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Preface

Large number of students appears for M.A./M. Sc. examinations externally every year. In
view of this, Shivaji University has introduced the Distance and Online Education Mode for
external students from the year 2008-09, and entrust the task to us to prepare the Self
Instructional Material (SIM) for aspirants. An objective of the SIM is to provide students the
material on the subject from which they can prepare for examination on their own without the help
of a tutor. Today we are extremely happy to present the book on "Partial Differential Equations”
for M.A./M.Sc. Semester-Il students as a SIM prepared by well devoted expert Dr. L. N. Katkar.
We hope that the exposition of the material in the book will meet the needs of all aspirants.

The mathematical formulation of the real world problems in science and engineering involves
partial differential equations. In order to understand the physical behaviour of these real world
problems, it is necessary to have some knowledge about the solutions of the governing partial
differential equations. For example, transverse vibrations of an elastic string are governed by the
wave equation; the temperature distribution in a homogeneous isotropic rod is governed by the
heat equation etc. The wave equation; the heat equation and the Laplace equation have been
derived by taking into account certain physical situations.

Partial differential equations of first order and various methods such as Charpit's method,
Jacobi method of finding their complete integral; general integraol; singular integral and Cauchy
integral surfaces are dealt in the first four units. The classification of second order partial
differential equations and their canonical forms are given in the unit 5. Boundary value problems
such as Dirichlet and Neumann boundary value problems are discussed in the subsequent units,
besides maximum-minimum principle and families of equipotential surfaces. The well-known
mathematical techniques namely, the most powerful method of separable of variables, Fourier
transform techniques and Green's function approach are applied to solve various boundary value
problems involving parabolic, elliptic and hyperbolic partial differential equations.

An attempt has been made to make the presentation of the various units comprehensive,
rigorous and yet simple. One of the features of this book is that in all units numerous examples
have been solved for the use of students working independently of a teacher. Although the book
is aimed to M. Sc. Distance Education Students, even SET/NET aspirants and students of
physics and engineering would find it useful.

We owe a deep sense of gratitude to the Ag. Vice-Chancellor who has given impetus to go
ahead with ambitious projects like the present one. Dr. L. N. Katkar, of the Department of
Mathematics, Shivaji University, has to be profusely thanked for the ovation he has poured to
prepare the SIM on Partial Differential Equations. We also thank Prof. S. H. Thakar, Head,
Department of Mathematics, Director of Distance Education Mode Prof. Cima Yeole, Shivaji
University, for their help and keen interest in completion of the SIM. Thanks are also due to Mr.
Sachin Kadam for computerizing the manuscript neatly and correctly.

Prof. K. D. Kucche
Chairman
BOS in Mathematics
Shivaiji University, Kolhapur-416004.
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Each Unit begins with the section objectives -
Objectives are directive and indicative of :
1. what has been presented in the unit and
2. whatis expected from you

3. what you are expected to know pertaining to the specific unit,
once you have completed working on the unit.

The exercises at the end of each unit are not to be submitted to
us for evaluation. They have been provided to you as study tools to
keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.
It is also advised to see the new syllabus 2022-23 and study the
reference books & other related material for the detailed study of the
paper.

(viii)




UNIT -1

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Introduction :

The mathematical formulation of the real situations in science and engineering involves partial
differential equations. In order to understand the physical behaviour of the real world situations, it is
necessary to have some knowledge about the properties and the solutions of the governing partial
differential equation. A partial differential equation is one involving more than one independent variable,
a dependent variable and its partial derivatives with respect to the independent variables. In general,
partial differential equations arise in physics in problems involving electric fields, fluid dynamics, wave
motion etc. These equations are called Heat equations, Laplace equations wave equations. Each is
profoundly significant in theoretical physics and their study is stimulated in the development of many
mathematical ideas.

The basic concepts from solid geometry play important roles in the study of partial differential
equations and it is essential that they should be understood thoroughly before the study of partial
differential equations is begun. Hence we define some basic concepts from geometry.

Curves and Surfaces :

Curves in Space : Let [ be an interval on the real line R and t a continuous variable which varies in L.
Iff}, f,, f5 are continuous functions of t, then the equations.

x=fi(0,y= 1200,z = 130, - (L.1)
represent the parametric equations of a curve in three dimensional space.
Note : (i) tis called the parameter of the curve.

(i1) The standard parameter is the arc length of the curve measured from some fixed point on the
curve to any current point, it is denoted by s instead of 't.

(ii1) The square of an infinitesimal arc length between two neighbouring points on the curve in 3-
dim. space is given by

ds® =dx® +dy* +dz*,

(&) (%) (%)
== | +|=| +|=| =1,
ds ds ds

It follows from equation (1.1) that the condition that the parameter t be the arc length of the curve is
that

RN AL
N+ L+ =1.



Examples :

1) The simplest example of a curve in space is a straight line with direction cosines ( ¢ ,m,n)
passing through a point (X, ¥, 7) and is given by

X=xq+Uls,y=y,+ms,z=z,+ns, .. (1.2)
where s is the parameter.
(i) A right circular helix lying on a circular cylinder is a space curve and is given by the parametric
equations

X=acoswt,y=asinwt,z=kt, .. (1.3)

where a, k, w, are constants.

Surface : Let (X, y, z) be the cartesian co-ordinates of a point in a 3-dimensional space. Then the
functional relation between these variables x, y, z given by the equation

F(x,y,2)=0 .. (1.4)
1s called a surface.

IfF is linear, then equation (1.4) can be solved for one of the variables and it can be expressed in terms
of the other two independent variables and we are left with only two degrees of freedom. Hence a
surface is defined as the locus of a point moving in space with two degrees of freedom.

Parametric Equations of a Surface :

A set of those points of a 3-dimensional space which are expressed as a function of two
parameters is called a surface. Thus a set of relations of the form.

x=Fw,v),y=FWv),z=Fu,v) .. (1.5)
determines a surface.
Exaplanation : Solving the first pair of equations (1.5)
viz., x=Fu,v),y=F(u,v),
foruand v as functions of x and y, we obtain
Say u=A(x,y),v=pu(x,y).
This shows that once x and y are known, then u and v are determined. Then corresponding value of z

is obtained by substituting these values of u and v in the third equation z = F;(u,v) . In otherwards the

value of z is determined once the values of x and y are known. Symbolically,

z=F, (ﬂ,(x,y),,u(x,y)). .. (1.6)

Which is a functional relation between the coordinates x, y and z. Thus any point (X, y, z) determined
from equations (1.5) always lies on a surface. The equations (1.5) therefore are called the parametric
equations of the surface.

Note : Not every point in space corresponds to a pair of values of u and v.

2



For that

—a(Fl’FZ) =0
o(u,v)

Note : Parametric equations of a curve and a surface are not unique.

Examples :

(1)

The parametric equations of a surface of a sphere of radius ‘a’ are given by

X = asinucosv,
y=asinusinv, a= constant

X = acosu.

The same surface is also represented by the set of equations

2

or

X=a 1_vz)cosu
(1+v2) ’

y=a 1_vz)sinu
(1+v2) ’

z= 2av ) a=constant
(l+v2)

The parametric equations of a cone x? + y? = z* tan” @ are given by
x =rsinécos g,
y=rsindsing, @ = constant

z=rcos@ -

xX=rcos¢, y=rsing, z=rcotg.

A Curve Through Surfaces :

Consider a surface f (x, y, z) =0,

and a plane z=k.

. (1.7)

. (1.8)

- (1.9)

.. (1.10)

. (1.11)
. (1.12)

A point whose co-ordinates satisfy equation (1.11) and which lies in the plane (1.12) has its co-
ordinates satisfying the equations

z=k, f(x,y,k)=0,

which represents a curve in the plane z=k.

. (1.13)



For example : Let S be a sphere with equation z

Cryiazi=a’.

Then the points of S with z=k have a z=k

z=k and v

24yt =a’—k?,

which is a curve C and the curve is a circle of radius >
a’ —? fork<a.
X

Thus a curve can be thought of as the intersection of the surface (1.11) and the plane (1.12).

In general, the common points to the surfaces,
S, f(x,y,2)=0,
and S,:g(x,»,2)=0,

lie on the curve C.

Thus, the locus of a point whose co-ordinates satisfies a pair of relations S; =0 and S, =0 is a
curve in space.

Direction Cosines of a line passing through two points :

Considera line through the points P (x;, y;,z,) and Q(x,, v,. 2, ). The vector P is defined by
P_Qz(xz,yz,zz)—(xl,yl,zl),
P_Q:(x2 — X1, Y2~ V1,23 — 21 ) 5
= PO =(x,—x)i+(ys =) j+(z2—2)k. .. (1.14)

Direction cosines of a line @ are the cosines of the angles made by the line @ with

co-ordinate axes. Let cosa, cos 3, cos ¥ be the direction cosines of the line PQ, then we have

from equations (1.14)
PQ-i =‘P_Q‘cosa =(x,—x;)

(x2 =)

—>Cosa = .
PQ
Similarly, cos B = (2 _le), .. (1.15)
P




(22_21)_
PQ

cosy =

Yo=% Vo= 575
Thus | [p o’ [pol * |pg| |2 the direction cosines of the line through the points P(x;, y;,z,)

aIld Q(X2,y2,22).
Note : From equations (1.15), we see that x, —x,, y, —y,, Z, —z; are proportional to the direction

cosines of the line and hence they represent the direction ratios of the line P_Q .

The Direction Cosines of the tangent to the curve :
Example 1 : Show that the direction cosines of the tangent to the curve
X =x(s),y = y(s), z = z(s),
where s is the arc length of the curve measured from the fixed point p, on the curve to any point P on

) (&8 &)
the curve are dS’dS’dS .

Solution : Consider a curve in 3-dimensional space given by

X =Xx(s5), ¥y =y(s), z = z(s), ... (1.16)
where s is the arc length measured from the fixed point p;, to any point P on the curve.
Thus s=P,P.
Let Q be any other point at a distance §g from P,

= F0O=5+0s.
Consequently, the co-ordinates of the point Q are / >y
0=(x(s+8s),y(s+6y),z(s+55)). .

Since §s is measured along the curve from P to Q and is therefore greater than the length §¢ of the
chord PQ.

In the limiting caseas 54y (,wehave

lim 22 =1 L (1.17)

The direction cosines of the chord PQ are given by

(x(s+5s)—x(s) y(s+35s)—y(s) Z(s+5s)—z(s))
oc ’ oc ’ oc '



By Taylor’s series expansion, we have

x(s+0s)—x(s) = 5S(Z j+0(5)

Hence direction cosines of the chord PQ are given by

os ( dx dy dz
(5 (ds +00s )) (ds +0(os )j 50(0’ +O(os )D

In the limiting case as 55, the point Q tends towards the point P and the chord PQ takes up

to the tangent to the curve at P. Thus as 54 (), the direction cosines of the tangent to the curve

(1.16) atapoint P are
(dx dy dz}
ds’ ds’ ds
Direction ratios of the normal to the surface :

Let us consider that the curve C (defined in equation

S (1.16)) lies on the surface S: F (x,y,z)=0.
Any point (x(s), ¥(s), z(s)) on the curve lies on this surface
P > T satisfies the equation
/g/fﬁ\\\ F(x(s), (s),2(5)) = 0. . (1.18)

If the curve lies entirely on the surface, then equation
(1.18) is an identity for all values of s. Differentiating
equation (1.18) with respectto s, we get

OF dx OF dy OF dz _
—_—t—

ox ds oy ds oz ds - (1.19)

(dx dy dz
where | — 57 5

(1.19) shows that the tangent to the curve C at the point P is perpendicular to the line whose direction

aF aF aF
ratios are 8 6y 82

j are the direction cosines of the tangent to the curve C at the point P. Equation

OF oF oF
o 8 oy | are the direction ratios of the normal to the surfaces S at the point P.

Example 2 : Find the direction cosines of the normal to the surface S of the form z=f(x, y).

Solution : Let the surface S : z = f(x, y)
= F(x,y,2)=f(x,y)—z .. (1.20)

6



oF OF OF
The direction ratios of the normal to the surface S': F(x,y,z)=0are | 7 >~ >~ |,
ox Oy Oz

where from equation (1.20), we have

oF o &
ox Ox Ox’
oF_ &
oy oy oy ) and
oF__,
0z
0z 0z
Let us introduce the notations —=p and =~ ¢
Ox oy
OF oF aF\_
Thus ooy o) PP

= Direction ratios of the normal to the surface (1.20) are (p, g, -1). Hence the direction cosines of
the normal to the surface S at the point P are

1
> > (Pa%_l).
p +q +1

Equation of a line when two surfaces are given :
LetS,:F(x,y,2)=0and S, : G (x,y, z) = 0 be two surfaces. Then the equations of the

tangent planes 7; and 7, at point P (X, y, z) to the surfaces S; =0 and S, = 0 are given by

Foz-»%E

OF
(X—x)a+(Y—y) . % =" .. (1.21)
6G 6G 6G
(X—x)—+(Y-y)—+(Z-2)—=0
and X)—=+(Y~-y) o 2)—=0, ..(122)

where (X, y, z) are the co-ordinates of any other point on tangent plane. Let C be the locus of the
intersection of two surfaces S| and S,, and L the intersection of two planes 7; and 7, . We see that

the intersection L of the planes 7, and 7, is the tangent at P to the curve C, which is the intersection

of the surfaces S, and S,.



It follows from equations (1.21), (1.22) that the equation of the line L is

F, F| |F. F| |F. F,
G, G| |G. G |G, G,

or X-x Y-y _Z-z .. (1.23)

a(F,G)  8(F,G) o(F,G)
o(y,z)  d(z,x)  O(x,y)

o(F,G) &(F,G) O(F,G)
0(y,z) ~ 0(z,x)  (x,y)

This is the equation of line whose direction ratios are ( J , when two surfaces

S, and S, are given.
2)  Partial Differential Equations :

A partial differential equation is one involving more than one independent variables x, y, t, ...,
one dependent variable g ¢ ¢” insome domain D and its partial derivatives 6,.,6,,...,0,,,6,,...,

such as,
f(xayatﬂ'“’e’ gxaey"“’gxta“') = 0 s (21)

where " denotes a set of functions possessing continuous partial derivatives of order n.

Order of a partial differential equation :

The order of a partial differential equation is the order of the derivative of the highest order
occuring in the equation.

In this unit and in the next three units, we shall consider partial differential equations of the first
order with one dependent variable z and two independent variables x and y. Then the most general first
order partial differential equation is given by



Sy zp g =0, .. (2.2)

Oz 0z
where p=—,g=—-
ox oy

Partial differential equations arise in a large variety of subjects in geometry, physics, mathematics etc.

Origin of first order Partial Differential Equations :

We shall examine in the following the intersecting question of how the first order partial differential
equations arise.

Example 3 : Find the first order partial differential equation which represents the set of all spheres
with centres on the z-axis and of radius a.

Solution : The set of all spheres with centres on the z-axis and of radius a is given by

2 +y +(z-0) =a?, .. (2.3)
where a and c are constants.
Difterentiating equations (2.3) with respect to x and y we get,
x+p(—-—)=0,
and yt+qgiz—c)=0.
Eliminating the arbitrary constant ¢ from the equations we obtain,
yp—xq =0,
which is the required first order partial differential equation.

Example 4 : Find the partial differential equation which represents the set of all right circular cones
with z-axis as the axis of symmetry.

Solution : The set of all right circular cones with z-axis as the axis of symmetry is given by the equation
x2+y?=(z-c)* tan’ a, ..(2.5)
where c is a constant and ¢ is a constant semi-vertical angle of the cone.
Differentiating equation (2.5) with respect to x and y we get
X = p(z—c)tan2 a,
_ 2
y=q(z—c)tan” « -
Now eliminating c and ¢ from the above equations we get

yp—xq=0. .. (2.6)

Thus the set of cones, vertex on the z-axis with semi-vertical angle ¢ is characterized by the first order
partial differential equation (2.6).



Example 5 : Find the partial differential equation which represents all surfaces of revolution with
z-axis as the axis of revolution.

Solution : All surfaces of revolution with z-axis as the axis of revolution are of the form

L= F(r), - (27)

where ;= /x% + y2 and F is an arbitrary function of class C! on some domain D.

On differentiating equation (2.7) first with respect to x and then with respect to y we get respectively
87" ’ 81”
= F ! r)y— , q = F (l” ) —_—
p=F( )8x o

where or _ r @ _JY

B
:>p=(ijxm,
r

and q=(1)F1w.
r

Eliminating the arbitrary function F from the above equation we get
yp —xq =0, .. (2.8)
which is a partial differential equation of first order satisfied by all surfaces of revolution.

Note : We see from examples (3), (4) and (5) that the surfaces spheres, cones and in general all
surfaces of revolution with z-axis as the axis revolution give rise to the same first order partial differential
equation. What is common in all surfaces is that all surfaces of revolution have the z-axis as the axis of

symmetry.
The obvious generlization of the surfaces of revolution with z-axis as the axis of symmetry is

the relation between x, y and z of the form F (u, v) =0, where u and v are functions of x, y, z. Hence
we shall now generalize the above argument slightly in the following.

Example 6 : Find the partial differential equation satisfied by all surfaces of the form,
Fuv)=0,

whereu=u(x,y,z)and v=v (X, Y, z) are known functions of X, y and z and F is the arbitrary function
ofuandv.

Solution : The equations of all surfaces ingeneral is given by the equation.
F(u,v)=0, ..(2.9)
whereu=u(x,y,z)and v=v (X, Y, z) are known functions of x, y and z.
Differentiating equation (2.9) with respect to x and y respectively, we get
F, (ux+uzp)+Fv(vx+va):0, ... (2.10)
10



and F,(u, +u,q)+F,(v,+v.q)=0. .. (2.11)

Eliminating /7, and F, between equations (2.10) and (2.11) we get

(Vx+pv2) _ (Vy+qu)

- b

(ux +puz) (uy +quz)

= P(uyvz _uzvy)+q(uzvx —uxvz)+(uyvx —uxvy) =0,

o(u,v) N o(u,v) _ o(u,v) . .
d(y,2) qa(z,x) a(x,y) (2.12)

This is the partial differential equation of first order satisfied by all surfaces of the form

=P

F(u,v)=0,
a(u,v) B
where o(x,) TUYy UV

is the Jacobian of u, v with respect to x and y.

Theorem : A necessary and sufficient condition that there exists between two functions u (x, y) and
v (X, y)arelation F (u, v) =0 oru=H (v) not involving x or y explicitly is that

o(u,v)
o(x,»)

Proof : The necessary condition

Let there exist between two functions u (X, y) and v (X, y) a relation of the type

Fwv)=0 .. (2.13)
not involving x and y explicitly.
Difterentiating equation (2.13) with respect to x and then with respect to y we get

Fu +Fy =0, .. (2.14)
and Fu,+Fy, =0. .. (2.15)

Eliminating F, and ', between (2.14) and (2.15) we get

= uw, —u,, =0,

11



o(u,v)
(x,»

= =0, .. (2.16)

jo))

N—"

ov
The sufficient condition : Letu (x, y) and v (x, y) be two functions of x and y such that 5 #0 and

o(u,v)
if P (x y) =0 then we claim that there exists a relation F (u, v) = O not involving x and y explicitly.

Eliminating y between the fuunctions u (x, y) and v (x, y) we get a relation
Fvx)=0. .. (2.17)
Difterentiating (2.17) with respect to x and y respectively we get

F.+Fu +Fy =0, .. (2.18)

and Fu,+Fy, =0. ..(2.19)
Eliminating F, from these equations we get
u
F.+F, (ux ——yva =0

Vy

= Fwv,+F, (uxvy —uyvx) =0

2

o(u,v)
= v, +F, =0, ..(2.20
Y a(x,y) ( )
o(u,v)
. >~ )
Since a(x,y) ,
= vay =0,

=>F. =0asv,#0.
= the function F does not contain the variable x explicitly. Hence from the relation (2.17) we have
Fu v)=0.

Hence the condition is sufficient.

Remark : We have obtained partial differential equation of first order by eliminating arbitrary constants.
(Refer examples (3), (4)).

Now consider two parameter family of surfaces given by the equation.

f(x, vz ab)=0.

12



Solving for z, we get
z=F(k, a b), .. (2.21)

where a and b are arbitrary constants. Differentiating equation (2.21) with respect to x and then with
respect toy, we get

p=F,and g=F,. .. (2.22)

The set of equations (2.21) and (2.22) constitute three equations involving two arbitrary constants ‘a’
and ‘b’. Now eliminating ‘a’ and ‘b’ from these equations we obtain a relation of the type.

S yzp g =0 .. (2.23)
which is a partial differential equation of the first order. In general equation (2.23) need not be linear.

Example 7 : Obtain the partial differential equation of first order by eliminating arbitrary constants
from the relation

(x—a)2 +(y—b)2 +z2=1.
Solution : We are given two parameter family of surfaces
(x—a)’ +(y-b) +2% =1. .. (2.24)

Equation (2.24) represents a set of all spheres of unit radius with centre in the xy plane. Differentiating
equation (2.24) with respect to x and y we get respectively.

(x—a)+zp=0,

=zp=—(x-a), .. (2.25)
and (y=b)+2g=0,

= zqg=—(y-b). .. (2.26)

Eliminating the constants ‘a’ and ‘b’ from equation (2.24) we obtain

2(p2+q>+1)=1. .. (2.27)
This is the first order non-linear partial differential equation.

Example 8 : Obtain the partial differential equation of first order by eliminating arbitrary constants
from the relation.

2(1+4%) = 8(x+ay+b)3-
Solution : Two parameters family of surfaces are given by the equation

22 (1+a*) =8(x+ay+b)’. .. (2.28)

Differentiating equation (2.28) with respect to x and y we get respectively.

13



2(d +l)p:12(x+ay+b)2,

and z(a3+1)q:12a(x+ay+b)2-
12 2
=>p=———(x+ay+b
L LA
12a 2
=———(x+ay+b
and Z(a3+1)( ) .
Consider

3
pS+q3 :%(x+ay+b)6(l+a3)
23(a3+1)

2

_ (12)3 (x+ ay+b)6

z? (a3 +1)2

(12 z(x+ay+b)°

(23 +1)]

3 6
_(2) z(x+ay+b)” by equation (2.28)
(8)* (x+ay +b)6
L g =27s .. (229)

This is the required first partial differential equation.

Example 9 : Eliminate the arbitrary functions from the following equations and find the corresponding
partial differential equations.

(1) z:xwaF(x2 +y2),
(i) 7 (x+y,x-z),
(i) z= f(x+ct)+g(x—ct).
Solution :
1) The equation of the surface is given by
z=xy+F(x2+y2), ... (2.30)
where F is arbitrary function. Differentiating equation (2.30) with respect to x and y we get respectively
p=y+2xF',
14



and qg=x+2yF".
Eliminating F' between these equations we obtain
(p-»)y=(¢-x)x,
= x° —yz—qx+py:O-
This is the required partial differential equation.

(i1) The equation of the surface is given by the equation
F(x—i—y,x—x/;) =0,

where F is arbitray

Let u=xtyandv=x-./;.

Hence equation (2.31) becomes

F(uv)=0.

Differentiating equation (2.33) with respect to x and y respectively we get

F,(u,+u.p)+F,(v,+v.p)=0 and

F, (uy +uzq)+ F, (vy +vzq) =0,
where from equation (2.32), we find

1

u, =1, u,=1, v,=1, v, =-

y

=0

)

:>FM+FV(1—

1
F,—F|—=q|=0
and u v(z /_qu .

Eliminating /7, and £, between equations (2.34) and (2.35) we get

pP-q=2Vz

This is the required partial differential equation

(ii)  Here z=f(x+ct)+g(x—ct),
=z =f"(x+ct)+g'(x-ct),
zo=f"(x+ct)+g"(x—ct),
z,=cf "(x+ct)—cg'(x—ct),

15
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z,=c f"(x+ct)+c?g"(x—ct),

=’z =z, .. (2.37)
This is the required second order partial differential equation.

Exercise :

1. Obtain the partial differential equation of first order by eliminating arbitrary constants from the
relations

(i) z=x+ax’y* +b, (iii) z = (x+a)(y +b),

(ii) 2z = (ax +y)’ +b, (iv) z=ax+by.
2. Obtain the partial differential equation by eliminating arbitrary functions from the following
relations.

(i)Z:x+y+F(xy), (ii)F(x—z,y—z)zO,

Xy . — X

z=F| = z=F|—
(i) ( - ] (iv) U
(V)Z:F(x—y), (vi) f(x2+y2+22,22—2xy)=0-

3. Classification of First Order Partial Differential Equations :

1. Linear Equation : A first order partial differential equation is said to be a linear equation if it
is linear in p, q and z. It is represented in the form

P(x, y)p+0(x,y)q = R(x,y)z+S5(x,y), - (3.1)
e.g YP—Xq=Xyz+Xx.
2. Semi-linear Equation : A first order partial differential equation is said to be a semi-linear

equation if it is linear in p and q and the coefficients of p and q are functions of x and y only. It is
represented in the form.

P(x,y)p+0(x,y)q =R(x,,z), ..(3.2)
c.g. Xp—yxq = xz?.
3. Quasi-linear Equation : A first order partial differential equation is said to be a quasi-linear

equation ifit is linear in p and q.

The equation of the type

P(x,y,2)p+0(x,,2)qg = R(x, y,2) .. (3.3)

16



is called quasi-linear equation.

€.g. (x2+zz)p—xyqzzzx+y2-
4. Non-linear Equation : The partial differential equations of the form f(x, y, z, p, ¢) = 0 which
do not come under the above three types are said to be non-linear equations.

eg. pq=z
This is anon-linear partial differential equation of first order.

Note : We observe that by eliminating arbitrary functions, we always produce quasi-linear partial
differential equations only. However, we obtain both quasi-linear as well as non-linear partial differential
equations when we eliminate arbitrary constants. If further, the number of constants to be eliminated
from the given relation is just equal to the number of independent variables then the partial differential
equation obtained by eliminating these constants is an equation of first order. However, if the number of
constants to be eliminated is greater than the number of independent variables, the equation of second
order will arise.

Classification of Integrals :
Consider a first order partial differential equation
fxxyzp g =0 .. (3.4)
A solution of equation (3.4) inaregion p — R x R is given by z=z (X, y) as a continuously differentiable

function of x and y for (x, ) € D such that the value of p and q obtained from the relation z=z (x, y)

must satisfy the equation (3.4). A solution z =z (X, y) of the first order partial differential equation
represents a surface in 3-dimensional space. This surface in 3-dimensional space will be called an
integral surface of the partial differential equation.

There are different types of solutions (integral surfaces) for the first order partial differential
equation (3.4).

1. Complete Integral : A complete integral of partial differential equation (3.4) is a relation
between the variables involving as many arbitrary constants as there are independent variables, provided
the value of p and q obtained from it satisfies equation (3.4). Geometrically it represents doubly infinite
system of surfaces.

Alternately, it is also defined as follows :
A two parameter family of solutions
z=F((y a b) ..(3.5)
is called a complete integral of the first order partial differential equation (3.4) if in the region considered,

the rank of the matrix
Fa an Fya
M =
Fb Fxb Fyb
1S two.
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2. General Integral : A solution of a partial differential equation (3.4) of the form

¢(M,V)=0, (36)
whereu=u(x,y,z)andv=v (X,y,z)and ¢ is an arbitrary function, is called the general integral.

The complete integral (3.5) can be used in the derivation of general integral. Let the complete
integral of the partial differential equation (3.4) by given by two parameter family of surfaces of the
form.

z=F(x,y,a,b). ..(3.7)

If we choose b = ¢(a) we get one-parameter family of solution of equation (3.4) of the form

z=F(x,y,a,4(a)). ...(3.8)

This is a sub-family of the two parameter family (3.7). The envelope of (3.8) if it exists and is obtained
by eliminating ‘a’ between (3.8) and

F,+F,¢'(a)=0. .. (3.9)
Solving this equation for ‘a’ we get
a=a(x,y).
Substituting this in equation (3.8), we obtain an integral surface of (3.4) as
z=F(x,y,a(x,y),¢(a(x,))) . (3.10)

Ifthe function a (x, y) is arbitrary, then such a solution is called a general integral (general solution) of
(3.4). Geometrically it represents the envelope of one parameter family of surfaces.

Note : When ¢(a) is a particular function, then we obtain a particular solution of the partial differential
equation. Thus different choices of ¢ may give different particular solution of the partial differential
equation.

Characteristic Curve :
Consider one-parameter family of surfaces

f(x,y,z,a)=0. .. (3.11)
For slightly different value of ‘a’ say 4 + §q , the system of surfaces becomes

f(x,y,z,a+0a)=0. .. (3.12)

These two surfaces will intersect in a curve given by the equation

f(x,y,z,a)=0, f(x,y,z,a+§a):0. ..(3.13)

Similarly, we can easily see that the curve may also be considered to be the intersection of the surface
(3.11) with the surface whose equation is

1

g[f(x,y,z,a+5a)—f(x,y,z,a):|:0_

18



As Sa — 0, we see that this curve of intersection is given by the equations

f(x,y,2,a)=0, %f(x,y,z,a)=0. .. (3.14)

This limiting curve is called the ‘characteristic curve’ of equation (3.11). Geometrically, it is the curve
on the surface (3.11) approached by the intersection of (3.11)and (3.12) as §q¢ — 0.

Envelope of the one-parameter family f (x,y, z,2)=0:

Consider a characteristic curve

f(x,t,a)=O,%f(x,y,z,a)=0, .. (3.15)

where ‘a’is a parameter. As the parameter ‘a’ varies, the characteristic curve (3.15) will trace outa
surface whose equation is obtained by eliminating ‘a’ between equations (3.15). Let this surface be
given by

g(x,y,2)=0. .. (3.16)

This surface is called the envelope of the one-parameter system f'(x, y, z, @) = 0.

e.g. Consider one parameter family of surfaces

Pay?+(z—a) =1. - (3.17)

It represents the family of spheres of unit radius with centres on the z-axis.
If f:x2+y2+(z—a)2—l,

then fo=-2(3-a).

Z
A
<< > The characteristic curve is given by

|
j/xzﬁLszr(Zd)z_l x2+y2+(z+a)2=1
-(-O,H,a\

- _/ Cilarac‘;erlst;c Curve - and z=g ..(3.18)
z=a,x"+y +(z—a) =1 o .
_ Eliminating ‘a’ between equations
oY (3.18) we get
<« x% + y2 =1 ' &
envelope 2, .2
//—\ Payt=l . (3.19)

Which represents the envelope of the family and is the cylinder.

We shall show that the envelope of one-parameter family of surfaces if it exists is a solution of
the given partial differential equation.
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Result:Let z=F (x, v, a) be a one-parameter family of solutions of the first order partial differential

equation f'(x, y, z, p, ¢) = 0. Then show that the envelope of this one parameter family, if it exists, is
also a solution of the partial differential equation.

Proof : Consider the first order partial differential equation,

f(x.y.2,p.q)=0. .. (3.20)
The one-parameter family of solutions of (3.20) is given by

z=F(x,y,a). .. (3.21)
Difterentiating equation (3.21) with respect to a we get

F, (x,y,a):O. ... (3.22)

Now the envelope of the family of one-parameter is obtained by eliminating ‘a’ between the equations
(3.21)and (3.22). Let the envelope be given by

z=G(x,y):F(x,y,a(x,y)), ...(3.23)
where a (x, y) is obtained from equations (3.22) by solving for ‘a’in terms of x and y.
Now we prove that the envelope (3.23) is a solution of equation (3.20). Hence differentiating
equation (3.23) with respect to x and y we get
p=G.=F . +Fa and g=G,=F,+Fa,.
Using equation (3.22), we get
p=G,=F, q=G,=F, ...(3.24)
This shows that the envelope will have the same partial derivatives as those of amember of the
family. Sincep =F andg = F| ) satisfy the equation (3.20). This implies thatp = G, and g = Gy also

satisfy the partial differential equation (3.20). This proves that the envelope of one parameter family of
surfaces is also a solution of a partial differential equation.

Envelope of the two-parameter family of surfaces f(x,y,z,a,b)=0:

Consider the two-parameter system of surfaces defined by the equation

f(x,yzab) =0, .. (3.25)
where ‘a’and ‘b’ are parameter.
Let b=¢(a). ..(3.26)

Difterentiating equation (3.25) with respect to a we get

T, I

= 25 .. (3.27)

The envelope is obtained by eliminating ‘a’ and ‘b’ from equations (3.25), (3.26) and (3.27).
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3. The Singular Integral :

The envelope of the two-parameter family of surfaces z = F'(x, y, a, b), which is obtained by
eliminating ‘a’ and ‘b’ from the equations

z=F(Xx, a b),
F,=0, F,=0,
is called the singular integral of the first order partial differential equation.

Note : This solution cannot be obtained by giving any values to the constants a and b and hence is not
contained in the complete integral.

Result : Prove that singular integral is also a solution of the first order partial differential equation.

Proof : Let a two-parameter family of solutions

z=F(a y ab) .. (3.28)
be a complete integral of the first-order partial differential equation
Sy zp g =0. ..(3.29)

The singular solution of (3.29) is the envelope of (3.28). We will show that the envelope of this
two parameter family (3.28), if it exists, is also a solution of (3.29). Hence differentiating equation
(3.28) with respect to ‘a’ and ‘b’ we get respectively

F,(x,yab)=0 ... (3.30)
and Fy(x,yab)=0 ..(3.31)

Now eliminating the parameters ‘a’ and ‘b’ between equations (3.28), (3.30) and (3.31) we obtain the
envelope

z=G(x,y)=F(x, 5 akx)y), b(x,y), ...(3.32)
where a(x,y) and b(x,y) are obtained from equations (3.30), (3.31) by solving for ‘a’ and ‘b’ in terms
ofxandy.

Difterentiating equation (3.32) with respect to x and then with respect to y we get respectively
p=G.,=F.+F,a. +Fpb,,

and q=G,=F,+F,a,+Fb,.

By virtue of (3.30) and (3.31) we have
p=G,=F and¢g=G,=F,.

This shows that the envelope will have the some partial derivatives as those of a member of the
family. As the two-parameter family is the complete integral of the first order partial differential equation
(3.29). Hencep = G, and g = Gy also satisfy the equation (3.29). This proves that the envelope of
the two parameter family (singular integral) is also a solution of the first order partial differential equation.

Note : The singular integral can also be found from the given partial differential equation without
knowing the complete integral.
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Result : Prove that singular solution is obtained by eliminating p and q from the equations.

fayzp@)=0,f,x%»zpq=0,1,&yzpq=0.
Proof : Consider the first order partial differential equation given by

f&yzp q=0.
The complete integral of (3.33) is given by

z=F({ a b).

Difterentiating (3.34) with respect to x and y we get respectively
p=F.(x,y,ab),

and q=Fy(x,y,a,b).

Substituting equations (3.34), (3.35) and (3.36) in equation (3.33) we obtain

f(x,y,F(x y,a, b) (x y,a, b) (x y,a, b)) 0.
This holds identically for all ‘a’ and ‘b’. Now we shall show that equation (3.37) satisfies
fp=Oandfq=O.
Differentiating equation (3.37) with respect to ‘a’and ‘b’ we get respectively.

sza +prxa +quya =0
and szb+ p xb+fq yb_
However, on the singular solution, we have
F,=0and F,=0.
Hence equations (3.38) and (3.39) reduce to
fp xa+quya =0
fp xb+quyb:O
Multiplying equation (3.40) by F),, and equation (3.41)by F,,, and subtracting we get
Fo(FuFyp=FyF)=0.
Since on the two-parameter family of surface (3.34)

FoFyp—FoF,, #0.

It FyyFy~FyF,, =0
an Fya

then -,
Fxb Fyb
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F, F_ F
a xa ya
and hence the matrix ( F, Fy F, J will not have rank two (Since F, =0, F = 0), which contradicts

xXa

the fact thatz = F'(x, y, a, b) is a complete integral. Hence from equation (3.42) we have

ﬁ) =0.
Similarly, we prove fq =0.
This proves the result.
4. The Special Integral : Usually (but not always) the three integrals viz., the complete integral,

the general integral and the singular integral include all the integrals of the first order partial differential
equationf(x, y, z, p, ¢) = 0. However, there are some solutions of certain first order partial differential
equations which do not fall under any of the three classes. Such solutions are called ““sepcial integrals™.

Example 1 : Show that z = ax + by + a + b? is a complete integral of z = px + qy + p? + ¢°.
By taking (1) = +/1 =42 , (1) b=a, find the envelope of the sub-family. Further find the singular
integral.
Solution : Let

Z:F(x,y,a,b)zax+by+a2+b2. ...(3.43)
To prove z = F (x, ), a, b) is a complete integral of equation

z=px+qy+pi+q’. .. (3.44)

F, a F xa F, ya
We prove the rank of the matrix F, Fy, F, 1s two.

Thus from equation (3.43) we find

F,=x+2a,F,=y+2b, F,,=1, F,=0, F,

=1, F

X

=0
Hence the above matrix becomes

F, Fyy Fy) (x+2a 1 0

F, Fy, F,) \y+2b 0 1)
Obviously, the rank of the matrix is 2. Hence equation (3.43) is a complete integral of (3.44).

Case 1 : Take p — /] — 42

Then the one-parameter sub-family is given by
z:F(x,y,aVl—az):ax+\/1—a2y+1_ ... (3.45)

Differentiating equation (3.45) with respect to ‘a’ we get
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_ ay  _
Fa=x- =0 ... (3.46)

From (3.45) we find

V1-a?
z—1l=al| x+ » Y, ..(3.47)

where from (3.46) we find

x2+y2'

Consequently, eliminating ‘a’ from equation (3.47) we obtain

(o))

Z>(Z—l)2 :x2+y2. ... (3.48)

This is the envelope (particular solution) of the equation (3.44).
Case : If b=a, then the one parameter sub-family of surfaces is given by
z=a(x+y)+2a>. .. (3.49)
Differentiating this with respect to a we get
F,=0=>x+y+4a=0,
=>x+y=—4a.
Substituting this value in equation (3.49) we get

)

16 °

=8z=—(x+y). . (3.50)

This is another envelope (particular solution) of the given partial differential equation (3.44).
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Now to find singular integral of (3.44), we differentiate equation (3.43), with respect to ‘a’ and then
with respect to ‘b’, we get respectively

F,=x+2a=0, .. (3.51)
and F,=y+2b=0. ... (3.52)
Eliminating ‘a’ and ‘b’ between equations (3.43), (3.51) and (3.52) we get

Loy Y
2 2 4
:>4Z:—(x2+y2)’ (353)

which is a singular integral of (3.44).

Note : The singular integral of equation (3.44) can also be obtained directly by eliminating p and q
between equations (3.44) and

X
fp:x+2p:O:>p:—§,

and Je=y+2q=0=q=-

N =

Substituting these in equation (3.44) we get
4z = —(x2 + y2 )

as the singular integral of equation (3.44)
Example 2 : Show that

(x—a)2 +(y—b)2 +z2 =1

is acomplete integral of
22(1+p2+q2)=1,

By taking (i) b=2a, (ii) b =a, show that the envelopes of the subfamily are respectively.
(y—2)c)2 +5z% =5 and (x—y)2 +2z%2 =2,

which are particular integrals. Show further that , — +1 are the singular integrals.

Solution : Let

f(x0.2,p,9) =2 (14 p7+47)-1=0 .. (3.54)

be the given partial differential equation.
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Let F(x,y,z,a,b)z(x—a)2+(y—b)2+22—1 ... (3.55)

be the two-parameter family of surfaces.

Differentiating (3.55) with respect to a, b etc., we find

F,=-2(x—a), F,=-2(y—=b), F,,==2, F, =0, F, =0, F

Fa an Fya _ —2(x—a) -2 0
F, F, F,) \=2(y-b) 0 =2

yb

b =2

Hence the matrix

has rank 2.
= ()c—a)2 +(y—b)2 +z2=1.
is a complete integral of equation (3.54)

Case 1 : Take b = 2a.

Hence from (3.55) the one-parameter sub-family of surfaces becomes.
(x—a)2+(y—2a)2+22:1. ... (3.56)
Differentiating (3.56) with respect to ‘a’ we get
—2(x—a)—4(y—2a) =0,
=>x+2y-5a=0, ..(3.57)

x+2y
5

Substituting this in equation (3.56) we get

2 2
(x_x+52y) +(y_2x-i5-4yj L2 -1,

= (y-2x)*+52% =5. .. (3.58)

This is the envelope of one parameter sub-family.

Case 2 : If we take b =a, then the one parameter family of sub-system becomes

(x—a)2+(y—a)2+zz=1. ... (3.59)
Differentiating this equation with respect to ‘a’ we get

x+y—-2a=0,

:>a=x;y . (3.60)
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Substituting the value of ‘a’ in equation (3.59) we get

2 2
(x_x+yj +(y_x+yj Ll ’
2 2

= (x-y)’ +222=2. - (3.61)

This is the envelope of one parameter family. Equations (3.58) and (3.61) are particular solutions of
(3.54).

Now to find singular integral of equation (3.54), we differentiate 2-parameter family of surfaces (3.55)
to get

Fa(x,y,z,a,b):x—a=0, ... (3.62)

Fb(x,y,z,a,b):y—bzo. ... (3.63)
The envelope is obtain by eliminating ‘a’ and ‘b’ between (3.55), (3.62) and (3.63). Thus

z==1.
This shows that the envelope consists of the pair of planes » = +1. These planes are integral surfaces
of the equations (3.55). It is the singular integral of the equation.

Note : The characteristic curve of the two-parameter system (3.55) is the locus of points of intersection
of (3.55) with the plane (3.57). Since this plane passes through the centre of the sphere (a, 2a, 0),
hence the characteristic curve of the system is the great circle.

Example 3 : Show that z = ax + % +b isa complete integral of pq= 1. This problem has no singular

integral. Find the particular solution corresponding to the sub-family b=a.

Solution : Let the partial differential equation is given by

f(xy,z,p,9)= pg—1=0. .. (3.64)

Let also the two parameters family of surfaces be given by

z:F(x,y,a,b):ax+%+b_ .. (3.65)
We find
y
F,=x——=,
a a2

a
1
:anzl, Fxb=0, Fya_ a_z, Fyb_o



F, Fu Fu) [x-2 1 _Lz
Hence the matrix F, F, F,| a a
¥ 4 1 0 0

has rank two.

This proves that z = ax + f +b is a complete integral of equation (3.64).

Now if b=a, then from equation (3.65) we get one parameter sub-system as

Z=ax+l+a_ ... (3.66)
a

Differentiating this with respect to ‘a’ we get

y
O=x——=+1
a’
2 )
=>a° =—2—
il ... (3.67)

To eliminate ‘a’ from equation (3.66), we first write it as

za :az(x+1)+y ,

%a’ = a4(x+1)2 +y2 +2a° (x+1)y .
Putting the value of a2, we get

2 (Y 2 2(x+1) 2y
’ ’(HJ(M) T e Y

=27 =2(x+1)y+2y°. - (3.68)

This is the envelope of one parameter family and is the required particular solution of equation (3.64).

Now differentiating equation (3.65) with respect to ‘a’ and then with respect to ‘b’ we get respectively

szy

-2, F =1
a az b

F,=0=x-2=0, {,=0=1=0
a
This is not true. = the equation (3.64) has no singular integral.

Note : It is always possible to obtain different complete integrals which are not equivalent to each
other. These are not obtained from one another merely by a change in the choice of arbitrary constants.

Exercise :

1. Show that 2z = (ax + y)2 +b isacomplete integral of px+gy—g> =0.

OoonO
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UNIT -11

LINEAR EQUATIONS OF THE FIRST ORDER

Introduction :
In this unit we study a method of finding a general integral of a quasi linear equation.

Theorem : The general solution of the Lagrange’s equation (quasi-linear equation).

P(x,y,z) p+0(x,»,2)g=R(x,5,z),

where P, Q and R are given continuously differentiable functions of X, y, and z (and not vanishing
simultaneously) is F (u, v) =0, where F is an arbitrary function of u and v and

u(x,y,z) = Cl,v(x,y,z) =C,
are the solutions of the system

dx dy dz
P(x,y,z) Q(x,y,z) R(x,y,z) :

Proof : Given that
u(x,y,z)=C1 and v(x,y,z):Cz .. (1.1)
are the solutions of the system of differential equations

dx _dy _dz . (12)
P O R

This implies that equation (1.1) satisfy equations (1.2),

= udx+u,dy+u.,dz=0 and .. (L.3)
= v dx+v,dy+v,dz=0. .. (1.4)

This shows that the equations (1.3) and (1.4) must be consistent equations. Hence we have
u,P+u,Q+u,R=0, .. (1.5)

and v.P+v,0+v.R=0. .. (1.6)

Solving equations (1.5) and (1.6) for P, Q and R we obtain
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U, Ul |u, u o u,ou,
2T % I LT 1 N O Y
P R
= = Q = s

P __Q _ R | (L7
a(u,v) 8(u,v) G(u,v)

8(y,z) 8(z,x) G(X,y)

Now we shall show that F (u, v) =01is a solution of Pp+ Qg =R.

=

Consider the relation F (u, v) =0. Differentiating this partially with respect to x and y we get

F,(u,+pu_)+F,(vi+pv.)=0, .. (1.8)

and F,(u,+qu. )+ F,(v,+qv.)=0. .. (1.9)
Eliminating ¥, and ', from equations (1.8) and (1.19) we get

(u, +puz)(vy +qu) :(uy +quz)(vx +pv.),

= p(uyv, —uv, )+ q(uy, —uw.)=(uy, -uv,)
EN
From equations (1.7) and (1.8) we find

Pp+Qq=R. .. (1.11)

This shows that F (u, v) = 0 is a solution of equation (1.11), where u (x, y,z) = C; and
v (x, ), z) = C, are solution of (1.2). This equivalently means that any surface F (u, v) = 0 generated by
the integral curves (1.2) is a solution of (1.11).

=D

General Case :

Theorem : If u; ()c1 3 X9 eees Xy z) =(;, i=1,2,....,nare independent solutions of the euqtions

oy _dx, v, _dz

n

P P~ P R

n

3

where P, P,, ..., P, and R are continuous differentiable functions of x|, X,, ..., X, and z not simultaneously
zero, then the relation
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¢(u1,u2,...,un)= 0,

where ¢ is arbitrary, is a general solution of the quasi-linear partial differential equation

Plﬁ+Pzz+...+Pnz=R
ox, ox, ox,, '

Proof : We are given that
7 (xl,xz,...,xn,z) =C;, i=1,2,..,n

are independent solutions of the equations

_dvy __dy, &
P P P R

Differentiating equation (1.12) we get

s e+ e o+ g 1 g
ox, ox, ox, Oz

This shows that the equations (1.13) and (1.14) must be compatible (consistent).

