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Preface

Topology is the core course of Mathematics which acts as a foundation for many
branches of mathematics like real analysis, functional analysis, algebraic topology, differentiable
equations, dynamical systems, etc. The distance concept that appears in the analysis and
metric spaces is attempted to be abstracted out by the subject topology. In this sense, the
concept of open sets, closed sets, continuity of functions, convergence of sequences, and
many other concepts that appears in the subjects analysis and metric spaces can be defined
on any non-empty set without requiring the concept of distance.

The main objective of this self-instructional material is:

1. to provide the fundamental concepts in topological spaces.

2. to demonstrate the product spaces and continuous functions on topological spaces.
3. toanalyze the compact and connected sets in topological spaces.

4. tostudy the theory and applications of separation and countability axioms, the Urysohn

lemma, and the Urysohn Metrization Theorem.

This self-instructional material is written according to the syllabus of Centre for
Distance Education, Shivaji University Kolhapur, and based on the following books.

1. J. R. Munkers, Topology, Second Edition, Pearson Education (Singapore), 2000.
2. W.J. Pervin, Foundations of General Topology, Academic Press, New York, 1964.

Dr. Kishor D. Kucche
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Each Unit begins with the section objectives -
Objectives are directive and indicative of :
1. what has been presented in the unit and
2. whatis expected from you

3. what you are expected to know pertaining to the specific unit,
once you have completed working on the unit.

The self check exercises with possible answers will help you
understand the unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
study tools to keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.
It is also advised to see the new syllabus 2022-23 and study the
reference books & other related material for the detailed study of the
paper.
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UNIT -1

TOPOLOGICAL SPACES

1.

Topological Spaces

Introduction

Various mathematicians like Frechet, Hausdorff, proposed different definitions

for topology over a period of years during the first decades of the twentieth century, but
it took quite a while to settle down to one definition for topology that seemed most
suitable. In this unit, we learn the definition ofa topological space and important examples

of it.

Definition 1.1 : Topology

A topology of X is a collection of subsets X satisfying the following properties
$,XeT.

The union of the elements of any subcollection of .7 is in 7.
(ie.1f X, € 7 then U Xa €7,

Intersection of elements of any finite subcollection of .7 is in 7.

The set X with topology .7 is called a topological space and is denoted by

(X,7) or simple X.
Example 1.2 : Let X= {q, b, ¢}

I.

Then there are many topologies on X, for example, J={¢,X} and

Z = {¢, X a},{b, c}} , are topologies on X. Infact, there are total 29 topologies
on X.

But the set ,7:{¢,X,{a},{b}}is not a topology as {a},{b} .7 but
{a,b} g T .

(D)




Definition 1.3 : Open Set
Let X be a topological space with topology .7. We say that a subset U of X is an

opensetif U e 7 .

Example 1.4 : Let X ={a,b,c} and 7 ={¢, X,{a},{b,c}} . Then {4} — X is an open

set where as {p} — X is not an open set.

Definition 1.5 : Discrete Topology

Let X be any set. Then the collection .7 of all subsets of X is a topology and
called the discrete topology. (i.e. 7= P(X) is called the discrete topology). Equivalently
if every singleton is open, then X is called a discrete topology.

We now give an equivalent definition of discrete topology in terms of singleton

sets.

Theorem 1.6 : A topology (X, 7)) is discrete if and only if every singleton is open.
Proof : If X is discrete, then every subset is open , so in particular, every singleton

1s open.
Conversely, suppose that for all x e X,{x} .7 .
Let Y be a subset of X. We have to show that Yy ¢ & .

We can write the set Yas ¥ =U{{x}|yeY}.

As {y} €7 ,and 7 is a topology, we get that U{{y}} € 7.

That is Y e & and thus .7 is discrete.

Definition 1.7 : Indiscrete Topology

Let X be any set. Then .7 ={¢, X} is called the indiscrete topology.

C2)




Example 1.8 : Let X'be a set and .7} = {Uc X| X -U is either finite or is all of x}.

Then 7] is a topology, called the finite complement topology.

Proof : Given 7, ={U c X| X -U is finite or U = 0}

finite.

Since X — X = ¢ is Finite, X € 7} .

Also X — 0 = X implies 0 € 7.

Let {U,} be the indexed collection of elements of T

If each U, is empty, then their union is empty and hence belongs to 7] .

So assume that there is at least one U, which is non empty. Then X — Uy is

Now X -UU, =N(X-U,)c X -Uy,
Since X —Up is finite, X —UU,, is also finite.
uv, € 7
Let U, U,, ..., U, € Z If one of U; is empty, then their intersection is empty.
So assume that U; # 0 foralli. Then X - U}, X - U,, ...., X — U, , are finite.
Then X -N_,U; =UL, (X -U;) is finite.
U €7

Hence 7; is a topology.

Example 1.9 : Let X'be a set and .7 = {U c X | X -U is countable or U = X}.

Then .7 is a topology, called the countable complement topology.

c

Proof : Given 7 ={U < X | X U is countable or U = ¢} .

3




Since X —0 =X and X — X = 0 is countable, 6, X € .7 .
Let U, e Z,aeA.
If each U, is empty, then their union is empty and hence belongs to 7] .

So assume that there is at least one U, which is non empty. Then X —Ujy is

countable.
X-UU,=N(X-U,)cX-Uy
Since X —Uy is countable, X —UJU,, is also countable.
WU, e Z
Let U, Uy, ...., U, € 7 . If one of U, is empty, then their intersection is empty.

So assume that U; # @ foralli. Then XU, X~ U,, ...., X~ U,, are countable.
Then X —N_,U; =UL, (X -U;) is countable.
mUie .

Hence .7 is a topology.

Definition 1.10 : Suppose that 7 and .7 ' are two topologies on a given set X. If
T < .7 then "is finer than 7. If 7' 5.7 then 7' is strictly finer than 7. We also
say that .7 is coarser (weaker) than .7". We say that .7 and .7"' are comparable if either

IT'>T or T T

Remark 1.11 : We can understand the above definition better by thinking of'a topological
space as a truckload with full of pebble gravel and all unions of collections of pebbles
being the open sets. Now by smashing the pebbles into smaller ones, the collection of
open sets has been enlarged, and the topology, like the gravel, is said to have been made
finer by the operation. We learn more about comparing topologies in the next unit.

4




[ EXERCISE-1 ]

Which of the following is not a topology ?

(A)  The collection of all subsets U of X such that X'\ U either is finite or is all
of X.

(B)  The collection of all subsets U of X such that X'\ U either is countable or
is all of X.

(C)  The collection of all subsets U of X such that X'\ U either is infinite or is
empty or is all of X.

(D)  None of the above

Let X ={a,b,c}. Then Which of the following is not a topology

A (DX}

B) {2,X.1a}}

©) {@,X.1a},{b,c}}

(D)  P(X), power set of X.

Let X ={a,b,c} and 7 ={¢, X,{a,b},{b,c}}.1s Ta topology ? Justify.

Let X ={a,b,c,d,e,f} and T ={¢,X {a}.{c.d}.{a,c,d},{b,c.d,e f}}.
Show that 7is a topology.

Let X= N and 7 ={¢, X }U{all finite subsets} . Is 7a topology ? Justify.

If {,7 } is a family of topologies on X, show that (1.7, is a topology on X.

a

Is UZ, atopology on X ?

(D)




2. Basis and Sub basis for a topology

Introduction :

Specifying the topology by means of all its open sets is too difficult, in general.
To over come this difficulty, we instead consider a smaller collection of subsets of X
and defines the topology in terms of that. That particular collection satisfying some
properties is called a basis, which we define explicitly in this unit.

Definition 2.1 : Base

Let X be any set and % be a collection of subsets of X. Then % is called a base
for a topology on X if
1. For each x e X, there exists B e & such that y e B.

2. For each x € B, (1B, , there exists B; € % such that xe By  B,(1B,.

Example 2.2 : For X = R, the collection of open intervals % = {(a,b) la,be R} is a

base.

Proof :

1. Let x e R. Then for any ¢ >0, wehave xe (x—¢,x+5)e B.

2. Let x e (a,b)N(c,d).
= xe(a,b) and xe(c,d)
= x<b and c<x
= c<x<b
~xe(eb).
Let g <¢.Then (¢,b) = (a,b)N(c,d).
Therefore, 4 is a base for X.

Example 2.3 : Let 4 be the collection of all circular regions (interior of circles) in the
plane. Then £ is the base as given any x ¢ X , we can find a circular region around x
and the second condition is explained in the following figure 1.1.

C6




Figure 1:

Example 2.4 : Let Z be the collection of all rectangular regions (interior of rectangles)

in the plane. Then Z is a base as shown in the following figure :

xe

Figure 2:

Example 2.5 : If X is any set, then the collection Z of all singletons of X is a base for
the discrete topology on X.

PI‘OOf.' Let x e X . Then {x}egg and xe{x}.
Suppose x € BB, . Then B, =B, ={x}.

Therefore x € By =B, (1B, .

Theorem 2.6 : Let # be a base for X. Then the collection
T ={U c X|VxeU, there exists B, € % such thatx e B, cU} is a topology and is
called the topology generated by the base 2.

Proof1: 1. Clearly g € .7 .
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Let x e X . Since A is a base there exists B #Z suchthat ye B X .
Hence X ¢ & .
Let U,e7,aelA and xe U U,

ael\

= xeU, forsome jeA.
Since U; € 7 there exists Be & suchthat xe Bc U,

Implies xe B J U,

ael

= UJUu,ed.

ael

Let Uand U, €.7 and xeU,NU,

=xeU, and xeU,

— there exists B, B, € # suchthat xe B, cU, and xe B, cU,
~.xe BB,

Since 4 is a base there exists By such that x € B; B/ (1B,
=xeB,c BB, cUNU,

=>UNU,eT

Hence the result is true for n = 2.

Now assume that the result is true for n = k.

k
That is if Uy, U,, ...., U, € 7 , then NU; €7
i=l

k k
Since NU; €7 and Uy, €7, we get that (ﬂlU,’jnUmey
i=1 i=

k+1 k
Implies NU; = NU NV €T

i=1 i=1

Thus .7 is a topology.
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Lemma 2.7 : Let X be a set and 2 be a base for a topology T on X. Then T equals the
collection of all unions of elements of B.

Proof : Given that .7 = {U c X |Vx eU there exists B, € # such thatxe Bc U }
Let U €. . Then for each x e U there exists B, € # suchthat xe B, cU.

So we can write U = J B, .
xeU

Therefore, .7 c {all union of elements of A} .
Since every B, € # isin .7, and .7 is a topology, we get UB, € .7 .

-7 is equal to the collection of all union of elements of %.

Remark 2.8 : If Z is a base for a topology 7 on X, then
T ={U c X|VxeU, there exists B, € % such thatxe B, cU}

= {all union of elements of A}
i.e. every element U of .7 (or every open sets U of X) can be expressed as a union

of basis elements.

Lemma 2.9 : Let X be a topological space. Suppose that € is a collection of open
subsets of X such that for each open set U of X and each x e U , there exists C e ¢
such that x e C c U . Then € is a basis for the topology on X.

Proof : Let x ¢ X . Since X is open, there exists C €4 suchthat xeCc X .
Let C\,C, €7 and xe C,NC,.
Since C, and C, are open, C;[1C, is open.
Therefore, there exists C; € ¢ such that xe C; < C,1C,

= 7 1s a basis for X.

Let .7 be the collection of open sets of X'and .7 is the topology generated by C.
We will show 7 = 7.

Let UeZ and xeU .

9




Then by given hypothesis there exists C €. suchthat xye CcU
=>UeT"'

=>9cT".

Let U €. '. Then U is the union of elements of %.

Since every element of % is open, union of these elements is also open.
~Uu=U,C,eT

=>9'cT

T =T

Theorem 2.10 : Let % and %' be bases for the topologies T and " on X respectively.

Then the following are equivalent.
1. T "is finer than I (i.e., T'>.T ).

2. For each x e X and for each B e 98 containing x, there exists B'e 98 such
that xye B'c B.

Proof: 1=2.
Suppose T'5 .7 .
Let xye X and Be % suchthat xy e B.
Since Be T = BeT".
As 7" is the topology generated by 4, there exists B'e 48" suchthat xe B' B.
2=1.
Let U e & and x U . Then there exists Be & suchthat ye B U.
Then by assumption, there exists B'e 44 suchthat x ¢ B' B
LxeB'cBcU
=>xeB'cU
=>UeT"'
LT DT
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Example 2.11 : Let Z be the collection of circular regions and % ' be the collection
ofrectangular regions in the plane. Let .7and .7 ' be the corresponding topologies. Then
T=T".

Proof : Clearly, given any circular region, we can find a rectangular region which

is contained in the given circular region.

=>7'57.
Similarly, given any rectangular region, we can find a circular region which is contained
in the given rectangular region.

=9 >57'
N T=T".

Definition 2.12 : Let % ={(a,b)|a,b e R}
#'={[a.b)|a,beR} and

#"={(a,b)-K |a,b eR}U{(a,b)| a,b e R}

11
Then B, A, A" are bases where K = 1,5,5,---- .

The topology generated by 4 is called the standard topology on R .
The topology generated by 4 is called the lower limit topology on R .

The topology generated by %" is called the K —topology on R, denoted by R ..

Theorem 2.13 : The topology of R, and Ry are strictly finer than the standard

topology on R but are not comparable with one another.

Proof : Let .7, .7" and .7" be the topologies of R, R, and R, respectively.
Let x e(a,b)e % . Then [x,b) e A" and x e [x,b) c(a,b).

=9'57.
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On the other hand 0€[0,1) € ' but there is no (a,b) e % such that

0€(a,b) =[0,1) (if there is, then a < 0 and as (a,b) =[0,1), then 4 >0)

-7 is strictly finer than 7.

Clearly, "5 .7 as "> %4 .

We know that 0 e (-1,1)— K € %" but there is no open interval (a, b) containing
‘0” such that (a,h) = (-1,1)-K .

Because if 0 e (a,b) then b> 0. So by Archimedean property, there exists € N

such that nb > 1.

1
=a<—<b
n

1 1
S—€ (a,b) but — € (—1,1)—K
n n

" T' 2T
i.e. 7" is strictly finer than .7 .

Now we will show that .7' and .7" are not comparable.

Since 0 e(-1,1)-K e #" and no interval [a,b) € #' containing ‘0’ such that

[a,b) = (-1,1)-K

= " is not contained in .

Similarly 0 €[0,1) € #'but no interval (a, b) or (a, b) — K containing ‘0’ will be
contained in [0,1).

.97 is not contained in & ".

Hence &' and & " are not comparable.

Definition 2.14 : Sub Basis

A sub basis . for a topology on X is a collection of subsets of X whose union
iIsXie. VxeX,thereexists § . suchthat ye §.

12)




We will see that topology generated by sub basis is the collection of all the
union of finite intersection of elements of sub basis.

Theorem 2.15 : Let . be a sub basis for a topology on X, and T be the collection of all
the union of finite intersection of elements of .#. Then Jis a topology generated by ..

Proof : Let . * be the collection of all finite intersection of elements of 7,
Now will show that . * is a base.

Let x e X . Since .7 is a subbase there exists § «.¥ such that y e §

As Y. /* xeSeS*.

Let By, B, € & *.Then B, :ﬁSi and B, :ﬁSi .
Then B,(1B, €. * as B, (1B, is the intersection of finite number of sets
of #*,
.. * is a base and
7 = {all unions of all finite intersection of elements of .% }
= {all union of elements of .7 *}

Since . * is a base, Jis a topology.

Definition 2.16 : Order Topology

Let X be a set with order relation ‘<’. Let a,b € X with a <b. Then
(a,b)={x|a<x<b}
(a ] {x|a<x<b}
[a ) {x|a<x<b}

[a,b]={x]a<x<b}

These four subsets of X are called intervals determine by a and b.

Example 2.17 : Let X = N with order ‘<’ then (1;5) = {2, 3,4} and [1,5)={1,2,3,4}.

C13) |




Lemma 2.18 : Let X be a set with simple order relation and assume that X has
more than one element. Let A be the collection of all sets of the following :

1. All open intervals (a, b) in X.

2. All intervals of form [ao,b) where a, is the smallest element of X.

3. All intervals of the form (a,bo] where b is the largest element of X.

Then the collection A is a basis for the topology on X.
Proof : Let xe X .
Suppose x is the smallest element of X.

Since X contains more than one element, there exists b such that x < b.

Then x € [x,b) eh.

Similarly, if x is the largest element of X, there exists a such that a < x implies
xe (a,x] eR.

If x is neither smallest nor largest, then there exists @ and b such that a <x <b
and hence x e(a,b)e % .

In any case, there exists B e % suchthat y e B.

Also if B and B, € # then B, (1B, € # because the intersection of B, and B,
is any one of the form (a, b), [a, b) or (a, b].

Definition 2.19 : Order Topology

Let X be a set with simple order relation and assume that X has more than one
element. Then the collection # consisting of all the sets of the form :

1. All open intervals (a, b) in X.

2. All intervals of form [a,,, b) where q, is the smallest element of X.
3. All intervals of the form (a, b,] where b, is the largest element of X.
is a basis for the topology on X, called the order topology.

14




Example 2.20 : The standard topology on X =R is an order topology.

Proof : Since R has neither smallest element nor largest element,
We have % ={(a,b)|a,beR}.

This topology generated by 4 is same as the standard topology.

Example 2.21 : X =7Z_, the set of positive integers. Then the order topology on X is
the discrete topology.

Proof : Here %’:{(a,bﬂa,beZ+}U{[1,c)|ceZ+}

Roranyn>1; {n} =(n-1,n+1)c A
-. Every singleton 1s open and hence the ordered topology on Z is the discrete

topology.

Example 2.22 : y — R xR with dictionary order.
Here # ={(axb,cxd)|a<candifa=c thenb<d}

is a basis and the topology generated by this Z is called the ordered topology on Rx R .

Definition 2.23 : If X is an ordered set and 4 e X, then the rays determined by a

are given by
(a,00) ={x|x>a}
[ae) = x| v2 )
(—o0,a)={x|x<a}
(

—o0,a|={x|x<a}

(@ED)




Example 2.24 : The open ray (a,o) is an open set, because if X has largest element b,

then (a,) :(a,bo] e7 .

If X has no largest element then (a,0)= | (a,x)

x>a

~.(a,) is open.

Lemma 2.25 : The open rays form a sub basis for the order topology on X. Also the
topology generated by this sub basis is same as the order topology.

Proof : Let xe X .

If x is the smallest element then there exists a such that x < a and

XE€E [x,a) =(~,a).

Similarly, if x is the largest element then there exists a such that a < x and
xe(a,x)=(-w,a).

Clearly, for any xe X, xe(x—&,0).

Hence the collection of open rays forms a sub basis.

Let .7" be the topology generated by the subbasis and .7 be the order topology

onX.

Since each open ray is an open set, we have ' 7 .

Let (a,b) e % . Then
(a,b)=(-o0,b)N(a,»)
[ao,b) =(~0,b)

(a,bo]:(a,oo)
Implies 7 ="' and hence '=7 .
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[ EXERCISE - 2)

Consider the following

(I) The collection %, ={(a,b)|a,b € Q} is a base for R.

(II) The collection %, ={(a,b)|a,beZ} is abase for R.

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Consider the following

(I) Every basis element is an open set in X.

