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Preface

The Shivaji University, Kolhapur has established the Distance and Online Education
Centre for external students from the year 2022-23, with the goal that, those students
who are not able to complete their studies regularly, due to unavoidable circumstances,
they must be involved in the main stream by appearing externally. The centre is trying
hard to provide notes to those aspirants by entrusting the task to experts in the
subjects to prepare the Self Instructional Material (SIM). Today we are extremely happy
to present a book on Numerical Analysis for M. Sc. Mathematics students as SIM
prepared by us. The SIM is prepared strictly according to syllabus NEP 2020 and we
hope that the exposition of the material in the book will meet the needs of all students.

This book has grown from the lectures we deliver in the Department of Mathematics
at Shivaji University, Kolhapur. The book is based on the curriculum recommended for
M. Sc. Mathematics at Shivaji University, Kolhapur.

This book has four units. Unit 1 provides an introduction to error analysis and
methods to estimate roots of polynomial and Transcendental equations. This unit
deals with direct and iterative method for finding the roots of transcendentel and
polynomial equations. In unit 2, the direct and iterative methods for the solution of a
system of linear algebraic equations are discussed. The error analysis and convergence
of iterative methods are also discussed. Various methods for finding eigenvalues and
corresponding eigen vectors are explained. Unit 3 gives the numerical methods of
differentiation and integration. Lagrange's interpolation and Newton's divided difference
formula is derived that approximates a function by a polynomial of given degree.
Uniqueness of interpolating polymial is proved. Error analysis for Lagvage's interpolation
is carried out. Various methods for numerical differentiation and numerical integration
are discussed along with their error analysis. Unit 4 deals with numerical solutions of
ordinary differential Equations. Various methods used to determine the numerical
solutions of ordinary differential Equations are discussed. Error analysis is for all the
methods is given.

All the units are followed by solved problems. A good number of examples have
been solved at the end of each unit to enable the student to understand the concepts
described in the text. Good number of excercises are given at the end of each unit.

We hope that the content of the SIM will be helpful for the students having their
education in distance mode.

Editor
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Each Unit begins with the section objectives -
Objectives are directive and indicative of :
1. what has been presented in the unit and
2. whatis expected from you

3. what you are expected to know pertaining to the specific unit,
once you have completed working on the unit.

The exercises at the end of each unit are not to be submitted to
us for evaluation. They have been provided to you as study tools to
keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.
It is also advised to see the new syllabus 2022-23 and study the
reference books & other related material for the detailed study of the
paper.
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INTRODUCTION

Numerical analysis involves the study, development and analysis of algorithms for obtaining
numerical solutions to various mathematical problems. Frequently numerical analysis is called the
mathematics of scientific computing. Numerical analysis is the development and study of procedures
for solving problems with computer. The art and science of preparing and solving scientific and engineering

problems have undergone considerable changes due to the available digital computing systems.

Digital computers are the principal means of calculation in numerical analysis and consequently
itis very important to understand how they operate. A computer has a finite word length and so only a

fixed number of digits are stored and used during computation.

1. Errors

Even in storing an exact decimal number in its converted form in the computer memory, an
error is introduced. This error is machine dependent. Also at the end of computation of aparticular
problem, the final result in the computer should be converted into a form understandable to the user.
Therefore an additional error is committed at this stage too. This error is called local round off error.

Thus we define
Error = True Value — Computed Value

In order to determine the accuracy of an approximate solution, errors are measured in different

ways.

Definition 2 : Absolute error = error |

|Error]|

Definition 3 : Relative error = m

Definition 4 : Round Off Error : is the quantity R which must be added to the finite representation

of a computed number in order to make it the true representation of that number.

When a number N is written in floating point form with t digits, say, in base 10 as,

N =(0-dydyds...d,)10°, d, %0

( (D) )




1
We say that the number N has t significant digits. For example, 0.3 agrees with 3 to one

1
significant digit. The round off error for this representation will be 3 0.3,

All the errors defined above are machine errors and can be minimized by using computing aids

of higher precision.
Methematically, in numerical analysis we usually come across two types of errors.
@) Inherent Errors

It is that quantity of error which is present in the statement of the problem itself, before finding
its solution. It arises due to the simplified assumptions made in the mathematical modelling of a problem.
It can also arise when the data is obtained from certain physical measurements of the parameters of the

problem.
(ii) Truncation Errors
These are errors caused by using approximate formulae in computations. e.g. when a function

f(x) is evaluated from an infinite series, if we use only first few terms of the series to compute value of

function f(x),we get an approximate answer. Here, the error is due to truncating the series.
Suppose f(x)=cosx.Then

2 X4 X6 2n

X 1y
f(x)=1 2!+4! i +(-1) (2n)!+....

If we retain the first n terms, the truncation error (TE) is

2n+2 2n+4 2n+6

SR Y ' S

TE =(-1)""" —— S
(2n+2)! (2n+4)! (2n+6)!

The study of this type of error is associated with the problem of convergence. Some special
terminology is used to describe the rapidity with which a sequence converges.

Big O and Little o Notation :
Let {x,} and {a,} betwo different sequences.
The equation x, =o(«, ) (wesay x, is “little oh” of «,, )

.Xx
Iim 2 =0
n—o Q,




To avoid division by zero, we say that
x, =o(a,) if|x,|<&,|e,| and &, - 0 as n — 0.

We write x, =0 (an ) (wesay x, is “bigoh” of ¢, ) if there is a constant C and number n,
such that |xn| < C|an| when n > n,,.

These two notations give a coarse method of comparing two sequences. They are frequently
used when both sequences converge to 0. If x, — 0, @, — 0 and x, =o(«,, ), then x, converges
to 0 at least as rapidly as @, does. If x, =0, @, —0 and x, =o(a, ) then x, converges to 0

more rapidly than ¢, does.

Definition : The truncation error is the quantity T which must be added to the true representation of

the quantity in order that the result is exactly equal to the quantity we are seeking to generate.

2. Stability in Numerical Analysis

A number of mathematical problems have solutions that are quite sensitive to small computational
errors, for example round off error. To deal with this phenomenon, we introduce the concept of stability.
A numerical method for solving mathematical problem is considered stable if the sensitivity of the

numerical answer to the data is no greater than in the original mathematical problem.

A numerical method is said to be stable if the effect of any single fixed round off error is
bounded.

3. Problem Solving Using Computers
In order to solve a given problem using computer the major steps involved are -
1) Choosing an appropriate numerical method
(i) Designing an algorithm
(ii1) Programming
(iv)  Computer Execution.

In Unit1 to4 we discuss various numerical methods (and their analysis) for solving transcendental
and polynomial equations, system of linear equations, differential equations, numerical methods available
to interpolate and approximate functions, integration and evaluation of eigen values and eigen vectors

of symmetric matrices.
o S

( C 3 ) )




UNIT -1

TRANSCENDENTAL AND POLYNOMIAL EQUATIONS

Introduction :

One of the basic problems in science and engineering is the computation of roots of an equation
f(x)=0.Theequation f(x)=0 iscalled algebraic or polynomial equation ifit is purely a polynomial
inx. Itis called a transcendental equation if f'(x) contains trignometric, exponential or logarithmic
functions.

Definition 1.0.2 :
Anumber £ isasolutionof f(x)=0 if f(£)=0.Such ¢ iscalledrootorzeroof f(x)=0.

Geometrically, arootof f(x) = 0 is the value of x at which the graph of y = f(x) intersects

the x-axis.

Definition 1.0.2 :

If we can write f(x)=(x—&)" g(x) where g(x) is bounded and g(&) =0 then & is
called a multiple root of multiplicitym. Inthiscase f (&)= f'(&)=/"(&)=...= f™ V(&) =0.
and f b (&) =0 form=1theroot & is called simple root.

The following are the basic properties of polynomial equation.

@) Every polynomial equation of n' degree, where 7 is positive integer has exactly 7 roots.
(i) Complex roots occur in pairs i.e. ifa+ibisaroot of f(x)=0,soisa—ib.
(i) Ifx=aisarootof f(x)=0,a polynomial of degree nthen f(x)=(x—-a)g(x) where

g (x) isapolynomial of degree (n— 1).

(iv)  Descartes Rule of Signs :

The number of positive roots of a polynomial equation f(x) =0 withreal coefficients cannot

exceed the number of changes in sign of the coefficients in the polynomial f(x) =0 . Similarly, the

number of negativeroots of f'(x) = 0 cannot exceed the number of changes in the sign of the coefficients




of f(—x)=0.Forexample,consider f(x)=x>-3x?+4x—5=0.Thecoefficients of this equation

are (1,-3,4,-5). As there are three changes in sign, the given equation will have at the most three

positive roots.

) Intermediate Value Property :

If f(x) isareal valued continuous function in the closed interval 4 < x < p thena function
takes each value between f(a) and f(b).Inparticularif f(a) and f(b)have opposite signs, then
the graph of a function y = f(x) crosses the x-axis at least once. i.e. f(x) =0 has at least one root

between a and b.

ie. f(£)=0, a<&<b

There are generally two types of methods used to find roots of f(x)=0.

@) Direct Methods :

These methods give the exact value of the roots in a finite number of steps. Further the methods
give all the roots at the same time. These methods require no knowledge of the initial approximation of

aroot of the equation f(x)=0.

e.g. solutions of polynomial equation are known for polynomials of degree upto cubic. i.e.

a
=_"1
for apx+a; =0, *=
do
[ 2
2 —
for agXx” +ax+a, =0, X=

2a,

(ii) Interrative Methods

These methods are based on the idea of successive approximations i.e. starting with one or
more initial approximations to the root, we obtain a sequence of approximate solutions which converges
to a root of given equation. In the next section we describe some numerical methods for the solution of

equation f(x)=0.




1.2 Bisection Method

This method is due to Bolzano.

Step 1: Choose x, and x; such that f(x,)f(x)<0 suppose x, < x;.
(By intermediate value principle root lies between x, and x, )
Define /, = (xo,xl).

Xo + X
b .

Step 2 : The desired root is approximately defined by X, =

If f(x,)=0 then x, isthe desired rootof f(x)=0.
If £(x,)#0,calculate f(x,)/f (x;).

If /'(xo) f (x;,) <0 thendefine 1; =(xo,x,).
Otherwise define 7, = (x,,x) and f(x,) f(x)<0.

Step 3 : Define /) = /; and go to step 1. Thus at each iteration we either find the desired root to the

required accuracy or narrow the length of interval to half of the length of interval at previous step. This
process is continued to determine a smaller and smaller interval within which the desired root lies. Ifhe
permissible error is ¢, then the approximate no. of iterations (n) required may be determined from the

relation

Note : The no. of iterations required to achieve required accuracy depends upon the initial interval /.

Ifthe length of 7, is sufficiently small we will reach at the solution in less no. of iterations.

Y20, 2 V.7 1 o B3 D SN

1.2.1 : Find areal root of the equation, f(x)= x> — x—-1=0

Answer :

Step 1: Since f(I)=-1<0 and f(2)=5> 0, therootlies between 1 and 2.

X + X,
Step2: xp ==——=15, f(x,)=f(15)=




1.3 Iteration Methods Based on First Degree Equation

Although the bisection method is easy to compute it is not very efficient. For most functions we
can improve the speed at which the root is approach through different schemes. Almost every functions
can be approximated by a straight line over a small interval. We begin from a value that is near to a
root. This initial value can be obtained by looking at the graph of a function or from few iterations of
bisection method.

Iteration methods are obtained by approximating f'(x) bya polynomial of degree one in the
neighbourhood of root. Thus

a
f@=apra=0=x=—" g 20 . (13.1))
0

The parameters @, and g, are to be determined by prescribing two approximate conditions

on f(x) and/or its derivatives.

1.3.1 Secant Method

Suppose x;_; and x, are two approximations to the root, then we determine a, and q, by

using linear approximation.
S (%)= apx, +a

f (xk—l ) =apX T

On solving above two equations simultaneously for a, and a; we get

f(xk)_f(xk—l) o = xkf(xk—l)_xk—lf(xk)

ay = and 9
X = Xp1 X = Xp1

from equation (1.3.1) we get, the next approximate root

Y, = xk—lf(xk)—xkf(xk_l)
k+1 F(x)= 7 (x2)

which may be written as
X = X1
X =~ e k=1,2,3, ... (132
+1 fk_fkfl s 9“5 s ( )

where f; = f(x;) and f_ = f(x).
This is called the Secant or the Chord Method.




Geometrically, in this method we choose two points on the curve and plot the line passing
through these two points. The point of intersection of the straight line with the x-axis is the next

approximation to the root (Fig. 1.1).

N

Fig. 1.1

1.3.2 Regula Falsi Method

This is the oldest method for finding the real root of an equation f'(x) = 0 and closely resembles
bisection method. This method is also called as method of false position. In this method we choose two
points x, and x; such that f(x,) and f(x,) are of opposite signs. Since the graph of y = f(x)

crosses the x-axis between these two points, a root must lie in between these points. Now the equation

of'the Chord joining the two points (xo, f (xo )) , (x1  f (x1 )) is
_ _ f(xl)_f(xo) _
y f(xo)—[—xl_xo (x=x)
The point of intersection of the chord with the x-axis is given by putting y = 0. Thus we get,

f(xl)_f(xo)(

— x—xo)

—f (%)=
On solving above equation for x we obtain

)
)1 () )

x=x0_

( C 8 ) )




Hence the second approximation to the root of f'(x) =0 is given by

ﬁ(xl—xo) - (13.2.1)

Ifnow f (x2 ) and f (xo) are of opposite signs then the root lies between x, and x, and we

replace x; by x, in(1.3.2.1) and obtain the next approximation. Otherwise we replace x,, by x, and
generate next approximation. The procedure is repeated till the root is obtained to the desired accuracy.

The repeated application of this procedure generates a sequence.

Firstiteration

(xz’f(xz))

Suppose the approximate solution after (k— 1) iterations is denoted by x, . Then the sequence

{xk} approaches to the root & as k —» o0 i.e. f(£)=0.

1.3.3 Newton Raahson Method

This method is generally used to improve the result obtained by one of the previous methods.
Firstly we derive this method by using linear approximation. Suppose x;, is a point in the neighbourhood

of the root of f(x)=0. If we approximate f(x) by a polynomial of degree one we get

f(x)=ayx+aq.
s (X)) =apx; +a

and  f'(x)=4q .. (1.3.3.1)




where a prime denotes differentiation with respect to x. On solving for as and a, we get
a, =f'(xk) and g :f(xk)—f'(xk)xk
From equation (1.3.1) we get,

f(xk)—f'(xk)xk
f(%)

S ()
S (%)
Thus we get the next approximate root as

e f(xk)
Xpy1 = X () k=0,1,2,3, ... ..(13.3.2)

=X, —

This method is called the Newton Raphson method. The method (1.3.3.2) may also be obtained
directly from Secant method (1.3.2.2) by taking the limit x,_; — x, . In the limiting process i.e. when

X,_; — X, the chord passing through the points (xk, 1 (% )) and (xk_l, f (xk_l)) converges to the

tangent at point (xk f (xk )) . Thus in this case the problem of finding aroot of equation f'(x)=0 is

equivalent to finding the point of inteersection of the tangent to the curve y = f(x) at the point
(x> / () with the x-axis. The Newton Raphson method requires two values f (x, ) and f'(x; ).

The method is applicable only when /' (xk ) # 0 i.e. root is a simple root.

The method can also be derived by using Taylor series representation. Let x,, be an approximate

root of f(x)=0 and let x; =x,+% be the correct root so that f(x;)=0. Expanding
7 (%)= f (xo +h) by Taylor series about x, , we obtain

2

h
F(x)=rf(x+h)= f(x0)+hf‘(x0)+7f"(x0)+....: 0
Neglecting the second and higher order derivatives we have

f(x0)+hf'(x0)=0

1.e. h=-

( (D) )




f (%)
f(x%)

Therefore X=X +h=x)—

is the better approximation than x,, .

Successive approximations are given by x, , X, ... where

Xy =X S ) =0,1,2,3
n+ n f,(x”) , 1 » 1, 4,3, ...

This is same as the formula (1.3.3.2).

1.4 Rate of Convergence

All the methods described in section 1.3 are iterative methods and repeatative application of
these methods generate a sequence of approximate solutions. Convergence of this sequence is an

important subject that we will discuss now.

1.4.1 Orders of Convergence
Some special terminology is used todescribe the rapidity with which a sequence convergences.
Let {xn } be a sequence of real numbers tending to a limit x*. We say tha the rate of convergence is at

least linear if there is a constant ¢ < 1 and an integer N such that

n+l

X, —x¥ < Cx, —x*| (n=N) . (L4.1.1)

The convergence is atleast quadratri C if there are a constant C (not necessary less tnhan 1)
and an integer N such that
Wy =3 <Clx, =x (12 N) L (14.12)

In general if there are positive constants C, largest ¢z and an integer N such that

n+l

|x —x*|SC|xn—x*|a (n>N) ..(1.4.1.3)

We say that the rate of convergence is atleast ¢ . The constant C is called the asymptotic error

constant.

If x; is an approximate root of f(x)=0 and ¢£ is a solution of equation f(x)=0 then

&, = x;, — & 1s the error in the solution. If the sequence &, — 0 as t — oo, we say that iterative

methods discussed in section 1.3 are convergent. We assume that & is asimple rootof f(x)=0 so

that f'(£)#0.
( [T )




1.4.2 Rate of convergence of Secant Method

Suppose & isa simplerootof f(x)=0 ie. f(£)=0

&, = x;, —& isanerror. On substituting x, =& + ¢, in(13.2.2) we get,
(ex—&) f(E+&)
f(§+5k)—f(§+5k—1)

Cpr1 =€k

Expanding /(£ +¢;) and /(£ +¢&,_,) inTaylor series about the root & and observing that
/(£)=0 we get,

(5k_5k1){5kf (§)+ f“(§)+ }
TR e

Cpyl =€k —

2

(& _5k1)|:5kf'(§)+gg!f"(§)+...:|
(2 —ekl)[f'(§)+;(sk ve,) f"(g)+..}

_, _{g AN }
e S e

:gk—

:gk{gﬁ 3 f((g)) [1-%(gk+gk1)f':—(§)+..}

('.'L:1+x+x2+x3+...)
1—x

:gk_{gk_%gk(gk +8k1)f"(§) ZE f"(é)

RGNPREGE
o [@T
e 28]
_lgkgk 1f"(




Thus we write &, =C-&,¢,_; where ¢ = lf"_(é:) and we ignore higher powers of ¢, .

2 1'(¢)
Theequation &, =C-&,6,_ ..(1.4.2.1)

is called error equation.
To determine the order of converence discussed in section 1.4.1, we have to determine the
number ¢ suchthat ¢, ., = 4-¢,“ where A and ¢ are to be determined. If we replace k by k—1 we

get,

& = Agi "
i.e. gk—l ot A_%lgk%(
Substituting the values of ¢,_; and ¢, inequation (1.4.2.1) we get,
VAR
Agka = C' gkA %ng%x
gka = CA_I_%&‘]{H—%
Comparing the powers of &, onboth sides of above equation we get,

1
a=1+—
a

1
which is quadratic equation in ¢ and we get & 25(1i\/§ ) The highest value of

1
a= 5(1 +\/§ ) and we find that the rate of convergence of secant method is ¢ =1.618 and

A:C%+a .

1.4.3 Rate of Convergence of Regula Falsi Method

Ifthe function f(x) intheequation f(x)=0 isconvex in the interval (xo , X ) that contains
the root, then one of the points x, or x; is always fixed and the other point varies with k. If the point

x, 1s fixed, then the function f(x) is approximated by the straight line passing through the points

(x0./ (x0)) and (x;. / (x¢)), k=1,2,3,....

( C 13 ) )




Suppose & is simple root of f(x)=0 ie. f(£)=0 and & =x, —¢ is an error in
approximate solution x; . Since the point (xo, f (xo )) is fixed we can write

f(xo)(xk—xo)
f(xk)_f(xo)

X1 =X —

f(§+€0)[§+8k—(§+80)]
f(E+e)-f(&+e)

'.'§+8k+1 :§+€0_

{sof'(f)+‘92'ff"(f)+--}(ek ~é)
PO e (4 e

Sk T &g~

_ @k%)(@F i
e a)s (@i i

=g —[5 + 5 f"(f)-l- }{l—gk+gof"—(gg)+ }
0| S0 e T TR

solete) (8 &’ S"(E),
20 f(E) 20 () T

%(‘;:))5081( + 0(505k2’€k3)

Since &, = x, — & is the error in the first approximation and is independent of &, we can write

_1r@),
27e°

and we get error equation

1
2

& =Cey

Here C is asymptotic error constant and by equation (1.4.1.2), we observe that the Regular
Falsi method has at least linear rate of convergence.
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1.4.4 Rate of Convergence of Newton Raphson Method
Suppose & isasimplerootof f(x) =0 ie. £(£)=0but '(£)=0.Suppose & =x, —&
is an error in the approximate solution x, . On substituting x, =& + &, in equation (1.3.3.2) and

expanding f(£+¢&;) and f'(£+¢&,) in Taylor series about the point & and using the fact that
f(£)=0and f'(&)# 0, weobtain

O @) ]

2
f'(é)+skf"(§)+%f"'(§)+....

$+ & :(§+5k)_

=g —¢ +£w+ +52M+g—k3(mj2
2 T ) 2

_ac L&), (0
S 2 f(8) o)

On neglecting terms containing gk3 and higher powers of ¢, we get an error equation

1 /(&)

Eral :Cgkz where C:E f'(§)

Thus by equation (1.4.1.2) we obsrve that Newton Raphson method has second order

convergence.

Note : Iftheroot £ of f(x) =0 isaroot of multiplicity two or more then the rate of convergence for

Newton Raphson method is one.




1.5 Interation Methods
To describe this method for finding the roots of equation
f(x)=0 ..(1.5.1)
We rewrite this equation in the form
x=¢(x) ..(1.5.2)

Let x, be an approximate value of the desired root £. Substituting it for x on the right hand

side of equation (1.5.2) we obtain the first approximation

X = ¢(x0)

The successive approximations are then given by

X2 :¢(x1)

Thus we get a sequence of approximate solutions {xk} . The convergence of this sequence
depends on the suitable choice of function ¢ (x) and initial approximation x, . The function ¢(x) is

called an iteration function. If the function ¢ is continuous and the sequence {xn } converges to x*

then

xn+1=¢(xn)
= x*=limx,, = Lt ¢(x,)=¢(Lt x,)=p(x*)

n—>0
Thus x* is aroot of equation (1.5.2) if the iteration function ¢ is continuous function.
The following theorem gives a necessary and sufficient condition for the convergence of

sequence{x, | .

Theorem : If $(x) is a continuous function in some interval [ a, b] that contains the root and

|¢5'(x)| < C <1 inthis interval, then for every choice of x, €[a,b], the sequence {xk} determined

from

X =0(x) ,k=0,1,2,3, ...
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Converges to the root & of x = ¢(x).

Proof : Since & isaroot of equation x = ¢(x),

E=¢(¢) .. (1.5.3)

X = 0( %) o (1.5.4)

From equation (1.5.3) and (1.5.4) we get,
E=Xp =9(E)—d(x), k=0,1,2,3, ...

Using the mean value theorem, we get

E-x0=0'(6,)(&—x) 6. eL(&,x;)
where L (&, x; ) represents a line segment joining & and x, .
Similarly, we obtain

&= =06 ) (& —x) O1 € L(E. %)

E—X = ¢'(9k—2)(§_xk—z) O, € L(faxk—z)

f—x1:¢'(l90)(§—xo) HOEL(é::xO)

Since each 6, €[a,b], ¢'(¢9,-)‘S C<land |£-x.|<C™(£-x)

Thus, g, <C*" e

Since C <1, the right hand side of above inequality goes to zero as k becomes large and it

follows that the sequence of approximations {x, | . Converges to the root & if C<1.

Note : The root obtained by this method is unique. Suppose &, and &, are two distinct roots of
equation (1.5.2).i.e. § =¢(&) and &, =¢(&,).

Then we get
&-6=9(¢)-¢(&)
=¢'(0)(&-%)

w(&-&)l1-g'@)]=0

( C 17 ) )




Bu, |g'(@)|<C<1 ~1-¢'(8) =0 =& =0
and therefore & = &, , hence the root is unique.

In general the speed of convergence depends on the value of C; the smaller the value of C, the

faster would be the convergence. Therefore, the speed of convergence dependent upon the choice of

#(x) . There are many ways of rewriting f'(x) =0 inthe form x = ¢(x). For example the equation

f(x) = x>+ x* =1 =0 can be expressed as
r=(1+)72 = () (say)
e=(1-x)2 = & (x) (say)
e=(1-x2)s = () (say)

x=1+x—x2—x3=¢4(x) (say)

We have to choose that function ¢, (x) for which |¢5I '(x)| <1.Since f(0)=-1and f(1)=1,

we know that root lies between 0 and 1.

' ()] =l1-2x-3x%[ £1 for x [0,1]

IO RN

_1
_ %xz(l—x3) A

—>® as x > 1

Observe that the functions ¢,, ¢;, ¢, are not the expected choices of iteration function, as

|¢i '-(x)| £1 fori=2,3,4intheinterval [0, 1 ].
1 _3
If we choose () :(1+x)7% then ¢'(x) = _E(IH) %
1 _3
and |¢'(X)|=E(1+x) %P Vx e[0,1]
1
max|¢'(x)| = —==0.17678 <1

0<x<l 248

and the iteration method x; ., = ¢ (xk ) converges to the root as |¢ '(x)| <1.
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1.6 Polynomial Equations

Polynomial functions are of special importance. They are everywhere continuous, they are
smooth, their derivatives are also continuous and smooth and they are readily evaluated. Descarte’s
rule of signs predict the number of positive roots. Polynomials are particularly well adapted to computers
because the only mathematical operations they require for evaluation are addition, subtraction and
multiplication.

To determine the roots of polynomial equation it is necessary to have the following information
1) The exact number of real and complex roots along with their multiplicity.

(i1) The interval in which each real root lies.

By fundamental theorem of algebra we know that a polynomial of degree # has exactly n
roots. Decarte’s rule of signs gives only upper limit of no. of + ve and — ve real roots. This rule does not
give the exact number of positive and negative real roots. The exact number of real roots of a polynomial
can be found by Sturms theorem.

Let f(x) beapolynomial of degree n. Let f,(x) represent its first order derivative. The
remainder of f(x)divided by f,(x) taken with the reverse sign is denoted by f,(x).Let f;(x)

denotes the remainder of f(x) divided by f,(x) with the reverse sign. Continue this process till we

arrive at a constant. We thus obtain a sequence of functions

f(x)ﬂfi(x)’fZ(x)a""’fk(x)

This sequence is called Sturm sequence.

Sturm Theorem : The number of real roots of the equation f(x) =0 on[ a, b] equals the difference

between the number of changes of sign in the Sturm sequence at x = a and x = b, provided that
fla)=0, f(b)=0.

Since a polynomial of degree » has exactly n roots, the number of complex roots equals (n -

number of real roots), where a real root of multiplicity 7 is counted » times.

If xy, x5, X3, ...., x, are real roots of f(x) then
f)=ay(x—x)(x—x,)(x—x3)..(x—x,)

Complex roots occur in pair. Ifx,, x, are complex roots then (x — x; ) (x —x, ) is a polynomial

of degree two with real co-efficients and in this case

f(x)=aq, (x2 +px+q)(x—x3)...(x—xn)
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Thus it is obvious that the methods of finding roots of polynomial equation should include the

determination of either linear factor (x - p) or quadratic factor x? + px+q-

In this section two methods are presented. Birge Vieta method is used to determine the linear

factor (x - p) whereas Bairstow method is used to determine the quadratic factor x> + px+q-

1.6.1 Birge-Vieta Method

This method is used to determine real root of polynomial equation
P (x)=apx" +ax"" +a,x"" +...+a, ;x+a,=0 .. (1.6.1.1)

IfP is aroot of polynomial P, (x) then (x — p) is factor of polynomial P, (x) . Supposepis an

approximate root of P,(x) . Ifwe divide P,(x) bya factor (x— p) then we geta quotient O, , a

polynomial of degree (n— 1) and a remainder. The remainder R depends on choice of p. i.e. if we

change the value of p, R will get change. Birge Vieta method gives a procedure to make R zero.

