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Preface

The Shivaji University, Kolhapur has established the Distance and Online Education

Centre for external students from the year 2022-23, with the goal that, those students

who are not able to complete their studies regularly, due to unavoidable circumstances,

they must be involved in the main stream by appearing externally. The centre is trying

hard to provide notes to those aspirants by entrusting the task to experts in the

subjects to prepare the Self Instructional Material (SIM). Today we are extremely happy

to present a book on Numerical  Analysis for M. Sc. Mathematics students as SIM

prepared by us. The SIM is prepared strictly according to syllabus NEP 2020 and we

hope that the exposition of the material in the book will meet the needs of all students.

This book has grown from the lectures we deliver in the Department of Mathematics

at Shivaji University, Kolhapur. The book is based on the curriculum recommended for

M. Sc. Mathematics at Shivaji University, Kolhapur.

This book has four units. Unit 1  provides an introduction to error analysis and

methods to estimate roots of polynomial and Transcendental equations. This unit

deals with direct and iterative method for finding the roots of transcendentel and

polynomial equations. In unit 2, the direct and iterative methods for the solution of a

system of linear algebraic equations are discussed. The error analysis and convergence

of iterative methods are also discussed. Various methods for finding eigenvalues and

corresponding eigen vectors are explained. Unit 3 gives the numerical methods of

differentiation and integration. Lagrange's interpolation and Newton's  divided difference

formula is derived that approximates a function by a polynomial of given degree.

Uniqueness of interpolating polymial is proved. Error analysis for Lagvage's interpolation

is carried out. Various methods for numerical differentiation and numerical integration

are discussed along with their error analysis. Unit 4 deals with numerical solutions of

ordinary differential Equations. Various methods used to determine the numerical

solutions of ordinary differential Equations are discussed. Error analysis is for all the

methods is given.

All the units are followed by solved problems. A good number of examples have

been solved at the end of each unit to enable the student to understand the concepts

described in the text. Good number of excercises are given at the end of each unit.

We hope that the content of the SIM will be helpful for the students having their

education in distance mode.

Editor
(v)
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Each Unit begins with the section objectives -

Objectives are directive and indicative of :

1. what has been presented in the unit and

2. what is expected from you

3. what you are expected to know pertaining to the specific unit,

once you have completed working on the unit.

The exercises at the end of each unit are not to be submitted to

us for evaluation. They have been provided to you as study tools to

keep you in the right track as you study the unit.

Dear Students

The SIM is simply a supporting material for the study of this paper.

It is also advised to see the new syllabus 2022-23 and study the

reference books & other related material for the detailed study of the

paper.
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INTRODUCTION

Numerical analysis involves the study, development and analysis of algorithms for obtaining

numerical solutions to various mathematical problems. Frequently numerical analysis is called the

mathematics of scientific computing. Numerical analysis is the development and study of procedures

for solving problems with computer. The art and science of preparing and solving scientific and engineering

problems have undergone considerable changes due to the available digital computing systems.

Digital computers are the principal means of calculation in numerical analysis and consequently

it is very important to understand how they operate. A computer has a finite word length and so only a

fixed number of digits are stored and used during computation.

1. Errors

Even in storing an exact decimal number in its converted form in the computer memory, an

error is introduced. This error is machine dependent. Also at the end of computation of aparticular

problem, the final result in the computer should be converted into a form understandable to the user.

Therefore an additional error is committed at this stage too. This error is called local round off error.

Thus we define

Error = True Value – Computed Value

In order to determine the accuracy of an approximate solution, errors are measured in different

ways.

Definition 2 :  Absolute error = | error |

Definition 3 :  Relative error =  
Error

True Value

Definition 4 : Round Off Error :  is the quantity R which must be added to the finite representation

of a computed number in order to make it the true representation of that number.

When a number N is written in floating point form with t digits, say, in base 10 as,

 1 2 30 .... 10e
tN d d d d  , 1 0d 
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We say that the number N has t significant digits. For example, 0.3 agrees with 
1

3
 to one

significant digit. The round off error for this representation will be 
1

0.3
3
 .

All the errors defined above are machine errors and can be minimized by using computing aids

of higher precision.

Methematically, in numerical analysis we usually come across two types of errors.

(i) Inherent Errors

It is that quantity of error which is present in the statement of the problem itself, before finding

its solution. It arises due to the simplified assumptions made in the mathematical modelling of a problem.

It can also arise when the data is obtained from certain physical measurements of the parameters of the

problem.

(ii) Truncation Errors

These are errors caused by using approximate formulae in computations. e.g. when a function

( )f x is evaluated from an infinite series, if we use only first few terms of the series to compute value of

function ( )f x , we get an approximate answer. Here, the error is due to truncating the series.

Suppose ( ) cosf x x . Then

2 4 6 2

( ) 1 ..... ( 1) ....
2! 4! 6! (2 )!

n
nx x x x

f x
n

      

If we retain the first n terms, the truncation error (TE) is

2 2 2 4 2 6
1 2 3( 1) ( 1) ( 1) ......

(2 2)! (2 4)! (2 6)!

n n n
n n nx x x

TE
n n n

  
        

  

The study of this type of error is associated with the problem of convergence. Some special

terminology is used to describe the rapidity with which a sequence converges.

Big O and Little o Notation :

Let  nx and  n  be two different sequences.

The equation  n nx o    (we say nx is “little oh” of n )

lim 0n

n n

x
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To avoid division by zero, we say that

 n nx o   if n n nx    and 0n   as n .

We write  n nx o   (we say nx  is “big oh” of n ) if there is a constant C and number 0n

such that n nx C   when 0n n .

These two notations give a coarse method of comparing two sequences. They are frequently

used when both sequences converge to 0. If 0nx  , 0n   and  n nx o  , then nx  converges

to 0 at least as rapidly as n  does. If 0nx  , 0n   and  n nx o  then nx  converges to 0

more rapidly than n  does.

Definition : The truncation error is the quantity T which must be added to the true representation of

the quantity in order that the result is exactly equal to the quantity we are seeking to generate.

2. Stability in Numerical Analysis

A number of mathematical problems have solutions that are quite sensitive to small computational

errors, for example round off error. To deal with this phenomenon, we introduce the concept of stability.

A numerical method for solving mathematical problem is considered stable if the sensitivity of the

numerical answer to the data is no greater than in the original mathematical problem.

A numerical method is said to be stable if the effect of any single fixed round off error is

bounded.

3. Problem Solving Using Computers

In order to solve a given problem using computer the major steps involved are -

(i) Choosing an appropriate numerical method

(ii) Designing an algorithm

(iii) Programming

(iv) Computer Execution.

In Unit1 to 4 we discuss various numerical methods (and their analysis) for solving transcendental

and polynomial equations, system of linear equations, differential equations, numerical  methods available

to interpolate and approximate functions, integration and evaluation of eigen values and eigen vectors

of symmetric matrices.
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TRANSCENDENTAL  AND  POLYNOMIAL  EQUATIONS

UNIT  -  I

Introduction :

One of the basic problems in science and engineering is the computation of roots of an equation

( ) 0f x  . The equation ( ) 0f x   is called algebraic or polynomial equation if it is purely a polynomial

in x. It is called a transcendental equation if ( )f x contains trignometric, exponential or logarithmic

functions.

Definition 1.0.2 :

A number   is a solution of ( ) 0f x   if  ( ) 0f   . Such   is called root or zero of ( ) 0f x  .

Geometrically, a root of ( ) 0f x  is the value of x at which the graph of ( )y f x  intersects

the x-axis.

Definition 1.0.2 :

If we can write  ( ) ( )
m

f x x g x   where ( )g x  is bounded and ( ) 0g    then   is

called a multiple root of multiplicity m.  In this case        ( 1)' " .... 0mf f f f        .

and   0mf    for m = 1 the root   is called simple root.

The following are the basic properties of polynomial equation.

(i) Every polynomial equation of nth degree, where n is positive integer has exactly n roots.

(ii) Complex roots occur in pairs i.e. if a + ib is a root of ( ) 0f x  , so is a – ib.

(iii) If x = a is a root of ( ) 0f x  , a polynomial of degree n then    ( )f x x a g x   where

 g x  is a polynomial of degree (n – 1).

(iv) Descartes Rule of Signs :

The number of positive roots of a polynomial equation ( ) 0f x   with real coefficients cannot

exceed the number of changes in sign of the coefficients in the polynomial ( ) 0f x  . Similarly, the

number of negative roots of   0f x  cannot exceed the number of changes in the sign of the coefficients
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of ( ) 0f x  . For example, consider  3 2( ) 3 4 5 0f x x x x     . The coefficients of this equation

are (1, –3, 4, –5). As there are three changes in sign, the given equation will have at the most three

positive roots.

(v) Intermediate Value Property :

If ( )f x  is a real valued continuous function in the closed interval a x b   then a function

takes each value between ( )f a  and ( )f b . In particular if ( )f a  and ( )f b have opposite signs, then

the graph of a function ( )y f x  crosses the x-axis at least once. i.e. ( ) 0f x   has at least one root

between a and b.

i.e.   0f   ,  a b 

There are generally two types of methods used to find roots of ( ) 0f x  .

(i) Direct Methods :

These methods give the exact value of the roots in a finite number of steps. Further the methods

give all the roots at the same time. These methods require no knowledge of the initial approximation of

a root of the equation ( ) 0f x  .

e.g. solutions of polynomial equation are known for polynomials of degree upto cubic. i.e.

for 0 1 0a x a  ,  
1

0

a
x

a
 

for 2
0 1 2 0a x a x a   , 

2
1 1 0 2

0

4

2

a a a a
x

a

  


(ii) Interrative Methods

These methods are based on the idea of successive approximations i.e. starting with one or

more initial approximations to the root, we obtain a sequence of approximate solutions which converges

to a root of given equation. In the next section we describe some numerical methods for the solution of

equation ( ) 0f x  .
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1.2 Bisection Method

This method is due to Bolzano.

Step 1 :  Choose 0x  and 1x  such  that    0 1 0f x f x   suppose 0 1x x .

(By intermediate value principle root lies between 0x  and 1x )

Define  0 0 1,I x x .

Step 2 :  The desired root is approximately defined by 0 1
2 2

x x
x


 .

If  2 0f x   then 2x  is the desired root of ( ) 0f x  .

If  2 0f x  , calculate    0 2f x f x .

If    0 2 0f x f x   then define  1 0 2,I x x .

Otherwise define  1 2 1,I x x  and    2 1 0f x f x  .

Step 3 :  Define 0 1I I  and go to step 1. Thus at each iteration we either find the desired root to the

required accuracy or narrow the length of interval to half of the length of interval at previous step. This

process is continued to determine a smaller and smaller interval within which the desired root lies. If he

permissible error is  , then the approximate no. of iterations (n) required may be determined from the

relation

1 0

2n

x x 


Note : The no. of iterations required to achieve required accuracy depends upon the initial interval 0I .

If the length of 0I  is sufficiently small we will reach at the solution in less no. of iterations.

EXAMPLES ....................................................................................................

1.2.1 :  Find a real root of the equation,  3
1( ) 1 0f x x x   

Answer :

Step 1 :  Since (1) 1 0f     and (2) 5 0f   , the root lies between 1 and 2.

 i.e.    0 0 1, 1, 2I x x  .

Step 2 :  0 1
2 1.5

2

x x
x


  ,    

2 1.5f x f 
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1.3  Iteration Methods Based on First Degree Equation

Although the bisection method is easy to compute it is not very efficient. For most functions we

can improve the speed at which the root is approach through different schemes. Almost every functions

can be approximated by a straight line over a small interval. We begin from a value that is near to a

root. This initial value can be obtained by looking at the graph of a function or from few iterations of

bisection method.

Iteration methods are obtained by approximating ( )f x  by a polynomial of degree one in the

neighbourhood of root. Thus

1
0 1

0

( ) 0
a

f x a x a x
a

      , 0 0a  ...... (1.3.1.)

The parameters 0a  and 1a  are to be determined by prescribing two approximate conditions

on ( )f x  and / or  its derivatives.

1.3.1 Secant Method

Suppose 1kx   and kx  are two approximations to the root, then we determine 0a  and 1a  by

using linear  approximation.

  0 1k kf x a x a 

 1 0 1 1k kf x a x a  

On solving above two equations simultaneously for 0a  and 1a  we get

   1
0

1

k k

k k

f x f x
a

x x







   and   
   1 1

1
1

k k k k

k k

x f x x f x
a

x x
 








from equation (1.3.1) we get, the next approximate root

   
   

1 1
1

1

k k k k
k

k k

x f x x f x
x

f x f x
 









which may be written as

1
1

1

k k
k k k

k k

x x
x x f

f f






 

 , k = 1, 2, 3, ....    .... (1.3.2)

where  k kf f x  and  1 1k kf f x  .

This is called the Secant or the Chord Method.
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Geometrically, in this method we choose two points on the curve and plot the line passing

through these two points. The point of intersection of the straight line with the x-axis is the next

approximation to the root (Fig. 1.1).

x0 x1 x3

x2

Fig. 1.1

1.3.2 Regula Falsi Method

This is the oldest method for finding the real root of an equation ( ) 0f x   and closely resembles

bisection method. This method is also called as method of false position. In this method we choose two

points 0x  and 1x  such that 0( )f x  and 1( )f x  are of opposite signs. Since the graph of ( )y f x

crosses the x-axis between these two points, a root must lie in between these points. Now the equation

of the Chord joining the two points   0 0,x f x ,   1 1,x f x  is

       1 0
0 0

1 0

f x f x
y f x x x

x x

 
    

The point of intersection of the chord with the x-axis is given by putting y = 0. Thus we get,

       1 0
0 0

1 0

f x f x
f x x x

x x


  



On solving above equation for x we obtain

 
     0

0 1 0
1 0

f x
x x x x

f x f x
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Hence the second approximation to the root of ( ) 0f x   is given by

 
     0

2 0 1 0
1 0

f x
x x x x

f x f x
  

 .... (1.3.2.1)

If now  2f x  and  0f x  are of opposite signs then the root lies between 0x  and 2x  and we

replace 1x  by 2x  in (1.3.2.1) and obtain the next approximation. Otherwise we replace 0x  by 2x  and

generate next approximation. The procedure is repeated till the root is obtained to the desired accuracy.

The repeated application of this procedure generates a sequence.

Suppose the approximate solution after (k – 1) iterations is denoted by kx . Then the sequence

 kx approaches to the root   as k   i.e.   0f   .

1.3.3 Newton Raahson Method

This method is generally used to improve the result obtained by one of the previous methods.

Firstly we derive this method by using linear approximation. Suppose kx  is a point in the neighbourhood

of the root of ( ) 0f x  . If we approximate ( )f x  by a polynomial of degree one we get

0 1( )f x a x a  .

  0 1k kf x a x a  

and   0' kf x a ... (1.3.3.1)

0x

3x 2x 1x

  0 0,x f x

  2 2,x f x

  1 1,x f x
First iteration
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where a prime denotes differentiation with respect to x. On solving for as and 1a  we get

 0 ' ka f x  and     1 'k k ka f x f x x 

From equation (1.3.1) we get,

   
 

'

'
k k k

k

f x f x x
x

f x


 

    
 
 '

k
k

k

f x
x

f x
 

Thus we get the next approximate root as

 
 1 '

k
k k

k

f x
x x

f x   ,  k = 0, 1, 2, 3, ... ... (13.3.2)

This method is called the Newton Raphson method. The method (1.3.3.2) may also be obtained

directly from Secant method (1.3.2.2) by taking the limit 1k kx x  . In the limiting process i.e. when

1k kx x   the chord passing through the points   ,k kx f x  and   1 1,k kx f x   converges to the

tangent at point   ,k kx f x . Thus in this case the problem of finding a root of equation ( ) 0f x   is

equivalent to finding the point of inteersection of the tangent to the curve ( )y f x  at the point

  ,k kx f x  with the x-axis. The Newton Raphson method requires two values  kf x  and  ' kf x .

The method is applicable only when  ' 0kf x   i.e. root is a simple root.

The method can also be derived by using Taylor series representation. Let 0x  be an approximate

root of ( ) 0f x   and let 1 0x x h   be the correct root so that  1 0f x  . Expanding

   1 0f x f x h   by Taylor series about 0x , we obtain

         
2

1 0 0 0 0' " .... 0
h

f x f x h f x hf x f x
x

      

Neglecting the second and higher order derivatives we have

   0 0' 0f x hf x 

i.e.
 
 

0

0'

f x
h

f x
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Therefore
 
 

0
1 0 0

0'

f x
x x h x

f x
   

is the better approximation than 0x .

Successive approximations are given by 2x , 3x , ... where

 
 1 '

n
n n

n

f x
x x

f x    , n = 0, 1, 2, 3, ...

This is same as the formula (1.3.3.2).

1.4 Rate of Convergence

All the methods described in section 1.3 are iterative methods and repeatative application of

these methods generate a sequence of approximate solutions. Convergence of this sequence is an

important subject that we will discuss now.

1.4.1 Orders of Convergence

Some special terminology is used todescribe the rapidity with which a sequence convergences.

Let  nx  be a sequence of real numbers tending to a limit x*. We say tha the rate of convergence is at

least linear if there is a constant c < 1 and an integer N such that

1 * *n nx x C x x     n N ... (1.4.1.1)

The convergence is atleast quadratri C if there are a constant C (not necessary less tnhan 1)

and an integer N such that

2
1 * *n nx x C x x     n N ... (1.4.1.2)

In general if there are positive constants C, largest   and an integer N such that

1 * *n nx x C x x


     n N ... (1.4.1.3)

We say that the rate of convergence is atleast  . The constant C is called the asymptotic error

constant.

If kx  is an approximate root of ( ) 0f x   and   is a solution of equation ( ) 0f x   then

k kx    is the error in the solution. If the sequence 0k   as k  , we say that iterative

methods discussed in section 1.3 are convergent. We assume that   is a simple root of ( ) 0f x   so

that  ' 0f   .
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1.4.2 Rate of convergence of Secant Method

Suppose   is a simple root of ( ) 0f x   i.e.   0f   .

k kx    is an error. On substituting k kx     in (13.2.2) we get,

   
   

1
1

1

k k k
k k

k k

f

f f

   
 

   





 
 

  

Expanding  kf    and  1kf      in Taylor series about the root   and observing that

  0f    we get,

     

       

2

1

1
2 2

1 1

' " ...
2!

1
' " ...

2

k
k k k

k k

k k k k

f f

f f

    
 

     





 

 
     

   

        

     

       

2

1

1 1

' " ...
2!

1
' " ...

2

k
k k k

k

k k k k

f f

f f
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1
" "1

... 1 ...
2! ' 2 '
k

k k k k
f f

f f

 
   

 




   

         
   

         
 
     

 
2

1
" "1

... 1 ...
2! ' 2 '
k

k k k k
f f

f f

 
   

 
   

         
   

2 31
1 ...

1
x x x

x
       


            
 

 
 

2

1
" "1

...
2 ' 2! '

k
k k k k k

f f

f f

 
    

 
     


   
 

2
2

1
"1

...
2 'k k k

f

f


  



 
    

  

         
 
 

 2 3
1 1

"1
0

2 'k k k k k
f

f
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Thus we write 1 1k k kC      where  
 

"1

2 '

f
C

f




  and we ignore higher powers of k .

The equation 1 1k k kC     ... (1.4.2.1)

is called error equation.

To determine the order of converence discussed in section 1.4.1, we have to determine the

number   such that 1k kA      where A  and   are to be determined. If we replace k by k –1 we

get,

1k kA   

i.e.
1 1

1k kA   
 

Substituting the values of 1k   and 1k   in equation (1.4.2.1) we get,

1 1

k k kA C A    


 

1 11 1
k kCA   

  


Comparing the powers of k  on both sides of above equation we get,

1
1


 

which is quadratic equation in   and we get  1
1 5

2
   . The highest value of

 1
1 5

2
    and we find that the rate of convergence of secant method is 1.618   and

1A C


 .

1.4.3 Rate of Convergence of Regula Falsi Method

If the function ( )f x  in the equation ( ) 0f x   is convex in the interval  0 1,x x  that contains

the root, then one of the points 0x  or 1x  is always fixed and the other point varies with k. If the point

0x  is fixed, then the function ( )f x  is approximated by the straight line passing through the points

  0 0,x f x  and   ,k kx f x , k = 1, 2, 3,....
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Suppose   is simple root of ( ) 0f x   i.e.   0f    and k kx    is an error in

approximate solution kx . Since the point   0 0,x f x  is fixed we can write

  
   

0 0
1 0

0

k
k

k

f x x x
x x

f x f x


 


   
   

0 0
1 0

0

k
k

k

f

f f

     
   

   

         
  

     

       

2
0

0 0

1 0 2 2
0

0

' " ...
2!

' " ... ' " ...
2! 2!

k

k
k

k

f f

f f f f

    
 

      


 
      

   
          

           

     
 

     
 

2
0

0 0

0
0

0

"
' ...

2! '

"
' 1 ...

2! '

k

k
k

f
f

f

f
f

f

   



   


 
   

  
 

   
 

 
 

 
 

2
0 0

0 0
" "

... 1 ...
2! ' 2! '

kf f

f f

   
 

 
   

        
   

   
 

 
 

2
0 0 0" "

...
2! ' 2! '
k f f

f f

    
 


  

 
 

 2 3
0 0

"1
0 ,

2 ' k k k
f

f


    


 

Since 0 0x    is the error in the first approximation and is independent of k, we can write

 
  0

"1

2 '

f
C

f







and we get error equation

1k kC  

Here C is asymptotic error constant and by equation (1.4.1.2), we observe that the Regular

Falsi method has at least linear rate of convergence.
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1.4.4 Rate of Convergence of Newton Raphson Method

Suppose   is a simple root of ( ) 0f x   i.e.   0f    but  ' 0f   . Suppose k kx  

is an error in the approximate solution kx . On substituting k kx     in equation (1.3.3.2) and

expanding  kf    and  ' kf    in Taylor series about the point   and using the fact that

  0f    and  ' 0f   , we obtain

 
   

     

2

1 2

' " ....
2!

' " '" ....
2!

k
k

k k
k

k

f f

f f f
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1
" "

.... 1 ....
2! ' '
k

k k k k
f f

f f

 
   

 




   

        
   

       
 
 

 
 

2 " "
.... 1 ....

2! ' '
k

k k k
f f

f f

 
  

 
   

        
   

       
 
 

 
 

 
 

22 3
2" " "

....
2! ' ' 2! '
k k

k k k
f f f

f f f

   
  

  
 

       
 

        
 
 

 
2

3"
0

2! '
k

k
f

f

 


 

On neglecting terms containing 3
k  and higher powers of k  we get an error equation

2
1k kC    where 

 
 

"1

2 '

f
C

f






Thus by equation (1.4.1.2) we obsrve that Newton Raphson method has second order

convergence.

Note :  If the root   of ( ) 0f x   is a root of multiplicity two or more then the rate of convergence for

Newton Raphson method is one.
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1.5 Interation Methods

To describe this method for finding the roots of equation

( ) 0f x  ... (1.5.1)

We rewrite this equation in the form

( )x x ... (1.5.2)

Let 0x  be an approximate value of the desired root  . Substituting it for x on the right hand

side of equation (1.5.2) we obtain the first approximation

 1 0x x

The successive approximations are then given by

 2 1x x

 3 2x x

-----------

 1n nx x 

Thus we get a sequence of approximate solutions  kx . The convergence of this sequence

depends on the suitable choice of function  x  and initial approximation 0x . The function  x  is

called an iteration function. If the function   is continuous and the sequence  nx  converges to x*

then

 1n nx x 

     1* lim  *n n n
n n n

x x Lt x Lt x x  
  

    

Thus x* is a root of equation (1.5.2) if the iteration function   is continuous function.

The following theorem gives a necessary and sufficient condition for the convergence of

sequence nx .

Theorem :  If  x  is a continuous function in some interval [ a, b] that contains the root and

 ' 1x C    in this interval, then for every choice of  0 ,x a b , the sequence  kx  determined

from

 1k kx x  , k = 0, 1, 2, 3, ....
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Converges to the root   of  x x .

Proof :  Since   is a root of equation  x x ,

    ... (1.5.3)

 1k kx x  ... (1.5.4)

From equation (1.5.3) and (1.5.4) we get,

   1k kx x      ,  k = 0, 1, 2, 3, ...

Using the mean value theorem, we get

  1 'k k kx x       ,k kL x 

where  , kL x  represents a line segment joining   and kx .

Similarly, we obtain

  1 1'k k kx x        1 1,k kL x  

  1 2 2'k k kx x         2 2,k kL x  

-------------------------------

  1 0 0'x x       0 0,L x 

Since each  ,i a b  ,  ' 1i C     and   1
1 0

k
kx C x 
  

Thus, 1
1 0

k
k C 
 

Since C < 1, the right hand side of above inequality goes to zero as k becomes large and it

follows that the sequence of approximations  kx . Converges to the root   if C < 1.

Note :  The root obtained by this method is unique. Suppose 1  and 2  are two distinct roots of

equation (1.5.2). i.e.  1 1    and  2 2   .

Then we get

   1 2 1 2       

  1 2'    

    1 2 1 ' 0      
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But,  ' 1C     1 ' 0    1 2 0   

and therefore 1 2  , hence the root is unique.

In general the speed of convergence depends on the value of C; the smaller the value of C, the

faster would be the convergence. Therefore, the speed of convergence dependent upon the choice of

 x . There are many ways of rewriting ( ) 0f x   in the form  x x . For example the equation

3 2( ) 1 0f x x x    can be expressed as

  1
2

11 ( )x x x   (say)

 
1

3 2
21 ( )x x x   (say)

 
1

2 3
31 ( )x x x   (say)

 2 3
41x x x x x     (say)

We have to choose that function  
i x  for which  ' 1i x   . Since (0) 1f    and (1) 1f  ,

we know that root lies between 0 and 1.

  2
4 ' 1 2 3 1x x x     for   0,1x

     
1

3 22
2

1
' 1 3

2
x x x


  

 
1

2 3 23
1

2
x x


   as 1x 

Observe that the functions 2 , 3 , 4  are not the expected choices of iteration function, as

 ' 1i x    for i = 2, 3, 4 in the interval [ 0, 1 ].

If we choose     1
21x x    then    

3
2

1
' 1

2
x x   

and    
3

2
1

' 1 1
2

x x     0,1x 

 
0 1

1
max ' 0.17678 1

2 8x
x

 
  

and the iteration method  1k kx x   converges to the root as  ' 1x  .
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1.6 Polynomial Equations

Polynomial functions are of special importance. They are everywhere continuous, they are

smooth, their derivatives are also continuous and smooth and they are readily evaluated. Descarte’s

rule of signs predict the number of positive roots. Polynomials are particularly well adapted to computers

because the only mathematical operations they require for evaluation are addition, subtraction and

multiplication.

To determine the roots of polynomial equation it is necessary to have the following information

(i) The exact number of real and complex roots along with their multiplicity.

(ii) The interval in which each real root lies.

By fundamental theorem of algebra we know that a polynomial of degree n has exactly n

roots. Decarte’s rule of signs gives only upper limit of no. of + ve and – ve real roots. This rule does not

give the exact number of positive and negative real roots. The exact number of real roots of a polynomial

can be found by Sturms theorem.

Let ( )f x  be a polynomial of degree n. Let 1( )f x  represent  its first order derivative. The

remainder of ( )f x divided by 1( )f x  taken with the reverse sign is denoted by 2 ( )f x . Let 3( )f x

denotes the remainder of 1( )f x  divided by 2 ( )f x  with the reverse sign. Continue this process till we

arrive at a constant. We thus obtain a sequence of functions

1 2( ), ( ), ( ),...., ( )kf x f x f x f x

This sequence is called Sturm sequence.

Sturm Theorem :  The number of real roots of the equation ( ) 0f x   on [ a, b] equals the difference

between the number of changes of sign in the Sturm sequence at  x = a and x = b, provided that

( ) 0f a  , ( ) 0f b  .

Since a polynomial of degree n has exactly n roots, the number of complex roots equals ( n -

number of real roots), where a real root of multiplicity r is counted r times.

If x1, x2, x3, ...., xn are real roots of ( )f x  then

     0 1 2 3( ) ... nf x a x x x x x x x x    

Complex roots occur in pair. If x1, x2 are complex roots then   1 2x x x x   is a polynomial

of degree two with real co-efficients and in this case

    2
0 3( ) ... nf x a x px q x x x x    
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Thus it is obvious that the methods of finding roots of polynomial equation should include the

determination of either linear factor  x p or quadratic factor 2x px q  .

In this section two methods are presented. Birge Vieta method is used to determine the linear

factor  x p  whereas Bairstow method is used to determine the quadratic factor 2x px q  .

1.6.1 Birge-Vieta Method

This method is used to determine real root of polynomial equation

1 1
0 1 2 1( ) ..... 0n n n

n n nP x a x a x a x a x a 
       ... (1.6.1.1)

If P is a root of polynomial ( )nP x  then  x p  is factor of polynomial ( )nP x . Suppose p is an

approximate root of ( )nP x . If we divide ( )nP x  by a  factor  x p  then we get a quotient 1nQ   a

polynomial of  degree (n – 1) and a remainder. The remainder R depends on choice of p. i.e. if we

change the value of p, R will get change. Birge Vieta method gives a procedure to make R zero.

Suppose p is an approximate root of ( )nP x .

  1( ) ( )n nP x x p Q x R   ... (1.6.1.2)

where 1 2 3
1 0 1 3 2 1( ) ....n n n

n n nQ x b x b x b x b x b  
        .... (1.6.1.3)

a polynomial of degree (n – 1) and R is remainder.

The coefficients in polynomial 1nQ   i.e. ib and remainder R are functions of p. Birge Vieta

method gives a procedure to determine p such that ( ) 0R p  .

  1( ) ( ) ( ) ( )n nP p p p Q p R p R p    ... (1.6.1.4)

( ) 0R p 

Equation (1.6.1.4) is the equation in variable p and any iterative method discussed in section

1.3 can be used to determine the root p. Application of Newton Raphson method discussed in section

1.3.3 for equation (1.6.1.4) gives

 
 1 '

n k
k k

n k

P p
p p

P p   ... (1.6.1.5)

For a polynomial equation, the computation of  nP  and 'nP  can be obtained with the help of

synthetic division. On comparing the coefficients of like powers of x on both sides of equation (1.6.1.2)

and using equations (1.6.1.1) and (1.6.1.3) we get,

  1 2 1 2
0 1 2 1 0 1 1..... .....n n n n n

n n na x a x a x a x a x p b x b x b R   
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Thus

0 0 0 0a b b a  

1 1 0 1 1 0a b pp b a pb    

2 2 1 2 2 1a b pp b a pb    



1 1k k k k k ka b pb b a pb     



1 1n n n na R pb R a pb     

In general

1k k kb a pb   , k = 1, 2, 3, .... ,n ... (1.6.1.6)

with 0 0b a  and nb R .

