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UNIT - |

OPEN SETS, CLOSED SETS AND BOREL SETS

Let R betheset of red numbers, 7 bethe set of integersand Q denotes the set of rational
numbers.

We introduce the concepts of open sets, closed setsand Borel setsin R .

1.1 Open Setsand Closed Sets
1. Definition : Open Set

A szt O of read numbersiscaled openif forevery xi O, thereexissared numberr >0 such
that theinternal (x- r,x+r)i O.

2. Note:

(1) For a < b, the open interva (a, b) is an open set. Because for any xI (a,b) choose
r =min{b- x,x- a . Thentheinterval (x- r,x+r)i (a,b). Also the open interva (@, b) is a
bounded open interva.
X-r=a X+r

o @ ® o
a X

r=min{b- x,x- a} =x- aand (x- r,x+r)i (a,b)
(2) Forany a,bl R we have,
(a¥)={x1 Rla<x}
(-¥,b)={xI R|x<b}
(-¥,¥)=R

Notethat dl these setsare open intervals but unbounded. And any unbounded openintervad is
of the above form.

(3 R andtheempty set f are open.
3. Proposition :

The intersection of any finite collection of open setsis open and the union of any collection of
open setsisopen .



Proof : Let {Oy},;, be the collection of open sets where | is an index set. Then for any

xl |<Lijlok,thereexistsatleast onek for which xI O, . Since O, isan open set there exist ared
number r > 0 such that,

xI (x-r,x+r)I O Uok_HenceEiJIOk is open.

Kl I

n
Nextlet{Ok}E:1 be any finite collection of open sets. If kOlOk isempty then dearly it isopen.

n n
if [ 1O« isnon-empty thenforany X1 (1O« P XT Oy for 12k £n
k=1 k=1

b thereexigts r, >0 suchthat (x- r,x+r, )i Oy, 1£k£n

Let r =min{r, r,,.....,r,} . Thenr >0 and (x- r,x+r){ O fordlk, 1k £n.

n n
Hence (X- 1. x+1) 1 (O . Therefore [ Ok is open.
k=l kel

4. Note :

el 106 .
Intersection of any collection of open sets need not be open. For, let O, :g H,Eznl N be

¥
the open intervals. Then [ 10 ={0} whichis not open.

n=1

5. Proposition :
Every non-empty open et isthe digoint union of a countable collection of open intervas.

Proof : Let O bethe non-empty open subset of R . Let x| O bearbitary. Then there exists
r>0suchthat (x-r,x+r)i O.

Therefore there existsy > x for which (x,y) I O and z< x suchthat (z,x)i O .Ddfinethe
extended red numbers a, and b, by

a,=inf{z|(z,x)1 O}, b =sup{y|(x,y)i O}

Then |, :(ax,q() isanopeninterva containing x. Further if a, <x <w <b, thenthereexist
ysuchthat x<w<y and (x,y) I O,whichimplies wl (x,y)I O. Thereforew] O.



Thuswi I,b wl O.Hence I, [ O

Nextif b,T O then thereisaresl number r > O suchthat (b, - r,b+r)i O and hence
(x,b,+ )i O which contradicts to the fact that b, isthe supremum of &l the dementsy such that
(x,y)I O.Hence b,I O.Smilaly a,i O.

Next, consider acollection of openintervals{1,},xI O.Forany xI OP xi I, 1 (J1,.
X 0

Therefore O f U|X.Ontheotherhandforeach xi O, I, I O and hence lei 0.
X 0 X0

Therefore O = U |, . Further forany x,yT O,if I,,N I, f thenthereisat least one dement say
xI O

zl 1,N1,.
P a,<z<b, anda, <z<b,
p dthera,£a,<z<b £b, ora,£a,<z<b £b,

P a,=a, and b, =b, (bythedefinitionsof a, and b)

Henceany twosatsin {1, } ; , areeither digoint or equal. Thus{1,} ; , isadigaint family of
open intervas such that O = U l, -
xl O
Finally we show thet the collection of openintervas {1,} ; , iscountable

Snceeachintervd of R contains countably infinite rationa numbers, and rationd numbersare

countably infinite, we conclude that the union ><|Uo x isacountable union. (If thisunion isnot countable

then we have uncountable union of countable sats of rationd numberswhich isuncountable s, but st
of rationa numbersis countable).

