the first solution is convergent Let 1
0

( ) ( ).
∞

=
= ∑ k

k
x d xφ

Using ratio test

1 | |
0

2( 1) (2 3) 2( 1) (2 3)
k

k

d x x
d k k k k

+ = = →
+ + + +

as k ® ¥ if | x | < ¥. The series convergent for finite x.

Q. 2. Obtain two linearly independent solutions of the following equations which are
valid near x = 0.

(a) 2 3 (1 ) 0x y xy x y′′ ′+ + + =

(b) 2 22 – 2 0x y x y y′′ ′+ =
Ans. :

(a): For x > 0 suppose we have a solution f of the form
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    0
0

( ) , 0
∞

=
= ≠∑r k

k
k

x x C x Cφ

Let     2( ) 3 (1 )L y x y xy x y′′ ′= + + +

   ( ) ( , ) ( ) ( –1) 3 ( ) += + + + + +∑ ∑ ∑r k r k k r
k k kL x r x k r k r C x x k r C x C xφ 1r k

kx C x ++ ∑

   [ ] 1

0 0
( )( –1) 3( ) 1)

∞ ∞
+ + +

= =
= + + + + + +∑ ∑k r k r

k k
k k

k r k r k r C x c x

  ( ) ( , ) 0=L x rφ  implies

[ ] 1

0 0
( )( –1) 3( ) 1 0k r k r

k k
k k

k r k r k r C x C x
∞ ∞

+ + +

= =
+ + + + + + =∑ ∑

[ ] [ ]{ } 1
0 1 0( –1) 3 1 ( 1)( ) 3( 1) 1 ++ + + + + + + +r rr r r C x r r r C C x

[ ]{ } 2
2 1( 2) ( 1) 3( 2) 1 0++ + + + + + + +⋅⋅⋅ =rr r r C C x

    ( ) ( –1) 3 1 0q r r r r= + + =  is indicial equation.

2 2( ) – 3 1 ( 1)q r r r r r= + + = +

     [ ] [ ]1 2
0 1 0 2 1( ) ( ) ( ) ( 1) ( 2) 0+ += + + + + + + + ⋅⋅⋅ =r r rL x q r C x q r C C x q r C C qφ

  [ ]0 –1
1

( ) ( )
∞ +

=
= + + +∑r r k

k k
k

q r C x q r k C C x =  0

   ( ) ( ) 0L xφ =  if and only if q(r) = 0 and

–1( ) 0+ + =k kq r k C C  for k = 1, 2, 3,...

   q(r) = 0 implies (r + 1)2 = 0 that is r = – 1 is a repeated root. Here r = r1 = r2 = – 1.

–1( ) 0+ + =k kq r k C C  for k = 1, 2, 3,...

Since, 2 2( ) ( 1) , ( ) ( 1)q r r q r k r k= + + = + +  and

   
–1

2

–

( 1)
=

+ +
k

k
C

C
r k

   2 2 2 2 2
–1 –1 –1 –1 –1

( 1) ( ) ( –1) ( – 2) ( 2)r k r k r k r k r

         
= ⋅⋅⋅                  + + + + + +         

   [ ]
0

2

(–1)

( 2) ( 3) ( – 2) ( –1)( ) ( 1)
=

+ + ⋅⋅ ⋅ + + + + +

kC

r r r k r k r k r k

The first solution will be constructed by substituting Ck’s at r = – 1 in the series. Ck at
r = – 1 is

   0
2

(–1)

!
=

k

k
C

C
k
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  1
0

( )
∞

=
= ∑r k

k
k

x x C xφ

  
–1

20

(–1)

!

∞

=
= ∑

k
k

k
x x

k
The series converges for all finite x.

Since r = – 1 is the root of multiplicity 2, i.e. r = r1 = r2 = – 1, the second solution

  
1

2 1 1
0

( ) ( ) (log ) ( )r k
k

k
x x C r x x xφ φ

∞

=
′= +∑

  [ ]
0

2

(–1)
.

( 2) ( 3)( 4) ( 1)
=

+ + + ⋅⋅⋅ + +

k

k
C

C
r r r r k

Define D = (r + 2) (r + 3) (r + 4) ..... (r + k + 1) then

  
'

0 2

(–2) 1 1 1 1
(–1)

2 3 4 1
 = + + + ⋅⋅⋅ + + + + + + 

k
kC C

r r r r kD

2

(–2) (–1) 1 1 1 1
(–1)

1 2 3!

k

kC
kk

 ′ = + + + ⋅⋅⋅ +  

 
–1

2 12
0

(–2) (–1) 1 1 1
( ) 1 (log ) ( )

2 3!

k
k

k
x x x x x

kk
φ φ

∞

=

 = + + + ⋅⋅⋅ + +  
∑

To obtain solution for x < 0 we replace x by |x |.

Thus, the two solutions are

  
–1

1 2
0

(–1)
( ) | |

!

k k

k

x
x x

k
φ

∞

=
= ∑

 
–1

2 2
0

(–2) (–1) 1 1 1
( ) | | 1

2 3!

k
k

k
x x x

kk
φ

∞

=

 = + + + ⋅⋅⋅ +  
∑

–1
2

0

(–1)
(log | |) | | .

!

k k

k

x
x x

k

∞

=
+ ∑

Check that series in both the solutions converge.

(b):  For x > 0 suppose we have a solution f  of the form

  0
0

( ) ( 0)
∞

=
= ≠∑r k

k
k

x x C x Cφ

Let   2 2( ) 2 – 2L y x y x y y′′ ′= +  then

   
1

0
( ) ( , ) ( ) ( –1) 2( ) – 2

∞ + + + +

=
 = + + + + ∑ k r k r k r

k k k
k

L x r k r k r C x k r C x C xφ

  [ ] 1

0 0
( ) ( –1) – 2 2( )

∞ ∞+ + +

= =
= + + + +∑ ∑k r k r

k k
k k

k r k r C x k r C x
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  [ ] [ ]{ } 1
0 1 0( –1) – 2 ( 1)( ) – 2 2 += + + +r rr r C x r r C r C x

[ ]{ } 2
2 1( 2) ( 1) – 2 2( 1) ++ + + + + +⋅⋅⋅rr r C r C x

  [ ]0 –1
1

( ) ( ) 2( –1)
∞

+

=
= + + + +∑r r k

k k
k

q r C x q r k C r k C x

Indicial equation is ( ) ( –1) – 2 0q r r r= =  gives 2 – – 2 ( – 2)( 1) 0r r r r= + =  r = – 1, 2.

1 22, –1r r= =  and 1 2– 3r r =  a positive integer.

If r1 – r2 is a positive integer, we try a series using the smallest root. If c0  and c3 both turn
out to be arbitrary, we obtain the general solution by this method. Otherwise the general solution
will involve a logarithm as it did in the case of equal roots. That logarithmic case is treated in
theorem 3.2.2.

Let us consider the series solution as  
–1

2
0

( ) ( smallest root = –1)
∞

=
= −∑ k

k
k

x c x rφ

 
–1 –1

0
( ) ( –1) ( – 2) 2 ( –1) – 2φ

∞

=
= +∑ ∑ ∑k k k

k k k
k

L k k c x k c x c x

[ ] –1

0 0
( –1)( – 2) – 2 2 ( –1)k k

k k
k k

k k c x k c x
∞ ∞

= =
= +∑ ∑

[ ]{ }–1 –1
0 –1

1
(2 – 2) ( –1) ( – 2) – 2 2( – 2)

∞

=
= + +∑ k

k k
k

c x k k c k c x

Since f  is a solution  L(f ) = 0 i.e.

0.c0 = 0 i.e. c0 is arbitary.

[ ] –1( –1)( – 2) – 2 2( – 2) 0 1,2,3,...k kk k c k c k+ = =

1 0 1 0

2 2

3 2 3 3

1 – 2 – 2 0 i.e.  –

2 – 2 0 i.e.  0

3 (2 – 2) 2 0 i.e.  0 0  is arbitary.

k c c c c

k c c

k c c c c

= = =

= = =

= + = ⋅ = ⇒

[ ] –1( –1)( – 2) – 2 2( – 2) 0 4,5,6,...k kk k c k c k+ = =

2
–1( – 3 ) 2( – 2) 0k kk k c k c+ =

  –1( – 3) 2( – 2) 0k kk k c k c+ =

    
–12( – 2)

– , 4,5,6,7,....
( – 3)

= =k
k

k c
c k

k k

   3
–2( – 2) –2( – 3) –2( – 4) –2(2)

( – 3) ( –1) ( – 4) ( – 2) ( – 5) 4 1

      = ⋅⋅ ⋅       ⋅      
k

k k k
c c

k k k k k k

     
–3

3
(–2) ( – 2)( – 3) ( – 4) (2)

( – 3)( –1) ( – 4)( – 2) ( – 5) 4 1

k k k k
c

k k k k k k

⋅⋅⋅=
⋅⋅⋅ ⋅
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–3

3
(–2) ( – 2)6

!

k k
c

k
=

Thus, we get a solution

 
–3

–1 0 1 2 –1
0 0 3 3

4

(–2) ( – 2)6
( ) – 0

!
φ

∞

=
= + ⋅ + + ∑

k
k

k

k
x c x c x x c x c x

k

–3
–1 2 –1

0 3
4

(–2) ( – 2)6
( –1)

!

k
k

k

k
c x c x x

k

∞

=

 
= + + 

  
∑

–1 2 2
0 3

1

(–2) ( 1)6
(1– )

( 3)!

k
k

k

k
c x x c x x

k

∞
+

=

 += + + 
+  

∑

–1 2
0 3

1

(–2) ( 1)6
(1– ) 1

( 3)!

k
k

k

k
c x x c x x

k

∞

=

 += + + 
+  

∑

Thus, we get two solutions

–1 2
1 2

1

(–2) ( 1)6
( ) (1– ) and ( ) 1

( 3)!

k
k

k

k
x x x x x x

k
φ φ

∞

=

 += = + 
+  

∑

These are two solutions for x > 0 for x < 0 replace x by |x | we get,

–1 2
1 2

1

(–2) ( 1)6
( ) | | (1– ) and ( ) | | 1

( 3)!

k
k

k

k
x x x x x x

k
φ φ

∞

=

 += = + 
+  

∑

Check that series appearing in f2  is convergent series.

EXERCISE

1. Compute indicial polynomials and their roots for the following equations.

(a) 2 2( ) – 0x y x x y y′′ ′+ + =

(b) 2 2 1
– 0

4
x y x y x y ′′ ′+ + =  

(c) 2 4 24 (4 – 5 ) ( 2) 0x y x x y x y′′ ′+ + + =

(d) 2 2( – 3 ) 0xx y x x y e y′′ ′+ + =

2. Find a solutions f  of the form

0
( ) , ( 0)r k

k
k

x x C x xφ
∞

=
= >∑

for the following equations.
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(a) 2 22 ( – ) 0x y x x y y′′ ′+ + =

(b) 2 2( – ) 0x y x x y y′′ ′+ + =
3. For each equation obtain two linearly independent solutions valid near origin

(a) 2 ( –1) 3( –1) – 0x x y x y y′′ ′+ =

(b) 2 5(1 2 ) 5 0xy x y y′′ ′+ + + =

(c) 3 (2 – ) – 2 0′′ ′+ =xy x y y

(d) 22 (1– 2 ) – 4 0xy x y xy′′ ′+ =

4. Consider the following equation near x = 0

(a) 2 2 22 (5 ) ( – 2) 0x y x x y x y′′ ′+ + + =

(b) 24 – 4 3(cos ) 0xx y xe y x y′′ ′ + =
Compute the roots r1, r2 of the indicial equation for each relative to x = 0.

