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Preface

Large number of students appears for M.A./M.Sc. examinations externally
every year. In view of this, Shivaji University has introduced the Distance Education
Mode for external students from the year 2008-2009, and entrust the task to us to
prepare the Self Instructional Material (SIM) for aspirants. An objective of this SIM is to
provide the students the material on the subject from which they can prepare for
examination on their own without the help of a tutor. We are extremely happy to present
the book on “Real Analysis” for M.A./M.Sc. Semester Il students as a SIM prepared by
Dr. (Mrs) Sarita Thakar and Dr. M. S. Bapat. We hope that the exposition of the material
in the book will meet the needs of all aspirants.

The book introduces the students to some of the abstract topics that pervade
modern analysis. The first unit deals with the algebra of sets and Borel sets. Measure
theory is the study of special type of set functions initiated by a French Mathematician
Henri Lebesgue. Unit two to six deal with the Lebesgue measure theory and integration.
Unit two deals with Lebesgue measure. Measurable functions and their properties are
discussed in Unit three. Lebesgue introduced the concept of an integral called as
Lebesgue integral, which generalizes the Rieman integration. The concept Lebesgue
integration is introduced in Unit four. In this unit Lebesgue integral of bounded functions,
Lebesgue integral of non-negative measurable functions and theorems on general
Lebesgue integral are introduced. Unit five and six deals with differentiation and
integration of monotone functions & functions of bounded variations. Unit seven
introduces concept of absolute continuity and fundamental theorem of integral calculus.
Unit eight consists of Minkowski and Holders inequality, convergence, completeness
and Riesz Representation Theorem.

We owe a deep sense of gratitude to the Vice-Chancellor who has given
impetus to go ahead with ambitious projects like the present one. Thanks are also due
to Mr. Sachin Kadam for computerizing the manuscript neatly and correctly. Any
suggesions and corrections for improvement will be highly appreciated.

Prof. Dr. K. D. Kucche
Chairman, B.O.S. in Mathematics,
Shivaji University, Kolhapur.
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Each Unit begins with the section objectives -
Objectives are directive and indicative of :
1. what has been presented in the unit and
2. whatis expected from you

3. what you are expected to know pertaining to the specific unit,
once you have completed working on the unit.

The self check exercises with possible answers will help you
understand the unit in the right perspective. Go through the possible
answers only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
study tools to keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.
It is also advised to see the new syllabus 2022-23 and study the
reference books & other related material for the detailed study of the
paper.
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UNIT -1

OPEN SETS, CLOSED SETS AND BOREL SETS

Let R bethe set of real numbers, 7, be the set of integers and Q denotes the set of rational
numbers.

We introduce the concepts of open sets, closed sets and Borel setsin [R .

1.1 Open Sets and Closed Sets
1. Definition : Open Set

A set O of real numbers is called open if for every x e O, there exists a real number 7> 0 such
that the internal (x —r,x+r)c O.

2. Note :

(1) For a < b, the open interval (a, b) is an open set. Because for any x € (a,b) choose
7 =min{b—x,x—a}. Then the interval (x—r,x+r) < (a,b). Also the open interval (a, b) is a

bounded open interval.

X-r=a X+r
O @ L O
a X

r=min{b—x,x—a}=x—aand (x—r,x+r) < (a,b)
(2)Forany a,b € R we have,
(a,OO):{xeR|a<x}
(—0,b)={xeR|x<b}
(~o0,0) =R

Note that all these sets are open intervals but unbounded. And any unbounded open interval is
of the above form.

(3) R and the empty set ¢ are open.
3. Proposition :

The intersection of any finite collection of open sets is open and the union of any collection of
open sets is open .



Proof : Let {0} 4; D€ the collection of open sets where I is an index set. Then for any

Y e H O , there exists at least one k for which x € O, . Since O, is an open set there exist a real
€

number > 0 such that,

xe(x—r,x+r)c O, c UOk.Hence Uok is open.
kel kel

n
Next let {Ok };;1 be any finite collection of open sets. If ﬂ Oy is empty then clearly it is open.
- k=1

If ﬂ O is non-empty then for any X € ﬂ O, =x€0; fori<k<n
k=1 k=1

= there exists 7, >0 suchthat (x—r,x+7) S Og, 1<k <n

Let r=min{r1,r2, ..... ,rn}.Thenr>O and (x—r,x+r)c O, forallk, 1<k <n.

Hence (X—r,x+r)c ﬂ Ok . Therefore ﬂ O is open.
k=1 k=1

4. Note :

11

Intersection of any collection of open sets need not be open. For, let O, = (—— ) —j neN be
nn

the open intervals. Then ﬂ 0, =10} which is not open.

n=1

5. Proposition :
Every non-empty open set is the disjoint union of a countable collection of open intervals.
Proof : Let O be the non-empty open subset of R . Let x e O be arbitary. Then there exists
r>0suchthat (x—r,x+r)cO.
Therefore there exists y > x for which (x, y) O and z < x suchthat (z,x) c O . Define the

extended real numbers a, and b, by
a, =inf{z|(z,x)c O}, b, =sup{y|(x,y) <O}

Then I, = (ax , bx) is an open interval containing x. Further if a, < x < w < b, then there exist

ysuchthat x <w<y and (x, y) < O, whichimplies w € (x, y) < O . Therefore wc O .



Thus wel, = weO .Hence I, c O

Next if b, € O then there is a real number » > 0 such that (bx —r,b, + r) c O and hence
(x, b, + r) < O which contradicts to the fact that b, is the supremum of all the elements y such that

(x,y)< O .Hence b, ¢ O. Similarly a, ¢ O.

Next, consider a collection of open intervals {Ix} ,x€O .ForanyxeO=xel C U I..
xe0

Therefore O U I..0On the other hand foreach x € 0, /, < O and hence U 1.cO.
xe0 xeO

Therefore O = U I, .Further forany x,y € O,if I, (11, # ¢ thenthere s at least one element say
xe0

zel NI,.
=a,<z<b and a,<z<b,
= either a, <a,<z<b, <b,ora,<a,<z<b, <b,

= a, =a, and b, =b, (bythe definitions of a, and b,)

Hence any two sets in {1 N } are either disjoint or equal. Thus {1 N } is a disjoint family of

xe0 xe0

open intervals such that O = U I..
xe0

Finally we show that the collection of open intervals {1 x }xe o 1s countable.

Since each interval of R contains countably infinite rational numbers, and rational numbers are

countably infinite, we conclude that the union U L is a countable union. (If this union is not countable
xXe

then we have uncountable union of countable sets of rational numbers which is uncountable set, but set
of rational numbers is countable).

Therefore O is the union of countable, disjoint collection of open intervals.

6. Definition :

Let E be any set of real numbers. A real number x is called closure point of E. If every open
interval containing x contains a point in E. The collection of all closure points of E is called a closure of

E and itis denoted by £ .
For example, if £ =(0,1) then E= [0,1]. Clearly F < E foranysetE.

3



7. Definition :

A set E of real numbers is called a closed setif g _ F .

8. Proposition :

For any set E of real numbers, its closure g is closed. Moreover, £ is the smallest closed set
that contains E.

Proof : Let E be any set of real numbers and let g be its closure. We prove that E -E-

Let x be a closure point of z . Consider an open interval /, which contains x. Then /_ contains
apoint of z . Letx"be the point such that x'e 7, NE . Further x'e I, and ' ¢ f i.e.x'isaclosure

point of E and /_is an open interval containing x'. Therefore there exist a point x" € E (11, which

shows that every open interval /_ containing the point x also contains a point of E. Hence y ¢ £ .

Therefore £ contains all its closure points and hence £ is closed. i.e. E -E

Nextif F is any closed set containing E then

EcF=>EcCF=F=ECF

Which shows that 7 is the smallest closed set containing E.

9. Proposition
Any set of real numbers is open if and only if its complement in R is closed.
Proof : Let E be any open subset of R . We show that its complement R —E is closed.

Consider a closure point x of R —E. Then every open interval containing x also contains a
point of R — g . Now if x € £, E is an open set, then there exists an open interval say /. which

contains x and x € [,  E. But then /_ is an open interval containing x and contains no point of
R — E - Which is a contradiction. Hence x ¢ F 1.e. xe R—E-
Thus R — g contains all its closure points and hence R — g is closed.

Conversely suppose R — £ isclosed. Let x ¢ E beany point. If every open interval containing
x contains a point of R — g, then x is a closure point of R — £ . Andsince R — g is closed we have
xeR—E.1e. x ¢ E whichis contradiction. Hence there exists an open /, interval containing x

whichisdisjointfrom R — g i.e. [, N(R—-E)=¢.Hence I, c E . Thus forany x ¢ E there exists

an open interval /_suchthat x e I/, < £ . Which shows that E is open.



10. Note:

(1)Since E = ( E€ )c then the above proposition also states that - A set is closed if and only if
its complement is open.
(2) Since R¢ =¢ and ¢° = R, and we know that both ¢ and R are open, the above

proposition indicates that both ¢ and R are also closed.

(3) The union of finite collection of closed sets is closed and the intersection of any collection
of closed sets is closed.

1.2 Heine Borel Theorem
1. Definition :
Acollection { £, ,_, issaid to be coverof aset Eif £ |JE; . Asub-collection of the cover
iel
that itself also is a cover of E is called a subcover of E. If each set £; in a cover is open we say that

{E, }ie ; 1sanopen cover of E. If the cover {E;}._, contains finite number of sets then we call itas a

iel

finite cover.

2. Heine-Borel Theorem :

Let F be a closed and bounded set of real numbers. Then every open cover of F has a finite
subcover.

Proof : First we consider the case that F is closed and bounded interval i.e. F'=[a, b],a<b.
Let Fbe an open cover of [a, b]. Let E be the set defined by

E= {x €la,b]|[a,x] can be covered by finite number of sets in .7-"}

Thenclearly 4 e E , since [a,a] = {a} is covered by finite number of sets in F (i.e. only one
setin F containing a). Thus E # ¢ . Since E < [a,b] it is bounded above by b. Therefore E has a
supremum or least upper bound. Let c=sup E. Now ¢ ¢ E and Fis an open cover of £, there exist
an open set Qe F such that ¢ e (. Therefore there exists > ( such that the interval

(c—e,c+€)cO.
Now ¢— e is not supremum of £. Therefore there exist x > ¢— e suchthat x ¢ £ . By definition
of £, the interval [a, x] is covered by finite number of sets {01 ,055.....,0; } in F. Hence the finite

collection {0},0,,.....,0;,0} in F covers the interval [a,c+€) i.e. there exist y such that

¢ <y <c+ e andtheinterval [a, y] is covered by finite number of sets in F, which is a contradiction.
since ¢ is the supremum of E such that [«, ¢] is covered by finite number of sets in . Thus ¢ =5 and

[a,b] is covered by finite number of sets from F.

5



Now, if F'is any closed and bounded set and F is an oepn cover of F, then F contained in
some closed and bounded interval [a, b].

Now F'is closed set, therefore its complement g ~ f isanopenset. Let 0= R ~ F . Let
JF* be a collection of open sets obtained by adding O to F. i.e. F*=_F {0} . Since F covers F
and O covers complement of F, F U{Q} covers [a,b].i.e. F * is an open cover of [a,b]. And by
above case F * has a finite subcollection of sets which also covers [a,b]. If O belongs to this finite

subcover of [a, b], then by removing O we get a finite subcover of F which is a subcollection of sets in
JF. Thus if F'is closed and bounded set then there is a finite subcover of set in F.

3. Definition :

A countable collection of sets {E, }:;1 is descending or nested provided £,

c E, forall

n e N . The collection of sets {E, }::1 is said to be ascendingif £, c E,,, forall y e N.

4. The Nested Set Theorem :

Let {F, }:;1 be a descending countable collection of nonempty closed sets of real numbers for

which F| is bounded. Then [ F, # 4.

n=1

Proof : Wr prove this theorem by contradiction. Suppose that n F, =9 Then for any real

n=1

number x, if x € F,, forall , ¢ N then x € ﬂ F,, which is not true. Hence there exist a natural number

n=l1

nsuchthat x¢ F, ie. xe R—F,.Let R—F, =0, . Since F, isclosed, O, is open. Thus for every

x € R there existan open set O, suchthat x € O, . Therefore R = U O, .Furthereach F, c R for
n

all , e N and hence F; < R. Therefore {On }::1 is an open cover of F|. The Heine-Borel theorem

k
tells us that there is a natural number k for which /' U o,.

n=l1



Next {Fn }w

. . [e¢] . .
. 1s descending, the sequence of open sets {O }n=1 is ascending, because

n

k k
0,=R-F,, neN. Hence U0n=0k=]R_Fk. Now F, c F and EQUOan_Fk

n=1 n=I1

o0
= F, = ¢ . Which is a contradiction since F, ’s are nonempty closed sets. Hence ﬂ F, #¢.

n=l1

1.3 The - algebra

Definition :

Let X be any set. A collection of A of subsets of X is called a o -algebra of subsets of X if
(i) $,XeA
i)  deA=>X-4deA

(ii1) The union of countable collection of sets in A also belongs to A.

2. Note :

(1) De Morgans Laws implies that the o -algebra A is also closed under countable intersection.

(2) The o -algebra Ais closed w.r.t. the relative complementi.e. 4,4, e A= 4 -4, € A.

3. Examples :

(1) Foranyset X, (X = ¢) the collection {¢, X } isa o -algebraand it is contained in every

o -algebra of subsets of X.

(2) For any non-empty set X the collection all subsets of X, called as power set of X, is a
o -algebra which contains every o -algebra of subsets of X. It is denoted by > X (or P(x) ).

4. Proposition :

Let F be a collection of subsets of a set X. Then the intersection A of all o -algebras of
subsets of X that contains Fis a o -algebra containing . Moreover it is the smallest ¢ -algebra of
subsets of X containing J in the sense that any ¢ -algebra that contains F also contains .A.

Proof:

Let {B’, }ie ; beacollection of ¢ -algebras of subsets of X such that 7 c B;, vie .



Let A=ﬂBl- . Since ¢, X € BVi, ¢,X€ﬂ3j =>¢XeA
Next, AeA:AeﬂBi

= AepB forall je ]

= X —AeB forall j ¢ ] . Since B;’s are ¢ -algebras for all i.

:X—AeﬂBI-

=X-4e A

Finally if { Ay, } is a countable collection of sets in A then, {Ak } cA= {Ak } c ﬂ B, .
={4,}cB,Viel =| J4, €B,Viel since B isa o -algebra.
k

Hence | J 4, €[ B =A. Which proves that Aisa o -algebra.
P .

1

Also, F B, Viel =>Fc([|B=A

Hence, A is a o -algebra containing F. Now if C is any o -algebra containing F then

Ce{B} . Therefore [ 1B, = Cie. A cC.Thisshows that Ais the smallest o -algebra containing

1

F.

5. Definition :

The collection B of Borel sets of real numbers is the smallest o -algebra of sets of real numbers
which contains all of the open sets of real numbers.

6. Note :

Every open set is contained in 3. Since B is closed under complement, and complement of an
open set is closed set we infer that all closed sets are Borel sets. Each singleton set is closed and hence
itis a Borel set. Since B is closed under countable union, every countable set is a Borel set.



7. Definition :

A countable intersection of open sets is called G5 set and a countable union of closed set is

called F set.

Gsand F sets are Borel sets.

8. Note :

If Ae G5 then A= ﬂGl. , G;’s are open sets, ;.
Similalry B € F then B = UFI. ,F;’s are closed sets ;.

Similarly we can construct the families G4, Gs¢5,.-.. and F_s, F_s ,.... Allmembers of these
families are Borel sets.

Thus we have following examples of F_ sets.

L. Every closed setis F set.

2. Countable sets are F__ sets. (Since these are countable union of singletons which are closed
sets.)

3. Open intervals are F sets.

4. Countable union of F_ setsis F_ set.

Following are some of the examples of G sets.

1. Every opensetis G set.
2. Every closed interval is G5 set.
3. Countable intersection of G setsis G set.

Complement of F setis G5 setand conversely.



9. Note :

Countable union of closed sets need not be closed and countable intersection of open sets
need not be open for,

o]

U[m%,b—ﬂ =(a,b)  and ﬂ(a——,m—j:[a,b]

n=l1 n=1 n n

N AL
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UNIT - 11

LEBESGUE MEASURE

Introduction :

Measure theory is the study of special type of set functions initiated by a French Mathematician
Henri Lebesgue (1875-1941). It helps in studying problems in Probability theory, Partial differential
equations, Hydrodynamics and Quantum Mechanics.

The concept of length of an interval is generalized to define measure of a set of real numbers.
Length of a finite interval I is defined as £ (I)=b—a where a and b are end points of the interval (a <
b), irrespective of whether I is closed, open, open-closed or closed-open. Thus length is a set function
defined on a set of intervals. We want to extend the notion of length to any set of real numbers.
Therefore we would like to construct a set function m which assigns to each set E a nonnegative
extended real number m(E) called a measure of E. Such a set function m should have the following
properties.

1. m(E) is defined for any subset of R i.e. £ € P(R)
2. For an internal [, m(E)= 7 (I)

3. For a disjoint sequence {E_} of subsets of g m (U E, ) = Z m (En )
n n
4. m is translation invarianti.e. m (E +y)=m(E)

Unfortunately such a set function m satisfying (1) to (4) doesn’t exist. Hence we restrict the set
P(IR) to a o -algebra of measurable sets. We first introduce outer measure of a set.

2.1 Lebesgue Outer Measure :

1. Definition : For any set A of real numbers, consider a sequence of non empty open bounded

o0

. Suchthat A< |7« . We define Lebesgue outer measure of A by,
B k=1

intervals {1 k}

m*(A)=inf{i£(1k)|Ag Cj]k}
k=1 k=1

where £ (1) is the length of the open interval /.
2. Properties of m* :
L. m*: P(R) > R U {0}
Thus m* is a set function from P (R ) to a nonnegative extended system of real numbers.

11



m*(A4)20 forany 4 e P(R)

11
*(¢) =0.For, 0 = —;,; forall 4 ¢ N implies,

m*(d)):inf{ (—% %)M)c(—% %) neN}

:inf{z|neN}
n

=0
If A is Singleton set then m*(A) =0

1 1
Proof: Let A= {x} then Ac (x—;,x+;) ,neN

1
Therefore, m*(A4) = lnf{ (X—; X+nj|neN}
:inf{z|xeN}
n
=0

5. m* ismonotoneie. A € B=>m*(A)<m*(B)

Proof: 4 < B Then for any sequence {J } of open intervals such that B — UJ, implies

AcUJ,.

Hence,

{Zz |BCUJ}Q{Z€ |ACUI}

Taking infimum of both sides,

1nf{Z£ |BCUJ }>1nf{2£ |AgLnJIn}

= m*B)>2m*(4) or m*(A)<m*(B)

3. Proposition : The outer measure of an interval is its length.
Proof: LetIbe any interval.
Case I : lis closed and finite interval.
LetI=[a,b], a<b
12



Then forgiven €> 0, [a,b] < (a—e€,b+€)
Hence, m*[a,b]< ((a—e,b+€)=(b+€)—(a—€)=b—a+2¢c
Since e> () is arbitrary, we have, m *[a,b] < b —a .. (1)

Next, consider a countable collection of open intervals such that [a,b] = U I, .Since[a,b]
n

is closed and bounded set, by Heine Borel theorem, there exist a finite subcover of [a, b].

Now [a,b] - Uln there exist an interval I, =(a,,b;)suchthat a € /,,anda; <a<b,.

n

Ifb; <b then there exist an interval I, = (a,, b,) such that a, <b, <b,.

——t——F— > ——>
ara a2b1 asz b akbbk

Continuing in this way we obtain a sequence of open intervals, (a;, b;), (a,, b,), (a3, b3), ....

(ay, by) from {I_} such that, a, <b. ; <b; V1. Since [a, b] is covered by finite number of open

intervals, this process must terminates finitely with some interval (a,, by ) with a, <b <b, . Therefore,
we get,

k
2 0(1,)= 2 (apnb;)
n i=1
:K(al,b1)+é(az,b2)+...+€(ak,bk)
=(b1—a1)+(b2—a2)+...+(bk —ak)
=—a,+(by—a,)+(by—az)+..+ (b —a;)+b,
But a,<b <b,=b —-a,>0
ay<b,<by=b,-a;>0,...b,,—a,>0

Hence, removing these positive terms from the r.h.s., we get,

Z((ln)z—al +b,
n
Further,a € (a,b,) = a, <a=—a<-a,

Similarly be(ak,bk):>b<bk.Henceb—a<bk—a1
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Thus we get,

> i(1,)>b-a

n

Taking infimum over all such open covers {L } of[a, b] we get,

inf{zwm [a,b]gUIn}Zb—a

jm*([a,b])zb—a ... (ii)
From (i) and (i) we get, m*[a,b] =b—a

Thus for any closed, finite interval I, m*(I) = £ (I)

Case Il : Let [ be any finite interval. Then for given e > 0 there exist a closed interval J such that
Jcland ((J)>((])-€.
Therefore we get,
((D—e<(Jy=m*(J)<m*(I) ... (iif)
Furtherif / is closure of Ithen J c [ clearly 7 isaclosed set.
Therefore we get,
m*(1)<m*(T)=0(T)=0(1) e (iv)
From (iii) and (iv) we get,
((I)—e<m*(I)< (1)

Since, &> () is small arbitrary we get,

m*(I)= ¢ (I), where Iis any finite interval.

CaseIll : I is any infinite interval. Since I is infinite interval, for any natural number 7, there is a closed
interval Jsuchthat J — 7 and ¢/(J) =n.

Then,
Jcl=m*(J)<m*(I)
= ((J)<m*(I)

=n<m*(I)or m*(I)>n

Thus for any natural number n, 1% (7) > 5 -
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Hence * (1) =00 = ¢(1)
Therefore forany interval I, 5% (7) = ¢(])

Note : The above proposition also asserts that the outer measure m* is a generalization of the length
function defined on set of intervals.

4. Proposition : Outer measure is translation invariant. i.e. for any set A and for any real
number y,

m*(A+y)=m*(A).

Proof : Let A be any subset of R . If there is a countable collection of open intervals {7, } such that

Ac Ulk ,then
k=1

Agolk C>A+yg[01k]+y

k=1 k=1
<:>A+ygU(]k+y)
k=1

Also ((1;)=((I;+y) forallk=1,2,3,.....

Therefore, *(A)—mf{ZE (1) |ACU[k}

k=1

:inf{iﬁ(lk)lflwg U +y)}

k=1 k=1
=inf {
=1inf {

=m*(A+y)

[Ms

€(1k+y |A+y < U Ik+y}
k=1

=~
I

1

M

K(Jk)|A+y§0Jk}

k=1

bl
]
—

5. Proposition : Let {£, } be a countable collection of sets of real numbers. (not necessarily
disjoint), then

m*(LkJEk)S;m*(E

15



Proof: If m* (E k ) = oo for some k then the inequality holds trivially. Therefore we assume that

If m* (E x ) < oo forall k. Then for given > () there exist a countable collection of open

intervals {Ik,i}zl suchthat £, < Ulk’i and,

m*(Ek)+i>Z€(1kw)» Y k=12,... .. (i)

© .
_, isalso acountable

. . . . 0
Since countable union of countable sets is again countable, {1 koi } il

collection of open intervals such that,

k=1 k=1 i=l
o0 o0

ie. UEic U 1
k=1 k=1,i=1

o0
o .
4 1s anopen cover of U E and hence,

Thus {]kai} Zl,
k=1

k=1 i=1
< z(m *(Ek)+ikJ ... (from (i)
k=1 2

k=1
Thus, m*LUEk}SZm*(EkHe
k=1 k=1



Since > () is arbitrary, we get,
o0 o0
m* UEk SZm*(Ek)
k=1 k=1
6. Note : The above proposition says that the outer measure m* is countably subadditive.
7. Corollary : If A is countable set then m*(A) =0.

Proof: Aiscountable.

= A=1{a},28y,35,... |

:U{ai}:UAi where A; = {a;}

Therefore, m*(A):m*(UA,-jSZM*(Ai)zo
i=1 i=1

Since A;’s are Singleton sets. m * (Ai ) =0 foralli=1,2,3,......

Hence, m*(A)=0
8. Note : The set of natural numbers N, the set of integers 7, the set of rational numbers (Q are
all countable sets. Hence m *(N) =0, m*(Z) =0, m*(Q)=0.

Any finite set is a countable set hence its outer measure is zero.

9. Example : Prove that an interval [0, 1] is not countable.

Solution : m* ([0,1]) =1+ 0 hence [0, 1]is not countable i.e. [0, 1] is an uncountable set.
Any interval is not countable, since it’s outermeasure is not zero.
10. Example : Let Abe a set of irrational numbers in the interval [0, 1]. Prove that ;#( 4) =1.

Solution : Let B be the set of rational numbers in the interval [0, 1]. Then 4 U B =[0,1]. Therefore
by subadditive property of m*,

m*[0,1]=m*(4 U B) < m*(A4)+m*(B)

Since B is countable, m * (B) = 0.Also m*[0,1]=1. Therefore 1 < m*(A4) .Also 4 <[0,1]
implies m*(A4) <m*[0,1]=1.Hence m*(4)=1.

