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Preface

It is hoped that students must learn mathematics not only to become a competent
mathematicians but also skilled users of mathematics in the solution of problems in
the real world especially in Engineering. They must learn how to use their mathematical
knowledge in solving the problems of the real world. | believe that through the study of
Linear Algebra, students will learn something about the art of applying mathematical
knowledge to solve such problems. Comprehensive account of the mathematical
artifact and numerous examples in this book will help the aspirants to develop an ability
to use Linear Algebra.

| have a great pleasure in presenting SIM on Linear Algebra in your hands. The
material of the book is the standard post-graduate syllabus of most of the Indian
Universities. In this book "Linear Algebra” has been written for the use of students
preparing for post-graduate examinations of Indian universities and SET/ NET aspirants.
In such competitive examinations more emphasis is given on examples. Efforts have
been made to put the subject matter in lucid and comprehensive manner. Various
reference books by the eminent authors have been utilized in the preparation of the text
and the author is gratefully indebted to them. | have streamlined the examples and
exposition, making the book easier to learn oneself. It is hoped that the teachers, the
students and large number of entrants to the competitive examinations will be benefited
with the matter of this book.

Any constructive suggestions for the improvement of the subject matter will be
highly appreciated.

Late. Prof. Y. S. Pawar
Shivaji University, Kolhapur
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Each Unit begins with the section Objectives -
Objectives are directive and indicative of :
1. What has been presented in the Unit and
2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.
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UNIT - |

LINEAR ALGEBRA

Definition
Vector Space:

A non-empty set V is said to be vector space over thefidd F. If V isan abdlian group under
addition and if forevery a,b1 F,n;,n,1 V,suchthat a x T v satisfying following condiition

@) a (v +v,) =av, +av,; al F,v,v,1V
(i) (a+b)y=ay+by; a,bl F, iV

@) (ab)w=a(bv); a,bT F, iV

vy 11F
\ Ixy =V
Example

Let V = F [x] over Fitisavector space usud addition and multiplication of polynomid.

Subspace:

Lete W2 f £V and a,bT F, w,w,1 W wth aw; +bw,T W then we cdled W is
subspace.

Example : W isthe collection of al polynomia with degree lessthan n is subspace of F[x].

Homomor phism in vector space

If UandV arevector space over Fthenthemapping T :U ® V issadto beahomomorphiam.
It ) T(w+uy) =T (u)+T(u)

(i) T(aw)=axT(u) "u,u,l U adal F




Lemma:

If V isavector over F then

1) a»0=0
2) 0w =0
3) -a(v)=-(av)

4) If vyt ganda »w=0p a =0, al F,vi V.

Lemma:

If V isavector space over Fand if W isasubspace of V then V/W isavector space over F,
wherefor v, +W, v, +W | v /W

@) (v + W)+ (v + W)= (v +v, ) +W

@) a(vw+w)=(av)+w

Theorem :

If T is homomorphism of U onto V with Kerna W then V isisomorphic to V/W, conversdy,
if U isavector space and W is subspace of U then there is a homomorphism of U onto U/W.

-

U onto

>V
Vv
—>_T(v)
h
vV+W f
u/w




Definition
Internal Direct Sum
Let V beavector spaceover Fandlet U, , U,, ....., U,, besubspaceof V, V issaid to bethe

internd direct sumof U, U,, ....., U, . If every dement v Vv canbewrittenin oneand only oneas

V=1 +U, +....+uU, where u T U, .

Definition
External Direct Product

Any finite number of vector pacesover F, V;, Vs, ..., V,,. Consder the set V of al order n
tuples (v, Vs, ..., V,,) Where v T V;, V iscaled externd direct sum V;, Vs, , ..., V.

1) Lt v=u+w
= (UpyUpyeeeey U )+ (Vi Vasevees Vi)

= (Uy + Vi, Uy + Voo, U+ ), U, WE V
2) av=a (U, Uy,....,Up)

=(au,auy,....,auy)
Theorem

If Vistheinternd direct sumof U,;,U.,....,U thenV isisomorphic to the externa direct sum
of U;,U,,.....U,.

= U +U, +...+U, ® (Uy,Us,...., Uy )

Linear Independent and Basis
Linear Combination
If V be a vector space over F and Vy,V,,...,V,,1 V then any element of the form,

av +a,\, +...+a Vv, wherea; 1 F isalinear combination over Fof v;,V,,...., Vi, .

Linear Span

If S beanon-empty subset of vector space V then L (S) the Linear Span of Sisthe set of dl
linear combinations of eements of S,

| C 3




Lemma:

L (S) issubspaceof V. If S, T are subsets of V then
) siTp L(S)I L)

2 L(L(S))=L(s)

3 L(SUT)=L(S)+L(T)

Finite Dimensional
The vector space V is said to be finite dimensiond if there is afinite subset Sin V such that
vV =L(S)-

Linear Dependent Set :
If V isvector spaceandif v, V,,....,V,, aeinV. We say that they arelinearly dependent over
Fif thereexist dements a,,a,,....,a,, in F not dl of them zero such thét,

av, +tav, +....+a, Vv, =0

Linearly Independent Set :
If V isvector spaceandif v, V,,....,\,, aeinV wesay that they arelinearly independent in F

dl arezero such that a,v; +a,v, +....+aVv, =0

Lemma
If v, Vs,...,V,, 1 V are linearly independent then every dement in their linear span have a

unicue representation in theform a v, +a v, +....+a v, with a, 'sl F.

Theorem
If Vi, Vs,...., \}, aeinV thendther they arelinearly independent or some v, islinear combination

of preceeding once vy, V,,...., Vi_1 -




Carollary :

If vi,Vp,....,;, INV have W asalinear span and if vy, V,,...., i aelinearly independent then
we can find asubset of v, V,,....,\, of theform v;,v,,...., Vi, Vig,Vig,....,, conddting of linearly
independent e ements whose linear spanisaso W.

Carollary :

If V is afinite dimensond vector space then it contains a finite set v, vs,....,\;, of linearly
independent e ements whose linear panisV.

Basis:
A subset S of avector space V is cdled abads of V if S conss of linearly independent
dementsandV =L (S).

Cardlary :

If V is afinite dimensond vector pace and if Uy, U,,....,u,, Span V then some subset of

U, Uy,....,U,, formsabegsof V.

Lemma:

If vi,Vs,....,\, iIsabadsof V over Fandif w,w,,....,w,, inV arelinearly independent over
F,then m£ n.

Cardlary :

If V isfinite dimensona over F then any two basis of V have the same number of eements.

Cardllary :

E (M is isomorphicto g (m) if and only if n=m. (by above carollary). (Two vector spacesare
isomorphic if and only if dimension is same).

Cardlary :

If V isfinite dimengond over F then V isisomorphicto g (M for auniqueinteger n. (integer n

depends on dimensons of V). (No. of eementsin the bass: dimension).
| C 55 |




Cardllary :

Any two finite dimensiond vector spaces over F of the Same dimengon are isomorphic.

Lemma:

If V isfinite dimensond over Fand if u;, U,,....,u,,1 V arelinearly independnt then we can

find VECtOr'S Ury4q, Ui ooy Uy 1V SUCh that Uy, Us,..., U, Unag, Uy, fOrM abesis of W

Lemma:

If V is finite dimensiona and if W is a subspace of V then W is finite dimensiond,

dimw £dimv and dim\\//—vzdim(v)- dim(w) .

Cardlary :

If A and B arefinitedimensiona subspaces of avector spaceV then A + B isfinite dimesniond
and dim(A+B) =dimA+dimB- dim(ANB).

Dual Space
Lemma:
Hom (V, W) isavector space over F under the operation (T +S)(v) =T (v) + S(v) -

T(av)=aT(v),al Fadvi V.

Proof : Let V and W be vector spaces over F and consider a collection of homomorphismsformV to
W.

As, (Hom (V, W), +)
0] Let (T+S)(v)=T(v)+S(v)ad
T(av)=aT(v);whereal F and vi V.

Take vi,V,1 V and T,ST Hom (V, W)
P (T+9)(Y+Vv,)=T (v, +Vv,)+S(v,+V,)

=T (W)+T(w)+ S(wv)+S(v)

C 6 )




(i)

(ii)

=T(w)+S(vy) +T (v,) +S(v,)
=(T +S)(v) +(T+S)(v,)

P T+SI Hom(V,W)

Scaar Multiplication

Let (T+S)(av)=T@v)+S(v);al F advi V.
=aT(v)+aS(v) ... T,ST Hom(V,W)
=a (T(v)+S(v))

=a(T+39)(v)

Associative Property
Let T4, Ty, T31 Hom(V,W)and vi V.

\ ((Tu+ o) +T3) (V) = (T + ) (W) + T3 (v)
=T, (V) +T, (v) +T5(v)

=T, (V) +(T,+T3) (V)

=(T+(% +T))(W)




P T,-T,1 Hom(V,W)
Also
(T,- T,)(@@v)=T,(av) +(- T,)(av)
=aT,(v)+(- DT, (av)
=aT,(v)- aT,(v)
=a(T,-To)v
\ (Hom(V,W),+) isagroup.
L (L+5)(W=T,(v)+T,(v)
=T, (V) + T, (V) T, (v), T,(V)T W and W isavector S,
= (T, +T,) (V)
Hence, (Hom(V, W), +) isabdlian.
Let| | F, TT Hom(V,w) and a,bl F.
b (IT)(avy+bv,) =T (I (a4 +bv, )) ...... by linearity of T.
ST (1 aw)+T(1 av,)
=1 aT(v)+1bT(v,)
=a(l T)(v)+b(I T)(v,)

| TT Hom(V,W)

Scada multiplication distrubute over addition.
| (TL+T,)(v) =1 T, +T) vy
=1 @r,(v) +T, (V)g
(1 T)W)+(1 T,) (V). WisaV. S and v, v, T V.

(0 ) +(1 7))




Vector multiplication distrubute over scalar addiition
(I +0)T, (W =(1 +b)(T,(v))
=1 T,(v) +bT,(v) ... WisaVector space
=(I ) (W +(bT)(V) ... | T,,bl T Hom(V, W)
=(1 T, +bT,)(v)

(Ib)T(W) =1 (bT(v)) ... TV w

[dentity w.r.t. multiplication
1T (v) =T (1) =15 (v)

=T(v)
\  Hom (V, W) isavector space over F.

Hence the proof.

Theorem :

If V and W are of dimensons m and n respectively over F, then Hom (V, W) isof dimension

mnover F.

Proof :

We prove the theorem by exhibiting abasis of Hom (V, W) over F conssting m, n eements.

Let v;,Vs,....,V,, beabassof V over Fand w,w,,....,w, beabassof W over F.

Define T; -V ® W as T; (v) =a;w; and T (v ) =w; ; fori =k.

=0; forjt k.

Wedamthat T; T Hom(V,W) and {T; li =1,2,...,m, j =1,2.....,n} islinearly independent

and spans Hom (V, W).
Let v,ul V.

\ v=ayv +ta,\, +....+a v, ad

u=hy +boV, +.+ bV, @1,85,0008 5, D05, b T F

C 9




Now,

T (av+bu) =T, (@@ +aa v, +.....+aa vy, + bbby, +bbyv, +.....+bbv, )
=T, (@a, +bb; v, +...+(aa, +bb, v,
=0+...+(aa; +bb;)w; +0+....+0

=(aa; +bb;)w,

=aT; (V) +bT; (u)
P T;T Hom(V,W).
Let ST Hom(V,W)and v;T V.
\ S(w)Tw.
Hence, S(Vvy) =a Wy +a W, +.....+ay W,.
For some a;q,8;5,....,84,1 F.
Infact, S(V,)=a W, +a;,W + .o ¥ai Wy, i = 1,2, ..., M.

Consider

=S(v)
Thus, the Homomorphisms §, and S agree on the basis of V.
\ §=S

C 10 D




However, S, islinear combination of T; whence S must be the same linear combingtion.

Thus, the set B spans Hom (V, W).
Now, we will show B islinearly independent
Suppose,

where B; T F .

Apply thison abassvector v; o V.

P (byTyt DTy e ¥ By Ty + e+ QT+ BT ) () =0(v ) =0
P 0+...+0+b;;w +b;,w, +.....+b;;w, +0+....+ 0=0

P b, =b;, =....b,.

Since W 's are bass dements of W.

Thisimplies by; =0 for dl i andj.

Thus, b islinearly independent over F and forms abass of Hom (V, W) over F.

\ dimHom (V, W) ismn.

Hence the proof.

Coradllary :

1. If dim V = m then dim Hom (V, V) = n?.
Proof : ReplaceW by V and nby m.

2. If dmV =mthendim (Hom (V, F)) =m.

Proof : AsF avector spaceisof dimension one over F.
Note: If V isfinite dimensond over F. It isisomorphic to Hom (V, F).
Dual Space:

If V isavector space thenit'sdua spaceisHom (V. F). It isdenoted by \7 . The dements of
v/ Will be cdled alinear functiond on'V into F.

C1




Problem : Show that Vi, V,,...., \t, isabasisof \7 , for v;,V,,....,V,, isbasisof V and
Solution : V(v;)=1  ifi=] -
=0 ifit].

Consider aV; +a,V, +...+a v, =0 for a,,a,,...,a,1 F

\ (@ +...+aV,)(v)=0pP a; =0 itistrue " j

P V,....,V, aelinearly independent.

dimV =dimV b ;,9,,....,V, isbasof V.
Lemma: If Visfinitedimensond and v 1 0 inV thenthereisandement f | V suchthat f (v)t O.
Proof : Let V isfinite dimensiond vector space over Fand let v, V5, ...., v, beabassof V.

Let VTV definedby U (v;)=1  if i=]

=0 ifit .
g

Consider, ¥, (v) =0 for y1 0 inV,\ Vzelai\/i a1 F.

\ ¥ (agy +any, +....+any,)=0

pa=0 . by definition of V.

p All a;'s usedinthe representation of v are zero.

Hence v = 0, a contradiction.

Thus \ Vv (v)t 0.

b ¥ =f1V suchtha f(v)t 0.

Hence the proof.
Definition :

Let thefunctional on yj into F, Ty, (f)=f(v) for £ V.

with T, =(f +9)(vo)

= (vo) +9(V) .. Hom (V, F)




T, (1 £)=1 f(v)
IxTVO(f)

T,, isindud of \J itiscaled Second Dual of V. It isdenoted by \; .

0

Leema: If V isfinite dimensiond then thereis an isomorphism of V onto \ -

Proof : LetV isfinitedimensiona vector space. Definethemapy v ® v byy (V) =T, forevery
vi V.
Wewill show y iswel-defined, one-one, onto, homomorphism.
Let u,vi V.Letu=v.
U f(u)="f(v)  fTV
UT,=T,
Uy (u)=y (v)
\ Thusy iswel-defined and one-one. Now, congider u,vi V .
y (U+v) =T,
but T,, = f (u+V)
=f(u+f(v) =T,(f)+T,(f)
=(T,+T)(f)

P T =T, +T,

Uty
\y (u+v) =T, +T,
=y (u)+y (V)
\y (U+v) =y (U)+y (v)
Let a beany dement.
y (av)=T,, = f(av)=af(v)
=axt, . Vector space.
=ay (v)
\' Yy ishomomorphism.

C 13D




Annihilator :
If W isasubspace of V then the annihilator of W

AW) ={ £TV | (W) =0" wi W}

O S
1. Show that A(w) issubspaceof \; .
Proof : Let f,g7 A(w) anda,bl F;wisarbitrary dementinW.
Clam:af+bgl A(W)
f(w)=0=g(w), "wl W.
P (af+bg)(w)=af(w)+bg(w)
=ax0+b >0
=0
baf+bgl AW)

Hence the proof.

Note:
1. If w={0} istheOsubspaceof V then A(W)=V .
2. IfW=Vthen A(W)={0}-

3. If V is finite dimensiond vector space and W contains a non-zero vector and dso W is a
proper subspacethen A(w) isnon-trivial, proper subspace of 7 .

Lemma:

If V isfinite dimensiona vector space over F and W isasubspace of V then \y isisomorphic
tov/A(w) and dim(A(W)) = dimV - dimw .
Proof : Let W be asubspace of V whereV isfinite dimensond.

