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Unit-1
DIVISIBILITY

1.1 This chapter requires very basic ideas in mathematics. In fact high school
mathematics is enough. We now proceed to prove a theorem which is a foundation
stone for development in number theory.

Principle of well — ordering

Every non-empty set S of non-negative integers has a least element. That is, there is
aeS suchthat a<b, forall beS.

Theorem. (Division Algorithm)

Given integers @ and b with » > 0, there exist unique integers ¢ and r satisfying
a=bg+r, 0<r<b.
The integers g and 7 are called respectively quotient and remainder in the division of a by b.
Proof. Let us consider the set
S ={a—-xb:x is integer, a—xb >0} .
Claim : S is non-empty.
Consider x=—|a| ,then a—xb=a—(-|a|)b=a+|a|b>a+|a[>0.

Thus § is non empty. Thus by well — ordering principle S has a least element say r.
Clearly, 0<7r

Further, there is an integer g such that » = a — g b that isa = bg + r.

Claim:r <b
Suppose on the contrary that » > b.

Consider a—(q+1)b=(a—qb)—b=r—b20. Therefore, a—(q+1)beS.Thus
a—(q+1):r—b<reS,

which contradicts minimality of ». Hence, » <b .
Thus, 0<r<b.

Uniqueness: Let if possible there be integers ¢',7' such that a =bg'+r',0<r'<b . Thus

bg+r=bq'+r'=r—r' =b(q'-q)=|r—r'|=b|q' —q|.
Now, 0<r'<b=—-b<—-r'<0. This together with 0<r<b, we obtain —-b<r—r'<b.
Thus, r—r"<b. Therefore, b‘q’—q‘:‘r—r"<b:>‘q'—q‘<1:>q:q'. Hence 7 =7". This

proves uniqueness.
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Corollary : Ifa and b are integers with b # 0, then there exist integers ¢ and » such that
a=bg+r, OSr<‘b‘ _

Proof. If b > 0there is nothing to prove. Supposeb < 0, then—b > 0. Therefore, there exist
unique integers ¢ and » such that a = (—b)q+r, 0<r<-b. Thus, a= b(—q)+r, 0<r<-b.

Hence, in any case a=bg+r, 0<r< ‘b‘ ,

Ex. 1. Square of an integer is of the form 4k or 4k + 1.

Solution. : We know that any integer is of the form 2k or 2k + 1. Therefore, square of an
integer is of the from (2k)2 =4k>or (2k+1)* =4k> + 4k +1= 4k (k+1)+1, which is precisely
of the form 4k or 4k +1.

Notes : 1. Observe that what the above theorem says is that no integer of the form 4k + 2
or 4k + 3 can ever be perfect square.

2. Square of any odd integer is of the form 8k + 1.

a(a2 +2)

Ex. 2. Show that the expression is an integer forall a > 1.

Solution. Any integer a > 1 has one of the form 3k, 3k + 1 and 3k + 2.
a is the form of 3k : Consider

a(a’+2) 3k(9%*+2)
3 3

ais of the form 34 +1 : Consider

2 2
a(a3+2) _ (3k+1)(91; +6k+3) :(3k+1)(3k2 +2k+1), an integer.

ais of the form 34 +2 : Consider

= k(9k” +2), which is an integer.

242) (Bk+2)(9k* +12k+6
a(a3+ ):( + )( - + + ):(3k+2)(3k2+4k+2)’aninteger_

a (a2 + 2) ) '
Thus is any case 3 1s an mteger.

Ex.3. Prove that any integer of the form of 6k + 5 is also of the form 3j + 2 but not
conversely.

Solution. Any integer of the form 6k + 5 is can be written as
6k+5:6k+3+2:3(2k+1)+2:3j+2

The integer 8 is of the form 3j + 2 but not the form 6k + 5.
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Ex.4. The square of any integer is of the form 3k or 3k + 1.
Solution. Any integer a has one of the three form 3k, 3k + 1 or 3k + 2.

Form 3k :(3k)" =9k* =3(3k”)

That is, of the form of 3k.

Form 3k + 1: (3k+1)" =9k” + 6k +1=3(3k* + 2k )+1.

That is the form of 3k + 1.

Form 3k +2 :(3k +2)° =9k +12k +4=3(3k + 4k +1) +1
This is the form of 3k + 1

Ex. 5. Prove that 34> —1is never a perfect square .

Solution. We know that square of an integer is of the form 3k or 3k + 1 i.e. no number of the
form 3k + 2 can ever be a perfect square. Observe that,

3a* 1= 3(a2 —~ 1) +2is of the form 3k + 2 and hence it can never be a perfect square.
Ex.6. Prove that cube of an integer has one of the form 9k, 9k + 1, 9k + 8.

Solution. Any integer has one of the forms 3k, 3k + 1 or 3k + 2.

Form 3k :(3k) = 27k* =9(3k’).

This is the form of 9k.

Form 3k + 1 :(3k+1)’ =27k" +27k> + 9k +1=9(3k" + 3k> + k) +1.

This is the form of 9k + 1.

Form 3k +2: (3k+2)’ =27k +54k> +36k +8 =9 (3k" + 6k +4k)+8.

This is of the form 9k + 8.
Ex.7. Prove that for any integer a one of the integers a,a +2,a + 4 is divisible by 3.

Solution. Any integer is of the form 3%,3k +1, or 3k +2 . Let a be of the form3k then a is

divisible by 3, now if a is of the form3k +1, then a+2 is divisible by 3 and finally if a is
of the form3k + 2, then a+4 is divisible by 3.

Ex.8. Prove that sum of squares of two odd integers cannot be a perfect square.

Solution,. We know that, square of an odd integers is of the form 8k + 1. There are two odd
integers so that sum of squares of two odd integers is of the form (8§m + 1) + (8n + 1) =
8(m+n) + 2. That is, sum of squares of an odd integers is of the form 8k + 2 which can never
be a perfect square.

Ex.9. Prove that the product of four consecutive integer is 1 less than a perfect square.

Solution. It is enough to prove that

a(a+1)(a+2)(a+3)+1is a perfect square.
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Consider
a(a+1)a+2)(a+3)+1=a(a’ +6a’>+1la+6)+1 .

Also consider

[(a+1)(a+2)-1] =(a+1)’(a+2) —2(a+1)(a+2)+1

(a2 +2a+1)(a2+4a+4)—2(a2 +3a+2)+1

=a'+4a’ +4a’ +2a’ +8a’ +8a+a’ +d4a+4—-2a° —6a-4+1
=a'+6a’ +11a’ +6a+1

za(a3+6a2+11a+6)+1.

Thus a(a3 +6a’ +11a+6)+1:[(a+1)(a+2)—1]2.
(Also
[a(a+3)+1] =a®(a+3) +2a(a+3)+1
zaz(a2+6a+9)+2a2+6a+1

=a*+64’°+9a*+2a* +6a+1

=a*+6a’+11a’+6a+1

=a(a’+6a> +11a+6)+1
Thus,

a(a3 +6a’ +11a+6)+1:[(a+1)(a+2)—1]2 :[a(a+3)+1]2)
Thus, a(a+1)(a+2)(a+3)+1 is a perfect square.

Ex.10. Establish that the difference of two consecutive cubes is never divisible by 2.

Solution. Let the consecutive numbers be aand a+1.
Consider, (a +1)3 —a’=3a*>+3a+1 =3a(a+1)+1.

Since a(a +1) is always of the form 2k, that is divisible by 2. Therefore difference of two
consecutive cubes is of the form 2k + 1 which is never divisible by 2.

EXERCISES 1.1.
1. The 4" power of any integer is either of the form 5k or 5k + 1.

n(n+1)(2n+1)

2.  For n21, prove that 6 is an integer.
n(n+1)(n+2)

3. For n>1, prove that p is an integer.
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1.2 Divisibility
Definition: Let a(a#0)and b be integers then we say that a divides b if there is an integer
¢ such that ac = b in this case we write a|b.

Theorem : For integers a, b, ¢ the following hold
a) al0,1]a,ala
b) alliffa==+1
c) Ifalband c|d, then ac|bd .
d) If a|band b|c,then a|c.
e) al|band b|a,iffa=1b.
f) If alband b #0, then ‘a‘é‘b‘.
g) If a|band alc, then a|bx+cy for arbitrary integers x and y.
Proof. a)a-0=0=4a|0;l-a=a=1|a;a-1=a= a]a.
b) a|l <> ab=1for some integer b < a =+1.
¢) a|bandc|d = aa, =bandcc, =d = aa,-cc, = bd :>ac(a102)=bd =ac|bd .
dal|band b|c=aa'=band bb'=c = aa'-b'=c = a|c.

e)albandbla =aa'=band bb'=a = aa'b'=a = a'b’' =1
=a'=xland b' =+1.

Thus a=2b .

a a

= ‘b‘ = ‘a‘ < ‘b‘ (because

f) a|band b#0= aa'=b with a' =0 =|d] 1=1).

g)albanda|c=aa'=band aa" =c = bx+cy = aa'x + aay =a(a'x+a”y) :
Thus a|bx+cy .

Definition (Common Divisor):Leta and b be two integers at least one of which is non zero,
an integer ¢ is common divisor of aand b, if c|aandc|b.

Definition (Greatest Common Divisor):Leta and b be two integers at least one of which is
non zero. Then a positive integer d is a greatest common divisor of a and b if

a) d|laandd|b

b) whenever cis a positive integer such that ¢|a and ¢|b then c<d.

Theorem. Given integers a and b not both of which are zero, there exist integers x and y
such that gcd(a, b) =ax+by .

Proof. Let us define

S ={au+bv:au+bv>0,u,v are integers| .
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Note that ‘a‘ =au+b.0 where u=1 and u=-1 according as a >0anda <0 . Therefore, S

1s non-empty set of positive integers. Hence, we can invoke principle of well-ordering which
assures of a least positive integer d €S . Therefore, there exist integers x and y such that

d=ax+by.

By division algorithm there exists integers ¢ and r such that,

a=dgq+r, 0<r<d.
Then r:a—dq:a—(ax+by)q:a(l—xq)+b(—yq).

Hence,r € § . But it contradicts minimality of d unless » =0. Thus » =0. Therefore 4 = dg
and so d |a and similarly d |b.

Let ¢ be a positive common divisor of aand b, then c¢|a and c¢|b hence c|ax+by =d .
Thus c|d . Therefore, ¢ =|c|<|d |=d . Thus d is gcd of aandb.

Corollary — If a and b are given integers not both zero. Then the set
S ={ax+by:x,y integers} is precisely the set of all multiples of d =ged(a,b) .

Proof. Supposed=gcd(a,b) so that d|a and d|b. Hence, d | ax + by, thatis, ax +by is
multiple of d. On the other hand d = gcd(a,b), then there exist integers u,v such that
d = au+ bv. Therefore, cd = a(cu)+b(cv) is of the form ax + by .

Definition (Relativity Prime integers)

Two integers a and b, not both of which are zero, are relativity prime if gcd(a,b) =1.

Theorem — Let aand b be integers, not both zero then a and b are relativity prime if and
only if there exist integers x and y such that 1= ax + by

Proof. Suppose aand b are relativity prime then gcd(a,b) =1and there exist integers x and
y such that ax + by = 1. Conversely, suppose ax+by =1. Let d=ged(a,b), then d|a and d|b

. Therefore, d |ax+by=1. Since d>0and 4|1, we must have d =1. Hence, a and b are
relatively prime.

Corollary 1.If gcd(a,b) =d then gcd(%,%) =1.

Proof. Suppose d=gcd(a,b), then d|a and d|b, so that % and 3 are integers. Since
d=ged(a,b) there exist two integers x and y such that d =ax+by so that 1= §x+§ y .

Hence, gcd (£,£] =1.
d d

Corollary 2. Let a|c and b|c with ged(a,b) =1, then ab|c .

Number Theory | 6



Proof. Since gcd(a,b)=1and there exist integers x and y such that ax+by =1, so that
c=c-1=c-(ax+by)=(ca)x+(cb)y. Since a|c and b|c there exist integers u and v such
that au=cand bv=c. Thus c=(ca)x+ (cb)y = (ab)vx + (ab)uy = (ab)(vx +uy). Therefore,
ab|c .

Note : Let a=6,b=4and c=12. Here gcd(6,4)=2#1 and 6|12 also 4|12but24 /12 .

On the other hand, let a = 6, b =4 and ¢ = 24. Here gcd(6,4) =2 # 1 and 6 | 24 also 4 | 24
and 24 | 24. Therefore, gcd(a, b) =1 is sufficient but not necessary for ab | c.

Theorem — (Euclid’s Lemma) Ifa|bc with gcd(a,b) =1 ,then a|c .

Proof. Suppose gcd(a,b) =1, then there exist two integers x and y such that ax+by =1 .
Thus c(ax+by)=c.1=c = acx+bcy =c.Since a|bc , a|acx+bcy=c.

Note. Consider the example, 12| 6x8with gcd(12,6)=6=1 , here 12 8.

Ex. Give integers a, b, ¢ such that a | bc, gcd(a, b) # 1 but still a | c. In other words ged(a, b)
= 1 1s sufficient but not necessary in the above result.

Theorem. Leta and b be integers not both zero. For a positive integer d,d =gcd(a,b) if
and only if

i) d|aandd|b
i1) wheneverc|a and c|b,then c|d .

Proof.Suppose d = gcd(a,b), then by definition (i) is obvious. Since d =gcd(a,b), there
exist integers x and y such that d =ax+by. Now c|a and c|bimplies c|ax+by=d.
Hence, c|d .

Conversely, suppose that the conditions hold. To prove that d =gcd(a,b), the first

condition of gecd is already satisfied, so it remains to prove that the given conditions imply
the second condition of gcd. Suppose that c is a positive integer such that c¢|aand c|b, then

by hypothesis (ii), ¢|d this implies c=|c|<|d |=d.

Least common multiple(lcm). The least common multiple of two nonzero integers aand b,
denoted by /cm(a,b), is the positive integer m satisfying the following conditions

1) alm and b|m
i) If a|c and b|c,with ¢>0 ,then m<c .
Note: Given non zero integers aand b, lcm(a,b) always exists and that Icm(a,b) <|ab|.

We shall now prove relation between ged and lem.

Theorem: Let a and b be positive integers then, Icm(a,b)ged(a,b) = ab.
Proof.Let d =gcd(a,b), then d|a and d|b , so that there exist integers » and s such that
a=dr and b=ds . Let m:%b ,then m=rb and m=as sothat a|m and b|m , thatis m

is common multiple of aandb .
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We shall prove that m is lcm of aandb. Let ¢ be a positive common multiple of aandb.
Then ¢ =au =bv for some integers u andv . Since d =gcd(a,b), there exist integers x and
y such that d = ax + by . Consider

i_ﬁ:ﬁ:c(ax—"'by)zfx+£y:vx+uy(8incemd=ab)
m md ab ab b a
which is an integer. Thus C>1=c2m . Therefore, m =lcm(a,b) . Thus Icm(a,b) Z%,
m

that is lem(a,b)gcd(a,b) =ab.

We shall now go through some illustrative examples

Ex.1. Prove that, for a positive integer n and any integer a, gcd(a,a +n) divides n, hence
ged(a,a+1)=1.

Solution. Let d =gcd(a,a+n) ,then d|a and d |a+n implies d |a+n—a=n .

Thus if d=ged(a,a+1)then d|1=d =1.

Ex.2. Assuming that ng(a,b) =1 prove that ng(a +b,a —b) =lor?2.
Solution.Let d = gcd(a+b,a—b), then d|a+b and d|a—b.
Thus d |(a+b)+(a—b)=2aand d|(a+b)—(a—b)=2b.
Since ged(a,b) =1, there exist integers x and y such that ax+by =1 . Therefore,
d|2(ax+by)=2(1)=2 .Thus d=1lord =2 .
Ex.3. Prove that, if ¢ and b are both odd integers then 16 |a* +5* 2.
Solution. We know that the square of an odd integer is of the form 8k + 1. Hence
at+b* =2=(8m+1) +(8n+1) —2. = (64 (m*+n?) + 16 (m+n)
=16 [4(m’+n°) + (m+n)

Thus 16]a" +b* -2
Lemma. If a =bg+r , then ng(a,b) =gcd(b, r) _

Proof. Let d =gcd (a, b)thend |aand d | b. Let d'=ged (b, r). Nowd |aand d |b = d|a -
bg=randd|b=d|bandd|r=d<d" Ontheotherhandd'=gcd (b, r)=> d'|band d'|r
=>d'|bg+ randd'|b=>d'|aandd'|b = d =d. Thusd=d’, that s, gcd (a, b) = gcd (b, r)

Using this lemma we can find ged of given two numbers as follows.
Ex.1 Find ng(12378,3054) and express ng(12378,3054) as 12378x+3054y .
Solution. Consider

12378 =3054 x4 + 162
3054=162 x 18 + 138
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162=138x1+24
138=24x5+18
24=18x1+6
18=6x3+0

Thus gcd(12378,3054) =6.

(Note. We can find gcd in fewer steps as follows.
12378=3054x4 + 162

3054=162x19 —24

162=24x7 - 6

24=6x4 + 0 .

What we have done here is that of the two possible remainders162(12378=3054x4 + 162)
and 162 — 3054 = - 2892 (12378=3054x5 — 2892 ) we choose numerically smaller value 162,
further, we choose 24 from the two possible values 138 and 138 — 162 = - 24. This technique
reduces number of steps. )

Here, gcd(12378,3054)=gcd(3054,162)=gcd(162,138)=gcd(138,24)=gcd(2,18)=6.
Now, we shall express gcd as 12378x+3054y .
6=24-18x1

=24—-(138-24x5)
=-138+24x6
=-138+(162-138x1)6
=162x6-138x7
=162x6—-(3054-162x18) x7
=162x132-3054x 7
= (12378 —3054 x4) x 132 - 3054 x 7
= 12378 x 132 + 3054 ( - 535)

Thus 6 =12378 x 132 +3054 ( - 535).

Theorem. If k > 0, then gcd(ka, kb) = k-gcd(a,b) ,

Proof. Let d=gcd(a,b) then d|aand d|b. Therefore for any k > 0,kd > 0 and kd | ka also
kd | kb . Let ¢ be a positive integer such that ¢ |kaand c|kb . Since d = gcd(a,b), there exist
integers X and » such that d = ax+by. Thus c¢|ka and C|kb:>c|k(ax+by) =kd . Hence,
kd = ged(ka,kb) . Thus, ged(ka,kb) =k-ged(a,b).

Corollary. For any integer k =0, gcd(ka, kb) = ‘k‘ gcd(a,b) :

Proof. If k£ > 0 there is nothing to prove. Let £ <0, then there is m >0 such that k =—m.
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Therefore, ged(ma,mb)=m-ged(a;b) = ged(—ka,—kb) =—k - ged(a,b). Hence,
ged(ka,kb) =|k|- ged(a,b).

Exercises 1.2.
1. If a|b, showthat (-a)|b,a|(=b),(-a)|(-b).
If a|b , then prove that a|bc.
If a|b , then prove that ac|bc. Is the converse true.

2.

3

4. Prove or disprove. If a|b+c then a|bor a|c.

5. Assuming that gcd(a,b) =1, prove that ged(2a+b,a +2b) =1 or 3.
6

If ged(a,b) =1, then for any nonzero integer ¢, gcd(ac,b) = ged(c,b).
7. Use Euclid’s algorithm to find integer x and y such that ,gcd(56, 72) =56x+72y.
8. Use Euclid’s algorithm to find integer X and ¥ such that,

ged(143,227) = 143x+227y.

1.3. Diophantine Equations

In general any equation in one or more unknowns which is to be solved in integers is
Diophantine equation.

The name honours the Greek mathematician Diophantus. There is an interesting
problems saying something about how long did Diophantus lived?

Ex.1. His boyhood lasted 1/6™ of his life; his beard grew after 1/12™ more, after 1/7™ more
he married, and his son was born 5 years later. The son lived to 1/2th his father age and the
father died after four years after his son

Solution. Let x be the age of Diophantus when he died. From the given information we have

lvavalevLSleva4=x
7 2

6
1 1 1 1
=>—Xx+—Xx+—x++—x+9=x
6 2 7 2
2 1 1 1
> —x+—x+—x+—x+9=x
12 12 7
2x+x+6x 1
—+—x+9=x
12 7
:>9—x+lx—x+9=0
12 7
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Tx9x+12x—84x
= +
84

63x+12x—-84x
= +
84

9=0

9=0

28 28

= x = 84.

Note. Diophantine equations may be of any degree and in any number of (variable)
unknowns. However in this course, we are interested in linear Diophantine questions of the
form ax +by =c. A Diophantine equation may have number of solutions.

e.g. 34+61=18,
32+62=18.
3(-2)+64=18.

That is (4, 1), (2, 2), (- 2, 4) are all solutions of 3x+6y =18.
Theorem. The linear Diophantine equation ax + by = ¢ has a solution if and only ifd |c

where d = gcd(a,b). If x,,y, 1s any particular solution of this equation then all other

b a
solutions are given by X =X, +(3j LY=Y, _(Ejt where ‘t’ is any arbitrary integer.

Proof — Let d=gcd(a,b) then d|aand d|b. Suppose ax + by = ¢ has a solution, that is,
there exist integers x and y such that ax + by = c¢. Since d|aand d|b, we have
dlax+by=c.Thus d|c.

Conversely, suppose that d|c. Since d =gcd(a,b), there exist integers x, and y, such that

d=ClXO +by0. Since d |c there is an integer » such that dr = ¢ .Thus ,
c=dr=(ax,+by,)r =a(xy)+b(yyr)

Hence X=X/, Y =),I" is a solution of ax + by = c .

This proves the first part of the theorem.

Suppose that, ax + by = ¢ has a solution (xo,yo)then ax, +by0 =cC.

Let (x,y) be any solution of ax + by = ¢ , then

ax+by=axg+by, = a(x—x,) =b(y-,) (1)

Since d= gcd(a,b), there exist relatively prime integers r and s such that , dr=a and
ds = b . Thus (1) becomes

dr(x—xo) =ds(y0 —y)
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:>r(x—x0) =s(y0 —y)

Since 7| r(x—xo) = S( Yo~ y) and gcd(r,s) =1 by invoking Euclid’s lemma ,we obtain

Pl Y=y

Therefore, there is an integer ‘t’ such that
W—y=n
=y=),—1t

a
=V=Y _(EJt

Further, X—X, =S¢

=X=X,+5t

9
=Sx=x,+ — |t
d

Let x' =x0+§tand Y=y, —%t , then

ax' +by' = a(x0 +§t]+b(y0 —%tj =ax,+by,=c.

Thus every other solution of ax + by = ¢ is of the form x = x, +§t and y=y, —%t

where ‘t’ is an arbitrary integer.
Note.Thus there are infinitely many solutions of the given equation, one for each value of ‘t’.

Ex.1. Solve172x+20y =1000.

Solution. Here ng(172, 20) =4and 4|1000 . Therefore given Diophantine equation has a

solution.

Consider,
172=20x8+12
20=12x1+8
12=8x1+4
8=4x2+0.

Thus ng(172, 20) =4 Now
4=12-8xl1
—12-(20-12x1)1
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=12x2-20
:(172—20><8)><2—20
=172x2-20x17
4:172(2)+20(—17)

Thus
4:172(2)+20(—17)

Multiplying both sides by 250, we obtain
1000 = 172(500) +20(—4250)

Thus, (500, —4250) is a solution of given Diophantine equation.

General solution of given Diophantine equation is

x=x0+§t=500+%t=500+5t

and
a 172
=y, ——1 =—4250——=1 = 425043t .

Y=D>Xo d 4
Thus, (5 00+5¢,—4250 - 43¢ ) is general solution where ‘t’ is an arbitrary integer.

We can proceed further to test whether the given equation has positive solution.
Consider,
500+5¢>0 4nq —4250+43t >0

B -98.8
43 -100 -99 -98
—t=-99 g «

= x=5andy =7
Thus (5, 7) 1s the positive solution and that it is only positive solution.

Corollary. If ged(a,b)=1 and it Xo»Y, is particular solution of linear Diophantine equation

ax + by = c then all the solution are given by, x =x, +bt,y =y, - at.
Note : Certain Diophantive equations need not have positive solution at all.
Note. Each of the following Diophantine equations do not have solution.

a) 6x+51y =22

b) 33x+14y =115

C) 14x+35y =93.
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Ex.2. Determine all solution in the integers of the following Diophantine equation
a) S56x+72y =40,
b) 24x+138y =18,
C) 221x+35y=11.
Solution. a) First of all we shall find the gcd of 56 and 72. Consider
72=56x1+16
56=16x3+8
16 =8x2+0.
Thus gcd(56, 72) =8 and that 8|16 , therefore solution exists.
Now 8=56-16x%3
=56—3><(72—56)
=56><4+72><(—3)_

Thus, 8=56x4+72x(-3).
Multiplying both sides by 5, we get,
40 =56%20+72x(-15).

