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Preface

Large numbers of students appear for M.A./M. Sc. Examinations externally every year. In
view of this, Shivaji University has introduced the Distance Education Mode for external students
from the year 2007-2008, and entrusted the task to us to prepare the Self Instructional Material
(SIM) for aspirants.

It is hoped that students must learn Mathematics not only to become competent
mathematicians but also skilled users of Mathematics in the solution of problems in the real
world. They must learn how to use their Mathematical knowledge in solving the problems of the
real world. Differential equations usually are description of physical systems. This book on
Ordinary Differential Equations consists of four chapters. Chapter one contains the complete
discussion of linear equations with constant coefficients, including the uniqueness theorem. In
chapter two linear equations with variable coefficients are trea. Equations with analytic coefficients
are introduced and series solutions are obtained by a simple formal process. A detailed treatment
of linear equations with regular singular points is discussed in chapter four. Classification of
regular singular points and regular singular points at infinity is studied. In chapter five existence
and uniqueness of solutions of first order initial value problem are established. The innumerable
examples and exercises are given at the end of each unit.

The book introduces the students to some of the abstract topics that pervade modern
analysis. The first chapter deals with the Riemann Stieltjes integration. The problems in Physics
and Chemistry which involve mass distribution that are partly discrete and partly continuous can
be solved by using Riemann Stietjes integrations. The Chapter 2 deals with convergence and
uniform convergence of sequences of functions and series where as the Chapter 3 consists of
multidimensional calculus. The Chapter 4 deals with implicit functions and extremum problems
which have wide applications in optimization theory. Line integrals, surface integrals and Volume
integrals are the subject matter of Chapter 5. This provides sufficient background to study the
Gauss divergence Theorem and Stokes Theorem.

We owe a deep sense of gratitude to the Vice-Chancellor who has given impetus to go
ahead with ambitious projects like the present one. Dr. Sarita Thakar, Professor, Department of
Mathematics, Shivaji University has to be profusely thanked for the ovations he has poured to
prepare the SIM on Differential Equations. We also thank Prof. M. S. Chaudhary, Former Head,
Department of Mathematics, Shivaji University, Director of Centre for Distance and Online
Education for their help and keen interest in completion of the SIM.

Prof. Dr. S. H. Thakar

Head Department of Mathematics &

I/c Dean, Faculty of Science & Technology,
Shivaji University, Kolhapur
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Each Unit begins with the section Objectives -
Objectives are directive and indicative of :
1. What has been presented in the Unit and
2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.

(viii)




&

Differential Equations

M. Sc. (Mathematics)
Paper lli

0 Dr. Sarita Thakar -

Department of Mathematics
Shivaji University, Kolhapur (M.S.)




— Chapter 1
Linear Equations with
Constant Coefficients

Contents :
Unit 1 : Initial value problems for second order equations.
Unit 2 : Linear dependence and independencce
Unit 3: The homogenous equation of order n

Unit 4 : The non-homogeneous equation of order n

Introduction :

We live in a world of interrelated changing entities. The position of the earth changes with
time, the velocity of falling body changes with distance, the bending of a beam changes with the
weight of the load placed on it, the area of circle changes with the size of the radius, the path of
projectile changes with the velocity and angle at which it is fired.

In the language of mathematics changing entities are called variables and the rate of change
of one variable with respect to another is called derivative. Equations which express a relation
among these variables and their derivatives are called differential equations.

A Linear differential equation of order n with constant coefficients is an equation of the
form

3y +a "+ g "I+ g = b X
where, a5 %0, g, &,1lg, are complex constants
and b is complex valued function on an intertat a < x<b.
The operator L defined by
L@ () =M +a "+ ae™(Y+..+ ap(y is called as

differential operator of order n with constant coefficients.

The equationL(y) = b(x) is called non-homogenous equatiorb(K) = O for allx in | the
corresponding equatidr(y) = O is called a homogenous equation.

Differential Equations (1)



Unit 1 : Initial VValue Problems for Second Order Equations

Here, we are concerned with the equation
Liy)=y'+ay+ay=0

where a; anda, are constants.

Theorem 1.1.1
Let, a;, &, be constants and consider the equdtigh=y” +a;y’ +a,y =0

1. Ifrq, r, are distinct roots of the characteristic polynomial
p(r) =r’+ayr +a,

then the functiongy (x) = € and @, (x)= € are solutions of(y) = 0.
2. Ifryis a repeated root of the characteristic polynop@l then the functiong (x) = €*
and @ (x) = xé¥ are solutions af(y) = 0.
Proof : Let ¢ (x) = €” be a solutions df(y) = 0.
L(e™)=(€")"+ a(&)+ a &
= (r? +ayr +a,)e™
L (e™) = 0 if and only ifp(r) = r* + ar +a, = 0.
1. If ry andr, are distinct roots op(r) then L(€?) = (d?)=0 and@( 3= & and
®,(x) = €2*are solutions ok(y) = 0.
2. Ifrqis arepeated root ofr) then
P(r)=(r-r)® and p(r)=2(r —,)
Le™)=P(nd* forall r& x
2@ =2 PR
O L(xé*)=[P(n+ xR n] &
At r=ry, P(r) =P(ry)=0.
i.e. L(xd) =0 thus, showing thake* is a solution of(y) = 0.
Thus ifr, is a repeated root of the characteristic polynof{g), then ¢ (x) = €¥* and
@,(x) = xé* are solutions ok(y) = 0.

Theorem 1.1.2 :

If ¢, andg, are two solutions di(y) = 0 thenC, ¢, + C¢, is also a solution di(y) = 0.
Where,C,; andC, are any two constants.

Proof : Let ¢, andg, be two solutions af(y) = 0

L@) =@ +a10, +a,0,=0
Differential Equations (2)



L(@) =@, + ¢, +2,¢,=0
Suppose&,; andC, are any two constants then the funciatefined byp=C, ¢, + C, ¢,
Is also a solution df(y) = 0.

L(®) = (agy + c,)" + ag(ap, + cp)+ af @i+ CP )

=Cy(@r +agy + ag) +cfp, + ags+ ag)
=G L(@) + (g
=0
The function¢ which is zero for allx is also a solution called the trivial solution
of L(y) = 0.

The results of above two theorems allow us to solve all homogeneous linear second order
differential equations with constant coefficients.

Definition 1.1 :
An initial value problemL(y) = 0 is a problem of finding a solutiop satisfying
O(%y) =ag and@ (xg )= BoWherex, is some real number amng, 5, are given constants.

Theorem 1.1.3 : (Existence Theorem)

For any reak, and constantg, /3, there exists a solutigmof the initial value problem

Liyy=y'+ay+ay=0, yY¥y)=a, A ¥B, —o<x<ow.

Proof : By theorem 1.1.1 there exist two solutiehsandg, that satisfyL(¢;) = L(¢,) = 0. From
theorem 1.1.2 we know thef ¢, + ¢, ¢, is a solution ot_(y) = 0. We show that there are

unique constants;, ¢, such thaip = ¢;¢, + cxp, satisfiesgp(xg) =a and ¢ &, )= .
P(x0) = cipi(Xo) + cp LX) =@

¢ (%0) = @y (%o + c2( X9 = B
Above system of equations will have a unique solutior, if the determinant

@(x0)  @Axo)
@ (%) 92(x0)
By theorem 1.1.1 (1)g (x) € and ¢, (x)€2* are two solution oL(y) =0 for r #r,

=@ (%) @2 (X0 =P X9 P1( X9 # 0.

and
A :erlxo r2 erZXO_ éQ(O [ éi‘o

=(r, _rl)e(ﬁ”z)xo 0.
By theorem 1.1.1 (2)g (x) =€** and ¢, (x)xé"* are solutions ok(y) = 0 and
A =e'%o E;jlxo + % Eéf‘o%_ % &Xo fé¥ 0

— 2nXo #0
Differential Equations (3)



Thus, the determinant condition is satisfied in both the cases. Thecgfoyare uniquely
determined. The functiop =c, ¢, +C, ¢, is a desired solution of the initial value problems.

Defination 1.2 :

A solution of a differential equation will be called a particular solution if it satisfies the
equation and does not contain arbitrary constants.

Theorem 1.1.4 :
Let, ¢ be any solution of
Ly)=y +ay+ay=0
on an interval | containing a poiry, Then for allxin I.

lp(xo) lE™ 1< o ) i I & ) !

Where,
lo0d] = Ho(x) F + ¢ (x)Fg]/Z andk=% B+ & |
Proof: Let,
u(x) =llp(x) |f
=|lp(x) F + | (x) P
=0(x) () +P (N P (¥
Then, U0 =0 (XA +A AP (I +¢"( 3P ( X+@( ¥¢'( X
and U< 2lp) [ € 20 €)1¢ «)]

as &) b &)l
Sinceg is a solution ot(y) =0, L(¢) =¢" + ¢ +a,p=0
le. @' (x) =—a¢ (X) — ap(X) and the above inequality becomes
U s 2@l CF 2¢ )] B & «H & ¢ X)I
<2[l+la [ &)W €)F 2Rt % T

But, 2lpx) 1l &)1 I &)1+ ¢ €)
Therefore,
Ul < 2(tla bl ) ¥ &XI+ €2 &)ld X3

<2(t |ag I+ lap YHIW €)1+ & & PH

<2k u(x)
Thus, we get

—2u(X)< U (X) < 2Ku(X)
u'(X) < 2ku( X is equivalent ta)'(X) — 2k u( XY < Osince exponential functions are positive

on multiplying above inequality by >*we get

Differential Equations (4)



e 2%(U(9-2ku(3)=( &2 ¢ ) <.
Integrating above inequality between the limigo x for x > X, yields.
e 2% = 62% (%)< 0
u(x) < <) ()

Thus, lp(x) |P< €07) |1 05 )
Similarly, forx > x, the inequality —X u (x) < u”(x) implies
lp(xo) IF €C70)< | () fi

Therefore foix > x, we get

loto) IF €200 < p ) A 00 1 & Il s (1.1.1)

Forx <x,, the sign of above inequality will get changed

lp(xo) IF €2070) 2 o ) flz 407%) 1 ¢ )|

This inequality can be written as

U0 lpp) IF< Tl 06 )i 1 & )l €XC®)
sincex <X, X;—Xx>0.

e X0 1p) 1B e s B & )ASE™ L (1.1.2)
Equation (1.1.1) and (1.1.2) together can be put in the form

e oo IFs I ) i< 1 & ) &P

Since all the terms in above inequality are positive the square root of each term results
into the required inequality.

Theorem 1.1.5 (Uniqueness Theorem)

Let ¢, Bbe any two constants and gtbe any real number. On any interval | containing
Xo there exists at most one solutigof the initial value problem

Liyy=y +ay+ay=0, Yxy)=a, ¥=B8
Proof : Suppose andy are two solutions.
Let O=@p—-y. SinceLg FLY ¥ O,
L) =LO-¢)=LO)-LW)=0

Since ¢ 6o )=y boFa  and @ % FY' & FB |
B(%) = 9(%) ¥ (%) =0 and @' (5 )= (%) 4’ O )= O

Thus, L(8) =0, 8(x,)=0 and &' & F O.
16 00) IF=He 60)f+ P o ¥ = 0

Differential Equations (5)



By theorem (1.1.4) we see that
1661 He €)f+ P &F = 0 foralk inl

This implies@(x) = 0 for allxinI.
But(x)=0(x)—¢(x)=0 ie. @ (X)=e@(X)

Theorem 1.1.6 :

Let ¢ 4, ¢, be two solutions ofL(y) = O given by theorem 1.1.1.d{, c, are any two
constants the functiop =c; ¢, + ¢, ¢, is a solution of.(y) = 0 0N —eo< X <ee,

Conversely, ifpis any solution ok (y) = 0 on —o< X <o, then there are unique constants
C, andC, such thapp =C; ¢+ C, ¢,.

Proof : First part of the theorem follows from theorem 1.1.2.

Conversely supposg is any solution of(y) = 0. Let ¢(xy) =a and ¢ (x )= for
some constanter and . In the proof of existence theorem 1.1.3 we showed that there is a
solutiony of L(y) = 0 satisfying.

Y(Xp) =a, Y'(x)=p ofthe form

Y(x)=q@(X+ cp,( ¥, wherec, andc, are uniquely determined by and 8 . By
uniqueness theorem 1.1¢5=y , for all x.

Examples :

1. Find all solutions of the following equations.
(@) y'-4y=0 (b) y+ 2iy”+y=0 ©y-4y"+5=0
Answer :
(a) The characteristic polynomialjr) =r?— 4. r, =2 andr, =— 2 are two distinct roots of
p(r)=0.
Thereforeg(s) = &% and ®(X)= € 2 are two solutions. For any constagsand
¢y, €™ + C,e ¥ is a solution. Thus the general solutiongéx) = ¢, + ¢, 2%,

(b) The characteristic polynomip(r) = r® + 2ir + 1

o(r) =00 :%5—21\/(2)24%
:%Erzw?sg
= i +2i

= (—11 fZ)i

Differential Equations (6)



Thusr = (—1+ «/_Z)i andr, =( —14_;1 are two district roots gf(r) = 0.

—1\/—2' _1_‘/—.
Therefore @ (X) =e( i )'X and @ (x)= e( Z)IX are two solutions. Thus, for any
constantg; andc,, ¢ (x) = cle(_lh/—z)ix + G é_l“/—z)ix is a general solution.

p(r) = 0 givesr; = 2 +i and
~)X are two solutions of the

%t c,e@*)Xis a general

(c) The characteristic polynomigr) = r> — 4 + 5.
r, = 2 —i as two distinct rootsg,(x) =e @ *"* andg,(x) =e ?
differential equation. For any constanisindc,, ¢(x) =c,e @

. . 1
solution. In particular forc; = C, = Ewe get,

2X _ix+éx O] X
@(x)=¢€ o &*cos x and for
U U

_-1 _1
¢ =— and CZ—E we get
iX _ e—ix 0
P(x) =X F———[F ésin x
2
O O
Thus, ¢ (x) = A € cosx + B € sinx is a solution of the differential equation for any
constants A & B.
2. Find the solutionsg of the following initial value problems.

(@) ¢'+¢-69=0, ¢ (0)=1¢ (OF O

y _ _ Lt
(b) ¢¥+9=0, @(0)=1, iy 0
(c) ¢ +kp=0, Kk isanyconstantyp (8 O, p (=) O
d) ¢-29-3p=0, ¢(0F 0, ¢ (OF 1

Answer :
(a) The characteristic polynomigd(r) =r?+r — 6. r, = 2 andr, = — 3 are distinct roots

Q(x) = Clezx + G &¢¥is a general solution.
0)=10 c¢+c,=1
@(0)=00 ¢ (x)= 2q* —3c e>atx=0, givesg (0)=2c; —X, = 0
solving equation (1) and (2) fay andc, we getc, = 3/5 andc, = +2/5.

2X 3x
Thus, the required solution i(x) = 3e5 + 22

Differential Equations (7)



(b) The characteristic polynomial (r) = r?+1. r, =i andr,=—i are distinct roots
@(X) = g cosx+ G, Sinxis a general solution.

@0)=10 ccosOtc, siF 1gives; = 1

p(%)=2 0 ¢ codY%+c, sifl,= 2 givesc, = 2.
Thus, ¢ (X) = cosx + 2 sinx is the required solution.

(c) The characteristic polynomial ig(r) = r? +k sincek is any constantg can be positive,
negative or zero.

Casel. k>0

Then =k i andr,= —k i ;are distinct roots.
O @(x) = cle*/EiX +6 e‘*/E X s a general solution

In generab(x) = Acos+/k x+ Bsiny k xis a solution.
@0)=00 AcosOtBsinGE 0 ieA= 0
o(m=00 Acosm+Bsimt=0 ieA= 0

Thus,¢ () =B sinVk x is a solution wher® is any constant.

Case 2. k=0
p(r)=r?>=0 O r =0 arepeated root.
0 @(x) =g+ ¢ x&= ¢+ ¢ ¥s a solution
0)=0 O ¢=0
(m=0 0O ¢g+cm=00 c,=0
Therefore there is no nontrivial solution correspondings to0.

Case 3. k<O
for k=0, p(r) =r®+k has distinct roots

n=v—k & r,=—J/—k (Sincek< 0, k> 0)

909 =8l X+ cpe
9(0)=¢+c=0

o) = e K T+ 6,6V X =0
Simultaneous evaluation of above two equations gjvec, = 0.
Thus, there is no non-trival solution corresponding 400.

The only non-trivial solution for the given equationiex) = BsinVk x

(d) The characteristic polynomip{r) =r?—2r — 3
r, =3, r, =1 are two distinct roots.

Differential Equations (8)



@(x) = cleSX + g € is a general solution

9(0)=0 0 ¢(0)=c+c,=0

¢ (0 =3¢ "~ &

g0)=10 ¢(0)=1=3
Thus,c; +¢, =0 and 8, —c, = 1 gives

C.I.:l and(;z: _1'
4 4

1 1_ .
Therefore@(X) = 2 e ~2°€ * is the required solution.

EXERCISES

1. Fill in the blanks.

(i) If ry, r, are distinct roots of characteristic polynomip(r) =r?+a, r +a,then

A(X) =i and @ (X) =.......cceeee are solutions of the differential equation
y'+ay+gy=0

(i) If p(r)=(r—-r)? is a characteristic polynomial the@ (x)=.............. and
(X)) =i are two solutions of the differential equatigh— 2,y +r,%y = 0.

(i) Uniqueness theorem states that ....................
(iv) Solution of y"—2y + 4y=0areq (X)=............ and@ X F oo
(v) The general solution oy —3Y + 2y=0is.....
2. Find the gental solution of each of the following equation.
(i) y"+4y =0 (i) y'—-y=0 (i) y"+y -6y=0
(v) y'+4ky 12 y=0 (V) y'-2ay+ay=0 (Vi) y'—4y+20y=0
3. Find the solution of the following initial value problems :
) y'=0, yO=2, y(@=-1
(i) y'+4y +4y=0, y(0)=1, y (0F 1
(i) y"'—2y +5y=0, y(0)= 2, y (0OF 4
0,

(iv) y'—4y +20y=0, y(%)=0, y(%)=1

Answers

1. () g(x) =€, @ (X)= & (i) @()=€™, @ (Y= x&
(i) theorem 1.1.5 V)@ (x) =, @ (N = x&

(V) qe2X+ Czé(

Differential Equations (9)



2. () q+ce™ (i) ce+ge”

(i) ¢+ e (iv) e+ g, &

(V) (¢ + CpX) % (vi) e*(gcos4x+ G sin4x)
3. (i) 3-x (i) (1 +3x) e

(i) &(2cos 2+ sin) (v) 5" sin4x

Unit 2 ;. Linear Dependence and Independence

Every solution of the equatidn(y) = 0 is a linear combination of two solutions obtained
in theorem 1.1.1. Therefore these two solutions span the solution space of the differential equation

L(y) = 0.

Defination 1.3 : A set ofn real or complex functiorfs, f,, fs,......,f, defined on an interva&(
b) is said to be linearly independent whgnf;(X) + ¢, fo(X+ ¢z f{ 3+[F ¢ f( ¥=0
for everyxin (a, b) implies¢; = ¢, = ¢z =lIII* g, =0.

Defination 1.4 : Given the functionsf; f, f3 [If, if constantsc, c,, c;, MG, not all zero

exist suchc, fi(xX)+ ¢, fo( X+ 3 f{ 3+F ¢ f( X=0 for everyx in (a, b), then these
functions are linearly dependent.
A set which is not linearly independent is said to be linearly dependent.

There are two notions of linear independence, according as we allow the coefficients
G, k=1, 2,3, ...ntoassume only real values or also complex values. In the first case, one says
that the functions are linearly independent over the field of reals; in the second case, that they
are linearly independent over the complex field.

Lemmal.2.1 :A set of real valued functions on an intenall) is linearly independent over
the complex field if and only if it is linearly independent over the real field.

Proof : If the set of real valued functions on an interaaby is linearly independent over
the complex field then it is linearly independent over the field of reals.

Conversely suppose the set is linearly independent over the real field. Therefore for
n
a; R, J_Zlaj fi(¥=0y {(Q+a, f(R+a; f{¥+0Fa, F(3=0 for all x in (a, b)
n
impliesaj =0forall j=1,2, 3., n. Let) ¢ f (x)=0 for all x in (a, b) and for some
=1

¢;UC, j=1,2,3In. Since the functionf, are real valued andc; fj(x) =0,

nlk —¢* O .
> =209 =0. But (¢ - ) /i
jle i

are all real and the set is linearly independent over the real field theqafxalcq*. But theng;'s

* n %
B c; fj(¥YH =0. implies jzzlcj f;(x)=0. Thus,
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n
are all real thereforgy c; f;(x) =0 impliesc; =0 forj =1, 2,..n.
=1

A set of functions which is linearly dependent on a given domain may become linearly
independent when the functions are extended to a larger domain. However, a linearly independent
set of functions clearly remain linearly independent on the restricted domain.

lllustration 1 : The functionsp, and ¢, define byg,(x) = Cosx and ¢,(x) = Sinx are linearly
independet on the real line IR and therefore are linearly independent a).(0, 2

lllustration 2 : The functionsy; andg, define byg,(x) =x, ¢,(x) = |x| are linearly indepent on
the interval (-1, 1) but is not linearly independent on the interval (0, 1) as on the interval

(0, 1), ¢1(X) = 9x(X).
Theorem 1.2.1 :

Let a;, a, be constants and consider the equalify) =y + g y+ & y=0. The two
solutions oL (y) = 0 given in the theorem 1.1.1 are linearly independent on any interval I.

Proof : Letr, r, be the roots of characteristic polynonpél) = r? + ar+a,.
Case 1.

If ry #r,, theng (x) = €1 andg,(x) = €2* are two solutions of the equatibfy) = 0 on
an interval I.

Supposec €1 + ¢, €2* =0 forall xin .

Thenc, +c,é27"% =0 for all xin .

Differentiation of above equation with respeckigivesc, (r, —r,)e2"* = ofor all x in

Since,r, #r; and exponential function in non-zew, is zero. But ifc, is zero then
¢, +C, €27% = 0 impliesc, is zero. Thusc e + ¢, & =0 impliesc, =c, = 0.

Thereforeg (x) = €* and @, (x)= €* are linearly independent.
Case 2.

If ry=r,, theng(x) = €1* andg,(x) = xd' *are two solutions of the equatibfy) = 0 on
an interval I.
Supposec,e®* + ¢, xé2* =0 thenc, + ¢,x=0 for allx in I. Thereforec; = ¢, =0. Thus,
¢, andg, are linearly independent
Thus, in both cases the two solutighsand¢ , of L(y) = O are linearly independent.
Defination 1.5 : Assume that each of the functionfg(x), fo(x), f3(x),d f, (x)are
differentiable atleasi(— 1) times in the intervab(b). Then the determinant
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f1(x) f2(X) f3(X) f.(%
AC R PTG I (€ I 1€
e B B
R VI PR G A C B e 8

denoted byW(f; f, fs3...., f;)(x) is called the wronskian of tmefunctions f; f, fs...., fj.

Theorem 1.2.2 :

Two solutionsg;, ¢, of L (y) = 0 are linearly independent on an interval | if and only if
W(@, @,) (X) # Ofor all xin |.

Proof : SupposeW(g@, @) (x) # 0 for all X in |
Let c,, C, be constants such that
C, P (X)+Cy 0, (X) =0 forallxinl. Then
CL (X)) +¢, ¢,°(X) =0 forallxin I.
Above two equations can be written as
() @(X 00 oo
o, : D%Q 0™ A
@ () @ (XNE%0 B0
Since,W(@, @) (x) z 0 for allxin |, the coefficient matrix is invertible. On premultiplying

the inverse of the coefficient matrix result<ir ¢, = 0. This proves that, andg, are linearly
independent on I.

Conversely, assume that ¢, are linearly independent on |. Suppose that there is a point
Xy In | such thatW(g,, @) (Xp) =0. Then the system of equations

Op(x0)  @x(xg) O 0 00
0, : D%Q = HH
@ (x0) @2 (x50 O
has a solution,, c, where at least one of these numbers is not zere, L&t be such a solution
and consider the functiaf(x) = ¢, @ (X + S @x( ¥. Now L) =0 and ¢ &, )= Oy’ & F O.
1

Therefore ||y (x,) IF Hw )T+ U & ﬁEE = 0.By theorem 1.1.4J|¢(x)|[= 0. But
lly () I Hy (X):f+4.U'Q<ﬂE: 0. Therefore w(x)=0 for all x in | and thus

q@(X)+ (X =0 for all x in I. But theng, and ¢, are linearly dependent. Thus, the
suppositionW(@, @) (Xg) =0 must be false and therefov®(¢;, ¢,) (x) # 0 for all xin I.
In the next theorem we will prove that we need to compVife,, @,) at only one point to

test the linear independence of the solutignandg, .
Differential Equations (12)



Theorem 1.2.3 :
Let ¢,, ¢, be two solution oE(y) = 0 on an interval | and I&§ be any pointin |. Then two
solutionsg; and¢, are linearly independent on | if and onlyWM (@, @) (Xg) # 0.

Proof : If ¢, andg, are linearly independent on | then by theorem 1. /29, @,) (x) # 0 for
allxin I. In particularW(¢,, @) (Xg) # 0 conversely, supposé&/ (@, @) (Xg) # 0 and
supposec,, ¢, are constants such thaf@,(X)+ c,@,(X¥ =0 for all x in I. Then
CLP1(X0) + Co0A X9 =0 and ¢, @y (Xg) + €95 (X9 =0.

Cp (%) @2(%0) Oy 0 00
i.e. o, : D% 0= bH
@ (Xo) @2 (%520 PO

But since the determinant of the coefficien¥i{q@, @) (Xg) # O we obtainc; =c, = 0.
Thus¢,, ¢, are linearly independent on I.

In the next theorem we show that the knowledge of two linearly independent solutions of
L(y) = O is sufficient to generate all solutiond.¢y) = 0.

Theorem 1.2.4 :

Let ¢, ¢, be any two linearly independent solutiond_¢f) = 0 on an interval |I. Every
solutiong of L(y) = 0 can be written uniquely as

@ =c, @+ C,p, Wherec,, ¢, are constants.

Proof : Let x, be a point in I. Letp(xy) =a, ¢ (%) = B. Since ¢;, ¢, are linearly
independent on | we know th&l¥ (¢, @,)(Xg) # 0. Consider the two equations.
On(x0) @aAx) 00 O
O, , D%QD: BH
@ (x0) @2(x)5F¥0 PO
Since W(@, @) (Xg) # 0, above system of equations has a unique solatiory, . For
this choice ot;, ¢, the functiony(x) = ¢ @ (X + ¢ @,( X satisfiesy/(xy) = ¢ @ X)) + SHEA X9

=a =@(Xg)i.e. Y(xg) =@(Xy) similarly ¢'(Xy) =¢'(¥) and L ¢y )= 0. From the uniqueness
theorem 1.1.5 it follows thag =¢gon | i.e.p=c @ +C,@,.

Examples :

Q1. Show that the functionse”, €, e are linearly independent.
Ans. :
Method 1 :

Let ¢+ 02§X+ %éXZO

then ¢ +c,& + cgéxzo .......... Q)
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Differentiate above equation (1) with respecktbenc,€* + 2¢, =0 implies
Co + 203ex =0 (2)
By differentiating equation (2) with respecttave get2c,e* = Othereforec; = 0.

But then by equation (2), = 0 and by equation (1) we ggt= 0. Thusc; =c,=c5;=0.
Therefore the functions, €, € are linearly independent.

Method 2 :
Let A =€, B(N= &, py( Y= &
ef X & 11
W@, @, @) =|e¢ 26> 3% =e & &1 2
e* 4e* 9&X 14
= [1(18-12) — 1 (9-3) + 1 (4-2)]
=2e> = 0.

by theorem 1.2.2,, ¢,, ¢5 are linearly independent.

Q2. : The functionsg,, ¢,are defined on —-<x < eo. Determine whether they are linearly
dependent or independent there.

() @(x)=x @(X=¢*risacomplex constant
(i) @()=x", @(x=5%
(i) @a(x)=x @& (X=X
(iv) @(x) =cosx, @ (X)= sinx
Ans. (i) :
Method 1 :

Let ¢ @ (X)+ (¥ =0

i.e.gx+cd =0 ... Q)
if r=0, ¢x+c,=0 forall xR implies
c; =0 andc, = 0. - @y, 9, are linearly independent if= 0, differentiate

equation (1) with respect tothenc, + rc,e* =0
Again differentiate above equation with respesttteenr %c,e™ = 0.But r #0 andg™ £

thereforec, = 0 and from equation (1) we ggt= 0. Thusg;, ¢, are linearly independent.
Method 2 :

x 1
1

X eI’X

Wig, @)=
1

- eI’X

X

re r
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=e™*(rx=1=z0 for xd IR
- ¢, & are linearly independent

Method 3 :

W@, @) (0)=‘2 j=1¢ O therefore by theorem 1.2, ¢, are linearly
independent.
Ans. (ii) :
Let ¢ ¢ +Cr9,=0
le. clx2+025x220
if (c;+5c,)» =0
If we choosec, = — &, # 0 then the linear combinatiogy ¢ + c,¢,=0 therefore by
definition 1.4,¢,, ¢, are linearly dependent.
Ans. (iii) :
For x>0 ¢ @+ G, = (Gt o) xas | xF x
and forx<0 g@ +c@,=(¢—Cyxas |xF —X
Thus, g ¢ +c,0,=0 for xR
O (c+c)x=0 and @ -G )= 0
for every x ] R above two equations hold true if and onlg,if- ¢, = 0. Thusg;, ¢, defined by
@(X) = xandg, (x)=|x |are linearly independent.

Ans. (iv) :
@ (X) =cosx; @ (x)= sinx

COSX  Sinx _1
—sinx co

“W(g, ¢)(X)=1%0, ¢,p, are linearly independent.

W(as @) ()=

Q3. : Let ¢, be any function satisfying the boundary value problem

y'+n?y=0, y(0) = y(2m), y'(0)= ¥ (21), N=0123....

2

show that [ @ (X)@n(X) dx=0 if n# m
0

AnNS. :

The characteristic polynomigd(r) = r?2+n? has roots; =in, r, = —inand therefore the
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general solutiory, (x) = ¢,cosnx+ d, sinnx
From the given boundary conditions.

®(0)=c, and ¢, (&r FcyU @, OF @, (Z )
and @ /(0)=nd, and ¢, (& Fnd,O @, (OF@, (Z)
Thus, @,(x) = ¢, cosnx+ d, sinnxsatisfies the given boundary conditions.
The solutiong, satisfies@,’ (x) + n°@,(X) =0 where asg " (x) + m2@, () =0 holds.
Thus,  (n* = m?) g (X9 (X =@ (APm( 3=0n( 30 m (3
= 5 (0 @n(¥) ~@n(XPm (X5

Integrating above equation from O t& 2

We get,
5 2 o ’ ’ ,
(”2‘”‘ )I%(><)¢m(>9 e [ B0 (X0 X—0n( YO m( X5 dx
0 0
= 1 (9 (%) —cvn(x)coré(@gn
But @ (0)=cy, @y(21)=cy; @, (0)= nd, @, (27)= nd,

Similarly, @,(0)=Cr, Pm(2T)=Cry @ m(0)= Md ;= @ 1 2T)

on
Thus, (nz—mz)‘[%(x)(pm(& de[ ng 6= ¢ mdl-{ nd g~ & M4
0
=0

2

Since, nzm [ G(X@n(X dx0.
0
Q4. (a) : Show thatg, (xX) = Sin nx satisfies the boundary value probleny” + n% = 0,
y(0)=0,y(z)=0n=1,2....

(b) : Using (a) show that

T
Isinnx sinmx dx= 0 if # m
0

Ans. 4(a) :
Method 1 :

The characteristic polynomigi(r) = r% +n2has roots =+ in and therefore the general
solution
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@, (x) = ¢,cosnx+ d, sinnx
y0)=¢(©0)=0 0 ¢,(0)=c,=0

y(m=¢,(m)=0 O @,(m)=cy(-1)" = 0.
Thus, @,(x) =sinnx is a solution fon=1, 2, 3,....

Method 2 :
@,(x) =sinnx, @, (x)= ncosnx
@," (x) = —n? sinnx
Thus, @' (X) + n’@,(x) = —r’sinnxt if sin ne 0
Since,  @,(x) =sinnx satisfiesg,’ (x) + n’@, (X =0
and  ¢,(0)=0, @, (1)=0
@,(X) =sinnx is a solution ofy" + n?y=0, y(0)= y(T)= 0.

Ans. 4(b) :
Working on the similar line as in example 2 we get,

(nz—mz)f%(x)gomm dxe (F - rﬁ)}sin nxsin mx dx
0 0
=[sinnx(—mcosmx) — sinmx(-n cosn>}§
=0 (assin0=sinz =0)

T
Since nZm [¢,(XYPn(% d=0.
0

Q5 : Supposep,;, ¢, are linearly independent solutions of the constant coefficient equation
y'+ay+ay=0, LetW (¢, ¢, ) be abbreviated to W. Show that W is constant if and
only if a; = 0.

AnS. :

W= W(g, ) :‘(pl, <p2‘ = (fplfpz' —<p2<p'1)
o @

Then W' =(ag; -0,0})
SR QP — 001 —Q P71

=00 —00
But ¢, andg, are solutions of" +a y + & y=0.
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Q6 :

Therefore @' +a0 +a,0,=0 0 ¢, =-ap;—ag,

Similarly, @' =-a,¢, —ag,

Thus, W' =@ (—ay @y —a,00,) —9, (-0’1 —a )
=—a (@0, —0201)
= —a1W

Thus, W'=0 iff =0

Therefore W = constant if and onlyaf = 0

Let ¢, ¢, be two different function on an interval I, which are not necessarily
solutions of an equatiorL(y) = 0. Prove the following

(a) If ¢, ¢, are linearly dependent on | then #/(¢, ) (x) = 0 for allx in |
(b) If W(¢y, ¢,) (X5) #0 for somex, in |, theng,, ¢, are linearly independent on |.
() W(¢y, ¢, )(X) = 0 for allx in | does not imply thad,, ¢, are linearly dependent on I.

(d) W(¢y, ¢,) (x) =0 for allxin l and ¢, (X) #0 on I, imply that arep;, ¢, linearly
dependent.

Ans. 6(a) :

Supposep,, ¢, are linearly dependent on | thepp,(X) + ¢, @,( ¥ = 0for some non-zero

c; andc,.

1 :_C_2 .
e. a00=-2,9
Wi, %)(X):‘%, goz,‘z(l’l(x)§02’(x)—§02(x)§0’1(>9
Q 9

[l 0, [l . O
0 W@, 8)(X) =02 ¢, ()95 () ~0() -2 94 (XE O
O G [l Y [l

O W(@, @)(x)=0 forallxd I.

Ans. 6(b) :

Suppose ¢ @y(X)+ C@x(X) =0 then
@ (X)+ P, (9 =0

Thus we have a system of equation
() @(X 00 oo
O, , D%Q iy BH
(X (Y550 ¥O0
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Therefore ak = x,

(%)  @(X) Oy 0 00
O, : D%Q = HH
@ (x0) @2 (xQEF20 VO
Thus,c; = ¢, = 0 if and only if the coefficient matrix is invertible i.e. the determinant of
coefficient matrix is non-zero

(X0)  @a(x0) 0
A0 POV i, ) (xp) 2 0
@ (X0) @2 (X0
Since, W(@, ®)(Xg)Z0 O c¢;=c,=0
O qoa(X+6e(X=0 0 ¢=c=0.
Henceg, andg, are linearly independent on I.

But

Ans. 6(c) :
Define  @(x)=x4, @&(¥=x X|

for x>0, [xEx O@)=x%x, @ (X=X

X2 X2
O W(@, @)= =0.
(@ @) o ZJ
for x=0, ¢a(X)=¢(¥)=0 0 W@,9,)=0
for x<0, |xE ~x O @ (x)= ¥ andg, X} —%
X2 —X2
0 W(g, @)= =0.
(%, @) ox —2><I

Thus  W(@, @) (X)=0 for —co< x<oo
Let a@(X)+Cp(X=0
for x>0, q@(X)+ Ce(XN=(g+ c) £=0.
0 ¢+c,=0 e, (i)
for x<0, ¢@(X)+ Cp,(XN=Ggf— 6 X=0.