Therefore O isthe union of countable, digoint collection of open intervas.

6. Definition :

Let E be any set of real numbers. A red number x is cdled closure point of E. If every open
interva containing X containsapoint in E. The collection of dl closure points of E iscaled aclosure of
Eanditisdenoted by E.

For example, if E=(0,1) then E=[0,1] . Clearly E| E forany st E.
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7. Définition :
A st E of red numbersiscadledaclosed sstif = E.

8. Proposition :

For any set E of red numbers, itsclosure g isclosed. Moreover, E isthesmallest closed st
thet contains E.

Proof : Let E beany set of real numbersand let E beits closure. We provethat E = E -

Let x beaclosurepoint of £ . Consider an openinterval |, which containsx. Then |, contains
apointof E.Letx' bethepointsuchthat x'T I, N E. Further x'T |, and x'] E i.e X' isaclosure
point of E and |, is an open interval containing x'. Therefore there exist apoint x"T EN 1, which
shows that every open interval |, containing the point x also contains apoint of E. Hence x| E .

Therefore E containsdl its closure points and hence E isclosed.ie E=E

Next if Fisany closed set containing E then

Ei FPEIF =F b Ei F

Which showsthat E isthe smallest closed st containing E.

9. Proposition
Any set of redl numbersis open if and only if itscomplement in R is closed.
Proof : Let E be any open subset of R . We show that its complement R — E is closed.

Consider a closure point x of R — E. Then every open interva containing x aso contains a
pointof R - E.Nowif xT E, Eisan open s, then there exists an open interval say |, which
containsx and xI 1, i E.Butthen I, is an open interva containing x and contains no point of
R - E . Whichisacontradiction. Hence x| E i.e. x] R- E.

Thus R - g containsal its closure pointsand hence R - E isclosed.

Conversaly suppose R - E isclosed. Let x| E beany point. If every openinterva containing
x containsapointof R - g, then xisaclosurepointof g - g.Andsnce R - g isclosed we have
xI R- E.i.e. x| E which is contradiction. Hence there exists an open |, interval containing x
whichisdigaintfrom g - g i.e I, N(R- E)=f .Hence |, I E.Thusforany xi E thereexists

anopeninterva 1, suchthat xI 1,1 E . Which showsthat E is open.



10. Note:

(1) Since E = (EC)C then the above proposition dso satesthat - A setisclosed if and only if
its complement is open.

(2) Snce R°=f and f “ =R, and we know that both f and R are open, the above
proposition indicates that both f and p are aso closed.

(3) The union of finite collection of closed setsis closed and the intersection of any collection
of closed setsis closed.

1.2 HeineBorel Theorem
1.  Definition :
A collection { E;} ;| issaidtobecover of aset Eif EI | JE; . A sub-collection of the cover
il
that itself also isa cover of E is called asubcover of E. If each set E; in acover is open we say that
{E};, isan open cover of E. If the cover { E;} ;, contains finite number of setsthen we cdl it asa
finite cover.

2. Heine-Borel Theorem :

Let F be aclosed and bounded set of real numbers. Then every open cover of F has afinite
subcovey.

Proof : First we consider the casethat F is closed and bounded interva i.e.F =[a,b], a<b.
Let F be an open cover of [a, b]. Let E be the set defined by
E ={xI [a,b]|[a,X] can be covered by finite number of setsin F}

Thendealy ai E,snce[a,a]={a} iscovered by finite number of setsin F (i.e. only one
stin F oontaining @). Thus E1 f . Since E | [a,b] it is bounded above by b. Therefore E has a
supremum or least upper bound. Let c =sup E. Now ¢ E and F isan open cover of E, thereexist
an open set O] F suchthat ¢] O. Therefore there exists | >0 such that the interval
(c-T,c+1)i O.

Now c- | isnotsupremumof E. Thereforethereexist x >c- | suchthat x| E . By definition
of E, theinterval [a,x] is covered by finite number of sets {0y, O,.,....., O} in F. Hence the finite
collection {O},0,,....,0,0} in F covers the interval [a,c+1) i.e. there exist y such that
c<y<c+!| andtheintervd [a,y] iscovered by finite number of sstsin F, which isacontradiction.

snce cisthe supremum of E such that [a, c] iscovered by finite number of setsin F. Thusc = band
[a,b] iscovered by finite number of setsfrom F.
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Now, if F isany closed and bounded set and F is an oepn cover of F, then F contained in
some closed and bounded interva [a,b] .

