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Preface

Topology is the core course of Mathematics which acts as a foundation for many

branches of mathematics like real analysis, functional analysis, algebraic topology, differentiable

equations, dynamical systems, etc. The distance concept that appears in the analysis and

metric spaces is attempted to be abstracted out by the subject topology. In this sense, the

concept of open sets, closed sets, continuity of functions, convergence of sequences, and

many other concepts that appears in the subjects analysis and metric spaces can be defined

on any non-empty set without requiring the concept of distance.

The main objective of this self-instructional material is:

1. to provide the fundamental concepts in topological spaces.

2. to demonstrate the product spaces and continuous functions on topological spaces.

3. to analyze the compact and connected sets in topological spaces.

4. to study the theory and applications of separation and countability axioms, the Urysohn

lemma, and the Urysohn Metrization Theorem.

This self-instructional material   is written according to the syllabus of Centre for

Distance Education, Shivaji University Kolhapur, and based on the following books.

1. J. R. Munkers, Topology, Second Edition, Pearson Education (Singapore), 2000.

2. W. J. Pervin, Foundations of General Topology, Academic Press, New York, 1964.

Dr. Kishor D. Kucche
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Each Unit begins with the section objectives -

Objectives are directive and indicative of :

1. what has been presented in the unit and

2. what is expected from you

3. what you are expected to know pertaining to the specific unit,

once you have completed working on the unit.

The self check exercises with possible answers will help you

understand the unit in the right perspective. Go through the possible

answers only after you write your answers. These exercises are not to

be submitted to us for evaluation. They have been provided to you as

study tools to keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.

It is also advised to see the new syllabus 2022-23 and study the

reference books & other related material for the detailed study of the

paper.
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TOPOLOGICAL  SPACES

UNIT  -  I

1. Topological Spaces
Introduction

Various mathematicians like Frechet, Hausdorff, proposed different definitions
for topology over a period of years during the first decades of the twentieth century, but
it took quite a while to settle down to one definition for topology that seemed most
suitable. In this unit, we learn the definition of a topological space and important examples
of it.

Definition 1.1 : Topology

A topology of X is a collection of subsets X satisfying the following properties

1. , X T .

2. The union of the elements of any subcollection of T  is in T.

(i.e. If X T  then 


 X


T ).

3. Intersection of elements of any finite subcollection of T  is in T.

(i.e. If X1, X, ..... , XnT  then 
1


n

i
i

X T )

The set X with topology  T  is called a topological space and is denoted by
(X,T ) or simple X.

Example 1.2 :  Let X = {a, b, c}

1. Then there are many topologies on X, for example,  1 , XT  and

    2 , , , , X a b cT , are topologies on X. Infact, there are total 29 topologies
on X.

2. But the set     , , , X a bT is not a topology as    , a b T  but

 , a b T .
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Definition 1.3 : Open Set

Let X be a topological space with topology T.  We say that a subset U of X is an

open set if U T .

Example 1.4 : Let  , ,X a b c  and     , , , , X a b cT . Then  a X  is an open

set where as  b X  is not an open set.

Definition 1.5 : Discrete Topology

Let X be any set. Then the collection T of all subsets of X is a topology and
called the discrete topology. (i.e. T = P(X) is called the discrete topology). Equivalently
if every singleton is open, then X is called a discrete topology.

We now give an equivalent definition of discrete topology in terms of singleton

sets.

Theorem 1.6 : A topology (X, T ) is discrete if and only if every singleton is open.

Proof : If X is discrete, then every subset is open , so in particular, every singleton

is open.

Conversely, suppose that for all  , x X x T .

Let Y be a subset of X. We have to show that Y T .

We can write the set Y as   | Y x y Y .

As  y T , and T  is a topology, we get that    y T .

That is Y T  and thus T  is discrete.

Definition 1.7 : Indiscrete Topology

Let X be any set. Then  , XT  is called the indiscrete topology..
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Example 1.8  : Let X be a set and  |  f U X X UT  is either finite or is all of X .

Then fT  is a topology, called the finite complement topology..

Proof : Given  |  is finite or    f U X X U U T

Since X – X =   is Finite,  fX T .

Also X –  = X implies  f T .

Let  U  be the indexed collection of elements of fT .

If each U  is empty, then their union is empty and hence belongs to fT .

So assume that there is at least one U  which is non empty. Then X – U  is
finite.

Now       X U X U X U  

Since X U  is finite, X U  is also finite.

  fU T

Let U1, U2, ...., n fU T . If one of Ui is empty, then their intersection is empty..

So assume that iU   for all i. Then X – U1, X – U2, ...., X – Un, are finite.

Then  1 1    n n
i i i iX U X U  is finite.

 1 . n
i i fU T

Hence fT  is a topology..

Example 1.9 : Let X be a set and  |  is countable or    c
c U X X U U XT .

Then cT  is a topology, called the countable complement topology..

Proof : Given  |  is countable or    c U X X U U T .
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Since X –  = X and X – X =  is countable, ,  cX T .

Let , cU T .

If each U  is empty, then their union is empty and hence belongs to fT .

So assume that there is at least one U  which is non empty. Then X U  is
countable.

      X U X U X U  

Since X U  is countable, X U  is also countable.

  cU T

Let U1, U2, ...., n cU T . If one of Ui is empty, then their intersection is empty..

So assume that  iU  for all i. Then X – U1, X – U2, ...., X – Un, are countable.

Then  1 1    n n
i i i iX U X U  is countable.

 1 . n
i i cU T

Hence cT  is a topology..

Definition 1.10 :  Suppose that T and  T ' are two topologies on a given set X. If
'T T  then  T ' is finer than T. If '  T T  then  T ' is strictly finer than  T . We also

say that  T  is coarser (weaker) than  T '. We say that  T  and  T ' are comparable if either
'  T T  or ' T T .

Remark 1.11 : We can understand the above definition better by thinking of a topological
space as a truckload with full of pebble gravel and all unions of collections of pebbles
being the open sets. Now by smashing the pebbles into smaller ones, the collection of
open sets has been enlarged, and the topology, like the gravel, is said to have been made
finer by the operation. We learn more about comparing topologies in the next unit.
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EXERCISE-1

1. Which of the following is not a topology ?

(A) The collection of all subsets U of X such that X \ U either is finite or is all
of X.

(B) The collection of all subsets U of X such that X \ U either is countable or
is all of X.

(C) The collection of all subsets U of X such that X \ U either is infinite or is
empty or is all of X.

(D) None of the above

2. Let  , ,X a b c . Then Which of the following is not a topology

(A)  , X

(B)   , , X a

(C)     , , , , X a b c

(D) P(X), power set of X.

3. Let  , ,X a b c  and     , , , , , X a b b cT . Is T a topology ? Justify..

4. Let  , , , , ,X a b c d e f  and         , , , , , , , , , , , , X a c d a c d b c d e fT .
Show that T is a topology.

5. Let X =   and    , all finite subsets XT . Is T a topology ? Justify..

6. If  T  is a family of topologies on X, show that  T  is a topology on X.

Is  T  a topology on X ?
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2.  Basis and Sub basis for a topology
Introduction :

Specifying the topology by means of all its open sets is too difficult, in general.
To over come this difficulty, we instead consider a smaller collection of subsets of X
and defines the topology in terms of that. That particular collection satisfying some
properties is called a basis, which we define explicitly in this unit.

Definition 2.1 : Base

Let X be any set and B be a collection of subsets of X. Then B is called a base

for a topology on X if

1. For each x X , there exists BB  such that x B .

2. For each 1 2x B B  , there exists 3B B  such that 3 1 2x B B B   .

Example 2.2 : For X =  , the collection of open intervals   , | ,a b a b B  is a
base.

Proof :

1. Let x . Then for any   > 0, we have  ,x x x    B .

2. Let    , ,x a b c d  .

 ,x a b   and  ,x c d

x b   and c < x

  c < x < b

 ,x c b  .

Let a c . Then      , , ,c b a b c d  .

Therefore, B is a base for X.

Example 2.3 :  Let C  be the collection of all circular regions (interior of circles) in the
plane. Then B is the base as given any x X , we can find a circular region around x
and the second condition is explained in the following figure 1.1.



7

Figure 1:

Example 2.4 : Let B be the collection of all rectangular regions (interior of rectangles)

in the plane. Then B is a base as shown in the following figure :

Figure 2:

Example 2.5 : If X is any set, then the collection B of all singletons of X is a base for
the discrete topology on X.

Proof : Let x X . Then  x B  and  x x .

Suppose 1 2x B B  . Then  1 2B B x  .

Therefore 3 1 2x B B B   .

Theorem 2.6 : Let B be a base for X. Then the collection

 | ,  there exists  such that x xU X x U B x B U      T B  is a topology and is
called the topology generated by the base B.

Proof 1 :  1.  Clearly T .
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Let x X . Since B is a base there exists BB  such that x B X  .

Hence X T .

2. Let U T ,    and x U


 

jx U   for some j .

Since jU T  there exists BB  such that jx B U 

Implies x B U


  

.U


  T

3. Let U1 and 2U T  and 1 2x U U 

1x U   and  2x U

  there exists B1, B2 B  such that 1 1x B U   and 2 2x B U 

1 2x B B  

Since B is a base there exists B3 such that 3 1 2x B B B  

3 1 2 1 2x B B B U U    

1 2U U  T

Hence the result is true for n = 2.

Now assume that the result is true for n = k.

That is if  U1, U2, ...., kU T , then 
1

k
i

i
U


 T

Since 
1

k
i

i
U


 T  and 1kU  T , we get that 1

1

k
i k

i
U U 



   
 

 T

Implies 
1

1
1 1

k k
i i k

i i
U U U




 

   T

Thus T  is a topology.
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Lemma 2.7 :  Let X be a set and B be a base for a topology T on X. Then T equals the
collection of all unions of elements of B.

Proof : Given that  |  there exists  such that xU X x U B x B U      T B

Let U T . Then for each x U  there exists xB B  such that xx B U  .

So we can write x
x U

U B


  .

Therefore, T {all union of elements of B}.

Since every B B  is in T , and T  is a topology, we get B  T .

T  is equal to the collection of all union of elements of B.

Remark 2.8 : If B is a base for a topology T on X, then

 | ,  there exists  such that x xU X x U B x B U      T B

     = {all union of elements of B}

i.e. every element U of T (or every open sets U of X) can be expressed as a union

of basis elements.

Lemma 2.9 : Let X be a topological space. Suppose that C is a collection of open
subsets of  X such that for each open set U of  X and each x U , there exists CC
such that x C U  . Then C is a basis for the topology on X.

Proof : Let x X . Since X is open, there exists CC  such that x C X  .

Let 1 2,C C T  and 1 2x C C  .

Since C1 and C2 are open, 1 2C C  is open.

Therefore, there exists 3C C  such that 3 1 2x C C C  

T  is a basis for X.

Let T  be the collection of open sets of X and T ' is the topology generated by C.

We will show T  = T '.

Let U T  and x U .
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Then by given hypothesis there exists CT  such that x C U 

'U T

'. T T

Let 'U T . Then U is the union of elements of C.

Since every element of C is open, union of these elements is also open.

U C    T

' T T

' T T

Theorem 2.10 : Let B and B' be bases for the topologies T and T' on X respectively.

Then the following are equivalent.

1.  T ' is finer than T (i.e., 'T T ).

2. For each x X  and for each BB  containing x, there exists 'B B  such
that 'x B B  .

Proof : 1 2 .

Suppose 'T T .

Let x X  and BB  such that x B .

Since 'B B  T T .

As  T ' is the topology generated by B', there exists ' 'B B  such that 'x B B  .

2 1 .

Let U T  and x U . Then there exists BB  such that x B U  .

Then by assumption, there exists 'B B  such that 'x B B 

'x B B U   

'x B U  

'U T

' T T
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Example 2.11 :  Let B be the collection of circular regions and  B ' be the collection
of rectangular regions in the plane. Let T and T  ' be the corresponding topologies. Then
T  = T  ' .

Proof : Clearly, given any circular region, we can find a rectangular region which

is contained in the given circular region.

' T T .

Similarly, given any rectangular region, we can find a circular region which is contained
in the given rectangular region.

' T T

' T T .

Definition 2.12 : Let   , | ,a b a b B

  ' , | ,a b a b B  and

     '' , | , , | ,a b K a b a b a b     B

Then B, B', B'' are bases where  1 11, , ,....
2 3

K  .

The topology generated by B is called the standard topology on  .

The topology generated by B' is called the lower limit topology on  .

The topology generated by B'' is called the K – topology on  , denoted by K .

Theorem 2.13 : The topology of l  and K  are strictly finer than the standardd

topology on   but are not comparable with one another..

Proof : Let T , T ' and T '' be the topologies of  , l  and K  respectively..

Let  ,x a b B . Then  , 'x b B  and    , ,x x b a b  .

' T T .
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On the other hand  0 0,1 ' B  but there is no  ,a b B  such that

   0 , 0,1a b   (if there is, then a < 0 and as    , 0,1a b  , then 0a  )

'T  is strictly finer than T.

Clearly, ''T T  as ''B B .

We know that  0 1,1 ''K   B  but there is no open interval (a, b) containing

‘0’ such that    , 1,1a b K   .

Because if  0 ,a b  then b > 0. So by Archimedean property, there exists n

such that nb > 1.

1a b
n

  

 1 ,a b
n

   but  1 1,1 K
n
  

' T T

i.e.  T '' is strictly finer than  T .

Now we will show that  T ' and  T '' are not comparable.

Since  0 1,1 ''K   B  and no interval  , 'a b B  containing ‘0’ such that

   , 1,1a b K  

''T  is not contained in 'T .

Similarly  0 0,1 ' B but no interval (a, b) or (a, b) – K containing ‘0’ will be

contained in  0,1 .

'T  is not contained in ''T .

Hence 'T  and ''T  are not comparable.

Definition 2.14 : Sub Basis

A sub basis S  for a topology on X is a collection of subsets of  X whose union
is X i.e. x X  , there exists S S  such that x S .
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We will see that topology generated by sub basis is the collection of all the
union of finite intersection of elements of sub basis.

Theorem 2.15 : Let S be a sub basis for a topology on X, and T be the collection of all
the union of finite intersection of elements of S. Then T is a topology generated by S.

Proof : Let  S * be the collection of all finite intersection of elements of T.

Now will show that  S * is a base.

Let x X . Since S is a subbase there exists S S  such that x S

As *S S , *x S S .

Let B1, 2 *B S . Then 1
1

n
i

i
B S


   and 2

1

m
i

i
B S


  .

Then 1 2 *B B  S  as 1 2B B  is the intersection of finite number of sets
of *S .

*S  is a base and

T  = {all unions of all finite intersection of elements of  S }

     = {all union of elements of  S *}

Since  S * is a base, T is a topology.

Definition 2.16 : Order Topology

Let X be a set with order relation ‘<’. Let ,a b X  with a < b. Then

   , |a b x a x b  

   , |a b x a x b  

   , |a b x a x b  

   , |a b x a x b  

These four subsets of X are called intervals determine by a and b.

Example 2.17 : Let X =   with order ‘<’ then (1;5) = {2, 3,4} and    1,5 1, 2,3, 4 .
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Lemma 2.18 : Let X be a set with simple order relation and assume that X has

more than one element. Let B be the collection of all sets of the following :

1. All open intervals (a, b) in X.

2. All intervals of form  0 ,a b  where a0 is the smallest element of X.

3. All intervals of the form  0,a b  where b0 is the largest element of X.

Then the collection B is a basis for the topology on X.

Proof : Let x X .

Suppose x is the smallest element of X.

Since X contains more than one element, there exists b such that x < b.

Then  ,x x b B .

Similarly, if x is the largest element of X, there exists a such that a < x implies

 ,x a x B .

If x is neither smallest nor largest, then there exists a and b such that a < x < b
and hence  ,x a b B .

In any case, there exists BB  such that x B .

Also if B1 and 2B B  then 1 2B B  B  because the intersection of B1 and B2
is any one of the form (a, b), [a, b) or (a, b].

Definition 2.19 : Order Topology

Let X be a set with simple order relation and assume that X has more than one
element. Then the collection B consisting of all the sets of the form :

1. All open intervals (a, b) in X.

2. All intervals of form [a0, b) where a0 is the smallest element of X.

3. All intervals of the form (a, b0] where b0 is the largest element of X.

is a basis for the topology on X, called the order topology.
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Example 2.20 : The standard topology on X    is an order topology..

Proof : Since   has neither smallest element nor largest element,

We have   , | ,a b a b B .

This topology generated by B is same as the standard topology.

Example 2.21 : X   , the set of positive integers. Then the order topology on X is
the discrete topology.

Proof : Here      , | , 1, |a b a b c c     B

R or any n > 1;    1, 1n n n   B

  Every singleton is open and hence the ordered topology on   is the discrete

topology.

Example 2.22 : X     with dictionary order..

Here   , |  and if  then a b c d a c a c b d     B

is a basis and the topology generated by this B is called the ordered topology on   .

Definition 2.23 : If X is an ordered set and a X , then the rays determined by a

are given by

   , |a x x a  

   , |a x x a  

   , |a x x a  

   , |a x x a  
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Example 2.24 : The open ray  ,a   is an open set, because if X has largest element b0

then    0, ,a a b  T .

If X has no largest element then    , ,
x a

a a x


  

 ,a   is open.

Lemma 2.25 : The open rays form a sub basis for the order topology on X. Also the
topology generated by this sub basis is same as the order topology.

Proof : Let x X .

If x is the smallest element then there exists a such that x < a and

   , ,x x a a   .

Similarly, if x is the largest element then there exists a such that a < x and

   , ,x a x a   .

Clearly, for any x X ,  ,x x    .

Hence the collection of open rays forms a sub basis.

Let  T ' be the topology generated by the subbasis and  T  be the order topology

on X.

Since each open ray is an open set, we have 'T T .

Let  ,a b B . Then

     , , ,a b b a  

   0 , ,a b b 

   0, ,a b a 

Implies 'T T  and hence ' T T .
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EXERCISE - 2

1. Consider the following

(I) The collection    1 , | ,a b a b B  is a base for  .