0 ¢g-c=0 L (i)
But g+c=0 and ¢ =00 ¢g=0c=0
Thus, c@+c,0,=0 0 c=¢,=0
Thereforeg,, ¢, are linearly independent.
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Ans. 6(d) :

Q7 :

a(x)  @(X
@ @

W(a, @) (x) =00 W(er, ¢2)(X) :‘

0 a(0)P (N-0() @ () =0
0 @)@ ()-@(x)e; (9=0
Since @ (x)20 OxUI

0 2XEW-a(0e () _
2
@29

Od-

O %ﬂ =0 O ﬁ:constant X (say)
¥ 0 )

Thereforeq (x) = kg,(X) and hencep, ¢, are linearly dependent.

If ¢, ¢, are two solution ofL(y) = 0 on an interval | containing a pointx,, then

W(@, @) (x) =e 270 W(g, @) (%))

AnS. :

Sinceg,, ¢, are solution ot (y) =0,
@ +a @ +agp=0
@ +ay @, +a0,=0
On multiplying the first equation bygy, second equation b and adding we obtain
AP — 020 +a (P10~ H)+afP P -0 9)=0
(@0 —@00 )+ 2@~ #1)=0 )
@) (¥
@) (X
Then W = ¢ ()¢, (X) =02 (X)¢1 (X)
and  W'=@ ()@, ()+ ()02 ()02 (X1 (N —92(Ap1 (3

=@ ()@ () —P(0@7 (¥
Thus, equation (i) becomes
W' +ayW = 0.
Thus W satisfies the first order differential equation
W' +ayW =0

et W=W(@,@)Kx)=
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Hence, W(x) = c[E®* wherec is constant of integration. At =X, we get
W(xp) = c[E® je. c= é7OW(y)
Thus, W(x) = eoW( %) €2~
= e 00 ()
ThereforeW(g, ¢,) (x) = € 2070 W (@, 0,) (%)

EXERCISES

1. The functionsg,, ¢, are defined on—co < x <o
Determine whether they are linearly dependent or independent there.

(i) @(X) =cosx, @, (x)= sinx
(i) @(x) =sinx, @ (x)= &

(i) @ (X) =sinnx, @,(X)= cosnx

(iv) @(9) =1 @, (x)=cosx

(V) @(x) =sin® x, @, (X)= cog x

(Vi) @(x) =1, @ (x)=sir* X, @5(x)= co$ x

(Vi) @(X) =cosx, @, (x)= X + &'
2. State whether the following statements are true or false.

(a)If ¢y, ¢, are linearly independent functions on an interval |, they are linearly independent
on any interval J contained inside 1.

(b) If ¢,, ¢, are linearly dependent on an internal |, they are linearly dependent on any internal
J contained inside I.

(c) If ¢, ¢, are linearly independent solutionslofy) = 0 on an internal I, they are linearly
independent an any internal J contained inside I.

(d) If ¢, @, are linearly dependent solutionslofy) = O on an interval I, they are linearly
dependent on any internal J contained inside I.

Ans. : 1.
(i) independent (i) independent (iii) independent
(iv) independent (v) independent (vi) dependent
(vii) dependent.
Ans.: 2.
(a) false (b) true (c) true (d) true
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Unit 3: The Homogeneous Equation of Order n

Everything we have done for the second order equation can be carried over to the case of
the equation of order n. Here, we are concerned with the equation

L(y)=y™ +a "D+ g Y™+ g y=0,

where, a, &, ag,......, g, are constants.

Theorem 1.3.1 :
Letrq, ry ra.....
p(r) =r" +ayr "t +a,r "2+ MHFa, and suppose; has multiplicity m(m+ m+ g+ 0

, I's be the distinct roots of the characteristic polynomial

+my = n). Thenn functions
e, xd¥, L X E B e R e
&, xdX, £ & ..., st B
are solutions of_(y) = y(" + g " + g "2+ 0B g y=0
Proof : Suppose; is a root ofp(r) of multiplicity m. Then p(r) = (r —r;)™q (r )whereq is a
polynomial of degrea —m. On differentiatingp(r), (m — 1) times we get,

p(r) = —r)Ma’@)+m (=)™ g ¢)
=(r=r)" ') —r)+miq )]

p'(N =0 -r)"a" )+ ¢ = )" €)+m -6+ " Ca¢)
=0 =) H 0@ O+ 2 € 9 COm 0 -1y €
=(r—r)M2 [Polynomial of orden ]

and so on
pMD(r)=(r —r, ym-m = [Polynomial of orden ]
=(r —r;) [Polynomial of orden # |
Therefore, p(r) = p'(5) = p'(f) =M p™ () = 0.
Let € be a solution ok (y) = 0. We see thatt(e”™) = p(r)&* where p(r) =r" +a,r "
+a,r"? + M a,

Thereforel (") = p(f)d” =0. Thusgix is a solution ot (y) = 0.
If we differentiate| (e™) = p(r)d* ktimes with respect towe obtain

ak X\ — Dak XD_ X
e )—L%Fé B—L(%é)
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(k 1) kO _rx

—Efo(k)(r)mo(k D(r) x+ =~ p*=2)(1) x?+ 3 {1 X =¢

Thus forr =r, andk =0, 1, 2,....m — 1 we getL(xk Xy=0. Therefore
XX, k=0,1,2,..... m —1are solutions df(y) = 0. This is true for every characteristic rgot

with multiplicity my. i.e. xXXé*, k=0,1,2,...m -1, i= 1,2,3,.sare solutions ok(y) = 0 and

the result follows.

Theorem 1.3.2 :

The n solutions ofL(y) = 0 given in theorem 1.3.1 are linearly independent on any
interval I.

Proof : We prove that functions given in theorem 1.3.1 satisfy the condition given in defination
1.3.

Suppose we haveconstants i1=1,2...s,j= 0,..m -1

Such that
(C_]_oerlx + C11 Xélx + Go % I’éX +....+ le -1) &1_1 ré()

+(020er2X + oy X&'+ g X B+t gy R ré‘)
+....+(c30ersx +Cg X&'+ ¢ g B+t ¢ o) Pst ré‘)= 0
Define  p(X)=Go+ g0+ £p X +....+ icmi_l)ﬁ‘_l
Then P(E + p( 3 &+ g xE+...+ o XE=0.

Assume that not all constarisare zero. Then there will be at least one of the polynomials
p; which is not identically zero on I. Suppgs€) is not identically zero on I. On dividing above

equation bye™ we get
p(X)+ (Y 2+ g x &4+ g xETX =0,
Upon differentiating above equation sufficiently many (at mgstimes, we obtain the
expression of the form

Q7+ gy &+ + Q(xETF =0
I.e. Q(X)+ X(% drsaX 4 4 Q(3 Es=2X% =

where theQ,’s are polynomials, degree &k is equal to degree & andQ, does not vanish
identically.

Continuing this process we finally arrive at a situation where,

Rs (¥ € =0,
on | andR is a polynomial, degree & is equal to degree &, which does not vanish
identically on |. ButR (x) és* = 0implies Rg(X) = 0 is a contradiction. Therefore our supposition

that P;(x) is not identically zero is not true. Thigs(x) =0 for all xin I.
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Thus all constants; =0 proving that then solutions given in theorem 3.1 are linearly
independent on an interval I.

* Initial value problem for n™ order equations.
The problem of finding a solutiogof
L(y) =y +a "+ g "2+ .+ g y= Osatisfying
P(X0) = a1, @(Xg) = gy, ot x)=a, where a,a, ag,......., a, and
01,05,03,....... o, are constants is denoted by

L(y)=0, y(g)=ay, Y(p)=az,.....¥" ™ (%)=a,
and is called an initial value problem.

Theorem 1.3.3 :

Let ¢ be any solution of

L) =y +ay" D+ g P+ g0
on an interval | containing a poirf. Then for allx in |

(o) l1lE™ < b x) Ik I ) IEC®)

where, k=1+|a |+ |a [+ lag b .+ By |
1
and o) lI=He 6)f+ 17 &)+ .= 9OV « A2
Proof : This proof is similar to the proof of theorem 1.1.4.
Let u(¥)=lle () If

=lpf+lg F+.+ p" ™ f
=p@+g g +...+9 Y
Hence  u(N=go+pd+@g+g @ +..+¢" D0 +pMemy
Thereforelu'(x) < 2lp () | I ) [+ 2 ¢ ¢ + .+ 2™ pfV |
Sincegis solution ofL(y) = 0,L(¢) = 0 and therefore
(02 a9V - a0
On substituting the expression f(p?”) we get
UI<2le W 26 1@ 4+ .+ 274" oY |
22 ||p"D P+ 2y (9070 19070 4 L 2 90 @l |
Hlal-b[f200 a1+ p3z 24 [bH
W (lef+ W ir Wi+ 1y .+ a2 % gt 07
+Ha |(g" D P+ Py b 100 e )
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<(W+lan Do f+ @ oy DY A+ @ dop W 2
fot (2l DO fr @ 20+ o 4 g BT 7
Since each coefficient on the right hand side is less tkarehave
U< k(o f+ip T+.x 9" 7)

=2k [lp (x) [f= &u )
Therefore |u'(x)|< 2ku(X)
Thus, we get—2k u(x)< U(X)< 2ku( %

u' —2ku(x)< 0 implies €2* u(x))< 0

Integrating above inequality between the limig to x for x> X, vyields
e 2R — 2% | ¥)< 0

Le. u(x) < €4070) ()

Thus,  [lex)|l< €7 | g )|l
Similarly for x > x, the inequality

—2ku(x) < U (¥ implies

1900) 11677 < Jp )l
Combining the above two inequalities we get the required resuk fox,.
For x <X, interchange the role afandx,

Weget [loO) €™ o )T 1 6 )IE® < @ )l
and i )™M b )0 @ X )H €007 @l )]
Thus,  [lo() € ™ < b x)Ik €79 1 &I, & ¥ )

which is the required result far< x,
Theorem 1.3.4 (Uniqueness theorem)

Let aq,05,03,....a,, be anyn constants and le¢ be any real number. On any interval |

containingx, there exists at most one solutigaf L (y) = 0 satisfyingp(xy) = a4, ¢ (Xg) =a 5,

Proof : Supposeandy were two solutions df (y) = 0 on | satisfying the above conditions at
X=X I.€.

9%0) =Y (%) =1, P(x) =Y (X =0 3 . 0" (x0)=4p "V (x)=a,
Define 8 = p—y . Sinceg andy satisfy L(p) =L(y) therefore L(6) =0 and

6(%) = (%) — (X)) = 0,6 (%)= 0,....8"™ (4 )= 0.

1
Thus — [160o) IFHP )+ P )1+ .2 8"V  Fp= 0
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Applying theorem 1.3.3 we obtaiid (x) | 0 for all x in I. This implies6(x)=0 for
all xin 1.

le. @(X)=y(x) forallxinl.
Theorem 1.3.5

If @, @, @s,...9, , aren solutions oL (y) = 0 on an interval |, they are linearly independent
if and only if W(@, @&, @3,..., ) x)# Ofor allxin . (definition 1.5)
Proof : The proof is entirely similar to the proof of theorem 1.2.2

SupposeW (@, @&, @s,...@, ) X)Z Ofor all x in I. Letcy, C,, Cs,....,C, be constants such
that G @ (X + CPA ¥ +....+ @ (X¥=0 for all xin .

By differentiating above equation £ 1) times we get a system of equations as follows.

2o ' ‘9 0 Qo
De &M e NE D%Q o0
2 o (x " (X "9 - @'(y pEsO0= OO
0@ @M e a () D= (05
3 : : OO0 CO
B0 2,00 @0 NR) (n—l(x)gﬁtnﬁ o

The coefficient matrix is invertible because the determinant of coefficient matrix is
(definition 1.5) W(@, @, ¢5,...¢3, ) k)% 0. On premultiplying the inverse of the coefficient

matrix we getg; = ¢, = Cg.....= G, = 0. This proves thap, @, ¢5,...¢, are linearly independent.

Conversely, assume thgt, @,,...q, are linearly independent on I. Suppose there is a

pointx, in | such thatW(@, @, @s,...@, ) Xg) = 0.Then the system of equations

B%(XO) P2(x0) pdx) - (X0 D[qm o0
0@ (o) (0 93(x9 &(x9 D%:QD o0
DR B9 @9 0 09 g0 = 00
O : : J

0 D O 0O
B0 07N Uy @ 0 xEeD BB

has a solutiory;, ¢y, C3 ..., G, Where at least one of these numbers is not zera | e, .....,G,
be such a solution and consider a function

WX =a@(R+ P Y+...+ ¢ (3.
Now L() =0 andy'(xy) =" (%) = ....= "™V (%)= 0.
Therefore||y (X)) |[F O But then by theorem 1.3.3|y (X) |F O, for allx in I. Therefore
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by defination of |y (x) ||, ¢ (x)=0 for allxin I. But theng,, @, ¢5,...@, are linearly dependent.
Thus the supposition W(@, ¢, @5,...¢,)Xo)=0 must be false. Therefore

W(@a, @, @s,..., ) (x)2 Ofor allxin I.

Theorem 1.3.6 (Existence Theorem)
Let aq,05,03,....a,, be anyn constants and leg, be any real number. There exists a
solutiong of L(y) = 0 on —eo < X < e satisfying
Px0) =a1,¢/(%0) =02 ¢ (%) =0 3.0 (xg)=a,

Proof : Let @, @, ¢5,...¢3, be any set oh linearly independent solutions bfy) = 0 on

— c0< X < oo, We will show that there exist unique constagt,, Gz, ....., G, such that

P=C Pt CoPat CaPst...+ G ¢,

is a solution of (y) = 0 satisfying the given initial conditiong") (x,) =a;, i=0,1,2,...n —1.
These constants;, ¢,, Cg, ....., G, would have to sartisfy

Dato e eh0 - &O9 O myp
Dd00 B0 00 - @09 DD WD
|:| n " L " D =
DRG0 @09 @59 - @'(x) 0%el= Wl
o - . . . 0=: :
0 : : : : DD' o d- 0
B0 00 0 Hxg g P RpEE

Sinceq@, @, ¢,...¢, are linearly independent, by theorem 1.3.5, the determinant of the
coefficients i.,e W(@, @, @3,...¢, ) Xo)# 0.Thus the coefficient matrix is invertible. Therefore
there is a unique set of constan{sc,, cs, ....., G, satisfying above system of equations. For this
choice ofg, ¢, G, ..., G, the function

P) =@ (Nt AR+ GO J+...+ Gon ()
will be the desired solution.
Theorem 1.3.7 :

Let @, @, @3,...@, ben linearly independent solutions bfy) = 0 on an interval I. If
C1:Cp, Cgyeveny G, are any constants

o) = @(X + PA R+ GPL J+...+ G, ()
is a solution and every solution may be represented in this form.

Proof : Sinceq,i=1, 2, 3...n is solution ofL(y) =0, L(¢)=0,i =1, 2, 3...n.
Therefore L(¢)=c¢; L(¢) + ¢ L(@y) + c3 U@y +....+ G, L(g,)=0and

P=C P+ CoPrt CaP3+....+ G @, is a solution of (¢) = 0.
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Let ¢ be any solution of(y) = 0 andx, be in I.
Suppose @(x,) =ay, ¢ (X) =0 2,¢F (Xg) = 3....0" ™ (x0)=ar, .

By existence theorem 1.3.6 there exist unique constds c;

Y= @tCr@ytCypst...+ G ¢,

is a solution ot.(y) = 0 onl satisfying
Wxo) =ag ' (o) =a 4" (x9) =0t 5.4 "™ (x)=ary
The uniqueness theorem 1.3.4 implies ¢haty. Thus@ =c, @ + Co @5+ Ca3P3+....+ G, @y

Theorem 1.3.8

G, such that

Let @, @, ¢, ..., bensolutions oL (y) = 0 on an interval | constaining a pakgt Then

W@, @, @, ) (X) = € 2070 W 00,,03,..0, ) ()

Proof :

W(, 9,05,

) &)=

@ (%)

@ (¥

@(X) @2(X) @5(X)
N C R OV I M 6
@3 (%

2"V "N e "N

By differentiating above determinant row-wise we get,

W (@, 05,0, ....4, ) X)
] 73 @3
%-" ¢2" ¢ 3"
+ %-" ¢2" ¢3"
g™ @, @,

I I

o @
a »

%-" ¢2"

§0_|_( n_l) §02 (n _l) §03 (n _1)

I I

3 N
3 M
o3 @
@, (.n -1
¢ Q2 @3
o 92 93

() @3

¢1®) ¢2(n) ¢3(n)

@h(X
@ (%
@ (¥

I

®n

I

®n
n

®n

o "

Since two rows are identical the value of first(1) determinants is zero. Therefore

W (@, o, 0;,....

Differential Equation

W) &)=

S

&
%"
%" +
-1 . @, h-1
A @ @3
@ @, §03’

%-" ¢2" ¢ 3"

§01( n) <02( n) <03( n

&h

@

n

&

(Pn(n)
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Since eachy, i=1,2,3,...n is a solution ofL(y) = 0 @™ =—(a,¢"™ +a,¢ ("2

+a,0(" ...+ a,q). Hence,

@) @ (%) ¢ I N ¢!
@ (%) @ () 4 IR N
W@, @,05,...8 ) X)= : : : :
2" 2" "N @ "
—a ") —ag"P( -ae" P - —am "
Since, @(x) (%) o0 @(®
@ (X) @ (%) ®3(%) @ (%
T C I S € @ "
—a 0"V —ae™N —ae" - —ae (R

fork=2, 3, 4,..n, as two rows of the determinant are constant multiplies of each other are

Thus,
@ (%) ®>(X) (X (X
ax e @0 % ()

W@ @05 )K= ¢'x0) @ (X o - @R

W00 B0 6N o 3,0y
=—ag W(@,02.¢03,.-- 4 ) &)
Thus W' +aW = 0. On integrating this equation between the lixjte x we get ,
e W(X) = €YOW( %)
or W (x) = & 2070 W ()
Thus W(@, @5, 03¢ ) (€)= € 2070 Wy 0, 93,1, ) (o)

Theorem 1.3.9

Let @, @, @5, ..., bensolutions oL (y) = 0 on an interval | containing. Then they are
linearly independent on | if and only W (@, @,,@5,...4, ) Xg)#Z O
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Proof : By theorem 1.3.5 the solutiogs, @, @, ..., of L(y) = 0 are linearly independent
on an interval | if and only iV (¢, ®,¢5,....¢, ) X)# Ofor allxin I.

But W(@, @, @s,...0 ) (X)= €270 W, @, @,...¢0, ) (o XDy theorem 1.3.8.)
ThereforeW(@, @, @3,....¢, ) X)# Oif and only if W(@,@5,¢,...4, ) Xg)# Oand the result
follows.

EXAMPLES

Q.1. Consider the equation
yo —y®_y+y=0
(a) Compute five linearly independent solutions.
(b) Compute the wronkian of the solutions found in (a).
(c) Find that solutior satisfying
9(0)=1¢ (0)=¢' (0)=¢" (0=¢'” (OF 0.
Ans (a) :
The characteristic equation
p(r)=r°—r—r+1
=r*r-1-¢ -1)
=(r* -1 -1)
=(r’-1)¢2+1)¢ -1
=(r+1)( -1 ¢+ -1)
Thus the characteristic roots are 1, 1,i-24]
Thereforeg (x) = €, @,(X = x&,¢5( 3= €%, @ ( X=sin x@(X) = cosx are solutions
of the given differential equation.
Ans (b) :
W(@, B, 05, 04.95) () = € 2070 W(01,0,030 40 9 (X0
For the given equatioa, = — 1. Letx, = O then

W(Q, @, 03,04,95) (X) = € W(@1,0 20 30 49 5 (0).

et xe €% sin x cosx
e (1+xe& —-€* cosx -—sinx
W (@, 00, 03.04.95) X)=| X (2+x & X —sinx —cos
e (B+xe& —-€* —cosx sinx
e (4+xe& & sinx cosx
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10 1 0 1
11 -1 1 O
W(@, 0,03,0495)(0)=11 2 1 0 -1
13 -1 -1 0
14 1 0 1

The row transformations

R-R, R—R, B- R B- Rgives

10 1 0 1
01 -2 1 -
W(@, @, ¢3,04,905)(0)=|0 2 0 0 -
0 3 -2 -1 -
04 0 0 O
1 -2 1 -
|2 0 0 -
3 2 -1 -
4 0 0 O
0 0 -2 2 0 =212 0
=-2 -1 -1+2 3 -1 -+ 3 -2 +1
0 0 O 4 0 0| |4 O

2 0 0
+3 -2 -1= -32
4 0 0

Thus, W(@, @.¢3.04.95)= € W(@1.020 30 49 5) (0)= —32"
Ans (c) :
The general solutiontis g(x) = g€ + ¢ x&+ g &+ gsin % £Cos x

The initial conditionsg(0) =1, ¢/ (0)=¢' (0)=¢" (0)=¢") (0)x= ogives the following
system of equations.

0 +1 0 10Mx0O OO
00,0 O
101 oS
210 Hnoe
3 -1 -1 0ok D(g
4 1 0 1HREsH HH
R R- R B- Rives
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+1 0 100 010

2 1 -Hkg o

0 0 -2k0=0-0
0°0 O %
=2 -1 “Hap 0-

4 0 0 OHHsH H-H
Solving the above system of equations simultaneously we get the valegscaf
Cz, Cy, Cs.

1
From last equation we get4= — 1 givesC, = 2

From the third row of the above system we get,

EHEIGLETH
w N P O

2c, —2c; = -1 gives 05:%
From second and fourth row we get,
Cp—203+ ¢ —G= -1

3c, — 203 —C4 —C5= —1
Substitution oft, andcs in above equations give

_203 + Cp=—
-2 —¢,=0
Thus, 3=, G4 = 1
1] ’ 4 4
_ _5
From first row we get& = 3

Thus, ¢@(x)=g€&'+ g x€+ g €+ gsin % oS x
=S _Lyes L ex_Lain v Lcosx
8 8 4 4
is the required solution.

Q.2. Find all solutions of the following equations.

(@) y"-8y=0 (b) y® +16y=0 (€) y"-5y"+6y=0
(d) y™ _16y=0 (€) y"-3y —2y=0 (f) y@+5y +4y=0
Ans. (a) :

The characteristic polynomial ip(r) = r3—8 and its roots ar@, —1+/3, -1~/ 8
Thus, three linearly independent solutions are giver®y e(—1+f3i)x, &-1~/3x and any

solution ¢ has the formgp(x) =¢ €* + ¢ &3, g &3% wherec,, c,, c; are any
constants.
Differential Equations (32)



Ans. (b) : The characteristic polynomial ig(r) = r4+16
p(r)=rf—@fi)*=¢2+@f ) ¢ 2@l )?)
=(r? =22 )?) ¢ *-o 2)?)
=(r+2ivi) ¢ -2 )+ 20 r( -a/ )
Thus, p(r)=(r+2i) ¢ —24 )+ 27 )( -a/)

T

. S | L~

i =cos— +i sin—=e 2
2 2

1
0,72 7
\/i_:ékzﬁ —e4 =cos—+isin—
- 1+ . i(L+i —1+i
Therefore \ﬂ:ﬁ’ RV (\fz): fz

The roots of characteristic polynomial arg2 (-1+i ),/ 2(=¥i ),/ 2@&i ), ~ 2@ )
Thus four linearly independent solutions are

e(ﬁ_ifz)x, o2/ 2 X, egfznfz;’ o

and every solutio@ has the form
qo(x):cléﬁ“fz)" TS é@+if2)< T éfzrifzh P éIzMzo

V24 2x

Ans. (c) : The characteristic polynomial ig(r) = r*—-52+6 andits roots are 0, 3, 2. Thus
three linearly independent solutions are given bg™,,e* and any solution has the

form p(x) =g €*+ g €+ g

Ans. (d) : The characteristic polynomial ig(r) =r%-16= 2+ 4)¢ 2 4= (+ 2 ¥( -i2)
(r+2)(r —2)andits roots are 2, — 2, 22. Thus four linearly independent solutions are

iven by e?, e, cos 2x, sin 2and ever solutiog has the form
g y y

P(x) = g+ 6 €2+ gcos2x g sin2x

Ans. (e) : The characteristic polynomial is
p(r)=r3—3 —2= ¢+ 1))+ -2)

and its roots are-l, ——— ,———.

2 2 _Am

0.
. : : @By DX .
Thus, three linearly independent solutionseré, e 2 @& < 0 andevery solution
¢ has the form
—X l+_\/§)x (LTJE)X
p(x)=g€ +ge 2 +ge
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Ans. (f) : The characteristic polynomial is

p(r)=rf+5r2+4=¢ 2+ 4)( *+1)
and its roots arei2 -2, i, 4. Thus four linearly independent solutions are
cosX, sinX , cox , sim and every solutiog has the form

@(X) = GqCOS2X;+ G Ssin2+ G COS¢ G SinX.
Q.3. Consider the equatiop” —4y = 0
(a) Compute three linearly independent solutions.
(b) Compute the wronkian of the solutions found in (a).
(c) Find the solutior satisfying
®(0)=0, ¢ (0)=1,¢" (0)= 0
Ans. (a) : The characteristic polynomigd(r) =r®—4r and its roots are 0, 2, —2. Thus, three
linearly independent solution ae8 =1, &, e and every solutiog has the form

P =g+ e + ge™
Ans. (b) :

W(@1, 0.95) (x) = €70 W(@,,0,,05) (0)
1 er e—2x
W(@, ¢.03)(x)=| 0 267 —26
0 4e* 4

1

W(@, ¢,,95)(0)=| 0
0

Thus, W(@, @, ¢3) (X) =16.

I O
|

Ans. (c) :
®(0)=0,¢ (0)=1,¢" (0= 0
p(x)=¢+ OZ@X+ %ézx, @(0)= ¢+ ¢+ g=0andsoon
a1 1D[ch [Dj

P 2 5= o

B 4 4HEH HH
R;— 2R, gives

1 1 10060 000

D 2 ~Zap=gln

B 0 8HH:H B4
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1 1 1
Therefore 03,=—Z,202—2c3:1D C ~G= O %=

G+e+;=00 =0

Thus, PX)= g+, + ge = %( & — ézx) is the required solution.

EXERCISE

1. Are the following statements true or false ?

@) If @, ®»,0,,....4, are linearly independent functions on an interval I, then any subset of
them forms a linearly independent set of functions on I.

(b) If @, 0,05,....4, are linearly dependent functions on an interval |, then any subset of
them forms a linearly dependent set of functions on 1.

2. Are the following sets of functions defined on < < x < « linearly independent or
dependent ? why ?

@ @(¥) =1 &(X)=x% @3(x= ¥
) g(x)=€X, @(¥=sinx @ (XY= 2cosx
© a=x ®X=€" @(YI=]x

3. Find a basis of solutions of the differential equations.
(@) y"+5y+4=0 (b) y"+6y' +12y+8y=10

) y®_y=0

4. Find the general solution of each of the following equations.

X 4x

0 6y’ -11y+ 4y= 0 (Ans. y k¥ g €+ 5 & )

(i) y'+2y ~y=0 (Ans. y(x)F ¢ E¥V2%+ g E1V2X)
(i) y"+y —-6y=0 (Ans. y(x)y g+ ¢ &+ g &)

(iv) y9 -2y =0 (Ans. y(X)F G+ G X+ g d2x 4 g g2y
(v) y"+8y=0 (Ans. yX)= g €%+ ¢ &+ g x@‘)

5. For each of the following equations find a particular solution which satisfies the given
initial conditions.

() y'=0, y@®=2 y@= -1
(i) y'+4y+4y=0, y(0)=1, y (0F 1
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(i) y"—2y +5y=0, y(0)= 2, y (OF 4
(iv) y' =4y +20y= 0, y(%)= 0,y(%)= 1
(v) 3y"+5y'+y-y=0, y(0F 0,y (OF Ly (03 -1

[Ans.: (i) y(x)=3-x, (i) y(x=@+3x)e> (i) y(x) =& (2cos2x+ sinX)
. 1 oxrm. 9 D
—e sin4 == 3 + X

(v) 5 X (V) y= HZ 16-F
Ans. 1:

(a) True (b) false
Ans. 2 :

(a) independent (b) dependent (i) independent
Ans. 3:

@ ax=e* g(=¢e*
(0) g(x) =€, @R =xe>, g( ¥= X &*

© (X)) =€, o(X=¢€", g3(3=cos x @, (X= sin x

Unit 4 : The Non-Homogeneous Equation of Order n

We now return to the™ order non-homogeneous linear differential equation with constant
coefficients. In the first part we will discuss the method of finding all solutions of the second
order non-homogeneous equation.

L=y +ay+ay= i X

Whereb is some continuous function on an interval I. The general solution of the above

equation is

Y = Ye(R+ (3,
where,y(X), the complementary function is the general solution of the related homogenous
equation ang,(X) is a particular solution of the equation.

Suppose we know that, is a particular solution of the equatibfy) = b(x) and lety be
any other solution. Then,

LW -wp)=LW)-LWp)=b(x)-b(x)=0

on |. This shows thay—y, is a solution of the homogenous equati¢y) = 0. Therefore if,,
¢, are linearly independent solutionslLgf) = O, there are unique constaatsc, such that
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w_QUp =G tC0;
In other words every solutiogrof L(y) =b (x) can be written in the form
Y=yp+a@+c0;
The problem of finding all solutions df(y) = b (x) reduces to finding a particular
solution y,.
Theorem 1.4.1
Let b(x) be continuous on an interval |I. Every solutigrof L(y) = b (X) on | can be
written asy =/, + ¢, @+ CL 5.

Whereyy, is a particular solutiony;, ¢,are two linearly independent solutions.¢y) = 0
andc,, ¢, are constants. A particular solutiggis given by

_ X a(t) @) — @i( %) e D] b( D
Yo(x) = dt
P XIO W(@, @) (t)

Conversely every suclris a solutions oE(y) = b (x)

Proof :
Let yand y;, be two solutions of

L=y +ay+ay=b
Then L@ —¥p)=LW)-L@,)=0
This shows thaty -/, is a solution of a homogeneous equati¢y) = 0. By theorem
1.1.1 there exist two linearly independent solutigfig, and every solution df(y) = 0 is of the

form c, @, + c,p,wherec, andc, are constants. Such a functigr, + ¢, @,cannot be a solution
of L(y) =b(x) unlessh(x) =0 on I.

Supposep(x) = (X @ (X + ( 3@,( ¥ is a solution ot (y) =b(x) on I.
(This procedure is called as the variation of constants.)
Then

(U@ +U )"+ ay(U@e+ U ) + agup i up p= b X
i.e. Ay (L@ + Upyy) + a Uy @+ U+ Usp 5+ U )

(U @20y @+ U@ + Uy @ ot 230+ UP 5)= [}
Therefore

U (@ +a@ +ap)+ufp,+ap,+ ag)
+(@U +@Uy ) +2(@rUg +PoUy)+ af@ Ui+ U= 1 X
e, (@uy +@Uy ) +2(@rug +@oUn) + afe Uit ) = 1 X
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Observe that if
@uy + Py =0

then (guy +@,u,) = (@ruy +@oug) + (@1 +@ 415

and @U; +@, Uy = (¥

Thus if we can find two functions,(x) andu,(x) such that
@uy +@.u, =0
@uy +@,uz = b(Y

Then ug, + uxp,will satisfy L(y) = b(x).

On solving above two equations fay andu,’

we get,

o —pb . _ @b
W (X)=— 5, W (Y=,
S Wi, ) W(g1, @)
Integration of above equation between the lijt® x provides

: o000
4= G o &
X t)b(t
and u()_yfil%amﬂu&y

The solutionu@, + up,takes the form

O x O
wm=q()1-@ﬁ)ﬁ0 t o)
O x U
RC] %ﬁ)gz) 000

The term @ (X) (X)) + @A X uf x)is a complementary function or the solution of
corresponding homogeneous equatify) = 0 and the particular solution takes the form

_ x %0() RACLC)
Vo= A Wime© 2 Wiae) ©
< LA @)~ %mwmuom

W(a, @) (t)
The functiony,(x) is a solution ot.(y) = b (x).

#a09=]

Theorem 1.4.1 provides a method to find a solution of second order non-homogeneous
differential equation with constant coefficients. The same procedure can be generalized for the
non-homogeneous equation of order
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Theorem 1.4.2

Let b be continuous on an interval | and @t®,@s,.....¢4, ben linearly independent
solutions of L(y) = y(" + g ™V + g, y"2+_..+ g y= 0on |. Every solutiony of L(y) =
b(x) can be written as

Y=gp+a@+cpr* cfst...+ P,

Whereyy, is a particular solution df(y) = b(x) andcy, ¢,, c3,......, G, are constants. Every
suchyis a solution of.(y) = b(x). A particular solutiony, is given by
Wi () b(9)
@, P3, ... ) )
Proof : The proof is similar to the proof of theorem 1.4.1 hdte continuous function on an
interval |. Consider the differential equation

L(y) =y +ay"P+ gy P+ o+ q = I X

where,a;, a, a;,..., &, are constants. lf, is a particular solution df(y) = b(X) andy is any
other solution ot (y) = b(x), then

LW-¢p)=LW)-LWp)=b(x)-b(x)=0

andy— y,is a solution of corresponding homogeneous equatyn= 0. (is called subtraction
principle).

Wp(x) = k;%(x)xjo W,

Thus any solutiony of L(y) = b(x) can be written in the form
Y=+ @ +Co@o+ C3Pst...+ G,
where, y; is a particular solution df(y) = b(x), the functions@, @, @s,....4, aren linearly
independent solutions bfy) = 0 (determined in theorem 1.3.1) aidc,, c;, ..., G,are constants.

To find a particular solutiony, we use the variation of constants method. Suppose

Wp =)@+ w(IPLA 3+ u ¥ x+...+ W 3 ( X

is a solution ot.(y) =b(x). Sincey, is a solution it satisfies the equationli(gy,) = b(x).
Wy = W@y + U+ ugPst...+ 4@,

n
=uq
i=1
Then, @y SW@ +U @+ Uy + U@t 4@y + 4o,
= (U@ +UpPy + UgPg +ooot Uy By )+ (Ut U 5+ ot Gy)
n n
=yu@ +t>y @
i=1 i=1
Let  Su'@=0 theny, =Y u ¢
We have ¢p" =3ui@ +3u @
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Supposey y'g' =0 then ¢, =Y u @

Continuing the same assumptions we get,

Yu'g =0 DY, =Yug
Yu'g =0 DYy =3 uq”

zui,q" — 0 ; wpl" — z q qIII

zUi’@(n_z) =0 wp(n—l) =3 uQ (n-1)
W =3u g5y g™
If su'g™D=p(x theny,™ =3 ug™ +b(x andL,) becomes
Lwp) =Fua™ +b(Fray yo"V+ a3y "+ 2y .

=b()+3Xy ™ +ag"V+..+ aqH

Thus, L(,) =b(X) and thereforey, is a solution ot.(y) = b (x). Therefore the problem
is now reduced to solving the system given below for the funatigns, u,,...,u,.

Yu'gq =0

Yu'gq =0

Suq =0

sug" =0

Su'gq" =p(%)

Thus, we have system of equations

B% P2 P %Sm’m 00 O
0@ @ @ - @ Opg oo g
D " n n n D ’D_ DO |:|
0@ o TP S D%‘sm‘m .
g U :
0 : DD 0 0o- 0d
B 0D g0 %(n—na@lhﬁ Bb(xH

By solving above system of equations by Cramer’s rule we get,
Wi (x) b(%) k=123

W@, &, ¢s,....0, ) (X)

Where W, (X) is the determinant obtained froW [¢, @, @, ....,@, ] (X) by replacing the

Uy (X) =

K" columnie[g @ @ .0 " ]"by[0 0 0..0 1.
If X, is any point in I, we can integraig, and the functions, can be written as
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X W, (t) b(t) dt
Uk(X) — _I k( ) ( )
% W(@a,¢.¢s....0,) t)
The particular solutiony, now takes the form

k=12,3,....n.

W, (t) b(t) dt
QPP ) )

Now we are in a position to find out a solution of the non-homogenous equation of
ordern.