If 1V ,let T betheregriction of f to Wandisdefined on W.

As, f(w)=f (w) forevery wi W.

C 14 D




\ FTwW;snce f1V.

Now, consider the mapping T -\ ® W ; definesas
T(f)="f;for f1V.

Let f,g7 V suchthat f=g.

U f(v)=g(v);forevery vi v

U ief(v)=g(v);forevery vi Wi Vv

U f(v)=g(v);forviw

U f=9

OT(f)=T(g) .. by definition of T.

Hence T iswedll-derined and one-one.

For Homomosphism of T,
Congder,

andT (I f)=I f=1> =1xT(f)...dnce| isscda.

\ T isHomomorphism.

Now, we will show that T is onto.

i.e. for agiven any dement 11 \iy . Then h isthe restriction of some f T V.

ie f=h

C 15 D




Weknow that, “if W, W,,....,W,, isabadsof W, subspace of V..

Then it can be expanded to a basis of V of the form {4, ..., Wy Wiq,.e.. W, } 5 Whose
dm (V) =n.

Let W, be the subspace of V spanned by { Wi, Wi p,eeee, Wo b -

Thus V =WAW, (- {Wp.y,-...., W} doesnot belong to {w,.....,w,} so WNW, =f
and W UW, = whole space)

Any dement of V isrepresented as v=w +wy; wi W and w T W, .
For hi W, define 1V as f (v) =h(w).
P f(w+w)=h(w)
P f(w)+f(w)=h(w)
b f(v)=h(w)
\ f1Vwehave f=h.
p f(w)=h(w)
Thus, T(f)=h andso T maps\; onto \y .
Congder,
keeT={ 11V |T(f)=0}
={t1V|F=0
={fTV|f (w)=0"wi W}
{1V |f (w)=0"wl W} o F(w) =T (w) every wi W.
= A(w)
Thus, by fundamentd theorem of isomorphism (agebra).

.V
w @A(W)

lar thev have th d dimw dimae—v °
In particular t t imens = £,
n particular they have the same dimensions AW 5
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Also, weknow dimy =dimV ad dimw =dimw -

\ Above expression become,

) . eV b
\ dmW =dimg———=
EAW) 2

dimW =dimV - dim A(W)

Hence the proof.

Theorem:

Proof :

aso.

If V be afinite dimensiond vector space over thefidd F. Let W be a subspace of V, then

dimW +dim A(W) =dimV

If W isthe 0 subspace of V then A(W) =V -
\ dim(A(W)) =dimV
=dmV.
Smilarly, the result is obviouswhen W = V.
Let us suppose that W is proper subspace of V anddimW =m, dimV =nwithO<m<n.

Let B ={w,W,,....,w,} beasbasisfor W. Since, B, islinearly independent subset of V

\ It can be extended to form abassfor V..
Let B ={Wy,W,...., Wiy, Wipyq,e-e.., Wo} DR @DRSISTOT V..

Let B={f,, fp,..., fry, Frareneenns T} bE@CUA bESISOF V.

+ T
Then g isabasisfor \j suchthat f; (w;)=d; =0;if i1 |

=1;ifi=j.
Wedamthat S={ f.1, friosen, T} isabasisof A(W)-
Since gj B. Therefore Sislinearly independent because g islinearly independent.
Therefore, Sisbasisof A(W) if L(S)= A(W).-

Let f1 A(W), fTV.
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n
Solet T=aaifi;al F
i=1

Now, f1 A(W).
b f(w)=0 wi AW).

b f(w;)=0foreachj=1,2,....m

\ én‘aifi (WJ-):O

i=1
Dalfl(wj)+a2f2(wj)+ ...... +aj_1fj_1(w.
Pa;=0
Putting, a; =a, =...... =a,=0in(d

o
f=a af

i=mt1
p f1 L(S)

\ A(w) containedin | (S).
Let g L(9).
= é. B f
i=m+1

Let wi W.

p g(w)— a bfggag’ J._

e. =m+1l &
g &d o}
j=1  ei=m+1 1]
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=01b g T (W) + e+ Gy T (Wj ) +

P g(w)=0
Hence, gT A(W).
Therefore, |(S)i A(W)
P wehave |(S)= A(W)
dimV =dim A(A(W)) +dim A(W)
\ dim(AMW))=n-m
=dimV - dmw
b dimV =dimW +dim A(W)

Anihilator of Anihilator

Let V be a vector space over F if any subset of V then A (S) is subspace of \y and by
definition of annihilaor.

A A~

AA(S) ={LTIV |L(f)=0," T A(S)

Example:
1) Show that A(A(S)) issubspaceof y; .
Note:
If V isfinite dimensona vector space then we haveidentity \ﬁ with V through theisomorphism
vV® L,.
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Therefore, we may regard A(A(S)) assubsgpceof V..

A(A(S))={vi vV |f (V)=0 fT A(S)}

Coradllary :

If W is subspace of V finite dimensional vector spacethen A(A (W)) =W .

Proof : We have,
AW ={fTV |f wW=0rwi W} L (1)
AAW)={vivI|f(v=0"fT AW} L )
Let wi W.Thenby (1) f(w)=0,"wi Wi V.
There from equation (2);
f(w)=0,"fT A(wW).
Therefore we have, A(A(W))
Hence, Wi A(AW))
Let vi A(AW)), "vi V.
p f(v)=0,"f1 A(W)
P f(v)=0,"f1 A(W)forvi w
b AAW))T W.
\ A(AW)) =w
dimV =dim A(A(W)) +dim A(W)
dimV =dimA(A(W)) +dim(V) - dimw
b dimA(AW))+dim(W)p A(A(W))=W . Hence the required.

Problem : Let V be finite dimensiond vector space over the fidd F. If Sis subset of V prove that
A(S) = A(L(S)) where |_(g) islinear spanof S,

Solution : Let V beafinite dimensona and Sisany subset of V.
Weknow that S| (S)-
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Therefore, A(L(S))T A(S) L (1)

(wivadw={agiVve AW)=V. AV)={a.\ VE{qQ )
Now, let fT A(S) then f(s)=0 fordl s] S.

n
If uisany dementof | (s) thenU=a a1 L(S),
i=1

&
Consider, flu=fcaas-
ei=1 2

p f1 A(L(SY) 2)
\ A(S)T A(L(S))

b A(L(S))= A(S)

Hence the reault.

Problem : Let V be finite dimensond vector space over F. If Sis any subset of V then prove that
A(A(S)) =L(S).

Solution ;

By previous A(S) = A(L(S)). By taking annihilator on both sides

P A(A(S))=L(S) e L(S) isSUbspaceof V..

Problem : Let W, and W, be subspaces of V which is finite dimensional. Describe A(W, +W, ) in
termsof A(W,) and A(W,).

Solution :
Let W and W, be two subspaces of Y.
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Wehave, W, I W, +W, and W, | W +W, .

Since, AW, +W,) 1 A(W) and AW, +W,) T A(W,).
B AW W) T AW )N AW,)

Conversdy let, f1 A(W,)NAW,)

P fT AW)and fT A(W,)

\ f(w)=0, f(w,)=0. "wT W, wi W,.

Letany wi W.Thus wi W isrepresented as w= W + W, .
b f(w)=f(w+w)

= f(w)+ f (wg)
0

p f(w)=0
P fT AW +W,)
B AW)NAW,) T AW, +W,)

\ AW G) = AW N A)

Hence, the resullt.

Problem : If W, and W, be subspaces of finite dimensiona vector spaces
Describe A(W, MW, ) intermsof A(W, )+ A(W,) .
Solution : By using previous exercise by replacing V by \j , W, by A(W,), W, by A(W, ) weget;
A(AW) +AWG)) = AAW))N A(A(W,))
=W NW,
B A(A(A(W) + AWL))) = AW W)

P AW +A(W,) = A(W,NW,) . A(W )+ A(W,) isasubspaceof ;.
Hence, the result.




System of Linear Homogenous Equation
Theorem : If the syssem of homogeneous linear equations

A X T apX, ... +a,X, =0

aryX + 8pXo e @ %, = 0 where a; T F
isof rank r then there are n — r linearly independent solutionsin g () .
Proof :

Conger, the system of m equations and n unknowns.

A% + 8pXo e @ %, = 0 where a; T F
Now, we find how many linearly independent solutions (X, Xy,...., X,) in M .
Let U be the subspace generated by m vectors with

(@r B+ &) @ SUppOsed that U is of dimensionsr.
Let v, =(1,0,....,0), v, =(0,1,....,0), ....., v, =(0,0,0.,....,0,1) beabasisfor g.

\ Uy, V,......,V, beit'sdud basisof £, anysmdl fT F(™ canbeexpressed asalinear

combination of v, 's.

n
f=ax%; x1F
i=1




= a QX% (V) + 3 QX% (Vo) + oot 394 %5 (V)
i=1 i=1 i=1
= Ay X F X F e F A X,
% (vj)=0 ]
=1 =]

=0
p Thisistruefor the other vectorsin U.
\ 1 AU)
Every solution (X, X,,...., X,) Of the system of homogenous equation it's an elements
XV + XV + et XV N A(U) -
Therefore, we see that the number of linearly independent solutions of the system of equation
isthedimendgonof A(U)-

But we know,
dimF®™ =dimU +dimA(U)

\ dmA(U)=n-r

Hence, the proof.

Corollary :

If n>m that isif no. of unknowns exceeds the number of equations then there is a solution
(X, X500y X)) Wherenot dl of (X, Xs,...., X,,) areO.
Proof : Since U isgenerated by m vectorsandm<naso r = dim(U) <m-

By above theorem the dim A(U) = n- r this number is nothing but no. of dementsin the
bassof A(U) which are non-zero vectors.

Hence, the proof.
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EXERCISE :

1.

If S,T1 Hom(v,W) and S(v;)=T(v)for dl dements v; of a basis of V, prove that
S=T.

If V is finite dimensional and v, 1 v, arein V, prove that thereisan f 1 V such that
fv)?r f(v).

If Fisthefield of red numbers, find A (W), where W is spanned by (1, 2, 3) and (0, 4, -1).
If fand gaein \y suchtha f(v)=0 implies g(v)=0, provetha g=I f for some

~

I'T F.

L OO
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UNIT - 11

INNER PRODUCT SPACES

Definition
The vector spaceV over Fissaid to be an inner product space, if there is defined for any two
vectors u,vi V an eement (u, v) in F such that,

1. (uv)=(v,u);
2. (u,u)3 0and (u,u)=0isandonly if u=0

3. (au+bv,w)=a (u,w)+b(u,w) forany u,v,wi V anda,bl F.
Note : A function satisfying the properties 1, 2, 3 is caled an inner product.

Example:

1) In p definefor u=(u...u,) and v=(\....v,) . (uv) = U+ ...+ u.7, , thisdefines
aninner product of M) .

2) (u,v) = 2uV;, + UV, + U,V + U,V, this defines an inner product on F(2),

3) Let V bethe set of dl continuous complex valued functions on the closed unit interva [ O, 1].

1

If £(t), g()1 v defire (f(©),g(t))=of ) g(Det.
0
Definition :
If vi v thenthelength of v (norm of v) written as ||\j| is defined by

lul =/(u,v)
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Leema:

If uvi V anda,bl F then
(au+bv,au+bv)=aa (u,u)+ab (u,v)

Proof : by property 3,

(au+bv,au+bv)=a(u,au+bv)+b(v,au+ bv)
but  (uau+bv)=a(uu)+b(u+v) and (v,au+bv)=a(v,u)+b (v,v)

\ (au+bv,au+bv)=aa(u,u)+ab (uv)+ab(v,u)+bb (v,v)

Hence the reault.
Cordllary :
laull =lallul

Proof : |aulf’ = (au,au)=aa (u,u) since by above Lemma. (-.-aa_:|a|2 and (u,u):||u||2)

\ ||au||2 =|a|2||u||2 taking positive square roots yields | ul| =|a||ul -

Lemma:

If & b, carerea numberssuchthat a>0and g 2 +2p| +¢3 o foral red number | then

b? £ ac-
. 9 1 , @& p’o
Proof : Completing the squares, a *+2bl +c==(al +b) +8c-_+,
a ag
o . : . b
Sinceit isgreater than or equal to Ofor dl | , in particular this must betruefor | =-E.Thus

29
c- c—=2% 0Oanddncea>0weget K2 )
gaz 0t b £ ac

Theorem : If u,vi V then |(u,v)| £ lulllvi .

Proof : If u=0thenboth (u,v) =0 and |y||M|=0 o that theresult istrue there.
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Case- | :
Suppose (for the moment) that (u,v) isred and u1 0.
Weknow if u,vl V anda,bl F then
(au+bv,au+bv)=aa (uu)+ab (uv)+ab (v,u)+bb (v,v)
For any red number | ,
O£ (lu+v,lu+v)=I2(uu)+2(u,v)l +(v,v)
Let a=(u,u), b=(u,v) and ¢ =(v,v) for thesethe hypothesis p p2 £ ac-

Thais (u,v)2 £ (u,u)(v,v) : from thisit isimmediate that (u,v) £ {lull vl -

Case- 1l :

u
If a =(u,v) isnot red then it certainly isnot O so that - ismesningful.

al o_1 1
Now 8;’VB:;>(U,V) :m)(u,v)zl ad |t|scertan|y red.

u

¢
1= Vi £ vV
Therefore by Casel, ‘gg j " v

lullIvl

ul_1 uitivi
lal -

=—ul weget 1£
a

\
lal

Whence |a| £ |ulllv] . putting a = (u,v) weobtain |(u,v)| £ lulllvi the desired resuit.

Examplel: If v = g™ with (u,v)= UV, + ...+ UV, where u=(Up.....lly), V=(Vp...nuo

then 0+ U2 E (et o [P) (M + o)

n

2

Example2:

1
of ¢)g &)t
0

1 1
£ () dt o (©)f
0 0

Definition : If u,vi V thenuissaid to be orthogond to v if (u, v) = 0.

Note: If uisorthogonal to v then v is orthogonal to u, for (v,u) =(u,v) =(0) =0.

C 28 D




Definition : If Wis subspace of V, the orthogona complement of W, \y/" isdefined by

W ={xT V|(x,w) =0"wl W}
Leema: \y" isasubgpaceof V.
If a,bl W" thenfordl a,bT wand
for wi W, (aa+bb,w)=a(aw)+b(bw)) =0

\ aa +bbl W"

Note: WNW" =(0) forif wi wnw" it must be sdif orthogond. if (w,w) =0

\ wWl=0b w=0

Example: W be subspace of V, \\/* isorthogona complement of W which also subspace of V, then

V=W +W"

() v =w +w" (M wnw" ={a}
i) There exists an orthogonal basis (W, W,,...,w; ) of w which is apart of an orthogonal basis

(W W W g0, ) OF V SO that

jtifi=] o

Let vi Vv bearbitrary and hence $ uniquescdas a,...a,, suchthat
g M g H g
v=aaw=aawt a aWw takingU=a aw,.w=q ajw
i=1 i=1 i=r+l i=1 i=r+l
\ v=u+w ul W,wi w*
aso this representation isunique for the scdars a;....a,, .

Thus y =W +W"
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Let yf wnw" beabitrary than ul W, yi w" -

P (u,u)=0b Jul=0P u=0

\ wnw” ={a}

Definition : The set of vectors {v;} in V is an orthonormal set if

(i) each v; isof length 1, (if (vi, ) =1).

@) forif it j, (v,v;)=0.

Lemma: If B ={v,V,,..v,} isanorthogona set then the vectorsin B are linearly independent.

Proof :

n
If W=a aM thena; =(w,v)Vv;.
r=1

Supposethat av; +....+a Vv, =0.

\ (@ +otagVvp, ) =0P a (v ) +...+a, (v, v ) =0 since (v;,% ) =0
For j i while (v;,v)=1 thisequation reducesto a; =0.

Thusthe v; 's ardlinearly independent.

If w=a,v+....+a,V, then

(wv) =(aw +..vapvy, v ) =ag (v, v ) +...+a, (v, v,)

P a;=(wv).

Lemma: If {v..v,} isanorthogond setinV andif wi Vv then

u=w- (W) vi- (W) (W) Voo (W, v, ) v, i Orthogondl to each of ..., V.