(II) The collection    2 , | ,a b a b B  is a base for  .

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Consider the following

(I)  Every basis element is an open set in X.

(II) Every open set is a union of basis elements for X.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Consider the following

(I)  '   if for each x X  and for each BB  with x B , there exists
       ' 'B B  such that 'x B B 

(II)  '   if for each x X  and for each BB  with x B , there exists
        ' 'B B  such that 'x B B 

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

4. Which of the following is true

(A) The topology of l  is finer than the standard topology on 

(B) The standard topology on   is finer than the topology of l

(C) The topology of l  is finer than the topology of K

(D) All of the above
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5. Consider the following

(I) The order topology with usual order on  is the standard topology on  .

(II) The order topology on the positive integers  + is the discrete topology..

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

6. Let X    and   , : ,a b a b B . Show that B is a base for X.

7. Let X    and   , 1 :n n n  B . Show that B is not a base for X.

8. Let X be a topological space; let A be a subset of X. Suppose that for each x A ,
there is an open set U containing x such that U A . Show that A is open in X.

9. Compare the finite complement and countable complement topologies.

3.  Product Topology X   YY
Introduction :

The definition of the topological product of an infinite set of topological spaces
was given by A.N. Tikhonov (1930). The construction of a topological product is one of
the main tools in the formation of new topological objects from ones already exist.
Using topological products, one can construct a number of fundamental standard objects
of general topology. Another important topology is the subspace topology, which is also
constructed from the existing one. In this unit, we focus on product topology and subspace
topology and relate them using open sets.

Before defining the product topology, we prove the following lemma.

Lemma 3.1 : The set  |  U V U is open in X  and V  is open in Y B  is a basis for a
topology on X   Y..

Proof : Let x y X Y   .

Since X is open in X and Y is open in Y, X Y B  and x y X Y   B .

Let 1 1U V , 2 2U V B .
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Then    1 1 2 2 1 2x y U V U V x U U       , 1 2y V V 

        1 2 1 2 .x y U U V V    

Figure 3:

Since 1 2U U  is open in X and 1 2V V  is open in Y (refer the Figure 3)

   1 2 1 2U U V V    B

   1 1 2 2U V U V    B

B  is a basis for X   Y.

Definition 3.2 : [The product topology]

Let X and Y be topological spaces. The product topology on X   Y is the topology

having basis as the collection of all sets of the form U   V where U is open in X and V
is open in Y.

The next theorem characterize the base for the product topology X   Y using the
bases for X and Y.

Theorem 3.3 : If B is a basis for a topology on X and C is a basis for a topology on Y,

then  | ,B C B C   D B C  is a basis for a topology on X   Y..

Proof : Let W be an open set of X Y such that x y W  .

Then there exists 'U V B , such that x y U V W    , where  B ' is a basis
for product topology X   Y..



20

x U   and y V .

Since U is open in X and x U , there exists BB  such that x B U  .

Similarly, there exists CS  such that y C V 

x y B C U V W      

x y B C W      where B C D .

D  is a basis for the product topology of X   Y.

Example 3.4 : The product of standard topology on   with itself is called the standard

topology on 2 . A basis for this product topology is

    , , | , , ,a b c d a b c d  B .

Definition 3.5 : Let 1 : X Y X    defined by  1 ,x y x   and 2 : X Y Y  

defined by  2 ,x y y  .

Then 1  is called a projection of X   Y onto X and 2  is called a projection of

X   Y onto Y.

Remark 3.6 : If U X is open, then

      1 1
1 1, | ,U x y x y U   

   , |x y x U 

 U Y 

Since U Y  is open in X Y ,  1
1 U   is open in X Y .

Similarly, if V Y  is open then  1
2 V X Y     is open in X Y .

Also    1 1
1 2U V U V    

Since U V  open in X Y ,    1 1
1 2U V    is open in X Y .
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Theorem 3.7 : The collection

     1 1
1 1| |U U is open in X V V is open in Y   S

is a subbasis for the product topology on X Y .

Proof : Let x y X Y   . Since X Y  is open in the product topology, there exists

U V B  such that x y U V X Y     .

Since x U ,    1
1x Y U Y U    

   1
1x y x Y U     

 1
1x y U    .

Let T  be the product topology on X Y and  T ' be the topology generated by S.

Since each element of S is open in the product topology, 'T T .

Now let U V  be a basis element for the product topology..

Figure 4 :

As explained in the remark ??, we have    1 1
1 2U V U V    

'U V  T

' T T

'. T T
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Lemma 3.8 : Let T  be a topology on X and Y X .

Then   |  Y Y U U is open in X T is a topology on Y..

Proof : Since  , X T , we have  YY   T  and  YY Y X  T

Let   YY U  T ,  .

Then    Y U Y U 
  

  

Since U U 


  T T

   YY U


   T .

Let   i YY U  T ,  i = 1, 2, ...., n.

Then    
1 1

n n
i i Y

i i
Y U Y U

 

   
 

   T

 YT  is a topology on Y.

4. The Subspace Topology
Introduction :

Another important topology is the subspace topology, which is also constructed
from the existing one. In this unit, we focus on product topology and subspace topology
and relate them using open sets.

Definition 4.1 : Let T  be a topology on X and Y be a subset of X. Then the topology

  |  is open in  Y Y U U XT  on Y is called a subspace topology and with this  YT  we
say that Y is a subspace of X.

We can construct the basis for the subspace topology Y using the base for the
topology X as shown in the next lemma.
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Lemma 4.2 : If B is a basis for a topology on X then the collection.

  | Y Y B BB B is a basis for the topology  YT  on Y.Y.

Proof :  Let U be an open set in Y such that x U .

Since   YU T ,  U Y V  where V is open in X.

 x V .

Since B is a basis for a topology on X there exists B B  such that  x B V .

   x B Y V Y  where   YB Y B .

  YB  is a basis for  YT .

Remark 4.3 : Every open set in a subspace topology need not be open in its parent

topology, for example if  X  with usual topology, then  0,1Y  is open in the
subspace topology Y, but not open in X. How ever thar is a special case, where every
open set of Y is also open X, which we prove in the following lemma.

Lemma 4.4 : Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is
open in X.

Proof :  Since U is open in Y,  U Y V  for some V open in X.

As Y is open in X, we get that  U Y V  is also open in X.

In the next theorem, we relate the subspace topology and the product topology.

Theorem 4.5 : If A is a subspace of X and B is subspace of Y, then the product topology
on A B  is the same as the topology on A B  inherits as a subspace of X Y .

Proof : Let T  be the product topology on A B .

Let     A B U V  be a basis element in the subspace topology on A B ,
where U is open in X and V is open in Y.

But             A B U V A U B V .

Since A U  is open in A and B V  is open in B, we get that
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    A U B V  is open in the product topology on A B .

  A BT T

Let U V  be a basis element in the product topology T  on A B .

U is open in A and V is open in B.

'  U A U  and ' V B V  where 'U  is open in X and 'V  is open in Y.Y.

       ' ' ' '        U V A U B V A B U V

Since ' 'U V  is open in X Y , we get U V  is open in A BT

  A BT T

  A BT T .

Example 4.6 : Let Y = [0,1] be a subset of  X . Then the basis for subspace topology

 YT  contains elements of the form  ,Y a b  where (a,b) is a basis element for the
topology on X then

 

 
 
 

, ,    if  , ;
0, ,    if  , ;

,
,1 ,    if  , ;

 or ,  if  , ;

 


  
 

  



a b a b Y
b a Y b Y

Y a b
a a Y b Y

Y a Y b Y

By definition of  YT , each of these sets are open in Y. (Note that the sets [0, b)
and (a,1] are not open in X).

Since the collection of these sets form a basis for order topology in the case of
Y = [0,1] its subspace topology and order topology are same.

However, next example shows that not every subspace topology is ordered.

Example 4.7 : Let X =   and    0,1 2  Y . Then Y is a subspace topology but
not an order topology.
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Proof  : The set {2} is open in the subspace topology on Y as

  3 52 ,
2 2

   
 

Y  where 
3 5,
2 2

 
 
 

is open in X.

But in the order topology on Y, {2} is not open, because any basis element

containing 2 is of the form  | 2  x x Ya x  for some a Y .

Clearly, (a, 2] is not a subset of {2}.

   Sub space topology on Y is different from order topology on Y..

Definition 4.8 : Convex set

Let X be an order set and Y be a subset of X. Then Y is called a convex subset of
X, if given , a b Y  with a < b the entire interval (a, b) of points of X should contained
in Y.

Example 4.9 : If  X , then all the intervals are convex.

Example 4.10 : If  X , then   is not convex as no interval is a subset of  .

Example 4.11 : If  X , then    0,1 2 Y  is not convex, because 0, 2Y , but

 0,2   Y .

The importance of convex sets is that, if subset is convex, then the order topology

is same as the subspace topology (observer that in the example 4.7, Y is not convex).
We prove this interesting result in the following theorem.

Theorem 4.12 : Let X be an ordered set in the order topology and Y be a convex subset
of X. Then the order topology on Y is same as the topology Y inherits as a subspace
of X.
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Proof : Consider the ray  ,a  in X.

If a Y , then    , |  and    a Y x x Y x a

which is an open ray in the order topology on Y.

If a Y , then a is either lower bound for Y or upper bound for Y as Y is a
convex subset of X.

(  if there exists , x y Y such that x < a < y, then as Y is convex,  , a x y Y )

If a is a lower bound then  , a Y Y .

If a is a upper bound then  , a Y .

 ,  a Y  is open in the order topology on Y..

Similarly,  , a Y  is also open in the order topology on Y..

Since these sets  , a Y  and  , a Y  form a subbasis for the subspace
topology on Y, subspace topology is contained in the order topology on Y.

To prove the converse, since any open ray of Y is equal to the intersection of the
open ray of X with Y, so it is open in subspace topology.

As open rays of Y form a subbasis for the order topology on Y, the order topology
on Y is contained in the subspace topology.

EXERCISE - 3

1. Let Y be a subspace of X.

(I)  If U is open in Y, then U is open in X.

(II) If U is open in X, then U is open in Y.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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2. Consider the set  |  is open in  and  is open in U V U X V Y B . Then

(I)   B is a basis for X Y .

(II)  B is a topology on X Y .

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A
inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

4. Let X    be a usual topology and Y   . Show that the subspace topology on
Y is the discrete topology.

5. Consider the set  1,1Y    as a subspace of  . Which of the following sets are

open in Y ? Which are open in   ?

 1| 1
2

A x x  

 1| 1
2

B x x  

 1| 1
2

C x x  

 1| 1
2

D x x  

5. Closed Sets
Introduction

With the help of open sets, we can introduce some of the basic concepts of a
topological space. In this unit we discuss the notion of closed set.

Definition 5.1 : Closed Set

A subset A of a topological space X is said to be closed if X – A (i.e., Ac) is open

in X.
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Example 5.2 : The subset [a, b] of   is closed as      , , ,  ca b a b  is open in

 .

Example 5.3 : In the plane 2  the set  | 0 and 0   A x y x y  is closed.

Proof : The complement of A is given by

 2 | 0 or 0     A x y x y

   | 0 | , 0        x y x y x y x y

     , 0 ,0      

Since  ,0   and  ,0   are open in 2 , we get

2  A  is open.

 A  is closed.

Example 5.4 : In the finite complement topology on X, the closed sets are finite subsets
and X itself.

Proof : Let A be a closed set.

 cA  is open in X.

   cX A  is finite or  cA .

  A  is finite or A = X.

Example 5.5 : In the discrete topology on X, each set A is closed because every subset
of X is open implies X – A is open.

Example 5.6 : Let  X ,    0,1 2,3 Y . Then [0,1] is both open and closed in Y.Y.

Proof : we can write [0,1] as   1 30,1 ,
2 2

   
 

Y
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1 3,
2 2

  
 

 is open X implies [0,1] is open in Y..

Also    0,1 2,3 Y  and [2,3] is open implies that [0,1] is closed.

  [0,1] is both open and closed in Y..

Remark 5.7 : From the above examples, we can observe that sets are not doors as a
door must be either open or closed, where as a set can be open, or closed, or both, or
neither.

The collection of closed sets have the properties similar to open sets as we discuss
in the next result.

Theorem 5.8 : Let X be a topological space. Then following holds :

1.  , X are closed.

2. Arbitrary intersection of closed sets is closed.

3. Finite union of closed sets is closed.

Proof :   and X are closed because they are compliments of open sets X and 
respectively.

Given a collection of closed sets     JA , by Demorgan laws, we have

 
 

   
 
 

J J
X A X A .

Since the sets  X A  are open, their arbitrary union  


 



J
X A  is open.

Implies 


 



J
X A  is open.

Thus 






J
A  is closed.

If Ai is a closed for i = 1, 2, ..., n, then  
1 1 

   
n n

i i
i i

X A X A
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As the finite intersection of open sets is open, we have  
1


n

i
i

X A  is open.

Hence 
1

n

i
i

A  is closed.

Definition 5.9 : Let Y be subspace of X. A subspace A of Y is said to be closed if Y – A
is open in Y.

Theorem 5.10 : Let Y be a subspace of X then a set A is closed in Y if and only if it
equals the intersection of a closed set of X with Y.

Proof : Suppose A is closed in Y.

  Y A  is open in Y..

    Y A U Y  where U is open in X.

   cA U Y  (See the Figure 5)

   A C Y  where  cC U  is closed in X

Figure 5

Conversely, suppose  A C Y  for some closed set C in X.

  X C  is open in X.

   Y X C  is open in Y..
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But    Y A Y X C  (refer the Figure 5)

  Y A  is open in Y..

  A  is closed in Y..

Remark 5.11 : A closed subset of Y need not be closed in X.

For example, consider 
10,
2

   
Y  and  X  then 

10,
2

 
 

 is closed in Y but not

closed in  . However, we have the following.

Theorem 5.12 : Let Y be a subspace of X. If A is closed in Y and Y is closed in X then
A is closed in X.

Proof : Given that A is closed in Y.

   A C Y , C is closed in X.

Since Y is closed in X we get that C Y  is closed in X.

  A  is closed in X.
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PRODUCT  TOPOLOGY

UNIT  -  II

1.  Closure and Interior of a Set
Introduction :

With the help of open sets, we can introduce some of the basic concepts of a
topological space. In this unit we discuss the notion of closure of a set and interior of a
set.

Definition 1.1 : Interior of a set

Let X be a topological space and A X . Then the interior of A is the union of
all open sets contained in A and is denoted by Int A (or A°)

i.e.   is open in | IntA U X U A .

Since each   U A IntA A .

Remark 1.2 : 1. Int A is the largest open set contained in A as Int A is the union of all
such sets.

2. If A is open, then Int A = A as A is the largest set such that A A .

Definition 6.3 : Closure of a Set

Let X be a topological space and A X . Then closure of A is the intersection
of all closed sets containing A and is denoted by A .

 i.e.   is closed in | A F X F A .

Since each   F A A A .
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Remark 1.4 :

1. A  is the smallest closed set contained in A.

2. If A is closed, then A A .

Theorem 1.5 : Let Y be a subspace of X and A be a subset of Y . Let A  denotes the
closure of A in X. Then the closure of A in Y is A Y .

Proof : Let B be the closure of A in Y.

Since A  is closed in X, we have A Y  is closed in Y.Y.

Also  A A Y . Since B is the smallest closed set containing A, we get

 B A Y .

As B is closed in Y, we have  B C Y  for some closed set C in X.

Since A B , we get A C .

As A  is the smallest closed set in X containing A, we get A C

   A Y C Y B

 A Y B

  B A Y .

Theorem 1.6 : Let A be a subset of the topological space X. Then

(i) x A  if and only if every open set U containing x intersects AA

i.e.      x A iff U A x U

(ii) Suppose the topology X is given by a basis, then x A  if and only if every basis
elements B containing x intersects A

i.e.      x A iff B A x B .

Proof. (i) : We prove x A  iff there exists open set U containing x such that

 U A .
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Let x A

   x X A  and X A  is open.

By taking  U X A , we get x U  and  U A .

Conversely, suppose there exists open set x U  such that  U A

  A X U

Since X U  is closed containing A and A  is the smallest closed set containing
A, we get  A X U

  x A .

(ii) Suppose x A  and B is a basis element with x B .

As B is open, by (i), we get  B A .

Conversely, suppose   B A x B .

Let U be an open set such that x U .

Then there exists a basis element B such that  x B U

   A U

  x A .

Remark 1.7 : A open set U of X containing x is called a neighborhood of x. With this
terminology, the first part of the above theorem can be stated as x A  iff A intersects
every neighbourhood of X.

Example 1.8 : If  X  and A = (0,1], then A  = [0,1].

Proof : Since every neighborhood of 0 intersects A, we get 0 A

If x < 0, then  ,0  is a neighborhood of x   which doesn ft intersect A.

Similarly, x > 1, then  1,  is a neighborhood of x which doesn’t intersect A.

 Hence  0,1A .
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Example 1.9 : If  X  and  1 ,  A n
n  then  0 A A .

Proof : Let B = (a, b) be a basis element with  0 , a b .

Then by Archimedean property, there exists n such that 
1

 a b
n

Implies B intersects A.

Also if a > 1, then  1,  is a neighborhood of a which doesn’t intersect A.

And if 0 < a < 1, then  1/ ,1/a m n  for some , m n .

Then  ,  a a  is a neighborhood of a which doesn’t intersect A,

where  1 min 1/ ,1 /
2

 m n .

 Hence  0 A A .

Example 1.10 : If  X  and    0 1, 2 C  then    0 1,2 C .

Example 1.11 : If  X , then   .

Proof : Let x  and B = (a,b) be a basis element with  ,x a b .

Since , a b , there exists c  such that a < c < b.

Thus  B .

Therefore   .

Example 1.12 : Consider the subspace Y = (0,1] of   and 
10,
2

   
 

A .

