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Preface
Large number of students appears for M. Sc. examinations externally every year.

In view of this, Shivaji University has introduced the distance education mode for
external students from the year 2008-09 and entrust the task to us to prepare the Self
Instructional Material (SIM) for aspirants. An objective of the SIM is to provide students
the material on the subject from which they can prepare for examination on their own
without the help of a tutor. Today we are extremely happy to present the book on
"Operations Research" for M. Sc. Part I students as a SIM prepared by well devoted
experts. We hope that the exposition of the material in the book will meet the needs
of all the students.

In the context of tremendous pace at which engineering and technology is
advancing, the scientist and engineer who has to interpret science to practical end has
the obligation to keep himself alert to understand the implications and complexities of
science and engineering before he can utilize them to the benefits of his fellowmen.
The subject matter covered in this book brings better awareness in planning, scheduling,
cost and job control to the efficient and economical conduct of industrial projects for
which the optimum use of men, money, machines and materials and their management
at all levels is necessary.

The main aim of this book is to make clear the fundamentals of operations
research and its techniques used in different fields of interests. This book covers
topics like Convex Sets, Theory of Linear Programming problems, Duality Theorem,
Information Theory.

An attempt has been made to make the presentation of the various units
comprehensive, rigorous and yet simple. Numerous examples have been solved for
the use of students. Although the book is aimed to M. Sc. Distance Education
Students, even SET/NET aspirant students and students of management and
engineering would find it useful.

I owe a deep sense of gratitude to the Vice Chancellor Prof. (Dr.) D. T. Shirke who
has given impetus to go ahead with ambitious project like the present one. I thank Mr.
Dayanand Gawade, Assistant Professor, Centre for Distance & Online Education for
his continuous help to complete this book. I also thank Dr. D. K. More, Director, Center
for Distance and Online Education, Shivaji University, Kolhapur for his help and keen

interests in the completion of SIM.

Prof. S. H. Thakar

Department of Mathematics,

Shivaji University, Kolhapur-416004.
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Each Unit begins with the section Objectives -

Objectives are directive and indicative of :

1. What has been presented in the Unit and

2. What is expected from you

3. What you are expected to know pertaining to the specific Unit
once you have completed working on the Unit.

The self check exercises with possible answers will help you to
understand the Unit in the right perspective. Go through the possible
answer only after you write your answers. These exercises are not to
be submitted to us for evaluation. They have been provided to you as
Study Tools to help keep you in the right track as you study the Unit.

(viii)
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1.0 INTRODUCTION

The roots of operations research can be found when early attempts were made to use a
scientific approach in technical problems and in the management of organisations at the time of
world war II. Britian had very limited military resources and therefore there was an urgent need
to allocate resources to the various military operations and to the activities of each operation in
an effective manner. Therefore the british military executives and managers called upon a team
of scientists to apply a scientific method to study the technical problems related to air and land
defence of the country. As the team was dealing with (military) operations the work of this team
of scientists was named as OR in Britian.

Their efforts were instrumental in winning the air battle of Britian, and of the North Attantic
etc.

The success of this team of scientists in Britian encouraged United States, Canada and
France to start with such efforts. The work of this team was given various names in United
States such as Operational analysis, operations evaluation operations research etc.

The apparent success of OR in the military attracted the attention of industrial
management in this new field. In this way OR began to creep into industry and many governmental
organisations.

After the war, many scientists were motivated to pursue research relevant in this new
branch. The first technique in this field called the simplex method for solving linear programming
problem was developed by American mathematician, George Dantzing in 1947. Since then
many techniques such as quadratic programming, dynamical programming, inventory theory,
queing theory etc. are developed. Thus the impact of OR can be experienced in almost all walks
of life.

Definition of OR

We give few definitions of OR.

1) OR is the application of the theories of probability, linear programming, queuing
theory etc. to the problems of war, industry, agriculture and many organisation.

2) OR is the art of winning war without actually fighting.

3) OR is the art of giving bad answers to the problems where otherwise the worse
answers are given. (T. L. Saathy 58)

CONVEX SETS AND
FUNCTIONS

UNIT

01
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Use of OR

In general we can say that whenever there is a problem there is OR for help. In addition
to the military operations research is widely used in many organisations. Now we discuss the
scope of OR in various fields.

1) Defence : There is a necessity to formulate optimum strategies that may give
maximum benefit.  OR helps the military executives to select the best course of
action to win the battle.

2) Industry : The company executives require the use of OR for the following :

1) Production department to minimize the cost  of production.

2) Marketing department to maximize the amount sold and to minimize the
cost of sales.

3) Finance department to minimize the capital required to maintain any level
of business.

The various departments come in conflict with each other as the policy of one
department is against the policy of the other. This difficulty is solved by the
application of OR techniques. Thus OR has great scope in industry. Now a days
almost all big industries in India make use of OR techniques.

3) L. I. C. : OR techniques are applicable to enable L. I. C. officers to decide the
premium rates of various policies in the best interest of the corporation.

4) Agriculture : With the increase of population and resulting shortage of food there
is a need to increase agriculture output for a country. But there are many problems
faced by the agriculture department of a country. e. g. (i) climate conditions (ii)
Problem of optimal distribution of water from the resources etc.

Thus there is a need of the policy under the given restrictions for which OR
techniques are useful to determine the best policies.

5) Planning : Careful planning plays an important role in the economic development
of many organisations for which OR techniques are fruitful for such planning.

CONVEX SETS AND THEIR PROPERTIES

1.1 Definition I (Convex Set) Let R x x x x x R i nn
n i   1 2 1 2, ,...., , , ,...,b go t

A subset S Rn , is said to be convex, if for any two points x x1 2,  in S the line segment

joining the points x1 and x2  is also contained in S.

In other words, a subset S Rn  is convex, if and only if

x x S x x S1 2 1 21 0 1, ;        b g

Some convex and non - convex sets in R2  are given below..
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Convex Sets

Non - convex Sets

Example 1.1

Show that the set S x x x x  1 2 1
2

2
23 2 6, :b gn s  is convex.

Solution :

Let x y S,   where x x x 1 2,b g  and y y y 1 2,b g .

Since   2 2
1 2x,  y S,  3x 2x 6  and  2 2

1 23y 2y 6 .

The line segment joining x  and y  is the set

u u x y: ,      1 0 1b gm r

For some  ,0 1  , let u u u 1 2,b g be a point of this set, so that

u x y1 1 11   b g , and u x y2 2 21   b g
Now,

3 2 3 1 2 11
2

2
2

1 1

2

2 2

2
u u x y x y         b g b g

                      
22 2 2 2 2

1 2 1 2 1 1 2 23 x 2 x 1 3 y 2 y 2 1 3 x y 2 x y

                226 6 1 12 1 6

Since   2
1 1x y 0 ,   2 2

1 1 1 1
1

x y x y
2

 similarly   2 2
2 2 2 2

1
x y x y

2
 and

 1 1 2 23x y 2x y 6  and we have

 2 2
1 23u 2u 6  and hence u u u S 1 2,b g .

Hence S is a convex set.
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Example 1.2

In Rn  consider,,

S x x1 1 m r  where x x x xn   1
2

2
2 2 1 2

...
/d i

Take x x S1 2, 

Then x x1 21 1 ,  and for 0 1  ,

   x x x x1 2 1 21 1    ( ) b g

    x x1 21 1( )

     x x S S1 2 1 11( )  is a convex set.

Example 1.3

Show that C x x x x R   1 2 1 2
22 3 7,b go t  is convex set.

Solution :

Let        x x x 1 2,b g  and y y y C 1 2,b g  and let o  1.

Let       w x y w w    1 1 2b g b g,

     w x x y y 1 2 1 21, ,b g b gb g

         w w x y x y1 2 1 1 2 21 1, ,b g b g b gc h   

      w x y w x y1 1 1 2 2 21 1   b g b g,

We have 2 3 2 1 3 11 2 1 1 2 2w w x y x y         b gc h b gc h

      2 3 2 3 1 2 31 2 1 2 1 2w w x x y y b g b gb g
Since x y C x x y y, , ,    2 3 7 2 3 71 2 1 2

Hence      2 3 7 1 7 71 2w w     . .b g

      w w w x y C1 2 1, ,b g b g   , 0 1  .

Hence C is a convex set.
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Example 1.4

Show that S x x x x x x R    1 2 3 1 2 3
32 4, ,b go t  is a convex set.

Solution :

Let x x x x 1 2 3, ,b g  and y y y y 1 2 3, ,b g  be any two points in S. Then by hypothesis,

2 41 2 3x x x   , 2 41 2 3y y y        .......... (i)

Let        w w w w x y   1 2 3 1, ,b g b g   where 0 1 

      w x x x y y y 1 2 3 1 2 31, , , ,b g b gb g

        w x x x y y y     1 2 3 1 2 31 1 1, , , ,b g b g b g b gc h

          w x y x y x y     1 1 2 2 3 31 1 1b g b g b gc h, ,

                       w x y w x y w x y1 1 1 2 2 2 3 3 31 1 1     b g b g b g, ,

We have,

           2 2 1 1 11 2 3 1 1 2 2 3 3w w w x y x y x y               b gc h b gc h b gc h

                  2 1 21 2 3 1 2 3x x x y y yb g b gb g

            .4 1 4 4    .......... by (1)

                   w x y S 1b g  for all x y S, ,  and for all   such that 0 1 

 S  is a convex set.

Example 1.5

Show that in R S x x x x x x x3
1 2 3

2
1
2

2
2

3
2 1, , ,    b g{ }  is a convex set.

Solution :

Let x x x x 1 2 3, ,b g  and y y y y S 1 2 3, ,b g .

Then x x x x
2

1
2

2
2

3
2 1     and y y y y1

2
2
2

3
2 2

1         .......... (i)

Let 0 1   and z x y   1b g  where z z z z 1 2 3, ,b g

Then z x x x y y y   1 2 3 1 2 31, , , ,b g b gb g

     z x x x y y y     1 2 3 1 2 31 1 1, , , ,b g b g b g b gc h
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       z x y x y x y     1 1 2 2 3 31 1 1b g b g b gc h, ,

         z x y x y x y
2

1 1

2

2 2

2

3 3

2
1 1 1     b g b gc h b gc h

           z x x x y y y x y x y x y
2 2

1
2

2
2

3
2 2

1
2

2
2

3
2

1 1 2 2 3 31 2 1   b g b gb g (ii)

For i = 1, 2, 3,  since  2i ix y 0  ,  2 2
i i i i

1
x y x y

2
   and therefore

2 2 2 2 2 2
1 1 2 2 3 3 1 2 3 1 2 3

1
x y x y x y x x x y y y

2
         

       1
1 1 1

2
  

Thus, 1 1 2 2 3 3x y x y x y 1   ............. (iii)

Hence from (i), (ii) and (iii) we have

z
2 2 2 2

1 2 1 11 1 1             b g b g b g.

     x y z S1b g  for all x y S,   and for all   such that 0 1  .

 S  is a convex set.

Theorem 1.1

The intersection of any finite number of convex sets is a convex set.

Proof

Let S S Sn1 2, ,...,  be a finite number of convex sets, and let S S S Sn   1 2 ... .

Let x y S,   and 0 1 

Then x y Si,   for each i = 1, 2, ..., n where each Si  is a convex set. Then

 x y Si  1b g  for each i = 1, 2,..., n

       x y S S S Sn1 2b g , ...

 S  is a convex set.

Theorem 1.2

Let S and T be convex sets in Rn . Then  S T  is also convex for any  ,  in R.

Proof

Let x y S T,   
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Then 1 1x u v   and 2 2y u v  , where 1 2u ,u S  and 1 2v ,v T

For any   with 0 1  , we have

       1 1 2 2x 1 y u v 1 u v         

       1 2 1 2x 1 y u 1 u v 1 v          

1 2u ,u S , S is convex.

 
1 2  u 1 u S     

Similarly,    
1 2v 1 v T    

 x 1 y S T      ,

Hence  S T  is convex.

Definition 1.2

A convex combination of a finite number of points x x xn1 2, ,...,  is a point

x x x xn n     1 1 2 2 ...

where   1 2 0, ,..., n   and   1 2 1   ... n

Remark

From this definition it follows that a subset K R n  is convex, if convex combination of

any two points of K belongs to K.

Theorem 1.3

For a set K to be convex it is necessary and sufficient that every convex combination of
points in K belongs to K.

Proof

Let every convex combination of points in K belong to K.

Then every convex combination of two points in K belongs to K.

Therefore K is convex. Hence the condition is sufficient.

Converly let K be convex.

To prove that the condition is necessary we shall follow the method of induction. We
shall first prove that if the condition is true for r points it is also true for r + 1 points.

Let  i i
i

r

x K

 

1

 where K is convex and x K i ri i i
i

r

   

, , , , ,..., 1 0 1 2

1
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Consider 
r 1 r 1

i i i i i
i 1 i 1

x ,x K, 1, 0
 

 
       , i r 1 2 1, ,...,

Here two cases arise.

i) r  1 0

ii) r  1 0

Case (I)

    r i i
i

r

i i
i

r

x x K






    1
1

1

1

0

Since by hypothesis  i  0  and  i
i

r



 1

1
.

Case (II)

     

r

i ir 1
i 1

r 1 i 1 r 1 r 1 r 1
i 1 r 1

x

0 x 1 x
1




   
 



      
 




        r 1 r 1 r 11 y x     

where        
 

r

i i r r
i 1 i

i i i
r 1 r 1i 1 i 1

x

y  x x
1 1


  




   
   


    and   

r 1

i
i 1

1



 

and        

r

ir
i 1 r 1

i
r 1 r 1i 1

1
1

1 1
 

 


 

   
   




Thus i 0  , 
r

i
i 1

1

    and therefore y K .

Hence    

r 1 r

i i i r 1 r 1 r 1 r 1 r
i 1 i 1

x y x 1 y x K


   
 

 
           

 
   becasue the right hand side

is the convex linear combination of two points y  and xr 1  in K which by hypothesis is convex.
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This proves the theorem for r + 1 points. It is true for r = 2 by definition. Hence theorem
is proved.

Definition 1.3

The convex hull of a set S is the intersection of all convex sets containing S. We shall
denote by [S] the convex hull of S.

Remark

Every set has a convex hull , because Rn  is a convex set and so there is always at least

one convex set Rn  of which every set is a subset. Also a convex set is its own convex hull.

Theorem 1.4

The convex hull of S is the set of all finite convex combinations of points in S.

Proof

Let K be the set of all finite convex combination of the points in S.

Then by theorem 1.3, K is a convex set containing S.

Hence S K . Let K1  be any convex set which contains S. Then K1  contains all convex

combinations of points in K1 . Hence it contains all convex combinations of points in S.

Hence K K 1 .

Thus K is a subset of all convex sets containing S which shows that K is the intersection
of all convex sets containing S. Hence K = [S].

i.e. K is the convex hull of S.

Theorem 1.5

The set of all convex combinations of a finite number of points x x xm1 2, ,...,  is a convex

set.

Proof

Let S x x xi i i i
i

m

i

m

   
R
S|
T|

U
V|
W|

  , ,0 1
11

To show that S is a convex set take x'  and x' '  in S, so that x xi i
i

m

' '



1

 where  i
' 0

and 'i
i

m



 1

1

 and x xi i
i

m

' ' ' '



1

 where ' 'i 0  and ' 'i
i

m



 1

1

.

Consider the vector         x x x      ' ( ) ' ',1 0 1
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      x x xi i i i
i

m

i

m

  

   ( ) ' '1

11

      x xi i i
i

m

  

    ' ( ) ' '1

1

We can write x xi i
i

m





1

where     i i i  ' ( ) ' '1

Since 0 1 0 0     , ' , ' 'i i  it follows that  i i m  0 1 2, ,..., . Also

               i i i
i

m

i

m

  

 ' ( ) ' '1

11

l q

              

     ' ( ) ' ' . ( )i i
i

m

i

m

1 1 1 1 1
11

Hence x  is a convex combination of x x x x Sm1 2, ,...,   .

Thus for each pair of points x'  and x' '  in S the line segment joining them is contained in
S. Hence S is a convex set.

Theorem 1.6

Every point of [S] can be expressed as a convex combination of at most (n + 1) points of

S Rn .

Proof

By definition of convex hull and theorem 1.1, [S] is a convex set.

Let x S i mi  , , ,...,1 2 .

x xi i i i
i

m

i

m

  

  , ,1 0

11
,  x S[ ]

Now x S [ ]  can be expressed as a convex combination of points in S follows from the

above theorem (1.3). What we have to prove now is that for any given x  we can always find

m n 1.

Let us suppose if possible that there is an x S  for which m > n + 1. Since the space

Rn  is n - dimensional, not more than n vectors in Rn  can be linearly independent. Consider the

vectors, x x x x x xm m m m1 2 1  , ,..., .
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Since m - 1 > n these (m - 1) vectors cannot be linearly independent.

Hence it is possible to find  i i m, , ,..., 1 2 1 not all zero such that

           i i m
i

m

x x 




 b g
1

1

0

or  i i i
i

m

m
i

m

x x
F
HG

I
KJ











1

1

1

1

0

or      i i
i

m

x 

 0

1

 where  m i
i

m

 





1

1

or  i
i

m



 0

1

Let   i i i i m  , , ,...,1 2 . Since  i  0  we can choose   such that  i  0  with  i  0

for at least one i. This will happen if 




RST

UVWi
mim i

i

 over those values of i for which  i 0  or



i

i

i


RST

UVW
max  over i for which  i 0 .

Also    i i i
i

m

i

m

i

m

  

 1

111

 i i

mm

 
L
N
M

O
Q
P 1 0

11

&

Now           i i i i i i
i

m

i

m

i

m

x x x 



111

         

 i i
i

m

x x
1

(Since  i i
i

m

x 

 0

1

)

Since at least one  i  0  it follows that x  is a convex linear conbination of at most

(m - 1) points. If m - 1 > n + 1 we can again apply the above argument and express x  as a
convex combination of m - 2 points, and so on till m - k = n + 1, k > 0. This proves the theorem.
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Definition 1.4

A point x of a convex set K is an extreme point or vertex of K if it is not possible to find two

points x x1 2,  in K such that

x x x    1 0 11 2  b g ,

A point of K which is not a vertex of K is called an internal point of K.

Theorem 1.7

The set of all internal points of a convex set K is again a convex set.

Proof

Let V be the set of vertices of K. Then K - V is the set of internal points.

Let x x K V1 2,   . Then x x K1 2,   and x x V1 2, 

Hence x x x K     ( ) ,1 0 11 2   , is by definition not a vertex of K, but x K .

i. e. x K V  .

Hence K - V is a convex set.

Definition 1.5

The set of all convex combinations of a finite number of points xi , i = 1, 2, ..., m is the

convex polynedron spanned by these points.

Theorem 1.8

The convex polyhedron is a convex set.

Proof

Let y1  and y2  be any two points in the polyhedron spanned by x i mi, , ,...,1 2

Then by definition

     y xi i
i

m

i i
i

m

1
1 1

1 0  
 
   , ,

    y xi i
i

m

i i
i

m

2
1 1

1 0  
 
   , ,

Now let,       y y y    1 0 11 2  b g ,

   
m m

i i i i
i 1 i 1

y 1 x x
 

      
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   y x xi i
i

m

i i i
i

m

   
 
 ( )1

1 1

    ,

where          i i i  ( )1

Since     i i i
i

m

i

m

i

m

   

 1 1

111

b g , y  is also in the polyhedron. Hence polyhedron is a

convex set.

Theorem 1.9

The set of vertices of a convex polyhedron is a subset of its spanning points.

Proof

Let W be the set of points spanning the convex polyhedron, and V be the set of its

vertices. If possible let y V  but y W . Since y  is in the poly hedron by definition it is a convex

linear combination of points of W all of which are other than y  (by assumption). Hence by

definition y  is not a vertex which is a contradiction. Therefore y W  or V W .

Remark

It is obvious that there can be spanning points which are not vertices. For example

consider the points A, B, C, D in R2  such that D is in the triangle formed by the vertices A, B, C.
The four points span the triangle ABC but D is not a vertex.

HYPERPLANES AND HALF SPACES

Definition 1.5

Let x R Cn , 0b g  a constant row n - vector and R . Then we define,

i) A hyperplane as x c xm r

ii) A closed half - space as x c xm r  or  x c x

iii) An open half space as x c xm r  or   x c x 

Definition 1.6

A set X Rn  is said to be an nbd  of a point x Rn
0   if,

x x x X  0m r  where x x x x x x xn n    1 2 1
2

2
2 2 1 2

, ,..., ...
/b g d i
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Definition 1.7

The .nbd  of x  in Rn   is defined as the set of all points y  in Rn  such that y x 

(Where   0, R )

Definition 1.8

If Rn  the point x  is a boundry point of the set S if every   - neighbourhood of x  contains
some points which are in S and some points which are not in S.

For example in

S x x1 1 m r , S x x2 1 m r , x R 2  the points on the circumference of the circle

x x1
2

2
2 1   are the boundry points of S1  and S2 . S1  contains all its boundry points while S2

contains none of them.

Definition 1.9

A set is said to be closed if it contains all its boundry points and is said to be open if its
complement is closed.

Definition 1.10

A set S is said to be bounded from below if  there exists y  in Rn  with each component

finite such that for every x S , y x . Note y x y x j nj j: , , ,...,   1 2 .

Definition 1.11

A set S is bounded if there exists a finite real number M0  such that for all x  in S,

x M .

Corollary 1.10

A hyperplane is a closed set.

Proof

Let x c x0m r be a hyperplane.

Let x1 be the boundry point of the hyperplane. Suppose it is not a point of the hyper

plane.

Then either c x1 0  or c x1 0 .

Suppose c x1 0  and let c x1 1 0  

Now c x c x x x  1 1

        c x c x c x x c x c x c x c x x1 1 1 1b g b g
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   c x c x c x x1 1b g

   c x c x x1 1b g c x1 1 1  

   c x c x x1 1

Consider the nbd  of x1, x x x 1m r  where  is an orbitary positive number..

Let  
 0 1

2 c

Hence if x  is in the nbd  of x1 we get c x 






   

1
0 1 0 1

02 2

b g

This shows that x  is in the half space c x0 . Hence there exits a nbd. of x1 which

contains no points of the hyperplane c x 0 . Hence x1 is not a boundry point of the hyperplane.

This is a contradiction. Thus there is no boundry point of the hyper plane which is not in the
hyperplane. Hence the hyperplane is a closed set.

Definition 1.12

In Rn , every hyper plane x c x/ l q  determines two open half spaces and two closed

half spaces. The open half spaces are :

 1X x c x   and  2X x c x 

The closed half - spaces are

 3X x c x   and  4X x c x  .

Corollery 1.11

A hyperplane is a convex set.

Proof

Let X x c x m r  be a hyperplane and let x x1 2,  be any two points of this hyperplane.

Then c x1   and c x2  . Now if 0 1  , we have

c x x c x c x   1 2 1 21 1    ( ) b g b g

       c x c x1 21b g b g

    =     1b g

Therefore the point  x x1 21 b g  for 0 1   is in the hyperplane. Hence the hyperplane

is a convex set.
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Corollary 1.12

The closed half spaces H x c x1  m r  and H x c x2  m r  are convex sets.

Proof

Let x x1 2,  be any two points of H1. Then c x1   and c x2  . If 0 1  .

c x x c x c x   1 2 1 21 1    ( ) ( ) ( )

          1 1( )

    x x H1 2 11( ) . Hence H1 is a convex set. Similarly H2  is a convex set.

Corollary 1.13

The open half spaces H x c x1  m r  and H x c x2  m r  are convex sets.

Proof

Let x x1 2,  be any two points of H1.

Then c x c x1 2  ,

If 0 1  , we have

c x x c x c x   1 2 1 21 1    ( ) ( )b g
          ( )1

      x x H x x H1 2 1 1 2 11( ) , ,

H1  is a convex set.

Similarly H2 is a convex set.

SUPPORTING AND SEPARATING HYPERPLANES

Definition 1.13 (Supporting hyperplane)

Let S Rn  be any closed convex set and w S  be a boundary point. Then a hyperplane

c x z  is called a supporting hyperplane of S at w , if

i) c w z   and

ii) S H   or S H 

where H x c x z  :l q  and H x c x z  :l q
Remarks

1) The supporting hyperplane need not be unique.

2) S may intersect the supporting hyperplane in more than one boundary points.
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Theorem 1.14

Let S be a closed convex set. Then S has extreme points in every supporting hyperplane.

Proof

Let w  be a boundary point of a closed convex set S.

Let c x z  be a supporting hyperplane at w S . Let B S x c x z  m r .

Then B is a closed convex set and B  for w B .

We claim that every extreme point of B is also an extreme point of S.

Let us assume to the contrary that an extreme point b  of B, is not an extreme point of

S. Then there exist x x S1 2,  , such that

           b x x   1 21b g , 0 1 

Therefore     c b c x c x   1 21b g .      .......... (i)

Since c x z  is a supporting hyperplane at w  and 1 2x ,x S

c x z1   and c x z2 

or c x z1   and c x z2       .......... (ii)

From (i) and (ii)

c b z z z    1b g or c b z z z    1b g

Therefore b  is not a point of B.

This is a contradiction.

Therefore every extreme point of B is also an extreme point of S.

Definition 1.14 (Separating hyperplane)

Let S and T be two non-empty subsets of Rn. The hyperplane H is said to separate S and
T if H is contained in one of the closed half spaces generated by H and T is contained in the
other closed half space. The hyperplane H is called separating hyperplane.

Remark :

A hyperplane H strictly separates S and T if S is contained in one of the open half spaces
generated by H and T is contained in the other open half space.
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Theorem 1.15 (Separating Hyperplane)

Let S Rn  be a closed convex set. Then for any point y  not is S, there is a hyperplane

containing y  such that S is contained in one of the open half spaces determined by the

hyperplane.

Proof

w

S

y

cx = z 

x1

x2

We are given that y S .

Since S is a closed set, there exist w S , such that,

w y x y
x S

  


min i.e.     w y x y ,w S,x S      .......... (i)

Observe that  w y 0   (S is closed and y S )

Let u  be any point of S. Since S is a convex set

 u w S  1b g  for 0 1       .......... (ii)

From (i) and (ii)

 u w y w y    ( )1

 w y u w w y    b g b g
2 2

  2 2 2 2
2u w w y w y u w w y       b gb g

  2 2
2 0u w w y u w    b g b g

    2
u w 2 w y u w 0       .
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Letting 0 , and c w y b g ; we get

w y u w  b gb g 0  or c u w b g 0   i.e.  c u c w  

or c u c y c w c y      

or c u y c w y c   b g b g 2

Hence c u c y .

Putting c y z , we get c u z .

Thus y  lies on the hyperplane c x z  and for all u S , c u z .

This completes the proof.

CONVEX FUNCTIONS

Definition 1.14 (Convex Functions)

Let S be a non - empty convex subset of Rn . A function f xb g  on S is said to be convex if

for any two vectors x1 and x2  in S.

f x x f x f x   1 2 1 21 1    b g b g b g b g 0 1 

Definition 1.15 (Strictly convex function)

Let S be a non empty convex subset of Rn . A function f (x) on S is said to be strictly

convex if for any two different vectors x1 and x2  is S.

f x x f x f x   1 2 1 21 1    b g b g b g b g 0 1 

o x

y

y = f (x)

Fig A : Strictly Convex Function

S

o x

y
y = f (x)

Fig B : Strictly Concave Function

S

It follows from the above two definitions that every strictly convex function is also convex.
The graph of a strictly convex function has been illustrated in Fig. A.
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Definition 1.16 [Concave (strictly concave) function]

A function f xb g  on a non - empty subset S of Rn is said to be concave (strictly concave)

if  f xb g  is convex (strictly convex).

Clearly, every strictly concave function is also concave. The graph of a strictly concave
function has been illustrated in Fig. B.

o x

y

y = f (x)

Fig C : Both Convex and Concave Functions

S

o x

y

y = f (x)

Fig D 

X0

It is possible for a function to be both convex and concave. For example, f x xb g   is

such a function (Fig. C). The function in Fig. D is strictly convex for x x 0  but not strictly convex

for x x 0 .

The following results are the immediate consequences of the above definitions :

i) A linear function z c x x Rn ,  is a convex (concave) function but not strictly

convex ( concave).

ii) The sum of convex (concave) functions is convex (concave) and if at least one
of the functions is strictly convex (concave) then so is their sum.

Note : In what follows we shall deal with convex functions only. However, all the results
remain valid if we deal with concave functions.