Suppose p is an approximate root of P, (x) .
P(x)=(x—p)0,;(x)+R ..(1.6.1.2)
where O, (x)=byx" " +bx"F +b X" +...+b, ,x+b, | ... (1.6.1.3)
apolynomial of degree (n— 1) and R is remainder.

The coefficients in polynomial Q,

,_; 1.e. b;and remainder R are functions of p. Birge Vieta

method gives a procedure to determine p such that R(p)=0.

P.(p)=(p=p)0,1(p)+R(p)=R(p) . (1.6.1.4)

R(p)=0
Equation (1.6.1.4) is the equation in variable p and any iterative method discussed in section
1.3 can be used to determine the root p. Application of Newton Raphson method discussed in section

1.3.3 for equation (1.6.1.4) gives

b, (Pk)

Pik+1 = Pr—
k+1 k Pn,(pk)

. (1.6.1.5)

For a polynomial equation, the computation of P, and P,"' can be obtained with the help of

synthetic division. On comparing the coefficients of like powers of x on both sides of equation (1.6.1.2)

and using equations (1.6.1.1) and (1.6.1.3) we get,

agx" +a X"+ a " + .t a, x+a, =( —p)(box"_1+b1x_ +oetb l)+R




a0=b0:>b0=a0
a; =b; — ppy = b, = a; + pb,

a, =b, — pp = b, =a, + ph

ay =b, — pb_y = b, = a; + pb;_,

a,=R—-pb, = R=a,+pb,,
In general

by=a,+pb,_,k=1,2,3,...n ..(1.6.1.6)
with by =a, and b, = R.
From equation (1.6.1.4) we have

P(p)=R=D, ..(1.6.1.7)

To determine P, '(p), differentiate (1.6.1.6) with respected p.

db, db
—*=p  +p—d
dp k-1 TP dp ... (1.6.1.8)
Equation (1.6.1.8) can be written as

Cea=by +pCiy

db
where d_k:Ck—l, k=1,2,3,...,n

/4

Above equation can also be represented by

C,=b+pC,_,k=1,2,,n—-1 ..(1.6.1.9)

db, d

C,=—L=—(a,+ pb,)=h

and " dp(1p0) 0

(Since by = a, and a,, is independent of p, differentiation of b, with respect to p is zero).
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On differentiating (1.6.1.7) with respect to p we get

dP(p) dR db,
—:—:—:Cn71 ...(1.6.1.10)
dp dp dp

By substituting the values of P,(p) and P, '(p) from equation (1.6.1.7) and (1.6.1.10) in
equation (1.6.1.5) we get

bl’l
C

n—1

Pin =Pk~ k=0,1,2, ... e (16.1.11)

where pj, is initial approximation of factor (x — p).
The method (1.6.1.11) is called the Birge Vieta Method.

The calculations of the coefficients b, and C, are carried out by using synthetic division.

p a a a, as a,_» a,_; a,
pby  pb  pb, pb, 5 pb, b,
p a by b, by b, » b, b,=R=PF,(p)
pCy  pC pC, rC,; rC,,
_dR _dp,(p)
c, G C, G c,, Gu= A

Note : Ifthe polynomial P,(x) do notcontain theterm %, write a, =0.

Once p is calculate with desired accuracy then repeat the procedure for O,_;(x) to determine

second factor of P, (x) . The continuous application of Birge-Vieta method produces all real roots.

1.6.2 Bairstow Method

This method is used to extract quadratic factor from polynomial P, (x), which may give a pair
of complex roots or pair of real roots. If we divide the polynomial P,(x) defined by equation (1.6.1.1)

by the quadratic factor x> + px + ¢ thenthe quotient is a polynomial of degree (n—2) and a remainder

is apolynomial of degree one .
Thus  P,(x)=(x?+ px+¢)0, ;(x)+ Rx+S . (1.6.2.1)

where Q ,(x)=hyx" 2 +bhx"> +bx" .. +b _ix+b, , .. (1.6.2.2)
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The coefficient by, by, b,, ... b, 5, b, , ,R and S are functions of pand g. x* + px+g¢ is

n-3° “n-2>

afactorof P,(x),if

R(p.q)=S(p.q)=0 o (1.62.3)

Suppose ( Po>9 ) is an initial approximation for equation (1.6.2.3) and ( Do +Ap,qy + Aq)
is the true solution of equation (1.6.2.3). Then

OR OR
R(p0+Ap,q0 +Aq)=R(p0,q0)+5Ap+aAq:0
oS oS
S(pO +Ap,q, +Aq)=S(p0,q0)+§Ap+aAq=0

On solving above equations simultaneously for Ap and Ag we get

__RS,—SR, , AQZ_M ..(1.6.2.4)
Rqu —Rqu Rqu _Rqu

Ap =

where R,, R, S,, S, arepartial derivatives of R and S with respect to p and g respectively
evaluated at ( Po-90 ) . Functions R and S are also evaluated at ( Po-90 ) .

Thus to determine the true solution it is necessary to calculate Ap and Aq . The increaments

Ap and Aq areknownintermsof R,S, R, , R,, S, S, evaluated at initial approximation ( Po>90 ) .

These functions R, S and their partial derivatives are obtained by comparing the coefficients of equal

powers of x in equation (1.6.2.1). From equation (1.6.1.1) and (1.6.2.1) we get

n—1

—k
X" rap =by + pb_ +qb_y = b =a, - pb,_ —qb;_,

x:a, ,=R+pb, ,+qb, = R=a,_—pb, ,—qb,_;

x’:a,=S+qb_,=S=a,—qb, ,
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In general we write

bk = ak _pbk—l _qbk—2 . k= 1, 2, 3, e, 1
where b, =a, and b_, =0.
From last two equations we get

R=b, ,and S=b,+ pb,_,

. (1.6.2.5)

. (1.6.2.6)

The partial derivatives R, R,, S, , S, canbe determined by differentiating (1.6.2.5) with

respect to p and ¢g. From equation (1.6.2.5) we get,

ob ob, _ ob,_ , 0b, Ob_
——E b p g2 =Ll o (1.62.7)
p p d * dp Op
ob, ob,_, ob,_, 0by, 0b_,
S S +b, 5+ . = =0
2 p 2q k-2 T4 g oq ... (1.6.2.8)
ob,
Substitution E =-Cy ,k=1,2,3,...,n converts equation (1.6.2.7) into
Cro1 =b —pCiy —qC 5 . (1.6.2.9)
oby,
Ifwe write Ck—2 = _5 then equation (1.6.2.8) becomes
Crr =b = PCr3—qCi,4 e (1.6.2.10)
From equation (1.6.2.9) and (1.6.2.10) we get a recurrence relation
Ck :bk _ka71 _qu72 5 k: 1, 2, 3, ceney n —1
ob, 0
_ Cy=——"—=——(a,— pb))=h
where C_; =0 and “o op Gp( 1= Pby)=by
(Since a; and b, = a,, are independent of p and ¢)
From equation (1.6.2.6), (1.6.2.7) we get
R = 8_R = % =-C, ,
Pop op
ob, ob,_
Sp= p +b,+p L=b,,—C,,—pC,,
From equation (1.6.2.6) and (16.2.8) we get
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S _ob, . ob,,
+p—2L
17 0q &g oq

= _Cn72 - an73

On substituting the above values of R, S, R, , R, S, S, inequation (1.6.2.4) and using
equation (1.6.2.6) we get,

bn 1( C an 3) (bn+pbn—l)(_cn—3)

Y ) (Cra = PCra)~(-Co ) (s ~Cra— 1Cra)
_ b,C,3=b,,C,
- C}fZ CnS(Cnl bnl)
(Cn 2)(bn+l7b ) (bn—l)(bnl Cn—l_pcn—Z)
and B (0= pCra)~(-Coa)(bra ~Coa — PC)

_ b -1 (Cn—l _bn—l ) _bncn—2
C}%—2 - Cn—3 (Cn—l - bn—l )

The improved values of p and g are now
pr=po+Ap and g, =gy +Aq

Repeat the procedure by replacing the initial approximation ( Po>9 ) by ( 2R ) , till we get

the required accuracy of p and g.

For computing b, 's and C, 's we use the following representation

ay ap a,
Pb, 3 pb, 5 pb,_,
—4b,_4 —gb, 3 —qb,_,
b, b, b,
—pC,3 -pC,,
qC,_4 qC, 3
Co G G, Cia Gt
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£,(x)

- | al Qa () =22 |
When p and g are obtained to the desired accuracy the polynomial -2 24 prtq 1s
obtained from the synthetic division procedure. The next quadratic factor of O, , (and hence of

P, (x))1is obtained by applying Bairstow method to O, , (x).

[[ ILLUSTRATIVE EXAMPLESD

1. Obtain aroot, correct to three decimal places for each of the following equations using the
bisection method
@ x¥*—x-1=0 ®) ¥ +x2+x+7=0
(©) x*-2x-5=0 (d) xe*-1=0

Answer (a): f(x)=x"—x—1=0
Since f(1)=-1 and f(2)=8-2-1=5, f(1)- f(2) <0. Therefore root lies between

I and 2. Take X) = 2 =2 =1.5
and 2. Take Xp =——=-=15.
3V (3
Xy)=|=1| —-|=[-1=0.875>0
/() (2) [2)
3 3 ,
fh=-1, f > =0.875, fF(Df 5 < 0. We therefore conclude that root lies between
and >
and .
3
X +1 ot 3
xI:OTzszl.ZSQ £(1.25)=(1.25)° —(1.25)~1=-0.2968 < 0

Root lies between 1.25 and 1.5 (" f'(x,)- /(%) <0)

_Xgt+tx  1.5+1.25

X == =TS 1375 (1) = 0.224609375 > 0

_xgt+x;  1.375+1.25

X3 = = 5 =1.3125;f(x3)=—0.051513671<0

Put  x =13125
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Put

Xo+x _1.375+1.3125
Xy == 5 =1.34375, f(x,)=0.082611083>0
Xo = x, =1.34375

oty 134375+13125
S 2

=1.328125; f(x5)=0.0145...> 0

" Xy = x5 =1.328125

xo+x  1.328125+1.3125
YT T, T 2

=1.3203125, f(x6) =-0.018710613 <0

X, = xg =1.3203125

o +x  1.328125+1.3203125
e, T 2

=1.32421875, f(x;)=-0.002127...<0

X, = x, =1.32421875

Cxptx  1.328125+1.32421875
2 2

Xg

=1.326171875 f(xs) =-0.00620...<0

X, = xg =1.326171875

Cxp+x  1.328125+1326171875
2 2

X9

=1.327158438 | f(x,)=0.01038...<0

Soxy =1.327148438

Xo+x _ 1.327148438+1.326171875
2 2

X0 =

=1326660157, f(x)=0.00829...<0

xo =1.326660157

Xo+x  1.326660157 +1.326171875
2 2

X, = =1.326416016, £ (x,,)=0.00725...> 0

x, =1.326416016

Xo+x _ 1.326416016+1.326171875
2 2

=1.326293946

X =

% — x5 | =1.326416016 —1.326293946] =1.22 x10™*

Therefore root is correct upto three decimal places.

Thusx=1.326293946 is aroot of ,3 _ y _1 = 0 which is correct upto three decimal places.
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Answer (b) : f(x):x3+x2+x+7:()

Put

Put

Put

Put

Put

Put

F(2)=(2P +(=2)* +(2)+7=-8+4-2+7=1>0
F(=3)=(3) +(=3)" +(=3)+7=-27+9-3+7=—14<0
Root lies between — 2 and — 3.

Let xo=—2, x,=-3, f(x%)=1>0, f(x)=-14<0.

_XotXx _

Xy >

=25, f(x,)=-4.875<0

BT 2 —=-225, £(-2.25)=-1.578<0
X=X = -2.25
CXgtx  —2-225
MTTL T T, =-2.125, f(x,)=-0.205078...<0
X =x, =—2.125
+ -2-2.125
X5 = Yot+X% _ =-2.0625 f(xs) —0.417724609 > 0

2 2
Xy = X5 =—2.0625

Xo+x  —2.0625-2.125
2 2

X6:

=—2.09375, f(x;)=0.11148..>0

)CO = x6 = _2‘09375

Cxgtx  —2.09375-2.125
2 2

X7

=-2.109375 f(x7) =-0.0454...<0

Cxp+x  —2.09375-2.109375
2 2

Xg =-2.1015625, f(x3)=0.0333...>0

Xy = xg =—2.1015625

Cxp+x  —2.1015625-2.109375
2 2

X9

X, = Xy = —2.10546875

=—2.10546875 , £ (xy)=—0.00601..

<0
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Xo+x _ —2.1015625—2.10546875

. 5 =-2.103516 f(x,)=0.0136...>0

X0 =

Xp =x0=-2.103516

Xp+x  —2.103516—2.10546875
2 2

X =

= 2104492 £(x,)=0.0038..> 0

Xo =X, =—2.104492

Xo+x  —2.104492-2.10546875
2 2

=-2.104980375

X =

| —xp5| =1-2.104492 + 2.104980375| = 4.88x10~*

.. Root correct upto three decimal paces is x;, =—2.104980375 .

Answer (c) : f(x):x3 -2x-5=0

Put

Put

Put

Put

f(2)=2°-4-5=-1<0, f(3)=27-6-5=16>0
f(2)fr@3)<o

. Root lies between 2 and 3.

Xo=2,x5=3, f(x)=-1<0, f(x)=16>0

Xy +X
===, f(x)=5.62>0

xl :.X2 :2.5

+ 2+2.5
x3:x02x1: 5 =2125, f(x)=03457>0

X =x3=2.125

_Xgtx  2+2.125

Xy == == 20625, f(x,)=-0.3513<0

X, =2.0625

+x _ 2.0625+2.125
xg =20 5 A= : =2.09375, f(x5)=-0.0089 <0

X, =2.09375

Xo+x  2.09375+2.125

=2.109385, f(x5)=0.1668>0
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Put  x =x, =2.10938

CXp+x  2.09375+2.10938

Xy = S = 5 :2.101565,f(x7):0.07856>0

Put  x =x,=2.101565

Xy +x  2.09375+2.101565

X
8 2 2

=2.09766 f(xg) =0.034...>0

Put  x =x3=2.09766

Cxp+x  2.09375+2.09766
2 2

X =2.09570, f(xy)=0.01286...>0

Put  x =xy=2.09570

Xo+x  2.09375+2.09870
2 2

=2.09473 | f(x,,)=0.00195>0

Xp+x  2.09375+2.09473
2 2

=2.09424

%10 — x| =12.09473 -2.09424| = 4.9x 107"

Root is correct upto three decimal places and x;; = 2.09424 isrootof f(x)=0.

Answer (d): £(0)=0-1=-1<0, f()=e-1=1.718>0

Xo=0,x =1, f(x)=-1<0, f(x)=1.718>0
Root lies between 0 and 1.

Xy + X
=== =05, £(0.5)=-0.1756<0

Put )CO = 0.5

_Xot+x  0.5+1

BT =075, £(0.75)=0.5877...> 0
Put x] :075
x,+x 0.5+0.75
X4: 02 1: 2 :06259f(x4)=01676>0
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Put x; =x4 =0.625

5y =70 03002 _ 05625, f(x;)=-0.01278...<0
Put Xy = x5 =0.5625

5= 0'5625; 092 059375, f(x;)=0.07514..0
Put  x =0.59375

X, =20 ;xl _ 05625 20‘59375 =0.578125, f(x;)=0.0306...> 0
Put  x =0.578125

5= 05623 +20'578125 =0.5703125, f(x;)=0.008779...> 0
Put  x =0.5703125

Xy =20 ;xl _ 026 “;5703 123 _ 056640625, f(x,)=~0.002...<0
Put  x, =0.56640625

B ;xl _ 0.566406252+0.5703125 =0.56836, f(x9)=0.0033..>0
Put  x =0.56836

. ;xl _ 0.5664062§+0.56836 ~0.56738 , 1(x1,)= 0000650
Put  x =0.56738

. ;xl _ 0.5664062§+0.56738 0566893,/ (x.,)=0.0006..<0
Put  x,=0.566893

. ;xl _ 0.5668932+0.56738 05671365

|x1, — x5 =10.566893 - 0.5671365| = 2.4 x10™*

The required root is 0.5671365 which is correct upto 3 decimal places.
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2. A real root of following functions lies in the interval (0, 1). Perform four iterations of secant
method to obtain the root.

(@) x* —5x+1=0 (b) cosx—xe* =0 (€) xe* —1=0
Answer (a): f(x)=x’-5x+1=0
Here x,=0,x =1. f(x))=1, f(x)=-3.

By Secant method (Chord method)

X = X1

Mt ZXk_f(xk)_f(xk—l)

For k=1, we have

f (%)

1-0
X, =1—(_3)—_(1)'(—3) =0.25 ; f(xz) =-0.234375

For k=2, we have

. XX .
BT f(xz)—f(xl) f(xz)
=0.25 0.25-1 (~0.234375)

T (=0.234375)—(=3)
=0.186441, f(x3)=0.074276
For k=3, we have

X3 =X

f(x5)=1 (%)

_0.186441-0.25
0.074276 —(-0.234375)

f (%)

)C4=.X3_

=0.186441 -(0.074276)

= 0.201736, f(x4) =-0.00047
For k=4, we have
X4 — X3
f(x4)—f(x3)

=0.201736— 0.201736 —0.186441 -(-0.00047)

(-0.00047) —(0.074276)

~f(x4)

x5=)C4—

= 0.201640
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Thus after four iterations approximate root is 0.20164.
Answer (b): f(x)=cosx—xe* =0
By Secant method

X = X1

Mt ZXk_f(xk)_f(xk—l)

Here x, =0, x; =1, f(x,)=1, f(x)=-2.177979523,

f ()

For k=1, we have
X1~ X

f(xl)—f(xo)

—1- 1-0 (=2.177979523)
(=2.177979523) -1

f(x)

=0.3146653378, f(x,)=0.519871175
For k=2, we have

Xy — X

f(xz)_f(xl).f(xz)

)C3=X2_

=0.3146653378 — 0.3146653378 1 .(0.519871175)

0.519871175—(=2.177979523)

=0.4467281466, f(x;)=0.203544710
For k=3, we have
X3 — X,
f(x3)=f(x,)

04467281466 0.4467281466 -0.3146653378 .0.20354471

0.203544710—-0.519871175

f (%)

)C4=.X3_

= 0.5317058606, f(x4) =0.0950824
For k=4, we have

X4 — X3

f(3x4)= 1 (x5)

f(x4)
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0.5317058606 — 0.4467281466

=0.5317058606 — -0.0950824
0.0950824 —0.203544710
=0.606200724
After four iterations approximate root is 0.606200724.
Answer (¢): f(x)=xe" -1
By Secant method
X = Xp1
Xl =X — 'f(xk)
! f(xk)_f(xk—l)
Here x, =0, x; =1, f(x)=-1, f(x)=1.718281828.
Fork=1,
X1 =X
Xy =X — 'f(xl)
f (xl ) - f(xo )
=1- -0 -(1.718281828)
1.718281828 — (1)
= 0036787944, f(x,)=-0.468536395
For k=2,
Xy =X
X3 =X _—'f(xz)
f(x2 ) - f(xl )
=0.36787944 — 0.36787944 1 -(-0.468536395)
(—0.468536395) —(1.718281828)
=0.503314365, f(x;)=-0.167419994
For k=3,

0.503314365-0.3146653378
0.203544710-0.519871175

-0.20354471

=0.503314365 -

=0.624703233, f(x4) =0.166752984

( C 34 )




For k=4,
X4 — X3

f(3x4)= 1 (x5)

=0.624703233 - 0.624703233 ~0.503514365 -(0.166752984)

0.166752984 +0.167419994

f(x4)

=0.564129945, f(x5)=-0.008306022475

The approximate root of f(x) = xe* —1=0 150.564129945.

3. Areal root of following functions lies in the internal (0, 1). Perform four iterations of Regula falsi

method to obtain the approximate root.

(@) x* —5x+1=0 () cosx—xe* =0 (©) xe*-1=0
Answer (a): f(x)=x>—-5x+1=0

We have x, =0, x, =1, f(x)=1, f(x)=-3

Since f'(x,)- /(%) <0, root lies between 0 and 1.

By Regula falsi method,
Xk — Xk
Xppp =X — Sflx
k+1 k f(xk)_f(xkfl) ( k)
Fork=1,
X1~ X
Xy =x—————— f(x
2 1 f(xl)_f(xo) ( 1)

= 025, f(x,)=-0.234375
Since f(x,)- f(x,)<0,root lies between x, and x, .
Put X =x,=0
For k=2,

X=X

f(e)=f(x)
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0.25-0

- .(-0.234375)
~0.234375-1

=0.25

=0.202532, f(x3)=-0.004352

Since f'(x,)- f(x3) <0, root lies between x, and x;.

For k=3,
X3 =Xy
X4 =3 f(x3)
f(x3)—f(x2)
0202532 2:202532-0 ) 604352)
20.004352 -1

=0.201654, f(x4) =-0.00007
Since f(xy)- f(x4)<0,root lies between x, and x, .
Put X;=x,=0.
For k=4,

f(3x4)= 1 (x5)

~f(x4)

x5=)C4—

—0.201654 2201654-0 (=0.00007)

—-0.00007 -1
=0.201640

|x5 — x| =10.201640-0.201654| = 0.000014 =1.4 10~

The root x =0.201640 is correct upto 4 decimal places.

Answer (b): f(x)=cosx—xe* =0.

We have x, =0, x, =1, f(x)=1, f(x)=-2.177979523.

Since f'(x,)- /(%) <0, root lies between 0 and 1.
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Fork=1,

X1 —Xp

f(xl)—f(xo)

=0.3146653378, f(x,)=0.519871175

f(x)

Since f(x,)- f(x,)<0,root lies between x; and x, .
For k=2,

Xy — X

f(xz)_f(xl).f(xz)

)C3=X2_

=0.3146653378 — 0.3146653378 -1 -0.519871175

0.519871175+2.177979523

=0.4467281466, f(x;)=0.203544710
Since f(x;)- f(x3) <0, root lies between x, and x;.
Put x, = x, then for k=3,

X3 =X

f(x5)=1(x)

f (%)

)C4=.X3_

=0.4467281466 — 04467281466 -1 -(0.203544710)

0.203544710+2.177979523

= 04940153366, £ (x,)=0.0708023
Since f(x,)- f(x;)<0,root lies between x; and x, .
Put x; = x; then for k=4,

f(3x4)= 1 (%)

~f(x4)

x5=)C4—

=0.4940153366 — 049401535 -1 -(0.0708023)

0.0708023 +2.177979523

=0.5099461404
The approximate rooy after four iteration is 0.5099461404.
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Answer (¢): f(x)=xe*—-1=0
We have x, =0, x, =1, f(x))=-1, f(x)=1.718281828.

Since f(x,)- /(%) <0, root lies between x, and x; .

By Rehula falsi method
X = Xg1

Xpyg =X — fx

fe+1 k f(xk)_f(xkfl) ( k)
Fork=1,

X1 —Xp
X, =x,————— f(x
2 1 f(xl)_f(xo) ( 1)
=1 =0 -(1.718281828)

1.718281828+1

=0.36787944, f(xz) =-0.468536395

Since f(x,)- f(x,)<0,root lies between x; and x, .
For k=2,

X=X

o) sy )

—0.36787944 — 0.36787944 -1 (=0.46853695)

—0.46853695—1.718281828

= 0.503314365, f(x3)=—0.167419994
Since f(x;)- f(x;) <0, root lies between x, and x;.
Put x, = x; then for k=3,.

X3 =Xy

f(x3)—f(x2)

f (%)

=0.503314365— 0.503314365 -1 (=0.167419994)

—0.167419994 —1.718281828

=0.547412061, f(x4) =-0.053648664

Since f(x,)- f(x;)<0,root lies between x; and x, .
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Put x; = x; then for k=4, we have

X4 — X3

f(3x4)= 1 (x5)

f(x4)

=0.547412061— 0.547412061-1 (~0.053648664)

—-0.053648664 —1.718281828

=0.561115046

The approximate root after four iterations is 0.561115046.

4.(a) Perform four iterations of the Newton Raphson method to find the smallest positive root of

(b)

©

d

(e)

the equation f(x)=x>-5x+1=0.
Apply Newton Raphson method to determine aroot of the equation f(x)=cosx—xe* =0,

correct upto thnree decimal places.

Perform four iterations on Newton-Raphson method to obtain approximate value of (77 )%
starting with initial approximation x, = 2.

To get the convergent Newton-Raphson method, show that the initial approximation x,, for

1 2
finding N where N is positive integer, must satisfy 0 < x; < e

Perform four iterations of Newton Raphson method to find approximate rootof £(x) = xe* —1.

Answer (a) : The smallest positive root of equation f(x) = x> —5x+1=0 liesbetween0and 1.

Let initial approximation x, = 0.5.

I (%)

In Newton Raph: thod Xk+1 = Xk = )
ewton Raphson metho + f(xk)

f(x)=x>-5x+1and f'(x)=3x>-5

o oS 0)

For k=0, 1= %o f'(xo)
=0.5—- /(05) =0.176470588

7'(0.5)
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For k=1,

7(0.176470588)
£'(0.176470588)

=0.176470588 —

=0.201568074
For k=2,

7(0.201568074)
7'(0.201568074)

x;=0.201568074 —

=0.201639675
For k=3,

7(0.201639675)
7'(0.201639675)

x, =0.201639675—

=(0.201639678
For k=4,

£(0.201639610)

x5 =0.201639678 —
7'(0.201639678)

=0.201639675
Since |xs — x| =10.201639675-0.201639678

=2.252x107
The root x =0.201639675 is correct upto 8 decimal places.

Answer (b) : The root of equation f(x)=cosx—xe* =0 lies between 0 and 1. Let initial

approximation x, = 0.5.

e / (xk)
By Newton Raphson method *x+1 = Xk I ,(xk) .

Here f(x)=cosx—xe* then f'(x)=—sinx—(x+1)e*.
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For k=0,

/(%)
/(%)

c0s(0.5)—(0.5)

=05-
—sin(0.5)=(0.5+1)"°

=0.518026009
Fork=1,

NNAC)
N (x)

=0.517757424

For k=2,

Xy =X _—f(xz)
U (xy)

=0.517757363
|x, —x3] =10.517757363 - 0.517757424]

=6.03x107°
The root x =0.567125668 is correct upto 6 decimal places.

Answer (¢) : Let x:17% then )3 —17 and f(x):x3 -17=0.

By Newton Raphson Method,

S (%)

X1 = Xk _f'(xk)

xk3—17
X
Xo=2.Fork=0,
-17
xlsz_x3 2 :2.75
X0
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Fork=1,

3 —
Xy = — 217 = 2.582644628
3x
For k=2,
3
X=X, —"2—217=2.571331512
3x,
For k=3,
3
X, = X3 —)‘3—217=2.571281592
3x3

Since |xy — x| =12.571331512-2.571281592| =4.9x10™>, the root is correct upto 4 decimal

places. The exact value of 7 %4 correct upto four decimal places is 2.571281592.

1 1 1 1
: — X=— —=Nje.— N=0,
Answer (d): To find N , let N then ; Le.

1
We write / (x)= < N =0, By Newton Raphson method

xk+1:xk—]{'(();k))=xk—xk =xk+xk2(L—N}=2xk—ka2
k -
2

Now plot the graphs of y=xand y = 2x— Nx?.

) , 2 1) 1
y=2x-Nx"=-N|x"——x|=-N|x——| +—
N N N

2
1 1 1
ie. (x - Wj =— N[y - ﬁj which is parabola. From the graph of this function we find that

2
for any initial approximation outside the range 0 < x < N the method diverges. If x;, = 0, the iterations

1
do not converge to I but remains zero always.
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Answer (e) : Theroot of equation f(x)=xe* —1 liesbetweenOand 1. Let x;, =0.5.