Then 
10,  in 
2

    
A Y .
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2. Limit Points
Introduction :

With the help of open sets, we can introduce some of the basic concepts of a
topological space. In this unit we discuss the notion of limit point of a set.

Definition 2.1 : Limit Point

Let A be a subset of a topological space X. Then a point x X  is called a limit

point of A if   /U A x    for all open set U containing x.

(i.e. every neighborhood of x intersects some point of A other than x itself.)

The set of all limit points of A is denoted by A'.

Example 2.2 :

1. If A = (0, 1], then 0 is a limit point of A and also every element of A is a limit
point.

 ' 0,1A  .

2. If  1B n
n   , then B' = {0} as zero is the only limit point of B.

3.    0 1, 2C    then C'= [1, 2].

We give the relationship between the closure of a set and the limit points of that
set in the following theorem.

Theorem 2.3 : Let A be subset of the topological space X and A' be the set of all limit

points of A. Then 'A A A  .

Proof : Let x A .

If x A , then x A A  .

Suppose x A . Then  \A x A .
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As x A , we get U A    x U 

 \U A x   x U 

x  is a limit point of A.

'x A 

'x A A  

'A A A   .

Now conversely, let 'x A .

Then  \U A x    x U 

 U A x U   

x A 

'A A 

'A A A 

Hence 'A A A  .

Corollary 2.4 : A subset of a topological space is closed if and only it contains all its
limit points.

Proof : A is closed if and only A A

if and only ' AA A 

if and only ' AA 

if and only A contains all its limit points.

3.  Hausdorff Space
Introduction :

In this unit, we introduce the Hausdroff space and discuss the closed sets of the
Hausdroff space.
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Definition 3.1 : Hausdorff Space

A topological space X is called a Hausdorff space if for each pair x1, x2 of distinct

points of X, there exist disjoint neighborhoods U1 and U2 of x1 and x2 respectively.

(i.e. 1 2 x x , there exists 1 1x U  and 2 2x U  such that 1 2  U U ).

Example 3.2 :   with standard topology is Hausdorff.

Proof : Let , a b  with a < b.

Then there exists a rational number r  such that a < r < b.

By taking  1 , U r  and  2 , U r , we get that a 1a U  and 2b U  such

that 1 2 U U .

Example 3.3 : Any non empty space X with indiscrete topology is not Hausdorff.

Proof : Let  ,  XT  be the topology..

Let , x y X  with x y .

As there is only one non empty set X, we cannot separate these two points with
two disjoint open sets. Hence X is not Hausdorff.

Example 3.4 : Let  X  with given topology   , |  n n nT . Then X is not
Hausdorff.

Proof : Consider 
10,
2
 .

As  10, ,
2
 n n  for each n, we can’t have two disjoint open sets U and V such

that 0U  and 
1
2
V .

Hence X is not Hausdorff.
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Example 3.5 :   with finite complement topology is not Hausdorff.

Proof : Let , x y  with x y .

Suppose there exist open sets U and V such that x U ; y V  such that
U V

Then  cU V .

As V is open, Vc is finite and so U is finite.

Also as U is open, Uc is finite, then  cU U  is finite, which is a contradiction.

Therefore,   with finite complement topology is not Hausdorff.

Theorem 3.6 : Every finite point set in Hausdorff space is closed.

Proof : Since every finite point set is the finite union of single point set it is enough to
prove that each singleton set is closed.

Let  0A x  and 0x x . Since X is Hausdorff, there exists x U  and 0 x V

such that U V .

In particular,  0 U x

 U A  and x U

 x A

 0  A x A

 A  is closed.

Theorem 3.7 : Let X be a space in which every finite set is closed and A X . Then the
point x is a limit point of A if and only if every neighbourhood of x contains infinitely
many points of A.

Proof : Clearly, if every neighbourhood U of x contains infinitely many points of A,
then  \ U A x

 x  is a limit point of A.
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Suppose there exists a neighbourhood U of x which contains only finitely many
points of A.

Then U also intersects A\{x} at finitely many points say at x1, x2, ..., xm.

i.e,     1 2\ , ,...., mU A x x x x .

As finite set is closed, we get  1 2\ , ,...., mV X x x x  is open.

Then  W U V  is also open containing x.

But   \ W A x , which is a contradiction to x is a limit point.

Thus every neighbourhood of x contains infinitely many points of A.

Definition 3.8 : Let X be a topological space. Then a sequence (xn) in X is said to be
convergence to x X  if for every neighbourhood U of x there exists N  such that

  nx U n N .

Remark 3.9 :

1. In a topological space, a sequence may converge to more than one point.

2. In ( ,finite complement topology), the sequence (1,2, ,3, ...) converges to every
n  because for any open set n U , since X – U is finite, we get all but

finitely many elements of the sequence lie in U.

Theorem 3.10 : If X is a Hausdorff space then a sequence (xn) of points of X converges
to at most one point of X.

Proof : Suppose xn is a sequence which converges to x X  and y X  where y x .
Since X is Hausdorff and x y  there exists U and V open sets such that x U  and
y V  and U V .

Since xn converges to x and U is a neighborhood of , nx x U  for all but finitely

many.

  only finitely many elements of (xn) are outside U.
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Also xn converges to y implies V contains all xn’s but finitely many which is a
contradiction.

 nx  converges to at most one point.

Remark 3.11 : If a sequence xn converges in a Hausdorff space, then it converges to
only one point say x and this x is called the limit of xn and is denoted by nx x .

Definition 3.12 : A topological space X satisfies T1 axiom if every finite point set is
closed in X.

Remark 3.13 : Every Hausdorff space satisfies T1 axiom. The converse need not be
true i.e. a topological space satisfying T1 axiom need not be a Hausdorff space. e.g. Let
X be a infinite set and consider the finite complement topology on X then this topological
space satisfies T1 axiom. But (X1, Finite complement topology) is not Hausdroff. Infact
we prove that any two open sets in X intersects i.e. U V . Suppose not then U
and V such that U V

  V X U .

Since U is open, X – U is finite.

V  is finite.

Since X is infinite, X – V is infinite.

V  is not open.

Theorem 3.14 :

1. Every simple order set is a Hausdroff space in the order topology.

2. A subspace of a Hausdroff space is Hausdroff .

3. Product of two Hausdroff spaces is Hausdroff.

Proof :

1. Let A be a subset i.e. simply ordered subset of X and , x y A  with x y .

Consider, without loss of generality,  , |   x y S z x z y
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If S  then  ,U y  and  , V x  are neighbourhood of x and y such that

U V .

If  S  let z S  then  , U z  and  , V z  are neighbourhood of x
and y such that U V .

 A  is Hausdroff.

2. Let y be a subspace of a Hausdroff space X and , x y Y  with x y

, x y X .

Since X is Hausdroff U  and V such that x U , y V , U V

  x U Y  and  y V Y  and        U Y V Y .

Y  is Hausdroff.

3. Suppose X and Y are Hausdroff space. Let 1 1x y , 2 2  x y X Y  such that

1 1 2 2  x y x y

1 2 x x  or 1 2y y .

If 1 2x x  then ,U V  such that 1x U  then 2 , x V U V .

1 1   x y U Y  and 2 2   x y V Y  such that      U Y V Y .

 X Y  is Hausdroff space.

EXERCISE - 4

1. Consider the following statements

(I) In the finite complement topology on a set X, every finite set is closed.

(II) In the discrete topology on a set X, every finite set is closed.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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2. Let X be a topological space.

(I) Arbitrary intersection of open sets are open.

(II) Arbitrary union of closed sets are closed.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Consider the following

(I) If X is Hausdorff space, then every singleton set is closed.

(II) If every singleton set in X is closed, then X is Hausdorff.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

4. Show that if A is closed in X, and B is closed in Y, then A B  is closed in X Y .

5. Show that if U is open in X, and A is closed in X, then U \ A is open in X and
A \ U is closed in X.

6. For subsets A and B of X, show that

(a)   If A B , then A B

(b)   A B A B 

4.  Continuous Functions
INTRODUCTION

We have seen the concept of continuity on real line and in the plane. In this
section, we define the continuity function which generalizes all these existing definitions.
We also learn homeomorphism, which is analogous to the isomporphism between
algebraic structures.

Definition 4.1 : Continuity

Let X and Y be topological spaces. Then :f X Y  is continuous if for each

open set V in Y,  1f V  is open in X.
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Example 4.2 : If X is discrete topology then every function :f X Y  is continuous,

because every subset of X is open and hence is  1f V .

Example 4.3 : If Y is indiscrete topology, then any function :f X Y  is continuous.

Proof : Since Y is indiscrete, the only open sets are   and Y.

Also  1f     and  1f Y X  , which are open in X.

Hence :f X Y  is continuous.

In the definition of continuity, the condition on open sets can be reduced to basis

elements, as we prove in the following lemma.

Lemma 4.4 : A function :f X Y  is continuous if  1f B  is open for every basis
element BB .

Proof : Let V be open in Y.

Since B is a basis for Y, we can write IV B  

     1 1 1 .I If V f B f B   
  

    

If  1f B
  is open B B  then  1

I f B 


  is also open in X

 1f V  is open in X.

  f  is continuous.

Theorem 4.5 : Let X and Y be topological spaces and :f X Y  then the following
are equivalent

1. f is continuous.

2. For every subset A of X,    f A f A .

3. For every closed set B in Y;  1f B  is closed in X.
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4. For every x X and every neighbourhood V of  f (x), there exists a

neighbourhood U of x such that  f U V .

Proof : (1)   (2) Suppose f  is continuous.

Let A X  and x A .

To show that    f x f X , let V be a neighborhood of  f x .

Since f is continuous,  1f V  is open in X.

Also  1x f V  implies  1f V A   .

Let  1y f V A 

 f y V   and    f y f A

   f y V f A  

 V f A 

   f x f A 

   f A f A 

(2)   (3) Let  1A f B

    1f A f f B B  

 f A B B   .

Since A X , we have      f A f A f A B  

   1 1A f f A f B A    

A A 

A  is closed.

 1f B  is closed.
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(3)   (4) Let x X  and V be an open set in Y such that  f x V .

Then Y – V is closed in Y and hence  1f Y V   is closed in X.

 1X f V   is closed in X.

 1f V  is open in X.

So by letting  1U f V , we have  1x f V U   and

   1  f U f o f V V 

  .f U V 

(4)   (1) Let V be an open set in Y and  1A f V .

To show A is open in X, let x A . Then  f x V .

Then there exists an open set U containing x such that  f U V

 1U f V A 

x U A  

A  is open in X.

 1f V  is open in X.

f  is continuous.

As discussed in the introduction, we now show that continuity in real case is a
special case of our definition.

Theorem 4.6 : If  :f    is continuous by means of topological spaces i.e.  1f U is

open for all open set U then f is continuous by    definition i.e. given 0x   and

  > 0, there exists   > 0 such that 0x x    implies     0f x f x   .

Proof : Let 0x   and   > 0. Then     0 0,V f x f x     is open in  .

As  f  is continuous,  1f V  is open.
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Since  1
0x f V , for two real number a and b, we have    1

0 ,x a b f V 

Now take  0 0min ,x a b x    .

Let x  be such that 0x x   .

Then    0 0, ,x x x a b    

   1,x a b f V  

      0 0,f x V f x f x     

   0f x f x   

  f continuous by    definition.

The next few results are about construction of continuous from one topological
space to another.

Theorem 4.7 : If : f X Y  maps all of X into single point 0 y Y , then  f  is continuous.

Proof : Let U be an open set in Y. Then   01

0

,  if ;
X,  if .

  
  

y U
f U

y U

As   and X are open in X, we get that  1f U  is open in X.

Therefore, f is continuous.

Theorem 4.8 : If A is a subspace of X then the inclusion function : j A X  is
continuous.

Proof : If U is open in X, then  1  j U A U .

Since A U  is open in A   1j U  is open in A.

  j  is continuous.
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Theorem 4.9 : If : f X Y  and : g Y Z  are continuous then   : g o f X Z  is
continuous.

Proof : Let General Topology Page 50 and U is open in Z.

  1 g U  is open in Y..

         
11 1   f g U g o f U  is open in X.

   g o f  is continuous.

Theorem 4.10 : If : f X Y  is continuous and A is a subspace of X then : Af A Y is
continuous.

Proof : We can observe that   Af f o j  where j is the inclusion map.

As f and j are continuous, there composition   Af f o j  is also continuous.

We now prove interesting result of continuity, called pasting lemma, which
roughly states that under some conditions, two continuous functions pasted (glued)
together gives a continuous function.

Lemma 4.11 : The pasting Lemma

Let  X A B  where A and B are closed in X. Let : f A Y  and : g B Y

be continuous. If       f x g x x A B , then f and g combine to give a continuous

function : h X Y  defined by  
 
 

  
  

 
 



f x x A
h x

g x x B

Proof : Since       f x g x x A B , h is well defined.

To show : h X Y  is continuous, let C be closed in Y..

Then      1 1 1   h C f C g C  is closed as  1f C  is closed in A and hence

in X; similarly  1g C  is closed in X.

Therefore, : h X Y  is continuous.
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Remark 4.12 : This result is also true if A and B are open i.e.  X A B  where A and
B are open in X.

Example 4.13 : The function :  h  defined by  
,   0;

,  0.
2


 



x x
h x x x

 is continuous.

Proof : Take  ,0 A  and  0, B .

Define :  f A  by   f x x  and

:  g B  by  
2


xg x .

Then f and g are continuous.

Here  0A B  and    0 0 0 f g .

As  
 
 

,  ;
,  .

 
 



f x x A
h x

g x x B
.

by pasting lemma, h is continuous.

5. Homeomorphism
Definition 5.1 : Let X and Y be topological spaces and :f X Y  be a bijective map.

Then f is called a homeomorphism if f and 1f   are continuous and in this case X and Y
are said to be homeomorphic.

Lemma 5.2 : :f X Y  is a homeomorphism  f U  is open in Y if and only if U is
open in X.

Proof : To show :f X Y  is continuous, let U be open in Y.

  1U f f U   is open in Y



50

 1f U  is open in X.

  f is continuous.

To show 1 :f Y X   is continuous, let U be open in X.

 f U  is open in Y.

     
11f U f U
   is open in Y.

1f   is continuous.

On the other hand assume that f is a homeomorphism. Then f and 1f   are
continuous.

Suppose  f U  is open in Y. As :f X Y  is continuous, we get   1f f U

is open in X.

U  is open in X.

Now if U is open in X, as 1 :f Y X   is continuous, we have    
11f U
  is

open in Y.

 f U  is open in Y.

Example 5.3 : The map :f    defined by   3 1f x x   is a homeomorphism.

Proof : Clearly f is bijective and continuous.

Also  1 1
3

yf x 
  is continuous.

Hence f is a homeomorphism.

Example 5.4 : The function  : 1,1f     defined by  
21

xf x
x




 is a

homeomorphism.

Proof : Clearly  f  is continuous.

To show  f  is one one, let    f x f y
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Then  x y xy y x  

As 1xy   , we get x = y.

To show f onto, let 0 y  .

Then 
21 1 4

2
y

f y
y

      
 

Also  0 0f  .

Hence f is onto.

Also  
2

1
1 1 4

0
2
0 0

y yf y y
y



    
 

Then  1f y  is continuous and hence f is a homeomorphism.

Example 5.5 : The function : lf    given by  f x x  is not a homeomorphism.

Proof : Here 1 : lf     is not continuous, because the inverse image of the set [1,2)

which is open in l , is itself, which is not open in  .

Hence f is not a homeomorphism.

EXERCISE - 5

1. Let X and Y be topological spaces and :f X Y .

(I) If  f  is continuous, then    f A f A , for every subset A of X.

(II) If for every subset A of X,    f A f A , then f is continuous.

(A) Only (I) is true. (B) Only (II) is true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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2. Let X and Y be topological spaces and :f X Y .

(I) If X has discrete topology, then f is continuous.
(II) If Y has indiscrete topology, then f is continuous.
(A) Only (I) is true. (B) Only (II) is true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Let   denotes the set of all real numbers in its usual topology and l  denotes
same set in the topology generated by all intervals of the form [a, b). Let

: lf   be defined by  f x x  for every real number x. Then which of the
following statements is true ?
A)  f is not continuous B)  f is continuous

C)  f is a homeomorphism D)  1f   is not continuous

4. Prove that for functions :f   , the    definition of continuity implies
the open set definition.

5. Suppose that :f X Y  is continuous. If x is a limit point of the subset of A of

X, is it necessary true that  f x  is a limit point of  f A  ?

6. Show that the subspace (a, b) of   is homeomorphic with (0, 1) and the subspace
[a, b] of   is homeomorphic with [0, 1]

7. Find a function :f    that is continuous at precisely one point.

6. Product Topology
Definition 6.1 : Let   JA   be an indexed family of sets and   JX A  .

The cartesian product of this indexed family is denoted by  J A   is defined

as   |  for each  
    J JA x x x A J      .

Lemma 6.2 :  Let   JX  be an indexed family of topological spaces let

 |    J U U is open in X   B  then B is a basis for the topology  J X  .
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Proof : Let x =     Jx x X   since each x  is open in X ,

  JB X  B

  x B B .

Let 1 2, B B B  then 1 2,   J JB U B V  

   1 2
 

   
J J

B B U V 
 

  


  
J

U V 


, U V   is open in X

1 2 B B .B .

  B is a basis for  J X  .

Definition 6.3 : Box Topology

Let   JX   be an indexed family of topological spaces then the collection

 |  is open in  for each   J U U X a J   B is a basis for  J X  and the
topology generated by this basis is called the box topology.

Definition 6.4 : Product Topology on  J X 

For each  J . Define    J X X  B  by    x x B  then B ’ss
are continuous.

Let   1 |  is open in  S U U XBB B B B  and   JS SB B  then S is a sub

basis for  X  and topology generated by S is called the product topology..

Theorem 6.5 : The product topology on  X  has a basis element in which elements

are of the form U  where U  is open in X  for each  J  such that U  is open in

X  for each  J  such that U  equals X  except for finitely many ’s.s.