LOCAL AND GLOBAL EXTREMA

In the problems of constrained optimization, we are interested in determining a vector x

that minimises the function f ( x ) [or maximises - f( x )] subject to the ‘constraints’

g x i mi ( ) , ,..., 0 1 2b g . The set of the vectors x  satisfying these constraints is usually called the

‘feasible region’.
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Definition 1.17 (Global minima)

A global minimum of the function f ( x ) is said to be attained at x0  if f x f x0b g ( )  for all x

in the feasible region.

Example : Function f x x( ) 1
2 , subject to the constraint x1 0 , has a minimum at x1 0 .

Definition 1.18 (Local minima)

A local minimum f x0b g  of function f xb g  is said to be attained at x0  if there exists a

positive   such thai f x f x0b g ( )  for all x  in the feasible region which also satisfy the condition

x x0    .

Example :

The function f x x x( ) 1
2

1
3  subject to the constraint x1 0 , has a local minimum at x1 0 .

Note that f xb g  has no global minimum at all.

Note : The word extremum is used to indicate either maximum or minimum.

Theorem 1.16

Let f ( x ) be a convex function on a convex set S. If f xb g  has a local minimum on S, then

this local minimum is also a global minimum on S.

Proof :

Let f xb g  have a local minimum f x0b g  at x0  which is not a global minimum on S. Then,

there exists at least one x1 in S x x1 0b g  such that f x f x1 0b g b g . Since f xb g  is a convex function

on S, we have

f x x f x f x   1 0 1 01 1    b g b g b g b g
Also    f x f x f x f x f x1 0 0 0 01 1b g b g b g b g b g b g b g     

Thus f x x f x 1 0 01  b g b g
Now, for any  0 , we observe that

   x x x x x1 0 0 1 01     b g ,
1 0

if  
x x

    

Thus  x x1 01 b g  will give a smaller value for f xb g  in the   - neighbourhood of x0 ,

whenever 
     1 0

min 1,
x x . This contradicts the fact that f xb g   takes on a local minimum at

x0 . Hence x0  is a global minimal point.
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Corollary 1.17

If a function f(x) has a local minimum on a convex set S on which it is strictly convex,
then this local minimum is also a global minimum on that set. This global minimum is attained at
a single point.

Theorem 1.18

Let f xb g  be a convex function on a convex set S. Then the set of points in S at which

f xb g  takes on its global minimum, is a convex set.

Proof :

The result is obvious if the global - minimum is attained at just a single point. Let us

assume that the global minimum is attained at two different points x1 and x2  of S. Then

f x f x1 2b g b g .

Now, since f xb g  is convex,

f x x f x f x f x   2 1 2 1 21 1     b g b g b g b g b g 0 1 

 f x x f x f x 2 1 2 11   b g b g ( )

 f x x f x 2 1 11  ( ) ( )

Thus every point x x x   2 11b g  corresponds to a global minima. The set of all such

x  is, obviously, a convex set.

Corollary 1.19

If the global minimum is attainable at two different points of S, then it is attainable at an
infinite number of points of S.

Theorem 1.20

Let f xb g  be differentiable on its domain. If f xb g  is defined on an open convex set S, then

f xb g  is convex if

f x f x x x f x
T

( ) ( ) ( )2 1 2 1 1   b g
for all x x S1 2,  .

Proof :

We shall prove that if

f x f x x x f x
T

( )2 1 2 1 1   b g b g b g  then f xb g  is convex.



23

Since x x S x x x1 2 0 2 11, ,    b g  for 0 1   implies that x S0  .

Using the above condition for x1 and x0 , we have

f x f x x x f x
T

1 0 1 0 0b g b g b g b g         .......... (i)

Similarly, for x2  and x0 ,

f x f x x x f x
T

2 0 2 0 0b g b g b g b g         .......... (ii)

Multiplying (ii) by   and (i) by 1b g and then adding, we get

   f x f x f x x x f x x f xT T T
2 1 0 2 1 0 0 01 1b g b g b g b g b g b g b g        

       T T
0 0 0 0 0 0f x x f x x f x f x     

Using the definition of 0x , this yields    f x f x f x x( ) ( )2 1 2 11 1    b g b g ,

which implies that  f x  is convex.

   EXERCISES  

1) Define : Convex set, hyperplane, extreme point, convex combination of points.

2) a) Prove that a hyperplane is a convex set.

b) Show that c x x x x R   1 2 1 2
22 3 7,l qo t  is a convex set.

c) For any point x y Rn,   show that the line segment joining x y,  i. e. [x : y]

is a convex set.

3) a) Show that S x x x x x x R    1 2 3 1 2 3
32 4, ,b go t  is convex set.

b) Show that in R3  the closed ball x x x1
2

2
2

3
2 1    is a convex set.

c) Show that a hyperplane in R3  is a convex set.

4) a) Show that the closed half spaces H x c x z1  /l q  as H x c x z2  /l q  are

convex sets.

b) The open half spaces x c x zm r  and x c x zm r  are convex sets.

c) The intersection of any finite number of convex sets is a convex set.
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5) a) Show that S x x x x x x x x x      1 2 3 1 2 3 1 2 32 4 2 1, , ,b go t  is a convex

set.

b) Let A be an m n  matrix and b  be on n - vector then show that

x R A x bn { }  is a convex set.

c) Let S and T be convex sets in Rn . Then for any scalars  ,  prove that

 S T  is a convex set.

d) Prove that the set of all convex combinations of a finite number of points

x x xm1 2, ,...,  is a convex set.

6) a) If V is any finite subste of vectors in Rn , then prove that the convex hull of
V is the set of all convex combinations of vertors in V.

b) If A x y Rn ,l q  these prove that  A x y .

c) Prove that : A linear function z c x c x c xn n   1 1 2 2 ...  defined over a

convex polyhedron C takes its maximum (or minimum) value at an
extreme point of C.

7) a) Let S Rn  be a convex set with a nonempty interior. If x C S1 /  and

x S2 int  then prove that for each 0 1   the point  x x1 21 ( )  lies in

int S.

b) If S Rn  is a convex then prove that int S is also a convex set.

c) Let S be a convex set with a non empty interior. Then prove that cl S is
also a convex set.

8) a) Let S Rn  be a closed convex set and y S . Then prove that there exist

unique x S0   such that y x mn y x x S    0 m r .

b) Let X Rn  be a closed convex set. Then show that for any point y  not in

X. There exist a hyerplane containing y  s. t. X is contained in one of the

open half spaces determined by the hyperplane.





LINEAR  PROGRAMMING
PROBLEMS

UNIT

02

2.0 INTRODUCTION
In 1947, George Dantzig and his associates, while working in the US department of Air

Force, observed that a large number of military planning problems could be formulated as
maximizing / minimizing a linear function (profit / cost) whose variables were restricted to
values satisfying a system of linear constraints (e.g. 2x1 + 3x2 „T 5). The term programming
refers to the process of determining a particular action plane. Since the objective function
(profit / cost) and constraints are linear, problems are called linear programming problems.

The general Linear Programming Problem (L.P.P.)

The general linear programming problem is to find a vector (x1, x2,..., xn) which minimizes
the linear form (i. e. objective function)

1 1 2 2    n nz c x c x ... c x  .......... (2.1)

subject to the linear constraints

0Jx   ( j = 1, 2, ..., n) .......... (2.2)

and

   11 1 12 2 1n n 1a x a x ... a x b

   21 1 22 2 2n n 2a x a x ... a x b  .......... (2.3)

   m1 1 m2 2 mn n ma x a x ... a x b

Where the aij, bi and cj (i = 1, 2, ..., m, j = 1, 2, ..., m) are given constants and m < n. We
shall assume that the equations (2.3) have been multiplied by (-1) where necessary to make all

ib 0 . The function (2.1) is called objective function and system (2.2) and (2.3) are called
constraints.

The general L. P. P. is also denoted by : Minimize 



n

j j
j 1

z c x

subject to jx 0 , j = 1, 2, ..., n and

ai j xj bi




n

ij j i
j 1

a x b   (i = 1, 2, ..., m)

25
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Definition 2.1

A feasible solution to the L. P. P. is a vector x x x xn1 2, ,...,   which satisfies the conditions
(2.2) and (2.3).

Definition 2.2
A basic solution (BS) to (2.3) (or L. P. problem) is a solution obtained by setting any n -

m variables equal to zero and solving for the remaining m variables, provided that the determinant
of the coefficients of these m variables is non zero. The m variables are called the basic variables.

Definition 2.3
A basic feasible solution (BSF) is a basic solution in which all the basic variables are non

negative.

Definition 2.4
A non degenerate basic feasible solution is a basic feasible solution in which all the

basic variables are positive.

Definition 2.5
A feasible solution which either maximizes or minimizes the objective function is called

an optimal feasible solution.

Theorem 2.1
The collection of all felsible solutions to the L. P. P. is a convex set.

Proof

Let F be the set of all felsible solutions to the system A x b x, 0

If the set F has only one point then obviously F is a convex set. Assume that F has more
than one point.

Let x x F1 2, . Then we have

A x b x1 1 0,  and A x b x2 2 0,

Let x x x0 1 21   where x x F1 2 0 1, , .

Then A x A x x0 1 21 

A x A x1 21  ,

b b b1 

Also since 0 1 0 01 2, ,x x  it follows that x0 0 . This shows that x F0  and
consequently F is a convex set.

Remark
In general the convex set F is either (i) empty (ii) Unbounded or (iii) closed.
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The empty set occurs when the constraints of the set can not be satisfied simultaneously.
In this case the system yields no solution.

An unbounded set implies that the region of fisible solutions is not constrained in atleast
one direction.

Finally closed set implies that the region of fessible solutions is a convex polyhedron
since it is defined by the intersection of a finite number of linear constraints.

Note :  We shall rewrite the definition of basic solution.

Basic Solution

Consider a system of simultaneous linear equations in n unknowns A x b m n( ),
r A m( ) . If any n - m variables are equated to zero then the solution of the resulting system for
m variables provided the determinant of the coefficient matrix of these variables is 0  is called
a basic solution, where r (A) = rank of A.

OR

If any m m  non singular matrix is chosen from A and if all the remaining n - m variables
not associated with the columns in this matrix are set equal to 0 the solution to the resulting
system of equations is called a basic solution. The m variables which can be different from zero
are called basic variables.

Theorem 2.2

A necessary and sufficient condition for a point x 0  in F to be an extreme point is that

x  is a basic feasible solution to the system A x b x, 0 .

OR

Every basic feasible solution of A x b  is an extreme point of the convex set of feasible

solutions (of A x b ) and conversely every extreme point of the convex set of feasible solutions

is a basic feasible solution to A x b .

Proof

Let F denote the set of feasible solutions of A x b .

Let x  be a basic feasible solution of A x b  which is a n - component vector ( x x xn1 2, ,..., ).

Thus both non basic (zero) and basic (some of which may be zero) variables are contains in x .
Suppose the components of x  are so arranged that the first m components are the basic
variables corresponding to basic vectors and are denoted by xB  Then,

x x oB,   where o  is an (n - m) component null vector. Also assume that the vectors of

the matrix A are so arranged that the first m column vectors correspond to xB  and we denote
this sub matrix of A by B (called the basic matrix) and we denote the remaining (n - m) column
vectors by R. Thus A = (B, R).
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Accordingly the system A x b  becomes

   (B, R) x o bB,   or B x bB .

By the definition of a basic solution B must be non singular.

Hence x B bB
1

To prove that every basic feasible solution is an extreme point of the convex set of
feasible solutions.

If possible assume that the two distinct feasible solution x1  and x2  exist such that

    x x x1 21  , 0 1     .......... (1)

But x1  and x2  can be expressed as,

   x x u x x uB B1
1

1 2
2

2
( ) ( ), , ,     .......... (2)

where xB
( )1  and xB

( )2  are the first m components of x1  and x2  respectively and u u1 2,

denote the last (n - m) component vectors of x1  and x2  respectively..

From (1) and (2)

        x o x u x uB B B, , ( ) ,( ) ( )1
1

2
21     .......... (3)

i. e.         x o x x u uB B B, ( ) , ( )( ) ( )1 2
1 21 1

Therefore   u u1 21 0      .......... (4)

Since 0 1 0, ( )  and u u1 20 0, , therefore from (4)

  u u1 2 0     .......... (5)

Since x x1 2,  are in the set of feasible solutions,

           A x b A x b B x bB1 2
1, ( )  and Bx bB

( )2

       x x B b xB B B
( ) ( )1 2 1

This shows that x x x1 2  which contradicts the fact that x x1 2 . Conseqnently x  cannot
be expressed as a convex combination of any two distinct points in the set of feasible solutions
and hence it must be an extreme point.

Conversely

Let x x x xn1 2, ,...,   be an extreme point of the convex set of feasible solutions.

We prove that x  is a basic feasible solution of A x b . By definition x  will be a basic
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feasible solution of A x b  if the column vectors associate with positive elements of x  are
linearly independent.

Assume that k - components of x  are positives (remaining are zeros). Arrange the
variables so that the first k components are positive. Then

      
k

j j j
j 1

x a b,x 0, j 1,2,...,k     .......... (6)

If possible assume that the vectors a a ak1 2, ,...,  are not linearly independent. So they

are linearly dependent and hence there exist scalars j  not all zero such that

      1 1 2 2 0a a ak k...

or       j j
j

k

a 0
1

    .......... (7)

From (6) and (7) it follows that for any 0 ,

 x a a bj j j j
j

k

j

k

11

or        x a bj j j
j

k

 
1

Thus the two points

   1 1 1 2 2 k kx x ,x ,..., x ,0,0,...,0     .......... (8)

         (n - k) components

and   2 1 1 2 2 k kx x ,x ,..., x ,0,0,...,0     .......... (9)

         (n - k) components

satisfy the constraints A x b

Since x j 0  select  such that 0 0








min
xj

j
j

Then the first k components of 1 2x ,x  will always be positive.

Since the remaining components of 1x  and 2x  are zeros, it follows that 1x  and 2x  are
feasible solutions different from x . Adding (8) and (9) we obtain.
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        1 2 1 2 kx x 2 x ,x ,..., x ,0,0,...,0

         1 2 1 2 k
1 1x x x ,x ,...,x ,0,0,...,0 x
2 2

Thus x  can be expressed as a convex combination of two distinct points 1x  and 2x  by

selecting 
1
2

i. e.  1 2
1 1x x 1 x
2 2

This contradicts the assumption that x  is an extreme point of the convex set of feasible
solutions.

Hence a a ak1 2, ,...,  are linearly independent and hence x  is a basic feasible solution.

We have obviously k m  . Because the number of linearly independent column vectors
cannot be greater than m which is the row rank = column rank = rank of a matrix A. If k = m then
the basic feasible solution is a non degenerate basic feasible solution.

Suppose k < m. Then the basic feasible solution is a degenerate basic feasible solution.
Select other (m - k) additional column vectors with their corresponding variables equation 0.
such that 1 2 ma ,a ,...,a  are linearly independent.

Thus the resulting set of k + (m - k) = m column vectors is linearly independent.

The sub matrix of A formed by these m columns is non singular.

Theorem 2.3

If the convex set of the feasible solutions of A x b,  is a convex polyhedron then at
least one of the extreme points of the convex set of feasible solutions gives an optimal solution.

If the optimal solution occurs at more than one extreme point the value of the objective
function will be the same for all convex combinations of these extreme points.

Proof

Let x x xk1 2, ,...,  be the extreme points of the convex set F of the feasible solutions of the

L. P. problem, max z c x  subject to A x b x, 0 .

Suppose xm  is the extreme point among x x xk1 2, ,...,  at which the value of the objective

function is maximum say z .

i. e.    i m1 i k
z max c x c x
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Let x F0  which is not an extreme point and let z0  be the corresponding value of the
objective function.

Then   0 0z c x    ........... (1)

Since x0  is not an extreme point it can be expressed as convex combination of the

extreme points x x xk1 2, ,...,  of F (where F is assumed to be bounded).

Then x x x xk k0 1 1 2 2 ...

where 1 2 0, ,..., k  and i
i

k

1
1

So from (1)    0 1 1 2 2 k kz c x x ... x

           0 1 m 2 m k mz c x c x ... c x

           0 1 m m mz c .... x c x

i. e. z z0

This implies that the value of the objective function at any point in the set of fessible
solutions is less than or equal to the maximal value z  at extreme points.

Let x x x r kr1 2, ,...., ( )  be the extreme points of the set F at which the objective function
assumes the same optimum value. This means.

   1 2 rz c x c x ... c x

Further let x x x xr r j1 1 2 2 0... ,  and j
j

r

1
1

 be convex combination of there

extreme points.

Then   1 1 2 2 r rc x c x x ... x

       1 1 2 2 r r 1 rc x c x ... c x z ... z

       1 2 ... r z 

       z  Thus c x z

This proves the result.

Note
Consider the general L. P. P.

Max. z c x  subjects to A x b x, 0  where
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A

a a
a a

a a

n

n

m mn

















11 1

21 2

1

..........
..........

...................
..........

    c c c cn( , ,..., )1 2

    x x x b b b bn m1 1 2,..., , , ,...,   
Where rank of A i. e. r (A) = m < n.

For convenience column vectors will also be represented by row vectors without using
the transpose symbol (T). So there should be no confusion in understanding the scalar
multiplication of two vectors c  and x .

We shall denote the jth column of A by a j nj, , ,...,1 2

so that    A a a an1 2, ,...,     .......... (1)

Form an m m  non singular submatrix B of A called the basic matrix, whose columns
are linearly independents vectors. Let these column vectors be renamed as

1 2, ,..., m . Therefore

   B m1 2, ,...,     .......... (2)

These columns of B form a basic of Rm .

Now any column aj  of A can be expressed as a linear combination of the columns of B.

Let    a y y yj j j m j m1 1 2 2 ...

   j 1 2 m 1j 2 j m ja , ,..., y , y ,...,y

i. e. a B yj j  where y y y yj i j j m j, ,...,2 

i. e. a B yj j  where y y y yj j j m j1 2, ,..., 

i. e. y B aj j
1  where y i mi j ( ,..., )1  are scalars.

The vector y j  will change if the columns of A forming B change. Any basic matrix B will

yield a basic solution to A x b . The solution may be denoted by m component vector as

x x x xB B BmB 1 2, ....,,   where xB  is determined from x B bB
1 .     .......... (4)
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Note that xBi  corresponds to the column i  of the matrix B. The variables x x xB B Bm1 2, ...,,

are called basic variables and the remaining (n - m) variables are non basic variables.

Correspondings to xB  we have z c x c x c xn n1 1 2 2 ...

         Let c c c cB B B B m1 2
, ...,, 

where cBi  is the coefficient of the basic variable xBi  in the objective function.

So      z c x c x c xB B B B Bm Bm1 1 2 2 0...

     z c c x xB Bm B B m1 1,..., ,...,  

     z c xB B    ........... (5)

Finally we form a new variable z j  defined as

    z y c y c y c c yj j B j B m j Bm Bi i j
i

m

1 1 2 2
1

...

    z c c y y yj B Bm i j j m j1 2,..., , ,...,  

    z c yj B j

There exists z j  for each aj .

Example 2.1
Illustrate the above definitions and notations for the following L. P. problem.

Maximize      z x x x x x1 2 3 4 52 3 0 0

subject to 4 2 41 2 3 4x x x x

  x x x x1 2 3 52 3 8

Solution :
Constraints equations in matrix form may be written as

a a a a a x b
x
x
x
x
x

1 2 3 4 5

1

2

3

4

5

4 2 1 1 0
1 2 3 0 1

4
8



























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or    A x b

A basis matrix B 1 2,   is formed using columns a3  and a1  where

    1 3 2 1
1
3

4
1











a a,

The rank of the matrix A is 2 and column vectors a a3 1,  are linearly independent and

thus form a basis for R2 . Thus basis matrix is

     
B

a a




1 2

3 1

1 4
3 1

, 

Then the basic feasible solution is x B bB
1

    x
B

ad j B bB






1 .

    xB














1
11

1 4
3 1

4
8

1
11

28
4

    
x

x

xB
B

B




















28
11
4
11

1

2

Hence the basic solution is x xB1 3
28
11 , x xB 2 1

4
11  and the remaining non basic

variables are (always) zero i. e. x x x2 4 5 0 .

Also c coeff of x coeff of x cB B1 1 3 3 3. .

c coeff of x coeff of x cB B2 2 1 1 1. .

Hence the value of the objective function is

      z c xB B



( , )

/
/

3 1
28 11
4 11

88
11

Also any vector a jj 1 2 3 4 5, , , ,   can be expressed as a linear combination of vectors

j j 1 2,  .
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Let      j 1j 1 2 j 2 1j 3 2 j 1a y y y a y a

    
121

2 2
22

y1 4 2 6 /111y B a
3 1 2 4 /11 y11

Hence   y12
6
11  and 1 y22

4
11 .

Now the variable z2  corresponding to the column vector a2  can be obtained as

    z c yB2 2 3 1
6 11
4 11



,

/
/

 

        




3 6

11
1 4

11
22
11

2. .

Similarly z z z1 3 4, ,  and z5  can also be obtained.

Theorem 2.4

Consider a set of m simultaneous linear equations in n unknowns with n m A x b,  and

r A m( ) . Then if there is a feasible solution x 0 , there is a basic feasible solution.

Proof

To prove this assume that there exists a feasible solution to A x b  with p n  positive
variables.

Number the variables, so that the first p variables are positive. Then the feasible solution
can be written as

        x a bj j
j

n

1
   ........... (1)

and hence

x j p x j p p nj j0 1 2 0 1 2,( , ,...., ), , , ,...,     ........... (2)

Case (i)

Suppose the set a j pj ( , ,..., )1 2  is linearly independent. Then p m .

If p = m the given solution is automatically a nondegenerate basic feasible solution.

Supposep < m. We know that this set of p linearly independent column vectors can be
extended to form a base a a am1 2, ,...,   of the column space of A.

In this case x x x x xp p m1 2 1, ,..., , ,...,   where x j p p mj 0 1 2, , ,...,  is a degenerate
basic fessible solution.
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Case (ii)

Suppose the vectors a j pj ( , ,..., )1 2  are linearly dependent. We shall show that under
these circumstances it is possible to reduce the number of positive variables step by step until
the columns associated with the positive variables are linearly independent.

When the a j pj ( , ,..., )1 2  are linearly dependent, there exist j  not all zero such that

         j j
j

p

a
1

0     .......... (3)

and we proceed to reduce some xr  in

         x a b x j pj j j
j

p

, ( , ,..., )0 1 2
1

    .......... (4)

to zero.

Suppose some vector ar  of the p vectors in aj j
j

p

0
1

 is expressed in terms of the

remaining (p - 1) vectors.

Thus      a ar
j

r
jj r     .......... (5)

substituing (5) in (4) we obtain

      
x x a bj r

j

r
j

j
j r

p 



1     .......... (6)

Here we have not more than (p - 1) variables. However we are not sure that all these
variables are non negative (In general if we choose ar  orbitrarily some variables may be negative)

We wish to obtain

x xj r
j

r

0  ( j = 1, 2, ..., p), j r     .......... (7)

For any j for which j 0  (7) will be satisfied automatically. When j 0  we have,

         
x xj

j

r

r

0  if j 0     .......... (8)
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x xj

j

r

r
0  if j 0     .......... (9)

We select ar  such that

    
x xr

r
j

j

j
j









min 0     ........ (10)

(Note that j ja 0 at least one j 0  and hence j 0 for some j )

Thus a fessible solution x x a bj r
j

r
j

j
j r

p 



1

is obtained with not more than (p - 1) non zero variables.

These variables are also non negative. (since j 0 )

If the columns associated with the positive variabls are linearly independent by case (i)
we have a basic feasible solution. If the columns associates with the positive variables are
linearly dependent we can repeat the same procedure and reduce one of the positive variables
to 0. Utimately we shall arrive at a solution such that the columns corresponding to the positive
variables are linearly independent. (Note that a single non zero vector is always linearly
independent)

OR

Theorem 2.5
If a linear programming problem

max. z c x  s. t. A x b x, 0

has at least one feasible solution then it has at least one basic feasible solution.

Proof
Let

x x x xk0 1 2 0 0 0, ,..., , , ,..., 
be a feasible solution to the L. P. P. with positive components x x xk1 2, ,..., .

Let a a ak1 2, ,...,  be the first k columns of A (associated with the positive variables

x x xx1 2, ,...  respectively)

Then by hypothesis

    x a x a x a bk k1 1 2 2 ...     .......... (1)
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Case (i)

Suppose a a ak1 2, ,...,  are linearly indepedent. In this case x x x xk0 1 2 0 0, , , ,...,   is a
basic fessible solution.

Case (ii)

Suppose a a ak1 2, ,...,  are linearly dependent.

So there exist scalers 1,...., k  not all 0 such that

1 1 0a ak k...  with atleast one j 0  and hence assume this j 0 .     .......... (2)

Let v
xj k

j

j
j






1 0max , (i.e. m +x is taken over those j fro which j x )

Obviously v > 0 for x j 0  (j = 1, 2, ..., k) and at least one j 0 .

Multiply (2) by 
1
v

 and then subtract from (1) to get

         
k k

j j j j
j 1 j 1

1x a a b
v

k
j

j j
j 1

x a b
v     .......... (3)

         1 2 k
1 2 kx x ,x ,..., x ,0,0,...,0

v v v

is a new solution of A x b .

We have v
x

or x
v

j kj

j
j

j 1 

The new solution x  satisfies non negativity restriction.

Since x
vj

j 0  for at least one j, x  is a feasible solution with at the most k - 1 positive

variables. All other variables are 0.

If the columns associated with the positive variables are still linearly. dependent, repeat
the above procedure. Cuntinuing in this way we get the column vectors ossociated with positive
variables which are linearly independent. Thus by case (i) we get a basic feasible solution.
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Example 2.2

If x x x1 2 32 3 1, ,  is a feasible solution of a L. P. P. problem

max.  z x x x1 2 32 4

subject to  2 4 111 2 3x x x

     3 5 141 2 3x x x

  x x x1 2 3 0, ,

find a Basic Feasible Solution

Solution :

We have A x b

where A x
x
x
x

b


















2 1 4
3 1 5

11
14

1

2

3

, ,

The given feasible solution is x x x1 2 32 3 1, , .

Hence   2 3 11 2 3a a a b.

Where a a a b1 2 3
2
3

1
1

4
5

11
14


















, , ,

Step (2)

The vectors a a a1 2 3, ,  associated wsith the positive variables x x x1 2 3, ,  are linearly
dependent so one of the vectors is a linear combination of the remaining two.

Let a a a3 1 1 2 2  Thus

          
4
5

2
3

1
11 2














Maximum no. of lin. independnet columns is less than 3 since row rank of coefficient
matrix A is 2.

  Now 
4
5

2
3

1 2

1 2











          2 4 3 51 2 1 2,
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       1 21 2,

       a a a3 1 22

i. e.        a a a1 2 32 0

Where            1 2 31 2 1, ,

Step (3)

Now determine which of the variables x x x1 2 3, ,  should be 0. For this find

 v
x

j

j
j




max , 0

   
1 2

1 2
max ,

x x (since 1 1 0 , 2 2 0 )

   
1 2 2max ,
2 3 3

 x x
v

x
v

x
v





1

1
2

2
3

3, ,  is a reduced solution where

    x
v1

1 2 1
2 3

1
2/

    x
v2
2 3 2

2 3
0

/

   x
v3
3 1 1

2 9
5
2




/

x 



1
2

0 5
2

, ,

Step (4)

Now the solution x 



1
2

0 5
2

, ,  is to be tested for basicness. The determinant of the

matrix of the of column vectors corresponding to x x1 3,  is
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2 4
3 5

0





Obviously a a1 3,  are linearly independent.

Hence x 



1
2

0 5
2

, ,  is a B. F. S.

Theorem 2.6

Let a L. P. P. have a B. F. S. If for any column aj  in A but not in B b b bm1 2, ,...,   (basic

vectors for columns in A) we have a y bj i j i
i

m

1
 with at least one yi j 0  (i = 1, 2, ..., m) then we

can find a new B. F. S. by replacing one of the columns in B by aj .

Proof

Consider a L. P. P. problem max z c x  subject to A x b x, 0  where A is m n  matrix
m < n and r (A) = m, where r (A) = rank of A.

Let xB  be a BFS of the LPP, where B b b bm1 2, ,...,   forms a basis for the columns of A.A.