(IT) Every open set is a union of basis elements for X.

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Consider the following

(I) 7'>¢ if for each xe X and for each Be % with x e B, there exists

B'e ' suchthat xe B'c B

(I) 7o>¢' if for each x e X and for each B e ¥ with x e B, there exists

B'e #' suchthat xe B'c B
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Which of the following is true
(A) The topology of R, is finer than the standard topology on R
(B) The standard topology on R is finer than the topology of R,
(C) The topology of IR, is finer than the topology of R
(D) All of the above
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5. Consider the following
(I) The order topology with usual order on R is the standard topology on R .
(II) The order topology on the positive integers Z , is the discrete topology.
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

6. Let X=R and # = {(a,b) ta,be Q} . Show that # is a base for X.

7. Let X =R and % ={(n,n+1):neZ}. Show that # is not a base for x.
8. Let X'be a topological space; let A be a subset of X. Suppose that for each x ¢ 4,
there is an open set U containing x such that {7 = 4. Show that A is open in X.

0. Compare the finite complement and countable complement topologies.

3.  Product Topology X x Y

Introduction :

The definition of the topological product of an infinite set of topological spaces
was given by A.N. Tikhonov (1930). The construction of a topological product is one of
the main tools in the formation of new topological objects from ones already exist.
Using topological products, one can construct a number of fundamental standard objects
of general topology. Another important topology is the subspace topology, which is also
constructed from the existing one. In this unit, we focus on product topology and subspace
topology and relate them using open sets.

Before defining the product topology, we prove the following lemma.

Lemma 3.1 : The set B ={U xV |U isopenin X andV is openinY} is a basis for a
topology on X x Y.

Proof : Let xxye XxY.
Since X'isopenin Xand Yisopenin Y, XxY e and xxye X xY e A.

Let U, xV,, U,xV, e A.
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Then xxy e (U xV )N (U, xV,) = xeU NU,, yeV NV,

< xxye(UNU,)x(VNV,).

m \\
v,d U N
T 2 — >
_v_l .4
U' U2
Figure 3:

Since U, U, is open in X and ¥;(1V, is open in Y (refer the Figure 3)
= (U,NU,)x(hNV,)e B
(U< )N(UyxVy) e B

— 4 is abasis for X « Y.

Definition 3.2 : [The product topology]
Let X and Y be topological spaces. The product topology on X « Y'is the topology

having basis as the collection of all sets of the form U x V where U is open in X and V'
isopenin Y.

The next theorem characterize the base for the product topology X « Y using the
bases for X and Y.

Theorem 3.3 : If Z is a basis for a topology on X and € 'is a basis for a topology on Y,
then 9 ={BxC|Be %B,Ce%} isa basis for a topology on X x Y.

Proof : Let /W be an open set of X x Y'such that xxyeW .

Then there exists U x} € &', suchthat xx y e UxV < W , where % 'is a basis
for product topology X x Y.
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—=xeU and yel .
Since Uis open in X and x e U, there exists Be & suchthat xye B U .

Similarly, there exists C €.# such that yeCcV
=>xxyeBxCcUxVcW

= xxyeBxCcW where BxCeD .

. 9 1s a basis for the product topology of X x Y.

Example 3.4 : The product of standard topology on R with itself'is called the standard
topology on R?. A basis for this product topology is

,%’:{(a,b)x(c,dﬂa,b,c,d ER} .

Definition 3.5 : Let 7,: XxY — X defined by 7,(x,y)=x and 7,: XxY >Y

defined by 7, (x,y)=y.

Then 7, is called a projection of X x Y onto X and 7, is called a projection of

X x Yonto Y.

Remark 3.6 : If 7 = X is open, then
-1 -1
7 (U)={(x,y)|7r1 (x,y)eU}

z{(x,y)|er}

=UxY
Since UxY isopenin x xY, nfl(U) isopenin yxy.
Similarly, if V = ¥ is open then ﬂz_l(V):XxY isopenin yxy.
Also 7, ' (U)Nz,' (V) =UxV

Since Ux ¥ openin x xy, ; (U)Nz, (V) isopenin x xy .
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Theorem 3.7 : The collection
5’2{71{1 (U)|UisopeninX}U{ﬂfl (V)|Vis0peninY}

is a subbasis for the product topology on X xY .

Proof : Let xxye XxY . Since yxy is open in the product topology, there exists
UxV e suchthat xxyeUxV c X xY.

Since xe U, {X}XYCUXY:ﬂ'l_l(U)
= xxye{xtxY cm ' (U)

.'.xxyenl_l(U).
Let .7 be the product topology on X x Y and .7 be the topology generated by ..
Since each element of .%’is open in the product topology, 7' 7 .

Now let  xJ/ be a basis element for the product topology.

%, (W)

_

\
x;'(V)

Y
W/ X
v

A,

Figure 4 :
As explained in the remark ??, we have UxV =z, (U)N 7' (V)
=>UxVeT'

=T
" T=T".
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Lemma 3.8 : Let .7 be a topology on X and y — x .
Then 7, ={YNU |U is openin X }is a topology on Y.
Proof : Since &, X ¢ 7, wehave O=Y(1De Ty, and Y =YX €9,

Let YnUaegy, aEA-

Then U (YﬂUa):Yﬂ( U Ua)

ael ael

Since U, e 7= JU,eT

ael

:>Yﬂ( U Ua)eﬂy_

ael

Let YNU; €9y, i=1,2,...,n.

Then ﬁ(YﬂUi)ZYﬂ(fn]Ui]eﬂy

i=1 i=l1

.7y is atopology on Y.

4. The Subspace Topology

Introduction :

Another important topology is the subspace topology, which is also constructed
from the existing one. In this unit, we focus on product topology and subspace topology
and relate them using open sets.

Definition 4.1 : Let .7 be a topology on X and Y be a subset of X. Then the topology
Ty ={YNU |U is openin X} onY is called a subspace topology and with this .7, we
say that Y is a subspace of X.

We can construct the basis for the subspace topology Y using the base for the
topology X as shown in the next lemma.
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Lemma 4.2 : If A is a basis for a topology on X then the collection.
%y, ={YN B|Be A} is abasis for the topology .7, onY.
Proof : Let U be an open setin Y suchthat x e U .
Since U € 9}, U =YV where V is open in X.
=>xel.
Since £ is a basis for a topology on X there exists B e % suchthat xye BV .

=xeBNYcVNY where B\Y € %, .

- Ay is a basis for 7.

Remark 4.3 : Every open set in a subspace topology need not be open in its parent
topology, for example if y — R with usual topology, then ¥ =[0,1) is open in the

subspace topology Y, but not open in X. How ever thar is a special case, where every
open set of Y is also open X, which we prove in the following lemma.

Lemma 4.4 : Let Y be a subspace of X. If U is openin Y and Y is open in X, then U is
open in X.

Proof : Since UisopeninY, U =Y (¥ for some V open in X.
AsY is open in X, we get that U =Y} is also open in X.

In the next theorem, we relate the subspace topology and the product topology.

Theorem 4.5 : If A is a subspace of X and B 1s subspace of Y, then the product topology
on 4x B 1s the same as the topology on 4x B inherits as a subspace of y xy .

Proof : Let .7 be the product topology on 4x B .
Let (4xB)N(UxV) be a basis element in the subspace topology on 4« B,

where U is open in X and V is open in Y.
But (AxB)N(UxV)=(ANU)x(BOV).

Since 4(U is openin A and BV is open in B, we get that
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(ANU)x(BNV) is open in the product topology on 4x B
:gAxB Cg

Let U xJ be a basis element in the product topology .7 on 4x B.

= U 1s open in A and V is open in B.

=U=ANU"'and ¥V =BV where /' isopenin X and }/' is open in Y.
UV =(ANU)X(BOV") =(AxB)NWU V")

Since U'x V' isopenin Y xy,we get U xV/ is openin 7,

=T CT4p

=7 =T

Example 4.6 : Let Y =[0,1] be a subset of y = R . Then the basis for subspace topology

Jy contains elements of the form Y (\(a,b) where (a,b) is a basis element for the

topology on X then
(a,b), if a,bey;
0,b), ifagY,bey;
YN(a,b)= [ )
(a,l], if aeY,bgY;

porY,ifaeY,be?;

By definition of .7, each of these sets are open in Y. (Note that the sets [0, b)
and (a,1] are not open in X).

Since the collection of these sets form a basis for order topology in the case of
Y =10,1] its subspace topology and order topology are same.

However, next example shows that not every subspace topology is ordered.

Example 4.7 : Let X= R and Y =[0,1)U{2} cR. Then Y is a subspace topology but

not an order topology.
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Proof : The set {2} is open in the subspace topology on Y as

35

{2} = (— —jﬂY where (5 5) is open in X.

But in the order topology on Y, {2} is not open, because any basis element
containing 2 is of the form {x|x e Ya< x <2} for some geY.
Clearly, (a, 2] is not a subset of {2}.
-, Sub space topology on Y is different from order topology on Y.

Definition 4.8 : Convex set

Let X be an order set and Y be a subset of X. Then Y is called a convex subset of
X, if given a,b €Y with a < b the entire interval (a, b) of points of X should contained
mY.

Example 4.9 : If xy — R, then all the intervals are convex.

Example 4.10 : If y — R, then N is not convex as no interval is a subset of N .

Example 4.11 : If xy — R, then ¥ =[0,1)U{2} is not convex, because 0,2 €Y, but

(0,2)£ Y.

The importance of convex sets is that, if subset is convex, then the order topology

is same as the subspace topology (observer that in the example 4.7, Y is not convex).
We prove this interesting result in the following theorem.

Theorem 4.12 : Let X be an ordered set in the order topology and Y be a convex subset
of X. Then the order topology on Y is same as the topology Y inherits as a subspace
of X.
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Proof : Consider the ray (a,) in X.

If geY,then (a,0)NY ={x|xeY and x > a}
which is an open ray in the order topology on Y.

If gV, then a is either lower bound for Y or upper bound for Y as Y is a
convex subset of X.

(- ifthere exists x,y € Y such that x<a <y, thenasY is convex, a e (x,y) = Y)
If a is a lower bound then (a,00)Y =Y .

If a is a upper bound then (—o0,a)NY =¢.

~.(@,0)NY is open in the order topology on Y.

Similarly, (—o0,a)(Y is also open in the order topology on Y.

Since these sets (a,0)(1Y and (—o0,a)(1Y form a subbasis for the subspace

topology on Y, subspace topology is contained in the order topology on Y.

To prove the converse, since any open ray of Y is equal to the intersection of the
open ray of X with Y, so it is open in subspace topology.

As openrays of Y form a subbasis for the order topology on Y, the order topology
on 'Y is contained in the subspace topology.

(EXERCISE - 3

1. Let Y be a subspace of X.
(I) If Uis open in ¥, then U is open in X.
(II) If U is open in X, then U is open in Y.
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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2. Consider the set 2 ={U xV |U is openin X and V is open in Y} . Then

(I) Zisabasis for X xY .

(IT) #isatopologyon X x7V .

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

3. Show that if Y is a subspace of X, and 4 is a subset of ¥, then the topology 4
inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

4. Let X =R be ausual topology and Y =7 . Show that the subspace topology on
Y is the discrete topology.
5. Consider the set Y =[-1,1] as a subspace of R . Which of the following sets are

open in ¥ ? Which are openin R ?

5. Closed Sets

Introduction

With the help of open sets, we can introduce some of the basic concepts of a
topological space. In this unit we discuss the notion of closed set.

Definition 5.1 : Closed Set
A subset A of a topological space X is said to be closed if X — A (i.e., A®) is open
in X.
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Example 5.2 : The subset [, b] of R is closed as [a,b]" = (~0,a)U(b,) is open in
R.

Example 5.3 : In the plane R? the set 4={xxy|x>0andy >0} is closed.

Proof : The complement of A is given by
R*—A={xxy|x<0ory<0}

={xxy|x<0yeR}U{xxy|xeR,y <0}

((—oo,O)xR)U(Rx(—oo,O))
Since (—w0,0)x R and R x(-w,0) are open in R*, we get

R?— 4 is open.

= 4 1s closed.

Example 5.4 : In the finite complement topology on X, the closed sets are finite subsets
and X itself.

Proof : Let A be a closed set.

— /¢ 1s open in X.

— X — /¢ isfinite or 4°=¢.

= A 1s finite or A= X.

Example 5.5 : In the discrete topology on X, each set A is closed because every subset
of X is open implies X — A is open.

Example 5.6 : Let x =R, Y =[0,1]U[2,3]. Then [0,1] is both open and closed in Y.

13
Proof : we can write [0,1] as [0,1]= (—E,EjﬂY
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(_E’Ej is open X implies [0,1] is open in Y.
Also Y —[0,1]=[2,3] and [2,3] is open implies that [0,1] is closed.

. [0,1] is both open and closed in Y.

Remark 5.7 : From the above examples, we can observe that sets are not doors as a
door must be either open or closed, where as a set can be open, or closed, or both, or
neither.

The collection of closed sets have the properties similar to open sets as we discuss
in the next result.

Theorem 5.8 : Let X be a topological space. Then following holds :

1. ¢, X are closed.
2. Arbitrary intersection of closed sets is closed.
3. Finite union of closed sets is closed.

Proof : ¢ and X are closed because they are compliments of open sets X and ¢
respectively.

Given a collection of closed sets {4, } by Demorgan laws, we have

aed’

X-N4,=U (X—Aa)_

ae ae

X—-4,)

Since the sets X — 4, are open, their arbitrary union UJ( 1s open.

aec

Implies X _OQJ Aa i open.

Thus N 4, 1s closed.
ael

IfAl. 1saclosed fori=1, 2, ..., n, then X-U4 = ﬂ(X—Af)

i=1 i=1
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n
As the finite intersection of open sets is open, we have [ (X - A,') 1s open.
i=1

n
Hence N 4; is closed.

i=1

Definition 5.9 : Let Y be subspace of X. A subspace A of Y is said to be closed if Y — A
is open in Y.

Theorem 5.10 : Let Y be a subspace of X then a set A is closed in Y if and only if it
equals the intersection of a closed set of X with Y.

Proof : Suppose A is closed in Y.
—=Y-—4 isopenin.
=Y -A=U(Y where U is open in X.
= A=U°NY (See the Figure 5)

//é///V// 7

Conversely, suppose 4 =C(\Y for some closed set C in X.

Figure 5

= X —(C 1s open in X.

=YN(X-C) isopeninY.
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But y - 4=YN(X —C) (refer the Figure 5)
-~ Y—A4 1sopeninY.

= 4 isclosed in Y.

Remark 5.11 : A closed subset of Y need not be closed in X.

1 1
For example, consider ¥ = [05] and y = R then [Oij is closed in Y but not

closed in R . However, we have the following.

Theorem 5.12 : Let Y be a subspace of X. If Ais closed in Y and Y is closed in X then
A 1s closed in X.

Proof : Given that A is closed in Y.
= A=CNY, Cis closed in X.
Since Y is closed in X we get that C(Y is closed in X.

= A 1is closed in X.
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UNIT - 1I

PRODUCT TOPOLOGY

1. Closure and Interior of a Set

Introduction :

With the help of open sets, we can introduce some of the basic concepts of a
topological space. In this unit we discuss the notion of closure of a set and interior of a
set.

Definition 1.1 : Interior of a set

Let X be a topological space and 4 — x . Then the interior of A is the union of
all open sets contained in A and is denoted by Int A (or A°)

ie. IntA=U{U is openin X |U < 4} .

Sinceeach Uc A= IntAc A.-

Remark 1.2 : 1. Int A is the largest open set contained in A as Int A is the union of all
such sets.

2. If A is open, then Int A = A as A is the largest set such that 4 — 4.

Definition 6.3 : Closure of a Set

Let X be a topological space and 4 — x . Then closure of A is the intersection
of all closed sets containing A and is denoted by 4.

ie. Z:ﬂ{F is closed inX|F:>A}.

Sinceeach F 5 4= 45 4.
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Remark 1.4 :
1. 4 1s the smallest closed set contained in A.

2. If Ais closed, then 4 _— 4.

Theorem 1.5 : Let Y be a subspace of X and A be a subset of Y . Let 4 denotes the
closure of A in X. Then the closure of Ain Y is 4(Y .

Proof : Let B be the closure of Ain'Y.

Since 4 is closed in X, we have 4(Y is closed in Y.

Also 4= AN Y - Since B is the smallest closed set containing A, we get

Bc ANY.
As Bis closed in Y, we have B=C[\Y for some closed set C in X.

Since 4~ p,weget AcC.

As 4 1is the smallest closed set in X containing A, we get 4 — C
= ANYcCNY=8B
= ANYcB

= B=ANY -

Theorem 1.6 : Let A be a subset of the topological space X. Then
(1) x e A 1f and only if every open set U containing x intersects A
le. xediff UNA#=¢vxeU

(11) Suppose the topology X is given by a basis, then y ¢ 4 if and only if every basis
elements B containing x intersects A

ie. xeAiff BNA#¢VxeB
Proof. (i) : We prove x ¢ 4 iff there exists open set U containing x such that

UNA=4¢.
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Let x ¢ 4

—xe X-A and xy _ 1 is open.

Bytaking ;y = x —4,weget xeU and U A=¢.

Conversely, suppose there exists open set x ¢ {/ suchthat U4 =¢

=>Ac X-U

Since X —U 1s closed containing A and 4 is the smallest closed set containing
A,weget Jc X -U

—>xed-
(11) Suppose y < 4 and B is a basis element with x € B.

As B is open, by (i), we get B(1A#¢.

Conversely, suppose B(1A# ¢VxeB.

Let U be an open set such that xy e/ .

Then there exists a basis element B such that xye B U

= ANU #¢

—=xed-

Remark 1.7 : A open set U of X containing x is called a neighborhood of x. With this
terminology, the first part of the above theorem can be stated as y ¢ 4 iff A intersects

every neighbourhood of X.

Example 1.8 : If X =R and A= (0,1], then 4 =[0,1].
Proof : Since every neighborhood of 0 intersects A, we get 0 4
If x <0, then (—o0,0) is a neighborhood of x which doesn ft intersect A.

Similarly, x > 1, then (1,00) is a neighborhood of x which doesn’t intersect A.

Hence A4=[0,1].
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Example 1.9 : If y — R and AZ{;,HEZJr} then 4=4U{0}.

Proof : Let B = (@, b) be a basis element with 0 e (a,b).

1
Then by Archimedean property, there exists n such that a < " <b

Implies B intersects A.
Also ifa > 1, then (1,00) is a neighborhood of @ which doesn’t intersect A.
And if 0 <a <1, then ae(1/m,1/n) for some m,neN.

Then (a—a,a+a) is a neighborhood of @ which doesn’t intersect A,
|
where o :Emm{l/m,l/n} _

Hence 4=A4U{0}-
Example 1.10 : If x — g and C ={0}U(1,2) then C =1{0}U[1,2].

Example 1.11 : If y =R, then Q=R.

Proof : Let x ¢ R and B = (a,b) be a basis element with x e (a,b).
Since a,b € R, there exists ¢ € Q such that a <c <b.
Thus BNQ#¢.

Therefore Q=R ..

1
Example 1.12 : Consider the subspace Y = (0,1] of R and 4= (05) .

Then A= (0,%} inY
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2. Limit Points

Introduction :

With the help of open sets, we can introduce some of the basic concepts of a
topological space. In this unit we discuss the notion of limit point of a set.