5. Obtain two linearly independent solutions of the following equations which are valid
near x = 0.

(a) 2 – 2 ( 1) 2( 1) 0x y x x y x y′′ ′+ + + =

(b) 2 2– 2 (4 – 2) 0x y x y x y′′ ′ + =

(c) – (4 ) 2 0x y x y y′′ ′+ + =

(d) 2 2 ( – 2) 2(2 – 3 ) 0x y x x y x y′′ ′+ + = .

Answers :

1. (a) 2
1 2( ) –1 ; 1, –1= = =q r r r r

(b)
2

1 2
1 1 1

( ) – ; , –
4 2 2

= = =q r r r r

(c)
2

1 2
9 1 1

( ) – ; 2,
4 2 4

= + = =q r r r r r

(d) 2
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Unit  3 :  The Bessel equation

If a is a constant, Re a  ³ 0 the Bessel equation of order a is the equation

2 2 2( – ) 0x y xy x yα′′ ′+ + =
This has the form
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x x
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where 
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( ) . 0= =x
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x

α
 is a singular point. Since the denominator of p(x)

does not contain x to a power higher than one and the denominator of q(x) (i.e. x2) does not
contain the factor x to a power higher then 2, x = 0 is a regular singular point. Therefore the
power series solution f will have the form
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The indicial equation is
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2 2( ) – 0.q r r α= =
The indicial polynomial q(r) has two roots r1 = a  and r2 = –a . We shall construct solutions

for x > 0. We consider three cases namely a  = 0, 2a is not a positive integer and 2a  is a positive
integer.

Case 1 : a  = 0

Since the roots are both equal to zero by theorem 3.2.2, there are two solutions f1, f2 of
the form
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Where s1(x), s2(x) have power series expansions which converge for all finite x.
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Since s1 is a solution L (s1) = 0 for all x. Therefore C1 = 0 and [ ] –2( –1) 0,k kk k k C C+ + =
k = 2, 3, 4

Thus, C1 = 0 and
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The function defined by this series is called the Bessel function of zero order of the first
kind and is denoted by J0. Thus
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Using ratio test
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as k ® ¥ if | x | < ¥. Thus, the series converges for |x | < ¥ and J0 (x) is the first solution of
Bessel equation with a = 0.

Now we determine a second solution f2 for the Bessel equation of order zero (i.e. a = 0).
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Since the series on right has only even powers of x, all odd terms on the left hand side
should be zero c1 = c3 = c5 = c7 = .... = c2n+1 = .....= 0.

The relation for the other coefficients that is for k even (let k = 2m) is
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and it can be shown by induction that
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The solution thus determined is called a Bessel function of zero order of second kind, and
is denoted by K0. Hence,
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Using the ratio test we can check that the series on the right is convergent for all finite
values of x.

Now we compute solution for Bessel equation of order a, where a  ¹ 0 and Re a ³ 0.
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for a  = 0 and c0 = 1, f1(x) becomes J0 (x). Before going for the second solution let us define
gamma function and study some properties of gamma function.
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Definition 3.3.1

The gamma function is defined by
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Thus, gamma function is an extension of the factorial function to numbers which are not
integers.

Suppose Re z < 0 and z is not a negative integer then there is a natural number N such that
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The gamma function is not defined at 0, –1, –2, –3,.......

We have a solution f1 (x) as
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Now choose 0
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Γ +
 we obtain a solution of the Bessel equation of order a

which is denoted by Ja  and is called the Bessel function of order a  of the first kind.
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Observe that this formula for Ja  reduces to J0 when a  = 0 as G(m + 1) = m!. Ja (x) is one
solution of Bessel equation with a  ¹ 0 and Re a  ³ 0.

To determine second solution we have to consider two situations. Either 2a is not a positive
integer or 2a is a positive integer. We determine second solution for both the situations.

Case 2 :  2a is not a positive integer

If 2a is not a positive integer there is another solution f2  (x) corresponding to the root
r2 = – a of the form
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On repeating the same calculations we have carried out for the root a, (replace a by –a
everywhere)

We get the second solution
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Observe that G (m – a + 1) exists for all m = 0, 1, 2, 3,.....  since a  is  not a positive integer.

Case 3 :  2a is a positive integer

(a) a is not a positive integer .

If a is not a positive integer G (m – a + 1) exists and the function J–a (x) is the second
solution of the Bessel equation.

(b) a is a positive integer.

Suppose a  = n. According to theorem 3.2.2 there is a solution f2 of the form
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Since – 2 – 2 1– 2 2– 2 3– 2
0 1 2 3

0

k n n n n n
k

k
c x c x c x c x c x

∞ + + + + +

=
= + + + + ⋅⋅ ⋅⋅∑

–
–2

2
,k n

k
k

c x
∞

=
= ∑  we get

{ }– 2 2 1– 2 2 –
0 1 –2

2
0 (1– ) – ( – ) – 0.n n k n

k k n
k

c x n n c x k n n c c x c x J
∞

=
    ′⋅ + + + + =   ∑

On multiplying by xn we have

[ ]0 1 –2
2

0 (1– 2 ) ( – 2 )
∞

=
⋅ + + +∑ k

k k
k

c n c x k k n c c x –2 ( ) n
nc x J x x′= ⋅  .............. (3.3.1)

Since the first solution is Ja (x) with a  = n and for a  = n, G (m + a  + 1) = G (m + n  + 1)
= (m + n) ! we have

    

2

0

(–1)
( )

! ( )! 2

m nm

n
m

x
J x

m m n

+∞

=

 =  +  
∑
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Therefore

    
2 –1(2 ) (–1) 1

( )
! ( )! 2 2

m nm

n
m n x

J x
m m n

++    ′ =    +    
∑

Thus equation (3.3.1) becomes

[ ]
2 2

0 1 –2 2 –1
2 0

(2 )(–1)
0 (1– 2 ) ( – 2 ) –

! ( )! 2

m m n
k

n k m n
k m

m n x
c n c x k k n c c x c

m m n

+∞ ∞

+
= =

+⋅ + + + =
+

∑ ∑

.............. (3.3.2)

The series on the right side begin with x2n and since n is positive integer, the right side do
not contain any odd terms. Therefore c1 = 0 c2k+1 = 0 for k = 1, 2, 3,.... and if n  > 1 then

–2( – 2 ) 0, for  2,3,4,...., 2 –1.k kk k n c c k n+ = =

Since 1 3 5 7 2 –10, .... 0.nc c c c c= = = = = =

Whereas   –2

(2 – )
k

k
c

c
k n k

+=  gives

  
0 02

2 42 4
,

4 2( – 2)2 ( –1) 2 2 ( – 2) ( –1)

c cc
c c

nn n n
= = =

⋅ ⋅ ⋅

  
04

6 66 2( – 3) 3!2 ( – 3) ( – 2) ( –1)

cc
c

n n n n
= =

⋅

in general      0
2 2

, 1,2,3,....., –1
2 !( –1) ( – 2)( – 3) ( – )

j j

c
c j n

j n n n n j
= =

⋅⋅ ⋅⋅
 ...(3.3.3)

In particular

  
0

2 –2 2 –22 ( –1)!( –1)!
n n

c
c

n n
=

On comparing the coefficients of x2n in equation (3.3.2) we get

  2 –2 –1 –1
– –

!2 ( –1)!2
n n n

n c
c c

n n
= =

Thus   0
2 –2 2 –2 2 –1

–
2 ( –1)! 2 ( –1)!

n n n

c c
c

n n
= =

and therefore      0
–1

– .
2 ( –1)!n

c
c

n
= .....( 3.3.4 )

Since c2 n–2  is used to find c, c2n remains undetermined, but the remaining coefficients
c2n+2, c2n + 4, c2n + 6,..... can be obtained by comparing the coefficients of x2(n + j) in equation
(3.3.2).

  2 2 2 2 –2 2 –1

(–1) (2 ) 1
(2 2 )(2 2 – 2 ) – 1,2,3.....

!( )! 2
+ + +

++ + + = =
+

j

n j n j j n
j n

n j n j n c c c j
j n j
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2 2 2 2 –2 2 –1

(–1) (2 ) 1
4 ( ) – 1,2,3.....

!( )! 2
+ + +

++ + = =
+

j

n j n j j n
j n

j n j c c c j
j n j

for j = 1 we have

2 2 2 1

(–1) ( 2)
4( 1) –

( 1)! 2
n n n

n
n c c c

n
+ +

++ + =
+

  
2

2 2 1
1

1 –
1 4( 1)4 2 ( 1)!

n
n n

cc
c

n nn
+ +

 = + + + ⋅ ⋅ +

Choose 2
1
– 1 1 1 1

1
4( 1) 2 3 44 2 ( 1)!+

 = + + + + ⋅⋅⋅ ⋅+ +  ⋅ ⋅ +
n

n

c c
n nn

i.e.  2 1
– 1 1 1 1

1
2 3 42 !+

 = + + + + ⋅⋅ ⋅⋅ +  n n
c

c
nn

Then   2 2 1
1 1 1 1 1

1 1
2 3 4 14 2 ( 1)!

+ +
+  = + + + + + ⋅⋅⋅⋅ + + + ⋅ +n n

c
c

n nn
for j = 2 we have

2

2 4 2 23
(–1) ( 4)

4 2( 2) – –
2!( 2)!2

n nn
c n

n c c
n

+ ++
+⋅ + =

+

 2 4 3
– 2 1

1 –
2 4 2( 2)4 2 2!( 2)! 2

+ +
 = + + ⋅ + ⋅ ⋅ +n n

c
c

n nn
 1

1 1 1
1 1

2 3 14 2 ( 1)!n
c

nn+
 + + + + ⋅⋅⋅⋅ + + ⋅ +

  2 2
– 1 1 1 1 1 1

1 1
2 2 2 3 14 ( 2)! 2 +

 = + + + + + + ⋅⋅ ⋅⋅ + + + + + n
c

n n nn

  2 2
– 1 1 1 1 1

1 1
2 2 3 14 ( 2)! 2n

c
n nn +

    = + + + + + ⋅⋅ ⋅⋅ + +    +   +  

  
2

4
– (–1) 1 1 1 1 1

1 1
2 2 3 12 2!( 2)! 2 +

    = + + + + + ⋅⋅⋅⋅ + +    +   ⋅ +  n
c

n nn

It can be shown by induction that

 2 2 2

– (–1) 1 1 1 1 1 1
1 1 ,

2 3 2 32 !( )! 2
+ +

    = + + + ⋅⋅⋅ ⋅ + + + + + ⋅⋅⋅ ⋅ +    +   ⋅ +  

m

n m n m

c
c

m n mm n m

1,2,3,....m=

Finally we get a solution f2

–
2

0
( ) ( log ) ( )n k

k n
k

x x c x c x J xφ
∞

=
= +∑

  
2 –1

– – 2 1 – 2 –
2 –1 2

0 2 –1
( log ) ( )

∞
−

= =
= + + + +∑ ∑

n
n k n n n n n k

k n n k n
k k n

x c x x c x x c x x c x c x J x

Since all odd terms c2k+1 = 0,  k = 1, 2, 3,....., we get,
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2–1
– – 0

2 0 2 1
1

1 1 1
( ) – 1

2 32 !( –1)( – 2) ( – ) 2 !

jn
n n n

j n
j

x c c
x x c x x

nj n n n j n
φ +

=

 = + + + + ⋅⋅⋅ ⋅+  ⋅⋅ ⋅⋅
∑

  

2

2
1

(–1) 1 1 1 1 1 1
– 1 1

2 3 2 32 !( )! 2

+∞

+
=

    + + + ⋅⋅ ⋅⋅ + + + + + ⋅⋅⋅ ⋅+    +   ⋅ +  
∑

m m n

n m
m

c x

m n mm n m

( log ) ( ).nc x J x+

Where c0 and c are constants related by equation (3.3.4) when c = 1, the resulting solution
f2 is often denoted by Kn. If c = 1 then c0 = – 2n–1 (n – 1) ! and

  

–1 2–1
– –1 –

2 2
1

(–1) 2 ( –1)!
( ) – 2 ( –1)!