By Newton Raphson Method

I (%)

X1 = Xk _f'(xk)

f(x)=xe* -1 and f'(x)=(x+1)e"

For k=0,
X = o—ﬁ(—m=0.5—&:0.571020439
f (xo) f (0.5)
For k=1,
Xy =% — f'(xl) = 0.567155569
f'(x)
For k=2,
X = x, —M=0.567143291
f'(x)
For k=3,
Xy =% /(%) _ 6 56714329
f'(x3)

|x4 — X3 | =5x107", the root x = 0.56714329 is correct upto 9 decimal places.

S. Use the iteration method to find, correct to four significant figures, a real root of each of the
following equation.
@ ¥ +x2-1=0 (b) 2x—cosx-3=0 () xe* -1=0

Answer (a): f(x)=x>+x*—-1=0

1

f@)=x>(x+D)-1=0=x*(x+1)-1ie ¥=

1+x
— 1 ' _ 1 _y
W)=y, $=-g e
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Observethat £(0)=—1and £ (1) =1. Therefore root lies between 0 and 1. On the interval

\ 1 o
0, 1), |¢'(x )| < ) <1. Thus iteration method.

1

Il_l_xk converges

=0.707106781

—

X1 = ¢(xk

Put x, =1, =

Sl-

1

I+x

Xy = =0.765366864

-1

Xy = m =0.752993979
Xy = \/lj—_x3 =0.755283135
X5 = \/lj-—x4 =0.754790473
Xg = \/lj-_xs =0.75489642

X; = ! =0.754873632

:

1+ x4

|x7 — x6| =2.2x107> . The approximate root 0.754873632 is correct upto 4 significant figure.

Answer (b) : 2x—cosx—3=0:>x=%(cosx+3)

On comparing this equation with x = ¢(x) wehave

sin x
2

<1

#(x) =%(Cosx+3)’ l4'(x)| =

Hence the iteration method is convergent.

1
Consider Xpp = E(COS X+ 3)
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Since f(x)=2x-cosx—3 and f(1)<0 and f(2)> 0, the root lies between 1 and 2.

Let the initial approximation

)CO :1.5

x| :%(cosxo +3)=1.535368601
X, :%(cosxl +3)=1.517710158
X3 :%(cost +3)=1.526530619
Xy = %(cosx3 +3)=1.522125627
X5 = %(cos X, +3)=1.524325743
Xg = %(cos X5 +3)=1.52322693

X, = %(cosx6 +3)=1.523775729
Xg :%(cosx7 +3)=1.523501637
Xo :%(cosxg +3)=1.52363853

X0 = %(cos Xg + 3) =1.52357016

X, = %(cosxlo +3)=1.523604307

|x10 —X 1| =3.4x107°. The approximate root 1.523604307 is correct upto four significant figures.

Answer (¢) : f(x)=xe" —1.Since f(0)=-1and f(1)=e—1>0,root lies between 0 and 1.
Let x, =0.5.
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X

xe —1=0=>x=¢"> ¢(x)=e",

¢'(x)| =e * <1 for xe(0,1)
. X, =e ' istheiteration formula.

X =0.5. x =e "% =0.606530659
x, =€ 1 =0.545239212
x;=e "2 =0.579703094
x, =€ 2 =0.560064628
xs=e 4 =0.571172148
Xg =€ ° =0.564862947
x; =e 6 =0.568438047
xg =e 7 =0.566409453
Xo =€ % =0.567559634
X0 =€ " =0.566907213
x; =€ 10 =0.567277195
X, =€ 1 =0.567067352
X3 =€ 12 =0.56718636
Xy, =€ 3 =0.567118864
X5 =e 1 =0.567157143

|xl4 - x15| =3.8x107°, rootx=0.567157143 is correct upto four significant figures.

6. Perform two iterations of Birge Vieta method to find the root of polynomial

P(x)= 2x° —5x+1=0. Use the initial approximation p, = 0.5 . Also obtain the deflated polynomial.

Answer: p,(x)=2x"—5x+1

=2x> +0x* —5x+1 and p; =0.5.
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0.5 2 0 -5 1
1 0.5 —-2.25
2 1 —4.5 —1.25=b,
1 1
2 2 -35=c¢,
P =Do —lc)—z =0.5- ((__13'.255)) =0.142857
0.142857 2 0 -5 1
0.285714 0.040816 —0.708454
2 0.285714  —4.959184  0.291546 =b,
0.285714 0.081632
2 0.571428 —4.877552=c,
D2 =D —i)—z =0.142857 —% =0.202630
Thus 0.202630 is root after two iterations. To find the deflated polynomial we use synthetic
division
0.202630 2 0 -5 1
0.405260 0.082118 —0.996510
2 0.405260 —4.917882 0.003490

Observe that by =0.003490, is the error in factorization.

The deflated polynomial Q, (x) = 2x* +0.405260x —4.917882.
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7. Perform two iterations of Birge Vieta method to find the root of polynomial

=3x3 +3x2 —=3x+2 = 0 - Use the initial approximation p, =0.5.

Answer :
0.5 1 -3 3 -3 2
0.5 —1.25 0.875 —1.0625
1 -2.5 1.75 -2.125 0.9375=b,
0.5 - 1.0 0.375
1 -2.0 0.75 —-1.750=¢4
D1 = Do —i—: = 0.5—%=1.0356
Second iteration p; = 1.0356.
1.0356 | 1 -3 3 -3 2
1.0356 —2.0343 1.0001 —2.0711
1 —1.9644 0.9657 -1.9999 -0.0711=b,
1.0356 —0.9619 0.0039
1 —0.9288 0.0038 —1.9960 = ¢4
b, (-0.0711)
D) =D —g =1.0356 ~(C1.9960) =0.999979
8. Perform two iterations of the Bainstow method to extract a quadratic factor x> + px+q from

the polynomial p; (x) = x* +x* —x+2=0. Use initial approximation p, =—0.9 and g, =0.9.

Answer :

-po=0.9 1 1 -1 2
-q,=-0.9 0.9 1.71 -0.171
-09 -1.71
1 1.9 —0.19=b2 0.119=b3

0.9 2.52

-0.9

1=co 2.8=cl 1.43=c2
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ap=—— Db 06L_ 40,

_bz (Cz _bz)—b301 _ 0.6410
o’ —¢ (¢, —by) 6.22

Ag = =0.1031

P =po+Ap=-09-0.1047 =-1.0047

9 =90 +Aq=0.9+0.1031=1.0031

Second Iteration

—p; =1.0047 1 1 -1 2
1.0047 2.0141 0.0111
—q, =-1.0031 —1.0031 —2.0109
1 2.0047 0.0110=b, 0.0002 = by

1.0047 3.0235

—1.0031

l=¢cy, 3.0094=c; 20314=c,

pp=——D0zha 0039 404
¢ —cy(c,=b,) 7.0361

_bz (Cz _bz)—b301 _ _0.0216

A =
! o’ —¢ (¢, —by) 7.0361

=-0.0031

P, =p +Ap=-1.0047+0.0047 = -1
q, =q, +Aq=-1.0031-0.0031=1.0

Hence the quadratic factoris x* + px+¢ =x* —x+1.
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9. Perform one iteration of the Bairstow method to find the quadratic factor of the polynomial

x40 +2x* +x+1=0-Use py =05 and g, =0.5.

Answer :

-po=-0.5 1 1 2 1 1
-q, =-0.5 -0.5 -0.25 —-0.625 —0.0625
-0.5 -0.25 —0.625
1 0.5 125 0.125=b; 0.3125=Db,

-0.5 0.0 -0.375

-0.5 0

1 0=c; 075=c, -025=c¢;

byc; —byc,

=0.1667
022 —-q (03 _bs)

Ap=—

_b3 (C3 —b3)—b402 _

Ag =
022 -G (C3 _bz)

0.5

Py = Py +Ap =0.6667
9, =9,+Aq=1.0

Quadratic factoris x? + px+¢ = x* +0.6667x +1.
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UNIT - 11

SYSTEM OF LINEAR ALGEBRAIC EQUATIONS AND
EIGEN VALUE PROBLEMS

2.1 Introduction:

System of linear equations arise in a large number of areas, both directly in modeling physical
situations and indirectly in the numerical solution of other mathematical models. These applications
occur in virtually all areas of the physical, biological and social sciences. Linear systems are involved in
optimization theory, numerical solutions of boundry value problems, partial differential equations, integral

equations and numerous other problems.

The present chapter deals with simultaneous linear algebraic equations which can be represented

generally as,
ay X, + Xy +ap X+t ay,x, = b

azl.xl + azzxZ +a23X3 +....+ aznxn = bz eee (2.1.1)

A, X+ ApXy +a,3%3+....4+a,,x, =b

* nn-'n n

where a; (i, j =1, 2, ...., n) are the known coefficients, b, (i =1, 2, ..., n) are the known

valuesand x; (i=1,2, ..., n) are the unknowns to be determined.

In the matrix notation, the above system of simultaneous linear algebraic equations can be

written as

Ax=b o (222)

where 4 is square matrix of order n, x is column vector with elements x;,i=1,2,...,nand b

is column vector with elements b,,i=1,2, ..., n.

2.2 Iteration Methods

Many linear systems are too large to be solved by dirct methods based on Gauss elimination
or matrix inversion. For these systems, iteration methods are often the only possible method of solution,
as well as being faster than elimination in many cases. In this section we discuss two iterative methods.

viz. Jacobi iteration method and Gauss Seidel iteration method.




A general linear iterative method for the solution of the system of equations 4x = » maybe

defined in the form

0 _ o ® 2 k=0,1,2, ... e (2.2.1)

where }(’”1) and }(") are the approximations for y at the (k+ 1) and &' iterations

respectively. H is called the iteration matrix and ¢ is column vector. In the limiting case }(k ) converges

to the exact solution

X=4b . (2.2.2)

When the system of equatons can be ordered so that each diagonal entry of the coefficient
matrix is larger in magnitude than the sum of the magnitudes of the other coefficients in that row - such
a system is called diagonally dominant. For such system the iteration will converge for any
starting values. Formally we say that an nxn matrix A is diagonally dominant if and only if for each
i=1,2,3,..,n

n
;| > Z‘“u‘
j=1

J#i

i=1,2,3,..,n

For iterative methods we rearrange the system of equations so that the diagonal entries of the
coefficient matrix A become diagonally dominant. If not, we rearrange the system of equations in such
a way that the diagonal entries of matrix A are non-zero and possibly large in magnitude. Such a

rearrangement is called pivoting.
1. Partial Pivoting

In the first state, the first column is searched for the largest element in magnitude and brought
as the first diagonal element by interchanging the first equation with the equation having the largest
element in magnitude. In the second stage, the second column is searched for the largest element in

magnitude among the (n — 1) elements leaving the first element, and this element is brought as the
second diagonal entry (a22 ) by an interchange of the second equation with the equation having the

largest element in magnitude. This procedure is continued until we arrive at the last equation.

Example 1 : Consider the system of equations
2x+2y+z4+2u=17
x=2y-u=2
3x—y-2z-u=3
x—2u=0
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Ans. :

2 2 1 27[x] [7
1 =2 0 -1|y| |2
3 -1 =2 -1|z| |3
1 0 0 =2|lul |0

max . {|2],]1],13] ,|1|} =|3| appears in third equation. Therefore interchange first and third
equation
3x—y—-2z—u=3
x=2y-u=2

2x+2y+z4+2u=7

x—2u=0

3 -1 =2 —1[x] [3
1 =2 0 -1fy| |2
2 2 1 =2lz| |7
1 0 0 =2|lul |0

Consider second column excluding ( a,, ) entry.

max {|—2| ,2, 0} = 2 we cankeep second equation as it is, since the | 2| also gives the maximum
value.

Consider third column excluding first two entries and calculate max {[1],0} = 1. There is no
need to interchange third and fourth equation and partial pivoting is complete.

The rearrangement of system is generally carries out on the augmented matrix [ A, b].

Complete Pivoting :

In this procedure we search the matrix A for the largest element in magnitude and bring it as the
first pivot. This requires not only an interchange of equations but also an interchange of position of the

variables.
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2.2.1 Jacobi Iteration Method

This method is an iteration method and is used to determine the solution of system of linear

equations. In the system Ax = b , we assume that the quantities a;; are non-zero and sufficiently large.

This can be done by partial or complete pivoting. The system of equations (2.2.1) may be written as
anxl = _(a12X2 + a13X3 +....+ alnxn ) +b1
a22x2 - —(a21x1 + a23X3 +....+ aznxn ) + b2 cees (2.2.1.1)

a,,x, = —(anlx1 F Ay Xy F e Ay 1y Xy ) +b,

From equation (2.2.1.1) we have an iteration method

1 1
ap ap
ey 1 (k) (k) AT
W = - (ayx® tapx® ot ay x )+ —b, (22.12)
as, a4
ety _ 1 (k) () w0\, L,
xn = —_(anlxl +an2x2 +....+an(’171)xn_l)+_ n
nn nn

0 _yp,

n n

Initially we can assume that x{” =, x{*) = b,..x

Since we replace the complete vector () in the right side of (2.2.1.2) at the end of each

iteration, this method is called the method of simultaneous displacement.
In the matrix form equation (2.2.1.1) can be written as
Dx=—(L+U)X+b

where L and U are respectively lower and upper traingular matries with zero diagonal entries,
D is diagonal matrix such that A=L+D+ U.

The matrix form of equation (2.2.1.1) is used to write an iteration method in the form,

D — _p N (L+u)x® +Dp,k=0,1,2,3, ... ..(2.2.1.3)
7© —p istheinitial approximation.
Alternatively equation (2.2.1.3) can be written as

kD — 0 _ (0 _ p-1 (L+ U)f(k) +D'p

( (@) )




=xO_p M D+L+U)xP +Dp
—x® _p T ax® ~p]
=x® 4+ Db - 4x®]

Define ¥ _ p-15(k) _ 5(k+1) _ (k) isthe error in the approximationand 7®) — f _ 4%

1s the residual vector.

We solve Df(k) — 7k for f(k) and find

f(kﬂ) _ )?(k) +;(k) (2214)

These equations describe the Jacobi iteration method in an error format. Thus to solve the
system of equations by Jacobi iteration method in an error form we have the following procedure

7 =p — ax®

—(k)

v Al ...(2.2.1.5)

—(k
gD 50 4 O

2.2.2 Gauss Seidel Iteration Method

We know that every matrix A can be uniquely represented as the sum of lower and upper
traingular matrix with zero diagonal entries and a diagonal matrix. The system of equations 4x = p

can be represented by
(L+D+U)x=b
~Dx=—(L+U)x+b
S Dx =-Lx-Ux+b
From above equation we have an iteration method
D% =z _re® Ly k=0,1,2,3, ... ..(22.2.1)
Initially, we assume that xl(o) =b.

Method (2.2.2.1) is called Gauss Seidel iteration method. In the explicit form equation (2.2.2.1)
can be written as

(L+D)x* D = —tx® 1+ p

x4 = (L+D) R +(L+D) b

( (@D )




=50 _x® _(L+D) " Ux® +(L+D) D
=x®—(2+D) [(L+D+)FN]+(L+D) "D
— =k ax® —p

=x® —(L+D)" [4x® -5]

6D Z 50 (14 D) [B - ax®)]

Thus to solve the system of equations by Gauss Seidel iteration method in an error form we

have the following procedure.
70 = p — Az ®)
Solve (7 4 p)y™ —7®) for 77'¥) by forward substitution

£+ _ £ (6) +V(k)’ k=0,1,...,n .. (2.2.2.2)

System (2.2.2.2) describe the Gauss Seidel method in an error form.

2.2.3 Convergence Analysis of Iterative Methods

Iterative methods are methods of successive approximations. Convergence of iterative methods

is studied through error analysis. To discuss the convergence of iterative method.
T D - ge® 4w, k=0,1,23, ... ..(223.0)

where 7+ and 3*) are the approximations for x at the (k + 1) and kM iterations

respectively, we study the behaviour of the difference between exact solution x and an approximation

<6
The exact solution of iterative method will satisfy

Y=Hi+C . (22.32)
Sibtracting (2.2.3.1) from (2.2.3.2) and substituting ~(*) — 3¢+ _ 3 we get

gk _ge® . k=0,1,2, ... ..(223.3)
Repeatative application of (2.2.3.3) for z(¥)  k=1,2,3, .... gives

gD _ gkzO0 0 £=0,1,2,3, ...
For Jacobi iterative method 7 = —p~! (7 +U) and 7 = p~!p whereas for Gauss Seidel

iterative methods g7 — (7 + D)_l Uand = ([ + D)‘l p - For both the methods iteration matrix H

remains constant for each iteration.
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Ifthe error sequence { gk+D } converges to zero as k — oo , we say that the iterativ method

converges. To study the convergence of error sequence we use the following theorems.

Theorem 2.1 : Let A be a squar matrix. Then

lim A" =0 if | 4] <1 oriff <(4)<1.

m—>0

Before proving this theorem we explain the notations and definitions used in the statement of

the theorem.

Definition : Matrix Norm

@)

(ii)
(iif)
(iv)

The matrix norm || A || is a non-negative number which satisfies the properties
l4ll>0 if 40 and || =0 where O is zero matrix.

lcAll = |c||| 4]| for arbitrary complex number c.

la+ Bl <] 4ll+Bl

laBll < 4lllBI

The most commonly used norms are

()

(ii)

(1)

Euclidean norm or frobenius norm

1
F=| Saf | e 4=[a ],

ij=1

Maximum norm
n
|l =14l = max >l (maximum absolute row sum)
k=1
n
lall, = max > lau] (maximum absolute column sum)
i1

Hilbert norm or Spectral norm

The largest eigen value in modulus of a matrix A is called the spectral radius of the matrix A and

is denoted by < ( 4) . The spectral radius is defined only for square matrices.

l4ll, =7 where 4 —<(4* 4) and gx_(Z)"

"4 1s the complex conjugate of A.
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Proof of Theorem 2.1 :

If || 4|| < 1 then by definition of norm of matrix.

|| <) (-- 4Bl <1 4l BIl)

and since norm is a continuous function,

lim 4™
m—»0

lim [.4™] =

m—0

< lim [4I" =0 (N4l <1)

m—»o0

For simplicity, we assume that all the eigen values of the matrix A are distinct. Then there exist

a similarity transformation S such that

A=S"'DS

where D is diagonal matrix having eigen values of A on the diagonal. Therefore
A" =(57'DS)(S7'DS)...(ST'DS )i times)

=s'D(ss")p..(ss")Ds

=s7'D"s

A" 0 0 0.0 |
where pr_| O A 0 0.0

0 0 0 0.2"]

lim A" = Sil( lim Dm)S =0 iffall the eigen values satisfy |/1i| <l,ie.q(4)<1-

m-—»0 m—»0

Theorem 2.2 : Theinfiniteseries 4 4+ 42 + 4° +. convergesiff lim 4™ = 0. Theseries converges
m-—>0

o (7-4)"

Proof: From the definition of convergent series we have

lim 4" =0

m-—»o0
Suppose ,,111310 A" =0 then by theorem 2.1 we have

:(4)<1

( (G D) )




Since the magnitude of largest eigen value of matrix A is strictly less than 1, |7 — 4] # (0 and

therefore (7 _ 4)! exists.

We know the identity
(T4 A+ A2+ L4 4 d")T=A) = — 4™
T A+ L2+ B4 ™) =141 = 4)"

Since r}ll_lgo A" =0 (by theorem 2.1), we have

T+ A+ A2+ A+ 44" =U—-A4)"

Theorem 2.3 : No eigen value of matrix A exceeds the norm of a matrix A. i.e. || 4] > (4)
Proof : Foreigen value ;4 ofa matrix A we have
Ax = AX
where ¥ is anon-zero eigen vector corresponding to eigen value ] .
- Azl =1211x 1 = lLaxll < |4l
Thus wehave | 4[[[x] < | 4ll%] (Il = 0)
ie. 1Al <14 (where 2 isany eigen value)

ie. (<4l

Theorem 2.4 : The iteration method of the form
x5 = gx® 47
for the system of equation 45 = p converges to the exact solution for any initial vector ¥ if || ;7| < 1.
Proof : We take initial vector x(9 _ (). Then the repeated application of'iteration method gives
xV=¢
W=V +e=Hc+c=(H+I)c

g ie=HH+De+c=(H*+H+1)E

D (R g v HP v H+1)E

( (@D )




lim x50 = lim (H* + B + B2 4+ H >+ H+1)E
k—o0 k—o0

—(I-H)'E Gf |H)<1)

Ths  limx* =(7-f)"'e

k—o©

In case of Jacobi iteration method we have
H=-D'(L+D)and z=p'p
U= "e=[1+07(L+)] DB
“[p'p+p' 2+ DB
~[p"(p+L+0)] DB
—(p+L+0)" (D) D
=A"'h

=X
Thus for Jacobi iteration method we have
limx*) =(1-H) 'c =%
k—o0

In case of Gauss Seidel iteration method we have

H=—(L+D)'vadz=(L+D)"'h

- 'e=[1+w+p"'v] (L+D)'F
[+ waD)+L+D) U] L4V
[+ w+p+0)] (L4D)'F

4 (D] LD 'D (4B ' =814

=Ap =%

Thus for Gauss Seidel iteration method we have

limx*D =(J—H) '¢=4"p =%

k—o0
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From theorem 2.3 we observe that Jacobi iterative method converges if
(H,)==(-D(L+1))=:(D(L+U))<1
and Gauss Seidel iterative method converges if
(Hy)==(-(L+D)"U)=<((L+D)"U)<1
Theorem 2.5 : A necessary and sufficient condition for convergence of an iterative method
& — 0 4 & is that the eigen values of the iteration matrix H satisfy |/1,. (H )| <1,i=1,2,..,n

where 1, (H) are eigen values of matrix H.

Proof : Suppose 4,,4,,4;,..., 4, are the eigen values of matrix Hand X, X,, X;, ..., X, be the

corresponding independent eigen vectors. (%) is an n-vector. We write

L H'eO = H* % +¢,H" %) +...+ ¢, H',

_ k= k— k=
=ql X+ Ay X+ A, )X,

lim 2% = H*z©® = lim c/l.k)?.
k=0 k—w z Lo

g0 L0iff A* 50as k 5.

ie.  z® giff|4(H)|<1.

Definition 2.2 : The rate of convergence of an iterative method is given by

v=—log,,[R(H)] where ¢ (f7) is the spectral radius of matrix H.

Theorem 2.6 : If Ais a strictly diagonally dominant matrix, then the Jacobi iteration scheme converges

for any initial starting vector.

Proof : The Jacobi iteration scheme is given by
= p M (L+U)x® +D7'h
=-D'(4-D)x"® +D7'p

—(7-p'A)x® +p'p
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The iteration scheme will be convergentif |7 — p=1 4] < 1.
Using absolute row sum norm we have

”I DlA” max 1—— ‘a

aj; Jj=1
J#i

l]‘

|ai,~| foralli=1i,1,2,3,...,nand therefore

Since A is strictly diagonal dominant, Z

/_
]¢l

1]

|7 = D' 4| < 1 and therefor the Jacobi iteration scheme converges for any initial starting vector.

Theorem 2.7 : IfAis strictly diagonally dominant matrix, then the Gauss-Seidel iteration scheme

converges for any initial starting vector.

Proof : The Gauss Seidel iteration scheme is given by
XY = (D+L) R +(D+L) "D
=—(D+1L) ' [4-(D+D]xP +(D+L)'b

[ 7-D+L) " 4lz® +(D+1) "B

The iteration scheme will be convergent if
(7-(p+1)"4) <1

Let 4 beaneigenvalueof ; _(p4 )" 4.
[—(p+10)" alz=1%
[(D+L) " (D+L)~(D+L)" 4]z =23

(D+L) ' [D+L-Al% =A%

L -Ux=A(D+L)x (cA=L+D+U)
Le. —Zax —/12% Xj 1<i<n
Jj=i+l
ie. —Zax —/1ax+/12ay X;
J=i+l
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n
Ad;x; = ’12% X Z ayX

j=1 Jj=i+l

Le.

|Aa;:x z|<|/1|2\%Hx]\+ x| (223
Jj=i+l

Since ¥ is an eigen vector, x = () - Weassume that ||x||=1.
Choose an index i such that |xl-| =1 and ‘xj‘ <1,Vj=i.

From equation (2.2.3.4) we get

Iﬂlla,,|<lﬁ|2\ay\+ 3 Jay]

]l+

i—1 n
.._|;,|{|aﬁ|_z\ayqs > Ja|
Jj=i

Jj=i+l

n
a.:

2. |a

. J=i+l
e

|a,.i| - Z‘aij‘
j=i

Since matrix A is diagonally dominant |a” | > Z ‘a

] =i
_]#l

il

a3

+ 3 Jo

Jj=i Jj=i+l

or -l Z\%P > Ja

]l+

n
2 Jay]
J=i+l

=
|a,.,.|—Z‘aij‘
j=i

<1 and therefore || <1.
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But 2 isanyeigenvalueof ; _(p4 7)™ 4.

~e(7=(p+10) " 4)<1

Note : The rate of convergence of Gauss Seidel scheme is twice that of the Jacobi scheme. It may

happen that for the system 4y =p , % (H J ) <1 but R (H G ) >1. Similarly it is possible to have the

system of equation 4y = p for %(H G ) <1 which but %(H J ) > 1. For these systems matrix A is not

diagonally dominant.

2.3 Matrix Factorization Method

The system of equation 4% = p canbe directly solved in the following cases.
Case(i): A=D

The system of equations is

b.
J— —_l .
aiixi_bi:xi_a fori=1,2,3,..,n;a;,#0 Vi

Case (ii) : A=L (Lower Traingular Matrix)
The system of equations is of the form
ax =b
y % +ayXy = by

a31X) + azX, +a33x; = by

A, X) + Ay Xy + A3 Xy + e +a,,x,=b

Solving first equation we get x; . If we substitute this value of x, in second equation we get x,

and so on. Since unknowns are determined by forward substitution, the method is called forward
substitution method.

Case (iii) : A=U (Upper Traingular Matrix)
In this case system of equation is of the form
ay X, + Ay Xy + A3 Xs +a,,x, =b

a22X2 + a23X3 et + aznx =




A1) (n=1)Xn—1 + An—tynXn = by
ann'xn = bn
From last equation we get x, from second last equation on substituting the value of x,, we get

x,_; and so on.

Since the unknown are determined from back substitution, this method is called the back
substitution method.
Thus the equation 4% = p is directly solvable if the matrix A can be transformed into one of

the three cases discussed above.

2.3.1 Triagulization Method

This method is also known as the decomposition method or factorization method. In this
method, the coefficient matrix A of the system of equations 43 = 5 is decomposed or factorized into
the product of a lower traingular matrix L and an upper traingular matrix U. We write the matrix A=
LU.

{4y 00 ... 0 Uy Uy Uy ... U,

by Ly 0 0 0 uy Uy Uz
Where, L: €31 €32 €33 e O and U: O O u33 e u3n

_gnl gnZ €n3 énn_ L 0 0 0 unn_

Then the system of equation 4x = ) becomes
LUx=bh

We write above equation as the following two systems of equations
Ur=2 o (2.3.1)
Lz =b

From Case (i1) we determine z and the form Case (iii) we solve [x =z to calculate x .
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2.3.1 (a) Doolittle’s Method

In this method we write A= LU where the diagonal elements of matrix L are 1. We write

a, a, a3z ... a 1 0 0 ... O|luyy up usz ... u,

Ay, Ay Qyy ... Gy, ly 1 0 .. 0| 0 uy Uy ... U,

a31 a32 U33 e a3n = £31 €32 1 e O 0 0 u33 e U3n
_anl Ay dyz ... ann_ _gnl £n2 €n3 1 L 0 0 0 unn_

n(n+1) n(n+1) 5 . .
> —-n |+ y n”~ unknowns comparing left hand side

with right hand side product. We get componentwise equations.

