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Preface

Large number of students appears for M.A./M. Sc. examinations externally every year. In

view of this, Shivaji University has introduced the Distance and Online Education Mode for

external students from the year 2008-09, and entrust the task to us to prepare the Self

Instructional Material (SIM) for aspirants. An objective of the SIM is to provide students the

material on the subject from which they can prepare for examination on their own without the help

of a tutor. Today we are extremely happy to present the book on "Partial Differential Equations"

for M.A./M.Sc. Semester-II students as a SIM prepared by well devoted expert Dr. L. N. Katkar.

We hope that the exposition of the material in the book will meet the needs of all aspirants.

The mathematical formulation of the real world problems in science and engineering involves

partial differential equations. In order to understand the physical behaviour of these real world

problems, it is necessary to have some knowledge about the solutions of the governing partial

differential equations. For example, transverse vibrations of an elastic string are governed by the

wave equation; the temperature distribution in a homogeneous isotropic rod is governed by the

heat equation etc. The wave equation; the heat equation and the Laplace equation have been

derived by taking into account certain physical situations.

Partial differential equations of first order and various methods such as Charpit's method,

Jacobi method of finding their complete integral; general integraol; singular integral and Cauchy

integral surfaces are dealt in the first four units. The classification of second order partial

differential equations and their canonical forms are given in the unit 5. Boundary value problems

such as Dirichlet and Neumann boundary value problems are discussed in the subsequent units,

besides maximum-minimum principle and families of equipotential surfaces. The well-known

mathematical techniques namely, the most powerful method of separable of variables, Fourier

transform techniques and Green's function approach are applied to solve various boundary value

problems involving parabolic, elliptic and hyperbolic partial differential equations.

An attempt has been made to make the presentation of the various units comprehensive,

rigorous and yet simple. One of the features of this book is that in all units numerous examples

have been solved for the use of students working independently of a teacher. Although the book

is aimed to M. Sc. Distance Education Students, even SET/NET aspirants and students of

physics and engineering would find it useful.

We owe a deep sense of gratitude to the Ag. Vice-Chancellor who has given impetus to go

ahead with ambitious projects like the present one. Dr. L. N. Katkar, of the Department of

Mathematics, Shivaji University, has to be profusely thanked for the ovation he has poured to

prepare the SIM on Partial Differential Equations. We also thank Prof. S. H. Thakar, Head,

Department of Mathematics, Director of Distance Education Mode Prof. Cima Yeole, Shivaji

University, for their help and keen interest in completion of the SIM. Thanks are also due to Mr.

Sachin Kadam for computerizing the manuscript neatly and correctly.

Prof. K. D. Kucche

Chairman

BOS in Mathematics

Shivaji University, Kolhapur-416004.
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Each Unit begins with the section objectives -

Objectives are directive and indicative of :

1. what has been presented in the unit and

2. what is expected from you

3. what you are expected to know pertaining to the specific unit,

once you have completed working on the unit.

The exercises at the end of each unit are not to be submitted to

us for evaluation. They have been provided to you as study tools to

keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.

It is also advised to see the new syllabus 2022-23 and study the

reference books & other related material for the detailed study of the

paper.

(viii)
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FIRST  ORDER  PARTIAL  DIFFERENTIAL  EQUATIONS

UNIT - I

Introduction :

The mathematical formulation of the real situations in science and engineering involves partial
differential equations. In order to understand the physical behaviour of the real world situations, it is
necessary to have some knowledge about the properties and the solutions of the governing partial
differential equation. A partial differential equation is one involving more than one independent variable,
a dependent variable and its partial derivatives with respect to the independent variables. In general,
partial differential equations arise in physics in problems involving electric fields, fluid dynamics, wave
motion etc. These equations are called Heat equations, Laplace equations  wave equations. Each is
profoundly significant in theoretical physics and their study is stimulated in the development of many
mathematical ideas.

The basic concepts from solid geometry play important roles in the study of partial differential
equations and it is essential that they should be understood thoroughly before the study of partial
differential equations is begun. Hence we define some basic concepts from geometry.

Curves and Surfaces :

Curves in Space : Let I be an interval on the real line R and t a continuous variable which  varies in I.
If f1, f2, f3 are continuous functions of t, then the equations.

1 2 3( ), ( ), ( )  x f t y f t z f t ,        ... (1.1)

represent the parametric equations of a curve in three dimensional space.

Note : (i) t is called the parameter of the curve.

(ii) The standard parameter is the arc length of the curve measured from some fixed point on the
curve to any current point, it is denoted by s instead of t.

(iii) The square of an infinitesimal arc length between two neighbouring points on the curve in 3-
dim. space is given by

2 2 2 2  ds dx dy dz ,

2 2 2

1
             
     

dx dy dz

ds ds ds
.

It follows from equation (1.1) that the condition that the parameter t be the arc length of the curve is
that

'2 '2 '2
1 2 3 1  f f f .



2

Examples :

(i) The simplest example of a curve in space is a straight line with direction cosines (  ,m,n)
passing through a point (x0, y0, z0) and is given by

0 0 0, ,     x x s y y ms z z ns ,        ... (1.2)

where s is the parameter.

(ii) A right circular helix lying on a circular cylinder is a space curve and is given by the parametric
equations

cos , sin ,  x a t y a t z kt  ,        ... (1.3)

where a, k, w, are constants.

Surface : Let (x, y, z) be the cartesian co-ordinates of a point in a 3-dimensional space. Then the
functional relation between these variables x, y, z given by the equation

F (x, y, z) = 0        ... (1.4)

is called a surface.

If F is linear, then equation (1.4) can be solved for one of the variables and it can be expressed in terms
of the other two independent variables and we are left with only two degrees of freedom. Hence a
surface is defined as the locus of a point moving in space with two degrees of freedom.

Parametric Equations of a Surface :

A set of those points of a 3-dimensional space which are expressed as a function of two
parameters is called a surface. Thus a set of relations of the form.

1 2 3( , ), ( , ), ( , )  x F u v y F u v z F u v        ... (1.5)

determines a surface.

Exaplanation : Solving the first pair of equations (1.5)

viz., 1 2( , ), ( , ) x F u v y F u v ,

for u and v as functions of x and y, we obtain

Say ( , ), ( , ) u x y v x y  .

This shows that once x and y are known, then u and v are determined. Then corresponding value of z

is obtained by substituting these values of u and v in the third equation 3( , )z F u v . In otherwards the

value of z is determined once the values of x and y are known. Symbolically,

 3 ( , ), ( , )z F x y x y  .        ... (1.6)

Which is a functional relation between the coordinates x, y and z. Thus any point (x, y, z) determined
from equations (1.5) always lies on a surface. The equations (1.5) therefore are called the parametric
equations of the surface.

Note : Not every point in space corresponds to a pair of values of u and v.
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For that
 1 2,

0
( , )





F F

u v

Note : Parametric equations of a curve and a surface are not unique.

Examples :

(1) The parametric equations of a surface of a sphere of radius ‘a’ are given by

x = asinucosv,

y = asinusinv, a = constant        ... (1.7)

x = acosu.

The same surface is also represented by the set of equations

 
 

2

2

1
cos

1






v
x a u

v
,

 
 

2

2

1
sin

1






v
y a u

v
,        ... (1.8)

 2

2

1




av
z

v
, a = constant

(2) The parametric equations of a cone 2 2 2 2tan x y z   are given by

sin cos ,x r  

sin sin ,y r     = constant        ... (1.9)

cosz r  .

or cosx r  , siny r  , cotz r  .      ... (1.10)

A Curve Through Surfaces :

Consider a surface f (x, y, z) = 0,      ... (1.11)

and a plane z = k.      ... (1.12)

A point whose co-ordinates satisfy equation (1.11) and which lies in the plane (1.12) has its co-
ordinates satisfying the equations

, ( , , ) 0 z k f x y k ,                  ... (1.13)

which represents a curve in the plane z = k.
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For example : Let S be a sphere with equation

2 2 2 2  x y z a .

Then the points of S with z = k have

z = k and
2 2 2 2  x y a k ,

which is a curve C and the curve is a circle of radius

2 2a k  for k < a.

Thus a curve can be thought of as the intersection of the surface (1.11) and the plane (1.12).

In general, the common points to the surfaces,

1 : ( , , ) 0S f x y z ,

and 2 : ( , , ) 0S g x y z ,

lie on the curve C.

Thus, the locus of a point whose co-ordinates satisfies a pair of relations S1 = 0 and S2 = 0 is a
curve in space.

Direction Cosines of a line passing through two points :

Consider a line through the points  1 1 1, ,P x y z  and  2 2 2, ,Q x y z . The vector PQ  is defined by

   2 2 2 1 1 1, , , , PQ x y z x y z ,

 2 1 2 1 2 1, ,   PQ x x y y z z ,

     2 1 2 1 2 1      PQ x x i y y j z z k .      ... (1.14)

Direction cosines of a line PQ  are the cosines of the angles made by the line PQ  with

co-ordinate axes. Let cos , cos  , cos be the direction cosines of the line PQ , then we have

from equations (1.14)

 2 1cos   PQ i PQ x x

 2 1cos


 
x x

PQ
 .

Similarly,  2 1cos



y y

PQ
 ,      ... (1.15)

C

z = k

z

x

y
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 2 1cos



z z

PQ
 .

Thus 
2 1 2 1 2 1, ,
   

 
 

x x y y z z

PQ PQ PQ  are the direction cosines of the line through the points  1 1 1, ,P x y z

and  2 2 2, ,Q x y z .

Note : From equations (1.15), we see that x2 – x1, y2 – y1, z2 – z1 are proportional to the direction

cosines of the line and hence they represent the direction ratios of the line PQ .

The Direction Cosines of the tangent to the curve :

Example 1 : Show that the direction cosines of the tangent to the curve

x = x(s), y = y(s), z = z(s),

where s is the arc length of the curve measured from the fixed point p0 on the curve to any point P on

the curve are , ,
 
 
 

dx dy dz

ds ds ds
.

Solution : Consider a curve in 3-dimensional space given by

x = x(s), y = y(s), z = z(s),      ... (1.16)

where s is the arc length measured from the fixed point p0 to any point P on the curve.

Thus s = P0P.

Let Q be any other point at a distance s  from P,,

0  P Q s s .

Consequently, the co-ordinates of the point Q are

      , ,   Q x s s y s y z s s   .

Since s  is measured along the curve from P to Q and is therefore greater than the length c  of the

chord PQ.

In the limiting case as 0s , we have

0
lim 1



s

s

c


 .      ... (1.17)

The direction cosines of the chord PQ are given by

     ( ) ( ) ( )
, ,

       
 
 

x s s x s y s s y s z s s z s

c c c

  
  

.

z

y

x

O
P0

P
Qs

c
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By Taylor’s series expansion, we have

   2
( )

     
 

dx
x s s x s s O s

ds
   .

Hence direction cosines of the chord PQ are given by

( ) , ( ) , ( )
                    

s dx s dy s dz
O s O s O s

c ds c ds c ds

    
  

In the limiting case as 0s , the point Q tends towards the point P and the chord PQ takes up

to the tangent to the curve at P. Thus as 0s , the direction cosines of the tangent to the curve

(1.16) at apoint P are

, ,
 
 
 

dx dy dz

ds ds ds
.

Direction ratios of the normal to the surface :

Let us consider that the curve C (defined in equation
(1.16)) lies on the surface S : F (x, y, z) = 0.

Any point (x(s), y(s), z(s)) on the curve lies on this surface
satisfies the equation

            ( ), ( ), ( ) 0F x s y s z s .      ... (1.18)

If the curve lies entirely on the surface, then equation
(1.18) is an identity for all values of s. Differentiating
equation (1.18) with respect to s, we get

0
  

     
  
F dx F dy F dz

x ds y ds z ds ,      ... (1.19)

where , ,
 
 
 

dx dy dz

ds ds ds
 are the direction cosines of the tangent to the curve C at the point P. Equation

(1.19) shows that the tangent to the curve C at the point P is perpendicular to the line whose direction

ratios are , ,
   

    

F F F

x y z .

, ,
        

F F F

x y z  are the direction ratios of the normal to the surfaces S at the point P..

Example 2 : Find the direction cosines of the normal to the surface S of the form z = f (x, y).

Solution : Let the surface S : z = f (x, y)

( , , ) ( , )  F x y z f x y z      ... (1.20)

S

P

C

T
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The direction ratios of the normal to the surface : ( , , ) 0S F x y z  are , ,
   

    

F F F

x y z ,

where from equation (1.20), we have

  
 

  
F f z

x x x
,

,
  

 
  
F f z

y y y and

1


 

F

z
.

Let us introduce the notations 





z
p

x
 and 





z

q
y

Thus , , ( , , 1)
         

F F F
p q

x y z .

  Direction ratios of the normal to the surface (1.20) are (p, q, -1). Hence the direction cosines of
the normal to the surface S at the point P are

2 2

1
( , , 1)

1


 
p q

p q
.

Equation of a line when two surfaces are given :

Let S1 : F (x, y, z) = 0 and S2 : G (x, y, z) = 0 be two surfaces. Then the equations of the

tangent planes 1  and 2  at point P (x, y, z) to the surfaces S1 = 0 and S2 = 0 are given by

      0
  

     
  
F F F

X x Y y Z z
x y z ,      ... (1.21)

and       0
  

     
  
G G G

X x Y y Z z
x y z ,      ... (1.22)

where (x, y, z) are the co-ordinates of any other point on tangent plane. Let C be the locus of the

intersection of two surfaces S1 and S2, and L the intersection of two planes 1  and 2 . We see that

the intersection L of the planes 1  and 2  is the tangent at P to the curve C, which is the intersection

of the surfaces S1 and S2.
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It follows from equations (1.21), (1.22) that the equation of the line L is

  
 

y z z x x y

z xy z x y

X x Y y Z z
F F F F F F

G GG G G G

or
( , ) ( , ) ( , )

( , ) ( , ) ( , )

  
 

  
  

X x Y y Z z
F G F G F G

y z z x x y

.      ... (1.23)

This is the equation of line whose direction ratios are 
( , ) ( , ) ( , )

, ,
( , ) ( , ) ( , )

   
    

F G F G F G

y z z x x y , when two surfaces

S1 and S2 are given.

2) Partial Differential Equations :

A partial differential equation is one involving more than one independent variables x, y, t, ...,

one dependent variable  nC  in some domain D and its partial derivatives , ,..., , ,...,x y xx xt   

such as,

 , , ,..., , , ,..., ,... 0x y xtf x y t     ,        ... (2.1)

where nC  denotes a set of functions possessing continuous partial derivatives of order n.

Order of a partial differential equation :

The order of a partial differential equation is the order of the derivative of the highest order
occuring in the equation.

In this unit and in the next three units, we shall consider partial differential equations of the first
order with one dependent variable z and two independent variables x and y. Then the most general first
order partial differential equation is given by

L

S2=0

S1= 0P

C

1

2
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f (x, y, z, p, q) = 0,        ... (2.2)

where ,
z z

p q
x y

 
 
 

.

Partial differential equations arise in a large variety of subjects in geometry, physics, mathematics etc.

Origin of first order Partial Differential Equations :

We shall examine in the following the intersecting question of how the first order partial differential
equations arise.

Example 3 : Find the first order partial differential equation which represents the set of all spheres
with centres on the z-axis and of radius a.

Solution : The set of all spheres with centres on the z-axis and of radius a is given by

2 2 2 2( )x y z c a    ,        ... (2.3)

where a and c are constants.

Differentiating equations (2.3) with respect to x and y we get,

x + p (z –c) = 0 ,

and y + q (z – c) = 0 .

Eliminating the arbitrary constant c from the equations we obtain,

yp – xq = 0,

which is the required first order partial differential equation.

Example 4 : Find the partial differential equation which represents the set of all right circular cones
with z-axis as the axis of symmetry.

Solution : The set of all right circular cones with z-axis as the axis of symmetry is given by the equation

2 2 2 2( ) tanx y z c    ,        ... (2.5)

where c is a constant and   is a constant semi-vertical angle of the cone.

Differentiating equation (2.5) with respect to x and y we get

2( ) tanx p z c   ,

2( ) tany q z c   .

Now eliminating c and   from the above equations we get

0yp xq  .        ... (2.6)

Thus the set of cones, vertex on the z-axis with semi-vertical angle   is characterized by the first order
partial differential equation (2.6).
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Example 5 : Find the partial differential equation which represents all surfaces of revolution with
z-axis as the axis of revolution.

Solution : All surfaces of revolution with z-axis as the axis of revolution are of the form

( )z F r ,        ... (2.7)

where 2 2r x y   and F is an arbitrary function of class C1 on some domain D.

On differentiating equation (2.7) first with respect to x and then with respect to y we get respectively

( ) ,
r

p F r
x




( )
r

q F r
y




where ,   
 

 
 
r x r y

y r y r
.

'( )
x

p F r
r

    
 

,

and '( )
y

q F r
r

   
 

.

Eliminating the arbitrary function F from the above equation we get

yp – xq = 0,        ... (2.8)

which is a partial differential equation of first order satisfied by all surfaces of revolution.

Note : We see from examples (3), (4) and (5) that the surfaces spheres, cones and in general all
surfaces of revolution with z-axis as the axis revolution give rise to the same first order partial differential
equation. What is common in all surfaces is that all surfaces of revolution have the z-axis as the axis of
symmetry.

The obvious generlization of the surfaces of revolution with z-axis as the axis of symmetry is
the relation between x, y and z of the form F (u, v) = 0, where u and v are functions of x, y, z. Hence
we shall now generalize the above argument slightly in the following.

Example 6 : Find the partial differential equation satisfied by all surfaces of the form,

F (u, v) = 0 ,

where u = u (x, y, z) and v = v (x, y, z) are known functions of x, y and z and F is the arbitrary function
of u and v.

Solution : The equations of all surfaces ingeneral is given by the equation.

F (u, v) = 0,        ... (2.9)

where u = u (x, y, z) and v = v (x, y, z) are known functions of x, y and z.

Differentiating equation (2.9) with respect to x and y respectively, we get

    0u x z v x zF u u p F v v p    ,      ... (2.10)
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and     0u y z v y zF u u q F v v q    .      ... (2.11)

Eliminating Fu and Fv between equations (2.10) and (2.11) we get

 
 

 
 




 
y zx z

x z y z

v qvv pv

u pu u qu
,

      0y z z y z x x z y x x yp u v u v q u v u v u v u v       ,

 
 

 
 

 
 

, , ,

, , ,

u v u v u v
p q

y z z x x y

  
  

  
.      ... (2.12)

This is the partial differential equation of first order satisfied by all surfaces of the form

F ( u, v) = 0,

where
 
 

,

, x y y x
u v

u v u v
x y


 

 ,

is the Jacobian of u, v with respect to x and y.

Theorem : A necessary and sufficient condition that there exists between two functions u (x, y) and
v (x, y) a relation F (u, v) = 0 or u = H (v) not involving x or y explicitly is that

 
 

,
0

,

u v

x y





.

Proof : The necessary condition

Let there exist between two functions u (x, y) and v (x, y) a relation of the type

F (u, v) = 0      ... (2.13)

not involving x and y explicitly.

Differentiating equation (2.13) with respect to x and then with respect to y we get

0 u x v xF u F v ,      ... (2.14)

and 0u y v yF u F v  .      ... (2.15)

Eliminating Fu and Fv between (2.14) and (2.15) we get

0
x x

y y

u v

u v
 .

0x y y xu v u v   ,
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,
0

,

u v

x y


 

 .      ... (2.16)

The sufficient condition : Let u (x, y) and v (x, y) be two functions of x and y such that 0
v

y




  and

if 
 
 

,
0

,

u v

x y




  then  we claim that there exists a relation F (u, v) = 0 not involving x and y explicitly..

Eliminating y between the fuunctions u (x, y) and v (x, y) we get a relation

F (u, v, x) = 0 .      ... (2.17)

Differentiating (2.17) with respect to x and y respectively we get

0x u x v xF F u F v   ,      ... (2.18)

and 0u y v yF u F v  .      ... (2.19)

Eliminating Fv from these equations we get

0y
x u x x

y

u
F F u v

v

 
    

 
,

  0x y u x y y xF v F u v u v    ,

 
 

,
0

,x y u
u v

F v F
x y


  

 .      ... (2.20)

Since
 
 

,
0

,

u v

x y




 ,

0x yF v  ,

0xF   as 0yv  .

  the function F does not contain the variable x explicitly. Hence from the relation (2.17) we have

F (u, v) = 0.

Hence the condition is sufficient.

Remark : We have obtained partial differential equation of first order by eliminating arbitrary constants.
(Refer examples (3), (4)).

Now consider two parameter family of surfaces given by the equation.

f (x, y, z, a, b) = 0 .
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Solving for z, we get

z = F (x, y, a, b),      ... (2.21)

where a and b are arbitrary constants. Differentiating equation (2.21) with respect to x and then with
respect to y, we get

xp F   and yq F .      ... (2.22)

The set of equations (2.21) and (2.22) constitute three equations involving two arbitrary constants ‘a’
and ‘b’. Now eliminating ‘a’ and ‘b’ from these equations we obtain a relation of the type.

f (x, y, z, p, q) = 0      ... (2.23)

which is a partial differential equation of the first order. In general equation (2.23) need not be linear.

Example 7 : Obtain the partial differential equation of first order by eliminating arbitrary constants
from the relation

   22 2 1x a y b z     .

Solution : We are given two parameter family of surfaces

   22 2 1x a y b z     .      ... (2.24)

Equation (2.24) represents a set of all spheres of unit radius with centre in the xy plane. Differentiating
equation (2.24) with respect to x and y we get respectively.

  0x a zp   ,

 zp x a    ,      ... (2.25)

and   0y b zq   ,

 zq y b    .      ... (2.26)

Eliminating the constants ‘a’ and ‘b’ from equation (2.24) we obtain

 2 2 2 1 1z p q   .      ... (2.27)

This is the first order non-linear partial differential equation.

Example 8 : Obtain the partial differential equation of first order by eliminating arbitrary constants
from the relation.

   32 31 8z a x ay b    .

Solution : Two parameters family of surfaces are given by the equation

   32 31 8z a x ay b    .      ... (2.28)

Differentiating equation (2.28) with respect to x and y we get respectively.
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   23 1 12z a p x ay b    ,

and    23 1 12z a q a x ay b    .

   2

3

12

1
p x ay b

z a
   


,

and    2

3

12

1

a
q x ay b

z a
  


.

Consider

 
   

3
63 3 3

33 3

(12)
1

1
p q x ay b a

z a
    


,

 
 

63

23 3

(12)

1

x ay b

z a

 



,

 
 

63

2
2 3

(12)

1

z x ay b

z a

 


  

,

 
 

63

62

(12)

(8)

z x ay b

x ay b

 


 
, by equation (2.28)

3 3 27p q z   .      ... (2.29)

This is the required first partial differential equation.

Example 9 : Eliminate the arbitrary functions from the following equations and find the corresponding
partial differential equations.

(i)  2 2z xy F x y   ,

(ii)  ,F x y x z  ,

(iii)    z f x ct g x ct    .

Solution :

(i) The equation of the surface is given by

 2 2z xy F x y   ,      ... (2.30)

where F is arbitrary function. Differentiating equation (2.30) with respect to x and y we get respectively

2 'p y xF  ,
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and 2 'q x yF  .

Eliminating F' between these equations we obtain

   p y y q x x   ,

2 2 0x y qx py     .

This is the required partial differential equation.

(ii) The equation of the surface is given by the equation

 , 0,F x y x z        ... (2.31)

where F is arbitray

Let u = x + y and v = x – z .      ... (2.32)

Hence equation (2.31) becomes

F ( u, v) = 0 .      ... (2.33)

Differentiating equation (2.33) with respect to x and y respectively we get

    0u x z v x zF u u p F v v p     and

    0u y z v y zF u u q F v v q    ,

where from equation (2.32), we find

1
1,   1,   1,   

2
    x y x zu u v v

z
,

1
1 0

2
u vF F p

z

     
 

,      ... (2.34)

and
1

0
2

u vF F q
z

   
 

.      ... (2.35)

Eliminating Fu and Fv between equations (2.34) and (2.35) we get

2p q z  .      ... (2.36)

This is the required partial differential equation

(iii) Here    z f x ct g x ct    ,

   ' 'xz f x ct g x ct     ,

   '' '' ,xxz f x ct g x ct   

   ' ' ,   tz cf x ct cg x ct
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   2 2'' '' ,ttz c f x ct c g x ct   

2
xx ttc z z       ... (2.37)

This is the required second order partial differential equation.

Exercise :

1. Obtain the partial differential equation of first order by eliminating arbitrary constants from the
relations

(i) 2 2 ,z x ax y b   (iii)   z x a y b   ,

(ii)  2
2 ,z ax y b   (iv) z ax by  .

2. Obtain the partial differential equation by eliminating arbitrary functions from the following
relations.

(i)  z x y F xy   , (ii)  , 0F x z y z   ,

(iii) 
xy

z F
z

   
 

, (iv) 
x

z F
y

   
 

,

(v) ( )z F x y  , (vi)  2 2 2 2, 2 0f x y z z xy    .

3. Classification of First Order Partial Differential Equations :

1. Linear Equation : A first order partial differential equation is said to be a linear equation if it
is linear in p, q and z. It is represented in the form

( , ) ( , ) ( , ) ( , )  P x y p Q x y q R x y z S x y ,        ... (3.1)

e.g. yp xq xyz x   .

2. Semi-linear Equation : A first order partial differential equation is said to be a semi-linear
equation if it is linear in p and q and the coefficients of p and q are functions of x and y only. It is
represented in the form.

( , ) ( , ) ( , , )P x y p Q x y q R x y z  ,        ... (3.2)

e.g. 2xp yxq xz  .

3. Quasi-linear Equation : A first order partial differential equation is said to be a quasi-linear
equation if it is linear in p and q.

The equation of the type

( , , ) ( , , ) ( , , )P x y z p Q x y z q R x y z         ... (3.3)



17

is called quasi-linear equation.

e.g.  2 2 2 2x z p xyq z x y    .

4. Non-linear Equation : The partial differential equations of the form f (x, y, z, p, q) = 0 which
do not come under the above three types are said to be non-linear equations.

eg. pq = z

This is a non-linear partial differential equation of first order.

Note : We observe that by eliminating arbitrary functions, we always produce quasi-linear partial
differential equations only. However, we obtain both quasi-linear as well as non-linear partial differential
equations when we eliminate arbitrary constants. If further, the number of constants to be eliminated
from the given relation is just equal to the number of independent variables then the partial differential
equation obtained by eliminating these constants is an equation of first order. However, if the number of
constants to be eliminated is greater than the number of independent variables, the equation of second
order will arise.

Classification of Integrals :

Consider a first order partial differential equation

f (x, y, z, p, q) = 0        ... (3.4)

A  solution of equation (3.4) in a region   D  is given by z = z (x, y) as a continuously differentiable

function of x and y for  , x y D  such that the value of p and q obtained from the relation z = z (x, y)

must satisfy the equation (3.4). A solution z = z (x, y) of the first order partial differential equation
represents a surface in 3-dimensional space. This surface in 3-dimensional space will be called an
integral surface of the partial differential equation.

There are different types of solutions (integral surfaces) for the first order partial differential
equation (3.4).

1. Complete Integral : A complete integral of partial differential equation (3.4) is a relation
between the variables involving as many arbitrary constants as there are independent variables, provided
the value of p and q obtained from it satisfies equation (3.4). Geometrically it represents doubly infinite
system of surfaces.

Alternately, it is also defined as follows :

A two parameter family of solutions

z = F (x, y, a, b)        ... (3.5)

is called a complete integral of the first order partial differential equation (3.4) if in the region considered,
the rank of the matrix

a xa ya

b xb yb

F F F
M

F F F

 
   
 

is two.
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2. General Integral : A solution of a partial differential equation (3.4) of the form

 , 0u v  ,        ... (3.6)

where u = u (x, y, z) and v = v (x, y, z) and   is an arbitrary function, is called the general integral.

The complete integral (3.5) can be used in the derivation of general integral. Let the complete
integral of the partial differential equation (3.4) by given by two parameter family of surfaces of the
form.

z = F (x, y, a, b).        ... (3.7)

If we choose ( )b a  we get one-parameter family of solution of equation (3.4) of the form

 , , , ( )z F x y a a .        ... (3.8)

This is a sub-family of the two parameter family (3.7). The envelope of (3.8) if it exists and is obtained
by eliminating ‘a’ between (3.8) and

'( ) 0a bF F a  .        ... (3.9)

Solving this equation for ‘a’ we get

a = a (x, y).

Substituting this in equation (3.8), we obtain an integral surface of (3.4) as

 , , ( , ), ( ( , ))z F x y a x y a x y      ... (3.10)

If the function a (x, y) is arbitrary, then such a solution is called a general integral (general solution) of
(3.4). Geometrically it represents the envelope of one parameter family of surfaces.

Note : When ( )a  is a particular function, then we obtain a particular solution of the partial differential

equation. Thus different choices of   may give different particular solution of the partial differential

equation.

Characteristic Curve :

Consider one-parameter family of surfaces

f (x, y, z, a) = 0.      ... (3.11)

For slightly different value of ‘a’ say a a , the system of surfaces becomes

( , , , ) 0f x y z a a  .      ... (3.12)

These two surfaces will intersect in a curve given by the equation

   , , , 0,    , , , 0  f x y z a f x y z a a .      ... (3.13)

Similarly, we can easily see that the curve may also be considered to be the intersection of the surface
(3.11) with the surface whose equation is

   1
, , , , , , 0f x y z a a f x y z a

a



     .
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As 0a  , we see that this curve of intersection is given by the equations

   , , , 0,   , , , 0


 


f x y z a f x y z a
a

.      ... (3.14)

This limiting curve is called the ‘characteristic curve’ of equation (3.11). Geometrically, it is the curve
on the surface (3.11) approached by the intersection of (3.11) and (3.12) as 0a  .

Envelope of the one-parameter family f (x, y, z, a) = 0 :

Consider a characteristic curve

 ( , , ) 0, , , , 0


 


f x t a f x y z a
a

,      ... (3.15)

where ‘a’ is a parameter. As the parameter ‘a’ varies, the characteristic curve (3.15) will trace  out a
surface whose equation is obtained by eliminating ‘a’ between equations (3.15). Let this surface be
given by

 , , 0g x y z  .      ... (3.16)

This surface is called the envelope of the one-parameter system f (x, y, z, a) = 0.

e.g. Consider one parameter family of surfaces

 32 2 1x y z a    .      ... (3.17)

It represents the family of spheres of unit radius with centres on the z-axis.

If  22 2 1f x y z a     ,

then  2 3af a   .

The characteristic curve is given by

 22 2 1x y z a   

and   z a      ... (3.18)

Eliminating ‘a’ between equations
(3.18) we get

2 2 1x y       ... (3.19)

Which represents the envelope of the family and is the cylinder.

We shall show that the envelope of one-parameter family of surfaces if it exists is a solution of
the given partial differential equation.

(0,0,a)

z

y

x

 22 2 1x y z a   

 22 2, 1z a x y z a    
Characteristic Curve

2 2 1x y 
envelope
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Result : Let  , ,z F x y a  be a one-parameter family of solutions of the first order partial differential

equation f (x, y, z, p, q) = 0. Then show that the envelope of this one parameter family, if it exists, is
also a solution of the partial differential equation.

Proof : Consider the first order partial differential equation,

 , , , , 0f x y z p q  .      ... (3.20)

The one-parameter family of solutions of (3.20) is given by

 , ,z F x y a .      ... (3.21)

Differentiating equation (3.21) with respect to a we get

 , , 0aF x y a  .      ... (3.22)

Now the envelope of the family of one-parameter is obtained by eliminating ‘a’ between the equations
(3.21) and (3.22). Let the envelope be given by

   , , , ( , )z G x y F x y a x y  ,      ... (3.23)

where a (x, y) is obtained from equations (3.22) by solving for ‘a’ in terms of x and y.

Now we prove that the envelope (3.23) is a solution of equation (3.20). Hence differentiating
equation (3.23) with respect to x and y we get

x x a xp G F F a    and y y a yq G F F a   .

Using equation (3.22), we get

,      x x y yp G F q G F      ... (3.24)

This shows that the envelope will have the same partial derivatives as those of a member of the
family. Since p = Fx and q = Fy satisfy the equation (3.20). This implies that p = Gx and q = Gy also
satisfy the partial differential equation (3.20). This proves that the envelope of one parameter family of
surfaces is also a solution of a partial differential equation.

Envelope of the two-parameter family of surfaces f (x, y, z, a, b) = 0 :

Consider the two-parameter system of surfaces defined by the equation

f (x, y, z, a, b) = 0,      ... (3.25)

where ‘a’ and ‘b’ are parameter.

Let ( )b a .      ... (3.26)

Differentiating equation (3.25) with respect to a we get

0
f f b

a b a

  
 

  
     ... (3.27)

The envelope is obtained by eliminating ‘a’ and ‘b’ from equations (3.25), (3.26) and (3.27).
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3. The Singular Integral :

The envelope of the two-parameter family of surfaces  z = F (x, y, a, b), which is obtained by
eliminating ‘a’ and ‘b’ from the equations

z = F (x, y, a, b),

Fa = 0,  Fb = 0,

is called the singular integral of the first order partial differential equation.

Note : This solution cannot be obtained by giving any values to the constants a and b and hence is not
contained in the complete integral.

Result : Prove that singular integral is also a solution of the first order partial differential equation.

Proof : Let a two-parameter family of solutions

z = F (a, y, a, b)      ... (3.28)

be a complete integral of the first-order partial differential equation

f (x, y, z, p, q)  = 0.      ... (3.29)

The singular solution of (3.29) is the envelope of (3.28). We will show that the envelope of this
two parameter family (3.28), if it exists, is also a solution of (3.29). Hence differentiating equation
(3.28) with respect to ‘a’ and ‘b’ we get respectively

Fa (x, y, a, b) = 0      ... (3.30)

and Fb (x, y, a, b) = 0      ... (3.31)

Now eliminating the parameters ‘a’ and ‘b’ between equations (3.28), (3.30) and (3.31) we obtain the
envelope

z = G (x, y) = F (x, y, a(x,y), b(x,y)),      ... (3.32)

where a(x,y) and b(x,y) are obtained from equations (3.30), (3.31) by solving for ‘a’ and ‘b’ in terms
of x and y.

Differentiating equation (3.32) with respect to x and then with respect to y we get respectively

x x a x b xp G F F a F b    ,

and y y a y b yq G F F a F b    .

By virtue of (3.30) and (3.31) we have

x xp G F   and y yq G F  .

This shows that the envelope will have the some partial derivatives as those of a member of the
family. As the two-parameter family is the complete integral of the first order partial differential equation
(3.29). Hence p = Gx and q = Gy also satisfy  the equation (3.29). This proves that the envelope of
the two parameter family (singular integral) is also a solution of the first order partial differential equation.

Note : The singular integral can also be found from the given partial differential equation without
knowing the complete integral.
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Result : Prove that singular solution is obtained by eliminating p and q from the equations.

f (x, y, z, p, q) = 0,  fp (x, y, z, p, q) = 0,  fq (x, y, z, p, q) = 0.

Proof : Consider the first order partial differential equation given by

f (x, y, z, p, q) = 0.      ... (3.33)

The complete integral of (3.33) is given by

 z = F (x, y, a, b).      ... (3.34)

Differentiating (3.34) with respect to x and y we get respectively

 , , ,xp F x y a b ,      ... (3.35)

and  , , ,yq F x y a b .      ... (3.36)

Substituting equations (3.34), (3.35) and (3.36) in equation (3.33) we obtain

      , , , , , , , , , , , , , 0x yf x y F x y a b F x y a b F x y a b  .     ... (3.37)

This holds identically for all ‘a’ and ‘b’. Now we shall show that equation (3.37) satisfies

fp = 0 and fq = 0.

Differentiating equation (3.37) with respect to ‘a’ and ‘b’ we get respectively.

0z a p xa q yaf F f F f F   ,      ... (3.38)

and 0z b p xb q ybf F f F f F   .      ... (3.39)

However, on the singular solution, we have

Fa = 0 and Fb = 0.

Hence equations (3.38) and (3.39) reduce to

0p xa q yaf F f F  ,      ... (3.40)

0p xb q ybf F f F  .      ... (3.41)

Multiplying equation (3.40) by ybF  and equation (3.41) by yaF  and subtracting we get

  0p xa yb xb yaf F F F F  .      ... (3.42)

Since on the two-parameter family of surface (3.34)

0xa yb xb yaF F F F  .

If 0xa yb xb yaF F F F 

then 0
xa ya

xb yb

F F

F F
 ,
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and hence the matrix 
a xa ya

b xa yb

F F F

F F F

 
  
 

 will not have rank two (Since Fa = 0, Fb = 0), which contradicts

the fact that z = F (x, y, a, b) is a complete integral. Hence from equation (3.42) we have

fp = 0.

Similarly, we prove fq = 0.

This proves the result.

4. The Special Integral : Usually (but not always) the three integrals viz., the complete integral,
the general integral and the singular integral include all the integrals of the first order partial differential
equation f (x, y, z, p, q) = 0. However, there are some solutions of certain first order partial differential
equations which do not fall under any of the three classes. Such solutions are called “sepcial integrals”.

Example 1 : Show that z = ax + by + a2 + b2 is a complete integral of z = px + qy + p2 + q2.

By taking (i) 21b a  , (ii) b = a, find the envelope of the sub-family. Further find the singular

integral.

Solution : Let

  2 2, , ,z F x y a b ax by a b     .      ... (3.43)

To prove z = F (x, y, a, b) is a complete integral of equation

2 2z px qy p q    .      ... (3.44)

We prove the rank of the matrix 
a xa ya

b xb yb

F F F

F F F

 
  
 

 is two.

Thus from equation (3.43) we find

2 , 2 ,   1,   0,   1,   0       a b xa ya ya xbF x a F y b F F F F

Hence the above matrix becomes

2 1 0

2 0 1

a xa ya

b xb yb

F F F x a

F F F y b

   
       

.

Obviously, the rank of the matrix is 2. Hence equation (3.43) is a complete integral of (3.44).

Case 1 : Take 21b a 

Then the one-parameter sub-family is given by

 2 2, , 1 1 1z F x y a a ax a y      .      ... (3.45)

Differentiating equation (3.45) with respect to ‘a’ we get
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2
0

1
a

ay
F x

a
  


.      ... (3.46)

From (3.45) we find

21
1

a
z a x y

a

    
 
 

,      ... (3.47)

where from (3.46) we find

22

22 11

a x a x

y yaa

 
      

,

 2 2 2 2a y x x   ,

2
2

2 2

x
a

x y
 


.

Consequently, eliminating ‘a’ from equation (3.47) we obtain

 
22 2

2

2 2
1

x y
z x

xx y

  
        

,

 2 2 21z x y    .      ... (3.48)

This is the envelope (particular solution) of the equation (3.44).

Case : If b = a, then the one parameter sub-family of surfaces is given by

2( ) 2z a x y a   .      ... (3.49)

Differentiating this with respect to a we get

0 4 0aF x y a     ,

4x y a    .

Substituting this value in equation (3.49) we get

 2

2
4 16

x yx y
z

    
 

,

 2
8z x y    .     ... (3.50)

This is another envelope (particular solution) of the given partial differential equation (3.44).
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Now to find singular integral of (3.44), we differentiate equation (3.43), with respect to ‘a’ and then
with respect to ‘b’, we get respectively

2 0aF x a   ,      ... (3.51)

and 2 0bF y b   .      ... (3.52)

Eliminating ‘a’ and ‘b’ between equations (3.43), (3.51) and (3.52) we get

2 2 2 2

2 2 4 4

x y x y
z     

 2 24   z x y ,      ... (3.53)

which is a singular integral of (3.44).

Note : The singular integral of equation (3.44) can also be obtained directly by eliminating p and q
between equations (3.44) and

2 0
2p
x

f x p p      ,

and 2 0
2q
y

f y q q      .

Substituting these in equation (3.44) we get

 2 24z x y  

as the singular integral of equation (3.44)

Example 2 : Show that

   2 2 2 1x a y b z    

is a complete integral of

 2 2 21 1z p q   .

By taking (i) b = 2a, (ii) b = a, show that the envelopes of the subfamily are respectively.

 2 22 5 5y x z    and  2 22 2x y z   ,

which are particular integrals. Show further that 1z    are the singular integrals.

Solution : Let

   2 2 2, , , , 1 1 0f x y z p q z p q          ... (3.54)

be the given partial differential equation.
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Let      2 2 2, , , , 1F x y z a b x a y b z           ... (3.55)

be the two-parameter family of surfaces.

Differentiating (3.55) with respect to a, b etc., we find

2( ),   2( ),   2,   0,   0,   2           a b xa xb xb ybF x a F y b F F F F

Hence the matrix

2( ) 2 0

2( ) 0 2

a xa ya

b xb yb

F F F x a

F F F y b

     
         

has rank 2.

   2 2 2 1x a y b z      .

is a complete integral of equation (3.54)

Case 1 : Take b = 2a.

Hence from (3.55) the one-parameter sub-family of surfaces becomes.

   2 2 22 1x a y a z     .     ... (3.56)

Differentiating (3.56) with respect to ‘a’ we get

   2 4 2 0x a y a     ,

2 5 0x y a    ,      ... (3.57)

2

5

x y
a


  .

Substituting this in equation (3.56) we get

2 2
22 2 4

1
5 5

x y x y
x y z

           
   

,

 2 22 5 5y x z    .      ... (3.58)

This is the envelope of one parameter sub-family.

Case 2 :  If we take b = a, then the one parameter family of sub-system becomes

   2 2 2 1x a y a z     .      ... (3.59)

Differentiating this equation with respect to ‘a’ we get

2 0x y a   ,

2

x y
a


  .      ... (3.60)
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Substituting the value of ‘a’ in equation (3.59) we get

2 2
2 1

2 2

x y x y
x y z

           
   

,

 2 22 2x y z    .      ... (3.61)

This is the envelope of one parameter family. Equations (3.58) and (3.61) are particular solutions of
(3.54).

Now to find singular integral of equation (3.54), we differentiate 2-parameter family of surfaces (3.55)
to get

 , , , , 0aF x y z a b x a   ,      ... (3.62)

 , , , , 0bF x y z a b y b   .      ... (3.63)

The envelope is obtain by eliminating ‘a’ and ‘b’ between (3.55), (3.62) and (3.63). Thus

1z   .

This shows that the envelope consists of the pair of planes 1z   . These planes are integral surfaces
of the equations (3.55). It is the singular integral of the equation.

Note : The characteristic curve of the two-parameter system (3.55) is the locus of points of intersection
of (3.55) with the plane (3.57). Since this plane passes through the centre of the sphere (a, 2a, 0),
hence the characteristic curve of the system is the great circle.

Example 3 : Show that 
y

z ax b
a

    is a complete integral of pq = 1. This problem has no singular

integral. Find the particular solution corresponding to the sub-family b = a.

Solution : Let the partial differential equation is given by

 , , , , 1 0f x y z p q pq   .      ... (3.64)

Let also the two parameters family of surfaces be given by

 , , ,
y

z F x y a b ax b
b

    .      ... (3.65)

We find

2
,a

y
F x

a
 

1
1,   ,     b x yF F a F

a

2

1
1,   0,   ,   0     xa xb ya ybF F F F

a
.
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Hence the matrix
2 2

1
1

   1      0    0

a xa ya

b xb yb

yF F F x
a a

F F F

             
has rank two.

This proves that 
y

z ax b
a

    is a complete integral of equation (3.64).

Now if b = a, then from equation (3.65) we get one parameter sub-system as

y
z ax a

a
   .     ... (3.66)

Differentiating this with respect to ‘a’ we get

2
0 1

y
x

a
   ,

2

1

y
a

x
 


.      ... (3.67)

To eliminate ‘a’ from equation (3.66), we first write it as

 2 1za a x y   ,

 2 2 4 2 2 2( 1) 2 1z a a x y a x y     .

Putting the value of a2, we get

   22 2 1 2
1 ( 1)

1 ( 1)

xy y
z x y x y

x y x

        
,

2 22( 1) 2z x y y    .      ... (3.68)

This is the envelope of one parameter family and is the required particular solution of equation (3.64).

Now differentiating equation (3.65) with respect to ‘a’ and then with respect to ‘b’ we get respectively

2
,   1  a b

y
F x F

a

2
0 0,   0 1 0      a b

y
F x F

a
.

This is not true.   the equation (3.64) has no singular integral.

Note : It is always possible to obtain different complete integrals which are not equivalent to each
other. These are not obtained from one another merely by a change in the choice of arbitrary constants.

Exercise :

1. Show that  2
2z ax y b     is a complete integral of 2 0px qy q   .
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LINEAR EQUATIONS OF THE FIRST ORDER

UNIT - II

Introduction :

In this unit we study a method of finding a general integral of a quasi linear equation.

Theorem : The general solution of the Lagrange’s equation (quasi-linear equation).

     , , , , , ,P x y z p Q x y z q R x y z  ,

where P, Q and R are given continuously differentiable functions of x, y, and z (and not vanishing
simultaneously) is F (u, v) = 0, where F is an arbitrary function of u and v and

   1 2, , , , ,u x y z C v x y z C 

are the solutions of the system

     , , , , , ,

dx dy dz

P x y z Q x y z R x y z
  .

Proof : Given that

  1, ,u x y z C  and   2, ,v x y z C        ... (1.1)

are the solutions of the system of differential equations

dx dy dz

P Q R
  .        ... (1.2)

This implies that equation (1.1) satisfy equations (1.2),

0   x y zu dx u dy u dz  and        ... (1.3)

0   x y zv dx v dy v dz .        ... (1.4)

This shows that the equations (1.3) and (1.4) must be consistent equations. Hence we have

0x y zu P u Q u R   ,        ... (1.5)

and 0x y zv P v Q v R   .        ... (1.6)

Solving equations (1.5) and (1.6) for P, Q and R we obtain
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y z z x x y

z xy z x y

P Q R
u u u u u u

v vv v v v

 

     z x x zy z z y x y y x

P Q R

u v u vu v u v u v u v
  

 
,

 
 

 
 

 
 

, , ,

, , ,

P Q R
u v u v u v

y z z x x y

  
  
  

.        ... (1.7)

Now we shall show that F (u, v) = 0 is a solution of  Pp Qq R .

Consider the relation F (u, v) = 0. Differentiating this partially with respect to x and y we get

    0u x z v x zF u pu F v pv    ,        ... (1.8)

and     0u y z v y zF u qu F v qv    .        ... (1.9)

Eliminating Fu and Fv from equations (1.8) and (1.19) we get

     x z y z y z x zu pu v qv u qu v pv     ,

     y z z y z x x z x y y xp u v u v q u v u v u v u v     

 
 

 
 

 
 

, , ,

, , ,

u v u v u v
p q

y z z x x y

  
  

  
.      ... (1.10)

From equations (1.7) and (1.8) we find

 Pp Qq R .      ... (1.11)

This shows that F (u, v) = 0 is a solution of equation (1.11), where u (x, y,z) = C1 and
v (x, y, z) = C2 are solution of (1.2). This equivalently means that any surface F (u, v) = 0 generated by
the integral curves (1.2) is a solution of (1.11).