From equation (1.6.1.4) we have

( )n nP p R b  ... (1.6.1.7)

To determine '( )nP p , differentiate (1.6.1.6) with respected p.

1
1

k k
k

db db
b p

dp dp


  ... (1.6.1.8)

Equation (1.6.1.8) can be written as

1 1 2k k kC b pC   

where 1
k

k
db

C
dp  ,  k = 1, 2, 3, ...., n

Above equation can also be represented by

1k k kC b pC   , k = 1, 2, , n – 1 ... (1.6.1.9)

and  1
0 1 0 0

db d
C a pb b

dp dp
   

(Since 0 0b a  and 0a  is independent of p, differentiation of 0b  with respect to p is zero).
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On differentiating (1.6.1.7) with respect to p we get

1
( )n n

n
dP p dbdR

C
dp dp dp              ... (1.6.1.10)

By substituting the values of ( )nP p  and '( )nP p  from equation (1.6.1.7) and (1.6.1.10) in

equation (1.6.1.5) we get

1
1

n
k k

n

b
p p

C


  , k = 0, 1, 2, ....           .... (1.6.1.11)

where 0p  is initial approximation of factor  x p .

The method (1.6.1.11) is called the Birge Vieta Method.

The calculations of the coefficients kb  and kC  are carried out by using synthetic division.

p 0a 1a 2a 3a ... 2na  1na  na

0pb 1pb 2pb ... 3npb  2npb  1npb 

p 0a 1b 2b 3b ... 2nb  1nb  ( )n nb R P p 

0pC 1pC 2pC ... 3npC  2npC 

0C 1C 2C 3C ... 2nC  1
( )n

n
dP pdR

C
dp dp  

Note :  If the polynomial ( )nP x  do not contain the term kx , write 0ka  .

Once p is calculate with desired accuracy then repeat the procedure for 1( )nQ x  to determine

second factor of ( )nP x . The continuous application of Birge-Vieta method produces all real roots.

1.6.2 Bairstow Method

This method is used to extract quadratic factor from polynomial ( )nP x , which  may give a pair

of complex roots or pair of real roots. If we divide the polynomial ( )nP x  defined by equation (1.6.1.1)

by the quadratic factor 2x px q   then the quotient is a polynomial of degree  (n – 2) and a remainder

is a polynomial of degree one .

Thus  2
1( ) ( )n nP x x px q Q x Rx S     ... (1.6.2.1)

where 2 3 4
2 0 1 2 3 2( ) ...n n n

n n nQ x b x b x b x b x b  
        .... (1.6.2.2)
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The coefficient 0b , 1b , 2b , ... 3nb  , 2nb  , R  and S are functions of p and q. 2x px q   is

a factor of ( )nP x , if

   , , 0R p q S p q  .... (1.6.2.3)

Suppose  0 0,p q  is an initial approximation for  equation (1.6.2.3) and  0 0,p p q q   

is the true solution of equation (1.6.2.3). Then

   0 0 0 0, , 0
R R

R p p q q R p q p q
p q

 
         

 

   0 0 0 0, , 0
S S

S p p q q S p q p q
p q

 
         

 

On solving above equations simultaneously for p  and q  we get

q q

p q q p

RS SR
p

R S R S


  


,  p p

p q q p

R S RS
q

R S R S


  


... (1.6.2.4)

where pR , qR , pS , qS   are partial derivatives of R and S with respect to p and q respectively

evaluated at  0 0,p q . Functions R and S are also evaluated at  0 0,p q .

Thus to determine the true solution it is necessary to calculate  p  and q . The increaments

p  and q  are known in terms of  R, S, pR , qR , pS , qS  evaluated at initial approximation  0 0,p q .

These functions R, S and their partial derivatives are obtained by comparing the coefficients of equal

powers of x in equation (1.6.2.1). From equation (1.6.1.1) and (1.6.2.1) we get

0 0 0 0:nx a b b a  

1
1 1 0 1 1 0:nx a b pb b a pb     

2
2 2 1 0 2 2 1 0:nx a b pb qb b a pb b       

 

1 2 1 2:n k
k k k k k k k kx a b pb qb b a pb qb

         

 

1 2 3 1 2 3: n n n n n nx a R pb qb R a pb qb           

0
2 2: n n n nx a S qb S a qb     
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In general we write

1 2k k k kb a pb qb    , k = 1, 2, 3, ..., n .... (1.6.2.5)

where 0 0b a  and 1 0b  .

From last two equations we get

1nR b   and 1n nS b pb   ... (1.6.2.6)

The partial derivatives pR , qR , pS , qS   can be determined by differentiating (1.6.2.5) with

respect to p and q. From equation (1.6.2.5) we get,

1 2
1

k k k
k

b b b
b p q

p p p
 


  

   
   ;  

0 1 0
b b

p p
 

 
  .... (1.6.2.7)

1 2
2

k k k
k

b b b
p b q

q q q
 


  

   
   ;  

0 1 0
b b

q q
 

 
  .... (1.6.2.8)

Substitution 1
k

k
b

C
p 


 

 , k = 1, 2, 3, ..., n  converts equation (1.6.2.7) into

1 1 2 3k k k kC b pC qC      .... (1.6.2.9)

If we write 2
k

k
b

C
q


 

  then equation (1.6.2.8) becomes

2 2 3 4k k k kC b pC qC                .... (1.6.2.10)

From equation (1.6.2.9) and (1.6.2.10) we get a recurrence relation

1 2k k k kC b pC qC    , k = 1, 2, 3, ...., n –1

where 1 0C   and  1
0 1 0 0

b
C a pb b

p p

 
     

 

(Since 1a  and 0 0b a  are independent of p and q)

From equation (1.6.2.6), (1.6.2.7) we get

1
2

n
p n

bR
R C

p p





   
 

1
1 1 1 2

n n
p n n n n

b b
S b p b C pC

p p


   
 

     
 

From equation (1.6.2.6) and (16.2.8) we get
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1
3

n
q n

bR
R C

q q





   
 

1
2 3

n n
q n n

b bS
S p C pC

q q q


 
 

     
  

On substituting the above values of R, S, pR , qR , pS , qS   in equation (1.6.2.4) and using

equation (1.6.2.6) we get,

    
     

1 2 3 1 3

2 2 3 3 1 1 2

n n n n n n

n n n n n n n

b C pC b pb C
p

C C pC C b C pC
    

      

    
  

      

       
3 1 2

2
2 3 1 1

n n n n

n n n n

b C b C

C C C b
  

   


 

 

and
      

     
2 1 1 1 1 2

2 2 3 3 1 1 2

n n n n n n n

n n n n n n n

C b pb b b C pC
q

C C pC C b C pC
     

      

    
  

      

      
 

 
1 1 1 2
2

2 3 1 1

n n n n n

n n n n

b C b b C

C C C b
   

   

 
 

 

The improved values of p and q are now

1 0p p p    and  1 0q q q  

Repeat the procedure by replacing the initial approximation  0 0,p q by  1 1,p q , till we get

the required accuracy of p and q.

For computing 'kb s  and 'kC s  we use the following representation

p 0a 1a 2a ... 2na  1na  na

q 0pb 1pb ... 3npb  2npb  1npb 

0qb ... 4nqb  3nqb  2nqb 

p 0b 1b 2b ... 2nb  1nb  nb

q 0pC 1pC ... 3npC  2npC 

0qC ... 4nqC  3nqC 

0C 1C 2C ... 2nC  1nC 
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When p and q are obtained to the desired accuracy the polynomial 2 2

( )
( ) n

n
P x

Q x
x px q

 
   is

obtained from the synthetic division procedure. The next quadratic factor of 2nQ   (and hence of

( )nP x ) is obtained by applying Bairstow method to 2 ( )nQ x .

1. Obtain a root, correct to three decimal places for each of the following equations using the

bisection method

(a) 3 1 0x x   (b) 3 2 7 0x x x   

(c) 3 2 5 0x x   (d) 1 0xxe  

Answer (a) : 3( ) 1 0f x x x   

Since (1) 1f    and (2) 8 2 1 5f     , (1) (2) 0f f  . Therefore root lies between

1 and 2. Take 0
1 2 3

1.5
2 2

x


   .

 
3

0
3 3

1 0.875 0
2 2

f x
          
   

(1) 1f   ,  
3

0.875
2

f
   
 

. 
3

(1) 0
2

f f
   
 

. We therefore conclude that root lies between

1 and 
3

2
.

0
1

3
11 2 1.25

2 2

x
x


   ;       3

1.25 1.25 1.25 1 0.2968 0f      

Root lies between 1.25 and 1.5 (    0 1 0f x f x  )

0 1
2

1.5 1.25
1.375

2 2

x x
x

 
   ;  2 0.224609375 0f x  

Put 0 2 1.375x x 

0 1
3

1.375 1.25
1.3125

2 2

x x
x

 
   ;  3 0.051513671 0f x   

Put 1 1.3125x 

ILLUSTRATIVE  EXAMPLES
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0 1
4

1.375 1.3125
1.34375

2 2

x x
x

 
   ,  4 0.082611083 0f x  

Put 0 4 1.34375x x 

0 1
5

1.34375 1.3125
1.328125

2 2

x x
x

 
   ;  5 0.0145... 0f x  

0 5 1.328125x x  

0 1
6

1.328125 1.3125
1.3203125

2 2

x x
x

 
   ,  6 0.018710613 0f x   

1 6 1.3203125x x 

0 1
7

1.328125 1.3203125
1.32421875

2 2

x x
x

 
   ,  7 0.002127... 0f x   

1 7 1.32421875x x 

0 1
8

1.328125 1.32421875
1.326171875

2 2

x x
x

 
   ,  8 0.00620... 0f x   

1 8 1.326171875x x 

0 1
9

1.328125 1326171875
1.327158438

2 2

x x
x

 
   ,  9 0.01038... 0f x  

0 1.327148438x 

0 1
10

1.327148438 1.326171875
1.326660157

2 2

x x
x

 
   ,  10 0.00829... 0f x  

0 1.326660157x 

0 1
11

1.326660157 1.326171875
1.326416016

2 2

x x
x

 
   ,  11 0.00725... 0f x  

0 1.326416016x 

0 1
12

1.326416016 1.326171875
1.326293946

2 2

x x
x

 
  

4
11 12 1.326416016 1.326293946 1.22 10x x     

Therefore root is correct upto three decimal places.

Thus x = 1.326293946 is a root of 3 1 0x x    which is correct upto three decimal places.
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Answer (b) :    3 2 7 0f x x x x    

       3 2
2 2 2 2 7 8 4 2 7 1 0f               

       3 2
3 3 3 3 7 27 9 3 7 14 0f                

Root lies between – 2 and – 3.

Let 0 2x   , 1 3x   ,  0 1 0f x   ,   1 14 0f x    .

0 1
2 2.5

2

x x
x


   ,  2 4.875 0f x   

Put 1 2 2.5x x  

0 1
3

2 2.5
2.25

2 2

x x
x

  
    ,  2.25 1.578 0f    

Put 1 3 2.25x x  

0 1
4

2 2.25
2.125

2 2

x x
x

  
    ,   4 0.205078... 0f x   

Put 1 4 2.125x x  

0 1
5

2 2.125
2.0625

2 2

x x
x

  
    ,  5 0.417724609 0f x  

Put 0 5 2.0625x x  

0 1
6

2.0625 2.125
2.09375

2 2

x x
x

  
    ,   6 0.11148... 0f x  

Put 0 6 2.09375x x  

0 1
7

2.09375 2.125
2.109375

2 2

x x
x

  
    ,  7 0.0454... 0f x   

1 7 2.109375x x  

0 1
8

2.09375 2.109375
2.1015625

2 2

x x
x

  
    ,  8 0.0333... 0f x  

Put 0 8 2.1015625x x  

0 1
9

2.1015625 2.109375
2.10546875

2 2

x x
x

  
    ,  9 0.00601... 0f x   

1 9 2.10546875x x  
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0 1
10

2.1015625 2.10546875
2.103516

2 2

x x
x

  
    ,  10 0.0136... 0f x  

0 10 2.103516x x  

0 1
11

2.103516 2.10546875
2.104492

2 2

x x
x

  
    ,   4 0.0038... 0f x  

0 11 2.104492x x  

0 1
12

2.104492 2.10546875
2.104980375

2 2

x x
x

  
   

4
11 12 2.104492 2.104980375 4.88 10x x      

  Root correct upto three decimal paces is 12 2.104980375x   .

Answer (c) :   3 2 5 0f x x x   

  32 2 4 5 1 0f       ,  3 27 6 5 16 0f     

   2 3 0f f 

  Root lies between 2 and 3.

0 2x  , 1 3x  ,  0 1 0f x    ,  1 16 0f x  

0 1
2 2.5

2

x x
x


  ,    2 5.62 0f x  

Put 1 2 2.5x x 

0 1
3

2 2.5
2.125

2 2

x x
x

 
   ,  3 0.3457 0f x  

Put 1 3 2.125x x 

0 1
4

2 2.125
2.0625

2 2

x x
x

 
   ,  4 0.3513 0f x   

Put 0 2.0625x 

0 1
5

2.0625 2.125
2.09375

2 2

x x
x

 
   ,  5 0.0089 0f x   

Put 0 2.09375x 

0 1
6

2.09375 2.125
2.109385

2 2

x x
x

 
   ,  6 0.1668 0f x  
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Put 1 6 2.10938x x 

0 1
7

2.09375 2.10938
2.101565

2 2

x x
x

 
   ,  7 0.07856 0f x  

Put 1 7 2.101565x x 

0 1
8

2.09375 2.101565
2.09766

2 2

x x
x

 
   ,  8 0.034... 0f x  

Put 1 8 2.09766x x 

0 1
9

2.09375 2.09766
2.09570

2 2

x x
x

 
   ,  9 0.01286... 0f x  

Put 1 9 2.09570x x 

0 1
10

2.09375 2.09870
2.09473

2 2

x x
x

 
   ,  10 0.00195 0f x  

Put 1 10 2.09473x x 

0 1
11

2.09375 2.09473
2.09424

2 2

x x
x

 
  

4
10 11 2.09473 2.09424 4.9 10x x     

Root is correct upto three decimal places and 11 2.09424x   is root of ( ) 0f x  .

Answer (d) :  0 0 1 1 0f      ,  1 1 1.718 0f e   

0 0x  , 1 1x  ,  0 1 0f x    ,  1 1.718 0f x  

Root lies between 0 and 1.

0 1
2 0.5

2

x x
x


  ,  0.5 0.1756 0f   

Put 0 0.5x 

0 1
3

0.5 1
0.75

2 2

x x
x

 
   ,  0.75 0.5877... 0f  

Put 1 0.75x 

0 1
4

0.5 0.75
0.625

2 2

x x
x

 
   ,  4 0.1676... 0f x  
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Put 1 4 0.625x x 

0 1
5

0.5 0.625
0.5625

2 2

x x
x

 
   ,  5 0.01278... 0f x   

Put 0 5 0.5625x x 

0 1
6

0.5625 0.625
0.59375

2 2

x x
x

 
   ,   6 0.07514... 0f x  

Put 1 0.59375x 

0 1
7

0.5625 0.59375
0.578125

2 2

x x
x

 
   ,  7 0.0306... 0f x  

Put 1 0.578125x 

0 1
8

0.5625 0.578125
0.5703125

2 2

x x
x

 
   ,  8 0.008779... 0f x  

Put 1 0.5703125x 

0 1
9

0.5625 0.5703125
0.56640625

2 2

x x
x

 
   ,  9 0.002... 0f x   

Put 0 0.56640625x 

0 1
10

0.56640625 0.5703125
0.56836

2 2

x x
x

 
   ,  10 0.0033... 0f x  

Put 1 0.56836x 

0 1
11

0.56640625 0.56836
0.56738

2 2

x x
x

 
   ,  11 0.0006... 0f x  

Put 1 0.56738x 

0 1
12

0.56640625 0.56738
0.566893

2 2

x x
x

 
   ,   12 0.0006... 0f x   

Put 0 0.566893x 

0 1
13

0.566893 0.56738
0.5671365

2 2

x x
x

 
  

4
12 13 0.566893 0.5671365 2.4 10x x     

The required root is 0.5671365 which is correct upto 3 decimal places.
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2. A real root of following functions lies in the interval (0, 1). Perform four iterations of secant

method to obtain the root.

(a) 3 5 1 0x x   (b) cos 0xx xe  (c) 1 0xxe  

Answer (a) :    3 5 1 0f x x x   

Here 0 0x  , 1 1x  .  0 1f x  ,  1 3f x   .

By Secant method (Chord method)

     1
1

1

k k
k k k

k k

x x
x x f x

f x f x






  



For k = 1, we have

   
 

2
1 0

1 3 0.25
3 1

x


    
  ;  2 0.234375f x  

For k = 2, we have

     2 1
3 2 2

2 1

x x
x x f x

f x f x


  



        
 0.25 1

0.25 0.234375
0.234375 3


   

  

     = 0.186441,   3 0.074276f x 

For k = 3, we have

     3 2
4 3 3

3 2

x x
x x f x

f x f x


  



     
 0.186441 0.25

0.186441 0.074276
0.074276 0.234375


  

 

     =  0.201736,    4 0.00047f x  

For k = 4, we have

     4 3
5 4 4

4 3

x x
x x f x

f x f x


  



        
 0.201736 0.186441

0.201736 0.00047
0.00047 0.074276


   

 

      =  0.201640



33

Thus after four iterations approximate root is 0.20164.

Answer (b) :   ( ) cos 0xf x x xe  

By Secant method

     1
1

1

k k
k k k

k k

x x
x x f x

f x f x






  



Here 0 0x  , 1 1x  ,  0 1f x  ,  1 2.177979523f x   ,

For k = 1, we have

     1 0
2 1 1

1 0

x x
x x f x

f x f x


  



       
 1 0

1 2.177979523
2.177979523 1


   

 

      = 0.3146653378,    2 0.519871175f x 

For k = 2, we have

     2 1
3 2 2

2 1

x x
x x f x

f x f x


  



      
 0.3146653378 1

0.3146653378 0.519871175
0.519871175 2.177979523


  

 

     = 0.4467281466,   3 0.203544710f x 

For k = 3, we have

     3 2
4 3 3

3 2

x x
x x f x

f x f x


  



     
0.4467281466 0.3146653378

0.4467281466 0.20354471
0.203544710 0.519871175


  



     =  0.5317058606,    4 0.0950824f x 

For k = 4, we have

     4 3
5 4 4

4 3

x x
x x f x

f x f x
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0.5317058606 0.4467281466

0.5317058606 0.0950824
0.0950824 0.203544710


  



      = 0.606200724

After four iterations approximate root is 0.606200724.

Answer (c) :  ( ) 1xf x xe 

By Secant method

     1
1

1

k k
k k k

k k

x x
x x f x

f x f x






  



Here 0 0x  , 1 1x  ,  0 1f x   ,  1 1.718281828f x  .

For k = 1,

     1 0
2 1 1

1 0

x x
x x f x

f x f x


  



      
 1 0

1 1.718281828
1.718281828 1


  

 

     = 0036787944,    2 0.468536395f x  

For k = 2,

     2 1
3 2 2

2 1

x x
x x f x

f x f x


  



        
 0.36787944 1

0.36787944 0.468536395
0.468536395 1.718281828


   

 

     = 0.503314365,    3 0.167419994f x  

For k = 3,

     3 2
4 3 3

3 2

x x
x x f x

f x f x


  



    
0.503314365 0.3146653378

0.503314365 0.20354471
0.203544710 0.519871175


  



    = 0.624703233,     4 0.166752984f x 



35

For k = 4,

     4 3
5 4 4

4 3

x x
x x f x

f x f x


  



      0.624703233 0.503314365
0.624703233 0.166752984

0.166752984 0.167419994


  



      = 0.564129945,    5 0.008306022475f x  

The approximate root of ( ) 1 0xf x xe    is 0.564129945.

3.  A real root of following functions lies in the internal (0, 1). Perform four iterations of Regula falsi

method to obtain the approximate root.

(a) 3 5 1 0x x   (b) cos 0xx xe  (c)  1 0xxe  

Answer (a) :  3( ) 5 1 0f x x x   

We have 0 0x  , 1 1x  ,   0 1f x  ,  1 3f x  

Since    0 1 0f x f x  , root lies between 0 and 1.

By Regula falsi method,

     1
1

1

k k
k k k

k k

x x
x x f x

f x f x






  



For k = 1,

     1 0
2 1 1

1 0

x x
x x f x

f x f x


  



     =  0.25,    2 0.234375f x  

Since    0 2 0f x f x  , root lies between 0x  and 2x .

Put 1 0 0x x 

For k = 2,

     2 1
3 2 2

2 1

x x
x x f x

f x f x


  





36

      0.25 0
0.25 0.234375

0.234375 1


   

 

     = 0.202532,    3 0.004352f x  

Since    0 3 0f x f x  , root lies between 0x  and 3x .

Put 2 0 0x x 

For k = 3,

     3 2
4 3 3

3 2

x x
x x f x

f x f x


  



      0.202532 0
0.202532 0.004352

0.004352 1


   

 

     = 0.201654,   4 0.00007f x  

Since    0 4 0f x f x  , root lies between 0x  and 4x .

Put 3 0 0x x  .

For k = 4,

     4 3
5 4 4

4 3

x x
x x f x

f x f x


  



      0.201654 0
0.201654 0.00007

0.00007 1


   

 

     = 0.201640

5
5 4 0.201640 0.201654 0.000014 1.4 10x x      

The root x = 0.201640 is correct upto 4 decimal places.

Answer (b) :  ( ) cos 0xf x x xe   .

We have 0 0x  , 1 1x  ,  0 1f x  ,   1 2.177979523f x   .

Since    0 1 0f x f x  , root lies between 0 and 1.
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For k = 1,

     1 0
2 1 1

1 0

x x
x x f x

f x f x


  



     = 0.3146653378,   2 0.519871175f x 

Since    1 2 0f x f x  , root lies between 1x  and 2x .

For k = 2,

     2 1
3 2 2

2 1

x x
x x f x

f x f x


  



     
0.3146653378 1

0.3146653378 0.519871175
0.519871175 2.177979523


  



     = 0.4467281466,   3 0.203544710f x 

Since    1 3 0f x f x  , root lies between 1x  and 3x .

Put 2 1x x  then for k = 3,

     3 2
4 3 3

3 2

x x
x x f x

f x f x


  



      0.4467281466 1
0.4467281466 0.203544710

0.203544710 2.177979523


  



     = 0.4940153366,   4 0.0708023f x 

Since    1 4 0f x f x  , root lies between 1x  and 4x .

Put 3 1x x  then for k = 4,

     4 3
5 4 4

4 3

x x
x x f x

f x f x


  



      0.49401533 1
0.4940153366 0.0708023

0.0708023 2.177979523


  



     = 0.5099461404

The approximate rooy after four iteration is 0.5099461404.
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Answer (c) : ( ) 1 0xf x xe  

We have 0 0x  , 1 1x  ,  0 1f x   ,  1 1.718281828f x  .

Since    0 1 0f x f x  , root lies between 0x  and 1x .

By Rehula falsi method

     1
1

1

k k
k k k

k k

x x
x x f x

f x f x






  



For k = 1,

     1 0
2 1 1

1 0

x x
x x f x

f x f x


  



      1 0
1 1.718281828

1.718281828 1


  



     = 0.36787944,    2 0.468536395f x  

Since    1 2 0f x f x  , root lies between 1x  and 2x .

For k = 2,

     2 1
3 2 2

2 1

x x
x x f x

f x f x


  



      0.36787944 1
0.36787944 0.46853695

0.46853695 1.718281828


   

 

      =  0.503314365,   3 0.167419994f x  

Since    1 3 0f x f x  , root lies between 1x  and 3x .

Put 2 1x x  then for k = 3,.

     3 2
4 3 3

3 2

x x
x x f x

f x f x


  



      0.503314365 1
0.503314365 0.167419994

0.167419994 1.718281828


   

 

     = 0.547412061,   4 0.053648664f x  

Since    1 4 0f x f x  , root lies between 1x  and 4x .
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Put 3 1x x  then for k = 4, we have

     4 3
5 4 4

4 3

x x
x x f x

f x f x


  



      0.547412061 1
0.547412061 0.053648664

0.053648664 1.718281828


   

 

     = 0.561115046

The approximate root after four iterations is 0.561115046.

4. (a)  Perform four iterations of the Newton Raphson method to find the smallest positive root of

the equation 3( ) 5 1 0f x x x    .

(b) Apply Newton Raphson method to determine a root of the equation ( ) cos 0xf x x xe   ,

correct upto thnree decimal places.

(c) Perform four iterations on Newton-Raphson method to obtain approximate value of  1
377

starting with initial approximation 0 2x  .

(d) To get the convergent Newton-Raphson method, show that the initial approximation 0x  for

finding 
1

N
, where N is positive integer, must satisfy 0

2
0 x

N
  .

(e) Perform four iterations of Newton Raphson method to find approximate root of  ( ) 1xf x xe  .

Answer (a) :  The smallest positive root of equation 3( ) 5 1 0f x x x     lies between 0 and 1.

Let initial approximation 0 0.5x  .

In Newton Raphson method 
 
 1 '

k
k k

k

f x
x x

f x   .

3( ) 5 1f x x x    and 2'( ) 3 5f x x 

For k = 0,
 
 

0
1 0

0'

f x
x x

f x
 

    
 
 
0.5

0.5 0.176470588
' 0.5

f

f
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For k = 1,

 
 

1
2 1

1'

f x
x x

f x
 

     
 
 
0.176470588

0.176470588
' 0.176470588

f

f
 

     = 0.201568074

For k = 2,

 
 3
0.201568074

0.201568074
' 0.201568074

f
x

f
 

     = 0.201639675

For k = 3,

 
 4
0.201639675

0.201639675
' 0.201639675

f
x

f
 

      = 0.201639678

For k = 4,

 
 5
0.201639610

0.201639678
' 0.201639678

f
x

f
 

     = 0.201639675

Since 5 4 0.201639675 0.201639678x x  

  92.252 10 

The root x = 0.201639675 is correct upto 8 decimal places.

Answer (b) : The root of equation ( ) cos 0xf x x xe    lies between 0 and 1. Let initial

approximation 0 0.5x  .

By Newton Raphson method 
 
 1 '

k
k k

k

f x
x x

f x   .

Here ( ) cos xf x x xe   then  '( ) sin 1 xf x x x e    .
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For k = 0,

 
 

0
1 0

0'

f x
x x

f x
 

     
   
   

0.5

0.5

cos 0.5 0.5
0.5

sin 0.5 0.5 1

e

e


 

  

   = 0.518026009

For k = 1,

 
 

1
2 1

1'

f x
x x

f x
 

     = 0.517757424

For k = 2,

 
 

2
3 2

2'

f x
x x

f x
 

    = 0.517757363

2 3 0.517757363 0.517757424x x  

 86.03 10 

The root x = 0.567125668 is correct upto 6 decimal places.

Answer (c) :  Let 1
317x   then 3 17x   and 3( ) 17 0f x x   .

By Newton Raphson Method,

 
 1 '

k
k k

k

f x
x x

f x  

        
3

2

17

3
k

k
k

x
x

x


 

0 2x  . For k = 0,

3
0

1 0 2
0

17
2.75

3

x
x x

x
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For k = 1,

3
1

2 1 2
1

17
2.582644628

3

x
x x

x


  

For k = 2,

3
2

3 2 2
2

17
2.571331512

3

x
x x

x


  

For k = 3,

3
3

4 3 2
3

17
2.571281592

3

x
x x

x


  

Since 5
3 4 2.571331512 2.571281592 4.9 10x x      , the root is correct upto 4 decimal

places. The exact value of 1
317  correct upto four decimal places is 2.571281592.

Answer (d) :   To find 
1

N
, let 

1
x

N
  then 

1
N

x
  i.e. 

1
0N

x
  .

We write   1
0f x N

x
   . By Newton Raphson method

 
 

2 2
1

2

1

1
2

1'
k k

k k k k k k k
k k

k

N
f x x

x x x x x N x Nx
f x x

x




          
 

Now plot the graphs of y = x and 22y x Nx  .

2
2 2 2 1 1

2y x Nx N x x N x
N N N

              
   

i.e. 
2

1 1 1
x y

N N N
         
   

 which is parabola. From the graph of this function we find that

for any initial approximation outside the range 0
2

0 x
N

   the method diverges. If 0 0x  , the iterations

do not converge to 
1

N
 but remains zero always.
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Answer (e) :  The root of equation ( ) 1xf x xe   lies between 0 and 1. Let 0 0.5x  .

By Newton Raphson Method

 
 1 '

k
k k

k

f x
x x

f x  

( ) 1xf x xe   and  '( ) 1 xf x x e 

For k = 0,

 
 

 
 

2
1 0

0

0.5
0.5 0.571020439

' ' 0.5

f x f
x x

f x f
    

For k = 1,

 
 

1
2 1

1

0.567155569
'

f x
x x

f x
  

For k = 2,

 
 

2
3 2

2

0.567143291
'

f x
x x

f x
  

For k = 3,

 
 

3
4 3

3

0.56714329
'

f x
x x

f x
  

10
4 3 5 10x x    , the root x = 0.56714329 is correct upto 9 decimal places.

5. Use the iteration method to find, correct to four significant figures, a real root of each of the

following equation.

(a) 3 2 1 0x x   (b) 2 cos 3 0x x   (c) 1 0xxe  

Answer (a) : 3 2( ) 1 0f x x x   

   2 2( ) 1 1 0 1 1f x x x x x        i.e. 
1

1
x

x




  1

1
x

x
 

 ,        
3

2
1

' 1
2

x x   
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Observe that  0 1f    and  1 1f  . Therefore root lies between 0 and 1. On the interval

(0, 1),   1
' 1

2
x   . Thus iteration method.

 1
1

1
k k

k

x x
x

  
   converges

Put 0 1x  , 1
1

0.707106781
2

x  

2
1

1
0.765366864

1
x

x
 



3
2

1
0.752993979

1
x

x
 



4
3

1
0.755283135

1
x

x
 



5
4

1
0.754790473

1
x

x
 



6
5

1
0.75489642

1
x

x
 



7
6

1
0.754873632

1
x

x
 



5
7 6 2.2 10x x     . The approximate root 0.754873632 is correct upto 4 significant figure.

Answer (b) :   1
2 cos 3 0 cos 3

2
x x x x     

On comparing this equation with  x x  we have

   1
cos 3

2
x x   ,     sin

' 1
2

x
x  

Hence the iteration method is convergent.