These are n® equations in (

Ay = Uy Qg =Upps A3 U35 eees Gy = Uy
ayy = Logltyy s Ayp = Loglhyy Uty s ey Uy, = Loyl Uy,

By using forward substitution we calculate

ull’ ulz’ l/l13, ceeey l/lln, gzl’ u22’ l/l23, ceeey uzn’ .........

Once the matrices L and U are known the solution is obtained by representing the system
Ax = b inthe form of equation (2.3.1)

2.3.1(b) Crout’s Method

In this method we write A= LU where the diagonal elements of matrix U are all 1. We write

a, a, az ... a, liy, 0 0 O |1 wup wsy ... u,

Ay, Ay Qyy ... Gy, lyy Ly 0 o 0|0 1 uy oo uy,

a31 a32 a33 e a3n = ’631 ’632 /633 “ee 0 0 0 1 e u3n
I S S o B I S e e | L U N U O

Again these are n? equations in n? unknowns. Equating the componentwise elements of L.h.s.
and r.h.s. we get
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apy =1Ly, app =Ly, a3 =Ly, e ay, =Ly,

Ay =1Loy, ayy =Lyguyy + L0y, Ayy = Logttyy + gty s ey Aoy = Logity, + Loty

By using forward substitution we get,

a
gll_all’ u12_£ ’ u13=£—,...., ”anT
11 11 11
ézl = a21 5 622 = a22 —leulz, ceeey uzn = a2n —leuln

Once the matrices L and U are determined the system of equations 43 = p isrepresented in
the form of equation (2.3.1) and system of equations (2.3.1) is solved from Case (ii1) and from

Case (1) respectively.

2.4 Eigen Values and Eigen Vectors

In section 2.2 and 2.3 iterative methods for linear system of equations are discussed. Consider

the system of equation

AX=I% (2.4.1)

Equation (2.4.1) is called eigen value problem. The eigen values of A are given by the roots of

the characteristics equation

det(4-A)=0 L. (2.4.2)

If A is square matrix of order n, equation (2.4.2) gives a polynomial equation of degree n. The

roots of this polynomial equation are called eigen values and may be determined by the methods given

in Unit 1. Once the roots A; of polynomial (2.4.2) are known then a non-zero vector x; such that
Ax; = X, ... (2.4.3)
is called the eigen vector or characteristic vector corresponding to 4;. On multiplying equation (2.4.3)
by a constant c we get
Acx; = ex; => Ay =4y
where y =cX; 1.e. y isalso a characteristic vector of A corresponding to eigen value A;. This shows

that an eigen vector is determined only to within an arbitrary multiplicative constant. On premultiplying
equation (2.4.1) (m— 1) times by A we obtain

A" = AA"% = AA" N (A%) = 24" ax = 124" %
= "%
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A" =" form=1,2,3,4,..... . L. (2.4.4)

Equation (2.4.4) shows that ;™ is an eigen value of 4m if j is aneigen value of A.

Since det ( AT — 1) =det(4—A1),Aand AT have the same eigen values. If iz; is an eigen
vector corresponding to the eigen value J, then Au; = Au;. Premultiplication by LTZ.T gives
I/_li];‘llz_li = /IiLTiTLTZ. and we get

1 il A,

i _
i

If u; is an eigen vector of a matrix A then /, is the eigen value of matrix A. Thus given eigen
value , we find eigen vector by solving 43 = 1x and given eigen vector x we find the corresponding
x'Ax it dit

eigen vector as —;— . Forarbitrary 7 , the ratio T is called the Rayleigh quotient.
X'X

Let A and B be two square matrices of same order. If'a non-singular matrix S can be determined
such that

B=S57'4S. o (2.4.5)

then the matrices A and B are said to be similar and the matrix S is called similarly matrix and

the transformation is called similarly transformation. From equation (2.4.5) we write
A=SBS™!
If 4, is an eigen value of A and u; is the corresponding eigen vector then
Au; = /liﬁi
S~ 4u, =287,
Put i; = Sv; then S A4SV, = AS7'Sv, = A7,.
i.e. Bv; = Av;. But then eigen values of A and B are same and given eigen vectors u; of matrix

AS _11/71- are the eigen vectors of the matrix B. A similarity transformation, where S is the matrix of

eigen vectors reduces a matrix A to its diagonal form. The eigen values of A are the diagonal elements.

Ifeigen vectors of A are linearly independent then S exists and the matrix A is said to be diagonalizable.
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2.4.1 Bounds on Eigen Values

The bounds on the eigen values of the matrix A are given by the theorems by Gerschgorin and
Brauer.

Theorem (Gerschgorin)

The largest eigne value in modulus of a square matrix A cannot exceed the largest sum of the
moduli of the elements along any row or any column.

Proof : Let A4, we an eigen values of A and X, be the corresponding eigen vector. Suppose

X, =[x, X2, X;, | . Since 4; is an eigen value of Aand X; is corresponding eigen vector,

Ax; = A X,
a4 43 Ay || Xa Xi1
dyy Gy dyz =t Ay, || X Xi2
.= ﬂ,l- .
anl anZ an3 T ann xin xin

Let |xik| = m;ax |xir| . Select the kth equation and divide itby x;, . The kth equation is

Ay X+ ApyXig + e +ay Xyt ag,x;, =A4x;

X; X; X; X,
— il i2 ik in
Then ﬂ'i _akl +ak2_+""+akk_+"“+akn

Xik Xik Xik Xik
X
i
. - <
Since |xik|_max|xir|, . —1,r=1,2, ey I
r ik

and |/1i|£|ak1|+|ak2|+|ak3|+ ..... +|akk|+ ..... +|akn|

Thusif 4 is aneigen value then

n
<Y Jay| for some &.
i1

n
~lal< ml?x Z|akl-|
i=1

Thus each eigen value and therefore the largest eigen value in modulus of a square matrix A
cannot exceed the largest sum of the moduli of the elements along any row.
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Since A and AT have same eigen values, the theorem is also true for columns. (Repeat the
procedure for AT)

Theorem (Brauer) : Let P, be the sum of the moduli of the elements along the kh row excluding the
diagonal element a,; ofasquare matrix A. Every eigen value of A lies inside or on the boundary of at

least one of the circles |/1 —akk| =F.,k=1,2,3,....n.
Proof : Let 4, be an eigen value of Aand X; be the corresponding eigenvector. Suppose

)_CiT — [xilaxiZ""’xin]

Then Ax; = A,X; canbe written as
allxll + allez + 6113)(?13 +..... + alnx = /lxll
alell + azlez + 61239(?13 +..... + aznx = //ixlz

QX + Ay Xin + Ay Xiz + o+ QX

nn”vin

=Ax

in

Let |xik | = m’?X |xir | .Selectkth equation from above n equations. The kth equation is

X; X; Xi(k— X;
_ il i2 i(k-1) i(k+1) in
2’1' - akk - akl —+ akz — ...+ ak(k_l) e ak(k+1) —_—t..... + akn —
Xik Xik ik Xik Xik
X.
. _ ir | <
Since || —mf‘x|xir|, . <l vi<r<n.
L

and |/1i—akk|ﬁ|ak1|+|ak2|+ ..... +‘ak(k+1)‘+‘ak(k71)‘+ ..... +|akn|
Thus |/Il-—akk|SPk

Therefore all the eigenvalues of A lie inside or on the union of the above circles.

Since A and AT have same eigenvalues, theorem holds for column sum also i.e.

|/11- —akk| < |a1k|+|a2k|+ ..... +‘a(k_1)k‘+‘a(k+l)k‘+ ..... +|ank ,k=1,2,3,...,n.
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The bounds obtained for rows and columns are independent. Hence all the eigen values of A
must lie in the intersection of these bounds. These circles are called the Gerschgorin circles and the

bounds are called the Gerschgorin bounds.

Example 2.4.1 : Estimate the eigenvalues of the matrix
1 2
A=1 1 1
1 3
using the Gerschgorin bounds and Brauer theorem.
Answer : By Gerschgorin theorem corresponding to row we have
| 2] < max {11+ 2]+ =10, 11+ [t 4 10, 1]+ 3]+ =11
<max{4,3,5}=5
ie. Al<5
Similarly by considering column sum we get,
|l < max {11+ 1]+ 11,120+ 11+ 3], =11+ 1] +[ 11}
<max{3,6,3} =6
By Brauer’s theorem every eigenvalue of A lies inside or on the boundary of atleast one of the
circles |/1 - akk| < A4,.
Corresponding to rows we have
=13, a-1<2, [2+1/<4
Corresponding to columns we have
2-1<2,[2-1<5, [A+1]<2
The union corresponding to row sum gives
{IA-1<3UlA-1<2UlA+11<4} ={1-1<3UlA+1< 4}
The union corresponding to column sum gives
{IA-1<2Ula-1<5Ula+1<2) ={lA-1l<5Ul1+1 <2}
Thus the required region is given by

al<sintial<eiN{ia-1<3Ula+1l<4iN{a-1<5,11+11< 2}
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Example 2.4.2 : Estimate the eigen value region of the matrix

'

Il
DN W
SRV I S}
w NN

By Gerschgorin theorem | 4| < max {7,9,9} =9
Corresponding to column we have | 4| < max {7,9,7} =9

Since matrix A is symmetric all eigenvalues arereal and | 1| < 9 gives the interval [ -9, 9]. Thus

all eigenvalues lie in the interval [ -9, 9].

By Brauer theorem the eigenvalues lie in the region {|1 —3|< 4|1 -5|<4U|1-3|< 4}

corresponding to row sum and corresponding to coulmn sum we have

{I1-3l<4Ul1-5<4Ul1-3< 4}

Thus we have the region
{IA-3l<4Ul1-51<4Ul1-3I< 4}
={-4<21-3<4U-4<1-5<4}

{(-1<2<7U1<2<9}=[-1,9]

Thus all roots lie in the interval [-1,9].

2.5 Jacobi Method for Symmetric Matrices

For real symmetric matrix all eigenvalues are real and there exist a real orthogonal matrix S
suchthat g-! 4¢ isadiagonal matrix D. The diagonal entries of D are all eigenvalues of matrix A. The

diagonalization is achieved by applying series of orthogonal transformations.

Computational Procedure

Let |a,»k|=max{‘ay‘:i¢j,i,j =1,2,3,...,n}_ Consider 2 x 2 matrix formed by the

intersection of i & & row and i & kth column. Then we get a matrix

a; ay
A4 =" l _ . . . .
1 o (ay = ay; since Ais symmetric matrix)
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cos —sind

sin@ cos@

- cosf siné || a; ay ||cos@ —sind
—sin@ cos@ || a; ay || sin@ cosd

Choose 51" :{ } and find @ such that S;leallS1 * is diagonal matrix.

sin 26

2 - . 2
a; cos” O+ay sin20+ay sin“ 6 (ay —a;) +ay cos20

sin 26

(ay —ay) +ay, cos20  a,sin® O+ay, cos” 0 —ay, sin 26

Now we choose ¢ such that the off diagonal entry of matrix SI*_IA1 Sl* becomes zero so that

Sl**lA1 Sl* becomes a diagonal matrix. Thus we choose @ such that

sin 26
(akk _al-l-) +aik C0520=0
-2a. 2a.
tan 26 = _ — ik
Qe — 4 A — Ay

T Vg
This equation produces four values of §. We choose @ between —— and — and we get,

4 Ay

1 —1 2a;
0 =—tan ik .

5 (aii —ay, j ifa; #ay,

72. .

:Z lfaii:akk, al-k>0

7Z- .
Z_Z lfaii:akk, aik <0

With this choice of @ constructn x n orthogonal matrix S, as follows. Write cos &, —sin 8,
sin@, cos@ at (i,i), (i,k), (k,i), (k,k) positions of matrix S, respectively. Write remaining

diagonal entries to be 1 and rest of the offdiagonal entries 0. Thus we geta matrix S, as
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th th
J

1 0 0 0
0 1 0 0
"o cos® 0 —sind
S, = 0 0 1
jth .. sin@ -+ cosf® 0
0 0 - 1|

Define B, =S,7'4S,

In B,,(i,k)and (k,i) entries are zero. Repeat procedure for B,. We get S, . Define
B,=S,"'BS,=5,7'5,745,5,

After making r transformations we get,

B.=87's7..5,7'574538,8S,...S,
= (815,558, ) A(S,5,S;....5,.)

=S148

As r — oo, B, approaches a diagonal matrix with the eigenvalues on the leading diagonal.
This procedure is called Jacobi method.

The convergence to a diagonal matrix takes place even if the maximum of offdiagonal elements
are not selected and we make any offdiagonal entry zero. This modification is called the special cyclic

Jacobi method. In this method there is no search for maximum offdiagonal entry.

2.6 Householder’s Method for Symmetric Matrices

In Jacobi method symmetric matrix is converted into a diagonal matrix through similarity
transformation. In this method a symmetric matrix A is reduced to the tridiagonal form by orthogonal

transformations. The orthogonal transformations are of the form

P=I=2ww' ... (2.6.1)

where j is a column vector such that ;755 = 1.
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Observe that P is symmetric and orthogonal.
P =(1—2ww’) =17 —2(ww") =1-2wi” =P
PP =(1-2ww" )(1-2ww")
= -2 — 2w +4iww wiv =1 (o wliw=1)
At the first transformation we find x; 's such that we get zero in the position (1, 3), (1, 4),.....,
(1,n) and zero in the corresponding positions in the first columni.e. (3, 1), (4, 1), (5, 1) .... (n, 1). Thus

one transformation PZ_1 AP, = A4,, bring (n—2) zeros in the first row and first column. In the second

transformation P;IAZQ , we get (n—3) zeros in the second column and second row namely (2, 4), (2,

5), (2, 6) .... (2, n) and (4, 2), (5, 2) ..... (n, 2) positions. The final matrix is tridiagonal. The

tridiagonalization is completed with exactly (n—2) Householder transformation.

The matrix P. is constructed as follows.
The vector w, is constructed with the first (r—1) components as zeros.

— T _
w, —[0,0,0,....O,x,,,xm,....,xn]

T

S 2 2 2 2 _
Since w." w, =1, x,”+x,, " +x.,, +....+x,” =1

with this choice of #,, P. = I —w.w,” .
Let us illustrate this procedure for 3 x 3 and 4 x 4 matrics.
A 4 43
A=|ay ay ay
13 Ay ds3

_T — -1 —T— 2,2

_7_==T
B =1-ww

1 00 0
00 1| |[w

-0 0-0  0-0
=0-0 1-2w,> 2w,w,

0-0 —2ww, 1-2w’
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P} P, = therefore P, isorthogonaland P/ = P;.

a9 I3 1 0 0

2
43 dy3 A3 (|0 2wyw; 1-2wy

2 2

apy a12(1—2W2 )_2a13W2W3 —2wyway; + a3 (1_2“’3 )

— 2 2
=|a, ay (1—2w2 )—2a23w2w3 —2WyW3a5, + ays (l—2w3 )

1 0 0

0 2w,wy 1- w32

PZT AP, is tridiagonal if (1, 3) entry of the matrix PZT AP, is zero. But (1, 3) entry of
132TAP2 is
a13 - 2W3 (a12W2 + a13W3) = O
Le. aj; —2wyr =0 where 7 = a;,w, +a;3w;
(1, 2) entry of P2T AP, denoted by aiz is
' 2
app =4y (1 —2w, )_ UEMPALE

2 = (a12 —2w2r)2 +(a13 —2w3r)2 [a13 —2wyr = O]

. a12
2 2 2 2 2

) 2 2 2
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Thus  g,% = (a, —2w2r)2 +(ay3 —2w3r)2
= (a12 —2w2r)2 +0

22 2
A =ap, +ap

Therefore, a,, = J_r\/alz2 + a132 =a,, —2wyr ==x§ (say)

Now we have two equations
ay; —2rw; =0 .. ()
ay, —2rw, =x§ .. (1)
Multiply equation (i) by w5 and (ii) by w, and add.
Since a;,w, + a5 w3 =r, wehave
r—2r=x8w, ie. r=+Sw,
Now from equation (ii) we have

ay, £25w)* = £S

W, =t———==
Thus 2 25
1[ a } 1 a
2 —ap — 13
W =—1F—=| wy=F—
2 S 2 2w2\/a122 + a132

In computing w; from w, , we choose w, as large as possible.

We demonstrate the reduction in the following example.

Example 2.6.1 : Reduce the matrix

1 3 4
A4=|3 2 -1
4 -1 1
to tridiagonal form.

Answer : Here \Ja,,” +a;,> =\/9+16 = +5.

2l _ap |1 3 . : .
Wy =g 1+? =3 1+§ (w, ismax. for S =5 since q;, is +ve choose S +ve)
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- Wh 5 1.C. "2 \/g
. — ap B 4 _1
3 - 2 _T
2W2\/a122+a13 2.—.5 5
J5
7 2 1}
LWy =] 0,——=,—
? [ﬁﬁ
and P, =1-2w,mw,
(1T 0 0]
o 3 _4
5 5
g 4 3
L 5 5|
1 o3 o4 L3
A, =PIAP,=|0 -= —-Z||3 2
2 2 2 5 5 4 1
g 4 3
L 5 5
1 o0 o1 -5
_lo 23 4|5 _2
5 5 5
o -2 3,4 _1
L 5 510 5
(1 =5 0]
5
o L 13
L 5 5

To illustrate the procedure for 4 x 4 matrix let

ap 4qp di3 dyy

app Ay dyy Ay
A=

di3 dyy dyz Ay

Ay Gyq d3q Ay
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Since the transformations PFT AP, are orthogonal, the sum of squares of the elements in any
row are invariant. We will use the fact that sum of squares of elements in any row of matrix A is same

as the sum of squares of elements in corresponding row of matrix PrT AP..
— T _ — T— 2, .2 2
Choose w, =[0,x,,x3,x,] and w," W, = x,” +x3> +x,° =1.

At the first transformation we find x, , x;, x, such that we get zero in the position (1, 3),
(I,4)and (3, 1), (4, 1).

In the matrix P, firstrow is a unit vector and therefore the position (1, 3), (1, 4) have zero

entry if the corresponding elements in AP, are zero. The firstrow of 4P, is given by the following

product.

1 0 0 0
aqi G 43 Ay

2
A, Gy Gy Gy ||0 1227 2xx; —2xx4
2

0

Qg Qyq d3q Ay

=2X,X,  —2X3%y4 l—2x42

2 2
—2a1,X,X4 —2a13X3%4 + ay4 (1 - 2x42 )}
= [allaIZ —2piXy, A3 2Py, gy 2p1x4]

where p; = a;,x, +a;3x; +a;4X,

Now we need to find x,, x5, x, suchthat a;; —2p;x; =0 and a;, —2p;x, =0. So that

(1,3)and (1,4) position of P, AP, will become zero. Since the sum of the squares of the elements in

any row is invariant underthe orthogonal transformation we have,
2 2 2 2_ 2 ) 2 P 2 2 2
a " +ap” tayt tay =ay +(ay =2pxg) (a3 - 2px) +(ay —2px)

Thus we have three equations
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ayy—2px, =0 ...(2.6.2)
a12 —2p1x2 = iSl vee (2.6.3)

Since matrix A is given matrix, S, is known quantity. Multiply (2.6.3) by x,, (2.6.1) by x;
and (2.6.2) by x, and add. We get,

2 2 2
p=2p (xz TX Xy ) =+81%,
But x22 + x32 + x42 =1 and therefore
P =FS5%,

Now if we put this value of p, inequation (2.6.3) then equation becomes a quadratic equation

in x, and can be solved for x, .

== 1512
> 2( s . (2.6.4)

From equation (2.6.1) and (2.6.2) we get

L I T Ga _ Gy

= X, = - 7
3 2p T25:% and *4 2p T25:% ... (2.6.5)

From equation (2.6.4) we observe that x, and therefore p, posses two values. Since x; and

X, contains x, inthe denominator, we choose the large root by x, . This is done by taking suitable

sign in equation (2.6.4).
sign
X _1 G sie (1)
2 S
T sign (ay,) _%4 sign (ay, )
; 28x, O ° 28,x,

where sign (4, ) is sign function which takes value — 1 if @, <0 and value 1if a;, > 0.

Thus the transformation P, AP, produces zero value in (1, 3), (1, 4) and therefore (3, 1),

(4, 1) positions. One more transformation discussed for 3 x 3 matrix produces zeros in (2, 4) and

(4, 2) positions. The resulting matrix will be a tridiagonal matrix.
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Example 2.6.21 : Use the Householder’s method to reduce the give matrix A into the tridiagonal
form.

4 -1 2 2
-1 4 -1 =2
A=
2 -1 4 -1
2 2 -1 4

Answer :

First iteration : Let i, =[0,x,, x5, x, ]T

S, =(-1? +(-2 +(2)* =3

xzzl{uw}:% |2
) 3 3 e

_(2)(-D 1 2 (1) |

X=———=—
3 2(3)\/% \/E’XFW:_%

1 0 0 O]
1 0 0 0 | 0o L 22
D70 oy 1202 2wy | |0 2]
—2X,X — X —2X3X -4 5 5
2%3 3 3% 3 3 3
0 —2xx, -2xx, 1-2x° 2 1 2
L = O — — -
. 3 3 3

4, = B AP,
1 0 0 0] 1 0 0 0]
0o -1 %2 2[4 -1 2 27, L _2 2
303 300 4 1 22 333
:0_52%—2—14—10%%%

2 2 -1 4

o 2 1 2 o 2 12
3 3 3. 3 3 3.
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1 0 0 0
0_1_224300
B 303 301 2 -4 1
_0—§§%—2—330
2 4 2 1
o 2 1 2
. 3 3 3]
4 3 0 0]
3 16 2 1
3 3 3
g 2 6 1
3 3 3
o L _1 4
3 3 3]

Second Iteration : P, =[0,0,x;,x,] ; x,% +x,° =1

2 2 1
S, = (g) +(lj :ﬁ; x32:— 1
3 3 3 2

+

w33

, 1(~5+2 5 s J5+2 5-2
2\ 5 W5 25
Suppose x;” =a then X~ = 204 and we have
‘10 0 0 |
0 0 0
P=10 0 1-2a L
’ J5
1 1
00 — 1——
L NG 10a
Ay = B A, Py
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10 0 o U4 3 0 0 o o 0 ]
0 0 o |3 X 2 11y 0 0
| 3 3 3 |
=10 0 1-2a -— 2 16 110 0 1-2a ——
AE T ¥
1 | | |
00 — 1-—o 1 1 40 0 —— 1-——
50 10a)|0 - -7 3 NETY
L 17 3 3 3t
o o ) T4 3 0 0 ]
16  2J5(1-2a)-1 2 1 1
0 0 0o |3 =2 _2 o b
3 35 35 30 10a
“lo 0 1-24 --L 216 1 16 1 1
s olo 2 —=(-20)+—= ————(1——j
i | 33 35 245 30U 104
00 —— ]-—o
i Ho toalo L Lot Lﬁ(l_Lj
3 3 35 3J5 30U 104/ |
4 3 0 0 |
3 6 _ 5
3 35
Tl 2 169
35 3 5
o o - =
i 5 5|

2.7 Power Method

In section 2.2.3 we have seen that convergence of iterative method depends upon the spectral
radius of iteration matrix H. Spectral radius of a matrix is the largest eigen value in modulus. Therefore,
itis necessary to calculate the largest eigen value (in magnitude). Power method is normally used to

determine the largest eigen value (in magnitude) of the given matrix (spectral radius of a matrix).

Suppose we want to determine the largest eigen value of a square matrix A of ordern. Let /4,

Ay Ay, ...y A, be the distinct eigen values of matrix A arranged in decreasing order (in magnitude).
|| > | > |As] > e > |4 e (2.7.1)
and v, v,, V3, ..., v, be the corresponding linearly independent eigen vectors.
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=Av,i=1,2,3,un (2.7.2)

Since eigen vectors are linearly independent, any eigen vector y in the eigen space, spanned

by the eigen vectors v, , v,, Vs, ..., V,, canbe written as
V=cV +cyvy tatcy, . (2.7.3)
[Since v, v,, V5, ..., v, are linearly independent vectors, this set is a basis of eigen space]
Premultiplying equation (2.7.3) by A we get,
Av = A(c1\71 +CVy +.at Y, )
= AV + AV, +c3 AV +.....+ ¢, AV,
From equation (2.7.2) we have

A\7 = 012,1\71 + CZJ/ZVZ + 6313‘73 +..... + Cnﬂnvn

2 2 2
—/11 {clv1 (%j 02172+(% CyVy +(%j chH}

Repeatative premultiplication of A gives,

k k k
Ak‘j — /11/‘ |:C1171 + (%J c2\72 +(%] C3173 +..... + [%j Cnvn:l ... (2.7.4)
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As kbecomes very large, right hand side of equation (2.7.4) and (2.7.5) will be dominated by

k= k+l |, — :
Ay, and 4" ¢y, respectively.

[Since |4|>|4

PRV
,i=2,3,4,..1n, (ZIJ —>0as k—ow ]

k= gk, —
Thus A"V =4 ey

ktl= o 9 k+l | —
and A7V oy

Now the eigen value 4, is obtained as the ratio of the corresponding components of 4++13;

and 45 .
p) ﬂlkﬂcl("l )r
. ﬂ'lkcl(vl) and
(Ak+l‘7)r
}w:kifww, r=1,2,3,..,n

where the suffix 7 denotes the rth component of the vector.

The iteration is stoped when the magnitudes of the differences of the ratios are less than the

given error tolerance.
In order to keep roundoff error in control, we normalize the vector before premultiplying by A.

For computation purpose we follow the following procedure.
Let v, be a non-zero arbitrary initial vector. (we choose v, in such a way that VOT v, #0)
Deﬁne .)_}k+l = AVk

Suppose m,,, is the largest element in magnitude of y, ,,,

Va1

Define Vi+1 =
My 41

()_}k+l ),,
Calculate W, r=1,2,3,..,n

If all the ratios are less than the given error tolerance

|(Fiet),  (Fin),

TGN CA)

( (@D )
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(Pes1),
Then ﬁ_)% as k —>oo.

The vector v, ., is the required eigen vector.

The initial vector v, is usually chosen as a vector with all components equal to unity if no

suitable approximation is available.

[( ILLUSTRATIVE EXAMPLES]

1. Solve the system of equations.
4x;+xy+x3=2
X +5x, +2x;, =—6
X +2xy+3x; =4

Using Jacobi iteration method. Take the approximation as x° = [0.5,-0.5,-0.5 ]T and perform

two iterations.
Answer : We have the system of equation 4x =} where

1 X1 2
3

2

A

Il
—_ =N
N D —

For Jacobi iteration method,

X =—p(L+U)x*® +D7'p

Vp 0 0l 7|0 K
DN L+U)=| 0 15 011 0 2|= 15 0 25
0 0 % 1 2 0 % % 0
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pb= 0 Moo |-6|=|-%
o 0 MY -4

Thus Jacobi iteration method becomes

S /! b2
N I VR R
R -

%Oorl bz

—

4
4

0= -1 0 -2 —g.z
o 0T

0.25 b2 0.75
{ 0.1 } -% { ~1.1 ]

0.16666 _% -1.16667

o -Y %{ 0.75] P2

S A/ {0.5]

A== V0 =¥ - -%
3o ~1.16667 Y

1.0666675
=|-0.883332

-0.85

9]
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(@)
(b)
©

For the following system of equations

dx+y+2z=4

3x+5y+z=7

x+y+3z=3

Show that Jacobi iteration scheme converges.

Obtain the Jacobi iteration scheme in matrix form.

Starting with (0 _ ( , itrate two times.

Answer : We have the system of equations 4x — p where

4
A=|3
1

1
5
1

Jacobi iteration method is

XD =g x® 4+ plp

where, H, =—

Therefore, H

DN (L+U)
0 0
0 0| D=
10
=-D Y (L+U)
1
A 0
__ 1
= 0 5
0 0

R e X

S O b

—_— N\— —
Om& &oo

S L O

—_— W O

w O O

—_— O

S = BN

oS O O

S O =

S = DN
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|
4 0 O

Dlp=] 0 }g 0

0 0 }é 3

Thus we have Jacobi iteration scheme.