11. Note : Outer measure of a countable set is zero. But the converse need not be true i.e.
m*(A)=0does not imply A is countable. We have the following example.
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12.  Example : Cantor’s set C is an uncountable set with outer measure zero.

Consider a unitinterval [0, 1]

1 12
Step 1: Remove the middle (gj rd part (595)

1
Length of the removed part= =

W

Number of intervals remained = 2, [O, —} ) [— ) 1}

1
Length of each interval present= —

3

1
Step 2 : Remove the middle (gj rd of the intervals present in the step 1

2 2
Length of the removed part = ry = 3—2
Number of intervals remained=4 =22
1_1
9 32

Length of each interval present =

At the step n we have,

n—1

Length of the removed part =

n

Number of intervals remained = 21

1

Length of each interval present = 3—n

2 n
1
Let C, denotes the union of intervals left at the nth step. Then C,= U I and ! (1 k ) = 3—n .
k=1
The Cantor set C is defined as C= ﬂ Ch .
n
Therefore C = C,, forall e N

Hence, m*(C)Sm*(Cn)

18



2 n
ie. m*(C) < (5) forall , e N

n
Butas n > o, (5) — 0 Hence we must have,

m*(C)=0
But Cantor’s set is uncountable and we have proved that its outer measure is zero.
13.  Example: If m*(A)=0then m*(A4UB)=m*(B)
Solution : m*( AU B) < m*(A)+m*(B) (Countable sub additive property)
=m*(AUB)<m*(B) (m*(4)=0)
Also Bc AUB=m*(B)<m*(4AUB)

Hence, m*(AUB)=m*(B)
14. Proposition : Given any set A and any > (), there is an open set O such that 4 = O and

m*(0)<m*(A)+ e.Alsothereisaset G € G5 suchthat 4 — G and m*(A) =m*(G).

Proof: Let &> (0. Then there exist a sequence {I,} of open intervals such that
A<, ad L) <m*(A)+e ()

Take O = Uln . Then O is an open set such that 4 = ©.And
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m*(O):m*(gln)sgm*(ln):gé(ln)

=>m*(0)<m*(A)+ e (By (1))
Next for €= YR there is an open set O, such that 4 < O, and
1
m*(On)Sm*(A)+2—n n=1,2,3,..

Take G=[)O,,Then GeGyzand GCO, Vn

And  AcoO,, Vn=>A4c()O,

=>AcG

Therefore,
m*(A)Sm*(G)Sm*(On)Sm*(AHz% VneN

— m*(4) <m*(G) < m*(A)
=>m*(4)=m*(G)
2.2 Lebesgue Measurable Sets :

Outer measure has the advantage that it is defined for all subsets of R . But it is not countably
additive. It becomes countably additive if we restrict the domain of m* to a
6-algebra of all measurable subsets of R .

We use the following definition due to Caratheodory.

1. Definition : A set E is said to be Lebesgue measurable if for any set A we have,

m*(A) =m*(ANE)+m*(4ANE®)

2. Note : For any set A, we can write,
A=ANR=AN(EUE®)=(4ANE)U(4NE®)
Hence, m*(4)=m*((ANE)U(4NE®))

m*(A) <m*(ANE)+m*(4NE®)

Thus, the set E is measurable if for any set A we have.

m*(A)>m*(ANE)+m*(4NE®)
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3.

Proof:

4.

Lemma : If E is measurable then E € is also measurable.

E is measurable.
—  ForanysetA, m*(A):m*(AﬂE)+m*(AﬂEC)

=m*(ANE)+m*(4ANE)

:m*(AﬂEc)+m*(Aﬂ(Ec)c)

which shows that E ¢ is measurable.

Example : Show that the empty set ¢ and R are measurable.

Solution : For any setA,

Proof:

6.

ANR=4 and ANR =4No=¢
Hence, m*(ANR)+m*(ANR®) = m*(4)+m*(3)
But m *(¢) = 0 therefore we get,

m*(ANR)+m*(ANR) = m*(4)

Hence R is measurable. Since R¢ = ¢, ¢ isalso measurable.

Preposition : I[f m*(E)= 0 then E is measurable.

Let A be any set. Then
m*(ANE)<m*(E)=0=m*(4NE)=0
Now ANE® c 4
= m*(ANE)<m*(4)
= m*(ANE)+m*(ANE) < m*(A)

Or m*(A)>m*(ANE)+m*(4NE®)

Hence E is measurable.

Note : Empty set ¢, any finite set and any countably infinite subsets of R are measurable.

The Cantor’s set C is also measurable because its outer measure is zero.

7.

Proof':

Proposition : The union of finite collection of measurable sets is measurable.

First we show that the unionof two measurable sets E, and E, 1s measurable. E, is measurable.

Therefore for any set A we have,

m*(4)=m*(ANE )+m*(4NE})
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E, is measurable. Therefore foraset 4 E} we get
m*(AmEf):m*(AmEfmE2)+m*(AmEme§)

:m*(AmEszf)+m*(Am(E1 uEz)c) ...... )

Using (2) in (1) we get
m*(A) =m*(AE )+ m* (A Ey A B ) +m* (AN (B UE,)) e 3)
Now, AN(E,VE,)=(ANE)U(ANE,)
=(ANE, u(AmEszf)
m*(AN(E UE,))=m*(ANE)U(4NE, NEf )}

<m*(ANE)+m*(ANE,NE) )
Using (4) and (3) we get

m*(A)Zm*(Am(EluEz))+M*(Am(E1UEz)c)

Thus E|, U E, is measurable.

Now if {E k};l is any finite collection of measurable sets then we prove that U Ey s
= k=1

measurable by induction on n. For n = 1. E| is measurable. Suppose measurability holds for n— 1 then

n—1

U E} is measurable and
k=1

Hence measurability holds for #» and hence for all 5 ¢ N. Thus union of finite collection of
measurable sets is measurable.

8. Definition : A collection .4 of subsets of R is called an algebra of sets if A is closed under
complement and union.

It follows from the DeMorgan’s laws that the algebra A is closed under intersection also.

Analgebra A is called & -algebraif'it is closed under countable union. ( ¢ -algebra or Borel
field).
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Let M be the collection of measurable subsets. Since complement of two measurable sets is
measurable, M is an algebra of measurable sets. We further show that M is ¢ -algebra.

9. Lemma : Let Abe any setand E|, E,, E;, ... E be a finite sequence of disjoint measurable
sets. Then,

m*(AﬂLgEszém*(AﬂEk)

Proof : We prove the lemma by induction on n.
Forn=1, m*(ANE,)=m*(ANE,) which is true trivially.
Let the result be true forn— 1
n-1 n—1
ie. m*[AﬂHEi]=;’n*(AﬂEk) holds

Consider,

k=t )]

_AH(OEk]_ﬂEnzAﬂ[UEkJ

k=1 k=1

Since E  is measurable set we get,

m*{Aﬂ[}QEkﬂ:m*{Aﬂ[gEk}ﬂEn}m{Aﬂ[gEkjﬂEn}

n—1
:m*(AﬂEn)er*(AﬂUEkJ

k=1

n—1
*(ANE,)+Y (ANE,) (By induction hypothesis)
k=1

m*(AﬂL’JEk}i(AﬂEk)

k=1 i=1

Thus the result is true for n. Hence by induction, the result is true forall 5 ¢ N.

k=1 k=1

i.e.m*(AU{UEkD:zm*(AﬂEk) forall e N.
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10.  Note: Inthe above lemmaif A= R then we get,

m*(Rm{OEiD:im*(RﬂEJ

=1 i=l

:m*@Ei]:ém*(a)

This shows that m* is finitely additive on a disjoint sequence of measurable sets i.e. m* is
finitely additive on a class of measurable sets. In the following theorem we prove that M is closed

under countable union.

11. Theorem : The collection M of all measurable sets is ¢ -algebra.

Proof : Since finite union of measurable sets is measurable and complement of measurable sets is

measurable, the collection M of all measurable sets is an algebra. To prove that M is
o -algebra we show that M is closed under countable union. Let E be the countable union of measurable
sets. Then there exist a countable collection of pairwise disjoint measurable sets {E, } such that

UE,=E
- :

LetAbeanysetandlet /', = U E, . Then each F isameasurable set.

k=1

By measurability of F we have,

m*(A)=m*(ANF,)+m*(ANFS)

Now AﬂFn:Am(oEk]
k=1
Hence m*(AﬂF"):m{Aﬂ(OEkJ]
k=1

= m*(ANEy)

k=1

Cs

Next F'n:LJEkg Ek:E
k=1

b
L

>F,cE=SE‘cF;, =>ANE‘cANF,

= m*(ANE)<m*(4NFY)
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Using (i) and (iii) in (i) we get,

m*(A)2 Y mH(ANE, )+ m*(ANE®) (V)
k=1

The Lh.s. is independent of n. Hence letting n — co we get,

m*(A)Zim*(AﬂEk)+m*(AﬂEc)
k=1

B m*(AmE>=m*(AﬂGEk}m*(G(AﬂEk)]
k=1 k=1
:m*(AﬂE)Sim*(AﬂEk) (V)
k=1
Using (v) in (iv) we get,

m*(A)>m*(ANE)+m*(4NE®)
Which shows that E is measurable.

Thus countable union of measurabl e setsis measurable which impliesthat collection M of
measurable sets is a ¢ -algebra.

12. Proposition : The interval (a,) is measurable. Also every interval (finite or infinite) is

measurable.

Proof : Let A be any set. Let A (a,oo) =4, and 4N (a,oo)c =AN (—oo, a)= A, -
We prove that m*(A4) > m*(A4,)+m*(4,).Ifm*(A)= o then the above inequality holds

trivially.

Ifm*(A) < oo then for given e> () there exist a countable collection of open intervals {1 }.

Suchthat Ac| JI, and  X((1,)<m*(A)+e .. ()

Now AcUl,

= Aﬂ(a,oo)g(LnJln)ﬂ(a,oo)
= 4, gLnJ[In N(a,%)]

Let  1,=1,0(a)
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Similarly 4 ZAﬂ(—OO’a]Q(UIn)ﬂ(—OO’a]

Let 1,=1,N(~,d]

Therefore A4, c U I,

Further 1,=1,NR=1,N[(-~,a]U(a,»)]
= (In ﬂ(—OO,a])U(]n ﬂ(a,oo))
1,=1,UI, which is a disjoint union.

o1,)+0(1,)
=m*(1;l)+m*(];)

=((1,)

Now from (ii),

4,1,

= me(a)<me(U, )< Zme(1,)

Similarly from (iii)

Therefore,

=Y 0(1,)<m*(A)+e  (from(i))
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Thus
m*(A1)+m*(A2)<m*(A)+ €
Since > () is arbitrary we have,
m*(A)2m*(A4,)+m*(4,)
This shows that the interval (g, o0) is measurable.

13. Definition : The smallest ¢ -algebra containing all open sets is called a family of Borel sets. It
is also the smallest ¢ -algebra containing all closed sets and also all open intervals.

14. Theorem : The collection M of measurable sets is a o -algebra that contains the o -algebra

B of Borel sets. Each interval, each open set, each closed set, each & set and each F_ set is

measurable.

Proof : We know that (a,0) e M therefore ~ (a,0) e M i.e. (—OO,a] e M

Also (_oo,b):(j(_w,b_l}

n=l n
Since countable union of measurable sets is measurable, (—o0,5) e M

NeXt’ (aab):(_ooab)ﬂ(aaoo)
Intersection of measurable intervals is measurable.
Hence, (a,b) e M

Thus every open interval is measurable. Each open set is countable union of open intervals.
Hence each open set is measurable. Complement of open set is closed set. Hence each closed set is
measurable. But the class of Borel sets is the smallest ¢ -algebra containing all open sets, all closed
sets and all open intervals.

Hence the family I3 of Borel sets is subset of M i.e. B c M
This shows that every Borel set is measurable. Also each &; set is the intersection of countable

collection of open sets. Since open sets are measurable and countable intersection of measurable sets

is measurable, each & is measurable. Similarly each F_ setis the countable union of closed sets
which are measurable. Hence each F_ set is also measurable.
15.  Proposition : The translate of a measurable set is measurable.

Proof : We know that outer measure is translation invariant. i.e. m*(A4+ x) = m * (A) forany

set A. Now if E is a measurable set then for any set 4, 4 —y is also a set for some y € R . Therefore

m*(A-y)=m*((A= )N E)+m*((4-y)NE)
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But xe(Ad-y)NE<xed-yand xeE
o x+yedand x+yeE+y

S(x+y)e AN(E+y)
o xe[(AN(E+y))-y]

Thus  (A-»)NE=[4AN(E+y)]-y

Similarly (4~ )\ E =[ AN(E+y) - y]

Therefore we get,
m*(A—y):m*[Aﬂ(E+y)—y]+m*[Aﬂ(E+y)C —y]
But 7, * is translation invariant. Hence we get
m*(A)=m*(AN(E +y))+m*(AN(E +)°)

Therefore £ +y is measurable. Thus translation of measurable sets is also measurable.

2.3  Outer and Inner Approximation of Lebesgue Measurable Sets :

1. Excision Property : If A is a measurable set of finite outermeasure which is contained in
B then

m*(B—A)=m*(B)—m*(4)

Proof : By measurability of A we have

m*(B)=m*(BA)+m* (B[ A°)
=m*(A)+m*(B—-A)

=>m*(B)-m*(A)=m*(B—-A) (o m*(A4) <o)
2. Theorem : Let E be any set. Then the following five statements are equivalent.
1) E is measurable.

2) Given e> (), thereisanopenset O o> E with m* (0O -E) <e

3) Given > (), thereisaclosedset f = g with ;% (E - F) <e
4) ThereisasetGin G5 with E = G,and m*(G—-E)=o0

5) Thereisaset Fe F o with Fc E, m*(E-F)=0
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Proof: (1) = (2)

Let E be a measurable set. First assume that m(E) < oo . Then by proposition 2.2 (14) for

given > () thereis an open set O > E such that,
m*(O)<m*(E)+e . (1)

Now both E and O are measurable and O = E U (O — E) which s disjoint union of measurable
sets, hence we get,

m*(0) =m(E)+m(0 - E)
= m(0-E)=m(0)-m(E) (- m(E) <o)
=>m*(O-E)=m*(0O)—m*(E) (m=m*onmeasurable sets)
=m*(0-E)<e (By (@)

Now let m(E)=00. R canbe expressed as a countable disjoint union of finite intervals.

Let, R= Uln

n=l1

Then, E=ENR=ENJI,={JENI,

Take E, =E(\I,. Therefore E = UE » and each E_ is measurable with m(E " ) <00,

n

Therefore, there exists an open set O,, © E . such that,

m*(0, —En)<in
Take OanJO”
Then UOn;UEn:O;)E and

o-t£=Jo,-JE,cJ(0,-E,)

Hence, m*(O—E)Sm*(U(On—En))SZm*(On—En)
< i=e L=e
n 2” n 2”

=m*(0O-E)<e.
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2)= @4

1 1 —
Given €=;,there isanopenset O, D E with m *(0n —E) < P Take G= ﬂo" . Then
GeGsand GoFE and, GcO,=G-EcO,-FE foralln,
= m*(G—E)<m*(0,~E)< L vneN
n
Since Lh.s. is independent of n, we get m*(G — E) =0 (Taking n — o ) where G € G.
4 =1
Since m*(G—-E)=0, G € G the set G— E is measurable. Also G is measurable.
And E=G—(G-E). Hence E is measurable.

() =3

E is measurable —, £ is measurable.

Therefore for given > () there is an open set () - F such that,
m*(0-E)<e (By(2))

Now, 0-E=0NE=ENO)=E-0

Take () = . ThenFisclosedset. Also 05 E=0OcE=FcE

Thus there is a closed set /' < E suchthat, m*(E - F) <e
(3) = ()

1 1 =
Given EZ;thereisaclosedset F, c Ewith m*(E—Fn)<;.TakeF UF".
Then F e F and F c E .And,
1
m*(E_F)SM*(E_Fn)<_a VneN
n

Taking n — oo we get, m* (E—F)=0 where F e F
S = (1)

Since m*(E—F)=0, E—F is measurable. Also F' € F' . Hence F is measurable.

AndE= F = F|U(E - F) . Therefore E is measurable.
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3. Theorem : Let E be a measurable set of finite outer measure. Then for each > (), thereisa

finite collection of open intervals {I i }Zzl for which O = U I, ,such that,
k=1

m*(E-0)+m*(O-F)<e
Proof : E is measurable set. Therefore by theorem for given > () there exists an open set I/
suchthat Ec ¢/ and m*(U - E)<e /2.
Since E is measurable, by excision property,
m*(U)-m*(E)<e/2 =>m*(U)<e/2+m*(E)
But m*(E) <o .Hence m*(U) is also finite. Next every open set is the union of disjoint

collection of open intervals. Therefore there exists a disjoint collection {I s };::1 of open intervals such

that U = J1; .
k=1

Therefore for each natural number n we have,

Z ¢ (1 k ) - Z m* (1 k ) (- Outer measure of an interval is its length)
k=1 k=1

n
=m* (U I ] (.- Outer measure is finitely additive on disjoint measurable sets)
k=1

Sm*(UlkJ (m* is monotone)
k=1

=m*(u)
Since r.h.s. is independent of » we have

0

DL ) Sm*(u) <o

k=1

0

SZK(I,{)<OO

k=1

o0
This shows that the infinite series Z 4 (1 k ) of positive terms is convergent. Hence for given
k=1

o0

e> () there is an integer » such that, Z f(lk ) <e/2

k=n+1
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4.

Take O = U I, . Then O is an open set and
k=1

Ocu=0-FEcu-F
>m*(O-E)<m*(u—-E)<e/2
>m*(O-E)<e/2

o0 n
Also, Ecu=E-Ocu-0=]I,-|JL
k=1 k=1

=FE-Oc G 1,

k=n+1

Thus |J Z isanopen coverof - O.

k=n+1

Hence, m*(E—O)zinf{Zf([kﬂE—OgUIk}
k

< > U(I)<e/2
k=n+1

Thus we have m*(E—-0)<e/2 and m*(O—-E)<e/2.
Adding these in equations, m* (O — E)+m*(E - 0) <e

Example : LetE be ameasurable set. Prove that there exist a Borel set B; and B, such that,

B, cEc B, and m(B,)=m(E)=m(B,),

Solution : By proposition, thereisaset G € G5 and F € F suchthat F - F — G andm* (E—F)
=0, m*(G—-E)=0.

Now, E=FU(E-F), G=EU(G-E)

=S m(E)=m(F)+m(E-F), m(G)=m(E)+m (G-E)

But, m* (E-F)=m(E-F) =0, m*(G—E)=m(G—E) =0, (m=m* on measurable sets)
Hence wet get, m(E) =m(F), m(G) =m(E)

Take By =F,B,=GThen B, c EC B,,
B, and B, are Borel sets and m(B,) = m(E) =m(B,).
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Example : IfE| and E, are measurable, show that,

m(E\UE,)+m(E,NE,)=m(E,)+m(E,)

Solution : Ifeither m(E, )= or m(E,)=oo then m(E, U E, ) = oo and the equality holds trivially.

If m(E,)<o, m(E,)<o then since E,UE,, E,(E, are measurable sets such that

(E\UE,)=E,U(E,-E,) and E, =(E,NE,)U(E, -E,).

Since these unions are disjoint we get,
m(E,\UE,)=m(E\)+m(E,-E,)
m(Ey)=m(E\NE,)+m(E;,~E))
=m(E\UE;)=m(E\)+m(E,)-m(E\NE,)

=m(E\UE,)+m(E\NEy)=m(E,)+m(E,)

Exercises I :

1.

If E; and E, are measurable sets with finite measure, prove that following are
equivalent.

If {E.} is a sequence of sets with m*(E;) = 0 for all ;j e N then prove that UE i is a
i=1
measurable set and has measure zero.

IfE| is ameasurable setand m*(E,AE , ) =0 then show that E, is measurable.

Lebesgue Measure :

Definition : Lebesgue Measure

A function ;5 : M — R ' |J{oo} defined by m(E) =m*(E) is called Lebesgue measure of E.

Where M is a o -algebra of Lebesgue measurable sets.

Thus m is a set function obtained by restriction of m* to the family M of measurable sets. Also

for an interval I, m(I) =m*(I)= ¢ (I)
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2. Proposition : Let { £, } " be asequence of measurable sets then m (UE ‘ ) <> m(Ey)
k ;

Ifthe sets E, ’s are pairwise disjoint then
m(UEk): 2 m(Ey)
k k

Proof : {E, } is a sequence of measurable sets. Therefore U E, isalso measurable and
k

m(LkJEk):m*(LkJEk)SZk:m*(Ek):;m(Ek)
:m(L}{JEk)SZk:m(Ek)

Now for a finite sequence {E k } Z:I of disjoint measurable sets, we have,

gl s

= =

Hence m is finitely additive.

Next, for an infinite sequence of disjoint measurable sets we have,

Cs

LnJEkg E,
k=1 k=1
n 0
=>m UEk <m UEk
k=1 k=1

Cs
o
bl
\%

3
Cs
o

=
I
=8
o
bl

=>m

=~
I
—_
>~
I
—_
bl
]
—_

Cs

=>m E, |z m(Ek)

=
Il

—_
>~
LN

The Lh.s. is independent of n. Hence as n — o, we get,
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o U | St

k=1 k=1

Also by countable sub additivity of m* we get,

m QEk :m*(gEkjﬁkim*(Ek):im(Ek)

=1 k=1

Hence, m UEk =Zm(Ek)
k=1 =1
3. Note : The above proposition says that Lebesgue measure is countably additive.
4. Example : Prove that countable subsets of R are measurable.

Solution : If A is countable set then m*(A) = 0. Hence A is measurable.

0

5. Definition : A countable collection of sets {£, },

is said to be ascending if £, C E;,,,

0
=1

vk . The sequence {Ek}kf is said to be descending if E,,, € E, , Vk .

6. Proposition :
(i) If { 4, };::1 is ascending sequence of measurable sets then /7 [U Akj = lim m(4;)

kel k—o0

(ii) If { B, };::1 is a descending sequence of measurable sets and m (B, ) < oo , then
m [

) If m(AkO ) = for some k ,then

s

Bk]: lim m(B,)

k—o0

b
Il

1

Proof:

A, gOAk :»m(AkO)Sm[GAk]

k=i k=i
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And Ako C Ak0+n Vn=12,3,...
= m( Ay ) Sm( A, ) Vn=1,2,..
:>m(Ak):oo Vk 2k,

= lim m(4,)=0

k—©

= lim m(4;)

Hence we have " (U Ay ] Jm

k=1
Now if m(Ak)<oo forallk=1,2,3,.......

Then define C, = 4, — 4, ,,k=1,2,3, ..... (4y=¢)

Then {C k }::1 is a disjoint sequence of measurable sets such that U 4, = U Ce

k=1 k=1
= m(o Ak] = m(OCk}
k=1 k=1
=2 m(C)
=1
=> [m (Ac)—m (4, )] (By excision property)
k=1

= lim m(4,) = lim m(4,)

n—»o0 k—o

Thus, m[U Ak]: lim m(Ak)
k=1

k—©
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()  Let{B; }le be the descending sequence of measurable sets with 7 (B, ) < o
Define D, =B, - B, ,k=1,2,3, ..... where D, = ¢

Since {Bk };::1 is descending, the sequence {Dk };::1 is ascending. Therefore by above result

(i) we have
m[Hijzggm(Dk)
But UDk_U(Bl_Bk)
k=1 k=1

=1
=B N{JB; (By distributive law)
=1
=B (ﬂ By ] (By De Morgam laws)
k=1

=m(By)-m (ﬂ By j (By excision property)
On the other hand, forall k=1, 2, 3, .....

m(Dy)=m(B,—B;)

=m(B,)—m(By)
Therefore,
m D, [=lim m(D )
[H kj k—o0 k

37



= lim m(Bl)—m(Bk)

k—0

DL
=

:>m(B1)—m

bl
]
—_

B, |=m(B,)—lim m(B,)

k—o0

DL

:m(Bl)—m

=~
LR

= B, =1 B ..
o[ (18- ) (o)<
7. Note : The condition m (B, ) <o is essential in the above proposition. We have the following

counter example.

8. Example : Let {£,}”  be a sequence of sets where E, =(n,%). Then {E,}” isa

n=1 n=1

decreasing sequence of measurable sets and ﬂ E,=¢=>m [ﬂ E, ] =0

But m (E,)=m(1,50) = oo whichis not finite.

And limm(E,)=lim m(n,0) =00

n—»0 n—0

n—»0

Thus 1Im m(En);tm[ﬂEnJ
n=l1

The conclusion of the above proposition does not hold since m(E, ) is not finite.
9. Definition : For a mesurable set E, a property holds almost everywhere on E if there is a

subset E,, of E such that the property holds forall x € £ — E, and m(E,)=0.
10. The Borel-Cantelli Lemma

0

Let {E;},", beacountable collection of measurable sets for which > m(E, ) <co. Then
k=1

almostall y ¢ R belongs to at most finitely many of the £} 's .