Thus, (20, - 15) is solution of given Diophantine equation.

General solution of given Diophantine equation is

X=X +£t = —ﬁt
0Ty Y=Y p
x=20+2t y=—15—§t
8 8

x=20+9¢ y=—15-71.

Thus, (20_9t’_15_7[ ) is general solution,where ‘t’ is arbitrary integer.

We can proceed further to test whether the given equation has positive solution.

Consider,
2049t >0 -15-7t>0
=20 -15
P> ——t<——
9 7

t>-222t<-2.14.

Observe that there is no integer t satisfying the given conditions. Hence, there is no positive
solution.

b) 24x+138y =18
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Here ng(24, 138) =6 and that 6| 18.

Therefore, the given Diophantine equation has a solution.
Consider,
138=24x5+18
24=18x1+6
18=6%x3+0
Thus, gcd(24,138) =6. Now
6=24-18x1
=24—-(138-24x5)
=24x6+138(-1).
Thus
6=24x6+138(-1).
Multiplying both the sides by 3.
18:24><18+138><(—3)

Thus (18, - 3) is solution of given equation. The general solution of the given equation is

b a
x=x0+2ty=y0—gt

138 24
S184 20 y=(3)- 24
X + . y=(-3) .

X=18+23 y= -3 41.

Thus, (18+23t ,—3—4t ) is general solution, where ‘t’ is arbitrary integer.

We can proceed further to test whether the given equation has positive solution.
Consider,

18+23t>0-3-4r>0

23t >-18 -4t <3

=1>-0.7826 ¢t <—-0.75.

Observe that there is no integer t satisfying the given conditions. Hence, there is no positive
solution.

¢) 221x+35y=11.
Here ged (221,35)=1 and 1|11
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Therefore the given Diophantine equation has a solution.
Consider,

221=35x6+11

35=11x3+2

11=2x5+1

2=2x1+0.

Therefore, ged(221,35)=1.
Now 1=11-2x5
=11-5x(35-11x3)
=35%(-5)+11x16
=35%(-5)+16x(221-35x%6).
Thus 1=221x16+35x(-101).

Multiplying on both sides by 11, we get
11=221x16+35%(-1111).

Thus (176’ —111 1) is solution of given Diophantine equation.

General solution of given Diophantine equation

b a
x=x0+2ty=y0—gt

221
x=176+3T5t y:(_llll)_Tt

x=176+35t y=—1111-221¢

Thus, (176 +35,—1111-221¢ ) is general solution.Where ‘t’ is arbitrary integer.

We can proceed further to test whether the given equation has positive solution.

Consider,
176 +35t>0 =t > — 6:>t>—5.028
and
o “1111
~1111-221¢ < Oimplies ¢ < —=1<-5.0271.

Observe that there is no integer t satisfying the given conditions. Hence, there is no positive
solution.
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Ex.3. A customer brought a dozen pieces of fruit apples and oranges, for $1.32. If an apple
costs 3 — cents more than an orange and more apples than oranges were purchased. How
many pieces of each kind were brought?

Solution — Let x be the number of apples and y be the number of oranges. Let z be the cost of
oranges .

Then, x+y =12 (1)
And (z+3)x+zyzl32 ()
From (2) we have
Z(x+y)+3x:132
=12z+3x =132
=4z+x=44 (3)
Here ged(1,4)=1and 144 Hence, Equation (3) has a solution. Now
1=4x1+ 1(—3)

=44 = 4(44) +1(—132)
Thus (44, - 132) is a particular solution .
General Solution is,

z=44+1 x=-132-4 4)
where ¢is any integer.

For positive solution we must have
44+t>0 4nq —132-4t>0

=>t>-44 ,nd t1<-33=>-44<r<-33.

We shall now prepare the table of permissible values of X,y and z. In view of Equation(1) and
Equation (4), we have

t z X y  (z+3)x+zy
-35 9 8 4 132
-34 10 4 8 132

Thus x=8,y=4 or x =38,y =4 are two possible solutions.

We have not listed other values of t because the values of x or y is zero or negative in those
cases.

Since number of apples is more than oranges x = 8, y = 4 is the solution.

Ex. 4. If a cock is worth 5 coins a hen 3 coins and three chicks together 1 coin how many
cocks, hens and chicks totaling 100 can be brought for 100 coins.
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Solution. Let X be the number of cocks ¥ be the number of hens and ‘z’ be the number of
chicks.

Then 5x+3y+§=100

And x+y+2z=100

Thus 15x+9y +2z =300, (1)

x+y+z=100. (2)

From (1) and (2) we obtain

4x+8y =200.

That is 7x+4y=100. (3)

Here ged(7,4)=1|100. Hence equation (3) has a solution .
Now1=7(-1)+4(2)=100=7x(-100)+4(200).

Thus, (- 100, 200) is a particular solution of given Diophantine equation.

General solution is

b a
x=x0+2ty=y0—gt

=—100+%t y= 200—%

x=-100+4¢ y =200-7¢.
where is any integer.

For positive solution we must have

—100+4¢ >0 3,4 200—-7¢ >0
=25+t>0, t<¥<29

Thus, 25 < t<29

We can now prepare table of possible solutions.

t X y z 15x+ 9y +z
26 4 18 78 300
27 8 11 81 300
28 12 4 84 300.

Exercises 1.3

1. Determine all the solutions in the positive integers of the following Diophantine
equations

a) 18x+5y=48
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b) 54x+21y=906
c) 158x-57y=7
(Ans. a) (1,6) b) (2,38), (9,20), (16,2) c) (17 -57t,47-158t) where t <0 )

2. A certain number of sixes and nines is added to give a sum of 126;if the number of sixes
and nines is interchanged, the new sum is 114.How many of each were there originally?

(Ans.six 6’s and ten 9’s)

3. When Mr. Smith cashed a cheque at his bank, the teller mistook the number of cents to
the number of dollars and vice versa. Unaware of this , Mr. Smith spent 68 cents and
then noticed to his surprise that he had twice the amount of the original cheque.
Determine the smallest value for which the cheque could have been written.

(Ans. $10.21)
|
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Unit-2
PRIMES AND THEIR DISTRIBUTION

2.1 Fundamental Theorem of Arithmetic

Definition. An integer p >1 1s a prime integer or simply a prime if it’s only divisors are 1

and p . An integer greater than 1 that is not prime is called composite integer.
Theorem. If p isaprime and p|ab then p|aorp/b.

Proof. If p|a then there is nothing to prove.

Suppose? | @ then p being prime its only divisors are 1 and p, therefore ged(p,a)=1lor
p .Ifged(p,a)= pthen p|a, which is absurd.

Hence gcd( p,a)=1. Then by Euclid’s lemma p|ab and gcd( p,a)=1 together give us
plb.

Corollary. Ifp is prime and p|a,a,...a, then p|a, for some 1<k <n.
Proof. We shall prove this by induction on # .

Suppose n = 2, then p|aa, = p|a, or p|a, by known result. Hence the result
holds for n=2 .

Suppose the result holds for n = m and

Consider.

plaa,..aa

m~m+l1

= pl(aa,..a,)a

m+1
= plaa,..a, orpla

m+1

= pla, forsome 1<k<m or pla

m+1

= pla, for some 1<k <m+1
Hence , the result holds for n =m+1 whenever it holds for n=m.
Therefore, by principle of mathematical induction the result holds for any n.

Theorem. If p,q,,q,,...q, areall primes and p|qq,...q, then p=gq, forsomek, 1<k<n

Number Theory | 20



Proof. In view of the above corollary, p|qq,...q, implies p|q, for some 1<k <n Since

both p and g, are primes and that ¢, >1,p>1 wehave p=g, .

Theorem. (Fundamental Theorem of Arithmetic)

Every positive integer n >1, can be expressed as product of primes, this representation is
unique apart from the order in which the factors occur .

Proof. If n is prime there is nothing to prove. Suppose ‘n’ is composite, then there exist an
integer d >1 such that djn with 1 <d <n. Thus there is a set of divisors of n such that 1 <d <

n. Therefore, there is a smallest integer p, such that 1 < p, <nand p, |n.
Claim : p, is prime.

Suppose on the contrary that p, is composite integer, then there is a divisor ¢ (1 <g< pl) of
p, which is ultimately a divisor of n, which contradicts minimality of p, .Hence p, is prime.
Thus we have n = pn,,where p, is prime and n>n,. If n,is prime, we are done, otherwise
there is prime p, dividing »,.Let n, = p,n, with n>n, > n, . If n, is prime we stop here.
Otherwise there is a prime p, and n, = p,n,with n>n, > n, > n,. Since n is finite the

above process can not be continued indefinitely, that is to say, there is a positive integer r

suchthat n_, = p q where p. and g, are primes.
Thus n= p,p,...p,q, 1is prime factorization of n > 1.

Uniqueness :Let ¢q,,9,,...,4, be primes such that, n=pp,..p, =q,q,..q,where p_,...p,

and ¢,,...q, are primes written in increasing order, thatis p, < p, < p,<..<p  and
q,<q,<..2q,.
Now, p,|pp,--P =949,-9, = P, = q, forsome 1<k<s.

By hypothesis p, = ¢, 2¢q,. Thus p, >q, Now, starting with ¢, instead of p we obtain
p, < q,.Thus p, = q,. Therefore, we have pps...p. = q2qs...qs Repeating the above process we
obtain I = g,+; ... g5 .This is possible only if » =s and p; = g, for all k.

Hence the uniqueness.

Corollary. Any positive integer n > 1, can be written uniquely in the canonical form n =
pip . p* where fori = 1,2, ... r each k. 1s a positive integer and each p, is a prime

withp;< p2<... <p,.

Proof. Proof is immediate from the above theorem.

Theorem. The number \/5 is irrational.
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Proof. Suppose on the contrary that~/2 is rational, then there exist integers a,b#0 such

that /2 = %, where ged(a,b) =1.Squaring both sides, we obtain 24 = a?.

If b > 1, then by Fundamental theorem of arithmetic, there is a prime p such that p | b.

Hence, p|a®, but then p | a ,so that gcd(a,b) 2 p, which is impossible. Thus we have b =1

so that ¢* =2 and there is no integer a whose square is 2. Hence, we arrive at contradiction.

Therefore +/2 is irrational.
Ex. 1 Prove that any prime of the form 3# +11s also of the form 6m +1.
Solution. For 3n+1 is to be odd we must have 3n to be even and hence n must be even.
Ex.2 Every integer of the form n* +4 is composite for n > 1.
Solution. Observe that
n*+4=n"+4n*+4-4n’
= (n2 + 2)2 —(2;1)2
:(n2 +2+2n)(n2 +2—2n) ,
which is composite for n>1.
Ex.3 The only prime of the form n*> -4 is 5

Solution. For n=3,n>—4=5 and for n>4, we have n’ — 4 = (n + 2) (n — 2), which is

composite.
Ex.4 . Prove that every number of the form 3n + 2 has a prime factor of the same form.

Proof. We know that product of any number of integers of the form 3n+1 is also a number of
the form 3n+1 and that product of any number of integers of the form 3n is also a number of
the form 3n. Therefore, the prime factorization of any number of the form 3n+2 must contain
a prime of the form 3n+2.

Theorem(Euclid’s Theorem). There is an infinite number of primes.

Proof. Let p =2,p,=3,p, =5,p, = 7,... be primes in natural order. If possible there be
last prime p . Thatis p ,p,,..., p, arethe only primes.

Consider
P=pp,.p, *1

Clearly, P>1 therefore, by Fundamental theorem of Arithmetic P has a prime factor p.
which isoneof p . p,,..., p, . Therefore p | p p,...... p, - Further p|P
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Thus p |P-p,p,.....p, = 1. Therefore, p|1which is absurd.
Hence, the infinitude of primes.
Note. Let p” denote the product of primes less than or equal to p, where p is prime.
Consider p* + 1
This number is called ‘Euclid’s number’ or ‘Euclidean number’

Consider,

3=2"+1=2+1

7=3"+1=23+1

31=5"+1=2.3.5.+1
211=7"+1=2.3.5.7+1
2311=11"4+1=2.3.5.7.11+1

All numbers of the form p”+1 need not be prime.
Let n=2

n,=mn, +1

ny=n,-n +1

n,=n,-n, -n +1

n,=n,,n,,.n,+1

Since each », > 1, eachn, has a prime divisor. Interestingly no two 7, ’s have same prime

divisor.

Let,
d =ged(n,,n, ) where i <k.

Suppose d | n, thenas i< k,d |n,n,n,...n,_,
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Further d |n, = d |n, -n,-n,...n,_, =1
Thus d =1
Hence ged(n,,n,)=1.

Thus, there are atleast as many different prime as different ni’s. Therefore primes are infinite
in number.

Now, let us come back to primes p , p,,..,p, . In natural order. Consider
P=pp,.p,, +1.
Then prime divisor p of P is none of p,, p,,..., p, , . Therefore p < p.

In other words, if there are several such primes p dividing P then p can not exceed

the smallest of these. Thatis p < p p,...p, , +1 (n 22)

With slight modification, we can write

P < pipsep,, -1(n23).

Theorem. If p isthe n" prime number then p, < 2

Proof. We shall prove this theorem by induction on n. For n =1, p, = 2 and 2 =2,

Thus the results holds. Let the result hold true for all integers < n.

We know, p,<p,p, P, t1

-2

<2.2%.2% .27 41
e |
=224

< 92l p2m
=

Thus p, <2°".

Hence, the result holds true for n. Therefore, by principle of induction the result holds for any
n.

From this theorem following result follows immediately.

Corollary .There are at least n + 1 primes less than 2% .

Proof. From the above theorem p,, p,,..., p, are primes less than 2*.
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Exercises 2.1

1. Exhibit five primes of the form n* -2 .

2. Prove that the only prime of the form n’ —1 is 7.

3. Find four primes of the form 2" -1 .

4. Find prime factorizations of the integers 1234 and 10140.

5. If n>1 is an integer not of the form 6k +1 , prove that either 2 or 3 divides n” +2" .
6. Prove that any integer of the form 8" +1 , where n>1 , is composite.

7.  Find all primes that divide 50! .

8. If p>5 is a prime number, show that p° +2 is composite.

2.2 SIEVE OF ERATOSTHENES

Let a >1 be a composite number then there exist integers b,c(l <b<al<c< a) such that
a =bc.Assuming b <c ,we haveb’ < bc =a and hence p < +/a . Since b>1, b hasa
prime factor p . If p is prime divisor of b > 1, then p |b = p|a and that p<b <\/5 . Thus

a composite number a always posseses a prime divisor p < Ja.

Therefore to find a prime factors of any integer a > 1. It is enough to test the primes less
than ~/a . More precisely the number 100 has a prime factor which is one amongst 2, 3, 5,
7. Infact100 = 2%.5%.

Let us consider the number a = 2093. Here the smallest prime dividing a is 7 and so 2093
=7 x 299. Further smallest divisor of 299 is 13, thus 299=13x23. Thus ¢ =7x13x23 .

Let us consider the application of sieve of Eratothenes to obtain all the primes less than 100.
12 3 4 5 X 7 fF % #
11 XX 13 J4 XX 18 17 XX 19 2¥
A 22 23 XK 2F 26 W 28 29 FK
31 32 S8 34 #F XK 37 38 3 AF
41 KX 43 AH XX AB 41 AKX 49 B
S\ 82 53 XK 55 58 SX B8 59 BK

61 g2 XX B4 65 KK 67 g8 Q&
71 XX 73 T I 76 71 XX 79 #¥
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BL 82 83 EX 85 ¥ BXN ¥ 89 B

91 92 B3 9¥ 95 FK 97 98 S\ ¥

Begin with 2 and score off all the multiples of 2 higher than 2 higher than 2. Then take 3 and
score off all multiples of 3 other than 3. Repeated it for 5, 7 and the integers that survise
scoring off are the primes less than 100.

Primes less than 100 are,
2,3,5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
Exercises 2.2
1. Determine whether the integer 501 is prime by testing all primes p < J501 as possible
divisors.
2. Apply sieve of Eratosthenes to obtain all primes between 200 and 300.

3. Show that any composite three digit number must have a prime factor less than or equal
to 31. What can be said about four digit number?

2.4 Goldbach Conjecture

The difference between consecutive primes could be small as with the pairs 11, 13 and 17,
19 and for that matter 1,000,000,000,061 and 1,000,000,000,063. We call such pairs as twin
primes 1. e. pair of primes of the form p and p + 2. The electronic computers have discovered
152892 twin primes < 3, 000,000,0 and 20 pairs between 10> and 10" +10000 .

The largest twin prime pair known is 3756801695685 - 2°%%° + |(as of January 2016)

Proposition. Given any positive integer n, there exist n consecutive integers, all of which are
composite.

Proof. Given an integer n, n — consecutive composite integers are
(n+1)+2,(n+1)43,..,(n+ 1)+ (n+1).

e.g. S1+2=2x61

51+3=3x41
51+4=4x31
51+5=5x25.

Goldbach Conjecture: Every even integer greater than 4 can be written as sum of two odd
primes.
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e.g. 6=3+3

8=5+3
10=5+5=3+7
12=5+7
14=11+3=7+7

16=3+13=5+11
18=7+11=5+13
20=7+13=3+17

Though this appears to be simple no proof has been found till todate. It is still an open
problem.

It has been verified by computation for all even integers less than 4x10'" , G.H. Hardy in his
address to the mathematical society of Copenhagen in 1921 stated that the Goldbach

3

conjecture appeared. “...Probably as difficult as any of the unsolved problems in

mathematics”. It is currently known that every even integer is the sum of 6 or fewer primes.
Lemma. The product of two or more integers of the form 4, + 1 is in the same form
Proof. Let 4m +1 and 4 +1 be two integers then

(4m+1)(4n+1)=16mn+4(m+n)+1=4(4mn+m+n)+1.

which is of the form 4n+1 .
Theorem. There is an infinite number of primes of the form 4, + 3

Proof. Suppose that there are only a finite number of primes of the form 4x + 3, namely

pl’pz""’pl‘.
Consider, N =4p,p,..p,-1=4(p,p,......p, —1)+3.

Clearly, N > 1 and is of the form 4# + 3

Since N > 1, it has prime factorization N = ¢,q,......q, . Further N being odd number
q, * 2(1 <k< s). If some g, divides4 p,p,......p, thenas q, | N
q,14p,p,....p, — N =1= ¢q,|1= g, =1 which is absurd. Thus g is other than p, ..., p,
for<k<s

Further, each g, (1 <k< s), being odd it is of the form 4n+1 or 4n+3. Since N is of
the form 4n+3, all g, 's can not be of the form 4n+1 because product of finite number of

integers of the term 4n+1 1s of the same form. Therefore, there is atleast one g, of the form
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4n+3. Thus g, is a prime of the form 4n+3 other than p,,p,,...,p, . Thus we arrive at

contradiction .

Therefore there are infinitely many primes of the form 4n+3.

Theorem. If all the n >2 terms of the arithmetic progression p, p + 2d, ..., p+ (n — 1)d are
prime numbers then the common difference d is divisible by every prime q <n.

Proof. Let q be a prime less than n. Let if possible ¢ | d .

Claim. The first q terms of the progression namely, p,p+d...,p+(q—1)d will leave

different remainders upon division by q.

Suppose on the contrary that p+rd and p+sd (0 <r<s< q) leave the same remainder
upon division by q. Then p+rd =q,q+rand p+sd =q,q+r, where g, and g,are quotients.
Therefore, (s—r)d =(q,—¢,)q . Thus q|(s—r)d Since ‘q is prime and ¢ | d,ged(g,d) =1
.Hence by Euclid’s lemma, ¢ | (S —r) which is absurd as 0<r<s<gq .

Hence, the claim.

Since the q integers p,p+d,p+2d,...p+ (q — 1) d leave different remainders upon
division by q, one of the above q numbers will leave remainder 0. Note that the q remainders
upon division by qare 0, 1, 2, ...,q— 1. Let 0<7 < g be such that ¢g| p +td .Note that if p <

n, then one of the members of the progressionp, p +d, ... ,p+ (n— 1) d is of the form p + pd
= p(1 + d), contradicting the fact that all members of the progression are primes. Therefore,
we have g<n<p<p+td .

Thus, we arrive at the conclusion that p+td is composite, which is absurd.

Therefore, g |d.

(eg.p=5 n=7d=4 oneof 1,2, ...., (7-1)1is p =15 and one of p, p+d,
p+2d,..p+(n—1)d namely5,5+4,5+2x4,5+3 x4, 5+4x4,5+5%x4,5+6x4
is5+5 x 4thatis p+ pd form. Andalson=3,p=3,d=4,q=2 <3 =n, consider 3,3 + 4
=7,3+2 x 4=11 are all primes. Here ¢ =2 divides d =4.)

I
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Unit — I
CONGRUENCES

3.1 Properties of Congruences:

Definition. Let n be a positive integer, then two integers « and b are said to be congruent
modulo n written as a=b(modn) if and only if n|a—b, that is , a~b=kn , for some
integer k .

Let ustake n=9 , then

25=7(mod9), —-23=4(mod9), 39=-6(mod9), —41=-5(mod9) ,

because 25—-7=2(9),23—-(-4) =3(9),36 - (-9) =5(9),41-(-5)=-4(09) .

Note. Congruence relation is an equivalence relation.

Let a« and n be a given integers, then there exist integers gand 7 , such that
a=qn+r,0<r<n . Observe that in this case a =r(modn) . Thus every integer is congruent
modulo n to one of the integers 0,1,2,...,n—1 . In particular, a=0(modn) if and only if
n|a . The set of integers 0,1,2,...,n—1 is called the set of least nonnegative residues modulo
n . Moreover, the set of integers a,,a,,...,a,is said to be complete set(system) of residues
modulo » , if every integer is congruent modulo »n to one and only one of g, . In other

words, a,,a,,...,a, is congruent modulo nto 0,1,2,...,n—1, taken in some order. For

example, —14,-16,15,23,31,41,45 is complete set(system) of residues modulo 7; Here, we

have

-14=0,-16=5,15=1,23=2,31=3,41=6,46=4.
Theorem. For arbitrary integers a and b,a =b(modn) ifand ifonly @ and b leave the same
remainder upon division by n.
Proof. Supposea =b(modn), then a=b+gn for some integer q. By division algorithm
there exist integers g, and » such that a =ng, +r,0<r <n,then a=>b+gn gives us
ng,+r=b+qn
=b=(q,—q)n+r.
Thus a and b leave the same remainder upon division byn .

Conversely, suppose that a and b leave the same remainder on division by n, then

a=qn+r and b=g,n+r where g,,q, are quotients and  is remainder on division by » .
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Thus, a—b=(q,—¢,)n=a=b(modn).

Theorem. Let n>0 be fixed and a, b, c, d be arbitrary integers. Then the following
properties hold

a) a=a(modn).
b) If a=b(modn)then b=a(modn).
¢) If a=b(modn) and b=c(modn)then a=c(modn).

d) If a=b(modn) and ¢ =d(modn) then a+c=b+d(modn) and
ac =bd(modn).

e) If a=b(modn), then a+c=b+c(modn) and ac=bc(modn).
f) If a=b(modn), then a" =b"(modn) for any positive integer k.
Proof. a) a=a(modn)
Since (a—a)=0=0.n for any integer a
=n|(a-a)
= a=a(modn)
b) a=b(modn)
=n|(a-b)

= a—b = k.nfor some k

—b—a=(-k)n
= n|(b-a)
= b=a(modn).

¢) Let a=b(modn) and b=c(modn) then a=c(modn)
= n|(a—b) and n|(b-c)
= n|(a=b)+(b-c)

:>n|(a—c)
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= a=c(modn).
Thus if @ =b(modn) and a=c(modn) then a =c(modn)
d) Suppose a=b(modn) and ¢=d(modn)
—n|(a=b) and n|(c—d)

= a—-b=nrandc—d =ns for some integersr, s

Now,
(a+c)-(b+d)=(a—b)+(c—d)
=nr+ns
=n(r+s).
Therefore,n|(a+c)—(b+d)
= (a+c)=(b+d)(modn)
a+c=b+d(modn).
Now, ac—bd = ac—be+be—bd =(a—b)c+(c—d)b = nre + bns
= ac—bd = n(rc+bs)
= n|ac—bd = ac = bd (mod n)
¢) Suppose a =b(modn) but ¢ =c(modn) always holds. Thus
a+c=b+c(modn).andalso ac = be(modn)

Also, a=b(modn) but ¢ =c(modn) always holds.
Then by (iv) we have

ac=bc(modn).

f) Suppose a=b(modn)=n|(a-b).
We know that if k is positive integer then
a —b =(a—b)(a'“l +ak72b+....+bk71)

Since, n|a—b, we have
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n| (a—b)(a’“l +a" b+ .+ b ) =a" -b

Therefore, n|a" —b" = a* =b" (modn).