Proof : et (u,v)=(w- (W,vy) vy (W, )V, V)

=(Wovi) = (Wove) (W, V) oo (W0 ) (V1 ) (W5 V) (Vi )

. 00t |
= (wv)- () ()=l 2
=0 and v isahitrary.

P\ uisorthogond to esch v;....v,

Theorem :
Let V be afinite dimensiona inner product space, then V has an orthogona set asabasis.

Proof : LetV beof finitedimensonnover Fandlet vy, v,,...., v, beabassof V. Now fromthisbasis
we shdl congtruct an orthogond set of n vectors

Let  u =V

_ Y
UZ - V2' (V21u1)||u ||2 I|nea SpECEOf Uz,ul-
1

u u
Uz =V3- (v3,u2)—22- (v3,u1) 12 linear space of us,uy,U, .
Jull o

Uisg =Visg - é.( i+ )

” ” linear space of U, 4,U;...U; .
j

Now (1) = Fuv, - (1) 0= () - L2 )

e
é Ml 5 il

- W <
() (e =0

(U2, us) :g%z - (V2’ul)L2'V3 (va, ) - (v, ) 9
é Jw] Ju 2” Jul 5
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=\Va, V3 '(VS UZ) Uy U (VS U1) Zul'Mul!US
W) S otk S Ve e

+(v2,u1) (V3 u,) Uy, Uy +MM Uy, Uy
Y A W W

&®
9V31V2 - (VZ!ul)
é || 1||

5 (Vg ) (Vo u
:(V2,V3)' 2 (; U,V - (V2 1) u12 2‘ ( 2 1)(22 1)
o] jwl" s
Uy, vs) &QUS Vo) (Vs th) (Vo ul)o 35(‘ Vo Up) - (Vo) (Vo ) 0 (V3 ) (i th)
2 i 2
T jwl™ 5l

)+(V3’U1)(V21u1) C(v)(vor )

= (U, v3)- (V. ¥ 2 2
o Jul
=0

\ u,u,,...,u, areorthogond.

_W U _ U,
Wy =2 W, =
B TY R

\ {W,W5,....,w,} isorthogonal setwhichislinearly independent and dim (V) = no. of elements
in this set. Therefore, it forms basis.

Linear Transformations
1) HOM (V, V) : the set of dl vector space homomorphisms of V into itsdlf.

2) HOM (V, V) formsavector space over F under the operations addition and scaar multiplication
defined as

T, T,1 HOM (v V), then (T + ) (V) =T, (V) +T,(v), "ul vendforal F,
() =a (L.(v)
Example:
1)  ForT,T,1 HOM (v V) and T, (V)T V forany vi Vv thenshow that

T,T,T HOM (V,V).
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Solution : Let T, T,T HOM (v V) wedefine T,T, (v) =T, (T, (V) forany vi v.

2)

Leta,bT Fand uvi V toshowthat (TT,)(au+bv) =a (T,T,(u)) + b (T,T, (v)).

Consider T,T,(au+bv)=T, @, (au+bv)g=T,@T,(u) +bT, (V)
=T,(aT,(w)+T,(bT, (W) =a (T, (T, W)) +b (T,( T (V)
=a gTT,)(Wg+b NT,)(V§

Thus T,T,T HOM (V,V).

(L +T) T =TT +T,T;

Solution: Leta,b1 F and u,vi V.

3)

4)

(T, +T,)Ta(au+bv) =(T,+T,) @ (au+bv)g= (T, +T,) @ Ty (u) + bT; (V)
=TT, (u) +bT;(V)g+T, T (u) + b T, (V)
=aT,T, (u) + bT,T,(v) +aT, T, (u) + bT,T, (v)
=a @LT, (u) +T,T5 () g+ b g T (V) +T,T, (V)
=a T+ T,T)(WEtb gT T, +T,T,) (V)
=a gT,+T,) T fu) +b g T, +T,) T, (V)

\ (T +T,) T =TT+ T,T,

T3 (T1 +T2) =T,T; + T;T, same as above.

Tl(TZ'TS) :(Tl’ Tz) T3

Solution : T, (T, T;)(au+bv) =T, gT,.T;)(au+b yg= T é (T,.T;) (u)+ b (T,.T;) (V)

=a (T, T, T)(u) +b (T, T, T5) (V)

=a (T, L) T (u)+b (T, T,) T5(v)




(T T,)éa T (Wg+(T.T,) @ T, (Vg

(T, &) Ts(au) +(Ty, T,) T5(bv)

(T, o) Ts(au+bv)

5 a(T,T,)=(aT)T, =Ty(aT,)
Solution : a (T, T,) (u) =(aT,) (T, (W) =(T,)(aT, (U)) =T, (aT,) (u)
\ From properties 1, gives clouser property w.r. to multplication 2, 3, 4 give HOM (V, V) an
associdive ring.
and 1T HOM (V,V) defined as Iv=v,"vi V ad
TI=I1T=T forevery TT HOM (V,V).

\ HOM (V V) isring with unity.

Definition : Anassociativering A iscdled an agebraover Fif A isavector space over F such that
"abl Aandal F

a(ab)=(aa)b=alab)

Note: HOM (V, V) isandgebraover F. Wedenaoteif A (V) and whenever wewant to emphasizethe
role of thefield F. We shdl denote it by A (V).

Definition : A linear transformation on 'V over Fisan eement of Ag (V). A (V) isthering or dgebra
of linear tranformationson V.

Lemma: If A isandgebrawith unit dement over F, then A isisomorphic to asubagebraof A (V) for
some vector sgpce V over F.

Proof : SinceA isandgebraover Fit must beavector space over F. Weshdl useV = A to provethe
lemma

If a] AletT,:A® A bedefinedby T, (v) =va forevery vi A.
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We assert that T, isalinear transformationonV (= A).
By theright distribution law.
T (W+v)= (4 +uy)a=va+u,a
=T (W) +To (V)
Therefore, A isandgebra T, (av) = (av) a=a (va) =a (T, (v)) , for vi A,al F.

Thus T, isindeed alinear transformation on A. Consider themappingy : A® A(V) defined
asy (a) =T, forevery al A.

Claim:y isanisomorphisnof A into A (V).
a=b
T,=T,py (a)=y (b) y iswel deined.
If a,bT Aanda,bl F then"vi A.
T.a+bp (V) =V (aa+bb) =a (va) +b (vb) -+ by left distribution law and AB dgebra
=a(T,(V)+b (T, (v)) =(aT, +bT,) (v) T, and T, aeL.T.
\ Tyaspp =aT, +bTy Py isavector soace homomorphousof A into A (V).
ie. y(aa+bb)=ay (a)+by (b)
Now a,bl A.
Top (V) =u(ab) = (va)b =T, (T, (v)) =(T,T,)(v) -+ Alisdgebraassociativelaw in A.
P Tp=Tal, Py (ab) =y (aly (b)
\ 'y isdsoaring homomorphism of A.
\ ¥ isahomomorphism of A asandgebrainto A (V).
Now Kev(y )={al Aly (8)=0}.i.ey (8)=0ie T,=0and T,(v)=0,"vi V.
Now V = A and A hasaunit element ehence T, (e) =0. However 0=T,(e) = ¢, =a.
Providing that a= 0. The Kernd of y must consist of O.
y isone-oneand dim(A) =dim(A(V)) givesy isonto

\' Yy isanisomorphism of A into A (V). This completes the proof.
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Lemma: Let A beandgebrawith unit eement over F, and supposethat A isof dimension n over F.
Then every dement in A stisfies some nontrid polynomid in F [x] of degree a most m.

Proof : Letebetheunitdementof A,if af A considerthe dementse, a, a2, ... aMinA. SnceA is
no dimensona over F, we know “If v;...v,, isbassof V over Fand if w...w,, inV ae Linear
independent over Fthen men” .

Let  dimA=m<m+1

\ e, a, & ... d" belinearly dependent over F. In other words there are elements

ag,ay,...ayl F notdl zero. Suchthat age+aja+...+a,a™ =0. But then a stisfies the non-

trivia polynomid q(x) =a, +a,;x+....+ax" of degreea most min F[x].

Theorem : If V isan n-dimendona vector gpace over F, then given any dement T in A (V), there
exigsanon-rivid polynomid q(x)T f (x) of degreea most n? suchthat ¢(T) = 0.

Proof : Asabove.

Definition : V isfinite dimensond, T A(v) somepolynomia q(x) exist for which q(T)=0 a
non-trivial polynomia of lowest degree with this property p(x) exigsin f (x) wecdl p(x) a
minima polynomid for T over F. If T stifies then p(x) [h(x) .

Definition : Andement T1 A(v) iscdled right invertible if there exitlsan g1 A(Vv) such that
TS=1 (1 isunit dement in A (V)). Smilaly we can define left in veify if 7 A(v) such that
uT =1

If TS=UT =1then T isinvetible.

Example: If TS=UT=1thenS=U
Solution: S=1S=(UT)S=U (TS =Ul=U.

Definition : Andement TinA (V) isinvetibleor regular if itisbath right and left invertiblei.e. if there
isandement ] A(V) suchthat ST =TS=1wewriteSas T L.

Note: AndementinA (V) whichisnot regular iscaled sngular.
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Example: Let F bethefield of red numbersand let V be f (x) theset of dl polynomiason x over
F.

Solution : Let Sbedefined by S(q(x)) = %(q(x)) and T by T(a(x) = &g (x) dx
1

Thenwhereas TS= 1.
Note: AndementinA (V) isright invertible but is not invertible.

Theorem : If Visfinitedimensond over F then T A(V) isinvetibleif and only if the congtant term
of the minima polynomid for T isnat O.

Let p(x) =ay +ax+....+a, X<, a, * 0 betheminima polynomia for T over F.

Ifa,0snce0=p(T)=a,T"+a, ;T +...+a,T +a, weobtan

& 2 e
_ 1 k-1
\S—-a—(akT +----+al)aasasa1ir‘iversef0rT.
0

Whence T isinvertible.

Suppose on the other hand that T isinvertible, let a, =0

Then 0=a,T +a,T?+...+a,T"=(a, +a,+..+a,T)T

Multiplying this rddation from the right by T-1 yidds
a,ta,T+..+a, T<1=0

Whereby T satisfy the polynomid q(x) =a, +a,x+....+a, x*1in f (x).

anddeg (q(x)) islessthanthat of f (x) thisisimpossible

\ p(x) isminima polynomia consequently a, * O.

Hence the Theorem.
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Corollary : If V isfinitedimensond over Fandif T] A(Vv) isinvetible then T-1 isa polynomia
expressonin T over T.

T isinvetible

\ ap+a,T +..+a, T =0witha,* 0

Then T '=- i(a1+a2T +....+akT"'1)
0

Corollary : If V isfinite-dimensond over Fandif T7 A(V) issngular thenthereexistsan St Q in
A (V) such that

ST=TS=0
Proof : Because T isnot regular the congtant term of its minima must be 0.
ie p(x) =a;x+...+a,x* where 0=a,T +...+a,T*
If S=a,+...+a, T  then S1 0
\ a;+...+a,x<!isof lower degreethen p(x).

\ ST=TS=0

Corollary : If Visfinite-dimensond over Fandif T1 A(V) isright invertible, thenit isinvertible.
Proof : Let TU =1, if T weresngular therewouldbeon St 9 suchthat ST =0.
However 0 =(ST)U =S(TU) =9 =St 0 acontradiction. Thus T isregular.

i.e Tisinvetible

Theorem : If Visfinite-dimensond over Fthen T A(Vv) issngulerif andonly if $ avi 0 inV
suchthet T (v) = 0.
Proof : Weknow T issngular if and only if thereisan S1 Q inA (V) suchtha ST =TS=0.
Since St O thereisandement wi Vv suchthat S(w): 0.
Let v=5(w) then T(v) =T(S(w)) = (TS) (w)
=0(w)=0
We produced anon-zero vector v in'V which isannihilated by T.
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Conversdy, if T (v) =0 with v Q.
Let $ of ST A(V), v=S(w) forsome wi V.
\ 0=T(S(w))=TS(W) b TS=0

\ T isdgngular,i.e Tisnotinvertible.

Definition : If TT A(V), thentherangeof T, T (V) isdefine by

T (V) ={v|vi V}.

Theorem : If Visfinitedimensond over Fthen TT A(V) isreguler if and only if T mgpsV onto V..
V isfinite dimensiond vector space over F.
Proof : Let TT A(V) isregular. For vi Vv wehaveT(T'l(v)) =v.
\ T(v)=Vv andhenceT isonto.
Converdy suppose T is onto.
Suppose that T is not regular.
\ T issingular thenthereexistsavector v, * 0 inV suchthat T (v,) =0, -\ 1 0.
We can extend to form abasisfor V as v, v,,..., , . Then every dement in T(V) isalinear
combingtion of the dlements w =T (Vv,) W =T (V,)...w, =T (V).

Therefore dimT (V) £n- 1 <n =dimV - Butthen T (V) must be different fromV.i.e T is
not onto a contradiction hence T must be regular.

Definition : If V isfinitedimensond over F, thentherank of T isthedimensonof T (V), therange of
T over F.

We denote rank of T by r (T).

Note:
1) If v (T) =dimV , then T isregular.
2) If r(T)=0 thenT=0andso T issngular.
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Lemma: If V isfinite dimendond over Fthenfor ST1 A(V).

1)
2)
3)
Proof :

1)

2)

3)

r(sT)£r(T)
F(TS) £1(T) (o r (ST) £ min{r(T),r(S)})

r (ST) =r(TS) =r (T) for Sregular in A (V).

Since S(v) <V \ (MS)(V)=T(S(V))£T (V)

\ dim(TS(V)) £dimT (V) i.e r (TS) <r (T)

Supposethet ¢ (T)=m,\ T(v) hesabassof mdements w....w,,.

Butthe S(T (V)) isspanned by S(w;), S(Ws),...., S(w, ).

Hence has dimension a& most m.

Since r (ST) =dim ((ST)(V)) =dim(S(T (V))) Em=dimT (V) =r (T)

If Sisinvertiblethen s(v) =V .

\ TS(V) =T (S(V)) =T (V)

\ r(ST)=dim((TS)(V)) =dim(T (V)) =r (T)

On the other hand if T (V) has w...w,, as a basis the regularity of S implies that

....... S(wy,) arelinearly independent.

Thereforefor a,...a,1 F, a;S(w)+....+a,S(w,) =0

S(aw )+ ...+ S(a,wy,) =0 - Sislinear.

P S(aw +...+aWy,) =0 multiply by S' on left.
aw+..+a,w,=0 -+ S isregular.

b a; =a, =..=a, =0 \' W....w,, basisof T (V)

and it spans (ST) (V) they fomabassof sr(Vv).
Butthen r (ST) =dim (ST (V)) =dim(T(V))=r(T)




Corollary : If TT A(v) adif ST A(V) isregular then
r(T)=r(srs?)

Proof : By 3above r(s*)=r (TS ) =r(T)

\ r(sts ) =r(s(rsy) =r((TsY) 8) =1 (T)

Example: LetV andw be vector space over thefield F and let T be alinear transformation from V
intow. If T isinvertible then the inverse function T-1 isalinear transformation from w onto V.

Solution : When T is one-one and onto, there is a uniquely determined inverse function T-1 which
mapsw and V. such that T-1T identity on V and TT~1 identity on W.

Claim: T-lislineari.e toshowfora,bT F, w,w,T W.
T (aw, +bw,)=aT *(w) +bT *(w,)
Now let wi, w, T W,\ $v,v,1 V suchthat T (v,) =w, T(V,) =w,.
e v =Tw)adv,=T"(w)
T(avw+bv,)=aT(v) +bT(v,)=aw+bw,

\ T Haw, +bw, ) =T gl (av, +bv,)g=av, +bw, =aT *(w)+bT *(w,)

Characteristics Roots
V will dways denote afinite dimensiond vector space over afidd F.

Definition: If TT A(V) then | T F iscaled acharacteristicroot (or eigenvaue) of Tif | | - T is
sngular.

Theorem: Thedement | T F isacharacteristicrootof T A(v) if andonly if for some vt Qin
ViT(v)=1(v)-
Proof : If | isacharacterigticroot of T then | - T issngula.

