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Preface
It is hoped that students must learn mathematics not only to become a competent

mathematicians but also skilled users of mathematics in the solution of problems in
the real world especially in Engineering. They must learn how to use their mathematical
knowledge in solving the problems of the real world. I believe that through the study of

Linear Algebra, students will learn something about the art of applying mathematical
knowledge to solve such problems. Comprehensive account of the mathematical
artifact and numerous examples in this book will help the aspirants to develop an ability

to use Linear Algebra.

I have a great pleasure in presenting SIM on Linear Algebra in your hands. The

material of the book is the standard post-graduate syllabus of most of the Indian
Universities. In this book "Linear Algebra” has been written for the use of students
preparing for post-graduate examinations of Indian universities and SET/ NET aspirants.

In such competitive examinations more emphasis is given on examples. Efforts have
been made to put the subject matter in lucid and comprehensive manner. Various
reference books by the eminent authors have been utilized in the preparation of the text

and the author is gratefully indebted to them. I have streamlined the examples and
exposition, making the book easier to learn oneself. It is hoped that the teachers, the
students and large number of entrants to the competitive examinations will be benefited

with the matter of this book.

Any constructive suggestions for the improvement of the subject matter will be
highly appreciated.

     Late. Prof. Y. S. Pawar
Shivaji University, Kolhapur
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Each Unit begins with the section Objectives -

Objectives are directive and indicative of :

1. What has been presented in the Unit and

2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.

(viii)
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LINEAR  ALGEBRA

UNIT  -  I

Definition

Vector Space :

A non-empty set V is said to be vector space over the field F. If V is an abelian group under

addition and if for every , ∈ Fα β , 1 2, ∈Vν ν , such that ⋅ ∈Vα ν  satisfying following condition

(i) ( )1 2 1 2+ = +v v v vα α α ;  1 2,  ,∈ ∈F v v Vα

(ii) ( ) 1 1 1+ = +v v vα β α β ;  1, ,  ∈ ∈F v Vα β

(iii) ( ) ( )1 1=v vαβ α β ;  1, ,  ∈ ∈F v Vα β

(iv) 1∈ F

1 11∴ ⋅ =v v .

Example

Let V = F [x] over F it is a vector space usual addition and multiplication of polynomial.

Subspace :

Let ≠ ≤W Vφ  and , ∈ Fα β , 1 2, ∈w w W  wth 1 2+ ∈w w Wα β  then we called W is

subspace.

Example : W is the collection of all polynomial with degree less than n is subspace of [ ]F x .

Homomorphism in vector space

If U and V are vector space over F then the mapping : →T U V  is said to be a homomorphism.

If (i)  ( ) ( ) ( )1 2 1 2+ = +T u u T u T u

(ii) ( ) ( )1 1= ⋅T u T uα α 1 2,∀ ∈u u U  and ∈ Fα
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Lemma :

If V is a vector over F then

1) 0 0⋅ =α

2) 0 0⋅ =v

3) ( ) ( )− = −v vα α

4) If 0≠v  and 0 0⋅ = ⇒ =vα α ,  ,∈ ∈F v Vα .

Lemma :

If V is a vector space over F and if W is a subspace of V then V/W is a vector space over F,

where for 1 +v W , 2 +v W /∈V W

(i) ( ) ( ) ( )1 2 1 2+ + + = + +v W v W v v W

(ii) ( ) ( )1 1+ = +v W v Wα α

Theorem :

If T is homomorphism of U onto V with Kernal W then V is isomorphic to V/W, conversely,
if U is a vector space and W is subspace of U then there is a homomorphism of U onto U/W.

U
V

U/W

T
onto

v
( )T v

η

φv W+
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Definition

Internal Direct Sum

Let V be a vector space over F and let 1U , 2U , ....., nU  be subspace of V, V is said to be the

internal direct sum of 1U , 2U , ....., nU . If every element ∈v V  can be written in one and only one as

1 2 ....= + + + nv u u u  where i iu U∈ .

Definition

External Direct Product

Any finite number of vector spaces over F, 1V , 2V , ..., nV . Consider the set V of all order n

tuples ( 1v , 2v , ..., nv ) where ∈i iv V , V is called external direct sum 1V , 2V , ..., nV .

1) Let    v u w= +

            ( ) ( )1 2 1 2, ,...., , ,....,m mu u u v v v= +

( )1 1 2 2, ,....,= + + +m mu v u v u v , ,u w V∈

2) ( )1 2, ,....,= mv u u uα α

      ( )1 2, ,....,= mu u uα α α

Theorem

If V is the internal direct sum of 1 2, ,...., nU U U then V is isomorphic to the external direct sum

of 1 2, ,...., nU U U .

( )1 2 1 2.... , ,...., = + + + → n nv u u u u u u

Linear Independent and Basis

Linear Combination

If V be a vector space over F and 1 2, ,...., ∈nv v v V  then any element of the form,

1 1 2 2 ....+ + + n nv v vα α α  where ∈i Fα  is a linear combination over F of  1 2, ,...., nv v v .

Linear Span

If S be a non-empty subset of vector space V then L (S) the Linear Span of S is the set of all
linear combinations of elements of S.
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Lemma :

L (S) is subspace of V. If S, T are subsets of V then

1) ( ) ( )⊂ ⇒ ⊂S T L S L T

2) ( )( ) ( )=L L S L S

3) ( ) ( ) ( )= +∪L S T L S L T

Finite Dimensional

The vector space V is said to be finite dimensional if there is a finite subset S in V such that

( )=V L S .

Linear Dependent Set :

If V is vector space and if 1 2, ,...., nv v v  are in V. We say that they are linearly dependent over

F if there exist elements 1 2, ,...., nα α α  in F not all of them zero such that,

1 1 2 2 .... 0+ + + =n nv v vα α α

Linearly Independent Set :

If V is vector space and if 1 2, ,...., nv v v  are in V we say that they are linearly independent in F

all are zero such that 1 1 2 2 .... 0+ + + =n nv v vα α α

Lemma

If 1 2, ,...., ∈nv v v V are linearly independent then every element in their linear span have a

unique representation in the form 1 1 2 2 ....+ + + n nv v vα α α  with ' ∈i s Fα .

Theorem

If 1 2, ,...., nv v v  are in V then either they are linearly independent or some kv  is linear combination

of preceeding once 1 2 1, ,...., −kv v v .
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Carollary :

If 1 2, ,...., nv v v  in V have W as a linear span and if 1 2, ,...., kv v v are linearly independent then

we can find a subset of  1 2, ,...., nv v v  of the form 1 2, ,...., kv v v , 1 2, ,....,i i irv v v  consisting of linearly

independent elements whose linear span is also W.

Carollary :

If V is a finite dimensional vector space then it contains a finite set 1 2, ,...., nv v v  of  linearly

independent elements whose linear span is V.

Basis :

A subset S of a vector space V is called a basis of V if S consist of linearly independent
elements and V = L (S).

Carollary :

If V is a finite dimensional vector space and  if 1 2, ,...., mu u u  span V then some subset of

1 2, ,...., mu u u  forms a basis of V..

Lemma :

If 1 2, ,...., nv v v  is a basis of V over F and if 1 2, ,...., mw w w  in V  are linearly independent over

F, then ≤m n .

Carollary :

If V is finite dimensional over F then any two basis of V have the same number of elements.

Carollary :

( )nF  is  isomorphic to ( )mF  if and only if n = m. (by above carollary). (Two vector spaces are

isomorphic if and only if dimension is same).

Carollary :

If V is finite dimensional over F then V is isomorphic to ( )nF  for a unique integer n. (integer n

depends on dimensions of V). (No. of elements in the basis : dimension).
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Carollary :

Any two finite dimensional vector spaces over F of the Same dimension are isomorphic.

Lemma :

If V is finite dimensional over F and if 1 2, ,...., ∈mu u u V  are linearly independnt then we can

find vectors 1 2, ,....,+ + + ∈m m m ru u u V  such that 1 2 1, ,...., , ,+ +m m m ru u u u u  form a basis of V.V.

Lemma :

If V is finite dimensional and if W is a subspace of V then W is finite dimensional,

dim dim≤W V  and ( ) ( )dim dim dim
V

V W
W

= − .

Carollary :

If A and B are finite dimensional subspaces of a vector space V then A + B is finite dimesnional

and ( ) ( )dim dim dim dim+ = + − ∩A B A B A B .

Dual Space

Lemma :

Hom (V, W) is a vector space over F under the operation ( ) ( ) ( ) ( )+ = +T S v T v S v .

( ) ( )=T v T vα α , ∈ Fα  and ∈v V .

Proof : Let V and W be vector spaces over F and consider a collection of homomorphisms form V to
W.

As, (Hom (V, W), +)

(i) Let ( ) ( ) ( ) ( )+ = +T S v T v S v and

( ) ( )=T v T vα α ; where ∈ Fα  and ∈v V .

Take 1 2, ∈v v V  and ,T S ∈  Hom (V, W)W)

( ) ( ) ( ) ( )1 2 1 2 1 2⇒ + + = + + +T S v v T v v S v v

      ( ) ( ) ( ) ( )1 2 1 2= + + +T v T v S v S v
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      ( ) ( ) ( ) ( )1 1 2 2= + + +T v S v T v S v

      ( ) ( ) ( )( )1 2= + + +T S v T S v

( ),⇒ + ∈T S Hom V W

(ii) Scalar Multiplication

Let ( ) ( ) ( ) ( )+ = +T S v T v S vα α α ; ∈ Fα  and ∈v V .

  ( ) ( )= +T v S vα α ..... ( ), ,T S Hom V W∈∵

  ( ) ( )( )= +T v S vα

  ( ) ( )= +T S vα

(iii) Associative Property

Let T1, T2, T3 ∈ Hom (V, W) and ∈v V .

( )( ) ( ) ( ) ( ) ( )1 2 3 1 2 3∴ + + = + +T T T v T T v T v

( ) ( ) ( )1 2 3= + +T v T v T v

( ) ( )( )1 2 3= + +T v T T v

( )( )( )1 2 3= + +T T T v

Now,

( ) ( ) ( )( ) ( )1 2 1 2 1 2 1 2T T v v T T v v− + = + − +

( ) ( ) ( )1 1 2 2 1 2= + + − +T v v T v v

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 2 2= + + − + −T v T v T v T v

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 2 21 1= + + − + −T v T v T v T v

( ) ( ) ( ) ( )1 1 1 2 2 1 2 2= + − −T v T v T v T v

( ) ( ) ( ) ( )1 1 2 1 1 2 2 2= − + −T v T v T v T v

( )( ) ( ) ( )( ) ( )1 2 1 1 2 2= + − + + −T T v T T v

( ) ( ) ( ) ( )1 2 1 1 2 2= − + −T T v T T v
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( )1 2 ,⇒ − ∈T T Hom V W

Also

( ) ( ) ( ) ( )( )1 2 1 2− = + −T T v T v T vα α α

( ) ( ) ( )1 21= + −T v T vα α

( ) ( )1 2= −T v T vα α

( )1 2= −T T vα

( )( ), ,∴ +Hom V W  is a group.

Let ( ) ( ) ( ) ( )1 2 1 2+ = +T T v T v T v

        ( ) ( )2 1= +T v T v ( )1∵T v , ( )2 ∈T v W  and W is a vector S.

         ( )( )2 1= +T T v

Hence, ( )( ), , +Hom V W  is abelian.

Let ∈ Fλ , ( ),∈T Hom V W  and , ∈a b F .

( ) ( ) ( )( )1 2 1 2⇒ + = +T av bv T av bvλ λ ....... by linearity of T..

       ( ) ( )1 2= +T av T avλ λ

       ( ) ( )1 2= +aT v bT vλ λ

       ( )( ) ( ) ( )1 2= +a T v b T vλ λ

( ),∈T Hom V Wλ

Scalar multiplication distrubute over addition.

( ) ( ) ( ) ( )1 2 1 2+ =  +  T T v T T vλ λ

( ) ( )1 2=  +  T v T vλ

( )( ) ( ) ( )1 2= +T v T vλ λ .... W is a V. S. and 1 2, ∈v v V .

( ) ( )( ) ( )1 2= +T T vλ λ
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Vector multiplication distrubute over scalar addition

( ) ( ) ( ) ( )( )1 1+ = +T v T vλ β λ β

         ( ) ( )1 1= +T v T vλ β  .... W is a Vector space

         ( )( ) ( )( )1 1T v T vλ β= +  ........... ( )1 1, ,∈T Hom V Wλ βλ

          ( ) ( )1 1T T vλ β= +

( ) ( ) ( )( )=T v T vλβ λ β ..... ( )∈T v W

     ( )( )= T vβ λ

Identity w.r.t. multiplication

( ) ( ) ( )1 1 1⋅ = ⋅ = ⋅T v T v T v

( )= T v

∴  Hom (V, W) is a vector space over F..

Hence the proof.

Theorem :

If V and W are of dimensions m and n respectively over F, then Hom (V, W) is of dimension
mn over F.

Proof :

We prove the theorem by exhibiting a basis of Hom (V, W) over F consisting m, n elements.

Let 1 2, ,...., mv v v  be a basis of V over F and 1 2, ,...., nw w w  be a basis of W over F..

Define : →ijT V W  as ( ) =ij i jT v wα  and ( ) =ij k jT v w ; for i = k.

     = 0 ;  for ≠i k .

We claim that ( ),∈ijT Hom V W  and { }| 1,2,...., , 1,2,....,= =ijT i m j n  is linearly independent

and spans Hom (V, W).

Let ,v u V∈ .

1 1 2 2 .....∴ = + + + m mv v v vα α α and

1 1 2 2 .....= + + + m mu v v vβ β β , 1 2, ,...., mα α α , 1 2, ,...., ∈m Fβ β β .
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Now,

( ) ( )1 1 2 2 1 1 2 2..... .....+ = + + + + + + +ij ij m m m mT v u T v v v v v vα β αα αα αα ββ ββ ββ

         ( ) ( )1 1 1 ....= + + + +ij m m mT v vαα ββ αα ββ

         ( )0 .... 0 ...... 0= + + + + + +i i jwαα ββ

         ( )= +i i jwαα ββ

         ( )1 10 ..... 0 ...... 0+= + + + ⋅ + + ⋅i j j mw w w wα α

( )10 ..... 0 ...... 0+ + + + ⋅ + + ⋅i j j nw w w wβ β

          ( ) ( )= +ij ijT v T uα β

( ),⇒ ∈ijT Hom V W .

Let ( ),∈S Hom V W and 1 ∈v V .

( )1∴ ∈S v W .

Hence, ( )1 11 1 12 2 1.....= + + + n nS v w w wα α α .

For some 11 12 1, ,....., ∈n Fα α α .

In fact, ( ) 1 1 2 2 .....= + + +i i i in nS v w w wα α α , i = 1, 2, ...., m.

Consider

0 11 11 12 12 1 21 21 2 2..... ....= + + + + + +n n n nS T T T T Tα α α α α

1 1...... ......+ + + + mn mnmTm Tα α

Let us compute ( )0 iS v .

( ) [ ]( )0 11 11 1 1 1 1..... ...... ......∴ = + + + + + +i n n mn mn iS v T T mTm T vα α α α

              1 1 2 20 ...... 0 ...... 0 ..... 0= + + + + + + + + +i i in nw w wα α α

( )
     

0       

= 
= 

≠ 
∵ j

ij k

w i k
T v

i k

   ( )= iS v

Thus, the Homomorphisms S0 and S agree on the basis of V.

0∴ =S S
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However, 0S  is linear combination of ijT  whence S must be the same linear combination.

Thus, the set B spans Hom (V, W).

Now, we will show B is linearly independent

Suppose,

( )11 11 12 12 1 1 1 1..... ..... ..... 0+ + + + + + + =n n m m mn mnT T T T Tβ β β β β ;

where ∈ijB F .

Apply this on a basis vector iv  of V..

( ) ( ) ( )11 11 12 12 1 1 1 1..... ..... ..... 0 0⇒ + + + + + + + = =n n m m mn mn i iT T T T T v vβ β β β β

1 2 20 .... 0 ...... 0 ..... 0 0⇒ + + + + + + + + + =i i i in nw w wβ β β

1 2 ......⇒ = =i i inβ β β .

Since 'iw s  are basis elements of W..

This implies 0=ijβ  for all i and j.

Thus, β  is linearly independent over F and forms a basis of Hom (V, W) over F..

∴  dim Hom (V, W) is mn.

Hence the proof.

Corollary :

1. If dim V = m then dim Hom (V, V) = m2.

Proof :  Replace W by V and n by m.

2. If dim V = m then dim (Hom (V, F)) = m.

Proof :  As F a vector space is of dimension one over F.

Note : If V is finite dimensional over F. It is isomorphic to Hom (V, F).

Dual Space :

If V is a vector space then it’s dual space is Hom (V. F). It is denoted by V̂ . The elements of

V̂  will be called a linear functional on V into F..
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Problem : Show that 1 2ˆ ˆ ˆ, ,...., nv v v  is a basis of V̂ , for 1 2, ,...., nv v v  is basis of V and

Solution : ( )ˆ 1=i jv v if  i = j ... (1)

           = 0 if i≠ j.

Consider 1 1 2 2ˆ ˆ ˆ.... 0n nv v vα α α+ + + =  for 1 2, ,...., n Fα α α ∈

( ) ( )1 1̂ ˆ.... 0 0n n i iv v vα α α∴ + + = ⇒ =   it is true i∀

1̂ ˆ,...., nv v⇒  are linearly independent.

1 2
ˆ ˆ ˆ ˆdim dim , ,...., nV V v v v= ⇒  is basis of V..

Lemma : If V is finite dimensional and 0≠v  in V then there is an element ˆ∈f V  such that ( ) 0≠f v .

Proof : Let V is finite dimensional vector space over F and let 1 2, ,...., nv v v be a basis of V..

Let ˆˆ ∈iv V  defined by ( )ˆ 1=i jv v if  i = j

          = 0 if i≠ j.

Consider, ( )ˆ 0=iv v  for 0v ≠  in V, , 
1

n

i i
i

v vα
=

∴ = ∑ , i Fα ∈ .

( )1 1 2ˆ .... 0∴ + + + =i n n nv v v vα α α

0⇒ =iα ...... by definition of ˆiv .

⇒  All 'i sα  used in the representation of v are zero.

Hence v = 0, a contradiction.

Thus, ( )ˆ 0∴ ≠iv v .

ˆˆ⇒ = ∈iv f V  such that ( ) 0≠f v .

Hence the proof.

Definition :

Let the functional on V̂  into F, ( ) ( )
0

0vT f f v=  for ˆ∈f V .

with ( ) ( )
0 0vT f g v= +

  ( ) ( )0 0= +f v g v ... Hom (V, F)

  ( ) ( )
0 0

v vT f T g= +
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( ) ( )
0 0vT f f vλ λ=

    ( )
0vT fλ ⋅

0vT  is in dual of V̂  it is called Second Dual of V. It is denoted by ˆ̂V .

Leema : If V is finite dimensional then there is an isomorphism of V onto ˆ̂V .

Proof :  Let V is finite dimensional vector space. Define the map ˆ̂: →V Vψ  by ( ) vv Tψ =   for every

∈v V .

We will show ψ  is well-defined, one-one, onto, homomorphism.

Let , ∈u v V . Let u = v.

( ) ( )⇔ =f u f v ... ˆ∈f V

u vT T⇔ =

( ) ( )⇔ =u vψ ψ

∴  Thus ψ  is well-defined and one-one. Now, consider ,u v V∈ .

( ) u vu v Tψ ++ =

but ( )u vT f u v+ = +

    ( ) ( )= +f u f v   ( ) ( )u vT f T f= +

    ( ) ( )u vT T f= +

u v u vT T T+⇒ = +

( ) u vu v T Tψ∴ + = +

      ( ) ( )= +u vψ ψ

( ) ( ) ( )∴ + = +u v u vψ ψ ψ

Let α  be any element.

( ) ( ) ( )vv T f v f vαψ α α α= = =

vTα= ⋅ ...... Vector space.

( )= ⋅ vα ψ

∴ψ  is homomorphism.
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Annihilator :

If W is a subspace of V then the annihilator of W

( ) ( ){ }ˆ | 0;= ∈ = ∀ ∈A W f V f w w W

EXERCISE .........................................................................................................