Proof: Foreach 5 ¢ N we have,

k=n k=n

m[OEkJﬁém(Ek)Sim(Ek)<oo
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Let £, = UEk . Then {Fn}OO

., 1s a decreasing seuence of measurable sets with
k=n -

m(F)=m [U Ey J <> m(E) e m (F,) < oo Therefore by continuity of measure we have

Butif S, = 2 m(Ey) then {S,} is a decreasing sequence of non-negative real numbers
k=n

which converges to zero i.e.

lim S, =0= lim » m(E,)=0

n—o0 n—o0
k=n

e A[00] -

n=l|k=n

ie. m{xeR|xeﬁGEk}=0

n=lk=n

Thus almost all x ¢ R does not belong to ﬂ U Ey .

n=1k=n

But xéﬂUKn:erEk foralln
n=lk=n k=n

=>xe¢k, forall ;> s and forall n
=>x¢gE; forall k
=>xek, for atmost finitely many £, 's .

1.e.almostall x € R belongs to atmost finitelymany £ 's .
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11. Note : Some of the properties of Lebesgue measure are named as follows :

1. Finite additivity : For any finite disjoint collection { £, }Zzl of measurable sets

n

m[OEkj =2 m(Ey)
k=1 k=1
2. Monotonicity : If A and B are measurable sets such that 4 = B then m(4) < m(B).
3. Excision : If A and B are measurable sets with 4 = B and m(4) < «, then
m(B—A)=m(B)—m(A)
Ans henceif m(A4) =0,then m(B— A) = m(B).

4. Countable monotonicity : For any collection {E i }::1 of measurable sets which covers a

measurable set E.

ie. Ec|JE =mE)<Y m(E).
k=1 k=1

5. Countable additivity : For any countable collection of disjoint mesurable sets {E © };::1 .

m[}QEkj:gm(Ek)

2.5 Nonmeasurable Sets

We have defined measurable sets and studied their properties. We have given many examples
of measurable sets. Hence it is natural to ask whether there exists any set which is not measurable. The
answer is yes but construction of nonmeasurable set is not simple.

We know that m*(E) =0 if then E is measurable and hence every subset of E is also

measurable. Hence nonmeasurable sets have positive outer measure. We show that if E is any set of
positive outer measure then there are subsets of E which are not measurable.

We first prove the following result.
1. Lemma : Let E be abounded measurable set of real number. Let A be a bounded, countably
infinite set of real numbers for which the collection {1+ E} ., of translations of E is disjoint.
Then m(E)=0.
Proof : Since translate of a measurable set is measurable each set 4 + F is measurable V1 e A .

Hence the collection {1+ E} ., is a countable disjoint collection of measurable sets. Hence by
countable additivity of Lebesgue measure we have
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Aen

m(U(/1+E))= > m(A+E)

AEA

Now E and A are bounded sets. Therefore there exists real numbers L and M such that
lx|<L, VxeE

IAl<M, Yien

We prove that U (A+E) is also a bounded set.
A
Let ye U (A+E) be arbitrary. Then
2

yeU(/1+E):>yE/1+E forsome ] e A
7

= y=A+x forsome ] ¢ 4 and forsome 4 ¢ E
= y[=+xl<lal+Id <L+ M

Since y € U (A + E) is arbitrary we have
7

|y|<L+M forall yeLﬂJ(/1+E)
Hence U(/l—i-E ) is bounded set and therefore m(U(/l +E )) is finite.
2 2

Now if m(E) > 0 then

Zm(/1+E):Zm(E):m(E)ZI=oo
A

Aen AEA

Since A isacountably infinite.

Therefore, m( U (1 +E)) = z m(A+ E) holds onlyif m(E)=0.

Aen Aen

2. Definition : For any set E of real numbers, any two points in E are said to be rationally
equivalent if their difference belongs to the set of rational number Q.

ie.forany x,ye E, x~y iff x—ye@Q.
This relation of ‘rational equivalence’ is an equivalence relation on the set E. For,

(1) x—-x=0,VxeE=>x~x,VxeE
2) xX~y=>x-yeQ=y-xeQ=y~x
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3) Ifx~yand y~z=>x-y,y-zeQ=ox—y+y-zeQ=>x-zeQ=>x~z.

The relation of ‘rational equivalence’ is an equivalence relation on the set E and hence partitions
E into disjoint equivalence classes.

3. Definition : For the rational equivalence relation on E we form a choice set C, by taking
exactly one member from each equivalene class. By Axiom of choise such a set Cy, can be formed.

4. Note : If Cp; is the choice set corresponding to the rational equivalence relation on E, then
1) The difference of two points in Cy is not rational.
(i1) For each pointxin E thereisapoint c € C, suchthat x ~c i.e. x—c=¢geQ ie. x=c+q

forsome g € Q.

(ii)  Foranyset A c Q the collection {/1+CE}/IGA is disjoint. Forif x € (4, + C )N (4, +Cy)
=>xelq+Cpand xed, +Cp,

= x=4,+¢ and x =4, + ¢, forsome ¢,c, € Cy
=>4+ =4+c
301_02:22_116(@

Which is a contradiction since difference of any two points in Cp, is not rational. Hence the

collection {4+ Cp}

Aen

5. Theorem : (Vitali) Any set E of real numbers with positive outer measure contains a subset
which is not measurable.

Proof : Since any set of real numbers contains a bounded subset of real numbers, we assume that E
is abounded subset of real numbers with m * (E) > 0.

Let Cg, be a choice set for the rational equivalence relation on E. We show that C; is not
measurable.

On the contrary assume that C, is measurable.

Let A, beany bounded countably infinite set of rational numbers. Since Cp, is measurable, the

collection of translates {/1 +Cp } Jenp 18 disjoint and measurable.

Hence by lemma we get m(C) =0.

Since measure is translation invariant we get
m(Cp)=m(A+Cy) VAen,

=>m(A+Cg)=0 VAen,
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Also the collection {4+ Cy} 4eng 18 disjoint. Hence

m( |J (A+Cg))= D m(A+Cx)=0
[

AenQ Aen(

:>m( U (/1+CE)):O

Aen()

Next E is bounded set. Therefore there exist a real number b such that |x| < 5, Vx e E

ie. Ec[-b,b]

Choose the index set A, =[—2b,2b](1Q i.e. A, contains all rational numbers in [ —2b, 2b]
Then A is bounded and countably infinite set.

Now if x e E then by partition of E w.r.t. the equivalence relation, there exists ¢ € Cf; such

that x ~ ¢ = x—c¢ =¢q for somerational number q. But C, < E c[-b,b]
= x,c €[-b,b] (‘xeEand ceCyp)
=>-b<x<b, -b<c<b

=-2b<x—c<2b

=-2b<q<2b
= q €[-2b,2b]
=qgen (" A contains all rational numbers in [ —2b, 2b])

But x—c=g=>x=c+qeq+Cg, gen,.Hence x e U (/1+CE)
Aen()

Since x ¢ E is arbitrary we get £ U (/1+CE),
Aen()

By monotonicity of outer measure

m*(E)Sm*( U (/1+CE)j£ > m*(A+Cy)

AEN() AenQ

= Z m*(CE):Zm(E)

Aen(

= z m(CE)=0

Aen(

— m*(E)=0
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Which is a contradiction because m * (E)) > 0. Hence Cf; is not mesurable. But Cp C E'.

Therefore E contains a subset that is not measurable.

6. Theorem : Outer measure is not additive.

i.e. There are disjoint sets A and B of real numbers for which m *( AU B) < m*(A4) + m*(B) .

Proof : We prove this by contradiction. Suppose m*( AU B) = m*(A)+m*(B) holds for every
pair of disjoint sets A and B.

Then for any sets E and A of real numbers, 4(1E and 4 E¢ are disjoint sets and
(ANE)U(4NES) = 4. Therefore,
m*(4)=m*[(ANE)U(4N E)]

=m*(ANE)+m*(4NE°) (By assumption)

This shows that E is measurable. Thus any set of real numbers is measurable which is a
contradiction since there exists nonmeasurable sets of real numbers. Hence there must exists a pair of
disjoint sets A and B such that,

m*(AUE)<m*(4)+m*(B).

N AL
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UNIT - 11

LEBESGUE MEASURABLE FUNCTIONS

3.1

1.

Measurable Functions :

We first establish the equivalence between the various sets that arise from a function f.

Proposition : Let fbe an extended real valued function whose domain is measurable. Then

the following statements are equivalent.

@)

(ii)
(iif)
(iv)

Proof:

countable intersection of measurable sets is measurable. Hence {x | f(x) > c} is measurable. Thus

For each real number c the set {x | f(x) > ¢} is measurable.
For each real number c the set {x | f(x) = ¢} is measurable.
For each real number ¢ the set {x| f(x) < ¢} is measurable.
j

For each real number ¢ the set {x| f(x) < ¢} is measurable.

Let D be the domain of fi.e. f:D — R.

Now  {x| f(x)>c}  ={x| f(x)<c}

Hence {x| f(x) > ¢} is measurableiff {x| f'(x) < c} is measurable.
Which implies (i) < (iv)

Similarly {x | £ (x) < c}c ={x| f(x)> c} implies (ii) <> (iii)

Next {x|f(x)zc}=ﬂ{x|f(x)>c—%}

n=1

1
Therefore if {x | f(x) > ¢} is measurable then {x | f(x)>c— ;} is measurable for all n. And

()= (ii)

o0

Also {x|f(x)>c}=U{x|f(x)2c+%

n=1

Therefore if (ii) is true then countable union of measurable sets is measurable. Hence

{x| f(x)> c} ismeasurable. Thus (ii) = (i)

Thus we have, (iv) < (i) < (ii) < (iii)
Which shows that all the four statements are equivalent.
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2. Definition : An extended real valued function fis said to be Lebesgue measurable if its domain
is measurable and if it satisfies one of four statements of the above proposition.

3. Proposition : If a function fis measurable then the set {x| f(x) =c} is measurable for
all ce R
Proof: Case(i): ce R, c<®

For any finite real number c,
{x[f)=ch={x[f)2c}N{x| f(x) <c}
Since f'is measurable, the sets {x| f(x)>c} and {x| f(x) <c} are measurable. Hence
{x| f(x)=c} is measurable forall c.
Case (i1) ¢ = +o0 Or —0
If ¢ = +o0 then f(x)=+o0 implies f(x)>k, VkeN.

o]

Hence, {x|f(x)=+00}=ﬂ{XIf(x)2k}

k=1
And if ¢ = —oo then we can write,

o]

{x] f(x) = =0} =[{x] f(x) <k}
k=1
Since fis measurable, the sets {x | f(x) >k} and {x| f(x) < —k} are measurable. Countable
intersection of measurable sets is measurable. Hence the sets, {x | f(x) =+o0} and {x| f(x) =—o}

are measurable. Thus {x | f(x) = ¢} is measurable for any extended real number c.

4. Example : Show that a function defined by,

f(x)= x+4 if x>2
= 8 if x<?2
1S measurable

Solution : Let c be any real number. Then,
{x[f()zcf=R ifc<6
=(-0,2)U[c-4,) if6<c<8
=[c-4,0) if §<¢

Any interval is measurable. Hence {x | f(x) > ¢} is measurable forall ci.e. / is measurable
function.
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5. Example : Discuss the measurability of f(x)=e*,x>0.

Solution : Let c be any real number. Then,
{x\f(x)Zc}z{x|ex20}2(0,00) if ¢<1
=(log, c,0) if ¢>1

The intervals (0,c0) and (log, ¢,%0) are measurable for all ¢, Hence f(x) = ¥ is measurable

function.

6. Proposition : Let fbe a function defined on a measurable set E. Then fis measurable if and
only if for each open set O, the inverse image of Ounder £, f! (O) is measurable.

Proof : If O is any open subset of R then
f(0)={x€E| f(x) €0}

First assume that inverse image of an open set is measurable. Then (c,»),c € R is an open

setand hence f!(¢,o0) is measurable forall ¢ e R .
But f_l(c,oo):{er|f(x)e(c,oo)}
={xeE|f(x)>c}.

Thus forall ¢ e R theset, {x € E| f(x) > ¢} is measurable. Hence fis measurable function.

Conversely suppose f1s measurable function. Let O be any open subset of R . Then there is a countable

collection {1, },"  of open, bounded intervals such that 0=k . Let I, =(a;,b,),k=1,2,3, ...
= k=1

Then 7, =(—0,b; )N(a;, ).
Let 4, =(a;,») and B, =(-,b;)
Therefore I, = A4, B, ,k=1,2,3, ......

Now f_l(Ak):{er|f(x)eAk}

{er|f(x)e(ak,OO)}

{er|f(x)>ak}
Similarly f(B)={x<E| f(x)>b,}

Since fis measurable, ' (Ak) and ! (Bk) are measurable forallk=1,2,3, .......
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Therefore f_1(0)=f_1 U]k):f I(U(AkﬂBk)J

But collection of measurable sets is a o -algebra which is closed under countable union and
intersection. Hence f -1 (O) ismeasurable.

Thus fis measurable iff inverse image of an open set is measurable.
7. Proposition : A continuous, real valued function defined on measurable domain is measurable.

Proof : Letfbe a continuous function defined on a measurable setE.i.e. f: E — R be continuous

function where E 1s measurable.

Let O be any open subset of R . Since fis continuous there exists an open set I/ such that
T o=ENu.

Since U/ 1s open it is measurable. Therefore £ ({/ is measurablei.e f‘l (O) is measurable.

Thus, inverse image of an open set is measurable, hence fis measurable function.

8. Proposition : Let fbe an extended real valued function on E. Then,

1) If fis measurable on E and f =g a.e on E, then g is measurable.

(i1) For ameasurable subset D of E, fis measurable on E if and only if the restrictions of fto D and
E —D are measurable.

Proof:

1) First assume that fis measurableon E. Let A ={x e E| f(x) # g(x)}. Thenforany c e R,
{xeE|gx)>c}={xed|gx)>c}U{xeE|f(x)>c}N(E-A)
Now f=g a-e=>m(4)=0
= Ais measurable and every subset of A is measurable.

Therefore {x e 4| g(x)>c} is measurable. Since f'is measurable, {x € E| f(x)>c} is
measurable. Since E and A are measurable, E — A is also mesurable. Further union and intersection of

measurable sets is measurable.
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Hence {x eE| f(x)> c} is measurable for any ¢ ¢ R . 1.e. g is measurable function.

(i1) Forany ¢ ¢ R we have,

{xeE|f(x)>c}={xeD|f(x)>c}U{xe E-D| f(x)>c}
Where D is measurable subset of E.

Thus if /is measurable then its restriction to D and E — D are measurable and conversely if its
restriction to D and E — D are measurable then r.h.s. is union of measurable sets which is measurable
i.e. fis measurable on E. Thus fis measurable on E iffits restrictions to D and E — D are measurable.

9. Theorem : Let fand g be measurable functions on E that are finite a.e on E. Then for any «
and S, a f + fg is mesurable and f* g is measurable on E.

Proof : Since fand g are finite a.e we may assume that both fand g are finite on E.
If ¢ =0 thenclearly @ /' =0 and hence « f is measurable.

If ¢ # 0 then for any real number c.

{erlaf(x)>C}={XEE|f(X)>£} if g >0

and {erlaf(x)>c}={er|f(x)<§} if ¢ <0

Since fis measurable the sets to the r.h.s. are measurable. Thus forall ¢, {x € E | & f(x) > c}

is measurable. Hence « f* is measurable function.

Nextif f(x)+ g(x) < ¢ forsomereal number cthen f(x)< ¢ — g(x). Therefore there exist

arational number g suchthat f(x)<qg <c—g(x).

(Since between any two distinct real numbers there exists countably infinite rational numbers.)

Hence, {xe E+ f(x)+g(x)<c}= UI:{er|f(x)<q}ﬂ{er|q<c—g(c)}:|
q€Q

- J[{xeElf(x)<q}N{xeE|g(x)<c—q}]
q€Q

Since fand g are measurable, {x € E | f(x) < ¢} and {x € E| g(x) < ¢ — ¢} are measurable

and countable union of measurable sets is measurable. Hence / + g is measurable function.
Thus if fand g are measurable functions then « /' + fg is measurable forall «, 3.

Now if fis measurable function then for any real number ¢ > (),

{xeE| f2(0)>c}={xeE| f(x)>c]U{xe E| f(x)<—c}
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and for ¢ <0, {er|f2(x)>c}:E.

Hence /2 is measurable.

Finally for any measurable functions fand g
1 2 22
fre=Arver-r =g

Since (1 +g)*, f?, g? are measurable. The sum and difference of measurable functions is

measurable. Hence f - g is measurable.

10. Note : The composition of two measurable real valued functions defined on R need not be
measurable.
11. Proposition : Let g be ameasurable real-valued function defined on E and let /be a continuous

real valued function defined on R . Then the composition feg is a measurable function on E.

Proof : We know that a function is measurable if and only if the inverse image of an open set is
measurable.

Consider an openset O — R . Then,
(fog)" (©)=(g'or ")(0)
=¢ (1)

Since fis continuous #~!(0) is an open set. And since g is measurable, g™ ( 7 (0)) is

measurable. Thus the inverse image ( fog) ™' (0) is measurable. Therefore the composite function fog

1S measurable.

12. Note : If we define amodulus functionm by m: R — R, m(x) = |x| then m is a continuous

function on R and for any measurable function f,
(mof )(x) = m(f (x)) =|f ()] =] f](x)

i.e. mof =|f|. Hence by above result | f| is measurable function.

Further | f|p is measurable with the same domain E.

13.  Definition : For a finite family { Jx }Zzl of functions defined on a domain E we define,

max{fl,fz,....,fn}(x) = max{ﬁ(x),fz(x),....,ﬁ(x)} VxeE
and min{fl,fz,....,fn}(x):min{fl(x),fz(x),....,fn(x)} VxeE
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14. Proposition : For a finite family { i }Z=l of measurable functions with common domain E,
the functions max { 15 foseeees [y } and min { JisSoseens [ } are measurable functions.
Proof : For any real number c,

max{fl,fz,f3,....,fn}(x)>c :>max{ﬁ(x),fz(x),....,fn(x)} >c

= f;(x)>c forsomek
Therefore, {er|max{f1,f2,.. . (x)>c} U xeE|f(x)>c}

Since f,'s are measurable functions, {x | £ (x)> a} is measurable forallk=1,2,3,...n.
Also finite union of measurable sets is measurable. Hence max { Jis farees [ } 1S measurable.

Similarly for any real number c,
min{ f,, f,..., f,} (x) > ¢ = min{ f{(x), f,(x),..., f,(¥)} > ¢
= fi(x)>c forallk=1,2,......
Therefore, {x e E|min{f;, f5s.coes £} (X) > c} = ﬂ{x €E| fi(x)>c}
k=1
Since f; 's are measurable functions and intersection of finite collection of measurable sets is
measurable sets is measurable, the set {x € E|min { Jis faseeii Sy } (x)> c} is also mesurable for all c.
Hence the function min{ £, f3,....f, } is measurable.

15. Note : For a function fdefined on a set E we define,
/1) = max { £ (x),—f (x)}, /" (x) = max { £ (x),0}
and 7 (x)=max{-f(x),0}

Therefore if is measurable on E, by above proposition | f|, 7" and f~are measurable on E.

3.2 Sequencial Pointwise Limits and Simple Approximation

1. Definition : For a sequence { I } of functions with common domain E, a function fon E and

asubset 4 c £ wehave.

@) The sequence { fn} converges to fpointwise on A if
fim £,09= 109, e 4
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(i1) The sequence { fn} converges to fpointwise on ase on A if it converges to fpointwise on
A—B where m (B) =0.

(ii1) The sequence { I } converges to funiformly on A provided for each > (), there is a positive

integer N.
|/ (x)— f,(x)| <€, Vx e 4 andforall 4> N .

2. Proposition : Let { I } be a sequence of measurable functions on E which converges pointwise

ase on E to a function /- Then fis measurable.

Proof : Since f, — fa-e onE, there is a measurable subset E, of E such that m(Ey)=0 and
/. — fon E—Ej, pointwise. But fis measurable on E if and only if its restriction to E — E is

meeasurable where m (E0 ) = 0. Therefore without loss of generality we assume that f, — f onE
pointwise. i.e. J (¥) = ’}i_l:{}ofn(x) , VxeE

Let ¢ be a fixed real number. Then,

f(x)<c forsome xec E .

— 3 ininteger n such that f(x)<c——<c.
n
. 1 .
= lim f, (x) < c—— for some integer n.
n—»0 n

1
— 3 anintegerk such that f;(x) <c——, Vj>k
n

Conversely,

1
f;(x) <c¢——, Vj > k and for some integer n.
n

1
= lim f;(x) <c¢——, for some integer n.
Jo®o n

= f(x) < c——, for some integer n
n

= f(x)<c

1
Thus f(x) < ¢ ifandonlyif f;(x) <c——, Vj > k and for some integer 7.
n
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1
Since f; is meeasurable, {x eE[f;(x)<c ——} is measurable.
' n

«© 1
And hence ﬂ {x €E|f;(x)<c _;} is measurable.
=k

Also union of countable collection of measurable sets is measurable. Therefore,
o0 o0 1
U ﬂ{er|fj(x)<c——} ={er|f(x)<c}
k=1| j=k h

is measurable. Therefore fis measurable.

Step Functions :

3.

Definition : A function y:[a,b]— R is called a step function if there is a partition,

{a =X X3 X e Xy = b} of'the interval [a, b] such that in every interval (xk_l,xk ) , the function y

1s constant. Thus,

4.
(1)

)

y(x)=cy Vxe(xkfl,xk), k=1,2,3,..,n
Note :

A step function is defined on a closed interval and assumes only finite number of
values.

At the endpoint of the interval the values assumed by the step function are arbitrary or
may not be assigned. These end points forms a finite set of discontinuities. Hence the
set of discontinuities of step function is a set of measure zero.

Following are some of the examples of step function.

(1)

)

f :[a,b] = R defined by
f(x)=a if a<x<c
fx)=p if c<x<b
o, are constants anda<c<b

The Signum function S defined by

1 ifx>0
S(x)=40  ifx=0
-1 ifx<0

is a step function
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3) The greatest integer function f :(a,b) — R defined by f(x)=[x] is astep function.

Note that every step function is measurable, since it is defined on closed interval which is

measurable and {x| f(x) > o} are sub intervals of [a, b] which are also measurable forall o e R -

Characteristic Functions :
5. Definition : Let E be any subset of R . The function y , : R — {0,1} defined by,

1 ifx eE

XE(X):{O if x ¢ E

is called the characteristic function of E.
Following are some of the properties of a characteristic function.
(1) Xo=0and yp =1

) A B=y%,4<%3

3) XauB=XatXB~=Xans

If A and B are disjoint then we get, X 4up =% 4 t X 5
4) XanB=X4 X3
&) xz=l-x4

(6) For a disjoint sequence { A, } of sets we have, X v, = z X 4,

6. Example : Let Abe any set. Prove that the characteristic function 7 , of Ais measurable if an
onlyif A is measurable.

Solution : Forany o ¢ R consider the set,

{x|XA(x)>oc}=R if <0
= A if 0<a<l
=0 if o>1

Therefore, y, , is measurable
< {x|y 4(x)>a} ismeasurable Vo e R
< R, 4, ¢ are measurable
<> Aismeasurable (Since R and ¢ are always measurable)

Thus % 4 is measurable iff A is measurable.
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7. Note :

(1) Existence of non-measurable set implies the existence of non-measurable function.

For, if P is anon-measurable set, then 7 , is a non-measurable function.

2) Sum of two measurable functions is measurable but sum of two non-measurable
functions need not be non-measurable.

For, if P is non-measurable set then p is also non-measurable. Hence 7, » and ) 5 are non-

measurable functions. But X p + % 5 =X p|jp = X r Whichis ameasurable function.

Simple Functions :
8. Definition : A function ¢ is called simple function if it is measurable and assumes only a finite

number of values.

If ¢: E — R isasimple function then there is a finite disjoint sequence { E, } :_1:1 of measurable

sets such that £ :UEi suchthat §(x) =a,, x€ E;,i=1,2,...,n. Thus In¢ = {a,,a,,...,a, } And
i1

the function can be expressed as a linear combination of characteristic functions. Thus,
n
()= a5, (x)
i=1

This representation of ¢ isnotunique. If ¢ is a simple function defined on a measurable set E

and {a,,a,,a;,...,a,} isthe setofnonzero values of ¢ thendefine 4; ={x € E|$(x) =a,} and the

function ¢ is given by,

d): zaix A
i=l1

This representation of ¢ is unique and called the canonical representation (natural

representation). In this representation all a;’s are nonzero and distinct and A;’s are disjoint measurable
sets.

Thus a simple function is a finite linear combination of characteristic functions of measurable
sets.
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9. Example : Prove that the sum, product and difference of two simple functions are simple.

Solution : Let 9= Z QX4 and V= Z Bix B; bethe two simple functions. Then,
i=1 i=1

O+ = 0 4+ Bk s
i=1 i=1

m+n

= Z Tk Ci
i=1

where v, =a; i=1,2,...,m
=B,_, i=m+l, ....,m+n

and C, =4, i=1,2,...,m
=B, i=m+l,m+2,...n

Since A;, B, are measurable, each C; is also measurable and hence ¢ +y is a simple function.

Similarly ¢ — v is also a simple function.
Now, QW=D 0% 4 D Bk s
i=1 i=1
= Z%B.;XA,- X B
i,J

=27 AiNBj

i,J
Since A; and B; are measurable, 4; (B ; are also measurable for all i, j. Hence ¢-y isa

simple function.