Weknow “If V-F.D.V.S. over Fthen T] A(V) issngular if and only if thereexistsa vt 0
inV suchthat T (v)=0."
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\ Thereisavector y1 Q inV suchthat (| - T)(v)=0.
Pl (v)-T(v)=0p T(v)=Iv
Conversdy, let T (v) =| v forsome v1 Q inV.

\lv-T(v)=01e (I -T)(v)=0 by (*) must besingular and s0 | is a characteristics
root of T.

Lemma: If | | F isachaacteristicroot of T{ A(V), then for any polynomid q(x)T F[x],
q(l ) isa characterigtic root of q(T).

Proof : Supposethat | | F isa characteristics root of T, by above theorem there is a non-zero
vector vinV suchthat Tv=1 v.

Now apply T on both side, we have
T2(W=T0 W)=TUV)=1TWV)=I?%
Continuing thisway, weobtain Tk (yv)=| ky " postiveintegersk.
If q(x)=ayx™+...+a,,, a;1 F then q(T)=a T™+...+a,, applyonv.
q(M) (W) =(agT™+a,T™ + +a,,)(v) =a,T™(V) +...+a,v
=(ag ™+a) ™1+..+a,)v=q()v

Thus (q(1 )- q(T))(v) = 0 henceby abovetheorem q(I ) isacharacteristicroot of q(T).

Theorem: If | T F isacharacteristicrootof T1 A(V) then | isaroot of theminima polynomia
of T. In paticular T only has afinite number of characteridicsrootsin F.

Proof : Let p(x) betheminima polynomia over For T, thus p(T) =0.
If | T F isacharacterigticroot of T, thereisav1 Q inV with T (v) =| v.-

As we know “If | T F is characteristic root of T] A(v) then for any polynomial
q(x)T F[x], q(l) isacharacteristic root of q(T).”

Therefore, we have p(T)(v) = p(l )v but p(T) =0, which impliestha p(l )v=0,
-»v1 0 by property of vector spacewemust have p(l ) =0. Therefore | isarootof p(x).Snce

p( x) has only afinite number of roots (infact log p(x) £ n? where dimV =n?, p(x) hasat most
n? roots) in F, there can only be afinite number of characteristic rots of T in F.
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Lemma: If T,ST A(V) andif Sisregular, then T and 151 havethe same minima polynomid.
Let T,ST A(V) and Sisreguar then we have
(sTsY)’ =sTSiSTS 1 =STITS L= ST%S
(s1s1)’ =sTSISTS ISTS L= STITITS L= ST3S L.
(sts) =sr*s?
Now forany q(x)T F[x], q(sTS?)=(T)S?
\ if g(x) =a, +ax+..+a,,x"
q(stst) =a,+a,STS * +...+a,(sT51)"
=a,+a,STS ' +..+a,ST"S !

=,S'+%, TSt +..+%, T"S?

=S(a,st+a, TS T+, +a,T"S ! .+ S islinear
=S(ao+a1T+...+ame) st .- g lislinear
=x(T) s

In particular if q(T) =0 then q(sTS ) = 0.
Thusif p(x) is the minima polynomid for T then it follows eedily that p(x) is dso the
minimal polynomid for grg-1.

Hence the proof.

Definition : Thedemet 0t v| V iscdled acharacteridtic vector of T. Belonging to the characteridtic
root | T Fif T(v)=1v-

Theorem: If | ,...1 , inFaredigtinct characteristicrootsof T1 A(v) adif v;....v, arecharacteristic
vectorsof T belongingto | ;... |, respectively, then v;....v, arelinearly independent over F.
Proof : If k =1 theresult trividy true.

Therefore one assumethat k > 1




Suppose Vv;...v, are linearly dependent over F then there is a relation of the form

av; +..+a, v, =0 wherea;..a, 1 F andnotdl of them are 0. In dl such relations, there is one
having as few non-zero coefficients as possible.

By auitable renumbering the vectors we can assume this shortest relation to be

by +...+bjv; =0 b;*0..b; 0 e (D)
Weknow that T (v ) =1 ;v; so applying T to equation (1) we obtain

(I,- Il)b2v2+....+(l P ll)ijj =0
Now |- 1,2 0fori>1and b,* O whence (I ;-1 ,)b; 1 0.

But then we have produced ashorter relation than that in (1) between v; ....v, . Thiscontradiction
proves the theorem.

Corollary : If TT A(v) adif dimV =n then T can havea most n distinct characteristic rootsin F.

Proof : Any sat of linearly independent vectorsin V can have a most n ements. Since any et of
digtinct characterigtic roots of T by above theorem gives rise to a corresponding set of linearly
independent characterigtic vectorswhich isa most n.

Corallary : If TT A(V) and dimV =n if andif T hasn distinct characteristic rootsin F then there
isabadsof V over F which condgds of characteristic vectorsof T.

Matrices
Let V bean-dimensiona vector space over Fand let v;....v,, bebasisof V over F.

If TT A(v) then T is determined on any vector as soon as we know its action on a
bedsaof V.

TV, TV,,..., TV, aethedementsof V.
Each of these can be written as alinear combination of v;....v,, unique way.
Thus T (Vi) =a; M +apVs +etangVy, T(V,) =asy +anV, +..tayy,

ST (V) =amy +anoVs + e +a v,
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This system can be written more compactly as
T(Vi):_aaijvj fori=1,.,n

The set of P numbersa;; T F completely discribes T.

Definition : Let V be an n-dimensiond vector space over Fand let v,....v,, beabassof V over F.
If T7 A(Vv) thenthe matrix of T inthe badis v;....v,, wittenasm (T) is

a&y; ap ... a6
(; -
a a ve. Ao
m(T)=¢ 2 ~2 ' T iy
: : N where T (v ) =g a;v,
* i=1
ganl app " Qg y

Example: Let FbeafiddandV bethe st of dl polynomidsin x of degree n—1 or lessover F. On
V let D be defined by

D(bo+byx+...+ by X 1) =b, +2b,x+... Hn-1)b, X" 2

(it is caled differentiation operator)
1) Sowtha DisL.T.on V.

2) Find m (D) w.rt. basis 1, x, x2,..., x™ !

Solution :
1) a,blF, p(x,qg(x)TV
ap(x)+bqg(x)TV
D(a p(x) +bq(x)) =D (ap(x))+D(bq(x))
=D(a)p(x)+aD(p(x))+D(b)q(x)+bD(qg(x))

=aD(p(x))+bD(q(x)) +D(@)=0=D(b)

\ Dislinear trandformation.

GEED)




2)  ThebassforVis1 x, x2,...,x" 1

\ D(w)=D(D=0, D(v,)=D(x)=1=0v, +0v, +....+0v,

I

i Qo
Q
<

D(v) = D(x2) =2x =0y +2v, +0v, +....+0V,
D(v)= D(x-1) =(i- ) x-2 =0V, +.. 4 2V, +(i - DV +0v +...+0v;
D(v,)=D(X™) =(n-1)x"2 =0y, +...+ 2y, ,+(n- Dv, ,+0v,

givesbass

\ m(D) =

O N O O
w O O ©Oo

BOR P B RO

2)  Fnd m(p) forabasis w = X" w, =x" 2. w, =1
Solution : Now D(w;) = D(x™1) =(n- 1) x™2 = 0w +(n- 2)w, + 0w, +...+ Ow,

D(w,) = D(x"2) =(n- 2)x™3= 0w, +0w, +(n- 2) w; +...+ 0w,

D(w) = D(x™ 1) =(n-i)x™ "L = 0w +...+ 0w +(n- i) W,y +OW,, +...#

D(w,)=D(x)=0=0w+....+ 0w,

Ow,

n
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O
S &
~
>
QO 1
N
—_
>S5
'O
N
~
o O
o O
o o
O

\ m(D) =¢: N
0 o 0 00 1.
go 0 0 0 0 0
3) U =L U, =14+X, U3 =1+, U, =1+ X" 1

isit bassfor V over F and what is matrix for D.
Solution : a;u +a,u,+....+au, =0
a,()+a,0+x) +..+a, (1+x"1) =0
b (aj+a,+..+a,)+ax+...+a,x" =0
Thisisalinear combinaion of 1 x, x2,...,x" ! anditisabassfor V..
Therefored! a; =0.
\ up...u, ael.l. andit formsabassof V..
\ D(w)=D(2) =0 =0u, +0u, +....+0u,
D(u,) =D (1+x) =1=1u, +0u, +....+0u,,
D(u;) =D(1+ x?) =2x=2x+2- 2=2(1+x- 1) = 2(u, - u,)

=- Z.jl"' 2U2+0U3+....+0Un

D(u,) =D (1+x" ) =(n- ) x™2 =(n- 1)(u, - u)

=(-n+1u+ O0u,+...+0u_ ,+(n- Du,_,+0u,

20 00 --- 0 05
¢1 00--- 0 0
\mp)=¢ 2 220 00
¢-3 03 --- 0 o
¢ i
Em-noo--- -y G




4) Let T islinear trandformation of V of n-dimensond vector space V and if T has n digtinct
Characteridtic roots then what is the matrix for T.

Solution : Let T islinear transformetiononV and | ;... , bendistinct characteristic roots of T-

Weknow “If TT A(V) and dimV =n andif T hasn digtinct and have ---- rootsin F, then
thereisabassof V over F which conssts of characterigtic vectorsof T.”

Therefore, we can find abasis v, v;,...v, of V over Fsuchthat T (v ) =1 v; .

Inthisbass T has amatrix
@&, 0 0 --- 05
m(T):go l, 0 --- Oj
€o 0 o0 | 5

Note:
?311 b1n9
If wehaveabasisv,....v, of V over Fagivenmatrixg : +,b; ;1 F givesriseto
bnl bnné)
0
alinear tranformation T defined onV by T(Vi) =a b;iV; on thisbasis

1

Thus every possble square away serves as the matrix of some linear transformation in the
basis v;....v,.

LetV isann-dimensiona vector spaceover Fand v; ...V, bebasissupposethat ST1 A(V),
having matrices m(S) =(a;; ), m(T) =(by; ) inthe given basis

Show that the collection of such matrices is an dgebric structure.

S=Tiff s(v)=T(v) foray vi v.

Henceiff S(v;)=T(v) forany v,...v, forming abasisof W.

EquivdlentsS=T if and only if a;; = by; for eachi andj.

I S=T if and only if m(s) =m(T).




Now m(S) :(a”-) and S(v;)=Q ayv; ad T(v,) :én byV;

\ (S+T)(vi) =S(v)+T(v,)=&a;v, +abv, :é(a.. +bij)vj

\ We can explicitly writedownm(s +T) for m(S) =(a;;), m(T) =(by)

Thisis meant by the matrix of linear transformation in a given bass, m(S+T) =(| ij) where
lij =a;; + by for every i and .

Now for gT F show that m(gS) =(m ) when m =ga; for every i andj.

m(gS) = (e ) =(m;)

gS(V|) = gala|JVj = 'é]_(ga” )VJ = S(VI)
]= I=
For m(ST) et ST(%)=S g bV, —ab,JS( i)

n
But S(Vj) = élajkvk

g g8 & 8
\ ST(v)=a byv =a a (bya j)% =¢a a (i )=
j=1 j=l1k=1 ek=1s=1
g
=ab; (ajlv1 +a V) +...+ajnvn)
j=1
iy iy
= a bl]a]lvl +a bua 12V2 +a le Jn
j=1 j=1
:(bila j1+bi2a21 +b|na nl) ""+(bila1n +b|nann)
g g
=a a (bia k)%
k=1j=1

\ m(ST) =(s ) whenforiandj

2y
Sik =a Piajk
j=1
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F, : st of dl nx nmatrices entry from F.

Itisan algebra
(aij) :(bij) two matrix in F, iff a;; = by, »
(3i) +(by ) =(1;) where I =a;; +by , -

ol F,9(a;)=(m)where m =g, -

iandj

iand]

i andj

n
(aij)(bij) :(Sij) whereevery i andj Sij = a by
K=1

Theorem : Theset of al nx nmatrices over F form an associdive dgebra, F, over F. If Visann-
dimensiond vector space over F, then A (V) and F, are isomorphic as agebraover F.

Proof : Let v,V,,...,\,, beabassof Vover F, T]T A(V), T:V®V, m(T) isthe matrix of T
w.rt. thebass v, v,,..., Vi, .

Wedeinemapping f : A(V)® F, asT ® m(T)-

f(T)=m(T),damf iswel defined, 1 - 1, onto

Let STT A(V)
if S=Tthen S(v) =T (v) forevery vi v.
ie S(v)=T(v), v inthebasisof W.
n n
o _ o
iff A aijVj =a bV,
j=1 j=1
iff, aij = bl] , " |md]
ie (ay)=(by)
one-one p m(S)=m(T),f iswel defined.
Al F,, $T1 A(V), f(T)=A,,.
f isonto.

a,bT F,T,S1 A(V),aT+bSl A(V).
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f (aT+bS)=m(@T+bS)=am(T)+bm(S)
(aT +bS)(v) =@T)(v) +(bS)(y) =aT(v) +b (S(v))
:aén a;V, +b§n_ bV, :§ (aa; +bby)y,
j=1 j=1 j=1
f (ST) =f () +f (T) =m(ST) =m(S)m(T)

n
\ ST(vj)=¢ 1gijVJ where Y :alaikbw
j= j=

g g
g; =a a aikbyy;
j=1k=1
\ f ishomomorphic.

Hence f isisomorphic.

Theorem : If V isn-deimensiond over Fandif T A(v) hasthematrix m, (T) inthebasisv;,..., v,
and thematrix m,(T) inthebasis W ,...,w, of V over F. Thenthereisan element C1 F, suchthat

m,(T)=C'm,(T)C.
(Infact, if Sisthelinear transformation of V defined by S(vi) =w, » i=1,..,nthenCcan

be closer to be m; (S))

Proof : Let m (T)=(a;) and m,(T)=(b;)
g g
Thus T (V) =@ @iV ang T(W)=a byw,
j=1 j=1
Let Shethelinear transformation on V defined by S(vi) =W, "' V,...,V, arebassof V over
F.SmapsV onto V.
Weknow “ If V isfinite dimensiond over Fthen T1 A(V) isreguler iff T mgpsV onto V..”
\ Sisregular if Sisinvetiblein A (V).
g
Now T (W) :qlb”-wj \ w =S(v) on subtituting this in the expression for T (w) we
J_
obtain
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aan 0
=1 [}

\ Sisinvetiblethisfurther Implifiesto
s(Ts(v))=s's(& byV;)

p (sTs)(v) =4 byv,

\ by the definition of the matrix of linear transformation in the given bags,

m (s7s) =(b; ) =m,(T)

However themapping T ® m, (T) isanisomorphic of A (V) onto ..

\m(s1s)=m(s)m @ m(s)=(m (s 9)m @) m(s)

\ my(T)=m (S ) m (T) m(S) whichisexadtly what is daimed in the theorem.,

A B
6 1uél 10_é 20

& -1 1 & of

Example1:

z 1 2\
(AB-BA=5 = 4
e0 1o

7 1 2\ 7 1 2\ /1 O\
(oo =E 2T 28l
&0 1380 1§ & 1

z 2 6\
(AB-BA)=3 - i
&2 24

/2 6\/2 6\ r8 O\
&2 20862 25 80 -8
él Ou

:(-8)8) 18
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PROBLEMS:

1.

Provethat S A(V) isregular if and only if whenever Vi, V1V are linearly
independent, then S(v;),S(V,) ..., S(v,) are aso linearly independent.
Provethat T A(V) iscompletely determined by its vaues on abassof V..

Prove that the minima polynomid of R over F divides dl polynomias satidfied by T over F.

If V istwo-dimensiond over afied F provethat every dement in A (V) satisfiesapolynomid
of degree 2 over F.

ad 1 06
: . A=%0 o0 11 F . _
Prove that give the matrix é : (where the characterigtic of F is not 2),
6 -11 64

then
@  A-6A2+11A-6=0
(b)  Thereexigsamatrix CI F, such that

d 0 05
CAC''=%0 2 o

éoosg

If Fis of characterigtic 2, prove that if F, it is possble to find matrices A, B such that
AB-BA =1

L OO
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UNIT - Il

CANONICAL FORMS

1)  Triangular Form
Definition :

Thelinear tranformations S T1 A(V) aresadtobesmilarif thereexigsaninvertibledement
Cl A(V) suchthat T =csc L.