Now F is closed s, therefore itscomplement R~ F isanopenset. Let O= R~ F . Let
F* beacollection of open sets obtained by adding O to . i.e. 7+ = FE{Q}. Since F covers F
and O coverscomplement of F, = E{Q} covers[a,b].i.e. F* isanopencover of [a,b]. Andby
above case F* hasafinite subcollection of setswhich dso covers [a,b]. If O beongsto thisfinite
subcover of [a,b], then by removing O we get afinite subcover of Fwhich isasubcollection of setsin
F. Thusif F isclosed and bounded set then there is afinite subcover of setin F.
3. Definition :

A countable collection of sets { En}if:1 is descending or nested provided E,,, | E, for all

nl N.Thecollection of sets { E,}*_ issaid to beascendingif E, [ E,, fordl ni N.

4. The Nested Set Theorem :

Let {F} ?14:1 be adescending countable collection of nonempty closed setsof real numbersfor

¥
which F, isbounded. Then (|F, * f .

n=1
¥
Proof :Wr prove this theorem by contradiction. Suppose that ﬂ Fo = . Then for any red
n=1

¥
number X, if X1 F, fordl nT N then x1 ﬂ F, whichisnot true. Hencethere exist anatural number
n=1

nsuchtha xi F,i.e xI R- F,.LeR- F, =0, .Since F, isclosed, O, isopen. Thusfor every
xI R thereexistanopenset O, suchthat xi O, . Therefore R =|_JO, . Furthereach F,, i R for
n

dlni N andhence F i R. Therefore{On}?f:l is an open cover of F,. The Heine-Borel theorem

k
tells usthat there is anatural number k for which F | UOn.

n=1



Next {F} ;‘:1 is descending, the sequence of open sets {On}¥

-, IS ascending, because

K k
0,=R-F,, ni N.Hence UOn=Oc=R-F Now F i F, and R [JO,=R-F,
n=1 n=1

¥
P R, =f .Whichisacontradiction snce F,’s are nonempty closed sets. Hence ﬂFn 1.
n=1

1.3 Thes -algebra

1. Definition :
Let X beany set. A collection of 4 of subsetsof X iscaled as -algebraof subsatsof X if
@) f,.XT A

@ AT AP X-Al A
@iy  Theunion of countable collection of setsin A aso belongsto A.

2. Note:
(1) DeMorgansLawsimpliesthat thes -algebra A isdso dosed under countableintersection.

(2) Thes -agebra.A isdosedw.r.t. therdativecomplementie A, AT AP A - AT A.

3. Examples:
(1) Forany set X, (X t f ) thecollection {f , X} isas -dgebraandit is contained in every
s -agebraof subsets of X.

(2) For any non-empty set X the collection al subsets of X, caled as power st of X, isa
s -algebrawhich containsevery s -algebraof subsetsof X. Itisdenoted by 2X (or P(x) ).

4. Proposition :

Let F be acollection of subsets of a set X. Then the intersection A of dl s -algebras of
subsets of X that contains F isa s -adgebracontaining 7. Moreover it isthe smdlest s -algebra of
subsats of X containing F in the sensethat any s -agebrathat contains F aso contains A.

Proof :

Let {B};, beacollectionof s -agebras of subsetsof X suchthat 1 B, " il | .



Let A=(\B .Sncef, X1 B"i,f,.XT(\BP f,XT A
i i
Next, Al AP Al (B
i

p Al B fordlif |

P X- Al B fordl i |.SnceB;saes -agebrasforal i.

p X- Al (B
i

b X-Al A

Finlly if { A} isacountable collection of setsin A then, {A} I AP {A}T 5.

p{A}I B,"iT 1P [JAT B,"il I ,dnce 5 isas -dgebra
k

Hence | JAT ()8 =.A. Which provesthat A isas -algebra.
K i

Also, F1 B "il I b Fi [(B=A
i

Hence, A isa s -dgebracontaining 7. Now if C isaly s -agebracontaning F then
CT1{B}. Therefore (B 1 Cie A ¢.Thisshowstha A isthesmales s -agebracontaining
[

F.

5. Definition ;

Thecollection 5 of Bord setsof red numbersisthesmdlest s -dgebraof setsof read numbers
which contains al of the open sets of rea numbers.