%p,+a”iR:0,i=l,2,...,n.
J 62

j=1 X

For each i, we have n-equations. Solving these n-equations for P, P,, ..., P, and R we get

P _ R
Oty tysennstty, ) Oty tysenstty, )
O(X), Xgsees Xj 13 2, X gsen Xy ) O(X)5Xg,e000 X, )

ox; Ox, ox,,

Oou, Ou, ou

a _ Tz _ Tz n

where (14,10, ’u”): ox;  0x ox,,
O(x1, X505 X, )

ou, Ou, ou,

ox; Ox, ox,,

1s the Jacobian of the transformation. Now we shall show that the relation
F(uy,uy,.u,)=0

is a solution of quasi-linear partial differential equation
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Pla—Z+P2£+...+Pn£=R
0ox, 0x, ox,,

Differentiating equation (1.17) partially with respect to x; we get

| OF Oy oy ez ],
Ou; Ox; 0z Ox; : .. (1.18)

J

oF OF oF

Eliminating ou, ’ ou, e from these n equations we get

n

5 oz O(uy,tys.stt, ) _ O(upuy,ntty) ..(1.19)

| 8Xj 8(x1,xz,...,xj_l,z,xjﬂ,...,xn) 8(x1,x2,...,xn

From equations (1.16) and (1.19) we obtain

0z
—P. =R
]Zz‘;&x. J ... (1.20)

This proves thatif'uy, u,, ..., u are independent solutions of (1.13) then F (u;, u,, ..., u,) isa solution
of equations (1.20). This proves the theorem.

Example 1 : Find the general integral of

z(xp—yq):y2 -x2.

Solution : The given partial differential equations is
zxp—zyq = y* —x*. .. (1.21)

The integral surface of the equation (1.21) is generated by the integral curves of the auxilary euqgtion

dx_dy __ dz .. (1.22)
X —yz  y?—x?

Consider the first two ratios of the equation

A&y s _dy
Xz —yz x -y

Integrating we get
logx=-logy+logC,,
= xy=C. .. (1.23)

Now we consider each ratio of the equation (1.22)
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xdx + ydy + zdz

x*z—y*z+zy? — 2x?

= xdx+ ydy+zdz =0.
Integrating the equation we get

X yiezt =G, .. (1.24)
The curves given by equations (1.23) and (1.24) generate the integral surface

F(xy,x2 +y2 +22) =0,

which is the general integral of equation (1.21).

Example 2 : Find the general integral of the partial differential equation

2x(y+zz)p+y(2y+zz)q=z3,

Solution : The given partial differential equation is

3

2x(y+zz)p+y(2y+zz)q:z . .. (1.25)

The integral surface of equation (1.25) is generated by the integral curves of the auxiliary equation

I A— .. (1.26)
2x(y+22) y(2y+22) z
The first integral curve is obtained by considering each ratio of the equation (1.26) as
dx/ _dv/ _dz
==,
2y+222 —2y—z2 —z%’
A dv d_
X y z
Integrating gives
logx—logy—logz=1logC,,
-2 =q. . (1.27)
vz

Now to find the second integral curve, consider the ratios

dy _dz

=—>

y(2y+zz) z’
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= 2°dy =2y*dz + 2% ydz,
= z2 (ydz — za’y) = —2y2dz ,

ydz—zdy  2dz
= 2 -T2,

Integration gives

z

y

+C,

NI )

Thus the curves given by equations (1.27) and (1.28) generate the integral surface

2_
F(i,z 2yjzo
vz’ yz '

Example 3 : Find the general integral of the partial differential equation
x(x+y)p=y(x+y)g—(x=y)2x+2y+2).
Solution : The integral surface of the equation
X(x+y)p=y(x+y)g=—(x=y)(2x+2y+2)
is generated by the integral curves of the auxilary equation

dx _ dy _ dz .
x(x+y) —y(x+y) —(x=y)2x+2y+2z)

To find the first integral curve, consider the ratio

dx dy dx _dy

= =
x(x+y) -y(x+y) x -y

Integration yields
logx=-logy+logC,,
=>xy=C.
Similarly, to find the second integral curve, each ratio of equation (1.30) is

de+dy  dx+dy+dz
(x=»)(x+y) —(x=y)(x+y+2)
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dx+dy dx+dy+dz .

x+y  —(x+y+z)

Integration results in

log(x+y)=—log(x+ y+z)+logC,.

=>@x+y)x+y+z)=C,,

These curves (1.31) and (1.32) generate the integral surface

F(xy,(x+y)(x+y+z)) =0.
Example 4 : Find the general integral of

(x2 +y2)p+2xyq =(x+y)z.
Solution : To find the integral surface of the equation

(x* +3%) p+229g = (x+ )z,
we first find the integral curves of the auxiliary equation

dx _dy  dz
x2+y? 2xy (x+y)z

To get the integral curve, we consider the ratios

dc+dy  dz :>dx+y_%_

(x+y)2_(x+y)z X+y
Integration of which gives
log(x+y)=logz+logC,,

xX+y

-C,.

z

Similarly, the other integral curve is obtained by consider the ratios

dx dx
2

x2+y? 2xp

= y?dy = —x*dy + 2xydx ,

z

:—:>(x2 +y2)dy:2xydx,

2xydx — x*d
gy = 2Bl
y
2
:dy:d(—}_
y
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Integration results in

2
X

y——=0C;, ..(1.36
y 2 (1.36)

Hence the integral surface generated by the curves (1.35) and (1.36) is given by
F (H_y | MJ o
z y ’
Example 5 : Find the general integral of the partial differential equation
(xy3 —2x4)p+(2y4 —x3y3)q = 9Z(x3 —y3) )
Solution : The general solution of the equation
(xy3—2x4)p+(2y4—x3y3)q=9z(x3—y3) .. (1.37)

is the integral surface generated by the integral curves of the auxilliary equation

&« __ & __ dz . (1.38)
xy3 —2x* 2y4 —x3y 9z(x3 —y3)
To find the integral curve, we first consider the ratios of the equation (1.38) as
& & dz
Xy _ z
y -2xt 2y —x° 9()63 —y3) ’
_dx Ay _dz
x y 3z
Integration of which gives
1
logx+logy= —glogz+logC1 ,
= x’y’z=C, .. (1.39)

Now consider the ratios

dx dy
xP=2xt 2yt =¥ty

= (2y4 —x3y)dx—(xy3 —2x4)dy =0.
Dividing by x3y> we get
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2 2
X y o ox y

(xdy — 2ydx) (ydx — 2xdy)
X 7 +y 2 = 0’

Integration yields

7T =06, ... (1.40)

Hence the general integral generated by the curves (1.39) and (1.40) is given by

3.3 Y X
F[X y Z,—2+—2J:O.
Xy

Example 6 : Find the general integral of

(x3 +3xy2)p+(y3 +3x2y)q = 2(x2 +y2)z_
Solution : The general solution of the equation

(x3+3xy2)p+(y3+3x2y)q=2(x2+y2)z .. (1.41)
is the integral surface generated by the integral curves of the auxilliary equations

dx dy B dz
x° +3xy2 y3 +3x2y 2(x2 +y2)z

.. (1.42)

The first integral curve of (1.42) is obtained by considering the ratio

d%+d%—2d%

x? +3y2 +y2 +3x° —4(x2+y2)

b

ey 2
xX y oz

Integrating we obtain

logx+logy—2logz=1logC,,
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3%201.
z

The second integral curve of (1.42) is obtained by considering the ratio

xdx — ydy 1 d% 2(xdx—ydy) dz
4 72 4,22 2.2 2 2
X +3xTy =y "3xyT 2x"+y X -y z

Integrating we get

log(x2 —yz)zlogz+logC2,

Exercise :

Find the general integral of the following partial differential equations.
I. (y+Dp+(x+1)g =z

2. (22—2yZ—y2)p+x(y+z)q=x(y—z)

3. Vvzp+xzg=x+y

4. yzp—xyqzx(z—2y)
5. Xzp + yzq = xy

6. (xz—yz)er(yz—zx)q:zz—xy

7. p-g=2z

Answers :
1. F(xz—y2+2x—2y,z(x—y))=0
2. F(x2+y2+22,y2—2yz—zz)=0

3, F(xz—y2,22—2(x+y)):0
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4. F(F 4y 0(r-2)=0

e
|

Y
y y-z)_,
z' z—x
7. F(x-i—y,x:\/;):o

Y-
y—
2.  Pfaffian Differential Equations :

W
B

6. F

Introduction : In this section, we introduce a Pfaffian difference equations. There is a fundamental
difference between Pfaffian differential equations in two variables and those in higher number of variables.
A Pfaffian differential equation in two variables always possesses an integrating factor. However, a
Pfaffian differential equation in more than two variables may not be integrable in general. We shall
derive in the following a necessary and sufficient condition for the integrability of a Pfaffian differential
equation in three variables.

Definition : A Pfaffian differential equation is a differential equation of the form

D Fi (%050, ) dx; =0 . (2.0)
i=1
where £} (z' =12,..., n) are continuous functions of some or all of the n-independent variables

X}, X, ..., X, , is called a Pfaffian differential equation, and the expression »_ F; (x;,x,,..., x, ) dx; is

1

called a Pfaffian differential form.
Definition : A Pfaffian differential form is said to be exact if we can find a continuously difefrentiable
function u (xl 3 X5 sees X, ) such that

du=F (X;,Xp,...; %, ) dxy + Fy (X1, X500, ) dXy + o4 F (X),X,.00,X,, ) dX,.
Definition : A Pfaffian differential equation is said to be integrable, if there exists a non-zero differentiable
function (xl 3 X5 5y Xy, ) such that the Pfaffian differential form

,u[F1 (x1,%550000%, ) dx; + ...+ F, (xl,xz,...,xn)dxn]

is exact. In this case the function z (x1 3 X5 5 Xy ) is called the integrating factor of the Pfaffian differential

equation and u (xl 3 X5, X, ) = C, where C is an arbitrary constant, is called the integral of the

corresponding Pfaffian differential equation.
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Note : Since the integral u (xl 3 X5 5y Xy ) = C of'the Pfaffian differential equation (2.1) represents a

surface in 7, then it follows from Pfaffian differential equation that, at every point of the integral the
normal has direction ratios (F, F,, ..., F).

Result : A Pfaffian differential equation in two variables always possesses an integrating factor.

Proof : Consider a Pfaffian differential equation in two variables x and y in the form
P(x,y)dx+Q(x,y)dy =0. ..(2.2)
If O(x, y) # 0, then we write this as

dy __Pxy)
dx  Q(x,y)

where P (x, y) and Q (X, y) are known functions of x and y, so that f(x,y) is defined uniquely at each
point of the xy plane, at which the functions P (x, y) and Q (X, y) are defined. From the existence
theorem for a first order ordinary differential equation the equation (2.3) has a solution

=f(xy), .. (2.3)

F(x,y)=C .. (2.4)

Result: If X =(P,0,R) isavectorsuchthat .y X =0 and # is anarbitrary differentiable

function of x, y and z then prove that
,uf-curl(,uf) =0

Proof : Let X =(P,Q,R)=Pi+Qj+Rk, - (2.5)

be a vector, where 1, j, k are unit vectors in the positive x, y and z directions respectively, such that

X-curl X=0- ... (2.6)
By definition, we have
i j k
curl ( ,u}) _|& 8 2
ox Oy oz
HP  pQ  uR

OUR _8,LtQj+j(8uP_a,uRj_i_k[a,uQ_a,uP]

= curl(uX)=i
(#X) (8}/ oz oz ox ox oy

— -\ OuUR ouQ ouP OuR ouQ ouP
:>(,uX)curl(,uX)—,uP(?—gj+,uQ(g—§ +IUR W—W ,
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— - oR 80 oP R 60 oP
:(/JX)CI/U"I(/JX):IUZ _P(a—gjﬁ‘Q(a—z—aj‘f‘R[g—aj}‘F

+u PRa—ﬂ—PQa—ﬂ+PQa—’u—QRa—ﬂ+QRa—’u—PRa—u _
. Oy 0z 0z 0.

X ox oy
- - - (R & OP OR o0 oP
= (,UX).curl(,uX) = ,uz _P(g—a—gjﬁ-Q(a—Z—aj—i—R(a—f—gﬂ_ .. (2.7)
This can also be written as
(4X)-cur (X :”2;21{%_2—?) .. (2.8)
ie. (,uf)-curl(,uf) = u? (Y-curl })

By virture of equation (2.6) we have
(,u})-curl(,u}) =0,

Conversely, let ( ,uf) ~curl (,u}) =0, for 1 # 0 then it follow from the definition
X-curlX =0-

Note : The condition x . y/ X = () is equivalent to

P a_Q_a_R +Q(6_R_6_PJ+R a_P_a_Q =0
0z Oy ox 0Oz oy Ox '

Criteria of Integrability of a Pfaffian Differential Equation :
Note that all Pfaffian differential equations do not possesses integral. If however, the equation
is such that there exists a function (x, y, z) with the property that 1 ( Pdx + Qdy + Rdz) is an exact

differential d ¢, then the equation is said to be integrable. The function ¢ is called the primitive of the
differential equation. In the following theorem we find a necessary and sufficient condition that a Pfaffian
differential equation is integrable.

Theorem : A necessary and sufficient condition that the Pfaffian differential equation x . g7 = () is
integrable is that ¥ . ¢/ X = 0, where X = (P, 0, R) isavector.
Proof : Consider a Pfaffian differential equation in three variables x, y, z given by

P(x,y,z)dx+Q(x,y,z)dy+ R(x,y,z)dz=0. ..(2.9)
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If X =(P,0,R) isavectorand 7 =(x,y,z), = dr =(dx,dy,dz), then equation (2.9) can also be

written as
}d?:de+Qdy+RdZ =0,

= Xdr =0- .. (2.10)
Let us assume that the equation (2.10) is integrable. We claim that

X-curlX =0-
Since the equation (2.9) is integrable. This implies that there exist differentiable functions (x, V, z) and

u(x,y,z) such that.

du:y(x,y,z)[de+Qdy++Rdz], u#0 .. (2.11)
where u=u(x,y,z)
=du=u,dx+u,dy+u,dz. .. (2.12)

From equations (2.11) and (2.12) we find
MP=u,, pQ=u,, uR=u,
=ud+u,j+uk= ,u(Pi+Qj+Rk)
=>Vu= ,u}-

Taking the curl of the equation we get
curl(V¢) = curl(,u}) )

Since the identity curl (V¢) =0
:curl(u}) =0,
= (,u})curl(/yt}) =0,
= XcurlX =0-

= theequation y g7 = () isintegrableif Yoy /X =0-

Conversely, assume that y 7 X = 0-

We prove that the Pfaffian differential equation Pdx + Qdy + Rdz = 0 is integrable.

Let us assume that one of the variables say z is a constant. Hence the Pfaffian differential
equation becomes,
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P(x,y,z)dx+Q(x,y,z)dy=0. .. (2.13)

This is a Pfaffian differential equation in two variables, hence it is always integrable. This implies that
there exists a function U and the integrating factor £ such that

dUu = ,u(de+Qdy) ,

=U,dx+U dy = ,u(deJery) ,

=>U,=uP, U,=p0. .. (2.14)
Substituting the values of P and Q in equation (2.9) we get

dex+Uydy+Uzdz+(,uR—Uz)dz =0.
This is equivalent to

dU+Kdz=0, . (2.15)
where K=uR-U,. ... (2.16)

We are given that X -curlX =05

= y?-curlu?z 0, .. (2.17)
where uX = (1P, 1O, uR),

pX =(uP,uQ,U, +K), due to (2.16)

= uX =(U,.U,.U.)+(0,0,K),

pX =VU+(0,0,K).

Taking the curl of this equation and using the identity, curl of gradU =0, we readily get

curl,ufza—Ki—a—Kj
oy oOx "’
- (0K oK
=curluX =| —,——,0
curlu (ay o j .. (2.18)
— — 0K oK
Thus (,uX)(curl(uX)):(Ux,Uy,Uz+K)-(5,—gaoj,
_OU oK UK
ox oy Oy Ox’
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- -\ oU,.K
(,uX)(curl(,uX))za((x—,y)).

Thus the condition (2.17) implies
oK) _,
ax,y) 7

— there exists a relation between U and K not involving x and y explicitly. Hence K can be
expressed as a function of U and z alone. Therefore equation (2.15) becomes,

.. (2.19)

d—U+K(U,z)=0_ .. (2.20)

dz

This is a first order ordinary differential equation, it possesses a solution. Let

¢(U,Z):C,

where C is an arbitrary constant, be a solution of equation (2.20). On replacing U by its expression in
terms of X, y and z we obtain the solution in the form

Ux,y,z)=C.
Hence the Pfaffian differential equation (2.9) is integrable.
Note : The Pfaffian differential equation (2.9) is in fact, exact ifand only if ;-7 x = -

Show that the following Pfaffian differential equations are integrable and hence find the corresponding
integrals.

Example 1 : (y2+yz)dx+(xz+zz)dy+(y2—xy)dZ=0. .. (2.21)

Solution : Here P = y? + yz, 0 =xz+z*,R=y* —xy.

Hence the vector y becomes

Xz(y2 +yz,xz+zz,y2—xy),

i J k
= curl X = 9 9 9
ox oy oz |,
yityz xz+z yi-xy

:curlf:(2(y—x—Z),2ya—2y)a

:}-curlfz(yz +yz,xz+22,y2 —xy)(2(y—x—z),2y,—2y),

44



=2[ Y+ y-x-2)+ y(z+20) =y (v-x) ],
:2()/3 —xyz —y22+y22—xyz—y22 +XyZ+ZZy—y3 +xy2),

= X-curl X =0-
This proves that the Pfaffian differential equation (2.21) is integrable. Now to find the integral of (2.21)
we assume z = constant = dz = 0. Hence equation (2.21) becomes

(y2+yz)dx+(xz+z2)dy=0. .. (2.22)
We write this equation as

dx N dy _0
z(x+z) y(y+2) ’

dx N zdy
x+z y(y+z) ’

& b
X+z y y+z )

Since z is a constant. On integrating we get

log(x+z)+logy—log(y+z)=1logC,,

where C; is a constant, may be function of z. Let the integral of (2.22) be denoted by U.

Xt .. (2.23)
y+z

Hence there exist a function £ such that

U, =uP:>y:i( Y J
P\y+z
= U= ! > .. (2.24)
y+z)
and U satisfies the equation
dUu
—+K=0
p , .. (2.25)
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where K=uR-U,

w202y y(xrz)

_(y+2)2 yt+z (y—i-z)2

K=0.

Hence equation (2.25) becomes

w_,
dz
:>dU:07

— U constant (independent of z),
= y(x+z)=C(y+2z2).

This is the required integral of (2.21).

Example 2 : yzdx + xzdy + xydz = 0.

Solution : The Pfaffian differential equation is

yzdx + xzdy + xydz =0, .. (2.26)
where the vector X =(P,0,R)=(yz,xz,xy) -
We see that
ik

curl X = %x %y %z =i(x—x)—j(y-y)+k(z—2)=0

vz Xz Xy

= curlX =0>

= X -curl X =0- - (2.27)
This shows that the equation (2.26) is integrable.
Now to find the integral of (2.26) we treat z= constant

=dz=0.
Hence equation (2.26) reduces to

yzdx + xzdy =0
z(ydx+xdy) =0 or d(xy) =0

=xy=C,, .. (2.28)

where C; may be function of z.
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Let U =xy
. . oU
There must exist a function £ such that o = uP
= la_U = L( ) = | =—
H Pa y H

The function U in (2.29) therefore satisfies the equation

EE+K=O
dz ’
where KzﬂR_a_U.
0z
z z
U
=K = As U =xy
Hence equation (2.31) becomes
d_U+£:0’
dz z
dU dz
= —+—=0,
u =z

Integrating we get
logU +logz=1logC or Uz=C,
=>xz=C,
which is the required integral.
Example 3 : yzdx+ (xzy - ZX) dy + (xzz - xy) dz=0
Solution : The Pfaffian differential equation is given by
yzdx + (xzy — zx)dy + (xzz - xy) dz=0
where the vector
X = (P,O,R) = (yz,xzy—zx,xzz—xy),

Therefore, we find
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I J
curl X = %x %y

Therefore, we see that

k
%Z :i(—x+x)—j(2xz—y—y)+k(2xy—z—z)

x*y—zx x’z—xy

= curlX = (O,—(sz—Zy),ny—2z) .

X -curl X = (0+(x2y—ZX)(2y—2XZ)+(2xy_2z)(x22_xy))

zf-curl}:Z[N—%—&+%+M—%—M+%}

X-curlX =0- - (2.35)

This shows that the equation (2.34) is integrable. Now to find the integral of (2.34) we treat

z=constant = dz =0

Hence equation (2.34) reduces to

or

or

or

Integrating we get

or

yzdx+(x2y—zx)dy:0,
= yzdx—zxdy+x2ydy =0,

z(ydx— xdy) = —xzydy ,

dx — xd
Z(Mj:_ydy,

X

oS =i
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Lot uo2(22w)
2x

] ) oU
There must exist a function # suchthat — = uP

Oox

_lav_, _L(_zj

or # P Ox H yz\ x%)’
L
2

Also the function U in (2.36) satisfies the equation

dU

—+K=0
dz ’
where
K=ﬂR—a—U:>K=—i2( 2
0z X

—>K=-z+2-2

X

=>K=-z.

Hence equation (2.38) becomes

dU
— 770 or dU-zdz=0.
A
Integrating we get
2
U-——=C
2
2 2
ie. E—y——z—=C,
x 2 2
vz 1o 5 5\ _
or ?—E(J’ Tz )—C,
or 2yz—x(y2+zz):2xC,

which is the required integral.
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Example 4 : (6x+yz)dx+(xz—2y)dy+(xy+2z)dz =0
Solution : The Pfaffian differential equation is given by
(6x+yz)dx+(xz—2y)dy+(xy+22)dz =0,
.. (2.41)

where the vector

X=(6x+yz,xz—2y,xy+22).
We find

k

i J
CurlX = %x %y %Z =i(x—x)—j(y—y)+k(z-z2)
6x+yz xz—-2y xy+2z

CurlX =0=> X -curl X =0 .. (2.42)
The equation (2.41) is integrable. To find the integral of (2.42) we treat

z =constant = dz =0
Hence equation (2.41) becomes

(6x+yz)dx+(xz—2y)dy =0

= 6xdx+ yzdx + xzdy —2ydy =0

:>6xdx+z(ydx+xdy)—2ydy=0

or 6xdx + zd (xy)—2ydy =0.
Integrating we get
3x+ zxy—y2 =C, .. (2.43)

where C; may involved z.

Let U:3x2+xyz—y2-

There must exist a function & such that
oU

== — P

ox H

1w
a P ox

6x+yz( x+yz):>,u
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Also the function U in (2.44) must satisfy the equation

dU

—+K=0
7 , ... (2.45)
where
oU
K=uR——
# 0z
=(xy+2z)—xy
=>K=2z.
Hence equation (2.45) becomes
du
d_+2Z:0 or U +2zdz=0-
Z
Integarting we get
U + Z2 = C2 5
ie. 3xt+xyz—yt+z% = C,, ... (2.46)

which is the required integral of (2.41).

Example 5 : (xzz —y? )dx +3x)%dy+x°dz =0

Solution : To test the integrability of the equation (2.47) we note that

Xz(xzz—y3,3xy2,x3).

So that
i Jj k
v _| 0 0 0 OO 2 .2 2 2
curl X = éx A)’ AZ =i(0-0) ](3x X )+k(3y +3y )
xzz—y3 3xy2 x°
Curl}:(O,—2x2,6y2)
Therefore, }Curl} = (0 —6x3y2 + 6x3y2) =0

= X-CurlX =0 .. (2.48)
— The equation (2.47) is integrable. Now to find the integral of (2.47) we treat
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z=constant = dz =0

Hence equation (2.47) reduces to

(xzz—y3)dx+3xy2dy =0.

We write this equation as

zx?dx -y dx +3xy*dy =0

= 3x?dx+3xy’dy — y dx =0

3xy?dy — ydx

= zdx + 5 =0
X
3
= zdx+d (y—J =0
X
Integrating we get
3
x4l = ¢
X
3
Let U=zx+2- .
X
There must exist a function & such that
U _p o 1O
ox pE o A P ox
SO R e 1 NP ¥
(xzz - y3> x? x?
The function U in (2.50) also satisfies the equation
EE+K=O
dz ’
where K:yR—a—U:K:L2x3—x:>K:0
oz X

Therefore equation (2.52) becomes
=>dU=0=U=C
Le. x*z+y* =Cx,

which is required integral.
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Example 6 : (1+yz)dx+x(z—x)dy—(1+xy)dz =0.
Solution : The Pfaffian differential equation is given by

(1+yz)dx+x(z—x)dy—(1+xy)dz:O, .. (2.54)
where the vector

X = (1+yz,x(z—x),—(1+xy)).

i Jj k
= curlX = %x %y %Z :i(—x—x)—j(—y—y)+k(z—2x—z)
I+yz x(z—x) —-1-xyp
= curl X = (—2x,2y+z,-2x).

We seet that

X -curlX = —2x(1+yz)+2y(xz—x2)+2x(l+xy)

= —2x—2xyz+2xyz—2x2y+2x+2x2y

X-curlX =0 .. (2.55)
— the equation (2.54) is integrable. Now to find the integral of (2.54) we treat

z=constant = dz =0

Therefore equation (2.54) reduces to

(1+yz)dx:x(z—x)dy:0.

We write this as
dx N dy _0
x(z - x) I+yz
or zdx N 3dy 0.
x(z - x) I+yz
dx dx dy
— =0. z = constant
x z-x y+l
Integrating we get

logx—log(z—x)+10g(y+%)zlogCl,
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(=)
x(yz+1) 3
or z(z—x) =C.
Let yox0z+l) .. (2.56)

Z(Z—x)

Therefore, there must exist a function ¢ such that

oU

—=uP

ox a

_la_U_ 1 (yz+l)(z—x)+x(yz+l)
or # P ox Z(l+yz) (Z_x)2

:leﬂ: 1 . (2.57)

2 (zx) (z=x)’

The function U in (2.56) therefore satisfies the equation

dUu
—+K=0
pE + , ... (2.58)
where
oU
K=uR——
H Oz
1 zZlz—x)xy—x(yz+1)(2z—x
K= 2[—(l+xy)]— ( )y2 (y 2)( )
(z—x) z (z—x)
K :;2[—22(1—%xy)—(zzxy—zxzy—nyZZ —2zx+x2yz+x2)}
zz(z—x

Ny .. (2.59)
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Hence equation (2.58) becomes

du 1 dz

———=0 dU—-—=0
dz 22 or 22 .
Integrating we get
z
x(yz+1) 1
or M‘F—:Cz
z(z—x) z

= (1+xy)=C,(z—x).
Example 7 : (2x + y2 + 2xz) dx + 2xydy + x2dz=0.
Solution : The Pfaffian differential equation is given by

(2x + y2 + 2xz) dx + 2xydy + x*dz=0 ,
where the vector

X = (2x+y2 +2xz,2xy,x2)

i ik
X = 0 0 0
= curlX = Ax Ay éz
2x+y*+2xz 2xy  x°

curl X =i(0—0)— j(2x —2x)+k(2y—2y)
curl X =0= X -curlX =0
= the equation (2.60) is integrable. To find the integral of (2.60) we treat

x=constant = dx=0-

Thus equation (2.60) reduces to

2xydy +x*dz =0.

Integrating we get
2
2xiyxlz= C
2
or xy° +XZZ=C1-
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Let U=xy>+x’z.

There must exist a function £ such that

oU oU

=—, R:—

Ho & HR=—
UL
M 0 2u y=>pu=1,

Also the function U satisfies the equation

d—U+K=O,
dx

oU
where K=upuP——
Oox

K:Z)c+y2 —i—2xz—(y2 +2xz)

=K=2x.

Hence equation (2.65) becomes

au +2x=0,
dx
Integrating we get
or 0w+ xlz+xt =G,

which is the solution of equation (2.60).

Example 8 : (I+yz)dx+z(z—x)dy—(1+xy)dz=0

Solution : Here X =(1+yz,2(z—x),~(1+xy))

i

J
= curl X = éx %y

l+yz z(z—=x) —(1+xy)

curl}:i(—)c’—2z+)c’)—j(—y—y)+k(—z—z)

curl X = =2zi + 2yj—2zk
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curl X = (-2z,2y,-2z)
= X-curl X = (1+yZ,Z2 _xz,—l—xy)(—2z,2y,—22)

X-curlX =0- .. (2.68)
= the given equation (2.67) is integrable. Consider,

x =constant = dx =0 .
Therefore, given equation becomes

z(z—x)dy—(l+xy)dz:0,

dy dz 0

:>1+xy_z(z—x) ’

xdy xdz 0

:>l+xy_z(z—x) ’

dy dz _ dz -0. X = constant

Integrating we get
1
10g(y+—}+logz—log(z—x) =log (|
X
)
z| y+—
:>—x = Cl’
(z—x)
+1
o 2wl o
x(z—x)
Let g Zlxtl) .. (2.69)

x(z—x)

There must exist a function & such that

oU oU
=—— or uR= >
HQ & PR =—

’u:ié_U: 1 { Xz }
Q oy z(z—x) x(z—x) ’
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N - SR S .. (2.70)

xz(z—x)’ (z—x)°

The function U satisfies the equation

dU
—+K=0
T + , .. (2.71)
where
oU
K=uP——
“ Ox
K- 1 2[1+yz]— x(z—x)yz—z(xy—kzl)(z—Zx)
(z—x) **(z-x)
On simplifying we get
1 2 1
K=—(z—x) > K=—
o) (z-x) =g L Q2T72)
du 1 dx
E-ﬁ-x—Z:O or dU‘f‘?:O
Integrating we get
vl
X
z(xy+l) 1 _¢,
x(z—-x) «x
= z(xy+1)—(z—x)=Cyx(z—x)
= z(1+xy)=(z—x)(1+ Cyx). . (2.73)
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Exercise :

Show that the following Pfaffian differential equations are integrable and hence find the corresponding
integrals.

1. z(z—y)dx+z(x+z)dy+x(x+y)dz=0
2. yzdx + 2xzdy —3xydz =0
3. ydx+xdy +2zdz =0

4. (yz+xyz)dx+(zx+xyz)dy+()g/+xyz)dz:0

Answers :

1. z(x+y)=C(x+z)
2, xy? =Cz?

3. xy+z2=C

mimlm
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UNIT-111

COMPATIBLE SYSTEMS OF FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS

Introduction :

In this unit we introduce a system of first order partial differential equations and find the conditions
that the system has common solution. As discussed in the Unit 2, the method of finding the general
integral of Lagrange’s equation, in this unit we introduce methods due to Chanpits and Jacobi to find
the complete integral of the first order partial differential equations.

Definition : Two first order partial differential equations

f(xy.2,p.q)=0 . (1.1
and g(x,y,2,p,q4)=0 . (1.2)

are said to be compatible (they have a common solution) on a domain D, ifand only if

J=M¢O onD .. (1.3)
o(p.q)
and the equation
dz:¢(x,y,z)da+w(x,y,z)dy .. (1.4)

is integrable, where p = ¢(x, v, z) and g =y (x, v, z) are obtained by solving (1.1) and (1.2).
Theorem : A necessary and sufficient condition for the two partial differential equations

f(xy.2,p,q)=0 and g(x,y,2,p,q)=0

to be compatible is that

o(f.g) o(f.g) o(f.g), a(f.g)
f.g]= +p + +q =0
o) 3 o) o)
Proof : Consider two first order partial differential equations
f(xy,2,p,q)=0 .. (1.5)
and g(x,»,2,p,9)=0. .. (1.6)
By definition, equations (1.5) and (1.6) are said to compatible iff
o(f.8)
J= #0
G(p,q) . (1.7)

60



and p=¢(x,y,z) and g = (x,y,z)

obtainable from (1.5) and (1.6) render the equation

dz:¢(x,y,z)dx+l//(x,y,z)dy .. (1.8)
integrable. We write equation (1.8) as
¢(x,y,z)dx+t//(x,y,z)dy—dz:0 ...(1.9)

We know the condition that the equation (1.9) is integrable iff

X-curlX =0>
where
} = (¢5 l/ja _1)
ik
= curl X = i i i
ox oy Oz
9 v -l

:curl}:i(—t//z)+¢zj+k(t//x —¢y)
= curl X = (—WZ,¢Z,wx —¢y) :

Thus the condition . o4/ X = ( becomes
(¢9l//9_1)(_l//z’¢z7l//x _¢y) =0

SY, Y. =0, +yh.. .. (1.10)

Substituting ¢ and ¥ for p and q respectively in equation (1.5) we get

f(x,y,z,¢,l//):0 . (1.11)
Differentiating equation (1.11) with respect to x and z we get

St [+ fw =0 .. (1.12)
and S+ 10+ . =0. .. (1.13)
Multiplying equation (1.13) by ¢ and adding it to the equation (1.12) we get

fot 81+ fo (b 400 )+ [y (v, +ow.)=0. - (1.14)

Similarly, from equation (1.6) we obtain

61



g +92.+2,(d +00.)+g, (v, +oy.)=0. .. (1.15)

Multiplying equation (1.14) by g, and (1.15) by ﬁ) and subtracting we get
fxgp _fpgx +¢(fzgp _fpgz)—l_(l//x +¢‘//z)(fqu _fpgq):()
j(fpgq _fqu)(l//x +¢l//z) :(fxgp _fpgx)+¢(fzgp _fpgz)

o(f.g) o(f.g), o(f.g)
=Sy gy ) =SS g
8(p,q)( ) o(x,p) ~ 9(z.p)
1(o(/.8) a(f,g)J
l//x+¢l//z:_ +¢ 5 .
or J(@(x, p) " o(zp) (1.16)
o(f.g)
J = #0
where G(p,q) .
Similarly, differentiating equation (1.11) with respect to y and z we obtain, after similar analysis, the
equation
-1{o(/8) a(f,g)J
b +yh =— +y . . (1.17)
g J LG(M) 0(2.9)

Now substituting equations (1.16) and (1.17) in the equation (1.10) we obtain

o(f.g), o(fe)_ o(/.8)  o(f.e)

o(xp) "o(zp) () | o(zq)

Replacing ¢ and ¥ by p and q respectively, we get

o(f.8), of8) olfg), o(f.g)_, e
o(p) T a(zp) o0na) Tozg) Y

This is the desired compatibility condition. This condition can also be written as

[f,g]zO.

Example 1 : Show that the equations

f=p*+q*-1=0and g=(p’+4*)x—pz =0
are compatible and find the one parameter family of common solutions.

Solution : Let the partial differential equations be given by
f(x,y.z,p,q)=p*+q°-1=0 .. (1.19)
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g(x,y,z,p,q)z(pz+q2)x—pz:O_

We know the condition that the equations (1.19) and (1.20) are compatible iff

[fag]zo
1e. a(f’g)+pa(f’g)+a(f’g)+qa(fag):O
a(xap) a(Z,p) 8(y,q) a(Z,q) 9
where from equations (1.19) and (1.20) we readily obtain
X
pz=X—=>p=—>
z
X 2 1
and q2:]_p2:>q2:1_(_J or §=— Zz_xz'
z z

We find from equations (1.19) and (1.20) that

fi=0, f,=2p, g, =p°+q°, g,=2px—z

5(f,g) 2 2 5(f,g)
= — :—2 =
Therefore, a(x,p) S8, =18 P(p +q ):> 6(x,p)
Similarly,
fzzoa g, =P
o(f.g) , o(f.8) .
Therefore, ) NS 92
ofzp) T ) T
Similarly,
f,=0, f,=2q, g,=0, g, =2¢gx
o(/f-8)
= - =0
Therefore, 3(y.q) Jv84=1,8, =0
Next we find
o(f.g)
= — =—2 - :2
2(50) f.8,-1,8:=-24(-p)=2pq
a(fag)_z _2_ 72 _ 2
8( ,q) z?

Substituting these in equation (1.21) we get
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[/.8]=-2p+p(2p7)+0+4(2pq)

:—2p+2p(p2+q2)
=2p+2p As p2+q2:1by...(1.19)
=0
=[f.g]=0. .. (1.24)

This shows that the equations (1.19) and (1.20) are compatible.
Now to solve these equations we have

dz = pdx + qdy
:idx+l\/22—x2dy
z z
= zdz — xdx =\ z> —x*dy
zdz — xdx \/ﬁ
:>—2=dy:>d( z°—x"|=dy

2

z5—x
Integrating we get
or 2 —x? :(y+c)2
or z? =x2+(y+c)2, .. (1.25)

which is arequired one parameter family of common solution.

Example 2 : Show that the equations

xp=yq, z(xp+yq)=2xy
are compatible and find a one parameter family of common solution.

Solution : Let the partial differential equation be given by
f(xy.z,p.9)=p-qy=0, .. (1.26)

g(x.y.z,p.q)=z(xp+yq)-2xy=0. . (1.27)
We know the condition that the equations (1.26) and (1.27) are compatible iff

[f.g]=0,
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where

o(f, o(f, o(f, o(f,
([f,g]=2408), jolfe) olfe), olfe) .. (1.28)
o(x,p) " o(zp) 0o(vq) ~ 0(zq)
From equations (1.26) and (1.27) we find
fi=p.fp=%8,=2p=2y,8,=2x
o(f.g
Therefore, 8((x,p; = fxgp _fpgx =2xy
Now we find
f-=0,g. =xp+yq
o(f.g) o(/.g)
Thus, 3(-.p) =1.8,— /8. Z—X(XP+yq):>m=—x2p—xyq,
Similarly,
fy :_Qafq :_yagy :Zq_zxagq =zy
o(f.g)
Hence, 2(nq) =118y =148y =2yx,
and
o(f.8) _ _ o(f.g) _ 2
3(5q) =f.g,~f,8.=y(xp+yq)= 3(5q) =X)p+yq.

Substituting these values in equation (1.28) we get
[/.8]=—(p"x" - »’¢*)=0

:>[f,g]=0

= Equations (1.26) and (1.27) are compatible. Now to solve these equations, we find from (1.26)
and (1.27) that

X

pP=—"5 4=
z

Y
z
Substituting thisin dz = pdx + qdy we get
dz =2 dx+Zdy
z z

= zdz = ydx + xdy
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zdz =d(xy) .
Integrating we get

;2

> xy+C
or 2t = 2xy+C.

Which is the required one parameter family of common solution.

Example 3 : Show that the equation z=px + qy is compatible with any equation f (x,,z, p,q)=0

that is homogeneous in x, y and z.

Solution : Since fis a homogeneous in x, , z, therefore it can be written as
nof X
f =z ¢(_727paQJ :
zZ Z
Put u=>y=2.
zZ z

Therefore, the given equations reduce to

g(x.y,2,p,q)=px+qy-z=0
and h(x,y,z,p.q)=¢(u,v,p,q)=0.
We know equations (1.30) and (1.31) are compatible iff

[g.h]=0,

where we know

g, h|= +p + +q
[ ]8(x,p) d(z.p) o(y.q) " 0(z4q)
Therefore, we have
o(g.h)
=g h —g h
o(xp) S TE
=p¢p_x¢x
=p¢p_x¢uux
0(g:h) _ x
a(x,p)_p¢p g
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Similarly,

—oh —
a(Z’p) gz p gpqz
- % x¢z
0(g.h)
= 8(2,1)) ¢p x¢z
d(g.h)
—g h —g.h
a(y’q) gy q gq y
ZQ¢q_y¢vvy
d(g.h) y
=q4,—=9,
o(y.q) 7z
and
0(g.h)
=g h —g h
a(Z,Q) gz q gq z
0(g.h) _
8(2,(]) - ¢q y¢z

Substituting these in [ g, 4 | we get

[s-h]= p#y ~~ b~ p#; ~ b+ 9 =~ 0.~ o# ~4,9.
=-ug, —v$, —(px+qv)4.
=—ug, —vp, —z(4, -u_. +4,v.) by ... (1.30)

= _u¢u _V¢v _Z(_¢u Ziz_¢v lej

=—ug, —ve, +£¢u +1¢v
z z

=-ug, —vp, +ud, +ve,

[g.h]=0

= the given equations are compatible.
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Exercise :

1. Show that the following first order partial differential equations are compatible and find
a one-parameter family of common solution.

Xp—yq =X,
2 —
X“p+q=xz

2. Show that the equations (x, V, Dy q) =0and g (x, V, D, q) = 0 are compatible if

o(f.g) o(f.g)

o(vp) o(va)

2. Charpit’s Method :
In this section, we present a method of finding complete integral of a first order p.d.e.
f (x, V.2, P, q) = 0 due to Charpit. Method is based on the concept of the last section viz. the concept
of compatibility.
Definition : Let a first order p.d.e. be given by
f(xy,2,p,q)=0. . (2.0)
A one-parameter family of p.d. equations given by
g(x,y,z, p,q,a) =0, ais a parameter, .. (2.2)
is said to be compatible with (2.1) if (2.2) is compatible with (2.1) for each value of a.
Result : Describe Charpit’s Method of solving a first order partial differential equation
f(x.».2,p,9)=0.
Proof : Let the first order p.d.e. whose complete integral is to be determined be given by
f(x».2,p,9)=0. . (2.3)

The fundamental idea in Charpit’s method is the introduction of a second partial differential equation of
the first order

g(x.y.2,p,q,a)=0 . (2.4)

which contain an arbitrary constant ‘a’ and which is such that

@) equations (2.3) and (2.4) can be solved for p= p(x,y,z) and ¢ =¢q(x,y,z) and

(i1) the equation dz = p (x, v, z) dx+q (x, v, Z) dy is integrable.
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i.e. we need only to seek an equation
g(x,»,2,p,q,a)=0

Compatible with the given equation
f(x».2,p.q)=0

We know equations (2.3) and (2.4) are compatible iff

[/.g]=0
i, ‘Z((i’;’; +p Z((i’i)) + Z((];:j)) +qaa((];’j)) 0. . (2.5)
=(f.g,-f,8.)+p(f.8,— fr8.)+(fr8,~ 1,8, )+a(f.8,~ 1,8.)=0.
We write this as
Iy B B0ty ) B () B (0t E =0
or 1B [ B (ot ) B (1 ) B0 ) B0, L)

This is a quasi-linear first order partial differential equation for g with x, y, z, p and q as the
independent variables.

Thus our problem of finding a one-parameter family of p.d. equations (2.4) which is compatible
with the given p.d.e. (2.3) is equivalent to find a solution of equation (2.6) in as simple form as possible
involving p or q or both and an arbitrary constant a.

This we do by finding an integral of the following subsidiary equations involving and arbitrary
constant.

d, dz dp dq

_4y __ __ . . (2.7)
pfy+af,  fitpfs Sy tdf

ax _4y
Ir Jq

Once an integral g (x, V,Z, P,q, a) of'this kind has been found, solving the p.d.e. (2.3) and
the integral thus obtained for p and q, we get
p= ¢(x,y,z,a), q= ly(x,y,z,a) .
Then
dz = gdx +wdy .. (2.8)
is integrable by virtue of the fact that the equations (2.1) and (2.2) are compatible.

Let the integral of (2.8) be of the form
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F(x,y,z,a,b)=0. ..(2.9)

This is a two-parameter family of solutions of (2.3), it is a complete integral of (2.3).

Example 1 : Find the complete integral of z% — pgxy = 0 by Charpit’s method.

Solution : Let f(x,y,2,p,q)=z" - pgxy =0 ..(2.10)

To find a one-parameter family of p.d.e. which is compatible with (2.10), we know the auxiliary
equations are

dc _dy  dz dp dg . (2.11)

I L o +d,  fo+pf.  J+df.

where from equation (2.10) we have

Jp=—axy, fy=—pxy, [, =—pqy, [, =—pgx, f.=2z.

Hence the equations (2.11) become

dx dy dz dp dg

—gxy —pxy —pqxy—pqxy  —pqy+2pz = —pgx+2qz

dx« dy  dz dp _ dgq
gxy pxy 2pgxy 2pz—pqy 2qz-— pgx

or .. (2.12)

Each ratio of (2.13) is also equal to

B pdx + qdy + xdp + ydq
Py + pasy +2pxz— pasy +2qzy— pgry
each ratio _p dx +qdy + xdp + ydq .
2z ( px+ qy)
Consider

dz  pdx+qdy+xdp+ ydq
2 pgxy 2z(px+qy)

Since from equation (2.10) we have

22

pq=—
xy
dz _ pdx+qdy+xdp+ ydg

222 2Z(px+qy)

Hence,
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:%_ pdx +qdy + xdp + ydq
z px+qy

dz d(xp+yq)

z px+qy

Integrating we get

log z =log( px+qy)+loga

=z=a(px+qy), .. (2.13)
where a is an arbitrary constant.
Let g(x,y,z,p,q,a)zz—a(px+qy). .. (2.14)

Thus equations (2.10) and (2.14) are compatible.
Solving equations (2.10) and (2.14) for p and q we obtain

== and 4= with ac+c)=1
chan yw1tacc—_

Hence the equation dz = pdx + gdy becomes

dz =2 dx+Zdy
cx y

dz 1ldx 1
=>—=——+c—dy-
zZ c¢X v
Integrating we get

log z :llogx+clogy+logb
c
|
z =bx4yc .. (2.15)

:F(x,y,z,b,c):z—bx%yc ..(2.16)

which is the complete integral of the first order p.d.e. (2.10). This is a two-parameter family of solutions
of equation (2.10) and is the required complete integral.

Example 2 : Find the complete integral of

(P2+q2)y—q2=0.
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Solution : Let the p.d.e. be given by

f(xy.zp.0)=(P"+4*)y-az=0. - (2.17)

From equation (2.17) we have

fo=2py, f,=2qy-z, f, =0, f,=p°+q°, f.=q.

Hence the auxiliary equations (2.7) becomes

ie. dx __dy _ . dzz :d_P:_d_‘g. . (2.18)
2py 2qy-z 2p°y+2q°y-qz P9 p
Consider the ratio
dp __dq
q p
= pdp = —qdq
Integrating we get
pi+qi=ad’, .. (2.19)
where ‘a’ 1s a constant.
Let g(x,y,z,p.q.a)=p* +¢° —a’ =0 .. (2.20)

which is compatible with (2.17). Now to find the complete integral of (2.17) we solve equations (2.17)
and (2.20) forp and q.