Consider  1
1

cos 3
2k kx x  



45

Since   2 cos 3f x x x    and  1 0f   and  2 0f  , the root lies between 1 and 2.

Let the initial approximation

0 1.5x 

 1 0
1

cos 3 1.535368601
2

x x  

 2 1
1

cos 3 1.517710158
2

x x  

 3 2
1

cos 3 1.526530619
2

x x  

 4 3
1

cos 3 1.522125627
2

x x  

 5 4
1

cos 3 1.524325743
2

x x  

 6 5
1

cos 3 1.52322693
2

x x  

 7 6
1

cos 3 1.523775729
2

x x  

 8 7
1

cos 3 1.523501637
2

x x  

 9 8
1

cos 3 1.52363853
2

x x  

 10 9
1

cos 3 1.52357016
2

x x  

 11 10
1

cos 3 1.523604307
2

x x  

5
10 11 3.4 10x x    . The approximate root 1.523604307 is correct upto four significant figures.

Answer (c) :    1xf x xe  . Since  0 1f    and  1 1 0f e   , root lies between 0 and 1.

Let 0 0.5x  .
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1 0x xxe x e    ,    xx e  ,   ' 1xx e     for  0,1x

1
kx

kx e   is the iteration formula.

0 0.5x  . 0.5
1 0.606530659x e 

1
2 0.545239212xx e 

2
3 0.579703094xx e 

3
4 0.560064628xx e 

4
5 0.571172148xx e 

5
6 0.564862947xx e 

6
7 0.568438047xx e 

7
8 0.566409453xx e 

8
9 0.567559634xx e 

9
10 0.566907213xx e 

10
11 0.567277195xx e 

11
12 0.567067352xx e 

12
13 0.56718636xx e 

13
14 0.567118864xx e 

14
15 0.567157143xx e 

5
14 15 3.8 10x x    , root x = 0.567157143 is correct upto four significant figures.

6. Perform two iterations of Birge Vieta method to find the root of polynomial

3
3( ) 2 5 1 0P x x x    . Use the initial approximation 0 0.5p  . Also obtain the deflated polynomial.

Answer :    3
3 2 5 1p x x x  

   3 22 0 5 1x x x     and 0 0.5p  .
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0.5 2 0 – 5 1

1 0.5 – 2.25

2 1 – 4.5 – 1.25 = b3

1 1

2 2 – 3.5 = c2

 
 

3
1 0

2

1.25
0.5 0.142857

3.5

b
p p

c


    



0.142857 2 0 – 5 1

0.285714 0.040816 – 0.708454

2 0.285714 – 4.959184 0.291546 = b3

0.285714 0.081632

2 0.571428      – 4.877552 = c2

 
 

3
2 1

2

0.291546
0.142857 0.202630

4.877552

b
p p

c
    



Thus 0.202630 is root after two iterations. To find the deflated polynomial we use synthetic

division

0.202630 2 0 – 5 1

0.405260 0.082118 – 0.996510

2 0.405260 – 4.917882 0.003490

Observe that b3 = 0.003490, is the error in factorization.

The deflated polynomial   2
2 2 0.405260 4.917882Q x x x   .
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7. Perform two iterations of Birge Vieta method to find the root of polynomial

4 3 23 3 3 2 0x x x x     . Use the initial approximation 0 0.5p  .

Answer :

0.5 1 –3 3 – 3 2

0.5 – 1.25 0.875 – 1.0625

1 – 2.5 1.75 – 2.125 0.9375 = b4

0.5 – 1.0 0.375

1 – 2.0 0.75 – 1.750 = c3

 
4

1 0
3

0.9375
0.5 1.0356

1.750

b
p p

c
    



Second iteration p1 = 1.0356.

1.0356 1 – 3 3 – 3 2

1.0356 – 2.0343 1.0001 – 2.0711

1 – 1.9644 0.9657 – 1.9999 – 0.0711 = b4

1.0356 – 0.9619 0.0039

1 – 0.9288 0.0038 – 1.9960 = c3

 
 

4
2 1

3

0.0711
1.0356 0.999979

1.9960

b
p p

c


    



8. Perform two iterations of the Bainstow method to extract a quadratic factor 2x p q   from

the polynomial   3 2
3 2 0p x x x x     . Use initial approximation 0 0.9p    and 0 0.9q  .

Answer :

0 0.9p  1 1 – 1 2

0 0.9q   0.9 1.71 – 0.171

– 0.9 – 1.71

1 1.9 – 0.19 = b2 0.119 = b3

0.9 2.52

– 0.9

1 = c0 2.8 = c1 1.43 = c2
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3 0 2 1

2
1 0 2 2

0.651
0.1047

6.22

b c b c
p

c c c b


      

 

 
 

2 2 2 3 1
2

1 0 2 2

0.6410
0.1031

6.22

b c b b c
q

c c c b

 
    

 

1 0 0.9 0.1047 1.0047p p p       

1 0 0.9 0.1031 1.0031q q q     

Second Iteration

1 1.0047p  1 1 – 1 2

1.0047 2.0141 0.0111

1 1.0031q   – 1.0031 – 2.0109

1 2.0047 0.0110 = b2 0.0002 = b3

1.0047 3.0235

– 1.0031

1 = c0 3.0094 = c1 2.0314 = c2

 
3 0 2 1

2
1 0 2 2

0.0329
0.0047

7.0361

b c b c
p

c c c b


    

 

 
 

2 2 2 3 1
2

1 0 2 2

0.0216
0.0031

7.0361

b c b b c
q

c c c b

 
      

 

2 1 1.0047 0.0047 1p p p       

2 1 1.0031 0.0031 1.0q q q      

Hence the quadratic factor is 2 2 1x px q x x     .



50

9. Perform one iteration of the Bairstow method to find the quadratic factor of the polynomial

4 3 22 1 0x x x x     . Use 0 0.5p   and 0 0.5q  .

Answer :

0 0.5p   1 1 2 1 1

0 0.5q   – 0.5 – 0.25 – 0.625 – 0.0625

– 0.5 – 0.25 – 0.625

1 0.5 1.25 0.125 = b3 0.3125 = b4

– 0.5 0.0 – 0.375

– 0.5 0

1 0 = c1 0.75 = c2 – 0.25 = c3

 
4 1 3 2

2
2 1 3 3

0.1667
b c b c

p
c c c b


   

 

 
 

3 3 3 4 2
2

2 1 3 3

0.5
b c b b c

q
c c c b

 
   

 

1 0 0.6667p p p   

1 0 1.0q q q   

Quadratic factor is 2 2 0.6667 1x px q x x     .
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SYSTEM  OF  LINEAR  ALGEBRAIC  EQUATIONS  AND
EIGEN  VALUE  PROBLEMS

UNIT  -  II

2.1 Introduction :

System of linear equations arise in a large number of areas, both directly in modeling physical

situations and indirectly in the numerical solution of other mathematical models. These applications

occur in virtually all areas of the physical, biological and social sciences. Linear systems are involved in

optimization theory, numerical solutions of boundry value problems, partial differential equations, integral

equations and numerous other problems.

The present chapter deals with simultaneous linear algebraic equations which can be represented

generally as,

11 1 12 2 13 3 1 1.... n na x a x a x a x b    

21 1 22 2 23 3 2 2.... n na x a x a x a x b     ... (2.1.1)



1 1 2 2 3 3 ....n n n nn n na x a x a x a x b    

where ija  (i, j = 1, 2, ...., n) are the known coefficients, ib  (i = 1, 2, ..., n) are the known

values and ix  (i = 1, 2, ..., n) are the unknowns to be determined.

In the matrix notation, the above system of simultaneous linear algebraic equations can be

written as

Ax b .... (2.2.2)

where A is square matrix of order n, x is column vector with elements ix , i = 1, 2, ..., n and b

is column vector with elements ib , i = 1, 2, ..., n.

2.2 Iteration Methods

Many linear systems are too large to be solved by dirct methods based on Gauss elimination

or matrix inversion. For these systems, iteration methods are often the only possible method of solution,

as well as being faster than elimination in many cases. In this section we discuss two iterative methods.

viz. Jacobi iteration method and Gauss Seidel iteration method.
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A general linear iterative method for the solution of the system of equations Ax b  may be

defined in the form

   1k k
X H X c


  , k = 0, 1, 2, ..... .... (2.2.1)

where  1k
X

  and  k
X  are the approximations for X at the (k + 1)th and kth  iterations

respectively. H is called the iteration matrix and c  is column vector. In the limiting case  k
X  converges

to the exact solution

1
X A b


 ... (2.2.2)

When the system of equatons can be ordered so that each diagonal entry of the coefficient

matrix is larger in magnitude than the sum of the magnitudes of the other coefficients in that row - such

a system is called diagonally dominant. For such system the iteration will converge for any

starting values. Formally we say that an  nxn matrix A is diagonally dominant if and only if for each

i = 1, 2, 3, ..., n

1

n

ii ij
j
j i

a a




i = 1, 2, 3, ..., n

For iterative methods we rearrange the system of equations so that the diagonal entries of the

coefficient matrix A become diagonally dominant. If not, we rearrange the system of equations in such

a way that the diagonal entries of matrix A are non-zero and possibly large in magnitude. Such a

rearrangement is called pivoting.

1. Partial Pivoting

In the first state, the first column is searched for the largest element in magnitude and brought

as the first diagonal element by interchanging the first equation with the equation having the largest

element in magnitude. In the second stage, the second column is searched for the largest element in

magnitude among the (n – 1) elements leaving the first element, and this element is brought as the

second diagonal entry  22a  by an interchange of the second equation with the equation having the

largest element in magnitude. This procedure is continued until we arrive at the last equation.

Example 1 :  Consider the system of equations

2 2 2 7x y z u   

2 2x y u  

3 2 3x y z u   

2 0x u 
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Ans. :

2 2 1 2 7

1 2 0 1 2

3 1 2 1 3

1 0 0 2 0

x

y

z

u

     
           
       
          

 max. 2 , 1 , 3 , 1 3  appears in third equation. Therefore interchange first and third

equation

3 2 3x y z u   

2 2x y u  

2 2 2 7x y z u   

2 0x u 

3 1 2 1 3

1 2 0 1 2

2 2 1 2 7

1 0 0 2 0

x

y

z

u

       
           
     
          

Consider second column excluding ( 12a ) entry..

 max 2 , 2,0 2   we can keep second equation as it is, since the 2  also gives the maximum

value.

Consider third column excluding first two entries and calculate  max 1 ,0 1 . There is no

need to interchange third and fourth equation and partial pivoting is complete.

The rearrangement of system is generally carries out on the augmented matrix [ A, b].

Complete Pivoting :

In this procedure we search the matrix A for the largest element in magnitude and bring it as the

first pivot. This requires not only an interchange of equations but also an interchange of position of the

variables.
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2.2.1 Jacobi Iteration Method

This method is an iteration method and is used to determine the solution of system of linear

equations. In the system Ax b , we assume that the quantities iia  are non-zero and sufficiently large.

This can be done by partial or complete pivoting. The system of equations (2.2.1) may be written as

 11 1 12 2 13 3 1 1.... n na x a x a x a x b     

 22 2 21 1 23 3 2 2.... n na x a x a x a x b      .... (2.2.1.1)



 1 1 2 2 ( 1) 1....nn n n n n n n na x a x a x a x b      

From equation (2.2.1.1) we have an iteration method

 ( 1) ( ) ( ) ( )
12 13 1 11 2 3

11 11

1 1
....k k k k

n nx a x a x a x b
a a

      

 ( 1) ( ) ( ) ( )
21 23 2 22 1 3

22 22

1 1
....k k k k

n nx a x a x a x b
a a

       .... (2.2.1.2)



 ( 1) ( ) ( ) ( )
1 2 ( 1)1 2 1

1 1
....k k k k

n n n n n nn
nn nn

x a x a x a x b
a a


      

Initially we can assume that (0)
11x b , (0) (0)

22 ... n nx b x b  .

Since we replace the complete vector ( )kx  in the right side of (2.2.1.2) at the end of each

iteration, this method is called the method of simultaneous displacement.

In the matrix form equation (2.2.1.1) can be written as

 Dx L U x b   

where L and U are respectively lower and upper traingular matries with zero diagonal entries,

D is diagonal matrix such that A = L + D + U.

The matrix form of equation (2.2.1.1) is used to write an iteration method in the form,

 ( 1) 1 ( ) 1k kx D L U x D b      , k = 0, 1, 2, 3, ... ... (2.2.1.3)

(0)x b  is the initial approximation.

Alternatively equation (2.2.1.3) can be written as

 ( 1) ( ) ( ) 1 ( ) 1k k k kx x x D L U x D b      
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 ( ) 1 ( ) 1k kx D D L U x D b     

 ( ) 1 ( )k kx D Ax b  

 ( ) 1 ( )k kx D b Ax  

Define ( ) 1 ( ) ( 1) ( )k k k kV D r x x     is the error in the approximation and ( ) ( )k kr b Ax 
is the residual vector.

We solve ( ) ( )k kDV r  for ( )k
V  and find

( )( 1) ( ) kk kx x V   .... (2.2.1.4)

These equations describe the Jacobi iteration method in an error format. Thus to solve the

system of equations by Jacobi iteration method in an error form we have the following procedure

( ) ( )k kr b Ax 

( ) 1 ( )k kV D r .... (2.2.1.5)

( )( 1) ( ) kk kx x V  

2.2.2 Gauss Seidel Iteration Method

We know that every matrix A can be uniquely represented as the sum of lower and upper

traingular matrix with zero diagonal entries and a diagonal matrix. The system of equations Ax b
can be represented by

 L D U x b  

 Dx L U x b    

Dx Lx Ux b    

From above equation we have an iteration method

( 1) ( 1) ( )k k kDx Lx Ux b     , k = 0, 1, 2, 3, .... ... (2.2.2.1)

Initially, we assume that (0)
11x b .

Method (2.2.2.1) is called Gauss Seidel iteration method. In the explicit form equation (2.2.2.1)

can be written as

  ( 1) ( )k kL D x Ux b   

   1 1( 1) ( )k kx L D Ux L D b
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   1 1( ) ( ) ( )k k kx x L D Ux L D b
      

      1 1( ) ( )k kx L D L D U x L D b
       

   1( ) ( )k kx L D Ax b
   

    1( 1) ( ) ( )k k kx x L D b Ax
    

Thus to solve the system of equations by Gauss Seidel iteration method in an error form we

have the following procedure.

( ) ( )k kr b Ax 

Solve   ( ) ( )k kL D V r   for ( )k
V  by forward substitution

( )( 1) ( ) kk kx x V   , k = 0, 1, ..., n .... (2.2.2.2)

System (2.2.2.2) describe the Gauss Seidel method in an error form.

2.2.3 Convergence Analysis of Iterative Methods

Iterative methods are methods of successive approximations. Convergence of iterative methods

is studied through error analysis. To discuss the convergence of iterative method.

( 1) ( )k kx Hx c   ,   k = 0, 1, 2,3, .... ... (2.2.3.1)

where ( 1)kx   and ( )kx  are the approximations for x  at the (k + 1)th and kth iterations

respectively, we study the behaviour of the difference between exact solution x  and  an approximation
( )kx .

The exact solution of iterative method will satisfy

x Hx c  .... (2.2.3.2)

Sibtracting (2.2.3.1) from (2.2.3.2) and substituting ( ) ( 1)k kx x     we get

( 1) ( )k kH   ,   k = 0, 1, 2, ....  ... (2.2.3.3)

Repeatative application of (2.2.3.3) for ( )k , k = 1, 2, 3, .... gives

( 1) (0)k kH   ,   k = 0, 1, 2, 3, ....

For Jacobi iterative method  1H D L U    and 1c D b  whereas for Gauss Seidel

iterative methods   1
H L D U

   and   1
c L D b

  . For both the methods iteration matrix H

remains constant for each iteration.
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If the error sequence  ( 1)k   converges to zero as k  , we say that the iterativ method

converges. To study the convergence of error sequence we use the following theorems.

Theorem 2.1 :  Let A be a squar matrix. Then

lim 0m

m
A


  if  1A   or iff    1A 9 .

Before proving this theorem we explain the notations and definitions used in the statement of

the theorem.

Definition : Matrix Norm

The matrix norm || A || is a non-negative number which satisfies the properties

(i) 0A   if 0A   and 0O   where O is zero matrix.

(ii) cA c A  for arbitrary complex number c.

(iii) A B A B  

(iv) AB A B

The most commonly used norms are

(i) Euclidean norm or frobenius norm

 

1

22

1

n

ij
ij

F A a


 
  
  
   where  

, 1

n
ij i j

A a


   

(ii) Maximum norm

1

max
n

ik
i k

A A a


   (maximum absolute row sum)

1
1

max
n

ik
k i

A a


  (maximum absolute column sum)

(iii) Hilbert norm or Spectral norm

The largest eigen value in modulus of a matrix A is called the spectral radius of the matrix A and

is denoted by  A9 . The spectral radius is defined only for square matrices.

2A   where  *A A  9  and  *
T

A A ,

A  is the complex conjugate of A.
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Proof of Theorem 2.1 :

If 1A   then by definition of norm of matrix.

mmA A  AB A B

and since norm is a continuous function,

lim lim lim 0
mm m

m m m
A A A

  
    1A 

For simplicity, we assume that all the eigen values of the matrix A are distinct. Then there exist

a similarity transformation S such that

1A S DS

where D is diagonal matrix having eigen values of A on the diagonal. Therefore

     
1 1 1

 times...m
mA S DS S DS S DS  

         1 1 1...S D SS D SS DS  

      1 mS D S

where

1

2

0 0 0 0

0 0 0 0

0 0 0 0

m

m
m

m
n

D







 
 
   
 
  




   


 1lim lim 0m m

m m
A S D S

 
   iff all the eigen values satisfy 1i  , i.e.   1A 9 .

Theorem 2.2 :  The infinite series 2 3 ....A A A     converges iff lim 0m

m
A


 . The series converges

to   1
I A

 .

Proof :   From the definition of convergent series we have

 lim 0m

m
A


 .

Suppose lim 0m

m
A


  then by theorem 2.1 we have

  1A 9
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Since the magnitude of largest eigen value of matrix A is strictly less than 1, 0I A   and

therefore   1
I A

  exists.

We know the identity

  2 3 1.... m mI A A A A I A I A        

     12 3 1.... m mI A A A A I A I A
        

Since lim 0m

m
A


  (by theorem 2.1), we have

  12 3 .... mI A A A A I A
      

Theorem 2.3 :  No eigen value of matrix A exceeds the norm of a matrix A. i.e.  A A 9

Proof :  For eigen value   of a matrix A we have

Ax x

where x  is a non-zero eigen vector corresponding to eigen value  .

x x Ax A x    

Thus we have x A x   0x 

i.e. A  (where   is any eigen value)

i.e.  A A9

Theorem 2.4 : The iteration method of the form

( 1) ( )k kx Hx c  

for the system of equation Ax b  converges to the exact solution for any initial vector (0)x  if 1H  .

Proof :  We take initial vector (0) 0x  . Then the repeated  application of iteration method gives

(1)x c

 (2) (1)x Hx c Hc c H I c     

   (3) (2) 2x Hx c H H I c c H H I c       



 ( 1) 1 2....k k kx H H H H I c      
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 ( 1) 1 2 2lim lim ....k k k k

k k
x H H H H H I c  

 
      

       1
I H c

  (if  1H  )

Thus   1( 1)lim k

k
x I H c




 

In case of Jacobi iteration method we have

 1H D L D    and  1c D b

     11 1 1I H c I D L U D b
      

              11 1 1D D D L U D b
    

   11 1D D L U D b
   

    11 1 1D L U D D b
    

1A b

x

Thus for Jacobi iteration method we have

  1( 1)lim k

k
x I H c x




  

In case of Gauss Seidel iteration method we have

  1
H L D U

    and   1
c L D b

 

     
11 1 1

I H c I L D U L D b
         

       
11 1 1

L D L D L D U L D b
         

     
11 1

L D L D U L D b
       

   
11 11A L D L D b
                1 1 1AB B A

  

1A b x 

Thus for Gauss Seidel iteration method we have

  1( 1) 1lim k

k
x I H c A b x
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From  theorem 2.3 we observe that Jacobi iterative method converges if

       1 1 1JH D L U D L U      9 9 9

and Gauss Seidel iterative method converges if

       1 1
1GH L D U L D U

      9 9 9

Theorem 2.5 :  A necessary and sufficient condition for convergence of an iterative method

( 1) ( )k kx Hx c    is that the eigen values of the iteration matrix H satisfy   1i H  , i = 1, 2, ..., n

where  
i H  are eigen values of matrix H.

Proof :  Suppose 1 , 2 , 3 ,..., n  are the eigen values of matrix H and 1x , 2x , 3x , ..., nx  be the

corresponding independent eigen vectors. (0)  is an  n-vector. We write

(0)
1 1 2 2 .... n nc x c x c x    

(0)
1 1 2 2 ....k k k k

n nH c H x c H x c H x    

     1 1 1 2 2 2 ....k k k
n n nc x c x c x     

( ) (0)

1

lim lim
n

k k k
i i i

k k i

H c x  
  

 
   

 


( ) 0k   iff 0k
i   as k  .

i.e. ( ) 0k   iff   1i H  .

Definition 2.2 :  The rate of convergence of an iterative method is given by

  10logv H  9 where  H9  is the spectral radius of matrix H.

Theorem 2.6 : If A is a strictly diagonally dominant matrix, then the Jacobi iteration scheme converges

for any initial starting vector.

Proof :  The Jacobi iteration scheme is given by

   ( 1) 1 ( ) 1k kx D L U x D b     

 1 ( ) 1kD A D x D b    

 1 ( ) 1kI D A x D b   
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The iteration scheme will be convergent if 1 1I D A  .

Using absolute row sum norm we have

1

1

1
max 1

n

ij
ii j

j i

I D A a
a






     
  



Since A is strictly diagonal dominant, 
1

n

ij ii
j
j i

a a



  for all i = i, 1, 2, 3, ..., n and therefore

1 1I D A   and therefor the Jacobi iteration scheme converges for any initial starting vector..

Theorem 2.7 :  If A is strictly diagonally dominant matrix, then the Gauss-Seidel iteration scheme

converges for any initial starting vector.

Proof :  The Gauss Seidel iteration scheme is given by

     1 1( 1) ( )k kx D L Ux D L b
      

      1 1( )kD L A D L x D L b
       

   1 1( )kI D L A x D L b
       

The iteration scheme will be convergent if

  1
1I D L A

  9

Let   be an eigen value of   1
I D L A

  .

  1
I D L A x x    

     1 1
D L D L D L A x x       

   1
D L D L A x x   

 Ux D L x    A L D U  

i.e.
1 1

n i

ij j ij j
j i j

a x a x
  

   1 i n 

i.e.

1

1

n i

ij j ii i ij j
j i j i

a x a x a x 
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i.e.

1

1 1

i n

ii i ij j ij j
j j i

a x a x a x 


  

   

1

1

i n

ii i ij j ij j
j i j i

a x a x a x 


  
   .... (2.2.3.1)

Since x  is an eigen vector, 0x  . We assume that 1x  .

Choose an index i such that 1ix   and 1jx  , j i  .

From equation (2.2.3.4) we get

1

1

i n

ii ij ij
j i j i

a a a 


  
  

        

1

1

i n

ii ij ij
j i j i

a a a


  

 
   

  
 

       
1

1

n

ij
j i

i

ii ij
j i

a

a a

  




 






Since matrix A is diagonally dominant 
n

ii ij
j i
j i

a a



 .

1

1

i n

ii ij ij
j i j i

a a a


  

   

or

1

1

i n

ii ij ij
j i j i

a a a


  
   

1
1

1

n

ij
j i

i

ii ij
j i

a

a a

 




 





 and therefore 1  .
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But   is any eigen value of   1
I D L A

  .

  1
1I D L A

  9

Note :  The rate of convergence of Gauss Seidel scheme is twice that of the Jacobi scheme. It may

happen that for the system Ax b ,   1JH 9  but   1GH 9 . Similarly it is possible to have the

system of equation Ax b  for   1GH 9  which but   1JH 9 . For these systems matrix A is not

diagonally dominant.

2.3 Matrix Factorization Method

The system of equation Ax b  can be directly solved in the following cases.

Case (i) :  A = D

The system of equations is

i
ii i i i

ii

b
a x b x

a
    for i = 1, 2, 3, ..., n ; 0iia    i

Case (ii) :  A = L (Lower Traingular Matrix)

The system of equations is of the form

11 1 1a x b

21 1 22 2 2a x a x b 

31 1 32 2 33 3 3a x a x a x b  



1 1 2 2 3 3 .......n n n nn n na x a x a x a x b    

Solving first equation we get 1x . If we substitute this value of x1 in second equation we get 2x

and so on. Since unknowns are determined by forward substitution, the method is called forward

substitution method.

Case (iii) : A = U (Upper Traingular Matrix)

In this case system of equation is of the form

11 1 12 2 13 3 1 1....... n na x a x a x a x b    

22 2 23 3 2 2....... n na x a x a x b   
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33 3 3 3....... n na x a x b  



( 1)( 1) 1 ( 1) 1n n n n n n na x a x b     

nn n na x b

From last equation we get nx  from second last equation on substituting the value of nx  we get

1nx   and so on.

Since the unknown are determined from back substitution, this method is called the back

substitution method.

Thus the equation Ax b  is directly solvable if the matrix A can be transformed into one of

the three cases discussed above.

2.3.1 Triagulization Method

This method is also known as the decomposition method or factorization method. In this

method, the coefficient matrix A of the system of equations Ax b  is decomposed or factorized into

the product of a lower traingular matrix L and an upper traingular matrix U. We write the matrix A =

LU.

where,

11

21 22

31 32 33

1 2 3

0 0 0

0 0

0

n n n nn

L

 
 
 
 
 
 
  

 
  
   
    
    

 and 

11 12 13 1

22 23 2

33 3

0

0 0

0 0 0

n

n

n

nn

u u u u

u u u

u uU

u

 
 
 
 
 
 
  





    


Then the system of equation Ax b  becomes

LUx b

We write above equation as the following two systems of equations

Ux z
.... (2.3.1)

Lz b

From Case (ii) we determine z  and the form Case (iii) we solve Ux z  to calculate x .



66

2.3.1 (a)   Doolittle’s Method

In this method we write A = LU where the diagonal elements of matrix L are 1. We write

11 12 13 1 11 12 13 1

21 22 23 2 21 22 23 2

31 32 33 3 31 32 33 3

1 2 3 1 2 3

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

n n

n n

n n

n n n nn n n n nn

a a a a u u u u

a a a a u u u

a a u a u u

a a a a u

     
     
     
     
     
     
          

  
   
    

          
     

These are n2 equations in 
    21 1

2 2

n n n n
n n

   
   

 
 unknowns comparing left hand side

with right hand side product. We get componentwise equations.

11 11a u , 12 12a u , 13 13a u , ...., 1 1n na u

21 21 11a u  , 22 21 12 22a u u  , ..., 2 21 1 2n n na u u 

--------------------------------------------------------

By using forward substitution we calculate

11u , 12u , 13u , ...., 1nu , 21 , 22u , 23u , ...., 2nu , .........

Once the matrices L and U are known the solution is obtained by representing the system

Ax b  in the form of equation (2.3.1)

2.3.1 (b)    Crout’s Method

In this method we write A = LU where the diagonal elements of matrix U are all 1. We write

11 12 13 1 11 12 13 1

21 22 23 2 21 22 23 2

31 32 33 3 31 32 33 3

1 2 3 1 2 3

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

n n

n n

n n

n n n nn n n n nn

a a a a u u u

a a a a u u

a a a a u

a a a a

     
     
     
     
     
     
         

   
    
     

          
      

Again these are n2 equations in n2 unknowns. Equating the componentwise elements of l.h.s.

and r.h.s. we get
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11 11a   , 12 11 12a u  , 13 11 13a u  , ...., 1 11 1n na u 

21 21a   , 22 21 12 22a u   , 23 21 13 22 23a u u   , ...., 2 21 1 22 2n n na u u  

------- ------ ------ ------

By using forward substitution we get,

11 11a , 12
12

11

a
u 


, 13

13
11

a
u 


, ...., 1

1
11

n
n

a
u 



21 21a , 22 22 21 12a u   , ...., 2 2 21 1n n nu a u  

Once the matrices L and U are determined the system of equations Ax b  is represented in

the form of equation (2.3.1) and system of equations (2.3.1) is solved from Case (iii) and from

Case (i) respectively.

2.4 Eigen Values and Eigen Vectors

In section 2.2 and 2.3 iterative methods for linear system of equations are discussed. Consider

the system of equation

Ax x ...... (2.4.1)

Equation (2.4.1) is called eigen value problem. The eigen values of A are given by the roots of

the characteristics equation

 det 0A I  ..... (2.4.2)

If A is square matrix of order n, equation (2.4.2) gives a polynomial equation of degree n. The

roots of this polynomial equation are called eigen values and may be determined by the methods given

in Unit 1. Once the roots i  of polynomial (2.4.2) are known then a non-zero vector ix  such that

i i iAx x .... (2.4.3)

is called the eigen vector or characteristic vector corresponding to i . On multiplying equation (2.4.3)

by a constant c we get

i i i iAcx cx Ay y   

where iy cx  i.e. y  is also a characteristic vector of A corresponding to eigen value i . This shows

that an eigen vector is determined only to within an arbitrary multiplicative constant. On premultiplying

equation (2.4.1) (m – 1) times by A we obtain

 1 1 2 1 ...m m m m mA x A x A Ax A x A x         

mx
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m mA x x for m = 1, 2, 3, 4, ....... ..... (2.4.4)

Equation (2.4.4) shows that m  is an eigen value of mA  if   is an eigen value of A.A.

Since    det detTA I A I    , A and AAT have the same eigen values. If iu  is an eigen

vector corresponding to the eigen value  , then i i iAu u . Premultiplication by T
iu  gives

T T
i i i i iu Au u u  and we get

T
i i

i T
i i

u Au

u u
 

If iu  is an eigen vector of a matrix A then i  is the eigen value of matrix A. Thus given eigen

value   we find eigen vector by solving Ax x  and given eigen vector x  we find the corresponding

eigen vector as 
T

T

x Ax

x x
. For arbitrary u , the ratio 

T

T

u Au

u u
 is called the Rayleigh quotient.