1. Show that ( )A W  is subspace of V̂ .

Proof :  Let ( ), ∈f g A w  and , ∈ Fα β ; w is arbitrary element in W.W.

Claim : ( )+ ∈f g A Wα β

( ) ( )0= =f w g w , ∀ ∈w W .

( ) ( ) ( ) ( )⇒ + = +f g w f w g wα β α β

     0 0= ⋅ + ⋅α β

     =  0

( )⇒ + ∈f g A Wα β

Hence the proof.

Note :

1. If  { }0=W  is the 0 subspace of V then ( ) ˆ=A W V .

2. If W = V then ( ) { }0=A W .

3. If V is finite dimensional vector space and W contains a non-zero vector and also W is a

proper subspace then ( )A W  is non-trivial, proper subspace of V̂ .

Lemma :

If V is finite dimensional vector space over F and W is a subspace of V then Ŵ  is isomorphic

to ( )ˆ /V A W  and ( )( )dim dim dim= −A W V W .

Proof : Let W be a subspace of V where V is finite dimensional.

If ˆ∈f V , let f  be the restriction of f to W and is defined on W.

As, ( ) ( )=f w f w  for every ∈w W .
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ˆf W∴ ∈ ; since ˆ∈f V .

Now, consider the mapping ˆ ˆ: →T V W ; defines as

( ) =T f f ; for ˆ∈f V .

Let ˆ, ∈f g V  such that f = g.

( ) ( )⇔ =f v g v ; for every ∈v V

( ) ( )i.e. ⇔ =f v g v ; for every ∈ ⊆v W V

( ) ( )⇔ =f v g v ; for ∈v W

⇔ =f g

( ) ( )⇔ =T f T g ...... by definition of T.

Hence T is well-derined and one-one.

For Homomosphism of T,

Consider,

( )+ = +T f g f g

( )( ) ( ) ( )∴ + = +f g v f g v

         ( ) ( )= +f v g v

         ( ) ( )= +f g v

( )∴ + = +T f g f g

        ( ) ( )= +T f T g

and ( ) ( )= = ⋅ = ⋅T f f f T fλ λ λ λ  ..... since λ  is scalar..

∴  T is Homomorphism.

Now, we will show that T is onto.

i.e. for a given any element ˆ∈h W . Then h is the restriction of some ˆ∈f V .

i.e. =f h
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We know that, “if 1 2, ,...., mw w w  is a basis of W, subspace of V..

Then it  can be expanded to a basis of V of the form { }1 1,....., ,.......+m m nw w w w ; whose

dim (V) = n.

Let 1W  be the subspace of V spanned by { }1 2, ,....,+ +m m nw w w .

Thus, 1= ⊕V W W   ( { }1,.....,+∵ m nw w  does not belong to { }1,....., nw w  so 1 =∩W W φ

and 1 =∪W W  whole space)

Any element of V is represented as 1= +v w w ; ∈w W  and 1 1∈w W .

For ˆ∈h W , define ˆ∈f V  as ( ) ( )=f v h w .

( ) ( )1⇒ + =f w w h w

( ) ( ) ( )1⇒ + =f w f w h w

( ) ( )⇒ =f v h w

ˆ∴ ∈f V we have =f h .

( ) ( )⇒ =f w h w

Thus, ( ) =T f h  and so T maps V̂  onto Ŵ .

Consider,

( ){ }ˆker | 0= ∈ =T f V T f

         { }ˆ | 0= ∈ =f V f

         ( ){ }ˆ | 0= ∈ = ∀ ∈f V f w w W

         ( ){ }ˆ | 0= ∈ = ∀ ∈f V f w w W ... ( ) ( )=f w f w  every ∈w W .

         ( )= A W

Thus, by fundamental theorem of isomorphism (algebra).

( )
ˆ

ˆ ≅
V

W
A W

In particular they have the same dimensions ( )
ˆ

ˆdim dim
 

=  
 

V
W

A W
,
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Also, we know ˆdim dim=V V  and ˆdim dim=W W .

∴  Above expression become,

( )dim dim ∴ =  
 

V
W

A W

( )dim dim dim= −W V A W

Hence the proof.

Theorem :

If V be a finite dimensional vector space over the field F. Let W be a subspace of V, then

( )dim dim dim+ =W A W V

Proof :

If W is the 0 subspace of V then ( ) ˆ=A W V .

( )( ) ˆdim dim∴ =A W V

= dim V.

Similarly, the result is obvious when W = V.

Let us suppose that W is proper subspace of V and dim W = m, dim V = n with 0 < m < n.

Let { }1 1 2, ,....,= mB w w w  be as basis for W. Since, 1B  is linearly independent subset of VV

also.

∴  It can be extended to form a basis for V..

Let { }1 2 1, ,...., , ,......,+= m m nB w w w w w  be a basis for V..

Let { }1 2 1
ˆ , ,...., , ,......,+= m m nB f f f f f  be a dual basis of V..

Then B̂  is a basis for V̂  such that ( ) 0= =i j ijf w δ ; if  i≠ j

 =1 ; if i = j.

We claim that { }1 2, ,....,+ += m m nS f f f  is a basis of ( )A W .

Since ˆ⊂S B . Therefore S is linearly independent because B̂  is linearly independent.

Therefore, S is basis of ( )A W  if ( ) ( )=L S A W .

Let ( )∈f A W , ˆ∈f V .
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So, let 
1=

= ∑
n

i i
i

f fα ; ∈i Fα ..... (1)

Now, ( )∈f A W .

( ) 0⇒ =f w ( )∀ ∈w A W .

( ) 0⇒ =jf w  for each j = 1, 2, .....,m.

( )
1

0
=

∴ =∑
n

i i j
i

f wα

( ) ( ) ( ) ( ) ( )1 1 2 2 1 1...... ..... 0− −⇒ + + + + + + =j j j j j i i j n n jf w f w f w f w f wα α α α α

0⇒ =jα
( ) 0, 

               = 1, 
i jf w i j

i j

= ≠ 
 

=  

∵

Putting, 1 2 ...... 0= = = =mα α α  in (1)

1= +
= ∑

n

i i
i m

f fα

( )⇒ ∈f L S

( )∴A W  contained in ( )L S .

Let ( )∈g L S .

1= +
∴ = ∑

n

i i
i m

g B f

Let ∈w W .

1=
= ∑

m

j j
j

w wγ

( )
1 1= + =

   
⇒ =       

∑ ∑
n m

i i j j
i m j

g w f wβ γ

   ( )
1 1= = +

 
=  

 
∑ ∑
m n

j i i j
j i m

f wγ β
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   ( ) ( )( )1 1
1

......+ +
=

= + + +∑
m

j m m j n n j
j

f w f wγ β β

  ( ) ( )1 1 1 1 1.....+ + += + + +m m m m m jf w f wγ β γ β

( ) ( )1 2 2 1 2 2.....+ + + ++ +m m m m m mf w f wγ β γ β

( ) ( )1 1..... .....+ + + +n n m n n nf w f wγ β γ β

  = 0

( ) 0⇒ =g w

Hence, ( )∈g A W .

Therefore, ( ) ( )⊆L S A W

⇒  we have ( ) ( )=L S A W

( )( ) ( )ˆdim dim dim= +V A A W A W

( )( )dim∴ = −A W n m

dim dim= −V W

( )dim dim dimV W A W⇒ = +

Anihilator of Anihilator

Let V be a vector space over F if any subset of V then A (S) is subspace of V̂  and by

definition of annihilator.

( )( ) ( ) ( ){ }ˆ | 0,A A S L V L f f A S= ∈ = ∀ ∈

Example :

1) Show that ( )( )A A S  is subspace of V̂ .

Note :

If V is finite dimensional vector space then we have identity ˆ̂V  with V through the isomorphism

vv L→ .
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Therefore, we may regard ( )( )A A S  as subsapce of V..

( )( ) ( ) ( ){ }| 0= ∈ = ∀ ∈A A S v V f v f A S

Corollary :

If W is subspace of V finite dimensional vector space then ( )( ) =A A W W .

Proof :  We have,

( ) ( ){ }ˆ | 0,= ∈ = ∀ ∈A W f V f w w W .......... (1)

( )( ) ( ) ( ){ }| 0,= ∈ = ∀ ∈A A W v V f v f A W .......... (2)

Let ∈w W . Then by (1)  ( ) 0=f w , ∀ ∈ ⊆w W V .

There from equation (2);

( ) 0=f w , ( )∀ ∈f A W .

Therefore we have, ( )( )A A W

Hence, ( )( )⊆W A A W

Let ( )( )∈v A A W , ∀ ∈v V .

( ) 0⇒ =f v , ( )∀ ∈f A W

( ) 0⇒ =f v , ( )∀ ∈f A W for ∈v W

( )( )⇒ ⊆A A W W .

( )( )∴ =A A W W

( )( ) ( )ˆdim dim dim= +V A A W A W

( )( ) ( )dim dim dim dim= + −V A A W V W

( )( ) ( ) ( )( )dim dim⇒ + ⇒ =A A W W A A W W . Hence the required.

Problem : Let V be finite dimensional vector space over the field F. If S is subset of V prove that

( ) ( )( )=A S A L S  where ( )L S  is linear span of S.

Solution : Let V be a finite dimensional and S is any subset of V.

We know that ( )⊆S L S .
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Therefore, ( )( ) ( )⊆A L S A S ...... (1)

        ( ⊆W V  and { } ( ) ˆ0W V A W V= ⊂ ⇒ = , ( ) { }0=A V , { }ˆ 0∴ ⊃V  )

Now, let ( )∈f A S  then ( ) 0f s =  for all ∈s S .

If u is any element of ( )L S  then ( )
1

n

i i
i

u s L Sα
=

= ∈∑ .

Consider, ( )
1=

 
=  

 
∑

n

i i
i

f u f Sα

         ( )
1=

= ∑
n

i i
i

f Sα

         
1

0
=

= ⋅∑
n

i
i

α ;  ∈iS S

          = 0

( )( )⇒ ∈f A L S ....... (2)

( ) ( )( )∴ ⊆A S A L S

( )( ) ( )⇒ =A L S A S

Hence the result.

Problem : Let V be finite dimensional vector space over F. If S is any subset of V then prove that

( )( ) ( )=A A S L S .

Solution :

By previous ( ) ( )( )=A S A L S . By  taking annihilator on both sides,

( )( ) ( )⇒ =A A S L S .... ( )L S  is subspace of V..

Problem : Let 1W  and 2W  be subspaces of V which is finite dimensional. Describe ( )1 2+A W W  in

terms of ( )1A W  and ( )2A W .

Solution :

Let 1W  and 2W  be two subspaces of V.V.
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We have, 1 1 2⊆ +W W W  and 2 1 2⊆ +W W W .

Since, ( ) ( )1 2 1+ ⊆A W W A W  and ( ) ( )1 2 2+ ⊆A W W A W .

( ) ( ) ( )1 2 1 2⇒ + ⊆ ∩A W W A W A W

Conversely let, ( ) ( )1 2∈ ∩f A W A W

( )1⇒ ∈f A W and ( )2∈f A W

( )1 0f w∴ = , ( )2 0f w = .  1 1∀ ∈w W ,  2 2∈w W .

Let any ∈w W . Thus ∈w W  is represented as 1 2= +w w w .

( ) ( )1 2⇒ = +f w f w w

   ( ) ( )1 2= +f w f w

   =  0

( ) 0⇒ =f w

( )1 2⇒ ∈ +f A W W

( ) ( ) ( )1 2 1 2⇒ ⊆ +∩A W A W A W W

( ) ( ) ( )1 2 1 2∴ + = ∩A W W A W A W

Hence, the result.

Problem : If 1W  and 2W  be subspaces of finite dimensional vector spaces.

Describe ( )1 2∩A W W  in terms of ( ) ( )1 2+A W A W .

Solution : By using previous exercise by replacing V by V̂ , 1W  by ( )1A W , 2W  by ( )2A W  we get;

( ) ( )( ) ( )( ) ( )( )1 2 1 2+ = ∩A A W A W A A W A A W

        1 2= ∩W W

( ) ( )( )( ) ( )1 2 1 2⇒ + = ∩A A A W A W A W W

( ) ( ) ( )1 2 1 2⇒ + = ∩A W A W A W W .... ( ) ( )1 2+A W A W  is a subspace of V̂ .

Hence, the result.
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System of Linear Homogenous Equation

Theorem :  If the system of homogeneous linear equations

1 1 12 2 1....... 0+ + + =n n na x a x a x

21 1 22 2 2....... 0+ + + =n na x a x a x

M
1 1 2 2 ....... 0+ + + =m m mn na x a x a x where ∈ija F

is of rank r then there are n – r linearly independent solutions in ( )nF .

Proof :

Consier, the system of m equations and n unknowns.

11 1 12 2 1....... 0+ + + =n na x a x a x

M
1 1 2 2 ....... 0+ + + =m m mn na x a x a x where ∈ija F

Now, we find how many linearly independent solutions ( 1 2, ,...., nx x x ) in ( )nF .

Let U be the subspace generated by m vectors with

( )11 12 1, ,......, na a a

( )21 22 2, ,......, na a a

  M
( )1 2, ,......,m m mna a a  and supposed that U is of dimensions r.

Let ( )1 1,0,....,0=v , ( )2 0,1,....,0=v , ....., ( )0,0,0,....,0,1=nv  be a basis for ( )nF .

1 2ˆ ˆ ˆ, ,......,∴ nv v v  be it’s dual basis of ( )ˆ nF , any small ( )ˆ∈ nf F  can be expressed as a linear

combination of ˆ 'iv s .

1

ˆ
=

= ∑
n

i i
i

f x v ;  ∈ix F

∴  For ( )11 12 1, ,......, ∈na a a U .

We have, ( ) ( )11 12 1 1 1 1 12 2 1, ,......, ......= + + +n n nf a a a f a v a v a v

( ) ( ) ( )( )11 12 11 121,0,....,0 0,1,....,0 , ,......+ =∵a a a a
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( ) ( ) ( )11 1 12 2 1 1......= + + + nf a v f a v f a v

( ) ( ) ( )11 1 12 2 1
1 1 1

ˆ ˆ ˆ......
= = =

= ⋅ + ⋅ + + ⋅∑ ∑ ∑
n n n

i i i i n i i n
i i i

a x v v a x v v a x v v

11 1 12 2 1.......= + + + n na x a x a x

( )ˆ.... 0=i jv v ≠i j

    = 1 =i j

= 0

⇒  This is true for the other vectors in U.

( )∴ ∈f A U

Every solution ( 1 2, ,...., nx x x ) of the system of homogenous equation it’s an elements

1 1 2 2ˆ ˆ ˆ.......+ + + n nx v x v x v  in ( )A U .

Therefore, we see that the number of linearly independent solutions of the system of equation

is the dimension of ( )A U .

But we know,

( )( )dim dim dim= +nF U A U

( )dim∴ = −A U n r

Hence, the proof.

Corollary :

If n > m that is if no. of unknowns exceeds the number of equations then there is a solution

( 1 2, ,...., nx x x ) where not all of ( 1 2, ,...., nx x x ) are 0.

Proof :  Since U is generated by m vectors and m < n also ( )dim= <r U m .

By above theorem the ( )dim = −A U n r  this number is nothing but no. of elements in the

basis of ( )A U  which are non-zero vectors.

Hence, the proof.
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EXERCISE :

1. If ( ), ,S T Hom V W∈  and ( ) ( )i iS v T v= for  all elements iv  of a basis of V, prove that

S = T.

2. If V is finite dimensional and 1 2v v≠  are in V, prove that there is an ˆf V∈  such that

( ) ( )1 2f v f v≠ .

3. If F is the field of real numbers, find A (W), where W is spanned by (1, 2, 3) and (0, 4, –1).

4. If  f and g are in V̂  such that ( ) 0f v =  implies ( ) 0g v = , prove that g fλ=  for some

Fλ ∈ .

❏ ❏ ❏
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INNER  PRODUCT  SPACES

UNIT  -  II

Definition

The vector space V over F is said to be an inner product space, if there is defined for any two
vectors , ∈u v V  an element (u, v) in F such that,

1. ( ) ( ), ,=u v v u ;

2. ( ), 0≥u u  and ( ), 0=u u  is and only if u = 0

3. ( ) ( ) ( ), , ,+ = +u v w u w u wα β α β  for any , , ∈u v w V  and , ∈ Fα β .

Note : A function satisfying the properties 1, 2, 3 is called an inner product.

Example :

1) In ( )nF  define for ( )1.....= nu u u  and ( )1.....= nv v v . ( ) 1 1, ......= + + n nu v u v u v , this defines

an inner product of ( )nF .

2) ( ) 1 1 1 2 2 1 2 2, 2u v u v u v u v u v= + + +  this defines an inner product on F(2).

3) Let V be the set of all continuous complex valued functions on the closed unit interval [ 0, 1].

If ( )f t , ( )∈g t V  define ( ) ( )( ) ( ) ( )
1

0

, = ∫f t g t f t g t dt .

Definition :

If ∈v V  then the length of v (norm of v) written as v  is defined by

( ),=u u v
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Leema :

If , ∈u v V  and , ∈ Fα β  then

( ) ( ) ( ), , ,+ + = +u v u v u u u vα β α β αα αβ

Proof : by property 3,

( ) ( ) ( ), , ,+ + = + + +u v u v u u v v u vα β α β α α β β α β

but ( ) ( ) ( ), ,+ = + +u u v u u u vα β α β  and ( ) ( ) ( ), , ,v u v v u v vα β α β+ = +

( ) ( ) ( ) ( ) ( ), , , , ,∴ + + = + + +u v u v u u u v v u v vα β α β αα αβ αβ ββ

Hence the result.

Corollary :

=u uα α

Proof : ( ) ( )2 , ,= =u u u u uα α α αα since by above Lemma. ( )( )2 2 and ,= =∵ u u uαα α

2 2 2
∴ =u uα α  taking positive square roots yields =u uα α .

Lemma :

If a, b, c are real numbers such that a > 0 and 2 2 0+ + ≥a b cλ λ  for all real number λ  then

2 ≤b ac .

Proof : Completing the squares, ( )
2

22 1
2

 
+ + = + + − 

 
b

a b c a b c
a a

λ λ λ .

Since it is greater than or equal to 0 for all λ , in particular this must be true for = −
b
a

λ . Thus

2

0
 

− ≥ 
 

b
c

a
and since a > 0 we get 2 ≤b ac .

Theorem :  If , ∈u v V  then ( ), ≤u v u v .

Proof :  If u = 0 then both ( ), 0=u v  and 0=u v  so that the result is true there.
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Case - I :

Suppose (for the moment) that ( ),u v  is real and 0≠u .

We know if , ∈u v V  and , ∈ Fα β  then

( ) ( ) ( ) ( ) ( ), , , , ,+ + = + + +u v u v u u u v v u v vα β α β αα αβ αβ ββ

For any real number λ ,

( ) ( ) ( ) ( )20 , , 2 , ,≤ + + = + +u v u v u u u v v vλ λ λ λ

Let ( ),=a u u , ( ),b u v=  and ( ),c v v=  for these the hypothesis 2⇒ ≤b ac .

That is ( ) ( )( )2, , ,≤u v u u v v ; from this it is immediate that ( ), ≤u v u v .

Case - II :

If ( ),= u vα  is not real then it certainly is not 0 so that 
u
α

 is meaningful.

Now ( )
( )

( )1 1
, , , 1

,
  = ⋅ = ⋅ = 
 

u
v u v u v

u vα α   and it is certainly real.

Therefore by Case I, 1 , = ≤ 
 

u u
v v

α α
.

1
∴ =

u
u

α α
  we get 1≤

u v
α

.

Whence ≤ u vα , putting ( ),= u vα  we obtain ( ), ≤u v u v  the desired result.

Example 1 :  If ( )= nV F  with ( ) 1 1, ......= + + n nu v u v u v  where ( )1.......= nu u u , ( )1.......= nv v v

then ( ) ( )2 2 2 2 2
1 1 1 1.... .... ....+ + ≤ + + + +n n n nu v u v u u v v

Example 2 : ( ) ( ) ( ) ( )
21 1 1

2 2

0 0 0

f t g t dt f t dt g t dt≤∫ ∫ ∫

Definition :  If ,u v V∈  then u is said to be orthogonal to v if (u, v) = 0.