General Case :

Theorem : If  1 2, ,..., , ,i n iu x x x z C  i = 1, 2, ...., n are independent solutions of the euqtions

1 2

1 2

... ,   n

n

dxdx dx dz

P P P R

where P1, P2, ..., Pn and R are continuous differentiable functions of x1, x2, ..., xn and z not simultaneously
zero, then the relation
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 1 2, ,..., 0,nu u u 

where   is arbitrary, is a general solution of the quasi-linear partial differential equation

1 2
1 2

...
  

   
  n

n

z z z
P P P R

x x x .

Proof : We are given that

 1 2, ,..., , ,i n iu x x x z C   i = 1, 2, ..., n      ... (1.12)

are independent solutions of the equations

1 2

1 2

...   n

n

dxdx dx dz

P P P R      ... (1.13)

Differentiating equation (1.12) we get

1 2
1 2

... 0i i i i
n

n

u u u u
dx dx dx dz

x x x z

   
    

    .      ... (1.14)

This shows that the equations (1.13) and (1.14) must be compatible (consistent).

1

0


 
  

 
n

i i
j

jj

u u
P R

x z
, i = 1, 2, ..., n.      ... (1.15)

For each i, we have n-equations. Solving these n-equations for P1, P2, ..., Pn and R we get

 
 

 
 

1 2 1 2

1 2 1 1 1 2

, ,..., , ,...,

, ,..., , , ,..., , ,..., 


 

 

i

n n

i i n n

P R
u u u u u u

x x x z x x x x x

,      ... (1.16)

where
 
 

1 1 1

1 2

2 2
1 2

1
1 2

1 2

, ,...,

, ,...,

n

n
n

i n
n

n n n

n

u u u

x x x

uu u
u u u

x x x
x x x

u u u

x x x

  
  

 


  


  
  





is the Jacobian of the transformation. Now we shall show that the relation

 1 2, ,..., 0nF u u u       ... (1.17)

is a solution of quasi-linear partial differential equation
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1 2
1 2

...
  

   
  n

n

z z z
P P P R

x x x

Differentiating equation (1.17) partially with respect to xi we get

0j j

j i ij

u uF z

u x z x

   
       

 .      ... (1.18)

Eliminating 
1 2

, ,...,
n

F F F

u u u

  
    from these n equations we get

 
 

 
 

1 2 1 2

1 21 2 1 1

, ,..., , ,...,

, ,...,, ,..., , , ,...,
n n

j nj j j n

u u u u u uz

x x x xx x x z x x 

 


 
 .      ... (1.19)

From equations (1.16) and (1.19) we obtain

1





n

j
jj

z
P R

x      ... (1.20)

This proves that if u1, u2, ..., un are independent solutions of (1.13) then F (u1, u2, ..., un) is a solution
of equations (1.20). This proves the theorem.

Example 1 : Find the general integral of

  2 2z xp yq y x   .

Solution : The given partial differential equations is

2 2zxp zyq y x   .      ... (1.21)

The integral surface of the equation (1.21) is generated by the integral curves of the auxilary euqtion

2 2

dx dy dz

zx yz y x
 
 

.      ... (1.22)

Consider the first two ratios of the equation

dx dy dx dy

xz yz x y
  
 

.

Integrating we get

1log log logx y C   ,

1xy C  .      ... (1.23)

Now we consider each ratio of the equation (1.22)
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2 2 2 2

xdx ydy zdz

x z y z zy zx

 


  
,

0xdx ydy zdz    .

Integrating the equation we get

2 2 2
2x y z C   .      ... (1.24)

The curves given by equations (1.23) and (1.24) generate the integral surface

 2 2 2, 0,F xy x y z  

which is the general integral of equation (1.21).

Example 2 :  Find the general integral of the partial differential equation

   2 2 32 2x y z p y y z q z    .

Solution : The given partial differential equation is

   2 2 32 2x y z p y y z q z    .      ... (1.25)

The integral surface of equation (1.25) is generated by the integral curves of the auxiliary equation

    32 22 2

dx dy dz

zx y z y y z
 

 
.      ... (1.26)

The first integral curve is obtained by considering each ratio of the equation (1.26) as

2 2 22 2 2

dydx dz
x y z

y z y z z

 

   
,

0
dx dy dz

x y z
    .

Integrating gives

1log log log logx y z C   ,

1
x

C
yz

  .      ... (1.27)

Now to find the second integral curve, consider the ratios

  322

dy dz

zy y z



,
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3 2 22z dy y dz z ydz   ,

 2 22z ydz zdy y dz    ,

2 2

2ydz zdy dz

y z


   ,

2
2

z dz
d

y z

 
   

 
.

Integration gives

2
2z

C
y z
  .      ... (1.28)

Thus the curves given by equations (1.27) and (1.28) generate the integral surface

2 2
, 0

x z y
F

yz yz

 
  

 
.

Example 3 :  Find the general integral of the partial differential equation

( ) ( ) ( )(2 2 )x x y p y x y q x y x y z       .

Solution : The integral surface of the equation

( ) ( ) ( )(2 2 )x x y p y x y q x y x y z             ... (1.29)

is generated by the integral curves of the auxilary equation

( ) ( ) ( )(2 2 )

dx dy dz

x x y y x y x y x y z
 

      
.      ... (1.30)

To find the first integral curve, consider the ratio

( ) ( )

dx dy dx dy

x x y y x y x y
  

   
.

Integration yields

1log log logx y C   ,

1xy C  .      ... (1.31)

Similarly, to find the second integral curve, each ratio of equation (1.30) is

( )( ) ( )( )

dx dy dx dy dz

x y x y x y x y z

  


     
,
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dx dy dx dy dz

x y x y z

  
 

   
.

Integration results in

2log( ) log( ) logx y x y z C      .

2( )( )x y x y z C     ,      ... (1.32)

These curves (1.31) and (1.32) generate the integral surface

 , ( )( ) 0F xy x y x y z    .

Example 4 : Find the general integral of

 2 2 2 ( )x y p xyq x y z    .

Solution : To find the integral surface of the equation

 2 2 2 ( )x y p xyq x y z    ,      ... (1.33)

we first find the integral curves of the auxiliary equation

2 2 2 ( )

dx dy dz

xy x y zx y
 


.      ... (1.34)

To get the integral curve, we consider the ratios

 2 ( )

dx dy dz dx y dz

x y z x y zx y

 
  

 
.

Integration of which gives

1log( ) log logx y z C   ,

1
x y

C
z


  .      ... (1.35)

Similarly, the other integral curve is obtained by consider the ratios

 2 2
2 2

2
2

dx dx
x y dy xydx

xyx y
   

 ,

2 2 2y dy x dy xydx    ,

2

2

2xydx x dy
dy

y


 ,

2x
dy d

y

 
    

 
.
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Integration results in

2

2
x

y C
y

  .      ... (1.36)

Hence the integral surface generated by the curves (1.35) and (1.36) is given by

2 2

, 0
x y y x

F
z y

  
  

 
.

Example 5 : Find the general integral of the partial differential equation

     3 4 4 3 3 3 32 2 9xy x p y x y q z x y     .

Solution : The general solution of the equation

     3 4 4 3 3 3 32 2 9xy x p y x y q z x y          ... (1.37)

is the integral surface generated by the integral curves of the auxilliary equation

 3 4 4 3 3 32 2 9

dx dy dz

xy x y x y z x y
 

  
.      ... (1.38)

To find the integral curve, we first consider the ratios of the equation (1.38) as

 3 3 3 3 3 32 2 9




   

dx dy dz
x y z

y x y x x y
,

3
  dydx dz

x y z
.

Integration of which gives

1
1

log log log log
3

x y z C    ,

3 3
1 x y z C      ... (1.39)

Now consider the ratios

3 4 4 32 2

dx dy

xy x y x y


  ,

   4 3 3 42 2 0y x y dx xy x dy     .

Dividing by x3y3 we get
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3 2 2 3

2 2
0

y dx dy x
dx dy

x y x y
    ,

   
4 4

2 2
0

xdy ydx ydx xdy
x y

x y

 
   ,

2 2
0

y x
d d

x y

      
   

.

Integration yields

22 2

y x
C

x y
  .      ... (1.40)

Hence the general integral generated by the curves (1.39) and (1.40) is given by

3 3
2 2

, 0
y x

F x y z
x y

 
  

 
.

Example 6 : Find the general integral of

     3 2 3 2 2 23 3 2x xy p y x y q x y z     .

Solution : The general solution of the equation

     3 2 3 2 2 23 3 2x xy p y x y q x y z          ... (1.41)

is the integral surface generated by the integral curves of the auxilliary equations

 3 2 3 2 2 23 3 2

dx dy dz

x xy y x y x y z
 

  
.      ... (1.42)

The first integral curve of (1.42) is obtained by considering the ratio

 2 2 2 2 2 2

2

3 3 4

dydx dz
x y z

x y y x x y

 

    
,

2
0

dx dy dz

x y z
    .

Integrating we obtain

1log log 2log logx y z C   ,
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12

xy
C

z
  .      ... (1.43)

The second integral curve of (1.42) is obtained by considering the ratio

 
4 2 2 4 2 2 2 2 2 2

21

23 3

dz xdx ydyxdx ydy dzz
zx x y y x y x y x y


  

   
.

Integrating we get

 2 2
2log log logx y z C   ,

2 2

2
x y

C
z

 
   

 
.     .... (1.44)

Hence the general integral is given by

2 2

2
, 0

xy x y
F

zz

 
  

 
.

Exercise :

Find the general integral of the following partial differential equations.

1. ( 1) ( 1)y p x q z   

2.      2 22z yz y p x y z q x y z     

3. yzp xzq x y  

4.  2 2y p xyq x z y  

5. xzp yzq xy 

6.    2 2 2x yz p y zx q z xy    

7. 2p q z 

Answers :

1.  2 2 2 2 , ( ) 0F x y x y z x y    

2.  2 2 2 2 2, 2 0F x y z y yz z    

3.  2 2 2, 2( ) 0F x y z x y   
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4.  2 2 , ( ) 0F x y y y z  

5.
2, 0

x
F xy z

y

 
  

 

6. , 0
x y y z

F
y z z x

  
   

7.  , 0  F x y x z

2. Pfaffian Differential Equations :

Introduction : In this section, we introduce a Pfaffian difference equations. There is a fundamental
difference between Pfaffian differential equations in two variables and those in higher number of variables.
A Pfaffian differential equation in two variables always possesses an integrating factor. However, a
Pfaffian differential equation in more than two variables may not be integrable in general. We shall
derive in the following a necessary and sufficient condition for the integrability of a Pfaffian differential
equation in three variables.

Definition : A Pfaffian differential equation is a differential equation of the form

 1 2
1

, ,..., 0
n

i n i
i

F x x x dx


 ,        ... (2.1)

where  1, 2,...,iF i n  are continuous functions of some or all of the n-independent variables

x1, x2, ..., xn , is called a Pfaffian differential equation, and the expression  1 2, , ...,i n i
i

F x x x dx  is

called a Pfaffian differential form.

Definition : A Pfaffian differential form is said to be exact if we can find a continuously difefrentiable

function  1 2, ,..., nu x x x  such that

     1 1 2 1 2 1 2 2 1 2, ,..., , ,..., ... , ,...,n n n n ndu F x x x dx F x x x dx F x x x dx    .

Definition : A Pfaffian differential equation is said to be integrable, if there exists a non-zero differentiable

function  1 2, ,..., nx x x  such that the Pfaffian differential form

   1 1 2 1 1 2, ,..., ... , ,...,n n n nF x x x dx F x x x dx    

is exact. In this case the function  1 2, ,..., nx x x  is called the integrating factor of the Pfaffian differential

equation and  1 2, ,..., nu x x x C , where C is an arbitrary constant, is called the integral of the

corresponding Pfaffian differential equation.
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Note : Since the integral  1 2, ,..., nu x x x C  of the Pfaffian differential equation (2.1) represents a

surface in n , then it follows from Pfaffian differential equation that, at every point of the integral the

normal has direction ratios (F1, F2, ..., Fn).

Result : A Pfaffian differential equation in two variables always possesses an integrating factor.

Proof : Consider a Pfaffian differential equation in two variables x and y in the form

( , ) ( , ) 0P x y dx Q x y dy  .        ... (2.2)

If ( , ) 0Q x y  , then we write this as

 ( , )
,

( , )

dy P x y
f x y

dx Q x y
   ,        ... (2.3)

where P (x, y) and Q (x, y) are known functions of x and y, so that f (x,y) is defined uniquely at each
point of the xy plane, at which the functions P (x, y) and Q (x, y) are defined. From the existence
theorem for a first order ordinary differential equation the equation (2.3) has a solution

1( , ) F x y C        ... (2.4)

Result : If ( , , )X P Q R  is a vector such that  0X curl X   and   is an arbitrary differentiable

function of x, y and z then prove that

  0X curl X  

Proof : Let  , ,   X P Q R Pi Qj Rk ,        ... (2.5)

be a vector, where i, j, k are unit vectors in the positive x, y and z directions respectively, such that

 0X curl X  .        ... (2.6)

By definition, we have

 
i j k

curl X
x y z

P Q R



  

  


  

  R Q P R Q P
curl X i j k

y z z x x y

     
                            

,

    R Q P R Q P
X curl X P Q R

y z z x x y

         
                             

,
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    2 R Q P R Q P
X curl X P Q R

y z z x x y
  

                                 

PR PQ PQ QR QR PR
y z z x x y

     
      

            
.

    2 R Q P R Q P
X curl X P Q R

y z z x x y
  

                                
.        ... (2.7)

This can also be written as

    2

, ,x y z

R Q
X curl X P

y z
  

  
     

 .        ... (2.8)

i.e.      2  X curl X X curl X     .

By virture of equation (2.6) we have

    0X curl X   .

Conversely, let     0X curl X   , for 0   then it follow from the definition

0X curl X  .

Note : The condition 0X curl X   is equivalent to

0
Q R R P P Q

P Q R
z y x z y x

                           
.

Criteria of Integrability of a Pfaffian Differential Equation :

Note that all Pfaffian differential equations do not possesses integral. If however, the equation

is such that there exists a function  , ,x y z  with the property that  Pdx Qdy Rdz    is an exact

differential d , then the equation is said to be integrable. The function   is called the primitive of the

differential equation. In the following theorem we find a necessary and sufficient condition that a Pfaffian
differential equation is integrable.

Theorem : A  necessary and sufficient condition that the Pfaffian differential equation 0X dr   is

integrable is that 0X curl X  , where ( , , )X P Q R  is a vector..

Proof : Consider a Pfaffian differential equation in three variables x, y, z given by

( , , ) ( , , ) ( , , ) 0P x y z dx Q x y z dy R x y z dz   .        ... (2.9)
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If ( , , )X P Q R  is a vector and  , ,r x y z ,    , ,dr dx dy dz , then equation (2.9) can also be

written as

0Xdr Pdx Qdy Rdz    ,

0Xdr  .      ... (2.10)

Let us assume that the equation (2.10) is integrable. We claim that

0X curl X  .

Since the equation (2.9) is integrable. This implies that there exist differentiable functions  , ,x y z and

 , ,u x y z  such that.

  , ,du x y z Pdx Qdy Rdz    , 0       ... (2.11)

where ( , , )u u x y z

x y zdu u dx u dy u dz    .      ... (2.12)

From equations (2.11) and (2.12) we find

,   ,     x y zP u Q u R u  

 x y zu i u j u k Pi Qj Rk     

u X   .

Taking the curl of the equation we get

   curl curl X   .

Since the identity   0curl  

  0curl X  ,

    0X curl X   ,

0Xcurl X  .

  the equation 0Xdr   is integrable if  0Xcurl X  .

Conversely, assume that 0Xcurl X  .

We prove that the Pfaffian differential equation 0Pdx Qdy Rdz    is integrable.

Let us assume that one of the variables say z is a constant. Hence the Pfaffian differential
equation becomes,
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( , , ) ( , , ) 0P x y z dx Q x y z dy  .      ... (2.13)

This is a Pfaffian differential equation in two variables, hence it is always integrable. This implies that
there exists a function U and the integrating factor   such that

 dU Pdx Qdy  ,

 x yU dx U dy Pdx Qdy    ,

,     x yU P U Q  .      ... (2.14)

Substituting the values of P and Q in equation (2.9) we get

  0x y z zU dx U dy U dz R U dz     .

This is equivalent to

0dU Kdz  ,      ... (2.15)

where zK R U  .      ... (2.16)

We are given that 0X curl X  ,

0,X curl X         ... (2.17)

where  , ,X P Q R    ,

 , , zX P Q U K    , due to (2.16)

   , , 0,0,x y zX U U U K   ,

 0,0,X U K    .

Taking the curl of this equation and using the identity, curl of gradU = 0, we readily get

K K
curl X i j

y x
  

 
  ,

, ,0
K K

curl X
y x


  

     
.      ... (2.18)

Thus       , , , ,0x y z
K K

X curl X U U U K
y x

 
  

      
,

      
U K U K

x y y x

   
 
    ,
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     ( , )

( , )

U K
X curl X

x y
  




.

Thus the condition (2.17) implies

( , )
0

( , )

U K

x y




 ,      ... (2.19)

  there exists a relation between U and K not involving x and y explicitly. Hence K can be
expressed as a function of U and z alone. Therefore equation (2.15) becomes,

 , 0
dU

K U z
dz

  .      ... (2.20)

This is a first order ordinary differential equation, it possesses a solution. Let

 ,U z C  ,

where C is an arbitrary constant, be a solution of equation (2.20). On replacing U by its expression in
terms of x, y and z we obtain the solution in the form

( , , )U x y z C .

Hence the Pfaffian differential equation (2.9) is integrable.

Note : The Pfaffian differential equation (2.9) is in fact, exact if and only if 0curl X  .

Show that the following Pfaffian differential equations are integrable and hence find the corresponding
integrals.

Example 1 :      2 2 2 0y yz dx xz z dy y xy dz      .      ... (2.21)

Solution : Here 2 2 2, ,P y yz Q xz z R y xy      .

Hence the vector X  becomes

 2 2 2, ,X y yz xz z y xy    ,

2 2 2

i j k

curl X
x y z

y yz xz z y xy

  
 

  

  

,

  2 ,2 , 2curl X y x z y y     ,

    2 2 2, , 2 ,2 , 2X curl X y yz xz z y xy y x z y y         ,
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     2 22 ( )( ) ( ) ( )y y z y x z y xz z y y x          ,

     3 2 2 2 2 2 3 22         y xy y z y z xyz yz xyz z y y xy ,

0X curl X   .

This proves that the Pfaffian differential equation (2.21) is integrable. Now to find the integral of (2.21)
we assume z = constant   dz = 0. Hence equation (2.21) becomes

   2 2 0y yz dx xz z dy    .      ... (2.22)

We write this equation as

0
( ) ( )

dx dy

z x z y y z
 

  ,

0
( )

dx zdy

x z y y z
  

  ,

0
dx dy dy

x z y y z
   

  .

Since z is a constant. On integrating we get

1log( ) log log( ) logx z y y z C     ,

1
( )

,
y x z

C
y z


 



where C1 is a constant, may be function of z. Let the integral of (2.22) be denoted by U.

( )y x z
U

y z


 


.      ... (2.23)

Hence there exist a function   such that

1
x

y
U P

P y z
 

 
     

,

 2

1

y z
 


,      ... (2.24)

and U satisfies the equation

0
dU

K
dz

  ,      ... (2.25)
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where zK R U 

   
 2 2( )

y y x y x zy
K

y zy z y z

 
  

 
,

K = 0.

Hence equation (2.25) becomes

0
dU

dz
 ,

0dU  ,

U  constant (independent of z),

( ) ( )y x z C y z    .

This is the required integral of (2.21).

Example 2 : 0yzdx xzdy xydz   .

Solution :  The Pfaffian differential equation is

0yzdx xzdy xydz   ,      ... (2.26)

where the vector ( , , ) ( , , )X P Q R yz xz xy  .

We see that

( ) ( ) ( ) 0

i j k

curl X i x x j y y k z zx y z

yz xz xy

           

0curl X  ,

0  X curl X .      ... (2.27)

This shows that the equation (2.26) is integrable.

Now to find the integral of (2.26) we treat z = constant

0dz  .

Hence equation (2.26) reduces to

0yzdx xzdy 

  0z ydx xdy    or   0d xy 

1xy C  ,      ... (2.28)

where C1 may be function of z.
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Let U = xy.      ... (2.29)

There must exist a function   such that 
U

P
x






1 1 1
( )

U
y

P x yz z
 

    


.      ... (2.30)

The function U in (2.29) therefore satisfies the equation

0
dU

K
dz

  ,      ... (2.31)

where U
K R

z
 

 


.

Thus 1
0   

xy
K xy K

z z
.

U
K

z
  As U xy      ... (2.32)

Hence equation (2.31) becomes

0
dU U

dz z
  ,

0
dU dz

U z
   .

Integrating we get

log log logU z C  or Uz C ,

xyz C  ,      ... (2.33)

which is the required integral.

Example 3 :    2 2 0yzdx x y zx dy x z xy dz    

Solution : The Pfaffian differential equation is given by

   2 2 0yzdx x y zx dy x z xy dz          ... (2.34)

where the vector

 2 2( , , ) , ,X P Q R yz x y zx x z xy    .

Therefore, we find
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2 2

2 2

i j k

curl X i x x j xz y y k xy z zx y z

yz x y zx x z xy

             

 

  0, 2 2 ,2 2curl X xz y xy z     .

Therefore, we see that

       2 20 2 2 2 2X curl X x y zx y xz xy z x z xy       

2 22X curl X x y   xyz 3x yz 2 2x z 3x yz 2 2x y 2 2x z xyz 
  

0X curl X  .      ... (2.35)

This shows that the equation (2.34) is integrable. Now to find the integral of (2.34) we treat

constant 0z dz   .

Hence equation (2.34) reduces to

 2 0yzdx x y zx dy   ,

2 0yzdx zxdy x ydy    ,

or   2z ydx xdy x ydy   ,

or 2

ydx xdy
z ydy

x

    
 

,

or 2

xdy ydx y
z ydy zd ydy

xx

        
   

.

Integrating we get

2

12

y y
z C

x
    
 

,

or
2

12

zy y
C

x
  ,

 
1

2

2

y z xy
C

x


  ,
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Let
 2

2

y z xy
U

x


 .      ... (2.36)

There must exist a function   such that 
U

P
x






or 2

1 1U yz

P x yz x
         

,

2

1

x
   .      ... (2.37)

Also the function U in (2.36) satisfies the equation

0
dU

K
dz

  ,      ... (2.38)

where

 2
2

1U y
K R K x z xy

z xx
             

,

y y
K z

x x
     ,

K z   .     ... (2.39)

Hence equation (2.38) becomes

0
dU

z
dz

  or   0dU zdz  .

Integrating we get

2

2

z
U C  .

i.e.
2 2

2 2

yz y z
C

x
   ,

or  2 21

2

yz
y z C

x
   ,

or  2 22 2yz x y z xC   ,      ... (2.40)

which is the required integral.
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Example 4 :      6 2 2 0x yz dx xz y dy xy z dz     

Solution : The Pfaffian differential equation is given by

     6 2 2 0x yz dx xz y dy xy z dz      ,

     ... (2.41)

where the vector

 6 , 2 , 2X x yz xz y xy z    .

We find

( ) ( ) ( )

6 2 2

i j k

Curl X i x x j y y k z zx y z

x yz xz y xy z

          
  

0 0Curl X X curl X         ... (2.42)

The equation (2.41) is integrable. To find the integral of (2.42) we treat

constant 0z dz   .

Hence equation (2.41) becomes

   6 2 0x yz dx xz y dy   

6 2 0xdx yzdx xzdy ydy    

 6 2 0xdx z ydx xdy ydy    

or 6 ( ) 2 0  xdx zd xy ydy .

Integrating we get

2 2
13x zxy y C   ,      ... (2.43)

where C1 may involved z.

Let 2 23U x xyz y   .

There must exist a function   such that

U
P

x





1 U

P x
 

 


 1
6 1

6
x yz

x yz
   


.
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Also the function U in (2.44) must satisfy the equation

0
dU

K
dz

  ,      ... (2.45)

where

U
K R

z
 

 


     ( 2 )xy z xy  

2K z  .

Hence equation (2.45) becomes

2 0
dU

z
dz

    or  2 0dU zdz  .

Integarting we get

2
2U z C  ,

ie. 2 2 2
23x xyz y z C    ,      ... (2.46)

which is the required integral of (2.41).

Example 5 :  2 3 2 33 0   x z y dx xy dy x dz .

Solution : To test the integrability of the equation (2.47) we note that

 2 3 2 3,3 ,X x z y xy x  .

So that

   2 2 2 2

2 3 2 3

(0 0) 3 3 3

3

i j k

curl X i j x x k y yx y z

x z y xy x

          



 2 20, 2 ,6Curl X x y 

Therefore,  3 2 3 20 6 6 0    X Curl X x y x y

0X Curl X       ... (2.48)

  The equation (2.47) is integrable. Now to find the integral of (2.47) we treat
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constant 0z dz   .

Hence equation (2.47) reduces to

 2 3 23 0x z y dx xy dy   .

We write this equation as

2 3 23 0zx dx y dx xy dy  

2 2 33 3 0x dx xy dy y dx   

2 3

2

3
0

xy dy y dx
zdx

x


  

3

0
y

zdx d
x

 
    

 
. z = constant

Integrating we get

3

1
y

zx C
x

  .      ... (2.49)

Let
3y

U zx
x

  .      ... (2.50)

There must exist a function   such that

U
P

x





  or  
1 U

P x
 




 
3

2 22 3

1 1 
       

z y

x xx z y
  .      ... (2.51)

The function U in (2.50) also satisfies the equation

0
dU

K
dz

  ,      ... (2.52)

where
3

2

1
0

U
K R K x x K

z x
 

      


Therefore equation (2.52) becomes

0   dU U C

i.e. 2 3x z y Cx  ,      ... (2.53)

which is required integral.
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Example 6 :       1 1 0yz dx x z x dy xy dz      .

Solution : The Pfaffian differential equation is given by

     1 1 0yz dx x z x dy xy dz      ,      ... (2.54)

where the vector

 1 , ( ), (1 )    X yz x z x xy .

     2

1 ( ) 1

i j k

curl X i x x j y y k z x zx y z

yz x z x xy

              
   

 2 ,2 , 2curl X x y z x     .

We seet that

     22 1 2 2 1X curl X x yz y xz x x xy       

     2 22 2 2 2 2 2x xyz xyz x y x x y      

0X curl X       ... (2.55)

  the equation (2.54) is integrable. Now to find the integral of (2.54) we treat

constant 0z dz   .

Therefore equation (2.54) reduces to

   1 0yz dx x z x dy    .

We write this as

 
0

1

dx dy

x z x yz
 

 
,

or
 

3
0

1

zdx dy

x z x yz
 

 
,

0
1

dx dx dy

x z x y z

  
 

. z = constant

Integrating we get

  1
1log log( ) log logx z x y Cz     ,
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  1

1
x y

z
C

z x

  
  


or
 
  1

1x yz
C

z z x





.

Let  
 

1x yz
U

z z x





.      ... (2.56)

Therefore, there must exist a function   such that

U
P

x





or  
    

 2

1 11 1

1

yz z x x yzU

P x z yz z x


    
  

    

       
   2 2

1 1z x x

z z x z x


 
  

 
.      ... (2.57)

The function U in (2.56) therefore satisfies the equation

0
dU

K
dz

  ,      ... (2.58)

where

U
K R

z
 

 


 
      

 2 22

1 21
1

z z x xy x yz z x
K xy

z x z z x

    
          

 
 2 2 2 2 2 2

22

1
(1 ) 2 2K z xy z xy zx y xyz zx x yz x

z z x
          

    
 

 
 
 

2 2 2

2 22 2

2z xz x z x

z z x z z x

    
 

 

2

1
K

z
   .      ... (2.59)
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Hence equation (2.58) becomes

2

1
0

dU

dz z
   or  2

0
dz

dU
z

  .

Integrating we get

2
1

U C
z

 

or
 
  2

1 1x yz
C

z z x z


 



   21 xy C z x    .

Example 7 :   2 22 2 2 0x y xz dx xydy x dz     .

Solution : The Pfaffian differential equation is given by

 2 22 2 2 0x y xz dx xydy x dz     ,      ... (2.60)

where the vector

 2 22 2 , 2 ,  X x y xz xy x

2 22 2 2

      

 

i j k

curl X x y z

x y xz xy x

(0 0) (2 2 ) (2 2 )curl X i j x x k y y     

0 0curl X X curl X         ... (2.61)

  the equation (2.60) is integrable. To find the integral of (2.60) we treat

constant 0x dx   .

Thus equation (2.60) reduces to

22 0xydy x dz  .

Integrating we get

2
2

12
2

y
x x z C 

or 2 2
1xy x z C  .
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Let 2 2U xy x z  .      ... (2.62)

There must exist a function   such that

,   
U U

Q R
y z

  
 
 

1 1
2 1

2

U
xy

Q y xy
 

    
 .      ... (2.63)

Also the function U satisfies the equation

0
dU

K
dx

  ,      ... (2.64)

where


 

U

K P
x



 2 22 2 2K x y xz y xz    

2K x  .      ... (2.65)

Hence equation (2.65) becomes

2 0
dU

x
dx

  .

Integrating we get

2
2U x C 

or 2 2 2
2xy x z x C        ... (2.66)

which is the solution of equation (2.60).

Example 8 :      1 1 0yz dx z z x dy xy dz           ... (2.67)

Solution : Here  1 , ( ), (1 )X yz z z x xy    

1 ( ) (1 )

      
   

i j k

curl X x y z

yz z z x xy

     2curl X i x z x j y y k z z         

2 2 2curl X zi yj zk   
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 2 ,2 , 2curl X z y z  

   21 , , 1 2 , 2 , 2        X curl X yz z xz xy z y z

0X curl X  .      ... (2.68)

  the given equation (2.67) is integrable. Consider,,

constant 0x dx   .

Therefore, given equation becomes

   1 0z z x dy xy dz    ,

 
0

1

dy dz

xy z z x
  

  ,

 
0

1

xdy xdz

xy z z x
  

  ,

0
1

dy dz dz

z z x
y

x

   
  

 

. x = constant

Integrating we get

  1
1

log log log logy z z x C
x

      
 

,

1

1

( )

z y
x

C
z x

  
  


,

or
 

1

1

( )

z yx
C

x z x




 .

Let  
 

1



z yx

U
x z x

.      ... (2.69)

There must exist a function   such that

U
Q

y
 




 or  
U

R
z

 



,

   
1 1U xz

Q y z z x x z x


 
       

,
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   2 2

1
   

 

xz

xz z x z x
  .      ... (2.70)

The function U satisfies the equation

0
dU

K
dx

  ,      ... (2.71)

where

U
K P

x
 

 


 
      

 2 22

1 21
1

x z x yz z xy z x
K yz

z x x z x

    
    
   

On simplifying we get

 
 2

2 22

1 1
   


K z x K

xx z x .      ... (2.72)

2

1
0

dU

dx x
   or 2

0
dx

dU
x

  .

Integrating we get

2
1

U C
x

 

 
  2

1 1z xy
C

x z x x


  



     21z xy z x C x z x     

    21 1z xy z x C x     .      ... (2.73)
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Exercise :

Show that the following Pfaffian differential equations are integrable and hence find the corresponding
integrals.

1.       0z z y dx z x z dy x x y dz     

2. 2 3 0yzdx xzdy xydz  

3. 2 0ydx xdy zdz  

4.       0yz xyz dx zx xyz dy xy xyz dz     

Answers :

1.    z x y C x z  

2. 2 2xy Cz

3. 2xy z C 
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COMPATIBLE SYSTEMS OF FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS

UNIT - III

Introduction :

In this unit we introduce a system of first order partial differential equations and find the conditions
that the system has common solution. As discussed in the Unit 2, the method of finding the general
integral of Lagrange’s equation, in this unit we introduce methods due to Chanpits and Jacobi to find
the complete integral of the first order partial differential equations.

Definition : Two first order partial differential equations

 , , , , 0f x y z p q         ... (1.1)

and  , , , , 0g x y z p q         ... (1.2)

are said to be compatible (they have a common solution) on a domain D, if and only if

 
 

,
0

,

f g
J

p q


 


on D        ... (1.3)

and the equation

   , , , ,dz x y z da x y z dy          ... (1.4)

is integrable, where  , ,p x y z  and  , ,q x y z  are obtained by solving (1.1) and (1.2).

Theorem : A necessary and sufficient condition for the two partial differential equations

 , , , , 0f x y z p q   and  , , , , 0g x y z p q 

to be compatible is that

   
 

 
 

 
 

 
 

, , , ,
, 0

, , , ,

f g f g f g f g
f g p q

x p z p y q z q

   
    
    .

Proof : Consider two first order partial differential equations

 , , , , 0f x y z p q         ... (1.5)

and  , , , , 0g x y z p q  .        ... (1.6)

By definition, equations (1.5) and (1.6) are said to compatible iff

 
 

,
0

,

f g
J

p q


 
        ... (1.7)
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and  , ,p x y z  and  , ,q x y z

obtainable from (1.5) and (1.6) render the equation

   , , , ,dz x y z dx x y z dy          ... (1.8)

integrable. We write equation (1.8) as

   , , , , 0x y z dx x y z dy dz           ... (1.9)

We know the condition that the equation (1.9) is integrable iff

0X curl X  ,

where

 , , 1X   

1

i j k

curl X
x y z

 

  
 

  


   z z x ycurl X i j k        

 , ,z z x ycurl X        .

Thus the condition 0X curl X   becomes

  , , 1 , , 0z z x y        

x z y z       .      ... (1.10)

Substituting   and   for p and q respectively in equation (1.5) we get

 , , , , 0f x y z         ... (1.11)

Differentiating equation (1.11) with respect to x and z we get

0x p x q xf f f         ... (1.12)

and 0z p z q zf f f    .      ... (1.13)

Multiplying equation (1.13) by   and adding it to the equation (1.12) we get

    0x z p x z q x zf f f f          .      ... (1.14)

Similarly, from equation (1.6) we obtain
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    0x z p x z q x zg g g g          .     ... (1.15)

Multiplying equation (1.14) by gp and (1.15) by fp and subtracting we get

     0x p p x z p p z x z q p p qf g f g f g f g f g f g        

            p q q p x z x p p x z p p zf g f g f g f g f g f g  

 
     

 
 
 

, , ,

, , ,x z

f g f g f g

p q x p z p
  

  
   

  

or
 
 

 
 

, ,1
,

, ,x z

f g f g

J x p z p
  

  
      

     ... (1.16)

where
 
 

,
0

,

f g
J

p q


 
 .

Similarly, differentiating equation (1.11) with respect to y and z we obtain, after similar analysis, the
equation

 
 

 
 

, ,1

, ,

  
      

y z

f g f g

J y q z q
   .      ... (1.17)

Now substituting equations (1.16) and (1.17) in the equation (1.10) we obtain

 
 

 
 

 
 

 
 

, , , ,

, , , ,

f g f g f g f g

x p z p y q z q
 

   
   

   
.

Replacing   and   by p and q respectively, we get

 
 

 
 

 
 

 
 

, , , ,
0

, , , ,

f g f g f g f g
p q

x p z p y q z q

   
   

   
.      ... (1.18)

This is the desired compatibility condition. This condition can also be written as

 , 0f g  .

Example 1 : Show that the equations

2 2 1 0f p q     and  2 2 0g p q x pz   

are compatible and find the one parameter family of common solutions.

Solution : Let the partial differential equations be given by

  2 2, , , , 1 0f x y z p q p q         ... (1.19)
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   2 2, , , , 0g x y z p q p q x pz    .      ... (1.20)

We know the condition that the equations (1.19) and (1.20) are compatible iff

 , 0f g 

i.e.
 
 

 
 

 
 

 
 

, , , ,
0

, , , ,

f g f g f g f g
p q

x p z p y q z q

   
   

    ,      ... (1.21)

where from equations (1.19) and (1.20) we readily obtain

x
pz x p

z
   ,      ... (1.22)

and
2

2 2 21 1
x

q p q
z

      
 

 or 
2 21

q z x
z

  .      ... (1.23)

We find from equations (1.19) and (1.20) that

0,   2 ,x pf f p   2 2 ,   2x pg p q g px z   

Therefore,
 
     

 
2 2, ,

2 2 2
, ,

 
         

 x p p x

f g f g x
f g f g p p q p

x p x p z
.

Similarly,

0,   z zf g p  

Therefore,  
 

 
 

2
2 2

2

, ,
2 2 2

, ,

 
      

 z p p z

f g f g x
f g f g p p

z p z p z
.

Similarly,

0,   2 ,   0,   2y q y qf f q g g qx   

Therefore,
 
 

,
0

,


  

 y q q y

f g
f g f g

y q .

Next we find

 
   ,

2 2
, z q q z

f g
f g f g q p pq

z q


     



 
 

2 2
2

, 2
2

,

f g x
pq z x

z q z


   

 .

Substituting these in equation (1.21) we get
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     2, 2 2 0 2f g p p p q pq    

 2 22 2p p p q   

2 2p p   As 2 2 1 p q  by ... (1.19)

= 0

 , 0f g  .      ... (1.24)

This shows that the equations (1.19) and (1.20) are compatible.

Now to solve these equations we have

dz pdx qdy 

     
2 21x

dx z x dy
z z

  

2 2zdz xdx z x dy   

 2 2

2 2

zdz xdx
dy d z x dy

z x


    



Integrating we get

2 2z x y c  

or  22 2z x y c  

or  22 2z x y c   ,      ... (1.25)

which is a required one parameter family of common solution.

Example 2 : Show that the equations

 ,   2xp yq z xp yq xy  

are compatible and find a one parameter family of common solution.

Solution : Let the partial differential equation be given by

 , , , , 0f x y z p q xp qy   ,      ... (1.26)

   , , , , 2 0g x y z p q z xp yq xy    .      ... (1.27)

We know the condition that the equations (1.26) and (1.27) are compatible iff

 , 0f g  ,



65

where

   
 

 
 

 
 

 
 

, , , ,
,

, , , ,

f g f g f g f g
f g p q

x p z p y q z q

   
   
   

.      ... (1.28)

From equations (1.26) and (1.27) we find

, , 2 ,x p x pf p f x g zp y g zx    

Therefore,
 
 

,
2

,


  

 x p p x

f g
f g f g xy

x p .

Now we find

0,z zf g xp yq  

Thus,
 
     

 
2, ,

, ,

 
        

 z p p z

f g f g
f g f g x xp yq x p xyq

z p z p .

Similarly,

, , 2 ,y q y qf q f y g zq x g zy      

Hence,
 
 

,
2

,


   

 y q q y

f g
f g f g yx

y q
,

and

 
     

 
2, ,

, ,z q q z

f g f g
f g f g y xp yq xyp y q

z q z q

 
      

 
.

Substituting these values in equation (1.28) we get

   2 2 2 2, 0   f g p x y q

 , 0 f g

  Equations (1.26) and (1.27) are compatible. Now to solve these equations, we find from (1.26)
and (1.27) that

,    
y x

p q
z z

.

Substituting this in dz pdx qdy   we get

y x
dz dx dy

z z
 

zdz ydx xdy  
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( )zdz d xy .

Integrating we get

2

12

z
xy C 

or 2 2z xy C  .

Which is the required one parameter family of common solution.

Example 3 : Show that the equation z = px + qy is compatible with any equation  , , , , 0f x y z p q 

that is homogeneous in x, y and z.

Solution : Since f is a homogeneous in x, y, z, therefore it can be written as

, , ,n x y
f z p q

z z
    
 

.      ... (1.29)

Put ,
x y

u v
z z

  .

Therefore, the given equations reduce to

 , , , , 0g x y z p q px qy z         ... (1.30)

and    , , , , , , , 0h x y z p q u v p q  .      ... (1.31)

We know equations (1.30) and (1.31) are compatible iff

 , 0g h  ,

where we know

   
 

 
 

 
 

 
 

, , , ,
,

, , , ,

g h g h g h g h
g h p q

x p z p y q z q

   
   
   

.      ... (1.32)

Therefore, we have

 
 

,

, x p p x

g h
g h g h

x p


 



 p xp x  

 p u xp x u  

 
 

,

, p u

g h x
p

x p z
 


 

 .
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Similarly,

 
 

,

, z p p z

g h
g h g q

z p


 



  p zx   

 
 

,

,


   

 p z

g h
x

z p
 

 
 

,

, y q q y

g h
g h g h

y q


 



 q v yq y v  

 
 

,

, q v

g h y
q

y q z
 


 

 ,

and

 
 

,

, z q q z

g h
g h g h

z q


 



 
 

,

, q z

g h
y

z q
 


  

 .

Substituting these in [ g, h ] we get

 , pg h p u p
x

p
z
   z qpx q   v q

y
q

z
   y zq 

     u v zu v px qy  

 u v u z v zu v z u v         by ... (1.30)

2 2u v u v
x y

u v z
z z

          
 

u v u v
x y

u v
z z

       

u v u vu v u v       

 , 0g h 

  the given equations are compatible.
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Exercise :

1. Show that the following first order partial differential equations are compatible and find
a one-parameter family of common solution.

,xp yq x 

2 . x p q xz

2. Show that the equations  , , , 0f x y p q   and  , , , 0g x y p q   are compatible if

 
 

 
 

, ,
0

, ,

f g f g

x p y q

 
 

 
.

2. Charpit’s Method :

In this section, we present a method of finding complete integral of a first order p.d.e.

 , , , , 0f x y z p q   due to Charpit. Method is based on the concept of the last section viz. the concept

of compatibility.

Definition : Let a first order p.d.e. be given by

 , , , , 0f x y z p q  .        ... (2.1)

A one-parameter family of p.d. equations given by

 , , , , , 0g x y z p q a  , a is a parameter,        ... (2.2)

is said to be compatible with (2.1) if (2.2) is compatible with (2.1) for each value of a.

Result : Describe Charpit’s Method of solving a first order partial differential equation

 , , , , 0f x y z p q  .

Proof : Let the first order p.d.e. whose complete integral is to be determined be given by

 , , , , 0f x y z p q  .        ... (2.3)

The fundamental idea in Charpit’s method is the introduction of a second partial differential equation of
the first order

 , , , , , 0g x y z p q a         ... (2.4)

which contain an arbitrary constant ‘a’ and which is such that

(i) equations (2.3) and (2.4) can be solved for  , ,p p x y z  and  , ,q q x y z and

(ii) the equation    , , , ,dz p x y z dx q x y z dy   is integrable.



69

i.e. we need only to seek an equation

 , , , , , 0g x y z p q a 

Compatible with the given equation

 , , , , 0f x y z p q 

We know equations (2.3) and (2.4) are compatible iff

 , 0f g 

i.e.
 
 

 
 

 
 

 
 

, , , ,
0

, , , ,

f g f g f g f g
p q

x p z p y q z q

   
   

   
.        ... (2.5)

        0x p p x z p p z y q q y z q q zf g f g p f g f g f g f g q f g f g         .

We write this as

      0p q p q x z y z
g g g g g

f f pf qf f pf f qf
x y z p q

    
        

    

or       0
    

       
    p q p q x z y z
g g g g g

f f pf qf f pf f qf
x y z p q .        ... (2.6)

This is a quasi-linear first order partial differential equation for g with x, y, z, p and q as the
independent variables.

Thus our problem of finding a one-parameter family of p.d. equations (2.4) which is compatible
with the given p.d.e. (2.3) is equivalent to find a solution of equation (2.6) in as simple form as possible
involving p or q or both and an arbitrary constant a.

This we do by finding an integral of the following subsidiary equations involving and arbitrary
constant.

y

p q p q x z y z

ddx dz dp dq

f f pf qf f pf f qf
     

  
.        ... (2.7)

Once an integral  , , , , ,g x y z p q a  of this kind has been found, solving the p.d.e. (2.3) and

the integral thus obtained for p and q, we get

   , , , ,   , , ,p x y z a q x y z a   .

Then

dz dx dy          ... (2.8)

is integrable by virtue of the fact that the equations (2.1) and (2.2) are compatible.

Let the integral of (2.8) be of the form
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 , , , , 0F x y z a b  .        ... (2.9)

This is a two-parameter family of solutions of (2.3), it is a complete integral of (2.3).

Example 1 : Find the complete integral of 2 0z pqxy   by Charpit’s method.

Solution : Let   2, , , , 0f x y z p q z pqxy        ... (2.10)

To find a one-parameter family of p.d.e. which is compatible with (2.10), we know the auxiliary
equations are

p q p q x z y z

dx dy dz dp dq

f f pf qf f pf f qf
     

  
,      ... (2.11)

where from equation (2.10) we have

,   ,   ,   ,   2p q x y zf qxy f pxy f pqy f pqx f z         .

Hence the equations (2.11) become

2 2

dx dy dz dp dq

qxy pxy pqxy pqxy pqy pz pqx qz
     

       
.

or 2 2 2
   

 
dx dy dz dp dq

qxy pxy pqxy pz pqy qz pqx      ... (2.12)

Each ratio of (2.13) is also equal to

  


pdx qdy xdp ydq

pqxy  pqxy 2 pxz pqxy 2 qzy pqxy

each ratio
 2

  



pdx qdy xdp ydq

z px qy
.

Consider

 2 2

  



dz pdx qdy xdp ydq

pqxy z px qy

Since from equation (2.10) we have

2z
pq

xy


Hence,  2 22

  



dz pdx qdy xdp ydq

z px qyz
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dz pdx qdy xdp ydq

z px qy

  
 



 d xp yqdz

z px qy





.

Integrating we get

 log log logz px qy a  

 z a px qy   ,      ... (2.13)

where a is an arbitrary constant.

Let    , , , , ,g x y z p q a z a px qy   .      ... (2.14)

Thus equations (2.10) and (2.14) are compatible.

Solving equations (2.10) and (2.14) for p and q we obtain

z
p

cx
  and 

cz
q

y
   with  1 1a c c  .

Hence the equation dz pdx qdy   becomes

z cz
dz dx dy

cx y
 

1 1dz dx
c dy

z c x y
   .

Integrating we get

1
log log log logz x c y b

c
  

1 ccz bx y      ... (2.15)

 
1

, , , , ccF x y z b c z bx y        ... (2.16)

which is the complete integral of the first order p.d.e. (2.10). This is a two-parameter family of solutions
of equation (2.10) and is the required complete integral.