Let A and B be two square matrices of same order.  If a non-singular matrix S can be determined

such that

1B S AS , .... (2.4.5)

then the matrices A and B are said to be similar and the matrix S is called similarly matrix and

the transformation is called similarly transformation. From equation (2.4.5) we write

1A SBS

If i  is an eigen value of A and iu  is the corresponding eigen vector then

i i iAu u

1 1
i iS Au S u 

Put i iu Sv  then 1 1
i i iS ASv S Sv v    .

i.e. i iBv v . But then eigen values of A and B are same and given eigen vectors iu of matrix

A, 1
iS u  are the eigen vectors of the matrix B. A similarity transformation, where S is the matrix of

eigen vectors reduces a matrix A to its diagonal form. The eigen values of A are the diagonal elements.

If eigen vectors of A are linearly independent then S–1 exists and the matrix A is said to be diagonalizable.
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2.4.1 Bounds on Eigen Values

The bounds on the eigen values of the matrix A are given by the theorems by Gerschgorin and

Brauer.

Theorem (Gerschgorin)

The largest eigne value in modulus of a square matrix A cannot exceed the largest sum of the

moduli of the elements along any row or any column.

Proof :  Let i  we  an eigen values of A and ix  be the corresponding eigen vector. Suppose

 1 2, ,...,T
i i i inx x x x . Since i  is an eigen value of A and ix  is corresponding eigen vector,,

i i iAx x

11 12 13 1 1 1

21 22 23 2 2 2

1 2 3

n i i

n i i
i

n n n nn in in

a a a a x x

a a a a x x

a a a a x x



     
     
     
     
     
          




      


Let maxik ir
r

x x . Select the kth equation and divide it by ikx . The kth equation is

1 1 2 2 ....... .....k i k i kk ik kn in i ika x a x a x a x x     

Then
1 2

1 2 .... ....i i ik in
i k k kk kn

ik ik ik ik

x x x x
a a a a

x x x x
      

Since maxik ir
r

x x ,   1ir

ik

x

x
 , r = 1, 2, ...., n

and 1 2 3 ..... .....i k k k kk kna a a a a       

Thus if   is an eigen value then

1

n

ki
i

a


    for some k.

1

max
n

ki
k i

a


  

Thus each eigen value and therefore the largest eigen value in modulus of a square matrix A

cannot exceed the largest sum of the moduli of the elements along any row.
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Since A and AT have same eigen values, the theorem is also true for columns. (Repeat the

procedure for AT)

Theorem (Brauer) : Let kP  be  the sum of the moduli of the elements along the kth  row excluding the

diagonal element kka  of a square matrix A. Every eigen value of A lies inside or on the boundary of at

least one of the circles kk ka P   , k = 1, 2, 3, ...., n.

Proof : Let i  be an eigen value of A and ix  be the corresponding eigenvector. Suppose

 1 2, ,...,T
i i i inx x x x

Then i i iAx x  can be written as

11 1 12 2 13 3 1 1.....i i i n in i ia x a x a x a x x    

21 1 22 2 23 3 2 2.....i i i n in i ia x a x a x a x x    



1 1 2 2 3 3 .....n i n i n i nn in i ina x a x a x a x x    

Let maxik ir
r

x x . Select kth equation from above n equations. The kth equation is

1 1 2 2 3 3 ..... .....k i k i k i kk ik kn in i ika x a x a x a x a x x      

Divide above equation by ikx  and rearrange the terms.

( 1) ( 1)1 2
1 2 ( 1) ( 1).... .....i k i ki i in

i kk k k k k k k kn
ik ik ik ik ik

x xx x x
a a a a a a

x x x x x
  

        

Since maxik ir
r

x x , 1ir

ik

x

x
 , 1 r n   .

and 1 2 ( 1) ( 1)..... .....i kk k k k k k k kna a a a a a         

Thus i kk ka P  

Therefore all the eigenvalues of A lie inside or on the union of the above circles.

Since A and AT have same eigenvalues, theorem holds for column sum also i.e.

1 2 ( 1) ( 1)..... .....i kk k k k k k k nka a a a a a          , k = 1, 2, 3, ...., n.
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The bounds obtained for rows and columns are independent. Hence all the eigen values of A

must lie in the intersection of these bounds. These circles are called the Gerschgorin circles and the

bounds are called the Gerschgorin bounds.

Example 2.4.1 :  Estimate the eigenvalues of the matrix

1 2 1

1 1 1

1 3 1

A

 
   
  

using the Gerschgorin bounds and Brauer theorem.

Answer :  By Gerschgorin theorem corresponding to row we have

 max 1 2 1 , 1 1 1 , 1 3 1         

      max 4,3,5 5 

i.e. 5 

Similarly by considering column sum we get,

 max 1 1 1 , 2 1 3 , 1 1 1         

      max 3,6,3 6 

By Brauer’s theorem every eigenvalue of A lies inside or on the boundary of atleast one of the

circles kk ka A   .

Corresponding to rows we have

1 3   , 1 2   , 1 4  

Corresponding to columns we have

1 2   , 1 5   , 1 2  

The union corresponding to row sum gives

   1 3 1 2 1 4 1 3 1 4                

The union corresponding to column sum gives

   1 2 1 5 1 2 1 5 1 2                

Thus the required region is given by

       5 6 1 3 1 4 1 5, 1 2                 
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Example 2.4.2 : Estimate the eigen value region of the matrix

3 2 2

2 5 2

2 2 3

A

 
   
  

By Gerschgorin theorem  max 7,9,9 9  

Corresponding to column we have  max 7,9,7 9  

Since matrix A is symmetric all eigenvalues are real and 9   gives the interval [ –9, 9]. Thus

all eigenvalues lie in the interval [ –9, 9].

By Brauer theorem the eigenvalues lie in the region  3 4 5 4 3 4        
corresponding to row sum and corresponding to coulmn sum we have

 3 4 5 4 3 4        

Thus we have the region

 3 4 5 4 3 4        

 4 3 4 4 5 4         

       1 7 1 9 1,9       

Thus all roots lie in the interval  1,9 .

2.5 Jacobi Method for Symmetric Matrices

For real symmetric matrix all eigenvalues are real and there exist a real orthogonal matrix S

such that 1S AS  is a diagonal matrix D. The diagonal entries of D are all eigenvalues of matrix A. The

diagonalization is achieved by applying series of orthogonal transformations.

Computational Procedure

Let  max : , , 1,2,3,...,ik ija a i j i j n   . Consider 2   2 matrix formed by the

intersection of ith & kth row and  ith & kth  column. Then we get a matrix

1
ii ik

ik kk

a a
A

a a

 
  
 

( ik kia a  since A is symmetric matrix)
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Choose 1

cos sin
*

sin cos
S

 
 

 
  
 

 and find   such that * 1
1 1 1 *S A S  is diagonal matrix.

       
* 1

1 1 1

cos sin cos sin
*

sin cos sin cos
ii ik

ik kk

a a
S A S

a a

   
   

     
         

           

 

 

2 2

2 2

sin 2
cos sin 2 sin cos 2

2
sin 2

cos 2 sin cos sin 2
2

ii ik kk kk ii ik

kk ii ik ii kk ik

a a a a a a

a a a a a a

   

    

     
  
      

Now we choose   such that the off diagonal entry of matrix * 1 *
1 1 1S A S  becomes zero so that

* 1 *
1 1 1S A S  becomes a diagonal matrix. Thus we choose   such that

  sin 2
cos 2 0

2kk ii ika a a
   

2 2
tan 2 ik ik

kk ii ii kk

a a

a a a a
 
 

 

This equation produces four values of  . We choose   between 
4


  and 

4


 and we get,

1 21
tan

2
ik

ii kk

a

a a
      

if ii kka a

4


 if ii kka a ,  0ika 

4


  if ii kka a ,  0ika 

With this choice of   construct n   n orthogonal matrix S1 as follows. Write cos , sin ,

sin , cos   at  ,i i ,  ,i k ,  ,k i ,  ,k k  positions of matrix S1 respectively. Write remaining

diagonal entries to be 1 and rest of the offdiagonal entries 0. Thus we get a matrix S1 as
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1

1 0 0 0

0 1 0 0

cos 0 sin

0 0 1

sin cos 0

0 0 1

i j

th

th

th th

i

S

j

 

 

 
 
 
 
   
 
 
 
  




 
 

 
    

 

Define 1
1 1 1B S AS

In  1, ,B i k and  ,k i  entries are zero. Repeat procedure for 1B . We get 2S . Define

1 1 1
2 2 1 2 2 1 1 2B S B S S S AS S   

After making r transformations we get,

1 1 1 1
1 2 1 1 2 3.... ....r r r rB S S S S AS S S S   


        1
1 2 3 1 2 3.... ....r rS S S S A S S S S



      1S AS

where 1 2 3.... rS S S S S

As r  , rB  approaches a diagonal matrix with the eigenvalues on the leading diagonal.

This procedure is called Jacobi method.

The convergence to a diagonal matrix takes place even if the maximum of offdiagonal elements

are not selected and we make any offdiagonal entry zero. This modification is called the special  cyclic

Jacobi method. In this method there is no search for maximum offdiagonal entry.

2.6 Householder’s Method for Symmetric Matrices

In Jacobi method symmetric matrix is converted into a diagonal matrix through similarity

transformation. In this method a symmetric matrix A is reduced to the tridiagonal form by orthogonal

transformations. The orthogonal transformations are of the form

2 TP I ww  .... (2.6.1)

where w  is a column vector such that 1Tw w  .
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Observe that P is symmetric and orthogonal.

   2 2 2
T TT T T T TP I ww I ww I ww P      

  2 2T T TP P I ww I ww  

         2 2 4T T T TI ww ww ww ww I      1Tw w 

At the first transformation we find 'ix s  such that we get zero in the position (1, 3), (1, 4),.....,

(1, n) and zero in the corresponding positions in the first column i.e. (3, 1), (4, 1), (5, 1) .... (n, 1). Thus

one transformation 1
2 2 2P AP A  , bring (n – 2) zeros in the first row and first column. In the second

transformation 1
3 2 3P A P , we get ( n – 3) zeros in the second column and second row namely (2, 4), (2,

5), (2, 6) .... (2, n) and (4, 2), (5, 2) ..... (n, 2) positions. The final matrix is tridiagonal. The

tridiagonalization is completed with exactly (n – 2) Householder transformation.

The matrix rP  is constructed as follows.

The vector rw  is constructed with the first (r–1) components as zeros.

 10,0,0,....0, , ,....,T
r r r nw x x x

Since 1T
r rw w  ,  2 2 2 2

1 1 .... 1r r r nx x x x     

with this choice of rw , T
r r rP I w w  .

Let us illustrate this procedure for 3 3 and 4   4 matrics.

11 12 13

12 22 23

13 23 33

a a a

A a a a

a a a

 
   
  

 2 2 30, ,Tw w w ,  2 2
2 2 2 31 1Tw w w w   

2 2 2
TP I w w 

      2 2 3

3

1 0 0

0 1 0 2 0, ,

0 0 1

o

w w w

w

   
       
      

     
2

2 2 3

2
2 3 3

1 0 0 0 0 0

0 0 1 2 2

0 0 2 1 2

w w w

w w w
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2 2
TP P I  therefore 2P  is orthogonal and 1

2 2
TP P .

11 12 13
2

2 12 22 23 2 2 3

2
13 23 33 2 3 3

1 0 0

0 1 2 2

0 2 1 2

a a a

AP a a a w w w

a a a w w w

  
      
       

        

   
   
   

2 2
11 12 2 13 2 3 2 3 12 13 3

2 2
12 22 2 23 2 3 2 3 22 23 3

2 2
13 23 2 33 2 3 2 3 23 33 3

1 2 2 2 1 2

1 2 2 2 1 2

1 2 2 2 1 2

a a w a w w w w a a w

a a w a w w w w a a w

a a w a w w w w a a w

     
 
      
 

      

2
2 2 2 2 3

2
2 3 3

1 0 0

0 1 2 2

0 2 1

TP AP w w w

w w w

 
 

    
   

    

   
   
   

2 2
11 12 2 13 2 3 2 3 12 13 3

2 2
12 22 2 23 2 3 2 3 22 23 3

2 2
13 23 2 33 2 3 2 3 23 33 3

1 2 2 2 1 2

1 2 2 2 1 2

1 2 2 2 1 2

a a w a w w w w a a w

a a w a w w w w a a w

a a w a w w w w a a w

     
 
      
 

      

2 2
TP AP  is tridiagonal if (1, 3) entry of the matrix 2 2

TP AP  is zero. But (1, 3) entry of

 2 2
TP AP  is

 2
2 3 12 13 32 1 2 0w w a a w   

 13 3 12 2 13 32 0a w a w a w  

i.e. 13 32 0a w r  where 12 2 13 3r a w a w 

(1, 2) entry of 2 2
TP AP  denoted by '

12a  is

 ' 2
12 12 2 13 2 31 2a a w a w w  

      12 22a w r 

   22' 2
12 12 2 13 32 2a a w r a w r      13 32 0a w r 

   2 2 2 2 2
12 13 2 3 2 12 3 134 4a a r w w r w a w a     

2 2 2 2
12 13 4 4a a r r   
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Thus    22' 2
12 12 2 13 32 2a a w r a w r   

        2
12 22 0a w r  

           ' 2 2 2
12 12 13a a a 

Therefore, ' 2 2
12 12 13 12 22a a a a w r S               (say)

Now we have two equations

13 32 0a rw  ... (i)

12 22a rw S   ... (ii)

Multiply equation (i) by w3 and (ii) by w2 and add.

Since 12 2 13 3a w a w r  , we have

22r r Sw     i.e.  2r Sw 

Now from equation (ii) we have

2
12 22a Sw S  

Thus
2 12

2 2

S a
w

S

 
 

2 12
2

1
1

2

a
w

S
    
 ,  13

3 2 2
2 12 13

1

2 2

a
w

w a a





In computing 3w  from 2w , we choose 2w  as large as possible.

We demonstrate the reduction in the following example.

Example 2.6.1 :  Reduce the matrix

1 3 4

3 2 1

4 1 1

A

 
   
  

to tridiagonal form.

Answer :  Here 2 2
12 13 9 16 5a a     .

2 12
2

1 1 3
1 1

2 2 5

a
w

S
           
  ( 2w  is max. for S = 5 since 12a  is +ve choose S +ve)
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2
2

4

5
w  i.e. 2

2

5
w 

13
3 2 2

2 12 13

4 1
2 52 2 5
5

a
w

w a a
  

  

2
2 1

0, ,
5 5

Tw
     

and 2 2 22 TP I w w 

     

1 0 0

3 4
0

5 5
4 3

0
5 5

 
 
   
 
 

 
 

2 2 2

1 0 0 1 0 0
1 3 4

3 4 3 4
0 3 2 1 0

5 5 5 5
4 1 1

4 3 4 3
0 0

5 5 5 5

TA P AP

   
    
              
     

    
   

        

1 0 0 1 5 0

3 4 2 11
0 3

5 5 5 5
4 3 1 7

0 4
5 5 5 5

   
   
       
   
   

    
   

2

1 5 0

2 1
5

5 5
1 13

0
5 5

A

 
 
   
 
 
 
 

To illustrate the procedure for 4   4 matrix let

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

a a a a

a a a a
A

a a a a

a a a a
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Since the transformations T
r rP AP  are orthogonal, the sum of squares of the elements in any

row are invariant. We will use the fact that sum of squares of elements in any row of matrix A is same

as the sum of squares of elements in corresponding row of matrix T
r rP AP .

Choose  2 2 3 40, , ,Tw x x x  and 2 2 2
2 2 2 3 4 1Tw w x x x    .

At the first transformation we find 2x , 3x , 4x  such that we get zero in the position (1, 3),

(1, 4) and (3, 1), (4, 1).

In the matrix 2P  first row is a unit vector and therefore the position (1, 3), (1, 4) have zero

entry if the corresponding elements in 2AP  are zero. The first row of 2AP  is given by the following

product.

11 12 13 14
2

2 2 3 2 412 22 23 24
2

13 23 33 34 2 3 3 3 4

214 24 34 44 2 4 3 4 4

1 0 0 0

0 1 2 2 2

0 2 1 2 2

0 2 2 1 2

a a a a

x x x x xa a a a

a a a a x x x x x

a a a a x x x x x

  
       
       
       

         2 2
11 12 2 13 2 3 14 2 4 12 2 3 13 3 14 3 4    1 2 2     2 2 1 2 2a a x a x x a x x a x x a x a x x       

 2
12 2 4 13 3 4 14 42 2 1 2a x x a x x a x     

 11 12 1 2 13 1 3 14 1 4      2 ,       2 ,      2a a p x a p x a p x   

where 1 12 2 13 3 14 4p a x a x a x  

Now we need to find 2x , 3x , 4x  such that 13 1 32 0a p x   and 14 1 42 0a p x  . So that

(1, 3) and (1, 4) position of 2 2P AP  will become zero. Since the sum of the squares of the elements in

any row is invariant underthe orthogonal transformation we have,

     22 22 2 2 2 2
11 12 13 14 11 12 1 2 13 1 3 14 1 42 2 2a a a a a a p x a p x a p x         

  22
11 12 1 22 0 0a a p x    

2 2 2
12 1 2 12 13 14 12a p x a a a S           (say)

Thus we have three equations

13 1 32 0a p x  .... (2.6.1)
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14 1 42 0a p x  .... (2.6.2)

12 1 2 12a p x S   ... (2.6.3)

Since matrix A is given matrix, 1S  is known quantity. Multiply (2.6.3) by 2x , (2.6.1) by 3x

and (2.6.2) by 4x  and add. We get,

 2 2 2
1 1 2 3 4 1 22p p x x x S x    

But 2 2 2
2 3 4 1x x x    and therefore

1 1 2p S x 

Now if we put this value of 1p  in equation (2.6.3) then equation becomes a quadratic equation

in 2x  and can be solved for 2x .

 12 1 2 2 12a S x x S  

2 12
2

1

1
1

2

a
x

S
   
 
 .... (2.6.4)

From equation (2.6.1) and (2.6.2) we get

13 13
3

1 1 22 2

a a
x

p S x
 

   and 
14 14

4
1 1 22 2

a a
x

p S x
 

 .... (2.6.5)

From equation (2.6.4) we observe that 2x  and therefore 1p  posses two values. Since 3x  and

4x contains 2x  in the denominator, we choose the large root by 2x . This is done by taking suitable

sign in equation (2.6.4).

 2 12 12
2

1

 sign1
1

2

a a
x

S

 
  

 

 13 12
3

1 2

 sign

2

a a
x

S x
 ,   

 14 12
4

1 2

 sign

2

a a
x

S x


where sign  12a is sign function which takes value – 1 if 12 0a   and value 1 if 12 0a  .

Thus the transformation 2 2P AP  produces zero value in (1, 3), (1, 4) and therefore (3, 1),

(4, 1) positions. One more transformation discussed for 3   3 matrix produces zeros in (2, 4) and

(4, 2) positions. The resulting matrix will be a tridiagonal matrix.
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Example 2.6.21 :  Use the Householder’s method to reduce the give matrix A into the tridiagonal

form.

4 1 2 2

1 4 1 2

2 1 4 1

2 2 1 4

A

  
    
   
   

Answer :

First iteration : Let  2 2 3 40, , ,
T

w x x x

     2 2 2
1 1 2 2 3S      

  2
2

1 1 1 2
1

2 3 3
x

   
     2

2

3
x 

  
3

2 1 1

2 62(3) 3

x
 

 
, 

 
4

2 1 1

2 62(3) 3

x


  

2
2 2 3 2 4

2 2
2 3 3 3 4

2
2 4 3 4 4

1 0 0 0

1 0 0 0 1 2 2
0

3 3 30 1 2 2 2
2 2 1

00 2 1 2 2
3 3 3

0 2 2 1 2 2 1 2
0

3 3 3

x x x x x
P

x x x x x

x x x x x

 
                            
  

2 2 2A P AP

1 0 0 0 1 0 0 0

1 2 2 1 2 24 1 2 20 0
3 3 3 3 3 31 4 1 2
2 2 1 2 2 1

2 1 4 10 0
3 3 3 3 3 3

2 2 1 4
2 1 2 2 1 2

0 0
3 3 3 3 3 3
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1 0 0 0

1 2 2 4 3 0 00
3 3 3 1 2 4 1
2 2 1

2 3 3 00
3 3 3

2 4 2 1
2 1 2

0
3 3 3

 
 

   
       
   
  
  

  

4 3 0 0

16 2 1
3

3 3 3
2 16 1

0
3 3 3
1 1 4

0
3 3 3

 
 
 
 
 

 
 
 

  

Second Iteration :   3 3 40,0, ,
T

P x x ; 2 2
3 4 1x x 

2 2

1
2 1 5

3 3 3
S         

   
; 

2
3

21 1 231 1
2 25 5

3

x
           
 



2
3

1 5 2

2 5
x

 
  

 
 and 

2 2
4 3

5 2 5 2
1 1

2 5 2 5
x x

 
    

Suppose 2
3x a  then 

2
4

1

20
x

a
  and we have

3

1 0 0 0

0 1 0 0

1
0 0 1 2

5
1 1

0 0 1
105

P a

a

 
 
 
 

   
 
 

  
 

3 3 2 3A P A P
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4 3 0 01 0 0 0 1 0 0 0
16 2 10 1 0 0 0 1 0 03
3 3 31 1

0 0 1 2 0 0 1 22 16 1
05 5

3 3 3
1 1 1 1

1 1 40 0 1 0 0 1
010 105 53 3 3

a a

a a

                                            

      

 

 

 

4 3 0 0
1 0 0 0

16 2 5 1 2 1 2 1 1
3 10 1 0 0

3 3 103 5 3 5
1

0 0 1 2 2 16 1 16 1 1
0 1 2 15

3 3 3 103 5 2 5
1 1

0 0 1 1 1 4 1 4 1105 0 1 2 1
3 3 3 103 5 3 5

a

a
a

a
a

a a
a

 
   

             
                   
                  

              

4 3 0 0

16 5
3 0

3 3 5
5 16 9

0
3 53 5
9 12

0 0
5 5

 
 
 
 
 
 
 
 
 
  

2.7 Power Method

In section 2.2.3 we have seen that convergence of iterative method depends upon the spectral

radius of iteration matrix H. Spectral radius of a matrix is the largest eigen value in modulus. Therefore,

it is necessary to calculate the largest eigen value (in magnitude). Power method is normally used to

determine the largest eigen value (in magnitude) of the given matrix (spectral radius of a matrix).

Suppose we want to determine the largest eigen value of a square matrix A of order n. Let 1 ,

2 , 3 , ...., n  be the distinct eigen values of matrix A arranged in decreasing order (in magnitude).

1 2 3 ..... n       .... (2.7.1)

and 1v , 2v , 3v , ..., nv  be the corresponding linearly independent eigen vectors.
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i i iAv v ,  i = 1, 2, 3, ....., n ..... (2.7.2)

Since eigen vectors are linearly independent, any eigen vector v  in the eigen space, spanned

by the eigen vectors 1v , 2v , 3v , ..., nv ,  can be written as

1 1 2 2 ..... n nv c v c v c v    .... (2.7.3)

[Since 1v , 2v , 3v , ..., nv  are linearly independent vectors, this set is a basis of eigen space]

Premultiplying equation (2.7.3) by A we get,

 1 1 2 2 ..... n nAv A c v c v c v   

       1 1 2 2 3 3 ..... n nc Av c Av c Av c Av    

From equation (2.7.2) we have

1 1 1 2 2 2 3 3 3 ..... n n nAv c v c v c v c v       

      
32

1 1 1 2 2 3 3
1 1 1

..... n
n nc v c v c v c v

 
  

              
      

        32
1 1 1 2 2 3 3

1 1 1

..... n
n nA Av A c v c v c v c v

 
  

                 
        

       
32

1 1 1 2 2 3 3
1 1 1

..... n
n nc Av c Av c Av c Av

 
  

              
      

    
32

1 1 1 1 2 2 2 3 3 3
1 1 1

..... n
n n nc v c v c v c v

     
  

              
      

   i i iAv v

       

2 22
2 32

1 1 1 2 2 3 3
1 1 1

..... n
n nc v c v c v c v

 
  

                     

Repeatative premultiplication of A gives,

32
1 1 1 2 2 3 3

1 1 1

.....
k kk

k k n
n nA v c v c v c v c v

 
  

                     
.... (2.7.4)

1 11
1 1 32

1 1 1 2 2 3 3
1 1 1

.....
k kk

k k n
n nA v c v c v c v c v

 
  

 
 

                     
.... (2.7.5)
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As k becomes very large, right hand side of equation (2.7.4) and (2.7.5) will be dominated by

1 1 1
kc v   and 1

1 1 1
k c v   respectively..

[Since 1 i  , i =  2, 3, 4, ... n, 
1

0
k

i


   
 

 as k   ]

Thus 1 1 1
k kA v c v

and 1 1
1 1 1

k kA v c v 

Now the eigen value 1  is obtained as the ratio of the corresponding components of 1kA v

and kA v .

 
 

1
1 1 1

1
1 1 1

k
r

k
r

c v

c v








   and

 
 

1

1

k
r

kk
r

A v
Lt

A v





 ,  r = 1, 2, 3, ..., n

where the suffix r denotes the rth component of the vector.

The iteration is stoped when the magnitudes of the differences of the ratios are less than the

given error tolerance.

In order to keep roundoff error in control, we normalize the vector before premultiplying by A.

For computation purpose we follow the following procedure.

Let 0v  be a non-zero arbitrary initial vector. (we choose 0v  in such a way that 0 1 0Tv v   )

Define 1k ky Av 

Suppose 1km   is the largest element in magnitude of 1ky  ,

Define
1

1
1

k
k

k

y
v

m







Calculate  
 
 

1k r

k r

y

v


, r = 1, 2, 3, ..., n

If all the ratios are less than the given error tolerance

i.e. if  
 
 

 
 

11 kk sr

k kr s

yy

v v
   , 1, 2,...,r s n 
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Then 
 
 

1
1

k r

k r

y

v
   as k  .

The vector 1kv   is the required eigen vector..

The initial vector 0v  is usually chosen as a vector with all components equal to unity if no

suitable approximation is available.

1. Solve the system of equations.

1 2 34 2  x x x

1 2 35 2 6   x x x

1 2 32 3 4   x x x

Using Jacobi iteration method. Take the approximation as  0 0.5, 0.5, 0.5   T
x  and perform

two iterations.

Answer :  We have the system of equation Ax b  where

4 1 1

1 5 2

1 2 3

 
   
  

A ,  

1

2

3

 
   
  

x

x x

x
and  

2

6

4

 
   
  

b

For Jacobi iteration method,

 ( 1) 1 ( ) 1)     k kx D L U x D b

4 1 1

1 5 2

1 2 3

 
   
  

 A , 

0 0 0

1 0 0

1 2 0

 
   
  

L  , 

0 1 1

0 0 2

0 0 0

 
   
  

U  and 

4 0 0

0 5 0

0 0 3

 
   
  

D

 1

1 1 10 0 04 4 40 1 1
1 1 20 0 1 0 2 05 5 5

1 2 01 1 20 0 03 3 3



   
    
           
     

      

D L U

ILLUSTRATIVE  EXAMPLES



87

1

11 0 0 24 2
610 0 65 5

41 40 0 3 3



  
    
           
             

D b

Thus Jacobi iteration method becomes

( 1) ( )

11 10 24 4
61 205 5 5

1 2 403 3 3



   
  
      
  
          

k kx x

0

0.5

0.5

0.5

 
   
  

x

(1)

11 10 24 4 0.5
61 20 0.55 5 5

0.51 2 403 3 3

        
             
              

x

      

1
20.25 0.75

60.1 1.15
0.16666 1.166674

3

 
    
            
         

(2)

11 10 24 4 0.75
61 20 1.15 5 5

1.166671 2 403 3 3

        
             
              

x

        

1.0666675

0.883332

0.85
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2. For the following system of equations

4 2 4  x y z

3 5 7  x y z

3 3  x y z

(a) Show that Jacobi iteration scheme converges.

(b) Obtain the Jacobi iteration scheme in matrix form.

(c) Starting with (0) 0x , itrate two times.

Answer :  We have the system of equations Ax b  where

4 1 2

3 5 1

1 1 3

 
   
  

A ,  

 
   
  

x

x y

z
,  

4

7

3

 
   
  

b

Jacobi iteration method is

( 1) ( ) 1  k k
Jx H x D b

where,  1  JH D L U

Here

0 0 0

3 0 0

1 1 0

 
   
  

L ,  

4 0 0

0 5 0

0 0 3

 
   
  

D ,  

0 1 2

0 0 1

0 0 0

 
   
  

U

Therefore,  1  JH D L U

           

1 0 04 0 1 2
10 0 3 0 15

1 1 010 0 3

 
  
      
    

  

           

1 10 4 2
3 105 5
1 1 03 3
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1

1 0 04 4
10 0 75

310 0 3



 
  
     
    

  

D b

Thus we have Jacobi iteration scheme.

( 1) ( )

1 10 14 2
3 7105 5 5
1 1 103 3

k kx x

                      

.... (i)

To check the convergence of numerical scheme, let us analyze the eigenvalues of the matrix

HJ.

Bounds on the eigenvalues of the matrix HJ are calculated by using Gerschgorin theorem.

By Grsungorin theorem

 3 4 2 4
max , ,

4 5 3 5
 

 14 7 7
max , , 1

15 12 10
 

Thus 1  and   1JH 9  therefore Jacobi iteration scheme is convergent scheme.

( 1) ( )

1 10 14 2
3 7105 5 5
1 1 103 3

k kx x

                      

(0) 0x

(1)

1

7
5

1

x
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(2)

1 10 1 14 2 0.15
3 7 710 0.65 5 5 5

0.21 1 1 103 3

x

                                         

3. For the following systemof equations.

2 1 x y

2 0   x y z

2 0   y z w

2 1z w  

Find the rate of convergence of Jacobi iteration method.

Answer :  We have the system Ax b  where

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

 
   
  
  

A
 , 

 
 
 
 
 
 

x

y
x

z

w

 and  

1

0

0

1

b

 
 
 
 
 
 

For Jacobi iteration method

 1  JH D L U

Here 

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

 
  
 
  

L ,  

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 
 
 
 
 
 

D ,  

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 
  
 
 
 

U

Thus   1  JH D L U

    

1 0 0 02 0 1 0 0
10 0 0 1 0 1 02

1 0 1 0 10 0 02
0 0 1 010 0 0 2

 
   
             
     
  

To determine the rate of convergence, let us calculate  JH9 , consider det   0 JH I .
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1 0 02
1 1 02 2 0

1 10 2 2
10 0 2




 













1 1 10 02 2 2
11 1 10 02 2 22

1 10 02 2



     

 



  

 

2 21 1 1 1 1 1
0 0 (0) 0

4 2 2 2 2 4 2

                           
        

   

   3 21 1 1 1 1
0

4 4 2 2 8
           

4 23 1
0

4 16
    

 2
2

3 3 4
4 4 16

2

 


      
3 5

8




0.654508497  , 0.095491502 

  0.654508497 JH9

The rate of convergence,

 10log  JH 9

    log 0.654508497 

    = 0.1841
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4. Solve the system of equations.