Ex. 1 Show that 41]2% —1.

Solution. To prove this, it is enough to show that 2% =1(mod41).
We know that2” = 5(mod41) = 2" =25(mod 41).

And 2°=23(mod4l).

Thus,

2% =2"2° =25.23(mod 41) = 2*° =1(mod 41).

9

Ex.2. Find last two digits of the number 99 .

Solution. We know 9 =—1(mod10), therefore 9° = (1)’ =—1=9(mod 10).
Next, 9 =81=-19(mod100) = 9* =361=-39(mod 100) = 9° = 21(mod 100).
Further, 9° =89(mod100)and 9" =1(mod100) .

Thus 9° =9°"1% =9°.9'% =89.1(mod100).
Therefore, 89 are the last two digits.
Ex.3 Find the remainder obtained upon dividing, 1!+ 2!+ 3!+ ..+ 100! by 12.

Solution. Since each of 4!,5!,...,100!contain 4!=1-2-3-4=24 , 4! + ...+ 100! is divisible
by 12 the remainder is 1! +2! +3!=1+2+6=09.

Theorem. If ca =ch(modn) then a Eb(modg) where d =ged(c,n)

Proof. Given d = gcd(c,n) then d|c and d|n, therefore " isan integer.

Consider, ca =cb(modn), then c(a—b)=nk for some integer k.

Now as d|c and dJn, there exist integer 7 and s such that ged(r,s)=1 and dr=candds=n
Thus dr(a —b) =dsk = r(a —b) =sk .

Since, r and s are relatively prime

r(a—b) =sk=s| (a—b)

= a=b(mods)
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=a= b(mod g) )

Hence the result.

Corollary. If ca = cb(modn) and ged(c,n)=1 then a=b(modn)

Corollary. If ca =cb(mod p)and p [ c, where p is a prime number, then @ =b5(mod p).

Proof. Since pis a prime ged(c, p)=p or 1. However as p | c,ged(c, p)=1 and the result

follows.

Ex.4 Prove each of the following

a) If a=b(modn) and m|n then a=b(modm)

b) If a=b(modn) and ¢ >0 then ca =cb(modcn)

b
¢) If a=b(modn) and the integers a,b,n are divisible by d >0 then %E g(modgj .

Solution. a) Suppose a Eb(mod n), then there is an integer k such that a =b+kn , since
m|n there is an integer ¢ such that n=m¢. Thus a=b+ktm=b+(kt)m and hence,

a=b(modm).

b) Suppose a=b(modn), then there is an integer k such that @ =5+ kn. Thus we

have for ¢ >0 ca=cb+ckn=cb+k(cn). Therefore, ca=cb(modcn).

¢) Suppose a=b(modn), then there is an integer & such that @ =b+kn so that

§:§+k§, for any d > 0. Since each of the integers a,b,n are divisible by d >0, each of
b
the numbers 3,2,2 are integers so 2.2 mod2 .
d d d d d d

Ex. 4. Give an example to show that a* = b* (mod ) need not imply a =b(modn)
Solution. 5* =4 (mod9) but 4 # 5(mod9)
Ex.5. Ifa = b(modn) prove that ged(a,n) = ged(b,n).

Solution. Suppose a Eb(mod n), then there exist positive integer & such that a =b+kn .
Let d =gcd(a,n),d'=gcd(b,n) . Since d=gecd(a,n) , we have d|a and d|n , so that
d|a,d|kn=d|a—kn=>b . Thus d|band d|n . Therefore, d <d' . Further, d'=gcd(b,n),
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we have d'|b and d'|n , so that d'|b,d'|kn=d'|b+kn=a . Thus d'|aand d'|n .
Therefore, d'<d .Thus d=d".

Ex.6. Find the remainder when 2% is divided by 7.

Solution.We know,

2’ =1(mod7)

=2% = (23)16 =1'°(mod7)

= 2% =1(mod 7)

=2 =2%?=2%2’ =1-4=4(mod 7).

Thus 2*" =4(mod7), that is, remainder when 2% is divided by 7is 4.

Ex.7 Find the remainder when 4444** is divided by 9.
Solution. Note that 1111=123x9+4 , so that 1111=4(mod9) .

Then 4444 =16(mod9) = 4444 = —2(mod9). Therefore 4444*** =(-2)**(mod9)or
4444** = 2***(mod9). Now 2’ =—1(mod9) implies 2° =—1(mod9).

Thus 2" =297 =(2°) 7 x2* = (-1)® x16 = (~1)x 7 =~7 = 2(mod 9) .
Hence, 2*** = (2””)4 =2*=7(mod9) .

Thus 4444*** = 2% =7(mod9). Therefore, the remainder is 7.
Ex.8. What is the remainder when the following sum is divided by 4?
P+2°+3 +---4+100° .
Solution.Observe that each of 2°,4°,6°,...,100° is divisible by 4. Now what remains to be

examined is the sum 1° +3° +5° +---+99° which contains 50 terms. This can be rearranged in
25 pairs as follows.

PC+3)+E +7)+--+(97 +99°).

Here each pair is of the form,
Q2n=17+Q2n+1)’ = (2n—1+2n+1)[(2n—1)4 +2n=-1’Qun+D)+---+2n-D2n+1) +2n+1)* ]
= (4n)[(2n D' +Q2n-1’Qun+D)+---+2u-1)2n+1)’ +2n+1)"* ]

Thus whole sum is divisible 4 and hence the remainder is zero.
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3.2 SPECIAL DIVISIBILITY TESTS
In this section we will see a mathematical formulation of divisibility tests.

Theorem.Given an integer b >1 , any positive integer N can be written uniquely in terms of
powers of b as N=a b"+a, b"" +a, ,b"” +---+ab+a, where the coefficients a, can

take on b different values 0,1,2,....,6—1 .
Proof. By division algorithm there exist integers ¢, and a, such that
N=gb+a,,0<a,<b .
If g, 2 b , we can divide once more and write
q,=9,b+a,,0<a,<b.
Substituting for g, , we obtain
N=(¢,b+a)b+a,=q,b* +ab+a,,0<a,a,<b.
Further,if g, 25, we can proceed to get
N = qu3 +a2b2 +ab+a,,0<a,,a,,a,<b.

Since, N >gq, >q, >---2=01s strictly decreasing sequences, this process should terminate in

finite number of steps to give us
N=ab"+a, b""' +a, b" > ++ab+a,,
where the coefficients g, cantake on b different values 0,1,2,...,6—1 .

Uniqueness:

Suppose that, N has two distinct representations as follows
N=ab"+a, b""'+a, b" > +---+ab+a,=cb"+c, b"" +c, b" " +--+chb+c,
where, 0<a, <b foreach i and 0<c¢; <bforeach j . This can be written as

0=d b"+d, b""'+-+db+d,

where d, =a, —c, . Since the two representations are different there exist d, # 0 for some i

. Let k be the smallest subscript for which d, # 0. Then
0=dpb"+d, b""+--+d, b +db".
This gives us

d, ==b(d b"* " +-td, ).
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Thus we have b|d, . The mequalities 0<a, <b and 0<c, <b give us -b<a, —c, <bor
|d, |<b . Therefore, b cannot divide d, . Hence, we must have d, =0, for all k. Thus a; = ¢

for all £ . Therefore, the representation is unique.

Theorem. Let P(x)= chxk be a polynomial function of x with integral coefficients ¢, .
k=0

If a=b(modn), then P(a)= P(b)(modn) .
Proof. Observe that a =b(modn) implies a* = b*(modn) for k=1,2,...,m . Hence,

c,a" =c b (modn)for k=1,2,...,m. Therefore, we have

chak Echbk (modn) .
k=0 k=0

That is P(a) = P(b)(modn).
Corollary. If ¢ is a solution of P(x)=0(modn)and a =b(modn), then b is also a solution.

Proof.Since a =b(modn), we have P(a)= P(b)(modn). Further, a is a solution of
P(x)=0(modn), we have P(a)=0(modn), therefore, P(b)=0(modn). Thus 5 is also a
solution of P(x)=0(modn).

This result can be used to develop tests of divisibility. Let us begin with test of divisibility by
9, in decimal system.

Theorem.Let N=a 10"+a_ 10" +a 10" +---+a,10+a, be the decimal expansion of
m m—1 m-2 1 0 p

the positive integer N , 0<a, <10, and let S=a,+a,+---+a, . Then 9| N if and only if
91§ .

Proof. We know that 10=1(mod9) . Let P(x)=a,x"+a, x""'+---+ax+a, . Then in
view of above theorem P(10)= P(I)(mod9). Clearly,

P10)=a 10" +a, 10" +a, 10"+ --+q10+a,= N
and

P)=a,+a,+--+a,=S.

Thus N = S(mod9) . Therefore, 9| N if and only if 9|S'.

In view of this result, we have an integer N is divisible by 9 if and only if sum of digits in N
is divisible by 9.

Let us now proceed to divisibility by 11.
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Theorem.Let N =a, 10" +a, 10" +a, 10" +---+4,10+a, be the decimal expansion of
the positive integer N , 0<a, <10, and let 7 =a,—-a,+a,—---+(-=1)"a, . Then 11| N if
and only if 11]7" .

Proof. We know that 10=—1(mod11) . Let P(x)=a x" +a, x""'+--+ax+a, . Then in
view of above theorem P(10)= P(—1)(mod11). Clearly,

P10)=a 10" +a, 10" +a, 10" +---+q10+a,= N
and

P-)=a,—a,+---+(-1)"a, =T.

Thus N=T(mod11) . Therefore, 11| N ifand only if 11|7 .

In view of this result, we have an integer N =a, 10" +a, 10" +a, 10" +---+410+aq, is
divisible by 11 ifand only if 7 =a,—a, +a, —---+(=1)"a, is divisible by 11.

Ex.9 Without performing the divisions, determine whether the integers 176,521,221 and
149,235,678 are divisible by 9 or 11?

Solution. a) Consider the integer 176,521,221. Observe that

1) 1+7+6+5+2+1+2+2+1=27, which is divisible by 9. Therefore, 176,521,221 is
divisible by 9.

1) 1-7+6-5+2-1+2-2+1= - 3, which is not divisible by 11. Therefore, 176,521,221 is
not divisible by 11.

b) Consider the integer 149,235,678. Observe that

1) 1+4+9+2+3+5+6+7+8=45 , which is divisible by 9. Therefore, 149,235,678 is
divisible by 9.

i) 1-4+9-2+3-5+6-7+8= 11 , which is divisible by 11. Therefore, 149,235,678 is
divisible by 11.

Looking at the above results regarding divisibility, students are advised to develop
divisibility tests for other integers in decimal as well as other systems also. For example,
10=1(mod3) gives us divisibility test for divisibility by 3 in decimal system where as

9 =0(mod3) gives us divisibility test for divisibility by 3 in the system to the base 9 and
9 =1(mod8) gives us divisibility test for divisibility by 8 in the system to the base 9. Let

P(x)=ax"+a, x""'+-+ax+a, . Let N=a,9"+a, 9" " +a, 9" ++a9+a,
where 0<a, <9 be a number to the base 9. Then 9 = 0(mod 3) implies
P(9) = P(0)(mod3) = N =qg,(mod3). Therefore, 3| N if and only if 3|q, . Similarly, we

can prove that 8| N if and only if 8|a, +a,+---+a,, .
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Ex.10 Test whether the integer (447836), is divisible by 3 and 8?

Solution. Consider (447836),. Here a,=6 and is divisible by 3. Therefore, (447836),1is

divisible by 3. Now consider4+4+7+8+3+6=32 which is divisible by 8. Hence,
(447836), is divisible by 8.

Exercises 3.1
1. Prove that the integer 53'" +103> is divisible by 39.
2. Use theory of congruence to verify that 89|2* —1and 97|2% -1 .
3. For any integer a , prove that a* =0(mod5) or a*=1(mod5).

4. Working with modulo 9 or 11m find the missing digit in the calculation below

a) 51840x273581=1418243x040
b) 2x99561=[3(523+x)]’
(Ans. a) 9,b) 4)
3.3. Linear congruences:
Definition. An equation of the form ax =bh(modn) is called linear congruence.
An integer x, is a solution ofax = b(modn)ifax, = b(modn).
We begin with

Theorem. The linear congruence ax=bh(modn) has a solution if and only if d|b , where

d =gcd(a,n) . If d | b , then it has d mutually incongruent solutions modulo » .

Proof. Observe that ax =b(modn)is equivalent to linear Diophantine equation ax—ny=>b .

We know that ax—ny =>b has a solution if and only if d|b . Moreover if it has a solution
b .
X,, Y, then any other solution has the form x=x0+gt, y= J’o+gt for some choice of

integer ¢ . Consider the following set of d solutions

n n (d-Dn
Xy Xy +—, X, +2—, -, X, +—— .
0°770 d 0 d 0 d

We shall prove that these d solutions are mutually incongruent modulo » .

Suppose on the contrary that
n n
X, +—t, =x,+—1t,(modn)
0 d 1 0 d 2

where 0<¢ <t,<d-1,then
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gt‘ Egtz(modn).

Now gcd (g,n) =— , and therefore, we can cancel 3 to get

QU

t,=t,(modd).
which implies d |t —t, . Since 0<¢ <t,<d -1, d cannot divide ¢, —¢, . Thus we arrive at
contradiction.
Now it remains to prove that any other solution x, +3t is congruent modulo » to one of the
d integers listed above. By division algorithm, we have f=dgq+r where ¢ and r are
integers with 0 <r <d . Hence,

n n n n
X, +gt=x0 +E(qd+r)=xo +nq+gr =X, +Er(m0dn).

This proves the result.

Corollary.If gcd(a,n) =1, then the linear congruence ax=h(modn) has a unique solution

modulo #n .
This is immediate from the above theorem.

Ex.11.Solve 18x=30(mod42) .
Solution.Consider 18x =30(mod42). Here, gcd(18,42) =6 and that 6|30 . Therefore, there
are 6 incongruent solutions modulo 42 given by x =x, + gt(mod n) where x, 1s a particular

solution of given linear congruence and ¢ =0,1,...,5 . Now
18x =30(mod 42) = 3x = 5(mod 7) multiplying both sides by 5, we obtain
15x=25(mod7) = x=4(mod 7). Thus x, =4is a particular solution.

Hence, the six solutions incongruent modulo 42. Thus the 6 solutions are

x=4 +%t(mod 42)= 4+ 7t(mod 42) , that is, x =4,11,18,25,32,39(mod 42) .

Ex.12 Using congruence solve 4x+51y =9 .

Solution.Consider 4x+51y=9. This can be written as linear congruence 4x=9(mod51).

We now solve this linear congruence for x . Now consider 4x =9(mod>51).
Multiplying both sides by 13, we get 52x=117(mod51), Thus x=52x=117(mod 51) .

Therefore, x=117=15(mod51). Hence, x =15+ 51t where ¢ is any integer.
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Next we can take
51y=9(mod4) = 3y =1(mod4) =9y =3(mod4) = y =3(mod4) = y =3+4s,

where s is any integer. Using values of x and yin 4x+51y =09,
we obtain the relation between » and s given by 4(15+51¢)+513+4s)=9=r+¢+1=0.
In general x =15+51¢ and y =3+4(—1—-¢)=—1-4¢ , where ¢ is any integer.

Note. Value of y in terms of ¢ can also be obtained directly on putting value of x in terms

of ¢in the equation 4x+51y=9.

Theorem. (Chinese Remainder Theorem)

Let n,n,,...,n, be positive integers such that gcd(n;,n,)=1for i# j . Then the system of

linear congruences

x=a,(modn,)

x=a,(modn,)

x=a.(modn,)

has a simultaneous solution, which is unique modulo the integer nn,---n

oo

n .
Proof.Let n=nmn,---n . For each k=1,2,....,r ,let N, =—=nn,---n,_n,,, ---n . Since n,
k

are relatively prime in pairs, gcd(N,,n,)=1, for k=12,...,r. Hence, each of the linear
congruence N,x =1(modn,) has a unique solution say x,, for k=12,...,7. Thus Ny x; =
1(mod ny)

Let x=aNx,+a,N,x, +---+a N x, .
Claim: X is simultaneous solution of the system.
Since n, | N, fori#k , N, =0(modn,) fori=k.
Hence,
Xx=aNx +a,N,x,+---+a Nx =aN x,(modn,).
Since N,x, =l(modn,) ,we have X =q, -1=q,(modn,) for k=1,2,...,r.

This proves the existence of solution
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Uniqueness:

Let x' be any other solution of the given system of linear congruences, then

x'=a,(modn,), foreachk=1,2,..,r.

Hence )_czx’(modnk), k=1,2,...,1)
=n, |;c—x'(k= 1,2,...,1) .

Since  ged(n,n)=1, for =k, wehave

x-x'

n=nn,..n,
—x= x'(modn) .

Hence the uniqueness.

Ex.12 The problem posed by Sun — Tsn corresponds to the system of three
congruences

2(mod3)

X

x=3(mod5)

x=2(mod7).
Solution — Here 74 =3,n, =5,n, =7,

So n=nnn, =3.5.7=105

1
N, _n_105_ 54
n 3
N, =10y
n 5
N =219y
n 7

Consider,

N,x=1(mod3)=35x =1(mod3)

By inspection X, =2 is a solution of this linear congruence.

Next,
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N,x=1(mod5)=>21x=1(mod5)

By inspection X, =1 is a solution of this linear congruence.
Further,

Nyx=1(mod7)=15x=1(mod7)

By inspection X; =1 of this linear congruence.
Consider,
x= aN,x, +a,N,x, + a,N;x,
=2.352+3.21.1+2.15.1
x =233

Thus;c=233(m0d105), that is,)_c=23(mod105) is simultaneous solution given

congrucnces.
Ex.13Solve 17x=9(mod276).

Solution. Note that 276 =3.4.23 and given linear congruence is equivalent to

17x=9(mod3) or x=0(mod3), (1)

17x=9(mod4)or x=1(mod4), )

17x=9(mod23). A3)
Now

x=0(mod3)=x=3k, for any integer k. (4)

Using this in the second, we get

k= 1(m0d4) or

k=9 = 3(m0d4)

= k =3+ 4, for any integer j. ®))
Thus, x=3k=3(3+4/)=9+12;. (6)
Using this in (3), we obtain

17(9+12/) =9(mod 23)
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=204, =—144(mod 23)

=3 =6(mod23)

= j =2(mod23)

= j=2+23t, where ‘t’ is arbitrary integer.
Thus, x =9+12(2+23t) =33+276t .

Hence, x = 33(m0d 276) is the solution.

Linear Congruence of Two Variables

Linear congruence of two variables is a congruence of the form

ax+by=c(modn).

Theorem. The system of linear congruences ax+by = r(mod n) and cx+dy= s(mod n) has

a unique solution modulo n whenever gcd(ad —bc, n) =1
Proof. Consider ax+by = r(modn) ........... (D
andcx+dy=s(modn). (2)

((1)xd —(2) xb) gives us

(ad—bc)x=(dr—bs)(modn) . . 3)
Since ged(ad —be,n)=1,

(ad—bc)z=1(modn) (4)
has a unique solution of modulo n,

Let “t’ be a solution of (4) then

(ad-bc)t=1(modn) L (5)
Multiplying both sides of (3) by ‘t” we obtain

(ad —bc)xt=(dr—bs)t(modn) . (6)

Using (5) in (6) we get,
x=(dr—bs)t(modn).
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Similarly, (1)xc—(2)xa gives us

(bc—ad) y=(cr—as)(modn)

= (ad —bc) y =(as—cr)(modn)

—y=(as—cr)t(modn)

Ex.14 Solve 7x+3y=10(modl6) (1)
2x+5y=9(modl6) )

Solution.Observe that ged(7x5-3x2,16) = ged(35-6,16) =ged(29,16) =1.

Hence, solution exists.

Consider, (ad —bc)z =1(modn) = (7x5-3x2)z=1(mod16) that is, 29z =1(mod16)

By inspection z =35 is a solution, therefore £ =5 .

Therefore, x =(dr—bs)¢(modn) gives us

x=(5-10-3-9)(5)mod16) = x = 23-5(mod 16) = x =115(mod 16) = x = 3(mod 16)

Similarly, y = (7-9~2-10)(5) = 43-5=215=7(mod 16)

We can also solve this problem directly as follows.

(1)x5—-2(3) gives us

35x+15y =50(mod16)

6x+15y =27(mod16)

=29x =23(mod16)

=13x=7(mod16)

= x=3(mod16)

Next, (1)x2-2x7 gives us

14x+6y =20(mod16)

14x+35y =63(mod16)

= -29y =-43 (mod16)
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= 29y = 43 (mod16)
-3y = -5 (mod16)
33y = 55 (mod 16) (multiplying by 11 an brth sides)

=>y= 7(m0d16)
EXERCISES 3.2
1. Solve 25x=15(mod29)(Ans. x=18(mod29) )

2. Solve 140x=133(mod301) (Ans. 16 + 63,t=0, 1, 2, ..., 6)

3. Using congruences, solve12x+25y =331 . (Ans.x=13+25¢,y=7-12t )

I
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Unit-4

Fermat’s Theorem

4.1 Let us begin with Fermat’s theorem

Theorem. Let p be prime and « is an integer such that p { a then
a"" =1(modp).
Proof. Consider the numbers a,2a,3a,...,(p—1)a .

Claim. These ( p— 1) integers are incongruent modulo p.

Let if possible 7a = sa(mod p)
wherel<r<s<p .
Since p t a and p is prime gcd(p,a) =1 So, ra Esa(modp)
=r=s(modp)
=>pl|r-—s.
Since, 1 <r <s <p, p cannot divide r—s.

Hence a, 2a, ..., (p-1) a leave different remainders when divided by p. Therefore, a, 2aq, ...,
(p-1) a leave remainders 1, 2, ..., p-1 in some order.

Therefore,

a-2a-3a---(p—a=1-2-3---(p—1)(mod p)

=1-2-3--(p=Da’" =1-2-3---(p—-1)(mod p)

= (p-Dla"" =(p-1)l(mod p)

=a"" =1(mod p).

Note that as ged (p, (p-1)!) = 1 we can cancel (p —1)! from both sides.

Corollary. If p is prime, then a” =a (mod p) for every integera .

Proof. If p | a then the result is trivially true. Further if p 4 a then by Fermat’s theorem
a" =1(mod p)

=a" =a(mod p).
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Ex. 1 Find the remainder when, 5*is divided by 11.

Solution.By Fermat’s Theorem 5"’ = l(modl 1) . Clearly 5> =3(mod11)and 3" = 4(m0d1 1)
Thus, 5°=3"=4(mod11).

Hence, 5% =55% =(5"°)'5* =1 -4 = 4(mod 1)

Therefore, 5% = 4(m0d1 1) .

Thus remainder is 4.

104

Ex.2. Use Fermat’s theorem to verify that 17|11 + 1.

Solution. By Fermat’s theorem

11° =1(mod17).

Further (11'°)’ =1° (mod17) =11 =(11°) =1° = 1(mod17) .
Now

117 =121=2(mod17) = 11* =2* = (~1)(mod17) .

Thus

11 =11".11° =1(~1)(mod17) =11 +1=0(mod17).

Note. If a” Ea(modn) fails to hold good for some choice ofa then n is necessarily

composite.
For example, n =117, then 2" =2'%7 = (27)!0.2°
Here 2" =128=11(mod117).
So that
2" =(27)".2° =11"-2°(mod117) .
Now (11)'° = (121)° =4*(mod117).
Thus,
2" =4°%.2° =2 (mod117).
Now,
2% =(2') =11 (mod117) .

Therefore,
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11°=121-11=4.11(mod 117)
Thus

2" =11° =44(mod117).
Hence,

(al+q"" =1(mod pq).
Thus,

2" =44(mod117)

2" £2(mod117)

and that 117=13x9 is composite.

Lemma. If p and ¢ are distinct primes with ¢’ = a (modg) and a? = a (modp) and then
a” =a(mod pq) .