2 !( –1)( – 2) ( – )

n jn
n n n

j
j

n x
x x n x

j n n n j
φ

=
= +

⋅⋅ ⋅⋅
∑

1
1 1 1

– 1
2 32 !

n

n
x

nn+
 + + + ⋅⋅ ⋅⋅ +  

2–1

1

(–1)
–

2 !( )! 2

n mmn

m

x
m n m

+

=

 
 ⋅ +  

∑

1 1 1 1 1 1
1 1

2 3 2 3m n m

    + + + ⋅⋅ ⋅⋅ + + + + + ⋅⋅ ⋅⋅ +    +    
 ( log ) ( )nc x J x+

   

– – 2–1

1

– ( – –1)!1 1
– ( –1)!

2 2 2 2 ! 2

n n jn

j

n jx x x
n

j=

     = + ⋅          
∑

1
1 1 1

– 1
2 32 !+

 + + + ⋅⋅⋅⋅ +  

n

n
x

nn

2

1

(–1)
–

2 ! ( )! 2

n mm

m

x
m n m

+∞

=

 
 ⋅ +  

∑

    
1 1 1 1 1 1

1 1 ( log ) .
2 3 2 3 nc x J

m n m

    + + + ⋅⋅ ⋅⋅ + + + + + ⋅⋅ ⋅⋅ + +    +    
The function f2   when c = 1 is denoted by Kn . Thus

 

– 2–1

0

( – –1)!1 1 1 1 1 1
( ) – – 1

2 2 ! 2 2 ! 2 3 2=

       = ⋅ + + + ⋅⋅ ⋅⋅ +              
∑

n j nn

n
j

n jx x x
K x

j n n

       

2

1

(–1)1 1 1 1 1 1 1
– 1 1

2 2 !( )! 2 2 3 2 3

∞

=

        + + + ⋅⋅⋅⋅ + + + + + ⋅⋅ ⋅⋅ +        + +        
∑

n mm

m

x x
m n m m m n

+ (log ) ( ).nx J x .......... (3.3.5)

The function Kn is called a Bessel function of order n of second kind.

In this section we have derived all kinds of Bessel functions. We list all these functions
here.

(1)  Bessel function of zero order of the first kind denoted by J0(x) and defined by

  
2

0 2 2
0

(–1)
( )

2 !

m m

m
m

x
J x

m

∞

=
= ∑

(2)  Bessel function of zero order of second kind denoted by K0(x) is

  

2

0 02
1

(–1) 1 1 1
( ) – 1 (log ) ( )

2 3 2!

mm

m

x
K x x J x

mm

∞

=

  = + + + ⋅⋅ ⋅⋅ + +    
∑
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(3)  Bessel function of order a of first kind denoted by Ja (x) is defined by

       

2

0

(–1)
( ) , (Re 0)

2 ! ( 1) 2

mm

m

x x
J x

m m

α

α α
α

∞

=

   = >   Γ + +   
∑

(4)  Bessel function of order n of second kind is defined by equation (3.3.5)

J0(x) is a solution of Bessel equation with a = 0 K0(x) is a second solution of Bessel
equation with a  = 0 obtained according to theorem 3.2.2 where the roots of indicial equation
r1 = r2 = a  = 0. Ja (x) is the first solution of Bessel equation where 2a  is not a positive integer
and Kn(x) is the second solution of Bessel equation where a  = n a positive integer.

Depending upon the situation choose a  and then find the required Bessel function.

EXAMPLES

Ex. 1. Suppose f is any solution  of 2 2 0x y xy x y′′ ′+ + =  for x > 0 and let 
1
2( ) ( )ψ φ=x x x .

show that y satisfies the equation 2 2 1
( ) 0

4
x y x y′′ + + =  for x > 0.

Ans. : Since f is a solution, 2 2 0x x xφ φ φ′′ ′+ + =

Let    
1 1 1

–
2 2 21

( ) ( ) then ( )
2

x x x x x xψ φ ψ φ φ′ ′= = +

and   
3 1 1

– –
2 2 21

( ) –
4

ψ φ φ φ′′ ′ ′′= + +x x x x

   
1 3 5

2 2 2 21
( ) –

4
x x x x xψ φ φ φ′′ ′ ′′= + +

  
1 1

22 21
– ( )

4
x x x xφ φ φ′ ′′= + +

  
1 1

2 2 22 21
– (– ) (Since 0)

4
x x x x x xφ φ φ φ φ′′ ′= + + + =

  
1

2 221 1
– ( ) – ( ) ( )

4 4
x x x xφ ψ= + = +

Thus, 2 2 1
( ) ( ) ( ) 0

4
x x x xψ ψ′′ + + =

and y satisfies the equation 2 2 1
( ) 0

4
x y x y′′ + + =  for x > 0.

Ex. 2. Let f  be a real valued non-trivial solution of ( ) 0y x yα′′ + =  on a < x < b

Let y be a real valued non-trivial solution of ( ) 0y x yβ′′ + = on a < x < b

Here a, b are real valued continuous functions.
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Suppose that ( ) ( ),x xβ α> (a < x < b) Show that if x1 and x2 are successive zeros of f on
a < x < b, then y must vanish at sone point r1, x1 < r1 < x2.

Ans.  : Suppose ( ) 0xψ ≠ for 1 2x x x< <  then either ( ) 0xψ >  1 2( , )x x x∀ ∈  or ( ) 0xψ <

1 2( , )x x x∀ ∈  suppose ( ) 0xψ >  for 1 2x x x< < .

Since x1 and x2 are successive zeros either 1 2 1 2( ) 0 on  ( , ) or  ( ) 0 on  ( , )x x x x x xφ φ> <
suppose 1 2( ) 0 on  ( , )x x xφ > . Then

( – ) – – ( )xψ φ φψ ψ φ φψ α ψ φ βψ φ′ ′ ′ ′′ ′′= = +
       ( – )β α φψ=

[Since f is solution of 0, ( ) 0α φ α φ′′ ′′+ = + =y y x similarly ( ) ( ) 0x xψ β ψ′′ + = ]

  Thus, ( – ) ( – ) 0 ( , , 0)ψ φ φψ β α φψ β α φ ψ′ ′ ′ = > > > Integration of above inequality

between x1 and x2 gives

[ ] [ ]2 2 2 2 1 1 1 1( ) ( ) – ( ) ( ) – ( ) ( ) – ( ) ( ) 0x x x x x x x xψ φ φ ψ ψ φ φ ψ′ ′ ′ ′ >

But x1 and x2 are zeros of f  therefore 1 2( ) ( ) 0x xφ φ= =  and above inequality becomes

 2 2 1 1( ) ( ) – ( ) ( ) 0.ψ φ ψ φ′ ′ >x x x x

Since ( ) 0xφ >  for 1 2 1 1and  ( ) 0, ( – ) 0x x x x x hφ φ< < = < for h > 0. Therefore

  1 1
1 0

( ) – ( – )
( ) 0

φ φφ →′ = >Lim
h

x x h
x

h

Similarly 2( ) 0xφ′ <

Let 2 1 1 2 1 2( ) – and  ( ) then  , 0,x L x L L Lφ φ′ ′= = >  2 1 1 2– ( ) – ( ) 0x L x Lψ ψ >

i.e.   1 2 2 1( ) ( ) 0L x L xψ ψ+ <

But 1 2 1 2( ) 0 for  and , 0.x x x x L Lψ > < < >

This is a contradiction to our assumption that ( ) 0xψ > for 1 2.x x x< < Therefore y  takes

both positive and negative values in the interval (x1, x2) and hence ∃  there exists 1 1 2( , )r x x∈
such that 1( ) 0.rψ =

Ex. 3. Show that J0 has an infinity of positive zeros.

Ans. :  J0 (x) is a solution of differential equation 2 2 0x y x y x y′′ ′+ + =

If 
1
2

0( ) ( )x x J xψ =  then by example 1, y satisfies

2
1

1 0, ( 0)
4

y y x
x

 ′′ + + = >  
The function satisfies ( ) sinf x x=  satisfies 0y y′′ + =

Since 2
1

1 1
4x

+ >  and sin x = 0 has infinitely many zeroes , 0,1,2,3,....x n nπ= =
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By above example  
2

1
( ) 1 and ( ) 1

4
x x

x
β α = + =  

1
2

0( ) ( )x x J xψ =  has a zero between np  and (n + 1)p  for n = 0, 1, 2,..... Thus, J0 (x) has

infinite number of positive zeros.

Ex. 4. (a) If  
1
2

00 and  ( ) ( )x x J xλλ φ λ> = shows that 2
2

1
– .

4x
λ λ λφ φ λ φ′′ + =

 (b) If l, m are positive constants, show that

1
2 2

0

( – ) ( ) ( ) (1) (1)λ µ λ µλ µ φ φ φ φ ′=∫ x x d x  – (1) (1).µ λφ φ ′

 (c) If 0 0and  ( ) 0, ( ) 0,J Jλ µ λ µ≠ = =  show that

  
1 1

0
0 0

( ) ( ) ( )x x d x x J xλ µφ φ λ=∫ ∫  0( ) 0J x dxµ =

Ans. (a) :  J0 (x) is solution of 2 2 0x y xy x y′′ ′+ + =  therefore J0 (l x) is solution of

2 2 2 2 0x y x y x yλ λ λ+ + =&& &  where ‘.’ represents differentiation with respect to l x.

If  
1 1 1

–
2 2 2

0 0 0
1

( ) ( ) then  ( ) ( ) ( )
2λ λφ λ φ λ λ λ′ ′= = + ⋅x x J x x x J x x J x

  
3 1 1

– – 22 2 2
0 0 0

1
( ) – ( ) ( ) ( )

4λφ λ λ λ λ λ′′ ′ ′′= + +x x J x x J x x J x

  
1 1

2 2 22 2
0 0 0

1
( ) – ( ) ( ) ( )

4λφ λ λ λ λ λ ′′ ′′ ′′= + + x x x J x x x J x xJ x

  
1 1

2 22 2
0 0

1
– ( ) – ( )

4
x J x x x J xλ λ λ = +  

  

1
2 22

0
1

– ( )
4

x J x xλ λ = +  

Therefore 2 2 21
( ) ( ) 0.