1 22 7 x x

1 2 32 1   x x x

2 32 1  x x

Using Gauss-Seidel method. Take the initial approximation as (0) 0x  and perform

two iterations.

Answer : We have the system of equations Ax b  where

2 1 0

1 2 1

0 1 2

 
    
  

A ,  

1

2

3

 
   
  

x

x x

x
,  

7

1

1

 
   
  

b

By Gauss-Seidel method

   1 1( 1) ( ) k kx D L U x D L b
      

Here

0 1 0

0 0 1

0 0 0

 
   
  

U   and  
 

2 0 0

1 2 0

0 1 2

 
    
  

D L

  1
4 2 1

1
0 4 2

8
0 0 4


 
    
  

T

D L

    

1 0 024 0 0
1 1 12 4 0 04 28

1 2 4 1 1 1
8 4 2

 
   
       
    

  

  1

1 10 0 0 02 20 1 0
1 1 1 10 0 0 1 04 2 4 2

0 0 01 1 1 1 108 4 2 8 4



       
             
             

D L U
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  1

7
1 0 0 22 7

91 1 0 14 2 4
11 1 1 138 4 2

8

D L b


 
  

    
          
      

    
  

Thus we have the iteration scheme

( 1) ( )

710 0 22
91 10 4 2 4

1 1 130 8 4 8



  
  
   
  
  

      

k kx x

0

0

0

0

 
   
  

x

(1)

7
2

9
4

13
8

 
 
 
 
 
  

x

(2)

7 710 0 2 22
9 91 10 4 2 4 4

1 1 13 130 8 4 8 8

    
    
     
    
    

          

x

       

4.625

3.625

2.3125

 
   
  

5. Determine the convergence factor for the Jacobi and Gauss Seidel methods for the system.

1

2

3

4 0 2 4

0 5 2 3

5 4 10 2

x

x

x
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Answer :

(i)  1  JH D L U

       

1 0 04 0 0 2
10 0 0 0 25

5 4 010 0 10

 
  
      
    

  

       

10 0 2
20 0 5

1 2 02 5

 
 
  
 
 
  

det   0 JH I

2

10 0 2
4 120 0 05 25 2 2

1 2
2 5

 
                

  


  



3 4 1
0

25 4
      
 

 

  2 41
0

100
      

 

0  ,  
41

100
  , 

41

100
 

Thus   0.41JH9  is the convergence factor of Jacobi iteration method.

(ii) For Gauss Seidel iteration method

  1  GH D L U

0 0 2

0 0 2

0 0 0

 
   
  

U  and 

4 0 0

0 5 0

5 4 10

 
    
  

D L
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  1
50 0 25

1
0 40 16

200
0 0 20


 

    
  

T

D L

     

1 0 04
10 05

1 2 1
8 25 10

 
 
 
 
    

  1  GH D L U

       

1 0 04 0 0 2
10 0 0 0 25

0 0 01 2 1
8 25 10

 
  
      
       

       

10 0 2
20 0 5

410 0 100

 
 
  
 
   

det   0 GH I  gives

   

10 2
41 120 0 0 0 05 100 2

410 0 100

 
               





   



Thus 0 , 0 , 
41

100
  are eigen values of HG. and   41

0.41
100

 GH9  is

convergence factor of Gauss Seidel iteration method.
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6. For the following system of equations

3 1 0 2

2 3 1 0

0 2 3 1

      
           
          

x

y

z

(a) Set up the Gauss Seidel iteration scheme in matrix form.

(b) Show that iteration scheme is convergent and hence find its rate of convergence.

(c) Starting with (0) 0x , iterate two times.

Answer :

(a)   1  GH D L U

In this example

3 0 0

2 3 0

0 2 3

 
    
  

D L  and  

0 1 0

0 0 1

0 0 0

 
   
  

U

  1
9 6 4

1
0 9 6

27
0 0 9


 
    
  

T

D L

     

1 2 4 1 0 03 9 27 3
1 2 2 10 03 9 9 3

1 4 2 10 0 3 27 9 3

      
   
        
   
            

T

Thus,   1  GH D L U

     

1 0 03 0 1 0
2 1 0 0 0 19 3

0 0 04 2 1
27 9 3
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10 03
2 10 9 3
4 20 27 9

 
 
 
 
 
  

  1

1 0 03 2
2 1 0 09 3

14 2 1
27 9 3



    
        
        

D L b

       

2
3

4
9

17
27

 
 
 
 
   

Thus,  ( 1) ( )

1 20 03 3
2 1 40 9 3 9
4 2 170 27 9 27



   
   
    
   
   
      

k kx x

Answer (b) :  To determine the rate of convergence we calculate spectral radius of matrix HG.

det   0 GH 

1 03
2 10 09 3
4 20 27 9









  



 2 2 4 1
0,0 0

9 9 81 3

               
  

2 4 4 4
0

9 81 81
       

  

2 4
0

9
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4
0,0,

9
   are eigen values of HG.

Thus,   4

9
GH9

Since   4
1

9
 GH9 , the method is convergent.

The rate of convergence 
4

log 0.3522
9

   .

Answer (c) : (0) 0x

(1)

2
3 0.6667

4 0.44459
0.629717

27

 
  
      
    

  

x

(2)

1 2 20 03 3 3
2 1 4 40 9 3 9 9
4 2 17 170 27 9 27 27

     
     
      
     
     
          

x

        

22
27 0.8148

61 0.753181
0.8354203

243

 
  
      
    

  

7. Find the inverse of matrix 

3 2 1

2 3 2

1 2 2

 
   
  

A .

Using LU decomposition method. Take Uii = 1.

Answer : We write

11 12 13

21 22 23

31 32 33

3 2 1 0 0 1

2 3 2 0 0 1

1 2 2 0 0 1

     
          
         


 
  

u u

u
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11 11 12 11 13

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

u u

u u u

u u u

 
    
    

  
    
     

On comparing the corresponding elements we have from first column 11 3 , 21 2 ,

31 1 .

From first row 11 12 12
2

2
3

   u u

11 13 13
1

1
3

   u u

From second column 21 12 22 3  u

22
4 5

3
3 3

  

31 12 32 2  u

32
2 4

2
3 3

   

From third column we have

21 13 22 23 2  u u

23
1 5

(2) 2
3 3

       
   

u

23
4

5
 u

31 13 32 23 33 2    u u

33
1 16

2
3 15

   

33
1 16 3

2
3 15 5

   

Thus we have,

3 0 0

52 03
341 3 5

 
 

  
 
  

L   and 

2 11 3 3
40 1 5

0 0 1

 
 
 
 
  

U
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Now, 1

61 15
1 90 453

0 0 5



 
 
  
 
  

T

L

                  

1 0 03
32 05 5

51 4
3 3 3

 
 
  
 
   

      

T

1

1 0 0

2 1 03
1 4 15 5

U 

 
 

  
 

  

 

2 11 3 5
40 1 5

0 0 1

 
 
  
 
  

Hence,   11 1 1   A LU U L

       

12 1 0 01 33 5
34 20 1 05 5 5

0 0 1 51 4
3 3 3

  
  
    
  
      

       

2 2 1
3 3 3

52 4
3 3 3

51 4
3 3 3
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8. Solve the following system of equations by Doolittie’s method.

1

2

3

4

2 1 1 2 10

4 0 2 1 8

3 2 2 0 7

1 3 2 1 5

      
    
    
    
          

x

x

x

x

Answer :  We write the system of equations

Ax b  as LUx b  or Ly b  and Ux y .

From Ly b  calculate y  by forward substitution and calculate x  from Ux y  by backward

substitution. For Doolittle method diagonal elements of matrix L are 1. Thus we have,

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1 0 0 02 1 1 2

1 0 0 04 0 2 1

1 0 0 03 2 2 0

1 0 0 01 3 2 1

     
    
     
    
           


 
  

u u u u

u u u

u u

u

Comparing the corresponding elements on both sides, from first row we have,

11 2u , 12 1u , 13 1u , 14 2 u .

From first column we have,

11 21 21 31 41
3 1

4 2, ,
2 2

       u

From second row we have 21 12 22 0u u    i.e. 22 2u  

21 13 23 2  u u  i.e. 23 0u

21 14 24 1  u u  i.e. 24 1 (2)( 2) 5   u

From second column we have,

31 12 32 22 2  u u   i.e. 32
1

4
 

41 12 42 22 3  u u   i.e. 42
5

4
 

From third row,

31 13 32 23 33 2   u u u  i.e. 33
1

2
u
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31 14 32 24 34 0   u u u  i.e 34
17

4
u

From third column we get,

41 13 42 23 43 33 2    u u u  i.e. 43 3

Lastly 41 14 42 24 43 34 44 1      u u u u  i.e. 44
13

2
 u

Thus we have

1 0 0 0

2 1 0 0

3 1 1 02 4
51 3 12 4

 
 
 

  
 
   

L   and  

2 1 1 2

0 2 0 5

1710 0 2 4
130 0 0 2

 
  

  
 
   

U

From Ly b  we get

1

2

3

4

1 0 0 0 10
2 1 0 0 8

3 1 1 0 72 4
5 51 3 12 4

                                 

y

y

y

y

Using forward substitution we have

1 10 y , 2 8 2 28  y y

3 1 2
3 1 30 28

7 7 29
2 4 2 4

      y y y

4 1 2 3
1 5 10 5

5 3 5 (28) 3(29) 52
2 4 2 4

           y y y y

From Ux y  we get

1

2

3

4

2 1 1 2 10
0 2 0 5 28

1710 0 292 4
13 520 0 0 2

                                 

x

x

x

x
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By backward substitution we have,

4 4
13

52 8
2

    x x

3 4 3
1 17

29 10
2 4

    x x x

2 4 22 5 28 6    x x x

1 2 3 4 12 2 10 5      x x x x x

Thus the solution is,

1 5x , 2 6x , 3 10 x , 4 8x .

9. Solve the following system of equations Ax b  by Crout method.

1

2

3

1 1 1 1

4 3 1 6

3 5 3 4

     
           
         

x

x

x

Answer :  We write A = LU

11 12 13

21 22 23

31 32 33

1 1 1 0 0 1

4 3 1 0 0 1

3 5 3 0 0 1

     
           
         


 
  

u u

u

On comparing the corresponding elements we obtain,

First column, 11 1 , 21 4 , 31 3 .

First row, 11 12 1 u  i.e. 12 1u , 13 1u .

Second column, 21 12 22 3  u   i.e. 22 3 4 1   

31 12 32 5  u  i.e. 32 5 3 2  

Second row, 21 13 22 23 1   u u  i.e. 23 5u

Second row, 21 13 22 23 1   u u  i.e. 23 5u

Third row, 31 13 32 23 33 3    u u   i.e. 33 3 3 10 10    
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Thus we have,

1 0 0

4 1 0

3 2 10

 
   
  

L  ,  
1 1 1

0 1 5

0 0 1

 
   
  

U

Now   LU x b ,

Put Ux y  then Ly b ,

i.e.

1

2

3

1 0 0 1

4 1 0 6

3 2 10 4

     
           
         

y

y

y

Using forward substitution we have y1 = 1.

1 24 6 y y   i.e.  2 4 6 2   y

1 2 33 2 10 4  y y y  i.e.  3
1 1

(3)(1) 2( 2) 4
10 2

y      

Thus 1 1y , 2 2 y  and 3
1

2
 y .

Now Ux y ,

1

2

3

1 1 1 1

0 1 5 2

0 0 1 1

2

     
           
           

x

x

x

By back substitution we get 3
1

2
 x ,

2 35 2  x x  i.e.  2
1 1

2 5
2 2

     
 

x

and 1 2 3 1  x x x  i.e. 1 2 3
1 1

1 1 1
2 2

      x x x

Thus 1 1x , 2
1

2
x , 3

1

2
 x  is the solution.
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10. For the matrix 

2 1 1

1 2 1

1 1 2

 
    
  

A , find all eigen values and the corresponding eigen vectors.

Answer :  det   0A I 

         2
2 1 1

1 2 1 2 2 1 1 2 1 1 2 0

1 1 2

 
                 

 


    



      22 4 4 1 1 1 0              

    22 4 3 2 1 0         

3 26 9 4 0      

  21 5 4 0       

   1 4 1 0       

Thus 1 , 1 , 4  are eigenvalues.

The eigenvectors corresponding to 1  is solution of the system   0A I x  .

1

2

3

1 1 1 0

1 1 1 0

1 1 1 0

     
            
         

x

x

x

The solutions are 

1

1

0

 
   
  

x   and 

1

0

1

 
   
  

x .

The eigenvector corresponding to 4   is solution of  4 0A I x  .

1

2

3

2 1 1 0

1 2 1 0

1 1 2 0

      
             
          

x

x

x

The solution is 

1

1

1

 
   
  

x .
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11. Find the intervals which contain all the eigenvalues of the following matrix.

1 2 3

2 1 1

3 1 2

 
  
   

Answer :  By Gerschgorin bounds the eigen values lie in the region.

 max 6, 4,6 6 

 max 6, 4,6 6 

i.e. 6

By Brauer theorem, all the eigen values lie in the union of circles 1 5  , 1 3  ,

2 4   and union of circles 1 5  , 1 3  , 2 4  .

Thus all the eigenvalues lie in the region

   6 1 5 1 3 2 4           

Since A is summetric all eigen values are real.

        6,6 4 6 2 4 2 6             

        6,6 4,6 2, 4 2,6     

     6,6 4,6 4,6   

12.  Compute 

10
1 0.1

0.1 1

 
 
 

exactly..

Answer :  Let 
cos sin

sin cos

 
  
 

S
 
 

cos sin 1 0.1 cos sin

sin cos 0.1 1 sin cos

     
           

TS AS
   
   

cos sin cos (0.1)sin sin (0.1)cos

sin cos (0.1)cos sin (0.1)sin cos

     
          

     
     

              

2 2 2 2

2 2 2 2

cos (0.2)sin cos sin sin cos (0.1) cos (0.1)sin sin cos

(0.1) cos sin sin (0.1)sin cos (0.1)sin cos cos
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2 2

2 2

1 (0.2)sin cos (0.1) cos sin

(0.1) cos sin 1 (0.2)sin cos

  
  
   

   

   

This matrix reduces to diagonal matrix if 2 2cos sin 0   .

2 2cos sin 0 cos 2 0 2
2

     
   

4



Using this values of 
4


  we get

1.1 0

0 0.9

 
  
 

TS AS D

10 10TS A S D

10 10 TA SD S

Since 
4


 , 

1 1

2 2
1 1

2 2

S

  
 
 
  

     

10
10

10

1 1 1 1
(1.1) 02 2 2 2

1 1 1 10 (0.9)
2 2 2 2

A

       
     
            

10 10

10 10

1 1 (1.1) (1.1)

2 2 2 2
1 1 (0.9) (0.9)
2 2 2 2

  
  
  
  
      

10 10 10 10

10 10 10 10

(1.1) (0.9) (1.1) (0.9)

2 2 2 2

(1.1) (0.9) (1.1) (0.9)

2 2 2 2
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13. Find all the eigenvalues and the corresponding eigen vectors of the matrix 

1 2 4

2 5 2

4 2 1

 
   
  

using Jacobi method.

Answer :

The largest off diagonal element in magnitude is a13.

13

11 33

2 8
tan 2

0

a

a a
    

  i.e. 
4




1

1 1
0

2 2
0 1 0

1 1
0

2 2

  
 

  
 
 
  

S

The first rotation gives,

1
1 1 1

1 1 1 1
0 0

1 2 42 2 2 2
0 1 0 2 5 2 0 1 0

1 1 4 2 1 1 1
0 0

2 2 2 2



                           
      

B S AS

         

5 3
1 1 2

0 2 2
2 2

4
0 1 0 5 0

2
1 1

0 5 3
22 2

2 2

    
   
       
   
         

       

4
5 0

2
4

5 0
2

0 0 3
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The largest off diagonal element in B1 is (1, 2)

 
   

4
1,2 2tan 2

1,1 2,2 5 5


   

 
  i.e. 

4



2

1 1
0

2 2
1 1

0
2 2

0 0 1

  
 
   
 
  

S

The second rotation gives,

1
2 2 1 2

1 1 4 1 1
0 5 0 0

2 2 2 2 2
1 1 4 1 1

0 5 0 0
2 2 2 2 2

0 0 1 0 0 3 0 0 1



            
     
             
     

          

B S B S

1 1 5 5
0 2 2 0

2 2 2 2
1 1 5 5

0 2 2 0
2 2 2 2

0 0 1 0 0 3

        
   
          
   

      

5 2 2 0 0

0 5 2 2 0

0 0 3

 
 

  
  

Thus eigenvalues are 1 5 2 2  , 2 5 2 2  , 2 3  .

We have the matrix of eigenvectors as,
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1 2S S S

    

1 1
1 1 0

0 2 2
2 2

1 1
0 1 0 0

2 2
1 1

0 0 0 1
2 2

       
       
   
      

  

1 1 1

2 2 2
1 1

0
2 2

1 1 1

2 2 2

   
 
   
 
   

The eigenvectors are,

1 2 3

1 1 1
2 2 2
1 1

,     ,    0
2 2

1
1 1

2
2 2

V V V

                                            

14. Using the Householder’s transformation reduce the matrix 

2 1 1

1 1 0

1 0 1

 
   
  

A  into a tridiagonal

matrix.

ANswer :  We have  2 30, , T
w x x , 2 2

1 12 13 2  S a a

 2 12 12
2

1

 sign 1 1 1 2 1
1 1

2 S 2 2 2 2

            

a a
x

2
2

1
1 2

2
  x
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 13 13
3

1 2 1 2

sign 1

2 2
 

a a
x

S x S x ; 2 3
1

2
2

x x

2
3

1
1 2

2
 x

Thus, 2
1 2 2 3

2
2 3 3

1 0 01 0 0
1 1

0 1 2 2 0
2 2

0 2 1 2 1 1
0

2 2

                    
 
  

P x x x

x x x

1 1

1 0 0 1 0 0
2 1 1

1 1 1 1
0 1 1 0 0

2 2 2 2
1 0 1

1 1 1 1
0 0

2 2 2 2

   
    
             
     

    
      

B P AP

    

2 2 0

2 1 0

0 0 1

 
 

  
 
 

15. Redice the matrix 

1 2 1

2 1 2

1 2 1

 
 
 
  

 into tridiagonal form using the Householder method.

Answer :  We have  2 30, , T
w x x , 2 2

1 12 13 5  S a a

 2 12 12
2

1

 sign1 1 2 5 2
1 1

2 S 2 5 2 5

            

a a
x

2
2

5 2 2
1 2

5 5
x


    

 13 13
3

1 2 1 2

sign 1

2 2

a a
x

S x S x


  ;  

2
2 3

1 2 1

2 1 1
2

2 5

x
x x

S x S
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2 2
3 2

5 2 5 2
1 1

2 5 2 5

 
    x x

 2
3

2 5 2 2
1 2 1

2 5 5


    x

Thus, 2
1 2 2 3

2
2 3 3

1 0 01 0 0
2 1

0 1 2 2 0
5 5

0 2 1 2 1 2
0

5 5

                    
 
  

P x x x

x x x

1 1

1 0 0 1 0 0
1 2 1

2 1 2 1
0 2 1 2 0

5 5 5 5
1 2 1

1 2 1 2
0 0

5 5 5 5

        
             
     

    
      

B P AP

   

1 0 0 1 5 0

2 1 4
0 2 5

5 5 5
1 2 3 4

0 1
5 5 5 5

  
  
       
  
    
     

   

5
1 0

1 5 05
5 3 6 3 6

5
5 5 5 55

6 36 3 00
5 55 5
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16. Find the largest eigenvalues in modulus and the corresponding eigenvector of the matrix

15 4 3

10 12 6

20 4 2

 
  
  

 using power method.

Answer :  Let 0v  be a non-zero arbitrary initial vector..

Define 1 k ky Av

1
1

1





 k

k
k

y
v

m  , 1km  is the largest (in magnitude) element in 1ky .

1
1 lim 



   
 

k

k k r

y

v
   , r = 1, 2, 3, ...., n.

1kv  is the required eigenvector,,

I.  0 1,1,1 T
v

1

15 4 3 1 8

10 12 6 1 4

20 4 2 1 18

      
            
          

y ;  1

4
9

2
9

1

 
 
 
 
  

v

1

0 1,2,3

8

4

18

 
         

 

y

v   not compatible.

II. 2

4
915 4 3 10.55

210 12 6 1.119
20 4 2 7.771

y

     
           
         

; 2

1

0.105

0.736

 
   
  

v

2

1 1,2,3

23.73

4.99

7.77

 
           

y

v  not compatible.
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III. 3

15 4 3 1 17.628

10 12 6 0.105 6.844

20 4 2 0.736 18.948

      
             
           

y ; 3

0.9303

0.3612

1

 
   
  

v

 

3

2 1,2,3

17.628

65.18

24.45

y

v

 
           

 not compatible.

IV. 4

15 4 3 0.9303 18.39

10 12 6 0.3612 7.6374

20 4 2 1 18.0508

      
             
           

y ; 4

1

0.415

0.98

 
   
  

v

 

4

3 1,2,3

19.76

21.14

18.05

 
           

y

v  not compatible.

V. 5

15 4 3 1 19.6

10 12 6 0.415 9.1

20 4 2 0.98 19.7

      
             
           

y ; 5

0.99

0.46

1

 
   
  

v

 

5

4 1,2,3

19.6

21.92

20.10

 
           

y

v  not compatible.

VI. 6

15 4 3 0.99 19.69

10 12 6 0.46 9.42

20 4 2 1 19.64

      
             
           

y ; 6

1

0.48

0.99

 
   
  

v

 

6

5 1,2,3

19.88

20.47

19.64

y

v

 
           

 not compatible.
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VII. 7

15 4 3 1 19.89

10 12 6 0.48 9.82

20 4 2 0.99 19.94

      
             
           

y ; 7

0.997

0.492

1

 
   
  

v

 

7

6 1,2,3

19.89

20.45

20.14

 
           

y

v  not compaitble.

VIII. 8

15 4 3 0.997 19.923

10 12 6 0.492 9.874

20 4 2 1 19.908

      
             
           

y ; 8

1

0.495

0.999

 
   
  

v

 

8

7 1,2,3

19.98

20.06

19.90

 
           

y

v

IX. 9

15 4 3 1 19.977

10 12 6 0.495 9.946

20 4 2 0.999 19.982

y

      
             
           

 

9

8 1,2,3

19.98

20.08

20.00

 
           

y

v  compatible.

The approximation to the largest eigenvalue in modulus is 20 . (i.e. 20  ) and the

eigenvector (approximate) is [1 – 0.495 – 0.999]T.

17. Find the largest eigenvalue of the matrix 

2 1 1 0

1 1 0 1

1 0 1 1

0 1 1 2

 
 
 
 
 
 

A  using power method. Correct

upto two decimal places.

Answer :   0 1,1,1,1 T
v
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I. 1

2 1 1 0 1 4

1 1 0 1 1 3

1 0 1 1 1 3

0 1 1 2 1 4

     
     
      
     
     
     

y
; 1

1

0.75

0.75

1

 
 
 
 
 
 

v

II. 2

2 1 1 0 1 3.5

1 1 0 1 0.75 2.75

1 0 1 1 0.75 2.75

0 1 1 2 1 3.5

     
     
      
     
     
     

y
 ; 2

1

0.786

0.786

1

 
 
 
 
 
 

v

 

2

1 1,2,3

3.5

3.66

3.66

3.5

 
 

          
 

y

v  not compatible upto 2 decimal places.

III. 3

2 1 1 0 1 3.572

1 1 0 1 0.786 2.786

1 0 1 1 0.786 2.786

0 1 1 2 1 3.572

     
     
      
     
     
     

y
; 3

1

0.7799

0.7799

1

 
 
 
 
 
 

v

 

3

2 1,2,3

3.572

3.544

3.544

3.572

 
 

          
 

y

v  not correct upto two decimal places.

IV. 4

2 1 1 0 1 3.5598

1 1 0 1 0.7799 2.7799

1 0 1 1 0.7799 2.7799

0 1 1 2 1 3.5598

     
     
      
     
     
     

y
; 4

1

0.7809

0.7809

1

 
 
 
 
 
 

v

 

4

3 1,2,3

3.5596

3.564

3.564

3.5596

 
 

          
 

y

v  not correct upto two decimal places.
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V. 5

2 1 1 0 1 3.5618

1 1 0 1 0.7809 2.7809

1 0 1 1 0.7809 2.7809

0 1 1 2 1 3.5618

     
     
      
     
     
     

y
;

 

5

4 1,2,3

3.5688

3.5611

3.5611

3.5618

 
 

          
 

y

v  correct upto two decimal place.

The approximate largest root is 3.561 and the corresponding eigenvector is 

1

0.7809

0.7809

1

 
 
 
 
 
 

.

1. Determine the LU decomposition of the matrix 

2 6 10

1 5 1

1 15 1

 
 
 
   

 assuming 1 ii , i = 1, 2, 3.

2. Solve the system of equations.

1 2 34 4  x x x

1 2 34 2 4  x x x

1 2 33 2 4 6  x x x

by Doolittle method.

3. Solve the following system of equation by Crout method.

(i) 1 2 3 2  x x x

1 2 32 2 5 3   x x x

1 2 33 2 3 6  x x x

EXERCISE
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(ii) 1 24 1 x x

1 2 34 0   x x x

2 34 0  x x

4. Given the matrix A = I + L + U where

1 2 2

1 1 1

2 2 1

 
   
  

A

L and U are strictly lower and upper triangular matrices respectively, decide whether (a) Jacobi,

(b) Gauss Seidel methods converge to the solution Ax b .

5. Show that the Gauss Seidel method for solving the system of equation.

(i)

1 1 1 1

2 3 5 6

3 2 3 4

      
           
          

x

y

z
and

(ii)

1 2 4 1

2 1 2 5

4 2 1 3

     
          
          

x

y

z
 diverges.

6. Setup the Jacobi iteration scheme in matrix form for the system

3 1 1 2

1 4 2 5

1 2 5 2

     
           
          

x

y

z

(i) Locate the eigenvalues of the iteration matrix H.

(ii) Determine the largest (in magnitude) eigenvalue using the Newton Rapnson method.

(iii) Find the rate of convergence of the iteration scheme.

7. The matrix 

1 2 3

6 13 18

4 10 18

 
   
  

A  is transformed to diagonal for by the matrix 
1 0 1

3 3 4

2 2 3

 
   
  

T

i.e. T–1AT. Calculate the eigenvalues and the corresponding eigenvectors of A.
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8. Find the intervals which contain all the eigenvalues of the following matrix

(i)  

1 2 3

2 1 1

3 1 2

 
  
   

(ii) 

2 3 1

3 2 2

1 2 1

 
 
 
  

(iii) 

1 1 1

1 1 1

1 1 1

 
  
  

9. Find eigenvalues and the corresponding eigenvalues of the following matrice using Jacobi method.

(i) 

3 2 2

2 5 2

2 2 3

 
 
 
  

(ii) 

1 2 4

2 5 2

4 2 1

 
   
  

(iii) 

2 2 4

2 6 2

4 2 2

 
 
 
 
  

10. Determine the largest eigenvalues and the corresponding eigenvector of the matrix 

4 1 0

1 20 1

0 1 4

 
 
 
  

to 3 correct decimal placed using power method.

11. Use Householder method and convert the following matrix in tridiagonal form 

1 2 1

2 1 2

1 2 1

 
 
 
  

.

12. Find the largest eigenvalues of the matrix 

2 1 1 0

1 1 0 1

1 0 0 1

0 1 1 2

 
 
 
 
 
 

A  using power method.
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INTERPOLATION,  DIFFERENTIATION  AND
INTEGRATION

UNIT  -  III

Interpolation is used to approximate given function by a polynomial or it is used to fit a polynomial

when the data is given in tabular form. There are two main uses of interpolation. The first use is the

reconstruction of function when it is not given explicity and second use is to replace a function ( )f x  by

an interpolating polynomial ( )P x  so that many common operations such as determination of roots,

differentiation, integration etc. which are required to perform on ( )f x  may be performed using ( )P x .

In this unit we first discuss the methods of constructing the interpolating polynomial ( )P x  to a

given function. We determine the deviation of the given function ( )f x  from the approximating polynomial

( )P x by estimating truncation error bounds. We discuss numerical methods of differentiation and

integration of a given function ( )f x .

3.1 Interpolation

Definition 3.1.1 : Interpolating Polynomial

A polynomial ( )P x  is called an interpolating polynomial if the value of ( )P x and/or its certain

order derivatives coincide with those of ( )f x  and/or its derivatives at one or more tabular points.

3.1.1  Lagrange Interpolation

Linear Interpolation :

We want to determine a polynomial of degree one denoted by

 
1 1 0P x a x a 

where 0a  and 1a  are arbitrary constants.

Satisfying    1 0 0p x f x  and    1 1 1p x f x .

i.e. we want to interpolate a function by a polynomial of degree one.

Since    1 0 0p x f x ,  0 1 0 0f x a x a 

and      1 1 1 1 1 1 0p x f x f x a x a   
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Above equations are two linear equations in two unknowns 0a  and 1a . Simultaneous evaluation

of these two equations gives

   0 1
1

0 1

f x f x
a

x x




  and      0 1
0 0 0

0 1

f x f x
a f x x

x x

 
    

Thus          0 1 0 1
1 0 0

0 1 0 1

f x f x f x f x
p f x x x

x x x x

    
         

   
     

   01
1 0 1

0 1 1 0

x xx x
p x f x f x

x x x x


  

        .... (3.1)

In other words we want to determine a  polynomial  1 1 0p x a x a   which satisfies

 0 1 0 0f x a x a 

 1 1 1 0f x a x a 

Above equations are three equations in two unknowns and therefore they have to be linearly

dependent.

 

 
 

1

0 0

1 1

1

1 0

1

p x x

f x x

f x x



          1 0 1 0 1 1 0 0 11 0p x x x x f x f x x f x x f x            

   
     

   01
1 0 1

0 1 1 0

x xx x
p x f x f x

x x x x


  

 

         0 0 1 1x f x x f x            ..... (3.1.1.1)

where   1
0

0 1

x x
x

x x





  and   0

1
1 0

x x
x

x x







The functions  
0 x  and  

1 x  are called Lagrange fundamental polynomials. These

polynomials satisfy

   
0 1 1x x   ,  i j ijx  , i, j = 0, 1

In general, if we have (n + 1) distinct points 0 1 2...... na x x x x b      of [a, b] and a

value of the function ( )f x  is known at these points, we can determine the polynomial
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  2
0 1 2 .... n

n np x a a x a x a x    

which satisfies    n i ip x f x , i = 0, 1, 2, ....., n.