6. Note:

Every open setiscontainedin B. Since 3 is closed under complement, and complement of an
open setisclosed set weinfer that al closed setsare Borel sets. Each singleton set is closed and hence
itisaBord set. Since B is closed under countable union, every countable set isaBord <.



7. Définition :
A countable intersection of open setsiscaled G, set and a countable union of closed set is
cdled F, st

Gyand F, setsare Borel sets.

8. Note:

If Al G, then A=(\G,, G;’s areopensets " j .
i
Smildry Bi Fthen B=| JF , F;'sareclosed sets " .
i

Similarly we can condruct thefamilies G, 5, Gyg4--- @d Ky, Fgs »--- - All membersof these
familiesare Bordl sets.

Thus we have following examplesof F, sets.

=

Every closed setis F, set.

2. Countable setsare F, sets. (Since these are countable union of singletons which are closed
Sets)

3. Openintervasare F, sets.

4. Countebleunionof F, setsis F, set.
Following are some of the examplesof G, sets.

1 Every open setis G, set.

2. Every dosed intervd is G set.

3. Countableintersection of G; setsis G, set.

Complement of F, setis G, set and conversdly.



0. Note:

Countable union of closed sets need not be closed and countable intersection of open sets
need not be open for,

¥Yée 1. 1 ~& L 16
aa+—.b- —;5=(a,b a-—,b+—==[a,b
nUﬂsaJrn ntl @b) and Qg n ng [a.0]

0o
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UNIT - Il

LEBESGUE MEASURE

I ntroduction :

Measuretheory isthe study of pecia type of set functionsinitiated by aFrench Mathematician
Henri Lebesgue (1875-1941). It hdpsin studying problems in Probability theory, Partia differentia
equations, Hydrodynamics and Quantum Mechanics.

The concept of length of an interval is generdized to define measure of aset of real numbers.
Length of afiniteinterva | isdefined as / (I) = b—a whereaand b are end points of theintervd (a<
b), irrespective of whether | isclosed, open, open-closed or closed-open. Thuslength isaset function
defined on a st of intervals. We want to extend the notion of length to any set of red numbers.

Therefore we would like to condtruct a st function m which assgns to each set E a nonnegative
extended rea number m(E) cdled a measure of E. Such a set function m should have the following

properties.

1. m(E)isdefined for any subsetof R i.e ET P(R)

2. Foraninterna I, m(E) = 7 (1)

3. For adisoint sequence {E,} of subsetsof g m UEn) = é m(En)
n

4. mistrandation invaianti.e m(E +y) = m(E) "

Unfortunately such aset function m satisfying (1) to (4) doesn't exist. Hence we restrict the set
P(IR) to a s -dgebra of measurable sets. We firgt introduce outer measure of a set.

2.1 Lebesgue Outer Measure:
1 Definition : For any set A of real numbers, consder a sequence of non empty open bounded
¥
intervals { I } i_l suchthat AT |1 . We define Lebesgue outer measure of A by,
- k=1

m* (A)=inf |
T
where / (I,) isthe length of the openinterva |, .

2. Propertiesof m* :

_.
L QDo

o(1) LA glkg

=~

1

1. m:P(R)® RU{¥}
Thusm* isaset function from P (R ) to a nonnegative extended system of rea numbers.
11



2 m* (A) 2 0 foray Al P(R)

caello -
3. m*(f)=0.For, f | & g fordl nl N implies

me(F) =inf | (L 1051 &L 105 ¥
I 8 nng n’' ng %
:|nf{3|nT N}
n

4, If A isSingleton set thenm*(A) =0

. 1 16
LetA= Al - = x+=2 7

Proof : Let A = {x} then 8 . ng’nl N

Iae 1 .16, »~ U
Therefore, m* (A) =inf | 8X-—,X+—+|nl NY

gk It Ny

:|nf{g|xT N}
n

5. m* ismonotonei.e. Al BP m* (A) £m* (B)
Proof : Af B Then for any sequence {J.} of openintervassuchthat B UJ,, implies
Al UJ, .

Hence,

{é}, 0(3,)IBI LnJJn}l’ {é}z(ln)mi Lnjln}
Taking infimum of both Sdes

mf{ n J)IBi UJ } inf{énz(|n)|Ai LnJIn}

p m* (B)3 m*(A) or m* (A) £m* (B)
3. Proposition : The outer measure of an intervd isits length.