10.  The Simple Approximation Lemma
Let fbe a measurable real valued functions on E. Assume that fis bounded on E and there is

aninteger )/ > () suchthat | f | <M onE.Then foreach > (), there are simple functions ¢_ and y/_

definedon E suchthat ¢_ < f <y_and 0<y_—¢_<e onE.

Proof : Since f'is bounded on E, f(x)| <M forall xyeg. -M< f(x)SM, VxeE ie.

f(E)c[-M,M] .Let(c, d)be an open bounded interval that contains f(E),i.e. f(E)< (c,d).
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Let c=y) <y, <Yy <.....< y,_; <y, =d beapartition of the closed bounded interval [, d] such

that the successive elements differ by less than > () (given)

1.e. Y, — Vi <€ v k=1,2,...n
Define 7, =[y4_, ) and f7' (I, )=E;,k=1,2,..n

Each interval 7, is open and fis measurable. Hence f~' (1, ) = E; is measurable for all

k=1,2,3,..n.

11.

Define simple functions ¢_ and y_ on E by

g = ZJ’k—l "XE, and Ve = Z)’k " XEg
k=1 k=1

Then forany x e E, f(x) < (c,d)
Therefore there exists unique k such that y,_; < f(x) <y,
Since f(x)c I, xe f~'(I,) = E, . Therefore zg, (x) =1
and P (X) =Yy AEp(x) = Vi1
We(X) =V Xep o) = Vi

Hence’ ¢€(X) < f()C) < l//e(x) and l//e(x)_¢e(x) =Vi — Vi <€

Since x ¢ E is arbitrary we get,

¢. < f<y_and y_—¢_<ec onE.

The Simple Approximation Theorem

An extended real valued function fon a measurable set E is measurable if and only if there is a

sequence {¢n } of simple functions on E which converges pointwise on E to fand |¢n| < | f | forall n,

onkE.

If fis nonnegative we may choose {¢n } to be increasing.

Proof : Since each simple function is measurable, the sequence {¢n} is a sequence of measurable

functions which converges to f pointwise on E. Henece fis measurable. Conversely assume that fis
measurable. Since every function is a difference of nonnegative functions, we further assume that

f=0onE.
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Let n be a natural number. Define £, by
E,={xeE|f(x)<n}
Then E, is measurable and the restriction of fto £, is nonnegative bounded measurable

function.
Le. f1E, >R, f(x)20,VxeE, and f(x)<n, VxeE, (Bydefinitionof E,)

1
Therefore by simple Approximation Lemma and by taking €= —, there exists simple function
n

1
¢, and v, suchthat 0< ¢, < f <y, on E, and 0<y, —¢, <—on E, .
n

1
=0<¢, <fand 0< f-¢, <y, -¢,<—onE,.
n
Now ¢, : E, — R can be extended to E by setting ¢, (x) =n, Vx suchthat f(x)>n.

Hence, 0 < ¢, < f onE.

We show that the sequence {¢n } converges to fpointwise on E.

Let x ¢ E be arbitrary.
Casel: f(x) is finite. Choose a natural number N such that f(x)< N . Then forany > N,

S(X)<N= f(x)<n 204 hence Osf(x)—¢n(x)<l, VYn>N.
n

= lim ¢, (x) = f(x)
Casell: f(x)=.Since f(x)>n foralln. ¢,(x)=n, Vn.
Therefore x}’liinoo g, (x)=00=f(x)

Thus there exists a sequence {¢, } of simple functions such that ¢, — f pointwise on E.
Now if ¥, =max{#,4,...4,}. Then {y,} is an increasing sequence of simple functions and

0<¢, < f foralln.
= 0<max{d,p,...4,} < f foralln

=0<y, < fforallnonE

and Imy, < f
n—
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Also y,, =max (¢, ¢,,.....4,) > ¢, foralln
= lmy,>limg, = f
n—>0 n—o0

Hence ’}1_{130 Y. =J where {w,} is increasing sequence of simple functions.

3.3 Littlewood’s Three Principles

There are three principles roughly expressed in the following terms :

1. Every measurable set is nearly a finite union of open intervals.
2. Every measurable function is nearly continuous.
3. Every pointwise convergence sequence of measurable functions is nearly uniformly convergent.

We have already discussed first wto of these principles. One of the versions of the third principle
is given by Egoroff’s Theorem.

To prove Egoroft’s Theorem we require the following Lemma.

1. Lemma : Let E be ameasurable set of finite measure. Let { I } be a sequence of measurable
functions on E that converges pointwise on E to areal valued function /. Then for each 7 > 0 and
S > 0, there is a measurable subset A of E and there is an index N such that | Jo—f | <n onAforall
n>N and m(E—A)<&.

Proof : For each k, |/ —fk| (x) = |f(x) — [ (%)

,xek.

Sinceeach f, ismeasurableand f, — f pointwise onE, fis also measurable. Hence | f- fk|

1s measurable function for all k. Therefore the set, {x el | f(x)— fi (x)| < 77} is measurable for all k.

Let £, ={x e E||f(x)— f;(x)| <7 for all k > n}

Then B, = [{x € E||f(x) - £ (0)| <1}

k=n
Since intersection of a countable collection of measurable sets is measurable. Therefore £, is
ameasurable set for all n. Further { £, } is an ascending collection of measurable sets

[---En=ﬂ{er||f<x)—fk(x)|<n}g N {er||f(x)—fk(x>|<n}=En+1}
k=n

k=n+1

Next E, c E forall 1= UEn cE,

n=l1
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Onthe other hand if x ¢ E then f, — f pointwise on E implies, ,}T; Ja()=f(x)
Therefore for 77 > 0 there exists an integer N such that | J,(x)—f (x)| <n forall > N.
Hence x e E)y

Thus x € E = x € E, for some N.

Therefore £ S UEn . Thus £= UEn )

n=l1 n=l1

By continuity of Lebesgue measure we get

m(E) = lim m(E, )

n—»®0

Since m(E) is finite, for given § , there is an index N such that |m(E )—-m(E, )| <0 forall

. Inparticular for N,

0<m(E)-m(Ey)<dS (v E,cE=m(E,)<m(E))
Take 4 = E), . ThenAis measurable and
m(E—A)=m(E-Ey)
=m(E)-m(E,), (By excision property)
<0

Thuson 4=E),

fu(x) = f(x)|<n forall > N and m(E-A)<35.
Egoroff’s Theorem

Let E be a measurable set with finite measure. Let { I } be a sequence of measurable functions

defined on E that converges pointwise on E to areal valued function f. Then for each > (), There is

a closed set F contained in E for which f, — f uniformlyonFand m(E - F) <e.

1
Proof : Let > () be arbitrary. For any integer ; « N, and for 7=— and 0 = e , there exists a
n
mesurable set 4, and an index N (n) such that
1
|/ ()= f(x)| < —on A forall k>N .. (1)
€
and m(E—A4,) e ... (2) (By Lemma)
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Take 4 = ﬂ 4, - Therefore A is measurable and ,

n=l1

m(E—A)=m(ENA°)

o))

=m| E( EOJ A4
n=1

=m GEﬂAnC

n=l1

:>m(E—A)<§ .3

We calim that { I } converges to funiformly on A. For given > () choose an integer n,, such

1

that P <€ Therefore by (1)
0

1
|fk(x)—f(x)| <—on 4,, forall kZN(nO).
ny

1

But Ac 4, and P <€ Therefore we get
0

|fk(x)—f(x)|<e onAforall k>N (n,)

€
Which shows that { fn} converges uniformly on A and we have m(E — A4) < 3
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Further A is measurable set. Therefore there exists a closed set ' — 4 such that

S
m*(A-F) <5. SInce F is closed, it is measurable. Hence A — F is also measurable and
(S
m*(A=F)=m(4~F)<.

Now E-F=ENF‘=ENF'NR=ENFN(4U4)
—(ENF NAU(ENF N4)(4nF)U(EN )

= E-Fc(4nFo)U(EN 4°)
:>M(E—F)Sm(A—F)+m(E—A)<§+§

=m(E-F)<e
Thus { fn} converges uniformly on F and m(E — F') <e where F is closed set contained in E.

3. Note : We have proved the following result which is a formulation of Littlewood’s first principle.

If E is measurable set of finite measure then for each > (), there is a fnite disjoint collection of
open intervals whose union is « and

m(E-U)+m(U-FE)<e
1.e. every measurable set of finite measure is nearly equal to finite union of open intervals.

Next we prove a precise version of Littlewood’s second principle.

4. Proposition : Let fbe a simple function defined on a set E. Then for every > (), thereis a

continuous functiongon R andaclosedset F — E suchthatf=gonF and m(E - F) <e.

Proof : Since fis a simple function, ftakes only finite distinct values on E. Let a, a,, .... a, be the
finite number of distinct values of fon E.

Let Ek={er|f(x)=ak},k=1,2,3,....n

n

Therefore the collection {Ek }k:1

is a disjoint collection of measurable sets whose union is E.

Hence by theorem there exists closed sets £, , k=1, 2,3, ...nsuch that

€
F, cE, and m(F, —E;)<—
n
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Take ' = U Fy . ThenFis also a closed set and
k=1

m(E-Fy=m(ENF°)

But F, c E, forallk=1,2,3, ........... nand £, 's are disjoint.
Hence E, NF =E, if j = kand E, N F“ = E, — F, . Therefore we get,

n

E,—F=(\(E,-F)=EN(E, - F,)

Therefore,
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ed €
=—Zl=—-n=e

ngo, n
=>m(E-F)<e

Now define a function g : F — R by g(x) =aq, if x € F} , k=1, 2, ... n. Since the collection

{F,};_, is disjoint, g is properly defined. We show that g is continuous on F.

Let x ¢ F be arbitrary. Then x € F}, for somek. Let > () be arbitrary. Then we can find

5> 0 suchthat (x—&,x+8)N F, = ¢ forall j k.
Andforany y e (x-5,x+35)NF

g(y) =a; . Hence |g(x)— g(y)|=0<e forall y e F suchthat |x—y|< 7.

This shows that g is continuous at x.

Since x ¢ F is arbitrary, g is continuous on F. This function g which is continuous on a closed
set F can be extended to a continuous function on R . And for this extended continuous function g we
have

f(x)=g(x) onFand m(E-F)<e.

5. Lusin’s Theorem

Let fbe a real valued measurable function on E. Then for each <> () there is a continuous

function gon R and a closed set F contained on E for which f=gonF and m(E — F) <e.

Proof : We prove the theorem for a measurable set E such that m(E) < o . Since fis a measurable
function, by Simple Approximation Theorem, there is a sequence { I } of simple functions defined on
E which converges to fpointwise on E. Let n be a natural number, for each simple function f, and for

any > () there exists a continuous function g, on R andaclosed set F,, contained in E such that,
€
fn =&n on fn and m(E_E1)< 2n+l .
Also by Egoroft’s theorem there is a closed set Fy such that /) £ and { fn} converges to

€
funiformlyon F, and m(E — F;) <5.

Define £ = ﬂ F, . Then,
n=0
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- (E—FO>UE°J<E—FH)]

<m(E-Fy)+Y.m(E-F,)

n=l1

e & € e €
<—+4+ =—+—=€
2 22n+1 2 2

n=l1

=>m(E-F)<e
Also F is countable intersection of closed set and hence it is closed. Also F*  F), forall n and
f, = g,on F,.Henceeach f, iscontinuousonFand f, = g, onF.Also { f, } converges uniformly

on F to the function f ( Fc E)) . Here fis also continuous on F. And this function fon F can be

extended to a continuous function g defined on R such that f=gon F where m(E — F) <e.

N A%
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UNIT - 1V

LEBESGUE INTEGRAL

Introduction :

We have studied theory of Riemann integration which is very useful in solving many mathematical
problems. But there are some drawbacks. First of all the Riemann integral of a function is defined on a
closed interval and cannot be defined on arbitrary set. Some problems in Probability theory,
Hydrodynamics Quantum mechanics requires integration of a function over a set which may not be an
interval. Further the function fmust be bounded and continuous almost every where so that its Riemann
integral exist. Also, fora sequence { f, } of functions which converges to f, the sequence of integrals,

{/, } need not converge to | f oreven | £ does not exist sometimes.

Henry Lebesgue in his classical work introduced the concept of an integral based on the
measures theory which generalizes the Riemann integral. The theory of Lebesgue integral tries to
overcome the drawbacks of Riemann integral.

4.1 Riemann Integral :

1. Let fbe a bounded real valued function defined on the interval [ a, b]. Let P be a partition of
[a, b] given by,

P={a=x,<x;<x,<..<x,=b}
Consider the sums,
U(faP)ZZ(xi_xi—l)'Mi and L(faP)ZZ(xi_xi—l)’mi
i=1 i=1

where M, = sup f(x)and m;= inf )f(x)

xe(xj—1.x7) YE(Xj—].X]

wherei=1,2,3, ..., n.

The upper Riemann integral of fover [ a, b] is defined by,
b .
(R f(x)dx=infU(f,P)
and the lower Riemann integral of fover [ a, b ] is defined by
b
(R)[ f (x)dx =sup L(f, P)

where the supremum and infimum are taken over all possible partitions P of [ a, b ].
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b b
If, (R)[ f(x)dx = (R)[ f (x)dx

then we say that Riemann integral of fover [ a, b ] exists and the common value of lower and
upper integral is called the Riemann integration of fover [ a, b |. Thus,

b b b
(R f()dx=(R)[ f(x)dx=(R)] f (x)dx

Note that in order that the function fbe Riemann integrable, it is necessary for it to be bounded.
We give another definition of Riemann integral of a bounded function using step functions.

Let v :[a,b] — R be a function defined by
y(x)=c,;, x;; <x<x, (1=1,2,3,...,n)
where a =x, <x, <x, <..<x, =b isapartitionof[ a,b]. v is called a step function.

Observe that,

L(y,p)= ZC,- (x,- - xH) =U (y, p) forany partition P of [a, b].
b

Thus step function ¥ is integrable and (R)_[ = Z ¢ (% —x1),

2. Definition :

For any function fwe define lower and upper Riemann integrals as follows :

b b
(R)If =sup {(R)'M | # is a step function and ¢ < f on[a,b] }

b b
and (R)If :inf{(R)J'l// |y is a step function and y > f on[a,b] }

3. Example : 1f f:[0,1] > R defined by
fx)=1 ifx is rational

fx)=0 ifx is irrational

1 1
Show that (R)] f()dx=0_ (R)] f(x)dx =1
0 0

The function fis called Dirichlet’s function.
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Solution : For any partition P of [ 0, 1 ]

(1)

@)

4.2

2.

M;=1landm;=0 Y i

Hence,

U(fap):Z(xi_xi—l)'Mi :Z(xi _xi—l)zl

L(f’P):Z(xi_xi—l)'mi =0

Henceinf U (f, P)=1andsup L (f, P)=0

1 1
= B[ f()dx=1 gog (R [ fGdx=0
0 0

Note :

In the above example the given function is not Riemann integrable. In due course we show that
its Lebesgue integral exist.

A sequence { I } of Riemann integrable functions need not converge to a Riemann integrable
function.

Lebesgue Integral of a Bounded Measurable Functions :
Definition : Let E be ameasurable set. The function y , defined by,
xe(x)=1 if xek

xp(x)=0 if x¢E
is called the characteristic function of E,

We define Lebesgue integral of by

J-XE =m(E)

Definition : A measurable real valued function ¥ defined on a set E is said to be simple if it

takes only finite number of real values.

If y takes distinct valyes a,, a,, ... anon E, thendefine E; = {x e E |y(x) =q;} =y ' (a;).

Then W= aX5 onE.
i=1

This is called a canonical representation of . In this representation all £, ’s are disjoint and

a,’s are distinct.
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3. Definition : Forasimple function ¥ defined on a set of finite measure E, we define integral

n n
of ¥ over E by I Y= Zaim(Ei) where ¥ = z a; X; is a canonical representation.
E i=1 i=1

4. Example : 1f =2y 4 +3% 4, where A;=[2,3], A,=[4,7]find _[(I)
Solution : I‘b = Zaim(Al.)

=2-m(A4,)+3-m(4,)

=20(4,)+3-0(4,)
=2x1+3x3
= 11
5. Example : 1f f:[0,1] > R defined by
fx)=1 ifx is rational

fx)=0 ifx is irrational
Find | f where 1=[0, 1]
1
Solution : 1If Ais aset of rational numbers in [0, 1] then f =y ,.Hence

J'f - JX L =m(4)=0 since A is countable
T

The following lemma shows that the elementary integral is independent of the choice of the
representation of the simple function.

6. Lemma: Let {E; }: be a finite disjoint collection of measurable subsets of a set of finite

n n
measure E. If ¢ = ZaiZEi , a;’s are real numbers, 1 <j < 5 then J.¢ = Zaim(Ei) .
i=1 E i=1

n
Proof : Given #= z 4;* Xg; . Here E;’s are disjoint but the numbers g, ’s need not be distinct.
i=1

Hence the representation of may not be canonical.

Let {4,4,....A, } bethe distinct values of ¢.

Define 4; ={x e E|¢(x)=2;},1< j<m
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Then # = Z A X ; 1s a canonical representation of ¢ and hence ,[ ¢= Z Aim (Aj )
Jj=1 E J=1

Now for each j, let I; be the set of indices 7 in the set of indices [ = {1, 2, ...n} such that

Then { = U[ j . Therefore,

j=1
m(A;)=m E; E,
( J) (L}JJ j (on I.E]Jj , ¢(x)=/1j)
- 21: m(E;) (Since E s are disjoint)
le J
Therefore,
z;tjm(A/.)=z }”Jm(El)
j=1 j=1 ieI]
= am(E, .o
]Z:; =y m(E) ('ai_ﬂj Onlj)
= z a;m (El )
Hence J.¢=Zl‘,aim(Ei)
E =
7. Proposition : Let ¢ and v be the simple functions which vanishes outside a set of finite
measure E.
Then (1) J.a(l)+bw:a‘|.¢+bj\u (2)¢2wa-e:>j¢2jw
Proof:

(1) Let ¢= z O; X4 and V= ZBi "X B; be the canonical representation of ¢ and ¥ ona
i=1 J=1

set of finite measure E. Let A and B  be the sets where ¢ and  are zero respectively.

m n
Then, E:UAi:UBj
i=0 j=0
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Therefore, E=ENE

0
=UEk where E; =4;NB;

Since {4, } " and {B,}"

j=o Are disjoint collections of measurable sets. Therefore the collection

0. L .
{E} 1o Isalsoadisjoint collection of measurable sets and

¢ ¢
o= zakXEk , V= zkaEk
k=0 k=0

Hence,

4
ap+by = (aa, +bb, )y g,
k=0

And,

J-a¢+b\u =§:(aak +bb )m(E,)

= éaakm(Ek)JrZ[:bbkm(Ek)

k=0 k=0
0 ¢
= aZakm(Ek)+bekm(Ek)
k=0 k=0

[ad+by=af¢p+b[v

2) Fora=1,b=-1 above result becomes,

jd)—w:jd)—j\u
Now ¢d=>wya-e

=>do—-y=>0a-e

= [¢-y=0

= [o-[v=0

:>I¢ZJW
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n
8. Note: If ¢ = z d; X E; is any representation for ¢ where a;’s are not necessary distinct
i=1
and E;’s need not be pairwise disjoint then,

G=a; Y +ay Ap, +a3 Apy+ta, AE,

=a [xp +ar[1sy +ra,[xp,

=alm(El)+a2m(E2)+...+a3m(E3)

:,Z:'aim(Ei)

Thus for any representation of simple function ¢,

j¢=§a,~m(a>

9. Note : A step function takes only a finite number of values and each internal is measurable.
Hence every step function is a simple function.

10. Definition : Let fbe aboundd real-valued function defined on a set of finite measure E. We
define the lower and Upper Lebesgue integral of fover E by

Lower Lebesgue Integral — Sup {J #14 is simple and ¢ < f on E}
E

Upper Lebesgue Integral = inf { I v |y 1s simple and f <y on E}
E

11.  Definition : Abounded function fon a domain E of finite measure is said to be Lebesgue
integrable over E ifits Upper and Lower Lebesgue integrals over E are equal. The common value of
the Upper and Lower integrals is called the Lebesgue integral or simply the integral of fover E and it

is denoted by }[ / .

12.  Theorem: Letfbe abounded function defined on the closed bounded interval [A, b]. If f is
Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrals are
equal.

Proof: fis Riemann integrable over [a, b]

= Riemann lower and upper integrals are equal.
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= sup {(R)I¢ | ¢ 1s a step function, ¢ < f}
1

=inf {(R)Igy | is a step function, /" < l/l}

Now for simple function ¢ and ¥ such that
p< f<y
= [o<]v
E E

= su < inf
sup[g<inf [v (D)

where ¢ and ¥ are simple functions. But,

inf st inf Iw— sup j¢< sup Igb
T R o N S A S e (2)
y—simple y—step @—step d—simple

(Supremum over larger set is larger and infinum over smaller set is larger. And every step
function is a simple function.)

inf < su
= n jw pf¢
v— szmplc ¢—s1mplc

..(3)
Hence from (1) and (3) we get

sup I ¢= inf I v
¢ simple V- szmple
Hence fis Lebesgue integrable. The inequality (2) implies that all the terms are equal. Hence
Lebesgue integral of fis equal to Riemann integral of /.
13. Example : Let E be the set of rational numbers in [0, 1]. Let fbe a Dirichlet’s function defined
on [0, 1] by
f(x)=lifxekFE

. Vx €[0,1]
=0ifxegE

Then j f= j1,ZE:1waE)=o

(Since E is countable)
01  [0,1]

Earlier we have shown that /s not Riemann integrable. Thus fis Lebesgue integrable but not

Riemann integrable and Lebesgue integral of fis : 6'- p /=0 .
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14.  Theorem : Letfbe a bounded measurable function on a set of finite measure E. Then fis

integrable over E.

Proof : Let n be anatural number. Take €=—. By simple approximation Lemma, there exists two
n

simple functions ¢, and y,, on E such that

1
$,<f<y,and 0<y,—9¢, <— onE.
n

Applying monotone property and linearity property, we get
1 1 1
0< [y, =[v,~[4,<[-=—[1=—m(E)
non n
E E E E E

=0< inf{jw |w is simple function, y > f
E

—sup {I @| ¢ is simple function, ¢ < f
E

SJ.W”_J.('IS S%'m(E) VneN
E E

= inf {I!// |y 1s simple function, y > f} = sup {J ¢ | ¢ 1s simple function, ¢ < f}
E E

= f1is Lebesgue integrable over E.

15.  Proposition : If fand g are bounded measurable function defined on a measurable set of finite

[of +pg=af f+B[g
E E E

measure then (i)

i) f=gae=[f=]g
E E

<

HE

E

|2

E

(iif) fﬁga'eijfﬁj.g,Hence,
E E

(v) If A< f(x)<B then A-m(E)sijB-m(E)
E

v) If A and B are disjoint measurable sets of finite measure then ALJ; 5 /= £ S 2[ / .
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Proof:

@)

First we prove that,
Jor=afs
% = aeR
If o =0then equality holds trivially.
If o >0 then,
of = inf |y= inf |y
JJ; IVE <\V I
Let % =d=>y=a
Therefore, .[ af = }Igb a¢
E E
—info¢
/<0 %
=a inf I ()
/0%
E
If & <0then
'[ = inf Iw
7 W=y
= inf
l>n\|/ (since ais negative)
o E
f
}r;d)Eocd) %=¢:>\|f=oul>
= inf ocJ- ()
/20
=asup | ¢ ) . .
=y (since o 1s negative)
= (xJ. f
E
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Thus forall g e R

for =f s

E

Now we show that,

Jf+g=£f+£g

E

Let vy, and y, be the two simple functions such that f <y, g <y, therefore
S+gsvyi+vy,.
Then,

£f+g=fgiw£WS£W1+Wz=£W1+£W2

Taking infimum over all simple functions y; > f and y, > g we get,

£f+gﬁ}ga£wl+;$’IWz

=[f+e<[r+[g ()
E E

E

Similarlyif ¢, < f and ¢, < g are simple functions such that ¢, + ¢, < f + g ,then.And,

jf+g— sup [ ¢

o<f+g g

2J.¢1+¢2
E

= _[ o)+ _[ ¢y
E E
Taking supremum over all simple functions ¢, < /" and ¢, < g we get,

jf+g> supj¢1+ sup [,
d1<f

bo<g g
=[f+e=[f+[g (b)
Hence from (a) and (b) we get,

[r+e=[r+[e
E E E
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(ii)

Therefore, Jaf+Bg=Iaf+JBg
E E E

=aff+B[g
E E

If f=g ae.then f—g=0 a.e.
If v isasimple functionsuchthat w > f—g =0 a.e.

=>y=0 a-e:IwZO
E

Taking infimum over all simple functions y > f — g we get,

inf >0
y=2f-g JE- v

:>jf—g20
E

:If—_[gZO
E E

= j fz J g
E E
Similarly if ¢ is a simple function such that ¢ < ' — g =0 a.e., we can show that,

If—gS0:>ffSJg
E E E

Hence, If='[g
E E

f<gae.
=0<g-f ae.