For any column aj  in A  a Bj  , we have

           a y bj i j i
i

m

1

Suppose some yrj
0

Then
a y b y bj i j i

i
i r

m

r j r
1

       
b

a
y y

y br
j

r j r j
i j i

i
i r

m1

1

Hence B x bB  gives b x bBi i
i

m

1
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













b x b x
a
y y

y bB i i Br
j

r j r j
i j i

i
i r

m

i
i r

m 1

11

        








b x x
y
y

b
x
y

aBi Br
i j

r j
i

B r

r j
j

i
i r

m

1

The new solution xB  is also a basic solution with the basic variables.

          x x x
y
y

i m i rBi B i Br
i j

r j





 , , ,..., ,1 2

and         x
x
yBr

Br

r j

Case (1)

Let xBr 0

In this case the new set of basic variables is obviously non negative, since we have
assumed the existance of a BFS, xB .

Case (2)

xBr 0

We have yr j 0

For the remaining y i r y y or yi j i j i j i j , ,0 0 0 .

If yi j 0  for some i, x x xBi Bi Br0 0,

If yi j 0  still xBi 0  and xBr 0 .

Suppose yi j 0

We require x x x
y
y

i rBi B i Br
i j

r j
0,

So we must have 
x
y

x
y

Bi

i j

Br

r j
, where y i j 0 .
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We select r in such a way that 
x
y

x
y

yBr

r j

B i

i j
i j









min 0

Then we have a B. F. S.

Example 2.3

Given a basic feasible solution x3 4  and x4 8  to the L. P. P..

max. z x x1 22  subject to

  x x x1 2 32 4

  x x x1 2 44 8 ,

obtain a new B. F. S.

Solution :

We have     A x b

Where        A x x x x x b






1 2 1 0
1 2 0 1

4 81 2 3 4, , , , ,   

      a a a a1 2 3 4
1
1

2
2

1
0

0
1


















, , ,

We have B x bB  where B 




1 0
0 1

     x x x x x x xB B B B B1 2 1 3 2 44 8 4 8   , , ,

      1 1 2 2
1
0

0
1











b b,

The y j  s for any column aj  in A but not in B are

     y B a
y
y1

1
1

11

21

1 0
0 1

1
1

1
1


















     
121

2 2
22

y1 0 2 2
y B a

0 1 4 4 y

Note that       a B a y b y b1
1

1 11 1 12 2 and

      a B a y b y b2
1

2 21 1 22 2 .
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Since y y11 211 1 0,  we can insert a1  in B. We now select r rb  for replacement by

a1  which corresponds to the value of r determined by the minimum ratio rule :

   
x
y

x
y

yBr

r
i

Bi

i
i

1 1
1 0









min ,

          






min ,
x
y

x
y

B B1

11

2

21

          



min ,4

1
8
1

4 1

11

x
y

B

    r 1

Hence we remove 1  and enter a1  in place of 1 1b .

The new basic matrix becomes

       B a1 2,   or a








1 2 1 2 2, , ,

  





B
1 0
1 1

We can now find the basic feasible solution xB  either by using the result x B bB

1

 or by
the transformation formulae.

     x x x
y
y

i m i rBi B i Br
i j

r j
, ,..., ,1

and x
x
y

Br
Br

r j
 for i = r = 1, x xi B1

Now 1 1b  is removed means x3  will not be a basic feasible solution. In its plane x4

corresponding to a1  will be a B. F. S. and x xB1 1 .

Using the formula

                x
x
y

x
B

B
1

1

11

3

1
4
1

4



45

    x x x
y
y

x x
y
y

B B B2 2 1
21

11
4 3

21

11
8 4

1
1

4

Hence the new B. F. S. is

      x x x x x xB B1 1 2 3 4 24 0 0 4, , ,

Theorem 2.7
If a linear programming problem,

Max. z= c x, , s. t. A x=b, x 0 ,

has at least one optimal feasible solution, then at least one basic feasible solution must
be optimal.

Proof

Let      

m n k
0

1 2 kx x ,x ,..., x 0,0,...,0

be an optimal feasible solution to the given linear programming problem which yields
the optimum value

      z c xj j
j

k

1
.  Also x a bj j

j

k

1
    .......... (1)

If a a ak1 2, ,...,  are linearly independent then 0x  is an optimed BFS. Otherwise a a ak1 2, ,...,

are linearly dependent and there exist j , not all 0,

such that j j
j

k

a 0
1

 where at least one j 0     .......... (2)

Let V
xj k

j

j




max

1
    .......... (3)

Obviously V > 0, because x j 0  and at least one j j k0 1 )  .

Now multiplying (2) by 
1
V  and subtracting from (1) we get

x a
V

a bj j j j
j

k

j

k 1

11

1
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


x

V
a bj

j

j

k

j
1

    .......... (4)





x x

v
x

v
x

vk
k

1
1

2
2 0 0 0, ,...., , , ,....,  is a new solution of A x b .

From (3) v
x

x
v

j kj

j
j

j 0 1 2, , ,.....,

Thus x  is a feasible solution and since x
vj

j 0  for at least one j, x  contains at the

most k - 1 non zero variables other variables being zero.

If the column vectors associated with the positive variables are still linearly dependent
we repeat the above process and finally get the solution which is a BFS. So without loss of

generality the solution x  will be assumed as a basic feasible solution.

We have to prove that x  is also optimum solution.

The value of the objective function corresponding to this solution x  will become

        z c x c x cj j
j

j

k

j j
j

k

j j
j

k


1 1 1

1

         or       z z c j j
j

k1

1
    .......... (5)

(since       z c xj j
j

k

1
 )

But, for optimality z  must be equal to z . Hence x  will be optimal solution if and only if
we prove,

          c j j
j

k

0
1

 in equation ( 5 ).

We shall prove this by contradiction.

If possible, let us assume that

          c j j
j

k

0
1
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Then, there will be two possibilities :

1) c j j
j

k

0
1

2) c j j
j

k

0
1

Now, in either of these two cases we can find a real number, say r, such that

r c j j
j

k

0
1

(in first case, r will be positive and in second case r will negative)

i. e. c rj j
j

k

  0
1

    .......... (6)

Now adding c xj j
j

k

1
 to both sides on ( 6 ), we have

k k k

j j j j j j
j 1 j 1 j 1

c r c x c x

or c x r zj j j
j

k

 
1

    .......... (7)

Now, x r x r x rk k

m n k

1 1 2 2 0 0 0








, ,..., , , ,...,  is also a solution for any value of r which

can be observed by multiplying equation ( 2 ) by r and adding to equation ( 1 )

Furthermore, there exist an infinite number of choices of r for which the solution

x r x r x rk k

m n k

1 1 2 2 0 0








, ,..., , ,...,  satisfies the non - negativity restrictions also.

We now proceed to prove this statement. To satisfy the non - negativity restriction, we
need

x r j kj j 0 1 2, , ,...,

or r xj j
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We have

or

r
x

if

r
x

if

r unrestricted if

j

j
j

j

j
j

j














,

,

,

0

0

0

Thus, we observe that if we select r satisfying the relationship

j
x

r j
x

j j

j

j

j

j









0 0   

max min

    .......... (8)

then x rj j 0  for j = 1, 2, ...., k. We note that if there is no j for which j 0 , then there

is no lower limit for r and if there is no j for which j 0 , then there is no upper limit for r..

Furthermore,

j
x

j

j

j




0

0
 

max

 and j
x

j

j

j




0

0
 

min

This proves that when r lies in the non - empty interval given by ( 8 ), then the infinite
number of solutions.

x r x r x rk k

m n k

1 1 2 2 0 0 0








, ,..., , , ,...,

satisfy the non - negativity restrictions also.

Now, from ( 7 ) we conclude that the left hand side c x rj j j
i

k

 
1

 yields the value of the

objective function which is strictly greater than the greatest value of the objective function. This

contradiction proves that c j j
j

k

0
1

 and hence x  is optimal.

Note : By what we have proved we have the result :

If the linear programming problem :

Max. z = cx, subject to Ax = b, x 0

has feasible solution, then it has at least one optimal basic feasible solutions.
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Reduction of any feasible solution to a basic feasible solution
Example 2.4

If x x x1 2 32 3 1, , , be a feasible solution of linear programming problem :

Max. z x x x1 2 32 4 ,

subject to 2 4 111 2 3x x x ,

3 5 141 2 3x x x ,

x x x1 2 3 0, , ,

then find a basic feasible solution.

Solution :
We express the above system as

a a a b
x
x
x

1 2 3

1

2

3

2 1 4
3 1 5

11
14



















or x a x a x a b1 1 2 2 3 3

But the given feasible solution is x x x1 2 32 3 1, , . Hence 2 3 11 2 3a a a b

Where a a a b1 2 3
2
3

1
1

4
5

11
14


















, , ,

Since the vectors a a a1 2 3, ,  associated with the corresponding varialbes x x x1 2 3, ,  are
linearly dependent, therefore one of the vectors can be expressed in terms of the remaining two.

Thus,

a a a3 1 1 2 2 . So 1 1 2 2 3 3 0a a a , where 3 1    ........... (1)

or
4
5

2
3

1
11 2














or
4
5

2
3

1 2

1 2











which gives

2 41 2 ,

3 51 2
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Solving these two equations we get 1 21 2, . Now substituting these values of 1

and 2  in (1), we get the linear combination

a a a1 2 32 0  or j j
j

k

a 0
1

    .......... (2)

Where 1 2 31 2 1, ,

Now we have to determine which one of the three variables x x x1 2 3, ,   should be zero.




1 3 1

1

2

2

3

3
j

x x x x
j

j

max
max , ,

 


max , ,1
2

2
3

1
1

2
3

Let x x x x



1

1
2

2
3

3, ,

Then, x1
1 2 1

2
3

1
2 ,

x2
2 3 2

2
3

0  (which was expected also),

x3
3 1 1

2
3

5
2











Now this solution x





1
2

0 5
2

, ,  will be a basic feasible if the vectors a1
2
3



  and a3

4
5





associated with non - zero variables x1  and x3  are linearly Independent.

Obviously a1  and a3  are linearly independent.

Hence the required basic feasible solution is

x x x1 2 3
1
2

0 5
2

, ,



51

To verify, we have 
1
2

1
3

0
1
1

5
2

4
5

11
14


















Example 2.5

Show that the feasible solution x x x z1 2 31 0 1 3, , ,  to the system

x x x1 2 3 2

x x x1 2 3 2

2 3 41 2 3x x x z Min( )  is not basic.

Solution :
First, we express the given system of constraint equations in matrix form :

1 1 1
1 1 1

2
2

1

2

3






















x
x
x

Therefore, according to our usual notations, we have

A x
x
x
x

b


















1 1 1
1 1 1

2
2

1

2

3

, ,

We show that the feasible solution x x x1 2 31 0 1, ,  is not basic.

So, we prove that the vectors

a1
1
1



  and a3

1
1





are linearly dependent.

Since there exist non - zero scalars 1 21 1,  such that 1 1 2 2 0a a

or 1
1
1

1
1
1

0
0

. .











  ,

the given feasible solution is not basic.

Theorem 2.8

Consider a L. P. P.  max. z c x , such that to Ax b x, 0 .

Let A a a aa m1 2, ,...,   and B m1 2, ,...,   be a non singular submatrix of A.A.
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Assume that a non - degenerate basic feasible solution x B bB
1  to A x b  yields a

value of the objective function z c xB B . If for any colunm aj  in A but not in B we have c zj j 0 ,

and if at least one y i mi j 0 1 2, ,...,   where a yj i j i
i

m

1
, then we can find a new basic feasible

solution by replacing one of the columns in B by a j .

Proof

We shall obtain a new basic feasible solution by replacing one of the vectors (say aj ) in

A but not in B by some vector in B (say r ). Obviously,,

aj i (i = 1, 2, ..., m)

Since aj  can be expressed as the linear combination of vectors in B, therefore

a yj i j i
i

m

1

or a y y y yj j j r j r m j m1 1 2 2 .... ...     .......... (1)

Now, by using the replacement theorem, a j  can replace r  and still maintains the basic

matrix, provided yr j 0 .

Assuming yr j 0 , where y ar j j0,  can be written as

a y yj i j i r j r
i
i r

m

1     .......... (2)

Solving the equation (2) for r , we obtain

r
r j

j
i j

r j
i

i
i r

m

y
a

y
y

1

1     .......... (3)

Also, we have B x bB

or 1 2 1 2, ,...., , ,...., ,....,m B B Br Bmx x x x b   

or x x x x bB B Br r Bm m1 1 2 2 ... ...

or
x x bB i i Br r

i
i r

m

1     .......... (4)
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Substituting the value of r  from (3) in (4), we obtain

x x
y

a
y
y

bB i B
i
i r

m

r j
j

i j

r j
i

i
i r

m

i r













1 1

1

      






x x
y
y

x
y

a bBi Br
i j

r j
i

Br

r j
j

i
i r

m

1  .......... (5 a)

or
x x a bBi i

i
i r

m

Br j
1  .......... (5 b)

Where x x x
y
y

i m i rBi B i Br
i j

r j
, , ,..., ;1 2 ,  .......... (6 a)

x
x
y

for i rBr
Br

r j
   .......... (6 b)

Comparison of ( 5 b ) with ( 4 ) indicates that the new basic solution of A x b  is given
by

x x x i m i rB Bi Br



, , , ,..., ;1 2

    




x x x xB B Br Bm1 2, ,..., ,....,

    




x x

y
y

x x
y
y

x
y

x x
y
yB Br

j

r j
B Br

j

r j

Br

r j
Bm Br

m j

r j
1

1
2

2, ,...., ,....,

and other non - basic components are zero.

For the new basic solution to be feasible, we require

x i mBi 0 1 2, , ,....,

Hence x x
y
y

i m i rB i Br
i j

r j

0 1 2, , ,..., , and  .......... (7 a)

x
y

Br

r j
0  .......... (7 b)
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We see that ( 7 b ) holds as yr j 0  and since we start with a non - degenerate basic

feasible solution, x i mBi 0 1 2, , ,...., . If yr j 0  and y i ri j 0   , then ( 7 a ) is satisfied. If yr j 0

and y i ri j 0   , then equation ( 7 a ) is satisfied only when

x
y

x
y

Bi

i j

Br

r j
0 (dividing ( 7 a ) by yi j 0 )

or
x
y

x
y

Bi

r j

Bi

i j

or
x
y

x
y

Br

r j

B i

i j

or
x
y

Min
x
y

Br

r j i

Bi

i j








This, if we select r such that









x
y

Min
x
y

yBr

r j i

B i

i j
i j, 0     .......... (8)

then column r  will be removed from basis matrix B to replace a j  so that the new basic
solution will be feasible. This completes the proof.

Note

1) We denote the new non - singular matrtx, obtained from B by replacing r  with

aj  by

B B B Bm




1 2, ,..., , where

B i r B ai i r j, ,

2) If the minimum in ( 8 ) is not unique, the new basic solution will be degenerate.
In this case, the number of positive basic variables will be less than m.

The procedure in above theorem can be explained by the following numerical
example.
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Example 2.6

Given the non - degeneate basic feasible solution x3 4  and x4 8  to the following LP
problem

Max. z x x1 22 , subject to

x x x1 2 32 4

x x x1 2 44 8

obtain the new basic feasible solution.

Solution :

The given basic feasible solution can be expressed as  B x bB














1 0
0 1

4
8

4
8

Here, we have

x
x

x
B bB

B

B


















1

2

4
8

1 0
0 1

4
8

, ,

a a

A x

1 2 1 2

1 2 1 0
1 4 0 1

0
0
4
8




















,

The y sj '  for every column aj  in A but not in B are

y B a
y
y1

1
1

11

21

1 0
0 1

1
1

1
1


















y B a
y
y2

1
2

12

22

1 0
0 1

2
4

2
4


















Since y y11 211 1,  are > 0, we can insert a1  in B. We now select r  for replacement by

a1  which corresponds to the value of suffix r determined by the minimum ratio rule :

x
y

Min
x
y

yBr

r i

B i

i
i

1 1
1 0









,
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Therefore,

x
y

Min
x
y

x
y

Br

r

B B

1

1

11

2

21







,






x
y

MinBr

r1

4
1

8
1

4
1

,

x
y

x
y

rBr

r

B

1

1

11
1

Hence we remove 1 .

The new basis matrix becomes

    B a


1 2 1 2, ,  (because a1  is replaced by 1 )

      





1 0
1 1

Now we can find the new basic feasible solution xB
 either by using the result x B bB

1

or using the transformation formulae ( 7 a ) and ( 7 b) of Theorem 2.8.

Hence the new basic feasible solution is :

 x
x
y

B
B

1
1

11

4
1

4

x x x y
y

B B B2 2 1
21

11
8 4 1

1
4

So that the solution to the original system of equations becomes

   x x x x x xB B1 1 2 3 4 24 0 0 4, , ,

we note that, if we had inserted a2  instead of a1 , the new basic feasible solution would
have been degenerate. We have developed the procedure for obtaining a new basic feasible
solution. Now we determine the value of the objective function corresponding to this new basic

feasible solution. We verify, whether z z  where z  denotes the new value of the objective

function. For this, we prove the following theorem.
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Theorem 2.9

Assume that we have a non - degenerate basis feasible solution x B bB
1  to A x b

which gives a value for the objective function z c xB B . Assume further that we have obtained a

new basic feasible solution x B bB
1  to A x b  by replacing one of the columns in B by a

column aj  (for which yr j 0 ) in A but not in B. If c zj j 0 , the new value (denoted by z ) of the

objective function will be greater than z, where z c yj B j  and y B aj j
1 .

Proof
The value of the objection function for the original basic feasible solution is

z c xB B

   c c c x x xB B Bm B B Bm1 2 1 2, ,...., , ,....,   

or z c xBi Bi
i

m

1
   .......... (A)

The new value is given by

z c xB B

or
z c x c x c xBi Bi B i Bi Br B r

i
i r

m

i

m

11

where c c i r c cBi Bi B r j ,

Therefore, 
z c x c xB i B i j B r

i
i r

m

1

Subsituting the values of new variables xBi  and xBr  from ( 7 a ) and (7 b ) of Theorem

2.8 into the last expression, we get

z c x x
y
y

c
x
yBi B i Br

i j

r j
j

Br

r ji
i r

m 



1   ........... (B)

Since the term for which i = r is c x x
y
yBr Br Br

r j

r j





 0



58

we can include it in the summation ( B ) without changing z , so that

z c x x
y
y

c
x
yBi Bi Br

i j

r j
j

Br

r ji

m 



1

   c x
x
y

c y
x
y

cB i Bi
Br

r j
B i i j

Br

r j
j

i

m

i

m

11

   z
x
y

z
x
y

cBr

r j
j

Br

r j
j

   z c z
x
yj j

Br

r j
 

   z c zj j  , where 
x
y

Br

r j
   .......... (C)

Now, from ( C ) we observe that the new value z  of the objective function is the original

value z plus the quantity c zj j  . Since 0 , and c zj j  is greater than 0. The value of the
objective function is improved.

Example 2.7
In worked example ( 2.6 ) show that the new value of the objective function is improved.

Solution :

Since c c c c1 2 3 41 2 0 0, , , , then the original solution x x x x3 4 1 24 8 0, ,  gives

z 1 0 2 0 0 4 0 8 0

In the new basis feasible solution x1  replaces x3

Since z c yB1 1 0 0
1
1

0



, 

and since c z1 1 1 0 0 , z   should exceed z ( = 0). From ( C ) we get

   z z c z
x
y

B
1 1

11

1 

   z 0 4 1 0 
      4  z 0
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Theorem 2.10

If we select the vector ak  to replace r  in B the suffix k can be selected by means of

c z Max c z c zk k j j j j j , 0 ,  so that the value of the objective function

z is increased as much as possible for the new basic feasible solution.

Proof
In the previsous Theorem we have obtained the improved value of z given by

        z z
x
y

c zBr

r j
j j 

Thus to give maximum value of z  we should select that value of j for which the term.

x
y

c zBr

r j
i j   is maximum.

But the computational difficulty arises while obtaining Max
x
y

c zBr

r j
j j.   , because we

have to compute 
x
y

Br

r j
 for each a j  having c zj j 0  by the rule

     
x
y

Min
x
y

yBr

r j j

Bi

i j
i j









, 0

But the change in objective function depends on

x
y

Br

r j
 and c zj j  both.

Thus to avoid large number of computations of 
x
y

Br

r j
, we can neglect the value of 

x
y

Br

r j
.

Hence the most convenient and time saving rule for choosing the vector ak  to enter the

basis B consists of selecting the largest c zj j . This is equivalent to choosing the vector ak  to

replace r  by means of

c z Max c zk k j j j  , for c zj j 0 .
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Note
The following are the advantages of using the above test.

1. The choice of vector ak  to enter the basis B by using above criteria gives the
greatest possible increase in z in each step.

2. More than m iterations will not be needed to reach the optimal basic feasible
solution.

3. It saves a time by giving the required solution in the least number of steps.

Definition 1 : Slack Variable
If the constraint has ‘ ’ sign then in order to make it an equality we have to add something

positive to the left side of constraint. The non-negative variable which is added to the left hand
side of the constraint to convert it into equation is called slack variable.

e.g. 1 2x x 3  then 1 2 3x x x 3  and x3 is slack variable.

Surplus Variable
If a constraint has ‘ ’ sign then in order to make it an equality we have to subtract

something non-negative from left hand side of inequality.

Definition
The positive variable which is subtracted from the left hand side of the constraint to

convert it into equation is called surplus variable.

e.g. 1 2x x 3  then 1 2 3x x x 3  and variable x3 is surplus variable.

Conversion of given LPP into standard form of LPP

Step 1
Convert constraints into equations except non-negativity of variable.

Step 2
Make right side of each constraint non-negative.

(multiply equation by (–1) if necessary)

e.g. 1 2 1 2x x 3 x x 3

Step 3
Make all variables non-negative if variable x is unrestricted in sign write x x ' x "

where x ',x" 0 .

Step 4
Convert objective function in maximization form.

Min  f x Max f x
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Example
Express the following LPP in standard form.

1 2 3Min z x 2x x

Subject to

1 2 32x 3x 4x 4

1 2 33x 5x 2x 7

1 2x ,x 0 , x3 is unrestricted in sign.

Step 1

1 2 3 42x 3x 4x x 4

1 2 3 53x 5x 2x x 7

Step 2

1 2 3 42x 3x 4x x 4

1 2 3 53x 5x 2x x 7

Step 3

x3 is unrestricted. ' "
3 3 3 x x x

' "
1 2 3 3Min z x 2x x x

s.t. ' "
1 2 3 3 42x 3x 4 x x x 4

' "
1 2 3 3 53x 5x 2 x x x 7

' "
1 2 3 3 4 5x ,x ,x ,x ,x ,x 0

Step 4

' "
1 2 3 3Min z x 2x x x

' "
1 2 3 3Max z x 2x x x

Thus standard form is

' "
1 2 3 3Max z x 2x x x
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Subject to

' "
1 2 3 3 42x 3x 4x 4x x 4

' "
1 2 3 3 53x 5x 2x 2x x 7

' "
1 2 3 3 4 5x ,x ,x ,x ,x ,x 0

Example 2.8
Solve the L. P. problem.

Max.  z x x x3 5 41 2 3

subject to  2 3 81 2x x

     2 5 102 3x x

         3 2 4 151 2 3x x x

and         x x x1 2 3 0, ,

Solution :

The inequalities are converted into equalities by introduction of slack variables x x4 5,

and x6  as follows.

 2 3 0 81 2 3 4x x x x.

  0 2 5 101 2 3 5x x x x

  3 2 4 151 2 3 6x x x x

Take x x x1 2 30 0 0, ,

Hence x4 8  and x x5 610 15,  which is the initial basic feasible solution.

Now we construct a starting simplex table. Here we compute j  for all zero variables

x j , j = 1, 2, 3 by the formula.

      j j B jC C Y

      1 1 1C C YB

      1 3 0 0 0 2 0 3 3, , , ,   
      2 2 2C C YB

      2 5 0 0 0 3 2 2 5, , , ,   
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      3 3 3C C YB

      3 4 0 0 0 0 5 2 4, , , ,   

Since all j  are not less than or equal to zero therefore the solution is not optimal. So
we proceed to the next step.

To find incoming vector :

Since 2 3  is max. of 1 2 3, ,  therefore 2 2y   is incoming vector..

Starting simplex table 1

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1  2  3  1  2  3 
x
y

B

2

Y4 0 8 2 3 0 1 0 0
8
3  

Y5 0 10 0 2 5 0 1 0 5

Y6 0 15 3 2 4 0 0 1
15
4

z c xB B x j 0 0 0 8 10 15

   = 0 c j 3 5 4 0 0 0

j 3 5 4 x x x

 
To find outgoing vector

Since 2  is incoming vector therefore we consider the ratio

       
x
Y

x
Y

x
Y

x
Y

B B B B1

2

1

12

2

22

3

32





, ,

i. e. 
x
Y

B1

2

8
3

5 15
2





, ,

We have 
x
Y

x
Y

YBr

r
i

B i

i
i

2 2
2 0









min ,
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

i
B B Bx

Y
x
Y

x
Y

min , ,1

12

2

22

3

32

8
3

Hence r = 1

i. e. 1  is the outgoing vector..

Since 2  is incoming vector and 1  is outgoing vector, therefore the key element is

y a12 12   as shown in table 1 which is equal to 3.

In order to bring 1  in place 2  we make the following intermediate tables.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 8 2 3 0 1 0 0

Y5 10 0 2 5 0 1 0

Y6 15 3 2 4 0 0 1

Divide key element by 3 to get unity at this position and then subtract 2 times of the first
row (obtained after dividing by 3) from the second and third row.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2

8
3

2
3 1 0

1
3 0 0

Y5

14
3

4
3 0 5

2
3 1 0

Y6

29
3

5
3 0 4

2
3 0 1

Now we construct second simplex table in which 1 4Y   is replaced by 2 2y  .
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Second simplex table 2

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1  2  3 
x
y

B

3

Y2 5
8
3

2
3 1 0

1
3 0 0 --

Y5 0
14
3

4
3 0 5

2
3 1 0

14
15

min

Y6 0
29
3

5
3 0 4

2
3 0 1

29
12

z c xB B x j 0
8
3

0 0
14
3

29
3

c j 3 5 4 0 0 0

j
1
3 x 4

5
3 x x

 
incoming outgoing

vector vector

To test the optimality of the solution compute j  for all zero variables x x1 3,  and x4 .

1 1 1 3 5 0 0 2
3

4
3

5
3





c c YB , , , , 

           1 1 1 3 10
3

1
3

c c YB

           3 3 3 4 5 0 0 0 5 4c c yB , , , ,    = 4 - 0 = 0

           4 4 4 0 5 0 0 1
3

2
3

2
3





c c YB , , , , 

           4
5
3

Since all j  are not less than or equal to zero, therefore this solution is also not optimal.
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Since 3 4  is maximum of the j s' , 3 3Y   is the incoming vector..

Also           
x
Y

x
Y

YBr

r
i

B i

i
i

3 3
3 0









min ,

    








min ,
x
Y

x
Y

B B2

23

3

33
 (since Y13 0 )

    



min ,14

15
29
12

14
15

2

23

x
Y

B

           r 2

Therefore 2 5y   is the outgoing vector and y a23 23 5  is the key element.

In order to bring y3  in place of 2 5y   we make the following intermediate table.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2

8
3

2
3 1 0

1
3 0 0

Y5

14
3

4
3 0 5

2
3 1 0

Y6

29
3

5
3 0 4

2
3 0 1

Divide the key element by 5 to get 1 at this position, then subtract 4 times of the second
row thus obtained from the third row.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2

8
3

2
3 1 0

1
3 0 0

Y5

14
15

4
5 0 1

2
15

1
5 0

Y6

89
15

41
15

0 0
2

15
4
5

1

The third simplex table in which 2 5Y   is replaced by Y3  is as follows
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Table 3

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1  2  3 
x
y

B

1

Y2 5
8
3

2
3 1 0

1
3 0 0 4

Y5 4
14
15

4
15 0 1

2
15

1
5 0

7
2

neg.

Y6 0
89
15

41
15 0 0

2
15

4
05 1

89
41

min

x j 0
8
3

14
15

0 0
89
15

c j 3 5 4 0 0 0

j
11
15 x x

17
15

4
5 x

 
Incoming Outgoing

vector vector

To test the optimality of the solution again compute j  for all zero variables x x1 4,  and

x5 .

  1 1 1 3 5 4 0 2
3

4
15

41
15





c c yB , , , , 





3 10

3
16
15

11
15





3 50 16

15
45 34

15

      4 4
4

4
0 5 4 0 1

3
2

15
2

15




c c y

B , , , , 

           









4 5 5 5

5
3

8
15

17
15

0 5 4 0 0
1
5

4
5

, , , , ,c c yB    = - 4 /5
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Also 5 5 5
4
5

c c ye

Since all the j s'  are not less than or equal to zero, therefore the solution is not optimal.