Note :  If u is orthogonal to v then v is orthogonal to u, for ( ) ( ) ( ), , 0 0v u u v= = = .
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Definition : If W is subspace of V, the orthogonal complement of W, W ⊥  is defined by

( ){ }| , 0W x V x w w W⊥ = ∈ = ∀ ∈

Leema :  W ⊥  is a subspace of V..

If ,a b W ⊥∈  then for all , wα β ∈ and

        for ( ) ( ) ( ), , ) 0w W a b w aw bwα β α β∈ + = + =

a b Wα β ⊥∴ + ∈

Note : (0)W W ⊥ =∩  for if w W W⊥∈ ∩  it must be self orthogonal. if ( , ) 0w w =

0 0w w∴ = ⇒ =

Example :  W be subspace of V, W ⊥  is orthogonal complement of W which also subspace of V, then

V W W ⊥= +

(i) V W W ⊥= + (ii) { }0W W ⊥ =∩
i) There exists an orthogonal basis ( )1 2, ,..., rw w w  of w which is a part of an orthogonal basis

( )1 1... ...r r nw w w w+ of V so that

1 if 
0 if i j ij

i j
w w

i j
δ

=
=  ≠

,  1...r nw w w⊥
+⇒ ∈

Let v V∈  be arbitrary and hence ∃  unique scalars 1.... nα α  such that

1 1 1

n r n

i i i i i i
i i i r

v w w wα α α
= = = +

= = +∑ ∑ ∑  taking 
1 1

,
r n

i i i i
i i r

u w w wα α
= = +

= =∑ ∑

v u w∴ = + ,u W w W ⊥∈ ∈

also this representation is unique for the scalars 1..... nα α .

Thus v W W ⊥= +
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ii) Let u W W ⊥∈ ∩  be arbitrary than u W∈ , u W ⊥∈ .

( ), 0 0 0u u u u⇒ = ⇒ = ⇒ =

{ }0W W ⊥∴ =∩

Definition :  The set of vectors { }iv in V is an orthonormal set if

(i) each iv  is of length 1, (if ( ), 1i iv v = ).

(ii) for if i j≠ , ( ), 0i jv v = .

Lemma : If { }1 2, ,... nB v v v=  is an orthogonal set then the vectors in B are linearly independent.

If 
1

n

i i
r

w vα
=

= ∑  then ( ),i i iw v vα = .

Proof : Suppose that 1 1 .... 0n nv vα α+ + = .

( ) ( ) ( )1 1 1 1.... , 0 , .... , 0n n i i n n iv v v v v v vα α α α∴ + + = ⇒ + + =  since ( ), 0j iv v =

For j i≠  while ( ), 1i iv v =  this equation reduces to 0iα = .

Thus the 'jv s  arelinearly independent.

If 1 1 .... n nw v vα α= + +  then

( ) ( ) ( ) ( )1 1 1 1 1, .... , , .... ,i n n i i n nw v v v v v v v vα α α α= + + = + +

iα= ( )
0  

,
1  j i

i j
v v

i j
≠

=  =
∵

( ),i iw vα⇒ = .

Lemma : If { }...i nv v  is an orthogonal set in V and if w V∈  then

( ) ( ) ( ) ( )1 1 2, , .... , .... ,i i n nu w w v v w v w v v w v v= − − −  is orthogonal to each of 1,...., nv v .
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Proof : Let ( ) ( ) ( )( )1 1, , ... , ,i n n iu v w w v v w v v v= −

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, , , .... , , .... , ,i i i i i n n iw v w v v v w v v v w v v v= −

( ) ( ), ,i iw v w v= − ( )
0  

,
1  j i

i j
v v

i j
≠

=  =
∵

= 0 and v is arbitrary.

u⇒∴ is orthogonal to each 1.... nv v .

Theorem :

Let V be a finite dimensional inner product space, then V has an orthogonal set as a basis.

Proof :  Let V be of finite dimension n over F and let 1 2, ,...., nv v v  be a basis of V. Now from this basis

we shall construct an orthogonal set of n vectors

Let 1 1u v=

( ) 1
2 2 2 1 2

1

,
u

u v v u
u

= − linear space of 2 1,u u .

( ) ( )2 1
3 3 3 2 3 12 2

2 1

, ,
u u

u v v u v u
u u

= − − linear space of 3 1 2, ,u u u .

M

( )1 1 2
1

,
i

j
i i i j j

j j

u
u v v u

u
+ + +

=
= −∑ linear space of 1 1, ....i iu u u+ .

Now ( ) ( ) ( ) ( ) ( )2 11
1 2 1 2 2 1 1 2 1 12 2

1 1

,
, , , , ,

v vv
u u v v v v v v v v

v v
 = − = − 
 

( ) ( )
2

1
1 2 2 1 2

1

, , 0
v

v v v v
v

= − =

( ) ( ) ( ) ( )1 2 1
2 3 2 2 1 3 3 2 3 12 2 2

1 2 1

, , , , ,
u u u

u u v v u v v u v u
u u u

 = − − − 
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( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 3 1 2 1
2 3 2 2 2 1 1 32 2 2

2 1 1

, , ,
, , , ,

v u v u v u
v v u u v u u u

u u u
= − − −

( ) ( ) ( ) ( ) ( ) ( )3 2 3 12 1 2 1
1 2 1 12 2 2 2

1 2 1 1

, ,, ,
, ,

v u v uv u v u
u u u u

u u u u
+ +

( )
( )

( ) ( ) ( )
1

3 2 2 1 2
1 3 1 2 11

2 3 2 2 2 12 2 2
1 1 1

, ,
, ,

, , ,

u
v v v u

u v u v uu
v v u v v u

u u u

 − 
  = − − − 
 

            ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 2 3 1 2 1 3 1 1 12 1 2 1
2 3 2 22 2 2 2 2

2 1 2 1 1

, , , , ,, ,
, ,

u v v u v u v u v uv u v u
u v v u

u u u u u

   
= − − − − −      

   

( ) ( ) ( ) ( ) ( )( )3 1 2 1 3 1 2 1
2 3 3 2 2 2

1 1

, , , ,
, ,

v u v u v u v u
u v v v

u u
= − + −

= 0

1 2, ,..., nu u u∴  are orthogonal.

1 2
1 2

1 2
, ,..., n

n
n

uu u
w w w

u u u
= = =

{ }1 2, ,...., nw w w∴  is orthogonal set which is linearly independent and dim (V) = no. of elements

in this set. Therefore, it forms basis.

Linear Transformations

1) HOM (V, V) : the set of all vector space homomorphisms of V into itself.

2) HOM (V, V) forms a vector space over F under the operations addition and scalar multiplication
defined as

( )1 2, ,T T HOM V V∈ , then ( ) ( ) ( ) ( )1 2 1 2T T v T v T v+ = + ,  u V∀ ∈ and for Fα ∈ ,

( ) ( ) ( )( )1 1T v T vα α=

Example :

1) For ( )1 2, ,T T HOM V V∈  and ( )1T v V∈  for any v V∈  then show that

( )1 2 ,T T HOM V V∈ .
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Solution : Let ( )1 2, ,T T HOM V V∈  we define ( ) ( )( )1 2 1 2T T v T T v=  for any v V∈ .

Let , Fα β ∈ and ,u v V∈  to show that ( ) ( ) ( )( ) ( )( )1 2 1 2 1 2T T u v T T u T T vα β α β+ = + .

Consider  ( ) ( ) ( ) ( )1 2 1 2 1 2 2T T u v T T u v T T u T vα β α β α β + = + =  +   

      ( )( ) ( )( ) ( )( )( ) ( )( )( )1 2 1 2 1 2 1 2T T u T T v T T u T T vα β α β= + = +

      ( ) ( ) ( )( )1 2 1 2T T u T T vα β=   +     

Thus ( )1 2 ,T T HOM V V∈ .

2) ( )1 2 3 1 3 2 3T T T T T T T+ = +

Solution : Let , Fα β ∈  and ,u v V∈ .

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 3T T T u v T T T u v T T T u T vα β α β α β + + = + + = +  +   

          ( ) ( ) ( ) ( )1 3 3 2 3 3T T u T v T T u T vα β α β=  +  +  +    

          ( ) ( ) ( ) ( )1 3 1 3 2 3 2 3T T u T T v T T u T T vα β α β= + + +

                      ( ) ( ) ( ) ( )1 3 2 3 1 3 2 3T T u T T u T T v T T vα β=  +  +  +    

          ( )( ) ( ) ( )1 3 2 3 1 3 2 3T T T T u T T T T vα β   = + + +   

          ( ) ( ) ( ) ( )1 2 3 1 2 3T T T u T T T vα β= + + +      

( )1 2 3 1 3 2 3T T T T T T T∴ + = +

3) ( )3 1 2 3 1 3 2T T T T T T T+ = +  same as above.

4) ( ) ( )1 2 3 1 2 3, ,T T T T T T=

Solution : ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 2 3, , , ,T T T u v T T T u v T T T u T T vα β α β α β   + = + = +   

 ( ) ( ) ( ) ( )1 2 3 1 2 3, , , ,T T T u T T T vα β= +

 ( ) ( ) ( ) ( )1 2 3 1 2 3, ,T T T u T T T vα β= +
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( ) ( ) ( ) ( )1 2 3 1 2 3, ,T T T u T T T vα β=   +     

( ) ( ) ( ) ( )1 2 3 1 2 3, ,T T T u T T T vα β= +

( ) ( )1 2 3,T T T u vα β= +

5) ( ) ( ) ( )1 2 1 2 1 2,T T T T T Tα α α= =

Solution : ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 2 1 2 1 2 1 2,T T u T T u T T u T T uα α α α= = =

∴  From properties 1, gives clouser property w.r. to multplication 2, 3, 4 give HOM (V, V) an
associative ring.

and ( ),I HOM V V∈  defined  as ,Iv v v V= ∀ ∈  and

TI IT T= =  for every ( ),T HOM V V∈ .

( ),HOM V V∴  is ring with unity..

Definition :  An associative ring A is called an algebra over F if A is a vector space over F such that
,a b A∀ ∈  and Fα ∈

( ) ( ) ( )ab a b a bα α α= =

Note :  HOM (V, V) is an algebra over F. We denote if A (V) and whenever we want to emphasize the
role of the field F. We shall denote it by AF (V).

Definition : A linear transformation on V over F is an element of AF (V). A (V) is the ring or algebra
of linear transformations on V.

Lemma :  If A is an algebra with unit element over F, then A is isomorphic to a subalgebra of A (V) for
some vector sapce V over F.

Proof :  Since A is an algebra over F it must be a vector space over F. We shall use V = A to prove the
lemma.

If a A∈  let :aT A A→  be defined by ( )aT v va=  for every v A∈ .
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We assert that aT  is a linear transformation on V (= A).

By the right distribution law.

( ) ( )1 2 1 2 1 2aT u v v u a v a u a+ = + = +

       ( ) ( )1 2a aT v T v= +

Therefore, A is an algebra ( ) ( ) ( ) ( )( )a aT v v a va T vα α α α= = = , for v A∈ , Fα ∈ .

Thus aT  is indeed a linear transformation on A. Consider the mapping ( ): A A Vψ →  defined

as ( ) aa Tψ =  for every a A∈ .

Claim : ψ  is an isomorphism of A into A (V).

a = b

( ) ( )a bT T a bψ ψ= ⇒ = ψ  is well deined.

If ,a b A∈  and , Fα β ∈  then v A∀ ∈ .

( ) ( ) ( ) ( )a bT v v a b va vbα β α β α β+ = + = +    ∵by left distribution law and  AB algebra

     ( )( ) ( )( ) ( ) ( )a b a bT v T v T T vα β α β= + = + aT  and bT  are L.T..

a b a bT T Tα β α β ψ+∴ = + ⇒  is a vector space homomorphous of A into A (V).

i.e. ( ) ( ) ( )a b a bψ α β αψ βψ+ = +

Now ,a b A∈ .

( ) ( ) ( ) ( )( ) ( )( )ab b a a bT v u ab va b T T v T T v= = = = ∵A is algebra associative law in A.

( ) ( ) ( )ab a bT T T ab a bψ ψ ψ⇒ = ⇒ =

ψ∴  is also a ring homomorphism of A.

ψ∴  is a homomorphism of A as an algebra into A (V).

Now ( ) { }| ( ) 0Kev a A aψ ψ= ∈ = . i.e. ( ) 0aψ =  i.e. 0aT =  and ( ) 0aT v = , v V∀ ∈ .

Now V = A and A has a unit element e hence ( ) 0aT e = . However ( )0 a aT e e a= = = .

Providing that a = 0. The Kernel of ψ  must consist of O.

ψ  is one-one and ( )dim( ) dim ( )A A V=  gives ψ  is onto

ψ∴  is an isomorphism of A into A (V). This completes the proof.
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Lemma :  Let A be an algebra with unit element over F, and suppose that A is of dimension n over F.
Then every element in A satisfies some nontrial polynomial in F [x] of degree at most m.

Proof :  Let e be the unit element of A, if a A∈  consider the  elements e, a, a2, ... am in A. Since A is

no dimensional over F, we know “If 1.... nv v  is basis of V over F and if 1.... mw w  in V are Linear

independent over F then m n≤ ” .

Let dim 1A m m= < +

∴  e, a, a2, ... am be linearly dependent over F. In other words there are elements

0 1, ,..., m Fα α α ∈  not all zero. Such that 0 1 .... 0m
me a aα α α+ + + = . But then a satisfies the non-

trivial polynomial ( ) 0 1 .... m
mq x x xα α α= + + +  of degree at most m in F [x].

Theorem :  If V is an n-dimensional vector space over F, then given any element T in A (V), there

exists a non-trivial polynomial ( ) ( )q x f x∈  of degree at most n2 such that ( ) 0q T = .

Proof :  As above.

Definition : V is finite dimensional, ( )T A V∈  some polynomial ( )q x  exist for which ( ) 0q T =  a

non-trivial polynomial of lowest degree with this property ( )p x  exists in ( )f x  we call ( )p x  a

minimal polynomial for T over F. If T satisfies  then ( ) ( )|p x h x .

Definition : An element ( )T A V∈  is called right invertible if there exists an ( )A Vδ ∈  such that

TS = 1 (1 is unit element in A (V)). Similarly we can define left in verify if ( )U A V∈  such that

UT = 1.

If TS = UT = 1 then T is invertible.

Example :  If TS = UT = I then S = U

Solution :  S = IS = (UT) S = U (TS) = UI = U.

Definition :  An element T in A (V) is invertible or regular if it is both right and left invertible i.e. if there

is an element ( )S A V∈  such that ST = TS = 1 we write S as T–1.

Note :  An element in A (V) which is not regular is called singular.
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Example : Let F be the field of real numbers and let V be ( )f x  the set of all polynomials on x over

F.

Solution : Let S be defined by ( )( ) ( )( )d
S q x q x

dx
=  and T by ( )( ) ( )

1

x

T q x q x dx= ∫

Then where as TS = 1.

Note : An element in A (V) is right invertible but is not invertible.

Theorem :  If V is finite dimensional over F, then ( )T A V∈  is invertible if and only if the constant term

of the minimal polynomial for T is not 0.

Let ( ) 0 1 .... k
kp x x xα α α= + + + , 0kα ≠  be the minimal polynomial for T over F..

If 0kα ≠  since ( ) 1
1 1 00 ....k k

k kp T T T Tα α α α−
−= = + + + +  we obtain

( )1 2
1 1

0

1
1 ....k k

k kT T Tα α α
α

− −
−

 = − + + + 
 

( )1
1

0

1
....k

kS Tα α
α

−∴ = − + + acts as an inverse for T..

Whence T is invertible.

Suppose on the other hand that T is invertible, let 0 0α =

Then ( )2 1
1 2 1 20 .... ....k k

k kT T T T Tα α α α α α −= + + + = + + +

Multiplying this relation from the right by T–1 yields

1
1 2 .... 0k

kT Tα α α −+ + + =

Whereby T satisfy the polynomial ( ) 1
1 2 .... k

kq x x xα α α −= + + +  in ( )f x .

and deg ( )( )q x  is less than that of ( )f x  this is impossible.

( )p x∴  is minimal polynomial consequently 0 0α ≠ .

Hence the Theorem.
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Corollary :  If V is finite dimensional over F and if ( )T A V∈  is invertible then T–1 is a polynomial

expression in T over T.

T is invertible

0 1 .... 0k
kT Tα α α∴ + + + =  with 0 0α ≠

Then ( )1 1
1 2

0

1
.... k

kT T Tα α α
α

− −= − + + +

Corollary : If V is finite-dimensional over F and if ( )T A V∈  is singular then there exists an 0S ≠  in

A (V) such that

0ST TS= =

Proof : Because T is not regular the constant term of its minimal must be 0.

i.e. ( ) 1 .... k
kp x x xα α= + +  where 10 .... k

kT Tα α= + +

If 1
1 .... k

kS Tα α −= + +  then 0S ≠

1
1 .... k

k xα α −∴ + +  is of lower degree then ( )p x .

0ST TS∴ = =

Corollary : If V is finite-dimensional over F and if ( )T A V∈  is right invertible, then it is invertible.

Proof : Let TU = I, if T were singular there would be on 0S ≠   such that 0ST = .

However ( ) ( )0 0ST U S TU SI S= = = = ≠  a contradiction. Thus T is regular..

i.e. T is invertible.

Theorem :  If V is finite-dimensional over F then ( )T A V∈  is singular if and only if ∃  a 0v ≠  in V

such that ( ) 0T v = .

Proof :  We know T is singular if and only if there is an 0S ≠  in A (V) such that 0ST TS= = .

Since 0S ≠  there is an element w V∈  such that ( ) 0S w ≠ .

Let ( )v S w=  then ( ) ( )( ) ( ) ( )T v T S w TS w= =

   ( )0 0w= =

We produced anon-zero vector v in V which is annihilated by T.
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Conversely, if ( ) 0T v =  with 0v ≠ .

Let ∃  of ( )S A V∈ , ( )v S w=  for some w V∈ .

( )( ) ( )0 0T S w TS w TS∴ = = ⇒ =

T∴  is singular, i.e. T is not invertible.

Definition : If ( )T A V∈ , then the range of T, T (V) is define by

( ) { }|T V v v V= ∈ .

Theorem :  If V is finite dimensional over F then ( )T A V∈  is regular if and only if T maps V onto V..

V is finite dimensional vector space over F.

Proof : Let ( )T A V∈  is regular. For v V∈  we have ( )( )1T T v v− = .

( )T V V∴ =  and hence T is onto.

Conversly suppose T is onto.

Suppose that T is not regular.

T∴  is singular then there exists a vector 1 0v ≠  in V such that ( )1 0T v = , 1 0v ≠∵ .

We can extend to form a basis for V as 1 2, ,..., nv v v . Then every element in T(V) is a linear

combination of the elements ( )1 2w T v= ( ) ( )1 2 .... n nw T v w T v= = .

Therefore ( )dim 1 dimT V n n V≤ − < = . But then  T (V) must be different from V. i.e. T is

not onto a contradiction hence T must be regular.

Definition :  If V is finite dimensional over F, then the rank of T is the dimension of T (V), the range of
T over F.

We denote rank of T by r (T).

Note :

1) If ( ) dimr T V= , then T is regular..

2) If ( ) 0r T =   then T = 0 and so T is singular..



40

Lemma : If V is finite dimensional over F then for ( ),S T A V∈ .

1) ( ) ( )r ST r T≤

2) ( ) ( )r TS r T≤ (so ( ) ( ) ( ){ }min ,r ST r T r S≤ )

3)  ( ) ( ) ( )r ST r TS r T= =  for S regular in A (V).

Proof :

1) Since ( )S V V< ( )( ) ( )( ) ( )TS V T S V T V∴ = ≤

( )( ) ( )dim dimTS V T V∴ ≤  i.e. ( ) ( )r TS r T<

2) Suppose that ( )r T m= , ( )T V∴  has a basis of m elements 1..... mw w .