If v is asimple function such that y > g — /> 0 then y >0 a.e.

:ijO
E

= inf ijO

oy
\v—ng

:>jg—f20
E
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E E
:>ngIf
E E

Thus / < g a.e. :>If§_[g
E E

Since fis bounded on E,

-|f1= £ <|f]
= [l [ r=]I/]
E E E

=—[|s1<]r=[lsl
E E E

[r

E

=

<171
E

AL f(x)£B, Vv xeE
=>A4-1< f(x)<B-1, VxeE

= Ay g(X)< f(x) < By p(x)

= [Ax ()< [ £(0) <[ By p(x)
E
:nmmamsijquE)
E

If A and B are disjoint measurable sets then ¥ ,, % 5 , X 4 are measurable functions and
XauB =X atXAsp
= %ap=S(Xat15)
=S natS Ap
3If'XAUB:If'XA+If'XB
E E E
= [ r=[r+[r
4 B

AUB
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16.

1)

2)

3)

4)

Note : From the above proposition we conclude that,

If f(x)>0 onE then jf(x)deOandiff(x) <0 onE, then If(x)deO
E E

Ifm(E) =0 then £ S =0

If f(x)=K a.e.onE, then lf = Km(E)

The result (ii) in the above proposition is one of the advantage over the Riemann integral.
Change in the value of function f'on a set of measure zero has no effect on the Lebesgue

integrability of for on the value of its integral. On the other hand changing the values of a Riemann
integrable function on a set of measure zero may affect the Riemann integrability of the function or the

value ofits integral.

17.

18.

In the above proposition, converse of (i) need not be true. We discuss the following example.

Example : Let [ :[-1,1] > R and g:[-1,1] > R be the functions defined by,

Sx)=2, x<0
=0, x>0
and g(x)=1 Vx

Thenclearly /' # g a-e.Infactthey are not equal even for a single point in the domain.

Also f=2-%_10; and g=%[1

1 1
Therefore, I /= I 2101 =2m[-1,0]=2
S04

1
and Ig:IX[_l’l] =m[—1,1]:2
-1
1 1
Thus, J.f:J.g but f#g
-1 -1

Proposition : Let { fn} be a sequence of bounded measurable functions on a set of finite

measure E. If { f, } — /" uniformly on E, then E}I;}J; Jo = 1J;: !
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Proof: Since the convergence is uniform and each f, is bounded, the limit function fis bounded.

Also fis a pointwise limit of a sequence of measurable functions. Therefore fis also measurable.

Since f, — f uniformly, for given > () there is a positive integer N such that

€
|f_>fn|<m— forall > N andforall x e E

(£)

Therefore

[ r-s)<

E

< E
“ff| <E> (E) )=

<€ forall > N

= (4] F o Im =]
E E E E

19. Note : If Convergence f, — f is not uniform then Ifn need not converge to If . We
have the following :
12
For each natural number n we define f, on g+ by f,(x)=n,if X €| —,— |=0 otherwise
nn
Then J-fn =1 for all n. Therefore limJ-fn =1.But }li_f)l(l)fn =0= J.f =0,
Hence limJ-fn # If.
20. The Bounded Convergence Theorem

Let { fn} be a sequence of measurable functions on a set of finite measure E. Suppose { I }

is uniformly pointwise bounded on E. i.e. there exists anumber )f > () such that | I | <M onE forall

n. If {f } — f pointwise on E then ,11m .[f J.f

Proof : Since pointwise limit of a sequence of measurable functions is measurable. Therefore fis

measurable. Also | fn| <M forallnonE = | f | <M onE. Now for any measurable subset of E,

E = AU(E — A) . Therefore for any n,
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[1.-[r=[h=-D= [ G=-D=[t-1)+ | (1,=5)

AU(E-A)

-Jf ~f)+ jf+[—ﬁ

<[l=t1+ [ 1l [ 1=
A

E-4 E-A4

<[lf-sl+2m 1
A E-A

< (|, = f|+2Mm(E - 4)
A

Now for any e> (), and E is a set of finite measure, by Egoroff’s theorem, there exists a

S
measurable set A of E for which f, — f uniformly on A and m(E — A4) < Iva Since f, = f

uniformly on A, there exists an integer N such that

S
|j;-_xf|<:2’n(lz)a VYn=>N and~\7X'E4A

Therefore for 5 > N we get,

< (|, = f|+2Mm(E - 4)
A

_E m(A) €
2 (E ) 4M
€ €
<—+—=€
2 2

< forall n>N.

Hence the sequence U;: J, ”} converges to £ / .

mquf

1.€C. n—>00
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21. Note: Ameasurable function fon E is said to vanish outside a set of finite measure if there is

a subset E, of E for which m(E,) <o and f=0on E-E,.

We define a support of a function fas a set, supp /' ={x e E| f(x) # 0}

If a function f'vanishes outside a set of finite measure then f'has a finite support.

If fis bounded measurable function defined on a set E and has a finite support £, then

Jr= " s=fr+ [ s=]1

E EqU(E-Ey) Eq E-E, Ey

where E|, is measurable set with finite measure and /=0 on E — E|, . This definition also holds

for a measurable set E with m(E) = «.

4.3. Lebesgue Integral of a Non-negative Measurable Function :

1. Definition : Let fbe a nonnegative measurable function on E. We define integral of fover E
by

_[f =sup ¢ I h| h is bounded measurable function of finite supportand 0 <4 < f onE}
E E

ie. jfzsupjh,
E

Where supremum is taken over all bounded measurable functions on E with finite measurable
support.

2. Theorem : Chebychev’s Inequality : Let /'be a nonnegative measurable function on E.
Then forany 4 >0,

m{xeE| f(x)2 A} < jf

E

N

Proof: Foranyreal 4 > (), defineaset £, by,
E,={xeE|f(x)= 2}
Then E, ismeasurable forall j .
First suppose that m(E; )=

For any natural number n, definesets £, , by £, , = £, [-n,n].

Then the sequence {E A } is an increasing sequence of measurable sets such that
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n=l1

UE/l,n =k, [ E,=E, ﬂR:EﬁmU[—”’”FUEﬂ,nJ
n—1 n=l
Define a function ,,, n € N by
W, (x)= A'XE/M (x) , VxeFE
Theny,(x)=Aifx€eE, , andy,(x)=0if x¢ E, ,.Hence y,(x) < f(x) onE forall n.

= [r=[y,
E E

foralln

= [ /= lim [y,
E E

n—>0

But _[V/n:jﬂ"lELn :ﬁ“'m(E/l,n)
E E

n—0 n—»0

= lim [y, = lim [ 2-m(E,,,)
E E

=1 35130 m (E A )
=Am [U E;, ] (By continuity of Lebesgue measure)
n=l1
= Am(E;)
= o0
Hence :Ileimjw,lzm :jf:oo
E n—»0 = &

1
Therefore, Iif = m(Ez)

Now consider, m(E, ) <. Define a function hby 2= Ay, . Then j, < 4 onE. Therefore

h 1s bounded measurable function and support of 71s £, whose measure is finite.

Therefore, f >h>0 on E; .

= [f2[h=[h=a]1=2-m(E,)

E E) E)
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= m(E)<~[f

Ay
1
:m{er|f(x)z/1}3—jf
A
E
3. Proposition : Let fbe anonnegative measurable function on E. Then J f =0 ifand onlyif
E

f=0a.eonkE.

Proof : Firstassume that I f =0.Then by Chebychev’s inequality for each natural number n we
E

have

1 1
:m{er|f(x)2—}S—.[f:0
n ns.

:m{er|f(x)Zl}:O
n

Therefore by countable additive property of Lebesgue measure,

{XEEIf(x)>0}=G{er|f(x)Zl}
n=1 n

3m{xeE|f(x)>0}=m{[j{er|f(x)zl}}
n

n=l1

Sim{erU‘(x)Zl}
n=l1 n

=0
—>m{xeE|f(x)>0}=0

= f=0a-eonE.
Conversely suppose that f=0a.eonE.

Let ¢ be asimple function and / be a bounded measurable function of finite support such that
f2h>2¢>0.
Then f=0a-e=>¢=0a-e
= I $=0
E
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But }[ h= S;g? l ¢, ¢ is asimple function such that ¢ < /. Hence J.h =0 since jqﬁ =0 forall
E E

o<h.
Next £ /= i?; £ h .Hence If =0, since I h = 0 for all bounded measurable functions with
' E

E
finite supportsuch that 2 < .

Thus / =0 e [ 120
E

4. Theorem : If fand g are non negative measurable functions then,

Q) {_“f:“ff,am
@ JSre=[r+fe
E E E

(ii) fﬁga.e.thenjfﬁjg

E E

Proof:
1) Since f>0, >0, of 20
By definition,

jaf:supjh

E h<of g

=sup | h
hpj Let§=K h=aK

I<fE
03

= sup J.OLK
K<fg

:supoch

= sup .[K
K<f g

:(xJ.f
E

(11) Let h and k be the bounded measurable functions such that < f and £k < g

Then, h+k< f+g
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Now, I Sre= zi?f .[ g’ ¢ 1s bounded measurable function.

zjh+k

=£h+£k

Taking supremum over all bounded measurable functions h, k such that 2 < f and k < g we get,

since h+k< f+g

jf+g>51_11;jj;h+i1<1gp_£k

=[f+ex[r+[g (1)
E E E

Next, let ¢ be the bounded measurable function defined on a set of finite measure such that
¢ < f + g . Define the functions h and k by,

h(x)=min{ f(x),4(x)} and k(x)=¢(x)—h(x)
Then h and k are bounded measurable functions. Further if f(x) < ¢ (x) then h(x) =f(x) and
k(x) = £(x) = h(x) < f(x) + g(x) = f(x) = g(x).
Andif f(x)>/(x) then h(x)=/(x) and k(x) ={(x)—h(x)=L(x)—L(x)=0< g(x)
Thus Vx e E, h(x) < f(x), k(x) < g(x)
Now f=/-h
=>l=k+h

:3I£:jk+h
E E

=£k+£h

:>I£<il<llg)£k+il<lff)‘£h

S [e<fe+]rs
E E E
Taking supremum over all bounded measurable functions ¢ < f + g, we get,

sup I£<If+jg

Isf+¢p E

:>£f+g££f+£g Q)
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(iif)

S.

E then,

Proof:

From (1) and (2) we get,

jf+g=ff+jg

E E E
Let 1 < g a.e.Ifhis bounded measurable function suchthat 2 < f then 2 < g a.e.
Therefore, {h|h< f} c{h|h< g}

:>supJ-thupIh
h<fy  h<g g

~fr<]s
E E

Theorem : (Additivity Over Domains of Integration)

Let fbe a nonnegative measurable function on E. If A and B are disjoint measurable subsets of

Jor=frels

AUB A

In particular if £, is a subset of E of measure zero then,
Jr=117
E  E-E

Since A and B are measurable, 4|J B is also measurable and the functions y,, y, and

X 4up aremeasurable. Since A and B are disjoint, we have

Xaup = X4t Xp

Therefore, -[ /= I S Xaus
AUB E

= [ /x4 25]

[f‘ZA +f'ZB]

Il
ty —

.£ S X +£ S 2s (Linearily property)

[re]r

Nextif E, is ameasurable subset of E then
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Ey=E,U(E-E,)

Hence by above property,

fr= [ r=frefs

EQU(E-EQ) Egy E-E(
Now m(E0)=0.Hence m{erO |f(x)>0} =0.

ie. f=0a-eon E,.Hence jf:O.
EQ

Therefore we get, .[ f= I S where m(Ey)=0.
E  E-E

6. Fatou’s Lemma

Let { /,,} be asequence of nonnegative measurable functions on E. If f, — f pointwise a.¢

onE, then

[ £ <timinf [ £, =lim[ /,
E E E

Proof : Since Lebesgue measure over a set of measure zero is zero, we assume that f, — f

pointwise on E. Also { fn} is a sequence of nonnegative, measurable functions, the limit function fis

nonnegative and measurable.

Let 4 be a bounded measurable function of finite support such that 42 < f onE.

Let A >0 beareal number such that |4 < M .

Let Ey ={x e E|h(x)#0}.Then m(E, ) < o . For each natural number 1, define a function
h, on E by

hn (x) = mln{h(X),f;,l(X)} s V.x S E
Then £, is measurable for eachn. And 0 <4, <M on E, forallnand 4, =0 on E-E,.

Thus 4, isbounded vy . Further foreach x ¢ £, 4(x) < f(x) and f, (x) = f(x) implies

h,(x) = h(x).Thus {hn } is a sequence of bounded measurable functions which converges pointwise

on E to 4. Therefore by bounded convergence theorem,

r}glc}ojh":r}gl}ojh”:jhzjh (Since h, =0 andh=0o0n E—E; )
E E, Ey, E
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Butforeachn, 4, <

>"n —Jn*

Hence .[h” < .[f” , foralln.
E E

Thus [ =1im [, =1im [ 4, <lim| £,
E "7k E E

Taking supremum over all bounded measurable functions 4 < 1 we get,

<limi
i2?£h< 1m1nf}£fn

= [ f <liminf [ f,
E E
7. Note : The inequality in Fatou’s Lemma may be strict. We have the following example :

8. Example: Let £ = (0,1] . For any natural number n, define f, =" Z[ 1} onE.
0

5
n

Then { f,} is a sequence of nonnegative measurable functions such that f, — /=0 onE.
Hence If=0 But J.f” ZI”'Z ! :nm[o,l}
U EE [O’J nl
E
:.[fnzl . Hence,}l_ri.[fnzl.
E E
Thus [ f<tim [ f, =tim £,
E "%k E

9. Monotone Convergence Theorem :
Let { /, } be an increasing sequence of nonnegative measurable functions onE, and let

S=limf, a.e.pointwise on E. Then,
[r=tim]f,
E E
Proof : Since { /, } is a sequence of nonnegative measurable functions, by Fatou’s lemma

f<lim| f,
{_ ‘m{_ (1)

Also {f, } is anincreasing sequence and f, — f a.e.Hence f, < f forall n e N which

implies, _[f = _[f forall n e N
E E
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:>supjf S_[f forall feN
E

n>k E

zirllfsupjf Slf

nzk g
=lim[f,<[f ()
E E
From (1) and (2) we get

[£<lim[f, <tim[f,<[s
E E E

E

= [f=lim[f,=1lm|f,
E E E

= [f=tm]f,
E E

10.  Corollary: Let { u, } be asequence of nonnegative measurable functions, and let /= Z Uy,

n=l

Then
Jr=2[u,
n=1
Proof : Define a sequence of functions { f, } by,
fn = z Uy
k=1

Since, u, 's are nonnegative measurable functions f,'s are nonnegative measurable and

{/, } 1san increasing sequence of nonnegative measurable functions and

f n - f = Z u k
k=1
Therefore by monotonic convergence theorem we get,

[r=1im(7,

= lim Iiuk
k=1



% k=1
=> J’ u,
k=1
Thus, J-f = z I”k
k=1
or J- z Up = z I Uy
k=1 k=1
11. Proposition : Let /be a nonnegative measurable function and { E; } be a disjoint sequence of

j‘f

E;

measurable sets. If £ = UE; then ]J; /= Zl:

Proof : Let u; = f Y% g,

Then, /-%g=/"% g

Hence by corollary 19,

if:jf'XE:g_[”i
ZZIfXE,
:£f=2Ejf

91



12.  Example : Show that Monotone Convergence theorem need not be true for decreasing
sequence of functions.

Solution : Let { / } be a sequence of functions defined by,

f,0=0 x<n forall y e R
=1 xX>n
Y
A
fl )
I - L T — P —awrr =
— } } } » X
1 2 3 4
J1>6>5>
Then {f, } is a decreasing sequence of measurable functionsand f, — 0= f.
Hence Ij; /=0

But _[fn = _[X[,l,w) = m[n,oo) =oo foralln.
R R

Therefore, ,}13.10 fl Jn=0

Thus ﬁg Vs ,}E{,‘o 11£ I . Which shows that the Monotone Convergence Theorem is not true for
decreasing sequence of functions.
13.  Example : Show that we may have strict inequality in Fatou’s Lemma.
Solution : Let { / } be a sequence of functions defined by,
f,x) =1 ifn<x<n+1

=0 otherwise

Le. Sa(x)=x [nn+1)

Then {f } isasequence of nonnegative measurable functionsand f, - 0= f

Hence qu;f - O. And I.R[f” - I.ng[",”“) =1,Vn . Therefore hﬁ_[fn =1
R
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Andweget, 0=[ f<lim [ £, =1
R R

This shows that strict inequality holds in Fatou’s Lemma.

14. Definition : A nonnegative measurable function fis said to be integrable over a measurable
setEif J' f<oo-

E
15. Proposition : Let / and g be the two nonnegative measurable functions. If f is integrable

over E and g(x) <f{x) on E then g is also integrable and
Jf—g=Jf—fg
E E E

Proof : Since fand gare nonnegative measurable functionsand g<fonE,f—g > OonE.

Therefore,  f=(f-g)+g
=[r=[(f-9)+¢g
E E
ij—g+fg
E E
But fis integrable on £ = I f <o
E
And g<f:jg<jf<oo
E E
= [g<u

E

= g isintegrable over E.

Hence, jf:jf—g+jg
E E E

:if—g=£f—£g

16. Proposition : Let /' be anonnegative function which is integrable over E. Then for given
e> 038 > 0. Such that for every set 4 — £ with m(A4) <& we have,

If<e
4
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Proof : If / is nonnegative and bounded then assume that sup | f (x)| < M for some finite positive real

number M. Then for given > () choose 6 < %/[ , such that for any set A with m(4) < & we get,

jf<£M=M~m(A)<M-5<M-§:e

:>If<e
4

Thus the result is true for nonnegative bounded function.
Next if f is not bounded then define a sequence { ) } by,
Ju®) = fx) iffx) < n
=n iff(x) > n
Clearly f,(x) < n ¥n and Vx
And f,,, 2 f, foralln. Thus { / } isanincreasing sequence of bounded measurable functions,

and f, > f .Also f

n

>0 foralln.

Hence by Monotone Convergence Theorem,

J7=lim[7,

n—0

Therefore for given > (03 an integer N such that,

(S
<5 forall > N

:>IfN_Jf<_
E E

:>£(f]v f)<§

:>£f fv) <§

Since, > [y, f~fy20=[f=fy20
E

Hence

[ =1y
E

:If_fN
E

94



Thus ;!f—fzv<§

IS
Choose such that § < —
0>0 N

Then for any set A with m(4) < & we have,

[r=[(r=1x)+1x

=[(f=fw)+[ sy
4 A
< +J-N (since fy <N)
A
=—+N-m(A)
<SiNs<S+N = =S4
N 2 2
= If <e
A
17. Proposition : Let fbe anonnegative integrable function over E. Then fis finite a.e on E.

Proof : For any natural number n, we have,
{xeE|f(x)=w}c{xeE|f(x)=n}

S m{xeE|f(x)=woj<m{xeE|f(x)=n}, Vn

By Chebychev’s inequality we have,

mi{xeE| f(x)>n}< jf

Therefore, ~ M{x€E|f(x)=} J / un

= m{xeE| f(x)=0}=0

= fis finitea.e on E.
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18.  Beppo Levi’s Lemma :

Let { I } be an increasing sequence of nonnegative measurable functions on E. If the sequence

of integrals :I I ; is bounded then { I } converges pointwise on E to a measurable function fthat is
E

finitea.e on E. and limjﬂ :Jf<oo.
E

n—>0
E

Proof : Since { I } is amonotonic (increasing) sequence of measurable functionsonE, f, — f on

E where fis also an extended real valued function.
Thus /() :I}T:Ofn(x) ,VxeE.

Since { fn} is increasing sequence, by Monotone Convergence Theorem we have
J f =1lim I I
n—>0
E E

But :I I ; is bounded. Hence I f isfinitei.e. I f <oo. Therefore fis integrable on E and
E E E
hence by above proposition fis finite a.e on E.

N AL
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UNIT -V

THE GENERAL LEBESGUE INTEGRAL

Introduction :

We have defined Lebesgue integration of simple functions, bounded measurable functions and
nonnegative measurable functions. Now we define Lebesgue integration of any measurable function.

5.1 General Lebesgue Integral
1. Definition : Let fbe any function defined on E. The positive part of fis defined as,

[T () =max(f(x),0), VxeE
Similarly negative part of fis defined as f~(x) = max (—f(x),0) forall x ¢ £ . Note that
both £+ and f~are nonnegative functions.
2. Note: (1) = f*— f~onE.Forif f(x)>0 then f*(x)= f(x) and f~(x)=0.Hence
fH(x)— £ (x) = f(x)-Similarlyif f(x) <0 then f*(x)=0and f~(x)=—f(x)-
Hence [ (x)~ f~(x) =0~ (=f(x)) = f(x).
(2) Similarly | f|= f* + f “onE.

3. Example : f is measurable if and only if " and f~are measurable.

Solution : Let fbe measurable. By definition

£ =max(f,0) and f~ =max(-f,0)
Since maximum of measurable functions is measurable, / and /"~ are measurable.

Conversely, ifboth /™ and f~ are measurable then /" —f~is measurable.

= f ismeasurable.
5. Example : If fix)=x, xe[-1,1], findf " and /.

Solution : By definition, f*(x)=max( f(x),0)

=max (x, 0) xe[-11]
Hence, S(x)=x if 0<x<1
=0 -1<x<0
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Similarly /7~ (x) =max (- f(x),0)

=max (X, 0) xe[-11]
Hence, /7 (x)=0 if 0<x<1
=—x if —1<x<0

6. Note :
(1) The representation of fas /= f* — f~is not unique. For, f; =f* + C, f, =/~ + C then
f=1-1

2) If fis measurable then /" and f~ are measurable. Hence | f | = f* + f~ isalso measurable.
Converse need not be true. i.e. | f | is measurable but fneed not be measurable.
For example, if P is a nonmeasurable subset of £ =[0,1) then define a function f: E — R
by fx)=1 if xep
= -1 if xgp

Then fis not measurable. But | /|(x) =1 is measurable.

7. Proposition : Let fbe a measurable functionon E. Then f* and 7~ are integrable over E if
and only if | /] is integrable over E.

Proof': Firstassumethat f* and f~ areintegrableonE. Since f* and f~are nonnegative measurable

functions by linearity property,
JUl=]rt e =]r+]f <o
E E E E

= | f | is integrable over E.

Converselyif | /| is integrable over E. Then we have 0 < f* <|f] and 0< £~ <|f].

And by monotone property we get,
jf+SI|f|<w and Jf_<J|f|<w
E E E E

Henceboth #* and f~are integrable over E.

8. Definition : A measurable function fon E is said to be integrable over E if | f | is integrable

overE.

i.e. fis integrable over Eiffboth f* and #~areintegrable over E. And we define integral of
fby
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Jr=lr-[r
E E E
9. Note : Foranonnegative functionf, f = f* and f~ =0 onE.

10.  Proposition : Let f be integrable over E. Then f'is finite a.e on E and, _[f = J /o,
E  E-E

where £, ¢ E with m(E,)=0.

Proof : Since fis integrable over E, by definition,

f] isalso integrable over E. Also | /| is nonnegative

measurable function. Hence | /| is finite a.c on E.

But |f|= "+ f.Henceboth f* and s~ arefinitea.c. Hence f = f* — f~ isfinitea.e
onE.

Let E, be a measurable subset of E with m(E;)=0.

Then J.f:Ier_fi
E E

=[r-]r
E E
B I S - j f (- Integral of £* and £~ iszero over a set of measure zero)
E-E, E-E, : gralot f f
= [ r-r
E-E,
- J' f
E-E,

11. Proposition : (The Integral Comparison Test)
Let fbe a measurable function on E. Suppose there is a nonnegative, integrable function g over

E such that | /| < g on E. Thenis integrable over E and J-f = I|f|
E | E

Proof : Since | f | and g are nonnegative measurable functions over E and | f | < g implies
“ fl< _[ g < o0, since g is integrable on E.
E E
= | f] is integrable over E.