54

Proof : Let B be the basis generated by the sub basis S then B consist of finite
intersection of elements of S. If we intersect element belonging to the same SB we
don’t get any thing new because

     1 1 1      U V U VB B BB B B B BS  is again an element of BS .

  Assume that basis element is the finite intersection of different BS ’s.s.

     1 21 1 1
1 1 1
      ....      

n
B U U UB B BB B B  then

x B  if and only if x  1
    1, 2,...,   i i

x U i nB B

if and only if  
    1,2,...,   
i i

x U i nB B

if and only if     1,2,...,  
i i

x U i nB B

  There is no condition on x  if   i B  i = 1, 2, ..., n

   UB  where U X   if   i B

  B U  where U X   except for finitely many ’s.s.

Remark 6.6 :

1. In a finite product space 1n
i iX  the box topology is same as the product topology..

2. Since every basis element in the product topology belongs to the basis for the
box topology. We have box topology is finer than product topology.

Theorem 6.7 : Let X  be an indexed family of spaces and A X    for each  if

 X  is given either the product or box topology then  J JA A   .

Proof : Let  Jx A 

      x A J 

To show  Jx A  .
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Let  Jx U 

     x U J   .

Since x A   and x U 

        A U J  

             J J JA U A U     

  Jx A 

   J JA A  

Conversely, let  Jx A  .

To show  Jx A  .

We have to show that     x A J   .

Let     x U J  

  Jx U 

      J A U  

   J A U  

Say   Jy A U  

    y A U   

,    A U  

    x A  

  Jx A 

  J JA A   .
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Theorem 6.8 : Let :  Jf A X   be given by      
 Jf a f a   wheree

: f A X   for each .

Let  X  have the product topology then f is continuous if and only if f is
continuous for each .

Proof : :  Jf A X   is given by      
 Jf a f a   where : f A X  .

Since :   J X X   , we get   f f  .

Now suppose f is continuous. As   is continuous,   f  is continuous  .

  f  is continuous  .

Conversely, suppose f  is continuous for each .

A typical basis element of the product topology is  1 UB B  where UB  is open

in XB .

We have to show that   1 1 f UB B is open in A.

But         11 11      f U f U f UB B B B B B .

Since fB  is continuous.  1
betaf UB  is open.

 f  is continuous.

Remark 6.9 : The above result is not true for box topology.

For example, consider   w
n nX , infinite countable product of

,   nX n .

Define :  wf  by    , ,...f t t t .

Suppose that w  is given with box topology..

Here each   nf  given by   nf t t is continuous.
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But we prove that f is not continuous. Consider,

  1 1 1 11,1 , , ...
2 2 3 3

            
   

B

    
1

1 1,


    
 n n n

Then B is open in box topology.

Suppose  1f B  is open in  .

Since  10  f B ,  1f B  is open in   there exists  >0 such that

   10 ,    f B  .

  ,  f B 

    ,    n n B 

   1 1, ,      
 nf n n

 

  1 1, ,      
 n n

 

Which is a contradiction as there 0n  such that 0 1n

0

1
 

n  and hence  ,   is not subset of 
0 0

1 1,  
 n n

Hence,  1f B  is not open and hence f is not continuous.

7. The Metric Topology
Definition 7.1 :  If d is a metric on X, then the collection   , | , 0  dB x x X B

is a basis for X and the topology generated by B is called the metric topology on X
induced by ‘d’.
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Definition 7.2 : Metrizable

A topological space X is said to be metrizable if there exists a metric d on X that

induces the topology of X.

Example 7.3 : A metric space is metrizable with given metric on X.

Definition 7.4 : Bounded Metric

Let X be a metric space with metric d.

Define :   d X X  by     , min , ,1d x y d x y . Then d  is a metric and
called the standard bounded metric corresponding to d.

Theorem 7.5 : The topology generated by d is same as the topology generated by d .

Proof : First we show that     , min , ,1d x y d x y  is a metric on X.

1.  , 0d x y

2.  , 0d x y  if and only if x = y

3.    , ,d x y d y z

4. Now we will show that      , , , d x z d x y y z

Suppose  , 1d x y  or  , 1d y z  then

     , , 1 ,  d x y d x z d x z

     , , ,  d x z d x y d y z

Now suppose  , 1d x y  and  , 1d y z  then

   , ,d x y d x y  and    , ,d y z d y z

       , , , ,   d x z d x z d x y d y z

       , , d x y d y z
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         , , , d x z d x y d y z

d  is a metric on X.

Since the collection of -balls with  < 1 forms a basis for the metric topology, it
follows that d and d  induces the same topology on X as the collection of  balls with
 < 1 under these two metric are same.

Theorem 7.6 : Let d and d' be two metrics on X ; T and  T ' be topologies induced by d
and d' . Then  T ' is finer than T if and only if for each x X  and  > 0 there exists

 > 0 such that    ' , ,d dB x B x  .

Proof : Suppose 'T T . Let x X  and  > 0.

Since  ,dB x   is open in  T , there exists 'B T  such that  , dB B x  .

As B is open in  T ' there exists  > 0 such that  ' , dB x B

Conversely, suppose assume that    criteria is true.

To show 'T T , let B T .

As B is open in  T , there exists  > 0 such that  , dB x B .

Then by assumption there exists  > 0 such that    ' , ,d dB x B x 

 ' , dB x B  

'T  is finer than  T .

Theorem 7.7 : The topologies on n  induced by Euclidean metric d and square metric
are the same as the product topology on n .

Proof : Here     
1

2 2
1,  n

i i id x y x y  and

   , max ...  i i n nx y x y x y . Since   
1

2 2
1  n

ii i i ix y x y
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1

2 2
1max 1      n

ii i i ii n x y x y

   , , x y d x y .

Let  , dy B x 

 , d x y 

 , x y 

 , y B x 

   , , dB x B x 

  d T T .

Also    2 2
1max    i i i n i ix y x y

   2 2
1 1max     n

i i i i n i ix y n x y

    
1

2 22
1 1max     n

i i i i n i ix y n x y

   , , d x y n x y

Let  ,y B x 

 , x y 

 , d x y
n


,   
 

dy B x
n


 , ,   
 

dB x B x
n
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   dT T

   dT T

Now we show that topology T  generated by square metric is same as product

topology  T .

Let       1 1 2 2, , ... ,    n nB a b a b a b  be a basis element in n  and

 1 2, ,..., nx x x x B

 ,     1, 2,...,   i i ix a b i n

Since  ,i ia b  is open in   there exists 0i  such that

   , ,   i i i i i ix x a b i 

Take  1 2min , ,..., n    .

To show  , B x B  , let  ,y B x 

 , x y 

     i ix y i

       i i ix y i 

   , ,    i i i i i i iy x x a b 

 y B

 , B x B 

 T T .

Let  ,B x   be a basis element in T . Then

       1 1 2 2 1 1, , , ... ,         B x x x x x x x         is open in n

     1 1, ... , ,        n nB x x x x B x    
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 T T

    dT T T

Hence the product topology on n  is metrizable.

Definition 7.8 : Given an index set J and  x x ,  y y , define   on  J  by

    , sup , | x y d x y J    where     , min , ,1d x y d x y    . Then the

topology induced by   is called the uniform metric.

Theorem 7.9 : The uniform topology on  J  is finer than the product topology and
coarser than the box topology.

Proof : Let  B U  be a basis element in J  and x B .

Since  U  except for finitely many, let iU  for 1, 2,... n .

As x B  then    x U    as 1 2
, ,...

n
U U U    are open in   there exists

0i such that

 ,   i ii i i ix x x U    

Take  1 2min , ,...., n    .

Let  ,y B x 

 , x y 

 ,      d x y   

In particular,

 , ,   1, 2,...,   
i i id x y i n   

 
i i

y U     i = 1, 2, ... n

  y U B
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 , fB x B .

Hence Uniform topology is finer than product topology.

Let B be a basis element in the uniform topology i.e.  ,B B x  .

Now take ,
2 2

    
 

U x x 
  .

Then U B  as for any y in U,  y x  

 , y B x  .

  Box topology is finer than uniform topology..

Theorem 7.10 : Let    , min ,1 d a b a b  be the standard bounded metric on  . If

x and y are two points of  w , define    ,
, sup

 
  

 
i id x y

D x y
i

. Then D is a metric

that induces the product topology on w .

Proof :             , , ,  i i i i i id x z d x y d y z

          
     , , ,

 i i i i i id x z d x y d y z
i i i

   , ,
sup sup

   
    

   
i i i id x z d x z
i i

        
     ,

, , i id x z
D x y D y z

i

     
,

sup , ,
 

   
 

i id x y
D x y D y z

i

     , , ,  D x z D x y D y z

  D is a metric on w .
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Let TD be the topology generated by D and T  be the product topology on w .

To show  DT T , let  ,DB x   be a basis element of DT .

Since  > 0 there exists N such that 
1


N
 .

Let    1 1, ... ,      N NV x x x x    . Then V is open in the product
topology.

To show that  , DV B x  , let y V .

Then  ,   1,2,...,    i i iy x x i N   and     iy i N .

Clearly, 
1    


   i ix y

i N
i N



       1 1 2 2 ,, ,
, max , ,..., ,

1 2
 

   
 

N Nd x yd x y d x y
D x y

N


 ,  Dy B x 

 ,  DV B x  .

Conversely, consider a basis element   i iU U  in the product topology

where Ui is open in   for 1 2, ,....., ni     and  jU    ij  .

Let x U . Then i ix U   i = 1, 2, ..., n.

Since Ui is open in   there exists 1 0 i  such that

 ,   i i i i i ix x x U     i = 1, 2, ..., n.

Now take  1min | ,... i
ni

i


   .

Claim :  , DB x U .

Let  , Dy B x 
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 , D x y 

 ,
sup

1
 

  
 

i id x y


 ,
   

1
  i id x y

i

  1 2, . 1  , ,...     i i i nd x y i i    

 i iy U  for i = 1, 2, ..., n

 y U

 y U

 DT T

w  is metrizable.
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COMPACT SPACES AND COUNTABILITY AXIOMS

UNIT  -  III

1.  Connected Spaces
Introduction :

In this unit, we define connected topological space and construct new connected
spaces from the existing ones. We also show that finite cartesian product of connected
spaces is connected, but arbitrary product of connected spaces need not be connected.

Definition 1.1 : Let X be a topological space. A separation of X is a pair (U, V) of
disjoint non-empty open sets of X whose union is X. If there is no separation of X, then
X is called connected. If a separation exists for X, then X is called disconnected.

We give an equivalent definition of connectedness in terms of open and closed
sets.

Lemma 1.2 : A space X is connected if and if the only subsets of X that are both open
and closed in X are the empty set and X itself.

Proof : Suppose X is connected.

Let A X  be closed and open in X such that A  and A X .

Then U = A and V = Ac forms a separation of X, which is a contradiction to that

X is connected.

Conversely, suppose X is not connected.

Then there exist disjoint nonempty open sets U and V such that U V X .

As U = Vc, U is both open and closed and U    and U X , which is a
contradiction.

Hence X is connected.
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Theorem 1.3 : If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty
sets A and B whose union is Y, neither of which contains a limit point of the other. The
space Y is connected if there exists no separation of Y.

Proof : Suppose A and B form a separation of Y i.e. Y A B  , A and B are open,
A B  .

A  is both open and closed in Y.

Then the closure of A in Y A Y  .

Since A is closed in Y, closure of A is A.

i.e. A Y A

A B  

Similarly, A B  .

  No limit point of A is in B and vice-versa.

Conversely, suppose there exist A and B such that A B Y , A B   ,

A B   ,      A Y A A B A A A B A        .

A  is closed in Y.

B  is open in Y.

Similarly, A is open in Y.

Example 1.4 : Let X denote a two point space in the indiscrete topology. Then X is
connected as there is no separation for X.

Example 1.5 : Let X    and    1,0 0,1Y    . Then Y is disconnected as  1,0A  

and  0,1B   forms a separation of Y.

Lemma 1.6 : If the sets C and D form a separation of X and if Y is connected subspace
of X then Y lies entirely within either C or D.
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Proof : Since X C D  ; C and D are open in X, we have C Y  and D Y  are open
in Y.

Also    C Y D Y Y   .

Since Y is connected, C Y   or D Y 

cY C D    or cY D C 

i.e.  Y D  or Y C .

As we have seen in the example ??, union of connected spaces need not be
connected, but with some extra conditions we can prove that union of connected spaces
is connected.

Theorem 1.7 : The union of a collection of connected sub spaces of X that have a

point in common is connected.

Proof : Let  A  be a collection of connected subspaces and p A .

We prove that the space Y A   is connected.

Suppose that Y C D   is a separation of Y.

Since p Y , we have p C  or p D ; suppose p C .

As  A Y   is connected and Y is not connected, we get either A C  or

A D  .

As p A  for each   and p C  we get that  A C   for every 

Hence  A C  , contradicting the fact that D is nonempty..

Theorem 1.8 : Let  A  be a sequence of connected subspaces of X, such that

1n nA A     for all n. Then nA  is connected.

Proof : Suppose nA  is disconnected.

Then there is a separation (U, V) of nA .
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Since each An is connected , we get either nA U  or nA V .

Suppose that nA U . Since 1n nA A    , we get that 1nA U  .

Then by induction each nA U .

Hence nA U  and V is empty, which is a contradiction.

Therefore, nA  is connected.

Theorem 1.9 : Let  A  be a collection of connected subspaces of X, let A be a connected

subspace of X. If A A    for all , then  A A   is connected.

Proof : Suppose  A A   is disconnected.

Then there is a separation (U, V) of  A A  .

Since A is connected , we get either A U  or A V .

Suppose that A U . Since A A    for all , A U  .

Hence A U   and V is empty, which is a contradiction.

Therefore,  A A  is connected.

Theorem 1.10 : Let A be a connected subspace of X. If A B A  , then B is also
connected.

Proof : Suppose that B is disconnected.

Then there is a separation B C D   for B.

Since A is conencted and A B C D   , we get that either A C  or A D .

Suppose A C . Then A C .

Thus, B A C  .

Since (C, D) is a separation for B, we get C D  
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Therefore, cB C D   and so B D  , which is a contradiction.

Hence B is connected.

Theorem 1.11 : The image of a connected space under a continuous map is connected.

Proof : Let :f X Y  be a continuous map and X be connected.

Since f  is continuous, we know that  :g X f X  is also continuous.

Now suppose that  f X  is disconnected with separation  f X A B  .

Then  1g A  and  1g B  are disjoint open sets such that    1 1X g A g B  

This is a contradiction to X is connected.

Theorem 1.12 : A finite Cartesian product of connected spaces is connected.

Proof : We prove that the product of two connected spaces X and Y is connected.

Let a b X Y    be a base point. Then the “horizontal slice” X b  is connected,
being homeomorphic with X.

Also each “vertical slice” x Y  is connected, being homeomorphic with Y.

Since    x b X b x Y    , each “T-shaped” space

Figure 6:

   xT X b x Y    is connected.

Since x xa b T  and each xT  is connected, therefore the union x xT  is
connected. As this union equals X Y , the space X Y  is connected.
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Now suppose that the product space 1 1... nX X    is connected.

Since the space 1 ... nX X   is homeomorphic with  1 1... n nX X X   , we

get that 1 ... nX X   is connected.

We now show that arbitrary product of connected spaces need not be connected.

Example 1.13 : The product space w  is not connected in the box topology..

Proof : Consider the cartesian product w  in the box topology..

We can write w A B  , where A is the set consisting of all bounded sequences

of real numbers, and the set B of all unbounded sequences.

Then the sets A and B are disjoint and open in the box topology For if a is a point

of w , the open set

   1 1 2 21, 1 1, 1 ...U a a a a      

consists entirely of bounded sequences if a is bounded, and of unbounded sequences if
a if unbounded.

Thus, even though   is connected, the product space w  is not connected in
the box topology.

Theorem 1.14 : The product space w  is connected in the product topology..

Proof : Now consider w  in the product topology..

Let    1 2, ,... | 0 for 
n

ix x x x i n    .

The space 
n

  is clearly homeomorphic to n  so that it is connected.

Let  n   . Since each  n
  is connected and   0 0,0,...

n
   , it follows

that the space   is connected.

To show that w  is connected, it is enough to prove that the closure of 

equals all of w .
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Let  1 2, ,... wa a a   and iU U   be a basis element for the product

topology that contains a. We show that U intersects  .

Since U is open in the product topology, there exists an integer N such that

iU   for i > N.

Then the point x = (a1; :::an;0;0; :::) of R¥ belongs to U, since ai 2 Ui for all i,

and 0 2Ui for i > N.

2. Connected Subspaces of the Real Line
Definition 2.1 : Linear Continuum

A simply ordered set L having more than one element is called a Linear Continuum

if the following hold :

1. L ha the least upper bound property.

2. If x < y, there exists z such that x < z < y.

Theorem 2.2 : If L is a linear Continuum in the order topology, L is connected, and so
are intervals and rays in L.

Proof : We know that a subspace Y of L is said to be convex, if for every pair of points
a, b of Y with a < b, the entire interval [a, b] of points of L lies in Y.

We first prove that if Y is a convex subspace of L, then Y is connected.

To contrary, assume that Y is the union of the disjoint nonempty sets A and B,
each of which is open in Y.

Choose a A  and b B  such that a < b.

Then the interval [a, b] of points of L is contained in Y.

Hence [a, b] is the union of the disjoint sets  0 ,A A a b   and  0 ,B B a b  ,

each of which is open in [a, b] in the subspace topology, which is the same as the order
topology.

The sets A0 and B0 are nonempty because 0a A  and 0b B . Thus, A0 and B0
forms a separation for [a, b].
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Let c = sup A0. We show that 0c A  and 0c B , which contradicts the fact that
[a, b] is the union of A0 and B0.

Case 1 : Suppose that 0c B . Then c a , so either c = b or a < c < b.

In either case, it follows from the fact that B0 is open in [a, b] that there is some
interval of the form (d, c] contained in B0. If c = b, we have a contradiction at once, for
d is a smaller upper bound on A0 than c. If c < b, we note that (c, b] does not intersect A0
(because c is an upper bound on A0).