Example 2 : Find the complete integral of

 2 2 0p q y qz   .
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Solution : Let the p.d.e. be given by

   2 2, , , , 0f x y z p q p q y qz    .      ... (2.17)

From equation (2.17) we have

2 22 ,   2 ,   0,   ,   p q x y zf py f qy z f f p q f q       .

Hence the auxiliary equations (2.7) becomes

i.e.
2 2 22 2 2 2

    
  

dx dy dz dp dq

py qy z pqp y q y qz p
.      ... (2.18)

Consider the ratio

dp dq

q p
  ,

pdp qdq   .

Integrating we get

2 2 2p q a  ,      ... (2.19)

where ‘a’ is a constant.

Let   2 2 2, , , , , 0g x y z p q a p q a         ... (2.20)

which is compatible with (2.17). Now to find the complete integral of (2.17) we solve equations (2.17)
and (2.20) for p and q.

Hence we write from (2.17) and (2.20) that

 2 2p q y qz  ,

and  2 2 2 2p q a qz a y   

or
2a y

q
z

 .

Hence
2

2 2 4
2

y
p y a y ya

z
 

or
2

2 2 4 2 2 2
2

y a
p a a p z a y

zz
     .

Hence the equation

dz pdx qdy 
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becomes

2
2 2 2a a y

dz z a y dx dy
z z

  

or

2

2 2 2

zdz a ydy
adx

z a y






i.e.  2 2 2 d z a y adx .

Integrating we get

2 2 2z a y ax b  

or  22 2 2z a y ax b   .

Hence the equired complete integral is

 22 2 2z a y ax b   .      ... (2.21)

Example 3 :  Find the complete integral of the p.d.e.

 2 2 2 2 2 2 2 2p q x y x q x y  

Solution : Let the given p.d.e. be denoted by

   2 2 2 2 2 2 2 2, , , , 0f x y z p q p q x y x q x y     .      ... (2.22)

From equation (2.22) we have

 2 2 2 2 22 , 2 2 , 0,p q zf pq f qp x q x y f    

 2 2 3 2 2 2 22 4 2 , 2 2x yf xy q x xy f yx yx q     .

Hence the auxiliary equations (2.7) become

   2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2

dx dy dz

pq qp x q x y p q q p x q x y
  

    

  2 2 22 2 3 2 2 22 2 2

dp dq

yx x yqxy q x xy

 
 

 
.

Consider the ratios
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  2 2 2 2 22 2 2 2 2 2 2 22 2

qdy ydq

x y x y qp q x q x y




 

 2 2 2 2 22 2 1

qdy ydq

x y x y q


 

   by ...  (2.22)

   2

1 1 1

2 1 2(1 )1

dy dq dy
dq

y y q q qq q

          
.

Integrating we get

   1 1
log log log 1 log 1 log

2 2
     y q q q a

   2 log 2 log log 1 log 1 2 logy q q q a     

2
2 2

2
log log

1

 
   

 

q
y a

q

2
2 2

21

q
y a

q
 



or    2 2 2 2 2 2 2 21 q y a y q y a y    

 
1

2 2 2

y
q

y a




.      ... (2.23)

Substituting this in equation (2.22) we get

 
2 2

2 2 2 2 2 2
2 2 2 2

y y
p x y x x y

y a y a

 
    

  

 
 

2 2
2 2 2 2

2 2

x y
y a x y

y a
      



 2 2 2 2p x x a  

 
1

2 2 2p x x a  .      ... (2.24)

Substituting these values in the equation

dz pdx qdy 
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1
2 2 2

1
2 2 2

y
dz x x a dx dy

y a
  



Integrating we get

2 2

2 2

y
z x x a dx dy b

y a
   


 

   
3 1

2 2 2 22 21

3
    z x a y a b .      ... (2.25)

Example 4 : Find the complete integral of

5 3 2 24 6 2 0px q x x z   

by Charpit’s method.

Solution : Let

  5 3 2 2, , , , 4 6 2 0f x y z p q px q x x z     .      ... (2.26)

From equation (2.26) we find

5 2 2 4 3 2, 12 , 5 8 12 , 0, 6p q x y zf x f q x f px q x xz f f x        .

Hence the auxiliary equations (2.7) become

5 2 2 5 3 2 4 3 2 212 12 5 8 12 6 6

dx dy dz dp dq

x q x px q x px q x xz px x q


    
    

.      ... (2.27)

Consider the ratios

5 26

dx dq

x x q
 

3
6

dx dq

qx
   .

Integrating we get

2

1
6 log log

2

     
 

q a
x

3
2

2
1

3
log       

 
xq

q a e
Cx

9
23 3   xq a e .
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Substituting in (2.26) we get

9
9 22
25 3 2 2

3 3 5

4 6 2
4 6 2      

x
x a e z

px a e x x z p
x x x

.

Hence the equation dz pdx qdy   becomes

9
323
2

3 3 5

4 6 2
 
 

    
 

x
xa e z

dz dx ae dy
x x x

9
323
2

3 3 5

6 4 2
 
 

    
 

x
xz a e

dz dx dx ae dy
x x x

or

6 3
3 2 23
2

3 3 5

6 4 2



 
       

   

x x
x z a e e

e dz dx dx ady
x x x

6 3
3 2 23
2

3 5

4 2



 

    
      

 

x x
x a e e

d ze dx ady
x x

.

Integrating we get

6 3
3 2 2
2 3

3 5
4 2




    
x x

x e e
ze a dx dx ay b

x x
     ... (2.28)

Consider

6
2

3
 

xe
I dx

x

Put 2

6
t

x


3 3

12

12

dx dt
dx dt

x x


    

Hence,

6
21 1

12 2
    t xI e dt e

6
62 3
23

3
4

3
  

x
xe a

a dx e
x
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Now consider

3
2

5
2




xe

dx
x

Put 2 2 3

3 1 6

3

t
t dx dt

x x x
      

3
2

5

1
2 2

6 3 9



      
   

tx
te dt t te

dx e
dtx

   1

9
   t tt e e

Thus

3 6
3

2 2

3


   x xa

ze e ay b

 
3 9 3 3 3

3
2 2 2 2 2

2

1 3

3 9


      x x x x xa

z ay b e e e e e
x

 
3 9

3
2 2

2

1 1

3 93
    x xa

z ay b e e
x

.      ... (2.29)

Example 5 : Find the complete integral of the p.d.e.

2 22 2 0z p qy y   

by Charpit’s method.

Solution :  Let

  2 2, , , , 2 2 0f x y z p q z p qy y     .      ... (2.30)

From equation (2.30) we have

2 , , 0, 4 , 2p q x y zf p f y f f q y f     

Hence equations (2.7) become

22 2 4 22
     

 
dx dy dz dp dq

p y p q y qp qy
.

Consider the ratio

2 2

dx dp
dx dp

p p
     .

Integrating we get
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x p a        ... (2.31)

or p a x  .

Substituting this in (2.30) we get

 2 22 2 0z a x qy y     .

 2 21
2 2       q z a x y

y .      ... (2.32)

Substituting these equation in dz pdx qdy   we get

   2 21
2 2       dz a x dx z a x y dy

y

 
 2

2
2

z a x
dz dy a x dx dy ydy

y y


     

   2
2

2
ydz zdy a x ydx a x dy

ydy
y y

   
 

   2 22 2ydz zdy a x ydx a x dy y dy     

Multiplying this equation by 2y we get

   22 2 32 4 2 2 4y dz zydy y a x dx y a x dy y dy     

or       22 2 42      d zy d y a x d y .

Integrating we get

 22 2 42zy y a x y b   

or  22 22y z a x y b      .      ... (2.33)

Which is the required complete integral.

Example 6 : Find the complete integral of

  22 z xp yq yp  

by Charpit’s method

Solution : Let

    2, , , , 2 0f x y z p q z xp yq yp          ... (2.34)

where from equation (2.34)
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22 2 , 2 , 2 , 2 , 2p q x y zf x yp f y f p f q p f       .

Hence the auxiliary equations (2.7) become

    2 22 2 42 2 4

dx dy dz dp dq

x yp y pxp yq yp q p

 
    

   
.

Consider the ratios

2

dy dp

y p
     or   2dy dp

y p
  .

Integrating we get

2 log log logy p a  ,

2y p a    or  
2

a
p

y
 .      ... (2.35)

Substituting this in (2.34) we get

2

2 4
2

a a
z x yq y

y y

    
 

,

2

3 2
2 2

a a
yq z x

y y

     
 

,

or
2

4 32

a z xa
q

yy y

    
 

.      ... (2.36)

Substituting in dz pdx qdy   we get

2

2 4 32

a a z ax
dz dx dy

yy y y

       
   

,

2

2 3 42

a ax a z
dx dy dy dy

yy y y
    ,

2

2 3 42

z a ax a
dz dy dx dy dy

y y y y
     ,

2

2 3 42

ydz zdy a ax a
dx dy dy

y y y y


    ,

2

2 3
( )

2

a ax a
d yz dx dy dy

y y y
   ,
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2

2 32

ydx xdy a
a dy

y y

   
 

2

3
( )

2

x a
d yz a dy

y y

   
 

.

Integrating we get

2 2

2 2

x a y
yz a b

y

          

or
2

2 34

ax b a
z

yy y
  

2

2 34

ax b a
z

yy y
   

which is the required complete integral.

Example 7 :  Find the complete integral of the p.d.e.

 2 2 0z p q px qy    .

Solution : Let the given p.d.e. be denoted by

   2 2, , , , 0f x y z p q z p q px qy     ,      ... (2.37)

 2 22 ,  2 ,  ,  ,          p q z x yf pz x f qz y f p q f p f q

Hence the auxiliary equations (2.7) reduce to

   2 2 2 2 2 22 2 2 2

dx dy dz dp dq

pz x qz y p z px q z qy p p p q q q p q

 
   

        

Consider the ratios

      22 2 2 2
0

0

qdp pdq qdp pdq qdp pdq

qpq pq p q pq pq p q

 
    

   

0
p

d
q

   
 

Integrating we get
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p
a

q


or p aq .      ... (2.38)

Substituting this in (2.37) we get

 2 2 2 0z a q q aqx qy   

   2 2 1 0q z a q ax y     

   2 1 0q qz a ax y     

for
 
 2

0
1

ax y
q q

z a


   


    ... (2.39)

Substituting these values in  dz pdx qdy  we get

dz aqdx qdy 

     
 
   

2 1

ax y
adx dy

z a


  



or      
2

1

1
zdz ax y adx y

a
     



     
2

1
2

2 1
zdz ax y adx dy

a
    



   2

2

1

2 1
zdz d ax y

a
  


.

Integrating we get

   
2

2

2

1

2 2 1

z
ax y b

a
   



 
 

2
2

2 1

ax y
z b

a


   



or
 2

2
2 1

ax y
z b

a


 


.      ... (2.40)

Example 8 : Find the complete integral of the equation
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 2 23 2xp yq z x q  

by Charpit’s method.

Solution : Let

   2 2, , , , 3 2 0f x y z p q xp yq z x q     .      ... (2.41)

From equation (2.41) we obtain

2 2, 3 4 , 4 , 2p q x zf x f y x q f p xq f       .

Hence the auxiliary equations (2.7) become

2 2 2 2 3 23 4 3 4 4 2

dx dy dz dp dq

x q qy x q px yq q x p xq p

 
   

    
.

Consider the ratio

dx dq

x q



.

Integrating we get

log log logx q a xq a    ,

or a
q

x
 .      ... (2.42)

Substituting (2.42) in (2.41) we get

2 2

2
3 2 0

a x a
xp y z

x x

 
    

 
,

2 3
2 2

ay
px z a

x
    ,

or
 2

2

2 3z q qy
p

x x


  .      ... (2.43)

Substituting these values in the equation dz pdx qdy   we get

 2

2

2 3z q ay a
dz dx dy

x xx

 
   
 

,

 2
2

1
2 3

a
dz x z a ay dx dy

xx
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or
 2 2

4
2

2
3

  
   

 
x dz x x a dx

x aydx axdy
x

,

 2
4

2
3

z a
x d aydx axdy

x

 
   

 
,

or
2

2 3 4

3 
  

 
z a a ay

d dy dx
x x x

,

2

2 3

z a ay
d d

x x

         
.

Integrating we get

2

2 3

z a ay
b

x x


 

or  2 3  x z a ay bx      ... (2.44)

which is the required complete integral.

Example 9 : Find the complete integral of the p.d.e.

pxy pq qy yz  

by Charpit’s method.

Solution : Let

 , , , , 0f x y z p q pxy pq qy yz     .      ... (2.45)

From equation (2.45) we have

, , , ,p q x y zf xy q f p y f py f px q z f y          .

Hence the auxiliary equations (2.7) reduce to

dx dy dz dp dq

xy q p y pxy pq pq qy py py px q z qy

 
   

        

we see that

0dp  ,

p a  .      ... (2.46)

Substituting in equation (2.45) we get

0axy aq qy yz    ,
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 q a y yz axy  

 
 

y z ax
q

a y





.      ... (2.47)

Substituting these values in dz pdx qdy   we get

 
 
z ax

dz adx y dy
a y


 

 .

We write this as

 z ax
dz adx y dy

a y


  



1
dz adx ydy dz adx a

dy
z ax a y z ax a y

            
.

Integrating we get

 log log( ) logz ax y a y a b    

   
log

a
z ax y a

y
b

  
 

  a yz ax y a be   

  ayz ax be y a
   .

This is required complete integral.

Example 10 : Find the complete integral of the p.d.e.

2 2 2 2 4 0x p y q  

Solution : Let the p.d.e. be given by

  2 2 2 2, , , , 4 0f x y z p q x p y q    .      ... (2.48)

2 2 2 22 , 2 , 2 , 2 , 0     p q x y zf px f qy f xp f yq f

Hence auxiliary equations (2.7) become

2 2 2 2 2 2 2 22 2 2 2 2 2

dx dy dz dp dq

px qy p x q y xp yq
     


.      ... (2.49)
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Now consider the ratios

2 22 2

dx dp dx dp

x ppx xp
     .

Integrating we get

log log logx p a  

xp a  .

Let  , , , , , 0g x y z p q a xp a        ... (2.50)

be the one-parameter family of p.d.c. which is compatible with (2.48).

Now to find the complete integral of (2.48) we solve

2 2 2 2 4x p y q   and xp a  for p and q to get

a
p

x
   and  

24 a
q

y




Hence the equation

dz pdx qdy 

becomes 24
a dy

dz dx a
x y

   .

Integrating we get

2log 4 logz a x a y b    .     ... (2.51)

This involves two arbitrary constants and hence it is called the complete integral of (2.48).

If however, we choose the ratio

2 22 2

dy dq dy dq

y qy q yq
   


Integrating we get

log log logy q a  

yq a 

Let  , , , , 0  g x y z p q yq a      ... (2.52)

This is a one-parameter family of p.d.e. compatible with (2.48). Solving we get

a
q

y
 .
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Also from equation (2.48) we get

2
2 2 2 4

4
a

x p a p
x


    .

Hence the equation dz pdx qdy   becomes

24
dx a

dz a dy
x y

   .

Integrating we get

24 log logz a x a y b    .      ... (2.53)

This equation involves two auxiliary constants and hence is called a complete integral of (2.48).

Note : Equations (2.51) and (2.53) are not different.

Example 11 : Find the complete integral of

2 2p x q y z 

by Charpit’s method.

Solution : Let

  2 2, , , , 0f x y z p q p x q y z         ... (2.54)

From this equation we find

2 22 , 2 , , , 1p q x q zf px f qy f p f q f      .

Hence the auxiliary equations (2.7) become

2 2 2 22 2 2 2

dx dy dz dp dq

px qy p x q y p p q q
     

  
.

Consider the ratios

2

3

2

2

p dx pxdp

p x 32 p x

2

2 3

2

2 2






q dy qydq

p x q y 32 q y 22 q y

2 2

2 2

2 2p dx pxdp q dy qydq

p x q y

 
  .

Integrating we get

   2 2log log logp x q y a 

2 2p x aq y       ... (2.55)
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Using this in (2.54) we get

2 2 2

1

z
aq y q y z q y

a
   



1
2

( 1)

z
q

a y
     

.      ... (2.56)

Hence from equation (2.55) we get

 

1
2

1
    

azp
x z

Substituting these values in

dz pdx qdy 

We get  

1 1
2 2

1 ( 1)

az z
dz dx dy

x a a y
           

1
dz dx dy

a a
z x y

     .

Integrating we get

 1 a z ax y b   

    
1 11

2 221a z ax y b    .

This is the required complete Integral.

Example 12 : Solve the p.d.c. by Charpit’s method

 2
p z qy  .

Solution : Let

   2
, , , , 0f x y z p q p z qy         ... (2.57)

be the given non-linear p.d.e.

Where from equation (2.57) we find

     1, 2 , 0, 2 , 2p q x y zf f y z qy f f q z qy f z qy           .

Hence the auxiliary equation (2.7) becomes

                
 dx dy dz dp dq

2q z qy
1 2y z qy p 2qy z qy 2p z qy 2q z qy

 
     
        ... (2.58)
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Consider the ratios

   
dy dp dy dp

2y z qy 2p z qy y p
   

  
.

Integrating we get

log y log p log a 

yp a       ... (2.59)

or a
p

y
 .

Putting this value in (2.57) we get

 2a
z qy

y
   or  

a
z qy

y
 

or 1 a
q z

y y

 
  

 
.      ... (2.60)

Substituting these values in

dz pdx qdy  ,

we get

a 1 a
dz dx z dy

y y y

 
   

 
,

3
2

a z a
dz dx dy dy

y y y
   ,

3
2

y
ydz zdy adx a dy

y
     ,

  1
d yz adx a dy

y
  .

Integrating we get

yz ax 2 ay b   .      ... (2.61)

Example 13 : Find the complete integral of the p.d.e.

 2 2 2 2z p z q 1  .
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Solution : Let

   2 2 2 2f x, y, z, p,q z p z q 1 0    ,      ... (2.62)

where

4 2 3 2 2
p q x y zf 2pz , f 2qz , f 0, f 0, f 4z p 2zq      .

Hence the auxiliary equation (2.7) become

4 2 2 4 2 2 3 3 2 3 2 3

dx dy dz dp dq

2pz 2z q 2p z 2q z 4z p 2zpq 4z p q 2zq

 
   

  
.

Consider the ratios

   3 2 2 3 2 2

dp dq

p 4z p 2zq q 4z p 2zq


 
,

dp dq

p q
  .

On integrating we get

log p log q log a p aq    .      ... (2.63)

Substituting this value in equation (2.62) we get

   2 2 2 2 2 2 2 2 2z a q z q 1 q z 1 a z 1     ,

 
2

2 2 2

1
q

z 1 a z



,

or
2 2

1
q

z 1 a z



.      ... (2.64)

Substituting in dz pdx qdy   we get

2 2z 1 a z dz adx dy   .

On integrating we get

 
3

2 2 2

2

a z 1
ax y b

3a


   .      ... (2.65)
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Example 14 : Find the complete integral of the p.d.e.

 2 22x z q 1 pz 

by Charpit’s method

Solution : Let

   2 2f x, y, z, p,q 2x z q 1 pz 0         ... (2.66)

 2 2 2 2
p q x y zf z, f 4xz q, f 2 z q 1 , f 0, f 4xzq p         .

Hence the auxiliary equations (2.7) become

          2 2 2 32 2 2 2

dx dy dz dp dq

z 4xz q zp 4q xz 4xzq pq2 z q 1 4xzq p p

 
   

     

Consider the ratios

2 2

dqdz
qz

p 4xq z p 4xzq




   

dz dq

z q
   .

Integrating we get

log z log q log a  

zq a 

a
q

z
  .

Substituting this in (2.66) we get

 22x a 1 pz 0  

 2 x
p 2 a 1

z
   .

Substituting this in dz pdx qdy   we get

 2 x a
dz 2 a 1 dx dy

z z
  

 2zdz 2 a 1 xdx ady   

Integrating we get
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2

2 2z
a 1 x ay b

2
    ,

or  2 2 2z 2 a 1 x 2ay b    .

This is the complete integral of (2.66).

Example 15 : Obtain the complete integral of the p.d.e.

 2 2 2z 1 p q 1   .

Solution : Let

   2 2 2f x, y, z, p,q z 1 p q 1 0          ... (2.67)

be the given p.d.e. Where from equation (2.67) we obtain

 2 2 2 2
p q x y zf 2pz , f 2qz , f 0, f 0, f 2z 1 p q       .

Hence the auxiliary equations (2.7) become

   2 2 2 2 2 2 2 2 2 2

dx dy dz dp dq

2pz 2qz 2p z 2q z 2zp 1 p q 2zq 1 p q

 
   

    
.      ... (2.68)

Consider the ratios

   2 2 2 2

dp dq

2zp 1 p q 2zq 1 p q


   
,

dp dq

p q
  .

Integrating we get

log p log q log a  ,

p aq  .

Let  g x, y, z, p,q,a p aq 0        ... (2.69)

be the one-parameter family of p.d.e. compatible with (2.67). Solving equations (2.67) and (2.69) we
get

 2 2 2 2z 1 a q q 1  

 2 2 2 2z q a 1 1 z    .

12 2
2

2 2 22

1 1 z 1 1
q q 1

a 1 z za 1

                 
.
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Therefore, the equation dz pdx qdy   becomes

1 1
2 2

2 22 2

a 1 1 1
dz 1 dx 1 dy

z za 1 a 1

         
    

1 2 22

2

dz a 1
dx dy

a 1 a 11
1

z

  
   

 

or
 

1 2 22 2

zdz a 1
dx dy

a 1 a 11 z
 

 
.

Integrating we get

2

2 2

a 1
1 z x y b

a 1 a 1
     

 

    22 2a 1 1 z y ax b      .

This is the required complete integral.

Note : A first order p.d.e. can have several complete integrals. Note however that the two complete
integrals are equivalent, in the sense that one can be obtained from another merely by changing the
arbitrary constants.

Remark : However, when one complete integral has been obtained, every other solution, including
every other complete integral can be obtained. We shall explain the procedure in the next section.

3. Some Standard Types of p.d.e.

Type (I) : This type of equation is of the form

 f p,q 0        ... (3.1)

i.e. The given partial differential equation does not involve x, y and z.

Hence x y zf 0, f 0, f 0   .

From auxiliary equations (2.7) we have

p q p q

dx dy dz dp dq

f f pf qf 0 0
   


.

Solving the last equation we get either p = a or q = a.

Putting this in (3.1) we get
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 f a,q 0    or  f p,a 0

q Q(a)   or  p P(a) .

Therefore, putting this in dz pdx qdy   we get

dz adx Q(a)dy  .

Integrating we get

z ax Q(a)y b  

or z P(a)x ay b   .

Type (II) : This type of equation is of the form

 f z, p,q 0        ... (3.2)

i.e. the given p.d.e. does not involve x and y explicitly.

The auxiliary equations become

p q q q z z

dx dy dz dp dq

f f pf qf pf qf
   

          ... (3.3)

Consider the last two ratios

dp dq
p aq

p q
          ... (3.4)

Substituting in (3.2) we get

 f z, aq,q 0  or q Q(a, z)        ... (3.5)

Therefore, the equation dz pdx qdy   becomes

dz aQ(a, z)dx Q(a, z)dy 

or
1

dz adx dy
Q(a, z)

 

Integrating we get

dz
ax y b

Q(a, z)
   .        ... (3.6)

Type (III) : This type of equations is of the form

g(x, p) h(y,q) (separable type)        ... (3.7)

and not z is involved.

The auxiliary equations are
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p p q x y

dx dy dz dp dq

g hq pg qh g h
   
  

Consider the ratios

p x

dx dx

g g




x pg dx g dp  

x pg dx g dp 0   .

Integrating we get

 g x, p a        ... (3.8)

  from (1) that

 h y,q a .        ... (3.9)

Solving these equations (3.8) and (3.9) for p and q we get

p G(a, x),  q H(a, y) .

Therefore, the equation dz pdx qdy   becomes

dz G(a, x)dx H(a, y)dy  .

Integrating we get

   z G a, x dx H a, y dy b    ,

which is the complete integral.

Type (IV) : This type of equation is of the form

 ,  z px qy f p q .      ... (3.10)

This is called Clairaut form of partial differential equation.

The auxiliary equations are

 
   

           p q p q

dx dy dz dp dq

x g y g xp pg yq qg p p q q

   dp o p a  and q b

Substituting this in equation (3.10), we obtain its complete integral in the form

 ,  z ax by f a b .      ... (3.11)

e.g. Find the complete integral of the p.d.e.
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   2 2 2 2   pqz p xq p q yp q .

Solution : The given partial differential equation is in Clairaut form, hence its complete integral is given
by

4 4
  

a b
z ax by

ab
.

4. Jacobi’s Method

Introduction : Let a partial differential equation be

 , , , , 0F x y z p q        ... (4.1)

and  , , 0u x y z        ... (4.2)

be the solution of (4.1)

Differentiating (4.2) w.r.t. y we get

0     y
y z

z

u
u u q q

u
.

Substituting the values for p and q in equation (4.1), let the equation (4.1) reduce to

 , , , , , 0x y zf x y z u u u .        ... (4.3)

This is a p.d.e., in which x, y and z are the independent variables and the dependent variable u does not
appear explicitly in the equation.

Complete integral of   , , , , , 0x y zf x y z u u u  :

A function  , , , , ,u x y z a b c  is said to be a complete integral of (4.3) if it satisfies the p.d.e.

and the associated matrix

 
 
 
 
 

a ax ay az

b bx by bz

c cx cy cz

F F F F

F F F F

F F F F

is of rank three.

Theorem : Let  , , , , , 0x y zf x y z u u u        ... (4.4)

be a p.d.e. Show that any function h given by

 , , , , , 0x y zh x y z u u u

is compatible with (4.4) is
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, , ,
0

, , ,

  
  

  x y z

f h f h f h

x u y u z u
.

Proof : Let  , , , , , 0x y zf x y z u u u        ... (4.5)

be a given p.d.e. in which x, y, z are independent variables. Differentiating (4.5) w.r.t. x, y and z we get

0
  

   
  x xx yx zx

x y z

f f f
f u u u

u u u ,        ... (4.6)

0
  

   
  y xy yy zy

x y z

f f f
f u u u

u u u ,        ... (4.7)

0
  

   
  z xz yz zz

x y z

f f f
f u u u

u u u .        ... (4.8)

Consider

 , , , , , 0x y zh x y z u u u ,        ... (4.9)

where  ih h , i = 1, 2, ...

On differentiating equation (4.9) w.r.t. x, y and z we obtain

0x xx yx zx
x y z

h h h
h u u u

u u u

  
   
   ,      ... (4.10)

0y xy yy zy
x y z

h h h
h u u u

u u u

  
   
   ,      ... (4.11)

and 0z xz yz zz
x y z

h h h
h u u u

u u u

  
   
   .      ... (4.12)

Multiply equation (4.6) by 
x

h

u


  and (4.12) by 

x

f

u


  and subtracting we get

        0x x xy xz
x x y x x y z x x z

h f f h f h f h f h
f h u u

u u u u u u u u u u

                                   
.    ... (4.13)

Now multiplying equation (4.7) by 
y

h

u


  and (4.11) by 

y

f

u


  and subtracting we get
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        0y y xy yz
y y x y y x z y y z

h f f h f h f h f h
f h u u

u u u u u u u u u u

                                    
.  ... (4.14)

Similarly, on multiplying equation (4.8) by 
z

h

u


  and (4.12) by 

z

f

u


  and subtracting we obtain

      0z z xz yz
z z x z z x y z z y

h f f h f h f h f h
f h u u

u u u u u u u u u u

                                    
.     ... (4.15)

Adding equations (4.13), (4.14) and (4.15) we get

0x x y y z z
x x y y z z

h f h f h f
f h f h f h

u u u u u u

                             
.      ... (4.16)

or  
 

 
 

 
 

, , ,
0

, , ,x y z

f h f h f h

x u y u z u

  
  

  
.      ... (4.17)

Equation (4.16) can also be written as

0u u u x y zx y z
x y z

h h h h h h
f f f f f f

x y z u u u

     
     

           ... (4.18)

which is the required result.

Jacobi’s Method :

Result : Describe Jacobi’s Method of solving the first order partial differential equation of the form

 , , , , , 0x y zf x y z u u u  .

Proof : Let the first order partial differential equation whose complete integral is to be determined be
given by the equation.

 , , , , , 0x y zf x y z u u u  ,      ... (4.19)

where x, y, z are independent variables.

The fundamental idea of Jacobi’s method is the introduction of two partial differential equations
of the first order

 1 , , , , , , 0x y zh x y z u u u a  ,      ... (4.20)

 2 , , , , , , 0x y zh x y z u u u b  ,      ... (4.21)

each involving one arbitrary constant ‘a’ and ‘b’ such that
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(i)
 
 

1 2, ,
0

, ,x y z

f h h

u u u





 on D and

(ii) the Pfaffian equation

     , , , , , ,x y zdu u x y z dx u x y z dy u x y z dz  

is integrable, where , ,x y zu u u  are obtained by solving equations (4.19), (4.20) and (4.21)

i.e. we seek functions h1, and h2 such that the equations (4.20) and (4.21) are compatible with (4.19).

We know that any h ( = hi , i = 1,2 ) compatible with equation (4.19) is given by

 
 

 
 

 
 

, , ,
0

, , ,x y z

f h f h f h

x u y u z u

  
  

        ... (4.22)

0x u y u z ux y z
x y z

h h h h h h
f f f f f f

u x u y u z

     
      

     
.

We write this as

0u u u x y zx y z
x y z

h h h h h h
f f f f f f

x y z u u u

     
     

     
.     ... (4.23)

This is the first order partial differential equation for h with x, y, z, ux, uy and uz as the independent
variables.

Hence the subsidiary equations of (4.23) are

yx z

u u u x y zx y z

dudu dudx dy dz

f f f f f f
    

  
.      ... (4.24)

From equation (4.24) we find two integrals involving arbitrary constants ‘a’ and ‘b’ of the form

 1 , , , , , , 0x y zh x y z u u u a  ,      ... (4.25)

and  2 , , , , , , 0x y zh x y z u u u b  .      ... (4.26)

These integrals are such that, equations (4.19), (4.25) and (4.26) can be solved for ux, uy, uz. These
values of ux, uy and uz are then substituted in

x y zdu u dx u dy u dz        ... (4.27)

which is integrable. The integral satisfying (4.19) is of the form

 , , , , , 0x y z a b c  .      ... (4.28)

This is the required complete integral of equation (4.19).
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Remark : The conditions for the equation

x y zdu u dx u dy u dz  

to be exact are

,   ,   y yx xz z
u uu uu u

y x z y x z

   
  

     

These conditions are obviously true. Hence the equation is either exact or not integrable at all.

Example 1 : Solve the equation

2 2 2 0z x yz zu u u   

by Jacobi’s method.

Solution : Let

  2 2 2, , , , , 0x y z z x yf x y z u u u z zu u u          ... (4.29)

be the first order partial differential equation.

Where from equation (4.29) we find

2 , 2 , , 0, 0, 2u x u y u x y z zx y z
f u f u f z f f f z u        

Hence the auxiliary equations (4.24) become

2 2 0 0 2
yx z

x y z

dudu dudx dy dz

u u z z u
    

   
.      ... (4.30)

From this we obtain two independent solutions from the ratios

0 0
yx

dudu


0x xdu u a    ,

0y ydu u b    ,

which are the two integral of (4.29). Substituting these in the equation (4.29) we obtain

2 2 2 0zz zu a b    ,

or
2 2 2

z
a b z

u
z

 
 .

Substituting these values in the equation

x y ydu u dx u dy u dy  
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we get

2 2 2a b z
du adx bdy dz

z

  
    

 
,

 2 2 dz
du adx bdy a b zdz

z
     .

Integrating we get

 
2

2 2 log
2

z
u ax by a b z C      .

This is the required complete integral of (4.29).

Example 2 : Solve the equation

 2
2 0z x zz u u u   

by Jacobi’s method.

Solution : Let

   2
, , , , , 2 0x y z z x zf x y z u u u z y u u    .      ... (4.31)

We first find two one-parameter family of p.d.e. which are compatible with (4.31)

From equation (4.31) we find

   2 , 2 , 2, 0, 0, 1u x y u x y u x y zx y z
f u u f u u f f f f          .

Hence the auxiliary equations (4.24) reduce to

   2 2 0 0 0 1
yx z

x y x y

dudu dudx dy dz

u u u u
    

    
.

From which we obtain two independent integrals by considering the ratios

 
0 0

yx
dudu

 ,

0x xdu u a    ,

0y ydu u b   .

Let  1 , , , , , , 0x y z xh x y z u u u a u a   ,      ... (4.33)

and  2 , , , , , , 0x y z yh x y z u u u b u b   ,      ... (4.34)
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which are compatible with (4.31). Substituting this in (4.31) we get

 2
2 0zz u a b    ,

or   21

2zu a b z   .

Substituting these values in the equation

x x y y z zdu u d u d u d   ,

we get

  21

2
du adx bdy a b z dz     .

Integrating we get

 
2

21

2 4

z
u ax by a b z C     

which is the required complete integral of (4.31).

Example 3 : Solve the equation

2 2 2 0x y zu x u au  

by Jacobi’s method.

Solution : Let

  2 2 2, , , , , 0x y z x y zf x y z u u u u x u au         ... (4.35)

be a given partial differential equation. From equation (4.35) we find

2 , 2 , 2 , 2 , 0, 0u u y u z x x y zx y z
f x f u f au f xu f f        .

Hence, the auxiliary equations (4.24) become

2 2 2 2 0 0
yx z

y z x

dudu dudx dy dz

u au xux
       
       ... (4.36)

From which we obtain two integrals by considering the ratios

0 0
y z

du du


0y yu u b    ,
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and 0z zdu u c   .

Let these be denoted by

 1 , , , , , , 0x y z yh x y z u u u a u b   ,      ... (4.37)

and  2 , , , , , , 0x y z zh x y z u u u b u c   .      ... (4.38)

Substituting these in (4.35) we obtain

2 2
2 2 2

2x x
b ac

u x b ac u
x


    .      ... (4.39)

Substituting these values in the equation

x y zdu u dx u dy u dz  

we get

 2 2

2

b ac
du dx bdy cdz

x


   .

Integrating

 2 2b ac
u by cz d

x


          ... (4.40)

Example 4 :  Solve the equation by Jacobi’s method

2 2 1x y zu u u  

Solution : Let

  2 2, , , , , 1 0x y z x y zf x y z u u u u u u          ... (4.41)

be a given p.d.e. Where from equation (4.41) we find

2 , 2 , 1, 0, 0, 0u x u y u x y zx y z
f u f u f f f f      .

Substituting these in auxiliary equations (4.24) we find

2 2 1 0 0 0
yx z

x y

dudu dudx dy dz

u u
        .      ... (4.42)

Consider the ratios

0
0 0

yx
x

dudu
du  

xu a ,
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and 0y ydu u b   .

Let these be denoted by

 1 , , , , , , 0x y z xh x y z u u u a u a   ,      ... (4.43)

 2 , , , , , , 0x y z yh x y z u u u b u b   .      ... (4.44)

Substituting these in (4.41) we get

2 2 1 0za b u   

 2 21zu a b    .      ... (4.45)

Substituting these values in

x y zdu u dx u dy u dz   ,

we get

 2 21du adx bdy a b dz       .

Integrating we get

 2 21u ax by a b z c      .

Example 5 : Solve the equation by Jacobi’s method

2
x y zxu yu u  .

Solution : Let

  2, , , , , 0x y z x y zf x y z u u u xu yu u    .      ... (4.46)

We find two one-parameter family of p.d.e. which are compatible with (4.46).

From equation (4.46) we have

, , 2 , , , 0u u u z x x y y zx y z
f x f y f u f u f u f       .

Hence the auxiliary equations (4.24) become

2 0
yx z

z x y

dudu dudx dy dz

x y u u u
       

 .

From which we obtain two independent integrals by considering

0z zdu u a    ,      ... (4.47)

and log log logx
a

x

dudx
x u b

x u
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xxu b .      ... (4.48)

Equations (4.47) and (4.48) are compatible with (4.46). Therefore, substituting (4.47) and (4.48) in
(4.46) we get

 2 21
y yb yu a u a b

y
     .      ... (4.49)

Substituting the values from equations (4.47), (4.48) and (4.49) in equation

x y zdu u dx u dy u dz   ,

we get

 2 1dx
du b a b dy adz

x y
    .

Integrating we get

 2log logu b x a b y ax C     .

This is the required complete integral of (4.46)

Example 6 : Solve the equation by Jacobi’s method

2
x y zxu yu u  .

Solution : Let

  2, , , , , 0x y z x y zf x y z u u u xu yu u         ... (4.50)

be a given p.d.e. Where from equation (4.50) we find

, , 2 , , , 0u u u z x x y y zx y z
f x f y f u f u f u f          ... (4.51)

Hence, the auxiliary equations (4.24) become

2 0
yx z

z x y

dudu dudx dy dz

x y u u u
        .      ... (4.52)

From which we find

0z zdu u C   ,      ... (4.53)

and log log logx
x x

x

dudx
x u a xu a

x u
       

x
a

u
x

  .      ... (4.54)
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Substituting these in (4.50) we get

2
2 0y y

C a
a yu C u

y

 
      

 
.      ... (4.55)

Substituting these values in

x y zdu u dx u dy u dz   ,

we get

 2dx
du a C a dy cdz b

x
     .

Integrating we get

 2log logu a x C a y Cz b    

This is the required complete integral of equation (4.50).

Example 7 :  Solve

2 2 2 2 2 2 2 0x y z x y zz u u u u u u   .

Solution : Let

  2 2 2 2 2 2 2, , , , , 0x y z x y z x y zf x y z u u u z u u u u u u         ... (4.56)

We first find two one-parameter family of p.d.e., which are compatible with (4.56).

From equation (4.56) we have

2 2 2 2 2 2 2 22 2 , 2 2u x y z x y u y x z x yx y
f u z u u u u f u z u u u u    ,

2 2 2 2 2 22 2 , 0 , 2 .u z x y z x y z x y zz
f u z u u u f f f zu u u    

Hence the the auxiliary equations (4.24) become

2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2x y z x y y x z x y z x y z

dx dy dz

u z u u u u u z u u u u u z u u u
  

  

2 2 20 0 2

yx z

x y z

dudu du

zu u u
      .

Therefore, the equation 0xdu   and 0ydu   give

xu a  and yu b .

Substituting these values in equation (4.56) we get
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2 2 2 2 2 2 2 0z za b z u a b u  

 2 2 2 2 2 2

2 2 2
1

1
z z

ab
u a b z a b u

a b z
    


.

Hence, the equation

x y zdu u dx u dy u dz  

reduces to

2 2 21

ab
du adx bdy dz

a b z
  


.

Integrating we get

 1sinu ax by abz C    .

Example 8 : Solve

  0z x yu z u u x y    .

Solution : Let

   , , , , , 0x y z z x yf x y z u u u u z u u x y     .      ... (4.57)

   , , , 1, 1,u z u z u x y x y z z x yx y z
f zu f zu f z u u f f f u u u         .

Hence, the auxiliary equations are

   1 1
yx z

z z x y z x y

dudu dudx dy dz

zu zu z u u u u u
       

 
.      ... (4.58)

Consider the ratios

   
z z

x y z x y z

du dudz dz

z u u u u u z u
    

 
.

Integrating we get

log log logz zz u a zu a    

z
a

u
z

 .      ... (4.59)

Now consider the ratios

x ydu du .

Integrating we ger



107

x yu u b  .      ... (4.60)

Now from (4.57) and (4.59) we have

x y
x y

u u
a


  .      ... (4.61)

Solving (4.60) and (4.61) we get

2 2x
b x y

u
a


   ,      ... (4.62)

and
2 2y
b x y

u
a


   .      ... (4.63)

Substituting for , ,x y zu u u  in

x y zdu u dx u dy u dz  

we get
2 2 2 2

b x y b x y a
du dx dy dz

a a z

           
   

 1 1 1

2 2 2 2 2

b b a
du dx xdx dy ydy ydx xdy dz

a a a z
       .

Integrating we get
2

2
2

1 1

2 4 2 4 2

b b y a
u x x y xy C

a a a z
      

i.e.    2 2
2

1 1

2 4 2

b a
u x y x y xy C

a a z
       .

Jacobi’s Method to solve a non-linear p.d.e. in two variables :

Consider the following non-linear partial differential equation in the form

 , , , , 0f x y z p q  .      ... (4.64)

The solution of (4.64) is a relation between x, y and z. Let this relation be

 , ,u x y z C      ... (4.65)

Then we have from (4.65) on differentiating w.r.t. x and y

,   yx

z z

uu
p q

u u
    .

On substituting these values in equation (4.64) we obtain a relation of the form

 , , , , , 0x y zg x y z u u u  .      ... (4.66)

This can be solved by Jacobi’s method discussed earlier, which yields
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 , , , , ,u f x y z a b c      ... (4.67)

In this if we choose u = c, we get a complete integral of (4.64).

Example 9 : Find a complete integral of the equation

2 2p x q y z 

by Jacobi’s method.

Solution : Let

  2 2, , , , 0f x y z p q z p x q y         ... (4.68)

be a given non-linear partial differential equation.

Let

 , ,u x y z C      ... (4.69)

be the solution of equation (4.68). Then on differentiating (4.69) w.r.t. x and then w.r.t. y we get
respectively,

,   yx

z z

uu
p q

u u
    .

Substituting this in equation (4.68) we get

22
yx

z z

uu
x y z

u u

      
   

.

or 2 2 2
x y zxu yu zu  .

Let

  2 2 2, , , , , 0x y z x y zf x y z u u u xu yu zu    .      ... (4.70)

The auxiliary equations are

yx z

u u u x y zx y z

dudu dudx dy dz

f f f f f f
        .      ... (4.71)

From equation (4.70) we find

2 , 2 , 2u x u y u zx y z
f xu f yu f zu    , 2 2 2, ,x x y y z zf u f u f u    .

Therefore, equations (4.71) become
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2 2 22 2 2
yx z

x y z x y z

dudu dudx dy dz

xu yu zu u u u
       


.      ... (4.72)

The two solutions of these equations are obtained by considering the ratios

2
2 0

2
x x

x xx

du dudx dx

xu x uu
     ,

and 2
2 0

2
y y

y yy

du dudy dy

yu y uu
     .

Integrating we get

log 2log logxx u a   and log 2 log logyy u b  ,

i.e. 2
xxu a  and 2

yyu b .

Let   2
1 , , , , , , 0x y z xh x y z u u u a xu a   ,      ... (4.73)

and   2
2 , , , , , , 0x y z yh x y z u u u b yu b   .      ... (4.74)

Which are compatible with (4.70). Solving (4.73) and (4.74) we obtain

2 2,   x y
a b

u u
x y

  .

Substituting these values in the equation (4.70) we get

2
z

a b
x y zu

x y
          

 2 1
zu a b

z
   .      ... (4.75)

Consequently the equation

x y zdu u dx u dy u dz  

reduces to

a b a b
du dx dy dz

x y z


   .

Integrating we get

     
1 11

2 222 2 2 ( )u ax by a b z C     .
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Writing u = C we get

     
1 11

2 22( )a b z ax by     

or

1 1
2 21

2 ax by
z

a b a b

                

or

21 1
2 2ax by

z
a b a b

               
.      ... (4.76)

Which is the complete integral of the equation (4.68).

Example 10 : Solve the p.d.e. by Jacobi’s Method

3z pqxy .

Solution : Let

  3, , , , 0f x y z p q z pqxy        ... (4.77)

be a given non-linear  partial differential equation.

Let  , ,u x y z C  be its solution.      ... (4.78)

Therefore, differentiating (4.78) w.r.t. x and y we get respectively

, yx

z z

uu
p q

u u
    .

Substituting these in equation (4.77) we get

  2 3, , , , , 0x y z z x yf x y z u u u u z u u xy   .      ... (4.79)

     
3 3 2, , 2 , , , 2u y u x u z x x y y x y z zx y z

f xyu f xyu f u z f u u y f u u x f z u           . ... (4.80)

Therefore, the auxiliary equations (4.71) become

3 2 22 3

yx z

y x x y x yz z

dudu dudx dy dz

xyu xyu yu u u u xu z z u

 
    

   
.      ... (4.81)

Consider the ratios

x x

y x y x

du dudx dx

xyu u u y x u
   


.

Integrating we get

 log logxxu a
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xxu a   or 
x

a
u

x
 .      ... (4.82)

Now consider the ratios

y y

x x y y

du dudy dy

xyu xu u y u
   


.

Integrating we get

 log logyyu b

yyu b   or 
y

b
u

y
 .      ... (4.83)

Using these values in equation (4.83) we get

or
3

2
z

ab
u

z
 .      ... (4.84)

Now substituting these values in the equation

x x y zdu u d u dy u dz  

we get

3
2

dx dy dz
du a b ab

x y z
   .

Integrating we get

2
log logu a x b y ab C

z

      
 

.

Taking  , ,u x y z C  we get

 2
log a bab

x y
z

  .

exp 2a b ab
x y

z

 
  

 
.      ... (4.85)

Which is the required complete integral.

Example 11 : Solve by Jacobi method the equation

pq xz .
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Solution : Let

 , , , , 0f x y z p q pq xz   ,      ... (4.86)

be a given non-linear partial differential equations.

Let  , ,u x y z C  be its solution.      ... (3.87)

Therefore, differentiating (4.87) w.r.t. x and y we get respectively

x

z

u
p

u
    and  y

z

u
q

u
  .

Substituting these values in (4.86) we get

  2, , , , , 0x y z x y zf x y z u u u u u xzu   .      ... (4.88)

From equation (4.88) we find

2 2, , 2 , , 0,u y u x u z x z y z zx y z
f u f u f xzu f zu f f xu        .      ... (4.89)

Hence the Jacobi’s auxiliary equations (4.71) reduce to

2 22 0
yx z

y x z z z

dudu dudx dy dz

u u xzu zu xu

 
     

 
.

Now the equation

0y ydu u a        ... (4.90)

The ratios

22 2
z z

z zz

du dudz dz

xzu z uxu


  

 
,

log 2log logzz u b    ,

2
zzu b  .      ... (4.91)

Using (4.90) and (4.91) in (4.88) we get

0x x
b

au xb u x
a

      
 

.      ... (4.92)

Substituting these values in the equation

x x y zdu u d u dy u dz  

we get

1

2

b
du xdx ady b dz

a
    
  .
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Integrtaing we get

2

2
2

b x
u ay b z C

a
     
 

.

2 2
2

b
u x ay bz C

a
      .

Which is the required complete integral of (4.88). Writing u = C we get

2
21

4 2

b
z x ay

b a
   
 

as a complete integral of equation (4.86).

Exercise :

1. Solve the partial differential equation by Jacobi method.

 2 2p q y qz  .