W 0=5 a0 [
p X{W(

Observe that a particular solutign satisfies

Wo(x0) =W, (%) =Wy (%) ==y (" (%)= 0.

EXAMPLES

Q.1. Compute the solutiony of y"+y'+ y+ y=1 which satisfiesy/(0)=0, ' (0)= 1,
"(0)=0.

Ans. : The characteristic polynomial of the corresponding homogeneous equation is
p(r) = r3+r2+r +1. The characteristic roots are—, 1. The basic solutions of the
corresponding homogeneous equation are

@ (X) =cosx @, (x)= sinx @; (X)= "
To obtain the particular solution of the form
Yp =@t U@t UzPs
We have to find W¢y, ¢,, ¢3) (X) and W, (t) fork=1, 2, 3.

cosx sinx e~

W(@,,05) () =|—sinx  cosx €%

—cosx -sinxk &%

W(@, @, @) (x) = & 20700 W(p,0,,05) (X0

=e” W(@,9,93)(0)

0 1
1 —
0

o

W(@, @2,92)(0)=

[

=1[1-0]+1[0+1]=2

Thus W(@h, ,,93) (x) = 267
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0 sinx e

W, (X)=| 0 cosx -€%= (1§ [-€* cosx €% sinxd - (cos

-1 —sinx €

cosx 0 e

W, (x) =|-sinx 0 —€%|= é&* (cosx —sinx)

—cosx 1 ¢€*

COSX sinx
W3(X) =|—sinx cosx 0= 1
—COSX —Sirx

X X —t H
W, (t) b(t) dt= _ € (cost+ Slm)dt

O Wy © T e
1

=—=[+SinX —CcOsX |
2

Thus, W (X) = %[cosx—sinx]

0, (%) :} W, (t) b(t) dt:Xe‘t(cost_—sirt )t
W(a, @, 95) (1) 2¢e7t

= %[+sin X+ COSX ]

X Wj(t)b(t) dt :f d _1
W@, @.09)(t) - 2¢7 2
Therefore a particular solution is given by

Wp = (@ + (Y@ 3+ W X@{ X

Uz(X) =

:—%(cosx —sinx)cox+—; (cox+ SiR )sim’r—; ége’= 1
The most general solution is
W)= ta@t @t 33
=1+¢, cosx+ c, sinx+ g €~
@0)=0 0 I+c+c=0
Y'0)=10 ¢'(x)=—g sinx+ g cosx —g &~
Thus,y’(0) =c,—c3=1

Y"(X) = —¢ COSX —G, sinx+ ¢ €~
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Yr0)=—+c=0
Solving the system of equations

1+c,+c3=0
G-C=1
—01+C3:0
_ 1 _1 _ 1
ngaﬁf—g’%-ay%-—z

Therefore the solution of our problem is given by
t,l/(x)=1+%(sinx—cos< %)
Q.2. Find all solutions i of the following equations
(@ y"-y=x
(b) y" -3y + 2y= sine’
(€) y' +4y +4y=3xe>
Ans. (a) : The characteristic polynimiqd(r):rS—r has roots 0, 1, -1 and the linearly
independent solution of the related homogeneous equatiog @e=1, @ (x)= €,
() =€
Let Wp = (@ + (Y@ 3+ W X@{ X
X W (t)b(t)ds

R e s

1 & €
W(@,@,@5)(X)=|0 & —e%|=2
0 & &€

0 & &€

b(YWy (X =0 & —&*|=-2x

X € e

1 0 e~
b()W,(X =0 0 —&|= x&*

b(x)W3(X =|0 & 0|= xé&
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X_2tdt NG
W (X) = I————Z

Uy(X) = Ite—dt——jt dt=——2(l+>§éx

Us(x) = Ite—dt-ljté dt——( x-1) &

— + + _ X2 1l+ +1 )= NG 1
Yp =W @+ U@t uz@a= Y —E( X) —2(X— )= 5~ is the
required particular integral and the solutign=c, +c, € + g € +(,,.
(b) :  The characteristic polynomigd(r) = r>—3 + 2 has roots +2, +1 and therefore the two
linearly independent solution of the corresponding homogeneous equation are
@(x) =€ and @, (x)= &
LetWp =ur(X)@(X) + U Y @, 3 be a particular integral of the given differential equation
then by method of separation of parameters we get,

WL Ay, - Wal) 83 O

"D W) 00 W(g9,) (3
where, W@ 95) () =| ¢ =&,

et 2&
0 e . . x

bYW, (X =| ,, |5 =& sin e,
sine”™*  2e™*

bYW (R =~ = d'sin €*.
e* sine

Thus, U (X) :I—e‘x sine”* dx —cosé&”

and Up(X) = [+ e sin e* dx= —sin €+ &* cos &

[ Integrate above equation with the substitutiere™.
Then the general solution
y=q@+cty,
=g &+ & +(-coseX) &+ (-sine*+ & cose )&
=¢ €+, éX— é%sin &%,
(c): The characteristic polynomig(r) = r?+4r +4 has roots —2, —2 and therefore the two
linearly independent solution of the corresponding homogeneous equation are

A=, @(X=xe*
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LetWp =ur (X @(X) + U Y @, 3 be a particular integral of the given differential equation
then by method of separation of parameters we get,

W, (X) b(x) dx _ (Wo( 3 I X dx
O wae e 2 T Wee)
—2X —2X
Where’ b(X) 3xe 3 VV_L«D_IJQOZ)()Q:‘GZ —2X Zle 2X)e_2X - e_4x
J— e J—
—2X
bW, (9=| o _ZX‘ 3% &,
3xe (1-2x)e
—6‘2X 0 A
b(X)W. = =3xe™.
W2 (9 e |
Thus, W (X) = I—ﬂ dx=—x and
4
up(x) = j+ dx= >?

— 3 _
Therefore  Yp=u @+ U2§02=—X3e 2X+§ BeaX

— 1 X3 e—2x
2

The general solution
Y=ce>+ czxe‘zx+% X e
Q.3. Find the general solution of

T T

y'+y=tanx , — < X<—.

Ans : The characteristic polynimigi(r) = r?+1 has roots #—i and the two linearly independent
solutions are
@(x)=cosx and ¢, kF sirx

Let Yp(X) =w(XN@(R+ W( 3@ X be a particular integral of the given differential equation
then by method of separation of parameters we get,

W, (X) b(¥) dx _ W( 3 if ¥ dx
W= T a We,ed
where, b(x) = tanx
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COSX  Sinx 0 sik| sin?x
W(q, X) = _ =1, b(X)W;(Xx) = =— ,
(@ 02) () —sinX CcoOX (Wa(>) tarx  cos COSX

COSX :

b(YW, (X = . O‘:smx

—sinx tanx
sin® x :
Therefore W(x) = I— dx=—log (secxt+ tanx}¥ sirx

U, (X) :Isin X d Xx= —cosx

and ¢, =—cosx log(sex+ tam ), g< X<
The general solution

y(X) = gCcosx+ G sinx—cosx log(ses tam )/%< X7,

Note. The formula for a particular a solutiop, of L(y) = b(x) makes sense for some

discontinuous functions b (x). Then will be a solution of L(y) = b(x) at the continuity
points of b.

Q 4. Find a particular solution of the equation.

y'+y=b(%,
Where, b(x=-1 (1< x<0),
=1 (0Osx<s),
=0 (Ix1>n1).

Ans : Let us find out the particular solution §f + y=a where« is a constant.

The characteristic polynomial ip(r) = r?+1 and has rootsi—i. Therefore the basic
solutions (linearly independent solutions) are

@(X)=cosx, @ (X)= sinx

Let o =u (N@A(X+ b @(R be a particular solution of the equatigh+ y=a . By
method of separation of parameters we get,

Wi (X) b(») dx _ Wo( 3 I X dx
" Waer T P T Waed
COSX  Sinx
where, W(g, @) (X) = _sinx  cosc =1
Wl(x):‘O sinx =—sinx, W, (x)= ‘ 1: COoSX
1 cosx —Sinx
Then, U (x) = IVV\\/}((QZ(Z;Q(SXI A SINX 4y~ cos X

Differential Equations (46)



_ Wo(¥)b(¥ | _ acosx
O W@ 0 T 1
The particular solution

dx=asin x

Wy =U @+ U@ =acos x+a sirf x=a
Thus the general solution ¢f + y=aqa is
i =c_cosx+ G sinx+a
The general solution on the real line becomes

(x) = ¢ cosx+ G, Sinx : -0 < X< A
=C3C0SX+ Gy sinx =1 A< X< 0
=C5COSX+ G sinx+ 1 & x<m
=C; COSX+ G SiNX , TT< X<o

The continuity ofyat x=—m, 0,71 gives—¢ =G -1 ;- g+l G+ ¥ <
Since we have three equations in 4 unknown, the particular solgtioii not be unique

e.g. choose c;=¢ +1 andc,=c,=c3=cg=c

Then cIcosx+ csinxis a complementary function or the solution of corresponding

homogenous equatioy’ + y=0 and particular equation will be determined as follows.
If c;=c¢ +1thenc =c;+1=¢ +2
C3=¢ +1
CGs=C-2=¢g+1-2=¢ -1
c,=C—-1=¢ -1-1¢ -2
Thus, the particular solution becomes

Y(x)=2cosx -0 < X<TT
=cosx —1 F#FISX< 0
=—cosx+ 1 X x<m
= —2COX TT< X<

If we choosec, = ¢; +2 theng = ¢g+1=¢ +3,

3= +2,
C5=0C3-2=¢,
¢, =c—1=¢ -1,
and the particular solution becomes
Y(x) =3cosx ; -0 < X< T

=2cosx -1 #<x< 0

=1 ; Osxsm

= —COSX , T<X<oo,
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Thus, we can generate infinitely many particular solutions that are piecewise continuous.
Method of undetermined coefficients :

The method described sofar is called the method of variation of parameters. Although this
method yields a solution of the non-homogeneous equation it sometimes require more labor
than necessary. We now explain a method which is often faster than a method of variation of
parameters. This method is useful to solve the non-homogeneous eduét)enb (x), when
b(x) is a solution of some homogeneous equation with constant coefficients. The procedure we
are about to describe is called the method of undetermined coefficients.

For the given different equatioln (y) = b (X), supposeb(x) is a solution of some
homogeneous equatidm (y) = 0 with constant coefficients. Th&h(b(x)) = O. If i/is a solution
of L (y) =b (x) andM (b) = 0 then

M [L@)] =M (b) =0.

Thereforey is a solution of the homogeneous equatibiiL(y)) = O with constant
coefficients. If the order of differential operatas n and that oM is mthenM(L(y)) =0 is a
homogeneous differential equation of orseer+ n and therefore there ama + n linearly
independent solutions oM (L(x)) = 0. Sincey(X) is a particular solution oM (y) = O every
linear combination of these + m linearly independent solution will not be a solution of
L (y) =b (x). Thus, to fine the solution &f (y) = b (x) we substitute the linear combination of
solutions intd_ (y) =b (x) and determine the set of coefficients other than the coefficients of the
solutions corresponding to the homogeneous equiat{gh= 0.

We give an example to show the usefulness of this method. Suppose we consider
L(y)=y' -3y +2y= X

Since (x%)" =0, X2 is a solution ofM (y) = y" =0.
Every solutiony of L (y) =° is a solution of

M (L(y)) = M(y" -3y +2y)= M(¥)= 0.
But M (y" =3y +2y)= (Y —3y+ 2y =0
ie. y¥ —3ytM + 2y = 0,

The characteristic polynomial of this equationpg’) = r°—3yt+ 3 (just the product
of characteristics polynomials bfandM ). The roots op (r) are 0, 0, 0, 1, 2 and hengemust

have the formy =cy+cx+ X + g&+ g & observe thatc,e® + ¢ €*is a solution
of L (y) = 0.

Since we are interested only in particular solutponof | (y) = X%, We can assume

Yp=co+ox+ X
Sincey ,is a solution, it should satisfy the differential equatiofy) = X2,

LWp) =Wy -3, +2p o= 28 +ox+ X H-F g+ 26 }+[ 2g]
L@W,) =x* gives 2¢,X% + (2¢, — 6c, )x+ (2 —3G+ 26 F X
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Since the above equation should hold for all values oh equating the coefficients of
equal powers ot we get ,

26, =1, 2, —6,= 0, Zy B+ 2,= 0.

By solving these equations simultaneously we get,

szl C;l::_3 C0:_7
2’ 2’ 4
7 3 1
=+ x+ 2%
Therefore, ¥, 275X 3
:%(2x2+6x+ 7)

is a particular solution of(y) = X

and W=, +cae + g &

1
y :Z(2X2+6X+ 7)+ g€+ g €* is a general solution of —3y +

2y = X2,
This method is also called as annihilator method since to kdlye= b (x), we find the
operatoM which annihilate®(x). i.e.M (b (x)) = 0.

OnceM has been found the problem becomes algebraic in nature.

EXAMPLES
Exp. 1. Using the annihilator method find a particular solution of each of the following
equations.
(@) y" +4y=cosx (b) y'—4y= 3" + 4™

(€) y'—y —2y= ¢ + cosx
Ans. (a) :cosx is a solution ofy" + y=0 therefore
M(y)=Yy'+y
L(y) =y +4y therefore M (L(y)) =[L()] +[ (V)]
ML()]=(y +4y)'+ Y +4y
=y +5y +4y

Thus, M[L(y)] =0 implies y(") +5y" + 4y=0.
The characteristic polynomial of the above equation is

p(r) =1 +5r%+4= ¢ 2+ 4)( *+ 1)

The root of p(r) arei, -, +2i, — 2i and hence the solutionshave the form
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i =C COSX+ C, Sinx+ G COS&+ ¢ SinX

observe that; cos 2x+ ¢, sin Zis a solution ofL(y) = y' +4 y= 0.Since we are interested only
in particular solutiony, of L (y) = cosx, we can assume

W, (X) = g cosx+ g, sinx
Sincey, is a solution it should satisfy the differential equatign+ 4y = cosx.
W, +4P,=—c COSX —C, Sink+ 4G COXt+ G Sirxd cos
On equation the coefficients of cosind sink we get

3¢, =1 X,=0ie. cl:% andc, =0

. . 1
Thus, particular solutiot p = 3 COSX

Ans. (b) : 3e® +4¢*is a solution of P—2) D —1)=0i.ey"—y —2y= 0.

Thus, M(y)=y —-y-2y. since L(y)=Yy -4y, M(L(y) =y —4y"
—6y" + 4y + 8y.

The differential equation
Y™ —4y" ~6y + 4y + 8y= 0

has a characteristic polynomip(r) =r*—4r -6 2+ 4 + 8.The roots of characteristic
polynomial are 2, 2, -1, —2.
The solutiony has the form
Y=g+ g xé+ g &+ g &
Observe that, X + ¢, € is a solution of the homogeneous equatify) = 0.
Since we are only interested in particular solution assume the solution

W, =0+ g xé*+ g &
Sincey, is a particular solution is should satisfy the equatjon 4y = 3 + 4%
W, =2+ 1+ 2x)cy) & —ge”
Wp =[4c +(4+ 4] € + @ &
o'~y =[ 4o+ (4 40 — 4 -&o] & -3 &
But y;, satisfies y"—4y= 3™ + 4¢”

Therefore [4c,] € —3,e* = 3&*+ 4¢”
By comparing coefficient o6 ande™ we get 4, = 3 and —8,=4
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Thus, W= +% xezx—é1 X+ ¢ &* and particular integral
3 x 4 _x
=Sxe* -2
Yo7y 3

Ans. (c) : X% +cosx is a solution ofp3(D2+1)y=0ie yM +y =0 Thusm(y) = y¥ + y"
Liy)=Yy -y-2y
Therefore M[L(y)]=[y - Y —Z)ﬂ(v) +[y-y- 23}
BVCIRVCIRVO IRV OIP Y

The differential equatiorV [L(y)] =0 has a characteristic polynomigkr)=r’—r®
5 _r4_q3.

The roots of characteristic polynomial &0, 0,i , 4+ ,

1+\/§ 1—\/—5
—= and———,

2 2
The solutiony must have the form

O+/50 m—/50
. 2 2
W(X)=Co+ g x+ X+ GCOS X GSin X g e + ge
+/50 /50
2 2
The expressioncs e +tge is a solution of the homogeneous equation

L(y)=Yy -y -2y=0.
Since we are interested in particular solution assume the solution

W, =Co+ox+ X + GCOS X G Sin X
The problem is to determine the constagt€;,, c,, Cz, ¢4 SO thatL () = X2 + COSX.
W, = +2C,X— G3Sin X+ ¢ COSX
W, =2c, —C3COSX —G SiNX
LWp) =y —Wp -2,
=(20, -0~ 2) ~(Jy+ 2, )X~ X —(Fy+ G )coX
+(c3—3¢4)sinX

= X2 + coSX

Thus, 2c, —¢ -2¢,=0, X+ X,= 0, —2,= 1, &+ ¢= -hndc;—-3¢,=0
Simulataneous evaluation of above equation gives

C2:_1 Cl:é :_§ 03:30 C:__l C3:——3
2’ 2 T Ty 4T 10! 10

3,1 1, 3

1 _.
Therefore Yo = —2 75X T5X Tt —p 5™
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EXERCISE

Exp. 1. Use the method of variation of parameters and find the general solution of each of

the following equation.
(@ y'—y=sin x
(©)  y'+3y+2y=12¢
(e) y"+4y=cosx
(9) Yy'-7y+6y=sinx

(i) 6y"+5y —6y=x

(b) y"+y=4xsinx
d) y"+2y+y=¥e*
(H y"+9y=sin3x

(h) 4y" —y=¢

Exp. 2. Find the particular solution of each of the following equation using the method of

undetermined coefficients.
(@) y"+4y +4y= 4%+ 6&
(©) y'+4y +4y=3xe™

Ans.(1):(a) Y=G€ + cze—x—%sin2 x—é

(€©) e+ gc*+2¢&

(e) ¢ COSX+ G, sin 2(+; COX

(@) ce™+ Czé(+7—14(7005x-l- 5sin x)

2X 3Xx

(b) y"—3y +2y= 2x&* + 3sinx

(d) y"—3y +2y=6e"

(b) c, cosx+ ¢, sinx —¥ coS¢ X Sinx

4 _—X
e+ xeX+ X8
d) ¢ G X 12

(f) G cosX+ ¢, sinX % X COs&

(b) cle5+oze_5+% &

. = — 1 5
) ced +ge? —= x—.
() e’ +ge? — x
2 3 2 3X 3 X 3 . 9
. x4+ 24L& e -2 X+ _Zsin x+ — cos
Ans.(2): (a) X" =2x+ o+ (b) x€" =5 TORET:
1 3 o
(c) ;X (€) e
SN0
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— Chapter 2
Linear Equations with
Variable Coefficients

Contents :

Unit 1: Homogenous equations with variable coefficients.
(a) Initial value problems for the homogeneous equation.
(b) Solution’s of homogenous equation
(c) Reduction of an order of a homogeneous equation

Unit 2 : Basis
(a) Linear independence and Wronskian
(b) Solution of non-homogeneous equations

Unit 3 : Homogenous equations with analytic coefficients.

Introduction

Solutions to linear equations with variables coefficients are necessary to analysis most of
the situations in science and technology. In the last chapter we have studied linear equations
with constant coefficients. In this chapter we are going to study linear equations with variable
coefficients. There is no standard procedure to find all possible solutions of a given equation.
However it is possible to construct series solution if the coefficient functions and the control
function are analytic on some open set.

Unit 1 : Homogeneous equations with variable coefficients.

A linear differential equation of orderwith variable coefficients is an equation of the

form ay(x) YV +a(R y" P+ a( x " P+...+ a( X ¥ b xwhere ay, &, &, .....a ., b

are complex valued functions defined on some interlal R. Points wherg, (X) = 0 forxin

| are called singular points. In this chapter we assumejl{g= 0 on I. Sincey is non-zero
we can divide the equation lay and rename functiors (x) / a; (X) by newa,(x) andb (x) /
ay (X) as newb(x). Then above equation can be written as

YV +a T+ a4 gy By
In this chapter we denote the left hand side of the above equation by an dperhty,

L(y) =y +a(R ¥+ a( 3 y"?+...+ a( ¥ yand the equation becomiey) = b (X).

If b(x) = 0 for allx in | we call equatiorL(y) = 0 a, homogeneous equation whereas if
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b(x) # 0 for somexin |, the equation is called a non-homogeneous equation.

A function ¢ is a solution ofL(y) = 0 on I if ¢ is n times differentiable and satisfies
L(¢) =0 for allxin I.

Most of the results we developed in chapter | are valid in more general case we are now
considering. The major difficulty with linear equations with variable coefficients, from a practical
point of view, is that there are very few types of equations whose solutions can be expressed in
terms of elementary functions and for which standard method of obtaining them, if they do
exist, are available. However, in cagea,, as,.....a, have convergent power series expansions
the solutions will have this property also and the series solutions can be obtained by a simple
formal procedure. But there is no analogue of the theorem 1.3.1 of chapter I, which gives a
procedure to find all possible solutions of given equation.

A. Initial value problems for the homogeneous equation
Although in many cases it is not possible to find the solution, we can prove that if the
functions g (x), =1, 2, 3,....n are continous functions then there is a solutioh(yp = 0.

Moreover if we know the initial values of the solution and its derivatives then the solution is
unique.

Theorem 2.1.1 :
Let by, by, by, ...., B be non-negative constants such that fox adll
g (x)[< B i=1, 2,3, ....,n and defin& by
k=1l+bh+b+by+...+ h.

If Xy is a pointin | an@ is a solution of.(y) = 0 on | then

o) 1€ < [p @)l W & )IEX*forallxin .
Proof : The proof of this theorem is similar to the proof of theorem 1.3.3.

Let  u=lleIF=k f+ I &«)T+ ¢ I+ .+ ¢ 3
=pp+@ g +@ @ +...+ @V 4 (1 (D)
Hence u'() =@ @+p@ +¢' g+@ @ +...+¢MpMV +o"Hp
Therefore [U()[<2l@ | FF2¢ W + 28 ¢ + +. @[ off |
(for any complex variable | z|=|Z )
Sinceg¢ is solution ofL(y) = 0,
0" =-a ()" -8 (09" - a0V - —a0
16" %) 112, ) 1D O o )™ + 3 )™+ & b ¢l |
Forallxinl, |a(X)|<h, i=1, 2, 3,.....n and therefore
16V (x) < b (g [+b, "2 by PO Lt @ |
and |U|<2lp | 20 W + 2 @+ ...
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2|¢" NP 1 2p" 0 [ 07 kb, 90704 xh df

The rest of the proof is on the same lines as that of theorem 1.3.3.
Hlal-blf=00 2R Ibg &%+ b

UM (pf+ fr @i+ iy .+ "2 F ")
+iy (0D P+ 19V Py, (p OV P+ p O Py
+h (19" P+ 1o )
<(+b) | +@+b )W F+ ..+ (@b, )2 ]
+(1+ 20 +b,+ b+ ...+ |y YD f

Since each coefficient on the right hand side is less than 2 k we have
[u'(X)|< 2k u(x)

Consider the right inequality which can be written as
u'(X) — 2k u( X< 0.
Integrate above inequality frorg to x with x > X,

e—2kxu()9_ e—2k>q) L( 5)S 0

or u(x) < 00y ¥)
lex)IF < 070 | (5 ) f
ie. e ) |l< €070 [ 66 )l

Similarly -2k u(x) < U(x) gives

() 1) < o )1, &> % )
and therefore
o) 1€ 0 < | x) s %) 1 @)1l & 5 )
If X <X, repeat the same procedure and integrate the inequalityftory. We get
o) 1€ < Jp )l B & )IEC™) & 5 )
which is the required inequality far< x,.

Observe that if interval | is closed and bounded interval a@)fare continuous functions
on | then these functions are bounded. [continuous function on closed and bounded intervals is
bounded and the function attains it bounds ]. Sey¢g) are bounded functions on |, there

always exist finite constankgsuch thafa; (x)[< b forj=1, 2,3, ...n.

Theorem 2.2.1 : (Uniqueness theorem)
Letx,be in | and letry,a,,a5,....a, be anyn constants. There is at most one solution
of L(y) = 0 on | satisfying
P(%) =1, ¢ (x0) = 5 @ (x0) =0 5.....4" ™ (x0)=0,
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Proof : Letx be any pointin | other thaq. Let J be closed and bounded interval in | containing
X, andx. On the interval J continuous functicey¢x) are bounded, that is,

la;j(¥)|< b (j=1,2,3,...n),
for some constants (These constants may depend on the choicebfl 1).
Supposep andy are two solutions df(y) = 0 onJ satisfying the given initial conditions

e (X)) =W(x) =ay, FOQ) =W (=0 @™V (x0)=y "V (x)=at,.  Define
6 =¢ —yinJ. Sincep andy satisfyL(y) = 0. 8(xy) = @(Xy) - (%) = 0,and L(¢) =L() =0
therefore by linearityt(6) = 0. 8(Xy)) = ¢ (X)) — w (X)) = Osimilarly 8'(xy) =0"(xg) =.....
=0"V(xy) =0. but 16 () IF=B &o)F+ P o)+ 0" (o YA+ .+ 16" P 0g) P= 0.
Applying theorem 2.1.1 we obta|{@ (x) | Ofor all x in J. In particularg (x) = O for allxin J

0 I. Butxis any point in | and therefor&(x) = 0 for everyin |. This proves thatp(x) =6(X)
for everyxin I.
Here we state existence theorem without proof.

Theorem 2.1.3 : (Existence Theorem)

Let a(x), a(X, &(¥,....., a (X be continuous functions on an interval | containing the

pointx,. If a,a,,....a,, are anyn constants, there exists a solutipof
L(y) =y +a(® ¥+ a( 3 y"P+...+ a( X ¥ Oonl satisfying
9(x0) =1, @ (X)) =05 @ (x0) =0 5. s (x0)=a1y -
(B) Solutions of homogeneous equation
Superposition principle :
If @,9,0,....4, are anymsolutions of thé_(y) = 0 on an interval | and,, c,,cs,...,Cy,

are anym constants the;@, + c, @, + cg3+.....+ G,@,, IS also a solution df(y) = 0.

The trivial solution is a function which is identically zero on I.

Theorem 2.1.4
There exisn linearly independent solutions (definition 1.3)Lgy) = 0 on I.

Proof : Letx,be a point in I. According to theorem 2.1.3 and theorem 2.1.2, there is a unique
solution ofL(y) = 0 satisfying given initial conditions &§.

Let ¢, be a solution ok(y) = O satisfying

(%) =0, @ (x0)=0, @1 (X0)=0,.... 0"V &g F O
Let ¢, be a solution ok(y) = O satisfying

?(%) =0, ¢ (X0)=1, @3 ()= 0,....05" ™V (o F O
In general Ley; be a solution of(y) = 0 with
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a" Vo)=L and @ G )=@ o) =@ P o FeV b F @ P ¥ O
ie. @i V(g)=1 and @® ¢ )=10, k=1,23..n -Kzi -1.

We will prove that these solutions, ¢, @, ....,@, are linearly independent on |. Suppose
there are constantg, c,, Cs,.....C,, such that

QAN+ AR+ P 3+....+ g, (3= 0forallxinl.
Differentiating above equatiom ¢ 1) times we get,

QP (N + P (R + GP3(F+....t @, (3=0

Above equations hold for all valuesain I.
In particular these equations are trueXferx,.

Since™(x,) =0 for j=1,2,3,...n jzi and ¢'D(x)=1 for j=i we get
.1+ c,.0+ 3.0+ ...+ G, .0 0
¢.0+co .1+ 3.0+ ...+ G, .0 0

In general
¢.0+c,0+..+6_1.0t¢ .} ¢g,1.G . tg 6 O

Thus,c; = 0 fori =0, 1, 2, 3,....n and therefore solutiong, ®,@s,....@, are linearly
independent.

(C) Reduction of order of a homogeneous equation

Suppose we have found one solution of the equaltig) =y + a(Xd y+ a( ¥ 0

then by using the variation of constants method we can rédyice O into a linear differential
equation of order one and obtain the second solution of the differential equation.

Theorem 2.1.5

If ¢,(X) is a solution ofL(y) =y +a(X Y+ &( ¥ y¥=0 on an interval | ang(x) # 0 on
I, the second solutiog, (X) is given by
X O s 0
@ (X)) =@i(X) exp [O[ & (t)di]ds
x{[col(s)lz g JO
The functionsp, and ¢, are linearly independent.

Proof : Sinceg, is a solution ot.(y) = 0,L(¢,) = 0.

Let @ (X) =u(X) @ (X be second solution &fy) = 0.

L(g2) = L(ug) = (ugpy)’ + aq( R (upy) + af X( wy =0.

i.e. U()@ (X +2u (Y@ (3+ U 3o (X
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+a ()@ + U e ( X+ al X el ¥=0.
Since  L(@) =@ +a(X) @y +ay Y9, =0,
U'()@(9+2u(3e@ (3+ a(H U w( J=0
Thus, @OOU'(9+ ¢ (Y+ a(Ieu( I U ¥=0.

If v=u” then above equation is linear equation of order one and can always be solved
explicitly providedg (x) 0 on .

AV + 20 (9+ a(@( I 3=0

(¥, E?Q %), (X B: 0
v()  5AX

On integrating above equation between the limjt® x, we get

X ! U
logv(x) —logv (g )+ i M+ a (thOdt= 0
% BAM) B

logv(x) —logv (% )+ 4 logp, (x)—logp (6 }+ [ a (1) dE O.
X0

X

(@ (%) _
Iogv——— 3 (t)dt
VO0) @2 (%) x{,l

V( X)QLZ( X) _ e_)_([) g (t)dt - ox ] x [l
— T = =expl- (t)dtd
V(%)@ () XIO 3

2 0 x 0
ie. v(x):w expD—Iq(t)diD
@ (x) H %

But v(x,) o ( X,) are the values of (x) @’ (%) evaluated at poing and therefore is constant

Let c= V(%) @2 (%), then
O x O
v(X) = exp—[ g (t)dtd
@°(x) B XIO
But v(X) = U(X and therefore
X e s U
u(x)= expU-[ g (t)dtds
P . JO
Since, @ (x) =u(X) @ (X we get the required result.

We can generalize above theorem for linear differential equation
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Liy) =y +a(R ¥+ a( 3 Y P+..+ a( X ¥O.
Theorem 2.1.6 :

Let ¢ be a solution oE(y) = 0 on an interval | and suppoggx) # 0 on I. Then we can
reduce the order of equatidfy) = 0 by one. If,, v5,....,v, are linearly independent solutions of
the reduced differential equation of order 1 and ifv, =u,, k=1, 2, 3,...,n, then

@, W@, U, ..., U, @, are linearly independent solutionsLgy) = 0 on I.

Proof : Let ¢ be solution ol (y) = 0 on |. we try to find a solutios of L(y) = O of the form
@=u(X)@ (X, whereu(x) is n times differentiable function defined on an interval I. If

@(xX) =u(X @ (R is a solution ot(y) = 0 then L(u(x)¢(X) =0.
Lug) = (ug)™ +a(H ()" + af ¥(w) P+t A(@)=0
=uWg +nu™ Vg +....+ up"

+a(X) %J(”_l)(pl +(n=) U2 + ...+ qul(”_l)g

+ap () 2+ (n-2) ") + ot up 020
+an1 o+ ug; B g, Cp, =0

The coefficient ofu in the above expression g™ +a,(x) @™ + ay (Y "V +

...+@ = L (@)= 0. Therefore the right hand side of above equation consists g, u",....,u™

Therefore if we substitute=u” then the above equation becomes a linear homogeneous equation
of ordern—1 inv.

au(™ + 81401 N al()wlgdn—l)Jr__._Jr Hp" ™+ (1) a0, "2+ ..+ a_pHiF 0
Since v(X) = U(X we get

av" D+ they + a( @D+ L+ Hp 0P (n-1) a (0,0 P+ L+ g pH e O

Since,@ (x) # 0 on | we can divide above equationgyThus, we can reduce the order of

differential equation by one. Supposgvs, v,,...,V, are linearly independent solutions of the
differential equation iv of ordern— 1. Then

v, D + %‘fﬂl N 85L<01%\4<(n_2)+ 4 %ngol(n_l)+ (n-1) a@, "2+ ..+ a 9Hy=0

Buttheny, (x)=u (X for k=2,3,4,..n

X
and uk(x):jvk(t) dt k=2,3,4,....n
%o
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But then by assumption, (X) @ (X is a solution ofL(y) = 0. Thus the functions

@, Uo@, Uz@y,....., 4y, are solutions of(y) = 0. These functions are linearly independent.

Suppose we have constanfsc,, Cs,....,C, such that
G+ CoUp@rt CaUP st ...t G Wp= 0
Since, @ (x) # 0 on | this implies

G+ CUp+ Gglgt..t G =0
Differentation above equation and substituting

u =V, fork=2,3,...n we get
CoVo + Vg + G Vyt....t ¢ % =0.
Sincev,, Vg, Vy,.....,V, are linearly independent by definition 1.3 we gget=c;=c, =
= ¢, = Oandtherefore, = 0. Thusg, u,@;, U3@y, .....,u, @, are linearly independent solutions.

EXAMPLES
Q. 1. Consider the equation
y"+1 —iz y=0 for x>0.
X X

(a) Show that there is a solution of the fofmmwherer is a constant.
(b) Find two linearly independent solutions 0¥ 0 and prove that they are linearly

independent.
(c) Find the two solutiong,, ¢, satisfying
a@)=1 : ¢ 1)=0
am=0 ; eO0=1

Ans (a) :

. — 1 . . .
Let @(x)=x be a solution toL(y) =Y +; Y—— y=0 Since¢ is a solution
X

L(y) = 0.
Therefore r(r —Ix 2 +rx" 2 —x" 2= 0
thatis(r—1)x"2=0 for x>0
Thus, r2-1=0 or r=+1, —-1.

Therefore@(x) =x and @, (X)=% are two solutions of_(y) = 0.

Ans (b) :

Let ¢, + cxp, =0thenc x+ % - 0. Differentiate this equation twice with respect to
X
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Xwe getz—(;2 =0 impliesc, = 0 and therefore; = 0. Thus g, and ¢, are linearly independent.
X

Ans (c) :
1
@(X) = x+ %
a)=1 and @ (L= Ogives
clx+c21:1 at x=1 i.e. g+o=1
X
clx—%:o at x=1 i,e. g =0
Thus, cl:cz:% and (pﬂx)z%ﬁﬁ%ﬁ
Let,  @00=dixr 6

®0)=0 and @ (¥ 1 gives
1

d,+dy=0 and g «,= 1. Then dlzé and d,=

1 10

and ==X —[]-

% &) Zﬁx XH
Q. 2. Find two linearly independent solutions of the equation
GBx—1Fy + (X —3)y %= 0 for x>%

Ans. : Put t=3x-1 then d—y:QGCE:yDS
dx dt dx

where . represents derivative with respect to t.

d’y _d dy_d . d, . dt_ . .
T X=" =" y@B="(3y)—=3y[B=9
dx  dx dx dxy dt( y dx y Y
Therefore ot2 y+9t y—9y= 0
or  t3y+ty—y=0
Let y =t be a solution then
r(r=1t" +rt ™ " = 0 implies(r2-1x" = 0.
Butt > O therefore = +1, -1
1
and @ (t) =tand ¢ (t) = are solutions
But t = 3x — 1 and therefore

@ (x) =3x—1and @ (x) :%1 are two solutions of given equation.
X_
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=0

c @ (X) + C05( X =0 implies ¢ (3X—1)+ 3)((:2_

On differentiating this equation two times with respeck twe get— 18C2)2 =0 and
(Bx-1

thereforec, = 0. Since 8—1+#0,c,; =0.
Thus ¢, andg, are linearly independent.

Q. 3. A differential equation and a function¢, are given in each of the following. Verify
that the function ¢, satisfies the equation and find a second independent solution.

(@) x2y'-7xy+15y=0, @ ()= X, (% 0)
(0) xy'—(x+)y+y=0, ¢ (X=¢€, (% 0)
©) @-x°)y —-2y+2y=0, @ (XF X (& x 1)

Ans (a) : a()=x, @ ()=3%, @ (N=6x

L(g) = x°@ —7xp, +15p,= x° (6x) - 7x (3¢ } 15¢= 0.