But the ( )( )S T V  is spanned by ( ) ( ) ( )1 2, ,...., nS w S w S w .

Hence has dimension at most m.

Since ( ) ( ) ( )( ) ( )( )( ) ( ) ( )dim dim dimr ST ST V S T V m T V r T= = ≤ = =

3) If S is invertible then ( )S V V= .

( ) ( )( ) ( )TS V T S V T V∴ = =

( ) ( ) ( )( ) ( )( ) ( )dim dimr ST TS V T V r T∴ = = =

On the other hand if T (V) has 1.... mw w  as a basis the regularity of S implies that

( ) ( )1 ,....., mS w S w  are linearly independent.

Therefore for 1.... m Fα α ∈ , ( ) ( )1 1 .... 0m mS w S wα α+ + =

( ) ( )1 1 .... 0m mS w S wα α+ + = S∵ is linear..

( )1 1 .... 0m mS w wα α⇒ + + = multiply by S' on left.

1 1 .... 0m mw wα α+ + = S∵  is regular..

1 2 ..... 0mα α α⇒ = = = = 1..... mw w∴  basis of T (V)

and it spans ( ) ( )ST V  they form a basis of ( )ST V .

But then ( ) ( )( ) ( )( ) ( )dim dimr ST ST V T V r T= = =
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Corollary :  If ( )T A V∈  and if ( )S A V∈  is regular then

( ) ( )1r T r STS −=

Proof :  By 3 above ( ) ( ) ( )1 1r S T r TS r T− −= =

( ) ( )( ) ( )( ) ( )1 1 1r STS r S TS r TS S r T− − −∴ = = =

Example :  Let V and w be vector space over the field F and let T be a linear transformation from V
into w. If T is invertible then the inverse function T–1 is a linear transformation from w onto V.

Solution : When T is one-one and onto, there is a uniquely determined inverse function T–1 which
maps w and V. such that T–1T identity on V and TT–1 identity on W.

Claim :  T–1 is linear i.e. to show for , Fα β ∈ , 1 2,w w W∈ .

( ) ( ) ( )1 1 1
1 2 1 2T w w T w T wα β α β− − −+ = +

Now let 1 2,w w W∈ , 1 2,v v V∴∃ ∈  such that ( )1 1T v w= , ( )2 2T v w= .

i.e. ( )1
1 1v T w−=  and ( )1

2 2v T w−=

( ) ( ) ( )1 2 1 2 1 2T v v T v T v w wα β α β α β+ = + = +

( ) ( ) ( ) ( )1 1 1 1
1 2 1 2 1 2 1 2T w w T T v v v v T w T wα β α β α β α β− − − −∴ + = + = + = +  

Characteristics Roots

V will always denote a finite dimensional vector space over a field F.

Definition :  If ( )T A V∈  then Fλ ∈  is called a characteristic root (or eigen value) of T if I Tλ −  is

singular.

Theorem :  The element Fλ ∈  is a characteristic root of ( )T A V∈  if and only if for some 0v ≠  in

V, ( ) ( )T v vλ= .

Proof : If λ  is a characteristic root of T then Tλ −  is singular..

We know “If V–F.D.V.S. over F then ( )T A V∈  is singular if and only if there exists a 0v ≠

in V such that ( ) 0T v = .” ....
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∴  There is a vector 0v ≠  in V such that ( ) ( ) 0T vλ − = .

( ) ( ) ( )0v T v T v vλ λ⇒ − = ⇒ =

Conversely, let ( )T v vλ=  for some 0v ≠  in V.V.

( ) 0v T vλ∴ − =  i.e. ( ) ( ) 0T vλ − =  by (*) must be singular and so λ  is a characteristics

root of T.

Lemma :  If Fλ ∈  is a characteristic root of ( )T A V∈ , then for any polynomial ( ) [ ]q x F x∈ ,

( )q λ  is a  characteristic root of ( )q T .

Proof :  Suppose that Fλ ∈  is a characteristics root of T, by above theorem there is a non-zero
vector v in V such that Tv vλ= .

Now apply T on both side, we have

( ) ( )( ) ( ) ( )2 2T v T v T v T v vλ λ λ λ= = = =

Continuing this way, we obtain ( )k kT v vλ=  ∀  positive integers k.

If ( ) 0 ....m
mq x xα α= + + , i Fα ∈  then ( ) 0 ....m

mq T Tα α= + +  apply on v.

( ) ( ) ( ) ( ) ( )1
0 1 0.... ....m m m

m mq T v T T v T v vα α α α α−= + + + = + +

   ( ) ( )1
0 1 ....m m

m v q vα λ α λ α λ−= + + + =

Thus ( ) ( )( ) ( ) 0q q T vλ − =  hence by above theorem ( )q λ  is a characteristic root of ( )q T .

Theorem :  If Fλ ∈  is a characteristic root of ( )T A V∈  then λ  is a root of the minimal polynomial

of T. In particular T only has a finite number of characteristics roots in F.

Proof : Let ( )p x  be the minimal polynomial over F or T, thus ( ) 0p T = .

If Fλ ∈  is a characteristic root of T, there is a 0v ≠  in V with ( )T v vλ= .

As we know “If Fλ ∈  is characteristic root of ( )T A V∈  then for any polynomial

( ) [ ]q x F x∈ , ( )q λ  is a characteristic root of ( )q T .”

Therefore, we have ( ) ( ) ( )p T v p vλ=  but ( ) 0p T = , which implies that ( ) 0p vλ = ,

0v ≠∵  by property of vector space we must have ( ) 0p λ = . Therefore λ  is a root of ( )p x . Since

( )p x has only a finite number of roots (in fact ( ) 2log p x n∴ ≤  where ( )2dim ,V n p x=  has at most

n2 roots) in F, there can only be a finite number of characteristic rots of T in F.
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Lemma :  If  ( ),T S A V∈  and if S is regular, then T and 1STS −  have the same minimal polynomial.

Let ( ),T S A V∈  and S is reguar then we have

( )21 1 1 1 2 1STS STS STS STITS ST S− − − − −= = =

( )31 1 1 1 1 3 1....STS STS STS STS STITITS ST S− − − − − −= = =

( )1 1k kSTS ST S− −=

Now for any ( ) [ ]q x F x∈ , ( ) ( )1 1q STS Sq T S− −=

∴  if ( ) 0 1 ... m
mq x x xα α α= + + +

( ) ( )1 1 1
0 1 ...

m

mq STS STS STSα α α− − −= + + +

     1 1
0 1 ... m

mSTS ST Sα α α− −= + + +

     1 1 1
0 1 ... m

mS S S TS S T Sα α α− − −= + + +

     ( )1 1 1
0 1 ... m

mS S TS T Sα α α− − −= + + + S∵  is linear

     ( ) 1
0 1 ... m

mS T T Sα α α −= + + + 1S−∵  is linear

     ( ) 1Sq T S−=

In particular if ( ) 0q T =  then ( )1 0q STS − = .

Thus if ( )p x  is the minimal polynomial for T then it follows easily that ( )p x  is also the

minimal polynomial for 1STS − .

Hence the proof.

Definition :  The element 0 v V≠ ∈  is called a characteristic vector of T. Belonging to the characteristic

root Fλ ∈  if ( )T v vλ= .

Theorem :  If 1.... kλ λ  in F are distinct characteristic roots of ( )T A V∈  and if 1.... kv v  are characteristic

vectors of T belonging to 1.... kλ λ  respectively, then 1.... kv v  are linearly independent over F..

Proof :  If k =1 the result trivialy true.

Therefore one assume that k > 1
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Suppose 1.... kv v  are linearly dependent over F then there is a relation of the form

1 1 ... 0k kv vα α+ + =  where 1.... k Fα α ∈  and not all of them are o. In all such relations, there is one

having as few non-zero coefficients as possible.

By suitable renumbering the vectors we can assume this shortest relation to be

1 1 ... 0j jv vβ β+ + = 1 0.... 0jβ β≠ ≠ .... (1)

We know that ( )i i iT v vλ=  so applying T to equation (1) we obtain

( ) ( )2 1 2 2 1.... 0j j jv vλ λ β λ λ β− + + − =

Now 1 0iλ λ− ≠  for i > 1 and 1 0β ≠  whence ( )1 0i iλ λ β− ≠ .

But then we have produced a shorter relation than that in (1) between 1.... kv v . This contradiction

proves the theorem.

Corollary : If ( )T A V∈  and if dimV n=  then T can have at most n distinct characteristic roots in F..

Proof :  Any set of linearly independent vectors in V can have at most n elements. Since any set of
distinct characteristic roots of T by above theorem gives rise to a corresponding set of linearly
independent characteristic vectors which is at most n.

Corollary :  If ( )T A V∈  and dimV n=  if and if T has n distinct characteristic roots in F then there

is a basis of V over F which consists of characteristic vectors of T.

Matrices

Let V be a n-dimensional vector space over F and let 1.... nv v  be basis of V over F..

If ( )T A V∈  then T is determined on any vector as soon as we know its action on a

basis of V.

1 2, ,..., nTv Tv Tv  are the elements of V..

Each of these can be written as a linear combination of 1.... nv v  unique way..

Thus ( )1 1 1 1 12 2 .... n nT v v v vα α α= + + + , ( )2 21 1 22 2 2.... n nT v v v vα α α= + + +

( ) 1 1 2 2... ....n n n nn nT v v v vα α α= + + +
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This system can be written more compactly as

( )
1

n

i ij j
j

T v vα
=

= ∑ for i = 1,..., n

The set of n2 numbers ij Fα ∈  completely discribes T..

Definition :  Let V be an n-dimensional vector space over F and let 1.... nv v  be a basis of V over F..

If ( )T A V∈  then the matrix of T in the basis 1.... nv v  witten as m (T) is

( )

11 12 1

21 22 2

1 2

n

n

n n nn

m T

α α α
α α α

α α α

 
 
 =
 
  
 

…
…

M M
L

where ( )
1

n

i ij j
j

T v vα
=

= ∑

Example :  Let F be a field and V be the set of all polynomials in x of degree n–1 or less over F. On
V let D be defined by

( ) ( )1 2
0 1 1 1 2 1... 2 ... 1n n

n nD x x x n xβ β β β β β− −
− −+ + + = + + + −

(it is called differentiation operator)

1) Show that D is L.T. on V.

2) Find m (D) w.r.t. basis 2 11, , ,..., nx x x −

Solution :

1) , Fα β ∈ , ( ) ( ),p x q x V∈

( ) ( )p x q x Vα β+ ∈

( ) ( )( ) ( )( ) ( )( )D p x q x D p x D q xα β α β+ = +

        ( ) ( ) ( )( ) ( ) ( ) ( )( )D p x D p x D q x D q xα α β β= + + +

        ( )( ) ( )( )D p x D q xα β= + ( ) ( )0D Dα β= =∵
∴  D is linear transformation.
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2) The basis for V is 2 11, , ,..., nx x x −

( ) ( )1 1 0D v D∴ = = , ( ) ( )2 1 21 0 0 .... 0 nD v D x v v v= = = + + +

  
1

n

i
i

ov
=

= ∑

( ) ( )2
3 1 2 32 0 2 0 .... nD v D x x v v v ov= = = + + + +

    M
( ) ( ) ( ) ( )1 2

1 2 1 11 0 .... 2 1 0 ... 0i i
i i i iD v D x i x v v i v v v− −

− −= = − = + + + − + + +

    M

( ) ( )( ) ( ) ( )1 2
1 2 11 0 .... 2 1 0n n

n n n nD v D x n x v v n v v− −
− −= = − = + + + − +

gives basis

( )

0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0

0 0 0 1 0

m D

n

− − − 
 − − − 
 − − −

∴ =  − − − 
 
 

− − − −  

M

2) Find ( )m D  for a basis 1 2
1 2, ,..., 1n n

nw x w x w− −= = =

Solution : Now ( ) ( ) ( ) ( )1 2
1 1 2 31 0 2 0 ... 0n n

nD w D x n x w n w w w− −= = − = + − + + +

( ) ( ) ( ) ( )2 3
2 1 2 32 0 0 2 ... 0n n

nD w D x n x w w n w w− −= = − = + + − + +

   M
        ( ) ( ) ( ) ( )1

1 1 20 .... 0 0 ... 0n i n i
i i i i nD w D x n i x w w n i w w w− − − −

+ += = − = + + + − + + +

  M
( ) ( ) 10 0 .... 0n nD w D x w w= = = + +



47

( )

0 ( 1) 0 0 0 0
0 0 ( 2) 0 0 0

0 0 0 0 0 1
0 0 0 0 0 0

n
n

m D

− 
 − 
 ∴ =
 
 
 
 

M

3) 2 1
1 2 31, 1 , 1 ,...., 1 n

nu u x u x u x −= = + = + = +

is it basis for V over F and what is matrix for D.

Solution : 1 1 2 2 .... 0n nu u uα α α+ + + =

( ) ( ) ( )1
1 21 1 .... 1 0n

nx xα α α −+ + + + + =

( ) 1
1 2 2... ... 0n

n nx xα α α α α −⇒ + + + + + + =

This is a linear combination of 2 11, , ,..., nx x x −  and it is a basis for V..

Therefore all 0iα = .

1.... nu u∴  are L.I. and it forms a basis of V..

( ) ( )1 1 21 0 0 0 .... 0 nD u D u u u∴ = = = + + +

( ) ( )2 1 21 1 1 0 .... 0 nD u D x u u u= + = = + + +

( ) ( ) ( ) ( )2
3 2 11 2 2 2 2 2 1 1 2D u D x x x x u u= + = = + − = + − = −

       1 2 32 2 0 .... 0 nu u u u= − + + + +

   M
( ) ( ) ( ) ( )( )1 2

11 1 1n n
n nD u D x n x n u u− −= + = − = − −

( ) ( )1 2 2 11 0 .... 0 1 0n n nn u u u n u u− −= − + + + + + − +

( )

0 0 0 0 0
1 0 0 0 0
2 2 0 0 0
3 0 3 0 0

( 1) 0 0 ( 1) 0

m D

n n

− − − 
 − − − 
 − − − −

∴ =  
− − − − 

 
  − − − − − − 

M
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4) Let T is linear transformation of V of n-dimensional vector space V and if T has n distinct
characteristic roots then what is the matrix for T.

Solution : Let T is linear transformation on V and 1... nλ λ  be n distinct characteristic roots of T..

We know “If ( )T A V∈  and dimV n=  and if T has n distinct and have ---- roots in F, then

there is a basis of V over F which consists of characteristic vectors of T.”

Therefore, we can find a basis 1 2, ,.... nv v v  of V over F such that ( )i i iT v vλ= .

In this basis T has a matrix

( )

1

2

0 0 0
0 0 0

0 0 0 x

m T

λ
λ

λ

− − − 
 − − − =
 
  
 

M

Note :

If we have a basis 1.... nv v  of V over F a given matrix 

11 1

1

n

n nn

β β

β β

 
 
 
 
 

L
M

L
, ,i j Fβ ∈  gives rise to

a linear transformation T  defined on V by ( )
1

n

i ij j
i

T v vβ
=

= ∑  on this basis.

Thus every possible square away serves as the matrix of some linear transformation in the

basis 1.... nv v .

Let V is an n-dimensional vector space over F and 1.... nv v  be basis suppose that ( ),S T A V∈ ,

having matrices ( ) ( )ijm S α= , ( ) ( )ijm T β=  in the given basis.

Show that the collection of such matrices is an algebric structure.

S = T iff ( ) ( )S v T v=  for any v V∈ .

Hence iff ( ) ( )i iS v T v=  for any  1.... nv v  forming a basis of V.V.

Equivalents S = T if and only if ij ijα β=  for each i and j.

If S = T  if and only if ( ) ( )m S m T= .
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Now ( ) ( )ijm S α=  and ( )
1

n

i ij j
j

S v vα
=

= ∑  and ( )
1

n

i ij j
j

T v vβ
=

= ∑

( ) ( ) ( ) ( ) ( )i i i ij j ij j ij ij jS T v S v T v v v vα β α β∴ + = + = ∑ + ∑ = ∑ +

∴  We can explicitly write down ( )m S T+  for ( ) ( )ijm S α= , ( ) ( )ijm T β=

This is meant by the matrix of linear transformation in a given basis, ( ) ( )ijm S T λ+ =  where

i j ij ijλ α β= + for every i and j.

Now for Fγ ∈  show that ( ) ( )ijm Sγ µ=  when ij ijµ γα=  for every i and j.

( ) ( ) ( )ij ijm Sγ γα µ= =

( ) ( ) ( )
1 1

n n

i ij j ij j i
j j

S v v v S vγ γ α γα
= =

= = =∑ ∑

For ( )m ST  let ( ) ( )( ) ( )
1 1

n n

i i ij j ij j
j j

ST v S T v S v S vβ β
= =

 
= = =  

 
∑ ∑

But ( )
1

n

j jk k
k

S v vα
=

= ∑

( ) ( ) ( )
1 1 1 1 1

n n n n n

i jk k ij jk k ij jk k
j j k k S

ST v v v vβ β α β α
= = = = =

 
∴ = = =  

 
∑ ∑∑ ∑∑

    ( )1 1 2 2
1

...
n

ij j j jn n
j

v v vβ α α α
=

= + + +∑

   1 1 2 2
1 1 1

....
n n n

ij j ij j ij jn n
j j j

v v vβ α β α β α
= = =

= + + +∑ ∑ ∑

  ( ) ( )1 1 2 21 1 1 1 1.... .... ....i j i in n i n in nn nv vβ α β α β α β α β α= + + + + + + +

  ( )
1 1

n n

ij jk k
k j

vβ α
= =

= ∑∑

( ) ( )ikm ST σ∴ =  when for i and j

1

n

ik ij jk
j

σ β α
=

= ∑
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nF  : set of all n x n matrices entry from F..

It is an algebra.

i) ( ) ( )ij ijα β=  two matrix in Fn iff ij ijα β= , ∀  i and j

ii) ( ) ( ) ( )ij ij ijα β λ+ =  where i j ij ijλ α β= + , ∀  i and j

iii) Fγ ∈ , ( ) ( )ij ijγ α µ= where ij ijµ γα= , ∀  i and j

iv) ( ) ( ) ( )ij ij ijα β σ=  where every i and j 
1

n

ij ik kj
K

σ α β
=

= ∑

Theorem :  The set of all n x n matrices over F form an associative algebra, Fn over F. If V is an n-
dimensional vector space over F, then A (V) and Fn are isomorphic as algebra over F.

Proof : Let 1 2, ,..., nv v v  be a basis of V over F, ( )T A V∈ , :T V V→ , ( )m T  is the matrix of TT

w.r.t. the basis 1 2, ,..., nv v v .

We deine mapping ( ): nA V Fφ →  as ( )T m T→ .

( ) ( )T m Tφ = , claim φ  is well defined, 1 - 1, onto

Let ( ),S T A V∈

if S = T then ( ) ( )S v T v=  for every v V∈ .

i.e. ( ) ( )i iS v T v= , iv  in the basis of V.V.

iff 
1 1

n n

ij j ij j
j j

v vα β
= =

=∑ ∑

iff,  ij ijα β= , ∀  i and j

i.e. ( ) ( )ij ijα β=

one-one ( ) ( )m S m T⇒ = , φ  is well defined.

nA F∈ ,  ( )T A V∃ ∈ , ( ) m nT Aφ ×= .

φ  is onto.

, Fα β ∈ , ( ),T S A V∈ , ( )T S A Vα β+ ∈ .
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( ) ( ) ( ) ( )T S m T S m T m Sφ α β α β α β+ = + = +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )i i i i iT S v T v S v T v S vα β α β α β+ = + = +

( )
1 1 1

n n n

ij j ij j ij ij j
j j j

v v vα α β β αα ββ
= = =

= + = +∑ ∑ ∑

( ) ( ) ( ) ( ) ( ) ( )ST S T m ST m S m Tφ φ φ= + = =

( )
1

n

j ij j
j

ST v vγ
=

∴ = ∑   where 
1

n

ij ik kj
j

γ α β
=

= ∑

    
1 1

n n

ij ik kj j
j k

vγ α β
= =

= ∑∑

φ∴  is homomorphic.

Hence φ   is isomorphic.