2. Solve by Jacobi method.

 2
p z qy  .
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THE  CAUCHY  PROBLEM

UNIT - IV

Introduction :

Given a partial differential equation and a curve in space, the Cauchy problem is to find an
integral surface of the equation which contains the given curve.

Let a partial differentiable equation and a curve be given by

 , , , , 0f x y z p q  ,        ... (1.1)

0 0 0( ),   ( ),   ( )x x s y y s z z s   .   ,s a b         ... (1.2)

Then the Cauchy problem is to find a solution

 ,z z x y

of the partial differential equation (1.1) such that

 0 0 0( ) ( ), ( )z s z x s y s .  ,s a b  .

In the unit 4, we find the integral surfaces through a given curve for a

1) linear partial differential equations,

2) non-linear partial differential equations,

3) and quasi-linear equations.

1. Integral Surfaces through a given curve for a Linear Partial Differential Equations.

Result : Discuss how a general solution may be used to determine the integral surface, which passes
through a given curve.

Proof : Consider a linear partial differential equation in the form

Pp Qq R  .        ... (1.3)

The general solution of the equation (1.3) is given by

 , 0F u v  ,        ... (1.4)

where F is an arbitrary function and   1, ,u x y z C ,   2, ,v x y z C  are solutions of the equation

dx dy dz

P Q R
  .        ... (1.5)
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This  solution is a two parameter family of curves.

Let C be a given curve whose parametric equations are given by

0 0 0( ),   ( ),   ( )x x s y y s z z s   ,        ... (1.6)

where s is a parameter (not necessarily the arc length) of the curve. Our aim is to find F such that the

integral surface  , 0F u v   contains the given curve C.

To obtain the integral surface containing the curve C, let us assume that, we can drive from
equation (1.5) two relations of the form

  1, ,u x y z C  and   2, ,v x y z C        ... (1.7)

involving two arbitrary constants C1 and C2. Substituting 0 0 0( ),   ( ),   ( )x x s y y s z z s    in these

equations, we get

 0 0 0 1( ), ( ), ( )u x s y s z s C ,

and  0 0 0 2( ), ( ), ( )v x s y s z s C .        ... (1.8)

From this particular solutions, we can eliminate the parameter s to obtain the relation between C1 and
C2 of the type

 1 2, 0F C C  .        ... (1.9)

Then the required integral surface   ,z z x y  is obtained by eliminating C1 and C2 between equations

(1.8) and (1.9).

Note : Sometimes the solution can also be obtained by assuming  v G u  and determining G..

Example 1 : Find the integral surface of the p.d.e.

     2 2 2 2x y y p y x x q x y z    

through the curve 2 , 0xz a y  .

Solution : Given p.d.e. is

     2 2 2 2x y y p y x x q x y z          ... (1.10)

The integral surface of the equation (1.10) is generated by the integral curves of the auxiliary equations

     2 2 2 2

dx dy dz

x y y y x x x y z
 

  
.      ... (1.11)

Consider the ratios

   
2 2

2 2
0

dx dy
x dx y dy

x y y y x x
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Integrating we get

3 3
1x y C  .

Let   3 3
1, ,u x y z x y C   .      ... (1.12)

Now consider the ratios

    2 2 2 2

dx dy dx dx dy dz

x y zx y x y x y z

 
  

  
.

Integrating we get

  2log log logx y z C   ,

i.e. 2x y zC  ,

or 2
x y

C
z


 .

Let   2, ,
x y

v x y z C
z


  .      ... (1.13)

It is given that the general surface represented by (1.12) and (1.13) passes through the curve

2 , 0xz a y  .

The parametric representation of these equations are

x as , y = 0 and a
z

s
 .      ... (1.14)

Substituting this in (1.12) and (1.13) we get

3 3
1a s C ,

and
2

2 2
0as

s C s C
a

     
 

.

6 3 2
2 1a C C  .      ... (1.15)

From equations (1.12),  (1.13) and (1.15) we have

 
3

23 3 6 x y
x y a

z

    
 

,

   
2 33 3 3 6z x y a x y    .      ... (1.16)

This is the required integral surface of (1.10).
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Example 2 : Find the integral surface of the differential equation

     2 2 2 1x z p xz yz y q z z     

passing through the curve

0 0, 0x s y   and 0 2z s .

Solution : Given p.d.e. is

     2 2 2 1x z p xz yz y q z z      .      ... (1.17)

The integral surface of the equation (1.17) is generated by the integral curves of the auxiliary equations

     2 2 2 1

dx dy dz

x z xz yz y z z
 

   
.      ... (1.18)

Each ratio of (1.18) is equal to

 2 2 2 2 2 2

dx dy dx dy

xz x xz yz y xz yz x y

 


      
,

  
  2 1

dx dy

x y z




 
.

Therefore, consider the ratios

2
dx dy dz

x y z


 


.

Integrating we get 1log( ) 2 log logx y z C   ,

12

x y
C

z

   
 

.      ... (1.19)

Let   12
, ,

x y
u x y z C

z


  .      ... (1.20)

Now consider the ratios

   2 1

dx dz

x z z z


 

 
 

2

1

dx z dz

x z z
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2 1

1

dx
dz

x z z
    
  

.

Integrating we get

 
2log 2 log log 1 logx z z C   

 
22

1x z
C

z


  .      ... (1.21)

Let  
 

22

1
, ,

x z
v x y z C

z


  .

It is given that the general surface represented by (1.19) and (1.21) passes through the curve

0 0 0, 0, 2x s y z s   .

Hence equations (1.19) and (1.21) become

1 12

1

44

s
C C

ss
  

and   2
1

2 1
4

s C
s

  .

  2 2
1 2

1 1

2 1 2 1 2 1
C C

C s C s s
C C

        

2 1
2 1

1 1

1 1
2

4 2

C C
C C

C C

      
 

     ... (1.22)

 
2 2

1 1

2

x z x y

z z

 
  

or  2

1 1

2
zx y

z
 

or   22 xz y z  .

Example 3 : Find the integral surface of

2 2 2 0x p y q z  

which passes through the parabola

, 1xy x y z   .

Solution : Given p.d.e. is

2 2 2x p y q z   .      ... (1.23)



119

The integral surface of the equation (1.23) is generated by the integral curves of the auxiliary equation

2 2 2

dx dy dz

x y z
 


.      ... (1.24)

Consider the ratios

2 2

dx dy

x y
 .

Integrating we get

1
1 1

C
x y
       ... (1.25)

Similarly, by considering the ratios

2 2

dy dz

y z


 ,

we obtain

2
1 1

C
y z
  .      ... (1.26)

Given that the general surface represented by (1.25) and (1.26) passes through the curve

, 1xy x y z   ,

whose parametric equations are

 1
1

x
y x x y

x
   



, , 1
1

s
x s y z

s
  


.      ... (1.27)

Substituting these in (1.25) and (1.26) we get

1 1
1

1 1 2 2

1

s s
C C s

s s s C

 
     



1
2 2 2

1

4
1

11 2 1
1

1

1

Cs s
C C C

s s
C


 

     



i.e. 1
2

4 1

2

C
C

 
   or  2 12 3C C  .      ... (1.28)
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Using equations (1.25) and (1.26) in the equation (1.28) we get

1 1 1 1
2 3

y z x y
     
 

or
1 1 2

3
y x z
   .      ... (1.29)

This is the required integral surface.

Example 4 : Find the equation of the integral surface of the equation

   3 2 23 2x p y x y q z x y         ... (1.30)

which passes through the curve 0 1x  ,  0 0, 1y s z s s   .

Solution : The integral surface of the equation (1.30) is generated by the integral curves of the auxiliary
equations

   3 2 23 2

dx dy dz

x y x y z x y
 

 
.      ... (1.31)

Each ratio of the equation  
2 2 2

1 1 1

3 2

dx dy dz
x y z

x x y x y

  

    

    

1 1 1

0

dx dy dz
x y z

  


     0
dx dy dz

x y z
     .

Integrating we get

1log log log logx y z C   

1
y

C
xz

  .

Let 1
y

u C
xz

  .      ... (1.32)

Now consider the ratios

 3 23

dx dy

x y x y






121

   2 2

3 3

3 3x y dx x y dx dydy

yx x y

  
  


     ... (1.33)

Each ratio of (1.33)

 2

3

3x y dx dy xdy

x y xy

  


 
.

Consider

 2

3

3x y dx dy xdydy

y x y xy

  


 

      
 2

3

3x dx dy ydx xdy

x y xy

  


 

      
 2

3

3x dx dy d xydy

y x y xy

 


 

Integrating we get

 3
2log log logy x y xy C   

or
3

2
x y xy

C
y

 
 .

Let
3

2
x y xy

v C
y

 
  .      ... (1.34)

Given that the general surface (1.32) and (1.34) passes through the curve

 0 0 01, , 1x y s z s s    .

  11

s
C

s s
 



  1
1

1

1
1 1

C
C s s

C


   

and 2 2
1

1 2
s s

C s C s
s

 
   

or  21 2C s 
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2

2 2 2

11 1
1 1

2 2 2

C
s s

C C C


      

  

Substituting in  11 1C s   we get

2
1

2

1
1

2

C
C

C

    

2 1 2 12C C C C   

or 1 2 1 2 2 0C C C C    .      ... (1.35)

From equations (1.32), (1.34) and (1.35) we obtain

3 32
0

x xy y x y xy

xz y

   
   .

2 3

0
x y y x xy

z y

  
  

   2 3 0x y y z y x xy     

or    2 2 0x y y xz x y yz    

   2 0x y y xz yz    

or    2 0x y xz y yz   

or    2yz x y xz y   .      ... (1.36)

This is the required integral surface.

Example 4 : Find the equation of the integral surface of the differential equation

2 ( 3) (2 ) (2 3)y z p x z q y x    

which passes through the circle.

2 20, 2z x y x   .

Solution : Given p.d.e. is

     2 3 2 2 3y z p x z q y x     .      ... (1.37)

The integral surface of the given equation (1.37) is generated by the integral curves of the auxiliary
equations

2 ( 3) 2 (2 3)

dx dy dz

y z x z y x
 

        ... (1.38)
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Each ratio 2 2 3

ydy dz

yx yz xy y




  

( 3)

ydy dz

y z



 

.

Therefore, consider the ratios

 2 ( 3) 3

dx ydy dz

y z y z




  
,

 2dx ydy dz    .

Integrating we get

2
12x y z C    .

or 2
12x y z C   .

Let 2
12u x y z C    .      ... (1.39)

Now consider the ratios

     2 3 2 3 2 3 2 3

dx dz dx dz

y z y x z x
  

   

   2 3 2 3x dx z dz   

Integrating we get

2 2
23 6x x z z C   

or 2 2
23 6x z x z C    .

Let 2 2
23 6v x z x z C     .      ... (1.40)

Given that the general surface represented by (1.39) and (1.40) passes through the circle

2 20, 2z x y x   ,

or 2 20, 2 0z x x y    ,

i.e.  2 20, 1 1z x y    .

The parametric representations of these equations are

1 cos , sin , 0x y z     .

Therefore, substituting these in (1.39) and (1.40) we get
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2
11 cos sin C    .     ... (1.42)

and    2
21 cos 3 1 cos C    

or 2
2cos cos 2 C     .      ... (1.43)

Adding equations (1.42) and (1.43) we get

1 2 0C C       ... (1.44)

Thus eliminating C1, C2 between (1.39), (1.40) and (1.44) we get

2 2 22 3 6 0x y z x z x z      

or 2 2 2 2 4 0x y z x z     .      ... (1.45)

This is the required integral surface.

Example 5 : Find the integral surface of the linear partial differential equation

     2 2 2 2x y z p y x z q x y z    

which contains the straight line

0, 1x y z   .

Solution : The linear partial differential equation is given by

     2 2 2 2x y z p y x z q x y z     .      ... (1.46)

The integral surface of the equation (1.46) is generated by the integral curves of the auxiliary equations

     2 2 22

dx dy dz

x y z x y zy x z
 

  
.      ... (1.47)

Each ratio of (1.47)

2

yzdx xzdy xydz

xyz y

 


2z x  2z x  2y 
  0d xyz  .

Integrating we get

1xyz C .

Let 1u xyz C  .      ... (1.48)

Now each ratio of the equation (1.47)

     2 2 2 2 2 2

xdx ydy dz

x y z y x z z x y
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0

xdx ydy dz 


0xdx ydy dz    .

Integrating we get

or 2 2
22x y z C   .

Let 2 2
22v x y z C    .      ... (1.49)

It is given that the general surface given in (1.48) and (1.49) contains the straight line

0, 1x y z   .

The parametric equations of the straight line are

, , 1x t y t z    .

Therefore, substituting these in equations (1.48) and (1.49) we get

2
1t C  ,

 2
22 1t C  .

Eliminating the parameter t, we get

1 22 2 0C C   .      ... (1.50)

Thus the required integral surface is obtained by eliminating C1 and C2 from (1.50). Elimination gives

2 22 2 2 0xyz x y z          ... (1.51)

Example 6 : Find the integral surface of the equation

  2 2x a p yq z  

passing through the initial data curve

0 0 01,   ,   x y s z s   .

Solution : The linear p.d.e. is given by

 2 2 2x p yq z   .      ... (1.52)

The integral surface of the equation (1.52) is generated by the integral curves of the auxiliary equations

2 2 2

dx dy dz

x y z
 


.      ... (1.53)

Consider the ratios

2 2

dx dy

x y



.
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Integrating we get

1
1

log( 2) log log
2

x y C  

 2
12x yC   .      ... (1.54)

Let
 2

1
2x

u C
y


  .      ... (1.55)

Now consider the ratio

2 2

dy dz

y z


Integrating we get

2log log logy z C 

or 2y zC .

Let 2
y

v C
z

  .      ... (1.56)

It is given that the general surfaces (1.55) and (1.56) passes through the initial data curve given by

0 01,x y s    and 0z s .      ... (1.57)

Therefore, substituting in (1.55) and (1.56) we get

1
1

C
s
   and  2s C

2
2

1

1
C

C
  .      ... (1.58)

Eliminating C1 and C2 from (1.58) we obtain

 

2

2
2

y y

z x

   
  

 2z y x  .      ... (1.59)

This is the required integral surface.

Example 7 :  Find the equation of the integral surface of the equation

   2 2 2x y p xyq x y z         ... (1.60)

which  passes through the curve
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2
0 0 00, ,x y s z s   

Solution : The general solution of equation (1.60) is obtained in the example (4) of unit 2 in the form.

1
x y

C
z


 ,      ... (1.61)

and

2 2

2
y x

C
y


 .      ... (1.62)

This surface passes through the given curve

2
0 0 00,   ,   x y s z s    .      ... (1.63)

Substituting these values in equations (1.61) and (1.62) we get

1s C  ,

2
2s C ,

2
2 1C C  .

Consequently, from equations (1.61) and (1.62) we obtain

   22 2 2z y x y x y   .      ... (1.64)

Given that the general surface (1.62) and (1.63) passes through the curve

2
0 0 00,   ,   x y s z s    .

Substituting these in equations (1.62) and (1.63) we get

2
1 2,   C s C s   ,

2
2 1C C  .

Eliminating C1 and C2 we get

22x x y
y

y z

     
 

,

   22 2 2z y x y x y   .      ... (1.64)

Example 8 : Find integral surface of

   2 2 32 2x y z p y y z q z   

which passes through the curve
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2
0 0 0,   ,   1x s y s z   .

Solution : We have obtained the general solution of the equation in the form (Refer example (2) of
Unit 2)

1
x

u C
yz

  ,      ... (1.65)

and
2

2
2z y

v C
yz


  .      ... (1.66)

Given that the general surface (1.65) and (1.66) passes through the curve

2
0 0 0,   ,   1x s y s z   .

Substituting in (1.65) and (1.66) we get

1s C  and 2
1 2s

C
s




1 2 12 1C C C   .

Using equations (1.65) and (1.66) we deminate C1 and C2 to get

 22 2
x

yz x z y
yz

  

   22 2yz x yz x z y    .      ... (1.67)

Example 9 :  Find the integral surface passing through the circle z = 1, x2 + y2 = 1 of the partial
differential equation

   x y p y x z q z     .

Solution : Let the linear partial differential equation be given by

   x y p y x z q z     .      ... (1.68)

The auxiliary equations are

dx dy dz

x y y x z z
 

  
.      ... (1.69)

Each ratio of  (1.69)

dx dy dz

x y y x z z


 

   

dx dy dz    .

Integrating we get
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1x y z C   .

Let 1u x y z C    .      ... (1.70)

Now each ratio of equation (1.69)

dx dy dz

x y y x z z

 


    
,

 2

dx dy dz

x y z

 


 
.

Consider the ratios

 2

dz dx dy dz

z x y z

 


 
.

Integrating we get

  22 log log logz x y z C    ,

or 2
2x y z C z   .      ... (1.71)

It is given that the general surface represented by (1.70) and (1.71) passes through the curve (circle).

2 21,   1z x y   ,

whose parametric equations are

cos ,   sin ,   1x t y t z   .      ... (1.72)

Substituting this in (1.70) and (1.71) we get

1cos sin 1t t C     and  2cos sin 1t t C  

1 2 2
cos

2

C C
t

 
   and 1 2sin

2

C C
t


 .

Hence    2 22 2
1 2 1 2

1
cos sin 1 2 1

4
t t C C C C         

 2 2
1 2 1 22 0C C C C     .      ... (1.73)

Substituting the values of C1 and C2 from equations (1.70) and (1.71)  we get

 
2

2

2 2
2 0

x y z x y z
x y z x y z

z z

                
   

,

     2 24 2 22 0z x y z x y z z x y z z x y z               ,
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i.e.        2 24 2 22 0z x y z x y z z x y z z x y z              .      ... (1.74)

This is the required integral surface (particular solution) through the given circle.

Example 10 : Find the integral surface of the linear partial differential equation

xp yq z 

which contains the circle

2 2 2 4,    2x y z x y z      .

Solution : The given partial differential equation is

xp yq z  .      ... (1.75)

The integral surface of the equation (1.75) is generated by the integral curves of the auxiliary equations

dx dy dz

x y z
  .

Consider the ratios

dx dy

x y
 ,

and integrating we get

1log log logx y C 

1
x

C
y

  .      ... (1.76)

Similarly, by considering the last two ratios we get

2
y

C
z
 .      ... (1.77)

Thus the integral surface of the equation (1.75) is

, 0
x y

F
y z

   
 

.      ... (1.78)

It is given that this integral surface passes through the given curve

2 2 2 4x y z   ,      ... (1.79)

2x y z   .      ... (1.80)

From equations (1.76) and (1.77) we find

1

x
y

C
    and  

1 2

x
z

C C
 .
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Substituting this in equations (1.79) and (1.80) we get

2
2 2 2

1 1 2

1 1
1 4x

C C C

    
 

,      ... (1.81)

and
1 1 2

1 1
1 2x

C C C
    
 

.      ... (1.82)

From equations (1.81) and (1.82) we find

2

2 2 2
1 1 21 1 2

1 1 1 1
1 1

C C CC C C

      
 

2
1 1 2 1 2

1 1 1
0

C C C C C
   

1 2 1 1 0C C C    .

Now replacing 1
x

C
y

   and 2
y

C
z

  we get

0xy xz yz   .      ... (1.83)

This is the required integral surface of the given partial differential equation.

Exercise :

1. Find the integral surface of the equation

     22 1 2 2xy p z x q x yz    

which passes through the line 0 0( ) 1,  ( ) 0x s y s   and 0 ( ) 0z s  .

2. Integral surfaces through a given curve for a non-linear Partial
Differential Equations

Result : Discuss the method of finding the integral surface of a non-linear partial differential equation.

Proof : Let  , , , , 0f x y z p q         ... (2.1)

be a given non-linear partial differential equation. By usual (Charpit’s) method we find its complete
integral. Let

 , , , , 0F x y z a b         ... (2.2)

be a complete integral of equation (2.1), which involves two arbitrary constants ‘a’ and ‘b’.
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Let C be a given curve whose parametric equations are given by

0 0 0( ),   ( ),   ( )x x s y y s z z s   ,        ... (2.3)

where s is aparameter of the curve. Our aim is to find the integral surface of the given partial differential
equation (2.1) which contains the given curve (2.3).

We expect that, this solution to be an envelope of one parameter subfamily of (2.2). This
envelope contains the curve C. This requires that

 0 0 0( ), ( ), ( ), , 0F x s y s z s a b  .        ... (2.4)

Differentiating this with respect to s we get

 0 0 0( ), ( ), ( ), , 0
F

x s y s z s a b
s





.        ... (2.5)

Thus we have two relations (2.4) and (2.5) from which we eliminate s to obtain the relation between
‘a’ and ‘b’ such as

 , 0a b  .        ... (2.6)

Factorizing this we get

 1 2,   ( )b a b a          ... (2.7)

Each one of the relations (2.7) defines a one parameter subfamily of the complete integral
(2.2). The envelope of each of these subfamilies if it exists, is an integral surface of the equation (2.1).

Note : The solution may not be unique.

Example 1 : Find a complete integral of the equation

 2 2p q x pz 

and the integral surface which passes through the curve

2
0 0 0: 0,   ,   2C x y s z s   .

Solution : Let

   2 2, , , , 0f x y z p q p q x pz    .        ... (2.8)

be a given non-linear p.d.e. To find its complete integral, we know the Charpit’s auxiliary equations are

p q p q x z y z

dx dy dz dp dq

f f pf qf f pf f qf
     

  
.        ... (2.9)

Where from equation (2.8) we find

2 22 ,   2 ,   ,   0,   p q x y zf px z f qx f p q f f p        .
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Consequently, equation (2.9) becomes

22 2
    


dx dy dz dp dq

px z qx pz pqq
.      ... (2.10)

Considering the ratios

2

dp dq

pqq
 

0pdp qdq   .

Integrating we get

2 2

 Constant
2 2

p q
 

or 2 2 2p q a  .      ... (2.11)

Substituting this in (2.8) we get

2
2 a x

a x pz p
z

   .

The equation (2.11) gives

22
2 2 a x

q a
z

 
  

 

2 2 2a
q z a x

z
   .      ... (2.12)

Substituting these in equation

dz pdx qdy 

we get

2
2 2 2a x a

dz dx z a x dy
z z

  

2 2 2 2zdz a xdx a z a x dy   

 2
2 2 2

2 2 2

zdz a xdx
ady d z a x ady

z a x


    


.

Integrating we get

2 2 2z a x ay b  
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or  22 2 2z a x ay b  

 22 2 2z a x ay b    .      ... (2.13)

This is the required complete integral. Given that this complete integral passes through the curve

2
0 0 0: 0,   ,   2C x y s z s   .

 22 24s as b   .      ... (2.14)

Differentiating (2.14) w.r.t. s we get

 28 2 2s as b sa  

 22 a as b   .      ... (2.15)

Eliminating s between (2.14) and (2.15) we get

2 2
2 2

4 1
4s s

a a
  

2
2

1
2 a ba

a

     
 

1
b

a
       ... (2.16)

Substituting this in (2.13) we obtain one-parameter subfamily of the complete integral in the form

2
2 2 2 1

z a x ay
a

    
 

 22 2 4 2 2 1a z a x a y  

 2 2 4 2 2 22 1a z a x y a y    

   4 2 2 2 22 1 0a x y a y z      .      ... (2.17)

To find the envelope of (2.17) differentiate (2.17) w.r.t. ‘a’ we get

   2 2 2 22 2 0a x y y z    .      ... (2.18)

Eliminating ‘a’ between (2.17) and (2.18) we get the required envelope of one-parameter subfamily as

 
 

   
 

 
22 2

2 2 2
2 2 22 2

2 2
2 1 0

24

y z y z
x y y z

x yx y
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or      2 22 2 2 22 2 2 4 0y z y z x y      ,

or    22 2 22 4z y x y   .

 2 2 22z y x y    ,

 2 2 22z y x y    .      ... (2.19)

(by discarding the negative sign as 2 2x y y  )

This is the required integral surface of (2.8).

Example 2 : Find a complete integral of the equation

 2 2p q x pz 

and the integral surface passing through the parabola 20, 4x z y  .

Solution :  The complete integrate of the p.d.e

 2 2p q x pz       ... (2.20)

is given by (refer earlier example)

 22 2 2z a x ay b   .      ... (2.21)

Given that this passes through the parabola C

20, 4x z y  ,

whose parametric equations are

20, , 4x y t z t  

 2
4t at b  

 2 2 22 4 0a t ab t b    

For real roots we must have

2 4 0b aC 

 2 2 22 4 4 0ab a b   

or  2 2 2 2 2 2 22 4 4ab a b a b ab a b     

1ab       ... (2.22)
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or 1
b

a
 .

Substituting this in (2.21) we obtain the equation of the required integral surface in the form

 2 2 22z y x y     or      22 2 22 4y z x y   .

Exercise 3 : Find the integral surface of 2 2z p q   which passes through the curve

24 0, 0z x y   .

Solution : Let

  2 2, , , , 0f x y z p q p q z         ... (2.23)

be the given non-linear partial differential equation. To find the complete integral we have from Charpit’s
auxiliary equations

2 22 2 02 2

dx dy dz dp dq

p q p qp q


    
  

.

Consider the ratios

2
2

dx dp
dx dp

p p
  

Integrating we get

2x p a     or   1

2
p x a  .      ... (2.24)

Substituting this in (2.23) we get

2
2 2 2

2

x a
q p z q z

      
 

or
 

 
2

24 1
4

2 2

x a z
q q x a z

 
     .      ... (2.25)

Substituting these values in the equation

dz pdx qdy 

we get

 21
4

2 2

x a
dz dx x a z dy
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 21
4

2 2

x a
dz dx x a z dy

       
 

 

 2

2

4

dz x a dx
dy

x a z

 
 

 

 2
4d x a z dy      

Integrating we get

 2
4x a z y b   

or    22
4x a z y b    .      ... (2.26)

Thisis the required complete integral. It is given that this integral passes through the curve

2

0 0 0,   0,   
4

s
x s y z    .

Hence equation (2.26) gives

 2 2 2s a s b        ... (2.27)

Differentiating (2.27) w.r.t. s we get

 2 2 0s a s  

2a s  .      ... (2.28)

Eliminating s between (2.27) and (2.28), we obtain

2a b .

Substituting this in (2.26) we get

   
2 2

2 4 2x b z s b    ,      ... (2.29)

which is the one parameter of subfamily of complete integral.

Differentiating (2.29) w.r.t. b we get

     2 2 2 2x b y b    ,

2
2

y b

x b

     
.      ... (2.30)

Eliminating b between (2.29) and (2.30) we get
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 2

4
2

2

z

x b





,

 2
2 2z x y    .      ... (2.31)

Example 4 : Find the complete integral of the equation

2 0p x qy z  

and derive the equation of the integral surface containing the line y = 1 and x + z = 0.

Solution : Let

  2, , , , 0f x y z p q p x qy z         ... (2.32)

be a given non-linear p.d.e.

To find its complete integral, the Charpit’s auxiliary equations give

 22 1 02

dx dy dz dp dq

px y p pp x qy
    

 
.      ... (2.33)

From which we obtain

0dq   or  q a      ... (2.34)

Using (2.34) in (2.32) we get

1
2

2 z ay
xp z ay p

x

      
 

.      ... (2.35)

Substituting (2.34) and (2.35) in the equation

dz pdx qdy 

we get

1
2z ay

dz dx ady
x

   
 

dz ady dx

z ay x


 


.

On integrating we get

2z ay b   .

Squaring we get

2z ay x b xb   
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or 2z ay x b xb    .

Squaring we get

 2
4ay z x b xb    .      ... (2.36)

Which is the required complete integral.

Given that this complete integral passes through the curve

: 1, 0C y x z   .

i.e. 1,   ,   y x t z t    .

On substituting this in (2.36) we get

 2
4a t t b bt   

 2
2 4a b t bt   .      ... (2.37)

Differentiating (2.37) w.r.t. t we get

 4 2 4a b t b  

2a b t b   

2a t     and  4b t

2b a  

or 2 0a b  .      ... (2.38)

On substituting b = – 2a in equation (2.36) we get one-parameter subfamily of the complete integral of
p.d.e. (2.32) in the form

   2
2 4 2ay z x a x a    

 2
2 8ay z x a ax     .      ... (2.39)

Differentiate equation (2.39) w.r.t. a we get

  2 2 2 8ay z x a y x     

or   2 2 4y ay z x a x      .      ... (2.40)

The envelope is obtained by eliminating a between equations (2.39) and (2.40) we get

 2xy z y  .      ... (2.41)

Which is the required integral surface of equation (2.32).
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Exercise :

1. Find the integral surface of

2 2 2 0x p y q z  

which passes through the hyperbola

, 1xy x y z   .

3.  Integral Surfaces through a given curve by a method of Characteristics

In this section we shall discuss the method of characteristics to find the integral surface of a
semi-linear and quasi-linear partial differential equations.

(a) Semi-linear Partial Differential Equations :

Consider a semi-linear partial differential equation given by

     , , , ,P x y p Q x y q R x y z  .        ... (3.1)

The expression on the left hand side of the equation (3.1) is called the directional derivative of z (x, y)

in the direction of     , , ,P x y Q x y  at the point (x, y).

The one parameter family of curves in the xy plane is characterized by the ordinary differential equation

 
 

,

,

Q x ydy

dx P x y
 .        ... (3.2)

Or the system of ordinary differential equations

   , , ,
dx dy

P x y Q x y
dt dt

  .        ... (3.3)

These curves have the property that along them z (x, y) will satisfy the ordinary differential equation

x y
dz dy

z z
dx dx

 

       
 
 

,

,x y
Q x y

z z
P x y

 

   
 

, ,

,
x yz P x y z Q x ydz

dx P x y


        ... (3.4)

or x y
dz dx dy

z z
dt dt dt

 

   , ,x y
dz

z P x y z Q x y
dt

          ... (3.5)
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   , ,
dz

P x y p Q x y q
dt

   ,

where zp z  and yq z

 , ,
dz

R x y z
dt

  .        ... (3.6)

The one parameter family of curves defined by equation (3.3) are called the characteristics curves of
the partial differential equation (3.1) and the equation is called characteristic equation.

Let  0 0,x y  be a point in the xy plane. By the existence and uniqueness of the solution of the

initial value problem for the ordinary differential equation, (3.3) will define a unique characteristic curve
(say)

       0 0 0 0, , , , ,x t x x y t y t y x y t  ,        ... (3.7)

such that 0(0)x x  and 0(0)y y .

If 0z  is the value for  ,z x y  at  0 0,x y  then the equation (3.7) determines a unique solution z as

 0 0, ,z z x y t .

Thus z (x, y) is uniquely determined along the characteristic passing through the point  0 0,x y  if we

know z (x, y) at  0 0,x y .

Example 1 :  Solve the equation

y xxz yz z 

with the initial condition

   ,0 , 0z x f x x  .

Solution : Let the equation be

y xxz yz z  .        ... (3.8)

We know the characteristic curves of (3.8) are given by the equation

 
 

,

,

Q x ydy

dx P x y
        ... (3.9)

where

     , ,   , ,   , ,P x y y Q x y x R x y z z    .

Hence equation (3.9) gives



142

dy x

dx y
  .      ... (3.10)

This equation has solution given by

2 2 2x y C  .      ... (3.11)

These curves have the property that along them the function z (x, y) satisfies the ordinary differential
equation

x y
dz dy

z z
dx dx

 

     x y
x

z z
y

    
 

by equation (3.10)

     
x yyz xz

y




dz z

dx y
  . by equation (3.8)

i.e. 2 2

dz z

dx c x
 


by equation (3.11)

2 2

dz dx

z c x
  


.

Integrating we get

2 2
log log

dx
z k

c x
  




1log sin log
x

z k
c

     
 

or
1sin

( )
x

cz k c e
   
  ,      ... (3.12)

where the constant of integration k may depend on c.

Therefore we write the general solution of the equation as

 
1sin

2 2
x

cz k x y e
   
   .      ... (3.13)

Now applying the initial conditions, we get
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   ,0z x f x ,  0x 

we have

1 1

2 2
sin sin

x x

c x y

           

      1 1sin sin 1
2

x

x

     
 

     2 2,0z x f x k x e


  

   2 2k x f x e


 

or     2k x f x e


       ... (3.14)

Hence the general solution (3.13) becomes

   
1sin22 2,

x

cz x y f x y e
    

   .      ... (3.15)

Example 2 : Solve the equations

2
x yz z z 

with the  initial condition    ,0z x f x .

Solution : We are given that

2
x yz z z  .      ... (3.16)

We know the characteristic curves of the p.d.e (3.16) are given by the equation

 
 

,

,

Q x ydy

dx P x y
 ,      ... (3.17)

where

   , 1,   , 1Q x y P x y  .      ... (3.18)

1
dy
dx

  .

whose solution is

x y C  .      ... (3.19)

These one parameter family of curves have the property that along them the function z (x, y) must
satisfy the ordinary differential equation
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x y
dz dy

z z
dx dx

 

      1x yz z   by equation (3.18)

2dz
z

dx
 . by equation (3.16)

2

dz
dx

z
 

Integrating we get

 
1 1

x k z
z x k c


    


,     .... (3.20)

where the constant of integration k may be a function of C.

 
 
1

,z x y
x k x y

  
 

.      ... (3.21)

Now applying the initial condition

   ,0z x f x

we get    
 

1
,0z x f x

x k x
   



     1f x x k x    ,

      1xf x f x k x  

     1f x k x xf x    

 
  

 
1 xf x

k x
f x


  

     
 

1 x y f x y
k x y

f x y

       


.

Substituting this in (3.21) we get

 
   

 

1
,

1
z x y

x y f x y
x

f x y




    


Simplifying we get
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,
1

f x y
z x y

yf x y


 

 
.

Which is the required solution.

(b) Quasi-linear Equation :

Consider a quasi-linear p.d.e. given by

     , , , , ,x yP x y z z Q x y z z R x yz  .      ... (3.22)

We know its solution defines an integral surface  ,z z x y  in the x, y, z space.

We know the direction ratios of the normal to this surface are given by  , , 1x yz z  .

Hence equation (3.22) states that the integral surface is such that at each point the line with
direction ratios (P, Q, R) is tangent to the surface at that point. (Infact, any surface z = z (x, y) has the
property that it is an integral surface iff the tangent plane contains the characteristic direction (P, Q, R)
defined by the p.d.e at each point).

In the case of quasi-linear equation, the characteristic curves are a family of space curves
whose tangent at each point coincides with the characteristic direction (P, Q, R) at that point. These
are given by the following system of ordinary differential equations

     , , , , , ,

dx dy dz
dt

P x y z Q x y z R x y z
    (say).      ... (3.23)

or      , , ,   , , ,   , ,
dx dy dz

P x y z Q x y z R x y z
dt dt dt

   .      ... (3.24)

By the existence and uniqueness of the solution of IVP of a system of ordinary differential equations
there passes a characteristic curve

     0 0 0 0 0 0 0 0 0, , , ,   , , , ,   , , ,x x x y z t y y x y z t z z x y z t        ... (3.25)

through each point  0 0 0, ,x y z .

Hence there is a two parameter family of characteristic curves. (Two parameter family of

characteristics are nothing but the curves of intersection of the surfaces   1, ,u x y z C  and

  2, ,v x y z C ).

Eliminating s and t from (3.25) we get the required integral surface.

Result : Every surface generated by a one parameter family of characteristics is an integral surface.

Proof : Let  ,z z x y  be an integral surface. Take  , ,P x y z  be any point on the surface. Then the

tangent to the characteristic curve passing through that point lies on the plane to the surface. Thus the
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tangent plane to the surface at each point contains the line with direction ratios (P, Q, R). Hence the
surface is an integral surface.

Conversely : We prove that every integral surface is generated by a family of characteristic curves.

Consider an integral surface

 ,z z x y .      ... (3.26)

Let ( ), ( )x x t y y t   be the solutions of the equations

  , , ,
dx

P x y z x y
dt

 ,

  , , ,
dy

Q x y z x y
dt

 ,      ... (3.27)

with the initial conditions 0 0,x x y y   at t = 0. The corresponding curve in 3-dimension is

 ( ), ( ), ( ), ( )x x t y y t z x t y t        ... (3.28)

We see that this curve lies on the given integral surface (3.26).

Further,

x y
dz dx dy

z z
dt dt dt

 

         , , , ,x yP x y z z Q x y z z 

        , ,R x y z

  The curve satisfies equations for characteristic curves. viz.

     , , , , , , , ,
dx dy dz

P x y z Q x y z R x y z
dt dt dt

   .

Therefore, integral surface (3.26) is generated by the characteristic curves.

Theorem : Consider the first order quasi-linear partial differential equation

     , , , , , ,x yP x y z z Q x y z z R x y z 

where P, Q and R have continuous partial derivatives with respect to x, y and z and they do not vanish

simultaneously. Let 0 ( )z z s  be prescribed along the initial curve given by

0 0 0: ( ),   ( )x x s y y s  

0 0,x y and 0z  being continuously differentiable functions. Further, for a s b  , if

   0 0
0 0 0 0 0 0( ), ( ), ( ) ( ), ( ), ( ) 0

dy dx
P x s y s z s Q x s y s z s

ds ds
  ,
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then there exists a unique solution z (x, y) defined in some neighbourhood of the initial curve 0 , which

satisfies the p.d.e. and the initial condition

 0 0 0( ), ( ) ( )z x s y s z s .

Proof : Consider the p.d.e

     , , , , , ,x yP x y z z Q x y z z R x y z       ... (3.29)

where P, Q, R are continuous differentiable functions of x, y, z and do not vanish simultaneously.

Let 0 0( ), ( )x x s y y s       ... (3.30)

be the initial data curve and

   0 0
0 0 0 0 0 0( ), ( ), ( ) ( ), ( ), ( ) 0

dy dx
P x s y s z s Q x s y s z s

ds ds
  .      ... (3.31)

Claim : We prove that z (x, y) is a unique solution of p.d.e. (3.29) satisfying

 0 0 0( ), ( ) ( )z x s y s z s .

We know the integral surface of (3.29) are the family of space curves and are given by the system of
ordinary differential equations

     , , ,   , , ,   , ,
dx dy dz

P x y z Q x y z R x y z
dt dt dt

   .      ... (3.32)

We solve these equations to find a unique family of characteristics (through  0 0 0, ,x y z  )

   0 0 0, , , ,x x x y z t x s t  ,

   0 0 0, , , ,y y x y z t y s t  ,

   0 0 0, , , ,z z x y z t z s t  ,      ... (3.33)

where x, y, z have continuous derivatives w.r.t. the parameters s and t satisfying the initial conditions

   0 0, ( ), , ( )x s o x s y s o y s  and   0, ( )z s o z s

We see from equations (3.33) that

 
   

0
00

,

,
s t

s t s t t
s t tt

x xx y
x y y x

y ys t 



  



         0s x t
x Q y P


  by equation (3.32)

       0 . due to admissibility conditions (3.31)

Now solving equations (3.33) for s and t, we obtain the relation
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Say       , , , ,x y z s x y t x y       ... (3.34)

At t = 0 we get

   0 0 0, , ( )x y z s o z s  

This implies that  ,x y  satisfies the initial condition. To prove  ,x y  also satisfies the equation

(3.29).

We consider,

 x y s x t x s y t yP Q P z s z t Q z s z t       

         s x y t x yz Ps Qs z Pt Qt   

   x y s x t y t t x t y tP Q z s x s y z t x t y      .     due to equation (3.32)

However, by chain rule, we have

0x t y t ts x s y s   (s and t are independent parameters)

and 1x t y t tt x t y t  

Hence the above equation becomes,

 , ,x y tP Q z R x y z    by equation (3.32)

i.e.  , ,x yP Q R x y z  

This shows that  ,x x y  satisfies the p.d.e. (3.29). Thus  ,z x y  is a solution of p.d.e. (3.29).

Uniqueness : Let  ,x y  be not unique solution of (3.29). This means that there are two surfaces

which intersect along the given initial curve. Through each point on the initial curve, there passes one
and only one characteristic curve. Therefore, this characteristic curve has to be on both the surfaces.
Hence the same family of characteristic curves which passes through each point of the initial curve lie
on both the surfaces.

Hence both the surfaces must coincide as both are generated by the same family of characteristics
curces.

This proves the uniqueness.

Example 1 : Solve the initial value problem for the quasi-linear equation

1x yzz z 

with the initial conditions

1
, ,

2
x s y s z s     for  0 1s  .
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Solution : Given p.d.e. i.e. a quasi-linear p.d.e. given by

1x yzz z  ,      ... (3.35)

where  , , , 1, 1P x y z z Q R   ,      ... (3.36)

subject to the initial conditions

0 0 0
1

( ) , ( ) , ( )
2

x x s s y y s s z z s s      ,  0 1s  .      ... (3.37)

We observe that

   0 0
0 0 0 0 0 0( ), ( ), ( ) ( ), ( ), ( )

dy dx
P x s y s z s Q x s y s z s

ds ds


1
1

2
s 

0    for 0 1s 

  from the above theorem that there exists unique solution z (x,y) satisfies the p.d.e. and the initial
condition. Hence we solve the equations.

We know the family of characteristic curves which generate the surface are the solution of the equations

,   ,   
dx dy dz

P Q R
dt dt dt

   .

i.e. ,   1,   1
dx dy dz

z
dt dt dt

   ,      ... (3.38)

with the initial conditions

      1
,0 ,   ,0 ,   ,0

2
x s s y s s z s s   .      ... (3.39)

From equation (3.38) we find

1z t C  ,  2y t C 

and 1
dx

t C
dt

   gives

2

1 32

t
x C t tC   .

Hence the family of characteristic curves through the initial data are found to be

2 1

2 2

t
x st s   ,
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y t s  ,

2

s
z t  .      ... (3.39)

Solving these equaqtions for s and t interms of x and y we obtain (from the first two equations of 3.39)

   
2 1

2 2

t
x t y t y t    

1
1

2
x y t y

     
 

or

1
2

y x
t

y





.      ... (3.40)

Substituting this in y = t + s we get

1
2

y x
s y

y


 


2

2

1
2

y
x

s
y


 


.      ... (3.41)

Substituting the values of t and s from equations (3.40) and (3.41) in 
2

s
z t   we get

 

 

2

2
2

2

y
y x x

z
y

 
   

 


.      ... (3.42)

This is the required solution of integral surface.

Example 2 : Solve the Chauchy problem for

2 x yz yz z 

when the initial data curve is

2
0 0 0: , ,C x s y s z s   ,  1 2s  .

Solution : The partial differential equation is given by

2 x yz yz z  ,      ... (3.43)
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subject to the initial conditions

2
0 0 0, , ,x s y s z s    1 2s  .      ... (3.44)

Here P = 2, Q = y, R = z .

Hence      2
0 0 0 0 0 0 0 0 0, , 2, , , , , ,P x y z Q x y z s R x y z s   .

Therefore, we observe that

    20 0
0 0 0 0 0 0, , , , 4

dy dx
P x y z Q x y z s s

ds ds
   ,

0   for  1 2s  .      ... (3.45)

The admissibility condition (3.45) implies that there exists unique solution z (x, y) satisfies the p.d.e.
and the initial conditions.

We know the family of characteristic curves which generate the surface are the solutions of the equations

2,   ,   
dx dy dz

y z
dt dt dt

   ,      ... (3.46)

such that 2
0 0 0, ,x s y s z s   .

Solving the equations (3.46) we obtain

12x t C  , 2 2log log ty t C y C e    ,

and 3 3log log tz t C z C e    .    ... (3.46a)

We have from equations (3.44) and (3.46a)

2
1 2 3,   ,   C s C s C s   .

Thus the family of characteristic curves is found to be

2x s t  ,      ... (3.47)

2 ty s e ,      ... (3.48)

tz se .      ... (3.49)

The solution is obtained by eliminating s and t between equations (3.47), (3.48) and (3.49).

Therefore, we see that

2 22t t txz y s e ste s e    ,

2 txz y ste  ,

2

xz y
t

z


 .
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Substituting in (3.47) we get

2
2

xz y
x s

z

   
 

,

y
s

z
  .

Therefore the equation tz se  becomes

2

y xz y
z exp

z z

       
    ,

or
2

2

xz y
z yexp

z

   
 

.      ... (3.50)

This is the required solution (integral surface).

Example 3 : Find the solution of the initial value problem for the quasi-linear equation

0x yz zz z     y  and x > 0

for the initial data curve

0 0 0: 0, , 2C x y s z s    , s   .

Solution : The quasi-linear p.d.e. is given by

x yz zz z   ,      ... (3.51)

with the initial data curve

0 0 0: 0, , 2C x y s z s    .

Here P =1, Q = -z and R = – z.

Therefore      0 0 0 0 0 0 0 0 0, , 1,   , , 2 ,   , , 2P x y z Q x y z s R x y z s   .

We observe from the admissibility condition that

0 0 1 0
dy dy

P Q
ds ds

   . s      ... (3.52)

This shows that there exists unique solution z (x, y) satisfies the p.d.e. and the initial conditions.

We know the family of characteristic curves which generate surface are the solutions of the equations

,   ,   
dx dy dz

P Q R
dt dt dt

   .

i.e. 1,   ,   
dx dy dz

z z
dt dt dt

     ,      ... (3.53)
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such that 0 0 0tx x   ,  0ty s  ,  0 2tz s   .

Solving these equations we get

1x t C  ,  2 2log log tz t C z C e     ,

and 2 2 3
t tdy

C e y C e dt C
dt

       ,

2 3
ty C e C   .

Hence the family of characteristic curves through the initial data curve is found to be

,

2 3 ,   

2 .

t

t

x t

y se s and

z se





 


   
  

    ... (3.54)

The solution is obtain by eliminating t and s from equation (3.54). Thus we have

2 3x

y
s

e
 


,

Substituting this value in 2 tz se   we get

2

2 3
x

x

y
z e

e





,

2

3 2x

y
z

e


 


for 

2
log 0

3
x

    
 

     ... (3.55)

This is the required solution (integral surface).

Note : The solution breaks down at  
2

log
3

x  .

Example 4 : Find the integral surface for the differential equation

  2 2  x yz xz yz y x

passing through the initial data curve (2s, s, s).

Solution : The quasi-linear p.d.e is given by

2 2  x yzxz zyz y x ,      ... (3.56)

subject to the initial conditions (2s, s, s)

i.e. 0 0 02 ,   ,     x s y s z s .      ... (3.57)
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Here       2 2, , ,   , , ,   , ,    P x y z xz Q x y z zy R x y z y x .

Therefore                    2 2 2 2 2
0 0 0 0 0 0 0 0 0, , 2 ,   , , ,   , , 4 3P x y z s Q x y z s R x y z s s s       .

We observe from the admissibility condition that

 22 20 0 2 2 4 0       
dy dx

P Q s s s
ds ds

, 0s  .      ... (3.58)

This shows that there exists unique solution z (x, y) satisfies the p.d.e. and the initial conditions.