Proof : Let| beany intervd.
Casel : | isdosed and finiteinterva.
Letl=[ab], a<b

12



Thenforgiven T >0, [a,b] i (a-T,b+1)

Hence, m*[a,b] £/ (a- T,b+1 ) =(b+1)- (a- 1) =b- a+ 2]

Since| >0 isarbitrary, wehave, m*[a,b] £b- a . ()

Next, consider acounteble collection of openintervalssuchthet[a,b] I | 1, - Since[a b]
is closed and bounded set, by Heine Borel theorem, there exist afinite subcover o: [a b].

Now [a,b] I [ I, thereexistaninterval |, =&y, by suchthat al |, anda <a<b;.
If by < b then there existnan interva 1, = (&, b,) suchthat &, < b; < b,,.

I &> £ £ N 3 f > hY

AN \J \ 7 V4 [ N J
ala a2b1a3b2 b3 akb bk

Continuing in this way we obtain a sequence of open intervals, (a, by), (&, by), (a3, by), ....
(&, by) from {I,.} such that, g < b_; < b " i. Since [, b] is covered by finite number of open
intervals, this process must terminates finitely with some interva (g, b,) with a, < b < b,. Therefore,
we get,

8 0(1,)7 & t(a )

i=1
=((ay,b,) +0(azb,)+...+ £(ay,by)
= (b, - a;) +(b, - a,) +...+ (b, - ay)
=-a;+(b; - a,)+(b, - ag) +..+(b.1-a,) +by
Bu a,<b,<b,P b, -a, >0
a;<b,<bsbP b,-a;>0,...,b_,-a,>0
Hence, removing these positive terms from the r.h.s., we get,
é. f(In)3 'a1+bk
n
Futher, al (a;,b;)P a;<ab -a<-a

Smilaly bi (ay,b) P b<by.Henceb-a<b —a

13



Thuswe get,
a(1,)>b-a
n
Taking infimum over al such open covers{l,.} of [a, b] we get,
inf{é o(1,) 1 [abli Uln}3 b- a
n

b m*([ab])2b-a ... (i)

From (i) and (ii) we get, m*[a, b] =b—a
Thusfor any closed, finiteinterva |, m*(1) = £ (1)

Casell : Let | beany finite intervd. Then for given | > 0 there exist a closed interva J such that
Jiande(3)>0(1)-1T.

Therefore we get,

(1)-T<e@)=m*(JEm*(1) ... (iii)
Furtherif 1 isclosureof Ithen | | | dealy T isaclosed sdt.
Therefore we get,

m* (1) Em*(T) =¢(T)=¢(1) .. (iv)

From (iii) and (iv) we get,
(()-TEmM () E£2(1)

Since, | >0 issmal arbitrary we get,
m*(1) = ¢ (1), wherel isany finiteinterval.

Caselll : lisany infiniteinterva. Sincel isinfinite intervd, for any naturd number n, thereisaclosed
interval Jsuchthat J i | and ¢(J) =n.

Then,
Ji 1 m*(3)Em=(1)
b /(J)E£m*(1)

b nEm*(l)or m*(1)3 n

Thusfor any naturdl numbern, m* (1) 3 n.

14



Hence m* (1) =¥ =/(1)
Thereforefor any interva |, m* (1) = ¢(1)

Note: The above propostion also assarts that the outer measure m* isa generalization of the length
function defined on set of intervas.

4, Proposdition :  Outer measure is trandation invariant. i.e. for any set A and for any red
numbery,

m* (A +y) =m*(A).

Proof : Let A beany subset of R . If thereis a.countable collection of openintervals{ Ik}t:l such that

¥
Al 1y, then
k=1

y 3
Al (1,0 A+yi ﬁnlk2+y
k=1 ek=1 (%]

. ; ¥

O A+yi (J(Ic+y)

k=1

Also £(1)=¢(l, +y) foral k=1,23, ...