Theorem :  If V is n-deimensional over F and if ( )T A V∈  has the matrix ( )1m T  in the basis 1,..., nv v

and the matrix ( )2m T  in the basis 1 ,..., nw w  of V over F. Then there is an element nC F∈  such that

( ) ( )1
2 1m T C m T C−= .

(In fact, if S is the linear transformation of V defined by ( )i iS v w= , ∀ i = 1, ..., n then C can

be closer to be ( )1m S )

Proof :  Let ( ) ( )1 ijm T α=  and ( ) ( )2 ijm T β=

Thus ( )
1

n

i ij j
j

T v vα
=

= ∑   and  ( )
1

n

i ij j
j

T w wβ
=

= ∑

Let S be the linear transformation on V defined by ( )i iS v w= , 1,..., nv v∵  are basis of V over

F. S maps V onto V.

We know “ If V is finite dimensional over F then ( )T A V∈  is regular iff T maps V onto V..”

∴  S is regular if S is invertible in A (V).

Now ( )
1

n

i ij j
j

T w wβ
=

= ∑ , ( )i iw S v∴ =  on substituting this in the expression for ( )iT w  we

obtain
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( )( ) ( )( )
1

n

i ij i
j

T S v S vβ
=

= ∑

( )
1

n

i ij j
j

TS v S vβ
=

 
⇒ =   

 
∑

∴  S is invertible this further simplifies to

( )( ) ( )1 1
i ij jS TS v S S vβ− −= ∑

( )( )1
i ij jS TS v vβ−⇒ = ∑

∴  by the definition of the matrix of linear transformation in the given basis,

( ) ( ) ( )1
1 2ijm S TS m Tβ− = =

However the mapping ( )1T m T→  is an isomorphic of A (V) onto Fn.

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1
1 1 1 1 1 1 1m S TS m S m T m S m S m T m S− − −∴ = =

( ) ( ) ( ) ( )1
2 1 1 1m T m S m T m S−∴ =  which is exactly what is claimed in the theorem.

Example 1 :

A B
1 1 1 1 1 2
1 1 0 1 1 0

     
=     −     

( )
1 2

0 1
AB BA

− 
− =  

 

1 1 1 1 2 0
0 1 1 1 1 1

B A

     
=     − −     

( )2 1 2 1 2 1 0
0 1 0 1 0 1

AB BA
− −     

− = =     
     

A B
1 1 2 3 3 5
1 1 1 2 1 1

     
=     −     

( )
2 6
2 2

AB BA
− 

− =  − 

2 3 1 1 5 1
1 2 1 1 3 1

B A

−     
=     − −              ( )

2 6 2 6 8 0
2 2 2 2 0 8

AB BA
− − −     

− = =     − − −     

   ( ) 1 0
8

0 1
 

= −  
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PROBLEMS :

1. Prove that ( )S A V∈  is regular if and only if whenever 1,..., nv v V∈ are linearly

independent, then ( ) ( ) ( )1 2, ,..., nS v S v S v  are also linearly independent.

2. Prove that ( )T A V∈  is completely determined by its values on a basis of V..

3. Prove that the minimal polynomial of R over F divides all polynomials satisfied by T over F.

4. If V is two-dimensional over a field F prove that every element in A (V) satisfies a polynomial
of degree 2 over F.

5. Prove that give the matrix 3

0 1 0
0 0 1
6 11 6

A F
 
 = ∈ 
 − 

 (where the characteristic of F is not 2),

then

(a) 3 26 11 6 0A A A− + − =

(b) There exists a matrix 3C F∈  such that

1

1 0 0
0 2 0
0 0 3

CAC−
 
 =  
 
 

6. If F is of characteristic 2, prove that if F2 it is possible to find matrices A, B such that
AB – BA = 1.

❏ ❏ ❏
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CANONICAL  FORMS

UNIT  -  III

1) Triangular Form

Definition :

The linear transformations ( ),S T A V∈  are said to be similar if there exists an invertible element

( )C A V∈  such that 1T CSC−= .

Definition :

The relation on A (V) defined by similarity is an equivalence relation, the equivalence class of
an element will be called its similarity class.

Note :

To check the two linear transformations are similar or not is difficult. Therefore, we can use
similarity class which matrix in some basis. These matrices will be called the Canonical Forms.

Definition :

The subspace W of V is invarient under ( )T A V∈  if ( )T W W⊂ .

Lemma :

If W V⊂  is invarient under T, then T induces a linear transformation T  on 
V
W

 defined by

( ) ( )T v W T v W+ = + . If  T satisfies the polynomial ( ) [ ]q x F x∈  then so does T . If ( )1p x  is the

minimal polynomial for T  over F and if ( )p x  is that for T then ( ) ( )1 |p x p x .
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Proof :   Let W V⊂  is inveriant under T. T is linear transformation and 
V

V
w

=  be vector space which

contain the element as v v W= +  for v V∈ .

Define, ( ) ( )T v T v W= +

Claim T  is well defined and linear transform

1 1 2 2,v W v v v W+ = = +  for 1 2,v v V∈  claim ( ) ( )1 2T v T v= .

( )1 2 1 2 1 20v W v W v v W v v W∴ + = + ⇒ − + = ⇒ − ∈

( )1 2T v v W− ∈ ∴  W is invarient under T..

( ) ( ) ( ) ( )1 2 1 2T v T v W T v W T v W∴ − ∈ = + = +

( ) ( )1 2T v T v⇒ = ,  hence T  is well defined.

, , Fα β ∈ , 1 2v v Vα β+ ∈  for 1 2,v v V∈ .

( ) ( ) ( )1 2 1 2 1 2T v v T v v T v v Wα β α β α β∴ + = + = + +

( ) ( )( ) ( ) ( )1 2 1 2T v T v W T v W T v Wα β α β= + + = + + +

( ) ( ) ( ) ( )1 2 1 2T v W T v W T v T vα β α β= + + + = +      

Hence, T  is linear..

Now if v v W V= + ∈  then ( ) ( ) ( )( )2 2T v T v W T T v W= + = +

( ) ( )( ) ( )( ) ( ) ( )22T v T T v W T T v W T v⇒ = + = + =

Thus 22T T= . Similarly ( ) ( )kkT T=  for any 0k ≥ ... (1)

Consequently, for any polynomial ( ) [ ]q x F x∈ , ( ) ( )q T q T= .

∵  for ( ) 0 1 .... n
nq x x xα α α= + + +

( ) 0 1 .... m
nq T T Tα α α∴ = + + +

( ) ( )0 1 0 1.... ....m m
n nq T T T T Tα α α α α α⇒ = + + + = + + +

  0 1 ....
n

nT Tα α α= + + + i Fα ∈∵

  ( ) ( )
0 1 ....

n
nT T q Tα α α= + + + = ( )1∵
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For any ( ) [ ]q x F x∈  with ( ) 0q T = 0∵  is the zero transformation on V .

( ) ( )0 q T q T= = .... (2)

Let ( )1p x  be the minimal polynomial over F satisfied by T .

If ( ) 0q T =  for ( ) [ ]q x F x∈  then ( ) ( )1 |p x q x ... (3)

If ( )p x  is the minimal polynomial for T over F then ( ) 0p T = .

( ) 0p T∴ = by (2)

( ) ( )1 |p x p x⇒ by (3)

Hence proof.

Theorem :

If ( )T A V∈  has all its charactristics roots in F, then there is a basis of V in which the matrix of

T is triangular.

Proof :

We prove this theorem by using induction on the dimensions of V over F.

If dim 1V =  then every element in A (V) is a scalar and also the theorem is true here.

Suppose that the theorem is true for all vectr spaces over F of dimension n–1 and let V be of
dimension n over F.

The linear transformation T on V has all its characteristic roots in F let 1 Fλ ∈  be a characteristic

root of T. There exists a non-zero vector 1v  in V such that ( )1 1 1T v vλ= .

Let { }1 |W v Fα α= ∈ ; W is a one-dimensional subspace of V and is invarient under T..

Let /V V W=  we know “If V is finite dimensional vector space and W be subspace of V then

dim dim dimV V W= − ”

dim dim dim 1V V W n∴ = − = −

Also we know ‘If W V⊂  is invariant under T then T induces a linear transformation T  on

V/W defined by

( ) ( )T v W T v W+ = +

Also, we know that, If T satisfies the polynomial ( ) [ ]q x F x∈  then so does T . If ( )1p x  is

the minimal polynomial for T  over F and if ( )p x  is that for T then ( ) ( )1 |p x p x ”
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T induces a linear transformation T  on V  whose minimal polynomial over F divides the

minimal polynomial of T over F.

Thus all the roots of the minimal polynomial of T , being roots of the minimal polynomial of T,,

must lie in F.

The linear transformation T  in its action on V  satisfies the hypothesis of the theorem.

Since V  is (n–1) dimensional over F, by our induction hypothesis there is a basis 2 ,..., nv v  of

over F such that

( )2 22 2T v vα= , ( )3 32 2 33 3.......T v v vα α= +

( ) ( )2 2 3 3 2 2 3 3..... ..... .....i i i ii i n n n nn nT v v v v T v v v vα α α α α α= + + + = + + +

Let 2 3, ,..., nv v v  be elements of V mapping into 2 ,..., nv v  respectively..

Then 1 2, ,...., nv v v  form a basis of V..

[ 2 ,..., nv v∵  be a basis if they are lineary independent and 2 3, ,...., nv v v  maps into these

elementry  2 3, ,...., nv v v∴  linearly independent. Therefore we have if 1 2, ,...., nv v v  linearly

independent then 1 2, ,...., nTv Tv Tv  linearly independent Now let 1 2, ,...., nv v v  and

1,...., n Fα α ∈  such that 1 1 .... 0n nv vα α+ + = . i.e. 1 0α =  the this linearly independent we are throw

if not then ( )1
1 1 2 2 1.... n nv v v vα α α−= − + + ⇒  is the linear combination of

( ) ( )1
1 1 1 2 2 .... n nT v v v v Wα α α−= = − + + ∈ a contradiction to W is invariant under T and dim W = 1]

Since ( ) ( ) ( )2 22 2 2 22 2 2 22 20T v v T v v T v v Wα α α= ⇒ − = ⇒ − ∈

Thus ( )2 22 2T v vα−  is a multiple of 1v  say 21 1vα  yielding, after transforming

( )2 21 1 22 2T v v vα α= +

Similalry,  2 2 3 3......i i i ii iTv v v v Wα α α− − ∈

( ) 1 1 2 2 .....i i i ii iT v v v vα α α∴ − + + +

The basis 1,...., nv v  of V over F provides us with a basis where every ( )iT v  is a linear

combination of iv  and its precedessors in the basis. Therefore the matrix of T in the basis is triangular..
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Theorem :

If V is n-dimensional over F and if ( )T A V∈  has all its characteristic roots in F, then TT

satisfies a polynomial of degree n over F.

Proof :  By previous theorem we can find a basis 1,...., nv v  of V over F such that

( )1 1 1T v vλ= , ( )2 21 1 2 2T v v vα λ= + , ... ( ) 1 1 2 2 .....i i i ii iT v v v vα α α= + + +  for i = 1, 2, ..., n

Equivalenty ( )1 1 0T vλ− = , ( )2 2 2 1 1....T v vλ α− =

( ) 1 1 1 1....i i i ii iT v v vλ α α − −− = + + for i = 1, 2, ...., n

Now ( ) ( )( ) ( ) ( ) ( )1 2 2 1 21 1 21 1 1 0T T v T v T vλ λ λ α α λ− − = − = − =

also ( ) ( ) ( ) ( )1 2 2 1T T T Tλ λ λ λ− − = − −

Continuing this type of computation yields.

( )( ) ( )1 2 1.... 0iT T T vλ λ λ− − − = , ( ) ( ) ( )1 2 2.... 0iT T T vλ λ λ− − − =

( ) ( ) ( )1 2.... .... 0i iT T T vλ λ λ− − − = for i = n

The matrix ( ) ( ) ( )1 2 .... nS T T Tλ λ λ= − − ∈ −  satisfies ( ) ( ) ( )1 2 .... 0nS v S v S v= = = = .

Then, since S annihilates a basis of V, S must annihilate all of V. Therefore S = 0. Consequently

T satisfies the polynomial ( ) ( ) ( )1 2 .... nx x xλ λ λ− − −  in F [x] of degree n proves the theorem.

2) Nilpotent Transformations

Lemma :

If 1 2 .... nV V V V= ⊕ ⊕ ⊕  where each subspace iV  is of dimension in  and is invariant under T,T,

an element of A (V), then a basis of V can be found so that the matrix of T in this basis is of the form

1

2

0 0
0 0

0 0 n

A
A

A

 
 
 
 
  
 

L
L

M
L

where each iA  is an i in n×  matrix and is the matrix of the linear transformation induced by T on iV .
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Choose a basis of V as follows : 
1

(1) (1) (1)
1 2, ,...., nv v v  is a basis of 1V , 

2

(2) (2) (2)
1 2, ,...., nv v v  is a basis

of 2V  and so on .... ( ) ( ) ( )
1 2, ,....,

n

n n n
nv v v  is a basis of nV . Since each iV  is invariant under T.T.

( )( )i
j iT v V∈  so is a linear combination of ( ) ( ) ( )

1 2, ,....,
i

i i i
nv v v  and only these. Thus the matrix of

T in the basis so chosen is of the desired form. That each iA  is the matrix of iT , the linear transformation

induced on iV  by T is clear from the very definition of the matrix of a linear transformation.

Lemma :

If ( )T A V∈  is nilpotent, then 0 1 .... m
mT Tα α α+ + + , when the i Fα ∈  is invertible if 0 0α ≠ .

Proof :

If S is nilpotent and 0 0 Fα ≠ ∈  a simple computation shows that

( ) ( )
2 1

1
0 2 3

0 0 0 0

1
.... 1 1

r
r

r

S S S
Sα

α α α α

−
− 

+ − + + + − =  
 

if 0rS =

Now if 0rT = , 2
1 2 .... m

mS T T Tα α α= + + +  also must satisfy 0rS = .

( )2
1 2 ....

rr m
mS T T Tα α α= + + + = 0 0rT =∵

Thus for 0 0α ≠  in F, 0 Sα +  is invertible.

Definition :

If ( )T A V∈  is nilpotent then k is called index of nilpotent of T if 0kT =  but 1 0kT − ≠ .

Theorem :

If ( )T A V∈  is nilpotent of index of nilpotence 1n  then  a basis of V can be found such that

the matrix of T in this basis has of the form

1

2

0 0

0 0

0 0
r

n

n

n

M

M

M

 
 
 
 
 
 
 

L

M O
L

where 1 2 ..... rn n n≥ ≥ ≥  and where 1 2 ..... dimrn n n V+ + + = .
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Proof : ( )T A V∈  is nilpotent with index of nilpotence 1n .

1 0nT∴ =  but  1 1 0nT − ≠

We can find a vector v V∈  such that 1 1 0nvT − ≠ .

Let ( ) ( ) ( )1 12, , ,...., nv T v T v T v−  be 1n  vectors we claim that these are linearly independent

over F.

Suppose that these are linearly dependent i.e. there are scalars 1 2, ,...., ni Fα α α ∈  not all

zero such that

( ) ( )1 1
1 2 .... 0n

ni
v T v T vα α α −+ + + =

Let sα  be the first non-zero scalar, hence

( )( )1
1

1
1 .... 0n ss

s s nT T T vα α α −−
++ + + =

We know “If ( )T A V∈  is nilpotent then 0 1 .... m
mT Tα α α+ + +  when the i Fα ∈  is invertible

if 0 0α ≠ ”

0Sα∴ ≠  we have 1
11 .... n s

s s nT Tα α α −
++ + +  is invertible, and therefore ( )1 1 0nT v− ≠ .

Thus no such non-zero sα  exists and ( ) ( ) ( )1 12, , ,...., nv T v T v T v−  Linearly independent over

F.

Let 1V  be the subspace of V spanned by ( ) ( )1
1

1
1 2, ,...., n

nv v v T v v T v−= = = .

1V∴  is invariant under T and have basis 11 2, ,...., nv v v , T can be induces the linear transformation

of 1V . The matrix representation of 1T  w.r.t. the above basis is 1nM .

So far we have produced the upper left-hand corner of the matrix of the theorem.

Now 2 1n n≤ , 2 0nT∴ ≠   for 1 2n n≠  (if 1 2n n=  then do above process)

We can find u V∈  such that ( )2 0nT u ≠ .

∴  claim, ( ) ( )2 1, ,...., nu T u T u− linearly independent and spans 2V  subspace of V and 2V   is

invariant under T. Therefore T induce a linear map on V2 whose matrix representation is 2nM and so

on.

Similarly we can find other.

We can get basis for V and the matrix representation of the required form.
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Lemma :

If 0 1u V∈  is such that ( )1 0n kT u− =  when 10 K n< ≤  then ( )ku T u=  for some 0 1u V∈ .

Proof :  Since u V∈ ,

( ) ( ) ( ) ( )1
1

11
1 2 1.... .... nk k

k k nu v T v T v T v T vα α α α α −−
+= + + + + + +

Thus ( ) ( ) ( )1 1 1 1
10 ....n k n k n

kT u T v T vα α− − −= = + +

However ( ) ( )1 1 1,...,n k nT v T v− −   are linearly independent over F

Whence 1 2 .... 0kα α α= = = =  and so ( ) ( ) ( )1
1

1
1 0.... nk k

k nu T v T v T uα α −
+= + + =

When ( )1
1

1
0 1 .... n k

k nu v T v Vα α − −
+= + + ∈ . Hence the proof.

Lemma :

There exists a subspace W of V, invariant under T, such that 1V V W= ⊕ .

Proof :

Let W be a subspace of V of largest possible dimension such that

(1) ( )1 0V W =∩ (2) W is invariant under T.

First we show that 1V V W= + .

Suppose not, then there exist an element z V∈  such that 1z V W∉ + .

Since 1 0nT = , there exists an integer k, 0 < k < n, such that ( ) 1
kT z V W∈ +  and such that

( ) 1
iT z V W∈ +  for i < k.

Thus ( )kT z u w= +  when 1u V∈  and where w W∈ . But then

( ) ( )( ) ( ) ( )1 1 10 n k n k n kk kT z T T z T u T w− − −= = = +

However, since both V1 and W are invariant under T, ( )1
1

n kT u V− ∈  and ( )in kT w W− ∈ .

Now since ( )1 0V W =∩  this leads to

( ) ( ) ( ) ( )1 1
1 0 0in kn k n kT u T w V W T u−− −= − = ⇒ =∩

We know “If 1u V∈  is nsuch that 1 0n kT u− =  where 10 k n< ≤  then 0
ku T u=  for some

0 1u V∈ .”
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We have ( )0
kT u u=  for some 0 1u V∈ .

Therefore ( ) 0
k kT z u w T u w= + = +

Let 1 0z z u= −  then ( ) ( ) ( )1 0
k k kT z T z T u w W= − = ∈  and  since W is invariant under T

this yields ( )1
mT z W∈  for all m k≥ .

On the other hand if i < k, ( ) ( ) ( )1 0 1
i i iT z T z T u V W= − ∉ +  for otherwise ( )iT z  must fall

in 1V W+ comtradicting the choice of k.

Let 1W  be the subspace of V spanned by W and 1
1 1 1, ,...., kz Tz T z− , 1z W∉∵  and since

1W W⊂ , the dimension of 1W  must be larger than that of W, moreover, since ( )1
kT z W∈  and since

W is invariant under T, 1W  must be invariant under T..

By the maximal nature of W, there must be an elements of the form

( ) ( )1
0 1 1 2 1 1 1 1.... 0k

kw z T z T z W Vα α α −+ + + + ≠ ∈ ∩
Where 0w W∈ . Not all of 1,...., kα α  can be 0, otherwise we would have

( )0 10 0w W V≠ ∈ =∩ , a contradiction.

Let sα  be the first non-zero sα , then ( ) ( )1
0 1 1 1...s k s

s s kw T T T z Vα α α− −
++ + + + ∈ .

Since 10 .... k s
s s s kT Tα α α α −

+≠ ⇒ + + +  is invertible and its inverse say R is a polynomial

in T.

Thus W and 1V  are invariant under R.