Definition :
Thereation on A (V) defined by smilarity isan equivaence reaion, the equiva ence class of
an dement will be cdled its Smilarity dass

Note:

To check the two linear transformations are Smilar or not is difficult. Therefore, we can use
smilarity class which matrix in some basis. These matrices will be cdled the Canonicad Forms.

Definition :

The subspace W of V isinvarient under T1 A(V) if T(W)1 W-

Lemma:

\%
If Wi V isinvarient under T, then T induces a linear transformation T on W defined by

T (v+W) =T (v) +W . If T sttifiesthe polynomiad q(x)T F[x] then sodoes T.If p;(x) isthe
minimal polynomid for T over Fandif p(x) isthat for T then p, ()| p(x).
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=V
Proof : Let W] V isinveiant under T. T islinear transformation and V =W be vector spacewhich

containthedementas v =v+W for vi V.

Define, T (v) =T (v) +W

Clam T iswel defined and linear transform

Vi +W =W, V, =7, W for vy, v, 1 V dam T (%) =T(v,).

\ vy AW =, HWP (V- )+ W =0P V- w1 W

T(v-v,)TW \  Wisinvarient under T.

VT (V) -T(w)TW=T(w)+W=T(w)+W

P T(v)=T(%), hence T iswell defined.

a,bl F,ay+bv,iV for q,v,1 V.

\ ?(avl+b\72):?(m)=T(av1+bv2)+W
=(aT(vw) +bT(v,))+W=aT (v) +W+bT (v,) +W
=a g7 (v )+Wg+ bgr (v,) +Wg=aT (%) +bT (V)

Hence, T islinear.

Nowif 7 =y +WT Vv then T2(v) =T2(v) +W =T (T(v)) +W

2

(V)

Thus T2 = 2. Smilaly (Tk) = (T)* forany k2 0 - (1)

b T2(v) =T (T (v)+ W) =T(T(v+wW)) =(T)

Consequently, for any polynomid q(x)T F[x], q(T) =q(T).

-+ for gq(x) =a, +a,;x+....+ax

\ q(T)=a,+aT+..+a,T"

b q(T) =a, +a,T +....+anTm) =a,+a,T +...+a,T™

= n
=apta,T+...+a,T sa; 1 F

—a,+a,T+..+a,(T) =q(T) (D)




Forany q(x)T F[x] with q(T)=0 .+ 0 isthezerotransformationon y; .
0=q(T) =q(T) e (2)
Let p,(x) betheminima polynomia over F satisfied by T .

If q(T) =0 for q(x)T F[x] then p,(x)]q(x) .. (3
If p(x) istheminima polynomid for T over Fthen p(T) =0.

\ p(T)=0 by (2)
P p (x| p(x) by (3)
Hence proof.

Theorem :

If T1 A(v) hasdl itscharactristicsrootsin F, then thereisabasis of V inwhich the matrix of
T istriangular.

Proof :
We prove this theorem by using induction on the dimensons of V over F.
If dimV =1 then every dement in A (V) isascdar and dso the theorem is true here.

Suppose that the theorem istrue for dl vectr spaces over F of dimension n—1 and let V be of
dimenson nover F.

Thelinear trandformation T on V hasall itscharacterigticrootsinFlet | ; T F beacharacterigtic
root of T. There exists anon-zero vector v, inV suchthat T (v;) =1 1\
LeW={av,|al F}; W isaonedimensiona subspace of V and isinvarient under T.
Let vy =y /w Weknow “If V isfinitedimensiona vector space and W be subspace of V then
dmy =dimV - dimw "
\ dimV =dimV - dimW=n-1

Alsoweknow ‘If W] V isinvariant under T then T induces alinear transformation T on
V/W defined by

T (v+W) =T (v) +W

Also, we know that, If T sttifiesthe polynomia q(x)T F[x] thensodoes T.If p;(x) is
the minimd polynomid for T over Fandif p(x) isthat for T then p, (x)| p(x)”
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T induces a linear transformation T on y/ whose minima polynomia over F divides the
minima polynomid of T over F.

Thusdl theroots of the minima polynomid of T, being roots of the minima polynomid of T,
mud liein k.

Thelinear trandformation T initsactionon \/ satisfies the hypothesis of the theorem.

Snce \/ is(n-1) dimensond over F, by our induction hypothesisthereisabess v,,..., V,, of

over F such that

(V) =a, %, T (V) =asV, +axnvs......

|

T(V):ai272+ai3\73+ ..... +aii\7i ..... T(Vn):an2\72+an3v3+ _____ +annvn

Let v,,Vs,...,V, bedementsof V mapping into V..., V;, respectively.
Then v, V,,....,V,, foomabessof V.

[ V,...,V, beabass if they are lineary independent and v, \;,....,V,, maps into these
elementry \ V,,v;,....,V, linearly independent. Therefore we have if vy, V,,....,V, linearly
independent then Tv;,Tv,,....,Tv,, linearly independent Now let wv,V,,....,V, and

ay,...,a,l F suchthata,v, +...+a.Vv, =0.i.e. a; =0 thethislinearly independent we are throw
if not then v :-al'l(azvz +....+anvn) P v is the Ilinear combination of
T(v) =V =-a;"(a,% +...+aV,)T W acontradiction to W isinvariant under T and dimW = 1]
Snce T(V,) =a,V, P T(W)- an®h =0P T(v,)- ayvi W
Thus T (V,) - @V, isamultiplecf v, say a,,v; Yidding, after transforming
T(v2) =a,vi +axv,
Smildry, TV, - a;,\, - @jgV5.....a ;i 1 W
\ T(v)-agvy+a\ +..ta;y,

The basis V;,....,V,, of V over F provides us with a basis where every T (v;) is a linear

combination of v; and its precedessorsin the basis. Therefore the matrix of T inthebassistriangular.
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Theorem:

If V is n-dimensiond over Fand if T7 A(v) hes dl its characterigtic roots in F, then T
satisfies apolynomia of degree n over F.

Proof : By previous theorem we can find abass v;,...., v, of V over F such that
T(v) =1, T(V) =asvi+l oV, . T(V) =apv +ai Vo +.+ayy, fori=1,2,..,n
Equivdenty (T-1,)v,=0, (T-1,)v, =a, ¥...
(T-1)v=a+..+aj v, fori=1,2, ..,n
Now (T-1,)(T-1,)(vo)=(T-11)(asvi)=a,(T-1,)y=0
dso (T-1)(T-1,)=(T-1,)(T-1,)
Continuing this type of computation yields.
(T-1)(T-15) (T 1)w=0, (T-1)(T-1,).(T-1;)v, =0
e T=1)(T-15)e(T- 1), =0 fori=n
Thematrix S=(T-1,)(T- 1)1 ..(T- I ,) stifies S(v,) =S(v,) =....=S(v,) =0.

Then, Snce Sannihilatesabassof V, Smus annihilatedl of V. Therefore S= 0. Consequently
T stisfiesthe polynomia (x- 11)(x- 1 ,)....(x- 1) inF[x] of degree n proves the theorem.

2)  Nilpotent Transformations
Lemma:

If V=\,AV,A ...AV, whereeach subspaceV; isof dimenson n, andisinvariant under T,
an dement of A (V), then abassof V can be found so that the matrix of T in thisbassis of the form

&A.L o -.. 0(':')
¢ N
0 A 0l
G: -
g0 0 - Aj

whereeach A isan n,” n; matrix and isthe matrix of the linear transformation induced by T on V.
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Chooseabasisof V asfollows: Vl(l),V(l),----,Vr(;) isabassof V, V{Z),V(Z),----,Vfé) isabads
of V, andsoon... ¥, " ,.... v isabasisof V,. Sinceeach V; isinvariant under T.
T(vj(i))f V; soisalinear combination of V(i),V(i).----,Vﬂ) and only these. Thusthe matrix of

T inthebasisso chosenisof thedesired form. That each A isthematrix of T, , thelinear transformation
inducedon V; by T isdear from the very definition of the matrix of alinear transformetion.

Lemma:

If T1 A(v) isnilpotent,thena, +a,T +....+a T ",whenthea; T F isinvetibleifa, * 0.

Proof :
If Sisnilpotentand a, * 0T F asimple computation shows that
el S st
(@g+S)g—- —5+—z+..+(-1)' 2 =1 g g =0
do Ag Qg 0@ a
Nowif Tr =g, S=a,T+a,T?+...+a,T™ dsomus satisfy § =0.
S" =(a,T +a,T? +....+ame)r =0 T'=0
Thusforay® O inF, ay+ S isinvetible.
Definition :
If T7 A(V) isnilpotent then k iscaled index of nilpotent of T if Tk =g but Tk-11 q.
Theorem :

If T1 A(V) isnilpotent of index of nilpotence n; then abasisof V can be found such that
the matrix of T in this bads has of the form

am, O o]
go M, -
¢ . -
¢ -
80 0 MWB

wheren; 3 n, 3 .....3 n, andwhere n +n, +.....+n, =dimV..
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Proof : T1 A(V) isnilpotent with index of nilpotence n,.
\ Th=phbut Tt g
We can find avector vi v suchtha 711 (.

Let v, T (v),T2(Vv),..... T (v) be n, vectorswe dam that these are linearly independent

over F.

Suppose that these are linearly dependent i.e. there are scaars @3,25,....,8 1 F notal
zero such that

ayv+a,T (v)+....+aniT”l'1(v) =0
Let a¢ bethefirst non-zero scdar, hence
Ts'l(as +a g T +....+aanrh's)(v) =0
Weknow “If TT A(V) isnilpotentthena, +a,T +....+a T ™ whenthea; T F isinvertible
ifa,t 0"
\ ag! Owehavea +ag,T+..+a,T" * isinvertible, and therefore T (v) 1 0.

Thusnosuchnon-zeroa ¢ exigsand v, T (v), T2(v),.... T 1(v) Linearly independent over

Let V; bethe subspace of V spanned by v, =V, v, =T (V),...., v, =T (V).

\ 'V isinvariant under T and havebagis Vi, Va,...., Vi, , T canbeinducesthelinear transformetion
of V;. The matrix representation of T, w.r.t. the above basisis M, .

So far we have produced the upper |eft-hand corner of the matrix of the theorem.

Now n, £n,\ T"21 g for gt n, (if np = n, then do above process)

Wecanfind yi v suchthat T2 (y)1 0.

\ dam, u, T (u),....,T ™1 (u) linearly independent and spans V,, subspaceof V and V, is
invariant under T. Therefore T induce alinear map on V., whose matrix representation is M, and so
on.

Smilarly we can find other.
We can get basisfor V and the matrix representation of the required form.
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Lemma:
If ugT V; issuchthat T % (y) =0 when 0<K £ n; then | = TX(y) for some u, T V.
Proof : Since ui Vv,

U=a1V+a2T(v)+....+aka'1(v)+ak+1Tk(v)+....+arhT“r1(V)
Thus 0=T"*(u)=a, T " (v)+...+a, T* (V)
However Tk (v) ..., T (v) arelinearly independent over F
Whence a, =a., = .. =2y =0 a0 U=a,, (V) ..+, T (1) =T )

When Up =&,V +...+a, T (V)T V. Hence the proof.

Lemma:
There exigts asubspace W of V, invariant under T, suchthat V = A W.

Proof :
Let W be a subspace of V of largest possible dimension such that

1) v,Nw =(0) (2) W isinvariant under T.

Firsg weshow that V =V, +W..

Suppose nat, then there exist an dement z] v suchthat zI V +W.

Since T = (, there exigts an integer k, 0 <k < n, such that T¥(z)T Vv, +W and such that

T (2T v, +W fori<k.

Thus TK(2) =y+w When ul V; and where wi W . But then
0=T(D =T (T¥(2) =T ¥ (u) +T™ " (w)

However, since both V; and W areinvariant under T, T (u)T v, and Tk (w) w -

Now since V; "W =(0) thisleadsto
Tk (u)=- T (w)\,NW=(0) b T"k(u)=0

Weknow “If ul \, isnsuch that Tk = where 0<k £n, then u=Tkuy, for some

UoT V.
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We have T* (uy) = u for some up1 V.

Therefore T¥(2) =u +w=T*u, +w

Let z = z- Uy then T*(z) =T*(2) - T* (up) =wi W and since W isinvariant under T
thisyidds T™(z)T W fordl ms k.

Ontheother handifi <k, T'(z)=T'(2)- T'(uy)T V, +W for otherwise Ti (z) mugt fall
in V; +W comtradicting the choice of k.

Let W, be the subspace of V spanned by W and z,Tz,...., Tz, - z1 W and since

W1 W, thedimension of W must belarger than that of W, moreover, since T* (z )T W and since
W isinvariant under T, W must be invariant under T.

By the maxima nature of W, there must be an dements of the form
Wy +a,z +a,T(z)+...+a, T (z)t 0T W NV,

Where w1 W. Not al of aj,..,a, can be 0, otherwise we would have
0t w1 WNV, =(0), acontradiction.

Let a¢ bethefirst non-zero a, then wy, +T5'1(as+as+1T +...+aka‘S)(zl)T \;.

Sncea ! 0P ag+ag,T+...+a,TK S isinvetible and itsinverse say R is a polynomial
inT.

ThusW and V; areinvariant under R.

However from the bove R(w )+ T (z)T R(V, )T V,

Forcing T5!(z)T V,+R(W)1 V,+W since s- 1<k this is impossible, therefore
V =V, +W and Because V; "W =(0), V = A W.

Hence the proof.

Problem: Let V =\{A W where W isinvariant under T when we can find a basis of V, so that

am, 00
meatrix representation of T in thisbasisis of the form g 0 Af'
2
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Definition : Theintegers ny,n,,.....,n, arecdled theinvariants of T.

Definition: If TT A(Vv) isnilpotent the subspace M of V, if dimenson mwhichisinvariant under T,
iscaled cyclicwith respect to T if

) T1™(M)=(0), T™*(M)2 (0)

2) Thereisandement 2] v suchthat z,T(z),.....T™1(z) form abasisof M.

Lemma: If M of dimengonm, iscyclic with respect to T, then the dimension of Tk () ism—k for
dl kEm.

Proof : Let M of dimension miscydicw.rt. T consider 2, T(2),T2(2),....T ™*(z) bebasisof M.
\ T(2),T*Y(2) T*?(2),... T™ (DT T* (M) (bebasisof | )
ButMiscydicwrt. Tie T™(m)=0ie TM(z)=pad T™1(2)1 o
\ TH(2), T¥(2),..., T™ 1(2) bebasisof Tk ().

Thereforem—k elements\ dim (T (M )) ism—k, " k £m.

Example: Foranilpotent T inA (V). Findintegersn, 3 n, 3 .....3 n, and subspacesV,,V,,,....,V, of
V cydlic with respect to T and of dimensions n;,n,,.....,n, respectively suchthat V =V, A ...A V.
Show that these are unique integers.

Solution : Let T A(V) isnilpotent, we suppose index of nilpotent n;.

\ Th=padTw!1 g

Thenvi v, v,T(V),T?(v),.... Tt (v) isLinearly independent set in V form a subspace
of V generated by these dement say V, and dim V, = n,.

Notlet ui v and ul V, and n, £n, beinteger\ T™ 11 .

And u, T (u),T2(u),...., T"2 1 (u) is linearly independent set form a subspace V, of V
generated by these eements.

Continue this process until we cover V.
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Suppose & the last we get V,,V,,....,V, be subspace each invariant under T and
ViNV; =(0), "itj and V=V, +V,+...+V,P V=V A AV,
Now we shows these integer are unique.

Suppose there are other integers m; 2 m,3 ....8 m, and subspace U, ,....,U of V cydic
w.rt. to T and of dimensions m,...., m respectively suchthat V =U; A ....AU,.