4
x x x xλ λφ λ φ ′′ + + =  

2
2

1
( ) ( ) –

4
x x

x
λ λ λφ φ λ φ′′ + =

Ans. (b) : 2
2

1
( ) ( ) –

4
x x

x
µ µ µφ φ µ φ′′ + =

2
2

1
( ) ( ) –

4
x x

x
λ λ λφ φ λ φ′′ + = .
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Multiply first equation by fl and second equation by fm and subtract these equations.

2 2 2 2– – ( – ) .µ λ λ µ µ λ µ λ λ µφ φ φ φ µ φ φ λ φ φ λ µ φ φ′′ ′′ = + =

Thus, ( )2 2( – ) –λ µ µ λ λ µλ µ φ φ φ φ φ φ ′′ ′=

Integrate above equation between 0 to 1. Since

  
1 1

2 2
0 0( ) ( ), (0) 0 and  ( ) ( ), (0) 0.x x J x x x J xλ λ µ µφ λ φ φ µ φ= = = =

Therefore

1
2 2

0

( – ) ( ) ( ) (1) (1) – (1) (1)x x d xλ µ µ λ λ µλ µ φ φ φ φ φ φ′ ′=∫

Ans. (c) :
1

2 2

0

( – ) ( ) ( ) (1) (1) – (1) (1)x x d xλ µ µ λ λ µλ µ φ φ φ φ φ φ′ ′=∫

Since,  0 0( ) 0, (1) 0 and  ( ) 0 (1) 0.λ µλ φ µ φ= = = ⇒ =J J

\
1

2 2

0

( – ) ( ) ( ) 0x x d xλ µλ µ φ φ =∫

i.e.  

1 11 1
2 2

0 0
0 0

( ) ( ) ( ) ( ) 0x x dx x J x x J x d xλ µφ φ λ µ= =∫ ∫

i.e.
1

0 0
0

( ) ( ) 0.x J x J x dxλ µ =∫

Ex. 5. Show that  J0¢ (x) = – J1 (x).

Ans. :  
2

0 2
0

(–1)
( )

2!

∞

=

 =   
∑

mm

m

x
J x

m

2 –1

0 2 2
1

2(–1)
( )

! 2

∞

=
′ = ∑

mm

m
m

m x
J x

m

  
2 –1

2 2 –1
1

(–1)

! 2

∞

=
= ∑

mm

m
m

m x

m

  
2 11

2 2 1
0

( 1)(–1)

( 1)! 2

++∞

+
=

+=
+

∑
mm

m
m

m x

m
(Replace m by m + 1)

  

2

0

(–1)
–

2 !( 1)! 2

∞

=

   =    +   
∑

mm

m

x x
m m

  1– ( )J x=
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Ex. 6.   Define, 
1

( )k
 when k is a non-positive integer to be zero. Show that if n is a positive

integer the formula for J–n(x) gives.

– ( ) (–1) ( )n
n nJ x J x=

Ans. :     
– 2

–
0

(–1)
( )

2 2! ( – 1)

∞

=

   =       +
∑

n mm

n
m

x x
J x

m m n

  

– 2(–1) 1
(As 0 for 0)

2 ! ( – )! 2 ( )

∞

=

   = = ≤      
∑

n mm

m n

x x
k

m m n k

  

– 2 2

0

(–1)
(Replace  by )

2 ( )! ! 2

n m mm n

m

x x
m m n

m n m

++∞

=

   = +   +   
∑

  

2

0

(–1)
(–1)

2 ! ( – )! 2

n mm
n

m

x x
m m n

∞

=

   =       
∑

  (–1) ( ).n
nJ x=

Ex. 7.   Show that

(a) –1( ) ( ) ( )x J x x J xα α
α α′ =

(b) – –
1( ) ( ) – ( )x J x x J xα α

α α+′ =

Ans. (a) :  
2

0

(–1)
( )

2 2! ( 1)

α

α α

∞

=

   =       + +
∑

mm

m

x x
J x

m m

\  
22

0

(–1)
( )

2! ( 1)2

α
α

α α α

∞

=

 =   + +
∑

mm

m

x x
x J x

m m

  
2 2

2
0

(–1)1

! ( 1)2 2

α

α α

+∞

=
=

+ +
∑

m m

m
m

x

m m

   
2 2 –1

2
0

(–1) (2 2 )1
( )

! ( 1)2 2

α
α

α α
α

α

+∞

=

+′ =
+ +

∑
m m

m
m

m x
x J

m m

  

–1 2

0

(–1)
2 2! ( )

α
α

α

∞

=

   =       +
∑

mm

m

x x
x

m m

  –1( )x J xα
α=

Ans. (b) :  
2(–1)

( )
2 2! ( 1)

α

α α
   =       + +

∑
mmx x

J x
m m

(147)



Differential Equations

    
2

–

0

(–1)1
2! ( 1)2

α
α α α

∞

=

 =   + +
∑

mm

m

x
x J

m m

 ( )
2 –1

–
2

1

2(–1)1

! ( 1)2 2
α

α α α

∞

=

′ =
+ +

∑
mm

m
m

m x
x J

m m

       
1 2 1

2 2
0

(–1) 2( 1)1

( 1)! ( 2)2 2α α

+ +∞

+
=

+=
+ + +

∑
m m

m
m

m x

m m

   
2

1
0

(–1)
–

! ( 2)2 2α α

∞

+
=

=
+ +

∑
m m

m
m

x x

m m

But    
1 2

1
0

(–1)
( )

2 2! ( 2)

α

α α

+ ∞
+

=

   =       + +
∑

mm

m

x x
J x

m m

\  

2
–

1 1
0

(–1)
– –

2! ( 2)2
α

α α α

∞
+ +

=

 =   + +
∑

mm

m

x x
x J

m m

Thus ( )– –
1–x J x Jα α

α α+
′ =

8.   Show that

(a) –1 1( ) – ( ) 2 ( )J x J x J xα α α+ ′=

(b) –1
–1 1( ) ( ) 2 ( )J x J x x J xα α αα++ =

Ans.    –1
–1( ) ( )x J x x J x J x Jα α α α

α α α αα′ ′= = + .......... (i)

– – – –1 –
1– ( ) ( ) –x J x x J x J x Jα α α α

α α α αα+ ′ ′= = + .......... (ii)

(a) Multiply equation (i) by x–a and equation (ii) by xa and add.

  –1 –1
–1 1( ) – ( ) ( – ) 2 ( )α α α α α αα α+ ′ ′ ′= + + =J x J x x x J J J J x

Thus, –1 1( ) – ( ) 2 ( )α α α+ ′=J x J x J x

(b) Multiply equation (i) by x–a and equation (ii) by xa and subtract.

  –1
–1 1( ) ( ) 2 ( )J x J x x J xα α αα++ =

Thus,  using results of example 7 we have proved the required result.

Ex. 9.   Show that  0 1( ) – ( )′ =K x K x

Ans. : 
2

0 02
1

(–1) 1 1 1
( ) – 1 log ( )

2 3 2!

∞

=

   = + + + ⋅⋅⋅⋅ + +      
∑

mm

m

x
K x x J x

mm

(148)



Differential Equations

      
2 –1

0 0 02 2
1

2(–1) 1 1 1 1
( ) – 1 ( ) log ( )

2 3! 2

∞

=

 ′ ′= + + + ⋅⋅⋅ ⋅ + + +  
∑

mm

m
m

m x
K x J x x J x

m xm

  

22 –1

02 2 –1 2
1 0

(–1) (–1)1 1 1 1
– 1 log

2 3 2! 2 !

mmm m

m
m m

m x x
x J

m xm m

∞ ∞

= =

     ′= + + + ⋅⋅ ⋅⋅ + + +         
∑ ∑

     
22 –1 2 –1

2 2 –1 2 2
2 2

(–1) (–1)1 1 1 1
– 1 1–

2 2 3 4! 2 ! 2

mm m m

m m
m m

m xx x x
m xm m

∞ ∞

= =

  = + + + ⋅⋅ ⋅⋅ + + +       
∑ ∑

0log ( )x J x′+

  
2 –1

02 2 –1
2

(–1)1 1 1 1 1
– 1 log ( )

4 2 2 3! 2

m m

m
m

x x
m x J x

x mm

∞

=

   ′= + + + + + ⋅⋅⋅ ⋅+ +    
∑

  
2 –2

02 2 –2
2

(–1)1 1 1 1 1
– – 1 log

4 2 2 2 3 –1! 2

m m

m
m

xx x
m x J

x mm

∞

=

     ′= + + + + + ⋅⋅⋅⋅ + +        
∑

Replace m by m + 1 and use the result 0 1–J J′ =  then

  

21

0
1

(–1) ( 1)1 1 1 1 1
( ) – – 1

4 2 ( 1)! ! 2 2( 1) ( 1) 2 3

mm

m

mx x x
K x

x m m m m m

+∞

=

 +     ′ = + + + + + ⋅⋅⋅⋅ +      + + +      
∑

1– log ( )x J x⋅

   
2(–1)1 1 1 1 1 1

2 1
4 2 2 !( 1)! 2 1 2 3

mmx x x
x m m m m

      = + + + + + + ⋅⋅⋅ ⋅+      + +      
∑

1– log ( )x J x⋅

   1– ( )= K x

Thus, 0 1( ) – ( )′ =K x K x

EXAMPLES

1. Let f be any solution for x > 0 of the Bessel equation of order a
2 2 2( – ) 0x y xy x yα′′ ′+ + =

Put 

1
2( ) ( ).x x xψ φ=  show that y satisfies equation

2

2

1
–

41 0y y
x

α 
 ′′ + + = 
 
 

2. Show that if a  > 0 then Ja  has an infinite number of positive zeros.

3. Show that J0¢  satisfies the Bessel equation of order one
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2 2( –1) 0.x y x y x y′′ ′+ + =

4. For a fixed a  > 0 and l > 0 let 
1
2( ) ( )x x J xλ αφ λ=  show that

2

2
2

1
–

4 –
x

λ λ λ

α
φ φ λ φ

 
 ′′ + = 
 
 

5. If l, m are positive show that

1
2 2

0

( – ) ( ) ( ) (1) (1) – (1) (1)x x d xλ µ λ µ µ λλ µ φ φ φ φ φ φ′ ′=∫

Unit  4 :  Regular singular points at  infinity

At the beginning of chapter 3 we have defined singular points of linear differential equation
of order n on the domain |x | < ¥. In unit 2 of chapter 3 we have discussed the power series
solutions of second order differential equation with regular singular points. These singular points
lie in a finite plane |x | < ¥. Often it is necessary to investigate solution of the differential
equation for large values of |x |. A simple way of doing this is to change the independent variable

by its reciprocal  x = 
1
t
 and study the solution of the resulting equation near t = 0. If the resulting

equation possesses the regular singular point of t = 0. We say that the original equation has a
regular singular point at infinity. The results on analytic solution and equations with regular
singular point at t = 0 can be applied to the transformed equation. Analysis of equation at t = 0
gives the analysis of given equation for infinite x.

Let us consider the second order differential equation

   1 2( ) ( ) ( ) 0′′ ′= + + =L y y a x y a x y

for large values of |x |.

Suppose f  is a solution of L(y) = 0 for |x | > r0 for some r0 > 0.