However from the above ( ) ( ) ( )1
0 1 1 1

kR w T z R V V−+ ∈ ⊂

Forcing ( ) ( )1
1 1 1

sT z V R W V W− ∈ + ⊂ +  since 1s k− <  this is impossible, therefore

1V V W= + and Because ( )1 0V W =∩ , 1V V W= ⊕ .

Hence the proof.

Problem :  Let 1V V W= ⊕  where W is invariant under T when we can find a basis of V, so that

matrix representation of T in this basis is of the form 
1

2

0

0
nM

A

 
  
 

.
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Definition :  The integers 1 2, ,....., rn n n  are called the invariants of T..

Definition :  If ( )T A V∈  is nilpotent the subspace M of V, if dimension m which is invariant under T,,

is called cyclic with respect to T if

1) ( ) ( )0mT M = , ( ) ( )1 0mT M− ≠

2) There is an element z M∈  such that ( ) ( )1, ,...., mz T z T z−  form a basis of M.

Lemma :  If M of dimension m, is cyclic with respect to T, then the dimension of ( )kT M  is m–k for

all k m≤ .

Proof : Let M of dimension m is cyclic w.r.t. T consider ( ) ( ) ( )2 1, , ,...., mz T z T z T z−  be basis of M.

( ) ( ) ( ) ( ) ( )1 2 1, , ,...,k k k m k kT z T z T z T z T M+ + + −∴ ∈ (be basis of ∈)

But M is cyclic w.r.t. T i.e. ( ) 0mT m =  i.e. ( ) 0mT z =  and ( )1 0mT z− ≠

( ) ( ) ( )1 1, ,...,k k mT z T z T z+ −∴  be basis of ( )kT M .

Therefore m – k elements ( )( )dim kT M∴  is m – k, k m∀ ≤ .

Example : For a nilpotent T in A (V). Find integers 1 2 ..... rn n n≥ ≥ ≥  and subspaces 1 2, ,...., rV V V  of

V cyclic with respect to T and of dimensions 1 2, ,....., rn n n  respectively such that 1 2.....V V V= ⊕ ⊕ .

Show that these are unique integers.

Solution : Let ( )T A V∈  is nilpotent, we suppose index of nilpotent n1.

1 0nT∴ =  and 1 1 0nT − ≠

Then v V∈ ,  ( ) ( ) ( )1 12, , ,...., nv T v T v T v−  is Linearly independent set in V form a subspace

of V generated by these element say V1 and  dim V1 = n1.

Not let u V∈  and 1u V∉  and 2 1n n≤  be integer 2 1 0nT −∴ ≠ .

And ( ) ( ) ( )2 12, , ,...., nu T u T u T u−  is linearly independent set form a subspace V2 of V

generated by these elements.

Continue this process until we cover V.
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Suppose at the last we get 1 2, ,...., rV V V  be subspace each invariant under T and

( )0i jV V =∩ , i j∀ ≠   and  1 2 1.... .....r rV V V V V V V= + + + ⇒ = ⊕ ⊕

Now we shows these integer are unique.

Suppose there are other integers 1 2 .... sm m m≥ ≥ ≥  and subspace 1 ,...., sU U  of V cyclic

w.r.t. to T and of dimensions 1 ,...., sm m  respectively such that 1 ..... sV U U= ⊕ ⊕ .

Claim :

s r=  and 1 1,...., r rm n m n= =

Suppose that this were not the case then there is a first integer i such that i im n≠  we may

assume that i im n< .

Consider mT V  , therefore for 1 ..... rV V V= ⊕ ⊕  we have

1 ....m m m
r

i i iT V T V T V= ⊕ ⊕ , dim .....m
j j i

iT V n m∴ = , j = 1 ..... r

Therefore above

( ) ( ) ( ) ( )1 2dim ....m
i i i i

iT V n m n m n m∴ ≥ − + − + + − .... (1)

and for 1 ..... sV U U= ⊕ ⊕  and since ( ) ( )0m
j

iT U =  for j i≥

( ) 1 2 1......m m m m
i

i i i iT V T U T U T U −∴ = ⊕ ⊕ ⊕

Thus ( ) ( ) ( ) ( )1 2 1dim ....m
i i i i

iT V m m m m m m−= − + − + + −

        ( ) ( ) ( )1 2 1....i i i in m n m n m−= − + − + + − j jn m=∵  for j < i

Contradict to the equation (1) 0i in m− >∵  thus there is unique set of integers

1 2 ..... rn n n≥ ≥ ≥  such that 1 ..... rV V V= ⊕ ⊕ .

Equivalently we have shown that the invariants of T are unique.

Theorem :  Two nilpotent linear transformation are similar if and only if they have the same invariants.

Proof :  The above Example has proved that if the two nilpotent linear transformations have different
invariants, then they cannot be similar for their respective matrices.
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1

2

r

n

n

n

M

M

M

 
 
 
 
 
 
 

O  and  

1

2

r

m

m

m

M

M

M

 
 
 
 
 
 
 

O cannot be similar.

In the other direction, if the two nilpotent linear transform S and T have the same invariants

1 ..... rn n≥ ≥ .

We know the result “If ( )T A V∈  is nilpotent of index of nilpotent n1 then basis of V can be

found such that the matrix of T in this basis has of the form 

1

r

n

n

M

M

 
 
 
 
 

O  when 1 ..... rn n≥ ≥  and

1 2 ..... dimrn n n V+ + + =  .”

Therefore there are basis 1 2, ,..... nv v v  and 1,..... nw w  of V such that the matrix of S in 1,..... nv v

and that of T in 1 ,....., nw w  are each equal to 

1

r

n

n

M

M

 
 
 
 
 

O .

But of A is the linear transformation defined on V by ( )i iA v w=  then 1S ATA−=  (Prove).

Hence S and T are similar.

Example :  Let ( ) 3

0 1 1
0 0 0
0 0 0

m T F
 
 = ∈ 
 
 

. Find similar matrix. T act on ( )3F .

i.e. Find A such that 1ATA S− = .

Basis of ( )3F  is ( )1 1,0,0u = , ( )2 0,1,0u = , ( )3 0,0,1u =

Let 1 1v u= , ( )2 1 2 3v T u u u= = + , 3 3v u=

w.r.t. this basis

1 0 0
0 1 1
0 0 1

A
 
 =  
  

   and  
1

1 0 0 0 1 1 1 0 0
0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1

ATA−
     
     =      
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A Decomposition of V : Jordan Form

Example :  Let V be finite dimensional vector space over F, ( )T A V∈ , V subspace of V invariant

under T. T induces a linear transformation T1 on V1 defined by ( ) ( )1T u T u=  for every 1u V∈ . Show

that for any polynomial  ( ) [ ]q x F x∈ , the linear transformation induced by ( )q T  on V1 is precisely

( )1q T . In particular ( ) 0q T =  then ( )1 0q T = .

Let V be finite dimensional vector space over F. ( )T A V∈ , 1V V⊆  invariant under T.T.

Therefore T induces a linear transformation T1 on V1 defined by ( ) ( )1T u T u=  for every

1u V∈ .

Let ( ) [ ]q x F x∈  be any polynomial such that ( ) 0q T = .

( )p x  minimal polynomial for T and ( )1p x  is minimal for T.T.

( ) ( )|p x q x  we know that ( ) ( ) ( ) ( ) ( )1 1 1| | 0p x p x p x q x q T= ⇒ =

Lemma :  Suppose that 1 2V V V= ⊕  where VV1 and V2 are subspaces of V, invariant under T. Let T1

and T2 be the linear transformations induced by T on V1 and V2 respectively. If the minimal polynomial

of T1 over F is ( )1p x  while that of T2 is ( )2p x , then the minimal polynomial for T over F is the least

common multiple of ( )1p x  and ( )2p x .

Proof :  If ( )p x  is the minimal polynomial for T over F, as we know above example both ( )1p T  and

( )2p T  are zero, whence ( ) ( )1 |p x p x  and ( ) ( )2 |p x p x . But then the least common multiple of

( )1p x  and ( )2p x  must also divide ( )p x .

On the other hand if ( )q x  is the least common multiple of ( )1p x  and ( )2p x , consider

( )q T . For 1 1u V∈  since ( ) ( )1 |p x q x

( ) ( ) ( )( )1 1 1 0q T v q T v= =  similarly for 2 2v V∈

( ) ( ) ( ) ( )2 2 2 0q T v q T v= =  Given any u V∈ , v can be written as ( )1 2cos v vθ = +  when

1 1v V∈ , 2 2v V∈   in consequence of which

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 0q T v q T v v q T v q T v= + = + =

Thus ( ) 0q T =  and  T satisfies ( )q x .  ( ) ( )|p x q x∴ .

( ) ( )p x q x⇒ =



67

Corollary :

If 1 ..... kV V V= ⊕ ⊕  where each iV   is invariant  under K and T if ( )ip x  is the minimal

polynomial over F of iT  the linear transformation induced by T on iV  then minimal polynomial of T

over F is least common multiple of ( ) ( ) ( )1 2, ,..., kp x p x p x .

Theorem :

For each i = 1, 2, ...K, ( )0iV ≠  and 1 2 ..... kV V V V= ⊕ ⊕ ⊕ .

The minimal polynomial of iT  is ( )i
iq x l .

Proof :  We prove this result using induction on k.

If k = 1 the 1V V=  and there is nothing that needs proving suppoose then that k > 1 and

( ) ( ) ( ) ( )1 2
1 2 ....... k

kp x q x q x q x= ll l

We first want to prove that each ( )1 0V ≠ . We introduce the k polynomials

( ) ( ) ( )2
1 2 .... k

kh x q x q x= l l

( ) ( ) ( ) ( )1 3
2 1 3 .... k

kh x q x q x q x= l l l

    M
( ) ( ) j

i j
i j

h x q x
≠

= ∏ l

    M
( ) ( ) ( )1 1

1 1.... k
k kh x q x q x −

−= l l

Since k > 1, ( ) ( )ih x p x=  whence ( ) 0ih T ≠ , thus, given i, there is a v V∈  such that

( ) 0iw h T v= ≠ . But

( ) ( ) ( ) ( )( ) ( )( ) 0i i
i i iq T w q T h T v p T v= = =

l l

In consequence 0w ≠  is in iV  and so ( )0iV ≠ . In fact, we have shown that ( ) 0ih T V ≠  is

in iV  and if j jv V∈  for j i≠  since ( ) ( )|j i
jq x h x

l .

( ) ( ) 0i jh T v =
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The polynomials ( ) ( ) ( )1 2, ,...., kh x h x h x  are relatively prime.

We know that “taken two polynomials ( )f x , ( )g x  in [ ]F x  they have a greatest common

divisor ( )d x  which can be realized as ( ) ( ) ( ) ( ) ( )d x x f x x g xλ µ= + .”

We can find polynomials ( ) ( ) ( )1 2, ,...., ka x a x a x  in [ ]F x  such that

( ) ( ) ( ) ( )1 1 .... 1k ka x h x a x h x+ + = .

From this we get ( ) ( ) ( ) ( )1 1 .... 1k ka T h T a T h T+ + =  whence, given v V∈ ,

( )( ) ( ) ( ) ( )( )1 11 .... k kv v a T h T a T h T v= ⋅ = + +

( ) ( )( ) ( ) ( ) ( )1 1 .... k ka T h T v a T h T v= + +

Now, each ( ) ( )i ia T h v  is in ( )ih T V and since we have shown above that ( )i ih T V V⊂ , we

have now exhibited v as 1 .... kv v v= + +  when each ( ) ( ) ( )1i iv a T h T v=  is in iV .

Thus 1 2 ....i kV V V V= + + + .

We must now verify that this sum is a direct sum. To show this, it is enough to prove that if

1 2 .... 0ku u u+ + + =  with each 0iu = . So suppose that 1 2 .... 0ku u u+ + + =  and that some iu  say

1u  is not 0 apply ( )1h T  we obtain ( )( ) ( ) ( )1 1 1.... 0kh T u h T u+ + = .

However ( )( )1 0jh T v =  for j i≠  since j ju V∈ , the equation reduced to ( )( )1 1 0h T u = .

But ( ) ( )1
1 1 0q T u =l  and since ( )1h x  and ( )1q x  are relatively prime we are led to 1 0u =  which is

of course in consistent with assumption that 1 0u ≠ .

1 2 ..... kV V V V⇒ = ⊕ ⊕ ⊕

Now prove that the minimal polynomial of iT  on iV  is ( ) i
iq T l .

By definition of  iV , since ( ) 0i
i iq T V =l , ( ) 0i

i iq T =
l  whence the minimal equation of iT

must be divisor of ( ) i
iq x l  thus of the form ( ) if

iq x  with i if ≤ l . By “Corollary above”.

The minimal polynomial of T over F is the least common multiple of ( ) ( ),....,i kf f
i kq x q x  and

so must be ( ) ( ),....,i kf f
i kq x q x . Since this minimal polynomial is in fact ( ) ( ),....,i k

i kq x q xl l  we

must have that, ,....,i i k k i if f f≥ ≥ ⇒ =l l l  for i = 1, 2, ....., k and so ( ) i
iq x l is minimal polynomial

for iT .

Hence the proof.



69

Note : If all the characteristic roots of T should happen to lie in F, then the minimal polynomial of T

takes on the especially nice form ( ) ( ) ( )1
1 .... k

kq x x xλ λ= − −
ll  where 1 ,...., kλ λ  are the distinct

characteristic roots of T. The irreducible factors ( )iq x  are ix λ− . Noe that on iV , iT  has only iλ  as

a characteristic root.

Corollary :

 If all the distinct characteristic roots ,....,i kλ λ  of TT lie in F, then V can be written as

1 ..... kV V V= ⊕ ⊕  where ( ){ }| 0i i
iV u V T vλ= ∈ − =l  and where iT  has only one characteristic

root iλ  on iV .

Note :

1 ..... kV V V= ⊕ ⊕∵  if dim i iV n=  then we can find a basis of V such that in this basis the

matrix of T is of the form 

1

2

k

A
A

A

 
 
 
 
  
 

O  where each iA  is an i in n×  matrix and is in fact the

matrix of iT .

Notation 

0 1 0 0 0
0 0 1

0 1
0 0 0

n

n n

M

×

 
 
  =
 
  
 

L
M M

M
L

Definition :  The matrix 

1 0 0
0 1 0

0 0 0 1
0 0 0

λ
λ

λ

 
 
 
 
 
 
 
 

L
L

M
L
L

 with ' sλ  on the diagonal, 1 is on the super diagonal

and 0’s elsewhere is a basic Jordan block belonging to λ .
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Theorem : Let ( )pT A V∈  have all its distinct roots, ,....,i kλ λ  in F. Then a basis of V can be fund in

which the matrix T is of the form 

1

2

k

J
J

J

 
 
 
 
  
 

O  where each 

1

2

i

i
i

ir

B
B

J

B

 
 
 =
 
  
 

O
 and

where 1,....i i iB B r  are basic  Jordan blocks belonging to iλ .

Proof :  Note that an m m×  basic Jordan block belonging to λ  is merely mMλ + , where,

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
0 0 0 0 0

m

m m

M

×

 
 
 
 =
 
 
 
 

L
L

M
L
L

We know that “If 1 2 ..... kV V V V= ⊕ ⊕ ⊕  where each subspace iV  is of dimension in  and is

invariant under T, an element of A (V), then a basis of V can be found so that the matrix of T in this

basis is of the form 

1

2

0 0
0 0

0 0 k

A
A

A

 
 
 
 
  
 

L
L

M
L

.

Where each iA  is an i in n×  matrix and is the matrix of the linear transformation induced by T

on iV .”

Also we know that “If all the distinct characteristic roots ,....,i kλ λ  of T lie in F, then V can be

written as 1 2 ..... kV V V V= ⊕ ⊕ ⊕  where ( ) ( ){ }| 0i i
iV v V T vλ= ∈ − =l  and where iT  has only

one charactristic root, iλ  on iV .”

Therefore, we can reduce to the case when T has only one characteristic root λ , that is T λ−
is nilpotent.
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Thus ( )T Tλ λ= + −  and sinceT λ−  is nilpotent, there is a basis in which its matrix is of the

form 

1
0

0
r

n

n

M

M

 
 
 
 
 

O

Therefore, “If ( )T A V∈  is nilpotent of index of nilpotence 1n , then a basis of V can be found

such that the matrix of T in this basis has the form 

1

2

0 0

0 0

0 0
r

n

n

n

M

M

M

 
 
 
 
 
 
 

L
L

M
L

.

Where 1 2 ..... rn n n≥ ≥ ≥  and 1 2 ..... dimrn n n V+ + + = .

But then the matrix of T of the form

1 1

r r

n n

n n

M B

M B

λ
λ

λ

           + =               

O OO

Using the first remark made in this proof about the relation of a basic Jordan block and the
Mm’s we have the required.

Example :

1)

2 5 1 0
2 4 1 0
1 2 1 0
1 2 0 1

A

− 
 − =
 −
 − 

Find Jordan form

Solution : The characteristic equation is ( )4
1x − .

rank of A Iλ− is 2.

Therefore, geometric multiplicity of equation is 2.

Hence there are two Jordan blocks.

of the form ( )2 2(1), (1)dia J J  or ( )3 1(1), (1)diag J J
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The minimal polynomial is ( )3
1x −

Therefore Jordan form ( )3 1(1), (1)diag J J

Example :  Let ( )T A V∈  and [ ]F x  ring of polynomials in x over F and define for any ( )f x  in

[ ]F x , v V∈ , ( ) ( )f x v f T v= . Prove that V is a module over [ ]F x .

[Let R ring M φ≠  is said to be an R-module if M is an abelian group under operation t such

that r R∈  and m M∈  there exists an element m M∈  subject to  (i) ( )r a b ra rb+ = +

(ii) ( ) ( )r Sa rS a=  (iii) ( )r S a ra Sa+ = + , ,a b M∀ ∈  and 1,r S R∈ ]

Example : [ ]F x  is a Eucliaden ring. V is finitely generated module are [ ]F x .

V is the direct sum of a finite number of cyclic subv modules.

(On R-module M is said to be finitely generated if there exists element 1.... na a M∈  such that

every m M∈  is of the form 1 1 .... n nm T a T a= + + .

M-cyclic if there is an element 0m M∈  such that every m M∈  is of the form 0m mα=  for

Rα ∈ .

Problems :

1. Prove that the matrix 

1 1 1
1 1 1

1 1 0

 
 − − − 
 
 

 is nilpotent, and find its invariants and Jordan form.

2. Find all possible Jordan forms for all 8 8×  matrices having ( )32 1x x −  as minimal polynomial.

3. If the multiplicity of each characteristic root of T is 1, and if all the characteristic roots of T are
in F, prove that T is diagonalizable over F.

❏ ❏ ❏
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HERMITIAN, UNITARY AND NORMAL TRANSFORMATIONS

UNIT  -  IV

Fact - 1

A polynomial with coefficients which are complex numbers has all its roots in the complex
field.

Fact - 2

The only irreducible, nonconstant, polynomials over the field of real numbers are either of
degree 1 or of degree 2.

Lemma :

If ( )T A V∈  is such that ( )( ), 0T v u =  for all v V∈ , then T = 0.

Proof :

Since ( )( ), 0T v v =  for v V∈ , given ,u w V∈ .

( )( ), 0T u w u w+ + =

Expansing this and use ( )( ), 0T u u = , ( )( ), 0T w w = , we obtain

( ) ( )( ), 0T u T w u w+ + =

( )( ) ( )( ) ( )( ) ( )( ), , , , 0T u u T u w T w u T w w+ + + =

( )( ) ( )( ), , 0T u w T w u∴ + =  for all ,u w V∈ ... (1)

Since equation (1) holds for arbitrary w in V, it still must hold if we replace in it w by iw
where i2 = – 1.

But ( )( ) ( )( ), ,T u iw i T u w= −  where as ( )( ) ( )( ), ,T iw u i T w u= .

Substituting these values in (1) and canceling i, we have

( )( ) ( )( ), , 0T u w T w u− + = ... (2)
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Adding (1) and (2) we get ( )( ), 0T w u =  for all ,u w V∈ .

Whence in particular ( ) ( )( ), 0T w T w = .

By the property of inner product space, we must have ( ) 0T w =  for all w V∈  hence T = 0.