Definition 2.1 : Limit Point

Let 4 be a subset of a topological space X. Then a point x ¢ X is called a limit

point of 4 if N (,4 / {x}) # @ for all open set U containing x.

(i.e. every neighborhood of x intersects some point of 4 other than x itself.)

The set of all limit points of 4 is denoted by 4.

Example 2.2 :

1. If4 = (0, 1], then 0 is a limit point of 4 and also every element of A is a limit
point.
s A'=[0,1].

2. If B= {l|n € Z+}, then B' = {0} as zero is the only limit point of B.
n

3. C ={0}U(1,2) then C=[1, 2].

We give the relationship between the closure of a set and the limit points of that
set in the following theorem.

Theorem 2.3 : Let A be subset of the topological space X and A' be the set of all limit
points of A. Then A= AUA".

Proof : Let xed.
If ye 4,then xe AUA.

Suppose x & A. Then A\{x}=A.
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Asxez,wegetUﬂA;«t@ VxeU
=>UNA\Ix} 2D VxeU
= x 1s a limit point of 4.
=>xeA'

=xeAUA'

nAcAUA4'.

Now conversely, let xe 4",
Then UNA\{x} 2D VxeU
=>UNA=D VxeU
—=xed

nA'cA

= AUd'c 4

Hence A=AUA".

Corollary 2.4 : A subset of a topological space is closed if and only it contains all its
limit points.

Proof : Aisclosed ifand only 4 _ 4
ifand only 4|JA'=A
ifand only 4'— A

if and only 4 contains all its limit points.

3. Hausdorff Space

Introduction :

In this unit, we introduce the Hausdroff space and discuss the closed sets of the
Hausdroff space.
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Definition 3.1 : Hausdorff Space
Atopological space X is called a Hausdorft space if for each pair x,, x, of distinct

points of X, there exist disjoint neighborhoods U, and U, of x; and x, respectively.

(i.e. Vx, # x,, there exists x, €U, and x, € U, such that U, U, =J).

Example 3.2 : R with standard topology is Hausdorff.
Proof : Let a,b e R witha <b.

Then there exists a rational number » € Q such that a <r <.

By taking U, = (—o0,7) and U, = (r,%), we get thata a e U; and b e U, such

Example 3.3 : Any non empty space X with indiscrete topology is not Hausdorff.
Proof : Let 7 ={@, X'} be the topology.

Let x,ye X with x# y.

As there is only one non empty set X, we cannot separate these two points with
two disjoint open sets. Hence X 1s not Hausdorff.

Example 3.4 : Let y — R with given topology .7 ={(~n,n)|neZ}. Then X is not
Hausdorff.

1
Proof : Consider 0,5 eR,
1 -
As 0,5 € (—n,n) for each n, we can’t have two disjoint open sets U and V such

1
that 0 e U and EEV'

Hence X is not Hausdorff.
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Example 3.5 : R with finite complement topology is not Hausdorff.

Proof : Let x,ye R with x# y.

Suppose there exist open sets U and V such that xc{7; y eV such that
Uunv =y

Then y —pec.
As V is open, V¢ is finite and so U is finite.
Also as U is open, U is finite, then {7 |J{/¢ = R is finite, which is a contradiction.

Therefore, R with finite complement topology is not Hausdorff.

Theorem 3.6 : Every finite point set in Hausdorff space is closed.

Proof : Since every finite point set is the finite union of single point set it is enough to
prove that each singleton set is closed.

Let A= {xo} and x # x,,. Since X is Hausdorff, there exists y e U and x, €V
suchthat UNV =3.

In particular, UN{xy} =&

=UNA4=9 and xeU

—xed

A= {xo} =A

= 4 1s closed.

Theorem 3.7 : Let X be a space in which every finite set is closed and 4 — x . Then the
point x is a limit point of A if and only if every neighbourhood of x contains infinitely
many points of A.

Proof : Clearly, if every neighbourhood U of x contains infinitely many points of A,
then UN A\ {x} =D

= x 1s a limit point of A.
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Suppose there exists a neighbourhood U of x which contains only finitely many
points of A.

Then U also intersects A\{x} at finitely many points say at x,, x,, ..., X,,,.
ie, UN(A\{x})= (X1, X000 X -

As finite set is closed, we get V' = X\{xl,xz,....,xm} 1s open.

Then W =U NV is also open containing x.

But W N(A4\{x})=@, which is a contradiction to x is a limit point.

Thus every neighbourhood of x contains infinitely many points of A.

Definition 3.8 : Let X be a topological space. Then a sequence (x,) in X is said to be
convergence to x ¢ X if for every neighbourhood U of x there exists N e N such that

x,eUVn=N.

Remark 3.9 :
1. In a topological space, a sequence may converge to more than one point.
2. In (N ,finite complement topology), the sequence (1,2, ,3, ...) converges to every

neN because for any open set U, since X — U is finite, we get all but
finitely many elements of the sequence lie in U.

Theorem 3.10 : If X is a Hausdorff space then a sequence (x,) of points of X converges
to at most one point of X.

Proof : Suppose x, is a sequence which converges to x e X and y € X where y #x.
Since X is Hausdorff and x # y there exists U and V open sets such that x ¢/ and

yveVand UNV =J.
Since x, converges to x and U is a neighborhood of x,x, e U for all but finitely

many.

= only finitely many elements of (x,) are outside U.
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Also x, converges to y implies V contains all x,’s but finitely many which is a
contradiction.

.. X, converges to at most one point.

Remark 3.11 : If a sequence x, converges in a Hausdorft space, then it converges to

only one point say x and this x is called the limit of x, and is denoted by x, — x.

Definition 3.12 : A topological space X satisfies T, axiom if every finite point set is
closed in X.

Remark 3.13 : Every Hausdorft space satisfies T; axiom. The converse need not be
true i.e. a topological space satisfying T, axiom need not be a Hausdorff space. e.g. Let
X be a infinite set and consider the finite complement topology on X then this topological
space satisfies T axiom. But (X, Finite complement topology) is not Hausdroff. Infact
we prove that any two open sets in X intersects i.e. U [V # & . Suppose not then 3/
and V such that UV =&

=>VcX-U.

Since U is open, X — U is finite.

— J/ is finite.

Since X is infinite, X — V is infinite.

— J/ is not open.

Theorem 3.14 :
1. Every simple order set is a Hausdroff space in the order topology.

2. A subspace of a Hausdroff space is Hausdroff .

3. Product of two Hausdroff spaces is Hausdroff.
Proof :
1. Let A be a subset i.e. simply ordered subset of X and x,y e 4 with x# y.

Consider, without loss of generality, x < y,S ={z|x<z <y}
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If § =@ then U (-, ) and V =(x,0) are neighbourhood ofx and y such that
unv=yg.

If S let ze§ then U =(-o0,z) and ¥ =(z,0) are neighbourhood of x
and y such that UNV =

= 4 1s Hausdroff.

2. Let y be a subspace of a Hausdroff space X and x,ye Y with x# y
=>x,yelX.
Since X is Hausdroff 3¢/ and V suchthat xc U, yeV, UNV =
=xeUNY and yeVNY and (UNY)N(VNY)=D.
-y is Hausdroff.
3. Suppose X and Y are Hausdroff space. Let x; xy,, x, xy, € X xY such that
XXV F X X))
=X # X, OF Y| #V,.
If x; # x, then U,V suchthat x;, €U then x, e V,UNV =O.

=xxy,eUxY and = x, xy, €V xY suchthat (UxY)N(V'xY)=0.

. X xY 1s Hausdroff space.

[ EXERCISE - 4 ]

1. Consider the following statements
(I) In the finite complement topology on a set X, every finite set is closed.
(IT) In the discrete topology on a set X, every finite set is closed.
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

42)




Let X be a topological space.

(I) Arbitrary intersection of open sets are open.

(IT) Arbitrary union of closed sets are closed.

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Consider the following

(D If X is Hausdorff space, then every singleton set is closed.

(IT) If every singleton set in X is closed, then X is Hausdorff.

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Show that if 4 is closed in X, and B isclosed in ¥, then 4x g isclosedin y xy .

Show that if U is open in X, and A4 is closed in X, then U \ 4 is open in X and
A\ Uis closed in X.

For subsets 4 and B of X, show that
(a) If Ac B, then Ac B

(b) AUB=4UB

Continuous Functions

INTRODUCTION

We have seen the concept of continuity on real line and in the plane. In this

section, we define the continuity function which generalizes all these existing definitions.

We also learn homeomorphism, which is analogous to the isomporphism between
algebraic structures.

Definition 4.1 : Continuity

Let X and Y be topological spaces. Then f: X — Y is continuous if for each

openset Vin Y, f~!(y) is open inX.
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Example 4.2 : If X is discrete topology then every function f: X — Y is continuous,

because every subset of X is open and hence is f*‘ r).

Example 4.3 : If Y is indiscrete topology, then any function f: X — Y is continuous.
Proof : Since Y is indiscrete, the only open sets are ¢ and Y.

Also (@)= and f7'(y)=x, which are open in X.

Hence f: X — Y is continuous.

In the definition of continuity, the condition on open sets can be reduced to basis

elements, as we prove in the following lemma.

Lemma 4.4 : 4 function f:X —Y is continuous if f ~1(B) is open for every basis
element Be 4.
Proof : Let Vbe openin Y.

Since 4 is a basis for Y, we can write V' =U,., B,
= f71 (V) = f71 (UaeIBa ) = UaeIfA (Ba )
If £'(B,) is open VB, € % then U,., /' (B, ) is also open in X

= f7'(v) is openin X.

-, f 1s continuous.

Theorem 4.5 : Let X and Y be topological spaces and f:X — Y then the following

are equivalent

1. fis continuous.
2. For every subset A of X, f(Z) c f(4).

3. For every closed set B in Y; ffl (B) is closed in X.
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4. For every xe X and every neighbourhood V of f (x), there exists a
neighbourhood U of x such that f(U)c V.

Proof : (1) = (2) Suppose f is continuous.
Let 4 x and ¢ 4.
To show that £ (x)e £ (X), let ¥ be a neighborhood of £ ().
Since f'is continuous, £~'(’) is open in X.
Also xe f71(y) implies ' (V)N4=D.
Let ye f' (V)N 4
= f(y)eV and f(y)e f(4)
= f(y)eVNs4)
VN f(A)=2D
= f(x)ef(4)
= f(4)c s
(2) = (3)Let 4= f'(B)
L fW=r(r"(B)cB
— f(4)cB=B8.
Since A= X, wehave f(4)c (4= r(4)cB
sdc (A c ' (B)=4
=Ac 4
— 4 is closed.

— 771(B) is closed.
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(3) = (4) Let xe X and Vbe an open set in Y'such that f(x)eV .
Then Y- Vis closed in ¥ and hence f~'(y —y) is closed in X.
= X - /' (r) is closed in X.
= f7'(v) is openin X.
So by letting U = /' (), we have xe ™' (¥)=U and
f(U)ZfOfil(V)CV
= f(U)cV.

(4) = (1) Let V'be anopensetin Yand 4= /' (V).
To show 4 is openin X, let x€ 4. Then f(x)eV .
Then there exists an open set U containing x such that 7 (U)cV
Ucf'(r)=4

xeUcA

= A 1s open in X.
. f7N(r) is open in X.
= f is continuous.

As discussed in the introduction, we now show that continuity in real case is a
special case of our definition.

Theorem 4.6 : I/ f:R — R is continuous by means of topological spaces i.e. f L(U)is

open for all open set U then f is continuous by ¢ —§ definition i.e. given x, € R and

g > 0, there exists § > 0 such that |x—x0| <0 implies ‘f(x)—f(xo)‘ <g.
Proof : Let xy €R and & >0. Then V' =(f(xy)—¢,/ (x))+¢) is openin R

As f"is continuous, f~'(y) is open.
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Since x, € £~ (V), for two real number a and b, we have x, € (a,b) = £ (V)
Now take & =min{x,—a,b—x,}.

Let x € R be such that |x—x0|65.

Then x e(xy—8,x)+6) <= (a,b)

= xe(a,b)c (V)

= f(D)eV =(f(x)-&./(x)+¢)

:‘f(x)—f(xo)‘<g

. fcontinuous by ¢ —¢§ definition.

The next few results are about construction of continuous from one topological
space to another.

Theorem4.7 : If /' : X — Y mapsall of X into single point y, € Y, then f is continuous.

, ify, eU;

Proof : Let U be an open set in Y. Then f~1(U) =
X, ify, eU.

As @ and X are open in X, we get that 7~ (¢/) is open in X.

Therefore, f'is continuous.

Theorem 4.8 : If A is a subspace of X then the inclusion function j: 4 — X is
continuous.

Proof : If U is open in X, then ;' (U)=4NU.
Since 4NU is openinA ;7' (U) is open in A.

= j is continuous.
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Theorem 4.9 : If f: X —>Y and g:Y — Z are continuous then gof: X > Z is

continuous.

Proof : Let General Topology Page 50 and U is open in Z.

— ¢ '(U) isopeninY.

jf*‘(g*‘(U))=(gof)71(U) is open in X.

. g of 1s continuous.

Theorem 4.10 : If /: X — Y is continuous and A is a subspace of X then f| A>T is

continuous.

Proof : We can observe that f | = J oj where is the inclusion map.

As fand j are continuous, there composition f | =/ oj isalso continuous.

We now prove interesting result of continuity, called pasting lemma, which
roughly states that under some conditions, two continuous functions pasted (glued)
together gives a continuous function.

Lemma 4.11 : The pasting Lemma
Let X = AlUB where A and B are closedin X. Let f:4—Y and g:B—>Y

be continuous. If 7 (x)=g(x)Vxe AN B, then fand g combine to give a continuous

f(x) xed

function ;- X — Y defined by 4(x) =
g(x) xeB

Proof : Since f(x)=g(x)Vxe ANB, his well defined.

To show };: X — Y 1is continuous, let C be closed in Y.

Then 4! (C)= ' (C)Ug ' (C) isclosedas f~'(C) is closed in A and hence
in X; similarly g~ (C) is closed in X.

Therefore, /: X — Y 1S continuous.

48 )




Remark 4.12 : This result is also true if A and B are openie. X = 4B where A and
B are open in X.

x<0;

X,

Example 4.13 : The function 4:R — R defined by A(x) = x 0 IS continuous.
—, x=0.

2

IA

\

Proof : Take 4 =(-,0] and B=[0,).

Define f: 4 — R by f(x)=x and

X
g:B—>R by g(x):E'
Then f'and g are continuous.
Here 4N B={0} and £(0)=0=g(0).

f(x), xe4;

A = .
s h(x) {g(x), xeB.

by pasting lemma, / is continuous.

5. Homeomorphism

Definition 5.1 : Let X and Y be topological spaces and f: X — Y be a bijective map.
Then f'is called a homeomorphism if fand ! are continuous and in this case X and Y

are said to be homeomorphic.

Lemma5.2: f: X —Y isa homeomorphism < f(U) isopeninYif and only if U is
open in X.

Proof : To show f: X — 7Y is continuous, let U be open in Y.

:U:f(f’l(U)) is open in Y
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— /'(U) is openin X.
. f1s continuous.

To show f*‘ :Y — X 1is continuous, let U be open in X.

= f(U) isopenin Y.

= () W)=r(U) isopenin Y.
— /! is continuous.

On the other hand assume that / is a homeomorphism. Then f'and f~' are

continuous.

Suppose f(U) isopeninY.As f:X — Y is continuous, we get /' (£ (U))
is open in X.

= U 1s open in X.

Now if U is open in X, as f*‘ -Y — X is continuous, we have (f‘l)_l (V) 18
openin Y.

= f(U) isopenin Y.

Example 5.3 : The map f/:R — R defined by f(x)=23x+1 is a homeomorphism.

Proof : Clearly f'is bijective and continuous.

Y

1S continuous.

Also /' (x)= 3_1

Hence f'is a homeomorphism.

X
Example 5.4 : The function f:(-1,1)> R defined by f(X)Zl 2 is a

homeomorphism.

Proof : Clearly f is continuous.

To show f is one one, let £ (x)= f(y)
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Then x—y=xy(y—x)

As xy#-1,we getx=y.

To show fonto, let 0= yeR.
—1+4/1+4)?

gy i

2y

Also £(0)=0.

Hence fis onto.
Also f_l(y): 2y
Then f~'(y) is continuous and hence /'is a homeomorphism.

Example 5.5 : The function f:R; > R givenby f(x)=x is not a homeomorphism.
Proof : Here f T RSR ; 1s not continuous, because the inverse image of the set [1,2)
which is open n R, 1s itself, which is not open in R .

Hence f'is not a homeomorphism.

(EXERCISE - 5 |

1. Let X and Y be topological spacesand f: X —> Y.

(D) If £ is continuous, then f(Z) c f(A4), for every subset 4 of X.

(IT) If for every subset A of X, f(Z) c f(4), then fiis continuous.
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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6.

Let X and Y be topological spacesand f: X —> Y.

(I) If X has discrete topology, then f'is continuous.

(IT) If Y has indiscrete topology, then f'is continuous.

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

Let R denotes the set of all real numbers in its usual topology and R, denotes
same set in the topology generated by all intervals of the form [a, b). Let

SR —>R,bedefined by f(x)=x for every real number x. Then which of the
following statements is true ?

A) fis not continuous B) f'is continuous

C) fis a homeomorphism D) f*‘ is not continuous

Prove that for functions f:R — R, the ¢ —§ definition of continuity implies
the open set definition.

Suppose that f: X — Y is continuous. Ifx is a limit point of the subset of 4 of

X, is it necessary true that £ (x) is a limit point of f(4) ?

Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace
[a, b] of R is homeomorphic with [0, 1]

Find a function f:R — R that is continuous at precisely one point.

Product Topology

Definition 6.1 : Let {Aa}ae , be an indexed family of sets and X ={J,.; 4, -

The cartesian product of this indexed family is denoted by [14cs 4, is defined

as [loes 4s Z{XZ(xa)aEJ |x, € 4, for each o eJ}_

Lemma 6.2 : Let {Xa}aeJ be an indexed family of topological spaces let

B ={[1yesU, U, isopenin X} then & is a basis for the topology TTyc; X, -
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Proof': Letxzx:(xa)eHaEJXa since each x, isopenin X,
B=1lye/ X, €%
=xeBeA.

Let B,,B, € # then B, =[1,.,U,.B, =I14es Vs,

B NB, :(H Ua)n(n Va)

aeJ ael

=11 (Ua ﬂVa), U, NV, is open in X

aeJ
= BB, e A.

o ABisabasis for [1,c, X, -

Definition 6.3 : Box Topology
Let {X o }ae , be an indexed family of topological spaces then the collection

B ={1yesU, |U, isopeninX, foreachae J}is a basis for [],., X, and the
topology generated by this basis is called the box topology.

Definition 6.4 : Product Topology on [],.; X,

For each e J. Define 11y =T11,c, X, > Xz by Hﬁ(x)zx@ then [[,’s
are continuous.
Let Sy Z{H%(U,@NU@ is open inX@} and S=J,_,S, then S is a sub

basis for [] X, and topology generated by S is called the product topology.