We know the family of characteristic curves which generate surface are the solutions of the equations

,   ,     
dx dy dz

P Q R
dt dt dt

.

i.e.
2 2,   ,       

dx dy dz
xz zy y x

dt dt dt
,      ... (3.59)

Satisfying the initial data (3.57). To solve equations (3.59) we write these equation as

2 2
  
 

dx dy dz
dt

xz yz y x
.    ... (3.59a)

dy y

dx x
  .

Integrating we get

1xy C .

Now each ratio of equation (3.59a)  
0

 


xdx ydy zdz

0   xdx ydy zdz .

Integrating we get

2 2 2
2  x y z C .

Hence the family of characteristic curves through the initial data (3.57) is given by

22 ,xy s

2 2 2 26x y z s   .

If we choose

22
  

s
x t y

t
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and 2 2 2 2 26 4z s t s t   .

Eliminating t and s we get the required integral surface

2 2 2 2 2 26z s x x y x   ,

2 2 23z xy x y    .

This is a required integral surface.

Example 5 : Find the integral surface passing through x = 1, 2 z y y   of the equation

   3 2 23 2   x yx z y x y z z x y .

Solution : The given p.d.e. is

   3 2 23 2   x yx z y x y z z x y ,     ... (3.60)

subject to the initial conditions

21,  x z y y .      ... (3.61)

Comparing (3.60) with the standard equation we have

   3 2 2, 3 , 2    P x Q y x y R z x y .      ... (3.62)

We choose the parameter 0 y s

 2
0 0 1z s s z s s      .

Therefore, the initial data is

 0 0 01,   ,   1   x y s z s s .      ... (3.63)

Hence we have

                    0 0 0 0 0 0 0 0 0, , 1, , , 3 , , , 1 2P x y z Q x y z s s R x y z s s s      .

We observe from the admissibility condition that

0 0 1 0 0   
dy dx

P Q
ds ds

.

This shows that there exists unique solution z (x, y) satisfying the p.d.e. and the initial conditions.

Thus the family of characteristic curves which generate surface are the solution of the equations

   3 2 23 2
  

 

dx dy dz
dt

x y x y z x y      ... (3.64)

   3 2 2, 3 , 2     
dx dy dz

x y x y z x y
dt dt dt

,      ... (3.65)
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satisfying the initial data (3.63). To solve equations (3.65) consider the each ratio of equation (3.64)

2 2 2

1 1 1 1 1 1

03 2

     
 
    

dx dy dz dx dy dz
x y z x y z

x x y x y

0    
dx dy dz

x y z
.

Integrating we get

1log log log log   x y z C

1 
y

C
xz

.      ... (3.66)

Now consider the ratios

 3 23




dx dy

x y x y

 2
3

3  
dx dy

x y
yx

2 2 33  x ydx y dx x dy

2 3 23   x ydx x dy y dx

2 3 3

2

3x ydx x dy x
dx dx d

yy

 
       

 
.

Integrating we get

3

2  
x

x C
y

or
3

2 
x

x C
y

.      ... (3.67)

Using the initial data (3.63) in equations (3.66) and (3.67) we get

1
1

1
C

s



,      ... (3.68)

2
1

1 C
s

.      ... (3.69)
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Concequently, the family of characteristic curve is obtain by eliminating C1 and C2 from equations
(3.66) and (3.67).

This gives 1

1

y

xz s



,      ... (3.70)

and
3 1

1  
x

x
y s

.      ... (3.71)

If we choose x = t ,      ... (3.72)

we get
3 1

1  
t

t
y s

,

 3 1 1 1
1

 
   

t s t
t

y s s
,

   

3

3 1 1 1 1
  

   
y s st

y
s t s tt

.     ... (3.73)

Consequently, we have from equation (3.70)

  
 

 

3 21

1 1 11 1


  

   
st z s s t

z
s s ts t t

.      ... (3.74)

Eliminating t and s between (3.72), (3.73), (3.74) we get

 
  

3
31 1

1 1
    

 
sx

y y s x sx
s x

,

  3  y s y xy sx ,

3    y s x y xy .

or 3


 
y

s
x y xy

.      ... (3.75)

Using (3.72) and (3.75) in (3.74) we get

 

2
3 3

3

1

1 1

         
 

 

y y
x

x y xy x y xy
z

y
x

x y xy

 3 2 2   z x y xy y x y
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3 2 2   x z x y xyz y yz

   2    x xz y y xz y yz

  2   x y xz y yz

This is the required integral surface.

(c) Non-Linear First Order Partial Differential Equations :

In this section we shall consider a method of finding integral surfaces of a non-linear partial
differential equations of first order, which is based largely on geometrical ideas. The method was first
developed by Cauchy and is called Cauchy’s Method of Characteristics.

The method involves the following steps :

Step 1 : Let  , , , , 0f x y z p q       ... (3.76)

be a given p.d.e. and the initial data curve be

0 0 0( ),   ( ),   ( )x x s y y s z z s   .      ... (3.77)

Using (3.76) and (3.77) determine the functions 0 ( )p s  and 0 ( )q s  such that

 0 0 0 0 0( ),   ( ),  ( ),   ( ),  ( ) 0f x s y s z s p s q s  ,      ... (3.78)

and 0 0 0
0 0

dz dx dy
p q

ds ds ds
          (These are called strip conditions)      ... (3.79)

Note : There could be several choices for 0 ( )p s  and 0 ( )q s . One can find unique solution for each

such choice.

Step 2 : Once a choice for 0 ( )p s  and 0 ( )q s  is made (i.e. the initial strip is chosen) we can solve the

following Cauchy characteristic equations

,   ,   p q p q
dx dy dz

f f pf qf
dt dt dt

    ,

x z
dp

f f p
dt

   , y z
dq

f f q
dt

   ,      ... (3.80)

subject to the initial conditions

0 0 0 0( ), ( ), ( ), ( )x x s y y s z z s p p s    and 0 ( )q q s  at t = 0.      ... (3.81)

The corresponding characteristic curves ( , ), ( , ), ( , )x x s t y y s t z z s t    generate the required

integral surface after eliminating s and t. Let the solution surface be in the z = z (x, y).

The method is illustrated in the following example.
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Example 1 : Determine the characteristics of the equation

2 2z p q 

and find the integral surface which passes through the curve

2

0 0 0,  0,  
4

s
x s y z    .  (the parabola 24 0, 0z x y    ).

Solution : Let the given p.d.e. be denoted by

  2 2, , , , 0f x y z p q p q z    .      ... (3.82)

The initial data curve is

2

0 0 0,  0,  
4

s
x s y z    .      ... (3.83)

To determine the function 0 ( )p s  and 0 ( )q s  we have the strip conditions.

 
2

2 2
0 0 0 0 0 0 0, , , , 0 0

4

s
f x y z p q p q     ,

and 0 0 0
0 0 02

dz dx dy s
p q p

ds ds ds
     .      ... (3.84)

2 2 2
2 2

0 04 4 2

s s s
q q    

or
0

2

s
q  .      ... (3.85)

Now the Cauchy characteristic equations (3.80) become

2
dx

p
dt

 ,

2
dy

q
dt

  ,

2 22 2
dz

p q
dt

  ,

dp
p

dt
 ,

and
dq

q
dt

 .      ... (3.86)
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Thus we have

2 22 2 2 2

dx dy dz dp dq
dt

p q p qp q
    
 

The ratios 2

dx dp

p p
  give

12x p C   .      ... (3.87)

Now consider the ratios

22
2

dy dq
y q C

q q
    

 .      ... (3.88)

The conditions

3log log
dp

dt p t C
p
    ,

3
tp C e  .      ... (3.89)

Similarly, 4log log
dq

dt q t C
q
    ,

4
tq C e  .      ... (3.90)

Now the equation  2 22 2

dz
dt

p q




gives  2 2 2 2
3 42 t tdz C e C e dt  ,

 2 2 2
3 42 tdz C C e dt  ,

 2 2 2
3 4 5

tz C C e C    .      ... (3.91)

Now on using the initial data (3.83) to (3.85) we have from equations (3.87) to (3.91) that

1 2 3 4 52,   2 ,   ,   ,   0
2 2

s sC s C s C C C     

Eliminating these constants, we have finally from equations (3.87) to (3.91)

2tx se s   ,      ... (3.92)

 2 1 ty s e   ,      ... (3.93)

2
ts

p e  ,      ... (3.94)
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2
ts

q e  ,      ... (3.95)

and
2

2

4
ts

z e  .      ... (3.96)

Solving (3.92) and (3.93) for s and et we get

2

y
s x

   
 

 and  
2

2

t x y
e

y
x






Substituting in (3.96) we get

2
1 2

4 2
2

y x y
z x

y
x

       
    

 

 21
2

4
z x y   .      ... (3.97)

This is the required integral surface.

Example 2 : Find by the method of characteristics, the integral surface of

pq xy

which passes through the curve z = x, y = 0.

Solution : Let the given p.d.e. be

 , , , , 0f x y z p q pq xy   ,      ... (3.98)

and the initial data curve be

0 0 0( ) , ( ) 0, ( )x s s y s z s s   .      ... (3.99)

Hence the equation  0 0 0 0 0, , , , 0f x y z p q   becomes

0 0 0 0 0p q x y 

0 0 0 0p q  

0 0( ) ( ) 0p s q s      ... (3.100)

Now the equation
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0 0 0
0 0

dz dx dy
p q

ds ds ds
 

becomes 0 01 1 0p q       ... (3.101)

0 1p  . ( unique initial data)

From equation (3.100)

0 0q  .    ... (3.102)

Now the Cauchy characteristics equations (3.80) become

,   ,   2 ,
dx dy dz

q p pq
dt dt dt

    ,   
dp dq

y x
dt dt

  .    ... (3.103)

Thus from equations

dx
q

dt
  and  

dq
x

dt
 ,

we have
2

2

d x dq
x

dtdt
 

2

2
0

d x
x

dt
   ,

which has solution

t tx ae be  .    ... (3.104)

t tdx
q ae be

dt
    .    ... (3.105)

Similarly, from equations

,    
dy dp

p y
dt dt

,

we have
2

2

d y dp
y

dtdt
 

2

2
0 t td y

y y ce de
dt

      .    ... (3.106)

Hence,
t tdy

p ce de
dt

      ... (3.107)
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Therefore, 2

dz
dt

pq


  2 t t t tdz ce de ae be dt   

 2 22 t tdz ace bc ad bde dt   

 2 2 2t tz ace bde bc ad t e      .    ... (3.108)

Using the initial data (3.99) to (3.102) at t = 0 we get

2

s
a b  ,    ... (3.109)

1

2
c d   ,    ...(3.100)

and

s ac bd e  

4 4 2

s s s
s e e         ... (3.111)

Finally, we have

cosh
2

t te e
x s x s t

 
   

 
,    ... (3.112)

sinh
2

t te e
y y t


   ,    ... (3.113)

2 2 2
4 4 4 4 2

t ts s s s s
z e e t       

 
,

2 2

2 2 2

t ts e e s
z

 
  

 

 cosh 2 1
2

s
z t  

 2 2cosh sinh 1
2

s
z t t  

    2 2cosh cosh
2

s
t t 

2coshz s t .    ... (3.114)
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Now  1
cosh

2
t tp e e p t    .    ... (3.115)

sinh
2

t te e
q s q s t

 
   

 
.    ... (3.116)

Now eliminating s and t from (3.112), (3.113) and (3.114) we get

2 2 4coshz s t

      2 2cosh cosh s t t

      2 21 sinh x t

 2 2 21 z x y .    ... (3.117)

This is the required integral surface through the given initial data curve.

Example 3 : Find the characteristics of the equation

pq z

and determine the integral surface which passes through the parabola x = 0, y2 = z.

Solution : Let the given p.d.e. be denoted by

 , , , , 0  f x y z p q pq z .    ... (3.118)

The initial data curve is

2
0 0 00, ,  x y s z s .    ... (3.119)

To determine the functions 0 ( )p s  and 0 ( )q s , we have the strip conditions

 0 0 0 0 0, , , , 0f x y z p q 

2
0 0 0 0 00 0     p q z p q s ,      ... (3.20)

and 0 0 0
0 0 

dz dx dy
p q

ds ds ds

0 0 02 (0) 2s p q q s     .    ... (3.121)

Equation (3.120) 0 2
 

s
p .    ... (3.122)

Now the Cauchy characteristic equations (3.80) become

2 2 3
t tdx

q dx C e dt x C e C
dt

      .
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1 1 4
t tdy

p dy C e dt y C e C
dt

      ,

2
52 2 log log

dz dz
pq t z t C

dt z
      ,

       
2

5 tz C e ,

1
tdp

p p C e
dt

   ,

2
tdq

q q C e
dt

   .   ... (3.123)

Thus we have

2
    

dx dy dz dp dq
dt

q p pq p q .

The ratios

1   
dx dq

x q C
q q ,   ... (3.124)

and 2   
dy dp

y p C
p p .   ... (3.125)

Also 3log log   
dp

dt p t C
p

3  tp C e ,   ... (3.126)

and 4 4log log      tdq
dt q t C q C e

q .    ... (3.127)

Now
2

3 42
2

   tdz
dt dz C C e dt

pq

2
3 4 5 tz C C e C .    ... (3.128)

Now using the initial data curve (3.119), (3.121) and (3.122) at t = 0, we have from (3.124)

1 10 2 2    s C C s ,

2 22 2
   

s s
s C C ,
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Equation (3.126) gives 32

s
C .

Equation (3.127) gives 42s C ,

and equation (3.128) gives
2

5 52 0
2

s
s s C C    .

Finally we have on substituting the values of these constants in equations (3.124) to (3.128)

2 2 tx se s ,    ... (3.129)

 1
2 2 2

    t ts s s
y e y e ,    ... (3.130)

2
 ts

p e ,    ... (3.131)

2 tq se ,    ... (3.132)

and 2 2 tz s e .    ... (3.133)

Now eliminating s and t between (3.129), (3.130) and (3.133) we have

1
2
2

1

  

 


t

t

x
e

s
y

e
s

   adding we get

 4

4
t x y

e
s


 .

Putting this in (3.129) we get

4
2 1

4

    
x y

x s
s

4 4
2

4

    
 

x y s
x s

s

2 4 4   x x y s

or 4 4  s x y

Therefore,
4

4

y x
s




Hence 4

4





t x y

e
y x

.
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Substituting this in (3.133) we get

2 2
4 4

4 4

           

y x x y
z

y x

2
4

4

   
 

x y
z .

This is the required integral surface.

Example 4 : Find by the method of characteristics the integral surface of the equation

2 0  p x qy z

which passes through the initial data y = 1, x + z = 0.

Solution : Let the given p.d.e. be denoted by

  2, , , , 0   f x y z p q p x qy z .    ... (3.134)

The initial data curve is

0 0 0, 1,   x s y z s .    ... (3.135)

To determine the functions 0 ( )p s  and 0 ( )q s , we have the strip conditions

  2
0 0 0 0 0 0 0, , , , 0 0    f x y z p q p s q s ,    ... (3.136)

and 0 0 0
0 0 0 0 01 (0) 1        

dz dx dy
p q p q p

ds ds ds
.    ... (3.137)

Therefore equation (3.136) give

0 00 2     s q s q s .    ... (3.138)

Now the Cauchy characteristic equations (3.80) reduce to

2
dx

px
dt

 ,

dy
y

dt
 ,

22
dz

p x qy
dt

  ,

2dp
p p

dt
   ,

0
dq dq

q q
dt dt

     .    ... (3.139)
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The equation 
dy

y
dt

 gives

1  ty C e    ... (3.140)

The equation  
 

1
1

     


dp dp
p p dt

dt p p

1 1

1
     

dp dt
p p

Integrating we get

  2log log 1 log   p p t C

   
2

2
2

1 1
   

 

t
t

t

C ep
C e p

p C e
.    ... (3.141)

The equation 30  
dq

q C
dt

.    ... (3.142)

The equation    
2 2

1 1
   
  

dx px dx x

dp p p dp p

or 2

1
 


dx dp

x p
.

Integrating we get

  4log 2 log 1 log   x p C

  2
4 1x C p

   .    ... (3.143)

From (3.141)
2 2

2 2

1 1
1 1

    
 

t t

t t

C e C e
p p

C e C e

   22
2

2

1
1 1 1

1
t

t
p p C e

C e

      


Hence  2

4 2 1tx C C e  .    ... (3.144)

Now the equation 
22 

dz
p x qy

dt
  becomes
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2

2
2

4 2 3 1
2

2 1
1

 
     

t
t t

t

C edz
C C e C C e

dt C e

2 2
2 4 1 32 t tdz

C C e C C e
dt

   2 2
2 4 1 32  t tdz C C e dt C C e dt

Integrating we get

2 2
2 4 1 3 5  t tz C C e C C e C .    ... (3.145)

Now using the initial data curve

0 0 0 0, 1, , 1     x s y z s p  and  0 2 q s ,

we have from equation (3.140) 1 1 C .

From equation (3.141) we have
2

2 2
2

1 1
1

C
C C

C
     

 .

From equation (3.142) we find 3 2C s  .

From equation (3.143) we have   2 4
4 41 1 4

4

C
s C s C s

       .

From equation (3.145) we find C5 = 0.

Thus the family of characteristic curves are given by

 2

4 2 1tx C C e 

 2
2  tx s e ,

 ty e ,  2 2 t tz se se ,   .... (3.146)

1

2
1 21
2

  
   
 

t
t

t
t

e e
p p

ee
  and  2 q s .

Solving the equations (3.146) for s and t we get

 2
2




x
s

y
 and te y .

Putting this in the  expression for z we get
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2

2

2

22
 



x xy
z y

yy
  or   


xy

z
x y

.

This is the required integral surface.

Example 5 : Find the integral surface of the equation

2 23 z p q

passing through 2
0 0 0: , 0,  C x s y z s .

Show that there are two possible initial strips 0 2p s , 0  q s .

Solution : Let the given non-linear p.d.e. be given by

  2 2, , , , 3 0   f x y z p q p q z ,    ... (3.147)

with the initial conditions

2
0 0 0, 0,  x s y z s .    ... (3.148)

To determine initial strip, we have the strip conditions

 0 0 0 0 0, , , , 0f x y z p q ,

2 2 2 2 2
0 0 0 0 03 0 3      p q z p q s ,    ... (3.149)

and 0 0 0
0 0 

dz dx dy
p q

ds ds ds

0 2p s  .    ... (3.150)

Hence equation (3.149) gives 0  q s .

Hence the initial strip is

2
0 0 0 0 0, 0, , 2 ,     x s y z s p s q s .    ... (3.151)

Now the Cauchy characteristic equations (3.80) are given by

2
dx

p
dt

 ,

6
dy

q
dt

  ,

2 22 6
dz

p q
dt

  ,

dp
p

dt
 ,
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dq
q

dt
 .

2 
dx

dp
.

Integrating we get 12 x p C .    ... (3.152)

Similarly, 6 6
dy

dy dq
dq

        ... (3.153)

26y q C   

3log log   
dp

p p t C
dt

3
tp C e 

Hence equation (3.152) gives

3 12 tx C e C  .   ... (3.154)

Now 4
tdq

q q C e
dt

   .    ... (3.155)

Consequently, equation (3.153) gives

4 26 ty C e C   .

Now
2 22 6 2  

dz
p q z

dt
,

2
dz

dt
z

  .

Integrating we get

2
5  tz C e .    ... (3.156)

Now using the initial data curve (3.151) we have from above equations (3.152) to (3.156)

1 14 3s s C C s     ,

2 20 6 6s C C s     ,

3 32 2s C C s   ,

4 4s C C s   ,

2 2
5 5s C C s   .
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Therefore, the characteristic curves are given by

 
 

2 2

4 3 4 1 ,

6 6 6 1 ,

,

2 ,

.

t t

t t

t

t

t

x se s x s e s

y se s y s e

z s e

p se

q se

     

      
 
 
 

.... (3.157)

The integral surface is obtained by eliminating s and t from (3.157) we get

 

2 2
3 2

1
3 2 3 2

x t y
z

x y

          

   2 2
9 2 2 2

36 4

 
  

x y x y
z z .    ... (3.158)

Exercise :

1. Find the characteristics of the equation pq = z and determine the integral surface which passes
through the straight line

x = 1, z = y.

2. Find the characteristics of the equation

2 2 2 p q

and determine the integral surface which passes through x = 0, z = y.
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SECOND  ORDER  PARTIAL  DIFFERENTIAL  EQUATIONS

UNIT - V

Introduction :

Partial differential equations of second order describe the physical behaviour of many practical
situations in science and engineering. We will see how such second order partial differential equations
arise in physics and engineering mathematics. Further, in many situations a given partial differential
equation of second order is difficult to solve, hence in this unit we classify the second order partial
differential equation in to elliptic, parabolic and hyperbolic forms by transforming it into canonical form.
The idea of reducing the given partial differential equation to a canonical form is that the transformed
equation assumes a simple form so that the subsequent analysis of solving the equation is easy. We also
discuss the methods of separation of variables of solving second order partial differential equation.

Definition : A semi-linear second order partial differential equation is expressed in the form.

 , , , , 0xx xy yy x yRu Su Tu g x y u u u    ,        ... (1.1)

where R, S, T are continuous functions of x and y only and 2 2 2 0R S T   , u is a dependent

variable. Equation (1.1) can also be written as

 , , , , 0x yRr Ss Tt g x y u u u    ,      ... (1.1a)

where ,   ,   xx xy yyr u s u t u   .

Solution of the Equation :

Definition : A function  ,u f x y  is said to be a regular solution of equation (1.1) in a domain

D     iff  ,f x y  on D and the function and its derivatives satisfy equation (1.1) identically..

Origin of Partial Differential Equation :

One dimensional wave equation :

Result : Derive an equation governing small transverse
vibrations of an elastic string.

Proof : Let an elastic string be stretched to a length 
and then fixed at the end points. Let the string be distorted
and further let at time t = 0 it be released and allowed to
vibrate. Our aim is to obtain the equation which governs

the deflection  ,y x t  at any point x after any time t > 0.

Q

P
1

2

1T

2T

s

x x
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Let y = y (x, t) be the displacement from the mean position (x-axis) of a string at time t at point
x. Let  s be the small portion of the string between two points P amd Q. We assume that the string is

homogeneous (i.e. mass per unit length is constant) perfectly elastic (i.e. does not offer any resistence
on bending) and weight of the string is neglected (i.e. action of the gravitational force on the string is
neglected).

In order to find the differential equation which describes the motion of string, we consider the
forces acting on the portion s . Let T1 and T2 be the tensions at points P and Q respectively acting

along the tangential direction. Since there is no motion of the string in the horizontal direction, therefore,
the horizontal components of the tensions will be constants.

1 1 2 2cos cos constantT T T      (say).        ... (1.2)

The resultant vertical force acting on the portion PQ is

2 2 1 1sin sinT T  .

Hence, the equation of motion is given by

Force = Mass • Acceleration

2

2 2 1 1 2
sin sin

y
T T s

t
   

   


9 ,        ... (1.3)

where 9 is the density of the string and s9 is the mass of the portion PQ and 
2

2

y

t




 is the acceleration

in the vertical direction.

We write from equation (1.3) that

2
2 2 1 1

2

sin sinT T s y

T T t

   
 


9

2
2 2 1 1

2
2 2 1 1

sin sin

cos cos

T T s y

T T T t

  
 


   


9

or
2

2 1 2
tan tan

s y

T t

  
  


9 .        ... (1.4)

Since 1tan  and 2tan  are the slopes of the curve of the string at points P and Q respectively,,

therefore we have by definition.

1tan
P x

y y

x x
         

      and

2tan
Q x x

y y

x x 




             .
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Hence equation (1.4) beomes

2

2
x x x

y y s y

x x T t




              
9 .

In the limiting case as 0x   i.e. Q P , we have

s x  ,

therefore,  we write

2

20
lim x x x

x

y y
yx x

x T t


 




                 
  

9 ,

2 2

2 2

y y

Tx t

 
 

 
9

,

2 2

2 2 2

1y y

x c t

 
 

 
,        ... (1.5)

where 
2 T

c 
9

, and c represents the speed of the wave propagation. Equation (1.5) is called the one

dimensional wave equation.

Heat Conduction Equation :

Result : Derive the second order partial differential equation which describes the temperature distribution
in a homogeneous isotropic solid.

Note : Homogeneous means distribution of material is uniform, isotropic means the material properties
are the same in all directions.

Specific heat of the solid means the amount of heat absorbed by the matter per unit mass per unit rise
in temperature.

Density of the solid means mass per unit volume.

Proof : Consider a homogeneous isotropic solid and V be any arbitrary volume inside the solid bounded
by a surface S. Let V  be a volume element. We denote

c : the specific heat of the solid,

9 : the density of the solid and,

u : the temperature which is a function of position and time.

Hence the heat energy stored in the volume element V  is equal to c u V9 .

Hence the total heat energy in the volume V is given by  
V

c udV   9        ... (1.6)
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If S  is a surface element, then the heat flow across S k un S          ... (1.7)

where n  is the outward normal to the surface S,

k - the thermal conductivity of the solid.

Hence the total flux across 
S

S k undS   .        ... (1.8)

Using the Gauss-Divergence theorem, we write

Total flux across  
V

S k u dV             ... (1.9)

Since the rate of change of heat energy in V is equal to the flux of heat energy across S. Therefore from
equations (1.6) and (1.9) we have

 
V V

c udV k u dV
t


  

      9 ,

    0
V

c u k u dV
t

         9 .      ... (1.10)

Since V is an arbitrary volume, we have therefore

    0c u k u
t


  


9 ,

  0
u

c k u
t


   


9 .

If the thermal conductivity k is constant through out the body, then we have

2 0
u

c k u
t


  


9 .

or
2u

K u
t


 


,      ... (1.11)

where 
k

K
c


9

 represents the heat conductivity, and

2 2 2
2

2 2 2

u u u
u

x y z

  
   

  
.

Equation (1.11) is the required heat conduction equation.

Note : One dimensional heat equation is given by

2

2

u u
K

t x

 


 
.      ... (1.12)
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There are some equations arise in physics. One of the most important partial differential equations in
Physics is the Laplace equation given by

2 0u 

i.e.
2 2 2

2 2 2
0

u u u

x y z

  
  

  
.      ... (1.13)

Note : The heat equation (1.11) reduces to Laplace equation when the temperature u does not change
with time t.

i.e. 0
u

t





 then equation (1.11) becomes

2 0u  .

Note : 2-dimensional Laplace equation is given by

2 2

2 2
0

u u

x y

 
 

 
.      ... (1.14)

Classification of second order Partial Differential Equation :

Result : By a suitable change of the independent variables, show that a second order partial differential
equation

 , , , , 0x yRr Ss Tt g x y u u u   

can be reduced to one of the canonical forms on the basis of

2 2 24 0,   4 0,   4 0S RT S RT S RT      .

Proof : A semi-linear second order partial differential equation can also be written as

 , , , , 0x yLu g x y u u u  ,      ... (1.15)

where
2 2 2

2 2
L R S T

x yx y

  
  

  
,      ... (1.16)

(x, y) are independent variables and u the dependent. We change the independent variables x, y to new

independent variables  ,   by means of the transformation equations

 ,x y  ,   ,x y  ,      ... (1.17)

where
 
 

,
0

,
x y

x y y x
x

J
x y y

  
   

 


    
 .

Then by using the chain rule of partial differentiation we obtain,
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x x xu u u    ,

y y yu u u    ,

xy x y x y xy y x x y xyu u u u u u u                    .

Similarly, we find

xx x x x x xx x x x x xxu u u u u u u                    ,

yy y y y y yy y y y y yyu u u u u u u                    .

Hence the operator (1.16) becomes

2 22x x x x xx xxLu R u u u u u                

 x y x y y x x y xy xyS u u u u u                     

2 22y y y y yy yyT u u u u u                .

We write this equation as

   2 2 2 2x x y y x x x y y x y yLu u R S T u R S T                     

   2 2
x x y y xx xxu R S T R u u            

   xy xy yy yyS u u T u u         

Substituting this in equation (1.15) we get

        , 2 , ; , , , , , ,x y x y x y x yA u B u A u G u u u                ,      ... (1.18)

where,   2 2,A u v Ru Suv Tv   ,      ... (1.19)

   1 1 2 2 1 2 1 2 2 1 1 1
1, ; ,
2

B u v u v Ru u S u v u v Tv v    ,      ... (1.20)

and A, B satisfy the equation

         22 21, , , ; , 4
4x y x y x y x y x y y xA A B RT S                .      ... (1.21)

We see that the transformed equation (1.18) has the same form as that of the original equation (1.15)

under the transformation (1.17). Since the classification of (1.15) depends on 2 4S RT ; therefore

we choose the new independent variables   and   so that the equation (1.18) takes the simplest

possible form. Thus the equation (1.18) will reduce to its simplest integrable form if the discriminant
2 4S RT  of the quadratic equation

2 0R S T         ... (1.22)
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is either positive, zero or negative every where.

Case (i) : Let 2 4 0S RT  .

In this case the roots 1 2,   of the equation (1.22) will be real and distinct. Thus we choose   and 

such that

1x y   ,      ... (1.23)

and 2x y   .      ... (1.24)

These are the first order partial differential equations for   and  .

Solving equation (1.23) by Lagrange’s method, we have

11 0
dydx dt


 


 1 , 0
dy

x y
dx

   .      ... (1.25)

Similarly, from equation (1.24) we find

 2 , 0
dy

x y
dx

  .      ... (1.26)

If 1 1( , )f x y C  and 2 2( , )f x y C  are the solutions of the ordinary differential equations (1.25) and

(1.26) respectively, and are called the characteristic curves of the equation (1.15), then we choose

 1 ,f x y  ,

and  2 ,f x y  .      ... (1.27)

The variables ,   are called the characteristic variables. For this choice of   and we have

  2 2,x y x x y yA R S T       

     2 2 2 2
1 1y y yR S T      

   2 2
1 1,x y yA R S T        .

 As 1  is a root of equation (1.22), we have therefore

 , 0x yA    .

Similarly, we show that

   2 2
2 2, 0x y yA R S T        ,

0A  .
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Consequently, equation (1.18) reduces to

   2 , ; , , , , ,x y x yB u G u u u        .      ... (1.28)

Since A = 0 and 2 4 0S RT  , then from equation (1.21) we have

2 0 0B B   .

Thus we have from equation (1.28)

 , , , ,
2
Gu u u u
B      ,

or  , , , ,u u u u     .      ... (1.29)

This is the desired canonical form of the equation (1.15). This form (1.29) is called hyperbolic form of
equation (1.15).

Case (ii) : Let 2 4 0S RT 

In this case the roots of the equation (1.22) are equal say 1 2   

We choose   such that

x y  ,

and   to be any arbitrary function of x and y independent of  . This is the Lagranges form of the

equation, solving we obtain

 ,f x y  ,

where  ,f x y C  is a solution of the equation

 , 0
dy

x y
dx

  .

Since    2 2, 0x y yA R S T        , due to (1.22)

 , 0x yA    ,

and  , 0x yA    , otherwise   would be function of  . Hence from equation (1.21) we have

B = 0. Putting these values in equation (1.18) we get

   , , , , ,x yA u G u u u     

or  , , , ,u u u u     .      ... (1.30)

This is the desired canonical form of the equation (1.15) and is called the parabolic form of (1.15).
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Case (iii) : Let  2 4 0S RT 

In this case the roots of the quadratic equation (1.22) are complex. We choose   and   as in the

case (i), so that

   , 0 ,x y x yA A     ,

and equation (1.18) reduces to

 , , , ,u u u u     .      ... (1.31)

This is similar to equation (1.29) except that the variables ,   are not real but are the complex

conjugates. Hence to obtain a real canonical form we make the transformation

 1
2

    ,

and  1
2

     .     ... (1.32)

Hence by using the chain rule of partial differentiation we have,

u u u       .

Using (1.32) we find

 1
2

u u iu    

and    u u u     
  

   1
4 4

iu u iu u iu       

 1
4

u u u    

Hence equation (1.31) becomes

 , , , ,u u u u u       .      ... (1.33)

This is the required real canonical form and is called an elliptic form of partial differential equation.

Thus we define the three types of canonical forms as follows :

Definition : A partial differential equation of second order viz.

 , , , , 0x yRr Ss Tt g x y u u u   

is said to
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(i) hyperbolic if 2 4 0S RT   and the corresponding canonical form is given by

 , , , ,u u u u     ,

(ii) parabolic if 2 4 0S RT  , and the corresponding canonical form is

 , , , ,u u u u     ,

(iii) elliptic if 2 4 0S RT   and the corresponding canonical form is

 , , , ,u u u u u       .

Example 1 : Show that

                  22 21, , , ; , 4
4x y x y x y x y x y y xA A B RT S               ,

where   2 2,x y x x y yA R S T        ,   2 2,x y x x y yA R S T        ,

and    1, ; ,
2x y x y x x x y y x y yB R S T               .

Solution : Consider

     2 2 2 2 2 2 2 2, , , ; ,                       x y x y x y x y x x x x y x y y x yA A B R RS RT RS

      2 2 2 2 2              x y x y x y y x y y x yS ST RT ST

            2 2 2 2 2 2 2 2 2 2 21 2
4

                y y x x x y y x x y x yT R S

2 2 2  y yT   2x x x y y x x y x yRS RT            

 y y x y y xST      

       2 2 2 2 2 21, , , ; , 2
4x y x y x y x y x y y x x y x yA A B S                     

    2 2 2 2 2x y x y x x y yRT          

        22 21, , , ; , 4
4x y x y x y x y x y y xA A B S RT                
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Example 2 : Reduce the equation 2 0xx yyu x u   to a canonical form.

Solution : The equation 2 0xx yyu x u 

can be written as 2 0r x t  .      ... (1.34)

Comparing this with the standard form we have

21,   0,   R S T x    .

Hence we see that

2 24 4 0S RT x   .

  Equation (1.34) is hyperbolic. Therefore, the quadratic equation

2 0R S T    ,

become 2 2 0  x

  x .

Let 1 x  , and 2 x    be its roots. Hence the ordinary differential equations

1 0
dy
dx

   and 2 0
dy
dx

  ,

become 0
dy

x
dx

    and  0
dy

x
dx

  .

Integrating we get

2

12
xy C   and  

2

22
xy C  .

Therefore, we choose the new independent variables   and   in the form

2

2
xy     and      ... (1.35)

2

2
xy   .      ... (1.36)

Now by changing the independent variables x, y as new independent variables   and  , we obtain by

using the chain rule of partial differention

x x xu u u    ,

y y yu u u    ,
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and 2xx x y x x x x xx xxu u u u u u                ,

2yy y y y y y y yy yyu u u u u u                ,

where from equations (1.35) and (1.36) we obtain

          ,   1,   1,   1,   ,   1,   0,   0x y xx xx x y xy yyx x                 ,

   22 22 (1) ( 1)xxu u x u x u x u u          

 2 2xxu x u u u u u          ,

and 2yyu u u u    

Substituting this in equation (1.34) we get

2x u
2 22x u x u   2u u x u     2 22x u x u   0

 24x u u u     

or    1
4

u u u   
 

 , for 2x    .

This is a required hyperbolic canonical form.

Example 3 : Reduce the equation

2 2
2 22xx xy yy x y

y xy u xyu x u u u
x y

   

into canonical form and hence solve it.

Solution : Given equation can be written as

2 2
2 22 x y

y xy r xys x t u u
x y

    .      ... (1.37)

Comparing this with the standard form, we have

2 2,   2 ,   R y S xy T x    .

We observe that

2 2 2 2 24 4 4 0S RT x y x y    .

Hence equation (1.37) is parabolic.

Hence the roots of the quadratic equation 2 0R S T     become

2 2 22 0y xy x   
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 2
0y x  

x
y

  . twice

Hence the solution of the ordinary differential equation

 , 0 0
dy dy xx y
dx dx y

    

is given by

2 2 2y x c  .      ... (1.38)

Now we choose the new independent variable   such that

2 2x y   .

Let us choose 2 2x y    (choice is arbitrary)

Therefore, we have

2 ,   2 ,   2 ,   2x y x yx y x y        ,

2,   2,   2,   2xx yy xx yy        ,

and 0xy xy   .

Thus by changing the independent variables (x, y) to  ,   we obtain

 2x nu x u u  ,

 2y nu y u u  ,

    2 2 2 2 2xyu x u y u y u y u y          ,

and      2 2 24 2 4 4 (2) (2)xxu u x u x u x u u         ,

     2 2 24 2 4 4 (2) ( 2)yyu u y u y u y u u           .

Hence equation (1.37) becomes.

2 24x y u 2 u   22u y u u     

 2 4xy xy u   2 24u x y u   2u   22u x u u     =

   
2 2

2 2
y xx u u y u u
x y      
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   2 2 2 2 2 2 2 2 2 216 2 2x y u u y x y x u y x y x            

0u  .      ... (1.39)

Which is required parabolic canonical form. This is a homogeneous second order p.d.e. with constant
coefficients.

Integrating w.r.t.   we get

 u f 

 


   u f g    

or       2 2 2 2 2 2,u x y f x y x y g x y     ,

where f and g are arbitrary.

Example 4 :  Reduce the equation

2 0xx yyu x u 

to a canonical form.

Solution : Given second order p.d.e. can also be written as

2 0r x t       ... (1.40)

Comparing this equation with the standard form we get

21,   0,   R S T x   .

We notice that

2 24 4 0S RT x    .

Hence the equation (1.40) is elliptic. Hence the quadratic equation 2 0R S T     becomes

2 2 0x  
It has roots

ix  

Let 1 ix   and 2 ix    be the complex roots. Hence the solutions of the first order ordinary

differential equations

 1 , 0
dy

x y
dx

    and   2 , 0
dy

x y
dx

 

i.e. 0
dy

ix
dx

    and  0
dy

ix
dx

  ,

are given by
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2

constant
2

 xy i    and   
2

constant
2

 xy i .

We write this as

2

12
xiy C     and  

2

22
xiy C  .      ... (1.41)

Therefore we choose the independent variables   and   such that

2

2
xiy   ,

and  
2

2
xiy    .

To obtain the real canonical form, further we make the transformations

 
21 , 0

2 2 x y
x x          ,

and  1 0, 1
2 x yi y          ,

1, 0xx yy   .

Hence we obtain

(0)x x xu u u u x u       

xu xu .

 0 1y y yu u u u u        

yu u .

xx x xu x u u u        

           x xu u  

2
xxu x u u   .

Similarly, yy y yu u u u     

yyu u .

Hence the equation (1.40) becomes

2 2 0x u u x u    
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or
1

2  
  u u u      ... (1.42)

2 2x  .

Which is the desired elliptic canonical form.

Example 5 : Reduce the equation

 2 2 2 11 n n
xx yy yn u y u ny u  

to a canonical form and hence find its general solution

Solution : The given second order p.d.e. is

 2 2 2 11 n n
xx yy yn u y u ny u   ,      ... (1.43)

where in this case

 2 21 ,   0,  nR n S T y     .

Case (i) When n= 1, we see that 2 4 0S RT  . Hence equation (1.43) reduces to

1
yy yu u

y
  ,      ... (1.44)

which is in the parabolic canonical form.

Case (ii) n > 1.

Then we see that   22 24 4 1 0nS RT n y    . Hence equation (1.43) is hyperbolic.

Hence the quadratic equation 2 0R S T   

i.e.  2 2 21 0nn y  

has roots

1
  



ny
n

.

Let 1 1

ny
n

 


, and 2 1

ny
n

  


 be roots of the equation. Hence the first order ordinary differential

equations

 1 , 0
dy

x y
dx

   and  2 , 0
dy

x y
dx

  ,

become
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0

1

ndy y
dx n

 


 and 0
1

ndy y
dx n

 


.

We write these equations as

( 1) 0
n

dy
n dx

y
    and ( 1) 0

n

dy
n dx

y
   .

The solutions of these equations are given by

1
1

ny x C     and 1
2

ny x C    .

These are called the characteristic curves of the equation. Therefore we choose the independent variables

  and   (which are called characteristic variable) such that

1

( 1)1 1,   x yn n

n
x

y y
  

     ,

and
1

( 1)1 1,  x yn n

n
x

y y
  

      ,

and 0,   0,   0,   0xx xy xy xx       ,

   
1 1

1 11 ,  1yy yyn n
n n n n

y y
       .

Hence we obtain

xu u u   ,

     1 1 11y yn n n
n nu u n u u u u

y y y
   

            
 

,

xxu u u u u       ,

and
   2 2

2 2
1 1

yy n n
n nu u u
y y

 
      
 

              
   2 2

1 2 2 1

( 1)1 1( 1)
n n n n

n nn n nu n u u u
y y y y

    
      ,

     
2

2 1
1 12yy n n

n n nu u u u u u
y y

    
         .

Substituting these values in equation (1.43) we get
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   2
2 2

2
11 2 2n
n

nn u u u y u u u
y

     
                 

       
2

2 1
1

11
n

n
n n

y nn n u u ny u u
y y

   



    

 2
4 1 0n u  

0u  for 1n  .

i.e.
2

0u
 
 
  .      ... (1.45)

This is the required hyperbolic canonical form. To find its solution, we integrate equation (1.45)
w.r.t.   to get

 1
u  

 
 ,

where     is a function of  . Integrating again w.r.t.  , we get

   1u d g     .

We write this as

     ,u x y f g   ,

where    1f d     .

i.e.      1 1, n nu x y f x y g x y     ,      ... (1.46)

where f and g are arbitrary. This is the required general solution of the equation (1.43).

Example 6 : Classify the equation

22sin cos cos 0xx xy yy yu xu xu xu    .

Reduce it to the canonical form and obtain its general solution.

Solution : The given partial differential equation is

22sin cos cos 0xx xy yy yu xu xxu xu    ,     ... (1.47)

where 21,   2sin ,   cosR S x T x     .

We see that

2 2 24 4sin 4cos 4 0S RT x x    
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  The equation (1.47) is hyperbolic. Hence the quadratic equation 2 0R S T     becomes

2 22sin cos 0x x   

It has roots sin 1x   . Let 1 sin 1x    and 2 sin 1x   . Hence the first order ordinary

equation.

 1 , 0
dy

x y
dx

   and  2 , 0
dy

x y
dx

  ,

become sin 1 0
dy

x
dx

    and sin 1 0
dy

x
dx

   .

Solutions of these equations are obtained by integrating

1cosy x x C   , 2cosy x x C   .

So that we choose the independent variables   and   such that

cosy x x    , cosy x x    .

From this we find sin 1,   1,   cos ,   0,   0x y xx xy yyx x          ,

sin 1,   1,   cos ,   0  x y xx xy yyx x          .

Hence we obtain

   1 sin sin 1xu u x u x     ,

     2
1 sin 1 sin sin 1 cosxxu u x x u x u x        

     2
sin 1 sin 1 sin 1 cosx u x x u u x        ,

       2 221 sin 2 sin 1 sin 1 cosxxu x u x u x u x u u            ,

   1 sin 2sin sin 1xyu u x u x x u       

and yu u u  

2yy yyu u u u u u u u u              .

Substituting these values in equation (1.47) we get

       2 221 sin 2 sin 1 sin 1 cosx u u x u x u u           
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   2sin 1 sin 2sin sin 1x x u xu x u          

 2cos 2 cosx u u u x u u           0

On simplifying we obtain

0u 

or
2

0u
 
 
  .      ... (1.48)

This is the required hyperbolic canonical form of the given p.d.e. Clearly its solution is

     ,u x y f g  

or      , cos cosu x y f y x x g y x x      .      ... (1.49)

This is the required general solution of (1.47).

Example 7 : Reduce the equation

2 2 0xx yyx u y u 

into canonical form

Solution : Given equation is

2 2 0xx yyx u y u  ,      ... (1.50)

where 2 2,   0,   R x S T y    .

We see that 2 2 24 4 0S RT x y    .

  The p.d.e. of second order (1.50) is hyperbolic. Now the quadratic equation

2 0R S T   

becomes  2 2 2 0x y   .

It has roots
y
x

   .

Let 1
y
x

    and  2
y
x

   . Consider the first order ordinary differential equations

 1 , 0
dy

x y
dx

   and  2 , 0
dy

x y
dx

  .

0
dy y
dx x

    and 0
dy y
dx x

  ,
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or 0
dy dx
y x
   and 0

dy dx
y x
  .

Integrating we get

1log log logy x C   and 2log log logy x C 

i.e. 1xy C   and  2
y

C
x
 .

Hence we choose the independent variables   and   such that

xy   and ,   ,   0x y xx yy
y

y x
x

          ,

2x
y

x
   , 

1
y x

  , 3

2
xx

y

x
   ,  0yy  , 2

1
yx

x
   .

Hence we obtain

2x
y

u u y u
x

 
    
 

,  
1

yu u x u
x   ,

2
2 2 2xx
y y y

u y u yu u y u
x x x

   
                 

,

2 2
2

2 4 3

2 2
xx

y y y
u y u u u u

x x x
   

      
 

,

and
2

2
12yyu x u u u
x

     .

Hence the given p.d.e. (1.50) becomes

2 2
4 0

y
y u u

x    .

or
1 0

2
u u

xy   .

i.e.
1 0

2
u u 

  .      ... (1.51)

Which is required hyperbolic canonical form.
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Example 8 : Reduce the equation

4 4 5 0xx xy yyu u u     to canonical form.

Solution : Let 4 4 5 0xx xy yyu u u   ,      ... (1.52)

where S = – 4, R = 4, T = 5.

Therefore, 2 4 16 80 0S Rt   

Therefore equation (1.52) is elliptic. The quadratic equation 2 0R S T     becomes

24 4 5 0    .

This has roots

 1 1 2
2

i   .

We choose 1
1
2

i    and 2
1
2

i   .

Hence the ordinary differential equations 1 0
dy
dx

   and 2 0
dy
dx

   become

1 0
2

dy
i

dx
    
   and 

1 0
2

dy
i

dx
    
  .

Integrating we get

1
1
2

y i x C    
   and 2

1
2

y i x C    
  ,

i.e. 12 2x y ix C   ,

and 22 2x y ix C   .

We choose 2 2x y ix    ,

and 2 2x y ix    .

Therefore, to obtain real canonical form, we consider the transformation

 1
2

     and  
2
i    .

2x y     and  2x   .

x x xu u u    ,

2xu u u    ,
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2y y y yu u u u u       ,

         2
2 0 2 2 0xxu u u u u u u             

4 4xxu u u u     ,

2xyu u u   ,      ... (1.53)

2 4xyu u u   ,

and 4yyu u .

Substituting these values in equation (1.52) we get

4 16u u  16 8 16u u u     20 0u  .

0u u    .

This is required elliptic canonical form of the equation.

Example 8 : Reduce the equation

2 22 0x x y y
xx xy yye u e u e u  

into canonical form

Solution : The second order p.d.e. is given by

2 22 0x x y y
xx xy yye u e u e u   ,      ... (1.54)

where 2 2,   2 ,   x x y yR e S e T e   .

We observe that

   2 22 4 4 4 0x y x yS RT e e     .