Note :  If V is an inner product space over the real field the lemma may be false.

For example, let ( ){ }, | ,  realV α β α β= , where inner products is the dot product. Let T be

linear transformation sending ( ),α β  into ( ),β α− . This shows that ( )( ), 0T v v =  for all v V∈ , YetYet

0T ≠ .

Definition :  The linear transformation ( )T A V∈  is said to be unitary if ( ) ( )( ) ( ), ,T u T v u v=  for all

,u v V∈  .

Note : A unitary transformation is one which preserves all the structure of V, its addition, its multiplication
by scalars and its inner product.

Note also that a unitary transformation preserves length for

( ) ( ) ( )( ) ( ), ,v v v T v T v T v= = =

The converse is also true, which is proved in the next result.

Lemma :

If ( ) ( )( ) ( ), ,T v T v v v=  for all v V∈  then T is unitary..

Proof :

Let ,u v V∈  and ( ) ( )( ) ( ), ,T u v T u v u v u v+ + = + +

Expanding this we have

( ) ( ) ( ) ( )( ) ( ), ,T u T v T u T w u v u v+ + = + +

        ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ), , , , , , , ,T u T u T u T v T v T u T v T v u u u v v u v v+ + + = + + +

Cancelling the same terms such as ( ) ( )( ) ( ), ,T u T u u u=  we have

( ) ( )( ) ( ) ( )( ) ( ) ( ), , , ,T u T v T v T u u v v u+ = + ... (1)
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For ,u v V∈ . In equation (1) replace v by iv, we have

( ) ( )( ) ( ) ( )( ) ( ) ( ), , , ,T u T iv T iv T u u iv iv u+ = +

( ) ( )( ) ( ) ( )( ) ( ) ( ), , , ,i T u T v i T v T u i u v i v u+ = − +

Cancel i on both side we have,

( ) ( )( ) ( ) ( )( ) ( ) ( ), , , ,T u T v T v T u u v v u− + = − + ... (2)

Adding (1) and (2) results, we have

( ) ( )( ) ( ), ,T u T v u v=  for all v V∈ .

Hence T is unitary.

Theorem :

The linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into
an orthonormal basis of V.

Proof :

Suppose that { }1 ,..., nv v  is an orthonormal basis of V, thus ( ), 0i jv v =  for i j≠  while

( ), 1i iv v = .

We will show that if T is unitary then ( ) ( ){ }1 ,..., nT v T v  is also an orthonormal basis of V. But

( ) ( )( ) ( ), , 0i j i jT v T v v v= =   for  i j≠

and ( ) ( )( ) ( ), , 1i i i iT v T v v v= =

Thus ( ) ( ){ }1 ,..., nT v T v  is an orthonormal basis of V..

On the other hand, if ( )T A V∈  is such that both { }1 ,..., nv v  and are orthonormal basis fo V,V,

if ,u w V∈  then

1

n

i i
i

u vα
=

= ∑
1

n

i i
i

w vβ
=

= ∑

( )
1 1

, ,
n n

i i i i
i i

u w v vα β
= =

 
∴ =  

 
∑ ∑

  ( )1 1 1 1... , ....n n n nv v v vα α β β= + + + +



76

  ( ) ( ) ( )1 1 1 1 1 1 2 2 1 1, , .... , n nv v v v v vα β α β α β= + + +

  ( ) ( ) ( )2 2 1 1 2 2 2 2 2 2, , .... , ....n nv v v v v vα β α β α β= + + + +

   ( ) ( )1 1, .... ,n n n n n nv v v vα β α β+ + +

  ( ) ( ) ( )1 1 1 1 1 2 1 2 1 1, , ...... , .....n nv v v v v vα β α β α β= + + + +

( ) ( )1 1, ...... ,n n n n n nv v v vα β α β+ + +

  1 1 2 2 .... n nα β α β α β= + + + ( ), 0i jv v =∵ i j≠

    = 1 i j=

However ( ) ( )
1

n

i i
i

T u T vα
=

= ∑  and ( ) ( )
1

n

i i
i

T w T vβ
=

= ∑

( ) ( )( ) ( ) ( )
1 1

, ,
n n

i i i i
i i

T u T w T v T vα β
= =

 
=  

 
∑ ∑

           
1

n

i i
i

α β
=

= ∑ ( ) ( )( ), 0i jT v T v =∵ i j≠

    = 1 i j=

( ),u w=

Thus T is unitary.

Lemma :

If ( )T A V∈  then given any v V∈  there exists an element w V∈ , depending on v and T, such

that ( )( ) ( ), ,T u v u w=  for all u V∈ .

This element w is uniquely determined by v and T.

Proof :

To prove the Lemma, it is sufficient to exhibit a w V∈  which works for all the elements of a

basis of V. Let { }1,...., nu u  be an orthonormal basis of V, we define

( )( )
1

,
n

i i
i

w T u v u
=

= ∑
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Consider ( ) ( )( )
1

, , ,
n

i i i i
i

u w u T u v u
=

 
=  

 
∑

( )( ) ( ) ( )( )( ) ( )( ) ( )1 1 2 2, , , , ... , ,i i n i nT u v u u T u v u u T u v u u= + + +

( )( ),iT u v= ( ), 0i ju u =∵ i j≠

    = 1 i j=

Hence the element has the desired property.

For uniqueness, consider ( )( ) ( )1, ,T u v u w=  and ( )( ) ( )2, ,T u v u w= .

( ) ( )1 2, ,u w u w∴ =

( ) ( )1 2, , 0u w u w∴ − =

( )1 2, 0u w w− =  for all  u V∈ .

Thus 1 2u w w= −  and therefore

1 2 1 20w w w w− = ⇒ =

Hence, the uniqueness of w.

Definition : If ( )T A V∈  then the Hermitian adjoint of T written as T*, is defined by

( )( ) ( )( ), , *T u v u T v=  for all ,u v V∈ .

Lemma :  If ( )T A V∈  then ( )*T A V∈  moreover,,

1. ( )* * iT T=

2. ( )* * *S T S Tλ = +

3. ( )* *S Sλ λ=

4. ( )* * *ST T S=  for all ( ),S T A V∈  and all Fλ ∈ .

Proof :  We must first prove that T* is a linear transformation on V. If , ,u v w  are in V, then

( )( ) ( )( ) ( )( ) ( )( ), * , , ,u T v w T u v w T u v T u w+ = + = +

( )( ) ( )( ), * , *u T v u T w= +
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 ( ) ( )( ), * *u T v T w= +

    ( ) ( ) ( )* * *T v w T v T w∴ + = +

Similarly, for Fλ ∈ ,

( )( ) ( )( ), * ,u T v T u vλ λ=

        ( )( ),T u vλ=

        ( )( ), *u T vλ=

        ( )( ), *u T vλ=

Consequently ( ) ( )* *T v T vλ λ=

Thus T* is linear transformation on V.

1. Consider  ( ) ( )( ) ( )( ) ( )( ), * * * , , *u T v T u v v T u= =

   ( )( ) ( )( ), ,T v u u T v= =

for all ,u v V∈ , whence  ( ) ( ) ( )* *T v T v=

Which implies that ( )* *T T= .

2. Consider ( ) ( ) ( ) ( )( ),( )*( ) ( )( ), ,u S T v S T u v S u T u v+ = + = +

∵  by property of linear transformation

     ( )( ) ( )( ), ,S u v T u v= +

     ( )( ) ( )( ), * , *u S v u T v= +

     ( ) ( )( ), * *u S v T v= +

     ( ) ( )( ), * *u S T v= +     ∵by property of Linear transformations

for all ,u v V∈  whence

( ) ( ) ( ) ( )* * *S T v S T v+ = +

Which implies that

( )* * *S T S T+ = +
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3. Consider ( ) ( )( ) ( ) ( )( ) ( )( ), * , ,u S v S u v S u vλ λ λ= =

  ( )( ) ( )( ), * , *u S v u S vλ λ= =

for all ,u v V∈  whence

( ) ( ) ( )* *S v S vλ λ⇒ = v V∀ ∈

implies that ( )* *S Sλ λ= .

4. Consider ( ) ( )( ) ( ) ( )( ) ( ) ( )( ), * , , *u ST v ST u v T u S v= =

  ( )( )( ) ( )( ), * * , * *u T S v u T S v= =

for all ,u v V∈   this forces

( ) ( ) ( )* * *ST v T S v=  for every v V∈

which implies that ( )* * *ST T S=

Hence the proof.

Lemma : ( )T A V∈  is unitary if and only if T*T = 1.

Proof :  If T is unitary, then for all ,u v V∈ ,

( )( ) ( ) ( )( ) ( ), * , ,u T T v T u T v u v= =

hence T*T = 1

On the other hand, if T*T = 1 then

( ) ( )( ) ( ) ( )( ), , * ,u v u T T v T u T v= =

Which implies that T is unitary.

Note :

1. A unitary transformation is non-singular and its inverse is just its Herminrian adjoint.

2. From T*T = 1, we must have that TT* = 1.

Theorem :  If { }1 2, ,..., nv v v  is an orthonormal basis of V and if the matrix of ( )T A V∈  in this basis

is ( )ijα  then the matrix of T* in this basis is ( )ijβ .

Where ij jiβ α= .
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Proof :  Since the matrices of T and T* in this basis are, respectively ( )ijα  and ( )ijβ  then

( )
1

n

i ij j
i

T v vα
=

= ∑   and   ( )
1

*
n

i ij j
i

T v vβ
=

= ∑

Now ( )( ) ( )( )
1

* , , ,
n

ij i j i j i jk k
k

T v v v T v v vβ α
=

 
= = =  

 
∑

     ( ) ( ) ( )1 1 2 2, ... , ... ,i j i j i jn nv v v v v vα α α= + + + +

      ( ) ( ) ( )1 1 2 2, .... , .... ,j i j i jn i nv v v v v vα α α= + + + +

      jiα= ( ), 0i jv v =∵ if   1i ≠

    = 1      1i =
This proves the theorem.

Note :  The Hermition adjoint for matrices on the Hermition adjoint for transformation are explicit
same.

Using the matrix representation in an orthonormal basis use claim that ( )T A V∈  is unitary if

and only if, whenever ( )ijα  is the matrix of T in this orthonormal basis, then

1

0
n

ij ik
i

α α
=

=∑  for  j k≠

while
2

1

1
n

ij
i

α
=

=∑

Definition : ( )T A V∈  is called self-adjoint or Hermintian if T* = T..

Definition : ( )T A V∈  is called Skew-Hermitian if T* = – T..

Note : ( )S A V∈  can be written in the form

* *
2 2

S S S S
S i

i
+ − = +  
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Since 
( )*

2
S S+

 and 
( )*

2
S S

i
−

 are Hermitian

S A iB∴ = +  when both A, B are Hermitrian.

Theorem : If ( )T A V∈  is Hermitian, then all its characteristics roots are real.

Proof :  Let λ  be a characteristic root of T, thus there is a 0v ≠  in V such that ( )T v vλ= .

We compute

( ) ( ) ( )( ) ( )( ), , , , *v v v v T v v v T vλ λ= = =

   ( )( ) ( ) ( ), , ,v T v v v v vλ λ= = =

Since T is Hermition and ( ), 0v v ≠ .

We have λ λ= .

Hence λ  is real.

Lemma :  If ( )S A V∈  and ( )* 0S S v =  then ( ) 0S v = .

Proof : Consider ( )( )* ,S S v v , since ( )* 0S S v = ,

( )( ) ( ) ( )( )0 * , ,S S v v S v S v= =

Impplies that ( ) 0S v = , therefore by definition of inner product space.

Corollary : If T is Hermitian and ( ) 0kT v =  for 1k ≥  then ( ) 0T v =

Proof : We show that if ( )2 0mT v =  then ( ) 0T v = , for if 2 1mS T −= , then *S S=  and 2* mS S T= .

Whence ( )( )* , 0S S v v =  implies that ( ) ( )2 10 mS v T v−= = .

Continuing down in this way, we obtain ( ) 0T v = .

If ( ) 0kT v =  then ( )2 0mT v =  for 2m k>   hence ( ) 0T v = .

Definition : ( )T A V∈  is said to be normal if * *T T TT= .
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Lemma : If N is a normal linear transformation and if ( ) 0N v =  for v V∈ , then ( )* 0N v = .

Proof : Consider ( ) ( )( )* , *N v N v .

Therefore by definition

( ) ( )( ) ( )( )* , * * ,N v N v NN v v=

   ( )( )* ,N N v v= * *N N NN=∵
   ( ) ( )( ),N v N v=

However, ( ) 0N v = , whence certainly ( )* 0N N v = .

Thus, we obtain that ( ) ( )( )* , * 0N v N v = .

This forcing that ( )* 0N v = .

Corollary : If λ  is a characteristic root of the normal transformation N and if ( )N v vλ=  then

( )*N v vλ= .

Proof :  Since N is normal, * *NN N N= , therefore

( ) ( ) ( ) ( )* * *N N N N NN Nλ λ λ λ λ λλ− − = − − = − +

    * *N N N Nλ λ λλ= − − +

    ( )( )*N Nλ λ= − −

    ( ) ( )*N Nλ λ= − −

That is to say, N λ−  is normal.

Since ( )( ) 0N vλ− =  by the normality of  N λ− ; from the above lemma.

( ) ( )* 0N vλ− =  hence ( )*N v vλ=

Hence the required.

Corollary : If T is unitary and if λ  is a characteristic root of T, then 1λ = .

Proof : Since T is unitary it is normal.

Let λ  be a characteristic root of T and suppose that ( )T v vλ=  with 0v ≠  in V. By previous

corollary ( )*T v vλ= .

Thus ( ) ( ) ( ) ( )* * *T T v T v T v vλ λ λλ= =
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Since * 1T T =  we have v vλλ= .

Thus we get 1λλ =  which of course says that .

Hence the required.

Lemma : If N is normal and if ( ) 0kN v = , then ( ) 0N v = .

Proof :  Let *S N N= ; S is Hermitian, and by the normality of N,

( ) ( ) ( ) ( ) ( ) ( )* * * 0
k k k

S v N N v N N v= = = ( ) 0kN v =∵
By “If T is Hermitian and ( ) 0kT v =  for 1k ≥  then ( ) 0T v = .”

We deduce that ( ) 0S v =  that is to say ( )* 0N N v = .

Also we know “If ( )S A V∈  and if ( )* 0S S v =  then ( ) 0S v = .”

Therefore ( ) 0N v =  as required.

Corollary :  If N is normal and if for Fλ ∈ ,

( ) ( ) 0
k

N vλ− = , then ( )N v vλ= .

Proof :  From the normality of N it follows that N λ−  is normal, whence by applyiong the lemma just

proved to N λ−  we obtain ( ) ( ) 0
k

N vλ− =  implies ( )( ) 0N vλ− = .

Which implies that ( )N v vλ= .

Lemma : Let N be a normal transformation and suppose that λ  and µ  are two distinct characteristics

roots of N. If v, w are in V and are such that ( )N v vλ= , ( )N w wµ=  then ( ), 0v w = .

Proof :  We compute ( )( ),N v w  in two different ways as a consequence of ( )N v vλ= .

( )( ) ( ) ( ), , ,N v w v w v wλ λ= = ... (1)

From  ( )N w wµ=

We know that “If λ  is a characteristic root of the normal tranformation N and if ( )N v vλ=

then ( )*N v vλ= .”

Therefore we have ( )*N w wµ= .
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Whence ( )( ) ( )( ) ( ) ( ), , * , ,N v w v N w v w v wµ µ= = = ... (2)

From equation (1) and (2) we have

( ) ( ), ,v w v wλ µ=

and since λ µ≠  this results in ( ), 0v w = .

Hence the required.

Theorem : If N is a normal linear transformation ob V, then there exists orthoonormal basis consisting
of characteristic vectors of N, in which the matrix of N is diagonal. Equivalently, if N is a normal matrix

there exists a unitary matrix U such that is ( )1 *UNU UNU− =  diagonal.

Proof : Let N be normal and let 1 2, ,..., kλ λ λ  be the distinct characteristic roots of N. We know that

“If all the distinct characteristic  roots 1 ,..., kλ λ  of T lie in F, then V can be written as 1 ... kV V V= ⊕ ⊕

where ( ) ( ){ }0i
i iV v V T vλ= ∈ − =  and where iT  has only one characteristic root, iλ  on iV .”

We can decompose V as 1 2 ... kV V V V= ⊕ ⊕ ⊕  where every i iv V∈  is annihilated by

( )n
i

iN λ− .

We also know that “If N is normal and if for Fλ ∈ , ( ) ( ) 0
k

N vλ− =  then ( )N v vλ= .”

Therefore iV  consists only of characteristic vectors of N belonging to the characteristic root

iλ . The inner product of V induces an inner product on iV .

We know that, “Let V be a finite dimentional inner product space, then V has an orthogonal
set as a basis.”

Therefore, we can find a basis of iV  orthonormal relative to this inner product.

By previous Lemma, let N be a normal transformation and suppose that λ  and µ  are two

distinct characteristic roots of N. If v, w are in V and are such that ( )N v vλ= , ( )N w wµ=  then

( ), 0v w = .”

Elements lying in distinct iV ’s are  orthogonal.

Thus putting together the orthonormal basis of the iV ’s provides us with an orthonormal basis

of V. This basis consists of characteristic vector on N, hence in this basis the matrix of N is diagonal.

We know that, “The linear transformation T on V is unitary if and only if it takes an orthonormal
basis of V into an orthonormal basis of V.”
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and

“If V is n-dimensional over F and if ( )T A V∈  has the matrix ( )1m T  in the basis 1,..., nv v  and

the matrix ( )2m T  in the basis 1 ,..., nw w  of V over F, then there is an element nC F∈  such that

( ) ( )( ) 1
2 1m T C m T C−= .”

These two results gives the matrix equivalence.

Corollary : If T is a unitary transformation, then there is an orthonormal basis in which the matrix of T
is diagonal, equivalently, if T is a unitary matrix, then there is a unitary matrix U such that

( )1 *UTU UTU− =  is diagonal.

Corollary : If T is a Hermitian linear transformation then there exists an orthonormal basis in which the
matrix of T is diagonal, equivalently, if T is a Hermitian matrix, then there exists a unitary matrix U such

that ( )1 *UTU UTU− =  is diagonal.

Lemma : The normal transformation N is

1. Hermitian if and only if its characteristic roots are real.

2. Unitary if and only if its characteristic roots are all of absolute value 1.

Proof : We have this using matrices. If N is Hermitian, then it is normal and all its characteristic roots
are real. If N is normal and has only real charactristic roots, then for some unitary matrix U,

1 *UNU UNU D− = =  where, D is a diagonal matrix with real entries on the diagonal.

Thus, *D D=  since ( )* * * * *D UNU UN U= = , the relation D* = D implies

* * *UN U UNU=  and since U is invertible. We obtain N* = N. Thuis N is Hermition.

If N is unitary transformation, then its characteristic roots are all of aboslute value 1. Since “If

T is unitary and if λ  is a characteristic root of T, then 1λ = .”

If N is normal and has its characteristic roots of absolute value 1.

Lemma : If N is normal and AN = NA, then AN* = N*A.
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Proof :  Let X = AN* – N*A, we claim that X = 0.

That is to show that for XX* = 0.

Since N commutes with A and with N*, it must commute with AM* – N*A thus

( ) ( )* * * * *XX AN N A NA A N= − −

( ) ( )* * * * * * *XX AN N A NA AN N A A N= − − −

        ( ){ } ( ){ }* * * * * *N AN N A A AN N A A N= − − −

Being of the form NB – BN, the trace of XX* is 0. Thus X = 0 and AN* = N*A.

Lemma : The Hermition linear transformation T is nonnegative (positive) if and only if all of its
characteristic roots are nonnegative (positive).

Proof : Suppose that 0T ≥ , If λ  is a characteristic root of T, then ( )T v vλ=  for some 0v ≠ .

Thus ( )( ) ( ) ( )0 , , ,T v v v v v vλ λ≤ = =  since ( ), 0v v >

We deduce that 0λ ≥ .

Conversly, if T is Hermitian with nonnegative characteristic roots, then we can find an orthonormal

basis { }1 ,..., nv v  consisting of chararteristic vectors of T. For each ( ),i i i iv T v vλ=  where 0iλ ≥ .