Hence by definition fis integrable over E.
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And, J|f|:
E

,{(ﬁ —f’)‘

Since f*,f‘zo,J-f+ZO,J.f*20.
E E

oy —

A=fr+fr=[(r+r)=[lrl

Hence,

<[l
E

12.  Note: Two functions fand g are integrable over E then the sum f+ g may not be properly
defined at points in E where fand g take infinite values of opposite sign. Hence we define the function

f+ gonasubset A of E where both f'and g are finite and then ,;,(E — 4) = 0 [E—A1is a set where
either fis infinite or g is infinite or both fand g are infinite and since fand g are integrable. fand g are
finite a.e. Hence 1 (E— 4)=0]

If f+ g is integrable over A then we define

[F+o)= | (F+o)=[r+eg+ | r+eg=[r+g
E A E-4 A

AU(E-4)

13. Proposition : Let fand g be integrable function over E. Then,
(a) a f isintegrable over E, and Iaf = aI f
E E

(b)  f+gisintegrable over E, and £f+g - £f+£g

(c) If f<g a°e,then£fgjjg.g

Proof:

(a) If o >0 then,

jocfj fr=r)={lof " ~ar”)

E E

= Otj fr- oc_“ /7~ (sincef " and /" are non-negative measurable)
E E
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=a£f+—a£f_
“elled]

Jur =of

E

Nextif ¢ =—1theng f=(-1)f =

Therefore, af:—f:—(f+—f‘):f‘_f+

and =[S0
E

E

J=r=[r-]s

Finally if & <0then @ =—k where k>0

Therefore, [of = [~kf =—[kf ==k[ f=a f
E E E E

E

Hence forall o, € R, we have,

Jor =al s
E E
(b) If f, and f, are nonnegative integrable functions such that /= f; — f,. And f = fr—r.
Then f=fi—fo=f"~f"
=+ =T+,
= [fi+f =[r"+1
E E

=[he]rm =]l
E E E
j£f1_£f2 =£f+_£f (Since 1, f5, /T and f~ are integrable)
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But sz.[f+_Jf_
E E E

Hence szjfl_.[f2
E E E

This shows that I f isindependent of the choice of representation for 1.
E

Now if fand g are integrable functions then f = f* - f~ and g = g* — g~ wheref™, /7,

g", g~ are nonnegative integrable functions.
Therefore, — f+g=(f"~f")-(g"-¢")
=(r+g")-(r+g)
:3£f+g=£(f++g+%l(f‘+gﬁ

E
LA A P TS
E E E E

i

=£f+£g

(c) If f<gaethen0<g-f ae.

But 0<g-fa.e.

SIgL
E E

14. Corollary : (Additivity over Domain of Integration)
Let fbe integrable over E. Assume that A and B are disjoint mesurable subsets of E. Then

Jor=lr+lrs

AUB
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Proof: We have | fx A| < | f | and | f- ;(B| < | f | on E. By integral comparison test, the measurable

function f- y, and f - y, areintegrable over E (- fis integrable | f | is integrable). And since A and

B are disjoint.
I xaus =2+ 23]
=f-Xa+f-xp onE.

Hence .[ f:J-f'ZAUB:“f'ZA"‘f'}(B]
> AUB E E
E E
=[r+[r
4 B

15.  Example: If fis integrable function, prove that | f] is also integrable and U J ‘ = £ /1 .Does

integrability of | f | implies that of /7
Solution : Forany functionf, = f+— f~ where f* >0, f~ >0.If / is integrable then /" and

S~ are integrable. Hence | f|= f ¥ + f ™ is integrable.
Further |f|=f"+f 2 f"~f " =f
= |72/ and |f]>-
= [1712]7 and [IF12-[7
EE E E

:>I|f|zjf and —I|f|SIf
E E E E
=-[lrl<[r<]lf
E E E

[r

E

=

<{|r
E

Finally | f | is integrable then /™ and f~are integrable. Hence f = f* — /'~ is integrable.
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16. Lebesgue Convergence Theorem :
Statement : Let g be an integrable function over E and let { /. } be a sequence of measurable

functions such that | f n| <gonEforallnand f, — f a.e.onE, thenfis integrable over E and

[ £=tim]7,
E E

Proof: |fn|Sg foralln
=-g<f,<g foralln

=0<f,+gand 0<g—f, Vn
Therefore { f, +g } and { g—f, } are the sequences of nonnegative measurable functions
suchthat f, +g—> f+gand g—-f,>g—-f.

Therefore by Fatou’s lemma,

[f+g<lim[f,+g and [g—f<lim[g-7,
E E E E

Now, fn|Sg‘v’n:>|f|Sg

Since g is integrable,

f | is integrable and hence /s integrable. Also each f, is integrable.

Hence we get,
jf+jgsn_m{jfn+jg} and Ig—Jfﬁli_m{fg—ffn}
E E E E E E E E

=[/+[g<tm[f,+[g and [g=[/<[g~lim]7,
E E E E E E E

E

Since gis integrable, Ig < Hence we get,
E

J-fgh—mj.f” and _J-fg_li—m-[f”
E E E E
jjfgh_mj.fn and Ifzmj.fn
E E E E
:}Ifﬁh_mjf,lﬁﬁjfngjf
E E E E
= [ f=lim[ f, =Tim[ 1,
E E E

= [f=tm]f,
E E
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17. Theorem : (General Lebesgue Dominated Convergence Theorem)

Let { /,, } be a sequence of measurable functions on E that converges a.e on E to /. Suppose
there is a sequence { g, } of nonnegative functions on E that converges pointwise a.e on E to gand

dominates { f, } on E in the sense that | fn| <g,onE vy.

If limjgnzjg<w,then r}g?oif;,:if
E

n—0
E

Proof: |fn|Sgn forall n.
=>-g,<f,<g, foralln.

=0<f,+g,and 0<g, 6 —f, foralln.

Therefore { f, +g, } and { g, — f; } are the sequences of nonnegative measurable functions
suchthat f, +g, > f+gand g, - f, > g—f ase.

By Fatou’s lemma, we get,

[f+e<tim[f,+g, and [g-r<im[g,-7,
E E E E

Now |fn|SgnVn:>|f|Sg

Since g and g are integrable, / and f, are integrable. Hence we get,
If+fg$ﬁﬂ{ff,1+fgn} and jg—ffﬁlln{]gn—ffn}
E E E E E E E E
= [f+[g<lim[f,+lim[g, and [g—[f<lim[g,~Tim[7,
E E E E E E E E

But g, - g a*eand }[gzlimlj;gn
Therefore, we get
[f+]g<lim[f,+[g and [g-[r<[g-Tim]7,
E E E E E E E E
:>If§h_mjfn and —Jfﬁ—mjfn
E E E E
= [f<tim|s, . [r=1im|7,
E E E E
= [ f<tim[ f, <lim[ f, <[ f
E E E E
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= [ f =tim[ £, =Tim| f,
E E E

= [f=tm]f,
E E

5.2 Characterization of Riemann and Lebesgue Integrability

1. Lemma: Let {¢,1 } and {Wn } be sequences of functions which are integrable over E such that

{¢n } is increasing while {l//n } is decreasing on E. Let fbe a function on E such that ¢, < f <y, on
E foralln.

If lim I(!//n ~¢,)=0, then {#,} = f pointwise a.e on E, {y,} = f a.e on E and fis
E

n—»0

integrable over E and
1.[“ ¢l’l = f 1.[“ n = f
n1—>oo;!: 2'; > n1—>oo;!:‘// £

Proof: For x ¢ E ,define ¢*(x) = lim ¢, (x)and ¥ *(x) = li_r)n ¥, (X) . The functions ¢* and y *
n—»o0 =%

are extended real valued functions. The sequences {¢n } and {l//n } are monotonic and hence ¢ * and

w * are properly defined on E. Further ¢ * and y * are pointwise limit of sequences of measurable

functions and hence ¢ * and i * are measurable functions.
Also ¢, <f<y,, Vn = ¢*<f<y*.
And since {¢n } is increasing and {l//n } is decreasing, we have
¢, <¢*< f<y*<y, foralln

=>0<y*—¢g*<y,—¢,, foralln

:OSI(w*—¢*)SJ(w,1—¢n),foralln
E

E

=0< [(y*~¢*)< lim [(y, ~¢,)=0
E E

= [(y*-4*)=0

E
=>ypy*—¢*=0 aconkE.

= y*=¢* aeonk
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Butg*< f <y * .Hence ¢*= f =y *,a.e.onE.
And ¢, > ¢*=f,y, > y*=f,aeonE.
Since ¢ * and y * are measurable, 1s also measurable.

Further ¢, < f <y, foralln.
=>¢<f<y

3_[¢1£Jf£f‘/ﬁ
E E E
Since ¢ and y/, are integrable, j¢1 <o, I W, <.
E E

Hence I f <oo. Therefore fis integrable over E.
E

Next ¢, < f <y, foralln.
=0<f-¢,and O<y, - f
:>0£f_¢ S‘//n_¢n and:ogl//n_fgl//n_¢n

=0<[ /=4, < v~ 0<[v,~f<[v,~4,
E E E E

=0<[r-[t<[v,~4, 0<[w,~[r<[v,-4,
E E E E E E

Taking limitas 7 — oo and lim [y, —¢, =0.
n—>0
E

n—0

=0<lim [f—[¢,<0, 0<lim [y,—[f<0
E E "E E

=]/ =lim [¢=lim [v,.
E E E
2. Theorem : Let fbe a bounded function on a set of finite measure E. Then f'is Lebesgue

integrable over E ifand only if /is measurable.

Proof : We know that a bounded measurable function on a set of finite measure E is Lebesgue
integrable. Conversely we show that a bounded, Lebesgue integrable function is measurable.

Let fbe integrable function on a set of finite measure E. Also fis bounded. Since fis integrable,
lower and upper Lebesgue integrals are equal. i.e.

sup{j¢|¢ is simple,§# < f on E}=inf{jw|l// is simple, f <y on E
E E
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Therefore there exists a sequence of simple functions {¢n } and {l//n } on E such that,

4, < f<y,¥n and ,}g{}ojqzﬁ —hmjy/n

:11mjwn $,)=0

n—»0

Since maximum and minimum of simple functions is again simple function we can replace each

¢, by max ¢ and each y, by maxy;.

1<i<n 1<i<n
Then the sequence {¢n} becomes increasing and {l//n} becomes decreasing such that

¢, < f<w,, Vn. Also we have = lim Iwn ¢, =0. Hence by above Lemma we get

n—»0

{¢n } - f, {l//n } — f a.e. on E and since the convergence is pointwise, fis measurable.

3. Note : If a bounded function on a closed and bounded interval [a, b] is Riemann integrable
over [a, b] then it is Lebesgue integrable over [a, b] and the two integrals are equal. The above
theorem suggest that a bounded Lebesgue integrals function is measurable. Hence we have following
theorem in which we prove the equivalence of Riemann integrability and measurability (or continuity
a.e)

4. Theorem : Let fbe a bounded function on the closed bounded interval [a, b]. Then fis
Riemann integrable over [a, b] if and only if the set of points in [a, b] at which fTfails to be continuous
has measure zero i.e. fis continuous on [a, b] a.e.

[Since continuity implies measurability, the above theorem states that Riemann integrability on
a closed bounded interval implies measurability]

Proof : First we assume that fis Riemann integrable over [a, b]. Then Riemann upper integral and

lower integrals are equal. Therefore there are sequences { p;l} and { pn} of partitons of [a, b] such
that  limU(f,p,)=1lim L(f.p,)

n—»o0 n—

= ,}ijgo[U(f,p;)—L(f,pZ)] =

where U ( f, p;l) and L ( f.p, ) are upper and lower Darbaux sums.

Under refinement of partition of [a, b] the lower Darbaux sum increases and the upper Darbaux

sum decreases. Hence, we form a common refinement p, of p, and p sothat {p,} isrefinement

of both {p | and {p, |.
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Also we construct the common refienement sequence { p, } suchthatp, . isrefinement of p,

for all n. Therefore, r}i_l)lgo[U(fa pn)_L(f’ P )] =0,

Y A
/* v,
f n
\\A
/N
0O a tk—l tk b X
P

For each integer n we define lower step function ¢, associated with fw.r.t. the partition P |

which agrees with fat the partition points of P and in each open interval of the partition P , ¢,

assumes constant value equal to the infimum of fon that interval.
Similarly for each integer n we define upper step function y, which agrees with fat the
partition points of P and y,, takes constant value equal to the supremum of f'on that interval.

Therefore by definition of the Darbaux sums we get,

b b
L(faPn):J-@ and U(f,P,szl//n , for all n.

Further the sequences {¢n} and {l//n} are sequences of integrable functions such that
¢, < f <y, forallnon[a, b]. Moreover each P . is refinement of P implies the sequence {¢n} is

increasingand {y, } is decreasing. Therefore,

n—>0

b
lim [ (v, ~4,)= im [U(f.5,)~L(/.B,)]=0
Hence by theorem {¢n} — f and {l//n} — f on[a, b] pointwise a.e.
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Let E be the set of points where either {y, (x)} or {4, (x)} fail to convergeto f'(x).Then

m(E) =0 (since w, = f ae, ¢, —> [ a.e). Let E, be the union of E and the set of all partition

points in the sequence {P,} . Then m(E,) =0 since E, is the union of countable set and the set E
whose measure is zero.

We claim that fis continuous at each pointin [a, b] - E,.

Let x, €[a,b] - E, be arbitrary and let > ().
Since {1,//,, (xo)} and {¢n (xo)} converges to f(x,) there exists an integer n, such that
W, (x0) = f(x0)] <€, |4, (x0) = f(xp)| <€ Vn=n

=, (X)) = f(x), f(x)) =9, (xo) <€

= f(x)=€<,,(x0) < f(x0) S, (%) < f(xp)+ €
Since x, is nota partition point there exists § > () such that (x, —&,x) +5) = I ny » Where
I n, 18 some open interval corresponding to the partition P,,O .
Therefore if (x—x,) <& then
Wi, (X0) = B, (X) < f(x) Sy, (X) =, (%)
= f(xp)—e< f() < fxo)+e
= /() f(x)|<e
Thus |x—x0| <o= | f(x)-f (x0)| <e. Which shows that f'is continuous at x, . Since
X, €la,b]—E, is arbitray, fis continuous a.e on [a, b].
Next we prove the converse.
Let fbe continuous on [a, b] a.e. Let {B,} be a sequence of partitions of [a, b] for which
|21 0.
Let {¢n } and {l//n } be the sequences of lower and upper step functions associated with the
function fover the partition P . Then ¢, < f <y, forallnon[a,b].

Let x, €[a,b] suchthat fis continuous at x, and x, isnota point of any partition P . Then

for given > () thereis § > (0 such that

|x—x0|<5:>\f(x)—f(x0)\<§
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= /(%) =5 <f@<f(x0)+

Choose an integer N such that ||Pn || <o forall > N .Let L, be the open interval of the

partition P such that x, € 1, . Then
I, =(xg—6,x+6)

But vxel,, ¢,(x)< f(x) <y, (x).

and 1 (%) == = (30) = £ (30) v (30) < £ (30) + 5

S

:>¢n(x0)gf(x0)5f(xo)+§’ f(x0)=v, (xO)Sf(x0)+§

S

:>0£f(x0)—¢n(xo)S§<e, Oéy/n(xo)—f(xo)£5<e

=0< f(x)) =4, (%) <€, = 0=y, (x))—f(xy) <€ forall >N .
:>¢n(x0)_>f(x0)ﬂ l//n(XO)_)f(xO)'

= lim ¢n(x0):f(x0), :’}E?OW)1(X0):f(xO)

n—»0
Since x, €[a,b] is such that fis continuous at x, and x, is not the point of any partition P,

weget g, — f, y, > faeon]a,b].

= lim ¢n = f , lim Yn= f a.c on [a, b]
n—»0

n—»0

Further since fis bounded on [a, b], the functions ¢, and y, are also bounded on [a, b].
Therefore by bounded convergence theorem,

b b b b
lim [, = [/ tim [y, =]/

n—®0

b
= lim [(y, —4,)=0

n—»0

The Riemann integration of a step function is same as its Lebesgue integral, we have

b b
jWn =U(f.P,) and I¢n =L(f.P,) foralln.

a
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b
B J/=uU(nR)
b
:>jf§U(faR1), foralln

b
Similarly, ff=SgPL(f,Pn)

b
:IfZL(f’Pn), for all n.

a

b b
Thus OSIf—_[fﬁU(f,Pn)—L(f,Pn),foralln.

b b b b
=0<[r-[r<fw,-[4,

a a

b b b
jOSIf_IfSJ.(l//n_gén)

Taking limitas n — oo we get,

Hence fis Riemann integrable. Thus a bounded function fis continuous a.e on [a, b] implies /
is Riemann integrable on [a, b].

N A%
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UNIT - VI

DIFFERENTIABILITY OF MONOTONE FUNCTIONS

6.1 Vitali’s Lemma
1. Definition

A closed, bounded interval [c, d] is said to be nondegenrate if ¢ <d.
2. Definition

A collection F of closed, bounded, nondegenerate intervals is said to be a cover of aset E, in
the sense of Vitali, if for every x ¢ E and <> () there is an interval I in F such that x ¢ 7 and

((I)<e.
3. The Vitali Covering Lemma

Let E be a set of finite outer measure. Let F be a collection of closed, bounded intervals that
covers E in the sense of Vitali. Then for each &> (), there is a finite disjoint subcollection {7, }ZZI of F
such that,

m* {E - 0 1, } <e
k=1

Proof: Since m*(E) < 0, there is an openset O such that £ — O and m*(0) <.

Since Fis a Vitali covering of E, we can assume that each interval of Fis contained in O.

Let {1, },, beadisjoint collection of sets in 7.

:m(olklém(O)

=Y m(I;)<m(0)

k=1

o]

=Y (1) <m(0) < o (1)
k=1

Now Fis a Vitali covering of E. Therefore Vx ¢ E and V e> 0, 37 e F such that
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xel and f(])<€

:EgUl
IeF

LetﬁZ{[€f|1ﬂU[k:¢} ..... )

k=1

Then EgLJL:Eg(U]}{QQ}

IeF IeF

SELﬁk U e (3)

k=1 1eF,

Now if {I i } is a finite disjoint subcollection of intervals in  such that Ec U Ii thenthe
k=1

proofis complete

(?E—Cﬂkz¢%ﬂm @ztjgj_ =0=>m* PYLJQJ<GVE>€

k=1 k=1

If E is not covered by U I} then there exist X € £~ U I} . Then from (3) we can find an
k=1 k=1

interval / € 7, suchthat xe [ € F,,.
Since I cO,VieFad F,cF,[cO,VIeF,,
= ((I)<m(0)<o.
Hence ¢ (1) is finite forall 7 € F,.

Let S, =sup{((1)|] € F,}

Si’l
Chooseaset /,,, € F, suchthat £(/,,)> 5 Then the collection {I},1,,... 1,1 . }isa

disjoint collection of sets in F . Inductively we can obtain a countable disjoint collection of sets {1 i }le

S, e(1)
in F such that E( n+1) 5 ZT,foralllefn.
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f n
ie. €(1n+1)>%,v1 with ITNUJ =9 e (4
k=1

00
=1

Next, for this countable collection {7, } _ wehave

1,c0, vk=1,2,3,..

Thus z l (]k ) converges. Hence 1}5130 ¢ (Ik ) =0
k=1

ie. {£(1)} >0 as k o0 o (5)

n
n
Let n be any natural number. If U Ii is not a cover of E, then there exists x e E — U I .
k=1 k=1

Since Fis Vitali covering of E there exists an interval J ¢ Fsuchthat x ¢ 7 and 7/ [U I k] =g.
k=1

Then / must have nonempty intersection with some member of {I s };::1 .Otherwiseif I, NI =¢, Vk,

n—1

then IN{J7, =¢, vn=12.3, ...
k=1

(1)
By (4) f(ln) >T foralln=1,2,....
Which is a contradiction since ¢ (I k) —0.

Hence / intesects with some member of {7, ], .

Let N be the least natural number such that 7 (7 # ¢.
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N-1
ThenN>nand IN|J I, =¢.
k=1

(1)
Andby (4), ((1y)>

ie. 20(1y)>(1).
Since x e/ and I(Iy # ¢, the distance of x from the centre of I is at the most
1

€(1)+5€(1N).

i \ 1
[ ° ] ®
T M [ 1 c 1

But /(1) <2/ (1 N) . Hence the distance between x and the centre of 7, is at the most.
1 1 5
£(1)+5£(1N) < 2E(IN)+5€(1N)=E£(1N)

Therefore x e 5* 1.

Thus XEE_UIk = x€5*Iy forsome N>n.
k=1

Hence E_Ulk - U 5*I ... (6)
k=1 ke=n+1

Since n is arbitrary. This relation holds foralln=1,2, 3, .....

0
Now forany > (), since z l (1 k ) converges, we can find an integer n such that
k=1

o]

D 4(1k)<§ (D)

k=n+1

For this n we have
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o0

< > m*(5%1)

k=n+1

= > sm()

k=n+1

=5 i (1)

k=n+1

€
<5 (by (1)

n
:m*(E—Ulkj<e'

k=1
4, Definition

For a real valued function f, let x be an interior point of its domain. We define the Upper
derivative of fat x as

Df (x) = lim

sup
0<ll<h t

[ f(X+t)—f(X)}

Similarly the lower derivative of fat x is defined as

{ . f(xH)—f(x)}
inf

O<ldl<h t

Df (x) = lim

h—0

Clearly Df(x) < Df (x).If Df(x)= Df(x) thenfis said to be differentiable at x and the
common value of the upper and lower derivatives is denoted by f"'(x).

5. Note

Let fbe a continuous on closed bounded interval [c, d] and differentiable on its interior (c, d)
then by Mean value theorem, there exists z € (¢,d) such that

f(d)-f(o)

f@="=

If f'>a on(c,d)then f'(z)>a and we get

f(d)-f(e)

a< (@)=
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Proof:

= a-(d-0)<[f(d)-f(c)]
The following theorem generalizes this inequality.
Theorem

Let fbe an increasing function on the closed bounded interval [a, b]. Then foreach ¢ > ().
1
m*{xe(ab)| Df () zaj<—[f ()~ f(@)]

and m*{x € (a,b) | Df (x) =oo} =

Let ¢ > 0. Define £, = {x € (a,b)| Df (x) > @} choose a'€(0,a) i.e. 0<a'<a-
Let Fbe a collection of closed, bounded intervals [c, d] contained in (a, b) such that
fld)-f(c)za'(d-c)

Since Df(x) >« on E,, we have

Bf(x) = lim sup 20 I@
h=0 osl<h t

SG+0)- /()
= t

>a>a'>0 (fis increasing)

= f(x+)-f(x)2a'(?) t—>0

= f(x+t)-f(x)2a'(x+t—x)

Thus for every > (03 aninterval [x,x+t] e F such that
([x,x+t]=t<e (o t—0)

Hence F1is a Vitali covering of £, . Hence by Vitali covering Lemma there is a finite disjoint

subcollection {[ck ,dy ]}Z:1 of intervals in F such that

G-



M:

<Y m*[ep,di |+

=
LN

z d—c )+
k=1
But [¢.di|eF=f(dy)-f(e)za'(d—c)

e (de) < [7(d)-1(e)]

Hence, ™m™ <_Z[f dk Ck)]+e
O e

Now fis increasing on [a, b] and { [ck ,d, ]}::1 is a disjoint collection of subintervals in [a, b].

Therefore,

Z[f (di)~ /()] < fB) - f (@)

[f(B)- f(a)]+e

1
Thus foreach > 0 and o' € (0, ), m*( )S;

Since > () is arbitrary we get,

m*( )S

[£(®)- f(a)]

1
a
_ 1
m*{x e (a,)| Df (x) 2 @ <—-[f(b) = f (@]
Next for each natural number n,
{x € (a,b)| Df (x) =} c {x e (a,b)| Df (x) > n}
= {xe(a,b)| Df (x) =0} C E, foralln=1,2,3, ....

Hence by above result,

1
m*{x €(a,b)| Df (x) =0} <m*(E,)<—(f(b)-f(@))  vn=1,2,3,...

:

= m*{x e (a,b)| Df (x) =00} =0
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6.2 Lebesgue’s Theorem
Lebesgue’s theorem is one of the important theorem in mathematical analysis (1904).
1. Lebesgue’s Theorem

Ifthe function fis monotone on the open interval (a, b) then it is differentiable almost everywhere
on (a,b).

Proof : Letfbe increasing on (a, b). Further assume that (a, b) is bounded [ - a and b are extended
real numbers. (a, b) need not be bounded].

Forrational numbers o and g define the sets
E, 5 ={xe(a,b)| Df (x)>a > B> Df (x)|
Then, {xe(a,b)|Df(x)>Df(x)}= U E,

ratlonals

m{x e (a,b)| Df (x) > Df (x)} =m (U Eaﬁj <Z m(Eqp)
(a.5)

We prove that E,, 4 has measure zero v rationals o, . Let , f be any two fixed

rational numbers with & > . Let E=E,, 5.

Let > (. Then there exists an open set O for which £ < O < [a,b] and m(O) < m*(E)+ €.

Let Fbe the collection of closed bounded intervals [ ¢, d] contained in O for which
f(d)=f(c) < p(d=c)
Since Df'(x) < # onE, Fis a Vitali covering of E. This vitali covering Lemma tells us that

there is a finite disjoint subcollection {[ck ,dy ]}Z:1 of F for which

oYl

Thus each interval in {[ck ,d, ]}ZZI is such that

F(d)—f(e)<B(dp—c;) v k=1,2,3,...n
and  [c.d;]<cO

:U[ck,dk]QO
k=1
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[ﬂ [cr.di ] J<m(0)
k

=1
n

= zm([ck’dk]) <m(0) (- The collection {[ck,dk]} is disjoint)
k=1

n

= > (¢4, ]) <m(0)

k=1

n

=Y (dy —c; ) <m(0)

k=1

Also by property of each interval [ck ,d, ] ,

f(dk)_f(ck)<ﬁ(dk_ck)

32[f dk ] ki_dk Ck

:Z[f dp ) f(cr)]< Bm(0) < B[m*(E)+ €]

Now for x € E([¢,d, | wehave Df (x)>a -

Hence lemma

m*{Eﬂ[ck,dk]}S%[f(dk)—f(ck)], vk=1,2,..n

But E:(Eﬂg[c"’d" J ( (/91 o] T]

=>m*(E)=m [

T C=
iy
»
Q.
k‘
N
+
3
*
—
s
|
Cs
Y
bl
Q
Bl
N
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1
S—,B[m*(E)+ e]+e
a

B

1
=—m*(E)=—'€+€
a a

1
ie. m*(E)SEm*(E)+—-e+e
o a
Since > () is arbitrary we have
m*(E)Sﬁm*(E)
a
But0<m*(E)<w and f<a

= — <1, Therefore we must have . m*(E)=0.
a

Thus E:Ea’ﬂ={xe(a,b)|5f(x)>a>,8>l_)f(x)} has measure zero. Hence

Df (x) = Df (x) a.eon[a, b]i.e.fis differentiable a.c on [a, b].