Then      , , ,d b d c c b   does not intersect A0.

Again, d is a smaller upper bound on A0 than c, contrary to construction.

Case 2 : Suppose that 0c A . Then c b , so either c = a or a < c < b.

Because A0 is open in [a, b], there must be some interval of the form [c, e)
contained in A0.

Because of order property (2) of the linear continuum L, we can choose a point
z of L such that c < z < e.

Then 0z A , contrary to the fact that c is an upper bound for A0.

We now prove that the intermediate value theorem of calculus is the special
case of the following theorem that occurs when we take X to be a closed interval in 
and Y to be  .

Theorem 2.3 : Intermediate value theorem

Let :f X Y  be a continuous map, where X is a connected space and Y is an

ordered set in the order topology. If a and b are two points of X and if r is a point of Y
lying between f (a) and f (b), then there exists a point c of X such that f (c) = r.

Proof : The sets    ,A f X r   and    ,B f X r   are disjoint, and

 f a A  and  f b B .

Also A and B are open in  f X .

Suppose that there does not exist c X  such that  f c r .
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Then  f X A B   and hence A and B forms a separation of  f X , which is
a contradiction to the continuous image of a connected space is connected.

EXERCISE - 7

1. Consider the following statements

(I) l  is connected

(II)   is connected

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Consider the following

(I) If f is continuous and E is connected, then  1f E  is connected

(II) If f is continuous and E is connected, then  f E  is connected.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Let T  and T  ' be two topologies on X. If 'T T , what does connectedness of
X in one topology imply about connectedness in the other ?

4. Show that if X is an infinite set, it is connected in the finite complement topology.

5. Let Y X ; let X and Y be connected. Show that if A and B form a separation of
X \ Y, then Y A  and Y B  are connected.

3.  Local Connectedness
Introduction :

In this section, we discuss path connectedness, components, locally path
connectedness and try to relate these concepts.

Definition 3.1 : Given points x and y of the space X, a path in X from x to y is a

continuous map  : ,f a b X  such that  f a x  and  f b y . A space X is said to
be path connected if every pair of points of X can be joined by a path in X.
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Theorem 3.2 : Every path connected space X is connected.

Proof : Suppose X A B  . Let a A  and b B . Then, since X is path connected,

there exists a path  : ,f c d X  between a and b.

Since f  is continuous and A and B are open,  1f A  and  1f B  are open and

are disjoint. Therefore      1 1,c d f A f B    is disconnected, which is a
contradiction.

Hence X is connected.

Remark 3.3 : The converse of the above theorem is not true. For example, let S denote
the following subset of the plane.

  sin / | 0S x l x x l   

Figure 7:

Because S is the image of the connected set (0, 1] under a continuous map, S is

connected. Therefore, its closure S , called the topologist’s sine curve, in 2  is also

connected. But S  is not path connected.

Definition 3.4 : Given X, define an equivalence relation on X by setting x ~ y if there is
a connected subspace of X containing both x and y. The equivalence classes are called
the components (or the “connected components”) of X.
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Theorem 3.5 : The components of X are connected disjoint subspaces of X whose union
is X, such that each nonempty connected subspace of X intersects only one of them.

Proof : Being equivalence classes, the components of X are disjoint and their union is
X. Each connected subspace A of X intersects only one of them. Because, if A intersects
the components C1 and C2 of X, say at points x1 and x2, respectively, then x1 ~ x2 by
definition; this cannot happen unless C1 = C2.

To show the component C is connected, choose a point x0 of C. For each point x
of C, we know that x0 ~ x, so there is a connected subspace Ax containing x0 and x. By
the result just proved, xA C . Therefore x C xC A  .

Since the subspaces Ax are connected and have the point x0 in common, their
union is connected.

Definition 3.6 : A space X is said to be locally connected at x if for every neighborhood

U of x, there is a connected neighborhood V of x contained in U. If X is locally connected
at each of its points, it is said simply to be locally connected.

Theorem 3.7 : A space X is locally connected if and only if for every open set U of X,
each component of U is open in X.

Proof : Suppose that X is locally connected; let U be an open set in X; let C be a
component of U. To show C open, let x C . Since X is locally connected,there exists a
connected neighborhood V of x such that V U . Since V is connected and V C  ,
we get x V C  . Therefore, C is open in X.

Conversely, suppose that components of open sets in X are open.

Given a point x X  and a neighborhood U of x, let C be the component of U
containing x. Since each component is conneceted, C is connected; since it is open in X
by hypothesis, and x C U  . Therefore X is locally connected at x.



77

EXERCISE - 8

1. Consider the two statements
(I) Every path connected space is connected.
(II) Every connected space is path connected.
(A) Only (I) is true. (B) Only (II) is true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Let X be a locally path connected topological space. Then :
(A) every connected open set in X is path connected
(B) every connected set in X is path connected
(C) every connected closed set in X is path connected
(D) every open set in X is path connected

3. Consider the following statements :
(a) A path connected set is connected
(b) A connected set is path connected
(c) Union of connected sets is connected
Which of them are correct ?
(A) 1 (B) 2 (C) 1, 3 (D) 2, 4

4. What are the components and path components of l  ?
5. Show that the ordered square is locally connected but not locally path connected.

6. Let X be locally path connected. Show that every connected open set in X is path
connected.

4. Compact Spaces
Introduction :

Frechet was the first to use the term “compact”. Compactness was introduced
into topology with the intention of generalizing the properties of the closed and bounded

subsets of n . In this unit, we discuss the properties of compact topological space and
construct new from old ones. We also see under what conditions, compactness can be
passed on to subspaces and products.
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Definition 4.1 : A collection A of subsets of a space X is said to be a cover for X, if the
union of the elements of A  is equal to X. It is called an open covering of X, if its
elements are open subsets of X.

Definition 4.2 : A topological space X is said to be compact, if every open covering A
of X contains a finite sub collection that also covers X.

Example 4.3 : Any topological space X with finite number of elements is compact, as
each open cover for X is itself a finite set.

Example 4.4 : The real line   is not compact.

Proof : Consider the set   1, 1n n n    A

Then for any x ,     1, 1x x x   , where  x  is the greatest integer less
than or equal to x. Implies A  is an open cover for  .

But no finite sub collection of A covers  .

Hence   is not compact.

Example 4.5 : The subspace    10 |X n
n     of   is compact.

Proof : Let A  be an open covering of X.

Then there is an element U of  A  containing 0.

Since U is open and 0 U , there exists  > 0 such that  , U   .

As  > 0, by Archimedean property, there exists N, such that 
1
N

 .

Hence the set  1 | n N U
n

  .

So at most 
1 11, ,...,
2 1N 

 are the elements of X, which are outside U, and these

elements can be covered by finitely many open sets, say U1,...,Um of A .
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Then 
1

m
i

i
U U



 
 
 

  is a finite sub collection of A  which covers X.

Hence X is compact.

Lemma 4.6 : Let Y be a subspace of X. Then Y is compact if and only if every covering
of Y by sets open in X contains a finite sub collection covering Y.

Proof : Suppose that Y is compact and   JA A  is a covering of Y where A  is
open in X.

Then the collection  |A Y J    is a covering of Y by sets open in Y.

Hence, a finite sub collection  1
,...

n
A Y A Y    covers Y.

Implies  1
,...

n
A A   is a sub collection of A  that covers Y.

To prove converse, let  '' AA  be a covering of Y by sets open in Y.

For each , choose a set A  open in X such that 'A A Y   .

Then the collection  AA  is a covering of Y by sets open in X.

By hypothesis, some finite sub collection  1 ,... nA A   covers Y.

Then  ' '
1 ,.... nA A   is a sub collection of  A ' that covers Y.

Therefore, Y is compact.

Remark 4.7 : The subspace of a compact space need not be compact. For example, the
interval [0, 1] is compact, which is known from analysis. But the subspace (0, 1) is not

compact as 1 ,1 | n Z
n 

     
  

A  is an open cover for (0, 1), which doesn’t has a finite

sub cover. Where as, if the given subspace is closed, then it is compact as we prove.
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Theorem 4.8 : Every closed subspace of a compact space is compact.

Proof : Let Y be a closed subspace of the compact space X.

Let A  be an open covering for Y by sets open in X.

Since Y is closed, X – Y is open in X.

Therefore,  X Y B A  is an open covering for X.

Since X is compact, some finite sub collection of B covers X.

After discarding the set X – Y from this finite sub collection, the resulting
collection is a finite sub collection of A  that covers Y.

Hence Y is compact.

Theorem 4.9 : Every compact subspace of a Hausdorff space is closed.

Proof : Let Y be a compact subspace of the Hausdorff space X.

To show Y is closed i.e. X – Y is open, let x0 be a point of  X – Y.

Since X is Hausdorff, for each point y Y  and x0, there exists disjoint open sets
Uy and Vy containing x0 and y, respectively.

Then the collection  |yV y Y  is a covering of Y by sets open in X.

As Y is compact, there exists a finite sub cover 
1
,....,

ny yV V  for Y.

Figure 8:
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Let 1
...

ny yV V V    and 1
...

ny yU U U   .

Then V Y , and V Y  , for if z V , then 1yz V  for some i, hence iyz U

and so z U .

Therefore 0x U X V X Y      and hence X – Y is open.

Theorem 4.10 : The image of a compact space under a continuous map is compact.

Proof : Let :f X Y  be continuous and X be compact.

Let A  be a covering for  f X  by sets open in Y.

As f  is continuous, the collection   1 |f A A A  is an open cover for X.

Since X is compact, there exists a finite sub cover    1 1
1 ,...., nf A f A   for X.

Then  1,..., nA A  is a finite sub cover for  f X  and hence  f X  is compact.

Theorem 4.11 : Let :f X Y  be a bijective continuous function. If  X is compact and
Y is Hausdorff, then f is a homeomorphism.

Proof : To prove 1 :f Y X   is continuous, let A be a closed subset of X.

Then A is compact. Since :f X Y  is continuous,  f A  is compact.

Given that Y is Hausdorff, so  f A  is closed in Y.

Therefore      
11f A f A
   is closed in Y.

Remark 4.12 : According to above result, if a continuous bijective map :f X Y  is
not a homeomorphism, then we can conclude that either X is not compact or Y is not
Hausdorff, for example, The function : lf    given by  f x x  is a bijective
continuous function but not a homeomorphism. As   is Hausdorff, we can conclude
that l  is not compact.

We now prove tube lemma, which will be useful in proving that product of
finitely many compact spaces is compact.
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Lemma 1.13 : (The tube lemma) : Consider the product space X Y , where Y is
compact. If N is an open set of X Y  containing the slice 0x Y of X Y , then N

contains some tube W Y  about 0x Y , where W is a neighborhood of x0 in X.

Proof : Since Y is compact and 0x Y  is homeomorphic to Y, we get that 0x Y  is also

compact. Let 0 0x y x Y   . Since 0x Y N   and N is open subset of X Y , there

exists open set y yU V  such that 0 y yx y U V N    .

Implies the collection  |y yU V y Y   is an open cover for 0x Y .

Therefore, there exists a finite sub cover 1 1,..., n nU V U V   for 0x Y .

Without loss of generality, we can assume that    0i iU V x Y   .

(as if some basis element is not intersecting 0x Y , discard that from the
collection.)

Let 1 ... nW U U   . Then W is open and 0x W .  0   ix U i 

We will prove that the sets i iU V  covers the tube W Y .

Let x y W Y   . Then 0 0x y x Y   .

0 i ix y U V     for some i,so that iy V .

But jx U  for every j (because x W ).

Therefore, we have i ix y U V   , as desired.

Figure 9 :
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Since i iU V N   for each i and    i iW Y U V   , we get that the tube

W Y N  .

Theorem 4.14 : The product of finitely many compact spaces is compact.

Proof : We Prove the result by mathematical induction.

First we prove that the product X Y  of two compact spaces X and Y is compact.

Let A  be an open covering of X Y .

Given 0x X , the slice 0x Y is compact and may therefore be covered by

finitely many elements 1,... mA A  of A. (  A covers 0x Y ).

Their union 1 ... mN A A    is an open set containing 0x Y .

Then by the tube lemma, the open set N contains a tube W Y about 0x Y ,

where W is open in X. Then W Y  is covered by finitely many elements A1,...,Am of A.

Thus, for each x in X, we can choose a neighborhood Wx of x such that the tube

xW Y  can be covered by finitely many elements of A .

Since X is compact and the collection of all the neighborhoods Wx is an open

covering of X, there exists a finite sub collection  1,...., kW W  covering X.

Now as each iW Y  is covered by finitely many elements of A  and X is covered

by these Wi, we get that The union of the tubes 1 ,.., kW Y W Y   covers X Y .

Thus, X Y  is compact.

Now assume that 1 1.... nX X    is compact.

Then  1 1 1.... ....n n nX X X X X       is compact as it is the product of two
compact spaces.

We now give a equivalent definition of compact space interms of closed sets.
We start with the following definition.
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Definition 4.15 : A collection C of subsets of X is said to have the finite intersection

property if 
1

n
i

i
C


  , for every finite sub collection  1,..., nC C  of C.

Theorem 4.16 : Let X be a topological space. Then X is compact if and only if for every
collection C of closed sets in X having the finite intersection property, the intersection

C
C


 

C
.

Proof : Suppose X is compact and C  be the collection of closed sets in X having finite
intersection property.

Suppose C C   C .

 C X C X   C

Since X is compact, there exists a finite sub cover 1,...., nX C X C   such that

 1
n
i iX X C  .

1
n
i iC  , which is a contradiction.

Therefore, C C   C .

To prove converse, let A  be an open cover for X.

For contrary, suppose assume that there is no finite sub collection of A which
covers X.

Then 1
n
i iA X   for any n .

 1
n
i iX A   .

So the collection  |X A A   C A  satisfies the finite intersection property..

Therefore,  A X A    A

A A X  A , which is a contradiction.

Therefore, there exists a finite subcover for X and hence X is compact.
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5. Compact Subspaces of the Real Line
We end this unit by proving that   is uncountable without using algebraic

properties. We start with a definition.

Definition 5.1 : For a topological space X, a point x X  is said to be an isolated point,
if the one-point set  x  is open in X.

Theorem 5.2 : Let X be a nonempty compact Hausdorff space. If X has no isolated
points, then X is uncountable.

Proof : Step 1 : We first show that given any nonempty open set U of X and x X ,

there exists a nonempty open set V contained in U such that x V .

If x U , since X has no isolated points,  U x .

So there exists y U  such that y x .

If x U , since U is non empty, there exists y U .

So in any case, there exists y U  such that y x .

As X is Hausdorff, there exists two disjoint open sets W1 and W2 containing x
and y, respectively.

Let 2V W U  .

Since 2y W U  , we get V   and V U .

As 1x W  and 1V W  , we get x V .

Step 2 : We show that given :f X  , the function  f  is not surjective.

Let  nx f n . Since X is non empty open set and 11x V , by Step 1, there

exists a nonempty open set 1V X  such that 11x V .

As V1 is non empty open subset of X and 2x X , there exists a nonempty open

set 2 1V V  such that 22x V .
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By induction, given a non empty open set Vn–1, there exists a nonempty open set

1n nV V   such that nnx V .

Then the collection  | 1, 2,3,.....iV i C  of nonempty closed sets of X satisfies
finite intersection property.

Because X is compact, nV   , say nx V .

Since nx V  but nnx V  for all n, we get that nx x  for all n.

Therefore,  f is not surjective and hence X is uncountable.

Corollary 5.3 : Every closed interval in   is uncountable.

Corollary 5.4 :   is uncountable.

EXERCISE - 9

1. Which of the following is true ?

(A) The real line   is compact

(B)    0 1/ |n n    is compact

(C) The interval (0;1] is compact

(D) All of the above are true.

2. Consider the following

(I) If Y is a subspace of a compact space X, then Y is compact.

(II) If Y is a compact subspace of X, then Y is closed.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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3. Consider the following two statements

(I) If X is nonempty compact Hausdorff space with no isolated points, then X is

    uncountable.

(II) Every open interval in  is compact Hausdorff space and hence is

      uncountable.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

4. Show that   with the finite complement topology is compact.

5. Prove that an infinite set X with the discrete topology is not compact.

6. Show that the union of a finitely many compact subsets of X is compact
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SEPARATION AXIOMS, NORMAL SPACES AND
URYSOHN METRIZATION THEOREM

UNIT  -  IV

1. Forms of Compact Spaces
Introduction :

In early days of topology, a space is called compact if every infinite subspace of
it has a limit point, where as the open covering formulation was called bicompactness.
Later, the standard definition of compact is interms of open covering, the above
compactness is renamed to limit point compactness. There is also another version of
compactness called sequential compactness. In this unit we will compare these three
versions of compactness and see when they all be same. We also study local compactness
and one point compactification.

Definition 1.1 : A space X is said to be limit point compact if every infinite subset of
X has a limit point.

Definition 1.2 : A space X is said to be sequentially compact if every sequence of
points of X has a convergent subsequence.

The next few results emphasize the relation among these three versions of
compactness.

Theorem 1.3 : Every compact space is limit point compact.

Proof : Let X be a compact space and A X  be infinite.

Suppose A has no limit point.

Then  limit point of AA A A  , so that A is closed.
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Since A has no limit point, for each a A , there exists a neighborhood Ua of a

such that  aU A a .

Then X is covered by the open set X – A and the open sets Ua.

As X is compact, it can be covered by finitely many of these sets

Say  
1

n
i

i
X U X A


 

Since X – A does not intersect A, we have 
1

n
i

i
A U


 

As each set Ui contains only one point of A, the set A must be finite, which is a

contradiction. Hence A has a limit point.

Example 1.4 : Limit point compactness need not implies compactness.

Proof : Let  ,Y a b  be given with indiscrete topology, i.e. Y and   are the only open
sets in Y.

We show that the space     , , , | ,X Y n a m b n m       is limit point
compact.

Let S be a non empty set of X, say  ,n a S .