Theorem 6.5 : The product topology on [1 X, has a basis element in which elements
are of the form [1U, where U, is openin X, foreach o e J suchthat U, is open in

X, foreach o e J suchthat U, equals X, except for finitely many o’s.
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Proof : Let 2 be the basis generated by the sub basis . then Z consist of finite
intersection of elements of .. If we intersect element belonging to the same ., we
don’t get any thing new because

% (Us)N%(Vy)=T1%(Uy NVy)e 7, is again an element of .7, .
. Assume that basis element is the finite intersection of different .7, ’s.
B=113,(Us, )z, (Us, )N--N1z,(Usg,) then

x e B if and only if x X EH_«%%(U«%’Z') Vi=L2,...n

if and only if [15 (x) €Uy Vi=12,...n

if and only if X, € U%i Vi=12,...,n

.. There is no conditionon x, if a # %, i=1,2,...,n

s B=T1U, where U, =X, if a #%,

- B=11U, where U, = X, except for finitely many o’s.

Remark 6.6 :
1. In a finite product space [T}, X; the box topology is same as the product topology.
2. Since every basis element in the product topology belongs to the basis for the

box topology. We have box topology is finer than product topology.

Theorem 6.7 : Let X, be an indexed family of spaces and A, — X, for each o if

[1.X, is given either the product or box topology then [],, Za =[lges 4, -
Proof : Let xe],, Za
=>xe Za Vaeld

To show x e[],c; 4, -
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Let xe[],e,U,

=>x,elU, Vael.

Since x, € 4, and x, €U,

=4, N0, #08 VaelJ

e (Maes 4 )N(Maes Uy ) = Maes (4, NU, ) 2 D
= x€[lpes 4y

= oes Ay STaes 4,

Conversely, let xem.

To show x €[], 4, -

We have to show that x, e 4, VaeJ.
Let x, eU, VaeJ

= x€[lpesUy

= (Maes 4, )N, ) # @

= [Maes (4, NU, )2 D

Say v €[laes (4, NU,)
=y,€4,NU, Va

A, NU, 29, Yo

= X, eZa Yo

=X, eHaJZa

= HaeJ Aa = HaJ Zoz .
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Theorem 6.8 : Let f:A—>][],., X, be given by f(a)=(fa (a)) where

aeJ

f,:A—> X, foreach a.

Let 11X, have the product topology then f'is continuous if and only if f,, is

continuous for each a.
Proof : f: A1, X, is givenby f(a) =(fa (a))aEJ where f,:4A—> X, .

Since [1, :[1yes X, = X, weget f, =11,of.

Now suppose fis continuous. As [],, is continuous, [, o f is continuous V¢ .

= f, 1s continuous V¢ .

Conversely, suppose f, is continuous for each a.

A typical basis element of the product topology is ], (U ﬂ) where U4 is open
in X,.

We have to show that f ' (H%(U%)) is open in A4.

But /™ (H%(Uﬂ)):(nﬂ °f)_1 (Uﬂ):fé’l (U%)'
Since f,, is continuous. fy, (U ) is open.

= f is continuous.

Remark 6.9 : The above result is not true for box topology.

For example, consider R" =T],_,+ X, , infinite countable product of
X, =R, Vn.

Define f:R —»R" by f(t)=(¢1t,...).

Suppose that R" is given with box topology.

Here each f, >R — R givenby f, (¢) =t is continuous.
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But we prove that f'is not continuous. Consider,

PEETNERINE

Then B is open in box topology.

Suppose f~'(B) isopenin R.

Since 0e f'(B), f'(B) is open in R there exists & >0 such that
0e(-6,6)c f(B).

= f((-5,5))= B

=11,((-8,8)) <11, (B)V

= f(8.8) (-1 1w
s 1)

Which is a contradiction as there 3n, such that ny6 >1

. 1 1
S . I
7o and hence (-§,5) is not subset of ( 1, n0]

Hence, f~'(B) is not open and hence /'is not continuous.

7. The Metric Topology

Definition 7.1 : Ifd is a metric on X, then the collection % = {Bd (x,e)|xeX,e> O}

is a basis for X and the topology generated by 4 is called the metric topology on X
induced by ‘d’.
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Definition 7.2 : Metrizable
A topological space X is said to be metrizable if there exists a metric d on X that

induces the topology of X.
Example 7.3 : A metric space is metrizable with given metric on X.

Definition 7.4 : Bounded Metric

Let X be a metric space with metric d.

Define d: X xX —R by d(x,y)min{d(x,y),1}. Then d is a metric and

called the standard bounded metric corresponding to d.

Theorem 7.5 : The topology generated by d is same as the topology generated by d .

Proof : First we show that d (x,y)=min {d(x,y),l} is a metric on X.

|

I. (x,)=0

|

2. (x,y)=0 ifand only if x = y

3. g(x,y)zc?(y,z)
4. Now we will show that d (x,z)<d (x,y)+(y,z)

Suppose d (x,y)=1 or d(y,z)=1 then

Now suppose d (x,y)<1 and d(y,z)<1 then

)
d(x,y)=d(x,y) and g(y,z):d(y,z)




d(x,z)< c?(x,y)+d (y,2)
*.d is a metric on X.

Since the collection of e-balls with € < 1 forms a basis for the metric topology, it

follows that d and ¢ induces the same topology on X as the collection of ¢ balls with
€ < 1 under these two metric are same.

Theorem 7.6 : Let d and d' be two metrics on X ; Tand 7' be topologies induced by d
and d'. Then 7' is finer than Tif and only if for each x ¢ X and € > 0 there exists

8> 0 such that B, (x,8) < B, (x,¢).
Proof : Suppose 7'>.7 . Let xe X ande> 0.

Since B, (x,&) is open in .7, there exists B e 7' such that Bc B, (x,¢).

As B is open in 7" there exists 6 > 0 such that B;, (x,6)cB
Conversely, suppose assume that ¢ —§ criteria is true.
Toshow 'S5 7 ,let e 7.

As B is open in .7, there exists ¢ > 0 such that B, (x,&)c B.
Then by assumption there exists & > 0 such that B, (x,8)c B, (x,¢)

=B, (x,6)c B

— 7' is finer than .7 .

Theorem 7.7 : The topologies on R" induced by Euclidean metric d and square metric

are the same as the product topology on R".

1

Proof : Here d(x, ) =( ?:1(’51' — Vi )2)2 and

1

p(x,y)=max{|x, - y,|..|x, = »,|} . Since |x; - ,] S( 2 (x —yl-)z)z
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1

:max{léién}ﬂx,-—y,-”ﬁ( ?:1(35[ _J’i)z)z
= p(x.y)<d(x.y).

Let ye B, (x,¢)

=d(x,y)<e¢

= p(r.y)<e

=yeB, (x¢&)

(x,g)CB (x,¢)

=7,09,.

o
Also (xi -y )2 < max; e, {|xi - y,~|2}

= 1(x —y,) S nmax;ge, {|xl~—y,~|2}

—_

= (22 (5 -0 ) P < wmax e, {0

=d(x,y)<np(x.y)

Let y € B (x,¢)

= p(xy)<s
:>d(x,y)<%
b

(x,e ch( j;]
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:>7p .9,
.'.%zﬂd

Now we show that topology -7, generated by square metric is same as product
topology 7.
Let B=(a;,b)x(ay,b,)x..x(a,,b,) be a basis element in R" and
x:(xl,xz,...,xn)eB
= X; e(ai,bi) Vi=12,..,n
Since (ai,bi) is openin R there exists ¢; >0 such that
(xi—&;.x;+&;) =(a;,b) Vi
Take € :min{gl,gz,...,gn}.
To show B, (x,e)c B, let y € B, (x,¢)
= p(x,y)<e
:>|xi—yl.|<8 Vi
=y -yl<e<e Vi
=) € (xi — &5 X +8i) = (ai’bi)
= yeB
~.B,(x,e)c B
=/ A=
Let B, (x,&) be a basis element in 7, . Then
B, (x,&)=(x —&,x +&)x(x, —&,x) +&)x..x(x, —&,x +&) is open in R"

S B=(x—&,x+¢&)x..x(x,—¢&,x,+¢&)C B, (x,8)
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T =T=3,

Hence the product topology on R” is metrizable.

Definition 7.8 : Given an index set J and x = (xa), y =( ya), define p on R’ by

,E(x,y)=sup{67(xa,ya)|aej} where g(xa,ya)=min{d(xa,ya),l}. Then the

topology induced by p is called the uniform metric.

Theorem 7.9 : The uniform topology on R’ is finer than the product topology and
coarser than the box topology.

Proof : Let B=T]U,, be a basis element in R’ and x e B.
o

Since U, =R except for finitely many, let U o = R for a #1,2,..n.

As xeB then x, €U, Va as U,,U,, ..U, are open in R there exists

g; > O such that
Xy e(xal. — &, X, +5i) cU,
Take ¢ :min{gl,gz,....,gn}.
Let ye B, (x,¢)
=p(x,y)<e
:c?(xa,ya)<8 Vo
In particular,
c?(xai,yai ) <e<g, Vi=12,..,n
=Yg, €Uy i=1,2,..n

~yellU,=8B
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=B 7 (x, 5) c B,
Hence Uniform topology is finer than product topology.

Let B be a basis element in the uniform topology i.e. B=5, (x,€).

Now take [/ :H(xa _g,xa +§j

Vo —Xy|<e

Then J = B as for any y in U,

:>yeB/5(x,8).

. Box topology is finer than uniform topology.

Theorem 7.10 : Let d (a,b) = min {|a —b|,1} be the standard bounded metric on R . If

_ w _ g(xi’yz') . .
x and y are two points of R", define D(x,y) =sup\——(. Then D is a metric
i

that induces the product topology on R" .

Proof : '.'c?(xi,zi)sg(xi,yl.)+c7(yl.,zl.)

d(x;,z)

1271

J(xi,y,.)_i_ 67()’,"Zi)
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Let .77, be the topology generated by D and .7 be the product topology on R™ .

To show .7 < .7, let B, (x,¢) be a basis element of .7, .

1
Since € > 0 there exists N such that ﬁ <ég.

Let V =(x—&,x +&)x..x(xy —&,xy +&). Then V is open in the product
topology.
To show that V < B, (x,¢), let yeV .

Then y; e(xl.—g,xi+8) Vi=1,2,..,N and y;eR Vi>N.

Clearly, |xi __yi| Sl< e Vi>N
i N
.._D(x,y)Smax{d(xl,)ﬁ)’d(xz,yz)’m’d(xN,yN)’g}
1 2 N
= yeB,(x,¢)
.'.VCBD(x,g)_

Conversely, consider a basis element U =[l;cz, U; in the product topology

where U, is openin R for i =a;,a,,.....,a, and Uj =R j#aq,.
Let yeU.Then x; €U, i=1,2,..,n.
Since U, is openin R there exists 1> &; >0 such that

xpe(x—&,x+e)cU, i=1,2,..,n.

&.
. i
Now take € :mln{7|l :051,...05”}_

Claim: B, (x,e)cU.

Let y e By (x,¢)

D)




= D(x,y)<¢

d(x.y,
:sup{@}<8

.'.M<g Vi
1

=d(x,y)<ei<g <l Vi=ay,a,..0,
=y, €U, fori=1,2,..,n

=>yelU

~yelU

" Ih=T

= R" is metrizable.
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UNIT - 111

COMPACT SPACES AND COUNTABILITY AXIOMS

1. Connected Spaces

Introduction :

In this unit, we define connected topological space and construct new connected
spaces from the existing ones. We also show that finite cartesian product of connected
spaces is connected, but arbitrary product of connected spaces need not be connected.

Definition 1.1 : Let X be a topological space. A separation of X is a pair (U, V) of
disjoint non-empty open sets of X whose union is X. If there is no separation of X, then
X 1s called connected. If a separation exists for X, then X is called disconnected.

We give an equivalent definition of connectedness in terms of open and closed
sets.

Lemma 1.2 : 4 space X is connected if and if the only subsets of X that are both open
and closed in X are the empty set and X itself.

Proof : Suppose X is connected.

Let 4 = X be closed and open in X such that 4 - @jand 4+ x .

Then U= 4 and V' = A€ forms a separation of X, which is a contradiction to that
X 1s connected.

Conversely, suppose X is not connected.

Then there exist disjoint nonempty open sets U and V' such that UV = X .

As U = J*, U is both open and closed and [ # @ and U = X, which is a
contradiction.

Hence X is connected.
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Theorem 1.3 : If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty
sets A and B whose union is Y, neither of which contains a limit point of the other. The
space Y is connected if there exists no separation of Y.

Proof : Suppose A and B form a separation of Yi.e. Y =AUB, A and B are open,
ANB=¢.

= A is both open and closed in Y.

Then the closure of A in Yy = 4 Y -

Since A4 is closed in Y, closure of 4 1s A4.

ie. 4NY =4

= ANB= o

Similarly, 4N B= ¢ -

. No limit point of 4 is in B and vice-versa.

Conversely, suppose there exist A and B such that 4(JB=7Y, Zﬂ B=g,
ANB=2, ANY =AN(4UB)=(4N4)U(4NB)=4.

— A4 isclosed in Y.

— B isopenin Y.

Similarly, 4 is open in Y.

Example 1.4 : Let X denote a two point space in the indiscrete topology. Then X is
connected as there is no separation for X.

Example 1.5: Let X =R and ¥ =[-1,0)U(0,1]. Then Y is disconnected as 4 =[-1,0)

and B =(0,1] forms a separation of Y.

Lemma 1.6 : If the sets C and D form a separation of X and if Y is connected subspace
of X then Y lies entirely within either C or D.
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Proof : Since X =CJD; Cand D are open in X, we have C(\Y and D(\Y are open
nY.

Also (CNY)U(DUY)=Y.

Since Y'is connected, CNY = or DY =J
=>YcC‘=DOrYycD =C

Le. yecporYcC.

As we have seen in the example ??, union of connected spaces need not be
connected, but with some extra conditions we can prove that union of connected spaces
is connected.

Theorem 1.7 : The union of a collection of connected sub spaces of X that have a

point in common is connected.

Proof : Let {Aa} be a collection of connected subspaces and p (14, .
We prove that the space ¥ =4, is connected.
Suppose that Y = CJ D is a separation of Y.
Since peY ,wehave pe C or pe D;suppose peC.

As {4,} <Y is connected and Y is not connected, we get either 4, = Cor

A cD.

(01

As pe A, for each o and p e C we get that {Aa} c C for every o

Hence U{Aa} c C, contradicting the fact that D is nonempty.

Theorem 1.8 : Let {Aa} be a sequence of connected subspaces of X, such that

4,NA,,, =D forall n. Then UA, is connected.
Proof : Suppose U4, is disconnected.

Then there is a separation (U, V) of U4, .
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Since each 4, is connected , we get either 4, cU or 4, V.

Suppose that 4, cU . Since 4,1 A4,,, #0,wegetthat 4, cU .

n+1
Then by induction each 4, c U .
Hence U4, cU and V' is empty, which is a contradiction.

Therefore, U4, is connected.

Theorem 1.9 : Let {Aa } be a collection of connected subspaces of X, let A be a connected

subspace of X. If AN A, #D forall o, then AU(UA,) is connected.
Proof : Suppose AU(U4, ) is disconnected.
Then there is a separation (U, V) of 4U(U4,).
Since 4 is connected , we get either 4= or AV .
Suppose that 4 = . Since A(14, #D foralla, 4, cU .

Hence U4, c U and V is empty, which is a contradiction.

Therefore, 4U(UA, )is connected.

Theorem 1.10 : Let A be a connected subspace of X. If Ac Bc A, then B is also
connected.

Proof : Suppose that B is disconnected.
Then there is a separation B=C|JD for B.

Since A4 i1s conencted and 4 = B=CJ D, we get thateither 4cC or 4 D
Suppose 4= C.Then 4~ C.

Thus, BcAcC.

Since (C, D) is a separation for B, we get C(\D =
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Therefore, g = C = p¢ and so B\ D =, which is a contradiction.

Hence B is connected.

Theorem 1.11 : The image of a connected space under a continuous map is connected.

Proof : Let f: X — Y be acontinuous map and X be connected.
Since /' is continuous, we know that g: X — £ (.X) is also continuous.
Now suppose that £ (X)) is disconnected with separation f(X)=AUB.
Then g~'(4) and g7'(B) are disjoint open sets suchthat X = ¢ (4)U g ' (B)

This is a contradiction to X is connected.

Theorem 1.12 : 4 finite Cartesian product of connected spaces is connected.
Proof : We prove that the product of two connected spaces X and Y is connected.

Let gxb e X xY be abase point. Then the “horizontal slice” X x p is connected,

being homeomorphic with X.

Also each “vertical slice” xxY is connected, being homeomorphic with Y.

Since xxb e (X xb)N(xxY), each “T-shaped” space

Y xxYyY
l axb
b < Xxb
@ X
X a
Figure 6:

T, =(Xxb)U(xxY) is connected.

Since axbe(),T, and each T, is connected, therefore the union N 7, is

connected. As this union equals y x vy, the space x xy is connected.
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Now suppose that the product space X, x...x X, _; is connected.

Since the space X, x...xX, is homeomorphic with (Xl x...xXn_l)xXn, we
get that X x...x X, is connected.

We now show that arbitrary product of connected spaces need not be connected.

Example 1.13 : The product space R" is not connected in the box topology.
Proof : Consider the cartesian product R" in the box topology.

We can write R" = 4|J B , where 4 is the set consisting of all bounded sequences

of real numbers, and the set B of all unbounded sequences.

Then the sets A and B are disjoint and open in the box topology For ifa is a point
of R", the open set

consists entirely of bounded sequences if a is bounded, and of unbounded sequences if
a if unbounded.

Thus, even though R is connected, the product space R" is not connected in
the box topology.

Theorem 1.14 : The product space R" is connected in the product topology.

Proof : Now consider R" in the product topology.
Let R" = {x=(x,x,,...)|x; =0 fori >n}.

The space R" is clearly homeomorphic to R” so that it is connected.

Let R” = Uf&n . Since each R" is connected and () — (0,0,...) e ﬂ@” , it follows
that the space R™ is connected.

To show that R" is connected, it is enough to prove that the closure of R”

equals all of R"™.
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Let a=(aj,a,,..)eR" and U =[]U, be a basis element for the product

topology that contains a. We show that U intersects R”.

Since U is open in the product topology, there exists an integer N such that
U,=Rfori>N.

Then the point x = (al; :::an;0;0; :::) of R¥ belongs to U, since ai 2 Ui for all 1,
and 0 2Ui for i > N.

2.  Connected Subspaces of the Real Line
Definition 2.1 : Linear Continuum
A simply ordered set L having more than one element is called a Linear Continuum
if the following hold :
1. L ha the least upper bound property.

2. If x <y, there exists z such that x <z <y.

Theorem 2.2 : If L is a linear Continuum in the order topology, L is connected, and so
are intervals and rays in L.

Proof : We know that a subspace Y of L is said to be convex, if for every pair of points
a, b of Y with a < b, the entire interval [a, b] of points of L lies in Y.

We first prove that if Y is a convex subspace of L, then Y is connected.

To contrary, assume that Y is the union of the disjoint nonempty sets 4 and B,
each of which is open in Y.