Hence we write from (2.17) and (2.20) that

(P*+4%)y =gz,

and (p2+q2)=a2:>qz:a2y
2
a
or q=_y.
z
2 2 yz
Hence py=a y—ya4—2
z
2
a
or p2=a2—a4y—2:>p=—\/zz—a2y2,
z z
Hence the equation
dz = pdx + qdy
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becomes

or

1.e.

Integrating we get

or

dz ==+z* azyzdx+
dz—a’yd

24 VWY _ iy

22 —a2y?

Nzt —a?y* =ax+b

zz—azy2 :(ax+b)2.

Hence the equired complete integral is

2

z =a2y2+(ax+b)2.

. (2.21)

Example 3 : Find the complete integral of the p.d.e.

p2q2+x2y2:x2q2(x2+y2)

Solution : Let the given p.d.e. be denoted by

f(x,y.z,p,9)=p’q*

From equation (2.22) we have

Consider the ratios

+x7y? =277 (¥ + 7 ) =0. .. (2.22)

1, =2pg f, =2qp> - 2x¢(x* +?), 1. =0,

| = 2xy° —¢* (4x3 +2x)° ),fy =2x% —2x%q>%.

Hence the auxiliary equations (2.7) become

dx dy

dz

2pq2 qu2 —2x2q(x2 +y2) 2]92c]2 -1-2q2p2 —2xzq2 (x2 +y2)

—dp —dq

2xy2—2q2(2x3+xy2) a 2yx2 —2x2yq2
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__4v —ydq
2x°y 2x2y? (1_q2) by ... (2.22)
:@:—dq 5 :ﬂ:(l_ 1 de'
v qi-¢*) v \a 2(1+q9) 20-9)
Integrating we get
1 1
log y =logq ——log(1+¢) -~ log(1-¢) +loga
2logy =2logg—log(1+g)—log(l—gq)+2loga
2
:logyzzlog(lq 2]-(12
2
— 2 = g2 q
Y 1_q2
or (1-¢*)y* =a®* = ¢*(y* +a*) = )"
S A— .. (2.23)
(v +a)?
y +a
Substituting this in equation (2.22) we get
2 J’Z 2.2 2( 2 2) y2
=—x"y +x"(x"+
i L’eraz} g Y yi+a?
22
=207 ra?) e 4y
(v*+a?)
:>p2:x2[x2—a2]
|
pzx(xz—az)é- .. (2.24)

Substituting these values in the equation

dz = pdx + qdy
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1
dz = x(x? —az)é dx+#dy

Integrating we get

Z:J-x xz—azdx+j J 2dy+b

\y:+a

z:%(x2+a2)%+(y2+a2)%+b. .. (2.25)
Example 4 : Find the complete integral of

px5 —4q3'x2 +6x%z-2=0
by Charpit’s method.
Solution : Let

f(x,y,z,p,q):pxs—4q3x2+6x22—2=0. ... (2.26)

From equation (2.26) we find
Sy :xs,fq :—12q2x2,fx =5px* —8q3x+12xz,fy =0,1, = 6x>.

Hence the auxiliary equations (2.7) become

&__ & dz —dp __dq . (2.27)
x> —12¢%x*  px°-12¢°x*  Spx* -84 x+12xz+6px? 6x°q
Consider the ratios
& __ dq
x° 6x’g
j— 6d—)3c = —d—q .
x q
Integrating we get
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Substituting in (2.26) we get

9 2
= 2 2
2 4ae* 6z
px’ =da’e” x* —6x’z+2=p=

x> x>
Hence the equation dz = pdx + gdy becomes
9
4’ 6z 2 .
dz = —3——3+—5 dx + ae” dy
X X’ X
= 3
2
6 4a’ex” 2 =
dz+—§dx= ai +— dx+aex2dy
x X x
3 5 3
_ 2 2
= 6 4a’ex” e *
or e (dz+—§dx]— 2+ ZE— |axtady
X X X
3 £ 3
_ 2 2
— 4 3,x 2 X
:>d(ze xzj_ ai + es dx +ady
X X
Integrating we get
6 3
3 2 2

3 2 B
ze ¥ = 4a3J-e—3dx+2_[e—5dx+ay+b
X X

6

2
Consider I = J & ik
e
Pu 6 t
t ——
2
2 _
R NN
X X 12
5
Hence, I:—L eta’z‘:—le)62
1 2
6
P
:>4a3j dx=——¢"
X

2

X

—



Now consider 0 J‘ ¢ i
5
3 1 t 6
Put SN Ny
x? x? 300X

3 ;3 &
Thus ze ¥ :—%exz +ay+b
3 ; 0 3 3 3
2 a 2 1 2 3 3 772
=z=(ay+b)e” ——e* ——e* -——e" —e”
3 9 X
SR R
a 2
s=(av+blex” — L ox® _ - 1. .. (2.29)
(ay+b)ex” —= 2t
Example 5 : Find the complete integral of the p.d.e.
22+ pP +qy+2y* =0
by Charpit’s method.
Solution : Let
f(x,y,z,p,q):2z+p2+qy+2y2=O. ...(2.30)

From equation (2.30) we have
Jo=20. 1= /=01, =q+4y,f.=2

Hence equations (2.7) become

de_d__dz__dp___ dg
2p y 2pP+qy 2P q+4y+2q
Consider the ratio
& __dp = dx=—dp
2p  2p
Integrating we get
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xX=-p+a
or p=a-x.

Substituting this in (2.30) we get

22+(a—x)2 -1-qy+2y2 =0-
=q :—l[2z+(a—x)2 +2y2]
Y
Substituting these equation in dz = pdx + gdy we get

dz:(a—x)dx—l[22+(a—x)2 +2y2]dy
y

(a—x)°

= dz+£dy=(a—x)dx—
y

ydz+2zdy (a—x)ydx—(a—x)2 dy
y y

ydz +2zdy =(a—x) ydx —(a —)c)2 dy —2y*dy

Multiplying this equation by 2y we get

2y%dz +4zydy = 2y* (a—x)dx—2y(a—x)2 dy—4y’dy

or d(2zy2)z—[d(yz(a—X)z)}—d(y“)'

Integrating we get
2zy% + y* (a—x)° +y*=b

or y2[22+(a—x)2+y2J=b-

Which is the required complete integral.

Example 6 : Find the complete integral of

2(z+xp+yq) = yp2
by Charpit’s method

Solution : Let

f(x,y.2,p,9)=2(z+xp+yq)—yp* =0

where from equation (2.34)
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f,=2x=2yp.f,=2y.f, =2p.f, =2q-p°. f. =2.

Hence the auxiliary equations (2.7) become

- dx =ﬂ= dz =—dp= —dq .
2(x=yp) 2y 20p+yq)-2p° 4p 4q-p°
Consider the ratios
__ B 2y _dp
y o 2p y p
Integrating we get

2logy+log p=loga,

:>y2p=a or p:iz

y
Substituting this in (2.34) we get
) a B a’
Z+X 3 + yqg |\=Yy 7 i
y y

2
:>2yq:a—3—2[z+x azj’
y Y

2
a z Xxa
2y \y vy

Substituting in dz = pdx + gdy we get

2
a a z ax
dz = dx+| ——| Z+ 2 | |ay,
yz {2)/‘ (y y3j:|

2
=%dx—a—§dy+a—4dy—idy )
Y Y 2y Y
2
= dz+idy :iz x—a—ﬁdy+a—4dy,
yooy y 2y

dz + zd 2
:L—w:%dx—a—fdy+a_4dya
y y y 2y

2
d(yz)="dx— S dy+——dy,
y y 2y
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Integrating we get
2( .2
yvz=a X +a—[y—j+b
y 2\ 2
I b a*
or =St 3
oy o4y

which is the required complete integral.

Example 7 : Find the complete integral of the p.d.e.

z(p2 +q2)+px+qy:0.
Solution : Let the given p.d.e. be denoted by

S (x.y.2.p.9)=2(p* +47 )+ px+qy =0, - (237)
= f,=2pz+x, f,=2qz+y, [, =(p*+4*). f. =1, fy=q
Hence the auxiliary equations (2.7) reduce to

dx dy dz —dp —dq

2pz+x  2qz+y 2pzz+px+2qzz+qy p+p(p2+q2) q+q(p2+q2)

Consider the ratios

- qdp _ pdq _, 4dp—pdq _ qdp—pdq _,

pa+pq(p>+4*) pa+pa(p*+4*) 0 q’

(2}

Integrating we get
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or p=aq. ... (2.38)
Substituting this in (2.37) we get

z(azq2 +q2)+aqx+qy=O
q2 I:z(a2+l)]+q(ax+y)20

q[c]z(a2 +1)+(ax+y)] =0

(ax+y)
z20=>qg=-
for q q Z(a2 +1) (239)
Substituting these values in dz = pdx + gdy we get
dz = aqdx + qdy
(ax+y)
=— adx +dy
z(a2 +l)[ ]
or zdz:—;[(ax+y)(adx+y)]
(a2 +1)
1
= zdz=———2(ax+y)(adx+dy
D) (ax+y)( )
2
zdz = — dlax+y) -
2(a%+1) (ax+7)
Integrating we get
z? 1 2
—=—————(ax+y) +b
2 2(d? +1)( )
2
2>22 :_M+b
(a2 +1)
2
or 2y lary) .. (2.40)

a’+1

Example 8 : Find the complete integral of the equation
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xp+3yq = 2(2—)626]2)
by Charpit’s method.

Solution : Let

f(x,3.2,p,q)=xp+3yg=2(z-x**)=0. (241
From equation (2.41) we obtain
fpr=x1, :3y+4x2q,fx :p+4xq2,fz =-2.
Hence the auxiliary equations (2.7) become
dx _ dy B dz B —dp _ —dq
X 3y+4x’q  px+3yq+4¢°x*  p+4xg*-2p 3q-2q
Consider the ratio
dx _dq
X —q
Integrating we get
logx+logg=loga= xqg=a,
or g=2. .. (2.42)
X
Substituting (2.42) in (2.41) we get
a x%a?
xp+3y——2(z— 5 J:O,
X X
2 3ay
=>px=2z+2a" ——,
X
2(z-¢*) 3
or p= (=¢’) v . (2.43)
X X

Substituting these values in the equation dz = pdx + gdy we get

2
dz=[2(z_q )—3“yjdx+3dy,

X X2 X

1
2

dz = [2x(z—a2)—3ay] dx+£dy
X
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or x* { 3 } =—3aydx + axdy ,

=
~
U
1
—~
N
|
1N}
]
~

} =3aydx+axdy ,

X
or d—Z_az}zﬁdy—ﬂdx
L .X2 X3 .X4 ’
A(=2)-o
x? x°
Integrating we get
2
or x(z=a?)=ay+bx° .. (2.44)

which is the required complete integral.

Example 9 : Find the complete integral of the p.d.e.
pxy+pq+qy=yz

by Charpit’s method.

Solution : Let

f(x,y,z,p,q)zpxy+pq+qy—yZ:0. ... (2.45)

From equation (2.45) we have

Jp=xy+q,fy=p+y.fr=py.f,=px+q=z,f. =—y.

Hence the auxiliary equations (2.7) reduce to

dx dy dz _ —dp —-dq
Xy+q  p+y pwHpqrpgtqy  py—py  px+q-z=gqy
we see that
dp=0,
=>p=a. ... (2.46)

Substituting in equation (2.45) we get

axy+aq+qy—yz=0,
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q(a+y)=yz—axy

_y(z—ax)

. (2.47)
(a+y)

Substituting these values in dz = pdx + gdy we get

(z—ax)
(a+y)

dz=adx+y dy

We write this as

:dz—adxzy(z_ax)

dy
a+y

:dz—adxz ydy :dz—adxz(l_ a dyj'
z—ax a+y z—ax a+y

Integrating we get

log(z—ax)=y—alog(y+a)+logh

= log (Z_aX)é)(er @) =y

= (z—ax)(y+a)’ =be”

z—ax=be’ (y+a) .
This is required complete integral.
Example 10 : Find the complete integral of the p.d.e.
2p2eyiqt—4=0
Solution : Let the p.d.e. be given by
f(x,y,z,p,q):x2p2+y2q2—4:0. ...(2.48)
= f,=2px*, f, =2qy°, f, =2xp>, f, =2y¢°, f. =0
Hence auxiliary equations (2.7) become

dx dy dz dp ___dq .. (2.49)

2px2 2qy2 - 2pzx2 +2q2y2 __2xp2 2yq2
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Now consider the ratios

dx dp dx dp
S T G
2px 2xp X p
Integrating we get
logx =—-log p+loga
=xp=a.
Let g(x,y,z,p,q,a)=xp—a=0

be the one-parameter family of p.d.c. which is compatible with (2.48).

Now to find the complete integral of (2.48) we solve

x*p?+y?¢® =4 and xp =a forp and q to get

a 4—a®
pP=— and q=
X y
Hence the equation
dz = pdx + qdy
becomes dz =L a4 —a? ﬂ
X y
Integrating we get

z=alogx+\4—a’logy+b-

This involves two arbitrary constants and hence it is called the complete integral of (2.48).

Ifhowever, we choose the ratio

dy  dq jdy dq

2y2q —2yq2 y q

Integrating we get
logy=—-logg+loga
= yq=a
Let g(x,y,z,p,q):yq—a:O

This is a one-parameter family of p.d.e. compatible with (2.48). Solving we get

a
q=—":
Y
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Also from equation (2.48) we get

/4_ 2
x2p2+a2:4:>p= 4

Hence the equation dz = pdx + gdy becomes

dz = 4—a2@+£dy.
Xy
Integrating we get
z=+4-a’logx+alogy+b- .. (2.53)

This equation involves two auxiliary constants and hence is called a complete integral of (2.48).
Note : Equations (2.51) and (2.53) are not different.
Example 11 : Find the complete integral of

pPPx+q’y=z
by Charpit’s method.

Solution : Let

f(x,y,z,p,q):p2x+q2y—z:0 .. (2.54)
From this equation we find

fo=2px.f, =2qy. [, = p*. [, = 4" . =-1.

Hence the auxiliary equations (2.7) become

de dy dz ___dp _ dq

2px 2qy 2p°x+2¢°y  pP-p ¢ —q
Consider the ratios

pzdx + 2 pxdp B qzdy +2qydq
275 - 205 427 2477 - 247 +24°y
N pzdx+2pxdp B qzdy+2qydq
p’x q’y

Integrating we get

log(pzx) = log(qzy) +loga

:>p2x=aq2y (255)
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Using this in (2.54) we get

z
ag’y+q’y=z=q’y=
a+1
AV
q= @y ... (2.56)
Hence from equation (2.55) we get
1
» =( az jz
x(z+1)

Substituting these values in

dz = pdx + qdy

d [ @ }% dy+| —2 % d

z = X

We get x(a+1) (a+1y 4

= 1+a£:\/;.£+ﬂ.
X

=R

Integrating we get
J+a)z =+Jax + yv+b
l !
[(a-i—l)z]é :(ax)% +yA +b-

This is the required complete Integral.
Example 12 : Solve the p.d.c. by Charpit’s method

p=(z+qy)".

Solution : Let

2
f(x%y.2,p.q)=p—(z+qv) =0 .. (2.57)
be the given non-linear p.d.e.

Where from equation (2.57) we find
fo=Lf,=2y(z+qp). /. =0, 1, =2q(z+qy). f. =2(z+qy).
Hence the auxiliary equation (2.7) becomes

o T - P _aq(stqy)
1 -2y(z+qy) p-2qy(z+qy) -2p(z+qy) -2q(z+qy) .. (2.58)
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Consider the ratios

dy dp dy __dp
-2y(z+aqy) 2p(z+qy) 'y p
Integrating we get
logy+logp =loga
=yp=a ...(2.59)
a
or p=—-
y

Putting this value in (2.57) we get

a 2 a
—=(z+ay) or Z+qy=\F
y y
or ngwi_z] ... (2.60)
vy \y

Substituting these values in

dz = pdx +qdy,

dz=idx+l{\/g—z}dy,
y YLVY

Ja

dz :de—zdy+Tdy,
y Wz

we get

= ydz—i-zdy:adx—i-x/;-%dy

YA ,

1

Jy

d(yz):adx+\/g dy .

Integrating we get

yz=ax+2.fay +b. .. (2.61)

Example 13 : Find the complete integral of the p.d.e.

zz(pzz2 +q2)=1.
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Solution : Let

f(x,y,z,p,q):z2 (p222+q2)—1:0, .. (2.62)
where

f =2pz*,f, =2q2°,f, =0,f, =0,f, =42°p’ +22q".

Hence the auxiliary equation (2.7) become

dx dy dz B —dp B —dq _

2pz4 222q 2p224 + 2qzz2 4z3p3 +2zpq2 4z3p2q+22q3

Consider the ratios
dp _ dq
p(4z3p2 + 2zq2 ) q(423p2 + 2zq2 )
_,dp_dq
P 9

On integrating we get

logp=logq+loga=p=aq. ... (2.63)

Substituting this value in equation (2.62) we get

z? (azqzz2 +q2): = qzz2 (1+a222) =1,

2 1

- 7’ (1+azzz)

1
q:—.
Z\/1+a222

Substituting in dz = pdx + qdy we get

z\1+a’z*dz = adx +dy -

b

q

or .. (2.64)

On integrating we get
3
(a222 + I)A

302 =ax+y+b. .. (2.65)
a
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Example 14 : Find the complete integral of the p.d.e.
2x (quz + 1) =pz
by Charpit’s method

Solution : Let
£(x,y,2,p,q) = 2x(22q> +1)-pz=0 .. (2.66)

=1, =-z1 :4X22q,fx :2(Z2q2 +1),fy =0,1, :4xzq2 -p.

Hence the auxiliary equations (2.7) become

dx _ dy _ dz B —dp _ —dq
-z 4xzzq -zp+ 4q2xz2 2 (quz + 1) + 4xzq2p - p2 4XZC13 —Pq
Consider the ratios
d
dz - y
7 . /a
-p+ 4xq22 -p+ 4xzq2
dz_ _dq
z q
Integrating we get

logz=-logq+loga
=>zq=a
a
- q = —.
z
Substituting this in (2.66) we get
ZX(a2 +1)—pz =0

:>p=2(az+l)§-
z

Substituting this in dz = pdx + qdy we get

dz=2(a%+1)2dx+2dy
Z VA

= zdz =2(a> +1)de+ady

Integrating we get
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ZZ_ 2 2
7-(&1 +1)x +ay+b,

or 22:2(a2+1)x2+2ay+b-

This is the complete integral of (2.66).
Example 15 : Obtain the complete integral of the p.d.e.

22(1+p2 +q2):1.
Solution : Let

f(x,y,z,p,q):zz(l+p2+q2)—1:0 .. (2.67)
be the given p.d.e. Where from equation (2.67) we obtain

f, = 2pz° ,f, = 2q22,fX =0,f, =0,f, = 22(1+p2 +q2).

Hence the auxiliary equations (2.7) become

x _dy __ dz —dp _ —dq . . (2.68)
2pz2 2qz2 2pzz2 +2q222 2zp(1+p2 +q2) 2zq(1+p2 +q2)
Consider the ratios
dp _ dq
2zp(1+p2 +q2) 2zq(l+p2 +q2)
_dp_dq
P q
Integrating we get
logp =logq+loga,
=p=aq.
Let g(x,y,2,p,q,a)=p—aq=0 .. (2.69)

be the one-parameter family of p.d.e. compatible with (2.67). Solving equations (2.67) and (2.69) we
get

22(1+azq2+q2):1

:>22q2(a2+1):l—22-

!
qz_( 1 j(l—zzj:q_ 1 (L—ljé
a’+1 z° a2 1\z? '
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Therefore, the equation dz = pdx + qdy becomes

S g%d L[ g%d
Z=—F——5— X+—m—| —— y
\/a2+1 22 \/a2+1 22

= dz S — 1 dy
( 1 lj% Val+l  +a’+l
z
zdz a 1
or = dx + dy -
(1_22)% Ja?+1 Va2 +1
Integrating we get

SN N S
’ \/a2+1X Vva?+1

= (a2 +1)(1-2%) =(y+ax +b)’.

y+b

This is the required complete integral.

Note : A first order p.d.e. can have several complete integrals. Note however that the two complete
integrals are equivalent, in the sense that one can be obtained from another merely by changing the
arbitrary constants.

Remark : However, when one complete integral has been obtained, every other solution, including
every other complete integral can be obtained. We shall explain the procedure in the next section.

3. Some Standard Types of p.d.e.
Type (I) : This type of equation is of the form

f(p,q)=0 .. (3.1
1.e. The given partial differential equation does not involve X, y and z.
Hence f, =0,f, =0,f, =0.
From auxiliary equations (2.7) we have

dx dy  dz dp dq

f, f, pf,+afy 0 0

Solving the last equation we get either p=a orq=a.

Putting this in (3.1) we get
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f(a,q)=0 or f(p,a)=0
=q=Q(a) or p=P(a).
Therefore, putting this in dz = pdx + qdy we get
dz =adx +Q(a)dy .
Integrating we get
z=ax+Q(a)y+b
or z=P(a)x+ay+b.
Type (IT) : This type of equation is of the form
f(z,p.q)=0
i.e. the given p.d.e. does not involve x and y explicitly.

The auxiliary equations become

dx dy  dz _ dp dq
f, f, pfy+afy -pf, —qf,

Consider the last two ratios

Substituting in (3.2) we get

f(z,aq,q)=0 or q=Q(a,z)
Therefore, the equation dz = pdx + qdy becomes
dz =aQ(a,z)dx + Q(a, z)dy

1
Q(a,2)

or dz = adx +dy

Integrating we get

dz
J- =ax+y+b_
Q(a,z)
Type (IIT) : This type of equations is of the form
g(x,p) =h(y,q) (separable type)
and not z is involved.

The auxiliary equations are
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Consider the ratios
dx —dx
e
= gydx =—g,dp
= g,dx+g,dp=0.
Integrating we get
g(x,p)=a
= from (1) that
h(y.q)=a.

Solving these equations (3.8) and (3.9) for p and q we get
p=G(a,x), q=H(a,y).
Therefore, the equation dz = pdx + qdy becomes
dz =G(a,x)dx + H(a,y)dy .
Integrating we get
z= jG(a,x)dx+JH(a,y)dy+b ,
which is the complete integral.
Type (IV) : This type of equation is of the form
z=px+qy+f(p.q).
This is called Clairaut form of partial differential equation.

The auxiliary equations are

dx dy dz —dp

.. (3.8)

. (3.9)

.. (3.10)

-X-g, -y-g&, ~Xp-pg,-¥4-q4g, -P+tP —q+q

=>dp=o=>p=aand g=>b

Substituting this in equation (3.10), we obtain its complete integral in the form
z=ax+by+ f(a,b).

e.g. Find the complete integral of the p.d.e.
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paz=p’(xq+p*)+q* (yp+4*)-
Solution : The given partial differential equation is in Clairaut form, hence its complete integral is given
by
at+b*

ab

z=ax+by+

4. Jacobi’s Method

Introduction : Let a partial differential equation be

F(x,y,z,p,q)=0 .. (4.1)
and u(x,y,z)=0 .. (4.2)
be the solution of (4.1)
Differentiating (4.2) w.r.t. y we get

Uy
u,+u,q=0=g=-——-:

z

Substituting the values for p and q in equation (4.1), let the equation (4.1) reduce to

f(x%pzugu,,u)=0. . (43)

Thisisap.d.e., in which x, y and z are the independent variables and the dependent variable u does not
appear explicitly in the equation.

Complete integral of f (X, 7,2,u,,u,,u.)=0:

A function u(x, y,z,a,b,c) issaid to be a complete integral of (4.3) if it satisfies the p.d.c.

and the associated matrix

a ax ay az
Fb Fbx Fby sz
FC FCX Fcy FCZ
is of rank three.
Theorem : Let f(x,y,z,ux,uy,uz):o . (44)

be ap.d.e. Show that any function h given by
h(x,y,z u_,u,,u ):O

sUxsHysty

is compatible with (4.4) is
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Proof : Let

f(x,y,z,ux,uy,uz)zo

.. (4.5)

be a given p.d.e. in which x, y, z are independent variables. Differentiating (4.5) w.r.t. X, y and z we get

fx + af uxx + af u X + af uZ)C
ou, ou,, 0 ou,
of of of
+ + + u
Sy ou, ¥ ou y Poou, ¥
f.+ o u, + o u, + o
ou, ou,, ou,
Consider
h(x,y,z,ux,uy,uz) =0,

where h=h;,1=1,2, ...

On differentiating equation (4.9) w.r.t. X, y and z we obtain

oh Oh oh
h,+—u, + Uy +—1u,,
ou, ou,, 0 ou,
b4 oh y Oh N Oh y
oou, Y Ou,, Poou, ¥
h, + oh u,, + oh u,, + oh
and S ou, Y ou, T ou, 7

oh of
Multiply equation (4.6) by . and (4.12) by ou. and subtracting we get

[ oh
“ou, ou, Ou, Ou, Ou,

Oh

Now multiplying equation (4.7) by 5, and(4.11)by 5, and subtracting we get
y y

_%@w%@f%_ﬁﬁh

8uy
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o oh of on

o

Ou, Ou,
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X

oh aihywxy(af oh o 6h]+uyz(6f oh of ah}o_ L @14)

You, ou Ou, Ou, Ou, Ou, éuz'auy Ou, Ou,

Y Y y y

Oh of
Similarly, on multiplying equation (4.8) by E and (4.12) by Ev and subtracting we obtain

oh
fza

z z z

Ay (LB O, (F S F ) s
Ou Ou, Ou, Ou, Ou, g ou, Ou, Ou, Ou,

Adding equations (4.13), (4.14) and (4.15) we get

ﬁ—(aih + ﬂ—ih + ﬁ—ih =0 (4.16)
“ou, ou, yauy u,, g “ou, Ou, ° ' o
or Of:h) , OU1h) | OULH) - @17)

a(x,ux) 8(y,uy) G(Z,uz)
Equation (4.16) can also be written as
oh oh oh oh oh oh
—+f, —+f,—— - - =0
e o ¥ Juo 5 =g .. (4.18)

X y z

S

which is the required result.

Jacobi’s Method :
Result : Describe Jacobi’s Method of solving the first order partial differential equation of the form
f(x7y7zﬂux7uy7uz) = 0 .

Proof: Let the first order partial differential equation whose complete integral is to be determined be
given by the equation.

f(xpzugu,,u,)=0, .. (4.19)
where x, y, z are independent variables.
The fundamental idea of Jacobi’s method is the introduction of two partial differential equations

of the first order

hl(x,y,z,ux,uy,uz,a)zo, ... (4.20)

hz(x,y,z,ux,u uz,b)zo, .. (4.21)

yﬂ

each involving one arbitrary constant ‘a’ and ‘b’ such that
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a(fahl’hZ)
a(ux,uy,uz)

(i1) the Pfaffian equation

#0 onDand

()

du=u, (x,y,z)dx+uy (x,y,z)dy+uz (x, y,z)dz

is integrable, where u,,u,,,u, are obtained by solving equations (4.19), (4.20) and (4.21)

1.e. we seek functions hy, and h, such that the equations (4.20) and (4.21) are compatible with (4.19).
We know thatany h (=h;, 1= 1,2 ) compatible with equation (4.19) is given by

o(f.h)  o(f.h)  o(f.h) _
+ + =0 (4.22)
8(x,ux) 6(y,uy) 8(Z,uz) .. (4.
Oh oh oh Oh oh Oh
>f—f.—+f(—f,. —+f.——f,. —=0.
Jx Ou, S ox Ty ou,, f”y oy ) ou, "oz
We write this as
Oh Oh oh Oh Oh oh
Zifr Zap 2 - - =0. .. (4.23
Ju ox f”y oy Ju. Oz Jx ou, Ty u,, S Ou, (423

This is the first order partial differential equation for h with x, y, z, u_, u, and u_ as the independent
variables.

Hence the subsidiary equations of (4.23) are

de dy dz du, du, du

- = =z .. (4.24)
Juo St e S S, T
From equation (4.24) we find two integrals involving arbitrary constants ‘a’ and ‘b’ of the form
hl(x,y,z,ux,uy,uz,a)zo, ... (4.25)
and hy (%, 3, 2,u,,u,u,,0) =0, ... (4.26)

These integrals are such that, equations (4.19), (4.25) and (4.26) can be solved for u,, Uy, U, These
values of u,, u,, and u_ are then substituted in

du =udx+u,dy+u,dz .. (4.27)
which is integrable. The integral satisfying (4.19) is of the form
¢(x,y,z,a,b,c)=0. ... (4.28)

This is the required complete integral of equation (4.19).
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Remark : The conditions for the equation
du=udx+u,dy+u,dz

to be exact are

These conditions are obviously true. Hence the equation is either exact or not integrable at all.

Example 1 : Solve the equation

z? +zu, —ux2 —uy2 =0
by Jacobi’s method.

Solution : Let
f(oyzupu,u)=2"+zu, —u? —u? =0 .. (4.29)

be the first order partial differential equation.

Where from equation (4.29) we find
Ju, :—Zux,fuy ==2u,,f, =2, /,=0,/,=0,/.=2z+u,

Hence the auxiliary equations (4.24) become

—2ux:—2uy: z 0 0 :—ZZ—uZ

dx dy dz du, du, du, ... (4.30)

From this we obtain two independent solutions from the ratios

=>du,=0=>u, =a,
=du,=0=u,=>b,

which are the two integral of (4.29). Substituting these in the equation (4.29) we obtain
22 +zu_—a*—b* =0,

a’+b> - 72
or U, =————
z

Substituting these values in the equation

du =u.dx +u,dy+u,dy
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we get

2,72 2
du =adx+bdy+(dez,

z

du = adx +bdy +(a® +b2)%—zdz,
z

Integrating we get

2
u :ax+by+(a2 +b2)logz—%+C.

This is the required complete integral of (4.29).

Example 2 : Solve the equation
z+2u, —(u, +uz)2 =0
by Jacobi’s method.
Solution : Let
f(x,y,z,ux,uy,uz)z+2yz —(ux +uz)2 =0. .. (4.31)

We first find two one-parameter family of p.d.e. which are compatible with (4.31)
From equation (4.31) we find

fux :—Z(ux +uy),fuy =—2(ux +uy),fuz =2,/,=0,/,=0,/. =1
Hence the auxiliary equations (4.24) reduce to

dx dy dz du, du, du_

X

2wy tu,) 20w 4u) 0 0 0 -1

From which we obtain two independent integrals by considering the ratios

du, _du,

0 0’
=>du,=0=>u, =a,
du,=0=u,=>.
Let hl(x,y,z,ux,uy,uz,a)zux—a:O, ... (4.33)

and hZ(xayazauxauyauzab):uy_b:()a (434)
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which are compatible with (4.31). Substituting this in (4.31) we get

Z=2uz—(a+b)2 =0,

or u2=%((a+b)2—2).

Substituting these values in the equation
du=u.d, +u,d, +u,d,,

we get
du = adx+bdy+%((a +b)’ —z)dz_

Integrating we get

2
u :ax+by+%(a+b)zz—%+C

which is the required complete integral of (4.31).

Example 3 : Solve the equation

2 2

2
ux"—u,”—au,” =0

y V4
by Jacobi’s method.
Solution : Let

_ 2 2 2 _
f(x,y,z,ux,uy,uz)—uxx —u,”—au,” =0

be a given partial differential equation. From equation (4.35) we find

S

Hence, the auxiliary equations (4.24) become

X

dex dy dz du du, du
x? 2u, 2au, 2xu 0 0

From which we obtain two integrals by considering the ratios

dlxly _ duz

0 0

=u,=0=u,=>b,
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and du,=0=>u_=c.

Let these be denoted by

and

hl(x,y,zu u.,,u a)zuy—b:O,

sUxosMysHzs

hz(x,y,zu u,,u b):uz—c=O_

W xsMystzs

Substituting these in (4.35) we obtain

Substituting these values

we get

Integrating

242 2 _
ux" —=b"—ac"=u, =

in the equation

du=udx+u,dy+u,dz

2

b% +ac

2

X

2 2
du:m%)dﬁbdwcdz,
X
2 2
u:—(b+—aC)+by+CZ+d
X

Example 4 : Solve the equation by Jacobi’s method

Solution : Let

2 2 _
u, +u,"+u, =1

2 2
f(xayazauxauyauz):ux +uy +uz—1:O

be a given p.d.e. Where from equation (4.41) we find

fux :2anfuy :ZUyafuZ :lafx :Oafy :O’fz :O.

Substituting these in auxiliary equations (4.24) we find

Consider the ratios

dx_d_y_%_ du

X

2u, 2u, 10
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and du,=0=u,=>.
Let these be denoted by

hl(x,y,z,ux,uy,uz,a)zux—a:O, .. (4.43)

hZ(xayazauxauyauzab):uy_b:O- (444)
Substituting these in (4.41) we get
a’+b*+u, —1=0

=u, =1-(a®+b?). .. (4.45)
Substituting these values in
du=u.dx+u,dy+u,dz,

we get

du = adx +bdy +[1-(a® +b?) | dz-

Integrating we get

u :ax+by+(1—a2 —bz)z+c-
Example 5 : Solve the equation by Jacobi’s method

_,, 2
XUy +yu, =u,”.

Solution : Let
[0,z uuy,u ) =xu, +yu, —u?=0. .. (4.46)

We find two one-parameter family of p.d.e. which are compatible with (4.46).

From equation (4.46) we have

fu :x’fuyzy?fuzz_zuz’fx:ux’ y:uJ” Z:0'

X

Hence the auxiliary equations (4.24) become

dx _dy  dz du du, du,

x ¥y 2u, u, »

From which we obtain two independent integrals by considering

=>du,=0=>u,=a, .. (4.47)
and @=—dux:>10gx=—logua+logb
x u

X
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xu,=b. ... (4.48)

Equations (4.47) and (4.48) are compatible with (4.46). Therefore, substituting (4.47) and (4.48) in
(4.46) we get

bt yu, =a? =u, =—(a>~b), .. (4.49)

y

Substituting the values from equations (4.47), (4.48) and (4.49) in equation

du=udx+u,dy+u.dz,
we get

du = b@wt(a2 —b)ldy +adz

X y

Integrating we get

u= blogx+(a2 —b)logy+ax+C .
This is the required complete integral of (4.46)

Example 6 : Solve the equation by Jacobi’s method

_, 2
XUy +yu, =u.".

Solution : Let

f(x,y,z,ux,uy,uz):xux+yuy—u22=0 ... (4.50)
be a given p.d.e. Where from equation (4.50) we find

Juy =% Sy =5 S, =205 [ =y fy =uy, [ =0 .. (4.51)

X

Hence, the auxiliary equations (4.24) become

dx _dy dz _ du du, du

- ’ 2“2__ " == ) T - ... (4.52)
From which we find
du,=0=>u,=C, ... (4.53)
dx du,
and —=- = logx=-logu, +loga= xu,=a
X u,
oy =2 4.54
= ... (4.54)
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Substituting these in (4.50) we get

C*-a
a+yuy—C2:0:uy=( 5 J ... (4.55)

Substituting these values in
du=udx+u,dy+u.dz,

we get

du :aﬁ+(C2 —a)dy+cdz+b_
X

Integrating we get
u= alogx+(C2 —a)logy+Cz +b

This is the required complete integral of equation (4.50).
Example 7 : Solve

Solution : Let
2T x Ty y "z x Py z

f(x,y,z u_,u.,u ) Zzuxzu 2ulrutut-u’=0 ... (4.56)

We first find two one-parameter family of p.d.e., which are compatible with (4.56).

From equation (4.56) we have

_ 2 _ 22 2 2
Ju, = 2uzuyu +2u.u, fuy—2uyz u u,” +2u,

Ju, =2u.z u, u —2u_,f.=0=1f,f. =2zux2uy2u22.
Hence the the auxiliary equations (4.24) become

dx dy dz

2 2 22 2 2 22
2uzu u, +2uu 2u,zuu,” + 2uu, 2uyzu " = 2u,

du, du, B du,

2 2 2
0 0 2zuu,"u,

Therefore, the equation du, =0 and du, =0 give
u,=a and u, =b.

Substituting these values in equation (4.56) we get
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Hence, the equation

reduces to

Integrating we get

Example 8 : Solve

Solution : Let

a’b*z’u? +a*h* —u.> =0

= uZ2 (l—azbzzz) =a’b? = u = L )
\ll—azbzz2

du =udx+u,dy+u,dz

ab

——dz
V1-a?bh?z?

du = adx + bdy +

u=ax+by+sin" (abz)+C.
uzz(ux+uy)+x+y=0,

f(x,y,z,ux,uy,uz)zuzz(ux +uy)+x+y=0, .. (4.57)

= =2z fu, = 2Uss fo, :Z(ux+uy),fx =Lf, =L/, :uz(ux+uy)_

Uy

Hence, the auxiliary equations are

Consider the ratios

Integrating we get

Now consider the ratios

Integrating we ger

dx  dy dz___ du, _du,  du, .. (4.58)
zuz_zuz_z(ux+uy)_ 1 u, (u,+u,

dZ _ duz jé__duz
z(ux+uy)_ uz(ux+uy) z u,

logz+-logu _+loga = zu, =a

a. .. (4.59)
z
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_X+y
Uy —Uu, = p
Solving (4.60) and (4.61) we get
b
2 2a°’
b x+y
and Uy =5~

Substituting for u,.,u,,,u_ in

x>%ys¥z

du =udx+u,dy+u,dz

b x+yj (b x+yj a
du=|—— dx—| —— dy+—d.
weget ! (2 2¢ )02 20 )UTZE

b 1 b 1

du :—dx——xdx——dy——ydy—i(ydx+xdy)+gdz_
2a 2 2a 2a z

2

Integrati t u—éx—ixz—é _y_Z__ e
egrating we ge 2" 12 SV T T Y >

1e. u=—(x—y)——

Jacobi’s Method to solve a non-linear p.d.e. in two variables :

Consider the following non-linear partial differential equation in the form

f(x,y,z,p,q) =0.
The solution of (4.64) is a relation between X, y and z. Let this relation be
u (x, Vv, Z) =C

Then we have from (4.65) on differentiating w.r.t. x and y

On substituting these values in equation (4.64) we obtain a relation of the form

g(x,y,z,ux,uy,uz)zo_

This can be solved by Jacobi’s method discussed earlier, which yields
107

... (4.60)

.. (4.61)

.. (4.62)

.. (4.63)

.. (4.64)

.. (4.65)

... (4.66)



u :f(x,y,z,a,b,c)

In this if we choose u = ¢, we get a complete integral of (4.64).

Example 9 : Find a complete integral of the equation

plx+q’y=z
by Jacobi’s method.

Solution : Let

f(xayazapaQ):Z_p2x+q2y=O

be a given non-linear partial differential equation.

.. (4.67)

.. (4.68)

... (4.69)

Let
u (x, v, z) =C
be the solution of equation (4.68). Then on differentiating (4.69) w.r.t. x and then w.r.t. y we get
respectively,
u, u
p=——""*, g=—-"-
uZ uZ

Substituting this in equation (4.68) we get

2 u 2
ux Yy
x| — | + — | =z
(MZJ y(“z] .

2 2_ 2
or xu,” 4+ yu,” =zu,”

Let

2 2 2
f(xayazauxauyauz)_xux +yuy —zu~ =0,

The auxiliary equations are

d« dy dz du du, du
S

X

From equation (4.70) we find

f“x =2xux,fuy :2yuy7fuz =—ZZMZ’ fx :“xz’fy =u

Therefore, equations (4.71) become
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de _ dy __dz __du, _du, du, . (4.72)
2xu,  2yu, —2zu, u’ uy2 u,’

The two solutions of these equations are obtained by considering the ratios

e _ e dx 0y

2xu, u, X u, ’

du, B

dy _ Ay, dy o,

and

2yu, ”y2 h% u,
Integrating we get
logx+2logu, =loga and log y+2logu, =logh,
ie. xux2 =g and yuy2 =b.
Let hl(x,y,z,ux,uy,uz,a)zxuxz—a=0, .. (4.73)
and h, (x,y,z,ux,uy,uz,b)=yuy2—b=0. .. (4.74)

Which are compatible with (4.70). Solving (4.73) and (4.74) we obtain

Substituting these values in the equation (4.70) we get
(oS
x| —|+y|—|=zu,
X y

1
=u’=—(a+b). .. (4.75)
z

Consequently the equation

du=udx+u,dy+u,dz

duz\/gdx+\/gdy+,/a+bdz_
X y z

w=2(ax)"2 +2(by)2 +2((a+b)z)2 +C -

reduces to

Integrating we get
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Writing u=C we get

((a+b)z)2 =] (@)% + ()2 ]

or /[(—bj 2] }

| 1/ 72
or 22{( i jA+( by jé} : .. (4.76)
a+b a+b

Which is the complete integral of the equation (4.68).
Example 10 : Solve the p.d.e. by Jacobi’s Method

2 = pgxy -

Solution : Let

f(x,y.2,p.94)=2" - pgry=0 (477
be a given non-linear partial differential equation.
Let u(x,y,z)=C beits solution. ... (4.78)

Therefore, differentiating (4.78) w.r.t. x and y we get respectively

Substituting these in equation (4.77) we get

f(xayazauxauyauz):uzzz3_Uxuyxyzo. (479)

= fux = _xyuyﬂfuy = _xyux’fz;z = 2“2239.]{)6 = _quyy,fy = _uxuyxﬁfz = 2Z3u22 oo (480)
Therefore, the auxiliary equations (4.71) become

dx dy dz —du —du, —du

= = = X = = z . cee (4 . 8 1 )
—XYu,  —Xyu, 2uzz3 —yuu,  —uUX 322u22
Consider the ratios
dx  du, dx _ du,
—Xyu, U,y X u,
Integrating we get

log(xu, )=loga
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Xu,=a or y_ _4, ... (4.82)

Now consider the ratios

—XPU, XU, y u,
Integrating we get

log(yu,)=logh

= yu, =b or y, _b, . (4.83)
y

Using these values in equation (4.83) we get

or u :@. ... (4.84)

Now substituting these values in the equation
du=u.d,+u,dy+u.dz

we get

du :aﬁ—kbﬂ—i—m%-

x oy h

Integrating we get

u =alogx+b10gy+@(—ij+C_

N

Taking u(x,y,z)=C we get

Zz//_z_bzlog(xa-yb)_

x?yb =exp(2\/“;b) .. (4.85)

Which is the required complete integral.

Example 11 : Solve by Jacobi method the equation
pqg =xz.
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Solution : Let

f(xayaZaP,Q):pq—XZ=0,

be a given non-linear partial differential equations.

Let u(x,y,z)=C beits solution.

Therefore, differentiating (4.87) w.r.t. x and y we get respectively

u

X

u

p=——~ and q:__y.

u

z

z

Substituting these values in (4.86) we get

f(x,y,z,ux,uy,uz):u

From equation (4.88) we find

S

X

_ _ _ 2 2
= Uy fu, =y uz——szuZ,fx—zuz Sy =0, 1, =—xu,”

Hence the Jacobi’s auxiliary equations (4.71) reduce to

Now the equation

The ratios

2

WMy —xzu,” =0,

Using (4.90) and (4.91) in (4.88) we get

Substituting these values in the equation

we get

dx _dy _ dz _ —du, __duy —du
w, u, —2xzu, zu.? 0 —xu,
du,=0=>u,=a
dz —du., dz du,
= > — = ,
—2Xzu, —;(uzz 2z —u,
= logz =-2logu_ +logb,
= zuz2 =b.
b
au,—xb=0=u, =(—jx_
a
du=u.d,+u,dy+u.dz
du = (éjxdx+ ady + \/Zidz
a \/5 )
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Integrtaing we get

2
u:(éj%+ay+2\/3\/;+C_

a

:u:i-x2+ay+2\/b_z+C_
2a
Which is the required complete integral of (4.88). Writingu=C we get

Z_L(ixzw f
4H\ 2a Y

as a complete integral of equation (4.86).

Exercise :

1. Solve the partial differential equation by Jacobi method.

(p*+4*)y=4z.
2. Solve by Jacobi method.

p=(z+qy)"

mimlm
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UNIT -1V

THE CAUCHY PROBLEM

Introduction :

Given a partial differential equation and a curve in space, the Cauchy problem is to find an
integral surface of the equation which contains the given curve.

Let a partial differentiable equation and a curve be given by

f(X,y,Z,p,q)zO, (11)

x=xy(8), ¥y=0(8), z=2y(s). Vs €[a,b] .. (1.2)

Then the Cauchy problem is to find a solution

z=z(x,)
of the partial differential equation (1.1) such that

zo(s):z(xo(s),yo(s)). Vs e[a,b].
In the unit 4, we find the integral surfaces through a given curve for a
1) linear partial differential equations,
2) non-linear partial differential equations,
3) and quasi-linear equations.
1. Integral Surfaces through a given curve for a Linear Partial Differential Equations.

Result : Discuss how a general solution may be used to determine the integral surface, which passes
through a given curve.

Proof : Consider a linear partial differential equation in the form

Pp+0g=R. .. (1.3)
The general solution of the equation (1.3) is given by

F(u,v)=0, .. (1.4)
where F is an arbitrary function and u (x, y,z) = C;, v(x, y,z) = C, aresolutions of the equation

e _dy iz

_4_ .. (1.5)
P O R
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This solution is a two parameter family of curves.
Let C be a given curve whose parametric equations are given by

x=xy(s), ¥y=y0(8), z=2y(s), ... (1.6)
where s is a parameter (not necessarily the arc length) of the curve. Our aim is to find F such that the

integral surface F (u,v)= 0 contains the given curve C.

To obtain the integral surface containing the curve C, let us assume that, we can drive from
equation (1.5) two relations of the form

u(x,y,z)=C, and v(x,y,z)=C, .. (1.7)

involving two arbitrary constants C, and C,. Substituting x = xy(s), y = yy(s), z=z(s) inthese

equations, we get

u(xo(s),yo(s),zo(s)) =G,

and v(x0(5), ¥0(5),29(8)) = C,. .. (1.8)

From this particular solutions, we can eliminate the parameter s to obtain the relation between C; and
C, of'the type

F(Cl,C2)=0- ...(1.9)
Then the required integral surface z = z(x, ) is obtained by eliminating C, and C, between equations
(1.8)and (1.9).

Note : Sometimes the solution can also be obtained by assuming y = G () and determining G.