  The equation (1.54) is parabolic. Hence the quadratic equation 2 0R S T     becomes

i.e. 2 2 22 0x x y ye e e   

 2
0x ye e  

0x ye e   .

y xe    .

Hence the ordinary differential equation

 , 0
dy

x y
dx

  ,
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becomes 0y xdy
e

dx
  .

We write this equation as

0y xe dy e dx   .

On integrating we obtain its solution as

1
y xe e C    .      ... (1.55)

Now we choose the independent variables   and   such that

x ye e     and   is arbitrary..      ... (1.56)

We choose x ye e    .                 ... (1.57)

From these equations we find

, , ,x y x y
x y x ye e e e             ,

, , ,x y x y
xx yy xx yye e e e           ,

and 0xy  , 0xy  .

Therefore, we find

   x x
xu u e u e 

    

 x
xu e u u 

    ,

and    y y y
y yu u e u e u e u u   

        .

Now          x x x x x x
xxu e u u e u e u e u e u e     

                

   2 2x x
xxu e u u e u u u    

      ,

( )x y
xyu e u u 

      ,

and    y y y y y y
yyu e u e u e u e u e e u u     

             

 2 2y y
yyu e u u u e u u    

        .

Substituting these in given p.d.e. (1.54) we get



197

 2 2x xe e u u u u   
      ( )2 x y x yu e e u u  

        

2 2 2y ye e u u 
     0yu e u u  

    
  ,

   4 y x x yu u e e u e e      

Solving equations (1.56) and (1.57) we find

2xe
 




 and 2ye
 




.

Thus we obtain

2 2
4u u u   

 
     .     ... (1.58)

This is the required parabolic canonical form.

Exercise :

1. Reduce the equation

2 0xx xy yyu u u  

into the canonical form and hence solve it.

2. Reduce the equation

2sin 2cos 0xx xy yyxu xu u  

into canonical form.

3. Find the characteristics of the equation

22 sin 0xx xy yy yu u xu u   

when it is of hyperbolic form.

4. Reduce the equation to a canonical form

   2 21 1 0xx yy x yx u y u xu yu      .
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2. One Dimensional Wave Equation :

1. Vibration of an infinite string (both ends are not fixed)

Result : Obtain DAlembert’s solution of the one dimensional wave equation which describes the
vibrations of an infinite string.

Proof : We know the vibrations of a string is governed by the second order partial differential euqtion
given by

2
1

xx tty y
c

 ,  x    ,        ... (2.1)

where y (x, t) is the deflection of the string.

Since the string is infinite boundaries of the string are not fixed. If f (x) is the initial deflection
(mean position) of the string and g (x) the initial velocity of the string, then the function y (x, t) is
required to satisfy the initial conditions

 ,0 ( )y x f x ,        ... (2.2)

(this gives initial position of the string)

and  , 0 ( )ty x g x , x    .        ... (2.3)

(this gives the initial velocity of the string.)

Thus our problem is to find the solution of the one-dimensional wave equation (2.1) satisfying
the initial conditions (2.2) and (2.3). We first reduce the equation (2.1) into canonical form by changing

the independent variables (x, t) into the new independent variables (Characteristic variables)   and 
by using the transformation equations

x ct   ,        ... (2.4)

and x ct   ,        ... (2.5)

where 1,   ,   0,   0,   1x t xx xt ttc          ,

1,   ,   0,   0,   0x t xx xt ttc         .

Also by using the chain rule of partial differentiation, we find,

xy y y   ,

 ty c y y    ,

2xxy y y y      ,

and  2 2tty c y y y     ,

Substituting these values in euqtion (2.1) we get

2 2y y y y y y         
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0y  .        ... (2.6)

This is the required canonical form of the equation (2.1).

Now integrating equation (2.6) we obtain

     ,y x t F G   .

Replacing   and   as defined in (2.4) and (2.5) we get

     ,y x t F x ct G x ct    ,       ... (2.7)

where F and G are arbitrary functions. Equation (2.7) is the general solution of the one dimensional
wave equation. The two terms in equation (2.7) can be interpreted as waves travelling to the right and
left respectively with velocity c.

The solution (2.7) is required to staisfy the initial conditions (2.2) and (2.3). Hence we have

       ,0y x f x F x G x   .        ... (2.8)

Now differentiating equation (2.7) with respect to t we get

     , ' 'ty x t cF x ct cG x ct    

       , 0 ' 'ty x g x cF x cG x     .        ... (2.9)

On integrating equation (2.9) between x0 to x we get

 
0

1 ( ) ( )
x

x

g x dx F x G x
c

   .      ... (2.10)

Adding and subtracting equations (2.8) and (2.10) we get respectively

0

1( ) ( ) ( )
2

x

x

G x cf x g x dx
c

 
  

 
 

 ,

and
0

1( ) ( ) ( )
2

x

x

F x cf x g x dx
c

 
  

 
 

 .

Substituting these values in equation (2.7) we get

     
0 0

1 1, ( ) ( )
2 2

x ct x ct

x x

y x t cf x ct g s ds cf x ct g s ds
c c

    
        

      
  ,

      
0

0

1 1, ( ) ( )
2 2

x x ct

x ct x

y x t f x ct f x ct g s ds g s ds
c





 
       

  
  ,
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      1 1, ( )
2 2

x ct

x ct

y x t f x ct f x ct g s ds
c





       .      ... (2.11)

where 2f c , 1g C  so that   2,y x t C  function. This is called the d’Alembert’s solution which

describes the vibrations of an infinite string at any point x and at any time t.

Note : x – ct = constant and x + ct = constant are called the characteristic curves of one dimensional
wave equation.

Note : If the string is released from rest then g (x) = 0, so that the solution (2.11) becomes

      1,
2

y x t f x ct f x ct    .

Physical Meaning of the solution of the wave equation

We know the general solution of one dimensional wave equation (2.1) is given by

     ,y x t F x ct G x ct    .      ... (2.12)

Consider    1 ,u x t F x ct  .      ... (2.13)

Hence the initial wave profile (shape) is given by

   1 , 0u x F x .

Now at time 
1t
c

 , we have from (2.13) that

 
1

1, 1u x F x
c

    
  .

  In time 
1t
c

 , the wave has travelled through a distance of 1-unit. Further, if we put ' 1x x  ,

then we have

   1 'F x F x  .

This implies that the original shape of the wave is retained even if the origin is shifted by one unit along
the x-axis.

Now at time 
2t
c

 , we have from equation (2.13)

 
1

2, 2u x F x
c

    
  ,

  the wave has travelled through a distance of 2 units at time 
2t
c

 .

Thus in particular, at t = 1, we have from equation (2.13),
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   1 ,1u x F x c 

  in one unit of time the profile has moved c units to the right.

  c is the speed of propagation.

Similarly, we conclude that the equation

   2 ,u x t G x ct 

represents a wave profile travelling to the left with speed c along x-axis. Thus the general solution
(2.12) of the one dimensional wave equation represents the superposition of two arbitrary wave profiles,
both of which are travelling with a common speed but in the opposite direction along the x-axis.

3. Vibrations of a Semi-infinite String (one end point is fixed)

Result : Obtain d’Alembert’s solution of the one dimensional wave equation which describes the
vibrations of a semi-infinite string.

Proof : The vibration of a string is governed by the second order one dimensional wave equation

2
1

xx tty y
c

 ,  0 x   , 0t  ,        ... (3.1)

where y (x, t) represents the deflection of the string at any point x and at any time t. Since the string is
semi-infinite i.e. one end of the string x = 0 is kept fixed for all time. If u (x) and v (x) are the initial
deflection and the initial velocity of the string, then the function y (x, t) is required to satisfy the initial
conditions.

   ,0y x u x , 0x  .        ... (3.2)

This equation describes initial position of the string and

   , 0ty x v x .        ... (3.3)

This describes initial velocity at point x. The deflection y (x, t) has to satisfy the boundary conditions

 0, 0y t  , 0t  .        ... (3.4)

This shows there is no deflection at fixed point x = 0 at any time t,

and  0, 0ty t  ,        ... (3.5)

showing that velocity at fixed point x = 0 is zero.

Our aim is to find the solution of equation (3.1) satisfying the conditions (3.2) to (3.5).

We know the d Alembert’s solution of one dimensional wave equation is given by

      1 1, ( )
2 2

x ct

x ct

y x t u x ct u x ct v x ds
c





      .        ... (3.6)
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However, this solution cannot be used for the given initial value problem, since  u x ct  has no

meaning for values 
xt
c

 . Therefore we modify our semi-infinite string problem to an infinite string

problem. Thus our problem is to find deflection of an infinite string subject to the initial conditions.

   ,0y x U x

   , 0ty x V x , x    ,

where   ( )  if  0,

( )  if  0,

u x x
U x

u x x


   

       ... (3.7)

and   ( )  if  0,

( )  if  0.

v x x
V x

v x x


   

       ... (3.8)

We notice that U and V are odd functions of x. Thus the solution of equation (3.1) subject to the
conditions (3.7) and (3.8) is given by d Alembert’s solution

      1 1, ( )
2 2

x ct

x ct

y x t U x ct U x ct V s ds
c





             ... (3.9)

Now we will show that the solution (3.9) is also a solution of equation (3.1) subject to the conditions
(3.2) to (3.5). For this, we simply prove that the solution (3.9) satisfies the initial and boundary conditions
(3.2) to (3.5). Therefore, from equation (3.9) we have at t = 0 and x > 0.

      1 1,0 ( )
2 2

x

x

y x U x U x V s ds
c

    ,  0x 

( ,0) ( )y x u x  , x > 0, due to (3.7).      ... (3.10)

Now from equation (3.9) we find after differentiating (3.9) with respect to t.

      1 1, ' ' ( )
2 2

x ct

t
x ct

y x t cU x ct cU x ct V s ds
c t





     
  .

We use the formula

           
 

 

         
    

x ct x ct

x ct x ct

V s ds V s ds V x ct x ct V c ct x ct
t t t t .
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           1 1, ' '
2 2

         ty x t cU x ct cU x ct cV x ct cV x ct
c

.     ... (3.11)

At t = 0, this gives

     1 1,0 '( ) '( ) ( ) ( )
2 2

    ty x cU x cU x V x V x

 , 0 ( )ty x V x . for x > 0      ... (3.12)

Now from equation (3.9) we have at x = 0

    1 10, ( ) ( )
2 2 

    
ct

ct

y t U ct U ct V s ds
c .

Since V is an odd function, this implies the integral ( )


ct

ct

V s ds  vanishes.

   10, ( ) ( )
2

   y t U ct U ct .

Using equation (3.7) we get

   10, ( ) ( )
2

  y t u ct u ct ,

 0, 0 y t .      ... (3.13)

Now from equation (3.11) we find for x = 0, and t > 0

     1 10, '( ) '( ) ( ) ( )
2 2

      ty t cU ct cU ct V ct V ct .

Using equations (3.7) and (3.8) we find for x   0

'( ) '( )( 1)   U x u x ,

'( ) '( )  U x u x ,

'( ) '( )  U ct u ct .

Similarly, for 0x , '( ) '( )U x u x

'( ) '( ) U ct u ct .

Hence we get

     1 10, '( ) '( ) ( ) ( )
2 2

    ty t cu ct cu ct v ct v ct .

 0, 0 ty t .      ... (3.14)
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Thus we have proved that the d’Alembert’s solution (3.9) also satisfies the initial and the boundary
conditions (3.2) to (3.5). This proves the D’Alembert’s solution (3.9) is the desired solution of the one
dimensional wave equation (3.1) subject to the conditions (3.2) to (3.5).

Note : In particular, if the string is released from rest i.e. v(x) = 0 then the solution (3.9) becomes

      1,
2

   y x t u x ct u x ct , for  x ct ,

   1 1
2 2
      

u x ct u ct x , for x ct .

4. Vibrations of a string of finite length

Result : Show that the d’Alembert’s solution of the one domensional wave equation which describes
the vibrations of a finite length string is given by

 
1 1

, sin cos sin sin
 

 

               
        

   
n

n
n n

vn x n ct n x n cty x t u
c n

   
 .

Proof : Let a string be of length  . The vibrations of a string is goverened by the second order partial
differential equation given by

2xx tty c y , 0   x , t > 0.        ... (4.1)

Since the string is finite, hence both the ends of the string are fixed for all time. Therefore the function
y (x, t) must satisfy the initial conditions

 ,0 ( )y x u x ,        ... (4.2)

 ,0 ( )ty x v x ,  0   x ,

where u (x) represents the initial position of the string and v (x) represents the initial velocity of the
string. The deflection of the string y (x, t) also satisfy the boundary conditions.

   0, , 0 y t y t ,        ... (4.3)

  there is no deflection at the end points of the string at any time t > 0,

and    0, , 0 t ty t y t .        ... (4.4)

This shows the velocity of the string at end points at any time t is zero.

The d’Alembert’s solution of equation (4.1) is given by

   1 1, ( ) ( ) ( )
2 2





     
x ct

x ct

y x t u x ct u x ct v s ds
c .        ... (4.5)

However, this solution cannot be used for given initial value problem as u (x – ct) has no meaning for
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values  xt
c

. Hence we convert our problem into a problem of vibrations of an infinite string by

extending our data.

Thus we consider the vibrations of an infinite string subject to the initial conditions.

 ,0 ( )y x U x ,

and  , 0 ( )ty x V x ,        ... (4.6)

where
( ),     0

( )
( ),     0

 
     




u x if x
U x

u x if x        ... (4.7)

and  2 ( ) U x r U x , if    x , 1, 2,...  r ,

and
( ),     0

( )
( ),     0

 
     




v x if x
V x

v x if x        ... (4.8)

and  2 ( ) V x r V x ,    x , 1, 2,...  r

This shows that U (x) and V (x) are odd functions of x and are periodic with period 2  .

Hence the deflection of the string given in (4.5) subject to the conditions (4.6) to (4.8) becomes

      1 1, ( )
2 2





     
x ct

x ct

y x t U x ct U x ct V s ds
c .        ... (4.9)

We assume U (x) and V (x) can be expanded into a Fourier series in  ,  . Since U (x) and V (x)

are odd functions, it contains only sine terms.

Thus we have,

1

( ) sin




   
  n

n

n xU x u 
,      ... (4.10)

and
1

( ) sin




   
  n

n

n xV x v 
,      ... (4.11)

where the Fourier constants nu  and nv  are given by

0

2 ( )sin    
 



 n
n su u s ds

,      ... (4.12)

and
0

2 ( )sin    
 



 n
n sv v s ds

.      ... (4.13)



206

Using equation (4.10) we find

 
1

1 1( ) ( ) sin ( ) sin ( )
2 2





                  
  n
n

n nU x ct U x ct u x ct x ct 
.

Since sin sin 2sin cos
2 2
         

   
A B A BA B

 
1

1 ( ) ( ) sin cos
2





           
     n

n

n x nU x ct U x ct u ct 
.      ... (4.14)

Similarly, on using (4.11) we find

1

1 1( ) sin
2 2

  

 

   
   

x ct x ct

n
nx ct x ct

nV s ds v s ds
c c



1

1 sin
2



 

   
   

x ct

n
n x ct

nv s ds
c



1

1 cos
2





     
  

 


x ct

n
x ctn

nv s
c n




1

cos ( cos (
2





                


 
n

n

v n nx ct x ct
c n

 
 .

Using the formula

cos cos 2sin sin
2 2
         

   
A B B AA B

we find,
1

1 ( ) sin sin
2 2

 



             
 

 

x ct
n

nx ct

v n nV s ds x ct
c c n

 
      ... (4.15)

Using equations (4.14) and (4.15) in equation (4.9), we readily obtain

 
1 1

, sin cos sin sin
 

 

                
        
   

n
n

n n

vn n ct n n cty x t u x x
c n

   
 .      ... (4.16)

Differentiating equation (4.16) with respect to t we get

1 1

( , ) sin sin sin cos
 

 

                                 
     t n n

n n

c n n ct c n n cty x t nu x v x
c

     
 .
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1 1

( , ) sin sin sin cos
 

 

                 
            t n n

n n

c n n ct n n cty x t nu x v x    
.    ... (4.17)

Now we easily check that the d’Alembert’s solution (4.16) satisfies the initial and boundary conditions.

Thus from equation (4.16) we find at t = 0

 
1

,0 sin ( )




   
  n

n

ny x u x U x
, by (4.10)      ... (4.18)

and    0, 0 ,  y t y t . as sin 0 sin 0 n

Now from equation (4.17), we find at t = 0

 
1

,0 sin ( )




   
  t n

n

ny x v x V x
, due to (4.11)

and    0, 0 ,  t ty t y t .      ... (4.19)

Thus we see from equations (4.18) and (4.19) that the d’Alembert’s solution (4.16) satisfies the initial
and the boundary conditions identically. Hence equation (4.16) is the desired solution of the one-
dimensional wave equation (4.1).

5. Vibrations of a string of finite length (Method of Separation of Variables)

Introduction : Among the many methods that are available for the solutions of a second order partial
differential equation, the method of separation of variables is a powerful method which is applicable  in
certain circumstances. We will apply the method to find the solutions of one dimensional wave equation.
The method will also be used to solve Heat and Laplace equations in the Units 6 and 7 below :

Result : By separable variable method find the solution of

2tt xxy c y , 0   x , t > 0.        ... (5.1)

subject to the conditions that

 
 

,0 ( ),   0

,0 ( ),   0

  

  


t

y x f x x

y x g x x
       ... (5.2)

and    0, , 0 y t y t ,        ... (5.3)

where f (x) and g (x) are initial displacement and velocity of the string.

Proof : We assume the method of separation of variables to find the vibration in a string which is
governed by the equation (5.1).

Therefore, let  , ( ) ( )y x t X x T t        ... (5.4)

be the solution of equation (5.1)
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'( ) ( ) xy X x T t , ''( ) ( )xxy X x T t .

Similarly, ( ) ''( )tty X x T t .

Substituting this in equation (5.1) we get

2'' ''XT c X T ,

2
'' '' X T

X c T
.        ... (5.5)

We see that the left handside is a function of x and the right hand side is a function t alone.

Equation (5.5) shows that each side must be a constant say  .

'' X X and   2'' T c T

or '' 0 X X and   2'' 0 T c T ,        ... (5.6)

where   may be zero, positive or negative. From the boundary condition

 0, 0 (0) ( ) 0  y t X T t

     (0) 0 X . as ( ) 0T t

Similarly,    , 0 0   y t X .

Thus our problem is

'' 0 X X        ... (5.7)

such that  (0) 0 X X .

Case (i) :  0
The solution of the equation (5.7) in this case is

 X Ax B        ... (5.8)

The boundary conditions (0) 0X  and   0X  give

  0A   and 0B .

Consequently, we get X (x) = 0 as the solution of equation (5.7). This is a trivial solution hence we
drop it.

Case (ii) : Let 0

Let 2  , where   is positive or negative. In this case the solution of equation (5.7) is given by

( )   x xX x A e B e  .        ... (5.9)

To determine the constants A and B, we use the boundary conditions
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(0) 0 0   X A B ,

and ( ) 0 0    X Ae Be 

  2 0  A Be  .

or  21 0 B e 

0 0   B A

Hence for 0  and 0 , the solutions (5.8) and (5.9) do not constitute the solution of the wave

equation (5.1).

Case (iii) : Let 0

Let 2  

In this case the solution of equation (5.7) is given by

( ) cos sin X x A x B x  .      ... (5.10)

Now the boundary conditions

(0) 0 0  X A

0 A

and    0 0 sin   X B 

Now if B = 0 then we have  , 0y x t  is again a trivial solution of equation (5.1).

Therefore we assume  0B

 sin 0 

  n  ,  n = 1, 2, 3, ...,

or 


n , n = 1, 2, ...,

For each value of n = 1, 2, ..., let  n  .

Thus 
n

n  , n = 1, 2, ...      ... (5.11)

These n  are called eigen values of the equation (5.1) and the corresponding functions sin   
 

n x

are called eigen functions. Hence the solution (5.10) can be denoted by

sin    
 n n

nX B x
, n = 1, 2, .....      ... (5.12)
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Similarly, for 
n

n , the solution of other equation, 2 2'' 0 T c T  is given by

( ) cos sin       
    n n n

n x n cT t C t D t 
,      ... (5.13)

where Cn and Dn are arbitrary constants. Hence, the solution (5.4) becomes

 , cos sin sinn n n
n ct n ct ny x t a b                        ,      ... (5.14)

where n n na C B  and n n nb D B .

By the principle of superposition, the series

   
1 1

, , cos sin sinn n n
n n

n ct n ct ny x t y x t a b   

 

                    
          ... (5.15)

if it converges, is also a solution of equation (5.1) satisfying the boundary conditions (5.3). We choose
an and bn such that y (x, t) in (5.15) satisfies the initial conditions (5.2).

Therefore the initial condition  ,0 ( )y x f x  gives

1

( ) sinn
n

nf x a  




   
   ,    0 x        ... (5.16)

Now differentiating equation (5.15) with respect to t we get

 
1

, sin cos sint n n
n

c n n ct ny x t na ct nb x   



                    
    ,      ... (5.17)

Thus at t = 0, we have

( ,0) ( )ty x g x ,

1

( ) sinn
n

n n ng x b x 



        
      ,   0 x   .      ... (5.18)

Equations (5.16) and (5.18) show that  f (x) and g (x) are expanded in a half range sine series.

Therefore an and bn are coefficients of the half range sine series of f (x) and g (x) respectively.

0

2 ( )sinn
n xa f x dx    

 


  ,      ... (5.19)

and
0

2 ( )sinn
n xb g x dx

n c



   
 



 .      ... (5.20)
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Thus the solution of one dimensional wave equation (5.1) subject to the conditions (5.2) and (5.3) is
given by the equation (5.15) with the coefficients an and bn given in equations (5.19) and (5.20)
respectively.

Note : When initial velocity of the string is zero. i.e. if g (x) = 0, then we have bn = 0. In this case the
solution (5.15) becomes

 
1

, cos sinn
n

n ct n xy x y a  



       
      ,      ... (5.21)

with
0

2 ( )sinn
n xa f x dx   

 


  .      ... (5.22)

Example 1 :  A tightly stretched string with fixed end points x = 0 and x = 1 is initially in a position
given by

   ,0 1y x x x 

It is released from rest from this position. Find the displacement y (x, t) at any time t.

Solution : We know the vibration of a string is governed by the second order p.d.e. given by

2 0tt xxy c y  , 0 1x  , 0t  ,      ... (5.23)

subject to the initial conditions

   0, 1, 0y t y t  , t      ... (5.24)

and    ,0 1y x x x  .      ... (5.25)

Also the initial velocity of the string is given by

 , 0 0ty x  .      ... (5.26)

By variable separable method, the solution of (5.23) is given by

           , cos sin cos siny x t A x B x C ct D ct      .   ... (5.27)

The boundary conditions

 0, 0 0y t A   . for 0, 0C D 

Also from (5.27) we have

           , cos sin sin costy x t c A x B x C ct D ct       

Therefore, the condition  , 0 0 0ty x D   .

Therefore, equation (5.27) becomes

      , sin cosy x t B x C ct  .      ... (5.28)

Now the condition  1, 0y t   gives
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   0 sin cosB C ct  

0B   or sin 0  for 0C 

If B = 0 then we have only trivial solution of (5.23).

Therefore, we assume 0B 

sin 0 n      ,  n = 1, 2, ......

Let n n  ,  for n = 1, 2, 3, .....

Therefore, corresponding to each n, the solution (5.28) becomes

     , sin cosn ny x t a n x n ct  , for n n na B C .      ... (5.29)

By superposition principle, the most general solution of equation (5.23) is given by

       
1 1

, , sin cosn n
n n

y x t y x t a n x n ct 
 

 

   ,      ... (5.30)

where the constant an is determined by using the condition

   ,0 1y x x x  .

Therefore, from (5.30) we have

     
1

,0 1 sinn
n

y x x x a n x




   . 0 1x       ... (5.31)

We see from equation (5.31) that ( ) (1 )f x x x   is expressed in the Fourier sine series. Hence the

corresponding Fourier constant an is given by

 
1

0

2 (1 )sinna x x n x dx 

        
1 1

2

0 0

2 sin sinx n x dx x n x dx 
 

  
  
  .

Integrating by parts we get

       
11 11 2

0 0 00

1 22 cos cos cos cosn
x x xa n x n x dx n x n x dx

n n n n
   

   

 
     
 
 

 

  1

2 2
0

4 cos
n

n xa
nn
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3 3
4 1 1

n
na

n 
     

3 3
8

na
n 

 , for n is odd,

an = 0  for n even.

Substituting this in (5.30) we get

     
3 3

1

8 1, sin cos
n

y x t n x n ct
n

 






  .      ... (5.32)

Example 2 : Solve

2 0tt xxy c y  , 1o x  , 0t  ,      ... (5.33)

   0, 1, 0y t y t  ,      ... (5.34)

 ,0 0y x  , 0 1x  ,      ... (5.35)

  2,0ty x x , 0 1x  .      ... (5.36)

Solution : Let  , ( ) ( )y x t X x T t      ...(5.37)

be a solution of equation (5.33) and is given by

           , cos sin cos siny x t A x B x C ct D ct      .   ... (5.38)

The boundary condition  0, 0 0y t A    for 0, 0C D  .

Also the condition

    ,0 0 0 sin 0y x B x C C      for  0B  .

Therefore, the solution (5.38) implies

      , sin siny x t B x D ct  .      ... (5.39)

Now the condition

     1, 0 0 sin siny t B D ct    

0B   or  sin 0   for 0D 

If B = 0 we have trivial solution of equation (5.33).

Therefore we assume

0 sin 0B n       , n = 1, 2, ....

Let n n  , n = 1, 2, ...

Therefore, corresponding to each n the solution (5.39) becomes
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     , sin sinn ny x t a n x n ct  .      ... (5.40)

Therefore, by superposition principle, the most general solution of (5.33) is given by

       
1 1

, , sin sinn n
n n

y x t y x t a n x n ct 
 

 

   ,      ... (5.41)

where the constant an is to be determined.

From equation (5.41) we have

       
1

, sin cost n
n

y x t a n x n c n ct  




   .      ... (5.42)

Therefore, the condition   2,0ty x x  gives

 2

1

sinn
n

x c a n n x 




  , 0 1x  .      ... (5.43)

This shows that x2 is expressed in the Fourier sine series. Hence the corresponding Fourier constant

nna  is given by

 
1

2

0

2 sinncna x n x dx   .

Integrating by parts we get

   
1 12

0 0

12 cos 2 cosn
xcna n x x n x dx
n n

  
 

 
  
  

 ,

     
11

0 0

1 2 12 cos sin sinxn n x n x dx
n n n n

  
   

       
    

 ,

 
 

  1

2
0

1 2 cos2 1
n n x

n nn


 

       
   

,

 
 

  
3

1 22 1 1 1
n n

n n 
       

,

    
3 3

2 1 4 1 1
n

n
ncna

n n


 
    ,

    
2 2 4 4

2 1 4 1 1
n

n
na

n c cn 
    .      ... (5.44)
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Substituting this in (5.41) we get

       
2 2 4 4

1

2( 1) 4, ( 1) 1 sin sin
n

n

n

y x t n x n ct
n c n c

 
 





     
 

 .      ... (5.45)

This is the required solution.

Uniqueness of Solution of Wave Equation :

Theorem : Show that the solution u (x, t) of the equation

 2 , ,   0 ,   0tt xxu c u F x t x t     ,

 ,0 ( ),   0u x f x x    ,

 , 0 ( ),   0tu x g x x    ,

 0, ( , ) 0,   0u t u t t   ,

if it exists, is unique.

Proof : Let there be two solutions  1 ,u x t  and  2 ,u x t  of the equation

 2 ,tt xxu c u F x t  , 0 x   , t > 0,     ... (5.46)

satisfing the conditions

 ,0 ( )u x f x , 0 x   ,      ... (5.47)

 , 0 ( )tu x g x ,

and    0, , 0u t u t  . 0t       ... (5.48)

 
2 2

21 1
2 2

,
u u

c F x t
t x

 
  

 
,

and  
2 2

22 2
2 2

,
u u

c F x t
t x

 
 

 

Subtracting these equations we get

   
2 2

1 2 2
1 22 2

0
u u

c u u
t x

    
 

.

Also  1 , 0 ( )u x f x  and  2 , 0 ( )u x f x

  1 2 , 0 0u u x  
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Also  1 ,0 ( )
u

x g x
t





and  2 ,0 ( )

u
x g x

t






  1 2 ,0 0u u x
t
  
 .

This shows that the function 1 2v u u   satisfies the corresponding partial differential equation

2 2
2

2 2
0v vc

t x

  
 

, 0 x   , t > 0      ... (5.49)

subject to the conditions

 ,0 0v x  , o x   ,      ... (5.50)

 , 0 0tv x  , o x   ,      ... (5.51)

and    0, , 0v t v t  , 0t  .

Claim : We prove v = 0 i.e.    1 2, ,u x t u x t .

Therefore, consider

   2 2 2

0

1
2 x tE t c v v dx 


     ... (5.52)

Since v (x, t) is twice differentiable, we see that E (t) is a differentiable function of t.

Hence  2

0

1 2
2 x xt t tt

dE c v v v v dx
dt

 


2

0 0
t tt x xt

dE v v dx c v v dx
dt

  
 

.

Integrating the second integral by parts we get

 2 2
0

0 0
t tt x t t xxv v dx c v v c v v dx   

 
.

However, from equation (5.51) we have

   0, 0 0, 0  tv t v t t    , 0t  ,

and    , 0 , 0  0tv t v t t     

Hence we have
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 2

0
t tt xx

dE v v c v dx
dt

 


.

From equation (5.49) we have

 2 0tt xxv c v  .

0dE
dt

  .

ConstantE  .      ... (5.53)

However,    , 0 0 ,0 0xv x v x    and  , 0 0tv x  , therefore, from equation (5.52) we have

    2 2 2

0

1(0) ,0 ,0
2 x tE c v x v x dx 


     ... (5.54)

(0) 0E  ,

Therefore 0E  .

Hence from equation (5.52) we have

   , 0, , 0  0,  0x tv x t v x t t x       .

This is possible only if v (x, t) = constant. The condition (5.50) gives

 ,0 0 constant 0v x   

 , 0v x t 

   1 2, ,u x t u x t  ,

which proves the uniqueness of the solution of the wave equation.

Remarks : The solution of the problem of vibrations of a string of finite length is also unique, as it is a

special case of the problem when  , 0F x t  .

Example 3 : A tightly stretched string with fixed end points x = 0 and x =   is initially in a position
given by

  3
0,0 sin xy x y    

  .

It is released from rest from this position find the displacement y(x, t) at any time t.

Solution : We know vibrations in a string are governed by the second order p.d.e. given by

2 2
2

2 2

y y
c

t x

 
 

, 0 x   , t > 0,      ... (5.55)
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such that    0, 0 ,y t y t   , t ,      ... (5.56)

and   3
0,0 sin xy x y    

  .      ... (5.57)

It is also given that the initial velocity of the string is zero.

 , 0 0ty x  .      ... (5.58)

We know by separable variable method the solution of equation (5.55) is given by

         , cos sin cos siny x t A x B x C ct D ct      .     ... (5.59)

The boundary condition

 0, 0 0y t A   .

Also from (5.59) we find

           , cos sin sin costy x t c A x B x C ct D ct       

Hence,  , 0 0 0ty x D   .

Hence solution (5.59) becomes

     , sin cosy x t BC x ct   .

Now the condition

     , 0 0 sin cosy t B C ct           ... (5.60)

0B  , for 0C  ,

or  sin 0  , for 0C  ,

If B = 0 we have trivial solution y (x, t) = 0. Therefore, we assume  0 sin 0B    ,

n   , n = 1, 2, 3, .....

Let n
n    

  , n = 1, 2, 3, ....      ... (5.61)

These are called the eigen values of the equation. Hence the solution (5.60) becomes

 , sin cosn n
n x n cty x t a         

     .      ... (5.62)

By the superposition principle, the most general solution of (5.55) is given by
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1 1

, , sin cosn n
n n

n x n cty x t y x t a   

 

        
       ,      ... (5.63)

where the constant an is determined by using the condition that

  3
0,0 sin xy x y    

  .

  From equations (5.57) and  (5.63) we have

  3
0

1

,0 sin sinn
n

x n xy x y a 



       
     .      ... (5.64)

We know 3sin 3 3sin 4sin   

3

33sin sin
sin

4

x x
x

 


      
       
 

 


.

Therefore, equation (5.64) becomes

0
1

33sin sin
sin

4 n
n

x x
n xy a

 




                
    


.

Comparing corresponding coefficients on both sides we get

1 0 2 3 0 4
3 1,   0,   ,   0....
4 4

a y a a y a    

Therefore, the solution (5.63) becomes

  0
0

3 3 3, sin cos sin cos
4 4

yx ct x cty x t y                   
           .

or   0 3 3, 3sin cos sin cos
4

y x ct x cty x t                                  .      ... (5.65)

Example 4 : By separating the variables, show that one dimensional wave equation

2 2

2 2 2
1y y

x c t

 
 

has solution solution of the form A exp   in  in x ct  , where A and n are constants. Hence show

that the functions of the form
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 , cos sinr r
r

r ct r ct r xy x t A B
a a a
                     



where Ar and Br are constants, satisfy the wave equation and the boundary conditions.

   0, 0,   , 0 y t y a t t   .

Solution : One dimension wave equation is given by

2 2

2 2 2
1y y

x c t

 
 

, 0 x a       ... (5.66)

where the deflection y (x, t) satisfies the conditions

   0, 0 ,y t y a t    t      ... (5.67)

Let  , ( ) ( )y x t X x T t      ... (5.68)

be its solution. Therefore, we have

''( ) ( )xxy X x T t  and ( ) ''( )tty X x T t .

Therefore, equation (5.66) becomes

2
1'' ( ) ''X T X x T
c



or
2

2
'' ''X T n

X c T
    (say)      ... (5.69)

2'' 0X n X   ,      ... (5.70)

and 2 2'' 0T c n T  .      ... (5.71)

Solving equations (5.70) and (5.71) we have

inxX e ,

inctT e .

Hence  , inx incty x t A e   ,      ... (5.72)

is a solution of equation (5.73), where A = constant. We can also write the solution of (5.70) and
(5.71) as

   cos sinX A nx B nx   and     cos sinT C nct D nct  .

Therefore, the solution of (5.66) is given by

    , cos( ) sin( ) cos( ) sin( )y x t A nx B nx C nct D nct   .      ... (5.73)
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Now applying the initial condition

 0, 0 0y t A   ,

and    , 0 0 sin( ) cos( ) sin( )y a t B an C nct D nct   

0B   or sin( ) 0an  for 0C  , 0D    as   ( ) 0T t 

If B = 0, we have trivial solution. Therefore, we assume 0 sin( ) 0B an  

an r  ,  r = 1, 2, .....

or
rn
a
   

  ,  r = 1, 2, .....

Therefore, solution for each value of r, we have

 , sin cos sinr r
r x rct rcty x t B C D

a a a
                      

.      ... (5.74)

By superposition principle, the most general solution is given by

   
1 1

, , cos sin sinr r r
r r

rct rct rxy x t y x t A B
a a a

   

 

                    
  ,     ... (5.75)

where Ar and Br are constants.

Exercise :

1. Obtain the solution of the wave equation

2
tt xxu c u

under the following conditions

   0, 2, 0u t u t  ,

  3,0 sin
2

u x x   
  ,

 , 0 0tu x  .
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2. The vibrations of an elastic string is governed by the partial differential equation

tt xxu u

The length of the string is   and the ends are fixed. The initial velocity is zero and initial

deflection is    ,0 2 sin sin 3u x x x  . Find the deflection u (x, t) of the vibrating string for

t >0.

3. A string is fixed at two points   apart and is stretched. The motion takes place by displacing

the string in the form sin xy a    
   from which it is released at time t. Show that the

displacement of any point at a distance x from one end at time t is

 , sin cosx cty x t a         
     .
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In this unit we consider heat conduction problem in a rod with the following assumptions.

1.  The rod is homogeneous.

2.  It is sufficiently thin so that the heat is uniformly distributed over it cross section at a given time  t.

3.  The surface of the rod is insulated to prevent any loss of heat through the boundary.

4.  ( , )u x t  is the temperature at the point x  at time  t.

We know the temperature ( , )u x t  in a rod is governed by the second order one dimensional.

p.d..e.

2

2

u u
k

t x

 


 
,

satisfying some initial and boundary conditions.

Case 1 : Heat conduction - Finite rod.

Result  : By separable variable method, find the temperature distribution in a rod of length   satisfying
the boundary conditions

   0, , 0u t u t  , 0t    ( end points of the rod are kept at 0° C.)

The initial temperature is ( ,0) ( )u x f x ,   0 .x  
The rod and its ends are perfectly insulated.

Or

By separable variable method, find the solution of the equation 
2

2

u u
k

t x

 


 
 , 0 , 0x t  

satisfying the conditions

(0, ) ( , ) 0u t u t  , 0t 

( ,0) ( ).u x f x            0 x  

Solution : Let  ( , )u x t   be the temperature in a rod of length  . We know the temperature distribution

in rod is governed by the second order partial differential equation given by

HEAT  CONDUCTION  PROBLEM

UNIT - VI
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2

2

u u
k

t x

 


 
 , 0 x   ,  0t                     ... (1.1)

satisfying the boundary conditions

(0, ) ( , ) 0u t u t  ,    0t         ... (1.2)

and ( ,0) ( )u x f x ,              0 x   ,        ... (1.3)

where ( )f x  is the initial temperature in the rod.

To find temperature in the rod at any instant t, by separable variable method, we assume the solution of
the equation (1.1) in the form

( , ) ( ) ( )u x t X x t         ... (1.4)

'( , ) ( ) ( )tu x t X x t   ,

and '( , ) ( ) ( )xu x t X x t  ,

''( , ) ( ) ( )xxu x t X x t   .

Hence equation ( 1.1 ) becomes

' ''( ) ( ) ( ) ( )X x t kX x t  

'' 'X

X k



  


     (say),        ... (1.5)

where   is a  constant may be zero, positive or negative

" 0X X   ,        ... (1.6)

and ' 0k    .        ... (1.7)

Case (i ) If 0  , then solutions of (1.6) and ( 1.7) are given by

,X Ax B     T  

The conditions (1.2) (0) ( ) 0 0 .X X A B     

Consequently, ( , ) 0u x t  , which is a trivial solution of equation (1.1).

Case ( ii ) If 0   say 2 

Therefore, solutions of equations (1.6) and (1.7) are

( ) x xX x Ae Be      and 2
( ) ktt Ce  .

Now the conditions ( 1.2 ) (0) ( ) 0X X   ,



225

and  
0

0
0

A B
A B

Ae Be 

     
  

 
.

( , ) 0u x t  .

Thus for 0   and 0   we have trivial solutions. Therefore, we assume

Case ( iii ) :  0   say  2   ,  0. 

Therfore, equations ( 1.6 ) and ( 1.7 ) become

" 2 0X X    and ' 2 0k    ,

which have solutions

( ) cos sinX x A x B x   ,        ... (1.8)

and 2ktaCe  .        ... (1.9)

Therefore, solution (1.4) becomes

 
2

, ( cos sin ) . ktu x t A x B x C e     .      ... (1.10)

The boundary conditions (1.2) viz.

   0, , 0 (0) 0 ( )u t u t X X      ,

(0) 0 0X A   ,

and   0  B sin ( )=0X    .

If 0B   yields only trivial solutions. Therefore we assume 0B 

sin 0  ,

( ) n    , 1,2,3,....n 

Let for each value of  n=1,2,....

n

n
 

 ,   1, 2,...n       ... (1.11)

These are called eigen values of the differential equation. Hence the solutions of (1.6) and (1.7) are
respectively

( ) sinn n

n x
X x B

 
  

  ,      ... (1.12)

 
2 2

expn n

n
t C kt

 
  
 
  .                  ... (1.13)
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These are called the corresponding  eigen functions of the equations. Therefore we write from (1.4)

 
2 2

, exp sinn n n

n kt n x
u x t B C

    
         .

or  
2 2

2
, exp sinn n

n kt n
u x t a x

    
         , for an = BnCn     ... (1.14)

Thus by the principle of superposition, we have

 
1

( , ) ,n
n

u x t u x t






is also solution of ( 1.1 ).

2 2

2
1

( , ) exp sinn
n

n kt n
u x t a x

 



   
        

  ,      ... (1.15)

if it converges, is also a solution of (1.1) satisfying the boundary conditions. That the initial temperature
in the rod is given by

( ,0) ( )u x f x .

1

( ) sinn
n

n
f x a x





 
   

 
  , 0 x   .      ... (1.16)

This is a Fourier series expansion of  f (x), where the Fourier constant an is given by

2
( ) sinn

o

n x
a f x dx

 
  

 



  .      ... (1.17)

Thus equation (1.15) is a solution of the equation (1.1), where the constant an is given in equation
(1.17).

Example 1 :  Solve t xxu u , 0 ,  0x t   ,

(0, ) ( , ) 0,u t u t 

( ,0) ( , ),u x x t  0 x   .

OR

A heat flow in a rod of length 10 cm of homogeneous material is governed by the p.d.e    2
t xxu c u .

The ends of the rod are kept at temperature 0O c  and initial temperature is    ,0 10u x x x  . Find

the temperature in the rod at any instant.
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Solution : we are given that

t xxu u , 0 , 0x t   ,                  ... (1.18)

satisfying (0, ) ( , ) 0u t u t  ,                  ... (1.19)

and ( ,0) ( ) 0,u x x x       0 x   .      ... (1.20)

We assume ( , ) ( ) ( )u x t X x T t      ... (1.21)

'( ) ( )tu X x t    and "( ) ( )xxu X x t 

Hence equation (1.18) becomes

' "( ) ( ) ( ) ( )X x t X x t  

or
" '

( )
X

say
X




 


.

We have if   is zero or positive, the equation (1.18) has trivial solution. Therefore, we assume   is

negative. We choose

2  

" 2 0X X   ,      ... (1.22)

and ' 2 0    .      ... (1.23)

The solutions of  ( 1.22 )and ( 1.24 ) are respectively given by

( ) cos sinX x A x x    ,      ... (1.24)

and 2( ) exp( )t C t   .      ... (1.25)

The boundary conditions (1.19) give

(0) 0 ( )X X   .

From equation (1.24) we have for  (0) 0X 

0A  ,

and ( ) 0 0 sinX B     .

If 0B   we have only trivial solution of (1.18). Hence we assume 0B  . In this case, we have

sin( ) 0  ,

n   for 1, 2,3...n 

Let , 1,2,3...n

n
n


  

      ... (1.26)
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Hence the corresponding solutions of (1.22) and (1.23) are

( ) sinn n

n
X x B x

 
  

  ,     and      ... (1.27)

2 2

2
( ) expn n

n
t C t

 
   
 
  .      ... (1.28)

These are called the corresponding eigen functions. Thus the solution of (1.18) can be written as

2 2

2
( , ) exp sinn n n

n n
u x t B C t x

    
         

or

2 2

2
( , ) exp sinn n

n t n
u x t a x

    
          .      ... (1.29)

The by the principle of superposition, the solution of equation (1.18) is given by

1

( , ) ( , )n
n

u x t u x t




 .

That is

2 2

2
1

( , ) exp sinn
n

n a n
u x t a t x





   
       

       ... (1.30)

if  it converges. However, it is given that the initial temperature of the rod is

( , ) ( )u x o x x  , 0 x  

 
1

sinn
n

n
x x a x





 
    

 


 ,     0 x        ... (1.31)

which is the Fourier sine series of ( ) ( ).f x x x   Hence the Fourier constant an is given by

 
0

2
( )sinn

n
a x x x dx

 
   

 




  ,

      
2

0 0

2
sin sin

n n
x x dx x x dx

     
     

     
 
 


   ,
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00

2
cos cosn

n n
a x x x dx

n n

 
 

                     


  
 

  

2

00

2
cos 2 cos

n n
x x x x dx

n n

 
 

               


  
  

       

3 3 3

3
0

2
( 1) ( 1) 2 cos

( )
n n

n

n
a x

n n n


  

  
        
   

  
 

 

2

3

4
( 1) 1n

na
n


    


     ... (1.32)

2

3 3
8

na
n 

  
, for n is odd,

an = 0, for n is even.      ... (1.33)

Hence equation (1.30) is the required solution of equation of (1.18) with

2

3 3

8
na

n 



.

Uniqueness of the Solution :

Theorem :  Show that the solution ( , )u x t  of the differential equation

( , ),t xxu ku F x t  0 ,  0x t   ,      ... (1.34)

satisfying the initial condition

( ,0) ( )u x f x , 0 x   ,      ... (1.35)

and the boundary conditions

(0, ) ( , ) 0u t u t  , 0t       ... (1.36)

is unique.

Proof. Let  1( , )u x t  and  2 ( , )u x t  be two solutions of the equation (1.34) subject to the conditions

(1.35) and (1.36).

2
1 1

2
( , )

u u
k F x t

t x

 
  

 
,        0    0x t   ,      ... (1.37)
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and
2

2 2
2

( , )
u u

k F x t
t x

 
 

 
, 0 ,   0x t   ,      ... (1.38)

satisfying the conditions

1( ,0) ( )u x f x , 0 x        ... (1.39)

2 ( ,0) ( )u x f x ,      ... (1.40)

and 1(0, ) , ( , ) 0u t u t  ,      ... (1.41)

2 2(0, ) ( , ) 0u t u t  .      ... (1.42)

Subtracting (1.38) from (1.37) we get

   2
1 2

1 2 2
0

u u
u u k

t x

  
  

 
,

satisfying 1 2( ,0) ( ,0) 0u x u x  ,

and 1 2 1 2(0, ) (0, ) 0 ( , ) ( , )u t u t u t u t     .

These equations show that, 1 2v u u    satisfies the corresponding equation

2

2
0

v d v
k

t x


 

 
,     0 ,  0x t        ... (1.43)

(0, ) ( , ) 0v t v t     , 0t       ... (1.44)

( ,0) 0,     0 .v x x         ... (1.45)

Claim : We prove that  1 2( , ) ( , )u x t u x t

Let us define a function E ( t ), such that

2

0

1
( ) ( , )

2
E t v x t dx

k
 



.      ... (1.46)

Since the integrand is positive definite 0 E      ... (1.47)

Differentiating (1.46) w.r.t. t  we get

0

1
2

dE v
v dx

dt k t







,

0

1
2 xxvk u dx

k
 



by equations (1.43)
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0

2 xx

dE
v v dx

dt
 



.

Integrating  the r.h.s. by parts we get

2
0

0

2 x x

dE
v v v dx

dt

 
  

  





Therefore , by boundary conditions (1.44) and (1.45) we have

(0, ) ( , ) 0v t v t  .