A Cf,
Therefore, ~ M*(A)=inf i@ (1)1 AT 1y
Tka k=1 %
iy R
=inf (& £(1L)IA+yT J(1e+y)y
Tk=t k=1 {’
1 Ut
=inf @ ((he+y) 1Ayl (e +y)
Tka k=1 %
i L
=infia (3 )IA+yl [y
Tk=1 k=1 %
=m*(A+y)

5. Proposition : Let {E, } be a countable collection of sets of real numbers. (not necessarily
digoint), then

k

m*(LkJEk)£ am*(E)

15



Proof : If m*(E,) =¥ for somek then theinequdity holdstrivialy. Therefore we assume that

If m*(E, ) <¥ fordl k. Thenfor given | >0 there exist a countable collection of open

intervds{lk,i}¥_1 suchthat Ey | |1y, and,
i

A

I g
m B+ x>al(lei) " k=12... ()
i=1

: . S ¥ ¥
Since countable union of countable setsis again countable, { I k,i} izL k=1 IS@soacounteble

collection of open intervas such that,

¥ } ¥ ¥
Uedi U Ut
k=1 k=L i=1
¥ ) ¥
ie UEBT U Tk
k=1 k=Li=1
¥ ¥ Y
Thus{ | k’i}i=l,k=1 is an open cover of | J E and hence,
k=1
¥ o ¥
m*UEcE & (1)
€k=l @ i=lk=1
¥ ¥
=a éf(hm)
k=l i=1
P T |
acm (B*oeg . drom()
g 81
=am*(Ex)+Ta =
k=1 k=12
3 -
=a m*(E)+I
k=1
¥ A ¥
Thus m*éiJEk2£é m* (E, ) +1

€k=1 @ k=1
16



Snce] >0 isahitrary, we get,

¥ 5 ¥
m*gUEk+£a m* (E, )

€k=1 @ kA
6. Note : The above proposition says that the outer measure m* is countably subadditive.
7. Corallary : If A iscountable set then m*(A) =0.
Proof : A iscountable.

P A={a,a,8;..}

¥ ¥
:U{ai} :UAi whereA; ={a}
i=1 i=1

§ ¥
Therefore, m*(A):m*é%Ai £am(A)=0
el @ =l

SinceA;'saeSinglelonsets m*(A)=0 fordli=1,2 3, .....

Hence, m*(A) =0
8. Note: Thesat of naturd numbers N, the set of integers 7, , the set of rationa numbers Q are
al countable sets. Hence m* (N) = 0, m* (Z) = 0, m*(Q) = 0.

Any finite set is a countable set hence its outer measure is zero.

0. Example : Provethat aninterva [0, 1] is not countable.

Solution : m*([0,1]) =1 0 hence [0, 1] isnot countablei.e. [0, 1] isan uncountable set.
Any interva is not countable, Snceit’s outermeasure is not zero.
10. Example: Let A beaset of irrationd numbersintheinterva [0, 1]. Provethat m* (A) =1.

Solution : Let B bethe st of rationa numbersin theinterval [0, 1]. Then AE B =[0,1] . Therefore
by subadditive property of m*,

m*[0,1] =m* (AE B) £m *(A) +m *(B)

Since B iscountable, m* (B )= 0. Also m*[0,1] =1. Therefore 1£ m* (A) . Also Al [0,1]
impliesm*( A £ m*[0,1] =1. Hence m* (A)= 1.

11. Note : Outer measure of a countable set is zero. But the converse need not be true i.e.
m*(A) = 0 does not imply A is countable. We have the following example,
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12. Example: Cantor'sset Cisan uncountable set with outer measure zero.

Congder aunit interva [0, 1]

i

Ao 20
Step 1: Remove the middle 81_35 rd part 83 §

1
Length of the removed part = 3

Ve 1\ /2 AY
i i = gO,—l;l, g—,llzl
Number of intervasremained = 2, &30 &M

1
Length of each interva present = 3

Ao
Step 2: Remove the middle 85 Erd of the intervals present in the step 1

2 2
Length of the removed part = 9 3—2
Number of intervdsremained =4 =22
1
g

LOII—‘

Length of each interva present =

At the step n we have,

n-1
3 n
Number of intervals remained = 2"

1

Length of each interva present = ?