Then (n, b) is a limit point of S as if A Y  is a neighborhood of (n, b), then

   ,n a A Y S   .

We can observe that singleton  n  is open in   as    1, 1n n n     .

Thus the collection  nU n Y   is an open cover for X but has no finite subcover

for X. Therefore, X is not compact.

Theorem 1.5 : Let X be a metrizable space. If X is limit point compact, then X is
sequentially compact.

Proof : Let X be a limit point compact space and (xn) be a sequence in X.

Let  |nA x n Z  .
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If the set A is finite, then there is a point x such that x = xn for infinitely many
values of n. In this case, the sequence xn has a constant subsequence and therefore
converges.

Suppose A is infinite. Since X is limit point compact, A has a limit point x.

Then A intersects every neighborhood of x at infinitely many points.

Now We define a subsequence (xn) converging to x as follows :

Since A intersects B(x, 1), choose n1 such that  
1

,1nx B x .

Again as A intersects  ,1 / 2B x  at infinitely many points, choose n2 > n1 such

that  
2

,1 / 2nx B x .

In this way, we choose nk > nk–1 such that  ,1 /
knx B x k .

Then the subsequence 1 2
, ,....n nx x  converges to x.

Theorem 1.6 : Let X be a metrizable space. If X is sequentially compact, then X is
compact.

Proof : We prove the result in 3 steps :

Step 1 : We show that if A  is an open cover for X, there exists  > 0 (called Lebesgue
number) such that if A X  with diam (A) < , then there exists U A  such that
A U .

Let A  be an open covering of X. Suppose that there is no  > 0.

Then for each positive integer n, there exists nC X  with   1
ndiam C

n
  but

nC U  for all U A  .

Choose a point n nx C  for each n.

Since X is sequentially compact, there exists a subsequence ( knx ) of the sequence
(xn) that converges, say to the point a.

Since  A  is an open cover for X, there exists U A  such that a U .
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Because X is metriazble and U is open, there exists  > 0 such that  ,B a U  .

Since knx  converges to x, choose nk large enough so that ,
2knx B a    

 
 and

1
2kn


 .

Then  ,
k kn nC B a U C U    , which is a contradiction.

So for every open cover for X, there exists a  > 0 satisfying the condition
mentioned in Step 1.

Step 2 : Given  > 0, there exists a finite covering of X by open -balls.

Suppose assume that there exists an  >0 such that X cannot be covered by
finitely many -balls.

We Construct a sequence of points xn of X as follows:

For any 1x X ,  1,X B x   (otherwise X could be covered by a single
-ball).

Choose  2 1,x X B x   . Then  1 2,d x x  .

Again    1 2, ,X B x B x   .

Choose     3 1 2, ,x X B x B x    .

Then  1 3,d x x   and  2 3,d x x  .

By continuing this way, we get  
1

,
n

i
i

X B x 


   and  1
1

,
n

n i
i

x X B x 


    


such that  1,n id x x    for all i = 1, 2, .... , n.

Therefore, the sequence xn does not have any convergent subsequence as

 ,n md x x   for all n > m.

Step 3 : Now we prove that X is compact.

Let A  be an open covering of X.

By Step 1, the open cover A  has a Lebesgue number .
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Let 3
  . Then by Step 2, there exists a finite covering   ,jB x   of X by

open -balls.

Since    2, 2
3jdiam B x      , there exists jU A  such that

 ,j jB x U   for all  j = 1, 2, ... , n.

Then  
1 1

,
n n

j j
i i

X B x U
 

   .

Hence there is a finite subcollection of A that covers X.

Theorem 1.7 : Let X be a metrizable space. Then the following are equivalent :

1. X is compact.

2. X is limit point compact.

3. X is sequentially compact.

Proof : (1)   (2) : Proof of theorem ??

(2)   (3) : Proof of theorem ??

(3)   (1) : Proof of theorem ??

Definition 1.8 : A space X is said to be locally compact at x if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of its
points, X is said simply to be locally compact.

Example 1.9 : The real line   is locally compact,

because    , ,x x x x x         .

Example 1.10 : The space n  is locally compact,

because        1 1 1 1, ... , , ... ,n n n nx a b a b a b a b     
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Example 1.11 : The space   is not locally compact,

because if a basis element    1 1, ... , .... ....n nB a b a b         contained in a

compact subspace, then its closure    1 1, ... , .... ....n nB a b a b         is compact,
which is a contradiction.

Example 1.12 : Every simply ordered set X having the least upper bound property is
locally compact: Given a basis element for X, it is contained in a closed interval in X,
which is compact.

Definition 1.13 : If Y is a compact Hausdorff space and X is a proper subspace of Y
whose closure equals Y, then Y is said to be a compactification of X. If Y – X equals a
single point, then Y is called the one-point compactification of X.

Theorem 1.14 : Let X be a Hausdorff space Then X is locally compact if and only if
given x in X, and given a neighborhood U of x, there is a neighborhood V of x such that

V  is compact and V U  (i.e. x V V U   ).

Proof : Suppose X is locally compact.

Let x X  and U be a neighborhood of x.

Since X is locally compact, there exists a one-point compactification Y of X.

Let C = Y – U. Then C is closed in Y implies C is a compact subspace of Y.

Since X is Hausdorff, there exist two open sets V and W such that x V  and
C W .

c c cV W V W V W C U      

Since cW  is closed, V  is closed and hence compact.

Hence V U , and V  is compact.

Suppose assume the converse part.

Let x X . Since X is open, by assumption, there is a neighborhood V of x such

that V  is compact.
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Corollary 1.15 : Let X be locally compact Hausdorff, let A be a subspace of X. If A is
closed in X or open in X, then A is locally compact.

Proof : Suppose that A is closed in X. Let x A . Then x X .

Since X is locally compact, there exists a compact subspace C of X containing

the neighborhood U of x in X. Then C A  is closed in C and thus compact, and
U A C A  .

Suppose now that A is open in X. Given x A , by the preceding theorem there

exists a neighborhood V of x in X such that V  is compact and V A . Then C V  is a
compact subspace of A containing the neighborhood V of x in A.

EXERCISE - 10

1. Consider the following.

(I) Every compact space is limit point compact.

(II) Every limit point compact space is compact.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Consider the two statements

(I) Every sequentially compact space is compact.

(II) Every limit point compact space is sequentially compact.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Show that [0, 1] is not limit point compact as a subspace of l .

4. Let X be limit point compact. If :f X Y  is continuous, does it follow that

 f X is limit point compact ?
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5. Let X be limit point compact. If A is closed subset of X, does it follow that A is
limit point compact ?

6. Show that the rationals   are not locally compact.

2. Countability Axioms
Introduction :

The countable axioms do not arise naturally from the study of analysis. Problems
like embedding a given space in a metric space or in a compact Hausdorff are purely
from topology and these problems can be solved with the help of countable and separable
axioms. In this section, we study the two countable axioms: first countable and second
countable; relation among them.

Definition 2.1 : A space X is said to have a countable basis at x if there is a countable
collection B of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of B. A space that has a countable basis at each of its points is said
to satisfy the first countability axiom, or to be first-countable.

Example 2.2 : ( , usual topology) is first countable.

Proof : For each x , consider  
1 1, |x x x n
n n

       
  

B .

Let U be a neighborhood of x.

Then there exists  > 0 such that  ,x x x U     .

By Archimedean property, there exists n  such that 
1
n

 .

Then,  1 1, ,x x x x x U
n n

         
 

.

Therefore  xB  is a countable base at x and hence ( ,; usual topology) is first
countable.
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Example 2.3 : Every metrizable space is first countable.

Proof : For each x X , let  
1, |x B x n
n

     
  

B .

Let U be a neighborhood of x.

Then there is an  > 0 such that  ,x B x U  .

By Archimedean property, there exists n  such that 
1
n

 .

Then,  1, ,x B x B x U
n

    
 

.

Therefore  xB  is a countable base at x and hence X is first countable.

Example 2.4 : The real line   with countable complement topology (co-countable) is
not first countable.

Proof : Let x .

Suppose  |nB n B  is a countable base at x.

Here each c
nB  is countable and so  cc

n n
n n

B B   is countable

Therefore n
n

V B   is open and x V .

Now take  \y V x  and  \U V y .

Then x U  and U is open as  c cU V y   is countable.

As ny B  for each n and y U , we get that nB U  for all n.

Which is a contradiction to the fact that B is countable base at x.

Therefore,   with countable complement topology is not first countable.
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Theorem 2.5 : Let X be a topological space.

1. Let A be a subset of X. If there is a sequence of points of A converging to x, then

x A ; the converse holds if X is first-countable.

2. Let :f X Y . If f is continuous, then for every convergent sequence nx x in
X, the sequence f (xn ) converges to f (x). The converse holds if X is first countable.

Proof : (1)  Let  nx A  be a sequence such that nx x , for some x X .

To show x A , let U be an open set of X with x U .

Since nx x , and x U , infinitely many '
nx s  are in U.

Therefore, U A   and hence x A .

Conversely, suppose that X is first countable and x A .

Let  |nB n B  be a countable basis at x.

We may assume that nx B  for all n.

Let 1 ...n nU B B   .

Then Un is open containing x and n nU B .

If V is open set containing x, then there exist n such that nx B V 

Since n nU B , we get that nx U V  .

Therefore,  |nU n U  is a countable basis for x.

Now, if x A , then (x, x, x, ....) is the required sequence that converges to x.

If x A , then x is a limit point of X and hence A intersects every neighbourhood

of x.

As each Un is open contains x, we get nU A    for all n.

Let n nx U A  . Then (xn) is a sequence in A.

To show nx x , let x U  be an open set of X.
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Since U  is a countable bais for x, there exists Um such that mx U U  .

Then n n mx U U U    for all n m . ( n mU U    n m  )

Therefore nx x .

(2) Suppose f  is continuous and nx x .

Let V be an open set of Y such that  f x V .

Then  1f V  is open in X and  1x f V .

Therefore,  1
nx f V  for infinitely many n’s.

 nf x V   for infinitely many n’s and hence    nf x f x .

Conversely, assume that X is first countable and whenever nx x , then

   nf x f x .

To show f  is continuous, we prove that    f A f A  for any subset A of X.

Let  y f A . Then  y f x , for some x A .

Since X is first countable and x A , there exists a sequence  nx A , such that

nx x .

Then by assumption,    nf x f x  and    nf x f A .

Therefore,    f x f A . (  by first result)

 y f A   and hence    f A f A .

Now we will go to the second countable spaces which have more impact than
the first countable spaces.

Definition 2.6 : A topological space X is said to satisfy the second countability axiom,
or to be second-countable, if it has a countable basis for its topology.
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Theorem 2.7 : Every second countable space is first countable, but not the converse.

Proof : Let  |nB n B  be a countable basis for X and x X .

Then we prove that   |x n nB x B  B B  is a countable basis at x.

Let U be a neighborhood of x. Then there exists nB B  such that nx B U  .

As  n xB B  we get that  xB  is a basis at x.

Therefore X is first countable.

Converse is not true in general: Consider ( , discrete topology).

As   xB  is a countable basis at x X , we get that ( , discrete topology)
is first countable.

Now suppose B is a basis for ( , discrete topology).

Since each  x  is open, there exists xB B  such that    x xx B x B x    .

As  is uncountable,  |xB x  is uncountable.

Therefore, B is uncountable and hence ( , discrete topology) is not second
countable.

We now show that the spaces satisfying countable axioms are nice in the sense

that they can be passed onto subspaces and products.

Theorem 2.8 : A subspace of a first-countable space is first-countable, and a countable
product of first-countable spaces is first-countable. A subspace of a second countable
space is second-countable, and a countable product of secondcountable spaces is second-
countable.

Proof : It is enough to prove for second countable spaces.

Let B be a countable basis for X and A X .

Now consider   |A B A B B B .

Then clearly  AB  is countable.

To show  AB  is a basis for A, let U be a neighborhood of a A .
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Then U A V   for some V open in X.

Since B is a basis for X, there exists BB  such that a B V  .

As A B A V  , we get a A B U  .

Therefore  AB  is a countable basis for A.

If  iB  is a countable basis for the space Xi, then the collection of all products

iU , where  i iU B  for finitely many values of i and i iU X  for all other values of i,

is a countable basis for iX .

EXERCISE - 11

1. Consider the following

(I) Every first countable space is second countable.

(II) The discrete topology on   is second countable.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Consider the two statements

(I)   with usual topology is second countable.

(II)   with usual topology is first countable.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Show that l  is first countable

4. Show that the real line   with finite complement topology( co-finite) is not

first countable.

5. Is l  is second countable? Justify..
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3. Lindelof spaces
Introduction :

Other than the two countable axioms, there are other two alternative countable
axioms, namely separable and Lindelof. Even though these two axioms are weaker than
the second countable, they have their own importance.

Definition 3.1 : A subset A of a space X is said to be dense in X if  A X .

Definition 3.2 : A space X is said to be Lindelof space, if every open covering of X
contains a countable sub covering.

Definition 3.3 : A space X is said to be separable, if it has a countable dense subset.

We now prove that every second countable space is Lindelof as well as separable.

Theorem 3.4 : Suppose that X has a countable basis. Then :

(a) Every open covering of X contains a countable sub collection covering X.

(i.e. every second countable space is Lindelof)

(b) There exists a countable subset of X that is dense in X.

(i.e. every second countable space is separable)

Proof : Let  |nB n B  be a countable basis for X.

(a) Let A  be an open covering of X.

Consider  ' |  there exists  such that B U B U    B B A .

We show that 
'B
B X




B
.

Let x X . Then there exists U A such that x U .

Since B is basis for X, there exists BB  such that x B U  .

Then 'BB  and x B .
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Now for each 'BB , choose BU U  such that B U .

Then 
' '

B
B B

X B U
 

  
B B

.

Therefore,  | 'BU BB  is a countable subcover for X.

(b) For each n , let n nx B .

Let  | ,n n nD x x B n   .

To show D is dense in X, let x X  and x U  be an open set.

Since B is a basis for X, there exists n  such that nB U .

n nx B  implies nx U  and hence D U  .

Example 3.5 : The space l  (lower limit topology) is first countable, Lindelof, separable
but not second countable.

Proof :

1. First countable : Given lx , the collection

 
1, |x x x n
n

       
B  is a countable basis at x.

2. Separable : Clearly the set of rational numbers   is dense in l .

3. Lindelof : Let A  be an open covering for l .

Then for any U A , there exists a basis element  ,a b   contained in U.

So if open cover of basis elements has a countable sub cover then A will have
countable sub cover.

So without loss of generality, let   , |a b J   A  be an covering of l .

Let C be the set  ,JC a b     which is a subset of  .
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We show the set C  is countable.

Let x be a point of C .

Since x C , x belongs to no open interval  ,a b  , therefore x a  for some
index .

Choose such a  and then choose qx to be a rational number belonging to the

interval  ,a b  .

Define :f C    by   xf x q .

To show f  is injective, let ,x y C   with x < y.

Then    ,x xf x q a b q b     

Since x < y and  ,y a b  , we get y b .

Therefore,    xf x q b y f y    , hence f is injective.

       and ,y a f y a b y a f y       

Therefore C  is countable.

Choose a countable sub collection  A ' of A that covers C .

Since C is a subset of  , C is a subspace of ( , usual topology) and hence

second countable. Now C is covered by the sets  ,a b  , which are open in   and
hence open in C.

Then there exists a countable subcollection  ,a b   for 1 2, ,...  

covering C.

Then the collection   1 2'' , | , , ...a b     A  is a countable subcollection

of A  that covers the set C.

Now '  ''A A  is a countable sub collection of A  that covers l .

Therefore l  is Lindelof.
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4. Not second countable : Suppose  1 2, ,...,B BB  is a countable basis for l .

Let infn nb B  and  |nJ b n  .

Let \a J . Then na b  for all n.

Now consider  ,U a  .

Suppose there exists nB B  such that  ,na B U a    , then

inf n na B b  , which is a contradiction.

Therefore, there doesn’t exists a countable basis for l  and hence is not second
countable.

Linedlof spaces are not as nice as first and second countable spaces in the sense
that they are not passed on to subspaces and products.

Example 3.6 : A subspace of a Lindelof space need not be Lindelof.

Proof : The ordered square    2
0 0,1 0,1I    is compact; therefore it is Lindelof.

Now consider the subspace  0,1A I  .

Then A is the union of the disjoint sets    0,1xU x  , each of which is open
in A. This collection of sets is uncountable, and no proper subcollection covers A.
Therefore A is not Lindelof.

Example 3.7 : The product of two Lindelof spaces need not be Lindelof.

Proof : Even though the space l  is Lindelof, we prove that the product space
2

l l l     is not Lindelof.

Basis for 2
l  consists of the sets of the form    , ,a b c d .

To show it is not Lindelof, consider the subspace   | lL x x x    .

Then L is closed in 2
l  and 2

l \ L is open.
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Now we can cover 2
l  by the open set 2

l – L and by all basis elements of the

form    , ,a b a d  .

Each of these open sets intersects L in at most one point.

Since L is uncountable, no countable subcollection covers 2
l .

Therefore 2
l  is not Lindelof.

Theorem 3.8 : A closed subspace of a Lindelof space is Lindelof.

Proof : Let Y be a closed subspace of a Lindelof space X.

To show Y is Lindelof, let  |U J  A  be an open cover for Y.

Then 'U U Y    where 'U  a is open in X.

Let  '' |U J  A . Then  '  X YA  is an open cover for X.

Since X is Lindelof, this cover has a countbale sub cover, say ' '
1 2, ,....U U .

If some '
iU  contains (X –Y), drop that '

iU .

Then the collection U1, U2, ..... is a countable subcover for Y.

EXERCISE - 12

1. Consider the following

(I) Every second countable space is Lindelof.

(II) Every second countable space is separable.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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2. Consider the following

(I) Every separable space is first countable.

(II) Every first countable space is separable.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Which of the following is false ?

(A) The space l  is first countable

(B) The space l  is second countable

(C) The space l  is Lindelof

(D) The space l  is separable.