Proof — By Fermat’s theorem

(a”yY’ = a” (mod p) and (&”)? = @’ (mod q)

These two along with

a’ =a(mod p)and a” = a(modgq)

Gives us
(@Y = a’ (mod p) = &’ = a (mod p)
And

(@) = d’ = a (mod q)
= a" =a(modgq)
Since p and q are distinct primes gcd( p,q) =1 and, hence, @’ = a(mod pq) :

Ex.3. Let p and g be distinct primes, prove that p?™ +¢”™ =1(mod pq) .

Solution. By Fermat’s theorem p?” =1(modg)and ¢”"' =1(mod p). Also p?" =0(mod p)
and ¢’ =0(modgq). Thus p?"' +¢”" =1(mod p)and p*" +¢”"' =1(mod q), therefore,

p +¢"" =1(mod pq).

Ex.4. Let p and g be distinct odd primes such that p—1|g—1. If gcd(a, pg) =1, prove that
a’" =1(mod pq) .
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Solution. Since gcd(a, pg) =1 and p, g are relatively prime ged(a, p) =1and ged(a,q) =1.
By Fermat’s theorem ¢’ =1(modg)and a””' =1(mod p).

Since p—1|g-1, (a*" =1|(a*" -1) .

Therefore, as p|a’" —1, we have p|a’" —1. Hence, a’" =1(mod p).

Thus a*"' =1(mod pq) .

Ex.5. Find the units digit of 3'” by use of Fermat’s theorem.

Solution.Observe that by Fermat’s theorem 3* =1(mod 5)and 3* =1(mod?2).

Since ged(5,2) =1, we get 3* =1(mod10) . Thus 3* =(3*)* =1° =1(mod 10).

Hence, 3° =3*3=1-3=3(mod10). Further, 3'° =3-(3)"" =3-3""=3*.3* =1-1=1(mod 10) .

Thus units digit is 1.
4.2 Pseudo Prime

By Fermat’s theorem a” T = l(mod p) happens for all prims p with the condition that
pta
However a”~' = l(mod p) may hold for non-prime p also.

Consider the example

29 =1024=31x33+1 .
That is

2" =1(mod31) = 2" =2(mod31).
And by Fermat’s theorem
2" =1(mod11).
So that
2 =2x27 =2x(2") =2x1(mod11) .
Therefore,
2" =2(mod11-31)

=2 =2(mod341)

=2 =1(mod341)
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Thus @' = l(modn) holds for non-prime n. In other words, 7| a-1.

In particular 7|2 1.

Such a composite integer ‘n’ is called Pseudo prime.

Note. "' = l(modn) need not imply n is prime.

Definition.A composite number n is pseudo prime ifn|2" -2 .

Note. Smallest pseudo prime is 341. Some others are 561, 645, 1105.
Theorem. If n is an odd pseudo prime then M, =2" -1 is a larger one .

Proof. Let ‘n’ be an odd pseudo prime. Since n is composite, let7z =rs, where r,s >1 we

may assume that 1<»<s<n. Then

M =2"-1

=2" -1

=(27) -1

=@ DY+ @Y H e+ @)+ 1]
Thus M, is composite number .

Since n is pseudo prime, n]2" — 2. .

That is, 2" — 2 = kn for some integer k.

Now,

2M"—1 _1 — 22"—2 _1

=2" -1

=" -D[2")Y "+ @) 2+ 1]

=M, [(2) T +@2") 7+ + (2 +]] .
Thus ,

M, 2% —1= M, |[2(2" -1)=2" -2,
Therefore, M, is pseudo prime.

Definition. (Pseudo Prime to base a). A composite integer n for which a" = a(modn)

holds in called pseudo prime to the base a .
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Notes . 1. Pseudo prime to the base 2 is called pseudo prime.
2. 91 is smallest pseudo prime to the base 3.
3. 217 is the smallest pseudo prime to the base 5.
4. There are infinitely many pseudo primes to any given base
5. There are 245 pseudo prime less than one million.

6. First example of even pseudo prime is 161038 = 2x73x1103 and was found in
1950.

7. There exist composite number n which are pseudo prime to every base a 1i.e.
a’ Ea(modn) for all ‘a’. The least such integer is 561. These exceptional numbers are called
as absolute pseudo primes or Carmichael numbers._.
Carmichael indicated four absolute pseudo primes namely 561, 1105, 2821, 15841.
Ex.6. Prove that 561 is an absolute pseudo prime.

Solution. Note that 561 = 3x11x17.

Let ged(a,561) =1then ged(a,3)=1, ged(a,11)=1,ged(a,17)=1.
Hence by Fermat’s theorem

a’ =1(mod3),a"’ =1(mod11), a'° =1(mod17)

=a= (@ =1* =1 (mod3),

= @' =1°=1 (modl1),

= (@'9" =1¥ =1 (mod17),

Thus, &*® =1(mod3-11-17) .

That is, 2> = 1 (mod 561) i.e., a°*' = a (mod 561).

Theorem. Let n a composite square free integer say, n= p,p,...p where the p, are distinct

primes. If p;; | n-1 for i=12,...,7 then n is absolute pseudo prime.
Proof. Suppose a is an integer relatively prime to n, that is gcd(a,n) =1.
Then gcd(a,pl.) =lfori=12,...,r.

Hence, by Fermat’s theorem, a”~' =1(mod p,) .

Thus p, |a” ™ -1 .

Since p; | n-1 for eachi=1,2,...,7, we havea” " —1]|a"" -1 .
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Thus p;| a"" -1 forall i=12,....r.
Therefore, n=p,p,...p, |a"" -1

Thus, ¢"' = 1(modn), for all integers a . (relative prime ton)
Hence n is absolute pseudo prime.
e.g. 1)561=3.11.17
2|560, 10]560, 16/560
2)1729=17.13. 19
6|1728, 12|1728, 16/1728
3) 10585=5.29.73
4]10584, 2810584,  72|10584
Note. 1) Therefore are only 43 absolute pseudo primes less than one million.
4.3 Wilson’s Theorem

Statement. For any prime p,(p —1)!=-1(mod p) .

Proof. For p =2, 3 the result is trivial
Letp>3

Let a be any one of the integers 1, 2,3, ...,p—1.

Then gcd(a, p) =1.

Consider the linear congruence ax = l(mod p) . Since gcd(a, p) =1 the linear congruence

ax = l(mod p) has a unique solution modulo p.

Leta' be a solution of ale(modp), such that @' is one amongst 1,2, ...,p—1.
Thus «' is unique integer such that 1<d'< p—1 satisfying aa’ = l(mod p) :
Claim - : a=d ifand only if either a =lor a=p—1.

Consider,

a’ =1(mod p)

=a’—1=0(mod p)

= (a—l)(a +1) = O(modp)

= a—-1=0(mod p)or= a+1=0(mod p)
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Hence eithera =lora=p-1.
Thus for any «a other than 1 and p — 1, a'is distinct from a .
Thus we obtain ((p — 3)/2) pairs (a,a’) such that,aa’ =1(mod p).

Hence,

2:3-+-(p=2)=1(mod p)

=(p-2)!=1(mod p)

=(p-1)(p-2)!=p-1(mod p)

=(p-1)!=-1(mod p)

eg.Let p=13

2.7 =1(mod13)

3.9=1(mod13)

4.10=1(mod13)

5.8=1(mod13)

6.11=1(mod13)

Hence, 11!=1(mod13)
ie.,12!=-1(mod13).

Converse of Wilson’s theorem is also true

Theorem.If (n—1)!=-1(modn) then is prime.

Proof. Suppose n is composite then there is d such that 1<d <n and djn. Thend |(n—1)!

Thus d| -1, so that we arrive at contradiction. Hence n is prime.

Theorem. The quadratic congruence X +1= O(mod p) where p is odd prime, has a solution
if and only if p=1(mod4).

Proof. Let ¢ be any solution of x* +1=0(mod p).Then a’ =—1(mod p).

Since p | a, Fermat’s theorem gives us
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p-1 p-1

l=a""'= (a2 )7 =(-1) 2 (mod p).

This holds only if 2 2‘1 is even,

ie. p—1=0(mod4) or p=1(mod4)

(If p is of the form 4k + 3 then 2 —1 js of the form 2k + 1 and hence
2

-1

(1) == =1,
So that, 1= —l(mod p) which is impossible for odd prime)
Conversely,
Suppose that p =1(mod4)
To prove that x* +1= O(mod p) has a solution.
We know,

p—1=—1(modp)

p;l E—(pz_l](modp)_

Consider,

(p_l)!:1'2'”(%—1)(%“)'“(}7_1)

=1-(p—1)-2-(p—2)--~(p—_1)(p7+1j _

Thus we obtain,

(p—l)! .....

1
—_
—
L
A —
\®)
—
[
\®)
A —
(0')

[
(0'8)
A —
7\

aN]
N
-
N—
[
7N\
aN]
N B
-
N
N—
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2
Since, p = l(mod 4), (pT—l) is even and hence, (p—1)!= HPT_IJ'} (mod p) .

By Wilson’s theorem, we have

(p-1)!=-1(mod p).

Thus,

e

2
That is, KPT_IJ'} +1=0(mod p).

Therefore, x 2(%]! is a solution of quadratic congruence X +1= O(mod p) .

Ex.7. Find the remainder when 15! is divided by 17 .
Solution. By Wilson’s theorem, we have 16!= —1(m0d17) , that is, 16!= 16(m0d17) )

Since gecd(16,17) =1 , we can cancel 16 from both sides and we get, 15!= 1(m0d17) )

Therefore, the remainder is 1.

Note. It may be noted that, for any prime p, (p—2)!=1(mod p) which is an intermediate

step in the proof of Wilson’s theorem.
Ex.8 Find the remainder when 2.26!is divided by 29.
Solution.By Wilson’s theorem, 28!=—1(mod29) , that is , —1 =28!(mod29). Therefore,

—1=26127.28(mod29)
= —1=26!(-2)(-1)(mod29)
= —1=26!(2)(mod29)

= 2.26!=28(mod29).

Number Theory | 55



4.4 Fermat’s Factorization Method

In this method we try to write integer n as difference of two squares. We start with an
integer a whose square is greater than n and nearest to » and proceed further by taking

a+l,a+2,...a+k till we get an integer b such that (a+k)*—n=>".
Ex.9 Using Fermat’s factorization method factorize 119143.
Solution. Observe that, 345> < 119143 < 346",
Consider,

346> — 119143 = 119716 — 119143 = 573

347* — 119143 = 120409 — 119143 = 1266

348> — 119143 = 121104 — 119143 = 1961

3497 — 119143 = 121801 — 119143 = 2658

350° — 119143 = 122501 — 119143 = 3357

3517 — 119143 = 123204 — 119143 = 4058

3522 — 119143 = 123902 — 119143 = 4761=(69)".
Thus,

3527 - 119143 = (69)* = 119143 = 3527 — (69)?

=(352+69)(352-69)

=421%x283.
Ex.10. Factors 23449

Solution. Observe that 1532 < 23449 <1542,

Consider

1547 —23449 = 23716 — 23449 = 267

1557 —23449 = 2402523449 = 576 = 24°
Thus

155% - 23449 = 247

23449 =155 —24°

=(155+24)(155-24)

=179x131.
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Note. While examinating the difference for possible square many values can be excluded by
inspection. We know that the square must end in one of the 6 digits 0, 1,4, 5, 6, 9

Further by calculating the squares of the integers the last two digits are limited to 00,
01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 69, 76, 81, 84, 89, 96.

Ex.11. Factorize 2279, 10541, 340663.
Solution. 1) 2279

We observe that-

47% <2279 < 48>,

Consider,

48 -2279 =25=5".
Therefore, 2279 = 48> —5°.
2279 =(48+5)(48-5)
=53 %43

2) 10541

We observe that
1022 <10541<103%.

Consider 103* —10541 =68
1024 — 10541 =275

105 —10541 =484 =22°
1052 —10541 =222
10541 =105 -222
=(105-22)(105+22)

=83 x 127

3) 340663

We observe that
583 < 340663 < 590
Consider

(584)” — 340663 = 393
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2

585) —340663 =1562,

2

586) —340663 =2733,

2

587) —340663 = 3906,

2

589) —340663 = 6258,

2

590)" —340663 = 7439,

2

591) -340663 =8618,

(585)

(586)

(587)

(588)" —340663 = 5081,
(589)

(590)

(591)

(

592)2 —340663 =9801=99".

Thus (592) -340663 =992,
Hence,

340663 = (592)" - 99
=(592-99)(592+99)

=493x691.
4.5 Generalization of Fermat’s Factorization Method

Here we look for two integers x and y such that x’ —)” is a multiple of n. In other

words x° = )° (modn).
Letd=gcd (x—y,n) (ord=ged (x +y,n)
Then is d a non — trivial divisor of n?, that is, do we have 1<d <n?

In practice, n is usually the product of two primes p andg . Let n be a number of the form

n = pq, where p and q are prime integers. With no loss of generality we can take p <q.
Note that d is one of the integer 1, p, q, pq. Suppose that p |x—y and ¢ | x — y then
pq|x—y.Butthen n=pg|x—y thatis xzy(modn). Similarly if p|x+ y and
g |x+ ythen x= —y(modn) . Since x Z *y(modn). Hence, one of p and q divides

(x+ y) and the other (x— y) . Thus gcd(x— y,n) and gcd(x+ y,n) give us the two divisors

of n.
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Ex.12. Factorize 2189.

Solution — Consider n = 2189.

Let us look for squares close to multiple of n.
Observe that 47° —2189 =20 .

Now 66 —2x2189=-22,

(81)> =3 x 2189 =—6,

(94) — 4 x 2189 =280,

2

105) —5x2189 =80,

2

115) -6x2189 =91,

2

124)" -7x2189 =53,

2

140) —9x2189 =-101,

2

148) —10x2189 =14,

2

155

(105)
(115)
(124)
(132)" -8x2189 =88,
(140)
(148)
(155)

—11x2189=-54.

Now, 81x155=12555=-579(mod2189)= 81°x155%* = (579)2 (mod2189).
Further

81 =-6(mod 2189)and 155% = 54 (mod 2189).

Thus (81)* (155)* = (—6) (=54) = (18)* (mod 2189) .

Hence (579)° =(18)" (mod2189).

Thus ged(579+18,2189) = gcd(597,2189) =199 and

gcd(579-18,2189) = ged(561,2189) = 11 are factors of 2189.

EXERCISES

1. Factor the number 2" —1 by Fermat’s factorization method.(Ans. 89x23)

2. Employ the generalized Fermat’s method to factor each of the following numbers
a) 2911 [Hint, 138> = 67% (mod 2911)]
b) 4573 [Hint, 177° = 92% (mod 2911)]

I
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Unit-5

Number Theoretic Functions

5.1 A function from set of integers into set of integers is called number theoretic function.
We begin with

Definition. For any integer n the number of positive divisors of » is denoted by 7(n).
Definition. For any integer n the sum of all positive divisors of » is denoted by o(n).

eg. L.t()=L7(2)=2,7(3)=2,7(4)=3,7(5)=2,7(6)=4,7(7) =2,7(8) = 4,7(9) =3,7(10) =4
2. 0()=1,0(2)=3,03)=4,0(4)=7,06(5)=6,0(6)=12,0(7)=8,0(8) =15,
c(9)=13,0(10)=18.

Notation. Let n be any integer and d,,d,,...,d, denote divisors of »n , then

D f(@)=fd)+f(d)++f(d,).

d|n

With this notation we have 7(n) = Zl; o(n)= Zd .

d|n dn

Note: For any prime p,7(p)=2,0(p)=p+1.

Theorem. If n = plk1 pzk2 prk" is the prime factorization of n >1 , then the positive divisors
of n are precisely those integers d of the form d = p“p,”...p“ where 0<q, <k,
fori=L2,...,r.

Proof. Note that the divisor d =1 is obtained when a, =a, =---=a, =0 and n itself occurs
when a, =k,,a,=k,,...,a, =k, .Let d be the nontrivial divisor of »n , then n=dd'
where d,d'>1 .Let d=¢q,q, --q,.,d'=tt,---t, be the prime factorizations of d and

d'.Then p'p...p" =qq, --qtt,- -t will be two factorizations of n .

Hence, by uniqueness of factorization, we obtain d=p“p,”...p", where
0<a, <k, and the possibility that a, =0 is permitted.

Conversely, let d = p“ p,”...p," , where 0<q, <k,.

Then

I ¢ k k. _ _a a a, . k—a ky—a k.—a, __ '
n=p"p,2..p =pp, . ..pip" T p, . p T =dd

k—a;  ky,—a, k,

whered'= p" " p, .p " and k,—a, 20 for 1<i<r .Then d'>0and d|n .
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Theorem. If n=p" p,” ... p *is the prime factorization of n >1 , then

a) z(n) =k +D(k, +1)---(k, +1)

ki +1 _1 ky+1 _1 k.+1 _1
p -1 p,—1 p,—1

Proof. We know that every divisor of n is of the form d = p,“ p, ... p, where 0<q, <k,.

There are k, +1choices for the exponent q,, there are k, +1 choices for the exponent

a,,...and k +1 choices for the exponent a,. Hence, tv(n) = (k, +1)(k, +1)---(k, +1).
Further,

o(n)=(1+p+pf +-+ p Y+ py+ py +4 Py ) (L4 p+ pl o+ p))

k+l ky+l k4l
Thus G(n):[p‘ IJ[pz 1]---(“ 1)
p -1 p,—1 p.—1

e.g. Let n=180=2%.3%.5".

Therefore,

7(180) =2+ D2+ 1)(1+1)=18and o(180) =[§:11][3;:11J(12:11}=546 :

Theorem. The product of positive divisors of 7 >1 is n' ™.

Proof.Let d and d'be a positive divisors of nthenn=dd’, where 1<d<n,1<d'<n .

So, "™ =[1dI1d" .Since [1d=114d".

dn d'n dn d'ln

2w
Wehave,nr(”)z(ﬂd) =n? =[ld.

dln dln

eg.[[d=16"""=16" =2" =1024.

djl6

Note that ,7(20) =7(5)-7(4) but 7(20) #7(10)-7(2) and 6(20)=0c(5)-c(4) but
0(20)20(0)-0(2).

5.2 Multiplicative Function

Let f be a number theoretic function, then f is multiplicative if,

f(mn) :f(m)-f(n) whenever gcd(m,n) =1.

Theorem.The function 7 and o are multiplicative.
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Proof: Let m, n be integers such that gcd(m,n) =1. Ifeither m =1 or n =1 then as
(7(1) =land ,7(1) =1 ,the result is trivial.

Suppose that m> 1 and n > 1.

By fundamental theorem of Arithmetic

] 1,

mzplklpé‘2 pf andn =g, qéz g .

where, p,, p,,...,p, and gq,.q,,...,q, are primes and k.k,,....k;[,l,,....[ are
positive integers.

Thus, mn = pl"l pé‘z ...pf’q]l1 qéz qi )

Since m and n are relatively prime, p,, p,,...,p, and q,,q,,...,q, are distinct

primes, we have

i+l _q ktl _q k1 b+l _q L _q L+l -1
G(mn):[pl J[pz ],,_(p, J(ql j(‘b j[q o (m)o(n)
p -1 p,—1 p. -1 -1 ) ¢q,-1 q,—1

and

t(mn) = (k, +)(k, +1)--- (k. + D), + D), +1)--- ([, +1) =t (m)r(n)

Lemma. If gcd(m,n) =1 then the set of positive divisors of mn consists of all products d,d,

where d, |m and d, |n and gcd(dl,dz) =1. Furthermore, these products are all
distinct.
Proof. Suppose m> 1 and n > 1, then, by Fundamental theorem of Arithmetic both m and n
k A I

have prime factorization as follows. m = p,’ pé‘z pf" and n=gq, qéz .q. .

Then mn = plkl pé‘z pf q]ll qéz qi and any divisor of mn is of the form

d=pips...p"qlqy...q" where 0<a <kand 0<b <I..

Let d,=p'p...p",d, =q"q> ...q" . Hence,d, |mand d, |n ,d =d.d,,

ged=(d,,d,)=1 and d,,d, are infact distinct.

Theorem. If f is a multiplicative function and F is defined by F(n) =Zf(d). Then F is

dn

also multiplicative.
Proof. Let m, n be relatively prime integers.

Consider,
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F(mn)=2 f(d)=2_f(dd,).

d|mn dilm

dyln
Then F(mn)=>Y" f(d,)f(d,).
dilm
d,ln

Since gcd(a’1 ,dz) =1 we can write

rlon) | Zrta | B )

dm dyln
Thus F(mn)=F(m)F(n).
e.g. Let m= 8§, n= 3, then
F(8.3)=f(1) + f(2) + f(3) + f(4) + f(6) + f(8) + f(12) + f(24)
=f{1.1) + f(2.1) + f{(1.3) + f(4.1) + f(2.3) + f(8.1) + f{(4.3) + {(8.3)
= f(1).(1) + f(2). (1) + (1).f(3) + f(4) . f(1)+ f(2) . f(3) + f(8) . f(1) + f(4) . f(3)
+ f(8) . f(3)
= (f(1) + f(2) + f(4) + f(8)) (f(1) + f(3)) =1f(8) . f(3)
Corollary. The function 7 and o are multiplicative.

Proof. We know f(n)=1 and f(n)=nare multiplicative. Hence, 7(n)= Zl and

d|n

o(n)= Zd are multiplicative.
d|n

5.3 The Mobius inversion formula
We begin with
Definition.(Mobius & Function).

For a positive n, define the function & by the rules

{ 1, ifn=1 }
u(n) = 0, if p?|n for some prime p
(=1)" if n= pyp;...p, wherep;s are all distinct
eg u(1)=Lu(2)=-1Lu(3)=-1u(4)=0,u(5)=-1
u(6) :1,,u(7) :—1,,u(8) :O,,u(9) :O,,u(IO) =1,

p(30)=u@2x3x5)=(-1)>=-1.

Theorem. The function ¢ is a multiplicative function.
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Proof. Let a, b be two relatively prime positive integers.
If p is a prime such that p*|aor p*|b , then u(a) =0 or u(b) =0 accordingly.
In this case p”|ab and hence, u(ab)=p(a).u(b)=0.

Let both a and b be square free. Since a and b are relatively prime, there is no
common prime divisor.

Let a=p,p,...p, and b=qq,...q, where p,p,,....p,:4,,9,,...,q, are all distinct.
Hence, ab is square free and ab=p,p,...p.q,q,...q, .
So, pu(ab)= (1) =(-1) (1) =sa(a) ae(b).

Hence, the result.

Theorem — For each positive integer n > 1

1 ifn=1

Tl

where d runs through the positive divisors of n.

ifn>1

Proof — Ifn=1, then Z,u(d)zu(l)zl. Suppose n >1 , then let F(n)zZu(d).

d|l djn

Let n = p*, for some prime p and k >1, then

D u(d) = p()+ p(p)+ u(p*)+---+ u(p")

d|n

=1+(-1)+0+0+....+0

Let n > 1, then there is prime factorization of n namelyn=p/“ p,”...p" 1 < ki=1,..,r.

Since 4 is multiplicative, F'(n) = Z u(d) is multiplicative.

dn

Consider,
F(n)=F(pfpy - pi)=F(p/)F(p¥)---F(p)=0.

Since F(p")=) u(d)=0 .

d|p*

Thus, we have Z,u(d) = F(n) =0 for n>1.

d|n
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Theorem. (Mobius Inversion Formula)

Let F and f be two number theoretic functions related by the formula

=Zf(d). Then
dln
Fo =Y u@r(5)= Y u(5)F@
d/n d/n

Proof. Note that, the two expressions

Z u(d)F( )and Z )F(d)

d/n a/n
are infact one and the same as one can be obtained by replacing dummy index d by

d' = g; as d ranges over all positive divisors of n.

Consider

s uarr(2)- z(uw)zf ]

dln din cl(n/d)

dln c| nld

‘Z( > u(d)f(c)] ...... 1)

Now, d|n and ¢ |3:> da =nandcb = 3, for some integers aand b = ¢ |n and
d|L.
c
Using this in Equation (1), we obtain

—Z( > ﬂ(d)f(c)] Z( > f(C)ﬂ(d)] Z{f(C) > u(d)]

din \_c|(n/d cn \ d|(n/c) cln d|(n/c)

We know that

> u(d)=0, forall 2>

c
dt
c

Therefore, » p(d)=1.

di
c
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Hence, we obtain Z(f(c) Z u(d)] Zf(c)-l = f(n).

cn d|(n/c)

s 103

d|n dln

Note. We know 7(n) = Zl, o(n)= Zd )

d|n dn

Hence, l—z,u(d]f(d) and n—z,u(dlo(d).

dln dln

Theorem. If F is a multiplicative function and F Z f Then f is also multiplicative.
dn

Proof. Let m, n be relatively prime positive integers.