Define 1
t

x
=  and let 1 1

1 1
( ) , ( ) ,t a t a

t t
φ φ    = =      
% %  2 2

1
( ) .a t a

t
 =   

%  These functions will

exist for 
0

1
| | .<t

x

 
2

2

( ) –1
( ) ( ) ( ) – .

d t dd dx
x x x t

dt dx dt dtt

φ φφ φ φ ′ ′= ⋅ = ⇒ =  

% %

    ( )
2

2 2 2
( ) 1 –1

– ( ) ( )
d t d dx d

x x
dx dt d tdt t t

φ φ φ   ′ ′= +      

%

  4 3
1 2

( ) ( )x x
t t

φ φ′′ ′= +

Therefore
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2

4
2
( )

( ) – 2 ( )
d t

x t t x
dt

φφ φ′′ ′=
%

  
2

4 2
2

– 2 –
dd

t t t
d tdt

φφ  
=  

 

%%

and

   4 3 2
1 2( ) ( ) ( ) 2 ( ) ( ) (– ) ( ) ( ) ( )φ φ φ φ φ φ′′ ′ ′= = + + +% % % % %% % %L L t t t t a t t t a t t

  
4 3 2

1 2( ) 2 – ( ) ( ) ( ) ( )t t t a t t t a t tφ φ φ ′′ ′= + + 
% % %% %

   ( ) 0L φ =  gives ( ) 0.L φ =%%  Thus, φ% satisfies

  
4 3 2

1 2( ) 2 – ( ) ( ) 0L y t y t a t t y a t y ′′ ′= + + = 
% % % .......(3.4.1)

Where the prime denotes differentiation with respect to t.

Convertsely if φ%  satisfies ( ) 0L y =% the function f  will satisfy  L(y) = 0. The equation

(3.4.1) is called the induce equation associated with L(y) = 0 and the substitution 
1

.x
t

=

Definition 3.4.1 :

We say that infinity is a regular singular point for 1( ) ( ) ( ) ( )L y y x a x y x′′ ′= +

2( ) ( ) 0a x y x+ = if t = 0 is a regular singular point of

   
4 3 2

1 2( ) ( ) 2 – ( ) ( ) ( ) ( ) 0L y t y t t t a t y t a t y t ′′ ′= + + = 
% % %

( )L y%  is equivalent to the equation

1 2
2 4

2 – ( ) ( )
( ) ( ) ( ) 0

t a t a t
y t y t y t

t t
′′ ′+ + =

% %

On comparing this equation with the equation in definition 3.1.3(b) we see that

1 2
2 4

2 – ( ) ( )
( ) and   ( )

t a t a t
p t q t

t t
= =

% %

If 1
0

( ) k
k

k
a t t tα

∞

=
= ∑% and 2

2
0

( ) β
∞

=
= ∑%

k
k

k
a t t t where the series converge for 0

0

1
| | , 0,t r

r
< >

then the denomiantor of p(t) will not contain a factor t to a power higher than one and the
denominator of q(t) will not contain a factor t to a power higher than two. By definition

3.1.3(b) t = 0 is a regular singular point of ( ) 0=%L y and therefore infinity is a regular singular
point of L(y) = 0.

EXAMPLES

Ex. 1. Check whether infinity is regular singular point of 2 0,x y a x y b y′′ ′+ + = where a, b
are constants.

Ans. : Put
1

.x
t

=
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2( ) – ( )′ = ⋅ = &
d y d t

y x t y t
d t d x

where .dot (.) represents differentiation with respect to t.

  [ ] [ ] 2 2( ) ( ) ( ) – ( ) – 2 ( ) (– )
d d td

y x y x y x t y t t y t t
d x d t d x

 ′′ ′= = =  && &

  4 3( ) 2 ( )t y t t y t= +&& &

2 4 3 2
2
1 1

( ) ( ) 2 ( ) – ( )   ′′ ′+ + = + + ⋅ +   && & &x y x axy by t y t t y t a t y t by
tt

   [ ]2 ( ) 2 – ( )t y t a t y t b y= + +&& &

     [ ]( ) 0L y x =  implies

2
2 –

( ) ( ) ( ) 0.+ + =&&
a b

y t y t y t
t t

This equation is of form 0.y p y q y′′ ′+ + =  Since denomination of p contains a factor

, 1rt r >/  and denominator of q contain a factor , 2, 0rt r t> =/  is a regular singular point. Thus,

infinity is a regular singular point of the given differential equation.

Ex. 2.   Show that infinity is not a regular singular point for the equation

0y a y b y′′ ′+ + =
where  a, b are constants, not both zero.

Ans. :    2( ) – ( )y x t y t′ = &

  4 3( ) ( ) 2 ( )y x t y t t y t′′ = +&& &

and   ( ) ( ) ( ) 0′′ ′+ + =y x a y x by x  gives

 4 3 2( ) 2 ( ) – ( ) ( ) 0.t y t t y t a t y t b y t+ + =&& & &

Therefore

2 4
2 –

( ) ( ) ( ) 0
t a b

y t y t y t
t t

+ + =&& &

Here 2 4
2 –

( ) and  ( )= =t a b
p t q t

t t

[If a = b = 0 then 
2

( ) =p t
t

and q (t) = 0. Since denominator of p(t) contain a factor , 1rt r >/

and denominator of q(t) contains a factor , 0 2 0rt r t= > =/  is a regular singular point and

infinity is regular singular point of the equation.]

Since either a or b is non-zero, 
2

2 –
( ) = t a

p t
t

 contains the determinator tr with r = 2 > 1 or

4
( )

b
q t

t
=  contains the denominator tr with r = 4 > 2. Therefore t = 0 is an irregular singular

point of the transformed equation and infinity is an irregular singular point of the given equation.
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Ex. 3.  Show that infinity is a regular singular point for the Legendre equation

2(1– ) – 2 ( 1) 0x y xy yα α′′ ′ + + =
where  a, b are constants, not both zero.

Ans. :    
2 4 3 1

( ) – ( ), ( ) ( ) 2 ( ),y x t y t y x t y t t y t x
t

′ ′′= = + =& && &

\    Legendre equation becomes,

( )4 3 2
2
1 1

1– 2 – 2 – ( 1) 0t y t y t y y
tt

α α   + + + =    
&& & &

2 2 2( –1) 2( –1) 2 ( 1) 0t t y t t y t y yα α+ + + + =&& & &

2 2 2

( 1)2
0

( –1) ( –1)

t
y y y

t t t

α α ++ + =&& &

Here 2
2

( )
( –1)

= t
p t

t
 contains a factor tr in the denominator with 0 1r = >/  and

2 2

( 1)
( )

( –1)
q t

t t

α α +=  contains a factor tr in the denominator with 2 2.r = >/

Therefore by definition 3.1.3(b) t = 0 is a regular singular point of the transformed equation
and infinity is a regular singular point of a given equation.

4. Find two linearly independent solutions of the equation 2(1– ) – 2 2 0x y xy y′′ ′ + = of

the form – –

0

r k
k

k
x c x

∞

=
∑  valid for | x | > 1

Ans. :  Put 
1

x
t

=  then

  2 4 3( ) – ( ), ( ) 2 ( )y x t y t y x t y t y t′ ′′= = +& && &

Given equation becomes

( )4 3 2
2
1 1

1– 2 – 2 – 2 0t y t y t y y
tt

   + + =    
&& & &

or
2 2( –1) 2 2 2 0 + + + = && & &t t y t y t y y

   2 2 3( ) ( –1) 2 2 0L y t t y t y y= + + =&& &

From example 2 we observe that x = 0 is a regular singular point of L(y) = 0.

Let f  be a solution of L(y) = 0 of the form

    
0

( ) r k
k

k
t t c tφ

∞

=
= ∑
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2 2 –2 3 –1

0 0 0
( ) ( –1) ( ) ( –1) 2 ( ) 2φ

∞ ∞ ∞
+ + +

= = =
= + + + + +∑ ∑ ∑k r k r k r

k k
k k k

L t t k r k r c t t k r t c t

    
2

0 0
( ) ( –1) – ( ) ( –1)k r k r

k k
k k

k r k r c t k r k r c t
∞ ∞+ + +

= =
= + + + +∑ ∑

2

1 0
2 ( ) 2

∞ ∞+ + +

= =
+ + +∑ ∑k r k r

k
k k

k r t c t

    [ ] 2

0
( )( –1) 2( ) k r

k
k

k r k r k r c t
∞

+ +

=
= + + + +∑

[ ]
0

– ( ) ( –1) – 2 k r
k

k
k r k r c t

∞ +

=
+ +∑

[ ] ( )2 1
0 1

0
( ) ( 1) – ( ( –1) – 2) – ( 1) ( ) – 2

∞ + + +

=
= + + + +∑ k r r r

k
k

k r k r c t r r c t r r c t

[ ]
2

– ( ) ( –1) – 2 k r
k

k
k r k r c t

∞ +

=
+ +∑

[ ]2 2 1
0 1

2
– – – 2 – – 2 – ( ) ( –1) – 2

∞+ +

=
   = + + +    ∑r r k r

k
k

r r c t r r c t k r k r c t

[ ]–2
2

( – 2) ( –1) k r
k

k
k r k r c t

∞ +

=
+ + +∑

( ) ( )2 2 1
0 1– – – 2 – – 2 += +r rr r c t r r c t

 [ ] [ ]{ }–2
2

– ( ) ( –1) – 2 – ( – 2) ( –1)
∞

+

=
+ + + +∑ k r

k k
k

k r k r c k r k r c t

The indicial equation is

2( ) – – 2 0q r r r= =  gives r = –1, 2 Since r1 – r2 = 2 + 1 = 3 a positive integer we try a

series solution using the smallest root, r = – 1.

At r = – 1, L(f ) = 0 implies

  0.c0 = 0,  2c1 = 0 and

[ ] –2( –1)( – 2) – 2 – ( – 3) ( – 2) 0 2,3,4,5,.....k kk k c k k c k= =

2 22, – 2 0 gives 0k c c= = =

33, 0. 0k c= = that is c3 is orbitrary

Thus, c0 and c3 are arbitrary whereas c1 = c2 = 0.

Since c2 = 0, all even terms c2k = 0,   k = 1, 2, 3,.... and
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–2
( – 3) ( – 2)

4,5,....
( –1)( – 2) – 2k k

k k
c c k

k k
= =

In particular

2 1 2 –1
(2 – 2) (2 –1)

2,3,4,....
2 (2 –1) – 2k k
k k

c c k
k k+ = =

2 –1
(2 – 2) (2 –1)

(2 – 2) (2 1) k
k k

c
k k

=
+

     2 –1
2 –1

, 2,3,4,.....
2 1 k
k

c k
k

= =
+

2 1 3
2 –1 2 – 3 2 – 5 2 – 7 1
2 1 2 –1 2 – 3 2 – 5 3+

       = ⋅⋅ ⋅⋅⋅       +       k
k k k k

c c
k k k k

3

2 1

c

k
=

+
Thus we get a solution

  –1 2 4 6
0 3 5 7( ) ....t c t c t c t c tφ = + + + +

–1 2
0 2 1

1

k
k

k
c t c t

∞
+

=
= + ∑

–1 23
0

1(2 1)
k

k

c
c t t

k

∞

=
= +

+∑

2
–1

0 3
1 (2 1)

k

k

t
c t c

k

∞

=
= +

+∑

Thus, we get two solutions

 –1
1( )t tφ =  and 

2

2
1

( )
2 1

k

k

t
t

k
φ

∞

=
=

+∑

Let  2
1

( ) ( ).k
k

t d tφ
∞

=
= ∑

By ratio test

22 2
1

2

( ) (2 1)2 1
( ) 2 3 (2 3)

k
k

k
k

d t k tt k
d t k kt

+
+ ++= × =

+ +

Since
2 1

1
2 3→∞

+ =
+

Lt
k

k
k

The series converger for |t | < 1.