4. Show that every separable metric space is second countable.

5. Show that ( , cofinite) is separable but not first countable.

6. Is ( , discrete) separable ? Justify..

4. Separation Axioms
Introduction :

The separation axioms are about the use of topological means to distinguish
disjoint sets and distinct points. Separation axioms depends on how rich is the topological
space interms of open sets. More the open sets in a space, it separates more points and
sets. The separation axioms are denoted with the letter “T”, as the word for separation
in German is Trennung. In this section, we discuss three separation axioms: T0, T1 and
T2.

Definition 4.1 (T0 axiom) : A topological space X is said to satisfy T0 axiom, if given
two distinct points x and y from X, there exists an open set U containing exactly one of
these points, i.e. x U  and y U  or x U  and y U . A space is called T0 if it satisfies
T0 axiom. T0 space is also called Kolmogorov space.
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Definition 4.2 (T1 axiom) : A topological space X satisfies T1 axiom, if for given two
distinct points , x y X , there exists two open sets U and V such that x U  but y U and
y V  but x U .

Definition 4.3 (T2 axiom) : A topological space X satisfies T2 axiom, if for given two
distinct points , x y U , there exists two open sets U and V such that x U  but y U ;
y V  but x U  and U V . T2 space is also called Hausdorff space, which we

have seen already.

Remark 4.4 : The following observations justify why above axioms are called separation
axioms:

1. In T0 space, any two distinct points are separated (or distinguishable) by an
open set.

2. In T1 space, any two distinct points are separated (or distinguishable) by two
open sets (need not be disjoint).

3. In T2 space, any two distinct points are separated (or distinguishable) by two
disjoint open sets.

4. We can understand these spaces through the following diagram :

Figure 10:

5. We can also observe that 2 1 0 T T T .
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Example 4.5 : Let  , ,X a b c  with topology       , , , , ,  X a b a bT . Then X is
a T0 space.

Proof : The open set  a separates a and b; a and c.

Similarly the open set  b separates b and c.

Therefore, X is a T0 space.

Example 4.6 : The discrete topology with atleast two points is a T0 space, as every
singleton is open.

Example 4.7 : The indiscrete topology with atleast two points is not a T0 space, as X is
the only non empty open set.

Example 4.8 : Let  , ,X a b c  with topology       , , , , ,  X a b a bT . Then X is
a T0 space but not T1.

Proof : If we take a and c, then the only open set containing c is X, which also contains
a. Thus we can not separate these two elements by two open sets.

Hence X is not T1.

Theorem 4.9 : A space X is T1 space if and only if each singleton set is closed in X.

Proof : Suppose X is T1 space and x X .

To show  \X x  open, let  \y X x .

As x y , there exists two open sets U and V such that x U  but y V  and
y V  but x V .

Implies  \ y V X x .

Hence  \X x  open is open i.e.  x  is closed.

Conversely, suppose each singleton is closed in X.

Let , x y X  with x y .
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Then  \U X y  and  \V X x  are open such that x U  but y V  and

y V but x V .

Therefore, X is T1 space.

Theorem 4.10 : A finite T1 space is discrete.

Proof : Let  1,..., nX x x .

We have to show that each  ix  is open

But    1 1 1,..., , ,...., c
i i i nx x x x x  is finite and hence closed in X.

Thus X is discrete.

Example 4.11 :   together with finite complement topology is T1 but not T2.

Proof : Let , x y  with x y .

Then  \ U y  and  \ V x  are open such that x U  but y V  and

y V  but x V .

Therefore,   is T1 space.

Suppose that   is T2.

Then for 0,1 , there exists two open sets 0U ; 1V  and U V .

As U and V are open, Uc and Vc are finite.

Also U V  implies  cU V  and so U is finite.

Then   cU U  is finite, which is absurd.

Hence   together with finite complement topology is not T2.

Remark 4.15 : The above theorem is not true if Y is not T2.

To see this, consider X = ( , usual), Y = ( , indiscrete) and D .

Define : f  by   1
2


  

x D
f x

x D
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And : g  by   1
3


  

x D
g x

x D

Then f and g are continuous as Y is indiscrete.

Also f (x) = g(x) for all x D .

But    f x g x  for x D .

EXERCISE - 13

1. Consider the statements

(I) Subspace of a T1 space is T1

(II) Subspace of a T2 space is T2

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Which of the following is true ?

(I) A space is T1 if and only every singleton is closed

(II) A space is T2 if and only every singleton is closed

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Show that   with the topology    | 0    A AT  is not T1 space.

4. Show that any metric space is T2 space.

5. Show that   with countable complement topology is not T2, but any sequence
has at most one limit.

6. Let X be a topological space and Y a Hausdorff space. Let  f  and  g  be a continuous

function from X to Y. Show that the set     :  A x X f x g x  is a closed
set.
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5. Regular and Normal Spaces
Introduction :

In the previous section, we have seen three separation axioms. In this section we
discuss two more important separation axioms: regular and normal. We also exhibit
whether these can be passed on to subspaces and products.

Definition 5.1 : Let X be a topological space which is T1. Then X is called regular if for
every closed subset B X  and for every \x X B , there exist disjoint open sets U and
V of X such that x U  and A V .

Definition 5.2 : Let X be a topological space which is T1. Then X is called normal if
given two disjoint closed subsets A and B of X, there exist disjoint open sets U and V of
X such that A U  and B V .

These two spaces are represented in the following diagram :

Figure 11:

In the following lemma, we give an equivalent definitions for regular and normal
spaces.

Lemma 5.3 : Let X be a topological space and one-point sets in X be closed.

(a) X is regular if and only if given a point x of X and a neighborhood U of x, there
is a neighborhood V of x such that V U .
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(b) X is normal if and only if given a closed set A and an open set U containing A,
there is an open set V containing A such that V U .

Proof :

(a) Suppose that X is regular.

Let x X  and U be a neighborhood of x.

Then B = X – U is a closed set and x B .

By hypothesis, there exist disjoint open sets V and W such that x V  and B W

      B X U W U X W .

Since V W ,  V X W

Since X – W is closed, we get   V X W U . Therefore, V U .

To prove the converse, suppose the point x and the closed set B such that x B
are given.

Then U = X – B is open and x U .

By hypothesis, there is a neighborhood V of x such that V U .

Then the open sets V and X V  are disjoint such that x V  and  B X V .

Thus X is regular.

(b) Suppose that X is normal.

Let A X  be closed and U be open such that A U .

Then B = X – U is a closed set and A B .

By hypothesis, there exist disjoint open sets V and W such that

A V  and B W

      B X U W U X W

Since V W ,  V X W

Since X – W is closed, we get   V X W U . Therefore, V U .

To prove the converse, suppose that A and B are disjoint closed sets.

Then U = X – B is open and A U .
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By hypothesis, there is an open set V containing A such that V U .

Then the open sets V and X V  are disjoint open sets containing A and B,
respectively. Thus X is normal.

We prove that regularity can be passed onto subspaces and products.

Theorem 5.4 : A subspace of a regular space is regular; a product of regular spaces is
regular.

Proof : Let Y be a subspace of the regular space X.

Then one-point sets are closed in Y.

(     x x Y  and  x  is closed in X).

Let x Y  and B be a closed subset of Y such that x B .

Now B Y B , where B  denotes the closure of B in X.

Therefore, x B . Since X is regular, there exist disjoint open sets U and V of X
such that x U  and B V .

Then U Y  and V Y  are disjoint open sets in Y such that

 x U Y  and   B Y B V Y . Therefore, Y is regular..

Let  X  be a family of regular spaces and  X X .

Since each X  is Hausdorff,  X X  is Hausdorff.f.

Hence one-point sets are closed in X.

To prove X regular, let   x X X  and U be a neighborhood of x in X.

Since U is open, there exists a basis element U  about x such that U U .

Since X  is regular and x U  , there exists a neighborhood V  of x  in X

such that V U  .

If U X  , then take V X  .
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Then  V V  is a neighborhood of x in X.

Since   V V V , we get that    V V U U  .

Therefore V U  and hence X is regular..

Example 5.5 : The space K  is Hausdorff but not regular..

Proof : The basis for K  is the union of all open intervals (a, b) and all sets of the form

 , a b K , where  1/ |  K n n .

This space is Hausdorff, because   with usual topology is Hausdorff, which is
contained in K .

We now show that K  is not regular..

The set K is closed in K , because  1\ 1, ,...
2

 cK  can be written as union of

the basis elements:      , 4 5,5 \ 4,       cK K  and thus Kc is open.

Also 0K .

Suppose that there exist disjoint open sets U and V with 0U  and K V .

Choose a basis element containing 0 and lying in U.

It must be a basis element of the form (a, b) – K, since each basis element of the
form (a, b) containing 0 intersects K.

Choose n large enough that  1/ ,n a b .

Then choose a basis element about 1/n contained in V; it must be a basis element
of the form (c, d).

Finally, choose z so that z < 1/n and z > max (c,1 / (n + 1)).

Then z belongs to both U and V, so they are not disjoint.
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Example 5.6 : The space l  is normal.

Proof : Since l  is finer than   and one-point sets are closed in  , we get that one-

point sets are closed in l .

To check normality, suppose that A and B are disjoint closed sets in l .

Let a A . Since l B  is open and   la B , there exists a basis element

 , aa x such that  ,  a la x B . i.e. for each a A ,  , aa x B .

Similarly, for b B , choose a basis element  , bb x  such that  , bb x A .

Now let  ,


  a
a A

U a x  and  ,


  b
b B

V b x .

Suppose  z U V , then there exists a A  and b B  such that  , az a x

and  , bz b x . Suppose a < b. Then    aa b z z  implies  , ab a x , which is a

contradiction.   , aa x B

Therefore U and V are disjoint open sets containing A and B respectively.

Hence l  is normal.

Remark 5.7 :

1. As l  is normal, it is also regular, and hence  l l  is regular..

2. The space l  is normal, but  l l  is not normal. Thus product of normal
spaces need not be normal.

3. Also  l l  is regular but not normal. So not every regular space is normal,
but regular space with countable basis is normal as we prove in next result.

Theorem 5.8 : Every regular space with a countable basis is normal.

Proof : Let X be a regular space with a countable basis B.

Let A and B be disjoint closed subsets of X.
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As X is regular and X – B is open, for each point a A , there exists a

neighborhood aV B  such that  aV X B .

Since B is countable, the collection  | aV a A  is countable and hence we can

relabel them by Vi, i .

Therefore, 
1




  i

i
A V  and  iV B  for all i .

Similarly there exists Ui in B, i , such that 
1




  i

i
B U  and iU A  for

all i .

Now let '
11 1 U U V  and '

11 1 V V U .

Then '
1U  and '

1V  are open such that ' '
1 1 U V , '

1 1 U B U B  and
'

1 1 V A V A .

Figure 12:
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By inductively we define,

'

1
\


 
n

in n
i

U U V  and '

1
\


 
n

in n
i

V V U

so that '
nU  and '

nV  are open such that ' ' n nU V , '  n nU B U B  and
'  n nV A V A .

Now let '

1
'




  n

i
U U  and '

1
'




  n

i
V V .

Then 'A V  and 'B U ; U ' and V ' are open.

Suppose ' '  U V , say ' ' x U V .

Then ' ix U  and ' jx V . Supose i j .

Since ' jx V  implies,  kx U  for all k = 1, 2, ....,  j

In particular,  ix U , which is a contradiction.  ' ix U

Therefore U ' and V ' are disjoint open sets containing A and B.

Hence X is normal.

Theorem 5.9 : Every metrizable space is normal.

Proof : Let X be a metrizable space with metric d.

Let A and B be disjoint closed subsets of X.

Let a A . Then  a X B  and X – B is open.

So there exists 0a  such that  ,  aB a X B .

i.e., for each a A , there exists 0a  such that  , aB a B .

Similarly for each b B , there exists 0b  such that  , bB b A .

Now let ,
3

   
 

 a

a A
U B a   and ,

3

   
 

 b

b B
V B b 
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Then U and V are open sets containing A and B, respectively.

We prove that U and V are disjoint. For if  z U V , then

, ,
3 3

       
   

a bz B a B b 
 for some a A  and some b B .

By triangle inequality, we get  ,
3 3

   
 

a bd a b   .

If a b  , then   2,
3

 bd a b 
 so that  , ba B b  .

If b a  , then   2,
3

 ad a b 
 so that  , ab B a  , which is a contradiction in

either case. Therefore U and V are disjoint containing A and B.

Hence X is normal.

Theorem 5.10 : Every compact Hausdorff space is normal.

Proof : Let X be a compact Hausdorif space.

Let A and B be disjoint closed subsets of X.

Then A and B are compact.

Let a A . Then since X is Hausdorff and B is compact, there exists disjoint
open sets Ua and Va containing a and B, respectively.

The collection  aU  covers A; because A is compact, A may be covered by

finitely many sets 
1
,....,

ma aU U .

Take 1
....  

ma aU U U  and 1
....  

ma aV V V

Suppose  x U V , then there exists j such that 
jax U . As x V , 

jax V , so

 
j ja ax U V , which is a contradiction.

Therefore, U and V are disjoint open sets containing A and B, respectively.

Hence every compact Hausdorff space is normal.
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Theorem 5.11 : Every well-ordered set X is normal in the order topology.

Proof : Let X be a well-ordered set.

We prove that every interval of the form  ,x y  is open in X.

If y is the largest element of X, then  ,x y  is a basis element in the order topology..

If y is not the largest element of X, then    , , 'x y x y  where y ' is the immediate
successor of y.

Now let A and B be disjoint closed sets in X.

Suppose assume that neither A nor B contains the smallest element a0 of X.

Let a A . Since X – B is open and  a X B , there exists a basis element C
such that   a C X B .

Since a is not the smallest element of X, C contains some interval of the form

 ,ax a , i.e. for each a A , choose an interval  ,ax a  such that  , ax a B .

Similarly, for each b B , choose an interval  ,by b  such that  , by b A .

Then the sets  ,


  a
a A

U x a  and  ,


  b
b B

V y b  are open sets containing A and

B, respectively;

We prove that they are disjoint. For suppose that  z U V .

Then    , , a bz x a y b  for some a A  and some b B . Assume that a < b.

Then if  ba y  the two intervals are disjoint, while if  ba y , we have a

 , ba y b , contrary to the fact that  , by b A .

A similar contradiction occurs if b < a.

Now suppose assume that A contains the smallest element a0 of X.

The set  0a  is both open and closed in X.

Then  0A a  and B are disjoint closed sets not containing the minimal element

of X.
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By the result of the preceding paragraph, there exist disjoint open sets U and V
containing the closed sets 0A a  and B, respectively..

Then  0U a  and V are disjoint open sets containing A and B, respectively..

EXERCISE - 14

1. Which of the statements are true ?

(I) Every regular space is Hausdorff.

(II) Every normal space is regular.

(A) Only (I) is true. (B) Only (II) is true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

2. Which of the following is false ?

(A) The space l  is regular

(B) The space l  is normal

(C) The space  l l  is regular

(D) The space  l l  is normal

3. Show that a closed subspace of a normal space is normal.

4. Prove that every regular Lindelof space is normal.

5. Show that every locally compact Hausdorff space is regular.
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6. The Urysohn Lemma
Introduction :

In this section, we learn one of the deeper result, called Urysohn lemma, which
guarantees the existence of continuous real valued function on a normal space. We also
see one of the consequences of Urysohn lemma, namely, Tietze extension theorem which
is an important result that asserts the extension of a continuous function defined on a
subspace to the whole space.

Theorem 6.1 : (Urysohn’s Lemma) : Let X be a topological space; let A and B be
disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then there
exists a continuous function  : ,f X a b  such that f (x) = a for all x A , and
f (x) = b for all x B .

Proof : It is enough to prove for  : 0,1f X  as  ,a b  is homeomorphic to [0, 1].

Let : 1,...,2 ,
2

    
 

n
n

kD k n  be the set of dyadic numbers in [0, 1].

We first prove that for each p D , there exists an open set Up of X such that,

whenever p < q, we have      p qp qA U U U U X B .

Since A and B are disjoint closed sets, we get  A X B  and X – B is open.

As X is normal, there exists an open set 1
2

U  such that 11
22

   A U U X B .

Again as 1
2

A U  and 1
2
 U X B , there exist open sets 1

4
U  and 3

4
U  such that

11 1
44 2

  A U U U  and 1 33
2 44
   U U U X B . So we have,

1 1 31 1 3
4 2 44 2 4

       A U U U U U U X B .

Continuing by induction we obtain open sets of X such that

   2 2 2.2 2.2 2 1 2 2 1 2
...

               n n n n n n n nA U U U U U U X B
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Since for any p D , .2 np k  for some 0 < k < 2n, there exists a open set Up

and if p < q, then p qU U .

Now we define,  : 0,1f X  by    inf : , if 
1, if 





  
 






d Dd d

d D d

d x U x U
f x

x U

Then f (x) = 0 for all x A  because,  dA U , for all d D  and D is dense in
[0, 1].

As   dB U  for all d D , we get f (b) = 1 for all b B .

If  rx U , then  sx U  for every s > r.

Therefore,  |  ps p x U , so      inf | inf |    pf x p x U s r s r .

If  rx U , then  sx U  for every s < r.

Therefore,  |  ps p x U  and hence    inf |  pf x p x U r .

Now we prove the continuity of  f. Let 0 x X  and an open interval (c, d) in

[0, 1] containing  0f x .

We will find a neighborhood U of x0 such that    ,f U c d .

Since D is dense in [0, 1], there exists , p q D  such that  0   c p f x q d .

Let  q pU U U . Since  0 f x q , we have x0 2Uq. (  if 0  qx U , then

 0 f x q )

Also as  0 f x p , we have 0  px U .

To show    ,f U c d , let x U .

Then  q qx U U  implies   f x q .

Since  px U , we have  px U  and hence   f x p .

Thus      , , f x p q c d . Hence    ,f U c d .
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Theorem 6.2 : (Urysohn metrization theorem). Every regular space X with a countable
basis is metrizable.