We know that any divisor d of mn is of the form ¢ = 4 4

ged(d,,d,) =1

where d, |m,d, | n and

172>

Invoking inversion formula, we have

f(mn) = Zu(dw( ]

d|mn

= > ud)u(d, )F( Hdi]
dy|m,
dy|

21

=y u(d»F[%] > “(dz’F[d%J

di|m dyln

= f(m)f(n)
Thus f is multiplicative.
Ex. For each positive integer n, show that u(n) u(n+1) u(n+2) u(n+3)=0.

Sol. Observe that one of the four consecutive integers n, (n + 1), (n + 2), (n + 3) is always

divisible by 4 = 2* and hence, not square free. Thus one of u(n), u(n+1), u(n+2), u(n+3)
1s always zero.
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5.4 Greatest Integer Function

For any real number x, the greatest integer function denoted by [x] is defined as the
largest integer less than or equal tox , that is, [x] is the unique integer satisfying

x—l<[x]<x.

Note that any real numberx can be written as, x=[x]+0,where 0<0<1.

Moreover, [x]=x if and only if x is an integer.

Theorem. If n is a positive integer and p is a prime, then the exponent of the highest power
n
Tk

of p that divides ! is Z{
p

} where the series is finite since {—k} =0 for p* >n.
k=1

p

Proof. Among the first n integers those divisible by prime p are p, 2p, 3p, ...,tp where t is the
greatest integer such that #p <n. In other words ¢is the largest integer less than or

n n
equal to — , so that [t = {—D .
P P

Thus there are {ﬁ} multiplies of p occurring in n!, namely, p,2 p,...,{ﬁ} p.
P P

Further, among the first n integers those divisible by p*are p*,2p*,...,tp°,

2

where, t is the largest positive integer such that sp? < n, thatis, 7= {—}
P

2

Thus there are {%} multiplies of p* occurring in n!, namely, p°,2p°,... ,{i} p.
p

Similarly, those integers which are divisible by p* are precisely {%} in number and
P

SO On.

Observe that highest power of p that divides n is the sum of these integers namely,
n n | n

— |+ = |+ = — .
LJ Lf } ;Lf }

Note. In view of this result, we can write n!= H p

psn

|

P

Ex.1.Determine the number of zeros with which the decimal representation of 50! terminates.
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Solution. To determine the number of zeros, it is enough to observe how may tens divide
50!

That is, how many pairs of 5 and 2 divide50!.

For that we are to find the exponents of 2’s and 5’s that divide 50!.

—| 50
The exponent of 2 = Z[?}

k=1

50 50 50 50 50
IS5 S T 5 T A [T s

2 2 2 2 2
=25+12+6+3+1

=47.
And,

| 50
Exponent of 5= ¥

k=1
50 50
=| — |4+| —
S
=10+2
=12.

Thus there are 12 pairs and hence 12 zeros.

Theorem. If n and r are positive integer with 1 <7 <n then the binomial coefficient

n n! . .
— |=— 1is also an integer .
r) (n-r)lr!

Proof. We know that for any two real numbers a and b
[a +b] > [a] +[b] :
Using this we can write
Gk
P p p

where p is a prime and k is a positive integer.

Thus z{%}z{"‘[}z{%} L (1)

k> el P el | P
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Thus L.H.S. of Equation (1) is the exponent of highest power of p that divides n! and R.H.S.
of (1) is the highest power of p that divides (n—r)! plus highest power of p that divides r!.

Thus r.h.s of (1) is the highest power of p that divides the product (n — r) Ir!.

Thus highest power of p that divides (n —r)!r! is less than or equal to highest power of p
that divides n!.

Hence, is always an integer.

(n—r.)!r!

Corollary. For a positive integer r the product of any r consecutive positive integer is
divisible by r!

Proof. Let n be a positive integer such that n,n— 1, n—2, ....., n— (r — 1) are r consecutive
positive integers.

Consider,

nn—1)..(n—-r+1Dn-r)..2.1

nn—1).(n—-r+1) =

(n—-r)..21
n!
- (n — r)!
n!
=——xr!
(n —r)!r!
Since, is an integer, the product of » consecutive positive integer is divisible by r!.

(n—r)!r!
e.g. n(n+1)(n+2)(n+3) are divisible by 4!.

Theorem. Let fand F be number theoretic functions such that F (n) = Z f (d )

dn

Then for any positive integer N,

OB WO

Proof. We have F(n) = Zf(d).

dn

Therefore, iF(n) = iZf(d)
7=l n=l dln
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The strategy is to collect terms with equal values of f(d) in the double sum.

Let k£ <n be fixed, then f(k) appears in Z f (d ) if and only if k divides n.

d|n

Since each integer divides itself, f(k) appears in the sum at least once for each k,

1<k <n. Now in order to find the number of sums Z f (d ) in which f(k) occurs, it
d|n

is enough to find the number of integers amongst the numbers 1,2,3,...,N which are

N
divisible by k. These are exactly[?} of them; k,2k,...,[%}k. Thus for each &

N
such that 1<k <N , f(k) is a term of the sum Z f(d) for [E} different positive

d|n

N N
integers less than or equalto N . Thus Y > f(d)=>" f(k) [%} :
=l

n=1 din

e.g., Let us consider N = 10.

D= f( )+ f(d)++D f(d)

n=l djn dll dp2 d|1o

=S

+HfD+f(2)

+H D+ 1))

HSD+ )+ 1 (4)
HSD+7(5)

HSD+ 2+ (3)+f(6)
H S+ 1)

HSD+ Q)+ f(H+1(8))
HSD+7B3)+109)
+HfD+ @)+ f(5)+ f(10))

= (DA + f(2)B)+ 3B+ (A(2)+ f(5)2)
+f O+ (DD +LB)D)+ £ (O)D)+ f(10)(1)

— 1) [ﬁ+f(2)[ﬂ+f(3)[ﬂ+f(4){ﬂ+f(5) g}

+£(6) [?}f@) [?}f@) [?}f@)g}mo)[ﬁ
il N
kz f(k)[ﬂ .

1

Thas 37 (n)

n=l1
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N N N
Corollary. If N is a positive integer then Zr(n) = Z[E}
n=l1 k=1

Proof . We know 7(n)=)"1. Thus by taking z for F and f to be the constant function

dn

f(n)=1 forall n , we obtain

T HeIN

Similarly, we obtain
N N N

Corollary. If N is a positive integer then ZO‘(I’I) = Zk[—} .
n=1 k=1

e.g. Consider the case N =6

St =E e S e

=6+3+2+1+1+1
=14
And

Exercises

1. Find the highest power of 5 dividing 1000! And highest power of 7 that divides 2000!

2. Determine the number of zeros with which the decimal representation of 1000!
terminates.

3. For what value of n does n! terminates in 37 zeros?

Answers: 1. 249,164 2.249 3.150.
(|
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Unit-6

Euler’s Generalization of Fermat’s theorem

6.1 We begin with

Definition — (Euler phi function)

For n>1, let ¢(n) denote the number of positive integers less than or equal to n and

relatively prime to n.

eg, #(1)=L¢(2)=14(3)=2,4(4)=2,4(5)=4,6(6)=2,6(7) =6,
$(8)=4,6(9)=6,4(10)=4,¢(30) =8.

Note. For any prime p, ¢(p) =p-1.
Theorem. If p is a prime and & > Othen ¢(pk) =p-p=p (l—lj .
p

Proof. Since ged(n, p*)=1 if and only if p|n . Amongst the integers 1, 2, ..., p* those

divisible by p are p, 2p, 3p, ..., (p"") p. Thus the number of positive integers less than or
equal to p* that are divisible by p are pk'] .

Therefore, number of positive integers less than pk that are relatively prime to pk is

k k k-1 k 1
s(p')=p"-p"=p ( p]

Lemma. Given integers a,b,c,ged(a,bc)=1 if and only if ged(a,b)=1 and ged(a,c)=1
Proof. Suppose gcd(a,bc) =1.Let d =gcd(a,b),thend|a and d|b, sothatd|a, d|bc
and hence, d <gcd(a,bc)=1. Therefore d = 1 .Similarly ged(a,c)=1.

Conversely, suppose that gcd(a,c) =1.

Let di = ged (a,be). Let if possible d; > 1 it must have prime factor p. Since p is prime,
d |bc= p|bc= p|bor p|c. Suppose p|b. Further, p|d, and d,|a= p|a consequently,

p < gcd(a,b)which is absurd. On the other hand if we take p|c, then p <gcd(a,c)is also a

contradiction.
Hence, ged (a,bc) =1,

Theorem. The function ¢ is a multiplicative function.
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Proof. Let m, n are relatively prime integers. Since ¢(1) =1 the result holds trivially when

eitherm=1orn=1. Letm>1and n> 1.

Let us arrange m, n integers form 1 to mn as follows

1 2 r m
m—+ 1 m+2 ... m+r 2m
2m+ 1 2m+2 ... 2m+r ... 3m
m-1m+1 n-1)m+2 ... (—-1)m+r ... nm.

Now, ¢(mn) is equal to the number of entries in the array which are relatively prime to mn.

We know that a number is relatively prime to mn if and only if it is relatively prime to both m
and n. We know that, gcd(qm+r,m) = gcd(m,r), that is, if an element in the first row is

relatively prime to m, then the whole column corresponding to that element is relatively
prime to m. Therefore as many as @(m) columns are there each integer of which is relatively

prime to m.

Consider the entries in the r™ column
rrm+r,2m+r,...,(h—1)m+r.
Let r be such that gcd(m,r)=1 .

Since,

km+r= jm+r(modn), (0< j<k<n)
= km= jm(modn)

= k=j(modn)

=>nlk-j.

which is absurd, no two entries in the rth column are congruent to one another modulo n.
Therefore, r,m+r,2m+r,...,(n—1)m+r are congruent to 0, 1, 2, ..., n— 1 modulo n in some

order.

Thus the rth column contains exactly as many integers relatively prime to n as the number
of integers 0, 1, 2, ...., n — 1 which are relatively prime to n. Thus there are exactly @(n)

integers in the ™™ column that are relatively prime to n. Therefore, each of the ¢(m) columns
contain¢(n) integers which are relatively prime to n. Hence, there are ¢(m)@p(n) integers
which are relatively prime to both m and n

Hence, ¢(mn) = @d(m)@p(n).Thus, ¢ is multiplicative function.
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Theorem. If the integer 7 > 1 has the prime factorization n= p p¥---p* | then

o(n)=(p" —p"") (" =P, ) (p" =)

At ()

Proof. We shall prove this theorem by induction on r. For » =1, we have n= p]k‘ and

o) =6(3) <5 = (1L 1]

P D
Let the result hold for » = s.

Consider,

k

J— ks ks+l
n_pl ps ps+l .

Since ged(p," py2 -+ pf‘, pfj]l )=1, we can write
$(n)=¢(p" - p}pu")
=¢(p" . p)(poa") (Since ¢ is multiplicative)

=(p" =P ) (P =) (Pt = P

Hence, the result holds for » = s +1 whenever it holds for » = 5. Therefore by principle of
induction the result holds for any r.

e.g. Let n=360 then n = 2°3%.5, so that

$(360) :360(1—%](1—3(1—%) =96.

Theorem. Forn > 2,¢(n) is an even integer .

Proof. Suppose n is a power of 2. Let n =2", for some positive integer k > 1.
1
Then, ¢(n)=¢(2")=2" (l —5] =2 which is even.

Suppose n is not power of 2 an odd integer. Then there is an odd prime p that divides n.

Let n=p*m where pt mand k>1 . Since p | m,gcd(p",m) =1 and as ¢ 1s multiplicative

p(n) = p(p"m) =¢(p*)p(m)= p" " (p—Dg(m).
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Since p is odd prime, p — 1 is even,so ¢(n) is even.
6.2 Euler’s Theorem

Lemma — Let n > 1and gcd(a,n) =L1If a,a,,...,a,,, are positive integers less than n and

relatively prime to n, then aa,,aaq,,.. .,aa, ., are congruent modulonto a,a,,.. o Ay, in

some order.

Proof.Claim : No two integers aay, aa, ..., aayy are congruent modulo n.

Let if possible aa, =aa,(modn), 1<i< j<¢(n) ,thenas ged(a,n)=1, we have
a,=a,(modn) =nla —a,

which is absurd.

Now, ged(a,,n)=1and ged(a,n)=1, 1<i<¢(n) implies that ged(aa,n)=1 for each
i=12,...,¢(n) . Thus for any fixed 1<i<¢(n), aa, is congruent modulo » to unique

integer b , 1<bh<n . Hence, gcd(b,n) = gcd(aal.,n) =1. Therefore, b must be one of

AysQysenes iy -

Theorem (Euler’s Theorem). Let 7 > 1and gcd(a,n) =1, then a’" = 1(mod n)

Proof. Without loss of generality we can take n> 1. Let a,a,,...,a,,, be the positive

integers less than n and relatively prime to n. Then as gcd(a,n) =1, aa, aa,,...,ad,, are

congruent to q,,a,,.. o Ay in some order .
Let a'|,a';,...,a';,, be arearrangement of a,a,,...,a,,, such that
aa, = a',(mod n)

aa, =a',(modn)

— '
aa,,, =a',,,(modn)

Thus, (aal )(aa2 ) x -(aa¢(n)) =a'\a'y---a'y, (modn),thatis,(aq,)...(aa,,, )
=a,a,...a,, (modn) .
Therefore,a’"a,a, ...a,,, = aa,...a,,, (modn).

Since each @ ; is relatively prime to n for i =1,2,...,¢(n), we can write
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" = 1(modn).
Note. Note that, Euler’s theorem is Euler’s generalization of Fermat’s theorem.

Corollary. If p is a prime and p | a , then a”' =1(mod p).

Ex.1 Find last two digits in the decimal representation of 3>°° .

Solution. We have to find smallest positive integer to which 3> is congruent modulo 100.

1 1
Note that gcd(3, 100) =land ¢(100) = 100(1 _Ej[l —g) =40. so that by Euler’s theorem

3% =1(mod100) that is, 3* =1(mod100) .

Thus, 3% = (3*)’ = 1(mod100).

Now, 3* =81=(~19)(mod100) = 3 = (3*)" = (~19)’ (mod100) =3" =(-39)(mod100).
Thus 3' =(-39)" = 21(mod 100).

Therefore, 3”° =3*".3' =1.21(mod 100) .

Hence, the last two digits in the decimal representation of 3°°° are 21.

Ex.2.Using Euler’s theorem, prove that , for any integer a , @’ = a(mod1729).

Solution. Observe that1729 =7-13-19. Let a be an integer such that, gcd(a,1729) =1 ,then
ged(a,7)=1,gcd(a,13) =1,gcd(a,19) =1and so

a® =1(mod7),a" =1(mod13),a" =1(mod19).

Thus, """ =1(mod7-13-19) = a* =1(mod1729) = a*" = a(mod1729).

However, if 1729 | a , there is nothing to prove.

Ex.3. If m and n are relatively prime positive integers, then m ™ + n? ™ 1 (modmn)

Hence deduce, p'" +¢""' = l(mod pq) where p and q are distinct primes.
Solution. Since ged(m,n)=1 we have m"") = 1(modm)and n" = 1(modn) also
m?™ = 0(mod m);n*"™ = 0(modn) .

Thus, m"") +n*™ = 1(mod n) and m"" +n"" = l(mod m) .

Hence, m"" +n"" = 1(modmn) .

For distinct primes p and q we have
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P9 4" = 1(mod pq) .
That is, p*" +¢”" El(mod pq).
Exercises
1. Use Euler’s theorem to establish the following
a) For any integer a , a" =a(mod2730)
b) For any integer a , a>> = a(mod 4080) .
2. Find the unit’s digit of 3'” using Euler’s theorem.(Ans. 1)
6.3 Some properties of the Phi — function :

Theorem. (Gauss) For each positive integern > 1, n= Z o(d)

d|n
The sum being extended over all positive divisors of n.

Proof. The integers between 1 and n can be separated into classes as follows:

If d is a divisor of n we put the integer m in the class s, provided gcd(m,n) =d.

In symbols, S, ={m:gcd(m,n)=d;1<m<n} .

Since gcd(m,n) =d, we have, gcd (%,s] =1.

n
Therefore, number of positive integers in §, is precisely ¢ (2] .

Further, each integer between 1 and n belongs to precisely one s, .

Therefore,
n=ls|-Xo( 4]
d|n d|n

But as ‘d’ runs over all the positive divisors of n, so does n/d, hence,we can write

n=>¢(d).

dln

e.g. Let n=10, the integers relatively prime to 10 are 1,3,7,9 and divisors of 10 are 1,2,5,10.
Consider

S, ={13,7,9},S, ={2,4,6,8},S, ={5},S,, ={10}and ¢(10) =4,4(5) =4,4(2)=1,¢(1) =1.
Observe that ¢(10) =¢(10/1) = S, [=4,9(5)=¢(10/2)= S, |=4,4(2) =¢(10/5) = S, |1,
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#(1)=¢(10/10) = S, |=1. Therefore,

3 ¢(d) = $(1) + $(2) + $(5) + $(10) = 1 +1+ 4+ 4 =10,

/o
Lemma. For integers a, n, ged(a, n) = 1 if and only of gcd(n—a,n)=1.

Proof. Suppose gcd(a,n)=1,and d =gcd(n—a,n)=d|n—a,d |n, hence,
dln,d
hand, suppose ged(n—a,n)=1 and d = gcd(a,n), then
dla,d

n—(n-a)=a=d<gcd(a,n)=1=d=1. Thatis, gcd(n—a,n)=1. On the other

n=dn—a,dln=d<ged(n-a,n)=1=d=1. Thus ged(a,n)=1.

Let us fix n = 15, then the integers relatively prime to 15 are 1, 2, 4, 7, 8, 11, 13, 14.
Then 15-1=14,15-2=13,15-4=11,15-7=8,15-8=7,15-11=4,15-13=2,15-14=1

are also relatively prime to 15 and is indeed a rearrangement of all integers relatively to 15.
Thus we can write

1+2+4+7+8+11+13+14=
(15-D+15-2)+(15-4)+(15-7)+(15-8)+(15-11) +(15-13) +(15-14)
Thus

1424+4+7+8+11+13+14=8x15—(1+2+4+7+8+11+13+14)

That is

2(142+4+7+8+11+13+14) =8x15,

Or

$(15)x15
1+2+4+7+8+11+13+14=——«—.

Thus, we have

Theorem. For n >1 , the sum of the positive integers less than » and relatively prime to n
.1
is —n¢(n) .

5 ¢(n)

Proof. Let a,,a,,...,a,,, be the positive integers less than » and relatively prime to » .
Since, ged(a,n) =1 if and only if ged(a—n,n) =1, the numbers n—a,,n—a,,...,n—a,, are

equal in some order to 4,,4a,,...,4,, . Thus
ata,+tay,=n-a)t(n—a)+-+n-ay,)

=ng(n)—(a,+a, +--+a,,) .
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Hence, 2(al +a+-+ aW)) = n@(n) and the result follows.

d
Theorem.For any integer n ¢(n) = nZ# .
dln

Proof. We know

F(n)znngb(d).

d|n

By inversion formula, we obtain

o) = Lu(a)r( 4]

d|n

Let us illustrate this for n = 10,

10§}££€2:10{u(n4_ﬂ(2)+AK5)+pdldi
dn d 5 10
IS ) @DT
=10| 1+ n 4
L 2 5 10
T 1}
—10|1————+—
. 2 5 10

2
:m§:4:¢0m.

.-
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Unit-7

Primitive Roots and Indices

7.1 Let us begin with the definition of order of an integer modulo n.

Definition. Let #n >1and a be an integer such that gcd(a,n) =1. Then the smallest positive

integer k such that a* = l(modn) is called order of @ modulo n.

eg.— 1)Leta=2 and n=5 .Here 2* =1(mod5), then order of 2 modulo 5 is 4.
2)Let a=3and n=35. Here 3* =1(mod 5), then order of 3 modulo 5 is 4.

3)Let a=2and n=7 . Here 2’ =1(mod7), then order of 2 modulo 7 is 2.

Notes. 1.1fa Eb(modn) then order of @ modulo n is same as order of b modulo n.

2.1If gcd(a,n) >1 then ax = l(modn) has no solution. Then we can not talk about

order ¢ modulo n. Therefore, whenever we talk order of ¢ modulo n it is assumed that
ged(a,n)=1.

Theorem — Let the integer « have order k modulo n, then " = 1(modn) if and only if k|4 in

particular & | ¢(n) :
Proof. Let h be any positive integer such that a'= l(modn).

Since k is order ofa modulo n we have a" = l(modn).
By division algorithm there exist integers q and r such that 4 = kg + r where 0 <r < k.
Hence, a" =a*"" = (ak )q a"=(1)"a" =a’(modn) . Thus a” =a"(modn) this together with

a' El(modn)gives us a" =1(modn).If 0<r<k, minimality of k is contradicted. Hence,
r=0.Thus h=kqgork|h.

Conversely, if k| & then there is an integer q such thatkg =/ and
a" =1(modn) = (a")' =17(modn) = a" = a" =1(mod ).
Since " = 1(modn) by Euler’s theorem, we have, k |¢(n).

Theorem. If the integer @ has order k modulo n then @' =a’ (modn)iff i= j(modk).
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Proof. With no loss of generality we can take i > Since a' =a’ (modn) and gcd(a,n) =1
we have, @'/ =1(modn).

Since a has order k modulo n, k|i— j i.e.i=j(modk) .

Conversely, if i=j(modk) then k|i— j therefore i = j+ kg for some integer q. Then,
d=a""=a (ak)q =a’ -1(modn) = d' =a’ (modn).

Thus,a' =a’ (modn).

Corollary. Ifa has order k modulo n then integers a, a’,....a" are incongruent modulo n.

Proof. Let if possible @' =a’(modn) with 1< j<i<ktheni= j(modk), that is, k|i— j

which is absurd.

Theorem. If the integer a has order k modulo n and h>0 then «" has order k / gcd(h,k)

modulo n.

Proof. Let d = gcd(h, k) then d|h and d|k . Therefore, there exist integers 4, and k; such that
dh, = h and ak, = k with ged(h,k ) =1.

Consider, (ah)kl =q" = gD = gt = (ak )h' =1" =1(modn) .

Thus, if r is the order a" modulo n, then r |k, .

On the other hand we have,

d" = (") =1 (mod n)

(ah)r =a" =1(modn).

Since the integera has order k modulo n, a* =1(mod#) . Therefore, we have k| ir .

Hence, k | hr = kd |dhr = k, | hr.Since ged(/,k)=1 by Euclid’s lemma &, |, .

Thus k, | » Therefore, r=k =k/d=k/gcd(h,k) .

Corollary. Let a have order k modulo n. Then «" also has order k if and only if
ged(h,k)=1.

Definition (Primitive Root). Let n > 1 and a be an integer such that gcd(a,n) =1 Then «a
1s primitive root of n if order of @ modulo n is ¢(n) .

e.g. 1) 2 and 3 are primitive roots of 5
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2) 3 and 5 are primitive root of 7.

Let us consider n =7

Integer 1 2 3 4 5 6

Order 1 3 6 3 6 2

Now forn =11

Integer 1 2 3 4 5 6 7 8 9 10
Order 1 10 5 5 5 10 10 10 5 2

Looking at the table, 3, 6 are primitive roots of 7 and 2, 6, 7, 8 are primitive roots of 11.
Ex.1 Show that if F, =2% +1,(n >1) is a prime then 2 is not a primitive root of F, .

Solution. Consider

2" = (22” )2 -

:(22” +1)(22” —1)
rl )

=2 = 1(mod F,)
Thus order of 2 modulo F,, can not exceed 2 "1 Since F, is prime

¢(F,)=F,—-1=2"

n n
. 1 2" . . o .
Since 2" <2 ,2 is not a primitive root of n.

Theorem. Let gcd(a,n)zl and let a,a,,...,a,, be the positive integers less than n and

. . . T 2
relatively prime to n. If a is a primitive root of n, then a, a°,..., a®™™ are congruent modulo n
to a1, as,..., Ay 1n some order.