Since 1  is maximum of the j s' , it follows that, 1 1Y  is the incoming vector..

Also      
x
Y

x
Y

YBr

r i

Bi

i
i

1 1
1 0









min ,







min ,
i

B By
Y

x
Y

1

11

3

31
Y is negative21 




i

min ,4 89
41

89
41

        r 3 .

i. e. 3 6Y   is the outgoing vector and Y a31 31
41
15

 is the key element.

Again in order to bring Y1 in place of 3 6Y   we make the following intermediate
table.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2

8
3

2
3 1 0

1
3 0 0

Y3

14
15

4
15 0 1

2
15

1
5 0

Y6

89
15

41
15 0 0

2
15

4
5 1

Divide the key element by 
41
15  to get 1 at this position, then subtract 

2
3  times of the third

row from the first row and adding 
4

15  times of the third row to the second row we have,
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xB Y1 Y2 Y3 Y4 Y5 Y6

Y2

50
41 0 1 0

15
41

8
41

10
41

Y3

62
41 0 0 1

6
41

5
41

4
41

Y6

89
15

1 0 0
2
41

12
41

15
41

The fourth simplex table in which 3 5Y   is replaced by y1  is as follows.

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

3 1 1

Y2 5
50
41

0 1 0
15
41

8
41

10
41

Y3 4
62
41 0 0 1

6
41

5
41

4
41

Y1 3
89
41 1 0 0

2
41

12
41

15
41

z c xB B x j
89
41

50
41

62
41 0 0 0

   = 765/41 c j 3 5 4 0 0 0

j x x x
45
41

24
41

11
41

To test the optimality of the solution again compate j  for all zero variables x x4 5,  and

x6 .

      4 4
1
4

0 5 4 3 15
41

5
41

2
41

45
41





c cB , , , , 

      5 5
1
5

0 5 4 3 8
41

5
41

12
41

24
41





c cB , , , , 

      6 6
1
6

0 5 4 3 10
41

4
41

15
41

11
41





c cB , , , , 
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Since all the j s'  for zero variables are negative so, this solution is optimal.

Hence    x x x1 2 3
89
41

50
41

62
41

, ,

and       max.z 765
41

Computational Procedure for Simplex Method

Example 1 2Max z 3x 2x

Subject to 1 2x x 4

1 2x x 2 ,  1 2x ,x 0

Answer
Step 1

Convert the given LPP into a standar form.

1 2 3 4Max z 3x 2x 0x 0x

1 2 3x x x 4

Subject to 1 2 4x x x 2 , 1 2 3 4x ,x ,x ,x 0

Step 2
Construct starting simplex table. Variable which form identity matrix in starting simplex

table are basic variables, cB represent cost of basic variables.

Basic cB  3 2 0 0

variable cost of

B.V. cB xB x1 x2 x3 x4

x3 0 4 1 1 1 0

x4 0 2 1 – 1 0 1

Step 3

Calculate j B j jc x c

1 B 1 1c x c 2 B 2 2c x c

     0 1 0 1 3       0 1 0 1 2

     =  – 3        = – 2

3 4 0
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Step 4 : Optimality Test

(i) If all j 0  the solution is optimal. Alterative optimal solutio will exist if any j

corresponding to non basic xj is also zero.

(ii) If corresponding to any – ve j , all elements of the column xj are – ve or zero ( 0 ),
then the solution under test is unbounded.

(iii) If at least one j 0  then solution is not optimal and therefore proceed to improve the
solution in the next step.

Step 5
Choose incoming and outgoing variable.

Let k jj
Min 0

The correspoding variable xk is incoming varable.

Outgoing variable is decided by minimum ratio (component wise) rule.

If
Br Bi

kiikr ki

x x
Min / x 0

x x

Then xBr is outgoing variable from the set of basic variables.

k jj
Min

Since

jj
Min Min 3, 2,0,0 3

The variable corresponding to 1 3  is x1. Therefore x1 is incoming variable and x1

becomes basic variable.

Consider component wise ratio of the values of basic variables i.e. xB and coefficient of
incoming variable x1 and take its Minimum.

Bk
k 1k

x 4 2Min Min , 2
x 1 1

Corresponds to x4 and therefore x4 is outgoing variable.

Thus x1 is incoming and x4 is outgoing variable.
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cj 3 2 0 0 Min

B.V. cB xB x1 x2 x3 x4 Ratio

 x3 0 4 1 1 1 0
4 4
1

             x4 0 2 1 – 1 0 1
2  1 
1

j – 3 – 2 0 0

Step 6
In order to make x1 as basic variable perform elementary row operations to convert

column corresponding to variable x1 as unit vector. Here operation R1 – R2 will make column
corresponding to variable x1 as unit vector. The position 1 in the unit vector depends upon the
position of incoming variable in basic variables.

3 2 0 0

B.V. cB xB x1 x2 x3 x4

x3 0 2 0 2 1 – 1

x1 3 2 1 – 1 0 1

Repeat step 4, 5 and 6.

cj 3 2 0 0 Min

B.V. cB xB x1 x2 x3 x4 ratio

  x3 0 2 0 2 1 – 1
2  1 
2

      x1 3 2 1 – 1 0 1 ---

j 0 – 5 0 3

Step 4  :  2 0

Therefore, variable x2 is incoming variable. Component wise ratio 
B

2

x
x  is {1, –}. Minimum

ratio corresponds to x3 and x3 is outgoing variable. Now make column corresponding to x2 as
unit vector.

B

1

x
x
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3 2 0 0 Min

B.V. cB xB x1 x2 x3 x4 ratio

x2 2 1 0 1
1
2

1
2

x1 3 3 1 0
1
2

1
2

j 0 0
3
2

1
2

Since j 0   j   the solution x2 = 1 and x1 = 3 is an optimal solution and optimal value.

1 2Max z 3x 2x 3 3 2 1 11

Example 2.9
Solve by simplex method the following L. P. problem.

Minimize       z x x x1 2 33 2

Subject to  3 2 71 2 3x x x

    2 4 121 2x x

   4 3 8 101 2 3x x x

      x x x1 2 3 0, ,

Solution :
First we convert the problem of minimization to maximization problem by taking objective

function z z' .

max.          z z x x x' 1 2 33 2

Now the equations obtained by introducing slakc variables x x x4 5 6, ,  are as follows.

         3 2 71 2 3 4x x x x

    2 4 0 121 2 3 5x x x x

    4 3 8 101 2 3 6x x x x

Taking x x x1 2 3 0  we get x x x4 5 67 12 10, ,  which is the starting B. F. S.
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Starting simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1  2  3 1 2 3

x
Y

Bi

12

Y4 0 7 3 -1 2 1 0 0 7 neg.

Y5 0 12 -2 4 0 0 1 0 3 min

Y6 0 10 -4 3 8 0 0 1
10
3

z c xB
1

8
x j 0 0 0 7 12 10

    = 0 c j -1 3 -2 0 0 0

j -1 3 -2 x x x

       1 1 1 1 0 0 0 3 2 4 1c c yB , , , ,  

       2 2 2 3 0 0 0 1 4 3 3c c yB , , , ,  

       3 3 3 2 0 0 0 2 0 8 2c c yB , , , ,  

Since all the j are not less than or equal to zero therefore the solution is not optimal.

2  is maximum.

Hence the incoming vector is 2 2y   and by mini ratio rule outgoing vector is

2 5y  .
Therefore key element y a22 22 4

In order to b ring 2 2y  in place of 2 5y   the inter mediate table is as follows.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 7 3 -1 2 1 0 0

Y5 12 -2 4 0 0 1 0

Y6 10 -4 3 8 0 0 1
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xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 10
5
2 0 2 1

1
4 0

Y2 3
1
2 1 0 0

1
4 0

Y6 1
5
2 0 8 0

3
4 1

Second simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

2 1 3

x
Y

B

1

Y4 0 10
5
2 0 2 1

1
4 0 4 min

Y2 3 3
1
2 1 0 0

1
4 0 -6 neg.

Y6 0 1
5
2 0 8 0

3
4 1

2
5

neg

x j 0 3 0 10 0 1

c j -1 3 -2 0 0 0

j
1
2 x -2 x

3
4 x

 

      1 1 1 1 0 3 0 5
2

1
2

5
2

1
2





c c yB , , , , 

      3 3 3 2 0 3 0 2 0 8 2c c yB , , , ,  

      5 5 5 0 0 3 0 1
4

1
4

3 3
4





c c yB , , , , 

Since all the j  are not less than or equal to zero the solution is not optimal.
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Here 1
1
2  is maximum.

Therefore y1  is the incoming, vector and by the minimal ratio rate we find that 1 4y 
as the outgoing vector.

Therefore key element y11
5
2 .

In order to to bring y1  in place of 1  the inter mediate table is as follows

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 10
5
2 0 2 1

1
4 0

Y2 3
1
2 1 0 0

1
4 0

Y6 1
5
2

0 8 0
3
4

1

xB Y1 Y2 Y3 Y4 Y5 Y6

Y1 4 1 0
4
5

2
5

1
10 0

Y2 5 0 1 1
1
5

3
10 0

Y6 11 0 0 13
5
2

1
2 1



77

Third simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1 2 3

Y1 -1 4 1 0
4
5

2
5

1
10 0

Y2 3 5 0 1 1
1
2

3
10 0

Y6 0 11 0 0 13
5
2

1
2

1

z c xB B' x j 4 5 0 0 0 11

  = 11 c j -1 3 -2 0 0 0

j x x
21
5

11
10

41
40 x

3 3 3 2 1 3 0 4
5

113 21
5




c c YB , , , , 

4 4 4 0 1 3 0 2
5

1
2

5
2

11
10





c c YB , , , , 

5 5 5 0 1 3 0 1
10

3
8

19
8

41
40





c c YB , , , , 

Since all j s'  for all non zao variables are negative so this solution is optimal.

Optimal solution is

 x x x1 2 34 5 0, ,

and max.   z' 11

  Hence min z 11

Example 2.10
Using simplex algorithm to solve the problem.

max.    z x x x2 5 71 2 3

subject to    3 2 4 1001 2 3x x x

     x x x1 2 34 2 100
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     x x x1 2 33 100

     x x x1 2 3 0, ,

Solution :

The equations obtained by introducing slack variables x x x4 5 6, ,  are as follows.

         3 2 4 1001 2 3 4x x x x

x x x x1 2 3 54 2 100

  x x x x1 2 3 63 100

Take    x x x1 2 3 100

Therefore starting B. F. S. is

x x x4 5 6100 100 100, ,

Starting simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1 2 3 1 2 3

Y4 0 100 3 2 4 1 0 0 25 min

Y5 0 100 1 4 2 0 1 0 50

Y6 0 100 1 1 3 0 0 1
100

3

z c xB B' x j 0 0 0 100 100 100

   = 0 c j 2 5 7 0 0 0

j 2 5 7 x x x

 
in out

 1 1 1 2 0 0 0 3 11 2c c yB , , , ,  

 2 2 2 5 0 0 0 2 4 1 5c c yB , , , ,  
 3 3 3 7 0 7c c yB

Since all j  are not less than or equal to zero for zero variables, so the solution is not
optimal.
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Since 3 7  is maximum therefore 3 3y   is the incoming vector..

By the min ratio rule

  min ,
x
y

yBi

i
i

3
3 0 100

4
25









, for i = 1

Therefore 1 4y   is the outgoing vector. Therefore the key element is y a13 13 4 . In

order to brings 1  in place of 3  we divide the first row by 4 and then subtract 2 and 3 times of
this row from the second and third rows respectively.

Thus the second simplex table is as follows.

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1 2 6

x
y

B

2

Y3 7 25
3
4

1
2 1

1
4 0 0 50

Y5 0 50
1
2 3 0

1
2 1 0

50
3

Y6 0 25
3
4

1
2 0

3
4 0 1 -50 neg.

x j 0 0 25 0 50 25

c j 2 5 7 0 0 0

j
13
4

3
2 x

7
4 x x

 
incoming

vector

For above simplex table

1 1 1 2 7 0 0 3
4

1
2

5
4

2 21
4





c c yB , , , , 

1
13
4
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2 2 2 5 7 0 0 1
2

3 1
2

5 1
2

3
2





c c yB , , , , 

4 4 0 7 0 0 1
4

1
2

3
4

7
4





c c yB , , , , 

Since all j  are not less than or equal to zero so the solution is not optimal.

Here 2
3
2  is max.

Therefore y2  is incoming vector and by min ratio rule we find that 2 5y   is the outgoing
vector. Key element is 3. Intermidiate table is :

xB Y1 Y2 Y3 Y4 Y5 Y6

Y3 25
3
4

1
2 1

1
4 0 0

Y5 50
1
2 3 0

1
2 1 0

Y6 25
5
4

1
2 0

3
4 0 1

The third simplex table is as follows.

B CB XB Y1 Y2 Y3 Y4 Y5 Y6 Min

Y3 7
50
3

5
6 0 1

1
3

1
6 0

Y2 5
50
3

1
6 1 0

1
6

1
3 0

Y6 0
100

3
4
3

0 0
5
6

1
6

1

x j 0
50
3

50
3 0 0

100
3

c j 2 5 7 0 0 0

j -3 x x
3
2

1
2

x
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1 1 1 7 5 0 5
6

1
6

4
3

3



C C Y zB , , , , 

4 4 4 0 7 5 0 1
3

1
6

1 3
2





C C YB , , , , 

5 5 5 0 7 5 0 1
6

1
3

1
2

1
2





C C YB , , , , 

Since all j  for zero variables are negative, this solution is optimal.

Optimal solution is x x x1 2 30 50
3

50
3

, ,  and Max. z 200 .

Complete solution with all computational steps is conveniently represented in the following
example.

Example :

Solve 1 2Max z 7x 5x

Subject to 1 2x 2x 6 , 1 24x 3x 12, 1 2x ,x 0

Solution :

1 2Max z 7x 5x

Subject to 1 2 3x 2x x 6 , 1 2 3 44x 3x 0x x 12 , 1 2 3 4x ,x ,x ,x 0

cj 7 5 0 0 Min

B.V. cB xB x1 x2 x3 x4 ratio 
B

i

x
x

x3 0 3 1 2 1 0 6

 x4 0 12 4 3 0 1 3

j – 7 – 5 0 0

x3 0 3 0
5
4

1
1
4

x1 7 3 1
3
4

0
1
4

j  0
1
4 0

7
4
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Since j 0  j  the solution is optimal solution.

x1 = 3, x2 = 0 and Max z = 7(3) + 5(0) = 21.

Artificial Variable Technique
If starting simplex table do not contain identity matrix, we introduce new type of variables

called artificial variables. These variables are fictitious and donot have any physical meaning.
This is only a device to introduce identity matrix in starting simplex table and to get basic
feasible solution so that simplex method may be adopted. Artificial variables are eliminated
from the simplex table as and when they become zero.

Two Phase Simplex Method
The process of eliminating artificial variables is performed in phase I and phase II is

used to get an optimal solution.

Computational Procedure of Two Phase Simplex Method
Phase I

In this phase the simplex method is applied to LPP with artificial variables leading to a
final simplex table containing a bsic feasible solution (BFS) to the original problem.

Step 1
Assign a cost – 1 to each artificial variable and cost 0 to all other variables.

Step 2
Solve by simplex method until either of three possibilities do arise.

(i) If Max z* < 0, given original problem does not have any feasible solution.

(ii) If Max z* = 0 and atleast one artificial variable appears in the optimal basis (basic
variable in last simplex table) at zero level then proceed to Phase II.

(iii) If Max z* = 0 and no artificial variable appears in the optimal basis proceed to Phase II.

Phase II

Assign the actual cost to the variables in objective function and zero cost to every artificial
variable that appears in the basis. This new objective function is now maximized by simplex
method with last simplex table of phase I as starting simplex table with actual cost values.

Example 1
Solve the following problem

1 2Max z x x

Subject to 1 22x x 4

1 2x 7x 7 ,  1 2x ,x 0
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Solution :
Convert the given problem into standard LPP.

1 2Max z x x

s.t. 1 2 32x x x 4 , 1 2 4x 7x x 7

i.e.

1

2

3

4

x
x2 1 1 0 4
x1 7 0 1 7
x

Since coefficient matrix donot contain identity matrix, we have to solve this problem by
two phase method by introducing artificial variables.

Phase I 1 2Max z 1a 1a

Subject to 1 2 3 12x x x a 4

1 2 4 2x 7x x a 7 , 1 2 3 4 1 2x ,x ,x ,x ,a ,a 0

0 0 0 0 –1 –1 Min

B.V. cB xB x1 x2 x3 x4 a1 a2 Rato

a1 – 1 4 2 1 – 1 0 1 0 4

 a2 – 1 7 1 7 0 – 1 0 1 1

j – 3 – 8 1 1 0 0

 a1 – 1 3
13
7 0 – 1

1
7 1

1
7

21
13

x2 0 1
1
7 1 0

1
7 0

1
7 7

13  
7 0 1

1
7 0

8
7

x1 0
21
13 1 0

7
13

1
13

7
13

1
13

x2 0
10
13 0 1

1
13

2
13

1
13

2
13

0 0 0 0 0 1
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Since j 0  j , an optimum basic feasible solution to the auxiliary LPP has been
attained.

1
21x
13

,  2
10x
13

,  3 4 1 2x x a a 0 .

By step 2 (iii) proceed to Phase II.

Phse II
Remove column of a1 and a2 from last simplex table. Starting simplex table will be last

simplex table of phase I. Whereas objective function is a function given in original problem.

1 2Max z x x

cj – 1 – 1 0 0

B.V. cB xB x1 x2 x3 x4

x1 – 1
21
13

1 0
7

13
1

13

x2 – 1
10
13 0 1

1
13

2
13

j 0 0
6

13
1

13

Since j 0  j , an optimum BFS has been attained.

1
23x
13 ,  2

10x
13

  1 2Min z x x

23 10 33
13 13 13

Example 2

1 2 3Max z x 2x 3x

Subject to 1 2 32x x 3x 2

1 2 32x 3x 4x 1 ,  1 2 3x ,x ,x 0
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Solution :
Though constraints are in the form of equations coefficient matrix do not contain identity

matrix and therefore one has to introduce artificial variables and solve by two phase simplex
method.

Phase I

1 2Max z a a

s.t. 1 2 3 12x x 3x a 2

1 2 3 22x 3x 4x a 1,  1 2 3 1 2x ,x ,x ,a ,a 0

cj 0 0 0 – 1 – 1 Min

B.V. cB xB x1 x2 x3 a1 a2 ratio

     a1 – 1 2 – 2 1 3 1 0
21
3

 a2 – 1 1 2 3 4 0 1
1
4

j 0 – 4 – 7 0 0

    a1 – 1
5
4

7
2

5
4

0 1
3
4

    x3 0
1
4

1
2

3
4

1 0
1
4

7
2

5
4 0 0

7
4

Since all j 0 , an optimum BFS to the LPP has been attained.

But 1 2
5Max z a a 0
4

Therefore (by step 2(i) of phase I) original problem does not possess any feasible solution.
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Alternatively example 1 can be solved as follows.

Example 2.11
Solve the following L. P. problem

Min.    z x x1 2

subject to   2 41 2x x

  x x1 27 7 ,     x x1 2 0,

Solution :

First we convert the problem of minimization to the maximization problem by taking the
objective function z z'  i. e.

Max. z z x x' 1 2

Introduction of surplus variables x3  and x4  in the given inequalities yields.

       2 41 2 3x x x

       x x x1 2 47 7

Here we can not get the starting B. F. S. so we introduce the artificial variables (positive)
x5  and x6 .

The above equations may be written as

2 41 2 3 5x x x x

 x x x x1 2 4 67 7

The problem will be solved in two phases.

Phase : 1
This phase consists of the removal of artificial variables.

Taking x x x x1 2 3 40 0,  we get x5 4  and x6 7 .

We construct the first table as follows.

Table 1

xB Y1 Y2 Y3 Y4 A1 1( )   A2 2( )

A1 4 2 1 -1 0 1    0

A2 7 1 7 0 -1 0    1

x j 0 0 0 0 4    7

    
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First we shall remove the artificial variable vector (columns) A1  and A2  from the basis
matrix. In place of artificial variable vector the entering vector should be so chosen that the
revised solution is non negative (B. F.) solution.

We can remove A2  and introduce y2  in its place in the basic matrix. For this we divide
the second row by 7 and then subtract it from the first row. Thus we get the following table.

It maybe seen that if y y y1 3 4, ,  is entered in place of A2  then the revised solution is not

non negative. So we can not enter either of them, in place of A2 . Since artificial variable x6

becomes zero, we forget about A2  for ever and will not consider it in any other table.

xB Y1 Y2 Y3 Y4 A1 A 2

2  1 

A1 3
13
7

0 -1
1
7

1
1
7

Y2 1
1
7 1 0

1
7 0

1
7

x j 0 1 0 0 3 0


Now we proceed to remove A1  and introduce y1  in its place in basic matrix. For this we

mutiply first row by 
7

13  and subtract 
1
7  times of this new row from the second row. Thus we get

the following table.

Table 2

xB Y1 Y2 Y3 Y4 A1

1  2 

y1

21
13 1 0

7
13

1
13

7
13

y2

10
13 0 1

1
13

14
91

1
13

x j
21
13

10
13 0 0 0

Since the artificial variable x5  becomes zero we forget about A1  and will not consider it
again.
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Thus we get the following solution in phase (1)

  x x x x1 2 3 4
21
13

10
13

0 0, , ,

Which is the B. F. S. with which we proceed to get the optimal solution by simplex
method.

Phase (II)

The starting simplex table

B cB xB Y1 Y2 Y3 Y4 Min. ratio

1  2 

Y1 -1
21
13 1 0

7
13

1
13

Y2 -1
10
13 0 1

1
13

14
91

z c xB B' x j
21
13

10
13 0 0

   
31
13

c j - 1 -1 0 0

j x x
6

13
7
91

3 3 3 0 1 1 7
13

1
13

6
13





c c yB , , 

4 4 4 0 1 1 1
13

14
91

7
91





c c yB , , 

Since j  s for all zero variables are negative so the solution is optimal.

Therefore the optimal solution is

 x x1 2
21
13

10
13

,  and

       Min. z = - max. z' 
31
13
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Example 2.12

Solve the following L. P. Problem

Max.    z x x x x1 2 3 42 3

Subject to         x x x1 2 32 3 15

 2 5 201 2 3x x x

         x x x x1 2 3 42 10

      x x x x1 2 3 4 0, , ,

Solution :

In order to get an identity matrix we need two more columns of the unit matrix as one
column of unit matrix (coeff. of x4 ) is present in the constraints.

Thus we need only two artificial variables in the first two contraints. Introducing the
artificial variables x5  and x6 we have,

         x x x x x1 2 3 4 52 3 0 15.

         2 5 0 201 2 3 4 6x x x x x.

         x x x x1 2 3 42 10

Phase (1)

Taking x x x1 2 3 0  we get x x x4 5 610 15 20, , .

First table

xB Y1 Y2 Y3 Y4 A1 A2

3  1  2 
A1 15 1 2 3 0 1 0

A2 20 2 1 5 0 0 1 

Y4 10 1 2 1 1 0 0

x j 0 0 0 10 15 20

 
First we remove the artificial variable vector A2  and introduce y3  in its place.

For this we divide the second row by 5 and subtract it 3 and one times of it from the first
and third rows respectively.
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Thus we get the following table.

Second Table

xB Y1 Y2 Y3 Y4 A1 A2

3  1 

A1 3
1
5

7
5 0 0 1

3
5

Y3 4
2
5

1
5

1 0 0
1
5

Y4 6
3
5

9
5

0 1 0
1
5

x j 0 0 4 6 3 0


Now the artificial variable x6 0  so we shall not consider it again. Again we remove the

artificial variable vector A1  and introduce y2  in its place. For this we multiply first row by 
5
7  and

then subtract its 
1
5

 and 
9
5

 times from the second and third rows.

Thus we get the following table.

xB Y1 Y2 Y3 Y4 A1

1  2  3 

Y2

15
7

1
7 1 0 0

5
7

Y3

25
7

3
7 0 1 0

1
7

Y4

15
7

6
7 0 0 1

9
7

x j 0
15
7

25
7

15
7 0

Here the artifical variable x5 0 . We shall not consider it in the other table.
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Thus we get the following B. F. S. with which we can proceed, for the optimal solution by
simplex method.

     x x x x1 2 3 40 15
7

25
7

15
7

, , ,

Phase (II)
The starting simplex table is as follows.

B cB xB Y1 Y2 Y3 Y4 min ratio

1 2 3

x
y

B

1

Y2 2
15
7

1
7 1 0 0 - 14 (neg.)

Y3 3
25
7

3
7 0 1 0

25
3

Y4 - 1
15
7

6
7

0 0 1
5
2

(min)

x j 0
15
7

25
7

15
7

c j 1 2 3 -1

j
6
7 x x x

 

1 1 1 1 2 3 1 1
7

3
7

6
7

6
7





c c YB , , , , 

Since all j  are not less than or equal to zero so the solution is not optimal.

Here y1  is the incoming vector and by minimum ratio rule we find that y4  is the outgoing
vector.

Therefore key element y31
6
7 .

In order to bring y1  in place of y4  multiply third row by 
7
6  and then add its s 

1
7 times in

first row and subtract 
3
7  times from the second row..
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The second simplex table is as follows.

B cB xB Y1 Y2 Y3 Y4 min ratio

3 1 2

Y2 2
5
2 0 1 0

1
6

Y3 3
5
2 0 0 1

1
2

Y1 1
5
2 1 0 0

7
6

z c xB B x j
5
2

5
2

5
2 0

    = 15 c j 1 2 3 -1

j x x x -1

4 4 4 1 2 3 1 1
6

1
2

7
6

1



c c yB , , , , 

Since 4  for zero variable is negative so the solution is optimal.

Optimal solution is

 x x x1 2 3
5
2

5
2

5
2

, ,  and max.z 15 .

Example 2.13
Using simplex algorithm solve the L. P. problem

Min. z x x x4 8 31 2 3

Subject to x x1 2 2

2 51 3x x

x x x1 2 3 0, ,

Solution :

First we convert the problem of minimization to maximization problem by taking z z' .

     max. z z x x x' 4 8 31 2 3
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Introducing the surplus variables x x4 5,  the equations obtained are

 x x x x1 2 3 40 2.

           2 0 51 2 3 5x x x x

The columns of x2 and x3  form a unit matrix. Therefore there is no need to introduce
the artificial variables.

Taking x x x1 4 50 0 0, ,  we have

x x2 32 5,  as starting B. F. S.

Starting simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 min ratio

1  1  2  4  5 
x
y

B

1

Y2 - 8 2 1 1 0 -1 0 2 min 

Y3 - 3 5 2 0 1 0 -1
5
2

x j 0 2 5 0 0

c j -4 -8 -3 0 0

j 10 x x -8 -3

 

1 1 1 4 8 3 1 2 10c c yB , ,  

4 4 4 0 8 3 1 0 8c c yB , ,  

5 5 5 0 8 3 0 1 3c c yB , ,  

Since all j  s are not less than or equal to zero so the solution is not optimal.

    Max j. 10 1

 Entering vector is 1 1y   and by minimum ratio rule we find that outgoing vector is

1 2y  .
Therefore key element is y11 1.
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In order to bring 1  in place of 1  we subtract 2 times of the first row from the second
row.

Second simplex table is

B cB xB Y1 Y2 Y3 Y4 Y5 min ratio

1  2 
x
y

B

4

Y1 -4 2 1 1 0 -1 0 -2 neg.

Y3 - 3 1 0 -2 1 2 -1
1
2  min

x j 2 0 1 0 0

c j - 4 - 8 - 3 0 0

j x - 10 x 2 -3

 

2 2 2 8 4 3 1 2 10c c yB , ,  

  4 4 4 0 4 3 1 2 2c c yB , ,   

   5 5 5 0 4 3 0 1 3c c yB , ,  

Since all j  s are not less than or equal to zero this solution is not optimal.

Since Max j 4 , the incoming vector is y4  and by the minimum ratio rule we find that

the outgoing vector is y3 2  .
Key element = 2

In order to bring y4  in place of y3  we divide the second row by 2 and then add it to the
first row.