Example 1 : Find the integral surface of the p.d.e.
(x—y)y2p+(y—x)x2q :(x2 +y2)z
through the curve xz=a’,y=0.
Solution : Given p.d.e. is
(x=») 2 p+(y—x)x*g=(x*+)?)z . (1.10)

The integral surface of the equation (1.10) is generated by the integral curves of the auxiliary equations

&« __dy __ dz (111
(x=3)y" (y-x)x> (52+)?)z
Consider the ratios
dx dy 2 2
G-’ oo =0
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Integrating we get

x3+y3 =C.
Let u(x,y,z)=x3+y3:C1.
Now consider the ratios
dx—dy dx dx—dy dz
R -
(x—y)(x +y ) (x +y )z X—Yy z
Integrating we get
log(x—y)=logz+logC,,
Le. x—y=zC,,
x—
or yZCz.
z
X—
Let v(x,p,z)="2=C,.

z

. (1.12)

. (1.13)

It is given that the general surface represented by (1.12) and (1.13) passes through the curve

xz=a2,y=O-

The parametric representation of these equations are

a
x=as,y=0and z==.
s

Substituting thisin (1.12) and (1.13) we get

3.3
a’s” =C,

and (as_ojS=C2:s2:C2_
a

From equations (1.12), (1.13) and (1.15) we have

(407 =af(222)

z

= 7 (x3 +y3)2 :a6(x—y)3.

This is the required integral surface of (1.10).
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Example 2 : Find the integral surface of the differential equation
x(z+2) p+(xz+2yz+2y)g=z(z+1)
passing through the curve
Xy =5,Y=0 and z, =2s.
Solution : Givenp.d.e. is
x(z+2) p+(xz+2yz+42y)q=z(z+1). .. (1.17)
The integral surface of the equation (1.17) is generated by the integral curves of the auxiliary equations

ax__ _ dy __ 4 .. (1.18)
x(z+2) (xz+2yz+2y) z(z+1)

Each ratio of (1.18) is equal to

dx +dy B dx +dy
xz+2x+xz242yz+2y  2xz+2yz+2(x+y)

B dx+dy _
2(x+y)(z+1)
Therefore, consider the ratios
- dx+dy _ 2%.
x+y z
Integrating we get log(x+y)=2logz+logC,,
X+y
3( 3 j=C1. .. (1.19)
zZ
X+
Let u(x,y,z)="22=C, . (1.20)
z
Now consider the ratios
dx dz

x(z+2) - z(z+1)

dx (z4+2)dz

x  z(z+1)
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Integrating we get

Let

dx (2 1 )
=—=|=- dz .
X z z+1

logx =2logz—log(z+1)+logC,

X(Zjl) =G,. .. (1.21)

z

v(x, ’ ):x(z+1):

2 .

z

It is given that the general surface represented by (1.19) and (1.21) passes through the curve

Xy =58,y =0,zy =2s.

Hence equations (1.19) and (1.21) become

and

or

or

S 1
—=C,=>—=C
45> ' 4 :

1
—Qs+1)=C
4s 2

Example 3 : Find the integral surface of

which passes through the parabola

Solution : Givenp.d.e. is

:>Cl(2s+l):C2:254.1:&323:&_
C G
1 C,-C 1
2 — 2 1:>C _C -
(4C1j C SR . (1.22)
x(z+1)_x+y_l
z2 z? 2
1 1
—(zx—-y)=—
22( ») 5
2(xz—y)zzz.
x2p+y2q+22:0
xy=x+y,z=1.
X’p+ylq=-z>. . (1.23)
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The integral surface of the equation (1.23) is generated by the integral curves of the auxiliary equation

dx _dy _ dz . (1.24)
22 22
Consider the ratios
@ _dy
22
Integrating we get
1 1
—=—+C
Xy 1 .. (1.25)

Similarly, by considering the ratios

d_y _ —dz
yz 22
we obtain

1 1
;+;:C2. .. (1.26)
Given that the general surface represented by (1.25) and (1.26) passes through the curve
xy=x+y,z=1,
whose parametric equations are

y(x—l):x:yzil

z=1, L (1.27)

s s s 1+,
4 -1
- - 1
S s 1
1+C,
ie. ——— =G, or 2C,+C, =3. .. (1.28)

2
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Using equations (1.25) and (1.26) in the equation (1.28) we get

2(l+1]+l—l=3
y z) x y

1 1 2

or ;+;+;=3. .. (1.29)

This is the required integral surface.

Example 4 : Find the equation of the integral surface of the equation
x3p+y(3x2+y)q:z(2x2+y) ... (1.30)

which passes through the curve x, =1, y, =s,z, =s(1+s).

Solution : The integral surface of the equation (1.30) is generated by the integral curves of the auxiliary
equations

dx dy dz .. (131)

X y(3x2 +y) Z(Zx2 +y)

Lt La
Each ratio of the equation =~ Y z

—x2+3x2+y—2x2—y

—ldx-i-ldy—ldz
X v z
0
& by _dz_,
X y z
Integrating we get
—logx+logy—logz=1logC,
Xz
Let u==>=c. . (132)
Xz
Now consider the ratios
&___ b
X’ y(3x2 +y)
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N (3x2 +y)dx =Q= (3x2 +y)dx+dy

x° y x4y
Each ratio of (1.33)
3 (3)(2 +y)dx+dy+xdy
X+ y+xy
Consider
dy _ (3x2 +y)dx+dy+xdy
y X4y 4y
3 3x2dx+dy+(ydx+xdy)
X+ y+xy
dy 3x’dx+dy + d(xy)
y X y+xy
Integrating we get
logy= log(x3 +y+xy)+log G,
X+ y+xy
or —=0C,,
Y
X+ y+xy
Let V=—""T+= C2 .

Y
Given that the general surface (1.32) and (1.34) passes through the curve

Xo=1,1=5,zy =s(1+s).

S j—
s(1+s)

o

_Cl

1

1=Cl(1+S):>S=1

1+s+s

and =C, = 1+52=Cys

S

or 1=(C,-2)s
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Substitutingin 1 = C, (1+s) we get

)=

or C1C2_C1_C2 +2:0. .ee (1.35)
From equations (1.32), (1.34) and (1.35) we obtain

3 3
+ 2y—-x"—y—

N A yxy:().
Xz y

2 3
+ — -
XAy yoxX Wy
z y

=(x2+y)y+z(y-x—xy)=0
or (x?+y)y—xz(x>+y)+yz=0
= (x2+y)(y-xz)+yz=0
or (x* +3)(xz=3)=1z=0

or yz=(x*+y)(xz—y). .. (1.36)
This is the required integral surface.

Example 4 : Find the equation of the integral surface of the differential equation
2y(z-3)p+(2x—z)g=y(2x-3)

which passes through the circle.
z=0,x>+y* =2x.

Solution : Givenp.d.e. is
2y(z=3) p+(2x-z)g=y(2x-3). .. (1.37)

The integral surface of the given equation (1.37) is generated by the integral curves of the auxiliary
equations

dx  dy  dz
2y(z-3) 2x-z y(2x-3)

.. (1.38)
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ydy —dz

Each ratio = 2k —yz—2xp 43y

_ ydy—dz
-y(z-3)

Therefore, consider the ratios

dx«  ydy-dz
2y(z=3) —y(z-3)

= dx=-2(ydy—dz).

Integrating we get
x=—y2+2z+Cl.
or x+y?-2z=C,.
Let u:x+y2—2z:C1.
Now consider the ratios
dx dz - de  dz
2y(z-3) y(2x-3) 2(z-3) 2x-3
= (2x-3)dx=2(z-3)dz
Integrating we get
x*-3x=2"—62+C,
or x2—22—3x+6z=C2.
Let v=x’—z"-3x+62=C,.

Given that the general surface represented by (1.39) and (1.40) passes through the circle
Z:O,xz+y2 =2x,

or z=0,x2—2x+y2=0,

ie. z=0,(x-1)+)>=1.

The parametric representations of these equations are

x=1+cosf,y=sinf,z=0.

Therefore, substituting these in (1.39) and (1.40) we get
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1+cos@+sin* @ =C,. .. (1.42)

and (1+cos @)’ —=3(1+cos0) = C,

or :>00529—cos€—2zC2. .. (1.43)
Adding equations (1.42) and (1.43) we get

C,+C,=0 .. (1.44)
Thus eliminating C,, C, between (1.39), (1.40) and (1.44) we get

x+y2 —2z+x%—z*-3x+6z=0

or xt+y?—z2-2x+4z=0. .. (1.45)
This is the required integral surface.

Example 5 : Find the integral surface of the linear partial differential equation
x(y2 +z)p—y(x2 +z)q :(x2 —yz)z

which contains the straight line
x+y=0,z=1.

Solution : The linear partial differential equation is given by
x(y2+z)p—y(x2+z)q=(x2—y2)z. ... (1.46)

The integral surface of the equation (1.46) is generated by the integral curves of the auxiliary equations

dx dy dz .. (1.47)

Each ratio of (1.47)

_ yzdx + xzdy + xydz
S
= d(xyz)=0.
Integrating we get
xyz=C,.
Let u=xyz=Cj. ... (1.48)

Now each ratio of the equation (1.47)

xdx+ ydy —dz

x? (y2 +z)—y2 (x2 +z)—z(x2 —yz)
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_ xdx+ ydy —dz
0

= xdx+ ydy—dz=0.

Integrating we get
or 4yt -2z=0C,.
Let v=x’+y*-2z=C,. ... (1.49)

It is given that the general surface given in (1.48) and (1.49) contains the straight line
x+y=0,z=1.

The parametric equations of the straight line are
x=t,y=—t,z=1.

Therefore, substituting these in equations (1.48) and (1.49) we get

2(-1)=c¢,.
Eliminating the parameter t, we get
2C,+C,+2=0. ... (1.50)

Thus the required integral surface is obtained by eliminating C; and C, from (1.50). Elimination gives

2xyz+x*+y*=2z42=0 .. (1.51)

Example 6 : Find the integral surface of the equation
(x+a)p+2yq=2z
passing through the initial data curve
xXp=L yy=s, z =[5
Solution : The linear p.d.e. is given by
(x+2) p+2yg=2z. .. (1.52)

The integral surface of the equation (1.52) is generated by the integral curves of the auxiliary equations

dx _dy _dz .. (1.53)
x+2 2y 2z
Consider the ratios
dx _ﬂ
x+2 2y
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Integrating we get

log(x+2)= %logy +log C,

= (x+2)° =yC;-
(x+ 2)2
Let u= = C] .
y
Now consider the ratio
& _d:
2y 2z
Integrating we get
logy =logz+logC,
or y=zC,.
z

. (1.54)

.. (1.55)

.. (1.56)

It is given that the general surfaces (1.55) and (1.56) passes through the initial data curve given by

xg=-1,y0=s and z, =/s.
Therefore, substituting in (1.55) and (1.56) we get

1

o° C, and fs = G,

1

Eliminating C, and C, from (1.58) we obtain

- (Zf T

z:\/;(x+2).

This is the required integral surface.

Example 7 : Find the equation of the integral surface of the equation

(x2 +y2)p+2xyq=(x+y)z

which passes through the curve
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Xy =0,y :s2,20 =—s
Solution : The general solution of equation (1.60) is obtained in the example (4) of unit 2 in the form.

xX+y

=G, . (1.61)

and

.. (1.62)

This surface passes through the given curve

X =0, yo=5% zy=—5. .. (1.63)

Substituting these values in equations (1.61) and (1.62) we get

S:_Cl,
S2=C2,
:>C2=C12.

Consequently, from equations (1.61) and (1.62) we obtain

zz(yz—x2)=y(x+y)2- .. (1.64)
Given that the general surface (1.62) and (1.63) passes through the curve

xy=0, ¥ =57, Zy=—S.
Substituting these in equations (1.62) and (1.63) we get
Cl - _S, C2 == S2 s
Eliminating C, and C, we get
2 2
(]
y z

2(32-x2) = y(x+y). .. (1.64)

Example 8 : Find integral surface of

2x(y+22)p+y(2y+zz)q=z3

which passes through the curve
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2
Xg=58", yo=5, z5=1.

Solution : We have obtained the general solution of the equation in the form (Refer example (2) of
Unit?2)

X
u=—==C
vz 1, ... (1.65)
2
z°=2
and -2 Y_c, . (1.66)
vz
Given that the general surface (1.65) and (1.66) passes through the curve
X :sz, Yo=S, zog=1.
Substituting in (1.65) and (1.66) we get
1-2s
s=C, and =C,
s
Using equations (1.65) and (1.66) we deminate C; and C, to get
vz —2x :i(zz —2y)
vz
:>(yz—2x)yz:x(zz—2y). .. (1.67)

Example 9 : Find the integral surface passing through the circle z =1, x? + y2 = 1 of the partial
differential equation

(x—y)p+(y—x-z)g=z.
Solution : Let the linear partial differential equation be given by
(x—y)p+(y—x-z)g=z. ... (1.68)

The auxiliary equations are

dx dy _dz .. (1.69)

x—y_y—x—z_ z

Each ratio of (1.69)

B dx +dy _dz
X—y+y—-x—-z z

=>dx+dy=-dz.
Integrating we get
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x+y=z=C.
Let u=x+y+z=C. .. (1.70)
Now each ratio of equation (1.69)

_ dx—dy+dz
x—y—y+x+z+z’

_ dx—dy+dz
2(x—y+z)

Consider the ratios

dz dx—dy+dz

z 2(x-y+z) .
Integrating we get
2logz =log(x—y+z)+logC,,
or x—y+z=Cz". . (1.71)
It is given that the general surface represented by (1.70) and (1.71) passes through the curve (circle).
z=1, x> +y* =1,
whose parametric equations are
x=cost, y=sint, z=1. .. (1.72)
Substituting this in (1.70) and (1.71) we get

cost+sint+1=C; and cost—sint+1=C,

jcost:M and sint:ﬂ.
2, 2 1 2 2
Hence cos” ¢ +sin tzl:z[(Cl+C2—2) +(C,-C,) J:I
=2 +C-2(C+C,)=0. .. (1.73)

Substituting the values of C; and C, from equations (1.70) and (1.71) we get

2
-y+ -y+
R el I SR ) B}
z z

:>z4(x+y+z)2+(x—y+z)2—ZZz[x—y+z+Zz(x+y+z)]:0,
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ie. 24(x+y+z)2 +(x—y+z)2—222[(x—y+z)+22(x+y+z)]:O.

This is the required integral surface (particular solution) through the given circle.

Example 10 : Find the integral surface of the linear partial differential equation
xXxp+yq=z

which contains the circle
x2+y? 4zt =4, x+y+z=2.

Solution : The given partial differential equation is

Xp+yqg=-z.

.. (1.74)

.. (1.75)

The integral surface of the equation (1.75) is generated by the integral curves of the auxiliary equations

& _dy _dz
x 'y z
Consider the ratios
_dy
X oy ’
and integrating we get

logx =log y +logC,

:>£:C1-
Y

Similarly, by considering the last two ratios we get

Y_c,

z

Thus the integral surface of the equation (1.75) is

F(f,l}o_
y z

It is given that this integral surface passes through the given curve
x2+y? +22 =4,
X+y+z=2.

From equations (1.76) and (1.77) we find

y=— and ,—_* .
G GG,
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Substituting this in equations (1.79) and (1.80) we get

x? 1+L2+% =4, .. (1.81)
Cl Cl C2
1
and x(1+—+ J:Z. .. (1.82)
1 1~2

From equations (1.81) and (1.82) we find

1 1 1 1Y
It—t—F=|+—+
¢’ Cc, ¢ GG

1 1 1
=>—+ +——=0
G GG GG

. X Y
Now replacing Ci = > and C, =  we get

xy+xz+yz=0. .. (1.83)

This is the required integral surface of the given partial differential equation.

Exercise :
1. Find the integral surface of the equation
(2xy—l)p+(z—2x2)q = 2(x—yz)

which passes through the line x,(s) =1, y,(s) =0 and z,(s) =0.

2.  Integral surfaces through a given curve for a non-linear Partial
Differential Equations

Result : Discuss the method of finding the integral surface of a non-linear partial differential equation.
Proof : Let f(x,»,2,p,q)=0 .. (2.1)

be a given non-linear partial differential equation. By usual (Charpit’s) method we find its complete
integral. Let

F(x,y,z,a,b):O .. (2.2)

be a complete integral of equation (2.1), which involves two arbitrary constants ‘a’ and ‘b’.
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Let C be a given curve whose parametric equations are given by

x=xy(8), ¥y=y0(5), z=2zy(s), ..(2.3)

where s is aparameter of the curve. Our aim is to find the integral surface of the given partial differential
equation (2.1) which contains the given curve (2.3).

We expect that, this solution to be an envelope of one parameter subfamily of (2.2). This
envelope contains the curve C. This requires that

F(xo (5), ¥0(5), 2 (s),a,b) =0. ..(2.4)

Differentiating this with respect to s we get

aa—f(xO(S), Vo), z().a,b) =0 ..(2.5)

Thus we have two relations (2.4) and (2.5) from which we eliminate s to obtain the relation between
‘a’ and ‘b’ such as

w(a,b)=0. ... (2.6)
Factorizing this we get
b=¢(a), b=g¢,(a) . (2.7)

Each one of'the relations (2.7) defines a one parameter subfamily of the complete integral
(2.2). The envelope of each of these subfamilies if it exists, is an integral surface of the equation (2.1).

Note : The solution may not be unique.

Example 1 : Find a complete integral of the equation
( pi+q’ ) X=pz

and the integral surface which passes through the curve

Solution : Let

f(tyzp.q)=(p*+¢*)x-pz=0. .. (2.8)

be a given non-linear p.d.e. To find its complete integral, we know the Charpit’s auxiliary equations are

dc _dy _ dz ___dp ___dg - (2.9)
fo Sty ety fiotpf. fi+df

Where from equation (2.8) we find
f,=2px=z, f,=24x, f,=p*+q°, [, =0, f.=—-p.
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Consequently, equation (2.9) becomes

de _dy _ dz dp_ﬁ'

2px—z 2qx pz q_z_pq

Considering the ratios
_9 _dq
a> rq
= pdp+qdq =0.
Integrating we get
2 2
P 4 _ Constant
2 2
or p2 + q2 = az .

Substituting this in (2.8) we get

azxzpz:pz—

The equation (2.11) gives

z
Substituting these in equation
dz = pdx + qdy
we get
—dx+—\/Z azxzdy
z
= zdz = a’xdx +aNz* —a*x*dy
2
:M dy:>d(\/2 —a’x? ):ady.
Nz? —a*x?
Integrating we get

22 —a*x* =ay+b
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or 22 —a*x® =(ay+b)’

= 22 =a’x* +(ay+b)’. - (2.13)
This is the required complete integral. Given that this complete integral passes through the curve

C:xy=0, v :sz, Zy =25

2

= 4s? =(as>+5) " . (2.14)
Differentiating (2.14) w.r.t. s we get

8s = 2(as2 +b)-2sa

:>2:a(asz+b)- .. (2.15)
Eliminating s between (2.14) and (2.15) we get

1
45 =~ = =—
a’ a’
:2:(a2-—2+ba)
a
:>b—l 2.16
p ... (2.16)

Substituting this in (2.13) we obtain one-parameter subfamily of the complete integral in the form

1)
2% =a’x? +(ay +—)
a

a’z? = a'x? +(a2y+1)2

=%z’ =4* (x2 +y2)+2a2y+1

= a* (x> +y?)+a*(2y-22)+1=0. . (2.17)
To find the envelope of (2.17) differentiate (2.17) w.r.t. ‘a’ we get

2a2(x2+y2)+(2y—22):o. (218)
Eliminating ‘a’ between (2.17) and (2.18) we get the required envelope of one-parameter subfamily as

(2)’_22)2 w2ip?)o (2y—22) 241 =
—4(x2+y2)2( ) —2(x2+y2)(2y )+1=0
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or (2y-22) —2(2y-22) +4(x? +y?) =0.
or (2-20) =4(x*+7)
=5 =2(yi\/m),
=22 =2(y it y?). .. (2.19)

(by discarding the negative signas \/x? + y? > y)
This is the required integral surface of (2.8).

Example 2 : Find a complete integral of the equation
( pi+q’ ) X=pz
and the integral surface passing through the parabola x =0, z* =4 .

Solution : The complete integrate of the p.d.e

(p*+4*)x=pz .. (2.20)
is given by (refer earlier example)

22 =a’x? +(ay +b)’. .. (2.21)
Given that this passes through the parabola C

x=0,z2 =4y,

whose parametric equations are
2
x=0,y=t,z"=4¢
2
= 4t =(at +b)

= a’t> +Q2ab-4)t+b* =0

For real roots we must have
Vb* —4aC =0
= (2ab—4)* —4a*p? =0

or (ab—Z)2 =a’h?® = a’b? —4ab+4 =a*b*

—ab=1 .. (2.22)

135



or b:l.
a

Substituting this in (2.21) we obtain the equation of the required integral surface in the form

z? :2(y+\/x2+y2) or (2y—22)2 :4(x2+y2)-

Exercise 3 : Find the integral surface of z = p? — 42 which passes through the curve

4z+x7=0,y=0.

Solution : Let

f(xp,2,p,9)=p*-¢*-2=0

.. (2.23)

be the given non-linear partial differential equation. To find the complete integral we have from Charpit’s

auxiliary equations
dx _dy _ dz __dp _—dq
2p 2q 2p*-2¢4> O0-p —q
Consider the ratios
dx _dp = dx=2dp
2p p
Integrating we get

1
x=2p+a or pzz(x—a)_

Substituting this in (2.23) we get

2
qZ:pZ_Z:qzz(x_a) _

\/(x—a)2—4z 1

or = =4=3 (x—a)’ —4z.

2
Substituting these values in the equation
dz = pdx + qdy

we get

dz:(x;ajdx+%\/(x—a)2 —4z-dy
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:dz—(x;ajdxzéxl(x—a)z —4z-dy

2dz —(x—a)dx
= =
\/(x—a)2 -4z

:—d[\/(x—a)z —42] =dy

dy

Integrating we get
\/(x—a)2 —-4z+y=>b
or (x—a)2—4z:(y+b)2.

Thisis the required complete integral. It is given that this integral passes through the curve

2
S

Xg =58, ¥ =0, zg=——
Hence equation (2.26) gives

(s—a)2 +st=b?
Differentiating (2.27) w.r.t. s we get

2(s—a)+2s=0

=>a=12s-
Eliminating s between (2.27) and (2.28), we obtain

a=\/§b-

Substituting this in (2.26) we get

2
(x—2b) —4z=(25+b)">
which is the one parameter of subfamily of complete integral.

Differentiating (2.29) w.r.t. b we get

2(x—2b)-(V2) =2(y +b),

:(x)it/gbj:_ﬁ'

Eliminating b between (2.29) and (2.30) we get
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and derive the equation of the integral surface containing the liney=1and x +z=0.

Solution : Let

-4z

——=2
(x—\/ib)

2

:>—2z:(x+\/§y)2-

Example 4 : Find the complete integral of the equation

pix+qy—z=0

f(xayazapaQ)=p2X+qy—Z=O

be a given non-linear p.d.e.

To find its complete integral, the Charpit’s auxiliary equations give

From which we obtain

by ds

dp

2px vy 2p’x+qy —p(p-1)

dg=0or g=a

Using (2.34) in (2.32) we get

xpzzz—ay:p:(

Substituting (2.34) and (2.35) in the equation

we get

On integrating we get

Squaring we get

dz = pdx + qdy

1

z—ay

X

V2!
dz=(z ayj dx +ady

X
dz—ady dx

o
NS

z—ay:x+b+2\/E

138

f

dq

0

.. (231)

.. (2.32)

.. (2.33)

.. (2.34)

.. (2.35)



or z—ay—x—b=2\/E-
Squaring we get
(ay—z+x+b)2 =4xb .

Which is the required complete integral.

Given that this complete integral passes through the curve
C:y=Lx+z=0.

ie. yv=1, x=t, z=—t.

On substituting this in (2.36) we get
(a+t+t+b)° =4bt
(a+b+21)* =4br-

Differentiating (2.37) w.r.t. t we get
4(a+b+2t)=4b
=a+b+2t=>b
—a=-2t and p=4
=b=-2a

or 2a+b=0.

.. (2.36)

. (2.37)

.. (2.38)

On substituting b=—2a in equation (2.36) we get one-parameter subfamily of the complete integral of

p.d.e. (2.32) in the form
(ay—z+x—-2a)" =4x(-2a)
(ay—z+x—2a)2 =—8ax -
Differentiate equation (2.39) w.r.t. a we get
2(ay—z+x-2a)(y—-2)=-8x

or (y-2)(ay—z+x-2a)=—4x.

The envelope is obtained by eliminating a between equations (2.39) and (2.40) we get

xy=z(y-2).
Which is the required integral surface of equation (2.32).
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Exercise :
1. Find the integral surface of
)c2p+yzq+z2 =0
which passes through the hyperbola

xy=x+y,z=1.

3. Integral Surfaces through a given curve by a method of Characteristics

In this section we shall discuss the method of characteristics to find the integral surface of a
semi-linear and quasi-linear partial differential equations.

(a) Semi-linear Partial Differential Equations :

Consider a semi-linear partial differential equation given by

P(x,y)p+0(x,7)q=R(x,,z2). - (3.)

The expression on the left hand side of the equation (3.1) is called the directional derivative of z (X, y)

in the direction of (P (x, y) ,0 (x, y)) at the point (x, y).

The one parameter family of curves in the Xy plane is characterized by the ordinary differential equation

dy _Qxy) (2
dx  P(x,y)

Or the system of ordinary differential equations
dx dy
—=P s s T = 5 . .
= P(xy). = =0(xy) (33)

These curves have the property that along them z (X, y) will satisfy the ordinary differential equation

dz dy
—=z +z, —
dx Y dx
:ZX+Z Q(x’y)
Y P(x,y)
dz 2z, P(x,y)+2,0(x,y)
= —= ..(34)
dx P(x,y)
dz __dx Ay
of d “dt dt
dz
== z,P(x,y)+2,0(x,y) .. (3.5)
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d
3£=P(x,y)p+Q(x,y)q,

where p=z_and ¢=z,

:%:R(x,y,z)_ ...(3.6)

The one parameter family of curves defined by equation (3.3) are called the characteristics curves of
the partial differential equation (3.1) and the equation is called characteristic equation.

Let (xo Yo ) be a point in the Xy plane. By the existence and uniqueness of the solution of the

initial value problem for the ordinary differential equation, (3.3) will define a unique characteristic curve
(say)

x(1) =x(x9, v9,1), (1) = y (X9, ¥:1), ..(3.7)
such that x(0) = x, and y(0) =y, .

If z,, is the value for z(x, y) at (xo » Vo ) then the equation (3.7) determines a unique solution z as

z= z(xo,yo,t) .
Thus z (X, y) is uniquely determined along the characteristic passing through the point (xo Yo ) ifwe
know z (x,y) at (xq, ¥ ).
Example 1 : Solve the equation
Xz, —yz, =z
with the initial condition
z(x,0)= f(x),x>0.
Solution : Let the equation be
XZ, =Yz, =Z. ...(3.8)

We know the characteristic curves of (3.8) are given by the equation

&y _0(x,y)
dx P(x,y)

.. (3.9)

where

P(x,y)=-y, Q(x.y)=x, R(x,y,z)=z.

Hence equation (3.9) gives
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d_y X

dx v

This equation has solution given by

x2+y2:C2-

.. (3.10)

. (3.11)

These curves have the property that along them the function z (x, y) satisfies the ordinary differential

equation

Le.

Integrating we get

or

where the constant of integration k may depend on c.

Therefore we write the general solution of the equation as

dz dy
—=z +z,—
dx Y dx
X y y
Yz, —xz,
y
dz _ _z
dx y
%__ z
dx )
%_ dx
P o2 _ 2

+logk

logz=—jL
Vet = x?

logz =—sin"! (zj +logk
c

7= k(c)e_sm_l(g 5

z= k(x2 +y2)e_sm_l(9'

Now applying the initial conditions, we get
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z(x,0)=f(x), x>0

we have
Sil’171 (Zj = sin71 (WJ
=sin™' (%) =sin”' (1) 2%
=z(x,0)=f(x)= k(xz)ef%
= k(x?) =f(x)e%
or k(x):f(x/;)-e% .. (3.14)

Hence the general solution (3.13) becomes

2(xy)= (VP +y? )e%ml@- - (3.15)

Example 2 : Solve the equations

2
Zx+Zy_Z

with the initial condition z(x,0) = £ (x).
Solution : We are given that
z.+z,=2z°. ... (3.16)

We know the characteristic curves of the p.d.e (3.16) are given by the equation

&y _0(xy), - (3.17)
dx  P(x,y)
where
O(x,y)=1, P(x,y)=1. .. (3.18)
:>d—y_1
dx
whose solution is
x—y=C. ... (3.19)

These one parameter family of curves have the property that along them the function z (x, y) must
satisfy the ordinary differential equation
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=z,+z,-1 by equation (3.18)

E_p by equation (3.16

o . y equation (3.16)
dz
— =dx
2

Integrating we get

S S ) S ... (3.20)

z x+k(c)

where the constant of integration k may be a function of C.

1
= L — .. (3.21
z(x,y) =) (3.21)

Now applying the initial condition
z(x,0) = (x)

Weget :>Z()C,O):f(X):_#(x)

= f()[x+k(x)]=-1,
xf (x)+ fF(x)k(x)=-1
= f(x)-k(x)=-1-xf(x)

__(1+xf(x))
= k(x)= —f(x)
:k(x_y):_[l+(x—y)f(x—y)] .

f(x=y)
Substituting this in (3.21) we get
-1

[1+(x=p) f(x-)]
f(x=y)

2(x.y)=

X —

Simplifying we get
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(e S my)
(x.7) 1=yf (x=y)

Which is the required solution.

(b) Quasi-linear Equation :

Consider a quasi-linear p.d.e. given by
P(x,y,2)z, +Q(x,,2)z, = R(x, yz). .. (3.22)
We know its solution defines an integral surface z = z(x, y) inthex, y, z space.

We know the direction ratios of the normal to this surface are given by (Z 0 ZyT 1) .

Hence equation (3.22) states that the integral surface is such that at each point the line with
direction ratios (P, Q, R) is tangent to the surface at that point. (Infact, any surface z=2z (x, y) has the
property that it is an integral surface iff the tangent plane contains the characteristic direction (P, Q, R)
defined by the p.d.e at each point).

In the case of quasi-linear equation, the characteristic curves are a family of space curves
whose tangent at each point coincides with the characteristic direction (P, Q, R) at that point. These
are given by the following system of ordinary differential equations

dx dy dz
P(xayaz) Q(X,y,Z) R(x,y,z)
d d d
or d_);:P(x,y,z), ?);:Q(x;yaz)a d_j:R(x’y’Z)- - (3.24)

By the existence and uniqueness of the solution of IVP of a system of ordinary differential equations
there passes a characteristic curve

x:x(x05y07205t)) y:y(x0>yOaZO)t)7 Z:Z(x()’y09209t) (325)

through each point (x,, ¥,z ).

Hence there is a two parameter family of characteristic curves. (Two parameter family of

characteristics are nothing but the curves of intersection of the surfaces u (x, y,z) =C, and
v(x,y,z) =C,).
Eliminating s and t from (3.25) we get the required integral surface.

Result : Every surface generated by a one parameter family of characteristics is an integral surface.

Proof : Let z = z(x, y) bean integral surface. Take P(x, y,z) beany point on the surface. Then the

tangent to the characteristic curve passing through that point lies on the plane to the surface. Thus the
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tangent plane to the surface at each point contains the line with direction ratios (P, Q, R). Hence the
surface is an integral surface.

Conversely : We prove that every integral surface is generated by a family of characteristic curves.

Consider an integral surface
z=z(x,y). ... (3.26)

Let x = x(¢), y = y(¢) be the solutions of the equations

d

d_:zp(xa%z(x,y)),

d

%:Q(X,y,z(x,y)), .. (3.27)

with the initial conditions x = x,,, y = y,, att=0. The corresponding curve in 3-dimension is

x=x(t),y = (1), z = (x(t), (1)) - (3.28)
We see that this curve lies on the given integral surface (3.26).
Further,

dz dx dy

—=z,—+tz,—

dt dt 7 dt

= P(x,y,z)zx + Q(x,y,z)zy

= R(x,y,z)

— The curve satisfies equations for characteristic curves. viz.

dx
dt

d d
= P(x,y,Z),% = Q(x,y,Z),d—j =R(x,y,z).

Therefore, integral surface (3.26) is generated by the characteristic curves.

Theorem : Consider the first order quasi-linear partial differential equation

P(x,y,z)zx + Q(x, y,z)zy = R(x, y,z)
where P, Q and R have continuous partial derivatives with respect to x, y and z and they do not vanish

simultaneously. Let z = z, () be prescribed along the initial curve given by

Lo :x=x0(5), y=yy(s)

Xy, Voand z, being continuously differentiable functions. Further, for 4 < g < p,1f

%P(Xo(S)JJ’o(S),Zo(S))_% (xo(s),yo(s), Zo(s)) =0,
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then there exists a unique solution z (X, y) defined in some neighbourhood of the initial curve I";, which

satisfies the p.d.e. and the initial condition

Z(xo(s),yo(s)) =2zo(s).
Proof : Consider the p.d.e

P(x,y,z)zx+Q(x,y,z)zy :R(x,y,z) ...(3.29)
where P, Q, R are continuous differentiable functions of x, y, z and do not vanish simultaneously.
Let xX=x4(5),y=yy(s) ... (3.30)

be the initial data curve and

d dx,
ZLP(x(5). 70(5): 20(8) =~ CQ (308 3o (). 20(5) 0. . (331)
Claim : We prove that z (X, y) is a unique solution of p.d.e. (3.29) satisfying

Z(xo(s),yo(s)) =2zy(s).

We know the integral surface of (3.29) are the family of space curves and are given by the system of
ordinary differential equations

dx dz

E:P(x,y,z), %:Q(x,y,z), EZR(X,)/,Z). ... (3.32)

We solve these equations to find a unique family of characteristics (through (x,, ¥, 2 ) )
X = x(xo,yo,zo,t) = x(s,t) ,
y= y(xo,yo,zo,t) = y(s,t) s

z:z(xo,yo,zo,t):z(s,t), ... (3.33)
where x, y, z have continuous derivatives w.r.t. the parameters s and t satisfying the initial conditions

x(5,0)=x0(5), ¥ (5,0) = yo(s)and z(s,0) =z, (s)
We see from equations (3.33) that

a ()C, y) xs xt
= =\ XV = VX )|
o(s,t) |y 1¥s Vil (=)
=(x0-».P),_, by equation (3.32)
#0. due to admissibility conditions (3.31)

Now solving equations (3.33) for s and t, we obtain the relation
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Say ¢(x,y)=z(s(x,y),t(x,y)) ...(3.34)

Att=0 we get
¢(x0,y0) = z(s,o) =2zy(s)

This implies that ¢ (x, y) satisfies the initial condition. To prove ¢ (x, ») also satisfies the equation
(3.29).

We consider,

Py, + Q¢y = P[zssx + Ztlx] +Q [zssy + Ztly:l

=2, (Ps,+0s,)+z,(Pt, +01,)

P +0p, =z, (5%, +5,5,)+2,(t:X, +1,,). dueto equation (3.32)
However, by chain rule, we have

SeX +8,5,=5,=0 (s and t are independent parameters)
and tX, 8y, =t =1
Hence the above equation becomes,

Pp.+0¢, =z, =R(x,y,z) by equation (3.32)

ie. Pp +0p, = R(x,y,z)
This shows that x = ¢ (x, y) satisfies the p.d.e. (3.29). Thus z = ¢(x, y) isasolution of p.d.e. (3.29).

Uniqueness : Let ¢ (x, ) be not unique solution of (3.29). This means that there are two surfaces

which intersect along the given initial curve. Through each point on the initial curve, there passes one
and only one characteristic curve. Therefore, this characteristic curve has to be on both the surfaces.
Hence the same family of characteristic curves which passes through each point of the initial curve lie
on both the surfaces.

Hence both the surfaces must coincide as both are generated by the same family of characteristics
curces.

This proves the uniqueness.

Example 1 : Solve the initial value problem for the quasi-linear equation
2z, +z, =1

with the initial conditions

x:s,y=s,z=§S for 0<s<1.
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Solution : Given p.d.e. i.e. a quasi-linear p.d.e. given by

zz,+z,=1, ..(3.35)
where P(x,y,z)=z,0=1LR=1, ...(3.36)
subject to the initial conditions

X=Xy =50 =0 =5,2 =2 (5) =25, 0<s<l. - (337)

We observe that

d d
%P(xo(s),yo(s),z()(s))—% (0 (), 30 (5), 2 (5))

=—s—1

#0 for 0<s<1

= from the above theorem that there exists unique solution z (x,y) satisfies the p.d.e. and the initial
condition. Hence we solve the equations.

We know the family of characteristic curves which generate the surface are the solution of the equations

Kb Yopg Zop

dt dt dt

dx dy dz
i - =4, _:15 _:1 .
1.e. 7 7 7 (3.38)
with the initial conditions

1
x(s,0)=s, y(s,0)=s, Z(S,0)=5S. ..(3.39)

From equation (3.38) we find

d & _ t+C, o
an 7 | gives

2
x:?+C1t+tC3.

Hence the family of characteristic curves through the initial data are found to be

£2
X=—+—_s8t+s,
2 2
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y=t+s,
..(3.39)

s
z=t+—-
2

Solving these equagtions for s and t interms of x and y we obtain (from the first two equations of 3.39)

... (3.40)

or

Substituting this iny=t+ s we get

y—-Xx

Y
2

s=y—

y
.. (341)

S
Substituting the values of t and s from equations (3.40) and (3.41) in Z =7+ we get

2
2(y—x)+(x—y—j
2 ), .. (3.42)

(2-»)

This is the required solution of integral surface.

Example 2 : Solve the Chauchy problem for

2z, +yz, =z

when the initial data curve is

2
Cixyg=s8,y0=5",zp=5, 1<s<2.

Solution : The partial differential equation is given by
...(3.43)

2z, +yz, =2z,
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subject to the initial conditions

Xo=8Yy=5",zy=5, 1<5<2. .. (3.44)
Here P=2,Q=y,R=2z.

Therefore, we observe that

dy, dx 2

—P(xq,¥0,20 ) ———O0(x4, V0,20 ) =4s—5

s (x5 0520) s O(x0-¥0-20) ,

20 for 1<5<2. ... (3.45)

The admissibility condition (3.45) implies that there exists unique solution z (X, y) satisfies the p.d.e.
and the initial conditions.

We know the family of characteristic curves which generate the surface are the solutions of the equations

dx d dz
Ezz, d_«:: =z .. (3.46)
such that X)=5,) :s2,20 =s5.
Solving the equations (3.46) we obtain
x=2t+Cy, logy=t+logC, = y=C,e',
and logz=t+logC; = z=Cse'. .. (3.462)
We have from equations (3.44) and (3.46a)
C =s, C,=5%, Cy=5s.
Thus the family of characteristic curves is found to be
x=s+2t, .. (3.47)
y=s’e, ...(3.48)
I ...(3.49)

The solution is obtained by eliminating s and t between equations (3.47), (3.48) and (3.49).
Therefore, we see that

XzZ—y= se' +2ste’ —s’e',

xz—y =2ste’,

Xz—y
2z

=t
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Substituting in (3.47) we get

Therefore the equation , — ¢! becomes

= 2)en )
z 2z )’

XZ —
or zz=wm{ 2yj. . (3.50)

z

This is the required solution (integral surface).

Example 3 : Find the solution of the initial value problem for the quasi-linear equation
zy—zz,+z=0 Vy andx>0

for the initial data curve
C:ixyg=0,y)=5,zp=-2s, —00<§<©.

Solution : The quasi-linear p.d.e. is given by

zZ,—zz,=-12, ..(3.51)
with the initial data curve
C:ixy=0,y)=5,zy)=-25.
HereP=1,Q=-zandR=-2z.
Therefore P(x0,¥0:20) =1, O(X0,¥0.20) =25, R(X9,¥0,29)=2s.
We observe from the admissibility condition that
Dop_ Doy Vs .. (3.52)

ds ds
This shows that there exists unique solution z (x, y) satisfies the p.d.e. and the initial conditions.

We know the family of characteristic curves which generate surface are the solutions of the equations

E_p oo E_p

dt dt dt

dx dy dz
i _=1a - =z, ——=- eee .
i.e. r i 7 z, (3.53)
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such that xl—o =%, =0, y|t=0 =5, zlio=-2s.
Solving these equations we get
x=t+C;, logz=—t+logC, =>z=Ce ',

dy —t —t
—=-Cre =>y=-C,|e dt+C
and 1 2 y 2_‘. 3,

=y=Ce ' +C;.

Hence the family of characteristic curves through the initial data curve is found to be

X =t,

y=-2se”' +3s, and (3.54)

z=-2se”".
The solution is obtain by eliminating t and s from equation (3.54). Thus we have

___ Y
2" -3"

Substituting this valuein , = _) g0~ We get

z= 2y e,

2¢7" -3
)
=>z= log| = |>x2>0
30" 2 for log 3 ... (3.55)
This is the required solution (integral surface).
, 2

Note : The solution breaks down at X = logg :
Example 4 : Find the integral surface for the differential equation

z(xz, - yz,)= y?—x?
passing through the initial data curve (2s, s, s).
Solution : The quasi-linear p.d.eis given by

ZXZ, —ZYZ), = y?-x?, ... (3.56)
subject to the initial conditions (2s, s, s)
Le. Xg =28, yp=5, Z5=5. ..(3.57)
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Here P(x,y,z)=xz, Q(x,9,2)=—2y, R(x,y,2)=y"—x>.

Therefore P(xo,yo,zo)=2s2, Q(xo,yo,zo)z—sz, R(xo,yo,zo)zsz—4szz—3sz.

We observe from the admissibility condition that

Do p P05 2(-5) =45> %0 e s, .. (3.58)
ds ds
This shows that there exists unique solution z (x, y) satisfies the p.d.e. and the initial conditions.

We know the family of characteristic curves which generate surface are the solutions of the equations

b, dy b
dt dt dt

. dx_ dy__ f_ 2 .2

i.e. e ) dt_y X, ...(3.59)

Satisfying the initial data (3.57). To solve equations (3.59) we write these equation as

dx _ dy _ zdz . ... (3.59)
Xz -yz y -x
_Y_y
dx x
Integrating we get
xy=C;.
xdx + ydy + zdz

Now each ratio of equation (3.59a) =

= xdx+ ydy+zdz=0.

Integrating we get
x2+y2+z 2=C2.

Hence the family of characteristic curves through the initial data (3.57) is given by
Xy = 257,
x2+y2+22 =657,

If we choose
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and 27 =657 —1> — 451>,
Eliminating t and s we get the required integral surface

2% =657 —x? —xzyz)c_2 )
= z2 =3xy—x’ - y*.
This is arequired integral surface.

Example 5 : Find the integral surface passing throughx=1, z = y? +  of the equation

x3zx +y(3x2 +y)zy = z(2x2 +y).
Solution : The givenp.d.e. is

x3zx +y(3x2 +y)zy = z(2x2 +y) , ... (3.60)
subject to the initial conditions

x=lLz=y*+y. ... (3.61)
Comparing (3.60) with the standard equation we have

P=x,0=y(3x>+y),R=z(2x> +y). .. (3.62)
We choose the parameter y, = s

=zy=s"+s=zy=s(s+1).
Therefore, the initial data is

Xo=1, yo=5, zo=s(s+1). ... (3.63)
Hence we have

P(xo,yo,zo) zl,Q(xo,yO,zo) :S(3+s),R(xO,y0,ZO) =s(s+1)(2+s).

We observe from the admissibility condition that
Dop_Pogn_ 1040
ds ds
This shows that there exists unique solution z (x, y) satisfying the p.d.e. and the initial conditions.

Thus the family of characteristic curves which generate surface are the solution of the equations

d_);: dy = dz =dt (3.64)
x y(3x2+y) Z(2x2+y) o

d d d
3%:x3,%:y(3x2+y),d—jzz(2x2+y), .. (3.65)
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satisfying the initial data (3.63). To solve equations (3.65) consider the each ratio of equation (3.64)

—ldx+ldy—ldz —ldx+ldy—ldz
X ¥ z __x y z
X243t +y-2xt—y 0
= e +d—y—% =0.
Xy oz
Integrating we get
—logx+logy—logz=1logC,
=2 -C, .. (3.66)
Xz
Now consider the ratios
dx dy
3 2
X y(3x +y)
dx d
2 4
= (3x + y)x—3 =—
= 3x?ydx + ydx = x*dy
= 3x?ydx — x’dy = —y*dx
2 3 3
jw:_dm_dx:d(x_j_
y y
Integrating we get
3
y
3
or —+x=0;, ..(3.67)

Y
Using the initial data (3.63) in equations (3.66) and (3.67) we get

1
C =—
= .. (3.68)
1
Cy=—+1, .. (3.69)
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Concequently, the family of characteristic curve is obtain by eliminating C, and C, from equations

(3.66) and (3.67).

This gives Y ! )
xz s+1
¥ 1
and —+x=—+1,
y K
If we choose xX=t,
£ 1
we get —+t=—+1
y s
3 —
t_:l+1_t:M’
y s s
pa S Sr3

2 1rs(-0) 2 1es(-1)

Consequently, we have from equation (3.70)

st oz :>Z_S(S+1)t2
[1+s(-1)]r s+1 l+s(1—1)"

Eliminating t and s between (3.72), (3.73), (3.74) we get

3
SX

_ Y B
_1+S(1_x):>y[l+s(l )] =5,

y

y+s(y—xy)=sx,
y=s[x—y+x].

Or #:S.

X —y+xy

Using (3.72) and (3.75) in (3.74) we get

xz[ . Yy [ . ) +1ﬂ
X —y+xy\x —y+xy

1+(1—x)3¢
X —y+xy

z(x3—y+xy):y2 +x2y
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Xz—x*y+xyz—y? =yz
x? (xz—y)+y(xz—y)=yz

(¥ +y)(xz—y)=yz
This is the required integral surface.

(¢) Non-Linear First Order Partial Differential Equations :

In this section we shall consider a method of finding integral surfaces of a non-linear partial
differential equations of first order, which is based largely on geometrical ideas. The method was first
developed by Cauchy and is called Cauchy’s Method of Characteristics.