Proof. Since gcd(a,n)=1, a,a’,...,a’"” are relatively prime to n. It remains to show that

a,a*,...,a"™

are incongruent modulo n.
Let if possible, a' =a’ (modn) , = i= j(mod ¢(n))

where 1< j<i<¢(n) then ¢(n)|i—j, which is impossible.
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Now for fixed 4,1 Skégb(n), there is a positive integerr, r <n such that ¢" =r(modn)

and

gcd(ak,n) = gcd(r,n) =1. So that r is positive integer less than n, relatively prime to n.
Hence r must be one ofa],az,...,a¢(n). Since Ay, 0. .., Ay, ATC incongruent modulo n,

2 ’a¢(n)

a,a,... are congruent to q,,a,,.. o Ay in some order.

Corollary. If n has a primitive root then it has exactly ¢(¢(n)) of them.

Proof. Suppose that a is a primitive root of n. Then a must be congruent to one of

ay,ay,..., 4y, Where a,,a,,...,a,,, are positive integers less than n relatively prime to n.

We know that a,d’,...,a""

are congruent modulo n to a,,a,,...... Do) in some order.
Further number ak,lékégb(n) has order ¢(n)if gcd(k,¢(n))=1. Hence, there are
exactly ¢(¢(n)) primitive roots of n.

Ex.2. Find the order of the integers 2, 3 and 5 modulo 17.

Solution. Consider the factors 2,4,8,16 of ¢(17)=16 . Now 2> #1(mod17),2* #1(mod17)
but 2° =1(mod17).Therefore, order of 2 modulo 17 is 8. Hence, 2 is not primitive root of
17 Next, 3> #1(mod17),3* #1(mod17),3" #1(mod17) but 3'° =1(mod17) .Therefore, order
of 3 modulo 17 is ¢(17)=16 . Hence, 3 is a primitive root of 17. Further,
5% £1(mod17),5* #1(mod17),5" #1(mod17) but 5'° =1(mod17). Hence, 5 is a primitive root
of 17.

Ex.3. Prove that ¢(2” —1) is multiple of n for any n > 1.

Solution. Since, 2" = 1(mod 2" —1) , therefore 2 has order n modulo 2" —1.
Therefore, n|¢ (2" - 1)

Ex.4. If p is a composite number such that 2” —1 is prime then p is a pseudoprime.
Solution. Since 27 = 1(mod 27 —1) therefore 2 has order p modulo 2”7 .
Therefore, p | ¢(2” - 1) =27 -2 Hence, p is pseudoprime.

Ex.5. Assume that order of @ modulo n is h and the order of b modulo n is k. Show that

order of ab modulo n divides hk. In particular, if gcd(h,k) =1, then order of ab is hk.

Solution. Given that " = l(modn)and b = l(modn) . Thus, (ab)hk =1(modn).
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Thus, order of ab modulo n divides hk. Note that, ab'""* = 1(modn). Therefore, if
gcd(h,k) =1, then Icm(h,k) = hk and hence, order of ab is hk.

Ex.6. The odd prime divisors of the integer »* + 1are of the form 4k +1
Solution. Let p be an odd prime divisor of n* + Ithen n° +1= O(mod p) :
=n’ =(-1)(mod p)

—n" =1(mod p)

=4|¢(p)=p-1

= p=4k+1.

Ex.7 The odd prime divisors of the integers (n4 +1) are of the form 8k +1.

Solution. Let p be a prime divisors of »* +1.Then
n'+1=0(mod P)

n' =(-1)(mod P)

n® (—1)2 (mod P)

8
n

1(mod P)

8¢(p)=p-1

= p=8k+1.

Exercises

1. Find the order of the integers 2, 3 and 5

a) modulo 19 b) modulo 23.

2. Find orders of all the positive integers less 13, which of them are primitive roots of 13.
7.2 Primitive Roots for Primes
Theorem.  (Lagrange) If p is a prime and, f(x)=ax"+a,_x"" +..+ax+q
(an F O(mod p)) is a polynomial of degree n =1 with integral coefficients then the
congruence f(x)=0(mod p) has at most n incongruent solutions modulo p.

Proof. We shall prove this theorem by induction on n. Let n = 1 then f (x) =ax+ta,.

Since gecd(a,, p) =1 the linear congruence a,x =—a,(mod p) has a unique solution.
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Hence, a,x + a, = 0(mod p) has unique solution for n= 1.

Suppose that the result holds forn=k — 1. Let f (x) be a polynomial of degree k.
If f(x)=0(mod p) has no solution then there is nothing to prove.

Let f(x)=0(mod p) have a solution @ . By division algorithm we have

f(x) :(x—a)g(x) +r, where r is constant. i.e. r is an integer and deg(g(x)) =k-1.
Since a is a solution of f(x)=0(mod p) ,we have f(a)=0(mod p).

Hence ,0= f(a)=(a—a)g(a)+r=r(mod p)

Thus, 7 =0(mod p) .

Hence, f(x)=(x—a)g(x)(mod p).

Let b be any other solution of f(x) =0(mod p) other thana .

Then, 0 Ef(b) E(b—a)g(b)(modp) :

Since, (b—a) # 0(mod p) , we have g(b) =0(mod p) .

Thus any solutions of f(x) =0(mod p) other than g is a solution of g(x)=0(mod p).

Since g(x) is of degree k-1, g(x)=0(mod p) can have at most k — 1 zeros incongruent

modulo p.
Thus f(x) =0(mod p) can have at most (k—l) +1=Fk incongruent solutions modulo p.

Hence, the result follows by principle of induction.

Corollary. If p is a prime number and d | p — 1, then the congruence x* —1= 0(mod p) has

exactly d solutions.

Proof. Since d | p —1 we have dk = p —1 where k is an integer then

xP—1=x% -1

Let f(x) =D+ @)+ .. +1.
Note that, deg( f (x)) =d (k—l) =p—1-d and that f (x) has integral coefficients.

By Lagrange’s theorem, f(x) =0(mod p) can have most p — 1 — d solutions incongruent

modulo p.
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By Fermat’s Theorem x”™' =1(mod p) has precisely p — 1 solutions incongruent modulo p,

namely the integers 1,2,...,p—1 .
Observe that 0=a”"' —1= (ad —l)f(a)(rnod p) with p /| f(a) implies that p|a‘ -1 .

Hence, any solutionx =a(mod p)of x”~' —1=0(mod p) other than the solution of
f(x) =0(mod p) must satisfy x* —1 = 0(mod p) . Thus x‘ —1=0(mod p) must have at least

p—1-(p—1-d)=d solutions. Since x* —1=0(mod p) can have at most d solutions, it must

have exactly d solutions.

Using this corollary we can prove Wilsons theorem
Theorem. (Wilson’s theorem)

If p is prime, (p —1)!=—1(mod p) .
Proof. Consider f(x)=(x-1)(x-2)... (x—(p —1))—(3:”‘1 —1)

_ p-2 p-3
=a,,X" " +a,x" " +.. +ax+a,

where , 4),4,,...,a, , are integers and that degree of f(x) isp—2.

We know that x”~' —1=0(mod p) has exactly (p — 1) incongruent solutions modulo p.
By construction each of 1 to p — 1 is a solution of f(x) =0(mod p) and that 1, 2,..., (p — 1) are

incongruent modulo p.

Since degree of f (x) is p — 2 by Lagrange’s theorem f(x) =0(mod p) can have at
most p — 2 incongruent solutions modulo p.
This is possible only if

a,,=a,,=--=a =a,=0(mod p) .

Thus (x—=1)(x=2)...(x—(p—1))—(x"" =1)= 0(mod p) holds for any integer x .
Therefore, for x =0, we obtain

(=1)(=2)-+-(~(p~1)) =—1(mod p) = (~1)*"'(p—1)!=~1(mod p) .

If p is odd prime then p — 1 is even and for p=2, we have —1+1=0(mod p) . Hence,
(p—-D!'=—-1(mod p) .

This proves Wilson’s theorem .

Number Theory | 86



Theorem. If p is a prime number and d | p -1, then there are exactly ¢(d ) incongruent

integers having order d modulo p.
Proof. Suppose d | p —1. Let l,u(d) denote the number of integers k, 1<k < p—1 that have

order d modulo p. Since each integerl,2,..., p —lhas order d, for some d | (p —1) )

Thus, p—1= Z v(d).

d|p-1

By Gauss’ theorem

p-1=2 ¢(d).
d|p-1
Thus D w(d)=D.¢() (1)
d|p-1 d|p-1

Claim - l//(d) S¢(d) for each divisor d of p— 1.

Let d be an arbitrary divisor of p — 1, then either l//(d) =0,o0r l//(d) >0, If w(d) =0, then
l//(d) <¢(d) holds trivially.
Suppose l//(d ) >0 then there is an integer a such that order of @ modulo p is d with

ged(a, p)=1.

Further, a, az, vy d < are incongruent modulo p and that each of them satisfies the polynomial
congruence

x? —1=0(mod p) (2)
for (a*)! =(a”)" =1" =1(mod p) fork =1,2,...,d .
Therefore, by corollary to Lagrange’s theorem, there can be no other solution of Equation(2).

Thus any integer having order d modulo p must be congruent to one of a,a’,...... ,a

modulo p. But only ¢(d ) integer amongsta,a”’,...... ,a” can have order d modulo p. In

other words " has order d modulo p if and only if gcd(k,d) =1. Thus l//(d) =¢(d) that is,

the number of integers having order d modulo p is equal to ¢(d) .Thus l//(d ) < ¢(d ) :

In view of Equation (1) we must have ¢(d) =l//(d) otherwise L.H.S. of (1) would be less
than R.H.S. of (1) which is not possible. Hence, the result.

Corollary. If p is a prime, then there are exactly ¢( p —1) incongruent primitive roots.
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Proof. Any primitive root of p has order ¢(p)= p—1. Therefore, number of primitive roots
of p is exactly ¢(p—1) :
e.g. Letp=13 then the divisorsofp—1=13-1=12are 1, 2, 3, 4, 6,12.

Order of 1 modulo 13 is 1

Orderof2,6,7,111s 12

Order of 3,9 1s 3

Order of 5, 8 1s 4

Order of 4, 101s 6

Order of 12 is 2

It is interesting to note that, the number of incongruent solutions of x® =1(mod13) is indeed

the sum of integers of order 6, 3, 2 and 1. Thus the number of incongruent solutions of

x®=1(mod13) is2+2+ 1+ 1 =6, namely 4, 10 of order 6; 3, 9 of order 3; 12 of order 2; 1
of order 1.

Ex.1. Ifp is a prime of the form 4k + 1, then the quadratic congruence x* = —1(mod p) ,admits

a solution.

Solution. Since 4| p—1=¢( p) there is an elementa of the order 4, that isa* =1(mod4) .
Thus, (a*> +1)(a* 1) =0(mod p) = a* =1(mod p) or a* =—1(mod p).

Since order of @ modulo p is 4, a* =1(mod p) is not possible. Hence a” =—1(mod p) so that

x*> = —1(mod p) has a solution.

Ex.2. If p is an odd prime, prove that the only incongruent solutions of x* =1(mod p) are 1

andp—1
Solution. We know that x> =1(mod p) has 2 incongruent solutions modulo p.

Since 1 and 1 — p are already solutions of x> =1(mod p), they are the only two incongruent

solutions of x> =1(mod p).

Ex.3. If p is an odd prime, prove that congruence x” > +x” +---+x+1= 0(mod p)
has exactly p — 2 incongruent solutions and they are the integers 2,3,..., p—1.
Solution. We know x”~' —1 = 0(mod p) has solution 2,3,..., p—1.

Since x”' —1= (x—l)(xp‘2 — +x+1) and x =1(mod p) has solution 1.

Therefore, x”> +x”7 +---+ x+1=0(mod p) has solutions 2,3,...,p—1.
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Not let us recall the results :
Let gcd(a, n) =1 and let A sy Ay ) be the positive integers less than n and relatively prime

to n. If a is a primitive root n, then a,az,...,a¢(")

are congruent modulo # to Ay ey Ay ) n
some order.

And

Let a have order k modulo n. Then a" also has order k if and only if ged(h, k) = 1.

The later can be rephrased as

Let a be a primitive root then a have order ¢(n) modulo . Then &" also has order ¢(n) if

and only if gcd(h,¢(n)) =1. This is equivalent to the statement.

An integer " is a primitive root of n if and only if gcd(h,¢(n)) =1.

Thus if, we can begin with the smallest primitive root a of an integer n (if exists), then we
can use it to find other primitive roots. Interestingly, we need not have to search too far for
smallest primitive root as most primes have either 2 or 3 as their primitive root. Let us
consider p = 23, by trial and error we can ensure that 5 is the smallest primitive root. Now we
can begin with this primitive root and compute others. In view of above result 5" is a

primitive root if ged(/,¢(23))=ged(h,22)=1 thatis, h=1,3,5,7,9, 13,15, 17, 19, 21 and

SO 5,53,55,57,59,513,5]5, 517,519,52] are primitive roots. Consider,
5°=5x25=5%x2=10(mod23),5° =55 =10x 25 =10x2 = 20 (mod 23),
57=5.52=20x2=17(mod23), 5°=5"-52=17x2 =11(mod 23),

5" =11x25=11x2=22(mod23), 5" =22x25=22x2=21(mod 23),

5 =21x25=21x2=19(mod 23), 5'" =19x25=19x2 =15(mod 23),

5 =15%x25=15x2=7(mod23), 5*' =7x25=7x2 =14(mod 23).

Thus the primitive roots are 5, 7, 10, 11, 14, 15, 17, 19, 20, 21. Observe that the number of
primitive roots incongruent modulo 23 is ¢($(23))=¢(22) =¢(11) =10. Here we have also

calculated 5'' for our calculation purpose.
Note that there are 5 pairs {5,521},{53,519},{55,517},{57,5]5},{59,513} such that
rr'=1(mod23).

This can also be used to find integers of given order from smallest primitive root. Recall the
result :
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Let a have order k modulo 7. Then &" also has order ——— .
ged(h, k)

¢(n)
gcd(h,(b(n))'

Thus, if @ is a primitive root, then order of a is ¢(n) so that a”" has order

We can use this result to find integers of a given order from a primitive root.
Let us consider p = 13 and it's primitive root 2. Let us find integers of order 6. Here,

¢(13) =12, so the integers of order 6 are those integers 2" with

12

6=———=>gcd(h,12)=2=h=2,10.
ged(h,12) ged(h12)

Thus 27, 2'° are integers of order 6. Now, 2% =4, 2'°=1024 =10(mod13). Therefore, 4 and

10 are integers of order 6.

Let us discuss how to find the number of integers of a given order £ modulo #.

Let n be an integer having primitive root a, then a,az,...,a¢(”) are congruent to @, a,,...,a 4(n)

k

in some order. Further, if a have order £ modulo »n. Then a" also has order ——— .

ged(h, k)
e : 0 ¢(n)

Thus if, a is a primitive root, then order of a is ¢(n) so that a" has order ——————. Thus
ged(n,¢(n))

. h . ¢(n) .

integers of order k& are those a” for which —————— =k that is, we have to find 4 such

ged(h,¢(n))

¢(n) )
that T:gcd(h,gb(n)). Let us consider p = 43. Here, ¢(43)=42, so that there are

integers of order 1, 2, 3, 6, 7, 14, 21, 42. First we shall find a primitive root of 43. Let us start
with 2. We have

2°=32=-11(mod43),2% =21(mod43),2” = —1(mod 43) and
2

24 =(27)" =(~1)* =1(mod 43).

Thus 2 is not a primitive root. Consider

3*=81=-5(mod43),3% =3*.32=(-5)(9) =-2(mod 43),3” = -6 (mod 43),
3% =36=-7(mod43)

Thus 3%'=3'*.37 =(=7)(-6) = —1(mod 43) . Hence, 3 is primitive root of 43.
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Power of 3 No. cong. Power of 3 No. cong. Power of 3 No. cong.
mod 43 mod 43 mod 43
1 03 15 22 29 18
2 09 16 23 30 11
3 27 17 26 31 33
4 38 18 35 32 13
5 28 19 19 33 39
6 41 20 14 34 31
7 37 21 42 35 07
8 25 22 40 36 21
9 32 23 34 37 20
10 10 24 16 38 17
11 30 25 05 39 08
12 04 26 15 40 24
13 12 27 02 41 29
14 36 28 06 42 01
Table 1

Clearly, only element of order 1 is 1,

42
Now integers of order 2 are those 3" for which - = ged(h,42) = ged(h,42)=21=h=21.
Thus there is only one integer of order 2, namely 3*' =—1=42(mod43), that is 42,

42
Next integers of order 3 are those 3" for which? =ged(h,42) = ged(h,42) =14 = h=14,28.

Thus there two integer of order 3, namely 6 and 36.

42
Now integers of order 6 are those 3" for which i ged(h,42) = ged(h,42) =7 = h=1,35.

Thus there are 3 integers of order 6, namely 37, 7.

Further, integers of order 7 are those 3" for which

42
- = ged(h,42) = ged(h,42)=6=h=6,12,18,24,30,36. Thus there are 6 integers of

order 7 namely 41, 4, 35, 16, 11, 21.
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Further, integers of order 14 are those 3" for which

42
e ged (h,42) = ged(h,42)=2= h=2,4,8,10,16,20,22,26,32,34,38,40 . Thus there are

12 integers of order 21, namely 9, 38, 25, 10, 23, 14, 40, 15, 13, 31, 17, 24.

Finally, integers of order 42, that is, primitive roots are those 3" for which

42
ol ged(h,42) = ged(h,42)=1= h=1,5,11,13,17,19,23,25,29,31,37,41. Thus there are

12 primitive roots for 43, namely 3, 28, 30, 12, 26, 19, 34, 5, 18, 33, 20, 29.

Note that there are 6 pairs {2,241},{25, 237},{2“,230},{213, 229},{217, 228},{219,223} such that
rr'=1(mod43).

Let us put it in tabular form.

Sr. No. Order Integers No. of integers

1 1 1 01
2 2 42 01
3 3 6, 36 02
4 6 7,37 02
5 7 4,11, 16, 21, 35, 41 06
6 14 2,8,22,27,32,39 06
7 21 9,10, 13, 14, 15, 17, 23, 24, 25, 31, 38 12
8 42 3,5, 12,18, 19, 20, 26, 28, 29, 30, 33, 34 12

Total 42

Ex. Find all positive integers less than 61 having order 4 modulo 61.

Solution. Let us find smallest possible positive primitive root modulo 61. Let us begin with
2. Consider the nearest power of 2 to 61. Note that ¢(61) =60 and divisors of 60 are 1, 2, 3,

4,5, 6,12, 15,20, 30, 60. We have 2° =12(mod 61),2"* =2°-2% =12-16 =9(mod 61),
2 =2".2=9.8=11(mod 61) so 2*° =2'%.2°=9.3=27(mod 61),
2
2% =(2%)" =11’ =121 =-1(mod 61) = 2% = 1(mod 61).
Thus 2 is a primitive root. The positive integers less than 61 having order 4 are those 2" for

60 s
which = ged(h,60) = ged(h,60)=15=15,45. Thus 2> =11(mod 61) and
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2% =232 =(-1)(11) =50(mod61). Hence 11 and 50 are two integers of order 4

modulo 61.
Exercises :

1. Assuming that » is primitive root of the odd prime p, then prove that

AP2 2 —1(mod p).

2. Assuming that 7 is primitive root of the odd prime p, and 7' is another primitive root
of p, then prove that 7' is not a primitive root of p.

3. For a prime p > 3, prove that the primitive roots of p occur in incongruent pairs r, »'

where r7'=1(mod p).

4. Let » be a primitive root of the odd prime p. Then prove the following :
(a) If p=1(mod4), then — is primitive root of p.
(b) If p=3(mod4), then — has order (p—1)/2 modulo p.

7.3 Composite Numbers having primitive root

Theorem. For k >3 then integer 2* has no primitive roots.

Proof. We shall prove this result by induction on k. However, we begin by showing that if «

is an odd integer then, ¢* = l(mod 2") S (1)
For k = 3 this holds trivially because we know that square of an odd integer is of the form
8k + 1, i.e. if ais an odd integera’ = 1(m0d8) :
Suppose k > 3.Let the result (1) holds true for k, that is, our induction hypothesis is
a”" =1(mod2").

Therefore, a* =1+5b2" , where b is an integer.

Consider
o= (a7} (1002 ) =142 1572 21427 (b4 572 ) = 1(mod 2.

Thus, % = l(mod 2k )
Therefore, (1) holds for k + 1 whenever it holds for k.
Hence, by principle of mathematical induction (1) holds for all £ >3.

Note that, the integers that are relatively prime to 2* are the odd integers . This is to support
the choice of « as odd integer in (1) and ¢(2") =2F/2=2"",
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Thus @ = a’®)? = 1(mod 24

o)

Thus 2° has no primitive root because order of @ modulo 2" is less than or equal to

Theorem. If gcd(m,n) =1, where m>2 and n > 2 then the integer mn has no primitive root.

Proof. Let be aan integer such that ged(a,mn)=1, that is, ged(a,m)=1 and ged(a,n)=1.
Let h=Ilcm(¢p(m),p(n))and d = ged(@(m),d(n)) .

Since ¢(m) and ¢(n) are even integers, we have d >2.

Hence, 7= #(m)-9(7) < ¢(m)-¢(n) _ ¢(mn) _

d 2 2

P(n)id

By Euler’s theorem, ™ = 1(modm) so that a" = (a¢("”) =1 = |(mod m).

Similarly, a" =1(modn) . Since gcd(m,n)=1 = a" =1(modmn).

Thus, "¢ =1(modmn). Thus, order of a modulo mn is less than or equal to

¢(m)¢(”) _ ¢(mn) < ¢(mn) <d(mn
= s <g(mn).

Thus mn cannot have primitive roots.

Corollary. The integer n fails to have primitive root if either.
a) n is divisible by two odd primes or

b) n is of the form »n = 2" - p*,

where p is an odd prime and m=>2.

Proof. a) Let n=pg where p and q are distinct odd primes. Hence p >2and ¢ >2and above
theorem applies.

b) Since p is odd prime we have gcd(2"’,p")=1 and as m >2,2" >2& p* >2 .
Therefore, above theorem applies.
Lemma. If p is an odd prime then there exists a primitive root r of p such that
7 = I(mod p°) .
Proof — Since p is an odd prime, it has a primitive root. Let r be one of the primitive roots of

p. If ¥’ = 1(mod p*) we are through.

Suppose 7*~' =1(mod p*) then letr'=r+ p and
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N (p—D(p-2)

0 pr’7 +---to p terms.

consider, (r')p_] = (r+p)p_] ="+ (p-Dpr?

Thus (r')pil =" +(p-1D)pr’*(mod p°) .
Since, #””' =1(mod p*), we have (r')pil =1-pr’?*(mod p).

Since, r is a primitive root of p,gcd(r, p) =1, we obtain p / r”~* . Note that as r is a primitive

root so does '=r+ p . Hence, (r')'ﬁl Z 1(mod p°) proves the lemma.

Corollary. If p is an odd prime then p* has primitive root. In fact for a primitive root r of p

either r or r + p (or both) is a primitive root of p*.

Proof. Since p is an odd prime, p has a primitive root r. We know that either

r"™' = 1(mod p*) or (r+p)’kl Z 1(mod p°) . Since,¢(p2) = p(p-1) we must have
' =1(mod p*) or(r+ p)”~ =1(mod p*).

So that r or r + p is a primitive root of p?. Note that if #*”' = 1(mod p*), order of » modulo
p’ must be ¢(p2) =p(p-1) and similarly if (r+p)’kl = 1(mod p*), order of » modulo
p’ must be ¢(p2) =p(p-1).
Ex. Find primitive roots of 25.

Solution. We know that 2, 3 are the primitive roots of 5. Note that there are
¢(4(25))=¢(20)=8 primitive roots of 25. We know that if 7 is a primitive root of p then r
or r + p is a primitive root of p*. Therefore, 2 or 7 and 3 or 8 are primitive rots of 25. Observe

that 2% = 1(mod25) and 3* = 1(mod25). Therefore, 2 and 3 are primitive roots of 25.
However, there are six more primitive roots of 25 which can be found by brute method or
starting with 2 or 3. Now let us take 2. The primitive roots of 25 are those powers % or 2 such

that ged(h, 20) - 1. Thus A =1, 3, 7,9, 11, 13, 17, 19. Thus 2° =8, 2" =128 =3(mod 25),
2% =12(mod25), 2'"'=23(mod25), 2 =17(mod25), 2!7 =22(mod25), 2" =13(mod25).
Thus the primitive roots are 2, 3, 8, 12, 13, 17, 22, 23.