SinceL(@) =0, ¢ is a solution of.(y) =0

To determine the second solution, since 0, we can divide the given equationxy

Considery"_z +—y 0.

X

Let g(x) = u(X@i(% = ¥ U ybe a solution. TherdX°U(X)"— (X3U) + (><°’l) 0
glves(u"x3+6xzu+6xu)——(>§u+ 3% g+ S (R 0= 0or UC+6x2U — 7x2u 0

e, ux-u=0 0O u—,:
u

><|H

(Integrate with respect t9

logu’ =log x+logkd U= kx

But thenu= kX—22 Let k=2 Theng(x)=u(x)@ (X = ¥(R)= X is the

second solution independentgfas c,x3 + ¢, ° =0 implies ¢, = ¢, = 0.

Ans (b): g(x) == (=@ (3 Let L(Y)= Y'—(1+%)Y+;l( y=0. (We can divide the
given equation bx asx > 0.)

L(a) =ex—(1+%)ex+71( €=0 O @, is a solution.

To determine second solution, kgtx) = u(X) @ (X be a solution then by theorem 2.1.5

le) exp E—IX a (t)d% dx

(9=
AT
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—2X |:| l |:| |:|
— L1
fe expg}ﬁl < HdXEdX
:Ie_zx exp[x+ log x] dx
=J’e‘2x xe' e[ x&* de — (1 +X) €7
Thus, ¢, (X) = — (1 +x) is a second solution of the equatldfy) = 0

aP(N+ PR =€+ o[-+ 3=0 0 ¢ o~ RE=10
But thenc, = ¢; = 0 thereforep, andg, are linearly independent solutions.

! " r 2X 2
Ans(©): g(X)=x @ (X=1, ¢ (X=0. Let Ly)=y -——"y+ yZ:O_
1-x 1-x
_ 2X 2X  _ : . _ _
L(g)=0- 1+ = 0. Therefore ¢, is a solitionL(y) = 0. To determine

1-x2 1-x2
second solution, let,(X) = u (X)#;(X) be a solution ok(y) = O.

By Theorem 2.1.5.
1
u(x) :IE exp E—IX a (t)d%dx

1 x =2t dt ] 1 1
=(—— ex X=[—= dx
Ix2 pEj'ltEd Ix21 NG

dx 1 dx
_12(1 X)IZ 2l 2I1+x

— e Lo XH
X 2 OQH—XH
Then@,(X) =@ (X) WX = —1+§ Iog%ﬁis a second solution.

Q. 4. One solution ofx®y" —3x%y —6xy —6y= Ofor x>0 is@; (X) =x find the remaining
two independent solutions forx > 0.

Ans : Let¢ =xube a solution ot (y) =0. Theng =xu' +u, ¢ = xd +2U,¢" =xu"+3U' -
L(g) = x3(xu" +3U) =3¢ (xti+ 20)+ 6 X xt )—6 xa Oimplies x4y = . Since
x#0, u" = 0gives u = g x+ ¢, X. Thusu =x andu = x* are two linear independent

m

solutions ofu” =0. But¢ = xu is a solution. Thereforg, (x) = x> and @s(x) = X are
remaining two linearly independent solutions.
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Q. 5. Consider the equationL(y)=y"+a(X Y+ a( ¥ ¥+ a( x ¥ 0. Supposep, and ¢,

are given linearly independent solutions of (y) = 0. Let ¢ =u¢, and compute the

[l
solution of order two satisfied byu” in order that L (¢) = 0. Show that%%is a
solution of this equation of order two.

Ans (c) : Let¢ = ug, be a solution oL(y) = 0.
g=ug+ug, ¢ =Ueg+2de + ¢ = Tp+3lp,++30p] + p]
L(y) = dr'g +3u'q +3Ug + upy’ o a( 3o+ 2 Wy + @1
+a,00 Jigy + upy 5 () upy=0
Sinceg, is a solutiong” +a,@, + axp, + ag,=0.
L(y) =u"@ +3u'q +3ugy + a()Epy+ 2 B a( ¥ ;=0

m

=@ u"+ B +a (0@ SU + Bp; + 2ap) + ap U=

0
Thus,L(y) = 0 is an equation of order two . %&Dis a solution ofL(v) =gV

0% 0O
+ %?.gal + algolg\/ + %agol" + 2ag; + ag;]gv: 0 if it satisfies the equatioh(V) = 0.

=0 o ool | _ 0 coicoé 010, 91,2097
o @ @ e 9r e e @
_Q 200, 000 | 20017
v 2 2 + 3
a @ o @

So® 3ol e, @0, el @7 ¢9h
o @ o’ @’ 0° ot @f
L(v) =@V’ + By + a@ 0V + Bpy + 2ap) + ag o v

(e +aw; vap: )~ (o] +ap; + ag)

Since ¢, and ¢, are solutions,® +a@, +ap, +apP,=0 and @¢" +a@' +amp,
+a50, =0 and therefore

L) =250 —%(—asrpl) =0
g, O

Thus,v = Ealgis a solution of reduced equation.
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EXERCISE

Use the reduction of order method and find the general solution of each of the following
equations. Verify thap, satisfies the equation.

@) X’y —xy+y=0, @ = x (Ans.y = ¢ x+ G, xlog X)

(b)y——y+ y=0,¢ =X (Ans.y = ¢ x+ ¢, )

(©) (2x® +1)y' —4xy + 4y= 0@ = X (Ans. y=¢gx+ c2(2>? -1))

@ y+(E=9y—(x-Dy=0,¢= x  (Ans. y=ox+ oy oy

()y+ __Dy y=0, @=% (Ans.y:clx2+c;2xzj% dx

1

N 2Py +3xy—y=0,¢ = ¥? (Ans. y=gx2 + G, X1)

Unit 2 : Basis

In the course on linear algebra we learn about a vector space also called as linear space
and the basis of a linear space. Suppose S is a set of functions with the following property.

If ¢, )€ S, ¢, +C, € S for any two constants, c,. Then the set S is called a linear

space of functions. If a linear space of functions S contains n fun@iops@s, ....,¢, which
are linearly independent and every function from S can be represented as a linear combination

of these function®}, ¥, @, .....¢, then the set, @, s, .....¢} is called a basis for the linear
space S. The numbeiis called dimension of S.
For a given linear differential equation(y) = y™ + a(x ¥V + g( y y" P+ 0D

+a,(x) y=0, the collection of all solutions denoted by SL¢y) = O is a linear space. Every
basis of S containslinearly independent functions and therefore dimension of solution space S

Is n.
To check the linear independence of functigng,, @s, .....@%,, we consider the wronskian
W(@,,¢s,....4,). There is a relation between the linear indepence of functions and the

Wronskian W@, @, @s,.....@, ). In chapter | we have proved this result for the linear differential
equation with constant coefficients.

Differential Equations (65)



A. Linear Independence and Wronskian

In section 1(B) we have seen that for the differential equatigh = y™ + g (» y™?
+a,(X) y(”‘z) + [ g, y=0 there aralinearly independent solutions, ¢, @s, .... ¢, satisfying
the initial conditionsg (%) =1, @ (%)= 0, j# i. These linearly independent solutions
Is a basis of solution spaceldl) = 0. Every solution of(y) = 0 can be represented as a linear
combination of these functiong, @, @s,.....4, .
Theorem 2.2.1

Let @, 9,¢3,.....4, ben solutions ofL(y) = 0 on | satisfying the initial conditions.

ﬂ(i_l)(xo) =1, gq(j —1)(XO): 0,j#i, X0

If ¢is any solution olL(y) = 0 on I, there ar@ constants;, C,, Cs,....C, such that
=y + Cpp + I Gy,
Proof :

Let ¢ is any solution ofL(y) = 0 on I. Let@(Xg) =a; ¢(Xg) =a, (X9 =0a 3
MgV (x,) = a,, for some constantg; a, a5 M,

Consider a functiony =a; @, +a,@,+a 395+ IH-a, @,

Since@, ¢, ....., are solutions ok(y) = 0, by superposition principle (chapter 2 unit
1(B)) wis also a solution di(y) = 0 and clearly

W(x) =a1@1(Xo) +a 20X +a PExg+IBang(xy=0a 3
as @(xg)=1and @(xy)=0 for i=2,3,4,..n.
' (%) =010 (Xo) + A 202 ( X9 +a P (g +IBa, ¢, (Xd=a
Since, @' (%) =0, @, (X0)=1, @3 (Xo)= Og, (xo)= O.
P (x0) =019 (X)) + 0 202 (X9 +a 3(x+IBa, ¢, (x§=a 5
Since, @ (%) =0, @, (%)=1, @5 (Xo)= O, (x)= O.

In general l,l/i(xo):ai i=3,4,5,...n -1
Thus, we see that

Wix) =ay, Y (x) =aa ' (x)=az.. 4" (xo)=ay .
Thus,y is a solution oL.(y) = 0 having the same initial conditions«gs that ofp . By
uniqueness theorem (chapter Il Unit | theorem 2.1.2) we mustjhave .

Le. @=o1 @ +a,0,+ 0305t Fan @,

Differential Equations (66)



Thus, every solution df(y) = 0, can be uniquely represented as a linear combination of
@, P,....40 - Sincey, @, ....¢, are linearly independent the set {@,¢s,.....¢,} is a basis
for the solutiond.(y) = 0.

Recall that the Wronkian affunctions@, ¥, @s,.....@, is defined as the determinant

@ (0 @3 @,
(RL, §02, §03’ (pn,
W(QL1§02,§03 ...... % ): gq-” [} ”

<0_|_( n_l) <02 (n _l) <03 (n _1) (pn (n _1)

Theorem 2.2.2 :

If @%@ aren solutions ofL(y) = 0 whereL(y)=y™ +g(x y* 9+
a(x) 3/”‘2) +[F g,( ¥ y on aninterval I, then they are linearly independent on I'if and only

if W(@,@,05,....4, ) k)% Ofor all xin I.
Proof :
SupposeW (@, @5, @3, ....4, )&X)# O for all x in I. We show that®,®.@s,....¢4 are
linearly independent on I. i.éci @=00U0 g=6=g=..==0
If there are constants, ;2 Cs,....C, SUch that
YN =g N+ 6@ 3+ gpd X+....+ ¢@, ( X=0 for allxin | then clearly,
@ (X + P2 (N + cgp3( 3+t g@y (3=0

Q@ (N+ e, (R+ 03505( ..+ g@, (3=0

@™V + " V) + e Y+t 60, O (3=0

Thus we get a system of linear equations

Dak e e & Dgp g
Bmx) A I ¢ I N ¢ DBLQD o0
00 @™ e - ”(x) Dg%g o
0. : : . 200 oo

0
B0 2" 00 Nx g0 YyEEE  BE
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The above system can be represented by Ax = 0. If A is invertible then we can premultiply
by At and we get x = 0. The square matrix is invertible if it is non-singular i.e. determinant of
A is non-zero.

The determinant of the matrix A iSN(¢,¢,¢s,....48,)&). Therefore if
n
W (@1, @,,@3,....4, )X )# 0 thenc,=c, =¢3 =.... =¢, = 0. Sincey G@ =0 0 ¢ =0,
i=1
i=1,2,3,...0 ,0,%.,¢;,...¢, are linearly independent.
Conversely, supposg, &, @, --.- @, are linearly independent solutiond 4y) = 0 defined
on |. Suppose there is agin | such thatW (¢, 5,95, ....4, ) kg)= O.
Then system af linear equations

0ako) @ ¢dx0 - %X O n pp
D I} I U ' D |:| |:|
0 @ (%) @, (Xo) P3(Xg o @ (X0 D%‘am 0
DR P9 wi(xd %”(Xa 0 0= 00
Daf : : , DD. 0 OO0

0 . .
TR R DRSPS O1c| S

has a solutiore,, ¢y, Cs,....C,, Where not all the constantsg, c,, c;,...C, are zero. Let
Cy, Cy, C3,....C, DE @ NON-zero solution of above system of equations and consider

YX)=a@(XN+ e N+ God I+0F g X

Since,q, i =1,2,3..n are solution of.(y) = 0, i is also a solution of equatididy) = 0.
Now L(y) = 0 and from above system of equations we get

Y(x0) = @i Xg) + oA X9 + cp £ X9+ go,( 33 =0.
Y (%) = o (X0)+ o (X9 + capa( X+ B Gy (=0
In general
W (x) = e (x) + o (% + cp P (x)+IH g,V ( =0
fori=1, 2, 3,4,..n-1.
Thus, @(x) =¢' (%) =" (x) = .= "V (%)= 0.
From theorem 2.1.1 it follows that(x) =0on I.

Therefore,g @(X) + @ ) + p{ I +0F ¢@,( x=0 for allxin I. Thus, we have,,

Cy, Cg,.....C, Not all zero such thad; @ (X) + P XY + P4 I +MF ¢@,( x=0 for allxin I.
Therefore the set, ¥, @3, ..., is not linearly independent on I. But this contradicts the fact
that @, ¢, @3,....4, are linearly independent on |. Therefore the assumption that there was a

pointx, in I such thaW (@, ¢, @3, ....4, ) Ko)= 0.must be false i.aV (@, @5, @5, ....4, ) k)% O
forall xin .
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Theorem 2.2.3
Let @&, ®,@s,....48 ben linearly independent solutions af(y) = y(™ + g(x y™?
+a,(x) "2 + I a,( ¥ y=0 on an interval I. lf is any solution of(y) = 0 on I, it can be

represented in the forgp= ¢, @ + co P, + C3@3+....+ G, @,, wherec;, C,, Cs,.....C, are constants.

Thus any set af linearly independent solutionslofy) = 0 on | is a basis for the solution space
of L(y)=0on .

Proof :
Letx, be a point in I. Supposgis any solution of.(y) = 0. Let@(Xy) =0y @(Xo) =05,
@' (%) = a5 P " Y(x)) =a, We show that there exist unique constapts,, C;,.....c, such
that ¢ =g @ (X) + P X+ e{ F+0IF ¢@,( X is a solution ofL(y) = O satisfying
W(xo) =0y, W' (X)) =0 W' (X) =0 5.0 " (xo)=a, These initial conditions are
equivalent to the following equations fof, C,, Cs,..... C, (€.9. (X)) = G Xg) + CHA X9 +
-+ Chh (0)=ay)

0 @ (xo) P2(Xo) pdx) - h(X9 D[ClD g D
D I I ! D |:|
DAl @00 509 w9 DBLQ
OA () @0 @30 - &(X agbsg 5”35
g : : : : D 0 0°0
W00 609 o g @t gt

Since @, ®,¢s,....@, are linearly independent by theorem 2.22(@,, ¢,,¢5,....4, )

(Xp) #0.Therefore the coefficient matrix is inversible and there is a unique solution

Cy, Cy, C,.....C, Of the above system of equations.
Thus we have a unique solution

Y= @(X)+ e ¥+ capd F+IIF ¢on( X
Satisfyingy(xy) = ay, @' (%) =0 5 Y (X0) =0 5.... 10" (xo)=a,, .But¢ is a solution
with identical initial conditions. Therefore by uniqueness theorem we dh@ye= w (x) on .
Thus@(x) =g @R+ e N+ o4 3+0F g@,( X on | and any solution of(y) = 0 can
be represented as a linear combination lofearly independent solutior, @, s, .....¢, .
In theorem 2.2.2 we have seen that the funopom,,@s,....@, are linearly independent
solutions ol (y) = 0 if and only if the WronskiaklV (@, @, @s,.....4, ) X)# Ofor allxin I. In the

next theorem we show that it is sufficient to calculate the WronsWidm, @,,¢s, ..., ) at
some poink, in 1.
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Theorem 2.2.4
Let @, ®. @3, .....¢, ben solutions ol(y) = 0 on an interval | and leg be any pointin I.
Then

0 x 0
W, @, P30 ) X)= exﬂéi ay € )dtg WO, 92¢3,--¢h )Xo)
X

Note that since exponential function is non-zero function,

W(®,@5,03,...0, ) Xg)Z Oimplies W(@, @, @, ...¢4, ) X)# O for all xin I.
Proof :

@ @ @3 - Gy
A B
LetW =W (@, 0,@3,....0h)=| ¢ @, o @
<0_|_(n_l) goz(n_l) <03 (n _1) (pn (n _1)
On differentiating W row wise we get
|:| ! ! ! ! |:| |:| |:|
0@ @, @3 “ 0 g 4‘% 4"3 4"3 ‘Prj, -
|:| ! ! ! ! |:| |:| |:|
WI p— |:| % ¢2 ¢3 % |:| + |:| QLII ¢2II ¢3II %” |:|+
p— |:| n n n n |:| |:| QL ¢2 % |:| -
[ §0.2 §0.3 an d o - : % O
0 : : : 0O 0o : : ]
%QL(n—l) qDz(n—l) g03(n-1) @, 0 —1% Eﬁ(n_l) ¢2(n—l) ¢3(n—1) o, @ —Da
0@ @ @3 @ U
|:| ! ! ! ! |:|
Ua @ @3 A S
L0 : : .0
= 2 . 2 . 2 . 2D
%&(n_ ) goz(”_ ) ¢3(n— ) o, h-20
o™ ol " " H

=V +Vo+ Vgt +V, (say)

Where \{, differs from W only in its K row and the ¥ row of V, is obtained by
differentiating the K row of W. The firsth — 1 determinants are all zero, since they each have
two identical rows. Observe thaf Yas kth and (k + T)row identical.

Sinceq@, @, ....., are solution ot (y) = 0, we have

n-1) (n-2) _

A" =gV - P —ag . a9 (=123.0)
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= (i)
==Y a4’
=0

Therefore
O O
0 ® @2 @3 ®h 0
0 ' ' O
- @ ) @3 h -
D n n n . n D

W' =V, = H goz % % O
D - - - —2) O
g gol(n 2) ¢2(ﬂ 2) %(n 2) ‘Pn(n 2) g
]n1 . n-1 . n-1 . n-1 0
8 j=0 j=0 i=0 i=0 8

Elimentary row transformations do not change the value of the determinant. Perform the
transformation

Ri+t &R+ a1 R+ a3 R+..+ 3 Rqweget

B A ® ] ¢h B
0 @ @ s @ O
w=5 : : L0
B §0_|_(n_2) goz(n_z) gos(n_z) ¢1(n_2) B
E‘al (pl( n-1) _al¢2(n—l) _a1¢3(n -1 . agh n —1)@
B A ) ! &h B
0 S S O d
=—8 g @ @5 @ 0- W@ 03 )
0 : : O
0 : : b0
eq(n—l) §02(n_l) ®s n-1) @, n —1)a

Therefore W +a; W = 0 and we get,
—}al(t)dt
W(x)=e™ W( %)
0 x U
i.e. W@ 6.0s,....4 ) &K)= expé{ ay )dtg WO, 9,03 ,--¢h )Xo )-
X0

Corollatory : If the coefficienta, is constant then

W(@, @5, P, ) &)= € 2070 Wy 9, 05,0 ) o).
From theorem 2.2.2 and theorem 2.2.4 it follows thablutions@,®,@s,.....@, of
L(y) = 0 on | are linearly independent if and onlW¥(¢,, @,,@3,....4, ) Xg)# O for some point
Xpin 1.
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B. Solutions of non-homogeneous equation

The equatiorL(y) = y(" + a (¥ ¥+ a( 3 Y™ 2+..+ a ¥ b xwherea,, a,, a,....,
a,, b are continuous functions on an interval | is a non-homogeneous linear equation aof order
with variable coefficients. The solutions of this equation can be determined by the variations of
constant method.

Theorem 2.2.5
Letb (x) be a continuous function on an interval | andded,, ¢s,.....¢, be a basis for the
solutions ofL(y) = 0 on I. Every solutiony of L(y)=y™ +a(® y" P+ a( 3 y" 2+

«+an(X)y=b(® can be written a§/ =, + @ + CP,+ CHP3* ...+ G@, where is ay, is a
particular solution oE(y) =b (x) andc;, C,, C5,.....C, are constants. Every sughs a solution of
L(y) =b(x). A particular solution//p is given by

W (1) (1Y)
§02’§03"'-’(pn )(t)

( )
where W(@,,¢,,@5,....4, )is a wronkian ofg, @, s, .....@, and W, is the determinant obtained

from W(e1, @2, @s....41 ) by replacing thé&™ column(@ @ @' ---9"™)" by (0,0,0...,0, T)
Proof :
If y, is a particular solution df(y) =b(x) andy is any other solution df(y) =b(X), then
LW —p) = LW@)-L@p)=b () —b(x)= 0.
Thereforey —yy, is a solution of corresponding homogeneous equatign= 0. Since
@, .0 ... 4, is a basis for the solution &fy) = 0 on I, every solution df(y) = O can be
expressed as a linear combinationgpip,, @5, ....4, -

Y=o =GP+ Cpp+ Chpgt ..t Gy

Y=p+a@+cpr+ Cpst...t Gy,

A particular solutiony, can be found by variation of constants method.ygte of the
form

Yp =)@+ (NP 3+ W X@f x+..+ H( Jp,( X
Sincey,is a solutionlL () =b(x) .

Yp SW G +Up ot Ug@gt .t Uy 0+ UPT+ Ugp o+ U 3+ + Y,
Chooseuy, Uy, Us,... U, SUch thaty @ + u, @,+ ug @s+...+ U, ¢, =0
Then Yp WP + U@ + Ugpg+ ..t Yy ¢,

Wp ZUP +Up @+ UzPatot L@y + UPT+ U o+ UP g+t Yo,
Let W@ +Uy @y +Uz@s+..+ U, @, =0 then
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Yo' =@ + U@y + U+t U@y
In general chooseg, @® +u, @9 +us @i +..+ 4 ¥ =0
Then 1, =4+ U, 0,00+ Uy * Vs 4y @, D
andg,® =u @™ +u; 9D+ us eV u @, O up O ug Mt 4, @
If we chooseu; "™V +uy @, "D+ uz V4 +y @, O V= (K. Then

W = e +up0 " + ugp? +.+ 4 gD+ b3
Thus we have the following equations

Wp =U@ + U ot UgPst...+ U @y
‘l’p’ SW@ F U@ U@zt W@ WP U@ g U gt (9= 0
U TP +UpP; +UgPa+ot Gy UL UpQ o+ Unp gtk (9 = 0
Uy ZUB H 105 USRS+t Oy D U@L U5 Upsht G =0
U 2w VU 0, O e 0P Uy,
tug P4+ g, = 0
Yol =gV +uyp” +ugps A eV b(Y Ui+ e ST
+ug ¢+ 10, " Y = b(Y)
Adding the terms columwise on left we get
L(Wp) =uL(@n) + uyL(@y) + ugl@q +...+ 4, L(@,)+ b( X
Since@, ., @3, ....4, arensolutions of homogeneous equatidy) = 0, L(¢) = L(¢,) =
L(gs) =...=L(@)=0andL(y,) =b(X).
The right hand side equations are the following system of linear equations.

S o
I D%z VS
0 go_l-” g02// (p3" % |:| E['JSI |:| Ell[)%
O : : [l S; B 00
= ; ; . oo

B 0D 0D %(n—l %nrg HH

We solve the above system of equations by Cramer’s rule.
W
W(R, 02.03,---.8)
Where W(@, @5, @s,-..@, ) is @ Wronksian ofg, @,,@s, ..., andW, is the determinant

Thus, Uy =
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obtained fromW (@, @5, @s,... @, ) by replacing¢" column by(0,0,0,.....,0 ). Thus

23 @, (=} 0 Gey1 (/8
@ @ %1 0 dur - @,
Wk - QL” ¢2II # _1 0 ﬂ;*‘ 1 . ¢]If]
" " e " b gl e
] » D1 0 Grr (/8
@ 0 %1 O @1 - @,
=b(¥ @' @ %1 O @Gy - o |THXYW
A O A Ve

Lo bR, s WO
Thus, T Wi, 00, 05,..00) AW @R 50 ) )
and Yp =w@ +Ux@ot Ug@st ..+ U, ¢, = éﬂ’k Uy
_n X w(Y
|<Z:1(H<(X)XIOW(%§02’§03’---%)(t)

EXAMPLES

Q. 1. Consider the equatiob(y) =y '+ a(X y+ a( } y=0,wherea,, a, are continuous on
some interval |. Lep;, ¢, and y;, i, be two bases for the solutitufy) = 0. Show that

there is a non-zero constdntSuch thatV (i, @,) (X = KW@, @,) ( 3
Ans. : Sinceg,, ¢, is bases for the solutions lofy) = 0 andy;, s, are solutions of(y) = O.
Yp=c@+cg, and Y,=dpt+dg,

for some constants, c,, d;, ds.

Q@ tCpy At dgo

@ +cg, dpitdgs
cy, doidg j

cy, doi+ dg:

C2 I I +
, do

W(yr,@2) (X) =‘

Q@ dgyt+dg,

I

‘cm dpy + dg,

B %ﬁ d@| |0 dp,
- q— 1 1
diy

¢ dg;
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[l
qgjj % 4o | A
@ » »|H
Q@
=(cld2—czd])¢l, ‘ =(qd— d) Wp,9 ) (¥

Thus, W((,i5) (x) = (cda— ¢d) W(@1,99) (X
Sincey,,y, are independernt;d, — c,d; # O.

Therefore there is a non-zero constknt c; d, — ¢, d; such that W(y,,¢5) (X) =
K W(d, @) (%)

Q. 2. ConsiderL(y)=Y +a(X y+ &( ¥ ¥ 0. Show thak, anda, are uniquely determined

by any basi®,, ¢, for the solutions ok(y) = 0. Show that
) %‘ o9
_ QL" ¢2II 2 ~ q)]fl ¢2II
W(a, 9) W(ep,95)

Ans. : Sinceg,, ¢, is basis for solutions af(y) = 0, ¢;, ¢, are solutions ok(y) = O.

L(@) =@ +ayp; +a,p,=0

L(@) =@, +8¢; +a,0,=0
Solving above two equations faj anda, by Cramers rule, we get.

-a @ ‘(pl o
alz_—coz" @ _lo 9
a4 o W@e)
% @
S M 1
a4 o W@e)
% @

[ We use the elementory properties of determinants det A ='detdhf we interchange
row / column, the value of det change its sign.]

Q. 3. Consider the equation” +a(x) y=0 where is a continuous function GRo < x <o .
Let, ¢, ¢, be the basis for the solutions satisfying

®(0)=1, 9,(0)= 0, (0F Lo, (OF 1,
Show thatW (¢, @) (x) =1 for allx
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Ans. : For the differential equation
y'+a(X) y+ a( 3 y=0,if ¢, andg, are two solutions then

—} a (t)dt
W@ @)(x)=e™  W(@,@) (%)
For y"+a(xX)y=0, g =0. ThereforeW(g,,,) (x) = W(@,®,) (0)

:‘%(O) 0,(0) :‘1 jzl

@40 ® O O
. . " 2 _
Q. 4. Find a general solution o' ——7 Y= X (0< x< @

Thus, W(@, @) (x) =1 for all x.

Ans. : Assume that the solution of homogeneous equdtion = ’—% y= 0 is of the form
X. Theny = X" implies L(x") = r(r —=1)x" =2 =2 2= Ogivesr z(r —1) — 2 = 0. Then
r>—r —2=0implies = 2 andr = — 1. Thusg,(x) = x> and @%(X) =% are solutions of
homogeneous equatidi(y) = ’—X—22 y=0.

A solution y;, of the non-homogeneous equation has the form
Wp=u (@ + w3 3

1
:ul(x)xzw(»;
. b(X)W, . bYW,
Where, U =———2 and u, =—~>—2
L Wne) 2 W(pL9,)
Here b(x) =x
0 % 1 x> 0
W, = =-= W, = =x°
1 1] x 2x 1
— 2
X
a o [© S
W(@,@)=|, | |= Xl =-1-2= -3and we find that
@A Y| |2x -
X
oo XER) L B x0d) R
1 3 3 2 W, 3 3

4
We may takey = g andu, = —% . We skip the constants of integration as they correspond

to the solution of corresponding homogeneous equation.
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Thus, the solution of non-homogeneous equation becomes

w :ED(Z_X_‘" —X3_
P 3 12 x 4

Every solutiong of L(y) =x has the form

3
OO =Y, +GAN+ QoA )=+ g R+ 2

where,c, andc, are constants.
Q. 5. One solution ofxzy'_zy: 0on 0 <x < oo is g(x)= x2. Find all solutions of
X2y —2y=2x—10Nn 0 <X <o,

Ans. : gi(x) = 32 Let @(x) = u(X) ¢ (¥ be a solution o&*y' —2y= 0. Then
L(go) =x* QI (Y@ +2U(3er (3+ € 391 ( X3-2 € Jpu( }= 0

= x? HJ”X2+ZU(>9E2 xt U J2H-2u 3 £=0
u” 4

L(p,) =0 gives u'x*+ 4= 0 ie. —= =
u X

logu’ = —4logx and U= xX* or u= is
3X

1 1

Therefore®(X) =u(X @( X = 38 B¢ = -

SinceL(y) is a linear differential operata® (X) =% is a second solution.
1
Thus, ¢(x)=x?and (PZ(X)=; are solutions of the homogenous equation
_ 2. _ w2
L(y)=x"y —2y=0or y"—Zy=0.
X

Equation x? y'—2y= 2x-1is the given differential equation. To reduce the equation in
standard form we have to divide the given equation’bye can do so sinceis positive.

2 2 1

Therefore consider the equtign — = y==——=. Solution of this equation will be a solution
X X
of given equation.
A solutiony, of a non-homogeneous equatig)h_i2 y= 2 __12 has the form
X X X

Wp=w(N@A(N+ (IO 3= u( X X+ )%

Where, U1'(X):% and u, (x):%
) O
2
b(X)=§—X—12, W(col,coz)=zx _;X =-3
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0 2
Wl: %( :_l, W2:X 0 X2
1=V x 2x 1
e
) X X2 X 2 1 10
U (X)) = = - and
1 (%) -3 3% 3 ul(X)ZBE XE SE E
2 10
, HQ__ZH(XZ) 2 1
uz(x):x—gz——x+—3 and Lb(X):——)g+—X
Thus wp=u1(><)¢l(x)+uz(>9<0z(>)
2
02, 10,00 G 1
H?)X 6X2 D DX 2

: : - 1
The general solution of given non-homogeneous equatiprrisx + > + clx2 + % » where
¢, andc, are constants.

Q. 6. One solution ofoy'—xy+ y=0 (%> 0)is @(x) = x. Find the solutiong of
X2y — xy+ y= ¥ satisfyingy (1) =1, ¢' (1)= 0.

Ans. : The given non-homogeneous equatlop"ls y +i y=1.(We can divide the equation
X2

byx2 asx’ is positive)
Let @ (X) =u(X @ (X = U ¥ xbe an other solution.

L(g) =[u'x+2u] - S[Ux+ ‘1+i2 @ X x=0gives u"x+ U =0.Therefore U’ :%
X X

andu(x) = g log x

@ (X) =u(X @ (X = gANog xis second solution. Without loss of generality we choose
Cl =1.

Thus, ¢ (x) = x and ¢,(Xx) = xlog x are two solutions of homogeneous equation
y ——3/ v 2 y 0.
A solution y, of a non-homogeneous equation

y"' _1 y +i2 y=1 has the form
X X

Wp=w ()@ (X + (e 3

b(x)W; U, (X) = b( XYW,

Thenuy (x) = M
ents () W@, @) W(g,@,)
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x  xlog x
where  b(¥) =1 W(@.)= =

1 1+logx -
0 xlogx X
L= =—xlogx, W, = =X
1 1+ logx 1
xlogx

W (X) = —logx and y k¥ —(Klogx —x)

Uzl(X)=§:1 and u, (x) =X

Thereforely, = (x—xlog x) x+ xOxlog x= %

The general solution of given non-homogeneous equation is
1] :x2+clx+ G, Xog X

Sincey(l)=1andy’'(1)=0,1+c = 1landc; =0

Y'(x)=2x+C(logx+1),¢' ()= 2+ =0 ando= -2
Therefore the solution satisfying given initial condition is

W(x) = X2 — 2xlog X.

Q.7.
(a) Show that there is a basgis ¢, for the solutions o&zy’ +4xy+ (2+ x2) y=0 (x> 0)
of the form

QI_(X) 4’1( ) g02()() 4’2( )
X X

(b) Find all solutions of
X2y +4xy+(2+ ¥)y= £ for » 0.

AnNS. :

(a) Let p= lz be a solution of the given homogeneous equation.
X

L) =y +7 Y +E 5 +1ay=0

Then, ¢:12_2_;/,¢':i2_4_v+@

and
X2 X X2 X X

V" 4\/ evd 40v 2vOd 02

L= =t AT e T e e O

ThereforeL(y) = 0 impliesy’ + v=0.

Y1(x)=cosx andy, k ¥ sirx are two linearly independent solutions/bf v=0.
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Thus, ¢ (X) :&st and @, (x):%X are two linearly independent solutions of given
X X

equation.

b)) A=, B =Si—2X
X X

. 4 02 O
Liy)=Y +;Y+BX—2+1HV=1

A solution y;, of L(y) = 1 has the form
Wp =u () @(X+ u( e 3.

b(X)W; o= YW,
W(a, @) 2 (3 W(e1,0,)
where b(x) =1

Then u (x)=

COSX sinx
W(§0_|_ ¢2) = X2 X2 = i
’ sinx 2cosx cox 2sim x4
NG x3 X2 X3
sinx COSX
0 — ) — 0
X sinx X COSX
Wl = ) = —— W2 = ) = —
1 COoSX 2Sinx X SINK  2COo% X
NG X3 NG e

—sinx
u (X) = /e = sinx, Y (X= ¥ cosx—2xsinx —2cox

Y

COSX

u, (X) = /(2 =+ COSX, b (X)= X SinxX 2XCOSX —2sinX
4
X

Wp = (XN @(X+ w(JeA 3

. 0SX . . SinX
:(xzcosx—2xsmx—2003< >+ )(2 Si- & CO% —ZSm—lg—
X X

::|__£2
X
Therefore the general solution of non-homogeneous equation is
2 COSX Sinx
Y :wp +G_I.§0_L+C2§02:1_?+ C1 X2 +C X2 :

Q. 8. Consider the equatioy”+ y=Db(X whereb is a continuous function oh< Xx<oo

satisfying I|b(t)|dt<oo. show that particular solutiony, is given by
1
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Yo(X) =}sin (x—t)b(t) dt
1

Ans. : The homogeneous equatigfi+ y =0 has two solutiongg (X) = cosx, ¢, (X)= sinx.
The particular solutiony, has the form

Yo(X) =u(X@(¥+ u( 3@, ( X where

oo
w1=\2 o s, ] G o

X b(t)Wz(t) X b(t)cost
“waemo®™ I 1

X
W :—cosij(t)sirtdt+ sinxj b ¢)cosdt
1 1

X
:_[b(t)[sinx cost —cox  sit] dt

><

= b(t)sin (x—t) dt

IR

EXERCISE

1. Consider the equatioy” +a(x) y+ a( 3 y=0 wherea;(x) anda,(x) are continuous
functions on << x < ecand are periodic with perid> 0 i.e.a (x+0) = g( ¥, &( x+0)

=a,(x) for all x. Let ¢ be a non-trival solution and Igt(x) = ¢(x+8). Shown thaty is
also a solution.

2. Consider the equatioy” +a(x) y=0where« is a continuous functions onee <X < co
which is of period > 0. Letg;, ¢, be the basis for solution satisfying

@(0)=1 ¢ (0)=0
®(0)=0, ¢ (0)=1
Show that there is at least one non-trival solugiofiperiod® if and only if ¢ (6) +@, (0) =2.
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3. One solution ofL(y) =Y +4—12 y=0 for x > 0 is ¢ (X) = X"2show that there is another
X

solutiony of the formy =u¢ whereu is some function.

4. Use the method of variation of parameter and find the particular solution of the following
equations where the solutions for the related homogeneous equation are given.