The method involves the following steps :
Stepl:Let  f(x,y,2,p,q)=0 ... (3.76)
be a given p.d.e. and the initial data curve be

X=x4(8), ¥y=y5(5), z=24(s). .. (3.77)

Using (3.76) and (3.77) determine the functions p,(s) and g, (s) such that

f(xo(S)a Y0(8)s 2o(s), Po(s), CIO(S)):Oa .. (3.78)
d “o o py B0y g Bo gy, lled strip conditi 3.79
an s Po s 99 s (These are called strip conditions) ... (3.79)

Note : There could be several choices for p,(s) and g, (s) . One can find unique solution for each

such choice.

Step 2 : Once a choice for p,(s) and g, (s) is made (i.e. the initial strip is chosen) we can solve the

following Cauchy characteristic equations

dx dy dz
_— , — = , —= —+
dt Tp dt Ja i P s
ap dg .
i fi—fp, = f—-ra, ... (3.80)
subject to the initial conditions
xX=xy(5),y=yy(8),z=2y(s), p= po(s)and g =¢g,(s) att=0. ... (3.81)

The corresponding characteristic curves x = x(s,?),y = y(s,t),z = z(s,t) generate the required
integral surface after eliminating s and t. Let the solution surface be in the z =z (x, y).

The method is illustrated in the following example.
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Example 1 : Determine the characteristics of the equation
z=p?—g?
and find the integral surface which passes through the curve

2
S

X =5, 9=0, 2y = - (the parabola 4z + x> =0,y =0 ).

Solution : Let the given p.d.e. be denoted by

f(xy.z,p.9)=p*-¢*>-z=0. .. (3.82)
The initial data curve is
§2
XOZS, yOZO, ZOZ_T' ..(383)

To determine the function p(s) and g, (s) we have the strip conditions.

2
2 2 8
f(xo’yO’ZO’po’qo)z():Po —qy +—=0,

4
dz, dx,, dy, s
and s Po s 9o s > Po. (3.84)
2 2 2
3%2 —_+_:>%2 =
4
or o LR ... (3.85)

Now the Cauchy characteristic equations (3.80) become

dx
-9
dt P,
dy_

a1

dz 2 2
—=2p° -2
r p q,
dp
a L

dq _

and r =q

.. (3.86)
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Thus we have

dx dy dz d—p—ﬂ—dt

2p 29 2p°-2¢> p ¢

_ dx _dp
The ratios 20 p give
=>x=2p+C(.
Now consider the ratios
d—y=ﬁ:>y=—2q—i-c2
—2q9 q
The conditions
d—p:dt:>10gp =t+logCy
P
= p=Cye'.
dgq
Similarly, —=dt=logg=t+logC,
q
= q = C4et .
i SR
Now the equation 2 7 2q2
gives dz=2(C;2e* —C 2™ ) dt,

dz=2(c2-c,?)edr,

=z=(C2-C2)e* +C;.

Now on using the initial data (3.83) to (3.85) we have from equations (3.87) to (3.91) that

C, =s2, cz=¢&,cg=—%,c;= 2

t
x=-—se +2s>

y:\/z~s(1—et),
p=—%5,
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Eliminating these constants, we have finally from equations (3.87) to (3.91)
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q=——Fc¢
\/5 ’
2
and z:—S—eZt.
4

Solving (3.92) and (3.93) for s and e’ we get

Y
s=| x———=
&
d et:x_‘/zy
an v
V2
Substituting in (3.96) we get
) =2
Z_—— —_—— .
A" V2) | L
V2

z= —%(x—\/zy)z_

This is the required integral surface.

Example 2 : Find by the method of characteristics, the integral surface of

pqg=xy
which passes through the curvez =x, y = 0.

Solution : Let the given p.d.e. be

f(xayazapaq):pq_xy:(),

and the initial data curve be
X0 (8)=5,10(5)=0,z(s) =s.
Hence the equation f (Xg. ¥, Zg» Po» 4o ) =0 becomes
Podo —X0Yo =0
= P40 —0=0

= po(s)-qo(s)=0

Now the equation
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ds ds ds
becomes l1=py-1+4g,-0 ... (3.101)
= po=1. (unique initial data)
From equation (3.100)
=q,=0. ... (3.102)
Now the Cauchy characteristics equations (3.80) become
dx dy dz dp dg
P . _— . —_—= 2 s T = —_— = . P .
a T a P dr i (3.103)
Thus from equations
dt 7 an da 7’
) @ _da_
we have 2
2
= d—f -x=0,
dt
which has solution
x=aée' +be'- ... (3.104)
dx p p
=>qg=—=ae —be
q r . ... (3.105)
Similarly, from equations
dy _  dp _
a o
we have _dzy = d_p =
de*  dt
2
j—fjév—yz():yzcet”e’. ...(3.106)
t
d
Hence, p= j: = ce' —de' . (3.107)
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Therefore,

ﬂ =dt
2pq

=dz= 2(cet —deé' )(ae’ —be! )dt

dz = 2(ace2t —bc—ad +bde™ )dt

= z=ace’ —bde —2(bc+ad)t+e-

Using the initial data (3.99) to (3.102) at t =0 we get

and

Finally, we have

s=ac—bd+e

S S S
=>s=—+—te=>e=—
4 4 2

e +e :
y= = y =sinht,
2
TR Lt
4 4 4 4 ’

s(ethLeztj S
Z=— 4+ —
2 2 2

=z= %[cosh 2t +1]
z= %[cosh2 t+sinh? ¢ +1]

= %[cosh2 t +cosh? t]

2
z=scosh”t-
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Now pZ%(et+e_t):>p:cosht_

(et—etj .
q=s = g =ssinht,

Now eliminating s and t from (3.112), (3.113) and (3.114) we get
z? =s*cosh*s
=(scosh?)” cosh? ¢

=x° (1+sinh2 t)

zzzxz(l-i-yz).

This is the required integral surface through the given initial data curve.

Example 3 : Find the characteristics of the equation

pq=z

and determine the integral surface which passes through the parabolax =0, y?=z.

Solution : Let the given p.d.e. be denoted by

f(xayazapaé])zpq—Z:O.

The initial data curve is

2
Xy =0,yy=5,zp=5".

To determine the functions p(s) and g, (s), we have the strip conditions

f(XO)y09207p07QO):0

= Poq0 — 2y :0::’170‘]0_52 =0,

dz, dx,, dy,
= +
and ds Po ds 7o ds
=25 =py(0)+qy=q,=2s.
) K
Equation (3.120) = Po=7.

2

Now the Cauchy characteristic equations (3.80) become

%:q:dx:Czetdt:x:Czet+C3.
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%:p:dy:Cle’dt:yzClet+C4,

—Z:qu:%:2t:10gz:t2+logC5,
z

dt
t2
Z=C5€ D)
dp t
—=p=>p=Cie
i p=p 1€,
dq ¢
—=g=>qg=C,e
5 1= 1=Ge .. (3.123)
Thus we have
de_dy_dz _dp _dq_,,
g p 2pq p ¢ '
The ratios
dx dq
—=—>=>x=q+C .. (3.124)
q q
dy dp
and —=—=y=p+(,, .. (3.125)
p p
Also d?p:dz‘:>10gp=z‘+logC3
= p=Ce', ... (3.126)
@—dt 1 =t+logC =C,e
and . = logg=t+logCy = q=Cye’ ..(3.127)
dZ 2t
2pq
z=C3Che™ +Cs. .. (3.128)

Now using the initial data curve (3.119), (3.121) and (3.122) att = 0, we have from (3.124)
s

s
2 5
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Equation (3.126) gives

Equation (3.127) gives 2s =Cy4,

S
and equation (3.128) gives 5~ = S25+C5 =G5 =0.

Finally we have on substituting the values of these constants in equations (3.124) to (3.128)

x=2se' —2s> ... (3.129)
y=§et+%3y=%(6’+l), . (3.130)
p==¢, . (3.131)
2
q=2se, ..(3.132)
and g2 . (3.133)

Now eliminating s and t between (3.129), (3.130) and (3.133) we have

adding we get

=2x=x+4y—-4s

or 4s=—x+4y
4y —x
Therefore, §=——
4
Hence ol = x+4y.
4y—x
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Substituting this in (3.133) we get

Z_(4y—xj2 x+4y 2
4 4y—x
2
Z:(x+4yj .
4

This is the required integral surface.

Example 4 : Find by the method of characteristics the integral surface of the equation
p2x +qgy—z=0
which passes through the initial datay=1,x +z=0.
Solution : Let the given p.d.e. be denoted by
f(x,y,z,p,q)=p2x+qy—z=0. ... (3.134)
The initial data curve is
Xy =S8,y =Lzy=-s. ... (3.135)

To determine the functions p(s) and g, (s), we have the strip conditions

£ (X05 905205 Po»40) = 0=> py°s+qo+5 =0, .. (3.136)
dz dx. dy
and —E= Pty — === py+qy(0)= po =1, . (3.137)

Therefore equation (3.136) give
s+qy+s=0=g,=-2s. ... (3.138)

Now the Cauchy characteristic equations (3.80) reduce to

—=2px

dt P,

dy

a7

d—j:2p2x+qy,

dp 2

A = +

dt prr,

q dq

A= g+g=>—"2=0 ..(3.1
p q+tq r (3.139)
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. dy :
The equation —- =y gives

dt
=y=Ce ... (3.140)
dp dp
i —=-p(p-1)=>—==dt
The equation i ( ) »(p-1)

:dp(i_Lj:dt
p p-1

Integrating we get
log p—log(p—-1)=t+logC,
t
o P o a2 .. (3.141)
(p-1) (Cye' -1)
: dgq
The equation I 0=>¢9=0C;. .. (3.142)
. dx _ 2px :ﬂ_ 2x
The equation dp —p(p—l) dp (p—l)
or dx __ 2dp
x p-1
Integrating we get
logx=-2log(p-1)+logC,
—x=C,(p-1)"" .. (3.143)
pe Czet = o= Czet 1
From (3.141) Ce' —1 Cye' -1
1 ) ¢ 2
=>p-1= =(p-1) =(Cye -1
Czet—l ( ) ( 2 )
2
Hence x:C4(C2et—1) . .. (3.144)

. dz 2
Now the equation o 2p°x+qy becomes
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2
! 2
dzzzc{ Cae J (Cre’ —1) +CyCi¢!

% =2C,2C e* +C,Cse’

= dz=2C,>C, (e¥adt)+ C,C; (e'dt)
Integrating we get

z=C°Ce* +C,Cye' +Cs. .. (3.145)
Now using the initial data curve

Xy =58,Yy=1zy=—5,py=—1and ¢q,=-2s,

we have from equation (3.140) =C =1.
&
From equation (3.141) we have —1= C. 1 =G, =-C,+1
2
From equation (3.142) we find Cy=-2s.
) -2 C,
From equation (3.143) we have s=Cy (-1-1D) " =s= T =C, =4s,
From equation (3.145) we find Cs=0.
Thus the family of characteristic curves are given by
.2
2
=>x=s (et - 2) )
y=e', z=se* —2se' ... (3.146)
L t
p= 2 = p= and g =-2s.
RN
—e —1
2

Solving the equations (3.146) for s and t we get

(v-2)°

Putting this in the expression for z we get

and et:y.
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or —>z=

This is the required integral surface.

Example 5 : Find the integral surface of the equation

passing through C: x, =s,y,=0,z, = s2.

Show that there are two possible initial strips p, =2s, g, ==*s .
Solution : Let the given non-linear p.d.e. be given by
f(xy.2,p.9)=p*=3¢* -z =0,
with the initial conditions
Xp=5,1=0,2, =52,
To determine initial strip, we have the strip conditions

f(xo,yO,ZO,pO,qo)ZO,

:>P02_3902_Zo =0:>P02 _3902 =5’

dz, dx, dy,
= +
and ds Po ds 7o ds
= py=2s.

Hence equation (3.149) gives g, ==s .
Hence the initial strip is
Xy =5, =0,z :sz,p0 =25,q,=1%s.

Now the Cauchy characteristic equations (3.80) are given by

%——6%
%=2p2—6q2,
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dt
& s
dp
Integrating we get x=2p+C. ... (3.152)
dy
Similarly, d—q=—6:>dy=—6dq .. (3.153)
= y=-6g+C,

%:pzﬂogpztﬂogC3

=p :Cset

Hence equation (3.152) gives

x=2Cse' +C,. - (3.154)
d
Now 7?=q:>q=C4e’. .. (3.155)

Consequently, equation (3.153) gives

y==6C,e' +C,.
dz 2 2
—=2p°—6qg~ =2z
Now Jt p q )
= & =2dt
z
Integrating we get
= z=Cse™. ... (3.156)

Now using the initial data curve (3.151) we have from above equations (3.152) to (3.156)
s=4s+C, = C, =-3s,
0=-6s5s+C, = C, =6s,
2s=C; = (C;=2s,
s=Cy=>Cy=s,
s?=Cy=Cs=s".
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Therefore, the characteristic curves are given by

x =4seé’ —3S3X=4S(€t —1)+s,

y =—6se’ +6S:>y=—6s(e[ —1),

z=s%e", e (3.157)
p=2se,
q =se’.

The integral surface is obtained by eliminating s and t from (3.157) we get

Z:(3x;r2tj2 {I_MT

2 2
Z:szz(zx;y)_ (3158)
36 4

Exercise :

1.

Find the characteristics of the equation pg = z and determine the integral surface which passes
through the straight line

x=1z=y

Find the characteristics of the equation
pi+q’=2

and determine the integral surface which passes through x=0,z =y.

mimlm
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UNIT-V

SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

Introduction :

Partial differential equations of second order describe the physical behaviour of many practical
situations in science and engineering. We will see how such second order partial differential equations
arise in physics and engineering mathematics. Further, in many situations a given partial differential
equation of second order is difficult to solve, hence in this unit we classify the second order partial
differential equation in to elliptic, parabolic and hyperbolic forms by transforming it into canonical form.
The idea of reducing the given partial differential equation to a canonical form is that the transformed
equation assumes a simple form so that the subsequent analysis of solving the equation is easy. We also
discuss the methods of separation of variables of solving second order partial differential equation.

Definition : A semi-linear second order partial differential equation is expressed in the form.

Ruxx+Suxy+TuW+g(x,y,uu u )zO, .. (1.1)

U xsPy

where R, S, T are continuous functions of x and y only and g% 4 §2 4+ 7% (), u is a dependent

variable. Equation (1.1) can also be written as

Rr+Ss+Tt+g(x,y,uu u )zO, .. (1.1a)

sHxsPy

where r=u,,, s=u,, t=u,,.

Solution of the Equation :

Definition : A function u = f(x, y) is said to be a regular solution of equation (1.1) in a domain

D cRxR iff f(x,y)e onDand the function and its derivatives satisfy equation (1.1) identically.

Origin of Partial Differential Equation :
One dimensional wave equation :

Result : Derive an equation governing small transverse
vibrations of an elastic string.

Proof : Let an elastic string be stretched to a length ¢
and then fixed at the end points. Let the string be distorted
and further let at time t = 0 it be released and allowed to
vibrate. Our aim is to obtain the equation which governs

the deflection y(x,¢) atany pointx after any time t> 0.
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Lety=y (X, t) be the displacement from the mean position (x-axis) of a string at time t at point
x.Let &g be the small portion of the string between two points Pamd Q. We assume that the string is
homogeneous (i.e. mass per unit length is constant) perfectly elastic (i.e. does not offer any resistence
on bending) and weight of the string is neglected (i.e. action of the gravitational force on the string is
neglected).

In order to find the differential equation which describes the motion of string, we consider the
forces acting on the portion §s . Let T; and T, be the tensions at points P and Q respectively acting
along the tangential direction. Since there is no motion of the string in the horizontal direction, therefore,
the horizontal components of the tensions will be constants.

= T, cosy, =T, cosy, = constant =T (say). .. (L.2)
The resultant vertical force acting on the portion PQ is

T, siny, =T, siny, .
Hence, the equation of motion is given by

Force = Mass * Acceleration

: : 0’
:>T2s1n1//2—7]s1nw1:%5s-?§;, .. (L.3)

2
where < is the density of the string and ¢S is the mass of the portion PQ and ?f is the acceleration

in the vertical direction.

We write from equation (1.3) that

T,siny, — T, siny, _gﬁ_az_y
T T o

T, si T;si
_, Losmyp  4Lsmyny

_ 2y
T, cosy, T,cosy, T o

2
or tany, —tany, =%%-Z—g}- ..(1.4)
!

Since tany, and tany, are the slopes of the curve of the string at points P and Q respectively,

therefore we have by definition.

(2] 42)
4 ox)p \ox ), and

e (2),2).,
X/ 0 Ox X+0x



Hence equation (1.4) beomes

(iy) _(@j _ 950y
o )se \Ox), T o

In the limiting case as §x — 0 1.e. Q — P,wehave

0s =0x>
therefore, we write
e ),

lim ox X+0x 0x X :iazy ,
Sx—0 ox T 6t2

%y < o°
SOty

ox- T ot

2 2

o0y _ 10y .. (1.5)

ox> ¢ ot?

T
where ¢ = I and c represents the speed of the wave propagation. Equation (1.5) is called the one

dimensional wave equation.
Heat Conduction Equation :

Result : Derive the second order partial differential equation which describes the temperature distribution
in a homogeneous isotropic solid.

Note : Homogeneous means distribution of material is uniform, isotropic means the material properties
are the same in all directions.

Specific heat of the solid means the amount of heat absorbed by the matter per unit mass per unit rise
in temperature.

Density of the solid means mass per unit volume.

Proof : Consider a homogeneous isotropic solid and V be any arbitrary volume inside the solid bounded
by a surface S. Let 57 be a volume element. We denote

c : the specific heat of the solid,
] : the density of the solid and,
u : the temperature which is a function of position and time.

Hence the heat energy stored in the volume element 5} is equal to ¢y SV .

Hence the total heat energy in the volume V is given by I I I cudV ... (1.6)
v
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If 5§ is asurface element, then the heat flow across §S = k- VundS .. (1.7)
where 7 isthe outward normal to the surface S,

k - the thermal conductivity of the solid.

Hence the total flux across S = j J kVundsS . .. (1.8)
s

Using the Gauss-Divergence theorem, we write

Total flux across S zj-J.IV-(kVu)dV .. (1.9)
4

Since the rate of change of heat energy in V is equal to the flux of heat energy across S. Therefore from
equations (1.6) and (1.9) we have

%Iﬂc%udV:uIV-(kVu)dV’

:>Iij[%(c%u)—V-(kVu)}dV=O. ..(1.10)

Since V is an arbitrary volume, we have therefore

g(c%u)—V(kVu) =0,
ot

= cza—”—v(kw) =0,
Ot
If the thermal conductivity k is constant through out the body, then we have
R 8_u —kViu=0 )
Ot

5
or a—L;=KV2u, R

k
where K = = represents the heat conductivity, and
o%u N o%u N d%u
o’ ot ot

Equation (1.11) is the required heat conduction equation.

Viu=

Note : One dimensional heat equation is given by

u_ P

ou _ . L (1.12)
ot ox?
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There are some equations arise in physics. One of the most important partial differential equations in
Physics is the Laplace equation given by

Viu=0

0’u  0’u 82u_

1e. + + =
For )

. (1.13)

Note : The heat equation (1.11) reduces to Laplace equation when the temperature u does not change
with timet.

. Ou :
ie. = =0 then equation (1.11) becomes

Vu=0-
Note : 2-dimensional Laplace equation is given by
2 2
8_”2‘+5_Z‘=0_ . (1.14)
ox~ 0oy

Classification of second order Partial Differential Equation :

Result : By a suitable change of the independent variables, show that a second order partial differential
equation

Rr+Ss+Tt+g(x,y,u,ux,uy) =0
can be reduced to one of the canonical forms on the basis of
S*—4RT >0, S*—4RT =0, S*—4RT <0.
Proof : A semi-linear second order partial differential equation can also be written as

Lu+g(x,y,u,ux,uy):0, .. (1.15)

2 2 2
where L=R 0 +S 0 +T 0 , .. (1.16)
o oxdy oyt

(x,y) are independent variables and u the dependent. We change the independent variables x, y to new
independent variables &, 7 by means of the transformation equations

&§=&(xy), n=n(xy) . (L17)
a(¢, & ¢
where J:ag,Z;: 0. . :fxﬂy_ézyﬂx¢0.

Then by using the chain rule of partial differentiation we obtain,

177



Uy =UG, U,
Uy =Ues, +UyT),,

uxy = ufgfxgy + ugr]é:xny + Ugfxy + qufynx + “;77777x77y + uqnxy .

Similarly, we find
Uy = ué‘f‘fxfx + ug‘né:xnx + uf‘é:xx + qufxnx + unnnxnx + urynxx >

Uy, = ”e‘é“fygy + ue‘néyny + ”ééyy + “né‘fyny Uy, T Uy,

Hence the operator (1.16) becomes
Lu=R|ug &l +2 2
u= u&:éx + uf}]é:xnx +u777777x +u§§xx + unnxx:| +
+S [uggggx‘fy + ugn (gxny + ynx ) + ”;77777x77y + uﬁé:xy + “;777@] +

+T[”§§95y2 + 26y, + ”777777y2 TSy, +”7777yy] :
We write this equation as
Lu=ug (RE: +S&,.&, +TE] )+ug, [2REm, +S (&, + &, )+2TE,m, |+
i, (Rn)f +Snn, +T1, ) +R(upl +um )+
+S (ugfxy +u, 1, ) +T (”ngyy +ugl,, )

Substituting this in equation (1.15) we get

A(ng,f:y)ugg +2B(§x7§ ;nxany)ufﬂ +A(77x’77y)u7777 :G(ganauaugfauﬂ), (118)
where, A(u,v) = Ru* + Suv+Tv?, ..(1.19)
B(uy,vi51,v, ) = Ruyu, "‘%S(”lvz +uyvy )+ Ty, ... (1.20)

and A, B satisfy the equation

A6, ) Alnem,) =B (Sobimen, )= 7 URT =S (Emy =& ). 2

We see that the transformed equation (1.18) has the same form as that of the original equation (1.15)
under the transformation (1.17). Since the classification of (1.15) depends on §2 _ 4T ; therefore
we choose the new independent variables £ and 7 so that the equation (1.18) takes the simplest

possible form. Thus the equation (1.18) will reduce to its simplest integrable form if the discriminant

S? —4RT ofthe quadratic equation

RA*+SA+T =0 - (1.22)
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is either positive, zero or negative every where.
Case (i) : Let §2 _4RT >0-

In this case the roots 4;, 4, ofthe equation (1.22) will be real and distinct. Thus we choose & and 7
such that

Se =4S, ..(1.23)
and Ne=721,. .. (1.24)

These are the first order partial differential equations for £ and 77.

Solving equation (1.23) by Lagrange’s method, we have

de _—dy _dt

1 -4 0
d

=222 (xy)=0, .. (1.25)
dx

Similarly, from equation (1.24) we find

dy
—+ A (x,y)=0. .. (1.
A (xy) (1.26)

If f,(x,y)=C, and f,(x,y)= C, are the solutions of the ordinary differential equations (1.25) and

(1.26) respectively, and are called the characteristic curves of the equation (1.15), then we choose

&=fi(xy),

and n=1r(xy). .. (1.27)

The variables &, 7 are called the characteristic variables. For this choice of £ and 7 we have
A(E0E, )= RET+5E.6,+TE)
= RAE] + SAE +TE]
= A(£.8,)=(RAT +SH+T)&].
As /4, 1saroot of equation (1.22), we have therefore

A(gx’gy) = 0 .
Similarly, we show that
A(non,)=m (RA3 +84,+T)=0,

= A4=0.
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Consequently, equation (1.18) reduces to
2B(§x7§ ;77x=77y)”§;7 :G(éjanau:ufau”). (128)
SinceA=0and §2 _4RT > (0, then from equation (1.21) we have

B’>0=B=0-

Thus we have from equation (1.28)

G
Uey :ﬁ:ﬂg’”’”’”é’”n)a
or gy = (o, u,uz 1) . (1.29)

This is the desired canonical form of the equation (1.15). This form (1.29) is called hyperbolic form of
equation (1.15).

Case (ii) : Let §2 _4R7 =0
In this case the roots of the equation (1.22) areequal say 4, =4, =4
We choose & such that

Sy =AGy,

and 77 to be any arbitrary function of x and y independent of £. This is the Lagranges form of the
equation, solving we obtain

&=/(xy),

where f(x,y)=C isasolution of the equation

d—y+/1(x,y):0_
dx

Since A(£,.6,) =2 (RA2 +52+4T) =0, due to (1.22)
= A4(&.¢,)=0,

and A(nx, 77y) # 0, otherwise 77 would be function of &. Hence from equation (1.21) we have

B =0. Putting these values in equation (1.18) we get
A(15m, Yty = G (Emusuz 1y )

or Uy = P(Eomuug ). . (1.30)

This is the desired canonical form of the equation (1.15) and is called the parabolic form of (1.15).
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Case (iii) : Let §2 _4RT <0

In this case the roots of the quadratic equation (1.22) are complex. We choose &£ and #7 as in the
case (1), so that

A(é:x’é:y):(): A(77x=77y),

and equation (1.18) reduces to

Ugy = P(&oms 10511, .. (1.31)

This is similar to equation (1.29) except that the variables &,7 are not real but are the complex

conjugates. Hence to obtain a real canonical form we make the transformation

05:%(5#7),

1
and ﬂ=—§(§—n). .. (1.32)
Hence by using the chain rule of partial differentiation we have,
U, =u,a, +ugh,.

Using (1.32) we find

=u, =%(ua +iuﬂ)
and gy =(uy), a§+(”f7)ﬂ'g§
15y = (Vo + 0 )= (1 + 1)

S, :i(um Fiugy)
Hence equation (1.31) becomes

uaa+uﬁﬂ=¢(a,,6’,u,ua,uﬂ). ..(1.33)
This is the required real canonical form and is called an elliptic form of partial differential equation.

Thus we define the three types of canonical forms as follows :

Definition : A partial differential equation of second order viz.
Rr+Ss+Tt+g(x,y,u,ux,uy) =0

1s said to
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@ hyperbolicif §2 _4R7 > o and the corresponding canonical form is given by

gy = P&, 11z 1y ),

(i1) parabolicif §2 _4RT = (,and the corresponding canonical form is

Uy = PS50 g0y )

@)  ellipticif §2 _4RT < o and the corresponding canonical form is

Upg TUpp :¢(aa/3aua“a,uﬂ).

Example 1 : Show that
A(Eo8 ) A(mom, ) =B (6odimom, ) = 3 RT =5 (Em, ~Em.,
where A(fx,fy) = RE? +8&.8, +T§y2 , A(nx,ny) = Rn? +8n.1, +T77§ ,

and B(&,.¢ ;nx,ny)=R§xf7x+%S(§xny+§ynx)+T§yny.

Solution : Consider

A(E8,))A(non, ) =B (£ Eyimom, ) = REEI + RSED -nn, + RTEI ] + RSnIEE, +
2 2 22 2
+8°8: 8,10, +STE. Sy + RT § + ST S m,n,,
1

TP, — R — S (i} +Emt+26.6m.m,)-
~T2E2p% —-RSEn (Em, +E n, )-2RTEE —

4§y77y xnx xny ynx X ynxny
_STnyUy (é:xny +§y77x)

1
= A(806)) A (e, )= B (E0yimom, ) == 87 (&0 + Ent - 26.&,mm, )+

+RT (&2 +mel -2 mE,m,)

= A(£08) A(nemy )= B (Seimen, ) =~ (* 4RT) (&, ~ &1,
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Example 2 : Reduce the equation u__ — x’u 4 = 0 toacanonical form.

son ° ; —x2,
Solution : The equation u,, —x“u,, =0

can be written as F—x%t=0- .. (1.34)
Comparing this with the standard form we have
R=1, §=0, T=-x".
Hence we see that
S* —4RT =4x*>0-
= Equation (1.34) is hyperbolic. Therefore, the quadratic equation
RA*+SA+T=0>
become 22-xt=0
> A=*x.

Let 4, = x,and A, = —x be its roots. Hence the ordinary differential equations

dy dy
—+4 =0 —+4,=0
e ! and e ’
d d

become D ix=0 and L-x=0,
dx dx

Integrating we get

2 2
Gy TG,

Therefore, we choose the new independent variables & and # in the form

2

E= y+% and .. (1.35)
2

77=y—x?. .. (1.36)

Now by changing the independent variables x, y as new independent variables & and 77, we obtain by
using the chain rule of partial differention

Uy = uféx +u7777x >

Uy =Ugs, +Uyl,,
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and U, = uféﬁxfy + 2u§n§x77x + Uy, 17,07, + “gfxx Uy

Uy, = ”é‘ééygy + 2“§r7§y77y T Uppllyly, + ”égyy TUplyy s

where from equations (1.35) and (1.36) we obtain

‘fx:xa é:yzl’ ‘fxleﬁ nxx:_l’ nx:—x, 77}’:1’ é:xy:O’ éZ)’)/:O’

2
U, :uggxz +2ug, (—x) +u,, (x2)+u§(1)+u,7(—1)
2
=Su, =Xx (uéé —2u§,7 +u,m)+u§ —u,,

and uyy=1/l§§ +2u§7]+uﬂ7]

Substituting this in equation (1.34) we get

xz%—szugn+x2%+u§—un—xz%—szugn—xz%:O

—4)c2u§,7 :_(”5 _“77)

1

or Hen 4(5_,7)(”5_“77), for x> =& 7.

This is arequired hyperbolic canonical form.

Example 3 : Reduce the equation

2 2
2 2. _Y X
YUy = 2xyuy, + XUy, =—u, +—u,
X y
into canonical form and hence solve it.
Solution : Given equation can be written as
2 2
2 2, Y X
Y =2xys+xt=—u, +—u,
X y

Comparing this with the standard form, we have

R:yz, S =-2xy, T=x%.
We observe that

S* —4RT =4x*y* —4x*y* =0.
Hence equation (1.37) is parabolic.

Hence the roots of the quadratic equation p32 + §1 + 7 = become

V2A2 = 2xpA+x% =0
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:>(y/1—x)2 =0

x
=A== twice
y

Hence the solution of the ordinary differential equation

93+A(Ly)=ozsiﬁ+1=0
dx dx y

is given by
Paxt=cl
Now we choose the new independent variable £ such that
E=x"+y"
Letus choose 77 = x? — »* (choice is arbitrary)

Therefore, we have

fx:2x7 fy:2y, 77x:2xa 77y:—2y,

Cr =2, §yy:2, M =2, 77yy:—2,

and £y =0=1,.

Thus by changing the independent variables (x, y) to (&,7) we obtain

u, =2x(u§+un),

u, =2y(u§—un),

=u,, =2x(u§§2y+u§,] (=2y)+u,:2y+u,, (—2y)),
and Uy =Ugg (4x2)+2u§n (4)62)+u,7,7 (4x2)+u§(2)+u,7(2),

Uy, =Ugs (4)/2)+2u§,7 (—4)/2)4—%,7 (4y2)+u§(2)+un(—2).

Hence equation (1.37) becomes.

4x2y2(%+2%+u,7,7)+2y2(u5+un)_

.. (1.38)

—2xy(4xy)(%—um7)+4x2y2(%{— 2z +u,m)+2x2(u§—u,7):

2 2
X
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:>16x2y2”7777 =2u; (_yz —x 4y’ +x2)+2”q (—y2+x2+y2 —xz)
=ty =0. . (1.39)

Which is required parabolic canonical form. This is a homogeneous second order p.d.e. with constant
coefficients.

Integrating w.r.t. 7 we get

ou _
%—f(e‘)

=u=f(5)n+g(£)

or u(xy)= £ +37) (x> =)+ g (¥ +)7).
where fand g are arbitrary.

Example 4 : Reduce the equation

2, —
Uy +x7u, =0

to a canonical form.

Solution : Given second order p.d.e. can also be written as
r+x*t=0 .. (1.40)
Comparing this equation with the standard form we get
R=1, §=0, T=x".
We notice that
S? —4RT =—4x* <0-
Hence the equation (1.40) is elliptic. Hence the quadratic equation 12 + §41 + 7 = () becomes
A +x2=0
It has roots
A ==ix

Let 4, =ix and A, =—ix be the complex roots. Hence the solutions of the first order ordinary

differential equations
d d
dx dx
) dy . dy .
—+ix=0 ——ix=0
Le. o 1x and . ix=0,
are given by
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2 2
y+i x? =constant and y-—i x? = constant .

We write this as

2 2
—iy+x7=C1 and iy+x7=C2. - (1.41)

Therefore we choose the independent variables £ and 77 such that

2

.X
=i+

=iy >

2

A
and =—iy+—.
n y >

To obtain the real canonical form, further we make the transformations

2

a:%(éntf]):x?:ax =x,a,=0,

and p=iln-¢)=y=p.=0.5,=1,

a.=Lp,=0.
Hence we obtain
U, =u o, +ugf. =u,x+uz(0)

U, =X, .

U, =u,d, +ugf, =u, (O)+uﬂ -1

lzly =uﬁ .
=u, = x[uaaax +uaﬂﬂx:|+ua
(24

=x (XU ) +u

_ .2
Uy =X Uy, +Uly, -

Sln’]llal‘ly, uyy ZUﬂaay+uﬂﬂﬂy :uﬂﬂ
Upy =Upp-

Hence the equation (1.40) becomes
xzuaa +u, + xzuﬁﬁ =0
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1

x> =2a-

Which is the desired elliptic canonical form.

Example 5 : Reduce the equation

2 2 2n-1
(n=1"uy, —y™u,, =ny™ u,

to a canonical form and hence find its general solution

Solution : The given second order p.d.e. is

(n—-1)° U, —yznuw = nyzn_luy , .. (1.43)
where in this case

Case (i) When n= 1, we see that §2 _4RT = (. Hence equation (1.43) reduces to

1
Uy, =-——u,, .. (1.44)

which is in the parabolic canonical form.

Case (ii))n> 1.
Then we seethat §2 —4RT = 4(n— 1)2 y2” > 0 . Hence equation (1.43) is hyperbolic.

Hence the quadratic equation g2 + SA+7 =0

1e. (n—l)z ﬂz—yzn =0
has roots

A=+

n—1

Let 4 = Y ,and 4, =— Y " be roots of the equation. Hence the first order ordinary differential
equations

4 2 () =0 and Lt 2, (x,3) =0,

dx 1 ’ dx
become
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[ ",

=0 and = =
dx (n-1) dx n-1
We write these equations as
(n— 1)—+dx 0 and (n— 1)—— =0.
y" y"

The solutions of these equations are given by
—y™4x=C and y"" 4 x=C,.

These are called the characteristic curves of the equation. Therefore we choose the independent variables
& and 77 (which are called characteristic variable) such that

y
1 (n—-1)
and 77=X+?:>77x=1, 77y=_ P
y y
and S =0, &, =0, n,,=0, 77,=0,
£, =—n( 1) ! —n(n-1)—L
yy = TR == 1]y, = nin = n+1
Hence we obtain
Uy =ug+u,,
uy=u§(n—1)%+un{——(n_nl)}:>uy:—(n_nl)[u;—uﬂ]
y y y ’
uxx=u§§+u§n+un§+unn
(n—1)* { (n—1)2}
and Uy, =Ugs———FUg | ———— |~
»y && yz én yz
(n-1)° (n-1)° n(n-1)
_ué(n_l)ynﬂ_ né y2n Ty y2n tu, yn+l )

1 1
Uy, = (ny ) [“éé 2“577 77'7] n(n )(5 ”)

Substituting these values in equation (1.43) we get
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(n-1)°
2n

(n—l)zl:uég+2u§,7+u,m:|—y2”{ [u§§—2u§n+uw]}+

2n
+n(n—l)y—(u§ —u,7) = ny*"! M(% _”77)

n+l n

Y
2
=4(n-1) u§,7=O
:>u§,7=0 for n>1.
- O’u__ 1.45
1.e. oé0n .. (1.45)

This is the required hyperbolic canonical form. To find its solution, we integrate equation (1.45)
w.r.t. 17 to get

a_u:
o5

where ¢ (&) isafunction of £. Integrating again w.r.t. £, we get

(%)

2

u=[¢(£)ds+g(n).

We write this as
u(x.y)=71(5)+gm),

where r(&)=[4(&)ds.

i u(x,y)=f(x=y"")+g(x+ ™). - (1.46)

where fand g are arbitrary. This is the required general solution of the equation (1.43).

Example 6 : Classify the equation
Uy, — 28I XU, — cos’ xu,,, —cosxu, =0.
Reduce it to the canonical form and obtain its general solution.

Solution : The given partial differential equation is
Uy, — 28I XUy, —cos? xxu , —cosxu, =0, .. (1.47)

where R=1, S=-2sinx, T=-cos’x.

We see that

S? —4RT =4sin’ x+4cos’ x=4>0
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= The equation (1.47) is hyperbolic. Hence the quadratic equation 32 + S + 7 = ( becomes

A2 —2sinxA—cos’x=0

It has roots 4 =sinx+1. Let 4, =sinx+1 and A, =sinx—1. Hence the first order ordinary

equation.
d d
o (x,y)=0 and L+ 4, (x,y)=0,
dx dx

become d—y+sinx+1=0 andﬂ+sinx—1:0_
dx dx

Solutions of these equations are obtained by integrating
y+x—cosx=C;, y—cosx—x=C,.

So that we choose the independent variables & and 7 such that
E=y—cosx+x,7]1=y—COSX—X.

From this we find §e=sinx+l, &, =1, &, =cosx, &, =0, &, =0,

n,=sinx-1, n,=1, n,=cosx, n,=0=1,.

Hence we obtain
u, =ug (1+sinx)+u, (sinx—1),
uxx=u§§(1+sinx)2+(1+sinx)u§,7(sinx—1)+u§cosx+
+(sinx—1)un§(sinx+1)+(sinx—1)2u,m+uncosx,
. 2 .2 . 2
u,. =(1+sinx) u§§+2(sm x—l)ufn—i-(smx—l) Uy +008 X (U +1ty ),

= Uy, =l (1+Sinx)+u§,72sinx+(sinx—1)u,7,7
and U, =ug+u,
Uy = Uge Uy TUye F Uy = Uy, =Uee + Uy Ty,

Substituting these values in equation (1.47) we get

(1+sinx)’ g +2(sin2—l)u§ﬂ +(sinx—1)* U, +cosxw—
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—25inx[(1+sinx)u§§ +2sinxu§,7 +(sinx—l)um7]—

—coszx[u§§ +2ug, +unnJ—cost:O

On simplifying we obtain

uin = O

Cu_ 1.48

or oé0n ... (1.48)
This is the required hyperbolic canonical form of the given p.d.e. Clearly its solution is

u(x,y)=r(&)+g(n)
or u(x,y)=f(y—cosx+x)+g(y—cosx—x). ... (1.49)
This is the required general solution of (1.47).
Example 7 : Reduce the equation

xzuxx —yzuyy =0
into canonical form
Solution : Given equation is

xzuxx—yzuyy =0, ... (1.50)
where R=x% §=0, T=—y%.
We see that S? —4RT =+4x%1%>0.

= Thep.d.e. of second order (1.50) is hyperbolic. Now the quadratic equation

RA?>+SA+T =0
becomes x*A? -yt =
It has roots A= if.

Let 4 = % and 4, = —% . Consider the first order ordinary differential equations

d d
—y+/11(x,y)=0 and —y+/12(x,y)=0_
dx dx



dy d dy d
or —y"‘_x:()and_y__xzo.
y X y x
Integrating we get
log y+logx=1logC, and log y —logx =logC,
, B Y_c
1.e. xy=C, and Plakes

Hence we choose the independent variables & and 7 such that

§:xyand77=§3§x=y, §y=%, &, =0=¢,,,

__ Yy _1 _ 2y __ 1
nx__x_zany_;anxx__)?a Uyy:()a?]yx_ x2-
Hence we obtain
v =yt (Lj u —uwxtu L
x 3 n w2 )Y S My
2 Y Y Yy
U, =YV U+ YU (——j——(u y+u (——D
xx & én xz xz né nn xz 5
2 2
2 2y Yy 2y
U, =V Upr ——Ug, +— U, +U (—j’
xx && xz én x4 nn n x3
2 1
and Uyy =X Ugg +2”§f7 T Uy

Hence the given p.d.e. (1.50) becomes

2
—4yzu§,7 +7yu,7 =0,
1
or Ugy _E”ﬂ =
1
1e. Ugy _Eun =Y. .. (1.51)

Which is required hyperbolic canonical form.
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Example 8 : Reduce the equation

4u,, —4u,, +5u,, =0 tocanonical form.

Solution : Let 4u,, —4u,, +5u,, =0,
where S=-4,R=4,T=5.
Therefore, S*—4Rt=16-80<0

Therefore equation (1.52) is elliptic. The quadratic equation 12 + §1 + 7 = ( becomes

42 —42+5=0-

This has roots

1 )
A==(1+2i)
> )
1 . 1 .
We choose 4 =§+l and 4, ZE—Z.

d d
Hence the ordinary differential equations d_i +4,=0 and d—i} + 4, =0 become

dy (1 ) dy (1 )
——+|=+i =0 —+|——1|=0
> ! and PR ! .

dx
Integrating we get
y+(l+i)x:C1 and y+(l—i)x:C2’
2 2
Le. x+2y+2ix=C,
and x+2y-2ix=C,.
We choose E=x+2y+2ix,
and n=x+2y-2ix.

Therefore, to obtain real canonical form, we consider the transformation

1 .

05:‘(5‘*"7) and ﬂzi(f_ﬂ).
2 2

S a=x+2y and f=-2x.

u, :uaax+uﬂﬂx,

=u,=u, —2ug,
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u,=u,a,+ugf, =u, =2u,,

Upy =Ugy TUgg (-2)+u, (0)+uﬂa (—2)+uﬂﬂ (-2)° +ig (0)

Upy =Ugy —Agp +4Ugs,

XX

Uy, = 2u,,, + Ugp s

Uy, = 2u,, — 4%/3 ,

and Uy, =4, .

Substituting these values in equation (1.52) we get

Yt — 161475 +161 55— 8, + 1600575 +20u,, = 0.

juaa‘i‘Uﬂﬂ :0.

This is required elliptic canonical form of the equation.
Example 8 : Reduce the equation

2x X+y 2y _
e U, +2e u, +euy, =0

into canonical form
Solution : The second order p.d.e. is given by

2

X X+y 2y _
e Uy, +2e u, +eu, =0,

bl
where R=e%, §=2", T=¢%.

We observe that

S? —4RT =42 _420) = ¢.

.. (1.53)

.. (1.54)

= The equation (1.54) is parabolic. Hence the quadratic equation g2 + §4 4+ T = ( becomes

Le. e A% +2e"V 1+ e* =0
2
—(e*2+¢”) =0
=e'l+e’ =0-

= A=—e"".

Hence the ordinary differential equation

d—y+/1(x,y) =0,
dx
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d —x
becomes Do,
dx

We write this equation as
eVdy—e dx=0.
On integrating we obtain its solution as

eV +e " =(.

Now we choose the independent variables & and 77 such that

E=e* —e 7 and 77 is arbitrary.

We choose n=e*+e”.

From these equations we find

§x :_e—x,gy :e_yanx =—e

and Sy =0,1m,=0.

Therefore, we find

U, =g (—e*x)+u,7 (—e™)

=u, :—efx(uég +u,7),

and u, :uéze_y+u,7 (—e_y):>uy =e” (u§ _“77)'

Now Uy =€ (ug +uy)—e |:l/l§é: (—e)+ gy (—efx)-i-ung

U, :e_x(uf +u,])+e_2x (ugé +2ug, +u77,7),

Uyy = —e ) [”§§ - ”rm] )

.. (1.55)

.. (1.56)

.. (1.57)

(—e™)+u (—e*x)]

and u, =e” [uge_y +g, (—e_y)—u%ce_y +u,7ne_y}—e_y (u§ _”77)

Yy

Uy, =e [u§§ —2u, +u,m]—e_y(u§—u,7).

Substituting these in given p.d.e. (1.54) we get
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e*e ™" (u§ +u,7)+(u§§ + 2ug, +um])+ 2" (—e_(x+y))[u§§ —u,m]+

+e? [eizy (”éf - g +”f777)_ e (ug —u, )J =0,

= du,, =u§(ey—ex)—u,7 (e +e”)

Solving equations (1.56) and (1.57) we find

and ¢V -2

S+n n-¢

e’ =

Thus we obtain

4
= Uyy = 22 [ ug =, ],

This is the required parabolic canonical form.

Exercise :

1.

Reduce the equation
Uy + 22Uy, +u,, =0

into the canonical form and hence solve it.

Reduce the equation
.2 _
sin” xu,, +2cosxu,, —u,, =0

nto canonical form.

Find the characteristics of the equation
Uye +2Uy, + sin” Xty +u, =0

when it is of hyperbolic form.

Reduce the equation to a canonical form

(1+x2)uxx+(l+y2)uyy +xu, +yu, =0.
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2. One Dimensional Wave Equation :
1. Vibration of an infinite string (both ends are not fixed)

Result : Obtain DAlembert’s solution of the one dimensional wave equation which describes the
vibrations of an infinite string.

Proof : We know the vibrations of a string is governed by the second order partial differential euqgtion

given by

1
Ve =3V, —0<x<w, - (2.1)

where y (X, t) is the deflection of the string.

Since the string isinfinite boundaries of the string are not fixed. If f(x) is the initial deflection
(mean position) of the string and g (x) the initial velocity of the string, then the function y (x, ?) is
required to satisfy the initial conditions

y(x,0)=f(x), - (2.2)
(this gives initial position of the string)

and ¥, (x,0)=g(x), —o<x<0. . (2.3)

(this gives the initial velocity of the string.)

Thus our problem is to find the solution of the one-dimensional wave equation (2.1) satisfying
the initial conditions (2.2) and (2.3). We first reduce the equation (2.1) into canonical form by changing
the independent variables (x, t) into the new independent variables (Characteristic variables) & and 77
by using the transformation equations

E=x—ct, ..(2.4)
and n=x+ct, (25)
where &=L &= &.,.=0, £,=0, {, =1,

n.=L n,=¢ 1n,=0, n,=0, 17,=0.

Also by using the chain rule of partial differentiation, we find,
Ve=Vet Yy,
vi==c(ye=v,),
= Ve = Vet 2Ven + Yy
and Vu =" (Ver =2+ Iy )
Substituting these values in euqtion (2.1) we get

Vee ¥ 2Veq + Vyp = Vee =2Ven + iy
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= Yep =0. .. (2.6)
This is the required canonical form of the equation (2.1).