Note. In the above example 2 and 3 are primitive root of 5 as well as 25. Further, 2 is
primitive root but 2 + 5 = 7 is not where as both 3 and 3 + 5 = § are primitive roots. Note that

7*=1(mod25) . Thus r”™' = l(mod pz) guarantees that 7 is primitive root of p*. Further 3,
8, 13, 23 are congruent modulo 5 and 2, 12, 17, 22 are congruent modulo 5. Also

=-18(mod25) implies 7*=18*=1(mod25). The next result assures that if » is a
primitive root of p with the property that r” 1= l(mod pz), then r is a primitive root of p*

for each positive integer k>2.
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Lemma. Let p be an odd prime and let r be a primitive root of p with the property that
PP 1(mod pz). Then for each positive integer k=2 , ™ = 1(mod p*)

Proof. We shall prove this result by induction on k. For k = 2, the result holds trivially ,
Suppose that the result holds for k =n, i. e., #*" ™ = 1(mod p").

Since ged(r, p"') =ged(r, p") =1, by Euler’s theorem, we obtain

r¢(p"_l) =1(mod p" ") = P = I(mod p" )= 1+ap"",

for some integer a such that, p [ a, otherwise, we would have, #7 = 1(mod p")

which is absurd.

Now consider
P (D -0\’ k-1\P k=1
r —(r :(1+ap ) =l+p-a-p"+--

Thus " @™ =1+ ap” (mod p"™") .
As p/a , we have

P = 1 (mod ",

Therefore the result holds true for any k by induction.

Theorem. If p is an odd prime and k >1, then there exists a primitive root for p*.

Proof. We know that, if p 1s an odd prime then there is a primitive root » modulo p such that

rp_l,z-‘l(mod pz) and that for such an r, for each positive integer k>2,

k=2
pp ) l(mod pk). Thus it is enough to find an » such that 7~ ,z-‘l(modpz) which

serves as a primitive root for all powers of p.

Let 1 be the order of » modulo p, then n must divide ¢(pk) | "' (p—1). Since n is the order
of r modulo p*, we have r"= l(mod pk) which implies that 7" =1(mod p). Therefore,

¢(p)=p—1|n. Thus n has the form n= p™(p-1), where 0<m<k—1.In case m<k-1,
k=2 P 2 k : :
then we would have n| p" “(p—1) and we get r =1(mod p ) which contradicts our

; P k k-1 . e
assumption that r = l(mod p ) Therefore, n=p" " (p-1), that is, r is primitive

root modulo p* for any integer k >1.
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Finally we consider the case 2p", where k >1.
Corollary. There are primitive roots for 2p" where p is an odd prime and k >1.

Proof. We know that p* with k£ >1 has primitive root and let » be a primitive root for p".
With no loss of generality, we may take » to be an odd integer, for if it were even then r + p*

would be an odd primitive root for pk. Since r is odd, we have gcd(r, Zpk) =1. Let n be
the order of r modulo 2p*. Then r must divide ¢(2pk) = ¢(2)¢(pk) = ¢(pk). Now
r' = l(mod Zpk) =r'= l(modpk). Therefore, (2pk) |[n. On the other hand
n| (Zpk) = ¢( pk) . Thus n= ¢( pk) and consequently, 7 is primitive roots for 2p".

Note that 1 primitive roots for 2, 3 is primitive root for 4 and thus we summarize.
Theorem. An integer n > 1 has a primitive root if and only if n = 2, 4, pk or 2pk.
Ex. Find four primitive roots of 26.

Solution. The integer 26 is of the form 26 =2x13, that is of the form 2p and therefore, it has
primitive roots. We begin by evaluating ¢(26) =¢(2-13) =¢(13) =12. Therefore, order of
any integer relatively prime to 26 is divisor of 12. Note that the divisors of 12 are 1, 2, 3, 4, 6,
12. Further, there are exactly ¢(¢(13))=¢(12)=¢(3)¢(4)=2-2=4 primitive roots. We

can directly find the primitive roots or use the method of obtaining the primitive roots
starting from the smallest primitive root. Let us do it directly. The integers relatively prime to

26are 1,3,5,7,9, 11, 15, 17, 19, 21, 23, 25. Clearly, 3°> =27 =1(mod 26) so order of 3 is 3.
Next, 5°=25=-1(mod26)=5*=1(mod26) so that order of 5 is 4. Now
7*=49=-3(mod26), 7’ =7*-7=-3-7=5(mod 26) and

7% =52 = -1(mod 26) = 7'* =1(mod 26), that is, order of 7 is 12, hence 7 is primitive root.
Clearly, 93 = (32)3 = (33 )2 =1, therefore, 9 is not a primitive root. Now, 11> =121=17(mod 26)
and, 113 =11-11=17-11=(-9)11=5(mod6) thus 11*=(112)" =(~9)(~9) =81 =3(mod 26)..
Next 11°=(1 13)2 =52 =—-1(mod26) therefore, order of 11 is 12, that is 11 is also a primitive
root modulo 26. Consider, 15=—11(mod26), (15)°=(=11)*=(11)*=(-9)(mod?26),
further, (15)° = (15)*(15) = (<9)(~11) =—5(mod 26), (15)* = (15)” =(-9)* =3(mod 26) and
(15)° = (153)2 =(=5)* = —1(mod 26), therefore, 15 is a primitive root for 26. Thus we have
found 3 primitive roots and obvious guess for the fourth one is 19 as 19 =-7(mod26) and
we are just required to verify that (19)° = 1(mod26) and (19)° = —1(mod26). For that it is
enough to see that (=7)=(=7)(=7)=(7)*(=7)=(=3)(=7)=-5(mod26)  so
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(=7)*=(19)’ = -5(mod 26) Thus the fourth primitive root is 19. Thus once we verify that 7
and 11 are primitive roots obvious guess are 19 and 15.

Alternatively, once we obtain 7 as the smallest primitive root, the other three are 7,77, 7.
2

Consider 72 =49 =-3(mod26),7> =7%-7 =(=3)-7=5(mod 26), 7* = (7%)” =(-3)* =9(mod 26)

therefore, 7°=72-7>=(-3)-5=11(mod26), 7" =7*-7°=9-5=19(mod 26), and

71 =(77)(7*) =19.9 =(~7)9 =15(mod 26) . Thus the four primitive roots are 7, 11, 15, 19.

Let us find integers of order 6 modulo 26. Here, ¢(26) =#(13) =12, so the integers of order
¢(26) 12
=6=
ged(h,¢(26)) ged(h,12)

. Thus integers of order 6 modulo 26 are 7%,7'°. Thus smallest positive integers of order 6

6 are those integers 7" with h = = ged(h,12)=2=h=2,10

2
modulo 26 are, 7>=49=23(mod26), 7°=5(mod26)=7°=(7>)"=(5)>=25(mod26)
and 7'°=7%.72.7> =(-1)-(-3)(-3) = -9 =17(mod 26) . Thus integers of order 6 modulo 26
are 17, 23. However, one is tempted to wonder if 3, 9 are also integers of order 6, but both

2
are clearly ruled out, for 3*=]and 9= (33) =1’=1.

Now let us find integers of order 3 modulo 26. Here, ¢(26)=¢(13) =12, so the integers of

order 3 are those integers 7" with

$(26) 12

=>3=—_
) ged(h,12)

S b — gcd(h,12)=4=>h=4.8.
ged (h,4(26) ged (A 12)

2
Thus the integers of order 3 are, 7¢ =(72)” =(-3)> =9(mod 26) and

2
78 =(7*)" =(9)* =3(mod 26), that is 3 and 9 are integers of order 3 modulo 26.

Now let us find integers of order 2 modulo 26. Here, ¢(26) =¢(13) =12, so the integers of

order 2 are those integers 7" with

$(26) 12

=>2=—"
) ged(h,12)

S b = ged(h,12)=6=>h=6.
ged (h,$(26) god(1,12)

Thus the integer of order 2 is, 7° =25(mod26) . Thus 25 is integers of order 2 modulo 26.
Similarly, the integers of order 4 are those integers 7" with

$(26) 12

SN
) ged(h,12)

h= W = gcd(h,12) =3 = h=3,9 and hence, the integers of
gealn,
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order 3 are, 7° = 5(mod26) and 7°=(7%).7=3.7=21(mod 26) . Thus 5 and 21 are integers
of order 4 modulo 26.

In general we can list the integers as follows :

Primitive roots are 7,75,77,711 ;thatis 7, 11, 15, 19.
Integers of order 6 modulo 256 are, 72,76,710; that 1s 17, 23,
integers of order 4 modulo 26 are, 73,79; that is5, 21,
integers of order 3 modulo 26 are, 74,78; that is, 3, 9,

integers of order 2 modulo 26 is, 76; that is, 25,
Integers of order 1 modulo 26 is, 1.

Ex. Find all primitive roots of 41 and 82.

Solution. Consider 2°=-9(mod41), 2'°=—-1(mod41), so 2 is not a primitive root of 41.
Next 3*=-1(mod41) implies that 3 is also not a primitive root of 41. Further,
4> =2'""=_1(mod41) and hence 4 is also not a primitive root. Now 5° =-2(mod41),
50 =4(mod41), 5*=-10(mod41), 5'°=5°5%=(4)(~10)=-1(mod41) therefore, 5 is
also not a primitive root. Consider, 6°=-5(mod41), 6*=25(mod4l),
6°=6"-6°=-2(mod41), 6'°=6°-6"=-9(mod41). Thus 6*° =-1(mod41) and hence 6 is
primitive root of 41.

Now 6 being an even integer it cannot be a primitive root of 82 and hence, 6 + 41 =47 is
primitive root of 82.

Notes :

1. Clearly, 2 is primitive root of 3 and 2* =4 = 1(mod9), so 2 is primitive root of all
powers of 3.

2. Since ¢(2p") = ¢( p") , they have same number of primitive roots.

3. Any primitive root of p* is also a primitive root of p" for n>2 .

Exercise :

1. Prove that 3 is a primitive root of all integers of the form 7% and 2-7%.

2. Prove that any primitive root » of p” is also a primitive root of p.

I
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7.4 THE THEORY OF INDICES

Consider the Table 1. In this table we have we out powers of primitive root 3 and the
positive integers less than 43 congruent to it modulo 43. However, if we take any other
primitive root and the table would be different. Thus for a given primitive root we can always

work out such a table. For example, we have 333 = 7(mod43) and in this case we say that

index of 7 relative to (primitive root) 3 is 35. Similarly, 32 = 18(mod 43) and in this case we

say that index of 18 relative to (primitive root) 3 is 29.

The concept of indices was introduced by Gauss. Let # be any integer that admits a
primitive . We know that, ¢ () the integers r, P2 e, 19 are congrnent modulo 7 to
ay, @y ,...., (), the ¢(n) integers less than n and relatively prime to 7. In other words each
integer a such that gcd(a, n) =1 canbe expressed as g = ¥ (mod ) for a suitable choice

of k, where 1< k < ¢(n) . This idea prompts the following definition.

Definition : Let 7 be a primitive root ofn and gcd(a,n) =1. Then the smallest integer k such
that 4 = % (mod ») is called index of a relative to »and is denoted by ind, a.

Notes :

1. Clearly, 1<ind.a<¢(n).

2. Whenever we talk about index it is assumed that gcd(a,n) =1.

3. If g =b(modn) then ind,a=ind b thatis ;"% = b (1164 y).
Clearly, 1 <ind, a < ¢(n) and that ;"¢ = 4 (modn)-
e.g. Let us consider n =5 and primitive root » =2 of 5. Then
2'=2(mod5), 2> =4(mod5), 2° =3(mod5) and 2* =1(mod5) -
Thus ind, 1=4, ind, 2=1, ind, 3=3 and ind, 4=2.
Note that g =p(modn)=inda=ind b-

Let g = h(modn) and r be a primitive root of 7.

Then ;"4¢ = 4 (modn) and ™% = p(modn) -
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Thus rmda = rmdb(modn)-

Therefore, ind a =ind b(mod o (n)) which is possible only if ind ¢ =ind 4. Thus,
when setting up tables of values ofind a, it is enough to take integers less than a and relatively

prime to 7.

Theorem : If n has a primitive root » and ind a denotes index of a relative to 7, then the

following properties hold.

(@)  indab=ind a+ind b(modg(n))

(b)  inda*=kind a(modg(n)) for k>0

(¢)  ind1=0 (mod¢(n)), indr=1 (mod¢(n))
Proof : By definition of index

(@) " =g (modn) and »"? =p (modn)

Therefore rinda+indb =ab (mod n) .
Since rmdab =ab (modn) we have rmda+mdb Ermdab (modn)

Hence, ind @ + ind » =ind ab(mod(b(n))-

(b) Note that inda* _ & (modn) -

And rkinda — (ri“d“)k = ak(l’nOdﬂ) :

Lk .
Hence, rmda Erkmda(modn)-

Therefore, ind a* = k ind a(mod ¢ (n)).

(c) Finally, »*"” =1(modn) = ind 1=0(mod¢(n)) and ind » =1(mod ¢ (n)).

The theory of indices can be used to solve certain types of congruences. Consider the
binomial congruence.

x* = a(modn) (k>2) (1)
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where  is a positive integer having primitive root and gcd (a, n) = 1. Inview of above theorem
(1) is equivalent to the linear congruence.

kind x =ind a(mod ¢ (n))

Let d = gcd(k,¢(n)) Afd /ind a then (2) is not solvable. However, if d | ind a,

then (2) has exactly d values of index modulo ¢ (7). Consequently, there are d solutions of

(D).
Consider the case k=1, n =p where p is odd prime. In this case (1) becomes,
x*=a(modp) L 3)
Since ged(2, p—1)=2,(3) has two solutions provided 2 | ind a.

Let 7 be a primitive root of p. Thenr, 12, ...., P! are congruent modulo pto 1, 2, ..,
p—1 insome order. The even powers of 7 produce the values of a for which the congruence

x’=a (mod p) is solvable. Note that there are precisely ( p—1)/2 such choices for a.

Example : Solve 4x’ =7(mod13) (1)

Solution : The above equation can be solved using theory ofindices. Let us fix 2 as primitive
root of 13. Note that,

2'=2(mod13), 22 =4(mod13), 2*=8(mod13)
2*=3(mod13), 2° =6(mod13), 2% =12(mod13)
27 =11(mod13), 28 =9(mod13), 2° =5(mod13)

2'9=10(mod13), 2''=7(mod13), 2'? =1(mod13)

Thus index table can be written as,

a 1 2 3 4 5 6 7 8 9 10 11 12
nde 12 1 4 2 9 5 11 3 8 10 7 6
Now (1) has a solution iff

ind, 4 +9ind, x =ind, 7(mod12)
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= 2+9ind, x =11(mod12)
=N 9ind, x =9(mod12)
= ind, x =1(mod4)
= ind, x=1,5,9

Looking at the index table, we obtain

x=2,5or 6(mod13)

Note : Let us consider p = 13. We can obtain ¢(¢$(13)) =4 primitive roots of 13. If we

know one of them. Let us start with 2. Infact remaining 3 can be obtained from the powers

2F(1<k <¢(n)) where ged(k,¢(13)) = ged(k,12) =1. Theyare

N=2,25=6,27=11> 2''=7(mod13).

Theorem : Let n be an integer possessing primitive root and let gcd(a@,n) =1. Then the

congruence x* = 4(mod ) hasa solutions if and only if
a®"'? =1(mod n)
where d = ged(k,¢(n)), if it has a solution, there are exactly d solutions modulo .

Proof : Taking indices, the congruence 49"/d —1(;modn) is equivalent to

¢(n)
d

ind ¢ =ind 1(mod¢(n))

Since ind 1=0(mod¢(n)), we obtain.

#(n) ind a =0(mod ¢(n))
d

—=ind a =0(modd)

—d|ind a
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But this is necessary and sufficient condition for congruence x* = 4(mod ) to be

solvable. However, if the congruence has solution, then there are exactly d solutions modulo
n.

Corollary : Let p be aprime and ged(a, p) = 1. Then the congruence x* = a(mod p) has

a solution ifand only if o7~/ = 1(mod p),where d = ged (k, p—1).

Example : Consider x3 = 4(mod13)-

Here d =gcd(3,4(13))=ged(3,12)=3 and so ¢(13)/d = 4. Observe that

4* = 1(mod13) - Hence, this congruence has no solution.

Example : Solve x* =5(mod13)-
Solution : Here ¢ = ged(3,¢(13)) = 4 and 5*=1(mod13).
Hence, x* = 5(mod13) hasa solution. Now the given congruence is equivalent to
3ind x =ind 5(mod12)
3ind x =9(mod12)

ind x =3(mod 4)
indx=3,7o0r11

And hence, x=7,8 or 11(mod13).
Example : Solve x!'? =13(mod17)-
Solution. We have x'2 =13(mod17)
We know that 3 is a primitive root of 17 and therefore, this is equivalent to
12indyx = ind;13(mod ¢(17)) or 12indyx = 4(mod16)

Clearly ged(12,16) = 4|4 and hence 12indx = 4(mod16) or 3-indx =1(mod4) hasa

solution ind;x = 3. Thus x = 10. Thus solutions modulo 17 are 2, 6, 10, 14.
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If we take primitive root 5 instead of 3, we have ind;x =3 implies x = 6 and in this

case also solutions modulo 17 are 2, 6, 10, 14.

Note that ged(12, 16) =4 and hence there are 4 incongruent solutions modulo 17.
Ex. Solve 8x5 = 10(m0d17) .
Solution. We have 8x° =10(mod17)

We know that 3 is a primitive toot of 17 and therefore, this is equivalent to

ind:8+5-ind;10(mod ¢(17)) or 10+5-ind;x = 4(mod 16)

5-indyx =10(mod16) = ind;x =2(mod16) = indx =2 = x =9
Therefore, the solution is 9 modulo 17.
Ex. Solve 7* = 7(mod17)-
Solution. We have 7* = 7(mod17)
We know that 3 is a primitive root of 17 and therefore, this is equivalent to
x-indy7 = ind;7(mod¢(17)) or x =1(mod16)-
Thus, the solutionis 1 modulo 16.

Note that in above example solution is congruent to ¢(17) =16 butnot 17 which is the case

in earlier examples.
Ex. Find the remainder when 32*.5'3 is dividisble by 17.

Solution. We have to solve
3**.5Y = x(mod17)-
Using theory of indices we can write
24-ind;3+13-inds5 = indx(mod ¢ (17)).
Thus we have
24-1+13-5 =ind;x(mod16) = ind;x =9(mod16) = ind;x =9 = x =12.

Therefore, only solution is 12 modulo 17. Thus 12 is the remainder.

Number Theory | 105



Exercise :

1. Determine whether the two congruences x° =13(mod23) and x!” =15(mod29)

are solvable.

2. For which values of b is the exponential congruence 9 = (mod13) solvable ?
3. Solve the congruence 7x3 = 3(mod11)-
4. Solve the congruence 3x* = 5(mod11)-

5. Determine the integers (1 < g <12) suchthat the congruence gx* = p(mod13)
has solution for 5=2, 5 and 6.
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Unit-8
THE QUADRATIC RECIPROCITY LAW

8.1 QUADRATIC RESIDUE

The qudratic reciprocity law deals with solvability of quadratic congruences. Consider
the congruence.

ax*+bx+c=0(modp) L. (1)
where p is prime and ¢%0(mod p)-

Since p is odd prime and p / a,wehave ged(4a, p)=1. Therefore, the quadratic
congruence in EqQ™. (1) is equivalent to,
4a(ax®+bx +c) = O(modp)

= 4a’x* + 4abx +4ac = 0(mod p)

= (2ax+b)* =b* —4ac(mod p)

Nowput 2ax+b=y and g = p2 — 44¢ , then we get

y*=d(modp) L ()
If x = x,(mod p) is a solution of the quadratic congruence in Eq™. (1), then the
integer y = 2ax,+b(mod p) is a solution of Eqn. (2). Conversely, if y = y,(mod p) isa

solution of quadratic congruence in Eqn. (2), then 2ax = y, —b(mod p) canbe solved to

obtain solution to Eq". (1).

Thus, the problem of finding a solution to the quadratic congruence in EqQ". (1) is
equivalent to that of finding a solution to linear congruence and a quadratic congruence of the
form.

x*=za(modp). L. 3)

Number Theory | 107



If p | a, then the quadratic congruence in Eqn. (3) has x = 0(mod p) asits only
solution. To avoid trivialities, let us agree to assume hereafter that p / a . Thus whenever

X = X, is a solution of x* =g (mod p), there is also a second solution x = p — x, . Since
xy = p—x,(mod p) implies 2x,=0(mod p) or equivalently x,=0(mod p) which is
impossible as p / a. x, and p—x, are incongruent modulo p. By Lagranges theorem

2
X

a(mod p) admits two solutions x, and p —x, exhaust the incongruent solutions of

2
X

a(mod p). Thus x* = a(mod p) has exactly two solutions or no solutions.
e.g. consider the quadratic congruence
5x% —6x+2=0(mod13)
This is equivalent to,
4x5(5x% —6x+2) = 0(mod13)
= (100x? ~120x+36) +4 = 0(mod 13)
= (100x—6) = 9(mod13)
= y*=9(mod13) . “4)
where y =10x-6.
Clearly, (4) has solutions y =3,10(mod13).
Next consider the linear equations
10x —6 =3(mod13) and 10x—6=10(mod13)
or equivalently
10x =9(mod13) and 10x =3(mod13)

It can be seen that x =10(mod13) and x =12(mod13) are solutions of the above

linear congruences. Hence, x =10, 12 are solutions of quadratic congruence modulo 13.
Definition : Let p be an odd prime and ged(a, p)=1. If the quadratic congruence

x*=a (mod p) has a solution then « is said to be quadratic residue of p otherwise a is

called quadratic non-residue of p.

Number Theory | 108



Note : If a = b(mod p), then a is quadratic residue. Ifand only if b is a quadratic residue
ofp.

Example : Consider the example with p = 13. We shall find out how many of the integers 1,
2, ..., 12 are quadiatic residues of 13. That is to find which ofthe congruences x? = ¢ (mod13)

are solvable when a runs through {1, 2, ..., 12}.

Consider,
P=12%=1
22=11°=4
32=10*=9
42=92=3
52=8"=12
6’=7"=10-

Thus 1,3,4,9, 10, 12 are quadratic residues of 13 and 2, 5, 6, 7, 8, 11 are quadratic
non-residues.

Further, there are two pairs of consecutive quadratic residues namely 3,4 and 9, 10.

1 _
In general for any odd prime p there are Z( p—4—(- 1)(p Iz ) consecutive pairs.

1 _
For p =3, there are 2(13—4—(—1)(]3 1)/2) =2 pairs.

Theorem : (Euler’s Criterion)
Let p be an odd prime and ged(a, p)=1. Then a is a quadratic residue of p if and

onlyif ¢'#"2 =1(mod p).

Proof : Suppose that a is a quadratic residue of p, so that x> =a (mod p) admits a solution,
call it x,. Since ged(a,p)=1, ged(x;,p)=1. Then x’>=a(modp), i.c.

a = x> (mod p) .Therefore, by Fermat’s theorem.
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4PD2 :(xlz )T =x""" =1(mod p).

Conversely, suppose that ¢(7/2 = 1(mod p) holds. Let be a primitive root of p.
Then we know that 7, 72, ....., % are congruent modulo nto a,, a,, ....., Ay @ integer less
than » and relatively prime to n. Since ged (a,n) =1, there isa positive integerk, I <k < p —1
such that 7* = a(mod p). Then * =a(mod p) for some integer k, with 1<k < p—1.
Thus,

rk(pfl)/Z _ a(lFl)/2 = l(modp) .

Hence, order of 7, that is, p — 1 must divide the exponent & (p —1)/2 ofrin(1). Thus
k has to be even. Let k= 2j. Then

(1) =r¥ = F = a(mod p)-

Thus 7/ is a solution of quadratic congruence x> =g (mod p) . Therefore, a is a

quadratic residue of p.

Note : Suppose that p is an odd prime and ged(a, p) =1, then
a”’'~1=0(mod p)
= (a?21)(aP)'2 4 1) = 0(mod p)
= aP 2= 1(mod p) or at?)'? = —1(mod p).