But  
1

x
t

= , therefore
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1( )x xφ = and 
–2

2
1

( )
2 1

k

k

x
x

k
φ

∞

=
=

+∑ are two solutions of given equation. Second

converges for |x | > 1.

Ex. 5.  For each equation locate and classify all its singular points.

(a) 3( –1) ( –1) 4 0x x y x y x y′′ ′+ + =

(b) 2 2 3( – 4) 2 3 0x x y x y y′′ ′+ + =

(c) 0y xy′′ + =

(d) 2 2( – 4) 3 – ( – 4) 0x x y x y x y′′ ′+ =

Ans. :  In chapter 3 Unit I, example 3, we have classified all its singular points in a finite plane.
It remains to check whether infinity is a singular point and whether it is a regular singular
point.

(a) 3
0( ) ( –1) 0a x x x= = gives x = 0, x = 1 are singularities x = 0 is irregular singular point

whereas x = 1 is a regular singular point.

put 
1

x
t

=  then 2( ) ( ) (– )
dy dt

y x y t t
dt dx

′ = ⋅ = & and ( )2( ) ( ) (– )d dt
y x y t t

dt dx
′′ = &

2 2– ( ) – 2 ( ) –t y t t y t t   =    && &  so 4 3( ) 2 .y x t y t y′′ = +&& &

      3( ) ( –1) ( –1) 4L y x x y x y xy′′ ′= + +

4 3 2
3
1 1 1 1

–1 2 –1 (– ) 4t y t y t y y
t t tt

    = + + +       
&& & &

22 4
(1– ) – 2 –t y t t y y

t t
 = + + +  

&& &

 
32 – (2 ) 4

( ) (1– )
t t t

L y t y y y
t t

+ += + +&& &

L(y) = 0 can be put in the form

2( –1) ( – 2) 4
0

(1– ) (1– )
t t

y y y
t t t t

+ + =&& &

or
2 – 2 4

0
(1– )

t
y y y

t t t
+ + =&& &

This equation is of the type ( ) ( ) 0′′ ′+ + =y p t y Q t y where
2 – 2

( )
t

p t
t

= and 
4

( )
(1– )

Q t
t t

=

Since the denominator of p(t) contains a factor , for 1 1rt r = >/ and q(t) contains a

denominator , for 1 2, 0rt r t= > =/ is a regular singular point.

Thus, x = 1 and infinity are regular singular whereas x = 0 is irregular singular point.
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(b) Put 1
x

t
=  then 2( ) –y x t y′ = & and 4 3( ) 2y x t y t y′′ = +&& &

      2 2 3( ) ( – 4) 2 3L y x x y x y y′′ ′= + +

4 3 2
2 2 3
1 1 2

– 4 2 (– ) 3t y t y t y y
t t t

   = + + +    
&& & &

     
2 2 2

(1– 4 ) – 8 – 3t y t y y
t t

 = + +  
&& &

2(1– 4 ) – 8 3t y t y y= +&& &

Since t = 0 is not a singular point of 
2(1– 4 ) – 8 3 0,t y t y y+ =&& & infinity is not a singular

point of the given equation.

(c) 4 3 1
( 2 ) .y x y t y t y y

t
′′ + = + +&& &

Therefore 4 3 1
( ) 2 0L y t y t y y

t
= + + =&& &  can be written in the form ( ) ( ) 0+ + =&& &y p t y q t y

where 
2

( )p t
t

=  and 5
1

( ) .q t
t

=

Here t = 0 is a singular point but since the denominator of q(t) contains a factor
tr, r = 5 > 2, t = 0 is not a regular singular point.

Since t = 0 is irregular singular point infinity is irregular singular point of the equation

0.y xy′′ + =

(d) x = 0 is regular singular point and x = 4 is irregular singular point.

Put 
1

x
t

=  then 2 4 3– , 2′ ′′= = +& && &y t y y t y t y

   2 2( ) ( – 4) – ( – 4)L y x x y x y x y′′ ′= +

  
2

4 3 2
2
1 1 1 1

– 4 2 [– ] – – 4    = + +       
&& & &t y t y t y y

t t tt

  
2

2 2(4 –1) 4 –1
(4 –1) –

t t
t y t y y

t t

   = + +     
&& &

  
2

2 31 –16 1 4 –1
(4 –1) t t t

t y y y
t t

 +  = + +     
&& &

L(y) = 0 can be written in the form ( ) ( ) 0y p t y q t y+ + =&& &  where
2

2
31 –16 1

( )
(4 –1)

+=
⋅

t t
p t

t t
 and
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1
( )

(4 –1)
=q t

t t

Since t = 0 is a singularity of p(t) and q(y) and is a simple pole by definition 3.1.3(a)
t = 0 is a regular singular point and infinity is regular singular point of the given equation.

S
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Existence and Uniqueness of
Solutions to First Order Equations

Chapter 4

Contents :

Unit 1 : The method of successive approximations.

Unit 2 : Convergence of the successive approximations.

Introduction :
In the last three chapters we have seen the methods of finding a solution to the given linear

differential equations. For linear differential equation with constant coefficients there is a method
to find all the solutions whereas for linear equations with variable coefficients, there are very
few types of equations whose solutions can be expressed in terms of elementary functions and
therefore we go for power series solutions. All the equations considered so far were linear
differential equations.

In this chapter we consider the general first order equation ( , )y f x y′ = where f is some

continuous function (need not be linear in y) Only in special cases it is possible to find explicit

analytic expressions for the solutions of ( , )y f x y′ = .

Our main purpose in this chapter is to prove that a wide class of initial value problems

   0 0( , ), ( )y f x y y x y′ = =

has a solution. Though it may not be possible to find out the exact solution, it is feasible to
construct a sequence of approximate solutions that may converge to the exact solution.

Unit  1 :  Methods of successive approximations

In this unit we study the general problem of finding solutions of the equation

   0 0( , ), ( )y f x y y x y′ = = .......... (4.1.1)

Where f  is any continuous real valued function defined on some rectangle

    { }0 0( , ) / | – | , | – | , , 0= ≤ ≤ >R x y x x a y y b a b

in the real (x, y) plane.

A function f  is a solution of equation (4.1.1) if 0 0( )x yφ =  and ( )( ) , ( ) .x f x xφ φ′ =
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Theorem 4.1.1
A function f  is a solution of the initial value problem (4.1.1) on an interval I if and only

if it is a solution of the integral equation

    
0

0 ( , )
x

x

y y f t y d t= + ∫  on I .......... (4.1.2)

Proof : Suppose f is a solution of the initial values problem on I. Then

   ( )( ) , ( )φ φ′ =t f t t  and 0 0( )x yφ =

Since f is continuous on I and f  is continuous on R, the function F defined by

( ) ( , ( ))F t f t tφ=
is continuous on I.

    ( ) ( , ( ))t f t tφ φ′ =  and 0 0( )x yφ =

On integrating above equation between x0 and x we get

   ( )
0 0

( ) , ( )′ =∫ ∫
x x

x x

t dt f t t dtφ φ

( )
0

0( ) – ( ) , ( )φ φ φ= ∫
x

x

x x f t t dt

or     ( )
0

0( ) , ( )= + ∫
x

x

x y f t t dtφ φ (as f (x0) = y0)

Thus f  is solution of (4.1.2)
Conversely suppose f satisfies (4.1.2) on I that is

0

0( ) ( , ( ))
x

x

x y f t t dtφ φ= + ∫

Differentiate this equation with respect to x and use the fundamental theorem of integral
calculus. The integral equation becomes

    ( ) ( , ( ))φ φ′ =x f x x  for all .x I∈

From (4.1.2) it is obvious that 0 0( )φ =x y .

Thus f  is a solution of equation (4.1.1).

Successive approximate solutions

As a first approximation to a solution defined

   0 0( ) .x yφ =
Then f 0 satisfies an initial condition but does not in general satisfy the differential equation.

Since f 0 is a first approximate solution, substitute y = f0 in equation (4.1.2) to generate
second approximate solution. Call this solution as f1 then

    
0

1 0 0( ) ( , ( )) .
x

x

x y f t t dtφ φ= + ∫
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Clearly 1 0 0( ) .x yφ =  Therefore f1 satisfies initial condition.

If we continue the process and define successively

   0 0( )x yφ = ,

     
0

1 0( ) ( , ( )) ( 0,1,2,......)
x

k k
x

x y f t t dt kφ φ+ = + =∫ .......... (4.1.3)

We get a sequence of functions { } 0k k
φ ∞

= . If this sequence converges then it may happen

that the limit function will turn out to be the solution of differential equation (4.1.1).

We now show that there is an interval I containing x0 where all the functions , 1,2,.....k kφ =
exist. Since f  is continuous on a compact set R, it is bounded on R, that is there exists a constant
M > 0 such that

| ( , ) | for all ( , ) .f x y M x y R≤ ∈

Theorem 4.1.2
The successive approximations defined by (4.1.3) exist and are continuous on

{ }{ }0/ | – | where min , /I x x x a b Mα α= ≤ =

and for , ( , ( )) .kx I x x Rφ∈ ∈

The function fk satisfy

0 0| ( ) – | | – | for all ink x y M x x x Iφ ≤

Proof :  We will prove this result by mathematical induction,

(i)  Clearly 0 0( )x yφ =  is continuous on I and

0 0| ( ) – | 0x yφ =
Thus  the theorem is true for k = 0.

(ii)  
0

1 0 0( ) ( , ( ))
x

x

x y f t t dtφ φ= + ∫

 
0

0 0( , )
x

x

y f t y dt= + ∫

Since f is continuous and continuous function is integrable, 1( )xφ exist.

0 0

1 0 0 0 0( ) – ( , ) ( , ) | – |
x x

x x

x y f t y dt f t y dt M x xφ = ≤ ≤∫ ∫

Therefore 1 0 0| ( ) – | | – |x y M x xφ ≤
Since f  is continuous on R the function F0 defined by

  0 0( ) ( , )F t f t y=
is continuous on I. Therefore f1 defined by
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0

1 0 0( ) ( )φ = + ∫
x

x

x y F t dt

is continuous on I.
The theorem is true for k = 1.

(iii)  Assume that the theorem is true for fk

(iv)  To prove the result for fk+1

We know that ( ), ( )φ ∈kt t R for  t Î I.

Since f  is continuous on R and fk is continuous on I,

  ( )( ) , ( )k kF t f t tφ=

exist for t Î I and Fk is continuous. The function fk+1 given by

     
0 0

1 0 0( ) ( , ) ( )φ φ+ = + = +∫ ∫
x x

k k k
x x

x y f t dt y F t dt

exists and is continuous function on I.

  
0 0

1 0 0( ) – ( ) ( ) | – |
x x

k k k
x x

x y F t dt F t dt M x xφ + = ≤ ≤∫ ∫

( )Since ( ) ( , )φ= ≤k kF t f t M

Thus fk+1 exist is continuous and satisfies the required inequality.

Definition : Let f  be a function defined for (x, y) in a set S. We say f satisfies a Lipschitz
condition on S if there exists a constant K > 0 such that

1 2 1 2| ( , ) – ( , ) | | – |≤f x y f x y K y y

for all 1 2( , ), ( , ) .∈x y x y SThe constant K is called Lipschitz constant.