Given v V∈ , i iv vα= ∑

Hence ( ) ( )i i i i iT v T v vα λα= ∑ = ∑

But ( )( ) ( ), ,i i i i i i i iT v v v vλ α α λ α α= ∑ ∑ = ∑

By the orthonormality of the iV ’s, Since 0iλ ≥  and  0i iα α ≥ , we get that ( )( ), 0T v v ≥

hence 0T ≥ .

Hence the required.

Lemma :  0T ≥  if and only if T = A*A for some A.

Proof :  We first show that * 0A A ≥ . Given v V∈ ,

( )( ) ( ) ( )( )* , , 0A A v v A v A v= ≥

Hence * 0A A ≥ .
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On the other hand, if 0T ≥  we can find a unitary matrix U such that 
1

*

n

UTU

λ

λ

 
 =  
 
 

O .

Where each iλ  is a characteristic root of T, hence each 0iλ ≥ .

Let
1

n

S
λ

λ

 
 

=  
 
 

O

Since each 0iλ ≥ , each iλ  is real, whence S is Hermitian. Therefore, U*SH is Hermitian,,

but

( )
1

2 2* * *

n

U SU U S U U U T

λ

λ

 
 = = = 
 
 

O

We have represented T in the form AA*, where A = U*SU.

Note :

1. Unitary over the real field are called orthogonal and satisfy QQ' = 1.

2. Herimitian over the real field are just symmetric.

Problems :

1. If T is unitary just using the definition ( ) ( )( ) ( ), ,T v T u v u= , Prove that T is nonsingular..

2. If T is skew-Herimitian, prove that all of its characteristic roots are pure imgainaries.

3. Prove that a normal transformation is unitary if and only if the characteristic roots are all of
absolute value 1.

4. If N is normal, prove that * ( )N p N=  for some polynomial ( )p x .

5. If 0A ≥  and ( )( ), 0A v v = , prove that ( ) 0A v = .
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Bilinear Forms
Definition : Let V be a vector space over the field F. A bilinear form on V is a function f, which assigns

to each ordered pair to vector u, v in V  a scalar ( ),f u v  in F, and which satisfies

( ) ( ) ( )1 2 1 2, , ,f cu u v cf u v f u v+ = +

( ) ( ) ( )1 2 1 2, , ,f u cv v cf u v f u v+ = +

[ :f V V F× → , if f is linear as a function of either of its arguments when the other is fixed.

The zero function from V V×  into F is clearly bilinear form]

Note :

1. The set of all bilinear forms on V is a subspace of the space of all functions from V V×  into F..

2. Any linear combination of bilinear forms on V is again a bilinear form.

3. The space of bilinear forms on V is denoted by ( ), ,L V V F .

Example : Let V be a vector space over the field F and let 1L  and 2L  be linear functions on V.V.

Define f by ( ) ( ) ( )1 2,f u v L u L v= .

If we fix v and regard f as a function of u, then we simply have a scalar multiple of the linear

functional 1L , with u fixed, f is a scalar multiple of 2L . Thus it is clear that f is a bilinear form on V.V.

Definition : Let V be a finite dimensional vector space and let ( )1,..., nB u u=  be can ordered basis

for V. If f is a bilinear form ob V. The matrix of f in the ordered basis B is the non matrix A with entries

( ),ij i jA f u u= . We shall denote this matrix by [ ]Bf .

Theorem : Let V eb a finite dimensional vector space over the field F. For each ordered basis B of V,
the function which associates with each bilinear form on V its matrix in the ordered bvasis B is an

isomorphism of the space ( ), ,L V V F  onto the space of n n×  matrices over the field F..
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Proof :  We observes that [ ]f f→  is a one-one correspondence between the set of liniear forms on

V and the set of all n n×  matrices over F. This is a linear transformation is easy to see, becuase

( )( ) ( ) ( )( ), , ,i j i j i jcf g u u f u u g u u+ = + , for each i and j.

This simply says that [ ] [ ] [ ]B B Bcf g c f g+ = + .

Corollary :  If { }1,...., nB u u=  is an ordered basis for V, and { }1* ,...., nB L L=  is the dual basis for

V* then the n2 bilinear forms ( ) ( ) ( ),ij i jf u v L u L v= , 1 i n≤ ≤ ,1 j n≤ ≤ ,  form a basis for the

space  ( ), ,L V V F . In particular, the dimension of  ( ), ,L V V F  is n2.

Proof : The dual basis { }1 ,..., nL L  is essentially defined by the fact that ( )iL u  is the its coordinate of

u in the ordered basis B.

Now the functions ijf  defined by,,

( ) ( ) ( ),ij i jf u v L u L v=  are bilinear forms of the type considered in the previous example.

If 1 1 ... n nu x u x u= + +  and 1 1 ... n nv y u y u= + +  then ( ),ij i if u v x y= .

Let f be any bilinear form on V and let A be the matrix of f in the ordered basis B. Then

( ), ij i i
ij

f u v A x y= ∑

Which simly says that ij ij
ij

f A f= ∑ .

It is now clear that the n2 forms ijf  comprise a basis for ( ), ,L V V F .

Example : Let V be the vector sapce R2. Let f be the bilinear form defined on ( )1 2,u x x=  and

( )1 2,v y y=  by

( ) 1 1 1 2 2 1 2 2,f u v x y x y x y x y= + + +

Now ( ) [ ] [ ]1 2 1 2
1 1

, , ,
1 1

f u v x x y y
 

= + + 
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and so the matrix of f in the standard ordered basis { }1 2,B e e=  is

[ ]
1 1
1 1Bf

 
=  

 

Let { }' '
1 2' ,B e e=  be the ordered basis defined by

( )'
1 1, 1e = − ,  ( )'

2 1,1e =

In this case the matrix p which changes coordinates from B' to B is

1 1
1 1

p
 

=  − 

Thus [ ] [ ]'B Bf pt f p= .

          
1 1 1 1 1 1
1 1 1 1 1 1

−     
=      −     

          
1 1 0 2
1 1 0 2

−   
=    

   

           
0 0
0 4

 
=  

 

What this means is that if we express the vectors u and v by means of their coordinates in the

basis B', say ' ' ' '
1 1 2 2u x e x e= + , ' ' ' '

1 1 2 2v y e y e= +  then ( ) ' '
2 2, 4f u v x y= .

Theorem : Let f be a bilinear form on the finite dimensional vector space V. Let fL  and fR  be the

linear transformations from V into V* defined by

( ) ( ) ( ) ( ) ( ),fu fvL v f u v R u= =

Then rank ( )fL  = rank ( )fR

Proof :  To prove rank ( )fL  = rank ( )fR , it will suffice to prove that fL  and fR  have the same

nullity. Let B be an ordered basis for V, and let [ ]BA f= . If u and v are vectors in V, with coordinate

matrices X and Y in the ordered basis B, then ( ), tf u v X AY= . Now ( ) 0fR v =  means that
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( ), 0f u v =  for every u in V, i.e. that 0tX AY =  for every 1n×  matrix X. The latter condition simply

says that AY = 0. The nullity of fR  is therefore equal to the dimension of the space of solutions of AYY

= 0.

Similarly, ( ) 0fL u =  if and only if 0tX AY =  for every 1n×  matrix Y. Thus u is in the null

space of fL  if and only if 0tX A =  if 0tA X = . The nullity of fL  is therefore equal to the dimension

of the space of solutions of 0tA X = . Since the matrices A and AAt have the same column rank, we see

that

nullity ( )fL  = nullity ( )fR

Hence the required.

Definition : If f is a bilinear form on the finite dimensional space V, the rank of f is the integer

r = rank ( )fL  = rank ( )fR .

Corollary : The rank of a bilinear form is equal to the rank of the matrix of the form in any ordered
basis.

Corollary : If f is a bilinear form on the n-dimensional vector space V, the following are equivalent.

(i) rank ( f ) = n

(ii) For each non-zero u in V, there is a v in V such that ( ), 0f u v ≠ .

(iii) For each non-zero v in V, there is an u in V such that ( ), 0f u v ≠ .

Proof : Statement (ii) simply says that the null space of fL  is the zero subspace. Statement (iii) says

they the null space of fR  is the zero subspace. The linear transformations fL  and fR  have nullity 0

if and only if they have rank n i.e. if and only if rank ( f ) = n.

Definition : A bilinear form f on a vector space V is called non-degenerate (or non-singular) if it
satisfies conditions (ii) and (iii) of above corollary.

EXERCISE :
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1. Which of the following functions defined on vectors ( )1 2,u x x=  and ( )1 2,v y y=  in R2, are

bilinear forms ?

(a) ( ), 1f u v =

(b) ( ) ( ) ( )2 2
1 1 1 1,f u v x y x y= + − −

(c) ( ) 1 2 2 1,f u v x y x y= −

2. Describe the bilinear forms on R3 which satisfy ( ) ( ), ,f u v f v u=  for all u,v.

Symmetric Bilinear Forms
Definition : Let f be a bilinear form on the vector space V. We say that f  is symmetric if

( ) ( ), ,f u v f v u=  for all vector u, v in V..

Theorem : Let V be a finite dimensional vector space over a field of characteristic  zero and let f be
a symmetric bilinear form on V. Then there is an ordered basis for V in which fis represented by a
diagonal matrix.

Proof : We must find an ordered basis { }1,..., nB u u=  such that ( ), 0i jf u u =  for i j≠ .

If f = 0 or n = 1 the theorem is onviously true. Thus we may suppose 0f ≠  and n > 1. If

( ), 0f u u =  for every u in V, the associated quadratic form q is identically 0, and the polarization

identity

( ) ( ) ( )1 1
,

4 4
f u v q u v q u v= + − −

Shows that f = 0. Thus there is a vector u in V such that ( ) ( ), 0f u u q u= ≠ . Let W be the

one-demensional subspace of V which is spaned by u, and let W ⊥  be the set of all vectors v in V such

that ( ), 0f u v = .

Now we claim that V W W ⊥= ⊕ . Certainly the subspaces W and W ⊥  are independent. AA

typical vector in W is cα , where c is a scalar. If cu  is also in  W ⊥ then

( ) ( )2, , 0f cu cu c f u u= =
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But ( ), 0f u u ≠  thus c = 0. Also each vector in V is the sum of a vector in W and a vector in

W ⊥  for, let V be any vector in V, and put

( )
( )

,
,

f w u
v w u

f u u
= −

Then ( ) ( ) ( )
( )

( ),
, , ,

,
f w u

f u v f u w f u u
f u u

= −

   ( ) ( ), ,f u w f w u= −

 and since f is symmetric ( ), 0f u v = .

Thus v is in the subspace W ⊥ . The expression

( )
( )

,
,

f w u
w u v

f u u
= +

Shows that V W W ⊥= +

The restriction of f to W ⊥  is a symmetric bilinear form on W ⊥ . Since W ⊥  has dimension

(n – 1), we may assume by induction that W ⊥  has a basis { }2 ,..., nu u  such that

( ), 0i jf u u = ,  i j≠ ,  ( )2, 2i j≥ ≥

Putting 1u u= , we obtain a basis { }1 2, ,..., nu u u  for V such that ( ), 0i jf u u =  for i j≠ .

Corollary : Let F be a subfield of the complex numbers, and let A be a symmetric n n×  matrix over
F. Then there is an invertible n n×  matrix P over F such that tP AP  is diagonal.

Theorem : Let V be a finite dimensional vector space over the field of complex numbers. Let f be a

symmetric bilinear form on V, which has rank V. Then there is an ordered basis { }1,..., nB v v=  for VV

such that

(i) the matrix of f in the ordered basis B is diagonal.

(ii) ( )
1, 1,...,

,
0,j j

j r
f v v

j r
=

=  >
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Proof :  We know that “Let V be a finite dimensional vector space over a field of characteristic zero,
and let f be a symmetric bilinear form on V. Then there is an ordered basis for V in which f is represented
by a diagonal matrix.”

Thus there is an ordered basis { }1,..., nu u for V such that ( ), 0i jf u u =  for i j≠ .

Since f has rank r, so does its matrix in the ordered basis { }1,..., nu u .

Thus we must have ( ), 0j jf u u ≠  for precisely r values of j. By reordering the vectors ju ,

we may assume that ( ), 0j jf u u ≠ , j = 1, ..., r..

Now we use the fact that the scalar field is the field of complex numbers. If ( ),j jf u u

denotes any complex square root of ( ),j jf u u  and if we put

( )
1

   1.....
,

                    

j
j jj

j

u j r
f u uv

u j r

 =
= 

 >

Then the basis { }1 ,..., nv v  satisfies conditions (i) and (ii).

Hence the required.

Theorem : Let V be an n-dimensional vector space over the field of real numbers, and let f be a

symmetric bilinear form on V which has rank r. Then there is an ordered basis { }1 2, ,..., nv v v  for V in

which the matrix of f is diagonal and such that ( ), 1j jf v v = ± , 1.....j r= .

Furthermore, the number of basis vectors jv  for which ( ), 1j jf v v =  is independent of the

choice of basis.

Proof : There is a basis { }1,..., nu u  for V such that

( ), 0i jf u u = i j≠

( ), 0j jf u u ≠ 1 j r≤ ≤

( ), 0j jf u u = j r>
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Let ( )
1

2,j j j u j
v f u u

−
= 1 j r≤ ≤

j jv u= j r>

Then { }1 ,..., nv v  is a basis with the stated properties.

Let p be the number of basis vectors jv  for which ( ), 1j jf v v = , we must show that the

number p is independent of the particular basis we have, satisfying the stated conditions. Let V+ be the

subspace of V spanned y the basis vectors jv  for which ( ), 1j jf v v =  and V– be the subspace

spanned by the basis vectors jv  for which ( ), 1j jf v v = − . Now dimp V += , so it is the uniqueness

of the dimension of V+ which we must demonstrate. It is easy to see that if u  is a non-zero vector in

V+, then ( ), 0f u u > , in other words f is positive definite on the subspace VV+. Similarly, if u is a non-

zero in V–, then ( ), 0f u u <  if f is negative definite on the subsace V–. Nopw let V ⊥  be the subspace

spaned by the basis vectors jv  for which ( ), 0j jf v v = . If  u is in V ⊥  then ( ), 0f u v =   for

all v in V.

Since { }1 ,..., nv v  is a basis for V, we have V V V V+ − ⊥= ⊕ ⊕ .

Furthermore, we claim that if W is any subspace of V on which f is positive definite then the

subsace W, V −  and V ⊥  are independent. For, suppose u is in W, , v is in V − , w is in V ⊥  and

0u v w+ + = .

Then ( ) ( ) ( ) ( )0 , , , ,f u u v w f u u f u v f u w= + + = + +

( ) ( ) ( ) ( )0 , , , ,f v u v w f v u f v v f v w= + + = + +

Since w is in V ⊥ , ( ) ( ), , 0f u w f v w= =  and since f is symmetric we obtain

( ) ( )0 , ,f u u f u v= +

( ) ( )0 , ,f v v f u v= +

Hence ( ) ( ), ,f u u f v v= . Since ( ), 0f u u ≥  and ( ), 0f v v ≤  it follows that

( ) ( ), , 0f u u f v v= =

But f is positive definite on W and negative definite on V − . We conclude that 0u v= =  and

hence that 0w =  as well.
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Since V V V V+ − ⊥= ⊕ ⊕

and W, V − , V ⊥  are independent we see that dim dimW V +≤ . That is if W is any subspace

of V on which f is positive definite, the dimension of W cannot exceed the dimension of V+. If B1 is
another ordered basis for V which satisfies the conditions of the theorem, we shall have corresponding

subspaced 1V + , 1V −  and 1V ⊥  and the argument above shows that

1dim dimV V+ +≤

Reversing the argument, we obtain 1dim dimV V+ +≤  and consequently 1dim dimV V+ += .

Hence the proof.

Note :

1. rank f = dim dimV V+ −+

2. The number dim dimV V+ −−  is often called signature of f.

Skew-Symmetric Bilinear Forms
Definition : A bilinear form f and V is called Skew-symmetic if ( ) ( ), ,f u v f v u= −  for all vectors

u, v in V.

Theorem : Let V be an n-dimensional vector space over a subfield of the complex numbers, and let
f be a Skew-symmetric bilinear form on V. Then the rank r of f is even and if r = 2k there is an ordered

basis for V in which the matrix of f is the direct sum of the ( ) ( )n r n r− × −  zero matrix and k copies

of the 2 2×  matrix 
0 1
1 0

 
 − 

.

Proof :  Let 1 1, ,...., ,k ku v u v  be vectors satisfying conditions

(a) ( ), 1j jf u v = , j = 1,..., k.

(b) ( ) ( ) ( ), , , 0i j i j i jf u u f v v f u v= = = , i j≠

(c) If jW  is the two-dimensional subspace spanned by ju  and jv  then

1 2 0..... kV W W W W= ⊕ ⊕ ⊕ ⊕ .
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Where every vector in 0W  is orthogonal to all  ju  and jv  and the restriction of f to 0W  is the

zero form.

Let { }1,..., sw w  be any ordered basis for the subspace 0W .

Then { }1 1 2 2 1, , , ,...., , , ,...,k k sB u v u v u v w w=  is an ordered basis for V..

From (a), (b) and (c) it is clear that the matrix of f in the ordered basis B is the direct sum of the

( ) ( )2 2n k n k− × −  zero matrix and k copies of the 2 2×  matrix 
0 1
1 0

 
 − 

. Furthermore, it is clear

that the rank of this matrix and hence the rank of f is 2k.

Hence the proof.

Groups Preserving Bilinear Forms
Let f be a bilinear form on the vector space V, and let T be a linear operator on V. We say that

T preserves f if ( ) ( ), ,u vf T T f u v=  for all u, v in V..

Theorem :  Let f be a non-degenerate bilinear form on a finite dimensional vector space V. The set of
all linear operators on V, which preserve f is a group under the operation of composition.

Proof : Let G be the set of linear operators preserving f we observed that the identity operator is in G
and theta whenever S and T are in G and the composition ST is also in G. From the fact that f is non-
degenerate, we shallo prove that any operator T in G is invertible and T–1 is also in G. Suppose T
preserves f. Let u be a vector in the null space of T. Then for any v in V we have

( ) ( ) ( ), , 0, 0u v vf u v f T T f T= = =

Since f is non-degenerate, 0u = . Thus T is invertible. Clearly T–1 also preserves f, for

( ) ( ) ( )1 1 1 1, , ,u v u vf T T f TT TT f u v− − − −= =

Hence the proof.

Let V be either the space Rn or the space Cn. Let f be the bilinear form

( )
1

,
n

j j
j

f u v x y
=

= ∑  where ( )1,...., nu x x=  and ( )1,...., nv y y=

The group preserving f is called the n-dimensional orthogonal group.
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Let f be the symmetric bilinear form on Rn with quadratic form.

( ) 2 2
1

1 1
,....,

n n

n j j
j j p

q x x x y
= = +

= −∑ ∑

Then f is non-degenerate and has signature 2p – n. The group of matrices preserving a form of
this type is called a pseudo-orthogonal group.

Theorem : Let V be an n-dimensional vector space over the field of complex numbers, and let f be a
non-degenerate symmetric bilinear form on V. Then the group preserving f is isomorphic to the complex
orthogonal group  O (x, c).

Proof : Of course, by an isomorphism between two groups, we mean a one-one correspondence
between their elements which preserves the group operation. Let G be the group of linear operators on
V which preserve the bilinear form f. Since f is both symmetric and non-degenerate, the theorem “Let
V be a finite-dimensional vector space over the field of complex numbers. Let f be a symmetric bilinear

form on V which has rank w. Then there is an ordered basis { }1,..., nB v v=  for V such that

(i) the matrix of f in the orered basis B is diagonal.

(ii) ( )
1     1,2,....,

,
0    i j

j r
f v v

j r
=

=  =

Tells us that there nis an ordered basis B for V in which f is represented by the n n×  identity
matrix. Therefore, a linear operator Y preserves f if and only if its matrix in the ordered basis B is a

complex orthogonal matrix. Hence [ ]BT T→  is an isomorphism of G onto O (x, c).

Hence the proof.

❏ ❏ ❏