., 2 2 _ 1 3 30
@ Y2 ¥+ 5 y=xogx @ (9= x¢, (3= % Ans. g, =2 logx =

2.7 —_ — — 1 . -3
(b) XY +xy-4y= X, ¢ = %,@-? Ans. g, = AE
© X2y +xy—y= X &, 9= x®=Y HAns. g, =e7 (1 x "
(d) 2x2y"+3)(y— y= X_l; @ = )%é , @, = X_l Bb\ns. :l,llp: —%X_l |OgXE

Unit 3 : Homogeneous equations with analytic coefficients

So far we have shown how to construct solutions of various special types of differential
equations using the exponential function, polynomials and the fundamental theorem of
calculus - that is how to reduce the integration of these differential equations to one or more
guadratures. The major difficulty with linear equations with variable coefficients, from a practical
point of view, is that it is rare that we can solve equations in terms of elementary functions, such
as exponential and trignometric functions. . However in case the coeffiaieatsas, ....,a,,
and b have convergent power series expansions the solutions will have this property also and
these series solutions can be obtained by a simple formal process.

An infinite series of the formY a,(z— )" is called a power series -z, Here 3, z,
n=0
z, are complex numbers. With every power series there is associated a disk, called the disk of

convergence such that a series converges absoulately fozavienjor to this disk. The center
of the disk is a, and its radius is called the radius of convergence of the power series.

Given a power seriesy a(z2—%)", let A =LMSUPnfja | | r :)\1 (wherer = 0 if
n=0

A=+ andr = «if ) =Q). The series converges absoulatelyzt- z k rand diverges if
|z—% P r.

If X,, x anda,, are real numbers the serids a (X—%)" is called a real power series. Its
n=0

disk of convergence intersects the real axis in an intexyalr( x, + r) called the interval of
convergence.

If gis a function defined on an interval | containing pgjwe say that g is analytic %
if g can be expanded in a power series akpwhich has a positive radius of convergence. Thus
g is analytic ak, if it can be representd in the form
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909 = 3 & %)

Wherea,, are constants and the series convergepxferx, [< r,r > 0.If g has a power

series expansion then all the derivativeg exist on| X — X, |< r and they may be computed by
differentating the series term by term that is

g(= 3 na 0o Y™, 4= 3 mD alx 7 ete

The differentiated series converges|oa X, |<r.

In calculus there are certain tests by which one could determine an interval of converge of
a real power series. A simple one and one which is frequently used is known as ratio test.

< 1t |u
The serlesZOUi converges absolutely |hﬂoo Nt =k <1.
n= n
() Xn
Example 1 :For the power serie§ —,
n=0 N
n+l
Lt |Unsa|_ Lt | A+1_Lim N 5=
n— o T nNoo” n/ |T nNoo | A _IXI
Up A n+1
Hence the series converges absoulately jfq |.
Example 2 :For the power series
2 4 B n-1
L. SR SIS, SO o Ao U
2! 41 6! (2n-2)!
n-1 _
Un = D en-2 g un+1:—( Ol
(2n-2)! (2n)!
Therefore
) ) _1\12n _ ) 2
Uim fnea = tim D X (an g)!z|=5{i”oo —— 2 =0 for eachx
n @) ()i 2n(2n-1)

Hence the series converges absoulately fot di§ interval of convergence is the entire
real axis.

Theorem 2.3.1 : (Existence theorem)

Let X, be a real number and suppose that the coefficigngs, as,.....a, in
Ly =y"+a( ¥+ a(3 ¥y x Al y
have convergent power series expansions in powexs-off on aninterva| x—x, K r,r > 0.
If &, o, 0g,....04, are anyn constants, there exists a solutipaf the problem

L(y) =0, y0p)=0a1, Yp)=a ... Y (%)=01,
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with a power series expansion

P() =3 G(x= %)
k=0

is convergent fof x —x; K r. We have

k! g =awy (k=0,1,2,3,....n =1 andc, for k= n may be computed in terms of
Co» C1, Cy, Cg,.....C,_ 1 Dy substituting the series inkgy) = 0.

If the coefficientsay, a,, as,..... a, are analytic ax, then the solutions are also analytic.
The solutions can be computed by a formal algebraic process.

lllustration :
L(y)=Y -xy=0
Herea;(x) =0, & (X)= —xare analytic for all real.
Let the solution of the equatidify) = 0 beg defined by

P(X)=ay+ax+ X+ g R+...= % a X
k=0
Then qd(x)=ai+2a2x+3as>?+434>§+....=g na ¥
n=1
@'(x) = 2a, + Bagx+12g X + .= E n(n-1)g X2
n=0

F0)-x000= 3 nin-Dg %25 5%

n=0
:2a2+6a3x+12a4>?+ 2035>§+ —{ay % 3%+t a X+ §‘>1<+ o}
= 2a, + (Bag —ay)x+ (123, —a )X + (208 —a )X+ ...
=28, + 3 [(N+2)(+ Va5 — 3] ¥
n=1

gis a solutin ofL(y)=y' —xy=0if ¢" —x@=0 or
2+ Y [(N+2)(n+ Dy —ahq) X =0
n=1

Above equation is true only if all the coefficients of the power serigsue zero. Thus,
2a, =0, (n+ 2)(n+ 1)g.» —1= O,n= 1,2,3....

This gives an infinite set of equations, and can be solved fdihus, fom = 1 we have

BBy =3 Or ag=—0

2)
Forn =2 we find
_ _ &%
(4)Ba, =3 or a= D)

Differential Equations (84)



Continuing in this way we see that

% Cl 3=0
_ & . _ 3. _ 3 g
€] @Q O
B _ B a= % _ a =0
on HEY @6 DE@G
% _ % s & _ &
OB OEeEaEe WO WEOOBH ™
In general
a3m = % '
(2)U3)TE)A6)I(BY UM (3n 1) (&n )
&

%ML (3) () H6)(7) (OO (@n ) (Bn+ 1) 2™ 2

Thus all the constants are determined in terma,@nda;. Collecting together terms
containinga, anda, as a factor we have

P =30+ X X Brage X d i
*ew emene F D @ne e@E o o
Let ¢, and¢, represent the two series in the brackets.
X3m
Thus, @09 =1 Z 2 [(BOBOBLE9...(an —1) (3n)
3m+1

o0 = x+ Z3B4[6D7D910 .(@n)(@n+ 1)

We have shown, in a formal way thysgatisfiesy” — xy = 0Ofor any two contanta, anda,

In particular the choice, = 0 andg; = 1 impliesg, (x) satisfies the equation aagl= 1,8,
= 0 impliesg, (x) satisfies the equation.

The only question that remains is about the convergence of the series, dgf{®rand
9, (X).

3m

@(x) =1+ dy(x) =1+ Zz[BEBEBEBj); (@M -1)(3n)

et _ x3m+3 . 2CB0BCBEI9TM(3n —1) (&n )
dm 2[BBCRCRAIN(E@NM) (3t 2) (3 3) x3m

X3

" (3Gm+ 2)(@am+ 3)

Lt sup 1 _ Ltinf 1
m-® 3m+2)(Bm+3) ™ (3m+ 2)(@Bmr 3)

The series converges i | <co.

Similarly ¢, (X) is convergent series.
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EXAMPLES

1. Find two linearly independent power series solutions (in powerg of the following
equations.

@y -xy+y=0 (b) y"+3x°y —xy=0
©) y'—xPy=0 d) y+3x3y+ xR y=0

Ans. (a) : Let @(X)=ag+ax+ aX+ gX+..+ 3 51+...:§ a Xbe a solution of
n=0
L(y) =Yy —xy+ y=0. Since it is a solution it satisfies the equatigan) = 0.

P(X)=ag+ax+ a X+ aX+..+ g 5‘<+...:§ a %
n=0
Then @ (X)=a+2ax+3aX+..+ ng 51‘1+...:§ na %t
n=1

@ (X) = 2a, + 3Ragx+ ..+ n(n-1)g X2+ .= g n(n-1)ga %2
n=2

Thus, L(p)= % n(n—l)awé”‘2 —xg ng >?‘1+§ g X=0.
n=2 n=1 =0

=Y (+2)(n+Da, X -3 ng R+3 3R=0
n=0 n=1 =0

=42%+aﬂ+2ﬂn+a(wﬂ)%q—n%+a}9=0

L) =22+ 20)* 3 {(1+2)(1+1) Gy~ (1D 3} R=0

We see that.(¢) = 0 if and only if 2, + a; = 0 and(n+2) (n+1) ., —(n—1)g, = Ofor

n=123,.... & -1 ay; aq+2=& is called recurrence relation.
2 (n+2)(n+1)
o) &
_ 9. _
a,=— a.=0
2= 50 3 &
_% _ _ 2 _
=2 -__%0_ =£.0=0
4T 4B 2B %= gy
:3a4 =-_ 3ao a=0
606  20B41516 !
= _ 3[580 3920
2[BM4CE16 17118
30B[Ta,
& =— a,,=0
40 10! q1
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In generala,,,;=0 n=12,3,....
a _ 30N —3)py
2n = (2n)!
_ 2[BHAREIM819IN(A -3)(@ -2)(@2 _1)(23%
2[ABBIM (2 —1) (2 )!
B (2n)!
2"n!(2n-1)(2n)!

—__ %
2"n!(2n-1)

@(x) = Z on X"+ Z aZn+lX2n+l
n=0 n=0

= — < —ao X2n+
% ngl 2"n!(2n-1) ax

H ) X2n Erl—
= -y — X
% 0 na2'n!(2n-1)0 4

00 2n
X . .
(x)=1-§Y ———— andg, k)= x are two solutions of the equation
A n; 2"n!(2n-1) V2

et A= 3 dn(3

X2(n+1)
dpa _ 2™ (+D)1(2n+1) - x*(2n-1)
dn NGk 2(n+1)(2n+ 1)
2"n!(2n-1)
Lt Ona _ Lt (2n-1)

g, "2+ (2n+ 1)
Redius of convergence=
The series converges it | << i.e. all values ok. Both the solutions are convergent for

all values ofx.

Ans. (b) :Let @(x)= % a, X' be a solution.
n=0

I0=3 na X gh=3 AnDa X
L@ =¢'+3<0 —xp
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=3 n(n-Da ¥ 2+38y na £1-% a?%
L(¢p) =r(]):2implies " "
2008, + 3Pagx+ 413, X+ 3g X+ 23 X+ 33 + 43 ¥+ [
—Rox+axX+axX+ g+ H=0.
200a, + (3235 —ag +[ 403y + (3-1p] X +[ B4+ (3(2)-1y] R
—[6.586 + (3(3) —1pg] X* + &= O

200a, + (@822 ~2 e+ 3 [ (0 30 23,0+ (-] ¥'= 0

Then a,=0 ; ag= 20 . Bea= (3n-1)a,
2L8 n+3)(n+ 2)
% e ;32:0
= aO . = 2a1 . —
Ay =——0_ a,= 22 a0
T 2m T 3
- _8a3 =+ 8a-0 ,a7 — 118.4 — 11EQB.1 ’%: 0
66 2[3H16 76 T1614 3
__(18-D(9-1x 201D 3 )
o 810~ 31=0
9[BBLH 1312 10976 4 3
The solution

00 =1+ 3 - CY"CHELTME -1 o0
£ 2(BOBCBIEIIII(3n —1) (8n )

(0= x+ & (-1 20 120MEE - 2) =L
i nél 3ABVIOLAM(8 ) (Bn+ 1)

Ans. (c) :Let @(X) = 5 a,X" be a solution ofy’ —x? y= 0. Since it is a solutiog (X) satisfies
n=0
L(p) =¢' —x°p=0.

0= 3 X', (=3 na X% g (3= 3 (D 3 ¥
L(p) = % n(n—l)a,,k”‘z—ng ax=0.
n=2 n=0

20a, + 3[Pag x+ § n(n-1)a %2 —§ a®i=o0
n=4 n=0
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20a, + 3 Ragx + z (n+ 4)(n+ 3)a, , X2 -z a®?=0
n=0

Here we have replacedby n + 4 and therefore the sum is from G40

2Ma, + 3Ragx+ g [ (h+ 4)(n+ 3)q.4 —a] 7P =

n=0
Thus, a, =0, ag=0 and a\,,+4:L :
(n+4)(n+3)
) cl a=0 =0
_ 9 ) G ) _ . _
a, = —> : =— ; =0 =0
4= 30 a5 = =k 3 e
= = aO . :&:—aﬂ- . =0 : =0
%~ 8[7 s | T g8 4mgo & 2 w0 S
_ d ) _ a1 ) _ . _
o= : 2= : a,,=0 : ;=0
127 3y 2 BT n5g912 13 14 15

Thus all the coefficienta,’s are determined in terms &f anda, sincea, =a; = 0 implies
aymspanda,,,.3=0form=0, 1, 2, 3,..... Therefore

P()= 3 A"+ T g™

m=0 m=0
O 00 X4m |
= ao g_+
5 2y 3TLILZ (40 —1)(41%
O X4m+l |
+a1D< Z

5 iz A0B(BCBILZIL3M (A ) (4n+ 1%

Therefore two linearly independent solutions are

(<] am

B X
AN aranIEn @ D@ )

X4m+1

ATH[BOOL271L3M (40 ) (4n+ 1)

@ (X) = x+ Z
Ans. (d) : Let @ (X) = % a, X' be a solution olL(y) = Y + x>y + ¥ y= 0. Therefore
n=0
L(g) = % n(n-1)a, X2+ ng na X1+ f% a X=0
n=2 n=1 n=0

that is %n(n—l)a,,%“ﬁg na >2‘+2+§ a X2=
n=2 n=1 n=0
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The first term starts fro” where as last two series start frafrandx? respectively. To
get the common base we write the expansion in the following form

20a, + 3 Pagx+ 413, X + ) n(n-1)a F2+ na %2+ %S a%?=o.
E%S n§5 nzl & nzl

Therefore

208, + 3Aagx+ (A0 + )R+ 3 n(n-1)a X2+3 (+ Da%2= 0
n=1

n=5
We replacen by n + 4 in the first series.

(o]

20a, + 3Dagx+ (A + g )X+ 5 [ (+ 4)(7+ g, .+ (+ D] X*= o

n=1
Above equation is true for all values>oand therefore

8,=0; =0, 4Ba+a=0 (4 g+ (F Da= 0

) ] a=0 =0
= ﬁ . . = —_281 . =0 : =0
473 I =] % &
_ LN ) _ 6[Ry ) _ . _
- - -0 =0
%= 3mmm T g Ao A
_ 9053, , _ 100Ba,

o =— : Qo= : a, =0 Do ae=0
27 3mymmoi2 BT pneggi 13 14 15

_  (-1)"5EI3M(4n —3)
&m 3AVBOLTIZI (M —1)(th )’

_ (-)™M 20610 (4n —2) | a —a . .=0
Qm+1 ATSBLOMI{4n ) (4n+ 1) | 4me2 = Qgm- 3= Y-
Therefore two linearly independent solutions are

a=1s § L CUSILI =)
m=1 SLAZVB T2 (4n 1) (4 )

_ 2 (-1)" 2060 (4n - 2) ame1
% (x) = X+mZ:1 ASCBIOI(4n ) (4n+ 1)X

2. Find the solutions of y" + (x—1)2y — (x—1)y= Gn the form@(x) = 3 a(x—1) which
k=0
satsfiesp(1) =1, ¢ (1)= 0.

Ans. : Let (X) = % a.(x=1) be a solution oL(y) = y +(x=1)? y — (x=1)y= 0.
K=0
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L@ = Y k(k-1)a (-1 2+ (x-1F3 ka (x-B5L -3 a (x-1f1= o.
k=2 k=1 k=0
that is % k(k—l)a((x—lf‘2+§ ka (x—1f*t —§ a (x=1§"1= 0.
k=2 k=1 k=0
20a, + 308 (x—1p T kk-Da x-172+5 ka (x—i
k=4 k=1

~a(x-1)~3 g (x-1f"=0
k=1
In the third term replackebyk + 3 we get

20a, +[ 32, —a] (x—1)|-§1[ k+ 3+ 2giot k-Dg] K= o.

Thus,
=1y ;& ;3 =0
a3:% ;a,=0 ;a5=0
:_EEZZ;E?]G 8 =0 %= 0
o= 5% 5

98 2B HI8I819

(-1)™ 20BCRIM(GEN — 1),
agm = ;a1 =0 for m=1,2... ; = 0.
M 2 BOFABIIIN(3 —1) (&) | o % 2

Corresponding to the coefficiersganda, we get the following two linearly independent
solutions.

e (C)T2EEMGN 1) . e
A=1* Y S BrrEEAIEn —1) (@ ) ™" and

@(x) =(x-1)
The general solution is

__H. & (-)"2EBIEn 1), LamD ~
PO=2B* 2 S arBremEn —1) (@) - o Zratxl)

@®(1)=1giveay=1

_ . 2 (-1)M20EBIEn -3 ) . Lemt
POI=% 3 5 EmeemEn ~neEn) <D

@¢(@1)=0 givea = 0.

a
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Thus, the required solution is

.2 (-)"20EEBINEN 1), - am
POI=1* Y S mrseIEn —1)@n ) .

3. Compute the solutiop of y" — xy=0which satisfiesp(0) =1, ¢ (0)= 0, ¢' (0)= O.

Ans.:Let 9(x) = ¥ a,X'be a solution oL(y) = y"— xy=0.Then
K=0

L(p) = in(n—l)(n—Z)a}1 X3 —xgo ax=0

Then 320ag+ Y n(n-)(-2)q X2 -3 g X'= 0
n=4 n=0
In the first sum replace by n + 4, then

3[20a; + § [ (+ 4)(n+ 3) (n+ )4 —a)] =0
n=0

_ _ an
Thus,a. =0 and = .
us. & &ea = ) (n+3) (n+ 2)

) il y S ; a3=0
_ 9 ) _ 9% R - ) o
a,=—20 C ae =1 C an = ‘a,=0

4T AR %= Tun %~ @54 !

- aO . — al . — a2 . :0
%~ g TBIER T gETe a3 A0 T EBBG 4 !
ag, = 2 -3y, = ol gy, = a

2T BRSO 12 VT @RI 12113 YT 4BBBO10I12118 14

25=0
aym = 2 YT &

M 2@BMITEIN(4n —2)(4n - ) ™ Z@amE] h -)@E ) 1)

)

v me2 = aym3=0

AC5[BBOILAM (4n ) (4n+ 1)(4n+ 2)

The general solutiom (X) of the given equation contains three paramedgrsy, a,.
The solutiong (X) becomes

am

P(x) =& %* mzzl 2[BIACB7BIN(4n —2) (4n —1)(4n 5

0 o Am+ 0
+a, [X+
'8 mZ:13E4[5D7E8]9]]]]](4n —1)(4n ) (4n+ 15
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. E}<2+ ® A2 0
azg mZ:14E5EBE8E910]]]D(m)(4n+ 1) (4n+ 2%

@(0)=1 givesay =1

o Amy¥Am-1)
gd(x)—aomZ:1 2(BLAB78I(4n —2)(4n —1) (4 )

O o (4m+1) XM O
"alt ) SRR n —1) () (4 B

O o Am+1 0
ta, 2%+ S (4m+2) X
577 2, 3BEIa(4n —1) (40 ) (40 B
¢ (0)=0 givesa = O.
Similarly ¢’ (0)=0 givesa, = 0.
Thus, the required solution is

) o X4m
P S BB (n —2) (i —D) ()

4. Legendre equation is an important differential equation occur in physical problems. The
equation

L(Y)=(1—x*)Y —2xy+a @+ 1)y= 0
where« is constant is called Legendre equation.
If we write this equation as

2X +ar(ar+1)

n _ - O’
Y 1-x? 1-x2 Y
we see thad,, a, are given by
2X a(a+l)
X) = and a (X)= :
a(9=—=7and & (}==—;

00

Both these functions are analytixat 0. Indeed,1 1 5= > x? and the series converges
_X -
for | x| <|. k=0

Thus,a,(X) anda,(x) have the series expansions. Both there series converge|for |

Thus by existence theorem the solutldiy) = 0 on x| <| have convergent power series
expansions.

Let ¢ be any solution df(y) =0 on x| <|.

Suppose@(x) = ¥ g,X' then
K=0

L(p) = (1—%?) in(n—l)a}1 X2 _szl ng R 1+a @+ 1)20 a X
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-3 n(n-1)a, X2y n(n-1)a X _oy ng X+a @+ 1)00 a X
n§2 ngz ngl ngo

= f [(N+2)(n+1)g,,, —{n(n-D+ 2n-a &+ 1} a] R
n=0

For ¢ to satisfyL(¢) = 0 we must have all the coefficients of the powersexfual to zero.
Hence, (n+2)(n+Day,, [n(mD-a @+1) = 0,r= 0,1,2,3,...

This is a recurrance relation which gigs., in terms ofa,,.
_n(n+h-a@+1)

+2

(n+1)(n+2)
:—(a+n+1)(a -n)
(n+1)(n+2)
for n =0 we get
612:_ar(ar+1)
__(@+2)(@-1)
a3———
2[B
Similarly,
__(@+3)(@-2) .- _@+t4e -3
4 3 2 % as e
_,a@+))@+3)@ —2)ao _, b+ 2 -D -3)
2[3B% 2037475 1
In general
_ qm@+2m-1) @+ 2m -3¢ + 1 ¢ —2)[I¢ —2n+ 2)
a2m—( 1) (2m)! 80
_ . qm @ *+2m) (@ +2m-2)10 + 2) —1)¢ —3)M¢ —2n+ 1)
Aom+1 —( 1) (2m+1)! ]

All the coefficients are determined in termsagfanda; and we have
P(x) =8 (X + & @y %

Where, %(X):Hg )" @+2m -1+ n -3 ¢ —200Ddq — 2+ 2)am

m=1 (2m)!
@ (X) = x+ g )" @+2m)@ + 2m-2)I¢ + 2)¢ -1 — I — 2+ 1?(2m+1
m=1 (2m+1)!

Both ¢, andg, are solutions of Legendre equation, corresponding to the choices
=1 ¢g=0 and ¢= 0g= 1,
respectively. They form a basis for the solutions, since
@®0)=1 ¢,0=0 ; @ (0=0 @, OF 1
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@0) (0
@0 @)
Since WronkiarW (@, ) # (0), ¢;,@,are linearly independent and therefore forms a basis.

If oris a non-negativ even integer= 2n, theng, has only a finite number of non-zero
terms. In this casg, is a polynomial of degreenZontaining only even powersxffor example,

a=0, @Xx)=1=py(x)

=@1(0)9; (0) 2 (0)p1 (OF 1

O W(@, @) (0)= ‘

a=2, gol(x):l+%2+1)a ¥ =1-3¢= p, (X)

or the recurrance relation

_ n(n+l)—a @ +1)

27 T D m+2) o ‘mplies
_00)-2(3), _
=2 T2, =-3
a 17 20 %
2(3)-2(3
a4=—( ;m ( )a2=0
with a; = 1 we getg (x) =1-3x% = p, (X)
for o = 4, 32:%)%:—1030
2(3)-4(5
= (;m()612
6-20
=————(-10
o (103)
_ 140
=+ 12a0
=33
3 20
_4(5)-4(5)
S5[6
=0
qol(x)=aoé—10x2+%5 X4E with g =1
35 4_

A =1-10¢+=2x = py ()
The solutiong, is not a polynomial in this case since none of the coefficients in the series

of ¢, vanish.
A similar situation occurs whes is a positive odd integet Theng, is a polynomial of

degreen having only odd powers afand¢; is not a polynomial.
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for example
_n(n+t)-a@+1)

(x=1) an+2 = (n+1) (n+2)
- 1(2)2 Egl(z)al 0
@ (X) = x= p(R (say)
(@=3) 8, = —1(2)2‘[;’ *)
~_5,
3 1
:3(4Z1E53(4)a3 _
@09 x=2 %= p(3 (s2y)
_1(2)-56
(a=5) as—W
__14,
3 9
_3(#)-50%,
A5 °
__18( 140
~ 7200 30"
_21
5 9
3y :%ﬁa‘s =0.

B0)=x=2 R+ 2082 p(y) (say)

Definition : 2.1.3

A polynomial solutiorp,, of degreen of @1-x?)y’ —2xy + n(n+ 1)= 0,

SatisfyingP, (1) = 1 is called the™ Legendre polynomial and the differential equation is
called Legendre equation.

Let ¢ be a polynomial of degreedefined by
dn 2 n
P(x) =—(x"-1)
dx"

u(x) = ()(2 _1)n implies u’(x) =n( )g _1)n_12X gives
(x2 -u (X)—2nx u(X=0
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Differentiate this equatiom(+ 1) times.
First differentiation gives

(X% =D)u" (X)+ 2x(L—n)U (X) —2n u(xx= 0
Second differentiation gives
(*=Du" (x)+ 2] @+ - d+ 2 @-n¥ (O-n)u (x§ O
Third differentiation gives
E-DuM+2{ @+ #+ D1 U+ § 2-n¥ @-n¥ (©O-))G= 0.
i.e. o =-Du™ +2x@-n)d' -3 -2y -1 § 4= 0.
In general i + 1)th differentiation gives
o =Du™D 1 2x((m+ )-n)d™D -3 2 3 4 = 60 -BHH = o
i.e. (2 =1u™2 + 2x ™D _n(n+ UM = 0. or

A —x? ™2 _ox (™D 4 n(n+ HdM= 0
since  900=9 (-1 =9 u(x= " (3,
dx dx’

1-x*)¢' =2 ¢ (X)+ n(n+ 1y (X)= 0
n
Thus the functionp(x) = %(x2 —-1)"is a solution of Legendre equation.
X

dn n_ dn n
_dx” (x2—1) ——E{x+1) (x—l)r‘DD
%x DL (x+ 1) + dn_l (x 1)”l (x+ 0+ ...

=n(n-1)(n-2)....201 &+ 13 + terms containingx(— 1) as factor.
=n! (x+ 1) + terms containing«(— 1) as factor.
Thus, at x=1,

d" o n
——(x*=1)"=2"[n!
dx"
n
Define P,(X) = 1 gxn(% 1)" thenP, (X) is a solution of Legendre

equation witr=n P, (1) = Z”L %“ Dh!E: 1. Thus,P,(X) is a Legendre polynomial of degnee
n!

Suppos is a polynomial solution of Legendre equation witl¥ n. Sinceg, andg, are
basic solutions of Legendre equatigr= ¢, ¢, + C, ¢, on |x | < | for some constantg andc, is
a solution. Inis eveny, is polynomial solution and, is not a polynomial) —¢; @ is polynomial
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where a, ¢, is not a polynomial and therefoecg = 0. In particular the functioR, satisfies
P,(X) = g ¢( ¥ for some constarg; if nis even. Since>,(1) = 1= ¢ ¢, (1) thereforeg (1) # 0.

Thus no nontrivial polynomial solution of Legendre equation can be zere at A similar
result is valid fon odd.

The formula

n
1 d (e_qy
2"n! dx"
iIs known as Rodriges formula. This expression can be used to prove properties of Legendre
polynomials.

Ph(X) =

EXERCISES

1. The equation(1—x?)y" —xy+a?y= 0 where« is a constant is called the Chebyshev
equation.
(a) Compute two linearly independent series solutions{pk||.
(b) Show that for every non negative integer=n there is a polynomial solution of

degrea.
2. The equationy” —2xy + 2r y= Owhere« is a constant, is called the Hermite equation.

(a) Find two linearly independent solutions of< X < oo,

(b) Show that there is a polynomial solution of degre®m casex =nis a non-negative
integer.

3. Find the general solution valid near the origin

(i) y +3xy+3y=0 (i) (@+4x?)y -8y=0
(i) (1+x?)y —4xy+ 6y= 0 (iv) 2y"+xy -4y=0
V) y'+xy=0

Answers .

o (—0?) (22 —a?)IH(an - 2f o %1
1. (@ @(x) =1+ Z—l (Eﬂf?!( L], 2m

o (12 —az)(32—az)D]I[%(2n ~1Y azg -
®(x) = x+mzz1 D) e

(b) ¢, is a polynomial ifer is an even integer,

@, is a polynomial ife is an odd integer.
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2 (@) @m=1+y 2 COEMEN =24 )on

m=1 (2m)!
0 = § Z70-0) 00 Ian 1.0 Yo

(b) fisa polynomlal i is an even integeg, is a polynomial ifr is an odd integer.

. (—3)kX2k |
3. () y(x) = ab%+kzzl K] E

| 0 ( 3)k 2k+1 |

gt 2 2 | 30507 0k + e

(_1)k+l 22|( 2k+1

(ii) y= ao(1+4x2)+qzo a1
3
(i) V(9 = a1-3¢)+ arix-% [
0o 30
k+1
. - 2+ L 3(-1) %
(iv) y(%) ao§+ . BWLZ P12k —3) (2K -1 (&+ 1)
0 =g+ U g
Y 80@ kél 22K 37L& —1)F
0 k 4k+1
oy X+ Z 2K X B
i 22K 1 5N IM(&K+ 1)F
CED
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— Chapter 3
Linear Equations with
Regular Singular Points

Contents :

Unit 1: Euler equation

Unit 2 : Second order equations with regular singular points
Unit 3 : The Bessel equation

Unit 4 : Regular singular points at infinity

Introduction

For alinear differential equatiag(x) Y™ + a(® Y™™+ a( X Y™ ?+...+ a( X ¥ 0,

where the coefficient functiore, &, a,, as,.....a, are analytic at some poixy, the pointx, is
called an ordinary point of the equatiorajf(x,) # 0. In the last chapter we have obtain power
series solutions valid near an ordinary point of a linear equation.

A singular point of the above linear equation is any pomk; for whichag (X;) = 0. In
this chapter we shall get power series solutions valid near a certain kind of singular points of the
equation. Itis usually difficult to determine the nature of the solutions in the vicinity of singular
points. However there is a large class of equations for which the singularity is rather weak in the
sense that slight modification of the methods used for solving equations with analytic coefficients
discussed in chapter Il unit 3, serve to yield solutions near the singularities.

Definition 3.1.1 (a)

A pointx = X, is a regular singular point af(y) = a,(%) ¥V + a( 3 y" P+ a( x {2
+[3a,(X) y=0 if the equation can be written in the forh(y) = (x—%)" " + B(
(x—%) " yV4 0 b, (%) y= 0 whereby, by, bs,..., b, are analytic a,.

If the functionsby, by, bs,..., b, can be written in the form

b () = (X= %) B (¥ k=1,2,3,.0

Whereg,, 5, Bs...., B, are analytic ax, thenL(y) =0 becomes

Y+ B (YT + By (R YD+ L+ B (XN y= 0
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Definition 3.1.1 (b)

A equation of the formcy(x) (x— %)" ¥V + (3 ( % ¥)"L ¥+ o X x 2
y("™2 + . +¢,(X)y= Ohas a regular singular pointstif c;, ¢;, ¢, Cs,.....C, are analytic at
X = Xy andcy(Xg) # O.

Definition 3.1.2

If X =Xy is a singular point but is not a regular singular point, then it is called irregular
singular point. For example, consider the equation

2. 3
—y->y=0.
XY =y=,¥

The originx = 0Ois a singular point but not regular therefare 0 is irregular singular
point. The coefficient of” is not of the fornxb,(x) whereb,(x) analytic.

In the first unit we study the differential equation that has a regular singular point at origin
and all the analytic functiorig, b,, bs,..., b, are constants.

Unit 1 : The Euler Equation

The simplest example of a second order equation that follows defination 3.1.1(a) is the
Euler equation

L(y)=x°y +axy+ by=0
wherea, b are constants.
Theorem 3.1.1
Consider the second order Euler equation
L(y)=x®y +axy+ by0 ( a bconstants),
and the polynomiad given by
q(r)=r(r-1+ar +b

A basis for the solutions of the Euler equation on any interval not contairifgs given
by

a0 =Ix* , @x)=Ix,
in casery, r, are distinct roots af and by

@) =Ix*, @ ()=|x} log|x]|,
if ry is a root of equatioq of multiplicity two.

Proof :
Caselr #r,
(a) We first consider the equation for 0. Letx" be a solution of Euler equation

L(y)=x°y +axy+ by=0
L(x") = % Ef(r—l)xr_z% abe{ _1El+ bx =0
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implies [r(r —1)+ar +b] %r Ez 0
gis a polynomial defined by(r) =r(r —1)+ar +b
Thus, we have
L(x")=q(nx
If ry is a root ofy(x) theng(r,) = 0 and therefore (x) = 0. i.e. g (x) = x* is a solution of
L(y) = 0. If r, is another root of] andr, # r, then @,(x) = x2is another solution of

L(y) = 0. Thus,g(x) = xX*and g,(x) = x2 is a basis for the solution of the Euler equation
as¢, andg, are linearly independent.

(b) 1f x<O0, Let (%)" be a solution (ik < 0, x> 0).

e H=—r (xS xS =16 -1 ()2
xg—x)r E = r(=x)(=x) * = r(=xJ and

L(y) =r(r =D () +ar (xJ +b (x) = q(r)(X)
if ry #r,then
@ (x)=(=X)", @, (x)= (~xf2 are solutions ok (y) = 0. If r; andr, are complex
roots ofq(r) = 0, we define for r complex by

x =d logx (x>0)

then  (xX') = (rogx) (& °%" =LXD>£ = 1%~ and the result follows on the same lines
for complex roots also.

Thus, we have proved that % 0)r; #r, ¢(x) = x*and g,(x) = x2 are solutions of
L(y) =0 and fox < 0,r, # r, we haveg (x) = (-x)* andg,(x) = (—x)'2 are solution of(y) = 0.

Since x| =xfor x>0 and k| =— xfor x < 0 ¢(x) =] x[*and ¢, (x) =| x[2 are solutions of
L(y) = 0ifry, r, are distinct roots ad(r) = 0.
We prove thap, andg, are linearly independent.

Let @ +Cop,=0 i.e. ¢ | x|t +c, | x]2= 0then ¢ +c,| x[27t= 0 for everyxeR.
Differentiating above equation w.n¢for x > 0 orx < 0 we get,
C(rp—r)Ix =0
Butr, #r, andx # 0 thereforec, = 0 andc; @, + c,¢p, = 0for all x impliesc; = 0 since
c, = 0and@(x) Z0.
Thus, ¢, andg, are linearly independent solutions.

Therefore ifr, andr, are distinct roots of(x) = 0, theng (x) =| x[*and ¢, (x) =| x[2
forms a basis for the solutionslafy) = O.
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Case2r,=r,
(@ x>0:Ifry =r,thenq(r,) = 0 andy’(r,) = 0. We have proved thatrif is a root ofg(x) = 0
theng (x) = X' is a solution. To construct second solution consider

d 0
HL(x )—qu(r)xrg
=[q'(r) +q(r)logx] X’

Since, %Xr =X log x
Butifr, =r, =r thenqg (r) = 0 andg’(r) = 0 and we have

2 Hx)EFo.
O (x)E= Lﬁaixr ﬁ: L( log ¥
or r
Thus, |(x" log x) = 0 impliesx’ logx is a solution of (y) = 0.
If r, is a root ofy (r) = 0 of multiplicity two theng (x) = x> and ¢, (x) = x* log xare two
solutions ofL(y) = 0.
(b) x<0: Ifx<O0, then x> 0 andg(x) = (—x)"and @,(x) = (-x)" log (—x)are solution of
L(y) = 0.
Thusg(x)=|x[* andp, &)= |xt log |- gre two solution oE(y) = 0.

@, + cxp, =0 impliesc; + ¢, log |x | = O for allx and therefore, =c, =0 andg,, ¢, are
linearly independent.

Thus ifr, is a repeated root afr) = 0 theng (x) =| x[* and @, & = [x't logk |s a
basis for solutions of the Euler equatibgy) = x*y' + axy+ by=0.
lllustration :

x?y'+ xy+ y=0 for x# 0 is Euler equation wita =b = 1.

The polynomialq(r) =r(r —1)+r +1=r 2+ 1andr = +, —i are roots ofy(r). A basis for

the solutions by theorem 3.1.1 are
@) =Ixf and@, & IxT & 0)
|x|=d"9K = cos(log [x [} i sin(logk |)

Thus 4(x) =cos(log [x [)land ¢,(x) =sin(log |x |)is another basis for solution of
L(y) =Xy + xy+ y=0.
Theorem 3.1.2

Consider the Euler equation of order

Ly =Xy +a XY+ g £2Y"h 4 a0,
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wherea,, a,, as,...,a, are constants. Le{, r,,...,r; be distinct roots of the indicial polynomial
g =r(r-1)¢ —2)..{ v+ Ipra;r ( -1).r( ~r+ 2 +a, and suppose
r, has multiplicitym. Then then functions
X[t Ix T loglx |,....k™ (ogx ™ A2l A2] logd |.XP | (ogT 7} .
Ix[*, I log|x |,..... k"1 (logx "y

form a basis for the solution df(y) = 0 on any interval not containing zero.
Proof : Let | x| be a solution ok (y) = 0.