Note that if @ satisfies both 4”2 =1(mod p) and a?™'% = _1(mod p) then
we would have 1=—-1(mod p) which is absurd. Hence, exactly, one of the two holds.
Therefore, if 7 )/2 = 1(mod p) then we must have aP2 2 ~1(mod p) . Therefore,

the integer a is quadratic non-residue of p iff a7 02 (mod p) . Thus we have
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Corollary : Let p be an odd prime and ged(a, p)=1. Then a is quadratic residue or non-

residue according to whether.
at?™’? = 1(mod p) or at?'? = —1(mod p)
Note : We have seen that 3 is quadratic residue and 2 is non-residue of 13. Observe that

2(13*1)/2 — 26 — 64 = 12 = —1(m0d13)

and  33D/2_36 _(27)*=(1)* =1(mod13)

Example : Solve x2 +7x+10=0(mod11)-
Solution : Consider x? +7x+10 = 0(mod11)
= 4x? +28x+40=0(mod11)
= (2x+7)2 =9(mod11)-
Now consider the congruence,
y*=9(modty L (1)
where y=2x+7.
Observe that y =3,8(mod11) are solution of Eq". (1).

Now, we consider 2x+7=3(modl1)and 2x+7=8(mod11). These are
equivalent to,

2x=-4(mod11) and 2x =1(mod11)
Consider 2x=-4(mod11) = x=-2(mod11)
= x=9(mod11)
and 2x=1(mod11) = 6(2x)=6(1)(mod11) = x=12x=6(mod11)
= x=6(modl11).

Thus x =6,9(mod11) are the solutions of given quadratic congruence.
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8.2 THE LEGENDRE SYMBOL AND ITS PROPERTIES :

Definition : Let p be an odd prime and let ged(a, p) =1. The Legendre symbol (a/ p) is
defined by

1 If a is quadratic residue of p

(a/p>={

—1 If a is quadratic non-residue of p -

a
Legendre symbol is also written as [;] or (a/p).In the symbol (a/ p), ais

called numerator and p is called denominator.

e.g. Letus take p=13. Then
(1/13)=(3/13) =(4/13) =(9/13) =(10/13) =(12/13) =1

and  (2/13)=(5/13)=(6/13)=(7/13) =(8/13)=(11/13) = -1

Recall that 1, 3, 4, 9, 10, 12 are quadratic residues and 2, 5, 6, 7, 8, 11 are non-
residues.

Remark : For p | a, we have purposely left the symbol (a/ p) undefined. Some authors
define (a/ p)=0 in case p | a. The advantage of this is that the number of solutions of
a

x> =a(mod p) is givenby 1+(a/ p). Observe that if[
p

;

2 =0(mod p) and in this case there is only one solution.

] =1 thenthere are 2 solutions,

if ] = —1, number of solutions is zero. However, ifp | a, then x* = a (mod p) becomes
x”=0(

Theorem : Let p be an odd prime and let @ and b be integers that are relatively prime to p.
Then the Legendre symbol has the following properties :

(@) If a=b(mod p),then (a/p)=(b/p),

®  (a?/p)=1,
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© (a/p)za(pfl)/z(modp),

) (ab/p)=(a/p)(b/p),

©  (1/p)=land (=1/p)=(-DP""?2.

Proof : (a) If a =b(mod p), then the congruences x* = a(mod p) and x* =5 (mod p)
have exactly the same solutions if any at all. Thus x* = a (mod p) and x* =b(mod p) are
both solvable, or neither one has a solution, which is exactly (a/ p) = (b/ p).

(b) Since a trivially satisfies x* = > (mod p) we have (a2 / p) =1.

(¢) We know that ¢(”™)'2 =1(mod p) or a?™'% = _1(mod p) according as a is quadratic

residue or non-residue ofp. Hence, (a/ p) = a7 (mod p).

(d) (ab/p)= (ab)PV2 = g (P2 (P12 (a/p)(b/p)(mod p). Since Legendre
symbol assumes values 1 and —1 only, if (ab/p)+#(a/p)(b/p), we would have

1=-1(mod p) which is absurd because p > 2. Therefore, we must have
(ab/ p)=(a/p)(b/p).
(e) Since (az/p):l,foraz 1, we have (1/ p)=1.

For the other part let a =—1 so that

-1/ p)= (=D (modp) .. 1)

Since the quantities (—1/ p) and (_1)(?~")/2 are either 1 or— 1, Eqn. (1) implies that
(<17 p)=(=D" 2.
Note : (abz/p)z(a/p)(bz/p) =(a/p).
Corollary : If p is an odd prime, then

1 if p=1(mod4)
~1 if p=3(mod4).

(10|
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Note : Inview of above corollary, we obtain, the quadratic congruence x* = —1 (mod p)

has a solution iff p is of the form 4k + 1.
Example : Show that x> = —46(mod17) has no solution.

Solution : The given problem is equivalent to evaluating (—46/17). We know

(—46/17)=(-1/17)(46/17) =(46/17)  ((~1/17) = (D)2 = (_¥ =1)
Since 46 =12(mod17), we have
(46/17)=(12/17)
Thus  (12/17)=(3x22/17) = (3/17)(22/17) = (3/17)
But  (3/17)=3"7""2=38=(81)* = (-4)* =—1(mod17)
Therefore, (3/17) = —1 and consequently, (46/17) =—1.

Thus x? = —46(mod17) has no solution.

Theorem : There are infinitely many primes of the form 4k + 1.

Proof : Suppose that there are finitely many such primes say p,, p,, ..., p,, and consider,

N= (2p1,p2, ...,pn)z +1

Clearly, N is odd, so that there exists some odd prime p with p | N. To put it another
way,

(2py, P>, ...,pn)z =—1(mod p)

Thus (=1/p)=1. Weknow that (—1/ p)=1 only if p is of the form 4k + 1.
p p

Hence, p must be one of p,p,, ...,p, but then p|N—(2p1,p2,...,pn)2 =1
or p| 1. Which is absurd. Hence, the result.
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-1
Theorem : If p is an odd prime, then i‘, (al P) =0,

a=1

Hence, there are (p —1)/2 quadratic residues and ( p —1)/2 quadratic non-residues

ofp.
Proof : Let be a primitive root of p. We know that the powers 7,2, 7! are congruent

modulopto 1,2, ...,p—1 insome order. That is , rz,_,,, #P~ are just a permutation of the

integers 1, 2, ..., p — 1 modulo p. This for any a lying between 1 and p — 1, inclusive there is
a unique positive integer k(1< k < p—1), suchthat a = 7* (mod p)-

Since r is a primitive root of p, we have
- 1=0(mod p) = (P02 ) (P2 1 1) = 0(mod p)
— P22 1(mod p) or AP /2 2 —1(mod p)
As 7 is primitive root of p, A2 1(mod p) and hence

A 1)/2 ~1(mod p)-

Thus (a/p):(r"/p)E(f”‘)(lﬂ)/2 (Hr072)" 2 -pf (mod p)-

Therefore, (a/ p)= (_1)" =(r"/p)are equalto I or—1.

-1 -1
Hence, i(a/P) = i(—l)k =0,
a=1 k=1

and the theorem is proved.

Corollary : The quadratic residues of an odd prime p are congruent modulo p to the even
powers of the primitive root r of p; the quadratic non-residues are congruent to the odd
powers of 7.

Proof : The result follows immediately from

(alp) =(’”k/l7)5(—1)k(modp).
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Theorem (Gauss’ Lemma) :

Let p be an odd prime and let ged (a, p) =1. Ifn denotes the number of integers in

the set.
-1
S = {a,Za,3a,...,(p2 ]a}

whose remainders upon division by p exceed p/2, then

(a/p)=(-1)".

Proof : Since ged(a, p)=1, we find that none of the (p—1)/2 integers in S is congruent to
zero and no two are congruent to each other modulo p. Let #,7,..., 7, be those remainders
upon division by p suchthat 0 <7 < p/2 andlet s,,s,,...,s, bethose remainders such that

pl2<s;<p.
Then m+n =(p—1)/2 and the integer.

B Fogevees Uy D= S P = Sy P — S,

are all positive and less thanp /2.

To prove that these integers are all distinct it suffices to show thatno p —s; is equal to

any 7. Assume on the contrary that,
p—S5=r;
for some choice of i and j. Then there exist integers u and v, with 1<u, v<(p-1)/2
satisfying s, = ua(mod p)and r; = va(mod p). Hence,
(u+v)a =s;+r,=p= 0(mod p)

which says that u +v=0(mod p). But the latter congruence can not take place

because l<u+v<p-1.
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Note that (p—1)/2 numbers #,7,...,r,,, p—S, P —Ss....p— 5, are simply the

integers 1,2, ..., (p—1)/2 , not necessarily in order of appearance. Thus, their product is
5 )
p—1
Therefore, (T]' =n.r(p=s5).(p—s,)

= K.l (=51) (=, ) (mod p)

=(-1)"R...r,,5p...5,(mod p) -

-1
But, we know that #,....7,, 5,...., 5, are congruent modulo p to a,2a,....,( > ]a,

In some order, so that

p-1
Since (T] ! is relatively prime to p, we obtain

1=(=1)"a»™"2 (mod p)

= a(""2 = (=1)"(mod p).
By Euler’s criteria, we obtain,

(a/ p)=a?™"?=(=1)"(mod p).
Thus  (a/p)=(-1)".

Let us consider the case p =13 and a =5.
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Then (p-1)/2=6,sothat s ={5,10,15,20,25,30} .

Modulo 13, the members of S are the same as the integers 5, 10, 2, 7, 12, 4. Three
ofthese are greater than 13/2. Hence, n =3 and consequently,

(5/13)= (-1 =1
Theorem : If p is an odd prime, then

(2/p)= 1 if p=1(mod8) or p =7(mod8)
PI=1 if p=3(mod8) or p=5(mod8).

Proof : By Gauss’ Lemma, ( 2/ p) =(=1)", where n is the number of integers in the set.

-1
S:{1-2,2-2,3-2,...,(%]-2}

which upon division by p leave remainder greater that p/2. The members of S are all
less than p, so that it suffices to count the number that are greater thanp /2.

p—1
For lskS(T],wehave 2k < p/2 iff k< p/4. Therefore, thereare [ p/4]

p=1 1p
integers in S less thanp / 2; hence n = " {Z} is the number of integers that are greater

thanp /2.
Now, we have four possibilities, for any odd prime has one of the forms 8k + 1,

8k + 3, 8k + 5 or 8k + 7. A simple calculation shows that,

1
If p=8k+1,then n=4k—{2k+z}:4k—2k:2k_

3
pr:8k+3,thenn:(4k+1)—{2k+z}:4k+l—2k:2k+1_
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1
pr=8k+5,thenn=(4k+2)—{2k+l+z}=4k+2—(2k—1)=2k+1_

3
pr:8k+7,thenn:4k+3—{2k+1+z}:4k+3—(2k—1):2k+2_

Thus when p is ofthe form 8 +1 or 8k + 7, nis even and so (2/p) =1 and in case

pis ofthe form 8k +3 or 8k +5,nisoddandso (2/p)=-1.

Corollary : If p is an odd prime, then

(2/p)= (-1 "

Proof : Suppose p is of the form 8% +1, then

Pr-1 (8k+1)°—1 64k>+16k
8 8 8

8k> + 2k

Which is an even integer and hence

(s (2/p)

On the other hand, ifp is ofthe form 8 + 3, then

PP-1 (8k+3) -1 64k>+48k+8
8 8 - 8

= 8k>+6k+1

which is odd, so that (_1)(1’2‘1)/8 =—1= (2/p) .

Theorem : Ifp and 2p + 1 are both odd primes, then the integer (_1)(7~1)/2 5 isa primitive
rootof2p + 1.

Proof : For the sake of convenience, letus put g =2p +1.

We distinguish the cases : p =1(mod4) and p =3(mod4)
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Casel:Let p=1(mod4). In this case (_1)?~1)/2.5 _ . Because ¢(q)=qg—1=2p,

the order of 2 modulo ¢ is one of the numbers 1, 2, p or 2p. We know
(2/p)=2"""2 =27 (modq)
But in the present setting, ¢ = 3(mod8), hence, the Legendre symbol (2/¢)=—1.
It follows that 27 = —1(mod q) and therefore 2 can not have order p modulo g. The order
of 2 being neither 1,2 2% = l(mod p) = ql3 which is not possible) nor p.
Therefore, order of 2 modulo g is 2p. Thus 2 is aprimitive root of g.

Casell: Let p=3(mod4). Inthis case (_1)(»)/2. 5 _ 5 and

(-2)"=(-2/¢)=(-1/¢)(2/¢)(mod g).

Since g =7(mod8), we have (-1/¢)=~1and (2/¢)=1.

Thus (-2)” = —1(mod ¢). Arguing as in the first case, we conclude that — 2 is a
q

primitive root of g.

Note : An odd prime p such that 2p + 1 is also prime is called Germain prime after the French
number theorist Sophie Germain (1776 —1831).

Theorem : There are infinitely many primes of the form 84— 1.

Proof : Suppose on the contrary that there are only a finite numbers of primes of the form
8k—1namely p, p,,...., p, and consider, N =(4p,, p,,...., p, )2 -2.

There exist atleast one odd prime divisor p of N, so that

2
(41719172,----,19,,) E2(m0dp).
In other words (2/ p) =1.Hence, p=+1(mod8).

If all the odd prime divisors of N were of the form 8% +1, then N would be of the
form 8a + 1, this is clearly impossible because N is of the form 16a — 2.
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Thus, N must have a prime divisor g of the form 8k — 1. But ¢ | N and

q/ (4p1, Doreens Pn)2 leads to the contradiction that g | 2.

Lemma : Ifp is an odd prime and a is an odd integer, with ged(a, p) =1, then

(p_zl)/z[ka/ p]

(a/p) =(-1 =

Proof : Consider the set of integers,

S{z[f’zlj}

By division algorithm, we have

ka=q,p+t, 1<t <p-1.

Then —=¢xt—=|— |=q; for 1<k <| —|.
p p p 2

Thus we can write

ka
ka:{?}p+t,€_ ..... (1)

Ift, < p/2,thenitisoneof #,7,,...,7,, andif ¢, > p/2 , thenit is one of the integers

(p-1)/2 (p-1)/2 ka m n
p+2rk+;sk. ...... @)

k=1

We know that ( p—1)/2 numbers,
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Fpeoes Ty D= Spyees D=,
are just rearrangement of the integers 1,2, ..., (p—1)/2.
Hence,

n

m n
et (psg)=pn) =Sk
k=1 k=l k=l

(p-1)/2 m
k=
k=1 k=

—_

Subtracting Eqn. (3) from Eqn. (2), we obtain,
(p1)/2 (P=1)/2] ka n
(a-1) k=p Z —|-n +2Zsk_
k=1 k=1 LP k=1
Since both a and p are odd integers, we have,

p=a=1(mod2)

and therefore Eqn. (4) can be written as,

(pfl /2 (pfl)/Z ka
0 > kEl-( > {?}—n](modZ)

k=1 k=1
(p—l)/2 ka
=n= ) {—}(modﬁ_
k=t LP
Thus by Gauss’ lemma,
(P—l)/Z{ka}
Z -

(a/p) =(-1"=(-1 =

This proves the Lemma.

p—1
Example : Let us consider p =13 andaZS.Here( 5 ]26.

ka
Therefore, it is necessary to consider {?} fork=1,2,....., 6. Thus,
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55 EHEHE )

Therefore,

(5/13) _ (_1)0+0+l+l+l+2 _ (_1)5 —_1.

QUADRATIC RECIPROCITY LAW :
Ifp and ¢q are distinct odd primes, then,

p-1)\g-1
(r/q)(q/p) =(—1)(TJ(TJ :
Proof : Consider the rectangle in the xy co-ordinate plane whose vertices are (0, 0), (p/2, 0),
(0, ¢/2), and (p/2, q/2).

Let R denote the region within this rectangle, not including any ofthe bounding lines.
The general plan of attack is to count the number of lattice points, that is, the points whose co-
ordinates are integers, inside R in two different ways. Because p and ¢ are both odd, the

p—1 qg-1
lattice points in R consist of all points (r, m), where 1 <n < (T] and 1<m < (T] :

p—1\g-1
Clearly, the number of such points is 5 )

q
Consider the diagonal D from (0, 0) to (p/2, g/2) which has the equation V = [;] X,

or equivalently py = gx .

Because ged(p,q)=1, none of the lattice points inside R will lie on D, for
p/gx= p/x and g/ py = q/y and clearly there exist no such x and y such that
(x,y) € R . Suppose that T, denotes the portion of R that is below the diagonal D, and T,

denote the portion above. By what we have just seen, it suffices to count the lattice points
inside each of these triangles.
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kq kq
The number of integers in the interval 0 <y < ? is equal to {?} . Thus for

p-1 kq
1<k < (T], there are precisely {?} lattice points in T, directly above (k, 0) and

kq
below D; in other words, lying on the vertical line segment from (k, 0) to [k, ?] . It follows
1

2 )| k
that the total number oflattice points contained in T, is z {_q} .
k=1 L P

26 e o o 0

loo?oo

o] 1 23 4 ]
5]
2

A similar calculation, with the roles of p and ¢ interchanged, shows that the number of
lattice points within T, is

r
2. 2]

This accounts for all of the lattice points inside R, so that

q-1

p-1)qg-1 (pT_lj kq (Tj Jjp
)5 2 H+ ) H

J=1
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Now by Gauss’ Lemma, we obtain,

This proves Quadratic Reciprocity Law.

Corollary 1 : Ifp and g are distinct odd primes then,

(fj(ﬁj_ I if p=1(mod4) or g=1(mod4)
g )\ p) |1 if p=g=3(mod4).

p—1\g-1
Proof : Note that (T] (T] is even if and only if at least one ofp and ¢ is of the form

p-13(g-1
4k + 1 and if both are of the form 4k + 3, the product (T] (T] is odd.

Corollary 2 : If p and ¢ are odd primes, then,

(2] if p=1(mod4) or g =1(mod4)
(12
p

2 2

P q

Proof : Note that (—] =1= (—] so that the result follows from above corollary.
q P
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Note : Let p be an odd prime and ¢ = +1 to be an integer not divisible by p. Suppose that a
has the factorization.

k,

Therefore, a = +2k plk‘ P, kz...p

r

where p; are distinct primes. Because the legendre symbol is multiplicative.

k k k,
1 2 0 1 ¥
p P\ P p p
a 1 2
To calculate ; , we have only to calculate each of the symbols —; , ; and

Pi 1 2
(;] . The values of [—;] and [;] were discussed earlier, so that one stumbling block is

p .
(;l] , Where p; and p are distinct odd primes, this is where the Quadratic Reciprocity Law

Pi
enters. Corollary 2 allows us to replace (;] by a new Legendre symbol having a smaller

denominator. Through continued inversion and division, the computation can be reduced to

1 1 2
that of the known quantities [——] , [—] , [—] .
q q q

29
Consider the Legendre symbol (5] . Here 29 =1(mod4) and 53=1(mod4),

SRERERCIEE)
63c)

we see that,
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2
Since 29 =5(mod8), (2—9] =-1.And

3 29 2
(2_9] - (?] = (5] =—1 (Since 3 =3(mod8))

Thus, (2—9] =(-D(=D=1.
53

Theorem 1 : If p # 3 is anodd prime, then

3) [1if p=+1(modl2)
p) |-1if p=+5(mod12).

Proof: Let p # 3 be an odd prime. Since 3 =3(mod4) we have,

b —(?] if p=1(mod4).

Now p =1(mod3) or p=2(mod3), therefore

(ﬁ]_ 1 if p=1(mod3)
3) |-1if p=2(mod3).

3
Thus [;] =1 ifand only if

p=1(mod4) and p=1(mod3) or p=3(mod4) and p=2(mod3).

Thus p =+1(mod12) . Hence, the result follows.
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QUADRATIC CONGRUENCES WITH COMPOSITE MODULI

In this section we shall be dealing with composite moduli. We begin with,

Theorem : Ifp is an odd prime and ged(a, p) =1, then the congruence x* = q (mod p”) ,
a
n >1 hasasolution ifand only if ; =1,

Proof : Suppose x*> = a (mod p”) has a solution, then so does x” = a(mod p), in fact the

a
same solution, thus [;] =1,

a
Conversely, suppose that [;] =1 We shall use induction to prove the result. Since

a
[;] =1, x?=q (mod p) has a solution, so that result holds for » = 1. Let the result hold for

n=k>1,thatis, x> =g (mod pk) has a solution x,, . Then
xg = a(modpk).
So that x; = a +bp* for some integer b.

Since ged(2x,, p) =1, the congruence 2x,y = —b(mod p) has a unique solution

x, modulo p. Consider,

k
X =Xo+ YoP
Then xl2 = xg + 2x0y0pk + ygpzk

= a+(b+2x0y0)pk+y§p2k.

In view of 2xy = —b(mod p), p|2xyy,+b . Thus, we obtain
x? = a(mod p**).

Therefore, x* = g (mod pk”) has a solutionfor s, =k +1.

Hence, by induction the result holds for any ».

We shall now state and prove some results for p =2.
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Theorem : Let a be an odd integer. Then we have the following.

a) x> = a(mod?2) always has a solution.
b) %2 = a(mod 4) hasasolution ifand only if g =1(mod4) -

c) x? = a(mod2")., for n >3, hasasolution ifand onlyif g = 1(modS8)-
Proof:
a) The result 1is trivial for any odd x=2t+1 and x=2/+1,
2 —q=A4k% + 4k — 4]% — 4] is always divisible by 2.
b) Suppose x? = g(mod 4), then as square of an odd integer is ofthe form4k + 1, a
must be of the same form, that is g =1(mod 4) -

Conversely, suppose ¢ =1(mod4) thenthere are two solutions modulo 4, namely,
x=1andx=3.

C) We know that square ofan odd integer is congruent to 1 modulo 8, a must be ofthe

form 8%+ 1. Conversely, suppose g = 1(mod8) , we shalluse induction onn. Let n =3, then

1, 3, 5, 7 are solutions of x?>=1(mod8)- Let the result hold for =k >1, then
x2 = a(mod 2) admits a solution x, , thatis, x; = a+ 52" for some integers b. Since a is

odd, so does x, . Therefore, x,y = —b(mod 2) admits a unique solution y,,.

Consider X =X+ yoz"“ and
xl2 = xg +2x, yo2k_l + )/322[‘_2
—a+b-2F +x0y02k +y§22k_2
=a+ (b + x0y0)2k + yg %2

Since 2/ x,y,+b we have

x2 = a(mod2"*).

Notethat 2k -2 =k +1+k-3>k+1.

Thus the result holds for 5 = k +1 . Therefore, by principle of induction, the result
holds for any 7.
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Theorem : Let n=2k°plk‘ pzk2 ..... D rk" be the prime factorization of » > 1 and let
ged(a,n)=1.Then x? = g(mod n) is solvable if and only if
a
a) — :lfori=1,2,....,r
bi
b) a=1(mod4)if 4|n,but 8| n; g=1(mod8) if8 |n.

Proof: Observe that the problem of solving quadratic congruence x? = g (mod ) is equivalent
to that of solving system of congruences.

x? a(mod2k°)
x° a(modplk‘)

x* a(modpzkz)

x*=a (mod prk")
In view of last two results, the result follows.

Example : Show that 7 and 18 are the only incongruent solution of x2 = —(mod 52) .

Solution : Consider x?> =—-1(mod35). Clearly, x,=2 is a solution of this quadratic
congruence. Observe that xé =4 =—1+(1)5 so that 5= 1 and consider the congruence

2x,y = —b(mod5) , that is,
2(2) y=-1(mod5) = 4y =-1(mod 5)
Clearly, unique solution of this congruence is y, =1.
Thus, x; = xy+ yop = 2+(1)-5=7 isasolution of x2 = _1(mod52)-
Moreover, —7 =18(mod 52) is the only other solution.
Example 2 : Using above example solve 2 = _1(mod53)-

Solution : We know from above example that x, =7 is a solution of x2 = —1(mod 52) .

With this we proceed to next step xé —a+b-5=49=(-1)+2x5% so that b=2. Now

Number Theory | 130



consider 2x,y = —b(mod 52) , that is, 14y = —2(mod 52) . Here y,=7 is a solution of
14y = ~2(mod5?). Thus x, = xy+ Pt =7+7-52=182.

Thus 57=182(mod125) and —68=182(mod125) are solutions of
x*=-1(mod125) -

In fact 57 and 68 are the only incongruent solutions of x? = —1(mod125) -

EXERCISE :

1. Solve 2 = 7(m0d33)
2. Solve y2 =31(mod11*)
3. Solve y2=1(mod2°)

4. Solve x2+5x+650(m0d53)

Answer :

. x=13,14(mod3*)

2. x=5008,9633(mod11)
3 1, =1, 1+2* —1+2*

4. x=122,123(mod5?)
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