Now integrating equation (2.6) we obtain
y(x.1)=F(£)+G(n).
Replacing & and 77 as defined in (2.4) and (2.5) we get
y(x,t)=F(x—ct)+G(x+ct), . (2.7)

where F and G are arbitrary functions. Equation (2.7) is the general solution of the one dimensional
wave equation. The two terms in equation (2.7) can be interpreted as waves travelling to the right and
left respectively with velocity c.

The solution (2.7) is required to staisfy the initial conditions (2.2) and (2.3). Hence we have

y(x,0)=f(x)=F(x)+G(x). .. (2.8)

Now differentiating equation (2.7) with respect to t we get
v, (x,t)=—cF'(x—ct)+cG'(x +ct)

= 1,(x,0)=g(x)=—cF'(x)+cG'(x). - (2.9)

On integrating equation (2.9) between x, to x we get

L[ e()dr=-F(0)+6(), . (2.10)
X0

Adding and subtracting equations (2.8) and (2.10) we get respectively

G(x):zic of )+ [ gy |
X0

and F()=5-| of )+ [ g |
X0

Substituting these values in equation (2.7) we get

y(x,1) —%C[cf(x—ct)—xxjj g(s)ds]+%c[cf(x+ct)+x£ g(s)ds ,
X0 X+t ]
:y(x,t)—l[f(xct)+f(x+ct)]+L{ .[ g(s)ds + J- g(s)ds
2 2C x—ct X0 | ’
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x+ct

= y(x0) =3[ G-en+ s Gerenleo- [ glsyds, AN

X—C

where 1 ec?, geC'sothat y(x,¢)e C? function. This is called the d’ Alembert’s solution which

describes the vibrations of an infinite string at any point x and at any time t.

Note : x —ct = constant and x + ct = constant are called the characteristic curves of one dimensional
wave equation.

Note : If the string is released from rest then g (x) =0, so that the solution (2.11) becomes

y(x,t)=%(f(x—ct)+f(x—ct)),

Physical Meaning of the solution of the wave equation

We know the general solution of one dimensional wave equation (2.1) is given by
y(x,t)=F(x—ct)+G(x+ct). .. (2.12)

Consider uy (x,0)=F(x—ct). . (2.13)
Hence the initial wave profile (shape) is given by

u (x,0)=F(x).

1
Now attime = o owe have from (2.13) that
1
u (x,—) =F(x-1),
c

1
= Intime 7 = Z , the wave has travelled through a distance of 1-unit. Further, if weput x'= x—1,

then we have

F(x-D=F(x")-

This implies that the original shape of the wave is retained even if the origin is shifted by one unit along
the x-axis.

2
Now at time 7 = oowe have from equation (2.13)
u (x,gj =F(x-2),
c

. . ) 2
— the wave has travelled through a distance of 2 units at time = o

Thus in particular, att =1, we have from equation (2.13),
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u (x,1)=F(x-c¢)
= in one unit of time the profile has moved c units to the right.

= cisthe speed of propagation.

Similarly, we conclude that the equation
u, (x,¢)=G(x+ct)

represents a wave profile travelling to the left with speed ¢ along x-axis. Thus the general solution
(2.12) of the one dimensional wave equation represents the superposition of two arbitrary wave profiles,
both of which are travelling with a common speed but in the opposite direction along the x-axis.

3. Vibrations of a Semi-infinite String (one end point is fixed)

Result : Obtain d’ Alembert’s solution of the one dimensional wave equation which describes the
vibrations of a semi-infinite string.

Proof : The vibration of a string is governed by the second order one dimensional wave equation

1
yxxzc_zytt, 0<x<o0, t>0, .. (3.1)

where y (X, t) represents the deflection of the string at any point x and at any time t. Since the string is
semi-infinite i.e. one end of the string x =0 is kept fixed for all time. Ifu (x) and v (x) are the initial
deflection and the initial velocity of the string, then the function y (X, t) is required to satisfy the initial
conditions.

y(x,0)=u(x), x>0-. ..(3.2)
This equation describes initial position of the string and
v, (x,0)=v(x). .. (33)

This describes initial velocity at point x. The deflection y (x, t) has to satisfy the boundary conditions

y(0,£)=0, V0. o (34)
This shows there is no deflection at fixed point x =0 at any time t,
and y,(0,¢)=0, .. (3.5)
showing that velocity at fixed point x =0 is zero.
Our aim is to find the solution of equation (3.1) satisfying the conditions (3.2) to (3.5).
We know the d Alembert’s solution of one dimensional wave equation is given by
X+t

y(x,t):%[u()c—cz‘)+u(x+ct)]+2L I v(x)ds ..(3.6)

C
x—ct
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However, this solution cannot be used for the given initial value problem, since 3 (x —¢¢) has no

meaning for values 7 > o Therefore we modify our semi-infinite string problem to an infinite string

problem. Thus our problem is to find deflection of an infinite string subject to the initial conditions.

y(x,0)=U(x)
yt(x,o):V(X), —0< X <0,
u(x) if x>0,
where Utx)= {—u(—x) if x<0, - (37
v(x) if x>0,
and V(X):{—v(—x) if x<0. .. (3.8)

We notice that U and V are odd functions of x. Thus the solution of equation (3.1) subject to the
conditions (3.7) and (3.8) is given by d Alembert’s solution

y(x,z)=%[U(x—ct)+U(x+ct)]+2Lc [ (s)ds .. (3.9)

x—ct

Now we will show that the solution (3.9) is also a solution of equation (3.1) subject to the conditions
(3.2)to (3.5). For this, we simply prove that the solution (3.9) satisfies the initial and boundary conditions
(3.2) to (3.5). Therefore, from equation (3.9) we have att =0 and x > 0.

y(x,0) :%[U(x)+U(x)]+2l—ch(s)ds . x>0

= (x,0) =u(x), x>0, due to (3.7). .. (3.10)

Now from equation (3.9) we find after differentiating (3.9) with respect to t.

xX+ct
yt(x,t)=l[—cU'(x—ct)+cU'(x+ct)]+Lg V(s)ds
2 2c ot :

x—ct

We use the formula
P x+ct _x+ct P 5 5
EXLV(S)ds = x;[ctaV(S)dS + V(x+ct)a(x+ct)—V(c_ct)a(x_ct) '
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=, (x,t) :%[—cU'(x—ct)+cU'(x+ct)]+2i[cV(x+ct)+cV(x—ct)].

C

Att=0, this gives

y,(x,0)= %[—CU '(x)+ cU'(x)] +%(V(x) +V(x))
¥ (%,0)=V (x). forx >0

Now from equation (3.9) we have atx =0

2(0,¢) = %[U(—ct)+U(ct)]+i j V(s)ds

—ct

ct

Since V is an odd function, this implies the integral J. V(s)ds vanishes.

= y(0,6) = %[U(—ct) +U(en)].
Using equation (3.7) we get
»(0,1) = %[—u(ct) +u(en)],

= y(0,¢)=0.
Now from equation (3.11) we find forx =0, and t>0

7, (0,6) :%[—cU'(—ct)+cU'(ct)]+%[V(ct)+ V(-cn)].

Using equations (3.7) and (3.8) we find forx < 0
U'(x) = —u'(=x)(-1),
=U'(x)=u'(-x),
=>U'(-ct)=u'(ct) .

Similarly, for x >0, U'(x)=u'(x)
=U'(ct)=u'(ct) .

Hence we get

y,(0,¢)= %[—cu '(ct)+cu '(ct)] + %[v(ct) - v(ct)] .

= ,(0,¢)=0.
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Thus we have proved that the d’ Alembert’s solution (3.9) also satisfies the initial and the boundary
conditions (3.2) to (3.5). This proves the D’ Alembert’s solution (3.9) is the desired solution of the one
dimensional wave equation (3.1) subject to the conditions (3.2) to (3.5).

Note : In particular, if the string is released from rest i.e. v(x) =0 then the solution (3.9) becomes

y(x,t):%[u(x—ct)+u(x+ct)], for x>ct,

=%[%u(x+ct)—u(0f—xﬂ,f0r xsct-

4. Vibrations of a string of finite length

Result : Show that the d’ Alembert’s solution of the one domensional wave equation which describes
the vibrations of a finite length string is given by

y(x,t)= Z”n Sin(n;zx)cos(nzcz)+sz_"sin(—nzxjsin(n7zdj_
n=l

e n

Proof : Leta string be of length ¢ . The vibrations of a string is goverened by the second order partial
differential equation given by

Y=y, 0<x<l,t>0. .. (4.1)

Since the string is finite, hence both the ends of the string are fixed for all time. Therefore the function
y (X, t) must satisfy the initial conditions

y(%,0) =u(x), . (4.2)

yt(x,0)=v(x), 0<x</,

where u (x) represents the initial position of the string and v (x) represents the initial velocity of the
string. The deflection of the string y (X, t) also satisfy the boundary conditions.

y(0,¢)=y(4,¢)=0, .. (4.3)
— there is no deflection at the end points of the string at any time t >0,
and v,(0,t)=y,(£,t)=0. .. (4.4)
This shows the velocity of the string at end points at any time t is zero.
The d’ Alembert’s solution of equation (4.1) is given by

X+ct

y(x,t):%[u(x—ct)+u(x+ct)]+é I v(s)ds .. (4.5)

x—ct

However, this solution cannot be used for given initial value problem as u (x — ct) has no meaning for
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X . . . . . .
values 7 > - Hence we convert our problem into a problem of vibrations of an infinite string by

extending our data.

Thus we consider the vibrations of an infinite string subject to the initial conditions.

y(x,0)=U(x),
and ¥, (x,0)=V(x), ... (4.6)
u(x), if 0<x</
where U(x):{—u(—x), if —(<x<0 .. (4.7)
and Ulx+2r0)=U(x),if —¢<x<¢,r=£1,%2,..,
_v(x), if 0<sx</{
and V(x)—{_v(_x), if —0<x<0 .. (4.8)

and V(x+2r0)=V(x), -0 <x<(, r=+1,%2,...
This shows that U (x) and V (x) are odd functions of x and are periodic with period 2 ¢ .
Hence the deflection of the string given in (4.5) subject to the conditions (4.6) to (4.8) becomes

y(x,t)= %[U(x—ct)+ U(x+ct)]+ixj.c V(s)ds .. (4.9)

x—ct

We assume U (x) and V (x) can be expanded into a Fourier series in (—/, /). Since U (x) and V (x)

are odd functions, it contains only sine terms.

Thus we have,

U(x)=Y u, sin(%j, .. (4.10)

n=l1

and V(x)=.v, Sin(%), (411

n=l1

where the Fourier constants «, and v, are given by

0
u, :%'([u(s)sin(%)ds’ .. (4.12)

_Ej' (s)sin| 2Z£
and =g vsin S g, . (413)
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Using equation (4.10) we find

1 _1 < . (nm, . (nm
E[U(x—ct)+U(x+ct)]—2;un[sm( ; (x ct)j+sm( ; (x+ct)ﬂ_

Since sinA+sinB:2sin(A+B)-cos(A;B)
2 2
= %[U(x—ct)+U(x+ct)] = zun sin(”_;zxj.cos(%ctj L @14)
n=1

Similarly, on using (4.11) we find

X+ct xX+ct o
— _[ V(S)ds—— I Zv sm(Tsjds

xct”l

1 0 x+ct
=—)>v, j sin(ﬂs)ds
2¢ l

n=l x—ct

I < / (1’17[ j
=—)» v,| ———cos| —s
2¢“= nr /

n=l1

x+ct:|
x—ct
__ L5y [cos(—(xvtctj cos(ﬂ(x—ctﬂ

2reig n l l ’

cosA—cosB=2sin(A;Bj~sin(B;Aj

Using the formula

we find, —thV(S)dS——Z {Sm( j Sln(jﬂ“ﬂ .. (4.15)

Cuml 1

Using equations (4.14) and (4.15) in equation (4.9), we readily obtain

< . (nm nrct v, . (nr . (nmct
X, t)= u, Sin| —x |-cos +— ) —sIin| —x (SIn
)HZ:‘;” (zj (Zj 2 (Zj (fj - (416)

e n

Differentiating equation (4.16) with respect to t we get

(== 2 3o in 2 Jsin 271 ) (L) 20 jz‘; sin[ 27 Joos 171 |

n=1
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e < . ([ nr . [ nxct > . (nr nrwct
= J)=—— , S| —Xx |sin + , S| —Xx |cos| —— | (4.
yinn ==57 0 (zx) (z)zv (ng (zj (4.17)

n=l n=l
Now we easily check that the d’ Alembert’s solution (4.16) satisfies the initial and boundary conditions.
Thus from equation (4.16) we find att=0

y(x,0)=>u, Sin(%X}U(x), by (4.10) .. (4.18)

n=l1

and y(0,6)=0=y(¢,2). as sin0 =sinnz =0
Now from equation (4.17), we find att=0

¥ (x,0)=>", Sin(%xjﬂ(x), due to (4.11)
n=1

and v,(0,t)=0=y,(4,t). ... (4.19)

Thus we see from equations (4.18) and (4.19) that the d’ Alembert’s solution (4.16) satisfies the initial
and the boundary conditions identically. Hence equation (4.16) is the desired solution of the one-
dimensional wave equation (4.1).

5. Vibrations of a string of finite length (Method of Separation of Variables)

Introduction : Among the many methods that are available for the solutions of a second order partial
differential equation, the method of separation of variables is a powerful method which is applicable in
certain circumstances. We will apply the method to find the solutions of one dimensional wave equation.
The method will also be used to solve Heat and Laplace equations in the Units 6 and 7 below :

Result : By separable variable method find the solution of
y, =y, O<x</,t>0. .. (5.1
subject to the conditions that

y(x,0)=f(x), 0<x</

v, (x,0)=g(x), 0<x</ - (5.2)
and y(0,¢)=y(4,¢)=0, .. (5.3)
where f(x) and g (x) are initial displacement and velocity of the string.

Proof : We assume the method of separation of variables to find the vibration in a string which is
governed by the equation (5.1).

Therefore, let y(x,t)= X(X)T(t) - (54)

be the solution of equation (5.1)
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=Y, =X'OT(@), Yy = X"(OT(@).
Similarly, v, = X()T"(?).

Substituting this in equation (5.1) we get

XT"=c*X"T>
3£:T2—". ..(5.9)
X T

We see that the left handside is a function of x and the right hand side is a function t alone.
Equation (5.5) shows that each side must be a constant say .

= X"=AX and 7v=c2T
or X"-2X=0 and 7"_ 237=0, ... (5.6)
where ,{ may be zero, positive or negative. From the boundary condition

y(0,¢)=0= X(0)T(t)=0

= X(0)=0. as T(t)#0

Similarly, y(£,t)=0=X(1)=0.
Thus our problem is

X"-21X=0 - (5.7)
such that X(0)=x()=0.
Case(i): 1=0
The solution of the equation (5.7) in this case is

X =A4Ax+B ... (5.8)

The boundary conditions X (0)=0 and x (¢) =0 give
A=0and B=0.

Consequently, we get X (x) =0 as the solution of equation (5.7). This is a trivial solution hence we
drop it.

Case(ii):Let 1 >0

Let 3 — o2, where o ispositive or negative. In this case the solution of equation (5.7) is given by

X(x)=A-e* +B%". .. (5.9)

To determine the constants A and B, we use the boundary conditions
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X(0)=0=> A+B=0,

and X(0)=0= de™* +Be” =0
— A+Be** =0-
or B[l—ezaf]zo

=B=0=4=0

Hence for 4 =0 and 4 > 0, the solutions (5.8) and (5.9) do not constitute the solution of the wave

equation (5.1).
Case (ii1): Let 1 <0
Let ) = _4?
In this case the solution of equation (5.7) is given by
X(x)=Acosax+ Bsinax.
Now the boundary conditions
X(0)=0=0=4
= A4=0
and X(0)=0=0=Bsin(al)

Now if B=0then we have y (x,¢) = 0 is again a trivial solution of equation (5.1).

Therefore we assume B = ()
=sin(al)=0
Dafznﬂ" n= 1a2> 3a aeay

nxw
or 05:7 ,n=1,2 ..,

Foreachvalueofn=1,2, .. leta=¢,.

Thus 05,127,n=1,2,...

.. (5.10)

. (5.11)

. (nr
These «,, are called eigen values of the equation (5.1) and the corresponding functions Sl (7 X j

are called eigen functions. Hence the solution (5.10) can be denoted by
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nw
Similarly, for &,, = W the solution of other equation, 74 2,27 = () is given by

T.()=C, Cos(%t)+Dn sin(%tj, .. (5.13)

where C, and D, are arbitrary constants. Hence, the solution (5.4) becomes

) =] aycos( 2 sin (229 sin 2] s

where a, =C,B, and b, =D, B, .

By the principle of superposition, the series

y(x,t)= iyn (x,t)= i[an cos(m;dj+bn sin(m;aﬂsin(m;ﬂj .. (5.15)

n=l1 n=1

if it converges, is also a solution of equation (5.1) satisfying the boundary conditions (5.3). We choose
a, and b, suchthaty (x, t) in (5.15) satisfies the initial conditions (5.2).

Therefore the initial condition y (x,0) = f(x) gives

f(x)=Zansin(%l), O<x</ .. (5.16)

n=l1

Now differentiating equation (5.15) with respect to t we get

¢ ~ . (nx nrxct . (nw
x,t)=~—) | —na, sin| —ct |+nb, cos sin| —x
yi(x1) zz[ ! (f ) ( ‘ ﬂ (f j - (3.17)

n=1

Thus att= 0, we have

Y, (x,0)=g(x),

= g(x)=> b, (%)sin(%xj’ O<x<?. .. (5.18)

n=l
Equations (5.16) and (5.18) show that f(x) and g (x) are expanded in a half range sine series.

Therefore a, and b, are coefficients of the half range sine series of f(x) and g (x) respectively.

—~a =%if(x)sin(%)dx, .. (5.19)

!
2 . ( nrx
and b, = — £ g(x)sin (—g )dx . ... (5.20)
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Thus the solution of one dimensional wave equation (5.1) subject to the conditions (5.2) and (5.3) is
given by the equation (5.15) with the coefficients @, and b, given in equations (5.19) and (5.20)
respectively.

Note : When initial velocity of the string is zero. i.e. if g (x) = 0, then we have b, = 0. In this case the
solution (5.15) becomes

y(x:7)= Y gy 05 -

n=l1

2. sinf 221
/ . ) .. (5.21)

/
27 . (nmx
with a, =< { f(x)sin [T)Jx . (5.22)
Example 1 : Atightly stretched string with fixed end points x =0 and x =1 is initially in a position
given by

y(x,O) =x(1-x)
It is released from rest from this position. Find the displacement y (x, t) at any time t.

Solution : We know the vibration of a string is governed by the second order p.d.e. given by

y,t—czyxx=0,0<x<l,t>0, ... (5.23)

subject to the initial conditions

y(0,0)=y(1,)=0, Vi .. (5.24)
and y(x,0)=x(1-x). .. (5.25)
Also the initial velocity of the string is given by

¥, (x,0)=0. .. (5.26)
By variable separable method, the solution of (5.23) is given by

y(x,2) = (A4cos(ax)+ Bsin(ax))(C cos(act) + Dsin(act)) . ... (5.27)
The boundary conditions

y(0,1)=0=0=4. for C+#0,D+0
Also from (5.27) we have

y, (x,1) = ac[ Acos(ax) + Bsin (ax)|[-Csin(act) + Dcos(act)]
Therefore, the condition y, (x,0)=0= D =0.
Therefore, equation (5.27) becomes

y(x,1) = Bsin(ax)[Ccos(act)]. .. (5.28)

Now the condition y(1,¢) =0 gives
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0= Bsin(a)-Ccos(act)

= B=00rsing=0 for C#0
If B=0 then we have only trivial solution of (5.23).

Therefore, we assume B = ()
=sina=0=>a=nr, n=1,2, ...
Let a,=nr, forn=1,2,3, ...
Therefore, corresponding to each n, the solution (5.28) becomes
v, (x,t)=a,sin(nzx)cos(nzct), fora,=B,C,. ..(5.29)
By superposition principle, the most general solution of equation (5.23) is given by

y(x,t)= iyn (x,t)= ian sin (n7zx) cos (nzet) | .. (5.30)
n=l

n=l1

where the constant a,, is determined by using the condition

y(x,0)=x(1-x).

Therefore, from (5.30) we have
y(x,O)zx(l—x):Zan sin(n7zx)- 0<x<l1 . (5.31)
n=1

We see from equation (5.31) that f(x) = x(1—x) 1s expressed in the Fourier sine series. Hence the
corresponding Fourier constant @, is given by

1

a, = 2_[ x(1—x)sin (nzx)dx
0

:{

a,=2|——cos(nzx)
nx

1
xsin(nzx)dx - Ixz sin(n;rx)dx:l .
0

[ ——

Integrating by parts we get

Iy

—J‘Ecos(nﬂx)dx

0 07’172'

1 1

2
+ jicos(nﬂx)dx +2X cos(nzx)
0 Nz nr

4o b : |:_COS(I’172')C)|1:|

" onlr nr o
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a ——2 [ -1]

n— 3 3
nma

a, =—3 3 ,fornisodd,
nw

a,=0 for n even.

Substituting this in (5.30) we get
8 w— 1 .
y(x,1) ==Y —sin(nzx)-cos(nrct)
VAR )

Example 2 : Solve

Vi =€y =0, o<x<1,t>0,

»(0,6)=y(Lt)=0,

y(x,0)=0, 0<x<I,

¥ (x,0)=x%, 0<x<I.
Solution : Let y(x,t): X(x)T(?)

be a solution of equation (5.33) and is given by

y(x,1)=(4cos(ax)+ Bsin(ax))(C cos(act)+ Dsin(act))
The boundary condition y(0,/)=0= A=0 for C#0,D#0.
Also the condition

y(x,0)=0=0=Bsin(ax)(C)=C=0 for Bx0.
Therefore, the solution (5.38) implies

y(x,1) = Bsin(ax)(Dsin(act)).
Now the condition

y(1,t)=0= 0= Bsin(a)- Dsin(act)

= B=00r sing=0for D#0
If B=0 we have trivial solution of equation (5.33).

Therefore we assume

B#0=sina=0=>a=nz.0=1,2,...
Let a,=nr,n=1,2,..
Therefore, corresponding to each n the solution (5.39) becomes
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v, (x,t)=a, sin(nzx)sin(nzct) .
Therefore, by superposition principle, the most general solution of (5.33) is given by
y(x,t)= Z y,(x,t)= Z a, sin(nzx)sin(nzct) ,
n=l n=l
where the constant @, is to be determined.

From equation (5.41) we have

v, (x,1)= i a, sin(nzx)-(nzc)-cos(nxct)

n=l1

Therefore, the condition y, (x,0) = x* gives

o0
2= ﬂCZannsin(nﬂx), 0<x<1.

n=l1

... (5.40)

.. (5.41)

.. (5.42)

.. (5.43)

This shows that x? is expressed in the Fourier sine series. Hence the corresponding Fourier constant

na, is given by

1
zena, = 2J‘x2 sin (nzx)dx
0

Integrating by parts we get
1

niw

1
- LJ‘2x cos(nzx) dx}
nr i

2
ena, =2 {x_ cos(nzx)
0 0

| 2 Lo
=2 —cos(mr)——{isin(nﬂx)

nw niw | nzt

_ | 1 n 2 cos(nzx) :
=2 D" 2(_ ”

(nr) nr 0

3
nrx

ol Ly a2 (L _1)}
nrw ?

zena, = 2(=1) - 34 3 ((—l)n —1)
nimw nrr

2

—J.Lsin(mrx)dx
0 9 nrw

.. (5.44)



Substituting this in (5.41) we get

(x,6) = 2{2( D" 240 ((—1)" —1)} sin(nzx)sin(nzct)

I’l7Z'C

This is the required solution.

Uniqueness of Solution of Wave Equation :

Theorem : Show that the solution u (X, t) of the equation
u,—c u =F(x,t), 0<x</{, t>0,
u(x,0)=f(x), 0<x</,
u, (x,0)=g(x), 0<x</,
u(0,¢)=u(¢,t)=0, t>0,

if it exists, is unique.

Proof : Let there be two solutions u, (x,7) and u, (x,z) ofthe equation

u, —c*u_ =F(x1t), O<x</,t>0,

satisfing the conditions

u(x,0) = f(x), 0<x</,
ut (X,O):g(x),
and u(O,t):u(ﬁ,t):O. >0

and

Subtracting these equations we get

o (uy—u,) _ 2 o°
ot* o’

(ul—uz)zo_

Also u; (x,0)= f(x) and u, (x,0) = f(x)

:>(u1 —uz)(x,O):O
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ou, ou,
—(x,0)= —=(x,0)=
Also o (x,0)=g(x) and Py (x,0)=g(x)

0
:a(ul —u,)(x,0)=0

This shows that the function v = u; —u, satisfies the corresponding partial differential equation

Z%V—czg%:m O<x</,t>0 ... (5.49)
subject to the conditions

v(x,O)zo, o<x</, ... (5.50)

v, (x,0)=0, o<x</, .. (5.51)
and v(0,¢)=v(4,t)=0, t20.

Claim : We prove v=01i.e. u; (x,¢) =u, (x,t).
Therefore, consider

V4
E(t)z%.!;(czv)% +v2)dx . (5.52)

Since v (x, t) is twice differentiable, we see that E (t) is a differentiable function of't.

/
dE 1 2
Hence dt _Ez[z(c vxvxt+vtvtt)dx
¢ ¢
dE 2
o E[vtvttdx+.(|;c VVdx

Integrating the second integral by parts we get

¢ 0

20 Y .2
=|vyv,dx+ (c V.Y, )0 —J.c Vv dx
0 0

However, from equation (5.51) we have
v(0,¢)=0=v,(0,¢)=0 V¢, >0,

and v(6,t)=0=v,((,t)=0 V>0

Hence we have
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dE

2
’ V; (Vtt —C Vi )dx .

S —

From equation (5.49) we have
v, — czvxx =0.

dE
> — =

0,
dt

= E =Constant - .. (5.53)
However,v(x,0)=0= v, (x,0)=0 and v, (x,0) =0, therefore, from equation (5.52) we have

l

1
E(0) =EI(CZV§ (x,0)+v7 (x,0)) dx . (5.54)
0
E0)=0,
Therefore E=0.

Hence from equation (5.52) we have
v (x,2)=0,v,(x,2)=0V >0, 0<x</.
This is possible only if v (x, t) = constant. The condition (5.50) gives
v(x,0) =0 = constant = 0
=v(x,t)=0
= (x,t) =u, (x,t) 5
which proves the uniqueness of the solution of the wave equation.

Remarks : The solution of the problem of vibrations of a string of finite length is also unique, as itis a

special case of the problem when F (x,¢)=0.

Example 3 : A tightly stretched string with fixed end points x =0 and x = ¢ is initially in a position
given by

(5.0) = yosin’ (25

It is released from rest from this position find the displacement y(x, t) at any time t.

Solution : We know vibrations in a string are governed by the second order p.d.e. given by

’y  , 3%y
el O<x<l,t>0, .. (5.55)
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such that 2(0,6)=0=y(t,1) Vi .. (5.56)

and ¥(x,0) =y, sin’ (%) . (5.57)

It is also given that the initial velocity of the string is zero.
= 7,(x,0)=0. .. (5.58)
We know by separable variable method the solution of equation (5.55) is given by
y(x,1)=(A4cos(ax)+ Bsinax)(Ccos(act)+ Dsin(act)). ... (5.59)
The boundary condition
y(0,t)=0=>A4=0.
Also from (5.59) we find
y, (x,1) = ac[ Acos(ax) + Bsin (ax)][-Csin(act) + Dcos(act)]
Hence, y,(x,0)=0=D=0.
Hence solution (5.59) becomes

y(x,t) = BCsin(ax)-cos(act).

Now the condition
y(£,t)=0= 0= Bsin(al)-Ccos(act) .. (5.60)
:>B:O’ for C¢07

or sin(af)=0, for C 20,

If B=0 we have trivial solution y (x, t) = 0. Therefore, we assume B = 0 = sin(a /) =0,

=al=nr.n=1,2,3, ...

Let a, z(%) n=1,23, .. . (5.61)

These are called the eigen values of the equation. Hence the solution (5.60) becomes

. 4
v, (x,t)=a, s1n(n—7;x)-cos(m;c j .. (5.62)

By the superposition principle, the most general solution of (5.55) is given by
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[ee]

y(50)=Y 0 (0=, Sin(%)w{m;dj, - (5.63)

n=l1 n=l1

where the constant @, is determined by using the condition that

y(x,0) = yysin’ (2],

— From equations (5.57) and (5.63) we have

VG ANE = . (nrx
y(x,O):y0 sin® (7):2% SIH(TJ_ ... (5.64)
We know sin360 = 3sin @ —4sin’ @

3sin (ﬂ] —sin (3&)
= sin’ (ﬂx) = ¢ tJ.

i 4

Therefore, equation (5.64) becomes

Yo

3sin (ﬂ) —sin (3”—)6) w
4 ¢ = Zan sin (_n;rx)

4

n=1

Comparing corresponding coefficients on both sides we get
3 1
a=y,—, a,=0, a=——y,, a, =0....
1=)o 4 © 3 4J’o 4

Therefore, the solution (5.63) becomes

3 . (7#x et Yo . (37rx) (37[61]
,t)==y,sin| — |cos| — |—==sin| —— |cos
p(6n) =0 (6) (6)4 ¢ )
Yo . [ 7x et . 37rx) ( 3rct ﬂ
,t)=—|3sin| — |-cos| —— |—sin cos
or y(x,1) 4[ bj (gj ( ; it ... (5.65)

Example 4 : By separating the variables, show that one dimensional wave equation

dy_1d%y

ox>  c? or?

has solution solution of the form A exp(+ in x + in c¢t) , Where A and n are constants. Hence show
that the functions of the form
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)= (2o (52 (2

r

where A and B, are constants, satisfy the wave equation and the boundary conditions.

y(0,¢)=0, y(a,t)=0Vt.

Solution : One dimension wave equation is given by

o’y 1 8%y

D R s uN ... (5.66

axz CZ 512 O<x<a ( )
where the deflection y (x, t) satisfies the conditions

y(0,¢)=0=y(a,t) Vvt .. (5.67)
Let y(x,t)=X(X)T(2) ... (5.68)
be its solution. Therefore, we have

Vo =X "(x)T(t) and y, = X (x)T"(2).
Therefore, equation (5.66) becomes

X7 =L x(ore

c

X 560
or X o7 (say) ... (5.69)

= X"+n’X =0, ... (5.70)
and T"+C2n2T:0' (571)
Solving equations (5.70) and (5.71) we have

X = eiinx ,

T = eiinct .
Hence y (x, t) =4- eiinxiinct R (572)

is a solution of equation (5.73), where A = constant. We can also write the solution of (5.70) and
(5.71) as

X = Acos(nx)+ Bsin(nx) and 7 = Ccos(nct)+ Dsin(nct) -
Therefore, the solution of (5.66) is given by

y(x,t) =[Acos(nx)+ Bsin(nx)|[C cos(nct) + Dsin(nct)]. ..(5.73)
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Now applying the initial condition
y(0,t)=0=>0=4,
and y(a,t)=0= 0= Bsin(an)[C cos(nct) + Dsin(nct)]

— B =0 or sin(an)=0 for C#0,D=#0 as T@)=#0
IfB=0, we have trivial solution. Therefore, we assume B # 0 = sin(an) =0

=an=rr, r=1,2, ..

rr
or ”=(—), r=1,2, ..
a

Therefore, solution for each value of r, we have

[ o I R

a a a

By superposition principle, the most general solution is given by

$(50)= 33, (50) =35 4o 2L B sin 22 sin 225 575

r=1 r=I1 a a

where Ar and B, are constants.

Exercise :

1. Obtain the solution of the wave equation

_ 2
Uy =C Uy

under the following conditions

u(0,t)=u(2,¢)=0,
u(x,0)=sin’ (%x),

u, (x,0)=0.
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The vibrations of an elastic string is governed by the partial differential equation
Uy = Uy
The length of the string is 7 and the ends are fixed. The initial velocity is zero and initial

deflectionis # (x,0) = 2 (sin x +sin 3x) . Find the deflection u (x, t) of the vibrating string for
t>0.

A string is fixed at two points ¢ apart and is stretched. The motion takes place by displacing

. [ 7x
the string in the form V =asin (7) from which it is released at time t. Show that the

displacement of any point at a distance x from one end at time t is

. [ Tx et
X,t)=asin| — |COS| —
y( ) (ﬁj ( / )

mimlm
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UNIT - VI

HEAT CONDUCTION PROBLEM

In this unit we consider heat conduction problem in a rod with the following assumptions.
1. Therod is homogeneous.
2. Itis sufficiently thin so that the heat is uniformly distributed over it cross section at a given time t.
3. The surface of the rod is insulated to prevent any loss of heat through the boundary.
4. u(x,t) isthe temperature at the point x attime t.

We know the temperature u(x,¢) inarod is governed by the second order one dimensional.
p.d..e.

ou o%u
a e
satisfying some initial and boundary conditions.
Case 1 : Heat conduction - Finite rod.
Result : By separable variable method, find the temperature distribution in arod of length ¢ satisfying
the boundary conditions
u (O,I) =u (f, t) =0, ¢>0 (endpointsoftherod are keptat0°C.)

The initial temperature is u(x,0) = f(x), 0<x</.

The rod and its ends are perfectly insulated.

Or
) ) . Ou o%u
By separable variable method, find the solution of the equation > =k 8_2 ,0<x<l,t>0
X

satisfying the conditions
u(0,))=u(l,t)=0, >0
u(x,0) = f(x). 0<x</

Solution : Let u(x,t) bethe temperature in arod of length y. We know the temperature distribution
inrod is governed by the second order partial differential equation given by
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ou o0°u

—=k—, , .. (1.1
PR O<x</l, t>0 (1.1)

satisfying the boundary conditions

u(0,0)=u((,0)=0, (>0 .. (1.2)
and u(x,0)=f(x), 0<x</, - (1.3)
where f(x) is the initial temperature in the rod.

To find temperature in the rod at any instant t, by separable variable method, we assume the solution of
the equation (1.1) in the form

u(x,t) = X (x)T(t) . (1.4)
=u,(x,1) = X ()T (1),

and u, (x,0)=X (X)T(t),
=u_(x,0)=X (X)T(t).

Hence equation ( 1.1) becomes

X(O)T () =kX (x)T(2)

xrr A (say) (1.5)
> — == Ssa , .
X T g

where ,} isa constant may be zero, positive or negative
=X -AX=0; . (1.6)
and T -1kT=0- - (1.7)
Case (i) If 4 =0, then solutions of (1.6) and ( 1.7) are given by
X=A4x+B, T=C
Theconditions (1.2) = X(0)=X{/)=0=A4=0=B8.
Consequently, u(x,¢) = 0, which s a trivial solution of equation (1.1).
Case (ii)If 4 >0 say 4 =2
Therefore, solutions of equations (1.6) and (1.7) are
X(x)=Ae* + Be™** and T(¢) = Ceazkt .

Now the conditions (1.2) = X(0)= X (/)=0,
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= A+B=0
and , . = A=B=0.
Ae®" + Be* =0

= u(x,t)=0.
Thus for 4 = and /4 > ( we have trivial solutions. Therefore, we assume
Case (iii): A<0say J=—g2, a>0.
Therfore, equations ( 1.6 ) and ( 1.7 ) become

X' +a*x=0 and T +o’kT=0,
which have solutions

X(x)=Acosax+ Bsinax, .. (1.8)
and T=ce ™. .. (1.9)
Therefore, solution (1.4) becomes

u(x,t)=(Acosax+Bsinax)C.e*a2kt- ... (1.10)
The boundary conditions (1.2) viz.

u(O,t) :u(ﬁ,t) =0=X(0)=0=X(V),

X(0)=0=4=0,
and X (¢)=0= Bsin (al)=0.
If B = yields only trivial solutions. Therefore we assume B - ()

=sinal=0,
= (al)=nxr ,Vn=123,....

Let for each value of n=1,2,....

nx
a,=—, n=12,.. .. (1.11)
1
These are called eigen values of the differential equation. Hence the solutions of (1.6) and (1.7) are
respectively
. nxx
Xu(¥) =B, sin| ==, - (112)
T C ' k
2 (1)=C, exp 7. . (1.13)



These are called the corresponding eigen functions of the equations. Therefore we write from (1.4)

—n’*kt)  (nzx
u, (x,t)=B,C, exp S Jsin| =~ |

—n* 7%kt ([ nx
or ty (x.1) =@, exp| —5— sin| =¥ | fora =B C, .. (1.14)

Thus by the principle of superposition, we have

u(x,t) = iun (x,7)
n=1

is also solution of (1.1).
*k
= u(x,t)= Za exp —I’l—ﬂ't sin Kx
r 72 /e .. (1.15)

if it converges, is also a solution of (1.1) satisfying the boundary conditions. That the initial temperature
in the rod is given by

u(x,0)= f(x).
:f(x)=2ansin{%xj, 0<x</. .. (1.16)
n=1

This is a Fourier series expansion of f(x), where the Fourier constanta_ is given by

:—If(x)sm( jdx - (1.17)

Thus equation (1.15) is a solution of the equation (1.1), where the constant a  is given in equation
(1.17).

Example 1: Solve u,=u O0<x</,t>0,

u(0,t)=u(l,t)=0,
M(X,O):.X'(g,t), 0<x</.
OR

A heat flow in arod of length 10 cm of homogeneous material is governed by the p.d.e u, = czuxx

The ends of the rod are kept at temperature ()9, and initial temperature is u (x, 0) =X (1 0-— x) .Find

the temperature in the rod at any instant.
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Solution : we are given that

u,=u,,, O0<x</,t>0, .. (1.18)
satisfying u(0,t) =u(/,t)=0, .. (1.19)
and u(x,0)=x({-x)=0, 0<x</. ... (1.20)
We assume u(x,t)=X(x)T(t) .. (1L.21)

=u, = X(x)T (¢) and u,, = X "(x)T(¢)
Hence equation (1.18) becomes

X(XO)T () =X (X)T(2)

I A(say)
or —=—=A(say).

X T 4
Wehave if } is zero or positive, the equation (1.18) has trivial solution. Therefore, we assume  is
negative. We choose

A=—a?

=X +a’X=0; - (1.22)
and T+a’T=0- .. (1.23)
The solutions of ( 1.22 )and ( 1.24 ) are respectively given by

X(x)=Acosax+ fsinax, .. (1.24)
and T(t) = C exp(—a’t) - .. (1.25)
The boundary conditions (1.19) give

X0)=0=X().

From equation (1.24) we have for X (0)=0
= A=0,

and X(/)=0=0=Bsinal.

If B =0 wehave only trivial solution of (1.18). Hence we assume B % () . In this case, we have
sin(al)=0,
=al=nr forn=1273..

nix
Let @, =—-n=1,23.. .. (1.26)
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Hence the corresponding solutions of (1.22) and (1.23) are

(nr
Xn(x):BnSIH 7)6 , and .. (1.27)

n’r?
T,(t)=C, exp| — 2 | .. (1.28)

These are called the corresponding eigen functions. Thus the solution of (1.18) can be written as

(x,t)=B,C i 21 in| 22
u,x,1)= n nex — Sin X
; Pl - ;

n’ 7t . (nw
or ty (3, 0) = & @Xp| =— 53— |sin| —=x | .. (1.29)

The by the principle of superposition, the solution of equation (1.18) is given by

w0 =y ().
n=l1

* —n*a? . nx
Thatis u(x,0) =Y a,exp R e R .. (1.30)
n=l
if it converges. However, it is given that the initial temperature of the rod is
u(x,0)=x(l—-x), 0<x</
& . (nx
x(ﬂ—x)=2ansm[7xj, 0<x</ - (1.31)
n=l

which is the Fourier sine series of f(x) = x(¢ —x). Hence the Fourier constant a,, is given by

2j. (= 0)si nr
a, =—|x({—x)sin| —x [dx
"oy l ’

0
20 & nr ! nr
=— KJ-xsin —Xx dx—szsin —x dx
! 0 / 0 l ’
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2 l niw £ 1
a,=—|ly—x—-cos| —x | +{|—cos| —x |d.
l niw l o oh7T 1

2 5 / ni
——| —x"—cos| —x
/ nr /

l

4 (nr)

2

a, =——| (-1)" -1
(nz il ]
802
=a,=—7, fornis odd,
nrw
a,=0, fornis even.

Hence equation (1.30) is the required solution of equation of (1.18) with

~ 82

a. =
n 3 3
nrmw

Uniqueness of the Solution :
Theorem : Show that the solution u(x,¢) ofthe differential equation
u,—ku, =F(x,t), 0<x</,t>0,
satisfying the initial condition
u(x,0) = f(x), 0<x</,
and the boundary conditions
u(0,t)=u(l,t)=0, t>0

is unique.

20 7 & &
a,=—|—-—(CD"+—(D"-2 3 cos
nr n b4

.. (1.32)

.. (1.33)

.. (1.34)

.. (1.35)

.. (1.36)

Proof. Let u,(x,t) and u,(x,t) be two solutions of the equation (1.34) subject to the conditions

(1.35)and (1.36).

ou, 0%
=>——k—
ot ox

=F(x,t), O<x</l t>0,
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u,  0u,

and E_k N F(x,1), O<x</t, t>0, .. (1.38)
satisfying the conditions
u (x,0) = f(x), 0<x</ .. (1.39)
uy(x,0)= f(x), ... (1.40)
and u (0,6) =u,((,t)=0, .. (1.41)
uy(0,6) =u,(¢,1)=0. .. (1.42)
Subtracting (1.38) from (1.37) we get
2
%(”1_“2)_]‘%:0,
satisfying u(x,0)—u,(x,0)=0,
and 1) (0,8) —uy(0,1) =0 =u, (L,t)—u,({,t).

These equations show that, v =u; —u, satisfies the corresponding equation

v dv

E—kax—2=0, 0<x<t, t>0 .. (1.43)
v(0,))=v((,)=0 , ¢>0 .. (1.44)
v(x,0)=0, 0<x</. .. (1.45)

Claim : We prove that u,(x,t) =u,(x,t)

Let us define a function E ('t ), such that

1 /
I
E(t)= 2k£v (x,0)dx .. (1.46)
Since the integrand is positive definite — £ > () .. (1.47)

Differentiating (1.46) w.r.t. t we get

dE 14 ov
—=—I2v—dx
e kyoot

1 l
= zj 2vk u,, dx by equations (1.43)
0
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dE .
—= ZJ. Vv, dx
ar '

Integrating the r.h.s. by parts we get

dE f
—= 2|:vvx|f) —jvﬁ dx:l
dt 0

Therefore , by boundary conditions (1.44) and (1.45) we have
v(0,6)=v(/,t)=0.

dE ¢, y dE _
:E=—2£vxdx_0 =—-<0, .. (1.48)

This shows that E (t) is decreasing function of t. From the condition v(x,0) = 0 we have from (1.46)
E(0)=0. Therefore we have

E(®) <0, Vt>0. ... (1.49)
But, by definition (1.46) E (¢) is non-negative.

= E@)=0, V>0

=v(x,t)=0 on0<x</, 20

= u(x,1) =u,(x,1).
Hence the solution is unique.

Example 2 : The temperature u(x,7) inarodoflength ¢ ingoverned by the p.d.e.

ut:C uxx'

The initial temperature isu(x,0) = f(x) . The rod and its ends are perfectly insulated
u (0,0)=0 and u (/,t)=0.
Find the temperature distribution in the rod.

Solution : Let u(x,7) be the temperature in arod of length ¢ . We know it is governed by the p.d.e.

w,=c*u,  0<x</(,t>0. ... (1.50)
Given that initial temperature is

u(x,0)= f(x), .. (L.51)
and u (0,6)=u,(¢,t)=0. .. (1.52)
We assume u(x,t)=X(x)T(t) .. (1.53)
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be the solution of equation (1.50)

=Su, =X'X)Tt)=>u,=X"(x)T(¢),
and u, = X(x)T'(t)
Hence equation (1.50) becomes

X()T'(t)=c*X"(x)T(¢)

X" T

= =——=A(say).
X 7T ()
= X"-1X =0,
and T'—Ac’T =05

. (1.54)
.. (1.55)

where /] is either zero or positive or negative. If 4 = (0 and ; > 0 weknow that it has trivial solution.

Therefore, we choose 4 < 0 Let j = _42 . Hence equations (1.54) and (1.55) become
X"(xX)+a*X =0,

and T +a**T=0-
Solving equations (1.56) and (1.57) we get

X =Acosax+ Bsinax,
and T =Cexp(-a*c’t), C#0.

Thus the temperature distribution in the rod is given by
u(x,t) = (Acos ax + Bsin ax).C exp(—a’c’t) -

To find the constants, we use the given conditions (1.52). From equation (1.60) we find
u . (x,t)=—a(Asinax— Bcosax)C. exp(—a’e’t)

Thus u, (0,0))=0=0=B for C%0.

Hence equation (1.60) reduces to
u(x,t) = Acosax.C exp(—azczt) .

Also u,(0,1) = 0= 0= A.sin(al).Cexp(-a’c’t).

= A=0 for C=0,
or sin(al)=0 for C#0.

If 4 =( then we have trivial solution. Therefore, we assume 4 = ( for C 0.
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= sin(al) =0,

=al=nx, for n=123,..

niw
= a,=—, n=123,... .. (1.62)

These are called the eigen values. Substituting this in equation (1.61) we get

nrw —n* e’
u(x,t)=ACcos| —x |exp| ———¢
! 14 :
nrx —n* e’
or u,(x,t)=a, cos 7x exp 7 L .. (1.63)

By the superposition principle, the most general solution of equation (1.50) is given by

© o 2,22
nrw —-n"rc
u(x,t) = Zun (x,1) :Z a, cos [7)6} exp(Tt} _ .. (1.64)
n=1 n=1
Given that the initial temperature in the rod is
u(x,0) = f(x).
Therefore, from (1.64) we have
= nrw
u(x,0)=/(x)= 2, a, cos| —=x | .. (1.65)
n=1

This represents the expansion of f(x) in the Fourier cosine series. Consequently , the Fourier constant

a, 1s given by

2 nrx
a, =Z£f(X)COS(TXde. .. (1.66)

5 o L o o _n2glc?
:>u(x,t)=zz'[f(x)cos 7x dx -cos 7x -exp Tz ... (1.67)

n=l1(

2. Heat conduction - Infinite Rod.

Result : Find the temperature distribution in a rod of infinite length satisfying the initial conditions

u(x,0)= f(x), —0 < X <0
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Solutions : Consider a homogeneous sufficiently thin rod of infinite length such that its surface is
insulated. If u(x,?) is the temperature in the rod, then the temperature distribution in the rod is
governed by the second order partial differential equation

u, =hku, —0 < x<00,t>0, .. (2.1)

satisfying u(x,0)=f(x), —00< X <0. .. (2.2)

We use the Fourier transform method to solve the equation. Therefore let the Fourier transform of
u(x,t) be U(a,t)

ie. F (u(x,+1)) =U(a,1)

Thus by definition of Fourier transform, we have

1o .
f(u(x,+1)):U(a,t):E [ uCe,nedr . (23)

Also we know the formula for Fourier transform of derivative as

7 (") =(ia) 7 (/). - (2.4)
Hence taking of the Fourier transform of equation (2.1) and using the formula (2.4) we get

U, = k(-ia)* F (u(x,1)),

U, =—ka*U(a,t),

= U, +ka’U =0. .. (2.5)
This is the first order differential equation, whose solution is obtain by integrating equation (2.5)

2
= U(a,t) = A(a)e * ™, .. (2.6)

where A(«) is an arbitrary function to be determined from the initial conditions.