AxPY=rixI™, (xT9=r¢ -DxT% ...
Ux[ )V =r (¢ -1¢ -=2)..( A+ 1T
Hence,L(|x[)=r( -1)¢ —2)..( A+ I "|[+ayr r( -BH( -2)
LN+ 2)x [+ .+a, K|
=q(r) Ix[
where an)=r)r-D¢ -2).. A+ Lrrr( -P( —-2)r.(n—+ &)+ #a,

The polynomialy(r) is called indicial polynomial. Thusx|" is a solution of_(y) = O if
q(r) = Oi.e. ifr is a root of indicial polynomial therx| is a solution of.(y) = 0.

Differentiating L(| x| )= q(r) |x] with respect tor’ we get
0 r 0o O
—L( x| )=L X
or “XD= L X

=(q'(r) +q(r)log|x |) Ix |

In generak times differentiation gives
oK Ogk O
—kL(|X|r)= LO— Ix1 O
or or 0

=H® () +kg"()log | x [+k(k=1d"? () (log | [f+ .+ q)(og|x f) K| .
If ris a root ofq(r) with multiplicity (k + 1) thenqg(r)=0,q'(r)=0,9" (r)= 0...,

0 [l
q®(r)=0and thereford_%%lx O=0fori=123,..k .
r O

i
Thus ¢(X) =%| x[,1=1,2,3,...k are solution of.(y) = 0.
r

If ry is a root ofg(r) of multiplicity m, then

) 92 gmL
Ix[t, = Ix=xF log |— K1 K (logk D,
al’l arl

A
o™t

=|x [ (log|x [ are solutions of(y) = O.

Repeating this process for each roaj(of we obtain all the solution and the result follows.

All these solutions are linearly independent and therefore form a basis for the solutions of
L(y) = 0 on any interval not containing zero.
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EXAMPLES

Q. 1. Find all solutions of the following equations fox > 0
(@ Xy +2xy-6y=0 (b) 2x°y' + xy—y=0
©) X2y +x)-4y=0 (d) x?y' —5xy+9y= X
(e) X3y +2Xx%y — xy+ y=0.
Ans.:
(a) The indicial equation
q(r)=r(r -1+ 2 —6=r 2+ —ehas root =3, - 2.

Therefore@(x) = xX’and ¢,(x) = X are basic solutions ang(x) = ¢, ¢ + ¢, X2
is general solution for constards c,.

(b) The indicial equation L
qr)=2r -D+r —1= 22 + —1h1as roor =1, -3 and @ (x) = X, (X = x 2
are basic solutionp(x) = ¢ X+ G, X2 is general solution for constards c,.

(c) The indicial equation
q(r) =r(r —1)+r —4=r? —4has root 2, — 2 Theg(x) = x°and g,(x) = X 2are
basic solutiong(x) = ¢ »° + ¢, X 2is general solution.

(d) The indicial equation
g(r)=r(r-1)-5% + 9=r 2 _p+ 9has root 3, 3. Since the root 3 is repeated root
of multiplicity two ¢(x)=x*and ¢,(x) = x’log x are basic solution of
corresponding homogeneous equatjéry' —5xy+9y=0.

The particular solution will be determined by using variation of constant method.

Let Y= (X @(X+ (e 3 be a solution of equation

O 9
y ——y+—2 y= Xthen
X X

uk(x)=jW Hereb(t) =t,
P2

3 3
W (gt 0) = X x~log x :x5,

32 x2+3x° log x

0o X log x

W, = =—x3logXx,

1 x2+3x° logx
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x> 0 3
W2: =+X7,
3x% 1
X~ log x[k log x
u(X) = I—gd = g dx———(logx)2
3D<dx dx _
Uy(X) = = —IY—Iogx

Y(x) =U1(X)§01(X)+ W( Yoo ¥
—%(Iog X123 + (log x) & log x:% % (log X7
The general solution
P=Cp + o+ = X + ¢, log xr% R(log ¥>.
(e) The indicial equation
qnN=rr-1)¢ -2+21( -+ + 1
:(r—l)gz -2+2 —:E: ( —1y(> —hasroot1, 1, —1.
Since one is a root of multiplicity twag (x) = X, ¢,(X) = xlog xand corresponding

o -1, ¢;(x) = Xt
The general solution

@(X) = gx+ o ¥og X+ G X2,
Q. 2. Find all solutions of the following equations foif x | > 0.

(@) x°y'+xy+4y=1 (b) X2y —3xy+5y=0
(€) X*y' +xy—4my= x

Ans.:
(a) The indicial equatiorg(r) =r(r —1)+r + 4 has rootr =+2i .

Since both the roots are disting,(x) =| x? and @, (x) = x[2. The general
solution of homogeneous equation is

i 7)
9() =g |xf +6 | xI
The particular solution will be calculated by variation of constant method.

Case 1 x>0,

If x>0thenk|=
@ (x)=x% and @, (x)= x2

Let y(X) = w(X @ (R + w( 3e( ¥ be a solution of
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W, (X) b(X) dx

2\ =1.thenw(X) = and
Xy + xy+4y=1. (N = Wa0,)

u,(X) :IW dxwhere b(x):i2 ,
@b X
2i 4 .
_ X _ oyl a4
P . I
10 X2 o x2 0 4
e A I P e
X_2||:|1 |:|
- 2 —2i—2+1 -2 )
w(x) = B_X_dezjx e =X
0 4i0 4i 4(-2) 8
H xH
X2|D1 ﬁ
2 2i—2+1 a 2
X X X
= = d A
Oy T T ey e
H xH

P
Thus, Y(x) =u(I A+ bY@ 3="-0F +7
P(x) = ¢3¢ +Cx72 +% is a solution of given equation.
Case 2 x<0

If x < 0 then|x |F —x and g (x) = (-x)? and@, )= ()2
Let y(x) =w (X @( X+ w( 3@,( ¥ be a solution of the given differential equation.

w3 s e
Wff ;_(X_)XZ)“ =072, W= (__:)* - (j|=(—x)+2,
b(x):X—12
b0 - le(x)b(x) I_(_X)ig(ﬁ)z de-t (—xz)i‘z :(—xé_zl
(%)
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(- X)2i
ey X X)° e L7 (0
4 -2 8
(—x)
W) =w(I A3+ w( 3o ¥

u ( ) J- 2(X)b(X)

—2i ) SRRY:!
w( )_( X) m_x 2i +( )é) (_X)—Z —
forx<0, @(x)=¢(— x)2' + Gy(— %) +% is a solution of the given differential equation.
Thus@(X) =g | xP +¢ | x[? +% is a solution of the given differential equatior #0.

(b) The indical equatiomny(r) =r(r —1) -3 + Shasroots 2 +, 2 —i. Since both the roots are

distinct g (x) =| x "' andg, &)= [x{ are two independent solutions. The general
solution

p=an()+ o3 = ol ' + ol 7= #( gl X+ ¢l A):

(c) The indical equationy(r) =r(r —1)+r —4rhas roots2y/rr and =2/ Since both the
roots are distincig (x) 5| xlz‘E and @, (x) = xrz‘/ﬁare two solutions. The general
solution of corresponding homogeneous equatiap(i§ = g | x|2‘/ﬁ +6 | xrz‘E .

We solve the non-homogeneous equation using the variation of constants method.
Casel1l x>0

If x> 0 then|x PV = x27 | |x 3= x-am

Let y(x) = w(X @ (X + w( 3eo( ¥ be a solution of given equation then

W(@, ) = o AT _-2ln_2ln _-4ln
AC o xm o x2lm X X X
N on
W= =2 W, (0= = T
=N X_Z\/E_ +2/m x+2‘/E -1
b(x) —% since the given equation ig + = y_4_" y_:l(
X—zf 10 e
(%) = le(x)b(X) X=| B’_‘Hdp+if g, 1 X +1
W(@, %) NG NG N (2/m+ 1)
X
—2m+1
Thus, X"

Uy (X) =+m
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2Jn
() =200 o T % e L X
’ W@e) gt Amalmel
X
X—2\/E+1 = 1 XZ\/E+1

YOO a—aim) At

x 0O 1 1 XD4\/E X

0_ _
swnH-2/i 2+ H a7 i-41 1-41
2JE+

=+

Forx >0, ¢(X) = QI_XZ\/E +toX
X

1-41°

Thus the general solution of the given equatiop(i®) = ¢ | xP¥™ + ¢, | x| 2/ +

is a solution of given equation. Fox 0

also we get/(x) =
X
1-41

Till now we have considered Euler equation having a regular singular point at origin. At
the beginning of this chapter we defined singular points, regular singular points and irregular
singular points. We present some definitions of singularities which can be used to classify the
singularities of the given differential equation.

Definition 3.1.3 (a) :
A second order differential equation
y'+p(2y+d2 o0,
analytic for 0 < g—7, | <r, has a regular singular pointzgivhen pg) has at worst a simple pole
atz =z, andq(2) has at worst a double polezat z,.
Definition 3.1.3 (b) :
For a second order differential equation
y'+p(XYy+ o3 y=0,
if X=X, Is a singular point and if the denominatopdk) does not contain the factor<{x;) to

a power higher than one and if the denominatay (@ does not contain the factor{x,) to a
power higher than two, then-X, is called a regular singular point.

EXAMPLES

Q. 1. Classify the singular points, in the finite plane, of the equation
X(X=172 (x+ 2)y + X y —(R+ 2x—1)y= 0
Ans.: ap(X) = X x—1)% (x+ 2)= 0 givesx =0, 1, -2
Thus the singular points in a finite plane arg at0, 1, —2.
Given equation can be written as
vy X _(P+2x-D)
X(X—1)? (x+ 2) X(X—1F (% 2)

y=0
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—(C+2x-1)
X(X—1F (x+ 2)

Since the denominator p{x) does not contain the factor<{ 0) and the denominator of
g (X) does not contain a factor € OY for p> 2 . Hencex = 0 is a regular singular point. Now
considerx = 1. Since the denominator pfx) contains the factorx(— 1f wherep =2 > 1
thereforex = 1 is not a regular singular point xe= 1 is irregular singular point.

therefore p(x) =

1P xr ) A0

At x = =2, the factor{+ 2) appears to the first power in the denominat@(gfwhich is
not higher than 1 and the factor«{ 2) appears to the first power in the denominatag(xf
which is not higher than 2. so= — 2 is a regular singular point.

Q. 2. Classify the singular points in the finite plane for the equation
X +1) (x=12 Y + 43 (x=1) Y+ (% 1)y O

Ans.: ap() = X (¢ +1)( x-1)? = 0givesx = 0, x=+i,x = 1 are roots oy, (x) = 0.
Thus, the singular points in a finite plane arg ato, +i, —i, 1.
Given equation is of the form
4 + (x+1) y=
X(>€ +1) (x—1) X (58 + 1) (x—1¥
4
X(x +1) (x—1)

II+ 0.

x+1

Here P()= x4(x2+1)(x—1)2

andq(x) =

(i) x=0

The denominator gf(x) contains a factox( 0f wherer =1 # 1 and the denominator
of g(xX) contains a factorx(— 0 wherer = 4 > 2. Therefore = 0 is an irregular
singular point.

(i) x=i
The denominator qf(x) contains a factox(i)" wherer = 1 # 1 and the denominator
of g(x) contains a factox(i)" wherer =1 # 2. Thereforex=i is a regular singular
point.

(i) x=—i
The denominator qf(x) contains a factox(i)" wherer = 1 # 1 and the denominator
of q(x) contains a factorx(+ i)" wherer = 1 # 2. Thereforex = - is a regular
singular point.

(iv) x=1

The denominator gf(x) contains a factox( 1J wherer = 1 # 1 and the denominator
of g(x) contains a factox( 1J wherer =2 # 2. Thereforex= 1 is a regular singular
point.

Thusx =i, —i, 1 are regular singular points axé O is an irregular singular point.
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Q. 3. For each equation, locate and classify all its singular points in the finite plane.
(@) X3(x=1)y + (x—1)y+ 4xy= 0. () X2(xP—4)y +25¢ y+3y= 0
© y'+xy=0 (d) x3(x—4)?y +3xy —(x=4)y= 0

ANS.:

(@) ag(x) = X (x-1), & (XY= 0givex=0,x=1.Thereforex= 0 andk = 1 are singularities.
Given equation can be put in the form
4
x2(x—1)

for x = 0, denominator gf (X) contains a factax’ wherer = 3 > 1 and therefone= 0
is irregular singular point. For= 1, denominator gf(x) contains a factorx(— 1)
wherer =0 # 1 and the denominator qfx) contains a factox( 1) wherer = 1% 2.

Thereforex = 1 is a regular singular point.

y=0

n 1
y'+—=y+
%3

(b) ay(X) = (R —4)= ¥ (x+ 2)( x=2). 8 (X) = 0 givesx= 0, 2, —2.Therefore 0, 2, -2
are singular points. Given equation is

V' + 2X 3

y+— y=0.
(X+2)(Xx=2)"  x°(x+2)(x=2)
Forx = 0, the denominator @f(x) contains a factof wherer =0 % 1 and denominator
of q(x) contains a factax’ forr = 2 # 2. Therefox = 0 is a regular singular point.
For x = 2, the denominator qf (x) contains a factor X — 2) for r = 1# 1 and the
denominator ofj(x) contains a factorX— 2) forr =1 # 2. Therefox = 1 is a regular
singular point.
Forx = — 2, the denominator @f(x) contains a factorX + 2) forr = 1# 1 and the
denominator ofj(x) contains a factor{+ 2) forr = 1 # 2. Therefox = -2 is a regular
singular point.
Thus, all the singular points are regular.

(c) 8y (x) =1+ 0 for anyx therefore equation do not have any finite singular point.

(d) ag(x) = X¥(x—4)%. a(X=0givesx =0, 4.x = 0, 4 are singular point of the given
equation. Given equation is
3 1 _
coeap Y T een””

Forx = 0, the denominator @f(x) contains a factot for r = 1# 1 and the denominator
of q(x) contains a factok' forr =2 # 2. Therefox = 0 is a regular singular point.

Forx = 4, the denominator @f(x) contains a factorX— 4) forr = 2 > 1 therefok =
4 is not a regular singular point.

Thusx = 0 is regular ang = 4 is irregular singular point.

0

y" +
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EXERCISE

1. For each equation, locate and classify all its singular points in the finite plane
(@ x*y+y=0 (Ans.: x=0is regular, no irregular)
(b) (X*+1)(x—4Py + (x—4F y+ y= 0 (Ans.: x=i, —i regularx = 4 irregular)
(©) x*(x—2)y +3(x—=2)y+ y= 0 (Ans.: x =2 is regularx = 0 irregular)

(d) (1+422y +6x(1+ H2)Y —9y= 0 (Ans.: x=i'§ are regular)

2. Find all solutions of the following equations.
(@) x?y'+2xy-12y=0 (Ans.: y=gxC+ 6, X*)
(b) xzy’+xy_9y:0 (Ans.: y= clx3+ c‘Qx_3)
2 X
(c) Xzy,+xy_4y: X (Ans.: X:C_I_X2+C2X2_§)
(d) x?y'—3xy+4y=0 (Ans.: y=3%(g+GIn )
(e) x?y' +5xy+5y=0 (Ans.: y=x"?[gcos(nx)+ G sin(inx])
3. Find all solutions of the following equations.
(@) X2y —5xy+9y=0 (Ans.: y=|xP (g +cIn|x])
1 2
(b) 9x?y"+2y=0 (Ans.: y=g¢ | xP +¢ | xP)
1
(c) 2)(2y"_3xy+ 2y=0 (Ans.: y:cl|x|2+C2|xF)

Unit 2: Second order equation with Regular Singular Points

A second order equation with a regular singular poixg heis the form

L(y) =(x—%)* Y +(x—%) & 3 ¥+ I X ¥ 0,

wherea(x), b(x) are analytic functions ag i.e. they have power series expansions

a9 =3 ay(x= %) andb(x= 3 B (x5 §
k=0 k=0

which are convergent on some interwatk,| <r, for somer, > 0.
Without loss of generality we assumg= 0. Then

L(y)=X°Y +x& } ¥+ It x 0 and
a( =3 ay X, H(x=7% By ¥ which are convergent on an interval
k=0 k=0
| x| <rg, ro>0. The Euler equation is a particular cask(gf = 0 witha, b constants.
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A second order equation with regular singular point has a power series solution. If functions
a(x), b (x) have power series expansion on some intew/pk| , then the power series solution
converges on the intervak | <r,,.

Theorem 3.2.1
Consider the equation

X2y +a(} xy+ H X ¥ O,
wherea andb have convergent power series expansions xdrq ro, ro > 0. Letry, 1,
(Rer, = Rer,) be the roots of the indicial polynomial

q(r)=r(r-1)+a Oy +b (0)
for 0 < |x| <rqthere is a solutiog, of the form

aw=Ixf 3 ok (e=D),

where the series converges far| |<r,. If r; —r, is not zero or a positiove integer, there is a
second solutio, for 0 < |x| <rg of the form

ex)=Ix[2 3 g X (¢=1),
k=0
where the series converge for||<r,,.

The coefficientsg,, ¢, can be obtained by substitution of the solution into the differential
equation.

Proof :
Suppose we have a solutigrof the form

qo(x):xrgq@%( (¢ %0, x>0)
K=0
for the equationL(y) =y + & ¥ xy+ If X ¥ 0.

Where a(X) =Y a, X‘and b(x)= ¥ By X for |x|<ro Then
k=0 k=0

o(x) = X g q X = % g X,
K=0 K=0

[0e]

B =y (kg A=Y (ke g X,
k=0

k=0

FH= 3 (k+ 1) (k+r-1)g X 2= {25 (k+ 1) (k¢ r-1)g %
k=0 k=0

b(x) () :ééoﬁk X %Biéo & xk%

Differential Equations (113)



0 ~ ~ k
X'y B X where B, = S ¢ By,
k=0 j=0

Do 00, O
xa(X @ (R ﬁgoak %ﬁﬁxf > (kg ﬁﬁ

=X éﬁoakxk %%20(“ ) g X %

e - - <o
=X ZCYka where ak = 3 (j+r)c; oy_;
k=0 j=0

g (0=% 3 (k+ 1) (k+ r-1) g X.
k=0

Thus, L@ ) =X 5 (k+ 1) (k¥ r-Dg ¥+ XY ax £+ Xy B,
k=0 k=0 k=0

=x § §k+ r(k+r-1)g +c~rk+bkg>¥
k=0[] U

L(¢) =0 implies[ Ik = §k+r)(k+r—1)ck +&k+bk)8=o

- k=0,1,2,3,....
Using the definitions ofry, B, we can write [ Jas

K K
[ Jk=(k+n(k+r=1)c,+ _Zo(j"'r)cjak—j + _ZOCJ' By j
j= i=

k-1
=[(k+r)(k+r=1)+ (+r)ag+ By +JZOEU )0k B B

for k = 0 we must have
rr=1+rag+pBy=0.
Sincec, # 0 the second degree polynongaiiven by
a(r)=r(r-D+rag+ By
is called the indicial polynomial and the only admissible valuesaoé the roots ad.
[ lk=qr+kKc. +d.=0 (k=1,2,3,...))...... (3.2.1

k-1
where dk: Z gj"‘r)ak_j"'ﬁk_ja:j (k:1,2,3,)(322)
B

Note thatd, is a linear combination af, c;, C,,.....C,_; With coefficients involving the
known functionsa, b andr. Leavingr andc, indeterminant for the moment we solve equations
(3.2.1) and (3.2.2) successively in termgpéndr. The solutions we denote B (r) and the
correspondingi, by D,(r). Thus,

D
Dy(r) = (r oy + BrX o cl(r>=—q(;—(+ri),
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and in general
D (r)—‘kE_l@j +r)a,+B [ r)C (r)‘———k(r) k=123..)
k J:O k—] k—] i y k q(r+k) , Ly O,

TheC, thus, determined are rational functions cdnd the only points where they cease
to exist are the pointsfor which the denominata|(r + k) = 0 for somé& =1, 2, 3,.... Only two
such possible points exist.

Define® by

P(x,r)=gxX +X T G(nX ...(3.2.3)
k=0
If the series converges for 0x <r, then clearly

L(®) (x,1)=co a(n)X,
sinceCy (r) satisfies equation 3.2.1 for evéey 1, 2, 3....

Thus if the functionp = x' > G X is a solution ot (y) = 0 therr must be a root of the
indicial polynomial k=0
a(r)=r(r-+rag+pBy
andc, (k= 1) are determined uniquely in termsr@fndc, given by equation (3.2.2), provided
qr +k) =0 k=1, 2, 3,... Conversely ifis a root ofg and if C,(r) can be determined then the
function ¢ given by equation (3.2.3) is a solutionLgf) = 0 for any choice od,, provided the
series in equation (3.2.3) is convergent.

Letr,, r, be two roots offand supposBe > Re . Thenq(r, +K) #0 forallk=1, 2, 3,...
Thus,Cy(r,) exists for alk = 1, 2, 3,... and for, = C, (r) = 1 we get a solution.

A0 =0 =23 G (GD=D),

Is a solution ot(y) = 0, provided the series converges.

If r, is a root ofg distinct fromr, andq(r, + k) #0 fork =1, 2, 3,..., then clearlg,(r,) is
defined fork = 1, 2, 3,.... and the functieh, defined by

©:()=0(x ) =H* 3 GA (o) =D

is another solution df(y) = 0, provided the series is convergent. The conddg{os+ k) # O for
k=1,2,..issame ag+k=r, foranyk=1, 2, 3,.... or; —r, #k i.e.r; —r, is not a positive
integer and the result follows.

lllustration :
Consider the equation

L(y)=x2y'+§xy'+ Xy= 0

As per theorem 3.2.1 we assume the solugiohthe equatio.(y) = 0 as
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P()=X 3 gk

k=0
FO=X"1Y (k1) g
k=0
and  FO=X2Y (k¢ n)(k r-Dgt
k=0

¢ %

L@ =K 5 (ke (ke =Dt +3 4 5 (ke g+ &7
k=0 2 o 0

:Eﬁ(r _1)+gr §0Xr +%r +1)¢ )+g( +1)§1+00§p(”1

+%r +2)(r +1)+g¢ + 2)%2 +cl§p(r+2 + ...

TM s

q(r) =r(r —1)+gr is the indicial polynomial
L(@) =a(NceX +[a(r+) g+ @] X +[ d r+2) o+ g k™2+.....
=q(r)cox + )(kg [c(r+ K g+ q(_l] %
=1
L(p) =0impliesq(r) = 0 andq(r+k) g, + G, =0
g(r)=r(r —1)+gr =r @ +%ﬁ= 0 implies r =0, —%

(Rer,>Re ) Definer, =0,r, = _%

0 ai —__ Gk _
g(r+k) g + g1 =0 gives ¢ qr k)’ k=123,..)

1 00 1 oo 1 0O O 1 EFO
N[ N[ L
q(r+k) 00 or+k=1)00 a(r+k=2)g O a(r+1)0
In the above expressian_; is written in terms of,_, , ¢,_, is expressed in terms of
C.3and so on.

U
Thus, Ck = [T
U]

_ (=2
C = , k=
gq(r+k)q(r+k-2)q(r+k-2)....qF+ 1)

. 1 . . .
Sincer, =0,1, = > ,F1 < 2is non zero and is not an integer. Therefore we apply theorem
3.2.1. For =r; =0,cy = 1 we get

=1
@(x) =1+ kzl q(k) o( k=1) ( k—=2).....q(1)
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and forcy = 1,r =r, = — 1/2 we obtain another solution
11

k Kk
@ (x) = X2+x22 (_1)X

§< k—— cﬁk— ..... %

These functiong,, ¢, will be solutions provided the series converge on some interval
containing 0.

Let@(N= 3 d (3.
k=0
Using the ratio test we obtain

|dk+1(x)|: |X| _ |X|
ECIRECGE] kD2

the series defining, is convergent for all finit&. The same is true fa,.

- 0ask - o provided x| <eo. Thus

To obtain solutions fox < 0, all the above calculations are valia'ifeplaced by x|,
where| x [ = o9k

Thus two solutions which are valid for &l O are

o (-1 x
A=Y G0 dk=D) A k=2)..a) 2

E :
0 (x) = x| 2 EJL+§ (-1

lpnen

where| X |? is a positive square root of |.

Thus we have seen that if the roots of indicial polynomials are distinct and the difference
between these two roots is not an integer then the solutidi{g)cf O will be constructed by
using power series method.

In the next theorem we prove that if the roots are identical or the difference between the
roots is an integer still the power series solution exist.
Theorem 3.2.2
Consider the equation
— 2 I U
L(y) =x"y + &% xy+ 6 X ¥ O,

wherea, b have power series expansions which are convergenxfot iy, ro > 0. Letry, 1,
(Re = Re 1) be the roots of the indicial polynomial

q(r) =r(r —1)+a (O +b (0).
If r; =r,there are two linearly independent solutignsg, for O < |x| <r, of the form
Q) = x[r 01(x), @, () =] x[*1 0, (Y (log | x Iy (),
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wherec,, 6, have power series expansions which are convergenx fer1|, ando,(0) # 0.

If r, —r, is a positive integer there are two linearly independent solutng, for
0 <|x| <rqof the form

@a(x) =1 x[* o1(x),

@ (x) = | x[? 0, (x)+ dllog | x )y (%),
wherec,, 6, have power series expansions which are convergenxferr,, o, (0)# O,
0,(0)# 0, andc is a constant. It may happen tlat O.

Proof :
Forx > 0, suppose we have a solutigof the form

O(x) =X % G X.
k=0
. ~ ~
L@ =X 5 Rk+ 1) (k+ r-1)G +ae+ B
k=0[] [l

~ k ~ k
where ay=5 (j+r)cja_jand B =5 cj By
j=0 i=0

a(x):gak%‘, ug:%gk}{
k=0 K=0
L(g) (x) =0 implies
[ Ik =%k+r)(k+r—1)ck+o;k+ﬁk5:0, k=0,12,3,...
U U

k k [l
> (j*r)cjarj+ ¥ ¢ B0
' j=0 g

0
=k+r)(k+r-1)c +
B j=0

:[(k+ r)(k+r-1)g + (k+r)ag +,30]Ck

k-1
+ > Hitr) o+ BB
i=0
Fork = 0 we must have

() =r(r—D+rag+By=0
Then

[ I«=a(r+k) ¢ +dc=0 . 3.2.4
k-1

where dk=_20@j+r) O+ Br-j B ...3.2.5
J:

Here, we are going to consider two cases according as the;fogotRe r, > Re ) of the
indicial polynomialq(r) satisfy.

Differential Equations (118)



Case (i) rqy=r,
Case (i) r,—r,is a positive integer.

Since,Re ;> Rer, q(r; +k)#0 fork=1, 2, 3,.... and we can solve equation (3.2.4) and
(3.2.5) forc, andd,. Let the solutions of, be denoted b¢,(r) and solution fod, be denoted by
Dy(r) . Then

L(®) (X, 1) =co q(r)X’ .....3.2.6
where® is given by
N =X +{ T G ¥
k=0

TheC,(r) are determined recursively by the formulas
Co(r)=co#0,
q(r+k) G(r) =-Dy(r)

k-1
Dk(r): ZO@J +r) ak_j +,8k_j@2j(r), k =12,3,....
J:

In case (i) i.er; =r,, q(ry) =0,q9" ¢,)=0.
On differentiating equation (3.2.6) with respect to
We get

9 o
aL(cp)(x,r)_LBa—rﬁx,r)
=Co[d(r)+(logx) o(r)] X

and we see thatif=r, =r, andC, = 1, then

Lﬁ%@(x, 1) = co[q () + (l0gx) g (r)] X"
=0.

. (PP WP . )
Since L X, r)=0, X,I; ) is a solution ot = 0. Thus the term by term
Ba_rﬁ D=0, =2 ) (9) y

differentiation of equation (3.2.3) gives the second solution

o (x) = xﬁéoq(rl) X+ (log X yEléo G(p &

=Xx1Y G (r) X +(log Y@ (.
whereg, is the solution already obtained in (3.2.3)
A =x1 Y G(n) X, (G(0)=1)
k=0
Case (ii) : Suppose, =r, +m, wheremis a positive integer. I€; is given,

Ci(rp), Co(ro),....., Cy 1)
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all exist as finite numbers, but since

g(r+m) G,(r) =—Dy(r), the coefficient oC (r) becomes zero at=r,.

q(r) =(r—r)) —>)
and hence,
q(r+m)=(r+m-g)(r+m-n)
=(r+m-r,—-m)(r+m-=n,)
=(r—=ry)¢ +m —r,)

If D,(r) also hasrg —r,) as a factor (i.eD,(r,) = 0), then it will get cancel from both the
sides of equatiog(r + m) C(r) = —D,(r) and would giveC, (r,) as a finite number. Then

Cra(r2), Creo(r), ...
all exist. In this special situation we will have a solutigrof the form

B9=4 3 G) X (G(1)=1

If we chooseCy(r) =r —r, thenD,(r,) = 0, asD,(r) is linear homogeneous ©y(r) ,
Cy(r).... C,_4(r) and henc®,(r) hasC, (r) as a factor.

Let
W= 3 GX (G(D=(r-r)

L@)(x,r)=(r—rp)a @ X'
ThereforeL(y) (x,1,) =0 and

Yx) = (xn)

is the second solution di(y) =0

SinceCy(ry) =C4(ry) =.....= C,,,_1(r ») = 0, the seriegyactually starts with thexth power
in X.
To get a solution associated withdifferentiate

LW) (x, )= —r)a X'

with respect ta then
d _, oy
L@ n]=L Ba—rg(x, N

=q(n)x +(r—rp)[d'(x)+ (logx) q(r)] X

oy 0 _
and LBO_rH_O atr=r,
and 0= (xr)
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IS a solution provided the series involved is convergent and

B0=x 3 G/ (A +(09 0 £ 3 Glp) f

whereC (r) = (r —r,) and
Co(rz) = Cl(r2) = Cz(r?) == Cm _1(r 2): 0
Thus,

B(x) = eréoq((rz) ¥ +(1og ¥ %Zém G () X
=X 3 CB) A #1099 3 Gun(9) 4"
= X k;c;(rz) X< +(log ) X2 mi;o Geern( T~ 1) ¥
= X éoq“z) X< +(log ) % cmi;o G(D X"

B0 = 4 3 Gl +(09 4TI ()

Wherec is constant.
Forx< 0, we replace™, X2, logx everywhere byx |*,|x |2, log|x| respectively and the result
follows.

The method used in the theorem 3.2.2 is called the Frobenius method. The sgjugions
are linearly independent. Thus, if the roots are equal or they differ by an integer then theorem
3.2.2 gives two linearly independent solutions of the differential equation

L(y) =Xy + x& ¥ ¥+ 6 X y=0.

EXAMPLES

Q. 1. Find all solutions¢ of the form

°@=Ix 3 6k (x> o)

for the following equations.
(@) 3x?y'+5xy+3xy=0

(b) 2xy'+(1+x)y —2y= 0
Test each of the series involved for convergence

Answer (a): Forx > 0 suppose we have a solutigof the form
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o(x)=x § G X, ¢ %0
k=0

then Px)=x" % (k+ NG X ang @(X) = xr‘zkgo(k+ N (k+ r—1)g X
K=0 =
Let L(y) =3x°y +5xy+ 3xytherefore

L@OM=X 3 [3(k+ N (k+ r-1+ 5K+ r] gk + X By ¢ ¥
k=0 K=0

=[3r ¢ -D+Blex" +{[3¢+ Y + 5(+ I, + Gopx'™
H[30r+2)¢ +D+5¢ + 2Jc, + Bx2+ .
Let q(r)=3r(r -D+5 =r (B8 + 2)then
L(@) (%, 1) =q(r)cox” +[a(r + ey + o] X +[q + 2)c,+ T X 2+ ...

=q(r)gX + g [o(r+K) g +3 G %K
k=1

L(p)(x,r)=0 only if q(r) = 0 and

g(r+k)g +3g,.4,=0 for k=1, 2, 3,.....

2
The indicial equation (r) = 0 impliesr (3r + 2) =0 thatig” =0, —% .Letr, =0, = T3

(By choicer; >r.)

Since anN=rFr+2),q¢ +tk)=F+k)@f +tk )+ 2)= ¢+k )(3 + 8+ 2)
q(r+k) g, +3g.4 =0 gives

_ ~

q(r+k)

Cy , k=1,2,3...

_ (=3)co
g(r+k) gir+k-1) g(r+k—-2)....q+ 1)

Casel:r;=0
(-3)co
q(k) o(k=1).....q1)
_ (-3)"
k(Bk+2)(k-1)(X -1k —2)(X —4)....0 5
_ (-3)
k! 5BOIMMX —4) (X —1)(&+ 2)

Forcy = 1 we obtainc, =

Thus,

@(x) =1+ % (3 "
&1 k! 5BIUTHX —4) (X -1) &+ 2)
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Case2: =2
ase 2 : I 3

-3¢y
qﬁ(_zm A_5H Hw_7H

o3 Hokaf - et

Forc, = 1 we obtainc, =

Since qn =r 3r+2)

Cx = (_3)kco
202 50 80 1
%—gg(3k)5k—§ﬁ(3k—3ﬁk —H@&=6).503
_ (=3)co
kI LA T3 —8) (X —5)(X —2)
Thus,
2

5 &1 k! L7 {3 —8) (X —5) (X —2%
To obtain solutions fax < 0, we replac&’ by |x|". Thus,

@(x) =1+ % (3"
&1 k! 5B X — 4) (X —1)(&+ 2)

(_3)ka |:|
k! 1007 I3 —8) (X —5) (X — 2§

These functiong; andg, will be solutions foix # 0, provided both the series converges
on some interval containing= 0.

20
and (Pz(X):lesglfrZ

Let @)= 3 d (X
k=0
Using ratio test we obtain

dea9|_| @x o 8ixl
di (X) (k+1)(3k+5)| (k+1)(3k+ 5)

ask — <o provided [x | <ee. Thus, series defining, is convergent for all finite.

Let @ (x) = f d (¥
k=1

Using ratio test we obtain

di41(X)
dx (¥

-3x _ 3|x| =0
1 (Bk+1) (k+1)
oo

ask — <o provided [x | <ee. Thus, series defining, is convergent for all finite.

Thus¢,, ¢, are solutions of the given equation.
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(b) Suppose fox > 0 we have a solutiogof the form
p(x) =X S G X, ¢#0
k=0
Let L(y) =2xy + (1+ X) y —2y= Othen

L@ = 3 2k+1)k+r-1C X1+ 3 (k+ )Gk
k=0 k=0

+3 (k+1)C T 25 G kT
k=0

k=0

= 3 [2k+ 1) (k+r =1+ K+ C XL+ T (k1 —2)G AT
k=0 K=0

=[2r ¢ —D+rJox 7 +{[ 26 + D ¢ K+ oy + 1 —2) "
H[20+2€ +D+ € + 2oz + € 1 px" -+

=a(eoX "+ 3 [ar+ 1 G+ (r+ k-9)Go]

The indicial equationy(r) = 0 implies 22— 2 +r =0, r (2r — 1) = 0 gives’ =0, %
Let Iy :% andr, = 0.
Observe that, # r, andr, —r, is not a positive integek(¢) (x, r) = 0 if and only if
g(r) =0 and
q(r+k) G +(r+k-3)G_y=0 or

M for k=1,2,3
q(r+k)

Sinceq(r) =r(2r —1)thereforeq(r +k) = (r +k) (2r + 2k —1) and
D(r+k 00 r+k-4)00 ¢+k — S)D o ¢ —2)4d

=t ———— 00—
"H qr+k B qrrk—pHH ar+ k=28 H g+ 2

_ (1) (r +k —3) ¢ +k —4) € +k — SN — 2,
(r+k) 2r+2& —1) (+k —1)(2+ B —3)..r+ D¢+ 1)

K=~

1
Case 1 :I’1=§,C0=1

(—1) ﬁ( 7ED —2 ||||||ﬁ—:ﬁ
Ck: 30

D
e LHamfk-2Fok- Z)Ek - @

_ (D) (K =5) (X =7) (X -9 3 (-1)(-3)
2Kk 1(2k +1) (2k — 1) (% — 3JIIm(3)
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_ GINE)
2Xk1(2k +1) (2k —1) (X —3)

and

|~

a+ g _ 3(=1f xk E
A ko1 2¥k!(2k+1)(2k —1) (X - 3]

N

@ (x) = x

Case2r,=0,Cy=1

o, = (D k-3)k -4) & ~5JII(-1) (-2)
K k(2k —1) (k —1) (X — 3)JIII(Y)

for k = 3,C; = 0 thereforeC, = 0 fork=1, 2, 3,...