Choose a € A and p € B such that a <b.
Then the interval [a, b] of points of L is contained in Y.
Hence [a, b] is the union of the disjoint sets 4, = AN[a,b] and B, = BN[a,b],

each of which is open in [a, b] in the subspace topology, which is the same as the order
topology.
The sets 4, and B, are nonempty because a € 4, and b € B,,. Thus, 4, and B,

forms a separation for [a, b].

I C72) |




Let ¢ =sup 4. We show that ¢ ¢ 4, and ¢ ¢ B, which contradicts the fact that
[a, D] is the union of 4 and B,,.

Case 1 : Suppose that c € B,. Then ¢ #a, so eitherc=bora<c<b.

In either case, it follows from the fact that B, is open in [a, b] that there is some
interval of the form (d, c] contained in B ,. If ¢ = b, we have a contradiction at once, for
d is a smaller upper bound on 4, than c. If ¢ < b, we note that (¢, ] does not intersect 4,
(because c is an upper bound on 4y).

Then (d,b]=(d,c]U(c,b] does not intersect 4,,.
Again, d is a smaller upper bound on 4, than ¢, contrary to construction.

Case 2 : Suppose that c € 4,. Then ¢ = p, so eitherc=a ora <c <b.

Because 4, is open in [a, b], there must be some interval of the form [c, e)
contained in A4,,.

Because of order property (2) of the linear continuum L, we can choose a point
zof L suchthatc<z<e.

Then z € 4, contrary to the fact that ¢ is an upper bound for 4,,.

We now prove that the intermediate value theorem of calculus is the special
case of the following theorem that occurs when we take X to be a closed interval in R
and Ytobe R.

Theorem 2.3 : Intermediate value theorem
Let f:X —> Y be a continuous map, where X is a connected space and Y is an

ordered set in the order topology. If a and b are two points of X and if r is a point of Y
lying between f (a) and f (b), then there exists a point c of X such that f (c) =r.

Proof : The sets A= f(X)(\(~o0,r) and B= f(X)N(r,+w) are disjoint, and
f(a)ed and f(b)eB.

Also 4 and B are open in £ (X).

Suppose that there does not exist ¢ ¢ X suchthat f(c)=r.
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Then f(X)=AUB and hence 4 and B forms a separation of f(X), which is

a contradiction to the continuous image of a connected space is connected.

[ EXERCISE - 7 |

Consider the following statements
(I) R, is connected

(II) R 1s connected
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

Consider the following

(I) If f is continuous and E is connected, then 7~ (£) is connected

(I1) If fis continuous and E is connected, then f(E) is connected.
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

Let 7 and .7 ' be two topologies on X. If 7' &7, what does connectedness of
X in one topology imply about connectedness in the other ?

Show that if X is an infinite set, it is connected in the finite complement topology.

Let y — x;let Xand Y be connected. Show that if 4 and B form a separation of
X\Y,then YUA and YJ B are connected.

Local Connectedness

Introduction :

In this section, we discuss path connectedness, components, locally path

connectedness and try to relate these concepts.

Definition 3.1 : Given points x and y of the space X, a path in X from x to y is a

continuous map f :[a,b]— X suchthat f(a)=x and f(b)=y.Aspace X issaid to

be path connected if every pair of points of X can be joined by a path in X.
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Theorem 3.2 : Every path connected space X is connected.
Proof : Suppose X = AUB.Let ge 4 and p e B. Then, since X is path connected,
there exists a path f:[c,d]—> X between a and b.

Since /" is continuous and 4 and B are open, f*‘ (4) and f*‘ (B) are open and

are disjoint. Therefore [c,d]=f"'(4)Uf'(B) is disconnected, which is a
contradiction.

Hence X is connected.

Remark 3.3 : The converse of the above theorem is not true. For example, let S denote
the following subset of the plane.

S ={xxsin(//x)[0<x<I}

wm

Figure 7:
Because S is the image of the connected set (0, 1] under a continuous map, S is
connected. Therefore, its closure S, called the topologist’s sine curve, in R? is also

connected. But S is not path connected.

Definition 3.4 : Given X, define an equivalence relation on X by setting x ~ y if there is
a connected subspace of X containing both x and y. The equivalence classes are called
the components (or the “connected components™) of X.
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Theorem 3.5 : The components of X are connected disjoint subspaces of X whose union
is X, such that each nonempty connected subspace of X intersects only one of them.

Proof : Being equivalence classes, the components of X are disjoint and their union is
X. Each connected subspace 4 of X intersects only one of them. Because, if 4 intersects
the components C; and C, of X, say at points x, and x,, respectively, then x; ~ x, by
definition; this cannot happen unless C; = C,.

To show the component C is connected, choose a point x,, of C. For each point x
of C, we know that x, ~ x, so there is a connected subspace 4 containing x,, and x. By
the result just proved, 4, < C. Therefore C =, 4, .

Since the subspaces 4, are connected and have the point x, in common, their
union is connected.

Definition 3.6 : A space X is said to be locally connected at x if for every neighborhood

U of x, there is a connected neighborhood V of x contained in U. If X is locally connected
at each of its points, it is said simply to be locally connected.

Theorem 3.7 : A space X is locally connected if and only if for every open set U of X,
each component of U is open in X.

Proof : Suppose that X is locally connected; let U be an open set in X; let C be a
component of U. To show C open, let x e C . Since X is locally connected,there exists a
connected neighborhood V of x such that 7 = {7 . Since V'is connected and V' | C = &,
we get x eV « C . Therefore, C is open in X.

Conversely, suppose that components of open sets in X are open.

Given a point y ¢ X and a neighborhood U of x, let C be the component of U
containing x. Since each component is conneceted, C is connected; since it is open in X
by hypothesis, and x ¢ C = U . Therefore X is locally connected at x.
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4.

( EXERCISE -8 )

Consider the two statements

(I) Every path connected space is connected.

(IT) Every connected space is path connected.

(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Let X be a locally path connected topological space. Then :
(A) every connected open set in X is path connected

(B) every connected set in X is path connected

(C) every connected closed set in X is path connected

(D) every open set in X is path connected

Consider the following statements :

(a) A path connected set is connected

(b) A connected set is path connected

(c) Union of connected sets is connected

Which of them are correct ?

(A)1 (B)2 O L3

What are the components and path components of R, ?

Show that the ordered square is locally connected but not locally path connected.

Let X be locally path connected. Show that every connected open set in X is path

connected.

Compact Spaces

Introduction :

subsets of R”. In this unit, we discuss the properties of compact topological space and
construct new from old ones. We also see under what conditions, compactness can be

Frechet was the first to use the term “compact”. Compactness was introduced
into topology with the intention of generalizing the properties of the closed and bounded

passed on to subspaces and products.
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Definition 4.1 : A collection <7 of subsets of a space X is said to be a cover for X, if the
union of the elements of .o is equal to X. It is called an open covering of X, if its
elements are open subsets of X.

Definition 4.2 : A topological space X is said to be compact, if every open covering .o/
of X contains a finite sub collection that also covers X.

Example 4.3 : Any topological space X with finite number of elements is compact, as
each open cover for X is itself a finite set.

Example 4.4 : The real line R is not compact.

Proof : Consider the set 7 ={(n—1,n+1)+neR}

Then for any x € R, x e([x]-1,[x]+1), where [x] is the greatest integer less

than or equal to x. Implies .7 is an open cover for R .
But no finite sub collection of .o7 covers R .

Hence R is not compact.
Example 4.5 : The subspace x ={0}U {l |ne Z+} of R is compact.
n

Proof : Let of be an open covering of X.

Then there is an element U of <7 containing 0.

Since U is open and () e U , there exists § > 0 such that (-5,5)c U .

1
As 0 > 0, by Archimedean property, there exists N, such that I <9,

1
Hence the set {;WZN}CU.

1
1,—,...,
So at most 5 N1

elements can be covered by finitely many open sets, say U,,...,U,, of .o/

are the elements of X, which are outside U, and these
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Then ( U, j UU is a finite sub collection of .7 which covers X.

i=1

Hence X is compact.

Lemma 4.6 : Let Y be a subspace of X. Then Y is compact if and only if every covering
of Y by sets open in X contains a finite sub collection covering Y.

Proof : Suppose that Y is compact and @ ={4,} _, isa covering of ¥ where A4, is

aeJ
open in X.

Then the collection {Aa NY|laed } is a covering of ¥ by sets open in Y.

Hence, a finite sub collection {Aal ny,..4, NY } covers Y.
Implies {Aal ”"Aan } is a sub collection of .7 that covers Y.

To prove converse, let .o7'= {Aa} be a covering of ¥ by sets open in Y.
For each o, choose a set 4, openinXsuchthat 4 =4 Y.
Then the collection &7 = {Aa} is a covering of Y by sets open in X.

By hypothesis, some finite sub collection {Aal ""Aan} covers Y.

1

Then {Aal ,....A('xn } is a sub collection of . ' that covers Y.

Therefore, Y is compact.

Remark 4.7 : The subspace of a compact space need not be compact. For example, the
interval [0, 1] is compact, which is known from analysis. But the subspace (0, 1) is not

compact as &7 = {(l,lj lneZ +} is an open cover for (0, 1), which doesn’t has a finite
n

sub cover. Where as, if the given subspace is closed, then it is compact as we prove.
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Theorem 4.8 : Every closed subspace of a compact space is compact.
Proof : Let Y be a closed subspace of the compact space X.

Let <7 be an open covering for Y by sets open in X.

Since Y'is closed, X — Y'is open in X.

Therefore, 2 = o7 |J{ X —Y} is an open covering for X.

Since X is compact, some finite sub collection of % covers X.

After discarding the set X — Y from this finite sub collection, the resulting
collection is a finite sub collection of <7 that covers Y.

Hence Y is compact.

Theorem 4.9 : Every compact subspace of a Hausdorff space is closed.
Proof : Let Y be a compact subspace of the Hausdorff space X.
To show Y'is closed i.e. X — Y'is open, let x, be a point of X — 7.
Since X is Hausdorft, for each point y € Y and x, there exists disjoint open sets

Uy and Vy containing x,, and y, respectively.

Then the collection {Vy lyeY } is a covering of Y by sets open in X.

As Y is compact, there exists a finite sub cover ViV, for Y.
n
v 74% "
g %//’%

‘\‘\
<

//////////

Figure 8:
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Let VZVy] U"'UVyn and UZUy] ﬂ...ﬂUyn .

Then y 5y,and VY =, forif ze V' ,then z €V, forsomei, hence z&U,,
andso zgU .

Therefore xyeU c X -V < X —Y and hence X — Yis open.
Theorem 4.10 : The image of a compact space under a continuous map is compact.

Proof : Let f: X — Y be continuous and X be compact.

Let .7 be a covering for f(X) by sets open in Y.
As f is continuous, the collection { f 1(4) |Ae o/ } is an open cover for X.
Since X is compact, there exists a finite sub cover £ (4 )., /' (4,) for X.

Then {Al,...,An} is a finite sub cover for £ (X) and hence f(X) is compact.

Theorem 4.11 : Let f: X — Y be a bijective continuous function. If X is compact and
Y is Hausdorff, then fis a homeomorphism.

Proof : To prove f~':y — X is continuous, let 4 be a closed subset of X.
Then A4 is compact. Since f: X — Y is continuous, f(4) is compact.

Given that Y is Hausdorff, so £ (4) is closed in Y.

Therefore (f—l )_1 (4) = f(4) isclosedin Y.

Remark 4.12 : According to above result, if a continuous bijective map f: X — Y is
not a homeomorphism, then we can conclude that either X is not compact or Y is not

Hausdorff, for example, The function f:R; - R given by f(x)=x is a bijective
continuous function but not a homeomorphism. As R is Hausdorff, we can conclude
that IR, is not compact.

We now prove tube lemma, which will be useful in proving that product of
finitely many compact spaces is compact.

I (81)




Lemma 1.13 : (The tube lemma) : Consider the product space X xY , where Y is
compact. If N is an open set of X xY containing the slice x,xY of X xY, then N

contains some tube W xY about xyxY , where W is a neighborhood of x,, in X.

Proof : Since Y is compact and x;, xY is homeomorphic to ¥, we get that x, xY is also
compact. Let x,xyex,xY . Since x,xY < N and N is open subset of X xY, there

exists open set U, XV, such that xyxyeU, xV, c N .
Implies the collection {U WXV, yeY } is an open cover for x,xY .
Therefore, there exists a finite sub cover U, xV},...,U, xV, for x,xY .
Without loss of generality, we can assume that (U, xV;)(x,xY) =D .

(as if some basis element is not intersecting x, xY , discard that from the

collection.)
Let W =U,N...NU, . Then Wis openand x, e W . ("~ xy €U; Vi)
We will prove that the sets U; xV; covers the tube W xY .
Let xxyeWxY . Then xyxyex,xY .
= x, xy eU,; xV, for some 1,50 that y V.
But x €U, for every (because x e W ).

Therefore, we have xxy e U, xV;, as desired.
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Since U, xV, = N for each i and (W xY)cU(U,xV;), we get that the tube
WxYcN-

Theorem 4.14 : The product of finitely many compact spaces is compact.

Proof : We Prove the result by mathematical induction.
First we prove that the product X xY oftwo compact spaces X and Y'is compact.
Let .o/ be an open covering of X xY .
Given x, € X, the slice x;,xY is compact and may therefore be covered by

finitely many elements 4,,...4,, of o7 (.- a/covers x,xY).
Their union N = 4, U...U 4,, is an open set containing x, xY .

Then by the tube lemma, the open set N contains a tube W xY about x,xY,
where Wis open in X. Then W xY is covered by finitely many elements 4,,...,4, of .o/

Thus, for each x in X, we can choose a neighborhood W, of x such that the tube

W.xY can be covered by finitely many elements of <7

Since X is compact and the collection of all the neighborhoods W is an open

covering of X, there exists a finite sub collection {Wl,....,Wk} covering X.

Now as each W, xY is covered by finitely many elements of &/ and X is covered
by these I, we get that The union of the tubes W) xY,..,W; xY covers X xY .

Thus, X xY is compact.

Now assume that X x....x X, | is compact.

Then X x...x X, = (X, x...xX,_;)x X, is compact as it is the product of two
compact spaces.

We now give a equivalent definition of compact space interms of closed sets.
We start with the following definition.
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Definition 4.15 : A collection % of subsets of X is said to have the finite intersection

property if (n] C, # D, for every finite sub collection {Cl,...,C

n
i=l

}of‘ﬁ.

Theorem 4.16 : Let X be a topological space. Then X is compact if and only if for every
collection € of closed sets in X having the finite intersection property, the intersection

N C+J.
Ce%

Proof : Suppose X is compact and % be the collection of closed sets in X having finite
intersection property.

Suppose Ny C =D .

SUcer (X -C)=X

Since X 1s compact, there exists a finite sub cover X —C,,...., X —C, such that
XcUL(X-C).

= >N, C;, which is a contradiction.

Therefore, Ny C# I .

To prove converse, let <7 be an open cover for X.

For contrary, suppose assume that there is no finite sub collection of .7 which
covers X.

Then !, 4, # X forany peN.
=N (X -4)=D.
So the collection € = {X -A,|A, e } satisfies the finite intersection property.

Therefore, ;. (X —4)# D

= U ey 4# X , which is a contradiction.

Therefore, there exists a finite subcover for X and hence X is compact.
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5. Compact Subspaces of the Real Line

We end this unit by proving that R is uncountable without using algebraic
properties. We start with a definition.

Definition 5.1 : For atopological space X, a point x ¢ X is said to be an isolated point,

if the one-point set {x} is open in X.

Theorem 5.2 : Let X be a nonempty compact Hausdorff space. If X has no isolated
points, then X is uncountable.

Proof : Step 1 : We first show that given any nonempty open set U of X and x e X,

there exists a nonempty open set ¥ contained in U such that x e /.
If xe U, since X has no isolated points, {J = {x} .
So there exists y e U such that y # x.
If xg U, since U is non empty, there exists y e U .

So in any case, there exists y € U such that y # x.

As X is Hausdorft, there exists two disjoint open sets /| and W, containing x
and y, respectively.

Let V=W,NU.

Since yeW,NU ,weget V=@ and J U .

As xeW ,and VW =D, weget xeg ) .
Step 2 : We show that given f:7Z, — X, the function f is not surjective.

Let x, = f(n). Since X is non empty open set and x, ¢ V1, by Step 1, there
exists a nonempty open set ¥; < X such that x; ¢ V1.

As V| is non empty open subset of X'and x, € X', there exists a nonempty open

set V, <V such that x, ¢ 172.
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By induction, given a non empty open set V,_,, there exists a nonempty open set

V, <V, suchthat x, zVn.

Then the collection ¢ = {Vi |i=1,2,3,..... } of nonempty closed sets of X satisfies

finite intersection property.

Because X is compact, NV, =@, say xe(\V -

Since x e I7n but x, ¢ I7n for all n, we get that x # x, for all n.

Therefore, f'is not surjective and hence X is uncountable.
Corollary 5.3 : Every closed interval in R is uncountable.

Corollary 5.4 : R is uncountable.

( EXERCISE-9 )

1. Which of the following is true ?
(A) The real line R is compact
(B) {0;U{1/n|neZ,} is compact
(C) The interval (0;1] 1s compact
(D) All of the above are true.
2. Consider the following
(I) If Yis a subspace of a compact space X, then Y is compact.
(IT) If Y is a compact subspace of X, then Y is closed.
(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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Consider the following two statements

() If X is nonempty compact Hausdorftf space with no isolated points, then X is

uncountable.

(II) Every open interval in R is compact Hausdorff space and hence is

uncountable.
(A) Only (I) 1s true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

Show that R with the finite complement topology is compact.
Prove that an infinite set X with the discrete topology is not compact.

Show that the union of a finitely many compact subsets of X is compact
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UNIT - IV

SEPARATION AXIOMS, NORMAL SPACES AND
URYSOHN METRIZATION THEOREM

1. Forms of Compact Spaces

Introduction :

In early days of topology, a space is called compact if every infinite subspace of
it has a limit point, where as the open covering formulation was called bicompactness.
Later, the standard definition of compact is interms of open covering, the above
compactness is renamed to limit point compactness. There is also another version of
compactness called sequential compactness. In this unit we will compare these three
versions of compactness and see when they all be same. We also study local compactness
and one point compactification.

Definition 1.1 : A space X is said to be limit point compact if every infinite subset of
X has a limit point.

Definition 1.2 : A space X is said to be sequentially compact if every sequence of
points of X has a convergent subsequence.

The next few results emphasize the relation among these three versions of
compactness.

Theorem 1.3 : Every compact space is limit point compact.
Proof : Let X be a compact space and 4 — x be infinite.

Suppose 4 has no limit point.

Then 4= AU {limit point of A} = 4, so that 4 is closed.

(88)




Since A4 has no limit point, for each 4 e 4, there exists a neighborhood U p ofa

suchthat U, N4 ={a}.

Then X'is covered by the open set X — 4 and the open sets U,,.

As X is compact, it can be covered by finitely many of these sets

n
Say X YU, U(x -4)
i=1
n
Since X — 4 does not intersect 4, we have A< UU;
i=1
As each set U, contains only one point of 4, the set 4 must be finite, which is a

contradiction. Hence 4 has a limit point.

Example 1.4 : Limit point compactness need not implies compactness.

Proof : Let Y ={a,b} be given with indiscrete topology, i.e. Y and ¢ are the only open

sets in Y.

We show that the space X =Z, xY ={(n,a),(m,b)|n,meZ,} is limit point
compact.