In other words we have,

  2 3
0 1 2 3 .... n

n np x a a x a x a x a x      .... (1)

    2 3
0 0 0 1 0 2 0 3 0 0.... n

n nf x p x a a x a x a x a x       .... (2)

    2 3
1 1 0 1 1 2 1 3 1 1.... n

n nf x p x a a x a x a x a x       .... (3)

    

    2 3
0 1 2 3 .... n

n n n n n n n nf x p x a a x a x a x a x       ... (n +2)

Equation (2) to ( n + 1) are n + 1 equations in (n + 1) unknowns 0a , 1a 2a , ..., na . Equations

(2) to (n + 2) has unique solution if the corresponding coefficient matrix is non-singular i.e.

 
 

 

2
0 0 0 0

02
1 1 1 1

12
22 2 2

2

1

1

1

1

n

n

n

n
n n

n n n

x x x a
f x

x x x a
f x

ax x x

f x
ax x x

                                



 

 


          ..... (3.2.1.2)

has a unique solution if the Vandermonde’s determinant

 

2 3
0 0 0 0

2 3
1 1 1 1

2 3
0 1 2 2 2 2 2

2 3

1

1

, , ,..., 01

1

n

n

n
n

n
n n n n

x x x x

x x x x

v x x x x x x x x

x x x x

 
 
 
   
 
 
  








If we determine 0a , 1a 2a , ..., na  from system (3.2.1.2) then the system (1), (2), ... (n + 2)

will be linearly dependent and therefore its determinant should be zero.
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i.e.

 

 
 
 

 

2

2
0 0 0 0

2
1 1 1 1

2
2 2 2 2

2

1

1

1
0

1

1

n
n

n

n

n

n
n n n n

p x x x x

f x x x x

f x x x x

f x x x x

f x x x x











          ..... (3.2.13)

To evaluate the l.h.s. of equation (3.2.1.3) we use the following property of the determinants.

Let  

2 3
0 0 0 0

2 3
1 1 1 1

2 3
2 2 2 2

0 1 2 1

2 3
1 1 1 1

2 3

1

1

1
, , ,...,

1

1

n

n

n

n

n
n n n n

n

x x x x

x x x x

x x x x
v x x x x x

x x x x

x x x x



   

 
 
 
 
   
 
 
 
  









     

2 1
0 0 0

2 1
1 1 1

2 1
0 1 2 1 2 2 2

2 1
1 1 1

1

1

.... 1

1

n

n

n
n

n
n n n

x x x

x x x

x x x x x x x x x x x

x x x









  

 
 
 
       
 
 
  





 


        0 1 2 0 1 2 1.... , , ,....,n nx x x x x x x x x x x x      

To evaluate determinant in equation (3.2.1.3) we expand the determinant with respect to first

column. The evaluation of determinant in equation (3.2.1.3) gives

   

2 2
0 0 0

2 2
1 1 1 1 1 1

2 2
02 2 2 2 2 2

2 2

1 1

1 1

....1 1

1 1

n n

n n

n n
n

n n
n n n n n n

x x x x x x

x x x x x x

p x f xx x x x x x

x x x x x x
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2

2
0 0 0

1 2
1 1 1

2
1 1 1

1

1

... 1 01

1

n

n

n n

n
n n n

x x x

x x x

x x x

x x x



  

 
 
 
    
 
 
  





    


           0 1 2 0 1 2 3 1 0 2 3, , ,...., , , , ,..., , , , ,...,n n n np x v x x x x f x v x x x x x f x v x x x x x  

   1
0 1 2 1.... 1 , , , ,...., 0

n
nv x x x x x


  

   
     

   1 2 0 2 3
0 1

0 1 2 0 1 2

, , ,...., , , , ,....,

, , ,...., , , ,....,
n n

n
n n

v x x x x v x x x x x
p x f x f x

v x x x x v x x x x
  

     
 
       

   0 1 3 4 0 1 1
2

0 1 2 0 1 2

, , , , ...., , , ,....,
..... 1

, , , ...., , , ,....,
nn n

n
n n

v x x x x x x v x x x x
f x f x

v x x x x v x x x x
   

  
 
     

   1 2 3 0 2 3
0 1

0 1 2 1 0 2

, , , ,...., , , , ,....,

, , , ...., , , ,....,
n n

n n

v x x x x x v x x x x x
f x f x

v x x x x v x x x x
 

 
     

   0 1 3 0 1 1
2

2 0 1 3 0 1 2 1

, , , ,...., , , ,....,
....

, , , ,...., , , , ,....,
n n

n
n n n

v x x x x x v x x x x
f x f x

v x x x x x v x x x x x



   ... (3.2.1.3)

[If we interchange any row of determinant, the value of determinant changes its sign]

From the elimentary properties of determinant observe that

        1 2 3 1 2 1 2, , , ,...., ...... , ,...,n n nv x x x x x x x x x x x v x x x   

and         0 1 2 3 0 1 0 2 0 1 2, , , ,...., ...... , ,...,n n nv x x x x x x x x x x x v x x x   

Thus
 
 

     
     

 1 3 1 2 3
0

0 1 2 0 1 0 2 0 3 0

, , ,...., ....

, , , ...., ....
n n

n n

v x x x x x x x x x x x x
x

v x x x x x x x x x x x x

   
 

   
  (say)

Similarly, 
 
 

     
     

 0 2 3 0 2 3
1

1 0 2 3 1 0 1 2 1 3 1

, , , ,...., ....

, , , ,...., ....
n n

n n

v x x x x x x x x x x x x x
x

v x x x x x x x x x x x x x

   
 

   
  (say)

In general,

      
 

 
       

       
0 1 1 1 0 1 1 1

0 1 2 1 1 0 1 1 1

, , , .... , ,...., .... ....

, , , ,...., , ,...., ..... ......
i i n i i n

i i i n i i i i i i i n

v x x x x x x x x x x x x x x x x

v x x x x x x x x x x x x x x x x x
   

   

    


    

  
i x      (say)
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Now equation (3.2.1.3) becomes

       0 0( ) ( ) .... ( )n i i n np x x f x x f x x f x     

 
0

( )
n

i i
i

x f x




   
0

( )
n

n i i
i

p x x f x


  where

 

 
( )

k
k i

i
i k

k i

x x

x
x x













   is called Lagrarge interpolating polynomial.

3.1.2 Newtons Interpolating Polynomial

In the last section we have seen that if we have (n + 1) distinct points

0 1 2..... na x x x x b      and the value of a function ( )f x  at  these points then we can fit a

polynomial  
np x  of degree n such that

   n i ip x f x , i = 0, 1, 2, ..., n.

Now represent this polynomial  
np x  in form

           0 1 0 2 0 1 0 1 1.... ....n n np x a a x x a x x x x a x x x x x x           

We want to calculate 0a , 1a , 2a , ..., na  in such a way that

   n i ip x f x , i = 0, 1, 2, ..., n.

   0 0 0nf x p x a 

     1 1 0 1 1 0nf x p x a a x x   

         2 2 0 1 2 0 2 2 0 2 1nf x p x a a x x a x x x x      

   

        0 1 0 2 0 1 ....n n n n n nf x p x a a x x a x x x x       

    0 1 1....n n n n na x x x x x x    
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By forward substitution we get, 0a , 1a , 2a , ..., na  as follows,

 0 0a f x

       1 01 0
1 0 1

1 0 1 0

,
f x f xf x a

a f x x
x x x x


  

     (say)

 
  

 
  

 
  

   0 2 0 02 1
2

2 0 2 1 2 0 2 1 2 0 2 1 1 0 1 0

f x x x f xf x f x
a

x x x x x x x x x x x x x x x x

 
            

 
 

  
 

          
2 1

2 0
2 0 2 1 1 0 2 1 2 0 2 1 2 1 1 0

1 1f x f x
a f x

x x x x x x x x x x x x x x x x

              

 
  

 
  

 
  

02 1

2 0 2 1 1 0 1 2 0 1 0 2

f xf x f x

x x x x x x x x x x x x
  

     

 0 1 2, ,f x x x   (say)

In general by induction we can prove that

 
    

 
    

0 1

0 1 0 2 0 1 0 1 2 1

....
.... ....i

i i

f x f x
a

x x x x x x x x x x x x
  

     

 
    0 1 1....

i

i i i i

f x

x x x x x x 


  

     0 1, ,...., if x x x (say)

Thus we have

           0 0 1 0 0 1 2 0 1, , , .....np x f x f x x x x f x x x x x x x      

     0 1 2 0 1 1... , , ,..., .....n nf x x x x x x x x x x    

The polynomial  
np x  is called Newton’s divided difference interpolating polynomial.

The coefficients  1 0 1,a f x x ,  2 0 1 2, ,a f x x x , ......,  0 1 2, , ,....,n na f x x x x  are

called Newton’s divided differences.
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3.1.2.1    Properties of Newton’s Divided Differences

(i)      1 0
0 1

1 0

,
f x f x

f x x
x x




    
     0 1

1 0
0 1

,
f x f x

f x x
x x


 



               0 1 1 0, ,f x x f x x (symmetry)

(ii)      1 0
0 1

1 0

,
f x f x

f x x
x x






    
   01

1 0 1 0

f xf x

x x x x
 

 

    
   

 
01

1 0 0 1

f xf x

x x x x
 

 

(iii)    
  

 
  

 
  

0 1 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

, ,
f x f x f x

f x x x
x x x x x x x x x x x x

  
     

          
     

  
2 0 1

2 0 1 0 1 2

1 x x f x
f x

x x x x x x

 
      

         
     

 
0 2

1
2 0 0 1 1 2 1 0 2 1

1 1 1f x f x
f x

x x x x x x x x x x

              

         
       1 0 2 1

2 0 1 0 2 1

1 f x f x f x f x

x x x x x x

  
      

             0 1 1 2
2 0

1
, ,f x x f x x

x x
    

        
   

 
1 2 0 1

2 0

, ,f x x f x x

x x






In general,

     1 2 0 1 2 1
0 1 2 1

0

, ,..., , , ,...,
, , ,..., , k k

k k
k

f x x x f x x x x
f x x x x x

x x






 ,  k = 3, 4, ...., n

Thus Newton’s divided differences are calculated as follows,

     1 0
0 1

1 0

,
f x f x

f x x
x x
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     1 2 0 1
0 1 2

2 0

, ,
, ,

f x x f x x
f x x x

x x






     1 2 3 0 1 2
0 1 2 3

3 0

, , , ,
, , , .........

f x x x f x x x
f x x x x

x x






The Newton’s divided differences may be calculaed with the help of following table.

0x  0f x

 0 1,f x x

1x  1f x  0 1 2, ,f x x x

 1 2,f x x       0 1 2 3, , ,f x x x x

2x  2f x  1 2 3, ,f x x x             0 1 2 3 4, , , ,f x x x x x

 2 3,f x x        1 2 3 4, , ,f x x x x

3x  3f x  2 3 4, ,f x x x

 3 4,f x x

4x  4f x

(iv) Newtons divided differences are symmjetries in all the variables

   0 1 1 0, ,f x x f x x

     0 1 2 1 0 2 2 1 0, , , , , ,f x x x f x x x f x x x  etc.

     0 1 2 3 1 0 2 3 0 1 3 2, , , , , , , , ,f x x x x f x x x x f x x x x    etc.

3.1.3 Uniqueness of Interpolating Polynomials

In section 3.1.1 we have seen how to calculate Lagrange’s interpolating polynomial  
np x  if

the values of function ( )f x  are known at (n + 1) nodes 0x , 1x , 2x , ...., nx . In section 3.1.2 we have

studied the evaluation of Newton’s divided interpolating polynomial if the values of function ( )f x  are

known at (n + 1) points 0x , 1x , 2x , ...., nx . We have seen that both the polynomials are polynomials

of degree n. In this section we prove that the polynomials obtained by two different methods are same.
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Suppose ( )p x  is an interpolating polynomial of the given function ( )f x  satisfying

   i if x p x , i = 0, 1, 2, ...., n and *( )p x  is another interpolating polynomial of same degree n

satisfying    *i if x p x , i = 0, 1, 2, ...., n. We show that    *p x p x .

Define      *Q x p x p x 

Since  p x  and  *p x  are polynomials of degree n.  Q x  is a polynomial of degree at

most n.

         * 0i i i i iQ x p x p x f x f x     , i = 0, 1, 2, ...., n

Thus  Q x  is a polynomial of degree less than or equal to n has (n + 1) distinct roots 0x , 1x ,

2x , ...., nx . But a polynomial of degree n has exactly n roots (real or complex). Therefore  Q x  has

at the most n roots. But  Q x  has (n + 1) distinct roots 0x , 1x , 2x , ...., nx . This implies that

  0Q x  .

Therefore      * 0Q x p x p x    i.e.    *p x p x

Thus, the interpolating polynomials obtained in two different ways may be different in form, but

are identical.

3.1.4 Truncation Error Bounds

In the last section we have seen that interpolating polynomial of degree n is unique Linear

interpolation gives a polynomial  
1p x  of degree one. The polynomial  

1p x  coincides with the

function ( )f x  at 0x  and 1x . It deviates from ( )f x  at all other points in the interval  0 1,x x . This

deviation is called the truncation error and is written as

     
1 1;E f x f x p x 

The expression for  1 ;E f x  is derived by using Rolle’s theorem.

Rolle’s Theorem : If   g x  is a continuous function on some interval [ a, b] and differentiable on

(a, b) and if      0g a g b  , then there is at least one point   inside (a, b) for which  ' 0g   .
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Error Bound for Linear Interpolation

Suppose  1p x  is a linear interpolating polynomial for the function ( )f x . The polynomial

 
1p x  coincides with ( )f x  at 0x  and 1x . Define a function  g t  as

            
  

0 1
1 1

0 1

t x t x
g t f t p t f x p x

x x x x

 
        

where  0 1,x x x  is a fixed point. Now function  g t  is continuous and differentiable.

     0 0 1 0 0g x f x p x    and      1 1 1 1 0g x f x p x  

at t x ,            
1 1 1 0g x f x p x f x p x       

Thus in the interval  0 ,x x ,    0 0g x g x   and by Rolle’s theorem   at least one point

 , inside  0 ,x x  for which  1' 0g   .

Similarly in the interval  1,x x ,    1 0g x g x   and by Rolle’s theorem   at least one

point 2  inside  1,x x  for which  2' 0g   .

Thus 0 1 2 1x x x      and    1 2' ' 0g g   .

Now on applying Rolle’s theorem for  'g t  on the interval  1 2,   we get  1 2,    such

that  " 0g   . Since 0 1 2 1x x x     ,  0 1,x x  .

Now differentiating  g t  twice with respect to t we obtain,

             
  

1 0
1 1

0 1

' ' '
t x t x

g t f t p t f x p x
x x x x

  
        

         
  1 1

0 1

2
" " "g t f t p t f x p x

x x x x
        

           
   

  
1

0 1

2
"

f x p x
f t

x x x x

    
 

      [  
1p t  is polynomial of degree 1  

1 " 0p t  ]

   
   

  
1

0 1

2
" 0 "

f x p x
g f

x x x x
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Thus         
1 0 1

"

2

f
f x p x x x x x


   

Therefore, the truncation error in linear interpolation is given by,

          1 1 0 1
1

; "
2

E f x f x p x x x x x f     

If   2"f x M       0 1,x x x   then,

         1 0 1
1

"
2

f x p x x x x x f    

  
0 1

0 1 2
1

2 x x x
Max x x x x M
 

  

Let     0 1w x x x x x    then      0 1'w x x x x x   

and   0 1' 0
2

x x
w x x


   . Hence maximum value of   0 1x x x x   is attained at

0 1

2

x x
x


 .

    2
1 00 1 0 1

0 1 0 12 2 4x

x xx x x x
Max x x x x x x

          
  

Thus      21 0
1 2

1

2 4

x x
f x p x M


 

Thus bound for truncation error  1 ;E f x  is 
 21 0

2
1

2 4

x x
M


.

Thus the truncation error

   
 

 
0 1

2
1 0

1
,

1
; "

2 4 x x x

x x
E f x Max f x




            ..... (3.1.4.1)
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Truncation Error for higher order interpolating polynomial

Interpolating polynomial  np x  of degree n coincides with (n + 1) times differentiable function

 f x  at  0 1 2, , ,...., nx x x x  (n + 1) points. The truncation error for this polynomial approximation is

     ;n nE f x f x p x 

For  ,x a b  and ix x , i = 0, 1, 2, ....m define

              
    

0 1

0 1

.....

.....
n

n n
n

t x t x t x
g t f t p t f x p x

x x x x x x

  
            .... (3.1.4.2)

Observe that   0ig x  ,   i = 0, 1, 2, ..., n.

In the interval  0 1,x x ,    0 0ig x g x  . Function g is continuous and differentiable.

Therefore by Rolle’s theorem  1 0 1,x x   such that  1' 0g   .

Similarly in the interval  1 2 2,x x   such that  2' 0g   . In general  1,i i ix x    such

that  ' 0ig   .

Now    1 2' ' 0g g   . 'g  is continuous and differentiable therefore by Rolle’s theorem

 1 1 2,    such that  1" 0g   .

 2 2 3,     such that  2" 0g   .

In general  1,i i i     such that  " 0ig   , i = 1, 2, ...., (n – 1).

Thus repeated application of Rolle’s theorem for  g t ,  'g t ,  "g t , ...,  ( )ng t  gives

 ,a b   such that  ( 1) 0ng   .

Differentiating function g defined in equation (3.1.4.2), ( n + 1) times with respect to t, we get,

     
     

    
( 1) ( 1) ( 1)

0 1

1 !

.....
nn n n

n
n

n f x p x
g t f t p t

x x x x x x
         

  

Since np  is a polynomial of degree (n)  ( 1) 0n
np t  .

   
     

     
( 1) ( 1)

0 1

1 !
0 0

.....
nn n

n

n f x p x
g f

x x x x x x
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and          
 

 0 1 ( 1).....

1 !
n n

n

x x x x x x
f x p x f

n
  

     

Thus the truncation error in intempolating polynomial is given by

          
 

 0 1 ( 1).....
;

1 !
n n

n n

x x x x x x
E f x f x p x f

n
  

  


3.2 Finite Difference Operators

Let the tabular points 0 1 2, , ,...., nx x x x  be equally spaced i.e. 1 0x x h  , 2 1x x h  ,....,

1n nx x h  .

In general 0ix x ih  , i = 1, 2, 3, ...., n.

Define the following operators.

(i) Forward differene operator      1i i if x f x f x   .

(ii) Backward difference operator      1i i if x f x f x    .

(iii) Central difference operator  
2 2i i i
h h

f x f x f x          
   

.

(iv) Average operator   1

2 2 2i i i
h h

f x f x f x                
.

(v) Shift operator    i iEf x f x h  .

3.2.1 Relations between finite difference operators

(i)        1 1 1i i i i i if x f x f x f x f f          

where  if x  is denoted by if .

(ii)      
2 2 2 2i i i i i
h h h h

f x f x h f x f x f x
               
   

         
2i
h

f x    
 

 0 0 1

2

1

2 i
i

f x ih f x i h f f 
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(iii)              1i i i i i i if x f x f x f x h f x Ef x f x       

   1 iE f x 

Thus      1 1i if x E f x E       .

(iv)      1i i if x f x f x   

Since        1
1 1i i i iEf x f x E f x f x
   

Thus      1
i i if x f x E f x  

            11 iE f x 

Therefore 11 E  

(v)    1
i iE f x f x h 

 
1

2 1

2i iE f x f x h
    
 

  and   
1

2 1

2i iE f x f x h
    

 

But   
2 2i i i
h h

f x f x f x         
   

     
1 1 1 1

2 2 2 2
i i iE f x E f x f x E E  

     

(vi)   1

2 2 2i i i
h h

f x f x f x                

    
1 1

2 21

2 i iE f x E f x
   

     1 1
2 21

2
E E 

  

(vii)        2i i i iE Ef x Ef x h f x h h f x h         

In general    n
i iE f x f x nh 

     i i if x f x h f x           

          i if x h f x   

              i i i if x h h f x h f x h f x         
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            2 2i i if x h f x h f x    

     i i if x f x h f x   

   1 iE f x 

                
0

1 1
n

n kn
i i i n k

k

n
f x E f x f x

k  


 
       

 


         1

0

1 1
nn kn

i i i k
k

n
f x E f x f x

k





 
      

 


Similarly      
1 1

2 2
n

n
i if x E E f x 
 

           
1 1

2 21
n k k

k
i

n
E E f x

k


 

   
 



       2 21
n k k

k
i

n
E E f x

k


 

   
 



      21
2

n k
k

i

n k
E f x h

k

          


    1
2 2

k
i

n k n k
f x h h

k

                


      
0 0 2

1 1
2

n n
k k

i n
i kk k

n nn
f x k h f

k k   

                    
 

3.2.2 Relations Between Differences and Derivative

In section 3.2.1 we have derived relations between different finite difference operators. If the

relation between derivative and any finite difference operator is obtained then the relation between

derivative and any finite difference operator is known.

Suppose f is smooth function

     i i if x f x h f x   

       
2

' "
2!i i i i
h

f x hf x f x h f x    
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2

' "
2!i i
h

hf x f x h  

Therefore,      1
' "

2i i i
h

f x f x f x h
h

   

 1
0( )if x h

h
  

Thus     0( )i iDf x f x h
h


 

Since finite difference operators are defined for discrete equidistant points and derivative is

defined for containuous functions, exact relation between derivative and differences cannot be obtained

and we get an error.

3.3 Numerical Differenciation

In this section we discuss methods for approximating the derivatives of a given function.

Numerical differentiation methods are developed by using one of the following techniques.

(i) Methods based on interpolation

In this method the function values or table values are used to approximate a function by a

polynomial (by using Lagranges interpolation or Newton’s divided difference formula) and this polynomial

is differentiated to get the derivative of a function.

(ii) Methods Based on Finite Difference Operators

In this method derivative is obtained by considerng Newton’s forward difference operator or

Newton’s backward difference operator or using shift operator. Since there is relation between every

pair of finite difference operators, derivatives are obtained by using any finite difference operator.

(ii) Methods Based on Undetermined Coefficients

In this method function is written in the form of linear combination of values of a function at

some points and the coefficients of this linear combination are obtained by using Taylor series expansion.

Now we discuss each of this methods in detail.
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Methods Based on Interpolation :

Given the values of function ( )f x  at a set of points 0 1 2, , ,...., nx x x x , obtain an interpolation

polynomial  np x  by using any interpolation technique (Lagrenge interpolation or Newton’s divided

difference formula). Thus

     ;n nf x p x E f x 

where  ;nE f x   is an error in the approximation.

In section 3.1.4 we have seen that

       
 

 0 1 ( 1).....
;

1 !
n n

n

x x x x x x
E f x f

n
  




     ' ' ' ;n nf x p x E f x 

In general the values of  ( )r
n kp x  gives the approximate values at the point kx .

The quantity      ( ) ( ) ( );r r r
n nE f x f x p x   is called the error of approximation in the rth

order derivative at any point x.

Example :  The following data for the function   4f x x  is given.

x    0.2 0.3          0.4

 f x 0.0016          0.0081        0.0256

Find  ' 0.4f  and  " 0.4f  using quadratic interpolation. Compare the results with exact

solution obtain the bound on the truncation error.

Answer :  Using Lagrange interpolation we have

               
        

        
    0 2 0 11 2

2 0 1 2
0 1 0 2 1 0 1 2 2 0 2 1

x x x x x x x xx x x x
p x f x f x f x

x x x x x x x x x x x x

    
  

     

         
  

  
    

  
 0.3 0.4 0.2 0.4

0.0016 0.008
0.2 0.3 0.2 0.4 0.3 0.2 0.3 0.4

x x x x   
 

   

  
  

 0.2 0.3
0.0256

0.4 0.2 0.4 0.3

x x 
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             2 20.0016 0.0081
0.7 0.12 0.6 0.08

0.02 0.01
x x x x     



   2 0.0256
0.5 0.06

0.02
x x  

               2 2 20.08 0.7 0.12 0.81 0.6 0.08 1.28 0.5 0.06x x x x x x        

        20.55 0.21 0.0216x x  

       
2' 0.4 ' 0.4 0.55 2 0.4 0.21f p  

       0.440 0.21 0.230  

      
2" 0.4 " 0.4 0.55 2 1.10f p  

Thus the approximate solutions are  ' 0.4 0.23f  ,  " 0.4 1.1f  .

The exact solutions are

   3' 0.4 4 0.4 0.256f  

    2" 0.4 4 3 1.92f x 

  3' 4f x x ,   2" 12f x x ,  '" 24f x x

           3
0.2 0.4

max '" 24 0.4 9.6
x

M f x
 

   

 
 

   
22

2 3
0.1

' 0.4 9.6 0.01 3.2 0.032
3 3

h
E M   

    
2 3" 0.4 0.1 9.6 0.96E hM  

Methods Based on Finite Difference Operators

In this section we derive relation between  derivative and finite difference operators.

    Ef x f x h 

     
2

' " ......
2!

h
f x hf x f x   

     
2

2 ......
2!

h
f x hDf x D f x   

d
D

dx
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2 2

1 ......
2!

h D
hD f x

 
    
 

 hDe f x

Thus hDE e

loghD E 

          
2 3

log 1 ....
2 2

 
       

           2 31 1
log 1 ....

2 3
         

22 3
2 2 ....

2 3
h D

  
     
 

          
2

2 31 1
....

2 3
        
 

Keeping only first term in each of the above series we have

     1' k k
k

f x f x
f x

h
 

 Forward differences

   1k kf x f x

h


 Backward differenes

   1 1

2
k kf x f x

h
 

 Central differences

Similarly,

       2 1
2

2
" k k

k

f x f x f x
f x

h
  

 Forward differences

     1 2
2

2k k kf x f x f x

h
  

 Backward differences

     1 1
2

2k k kf x f x f x

h
  

 Central differences

First two expressions for both the representations are of first order whereas the third

representation is of second order.
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Methods Based on Undetermined Coeficients

In this method we write  ( )rf x  as a linear  combination of the value of  f x  at an arbitrary

chosen set of tabular points. Determine the coefficients in linear combination by using Taylor series

expansions of function at some point and by equating the equal powers of derivatives.

For example, assume that the tabular points are equispaced with step length h. Write

   ( )
v

r r
k p k p

p v

h f x a f x 


 

The local truncation error is defined as

     ( ) ( )1 v
r r r

k k p k pr
p v

E x h f x a f x
h




 
  

  


The coefficients pa  are determined by requiring the method to be of particular order..

Example : A differentiation rule of the form

       0 0 0 1 1 2 2'f x f x f x f x    

where 0kx x kh  , is given. Find the values of  0 , 1 , 2  so that the rule is exact for

2f p . Find the error term.

Answer :

       0 0 0 1 1 2 2'f x f x f x f x    

     0 0 1 0 2 0 2f x f x h f x h      

         
2 3

0 0 1 0 0 0 0' " "' ....
2! 3!

h h
f x f x hf x f x f x 

 
      

 

                  
2 3

2 0 0 0 0
(2 ) (2 )

(2 ) ' " "' ....
2! 3!

h h
f x h f x f x f x

 
     

 

       0 1 2 0 1 2 02 'f x h h f x           

     
2 3

3
1 2 0 1 2 04 " 2 "' ......

2! 3!

h h
f x f x         
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On equating the coefficients of equal powers of derivatives we have,

 0 0 1 2: 0f x     

   0 1 2' : 2 1f x h  

 0 1 2" : 4 0f x   

 0 1 2"' : 8 0....f x   

Since above system of equations contain three arbitrary values 0 , 1 , 2  we can consider

only first three equations to obtain the values of 0 , 1 , 2 . From first three equations we have the

following

1 2 1 24 0 4       

   1 2 2 2 2
1

2 1 4 2 1
2

h h
h

     
       

Thus 1
2

h
  , 2

1

2h
 

  and 0 1 2 0       gives

0 1 2
2 1 3

2 2h h h
   

      

The leading term in the error expression is

     
3 3

1 2
2 8

8 '" '"
3! 2 3!

h h
f f

h h
       

 

          
34

'"
2 6

h
f

h
   

 

          
2

'"
3

h
f  

Thus the error term  
2

'"
3

h
E f  

Since the error term contains third derivative, the method is exact for the functions whose third

derivative is zero. i.e. method is exact for 2f p .
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3.4 Numerical Integration

The general problem of numerical integration is to find the numerical value of the integral

   
b

a

I w x f x dx 

We assume that  w x  and  f x  are Riemann integrable functions on [a, b].   0w x  defined

on [a, b] is called weight function. The integral I is written as a finite linear combination of values of

 f x  in the form

     
0

b n

k k
ka

I w x f x dx f x


  ..... (3.4.1)

 ,kx a b  are called nodes and are distributed on the interval [a, b] with 1k kx x  , k = 1, 2,

3, ....n. The coefficients k , k = 1, 2, 3, ...n are called weighs of integration rule or quadrature formula

(3.4.1).

The error is given by

     
0

b n

n k k
ka

R w x f x dx f x


 

Definition : An integration method (3.4.1) is said to be of order p, if it produces exact results

( Rn = 0) for all polynomials of degree less than or equal to p.

Methods Based on Interpolation

Given the (n + 1) nodal values and the corresponding values of  kf x , the Lagrange

interpolating polynomial is given by

       
   
 

1

0 1 !

nn

k k
k

f
f x x f x x

n







 

  ;  0 nx x 

where    

   'k
k k

x
x

x x x







  and       0 1 ...... nx x x x x x x    

From equation (3.4.1) we get,

   
b

a

I w x f x dx 
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1

0 1 !

b nn

k k
ka

x f
w x x f x dx

n

 



 
  

  
 

     
   
 

   
1

0 1 !

b bnn

k k
k a a

f
w x x dx f x x w x dx

n








 
  

  
  

 
0

n

k k n
k

f x R


  ..... (3.4.2)

where    
b

k k
a

w x x dx     and error  
       11

1 !

b
n

n
a

R x w x f dx
n

 
 

The error    
       11

1 !

b
n

n
a

R x w x f dx
n

 
 

   
 

   
1

1 !

bn

a

f
w x x dx

n







    for some  ,a b .

   
 

   
1

1 !

n b

n
a

f
R w x x dx

n







 

The error term can also be determined by

 
   1

1 !
n

n
C

R f
n




where   1 1

0

b n
n n

k k
ka

C w x x dx x 



 

C is called error constant. If C is zero for   1nf x x   then we take the next term   2nf x x 

and naturally the error will be zero for all polynomials of degree (n + 1).