Claim :
s=rand m =n,..m =n,
Suppose that this were not the case then there is afirst integer i such that m * n, we may

assumethat m <n.
Consider Tmy , thereforefor V =V, A ....AV. wehave
TV =T VA AT, \ dmT™V, =n.m,j=1...r
Therefore above
\ dim(T™V) (n-m)+(p - m)+.... #(n - m) e (D)
andfor V=U; A ... AU andsince T (U;) =(0) for j 3 i
\ TM(V)=T"U,AT"U, A .. AT"U, ,
Ths  dimT™ (V) =(m- m)+(m- m)+...+(m.,- m)

=(n-m)+(nz-m)+..4(ny-m) wnp =m; forj<i
Contradict to the equation (1) - n,- m >0 thus there is unique set of integers
n3n,3...3n suchthaV=V,A..AV.
Equivdently we have shown that the invariants of T are unique.

Theorem : Two nilpotent linear transformation are smilar if and only if they have the same invariants.

Proof : The above Example has proved that if the two nilpotent linear transformations have different
invariants, then they cannot be smilar for their respective matrices.
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cannot be amilar.

Mm 5

Weknow theresult “If T A(V) isnilpotent of index of nilpotent n, then basis of V can be
aM

o

¢ . N
found such that thematrix of T inthisbasishasof theform & ' Twhenng ®.....3 n and
2

n+n +....+n =dimVv
Thereforetherearebasis v, vs,....v,, and wW,.....w,, of V suchthat thematrix of Sin v;,.....v,
aM

¢
adthatof Tin w,.....,w, areeach equa to &

Q- ol O

Mp,

But of A isthe linear tranformation defined onV by A(v;) =w then 5= aTA"1 (Prove).

Hence Sand T are amiilar.

a® 1 16
Example: Let m(T)=%0 0 0.1 F,.Find Smilar matrix. T act on £@).
0 0 Oy
i.ee Aind A suchthat ATA'L = S.
Basisof @ isu, =(1,0,0), u, =(0,1,0), u; =(0,0,1)

Let vi =uy, v, =T (Uy) = U, +Us, V5 =Us

w.rt. thisbass
& 0 0y ¢l 0 Oud 1 lgel O 0Od
P p -1 u u u
A=% 1 10 and ATAT=E0 1 1950 0 o@go 0 0
0 0 1§ B0 0O 1§80 O O 1 1§

@)




A Decomposition of V : Jordan Form
Example: LetV befinite dimensond vector spaceover F, T A(V), V subspace of V invariant
under T. T induces alinear transformation T, onV, defined by T, (u) =T (u) for every ul V. Show
thet for any polynomia q(x)T F[x], thelinear transformation induced by q(T) onV, isprecissly
q(T,) . In particular g(T) = 0 then q(T,) =0.

Let V befinite dimensond vector spaceover F. T A(V). M [V invariant under T.

Therefore T induces a linear transformation T; on V; defined by T, (u) =T (u) for every
ul V.

Let q(x)T F[x] beany polynomia such that q(T) = 0.
p(x) minimd polynomid for T and p, (x) isminimd for T.

p(x) [q(x) weknow that p,(x) | p(x)=p (x)[a(x) P q(T,)=0

Lemma: Supposethat V =V, AV, whereV, and V,, are subspaces of V, invariant under T. Let T,
and T, bethelinear transformationsinduced by T on 'V, and V,, respectively. If the minima polynomid
of T, over Fis p, (x) whilethat of T, is p, (x), thenthe minimal polynomial for T over Fisthe least

common multipleof p; (x) and p, (x).

Proof : If p(x) istheminimal polynomial for T over F, aswe know above exampleboth p(T,) and
p(T,) are zero, whence p,(x)| p(x) and p, (x)| p(x). But then the least common muitiple of
p,(x) and p, (x) must dso divide p(x).

On the other hand if q(x) is the least common multiple of p, (x) and p, (x), consider
q(T). For u TV, snce p,(x)|q(x)
a(T)(v;) =a(T)(w) =0 smilaty for v,T Vv,

a(T)(v,) =q(T,)(v,) =0 Givenay ui Vv, v can be written as cosq = (v, +v,) when

vl Vy, v, 1V, inconsequence of which
q(M)(v) =q(T)(w +v,) =a(T) (v) +aq(T)(v) =0
Thusq(T) =0 and T satisfies q(x). \ p(x)|q(x).

P p(x)=q(x)




Corallary :

If V=V,A ...AV, whereeach V, isinvariant under K and T if p, (x) isthe minima
polynomid over Fof T, the linear transformation induced by T on V; then minima polynomid of T
over Fisleast common multipleof p; (x), p,(x),..., p (x) .

Theorem :

Foreachi=1,2,..K, V1 (0) andV =V, AV, A...AV,.
Theminimal polynomid of T, is g, (x) .

Proof : We prove thisresult usng induction on k.

If k=1the V =V, and thereis nothing that needs proving suppoose then that k > 1 and
p(x) =gy (x) g2 (X).......q< ()

We firgt want to prove that each V; ¢ (0) . We introduce the k polynomias
h (%) =, (x) 2 ...0, ()

hy () =g (%) g5 (X)2....q (X)'

h(x):éqj(x)“
it j

he () =g ()™ ..., ()<
Sincek > 1, h (x)= p(x) whence h (T)* 0, thus giveni, thereisa vi v such that
w=h (T)v? 0.But
g (M) (W) =g M"(h(T)v)=pT)v) =0
In consequence w Q isin V; andso V;  (0). Infact, we have shownthat h (T)V t O is
inV; andif v; TV for j 2 i since g; (x)7 | (x).

h(T)(v;)=0
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The polynomias h, (x), b, (x),....,h, (x) arerdatively prime.

We know that “taken two polynomids f (x), g(x) in F[x] they have agrestest common
divisor g (x) which canberedizedas d (x) =1 (x) f (x) +m(x) g(x).”

We can find polynomias a(x),a(x),....a,(x) in F[x] such that
a () () +....+a (x)h (x) =1.

Fromthiswe get a, (T) h (T) +....+a, (T) h (T) =1 whence, given vi Vv,
v=vx=(a (T))h (T)+...+a, (T) h (T)(v)
=a, (M) h(T)(V) +...+a, (T) (T (v)

Now, each a, (T) h (v) isin h (T )V and sincewe have shown abovethat by (T)V 1 V, ,we
have now exhibited v as v =\, +....+v, wheneach v, = g (T)h (T)(v) isin V.

ThusV, =V, +V, +....+V,.

We must now verify thet this sum is adirect sum. To show this, it is enough to prove thet if
U +U, +.... +u, =0 witheach u; =0. So supposethat u; +u, +.... +u, =0 and that some u; say

U, isnot 0 apply hy (T) weobtan hy (T)(u)+....+h(T)(u) =0.

However by (T)(v;)=0for j 1 i since u;T V;, the equation reduced to h, (T)(y) =0.
But ¢, (T)" (u;) =0 and since h (x) and q; (x) arerdatively primewe areled to u; =0 whichis
of course in consistent with assumption that u; * O.

PV =\ A, A.. AV,
Now prove that the minimal polynomial of T, on V; is g, (T)" .

By definiion of V;, since g (T)"Vv, =0, g ('I'i)[i = 0 whence the minima equation of T,
must be divisor of g, () thusof theformg, (x)" with f; £ ¢; . By “Corollary above’.

Theminimal polynomid of T over Fisthelesst common muitipleof ¢ (x) " |....,q, (x)' ad
somustbe g (x) " ..., q, (x)' . Since this minimal polynomid isin fact g (x)" .....,q, (x)'* we
must havethat, f; 3 ¢;,...., fy3 4P 4= f fori=1,2 ..., kandso g (x)"i isminima polynomial
for T..

Hence the proof.




Note: If dl the characterigtic roots of T should happen to liein F, then the minima polynomid of T
takes on the especially nice form q(x) =(x- | 1)[1....(x- I I()[k where | ,....,| , aethe digtinct

characteridtic roots of T. Theirreduciblefactors g (x) are x- | ;. Noethaton V;, T; hasonly |; as

acharacteristic root.

Corallary :

If al the digtinct characterigtic roots | ,....,I , of T lie in F, then V can be written as

root |, onV,.

Note:
V=V, A _...AV, if dimV, =n then we can find a basis of V such that in this basis the

& 0
matrixofTisoftheformg " ;Whereeach A isan n;” n; matrix and isin fact the
: A
matrix of T,.
® 10 .- 0 06
| go 01 : : _m.
Notation G: 0 1~
go 0 O:Eh'n

& 1 0 - 0p
91 1 .. 07
¢.
C:
Definition : Thematrix GO
éo 0 0 - Ig

and 0's elsewhere is abasic Jordan block belongingto | .
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Theorem: Let TT A, (V) haveal itsdistinctroots, | ;,....,|  inF. Thenabasisof V can befundin

) 0 a8, 6
g Jo - ¢ B

which the matrix T is of the form c - whereeach J; :g 12 ) ~ad
: 3 g 8

where B,,....Br, arebasic Jordan blocksbelongingto | ;.

Proof : Notethat an m” m basic Jordan block belongingto | ismerdy | + M ,,, where,

@® 10 - 0 05
001 - 00
Mm:gf -
0 00 - 0 1]
& 0 0 - 0 Of, .

Weknow that “If V =\, AV, A..... AV, where each subspace V, isof dmendon n, andis
invariant under T, an dement of A (V), then abags of V can be found s0 that the matrix of T in this

&Ai o ... 06
go A, - O
basisisof theform € : .
80 0 - A

Whereeach A isan n;” n, matrix and isthe matrix of thelinear transformation induced by T

onV,.”

Alsoweknow thet “If dl the distinct characteristicroots | ;,....,1  of T lieinF, thenV canbe

one charactristicroot, |, on V,.”

Therefore, we can reduceto the casewhen T hasonly one characteristicroot | , thatisT - |
is nilpotent.
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ThusT =| +(T-1) andsinceT - | isnilpotent, thereisabasisin whichits matrix isof the

aM,, 06
v . -
form ¢ : -
&0 M 5

Therefore, “If TT A(V) isnilpotent of index of nilpotence n,, then abasis of V can be found

aé/ln1 O - 066
g -
¢ 0 an e 0 :
suchthatthematrixofTinthisbasishastheformg : :
00 My

Wheren 3 n, 3 ...3npandng+n, +.....+n, =dimV.

But then the matrix of T of the form

iy S am, 6 aB, 6
¢ | 2 ¢ *_¢ +

. - 9 __9 -
(; . i . -
g B My p & B

Using the first remark made in this proof about the relation of a basic Jordan block and the
M., swe have the required.

Example:
&2 5 1 0O
é U
A:é-z 4 1 Ou
1) &1 2 1 0d
é U
&1 2 0 13
Find Jordan form

Solution : The characteristic equation is (x - 1)*.
rankof A-]1]is2
Therefore, geometric multiplicity of equation is 2.
Hence there are two Jordan blocks.
of theform dia(J,(1), J,(1)) or diag(J5(L), (D))
(D)




Theminima polynomid is (- 1)°

Therefore Jordan form diag (J5(1), J; (D)

Example: Let T] A(v) ad E[x] ring of polynomidsin x over F and define for any f (x) in
E[x], vi V, f(x)v=1f(T)v.Provetha V isamoduleover F[x].

[LeeRring M 1 f issadtobean R-moduleif M isan abelian group under operation t such
that ri{ R and mi M there exists an element mi M subject to (i) r(a+b) =ra+rb

(i) r(sa) =(rS)a (i) (r+S)a=ra+Sa, "abl M andr,SI R]

Example: F[x] isaEudiadenring. V isfinitely generated module are [ x] -

V isthe direct sum of afinite number of cydlic subv modules.

(On R-module M is said to befinitely generated if there exigsdement &....a,1 M suchthat
every mi M isof thefom m=Ta +....+T,a,.

M-cydlicif thereisan dement my1 M suchthat every mi M isof theform m=am, for
al R.

Problems:
el 1 1p¢
(;_ _ _ -
1. Prove that the matrix é 1-1 1% is nilpotent, and find its invariants and Jordan form.
1 1 0g4

2. Find dl possble Jordan formsfor al 8 8 matriceshaving x? (x - 1)3 asminimd polynomid.

3. If the multiplicity of each characterigticroot of T is 1, and if dl the characteridtic rootsof T are
inF, provethat T isdiagondizable over F.

HENRN
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UNIT - IV

HERMITIAN, UNITARY AND NORMAL TRANSFORMATIONS

Fact-1

A polynomid with coefficients which are complex humbers has dl its roots in the complex
fidd.

Fact - 2

The only irreducible, noncongtant, polynomids over the fidd of rea numbers are ether of
degree 1 or of degree 2.

Lemma:

If T1 A(v) issuchtha (T(v),u)=0 foral vi v ,then T=0.

Proof :
Since (T(v),v) =0 for vi v, given u,wi V.
(T(u+w),u+w)=0
Expansing thisand use (T (u),u) =0, (T(w),w) =0, weobtain
(TW+T(W,u+w)=0
(T (u),u)+ (T (u),w) +(T(wW),u) {T(W,w) =0
\ (T(w,w)+(T(w),u) =0 foral u,wi Vv - (1)

Since equation (1) holds for arbitrary w in V, it dill must hold if we replace in it w by iw
wherei?=—1.

But (T(u),iw) =-i(T(u),w) whereas (T (iw),u)=i(T(w,u).
Subgtituting these valuesin (1) and canceling i, we have
-(T(U),W)+(T(M,U)=O (2)
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Adding (1) and (2) weget (T(w),u) =0 fordl u,wi V.
Whencein particular (T (w), T (w)) =0.

By the property of inner product space, we must have T (w) =0 fordl wi v henceT =0.

Note: If V isaninner product space over thered fied the lemmamay be fase.

For example, let V ={(a,b) |a, b rea} , whereinner productsisthe dot product. Let T be
linear transformation sending (a,b) into (- b,a ). Thisshowsthat (T (v),v) =0 fordl vi v, Yet
T!O0.

Definition : Thelinear transformation T1 A(V) issaidtobeunitary if (T (u),T (v))=(u,v) forall

uvl V .

Note: A unitary trandormationisonewhich presarvesdl the Sructure of V, itsaddition, itsmultiplication
by scdars and itsinner product.

Note aso that a unitary transformation preserves length for

IVl =(v,v) = (T (V),T (V) =T (V)|

The converseis dso true, which is proved in the next result.

Lemma:

If (T(v), T(v))=(v,v) fordl vi v thenTisunitary.

Proof :
Let u,vi V and (T(u+v),T(u+v))=(u +v,u+v)
Expanding this we have
(TW+T MW, T (W) +TW)=(u+v,u+v)
(T(W),T(W)+(T (), T W) +(T MW, T (W) +(T(W),TW)=(uu)+ (uv)+(v,u)+(v,v)
Cancdlling the same terms such as (T (u), T (u)) = (u,u) we have

(T(W), TW)+(T(W),T (W) =(u,v)+(v,u) .. (1)
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For u,vi V . Inequation (1) replace v by iv, we have
(T(W),TMv))+(TGv),T (u) =(u,iv)+(iv,u)
i(T(W,TW)+i(TW,T(W)=-i(u,v)+i(v,u)

Cancd i on both sde we have,

- (T(W, TW)+(T(W),T (W) =- (u,v)+(v,u) .. (2
Adding (1) and (2) results, we have

(T(W),T(W)=(u,v) fordl vi v.

Hence T isunitary.

Theorem :
Thelinear transformation T on V isunitary if and only if it takes an orthonormd basisof V into

an orthonormal bassof V.
Proof :
Suppose that {w,...,v,} is an orthonormal basis of V, thus (V,V;) =0 for i1 j while
(viov) =1.

Wewill show that if T isuritary then {T (%, )....., T (v,,)} isalso an orthonormal basisof V. But

(T0).T(v))=(%vy) =0 for is |

and  (T(v).T(w))=(%.v)=1

Thus{T (V). T (V,)} isan orthonormal basisof V.