Let S be a non empty set of X, say (n,a)e S .

Then (n, b) is a limit point of S as if 4xY 1is a neighborhood of (n, b), then
(n,a)e(AxY)INS.

We can observe that singleton {5} is openin Z, as {n}=(n-1Ln+1)NZ,.

Thus the collection U, = {n}x Y is anopen cover for X but has no finite subcover

for X. Therefore, X is not compact.

Theorem 1.5 : Let X be a metrizable space. If X is limit point compact, then X is
sequentially compact.

Proof : Let X be a limit point compact space and (x,) be a sequence in X.

Let A={x,|neZ,}.
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If the set 4 is finite, then there is a point x such that x = x, for infinitely many
values of n. In this case, the sequence x, has a constant subsequence and therefore
converges.

Suppose 4 is infinite. Since X is limit point compact, 4 has a limit point x.
Then A intersects every neighborhood of x at infinitely many points.

Now We define a subsequence (x,) converging to x as follows :
Since 4 intersects B(x, 1), choose 7, such that x, € B (x,1).

Again as 4 intersects B(x,1/2) at infinitely many points, choose n, > n, such

that x,, € B(x,1/2).
In this way, we choose 7, > n,_, such that x, € B(x,1/k).

Then the subsequence X, ,X,,,---- converges to x.

Theorem 1.6 : Let X be a metrizable space. If X is sequentially compact, then X is
compact.

Proof : We prove the result in 3 steps :

Step 1 : We show that if <7 is an open cover for X, there exists 6 > 0 (called Lebesgue
number) such that if 4 — x with diam (4) < J, then there exists {/ € .o/ such that

AcU.
Let .o/ be an open covering of X. Suppose that there is no 6 > 0.

, 1
Then for each positive integer n, there exists C, = X with diam (Cn) < " but
C,gUforalyeg .
Choose a point x, € C, for each n.

Since X is sequentially compact, there exists a subsequence (X, ) of the sequence
(x,) that converges, say to the point a.

Since <7 is an open cover for X, there exists [/ e o7 suchthat e .
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Because X is metriazble and U is open, there exists € > 0 such that B(a,&)cU .

g
Since X, converges to x, choose n;_ large enough so that X, € B (%5) and

k

Then C,, < B(a,e)cU=C, cU, which is a contradiction.

So for every open cover for X, there exists a 6 > 0 satisfying the condition
mentioned in Step 1.

Step 2 : Given € > 0, there exists a finite covering of X by open ¢-balls.

Suppose assume that there exists an € >0 such that X cannot be covered by
finitely many e-balls.

We Construct a sequence of points x, of X as follows:

For any x;, € X, X # B(x;,&) (otherwise X could be covered by a single
e-ball).

Choose x, € X —B(x;,&). Then d(x,x,)>¢.
Again X # B(x,¢)UB(x,,¢).
Choose x; € X —(B(x,e)UB(x,,¢)).

Then d(x,x;)>¢ and d(x,,x;)>¢€.

n n
By continuing this way, we get X # U B(x;,&) and Xu1 € [X_ UlB(xi’g)j|
i=1 i=

such that d(x,m,xi) >¢ foralli=1,2, ..., n.

Therefore, the sequence x, does not have any convergent subsequence as
d(x,,x,)>¢ foralln>m.
Step 3 : Now we prove that X is compact.

Let <7 be an open covering of X.
By Step 1, the open cover 7 has a Lebesgue number 3.
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o
Let € =§. Then by Step 2, there exists a finite covering {B (X j,&‘)} of X by

open g-balls.

Since diam(B(xj,e)):zg:%<5, there exists U; €% such that

B(xj,e)ch forall j=1,2,..,n.
Then X:QB(xj,g)CQUj_

Hence there is a finite subcollection of .7 that covers X.

Theorem 1.7 : Let X be a metrizable space. Then the following are equivalent :

1. X is compact.
2. X is limit point compact.
3. X is sequentially compact.

Proof : (1) = (2) : Proof of theorem ??
(2) = (3) : Proof of theorem ??
(3) = (1) : Proof of theorem ??

Definition 1.8 : A space X is said to be locally compact at x if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of its
points, X is said simply to be locally compact.

Example 1.9 : The real line R is locally compact,

because x e (x—&,x+&)c[x—g,x+¢].

Example 1.10 : The space R" is locally compact,

because x € (a;,b;)x...x(a,,b,) <[a;,b]x...x[a,.b,]
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Example 1.11 : The space R” is not locally compact,
because if a basis element B=(a,b)x...x(a,,b,)xRx...xRx.... contained in a

compact subspace, then its closure B =[a;,b|x...x[a,,b, | x Rx...xRx.... is compact,

which is a contradiction.

Example 1.12 : Every simply ordered set X having the least upper bound property is
locally compact: Given a basis element for X, it is contained in a closed interval in X,
which is compact.

Definition 1.13 : If Y is a compact Hausdorff space and X is a proper subspace of ¥
whose closure equals Y, then Y is said to be a compactification of X. If Y — X equals a
single point, then Y is called the one-point compactification of X.

Theorem 1.14 : Let X be a Hausdorff space Then X is locally compact if and only if
given x in X, and given a neighborhood U of x, there is a neighborhood V of x such that

V iscompactand V — U (i.e.xeV =V —U)-
Proof : Suppose X is locally compact.
Let x € X and U be a neighborhood of x.
Since X is locally compact, there exists a one-point compactification ¥ of X.
Let C=Y— U. Then Cis closed in Y implies C is a compact subspace of Y.
Since X is Hausdorff, there exist two open sets ' and W such that x ¢}/ and
Ccw.
VAW =@ =V W =VUWecC =U
Since W* is closed, 7 is closed and hence compact.
Hence y — 7, and J/ is compact.

Suppose assume the converse part.

Let x e X . Since X is open, by assumption, there is a neighborhood V of x such

that 7 is compact.
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Corollary 1.15 : Let X be locally compact Hausdorff, let A be a subspace of X. If A is
closed in X or open in X, then A is locally compact.

Proof : Suppose that 4 is closed in X. Let x€ A. Then x€ X .

Since X is locally compact, there exists a compact subspace C of X containing
the neighborhood U of x in X. Then C() A4 is closed in C and thus compact, and
UNAcCNA.

Suppose now that 4 is open in X. Given x € A4, by the preceding theorem there

exists a neighborhood 7 of x in X such that 7 is compactand y — 4. Then ¢ =y isa

compact subspace of 4 containing the neighborhood V of x in 4.

( EXERCISE - 10 |

1. Consider the following.
(I) Every compact space is limit point compact.

(IT) Every limit point compact space is compact.

(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
2. Consider the two statements

(I) Every sequentially compact space is compact.

(IT) Every limit point compact space is sequentially compact.

(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
3. Show that [0, 1] is not limit point compact as a subspace of R;.
4. Let X be limit point compact. If f: X —» Y is continuous, does it follow that

/(X)is limit point compact ?
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5. Let X be limit point compact. If 4 is closed subset of X, does it follow that 4 is
limit point compact ?

6. Show that the rationals Q are not locally compact.

2. Countability Axioms

Introduction :

The countable axioms do not arise naturally from the study of analysis. Problems
like embedding a given space in a metric space or in a compact Hausdorff are purely
from topology and these problems can be solved with the help of countable and separable
axioms. In this section, we study the two countable axioms: first countable and second
countable; relation among them.

Definition 2.1 : A space X is said to have a countable basis at x if there is a countable
collection Z of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of Z. A space that has a countable basis at each of its points is said
to satisfy the first countability axiom, or to be first-countable.

Example 2.2 : (R, usual topology) is first countable.

Proof : For each x e R, consider . ={(x—l,x+ljln EN}.
n n

Let U be a neighborhood of x.

Then there exists € > 0 such that x e (x—¢,x+&)cU .

1
By Archimedean property, there exists 5 ¢ N such that " <e.
1 1
Then, xe| x——,x+— |c(x—¢g,x+&)cU.
n n

Therefore 2, is a countable base at x and hence (R ,; usual topology) is first

countable.
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Example 2.3 : Every metrizable space is first countable.

1
Proof : For each x e X, let %, :{B(X,ZJWEN}.

Let U be a neighborhood of x.

Then there is an & > 0 such that x e B(x,&)c U .

1
By Archimedean property, there exists 7 € N such that - <¢.
1
Then, X € B(X,—j cB(x,e)cU .,
n

Therefore %, is a countable base at x and hence X is first countable.

Example 2.4 : The real line R with countable complement topology (co-countable) is
not first countable.

Proof : Let xeR.

Suppose X = {Bn |lneN } is a countable base at x.

Here each B¢ is countable and so |JB, = (ﬂ B, )c is countable
n

Therefore V' =B, isopenand xe .
Now take y eV \{x} and U =V \{y}.
Then xe U and Uis openas U =V “J{y} is countable.

As ye B, foreachnand y ¢U, we get that B, U for all n.
Which is a contradiction to the fact that & is countable base at x.

Therefore, R with countable complement topology is not first countable.
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Theorem 2.5 : Let X be a topological space.

1.

Let A be a subset of X. If there is a sequence of points of A converging to x, then

x € A; the converse holds if X is first-countable.

Let f: X — Y . If fis continuous, then for every convergent sequence X, — X in

X, the sequence f (x, ) converges to f (x). The converse holds if X is first countable.

Proof : (1) Let (x,) < 4 be a sequence such that x, — x, for some x e X .

of x.

To show x e Z, let U be an open set of X with x e U .
Since x, — x, and xe U, infinitely many x s are in U.
Therefore, U 4# & and hence x € A.

Conversely, suppose that X is first countable and x € A,
Let % ={B,|neN} be a countable basis at x.

We may assume that x € B, for all n.

Let U, =B,..NB,.

Then U, is open containing x and U, < B, .

If V'1s open set containing x, then there exist n such that xe B, cV
Since U, c B,, we get that xeU, V.

Therefore, % ={U, | n € N} is a countable basis for x.

Now, if x e 4, then (x, x, x, ....) is the required sequence that converges to x.

If x ¢ 4, then x is a limit point of X and hence 4 intersects every neighbourhood

As each U, is open contains x, we get U, (1A= & for all n.
Let x, €U, N A. Then (x,) is a sequence in 4.

To show x, = x, let xeU be an open set of X.
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Since 7% is a countable bais for x, there exists U, such that xeU,, cU .

Then x, eU, cU, cU forall y>m.(U,cU,, VYn>m)

Therefore x, = x.
2) Suppose f* is continuous and x, — x.

Let V'be an open set of Y such that f(x) eV .

Then f~'(y)isopeninXand xe /' (V).

Therefore, x, € f “1(y) for infinitely many n’s.

= f(xn) eV for infinitely many »’s and hence f(xn) — f(x).

Conversely, assume that X is first countable and whenever x, — x, then
f(x,)— f(x).

To show f is continuous, we prove that f(Z) c m for any subset 4 of X.

Let y ef(]). Then y = f(x), for some xeA.

Since X is first countable and x € A, there exists a sequence (x, ) = 4, such that

X, —>X.

n

Then by assumption, f(x,)—> f(x) and f(x,)c f(4).
Therefore, f(x)e m . (- by first result)

— ye f(4) and hence 1(4) < 1(4).

Now we will go to the second countable spaces which have more impact than
the first countable spaces.

Definition 2.6 : A topological space X is said to satisfy the second countability axiom,
or to be second-countable, if it has a countable basis for its topology.
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Theorem 2.7 : Every second countable space is first countable, but not the converse.

Proof : Let #={B, |neN} be a countable basis for Xand x e X .

Then we prove that %, ={B, € #|xe B,} is a countable basis at x.
Let U be a neighborhood of x. Then there exists B, € % suchthat xe B, cU .

As B, € #, we get that %, is a basis at x.

Therefore X is first countable.

Converse is not true in general: Consider (R , discrete topology).

As & = {{ x}} is a countable basis at x e X , we get that (R , discrete topology)
is first countable.

Now suppose # is a basis for (R, discrete topology).

Since each {x} is open, there exists B, € % suchthat xe B c {x} = B_=1{x}.

As R is uncountable, {B, |xeR} is uncountable.

Therefore, & is uncountable and hence (R, discrete topology) is not second
countable.

We now show that the spaces satisfying countable axioms are nice in the sense

that they can be passed onto subspaces and products.

Theorem 2.8 : A subspace of a first-countable space is first-countable, and a countable
product of first-countable spaces is first-countable. A subspace of a second countable
space is second-countable, and a countable product of secondcountable spaces is second-
countable.

Proof : 1t is enough to prove for second countable spaces.

Let 4 be a countable basis for Xand 4 — x .
Now consider B, ={B(A|Be A} .
Then clearly %, is countable.

To show %, is a basis for 4, let U be a neighborhood of g 4.
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Then U = AV for some V open in X.
Since 4 is a basis for X, there exists Be 4 suchthat g BV .

As ANBc AV ,weget aec A(N\BcU.
Therefore %, is a countable basis for 4.
If %, is a countable basis for the space X, then the collection of all products

[1U;, where U, € %, for finitely many values of i and U, = X, for all other values of,

is a countable basis for [].X .

( EXERCISE - 11 |

1. Consider the following
() Every first countable space is second countable.

(IT) The discrete topology on R is second countable.

(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
2. Consider the two statements

(I) R with usual topology is second countable.

(I) R with usual topology is first countable.

(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
3. Show that R, is first countable
4. Show that the real line R with finite complement topology( co-finite) is not

first countable.

5. Is R, is second countable? Justify.
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3.

Lindelof spaces

Introduction :

axioms

Other than the two countable axioms, there are other two alternative countable
, namely separable and Lindelof. Even though these two axioms are weaker than

the second countable, they have their own importance.

Definition 3.1 : A subset 4 of a space X is said to be dense n X'if 4 _ y .

Definition 3.2 : A space X is said to be Lindelof space, if every open covering of X
contains a countable sub covering.

Definition 3.3 : A space X is said to be separable, if it has a countable dense subset.

We now prove that every second countable space is Lindelof as well as separable.

Theorem 3.4 : Suppose that X has a countable basis. Then :

(@)

(®)

Proof :

(2)

Every open covering of X contains a countable sub collection covering X.
(i.e. every second countable space is Lindelof)
There exists a countable subset of X that is dense in X.

(i.e. every second countable space is separable)
Let #={B,|neN} be a countable basis for X.
Let ./ be an open covering of X.

Consider '={B e #| there exists U, € &/ such that Bc U, }.

We show that U B=X.
Be#A'

Let x e X . Then there exists U, € & such that xe U, .
Since # is basis for X, there exists B e % suchthat xe Bc U, .

Then Be %' and x e B.
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(b)

Now for each Be #', choose Uy =U,, suchthat BcU,, .

Then X = | Bc U Uy.
Be#A' BeA'

Therefore, {Uy | Be '} is a countable subcover for X.
Foreach neN,let x, € B,.

Let D={x,|x, €B,,neN}.

To show D is dense in X, let x ¢ X and x e be an open set.

Since 4 is a basis for X, there exists e N such that B, cU .

x, € B, implies x, e U and hence DU # .

Example 3.5 : The space R, (lower limit topology) is first countable, Lindelof, separable

but not second countable.

Proof :

1.

First countable : Given x € R;, the collection

1
B, = {[x,x+;j |ne N} is a countable basis at x.

Separable : Clearly the set of rational numbers Q is dense in R;.
Lindelof : Let <7 be an open covering for R,;.

Then for any {J e o7 , there exists a basis element [aa ,ba) contained in U.

So if open cover of basis elements has a countable sub cover then .7 will have

countable sub cover.

So without loss of generality, let ./ = {[aa by )laed } be an covering of R, .

Let C be the set C=U,.,(a,,b,) which is a subset of R.

a’”a
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We show the set R — (C is countable.

Let x be a point of R—C.

Since x ¢ C, x belongs to no open interval (aa,ba ) , therefore x =ag for some
index .

Choose such a 3 and then choose g to be a rational number belonging to the
interval (ag, by )

Define f:R-C—>Q by f(x)=q,.

To show £ is injective, let x,y e R—C withx <y.

Then /' (x) =g, €(az.bs)= q, <by

Since x <y and y%(aﬁ,bﬁ),we get y>bﬁ.

Therefore, f(x) =g, <bs <y < f(y), hence f’is injective.
('.‘y:ay andf(y)e(ay,by):y:ay <f(y))

Therefore R — C is countable.

Choose a countable sub collection &' of < that covers R—C'.

Since C is a subset of R, C is a subspace of (R, usual topology) and hence
second countable. Now C is covered by the sets (aa,ba ), which are open in R and

hence open in C.

Then there exists a countable subcollection (aa,ba) for a=q;,a,,..

covering C.

Then the collection 7 "= {[aa by )la=a ,(xz,...} is a countable subcollection

of .27 that covers the set C.
Now 7' |J&7" is a countable sub collection of .27 that covers R;.

Therefore R, is Lindelof.
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4. Not second countable : Suppose % ={B,,B,,...,} is a countable basis for R, .
Let b, =inf B, and J ={b, |neN}.
Let g R\J.Then a# b, foralln.
Now consider U =[a, ).
Suppose there exists B,€% such that aeB,cU=[a,), then
a=1inf B, =b, , which is a contradiction.

Therefore, there doesn’t exists a countable basis for R; and hence is not second

countable.

Linedlof spaces are not as nice as first and second countable spaces in the sense
that they are not passed on to subspaces and products.

Example 3.6 : A subspace of a Lindelof space need not be Lindelof.
Proof : The ordered square I; =[0,1]x[0,1] is compact; therefore it is Lindelof.
Now consider the subspace 4=1x(0,1).

Then 4 is the union of the disjoint sets U, ={x}x(0,1), each of which is open

in 4. This collection of sets is uncountable, and no proper subcollection covers 4.
Therefore 4 is not Lindelof.

Example 3.7 : The product of two Lindelof spaces need not be Lindelof.
Proof : Even though the space R, is Lindelof, we prove that the product space
R, xR, = Rf is not Lindelof.

Basis for R consists of the sets of the form [a,b)x[c,d).
To show it is not Lindelof, consider the subspace L = {xx (—x)|xeR 1} .

Then L is closed in Rf and Rf\ L is open.
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Now we can cover Rf by the open set Rf— L and by all basis elements of the
form [a,b) X [—a, d) )
Each of these open sets intersects L in at most one point.

Since L is uncountable, no countable subcollection covers Rf.

Therefore Rf 1s not Lindelof.

Theorem 3.8 : A closed subspace of a Lindelof space is Lindelof.
Proof : Let Y be a closed subspace of a Lindelof space X.

To show Yis Lindelof, let &/ = {U g laed } be an open cover for Y.
Then U, =U, (Y where U,, ais open in X.

Let o/'= {Ua |a eJ} . Then 7' |J(X —Y) is an open cover for X.
Since X is Lindelof, this cover has a countbale sub cover, say U{,U'z, .....

If some U; contains (X —Y), drop that U; .

Then the collection Uy, U,, ..... 1S a countable subcover for Y.

( EXERCISE - 12 )

1. Consider the following
(I) Every second countable space is Lindelof.
(IT) Every second countable space is separable.
(A) Only (I) is true. (B) Only (II) 1s true.
(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
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2. Consider the following

(I) Every separable space is first countable.

(IT) Every first countable space is separable.