Theorem 4.1.3 :
Suppose S is either a rectangle

0 0| – | , | – | ( , 0);x x a y y b a b≤ ≤ >

or a strip

0| – | , | | ( 0)α≤ < ∞ >x x y a

and that f is real valued function defined on S.

Such that 
f

y

∂
∂

 exists, is continuous on S and

( , ) , for ( , ) and
∂ ≤ ∈
∂

f
x y K x y S

y
 for some K > 0. Then f satisfies a

Lipschitz condition on S with Lipschitz constant K.

Proof :  
1

2

1 2( , ) – ( , ) ( , )
y

y

f
f x y f x y x t d t

y

∂=
∂∫
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Therefore

1

2

1 2( , ) – ( , ) ( , )
y

y

f
f x y f x y x t d t

y

∂=
∂∫

1

2

( , )
y

y

f
x t d t

y

∂≤
∂∫

1

2

y

y

K d t≤ ∫

1 2–≤ K y y

Thus, 1 2 1 2( , ) – ( , ) | – |≤f x y f x y K y y  for all (x, y1) (x, y2) in S.

EXAMPLES

1.  Consider the initial value problem

   3 1, (0) 2.y y y′ = + =
(a) Show that all the successive approximations f0, f1,  f2,..... exist for all real x.

(b) Compute the first four approximations f0, f1,  f2, f3 to the solution.

(c) Compute exact solution.

(d) Compare exact and approximate solution.

Answer :

(a)  We will prove this result by induction on k.

k = 0,

0 0( ) 2x yφ = =

f0 exist and is continuous.

Assume that fK exist and is continuous.

0

1 0 ( , ( ))
x

k k
x

y f t t dtφ φ+ = + ∫

  [ ]
0

0 3 ( ) 1
x

k
x

y t dtφ= + +∫

  
0

0 03 ( ) ( – )
x

k
x

y t d t x xφ= + +∫

Since fk is continuous, fK is integrable.

Therefore fk+1 exist and is continuous.

Thus, f0, f1,  f2,..... exist for all real x.
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(b)  0( ) 2xφ =

   
0

1 0 0( ) ( , ( ))
x

x

x y f t t d tφ φ= + ∫

Here ( , ) 3 1f t y y= + . Therefore

  [ ]1 0
0

( ) 2 3 1
x

x d tφ φ= + +∫

  
0

2 7 2 7
x

dt x= + = +∫

  [ ]2 1
0

( ) 2 3 1φ φ= + +∫
x

x d t

  [ ]
0

2 3 (2 7 ) 1
x

t d t= + + +∫

  
0

2 (21 7)= + +∫
x

t d t

  
2 221 21

2 7 2 7 .
2 2
x x

x x= + + = + +

  [ ]3 2
0

( ) 2 3 ( ) 1φ φ= + +∫
x

x t d t

  
2

0

21
2 3 2 7 1

2

x

t t d t
  = + + + +    

∫

  
2

0

63
2 7 21

2

x

t t d t = + + +  ∫

  
2 363

2 7 21
2 2 3
x x

x= + + +

  
2 321 21

2 7 .
2 2

x x x= + + +

(c) – 3 1y y′ =

    
3 –3

11x xy e e d x c = + ∫

   
–3

3
1–3

 
= + 

 

x
x e

e c

   
3

1
1

–
3

xc e= +
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Since  at x = 0,        y = 2,        0
1

1
2 –

3
c e= +              i.e. 1

7
. and

3
c =

   
31 7

( ) –
3 3

xy x e= +

   
2(3 )1 7

– 1 3
3 3 2

x
x

 
= + + + + ⋅⋅ ⋅⋅ 

 

   
2 421 63

2 7
2 8

x x x= + + + + ⋅⋅⋅⋅

(d)   f0, f1, f2 , f3  are respectively first, first 2, first 3 and first 4 terms of the series solution

31 7
– .

3 3
xy e= +

2.  For each of the following problems compute the first four successive approximations
f0, f1, f2 , f3 .

(a) 2 2, (0) 0y x y y′ = + = (b)   1 , (0) 1y x y y′ = + =

(c) 2, (0) 1y y y′ = =

Answers :

(a)   2 2
0 0( ) 0, ( , )x y f x y x yφ = = = +

   ( )
0

1 0 0( ) , ( )
x

x

x y f t t d tφ φ= + ∫

  ( )2 2

0

0 0
x

t d t= + +∫

  
3

3
x=

  ( )
0

2 0 1( ) , ( )
x

x

x y f t t d tφ φ= + ∫

                          
3

0

0 ,
3

 
= +  

 
∫
x t

f t d t

  

23
2

0 3

   = +     
∫
x t

t d t

  
3 7

3 63
x x= +

  

23 7
2

3
0

( )
3 63

x t t
x t d tφ

   = + +    
∫
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106 14

2
2

0

2
9 3 6363

x tt t
t d t

 
= + + + ×  

∫

  
113 7 15 2

3 7.9 15 63 63 11 3 63
xx x x= + + +

× × × ×

  
3 7 11 152

3 7.9 11.3.68 15.63.63
x x x x= + + +

(b)  0( ) 1 ( , ) 1x f x y x yφ = = +

  
0

1 0 0( ) (1 )
x

x

x y t d tφ φ= + +∫

  
0

1 [1 ]
x

t d t= + +∫

  
2

1
2
x

x= + +

 
2

2
0

( ) 1 1 1
2

x t
x t t d tφ

  
= + + + +  

   
∫

      
3

2

0

1 1
2

x t
t t d t

 
= + + + + 

 
∫

  
2 3 4

1
2 3 8
x x x

x= + + + +

 
2 3 4

3
0

( ) 1 1 1
2 3 8

x t t t
x t t d tφ

  
= + + + + + +  

   
∫

  
3 4 5

2

0

1 1
2 3 8

x t t t
t t d t

 
= + + + + + + 

 
∫

  
2 3 4 5 6

1
2 3 8 15 48

= + + + + + +x x x x x
x

(c)  2
0 0( ) 1 ( , )x y f x y yφ = = =

 
2

1
0

( ) 1 [(1) ]φ = + ∫
x

x d t

  1 x= +

  
2

2
0

( ) 1 [1 ]
x

x t d tφ = + +∫
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2 32

1
2 3
x x

x= + + +

  
3

21
3
x

x x= + + +

  

23
2

3
0

( ) 1 1
3

x t
x t t d tφ

 
= + + + + 

 
∫

  
6 3 4 5

2 4 2 3

0

1 1 2
9 3 3 3

x t t t t
t t t t t d t

  
= + + + + + + + + + +  

   
∫

  
3 5 7 2 3 4 4 5 6

1 2
3 5 7 9 2 3 12 4 15 18
x x x x x x x x x

x
 

= + + + + + + + + + + ⋅  

  
6 7

2 3 4 5
3

2 1
( ) 1

3 3 9 63
x x

x x x x x xφ = + + + + + + +

3.  Consider the problem

2 2 (0) 0y x y y′ = + =

on R : | | 1, | | 1x y≤ ≤

(a)   Compute an upper bound M for 2 2( , )f x y x y= +  on R

(b)   On what interval containing x = 0 will all the sucdessive approximations exist and be
such that their graphs are in R.

Answers :

(a)

  sup ( , )RM f x y=

  sup 2 2
| | 1, | | 1( )x y x y≤ ≤= +

  = 2

(b) By theorem 4.1.2

    0/ | – | where min ,
b

I x x x a
M

α α  = ≤ =    
Here,   0 00, 0, 1 and 2x y a b M= = = = =

\     1
/ | | where min 1,

2
I x x α α  = ≤ =    

\     { }1
/ | | .

2
I x x= ≤
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4.  By computing appropriate Lipschitz constants show that the following functions satisfy
Lipschilz conditions on the set S.

(a)   { }2 2( , ) 4 on ( , ) / | | 1, | | 1f x y x y S x y x y= + = ≤ ≤

(b)   { }2 2 2( , ) cos sin on ( , ) / | | 1, | |= + = ≤ < ∞f x y x y y x S x y x y

Answers :

(a)       2 2( , ) 4f x y x y= +

2 2 2 2
1 2 1 2( , ) – ( , ) 4 – 4   = + +   f x y f x y x y x y

    
2 2
1 2–= y y

    1 2 1 2–y y y y= +

But 1 2| | 1 | | 1 and  | | 1y y y≤ ∴ ≤ ≤

( )1 2 1 2 1 2( , ) – ( ( , ) | | | | | – |≤ +f x y f x y y y y y

 1 22 | – |≤ y y

Therefore Lipschitz constant K = 2.

(b)      2 2 2( , ) cos sin= +f x y x y y x

2 2 2 2 2 2
1 2 1 1 2 2( , ) – ( , ) cos sin – cos sin   = + +   f x y f x y x y y x x y y x

    ( )2 2 2 2
1 2 1 2cos – cos sin ( – )= +x y y x y y

    
2 2 2 2

1 2 1 2| | cos – cos sin –≤ +x y y x y y

    
2 2

1 2 1 2cos – cos –≤ +y y y y

By mean value theorem ( ) – ( ) ( ) ( – )f b f a f c b a′=

   2 2
1 2 1 2cos – cos –2cos sin ( – )y y y y y y=

Therefore

1 2 1 2 1 2( , ) – ( , ) 2 cos sin – –≤ +f x y f x y y y y y y y

    1 23 –y y≤

Therefore k = 3 is a Lipschitz constant.

5.  (a) Show that the function f given by

     2( , ) | |=f x y x y

Satisfies Lipschitz condition on { }( , ) | | 1, | | 1= ≤ ≤R x y x y

(b)  Show that 
f

y

∂
∂

 does not exist at (x, 0) if x ¹ 0.
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Answer :

(a) 2 2
1 2 1 2( , ) – ( , ) | | – | |=f x y f x y x y x y

 2
1 2| | | – |x y y≤

 1 21| – |y y≤
Thus, function satisfies Lipschitz condition with Lipschitz constant k = 1.

(b) Since |y | is not differentiable at  y = 0, 
f

y

∂
∂

 do not exist at (x, 0) unless x = 0 if x = 0 then

the function itself is zero.

EXERCISE

1.  Compute Lipschitz constant for the following functions.

(a) { }2( , ) ( ) ( ) ( ) on | | 1, | | 2= + + = ≤ <f x y a x y b x y c x S x y (a, b, c are continuous functions

on | | 1x ≤ )

(b) { }( , ) ( ) ( ) on ( , ) / | | 1, | |f x y a x y b x S x y x y= + = ≤ < ∞ (a, b are continuous functions on

| | 1x ≤ )

(c) { }23 –( , ) on ( , ) / 0 , | |x yf x y x e S x y x a y= = ≤ ≤ < ∞

2.  (a) Show that the function f given by
1
2( , )f x y y=

 does not satisfy Lipschitz condition on

{ }( , ) / | | 1, 0 1= ≤ ≤ ≤S x y x y

(b) Show that this f satisfies a Lipschitz condition on any rectangle R of the form

 { }( , ) / | | , , , , 0= ≤ ≤ ≤ >R x y x a b y c a b c

3.  Show that the function f given by

( , ) 0, if  0, | | 1= = ≤f x y x y

 2 , if  0 | | 1, –1 0= < ≤ ≤ <x x y
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2 – , if  0 | | 1, 0= < ≤ ≤ ≤y
x x y x

x

 2–2 if  0 | | 1, 1= < ≤ ≤ ≤x x x y

does not satisfy a Lipschitz condition on { }( , ) / | | 1, | | 1 .R x y x y= ≤ ≤

4.  Determine the bound for the function given by ( , ) 1– 2f x y x y=

on    { }1
( , ) / | | , | | 1

2
S x y x y= ≤ ≤ .
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Unit  2 :  Convergence of successive approximations

In the last unit we have found the successive approximate solutions to a differential equation
(4.1.1). In this unit let us prove that this sequence of successive approximate solutions actually
converges to the exact solution of differential equation (4.1.1).