A 1
e LY eV ()
WK% o) D

To check the convergence of numerical scheme, let us analyze the eigenvalues of the matrix

4
7

Bounds on the eigenvalues of the matrix H ;are calculated by using Gerschgorin theorem.

By Grsungorin theorem
|/1|<max{§,—,g}=i
453 5
|/1|<max{ﬂ,l,l}
151210

Thus| 4| <1 and R(H, ) <1 therefore Jacobi iteration scheme is convergent scheme.

A 1
e I V%
%% 0] b

¥ =0
1
nF¥0 =7
1
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O =Y =TT roas
¥P =30 0 -Vl T4+ T |=| 06

_% _% 0 1 1 0.2
3. For the following systemof equations.
2x—y=1
-x+2y-z=0
-y+2z-w=0
—z+2w=1

Find the rate of convergence of Jacobi iteration method.

Answer : We have the system 4y =) where

2 -1 0 O X 1
-1 2 -1 0 0
o -1 2 -1}, z | and 0
o 0 -1 2 w 1
For Jacobi iteration method
H,=-D'(L+U)
O 0 0 0 2 0 00 0O -1 0 O
-1 0 0 O 0 2 00 -
Here L= , D= ,U:O 0 bo
-1 0 O 0 0 2 0 0O 0 0 -1
O 0 -1 0 0 0 0 2 0O 0 0 o

Thus H, =-D"'(L+U)

/0 0 0]

A 0 -1 0 0
5 0 0jl-.1 0 -1 0
1 0 -1 0 -1
A 0

O%_OO—IO

To determine the rate of convergence, let us calculate %(H J ) , consider det (H g —Al ) =0.

[u—

0
0 O
0 O
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212 8
SN SR S
4 16
2
ﬁ_%i (%) _416
2
3+4/5

A =10.654508497, A =10.095491502
%(HJ) =0.654508497

The rate of convergence,
y=~log)(H,)

= —10g(0.654508497)
=0.1841
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4. Solve the system of equations.
2% —x, =7
=X +2x, —x; =1
=Xy +2x; =1

Using Gauss-Seidel method. Take the initial approximation as (9 _ () and perform

two iterations.

Answer : We have the system of equations 43 = p where

2 -1 0 x| 7
A=-1 2 -1| X=|x| b=|1
0 -1 2 X3 1

By Gauss-Seidel method

)~ _(p+) ' UT® +(D+L) b

0 -1 0 2 0 0
Here U=|0 0 =1| .4 (D+L)=|-1 2
0 0 -1 2
4 2 17
(D+L)1:é 0 4 2
0 0 4

oo|||
D NN
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2
(D+L) 'b= % % 0l 1]=
|

% N )

Ao D

—
[98)

o |

Thus we have the iteration scheme

I/
U A A R A
oKk Al %

oy ol 7
LA VAR
UNAA AR
[ 4.625

=| 3.625
23125

Determine the convergence factor for the Jacobi and Gauss Seidel methods for the system.

40 20x] [4
05 2| x|=-3
5 4 10| x| |2
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Answer :

@)

(ii)

H,;=-D"'(L+U)

a0 0 o
:_o%oooz
5 4 0

00%0
ooy

=0 o0

Yoo

[\

\®)
)]

det(H, - AI)=0

0-4 0 —%
{0 & Hefe-Hgo

= -1 +(i+lj;t:0
25 4

:(—z)[zz—ﬂ}:o
100

41 41
= A4=0, V100 \ 100

Thus < (H ) =+/0.41 is the convergence factor of Jacobi iteration method.

For Gauss Seidel iteration method

H,=-(D+L)'U

0 0 2 4 0
U=|0 0 2 and PHL= 0 5
0 0 0 5 4 10
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50 0 =25
(D+L) =300 0 40 -16

=l 0 % 0

_% ‘225 %0
H,=-(D+L)'U

_% 0 0

o B 2.

__% ‘225 %0
0 0 A

=0 0 %

0 o -4l

oS o O
oS O O
S NN

5
100

det (Hg —AI)=0 gives

I I A
0 -2 —% =(—z)[-z(%-zj-o}—%[o-o]=0
00 44

41 41
_ —0, A=—r i (Hg)=——=041 i
Thus 2=0, 1=0, 100 are eigen values of H . and ( G) 100 18

convergence factor of Gauss Seidel iteration method.
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6. For the following system of equations

-3 1 0|lx -2
2 3 114lyi=|0
0 2 3|z 1
(a) Set up the Gauss Seidel iteration scheme in matrix form.

(b) Show that iteration scheme is convergent and hence find its rate of convergence.
(©) Starting with %(0) _ (y, iterate two times.

Answer :

@  H,=—(D+L)'U

In this example
0 1 0
D+L=12 3 0] 4U=[001
0 00
NEX 4T
(D+L) " '=—|0 9 6
27
0 09

Thus, H, =—(D+L)"'U

00y
%%00
Y % AP

S O =
S = O
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NINNINN
NSNS

Il
o (e) [e)

(D+L)"'b

NS

NSNS

+
~

| — 1
|
N
~
W ©
&O o

0 )5 0 7
Thus, %) =| o % % =0 4 %
0 Y % s
Answer (b) : To determine the rate of convergence we calculate spectral radius of matrix H,g.

det (H;—A7)=0

) % 0
=0 %—/1 % )
0 Y %2

SRR

.-.—A[ﬁ—iﬂi—i}:o
9 81 81

:—Az(z—fjﬂ
9
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4
=> A= 0,0,§ are eigen values of H,.

Thus, ¢(Hg) =

NN N

Since *(H ) =—<1, the method is convergent.

\ol-h

4
The rate of convergence vV = —log ' 0.3522

Answer (¢): @ _p

X .
1%7 0.6297
A SR
0 Y1 %1 |V
2% 0.8148
= 6/1 =10.7531
20443 0.8354
3 21
7. Find the inverse of matrix A =2 3 2
1 2 2

Using LU decomposition method. Take U, = 1.

Answer : We write




4y Ly, Cyuys
=|ly Ly +iy Cogtty3 + Cypliys

Uy sy + Uy Lyguy + Uatiny + U5

On comparing the corresponding elements we have from first column ¢, =3, /,, =2,

2
From first row lhp =2=u, = g

1
Otz = 1= w3 =3
Fromsecond column  /,,u;, +(,, =3

(yy=3-2=2
22 3 3

Uyguyy +103p =2

2
.'.€32 =2_§:

W |

From third column we have

Cogtyz +Lopliny =2

1 5
(2)@{5)“23 =2

. u23 =

Cygttyy + Usqupy + 053 =2

1 16

So—t—+ =2
315 ¥
1 16 3
(=2 — =2
33 315 5
2/ 1
30 0 % /é
Thuswe have, L=|2 53 0 | andy=|0 1 45
4/ 3
A /é 0 0 1

( [GEIED) )
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8. Solve the following system of equations by Doolittie’s method.

2 1 +1 2[x] [-10
40 2 1|x| |8
32 2 0llx| |7
13 2 —1f|x| | -5

Answer : We write the system of equations
Ax=h as LUr=h Or Ly=b and Ux =7

From Ly = calculate 3 by forward substitution and calculate ¥ from Ux = ¥ by backward

substitution. For Doolittle method diagonal elements of matrix L are 1. Thus we have,

21 1 2 I 0 0 Ofluy; w, wz uy
4 0 2 1 Ly 1 0 O 0 wuy uyy Uy
322 0| |ty (5, 1 00 0 uy uy
1 3 2 -1 ly Ly lyy 1] 0 0 0wy

Comparing the corresponding elements on both sides, from first row we have,
I/lll :2, Ll12 :1, u13 :1, u14 :_2.
From first column we have,

3 1
uply =4=1ly =205 :Eafm :E

From second row we have /,,u;, +u,, =0 i.e. u,, =-2
lyuy3 +Uyy =2 1.€. Uy =0
Oy +upy =116 Uy, =1-(2)(-2)=5

From second column we have,

) 1
€31u12 +/€321/l22 = 2 1.C. 632 :_Z

. 5
€41u12 +/€421/l22 :3 1.C. ’642 = _Z

From third row,

€31u13 +/€32U23 +u33 :2 1.€C. u33 :E
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. 17
Caithg + 3ty +t3y =0 1.6 Usg = T

From third column we get,

€41u13 +/€421/l23 +£43u33 = 2 1.€. €43 :3

13
I.asﬂy €41u14 +/€421/l24 +€43u34 +I/l44 :_1 i.e. u44 :_?
Thus we have
10 0 0] 21 1 2]
2 1 0 0 0 -2 0 5
L= and U= 1/ 17
% Yo U0
1/ _5 o 0o o -13
PR 7SE - el
From Ly =b we get
1 0 0 " _10
2 1 0 0
3 { B%) _ 8
A _A 1o V3 7
L/ _5 -5
A A 301
Using forward substitution we have
y=-10, y, =8-2y =128
3 1 30 28
=T—=y+=V =7T+—+—=29
V3 2)’1 4y2 ) 4
1 5 10 5
=5——y+—9, =3P, =5+—+—(28)-3(29)=-52
Y4 2)’1 4)/2 V3 5 4( )—3(29)

From Ux =y we get

21 1 =2 57 T-10
020 5| e
o 0 ¥ 0|7 2
_13 X -52
00 0 A 4
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By backward substitution we have,

1 17
—X;+—x, =29= x;, =10
BTN 3

2%+ %y +x3 - 2x4y =—-10=x, =5
Thus the solution is,

x=5,x=6,x=-10, x, =8.

9. Solve the following system of equations 4x = p by Crout method.
1| x 1
- 1 X 2 = 6
3| x; 4

Answer : We write A=LU

1 1 iy 0 0|1 wuy, up
35 3| |6y £y f5]0 0 1

On comparing the corresponding elements we obtain,

Firstrow, Ciuy, =116 uy,=1,u,=1.
Second column, Uy + 05 =3 16 0y =3-4=-1

€31u12 +/€32 :5 i.e. €32 :5_3:2

SGCOHd row, €21u13 + 16221/[23 = _1 i.e. u23 = 5
SGCOHd row, €21u13 + 16221/[23 = _1 i.e. u23 = 5
ThiI‘dI‘OW, €31u13 +/€32U23 +£33 :3 i.e. €33 :3_3_102_10
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Thus we have,

1 0 0 11 1
3 2 -10 0 0 1
Now (LU)x =b,

Put Ux =y then Ly =b,

I 0 0 ||y 1
Le. 4 -1 0 W= 6
3 2 =10}, 4

Using forward substitution we have y; = 1.
4y1 — W =6 1e. B4 =4—-6=-2

) 1 1

3y +2y, —10y; =4 ie. V3= E[(3)(1)+2(_2)_4] ==

1
Thus N :1’ b =-2 and ¥ =_E'

Now Ux =y,
1 1 1| x 1
0 0 1]x _l
2

1
By back substitution we get X3 = _E ,

1
x2 +5.7C3 :_2 le x2 :_2+5(5j:

: 1 1
and x1+x2+x3=11.e. x1=1—x2—x3=1_5+5=1

1 1
X3 = —— isthe solution.

Thusxlzl,xzzz’ >
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2 -1 1
10.  Forthematrix 4=|—-1 2 -1/, {findall eigen values and the corresponding eigen vectors.
I -1 2

Answer : det (4—-A7)=0

o4 -1 1
S 21 222 <1 === -1]+1[~@2=)+1]+(1-2=2) =0
-1 2-2

= 2-D)-42+22-D)+UA-D+(-1+1)=0
= (2-2)(2*-42+3)+2(41-1)=0

= -1>+61*-91+4=0

= (—A+1D(A2=51+4) =0

= (-21+D(A-4)(A1-1D)=0
Thus 4 =1, A =1, A =4 areeigenvalues.

The eigenvectors corresponding to 4 =1 is solution of the system (4 —7)x = 0-

1 -1 1| x
1 1
The solutionsare x ={ 1| and x =| 0
0 -1

The eigenvector corresponding to 4 = 4 issolutionof (4 —47)x =0-

-2 -1 1| x 0
-1 -2 -1||x, |=|0
1 -1 =2 B2 0
.
The solutionis x =| —1 |.
1
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11. Find the intervals which contain all the eigenvalues of the following matrix.

1 2 3
2 1 -1
-3 -1 2

Answer : By Gerschgorin bounds the eigen values lie in the region.
|4l < max {6,4,6} =6
|4l < max {6,4,6} =6
i.e. IAl<6
By Brauer theorem, all the eigen values lie in the union of circles |1 —1|<5, |1-1<3,
|4 —2| <4 and union of circles |1 —1| <5, |1 -1]<3,|1-2|<4.

Thus all the eigenvalues lie in the region

{lal<6fN{la-1<5Ula-1<3Ul1-2|< 4}

Since A is summetric all eigen values are real.
(-6,6)N{-4<1<6}U{-2<21<4}U{-2<21<6}}
(-6,6)N{(-4,6)U(~-2,4)U(-2,6)}

(—6,6)N(—4,6) = (~4,6)

. 1 017" 1
. Compute 01 1 exactly.

cosd —sinf
sin@d cosd

cosd sin@d|| 1 0.1||cos@ -—sinf
STAS =
—sin@ cos@ || 0.1 1 |[|sin@ cos@

| cos@ sinf || cosf+(0.1)sinf —sin&+(0.1)cosd
B (0.1)cos@+sin@ —(0.1)sin @ +cos b

Answer : Let S :{

—sin@ cos@

B cos? @+(0.2)sinfcos@+sin> @ —sinHcos &+ (0.1)cos”> @—(0.1)sin® & +sin Hcos
(0.1) (cos2 0 —sin? (9) sin® 6 — (0.1)sin@cos @ —(0.1)sin Bcos & + cos’ 0
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| 1+(0.2)sinfcos b (0.1)(coszl9—sin2 49)
(0.1)(cos> 0—sin>@)  1-(0.2)sin@cos

This matrix reduces to diagonal matrix if o2 9 —sinZ2 6 =0-

c0526?—sin2¢9:O:>cos29:0:>29:%

. . 72.
Using this values of € = 7 Weeet

, 1.1 0
ST A4S = =D

0 09
STA10S=D10
AIOZSDlosT
1 1
Since 92%,5': f f
V22
11 11
o |2 N2 an® oo o 2
[ L T R XL | I U
V22 V2 2
(1 1 @p®  @p®
A RN RN
Lot 09" 09"
V2 2l 2 &

(1.1)10 L09° .’ 09"

| 2 2 2 2
(1. 09" @.n" . (0.9)'°
2 2 2 2
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1 -2 4

13. Find all the eigenvalues and the corresponding eigen vectors of the matrix 2 5 2
4 -2 1

using Jacobi method.

Answer :

The largest off diagonal element in magnitude is a 5.

2a 8
tan20=—->"" ==, 9=~
ayp —dss

Loy L
V2 V2
S=| 0 1 0
1, L
V2 V2
The first rotation gives,
Lo, L] 1o, L]
N -8 [ T T Y- SN -
B=S87'4S=0 1 0 ||-2 5 =2/ 0 1 0
LIPS I I P
N 7
- s 3]
1 1] == =2 —=
— 0 —
w R
=l 0 1 O0f-—— 5 0
V2
LU N ;
2 2] = 2 —F
L \/_ \/—__\/5 \/5_
_ A }
5 — 0
V2
4
=|l-—— 5 0
2
|0 0 -3]
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The largest off diagonal elementin B, is (1, 2)

tan 26 = (1.2) = 2 _o i.e
(1L,1)-(2,2) 5-5
11
2 2
1 1
S,=|— — 0
V2 2
0o 0 1]
The second rotation gives,
- | L
— —— 0 5  —
2 2
1 1 4
B,=8,'BS,=|-— — 0|-—
2 =9y Doy NN NG
0o 0 1 o
L S It
V2 42 V2
1 1 5
= = 0| 2+—=
V2 42 V2
0 0 1]l o
5-22 0 0
=l 0 54242 0
0 0 -3

0==
4
4,
NG NG
1
5 0 ||—
J2
0 -3][o0
5
——-2 0
2
5
24+— 0
2
0 -3

Thus eigenvalues are 4, =5—2\/§, A, =5+2\/§, A =-3.

We have the matrix of eigenvectors as,

° Sl- & -

(e}

)
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| 1] L _L 0
0 ——
7R
= 0 1 0 ||[—= — O
| LV2o2
— 0 — 0 0 1
V2 V2 I -
LR
2 2 2
B
V2 2
LI
L2 2 2]
The eigenvectors are,
. =[]
| i 72
Vi=l—|, V,=|—1|, V3=| O
N N 3 :
1 1 —=
L 2 ] L 2] L2

1
0 | into a tridiagonal
1

O = =

2
14.  Usingthe Householder’s transformation reduce the matrix 4 =| 1
1

matrix.

ANswer : We have w:[O,xz,x3]T, S, =+ ay’ +as” =2
x22=%|:1+m:|= 1|:1+Lj|=\/5+1

S, 20 2] 22

1-2x,% =—

1
V2
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x:a13(signa13): LN
PT28y, 25x, 0 PR 2
1
1-2x" =—
P2
1 0 0 1 0 0
1 1
Thus, £ =|0 1—2x22 %% [=|0 ———= ——=
: NRNG
0 -2xx; 1-2x 1 )
0 —— —
L V2 V2
1 0 0 11 1 0 0
B=BAR =|0 L1 1 1 040 IR
o (RS PP 22
0 SR 0 11
L V2 V2 V2 2
2 20
=2 1 0
0 0

1 2 -1
15. Redicethematrix | 2 1 2 | into tridiagonal form using the Householder method.
-1 2 1

Answer : We have w:[o,xz,x3]T, S, :Jalzz +a132 =5
) ;[1+a12 sign(alz)}_ 1[1 2 }_\/34_2

X" == =—|1+=|=—"-—F—
: S, 200 5] 25
1—2x22:_\/§+2=_i
NEEEN]
Cappsign(a3) -1 _ 2x 11

Xy = = . 2XyXxy =— = =
; 28,x, 28x,0 S0 28x, S A5
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5-2
245

\/§+2
1_

2

245

1-x,

2

X3

%)
] o Lel 47_J
L
')
517 _ .
27[ _J _J _J _
= | | . _ |
J. —
—
— (@) O | _ ) | | _
SC - | _
“ Il | | i 5
I o _ “ “ - lf_JZf_J
=~ lad 1[2[ |
q o ' A& - |
(I 4 _ :
f I 51[ O
~ 2 |
¢ |
) T o % |
| g O _
— =] A._/~ (@\] _ _ | _1 _
2__ 0 _ _1 __
; Il
n.v/.A — (a) (@] D11
_ Il Al
— J D[
.. Dla Il
e .
T
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16. Find the largest eigenvalues in modulus and the corresponding eigenvector of the matrix

-15 4 3
10 -12 6 using power method.
20 -4 2

Answer : Let v, be anon-zero arbitrary initial vector.

Deﬁne .)_}k+l = AVk

o = Yi+1 . . ] o
Vierl = o Mer 18 the largest (in magnitude) elementin y, ., .
k+1
1 )7k+1
Ay = lim | === _
! k—)oo[ Vk jr , = 1, 2, 3, ceeey I

V., 1s the required eigenvector,

L v =[LL1]
_4
-15 4 3|1 -8 A
¥, =| 10 —1261:4;v1:%
20 -4 2|1 18 1
_ -8
n) |4 |
7 not compatible.
01,23 18
| _4
-15 4 3 A 10.55 1
I y,=| 10 -12 6 % =| ~L.11|. v, =| -0.105
20 -4 2] =7.77 —0.736
_ -23.73
Y2 |
(V_J = =499 | not compatible.
P23 | 777
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1L

IV.

VL

-15 4 3 1 -17.628 -0.9303
y3=|10 —12 6 —-0.105|=| 6.844 |.v;=| 0.3612

2

20 -4 2|-0.736 18.948 1
_ —17.628
Ll o] 6518 .
. - : not compatible.

(123) | —24.45

-0.9303 18.39 1
03612 |=| -7.6374 |. v, =|-0.415
—-18.0508 —-0.98

3, = ~12 6
4 2

-19.76

Vs _|_
(V_j =| 2114 o compatible.
3/023) | -18.05

3

20 -4 2| -0.98 19.7 1
_ -19.6
Vs
(VJ =| 21921 ot compatible.
+/023) | -20.10

—-0.99 19.69 1
046 |=| 942 | v,=|-048
—-19.64 -0.99

Vo= 10 -12 6
20 -4 2

—-19.88

Vs _|_
(V_J =| =2047 | ot compatible.
20123 | ~19.64

-15 4 3 ~19.6 ~0.99
yo=| 10 12 6|[-0.415|=| 9.1 | v =| 046
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-19.89 -0.997
v, 1= 126|048 |=| 9.82 |.% =| 0492
-4 2[-0.99 19.94 1
_ ~19.89
Y7 |
(V_j =1 ~2045 ] 1ot compaitble.
6/0.23) | -20.14
-15 4 31| -0.997 19.923 1
20 4 2 -19.908 -0.999
~ ~19.98
(?] —| =20.06
7023 | ~19.90
-15 4 3 1 -19.977
IX. Yo=| 10 =12 6| -0.495|=| 9.946
20 -4 21| -0.999 19.982

-19.98
Yo | _
(V_j =| ~20.08 compatible.
8/0.23) | -20.00

The approximation to the largest eigenvalue in modulus is | 1| = 20 . (i.e. 2 =-20)and the

eigenvector (approximate) is[1—0.495— 0.999]T.

21 10
) . . 1 1 01 .
17. Find the largest eigenvalue of the matrix 4 = Lo 11 using power method. Correct
01 1 2

upto two decimal places.

Answer: 7, = [l,l,l,l]T
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2 1 1 ol[1] [4 1
ol oo 11 3] lo7s
L 7o 1}13;“0.75
01 1 21| |4 1
21 1 o 1 35 I
ol 10 1o7s] |275] . |0.786
o 2701 01 1|05 275 T 0786
01 1 2| 1 35 I

¥, | 3.66
Vi (123) " | 3.66 | not compatible upto 2 decimal places.

}
:

3.5
21 1 o] 1 3.572 1
|11 0 1]l0786] [2.786] _ 10.7799
= = v =
m 371 0 1 1]/0786] [2.786|: | 0.7799
01 1 2| 1 3.572 1
3.572
7 _|3.544
v, (12.3) 3.544 | not correct upto two decimal places.
3.572
211 0 1 3.5598 1
11 0 107799 (27799 _ 10.7809
= = V, =
v, 4710 1 1]]07799] 7127799 |: 4 | 0.7809
01 1 2 1 3.5598 1
3.5596

Vs | 3.564
V3 (12.3) 3.564 | not correct upto two decimal places.
3.5596
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2110 1 3.5618

_ |1 1 0 1|/0.7809| |2.7809

5T 001 107809 2.7809 |;

01 1 2 1 3.5618
3.5688

Vs | 3.5611
vy (172’3)_ 3.5611 | correct upto two decimal place.

3.5618
1
. . L . 1 0.7809
The approximate largest root is 3.561 and the corresponding eigenvector is .
0.7809
1

[[ EXERCISE D

2 -6 10
I 5 1
-1 15 -1

Determine the LU decomposition of the matrix assuming /; =1,1=1,2,3.

Solve the system of equations.
4x,+x,+x;,=4

X +4x, —2x;=4

3x,+2x, —4x; =6

by Doolittle method.

Solve the following system of equation by Crout method.
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(i) 4x; —x, =1
_xl +4x2 _X3 = 0
_x2 +4X3 :O

Given the matrix A=1+ L+ U where

1 2 2
A=|1 1 1
2 2 1

Land U are strictly lower and upper triangular matrices respectively, decide whether (a) Jacobi,

(b) Gauss Seidel methods converge to the solution 4x = p .

Show that the Gauss Seidel method for solving the system of equation.

11 -1][x] [-1

o) 350y |=0 and
3 2 -3]|z] |4
1 2 4][x] [-1

@ |21 Z||Y|=] | diverges.
4 2 1][z] |3

Setup the Jacobi iteration scheme in matrix form for the system

31 1)|x 2
1 4 2||y|=|-5
1 2 5| ¢z 2
@) Locate the eigenvalues of the iteration matrix H.
(i1) Determine the largest (in magnitude) eigenvalue using the Newton Rapnson method.

(ii1) Find the rate of convergence of the iteration scheme.

1 -2 3 1 0 1
Thematrix 4= 6 —13 18] istransformedto diagonal forbythematrix 7=|3 3 4
4 -10 18 2 2 3

i.e. T"IAT. Calculate the eigenvalues and the corresponding eigenvectors of A.
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8. Find the intervals which contain all the eigenvalues of the following matrix
1 2 3 2 31 -1 1 1
-3 -1 1 2 1 1 1 -1
9. Find eigenvalues and the corresponding eigenvalues of the following matrice using Jacobi method.
322 1 2 4 2 V2 4
2 23 -2 1 4 2 2
4 1 0
10. Determine the largest eigenvalues and the corresponding eigenvector of the matrix 120 1
0 1 4
to 3 correct decimal placed using power method.
2 -1
11. Use Householder method and convert the following matrix in tridiagonal form L2
-1 2 1
21 10
. . ) 1 1 01 .
12.  Find the largest eigenvalues of the matrix 4 = L0 o0 1 using power method.
01 1 2
o %
( C 119 ) )




UNIT - 11

INTERPOLATION, DIFFERENTIATION AND
INTEGRATION

Interpolation is used to approximate given function by a polynomial or it is used to fit a polynomial
when the data is given in tabular form. There are two main uses of interpolation. The first use is the
reconstruction of function when it is not given explicity and second use is to replace a function f'(x) by
an interpolating polynomial P(x) so that many common operations such as determination of roots,

differentiation, integration etc. which are required to performon f'(x) may be performed using P(x).

In this unit we first discuss the methods of constructing the interpolating polynomial P(x) toa
given function. We determine the deviation of the given function f'(x) from the approximating polynomial
P(x) by estimating truncation error bounds. We discuss numerical methods of differentiation and

integration of a given function f'(x).

3.1 Interpolation
Definition 3.1.1 : Interpolating Polynomial

A polynomial P(x) is called an interpolating polynomial if the value of P(x)and/or its certain

order derivatives coincide with those of f'(x) and/or its derivatives at one or more tabular points.

3.1.1 Lagrange Interpolation
Linear Interpolation :

We want to determine a polynomial of degree one denoted by
P (x)=ax+a,
where a,, and q, are arbitrary constants.
Satisfying p; (%)= /(%) and p; (x,)= £ (x,)-
i.e. we want to interpolate a function by a polynomial of degree one.
Sinee  py (xo) =1 (x0), f (%) =axy+aq

and Pl(xl)Zf(xl):f(xl):a1x1+a0
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Above equations are two linear equations in two unknowns a, and ¢, . Simultaneous evaluation

of'these two equations gives

q :M and %o =f(x0)—x{

X0 —X

f(xo)—f(xl)}

X0 —X

Thus P1:f(xo)_xo{f %0
X0

(
~p(x)= (x=x) (%)

(x0—x)

(x

(% —xo)

X0

)—f(xl)}{f(xo)—f(xl)}
X Xo —X
—%))
o)+ —=5/(n) (3D
In other words we want to determine a polynomial p, (x) = a,x + a, which satisfies
I (%) = ayxy +a

f(xl) =ax t+aq

Above equations are three equations in two unknowns and therefore they have to be linearly

dependent.
p(x) x 1
f(x) x 1=0
f(x) x 1

SoD (x)[xo—xl]—x[f(xo)—f(xl)]+1[x1f(x0)—x0f(xl)]:0

(x—xl) (x—xo)

sop(x) =
Py (xo—x1)f(xo)+(xl—xo)f(xl)
=l f(x)+ 6D f(x) (3.1.1.1)
where (,(x) = ™M and 0,(x) = X=Xy
Xo X X, — X,

The functions ¢, (x) and ¢, (x) are called Lagrange fundamental polynomials. These

polynomials satisfy
go(X)"'fl(x):l, él(x]):é‘l]; i,jZO, 1

In general, if we have (n + 1) distinct points a < x; < x; <X;......<x, <b of [a,b] and a

value of the function f'(x) is known at these points, we can determine the polynomial
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p,(X)=ay+ax+a,x* +..+ax"

whichsatisfies p, (x;)=1(x;),i=0,1,2, ..., n.