Ontheother hand, if T1 A(v) issuchthat both {v,...,v,,} and are orthonormal basisfo W,

if uywl V then
n
[}
u:aaivi w
i=1

I

Qo
o
<

I
N

==Y 3 0
\ (uw)=caav .a by +
g1 i1 o

=(aM +...+a,V, b+t by
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=(a, b)) Ha, bov, ) +..o+ (v, by,

=(ayVo, by ) +(a Vs, bV )+ (AW, , bV, ) + ..o

=a151 +a252++an5n ."(V|1VJ):O |1 J

However T (u) = égl aT (%) and T (W) :én biT (Vi)

i=1 i=1
(TW.T (W) =R 2T (v).4 bT(4)2
ei=1l i=1 [}
:éa|6| (T(V|),T(VJ))—O i1 j
i=1
=1 i= ]
= (u,w)
ThusT isunitary.
Lemma:

If TT A(v) thengivenany vi V thereexistsaneement wi Vv, dependingonv and T, such
that (T (u),v) =(u,w) fordl ui v.

Thisdement w isuniqudly determined by v and T.
Proof :

To prove the Lemma, it is sufficient to exhibit a wi Vv which works for dl the dements of a
basisof V. Let {u,....,u,} bean orthonormal basis of V, we define

w:é{ (T(ui),v)ui

i=1
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Consider (Ui,W) =gui,é (T(ui),v) U =

= (T (u) W) (uo ) (T () V) (U)o (T (un) V) (U0, )
=(T(u).v) (uuy) =0 it
=1 i=j

Hence the dement has the desired property.

For uniqueness, consider (T (u),v) =(u,w;) and (T (u),v)=(u,w,).
\(uvg) = (uw,)
\ (uw)- (uw,)=0
(uw - w,) =0 foral uf v.

Thus u=w - w, and therefore

W-w,=0P w=w,

Hence, the uniqueness of w.

Definition : If T7 A(v) then the Hermitian adjoint of T written as T*, is defined by
(T(u),v)=(u,T*(v)) foral uvi V.

Lemma: If TT A(V) then T*1 A(Vv) moreover,

1

2.

3.
4,

(T*)*:Ti
(S T)*= 5 +T
(Is)* =1 s*

(ST)*=T*s* fordl STT A(V) anddl | | F.

Proof : Wemug fird provetha T* isalinear transformationon V. If u,v,w aeinV, then

(u,T*(v+w) = (T (J, v+ w) =(T (u),v)+(T (W, w)

=(u,T* (W) +(u,T* (w))

GiAD)




=(u,T*(V)+T*(w)
\ TH(v+w) =T * (V) +T*(w)
Smilaly, for | T F,
(u,T*(v)=(T(W),lv)
(T (u,v)
M (u,T*(V))
(u, I T*(v))

Consequently  T*(] v) =1 T*(v)
Thus T* islinear trandformaionon V.

Consider (u,(T*)*(v)) =(T*(u),v)=(v,T* (W)

=(T(W,u) =(u,T(W))
foral u,vi V,whence (T*)*(v)=T(v)
Whichimpliesthat (T+)* =T .
Consider (u,(S+T)*(V))=((S+T)U),v) =(S(u) +T(u),v)
-+ by property of linear transformation
=(S(u),v)+(T(u),v)
=(u,$* (V) +(u, T*(v))
=(u,S* (V) +T*(v))
=(u,(S*+T*)(v)) - by property of Linear transformetions

fordl u,vl V whence

(S+T)* (V) =(s*+T*)(v)
Which implies that

(S+T)* =5 +T*
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3. Consder (u,(I 9)*(v))=((1 S)(u),v) =1 (S(u),v)
=1 (u,5*(v)) =(u,I"s* ()
fordl u,vi V whence
b (I S)*(v) =I"S*(v) "vi Vv
impliesthet (| S)* =| S*.
4. Consider (u,(ST)*(v))=((ST)(u),v) =(T(uw,S*(V))
=(u,T*(s* (V) =(u,T*S* (v))
fordl u,vi V thisforces
(ST)*(v) =T * st (v) forevery vi v
whichimpliesthet (ST)* =T * S*

Hence the proof.

Lemma: TT A(Vv) isunitary if and only if T*T = 1.
Proof : If T isunitary, thenfordl u,vi V,
(u,T*T (V) =(T (W), T (V) =(u,v)
hence T*T =1
On the other hand, if T*T = 1 then
(uVv)=(u,T*T (V) =(T(uw),T(V))
Which impliesthat T is unitary.

Note:
1 A unitary transformation is non-singular and its inverseisjug its Herminrian adjoint.

2. From T*T = 1, we must havethat TT* = 1.

Theorem : If {%,V,,...,v,} isanorthonormal basisof V and if thematrix of T7 A(V) inthisbesis
is (@;; ) then the matrix of T in thisbesisis (b;; ).

Where blj :a_ji .
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Proof : Sincethe matricesof T and T* in this basis are, respectively (aij) and (bij) then

n n
T(Vi):éaijvj and T*(Vi):é. by v
i=1 i=1

& 0]

Now by =(T*(4).v)=(%.T(v;))=¢% @ anv+
& k1 o

= (V@ )+t (Vi agvp ) ek (a0 )

=& (Vi) e H 8o (U V) o+ 8 (V)
=a_ji ‘.'(Vi,Vj):O if j11
=1 i=1

This proves the theorem.

Note : The Hermition adjoint for matrices on the Hermition adjoint for transformetion are explicit
same.

Using the matrix representation in an orthonormal basisuseclamthat T7 A(V) isunitary if
and only if, whenever (a i ) isthe matrix of T in this orthonorma basis, then

e
aaa@x=0for j1k
i=1

while én.|aij|2 =1
i=1
Definition: T1 A(V) iscdled sdf-adjoint or Hermintian if T* = T.
Definition: T1 A(V) iscaled Skew-Hermitian if T* =—T.
Note: si A(V) canbewrittenin the form

_S+S*  _aB- S*§
= +i :
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S+S* S- S*
Since( > )and( > )areHermitian

\ S=A +iB whenboth A, B are Hermitrian.

Theorem : If TT A(V) isHemitian, then dl its characterigtics roots are redl.

Proof : Let | beacharacterigtic root of T, thusthereisa vt 0 inV suchthat T (v) =1 v.
We compute

I (v,v) =(1v,v) =(T(W),v) = (v, T*(v))
=(v,T(V) =(v1 v)=T"(v,v)
Since T isHermitionand (v,v) ¢ 0.
Wehave| = .

Hence| isred.

Lemma: If ST A(V) ad s*S(v) =0 then S(v) =0.
Proof : Consider (S*S(V), v), since S*S(v) =0,

0=(S*s(v),v) =(S(v),s(v))

Imppliesthat S(v) =0, therefore by definition of inner product space.

Corallary : If TisHermitianand Tk (y)=0 for k3 1 then T (v) =0

Proof : Weshow thetif T2m(y) =0 then T (v) = 0, forif g=12m-1,then St =S and g+ g=T2m.
Whence (S*S(V), v) =0 impliesthat 0 = S(v) = T2™1(v) .
Continuing down in thisway, we obtain T (v) = 0.

If TK(v)=0then T2M(y) =0 for om >k hence T (v) = 0.

Definition: T] A(v) issadtobenormd if 7T =TT*.
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Lemma: If Nisanormd linear transformation and if N (v) =0 for vi Vv, then N*(v) =0.
Proof : Consider (N* (v), N*(v)).
Therefore by definition
(N*(v), N*(v)) =(NN*(v),v)
=(N*N(V),v) - N*N = NN*
=(N(v),N(v))
However, N (v) =0, whencecertainly N* N(v) =0
Thus, we obtainthat (N* (v), N*(v)) = 0.

Thisforcing that N* (v) = 0.

Corollary : If | isa characteristic root of the norma transformation N and if N (v) =| v then
N*(v) =1 v
Proof : SinceNisnorma, NN*=N* N, therefore
(N-1)(N-1)*=(N-1T)(N*- ) =NN*-TN+1 T
=N*N-IN*-T N+l
=(N*-T)(N-1)
=(N-1)*(N-1)
Thatistosay, N- | isnormdl.
Since (N - | )(v) =0 by thenormdity of N - | ; from the above lemma
(N-1)*(v)=0hence N*(v) =l v
Hence the required.

Corollary : If Tisunitary andif | isacharacteristicroot of T, then || | =1.
Proof : Snce T isunitary it isnormd.

Let | beacharacteristic root of T and supposethat T (v) =| v withv1 0 inV. By previous
corollary T*(v) = v.

Thus  T+T (v)T*(1 v) =1 T*(v) =1 T (v)
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SnceT*T=1wWehave y=|[v.
Thusweget | [~ =1 which of course saysthat .
Hence the required.

Lemma: If Nisnormd andif N* (v) =0, then N(v) =0.
Proof : Let S=N* N ; SisHermitian, and by the normdity of N,
$*(v) =(N*N) (V) =(N)“ (N)* (V) =0 N (v) =0
By “If T isHermitianand Tk (v)=0 for k3 1 then T (v)=0."
We deducethat s(v) =0 thatistossy N* N(v) =0-
Alsoweknow “If ST A(V) andif s*S(v) =0 then S(v) =0.”
Therefore N (v) =0 asrequired.

Corollary : If Nisnormd andiffor | | F,

(N-1)(v)=0then N(v) =1 v-
Proof : Fromthe normdlity of N it followsthat N - | isnorma, whence by gpplyiong the lemmajust
provedtoN - | weobtain (N - | )*(v) =0 implies (N - 1 )(v) =0

Which impliesthat N (v) =] v-

Lemma: Let N beanormal transformation and supposethat | and m aretwo distinct characteristics
rootsof N. If v, warein V and are such that N (v) =1 v, N (w) = mw then (v,w) =0.

Proof : We compute (N (), w) intwo different ways as a consequence of N (v) =| v
(N(),w)=(1v,w) =1 (v,w) .. (D
From N(w)=nmw

Weknow thet “If | isacharacteristic root of the normal tranformation N andif N (v) =| v
then N* (v) = v.”

Therefore we have N * (w) = mw.




Whence (N (v),w) = (v, N*(w)) = (v, mw) = m(v, w) .. (2
From equation (1) and (2) we have

| (v,w)=m(v,w)
andsince | 1 m thisresultsin (v,w) =0.

Hence the required.

Theorem : If Nisanormd linear transformation ob V, then there exists orthoonorma basis conssting
of characteridtic vectorsof N, in whichthe matrix of N isdiagond. Equivdently, if N isanorma matrix

there exists a unitary matrix U such that is yNU “1 (= UNU *) diagond.

Proof : Let N benorma andlet | 4,1 ,,...,1  bethedistinct characterigtic roots of N. We know that
“If dl the digtinct characteridtic rootsl ,...,1 , of TlieinF, thenV canbewrittenasV =V, A ..AV,

where V. :{VT V‘(T 1) () :0} and where T; has only one characteristic roat, | ; on V, .”

We can decompose V as V =\, AV, A .. AV, where every v,V is annihilated by
(N-1,)".

We aso know that “If N isnorma andif for | T F, (N- 1 )¢ (v) =0 then N(v) =1 v.”

Therefore V, conssts only of characteristic vectors of N belonging to the characteristic root

| . Theinner product of V induces an inner product on 'V, .

We know that, “Let V be afinite dimentiona inner product space, then V has an orthogond
st asabasis”

Therefore, we can find abasis of V, orthonorma relative to thisinner product.

By previous Lemma, let N be anorma transformation and supposethat | and m are two
distinct characterigtic roots of N. If v, warein V and aresuchthat N (v) =| v, N(w) = mw then

(v,w)=0."

Elementslying in distinct V,'sare orthogond.

Thus putting together the orthonormal basis of the V; ’ s provides us with an orthonormal basis
of V. Thisbasis consggts of characterigtic vector on N, hence in this basis the matrix of N is diagond.

Weknow thet, “ Thelinear trandformation T onV isunitary if and only if it takesan orthonormd
basis of V into an orthonormad basisof V.”
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and

“If VV isn-dimensiond over Fandif T A(Vv) hesthematrix my (T) inthebasisv,..., v, and
thematrix m,(T) in the basis w,...,w, of V over F, then there is an dement CT F, such that
m,(T) =Cc(m(T))Cct”

These two results gives the matrix equivaence.

Corallary : If T isaunitary transformation, then there is an orthonormal basisin which the matrix of T
is diagonal, equivaently, if T is a unitary matrix, then there is a unitary matrix U such that

UTU *(=UTuU *) isdiagond.

Coroallary : If T isaHermitian linear transformation then there exists an orthonormal basisinwhich the
matrix of T isdiagond, equivaently, if T isaHermitian matrix, then there exists a unitary matrix U such

that yTU-1(=UTU *) isdiagond.

Lemma: The normd transformation N is
1. Hermitian if and only if its characterigtic roots are redl.
2. Unitary if and only if its characterigtic roots are dl of asolute vaue 1.

Proof : We have thisusng matrices. If N is Hermitian, then it isnorma and dl its characterigtic roots
are red. If N is norma and has only real charactristic roots, then for some unitary matrix U,

UNU ! =UNU* = D Where, D isadiagona matrix with real entries on the diagond.

Thus, px=p since D*=(UNU *)* =UN*U *, the relation D* = D implies
UN*U*=UNU * andsince U isinvertible. We obtain N* = N. Thuis N is Hermition.

If N isunitary trandformation, then its characteridtic roots are dl of abodute vaue 1. Since “If
Tisunitary andif | isacharacteristicroot of T, then || | =1.”

If N isnorma and has its characteritic roots of absolute value 1.

Lemma: If Nisnormal and AN = NA, then AN* = N*A.




Proof : Let X = AN* —N*A, weclamthat X =0.
That isto show that for XX* =0.
Since N commutes with A and with N*, it must commute with AM* —N*A thus

XX* = (AN* - N* A) (NA* - A* N)
XX* = (AN*- N* A)NA*- (AN*- N* A) A*N
= N{(AN*- N* A)A*} - {(AN*- N* A)A*} N
Being of the form NB — BN, the trace of XX* is0. Thus X =0 and AN* = N*A.

Lemma : The Hermition linear transformation T is nonnegetive (positive) if and only if dl of its
characterigtic roots are nonnegetive (postive).

Proof : Supposethat T 3 0, If | isacharacterigticroot of T, then T (v) =| v forsome v Q.
Thus O£ (T(V),v)=(1vv)=1 (v,v) since (v,v) >0
Wededucethat | 3 Q.

Converdy, if T isHermitian with nonnegative characteridtic roots, then we can find an orthonorma
basis{\,...,v,} condsting of chararteristic vectorsof T. For each v, T(v) =1,v; where|; 3 0.

Given vi Vv,v=4aa;v
Hence T(v)=aaT(v)=4lav
But (T(v),v):(é’lliaivi,éaivi)=é’lliaiaTi

By the orthonormdlity of the V;’s, Since | ; 2 0 and a;a; ® 0, we get that (T (v),v)3 0
hence T 3 Q.

Hence the required.
Lemma: T3 Q ifandonlyif T=A*A for omeA.

Proof : Wefirg show that A* A3 0.Given v] V,
(A*A(v),v) =(Alv),A(v)2 0
Hence A* A3 Q.




ab, o)
Ontheother hand, if T 3 0 wecanfind aunitary matrix U suchthat UTU* = ¢ .

Whereeach |, isacharacteristic root of T, henceesch | ; 3 0.

Let S=

L

Snceeach | ; 3 0, each \/f isred, whence SisHermitian. Therefore, U* SH isHermitian,,

(D»OVOVO&I
'_‘_
(@

but
ab, o)
U*su)’=u*su =u*S . U=T
S g
We have represented T in the form AA*, where A = U*SU.
Note:
1 Unitary over thered field are called orthogona and satisfy QQ' = 1.
2. Herimitian over thered fidd are just symmetric.
Problems:
1. If T is unitary just using the definition (T (v),T (u))=(v,u), Provetha T is nonsingular.
2. If T is skew-Herimitian, prove that dl of its characterigtic roots are pure imgainaries.
3. Prove that a norma transformetion is unitary if and only if the characteridtic roots are al of
absolute value 1.
4, If N isnormd, provethat N* = p(N) for some polynomid p(X).
5. If A3 0and (A(v),v)=0, provethat A(v)=0.
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Bilinear Forms
Definition : LetV beavector paceover thefidd F. A bilinear formonV isafunctionf, which assgns
to each ordered pair to vector u, vinV ascdar f (u,v) inF, and which satisfies

f (cu +u,,v) =cf (u, V) + f (W, V)

f(u,cw+v,) =cf (uv)+ f(u,v,)

[ f:V'V® F,if fislinear asafunction of ather of its arguments when the other is fixed.
Thezero function from \/ “ v/ into Fiscdearly hilinear form|

Note:
1 The st of dl bilinear formsonV isasubspace of the space of dl functionsfrom v/~ v/ intoF.