2

0

2 0   0x

dE dE
v dx

dt dt
     



.      ... (1.48)

This shows that E ( t ) is decreasing function of t. From the condition ( ,0) 0v x   we have from (1.46)

E(0) = 0. Therefore we have

( ) 0,      0.E t t        ... (1.49)

But, by definition (1.46) E (t) is non-negative.

( ) 0,      0E t t   

( , ) 0      v x t  on 0 ,    0x t  

1 2( , ) ( , )u x t u x t  .

Hence the solution is unique.

Example 2 : The temperature ( , )u x t   in a rod of length     in governed by the p.d.e.

2
t xxu c u .

The initial temperature is ( ,0) ( )u x f x  . The rod and its ends are perfectly insulated

(0, ) 0xu t  and    ( , ) 0xu t  .

Find the temperature distribution in the rod.

Solution : Let  ( , )u x t  be the temperature in a rod of length   . We know it is governed by the p.d.e.

2
t xxu c u 0 , 0x t   .      ... (1.50)

Given that initial temperature is

( ,0) ( )u x f x ,      ... (1.51)

and (0, ) ( , ) 0x xu t u t  .      ... (1.52)

We assume ( , ) ( ) ( )u x t X x T t      ... (1.53)
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be the solution of equation (1.50)

'( ) ( ) "( ) ( )x xxu X x T t u X x T t    ,

and ( ) '( )tu X x T t

Hence equation (1.50) becomes

2( ) '( ) "( ) ( )X x T t c X x T t

         2

" '( )
( ).

X T t
say

X c T
  

        " 0  X X ,      ... (1.54)

and 2' 0T c T  ,      ... (1.55)

where   is either zero or positive or negative. If 0   and 0   we know that it has trivial solution.

Therefore, we choose 0   Let 2   . Hence equations (1.54) and (1.55) become

2"( ) 0X x X  ,      ... (1.56)

and ' 2 2 0T c T  .      ... (1.57)

Solving equations (1.56) and (1.57) we get

cos sinX A x B x   ,      ... (1.58)

and 2 2exp( ),  0T C c t C   .      ... (1.59)

Thus the temperature distribution in the rod is given by

2 2( , ) ( cos sin ). exp( )u x t A x B x C c t     .      ... (1.60)

To find the constants, we use the given conditions (1.52). From equation (1.60) we find

2 2( , ) ( sin cos ) .exp( )xu x t a A x B x C e t     

Thus  0, 0 0  xu t B    for 0C  .

Hence equation (1.60) reduces to

2 2( , ) cos . exp( )u x t A x C c t   .      ... (1.61)

Also 2 2( , ) 0 0 .sin( ). exp( )xu t A C c t      .

0A    for  0C  ,

or sin( ) 0   for 0C  .

If 0A   then we have trivial solution. Therefore, we assume 0A   for 0C  .
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sin( ) 0  ,

,n   for   1, 2,3,.....n 

,  1, 2,3,.....n

n
n


  

      ... (1.62)

These are called the eigen values. Substituting this in equation (1.61) we get

2 2 2

( , ) cos exp
n n c

u x t AC x t
   

          .

or

2 2 2

( , ) cos expn n

n n c
u x t a x t

   
           .      ... (1.63)

By the superposition principle, the most general solution of equation (1.50) is given by

2 2 2

1 1

( , ) ( , ) cos expn n
n n

n n c
u x t u x t a x t

  

 

  
         

    .      ... (1.64)

Given that the initial temperature in the rod is

( ,0) ( )u x f x .

Therefore, from (1.64) we have

1

( ,0) ( ) cosn
n

n
u x f x a x





 
   

 
   .      ... (1.65)

This represents the expansion of f (x) in the Fourier cosine series. Consequently  , the Fourier constant

na  is given  by

0

2
( )cosn

n
a f x x dx

 
  

 



  .      ... (1.66)

2 2 2

1 0

2
( , ) ( ) cos cos exp

n

n n n c
u x t f x x dx x t

  



    
              




    .     ... (1.67)

 

2. Heat conduction - Infinite Rod.

Result : Find the temperature distribution in a rod of infinite length satisfying the initial conditions

( ,0) ( )u x f x , x   
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Solutions : Consider a homogeneous sufficiently thin rod of infinite length such that its surface is

insulated.  If ( , )u x t  is the temperature in the rod, then the temperature distribution in the rod is

governed by the second order partial differential equation

t xxu ku      , , 0x t     ,        ... (2.1)

satisfying ( ,0) ( )u x f x , x   .        ... (2.2)

We use the Fourier transform method to solve the equation. Therefore let the Fourier transform of

( , )u x t  be ( , )U t

i.e.  ( , 1) ( , ) u x U tF

Thus by definition of Fourier transform, we have

 
1

( , 1) ( , ) ( , )
2

i tu x U t u x t e dt






   F .        ... (2.3)

Also we know the formula for Fourier transform of derivative as

   ( ) ( ) ( ) n nf x i f xF F .        ... (2.4)

Hence taking of the Fourier transform of equation (2.1) and using the formula (2.4) we get

2( ) ( ( , ))tU k i u x t  F ,

2 ( , )tU k U t   ,

2 0tU k U   .        ... (2.5)

 This is the first order differential equation, whose solution is obtain by integrating equation (2.5)

2
( , ) ( ) ktU t A e     ,        ... (2.6)

where ( )A   is an arbitrary function to be determined from the initial conditions.

From the definition (2.3) we obtain

 
1

( ,0) ( ,0)
2

i xu x u x e dx







 F

1
( ,0) ( )

2
i xU f x e dx







         by equation (2.2).

But from equation (2.6), we have

( ,0) ( )U A 

 ( ) ( ) ( )A f x   F F .
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Hence equation (2.6) becomes

2
( , ) ( ) ktU t e    F .        ... (2.7)

Taking the inverse Fourier transform of equation (2.7) we get

   1 1( 1) ( ) ( )u x f x g        F F F F F ....  for 2
( ) ktg e F

 1( , ) *u x t f g    F F ,

( , ) *u x t f g ,       ... (2.8)

where *f g   is the convolution of ( )f x  and ( )g x  over the interval  ,   and is defined by

 
1

* ( ) ( ) ( )
2

f g x f x g d  






  .

Thus  we have

1
( , ) ( ) ( )

2
u x t f g x d  







  ,       ... (2.9)

where 21( )ktg e   F

21
( ) exp

42

x
g x

ktkt

 
   
 
 

21 ( )
( ) exp

42

x
g x

ktkt






 
    
 
 

.

Hence equation (2.9) becomes

 2
1 1

( , )  ( ) exp
42 2 kt

x
u x t f d

kt


 

 





 
 
  

 .      ... (2.10)

If 1k   and

0 when x<0
( )

a  When x>0,
f x


 


then we have
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28

0

( )
( , ) exp

42

a x
u x t d

tt






 
  

  
 .

Put
2

x

t





 ,

2d td  

when 0,    
2

x

t
   

and  as ,        .

Thus  we have

2

2

( , ) 2
2 x

t

a
u x t e td

t
 








 

2

2

( , ) 2
x

t

a
u x t e d 








 

We write this as

0
2 2

0
2

( , ) 2
x

t

a
u x t e d e d  




 



 
   
  
  .      ... (2.11)

Now consider the integral

0
2

2
x

t

e d 




Put   y d dy     

When  
2 2

x x
y

t t



  

and 0   0y   

Thus we have

0 22 2

0

2

x
t

x

t

e d e d   



       ... (2.12)
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Also consider
2

0

e d 


 .

Put 2 2t d dt     ,

1

2
d dt

t
  .

When 0 0t    ,

and t   .

Thus

1 1
12

2 2

0 0 0

1 1
 

2 2
t te d e t dt e t dt 

        

2

0

1 1

2 2 2
e d 




   .      ... (2.13)

Using (2.12) and (2.13) in equation (2.11) we get

2 2

0

( , ) 2
2

x

ta
u x t e d 






 
 
  
 
  



         

2 2

0

2
1

2

x

ta
e d 

 


 
 
  
 
  



( , ) 1
2 2

a x
u x t erf

t

  
   

  
,      ... (2.14)

where

2

0

2
( )erf x e d 




   is the error function.
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3. Families of Equipotential surfaces :

Definition :

Let ( , , )f x y z c  be a one-parameter family of surfaces. We say that this family of surfaces

is equipotential if these exists a potential function  ( which is a solution of Laplace equation  2 0  )

such that   is constant whenever ( , , )f x y z  is constant.

Note : Not every one parameter family of surfaces ( , , )f x y z c  is a family of equipotential surfaces.

Result : Find the condition that a one parameter family of surfaces form a family of equipotential
surfaces.

Proof : Let  ( , , )f x y z c be a one parameter family of surfaces. By definition, equation (3.1) will be

a family of equipotential surfaces if the potential function   (Which is a solution of the Laplace equation
2 0  ) is constant whenever ( , , )f x y z  is constant.

This means that there must exist a functional relation of the type

 ( , , )F f x y z         ... (3.2)

between the function    and F  such that    = constant whenever ( , , )f x y z  = constant.

Differentiating (3.2) partially w.r.t. x we obtain

.
dF f

x df x

 


  ,

       ... (3.3)

and

22 2 2

2 2 2
. .

d F f dF f

x dfx df x

   
    

.        ... (3.4)

Similarly,

22 2 2

2 2 2
.

d F f dF f

y dfy df y

   
    

,        ... (3.5)

and

22 2 2

2 2 2
.

d F f dF f

z dfz df z

   
    

.        ... (3.6)

Therefore, consider

2 2 2
2

2 2 2y y z

  


  
   

  
,
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2 2 22 2 2 2
2

2 2 2 2

d F f f f dF f f f

x y z dfdf x y z


             
                              

2 '' 2 ' 2( ) ( ) ( ) .F f gradf F f f           ... (3.7)

Since   satisfies the Laplace equation in free space

2 0 

 

'' 2

' 2

( )

( )

F f f

F f gradf


   .        ... (3.8)

This shows that, the condition that the surfaces (3.1) form a family of equipotential surfaces is that the

quantity 

2

2

f

gradf


  is a function of f alone. We denote this function by ( )f  . Hence equation (3.8)

can be written as

''

'

( )
( )

( )

F f
f

F f
  ,

2

2
( ) 0

d F df
f

dfdf
   .        ... (3.9)

Integrating we get

( )
.

f dfdF
Ae

df
      ... (3.10)

where A is a constant. Integrating (3.10) w.r.t. f  we get

( )
( )

f df
F f A e df B

         ... (3.11)

where B is a constant.  This is the general form of the corresponding potential function.

This is the necessary condition that the one-parameter family of surfaces ( , , )f x y z c  is a family of

equipotential surfaces.

Example 1 :  Show the surfaces

2 2 2 2 ,     0x y z r r   

form a family of equipotential surfaces and find the general form a the corresponding potential function.
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Solution : Let

  2 2 2 2, ,f x y z x y z r         ... (3.12)

be the one parameter family of surfaces. To show that this family forms a family of equipotential
surfaces, we find the potential   s.t.

grad , , 2( , , ),
f f f

f x y z
x dy z

   
    

     ... (3.13)

2 2 2
2

2 2 2
2 2 2 6

f f f
f

x y z

  
       

  
     ... (3.14)

2 6f  .

2 2 2 24( )f x y z          ... (3.15)

2
4f f   .

Therefore, the equation

2

2

3
( )

2

f
f

ff



 


     ... (3.16)

Therefore, the equation 

''

'

( )
( )

( )

F f
f

F f
 

has solution ( )f df
A e df B

  
33 1

2log( )2 . .
df

ffA e df B A e df B 


 

      
3

2A f df B


  ,

This gives

1

2

2A
B

f




 
.

2A B
r

    .
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Example 2 : Show that the surfaces

2
2 2 2 3x y z cx  

can form an equipotential of surfaces, and find the general form of the potential function.

Solution  : One parameter family of surfaces is given by

2
2 2 2 3 x y z c x  

i.e.  
2

2 2 23  x x y z c


   .

Let    
2

2 2 23, ,  f x y x x x y z c


         ... (3.17)

To show this family forms a family of equipotential surfaces we find

, ,  
f f f

f
x dy dz

   
    

 51 2 22 23 3 3 34 2 ,2 ,2
3 3

f x x y z yx zx
       

 

 5 2 2 232 2 ,3 ,3
3

f x x y z xy xz


    .      ... (3.18)

Now  
2 82 2 23 3

2
4 10
9 9

f
x x y z

x

    


,

2 22 2
3 3

2 2
2 ,   2

f f
x x

y z

   
  .

Hence
2 2 2

2
2 2 2

f f f
f

x y z

       
   

 becomes

 82 2 22 2 23 3 3 34 10 2 2
9 9

f x x y z x xx
   

      ,

         82 2 23 340 10
9 9

x x y z
 

  

Thus,  82 2 2 2310 4
9

f x x y z


    .
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Now  
2 2 2

2 f f f
f

x y z
                    

     ... (3.19)

becomes

 10 22 2 2 2 2 2 2 234grand 2 9 9
9

f x x y z x y x z
        ,

         10 24 2 2 2 2 2 2 2 234 4 4 9
9

x x y z x y z x y z
          ,

       10 24 2 2 2 2 234 4 5
9

x x y z x y z
        ,

          10 24 2 2 2 2 2 2 2 234 4 4
9

x x x y z y z x y z
          ,

         10 2 2 2 2 2 2 2 2 234 4
9

x x x y z y z y z x
          ,

        102 2 2 2 2 2 234 4
9

f x x y z x y z
          .      ... (3.20)

So that,

 

  

8 2 2 23
2

2 10 2 2 2 2 2 23

10 4
9

4 4
9

x x y z
f

f x x y z x y z





  
    

,

           
2

3

2 2 2

5
2

x

x y z


 

Therefore,
 

2 2

2 2 22 2 23

5
52 ( )

2
f f

t
ff fx x y z




    
  

     ... (3.21)

This shows that the given set of surfaces forms a family of equipotential surfaces.

Now to find the general form of the corresponding potantial function, we know it is given by

( )f df
A e df B

   ,

5 1
2

df
fA e df B

 
  ,

5
2log( )fA e df B


  ,
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5
2A f df B 

  ,

3
22

3
Af B 

   ,

or  
3

2 22 2 232
3

A x x y z B


       ,

 
3

2 2 2 22
3

A x x y z B
 

       .

This is the required potential function.

Example 3 :  Show that the family of right circular cones x2 + y2 = cz2, where c is a parameter, forms
a set of equipotential surfaces and show that the corresponding potential function is of the form

log tan
2

A B  , where A and B are constants and   is the usual polar angle.

Solution : The family of right circular cones is given by

2 2 2x y cz 

i.e.  2 2 2z x y c  

Let    2 2 2, ,f x y z z x y c   .      ... (3.22)

To show that, this surfaces form an equipotential surfaces, we find

  2 2 3 2 2, , 2 , 2 , 2
f f f

f xz yz z x y
x y z

             

  2 2 3 2 22 , ,f xz yz z x y      .      ... (3.23)

Therefore,   22 2 4 2 4 6 2 24f x z y z z x y       ,

  26 2 2 2 2 2 24z x z y z x y    ,

  2 6 2 2 2 2 24f z x y x y z     .      ... (3.24)

Next
2 2 2

2
2 2 2

f f f
f

x y z

     
     gives

 2 2 2 4 2 22 2 6f z z z x y       ,
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 2 2 4 2 24 6f z z x y     ,

 2 4 2 2 22 3 3 2f z x y z    ,

    2 4 2 2 2 2 22 2f z x y z x y      .      ... (3.25)

Therefore,
   
  

4 2 2 2 2 22

2 6 2 2 2 2 2

2 2

4

z x y z x yf

z x y x y zf





      
  

 
2

2 2 2 2 2
1 2 1
2

z
x y x y z
      

   2 2 2 2 2 2

1 1

2 2z x y z x y 
 

  

or  
 

2

2
1 1

2 1
f

f
f ff

   
     .... (3.26)

This shows that the one parameter family of surfaces (3.22) forms an equipotential surfaces.

To find the corresponding potential function, we know it is given by

 f df
A e df B

   ,

 
1 1

2 1
df

f fA e df B
    


  ,

 1
2log log( 1)f f df

A e df B     ,

1
21 ( 1)  A f df B

f
       

 ,

log 2 1A f f B       .      ... (3.27)

This is the required potential function. Now we show that potential function is given by

tan
2

A B   .

We consider the transformation

sin cosx r   , sin siny r   , cosr r 
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2 2 2 2sinx y r   

Hence  2 2 2 2tanf z x y     22 tan secdf d   

21 tan 1 secf       .

 
 

1 1
2 1

f
f f

  


becomes   2 2
1 1

tan 2sec
f

 
  .

Integrating we get

  2
2 2

1 1 2 tan sec
tan 2sec

f df d   
 

      ,

         
22sec tan

tan
d d   


   ,

  2log tan log cosf df    ,

 
2 2

3
tan sinlog log
cos cos

f df  
 

 
   

  .

Therefore  f df
A e df B

  

becomes

3coslog
2 2sin 2 tan secA e d B



   

 
  
    ,

3
2

2
cos2 tan sec
sin

A d B   


   ,

2 cosecA d B    ,

log tan
2

A B    
  .

This is the required family of equipotential surfaces.

Example 4 : Show that surfaces

   22 2 2 2 2 42x y a x y a c    

can form a family of equipotential surfaces and find the general form of the corresponding potential
function.
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Solution : The one-parameter family of surfaces is given by

     22 2 2 2 2 4, , 2f x y z x y a x y a c      .      ... (3.28)

To show this surfaces form an equipotential surfaces, we find

    2 2 2 2 2 2, , 4 4 ,4 4 ,0
f f f

f x x y a x y x y a y
x y z
             

,

    2 2 2 2 2 24 4 ,4 4 ,0f x x y a x y x y a y      .      ... (3.29)

Therefore
2 2 2

2 f f f
f

x y z
                    

,

becomes    2 22 2 2 2 2 2 2 2 216 16f x x y a y x y a             ,

    22 2 2 4 2 2 216 2x x y a a x y
     

      22 2 2 4 2 2 22y x y a a x y
     

,

      32 2 4 2 2 2 2 2 2 216 2x y a x y a x y x y         ,

     22 2 2 2 2 4 2 2 216 2f x y x y a a x y         .      ... (3.30)

Now
2 2 2

2
2 2 2

f f f
f

x y z

     
  

becomes  2 2 216f x y        ... (3.31)

So that
 
 

2 22

2 2 2

16 1

16

x yf
fx y ff

  


Hence  
2

2
1f

f
ff

  
 .      ... (3.32)

This shows that the given set of surfaces (3.28) forms a family of equipotential surfaces.

Now to find the general form of the potential function, we know

 f df
A e df B

   ,
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1 df
fA e df B


   ,

1log fA e df B


  ,

1A df B
f

   ,

logA f B   ,

or    22 2 2 2 2 4log 2A x y a x y a B         ,      ... (3.33)

where A, B are constants. This is a required equipotential function.
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LAPLACE  EQUATION

UNIT - VII

1. Introduction :

Various physical phenomena are goverened by the Laplace equation. In this unit we derive the
Laplace equation and discuss the method of its solution. Various boundary value problems for the
Laplace equation viz., the Dirichlet problem and Neumann problem for certain specified regions are
the subject matter of this unit.

Result : Derive Laplace equation.

Proof : Consider two particles m and m1 at Q and P respectively separated by a distance r. Then by
Newton’s law of gravitation, the magnitude of the force is directly proportional to the product of the
masses and inversely proportional to the square of the distance between them.

1
2

Gmm
F

r
   ,        ... (1.1)

where the negative sign indicates the force is attractive. Here G is the gravitational constant. Assuming
the unit mass at Q and G = 1, the force at Q due to the mass m1 at P is given by

1
2

m
F

r
  ,

1m
F

r r
    

  
.        ... (1.2)

Let the particle of unit mass move under the attraction of the particle of mass m1 at P from infinity upto

Q, then the work done by the force F  is given by

1  
r r m

Fdr dr
r r 

   
    ,

1  
r m

d
r

   
  ,

1
r m

Fdr
r

  .        ... (1.3)

The gravitational potential is defined to be the amount of work which must be done against gravitational
force. Hence the potential V at Q due to a particle at P is given by
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1m
V

r
  .        ... (1.4)

From equations (1.2) the intensity of the force at P is given by

F V  .        ... (1.5)

Now if we consider a system of particles of masses m1, m2, ...., mn which are at distance r1, r2, ..., rn
respectively, then the force of attraction at Q due to the system of particles is given by

1

n
i

ii

m
F

r

   
 

 ,

1

n
i

ii

m
F

r

 
   

 
 .        ... (1.6)

The work done by the force acting on the particle is

1

r n
i

ii

m
Fdr V

r

   ,        ... (1.7)

2 2

1

n
i

ii

m
V

r

 
    

 
 , , 0ir 

2 2

1

n
i

ii

m
V

r

      
 

 ,

where i i i ir x i y j z k   ,

 
1

2
i i i i ir r x y z    

Thus  
2 2 2 1

2 2 2 2 2
2 2 2

i
i i i i

i

m
m x y z

r x y z

                  
,

where
 

 
1

2 2 2 2
3

2 2 2 2

i
i i i

i i i

x
x y z

x
x y z

    
  

,

   
 

2 2 22 1
2 2 2 2

2 5
2 2 2 2

2 i i i
i i i

i i i

x y z
x y z

x x y z

     
  

.

Similarly,
   

 

2 2 22 1
2 2 2 2

2 5
2 2 2 2

2 i i i
i i i

i i i

y z x
x y z

y x y z

     
  

,
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and
   

 

2 2 22 1
2 2 2 2

2 5
2 2 2 2

2 i i i
i i i

i i i

z x y
x y z

z x y z

     
  

,

2 2 2

2 2 2
0i

i

m

rx y z

              
,

2 0i

i

m

r
   
 

,

2 0V  .        ... (1.8)

This is called the Laplace equation.

Note : In 2-dimensions, the Laplace’s equation is given by

2 2
2

2 2
0u uu

x y

    
  .        ... (1.9)

A solution u (x, y) of equation (1.9) is called 2-dimensional harmonic function.

Solution of Laplace Equation :

Example 1 : Obtain the solution of the two-dimensional Laplace equations 2 0u   by the method

of separation of variables.

Solution : Consider the two-dimensional Laplace equation

2 0u  ,

i.e.
2 2

2 2
0u u

x y

  
  .      ... (1.10)

To find the solution of (1.10) we assume

 , ( ) ( )u x y X x Y y .      ... (1.11)

2

2
''( ) ( )u X x Y y

x

 


 and  
2

2
( ) ''( )u X x Y y

y

 


Therefore, equation (1.10) becomes

'' ''( ) 0X Y XY y  ,

or
'' ''X Y k

X Y
    (say),      ... (1.12)

where k is called  the separation constant, and k may be positive, zero or negative.
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Case (i) k > 0. Take 2k  ,   is real.

Therefore, we get from equations (1.12)

2'' 0X x   and 2'' 0Y y       ... (1.13)

Solutions of these equations are respectively given by

1 2
x xX C e C e    and     3 4cos sinY C y C y   .      ... (1.14)

Hence the solution of equation (1.10) becomes

    1 2 3 4, cos sinx xu x y C e C e C y C y      .      ... (1.15)

Case (ii) If k = 0, then from equations (1.12) we have

'' 0X    and  '' 0Y  .

Which provide us

5 6X C x C   and  7 8Y C y C  .

Hence the solution of (1.10) becomes

     5 6 7 8,u x y C x C C y C   .      ... (1.16)

Case (iii) Let k < 0. Take 2k  

Hence the equations (1.12) become

2'' 0X x   and 2'' 0Y y  ,

which have solutions

 9 10cos sinX C x C x    and 11 12
y yY C e C e   .

Hence the general solution of (1.12) is given by

    9 10 11 12, cos sin y yu x y C x C x C e C e      .      ... (1.17)

In all these solutions Ci (i = 1, 2, ...,12) are constants of integration and are to be calculated by using
the boundary conditions.

Laplace Equation in Polar Form :

Result : Show that in polar-coordinates r,  , the two-dimensional Laplace equation 0xx yyu u 

takes the form

2
1 1 0rr ru u u
r r

  

Proof : In Cartesian co-ordinates the two-dimensional Laplace equation is given by

2 0u  ,
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0xx yyu u   .      ... (1.18)

We know the relations between the Cartesian co-ordinates and polar co-ordinates are given by

cosx r  , siny r  ,

2 2 2r x y    and  
1tan

y
x

     
 

,

where cosr x
x r

  
 ,

sin
yr

y r
  

 ,

and 2 2
siny

x rx y

   
  ,

2
cosx

y rr

   
 .

We have by Chain rule of partial differentiation

2 2

2

1

1
r

yu u r u xu u
x r x x r y x

x





                    ,

2 2
cosx r

y
u u u

x y
       

sincosx ru u u
r
      

       ... (1.19)

and
2

2 2
1

y r
y xu u u
r xx y


        

,

cossiny ru u u
r
     

  .      ... (1.20)

Similarly, we find      xx x x xx r
ru u u u
x x

   
 

,

          
sin sin sincos cos cosxx r r

r

u u u u u
r r r 



                                 ,
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      2
sin sincos cosxx rr ru u u u

r r
 

           

           
sin cos sincos sinr ru u u u

r r r  
                   

,

2 2
2

2 2
sin cos sin sin sin coscos 2 2xx rr r ru u u u u u

r rr r
  

          .      ... (1.21)

Similarly, we find

     yy y y yy r

ru u u u
y y

   
 

,

      
cos cos cossin sin sinr r

r
u u u u

r r r 


                      

       2
cos cossin sinrr ru u u

r r
 

       
 

         
cos sin cossin cosr ru u u u

r r r  
        

  ,

2 2
2

2 2
sin cos cos sin cos cossin 2 2yy rr r ru u u u u u

r rr r
  

          .     ... (1.22)

Adding equations (1.21) and (1.22) we get

2
1 1

xx yy rr ru u u u u
rr

    .

Thus 0xx yyu u 

2
1 1 0rr ru u u
r r

    .      ... (1.23)

This is the polar form of the 2-dimensional Laplace equation.

Example 2 :  Show that the two-dimensional Laplace equation 2 0u   in polar co-ordinates r, 

has the solution of the form 
 n n in

n

Ar Br e   , where A and B are constants.

Solution : The two-dimensional Laplace equation in plane polar co-ordinates is given by

2 2

2 2 2
1 1 0u u u
r rr r 

    
 

.      ... (1.24)

Let ( ) ( )u R r       ... (1.25)
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be the solution of equation (1.24)

''( ) ( )rru R r     and '( )ru R r  ,

 ( ) ''u R r  

Hence equation (1.25) becomes

     
2

1 1''( ) '( ) ( ) '' 0R r R r R r
r r

        .

Dividing this equation by  ( )R r   we get

2

'( )'' 1 1 '' 0
R rR

R r R r
  
 ,

or  2 21 '''' 'r R rR n
R

   
 . (say)      ... (1.26)

2'' 0n    ,

i.e.
2

2
2

0d n
d
    ,      ... (1.27)

and
2

2 2
2

0d R dRr r n R
drdr

   .      ... (1.28)

Equation (1.27) provides

ine   ,

or cos sinC n D n    .      ... (1.29)

Let mR r  be the solution of equation (1.28). Hence the equation (1.28) becomes

  2 2 1 21 0m m mr m m r rmr n r     ,

 2 2 0mm n r   ,

m n   .

Hence the solution of (1.28) is given by

n nR Ar Br  .      ... (1.29)

Therefore the solution of equation (1.24) becomes

   , n n in
n n

n

u r A r B r e   



  ,     ... (1.30)

or         , cos sinn n
n n n n

n

u r A r B r C n D n     .      ... (1.31)

Which is the required result.



255

Laplace Equation in Spherical Polar Co-ordinates :

Result : Show that in spherical polar co-ordinates r,  ,   the Laplace equation 2 0u   takes the

form

2
2

2 2
1 1sin 0

sin sin

u u ur
r r


    

                    .

Proof : In Cartersian co-ordinates the Laplace equation is given by

2 0xx yy zzu u u u     .      ... (1.32)

To transform equation (1.32) in to spherical polar co-ordinates, we have

sin cos , sin sin , cosx r y r z r            ... (1.33)

2 2
2 2 2 2 1 1,   tan ,   tan

x y y
r x y z

z x
           

 
     ... (1.34)

where sin cos ,   sin sin ,  cosx y z
yx zr r r

y r r
          ,      ... (1.35)

and
2 2 2

cos cos
x x

xz
rr x y

    


,

cos sin sin,   y zr r
          ... (1.36)

Similarly, we find

sin cos
,   ,   0

sin sinx y zr r
   
 

         ... (1.37)

Now by using the chain rule of partial differentiation we write

x r x x xu u r u u     .

Using equations (1.35), (1.36) and (1.37) we get

cos cos sin
sin cos

sinx ru u u u
r r 
   


   .     ... (1.38)

In the same way, we find

cos sin cos
sin sin

siny ru u u u
r r 
   


   ,      ... (1.39)

and
sincosz ru u u

r 
  .      ... (1.40)



256

Now to find the second order derivative, we again use the chain rule and write

     xx x x x x x xr
u u r u u    

        cos cos sin
sin cos sin cos

sinr
r

u u u
r r 
     


      
 

cos cos sin cos cos
sin cos

sinru u u
r r r 



     


         
  

cos cos sin sin
sin cos

sin sinru u u
r r r 



    
 

          
    ,

2 2 2
2 2

2 2 2

cos cos sin
sin cos

sin
xx rru u u u

r r
 

   


    

22sin cos cos 2sin cos
r ru u

r r 
             

   

2 2 2

2

2cos cos sin cos cos sin

sin
ru u

r rr


     


           

2

2 2 2 2 2

sin cos cos cos sin sin cos

sin sin
u

r r r


      
 

 
    

 

2 2

2 2

cos sin 2cos sin cos

sin
u

r r


    


 
  

 
.      ... (1.41)

Similarly, the second order derivative

     yy y y y y y yr
u u r u u

 
     gives

2 2 2
2 2

2 2 2

cos sin cos
sin sin

sin
yy rru u u u

r r
 

   


   

        
2

2

2sin cos sin 2cos sin 2cos cos sin

sin
r ru u u

r r r
  

       


                  

       
2 2 2 2 2

2 2

cos sin cos 2sin cos sin cos cos

sin
ru u

r r r r


       


   
           

       
2

2 2 2 2 2

sin cos sin cos cos sin cos

sin sin
u

r r r


      
 

 
    

 
.      ... (1.42)
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and      zz z z z z z zr
u u r u u     ,

sin sin sincos cos coszz r r
r

u u u u u
r r r 



              
    ,

2 2
2

2 2
2sin cos sin sin cos sincoszz rr r ru u u u u u

r rr r
  

           .     ... (1.43)

Adding equations (1.41), (1.42) and (1.43) we obtain

2 0u 

2 2 2 2
1 1 2 cos 0

sin sin
rr ru u u u u

rr r r
  


 

      .      ... (1.44)

This can also be written as

2
2

2 2 2 2 2
1 1 1sin 0

sin sin

u u ur
r rr r r


   

                    ,

2
2

2 2
1 1sin 0

sin sin

u u ur
r r


    

                     .      ... (1.45)

This is the required Laplace equation in spherical polar co-ordinates.

Example 3 :  Show by using the method of separation of variables that the general solution of Laplace’s

equation in (r, ,  ) co-ordinates is

   
1

0

1, , ,n
n n nn

n

u r r S
r

     





   
 

 ,

where     
0

, cos sin
n

m
n n nm nm

m

S P A m B m    


  ,

cos  ,  and   m
nP   is the associated Legendre function and n , n ,

Anm and Bnm are constants.

Solution : We know the Laplace equation in spherical polar form is given by

2
2

2 2
1 1sin 0

sin sin

u u ur
r r


    

                         ... (1.46)

This can be written as

2 2
2

2 2 2
1 12 sin 0

sin sin

u u u ur r
rr


    

                   ... (1.47)
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Since u is a function of r,  ,   we assume

     , , ( )u r R r           ... (1.48)

is the solution of equation (1.47). Therefore, we find from (1.48)

'' ,   ' ,   'rr ru R R R        and ''u R   .      ... (1.49)

Substituting these in equation (1.47) we get

 2
2

1 1'' 2 ' sin '' cos ' '' 0
sin sin

r R rR R R R 
 

            .

Dividing throughout by R  we get

2
2

'' ' '' ' 1 ''2 cot 0
sin

R Rr r
R R




      
   ,

i.e.
2 2 2 2

2 2 2 2
2 1 cot 1 0

sin

r d R r dR d d d
R R dr ddr d d


  

      
   ,

2 2 2

2 2 2
2 1 1sin 0

sin sin

r d R r dR d d
R R dr ddr d


    

          ,

or
2 2 2

2 2
2 2

2 1 1sin sin
sin

r d R r dR d d m
R R dr ddr d

 
   

             
.(say)         ... (1.50)

Now consider the r.h.s. equations of (1.50)

2
2

2
0d m

d
    ,      ... (1.51)

which has solution

  imCe    .      ... (1.52)

Now the l.h.s. equation of (1.50) becomes

2 2 2

2 2
2 1 sin

sin sin

r d R r dR d d m
R R dr d ddr


   

    
  

     ... (1.53)

This can also be written as

2 2 2

2 2
2 1 sin

sin sin

r d R r dR d d m k
R R dr d ddr


   

      
  

 (say)    ... (1.54)

Consider
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2 2

2
2r d R r dR k

R R drdr
  ,

2
2

2
2d R dRr r kR

drdr
   .

Take for convenience  1k n n 

Therefore  
2

2
2

2 1 0d R dRr r n n R
drdr

    ,      ... (1.55)

and  
2

2
1 sin 1 0

sin sin

d d m n n
d d


   

        
 

 
2

2
1 sin 1 0

sin sin

d d mn n
d d


   

             
     ... (1.56)

Equation (1.55) is a homogeneous linear equation of second order. We put r = ez (changing the
independent variable r to z), hence we find

1dr dzr
dz dr r

  

1dR dR dz dR dR dRr
dr dz dr r dz dr dz

     

Now
2 2

2 2 2
1 1 1d R d dR d R dz dR

dr r dz r dr dzdr dz r
     
 

      
2

2 2
1 d R dR

dzr dz

 
  

 
,

2 2
2

2 2
d R d R dRr

dzdr dz
   .

If d
dz

    then we have

dr
dr

 ,

and  
2

2
2

1dr
dr

   .

Hence equation (1.55) becomes
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  1 2 ( 1) 0n n R       ,

  1 0n n R      .      ... (1.57)

This is a differential equation with constant coefficients whose auxiliary equation is

  1 0n n     ,

which has roots  ,   1n n     .

Hence solution of (1.57) is given by

( 1)
1 2

nz n zR C e C e   .      ... (1.58)

Consequently, the solution of equation (1.55) is

( 1)
1 2

n nR C r C r   .      ... (1.59)

Now to find the solution of equation (1.56) we put

cos  , sin
d
d
 


   ,

We write sin
dd d d d

d d d d d
 

    
         ,

2 2

2 2
cos sin

dd d d
d dd d

 
  

      ,

and
2 2

2
2 2

cos sind d d
dd d

 
 

      .

From equation (1.56) we have

2 2

2 2
1 sin cos ( 1) 0

sin sin

d d mn n
dd

 
  
               

     ... (1.60)

Using the above expressions in equation (1.60) we get

 
2 2

2
2 2

coscos sin sin ( 1) 0
sin sin

d d d mn n
d dd

  
   

             
,

i.e.  
 

2 2
2

2 2
1 2 ( 1) 0

1

d d mn n
dd

 
 

         
 

.      ... (1.61)

This is called as associated Legendre’s equation whose solution is given by

   cosm m
n nAP AP    .      ... (1.62)
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Using equations (1.52), (1.59) and (1.62) in equation (1.48) we obtain the general solution of given
equation (1.46) in the form

     ( 1)
1 2, , cosn n m im

nu r A r A r P e        .

By supperposition principle, the general solution can also be written as

   
1

0

, , ,n n
n nn

n

u r r S
r


    






   
 

 ,

where     
0

, cos cos sin
n

m
n n nm nm

m

S P A m B m    


  .

Kelvin’s Inversion Theorem :

Theorem : If  , ,u u r    is a harmonic function, where  , ,r    are the spherical polar co-ordinates,

then show that

2 2

, ,a au u
r r

 
 

  
 

is also a harmonic function, where ‘a’ is a constant.

Proof : Given that  , ,u r    is a harmonic function.  it satisfies Laplace equation.

2
2

2 2
1 1sin 0

sin sin

u u ur
r r


    

                     .      ... (1.63)

Claim : We prove that

2 2

, ,a au u
r r

 
 

  
 

 is also a harmonic function.

Let
2aR

r
 ,

 , ,u Ru R    .

Since  , ,u R    satisfies the equation (1.63) as it is harmonic.

2
2

2 2
1 1sin 0

sin sin

u u uR
R R


    

                     .      ... (1.64)

We claim that
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2
2

2 2
1 1sin 0

sin sin

u u ur
r r


    

                    .      ... (1.65)

Therefore, consider

  2 2 , ,ur r Ru R
r r

  
  ,

 2 2 , ,u R Rr R r u R
R r r

      
   ,

 
2 2 2

2 2 2
2 2

, ,u a a u ar r r u R
r r Rr r

 
                   

,

 
4

2 2 , ,u a ur a u R
r r R

     
 

.      ... (1.66)

Differentiating this with respect to r we get

4 4 2
2 2

2 2
u a u a u R u Rr a

r r R r r R rr R

           
       

,

       
4 6 2

2 3 2
2a u a u

Rr r R

  
 

,

2
2 2 3

2
2u u ur R R

r r R R

       
    

,

or
2 2u ur R R

r r R R
         
       .      ... (1.67)

Similarly, consider

  sin sin , ,u Ru R   
 
 
  ,

sin sinu uR 
 
 
  . as  R R 

Differentiating this with respect to   we obtain

sin sinu uR
   
         
       ,

           
2

2
cos sinu uR R 

 
  
 

,
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2

2
1 sin cos sin

sin sin
u R u u  

     
               

1 sin sin
sin sin

u R u 
     

          
       .      ... (1.68)

Next consider

 
2 2

2 2 2 2
1 1 , ,

sin sin

u Ru R  
   
       ,

2 2

2 2 2 2
1

sin sin

u R u

   
 
  .      ... (1.69)

Adding equations (1.67), (1.68) and (1.69) we get

2
2

2 2
1 1sin

sin sin

u u ur
r r


    

                   =

2
2

2 2
sin

sin sin

u R u R uR R
R R


    

                    ,

2
2

2 2
1 1sin

sin sin

u u uR R
R R


    

                      
,

= 0 by virtue of equation (1.64)

2
2

2 2
1 1sin 0

sin sin

u u ur
r r


    

                     .

This proves that 
2 2

, ,a au u
r r

 
 

  
 

  is also harmonic.

2. Boundary Value Problems :

Any problem of determining a function u (x, y) satisfying Laplace’s equation within certain
region D and satisfying certain conditions on the boundary B of the region D is called boundary value
problem, for the Laplace equation.

There are mainly three types of boundary value problems for Laplace equation viz.

1. The first boundary value problem, called The Dirichlet problem.

2. The second boundary value problem called The Neumann problem.

3. The third boundary value problem called the Mixed Boundary Value problem.
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Dirichlet Problem :

There are two types of Dirichlet peoblems -

(i) Interior Dirichlet Problem and

(ii) Exterior Dirichlet Problem.

Interior Dirichlet Problem :

If f is a continuous function on the boundary B of some finite region D, then the problem of
determining a function u (x, y) such that

(i) 2 ( , ) 0u x y   with D (i.e. u (x, y) is harmonic inside D) and

(ii) u (x, y) = f on B (i.e. u coincides with f on the boundary B)

is called Interior Dirichlet Problem.

Exterior Dirichlet Problem :

If f is a continuous function prescribed on the boundary B of a finite simply connected region
D, then the problem of determining a function u (x, y) such that

(i) 2 ( , ) 0u x y   outside D and

(ii) u (x, u) = f on the boundary B

is called Exterior Dirichlet Problem.

The Neumann Problem :

Interior Neumann Problem :

If f is a continuous function defined uniquely at each point of the boundary B of a finite region D, then
the problem of determining a fuunction u (x, y) such that

(i) 2 ( , ) 0u x y   in D (i.e. u is harmonic inside D) and

(ii) Satisfies ( )u f s
n
 
  on the boundary B, where 

n

  is the directional derivative along the

outward normal (i.e. normal derivative 
u
n

  coincides with f at every points of B)

is called the interior Neumann problem.

Exterior Neumann Problem :

If f is a continuous function prescribed at each point of the smooth boundary B of a bounded
simply connected region D. Then finding a function u (x, y) satisfying

(i) 2 ( , ) 0u x y   outside D and

(ii)
u f
n
 


on the boundary B

is called an exterior Neiumann Problem.
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Note : If   is the temperature, 
n



 is the heat flux representing the amount of heat crossing per unit

volume per unit time along the normal direction.

The Third Voundary Value Problem :

The problem of finding a function u (x, y) which is harmonic in D and satisfies the condition

( ) ( ) 0u h s u s
n
  
  on B where ( ) 0h s   and ( ) 0h s  .

The Fourth Boundary Value Problems (Mixed Boundary Value Problem) :

The Robin Problem :

The problem of finding a function u (x, y) which is harmonic in D and satisfies different boundary

conditions on different portions of the boundary B, such as 1( )u f s  as B1 2 ( )u f s
n
 
 on B2, where

1 2B B B , is called Robin Problem.

Maximum and Minimum Principle :

Theorem : Let D be a region bounded by a simple, closed, piecewise smooth curve B. Let u (x, y) be

a function which is continuous in a closed region D D B   and satisfy the Laplace equation 2 0u 
(i.e. harmonic in D) in the interior of D. If u is not constant everywhere on D , then the maximum and

minimum values of u (x, y) must occur only on the boundary B of D.

Proof : Let D be a region bounded by B inside which the function u (x, y) is harmonic.

i.e. 2 0u   in D

i.e.
2 2

2 2
0u u

x y

  
    in D.        ... (2.1)

Let the maximum value of u (x, y) on B be M. Let the theorem be not true. Therefore we assume that

the function u (x,y) attains its maximum at some interior point  0 0,x y  in D and not at any point on the

boundary B of D.

If  0 0 0,M u x y  then 0M M .

Say  0 0 0,M u x y M  .        ... (2.2)

Let us construct an auxiliary function

   2 20
0 02

( , ) ( , )
4

M M
v x y u x y x x y y

R

        ,        ... (2.3)

where  ,x y D  and R is the radius of the circle with centre  0 0,x y  containing D. Since D is

bounded as R exists. We observe from equation (2.3) that
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   0 0 0 0 0, ,v x y u x y M  .        ... (2.4)

We show that v (x, y) like u (x, y) attains its maximum at a point  0 0,x y  in D. However, on B we

have

0( , )
4

M M
v x y M


  ,

   2 2
0 0

2
1

x x y y

R

   
 
 

  0
0,

4

M M
v x y M M


    .

  the function v (x, y), like u (x, y) must attain its maximum at a point  0 0,x y  in D.

0, 0xx yyv v    at some point in D.

0xx yyv v    at some point in D.

However, in D we have from equation (2.3)

0
2

(2 2)
4

xx yy xx yy
M M

v v u u
R


     ,

0
2xx yy xx yy

M M
v v u u

R


    ,

Since u is harmonic in D

0xx yyu u   .

0
2

0xx yy
M M

v v
R


    , Since 0M M

0xx yyv v   .

This is a contracdiction.

  the maximum of u must be attained on the boundary B.

Green Identity :

Let B be a closed surface in the space and D denote the bounded region enclosed by B.

Let F  be a vector C 1 in D and continuous on D. Then we know the Gauss divergence theorem is

given by

ˆ
B D

Fnds F dV        ,        ... (2.5)

where dV is an element of volume, ds is an element of surface area and n̂  is the outward normal.

Green’s identity is obtained from (2.5).

R
D

B

 0 0,x y
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Let F f  , where f  is a vector function and   is a scalar function. Then from equation (2.5), we

have

  ˆ
D B

f dV n f ds        

we know  f f f      

  ˆ
D B

f f dV n f ds             ,

ˆ
D B D

f dV n f ds fdV                .

We choose the vector function

f   .

Therefore, the above equation yields

2ˆ
D B D

dV n ds dV                  .        ... (2.6)

Since n̂   is the derivative of   in the direction of n̂ . We denote this directional derivative by

n̂
n
  


.

Therefore, equation (2.6) reduces to

2

D B D

dV ds dV
n
        
        .        ... (2.7)

This equation is known as Green’s first identity.

Now interchanging the role of   and  , we obtain from (2.7) the equation

2

D B D

dV ds dV
n
        
               ... (2.8)

Now substracting (2.8) from (2.7) we get

 2 2

D B

dV ds
n n
             
              ... (2.9)

This is known as Green’s Second identity.

If in particular,    in equation (2.7) then we have
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 2 2

D B D

dV ds dV
n
      
        .      ... (2.10)

Which is a special case of Green’s first identity.

Properties of Harmonic Functions :

Solutions of Laplace equation are called harmonic functions. These functions possess a number of
interesting properties.

Theorem 1 : If a harmonic function vanishes everywhere on the boundary then it is identically zero
everywhere.

Proof : Let   be a harmonic function in D.

2 0    in D,      ... (2.11)

and also 0   on B.      ... (2.12)

We shall show that 0   in D D B  .

We know the Green’s indentity is given by

 2 2

D B D

dV ds dV
n
      
        .      ... (2.13)

Using (2.11) and (2.12) we have from equation (2.13)

 2
0

D

dV    .      ... (2.14)

Since  2  is positive. It follows that the integral (2.14) will be satisfied only if 0  .

  = constant in D. But   is continuous in D D B   and 0   on B, it follows from the maximum

and minimum principle that 0   in D.

Theorem : If   is a harmonic function in D and 0
n
 


 on B, then   is a constant in D .

Proof : Let   be a harmonic in D.

2 0     in D.      ... (2.15)

Also 0
n
 


 on B.      ... (2.16)

Then we prove that  = constant in D D B  .

Now by Green’s identity we have
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 2 2

D B D

dV ds dV
n
      
             ... (2.17)

Using equations (2.15) and (2.16) we have

 2
0

D

dV    .

Since  2 is positive, it follows that the integral will be satisfied only if 0  .

  = constant in D.

Since the value of   is not known on the boundary B, but

 0
n
 


 on B.

  = constant on B and hence by the maximum and minimum principle it is constant on D.

This proves the theorem.

Uniqueness Theorem :

Theorem : Prove that the solution of the Dirichlet problem, if it exists, is unique.

Proof : Let us suppose that u1 and u2 are two solutions of the Dirichlet problem.