In other words we have,
P, (x)=a0+a1x+a2x2+a3x3+....+a”x” o (1)
2 3
F(x0)=p,(x0)=ag +axy +ayxy” +asxy” +....+a,x" e (2)
2 3
F(x)=p,(x)=ay +ax +ayx” +asx +...+a,x" .. (3)
F(x,)=p,(x,)=ag+ax, + ax,  +ayx’ +..+a,x, .. (n+2)

Equation (2) to (n+ 1) aren+ 1 equations in (n + 1) unknowns a,, a, a,, ...,a, . Equations

(2) to (n +2) has unique solution if the corresponding coefficient matrix is non-singular i.e.

I Xy Xy X" [
1 2 n ° f(xo)
| X1 a f(x )
1 x, x° x," || % |= ;1
(- | (3.2.1.2)
S (x,
1 x, )c,,2 x," | L |

1 ox, x° x° xoﬂ
1 x x> x° x,"
- 2 3
v(xo,xl,xz,...,xn)— 1 x, x° x> - X #0
2 3 n
_1 Xn  Xn Xy Xy J

If we determine q,,, a, a,, ...,a, fromsystem (3.2.1.2) then the system (1), (2), ... (n +2)

will be linearly dependent and therefore its determinant should be zero.
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Le.

Let

v(xo,xl,xz,...,xn_lx) =

=(x—x0)(x—x ) (x—2,)eeee(x—x,;)

2
X0 X0
2
X X
2
) X
2
xnfl xnfl
2
X X

_1 X,

X1

= (x—xo)(x—xl)(x—xz)....(x—xn)v(xo,xl,xz,....,xnfl)

To evaluate determinant in equation (3.2.1.3) we expand the determinant with respect to first

column. The evaluation of determinant in equation (3.2.1.3) gives

2 n | 2 n]
Xy X X X X X
2 n 2 n
X% X1 X% X
2 n|_— 2 n |4
Py (%) X, X X, f (xo) X, X X,
2 n 2 n
xn xn xn _ xn xn xn _
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1 x x? x"
1 x, x° xy"
n+l
.+(_1) 1 xl x12 ces xln :O
2 n
L 1 xnfl xnfl xnfl

5Dy (x)v(xo,xl,xz,....,xn)—f(xo)v(x,xl,xz,x3,...,xn)+f(xl)v(x,xo,xz,x3,...,xn)
....+(—1)n+1v(x,xo,xl,xz,....,x _ )=O

V(X X, X500 X, )

V(X5 X, Xg5enes X, )

.'.pn(x)Z f(xo)_

v(X,Xq, X, X3, X400, X, )

V(X5 %), X550 X, )

B v(x,xl,xz,x3,....,xn)f(x )+ v(
= 0

V(X0 X1, Xp,00s X, ) V(X5 X0, X9, 00s X, )

V(X,Xo,xly--“axn—l)

V(X X0 X1, Xg s eeves X,y

v(x,xo,xl,x3,....,xn)

F(x)+.t

+

)f(xn)... (3.2.1.3)

v(xz,xo,xl,x3,....,xn)
[If we interchange any row of determinant, the value of determinant changes its sign]

From the elimentary properties of determinant observe that
v(x,xl,xz,x3,....,xn) :(x—xl)(x—xz) ...... (x—xn)v(xl,xz,...,xn)
and v(xo,xl,xz,x3,....,xn):(xo—xl)(xo—xz) ...... (xo—xn)v(xl,xz,...,xn)

Thus V(X,xl’x3"“"xn): (r=x)(x=x) (¥ =x5) . (x=,) =/, (x) (say)

v(x,x0, %5, X5, %, ) (X=X ) (x—xy)(x—x3)....(x—x,)
. _ =/
Similarly, v(xl,xo,xz,x3,....,xn) (x1 —xo)(x1 —xz)(x1 —X3 )....(x1 —xn) 1(x) (say)

In general,

V(X X0 X yee Xy Xy senees Xy ) B (x=x0)(x=x) ) (x =%, ) (x = %141 ) oo (x — )

V(X5 X0 X15 X yeees Xy X eees Xy ) - (x; = x0 ) (% = xp ) (37 = X ) (X5 = X101 ) oo (37 — )

=/,(x) (say)
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Now equation (3.2.1.3) becomes

D, (x)= ﬁo(x)f(xo)+Ei(x)f(xl-)+....+€n(x)f(xn)

= ifi(x)f(xi)

i=0

p,(x)= igi(x)f(xi) where
i=0

[1(x-x)
li(x)= 2 jscalled Lagrarge interpolating polynomial.

H(x,.—xk)

k#i

3.1.2 Newtons Interpolating Polynomial

In the last section we have seen that if we have (n + 1) distinct points

a<xy,<x <X,...<x,<b and the value of a function f(x) at these points then we can fit a

polynomial p, (x) of degree nsuch that
P(x%)=/(x),i=0,1,2,..,n
Now represent this polynomial p, (x) in form
P () =ay+ay(x—xp)+ay (x—xp ) (x =)+t @, (x =% ) (x =X )eerr(x =, ;)

We want to calculate a,, a,, a,, ...,a, insucha way that

f(xn):pn (xn):ao +a1(xn —x0)+a2 (xn —xo)(xn —xl)+....

+a, (xn —xo)(xn —xl)....(xn —x,H)
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By forward substitution we get, a,, g, a,, ...,a, asfollows,

a0=f(x0)
S(x)- S (x)—f(x
“= E:l_)xoao - )lcl)—xo( ! =S %] (say)

o)) (e {f(xl)_f(xo)}

(xz—xo)(xz—xl) (xz—xo)(xz—xl) (xz—xo)(xz—xl) X —Xg X —Xp

. /(%) B S (%) +f(x -1 N 1
o (2 =x ) (2 =) (30 =%0) (3, —x;) 4 O){( }

_ f(x) f(x) /(%)

B (x2 _xo)(xz_x1)+(x1 _xo)(xl —x2)+(x0—xl)(x0 _xz)

= f[xo,xl,xz] (say)

In general by induction we can prove that

f(xo) f(xl)

a; = +

(%o —1) (0= ) (%0 —3) (51 =) (3 — %2 ) (2 ;)

f (%)
(Xl- —xo)(x,- —xl)....(xl- _xi—l)

= [[%0s 0o X;]  (sy)

+

Thus we have

Py (x)=f(x0)+f[xo,xl](x—xo)+f[x0,x1,x2](x—xo)(x—xl)+ .....
et X0 X1 %0500 %, | (X=X ) (X =21 ) oo (x =,y

The polynomial p, (x) is called Newton’s divided difference interpolating polynomial.

The coefficients a, = f[xo,x], @ = f[%0. %%, ], ooy @, =

o = f[X0:%1,%550,%, | are
called Newton’s divided differences.
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3.1.2.1 Properties of Newton’s Divided Differences

(i) f[XOaxl]: f(x1)—f(xo) _ f(xo)_f(xl) :f[xlaxo]

X1 —Xp Xo — X

f[xo,x1]=f[x1,xo] (symmetry)

@ S[xox]=

(]]1) f[x03x13x2]=(xo_xl)(

- [T S]]

(% —xp)

_ f[xlﬂxZ]_f[xo’xl]

B (%, =)

In general,

X1sXnaees X | — F X0, X0, %5500y X;
f[anxlax29~..,xk—1’xk]:f[ S aiais k]x f_[xm A 1], k=3,4,...n
k 0

Thus Newton’s divided differences are calculated as follows,

]:f(xl)‘f(xo)

X1 —Xp

f[xo’xl
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f[xl,xz]—f[xo,xl]

Xy =X

f[XOaxlaxz]:

I [%0sx1, %0, ] = AT e CRTES)
X3 =X

The Newton’s divided differences may be calculaed with the help of following table.

Xo f(x0)

}: VETEA
W () = ranon]
}:> ERN }:> £ [%05 %1%, %3]
Y5 f(n) }:f[xl,x2,x3] }:f[xo,xl,xz,x3,x4]
}: ] }:f[xl,xz,x3,x4]
5 f(n) }:f[xz,x3,x4]
}: L]
Xy f(x)

(iv)  Newtons divided differences are symmjetries in all the variables
f[xo,x1]=f[x1,x0]
f[xo,xl,xz]=f[x1,x0,x2]=f[x2,xl,x0] etc.

I %021, X0, %3] = [ X1, %00 %5, X3 ] = [ %0, %1, X3, X, | ete.

3.1.3 Uniqueness of Interpolating Polynomials

In section 3.1.1 we have seen how to calculate Lagrange’s interpolating polynomial p, (x) if
the values of function f(x) areknownat(n+1)nodes x,, x;, x,,...., X, . Insection3.1.2 we have
studied the evaluation of Newton’s divided interpolating polynomial if the values of function f'(x) are
known at (n+ 1) points x;, x;, X, , ...., X, . We have seen that both the polynomials are polynomials

of degree n. In this section we prove that the polynomials obtained by two different methods are same.
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Suppose p(x) is an interpolating polynomial of the given function f(x) satisfying
f(x)=p(x),i=0,1,2,...,nand p*(x) is another interpolating polynomial of same degree n
satisfying f(x,») = p*(xl-), i=0,1,2,...,n. Weshow that p(x)= p*(x).

Define Q(x) = p(x)-p*(x)

Since p(x) and p*(x) are polynomials of degree n. O(x) is a polynomial of degree at

mostn.
O(x;)=p(x)-r*(x)=f(x)-f(x)=0,i=0,1,2,...,n

Thus Q(x) is apolynomial of degree less than or equal to n has (n+ 1) distinct roots x;, x;,
X, ,...., X, . Butapolynomial of degree n has exactly n roots (real or complex). Therefore O (x) has
at the most n roots. But Q(x) has (n + 1) distinct roots x,, x;, x,, ...., x,. This implies that
0(x)=0.

Therefore O(x) = p(x)—p*(x)=0ie. p(x)=p*(x)

Thus, the interpolating polynomials obtained in two different ways may be different in form, but
are identical.

3.1.4 Truncation Error Bounds

In the last section we have seen that interpolating polynomial of degree n is unique Linear

interpolation gives a polynomial p, (x) of degree one. The polynomial p, (x) coincides with the

function f(x) at x, and x,. It deviates from f(x) atall other points in the interval (xo,xl) . This

deviation is called the truncation error and is written as

E(f;x)=f(x)=-p (x)

The expression for E, (f;x) is derived by using Rolle’s theorem.

Rolle’s Theorem : If g (x) isacontinuous function on some interval [ a, b] and differentiable on

(a,b)andif g(a)=g(b)=0,thenthere isat least one point & inside (a, b) forwhich g'(£)=0.
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Error Bound for Linear Interpolation

Suppose p, (x) is alinear interpolating polynomial for the function f(x) . The polynomial

p; (x) coincides with f(x) at x, and x,. Define a function g (¢) as

g = 10— p (-] f(x)- pl(x)] (=% )(1=x)
%) (x—x)

where x € (x,,x, ) isa fixed point. Now function g () is continuous and differentiable.

g(x)= /(%)= pi(xp)=0 and g(x)=/1(x)-pi(x)=0

atr=x, gx)=7(x)-p(x) [f(x) pl(x)] 0

Thus in the interval (xy,x), g(x,)=g(x) =0 and by Rolle’s theorem 3 at least one point
&, inside (xy,x) forwhich g'(&)=0

Similarly in the interval (x,x,), g(x)=g(x,)=0 and by Rolle’s theorem 3 at least one
point &, inside (x,x, ) forwhich g'(&,) =

Thus xy <& <x<& <xand g'(&)=¢g'(&)=

Now on applying Rolle’s theorem for g'(#) ontheinterval (&,&,) weget & € (&,&,) such
that g"(&)=0.Since x, <& <x<& <x;, E€(xg,x)).

Now differentiating g (¢) twice with respect to t we obtain,

t x1 (t—xo)

g (=10 = pO-[ £ ()~ pl(x)]
—XO)(.X—XI)

0= 0 O-Lr
0 1

2[f(x)=p ()]
(x—x0)(x—x)
[ p, (¢) is polynomial of degree 1 p,"(¢)=0]

2[ f(x)=p,(x)]
(x=2)(x—x)

=f"(¢)-

g"(§)=0=r"({)=
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V7€)

Thus  f (x)—p (x) = (x—x))(x—x >

Therefore, the truncation error in linear interpolation is given by,
1

E (fix)=f(x)=p (x) :E(x_xo)(x_xl)f"(f)
If|f"(x)| <M, Vxe[xy,x] then,

£ (0= py (] =35 =30) (=) £ (£

Sl Max ‘(x—xo)(x—xl)‘Mz

ZxOSxle
Let w(x) =(x—xy)(x—x;) then w'(x) =(x—xp)+(x—x)

X T X

and w'(x)=0=x= . Hence maximum value of |(x—x,)(x—x, )| is attained at

Lo Xotn '
2
Yo X Yo+ X (=% )2
Z\lxax(x—xo)(x—xl)‘z > — X 5 -x ||= 2
(=)’
Thus |f(x)—p1 (x)| < ETMZ
1 (5%
Thus bound for truncation error E, ( f;x) is E%M )
Thus the truncation error
L(xi=x)
B (fix)|s 12 Max /()] L (3.1.4.1)
2 4 xe xo,xl)
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Truncation Error for higher order interpolating polynomial
Interpolating polynomial p, (x) of degree n coincides with (n+ 1) times differentiable function

f(x)at {xo 3 X5 Xy ey Xy } (n+ 1) points. The truncation error for this polynomial approximation is

E,(f:x)=f(x)-p,(x)

For x e (a,b) and x #x;,i=0, 1,2, ...m define

(= £ (- p, ()-[ ()~ pn<x>] (- ))((t)) """ ((t"‘”)) G142
(x—x0)(x—x))..... xX—x,

Observe that g(xl-) =0,y i1=0,1,2,..,n
In the interval (xo, X ) , g (xo) =g (xi) =0. Function g is continuous and differentiable.
Therefore by Rolle’s theorem 3& € (xy,x; ) suchthat g'(£)=0
Similarly in the interval (x;,x,)3¢&, suchthat g'(&£,) = 0. Ingeneral 3¢; €(x;_;,x,) such
that g'(cfi) =0.
Now g'(&)=g'(£,)=0. g'is continuous and differentiable therefore by Rolle’s theorem
In, €(&,& ) suchthat g"(1,)=0.
3n, €(&,.4;) suchthat g"(n,)=0.
In general 37, (&;,&;,,) suchthat g"(7,)=0,i=1,2, ..., (n—1).
Thus repeated application of Rolle’s theorem for g (z), g'(¢), g"(¢), ..., g™ (¢) gives

& e(a,b) suchthat g™V (£)=0.

Differentiating function g defined in equation (3.1.4.2), (n+ 1) times with respect to £, we get,

(n+ D f(x)-p, (x)]
=) (=)o (5=, )

Since p, isapolynomial of degree (n) p, "™V (1) =0.

g(n+l) (t) — f(n+l) (t) _ pn(n+1) (t)

(n+ DI £ (x)=p, (x)] _
(x=x0)(x=x)ecee(x—x,)

g"M(§)=0= 7" (g)-
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3.2 Finite Difference Operators

Let the tabular points x,, x;, x,,....,x, be equally spacedi.e. x;,—xy,=h, x, —x;=h,....,
X, =X, =h.

In general x; =x,+ih,1=1,2,3,...,n.
Define the following operators.
() Forward differene operator Af (x;)= 1 (x;,1)— /(%) .

(i)  Backward difference operator Vf (x;) = f(x;)— /(%)

h h
(ii1) Central difference operator 6./ (x,- ) =f (x,- + Ej -f (x,- - 5) .

(iv)  Average operator Af (%)= %[f(xi - g) + f(xl. + gﬂ .

(v)  Shiftoperator £f (x;)= f(x; +1).

3.2.1 Relations between finite difference operators
(@) Af(xi):f(xi+1)_f(xi)zvf(xi+1):>Afi =Vfin

where f(x;) isdenoted by f;.

)=o) (e ) 4
N
—5f(xi + 2)

Af(x0+ih):§f(x0+(i+%)h]:>Afi =0f

2
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(iif)

(iv)

V)

(vi)

(vii)

A (%)= S (%) = ()= [ (k)= /() = Bf ()= /()
=(E-D f(x)
Thus Af (x;)=(E-1 f(x;)=>A=E-1.
VI ()= (x) = (x1)
Since Ef (x;)= f (X)) = E7 [ (x41) = £ (x;)
Thus V£ (x;) = f(x)-E"'f(x;)
(- f(x)
Therefore v = | — £~

E'f(x)=f(x+h)
()= () ana B (n)= (5 -50)

h

L I BT

CEPf(x)-E 2 (x) =8 (x) = E—E 2 =5

wro = (et (4]

:%[E%f(xi)w‘%f(x,.)}
:y:%(E% +E7%)

E[Ef (x;,)]=Ef (x;+h)= f(x;+h+h)= [ (x;+2h)
Ingeneral E" f (x;) = f (x; +nh)
ALAY (x)[=ALf (4 )= £ (x)]

= Af (x;+ 1) =4 (%)

= f(x;+h+h)—f(x;+h)=[ f(x;+h)- £ (x)]
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=f(xi+2h)—2f(xi+h)+f(xi)
A (x;)=f (% +h)= [ (x;)
=(E-Df(x)

S A f(x)=(E-D" f(x;)= i(—l)k (ZJf(an_k)
k=0

n N[
f(x,.{a—kjh}%( 1) (k]fH;k

3.2.2 Relations Between Differences and Derivative

In section 3.2.1 we have derived relations between different finite difference operators. If the

relation between derivative and any finite difference operator is obtained then the relation between

derivative and any finite difference operator is known.

Suppose fis smooth function
Af (x)=f(x+h)= f(x;)

2

=f(x,-)+hf'(x,-)+h2—!f”(xi+¢9h)—f(x,-)
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2

() + 5 (,+ 0B)
Therefore, f'(xi):%Af(xf)—gf"(xi +‘9h)

:%Af(xi)+0(h)

Thus Df(xi)=% £(x,)+0(h)

Since finite difference operators are defined for discrete equidistant points and derivative is
defined for containuous functions, exact relation between derivative and differences cannot be obtained

and we get an error.

3.3 Numerical Differenciation

In this section we discuss methods for approximating the derivatives of a given function.

Numerical differentiation methods are developed by using one of the following techniques.
@ Methods based on interpolation

In this method the function values or table values are used to approximate a function by a
polynomial (byusing Lagranges interpolation or Newton’s divided difference formula) and this polynomial

is differentiated to get the derivative of a function.
(ii) Methods Based on Finite Difference Operators

In this method derivative is obtained by considerng Newton’s forward difference operator or
Newton’s backward difference operator or using shift operator. Since there is relation between every

pair of finite difference operators, derivatives are obtained by using any finite difference operator.
(ii) Methods Based on Undetermined Coefficients

In this method function is written in the form of linear combination of values of a function at
some points and the coefficients of this linear combination are obtained by using Taylor series expansion.

Now we discuss each of this methods in detail.
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Methods Based on Interpolation :

Given the values of function f'(x) atasetofpoints x,,x,,X,,...., X, , obtain an interpolation

polynomial p, (x) by using any interpolation technique (Lagrenge interpolation or Newton’s divided

difference formula). Thus
[ =p, )+ E, (f3x)
where E, (f;x) isanerror in the approximation.

In section 3.1.4 we have seen that

E,(fx)= 12 ()

') =p,"(X)+E,(f;x)
In general the values of pn(”) (xk ) gives the approximate values at the point x; .

Thequantity £, (f;x)= £ (x)- p,"” (x) is called the error of approximation in the r'

order derivative at any point x.

Example : The following data for the function £ (x) = x* is given.
X 0.2 0.3 0.4
f(x) 0.0016 0.0081 0.0256
Find £'(0.4) and £"(0.4) using quadratic interpolation. Compare the results with exact
solution obtain the bound on the truncation error.
Answer : Using Lagrange interpolation we have

(x—xl)(x—xz) (x—xo)(x—xz)

(xo—xl)(xo—xz) (xl_xo)(xl_xz)

_ (x-0.3)(x-0.4) (0.0016)+ (x=0.2)(x-0.4) (0.008)
(0.2-0.3)(0.2-0.4) (0.3-0.2)(0.3-0.4)

P, (x)= S (x0)+ f(x)+ o

(x-0.2)(x-0.3)
(04-02)(0.4— 0.3)(0‘0256)
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(0.0081)
—0.01

0.0016

—(x2=0.7x+0.12) +(x2-0.6x+0.08)
0.02

)(0.0256)

+(x2=0.5x+0.06
0.02

=(0.08)(x> =0.7x+0.12) = 0.81(x* = 0.6x +0.08) +(1.28) (x> - 0.5x +0.06)
=0.55x* —0.21x+0.0216
£'(0.4)= p,'(0.4)=(0.55)(2)(0.4)-0.21
=0.440-0.21=0.230
£"0.4) = p,"(0.4)=(0.55)(2)=1.10
Thus the approximate solutionsare £'(0.4) =0.23, "(0.4)=1.1.
The exact solutions are
£'(0.4)=4(0.4) =0.256
7"0.4)=4(3)x*=1.92
F'(x)=4x>, f"(x)=12x*, f"(x)=24x

S.My = max |f"'(x)| =24(0.4)=9.6
0.2<x<0.4

0.1

2
£, '(0.4)|£%M3 = 9.6=(0.01)(3.2) = 0.032

|E,"(0.4)] < hMy =(0.1)(9.6) = 0.96

Methods Based on Finite Difference Operators

In this section we derive relation between derivative and finite difference operators.

Ef (x)=f(x+h)

:f(x)+hf'(x)+};—2f”(X)+ ......

!

:f(x)+th(x)+Z—2!D2f(x)+ ...... [D:%}
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212
:[1+hD+h21') Foron jf(x)
:eth(x)
Thus g — P
S hD =logE

2 3
:bgU+A)=A—é—+é—am
2 2

1

:—mgu—v)=A+5V2+%vﬁhm

Keeping only first term in each of the above series we have

f(xku)_f(xk)
h

f(xk)_f(xkfl)
h

~ S () = f ()
B 2h

S()=

I

Similarly,

S (%12) =2 (3450 ) + f ()
h2
()27 () ()

= %

~ f(xk+1)_2f(xk)+f(xk71)
52

N

S (%)

Forward differences

Backward differenes

Central differences

Forward differences

Backward differences

Central differences

First two expressions for both the representations are of first order whereas the third

representation is of second order.

( C 139 )




Methods Based on Undetermined Coeficients

In this method we write £(") (x) asalinear combination ofthe value of ' (x) atan arbitrary

chosen set of tabular points. Determine the coefficients in linear combination by using Taylor series

expansions of function at some point and by equating the equal powers of derivatives.

For example, assume that the tabular points are equispaced with step length h. Write
WIO(5)= Y a,f (x.,)
p=—v
The local truncation error is defined as
B (5) = WS (5)= Y, 4, (e,

p=v

The coefficients @, are determined by requiring the method to be of particular order.

Example : A differentiation rule of the form
['(x0)=aof (x0) +en s (x)+arf(x;)
where x, =x, +kh, is given. Find the values of ¢, ;, &, so that the rule is exact for
f € p,.Find the error term.

Answer :
f'(xo):aof(xo)"'alf(?ﬁ)"‘azf(xz)
=ayf (xp)+a f(xg+h)+a f(xy+2h)

2

RPN
:aof(x0)+al{f(x0)+hf (x0)+2—!f (x0)+§f (x0)+...}

2 3
+a, {f(xo)+(2h>f'(xo)+%f"(xo)+% f"'(x0)+....}

=(ap+ +a2)f(xo)+[alh+a2 (Zh)]f'(xo)

h’ K
rlerda] (v + e+ 2 [ () o
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On equating the coefficients of equal powers of derivatives we have,
f(x):ap+a+a,=0
f'(x0): (e +2ay ) h =1
f"(x): o +4a, =0
F"(x0): 0 +8a, =0....

Since above system of equations contain three arbitrary values ¢, «; , &, we can consider

only first three equations to obtain the values of ¢, ¢ , @, . From first three equations we have the

following
(O{l+2a2)h:12(—4a2+2a2)h:1:>a2:;—}ll
2 -1
Thus al_Z’ 2=5, and oy +a; +a, =0 gives
2 1 3

0 R AV

The leading term in the error expression is
3

O O A PO

h 2h

(2

2h

h2 m
—?f (&)

2

h
Thus the error term E = —?f"'(ég)

Since the error term contains third derivative, the method is exact for the functions whose third

derivative is zero. i.e. method is exact for f € p,.

( C 141 ) )




3.4 Numerical Integration

The general problem of numerical integration is to find the numerical value of the integral
b
I= Iw(x)f(x)dx

We assume that (x) and # (x) are Riemann integrable functions on [a, b]. y(x) > 0 defined
on [a, b] is called weight function. The integral I is written as a finite linear combination of values of

f (x) inthe form

b n
I={w@fac=d 4f(x) (3.4.1)
a k=0

x, €[a,b] are called nodes and are distributed on the interval [a, b] with x,_; < x,,k=1,2,

3, ...n. The coefficients 4, ,k=1,2, 3, ...nare called weighs of integration rule or quadrature formula
(3.4.1).

The error is given by

b n
R, :Iw(x)f(x)dx—Z/ka(xk)
o k=0

Definition : An integration method (3.4.1) is said to be of order p, if it produces exact results

(R, =0) for all polynomials of degree less than or equal to p.

Methods Based on Interpolation

Given the (n + 1) nodal values and the corresponding values of f (xk ), the Lagrange

interpolating polynomial is given by

n (n+1)
f(x)zkzz;)fk(x)f(xk)wr(x)f(Tl(f); o <E<x

z(x)

x—xk)ﬂ'(xk)

where fk(x>=( and 7 (x) = (x=x; ) (x =% ) oo (x—,)

From equation (3.4.1) we get,

1 :jiw(x)f(x)dx
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K n (x) f* (f)
_£w(x)|:l§)fk(X)f(xk) (n+D!

n | b f(n+1) (é:
= IW(X)fk(X)dx 1 (x )+ Iﬂ(x)w(x)dx

k=0| 4 +1)!

=S A f (%) + R
k=0

b
where % :.[W(X)gk(X)dx and error Rn = 1)'Iﬁ(x)w(x)f(”“) (&)dx

The error R = 1)'Iﬁ(x)w(x)f(n+1) (&)dx

(n+1)
f( (n) | jw(x)|7r(x)|dx for some 7 € (a,b).

(n+1) b
|Rn| < ‘f(Tl()?)‘jw(xﬂﬂ(xﬂ dx

The error term can also be determined by

C (n+1) (

Be= e )

b n
where C = Jw(x) X" dx - > Qox,"
p k=0

Cis called error constant. If Cis zero for f(x) = x"* I then we take the next term f(x)= ar

and naturally the error will be zero for all polynomials of degree (n+1).