Third simplex table is

B cB xB Y1 Y2 Y3 Y4 Y5 min ratio

 1  2

Y1 - 4
5
2

1 0
1
2

0
1
2



Y4 0
1
2

0 -1
1
2

1
1
2



xj
5
2

10 0
1
2

0

cj -4 -8 -3 0 0

j x -8 -1 x -2

   2 2 B 2c c y 8 4,0 0, 1 8         

 3 3 B 3
1 1c c y 3 4,0 , 1
2 2

          
 

 5 5 B 5
1 1c c y 0 4,0 , 2
2 2

           
 

Since all j ' s  are negative, this solution is optimal.

So the optimal solution is

1 2 3
5x ,x 0,x 0
2

  

and  minz max.z ' 10  

95
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DUALITY THEOREM
INTRODUCTION

We have considered the L. P. Problems in which by minimum ratio rule we get only one
vector to be deleted from the basis. But there are the L. P. Problems where we get more than
one vector which may be deleted from the basis.

Thus if min ,
x
y

yBi

ik
ik 

RS|T|
UV|W|

0 (k  is incoming vector)

occurs at i i i 1 2, ,..  is

i. e. minimum occurs for more than one value of i then the problem is to select the vector

to be deleted from the basis (If we choose one vector say  i (i is one of i i is1 2, ,..., ) and delete it

from the basis then the next solution may be a degenerate B. F. S. Such problem is called

problem of degeneracy.

It is observed that when the simplex method is applied to a degenerate B. F. S. to get a

new B. F. S., the value of the objective function may remain unchanged i. e. the value of the

objective function is not improved.

The procedure for such problems of degeneracy is as follows.

Let i
Bi

ik
ik

X
y

ymin ,
d i


R
S|
T|

U
V|
W|

0  occur at i i i is 1 2, ,...,

where k ky is the incoming vector..

Let I i i is1 1 2 , ,...,l q
1) Renumber the columns of the table starting with the columns in the basis. Let

y y1 2, ,...  etc. be the new numbers of columns. Let y t  be the new number of

entering vector yk  i. e. y yk t .

2) Calculate min
y
y

i Ii

ik

1
1

RS|T|
UV|W|
  . If minimum is unique then delete the corresponding

vector from the basis.
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If minimum is not unique then proceed to the next step.

3) Calculate mini
y
y

i Ii

ik

2
2

RS|T|
UV|W|
   where I2  is the set of all those values of i I 1 , for

which there is a tie in I2 . Clearly I I2 1 .

In this case if minimum is unique then correspondng vector is deleted from the
basis. If in this case also, minimum is not unique proceed to the next step.

4) Compute mini
y
y

i Ii

ik

3
3

RS|T|
UV|W|
   where I3  is the set of those values of i I 2  for which

there is a tie in (3) clearly I I I3 2 1  .

Proceeding in this way we can get a unique minimum value of i i. e. the unique
vector to be deleted from the basis.

Example 1
Solve the L. P. Problem

Max.    z x x x x   
3
4

150 1
501 2 3 4

Subject to       
1
4

60 1
25

9 01 2 3 4x x x x   

      
1
2

90 1
50

3 01 2 3 4x x x x   

      x3 1

         and x x x x1 2 3 4 0, , , 

Solution :

Introducing the slack variables in the constraints we get the following equalities

1
4

60 1
25

9 01 2 3 4 5x x x x x    

1
2

90 1
50

3 01 2 3 4 6x x x x x    

x x3 7 1 

Taking x x x x1 2 3 40 0 0 0   , , ,  we have

       x x x5 6 70 0 1  , ,
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Which is the starting B. F. S.

Starting simplex table

B cB xB y4 y5 y6 y7 y1 y2 y3 Min ratio

y1 y2 y3 y4 y5 1( ) y6 2( ) y7 3( )
x
y

B

1

y5 0 0
1
4

-60 
1

25
9 1 0 0 0

y6 0 0
1
2

- 90 
1

50
3 0 1 0 0

y7 0 1 0 0 1 0 0 0 1 -

z c xB B x j 0 0 0 0 0 0 1

   = 0 c j
3
4

-150
1

50
-6 0 0 0

 j
3
4

-150
1

50
-6 0 0 x

A B

1 1 1
3
4

0 0 0 1
4

1
2

0 3
4

    F
HG

I
KJ c c yB , , , ,b g

2 2 2 150 0 0 0 60 90 0 150        c c yB , , , ,b gb g

3 3 3
1

50
0 0 0 1

25
1

50
1 1

50
     F

HG
I
KJ c c yB , , , ,b g

4 4 4 6 0 0 0 9 3 0 6      c c yB , , , ,b gb g
Since all  j  are not less than as equal to zero therefore the solution is not optimal

          and max j  
3
4 1

Therefore incoming, vector is y1  and

i
B i

i l
i j

x
y

ymin , 
RS|T|

UV|W|
0  is not unique.
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This minimum is o and occurs for i = 1 and i = 2.

This problem is a problem of degeneracy.

Therefore to select the vector to be deleted from the basic we proceed as follows.

1) First of all we renumber the columns of above table as follows.

Let y y y y y y1 5 2 6 3 7  , ,

y y y y y y y y4 1 5 2 6 3 7 4    , ,

2) Since minimum ratio occurs for

i = 1 and i = 2 it follows that

I1 1 2 ,l q
Incoming vector is y y k1 4 4 ,  for i = 1, 2

i I
i

i

y
y

y
y

y
y

RS|T|
UV|W|


RST
UVW,

min min ,1

4

11

14

21

24

 F
HG

I
KJ

F
HG

I
KJ

R
S
||

T
||

U
V
||

W
||
min , min ,i 1

1
4

0
1
2

4 0l q

 0 21

24

y
y

This minimum is unique and occur for i = 2. Therefore the vector to be deleted (i. e. the

outgoing vector) from the basis is y y2 2 6 b g .

Therefore key element is y21
1
2

 .

Therefore in older to bring y1  in place of y6  we divide the second row by 
1
2

 and then

subtract 
1
4

 times of this row from the first row..
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Second simple table

B cB xB y1 y2 y3 y4 y5 y6 y7 Min ratio

2b g 1b g 3b g x
y

B

3

y5 0 0 0 -15 
3

100
15
2

1 
1
2

0 --

y1
3
4

0 1 -180 
1

25
6 0 2 0 --

y7 0 1 0 0 1 0 0 0 1 1 (Min)

x j 0 0 0 0 0 0 1

c j
3
4

-150
1

50
-6 0 0 0

 j 0 -15
1

20


21
2

0 
3
2

x

A B
Incoming Outgoing

Vector Vector

2 2 2 150 0 3
4

0 15 180 0 15     FHG
I
KJ    c c yB , , , ,b g

3 3 3
1

50
0 3

4
0 3

100
1

25
1 1

20
     FHG

I
KJ  F
HG

I
KJ c c yB , , , ,

4 4 4 6 0 3
4

0 15
2

6 0 21
2

    FHG
I
KJ
F
HG

I
KJ  c c yB , , , ,

6 6 6
3
2

   c c yB

Since all  j  are not less than or equal to zero therefore the solution is not optimal.

     Max.  j  
1

20 3
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Therefore incoming vector is 
1
3

 and by minimum ratio rule we find that the outgoing

vector is y7 2b g .

(In considering 
x
y

B

B
 we need not consider the ratios 

x
y

B1

13
 and 

x
y

B2

23
 since y13

3
100

   and

y23
1

25
  are both negative.)

Therefore key element y33 1 .

In order to bring y3  in place at y7 3b g  we add 
3

100
 and 

1
25

 times of the third row in the

first and second rows respatively.

The third simplex table

B cB xB y1 y2 y3 y4 y5 y6 y7

2b g 3b g 1b g

y5 0
3

100
0 -15 0

15
2

1 
1
2

3
100

y1
3
4

1
25

1 -180 0 6 0 2
1

25

y3             
1

50
1 0 0 1 0 0 0 1

x j
1

25
0 1 0

3
100

0 0

c j
3
4

-150
1

50
-6 0 0 0

 j x -15 x 
21
2

x 
3
2


1

20

2 2 2 150 0 3
4

1
50

15 180 0 15     FHG
I
KJ    c c yB , , , ,b g

4 4 4 6 0 3
4

1
50

15
2

6 0 21
2

     FHG
I
KJ
F
HG

I
KJ  c c yB , , , ,
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6 6 6 0 0 3
4

1
50

1
2

2 0 3
2

    FHG
I
KJ FHG

I
KJ  c c yB , , , ,

7 7 7 0 0 3
4

1
50

3
100

1
25

1 1
20

    FHG
I
KJ
F
HG

I
KJ c c yB , , , ,

Since all  j 0  thesefore the solution is optimal and the optimal solution is

 x x x x1 2 3 4
1

25
0 1 0   , , ,

and        Max z. 
1

20

DUALITY
Introduction

Every L. P. Problem is associated with another L. P. Problem called the dual of the
problem. Consider a L. P. Problem

Max. z c x c x c xn n   1 1 2 2 ...

Subject to a x a x a x bn n11 1 12 2 1 1   ...

a x a x a x bn n21 1 22 2 2 2   ...

...............................................

a x a x a x bm m m n n m1 1 2 2   ...      .......... (i)

and x x xn1 2 0, ,....,  ,

where the signs of all parameters a, b, c are orbitary.

Then the dual of this problem is defined as

Mini z b w b w b wm m
    1 1 2 2 ...

Subject to a w a w a w cm m11 1 21 2 1 1   ...

a w a w a w cm m12 1 22 2 2 2   ...

...................................................

and a w a w a w cn n mn n n1 1 2 2   ...

and w w wm1 2 0, ,..., 

where w w wm1 2, ,...,  are called the dual variables.



103

Also problem (1) is called the primal problem.

In a matrix notation a L. P. Problem is

Max. z c x

Subject to A x b

and x0

and its dual is defined as

Min z b w  '

Subject to A w c' '

and w 0

Where w

w
w

wm



L

N

MMMMM

O

Q

PPPPP

1

2

....

and A b c', ', '  are the transposes of the matrices A b,  and c  respectively..

It is obvious from the definition that the dual of the dual is the primal itself.

It is important to note that we can write the dual of a problem if all its constraints involve
the sign  .

If  the constraint has a sign   then multiply both the sides by - 1 and makes the sign  .

If the constraint has a sign = for ex. a x bi j j i
j

n





1
   ........... (3)

then we can replace it by two constraints involving two inequalities i. e.

 a x bi j j i
j

n





1
   ........... (4)

  a x bi j j i
j

n





1
   ........... (5)

5) may be written as

             

a x bi j j i
j

n

1
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Standard form of the primal
The L. P. Problem is in standard primal form if

1) It is a problem of maximization and

2) All the constraints involve the sign  .

Relationship between two problems (Primal and dual)
The two problems (primal and the dual) are related to each other in the following manner.

1) If one is a maximization problem then the other is a minimization problem.

2) If one of them has a finite optimal solution then the other problem also has a finite
optimal solution.

3) From the final simplex table of one problem the solution of the other an be read

from the  j  row below the columns of slack and surplus variables as follows.

The  j j j j j B js c z c c y'    d h  with the sign changed for the slack vectors in
the optimal (final) simplex table for the primal are the values of the corresponding
optimal dual variables in the final simplex table for the dual problem.

4) The optimal values of the objective functions in both the problems are the same
that is Max Z Min Zx w.  .

5) If one problem has an unbounded solution then other has no feasible solution.

Example 2
Write the dual of the problem

Mini. z x x 3 1 2

Subject to 2 3 21 2x x 

x x1 2 1 

and x x1 2 0, 

Solution :

First we write the problem in standard primal form as follows.

Max. z x x'  3 1 2  where z z' 

Such that    2 3 21 2x x

and    x x1 2 1

and x x1 2 0, 

which may be written as
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Max z
x
x

' ,  
L
NM

O
QP3 1 1

2

Such that 
 
 
L
NM

O
QP
L
NM

O
QP



L
NM

O
QP

2 3
1 1

2
1

1

2

x
x

and x x1 2 0, 

The dual of the given problem is given by

Mini. z
w
w

   
L
NM

O
QP2 1 1

2
,

such that 
 
 
L
NM

O
QP
L
NM

O
QP



L
NM

O
QP

2 1
3 1

3
1

1

2

w
w

and w w1 2 0, 

or mini. z z w w   1 2

such that    2 31 2w w

   3 11 2w w

Example 3
Write the dual of the problem

miz. z x x 2 52 3

such that x x1 2 2 

2 6 61 2 3x x x  

x x x1 2 33 4  

and x x x1 2 3 0, ,  .

Solution :

First we write the given problem in standard primal form as follows.

1) The objective function is changed from minimization to maximization.

i. e. Max z x x'  2 52 3  where z z' 

2) The sign of first constraint is changed to   by multiplying both sides by - 1 and

3) The third constraint is replaced by two constraints.

x x x1 2 33 4  
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and x x x1 2 33 4  

The second may be written as

    x x x1 2 33 4

Thus the given problem in standard primal form is as follows.

Max. z x x x'  0 2 51 2 3

subject to   x x1 2 2

2 6 61 2 3x x x  

x x x1 2 33 4  

    x x x1 2 33 4

and x x x1 2 3 0, , 

i. e. Max z
x
x
x

. ' , ,  
L

N
MMM

O

Q
PPP

0 2 5
1

2

3

,

such that 

 


 

L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP




L

N

MMMM

O

Q

PPPP

1 1 0
2 1 6
1 1 3
1 1 3

2
6
4

4

1

2

3

x
x
x

and x x x x1 2 3 4 0, , , 

Therefore the dual of the given problem is given by

Miniz

w
w
w
w

   

L

N

MMMMM

O

Q

PPPPP
2 6 4 4

1

2

3

4

, , ,

such that 

 
 



L

N
MMM

O

Q
PPP

L

N

MMMMM

O

Q

PPPPP
 



L

N
MMM

O

Q
PPP

1 2 1 1
1 1 1 1
0 6 3 3

0
2
5

1

2

3

4

w
w
w
w

and w w w w1 2 3 4 0, , , 
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or Min. z w w w w    2 6 4 41 2 3 4

such that     w w w w1 2 3 42 0

     w w w w1 2 3 4 2

0 6 3 3 51 2 3 4w w w w    

and w w w w1 2 3 4 0, , , 

Example 4
Apply the simplex method to solve the following

Max. z x x x  30 23 291 2 3

s. t. 6 5 3 261 2 3x x x  

4 2 5 71 2 3x x x  

and x x x1 2 3 0, ,      .......... (1)

Also read the solution of the dual of the above problem from the final table.

Solution :

Introducing the slack variables x4  and x5 ,we have

6 5 3 261 2 3 4x x x x   

4 2 5 71 2 3 5x x x x   

Taking x x x1 2 3 0    we have x4 26  and x5 7 ,

which is the starting B. F. S.
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Starting Simplex Table

B cB xB y1 y2 y3 y4 y5 Min. Ratio. 
X
y

B

1

1b g 2b g 3b g 1b g 2b g

y4 0 26 6 5 3 1 0
13
3

y5 0 7 4 2 5 0 1
7
4
Min

z c xB B x j 0 0 0 26 7

  = 0 c j 30 23 29 0 0

 j 30 23 29 x x

A B
Incoming Outgoing

1 1 1 30 0 0 0 4 30    c c yB , ,b g b g
Similarly  2 323 29 ,

Since all  j  are not less than or equal to zero therefore the solution is not optimal.

Max.  j  30 1

Hence 1 1 yb g  is incoming vector and by minimum ratio rule we find that y5 2b g  is
outgoing vector.

Hence the key element y a21 21 4  .
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Second simplex table

B cB xB y1 y2 y3 y4 y5 Min. Ratio. 
X
y

B

2

2b g 1b g

y4 0
31
2

0 2 
9
2

1 
3
2

31
4

y1 30
7
4

1
1
2

5
4

0
1
4

7
8


z c xB B x j
7
4

0 0
31
2

0

  
105

2
c j 30 23 29 0 0

 j x 8 
17
2

x 
15
2

B A

2 2 2 23 0 30 2 1
2

8    F
HG

I
KJ c c yB , ,b g

3 3 3 29 0 30 9
2

5
4

17
2

    FHG
I
KJ  c c yB , ,b g

= 29 - 37.5 = - 8.5

5 5 5 0 30 3
2

1
4

15
2

   FHG
I
KJ  c c yB , ,b g

Since all  j  are not less than or equal to zero so the solution is not optimal. Here y2  is

insuming vector and y1  is out going vector..

The key element is y22
1
2


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Final simplex table

B cB xB y1 y2 y3 y4 y5 Min. Ratio.

y4 0
17
2

- 4 0 
19
2

1 
5
2

y2 23
7
2

2 1
5
2

0
1
2

z c xB B x j 0
7
2

0
17
2

0

  
161
2

c j 30 23 29 0 0

 j 16 x 
57
2

x 
23
2

1 1 1 30 0 23 4 2 16      c c yB , ,b gb g

3 3 3 29 0 23 19
2

5
2

57
2

    FHG
I
KJ  c c yB , ,b g

5 5 5 0 0 23 5
2

1
2

23
2

    FHG
I
KJ  c c yB , ,b g

Since all  j are   0 the solution isoptimal.

Therefore optimal solution is

x x x1 2 30 7
2

0  , ,  and max.z 161
2

.

To write the dual of the problem.

The given problem may be written as :

Max. z
x
x
x


L

N
MMM

O

Q
PPP

30 23 29
1

2

3

, , ,

such that 
6 5 3
4 2 5

26
7

1

2

3

L
NM

O
QP
L

N
MMM

O

Q
PPP

L
NM

O
QP

x
x
x

and x x x1 2 3 0, , 
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Therefore the dual of the given problem is given by

Mini z
w
w

 
L
NM

O
QP26 7 1

2
,

such that 

6 4
5 2
3 5

30
23
29

1

2

L

N
MMM

O

Q
PPP
L
NM

O
QP

L

N
MMM

O

Q
PPP

w
w

where w w1 2 0, 

OR

Min. z w w  26 71 2

s. t. 6 4 301 2w w 

5 2 231 2w w 

3 5 291 2w w      .......... (2)

where w w1 2 0, 

The dual problem (2) may be written as

Max. z w w1 1 226 7   

s. t. 6 4 301 2 3 6w w w w   

5 2 231 2 4 7w w w w   

3 291 2 5 8w s w w w   

and w w w1 2 8 0, ,..., 

Where w w w3 4 5, ,  are surplus variables and w w w6 9 8, ,  are the artificial variables.

Now we obtain the solution of the above problem by simplex method.



~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~

1) Solve the L.P. Problem

Max.  1 2 3z 3x 5x 4x  

Subject to, 1 22x 3x 8 

2 32x 5x 10 

1 2 33x 2x 4x 15  

and 1 2 3x ,x ,x 0

2) Solve by simplex method the following L. P. Problem

Minimize  1 2 3z x 3x 2x  

Subject to, 1 2 33x x 2x 7  

1 2x 4x 12  

1 2 34x 3x 8x 16   

1 2 3x ,x ,x 0

3) Solve the following L. P. Problem

Minimize  1 2z x x 

Subject to, 1 22x x 4 

1 2x 7x 7 

1 2x ,x 0

4) Using the simplex method to solve the following L. P. Problem

Max.  1 2 3 4z x 2x 3x x   

Subject to, 1 2 3x 2x 3x 15  

1 2 32x x 5x 20  

1 2 3x 2x x x 10   

1 2 3 3x ,x ,x ,x 0
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5) Using the simplex method solve the L.P. Problem

Min.  1 2 3z 4x 8x 3x  

Subject to, 1 2x x 2 

1 32x x 5 

1 2 3x ,x ,x 0

6) Using the simplex method solve the following.

Max.  1 2 3z 2x 5x 7x  

Subject to, 1 2 33x 2x 4x 100  

1 2 3x 4x 2x 100  

1 2 3x x 3x 100  

1 2 3x ,x ,x 0

7) Solve the following L. P. Problem.

Max.  1 2 3 4
3 1z x 150x x x
4 50

   

Subject to, 1
2 3 4

x 160x x 4x 0
4 25
   

1
2 3 4

x 190x x 3x 0
2 50
   

and 1 2 3 4x ,x ,x ,x 0

8) Use the simplex method to solve the following

Max.  1 2 3z 30x 23x 29x  

Subject to, 1 2 36x 5x 3x 26  

1 2 34x 2x 5x 7  

and 1 2 3x ,x ,x 0

Also read the solution of the dual of the above problem from the final table.
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9) Use two phase simplex method to solve.

Minimize  1 2 3 4z 3x 2x x x   

Subject to, 1 2 3 44x 5x x 3x 5   

1 2 3 42x 3x 4x 5x 7   

j jx 0,c 1,2,34 

10) Solve the following L.P.P.

Maximize  1 2z 3x 4x 

Subject to, 1 2x 4x 8 

1 2x 2x 4 

1 2x ,x 0

11) Solve the following L.P.P.

Maximize  1 2z 2x x 

Subject to, 1 24x 3x 12 

1 24x x 8 

1 24x x 8 

1 2x ,x 0

12) Solve the following L.P.P.

Max.  1 2z 5x 3x 

Subject to, 1 2x x 2 

1 25x 2x 10 

1 23x 8x 12 

1 2x 0,x 0 
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13) Solve by L.P.P.

Max.  1 2 3z 22x 30x 25x  

Subject to, 1 22x 2x 100 

1 2 32x x x 100  

1 2 3x 2x 2x 100  

1 2 3x ,x ,x 0

14) Solve by L.P.P.

Max. 1 2 3z 5x 2x 3x  

Subject to, 1 2 32x 2x x 2  

1 23x 4x 3 

2 3x 3x 5 

1 2 3x ,x ,x 0

15) Solve by L.P.P.

Max. 1 2 3 4z x 15x 2x 5x   

Subject to, 1 2 3 43x 2x x x 6   

1 2 6 42x x x 4x 4   

1 2 3 42x 6x 8x 4x 0   

1 2 3 4x 3x 4x 3x 0   

1 2 3 4x ,x ,x ,x 0


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DUALITY IN LINEAR PROGRAMMING PROBLEM

Definition : Primal Problem

Max   
n

T
x i i

i 1

z c x c x


 

s.t.  m nAx b,  x 0,  A  

Definition : Dual Problem

Min   
m

T
w i i

i 1

z b w b w


 

s.t. TA w c,  w 0 

( x  has n components, w  has m components)

General Rules for converting any primal to its dual

Step 1 : Convert the objective function into max form (MIn z = – (Max – z)).

Step 2 : If the constraint has ' ' then multiply the constraint by (–1)

Step 3 : If the constraint has '=' then replace this constraint by two constraints '  ' and ' ' e.g.

1 2 1 2x x 2 x x 2      and 1 2x x 2  .

Step 4 : Every unrestricted variable is replaced by the difference of two non-negative variables
e.g. x

1
 is unrestricted.

* ** * **
1 1 1 1 1x x x ,  x ,x 0  

DUALITY THEOREM
UNIT

03
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Step 1 to 4 gives Standard primal LPP.

Max Tz c x

s.t. Ax b, x 0 

Step 5 : Dual of above primal LPP is obtained

(i) TA A

(ii) Interchange b, c .

(iii)     

(iv) Minimize objective function.

Example : Max 1 2z 3x 2x 

s.t. 1 2x 3x 5 

1 2x x 7  , 1 2x ,x 0

Answer :  Max T
x 1 1 2 2z c x c x c x  

s.t.  Ax b , x 0

Primal :  Max   1 T
1 2

1

x
z 3x 2x 3 2 c x

x

 
    

 

s.t.
1

2

x1 3 5

x1 1 7

    
        

, x 0

Dual :  Min   1
w

2

w
z 5 7

w

 
  

 

1

2

w1 1 3

w3 1 2

    
        

, 1 2w ,w 0
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Example : Write dual of following LPP

Max  1 2 3z 2x 3x x  

s.t.  1 2 3x x 3x 8  

1 2 3x x x 4   , 1 2 3x ,x ,x 0

Answer :  Max  
1

2

3

x

z 2 3 1 x

x

 
    
  

s.t.  

1

2

3

x
1 1 3 8

x
1 1 1 4

x

 
              

,  1 2 3x ,x ,x 0

Dual LPP Min w 1 2z 8w 4w 

s.t.
1

2

1 1 2
w

1 1 3
w

3 1 1

   
                 

, 1 2w ,w 0

Primal : Max Tz c x

s.t. Ax b , x 0

Dual : Min T
wz b w

s.t. TA w c , w 0

Example : Find the dual of the following Primal.

Min x 2 3z 2x 5x 

s.t.  1 2x x 2  , 1 2 32x x 6x 6  

1 2 3x x 3x 4   , 1 2 3x ,x ,x 0
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Answer : Max '
x 2 3z 2x 5x    '

x xz z 

1 2x x 2    , 1 2 32x x 6x 6  

1 2 3x x 3x 4   ,   1 2 3x x 3x 4     , 1 2 3x ,x ,x 0

Max '
x 2 3z 2x 5x  

s.t. 1 2x x 2   

1 2 32x x 6x 6  

1 2 3x x 3x 4  

1 2 3x x 3x 4     , 1 2 3x ,x ,x 0

Standard :  Max  
1

'
x 2

3

x

z 0 2 5 x

x

 
     
  

s.t.

1

2

3

1 1 0 2
x

2 1 6 6
x

1 1 3 4
x

1 1 3 4

     
    
        
          

, 1 2 3x ,x ,x 0

Dual : Min w 1 2 3 4z 2w 6w 4w 4w    

s.t.

1

2

3

4

w
1 2 1 1 0

w
1 1 1 1 2

w
0 6 3 3 5

w

 
     
           
        

 

, 1 2 3 4w ,w ,w ,w 0

Min  w 1 2 3 4z 2w 6w 4 w w    

 1 2 3 4w 2w 1 w w 0    

 1 2 3 4w w 1 w w 2     

 2 3 46w 3 w w 5    , 1 2 3 4w ,w ,w ,w 0

Let '
3 3 4w w w   then '

3w  is unrestricted.
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 Min '
w 1 2 3z 2w 6w 4w   

s.t. '
1 2 3w 2w w 0   

'
1 2 3w w w 2    

'
2 36w 3w 5   , 2 2w ,w 0

'
3w  is unrestricted.

Observation : Third constraint in primal is equation. Third variable in its dual is unrestricted in
sign.

Example : Find dual of

Min x 1 2 3z 2x 3x 4x  

s.t. 1 2 32x 3x 5x 2   , 1 2 33x 4x 6x 5  

1 2x ,x 0 , 3x  unrestricted.

Answer : Max '
x 1 2 3z 2x 3x 4x   

s.t. 1 2 32x 3x 5x 2    

1 2 33x 4x 6x 5   , 2 2x ,x 0

3 4 5x x x  , 4 5x ,x 0

Max  '
x 1 2 4 5z 2x 3x 4 x x    

 1 2 4 52x 3x 5 x x 2     

 1 2 4 53x 4x 6 x x 5   

Standard Primal :  Max  
1

2'
x

4

5

x

x
z 2 3 4 4

x

x

 
 
    
 
 
 
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1

2

4

5

x

x2 3 5 5 2

x3 4 6 6 5

x

 
                 
 

, 1 2 4 5x ,x ,x ,x 0

Its dual is

Min w 1 2z 2w 5w  

s.t.
1

2

2 3 2

w3 4 3

w5 6 4

5 6 4

    
              
   

   

, 1 2w ,w 0

Min w 1 2z 2w 5w  

1 22w 3w 2    , 1 23w 4w 3   

1 25w 6w 4     and 1 2 1 25w 6w 4 5w 6w 4    

Observation : 3rd variable in primal is unrestricted. 3rd constraint in its dual is an equation.

Theorem : The dual of the dual of a given primal is the primal.

Proof : Consider a primal

Max T
xz c x

s.t.  Ax b , x 0 .... (I)

Dual of the above primal is

Min T
wz b w

s.t. TA w c , w 0  .... (II)

The corresponding primal is,

Max T
wz b w  

s.t. TA w c   , w 0 ... (III)
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Observe that (II) and (III) are same.

Consider dual of (III)

Min T
uz c u 

s.t.  TTA u b   , u 0  ..... (IV)

Standard form of (IV) is,

Max    T T
uz c u c u    

s.t. Au b   , u 0 Au b    , u 0

Thus we have,

Max ' T
uz c u , Au b , u 0  ..... (IV)

Observe that (I)   (V)

Thus dual of dual is primal.