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
3. Which of the following is false ?

(A) The space R, i1s first countable
(B) The space R, is second countable
(C) The space R; is Lindelof

(D) The space R, is separable.
4. Show that every separable metric space is second countable.

5. Show that (IR, cofinite) is separable but not first countable.

6. Is (R, discrete) separable ? Justify.

4. Separation Axioms

Introduction :

The separation axioms are about the use of topological means to distinguish
disjoint sets and distinct points. Separation axioms depends on how rich is the topological
space interms of open sets. More the open sets in a space, it separates more points and
sets. The separation axioms are denoted with the letter “T”, as the word for separation
in German is Trennung. In this section, we discuss three separation axioms: 7, T and
T,.

Definition 4.1 (7, axiom) : A topological space X is said to satisfy 7|, axiom, if given
two distinct points x and y from X, there exists an open set U containing exactly one of
these points, i.e. xeU and y ¢U or x¢U and y eU . Aspace s called T, if it satisfies
T, axiom. T}, space is also called Kolmogorov space.
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Definition 4.2 (T axiom) : A topological space X satisfies 7'} axiom, if for given two
distinct points x, y € X , there exists two open sets U and V' such that x ¢ {7 but y ¢ U and

yeV but xegU.

Definition 4.3 (T, axiom) : A topological space X satisfies T, axiom, if for given two
distinct points x, y € U , there exists two open sets U and V' such that y ¢/ but y ¢ U ;

yeV but xgU and UNV =0. T, space is also called Hausdorff space, which we
have seen already.

Remark 4.4 : The following observations justify why above axioms are called separation

axioms:

1. In 7|, space, any two distinct points are separated (or distinguishable) by an
open set.

2. In T space, any two distinct points are separated (or distinguishable) by two

open sets (need not be disjoint).

3. In T, space, any two distinct points are separated (or distinguishable) by two
disjoint open sets.

4. We can understand these spaces through the following diagram :

not T
TO but not T1

T1 butnot T2

Figure 10:

Ll

5. We can also observe that 7, = 7, = Tj,.
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Example 4.5 : Let X ={a,b,c} withtopology 7 ={@, X,{a},{b},{a,b}}. Then Xis

a T}, space.

Proof : The open set {4} separates a and b; a and c.

Similarly the open set {p} separates b and c.

Therefore, Xis a T, space.

Example 4.6 : The discrete topology with atleast two points is a 7|, space, as every
singleton is open.

Example 4.7 : The indiscrete topology with atleast two points is not a 7, space, as X is
the only non empty open set.

Example 4.8 : Let X ={a,b,c} withtopology 7 ={@, X,{a},{b},{a,b}}. Then Xis
a T}y space but not 7.

Proof : 1f we take a and ¢, then the only open set containing c 1s X, which also contains
a. Thus we can not separate these two elements by two open sets.

Hence Xisnot T I

Theorem 4.9 : 4 space X is T| space if and only if each singleton set is closed in X.
Proof : Suppose X'is T space and x e X .
To show X \{x} open,let y e X \{x}.

As x # y, there exists two open sets U and V' such that x {7 but y ¢V and
yelV but xegl .

Implies y eV < X \{x}.
Hence X \{x} openisopenie. {x} is closed.

Conversely, suppose each singleton is closed in X.

Let x,ye X with x#y.
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Then U =X \{y} and y = X \{x} are open such that xc{/ but y¢V and
yelVbut xgp.

Therefore, X is T space.
Theorem 4.10 : A finite T, space is discrete.
Proof : Let X = {xl,...,xn} .

We have to show that each {x;} is open

But {x,}" ={Xj,..., X;_, X}, 1,0 X, } IS finite and hence closed in X.

Thus X is discrete.
Example 4.11 : R together with finite complement topology is 7 but not 7.
Proof : Let x,ye R with x# y.

Then U =R\{y} and y =R\ {x} are open such that xe{/ but y¢V and
yelV but xel .

Therefore, R is T space.

Suppose that R is 7,.

Then for 0,1 € R, there exists two opensets 0cU; leV and UNV =T .

As U and V are open, U and V* are finite.

Also UNV =& implies {7 — ¢ and so U is finite.
Then R =y JU*© is finite, which is absurd.

Hence R together with finite complement topology is not 75,.

Remark 4.15 : The above theorem is not true if Y is not 7. 5

To see this, consider X = (R, usual), Y= (R, indiscrete) and D=Q.

1 xeD

Define f:R — by f(x)Z{2 veD
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1 xeD

And g:R — by g(X)={3 xeD

Then f'and g are continuous as Y is indiscrete.

Also f(x) =g(x) forall xe D.

But f(x)# g(x) for xg D.

(EXERCISE - 13]

Consider the statements

(I) Subspace of a T space is T

(IT) Subspace of a T, space is T,

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
Which of the following is true ?

(I) A'space is T if and only every singleton is closed

(IT) A space is T, if and only every singleton is closed

(A) Only (I) is true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.

Show that R with the topology .7 ={4c R |0e 4}U{D} is not T, space.

Show that any metric space is T, space.

Show that R with countable complement topology is not 7, but any sequence

has at most one limit.

Let X' be a topological space and Ya Hausdorft space. Let f and g be a continuous

function from X to Y. Show that the set A4 = {x eX:f(x)= g(x)} is a closed

set.

(@)




5. Regular and Normal Spaces
Introduction :

In the previous section, we have seen three separation axioms. In this section we
discuss two more important separation axioms: regular and normal. We also exhibit
whether these can be passed on to subspaces and products.

Definition 5.1 : Let X be a topological space which is T'}. Then X'is called regular if for
every closed subset g — x and for every x e X \ B, there exist disjoint open sets U and
VofXsuchthat yely and 4V .

Definition 5.2 : Let X be a topological space which is 7. Then X is called normal if
given two disjoint closed subsets 4 and B of X, there exist disjoint open sets U and V of
Xsuchthat 4cU and BV .

These two spaces are represented in the following diagram :

7 «

Regular Normal

Figure 11:

In the following lemma, we give an equivalent definitions for regular and normal
spaces.

Lemma 5.3 : Let X be a topological space and one-point sets in X be closed.

(@) X is regular if and only if given a point x of X and a neighborhood U of x, there
is a neighborhood V of x such that i/ —[J .

[@1D)




(®)

Proof :

(2)

(b)

X is normal if and only if given a closed set A and an open set U containing A,

there is an open set V containing A such that y —[J .

Suppose that X is regular.

Let x € X and U be a neighborhood of x.

Then B=X-Uisaclosed setand x ¢ B.

By hypothesis, there exist disjoint open sets Vand Wsuchthat x e and B W
SB=X-UcW=U>X-W.

Since VYW=, VcX-W

Since X — Wis closed, we get = X — W — U - Therefore,  — [/ .

To prove the converse, suppose the point x and the closed set B such that x ¢ B
are given.

Then U=X—-Bisopenand xeU .
By hypothesis, there is a neighborhood 7 of x such that VcU.

Then the open sets ¥ and X —J are disjoint such that xe ¥ and Bc X —V .
Thus X is regular.

Suppose that X is normal.

Let 4 X be closed and U be open such that A c U .
ThenB=X-Uisaclosedsetand ANB=C.

By hypothesis, there exist disjoint open sets V" and W such that
AcV and BcW

SB=X-UcW=U>X-W

Since V(W =8, VcX-W

Since X — Wis closed, we get y = X — W — U - Therefore,  — [/ .
To prove the converse, suppose that A and B are disjoint closed sets.

ThenU=X—-Bisopenand 4 U .
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By hypothesis, there is an open set V' containing 4 such that / U .

Then the open sets V and y —j are disjoint open sets containing 4 and B,

respectively. Thus X is normal.

We prove that regularity can be passed onto subspaces and products.

Theorem 5.4 : A subspace of a regular space is regular; a product of regular spaces is
regular.

Proof : Let Y be a subspace of the regular space X.

Then one-point sets are closed in Y.

(+{x}={x}NY and {x} is closed in X).
Let x Y and B be a closed subset of ¥ such that x ¢ B.

Now Eﬂ Y = B, where B denotes the closure of B in X.

Therefore, x ¢ B. Since X is regular, there exist disjoint open sets U and V of X

suchthat yeU and gy .
Then UNY and V(Y are disjoint open sets in ¥ such that

xeUNY and BNY =B VY - Therefore, Y is regular.
Let {Xa} be a family of regular spaces and X =] X, .

Since each X, is Hausdorff, X =] X, is Hausdorff.

Hence one-point sets are closed in X.
To prove X regular, let x=(X,)e X and U be a neighborhood of x in X.
Since U is open, there exists a basis element [JU,, about x suchthat [TU, cU .

Since X, isregular and x, €U, , there exists a neighborhood V,, of x, in X,

such that Va cU,.

IfU,=X,,thentake V, = X, .
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Then V' =[]V, is a neighborhood of x in X.
Since V:]‘[Va :]‘[Va , we get that V:]‘[Va cllvu, cU.

Therefore 7 — {7 and hence X is regular.
Example 5.5 : The space R is Hausdorff but not regular.

Proof : The basis for R 1s the union of all open intervals (a, b) and all sets of the form
(a,b)—K ,where K ={1/n|neZ,}.
This space is Hausdorff, because R with usual topology is Hausdorff, which is

contained in R .

We now show that R, is not regular.

1
The set K is closed in R ., because K =R\ {1,5,---} can be written as union of

the basis elements: K = (—o0,—4)U[(~5,5)\ K JU(4,0) and thus K¢ is open.

Also 0¢ K .
Suppose that there exist disjoint open sets U and V' with 0 cU and K V.
Choose a basis element containing 0 and lying in U.

It must be a basis element of the form (a, b) — K, since each basis element of the
form (a, b) containing 0 intersects K.

Choose n large enough that 1/n e (a,b).

Then choose a basis element about 1/n contained in V; it must be a basis element
of the form (c, d).

Finally, choose z so that z < 1/n and z > max (c,1 / (n + 1)).

Then z belongs to both U and V, so they are not disjoint.
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Example 5.6 : The space R, is normal.

Proof : Since R, is finer than R and one-point sets are closed in R, we get that one-

point sets are closed in R, .

To check normality, suppose that 4 and B are disjoint closed sets in R;.

Let ge 4. Since R, —B 1s open and a € R, — B, there exists a basis element
[a,xa)such that [a,xa)c R, —-B.1ie.foreach g 4, [a,xa)ﬂB =0.

Similarly, for » € B, choose a basis element [b,xb) such that [b,xb ) NA4=9.

Now let U/ = | [a,xa) and J = J [b,xb).

aed beB
Suppose ze UV, then there exists e 4 and pe B such that z€[a,x,)
and ze[b,x,). Suppose a < b. Then a<b<z<z, implies b€[a,x,), which is a
contradiction. ([a,x,)N B =2)
Therefore U and V are disjoint open sets containing 4 and B respectively.

Hence R, is normal.

Remark 5.7 :
1. As R; is normal, it is also regular, and hence R; xR, is regular.
2. The space R, is normal, but R; xR, is not normal. Thus product of normal

spaces need not be normal.

3. Also R; xR, 1s regular but not normal. So not every regular space is normal,

but regular space with countable basis is normal as we prove in next result.

Theorem 5.8 : Every regular space with a countable basis is normal.
Proof : Let X be a regular space with a countable basis %.
Let 4 and B be disjoint closed subsets of X.
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As X is regular and X — B is open, for each point 4 4, there exists a

neighborhood V, € # suchthat |V, - X —B.

Since 4 is countable, the collection {Va lae A} is countable and hence we can

relabel them by V;, i e N .

Therefore, A c 6 V.and ;NB= forallieN.

i=1

Similarly there exists U; in %, i € N, such that B c GUI. and ;N 4= for

i=1

all ieN.
Now let U, =U, —V and v, =V, ~U.

Then Ul' and Vl' are open such that U{ﬂV{:@, U{ﬂB:UlﬂB and
VVNA=V,NA.

N

SO

i

W

-

NN v,
N\
N 3

NN

NI
)

Figure 12:
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By inductively we define,

U =U\NUVi and V. =V,\UU;

i=1 i=1
so that U,'Z and V,; are open such that UéﬂV,Lz@, U,'ZﬂB:UnﬂB and
VNA=V,NA.

Now let U':GU;Z and V':GV,;.
i=1

i=1
Then 4 =)' and B=U"'; U'and V'are open.
Suppose U'NV'#,say xeU'NV".

Then er; and er}.Supose i<j.
Since x VJ implies, x ¢ U, forallk=1,2, ..., j

In particular, y ¢ {/;, which is a contradiction. ( xe Ul)

Therefore U ' and V' are disjoint open sets containing 4 and B.

Hence X is normal.

Theorem 5.9 : Every metrizable space is normal.

Proof : Let X be a metrizable space with metric d.
Let 4 and B be disjoint closed subsets of X.
Let g 4. Then ge X — B and X — B is open.

So there exists &, >0 such that B(a,&,)c X - B.
1e., for each 4 e 4, there exists ¢, >0 such that B(a,ga ) NB=Y.

Similarly for each p e B, there exists &, >0 such that B(b,&,)A=2.

Now let U = | B(a,%’] and V = B(b,z—bj

acA beB
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Then U and V are open sets containing 4 and B, respectively.

We prove that U and V are disjoint. For if zeU(V, then

£ €
ZEB(CZ,?C’)HB(IJ,?[)] for some ge 4 and some e B.

By triangle inequality, we get d (a, b) < (%’ +%b] )

2¢
If ¢, <&, then d(a,b)<7b so that a € B(b,¢,).

2e, o .
If g, <¢,,then d (a,b) < = %0 that b€ B(a,&, ), which is a contradiction in

either case. Therefore U and V are disjoint containing 4 and B.

Hence X is normal.

Theorem 5.10 : Every compact Hausdorff space is normal.
Proof : Let X be a compact Hausdorif space.

Let 4 and B be disjoint closed subsets of X.

Then A4 and B are compact.

Let g e 4. Then since X is Hausdorff and B is compact, there exists disjoint
open sets U, and V containing a and B, respectively.

The collection {Ua} covers A; because 4 is compact, 4 may be covered by
finitely many sets Ual ,....,Uam .
Take U = Ua] U""UUam and V = Val ﬂ....ﬂVam
Suppose x e UV, then there exists j such that x € Uaj As xelV, X€ Vaj , SO

xelU, ; nr, Ir which is a contradiction.

Therefore, U and V are disjoint open sets containing 4 and B, respectively.

Hence every compact Hausdorff space is normal.
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Theorem 5.11 : Every well-ordered set X is normal in the order topology.
Proof : Let X be a well-ordered set.

We prove that every interval of the form (x, y] is open in X.
Ify is the largest element of X, then (x, y] is a basis element in the order topology.

Ify is not the largest element of X, then (x, y] = (x, b% ') where y'1s the immediate
successor of y.

Now let 4 and B be disjoint closed sets in X.

Suppose assume that neither 4 nor B contains the smallest element a, of X.

Let ge 4. Since X — B 1s open and 4 e X — B, there exists a basis element C
suchthat yeCc X -B.

Since a i1s not the smallest element of X, C contains some interval of the form

(x,.a], ie. for each g e 4, choose an interval (x,,a| such that (x,,a|V\B=9.
Similarly, for each p € B, choose an interval (,,b] such that (y,,b]N4=3 .

Then the sets U = J ( xa,a] and J = |J ( yb,b] are open sets containing 4 and
acA beB

B, respectively;

We prove that they are disjoint. For suppose that ze UV .
Then z e(x,,a]N(y;,b] for some g e 4 and some p e B. Assume that a < b.
Then if a<y, the two intervals are disjoint, while if a>y,, we have a

a €(y,.b], contrary to the fact that (y,,b]NA=2.

A similar contradiction occurs if b < a.

Now suppose assume that 4 contains the smallest element a, of X.

The set {ao} is both open and closed in X.

Then 4—{a,} and B are disjoint closed sets not containing the minimal element

of X.
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By the result of the preceding paragraph, there exist disjoint open sets U and V'

containing the closed sets 4—a, and B, respectively.

Then U U {ao} and J are disjoint open sets containing A and B, respectively.

[ EXERCISE - 14]

1. Which of the statements are true ?

(I) Every regular space is Hausdorff.

(IT) Every normal space is regular.

(A) Only (I) 1s true. (B) Only (II) 1s true.

(C) Both (I) and (II) are true. (D) Both (I) and (II) are false.
2. Which of the following is false ?

(A) The space R, is regular

(B) The space R, is normal

(C) The space R; xR, is regular

(D) The space R; xR, is normal

3. Show that a closed subspace of a normal space is normal.
4. Prove that every regular Lindelof space is normal.
5. Show that every locally compact Hausdorff space is regular.
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6. The Urysohn Lemma
Introduction :

In this section, we learn one of the deeper result, called Urysohn lemma, which
guarantees the existence of continuous real valued function on a normal space. We also
see one of the consequences of Urysohn lemma, namely, Tietze extension theorem which
is an important result that asserts the extension of a continuous function defined on a
subspace to the whole space.

Theorem 6.1 : (Urysohn’s Lemma) : Let X be a topological space; let A and B be
disjoint closed subsets of X. Let [a, b] be a closed interval in the real line. Then there

exists a continuous function f:X —>[a,b] such that f (x) = a for all xe A, and
f(x)=bforall xeB.

Proof : 1t is enough to prove for f: X —[0,1] as [a,b] is homeomorphic to [0, 1].

k
Let D= {27 k=1,...,2"ne N} be the set of dyadic numbers in [0, 1].
We first prove that for each p € D, there exists an open set Up of X such that,

whenever p < g, we have AcUpcﬁchqcﬁch—B.

Since 4 and B are disjoint closed sets, we get 4 — ¥ — B and X — B is open.

As X'is normal, there exists an open set U, such that AC U, < U 1 ©X-B.
2 2 2

Againas Ac U, and Ul < X - B, there exist open sets U; and U, such that
2 2 4 4

AcUlcﬁl CUl and ELCU3 c53 c X —B. So we have,

4 4 2 2 4 4
ACU1 Cﬁl CU1 Cﬁl CU3 Cﬁ3 cX-B
4 4 2 2 4 4 )

2T = T 2271 < "'U(z‘"fl)z‘" )




Since for any pe D, p=k.27" for some 0 <k < 2", there exists a open set Up

and ifp <gq, then U, CU,.

inf{d:xeU,}, ifxeU,pU,

Now we define, f: X —(0,1| b (x)=
/ [ ] y/ { 1, iferUdeDUd

Then f'(x) = 0 for all x e 4 because, AcU,, for all 4 € D and D is dense in
[0, 1].

As BNU,; =9 forall e D, wegetf(b)=1forall hpcB.

If xeU,,then xeU, for everys>r.

Therefore, Se{p|erp},so f(x):inf{p|erp}£inf{s|r<s}£r_
If x¢U,,then xgU, foreverys <r.

Therefore, s & {p|x€U,} and hence /(x)=inf{p|xeU,}>r.

Now we prove the continuity of f. Let x, € X and an open interval (¢, d) in

[0, 1] containing f(x;).

We will find a neighborhood U of x,, such that f(U) < (c,d).

Since D is dense in [0, 1], there exists p,q € D suchthat c< p< f(x))<g<d.

Let U:Uq—Up. Since f(x0)<q, we have x0 2Uq. (- if x, €U, then
f(xo)ZQ)

Also as f(xo)>p,wehave xy2U,,.