2. Any linear combination of bilinear formson V isagain abilinear form.

3. The space of hilinear formson V isdenoted by L(V,V, F).

Example: Let V be avector space over thefiddd Fand let Ly and L, belinear functions on .
Definef by f (u,v) =L, (u) L (v).

If wefix v and regard f asafunction of u, then we smply have a scdar multiple of the linear
functiond L, with u fixed, f isascda multipleof L, . Thusitisclear that f isahbilinear form on W.

Definition : Let VV beafinite dimensiona vector space and let B = (Uu,..., U,) be can ordered basis
for V. If fisahbilinear form ob V. The matrix of f in the ordered basis B isthe non matrix A with entries

A; = T (u;,u; ). Weshall denote thismatrix by [ ]

Theorem : Let V eb afinitedimensiona vector space over thefield F. For each ordered basisB of V,
the function which associates with each bilinear form on V its matrix in the ordered bvass B is an

isomorphism of the space L (V, V, F) onto the spaceof n” n matrices over thefidd F.




Proof : Weobservesthat f ® [ f ] isaone-one correspondence between the set of liniear formson
V and the set of dl n° n matrices over F. This is a linear transformation is easy to see, becuase

(cf +a)(u,u;) =(F(u.u)*+9(u.u;)), for each i andj.

Thissmply saysthat [cf +g], =c[ ], +[g];-

Corollary : If B={u,,....,u,} isanordered basisfor vV, and B* ={L,...., L} isthedua basisfor
V* then the n2 bilineer forms f;; (u,v) =L;(u) L (v), 1£i £n,1£ j £n, form a basis for the
space L(V,V, F).Inpaticular, thedimensonof L(V,V, F) isn?,

Proof : Thedua basis{Ly,...,L,,} isessentially defined by thefact that L; (u) istheitscoordinate of
u in the ordered basis B.

Now the functions f;; defined by,
fi; (u,v) = (u) L (v) arebilinear forms of the type considered in the previous example.
If U= +...+ XU, and v=yiup +.+ you, then f (u,v) = %y

Let f beany bilinear form on'V and let A be the matrix of f in the ordered basis B. Then

f(uv)=3 AXY;
ij
Whichsimly systhat f =3 A, f; .
]
It is now clear that the n? forms f;; compriseabasisfor L(V,V, F).
Example : Let V be the vector sapce RP. Let f be the bilinear form defined on u=(x,%,) and

V:(Y1a yz) by

f(UV) = X0 +XY +3 % +X%Ys

él 1p
Now f(uv)=[x.%]+ s H-"[yl’ Yo]
& 1y
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and so the matrix of f in the standard ordered basis B ={e,,6,} is

[1o=5 4

Let B'={q,6,} bethe ordered basis defined by
e =(1-1), &=(11)
In this case the matrix p which changes coordinatesfrom B' to B is
1 1y
1 1

Thus [f]g =pt[f],p

D> (D

p:

@

_d -4 1ue1 1u
& 1R o

_& -10e0 2y

& 149 24
_&0 0y

& 4
What this meansisthat if we expressthe vectors u and v by means of their coordinatesin the

basisB',say u:xiei+x'2e'2, V= Yie:["'ylze‘z then f (U,V) :4x'2y'2.

Theorem : Let f beabilinear form on the finite dimensiond vector space V. Let Ly and R; bethe
linear trandformations from V into V* defined by

(L) V)= £ (uv) =(Ry,) ()
Then rank (L) =rank (R;)
Proof : To proverank (Lf) = rank (Rf ) it will sufficeto provethat Ly and R; have the same

nullity. Let B be an ordered basisfor V, andlet A=| f ] . If uandv arevectorsin V, with coordinate

matrices X and Y in the ordered basis B, then f (u,v) = X'AY . Now R; (v) =0 means that




f (u,v) =0 foreveryuinV,ietha xtay =0 forevery n~ 1 matrix X. Thelatter condittion Smply
saysthat AY =0. Thenullity of R; istherefore equd to the dimension of the space of solutionsof AY
=0.

Smilaly, L; (u)=0 if andonly if xt Ay =0 for every n” 1 matrix Y. Thus u isin the nul
spaceof L ifandonlyif xta=0if aAtx =0- Thenulity of L¢ istherefore equd to the dimension

of the space of solutionsof Al x = . Sincethematrices A and At have the same column rank, we see
that

ndlity (L ) =nulity (R; )
Hence the required.

Definition : If f isahbilinear form on the finite dimensona space V, therank of f isthe integer

r:rank(Lf) = rank (Rf).

Corallary : Therank of ahbilinear form is equa to the rank of the matrix of the form in any ordered
basis.

Corallary : If f isabilinear form on the n-dimensiond vector space V, the following are equivaen.
() rank (f)=n
(ii) For each non-zerou inV, thereisav in V such that f (u,v)* 0.

(i)  Foreachnon-zerovinV,thereisanuinV suchthat f (u,v)* 0.

Proof : Statement (i) Smply saysthat the null space of L isthe zero subspace. Statement (iii) says
they the null space of R; isthe zero subspace. The linear trandformations L; and Ry havenullity O
if and only if they haverank ni.e. if and only if rank (f) =n.

Definition : A bilinear form f on a vector space V is caled non-degenerate (or non-singular) if it
satisfies conditions (ii) and (iii) of above cordllary.

EXERCISE :
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1. Whichof the following functions defined on vectors u = (%, %,) and v=(y,,y,) inR?, are
bilinear forms ?

(@ f(u,v)=1
B f(uv)=(+ ) (% w)

©  F(uv)=xy,- %%
2. Destribethe bilinear formson RRwhichsatify f (u,v) = f (v,u) foral u,v.

Symmetric Bilinear Forms

Definition : Let f be a bilinear form on the vector space V. We say that f is symmetric if
f (u,v) = f (v,u) fordl vector u, vinV.

Theorem : Let V beafinite dimensona vector space over afield of characteristic zero and let f be
a symmetric bilinear form on V. Then there is an ordered basis for V in which fis represented by a

diagond métrix.

Proof : Wemust find an ordered basis B ={u,...,u,} suchthat f (u;,u;)=0forit j.

If f = 0 or n =1 the theorem is onvioudy true. Thuswe may suppose f * 0 and n> 1. If
f (u,u) =0 for every uinV, the associated quadratic form q is identicaly O, and the polarization
identity
1 1
f (u,v)==qg(u+v)- =g(u- v)
(uv)=—q 20
Showsthat f = 0. Thusthereisavector uinV suchthat f (u,u) =q(u)* 0. Let W be the

one-demensional subspace of V which isspaned by u, and let \\/* betheset of dl vectorsv inV such
that f (u,v)=0.

Now we clam that \y =\w A" - Certainly the subspaces W and \y/* are independent. A
typical vector inW is ca , wherecisascadar. If cu isdsoin " then

f (cu,cu) =c?f (u,u) =0
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But f (u,u)? 0 thusc=0. Alsoeach vector inV isthe sum of avector in W and avector in
w" for, let V beany vector in V, and put

and sincef issymmetric f (u,v) =0.
Thusv isin the subspace \\/" . The expresson

f (w,u)

W= f(u,u)

u-+v

Showsthat v =w +W"
Theredriction of f to \\/* isasymmetric bilinear form on \y/* . Since \/" has dimenson
(n—1), we may assume by induction that \w* hasabasis{u,....,u,} suchthat
Funuy) =0, it j, (i*2j° 2)

Puting U, =u , we obtain abasis {uy, Uy, ..,uy} for V suchtha f(u;,u;)=0 forit j.

Corallary : Let F be asubfidd of the complex numbers, and let A be asymmetric n” n matrix over
F. Thenthereisan invertible n™ n matrix P over F suchthat pt aop isdiagond.

Theorem : Let V beafinite dimensiond vector space over the field of complex numbers. Let f be a
symmetric bilinear form on 'V, which hasrank V. Then thereis an ordered basis B :{vl,..., vn} forVv
such that

(0] the matrix of f in the ordered bass B is diagondl.

) iLj=1..r
ONERIURD A
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Proof : Weknow that “Let V be afinite dimensiond vector space over afield of characteridtic zero,
and letf beasymmetric bilinear formon V. Thenthereisan ordered basisfor V inwhich f isrepresented
by adiagona matrix.”

Thusthereis an ordered basis {uj,..., u,} for V suchthat f (u;,u;) =0 forit j.
Sincef hasrank r, so doesits matrix in the ordered basis { ..., U} .

Thuswe must have f (Uj ,Uj) * O for precisely r veluesof j. By reordering the vectors U;,

we may assumethat f(u;,u;)20,j=1,..,r.

Now we use the fact that the scalar field is the field of complex numbers. If ,/f (uj,u;)
denotes any complex square root of f(uj,uj) and if we put
i 1
——
Vi =1 f (ui’uj)
1u >r
Thenthe basis {\,,...,v,,} satisfies conditions (i) and (ii).

Hence the required.

Theorem : Let V be an n-dimensiond vector space over the field of real numbers, and let f be a
symmetric bilinear form on 'V which hasrank r. Then thereis an ordered basis{\ﬁ,vz,...,vn} forVin

which the matrix of f isdiagond and suchthat f (v;,v;)=+£1, j=1...r.

Furthermore, the number of basis vectors v; for which f (Vj WV ) =1 isindependent of the
choice of basis.

Proof : Thereisabasis{u,...,u,} for V such that

f(ui,uj):o i1
f(uj,uj)lo 1£jEr
f(u;,u;)=0 j>r




Let Vj:|f(uj’uj)|-.% 1E£jEr
j>r

Then {w,...,v,} isabasiswith the stated properties

Let p be the number of basis vectors v; for which f (Vj ,Vj) =1, we must show that the
number p isindependent of the particular basiswe have, satisfying the stated condiitions. Let V* bethe
subspace of V spanned y the basis vectors Vv; for which f (Vj ,V,-) =1 and V" be the subspace
spanned by the basisvectors v; forwhich f (v;,v;)=-1.Now p=dimV*, soitistheuniqueness
of the dimension of VV* which we must demongtrate. It is easy to seethat if u is anon-zero vector in

V* then f (u,u) >0, inother wordsf is positive definite on the subspace V*. Similarly, if uisanon-
zeroin V-, then f (u,u) < 0 if f isnegative definite on the subsace V—. Nopw let /" bethe subspace

spaned by the basis vectors v; for which f(v;,v;)=0.1f uisin y* then f(u,v)=0 for
dlvinV.
Since{v,...,v,} isabasisforV,wehavey =v*+Av- A V" -

Furthermore, we clam that if W is any subspace of V on which f is pogtive definite then the
subsace W, /- and " are independent. For, suppose uisin W, visin y-, wisin " and
u+v+w=0.

Then 0=f (u,u+v+w)="f(u,u)+ f(uv)+ f(uw)

0=f (vu+v+w) =1 (v,u)+ f(v,v)+ f (v,w)

Sincewisiny", f (u,w) = f(v,w)=0 and sincef is symmetric we obtain

Hence f (u,u) = f (v,v).Since f (u,u)® 0 and f (v,v) £0 it followsthat
f(uu)=1f(v,v)=0

But f is pogtive definite on W and negative definite on \/- . We conclude that y=v =0 and
hencethat w=0 aswdl.
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Snce v =v*Av AV
andW, -, y" aeindependent weseetha gim\w £ dimv *- Thet isif W isany subspace

of V onwhich f is postive definite, the dimension of W cannot exceed the dimension of V*. If B, is
another ordered basisfor V which satisfies the conditions of the theorem, we shal have corresponding

subspaced V;*, V" and \j;" and the argument above shows that
dimVv;" £dimVv™*
Reversing the argument, we obtain dimVv* £ dimV;" and consequentlydimVv * =dimV;" .

Hence the proof.

Note:

L rakf=dimv*+dimv-
2. The number gimv* - dimyv- 1Soften called signature of f.

Skew-Symmetric Bilinear Forms
Definition : A bilinear form f and V is called Skew-symmeticif f (u,v) =- f (v,u) for al vectors
u, vinV.

Theorem : Let V be an n-dimensiona vector space over a subfield of the complex numbers, and let
f be a Skew-symmetric bilinear formon V. Thentherankr of f isevenand if r = 2k thereisan ordered

badsfor V inwhich the matrix of f isthe direct sumof the (n- r)” (n- r) zero matrix and k copies
60 1y

of the 2 2 matrix 8_1 08.

Proof : Let u,Vvy,....,Uy, Vi bevectors satisfying conditions

@  f(u.v)=1,j=1..k

O  f(uu)=f(v,v;)=1(u,v)=0,i1 ]

(© If W, is the two-dimensional subspace spanned by u; and Vv; then

V=WAW, A....Aw, Aw,.




Where every vector in W, isorthogona toal u; and v; and theredtriction of f to W, isthe
zero form.

Let {w,...,w;} beany ordered basis for the subspace \W,.

Then B ={uy, V1, Uy, V vey U, Vi, W ..., W} IS @N OFdered basisfor V..
From (a), (b) and () it isclear that the matrix of f inthe ordered basisB isthe direct sum of the
é0 1y
(n- 2K)" (n- 2k) zero matrix and k copies of the 2- 2 matrix é 1 O(J. Furthermore, it is clear
€ a
that the rank of this matrix and hence therank of f is 2k.

Hence the proof.

Groups Preserving Bilinear Forms

Let f beabilinear form onthe vector spaceV, and let T be alinear operator on V. We say that
T preservesfif f (T, T, )= f (u,v) fordl u, vinV.

Theorem : Letf beanon-degenerate bilinear form on afinite dimensiona vector spaceV. The set of
al linear operators on V, which preserve f is a group under the operation of compostion.

Proof : Let G bethe set of linear operators preserving f we observed that the identity operator isin G
and thetawhenever Sand T arein G and the compostion ST isadso in G. From the fact that f isnon-
degenerate, we shalo prove that any operator T in G is invertible and T-1 isdso in G. Suppose T
preservesf. Let u beavector in the null space of T. Then for any v inV we have

f(uv)=f(T,T,)=f(0T,)=0

urlv
Sincef is non-degenerate, y=0. Thus T isinvertible. Clearly T-1 also preservesf, for
F(TaTY) =1 (T LT Y) = £ (u,v)
Hence the proof.
Let V be either the space R or the space C". Let f be the bilinear form
n
f(uv)= jéz-lxj Yi where u=(%,..... %,) and v=(yy,...., V)

The group preserving f is called the n-dimensionda orthogona group.
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Let f be the symmetric bilinear form on R" with quadratic form.

n n
2

a(x.x)=ax- a Vi

j=1 j=p+l

Then f isnon-degenerate and has signature 2p —n. The group of matrices preserving aform of
thistypeis caled a pseudo-orthogona group.

Theorem : Let V bean n-dimensiond vector space over thefield of complex numbers, and let f bea
non-degenerate symmetric bilinear formon V. Then thegroup preserving f isisomorphic to the complex
orthogonal group O (X, C).

Proof : Of course, by an isomorphism between two groups, we mean a one-one correspondence
between their e ementswhich preservesthe group operation. Let G bethe group of linear operatorson
V which preserve the bilinear form f. Sincef isboth symmetric and non-degenerate, the theorem “Let
V beafinite-dimensond vector space over thefield of complex numbers. Letf beasymmetric bilinear

form on V which has rank w. Then there is an ordered basis B ={v,,..., v} for V suchthat

M the matrix of f in the orered basis B is diagond.
_ _il j=12,....,.r
ORI T) R PR

Tdls usthat there nis an ordered basis B for V in which f is represented by the n” n identity
matrix. Therefore, alinear operator Y preservesft if and only if its matrix in the ordered basis B isa

complex orthogona matrix. Hence T ® [T]g isanisomorphism of G onto O (x, ©).

Hence the proof.

HRENRN