Theorem : If x is any FS to primal problem and w is any FS to the dual problem then,

T Tc x b w

i.e.
n m

i i i i
i 1 i 1

c x b w
 

 

Proof : Primal is  Max T
xz c x  s.t.  Ax b , x 0

Dual is  Min T
wz b w  s.t. TA w c , w 0

11 12 1n 1

2

i1 i2 in

m1 m2 mn 1n

a a a b

b

a a a

a a a b

   
   
   
   
   
   


   

 


,  x 0 m n n 1 m 1A  x b  

i.e

n

ij j i
j 1

a x b


 , i = 1, 2, 3, ..., n .... (1)



123

11 21 31 m1
1 1

12 22 32 m2
2 2T

13 23 33 m3

m n1
1n 2n 3n mn

a a a a
w c

a a a a
w c

A w c a a a a

w c
a a a a

 
    
    
      
    
    
     





 
  



1k 1 2k 2 3k 3 mk m ka w a w a w .... a w c    

m

pk p k
p 1

a w c


 , k = 1, 2, 3, ....., n ...... (2)

From (1) and (2) we have,

n n m m n

i i pi p i p pi i
i 1 i 1 p 1 p 1 i 1

c x a w x w a x
    

   
    

    
    

n m n m

i i p pj j p p
i 1 p 1 j 1 p 1

c x w a x w b
   

 
   

 
    (by 1)

Thus we have,

c x b w  

   
n

T
1 2 n 1 2 n i i

i 1

c x c c ...c x x ...x c x c x


    

T Tc x b w

Theorem : If x̂  is a FS to the primal and ŵ  is a FS to its dual such that ˆ ˆc x b w    then x̂  is

an optimal solution to the primal and ŵ  is an optimal solution to the dual.

Proof : We know that if x  is a FS to the primal and ŵ  is a FS to its dual then ˆc x b w    .

Thus ˆ ˆ ˆc x b w c x c x c x        

If x  is a FS to the primal then, ˆ ˆc x c x c x      is maximum.

x̂  is an optimal solution to the primal.

Similarly if w  is any FS to its dual ˆc x b w   .

But ˆ ˆc x b w  

 ˆ ˆb w b w b w      is minimum.

 ŵ  is an optimum solution to the dual.



124

DUALITY THEOREM :

If  0 0x w  is an optimum solution to the primal (dual) then there exist a feasible solution

 0 0w x  to the dual s.t. T T
0 0c x b w .

Proof : Primal T
xMax z c x  s.t. Ax b , x 0

Consider T
xMax z c x   s.t.  5Ax Ix b 

m nA  , m mI   identity    
      

 
 

 m n m s n m 1

x
A I b

x

 A B C  where B 0  then 
1

Bx B b .

Let 
B

0

x
x

0

 
  
 

 be an optimum solution to the primal where  m
Bx R , n m0 R   then

1
Bx B b .

Therefore T T
0 B Bz c x c x   where Bc  is cost vector corresponding to Bx .

1T T
j B j j B j jc x c c B a c     ,  j = 1, 2, 3, ..., n

1T
B jc B e 0  ,  j = n + 1, .... n + m

Since 0x  is optimal j 0  .


1T

B j jc B a c 0  ,  j = 1, 2, 3, ....., n

1T
B jc B e 0 ,  j = n + 1, n + 2, .... n + m

1T
B j jc B a c ,   j = 1, 2, 3, ..., n

 1 1 1T T T
B 1 B 2 B n 1 2 3 nc B a c B a c B a c c c c    

1T T
Bc B A c and 

1T
B jc B e 0 ,   j = n + 1, .... n + m

Put
1T T

B 0c B w   (say)  m
0w R

Then T T
0w A c  or  T

0A w c .
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Since
1T

B jc B e 0 ,  1T
Bc B 0   i.e.   T

0w 0

Thus T
0A w c ,  0w 0

i.e. 0w  is feasible solution to the dual.

  
1T T T T

0 0 B B Bb w w b c B b c x

Since T T
0 B Bb w c x

0w  is an optimum solution to the dual.

Similarly starting from dual problem we can reach to primal solution.

Theorem : If kth constraint in the primal is an equality then the dual variable w
k
 is unrestricted in

sign.

Proof : Primal

T
xMax z c x

s.t. 11 1 12 2 13 3 1n n 1a x a x a x ..... a x b    



k1 1 k2 2 k3 3 kn n ka x a x a x ..... a x b    

k1 1 k2 2 k3 3 kn n ka x a x a x ..... a x b      



m1 1 m2 2 m3 3 mn n ma x a x a x ..... a x b    

1 2 3 nx ,x ,x ,.....,x 0

Dual of above primal will be,

' "
w 1 1 2 2 k k k k k 1 k 1 m mMin z b w b w .... b w b w b w ... b w        

s.t.

1

211 21 k1 k1 m1 1

12 22 k2 k2 m2 2
'

13 23 k3 k3 m3 k 3

"
k

1n 2n kn kn mn n

m

w

wa a a a a c

a a a a a c

a a a a a w c

w
a a a a a c

w

 
 

    
        
     
    
    
       

 
  

 
 

 
    

  
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' "
1 2 3 k k mw ,w ,w ,....,w ,w ,...,w 0

 ' "
w 1 1 2 2 k k k m mMin z b w b w .... b w w ..... b w      

s.t.  ' "
11 1 21 2 k1 k k m1 m 1a w a w .... a w w ..... a w b      

 ' "
12 1 22 2 k2 k k m2 m 2a w a w .... a w w ..... a w b      



 ' "
1n 1 2n 2 kn k k mn m na w a w .... a w w ..... a w b      

' "
1 2 k k mw ,w ,....,w ,w ,.....,w 0

Put ' "
k k kw w w   then w

k
 is unrestricted.

Thus we have,

m

w i i
i 1

Min z b w




s.t. 11 1 21 2 k1 k m1 m 1a w a w .... a w ..... a w c     

12 1 22 2 k2 k m2 m 2a w a w .... a w ..... a w c     



1n 1 2n 2 kn k mn m na w a w .... a w ..... a w c     

1 2 k 1 k 1 mw ,w ,....,w ,w ,....,w 0   , w
k 
unrestricted kth variable in dual is unrestricted in sign.

Theorem : If pth variable in primal is unrestricted in sign then pth constraint of the dual is an
equation.

Proof : x 1 1 2 2 p p n nMax z c x c x .... c x ..... c x     

s.t. 11 1 12 2 13 3 1p p 1n n 1a x a x a x ..... a x .... a x b      

21 1 22 2 23 3 2p p 2n n 2a x a x a x ..... a x .... a x b      



m1 1 m2 2 m3 3 mp p mn n na x a x a x ..... a x .... a x b      

1 2 p 1 p 1 nx ,x ,....,x ,x ,......,x 0   , x
p
 unrestricted.
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Since x
p
 is unrestricted write

' "
p p px x x  s.t.   '

px 0 , "
px 0

Then primal becomes,

 ' "
x 1 1 p p p n nMax z c x ..... c x x .... c x     

s.t.  ' "
11 1 12 2 1p p p 1n n 1a x a x ..... a x x .... a x b      



 ' "
m1 1 m2 2 mp p p mn n ma x a x ..... a x x .... a x b      

' "
1 2 p 1, p p nx ,x ,.....,x x ,x ,...,x 0 

The dual problem is,

w 1 1 2 2 m mMax z b w b w ..... b w   

s.t.

11 21 m1 1

12 22 m2 21

2

1p 2p mp p3

1p 2p mp p

m

1n 2n mn n

a a a c

a a a cw

w
a a a cw

a a a c

w

a a a c

   
   

    
    
    
     
           
     

   
      



   


   

i.e. 11 1 21 2 31 3 m1 m 1a w a w a w ..... a w c    

12 1 22 2 32 3 m2 m 2a w a w a w ..... a w c    



1p 1 2p 2 3p 3 mp m pa w a w a w ..... a w c    

1p 1 2p 2 3p 3 mp m pa w a w a w ..... a w c      



1n 1 2n 2 3n 3 mn m na w a w a w ..... a w c    

p and (p + 1)th constraint implies.

1p 1 2p 2 3p 3 mp m pa w a w a w ..... a w c    

Thus pth constraint in the dual is an equation.
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INTERGER LINEAR PROGRAMMING

INTRODUCTION

There are certain decision problems where decision variables make sense only if they

have integer values in the solution. For example, it does not make sense saying 1.5 men working

on a project or 1.6 machines in a workshop. The integer solution to the problem can, however,

be obtained by rounding off the optimum value of the variables to the nearest integer value. This

approach can be easy in terms of economy of effort in time and cost that might be required to

derive an integer solution but this solution may not satisfy all the given constraints. Secondly, the

value of the objective function so obtained may not be optimal value. All such difficulties can be

avoided if the given problem, where an integer solution is required, is solved by integer

programming techniques.

Types of Interger Programming Problems

There are two types of integer programming problems.

i) Linear integer programming problems.

ii) Non - linear integer programming problems.

In this unit we are going to learn the methods of solving linear integer programming

problems. linear integer programming problems can be classified into three categories :

i) Pure (all) integer programming problems in which all decision variables are

required to have integer values.

ii) Mixed integer programming problems in which some, but not all, of the decision

variables are required to have integer values.

iii) Zero - one integer programming problems in which all decision variables must

have integer values of 0 or 1.

The pure integer programming problem in its standard form can be stated as follows :

Maximize z c x c x c x c xn n    1 1 2 2 3 3 ....

Subject to the constraints

a x a x a x a x bn n11 1 12 2 13 3 1 1    ....

a x a x a x a x bn n21 1 22 2 23 3 2 2    ....

............................................................
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a x a x a x a x bm m m mn n m1 1 2 2 3 3    ....

and x x x xn1 2 3 0, , ,...,   and are integers.

Here we shall discuss two methods.

i) Gomory's cutting plane method and

ii) Branch and Bound method for solving integer programming problems.

GOMORY'S ALL INTEGER CUTTING PLANE METHOD

Gomory's cutting plane method was developed by R. E. Gomory in 1956 to solve integer
linear programming problems using the dual simplex method. It is based on the generation of a
sequence of linear inequalities called a 'cut'. This 'cut' cuts out a part of the feasible region of the
corresponding L. P. problem while leaving out the feasible region of the integer linear programming
problem. The hyperplane boundary of a cut is called the cutting plane.

Gomory's algorithm has the following properties :

i) Additional linear constraints never cut - off that portion of the original feasible
solution space which contain a feasible integer solution to the original problem.

ii) Each new additional constraint (or hyperplane) cuts - off the current non - integer
optimal solution to the linear programming problem.

Method for constructing additional constraint (cut)

Gomory's method begins by solving the linear programming (LP) problem without taking
into consideration the integer value requirement of the decision variables. If the solution so

obtained in an integer i. e. all variables in the xB  column (also called basis) of the simplex table

assume non - negative integer values, the current solution is the optimal solution to the given
integer LP problem. But if some of the basic variables do not have non - negative integer value,
an additional linear constraint called the Gomory constraint (or cut) is generated. This linear
constraint (or cutting plane), is added to the bottom of the optimal simplex table so that the
solution no longer remains feasible. The new problem is then solved by using the dual simplex
method. If the optimed solution so obtained in again non - integer, another cutting plane is
generated. The procedure is repeated until all basis variables assume non - negative integer
values.

The procedure for developing a cut

Select one of the rows, called source row for which basic variable is non - integer. The
desired cut is developed by considering only fractional parts of the coefficients in source row.

Suppose the basic variable xr  has the largest fractional value among all basic variables.

Then the rth constraint equation (row) from the simplex table can be rewritten as ,

           x b x a x a xB r r r rr
    1 1 1 2 2. ...d i

      
 


x a xr r j j
j r

     .......... (i)
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Where x jj  ( , , ,...)1 2 3  represents all the non - basic variables in the rth constraint except

the variables xr  and b xr Br
 d i  is the non - integer value of varialbe xr . Let us decompose the

coefficients of x j  and xBr
 into integer and non - negative fractional parts in equation (i).

     x f x a f xB r r r r j
j r

r j j
    


( )1 0 { }     .......... (ii)

Where xBr  and ai j  denote the largest integer obtained by trucating the fractional part

from xBr
 and ar j  respectively. Rearranging equation (ii) we get,

  f x x a x f xr Br r r j j r j j
j r

    


o t     .......... (iii)

Where fr  is strictly positive fraction 0 1 frb g  while 0 1 f r j . We may write equation (iii)

in the form of following inequality.

   
f f xr r j j

j r





i. e. f x f sr j j r g   or   

f s f xr g r j j
j r

    .......... (iv)

Where Sg  is a non - negative slack variable and is called the Gomory slack variable.

Equation (iv) represents Gomory's cutting plane constraint. This constraint create an additional

row along with a column for the new variable Sg .

Steps of Gormory's all integer programming algorithm

Step - 1

Initialization : Formulate the standard integer LP problem. If there are any non -
integer coefficients in the constraint equations, convert them into integer
coefficients. Solve it by simplex method, ignoring the integer requirement of
variables.

Step - 2

Test of optimality

a) Examine the optimal solution. If all basic variables (i. e. x bBi i 0  ) have

integer values, the integer optimal solution has been derived and the procedure
should be terminated. The current optimal solution obtained in step 1 is the optimal
basic feasible solution to the integer linear programming.

b) If one or more basic variables with integer requirements have non - integer
solution values, then go to step 3.
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Step - 3

Generate cutting plane : Choose a row r corresponding to a variable xr  which

has the largest fractional value fr  and generate the cutting plane (a Gomory

constraint) as explained earlier in equation (iv)

 
  


f s f xr g r j j
j r

where 0 1 fr j  and 0 1 fr .

If there are more than one variables with the same largest fraction, then choose
the one that has the smallest contribution to the maximization LP problem or the
largest cost to the minimization LP problem.

Step - 4

Obtain the new solution : Add the cutting plane generated in step 3 to the
bottom of the optimal simplex table as obtained in step. 3. Find a new optimal
solution by using the dual simplex method i. e. choose a variable to enter into the

new solution having the smallest ratio   j ij ij/ a ;a 0  and return to step 2.

Start

Ignore integer requirement
and solve by simplex method

Do all basic 
variables with 

integer requirements
have integer 

solution
values?

Yes Current solution is
the requited integer 
LP problem solution

No

Select the basic variable with largest 
fractional value. Generate the cutting plane

Add the cutting plane to the bottom of optimal
simplex table. Find new optimal solution

using dual simplex method.
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The process is repeated until all basic variables with integer requirements assume
non - negative integer values.

The procedure for solving an ILP problem can be explained through a flow chart
given above.

EXAMPLES

1) Solve  the following integer programming problem using Gomory's cutting plane
algorithm.

Maximize z x x 1 2

Subject to

3 2 51 2x x 

x2 2

and x x1 2 0,   and are integers.

Answer :

Step : 1

Introducing the slack variables we get,

Maximize z x x s s   1 2 1 20 0

Subject to

3 2 51 2 1x x s  

x s2 2 2 

and x x s s1 2 1 2 0, , , 

The optimum solution to the LPP is given below.

C j 1 1 0 0

Basic Coeffts of Values of Variables Min

Variables Basic variables Basic variables x1 x2 s1 s2 Ratio

CB b XB x xB k/

      s1 0 5 3 2 1 0 5 / 2

  s2 0 2 0 1 0 1 2/1

z c xB B  0  j j jz c  -1 -1 0 0

     = c x cB j j  A
  s1 0 1 3 0 1 -2 1/3

1
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  x2 1 2 0 1 0 1 2/0

z c xB B  2  j j jz c   -1 0 0 -1

A
  x1 1 1 / 3 1 0 1/3 -2/3

x2 1 2 0 1 0 1

z7 3/  j j jz c   0 0 1/3 1/3  j  0

The optimal solution is x x1 2

1

3
2 ,  and Max. z

7

3
.

Step : 2

In the current optimal solution, all the basic variables in the basis are not integers and the

solution is not acceptable. Since both decision variables x1 and x2  are assumed to take an

integer value, a pure integer cut is developed under the assumption that all the variables are
integers. We go to next step.

Step : 3

Since x1 is the only basic variable whose value is a non - negative fraction, we shall

consider the fist row for generating the Gomory cut. Considering x1 - equation as the source

row we write.

   
1

3
0

1

3

2

31 2 1 2   x x s s.    ( x1 - source row)

The factoring of the x1 - source row yields

      0
1

3
1 0 0

1

3
1

1

31 1 2F
HG

I
KJ    F

HG
I
KJ   F

HG
I
KJ( ) x s s

Observe that each of the non - integer coefficient is factored into integer and fractional
parts in such a manner that the fractional part the fractional part is strictly positive.

Rearrange the equation so that all of the integer coefficients appear on the left hand side.
This gives

1

3

1

3

1

32 1 1 2   s x s sb g

Therefore 
1

3

1

3

1

31 2 s s
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Thus complete Gomorian constraint can be written as

         
1

3

1

3

1

31 1 2  g s s  or    
1

3

1

3

1

31 1 2g s s

Where g1 is the new non - negative (integer) slack variable.

By adding the Gomory cut at the bottom of the simplex table, the new table so obtained
is given below.

c j    1 1 0 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 s1 s2 g1

x1 1 1 / 3 1 0 1/3 -2/3 0

x2 1 2 0 1 0 1 0

g1 0 - 1 / 3 0 0 -1/3 -1/3 1

Step - 4

Apply the dual simplex method to find the new optimal solution.

c j   1 1 0 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 s1 s2 g1

      x1 1 1 / 3 1 0 1/3 -2/3 0

     x2 1 2 0 1 0 1 0

  g1 0 - 1 / 3 0 0 -1/3 -1/3 1

z
7

2
z cj j  0 0 1/3 1/3 0

A
     x1 1 0 1 0 0 -1 1

     x2 1 2 0 1 0 1 0

     s1 0 1 0 0 1 1 -3

    z2    z cj j 0 0 0 0 1

Since all  j 0 , the solution is optimal solution. Thus x x s1 2 10 2 1  , ,  and max. z = 2.
This solution satisfies the integer requirement.
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2) Solve the following integer programming problem using Gomory's cutting plane
algorithm.

Maximize z x x x  2 20 101 2 3

Subject to 2 20 4 151 2 3x x x  

6 20 4 201 2 3x x x  

and x x x1 2 3, ,  are non - negative integers.

Also show that it is not possible to obtain a feasible integer solution by using the
method of simplex rounding off.

Answer :

Adding slack variable s1 in the first constraint and artificial variable in the second constraint

the problem is stated in the standard form as :

Maximize z x x x s MA    2 20 10 01 2 3 1 1

subject to

2 20 4 151 2 3 1x x x s   

6 20 4 201 2 3 1x x x A   

and x x s A1 2 1 1 0, , ,   and are integers.

The optimal solution of the problem ignoring the integer requirement using the simplex
method (Big M technique) is obtained in the following table.

c j 2 20 -10 0 -M

Basic Coeffts of Values of Variables Min

Variables Basic Basic x1 x2 x3 s1 A1 Ration

variables variables

  s1 0 15 2 20 4 1 0 15/20

A1 - M 20 6 20 4 0 1 20 / 20

Z M 20 z cj j  -6M-2 -20 M-20 -4M+10 0 0

x2 20 3/4 1/10 1 1/5 1/20 0 15/2

 A1 - M 5 4 0 0 -1 1 5/4

z M 15 5 z cj j  - 4 M 0 14 M + 1 0

A
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x2 20 5 / 8 0 1 1/5 3/40   -1/40

x1 2 5 / 4 1 0 0 -1/4 1/4

z15 z cj j  0 0 14 1 M  j  0

The non - integer optimal solution is x x x1 2 35 4 5 8 0  / , / ,  and Max. z = 15. Then the

rounded off solution will be x x x1 2 31 0 0  , ,  and Max z = 2. This solution does not satisfy the

second constraint 6 20 4 201 2 3x x x   . Hence it is not possible to obtain an integer optimal

solution by simply rounding off the values of the variables.

To obtain the integer valued solution, we proceed to construct Gomory's constraint

(fractional cut). Since the fractional part of the value of x2 0 5 8 ( / )  is more that the fractional

part of x1 1 1 4 ( / ) , the x2  - row is selected for constructing the fractional cut as given below..

    
5

8
0 1

1

5

3

401 2 3 1   . .x x x s

       0
5

8
1 0 0

1

5
0

3

402 3 1F
HG

I
KJ    F

HG
I
KJ  F

HG
I
KJb gx x s

On rearranging above equation we obtain the Gomory's fractional cut as,

     
5

8

1

5

3

401 3 1g x s          (Cut I)

Adding this additional constraint at the bottom of optimal simplex table, we get

c j 2 20 -10 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 x3 s1 g1

x2 20 5 / 8 0 1 1 / 5 3 / 40 0

x1 2 5 / 4 1 0 0 - 1/4 0

g1 0 - 5 / 8 0 0 -1/5 -3/40 1

z = 15 z cj j  0 0 14 1 0

A

Here max , ,
/

,
( / )

0

0

0

0

14

1 5

1

3 40 

R
S|
T|

U
V|
W|b g
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        = max , , ,   RST
UVW

70
40

3

        = 
40

3
 Therefore we must enter the variable s1.

Thus s1 is the entering variable whereas g1 is outgoing variable. Here we are applying

dual simplex method.

c j 2 20 -10 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 x3 s1 g1

x2 20 0 0 1 0 0 1

x1 2 10 / 3 1 0 2 / 3 0 -10/3

s1 0 25 / 3 0 0 8/3 1 -40/3

z = 20 / 3 z cj j  0 0 34/3 0 40/3

The solution is optimal but is still non - integer solution. Therefore one more fractioned

but should be added. Consider x1 - row for censtructing the cut.

        3
1

3
1 0 0

2

3
4

2

31 3 1F
HG

I
KJ    F

HG
I
KJ   F

HG
I
KJb gx x g

We obtain Gomory's fractional cut as,

     
1

3

2

3

2

32 3 1g x g       (Cut - II)

Adding this constraint to the optiomal simplex table the new table becomes

c j 2 20 -10 0 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 x3 s1 g1 g2

x2 20 0 0 1 0 0 1 0

x1 2
10

3
1 0

2

3
0 

10

3
0

s1 0
25

3
0 0

8

3
1 

40

3
0
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g2 0 
1

3
0 0 

2

3
0 

2

3
1

z
20

3
z cj j 0 0

34

3
0

40

3
0

Ratio - -
34 3

2 3

/

/
40 3

2 3

/

/ -

= - 17 - 20

A
Maximum ratio = - 17. Remove g2  from the basis and enter variable x3  into the basis by

applying the dual simplex method.

c j 2 20 -10 0 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 x3 s1 g1 g2

x2 20 0 0 1 0 0 1 0

x1 2 3 1 0 0 0 -4 0

s1 0 7 0 0 0 1 -16 4

x3 -10 1/2 0 0 1 0 1 -3/2

z = 1

The above optimal solution is still non - integer because variable x3  doex not have

integer value. Thus a first fractional cut will have to be constructed with the help of x3  - row and

the required Gomory's fractional cut is

    
1

2

1

23 2g g        (Cut III)

Additing this cut to the bottom of above table we get a new table. Apply the dual simplex
method.
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c j 2 20 -10 0 0 0 0

Basic Coeffts of Values of Variables

Variables Basic Basic x1 x2 x3 s1 g1 g2 g3

variables variables

     x2 20 0 0 1 0 0 1 0 0

     x1 2 3 1 0 0 0 -4 0 0

     s1 0 7 0 0 0 1 -16 4 0

     x3 -10 1/2 0 0 1 0 1 -3/2 0

  g3 0 -1/2 0 0 0 0 0 -1/2 1

z = 1 z cj j  0 0 0 0 2 15 0

Ratio 
z c

row
j j

th




5 - - - - - -30 -

A
Max. ratio = - 30 and therefore remove variable g3  and enter variable g2  into the basis

By applying the dual simplex method, we get the new optimal solution as shown in the following
table.

c j 20 20 -10 0 0 0 0

Basic Coeffts of Values of Variables

Variables Basic Basic x1 x2 x3 s1 g1 g2 g3

variables variables

x2 20 0 0 1 0 0 1 0 0

x1 2 3 1 0 0 0 -4 0 0

s1 0 3 0 0 0 1 -16 0 8

x3 -10 2 0 0 1 0 1 0 -3

g2 0 1 0 0 0 0 0 1 -2

z 14 z cj j  0 0 0 0 2 0 30

Since all the variables in above table have assumed integer values and all z cj j 0 , the

solution is integer optimal solution. x x x1 2 33 0 2  , ,  and maz x = - 14.
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3) The owner of a readymade garments store sells two types of shirts - zee shirts
and button - down shorts. He makes a profit of Rs. 3 and Rs. 12 per shirt on zee
- shirts and Button down shirts, respectively. He has tow tailors A and B at his
disposal to stitch the shirts. Tailors A and B can devote at the most 7 hours and
15 hours per day respectively. Both these shirts are to be stitched by both the
tailors. Tailors A and B spend 2 hours and 5 hours, respectively in stitching one
zee - shirt and 4 hours and 3 hours, respectively in stitching a Button down shirt.
How many shirts of both types should be stitched in order to maximize daily
profit?

a) Formulate and solve this problem as an LP problem.

b) If the optimal solution is not integer valued, use Gomory technique to derive
the optimal integer solution.

Answer :

Let x1 and x2  are number of zee - shirts and Button down shirts to be stitched daily,,

respectively. Then we have to maximize profit = 3 121 2x x  subject to the constraints.

i) Availability of time with tailor A

2 4 71 2x x 

ii) Availability of time with tailor B

5 3 151 2x x 

and x x1 2 0,   and are integers. Thus we get,

Maximize z x x 3 121 2

Subject to,

2 4 71 2x x 

5 3 151 2x x 

and x x1 2 0,   and are integers.

Adding slack variables s1 and s2  the given LP problem is stated into its standard form.

Maximize z x x 3 121 2

Subject to,

2 4 071 2 1x x s  

5 3 151 2 2x x s  

and x x s s1 2 1 2 0, , , 
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c j 3 12 0 0

Basic Coeffts of Values of Variables Min

Variables Basic variables Basic variables x1 x2 s1 s2 Ratio

CB b XB x xB k/

  s1 0 7 2 4 1 0 7/4

     s2 0 15 5 3 0 1 15 / 3

     z0 z cj j  -3 -12 0 0

  x2 12 7 / 4 1 / 2 1 1 / 4 0

     s2 0 39 / 4 7 / 2 0 - 3 / 4 1

z = 21 z cj j  3 0 3 0  j 0

The non - integer optimal solution is x x1 20 7 4 , /  and max z = 21.

b)

To construct Gomory's fractional cut we use x2  - rows.

7

4

1

2

1

41 2 1  x x s

The required fractional cut is

            
3

4

1

2

1

41 1 1g x s

Adding this additional constraint to the bottom of the optimal simplex and applying the
dual simplex method we get the following iterations.

c j 3 12 0 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 s1 s2 g1

x2 12 7 / 4 1 / 2 1 1 / 4 0 0

s2 0 39 / 4 7 / 2 0 - 3 /4 1 0

g1 0 - 3 / 4 - 1 /2 0 -1/4 0 1

z = 21 z cj j 3 0 3 0 0
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z c

row
j j

3
- 6 - - 12 0 0

A
x2 12 1 0 1 0 0 1

s2 0 g / 2 0 0 - 5/2 1 7

x1 3 3 / 2 1 0 1/2 0 - 2

z
33

2
z cj j  0 0

3

2
0 6

The optimal solution is still non - integer. Therefore adding one more fractional out with

the help of x1 - row we get the following able and subsequent interations by dual simplex method.

c j 3 12 0 0 0 0

Basic Coeffts of Values of Variables

Variables Basic variables Basic variables x1 x2 s1 s2 g1 g2

x2 12 1 0 1 0 0 1 0

s2 0 9 / 2 0 0 
5

2
1 7 0

x1 3 3 / 2 1 0 1/2 0 -2 0

g2 0 - 1 /2 0 0 -1/4 0 0 1

z
33

2
z cj j  0 0

3

2
0 6 0

Ratio 
z c

row
j j


4

- - -3 0 - -

x2 12 1 0 1 0 0 1 0

s2 0 7 0 0 0 1 7 -5

x1 3 1 1 0 0 0 -2 1

s1 0 1 0 0 1 0 0 -2

z = 15 z cj j  0 0 0 0 6           3 0

Since all the variables have assumed integer values and all z cj j 0 , the solution is an
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integer optimal solution. Thus the company should produce x1 1  zee shirt, x2 1 . Button -

down shirt to yield maximum profit z = Rs. 15.