_ (=26C _
=— =2
o @
c,=-HG_2_1
2B 6 3
and @ (X) = Co+ G x+ G X
=1+2x+1x2
3

Thus, forx# 0 we get two solutions
1

=0 00 1K K |
@ (x) =] x]2 g__,_ 3(-1)x

=1 2Kk 12k + 1) (2k —1) (X —?E

2
®(x) =1+ 2x+%

Check that series in the first solution is convergent@®t) = > di(X.
K=0

Using ratio test

i+t X - | x| .
dy 2(k+1)(2k+ 3)| 2(k+ 1)(x+ 3)

ask — o if | X | <ee. The series convergent for finite

Q. 2. Obtain two linearly independent solutions of the following equations which are
valid near x = 0.

(@) x*y +3xy+(1+ Q) y=0
(b) X2y +2x2 Yy —2y=0
Ans. :

(a): Forx > 0 suppose we have a solutignof the form
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mm=%§c;% . G#0
=0
Let L(y) = X2y +3xy+(1+ Q) y

L@ 1) =Xy (k+ 1) (k+r-DG X +3X T (k+ NG X+Y G X7 +x' T g X*

= 3 [(k+ 1) (K+r =1+ 3K+1 )+ LG + 5 g &
k=0 k=0
L(g) (x,r) =0 implies

g [(k+r)(k+ r—1)+ 3Q(+r)+]]Ck NS g Ce JHrl = g
K=0 Zo

[r(r =D+ 3 +dCox" +{[ € + D€ » A+ 1 £,+Cpx"™
H[(r +2) @ +1)+ 3¢ + 2+ IC, +C}x "2+
q(r) =r(r —1)+ 3 + 1= Ois indicial equation.
Q) =r?—r+3 +1= ¢ + 17
L(@) (00 =a(r)Cox" +[a(r +1)Cy+Co] X ™ +[a(r +2C o+ C|d **+ = 0

=a(CoX + 3 [dr+ K G G K™ =

L(e)(x) =0 if and only ifg(r) = 0 and
q(r+k)G +C._1=0 fork=1, 2, 3,...
qr) =0implies { + 1)2 =0thatis =—1is arepeated root. Herer, =r, = — 1.

q(r+k)G +G_;=0fork=1, 2, 3,...

Since,  q(r)=(r +1)?, q(r +k)= (r +k +1)* and

_ G
(r +k +1)2
R ad -1 0o -1 U -1 O -0
_E(r +k +1)2 Eﬁ(r +k)ZEH(r +k —1)2 EH(r +k —2)251]%( + 2)25

_ 1)*Co
[(r+2) ¢ +3)ME +k —2)¢ +k —1)( +k )( +k + 1}

The first solution will be constructed by substituti@gs atr = — 1 in the serie€, at
r=-1is

(G
C= e
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q(x)=xf§q%

< (—1)
kzO 2
The series converges for all finie

Sincer = — 1 is the root of multiplicity 2, i.€.=r, =r, = — 1, the second solution
%) =X 3 G() X +(log Y1(3
k=0

(-1Cy
[(r+2)(r+3)(r+4)mn1 +k +1)]
DefineD=(r+2)¢+3)( +4)..... ( +k+ 1) then
o (-2)01 1 1 1 O
Ce= DG 02 B2 rea rea B
21 1, 1 10
w2 A2 +EDH}EE
p=xty CACY d+2+2em10k + (0g W (3
k=o k!

To obtain solution fok < 0 we replace by |x|.

Cy

iD=

Thus, the two solutions are

0 =|xt 3 CUX
k=o k!
%) =Ix* 2(2)(21* 2+ 2emm 150
k=0 k!
k Kk
+(log [xx Tty EX
k=0 k!

Check that series in both the solutions converge.
(b): Forx> 0 suppose we have a solutigrof the form

o0=X3 G X (G*O
Let L(y)= Xy +2x2 y—2ythen

L@ =3 B+ ke r=D0o¢ T + 2t 1)G O™ - 26, £
k=0

= %[(k+r)(k+r—1)_z]ck Xk+r+§ 20+ 1)C, Jerrel
k=0 K=0
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=[r-D-Acox" +{[ €+ 1)t )-IC,+ 2Cx™
H[(r+2) ¢ +D-AC,+ 2¢ + 1L} x"* 2+ 0D

=q(r)Coy X + E [q( r+k) G +2(r+ k_l)C.(—l] £k
k=1

Indicial equation isq(r)=r(r —1)—2= Ogivesrz—r -2=¢ -2)(+1=0r=-1, 2.
n=2,r,=-1andr, —r, =3 a positive integer.
If ry —r, is a positive integer, we try a series using the smallest ragtalfidc; both turn

out to be arbitrary, we obtain the general solution by this method. Otherwise the general solution
will involve a logarithm as it did in the case of equal roots. That logarithmic case is treated in

theorem 3.2.2.

. . . _ - 1 _
Let us consider the series solution @) = ¥ 6. X  (r,-smallest root = —1)
K=0

L@= 3 kD=2 A7+ 5 (- £ -7 ¢ ¥
= 3 [k-D(k-2)-Fq ¥+ 25 & -1 ¥
k=0 k=0

=@-2)k0 )+ 3 {{(-Dk-2-Fg+ 2 ~2k K

Sinceg is a solutionL(¢) =0 i.e.

0.co = 0i.e.cyis arbitary.

[k-)(k-2)-g+ 2k -241= 0 k= 1,23,..
k=1 -2 —X=0ie.qg= g
k=2 -26,=0 i.e.,=0
k=3 (2-2)+2c,=0i.e. Oz= 00 ¢ is arbitary.
[(k-1)(k-2)-3g + 2k —2%5_,= 0 k= 4,56,...

(k?=3K)g +2(k=2)g_,= O
k(k=3)g +2(k=2)G_4= 0

ck=—m, k=4,56,7,....
K(k—23)
O2k-2)00 -2k —3) 00 -2k —-4) 00 —2(
““Hkk-3) Hk-Dk-adH k-2« -5 0 @1

_ (k-2 -3)k —4m(2)
k(k=3)(k—=1)(k —4) (k — 2) k —5)0 & 1
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_ (2K -2)6
- k!
Thus, we get a solution

o k—
§0(X) :CO X—l_ CO )P"‘ODX’L‘F % )g_l_kz (_2) ak(lk —2)6 § &—l
=4 .

_ O, 2 (2°%k-2)6 4~
= (LoDt gD+ 3 ¢ X5
Co(xX -1 635 k; w J

o 0, 2 (2 k+1)6 g0
TR T T g

_ 0 @ 2 k+16 U
=X e X5 e XD

Thus, we get two solutions

_ O 2 (-2k+1)6 (U
@ (X) = x{1-x) ande, ()= ngy AW %E

These are two solutions far> 0 forx < O replace by |x | we get,

ol O, 2 (2fk+16 U
@) =|xI™" (1-x) andp, & ¥ Méiélw %5

Check that series appearinggnis convergent series.

EXERCISE

1. Compute indicial polynomials and their roots for the following equations.

(a) xzy’+(x+ xC) y—y=0

Oo. 10

b) XPy'+xy+O¥—-=[y=0

(b) x7y'+xy O -2 B

(©) 4xPy + (@x* —5x)y+ (¥ + 2)y= 0

d) Xy +(x-3¥%)y+ & =0
2. Find a solutions¢g of the form

p(0=X 3 G X, (x>0
k=0

for the following equations.
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(@) 2xy'+ (¢ =X y+y=0
() X*y+(x=X)y+y=0
3. For each equation obtain two linearly independent solutions valid near origin
@ 2x(x=-1)y +3(x-1y —-y=0
(b) 2xy'+5(1+ 2x)y+ 5y= 0
() xy'+(2-x)y —=2y=0
d) 2xy'+(@1-2¢)y —4xy= 0

4. Consider the following equation neax = 0
(@) 2x2y' +(Bx+ X¥)y+ (¥ =2)y=0
(b) 4x?y' —4ax& y+ 3(cosx)y= O

Compute the roots,, r, of the indicial equation for each relativexte 0.

5. Obtain two linearly independent solutions of the following equations which are valid
nearx = 0.

(@) X2y —2x(x+1)y+2(x+ 1) y= 0
(b) X2y —2x2y+ (4x—2)y= 0
(€) xy' —(4+x)y+2y=0

d) X2y +2x(x=2)y+2(2-3)y= 0

Answers :

1. @ q(r)=r?-1 ; r=1r,=-1

I P
() AaN=r’=7 ;i =7, rp=—7

2 9 1 1
N=rc—=r+= D=2, r,==
(c) a(r) 275 1 277

d) q(r)=r?+1 ; rp=i,ro=+

N Gy A G\ S S
2. (@) W= X2 A 1) w(h= X o Xk 0 e
o )Mk -1+) o 2 @)@ K -1+ )
O =X e ke ap 2T L 2) ek —2)
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n

3. (@) w=1-3 % L Y= XX

n=1 4n% —1
35" > 10k
- - . — v 2 _10¥ 2
) V=12 e ey ¢ Y27 XX
_® @Bn+a)x™I | 2 (X
(©) P T Y2=1+ 2, 25BN —1)
G _ Lo ok 2k
@ %= 2 7k T Ssra a1
4. (a) rﬁ% : rp=-2
3 1
(b) r1:E : r2:E
5. (@) y()=x w(Y= X &-1)
_ _ _ a4 Ll Xy D
b) W®=X B(3= X g,+3x+6>% S i 4% log| X
1,1 @ 60x"
=1+= - : =
€ N +2X+12X2 ! Y Xr’+n§6 O -5nnh-1)n-2)
co n-3.,n+l
d) n=x-2xX+2x =X+ i S

n=4 n!

Unit 3: The Bessel equation

If o is a constanRea > 0 the Bessel equation of ordeis the equation

X2y + xy+( X —a®) y=0
This has the form

2 2
y+y+ X2 y=0
X
here p() =2 andq(® =22, x=0 is a singular point, Since the denom
where p —Xan q 2 is a singular point. Since the denominatop(@j

does not contain to a power higher than one and the denominatf(i.e. x?) does not
contain the factox to a power higher then 2,= 0 is a regular singular point. Therefore the
power series solutiop will have the form
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p0)=X 3 G
k=0
Let L(y)= X2y + xy+(X¥-a?)y

L@ (=3 K+ k+r-DC X +3 (k+ NG X+ (£ a?)y G X
:éogkﬂ)(m r=1)+ (k1) a2, X +éoq< 2
=H(r=1)+r —azgioxr *HE+y €+ 1)_a2%;f(r+l

v {Hk+r)2—GZHCk +ck_2} &
k=2
The indicial equation is
q(r)=r(r=D+r —a*=0
q(r) = r’—a?=0.

The indicial polynomiaj(r) has two roots, = « andr, = —«. We shall construct solutions
for x> 0. We consider three cases nanmely 0, 2xis not a positive integer andvds a positive
integer.

Casel:x =0

Since the roots are both equal to zero by theorem 3.2.2, there are two salytigres
the form

@(x) =01(x) and @, (x)= X0, (X)}+ (log x)p; (X),
Where 64(x), 05(X) have power series expansions which converge for all fiite
Sincea =0,

L(y)= Xy + xy+ Xy

Supposedy(x)= x* % G X = % G X (G#0) be a solution of(y) = 0. Then
K=0 K=0

[oe]

LOD()= 3 k(k-DG £+ kG ¥+5 G ¥?
k=2 k=1 0

k=

:§k(|<—1)cK >é‘+qX+§ kG §é+§ G, &
k=2 k=2 k=2

:clx+k§ {[k-D+K G+ G_3} %

=2

Sinceo, is a solutiori (c,) = 0 for allx. ThereforeC, = 0 andk(k—1)+ K] G, + G_, =0,
k=2,3,4
Thus,C,; =0 and
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k®C, =—-C,_, for k=2,3,4,.....
The recurrance relation becomes

_ G _
Ck——7, k—2,3,4, .....
Since C,=0,CG=C=C;=....= Cy41= ...= 0.
The choiceCy = 1 implies
C 1 C, O 100 10 (-7
C,=—2=—= C,=—2= = T
27T T T T T T 2 2 2o

In general
_ & _ (D"
222 [B°MMan)> 22" m ¥’
Thuso, contains only even powers and we get
3 (<] (_1)mX2m
A= 2 a2
The function defined by this series is called the Bessel function of zero order of the first
kind and is denoted by.JThus
®© (1 mX2m
o=y SXX
0o 2

2m

m!?

Lt Jo(¥=3 d(¥
k=0

Using ratio test

de | |22(k+12| 4k+17

ask — o if | X| <. Thus, the series converges far |[< < andJ, (X) is the first solution of
Bessel equation witty = 0.

2

Now we determine a second solutigyfor the Bessel equation of order zero (@.e= 0).
Let ¢ (X) = Jo(X) then the solutiom, has the form

P2(X) = x02(X +(log Y ( %

=3 g X +(log@a (¥, (G=0).
k=0
Sinceg, is second solution

L(g,) (X) = X°@, + x@, + X9,=0

% 0= 5 kgt + A2+ tog 3g{ ()
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o (X) = éz k(k—1)g X2 +@ _x%+ (log X"
L(%)(X):kzzk(k—l)Q X+ 20 (-0, ()
(109 )’ +élkq< X +@(3+ Klog 3¢ ( 3
+x2§00K X+ % (log Y@ (®

= 3 k(k-1)g X+ 3 kg £+3 ¢ ¥2+29 (¥
k=2 k=1 k=0

+(logx) (%@ + g + X,)
Since  L(@)=x°@ +x@ +@,=0
L@ (=5 k(k-)g X+¢x 5 kg 5+ £, %+2 e (X
k=2 k=2 k=2

Since L(¢,) should be zero ang ' (x) = Jg (),

Lo (=DMam @™t
A= (=3 7
00 00 ® 1 Zﬂ)gm
Thus 3 Mk-Da ka3 kg ke g, = ooy N
K=2 K=2 K=2 22™ (mt)?
@ —1)™ 2m 2"
ax+ ¥ {[k( k-1)+ K g+ ¢(_2} X = —ZZ(gm—z
K=o 27 (m!)
Since the series on right has only even powers afi odd terms on the left hand side

should be zere; =c;=c5=C; = ....= Cyy1 = .....= 0.
The relation for the other coefficients that isKkaven (lek = 2m) is

_ o (=1)"2m
mom-1y 2] g+ 2= 2502
3 (_1)m+1 B
Mm]Qm+QmQ E%Tz—gﬂ m=12,3,4,.....
1 |:|( 1)m+1 [l _
, m=12,3,4....
o om? 2P my? g
G =0
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and it can be shown by induction that

m
DT D1+—:L + 1 + [+ 1+ 1+1D m=12,3,.
22"(mH20m m-1 m-2 3 20

Com =
The solution thus determined is called a Bessel function of zero order of second kind, and
is denoted b¥,. Hence,
2 =)"g.1.1 1oxd™
Ko(X) == ——+=+=+1I+—= + (logx) Jp (X
0(X) mzzl(m!)z >t3 pREC{E (logx) Jp (x)
Using the ratio test we can check that the series on the right is convergent for all finite
values ofx.
Now we compute solution for Bessel equation of orderherea # 0 andRe« > 0.
L(Y) =Xy + xy+(X-a?) y=0
Letx > 0. The roots of indicial equation are
= o h=—a
Let us find out the solution corresponding {&= «. A solutiong,; (X) has the form

A0 =¥ 3 ok, (420
Then

LM =3 (kra)(k+a-1)g ¥+ 3 (kra) g ¥
k=0 k=0

(o] (o]
+ Z Ce Xk+o{+2_aZ Z G )2(+a
k=0 k=0

1
||M8

g +a)(k+a -1+ (k+a)—a’He X+ f G Xrar2
k=0
2 H

et -afp 7+ 5 gk

||M8

=00e X' +Ha +1f —a*Ho X+ § Hk+a)?-a Hg X
k=2

00

+ Z Cko X
k=2

k+a
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=006y X" +Ha +17 —a’Hg )é’+1+k§2g(k+a2)—az) &+ §-25 xra

Thus, L(¢)(x) =0 implies
Oleg =0, ¢ is arbitrary.
=0,
Ha+k)?-a’Ha+62=0 k=2,34,...
Since (@ +k)2-a’=k(20+Kk)z0 for k= 2,3,......,
k(2a + k)G + G_» =0 gives

_ Ck—2

Ck =— .
k(2a + k)
Since ¢ =0, cx41=0 for k=0,1,2, 3,.....
that is all odd terms are zero.
We find
= % - %
2(20+2) 2?@+1)
____ 5 _ %
Cy= =—
420+4) 2@+ @+2)
G = Y e —C4 _ —G
6(20+6) 126+ 3) 213§+ 3) 2°BIa+1)@+2)@+ 3)
8(2x+8) Baa+1)@+2)@+3)@+ 4)
In general,
—1)"
o (=D

22 mi(a +1) (o + 2) (@ + )M + m)’
Thus the solutio; becomes

AW =x 3 ok (¢20

:COXO’+)(1 % (_1)mX2m
mz1 2™ mi(a +1) (@ + 2)0Ha + m)

for « = 0 andcy = 1, ¢,(X) becomes), (x). Before going for the second solution let us define
gamma function and study some properties of gamma function.
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Definition 3.3.1
The gamma function is defined by

M(2) :Te-X XL dx (Re z 0)
0
Lemmal:l(z+)=2(2

Proof : F(z+1):Ie_X X dx
0
— Lim ° —X ,Z
—T_>00J-e X“dx
0

_ Lim Dz(i‘_x T
_T_.OO D( —_
H —1x=0

T ]
ol —e Xzt dg
0 g

T
=Hm z[e” L dx
0

=z[€ X 71 dx
0
=zl (2
. T
Observe that L™ xZe*|=H" T20s T_0=0
0

By definition 3.3.1
@)= Ie‘xdx: 1
0

Thus, ifzis a positive intege,
MNn+l)=nl(n)=n(n-1)(n-2)
=(n)(n-1)(n—2)(n— 3 (1)
=n!

Thus, gamma function is an extension of the factorial function to numbers which are not
integers.

Suppose Re< 0 andzis not a negative integer then there is a natural number N such that
—N<Rez<-N+1
But then ReZ + N) > 0 and therefore we can define
MNz+ N)=(z+ N-1)(z N-2)IM( # 1) E ( zThen
r@= iz ) ,
(z+ N=1)(z+ N=-2)(z+ N-3)IM( # 1) z
The gamma function is not defined at 0, -1, -2, -3,.......

(Rez< 0)

We have a solutiog, (x) as
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( 1)m 2m
m!(a +1) (o + 2)MHa + m)

A =X’ + X Z T

Now choosec, = . we obtain a solution of the Bessel equation of owder

2°T (@ +1)
which is denoted by, and is called the Bessel function of ordeof the first kind.
O [f 5 )" Ox "
WZHE 2, m H20
—o mi(a+m(a+ m-1)II + 1) @ +1)02

Ox [] °° " Dxﬁm
"y 0m'F(a+m+1)B_E (Rez>0)

Observe that this formula fdy, reduces td, whena = 0 ad’(m+ 1) =m!. J(X) is one
solution of Bessel equation with # 0 and Rex > 0.

To determine second solution we have to consider two situations. Eitfsan@ a positive
integer or 2 is a positive integer. We determine second solution for both the situations.
Case 2 : 20 is not a positive integer

If 200 is not a positive integer there is another solu@®rix) corresponding to the root
r, = —«aof the form

B)=x73 Gok.
k=0

On repeating the same calculations we have carried out for the, rigeplacex by —o
everywhere)

We get the second solution

(0= °° [ A M
J-a B_H 2 miT(ma+DH2d -

Observe thaf' (m—o + 1) exists for alin=0, 1, 2, 3,..... sinae is not a positive integer.

Case 3 : 20 is a positive integer
(a) ais not a positive integer .

If o is not a positive integdf (m—o + 1) exists and the functiah,, (X) is the second
solution of the Bessel equation.

(b) o is a positive integer.
Supposex =n. According to theorem 3.2.2 there is a solu@gif the form

(9 = x-“éo Gt + dlog B J( 3.
L(@)(X) = %@, (D + x@, () +( = )@, ¥=0 implies
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e -n-2
€03 (eontkn-ng ke 2 g ¢ 4+(dogwm
=0
+ XS% (k=n) g X1+ 3+ (clog 3 %B
@:O X E

(oo U
+(®=n®) 0y g X"+ (clog ¥ J(3T= 0.
Bk=0 =

SinceJ, (x) is the first solution correspondingdo=n, x2J;, + x J,+ (¢ — 1f) Jn(X =0,
and above equation gets reduce to

00

T (k—n)(k—n-1g £+ 2cx] —cd+ S (k- §gK™+ ¢y

k=0 k=0

00 00
+ Z Ck Xk—n+2_ n2 Z q( %(—n - 0
k=0 k=0

Therefore
%%k n) (k— n—-1+ (k—n)—fH g§ +Z Q§_n+2+2cxn](>).:0
or 2 %k nZEq< %‘”+§0 G X ™2+ 2cexJ(¥=0

thatis  Ofeg x " +H1-ny —nzgcxl'”% Hk—r? —rfd g XM+ % ¢ X2
k=2 k=0
+2cxJ, (X =0.

Since %Ck Xk—n+2:CO M2y qx1-n+2Jr s 2 2 6 37 2
k=0

k—n
Ck—2X ', we get
2

M s

K
0lox "+ H1-ny’ —rHg XH+|§2{ Hk—r)? - rf g+ 19—2} X"+ cxy= 0
On multiplying byx" we have
Ot + (=20 x* ¥ [K(=20 6+ £l & = o, ()00 v (3.3.1)

Since the first solution i3, (X) with & =nand forz =n,I'(m+ o + 1) =I'(m+n + 1)
= (m+n) ! we have
00 (_1)m [x ﬁm+n

In(¥ :mzzo m! (m+ n! EE
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Therefore

Lo < (2m+n) (D" Ox 0
(=2 m! (m+ ! a3a a3

Thus equation (3.3.1) becomes

o @ (2m+n) (=" ,@m2n
Olty + (1—-2n)g X+k§2[k(k_2n)ﬁ+ Q—Z] %= _rizzo m! (me+ r)!22m+n—1

.............. (3.3.2)

The series on the right side begin witAand sincen is positive integer, the right side do
not contain any odd terms. Therefafe= 0cy,1 =0 fork=1, 2, 3,.... and i > 1 then

k(k-2n)g + g_»,=0, for k= 2,3,4,.....2 —1.

Since ¢ =0, g=c=¢=...=Ccy_1=0.

— +Cy_o .
Whereas ¢y —k(2n—k) gives
22(n—1) 42(n-2) Z'ph -2)6 -1
C6 = C4 = CO
62(n-3) 312°(n—-3)(n-2)( -1)
. _ Co L
in general P , j=4,2,3,....n =1 ...(3.3.3
° T n-1 (- 2)6 - 3mmp —j ) 233
In particular
Con-2 %

222 _1)1(n—1)!
On comparing the coefficients &t in equation (3.3.2) we get
n _ c

2= 7O o1 T T (it
Thus 2= % =— ¢
2= M2 R P —1)!
and therefore c= —%. ..... (3.34)
2" (n-1)!

Sincec, , , is used to find, c,, remains undetermined, but the remaining coefficients
Consr Con + 4 Con + g----- CAN be obtained by comparing the coefficient€8f ) in equation
(3.3.2).

. D @+n) 1

(2n+2))(2+ 2] =D Xopa2) + Cone 2 2= € el 2 = 1,23....
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D' 2j+n) 1

4j(n+]) Cons2j +Consoj 2= —C i+ 22 j=1,2,3.....
forj =1 we have
(—1)(n+2)
4(n+1 + A W A
(n )C2n+2 Con = (n+1)|2”+1
_ o 1 0 ¢y
= +
Cam2 4D?“+1E(n+1)!ﬁl n+1t 4(n+1)
Choose—2"__ = +1_C P 1+D]]]]]}—lﬁ
4n+1) 42" [n+1)! 2 3 4 n
—C 1,1 1 10
: Con = + =+ =+ =+ [ =
+C 1.1, 1 1, 107
Then == ﬁl+1+ +Z+ S+ —+—
2T M 1)) 2 3 4 N n+
forj = 2 we have
_ _C(=1F (n+4)
4m(n+2)02n+4_ 2!(n+2)!2n+3 —Con+ 2
—C 2 [ 1 c 1.1 10
= + +1+ =+ =+ M ——
Came4 4[2[2!(n+2)!2“+3@l n+2H a2n+2) 4[2”+1(n+1)!@ 2 3 n+1
—C D1+ 1 +1+1+1+1+D]]]]]} 1Jr 10
42(n+2)|2“+255 n+2 2 3 n n+

1, 1
2 n+2%‘ Hi_ﬁh- i +D]]]]I+ * +
s (n+2)!2 2 3 n+ 1

__ —(Iyc 1, 1[0
_2@!(n+2)!2”+4%l F@+2+3+m} Yl

It can be shown by induction that

_ —-1"c 1 M
- =+ 2+ 3= HIIES ,
Can+am 2nl(n+ m! 2m2m %L "3 + Hﬁ“ 2" 3+ n+ m]
m=12,3,....
Finally we get a solutiog,
@) =x"3 g X +(dog ® H(¥
k=0
2n-1 00
=3 G X+ X "Gy XM+ XMy XM+ XN Y g #(log X )x
k=2n-1

Since all odd terms,,; =0, k=1, 2, 3,....., we get,
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.Co c 1.1 10
B =X+ X Z 22 [ I(n—1)(n— 2T —j) 2*n ElJerr?:mm}nE){1

0 2Mtn
-3 (=1)"cx o ﬁ+ += +D]]]]]} gﬁh +-= +D]]]]]} 1
m=1 2m!(n+ m! 2 2 3 n+ m

+(clog x) J, (%.

Wherec, andc are constants related by equation (3.3.4) wdren, the resulting solution
¢, is often denoted bi,.. If c = 1 thenc, = — 2" (n—1) ! and
o (2" -1

- _n2n—l Dk —N -
(pZ(X) X (n ) X le 22] J |(n_1) (n _Z)ED]]]HH —j )

X" 1.1 10 —1 )™ oxrem
o +§+3+m}n5 m=1 2tm!(n+ n)'EE
%-‘- L HFETH " +mm}n+lm%+(d09x)3 (¥
__DXD_nl —(n_J _ )ID)(DzJ
20 20" ””ETE | H20
X" 1.1 102 )™ mxEtm

oM §+3+m}n5 m=1 2[m! (n+ H)'EE

%+ += +[D]]]]} B+§L+ + = +D]]]]]}n+ %ﬂclogx)J

The functiong, whenc = 1 is denoted bi{,, . Thus
1x " =L (n—j— Dioxf 110,101 100x ]
Kn(X)=-= g | S+ +D]]]]]}
=350 2, HH "2n! nHd 20

ipxde O Dxc’rm%H L1, ﬁl 1 ([
RIS + o+ +mm]}
B_E -1 m!(n+ m)'B_E n‘HJr I%
+ (Iogx)Jn(x). .......... (3.3.5)
The functionK, is called a Bessel function of ordeof second kind.

In this section we have derived all kinds of Bessel functions. We list all these functions
here.
(1) Bessel function of zero order of the first kind denoted,p§) and defined by
Jo(x) = Z 2m 2
m=0 2 !
(2) Bessel function of zero order of second kind denote,py is
© ()" p.1,1 1xg”

Ko(9==3 &= o e e o B AP+ (0gx) o ()
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(3) Bessel function of order of first kind denoted by, (X) is defined by
xf e @ opxg”
Jy(X) = , (Rea >0
«0=HH 2 mir@emenn )
(4) Bessel function of orderof second kind is defined by equation (3.3.5)

Jo(X) is a solution of Bessel equation with= 0 Ky(X) is a second solution of Bessel
equation witha = 0 obtained according to theorem 3.2.2 where the roots of indicial equation
r,=r,=a =0.J,(X) is the first solution of Bessel equation whete 2 not a positive integer
andK(x) is the second solution of Bessel equation wlaeren a positive integer.

Depending upon the situation cho@send then find the required Bessel function.

EXAMPLES

1
Ex. 1. Supposepis any solution ofx*y'+ xy+ X y=0 for x > 0 and lety(x) = x2 (X

- . , 1
show that i satisfies the equationx®y’ +(x? +Z) y=0 forx> 0.

Ans. : Sinceg s a solution,x’¢' + x¢ + =0

1 1 1
Let W(xX) = X2 (%) theny’ (x)=% X 20+ X
R
and Y'(x)= 3 X 2@+ Xx2¢+ x2

1 3 5
X" (X) = —% X2+ X2 @ + X2

1 1
= —%xz @+ X2 (x¢ + X¢')

1 1
:_%Xz P+ x2(—=X) (SinceXq’ + g + Xp= 0)

1
=— (G 2=+ AW (Y

Thus, xzw"(x)+(x2+%)w(x):o

and y satisfies the equatiok’y" + (X +%) y=0 forx> 0.

Ex. 2. Let¢ be areal valued non-trivial solution ofy" +a(xX) y=0 ona<x<b

Let wbe a real valued non-trivial solution ofy" + B(X)y=0ona<x<b
Here «, fare real valued continuous functions.
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Suppose thatB(x) >a(x), (a<x < b)Show that if x; and x, are successive zeros gfon
a<x < b, theny must vanish at sone point,, X; <r; <X.
Ans. : Supposey(x) Z0for x < x< X then eitherg(x)>0 OxO(x, %) or ¢(x)<0
OxO(x, %) supposeap(x) >0 for x; < X< X%.
Sincex, andx, are successive zeros eitlggix) >0 on () ,% ) or@ Xx< 0on & % )
supposep(x) >0 on (4 ,% ). Then

Wo-o'y=g¢" —op" =-a W e+Bye
=(B-a)ey
[Sincegis solution ofy" +ay=0, ¢' +a (X)¢ = 0similarly ¢"(x) + B(X)y =0]

Thus, W¢ -ou') =(B-a)py >0 (B>a,py > 0)integration of above inequality
betweerx, andx, gives

[(x2) ¢ () =00l O] {9 ()@ () -9 (' ()] > 0
But x; andx, are zeros op thereforep(x;) = @(x,) =0 and above inequality becomes

Y (%) @ (%) =W ()¢ (%) > 0.
Sinceg(x) >0 for x; < x< % and ¢ (¢ )= 0,0 (¢ —h)x Gor h> 0. Therefore

§d(X1) — hi_n:lo ¢(Xl) _f(xl — h) >0

Similarly ¢/ (x,) <0

Let ¢(x) =-Ly and ¢ € )= Ly thenly Lp> O~ (X)L - (X)L, >0
I.e. Ly (X5) + Lap (%) <O

But ¢(x) >0 for x < x< % andl; ,L,> 0.

This is a contradiction to our assumption tpgk) > 0for X < X< X%. Thereforey takes
both positive and negative values in the interxglx;) and hence there exists; (X4, X5)
such thaty(ry) =0.

Ex. 3. Show thatJ, has an infinity of positive zeros.
Ans. : Jy (X) is a solution of differential equatiox? y'+Xxy+ e y=0
1
If Y(x)=x23 (X then by example Iy satisfies
10
y"+§+— y=0, (x> 0)
4x? E
The function satisfied (x) =sin X satisfiesy” + y=0

Since1+4—l2 >1 and sinx = 0 has infinitely many zeroes= nmr, n=0,1,2,3,....
X
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By above example&?(x) :1+4i2 anda )= E
X
1
WY(x) = x2 Jp(X has a zero betweewr and o+ 1)z forn=0, 1, 2
infinite number of positive zeros.

..... Thusly (X) has

1
- n 1
Ex. 4. (@) If A>0and ¢, & )= x2J, & x)shows that®, +F¢A =-A%g,.
X

(b) If A, uare positive constants, show that
1
— 1[0, (09, (x) dx= 0 D9, O —g, O’ Q).
0

©If AzpandJy @ )= 0,Jy f+ = 0O,show that

1 1
[ (@, (x) dx=[ XA ¥ 35(ux) dx=0
0 0

Ans. (a) : Jy (X) is solution of X2y + xy+ X y=0 thereforeJ, (4 x) is solution of
A2x2y+)\ X y+A 2y y=0 Where * represents differentiation with respectta.

1 1 1

It @,()=x2J(A% then @, (x):l X230 % RA04Q 3

w

%' (0= X 23 (A% + sz I Y+ %AZ 3 x
1
ngoA"(x)z—% X2 H(A %+ ngh%? TO ¥ x4

1
1 — —
=—Zx2JO()\x) + X2 g-)\zx'z @ 3

1

=—XEJ0()\ X)%‘+A2X2D

H

Therefore x%@," (x) + ﬁ% +12x2 EWA (¥ =0.

n 1
@ (X) +E§0A (¥) =-A%g,

Ans. (b) : o, (X)+ 240,,,(X)_ —H (Pu

o (X)+ %(X) =-A%p, .
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Multiply first equation byg, and second equation lgy, and subtract these equations.

0 -0 0= 10,0 +A%0,0 =0 -1 e,

Thus, ( —u )(P/\ (py ((py ) (P/\' (pﬂ)

Integrate above equation between 0 to 1. Since
1 1

& (%) =x2 %A%, ¢(0)=0and@, XF % 3 X), 9, (OF O.
Therefore

1
(A% =1 [0 (99, () dx=, Do () -0 Dy, @)
0
1
Ans. (€):  (A%-p?) [0, (09, () dx=9, @, O-¢ Op, O
0

Since, Jy(A)=0,¢,()=0 andJy g F @ @, IF O.

1
(A% =) [ @ (99, (¥) d x= 0
0

1 11 1
ie. o ()@, (¥) dx= X HA xR J(u xdx0
0 0
1
le. IXJO(A X) Jo(u ¥ dx=0.
0

Ex. 5. Show that J,"(x) = —J; (X).

2 ok g™
Ans. : Jo(¥ =Y ——
0 mZ:O m!2 2
fy e & (DT 2mXm
Jo (9 mzzl m2  22m
_ 2 ()" mx¥m
m=1 m|2 22m—1

Z ( 1)m+1 (m+1) X2m+l

Repl +1
2 o(m+1)!2 2m (Replacanbym+ 1)

Oxd & (—1) X E7rm
H

"R

—om!(m+1)! 02
=—=J1(x)

Differential Equations (146)



Ex. 6. Deﬁne,l_i whenk is a non-positive integer to be zero. Show thatifis a positive

integer the formula for J_,(x) gives.