Thus our aim is to determine the weights 4, and nodal pionts x; such that the error term R,

The approximate value of the integral is written as

b n
szw(x)f(x)dx: Z/lkf(xk)
a k=0

is minimum. For simplicity we assume that all the nodal points are equispaced and end points are nodal
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Newton Cotes Methods

In this method we assume that 1, (x) =1 and the nodes are equispaced with x, =a, x, =b

a
and 7 =—— The weights 4, are called cotes numbers. We calculate the weights 4, by using
n

Lagrange interpolation. From equation (3.4.2) we know that

b n
1 :J-w(x)f(x)dxz z/lkf(xk)+Rn
a k=0
b (n+1) b
A :J.w(x)ﬁk (x)dx gpq R, =]1T1()7?)Iﬂ(x)w(x)dx_

b
A = Iw(x)ﬁk (x)dx

0, (x)=
Now o e 30 ) (e =0y ) (2 = 1) (3 = Xpag ) (3 — 3, )

Since all nodes are equispaced, x; = x, +i/h and

()= (x=x0)(x=x; e (x =Xy ) (X = X411 ) oo (x =)
T ) k=D A= 2) oot (=) (<20).....(~(n— F)h)

(x—xo)(x—xl) ..... (x—xk_l)(x—ka) ..... (x—xn)
kR (=) (=i h"F

Substitute x = x, + s/ then x—x; = x, +sh—(x, +ih)=(s—i)h.

sh(s =1)h(s = 2)h...(s —k + 1) h(s =k =1)h...(s —n)h

/ =
i ) J\(n— k) (=1)" " "

Cs(s=D(s=2)..(s—k+D)(s—k-1)...(s—n)h"
- K\(n—k) (=1 "

Since w(x)=1and x =x,+sh, dx = hds -

x=a=xy=>s=0and x=b=x,=xy+nh=xy+sh=s=n.

S A :jzw(x)ﬁk (x)dszﬁk (x)dx

X0
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_ ]5 s(s—=D(s=2)...(s—k+1)(s—k—-1)....(s—n) hds

) K-y =n—* e (3.4.3)
7(0) = (=) (x = ) oo (=3, )
=sh(s—Dh(s—2)h.....(s—n)h
7 (x)=h"s(s = 1)(s = 2)(s —3).....(s —n) Where x =x, +sh
In equation (3.4.2) we have
(n+1) b
R, = / (n)jﬂ(x)w(x)dx
(n+1)! ’
f(n+1) (77) n .
=m£h Ls(s = 1)(s = 2)(s =3).....(s — 1) - hds
hn+2 (n+1) n
=(£T)!(77)_([s(s—l)(s—2) ..... (s—n)-ds .. (3.4.4)
Thus from equation (3.4.3), (3.4.4) and (3.4.2) we have
b n
I=[f(Ddx =3 4 f(x)+R,
4 k=0
P ]ﬁ s(s—=1)(s—=2)...(s—k+1)(s—k—-1)...(s—n)hds
where %% ) kl(n—k)l(=1)"*
hn+2 (n+1) n
and R, = (ZT)'(U) j s(s-D(s-2)...(s—m)ds (3.4.5)

0

From equation (3.4.5) for different values of n we get different numerical methods of integration.

Case1:n=1:Trapezoidal Rule
b
[ £ G =201 (x)+ Af (%)

= Ao f (@) + A f (b)
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G (s— 1) h
%= 01(1-0)! 3 I( ~Dds=-h" 0 2
41 1
12—15211111;'hj.sds:h-§ :%
! Y0 0
Sincen=1, h = ;aZ(b—a)andweget
jf(x)d R (R P D)
b
[f )= (b a)[f() f@r (3.4.6)

equation (3.4.6) is called Trapezoidal rule.

From equation (3.4.5) we get error in Trapezoide rule as

n |
R :;Is(s—l)dx-f"(ﬁ)
)

3
= —f—zf"(f) where & e(a,b)

C
Alternatively R = 5 /"(n) since trapezoidal rule is exact for a polynomial of degree one we

calculate C for f(x)=x?.

b
C=J-x2dx—(b a)[f( )+f(b)]
s1b
X (b-a) 2
3, 2 [ +07]
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_b3—a3 _(b—a)(a2+b2)
3 2

2 2 2,2
:(b—a){b +ab+a _a +b }
3 2

:(b;a)[%z+2ab+2a2—3a2—3b2]
_(b—a)3
6
The error
C " (b_a)3 "
Rlzaf (77):— = f (77) where ne(a,b)

Thus the trapezoidal rule for numerical integration is

(b-a)

: [f(a)+ 1 (b)]

j)‘f(x)dx:

and the error in the formula is

_(b—a)3

)

To determine the error bound we calculate maximum absolute value of R, by evaluating values

of ().

Case 2 : n =2 : Simpson’s Rule

b—a B b—a a+b
. Xy=a, Xy =at > T 5 , X, =b.

Here h =

From equation (3.4.5) we have
b
[ £ e =Jof (%) + Af () + 4 f (%)

~ (_1)2—0 2
_—01(2_0)!hj(s—1)(s—2)ds

0

o
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2
:ﬁ{(s_l)m—zf_(s—zf}
2 6 0

4 (—2)1

=27

_ﬁ_§_ﬂ}
213 2

Thus we have

b
;[f(x)dxz(b;a)[f(a)+4f(a;b)+f(b)}
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1
Which is called the Simpson’s rule or Simpson’s 3 rd rule. Since three observations are used

to derive the formula, the formula is exact for all polynomials upto order two. The error may occur for

f(x)=x.Letuscalculate C for f(x)=x>.

b 3
C:jx3dx—(b;")[a3+4(“;bj +b3}

:l(b“_a“)_(b_a)[zf +(a+b) +26°]
4 12

bt —a* _(b—a)[
4 12

2a° + a3 +2a%b +3ab* + b +25° ]

_bt-da’ _(b—a)[

= a3+a2b+ab2+b3]
4 4

b4 —-a* (b a)[(

2 +b)(a? +p?)]

=0
This shows that method is exact for polynomials of degree upto three. Let use caulculate C for

f(x)=x*.

b 4
czjx4dx—(b;“)[a4+4(“;b) +b4}

_1(ps _a5)—(b_a)[a4+l(a+b)4+b4}
5 6 4

C:é(b5—a5) (b24a)[4 +a* +4a3b + 64%b* + 4ab’ + b* + 4b*]

(1712(?)[24 b* +ab® +a*b* +a’b +a* ) 5(5614 +4a’b+6a’h’ +4ab3+5b4)]
- (bl ;g‘) [—a* —b* + 4ab® —6a°h* + 4a°b)
(b—a)(b-a)’

120
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(h—a)
120

1
Then error in Simpson’s 3 rdrule is

(b-a)

_ (iv)
k== 4'(120)f ()

Since p— g = 24 the error term

(2h)

_ (iv)
k== 24(120)f ()

32h°

_ Giv)
- (24)(120)f (n)

S 7 (n)
(3)(30)

hs iv
%f( )(77) where 7 € (a,b)

From above two cases we observe that for large value of n we get better approximation.
However for large n (n > 8,n # 9) some of 4, 's become negative and therefore higher order Newton

Cotes formulas are not commonly used.

Conclusions :

In this unit we have seen how to approximate a function or a given tabular values of function by
apolynomial. If (n + 1) observations or values of function are known we can fit a unique polynomial of
degree n. Lagrange interpolation method and Newtons divided difference formula generate the same
polynomial.

Finite difference operators and polynomial interpolation is used to calculate the derivative of a
given function. Method of undetermined coefficients can also be used to find out the derivatives of a
given function.

Methods of numerical integration are developed by approximating a function by a polynomial
and on integrating this approximating polynomials. It is shown that trapezoidal method is first order

method whereas Simpson’s one third rule is of order three.
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1.

[[ ILLUSTRATIVE EXAMPLES]]

Given f(2)=4, £(2.5)=5.5, find the linear interpolation polynomial using (i) Lagrage

interpolation (i1) Newton’s divided difference interpolation.

Answer : Here x)=2, x,=2.5, f(x))=4, f(x)=55.

()

Lagrage fundamental polynomials are given by

1) = X=X :x—2.5 0 (x) = X=Xy :x—2

Interpolating polynomial
B(x)=10,(x) f(x0)+¢,(x) f(x)

B x—2.5
~ —(0.5)

=8(x-2.5)+11(x-2)

(H)+22(55)
0.5

=3x-2
Thus f(x)= P (x)=3x-2

By Newton’s divided difference interpolation formula we have
P(x)= f(xo)-i-f[xo,xl](x—xo)

_f(xl)_f(XO)_5-5—4_£_
S o] = N—x, 252 05 °

B(x)=4+3(x-2)=3x-2

Using the data sin (0.1) =0.09983 and sin (0.2) =0.19867 find the Lagrange interpolation

polynomial. Obtain a bound on the truncation error.

Answer : Here x,=0.1, x; =0.2, f(x))=0.09983, f(x,)=0.19867.

Lagrange fundamental polynomials are given by

(x-x) x-02
(x0—x,) ~(=0.1) >

EO (X):




Interpolating polynomial
B(x)=10,(x) f(x0)+¢,(x) f(x)

=292 09983)+ 2=%1(0.19867)
—(0.1) (0.1)

=0.9884x-0.00099

The truncation error

B () =020 g

~(x-0.D(x-0.2)
- 2

(—siné)

The maximum value of |— siné

,& €[0.1,0.2] is sin (0.2)=0.19867.

Ths  E(f3x)< I(x_x‘) )z(x_xl)lo.wsm where x €[0.1,0.2]

3. In the following problems, find the maximum value of the step size 4 that can be used to

tabulate ' (x) on[a, b]using linear interpolation such that |Error| < & -

) f(x):(1+x)6, [a,b]=[0,1], £ =5%x107°-

i) f(x)=2%[a.b]=[01], g =1x107.

i) f(x)=xe", [a,p]=[1.2], £ =1x107

Answer : The truncation error in linear interpolation is given by

By (5) =5 (x=30) (v=x) ()

Jmax =|(x—x)(x—x)

w(0) = (x—x,) (x—x,)

W'(x)=(x—xl)+(x—x0)=0:>x=x0—+x1

’ x(frﬁl?; B ‘(X—xo)(x—xl )‘ oceurs at X =2 ;Lxl
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s e

(x0+x1 . j(xo +X _xj
2 0 2 !

B ( f;x)‘<83‘Mf"(f)

<&
4
2
‘El(f;x)‘S%M where M = rr<1§a§ |f"(§)|
i) For £(x)=(1+x)° £"(x)=301+x)"
max |/ "(x)] =30(2)* = 480 Thus M =480

0<x<1
B (f3x)| s§-480 =60h> <5x107°
-7 <0.0009128

ii) f(x)=2"
[1)=2%n2,  f(x)=2"(n2)°
max £ "(x)=2(n2)" = 0.960906027

0<x<1

Thus M =0.960906027

2
.-.h—-M<1><10‘5
8
-5
2o X107 0009124

0.120113253
i) f(x)zxex, f'(X)=ex+xex=(l+x)ex
f"(x)=e"+(+x)e* =(2+x)e"

comax | £"(x)] = (2+2)e® = 29.5562244

1<xL2
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2 -5
%M<lx10_5 oy X107 %8

29.5563244
- h <0.001645
4. Find the interpolaring polynomial that fits the following data. Find an approximationto 7 (x)
at 3.0.
X 0 1 2 4 5 6
f(x) 1 14 15 5 6 19

Answer :

By Langrange interpolation polynomial,

(x-D(x-2)(x-4)(x-5)(x-6) x(x-=2)(x-4)(x-5)(x-6)
(x)= D+

f=h (-D(=2)(-4)(-5)(-6) (D) (=1)(=3)(-4)(-5) (14)
+(x—0)(x—l)(x—4)(x—5)(x—6)(15)+x(x—l)(x—2)(x—5)(x—6)(5)
() (M (=2)(=3)(—4) 4(3)(2)(-D(-2)
(x-0)(x-1D(x-2)(x-4)(x-6) x(x-1D(x-2)(x-4)(x-5)
S@WEOED O+ ——eon
}%(5)::(2)(1)(—1)(—2)(—3)(1)(1)+_3(1)(—1)(—2)(—3)(14)
—240 60

.\ 3(2)(-D(=2)(=3) (15)+ 3(2)(D(=2)(=3) (s)
-48 48

3(2) (D (=1 (=3)
i -6

(6)+ 3(2) (D (=D(=2)
0 240

(19)

12 _18><14+36><5+36><5_18><6+12><19 B
240 60 48 48 60 240

10
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5. Given the following values of f(x) = |n x, find the approximate value of 7'(2.0) using linear

and quadratic interpolationand "(2.0) using quadratic interpolation. Also obtain an upper bound on

the error.
i 0 1 2
X; 2.0 2.2 2.6
f; 0.69315 0.78846 0.95551
Answer :

With linear interpolation we have

(2.2)-f(2.0)

\ _f
/'(2.0)= 22-2.0

e £1(2.0)= 0.788460—20.69315 047655

By Lagrange interpolation we have

(=n)(r=m) oy, Gmn)lamm) o Scx—xo)(x—xl) )

(xo—xl)(xo—xz) (xl_xo)(xl_xz)

f(x)zp(x)=

_ =220 =26) () g9315), X2 E=26) () ece)

(-0.2)(-0.6) (2)(-0.4)
(x-2)(x-2.2)
(0.6)(0.4) (0:95551)
Thus,
£ =P (x)= 0'3913215 [(x—22)+ (x—2.6)]- 273890, 2)1 (x-2.6)]
0955501y _9) s (x=2.2)]
0.24
F1(2.0)= P,(2.0) = 0.69315(-0.8) 0.78846(-0.6) . 0.95551(-0.2) 049619
AT 012 0.8 024
WY e gy 069315 - 0.78846 0.95551 =
f"zp"(x)= G (2) X (2)+ 22 (2) =-0.19642
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The errors associated with methods are given by,

X0

;"1 7€) Xy < E<x,

E'(x)=
Ez'(xo)=%(xo—x1)(xo—xZ)f"'(f) Xy <E<x,
E,"(x) :%(2% ! _xz)f"'(f)J“%(xo —x)(x —xz)[f(iv) (771)+f(iv) (772)}

Xo <&, 11,10, <Xy

For f(x)= |n x we have

M, = max |f'(x)|: max 1 =0.5
Xp<E<xy 2<x<2.2|1X
n 1
M, = max |f (x)|= max -—|=0.25
X9<é<xy 2<x<2.6| x
m 2
M, = max |f (x)|= max +—=0.25
X9<E<xy 2<EL2.61 x
M, = max ‘f(iv)(x)‘z max _—f =£=O.375
Xo<E<x 2<E<2.6| x 16
|E,'(2.0)| < 2 _22‘2 ‘(0.25) =0.025

|E,'(2.0)| < %I(z—z.z)(z ~2.6)/(0.25) = 0.005
|E,"(2.0)| < %Iz(z)—z.z—zﬁl-(o.zs)

+i(2—2.2)(2—2.6)[0.375+0.375]

<(0.8)(0.25) (0.12)(0.750)
< +
3 24

=0.0704
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7. A differentiation rule of the form

f'(x0)=a0f0+a1fl+a2f2 (xk=x0+khafk=f(xk))

is given. Find the values of ¢, ;, a, so that the rule is exact for f € P, . Find the error
term.
Answer :

S(x0)=aof (x0) +enf (x)+anf(x;)

=ayf (xp)+a f (xg+h)+a, f(xy+2h)

2 3
- aof (o) £ (50) A (30)+ 2 ) 2 ().
(2h)’ (2h)’

fvv(x0)+

+a, {f(x0)+(2h)f'(xo)+ 5 f'"(xo)+...1

2!

2
=(ap+o+ay) f(x))+h(ey +2a2)f'(x0)+%f"(xo)[al+4a2]

3

h
+;f"'(x0)[a1 +8a, | +.....

On comparing the coefficients of /' (x,), f'(x), /"(X) ... We get,
ay+o+a, =0, h(a+2a,)=1, a;+4a, =0.
Since the formula is exact for a polynomial of degree 2, the error is in the form £ "(&).

o +4o, =0= o =—4a,

h(a1+2a2):1:>h(—2a2):1:>a2:_Zl_h
2
Therefore, @) = —4a, = o
do,to +« =0« +E_L_0:a __i
an 0 1 2 0 h 2h o 2h'
The error will be
h3

af"'(ﬁ)(al +8a,)
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()

(ii)

(1)

(1v)

A pef2d

3! h 2h

hZ

L))

2 2
.. Error bound |E,| <%f'"(§)— d (&),

Show that

(M A=EV (Dv=E£"A (i) £ =1+A (V) g =1-A
Af (%)= f (%x1) = £ (%) ()
and  EVf(x,)=E[Vf(x)]|=E[f(x)-f(x)]=Ef (x;)-Ef ()

LEVE(x)=(x)-S () (11)
From (i) and (ii) we have A = EV .

Vi) =s(x)-SCo) (i)
(E78) ()= E7 (& (x)) = E7(f (3i00) = £ () = £7 () = E71 ()
AAETA) £(x)= (%)~ f(x) .. (ii)
From (i) and (ii) we have v = 1A .

(1+A)f(xl.):f(xl-)+Af(xi):f(xl.)+f(xi+1)—f(xl~)=f(x,~+1)=Ef(x,~)
Thus g =1+A.

(I—V)f(xl):f( ) Vf( I:f Xi-1 ] f 11 =E lf(xi)
Thus g-1 1 _A -
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Using the following data find " (6.0), error =0 (h) and /™ (6.3) error =0 (h2).

X 6.0 6.1 6.2 6.3 6.4
f () 0.1750 —0.1998 -0.2223 —-0.2422 —-0.2596
Answer :
With linear interpolation error is 0 (h)
£1(6.0) = f(6.1)-f(6.0) _~0.1998-0.1750 348
6.1-6.0 0.1
X )—2f(x. )+ f(x,_
f..(xk):f( k+l) fh(zk) f( k l)+0(h2)
Here h=0.1and x;,, =x; +h.
6.4)-21(63 6.2
 fl63) - L16D=2/ 163+ /(62)
(0.1)
—0.2596 —2(-0.2422) +(—0.2223)
= :0.25
(0.01)
.. . 1 ,
10. Calculate the n' divided difference of ; based on the points x, x|, x,, ..., X,,.
1 1
Answer : We have f[xo,xl]:f(xl)_f(xo)_ o X |
X1~ X X1~ Xp XoX1
S S O
f[xmxlaxz]:f[XI,XZ]_f[xo’XI]= A b
(xz _XO) (xz _xo) XXXy
(D"
Let f[x07x1>x2""7xk]:—.
XXXy .. X,

Then f[xO,xlg.X2a...,xk+l]: f[XDXZ,'H’XkH]_f[xo’xpxz’.“’x’C] .

Xr+1 — Xo

(-1)* (-1)*

_ NXpXsee Xp g XoXpXp.. Xy

Xjspee-X
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D (=) (<D

Hence by induction we have,

(="

I %%, X500y X, | = ————
XXXy ... X,

1
11. it f(x) = x_2 , find the divided difference f [xl,xz, x3,x4] .

1 1
2 2

fa)-f(n) _x" x*_ (q+x)(q-x)

Answer ; = = B
f[xl ,X2] X, — X Xy —X x12x22 ('XZ - xl)

_ —x (x, +x3)+x32 (x+x,)

PR R (x3—x)

B —x, (xy+x3)+ X3° (X1 + X, )+ X2, X5 — XX, X3
x220,0 07 (x3—x))

_ (x5 =3 ) (312, + x,25 + X, x3)
X%, xy (x3—x)

_ XX X5+ XX

2.2 2
X Xy X3

f[xz,x3,x4]—f[xl,x2,x3]

X4 =X

f[xl,xz,x3,x4]=
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XpX3 + XXy +X3X, XX +X)X3 + XpX3

2.2 2 2,22
Xy X3 Xy X X x5

Xy (o + X3 + XXy ) = x7 (3,00 + X, + Xy )

- D e s (x4 —x;)

(X125 + XX + X, X3, + X, X3, )
2

2.2 2
XX X537 X,

12, If £(x)=e™showthat A" £ (x) = (e —1)" &
Answer :

A (x)=fx+h)-f(x)

— ea(x+h) _ eax
_ eax (eah _ 1)

A f(x)=A[Af ()] = Ale= (e —1)]

Let  AFf(x)=(e” —l)k e™

Then  AF £(y) = A[(eah —l)k e“x]

Hence by induction A” f(x)= (e“x - l)n e
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13. The following table of values represents a polynomial of degree < 3. Locate any error in the

table of values

X 0 0.1 0.2 0.3 0.4

£ x) 2.0 211 | 228 2.39 2.56

Answer : Observe that Af, =0.11, Af, =0.17, Af, =0.11, Af; =0.17. Since there is sudden
change in value at Af,. The error is expected at x = 0.3. Let f(0.3) =2.39 + ¢ . Since the data

represents a polynomial of degree <3, A* £ =0.

x (%) Af A*f A f A*f
0 2.0 0.11 0.06 ~0.12+¢ 024-4¢
0.1 2.11 0.17 ~0.06+ ¢
0.2 2.28 0.11+ & +0.12-3¢
0.3 239+ ¢ 0.06—2¢
0.4 2.56 017 - ¢
0.24

A4f=0.24—45:0:>5=T:0.06

Thus  £(0.3)=2.39 + 0.06 = 2.45

14. Determine the step size / that can be used in the tabulation of a function f'(x), g <x<b,at

equally spaced nodal points so that the truncation error of the quadratic interpolation is less than ¢.

Answer : Let x;_;, x;, x,,, denote three consecutive equipaced points with step size 4. The truncation

error of the quadratic Lagrange interpolation is bounded by
M,
£, (f:x)| < ?max‘(x —x; ) (x—x;)(x—x., )‘

where x, , <x<x.,, and M3 = max ‘f (X)‘
i—1 i+1 a<x<b
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Then x-x,_,=x +th—x,_ =(1+t)h
X=X, =X, +th—x; =th
X=X =X +th—x, =({t-1h
Since  xe(x_,x., ).t €(-11)
)(x—xi)(x—xi,l)z(t—l)t(t+l)h3

and  (x—x;,

Define g (1)=(r—De(t+1)=1(r2-1)

Then g'(t)=3t2—1=0:>12=§ and == %

max |(x—x_ )(x—x)(x—x; )‘ = h* max |(£=1)¢(t+1)|

X1 Sx<x4 —1=t<1

= h max ‘t(tz —1)‘

—1<e<t
)
3\3

2
33

Hence the truncation error in quadratic interpolation is bounded by

Yy

=

3
‘Ez (f:x)‘SLM3

6(3v3)

e
— M, <¢
Now choose 4 such that 6(3 \/g) 3 .
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15. Find the maximum value of the uniform mesh size / that can be used to tabulate f (x) on
[a, b] using quadratic interpolation. Where £ (x) = x?¢*, [a,b] =[0,1] suchthat |error| < 5x107° .
Answer : From example 14 we see that,

o[

3

where M3 = max xzex =e
0<x<1

1
{9\/§x5x10_6}3
he| ——————

e

16. Determine the step size 4 that can be used in the tabulation of a function f(x), g <x<pb,at

equally spaced nodal points so that the truncation error of the cubic interpolation is less than & .

Answer : Letx, x|, X,, x; denote four consecutive equispaced points with step size /. The truncation

error of the cubic interpolation is bounded by

‘E3 (f;x)‘ S% max ‘(x—xo)(x—xl)(x—xz)(x—x3)‘

I xp<x<xy

and M4 = max ‘f(4) (x)‘

as<x<b

Put t:%[x_xlzxz} e x="1""2 g

Since  x€(xp,%3), fe(—g,gj




This (x—xo)(x—xl)(x—xz)(x—x3):(t+%j(z+%j(t_lj(t_ijh2

e o

To determine optimum value of g (¢), consider g'(¢)=0.

g(t)= (12 —%)(ﬂ _%)
N

= 2t(2t2 —%)
J5

g't)=0=>1=0, f=i7

o[ E6D-

. Maximum absolute value of g is obtained for ¢ 2=

9
0)=—
g() 16and

>

e
M

Hence ‘E3 (f;x)‘ < 4—:"}12(1)

Now choose % such that

1
h4M b < 24¢ Vs

17. Determine the step size that can be used in the tabulation of £ (x) = cos 2x in the interval

V4
[0, Z} at equally spaced nodal points so that the truncation error of the cubic interpolation is less than

1x1076.

Answer : We have

4
‘E3 (fo)‘S%'M4
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For f(x)=cos2x, f'(x)=-2sin2x, f"(x)=—-4cos2x, f"(x)=8sin2x.

™ (x)=16cos2x and M, = max ‘f(dr)(X)‘

osm%

= max [16cos2x|=16

Ost%

h2
Hence, —-16 <1x107°
24

1

-6 \4
h<(24><10 j
16

18.  Atableofvaluesof f(x)=e>* in[0, 1]is constructed with step size 0.05. Find the maximum

total error if cubic interpolation is to be used to interpolate in this interval.
i
Answer : |E;(f;x)|< Q'M“

For f(x)=¢*, f'(x)=3e", f"(x)=9¢, f"(x)=27¢, f™ (x)=81e".

and A44 ::nmax‘j%4)(x)

0<x<1

= max|81e3x| =8le
0<x<1

Therefore, maximum total error

4
\E3(f;x)\s(0'§:) -8le

19.  Evaluate the integral

Using (i) Composite trapezoidal rule.

(i1) Composite Simpson’s rule with 2, 4 and 8 equal subintervals.
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Answer : Let I} and Ig denote the values obtained by using Trapezoidal and Simpson’s rule respectively.

1 1
0) ForN=2, h= ) and 0, EX 1 are three nodes. We have two subintervals for trapezoidal rule

and one interval for Simpson’s 1/3 rd rule.

I =g[f(xo)+2f(xl)+f(x2)]

=%:f(o)+2f(%)+f(1)J

1+L+l :ﬂ =0.708333
2| 24

1
4 1+l

I =30 (x0)+47 (x)+ £ (32)]

=%[f(0)+4f(%)+f(1)}

=1[1+§+1} =B _0.694444
2] 36

6 3
) 1 1 1 3 i )
i) ForN=4, h= 1 and 0, 157 1 are five nodes. We have 4 subintervals for trapezoidal
) ) 1 1 3
rule and two subintervals for Simpson’srule. x, =0, X = 1 Xy = 5 X3 = 1 x4 =1.

I :g[f(xo)+2f(x1)+2f(x2)+2f(x3)+f(x4):|

:é[f(on2f(%)+2f(%)+2f(%)+f(1)}
= 0.697024
=2 (o) +47 (1) 427 (52)+47 (5)+ £ (x)]

L4 (V)2 () ss () r0]

=0.693254
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6
X5 = ,xézg, X; ==, xo=1.

8

oo | L\

1 1 3 1
FOTN:Sah:_aXOZOa‘xl:ga‘xZ: X3:§’X4:E’

8

=2 (x0)+ 207 (0)+ £ () + £ (5 )+ £ (i) + £ (55)+ £ (56)+ £ ()4 £ ()]

= el P @2 () r (V) 1 () 1 (1)1 (356) 5 (%) + £ (4)} + 1 0]

=0.694122

I =g[f(xo)+4f(x1)+2f(xz)+4f(x3)+2f(x4)+4f(xs)+2f(x6)+4f(x7)+f(x8)]

:2_14[f(0)+4f(%)+2f(%)+4f(%)+2f(%)+4f(%)+2f(%)+4f(%)+f(l)}

=0.693155.

2
x 1
20. Evaluate Ie dx using the Simpson’srule withz=1and / = 5 Find the bound on the error
0
in each case. Compare with the exact solution.

Answer : Forh=1, x, =0, x;, =1, x, =2.
h
1=§[f(x0)+4f(xl)+f(x2)]

:%[f(0)+4f(1)+f(2)]:%[eo +4e' + ]

Since for # = 1 we have one interval for Simpson’s rule, the error in the integration

n iv . (iv) _ 2
R, :_%[f( )(5)], 0<£<2, f(x)=e" and therefore £ (x)=e", ggi)‘z‘f (x)‘—e :

1
|R2| <%'€2

1
i) For 7 = 5> %o = 0,x= 0= 1, X3 = 1N= 1. We have two subintervals for Simpson’s

rule and

P2 ()41 (5) 42 (1) 47 (30)+ £ ()]
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— [ @=ar(W)r2rmrar(%)+s @]

:é[1+4\/2+2e+4e\/2+e2]

Since we have two intervals for Simpson’s rule

Ry =—§[f“’” (6)+ /(&)
where x, <& <x, and x, <&, <x,
le. 05, <land 1<&, <2.
f(x)=¢"

. (iv) 1
.o max =e
os§1s1f (681)

(@) _ 2
and Orgngé‘zf v (982) =€ and we have

i o) I P
Plerel- L fere

[[ EXERCISE ]

|R,| <

In the following problems, the values of a function £ (x) are given. Find the interpolating

polynomial that fits the data.
@) X -2 -1 0 1 3 4
f(x) 9 16 17 18 44 51

Calculate /(0.5) and £(3.1).
(i) X 1 3 4 5 7 10

7 (x) 3 31 69 131 351 1011
Calculate f(3.5).