2. Definition :
Let f'be integrable over a closed bounded interval [a, b]. Let fis extended to (b,b + 1] by

assuming the value f(b) onthis interval.

Forall 2, 0 < h <1 we define the divided difference function Diff; faverage value function
Av, fon[a, b] by

x+h
Diff, f(x) = f(x+hh)—f(x) and AVif(X) :Z _[ f

where 0 < <1 and x €[a,b].

3. Note : Forall 4 <y <y <p wehave

IDmf=If(“h2_f(x) =%Bf(x+h)—z’f(x>]

1 v+h v
7{ [ ro- j f(x)}

u+h
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v+h u+h v

Z% [ oo+ j 10— j f@- [ 1)

u+h u+h

v+h 1 u+h

{ f@-— j f(x)

1
h
= AV, [ ()~ AV, f (@)

Corollary : Letfbe an increasing function on the closed bounded interval [a, b]. Then f's is integrable
b
over [a, b] and If'ﬁ S )= f(a)

Proof : Since fis increasing on [a, b], it is measurable and hence its divided difference functions are
also measurable. Since fis increasing (monotonic) on [a, b] it is differentiable a.e (a, b) [by Lebesgue
Theorem]. For each positive integer n, define

X+1j—f(X)

A
Diff, f (1) = ——"
' n

, x€la,b]

Then {Dlﬁq / } is a sequence of nonnegative mesaurable functions and
n Jn=l

1
e
lim Dif, f(x) = lim ”1
n

= f"'(x) a.eon[a, b]

Di
Thus { lﬁlf} converges to f'a.e. on [a, b].

Hence by Fatou’s Lemma,

Tf’s lin;infiDﬁlf

n
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b bf(x+lj—f(x)
But IDﬁlf(x):I T d

n

n

b 1 b 1
=n J-f xX+— |dx— J-f(x)dx , (substitution for x+—=7¢)
a h a h

1
b+—

" b
=n .[ f(x)dx— If(x)dx
1 a

a+—
n

1 1
b b+; a+; b
=n J- f(x)dx+ I f(x)dx— I f(x)dx— I f(x)dx
1 b a 1
_b+f a+l

=n J-n f(x)dx— Jﬂ f(x)dx
L b a

1
1

b o
NIALREAR
=Av) f(b)=Av) f(a)
< f(b)-f(a) (/)= f(b) on [b,b_1]
and f'(a) < f(x) on [a,a +%D

b
= | Diff,/ f(x) < f(B)~ (@) Vn

b
= lim sup [ Diffy f < f(b)~ f ()
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Therefore we get

b b b
[£1< limint [ Diff £ < lim sup [ Diff £ < /() - f (@)
b
= [/'<f®)-f(a)

6.3 Functions of Bounded Variations
1. Definition : Total Variation

L et fbeareal valued function defined on the closed bounde interval [a, b]. Let P = {xg, X....x; }
be a partition of [a, b]. The variation of f with respect to partition P is defined by

K
V(fop) =2 |f (x) = f(x0)|
i=1

And the total variation of fon [a, b] is defined by,
V()= sup{V(f, P)|P is a partition of [a,b]}
2. Definition

A real valued function fon the closed, bounded interval [a, b] is said to be of bounded variation
on [a,b],if

TV(f)<o
3. Example
Let fbe an increasing function on [a, b] show that fis of bounded variations on [a, b].

Solution : Let P be a partition of [a, b] given by

Then V(P =20 ()= f ()

k
- Z [f (x:) = f (i )] (Since fis increasing)

[f(x,-)—f(xo)}+[f(x2)—f(xl)]+...+[f(xk)—f(xk_1)}
:f(xk)—f(xo)

= f(b)-f(a)
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that

Hence Sl;p V(f,p)=f®b)-f(a)

=TV(f)=f(b)-f(a)<xo

Therefore fis of bounded variations on [a, b].

Definition

A real valued function £is said to be Lipschitz function if there exists a real number ¢ > () such

|f(x')—f(x)|£c|x'—x| Vx,x'e[a,b]

Lipschitz functions are continuous but converse need not be true.

Example
Let fbe a Lipschitz function on [a, b] show that fis of bounded variation on [a, b].

Solution : Since fis a Lipschitz function on [a, b], there exists ¢ > () such that,

|fw)— f)|<elu—v] Yu,vela,b]

Therefore for any partition P = {xo , X ,....xk} of [a, b]

=c(xk —xo)
=c(b-a)
=V(f,p)<c(b-a)

Taking supremum over all partitions of [a, b] we get,

supV (f,p)<c(b—a)
P

=>TV(f)<c(b—a)<x®
Hence fis of bounded variations on [a, b].
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6. Example
Define a function fon [0, 1] by

T
xcos| — | if0<x<1
f(x)= (2)6)
0 ifx=0

Show that fis continuous on [0, 1] but not of bounded variations on [a, b].

Solution : For any natural number  consider the partition P, of [0, 1] given by

1 1 11
B’l :{Oa_a :""7_>_a1}
2n 2n—1 32

k
The V(P)=2|7 (x)- 7 (xy)]
i=1

:‘f(xi)_f(xo)‘*‘f(xz)_f(xl)‘+----+‘f(xk)_f(xk—l)‘
der=ien R E

2n1_1cos((2n—1),%}—;—ncos(2n%J
7 1

COS———COS T
2 2

+ +.+

= f(zl—nj—f(xo)

1 T
= —cos(2n,—] -0
2n 2

—+

+....+

r r
But COS(H E] ==l ifnis even and COS(” 3) =0 ifnis odd. Hence we get

1 1 1 1 1
V(f,Pn):2—+—+ + ot —+—

1
n 2n 2n-2 2n-2 2 2

1 1 1 & 1
As n—>© 1+5+—+----+— — o0 since the series Z; is divergent.
n n=l

Hence V(f,P,) >® as n—

Therefore fis not a function of bounded variations.
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7. Note

Let ¢ €[a,b] be any element, P be a partition of [a, b] and P' be the refinement of P obtained
by adding c to the partition P.

Let P={a=xy<x <..x,=b}

Then, P'={a=x)<x <..x_<c<x; <.x,=b}

Therefore, Vif.p)= Z(f(xk)_f(xkfl))
k=1

=k§\f<xk>—f<xk1>\+ 1 ()~ £ ()

k=i+1

£ (5) = )|

k=i+1
i—1

<31 ()= f )|+ @ = f ()| + | ()= £ ()

k=1
+ Z ‘f(xk)_f(xkfl)‘
k=i+1
=V (f,P)
Thus  V(f,P)<V(F,P") VPc P’

This shows that finer the partition, larger is the variation.

8. Lemma

Let fbe a function of bounded variations on the closed and bounded interval [a, b]. Then fcan
be expressed as the difference of two increasing functions on [a, b] as follows,

S = SE+TV (fiam) =TV (far) Vxe[a,b]

Proof : Let ¢ €[a,b] be arbitrary. Let P be a partition of [a, b] containing c. Then P induces the
partitions P, and P, of [a, c] and [¢, b] respectively and we have

V(fia,b]’P):V(f[a,c]’ﬁ)_FV(fic,b]’PZ)
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Taking supremum over P, P; and P, we get,
TV (fen)) =TV (frae1)* TV (o))
If fis a function of bounded variations on [a, b] then TV(f[a,b])< o and hence
TV (fian) < forallx € [a,b].

Therefore of g <y < v < b then
TV( f[a’v]) = TV( f[a’u])+TV( f[u’v])
:>TV(fia,v])_TV(J([a,u]):TV(fiu,v]) VYa<u<v<hb
Let 7 :[a,b] — R be a function defined by

70 =T (f)
T is called the total variation function for fand for 4 <4 < v < b, we have
TV ($ias)) =TV (fiaa)) =TV (fiu1) > ©
=TW)-Tm)=0
=TW)2T(u)
Thus wu<v=Tw)<T(v)

Hence T is increasing function. i.e. 7V (f[a,x] ) is increasing function on [a, b)].
Nextfor g<y<v<p,let P= {u,v} be the partition of [«, v]. Then,
@)~ O [f D) = f @ =V ([ P) STV (S

And TV (fua)) =TV (fiao)) =TV (Vi)

Therefore,
F@)=fOSTV (f0)) =TV (fjau))
= [TV (f0a)) S TO+TV (fi)
Thus, u<v= f@+TV (fiuu)) < SOV+TV (fi0)
This shows that f (x)+ TV ( f{,.;) is an increasing function on a, b].

Finally, /(1) =| f)+TV (fio1) | =TV (fla). Vxela,b]

1.e. f'can be expressed as a differene of two increasing functions on [a, b].
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9. Jordan’s Theorem

A function fis of bounded variations on the closed bounded interval [a, b] if and only if it is the
difference of two increasing functions on [a, b].

Proof : Let fbe a function of bounded variations on [a, b]. Then by preceding lemma f can be
expressed as the difference of increasing functions.

Conversely let = g —h on [a, b] where g and / are increasing functions on [a, b].

Let P= {xo,xl,xz,....xk} be a partition of [a, b]. Then

:i[g(xi)—g(xi1)]+lZ::[h(xl-)—h(xi1)]

=g(b)—g(a)+h(b) - h(a)
Thus, V(f,P) < g(b)—g(a)+ h(b)— h(a) holds for any partition P of [a, b].

Il
—_

Taking supremum over all partitions P of [a, b] we get,
TV (f)< g(b)—g(a)+h(b)—h(a) <o = f isofbounded variations on [a, b].
10. Definition

A function f of bounded variations can be expressed as the difference of two monotonic
increasing functions. This representation of /is called as Jordan decomposition of /. The above theorem
says that Jordan decomposition exists for a function of bounded variations.

11. Corollary

Ifa function fis of bounded variations on closed bounded interval [a, b] then it is differentiable
almost everywhere on the open interval (a, b) and /' is integrable over [a, b].

Proof : According to Jordan theroem, f7is the difference of two increasing functions on [a, b]. Let
f = g —h where gand A are increasing. Hence g' and /' exists a.e on (a, b) and therefore f'=g'- A’
exists a.e on (a, b). Also by theorem f" is integrable over [a, b].

N AL
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UNIT - VII

CONTINUOUS FUNCTIONS

7.1 Absolutely Continuous Functions
1. Definition

A real valued function fon a closed bounded interval [a, b] is said to be absolutely continuous

on[a,b]ifforevery e> (), thereis § > ( such that for every finite disjoint collection {(a by )}Zzl of

open intervals in (a, b) with

(b —a;) <3 then i‘f(bk)_f(ak)‘<€

1 k=1

M:

b
Il

2. Note

If /is absolutely continuous on [a, b] then for any ¢ €[a,b] for given > (,thereis §> (0
such that [x —c| < 6 = |f(x)—f(c)| <€e.

Therefore fis uniformly continuous at c. Since ¢ € [a, b] is arbitrary, fis continuous on [a, b].

Thus absolute continuity implies continuity. But the converse need not be true.

3. Proposition

Ifthe function fis Lipschitz on a closed bounded interval [a, b] then it is absolutely continuous
on [a, b].

Proof : Let fbe a Lipschitz function. Then there exists a real number ¢ such that

|f(u)—f(v)|£c|u—v| forall u,vela,b]

€
Then for given > () choose 0 =— then
c

|u—v|<5:>|f(u)—f(v)|Sc-|u—v|<cE:e
c

Hence fis absolutely continuous on [a, b].
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4. Note

Absolutely continuous functions need not be Lipschitz for example f(x) = \/; ,0<x<1Is

absolutely continuous but not Lipschitz.

5. Theorem

Let fbe the absolutely continuous on a closed bounded interval [a, b]. Then f7is the difference
of two increasing absolutely continuous functions and hence fis a function of bounded variations
on [a, b].

Proof : Let fbe the absolutely continuous function on [a, b]. Therefore for given <=1 choose § > 0

such that for a partition P of [a, b] containing N closed intervals, {[ck ,dy ]}szl ,de —c | <o forall

Then on any sub-interval [ck ,d,, ] of [a, b]
ey —dy|<5= ‘f (¢ )-f(d, )‘ <1 (since fis absolutely continuous)
Therefore for any finite collection {(xl- , xl'- )} of disjoint intervals in [ck ,d,, ] we have

Z|xi '—xi|<§:>Z‘f(xi ')—f(xi)
i P,

<1

Taking supremum over all partitions p; of [ck ,d, ] we get

TV (fgpa]) SV, V1<k <N

But TV (/i) = ZTV(f[ck,dk])

Therefore fis a function of bounded variations on [a, b].

Now any function f'of bounded variations on [a, b] can be written as,
J@ =[SO +TV (fio)) [TV (fia)

where TV (f[a,x] ) is a total variation function on [a, b].
Also sum of two absolutely continuous functions is continuous. Hence it is sufficient to prove
that the total variation function 7V ( Max] ) on [a, b] is absolutely continuous.
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Let &> ( be given. Since fis absolutely continous, for a collection {(ck ,d, )}Z=1 of disjoint

open intervals, there is § > () such that
n n e
Yldi—cil<s=|f (de)- 1 (<) <3

k=1 k=1

Now B, ifis any partition of [ck,dk],kz 1,2, ....nthen,
n [=
i fLUB <=
k=1 2

n =
= ZV(f[ck’dk]’Pk)<5

k=1

Taking supremum over all partitions B, of [ck ,d, ] ,k=1,2,....nwe get,

2T ()5 <
But TV(f[Ck»dk]) =TV(f[“’dk])_TV(f[“’Ck])

Hence Z[TV( fa, dk])—TV( f[a’%])} <e

Since TV (f[a’x] ) is increasing on [a, b] we have,

n n

> |4, —ck|<5:>Z‘TV(f[a,dk])—TV(f[a’Ck])

k=1 k=1

This shows that 7V ( Jax] ) is absolutely continuous on [a, b]. Hence fis the difference of two

increasing, absolutely continuous functions on [a, b].

6. Note

f =(T+ f)—T whereTand T+ fare increasing. Above proposition says that if/is absolutely

continuous then T is also absolutely continuous and also T + f is absolutely continuous. Thus fcan be
expressed as a difference of increasing, absolutely continuous functions.
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7. Definition : Uniformly Integrable Functions

A family F of measurable functions defined on E is said to be uniformly integrable over E if for
each e> ( thereisa § > ( suchthat foreach /" € F if Aisameasurable of E with m(4) < 6 then

JIrt<e,
A

8. Note : For 0 < 4 <1 we have

x+h

_ I
Diff, f(x)=" (th AN AV, f(x)=— [ r@dt vy cpap

Andas 4 — 0, Diff) f(x) = f'(x) and Av, f(x) > f(x), Vxe[a,b].

9. Theorem
Let fbe continuous on the closed bounded interval [a, b]. Then f7is absolutely continuous on
[, b] if and only if the family of divided difference functions, { Diff, f} o<p<; 18 uniformly integrable

over [a, b].

Proof : First assume that the family { Diff; /'} , isuniformly integrable over [a, b]. Let > () choose

S > 0 such that
. €
m(E)<5:>£|D1ffhf|<§’ V0 <h<1 e

To prove that fis absolutely continuous on [a, b] let {(ck ,d, )}ZZI be the disjoint collection of

open subintervals of (a, b) for which

M:

[dk —Ck ] <6 [ o istaken from uniform integrability] .... (2)

b
Il

1

Now forall, 0 < 4 <1 and 1< k <5 wehave

dj
[ Diff, f = Avy £ (¢ )= Avy £ (dy)
k
Therefore,
n n dk
D |Av, £ (dy) = Av, £ (¢ )| = | [ Diffy, f
k=1 k=1|cy,
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Let £= U (Ck »d ) . Hence we can write,
k=1

Z\Avh 7(d)-Av, £ (c) j |Diff, /]
Using (1) in (3) (Since m(E) < & ) we get

L €
;\AVhf(dk)‘AVhf(ck)\<§, VO<h<I

Since fis continous, taking limitas ; —s () we get,

Z‘f d)- )‘<§<e

where Z Ck < 5 Hence f1s absolutely continous.

To prove the converse, suppose that fis a absolutely continuous. Since every absolutely
continuous function is a difference of two increasing functions. We prove the converse for increasing
function f. Now fis increasing — the divided difference functions are nonnegative. To prove that the

e> ( there § > () such that for any measurable subset E of (a, b) m(F) < & implies

[Diff, f<e, v 0<h<I

Now any measurable set E is contained ina G set G such that m(G — E) = 0. Every G set

disjoint collection of open intervals. Hence we prove that for a collection {(ck ,d, )}

open sub-intervals of (a, b) if E= U (Ck 2 dy ) then
k=1
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S
m(E)<5:>jDiffhf<5
E

We show that that such § exists for given e> (. Now let > ( be arbitrary. The function fis

absolutely continuous on [a, b+ 1]. Therefore for given > () thereis § > () suchthatif {(ck ,d, )}Z=1

is a disjoint collection of open sub-intervals of (a, b) with z [dk —Ck ] <0,

= () 1(@)<5

k=1

Now for g <y <v<h wehave

ijfhf J~ (t+h) f(t)

I Ft+h)dt - j f(t)dt}

> -
I 1

wlh‘

Lu+h

(v+h
j F(O)dt - j f(t)dt]

1 v+h u+h

= ih F(O)dt + j F(O)dt - j f(t)dt—u;[h f(t)dt}
1 v+h u+h

= j f(6)dt - j f(t)dt}

1 [ h h
— j f(v+z)dt—j f(u-i—t)dt:l
h L0 0

lh
:Zj[f(vm—f(uﬂ)]dt
0

Let g(t)= f(v+t)— f(u+1t). Therefore,
where 0<s<1and 0< /<1

v h
{ Diff, f = % { g(t)dt
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Nowif £ = U(Ckadk) then
k=1

n

[pift, f= [ Diff, f= > Diff, f
E

n (ckdk )
U (ck-dk)
k=1

n

h
g(t)dt where 0<7<1
0

>| -

k=1

and  g(t)=f(dy+1)— (¢ +1)

1
Therefore, jDiffh /= ij{f(dk +1)— [ (¢, +1)]dt
E

0 k=1
Now 2ldi—c]= 2 [+~ (¢, +0)] <&
k=1 k=1
:Z[f(dk+t)—f(ck+t)]<§
k=1
11
But jDiffhf=ZJZ[f(dk+t)—f(ck+r)]
E 0 k=1
h
glJ’Edt:lE hzf
hi2 2
. €
:leffhfsTe, 0<n<l
E

Which shows that the family { Diff, f}, isuniformly integrable over [a, b].

10. Note

For a non-degenerate, closed bounded interval [a, b], let F;,,, F,- and F), denote the

families of functions on [a, b] which are Lipschtiz, absolutely continous and of bounded variations
respectively. Then the following strict inclusion holds.

szprACQfBV
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Each of these collections are closed w.r.t. linear combination. Also the functions in any of these
collections has total variation function in the same collection and hence any function in one of these
collections may be expressed as a difference of two increasing functions in the same collection.

7.2 Integrating Derivatives : Differentiating Indefinite Integrals
1. Definition

Let fbe a continuous function on the closed bounde interval [a, b]. By takingu=a and v=»5
we get,

b
IDiffhfZAVh f(b)—Avy f(a),where 0<h<l

This is called a discrete formulation of the fundamental theorem of integral calculus.

2. Note
Since fis continuous Av,, f(b) — f(b) and Av, f(a)—> f(a) as , - 0" .

Further if fis absolutely continous we prove that

b b
[Dift, > [ £ as h 50

3. Theorem : (Fundamental theorem of intergal calculus for Lebesgue
integral)

Let f'be absolutely continuous function on the closed bounded interval [a, b]. Then fis
differentiable almost every where on [a, b], its derivative /' is integrable over [a, b] and

b
[11=r®)-fla)

Proof : By discrete formulation of the fundamental theorem of Integral calculus we have
b
[Dift, £ —> Av, f(b)=Av, f(a) e

Taking limitas 3 _y o* we get
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h—ot h—0

b
lim { [ Diff, f}: lim [Avy /(b)~Av, /(@)]

a

= f(b)-f(a)

put 2 =—.Thereforeas j _y o*, n —> oo. Hence we get,
n

n—»0

b
lim | | Diff =f(b)- f(a
(I %f] f(b)-f(a) e
Now fis absolutely continuous function on [a, b]. Hence f'can be expressed as a difference of
two increasing functions. By Lebsegue theorem increasing functions are differentiable a.e on [a, b].

Diff, f

n

Hence fis also differentiable on [a, b] a.e. Therefore the sequence { } converges pointwise
n=1

almost every where on [a,b]to /" . 3)

Diff, f|”
Also the sequence { ! f} is uniformly integrable over [a, b]. Therefore by Vitali
n n=l1

Convergence Theorem we can write

b b b
lim [ | Diff, f} = limDiff, f = fr 4)

n

Therefore from (2) and (4) we get
b
[11=r®)-f(@

4. Definition

A function fon a closed bounded interval [a, b] is called the indefinite integral of a function g

over [a, b] if g is Lebesgue integrable over [a, b] and ./ (¥) = f (@) + I g0dt | yxe[a,b.

5. Theorem

A function fon a closed bounded interval [a, b] is absolutely continuous on [a, b] if and only if
itis an indefinite integral over [a, b].
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Proof : First suppose that fis absolutely continuous on [a, b]. For each x [a,b], fis absolutely

continuous over [a, x]. Hence by above theorem we have

[11=r@-f()

= f(x)=f@)+] /"

Thus fis the indefinite integral of / ' over [a, b]. Conversely suppose that fis the indefinite

integral of g over [a, b]. Let {(ak ,by, )}ZZI be the disjoint collection of open subintervals of (a, b).

We define £ = U (ak>bk) . Then,
k=1

( S =f(@)+[g.Vxe [a,b]J

= [lg|

E

Now | g| is integrable over [a, b]. Therefore for given > () thereis § > () such that for any

measurable subset E of [a, b] with m(E) <&, £|g| <€,

Therefore for, E= U (ak by )
k=1
m(E)< 8= m[U(ak,bk)j <6
k=1

= > m(a;,b )<
k=1
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= i[bk—ak]<5
k=1

= 37 ()~ (o) <

Which shows that fis absolutely continuous over [a, b].

6. Corollary

Let fbe a monotone function on the closed bounded interval [a, b]. Then f is a absolutely
continuous on [a, b] if and only if

b
[r=r®)-r@

Proof : If fis absolutely continous on [a, b] then by above theorem,

SO =S@+[ 1" Vxe(a,b]
b
For x = b, we get If'=f(b)—f(a)

b
Conversely, assume that f'is increasing on [a, b] and _[f '=f(b)~ /(@) Then for any

x €la,b]

b X b
0=[/'=f®)+f@ =]+ [f'=fB)+ f(x)= f(x)+ [ (a)

X b
0= { | f'—f(x)+f(a)}+[ [r- f(b)+f(x)} ()

Since f1is increasing on [a, b],

x b
[r<f@-r@, [£<r®)-1e

a X

X b
= [/ fO-f@<0_ [f=f®)+[(x)<0
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Thus sum of two nonpositive terms is zero (from (2)). Hence each of them must be zero,

ie. |f-r@+f@=0
b

= f(x)=f@)+] 1" Vx e[a,b]

Thus fis indefinite integral of /' and hence fis absolutely continuous on [a, b].

7. Lemma

Let fbe integral over closed bounded interval [a, b]. Then f(x)=0 foralmostall x [a,b]

X2
ifand only if [ /=0 foran (x,%,) < [a.b].

X

X2
Proof: Clearly if f(x)=0 foralmostall x €[a,b]then _[ J =0 forall (x,x,) = [a,b].

X

Conversely suppose that the condition holds

ie. ] /=0 Y(xx)clab] (D)

X

We claim that, }[ /=0 for all measurable sets £ — [a,b]. e (2)

Since every open set is a countable union of disjoint open intervals, the equation (1) holds for
all open sets. The continuity of integration says that every G set G satisfies equation (1) since it is the

countable intersection of open sets.

Further every measurable set E of [a, b] can be expressed asE = G —E, G where G is G

sets and E is a set of measure zero. Hence equation (1) holds for any measurable subset of [a, b].
Therefore our claim (2) holds.

Next measurability of fimplies, the sets
E*={xe[a,b]| f(x)20} and E~ ={x €[a,b]| f(x) <0}
are measurable. Therefore /= f* — f~and = f* on E"and f=—f onE".