From the definition (2.3) we obtain

7 (u(x.0)) = [ u(x.0)e“d
ux = —— u\x e X
’ 27 = ’
| |
= U(@0)=—— [ £ ax by equation (2.2).

But from equation (2.6), we have
U(a,0)=A(x)
= Ala)=F(f(x))=F(a).
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Hence equation (2.6) becomes

Ula,t) = Fla)e . Q)

Taking the inverse Fourier transform of equation (2.7) we get
FF(ux+D)]=F"[F(f(0)F ()] ... for F(g)= oK

Su(x,)=F"[F(f*g)],
u(x,t)=f*g, ..(2.8)
where f*g isthe convolutionof f(x) and g(x) over the interval (—o0,) and is defined by

0

(f*g j x=&)g(&)dé
Thus we have

u(x,?) T f()g(x-8)ds .. (2.9)
where g=F"(M)

1 x2
= g(x)= —2 - eXP{th

R (x-¢&)°
:g(x—f)—z—Wexp " |

Hence equation (2.9) becomes

u(x,t) = T \/—ff(f)e 1{( 4]5)2]615. .. (2.10)
If k=1 and
P = {o when x<0
a When x>0,
then we have
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=]
u(x,t) = ex
T
x—¢
t =
Pu 2\/; n,
= dé =2tdn
X
when ¢=0, = h
and as &>, n—oow.
Thus we have
a o0
u(x,t)=
7r«/2_t_x'[
o

We write this as

T

a 9 2 T2
u(x,t)=—-2 J. e d77+J.e_’7 dn
. :

— X

N

Now consider the integral
0

I eiﬂzdn
o
Put n=-y =>dn=-dy
—X X
= — :> [
and n=0 =y=0

Todi

Thus we have

0
J
X 0
NG

2 2
e’ dn= I e dn
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o]

2
Also consider Ie Tdn,
0

Put n*=t=2ndn=dt,
d : dt
=dn=—¢dt
N
When n=0=1=0,
and N—>00=f—>w0,
-1 1
T2 T 1 — 1%, -
Thus Ie*” d?]zj‘e*t—tzdtz—je*ttz dt
0 0 2 2%
T2 11z
N A L L L . (2.13)
! 7 2[2 2

Using (2.12) and (2.13) in equation (2.11) we get

X

N NS
u(x,t) :ﬁ\/E I e_'72d77 +Tﬂ
r
0

X

a 22\/;

- 1+T j- eiﬂzdn

T

7]

a X
:u(x,t)ﬁ{lwrf(z—ﬁﬂ, .. (2.14)

where

2 2 2
erf (x)=ﬁJ.e ""dn is the error function.
0
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3.  Families of Equipotential surfaces :
Definition :

Let f(x,y,z)=c beaone-parameter family of surfaces. We say that this family of surfaces
is equipotential if these exists a potential function ¥ (which is a solution of Laplace equation V2 =0)
such that ¥ is constant whenever f'(x, y,z) is constant.

Note : Not every one parameter family of surfaces f(x, y, z) = ¢ is afamily of equipotential surfaces.

Result : Find the condition that a one parameter family of surfaces form a family of equipotential
surfaces.

Proof:Let f(x,y,z)=cbeaoneparameter family of surfaces. By definition, equation (3.1) will be
a family of equipotential surfaces if the potential function ¥ (Which is a solution of the Laplace equation

V?y =0)is constant whenever f(x, y,z) is constant.

This means that there must exist a functional relation of the type

y=F{f(x,y,2)} - (32)
between the function ¥ and g suchthat ¥ = constant whenever f(x, y,z) =constant.

Differentiating (3.2) partially w.r.t. x we obtain

oy dF of
ox  df ox’
.. (3.3)
% d*F (of\ dF d*f
- = | = S
and x2 de ax df axz . (34)
N *w d*F(ofY dF o*f
Similarly, @T:W _y +d—-—2, .. (3.5)
*w d*F(of dF o*f
- = | — +— ' —
and 622 df2 7 df azz . (36)
Therefore, consider
2 _azw 82W azw
' ot
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, d*F (asz (asz (afT dF (0% f &*f &f

Viy = — | = = |[t—= + +
dr? |\ ox Oy 0z af | ox* o  oz°

V2w =F'(f) (gradf)* +F (f)V*f. ..(3.7)

Since v satisfies the Laplace equation in free space

=Viy=0

" 2
_EFU__ sz. . (38)
F(f)  (gradf)

This shows that, the condition that the surfaces (3.1) form a family of equipotential surfaces is that the

VS
quantity |gm P f|2 is a function of falone. We denote this function by y( /') . Hence equation (3.8)

can be written as
F'(f)
) x(f),
d’F () df 0
> — _—=
de X df . ...(3.9)
Integrating we get

a _

af ... (3.10)
where A is a constant. Integrating (3.10) w.r.t. f we get
W:F(f):Aje‘Mf)‘-’fderB - (3.11)

where B is a constant. This is the general form of the corresponding potential function.

This is the necessary condition that the one-parameter family of surfaces f'(x, y, z) = ¢ is afamily of
equipotential surfaces.

Example 1 : Show the surfaces

x2+y2+22:r2, r>0

form a family of equipotential surfaces and find the general form a the corresponding potential function.
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Solution : Let

f()c,y,z)=x2+y2+zz=r2 ..(3.12)

be the one parameter family of surfaces. To show that this family forms a family of equipotential
surfaces, we find the potential ¥ s.t.

Eaf of of
grad / =

N 0, o~ =2 s Va4 )s
o dy azJ (x,¥,2) .. (3.13)

*f *f o
= + +
ot o ozt

VS =2+2+2=6 . (3.14)

=V f=6.
= |V =402+ y? +2%) .. (3.15)
2
=|Vf| =4r.
Therefore, the equation

Vif 3
vt =g=l(f) .. (3.16)

F'(f)
F'(f)

==x(f)

Therefore, the equation

has solution W= AI L ‘df +B

3.1 -3
——|—=df £y
:>1//:A_[e 2y .df+B:sl//=Aje1°g<f>2df+B.

3
w=A[f 2df +B-

This gives
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Example 2 : Show that the surfaces
2
Xyt 2t =’
can form an equipotential of surfaces, and find the general form of the potential function.
Solution : One parameter family of surfaces is given by
2
Xyt 4zt =cx3
-2

ie. x3(x2+y2+22)=c :

-2

Let f(xpy,x)=x3 (x2+y2+22)=c - (3.17)

To show this family forms a family of equipotential surfaces we find

o (YU
U PR

(4 /— (5 +z)2yx/2zx/j

\%4 :%x% (2x2 —y? —z2,3xy,3x2). . (3.18)
O*f 4 % 10 % 2. 2
Now 8x_2:§x AJF;’C A(J’ tz ),
2 2
8); 0z
O’f O°f . 0
Hence Vf= ( 6xf 6{ asz becomes
vif 4 / /(y +z )+2x7%+2xx7%,
:ﬂx_é-kmx_%(yz'i'zz)
9 9
Thus, sz:mx_%(4x2+y2+zz)-

9
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Now \72% (%}2 +(%T +(%)2 . (3.19)

becomes

|grandf|2 = gx_l% _(2x2 —yt—z? )2 +9x%y? +9x222},

zix_l% :4)c4+(yz+zz)2 —4x? (y2+22)+9x2(y2 +22)]

2

=£x_l% :4x4+(y2 +22)2 +5x7 (y2 +22)l
:gx_l% [4x4+4x2(y2+22)+(y2 +22)2+x2(y2 +22)1

:gx_l%[4x2(x2+y2+22)+(y2+22)(y2+22+x2)l

V7|’ =gxl% [(4x? )2+ 22) 4 (x2 4)2 4 22) ], .. (3.20)
vif %x_% (4x2+y2+22)
So that, vr[? _gx1%(4x2+y2+zz)(x2+y2+22)’
R
2(x?+y?+22)
5
Vi 2 ViS5

—=x(@) ..(3.21)

Thereft s - - )
erefore |Vf|2 . %(xz +y7+2%) |Vf|2 2/

This shows that the given set of surfaces forms a family of equipotential surfaces.

Now to find the general form of the corresponding potantial function, we know it is given by

WzAJg{z(f)dfderB’

Sily

W:Aje 21 df + B>
_5

p =4 Adf+B,
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W:Ajf’%dfw,
VI:—%Af_%JrB,

_ A
or wz—zA[x%(x2+y2+Zz)J ’

+B,
3

-3
Wz—gA[x(x2+y2+zz) A}+B,

This is the required potential function.

Example 3 : Show that the family of right circular cones X%+ y2 = cz2, where ¢ is a parameter, forms
a set of equipotential surfaces and show that the corresponding potential function is of the form

0
Alog tan 5 + B, where A and B are constants and ¢ is the usual polar angle.

Solution : The family of right circular cones is given by

X2 +y2 =C22
Le. z2 (xz +y2) =c
Let flayz)=z2(x2+y?)=c. .. (3.22)

To show that, this surfaces form an equipotential surfaces, we find

Vf = (@ 1 @] = (2xz’2, 2yz*2,—2z’3 (x2 + y2 ))

ox’ oy oz
Vf = 2()6272,)/272,—273 (x2 +y2)) . .. (3.23)
Therefore, |Vf|2 = 4(x2274 +y2274 +z7° (x2 + y2 )2 ) )

2
:42_6( 222+y222 +(x2 +y2) ),

V7P =420 (62 +32) (2 + 2 +22). .. (3.24)
82 62 62
Next V2f= Gx{ + Gy{ + 82]; gives

V2f=2z242z2 4627 (k2 +y?),
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Vi =4z 46274 (x2+97),

V2 =2 (3x +3y% +222),

V=24 (2(x + 7 4 22)+ (¥ + 7). .. (3.25)
sz _22_4[2(x2+y2+22)+(x2+y2)]
Therefore, |Vf|2 - 4, (x2+y2)(x2+y2+22)
1o 2 1
2 | X4y X4yt 4zt
_ | . |
272(x2+y2) 2272(x2+y2)+2
Vi1 1
or v T —f+2(f+1)—l(f) ... (3.26)

This shows that the one parameter family of surfaces (3.22) forms an equipotential surfaces.

To find the corresponding potential function, we know it is given by

W:Aje—jz(f')dfdf+3’

R

(10gf+10g(f+1)%)

W:Aje‘f Ydaf + B

w:AjBﬂfﬂ)‘%}dfw,

w=dllogf+2f+1]+B . .. (327)

This is the required potential function. Now we show that potential function is given by
v = Atan (4 +B
2
We consider the transformation

x=rsinfcos¢, y=rsinfsing, r=rcosd
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= x* +y? =r?sin’ @
Hence = f=z" (xz +y2) = tan” = df =2tanOsec’ 0dO

=>.Jf+ =+/tan’ O+1=secd-

1 1
= x(f)=—+
o201+
becomes x(f)= 12 + 12
tan“ @ 2sec” O
Integrating we get
j fdf J.[ > }2tant9sec2 0deo
tan’ 9 2sec 0 ’
jzsec 25049, [tan6do,
tan 6
J.;((f)df =2logtand—logcosd,
tan’ 6 sin” &
df =lo =lo
[x(f)dr =tog"— g(cos39j.
Therefore y=a[e " g1
10g[cos QJ
becomes W= AJ- sin?0) .2 tan @sec? 0dO+ B,

3
=24[%5 9 tanhsec? 040 + B
v J-sinzé’ ’

W:2Ajcosec0d9+B,

v = Alog(tan§)+B i

This is the required family of equipotential surfaces.

Example 4 : Show that surfaces

2
(x2 +y2) —2c12()c2 —i—y2)+a4 =c
can form a family of equipotential surfaces and find the general form of the corresponding potential
function.
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Solution : The one-parameter family of surfaces is given by

f(xy,2)=(x? +yz)2 ~2a* (x* +y?)+at =c. .. (3.28)

To show this surfaces form an equipotential surfaces, we find

Vf:(al g gj:(4x(x2 +y2)—4a2x,4y(x2 +y2)+4a2y,0),

ox’ oy oz
= () At (0 rAan0). . B29)
2 2 2
Therefore Vf |2 :(%) ‘{%j +(Z_j;j >
becomes |Vf|2 =16x? [(x2 +y2 —a2)2}+16y2 [(x2 +y2 +a2)2} )

:l6[x2 (x2 +y2)2 +a4—2a2(x2 +y2) +

+y2 ()c2+y2)2+a4+2a2 (x2+y2)}},

=16[(x2 +y2)3 +a4(x2 +y2)—2a2 (x2 +y2)(x2 —yz)}

|Vf|2 =16(x2 +y2)[(x2 +yz)2 +a*-24* (x2 +y2 )} . ...(3.30)
o’f *f S

Now Vif= o + o + 2

becomes Vi =16(x"+)7") .. (331)
vir 16(x?+y?) 1

So that |Vf|2 16(x2 +y2)f f
TL-Lo)

Hence v f RS ..(3.32)

This shows that the given set of surfaces (3.28) forms a family of equipotential surfaces.

Now to find the general form of the potential function, we know

v = Aje—jz(f')dfdf+B’
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[ Lar
y=Afe y -df + B>

-1
W:Aje“’gf df +B,
1
w=A|—=df +B
J‘f )
w=Alog f+B,

or l//=A10g[(x2+y2)2—2a2(x2+y2)+a4}+3, ..(3.33)

where A, B are constants. This is a required equipotential function.

mimlm
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UNIT-VII

LAPLACE EQUATION

1. Introduction :

Various physical phenomena are goverened by the Laplace equation. In this unit we derive the
Laplace equation and discuss the method of its solution. Various boundary value problems for the
Laplace equation viz., the Dirichlet problem and Neumann problem for certain specified regions are
the subject matter of this unit.

Result : Derive Laplace equation.

Proof : Consider two particles m and m| at Q and P respectively separated by a distancer. Then by
Newton’s law of gravitation, the magnitude of the force is directly proportional to the product of the
masses and inversely proportional to the square of the distance between them.

Gmm,

>F=—"7T7TJT1 (L)
r

where the negative sign indicates the force is attractive. Here G is the gravitational constant. Assuming
the unit mass at Q and G = 1, the force at Q due to the mass m at P is given by

:FZE(TJ‘ .. (1.2)

Let the particle of unit mass move under the attraction of the particle of mass m, at P from infinity upto
Q, then the work done by the force g is given by

r _ r 8
O{Fdrzig(%j dr’
t (m
[

- (1.3)

The gravitational potential is defined to be the amount of work which must be done against gravitational
force. Hence the potential V at Q due to a particle at P is given by
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V=-—— o (1.4)

F=-VV. .. (1.5)

Now if we consider a system of particles of masses m, m,, ..., m which are at distance r|, r,, ..., 1,
respectively, then the force of attraction at Q due to the system of particles is given by

:F:v[zﬁ]_ . (1.6)

The work done by the force acting on the particle is

[Far=3% "=V (1.7

i=1 i

3

i=1 1

=V =-Y Vv [ﬂj

i=1 hi
where r=xity j+zk,
:|Fi|:ri:(xi+yi+zi)%
2( My (32 62 82 2 2 2 *%
b ' (Ti]:mi(axz "o +622](Xi i) 7
1
L (x2+y2+22) /2 _ 4
where ox Lo 3
g (21 y2422)
200 2. avh (inz_yiz_ziz)
37(3@ +yi +Zi) =

2 2 2 _
Similarly, ayz(xf”"”" B %



(o)

(2, 2 2\
and P (xi Ttz ) =
2 2 2
= 62—1-82—1-82 M
ox° oy° oz v
:vz(ﬁjzo
l/-l_ b
=V¥=0-

This is called the Laplace equation.

2 2. 2
(xi ty +z;

oo

y

. (1.8)

Note : In 2-dimensions, the Laplace’s equation is given by

_0%u, O _

Vu =0
x? oyt )

- (1.9)

A solution u (x, y) of equation (1.9) is called 2-dimensional harmonic function.

Solution of Laplace Equation :

Example 1 : Obtain the solution of the two-dimensional Laplace equations y/2;, — () by the method

of separation of variables.

Solution : Consider the two-dimensional Laplace equation

Vzu =0
2 2

ie. 8_?"‘8_2{:0.
ox~ Oy

To find the solution of (1.10) we assume
u(x,y)=X()Y(y).

2
=9 X "(x)¥ () and
ox

Therefore, equation (1.10) becomes

X"Y+XY"(3)=0,

X' v,

or b% %

(say),

.. (1.10)

. (1.11)

o*u
—=Xx)r"
oF = Y@rO)

.. (1.12)

where k is called the separation constant, and k may be positive, zero or negative.
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Case (1) k> 0. Take j = o2, a isreal.
Therefore, we get from equations (1.12)
X"—g’x=0and Y"+a?y=0

Solutions of these equations are respectively given by

X =Ce™ +Cye* and Y =Cycos(ay)+Cysin(ay).

Hence the solution of equation (1.10) becomes
u(x,y)=(Cre™ + Cpe™ )(C3 cosay+Cysinay).
Case (i1) If k =0, then from equations (1.12) we have

X"=0 and y"=0.
Which provide us

X=Csx+Cgand Y =C,y+Cy.
Hence the solution of (1.10) becomes

u(x,y) = (C5x+C6)(C7y+C8).
Case (iii) Let k <0. Take f = _42
Hence the equations (1.12) become

X"ratv=0and Y'-a’y =0,

which have solutions

X =(Cycosax+Cysinax) and ¥ = C,e* +Cpe ™.

Hence the general solution of (1.12) is given by

I/l(x, y) = (C9 cosax +Cj,sin ax)(clleay n C]ze_ay).

L (1.13)

. (1.14)

. (1.15)

.. (1.16)

L (1.17)

In all these solutions C; (i=1, 2, ...,12) are constants of integration and are to be calculated by using

the boundary conditions.

Laplace Equation in Polar Form :

Result : Show that in polar-coordinatesr, g, the two-dimensional Laplace equation u , +u,, =0

takes the form

IS B
u,, +;ur +—21/l99 =

Proof : In Cartesian co-ordinates the two-dimensional Laplace equation is given by

Vzu =0>
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= Uy +u,, =0, .. (1.18)
We know the relations between the Cartesian co-ordinates and polar co-ordinates are given by

x=rcos@, y=rsinf,

= r?=x?+y? and 6 =tan"' (Zj,

X
where @=£=cosé’,
ox r
@:lzsinﬁ
oy r ’
%: -y :—sint9
and ax x2+y2 7 5
@zi:cosﬁ
o o

We have by Chain rule of partial differentiation

T

%)
X2

ox or ox 00 ax r 1+y_j ,
X
=u, =u,cosl+u, 2—y2
x“+y
:>ux=u,cosé’—u5(smej .. (1.19)
r
2
Yy X 1)
u,=u, =+u -
and y T Hr, 9{x2+y2](X’
. 0
uy:u,51n9+u9(cors ) .. (1.20)
or 00
i u, =(u.) =(u,) —+(u ), —
Similarly, we find xx ( x)x ( x)r o ( x)g o

uxx=[u,,c050—u9(smeﬂ cos@+[urcosé’—u5(smeﬂ (_smé’j
r - r 0 r J’
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sin @ sin &
uxx=[u,rcos¢9—u9r( )+u9 > }cosﬁjL

r r
+[u,,0cos@—ursinﬁ—u%(sme)—ug COSH}(_SIHQJ’
r r r
. ) .2 .
Uy, =U, 00529—2ur0w+u99 sze u, S 9+2u9w. .. (1.21)
r r r
Similarly, we find
or 00
u, =(u,) =(u,) —+(u ;
Yy ( J’)y ( y), ay ( Y)e ay
:[u,sinHJrug COS@} sint9+[ursint9+u9 cos&'} (COSHJ
roJ rolg\ r
:(uw sin @ +uy, cos 0 —~uy Coszgjsin6’+
r r
+(ur9 sin @+, cos® —Uy sin ¢ +u, cos@j COSQ’
r r r
. 2 . 2
Uy, = Uy, sin2¢9+2u9rw+u% c052 9—2@;9 sm¢9(2:os9+ur cos" & . (1.22)
r r r r
Adding equations (1.21) and (1.22) we get
_ 1 1
uxx+uyy_urr+r_2ut90+;ur.
Thus Uy +ut,, =0
1 1
3u,,,+;ur+r—2u99=0_ (123)

This is the polar form of the 2-dimensional Laplace equation.

Example 2 : Show that the two-dimensional Laplace equation y/2,, — () in polar co-ordinatest, g

n -n) _xinf
has the solution of the form Z ( Ar”+ Br )e , where A and B are constants.
Solution : The two-dimensional Laplace equation in plane polar co-ordinates is given by

o’u 1ou 1 0%u
—+—+——=0

02 o T2 a0 ) .. (1.24)
Let u=R(r)®(0) ... (1.25)
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be the solution of equation (1.24)
=u, =R"(r)®(0) and u, =R'(r)®,
1/199 = R(l’)@"(e)

Hence equation (1.25) becomes

R'(1)O(0)+-R'()0(0) + = R()©"(0) =0
r r

Dividing this equation by R()@(8) we get

R' 1R()_ 10"

=0
R r R 206
1( 2 0" -
—\r R"+rR'):——=n
or R 0 . (say)
= 0"+n’0=0>
d’e 2
ie. —+n"0=0,
ie 15
»d’R . dR
r*—+r—-n"R=0
and ar’ dr '
Equation (1.27) provides
@zeil}’le,
or ®=Ccosnf+ Dsinnd -

Let p — ;,»m be the solution of equation (1.28). Hence the equation (1.28) becomes
P2 lm(m =1 "2+ rmr ™ —n%" =0,
= (m?>-n®)r" =0,
=>m=xn.

Hence the solution of (1.28) is given by

R=Ar"+Br "

Therefore the solution of equation (1.24) becomes

u(r,0)= Z(Anr” +B,r " )eiina

n=

b

or u(r,0)= Z(Anr” +B " )(Cn cos(n8) + D, sin(nd)).

Which is the required result.
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Laplace Equation in Spherical Polar Co-ordinates :

Result : Show that in spherical polar co-ordinates r, @, ¢ the Laplace equation yv/2;, — () takes the

form

2
Q(rza—”)+ 1 i(sinea—”j+ L du_y
or\' or) sin6 oo 00)  sin® 0 04>

Proof : In Cartersian co-ordinates the Laplace equation is given by
Viu =Up Uy, U, = 0.

To transform equation (1.32) in to spherical polar co-ordinates, we have

x=rsinfcosg,y=rsin@sing,z =rcosd

2, 2
x°+
=t =x?+y?+2%, taan_l—y, ¢:tan_l(zj
z X
where rxzﬁzsinﬁcosqzﬁ, ry:Z:sianinqﬁ, r.=%=cos@
y r r ’
and 0 = Xz — 0 :cochos;/ﬁ,
2 /x2+y2 r
ey:cosé?smq‘ﬁ’ 02=sm0
r r
Similarly, we find
sin ¢ cos ¢
= — , = , Z:O
2 rsin@ P rsin @ %

Now by using the chain rule of partial differentiation we write
U, =u,r +ugl, +uyd, .
Using equations (1.35), (1.36) and (1.37) we get

cos@cos ¢ " sin ¢ "
-

u, =sin@cosdu, + : 4
r rsind

In the same way, we find

cos¢9sin¢u N cos ¢ "

u, =sin@singu, + 0 :
r rsin@

y

&>

sin @
and u, =cosbu, — r Uy,
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Now to find the second order derivative, we again use the chain rule and write
Uy = (ux )’, Ty + (ux )9 ex + (ux )¢ ¢x

cos & cos
¢ u

= (sin Ocosgu, +

r rsind

0 sing u¢j -(sin@cos @)+

+ (sin Ocosgu, +

cos@cos¢u _ sing " ] .(cosecos¢j+
0

0 .
r rsin @ 7

+ (sin Ocosgu, +

cos ) cos ¢ sin ¢ j ( sin ¢ )
Ug————Uy | | ————
r rsin@ "4 rsiné )’
cos” O cos” ¢ sin’ ¢
r? % 1 2sin2 0

.2 2
= U, =u,sin"0cos” g+ugy +

. 2 .
o, (2sm6’c0s6’cos ¢j+”r¢ (_ 2sm¢cos¢)+

r r

- 2 2 .2
+u0¢(_2cos€cos¢sm¢j+uﬁ(cos 6 cos ¢+s1n ¢j+

. V4
2 sin O r r

. 2 . .
b, (sm(ﬁcosqﬁ 4 gos 6 cos ¢gsin ¢ N sin ¢ cos ¢]+

2 r2sin’ @ r2sin’ 6

> > .. (1.41)

(cos&’sin2 ¢ 2cosBsinfcos’ (15]
+u0 N - .
r°sin@ r

Similarly, the second order derivative
u, =(u, )r ry+(u, )9 0,+(u, )¢ ?, gives

cos” Osin’ ¢ cos” ¢
2 Ty
r r-sin” @

_ 22
Uy, =U, sin” 0sin” @ +ugy

—+

; .2 . ‘
u, (2sm6’cosé’sln ¢j+u,,¢ (2COS¢sm¢j+u9¢(2cos&’cos¢sm¢j+

r r 2 sin O

2 g2 2 : 02 2
+ur(cos 0sin ¢+cos ¢j+u9(_2sm9cosﬁsm ¢+c056’cos ¢j+

r r 2 7% sin@

. : 2 1
+u, (_sm¢c0s¢_sm¢cos¢_cos 951n¢°05¢j, (1)

2 r2sin’ @ r2sin’ @
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and U, :(uz)r r; +(uz)g 92 +(uz)¢ ¢Z’

:uzzz(u,cosﬁ—ug smﬁj c059+(urc050—u9 s1n49) sin ¢
roJ, r Jog r °’
. ) ) .
—u_=u, cosze_ur02sm€cosﬁ+u00 s1n26?+ur sin 9+u0 cosé?zsmé?. (143)
r r r r
Adding equations (1.41), (1.42) and (1.43) we obtain
Viu=0
1 1 2 cosd
DU, t—Ugg+ 55Uy +— U, + u, =0
T3 Ugg 2 sin2 g pp T 2sing 0 . .. (1.44)
This can also be written as
2
izi(rza—”j+ - i(sinea—”j+—2 L__Ou_y
r- or or) r°sin@ 06 00) r“sin“ 0 o¢ ’
2
:g(rza—uj+ .1 i(sinﬁa—u)+ 12 a—g‘:o (1.45)
or or/) sin@ 060 00) sin“ 0 d¢ ' R

This is the required Laplace equation in spherical polar co-ordinates.

Example 3 : Show by using the method of separation of variables that the general solution of Laplace’s
equation in (1, @, ¢ ) co-ordinates is

u(r,0,4)= Z(anr” 3 rnlﬂ jsn (0,9).
n=0

where Sn (9’ ¢) = Z an (/J)(Anm cos m¢+Bnm sin m¢) 5
m—0

pu=cos@, and P () isthe associated Legendre functionand «,, £,
A, ,and B, are constants.

Solution : We know the Laplace equation in spherical polar form is given by

0 z@uj 1 0 ( , auj 1 2%
—|r-—=\|+——|sinf— |+——————=0
6r( or) sin@ o6 00)  sin? 0 04 . (1.46)

This can be written as

20%u ., du, 1 a(sinea_uj+ 1 &u

ro—+2r—+ ——— =0
20)" sin? 0 047 .. (1.47)

or? or  sinf 06
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Since uis a function of 1, g, ¢ we assume

u(r,0,4)=R(r)O(O) D () . (1.48)
is the solution of equation (1.47). Therefore, we find from (1.48)
u,=R"O0, y, =R'OD, y,=RO'®and u; = ROD". .. (1.49)
Substituting these in equation (1.47) we get
r?R"O®D +2rR'O® + ——[sin ORO"D + cos ORO '] + 12 ROD"=0
sin @ sin” @
Dividing throughout by RE@® we get
PR RO gD L P
R R O ® sin’0 @
r*d’R 2rdR 1d°© cotd d® 1 d’®
ie. ——t———t—— —+ ———> =0
R dr- Rdr ©do ® dOf ®sin“ 0 dg ’
r*d’R 2rdR 1 d(. ,00 1 d’o®
——2+——++—(Sln9—)+ ) —220
R dr* R dr Osinfdé 00) ®sin”“ 6 d¢ ’
DR IIR (00 [t o= LD 150
o \R a2 Rdr @smodol o0 o ag Gy (150)
Now consider the r.h.s. equations of (1.50)
d*o 2
—+m®=0
e , .. (1.51)
which has solution
O (¢)=Ce™™ . .. (1.52)
Now the L.h.s. equation of (1.50) becomes
2 52 2
r d §+£d—R+ 1 i(siné’d—®)=—mz .. (1.53)
R dr R dr ©sinf do df ) sin- 0
This can also be written as
rd’R 2rdR__ | i(sined—@)j+ "k (say) . (154)
Rd? Rdr ©sm0do\  do) smig = ) =t

Consider
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2 d*R  2r dR
R dr* R dr ’

2
d°R 5 4R _p

:>I"2 5
dr dr

Take for convenience k = n(n+1)

d’R ., dR
Therefore r 172 +2I”E—n(n+1)R=0, ... (1.55)
r

+n(n+1)®=0

1 d( d@j_ m’®

—| sinfd—
and sin6 do d0) sinlo

1 d(. ,d® m*
= = |sin@=—= |+|n(n+1)- }(9:0

sin 0 d@( d@) { sin® 0 - (156)
Equation (1.55) is a homogeneous linear equation of second order. We put r = e* (changing the
independent variabler to z), hence we find

dr dz 1
=

dz dar r

dR_dR dz _1dR _ dR_dR
dr dz dr rdz dr dz

d’R _ d(ld_RjzldzR dz 1 dR

Now i d\rd) v aR dr e

rdz? dr iy dz

er
P\ dz? dz )

»d’R d*R dR
=>r -

dr*  dz? dz’
. d
If & == then we have
dz
ri:E’
dr ’
2
and 2L —0(0-1),
dr

Hence equation (1.55) becomes
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(0(6-1)-20-n(n+1))R=
=(0-n)(@+n+1)R=0. .. (L.57)
This is a differential equation with constant coefficients whose auxiliary equation is
(0-n)(@+n+1)=0,
which has roots O=n, O=—(n+1).
Hence solution of (1.57) is given by
R=Ce" +Cye "2 . (1.58)
Consequently, the solution of equation (1.55) is
R=Cp" +Cpr~ D, .. (1.59)

Now to find the solution of equation (1.56) we put

/JZCOSQ, :d—ﬂZ—Sil’le,

do

, _d®_dO du_ do__ . ,do
We write Y40 du 4o do du

2
and :%:—cosﬁd®+sm 6’d ©

du du*’

From equation (1.56) we have

1. 4% d@} { m? }
sin @ +cos@— |+| n(n+1)— ®=0
, { 15 10 (n+1) i’ g .. (1.60)

Using the above expressions in equation (1.60) we get

2
—c0s0%9© | in? ed? c0sO (_g; 9)d—®+{n(n+1)— m }@:0
du du® sinf du sin” @ ’
RC) do m* _
ie. (1- 2 )d > 2ﬂdﬂ{”(”+1) —(l_ﬂz)}a—o. .. (1.61)

This is called as associated Legendre’s equation whose solution is given by

O =AP" (u)= AP (cos®). .. (1.62)
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Using equations (1.52), (1.59) and (1.62) in equation (1.48) we obtain the general solution of given
equation (1.46) in the form

u(r,0,8) = (4" + 4~ ) P" (cosf)-e* ™.

By supperposition principle, the general solution can also be written as

u(r,0,¢)= Z(ar + 'fﬂj S,(0.9),

n=0

where S, (0,4)= z P (cos6)(A,, cosmp+B,, sinmgp)

Kelvin’s Inversion Theorem :

Theorem: If u = u(r,6, ) isaharmonic function, where (7, 8,4 ) are the spherical polar co-ordinates,

then show that
2 2
i=2u {“—, 0, ¢j
r r

is also a harmonic function, where ‘a’ is a constant.

Proof : Given that u (r,0,¢) is aharmonic function. = it satisfies Laplace equation.

2
:i(rza—u}r .1 i(sinﬁa—u)+ 1 6_u:O (1.63)
or or) sin@ 06 00) sin’ 6 o¢* ' et
Claim : We prove that
2 (a2
u= - u - 0, ¢j is also a harmonic function.
2
Let Rza—,
.

= =Ru(R,0,4).

Since u (R, 8,4 ) satisfies the equation (1.63) as it is harmonic.

2
Y A Y- A N e
OR OR sind 06 ole) sin2 2] a¢2 . L

We claim that
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o 2 85) 1 0 ( : 817) 1 0%
|\ =]t —| sinf— |+ 22 =0
or (r or/) sinf 060 00) sin* 6 o¢* . ... (1.65)

Therefore, consider

20u 20
—=r"—(Ru(R,0,
4 or " 8r( u( ¢))’
OR or or ’
200 2 azj( azjﬁu 2( azj
=>rc == -— || -= =+ —— |u(R,0,
. (r 7o\ JrRO).
20U atou
St R,0,0). ... (1.66
" or r OR ¢ u( ¢) ( )

Differentiating this with respect to r we get

0 (rzﬁ_ﬁj:a4 ou_a* Q®u R _ > 0u R

o\ or) r20R r oR: or = OROr’

:2a48_u+£82u
2 OR 13 OR*’

— 2
:»ﬁ(rz a—”j Y SRy S
or\"  or OR OR?’

0 2871) 0 ( 28u)
2|\ _p Y| prt
or ar(r pwll ke Ry B . (1.67)
Similarly, consider
.o ou . 0
0— =sind—(Ru(R,0,
sin 6~ =sin 66’( u(R,0,¢)),

. 0u . 0u
9% — Rsin 9L
Sin 20 Sin 20 . as R iR(Q)

Differentiating this with respect to ¢ we obtain

i(sin Ga—ﬁ) :i(R sin@)
00 00 00 00)’
2
= Rcos@a—u+Rsin6’a—u
00 0

0’
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_ 2
1 0 (sin@a—uj R (cos@a—u+sin6’a—uj
00 0

= —— ,
sin@ 00 00) sin@ 0>
1 o(. ,.ou R o0(. ,ou
= — —(smﬁ—j =— —[sme—). .. (1.68)
sin@ 06 00 sin@ 060 00

Next consider

1 o%m 1 &P
sin20 0> sin’ 0 0f° [Ru(R.0.9)].

I &% _ R &%
sin? @ 6¢>  sin® @ d¢*

.. (1.69)

Adding equations (1.67), (1.68) and (1.69) we get

_ — 2—
Q(rzﬁ_u}r .1 i(sint9a—”[j+La—u:
or\' or) sinf o6 00)  sin® 0 4>

2
:Ri(Rza—ujJr _R i(sint9a—7’[)+—R ou
OR\' ©OR) sin6 06 00) sin® 0 o¢*’

2
=R i(Rza—uj+ _1 i(sinﬁé—u]+ 1o
OR\' OR) sinf o0 00) sin® 0 o¢* |’

=0 by virtue of equation (1.64)

— — 2—
:i(rz 8_u)+ ,1 i(sin@a—uj+ I 6_u:0
or\" or) sinf o6 00)  sin® 0 04>

2

2
: —_a a . .
This proves that ¥4 =—u (— 0, ¢) is also harmonic.

r r

2.  Boundary Value Problems :

Any problem of determining a function u (x, y) satisfying Laplace’s equation within certain
region D and satisfying certain conditions on the boundary B of the region D is called boundary value
problem, for the Laplace equation.

There are mainly three types of boundary value problems for Laplace equation viz.
1. The first boundary value problem, called The Dirichlet problem.
2. The second boundary value problem called The Neumann problem.

3. The third boundary value problem called the Mixed Boundary Value problem.
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Dirichlet Problem :
There are two types of Dirichlet peoblems -
@) Interior Dirichlet Problem and
(i1) Exterior Dirichlet Problem.
Interior Dirichlet Problem :
If fis a continuous function on the boundary B of some finite region D, then the problem of
determining a function u (x, y) such that
(i) V2u(x, y) =0 with D (i.e. u (x, y) is harmonic inside D) and
(i1) u (x,y) =fonB (i.e. u coincides with f on the boundary B)
is called Interior Dirichlet Problem.
Exterior Dirichlet Problem :
If fis a continuous function prescribed on the boundary B of a finite simply connected region
D, then the problem of determining a function u (x, y) such that
(i) V2u(x,y) =0 outside D and
(i) u (x, u) = fon the boundary B
is called Exterior Dirichlet Problem.
The Neumann Problem :
Interior Neumann Problem :
If fis a continuous function defined uniquely at each point of the boundary B of a finite region D, then
the problem of determining a fuunction u (x, y) such that

)] Vzu( x,y) =0 inD(i.e. uis harmonic inside D) and

Qu _

0
on S (s) onthe boundary B, where —— is the directional derivative along the

(i) Satisfies on

outward normal (i.e. normal derivative o coincides with fat every points of B)
is called the interior Neumann problem.
Exterior Neumann Problem :

If fis a continuous function prescribed at each point of the smooth boundary B of a bounded
simply connected region D. Then finding a function u (x, y) satisfying

(@) V2u(x,y) =0 outside D and

15,
(i) é = f on the boundary B
1s called an exterior Netumann Problem.
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: oy . : : :
Note : If v is the temperature, k4 is the heat flux representing the amount of heat crossing per unit
n

volume per unit time along the normal direction.
The Third Voundary Value Problem :
The problem of finding a function u (x, y) which is harmonic in D and satisfies the condition

0
é‘i‘ h(s)u(s) =0 on B where A(s)>0 and A(s) #0.

The Fourth Boundary Value Problems (Mixed Boundary Value Problem) :
The Robin Problem :
The problem of finding a function u (x, y) which is harmonic in D and satisfies different boundary

0
conditions on different portions of the boundary B, suchas u = f(s) as B, O_Z = f>2(s)on B,, where

B,UB, = B,iscalled Robin Problem.

Maximum and Minimum Principle :
Theorem : Let D be aregion bounded by a simple, closed, piecewise smooth curve B. Let u (x, y) be
a function which is continuous in a closed region D = D J B and satisfy the Laplace equation v2;, = ()

(i.e. harmonic in D) in the interior of D. If u is not constant everywhere on p), then the maximum and
minimum values of u (x, y) must occur only on the boundary B of D.

Proof : Let D be aregion bounded by B inside which the function u (x, y) is harmonic.

Le. Viu=0 nD
o*u  0%u
ie. ax—fry:() inD. (2.

Let the maximum value of  (x, y) on B be M. Let the theorem be not true. Therefore we assume that

the function u (x,y) attains its maximum at some interior point (xo » Yo ) in D and not at any point on the

boundary B of D.

If My =u(xy,y,) then My >M .
Say My =u(xy,y)=M+e. .. (22)
Let us construct an auxiliary function

v(x,y)=u(x,y)+%[(x—x())2 +()")’0)2}, . (2.3)

where (x,)e D and R is the radius of the circle with centre (xo , yo) containing D. Since D is

bounded as R exists. We observe from equation (2.3) that
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v(xo,y0)=u(x0,y0):M0. ..(2.4)

We show that v (x, y) like u (x, y) attains its maximum at a point (x,, y, ) inD. However, on B we

have

2 2
v(x,y)SM+—MO_M ((x—xo) _(y_yo) Sl]
4 7 R?

:>v(x,y)SM+ 2

<M,.

= the function v (X, y), like u (x, y) must attain its maximum at a point (xo » Vo ) inD.

= Vi £0,v,, <0 at some pointin D. D

= Vi +V,, <0 atsome pointin D.

However, in D we have from equation (2.3)

M,-M
VitV =uy, tu, +———(2+2)
yy »y 4R2 B

Vip TV Sy TU, + —,
R
Since uis harmonicin D
= Uy +u, =0,
:>Vxx+vyy: >0 SIHCGMO >M

This is a contracdiction.
— the maximum ofu must be attained on the boundary B.
Green Identity :
Let B be a closed surface in the space and D denote the bounded region enclosed by B.

Let 7 beavector ¢ ¢ ! in D and continuous on D. Then we know the Gauss divergence theorem is
given by

[[Faas=[[[v-F-av (2.5)
B D

where dV is an element of volume, ds is an element of surface area and 7; is the outward normal.

Green’s identity is obtained from (2.5).
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Let F = f(zﬁ , Where f is a vector function and ¢ is a scalar function. Then from equation (2.5), we

have

[[]V-(Fo)av =] Foas

we know VA(fp)=F-Vo+dv-f
= [[[(F-V+gv-F)av = [i-Fgds.
D B

3j£jf.v¢dv=j£ﬁ-f¢ds—j[j)j¢v~de.

We choose the vector function

f=Vy.
Therefore, the above equation yields
f— i . — 2
[[[ve-voav=[[pi-Vyas-|[[ovyav .. (2.6)
D B D
Since 7-V i is the derivative of i in the direction of ;. We denote this directional derivative by
. oy
n-Vy=——
14 on

Therefore, equation (2.6) reduces to

5
jyv""v‘/"”Zfl"’a_y,:ds‘ijz‘/’d’/. L7

This equation is known as Green'’s first identity.

Now interchanging the role of ¢ and ¥ , we obtain from (2.7) the equation

0
I]{IW-WV=I£¢a—de—I]{IW2¢dV . 8)
Now substracting (2.8) from (2.7) we get
0 0
J[ [ -pvg)ar =[[[6 57 -y 22 Ja -29)

This is known as Green’s Second identity.

Ifin particular, ¢ =y inequation (2.7) then we have
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ILU(W)ZdV:Il"’%dS‘Isz"’dV. .. (2.10)

Which is a special case of Green’s first identity.
Properties of Harmonic Functions :

Solutions of Laplace equation are called harmonic functions. These functions possess a number of
interesting properties.

Theorem 1 : If a harmonic function vanishes everywhere on the boundary then it is identically zero
everywhere.

Proof : Let ¢ be a harmonic function in D.

= V%¢=0 inD, . (2.11)
and also ¢=0 onB. .. (2.12)
We shall show that =0 in D=D(JB.

We know the Green’s indentity is given by

I]U(W)z dV:Iy%dS‘Iy‘WZWV. . (2.13)
Using (2.11) and (2.12) we have from equation (2.13)
Iy(wy V=0 L (2.14)

Since (V ¢)2 is positive. It follows that the integral (2.14) will be satisfied only if Vg =0.

= ¢ =constant in D. But ¢ is continuousin D = p|J B and ¢ = 0 on B, it follows from the maximum

and minimum principle that ¢ =0 inD.

0
Theorem : If ¢ is a harmonic function in D and 9 0 on B, then ¢ is aconstantin Jy.

on
Proof : Let ¢ be aharmonicin D.
= V?¢=0 inD. .. (2.15)
0
Also G_Z:O on B. .. (2.16)

Then we prove that ¢=constantin D=D(JB.

Now by Green’s identity we have
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jy(v"’)z‘wZIZ["’%‘ZS‘U)IWZWV (217
Using equations (2.15) and (2.16) we have

[[[(ve)*ar=o.

Since (V ¢)2 is positive, it follows that the integral will be satisfied only if Vg =0.

= ¢ =constantin D.

Since the value of ¢ is not known on the boundary B, but

o¢
)
o on B.

= ¢ =constant on B and hence by the maximum and minimum principle it is constant on D.

This proves the theorem.
Uniqueness Theorem :
Theorem : Prove that the solution of the Dirichlet problem, if it exists, is unique.

Proof : Let us suppose that u; and u, are two solutions of the Dirichlet problem.

= V?u,(x,y)=0inDand

uy (x,y)= f(s)ontheboundary B, ..(2.18)
where fis a continuous function defined on the boundary B. Similarly, we have

V?u,(x,y)=0 inDand

uy (x,y)= f(s) onB. .. (2.19)
Since u; and u, are harmonic in D, therefore u; —u, is also harmonic in D.

= V? (4, ~u,) =0 inD.
However, from equations (2.18) and (2.19) we have

u —u,=0onB .. (2.20)
By the maximum and minimum principle,

u —u, =01nD,

:>ul:Ll2.
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(Because if a harmonic function vanishes everywhere on the boundary, then it is identically zero
everywhere). This proves the uniqueness.

Other forms of Green’s Identity :

By Green’s theorem, we know, ifu (x, y) and v (X, y) are differentiable functions in D and continuous
on the boundary B of D then

ou , ov _
£(§+gde = jJ;(Udy—de) .. (2.21)
o¢ o¢
U=yZ2 V=
Let Ve d 7TV

=>U, =y +vd.. V, =y, ¢, +yo,

Therefore, equation (2.21) becomes

[(v.d+vbe+v,8, +v8,,)dS = [ (d.dv—4,dx)
B

D
0
We use Pody —p,dx = —¢dS
on
o¢
Hence, [(v b +vd+v,0, +v,)dS = j ylds. - (222)
D

On interchanging ¢ and ¥ in (2.22) we get

[(Bv +dv+dw, +oy,,)dS = j¢a"n’ ds. . (2.23)
D

Substracting (2.23) from (2.22) we get

IJ;(V/V¢ V2 )dsS = J-( 8}(1‘15 ¢5l//j . (2.24)

The identities (2.22) and (2.24) are called Green’s identities.

Theorem : Show the necessary condition for the existence of the solution of the Neumann problem is
that the integral of fover the boundary B should vanish.

Proof : Letu (x, y) be the solution of the Neumann interior problem.