 2
1 , 0u x y   in D and

 1 , ( )u x y f s on the boundary B,      ... (2.18)

where f is a continuous function defined on the boundary B. Similarly, we have

 2
2 , 0u x y   in D and

 2 , ( )u x y f s  on B.      ... (2.19)

Since u1 and u2 are harmonic in D, therefore u1 – u2 is also harmonic in D.

 2
1 2 0u u    in D.

However, from equations (2.18) and (2.19) we have

1 2 0u u   on B      ... (2.20)

By the maximum and minimum principle,

1 2 0u u   in D,

1 2u u  .
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(Because if a harmonic function vanishes everywhere on the boundary, then it is identically zero
everywhere). This proves the uniqueness.

Other forms of Green’s Identity :

By Green’s theorem, we know, if u (x, y) and v (x, y) are differentiable functions in D and continuous
on the boundary B of D then

 
D B

U V dS Udy Vdx
x y

       
       ... (2.21)

Let U
x
 


  and  V y
 


x x x xxU      , y y y yyV     .

Therefore, equation (2.21) becomes

   x x xx y y yy x y
D B

dS dy dx              .

We use x ydy dx dS
n
   


Hence,  x x xx y y yy
D B

dS dS
n
          
  .      ... (2.22)

On interchanging   and   in (2.22) we get

 x x xx y y yy
D B

dS dS
n
          
  .      ... (2.23)

Substracting (2.23) from (2.22) we get

 2 2

D B

dS dS
n n
             
         ... (2.24)

The identities (2.22) and (2.24) are called Green’s identities.

Theorem : Show the necessary condition for the existence of the solution of the Neumann problem is
that the integral of f over the boundary B should vanish.

Proof : Let u (x, y) be the solution of the Neumann interior problem.

2 0u   in D,      ... (2.25)

and ( )u f s
n
 


 on B.      ... (2.26)
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Then we claim that ( ) 0
B

f s ds  .

We know the Green’s identity is given by

 2 2

D B

dS dS
n n
             
    .      ... (2.27)

Put 1   and u   in (2.27) we get

2

D B

uuds ds
n
 
 

Using equations (2.25) and (2.26) we get

( ) 0
B

f s ds  .      ... (2.28)

This proves the result.

Theorem : Show that the solution of the Neumann problem is either unique or it differs from one
another by a constant only (i.e. solution is unique up to the addition of a constant).

Proof : Let  1 ,u x y  and  2 ,u x y  be two solutions of the interior Neumann problem.

1u and 2u  are harmonics in D.

i.e. 2
1 0u  , in D and  2

2 0u   in D,      ... (2.29)

and 1u
f

n





on B  and  2u

f
n





 on B.      ... (2.30)

Then we claim that 1 2u u  = constant.

Consider 1 2v u u 

Then  2 2 2 2
1 2 1 2v u u u u    

       =  0  in D.

2 0v   in D,      ... (2.31)

and   1 2
1 2

u uv u u
n n n n

     
   

       = f – f

0v
n
 
  on B.      ... (2.32)

We know the Green’s identity
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 x x xx y y yy
D B

ds ds
n
          
  .      ... (2.33)

Put v    in (2.23) we get

   2 2
x xx y yy

D B

vv vv v yy ds v ds
n
        ,

2 2 2
x y

D B

vv v v v ds v ds
n
         ,

   2 2

D D B

vv ds v v ds v ds
n
    
   .      ... (2.34)

Using equations (2.31) and (2.32) we obtain from equation (2.34)

 2
0

D

v ds  .      ... (2.35)

Since  2
v  is positive. It follows that the integral (2.35) will be satisfied only if 0v   in D.

v  is constant in D.

1 2u u   = constant.

This proves that the solution of the Neumann problem differs from one another by a constant.

If constant is zero   the solution is unique.

Stability : A solution is said to be stable if it depends continuously on the initial and/or boundary data.

Stability Theorem : Show that the solution of the Dirichlet problem is stable.

i.e. Show that the solution of the Dirichlet problem depends continuously on the boundary data.

Proof : Let u1 and u2 be two solutions of the Dirichlet problem in D and f1, f2 be given continuous
functions on the boundary B of the region D.

2
1 0u   in D and 1 1u f  on B.

Similarly 2
2 0u  in D,  2 2u f  on B.

Let 1 2v u u  .

 2 2 2 2
1 2 1 2 0v u u u u       in D

2 0v   in D

and 1 2v f f   on B.

v  is a solution of the Dirichlet problem with boundary condition 1 2v f f   on B.
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Therefore, by the maximum and minimum principle, the harmonic function v attains the maximum and
minimum values on B.

Equivalently, 1 2f f  has maximum and minimum value on the boundary B. (i.e. 1 2f f  must be

bounded)

Thus if 1 2f f  on B.

Therefore at any interior point in D, we have, for given 0

min maxv v  

v  in D

1 2u u   in D.

Hence if 1 2f f   on B then 1 2u u  on D.

Thus, small changes in the initial data bring about an arbitrary small change in the solution.

This shows that the solution depends continuously on the boundary data.

i.e. the solution of the Dirichlet problem is stable.

3. Interior Dirichlet Problem for a Circle :

The Dirichlet problem for a circle is defined as follows.

Result : Show that the solution for the Dirichlet Problem for a circle of radius a is given by the Poisson
integral formula.

Example 1 : Find the value of  ,u r   at any point in the interior of the circle (r = a) D in terms of its

values on the boundary B such that u is single valued and continuous within and on a circular region and
satisfies the equation

2 0u  , 0 r a  , 0 2  

subject  to    ,u a f  , 0 2   , where  f   is continuous function on B.

Solution : Our problem is to solve for  ,u r   satisfying the equation

2 0u  , 0 r a  , 0 2   ,        ... (3.1)

subject to the boundary condition

   ,u a f  , 2o    ,        ... (3.2)

where  f   is continuous function on the boundary of circle.

We know the polar form of Laplace equation (3.1) is given by

2 2

2 2 2
1 1 0u u u
r rr r 

    
 

       ... (3.3)
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We know the solution of the equation (3.3) is given by (Refer equation 1.31)

    
0

, cos sinn n
n n n n

n

u r C r D r A n B n  






   .        ... (3.4)

At r = 0,  ,u r  must be finite. Hence

nr   as 0 0nr D   ,

   
0

, cos sinn
n n

n

u r r A n B n  




   ,        ... (3.5)

   0

1

, cos sin
2

n
n n

n

a
u r r a n b n  





    .    for 0
0 2

a
A        ... (3.6)

Now using the boundary condition

   ,u a f  ,

we have

   0

1

cos sin
2

n
n n

n

a
f a a n b n  





   .

This is the Fourier series expansion of  f  , hence Fourier constants are given by

 
2

0
0

1a f d


 


   ,

 
2

0

1 cosn
n

a f n d
a



  


  ,

and  
2

0

1 sinn
n

b f n d
a



  


  , n = 1, 2, 3, .....

Substituting these values in the solution (3.6) we get

       
2 2 2

10 0 0

1 cos sin, cos cos
2

n

n
n

r n nu r f d f n d f n d
a

           
  





 
   

  
   .

Interchanging the order of summation and integrating we get

       
2 2

10 0

1 1, cos cos sin sin
2

n

n

ru r f d f n n n n d
a

 

        
 





    
   ,
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2

10

1 1, cos
2

n

n

ru r f n d
a



    






      
  

 .       ... (3.7)

Consider

     

1 1

cos sin
n n

in

n n

r rn i n e
a a

    
 



 

                  ,

     

1 1

cos sin
n n

i

n n

r rn i n e
a a

    
 



 

                   .        ... (3.8)

Since 1rr a
a

    and   1ie    .

The expression on the right hand side of the equation (3.8) is a geometric series.

Therefore,  
 

 1 1

i
n

i

in

r e
r ae

ra e
a

 

 

 








 
 

         
 

 .

Equating the real part on both sides we get

 
 

 1

cos Re
1

i
n

in

r e
r an

ra e
a

 

 
 






  
         

   
 

 ,

   

   

1
Re

1 1

i i

i i

r re e
a a

r re e
a a

   

   

  

  

            
          

,

 

     2

2

Re
1

i

i i

r re
a a

r re e
a a

 

   



  

            
   
  

,

   

 
2

cos sin
Re

1 2cos

r ri
a a

r r
a a

   

 

          
           

,
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2

2
1

cos
cos

1 2 cos

n

n

r r
r a an
a r r

a a

 
 

 





       
        
          

   

 .

Substituting this on the r.h.s. of (3.7) we get

   
 

 

2

2 2

2
0

2

cos
1 1,

2 21 cos

r r
a au r f d

r r
a a

  
  

  

 
  

   
     

 ,

     
  

2 2 2

2 2
0

1,
2 2 cos

a ru r f d
a ar r



  
  


   .        ... (3.9)

This is known as Poisson integral formula for a circle, which gives the unique solution for the Dirchlet
problem.

4. The Dirichlet Exterior Problem for a Cicle :

Result : Show that the solution for the exterior Dirichlet problem for a circle of radius a is given by
(Poisson integral formula)

 
   

 

2 2 2

2 2
0

1,
2 2 cos

r a f
u r d

r ar a

 
 

  



    

 .

Solution : Exterior Dirichlet problem is decribed by

2 0u   for 0 2   , r a ,        ... (4.1)

and    ,u a f  , 0 2   , r = a,        ... (4.2)

where  f   is a continuous function of   on the surface r = a, and  ,u r   must be bounded

as r  . We know by the method of separation of variables, the general solution of (4.1) in polar
co-ordinates is given by

    
0

, cos sinn n
n n n n

n

u r C r D r A n B n  






          ... (4.3)

Now as r   we require that  ,u r   to be bounded

0nC   As  as nr r 

Hence the general solution (4.3) reduces to
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0

, cos sinn
n n

n

u r r A n B n  






  .       ... (4.4)

It can also be written as

   0

0

, cos sin
2

n
n n

n

a
u r r a n b n  






   .        ... (4.5)

Now using the boundary condition

   ,u a f  ,

   0

1

cos sin
2

n
n n

n

a
f a a n b n  






    .

Hence the Fourier constants are given by

 
2

0
0

1a f d


 


  ,

 
2

0

cos
n

n
aa f n d



  


  ,

 
2

0

sin
n

n
ab f n d



  


  . n = 1, 2, 3, .....

Substituting these values in equation (4.5) we get the solution as

                 
2 2 2

10 0 0

1, cos cos sin sin
2

n
n

n

au r f d r n n f d n n f d
  

          
 






 
   

  
   .

Interchanging the order of summation and integration we get

       
2 2

10 0

1 1, cos cos sin sin
2

n

n

au r f d f n n n n d
r

 

        
 





    
   .

     
2

10

1 1, cos
2

n

n

au r f n d
r



    






      
  

 .        ... (4.6)

Consider,

     

1 1

cos sin
n n

in

n n

a an i e
r r

    
 



 

                .
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i.e.      

1 1

cos sin

nn n
i

n n

a an i e
r r

    
 



 

                 
         ... (4.7)

Since r > a

1a
r

   and   1ie   

The expression on the right hand side of the equation (4.7) is a geometric series. Therefore, we have

 
 

 1 1

i
n

i

in

a e
a re

ar e
r

 

 

 








            

 ,

    

   

   

1

1 1

i i

i i

a ae e
r r
a ae e
r r

   

   

 

  

   
          

,

    

 

     2

2
1

i

i i

a ae
r r

a ae e
r r

 

   



  

   
 
    

,

 
   

 
2

1
2

cos sin

1 2 cos

n
i

n

a ai
a r re
r a a

r r

 
   

 






                    

 .

Equating the real part on both sides we get

 
 

 
2

1
2

cos
cos

1 2 cos

n

n

a a
a r rn
r a a

r r

 
 

 





        
   

    

 .

Substituting this in equation (4.6) we get

   
 

 

2

2 2

2
0

2

cos
1 1,

2 21 cos

a a
r ru r f d

a a
r r

  
  

  

 
  

  
     

 .
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2 2 2

2 2
0

1,
2 2 cos

r au r f d
r ar a



  
  

 
   ,

or  
   

  
2 2 2

2 2
0

1,
2 2 cos

r a f
u r

r ar a

 


  



   .        ... (4.8)

This is the required solution of the exterior Dirichlet Problem.

5. Interior Neumann Problem for a Cicle :

The interior Neumann Problem for a circle is described as follows.

Example 1 : Solve

2 0u  , r < a

subject  to the boundary condition

 u u f
n r

  
   on r = a ,

(Because outward normal to the Ole is along the radius vector)

where  
2

0

0f d


   .

Solution : To find the solution, we solve the equation

2 2

2 2 2
1 1 0u u u
r rr r 

    
 

, r < a        ... (5.1)

subject to the boundary condition

 u f
r

 


on r = a, 0 2   ,        ... (5.2)

where  f   is a continuous function of   on the surface r = a.

We know by the method of spearation of variables, the general solution of equation (5.1) is given by

    
0

, cos sinn n
n n n n

n

u r C r D r A n B n  






   .        ... (5.3)

Since at r = 0, the solution should be finite hence we must have Dn = 0 ( nr  as 0r  ).

Hence the solution becomes

   
0

, cos sinn
n n

n

u r r A n B n  




  .
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This can be written as

   0

1

, cos sin
2

n
n n

n

a
u r r a n b n  





   .        ... (5.4)

Differentiating (5.4) w.r.t. r we get

 1

0

cos sinn
n n

n

u nr a n b n
r

 






  
  .        ... (5.5)

Now using the boundary condition

   ,u a f
r

  
 ,

we have       1

0

cos sinn
n n

n

f nr a n b n  






  .        ... (5.6)

This is a Fourier series expansion of  f  , where the Fourier constants are given by

   
2

1
0

1 cosn n
a f n d

n a



  
   ,

   
2

1
0

1 sinn n
b f n d

na



  


  .

Substituting these values in (5.4) we get

    
2

0
1

1 0

, cos cos sin sin
2

n

n
n

a ru r f n n n n
n a



     







    .

Interchanging the order of summation and integration, we get

     
2

0

10

1, cos
2

n

n

a r au r f n d
a n



    






    
  .        ... (5.7)

Now consider

   

1 1

1 1
n n

in i

n n

r re e
a n a n

   
 

 

 

            
  ,

       2 3

...
1 2 3

i ii r rr e ee
a aa

       
 
    
 

,
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1

1 log 1
n

in i

n

r re e
a n a

   


 



            ,      as  
2 3

log 1 ...
2 3
x xx x

 
       

     
1

1 log 1 cos sin
n

in

n

r r re i
a n a a

     






               .       ... (5.8)

[ Now to find the real part of log z, for z = x + iy

let logW u iv z   ,

u ivz x iy e     ,

cos ,   sinu yx e v y e v   ,

2 2 2ue x y  

2 2logu x y    ].

Therefore, equating the real part on both sides of (5.8) we get

     
2 2

1

1 cos log 1 cos sin
n

n

r r rn
a n a a

     




                
      ,

 2 2

2

2 cos
log

a ar r

a

   
  .

Substituting this in equation (5.7) we get

     
2 2 2

0
2

0

2 cos
, log

2

a ar ra au r f d
a

  
  


  

   .       ... (5.9)

Thus the required solution of interior Neumann Problem for a circle can also be written as

     
2

2 20

0

, log 2 cos
2 2

a au r a ar r f d


    


        .     ... (5.10)

The constant factor a2 in the argument of log was eliminated by virtue of the necessary condition for the
Neumann problem.

6. Exterior Neumann Problem for a Circle :

Result : State the exterior Neumann problem and show that its solution for a circle of radius a is given
by

     
2

2 20

0

, log 2 cos
2 2

a au r a ar r f d


    


        .
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Proof : The exterior Neumann problem for a circle is described by

2 0,   ,  0 2u r a       ,        ... (6.1)

subject to the condition

 u u f
n r

  
  , on the boundary r = a.        ... (6.2)

By the method of separation of variables, we know the general solution of (6.1) in polar form is given
by

        
0

, cos sinn n
n n n n

n

u r C r D r A n B n  






   .        ... (6.3)

Now as r   we require that to  ,u r   be finite (bounded)

0nC  . (as nr   as r  )

Hence the general solution (6.3) reduces to

   
0

, cos sinn
n n

n

u r r A n B n  






  .        ... (6.4)

Without loss of generality, it can also be written as

   0

1

, cos sin
2

n
n n

n

a
u r r a n b n  






   .        ... (6.5)

Differentiating equation (6.5) w.r.t. r we get

   1

1

cos sinn
n n

n

u n r a n b n
r

 


 



   
  .        ... (6.6)

Now using the boundary condition

   ,u a f
r

  


,

we get      1

1

cos sinn
n n

n

f n a a n b n  


 



   .        ... (6.7)

This is the Fourier series expansion of  f  , where the Fourier constants are given by

   
2

1

0

1 cosn
na n a f n d



  


    ,

 
21

0

cos
n

n
aa f n d
n



  



    ,
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and  
21

0

sin
n

n
ab f n d
n



  



   .

Substituting these constants in equation (6.5) we get

    
21

0

1 0

, cos cos sin sin
2

n
n

n

a au r r f n n n n d
n



      


 



     .

Interchanging the order of summation and integration we get

     
2

0

10

1,  cos
2

n

n

a a au r f n d
r n



    






     
  ,

     
2

0

10

1,  cos
2

n

n

a a au r f n d
r n



    






    
  .        ... (6.8)

Now consider

   

1 1

1 1
nn

in n i n

n n

a ae e
r n r n

 
 

 

 

            
 

      
       

2 3

...
1 2 3

i ni n i naa aee e
rr r

  
            
  

      
 log 1 i na e

r
            ...  

2 3

log 1 ...
2 3
x xx x

  
         

     
1

1 log 1 cos sin
n

in

n

a a ae i
r n r r

     






           
    .

Equating the real part on both sides we get

     
1

1 cos log 1 cos sin
n

n

a a an i
r n r r

     




         
  ,

     2 2

1

1 cos log 1 cos sin
n

n

a a an
r n r r

     




                 
      ,

   2 2

2
1

2 cos1 cos log
n

n

r ar aa n
r n r

 
 





       
  .
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Substituting this in equation (6.8) we get

     2 2 2
0

2
0

2 cos
, log

2

r ar aa au r f d
r

  
  


  

   ,

or      
2 2 2

0
2

0

2 cos
, log

2 2

r ar aa au r f d
r

  
  


   

   
  .       .... (6.9)

This is the required solution.

7. Interior Dirichlet Problem for a Rectangle :

Result : Solve

2 0,   0 ,   0u x a y b      ,        ... (7.1)

subject to the boundary conditions

   , , 0u x b u a y  ,        ... (7.2)

 0, 0u y  ,        ... (7.3)

   ,0u x f x , 0 x a         ... (7.3)

Solution : We assume a variable separable solution of the form

   , ( )u x y X x Y y .        ... (7.5)

Therefore, equation (7.1) becomes

'' '' 0X Y XY  ,

'' ''X Y
X Y

    (say),        ... (7.6)

where   is a constant, may be positive, zero or negative. For different choices of   we have three

solutions. We have to choose that solution which is consistent with the physical nature of the problem
and the boundary conditions.

Case (i) : 0  , Take 2  .

Then we have the equations

2'' 0X X   and 2'' 0Y Y  .

Whose solutions are given by

1 2
x xX C e C e   ,    3 4cos sinY C y C y  

Therefore, the general solution of (7.1) is given by

        1 2 3 4, cos sinx xu x y C e C e C y C y      .        ... (7.7)

y

x

u = 0

O y = 0
x = 0

x = a

u = 0

u = 0

y = b

u (x, 0) = f (x)
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Now using the boundary condition

 0, 0u y  ,

we get from equation (7.7)

      1 2 3 40 cos sin 0C C C y C y     ,

1 2 0C C   .       .... (7.8)

Again using the boundary condition

 , 0u a y  ,

we get from equation (7.7)

      1 2 3 40 cos sinx xC e C e C y C y      ,

1 2 0a aC e C e    .        ... (7.9)

From equations (7.8) and (7.9) we have 1 20C C  .

Hence  , 0u x y   is the only possible trivial solution. Hence we neglect the case 0  .

Case (ii) : If 0  , then from equation (7.6) we have

'' 0X   and '' 0Y  .

This provides

 5 6X C x C   and  7 8Y C y C  .

Hence the general solution of (7.1) is given by

     5 6 7 8,u x y C x C C y C   .      ... (7.10)

Using the boundary conditions

 0, 0u y   and  , 0u a y  ,

we get from (7.10)

6 50C C 

 , 0u x y   is a trivial solution. Hence we discard 0  .

Case (iii) : If 0  , Take 2   .

Hence from equation (7.6) we have

2'' 0X X   and 2'' 0Y Y  ,
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which have solutions

9 10cos sinX C x C x    and  11 12
y yY C e C e   .

Therefore, the general solution of (7.1) is given by

    9 10 11 12, cos sin y yu x y C x C x C e C e      .      ... (7.11)

Now using the boundary condition

 0, 0u u  ,

we obtain 9 0C  .

Also the boundary condition  , 0u a y   yields

  10 11 120 sin y yC a C e C e    .

If C10 = 0, we will have again a trivial solution. Therefore, we assume

10 0C 

sin 0a  ,

a n   , 1, 2,...n 

or n
a
  ,

Take
n

n
a
  . 1, 2,...n       ... (7.12)

These are called the eigen values. Hence the possible non-trivial solution is given by

  10, sin exp expn n n
n n nu x y C x a y b y
a a a
                      

By superposition principle, the most general solution of (7.1) is given by

 
1

, ( , )n
n

u x y u x y






Hence  
1

, sin exp expn n
n

n n nu x y x a y b y
a a a
  



                    
        ... (7.13)

Now using the boundary condition

 , 0u x b  ,

we have from equation (7.13)
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0 sin exp expn n
n n nx a y b y
a a a
                      

,

exp exp 0n n
n b n ba b

a a
          

    ,

exp

exp
n n

n b
ab a
n b

a





 
 
   
  
 

, n = 1, 2, ...

Substituting this in (3.13) we get

     
1

sin
, exp ( ) exp ( )

exp

n

n

n xa
n nau x y y b y b

n x a a
a


 







 
             

 

 ,

      
1

2 sin
sinh ( )

exp

n

n

n xa
na y b

n x a
a










 
 
   

  
 

 ,     Since sinh
2

x xe ex
  

 

   
1

, sin sinh ( )n
n

n x nu x y A y b
a a
 



    
  ,  for 

2

exp

n
n

a
A

n b
a



  
 

.           ... (7.14)

Now using the boundary condition

 ,0 ( )u x f x , 0 x a  ,

we have from equation (7.14)

1

( ) sin sinhn
n

n x n bf x A
a a
 



       
         ... (7.15)

This is a Fourier sine series, where the Fourier constant is given by

0

2sinh ( )sin
a

n
n b nA f x x dx

a a a
        

    ,

or
0

2 ( )sin
sinh

a

n
nA f x x dx

n b aa
a




   
    
 

 .      ... (7.16)

Thus the general solution for the Dirichlet problem for a rectangle is given by
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1

, sin sinh ( )n
n

n nu x y A x y b
a a
 



   
  ,

where
0

2 ( )sin
sinh

a

n
nA f x x dx

n b aa
a




   
    
 

 .      ... (7.17)

8. The Neumann Problem for a rectangle

Result : Solve the equation

2 0u     0 x a  , 0 y b  ,        ... (8.1)

subject to the boundary conditions.

(0, ) ( , ) 0x xu y u a y  ,        ... (8.2)

 ,0 0yu x  ,        ... (8.3)

 , ( )yu x b f x .        ... (8.4)

Solution : By variable separable method, we have obtained the general solution of equation (8.1) in
the form

    1 2 3 4, cos sin y yu x y C x C x C e C e      .        ... (8.5)

Differentiating equation (8.5) w.r.t. x and y we get

  1 2 3 4( , ) sin cos y y
xu x y C x C x C e C e       .        ... (8.6)

Now using the boundary condition (8.2) viz.

(0, ) 0xu y   gives

2 0C  .

Therefore, equation (8.5) becomes

   1 3 4, cos y yu x y C x C e C e    .        ... (8.7)

Now the boundary condition

 , 0xu a y   gives

 1 3 40 sin y yC a C e C e     .

If C1 = 0 then we get trivial solution of (8.1). Therefore, for non-trivial solution, we assume 1 0C  .

 sin 0a  ,

a n   ,  n = 1, 2, 3, ....
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n
a
  . n = 1, 2, 3, ...

Let for each n,

n
n
a
  , n = 1, 2, ....        ... (8.8)

These are called the eigen values. Thus the possible solution is given by putting n  in equation (8.7).

   , cos
n ny y
a anu x y x Ae Be

a

 
    

 
.        ... (8.9)

Differentiating (8.9) w.r.t. y we get

( , ) cos
n ny y
a a

y
n nu x y x Ae Be
a a

 
         

 
.

Now using the boundary condition

( , 0) 0yu x 

we have 0 cos ( )n n x A B
a a
    

 

0A B    A = B.

Thus the solution (8.9) becomes

 , cos exp expn n nu x y A x y y
a a a
                      

,

 , 2 cos coshn nu x y A x y
a a
        

    .

Using the superposition principle and for 2 nA A , we write the general solution of (8.1) as

 
1

, cos coshn
n

n nu x y A x h
a a
 



       
    .      ... (8.10)

Finally using the boundary condition (8.4)

( , ) ( )yu x b f x ,

we have

1

( ) cos sinhn
n

n n nf x A x b
a a a
  



           
      ,

which is the Fourier cosine series. The corresponding Fourier constant is given by
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0

2sinh ( ) cos
a

n
n n nA b f x x dx
a a a a
             

     

0

2 ( )cos
sinh

a

n
nA f x x dx

n an b
a




     
   
 
 

 .      ... (8.11)

Hence the required solution of the Neumann problem for a rectangle is given by

 
1

, cos sinhn
n

n nu x y A x y
a a
 



       
    ,

where the constant An is given by

0

2 ( )cos
sinh

a

n
nA f x x dx

n b an
a




   
   
 
 

 .      ... (8.12)

9. The Dirichlet Problem for the Upper Half Plane

Result : Find the solution of the problem

2 0u  , , 0x y     ,

 ,0 ( )u x f x , x    ,

such that u is bounded as y  , u and ux vanish as x  .

Solution : Given that

0xx yyu u  ,   ,x     y > 0,        ... (9.1)

( ,0) ( )u x f x ,  x    ,        ... (9.2)

with the conditions that u is bounded as y   and u and ux vanish as x  .

We use the technique of Fourier transform to solve the problem. Let  ,U y  be the Fourier transform

of u (x, y) in the variable x. Therefore, by definition we have

    1, ( , ( , )
2

i xU y u x y u x y e dx






  F .        ... (9.3)

Now applying the Fourier transform to equation (9.1) we get

2 2

2 2
0u u

x y

       
    

F F .
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Since Fourier transform for derivative is given by

     ( ) ( ) ( )
nnf n i f x F F .

   
2

2

2
( , ) 0ui u x y

y


     
 

F F .

 2 , 0yyU y U     ,

i.e. 2 0yyU U  .        ... (9.4)

Its solution is given by

     , y yU y A e B e      .        ... (9.5)

Since we require that the solution  ,U y  be bounded as y  , therefore, for  0  , we must

have   0A   , and for 0  ,   0B   .

Therefore, we have

   , ,0 yU y U e    ,        ... (9.6)

where     ,0 ,0U u x  F

   ( )f x F by equation (9.2)

   ,0U F   , by definition of Fourier series.

Hence    , yU y e    F .        ... (9.7)

Also by definition of inverse Fourier transform, we have

 1
2 2

2y y
e

y x



      

F .        ... (9.8)

We write equation (9.7) on using (9.8) as

     2 2
2, ( )

y
u x y f x

y x
         

F F F ,

                                  2 2
2, *

y
u x y f

y x
         

F F       Since * ( ) ( )f g f g F F F

Taking inverse Fourier transform on both sides we get
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  2 2
2, *

y
u x y f

y x
    

,

   
 22

1 2,
2

y
u x y f d

y x
 

 





      
     (by convolution theorem.)

   
 22

,
fy

u x y d
y x




 






 

 .        ... (9.9)

This is the required solution of the Dirichlet problem for the upper half plane.

10. The Neumann Problem for the Upper Half Plane :

Result : Find the solution of the problem

2 0u  , , 0x y     ,

( , 0) ( )yu x g x , x   ,

such that u is bounded as y  , u and ux vanish as x   and  ( ) 0g x dx




 .

Solution : We reformulate the problem by introducing a new variable v (x, y) as

   , ,yv x y u x y .      ... (10.1)

Then  ,
u

u v x d


        ... (10.2)

Also    2 2 2, 0yv x y u u
y
     
 ,

and  ,0 ( ,0) ( )yv x u x g x  .

Thus our problem is reformulated in to the new variable v as

2 ( , ) 0v x y  , x   , y > 0,      ... (10.3)

 ,0 ( )v x g x , x    .      ... (10.4)

Since u is bounded as y v  is also bounded as y  .

Integrating equation (10.1) with respect to y we obtain

 , ( , )
y

a

u x y v x d  
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Since, u is bounded as y   ,
y

a

v x d    is bounded as y  .

  the integrand v (x, y) is bounded on y  .

Also from equation (10.1) we find

 ,x y xv x y u u
x y
  
 

 lim , lim ( , ) 0x x
x x

v x y u x y
y 

  
 .

( , ) 0xv x y   as x  .

Also from equation (10.2), we have

lim lim ( , ) 0
y

x x
a

u v x d 
 

 

0v  as x  .

However, we know the solution of the problem is given by

 
 2 2

( , )
gy

v x y d
x y




 






 

 .      ... (10.5)

Hence the solution of the original problem becomes

 ( , ) ,
y

u x y v x d


   .

On using (10.5) we get

 
 2 2

1( , )  
y

g
u x y d d

x


  

  






 

 

Consider  
 2 2

2 2

21 1 log
2 2

y y
d x

x 


   
 

    
 

 ,

 
 
 

2 2

2 22 2

1 log
2

y
x y

d
x x

 
   

  
  

     
 ,

   
 

2 2

2 2

1( , ) log
2

y
x y

u x y g d
x


 

  

  
  

   
 .      ... (10.6)

This determines the solution of the problem.
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Introduction :

In this unit we shall discuss Riemann's method of solving  a linear second order hyperbolic
partial differential equations which are in the canonical forms. The method is illustrated in the following
theorem.

Theorem : Describe Riemann's method of solving a linear second order hyperbolic equation .

Proof : Let

[ ] ( , )xy x yL u u au bu Cu f x y     ,                    ... (1.1)

be a linear, second order hyperbolic equation, which is in a canonical form, where a, b, c are functions
of x and y only .

Define another operator M such that

[ ] ( ) ( ) ,xy x yM u v av bv cv                       ... (1.2)

where v (x) is a function having continuous second order partial derivatives. The operator M is called
the adjoint operator of L.

Consider

   

     
[ ] [ ( ) ( ) ],

                       ( ) ( ) .

xy x y xy x y

xy xy x x y y

vL u uM v v u au bu cu u v av bv cv

Nu uv vau u av vbu u bv

        

     

We write

( ) ( )xy xy x y y xvu uv vu uv   ,

( ) ( )x x xvau avu u av  ,

( ) ( )y y yvbu bvu u bv  .

Therefore

       [ ] [ ] x y x yx
vL u uM v vu y uv avu bvu     ,

   y x yx
avu uv bvu vu   

[ ] [ ] x yvL u uM v U V    ,        ... (1.3)
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where

,yU avu uv 

xV bvu vu  .        ... (1.4)

Let  ( , )P    be a point at which the solution is

to be found. Let the characteristics through P intersect

the initial curve  at Q and R. We assume that  , ,x yu u u

are prescribed along  . Let C be a closed contour
PQRP bounding the region D. We now apply Green's
theorem to this region.

Now from equation ( 1.3) we have

   x y
D D

vLu uMv dxdy U V dxdy    .

Using Green's theorem we write

  ( )
D c

vLu uMv dxdy Udy Vdx   

  ( ) ) ( )
QR P

D Q R P

vLu uMv dxdy Udy Vdx Udy Vdx Udy Vdx                    ... (1.5)

Now along PQ, y  is constant 0dy  and along PR , x is constant and hence dx = 0.

Therefore, above equation becomes

( ) ( )
QR P

D Q R P

vLu uMv Udy Vdx Udy Vdx               ... (1.6)

Now consider

Q Q Q

x
P P P

Vdx bvudx vu dx     by equation ( 1.4)

          
Q R

Q
xP

P P

bvudx uv uv dx   

  ( )
Q Q

Q
xP

P P

Vdx uv u bv v dx   

y

x

Q

R F

D
 ,P  
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Substituting this in equation (1.6) we get

   ( ) ( ) ( )
QR P

xQ p
D Q R p

vLu uMv dxdy Udy Vdx Udy uv uv u bv v dx           ,

       
Q R

x yp Q
P P

uv uv u bv v dx u av v dy       

  ( )
R

Q D

Udy Vdx vLu uMv dxdy     .        ... (1.7)

The function    is quite arbitrary. We choose the function    such that it is the solution of the adjoint
equation M[v] = 0 satisfying the conditions

x b    on  y  , ( i.e along PQ)

y a    on  x  , (i.e along RP)

and 1    at x   and  y  .  ( i.e at point P)        ... (1.8)

Such a function  , , , ,x y   if it exists, is called a Riemann function or Green's function.

Hence equation (1.7) reduces to

 [ ] ( )  dxdy
R

p Q
Q D

u uv Udy Vdx vLu     ,

    ( ) ( )  dxdy
R

y xp Q
Q D

u uv a u u dy b u u dx vf           

 [ ] ( ) ( )  dxdy
R R

p y xQ
Q Q D

u uv uv ady bdx uv dy vu dx vf            ... (1.9)

Equation (1.9) finds u at p provided u and ux are prescribed along the curve  . However, when u and
uy are prescribed along   , then to find u at p we use the identify

( ) ( ) ( )
R R

x y
Q Q

d uv uv dx uv dy     , by chain rule

    ( ) ( )  dy
R

Q R x y
Q

uv uv uv dx uv     .      ... (1.10)
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Substituting this in ( 1.9) we get

     ( )  dy  dxdy
R R

x yp R
Q Q D

u uv uv ady bdx uv dx vu vf            ... (1.11)

On adding equations (1.9) and (1.11) we get

1
[ ] [ ] [ ] ( )

2

R

p Q R
Q D

u uv uv uv ady bdx vfdxdy          +

   1 1

2 2

R R

y x x y
Q Q

uv dy vu dx uv dx vu dy     .      ... (1.12)

By using any of the equations (1.9), (1.11) and (1.12) whichever is suitable, value of u at p can be
obtained provided values of  u, ux or uy are known along the curve    .

Example (1) : Show that for the linear hyperbolic equation

0,
4xy

u
u  

the Riemann function is

     0, , , ,v x y J x y     

where Jo is the Bessel function of the first kind of order zero.

Solution : The linear hyperbolic equation is given by

[ ] 0
4xy

u
L u u   .      ... (1.13)

Comparing this equation with the standard linear hyperbolic equation (1.1) we have

1
, ,

4
a o b o c   and ( , ) 0f x y  .

Hence the adjoint operator M is defined by

[ ]
4xy

v
M v v  .      ... (1.14)

We see that

M L

      L  is self adjoint.
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Therefore, we have

   
4 4xy xy
u vvL u uM v v u u v          

    ,

= xy xyvu uv ,

 = ( ) ( )x y y xvu uv ,

[ ] [ ] x yvL u uM v U V   .      ... (1.15)

We choose the Riemannian function in such a way that

[ ] 0M v  .

0xv  on y  ,

0yv  on x  ,

and 1v      at x  and  y  .

Let ( )v v  ,

where   is a single valued differentiable function of x and y .

Let   2 x y     ,

2 ( )x y    ,

1
( )

2x y 


   ,

and
1

( )
2y x 


  .

Hence, we have

1
( )

2xv v y 


  ,

1
( )

2yv v x 


  .

,   x x y yv v v v     ,

  2

1 1 1 1
( )

2xy y yv v y v v y     
  

 
      

 
,
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1 1

4xyv v v 
 

   
 

.  0
4xy

v
v 

  the equation  is transformed to the ordinary differential equation

1
0v v v 

   ,      ... (1.18)

where ( )v   satisfies ( ) 1v o  . Equation ( 1.18) is the Bessel equation of order zero, whose solution is

given by J0 ( ),

 ( )( )ov J x y     .

This is the required Riemann function .

Example (2) : Show that the Green's function for the equation  xyu u o    is

   0, ; , 2 ( )( )v x y J x y      ,

where J0  is the Bessel's function of first kind and of order zero .

Solution : Here the linear hyperbolic second order partial differential equation is given by

( ) 0xyL u u u   .      ... (1.19)

Comparing this equation with the standard canonical hyperbolic equation we get

0, 0, 1a b c    and  f ( x,y) =  0.

The adjoint operator M is given by

[ ] 0xyM v v v   .      ... (1.20)

We see that M = L, proving L is self adjoint.

Hence        xy xyvL u uM v v u u u v v     ,

  xy xyv u u v  ,

[ ] [ ] (  ) (  )y x x yvL u uM v u u u v    ,

x yU V  ,

where ,y xU uu V uv  .    ... ( 1.21)

We choose v  such that [ ] 0M v  ,

0xv    on   y  ,

0yv     on     x  ,      ... (1.22)
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and 1v       at     x  ,  y  .

Let ( ),v v 

where   is a single valued differentiable function of  x and y..

Let 2 4( )( )x y    

 
2

x y 


      and    
2

y x 


   .

Therefore

2
( )x xv v v y  


  

and
2

( )yv v x 


 

Thus 2

2 2 2
( ) ( )xy y yv v y v y v     

 
    

 2 3

4 4 2
( ) ( )( )xyv v x y v x y v     

 
        ,

1
xyv v v 

   .     ... ( 1.23)

Thus the equation

0xyv v  ,

is transformed to the equation

1
0v v v 

   .      ... (1.24)

This is  a  Bessel  equation of order zero, whose solution is given by

   0, ; ,v x y J  

   ( , ; , ) 2ov x y J x y      .      ... (1.25)

Example 3 : Show that

  
 3

2 ( )( ) 2
( , ; , )

x y xy x y
v x y
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is the Riemann function for the second order p.d.e

 2 0xy x yu u u
x y

  
 .

Hence obtain the solution of the equation in the form

 3 2 2 32 3 3 2v y y x yx x    ,

subject to 0u  ,    23xu x     on  y x .

Solution :  A linear second order hyperbolic equation is given by

 1
[ ] 0xy x yL u u u u

x y
   

 ,      ... (1.26)

where
2

,a
x y


   

2
,b

x y


  0,c    ( , ) 0f x y  .

The operator M is defined by

2 2
[ ] xy

x y

M v v v v
x y x y

   
          ,      ... (1.27)

such that

i) [ ] 0M v  ,

ii)
2

xv v
x y


 on y  ,      ... (1.28)

iii)
2

yv v
x y


 on x  ,

iv) and  1v       at x    y  .

Now to show

      
 3

2 2
, ; ,

x y xy x y
v x y

  
 

 

      


                ... ( 1.29)

in a Riemann's (Green's) function, we simply show that  v  defined in ( 1.29) must satisfy the equation
(1.27) and the  addition  ( 1.28). We find

 
 

 
 

  3 3

1
2 2 2x

x y
v y xy y     

   


         

 
,
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  2

3

1
2 2 2 2xv xy y xy x y x y  

 
           ,

 
 2

3
1 4 2 2 2xv xy y x   

 
      

 .      ... (1.30)

Next  
 3

1
4 4xyv x y

 
 



 
 3
4

xy

x y
v

 


 


.      ... (1.31)

Also  
 2

3

1
4 2 2 2yv xy x y   

 
            ... (1.32)

Now consider

 
 2

2 4
[ ] ( )xy x yM v v v v v

x y x y
   

       ... (1.33)

On using equations ( 1.30), (1.31), and ( 1.32) in ( 1.33) we get

 
     

    2 2
3 3

4 2 1
[ ] 8 2 2 4

x y
M v xy x y x y

x y
  

   

             +

   
    2 3

4
2 2x y xy x y

x y
  

 
       

  ,

 
     

 2

3 3

4 4
[ ]

x y
M v x y

x y   


  

  

[ ] 0M v  .

v   satisfies the condition ( i ) in  ( 1.28 ). Now along  y   equation (1.30 ) becomes

 
 

 2
3

1
4 2 2 2x y

V x x     
 

       .

 
 

 2
3

1
2 2 2x y

V x    
 

           ... (1.34)
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Also  
  3

2 1
4 2 4

y

v x x
x y 

    
 

 
          

          
   3

1
2 2 4x      

 
      



 
 2

3

2 1
2 2 2

y

v x
x y 

   
 

             .      ... (1.35)

Equations ( 1.34 ) and ( 1.35 ) show that the condition (ii) of equation (1.28) is satisfied.

Similarly condition (iii) can be verified .

Now consider at x    ,  y 

 
 

  3
| 2 2v
p

 
     

 


      

 ,

 
2 2

2

1
| 4 2v
p    

 
     

| 1v
p

This shows that the equations ( iv) of ( 1.28 ) also verified.

Hence

 
 

   3
, ; , 2 2

x y
v x y xy x y    

 


      



in the Riemann function of the given p.d.e. (1.26).  Now to find it solution , we consider

[ ] [ ] x yvL u uM v U V   ,

where
2

yU vu uv
x y

 
 ,     ... (1.36 )

and
2

xV vu vu
x y

 
     ... (1.37 )

It is given that along the curve : y x    that is along QR

u o   and   23xu x .     ... (1.38 )

Also along QR the Riemann's function is given by

y

x

 ,Q  

 ,P  

 ,R  

y = x
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2

3

2
2 2

x
v x 

 
   

 
 

2

3

4  x x
v



 


 


.      ... (1.39)

We know the value of  u at P in given by

       
R R

p y xQ
Q Q D

u uv uv ady bdx uv dy vu dx vfdxdy        ,

where in this carve ( , ) 0f x y  . Using ( 1.38 ) and ( 1.39 ) we get

[ ]
R

p x
Q

u vu dx  ,

        
 
 

2
2

3

4
3

R

Q

x x
x dx



 





 ,

         
 5 3

3

12
x x dx






 

 


 ,

         

6 4

3

12

6 4

x x





 

 
  

   
,

        
   6 6 4 4

3

1
2 3    

 
      ,

        
6 6 5 5

3

1
2 2 3 3    

 
      .

 
6 5 5 6 5 5

3

1
( , ) 2 2 2 2u          

 
        ,

 
     5 5 4 4

3

1
2 2        

 
        ,
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    5 5 4 4

3

1
2       

 
       .

 
 

  4 3 2 2 3 4 3 3
3

2 2 2 2 2 2
 

           
 


         ,

 
 

4 3 3 2 2 4
2

2 3 3 2 2
 

      
 


       ,

  2 2( , ) 2 2u          ,

  3 2 2 2 2 3, 2 2 2 2u                ,

  3 2 2 3, 2 3 3 2u           .

Thus u at any point ( x,y) is given by

3 2 2 3( , ) 2 3 3 2u x y y y x x y x    .

Note : We see that the solution of the Cauchy problem at a point ( , )  depends only on the Cauchy

data on the curve   . The knowledge of the Riemann's -Green function therefore enables us to solve
the p.d.e with the carve data .

Harnack's Theorem :

Let us prove the following lemma first.

Lemma : Let D be a bounded domain, bounded by a smooth closed curve B. Let   ,nu x y be a

sequence of functions each of which is continuous on D DUB  and harmonic in D. If   ,nu x y

converges  uniformly on B, then nu  converges uniformly on D  .

Proof : Let   nu  be a sequence of functions, converges uniformly on the boundary B. Then by

definition, for given o  we can always find N such that

( , ) ( , )m nu x y u x y  on B    , .m n N 

Since each of  ( , )nu x y   is harmonic in D.

2 0nu  in D,

and 2 0mu   in D.

2 ( ) 0m nu u   in D,
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m nu u   is harmonic in D.

By the Maximum and minimum principle, we have

   , ,m nu x y u x y      on D    ,m n N   .

Hence the result.

Harnnack ' Theorem :

Let D be a bounded domain, bounded by a closed smooth curve B. Let  ,nu x y  be a

sequence of functions, each of which continuous on D  and harmonic in D. If  ,nu x y  converges

uniformly on B, then  nu  converges an D   to a limit function which is continuous on D    and harmonic

in D.

Proof : Let { }nu  be a sequence of functions , each of which continuous on D DUB   and harmonic

in D.

 2 , 0nu x y    in D      ... (1.40)

Let the sequence { }nu   converge uniformly on the boundary B.

 for given 0  , we can find a number N such that

   , ,m nu x y u x y  on B ,m n N       ... (1.41)

Since by (1.40) each of   ,nu x y    is harmonic in D.

 m nu u    is harmonic in D.

Then by maximum and minimum principle,

we have    , ,m nu x y u x y  on  m,n N D        ... (1.42)

i.e. the sequence { }nu  converges uniformly on D .  We know that "On a closed bounded set, a

uniformly convergent sequence of continuous functions converges to a function which is continuous on
that set ."

Since  ,nu x y  converges uniformly on  D  ,  let it converges to  ,u x y  . Then  ,u x y is also

continuous on   D  .

We now show that  ,u x y  is hammonic in D.

Let  ,x y D . Since D is open, therefore   a circle with centre at  ,x y  and radius 'a'

which is contained in D, whose equations is
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   2 2 2X x Y y a    ,

where , cosX x a   , sinY y a      is any point on the circle.

Let ( ) ( cos , sin )n nu u x a y a     .

By equation (1.40),  ,nu x y  is harmonic inside the circle and continuous on the circle, then we know

 ,nu x y  is given by Possion integral formula

 
 22

2
0

11
, ( )

2 1 2 cos( )
n nu n u d



  
  




  
9

9 9
.

We have  r
a9 ,

and    2 2 2 2x n y r a      .

Hence

( , ) lim ( , )n
x

u n u n 


 As ( , )nu x y converges to ( , )u x y

 22

2
0

11
lim ( )

2 1 2 cos( )
n

x
u d



 
  




  
9

9 9
,

= 
 22

2
0

11
lim ( )

2 1 2 cos( )
n

x
u d



 
   



  
9

9 9
.

Since the sequence  ,nu x y  converges uniformly to  ( , )u x y   therefore limit and the integral have

been interchanged

 22

2
0

11
( , ) ( )

2 1 2 cos( )
u n u d



  
  




  
9

9 9

Hence u  is harmonic in the region 2 2 2( ) ( )x y n a     for all points ( , )n  . Since  ( , )x y  is an

arbitrary point of D.

 u is harmonic in  D.

This proves the theorem.
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Exercise:

1. Show that

2 2 2

2

( )
( , ; , )

2

x y
v x y

x

 
 

  


is the Green's function for the second order partial differential equation

2
0xx yy xu u u

x
   .
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