Where both £ and f~ are nonnegative measurable functions. Hence,
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j)‘f+zjf:0andj)‘(—f_):‘ff20

a E_

b
:If+20 and I—f_=0 or If_=0

= f*=0ae, f~ =0 ae (Since £+ and f~ are nonnegative measurable functions)

But f=f* - f~.Hence f =0 a.e on[a, b]

8. Theorem

X

d
Let fbe integrable over the closed bounded interval [a, b] then ;- l:j / ] = /(%) foralmost

all x e[a,b].
Proof : Define a function F on [a, b] by

F(X)fo, Vx e[a,b]

Then F is an indefinite integral of some integrable function on [, b] and hence it is absolutely
continuous. Therefore F is differentiable almost everywhere on [a, b] and its derivative F'is integrable.

Now if [xl , Xy ] is any closed interval contained in [a, b], then

X2

[lren1=]Ff r=r(a)-Fa)-[ 1

=[r=fr=Jr=Jr-Jrs
=0
ie. - J.(F'_ f)=0 V[x.x,]<(a,b] ([ x1,x, ] is arbitrary)
= [aj‘b][F'_ /1=0 (Taking x, =a and x, =b)

= F'-f=0 aeon]|a,b]
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= F'= fa.eon|a,b]

d X
ja ;[f =/ aeon[a,b]

9. Note

X

d
Above theorem shows that the differential operator T and the integral operator I are
X a

inverses of each other and that differentiation is reverse process of integration and vice-versa a.e.

N A%
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UNIT - VIII

THE LY SPACES

8.1 Normed Linear Spaces
1. Definition

Let E be a measurable set of real numbers. Let F be a collection of all measurable extended
real valued functions on E which are finite a.e on E.

Let f,g e F .Wedefine arelationon Fby f = g if f(x)= g(x) a.eonE. Then,
@ f=f forall feF since f(x)= f(x) onE.

@  f=g=>g=f,Yf.geF.
(i) fzgand g=zh= f=gaeonEandg=haeonE.

Let  E={xeE|f(x)#g(x)}, E;={xeE|g(x)#h(x)]

Then m(E)=0=m(E,)

Therefore, {x € E| f(x)=h(x)} =[ E—~(E UE,)]UE;
=(EUE;)-[(E UE,)-E ]
=E-[(E,UE,)-E; |

where E; C E, N E, suchthat £, = {x e E, N E, | f(x) = h(x)}

Since m(E,)=m(E,)=0, m(E;)=0.Also m(E,UE,)=0.

Therefore m((E1 UE, ) —E3) =0. This shows that f(x)=/h(x) a.eonEie. f=h.

(1), (i1) and (ii1) implies that the relation ¢ ~ ’ is an equivalence relation on . This equivalence
relation on Finduces a partition of F into disjoint collection of equivalence classes denoted by F / ~.

If f,geF and a,f arereal numbers then of f]+ f[gle F/=.

1.e. F /= isalinear space. The zero element of this equivalence class is the set of all functions

which vanisha.eonE.
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2. Definition

A set of all equivalence classes [ /'] e F /= such that J'|f|P <, 1< P < iscalled an

E
LP (E) space.
P
Ths  17(E)= {[f] 11" < oo}
E

3. Note
(1) If f=gthen[f]=[g].

But f=g= f=g aeonE.

P P
= [l =]le
E E

i.e. any member of the equivalent class gives same value of the integral. Therefore LP (E) is

properly defined VP, 1< P< 0.
2) For any two real numbers a and b,

la +b| <|al +|b| < 2 max {|a| , |b|}
Hence |q+b|” <27 [ max{lal Jbl}]" =2 max {lal” 16"}
= la+b]" <2" {lal” +15I"}

3) If[f1,[g]e L¥ (E)and &, B arereal numbers than,

[laf+pel” < [2" [|asl” +15gl" ]
E E
=2"lal” [| 1" +27 18" [Igl” <oo-
E E
since I|f|P <00 and J-|g|P <oo.
E E

Hence [a f + fg] e LF(E) i.e. L°(E) is a linear space. For p—1, ['(E) is aspace of all

equivalent classes of integrable functions.
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4. Definition

Let F bea collection of all measurable extended real valued functions on E which are finite a.e
on E. A function f e F iscalled essentially bounded if there is some real number M > 0 such that

|f(x)| <M foralmostall x ¢ E .

If such a real number M exists it is called an essential upper bound for .

S.  Definition : 1°(E)

A collection of all equivalent classes [f] for which f1s essentially bounded is called £ (E)

space. L”(E) 1s also a linear subspace of F/~.

6. Note

For simplicity and convenience we say that the equivalence classes [f] as functions and denote
them by finsterad of [f]. Thus

1F(E) = {f | £ 7 < 00} where 7 =[f].

7. Definition : Norm on Linear Spaces

Let X be a linear space. A real valued functional || on Xis called a norm if (

:X—>R)-

O |r+gl<lfl+le
@ s =lal]s
(i)  |f]>0and|f|=0,iff f=0.

, f,geX

N VfEX and VaelR.

A linear space X together with a norm is called a normed linear space.

A function f € X is called unit function if || f || =1.Notethat forany f e X, f #0 then
m 1S a unit function. m is anormalization of .
8. Example

Show that L(E) is a normed linear space.

Solution : We have, Ll(E)z{f|J|f|<w}.
E
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i.e. space of all Lebesgue integrable function is the ['(E). Clearly [!(E) is linear space

(since Lebesgue integration is linear). Define anormon 1! (E) by

171, =I|f|, Vf e L'(E)

E

Then,
) f,gel'(E)= f and garefinitea.c onE.

And |f +g|<|f|+]|g| a.e.onE.

=[5 +el<[Ir1+lel= 171+ [lgl <o
E E E E

= [ +gel/(£) and |+ gl <]/l + el

o lesl=Jlasi=[lallr|=lal] |1
E E E

(i)  For f e I'(E) suchthat /], =0 then

j|f|=0:>f=0 a.eonE.
E

= [ f] is the zero of [!(E).
= =0

Alsof=00n E= [|f|=0=]s], =0
E

Hence |.|| isanormon !(E) . Therefore [!(E) is anormed linear space.

9. Example

Show that [* (E) is anormed linear space.
Solution : We have L”(E) ={f'| f is essentially bounded on E}
= L"(E)= {f | |f(x)| <M a.e on E for some real number M > O}
Forafunction f e [*(E) we define,

|71, =inf {M || f(x)| <M a.e on E}
= infimum of the essential supremum of /.
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Hence | f|<| /], aeonE.

1
First we prove the triangle in equality for the norm. For each natural numbern, || ||OO +—1s
n

not the infimum of the essential supremum of /. Hence,

1
Sl 71, +; a.e.onE.

1
i.e. 3 a setE, suchthat |f]<|f], +—on E-E, and m(E,)=0.
Let E, =| JE, . Then m(Ew)=m£0En]Sim(En)=0
n=l n=1 n=l
And |f|<||f],, on E-E,, and m(E,)=0
ie. |f| < ||f||oO a.conkE.
Thus || f ||Oo is the smallest essential supremum of /. Now if f, g € L”(E) . Then,
£+ gl @+ e <IA], +lel, aconE.
But || f+ g||oO is the smallest essential supremum.
Hence [/ +gl., =[], +lg..-
Next ||a f ||oO is the smallest essential supremum of ¢ f".

= |af| < ||0(f||oO a.e.onE.

= |a||f| S||05f||oO a.e.onkE.

1
|l aconE, aso.

1
= |7, < E”af”w (. ||f||oo is the smallest upper bound of | £|)

= lal|f], <[ers],
Also |f|£||f||oo a.e.onkE.

= lal|f|<lal|f], a.eonE
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:>|05f|£|05|||f||oo aconE

=efl, <lall].

Ths  Jlas],, =lal-| /], (a+0)

Clearly ||f||oO >0.Andif ||f||oo =0 then

)| <|f]. =0 aeonE.
=|f(x)|=0 aconE.

= f =0 a.e.onE.

= f=0

Thus |||, isanorm on 7*(E) and therefore [°(E) is anormed linear space.

8.2 TheInequalities
1. Definition

For any measurable setE, f e L”(E), 1 < P < o0 wedefinea function || on ' (E) by

pl/P
A, =| 1]
E

We show that ||| isanormon L (E).

2. Definition
1 1

If p e(1,00) isareal number then its conjugate ¢ is also real number such that ; + g =1,

Note thatif p e (1,00), its conjugate ¢ = E also liesin (1,00) . Conjugate of 1 is oo and
vice-versa.
3. Theorem : Young’s Inequality

For 1< p <0, and a conjugate q of p, and for any two positive real numbers a and b,

a? bl
ab<—+—
p q
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Proof : Define a function g by

1 1
g(x):—xp—I—;—x, Vx>0

Differentiating w.r.t. x we get,
g'(x)=x""-1
Then g'(x)>0 if x > 1 and g'(x)<0 if x <1 and g'(x)=0 at x = 1. Also
g"(@)=(p-ha">.
Hence g"(x)>0, Vx>0 sincep> 1.

1 1
Therefore g isminimum atx =1 and &min = ; +—=1=0,

Hence g(x) >0, Vx e (0,).

1 1
= —x"+——x20, Vx e (0,00)
p q ’

P
=>-—+—2x, Vxe(0,0)
P g
x? 1
:>XS—+—, VXE(O,OO)
P q
a

Take X = YRR Then we get

=g St (“(g-Dp=9)

151



a? b?
= a-b<—+— wherea>0,b>0and p and g are conjugates of each other.
p 9

4.  Theorem : Holder’s Inequality

Let E be any measurable set and 1 < p <oo and ¢ the conjugate of p. If 7 e L”(E) and

g € L1(E) thentheir product feg is integrable over E and
Jlr-el<lr1, el
E
Moreover if f # 0 then the function f; given by
f*= ||f||;p -sgn(f)-|f|p_1 belongsto 17 (E).
and If'f*:||f||p and [/ *], =1
E

Proof:

Casel: p=1

Ifp=1then g =0 . Thereforeif f e [!(E)and g e L”(E).
11
then [|f] < and ], =(fI/) =1/
E E

and |g|<|g], aeonE.

Therefore I|f‘g|=J|f|~|g|
E E
<{111lel..
E
=l [lA1=lel.. I,
E

s g0 gl

E
Next forp=1, f"‘:||f||if1 sgn(f)|f|171

=sgn(f) € L"(E)

since  sgn(f)=xleL”(E)
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and | =1 sen ()= [1A=]11,
E E E

Also [|£*],, =[sen ()|, =1 since 1 is the essential supremum of sgn (7).

Thus the result holds forp=1.
Casell: p>1llet f#0, g=20> fel’(E), geL!(E).

f g
If Holder’s Inequality is true when fis replaced by ” f|| and g is replaced by ” g” thenitis
p q

true for fand g. Hence we assume that fand g are normalized functions. i.e. ||f || = 1, |g ||q =1,

Then, @Iflpj% -1, @'ngJ% =1

= [l =1, = [lel =1
E E

Now |f]” and |g|" are integrable over E.

,b=|g

3

Therefore fand g are finite a.e on E. Therefore by Young’s Inequality, taking a = | f

A7 el
+——a.e

—_— onE.
p

MRS
7 clel”

:£|f-g|££7+jg7
R (T T
Ll i

1 1 1 1
= — (=) =—+—
p q P q

=1

= j|f -g|<1 ie.isintegrable over E.
E

Hence f,ge L'(E)
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S g

Also for any functions fand g (not normalised) ” f|| and ” g|| are normalised. Hence we
p q
get

S &
171, lel,

J

E

=[1r-lsl, e,
Finally forany function f e 17 (E),
fore=reAr T sen ()|
WAL P aconE (- f-sen(f)=]/] ac.onE)
= [ =[5 7 s
2
U7 Lt =0, A
=715 =111,
ot 17~ gf*vj%

- w“f”;l’ sen (/)| ‘q J%

]
= ||f||;1—p) (J‘|f|(p—l)q ]A
E

I p

=||f||;P-( ﬂfv’ij
E

P

N
=1, A=A,
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0 P
- A (.q+(1 p)—()j
~1

Thus If'f*:||f||p and ||f*||q =1,
E

5. Minkowski’s Inequality

Let E be a measurable set and 1< p <o . If the functions fand g belongs to 17 (E) then
frgerr(E)and|f+el, <[], +lel,
Proof: Let, 1< p<o0.
Since [ (E) isalinear space, 1, g e L’ (E)
= f+gelf(E)

Let f+g=0 onE. Let (f+g)* be the conjugate function of f+ g. Then by Holder’s
Inequality we have,

If+gll, = [(f+g)-(f+g)*

E

Aand (£ +g)4, =1

=[r-(fre) +[e(r+g)*

E E

<|71, I +e)*, +lel, (7 +2),
= (171, +lel, )l +2)4,
~ 171, +1el, (~ICr+)*], =1)

6. Note
We have already established the Minkowski’s Inequality forp=1,p= .

Hence the inequality, f+g||p < ||f||1,7 +||g||p holds V,1< p<,.
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7. Theorem : (The Cauchy -Schwarz Inequality)

Let E be a measurable set and fand g be measurable functions on E such that % and g 2 are
integrable over E. Then f - g is also integrable over E and

<))

Proof : Since f* and g? areintegrable over Ewehave f, g e [?(E).Hence by Holder inequality
(P=2,9=2).

£|f~glﬁ||f||2 el
() (1)

[0 )

8.  Corollary

Let E be amesurable setand 1< p <.

Let F be a subfamily of 17 (E) such that 171 », <M, Vf e F and for some constant M.
Then the family F is uniformly integrable over E.
Proof : Let > () and let A be any measurable subset of E of finite measure. Let p and q be the
conjugates of each other consider the spaces 17 (4) and [9(A) . Define a functiongonAby g(x) =1,
Vxe A - Then,

I|g|q :Ilzm(A)<w.Hence, geli(A4)
A A

Now f e F < [P(4). Then | f], <M.

Therefore by restricting fto A and by Holder’s inequality we get,

J17-¢l=[lr1=011, lel,
A A

() {fer )
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(Ilfl ] ()i

<M -[m(A)]%
c VY
Thus forall f e F,forgiven > (), take 0 = (ﬁj and we get,

m(4) <5 = [|f]< M (m(4))° Y/
A

:>I|f|<e
A

Hence fis uniformly integrable over E, Vf € F i.e. The family F is uniformly integrable

overE.

9. Corollary

Let E be a measurable set of finite measure and let 1 < p; < p, <oo.Then 12 (E) c I (E) .
And further

I£1,, <clfl,, . vrerr g

Pr—
Where ¢ - [m(E)]p-r, 1fp2<oo

1
and (- [m(E)]n if p, =0

Proof:

P>
Letp2<oo.DeﬁneP:?>1 (P <p2)
1

Let g be the conjugate of p. Let 1 e 2 (E).
» P
J“f]ﬁ‘ :I‘fpl‘plz-[|f|p2<w
E E E

157



4 = —
Let g = 7, . Then | 18" = [1=m(E) <0
E E
Hence g e [7(E). By Holder’s inequality we get,

[lrm-el<lrnl, lel,
E

1

:yfpl\{][_\ff’l\”]”@Iglqj;

P 1
=[I |f|”2]” (I l)q
E E
=1 ()
= [lro] < -(me) o
E

1
Taking p_ power of both sides we get
1

] 1
(flr \jﬁ’l <71, -[mE)]oe

P
—n(E) "7 ],

) 1 1 1 1 P PP
Since —=—|l-—|=—|1-—|=
pq P p D )2 Y4V%)
PP

Thereforeif C =[m(E)| pp, then

171, <clrl,, <o

Hence f e [/ (E) andtherefore [2(E) ¢ [P\ (E)
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Casell: p,=w and 1< p, < p, =©

Then feL”(E)=|f]<|f].,
=117 <112
= (1A <[
E E

=71 - m(E) <o

1
Hence f e [7'(E).And taking p_ power of both sides we get,
1

1
{I /1" Jpl <| /] -m(E) o
E

1
Take C = m(E)"* then

1
171, <€l pr=o0 and ¢ =m(E)™.

10 Note
(1) IfE is of finite mesure then 1 < p, < p, <0 = [P2(E) is proper subspace of [”I (E).
) If E is of infinite measure, then there are no inlcusion relationships among 17 (E) spaces.
11. Example
Let E be a set of finite measure and let 1 < p, < p, <oo.Take £ = (0, 1] . Define a function f
1 1
onEby f(x)=x“ where _;1<0‘ <_p_2'

1”2 (E)c LM (E
Then f e LM (E) but f ¢ 172 (E). Hence L (E) < L7 (E).
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12. Example
Let £ =(1,00).Then ;;(E) = oo . Define a function fon E by,

l+nx’

x>1

f(x)=

Then f e I? (E) and f ¢ [P (E) forany p # 2. Hence in general there is no inclusion

relationship among the 17 (E) whenever E is not a set with finite measure.

8.3 LPis Complete : The Riesz-Fischer Theorem

Since LP spaces are normed spaces, it is possible to introduce convergence concepts in LP,
similar to the convergence in R , which is normed by absolute value function.

1. Definition

A sequence { f,} inalinear space X which is normed by a norm function ||| on X is said to

converge to a function fin X if

im |/~ /,]=0

n—»0

We write { f,} = / inXor r}l_{?ofn =/ inX.

2. Definition

For 1< p <o, [P (E) arenormed linear spaces. For a sequence { fn} of functionsin 17 (E),
(il 7o perry it imlf =71, =0 ie

lim _“fn _f|p =0

}’l—)OOE

For p = o, the sequence { fn} of functionsin [ (E) converges toafunction f e L°(E) if

{f,} = f uniformlya.eonE.

3. Definition

Let X be anormed space normed by || Asquence { £, } in Xis said to be Cauchy in X if for

each > () there is a natural number N such that || Jn— fm” <eforall m,n>N.
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A normed linear space X is said to be complete if every Cauchy sequence in X converges to
a function in X. A comlete normed linear space is called a Banach Space.

4.  Proposition :

Let X be a normed linear space. Then every convergent sequence in X is Cauchy. And a
Cauchy sequence in X converges it it has a convergent subsequence.

Proof : Let { I } be a convergent sequence in X such that { I } — f in X. By triangle inequality for

the normon X,

1 = 1all= 11 =S+ =1l
<| £y = F+ 1 = 1l Vm,n

Asm— o, f, > f and || f=tn || — 0. Therefore there is an integer N such that

r-sl<y — wmz,
Similarly there exists an integer N, such that
Ir=1l<5 vnz N,
Take N = max {N;, N, } . Then we get
||fn—fm||<§+§:e Ym,n> N

Hence { fn} is a Cauchy sequence.

Now let { I } be a Cuchy sequence in X that has a subsequence {fnk } which converges to f

in X. Let > () be given. Since { fn} is Cauchy we can choose an integer N such that
S
||f;1_fm||<5 Vm,n> N

Since {f n, } converges to f we can choose k such that n, > N and

€
f"k -/ H < E ’
Using triangle inequality for the norm we get

15 = A=) = o + 1o = 1]

(S S
< +f"k_fH<§+E
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= ||/, = /] <€ forall > N .

Therefore the sequence converges to fin X.

5.  Definition : Rapidly Cauchy Sequence

Let X be a linear space normed by ||.||. A sequence { I } in X is said to be rapidly Cauchy if

o0
there is a convergent series of positive numbers z € for which
k=1

| fes1 = fi]| S€” forallk,

6. Note

If { fn} is a sequence in normed linear space and if there is a sequence of non-negative

numbers {ak } such that

| foe1 = 2] < @ forallk.

Then  f,.x — /. =[fn+k _fn+k—1]+[fn+k—l _fn+k—2]+----+[fn+1 _fn]

n+k—1

= Z [fj+l_fj:| foralln, k.
j=n

n+k—1
Therefore, ok = Il = Z [fjﬂ_fj:l
Jj=n
n+k—1
< 2 =1
Jj=n
n+k—1 0
<D a <Y a oy
Jj=n Jj=n
Thus fnk_fn =Zaj,‘v’n,k
j=n
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7.  Proposition

Let X be anormed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Further
every Cauchy sequence has rapidly Cauchy subsequence.

Proof : Let { fn} be arapidly Cauchy sequence in X and let z €k be a convergent series of non-
k=1

negative numbers for which

||fk+l —Ji || <g,* forall k.

o0
=\ fowr — S < D€

J=n

o0 0
. . . 2
Since the series z €k converges, the series z € also converges. Hence the sequence
k=1 k=1

{ /,,} is a Cauchy sequence.

Conversely assume that { I } is a Cauchy sequence in X. We can choose strictly increasing

sequence of natural numbers {#; } such that
6]
=\7)> Vk

1 1Y
Take ak:(—j = —J . Then
2 J2

I

~f

k+1

N |

f”k+1 _f”

k
<(1j 2 VK
<=1 =a,°,
2 k

k

0 0 1
and ) aq; = —= | converges
Lo E[ ) e

k=1
Hence {f - } is arapidly Cauchy subsequence.
8. Theorem

Let E be ameasurable set and 1< p < oo . Then every rapidly Cauchy sequence in 7 (E)

converges, with respectto [ (E£) norm, pointwise a.e on E to a functionin 17 (E).

Proof : We assume that 1 < p <oo. Let { I } be arapidly convergent subsequence in [7 (E). Then

o]

for a convergent series z €k ofpositive numbers we have,
k=1
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| /et _fk”p <&, vk
1
= (ﬂfm —f,J”jA <&/’ forallk.
E

= [l = fl” < fran
E

For a fixed natural number £ we have,

| i ()= [ (x)| 2 €, ifand onlyif | £, (x) - £ (0)]" 2"

Therefore by Chebychev’s inequality we get,

m{x € E|fy(@~ i@ 2e,} =m{x  E||frn@ - fi(0)] 2,7

1 1

p 2

< p_[|fk+l_fk| <—&’
S h

<g,’

Let E, ={er||fk+1(X)—fk(x)|Zek}

Thenm(E, ) <e,” .And

€

3
7\
Cs
S
N—
IN
M
EX
S
™
M

0
But p >1, hence the series z &’ converges. Therefore
k=1

0

D m(E)<oo

k=1

= lim Y m(E,)=0

n—»o0
k=n

Hence by Borel-Cantelli lemma almostaall x ¢ £ belongs to atmost finitelymany £, 's .1.e. 3

aset £, £ suchthat m (EO) =0 and forall x € E — E,, there exists an integer K(x) such that

[fis1 ()= fr(®)] <€, Vh 2 K(x)

(since x belongs to atmost finitely many £, 's )
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Thusif x € E — E,, then

| fenn (0= fi ()| <€, VE = K(x)

n+k—1

=Sk = £,00] 20 | ) = ;0]

Jj=n

n+k—1

< Z €/ forall n> K(x) and forall k.
Jj=n

< Zej forall n> K(x) and Vf .
j=n

Since the series Z €j converges, the sequence { i (x)} is Cauchy. Since the set R of real
Jj=n

numbers is complete, the sequence { Jr (x)} convergesin R . Let £, (x) > f(x).

Then f, — f a.conE. (since xe E—E, and m(Ey)=0)
Now we have,
n+k—1
[fwee =1l =] 22 |50 = 1)
Jj=n

n+k—1

< 2 - £G))
Jj=n

IA

n+k-1 5
< z .
S E]

J=n

0
ZEJZ
Jj=n

1 o
= ([t <X/
E Jj=n

" p
= [lfi = £l S(ZEJZJ . n.k
E j=n

Since f, — f pointwise a.e on E, taking limitas ¢ — oo, we get (By Fatous Lemma)

0 p
[lr=£l" <tim]| /= £, s[ze;J
E E j=n
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" p
= J|f‘fn|p S(ZE_;ZJ ,foralln.
E

J=n

0 P
Se/ :

Now J converges. Hence Z < <
j=1 =

—_

= [1f=£]" <o
E

=|f - f,|"is integrable over E.

= [ =1, e LP(E)

But f, € [/(F) foralln,and [”(E) is alinear space. Hence f, +(f—fn) el’(E), Vn.
= fel’(E)

where fis a pointwise limit of {fn} a.eon E. Thus {fn} eL’(E) and f, > f a.eonE,

pointwise then f e [7(E).i.e. [ (E) is complete.

9.  Riesz-Fischer Theorem
Let E be a measurable set and 1< p <co. Then [”(E) is a Banach space. Moreover if

{ fn} — f in [?(E), then asubsequence of { fn} converges pointwise a.e on E to /.

Proof : Weknow that 77 (E), 1 < p <o isanormed linear space. We prove that 77 (E) is complete.

Consider a Cauchy sequence { fn} in /7 (E). Then there exists a subsequence {f n } of
{ I } which is rapidly Cauchy. By previous theorem every rapidly Cauchy sequence converges pointwise

toafunctionin 77 (E). Let {f I } — / pointwise a.con Ewhere f e [”(E).Andby proposition, if
a subsequence of a Cauchy sequence converges then the Cauchy sequence converges in the normed

linear space.

Hence the given Cauchy sequence { I } converges to the function fin 7 (E).
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10. Note
Ifasequence { fn} in /7 (E) converges pointwise a.e. on E to a function fin [”(E) then

{ I } may not converge ingeneral in 17 (E).

" oy

’/n

For example: E=[0, 1], 1< p < . For each natural number n define Jo=n

Then the sequence { fn} converges pointwise a.e on E to a function /= 0. But the sequence { fn}

does not converge to /=0 w.r.t. Z”[0,1] norm.

N AL
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