Thus our aim is to determine the weights k  and nodal pionts kx  such that the error term nR

is minimum. For simplicity we assume that all the nodal points are equispaced and end points are nodal

points.

The approximate value of the integral is written as

     
0

b n

k k
ka

I w x f x dx f x


 



144

Newton Cotes Methods

In this method we assume that   1w x   and the nodes are equispaced with 0x a , nx b

and 
b a

h
n


 . The weights k  are called cotes numbers. We calculate the weights k  by using

Lagrange interpolation. From equation (3.4.2) we know that

     
0

b n

k k n
ka

I w x f x dx f x R


  

   
b

k k
a

w x x dx     and 

   
 

   
1

1 !

bn

n
a

f
R x w x dx

n







  .

   
b

k k
a

w x x dx   

Now           
        

0 1 1 1

0 1 1 1

..... .....

.... .....
k k n

k
k k k k k k k n

x x x x x x x x x x
x

x x x x x x x x x x
 

 

    


    


Since all nodes are equispaced, 0ix x ih   and

         
         

0 1 1 1..... .....

1 2 .... 2 ..... ( )
k k n

k

x x x x x x x x x x
x

kh k h k h h h h n k h
     


     



          
       0 1 1 1..... .....

! ( 1) ( )!
k k n

k n k n k

x x x x x x x x x x

k h n k h
 

 

    


 

Substitute 0x x sh   then    0 0ix x x sh x ih s i h       .

  ( 1) ( 2) ....( 1) ( 1) ....( )

!( )!( 1)
k n k n

sh s h s h s k h s k h s n h
x

k n k h
      


 



           
( 1)( 2)....( 1)( 1)....( )

!( )!( 1)

n

n k n

s s s s k s k s n h

k n k h
      


 

Since   1w x   and 0x x sh  , dx hds .

0 0x a x s     and 0 0nx b x x nh x sh s n        .

     
0

nxb

k k k
a x

w x x dx x dx    
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0

( 1)( 2)....( 1)( 1)....( )

!( )!( 1)

n

n k

s s s s k s k s n
hds

k n k 
      


  ..... (3.4.3)

      0 1 ..... nx x x x x x x    

         ( 1) ( 2) .....( )sh s h s h s n h   

  1 ( 1)( 2)( 3).....( )nx h s s s s s n       where 0x x sh 

In equation (3.4.2) we have

   
 

   
1

1 !

bn

n
a

f
R x w x dx

n







 

     

   
 

1
1

0

( 1)( 2)( 3).....( )
1 !

nn
nf

h s s s s s n hds
n


     

 

      

   
 

2 1

0

( 1)( 2).....( )
1 !

nn nh f
s s s s n ds

n

 

    
  ... (3.4.4)

Thus from equation (3.4.3), (3.4.4) and (3.4.2) we have

   
0

b n

k k n
ka

I f x dx f x R


  

where  
0

( 1)( 2)....( 1)( 1)....( )

!( )!( 1)

n

k n k

s s s s k s k s n hds

k n k
 

      


 

and

   
 

2 1

0

( 1)( 2).....( )
1 !

nn n

n
h f

R s s s s n ds
n

 

   
  ..... (3.4.5)

From equation (3.4.5) for different values of n we get different numerical methods of integration.

Case 1 : n = 1 : Trapezoidal Rule

     0 0 1 1

b

a

f x dx f x f x  

        
0 1f a f b  
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111 0 2

0
00

( 1) ( 1)
( 1)

0!(1 0)! 2 2

s h
h s ds h

 
    

 

111 1 2

1
00

( 1)

1!(1 1)! 2 2

s h
h sds h


   

 

Since n = 1,  b a
h b a

n


    and we get

 
 

 
 

 
 

    
2 2 2

b

a

b a b a b a
f x dx f a f b f a f b

  
   

 
 

    
2

b

a

b a
f x dx f a f b


  ..... (3.4.6)

equation (3.4.6) is called Trapezoidal rule.

From equation (3.4.5) we get error in Trapezoide rule as

 
13

1
0

( 1) "
2!

h
R s s dx f   

      
13 3 2

0
"

2 3 2

h s s
f 

 
   

      
3 1 1

"
2 3 2

h
f    

 

      
3

"
12

h
f    where  ,a b 

Alternatively  1 "
2!

C
R f   since trapezoidal rule is exact for a polynomial of degree one we

calculate C for   2f x x .

 
    2

2

b

a

b a
C x dx f a f b


  

    
   

3
2 2

3 2

b

a

x b a
a b
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  3 3 2 2

3 2

b a b a a b  
 

    
2 2 2 2

3 2

b ab a a b
b a

   
    

   
   2 2 2 22 2 2 3 3

6

b a
b ab a a b


    

   
 3

6

b a
 

The error

 
 

 
3

1 " "
2! 12

C b a
R f f 

   where   ,a b

Thus the trapezoidal rule for numerical integration is

 
 

    
2

b

a

b a
f x dx f a f b


 

and the error in the formula is

 
 

3

1 "
12

b a
R f 

 

To determine the error bound we calculate maximum absolute value of 1R  by evaluating values

of  "f  .

Case 2 : n = 2 : Simpson’s Rule

Here 
2

b a
h


 . 0x a , 1 2 2

b a a b
x a

 
   , 2x b .

From equation (3.4.5) we have

       0 0 1 1 2 2

b

a

f x dx f x f x f x    

 2 0 2

0
0

1
( 1)( 2)

0!(2 0)!
h s s ds
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22 3

0

( 2) ( 2)
( 1)

2 2 6

h s s
s

  
    

34 ( 2)
( 1)

2 2 6

h  
     

4
2

2 3

h       

3

h


       

22 1

1
0

( 1)
( 2)

1!(2 1)!
h s s ds


 

 

23 2

0

2

3 2

s s
h
 

    

8
4

3
h
     

4

3

h


       

22 2

2
0

( 1)
( 1)

2!(2 2)!
h s s ds


 

 

23 2

02 3 2

h s s 
   

8 4

2 3 2

h     

3

h


Thus we have

 
 

   4
6 2

b

a

b a a b
f x dx f a f f b
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Which is called the Simpson’s rule or Simpson’s 
1

3
rd rule. Since three observations are used

to derive the formula, the formula is exact for all polynomials upto order two. The error may occur for

  3f x x . Let us calculate C for   3f x x .

  3
3 3 34

6 2

b

a

b a a b
C x dx a b

        
  

         34 4 3 31
2 2

4 12

b a
b a a a b b

        

    
   

4 4
3 3 2 2 3 32 2 3 2

4 12

b a b a
a a a b ab b b

 
      

    
   

4 4
3 2 2 3

4 4

b a b a
a a b ab b

 
    

    
 

  
4 4

2 2

4 4

b a b a
a b a b

       

    = 0

This shows that method is exact for polynomials of degree upto three. Let use caulculate C for

  4f x x .

  4
4 4 44

6 2

b

a

b a a b
C x dx a b

        
  

         45 5 4 41 1

5 6 4

b a
b a a a b b

         

                 5 5 4 4 3 2 2 3 4 41
4 4 6 4 4

5 24

b a
C b a a a a b a b ab b b


        

         
     4 3 2 2 3 4 4 3 2 2 3 424 5 5 4 6 4 5

120

b a
b ab a b a b a a a b a b ab b

            

   
   4 4 3 2 2 34 6 4

120

b a
a b ab a b a b


     

  
  4

120

b a b a 
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 5

120

b a
 

Then error in Simpson’s 
1

3
rd rule is

 
 

   
5

4! 120
ivb a

R f 
 

Since 2b a h   the error term

 
 

   
5

2

24 120
ivh

R f  

      
   

532

24 120
ivh

f  

      
   

5

3 30
ivh

f  

     
   

5

90
ivh

f   where  ,a b

From above two cases we observe that for large value of n we get better approximation.

However for large n  8, 9n n   some of 'k s  become negative and therefore higher order Newton

Cotes formulas are not commonly used.

Conclusions :

In this unit we have seen how to approximate a function or a given tabular values of function by

a polynomial. If (n + 1) observations or values of function are known we can fit a unique polynomial of

degree n. Lagrange  interpolation method and Newtons divided difference formula generate the same

polynomial.

Finite difference operators and polynomial interpolation is used to calculate the derivative of a

given function. Method of undetermined coefficients can also be used to find out the derivatives of a

given function.

Methods of numerical integration are developed by approximating a function by a polynomial

and on integrating this approximating polynomials. It is shown that trapezoidal method is first order

method whereas Simpson’s one third rule is of order three.
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1. Given  2 4f ,  2.5 5.5f , find the  linear interpolation polynomial using (i) Lagrage

interpolation (ii) Newton’s divided difference interpolation.

Answer :  Here  0 2x , 1 2.5x ,  0 4f x ,  1 5.5f x .

(i) Lagrage fundamental polynomials are given by

 
 

1
0

0 1

2.5

0.5

 
 

 
 x x x

x
x x ,  

 
0

1
1 0

2

0.5

 
 


 x x x

x
x x

Interpolating polynomial

         1 0 0 1 1  P x x f x x f x

 
   2.5 2
4 5.5

0.5 0.5

 
 

x x

   8 2.5 11 2    x x

3 2 

Thus    
1 3 2  f x P x

ii) By Newton’s divided difference interpolation formula we have

      1 0 0 1 0,  P x f x f x x x x

     1 0
0 1

1 0

5.5 4 1.5
, 3

2.5 2 0.5

 
   

 
f x f x

f x x
x x

   
1 4 3 2 3 2P x x x    

2. Using the data sin (0.1) = 0.09983 and sin (0.2) = 0.19867 find the Lagrange interpolation

polynomial. Obtain a bound on the truncation error.

Answer :  Here 0 0.1x , 1 0.2x ,  0 0.09983f x ,  1 0.19867f x .

Lagrange fundamental polynomials are given by

   
   

1
0

0 1

0.2

0.1

 
 

 


x x x
x

x x ,    
 

0
1

1 0

0.1

0.1

 
 




x x x
x

x x

ILLUSTRATIVE  EXAMPLES
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Interpolating polynomial

         1 0 0 1 1  P x x f x x f x

 
 

 
 0.2 0.1

0.09983 0.19867
0.1 0.1

 
 

x x

0.9884 0.00099 x

The truncation error

       0 1
1 ; "

2!

 


x x x x
E f x f 

    
  

 0.1 0.2
sin

2

 
 

x x 

The maximum value of  sin , 0.1,0.2    is sin (0.2) = 0.19867.

Thus     0 1
1 ; 0.19867

2

 


x x x x
E f x where  0.1,0.2x

3. In the following problems, find the maximum value of the step size h that can be used to

tabulate  f x  on [a, b] using linear interpolation such that Error  .

i)    61 f x x ,    , 0,1a b , 55 10  .

ii)   2 xf x ,    , 0,1a b , 51 10  .

iii)    xf x xe ,    , 1, 2a b , 51 10  .

Answer :  The truncation error in linear interpolation is given by

       1 0 1
1

; "
2

  E f x x x x x f 

  
0 1

0 1max
 

  
x x x

x x x x

    0 1  w x x x x x

      0 1
1 0' 0

2


      

x x
w x x x x x x

  
0 1

0 1max
 

   
x x x

x x x x  occurs at 0 1

2




x x
x .
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0 1

0 1 0 1
0 1 0 1max

2 2 

          
  x x x

x x x x
x x x x x x

     
 2 2

1 01 0 0 1

2 2 4 4

       
  

x xx x x x h

     
2

1 0
1 ; "

4


   

x x
E f x f  

 
2

1 ;
8

 
h

E f x M where  
0 1

max "
 


x x

M f




i) For    61 f x x ,    4" 30 1 f x x

   4
0 1
max " 30 2 480

x
f x

 
  Thus M = 480

 
2

2 5
1 ; 480 60 5 10

8
     

h
E f x h

0.0009128 h

ii)   2 xf x

 ' 2 2xf x n ,       2" 2 2xf x n

   2

0 1
max " 2 2 0.960906027

x
f x n

 
 

Thus M = 0.960906027

2
51 10

8
   

h
M

5
2 1 10

0.009124
0.120113253


   h h

iii)    xf x xe ,    ' 1   x x xf x e xe x e

     " 1 2    x x xf x e x e x e

    2

1 2
max " 2 2 29.5562244
 

   
x

f x e
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2 5
5 2 1 10 8

1 10
8 29.5563244


  

   
h

M h

0.001645 h

4. Find the interpolaring polynomial that fits the following data. Find an approximation to  f x

at 3.0.

x 0 1 2 4 5 6

 f x 1 14 15 5 6 19

Answer :

By Langrange interpolation polynomial,

           
      

      
     

 
5

1 2 4 5 6 2 4 5 6
1 14

1 2 4 5 6 1 1 3 4 5

        
  

        
x x x x x x x x x x

f x P x

           
      

      
      

     
 0 1 4 5 6 1 2 5 6

15 5
2 1 2 3 4 4 3 2 1 2

        
 

    
x x x x x x x x x x

      
     

       
    

0 1 2 4 6 1 2 4 5
6 (19)

5 4 3 1 1 6 5 4 2 1

x x x x x x x x x x        
 



 
        

      
3

2 1 1 2 3 1 3 1 1 2 3
5 1 14

240 60

     
 


P

    
 

     
 3 2 1 2 3 3 2 1 2 3

15 5
48 48

    
 



    
 

      
 3 2 1 1 3 3 2 1 1 2

6 19
60 240

   
 



12 18 14 36 5 36 5 18 6 12 19
10

240 60 48 48 60 240
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5. Given the following values of  f x n x , find the approximate value of  ' 2.0f  using linear

and quadratic interpolation and  " 2.0f  using quadratic interpolation. Also obtain an upper bound on

the error.

i 0 1 2

ix 2.0 2.2 2.6

if 0.69315 0.78846 0.95551

Answer :

With linear interpolation we have

 
   2.2 2.0

' 2.0
2.2 2.0





f f

f

i.e.   0.78846 0.69315
' 2.0 0.47655

0.2


 f

By Lagrange interpolation we have

      
       

       
    0 2 0 11 2

2 0 1 2
0 1 0 2 1 0 1 2 2 0 2 1

x x x x x x x xx x x x
f x P x f x f x f x

x x x x x x x x x x x x

    
   

     

  
  

    
  

 2.2 2.6 2 2.6
0.69315 0.78846

0.2 0.6 2 0.4

   
 

  
x x x x

  
  

 2 2.2
0.95551

0.6 0.4

 


x x

Thus,

             2
0.69315 0.78846

' ' 2.2 2.6 2 2.6
0.12 0.8

        f x P x x x x x

    0.95551
2 2.2

0.24
   x x

   
     

2
0.69315 0.8 0.78846 0.6 0.95551 0.2

' 2.0 ' 2.0 0.49619
0.12 0.8 0.24

f P
  

     

   2
0.69315 0.78846 0.95551

" " (2) (2) (2) 0.19642
0.12 0.8 0.24

     f x P x
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The errors associated with methods are given by,

   0 1
1 0' "

2




x x
E x f 

0 1 x x

      2 0 0 1 0 2
1

' '"
6

  E x x x x x f 
0 2 x x

            ( ) ( )
2 0 0 1 2 0 1 0 2 1 2

1 1
" 2 '"

3 24
        

iv ivE x x x x f x x x x f f  

0 1 2 2, , x x  

For   nf x x  we have

 
0 1

1
2 2.2

1
max ' max 0.5
   

  
x x x

M f x
x

 
0 2

2 22 2.6

1
max " max 0.25
   

   
x x x

M f x
x

 
0 2

3 32 2.6

2
max '" max 0.25
   

   
x x

M f x
x 

 
0 2

( )
4 42 2.6

6 6
max max 0.375

16   


   iv

x x
M f x

x 

Thus    
1

2 2.2
' 2.0 0.25 0.025

2


 E

      2
1

' 2.0 2 2.2 2 2.6 0.25 0.005
6

   E

     2
1

" 2.0 2 2 2.2 2.6 0.25
3

   E

        1
2 2.2 2 2.6 0.375 0.375

24
   

     
     0.8 0.25 0.12 0.750

0.0704
3 24
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7. A differentiation rule of the form

 0 0 0 1 1 2 2'   f x f f f   (  0 ,    k k kx x kh f f x )

is given. Find the values of 0 , 1 , 2  so that the rule is exact for 2f P . Find the error

term.

Answer :

       0 0 0 1 1 2 2'   f x f x f x f x  

     0 0 1 0 2 0 2    f x f x h f x h  

         
2 3

0 0 1 0 0 0 0' " '" ....
2! 3!

h h
f x f x hf x f x f x 

 
       

          
 

 
 

 
2 3

2 0 0 0 0
2 2

2 ' " '" ....
2! 3!

 
     

 
h h

f x h f x f x f x

          
2

0 1 2 0 1 2 0 0 1 22 ' " 4
2!

h
f x h f x f x            

  
3

0 1 2'" 8 .....
3!

h
f x    

On comparing the coefficients of  0f x ,  0'f x ,  0"f x  .... we get,

0 1 2 0     ,  1 22 1 h   , 1 24 0   .

Since the formula is exact for a polynomial of degree 2, the error is in the form  '"f  .

1 2 1 24 0 4       

   1 2 2 2
1

2 1 2 1
2

       h h
h

   

Therefore, 1 2
2

4  
h

 

and 0 1 2 0 0
2 1 3

0 0
2 2

         
h h h

     .

The error will be

  
3

1 2'" 8
3!


h

f   
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3 2 8

'"
3! 2

    
h

f
h h



  
2

'" 2
3!

h
f  

  Error bound    
2 2

2
2

'" '"
6 3

h h
E f f   .

8. Show that

(i) E   (ii) 1E   (iii) 1E    (iv) 1 1E  

(i)      1i i if x f x f x   .... (i)

and            1 1i i i i i iE f x E f x E f x f x Ef x Ef x             

     1i i iE f x x f x    ..... (ii)

From (i) and (ii) we have E   .

(ii)      1i i if x f x f x    ..... (i)

               1 1 1 1 1
1 1i i i i i iE f x E f x E f x f x E f x E f x    
       

       1
1i i iE f x f x f x
    .... (ii)

From (i) and (ii) we have 1E   .

(iii)                  1 11 i i i i i i i if x f x f x f x f x f x f x Ef x          

Thus 1E    .

(iv)                  1
1 11 i i i i i i i if x f x f x f x f x f x f x E f x
          

Thus 1 1E     .
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9. Using the following data find f ' (6.0), error = 0 (h) and f '' (6.3) error = 0 (h2).

x 6.0 6.1 6.2 6.3 6.4

f (x) 0.1750 – 0.1998 – 0.2223 – 0.2422 – 0.2596

Answer :

With linear interpolation error is 0 (h)

 
   6.1 6.0 0.1998 0.1750

' 6.0 3.748
6.1 6.0 0.1

f f
f

  
   



         1 1 2
2

2
'' 0k k k

k

f x f x f x
f x h

h
  

 

Here h = 0.1 and 1k kx x h   .

       

 2
6.4 2 6.3 6.2

6.3
0.1

f f f
f

 
 

   
   
 

0.2596 2 0.2422 0.2223
0.25

0.01

    
 

10. Calculate the nth divided difference of 
1

x
 based on the points x0, x1, x2, ..., xn.

Answer : We have      1 0 1 0
0 1

1 0 1 0 0 1

1 1

1
,

f x f x x x
f x x

x x x x x x




   
 

     
   

1 2 0 1 1 2 0 1
0 1 2

2 0 2 0 0 1 2

1 1
, , 1

, ,
f x x f x x x x x x

f x x x
x x x x x x x

 


   
 

Let  
 

0 1 2
0 1 2

1
, , ,...,

....

k

k
k

f x x x x
x x x x


 .

Then      1 2 1 0 1 2
0 1 2 1

1 0

, ,..., , , ,...,
, , ,..., k k

k
k

f x x x f x x x x
f x x x x

x x








 .

     

   

1 2 3 1 0 1 2

1 0

1 1
.... ....

....

k k

k k

k

x x x x x x x x

x x
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  1

0 1

0 1 2 1 1 0 0 1 2 1

1 1

.... ....

k k
k

k k k

x x

x x x x x x x x x x




  

  
 



Hence by induction we have,

 
 

0 1 2
0 1 2

1
, , ,...,

....

n

n
n

f x x x x
x x x x




11. If  
2

1
f x

x
 , find the divided difference  1 2 3 4, , ,f x x x x .

Answer :          
 

2 2
2 1 1 2 1 22 1

1 2 2 2
2 1 2 1 1 2 2 1

1 1

,
f x f x x x x xx x

f x x
x x x x x x x x


  

  
  

        
 1 2

2 2
1 2

x x

x x


 

     
 2 3 1 2

2 2 2 2
2 3 1 2 2 3 1 2

1 2 3
3 1 3 1

, ,
, ,

x x x x
f x x f x x x x x x

f x x x
x x x x

 
 

 
 

 

         
   

 

2 2
1 2 3 3 1 2

2 2 2
1 2 3 3 1

x x x x x x

x x x x x

   




         
   

 

2 2
1 2 3 3 1 2 1 2 3 1 2 3

2 2 2
1 2 3 3 1

x x x x x x x x x x x x

x x x x x

     




         
  

 
3 1 1 2 1 3 2 3

2 2 2
1 2 3 3 1

x x x x x x x x

x x x x x

  




         
1 2 1 3 2 3

2 2 2
1 2 3

x x x x x x

x x x

 


     2 3 4 1 2 3
1 2 3 4

4 1

, , , ,
, , ,

f x x x f x x x
f x x x x

x x
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2 3 2 4 3 4 1 2 1 3 2 3
2 2 2 2 2 2

2 3 4 1 2 3

4 1

x x x x x x x x x x x x

x x x x x x

x x

   





 
   

 

2 2
1 2 3 2 4 3 4 4 1 2 1 3 2 3

2 2 2 2
1 2 3 4 4 1

x x x x x x x x x x x x x x

x x x x x x

    




 
 1 2 3 1 2 4 1 3 4 2 3 4

2 2 2 2
1 2 3 4

x x x x x x x x x x x x

x x x x

  
 

12. If   axf x e show that    1
nn ah axf x e e   .

Answer :

     f x f x h f x   

 a x h axe e 

 1ax ahe e 

      2 1ax ahf x f x e e        

 1ah axe e  

  1 1ah ah axe e e  

 21ah axe e 

Let    1
kk ah axf x e e  

Then    1 1
kk ah axf x e e      

     1
kah axe e  

       1 1
kah ah axe e e  

      1
1

kah axe e


 

Hence by induction    1
nn ax axf x e e   .
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13. The following table of values represents a polynomial of degree 3 . Locate any error in the

table of values

x 0 0.1 0.2 0.3 0.4

f (x) 2.0 2.11 2.28 2.39 2.56

Answer :  Observe that 0 0.11f  , 1 0.17f  , 2 0.11f  , 3 0.17f  . Since there is sudden

change in value at 2f . The error is expected at x = 0.3. Let  0.3 2.39f   . Since the data

represents a polynomial of degree 3 , 4 0f  .

x  f x f 2 f 3 f 4 f

0 2.0 0.11 0.06 – 0.12 +  0.24 – 4

0.1 2.11 0.17 – 0.06 + 

0.2 2.28 0.11 +  + 0.12 – 3

0.3 2.39 +  0.06 – 2

0.4 2.56 0.17 – 

4 0.24
0.24 4 0 0.06

4
f        

Thus f (0.3) = 2.39 + 0.06 = 2.45

14. Determine the step size h that can be used in the tabulation of a function  f x , a x b  , at

equally spaced nodal points so that the truncation error of the quadratic interpolation is less than  .

Answer :  Let 1ix  , ix , 1ix   denote three consecutive equipaced points with step size h. The truncation

error of the quadratic Lagrange interpolation is bounded by

      3
2 1 1: max

6 i i i
M

E f x x x x x x x    

where 1 1i ix x x    and  '"
3 max

a x b
M f x

 


Put ix x
t

h
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Then  1 1 1i i ix x x th x t h      

i i ix x x th x th    

 1 1 1i i ix x x th x t h      

Since    1 1, , 1,1i ix x x t   

and         3
1 1 1 1i i ix x x x x x t t t h      

Define        21 1 1g t t t t t t    

Then   2 2 1
' 3 1 0

3
g t t t       and 

1

3
t  

       
1 1

2
1 1

1 1
max max 1 1

i i
i i i

x x x t
x x x x x x h t t t

 
 

    
     

 2

1
max 1

t t
h t t
  

 

3 1 1
1

3 3
h

    
 

3 2

3 3
h 

Hence the truncation error in quadratic interpolation is bounded by

   
3

2 3
2

:
6 3 3

h
E f x M

Now choose h such that  
3

3
2

6 3 3

h
M  .

i.e.

1

3

3

9 3
h

M
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15. Find the maximum value of the uniform mesh size h that can be used to tabulate  f x  on

[a, b] using quadratic interpolation. Where   2 xf x x e ,    , 0,1a b   such that 6error 5 10  .

Answer : From example 14 we see that,

1

3

3

9 3
h

M

 
  
 

where 
2

3
0 1
max x

x
M x e e

 
 

1
6 39 3 5 10

h
e

  
    

16. Determine the step size h that can be used in the tabulation of a function  f x , a x b  , at

equally spaced nodal points so that the truncation error of the cubic interpolation is less than  .

Answer :  Let x0, x1, x2, x3 denote four consecutive equispaced points with step size h. The truncation

error of the cubic interpolation is bounded by

      
0 3

4
3 0 1 2 3; max

4! x x x

M
E f x x x x x x x x x

 
    

and  (4)
4 max

a x b
M f x

 


Put 1 21

2

x x
t x

h

    
 i.e. 1 2

2

x x
x th


 

Since  0 3,x x x ,  
3 3

,
2 2

t
   
 

  1 2
0 0

3

2 2

x x
x x th x t h

        
 

  1 2
1 1

1

2 2

x x
x x th x t h

        
 

  1 2
2 2

1

2 2

x x
x x th x t h

        
 

  1 2
3 3

3

2 2

x x
x x th x t h
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Thus       2
0 1 2 3

3 1 1 3

2 2 2 2
x x x x x x x x t t t t h

                 
     

Define   3 1 1 3

2 2 2 2
g t t t t t

             
     

To determine optimum value of  g t , consider  ' 0g t  .

  2 29 1

4 4
g t t t

      
  

  2 2 2 21 9 1 9
' 2 2 2

4 4 4 4
g t t t t t t t t

                 
     

          
2 5

2 2
2

t t
   
 

 ' 0 0g t t   , 
5

2
t  

  9
0

16
g   and 

5 5 9 5 1
1

2 4 4 4 4
g
            
    

  Maximum absolute value of g is obtained for 
2 5

4
t  .

Hence   24
3 ; (1)

4!

M
E f x h 

Now choose h such that

4

424

h
M      or     

1
4

4

24
h

M

   
 

17. Determine the step size that can be used in the tabulation of   cos 2f x x  in the interval

0,
4

 
  

 at equally spaced nodal points so that the truncation error of the cubic interpolation is less than

61 10 .

Answer :  We have

 
4

3 4;
24

h
E f x M 
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For   cos 2f x x ,  ' 2sin 2f x x  ,  '' 4cos 2f x x  ,  ''' 8sin 2f x x .

 ( ) 16cos 2ivf x x  and   (4)
4

0 4

max
x

M f x
 



0 4

max 16cos 2 16
x

x
 

 

Hence,
2

616 1 10
24

h   

1
6 424 10

16
h

 
  
 

18. A table of values of   3xf x e  in [0, 1] is constructed with step size 0.05. Find the maximum

total error if cubic interpolation is to be used to interpolate in this interval.

Answer :   
4

3 4;
24

h
E f x M 

For   3xf x e ,   3' 3 xf x e ,   3'' 9 xf x e ,   3''' 27 xf x e ,  ( ) 381iv xf x e .

and  (4)
4

0 1
max

x
M f x

 


      
3

0 1
max 81 81x

x
e e

 
 

Therefore, maximum total error

 
 4

3
0.05

; 81
24

E f x e 

19. Evaluate the integral

1

0
1

dx
I

x




Using (i) Composite trapezoidal rule.

(ii) Composite Simpson’s rule with 2, 4 and 8 equal subintervals.
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Answer : Let IT and IS denote the values obtained by using Trapezoidal and Simpson’s rule respectively.

i) For N = 2, 
1

2
h   and 0, 

1

2
, 1 are three nodes. We have two subintervals for trapezoidal rule

and one interval for Simpson’s 1/3 rd rule.

     0 1 22
2T
h

I f x f x f x    

          1 10 2 124
f f f    

     

1 2 1 17
1 0.708333

14 2 241
2

      
 

 

     0 1 24
3S
h

I f x f x f x    

          1 10 4 126
f f f    

     
1 8 1 25

1 0.694444
6 3 2 36
       

ii) For N = 4, 
1

4
h   and 0, 

1

4
, 

1

2
, 

3

4
, 1 are five nodes. We have 4 subintervals for trapezoidal

rule and two subintervals for Simpson’s rule. 0 0x  , 1
1

4
x  , 2

1

2
x  , 3

3

4
x  , 4 1x  .

         0 1 2 3 42 2 2
2T
h

I f x f x f x f x f x      

              1 31 10 2 2 2 14 2 48
f f f f f      

      =  0.697024

         0 1 2 3 44 2 4
3S
h

I f x f x f x f x f x      

              1 31 10 4 2 4 14 2 412
f f f f f      

      = 0.693254
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For  N = 8, 
1

8
h  , 0 0x  , 1

1

8
x  , 2

1

4
x  , 3

3

8
x  , 4

1

2
x  , 5

5

8
x  , 6

6

8
x  , 7

7

8
x  , 0 1x  .

                      0 1 2 3 4 5 6 7 82
2T
h

I f x f x f x f x f x f x f x f x f x          

                            1 3 5 6 71 1 10 2 18 4 8 2 8 8 816
f f f f f f f f f           

         = 0.694122

                    0 1 2 3 4 5 6 7 84 2 4 2 4 2 4
3S
h

I f x f x f x f x f x f x f x f x f x          

                          1 3 5 6 71 1 10 4 2 4 2 4 2 4 18 4 8 2 8 8 824
f f f f f f f f f         

 

= 0.693155.

20. Evaluate 

2

0

xe dx  using  the Simpson’s rule with h = 1 and 
1

2
h  . Find the bound on the error

in each case. Compare with the exact solution.

Answer :  For h = 1, 0 0x  , 1 1x  , 2 2x  .