4.4 GEOMETRICAL INTERPRETATION OF GOMORY'S CUTTINGS PLANE
METHOD

Let us consider the problem

Maximum z x x 1 2

Subject to

2 5 161 2x x 

6 5 301 2x x 

x x1 2 0, 

The graphical solution of this problem is obtained in the figure with solution space
represented by the convex region OABC. The optimal solution occurs at the extreme point B

i. e. x x1 23 5 18 . , . ,  max z = 5.3. But this solution is not integer valued. While solving this

problem by Gomory's method, we introduce first

Gomory's constraint   
3

10

9

10

4

53 4x x .

In order to express this constraint in terms of

x x1 2& , we use the constraints 2 5 161 2 3x x x  

and 6 5 301 2 4x x x   . Then Gomory's constraint

becomes,

      
3

10
16 2 5

9

10
30 6 5

4

51 2 1 2x x x xb g b g

i. e. x x1 2 5
1

6
 

This constraint cuts off the feasible region and now the feasible region is reduced to
somewhat less than the previous one and the procedure continues till an integer valued corner
is found. Because of cuttings in the feasible region, the method was named as cutting plane
method.

~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~

Find the optimum integer solution of the following all integer programming problems.

1) Max z x x 1 2

Subjct to

3 2 51 2x x 

x1 2
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x x1 2 0,   and are integers.  Ans x x z.: , ,max.1 23 2 5  b g
2) Max. z x x 1 22

Subjct to

4 2 151 2x x 

x x1 2 0,   and integers.

Ans x x z.: , ,max.1 23 0 3  b g
3) Max. z x 3 2

Subject to,

3 2 71 2x x 

x x1 2 2  

x x1 2 0,   and integers.

Ans x x z.: , ,max1 20 2 6  b g
4) Max. z x x 1 25

Subject to,

x x1 210 20 

x1 2

x x1 2 0,   and integers.

Ans x x z.: , ,max1 22 1 7  b g
5) Max. z x x 3 41 2

Subject to,

3 2 81 2x x 

x x1 24 10 

x x1 2 0,   and are integers.

Ans x x z.: , ,max1 20 4 16  b g
6) Max. z x x 11 41 2

Subject to,

  x x1 22 4
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5 2 161 2x x 

2 41 2x x 

x x1 2 0,   and are integers.

Ans x x z.: , ,max1 22 3 34  b g
7) Max. z x x 1 2

Subject to,

x x1 22 4 

6 2 91 2x x 

x x1 2 0,   and are integers.

Ans x x z.: , ,max1 21 0 2  b g
8) Max. z x x x  3 2 51 2 3

Subject to,

5 2 7 281 2 3x x x  

4 5 5 301 2 3x x x  

x x x1 2 3 0, ,   and are integers.

Ans x x x z.: , , ,max1 2 30 0 4 20   b g
BRANCH AND BOUND METHOD

The branch and bound method was first developed by A. H. Land and A. G. Daig and it
was further studied by J.O. C. Little et. al. and other researchers. This method can be used to
solve all integer, mixed integer and zero - one linear problems. This is the most general technique
for the solution of integer programming problem (I.P.P.) in which a few or all the variables are
constrained by their upper or lower bounds.

STEPS OF BRANCH AND BOUND ALGORITHM

Step : 1

Initialization : Consider the following all integer programming problem.
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Maximize z c x c x c x

Subject to constra s

a x a x a x x x b

a x a x a x a x b

a x a x a x a x b

LP A

n n

n n

n n

m m m mn n m

   

    

    

    

U

V

|
|
||

W

|
|
||



1 1 2 2

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

...

int

...

...

...................................................

...

b g

Obtain the optimal solution of the given problem ignoring integer restriction on the
variables.

If the solution to this LP problem (say L P - A) is infeasible or unbounded, the solution to
the given all integer programming problem is also infeasible or unbounded, as the case may be,

Otherwise examine optimal feasible solution. If the answer satisfies the integer
restrictions, the optimal integer solution has been obtained. If one or more basic variables do not
satisfy integer requirement then go to step 2.

Step : 2

a) Let the optimal value of objective function of LP - A be z1. This value provides an

initial upper bound on objective function value for integer LP problem. Let it be

denoted by zu . The lower bound on integer LP problem can be obtained by

truncating to integer all values of the varialbes. Let the lower bound be denoted by

zL .

b) Let xk  be the basic variable having largest fractional value.

c) Branch (or partition) the LP - A into two new LP sub - problems (also called

nodes) based on integer value of xk  i. e. partitioning is done by adding two mutually

exclusive constraints.

x xk k  and x xk k 1

to the original LP problem. Here xk  is the integer portition of the current non -

integer value of the variable xk . This is done to exclude the non - integer value of

the variable xk . The two new LP sub problems are as follows.

LP sub - problem B LP sub - problem C

Max z c xj j
j

n



 .

1

Max z c xj j .

subject to subject to

a x bi j j i a x bi j j i
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x xk k x xk k 1

and x j 0 and x j 0

Step : 3

Bound step : Obtain optimal solution of sub - problems B and C. Let the optimal value of

the objective function of LP - B be z2  and  that of LP - C be z3 .

Step : 4

Examine solution of both LP - B and LP - C, which might contain optimal point.

1) Exclude a sub - problem from further consideration if it has an infeasible solution.

2) If a sub - problem yields a solution that is feasible but not an integer then for this
sub - problem return to step - 2.

3) If a sub - problem yields a feasible integer solution examine the value of objective

function. If this value is equal to the upper bound zU , an optimal solution has

been reached. But if it is not equal to the upper bound zU  but exceeds the lower

bound zL , this value is considered as  new upper bound and return to step 2.

Finally if it is less than the lower bound, terminate this branch.

Step : 5

The procedure of branching and bounding contimes until no further sub problem remains
to be examined. At this stage, the integer solution corresponding to the current lower bound is
the optimal all integer programming problem solution.

Examples

1) Solve the following all integer programming problem using the branch and bound
method.

Maximize z x x 3 51 2

Subject to the constraints

2 4 251 2x x 

x1 8

2 102x 

and x x1 2 0,   and integers.

Answer :

Relaxing the integer requirements, the optimal non - integer solution of the given integer

L. P. problem obtained by the graphical method as shown below is x x1 28 2 25 , .  and

z1 35 25 . .
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2 4 6 8 10 12
x1

x2

2

4

6

8

10

12

x1=8

2x2=10
C

2x1+4x =252

Feasible
Region

B (8, 2.25)

The value of z1 represents the initial upper bound, zu  35 25.  on the value of the objective

function i. e. the value of the objective function in the subsequent steps cannot exceed 35.25.

The lower bound zL  is obtained by truncating the solution values to x1 8  and x2 2 .

Thus zL   3 8 5 2 34( ) ( )

The variable x2 2 25( . )  is the only non - integer solution value and is therefore selected

for dividing the given problem into two sub - problems LP - B and LP - C. Two new censtrains

x2 2  and x2 3  are created. These two constraints are added to the given problem to get two

sub - problems.

LP - B LP - C

Max z x x 3 51 2 Max. z x x 3 51 2

Subject to, Subject to,

2 4 251 2x x  2 4 251 2x x 

x1 8 x1 8

         2 102x           2 102x 

x2 2 x2 3

and x x1 2 0,   and integers. and x x1 2 0,   and integer..

In sub - problem L. P. B. the constraint 2 102x   is redundant as x2 2  satisfy 2 102x  .

Subproblem B and C are solved graphically.
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2 4 6 8 10 12

2

4

6

8

10

12

14

B

C

x2 5

x2 3
x2 2

x1 8
x2

B) Feasble region for sub - problem B

C) Feasible region for sub - problem C.

The solution to subproblem B is x x z1 2 28 2 34  , , .

The solution to subproblem C is x x z1 2 36 5 3 34 5  . , , . . Notice that both solution yield

value of z lower than that of original LP problem. The value of z, establishes an upper bound on

z2  and z3  values of sub - problems.

Since the solution of sub - problem B is an all integer, we stop the search of this sub -

problem i. e. no further branching is required from node B. The value of z2 34  becomes the

new lower bound on the IP problems optiomal solution. A non - integer solution of sub - problem

C and also z z3 2 , both indicate that further brancing is necessary from node C. However if

z z3 2  then no further branching would have been required from node C. The upper bound now

takes the value z zU  3 34 5.  instead of 35.25 at node A.

The sub - problem C is now branched into two new subproblems D and E, and are

obtained by adding the constraints x1 6  and x1 7  (for problem C, x1 6 25 . )

LP - D LP - E

Max. z x x 3 51 2 Max. z x x 3 51 2

Subject to, Subject to,

2 4 251 2x x  2 4 251 2x x 

x1 8 x1 8

         2 102x           2 102x 

x2 3 x2 3
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x1 6 x1 7

and x x1 2 0,   and integers. and x x1 2 0,   and integers.

Sub - problems D and E are solved graphically.

The solutions are

LP - D : x x Max z z1 2 46 3 25 34 25   , . , . .

LP - E : No feasible solution exists because constraints

x1 7  and x2 3  do not satisfy 2 4 251 2x x  .

So this branch is terminated.

2 4 6 8 10 12

6

8

10
x 1

=
8

14
x1

D4

2

x 1
=

7

x2 5

x2 3
x2 2

x 1
=

6

In problem - D solution x2 3 25 .  is not an integer solution. Create new sub problems F

and G from sub problem D with two new constraints x2 3  and x2 4 .

LP - F LP - G

Max. z x x 3 51 2 Max. z x x 3 51 2

Subject to, Subject to,

2 4 251 2x x  2 4 251 2x x 

x1 8 x1 8

         2 102x            2 102x 

x2 3 x2 3

x1 6 x1 6

x2 3 x2 4
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and x x1 2 0,   and integers. and x x1 2 0,   and integers.

The graphical solution of sub - problems F and G gives

sub - problems F : x x1 26 3 ,  and Max. z z 5 33

sub - problems G : x x1 24 25 4 . ,  and Max. z z 6 33 5.

The branching process is terminated when new upper bound is less than or equal to the
lower bounds of previous solutions or no further branching is possible.

Although the solution at node G is non - integer, no additional branching is required from

this node because z z6 4 . The branch and bound algorithm is terminated and the optimal integer

solution is x x1 28 2 ,  and z = 34 yielded at node B.

The branch and bound procedure for the above problem is given below.

Infeasible

z  = 35.25
z

U

L = 34

E

G

F

D

B

A

Optimal
Solution

x2 2

x1 6

x1 7

x2 3

x2 4C

x2 3

x x1 28 2 25 , .
z1 35 25 .

x x1 28 2 ,
z2 34

x x1 26 3 25 , .
z4 34 25 .

x x1 26 3 ,
z5 33

x x1 26 3 ,
z5 33

x x1 24 5 4 . ,
z6 33 5 .

zU 34 5.
zL 33 0.

x

2) Use branch and bound technique and solve the following integer programming
problem.

Max. z x x 7 91 2

Subject to,

  x x1 23 6

7 351 2x x 

0 71 2 x x,

and x x1 2,  are integers.

Answer

Relaxing the integers requirement the optimal non - integer solution obtained by graphical
method is as follows.
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2

2

4 6 8

4

6

8
x x1 23 6 

Feasible
region

(9/2,7/2)

x1 7

x2 7

x1

x2

7 351 2x x 

       x x1 2

9

2

7

2
 ,

and z1 7
9

2
9

7

2
63 F

HG
I
KJ 

F
HG

I
KJ 

Thus zu  63  and zL   7 4 9 3 55( ) ( )

Both x1 and x2  are non - integer solution values. Choose x1

9

2
  for dividing the given

problem into two sub problems LP - B and LP - C. Two new constraints x1 4  and x1 5  are

added to LP - B and LP - C respectively.

LP - B LP - C

Max. z x x 7 91 2 Max. z x x 7 91 2

Subject to, Subject to,

  x x1 23 6   x x1 23 6

   7 351 2x x     7 351 2x x 

   0 71 2 x x,    0 71 2 x x,

x1 4 x1 5

and x x1 2,  are integers. and x x1 2,  are integers.

The solution to sub problem LP - B and LP - C are obtained by graphical method.
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2

2

4 6 8
x1

4

6

8

Region B

(4,10/3)

  x x1 23 6

Region C = {(5,0)}

7 351 2x x 

x1 5x1 4

x2

The solution of sub problem LP - B is x x z1 2 24
10

3
58  , , . The feasible region for

subproblem LP - C is {(5, 0)}. Therefore the solution of subproblem LP - C is x x z1 2 35 0 35  , , .

Since all the variables have integer values, we stop the search for this subproblem i. e. no
further branching is required from node C. The value z = 35 becomes the new lower bounds on

the IP problems optimal solution. A non - integer solution of subproblem B and z z2 3 , both

indicate that further branching is necessary from node B.

The sub - problemB is now branched into two new subproblem D and E, and are obtained

by additing the constraints x2 3  and x2 4  (as for problem B x, /2 10 3 ).

LP - D LP - E

Max Z x x 7 91 2 Max. Z x x 7 91 2

Subject to, Subject to,

  x x1 23 6   x x1 23 6

   7 351 2x x     7 351 2x x 

  0 71 2 x x,    0 71 2 x x,

x1 4 x1 4

x2 3 x2 4

The graphical solutions to LP - D and LP - E are as follows.
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2

2

6 8

4

6

8

(4,10/3)
  x x1 23 6

Region C = {(5,0)}
x =41

x =52

x2 7

x2

x1

x2 3

4

7 351 2x x 

D

There is no feasible region for LP-E, Since x1 4  and x2 4  do not satisfy   x y1 23 6

as such there is no feasible solution for problem LP - E. The solution of subproblem LP - D is

x x1 24 3 ,  and z4 55 . Since there is no solution for subproblem LP - E no further branching

is required for this subproblem. Since solution to LP - D is an integer solution, no further branching
is required for LP - D asa.

Thus finally, we get the optimal solution to the given integer LP problem as z = 55,

x x1 24 3 , .

The tree - diagram corresponding to this problem is shown in the following figure.

Start

x1 4 x2 5

No solution

Optimal solution

x2 4x2 3

x x1 29 2 7 2 / , /
z1 63

x x1 24 10 3 , /
z2 58

x x1 25 0 ,
z3 35

x x1 24 3 ,
z4 55
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Remark

If the number of variables are more than 2 then exclude the redendent constraints and
solve these problems by simplex method and obtain solutions corresponding to each sub -
problem.

~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~

Use branch and bound technique and solve the following integer programming problems.

1) Max. z x x x  3 3 131 2 3

Subject to,

   3 6 7 81 2 3x x x

   5 3 7 81 2 3x x x  

       0 5 x j

and all x j  are integer..

2) Max. z x x 3 1 2

Subject to,

3 121 2 3x x x  

3 11 661 2 4x x x  

x jj  0 1 2 3 4, , , ,

3) Max. z x x 1 2

Subject to,

  4 101 2x x 

2 5 101 2x x 

x x1 2 0 1 2 3, , , ,

4) Min. z x x 3 2 51 2.

Subject to,

x x1 22 20 

3 2 501 2x x 

x x1 2 0,   and integers.
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Ans x x z.: , ,1 214 4 52  b g
5) Max. z x x 2 31 2

Subject to,

x x1 23 9 

3 71 2x x 

  x x1 2 1 

x x1 2 0,   and integers.

Ans x x z.: , ,1 20 3 9  b g
6) Max. z x x 7 61 2

Subject to,

2 3 121 2x x 

6 5 301 2x x 

x x1 2 0,   and integers.

Ans x x z.: , ,1 25 0 35  b g
7) Max. z x x 5 41 2

Subject to,

x x1 2 2 

       5 3 151 2x x 

       3 5 151 2x x 

and x x1 2 0,   and integers.

Ans x x z.: , ,1 23 0 15  b g
8) Max. z x x x   3 31 2 3

Subject to,

   x x x1 2 32 4

     2 15 12 3x x .

x x x1 2 33 2 3  
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x x1 2 0, 

x3  - non - negative integers.

Ans x x x z.: , , ,1 2 30
8

7
1

29

7
   F

HG
I
KJ

9) Max. z x x 1 2

Subject to,

2 5 161 2x x 

6 5 301 2x x 

x2 0

x1 - non - negative integer..

Ans x x z.: , ,1 24
6

5

26

5
  F

HG
I
KJ

10) Max. z x x 110 1001 2

Subject to,

6 5 291 2x x 

4 14 481 2x x 

x x1 2 0,   and integers.  Ans x x z.: , ,1 24 1 540  b g

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AIM :

To quantitatively assess the quality of information contained in a piece of information.

OBJECTIVES :

After studying this unit we should be able to -

1. Know various communication processes and parts of communication system.

2. Understand measure of information.

3. Understand applications and axioms of entropy function.

4. Know the basic requirements to be satisfied by the logarithmic form of entropy
function.

5. Measure channel capacity, efficiency and redundancy.

6. Apply Shannon-Fano encoding procedure to obtain decodable code of a message.

4.1 INTRODUCTION

Information theory is a branch of probability theory with a large number of applications
to communication systems. Mathematical theory of communications was principally initiated
by Claude Shannon in 1984.

If something is very likely to occur, the statement that it will occur does not give much
information. On the other hand if something is unlikely to occur, the statement that it will occur
gives a good deal of information.

The amount of information in the message should be measured by the extent of the
change in probability produced by the message.

4.2 COMMUNICATION PROCESSES

Definition 4.1 : The communication process may be defined as the procedure by which one
mind affects another is called communication process.

This may be any means by which the information is carried from a transmitter to receiver.
There are three essential parts of a simplest communication system.

(i) Transmitter or source.

(ii) Channel or transmission network which carries the message from transmitter to

INFORMATION THEORY
UNIT

04
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receiver.

(iii) Receiver or sink.

Model for Communication System :

Source of
message

Encoder Channel Decoder Receiver

Noise

Transmitter Receiver

Each part of communication system is explained below.

Definition 4.2 : Transmitter : It is a person or machine which produces the information to be
communicated.

Definition 4.3 : Encoder : The device which is used to improve the efficiency of the medium
through which the message is transmitted is called encoder.

Encoder acts as step-up transformer.

Definition 4.4 : Channel : It is a medium over which the coded message is transmitted. It is
the transmission network (or media) that carries the message from the source to receiver e.g.
human voice, newspapers etc.

Definition 4.5 : Decoder : A device which transforms encoded message into the original form
which is acceptable to the receiver. This is used to transform encoded message into the original
form at the receivers end.

Definition 4.6 : Receiver : This is the destination to which the message is conveyed from the
source (or transmitter) through a communication channel.

Definition 4.7 : Noise : This is the general term which creates interruptions or disturbances in
the transmission of message (or information) from transmitter to receiver e.g. noise or
disturbance in radio or television during the relay of programmes, errors in newspapers printing
etc. Noise is anything which tends to produce errors in transmission.
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Theorem 4.1 : Fundamental theorem of information theory :

It is possible to transmit information through a noisy channel at any rate less than the
channel with an arbitrary small probability of error.

(In the next section the basic concepts in statistics are studied. This section is pre-
requisit and is not a part of syllabus).

4.3 BASIC STATISTICS REQUIRED TO STUDY

COMMUNICATION SYSTEM

Definition 4.8 :

The set  1 2 3, , ,....., nS e e e e  is called a sample space of an experiment satisfying the

following two conditions.

1. Each element of the set S denotes one of the possible outcomes.

2. The outcome is one and only one element of the set S whenever the experiment
is performed.

Definition 4.9 : If to each elementary event ie S  we assign a real number  ip e  is called the

probability of an elementary event ie  such that

(i)    0ip e  ,  i  and  (ii)  
1

1
n

i
i

p e




Such an assignment is called acceptable assignment.

Definition 4.10 : Events :

1. Event : Every subset of the sample S of an experiment is called an event generally
denoted by E.

2. Simple Event : Any event that contains only one element is called simple event.

3. Equally Likely Event : If there is no reason to expect any one in preference to any
other i.e. probability of happenng two or more events is same.

4. Mutually Exclusive Events : The happening of one excludes the happening of the
other.

5. Dependent and Independent Events : Two events are said to be independent when
occurence of one has no effect on the probability of other.
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Probability : With each even Ei in a finite sample space S, we associate a real number say

 ip E  called the probability of an event Ei satisfying the following conditions.

(i)  0 1iP E 

(ii)          1 2 3 1 2 3..... .....n nP E E E E P E P E P E P E      

where 1 2, ,....., nE E E  are mutually exclusive.

(iii)   1P S 

       P A B P A P B P A B   

Conditional Probability

Consider the two events E1 and E2 in a sample space S. Here E1 represents the event
that has occured m1 number of time in n number of trails and E2 represents event that has
occured m2 number of times out of these m1 number of occurances of E1. The probability of
combine happening of E1 and E2 in the same trial is

  1 2 2
1 2

1

m m m
P E E

n m n
  

The relative frequency 
2

1

m

m  is the conditional probability of occurance of event E2 given

that E1 has occured. Which is denoted by  2 1/P E E ,   1 0P E  .

     1 2 1 2 1/P E E P E P E E

Definition 4.11 : Conditional probability of E2 given E1 is

   
 
1 2

2 1
1

/
P E E

P E E
P E




 2 1/P E E  satisfies following properties.

(i)  2 10 / 1P E E 

(ii) If E2 is an event which cannot occur then  2 1/ 0P E E  .

(iii) If the event E2 is entire space S then    2 1 1/ / 1P E E P S E  .

(iv) If E2 and E3 are independent events then      2 3 1 2 1 3 1/ / /P E E E P E E P E E  .
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(v) If occurance of E1 does not affect the occurance of E2 then    2 1 2/P E E P E .

E1, E2 are independent events if and only if      1 2 1 2P E E P E P E  .

Law of Probability :

              1 2 3 1 2 1 3 1 2 1 2 1....... / / .... / ...n n nP E E E E P E P E E P E E E E E E E    

4.4 STATISTICAL NATURE OF COMMUNICATION SYSTEMS

In communication system the source selects and transmits of symbols from a given
alphabet to the channel, based on some statistical rule. The channel also transmits this symbolic
information to the receiver under some statistical rule.

Memoryless Channel :

A memoryless channel os described by an input alphabet  1 2, ,..., mA x x x  and output

alphabet  1 2 3, , ,..., nB y y y y  and a set of conditional probabiloities  / ,j iP y x i j , where

 /j iP y x  is the probability that the output symbol yj will be received in, the input xi is sent.

Definition 4.12 : Binary Symmetric Channel :

A binary symmetric channel has two input symbols  1 20, 1x x   and two output

symbols  1 20, 1y y   and it is symmetric in the same that    1 1 2 2/ /P y x P y x p  ,

   1 2 2 1/ /P y x P y x p   where 1p p p    being the probability of error transmission.

The Channel Matrix :

The input to the channel, the output from the channel and conditional probabilities for a
pair of symbols can be expressed in the form of a matrix called channel matrix.

Output

A = Input  

       

1 1/1 2/1 n/1

2 1/2 2/2 n/2

1/ 2/ n/

     1 2y y y

m m m m

n
x p p p

x p p p

x p p p

 
 
 
 
 
 






 


Where  / /j i j ip p y x , i = 1, 2, ....., m, j = 1, 2, ....., n.
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e.g. The channel matrix of the Binary symmetric channel is

p p

p p

 
 
 

Probability Relation in a Channel

 If  0i ip p x  denotes the probability that the symbol ix  is selected for transmission,

 0 j jp p y  the probability that the symbol jy  is received then the relation between the

probabilities of various input symbols and output symbols is expressed as

0 / 0
1

m

i j i j
i

p p p


 , i = 1, 2, ....., n ..... (i)

(i) The joint probabilities of sending a symbol ix  and receiving the symbol jy  is

given by

  / 0,i j j i ip x y p p     ,i j ..... (ii)

(ii) The conditional backward input probabilities when it is known that the symbol

jy  has been received is

   / 0 0/ /i j j i i jp x y p p p     ,i j ..... (iii)

The relations (ii) give the joint probabilities of sending a symbol ix  and receiving a
symbol jy  while relation (iii) give the backward channel probabilities given that an output jy
has been received.

Example 1 : Consider a binary channel with input symbol  0,1X , output symbol  0,1Y  and

the channel matrix 
2 / 3 1/ 3

1/10 9 /10

 
 
 

. Let us assume that the input probabilities 10 3 / 4p   and

20 1/ 4p  . Then

2

01 1/
1

3 2 1 1 21

2 3 4 10 40io i
i

p p p


     

2

02 2/
1

3 1 1 9 19

4 3 4 10 40io i
i

p p p


     

The conditional backward input probabilities are obtained by using (iii),
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 

2 3
203 40 / 0

21 21
40

p


 
;

 

1 3
103 40 /1

19 19
40

p


 

 

1 1
110 41/ 0

21 21
40

p


 
;

 

9 1
910 41/1

19 19
40

p


 

The joint probabilities are obtained by relation (ii)

  / 0,i j j i ip x y p p

  2 3 1
0,0

3 4 2
p      1 3 1

0,1
3 4 4

p   

  1 1 1
1,0

10 4 40
p      9 1 9

1,1
10 4 40

p   

Example 2 :  Consider a binary channel with input symbol  0,1X , output symbol  0,1Y  and

the channel matrix 
1/ 3 2 / 3

1/ 5 4 / 5

 
 
 

. Further assume the input probabilities 10
6

7
p   and 20

1

7
p  .

2

10 0 1/
1

6 1 1 1 11

7 3 7 5 35i i
i

p p p


     

02 10 2/1 20 2/2
6 2 1 4 24

7 3 7 5 35
p p p p p      

The joint probabilities are obtained by using (ii)

  / 0,i j j i ip x y p p

  1 6 2
0,0

3 7 7
p    ;   2 6 4

0,1
3 7 7

p   

  1 1 1
1,0

5 7 35
p    ;   4 1 4

1,1
5 7 35

p   

The conditional backward input probabilities are obtained by using (iii)
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 

1 1
103 70 / 0

11 11
35

p


   

2 6
53 70 /1

24 6
35

p


 

 

1 1
15 71/ 0

11 11
35

p


   

4 1
15 71/1

24 6
35

p


 

Noisless Channel :

If the channel matrix contains only one non-zero element in each column, then such a
channel is called a noiseless channel.

e.g. (i) Binary symmetric channel with p = 0 or 1.

(ii) 

1/ 2 0 1/ 6 0

0 5 / 7 0 0

0 0 0 2 / 3

 
 
 
  

       (iii) 

1/ 2 1/ 2 0 0 0 0

0 0 3 / 5 5 /10 1/10 0

0 0 0 0 0 1

 
 
 
  

4.5  A MEASURE OF INFORMATION

Basic Assumptions :

(i) There is a finite set  1 2, ,...., nX x x x  of events and the probability of occurence of

event ix  is ip , such that 1 2 .... 1np p p    . Consider the event kx has occured. So according

to the statement that the quantity of information received is inversely proportional to the likelihood

of the event, if  kI x  denote the amount of information received from the occurence of the

even kx  with probability kp  of occurence then    k rI x I x  for k rp p .

(ii) If kx  has 1kp   then   0kI x   because no information is received provided occurence

of a particular event is known in advance.

If we are interested in the probabilities of the occurence of an event in set X and not in
their actual natures, the expected value of information received may be written as

 
1

m

i i
i

p I p



Where   2logi iI p p  .
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The 2log ip  indicates the probability concerning the receiver before receiving the
information, provided the fact that the communication system is noiseless.

Example 1 : Suppose a baby is born at a neighbour’s house and the question is asked whether
the baby is a boy or girl ? The answer ‘It is a boy’ gives specific amount as information.

Since the probability that it is a boy is 
1

2
p   therefore the amount of information is

2
1

log log log 2 1 bit
2

p    

Example 2 :  A large field is divided into 64 squares (88). In the dark night a cow has entered
in this field. This cow is located by a member of searching party who sends back an information
giving the location of the cow as the 43rd square. Calculate the amount of information obtained
in the reception of this message.

Answer : Before the message was received, the probability that the cow was in 43rd square =

1

64
. The quantity of information received with a message is

2 2
1

log log log 64 6 log 2 6 bits
64

p     

Alternatively, if the message received was, the cow was in the square 6th row and 3rd

column of the field, then before the information was received the cow was equally likely to have

been in any of the different columns i.e. 
1

8cp  .

Similarly the probability that it was in row 6 is 
1

8rp  . A two symbol information will be

sent in which the first symbol stands for row and second for column.

The first symbol gives 
1

log log log 8 3
8cp      bits of information and the second

symbol gives 2
1

log log log 8 3
8rp      bits of information.

Thus the total amount of information is 3 + 3 = 6 bits.

The name given to the unit of information is bit.
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Choice of Measure :

The expected value of information can be interpreted as the expected amount of
information needed to determine which event of set X has occured. It is the measure of
uncertainty regarding which event of X has occured or will occur. The uncertainty is considered
to be maximum when each event 1 2, ,....., mx x x of X are equally probable i.e.