To show f(U)c(c,d),let xeU .

Then xeU, CUq implies f(x)<gq.

Since x¢U,,, we have x U, and hence f(x)>p.

Thus f(x)e[p,q]c(c,d).Hence f(U)c(c,d).
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Theorem 6.2 : (Urysohn metrization theorem). Every regular space X with a countable
basis is metrizable.

Theorem 6.3 : (Tietze extension theorem). Let X be a normal space, let A be a closed

subspace of X.

1. Any continuous map of A into the closed interval [a,b] of R may be extended to
a continuous map of all of X into [a, b].

2. Any continuous map of A into R may be extended to a continuous map of all of
Xinto R.

Lemma 6.4 : Let X be a set; let o/ be a collection of subsets of X having the finite
intersection property. Then there is a collection & of subsets of X such that & contains
o, and 9 has the finite intersection property, and no collection of subsets of X that
properly contains 9 has this property.

We often say that a collection 9 satisfying the conclusion of this theorem is
maximal with respect to the finite intersection property.

Proof : Let o be a collection of subsets of X that has the finite intersection property (in
short, f.i.p).

Let A={%|% > o and A has fip}

For %#,,%,,€ A, we define %, < %, if B, < %,.
We show that A has a maximal element Z.
In order to apply Zorn’s lemma, we must show that if B is a “subsuperset” of A

that is simply ordered by proper inclusion, then B has an upper bound in A.

We show that the collection ¥ = |J £ is anelement of A, then it is the required
BeB

upper bound on B.

To show that % is an element of A, we must show that ¥ — o7 and that € has
the finite intersection property.

Clearly % contains .7, since each element of B contains 7.

To show that 4’has the finite intersection property, let Ci....., C, be elements €.
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Because %’is the union of the elements of B, there is, for each i, an element %,
of B such that C; € #.

The superset {%’ yees B, } is contained in B, so it is simply ordered by the relation
of proper inclusion.

Being finite, it has a largest element; that is, there is an index k such that %, — %,
fori=1, ..., n. Then all the sets C,....,C, are elements of B, .

As %, has the finite intersection property, the intersection of the sets C,...,C,

is nonempty, as desired.

Theorem 6.5 : Let X be a set, let Z be a collection of subsets of X that is maximal with
respect to the finite intersection property. Then:

1. Any finite intersection of elements of ¥ is an element of 9.

2. If A is a subset of X that intersects every element of 7, then A is an element of .
Proof :

1. Let B equal the intersection of finitely many elements of Z.

Consider & =9 |J{B}. We show that & has the finite intersection property;
then maximality of & implies that &= &, so that B ¢ & as desired.

Take finitely many elements of &. If none of them is the set B, then their
intersection is nonempty because Z has the finite intersection property.

If one ofthem is the set B, then their intersection is of the form D, (... D,, N B.
Since B equals a finite intersection of elements of &, this set is nonempty.
2. Given 4, define & =9 J{A4}.

We show that & has the finite intersection property, from which we conclude
that A belongs to Z.

Take finitely many elements of &. If none of them is the set 4, their intersection
1s automatically nonempty.

Otherwise, it is of the form D, ...\ D,,N 4. Now D, (... D,, belongs to 2,
by (a); therefore, the intersection D, (... 1D,, (1 4 is nonempty, by hypothesis.
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Theorem 6.6 : (Tychonofftheorem). An arbitrary product of compact spaces is compact
in the product topology
Proof : Let X = [] X, , where each space X, is compact.

aeJ
Let .o/ be a collection of subsets of X having the finite intersection property.

We prove that the intersection | A =& . Then X is compact.
Aeod

Choose a collection & of subsets of X such that ¢ — 7 and & is maximal with

respect to the finite intersection property. (Such Z exists by previous lemma).

It will suffice to show that the intersection (| D# < as @ — o7 .
De2

Given g e J, let 7, : X = X, be the projection map.

Consider the collection {ﬂa (D)|De2 } of subsets of X, . This collection has

the finite intersection property because Z does.

By compactness of X, for each o, we can choose a point x, of X, such that

Xo € nDe@ﬂa (D)
Let x be the point (x, )aEJ of X.

We shall show that y ¢ p forevery De 9.

First we show that if 7' (Ug) is any subbasis element (for the product
topologyon X) containing x, then 75’ (Up) intersects every element of 2.
The set Up is a neighborhood of x5 in Xj4.

Since x; €, (D) by definition, Uy intersects 7 (D) in some point, say

75(y), where yeD.
Then ye ﬂgl (Uﬁ)ﬂD and by previous results, every subbasis element

containing x belongs to Z.
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And then it follows that every basis element containing x belongs to Z, as every
basis element is a finite intersection of subbasis elements.

1.e. if B is the basis element containing x, then B e 9.

As 2 has the finite intersection property, B(\D =& for every D e & ; hence
xe D forevery D e 9 as desired.
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UNIT - V

EXAMPLES, SEMINARS, GROUP DISCUSSIONS

Introduction :

In this unit, we go through several examples, results based on the topics discussed
in the previous units. We also give some exercise problems that can be considered for
seminar topics and for group discussions.

Theorem 1 : (Urysohn metrization theorem). Every regular space X with a countable
basis is metrizable.

Proof :
Step 1 : We prove the following :

There exists a countable collection of continuous functions f, : X —[0,1] having

the property that given any point x, of X and any neighborhood U of x, there exists an
index n such that f, is positive at x, and vanishes outside U.

Let {Bn} be a countable basis for X. Let x ¢ X and U be a neighborhood of x.

Then there exists B, such that xe B, c U .

Since X is regular, there exists V containing x such that x e V B, .

Again we can find a basis element B, such that xe B, c V.

Therefore, x e B_n cVc B, .

For each pair n, m of indices for which B, c B, , apply the Urysohn lemma to
choose a continuous function g, :X —[0,1] such that g,,(B,)={l} and

Zum(X—B,)=10}.

Then the collection {gnm} satisfies our requirement.
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Because the collection {g,lm} is indexed with a subset of Z, xZ_, it is
countable; therefore it can be re indexed with the positive integers, giving us the desired

collection {f,}.

Step 2 : Given the functions f, as in Step 1, take R"™ in the product topology and define
amap F:X —>R" by F(x)= (fl (x), £, (x),...)
We show that F'is an imbedding.

First, F' is continuous because R"™ has the product topology and each f, is
continuous. Second, F'is injective because given x # y, there exists an open set U such

that yeU and y e U .

Then by step 1, there is an index n such that £, (x) >0 and f, () =0;therefore,
F(x)#=F ( y) .

Finally, we prove that F' is a homeomorphism of X onto its image, the subspace
Z=F(x) of R".

We know that F' defines a continuous bijection of X with Z.

Let z, be a point of F(U). We Shall find an open set W of Z such that
zoeW cF(U).

Let x, be the point of U such that F (x,)=z,.
Choose an index N for which f (x,)>0 and fy (X |U)=1{0}.

Take the open ray (0,+o0) in R, and let /" be the open set V' = ﬂ](,l ((0, +oo)) of
R™.
Let W =V () Z. Then W is open in Z, by definition of the subspace topology.

zy €W because 7y (29) =7y (F(Xo))=fy (x)>0.

And WceF(U). For if zew, then z=F(x) for some xe X, and

my (2)€(0,+0).
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Since 7, (Z) =7y (F(x))=fy(x), and f vanishes outside U, the point x

must be in U.

Then z = F(x) is in F(U), as desired.
Thus F is an imbedding of X'in R".

Since R" is metrizable, X, as a subspace of R", is metrizable.

Definition 2 : If 4 and B are two subsets of the topological space X, and if there is a
continuous function f: X —[0,1] suchthat f(4)={0} and f(B) =11}, we say that

A and B can be separated by a continuous function.

Definition 3 : A space X is completely regular if one-point sets are closed in X and if
for each point x0 and each closed set 4 not containing x0, there is a continuous function

f:X —[0,1] suchthat f(x,)=1and f(4)={0}.

Example 4 : Every normal space X is completely regular.

Proof': Let A be a closed set and x, € X such that x, ¢ 4.

Since {xo} is closed, and X is normal, by Urysohn lemma, there exists a
continuous function f: X —[0,1] suchthat f(x)=0 forall xe 4 and f(x,)=1.

Hence X is completely regular.

Example 5 : Every completely regular space X is regular.
Proof : Let A be a closed subset of Xand x, € X \ 4.

Then by definition of completely regular, there exists a continuous function

f:X —[0,1] suchthat f(x,)=1and 7(4)={0}.

1 1

Observe that the sets [05] and (5’1} are open in [0, 1].
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As f is continuous, we get that the sets 7! ([0,%)] and [ ((%,ID are

open and they are disjoint.

Also x, ef ((%,ID and Ac [ ([0,%)]

Hence X is regular.

We now show that completely regular spaces can be passed onto subspaces and
products.

Theorem 6 : A subspace of a completely regular space is completely regular. Product
of completely regular spaces is completely regular.

Proof : Let X be completely regular and Y be a subspace of X.

Let x;, be a point of ¥, and let 4 be a closed set of ¥ not containing x,.

Let 4 denotes the closure of 4 in X. As 4 is closed in ¥, we get 4= A(Y .

As xy2 A, wehave x, ¢ 4.

Since X is completely regular, there exists a continuous function f: X —[0,1]
such that f'(x,)=1 and £(4)={0}.

Then f|y:Y —[0,1] satisfies /|y (x,)=1 and f|,(4)={0}.

Let X =]] X, be aproduct of completely regular spaces.

Let b=(b,)e X and 4 be a closed set of X not containing b.

Since X\ 4 1sopenand p e X \ 4, there exists a basis element [[U, such that
bellU,cX\4

As we know U, = X, except for finitely many a, say o =a,....,a,, .
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Given i = 1, ...,n choose a continuous function f,, : X, —[0,1] such that

Jo; (bai)=1 and fo, (X—Ual.)=0_

Now define f: X —[0,1] by f(J’)Zfllfal- (Vo).

Then f(b)=1.To show f(4)=0,let gc 4.

Then there exists «;, for some j =1,....,n such that a, gUaj and hence

foi (a4 )=0 implies f(4)=0.

Definition 7 : A compactification ofa space X is a compact Hausdorff space Y containing

X as a subspace such that X=Y.Two compactifications ¥, and Y, of X are said to be

equivalent if there is a homeomorphism /:Y; — Y, suchthat j(x) = x forevery xe X .

Lemma 8 : If' Y is a compactification of X, then X is completely regular.

Proof : Suppose X has a compactification Y.
Since Y is compact and Hausdorff, Y is normal.
As every normal space is completely regular, Y is completely regular
Thus 4 is completely regular being a subspace of Y.

In the next lemma, we prove the converse of the above statement i.e. if X is
completely regular, then X has a compactification.

Lemma 9 : Let X be a space; suppose that }- X — 7 is an imbedding of X in the
compact Hausdorff space Z. Then there exists a corresponding compactification Y of X;
it has the property that there is an imbedding H :Y — 7 that equals h on X. The
compactification Y is uniquely determined up to equivalence. We call Y the
compactification induced by the imbedding h.
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Proof : Let X, denote the subspace /(x) of Z, and ¥, denote its closure in Z.
Then Y, is a compact Hausdorff space and X =¥,

Hence Y is a compactification of X),.

We now construct a space Y containing X such that (X, Y) is homeomorphic
(Xp Yp)-

We choose a set 4 disjoint from X that is in bijective correspondence with the set

Y, — X, under some map k: 4 —> Y, - X,.
Define Y = X | 4, and define a bijective correspondance H :Y — Y, — X, by
H(x)=h(x) for xe X,

H(a)=k(a) forge 4.
Then Y is a topology with open set U if and only if H(U) is open in ¥,,.
Now the map H is a homeomorphism; and the space X is a subspace of Y because
h=H|y.
By expanding the range of H, we obtain the required imbedding of Y into Z.

Now suppose ¥, is a compactification of X'and that /, :¥; — Z is an imbedding

that is an extension of 4, for i =1, 2.

Now each H; maps X onto h(X)=X,.
As H is continuous, it maps Y; into X,,.

Hence H,(Y;)=X,, and (H;' )0 H, defines a homeomorphism of ¥; with ¥,
that equals the identity on X.

Example 10 : Let Y be the space [0, 1]. Then Y is a compactification of X =(0,1);
obtained by adding one point at each end of (0, 1).

Lemma 11 : Let Ac X ; let f:A— Z be a continuous map of A into the Hausdorff

space Z. There is atmost one extension of f to a continuous function g: 4 — 7 .
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Proof : Suppose that g, g': 4 — X are two different extensions of /.
Choose x so that g(x) = g'(x).
Let U and U ' be disjoint neighborhoods of g(x) and g'(x), respectively.

Choose a neighborhood ¥V of x so that g(V)cU and g'(V)cU'.

Now Vintersects 4 ,say at point y.

Then g(y)eU and g'(y)eU".

But since y € 4, we have g(y)=f(») and g'(»)=rf(»).
This contradicts the fact that U and U ' are disjoint.

Theorem 12 : (The Stone-Cech compactification) : Let X be a completely regular
space. There exists a compactification Y of X having the property that every bounded

continuous map f : X — R extends uniquely to a continuous map of Yinto R.

Proof : Let {/, }aE , be the collection of all bounded continuous real-valued functions

on X, indexed by some index set J.
Foreach ¢ e, let 1, =[inf £, (X),sup £, (X)]. Then define #: X —I1,.,

by h(x)=(f, (x))

aed ’
Since each [, is compact, []/, is compact.

Because X'is completely regular, the collection { Ia } separates points from closed
sets in X.

Therefore the map 4 is an imbedding.

Let Y be the compactification of X induced by the imbedding 4.

Then there 1s an imbedding H :Y —[]/, that equals 2 when restricted to the
subspace X of Y.

We now show that a bounded continuous real-valued function f on X extends
to Y.
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Since f* is bounded and continuous, f = f; for some index S e J.
Let 7p : 111, — Iz be the projection mapping.
Then the continuous map 7z °H :Y — I is the required extension of f as if

xeXx wehave 75 (H(x))=75(h(x))=r, ((fa (x))aej) = f5(x).

Uniqueness of the extension is a consequence of the lemma ?? .

Theorem 13 : Let X be a completely regular space. If Y, and Y, are two compactification
of X satisfying the extension property of Theorem ??, then Y; and Y, are equivalent.

Proof : Consider the inclusion mapping j, : X — Y,.

It is a continuous map of X into the compact Hausdorff space Y,.

Because Y, has the extension property, we can extend the /, to a continuous map
SHih =D

Similarly, we can extend the inclusion map j,: X — ¥, to a continuous map

LY, =1,

Figure 13:
Then the composite map f; o f, : ¥; — ¥ satisfies f; (f,(x))=x forall xe x .
Therefore f; o f, is a continuous extension of the identity map iy : X — X .
But the identity map of Y, is also continuous extension of i.
Then by lemma ??, f; o f, is equal to the identity map of ;.

Similarly, f; o f; is equal to the identity map of ¥,.

Thus f; and f, are homeomorphisms.

34)




Remark 14 : For each completely regular space X, there exists a unique compactification
of X satisfying the extension condition of Theorem ??. We will denote this

compactification of X by B(X) and call it the Stone-Cech compactification of X. It is
characterised by the fact that any continuous map f:X — C of X into a compact

Hausdorff space C extends uniquely to a continuous map g: (X) —C.

[ SELF - TEST 4.4 j

1. The one point compactification of R? is homeomorphic with:
A) R?
B) R
C) 52
D) S!
2. Which of the following statements is not equivalent to any two of the remaining
statements for a topological space X, where one point sets are closed ?
A) X is completely regular
B) X is metrizable
C) X is homeomorphic to a subspace of a compact Hausdorff space

D) X is homeomorphic to a subspace of a normal space

[ SHOT ANSWER QUESTIONS 4.4 j

1. Give an example of a regular space which is not completely regular.

2. Give an example of a completely regular space which is not normal.
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[ TOPICS FOR SEMINARS AND GROUP DISCUSSIONS j

1. If {7} is a family of topologies on X, show that 1.7, is a topology on X.
Is U.Z, is a topology on X ?

2. Let {%} be a family of topologies on X. Show that there is a unique smallest

topology on X containing all the collections .7, and a unique largest topology

ontained in all .7 .

3. If X ={a,b,c} let 7,={2,X {a},{a,b}} and 7, ={D, X,{a},{b,c}}. Find
the smallest topology containing .7; and .7, , and the largest topology contained
in .7, and .7,.
4. Consider the following topologies on R
(a) ] = the standard topology
(b) .7, = the topology of R
(c) .75 = the finite complement topology
(d) .7, = the upper limit topology, having all sets (a, b] as basis
(e) s = the topology having all sets (—o0,a) as basis.
Determine, for each of these topologies, which of the others it contains.

5. Amap f:X — 7Y issaid to be an open map if for every open set U of X, the set
f(U)isopeninY. Show that 7, : X xY — X and 7, : X xY — ¥ are open maps.

6. Show that every order topology is Hausdorif.

7. In the finite complement topology on R, to what point or points does the

sequence x, =1/n converge ?
n

8. Show the T, axiom is equivalent to the condition that for each pair of points of
X, each has a neighborhood not containing the other.
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10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

Let Y be an ordered set in the order topology. Let f,g: X — Y be continuous.

(a) Show that the set {x| f(x) < g(x)} is closed in X.

(b) Let h: X —Y be the function 4(x)=min{f (x),g(x)}. Use the pasting
lemma to show that h is continuous.

Justify the following statements

(a) Is a product of path connected spaces necessarily path connected ?

(b) If 4 — x and 4 is path connected, is 4 necessarily path connected ?

(c) If f: X > 7Y is continuous and X is path connected, is f (X) necessarily
path connected ?

(d) If {Aa} is collection of path connected subspaces of X and if 4, #J,
is |J 4, necessarily path connected ?

If 4 x, aretraction of X onto A4 is a continuous map »: X — 4 such that

r(a)=aq foreach g e 4. Show that a retraction is a quotient map.

Show that no two of the spaces (0, 1), (0, 1], and [0, 1] are homeomorphic.

Show R” and R are not homeomorphic if 7 > 1.

Let p: X — Y be a quotient map. Show that if X is locally connected, then Y is
locally connected.

Show that if Y is compact, then the projection 7; : X xY — X is a closed map.
Show that in R with countable complement topology, finite sets are compact.
Show that R with discrete topology is locally compact.

Continuous image of a locally compact space is locally compact. True or

False ? Justify.

Continuous image of a first countable space is first countable. True or False ?

Justify.

Show that continuous image of a separable space is separable.
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21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Is subspace of a separable space, separable? Justify.
Show that R with finite complement topology is Lindelof.

Give an example (other than already discussed) of a space which is 7|, but not
T,.
Give an example (other than already discussed) of a space which is 7' but not
T,.
Give an example (other than already discussed) of a space which is 7, but not
T;.
Give an example (other than already discussed) of a space which is 75 (regular)

butnot 7, .
6]

Give an example (other than already discussed) of a space which is regular but
not normal.

Give an example (other than already discussed) of a space which is completely
regular but not normal.

Show that every locally compact Hausdorff space is completely regular.

Is [0, 1] a compactification of (0, 1) ? Is it a one point compactification ?
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