Theorem 6.3 : (Tietze extension theorem). Let X be a normal space; let A be a closed
subspace of X.

1. Any continuous map of A into the closed interval [a,b] of   may be extended to
a continuous map of all of X into [a, b].

2. Any continuous map of A into   may be extended to a continuous map of all of
X into  .

Lemma 6.4 : Let X be a set; let A be a collection of subsets of X having the finite
intersection property. Then there is a collection D of subsets of X such that D contains
A, and D has the finite intersection property, and no collection of subsets of X that
properly contains D has this property.

We often say that a collection D satisfying the conclusion of this theorem is
maximal with respect to the finite intersection property.

Proof : Let A  be a collection of subsets of X that has the finite intersection property (in
short, f.i.p).

Let  |  and  has f.i.p B B A B

For  1  2, ,B B  , we define  1  2B B  if  1  2B B .

We show that  has a maximal element D.

In order to apply Zorn’s lemma, we must show that if  is a “subsuperset” of 
that is simply ordered by proper inclusion, then  has an upper bound in .

We show that the collection 


 
B

C B


 is an element of , then it is the required

upper bound on .

To show that C is an element of , we must show that C A  and that C has
the finite intersection property.

Clearly C contains A, since each element of  contains A.

To show that C has the finite intersection property, let C1,...., Cn be elements C.
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Because C is the union of the elements of , there is, for each i, an element  iB

of  such that iC B .

The superset   1  ,..., nB B  is contained in , so it is simply ordered by the relation

of proper inclusion.

Being finite, it has a largest element; that is, there is an index k such that   i kB B

for i = 1, ... , n. Then all the sets C1,....,Cn are elements of  kB .

As  kB  has the finite intersection property, the intersection of the sets C1,...,Cn
is nonempty, as desired.

Theorem 6.5 : Let X be a set; let D be a collection of subsets of X that is maximal with
respect to the finite intersection property. Then:

1. Any finite intersection of elements of D is an element of D.

2. If A is a subset of X that intersects every element of D, then A is an element of D.

Proof :

1. Let B equal the intersection of finitely many elements of D.

Consider    BE D . We show that E has the finite intersection property;
then maximality of D implies that E = D, so that B D  as desired.

Take finitely many elements of E. If none of them is the set B, then their
intersection is nonempty because D has the finite intersection property.

If one of them is the set B, then their intersection is of the form 1 ...  mD D B .
Since B equals a finite intersection of elements of D, this set is nonempty.

2. Given A, define    AE D .

We show that E has the finite intersection property, from which we conclude
that A belongs to D.

Take finitely many elements of E. If none of them is the set A, their intersection
is automatically nonempty.

Otherwise, it is of the form 1 ...  mD D A . Now 1 ...  mD D  belongs to D,

by (a); therefore, the intersection 1 ...  mD D A  is nonempty, by hypothesis.
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Theorem 6.6 : (Tychonoff theorem). An arbitrary product of compact spaces is compact
in the product topology

Proof : Let 


 
J

X X


, where each space X  is compact.

Let A  be a collection of subsets of X having the finite intersection property.

We prove that the intersection 


 
A

A
A

. Then X is compact.

Choose a collection D of subsets of X such that D A  and D is maximal with
respect to the finite intersection property. (Such D exists by previous lemma).

It will suffice to show that the intersection 


 
D

D
D

 as D A .

Given  J , let : a X X  be the projection map.

Consider the collection   | a D D D  of subsets of X . This collection has
the finite intersection property because D does.

By compactness of X , for each , we can choose a point x of  X  such that

 Dx D D .

Let x be the point   Jx   of X.

We shall show that x D  for every D D .

First we show that if  1 U   is any subbasis element (for the product

topologyon X) containing x, then  1 U   intersects every element of D.

The set U  is a neighborhood of x  in X  .

Since  x D   by definition, U  intersects  D  in some point, say

 y , where y D .

Then  1 y U D   and by previous results, every subbasis element

containing x belongs to D.
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And then it follows that every basis element containing x belongs to D, as every
basis element is a finite intersection of subbasis elements.

i.e. if B is the basis element containing x, then B D .

As D has the finite intersection property, B D  for every D D ; hence

x D  for every D D  as desired.
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Introduction :

In this unit, we go through several examples, results based on the topics discussed
in the previous units. We also give some exercise problems that can be considered for
seminar topics and for group discussions.

Theorem 1 : (Urysohn metrization theorem). Every regular space X with a countable
basis is metrizable.

Proof :

Step 1 : We prove the following :

There exists a countable collection of continuous functions  : 0,1nf X  having
the property that given any point x0 of X and any neighborhood U of x0, there exists an
index n such that fn is positive at x0 and vanishes outside U.

Let  nB  be a countable basis for X. Let x X  and U be a neighborhood of x.

Then there exists Bm such that  mx B U .

Since X is regular, there exists V containing x such that   mx V B .

Again we can find a basis element Bn such that  nx B V .

Therefore,   n mx B V B .

For each pair n, m of indices for which n mB B , apply the Urysohn lemma to

choose a continuous function  , : 0,1n mg X  such that    , 1n m ng B  and

   , 0 n m mg X B .

Then the collection  ,n mg  satisfies our requirement.

EXAMPLES, SEMINARS, GROUP DISCUSSIONS

UNIT  -  V



128

Because the collection  ,n mg  is indexed with a subset of    , it is
countable; therefore it can be re indexed with the positive integers, giving us the desired

collection  nf .

Step 2 : Given the functions  fn as in Step 1, take w  in the product topology and define

a map : wF X  by       1 2, ,...F x f x f x

We show that F is an imbedding.

First, F is continuous because w  has the product topology and each fn is
continuous. Second, F is injective because given x y , there exists an open set U such
that x U  and y U .

Then by step 1, there is an index n such that   0nf x  and   0nf y ; therefore,

   F x F y .

Finally, we prove that F is a homeomorphism of X onto its image, the subspace

 Z F X  of  w .

We know that F defines a continuous bijection of X with Z.

Let z0 be a point of F(U). We Shall find an open set W of Z such that
 0  z W F U .

Let x0 be the point of U such that  0 0F x z .

Choose an index N for which  0 0Nf x  and    | 0Nf X U .

Take the open ray  0,  in  , and let V be the open set   1 0, NV   of

w .
Let  W V Z . Then W is open in Z, by definition of the subspace topology..

0 z W  because       0 0 0 0  N N Nz F X f x  .

And  W F U . For if z W , then  z F x  for some x X , and

   0, N z .
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Since        N N NZ F x f x  , and Nf  vanishes outside U, the point x
must be in U.

Then  z F x  is in F(U), as desired.

Thus F is an imbedding of X in w .

Since w  is metrizable, X, as a subspace of w , is metrizable.

Definition 2 : If A and B are two subsets of the topological space X, and if there is a
continuous function  : 0,1f X  such that    0f A  and    1f B , we say that
A and B can be separated by a continuous function.

Definition 3 : A space X is completely regular if one-point sets are closed in X and if
for each point x0 and each closed set A not containing x0, there is a continuous function

 : 0,1f X  such that  0 1f x  and    0f A .

Example 4 : Every normal space X is completely regular.

Proof : Let A be a closed set and 0 x X  such that 0 x A .

Since  0x  is closed, and X is normal, by Urysohn lemma, there exists a

continuous function  : 0,1f X  such that   0f x  for all x A  and  0 1f x .

Hence X is completely regular.

Example 5 : Every completely regular space X is regular.

Proof : Let A be a closed subset of X and 0 \x X A .

Then by definition of completely regular, there exists a continuous function

 : 0,1f X  such that  0 1f x  and    0f A .

Observe that the sets 
10,
2

 
 

 and 
1 ,1
2

 
  

 are open in [0, 1].
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As  f  is continuous, we get that the sets 1 10,
2

   
   

f  and 1 1 ,1
2

   
   

f  are

open and they are disjoint.

Also 1
0

1 ,1
2

       
x f  and 1 10,

2
       

A f .

Hence X is regular.

We now show that completely regular spaces can be passed onto subspaces and
products.

Theorem 6 : A subspace of a completely regular space is completely regular. Product
of completely regular spaces is completely regular.

Proof : Let X be completely regular and Y be a subspace of X.

Let x0 be a point of Y, and let A be a closed set of Y not containing x0.

Let A  denotes the closure of A in X. As A is closed in Y, we get  A A Y .

As 0 x A , we have 0 x A .

Since X is completely regular, there exists a continuous function  : 0,1f X

such that  0 1f x  and    0f A .

Then  : 0,1Yf Y  satisfies  0 1Yf x  and    0Yf A .

Let  X X  be a product of completely regular spaces.

Let   b b X  and A be a closed set of X not containing b.

Since X \ A is open and \b X A , there exists a basis element U  such that

\ b U X A

As we know U X   except for finitely many a, say 1,...., n   .
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Given i = 1, ...,n choose a continuous function  : 0,1i if X   such that

  1i if b   and   0 i if X U  .

Now define  : 0,1f X  by    
1

 
n

i if y f y  .

Then   1f b . To show   0f A , let a A .

Then there exists j , for some j =1,....,n such that  ja U   and hence

  0if a   implies   0f A .

Definition 7 : A compactification of a space X is a compact Hausdorff space Y containing

X as a subspace such that X Y . Two compactifications Y1 and Y2 of X are said to be
equivalent if there is a homeomorphism 1 2: h Y Y  such that   h x x  for every x X .

Lemma 8 : If Y is a compactification of X, then X is completely regular.

Proof : Suppose X has a compactification Y.

Since Y is compact and Hausdorff, Y is normal.

As every normal space is completely regular, Y is completely regular

Thus A is completely regular being a subspace of Y.

In the next lemma, we prove the converse of the above statement i.e. if X is
completely regular, then X has a compactification.

Lemma 9 : Let X be a space; suppose that : h X Z  is an imbedding of X in the
compact Hausdorff space Z. Then there exists a corresponding compactification Y of X;
it has the property that there is an imbedding : H Y Z  that equals h on X. The
compactification Y is uniquely determined up to equivalence. We call Y the
compactification induced by the imbedding h.
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Proof : Let X0 denote the subspace h(x) of Z, and Y0 denote its closure in Z.

Then Y0 is a compact Hausdorff space and 0 0X Y

Hence Y0 is a compactification of X0.

We now construct a space Y containing X such that (X, Y) is homeomorphic
(X0, Y0).

We choose a set A disjoint from X that is in bijective correspondence with the set
Y0 – X0 under some map 0 0:  k A Y X .

Define  Y X A , and define a bijective correspondance 0 0:  H Y Y X  by

   H x h x for x X ,

   H a k a for a A .

Then Y is a topology with open set U if and only if H(U) is open in Y0.

Now the map H is a homeomorphism; and the space X is a subspace of Y because

 Xh H .

By expanding the range of H, we obtain the required imbedding of Y into Z.

Now suppose Yi is a compactification of X and that : i iH Y Z  is an imbedding
that is an extension of h, for i = 1, 2.

Now each Hi maps X onto   0h X X .

As Hi is continuous, it maps Yi into 0X .

Hence   0i iH Y X , and  1
2 1


oH H  defines a homeomorphism of Y1 with Y2

that equals the identity on X.

Example 10 : Let Y be the space [0, 1]. Then Y is a compactification of  0,1X ;
obtained by adding one point at each end of (0, 1).

Lemma 11 : Let A X ; let : f A Z  be a continuous map of A into the Hausdorff

space Z. There is atmost one extension of f to a continuous function : g A Z .
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Proof : Suppose that , ' : g g A X  are two different extensions of f .

Choose x so that    'g x g x .

Let U and U ' be disjoint neighborhoods of  g x  and  'g x , respectively..

Choose a neighborhood V of x so that  g V U  and  ' 'g V U .

Now V intersects A ,say at point y.

Then  g y U  and  ' 'g y U .

But since y A , we have    g y f y  and    ' g y f y .

This contradicts the fact that U and U ' are disjoint.

Theorem 12 : (The Stone-Cech compactification) : Let X be a completely regular
space. There exists a compactification Y of X having the property that every bounded
continuous map :  f X  extends uniquely to a continuous map of Y into  .

Proof : Let   Jf   be the collection of all bounded continuous real-valued functions

on X, indexed by some index set J.

For each  J , let    inf ,sup   I f X f X   . Then define :  Jh X 

by      
 Jh x f x  .

Since each I  is compact,  I  is compact.

Because X is completely regular, the collection  f  separates points from closed

sets in X.

Therefore the map h is an imbedding.

Let Y be the compactification of X induced by the imbedding h.

Then there is an imbedding : H Y I  that equals h when restricted to the
subspace X of Y.

We now show that a bounded continuous real-valued function f on X extends
to Y.
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Since f  is bounded and continuous, f f  for some index  J .

Let :  I I    be the projection mapping.

Then the continuous map : H Y I   is the required extension of f as if

x X  we have            
  JH x h x f x f x       .

Uniqueness of the extension is a consequence of the lemma ?? .

Theorem 13 : Let X be a completely regular space. If Y1 and Y2 are two compactification
of X satisfying the extension property of Theorem ??, then Y1 and Y2 are equivalent.

Proof : Consider the inclusion mapping 2 2:j X Y .

It is a continuous map of X into the compact Hausdorff space Y2.

Because Y1 has the extension property, we can extend the j2 to a continuous map

2 1 2:f Y Y .

Similarly, we can extend the inclusion map 1 1:j X Y  to a continuous map

1 2 1:f Y Y .

Figure 13:

Then the composite map 1 2 1 1:f f Y Y  satisfies   1 2f f x x  for all x X .

Therefore 1 2f f  is a continuous extension of the identity map :Xi X X .

But the identity map of Y1 is also continuous extension of iX.

Then by lemma ??, 1 2f f  is equal to the identity map of Y1.

Similarly, 2 1f f  is equal to the identity map of Y2.

Thus f1 and f2 are homeomorphisms.
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Remark 14 : For each completely regular space X, there exists a unique compactification
of X satisfying the extension condition of Theorem ??. We will denote this
compactification of X by  X  and call it the Stone-Cech compactification of X. It is

characterised by the fact that any continuous map :f X C  of X into a compact

Hausdorff space C extends uniquely to a continuous map  :g X C  .

SELF - TEST  4.4

1. The one point compactification of 2  is homeomorphic with:

A)  2

B) 

C)  S2

D) S1

2. Which of the following statements is not equivalent to any two of the remaining

statements for a topological space X, where one point sets are closed ?

A)  X is completely regular

B)  X is metrizable

C)  X is homeomorphic to a subspace of a compact Hausdorff space

D)  X is homeomorphic to a subspace of a normal space

SHOT ANSWER QUESTIONS 4.4

1. Give an example of a regular space which is not completely regular.

2. Give an example of a completely regular space which is not normal.
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TOPICS FOR SEMINARS AND GROUP DISCUSSIONS

1. If  T  is a family of topologies on X, show that T  is a topology on X.

Is T  is a topology on X ?

2. Let  T  be a family of topologies on X. Show that there is a unique smallest

topology on X containing all the collections T  and a unique largest topology

ontained in all T .

3. If  , ,X a b c  let      1 , , , ,X a a b T  and      2 , , , ,X a b c T . Find

the smallest topology containing  1T  and  2T , and the largest topology contained

in  1T  and  2T .

4. Consider the following topologies on 

(a)  1T  = the standard topology

(b)  2T  = the topology of K

(c)  3T  = the finite complement topology

(d)  4T  = the upper limit topology, having all sets (a, b] as basis

(e)  5T  = the topology having all sets  ,a  as basis.

Determine, for each of these topologies, which of the others it contains.

5. A map :f X Y  is said to be an open map if for every open set U of X, the set

f (U) is open in Y. Show that 1 : X Y X    and 2 : X Y Y    are open maps.

6. Show that every order topology is Hausdorif.

7. In the finite complement topology on  , to what point or points does the
sequence 1/nx n  converge ?

8. Show the T1 axiom is equivalent to the condition that for each pair of points of
X, each has a neighborhood not containing the other.
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9. Let Y be an ordered set in the order topology. Let , :f g X Y  be continuous.

(a) Show that the set     |x f x g x  is closed in X.

(b) Let :h X Y  be the function       min ,h x f x g x . Use the pasting
     lemma to show that h is continuous.

10. Justify the following statements

(a) Is a product of path connected spaces necessarily path connected ?

(b) If A X  and A is path connected, is A  necessarily path connected ?

(c) If :f X Y  is continuous and X is path connected, is f (X) necessarily
      path connected ?

(d) If  A  is collection of path connected subspaces of X and if A   ,

     is A  necessarily path connected ?

11. If A X , a retraction of X onto A is a continuous map :r X A  such that
 r a a  for each a A . Show that a retraction is a quotient map.

12. Show that no two of the spaces (0, 1), (0, 1], and [0, 1] are homeomorphic.

13. Show n  and   are not homeomorphic if n > 1.

14. Let :p X Y  be a quotient map. Show that if X is locally connected, then Y is
locally connected.

15. Show that if Y is compact, then the projection 1 : X Y X    is a closed map.

16. Show that in   with countable complement topology, finite sets are compact.

17. Show that   with discrete topology is locally compact.

18. Continuous image of a locally compact space is locally compact. True or

False ? Justify.

19. Continuous image of a first countable space is first countable. True or False ?

Justify.

20. Show that continuous image of a separable space is separable.
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21. Is subspace of a separable space, separable? Justify.

22. Show that   with finite complement topology is Lindelof.

23. Give an example (other than already discussed) of a space which is T0 but not

T1.

24. Give an example (other than already discussed) of a space which is T1 but not

T2.

25. Give an example (other than already discussed) of a space which is T2 but not

T3.

26. Give an example (other than already discussed) of a space which is T3 (regular)

but not 
31
2

T .

27. Give an example (other than already discussed) of a space which is regular but
not normal.

28. Give an example (other than already discussed) of a space which is completely
regular but not normal.

29. Show that every locally compact Hausdorff space is completely regular.

30. Is [0, 1] a compactification of (0, 1) ? Is it a one point compactification ?
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