     0 1 24
3

h
I f x f x f x    

           0 1 21 1
0 4 1 2 4

3 3
f f f e e e     

Since for h = 1 we have one interval for Simpson’s rule, the error in the integration

 
5

( )
2 90

ivh
R f      , 0 2  ,   xf x e  and therefore  ( )iv xf x e ,  ( ) 2

0 2 2
max ivf x e
 

 .

2
2

1

90
R e  

ii) For 
1

2
h  , 0 0x  , 1

1

2
x  , 2 1x  , 3

3

4
x  , 4 1x  . We have two subintervals for Simpson’ss

rule and

         0 1 2 0 44 2 4
3

h
I f x f x f x f x f x      
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            1 510 4 2 1 4 22 26
f f f f f      

    21
1 4 2 4

6
e e e e e    

Since we have two intervals for Simpson’s rule

   
5

( ) ( )
2 1 290

iv ivh
R f f     

where 0 1 2x x   and 2 2 4x x 

i.e. 10 1   and 21 2  .

  xf x e

 
1

( ) 1
1

0 1
max ivf e



 

 

and  
2

( ) 2
2

0 2
max ivf e



 

  and we have

 
 

 
5

2 2
2 5

1

90 90 2

h
R e e e e   

1. In the following problems, the values of a function  f x  are given. Find the interpolating

polynomial that fits the data.

(i) x –2 –1 0 1 3 4

 f x 9 16 17 18 44 51

Calculate f (0.5) and f (3.1).

(ii) x 1 3 4 5 7 10

 f x 3 31 69 131 351 1011

Calculate f (3.5).

(iii) x 0 1 2 4 5 6

 f x 1 14 15 5 6 19

Calculate f (5.5).

EXERCISE
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(iv) x –1 1 4 7

 f x –2 0 63 342

Calculate f (5.0).

(v) x –1 2 4 5

 f x –5 13 255 625

Calculate f (3.0).

2. In the following problems, find the maximum value of stepsize h that can be used to tabulate

 f x on [a, b] using linear interpolation such that Error  .

(i)   61f x x  ,    , 0,1a b  , 55 10   .

(ii)  
2

1

1
f x

x



,    , 1, 2a b  , 41 10   .

3. Prove the following relations.

(i)
1

2
0

0

n

k n
k

f f f




   

(ii)   1i i i i i if g f g g f     

(iii)  2
1i i i if f f f   

(iv)   1/i
i i i i i i

i

f
g f f g g g

g 
      
 

(v)    

4. The following data represents the function   xf x e .

x 1 1.5 2.0 2.5

 f x 2.7183 4.4817 7.3891 12.1825

Evaluate the value of f (2.25) using Newton’s divided difference interpolation.
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5. In the following problems find the maximum value of the uniform mesh size h that can be using

to tabulate  f x  on [a, b] using quadratic interpolation such that Error  .

(i)    42f x x  ,    , 1, 2a b  , 41 10   .

(ii)   1xf x e  ,    , 0,1a b  , 41 10   .

(iii)   2 xf x x e ,    , 0,1a b  , 65 10   .

(iv)   2 lnf x x x ,    , 5,10a b  , 51 10   .

6. In the following problems find the maximum value of uniform mesh size h that can be used to

tabulate  f x  on [a, b] using cubic interpolation such that Error  .

(i)   xf x e ,    , 1,2.5a b  , 41 10   .

(ii)   cos 2f x x ,  , 0, 4a b     , 61 10   .

(iii)   xf x xe ,    , 1, 2a b  , 55 10   .

7. Determine , , ,     such that the relation

   ' ''( ) ''( )
2

a b
y y a y b y a y b        
 

is exact for polynomial of as high degree as possible.

8. Evaluate 

2

0

xe dx  using the Simpson’s rule with h = 1 and 
1

2
. Find a bound on the error in each

case.

9. Compute 

1

3
0 0

P

P
x

I dx
x


  for p = 0, 1  using trapezoidal and Simpson’s rules with the number

of points 3, 5 and 9.

10. Compute 
 2

2

4

cos ln sin

sin 1

x
dx

x



   correct to 3 decimal places, using trapezoidal rule and

Simpson’s rule.

11. Evaluate 
1

0

sin
1

x
dx

x
  
   using trapezoidal and Simpson’s rule.
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NUMERICAL   SOLUTION  OF

DIFFERENTIAL  EQUATION

UNIT  -  IV

Euler’s Method :

Consider the interval [a, b] and the initial value problem  ' ,x f t x  with  
0x a x  (initial

point).

Divide interval [a, b] into equal sub-interval and select mesh point

kt a hk  , k = 0, 1, ..... N and 
b a

h
N




Suppose x , 'x , "x  are all continuous. The Euler Method iteration formula is 0 0x  .

 1 ,i i i ihf t    

Example 1 :  Solve the initial value problem '
2

t x
x


 , on the interval [0, 3],  0 1x  .

Solution :  Let h = 0.5,  
0 0 1x   .

 1 0 0 0,hf t   

       0 1
1 0.5

2

    
 

This for 0 0t  , 1 0.5x 

      = 0.75

 2 1 1 1
0.5 0.75

, 0.75 0.5 0.6875
2

hf t         
 

for t1 = 0.5, x2 = 1

3
1 0.6875

0.6875 0.5 0.765625
2

     
 

for t2 = 1, x3 = 1.5

4
1.5 0.765625

0.765625 0.5 0.9492187
2

     
 

for t3 = 1.5, x4 = 2

5
2 0.9492187

0.9492187 0.5 1.2119141
2

     
 

for t4 = 2, x5 = 2.5
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6
2.5 1.2119141

1.2119141 0.5 1.5339355
2

     
 

for t5 = 2.5, x6 = 3

Now, ' '
2 2 2 2

t x x t
x x       multiply by 2

t
e  we have,

 12 2 2 2'
2 2 2

t t t tx t t
e x e e x e

     
 

integrate

 12 2

2

t tt
e x dt e dt 

2 2
2 1

1 12 2
2 2

t t
t t e e

e x dt C   

  2 2 22 2
t t t

te e C t e C     

22
t

x t Ce


     by initial condition 1 =0.2 + C C = 3

   22 3
t

x t e


  

Example 2 :  Solve 2' 2x x    with  0 1x  , with h = 0.2, 0.1 and 0.05 on [0, 1].

Solution : Let h = 0.2

2
1 2i i i iX X ht X   i = 0, 1, 2, 3, 4, 0 1X 

For i = 0, 0 0t  , 0 1X  .

  2
1 0 0 00.2 2 1X X X ht x   

For i = 1, 1 0.2t  , 1 1X  .

   2
2 1 2 0.2 0.2 1 0.92X   

For i = 2, 2 0.4t  , 2 0.92X  .

    23 0.92 2 0.2 0.4 0.92 0.78458X   

For i = 3, 3 0.6t  , 3 0.78458X  .

4 0.63684X 

5 0.50706X 
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Now for,

h = 0.1

u0 = 1,  u1 = 1,  u2 = 0.98,  u3 = 0.94158,  u4 = 0.88839

u5 = 0.82525,  u6 = 0.75715,  u7 = 0.68835,  u8 = 0.62202

u9 = 0.56011,  u10 = 0.50364.

Order of Euler’s Method

Lemma :

Let 0a  , 0b   and let nx , n = 0, 1, ...... be a sequence of non-negative numbers satisfying

the inequality

 
1 1n nx a x b    ...... (1)

Then 0
1na

na
n

e
x e x b

a


  ....... (2)

Proof :  We have  
1 01x a x b  

         2
2 1 0 01 1 1 1 1x a x b a a x b b a x a b b               

             2 3 2
3 2 0 01 1 1 1 1 1 1x a x b a a x a b b b a x a b a b b                  

Continuing in this way we see that,

     
 1

0 0
0

1 1
1 1 1

nn
n j n

n
j

a
x a x b a a x b

a





 
       ........ (3)

From the finite geometric series formula.

From the Maclaurin expansion of ae , we have 1 aa e  ,

For a > 0 and thus that  1
n naa e  . Substituting this into (3) gives

0
1na

na
n

e
x e x b

a


 

Hence the result.
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Theorem :  Let X be the solution to

 ' ,X f t x ....... (1)

and suppose that  C X t d   for  0 , kt t t .

Let i , i = 0,...., N be the Euler Method approximation to  ix t .

Where 0it t ih   with 0kt t
h

N


 .

If  "X t M  for some constant M and all  0 , kt t t  and  the function f in (1) is Lipschitz

continuous with constant L in the reactangle

  0, | ;kR t x t t t c x d    

Then     0 1
2

iL t t
i i

Mh
x t e

L
    ...... (2)

Proof :  Let  i i iE X t    be the error made by Euler’s Method at the ith step. From Taylor’ss

theorem applied to  X t  and (1) we have

 1 1 1i i iE X t    

              21
' " ,

2i i i i i iX t hX t h X E hf t       

            21
' , "

2i i i i iE h X t f t h X      

              21
, "

2i i i i i iE h f t x t f t h X          ......... (3)

For some  1,i i it t   since "X  is bounded by M and f is Linchitz continuous.

   
2 2

1 1
2 2i i i i i

Mh Mh
E E hL X t E hL              ...... (4)

Thus from above lemma

 
2 1

1
2 2

ihL
ihL

i
Mh e Mh

E e
hL L


  

Since 0 0E  . The result now following by putting 0iih t t  .
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Theorem : Let 
0
max i

i N
 

 
 .

Then under the same hypothesis as above Theorem

      0 0
01

2
i iL t t L t t

i i
hM

X t e e
L hL

        
 

Let 0 0 0x   ,  1 1,i i i i ihf t       .

Runge-Kutta Method

One Step Method

 0 0y y x

 1 ,i i i iy y h x y h  

The function   predicts the direction that the solution will take for the point  ,i ix y  if 

satisfying the condition

   
0

lim , ; ,i i
h

x y h f x y




Then we get the improved solution and the method is said to be consistent.

Modified Euler Method

Instead of using  YEuler  as the approximation to  iY x  we use it to locate another point near

the trajections of  iy x  take the Estimated slope   to be the average of slope of  ,i ix y  and

 1 Euler,ix y .

0 0y x

 1 ,i iM f x y

 2 1,i iM f x h y hM  

Then 1 2
1 2i i

M M
y y h


 

This is modified Euler method.
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Example : Solve  '
2

x y
y


 , [0, 3],  

0 0 1y y  , h = 0.5.

Solution : Let x = 0, 1 0.5M   ,  2 1, 0.125i h iM f x y hM   

1 2
1 0 0.84375

2

M M
y y h

    
 

x = 0.5, 1 0.171875M   , 2 0.1210937M  .

2 0.8310546y 

if 1 2 31,   0.0844727,   0.3133845, then  0.9305114x M M y   

if 1 2 41.5,   0.2847443,   0.4635582,  then  1.117887x M M y   

if 1 2 52,   0.4412062,   0.5809048,  then  1.3731148x M M y   

if 1 2 62.5,   0.5634426,   0.6725819,  then  1.6821209x M M y   

Mid Point Method

Using Euler’s method approximate the solution at the mid point of ix , 1ix  and take estimated

slope   to be  f at that point

0 0y x  1 ,i iM f x y 1
2 ,

2 2i i
Mh

M f x y h
    
 

1 2i iy y hM  

Note that Local truncation error for one step method defined as

       1 , ,i i i i iE h y x y x h x y h  

Question : Find the order of local truncation error for the modified Euler Method.

Answer : Assume that f has continuous third order partial derivatives in a rectangle containing the

solution ( )y x .

From Taylor’s theorem.

             
2 3

4
1 ' " "' 0

2! 3!i i i i i i
h h

y x y x h y x hy x y x y x h       
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2

1 ' " "'
2 6i i i i i
h h

y x y x h y x y x y x
 

     
      ..... (1)

Differentiating the differential equation  ' ,y f x y  we obtain

         , , , ,
" ' ,

f x y f x y f x y f x y
y y f x y

x y x y

   
   

   

           
2 2

2

, ,
"' ' , , , ,

f x y f x y
y y f x y f x y f x y f x y

x y x y y xx

                  

           
2

2
, , , , , ,f x y f x y f x y f x y f x y f x y

y y y

         

              
2 2

2
, 2 , , , ,f x y f x y f x y f x y f x y

x y x yx

    
         

       
22

2

2
, , , ,f x y f x y f x y f x y

yy

          

   ' ,i i i iy x f x y f 

   
2 3

2
1 , , , , ,1 2

2! 3!i i i i x i y i i xx i xy i i yy i
h h

y y hf f f f f f f f f         

 2 4
, , , 0i y i x i y if f f f h   .......... (2)

     1 2
1

1
, ; , ,

2 2i i i i i i
M M

x y h f x y f x h y hM 
      

         1
, , ,

2 i i i i i if x y f x h y hf x y     

Taylor’s Theorem for two variables

       , , , , ,f x y h f x y h f x y k f x y
x y

 
  

 

     
2 2 2

2 2
2 2

1
, 2 , ,

2
h f x y hk f x y k f x y

x yx y
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Apply to the slope estimate   for modified Euler method we obtained.

     2 2 2 2 3
, , , , ,

1 1
, ; 2 0

2 2i i i i i x i i y i xx i xy i i yy ix y h f f hf hf f h f L f f h f f h           

     
2 2

2 2
, , , , ,

1 1

2 2 4 2 4i i x i y i i xx i xy i i yy i
h h h

f f f f f h f f f f      ........ (3)

     
2 2 3 3 3

2
, , , , ,, ,

2 2 4 2 4i i i i x i y i i xx i xy i i yy i
h h h h h

h x y h hf f f f f f f f f        ........ (4)

Subtract equation (4) from (2) we get,

  3 2
1 , , ,

1 1 1
, ;

12 6 10i i i i i xx i xy i i yy iy y h x y h h f f f f f
     

   2 4 3
, , ,

1 1
0 0

6 6i y i x i y if f f f h h
   

  3
i h kh  k is constant.

Provided 2nd partial derivative of  f  is continuous.

Therefore, the local direction error of Euler modified method of order 3 in h.

Theorem : Consider the one step method

 1 ,i i i iy y h x y h  

Let   be Lipschitz continuous with consistent L in the variable x in the reactangle R.

  0, : ;kR x y x x x c y d      where  ic y x  and i d   for the space point

ix = 0, 1, ..., N then

 
    0 1iL x x

i i
L

y x e
hL

 
  

Proof : i  is approximation to iy .

 1 1 1 , ;i i i i i iy y h x h           

Add and subtract  , ;i i ih x y h y 

     1 1 1 , ; , ; , ;i i i i i i i i i i i iy y h x y h y h x y h y h x h                          
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     , ; , ;i i i i i i ih y h x y h x h          

     , ; , ;i i i i i i ih y h x y h x h          

 
i i i i ih y hL y      

   1 i ih hL y     

From the assumption of Lipschitz continuity for   and by the lemma above

 
1 0

1
1

na
na

n n n
e

x a x b x e x b
a

 
       

We have,  
    0 1iL x x

i i
h

y x e
hL

 
   0 0y 

Question : Show that the global truncation error made by the modified Euler Method is  2O h .

Answer : We seen that the local truncation error is order three.

This follows from the above theorem, once we have established that

      1
, ; , , ,

2i ix y h f x y f x h x hf x y      

is Lipschitz continuous. Assume that  f  itself is Lipschitz continuous with constant Lf. we have

        1 2 1 1
1

, ; , ; , , ,
2

x y h x y h f x y f x h y hf x y         

    2 2 2
1

, , ,
2

f x y f x h y hf x y     

         1 2 1 1 2 2
1 1

, , , , , ,
2 2

f x y f x y f x h y hf x y f x h y hf x y       

   1 2 1 1 2 2
1 1

, ,
2 2f fL y y L y hf x y y hf x y           

     1 2 1 2 1 2
1 1 1

, ,
2 2 2f f fL y y L y y L h f x y f x y     

2
1 2 1 2

1

2f fL y y L h y y   

 2
1 2

1

2f fL hL y y
    
 



181

Thus   is Lipschitz continuous with constant 
21

2f fL L hL   .

Note that, similarly we can show that the midpoint method can have a global truncation error of order

two.

Example :  'y ty  , [0, 0.15],  h = 0.05 with   0 1y 

Solve by Euler modified method.

Solution : Euler Method :  1 ,i i ihf t     0 1 0  

 
1 1 0.05 0 1 1     for 0.05

 
2 1 0.05 0.05 1 0.9975      for 0.1

 
3 0.9975 0.05 0.1 0.9975 0.9925125      for 0.15

Euler Modified 1 2
1 2i i

M M
y y h


  (0, 0.05, 0.1, 0.15)

 1 ,i iM f x y  2 1,i iM f x h y hM  

1 0M  2 0.05M  

 
1

0 ( 0.05)
1 0.05 0.99375

2
y

 
   2 0.9923205y 

Mid point 1 2i iy y hM  

1
2 ,

2 2i i
hMh

M f x y
    
 

 
1 1 0.15 0.075 0.98875y    

Example :  Solve 'y ty  .

Solution :
'y

t
y
      log 'y t 

intigrating both side we have  log 'y dy tdt  

  
2

log
2

t
y c     

2

2

t
c

y e
 

 1 0ce c  

  
2

2

t

y e


   y = 0.988813
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Exercise :

1) Solve y' = – 2xy2, if y (0) = 1, h = 0.2, 0.1, 0.05 on [0, 1]

2) Solve y' = x2 + y2, if y (0) = 0, h = 0.5 on [0, 2].

Runge Kutta Methods

The most general Runge-Kutta Method involving two slope calculations is

0 0y x  1 ,i iM f x y  2 1,i iM f x h y h M   

 1 1 1 2 2i iy y h w M w M    where  0,1  .

Note : 1.  This gives the modified Euler Method when 1    and 1 2
1

2
w w   and the midpoint

method when 
1

2
    and 1 0w  , 2 1w  .

2. Not every choice of   and   will lead to a method that has order three local truncation error,,

however indeed with  i iy y x ,  ,i i if f x y , ,i x
f

f
x





 and so forth we have from Taylor’s’s

Theorem by sequence of computation (Similar to that used above).

     1 1 2 ,i i i i i i ih y y h w f w f x h y hf          

   2 3
1 2 , ,

1
' " 0

2i i i i i x i y iy h y h w hf w h f f h f hf h         

   2 2 3
1 2 2 , 2 ,

1 1
1 0

2 2i i x i y iw w hf w f h w f f h h              
   

Thus since  ,f x y  is arbitrary for i  to be  30 h  we must have

1 2 1w w  2
1

2
w  2

1

2
w 

   2
1

2
w


 1

1
1

2
w


 

It can be shown that no choice of   can lead to an order of local truncation error greater than

three. Put

1 1 2
1 1

1
2 2i iy y h M M
 

         
   1 22 1

2i
h

y M M


      

Note :  Every Runge-Kutta Method should reduce to a quadrature formula when  ,f x y  is independent

of y with w’s as weights and  ’s as abscissas.
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If 
1

2
  we get

1 2i iy y hM    1 ,i iM f x y   and 1
2 ,

2 2i i
hMh

M f x y
    
 

Which is the Euler method with spacing 
2

h
, i.e. is midpoint quadrature rule when  ,f x y  is

independent of y.

For 1   we get

 1 1 22i i
h

y y M M     1 ,i iM f x y ,  2 1,i iM f x h y hM  

Which is Eular modified method.

Which reduces to the trapezoidal rule when  ,f x y  independent of y.

Note that the general form of a Runge-Rutta Method involving n slope calculations is

0 0y x ,  1 ,i iM f x y ,  2 2 2 1,i iM f x h y hM   

..... 

1

1

,
n

n i n i nj j
j

M f x h y h M 




 
    

 


1
1

n

i i j j
j

y y h w M


  

2. Thus a three slope Runge-Kutta Method has the form

0 0y x ,  1 ,i iM f x y ,  2 2 21 1,i iM f x h y M h   

 3 3 31 1 32 2,i iM f x h y M h M h     

 1 1 1 2 2 3 3i iy y h w m w m w m    

By expanding the local truncation error in a manner similar to that used in above

1 2 3 1w w w  

 21 2 31 32 3
1

2
w w    

 2 21 2 3 31 32 3
1

3
w w       , 2 31 3

1

6
w   , 2 2 3 3

1

2
w w  



184

2 2
2 2 3 3

1 1 1

2 2 6
w w   ,  22

21 2 31 32 3
1 1 1

2 2 6
w w     , 21 31 3

1

6
w  

21 2   ,  31 32 3   

1 2 3 1w w w   

 21 2 31 32 3
1

2
w w    

 22
21 2 31 32 3

1

2
w w     ,  21 31 3

1

6
w  

    1 1 2 2 21,i i i i i i ih y y h w f w f x h y hf       

 3 3 31 32 2,i i iw f x h y hf M h     

           
2

1 2 , 2 , 21' "
2i i i i i x i y i

h
hy y hw f w h f f h f hf         

             3 , 3 , 31 32 2 21,i i x i y i i i iw h f f h f hf hf x h y hf         

 
2

2 2
, , 1 2 2 , 2 2 21 ,2i i x i y i i i i x i i y

h
hf f f f hw f w hf w h f w h f f        

        2
3 3 3 , , 31 32 , 2 , 21i i x i y i i i x i y iw hf w h f f hf h f f h f hf           

         2 2
1 2 3 2 2 3 3 , 2 21 3 31 32 ,

1 1
1

2 2i i x i y iw w w hf w w h f h w w f f                     
   

 
3 3

2 2
2 21 2 3 31 32 3 , 2 2 3 3 ,

1 1

2 3 2 3i xy i i xx
h h

w w f f w w f                   
   

 
3 3

22 2
21 2 31 32 3 , 2 31 3 , ,

1 1

2 3 2 6i yy i i x i y
h h

w w f f w f f                
   

3 2
21 31 3 ,

1

6 i y ih w f f    
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2 21
1

2

1

2

3 31 32 1 – 1 2        ... (1)

1w 2w 3w
1

6

4

6

1

6

2 21
1

2
   , 3

3

4
  , 31 0  , 32

3

4
  , 1

2

9
w  , 2

3

9
w  , 3

4

9
w          ... (2)

2 21
1

3
   , 3 32

2

3
   , 31 0  , 1

1

4
w  , 2 0w  , 3

3

4
w          ... (3)

Runge Kutta Method for Four Slopes

Order four method

0 0y x ,  1 ,i iM f x y ,   1
2 ,

2 2i i
hMh

M f x y
    
 

2
3 2 2i i

hMh
M f x y

     
   4 3,i iM f x h y hM  

 1 1 2 3 42 2
6i i
h

y y M M M M     

Define

 1 ,i iM f x y

 2 2 21 1,i iM f x h y hM   

 3 3 31 1 32 2,i iM f x h y hM hM      ... (1)

 4 4 41 1 42 2 43 3,i iM f x h y hM hM hM       

 1 1 1 2 2 3 3 4 4i iy y h w M w M w M w M      ... (2)

where the  ----- 2 , 3 , 4 , 21 , 31 , 32 , 41 , 42 , 43 ,  and 1w , 2w , 3w , 4w  are

chosen to make 1iy   closer to  1iy x  .
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Expanding as before (and matches coefficients of powers of h) we obtain the following system

of equation

2 21  , 3 31 32    , 4 41 42 43     

1 2 3 4 1w w w w    ,   2 2 3 3 4 4
1

2
w w w    

2 2 2
2 2 3 3 4 4

1

3
w w w     ,   3 2 32 4 4 42 3 43

1

6
w w       

3 3 3
2 2 3 3 4 4

1

4
w w w     ,  2 2 2

3 2 32 4 2 42 3 43
1

12
w w       

 3 2 3 32 4 2 42 3 43 4
1

8
w w          , 4 2 32 43

1

24
w    

The equations of the above form occur in all Runge-Kutta Methods. We have 11 equations in

13 unknowns.

The method (2) will correspond to Simpson’s rule of integration.

If 2 3   and 2 3w w  the solution of equations above is given by

2 3
1

2
  

4 1  2 3
1

3
w w  1 4

1

6
w w 

41 42 430 , 1    

Thus the equation in (1) and (2) gives above.

To solve by ---- choice 2
1

2
  , 31 0  .

2 21
1

2

1

2

3 31 32
1

2
0

1

2

4 41 42 43 1 0 0 1

1w 2w 3w 4w
2

6

2

6

2

6

1

6
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2 21
1

3
   ,  3

2

3
  ,  31

1

3
   , 32 1  ,  4 1  , 41 1  , 42 1   , 43 1  ,

1 4
1

8
w w  ,  2 3

3

8
w w 

Example :  Solve

'
2

x y
y


 [0, 3] h = 0.5 y0 = 1

Answer :

Case 1 h = 0.5    1 0.5M  2 0.3125M   3 0.3359375M   4 0.1660156M  

if  x = 0  
1 1 0.08333 0.5 2 0.3125 2 0.3359 0.1660156y        

     = 0.8364258

if  x = 0.5 1 0.1682119M  2 0.0221862M       3 0.0404396M    4 0.091897M 

2 0.8196285y 

if  x = 1 1 0.0901857M      2 0.2039125M       3 0.1896966M       4 0.2927615M 

3 0.9171423y 

if  x = 1.5 1 0.2914288M       2 0.3800002M         3 0.3689288M      4 0.44919M 

4 1.1036826y 

if  x = 2 1 0.4481587M  2 0.5171388M       3 0.508516M       4 0.571029M 

5 1.3595575y 

if  x = 2.5 1 0.5702212M  2 0.623943M        3 0.6172283M     4 0.6659141M 

6 1.6694308y 

Case 2 : h = 1 y0 = 1

if  x = 0 1 0.5M   2 0.125M   3 0.21875M    4 0.10975M 

1 0.8203125y 

if  x = 1 1 0.0898439M  2 0.3173828M  3 0.260498M  4 0.4595947M 

2 1.1045125y 
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if  x = 2 1 0.4477437M  2 0.5858078M  3 0.5512918M    4 0.61209M 

3 1.670186y 

Case3 :  h = 1.5  y0 = 1

if  x = 0 1 0.5M   2 0.0625M           3 0.1015625M     4 0.3261718M 

1 0.8745117y 

if  x = 1.5 1 0.3127441M  2 0.5704651M    3 0.4738197M  4 0.7073793M 

2 1.621685y 

Case 4 : h = 3 y0 = 1

if  x = 0 1 0.5M   2 0.625M       3 0.21875M   4 1.328125M 

1 1.8203125y 

Exercise :

1)  ' 5 1y x y  , y (0) = 5,  [0, 2], h = 0.5,  0.2,  0.1

2) 2' 2y xy  , y (0) = 1, [0, 1], h = 0.2, 0.1, 0.05

3) 2 2'y x y  , y (0) = 0, [0, 2], h = 0.5

Example :

h = 0.25,   y0 = 1

1 0.8974915y  2 0.8364037y  3 0.8128696y  4 0.8195840y 

( 4 'y ) 5 0.9121021y  ( 5 'y ) 6 1.1036408y 

( 6 'y ) 7 1.3595168y  ( 7 'y ) 8 1.6693928y 

x = 0 1 0.5M   2 0.40625M   3 0.4121084M   4 0.3134863M  

x = 0.25 1 0.375M   2 0.2378082M   3 0.2463827M   4 0.1679479M  

Find, x = 0.5

x = 0.75

x = 1

x = 1.25
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x = 1.5

x = 1.75

x = 2

x = 2.25, and

x = 2.5

Systems of Differential Equations

 , ,
dx

f t x y
dt

  0 0x t x

... (1)

 , ,
dy

g t x y
dt

  0 0y t y

This can be written as,

      ' , ,x t f t x t y t  0 0x t x

      ' , ,y t g t x t y t  0 0y t y

Example :

2
dx

x y
dt

   0 6x 

3 2
dy

x y
dt

   0 4y 

Solution to the I.V.P is

  44 2t tx t e e 

  46 2t ty t e e 

The Runge-Kutta formulas of order 4 are

 1 1 2 3 4
4

2 2
6k kx x f f f f     

 1 1 2 3 4
4

2 2
6k ky y g g g g     
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where

 1 , ,k k kf f t x y  1 , ,k k kg g t x y

2 1 1, ,
2 2 2k k k
h h h

f f t x f y g
     
  2 1 1, ,

2 2 2k k k
h h h

g g t x f y g
     
 

3 2 2, ,
2 2 2k k k
h h h

f f t x f y g
     
  3 2 2, ,

2 2 2k k k
h h h

g g t x f y g
     
 

 4 3 3, ,k k kf f t h x hf y hg     4 3 3, ,k k kg g t h x hf y hg   

Example : Solve

' 2x x y   0 6x  [0, 0.2] h = 0.02

' 3 2y x y   0 4y 

Solution :

 1 0,6, 4 6 2 4 14f f      1 0,8, 4 26g g 

0 1 6.14
2

h
x f  0 1 4.26

2

h
y g 

 2 0.01,6.14, 4.26 14.66f f   2 0.01,6.14, 4.26 26.94g g 

0 2 6.1466
2

h
x f  0 2 4.2694

2

h
y f 

 3 0.01,6.1466,4.2694 14.6854f f   3 0.01,6.1466, 4.2694 26.9786g g 

0 3 6.293708x hf  0 3 4.539572y hg 

 4 0.02,6.293708, 4.539572 15.372852f f 

 4 0.02,6.293708, 4.539572 27.96028g g 

 1
0.02

6 14 2 14.66 2 14.6854 15.372852 6.29354551
6

x        

 1
0.02

4 26 2 26.94 2 26.9786 27.960268 4.5393249
6

y        
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k kt 1f 2f 3f 4f 1g 2g 3g 4g kx ky

0 0 -- -- -- -- -- -- -- -- 6 4

1 0.02 14 14.66 14.6854 15.372852 26 26.94 26.9786 27.960268 6.2935 4.8393

2 0.04 15.3721 27.9591 6.6150 5.11948

3 0.06 6.968525 5.74396

4 0.08 7.35474 6.41653

5 0.1 7.7769 7.1412

6 0.12 8.2381 7.9226

7 0.14 8.7414 8.7653

8 0.16 9.290209 9.6745

9 0.18 9.888271 10.6560

10 0.2 10.53962 11.715780

Exercise :

1) Solve the system ' 2 3x x y  , ' 2y x y   with initial condition  0 2.7x   ,  0 2.8y 

over the interval [0, 1] use h = 0.05.

2) Solve the system ' 3x x y  , ' 4y x y   with initial condition  0 0.2x  ,  0 0.5y 

over the interval [0, 2] use h = 0.05.

3) Solve the system ' 4x x y  , 'y x y   with initial condition  0 2x  ,  0 3y 

over the interval [0, 2] use h = 0.05.

4) Solve the system ' 4x y x  , 'y x y   with initial condition  0 1x  ,  0 1y 

over the interval [0, 1.2] use h = 0.05.