     1 2
1

..... mp x p x p x
m

   

Shannon and Wiener have suggested the following expression as the measure of
expected amount of information.

 1 2
1

, ,....., log
m

m i i
i

H p p p p p


 

The function H is also known as entropy function.

4.7 PROPERTIES OF ENTROPY FUNCTION

1. Continuity : The entropy function  1 2, ,....., nH p p p  is continuous for each independent

variable ip , 0 1ip  .

Proof :  1 2 0 1 1 2 2 1 1, ,....., log log .... log logn n n nH p p p p p p p p p p p      

         1 1 2 2 1 1log log .... logn np p p p p p     

             1 2 1 1 2 11 ...... log 1 .....n np p p p p p      

Since all ip  are continuous and independent variables i = 1, 2, ...., n–1 in the interval

(0, 1), therefore the log of continuous function is also continuous.

2. Symmetry : The entropy function is symmetric function in all variables.

 1 2
1

, ,......, log
n

n i i
i

H p p p p p


 

   1 2 2 1, ,H p p H p p  for 1 2 1p p 

3. Maximum Value Property

 1 2 3
1 1 1 1

Max , , ,...., , , ,....,nH p p p p H
n n n n

   
 

4. Additivity : If a particular event xn with probability pn is divided into m mutually exclusive

subsets say 1 2 3, , ,...., me e e e  with probabilit ies 1 2, ,...., mq q q  respectively such that

1 2 3 ....n mp q q q q      then
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        1 2
1 2 1 1 2 3 1 2 3 1, ,..., , , , ,...., , , ,..., , , ,..., m

n m n n n
n n n

qq q
H p p p q q q q H p p p p p p H

p p p 
    
 

Proof : Since the event xn with probability pn is divided into disjoint subsets 1 2 3, , ,...., me e e e  with

respective probabilities 1 2 3, , ,...., mq q q q ; 1 2 ....n mp q q q    .

 
1

1 2 1 1 2 3
1 1

, ,...., , , , ,...., log log
n m

n n k k i i
k i

H p p p q q q q p p q q



 

   

1 1

log log log
n m

k k n n i i
k i

p p p p q q
 

 
    

 
 

 1 2, ,...., log logn n n i iH p p p p p q q   .... (i)

1 1

log log log log
m m

n i
n n i i n n n i

n ni i

p q
p p q q p p p q

p p 

    
 

 

1

1

log log

m

i m
i i

n n n i
n ni

q
q

p p p q
p p




 
 
  
  




 
1

log log
m

i
n n i

ni

q
p p q

p

 
  

 


1

log
m

i i
n

n ni

q q
p

p p

       
    


1

log
m

i i
n

n ni

q q
p

p p

     
  



1 2, ,...., n
n

n n n

qq q
p H

p p p
   
 

.... (iii)

Theorem 4.2 :  Let 1 2, ,...., mp p p  and 1 2 3, , ,...., mq q q q  be arbitrary non-negative numbers with

1 1

m m

i i
i i

p q
 

  .
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Then 
1 1

log log
m m

i i i i
i i

p p p q
 

     with equality iff   i iq p i  .

Proof : Since log is convex function log 1x x   with equality iff x = 1.

For i

i

q
x

p
 , log 1i i

i i

q q

p p
       
   

 with equality iff f 1i

i

q

p
  i.e. i iq p .

 
1 1

log 1
m m

i ii i
i

i i ii i

q pq q
p

p p p 

              
   i iq p  

Thus 
1

log 0
m

i
i

ii

q
p

p

   
 



 
1 1 1

log log 0 log log
m m m

i i i i i i i
i i i

p q p p q p p
  

     

i.e.   
1 1

log log
m m

i i i i
i i

p p p q
 

   

Example : Evaluate them average uncertainty associated with the sample of events A, B and
C which are mutually exclusive with probability distribution.

Event :   A   B   C

Probability : 1/5 4/15 8/15

Solution : We have 1
1

5
p  , 2

4

15
p  , 3

8

15
p 

 1 2 3 1 1 2 2 3 3, , log log logH p p p p p p p p p  

1 1 4 4 8 8
log log log

5 5 15 15 15 15
             
     

1 1 4 8
3log 4log 8log

15 5 15 15

                    

     1
3 log1 log5 4 log 4 log15 8 log8 log15

15
       

       2 31
3log 5 4log 2 4log 3 5 8log 2 8log 3 5

15
          
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2 31
3log 5 4 log 2 8log 2 12 log 3 12log 5

15
        

 1
15log 5 12log 3 32

15
    

4 32
log 5 log 3

5 5
  

Example : Evaluate the average uncertainty associated with the probability space of events A,
B, C, D which are mutually exlcusive with probability distribution.

Event : A B C D

Probability : 1/2 1/4 1/8 1/8

Solution : We have 1
1

2
p  , 2

1

4
p  , 3

1

8
p  , 4

1

8
p  .

 1 3 3 4 1 1 2 2 3 3 4 4, , , log log log logH p p p p p p p p p p p p   

1 1 1 1 1 1 1 1 1 1 1 1
, , , log log log log

2 4 8 8 2 2 4 4 8 8 8 8
H
       
 

1 1 1 1
log 2 log 4 log8 log8

2 4 8 8
    

2 3 31 1 1 1
log 2 log 2 log 2 log 2

2 4 8 8
   

1 2 3 3
log 2

2 4 8 8
     
 

 1
4 4 3 3 log 2

8
   

14 7
log 2  bits

8 4
 

4.8 JOINT AND CONDITIONAL ENTROPIES

Consider two sets of messages

 1 2 3, , ,...., mX x x x x  and   1 2 3, , ,...., nY y y y y

Where 'six  are the messages send (message input) and 'siy  are the messages

received (channel output).
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Let  ,ij i jp P X x Y y   , i = 1, 2, 3, ....., m; j = 1, 2, 3, ....., n denote the probability

of the joint event that message xi is sent and message yj is received.

Define marginal probability distributions of X and Y by 0
1

n

i ij
j

p p


  and 0
1

m

j ij
i

p p




,i j respectively

Definition 4.13 : The marginal entropies of the two marginal distribution are given by,

 
0 0

1

log
m

i i
i

H X p p


   and   
0 0

1

log
n

j j
j

H Y p p


 

The entropy H(X) measures the uncertainty of the message sent (irrespective of message
received) and H(Y) performs the same role for the message received.

Definition 4.14 : The joint entropy is the entropy of the joint distributions of the messages sent
and received and is given by,

 
1 1

, log
m n

ij ij
i j

H X Y p p
 

 

Definition 4.3 :      ,H X Y H X H Y   with equality off X and Y are independent.

Proof :     
0 0 0 0

1 1

log log
m n

i i j j
i j

H X H Y p p p p
 

    

0 0
1 1 1 1

log log
m n n m

ij i ij j
i j j i

p p p p
   

   
         
   

 0 0
1 1

log log
m n

ij i j
i j

p p p
 

  

 0 0
1 1

log
m n

ij i j
i j

p p p
 

 

   
1 1

log  
m n

ij ij
i j

H X H Y p q
 

   where 0 0ij i jq p p .... (i)

By definition   
1 1

, log
m n

ij ij
i j

H X Y p p
 

  .... (ii)
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But 0 0 0 0
1 1 1 1 1 1 1 1

1
m n m n m n m n

ij i j i j ij
i j i j i j i j

q p p p p p
       

  
        

    

By thereom 4.2, since

1 1 1 1

1
m n m n

ij ij
i j i j

q p
   

   , 
1 1 1 1

log log
m n m n

ij ij ij ij
i j i j

p p p q
   

   

Thus from equation (i) and (ii) we have      ,H X Y H X H Y  .

Example :  A transmitter has an alphabet consisting of five letters  1 2 3 4 5, , , ,x x x x x  and the

receiver has an alphabet consisting of four letters  1 2 3 4, , ,y y y y . The joint probabilities for the

communication are given by,

41 2 3

1

2

3

4

5

            

0.25 0.00 0.00 0.00

0.10 0.30 0.00 0.00

0.00 0.05 0.10 0.00

0.00 0.00 0.05 0.10

0.00 0.00 0.05 0.00

y y y y

x

x

x

x

x

 
 
 
 
 
 
  

Determine the marginal, conditional and joint entropies for this channel (assume that 0
log 0 = 0)

Solution : The channel is described here with joint probability pij, i = 1, 2, 3, 4, 5 and
j = 1, 2, 3, 4,

By definition, marginal probability distributions of X and Y are

0
1

n

i ij
j

p p


   and   0
1

m

j ij
i

p p




Here 10 0 11 12 13 14
1

n

j
j

p p p p p p


    

       = 0.25 + 0.00 + 0.00 + 0.00 = 0.25

Similarly,

p20 =  0.10 + 0.30 + 0.00 + 0.00 = 0.40

p30 = 0.00 + 0.05 + 0.10 + 0.00 = 0.15

p40 = 0.00 + 0.00 + 0.05 + 0.10 = 0.15
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p50 = 0.00 + 0.00 + 0.05 + 0.00 = 0.05

Since 0
1

m

j ij
i

p p




01 11 21 31 41 51p p p p p p    

       = 0.25 + 0.10 + 0.00 + 0.00 + 0.00 = 0.35

Similarly,

p02 =  0.00 + 0.30 + 0.05 + 0.00 + 0.00 = 0.35

p03 =  0.00 + 0.00 + 0.10 + 0.05 + 0.05 = 0.2

p04 =  0.00 + 0.00 + 0.00 + 0.10 + 0.00 = 0.1

/
0

0.25 0.00 0.00 0

0.25 0.25 0.25 0.25
0.1 0.3 0.00 0.00

0.4 0.4 0.4 0.4
0.0 0.05 0.1 0

0.15 0.15 0.15 0.15
0.00 0.00 0.05 0.10

0.15 0.15 0.15 0.15
0.00 0.00 0.05 0.00

0.05 0.05 0.05 0.05

ij
j i

i

p
p

p

 
 
 
 
 
 
 
 
 
 
 
 
 
 

         

1 0 0 0

0.25 0.75 0 0

1 2
0 0

3 3
1 2

0 0
3 3

0 0 1 0

 
 
 
 
 
 
 
 
 
 

Marginal Entropies :

 
5

0 0
1

logi i
i

H X p p


 

 0.25log 0.25 0.4 log 0.4 0.15log 0.15 0.15log 0.15 0.05log 0.05     
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 1 1 2 2 3 3 3 3 1 1
log log log log log

4 4 5 5 20 20 20 20 20 20
     

1 2 5 3 20 1
log 4 log log log 20

4 5 2 10 3 20
   

     2 2 21 2 3 1
log 2 log 5 log 2 log 2 log 5 log 3 log 2 5

4 5 10 20
       

1 2 2 3 3 3 1 1
log 2 log 5 log 2 log 2 log 5 log 3 log 2 log 5

2 5 5 5 10 10 10 20
       

1 2 3 1 2 3 1 3
log 2 log5 log3

2 5 5 10 5 10 20 10
                       

   1 1 3
5 4 6 1 8 6 1 log 5 log 3

10 20 10
       

4 3 3
log 2 log 5 log 3

5 4 10
  

3 3 4
log 5 log 3  bits

4 10 5
  

 
4

0 0
1

logj j
j

H Y p p


 

 0.35log 0.35 0.35log 0.35 0.2 log 0.2 0.1log 0.1    

7 1 1
0.7 log 0.2log 0.1log

20 5 10
      

20
0.7 log 0.2 log 5 0.1log10

7
  

 
22 5

0.7 log 0.2 log 5 0.1log 2 5
7

 
    

 

   0.7 2log 2 log 5 log 7 0.2 log 5 0.1 log 2 log 5     

   log 2 1.4 0.1 log 5 0. 0.2 0.1 0.7 log 7     

1.4 log 2 log 5 0.7 log 7  
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Conditional Entropy :

 
/

1 1

/ log
m n

ij j i
i j

H Y X p p
 

 

11 1/1 21 2/1 22 2/2log log logp p p p p p   

32 3/2 33 3/3 43 4/3log log logp p p p p p  

44 4/4 53 5/3log logp p p p  (Since remaining pij = 0)

4 3
0.25log1 0.1log 4 0.3log 0.05log 3 0.1log

3 2
     

3
0.05log 3 0.1log 0.05log1

2
 

   20.2log 2 0.3 log 2 log 3 0.05log3 0.1 log3 log 2     

 0.05log 3 0.1 log 3 log 2  

   log 2 0.2 0.6 0.1 0.1 log3 0.3 0.05 0.1 0.05 0.1         

0.6 log 2 0.6 Bits 

Joint Entropy :

     , /H X Y H X H Y X 

3 3 4
log 5 log 3 0.6 log 2

4 10 5
   

3 3 14
log5 log 3

4 10 10
  

Set Axioms For Entropy Function :

Assume the following four conditions as axioms :

1. Given a finite complete probability scheme  1 2 3, , ,......, np p p p

 1 2 3
1 1 1 1

Max , , ,...., , , ,....,nH p p p p H
n n n n

   
 

2. For a joint finite complete scheme, associated entropies should satisfy

     , /H X Y H X H Y X 

3.    1 2 3 1 2 3, , ,....., ,0 , , ,.....,n nH p p p p H p p p p
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4. The entropy function is continuous with respect to all its arguments.

These axioms essentially lead to a unique expression for entropy of finite scheme.

4.7 UNIQUENESS THEOREM

Theorem 4.4 : The only function which satisfies for axioms for entropy function is

 1 2
1

, ,....., log
n

n i i
i

H p p p p p


 

where   is an arbitrary positive number and the logarithm base is any number greater than 1.

Proof : Consider  1 1 1 1
, , ,....,H f n

n n n n
   
 

Step 1 : To show that   logf n n

Since    1 1 1 1 1 1
, ,...., , ,....., 1

1 1 1
f n H H f n

n n n n n n
              

 f n  is non-decreasing function of n.

According to axiom (2), for any complete probability scheme consisting of the sum of m
mujtually exclusive schemes.

         1 2 3 1 2
1

, , ,...., .....
m

m m i
i

H x x x x H X H X H X H X


    

If each scheme consists of r equally likely events then

     
1 2, ,...., m

mH X X X mf r f r 

where m and r are any arbitrary integers.

Now take two integers t and n such that

1m n mr t r  

 log log 1 logm r n t m r  

log 1

log

m t m

r r n


   .... (i)

Since  f n  is non decreasing function

     1m n mf r f t f r  

i.e.        1mf r nf t m f r  
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 
 

1m f t m

n f r n


  .... (ii)

Comparing (i) and (ii) we have

 
 

log 1

log

f t t

f r r n
 

As n , for any positive integers r and t,

 
 

log
0

log

f t t

f r r
 

Thus
 
 

log

log

f t t

f r r
   (say)

  logf t t ,    logf r r  (say)

Thus   logf n n .

Since  f t  is non decreasing   must be positive.

This proves the uniqueness theorem for particular case when all events have equal
probabilities.

Step 2 : All probabilities are rational number (but not necessarily all equal).

Let a be a common denominator for the different rational kp  and 
k

kp



 , i   ,

k  .

Consider a probability scheme X.

Let the scheme Z consists of a equally likely events  1 2 3, , ,......,z z z z .

Decompose these events into groups containing events 1 2 3 1, , ,...., n     and n .

Denote the decomposed scheme by Y. When the event Xk with probability pk occurs, all
events partioned in the kth group occur with equal probability in scheme Y. Thus occurs, all
events partitioned in the kth group occur with equal probability in scheme Y. Thus

   
1 1 1

, ,...., log k
k k k

H  
  
   
 

 log logkp  
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  1 1 1
/ , ,.....,k

k k k

H Y X p H
  
    
 

    log logk kp p    

The totality of events in Z forms the sum of two schemes.

     , logH Z H X Y f     

     , /H X Y H X H Y X 

     , /H X H X Y H Y X  

    log log logk kp p       

   logk kp p  

Thus, the uniqueness theorem also helds when 1 2, ,...., np p p  are rational numbers.

Step 3 : The continuity axiom of the entropy function ensures that the uniqueness theorem is

valid when 1 2 3, , ,...., np p p p  are incommensurable.

4.8 MUTUAL INFORMATION

Expected Mutual Information :

Consider a set of messages sent  1 2, ,...., mX x x x  and the set of messages received

 1 2 3, , ,...., nY y y y y . Then the quantity

 
0 0

, log ij
i j

i j

p
h x y

p p
     i = 1, 2, ......, m; j = 1, .....m, n

is known as mutual information of the messages sent ix  and the message received jy .

Definition 4.15 : Expected Mutual Information : Expected mutual information of X and Y is
denoted by I (X,Y).

 
0 01 1

, log
m n

ij
ij

i ji j

p
I X Y p

p p 



Theorem 4.5 :          , / /I X Y H X H X Y H Y H Y X   

Proof : We have



179

   
0 0 /

1 1 1

/ log log
m m n

i j ij i j
i i j

H X H X Y p p p p
  

    

      0 /
1 1 1 1

log log
m n m n

ij i ij i j
i j i j

p p p p
   

 
    

 
  

      
/

01 1

log
m n

i j
ij

ii j

p
p

p 

 
  

 


Since / 0ij i j jp p p

/
0

ij
i j

j

p
p

p


Thus,
   

0 01 1

/ log
m n

ij
ij

i ji j

p
H X H X Y p

p p 

 
    

 


        ,I X Y

Similarly,       / ,H Y H Y X I X Y 

From theorem 4.5 we observe that the information conveyed about X by Y is same as

the information conveyed about Y by X. When X and Y are independent,  , 0I X Y  .

Theorem 4.6 :

       , ,I X Y H X H Y H X Y  

Proof : We know that

     , /H X Y H X H Y X 

      / YH Y H X 

     / , YH X Y H X Y H  

     , X/ YI X Y H X H  

          ,H X H X Y H Y  

          ,H X H Y H X Y  
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4.9 CHANNEL CAPACITY, EFFICIENCY AND REDUNDANCY

Definition 4.16 : Channel Capacity

 ,I X Y  indicates the measure of the average information per symbol transmitted in

the system. The channel capacity is the maximum of information transmitted.

 max ,C I X Y

For noiseless chanel

       , ,I X Y H X H Y H X Y  

Therefore,  max ,C I X Y

    max H X

   0 0
1

max log
m

i i
i

p p


 
  

 


Since   1 1 1 1
max , , ,....,H X H

m m m m
   
 

  1 1 1
max , ,....,C H X H

m m m
     
 

    
1 1

logm
m m

        

    
1

log logm
m

  

Thus C = log m bits/symbol.

Definition 4.17 : Capacity of Channel

The capacity of channel can be expressed in bits per seconds. If symbols have a common
duration of t sec, then channel capacity C per/sec is given by

log
 bits/sec  bits/sect

C n
C

t t
 

Definition 4.18 : Redundancy

The difference between the actual rate of transmission of information I (X, Y) and its
maximum possible value is defined as the redundancy of the communication system.

Absolute redundancy for noise free channel = C – I (X, Y)

          = log m – H (X)
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Relative Redundancy : The ratio of absolute redundancy to the channel capacity is defined as
relative redundancy.

Relative redundancy for noise free channel 
 log

log

m H X

m




         
 ,C I X Y

C




Definition 4.19 : Efficiency

The efficiency of the system is defined as the ratio of actual rate of transmission of
information to its maximum possible value.

Efficiency of the noise free channel 
   , ,

log

I X Y I X Y

C m
 

Example : Find the capacity of the memoryless channel specified by

1 1 1
0

2 4 4
1 1 1 1

4 4 4 4
0 0 1 0

1 1
0 0

2 2

 
 
 
 
 
 
 
 
  

Solution : The capacity of memory less channel is given by

  max ,C I X Y

         max ,H X H Y H X Y    

       
4

, log ,i j i j
ji

p x y p x y 

    
1 1 1 1 1 1 1 1

log 2 log 4 log log1 2 log
2 2 4 4 4 4 2 2

                 
      

    
1 1

log 2 log 4 log 4 log 2
2 2

   

1
1 2 1 log 2

2
     
 
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9 9
log 2  bits/symbol

2 2
 

4.9 ENCODING

Definition 4.20 : Encoding may be defined as a transmission procedure of a message from
sources to receiver through a noiseless channel in come code language.

In calculating the long run efficiency of communication system, the average length of a
code word is of considerable interest. It is a quantity which is chosen to be minimum.

Following are the elements of the noiseless coding problem.

(i) A random variable X taking value 1 2 3, , ,...., nm m m m  with prescribed probabilities

     1 2, ,...., Np m p m p m  respectively. X is to be observed independently over and over again.

Thus, generating a sequence whose components belong to the set  1 4, ,....., Nm m m  such a

sequence is called a message.

(ii) A  1 2 3, , ,......, DY a a a a  set is called a set of code character or the code alphabet.

Each symbol mi is to be assigned a finite sequency of code characters called the code word
associated with mi. The collection of all code words is called a code. Code words are assumed
to be distinct.

(iii) The objective of noiseless coding is to minimize the average code word length. Number
of letters in a word is called length of the word.

Objective :

If the code word associated with mi is of lenghth ni, i = 1, 2, 3, ...., N, then the problem
is to determine code that minimize the average length of messages.

The following are some of subclasses of code :

(i) Block Code : A code tha establishes a relationship with each of the symbols f the set X
to a fixed sequence of symbols of the set Y is called a block code. e.g. m1 may correspond to
a1a7 or m2 may correspond to a7a8a4 etc.

(ii) Binary Code : In particular if the set Y = {0, 1} then the block code is called binary code

1 1a  , 2 101a  .

(iii) Non-singular code : A block code is said to be non-singular if all the words of the code
are distinct.

(iv) Unique Decodable Code : A code is said to be unuquely decodable (separable) code
if every finite sequence of symbols of the said Y is associated atmost one symbol of the set X.

e.g. 1 0m  , 2 10m  , 3 110m  , 4 111m  . Here encoding procedure established

a one to one correspondance between message and their code words without the necessity of
having any space between successive messages.
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If we have 00001001001101000111 the we have

1 1 1 1 2 1 2 1 3 2 1 1 4.m m m m m m m m m m m m m

4.10 SHANNON FANO ENCODING PROCEDURE

This method of encoding is directed towards constructing reasonably efficient separable
binary of codes for sources without memory.

Let  1 2 3, , ,....., nX x x x x  be the list of the messages that are to be transmitted from

some source and  1 2, ,....., nP p p p  be their corresponding probabilities.

Aim is to device an encoding procedure so that a sequence of binary numbers {0, 1} of
unspecified length can be associated to each message xi. The sequence so obtained must
satisfy the following conditions.

(i) No sequency of binary numbers can be obtained from any other sequence by adding
additional binary terms to the sequences of shorter length.

(ii) Binary numbers associated with each messages xi to form a sequence occur
independently with equal probability.

The Procedure to Construct Code :

Step 1 :  Arrange the messages 1 2, ,....., nx x x  indescending order in terms of their probabilities

without loss of generality let 1 2 3....... mp p p p   .

 Message 1x 2x 3x .... mx

Probability 1p 2p 3p .... mp

Step 2 : Divide the set of messages X into two subsets X1 and X2 of equal probabilities.

Set Message Probabilities

1X 1 2,x x  1 1 2P X p p 

2X 3 ,...., mx x  2 3 4 ..... mP X p p p   

Such that    1 2 .P X P X

Step 3 : Again divide both subsets X1 and X2 into two subsets say X11, X12 and X21, X22 with
equal probabilities respectively.

Step 4 : Assign binary number 0 to the first position of the coded word in each message in
subset X1 and 1 to the first position of the coded word in each message in subset X2. The
similar procedure of assignment is repeated for subsets of X1 and X2.

Setp 5 : The division and assignment will continue till each subset contains only one message
(word).
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Example : Apply Shannon Fano encoding procedure to the following set of messages.

X : m1 m2 m3 m4

P : 0.4 0.3 0.2 0.1

Determine entropy of the source, expected length, efficiency and redundancy of the
code that you obtain.

Answer :

Character Probabilities Partioning Code word Code word length

1m 10.1  }  X X1 0 1

2m 0.3 X21 10 2

3m         0.2    X2          X221 110 3

4m 0.1 X22 111 3

         X222

 1 1X m ;  2 2 3 4, ,X m m m

 21 2X m ;  22 3 4,X m m

 221 3X m ;  222 4X m

(a) The entropy of the source is

     logi iH X p x p x 

 0.4 log 0.4 0.3log 0.3 0.2 log 0.2 0.1log 0.1    

10 10 10
0.4 log 0.3log 0.2 log 0.1log10

4 3 2
   

 20.4 log 2 log 5 log 2 0.3 log 2 log 5 log 3       

   0.2 log 5 0.1 log 2 log 5  

   log 5 0.4 0.3 0.2 0.1 0.3log 3 log 2 0.4 0.8 0.3 0.1        

log 5 0.3log 3 

(b) The expected length of code is

 i iL p m n  

   = (0.4)(1) + (0.3)(2) + (0.2)(3) + (0.1)(3)

   = 0.4 + 0.6 + 0.6 + 0.3 = 1.9 bits/symbol
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(c) Efficiency of code = 
 H X

L

  log 5 0.3log3

1.9

H X

L
 
 

(d) Redundancy of code  
1.9 log 5 0.3log 3

1
1.9

   
  

Example : The source memory has six characters with the following probabilities of transmission.

A B C D E F

1

3

1

4

1

8

1

8

1

12

1

12

Devise the Shannon Fano encoding procedure to obtain a uniquely decodable code to
the above message. What is average length, efficiency and redundancy of the code that you
obtain ?

Answer : Probabilities are already arranged in decending order.

 1 ,X A B

 2 , , ,X C D E F

 1
1 1 7

3 4 12
P X   

 2
1 1 1 1 5

8 8 12 12 12
P X     

 
11X A ,  

12X B ,  21 ,X C D ,  22 ,X E F ,  21
1

4
P X  ,

 22
1

6
P X  ,  211X C ,  

212X D ,  
221X E ,  

222X F .

Length of code

Code of  11A X  is 00 2

Code of  is  12B X  01 2

Code of   211C X  is 100 3

Code of  212D X  is 101 3

Code of  221E X  is 110 3

Code of  222F X  is 1111 3
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(a) The entropy of source is given by

     logi iH X p x p x 

1 1 1 1 1 1 1 1
log log 2 log 2 log

3 3 4 4 8 8 12 12

           
   

 2 31 1 1 1
log 3 log 2 log 2 log3 2 log 2

3 4 4 6
    

1 1 3 1 1
log 3 log 2 log 2 log3 log 2

3 2 4 6 3
    

1 3 1 1 1
log 2 log 3

2 4 3 3 6
          
   

19 1
log 2 log 3

12 2
 

(b) The average code length of the message is given by,

 i iL p x 

    
1 1 1 1 1 1

2 2 3 3 3 3
3 4 8 8 12 12

                                    

    
2 1 3 3 3 3

3 2 8 8 12 12
     

    
16 12 9 9 6 6 58 29

24 24 12

    
  

    = 
29

12
 bits/symbol

Efficiency of code 
  19 1 12

log 3
12 2 29

H X

L
     

Redundancy of code 
19 1 12

1 log3
12 2 29
      

EXERCISE :

1. Write a critical essay on Information Theory.

2. Define entropy function.

3. Show that entropy function is maximum when mutually exclusive events are equiprobable.
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4. An alphabet consists of 8 consonants and 8 vowels. Suppose that all the letter of the
alphabet are equally probable and that there is no inter symbol influence. If consonants
are always understood correctly but vowels are understood correctly only half the time
being mistaken for other vowels the other half of the time, all vowels being involved in
errors the same percentage of the time, what is the average rate of information
transmission ?

5. Evaluate the entropy associated with the following probability distribution.

A B C D

0.4 0.3 0.1 0.2

6. A transmitter and receiver has an alphabet that consists of three letters each. The joint
probabilities for communication are given below.

p (x1, y1) y1 y2 y3

x1 0.45 0.45 0.01

x2 0.02 0.02 0.01

x3 0.01 0.02 0.01

Determine the different entropies for this channel.

7. Apply Shannon Fano encoding procedure to the following messasge.

[X] : A B C D

[P] : 0.4 0.3 0.2 0.1

8. Apply Shannon-fano encoding procedure to the following message ensemble.

X x1 x2 x3 x4 x5 x6 x7 x8

P 0.49 0.14 0.14 0.07 0.07 0.04 0.02 0.03

9. Find the capacity of the memoryless channel specified by the following channel matrix.

1 2
0

3 3
2 1

0
3 3
0 0 0

P

 
 
 
   
 
 