—=V?u=01inD, .. (2.25)

and 2—;‘ = f(s) onB. .. (2.26)
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Then we claim that j f(s)ds=0.
B
We know the Green’s identity is given by

_ _ ([, 22 _ 407
lj;(t//V2¢ ¢V21//)dS—£(t//an ¢anjds. .. (2.27)

Put w =1 and ¢ =u in(2.27) we get
Ivzuds = ja—uds
5 % on

Using equations (2.25) and (2.26) we get
[ f(s)ds =0 (2.28)
. . . (2.

This proves the result.

Theorem : Show that the solution of the Neumann problem is either unique or it differs from one
another by a constant only (i.e. solution is unique up to the addition of a constant).

Proof: Let u, (x, y) and u, (x, y) be two solutions of the interior Neumann problem.

= u, and u, are harmonicsinD.

ie. V2, =0,inDand V2, =0 inD, .. (2.29)
Ouy Ouy
and o = fonB and o = f onB. ... (2.30)

Then we claim that «; —u, = constant.

Consider V=u —u,
Then Vi =V? (ul—uz)zvzul—vzu2
= 0 inD.
= V?y=0inD, ..(2.31)
v _ 0 _Ou;  Ouy
and on  on (ul uz) on on
=f-f
ov
=—=0
on on B. ..(2.32)

We know the Green’s identity
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I(l//x¢x YD Y PP, )ds =Il//%ds. .. (2.33)
D B

Put g =y =v in(2.23) we get

J)[(vx)z +vv,, +(vy)2 +yynydS = £v%ds ,

= J[vi +v§ +vV2v]ds :J-v@ds ,

5 % on
= J.(Vv)2 ds + j v(Vzv)ds = J.v@ds
) ) A on - .. (2.34)

Using equations (2.31) and (2.32) we obtain from equation (2.34)

J(vv)?ds=0. .. (2.35)
D

Since (Vv)2 is positive. It follows that the integral (2.35) will be satisfied only if V/y, = () in D.
= y isconstant in D.
= u; —u, = constant.

This proves that the solution of the Neumann problem differs from one another by a constant.

If constant is zero = the solution is unique.

Stability : A solution is said to be stable if it depends continuously on the initial and/or boundary data.
Stability Theorem : Show that the solution of the Dirichlet problem is stable.

i.e. Show that the solution of the Dirichlet problem depends continuously on the boundary data.

Proof : Let u; and u, be two solutions of the Dirichlet problem in D and f}, f, be given continuous
functions on the boundary B of the region D.

= V2, =0 inDand u, = f; onB.

Similarly V?u, =0inD, u, = f, onB.

Let V=u —U,.
= V=V (1, —u,)=V?u —~V?u, =0 inD
—V?y=0inD

and v=f —f, onB.

= v 1s asolution of the Dirichlet problem with boundary condition v = f, — £, onB.
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Therefore, by the maximum and minimum principle, the harmonic function v attains the maximum and
minimum values on B.

Equivalently, f, — f, has maximum and minimum value on the boundary B. (i.e. f; — f, mustbe
bounded)

Thusif|f1 —f2| <e onB.

Therefore at any interior point in D, we have, for given > ()

=|vl<e inD
= |u1 —u2| <einD.

Henceif|f1 —f2| <e onBthen |u1 —u2| <e onD.

Thus, small changes in the initial data bring about an arbitrary small change in the solution.
This shows that the solution depends continuously on the boundary data.

i.e. the solution of the Dirichlet problem is stable.

3. Interior Dirichlet Problem for a Circle :

The Dirichlet problem for a circle is defined as follows.

Result : Show that the solution for the Dirichlet Problem for a circle of radius a is given by the Poisson
integral formula.

Example 1 : Find the value of (7, 0) atany point in the interior of the circle (r=a) D in terms of its

values on the boundary B such that u is single valued and continuous within and on a circular region and
satisfies the equation

Vu=0,0<r<a,0<6<2rx
subject to u(a,0)= f(6), 0< @ <27 ,where £(8) is continuous function on B.
Solution : Our problem is to solve for u (r, §) satisfying the equation
Viu=0,0<r<a,0<0<2r, .. (3.1
subject to the boundary condition
u(a,0)=f(0), 0<0<2r, ..(3.2)
where (@) is continuous function on the boundary of circle.

We know the polar form of Laplace equation (3.1) is given by

Qu 1ou, 1% _
o ror 12 o0?
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We know the solution of the equation (3.3) is given by (Refer equation 1.31)
u(r,0)= i(Cnr” +Dnr_")(An cosnf+ B, sinnb) . (3.4)
n=0
Atr=0, u(r,0)must be finite. Hence
r" swasr—>0=D,=0,
:u(r,@):ir" (4, cosnd+B,sinnb) .. (3.5)
n=0
=u(r,0)= a7°+ir" (a,cosnf+b,sinnbd)  for A, = %0 .. (3.6)
n=1
Now using the boundary condition

u(a,0)=1(0),

we have

(0 =224+3"a"(a, cosn0+b,sinnb)

n=1

This is the Fourier series expansion of f (), hence Fourier constants are given by

2r
= ay=" [ 1(0)do,
o
1 2r
a,=—— [ f(0)cosnddo,
za,

2
and bn=Ljf(9)sinned,9,n=1,2,3, .....

za,

Substituting these values in the solution (3.6) we get
o 2| cosnd F sinnd °f
u(r,0)==—[ f(#)dp+> | == [ f($)cosngdg+>—=[ f(¢)cosngdg |
2 0 o a T Ty
Interchanging the order of summation and integrating we get

2z 2z 0 n
u(r,@)zi [ f(¢)d¢+% [ f(¢)z(§j [cos ng cos n +sin ngsin nd]dg
0 0

n=1
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2

u(ro)= 1] f(¢){%+i(§)n cosn<¢—e>}d¢.

7 0
Consider
g(g [cosn(¢—0)+isin[n(p-0)]]= g(gjn (-0
3] -1 o) 5[]
Since r<a:>£<land |ei(¢—0)|sl.

The expression on the right hand side of the equation (3.8) is a geometric series.

; . (L)g(w)
Therefore, Z[Lei(¢_9)} __\a)
- L) i(4-0)
2

Equating the real part on both sides we get

o, (Lj £(#-0)
r o a
Z(;) cosn(gp—60)=Re —1 e |
a

n=l1

(1) £(#-0) [1 _ Le—i(¢—9)}
=Re d a

(I_Lei(gﬁ—é)))(l_Le—i(gﬁ—é))) ’
a a

| (L)[ez‘w)_z}
_Re a a _|,

1= T (80 4 pil9-0)) L 1™
a a2

2[005(¢—0)+isin(¢—6’)—§}
(l—§2cos(¢—0)—(§)2)
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o]

= Z(gjn cosn(p—0)=

n=l1

Pagan]

(2L oostp-0)+( ]

Substituting this on the r.h.s. of (3.7) we get

L2 . Lcos(¢—9)—é
u(r0)=—[ 1(#) 5+—% @ |dg.
70 1——”cos(¢—0)+r—2
a a
i (az—rz)
,0)=— dg. ..(39
u(r.6) 7T!).f(¢)2(a2—2arcos(¢—9)+r2) ’ G2

This is known as Poisson integral formula for a circle, which gives the unique solution for the Dirchlet
problem.

4. The Dirichlet Exterior Problem for a Cicle :

Result : Show that the solution for the exterior Dirichlet problem for a circle of radius a is given by
(Poisson integral formula)

_LG (rz_az)f(¢)
u(r.0)= 2z ‘([ [r2—2arcos(¢—t9)+a2}d¢.

Solution : Exterior Dirichlet problem is decribed by
Viu=0for0<o<2z,r>a, - (4.1)
and u(a,0)=1(0), 0<f<2x,1=2, .. (4.2)

where £(#) is a continuous function of @ on the surface r = a, and u(7,6) must be bounded

as r — oo . We know by the method of separation of variables, the general solution of (4.1) in polar
co-ordinates is given by

u(r,0)= Z(Cnr” +Dnr7”)(An cosné + B, sinnd) . (43)
n=0
Now as r — oo we require that 4 (,8) to be bounded
=C,=0 (As 7" —> o0 as r —> o)

Hence the general solution (4.3) reduces to
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u(r,0)=>Yr"(A,cosnd+B,sinnb) . (44)
n=0

It can also be written as

u(r,H):%’+Zr‘” (a, cosn@+b,sinnd) .. (4.5)
n=0

Now using the boundary condition

u(a,0)=1(0),
:>f(l9)=a—20+ia” (a,cosnd+b,sinnb)

n=1

Hence the Fourier constants are given by

2
ay="[ 1(0)do,
7 0
n 2w
a, =" [ f(0)cosnddo
Ty ’

n 2w
b, ="= [ f(6)sinn0do . n=1,273, ...
T
0

Substituting these values in equation (4.5) we get the solution as

2z 0 n 2z 2r
u(rﬁ):i“(mdmzrn%{cosnejcosn¢f(¢)d¢+sinn9jsinn¢f(¢)d¢ .
0 n=l 0 0

Interchanging the order of summation and integration we get

2

u(r,@)zzij

T 0 n=1

2z 0 n
f(¢)d¢+% £ f(¢)2(%j [cos ng cos nf + sin ng sin nd | dp

2

u(r0)= 1] f(¢){§+ijl(§j" cosn(cé—e)}dcﬁ. - @6)

o

Consider,

i(%jn [cosn(¢— 0)+isin(¢— 9)] = ,i(%)n 9-0)

n=1 =1
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ie. i(%)n [cosn(¢—0)+isin(¢—«9)] = i{(%)n ei(¢9)T (47

n=l1 n=I1

Sincer>a

2%<1 and |ei(¢—9)| <1

The expression on the right hand side of the equation (4.7) is a geometric series. Therefore, we have

a i(¢-0)
o]
priANG [1_£ef(¢—e)}

r

a i4-0) [1 _ gei(;é—e)}
r

r

) [1_ﬂef<¢ﬂ[1_£ef<¢0>} ’
r r

Equating the real part on both sides we get

i(%)n cosn(p) { %[COS(¢_¢9)_%} :

n= a a
! 1—2;cos(¢—¢9)+r—2}

Substituting this in equation (4.6) we get

2

2 Leos(p-0)-L
W(r0)= [ 1) 3+ = |
70 1——acos(¢—6’)+a—2
r r
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2r 2 2

| r—d
o)=L ‘
=u(r,0) jn J.Sf(¢)2(r2—2ar005(¢—9)+a2) ¢,

2 Pedrle) L (48)

or u(r,0)=
(r-6) 27T0(r2—2arcos(¢—0)+a2)

This is the required solution of the exterior Dirichlet Problem.
5. Interior Neumann Problem for a Cicle :
The interior Neumann Problem for a circle is described as follows.
Example 1 : Solve
Viu=0,r<a
subject to the boundary condition

ou

on ar_f(e) onr=a

(Because outward normal to the Ole is along the radius vector)

2
where J‘f(ﬁ)dG:O.
0

Solution : To find the solution, we solve the equation

2 2
Qu 1ou, 1

+— <
02 ror s 892 , r<a .. (5.1)
subject to the boundary condition
ar—f(g)onr—a 0<0<2r, ..(5.2)

where 7(8) is a continuous function of ¢ on the surfacer=a.
We know by the method of spearation of variables, the general solution of equation (5.1) is given by
u(r,0)= z (Cnr” +D,r ™" )(An cosnf+ B, sinnb) .. (5.3)
n=0
Since atr = 0, the solution should be finite hence we musthave D, =0 (7 _y o038  —0).
Hence the solution becomes

u(r,0)=>Yr"(4,cosnf+B,sinnb)
n=0
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This can be written as

u(r,@):%’+2r" (a,cosn@+b,sinnd) . (5.4)

n=l1

Differentiating (5.4) w.r.t. r we get

Z_Z - Z‘nr’“1 (a, cosn@+b, sinnb) .. (5.5)
n=0

Now using the boundary condition

% (a,0)=1(6),
or

we have f(0)= i””n_l (an cos(n) +b, sin(n&'))_ ... (5.6)

This is a Fourier series expansion of f (&), where the Fourier constants are given by

2z
a, =— - [ £(0)cos(nd)dO
a" g ’

1 2
b, =—— _[ f(9)sin(nd)do
na""r sy

Substituting these values in (5.4) we get

u(r,@):%+zmmn 1 jf(qﬁ )[cos ngcosnd +sin ngsinnd|

n=l1

Interchanging the order of summation and integration, we get

(r 49)_ f > (Lj’ %cosn(¢—9)d¢, . (5.7)

0 n=l

o r nl in(¢-0) _ N Klj i(¢—9)Tl,
2(5) s - E)e ]

n=1
2 3
r i8-0) {L £i(#-0) {L ei(¢a)}
a a

= + + +o
1 2 3

Now consider
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3

o0 ) 2
z(ﬁj L gint-0) _ log[l e’(H)] as log(l—x)z—{x+x—+x—+--1
p 23

n=1\4 n
S[£] Lot —tog|1-Leos(p-0)-iLsin(g-0)|. . (53)
‘o\a/) n

[ Now to find the real part of log z, forz=x + 1y

let W=u+iv=logz,

M‘HV

=z=x+iy=e
_ Ll — oY qi
= x=e cosv, y=e’ sinv,

:>62“:)c2+y2

—u=log\x?+y* 1.

Therefore, equating the real part on both sides of (5.8) we get

i(g)n %cosn(¢—0) = —log\/(l—gcos(qﬁ—@)jz +(§sin(¢—6’))2 ’

n=l1

2 — 2
:—log\/a 2arco;2(¢ 0)+r

Substituting this in equation (5.7) we get

27 2 _ 2
u(r.0)=22-% [ 1o \/a 2‘”00;2(‘15 T r(p)ag. .. (5.9)
0

Thus the required solution of interior Neumann Problem for a circle can also be written as

2

u(r,e)——o— j og[a® —2arcos(¢-0)+r> |- £ (9)dp . (5.10)

0

The constant factor a2 in the argument of log was eliminated by virtue of the necessary condition for the
Neumann problem.
6.  Exterior Neumann Problem for a Circle :

Result : State the exterior Neumann problem and show that its solution for a circle of radius a is given
by

2z

u(r,6’)——0 J. og a —2arcos(¢5 0 +r2] f ¢)d¢

0
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Proof : The exterior Neumann problem for a circle is described by
Viu=0, r>a, 0<0<2r, .. (6.1)
subject to the condition

ou_ou

== 1(9) -
on_ o S(0)  on the boundary r=a. ..(6.2)

By the method of separation of variables, we know the general solution of (6.1) in polar form is given
by

u(r,0)= i(Cnr” +Dnr_")(An cos(n0) + B, sin(nd)) .. (6.3)
n=0

Now as r — oo we require that to 4 (r, @) be finite (bounded)
=C,=0. (@s 3" sopasr—ow)

Hence the general solution (6.3) reduces to

u(r,0)=>Y r"(A,cosnd+B,sinnb) . (6.4)
n=0

Without loss of generality, it can also be written as

u(r,H):%-i—Zr‘" (a,cosn@+b,sinnd) .. (6.5)

n=1
Differentiating equation (6.5) w.r.t. r we get

[e¢]

ou —-n—1 :
==>(-n)r a, cosn@+b, sinnd
or L ( " » ) ... (6.6)

n

Now using the boundary condition

% (4,0)= £(0),
or
we get f(6)= i(—n)af’H (a, cosn@+b,sinnd). . (6.7)
n=1

This is the Fourier series expansion of (@) , where the Fourier constants are given by
1 2z
a,(-n)a"" =~ J. £ (6)cosnddo
7Z- b
0

n+l 27

= a, =—“— [ f(0)cosnddo
nzT ’

n
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and

Substituting these constants in equation (6.5) we get

0 n+l 27
u(r,@):%+2—r_"an—ﬂj S (#)[cos ngcosnf+sinngsinnd|dg
n=1 0

Interchanging the order of summation and integration we get

272'00

u(r0)=2- 4 T3 (2 ) L p(g)cosn(s-0)as.

()nl

(r 6;)____If Z( j = cosn(¢p—0)d¢ .. (6.8)

Now consider

2
{gei((/ﬁn) {(gjei(w)} { 9 n)}
_|r 1 AN - LAr : +
a i(¢g—n 2 3
:—log[l—7e(qj )} ---(log(l—x)z—[X+x—+x—+~--D
2 3
i(_j 1 in(g-0) _ log(l——cos(¢ 9)—l—sm(¢ 9)]
r) n

n=1

Equating the real part on both sides we get

l—gcos(¢—9)—i£sin(¢—9)"
r r

i(g)n %cosn(¢—6’) =—log

n=1

:>Z(%)n%cosn(¢—‘9):—10g\/(1—%005@5—9)2j+(%5in(¢_9)2),

0 n 2 .y 2
:z(%) %cosn(¢—9)=—10g\/r 2arcos§¢ )+a |

r
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Substituting this in equation (6.8) we get

2

2 2 2
u(r,H):a—0+£If(¢)log\/r —2arcos(¢p—0)+a 9
0

2 P2

27 2 2
o u(r,@):a?()+§jlog(r —2arcos§¢—9)+a )[(¢)d¢_

0 r

This is the required solution.
7. Interior Dirichlet Problem for a Rectangle :
Result : Solve

Viu=0, 0<x<a, 0<y<bh,

subject to the boundary conditions
u(x,p)=u(a,y)=0,
u(O,y):O,

u(x,0)=f(x), 0<x<a

Solution : We assume a variable separable solution of the form
y

u(x,p) =X ()Y (). -
Therefore, equation (7.1) becomes =0
X"Y+XY"=0, us0 veo
u(x,0)=f(x)
X" Y"
A L _ 0 - -
Y Ty Tt . o Y0 xms

.. (6.9)

- (7.1)

. (7.2)
. (7.3)

- (1.3)

.. (1.5)

.. (7.6)

where ,} is a constant, may be positive, zero or negative. For different choices of 4 we have three

solutions. We have to choose that solution which is consistent with the physical nature of the problem

and the boundary conditions.
Case(i): A >0,Take J = 42.
Then we have the equations
X"-a’x=0and y"y o’y =0-
Whose solutions are given by
X =Ce™ +Che™®, Y =Cycos(ay)+Cysin(ay)

Therefore, the general solution of (7.1) is given by

u(x,y)=(Cre™ + Cze_“x)(C3 cos(ary)+Cysin(ay)).
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Now using the boundary condition
u(0,y)=0,
we get from equation (7.7)
0=(C, +C,)(Cycos(ay)+Cysin(ay))=0,
=C +C,=0. e (7.8)

Again using the boundary condition

u(a,y)=0,

we get from equation (7.7)

0=(Ce™ +Cre™)(Cy cos(ay)+Cysin(ay)),

= Ce™ +Ce™ =0. ..(7.9)
From equations (7.8) and (7.9) we have C; =0=C,.
Hence u(x,y)=0 is the only possible trivial solution. Hence we neglect the case 4 = 0.

Case (ii) : If 3 = 0, then from equation (7.6) we have

X"=0and y"=0.
This provides

X =(Csx+Cy) and Y =(Cyy+Cy).
Hence the general solution of (7.1) is given by
u(x,y):(C5x+C6)(C7y+C8). ... (7.10)
Using the boundary conditions
u(0,y)=0 and u(a,y)=0,
we get from (7.10)
Ce=0=C;5
= u(x,y)=0 isatrivial solution. Hence we discard 3 =0 .
Case (iii): If 1 <0, Take J = _42.
Hence from equation (7.6) we have

X"+a?X=0and y" 5%y =0,
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which have solutions
X =Cycosax+Cysinax and Y =Cje® +Cpe ™.
Therefore, the general solution of (7.1) is given by
u(x,y)=(Cycosax+C,sin Owc)(C1 e +Cpe ™ ) . . (7.11)
Now using the boundary condition
u(0,u)=0,
we obtain Cy=0.
Also the boundary condition u (a, y) = 0 yields
0=C, sin(aa)(Cne“y +Cpe ™ ) .

If C,, =0, we will have again a trivial solution. Therefore, we assume

Cio#0
=sinaa=0,
= aa=nr, Vn=12,..
or a="",
a
Take a. =1E. Vn=1,2,.. .. (7.12)
a

These are called the eigen values. Hence the possible non-trivial solution is given by

u, (x,5)=Cysin (%x)(an exp (%y) +b, exp(—%yn

By superposition principle, the most general solution of (7.1) is given by

u(x,y)=2 u,(x.y)

n=l1

Hence u(x,y)=> sin (%x)[a exp (%yj +b, eXp(—%yﬂ . (7.13)

n=1

Now using the boundary condition
u(x,b)=0,

we have from equation (7.13)
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O s
a a a

=a, exp(nﬂb)+b exp(—n—”bj=0,
a a

(n;zbj
exp| —
:}b =—a —a, 1121,2,...
" " ( nﬂbj
exp| ———
a

Substituting this in (3.13) we get

u(x’y)iﬂ[exp{—(y b)} eXP{_%(y_b)}]

1 ( nﬂ'.XJ
n=l exp| ———
a

w 24, sin(’mx) v
= Z -sinh {M(y b)} (Since sinhx =< _ze j

1 ( nﬂ')C)
n=l exp| ———
a

2
=u(x,y) ZAn Sm(nzxjsmh{—(y b)} for An:%. . (7.14)
a

Now using the boundary condition

u(x,0)= f(x), 0<x<a,
we have from equation (7.14)
X)= 3 A, sin m)sinh(—@j
f(x) Zl ; ( ; ; .. (7.15)

This is a Fourier sine series, where the Fourier constant is given by

A smh(—@j —gj.f(x)sin(ﬂxjdx ,
a aj a

or An:asmh( a )jf(x)sm( jdx .. (7.16)

Thus the general solution for the Dirichlet problem for a rectangle is given by
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_S" 4 sin 72 5 \sinh 27 (1 —
u(x,y)=> 4, sm( ; xjsmh{ ; (v b)},

n=l1

where 4,= 2 J-f(x)sin M x dx . (7.17)
Joo

asinh(—n—ﬁb
a

8. The Neumann Problem for a rectangle
Result : Solve the equation
V=0 0<x<a, 0<y<b, .. (8.1)

subject to the boundary conditions.

uy(0,y)=u,(a,y)=0, .. (8.2)
u,(x,0)=0, .. (8.3)
u, (x,b)=f(x). . (84)

Solution : By variable separable method, we have obtained the general solution of equation (8.1) in
the form

u(x,y)=(C, cosax+C,sin ax)(C3e“y + C4e_“y) : .. (8.5)
Differentiating equation (8.5) w.r.t. x and y we get

u (x,y)=a[Csinax+C, cos ax](C3e“y +Cye ) : .. (8.6)
Now using the boundary condition (8.2) viz.

u,(0,y)=0 gives

C,=0.
Therefore, equation (8.5) becomes

u(x,y)=C cosax(C3e“y +C4e_“y). .. (8.7)
Now the boundary condition

u,(a,y)=0 gives
0=aC;sinaa (C3e“y + C4e_“y) .
If C; = 0 then we get trivial solution of (8.1). Therefore, for non-trivial solution, we assume C; # 0.

= sin(aa) =0,

= aa=nrx, n=1,2,3, ...
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Sa=". n=1,23,..
Let for eachn,

a,=—, n=1,2, .. .. (8.8)

These are called the eigen values. Thus the possible solution is given by putting ¢, in equation (8.7).

nr _hr )

u(x,y)=cos (ﬂxj(/lejy +Be ¢
a

... (8.9)
Differentiating (8.9) w.r.t. y we get
5 0]
u,(x,y)= Mcos(ﬂxj Ae® —Be ¢ |,
a a
Now using the boundary condition
u,(x,0)=0
wehave 0="" o "% 1} (4-B)
a a
= A-B=0 =>A=B.
Thus the solution (8.9) becomes
u(x,y)=Acos (ij[exp (ﬂy) + exp(—ﬂyﬂ ,
a a a
u(x,y)=2A4cos (ﬂxj cosh(ﬂy) _
a a
Using the superposition principle and for 24 = A4, , we write the general solution of (8.1) as
u(x,y)= 3 A cos Mx) cosh(ﬂh)
(x.y)=24, (a —h. .. (8.10)

n=l1

Finally using the boundary condition (8.4)
uy,(x,0) = f(x),
we have
f(x)=>" 4, cos (ﬂ x) : (ﬂ) sinh (ﬂ bj
el a a a ’

which is the Fourier cosine series. The corresponding Fourier constant is given by
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(%) A, -sinh (% b) _ %j f(x)cos (% x) dx
0

:>An=msmh(%b) jf(x)cos( jd | L (8.11)

Hence the required solution of the Neumann problem for a rectangle is given by

(x,y)= ZA cos(;x)smh(—yj

n=1

where the constant A | is given by

A, —mTujf(x)cos( jd .. (8.12)

9. The Dirichlet Problem for the Upper Half Plane
Result : Find the solution of the problem

Vi =0, —0<x<w,y>0,

u(x,0)=f(x), —0<x<o0,
such that uis bounded as y —> o0, uand u vanishas |x| —» .
Solution : Given that

Uy Ty, =0,

u(x,0)=f(x), —o<x<w, ..(9.2)

—00 < x <00, y >0, ..(9.1)

with the conditions that u is bounded as ¥ — c anduand u_ vanish as |x| — oo.

We use the technique of Fourier transform to solve the problem. Let U (¢, y) be the Fourier transform

ofu(x,y) in the variable x. Therefore, by definition we have

U(a,y)=F{u(x,y} =ﬁ [ uCx, yyeax. .. (9.3)

Now applying the Fourier transform to equation (9.1) we get
2 2
F u +F 0 th =0
ox? oy
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Since Fourier transform for derivative is given by
FLrOm)=(-ia)" #{f(x)}.

o’u

= (=ia)’ F{u(x,y)} + j{ay_z} =0

= -a’U(a,y)+U,, =0,

ie. U, —a’U=0. .. (94)

Its solution is given by
U(a,y)=A(a)e™ +B(a)e ™. .. (9.5)
Since we require that the solution U (a, y) be bounded as y — o, therefore, for o > (), we must

have 4(¢)=0,andfor ¢ <0, B(a)=0-

Therefore, we have

U(a,y)=U(a,0)e ", .. (9.6)
where U(a,0)=# {u(x,0)}
=F{f(x)} by equation (9.2)
=U(a,0)=F(a), by definition of Fourier series.
Hence U(a,y):f(a)-e"a‘y. ...(9.7)

Also by definition of inverse Fourier transform, we have

st [ ey _ [2
s y}z\E(ﬁj - (9.8)

We write equation (9.7) on using (9.8) as

;{u<x,y>}=f{f<x>}f{\/§(yzix2]},

i{u(x,y)}=f{f*\/%'( - )} (Since #(f*g)=F(f)-F(2))

y2+x2

Taking inverse Fourier transform on both sides we get
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_rx |2 Y
u(x,y)—f \/;£y2+x2j’
u(x,y)= ﬁ ]i (&) \/% (mj dé (by convolution theorem.)

vy (&)
u(x,y)—;_[omdsg_ ...(9.9)

This is the required solution of the Dirichlet problem for the upper half plane.

10. The Neumann Problem for the Upper Half Plane :
Result : Find the solution of the problem

Viu=0, —0<x<w,y>0,
uy (x,0)=g(x), —0<x <0,

such that uis bounded as y — o, uand u, vanish as |x| — o and I g(x)dx =0

—00

Solution : We reformulate the problem by introducing a new variable v (x, y) as

v(x,y)zuy (x,y). ... (10.1)
Then u=[v(x,n)dn ..(10.2)
Also VZV(Xay)=V2uy =Q(V2u)=0
a)/ 5
and v(x,0)=u,(x,0)=g(x).

Thus our problem is reformulated in to the new variable v as
Vzv(x,y):O, —0<x<w,y>0, ... (10.3)
v(x,0)=g(x), —00< X< 0. ...(10.4)

Sinceuis bounded as y — o0 = v isalsoboundedas y — .

Integrating equation (10.1) with respect to y we obtain
¥

u(x,y) = [v(x,m)dn

a
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y
Since, uis bounded as y —> © = Iv(x,f])di] isboundedas y — .

= the integrand v (x, y) isbounded on y —> .
Also from equation (10.1) we find
0 0

Vv, (x,y) :auy =—1u,

= lim v, (x,) _9 lim u (x,y)=0
| |00 Oy Il > .

=v.(x,y) >0 as |x] > 0.

Also from equation (10.2), we have

b
lim u :J.‘l‘im v(x,n)dn =0
X|—>0

|x|—o0

=v—0as x| — 0.

However, we know the solution of the problem is given by

v &)
e

Hence the solution of the original problem becomes

y
u(x,y)=[v(x.n)dn

Onusing (10.5) we get
177
u(x,y)=—jnf%d§dn
ﬂ-a —OO(GZ_X) +7
1§ 2n 1 2 2
: L2 gp=Liogl(e—x)*+
Consider n g[(ég )"+ ]a,
2£(§_X)2+,72 2

¥y 2.2
I/ B PV N k) B
S 2°g[(§x>z+a2 ’

y Y 2
u(x.y) == g(é)log{%} dé.

This determines the solution of the problem.
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UNIT - VIII

RIEMANN'S METHOD OF SOLUTION OF LINEAR
HYPERBOLIC EQUATIONS

Introduction :

In this unit we shall discuss Riemann's method of solving a linear second order hyperbolic
partial differential equations which are in the canonical forms. The method is illustrated in the following
theorem.

Theorem : Describe Riemann's method of solving a linear second order hyperbolic equation .

Proof: Let
Llu]=u,, +au, +bu, +Cu= f(x,y), - (1.1

be a linear, second order hyperbolic equation, which is in a canonical form, where a, b, ¢ are functions
ofxand yonly.

Define another operator M such that
Mlu]=v,, —(av), —(bv), +cv, .. (1.2)

where v (x) is a function having continuous second order partial derivatives. The operator M is called
the adjoint operator of L.

Consider

vL[ul-uM [v]= Vu,, +au, +bu, +cu]—ulv,, —(av), —(bv), +cv],

= (Nuxy —uv,, ) +(vau, +u(av), )+ (vbuy +u(bv), )

We write

Vi, —tvy, = Vit ), = (uv)) .,

vau, = (avu), —u(av),,

vbu, = (bvu), —u(bv), .
Therefore

vL[u]l-uM|[v]= (vux )y —(uvy )x + (avu)x +(bvu)y

b

= (avu —uvy) ~|—(bvu +vu, )y

:>vL[u]—uM[v]:Ux+Vy, .. (1.3)
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where

U=avu —uv,

V=bvwu+vu,. .. (1.4)
y
Let P(a, ) beapoint at which the solutionis 4
to be found. Let the characteristics through P intersect \
the initial curve " at Q and R. We assume that u,u,u, | Q < P(o.B)
D
are prescribed along . Let C be a closed contour
PQRP bounding the region D. We now apply Green's N
theorem to this region.
Now from equation ( 1.3) we have R—— T
> X
H (vLu - qu]dxdy = H(Ux +V, )dxdy .
D D
Using Green's theorem we write
H (vLu - qu]dxdy = Cj) (Udy —Vdx)
D c
R P 0
J.J.(vLu - qu]dxdy = '[ (Udy —Vdx) + J.Udy —Vdx)+ J. (Udy —Vdx) .. (1.5)
D 0 R P

Now along PQ, y is constant = dy = 0 and along PR , x is constant and hence dx = 0.

Therefore, above equation becomes

R P 0
J-J. (vLu —uMv) = J- (Udy —Vdx)+ I Udy — I Vdx (1.6)
: ) : ) .. (1.
Now consider

0 0 0
I Vdx = Jbvudx + J vu dx by equation ( 1.4)
P P P

0 R

= jbvudx +[uv]g —juvxdx
P P

Q 9
I Vdx = [uv]g + Iu(bv —v,)dx
P P
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Substituting this in equation (1.6) we get

R P 9
H (vLu —uMv)dxdy = I (Udy —Vdx) + IUdy - [uv]Q + [uv]p - ju(bv -V, )dx
D R

0 p

:>[uv]p =[uv]Q+Tu(bv—vx)dx+]iu(av—vy)dy—

R
—j(Udy—de)wL.”.(vLu—qu)dxdy. (17
0 D

The function v is quite arbitrary. We choose the function v such that it is the solution of the adjoint
equation M[v] =0 satisfying the conditions

v.,=bv on y=p, (i.ealong PQ)
v,=av on x=a, (i.ealong RP)
and v=1 at x=a and y=p. (ieatpointP) .. (1.8)

Such a function v (x, v, ) ,if it exists, is called a Riemann function or Green's function.

Hence equation (1.7) reduces to

R
[u], = [uv]Q —J-(Udy—de)+”vLu dxdy
0 D

[u], =[], -

IQ — =

[(avu —uv,)dy —(bvu+vu, )dx} + ” vf dxdy
D

R R
[u], =[], = [uv(ady—bd) + [ (wv,dy+vud)+ [[of dxdy ()
0 0 b

Equation (1.9) finds u at p provided u and u, are prescribed along the curve T . However, when u and
uy are prescribed along T, then to find u at p we use the identify

R R
.[ d(uv) = '[ [(uv)x dx + (uv) y dy} , by chain rule
0 0

[uv]p =[uv]g -

IQ — =

[ )t uv), dy]. . (1.10)
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Substituting this in ( 1.9) we get

R R
[u], =[uv],, — [uv(ady —bdx)— [ (uv.dx-+vu, dy)+ [[vf dxdy . (L11)
0 0 D

On adding equations (1.9) and (1.11) we get

R
[u], = %[[uv]g +[uv]g } - iuv(ady —bdx) + H vfdxdy
D

1% 15
+E£(uvydy+vuxdx)—§£(uvxdx+vuydy). L (1.12)

By using any of the equations (1.9), (1.11) and (1.12) whichever is suitable, value of u at p can be
obtained provided values of u, u, or uy are known along the curve T .

Example (1) : Show that for the linear hyperbolic equation

u, +—=0,
xy 4

the Riemann function is

v(x,y,a,ﬁ)ZJo( (x—a)(y—ﬁ)),

where J o 1s the Bessel function of the first kind of order zero.

Solution : The linear hyperbolic equation is given by
u
L[u]zunyrZ:O_ .. (1.13)
Comparing this equation with the standard linear hyperbolic equation (1.1) we have
1
a:o,bzo,czz and f(x,y)=0.
Hence the adjoint operator M is defined by
v
M[V]:ny+z- .. (1.14)

We see that

M=L
= L isselfadjoint.
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Therefore, we have
vL[ul-uM[v]= v(uxy +%j —u(vxy +Kj ’

= Vi, —Uvy,,

= (vux)y _(uvy)xa
vL[u]-uM[v]=U,+V,. .. (1.15)

We choose the Riemannian function in such a way that

M[v]=0.

v, =0 on y=p4,

v, =0 on xX=a,
and y=1 at x=a and y=/f.
Let v=v(n),

where 77 is a single valued differentiable function of x and y .
Let n*=(x-a)(y-B),

=201, ==,

1
:>77x=z(y—ﬂ),

and Uyzz(X—a).

Hence, we have
: =5
v. =—v (y—
X 277 n Y )

1

v, =%v,7(x—a)_

=SV =V, YV, =V00,,

1 1

1 1
= Ve =5 | Vgylly =Y =B)+v, —=v, = (=P
=3 -, |
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1 1 V
= Vy =Z Van +;v,7 ) Vi :_(0)

— the equation is transformed to the ordinary differential equation

1
v,m+;vn+v=0, .. (1.18)

where v(7) satisfies v(o) =1. Equation ( 1.18) is the Bessel equation of order zero, whose solution is
givenby J, (77),

=v=J,(Ja-a)v-9).
This is the required Riemann function .

Example (2) : Show that the Green's function for the equation u,, +u =0 is

v(x 230, 8) =y (2J(x- )= B)).
where J; is the Bessel's function of first kind and of order zero .
Solution : Here the linear hyperbolic second order partial differential equation is given by
Lu)=u,, +u=0. .. (1.19)
Comparing this equation with the standard canonical hyperbolic equation we get
a=0,b=0,c=1 and f(x,y)= 0.
The adjoint operator M is given by
Mv]=v, +v=0. ... (1.20)

We see that M =L, proving L s self adjoint.

Hence vL[ul—uM v]=v(u,, +u)=u(vy, +v),
=V, —u v,

= vL[u]-uM[v]=(u u,), —(uv,),,
=U, + Vy ,

where U=uu,,V=uv,. .. (L21)
We choose v such that M[v]=0,

v.,=0 on y=p,

v,=0 on x=qa, .. (1.22)
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and y=1 at x=a, y=p.
Let v=v(n),

where 77 is a single valued differentiable function of x andy.

Let n’ =4x-a)y-p)

2 2
=1 :;(J’—ﬂ) and =17, ZZ(X—Q).

Therefore
2
Vy :Vnﬂx :_V;](y_ﬂ)
n
and v, =—v,(x-a)
’ =5 - (y=1p) >
Thus Ve ==V, (V=) ——v,n,(y=L)+—V
vy v p? n "
4 2
:>vxy:—zv,m(x—a)(y—ﬂ)——3v,7(x—a)(y—ﬂ)—i——vn’
n n n
1
:>vxy=V777]+;v77. (123)
Thus the equation
Vy +v=0,
is transformed to the equation
Vi =V TV =0, . (1.24)

n

This is a Bessel equation of order zero, whose solution is given by

v(x, e, )=Jy(n)

i) =, (2f(x=a)(v-5)). - (125)
Example 3 : Show that

(x+ y)[ny+(a —ﬂ)(x—y)+2a,8]
(0:+ﬂ)3

v(x, y;a, B) =
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is the Riemann function for the second order p.d.e

uxy +

x+y(uX+uy):0'

Hence obtain the solution of the equation in the form
v :(2y3 —3y*x+3yx° —2x3) ,
subject to u=0, ”x=3x2 on y==x.

Solution : Alinear second order hyperbolic equation is given by

1

Llul=u_, + u +u,)=0
[u]=u, x+y(x ,)=0, ..(1.26)
2 5 2
a= , = , — —
where Xty ity c=0, f(x,y)=0.
The operator M is defined by
MDY 2 2
vl=v,, — v — v
¥ | xry T .. (1.27)
such that
D M[V]:()’
2
i v, = % -
1) iy on yv=p, .. (1.28)
2
v o= v B
1ii) " Ty on xX=a,

v) and y=1 atx=a y=p.

Now to show

(x+y)[2xy+(a—ﬂ)(x—y)+2aﬂ]
(a+pB)

ina Riemann's (Green's) function, we simply show that v defined in ( 1.29) must satisfy the equation
(1.27) and the addition (1.28). We find

(x+»)

1
Vv, —m[2y+a—ﬂ]+m[2xy+(a—ﬁ)(a—y)+2aﬂ],

v(x,yia,p)= . (1.29)
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1
v, = 3[2xy+2y2+2xy+(a—ﬂ)(x—y+x+y)+2a,6’}

(a+p)
v, = . :ﬂ)3 [4xy+2y2 +2x(a—,6’)+20(ﬂ] . . (1.30)
1
Next Vip = (a+,8)3 [4x+4y]
S, :?(x;y)z . - (131)
a+
1
Also v, = (a+ﬂ)3 [4xy+2x2 —2y(a—ﬂ)+2aﬂ} .(132)

Now consider

2
M[V]:ny_x+ (v +v,)+

Gy (v) . (1.33)

On using equations ( 1.30), (1.31),and ( 1.32) in ( 1.33) we get

4(x+ 2 1 s
M[V]=(0(5+ﬂ);3_(x+y) (a+,8)3 [8xy+2(x +y )+2(x—y)(a—ﬂ)+4aﬂ} i

4
e e p) ) 2a]

v:4(x+y)_ 4 [
M= sy (x+y)(a+ﬂ)3( /)

= M[v]=0.

= v satisfies the condition (1) in (1.28 ). Now along y = S equation (1.30 ) becomes

1
("), = i p) [4xB+2/ +2x(a - B)+ 20|

1
(Vx)y=ﬂ=(a+ﬁ)3 [2” +2x(a+ B)+2ap | - (1.34)
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2 1
Also [ v]y:ﬂ :(a+—ﬂ)3[4xﬂ+2(a—ﬂ)(x—ﬁ)+4aﬁ]

xX+y

:W[zx(mﬁ)—zﬂ(a—ﬂ)ﬂaﬁ]

2 1
:>( v]yzﬁ:—(a+ﬁ)3 [2ﬂ2 +2x(a+ﬂ)+2aﬂ] . (135)

X+y
Equations ( 1.34) and ( 1.35 ) show that the condition (i1) of equation (1.28) is satisfied.
Similarly condition (iii) can be verified .

Now considerat x=a , y=p

= (a+ﬂ3[2 af+(a-p)(a-pB)+2ap]
(a+8) Y
P(o.p) y X
V| = —1 |:4aﬂ+a2—2aﬂ+ﬂ2:| R(B B)
g (a+,[)’)2 )
vlpzl
This shows that the equations (iv) of ( 1.28 ) also verified. O CREY)
Hence > X
v(x,y;a,ﬂ)z—x+y3[2xy+(a—ﬂ)(x—y)+2aﬂ]
(a+p)

in the Riemann function of the given p.d.e. (1.26). Now to find it solution , we consider

vL[u]-uM[v]=U,+V,,

2

where U=x+yvu—uvy, .. (1.36)
2

and V=x+yvu+vux - (1.37)

It is given that along the curve I": y = x thatis along QR

u=o and u, =3x>. ..(1.38)

Also along QR the Riemann's function is given by
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2x

(a+p)

V=

o 22 +208]

2
:V:M. . (1.39)
(a+p)

We know the value of u at P in given by

R R
[u] = [uv]Q —juv(ady —bdx)+ I(uvydy +vuxdx) +” vidxdy ,
0 0 D

where in this carve f(x,y)=0.Using( 1.38 )and (1.39 ) we get

:( +1ﬁ)3 [2ﬁ6-2a6+3aﬁ5—3a5ﬁ]_
[04

u(e, f) = : [2,6’6+2a,6’5+a,6’5—2a6—2a5,6’—a5ﬂ]

(a+,8)3

:(a:ﬂ)S 26" (a+p)-20 (a+ p)+ap( ' -a')]
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1 S_ o\ aBl Bt — o
Im[z(m/})(ﬂ ) ﬁ(/’) )}

=M2(a+ﬂ)[2ﬂ42ﬂ3a+2ﬂ2a2 +28a° +2a* + o’ +a3ﬂl

(05+ﬂ)3

- (ﬂ;“)z[zﬂ“ +3af’ +30* 42057 + 20" |

(a+5)
ue, f)=(p—0)( 28 —ap+2d7),
u(e,B)=24-2ap* —af* +a’ f+2a°f-2a’,
u(a, B)=2p4"-3ap* +3a’*f-2a°.
Thus u at any point ( x,y) is given by

u(x,y)=2y3 —3y2x+3x2y—2x3-

Note : We see that the solution of the Cauchy problem at a point («, ) depends only on the Cauchy

data on the curve [ . The knowledge of the Riemann's -Green function therefore enables us to solve
the p.d.e with the carve data .

Harnack's Theorem :

Let us prove the following lemma first.
Lemma : Let D be a bounded domain, bounded by a smooth closed curve B. Let {un (x, y)} bea

sequence of functions each of which is continuous on ) — pyg and harmonic in D. If {un (x, y)}

converges uniformly on B, then u,, converges uniformlyon p .

Proof : Let {un} be a sequence of functions, converges uniformly on the boundary B. Then by

definition, for given €> 0 we can always find N such that
|um(x,y)—un(x,y)| <eonB Vm,n>N.
Since each of u,(x, y) is harmonicinD.
= Vzun =0inD,
and Vu,, =0 inD.
= V*(u, —u,)=0 inD,
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= u,, —u, isharmonicinD.
By the Maximum and minimum principle, we have
‘um (x,y)-u, (x,y)‘ <e onp Vmun>N(e).

Hence the result.

Harnnack ' Theorem :
Let D be a bounded domain, bounded by a closed smooth curve B. Let u, (x, y) be a

sequence of functions, each of which continuous on 75 and harmonic in D. If «,, (x, ) converges
uniformly on B, then u,, convergesan 7, toalimit function which is continuous on 7, and harmonic
inD.
Proof: Let {u,} beasequence of functions , each of which continuous on p = pyyp and harmonic
inD.

= V?u,(x,y)=0 inD .. (1.40)

Let the sequence {u,} converge uniformly on the boundary B.

— for given ¢> () , we can find a number N such that
‘um (x,y)—un (x,y)‘<e onB Vm,n>N .. (1.41)
Since by (1.40) each of u,, (x, y) is harmonic in D.
= (u,, —u, ) is harmonicin D.
Then by maximum and minimum principle,
we have ju,y (x,3) =1, (x,)| <€ on D VmneN .. (1.42)

i.e. the sequence {u,} converges uniformly on ). We know that "On a closed bounded set, a

uniformly convergent sequence of continuous functions converges to a function which is continuous on
that set."

Since u,, (x, y) converges uniformly on p , let it converges to u(x, y) . Then u(x, y) is also

continuouson 7 .

We now show that u(x, y) is hammonic in D.

Let (x, y) e D. Since D is open, therefore 3 a circle with centre at (x, y) and radius 'a’'

which is contained in D, whose equations is
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(X -x)+(Y-y)’ =d,
where, X = x+acost, Y =y+asinz isany point on the circle.

Let u,(r)=u,(x+acosr,y+asinr).

By equation (1.40),u,, (x, ) is harmonic inside the circle and continuous on the circle, then we know

u, (x, y) is given by Possion integral formula

1 %7 (1—%2)

”’1(5’")=Z£ 1—2%cos(9—r)+%2un(r)dr'
We have R= (%),
and (§—x)2+(n—y)2:rz<a2.
Hence
u(g,n) = )}gfolo u,(&,n) As u,(x,y) converges to u(x, y)

1 %7 (1—%2)

=1l —J.
x50 27 1-2%¢c08(0—17)+1

u,(r)dr

2 u,

1 27 1-<?
R j ( ) ~ limu, (r)dr
27y 1-2%¢c08(0 — 1)+ x>
Since the sequence u,, (x, y) converges uniformly to u(x, y) therefore limit and the integral have
been interchanged
1 %7 1-<2
u(én=— | () —u(7)dr

27 5 1-28cos(0—1)+%

Hence u is harmonic in the region (x — &)? + (y —n)* < o* forall points (&,n) . Since (x, y) isan
arbitrary point of D.
= u 1sharmonicin D.

This proves the theorem.
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Exercise:
1. Show that

*+a’-(y- By
2x?

v(x,y;a, p) =

is the Green's function for the second order partial differential equation

Upe Uy, ——u, =0,

mimlm
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