(ii1) X 0 1 2 4 5 6
f(x) 1 14 15 5 6 19
Calculate f(5.5).
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(iv) X -1 1 4 7

f(x) -2 0 63 342
Calculate f(5.0).
v) X -1 2 4 5
7 (x) -5 13 255 625

Calculate f(3.0).

In the following problems, find the maximum value of stepsize / that can be used to tabulate

f (x) on[a, b] using linear interpolation such that |Error| < & -

O f)=1+2° [a,b]=[0,1], £ =5x107

1
@ S =5 [ab]=[12], s=1x10*

Prove the following relations.

n—1
0 LA =N, A

k=0
(i) A(f, 'gi):fiAgi +g1d;
i) A =(f+ fia) A

(iv) A(il = (&8~ fidgi) g1

i

(%) A=V =—-AV

The following data represents the function f'(x)=e*.
X 1 1.5 2.0 2.5
7 (x) 2.7183 4.4817 7.3891 12.1825

Evaluate the value of /(2.25) using Newton’s divided difference interpolation.
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In the following problems find the maximum value of the uniform mesh size / that can be using

to tabulate f (x) on [, b] using quadratic interpolation such that |Error| < & -
O =2+ [ab]=[12], £=1x107*

(ii) F(x)=e", [a,b]=[0,1], £ =1x107*-

@  f(x)=x%" [a,b]=[0,1], £=5x107°.

@)  f(x)=x*Inx, [a,b]=[510], g=1x107°.

6. In the following problems find the maximum value of uniform mesh size /4 that can be used to
tabulate f (x) on[a, b] using cubic interpolation such that |Error| < & -
0 f)=e", [ab]=[125], g=1x107*
i  f(x)=cos2x, [a,b]=[0,%}, e=1x107°.
(]]1) f(X):xexa [aab]:[laz]’ 8=5X10_5'
7. Determine «, f, 7,0 such that the relation
+b
y'(a 5 jz ay(a)+ay(b)+y"(a)+5y"(b)
is exact for polynomial of as high degree as possible.
p 1
8. Evaluate I e’ dx using the Simpson’s rule with 2=1 and 5 Find a bound on the error in each
0
case.
1 o P
0. Compute Ip= I m dx for p=0, 1 using trapezoidal and Simpson’s rules with the number
0
of points 3, 5 and 9.
T
7 cosIn (sin x) 4
10. Compute .[ sin2 x+1 * correct to 3 decimal places, using trapezoidal rule and
T
4
Simpson’srule.
1 .
sin x . . .
I1. Evaluate I (1 + j dx using trapezoidal and Simpson’s rule.
X
0
DRI IR
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UNIT - IV

NUMERICAL SOLUTION OF
DIFFERENTIAL EQUATION

Euler’s Method :

Consider the interval [a, b] and the initial value problem x'= f (z, x) with x(a) = X, (initial

point).

Divide interval [a, b] into equal sub-interval and select mesh point

t,=a+hk,k=0,1,...Nand h=

Suppose x, x', x" are all continuous. The Euler Method iteration formulais &, = x, .

S =6 +hf[tia§i]

t—x
Example 1: Solve the initial value problem x'=——/on the interval [0, 3], x(0) =1.

2
Solution : Let2=0.5, & =x(0)=1.
& =% +hf[lo=§0]
_1+(0.5) 2= i
=1+10. N This for £, =0, x;, =0.5
=0.75
0.5-0.75
& =&+ [1,6]=0.75+ O.S(Tj =0.6875 for £, =0.5,x,= 1
& =0.6875 +0.5(%) =0.765625 fort,=1,x,=1.5
& :0.765625+0.5(wj=0.9492187 fort; = 1.5,x,=2
& =O.9492187+0.5(Mj =1.2119141 for t, =2, x5 =2.5
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Now,

& =1.2119141+0.5

(2.5—1.2119141)

c=tToen =D mutiplyby L% weh
573 5 =7 multiplyby /2 wehave,

1
e% (xv+§j:e%£:>(e%x) =ée% integrate

2

:le% —26% +C=(t—2)e% +C

¢ —7_24Ce /s byinitial condition 1=0.2+C = C=3

x=t—2+3e_%

Example 2 : Solve y'=_2 4 2 with x(0) =1, withh=0.2,0.1 and 0.05 on [0, 1].

Solution : Leth=0.2

For

For

For

For

X, =X, -2htX? i=0,1,2,3,4, X, =1
i=0,1,=0, X, =1.

X(0.2)~ X, = X, —2htyx," =1

i=1,4=02, X, =1.

= X, =1-2(0.2)(0.2)(1)* =0.92

i=2,14,=04, X,=092.

= X, =0.92-2(0.2)(0.4)(0.92)" = 0.78458
i=3,4,=0.6, X;=0.78458.
— X, =0.63684

X5=0.50706
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Now for,

h=0.1

ug=1, uy =1, uy =0.98, u; =0.94158, u, =0.88839
us = 0.82525, uy=0.75715, u;=0.68835, ug=10.62202
ug=0.56011, u;,=0.50364.

Order of Euler’s Method
Lemma :

Let 4 >0, >0 andlet x,,n=0,1,..... be a sequence of non-negative numbers satisfying
the inequality

x . <U+a)x,+b (1)
na ena -1
Then x,<e“xy+b—+— . 2)
a

Proof: We have x; <(1+a)x, +b
X <(+a)x +b<(a+D[(1+a)x, +b:|+b=(1+a)2 xo+(I+a)b+b

x, <(1+a)x, +b£(a+1)[(l+a)2 x0+(1+a)b+b]+b=(l+a)3 xo+(+a) b+(1+a)b+b

Continuing in this way we see that,

xnS(1+a)nxo+bnz_l(l+a)j:(l+a)"x0+b% ........ (3)
a

j=0
From the finite geometric series formula.

From the Maclaurin expansion of ¢, wehave |4 4 < ¢%,

For a>0and thus that (1 4)" < ¢ . Substituting this into (3) gives

e —1

na
x,<e " xy+b »

Hence the result.
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Theorem : Let X be the solution to
X'= f(t,x) ....... (1)
and suppose that C = X (¢) < d for t € (1o, ).

Let & ,1=0,...., N be the Euler Method approximation to x (t,- ) )

t, —t
Where #; =1, +ih with h ==*—".

If | X ”(t)| < M forsome constant M and all € (to Ny ) and the function fin (1) is Lipschitz

continuous with constant L in the reactangle
R={(t,x)|ty <t<t;c<x<d)
Mh _
Then ‘x(ti)_fi‘gz(ewl o) (2)

Proof: Let £, =X (tl- ) — &, be the error made by Euler’s Method at the it step. From Taylor’s

theorem applied to X (¢) and (1) we have

E, = X(ti+1 ) - §i+1

=X ()R () + X E) [ &+ 18]
- E +h[X'(t,-)—f(f,-,f,-)]+%h2X"(Ti)

1
:Ei+h[f(ti)x(ti)_f(tiafi)]"‘zhz)("(fi) ......... 3)
Forsome 7, € (ti,ti +1) since y " is bounded by M and fis Linchitz continuous.

Mh?

2
M _glaery M 4)
2

2

|Ej| <|E;|+AL|X (1,)- &|+

Thus from above lemma

Mh? " —1 _ Mh (eihL _1)

|E;| <
2 hL 2L

Since E, =0 . The result now following by putting ih = ¢, —¢,,..
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Theorem : Let 0 = ggiﬂé‘ |

Then under the same hypothesis as above Theorem

(1)< 220 2 i) 1) gy )

Let & = x5+, & =§i+hf(tia§i)+5

Runge-Kutta Method
One Step Method
Yo=Y (xo )
Yirn =Vi T h¢(xiyz'a h)

The function ¢ predicts the direction that the solution will take for the point (xi , yi) if ¢

satisfying the condition

111’1’1¢( Xi» Vis ) f(x:y)

h—0

Then we get the improved solution and the method is said to be consistent.

Modified Euler Method

Instead of using Y ., as the approximationto ¥ (xl» ) we use it to locate another point near

uler

the trajections of y( ) take the Estimated slope ¢ to be the average of slope of ( X;, yi) and
(X515 VEuler ) -

Yo =Xo

M, =f (xiayi)

M, =f(xl. +h,y; +hM1)

M, +M,

Then Vi =Y;+h >

This is modified Euler method.
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a4
Example : Solve » =75 [0,3], y, =y(0)=1,h=0.5.

Solution : Letx=0, M, =—0.5, M, = [ (X, y; + hM;) =—0.125
M, +M
y1=yo+h(—1; 2j=0.84375

x=0.5, M, =-0.171875, M, =0.1210937 .

¥, =0.8310546

ifx=1 M,=0.0844727, M, =0.3133845,then y; =0.9305114
ifx=1.5 M, =0.2847443, M, =0.4635582, then y, =1.117887
ifx=2, M, =0.4412062, M, =0.5809048, then y; =1.3731148

ifx=2.5, M, =0.5634426, M, =0.6725819, then y, =1.6821209

Mid Point Method

Using Euler’s method approximate the solution at the mid point of x;, x;,, and take estimated

slope ¢ to be fat that point

h
Yo =X Mlzf(xi’yi) M2 :f(xi+5,yi+h—j
S Vi = Vi ThM,

Note that Local truncation error for one step method defined as

Ei(h):)’(xm)_y(xi)_h¢(xi=yi’h)

Question : Find the order of local truncation error for the modified Euler Method.

Answer : Assume that fhas continuous third order partial derivatives in a rectangle containing the

solution y(x).
From Taylor’s theorem.
2 3

h h
y(xl-H):y(x,- +h):y(xl-)+hy'(xi)+;y"(xl-)+?y'”(xi)+0(h4)
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W) s =t ) ) )| 0

Differentiating the differential equation y'= f'(x, y) we obtain

yn:af(axay)+af(x’y)yv:af(x’y)+f(x’y)af(x’y)
X oy ox y

w_02f(xy) f(xy) | o(0d 0 0
=SB IO s e S S e | 2 ) S ()

0 d o*
+5f(x,y)(5f(x,y)]f(xay)+f(an)ay—zf(W)'f(x’y)

2

=a—f(x y)+2 o’ f(xy) f(xy)+if(xy)~if(x y)
o oxdy” T T T

6’ > [ o 2
+ =5 (6) | f(0y) + = f ()| f(xp)
6)/ 8)}
v'(x)=f(x2)=1;
()= VL Ui 5 2
R Vit = Vi = fi+§(fiax+fi,yfi)+a[fi,xx+ f;‘,xyf;'-’_fi,yyfi

thfiet L]0 @)

M+ M,

2 :%[f(xis)’i)Jrf(xi+h’yf+hM1)]

¢(xiayz‘;h)

EIPAR——

Taylor’s Theorem for two variables
0 0
f(xayah) = f(x:y)+ha_f(x7y)+k_f(xay)
x y

+l hzif(x v)+2hk o fx y)+k2if(x y)
2 ox? ’ oxoy ’ 8y2 ’
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Apply to the slope estimate ¢ for modified Euler method we obtained.

(v =2 ot F MW 4 (0 28 11 7 2 0)

_f+ fzx+ flyf+ fzxx+ hflxyf fzyyf2 -------- (3)
h2 h2 h3 h3 h3
h¢(xi’yi’h):h]pi+7 i,x+?ﬁ,yfi+7 i,xx+7fi,xyf;'+7ﬁ,yyﬁ2 """" (4)

Subtract equation (4) from (2) we get,

1 1 1

Yiv1 — h¢( XisVis ) h3|:__ i,xx__f;,xyf;_ﬁ

2
12 6 fi’yyfi

+%fi,yfi,x +éfi,y2fi}+0(h4)_0(h3)

le; (n)| < ki® k is constant.

Provided 29 partial derivative of f is continuous.

Therefore, the local direction error of Euler modified method of order 3 in h.

Theorem : Consider the one step method
Yisr =Vt h¢(xi ) yl-h)
Let ¢ be Lipschitz continuous with consistent L in the variable x in the reactangle R.

:{(x,y):x0 Sxﬁxk;cSySd} where cﬁy(xi) and & <d for the space point
x;=0,1, .., Nthen

ERRET

Proof: & isapproximationto y;.

|J’i+1 - §i+1| =i~ [651‘ + h¢(xl-,§,~; h)]‘

Add and subtract h¢(x;,y;;h)+ y;

|yi+l _§i+1| =1Vin _I:h¢(xi’yi;h)+yi:|+|:h¢(xiﬂyi;h)+yi:|_I:é:i +h¢(xi"§i;h):”
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:‘ei (W)+y,—& +h[qﬁ(xi,yi;h)—¢(xi,§i;h)]‘
S|Ei (h)|+|yi _§i|+hH:¢(xiﬂyi;h)_¢(xi"§i;h):”
S|ei (h)|+|yi —&|+hL|y; - &|

= |e (h)|+(1+hL)|yi _§i|

From the assumption of Lipschitz continuity for ¢ and by the lemma above

[x,m_(l—i-a)x +b=x,<¢€" x0+be _1}
a

E(h) x—xo) _1)

é\<

Yo =%

Question : Show that the global truncation error made by the modified Euler Method is 0 (52).

Answer : We seen that the local truncation error is order three.

This follows from the above theorem, once we have established that

¢(xi,yi;h):%[f(x,y)+f(x+h,x+hf(x,y))]

is Lipschitz continuous. Assume that fitselfis Lipschitz continuous with constant L. we have

6 (. 313h) =9 (x, v23h)| = Bf(x n)+f(x+hy i (x, y))}

AL G e )]

2
<1 o) = £ (a1 (o + 0 (x00) = £ (w4 by 40 (5,32)
<Lyl =wales b L (o)=L 4 (50)]
S%Lfb}l _J’2|+%(Lf|yl —y2|)+%th‘f(x’yl)‘f(x%)‘

1
<L, |J’1 - yz| + Eszh |J’1 - J/2|

1
< (Lf +EhL2fj(yl —yz)
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1
Thus ¢ is Lipschitz continuous with constant L = L + > h?

Note that, similarly we can show that the midpoint method can have a global truncation error of order

two.

Example: y'=-zy,[0,0.15], h=0.05with »(0)=1

Solve by Euler modified method.

Solution : Euler Method : &, =& +hf (£,&;) =10
& =1+0.05(0x1) =1 for —0.05
& =1+0.05(-0.05x1) = 0.9975 for 0.1
& =0.9975+0.05(-0.1x0.9975) = 0.9925125 for -0.15

M, +M,

Euler Modified Yy =Y; +h

Ml =f(xiayi)
M, =0

3y 2140050+ (009)

Mid point Vis =y +hM,

h kM,
Xt Yt
2 2

)

Mzzf(

Example: Solve y'=-1y.

'

Solution : y; == (logy)'=—t

intigrating both side we have

2
logy=—t—+c
= 2

(0,0.05, 0.1, 0.15)

M, =f(xl- +h,yl.+hM1)

M, =-0.05

0.99375 ¥, =0.9923205

y, =1+0.15(-0.075) = 0.98875

jlog(y)'dy=—jtdt

2
—+c
y=e 2

= l=e“=c=0

. y=0.988813
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Exercise :

1) Solve y'=—2x)2,ify (0)=1,h=0.2,0.1,0.05 on [0, 1]
2) Solve y'=x%+ 2, if y (0)=0, h=0.5 on [0, 2].

Runge Kutta Methods

The most general Runge-Kutta Method involving two slope calculations is
Yo =Xo Mlzf(xl.,yi) MZ:f(xi+ah,yi+hﬂM1)

Vs =i +h(wmM, +w,M,) where a €[0,1].
1
Note : 1. This gives the modified Euler Method when o = =1 and W} =w, = ) and the midpoint

1
method when & =ﬂ=§ and w, =0, w, =1.
2. Not every choice of « and g will lead to a method that has order three local truncation error,

0,
however indeed with y; = y(x;), fi = f(x.3;), fix = % and so forth we have from Taylor’s

Theorem by sequence of computation (Similar to that used above).

g (h) =y, _J’i_h[wlfi +w2f(xi+0£h,y,- +ﬂhf,)]

=yl.'h+%yi " [ wilfy e wh(f,+ S+ £, B0f) |+ 0 (1)

= (1=w, —wy ) I, +(%—aw2jfi’xh2 +(%—ﬂw2jfi’yfih2 +0(#?)

Thus since f(x,y) is arbitrary for €; tobe ((5?) we must have

1

W1+W2:1 aWZZE ﬂM}zzE
1 1
=p=a " 0 M=l

It can be shown that no choice of ¢ can lead to an order of local truncation error greater than
three. Put

1 1 h
Vi =Y +h|:(1—sz1 +ZM2:| =) +E|:(20{—1)M1+M2:|

Note : Every Runge-Kutta Method should reduce to a quadrature formula when f*(x, y) is independent

of y with w’s as weights and ¢ ’s as abscissas.
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1
If a Zzweget

hM, )

h
Vi =Y +hM, M, = f(x,y;) and M, =f(x,-+5,y,-+ >

h
Which is the Euler method with spacing > i.e. is midpoint quadrature rule when £ (x,y) is

independent of y.

For ¢ =1 we get

h
Vit :yi+E[M1 + M, ] M= (%), My = f(x +h,y; +hM)
Which is Eular modified method.

Which reduces to the trapezoidal rule when f (x, y) independent of y.

Notethat the general form of a Runge-Rutta Method involving n slope calculations is

Yo =%y, M, :f(xi’y[)’ M, :f(xi+a2h’yi+ﬂ2hM1)

n—1
.... M, =f£xl. +a,h,y; +h2ﬂanjJ

J=1

n
Vit =Vt hz w,M;
j=1
2. Thus a three slope Runge-Kutta Method has the form
Yo =% My=f(x,5;), My =[x +axh,y; + By Mih)
M; = f(xi +ash, y; + By M h+ ﬁ32M2h)
Yisr = Vi +h(wimy +wyny +wyms )
By expanding the local truncation error in a manner similar to that used in above
1
Borwy +( By + Bay ) ws = )

1 1 1
@ Brywr + (,331 +ﬂ32)W3 :g, By 1w :g, O W, + a3W; :5
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=> b=y, Byt+fn=a;
:>W1+W2+W3:1

1

Baiw; +(ﬂ31 +ﬂ32)w3 = 5

1 1
ﬂ212W2 +(ﬂ31 + [ )2 Wi :5, BBy :g
e (W) =y, -y _h{(wlfi +wy f (x;)+ash, y, +,321hfi)

+W3f(xi +azh, y; + By b +ﬂ32M2h)}

2
s % v "= A+ wah (fi+ frsoah+ £ Baihfi) |+

+wsh (fl +fixash+ [, (ﬂ31hﬁ + Bohf (xi +ayh, y; + o I )))}

12
= hf; + T(ﬁx + fiyJi ) —hwy f; —wyhf; — W2h2fi,xa2 - thZIBZlfifi,y -
—wihf; — W3h2a3fi,x —fiy [:Bmhfi + Byh (fl + fixh+ fi B )]
1 1
= (I_Wl ) _W3)hfi +(5‘ wa, — W3a3jh2f;',x +h’ [E_ w1 =W (,331 + B3 ))ﬁyﬁ +

h3 1 h3 1
+7(§—azﬁz1wz — a3 ( By +ﬂ32)w3jf;',xyfi +?(§—a22w2 _a32W3jfi,xx +

B ’ n (1
+?(§—ﬂ212W2 ~(Bs1+ By2) W3jfi,yyfi2 +?(g_a2ﬁ3lw3]fi,xfi,y +

+h (% = B Baiws j fi,yzfi
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1 1
2% b P P
a; B B 1 -1 2 - (1)
1 4 1
Moo s o 6
1 3 3 2 3 4

0522521321, a3:Z, B =0, ﬁ3zzz, leg, szg, W3:§ ..(2)
= B o =2 B =0 W= =0 W= 3

253721, BT 2, By =0, W 4,W2— M7y ..(3)

Runge Kutta Method for Four Slopes
Order four method
h hM
Yo =Xo> Mlzf(xiay[)a MZZf(xi+5ayi+le
h hM
M3:f(xi+5+yi+ 22j My = f(x;,+h,y,+hMy)
h

yi+1:yi+g(Ml+2M2+2M3+M4)
Define
Mlzf(xi’yi)
M, =f(xi+a2h’yi+ﬂ21hM1)
M = f(x; +ash,y, + By hM, + B3, h M) (1)
M, =f(xi +ayh, y; + Py hM, + PiyhM +,B43hM3)
where the ----- y, O3, Oy, Bors Pars Bros Bars Baas Paz, and wi, wy, wy, w, are

chosen to make y,,, closerto y(x;,,).
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Expanding as before (and matches coefticients of powers of h) we obtain the following system

of equation

ay = Por, a3 =Py + Byys @y = Pur + Bar + B3

Wit Wyt wytwy =1, Wty T Was Wy =

1 1
2 2 2
Wyl + Wil + Wy = 3 w30, By + Wy (0‘4ﬂ42 + a3ﬁ’43) = s

3 3 3 1 2 2 2 1
WHly" + W33 + Wy R w3ty By + Wy (a2 Pty ﬂ43)—6

1

1
W30 03 3, + Wy (052/342 + 3843 ) Qy = rE W) B3 Bz = N

The equations of the above form occur in all Runge-Kutta Methods. We have 11 equations in
13 unknowns.

The method (2) will correspond to Simpson’s rule of integration.

If &, = a3 and w, = wy the solution of equations above is given by

1 1
ﬂ41 =0= /5’42’/343 =1
Thus the equation in (1) and (2) gives above.
) 1
To solve by ---- choice @, = 5 B3 =0.
1 ]1
0(2 1821 2 2
1 1
as B B, P 0 P
ay Ba B P 1 0 0 1
2 2 2 1
w W, Wy W, 3 3 3 5
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1 2 1
a2:§:ﬁ’21, a3:§, ,331:_5,,332:1, 0!4=1,/341:1,,342:—1,,343=1,

y'="2" [0, 3] h=05  y,=1
Answer :
Case 11=05 M, =05 M,=-03125 M, =—-03359375 M, =-0.1660156
if x=0 3 =1+0.08333(=0.5-2x0.3125 - 2x0.3359 — 0.1660156)
~ 0.8364258

if x=05  M,;=0.1682119 M, =-0.0221862 M, =-0.0404396 M, =0.091897
y, =0.8196285

if x=1 M, =0.0901857 M, =02039125 M, =0.1896966 M, =0.2927615
y; =0.9171423

if x=1.5 M, =0.2914288 M, =0.3800002 M, =0.3689288 M, =0.44919
4 =1.1036826

if x=2 M, =0.4481587 M, =0.5171388 M, =0.508516 M, =0.571029
ys =1.3595575

if x=2.5 M, =0.5702212 M, =0.623943 M, =0.6172283 M, =0.6659141
Ve =1.6694308

Case2:h=1y,=1

if x=0 M, =-0.5 M, =-0.125 M, =-0.21875 M, =0.10975
¥, =0.8203125

if x=1 M, =0.0898439 M, =0.3173828 M4 =0.260498 M, =0.4595947
vy, =1.1045125
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if x=2 M, =0.4477437
y; =1.670186

Case3: h=15 y,=1
if x=0 M, =-0.5

¥, =0.8745117
if x=1.5 M, =0.3127441

¥, =1.621685
Cased:h=3y,=1
if x=0 M,=-05

v =1.8203125

Exercise :

M, =0.5858078 M, =0.5512918 M, =0.61209

M, =-0.0625 M, =-0.1015625 M, =0.3261718

M, =0.5704651 M, =0.4738197 M, =0.7073793

M, =0.625 M;=-0.21875 M, =1.328125

) y'=5(x=1y,y(0)=5,[0,2,h=0.5, 02, 0.1

2)  y'=-202»(0)=1,[0,1],h=02,0.1,0.05

3) y'=x*+32,»(0)=0,[0,2],h=0.5

Example :
h=025, y,=1
¥, =0.8974915 ¥, =0.8364037 v; =0.8128696 v, =0.8195840

(7,") ys =0.9121021

(¥s") vy, =1.3595168

(75") ys =1.1036408

(»,') ys =1.6693928

x=0 M, =-0.5 M, =-0.40625 M;=-0.4121084 M, =-0.3134863

x=0.25 M, =-0.375 M, =-0.2378082 M, =-0.2463827 M, =-0.1679479

Find, x=0.5
x=0.75
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x=1.5
x=1.7
x=2

5

x=2.25,and

x=2.5

Systems of Differential Equations

dx
I t, s
7 f(tx,y)

dy
- = ta 5
o =8(txy)

This can be written as,

x'(0) = f(t,x(0), y(0))
y'(t) = g(t,x(t),y(t))

Example :

dx
—=x+2
dr 7
dy
—=3x+2
dt Y

Solution to the LV.Pis

x(t) =4e" +2¢7!

y(t)= 6e* —2¢7"

x(0)=6

y(0)=4

The Runge-Kutta formulas of order 4 are

4
X1 = Xg "‘g(fl +21, +2f3+f4)

4
Vier1 = Vk +g(81 +2g,+12g; +g4)

(1)
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where

=f(tk9xkayk) & =g(fkaxka)’k)
h h
HL=f l‘k+ ,k+ flayk+2g1 2=8 tk+ ,k+ flayk+2g1
h h
Li=f tk+ Xt fzayk+2g2 g83=8 tk+ X T fzayk+2g2
f( +h xk+hf3>yk+hg3) g( +h xk+hf3>yk+hg3)

Example : Solve

x'=x+2y x(0)=6 [0,0.2] h=0.02
y'=3x+2y y(0)=4

Solution :
fi=/1(0,6,4)=6+2x4=14 g, =2(0,8,4)=26
xo+§f1:6.14 y0+§g1=4.26
£, =1(0.01,6.14,4.26) =14.66 2, =g(0.01,6.14,4.26) = 26.94
X +§f2 =6.1466 Yo +§f2 =4.2694

= £(0.01,6.1466,4.2694) =14.6854 g, = g(0.01,6.1466,4.2694) = 26.9786
Xy + hfy =6.293708 o +hgs =4.539572
£, = £(0.02,6.293708,4.539572) = 15.372852
g4 = 2(0.02,6.293708,4.539572) = 27.96028

X = 6+%(14+2x14 66+2x14.6854+15.372852) = 6.29354551

V= 4+&(26+2x26 94 +2x26.9786 +27.960268) = 4.5393249
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kot h Lo f Ja g g g3 84 Xy Yk
0 o0 - - - - - - - - 6 4
1 002 14 14.66 14.6854 15.372852 26 2694 269786 27.960268 6.2935 4.8393
2 004 15.3721 27.9591 6.6150  5.11948
3 006 6.968525  5.74396
4 008 735474 641653
5 01 7.7769 7.1412
6 0.12 8.2381 7.9226
7 014 8.7414 8.7653
8 0.16 9.290209 9.6745
9 018 9.888271 10.6560
10 02 10.53962 11.715780
Exercise :
1) Solvethe system x'=2x+3y, y'=2x+ y withinitial condition x(0)=-2.7, y(0)=2.8
over the interval [0, 1]use h=0.05.
2) Solve the system x'=3x—y, y'=4x—y withinitial condition x(0)=0.2, y(0)=0.5
over the interval [0, 2] use h=0.05.
3) Solve the system x'=x-4y, y'=x+y with initial condition x(0)=2, y(0)=3
over the interval [0, 2] use h=0.05.
4) Solve the system x'=y—4x, y'=x+y with initial condition x(0)=1, y(0)=1

over the interval [0, 1.2] use h=0.05.

X/
%

K/
0’0
K/
) X
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