Theorem 4.2.1 : (Existence Theorem)

Let f  be a continuous real valued function on the rectangle

    { }0 0( , ) / | – | , | – | , 0, 0= ≤ ≤ > >R x y x x a y y b a b

and let ( , ) for all  ( , ) .f x y M x y R≤ ∈

Suppose f satisfies a Lipschitz condition with Lipschitz constant K in R. Then the successive
approximations.

 
0

0 0 1 0( ) , ( ) ( , ( )) , 0,1,2,3,.....,φ φ φ+= = + =∫
x

k k
x

x y x y f t t d t k

Converge on the interval { }0/ | – |I x x x α= ≤ where { }min ,
b

a
M

α =  to a solution f of

the initial value problem (4.1.1)

   0 0( , ), ( ) on  y f x y y x y I′ = =

Proof (a) : Convergnce of {fk}

Since the function fk can be written as

  0 1 0 2 1 3 2 –1( ) ( – ) ( – ) ( – ) ( – )k k kxφ φ φ φ φ φ φ φ φ φ= + + + ⋅⋅⋅⋅ +

  0 –1
1

( ) ( ) ( ) – ( )
k

k p p
p

x x x xφ φ φ φ
=

 = +  ∑

The sequence fk converges, that is φ→∞
Lim
k k  exists if and only if the series

0 –1
1

( ) ( ) – ( )φ φ φ
∞

=
 +  ∑ p p

p
x x x   is a convergent series.

By theorem 4.1.2 the functions fp all exist, each is continuous on I and ( , ( ))px x Rφ ∈  for

x in I.

Moreover 1 0 0( ) – ( ) | – | for inx x M x x x Iφ φ ≤

  
0 0

2 1 0 1 0 0( ) – ( ) ( , ( )) – ( , ( ))φ φ φ φ
   
   = + +
      

∫ ∫
x x

x x

x x y f t t d t y f t t d t

   [ ]
0

1 0( , ( )) – ( , ( ))
x

x

f t t f t t dtφ φ= ∫
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Therefore
0

2 1 1 0( ) – ( ) ( , ) – ( , )
x

x

x x f t f t d tφ φ φ φ≤ ∫

Since f satisfies Lipschitz condition with constant K

1 2 1 2( , ) – ( , ) –≤f t f t Kφ φ φ φ  and we have

0

2 1 1 0( ) – ( ) ( ) – ( )≤ ∫
x

x

x x K t t d tφ φ φ φ

But 1 0 0( ) – ( ) –x x M x xφ φ ≤  for x in I

Therefore
0

2 1 0( ) – ( ) –≤ ∫
x

x

x x K M t x d tφ φ

and
2

0
2 1

( – )
( ) – ( ) .

2

x x
x x K Mφ φ ≤

By mathematical induction we will prove that

–1 0
–1

| – |
( ) – ( )

!
≤

p
p

p p
x x

x x M K
p

φ φ   for every x in I............ (4.2.1)

We have seen that this inequality is true for p = 1 and p = 2. Let us assume the result for
p = m and we will prove it for p = m + 1.

Without loss of generality assume that x ³ x0.

By definition of fm+1  and fm we get

0 0

1 0 0 –1( ) – ( ) ( , ( )) – ( , )
x x

m m m m
x x

x x y f t t d t y f t d tφ φ φ φ+

   
   = + +
      

∫ ∫

   [ ]
0

–1( , ( )) – ( , ( ))= ∫
x

m m
x

f t t f t t dtφ φ

Thus,
0

1 –1( ) – ( ) ( , ( )) – ( , ( ))
x

m m m m
x

x x f t t f t t d tφ φ φ φ+ ≤ ∫

Since f satisfies Lipschitz condition we get

0

1 –1( ) – ( ) ( ) – ( )+ ≤ ∫
x

m m m m
x

x x K t t d tφ φ φ φ

But  0–1
–1

–
( ) – ( ) .

!

m
m

m m
t x

t t M K
m

φ φ ≤

Therefore
0

1 0( ) – ( ) –
!+ ≤ ∫

xm
m

m m
x

MK
x x t x d t

m
φ φ

1 1
0 0( – ) ( | – |)

! 1 ( 1)!

+ +
≤ =

+ +

m mm x x K x xM K M
m m K m
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Thus by induction the inequality (4.2.1) is true for p = 1, 2, 3,.....

Since
0

–1
–

( ) – ( ) ,
!

≤
pp

p p
K x xM

x x
K p

φ φ

( )00 | – |
–1

1 1

–
( ) – ( ) –1

!= =
≤ ≤∑ ∑

ppk k
k x x

p p
p p

K x xM M
x x e

K p K
φ φ

And by weierstrass M-test, left hand series is uniformly convergent. Therefore the series

0 –1
1

( ) ( ) – ( )φ φ φ
∞

=
 +  ∑ p p

p
x x x

is absolutely convergent on I. Let f (x) be a limit function of the series. Then

0 –1
1

( ) ( ) ( ) – ( )φ φ φ φ→∞ →∞
=

   = +    
∑
k

Lim Lt
k k k p p

p
x x x x

       ( )0 –1
1

( ) ( ) – ( )φ φ φ
∞

=
= + ∑ p p

p
x x x

   = f (x)

Thus the sequence {fk} of successive approximations is a convergent sequence.

(b)  Properties of limit function f.

The limit function f is a continuous function on I.

1 2

0 0

1 1 1 2 0 0( ) – ( ) ( , ( ) – ( , ( )
x x

k k k k
x x

x x y f t t d t y f t t d tφ φ φ φ+ +

   
   = + +
      

∫ ∫

    [ ] [ ]
1 2

0 0

( , ( ) – ( , ( )
x x

k k
x x

f t t d t f t t d tφ φ= ∫ ∫

    
2

1

( , ( )
x

k
x

f t t d tφ= ∫

Since f is bounded by M, that is,

( , ) for  ( , ) ,f x y M x y R≤ ∈

1 1 1 2 1 2 1 2( ) – ( ) | – | ,k kx x M x x x x Iφ φ+ + ≤ ∀ ∈

By taking limit as k ® ¥ we get

1 2 1 2( ) – ( ) | – |x x M x xφ φ ≤

Therefore as 2 1 2 1, ( ) ( ),x x x xφ φ→ →  that is, f  is continuous on I.

In particular

0 0( ) – ( ) | – |,x x M x x x Iφ φ ≤ ∀ ∈
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Since x Î R, { }0| – | min ,
b

x x a
M

α≤ =  and 0| – | b
x x

M
≤  implies 0| – | .M x x b≤

Therefore 0 0| ( ) – ( ) | | – |x x M x x bφ φ ≤ ≤

Thus, x Î I and 0| ( ) – ( ) |x x bφ φ ≤  implies ( , ( ))x x Rφ ∈

(c)  Bounds for | ( ) – ( ) |kx xφ φ

We have    0 –1
1

( ) ( ) ( ) – ( )p p
p

x x x xφ φ φ φ
∞

=
 = +  ∑

and  0 –1
1

( ) ( ) ( ) – ( )
k

k p p
p

x x x xφ φ φ φ
=

 = +  ∑

Therefore

   –1
1

( ) – ( ) ( ) – ( )k p p
p k

x x x xφ φ φ φ
∞

= +
 =  ∑

 –1
1

( ) – ( ) | ( ) – ( ) |
∞

= +
≤ ∑k p p

p k
x x x xφ φ φ φ

But   0
–1

| – |
( ) – ( )

!
≤

p p

p p
K x xM

x x
K p

φ φ  and 0| – |x x α<

Therefore –1( ) – ( )
!

≤
p p

p p
KM

x x
K p

αφ φ

Thus,   
1

( ) – ( )
!

∞

= +
≤ ∑

p p

k
p k

KM
x x

K p

αφ φ

 
1

0

( ) ( )
( 1)! !

+ ∞

=
≤

+ ∑
k p

p

K KM
k k p

α α

 
1( )

( 1)!

+
≤

+

k
kKM

e
K k

αα

for every k we have

  
1( )

( ) – ( ) .
( 1)!

+
≤

+

k
K

k
KM

x x e
K k

ααφ φ

(d)  The limit f is a solution

We must show that

   
0

0( ) ( , ( )) , for all in .
x

x

x y f t t d t x Iφ φ= + ∫
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Since f  is continuous on I and f is continuous on R, the function F defined by

( ) ( , ( ))F t f t tφ=  is continuous on I and therefore is integrable.

Thus, 
0

0 ( , ( ))
x

x

y f t t d tφ+ ∫   is we defined

Now     
0

1 0( ) ( , ( ))
x

k k
x

x y f t t d tφ φ+ = + ∫

Taking limit on both sides we get

   
0

1 0( ) ( ) ( , ( ))φ φ φ→ ∞ + → ∞= = + ∫
x

Lt Lt
k k k k

x

x x y f t t d t

Therefore it is sufficient to prove that

0 0

( , ( )) ( , ( ))
x x

Lt
k k

x x

f t t d t f t t d tφ φ→ ∞ =∫ ∫

0 0

( , ( )) – ( , ( ))∫ ∫
x x

k
x x

f t t d t f t t d tφ φ

  
0

( , ( )) – ( , ( ))φ φ≤ ∫
x

k
x

f t t f t t d t

       
0

( ) – ( )
x

k
x

K t t d tφ φ≤ ∫

But by (c)

 
1( )

( ) – ( )
( 1)!

+
≤

+

k
K

k
KM

t t e
K k

ααφ φ

Therefore
0 0

1

0
( )

( , ( )) – ( , ( )) | – |
( 1)!

+
≤

+∫ ∫
kx x

K
k

x x

K
f t t d t f t t d t M e x x

k
ααφ φ

Since
1( )

0 as  ,
( 1)!

+
→ → ∞

+

kK
k

k

α

0 0

( , ( )) ( , ( ))
x x

k
x x

f t t d t f t t d tφ φ→∫ ∫  that is

0 0

( , ( )) ( , ( ))φ φ→∞ =∫ ∫
x x

Lt
k k

x x

f t t d t f t t d t

And    
0

0( ) ( , ( ))
x

x

x y f t t d tφ φ= + ∫
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Thus f  is a solution of the initial value problem 0 0( , ), ( )y f x y y x y′ = =  on I.

In theorem 4.2.1 we have shown the existence of solution of initial value problem 4.1.1.
The solution thus obtained is a uniques solution.

Picard-Lindel of theorem states that if  f  is continuous function and satisfies Lipschitz condition
on R, then the successive approximations fk exist on |x – x0 | £ a  ,  fk’s  are continuous and
converge uniformaly on the interval I to a unique solution passing through (x0, y0) ÎR.

S
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