I_n(0=D"3 (%

n )" oxg"
Zo mil (m- n+1) BEE

_xg" e ey ooxd” 1
= E énml(m—r)lgéﬁ (Asl_(k) 0 fork< 0)

Ans. : J_,(¥= %
[IX
a7

(Replacem byn+ n)

=(=D" 3, (%)
Ex. 7. Show that
@ (X" 3) (=X L0y
(0) (7 I) (N ==X Ja (R

xrf & )" oxd"
“o m [ (m+a +2) H2H

XA @ )™ oxd”
X 3a(9= v méo m! [ (m+a +1)

1 co (_1) X2m+ 2a

o mzo m[ (m+a+1) 22m

(x?J )':i 2 ()7 (@m+ 20) x2ME
@0 Som (mra+l) 22M

uil
0

ﬂlw )™ O
_XGEQE mom'|_(m+a) 2

X

=x“ Jg-1(®

)™ oxg"
m! [ (m+a +12) H2t

Ans.(b):  J,(X :%ﬁ 5
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R O A 't
00 Som[ (mta+1)

) © [N 2m>emt
(X ) Z im | (mya+1) 22M

0 (_1)m+1 z(m + 1) X2m+l
o (M+D)! (m+a +2) 22™2

'%|H

X & ~m xom
204 Somi (mra+2) 2m

_xgte @y A"
But Ja+1(x)_EéE Z o ml |_(m+a+2) BEE

g )™ oxpgm
2"+1 —o m! | (m+a +2)

—a
—X Ja+1 =

Thus (x‘a Jy )' =—x% Ja

8. Show that
(a) Jaa(¥W—Jp41(R=2 ‘L, (%
(0)  Jga(R+ Jpea(R =20 X L (3

Ans. X (RN=0F ) =aXTy+23 (i)
Xy (=X L) ==a XT L+ X (ii)
(a) Multiply equation (i) by<* and equation (ii) bx* and add.
Joa(W=Jpus(W=(@ X =a x) J+ '+ J =2 3 (X
Thus, Jg_1(9 = Jps1(X =23 (R
(b) Multiply equation (i) byx™* and equation (ii) bx* and subtract.
Jaa(Q+ Jpen(® =20 XT3 (3

Thus, using results of example 7 we have proved the required result.

Ex. 9. Show that K (x) = — K;(x)

Ans. : Kq(X) :—mil (r_nll);n + 1+ 1+D]]]]]}:ﬁﬁ5§ +logx Jg (X)
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P 5 L s A I | 1]2m ™t
Ko (X)=— +=+ =+ =+ J X)+ log x
0053, Qe 3 B S oo 3
0 m-1 [ o m[] ,
_ 2 (= +1+1+mm}1Dmx2 _1 Z (1) Dxﬁ 0gxJg
o (_ m—1 2] o m  2m-1
:5_2(1 +1+1+m}mmx2 10 x 5 )" ¥
2 m=2 m|2 2 3 22m -1 % E-szz 2 22’7’!
+logx Jg (%)

(D" T L —mE\H += +[|]]]]]}—1%+|09X~]o (%)

00 m . 2m-2
X, fxgs e Er}_m + 1y 1+DEH}—1%+|09XJO
4 2 =2 m“2 2 3

Replacenby m + 1 and use the resulty =—J, then

_1ox, xge (™ O E’rm 1 (m+1) 1, o 100
Ko (X < 2 HHZ, (m+1)|mlB§E F2mr D) (1) 2+ Bl
—logx [y (X)

10x0< D™ OxpfM0O 1 ETH L1, 1M
[I]]]]B——n%

1
_§+4+ 202 mime el Brea

—logx [y, (X)
=—Ky (X)

Thus, Kq (x) = —K;(X)

EXAMPLES

1. Let¢be any solution fox > 0 of the Bessel equation of order

XY+ xy + (X —a®) y=0
1

Put ¢ (X) = x2¢(X). show thaty satisfies equation
o 1 o0

=-a

A4 Hoo

2 Dy_

U X0
U U
2. Show that if > 0 then],, has an infinite number of positive zeros.

y" +

3. Show thatl,” satisfies the Bessel equation of order one
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X2y + xy+(X-1) y= 0.

1
4. Forafixedr >0andl> 0 let@, (x) = x2J,(A ¥ show that

. ;790 )
Gt h =29
oXx 0
U U

5. If A, u are positive show that
1
— 12 @ 008, (9d x= ¢, (D¢, () -, (Lh )
0

Unit 4 : Regular singular points at infinity

At the beginning of chapter 3 we have defined singular points of linear differential equation
of ordern on the domainx | <ee. In unit 2 of chapter 3 we have discussed the power series
solutions of second order differential equation with regular singular points. These singular points
lie in a finite plane k| <. Often it is necessary to investigate solution of the differential
equation for large values of |. A simple way of doing this is to change the independent variable
by its reciprocalx = % and study the solution of the resulting equation hed. If the resulting

equation possesses the regular singular pointdl. We say that the original equation has a
regular singular point at infinity. The results on analytic solution and equations with regular
singular point at = 0 can be applied to the transformed equation. Analysis of equatierDat
gives the analysis of given equation for infinite

Let us consider the second order differential equation

Liy)=y' +a(dy+ a( ¥ 0
for large values of} |.
Supposep is a solution oL (y) = O for |x | >r, for somer,> 0.

| =y = L s oy = A Ay = 4 O . ,

Deflnet—; and Ietgo(t)—goEtB al(t)—aiEEH a,(t) aZHH These functions will
exist for |t |<i.
X0

dgo(t) X 0-10 _ _odg
<o()Dd— I gD dy=-P 7

ddf§t) . 1@%@1()) v 2 Fﬁ
14<d<x)+—<d<x)
Therefore
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.
g% = t“%— 2 (%)

20 | |
=4 d—go — 2 2 2d §0 O
dt O dtr
and
L) = L(e) =t*¢ (1) + 2% 1)+ & (1) (-t*)¢ )+ & O )
=t'g' )+’ -& O 0+ & 00 ©)
L(®) =0 gives L () =0. Thus, g satisfies
Ly =t'y+Re-a®Qy+z®y=0 . (3.4.1)
Where the prime denotes differentiation with respett to
Convertsely ifp satisfied (y) =0the functiong will satisfy L(y) = 0. The equation

(3.4.1) is called the induce equation associated lvfith= 0 and the substitutiokn = O
Definition 3.4.1 :

We say that infinity is a regular singular point far(y) =y (X + g(% y( ¥
+a,(X) y(X =0if t = 0 is a regular singular point of

Liy)=t*y'(9+ Rt -t"a (OFY (9+ B() W(9=0
L (y) is equivalent to the equation
v+ 220 y+ 20 yy=0

On comparing this equation with the equation in definition 3.1.3(b) we see that

p()=2"310 and q (= %)

If &(t)=t Z a, t* andd, (1) = t2 Z By t“ where the series converge fb|i<— rp > 0,
k=0 =0 fo
then the denomiantor @i(t) will not contaln a factot to a power higher than one and the

denominator ofg(t) will not contain a factot to a power higher than two. By definition
3.1.3(b)t = 0 is a regular singular point @f(y) = 0and therefore infinity is a regular singular
point ofL(y) = 0.

EXAMPLES

Ex. 1. Check whether infinity is regular singular point of x?y" + a x y+ b y=0,wherea, b
are constants.

AnS. : Put X:f'
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y'(X) = d—i/ E—I%( = —t?y(t)where .dot () represents differentiation with respett to
P _dy, dt _ Yo 3
Y= [3]= VO] | = 00 -2 00
=t*y () + 2%y (1)

X2Y'(XQ)+ axy+ by:tlzgi’“‘jhzf‘y% Ef]f%_ %‘(/)%+ by

=t2y (1) +[2-a]ty()+by
L[y(x)]=0 implies

N 2-a b
y(t) "‘T y(®) +t_2 y(9 =0.
This equation is of formy" + py + q y=0. Since denomination g contains a factor

t", r #1 and denominator @fcontain a factot', r # 2,t = O is a regular singular point. Thus,
infinity is a regular singular point of the given differential equation.

Ex. 2. Show that infinity is not a regular singular point for the equation
y'+ay+by=0

where a, b are constants, not both zero.

Ans. : y'(¥) ==t y(1)

y' (%) =ty () + 23 y(y
and y'(X)+ay(X+ by ¥=0 gives
t4(t) + 23y () —at?y(H)+ by §= 0.
Therefore

y(t)+2tt;a'y<t)+t%y<t):o

Here p(t) = 2tt2—a and ¢ (t):tt‘)‘

[If a=b=0thenp(t) = % andg (t) = 0. Since denominator pft) contain a factot", r #1

and denominator od(t) contains a factot’, r =0% 2 t = 0 is a regular singular point and
infinity is regular singular point of the equation.]

Since eitheaorbis non-zero,p(t) = 2 contains the determinatdmwithr =2 >1 or

q(t) =£4 contains the denominattrwith r = 4 > 2. Thereforé = 0 is an irregular singular
point of the transformed equation and infinity is an irregular singular point of the given equation.
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Ex. 3. Show that infinity is a regular singular point for the Legendre equation
(L-x*)Y —2xy+a @+ 1y= 0

where a, b are constants, not both zero.
, ) . ) 1

Ans. : y(x)=—12y(1), Y(¥= Y+ 22y, o

Legendre equation becomes,
EL—EDH“W 2%y 25( ) +a @+ 1y= 0
2 t

2 —Dt2y+ 2¢%2 -1t y+ 2 y+a @+ Ly= 0
.. 2t . a(a+l

+ + =0

Y (t2—1)y t2(t%-1)

Here p(t)= contains a factot’ in the denominator withr =031 and

(t* -
_a(a+])
Ct2(t2-1)
Therefore by definition 3.1.3(b) O is a regular singular point of the transformed equation
and infinity is a regular singular point of a given equation.

contains a factdf in the denominator withm =2 2.

a(t)

4. Find two linearly independent solutions of the equatior(l—xz)y’ —2Xxy+ 2y= of

the form x™ ¥ g X valid for | x| > 1
K=0

Ans. : Putx:% then

y (x)=-ty(), Y(¥= 22y

Given equation becomes
104, 3. 1 .2, —
ﬁ[—t—ZHH y+ 2t yH—ZI(—t y)+ =0
or (-1 [+ 2ty 2ty+ 2y= 0

L(y) =t?(t*~Dy+ 2t°y+ 2y= 0
From example 2 we observe tixat O is a regular singular point bfy) = 0.
Let ¢ be a solution of(y) = 0 of the form

o) =t" % ¢, t
k=0
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L(@ =t2(t2-1)F k+r)k+r -1 " 2+ 235 K+ r )< 4 2y g k7
k=0 k=0 k=0

:kgo(k+r)(k+r_1) Cy tk+r+2 _éo(k_l_ r)(k+ r —l)Ck tk+r
+2§ (k+l’)tk+r+2+2§ Cy tk+r
k=1 k=0
= E [(k+r)(k+r-1)+2k+r) ¢ gher+2
k=0
—g [(+r)(k+r-1)—2]c, """
k=0
:kg [(k+1)(k+T1+1)] ¢ 2 _(r(r —1) -2kt { €+ )—)?clt”l
=0
—g [(k+ r)(k+r—1)—qcktk+r
k=2

=o[2r — ot 24 —2et " =S [K4r K4t —D)—fo <
k=2
+ 3 [kt r=2) 1 —Dg ]t
k=2

=—(r2—r —2)cotr —(r2+r —%clt”l
—ki{[(k+r)(k+r—l)—2]ck {k+r —2)k+1 —dho

The indicial equation is

q(r) = r?_r —2=0givesr =1, 2 Since, —r, = 2 + 1 = 3 a positive integer we try a
series solution using the smallest raoot,— 1.
Atr=—-1,L(¢) =0 implies
0cy=0, Zz;=0and

[k-)(k-2)-3g -k -3k -2%_,= Ok 2,3,4,5,...

k=2, —2c,=0givesc,= 0
k=3, 0c; = Othat iscs is orbitrary
Thus,c, andc; are arbitrary whereas =c, = 0.
Sincec, = 0, all even terms, =0, k=1, 2, 3,.... and
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__(k-3)(k-2)
(k—1)(k —2) -2

2 k:4,5,....

In particular

_(2k=2)(% -1)
2= o 2k —1) =2
_@k=2)(&-1)
T (2k-2)(X+ 1) 2

_2k-1
Dk+1 %
Pk —1002% —300 X —5]] X — 1

Cok1 = H2k+1HHZk 1HHx -3 x &ms%

- G
2k +1
Thus we get a solution

@(t) = cot L+ oot + ot + ¢, 0+

Cok_1 k=2,3,4,....

1 e 2%
=Gt kZ Cok+1t
=1

(o]
-1, C3 2%

=cot t
O 2 )
1 00 t2k
=cyt +
OB 2 e
Thus, we get two solutions
o0 t2k
= -1 t)=
@(t) =t and & (t) k; 1
Let et) = d(D).
k=1
By ratio test
deaa ()] |22 2k+1] _ |(@k+1)t?|
de() | [2k+3 2 | | (2k+3)]
Since ', 2kl g
2k +3

The series converger for| < 1.

1
But X :f , therefore
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[ -2k

@0 =xand ;9= 5 2

are two solutions of given equation. Second
converges forx| > 1.
Ex. 5. For each equation locate and classify all its singular points.

(@) x3(x=1y +(x=1)y+ 4xy= 0

(b) x3(x2-4)y +2xXy+3y=0

() y'+xy=0

(d) x3(x—4)2y+3xy —(x—4)y= 0

Ans. : In chapter 3 Unit I, example 3, we have classified all its singular points in a finite plane.
It remains to check whether infinity is a singular point and whether it is a regular singular
point.

(a) a(X) = )(3( x—1)= 0givesx = 0,x =1 are singularities = O is irregular singular point
whereax = 1 is a regular singular point.

_1 oy - dy gt _ ey — O [orag 2y) dt
put  x=1  then y(x)—d—i/Bg—X—y(t)(—tz)and y' (%) Olt(y(t)( tz))CIX
:E—tz’y(t)—Zty(t)EE—tZEsoy”(x)=t4'y+2t3'y.
L(y) = X°(x=1) ¥ + (x=1)y+ 4 xy
_1M Orae 0L O ) 1
- SHE 2By 4y

N e J H
=(1 t)y+EE 2-t+t Dy+ty

2—(2+t)t+t3 . 4
t Y

L(y)=Q-t)y+ Y
L(y) = 0 can be put in the form
2
er(t—l)(t -2, 4 y=0
(a-t) t(l-t)
L tP-2. 4
or + + =0
Y t(1—t)y
. _— _t?-2 _ 4

This equation is of the typé + p(t) Y + Q() y=0wherep(t) = andQ(t) = (D)

Since the denominator qf(t) contains a factot',forr =1# land q(t) contains a
denominatott’, for r =1# 2,t = Ois a regular singular point.
Thus,x = 1 and infinity are regular singular whereas 0 is irregular singular point.
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(b) Put x :El then y'(x) = 2 yand y'(x) = t*y+ 26y

L(y) =X (X-4)y +2X y+ 3y

—%ﬁl E% y+2t3yD+ (-t*y)+ 3y

. 2 200,
=(1-4°%)y+ -8 —“Hy+
( )y O (Y
=(1-4%)y -ay+ 3y
Sincet = 0 is not a singular point dL—4t*)y —& y+ 3y= Oinfinity is not a singular
point of the given equation.
] Y. . 1
© y+xy=(fy+2E9+
ThereforeL(y) = t*y+ 2t3y+f y= 0 can be written in the forny + p(t) y+ g(1) y=0
where p(t) =t2 andq(t) :t%.

Heret = 0 is a singular point but since the denominatoq(of contains a factor
t',r =5>2t=0is not a regular singular point.

Sincet = O is irregular singular point infinity is irregular singular point of the equation
y'+xy=0.

(d) x =0 is regular singular point axd= 4 is irregular singular point.
Put X=% theny =—t?y, y'=t'y+ 268y

L(y)=x*(x=4)°y + xy—(x-4)y

_1im f 4. 3-[|+_1_2- m O
R B L R A= Ll o
(4t —17
= (4t - 1?%5% ty+ y
= B E

[B1t2 16+1D 04 - y
o PPHOH

L(y) = 0 can be written in the forgn+ p(t) y+ g( 9 y=0 wherep(t) =

= (4 =17y~

31° —16+ 1
.2, and
(4t —17 [
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1
t(4t —1)

Sincet = 0 is a singularity op(t) andq(y) and is a simple pole by definition 3.1.3(a)
t = 0 is a regular singular point and infinity is regular singular point of the given equation.

q(t) =

CN\2D
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— Chapter 4
Existence and Uniqueness of
Solutions to First Order Equations

Contents :

Unit 1: The method of successive approximations.

Unit 2 : Convergence of the successive approximations.

Introduction :

In the last three chapters we have seen the methods of finding a solution to the given linear
differential equations. For linear differential equation with constant coefficients there is a method
to find all the solutions whereas for linear equations with variable coefficients, there are very
few types of equations whose solutions can be expressed in terms of elementary functions and
therefore we go for power series solutions. All the equations considered so far were linear
differential equations.

In this chapter we consider the general first order equatienf (x, y) wheref is some
continuous function (need not be lineay)rOnly in special cases it is possible to find explicit
analytic expressions for the solutionsyf= f(x, y).

Our main purpose in this chapter is to prove that a wide class of initial value problems

y=1f(xy), Y%)=Y%
has a solution. Though it may not be possible to find out the exact solution, it is feasible to
construct a sequence of approximate solutions that may converge to the exact solution.

Unit 1: Methods of successive approximations

In this unit we study the general problem of finding solutions of the equation

y=1f(xy), Y%)=Y% (4.1.1)
Wheref is any continuous real valued function defined on some rectangle

R={(x /Ix-xk aly-y& bab p
in the real X, y) plane.

A function ¢ is a solution of equation (4.1.1)f(%y) = Yo and @ (x) = f (%, ¢(X).
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Theorem 4.1.1

A function ¢ is a solution of the initial value problem (4.1.1) on an interval | if and only
if it is a solution of the integral equation

X
y=yt[ f(tydtonl ... (4.1.2)
%0

Proof : Supposes is a solution of the initial values problem on I. Then

¢ =1 (Lo®) andp(x) = o
Since¢ is continuous on | anidis continuous o, the functionF defined by
F(t)=f (o)
IS continuous on |I.
¢ () =f(t, o) ande(x) = Yo
On integrating above equation betweg@andx we get

[ dt=] f(te()dt
X0 X0
o) -900) = [ f(tLe()dt
X0

or Pox)=yo+ [ f(t@())dt  (asg(x) =Yo)
X0

Thusg is solution of (4.1.2)
Conversely supposgsatisfies (4.1.2) on | that is

Px)= Yo + [ T(tg(1) dt
X0

Differentiate this equation with respecttand use the fundamental theorem of integral
calculus. The integral equation becomes

¢ (x)= f(x@(x) forall xUI.
From (4.1.2) it is obvious tha(xy) = Yp.
Thusg is a solution of equation (4.1.1).
Successive approximate solutions
As a first approximation to a solution defined
& (X)= Yo
Theng satisfies an initial condition but does not in general satisfy the differential equation.

Sinceg  is a first approximate solution, substityte ¢, in equation (4.1.2) to generate
second approximate solution. Call this solutioathen

A= Yo+ | F(Lep()) dt
X0
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Clearly ¢ (Xg) = Yo Thereforeg, satisfies initial condition.
If we continue the process and define successively
%(X) = yO ’

We get a sequence of functio{r&}fzo. If this sequence converges then it may happen
that the limit function will turn out to be the solution of differential equation (4.1.1).

We now show that there is an interval | containgwyhere all the functiong,, k =1,2,.....

exist. Sincd is continuous on a compact Beit is bounded oR, that is there exists a constant
M > 0 such that

| f(X,y)|I£ M forall (x,y) R
Theorem 4.1.2
The successive approximations defined by (4.1.3) exist and are continuous on
I ={x/|x—>§) l<a wherea = mifa b /1\/I}}
and for xOI, (X, g(X))UR
The functiong, satisfy
g (X)—Yo EM |x—X | for allxin |
Proof : We will prove this result by mathematical induction,

(i) Clearly @ (x)= Yy is continuous on | and

@ (X)—Yo =0
Thus the theorem is true fee= 0.

(i) @)= Yo+ [ H(tgp(D) dt
X0

X
= yo + [ f(t, yo) dt
X0

Sincef is continuous and continuous function is integradp|éx) exist.

X
() - Yol = < [| f(t yo) dis M| x= x|

Xo
Therefore |@(X)—Yp I M | X=X |
Sincef is continuous o the functionF, defined by

Fo(t) = f(t, o)
is continuous on |. Therefory defined by

_I f(t! yO)d
X
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X
@) = Yo+ [ Fo(Ddlt
X0
is continuous on |.

The theorem is true fdr= 1.
(i) Assume that the theorem is true ffyr
(iv) To prove the result fog,,,

We know that(t, ¢ (t))OR for te I.
Sincef is continuous oR andg, is continuous on |,

R = f (L)
exist fort € | andF, is continuous. The functiog, given by

Bea() = Yo [ F(tL @)dt= yo+ [ R(Ddt
X0 X0

exists and is continuous function on 1.

X
<[R9 dts M| x= x|

%o

(Since|F €}=|f €.0 J<sM)
Thusg,,, exist is continuous and satisfies the required inequality.
Definition : Letf be a function defined fox(y) in a setS We sayf satisfies a Lipschitz
condition onSif there exists a constaKt> 0 such that
[T o) T w)Is Ky - |

for all (X, y1), (X, Y»)OO SThe constankK is called Lipschitz constant.

|§0K+1(X) - y0| =

J R
X0

Theorem 4.1.3 :
SupposeSis either a rectangle
IXx-%ka ly-p£b (ab> 0)
or a strip
X=X a, |yke  (@> 0)
and thaf is real valued function defined &

Such thati;—f exists, is continuous ddiand
y

< K, for (x y)O Sand for someK > 0. Thenf satisfies a

df
— (X,
3 y( y)
Lipschitz condition orS with Lipschitz constari.
Y1 of
Proof : f(x, y)— f(x yz):I—(x f)dt
Y2 9 y
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Therefore

0 w)= F00 1) =|F 25 (x o
Y2ay

Y1

[

A

o0f
o (x, t
ay(X )

IN

dt

Y1
SIKdt
Y2

<K |yp— Yyl

Thus,| f(x y)— f(x y2)|s K|y — W |forall X,y (X, ¥,) inS

EXAMPLES

1. Consider the initial value problem
y' =3y+1, y(0)= 2.

(a) Show that all the successive approximatignss,, ¢,
(b) Compute the first four approximatiogs, ¢;, ¢,, ¢; to the solution.

(c) Compute exact solution.

(d) Compare exact and approximate solution.

Answer :
(a) We will prove this result by induction dan
k=0,

B(X)=Yo=2
@ exist and is continuous.
Assume thay exist and is continuous.

B = Yo+ [ F(t @ (D) dt
X0

= Yo+ [ [3a )+ 1] dt
X0

= Yo +3[ A (0)d t+ (x—%)
X0

Sinceg, is continuousgy is integrable.
Thereforeg,,, exist and is continuous.
Thus, @y, ¢, @,,..... exist for all reax.

Differential Equations

exist for all reax.

(163)



() @0 =2
A= yo+ | FlLap®)dt
Heref (t,y)=3y+1 Thxz,\refore
@ (x) =2+:[[3(p0+]]d t

:2+}7dt: 2+ 7x
0
(pz(x)=2+f[3(pl+J]dt
0
:2+}[3 (2+ 7t )+ fdt
0
:2+} 21+ 7t
0

2 2
21X +7X= 2+ X+ 21x .

=2+

@;(X) =2+I[3(p2(t)+1]dt

_2+I%HZ+ Tt+ 22 tzﬁﬁit
_2+I %+211+@t2D t

2
e 7xs 21X 483X
2 3

= O
— eSx O + C1D
03 'O
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Since ak=0, y=2, 2=—%+Cleo i.e.cl:%.and
1.7
X) = —=+— X
y( 373
0 2 0
LA T W o ML
3 3 2 0

=2+7x+271x2+%3x4+m]]]]]

(d) ¢@o o1, @5, @5 are respectively first, first 2, first 3 and first 4 terms of the series solution

_1 +Z e?’xl

Y=7373

2. For each of the following problems compute the first four successive approximations
P O1, P2, D3 -

@ y=x+y, y0)=0 (b) y =1+xy, y(0)=1
© y=y, y0)=1

Answers :
(@) B =Y =0, f(xy)= X+ ¥

@)= yo+ [ F(t @p(D)dt
X0

:O+}(t2+02)dt
0

X3

3
%) =Yo+ [ f(t @(D)dt

O O

X Ek3 t7ﬁ

@s(x) = [H*+0=+—g Odt
S EE 6301
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L, 2000

_X52+t dt
‘{% 9 o6& 3x63

3 7 5 1
X x| 2k

3 7.9 15 6% 63 1% 8 63

3 X 2t 315
==+ =+ +
3 7.9 11.3.68 15.63.63

(b) w(x)=1 f(x,y)=1+ xy

@) =yot+ [ (L+tg)dt
X0

X
=1+[ 1+t]dt
0

X2

=1+ Xx+—
2

@ (X) = 1+Ig.+t[[l+t+—[u:dt
od O 2 M

x 1] , t30
:1+I A+t +t°+—dt
0 0 20

X2 X3 X4
:1+x+7+—+—

3 8

t? 2
@3(x) = 1+jﬂ-+tEﬂ+t+—+—+—ElEdt
2 3 8
X ] t3 t4 tSD
:1+Ig_+t+t2+_+_+_[;jt
0 [ 2 3 8p

2 3 4 6
X X+X X5+X

=l4+Xx+—+—F+ =+ —+
2 8 15 48
(©) () = yp=1 f(x y)= ¥

@) =1+[[(1)*] dt
0
=1+x

@ () =1+}[1+ 1 dt
0
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=1+ x+—+=
3
=1+ x+ X2+
3
X[ 5 t3ﬁ
%(x)=1+Ig.+t+t +—[ dt
o0 30
x[] 5
:1+Ig_+t2+t4+t_+2g+t2+t_+t3+t_+t_[|]]dt
9 0 3 3 3m
3 5 7 [y2 4 4 ]
_1+X+X_+X_+L+ZDL £+l+l+_)(5+_)@
3 /MM pg2 3 12 4 15 1

7
@ (X) =1+ x+ X + x’5+g )(qu.iL X5+_+_

3. Consider the problem

y=x+y %0)=0
onR:|X[£1], ly | 1

(&) Compute an upper bouiifor f(x, y)= X + y2 onR

(b) On what interval containirng= 0 will all the sucdessive approximations exist and be
such that their graphs areRa
Answers :
(a)
M =RPf(x )

= KLy O+ Y)
=2
(b) By theorem 4.1.2

:Ex/|x X Ea wherex = mlrﬁa b %

O
Here, X =0, yo=0, a=b=1 andM=

:Ex/|x|<a wherea = mi 11%

O 2

‘—IH

x/|x|<1}
2
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4. By computing appropriate Lipschitz constants show that the following functions satisfy
Lipschilz conditions on the setS.

@ f(xy)=4X+yYonS={(x)/|x 1|y}
(b) f(x, y)=Xcos y+ ysirf x onS={ (x, y)/ |4 1, |yleo}

Answers :
(@) fy) =4+ y
|f(X, yl)—f(X1 y2)|:‘E4)g+ f%_%é‘.)g-k %‘
= vi -3 |
=1+ ol [ ¥

But |yl<10 |y kland 9 1

FOoowm)=(Fxu) < (In+1%) 1% - |

<2y =Y |
Therefore Lipschitz constaKt= 2.

(b) f(x, y)= ¥ cos y+ ysirf x

|f(x,y1)—f(x,y2)|=‘%>3 cos y+ y sirf %—%)@ cod y+ y sif %
:‘xz(coszy1 —coé y2)+ SIRX §f % ‘)
g|x|2‘co§y1 —co§y2\+\ Siﬁﬂﬁi ¥

< ‘COSZ y; —Co$ YZ“" YY)
By mean value theorenfi(b) — f (a) = f'(c) (b— a)

cosy, —cody,= —2coy Sig ¥ )
Therefore

[T(x, %) - f(x B)<|2 cosy siny| y —y+| ¥y —¥

<3ly1 -y,
Thereforek = 3 is a Lipschitz constant.

5. (a) Show that the functionf given by

f(xy)=x1yl
Satisfies Lipschitz condition oR={(x Y| xI< 1, | vk }

f . :
(b) Show '[hatg—y does not exist ak(0) if x # 0.
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Answer :
@ [f (6 y) = FOuw) = [ R 1y =X | gl

<Xy =Y, |

<1y -ys |
Thus, function satisfies Lipschitz condition with Lipschitz conskantl.

. . . : of _ :
(b) Since |y | is not differentiable ay = 0, a_y do not exist at{, 0) unlesx =0 ifx=0 then

the function itself is zero.

EXERCISE

1. Compute Lipschitz constant for the following functions.
@ f(x,y)=a(x f+ (3 v ¢ xon ${| 1| % }Z(a, b, c are continuous functions
on|xl|<1)
() f(xy)=a(® y+ i Fon S={( x ¥/| % 1,| ¥} (a bare continuous functions on
IX|< 1)

©) f(xy)=xe*Y on S={(x y/0s x a| yk}

2. (a) Show that the functiorf given by
1

f(x )=y
does not satisfy Lipschitz condition on

S={(x /I x<10s ¥ }
(b) Show that thig satisfies a Lipschitz condition on any rectariglef the form
R={(xW/Ixsab ¥ ¢cabed

3. Show that the functionf given by
f(x, y)=0,if x=0, |y|<1
=2x, if 0<|xk 1 -1ky< O

—ox=2Y if 0<|xE 1 & y< X
X

=-2x if 0<|xk1¥<y<1
does not satisfy a Lipschitz condition &F{(X, W X<l |yk } :

4. Determine the bound for the function given byf (x, y)=1-2xy

on S={(x w|x|s§,|y|s}-
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Unit 2: Convergence of successive approximations

In the last unit we have found the successive approximate solutions to a differential equation
(4.1.1). In this unit let us prove that this sequence of successive approximate solutions actually
converges to the exact solution of differential equation (4.1.1).

Theorem 4.2.1 : (Existence Theorem)

Letf be a continuous real valued function on the rectangle
R={(xY/|x-%I<aly-yk ba0bp
and let [f(x, y)|sM forall (x, y)O R

Supposé satisfies a Lipschitz condition with Lipschitz constéim R. Then the successive
approximations.

Converge on the intervdl ={X/ | x—x, |<a}whereq = min{a, %} to a solutiony of
the initial value problem (4.1.1)

y="1f(x ¥, Y%=y on |

Proof (a) : Convergnce of §}
Since the functio, can be written as

(%) = @ + (P —Po) + (P2 -0+ @3—P I @ —px )
B 09=800* 3 Bs9-951098
The sequencey, converges, that ii[“m @, exists if and only if the series
(X + pil H9, (X —@p_1(WH is a convergent series.

By theorem 4.1.2 the functiogg all exist, each is continuous on | a@d g, (X)) 0 R for
xinl.

Moreover [@(X)—@(X)|< M |x—>X | for xin |

[l X g X U
G -@(x) =Dyt [ f(te(t) dt-Oyo+ [ f(teo(t) dt
H % HH % H

= [[ftam)-f t.ao)]dt
X0
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Therefore @ (X)—@(X)|<

[l f(te) - T (tgo) d
X0

Sincef satisfies Lipschitz condition with constaft
[f(t.@)-f¢.9) <K|p —@J and we have

() -@g(¥) < K

f|¢’1(t) —@o(1)] d{
X0

But |@(X) —@p(X)| < M|x— | forxin |

Therefore [ -@ (X < K i M|t—x| dt

X0

2
KM XX)”
2

By mathematical induction we will prove that

Kp—1|X_X0 |p
!

and B(x)-a(x) <

‘§0p(X)—§0p_1(X)‘ <M for everyxin I............ (4.2.1)

We have seen that this inequality is trueder 1 andp = 2. Let us assume the result for
p =mand we will prove it fop=m+ 1.

Without loss of generality assume tiat x,.
By definition of ¢,,, andg,, we get

(=00 = o+ [ 1(t@n(0) d OO+ [ F(tomy) d T
BGr1(X) = Pn(X) = + t!¢mt — }{)"’ t,§0m_
' = g0 oYY

= [[ft.@n®) - f t.@nat))] dt
X0

Thus, a0 —=0m(¥) < ] FEOmD)— f tom ©)dt
X0

Sincef satisfies Lipschitz condition we get

B (9= PN < K[ |0 @ (0] d t
X0

Km—1|t_XO|ml

But |G (1) =P a @) <M -

MK™ * m
t—X| dt
o XJOI %l
MK™ (x=x)™ _M (K|x=x% )™
m! m+1 K (m+1)!

Therefore |G (X) —@n(X)| <

<
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Thus by induction the inequality (4.2.1) is true jior 1, 2, 3,.....

| M KPx—x|"
Since ‘gop(x) —gop_l(x)‘ < Ko
M k Kp|x )<0| ~
z\%(x) R R M (dshonly

And by weierstrass M-test, left hand series is uniformly convergent. Therefore the series
W)+ Y Hp(X)—9y_1(XH
p=1

is absolutely convergent on I. Leé(x) be a limit function of the series. Then

Lim

koo B(X) = km%’o(XH Z H (X —@pa(X)

(o]

=@+ Y (050 -0pa(%)

p=1
=9(¥)

Thus the sequencejf of successive approximations is a convergent sequence.

(b) Properties of limit functiom.
The limit functiong is a continuous function on I.

|§4<+1(X1) —§0k+1(X2)|

0 g X2
EYO*'I f(t, %(t)dﬂé'—EYOJff f(t§0k(t)d%

X Xo
=|[[ft a®]dt-[[ft. @ ®]dt
X X

=Xff(t,gq<(t)dt

X
Sincef is bounded by, that is,
f(x, y)|sM  for (x, YOR
|1 (%) =P 1(X2) S M | xq = X5 | 0xq, x|
By taking limit ask — « we get
P(x) =@ (X)| < M~ % |

Therefore asx, —» X, @(%) — @(x), thatis,p is continuous on I.
In particular

() -@(x%) < M|x=3%| Ox3I
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Sincexe R | X=X |sa = min{a,&} and| X —Xg IS% implies M | x—x, |< b.

Therefore  |@(X)—@ () |sM |x=% |<Db
Thus,xe land|@(x)—@ (%) |< b implies (x,¢(x))0 R

(c) Bounds forl@(x) —@, (X) |

We have () =@(X)+ §lgop(x>—<op_l(x)a
p:

k
and @ () =@ () + Zlgop(X)—chOoE
p:

Therefore

P-4 (0= 3 Ho(X)—0p1(VE

p=k+1

PX)-B M S 105 (0-Ppa ()]

p=k+1
M KP|x—x [P
But ‘§0p(X)—§0p_1(X)‘S?% and|x—x, |<a
M KPaP
Therefore‘qop (X)=®p1 (x)‘ < N o
> M KPaP
Thus, [e()-@ (s y = ——
p:k+1K p

M (Ka)** 2 (Ka)P
k (k+D! =0 P

<

< =
K (k+1)!

M (K@) ya

for everyk we have

k+1
M (Ka) eKa.

PO =A = ==

(d) The limitgis a solution
We must show that

®(X) = Yo +} f(t, (1)) dt,  forall xin I.
Xo
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Since¢ is continuous on | anfds continuous oIk, the functionF defined by
F(t) = f(t, @(t)) is continuous ohand therefore is integrable.

X
Thus, Yo * | f(t, @(t))dt is we defined
Xo

Now G (X)=Yo+ [ f(t g (D) dt
X0

Taking limit on both sides we get

)= o AP = Yot i w [ f(L @ (D) dt
X0

Therefore it is sufficient to prove that

o [T @)= [ f(t e)dt
X0 X0

| f(t, (pk(t))dt—f ft,ot)dt
X0 X0

<

[Ift a@)-f ¢ e)dt
X

<K|[la®-p)dt
X0
But by (c)
M (Ka) kq
|§4<(t)—§0(t)|3?w e
X X (Ka)k+l a
Therefore ){)f(t,%(t))dt—){) ft,ot)dt< M (k+1)! | X=% |
| (K o)<
Since k+1)! - 0ask - o,

}f(t’%(t))dt - ff(t,qo(t))dtthat is
%o X

o [T @Ot = [t e®)dt
X0 X0

And () =yo + [ f(t @(D) dt
X0
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Thus¢ is a solution of the initial value problegi= f(x, y), y(%)= ¥ onl.

In theorem 4.2.1 we have shown the existence of solution of initial value problem 4.1.1.
The solution thus obtained is a uniques solution.

Picard-Lindel of theoremstates that iff is continuous function and satisfies Lipschitz condition
on R, then the successive approximatigyexist on X —X,|< « , ¢’s are continuous and
converge uniformaly on the interval | to a unique solution passing thregoh)(e R.
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