Length of the removed part =

Let C,, denotestheunion of intervas|eft a thent step. Then C, U' «and (1) =

The Cantor st C isdefined as C :OC“.
Thergfore Ci C, fordl nl N

Hence, m* (C) £Em*(C,,)

18

n

k=1

3n



@ o

k=1 @

.. N

Butasn® ¥, g}%g ® 0 Hencewe mus have,

m*(C)=0
But Cantor’s st is uncountable and we have proved that its outer measure is zero.
13.  Example: If m*(A) =0then m* (AU B) = m*(B)
Solution : m*(AUB) £m * (A) +m* (B) (Countable sub additive property)
P m*(AUB) £ m* (B) (m*(A)=0)
Also Bi AUBP m*(B)Em*(A UB)
Hence, m* (AU B =m* (B)

14, Proposition : Givenany ss Aandany | >0, thereisan open set O suchthat A] O ad
m*(0) £ m* (A)+1 . Alsothereisaset GI G4 suchthat Ai G and m*(A) = m*(G).

Proof : Let T >0. Then there exist asequence{|,} of open intervals such that

Al Ul g af(ln)<m= A+l i)
n n
Teke O=(JI ,. Then Oisan open set such that Aj O.And
n
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2.2

m*(O):m*(Uln) Eqm(1,)=a¢(1,)
P m*(O)£ m* (A)+1 By (1)

1 R
Nex fal =S thereisan open set O, suchthat Al O,,and

1
m*(on)ﬁm*(A)+F n=123,..

Teke G=()O,,Then GI Gy and Gi O, "n
n

And Al O,, "nP Al O,
n

b Al G
Therefore,

m* (A £m* (G) Em* (O, ) £ m* (A)+2—1n "nl N

P m*(A)£m* (G)Em* (A)
P m*(A=m*(G)
L ebesgue Measurable Sets:
Outer measure has the advantage that it is defined for dl subsatsof R . But it is not countably

additive. It becomes countably additive if we restrict the domain of m* to a
6-adgebraof al measurable subsetsof R .

We use the fallowing definition due to Caratheodory.
Definition : A set E issaid to be Lebesgue measuradleif for any set A we have,

m* (A =m*(ANE)+m*(ANE®)

Note: For any set A, we can write,
A=ANR=AN(EUE®)=(ANE)U(ANE®)
Hence, m* (A =m* ((ANE)U(ANE®))

m* (A) £Em* (A NE)+m * (A NE ©)
Thus, the st E is measurableif for any set A we have.

m*(A)2m* (A NE)+m* [ NE ©)
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3. Lemma: If Eismeasurablethen E ¢ isaso measurable.

Proof : Eismeasurable.
b ForanysetA, m*(A) =m*(ANE)+m*(ANE®)

=m* (ANE®)+m* (ANE)

= me(AnE)+me( An(E9)°)
which showsthat E°© ismessurable.
4. Example : Show that theempty set f and R are measurable.
Solution : For any set A,

ANR=A ad ANR®=ANf=f
Hence, m*(AﬂR)+m*(AﬂRC):m*(A)+m*(f)
But m* (f ) = O therefore we get,
m* (ANR)+m* (ANRE) = m* (A)
Hence p ismeasurable. Since R ¢ =f , f isdso measurable.

5. Prepostion : If m*(E) = 0 then E is measurable.
Proof : Let A beany set. Then

m*(ANE) £Em* (E)=0P m*(ANE)=0
Now ANECT A

b m*(ANES) Em* (A)

b m*(ANES)+m* (ANE) £ m* (A)
or m*(A)2m* (A NE)+m* @A NE ©)

Hence E is measurable.

6. Note: Empty st f , any finite set and any countably infinite subsetsof R are measurable.
The Cantor’s set C is d'so measurable because its outer measureis zero.

7. Proposition : The union of finite collection of measurable setsis measurable.

Proof : First we show that the unionof two measurable sets E; and E, ismeasurable. E, ismeasurable.
Therefore for any set A we have,

m*(A)=m*(ACE)+m*(AGES) .. 1)
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E, ismeasureble. Therefore for aset AC E; we get
m*(AG Ef) =m* (AGE G B) +m* (AG EF G ES)

- (ace,c ) e re(g € 6

...... ©)
Using (2) in (1) we get
m*(8)=m* (AG E)+m*(AGE, G E¥)+m*(AG(EEE,)°) - ©)
Now, AC(E, EE,)=(ACE)E(ACE,)
=(AGE)E (AC E,CEf)
p m*(AG(EEE,))=m§ACE)E (ACE,CE’)Y
em*(ACE)+m*(ACE,CE’) ... (4)

Using (4) and (3) we get

m*(A3 m( AC(RE Ez))+m*(A(;(E1EE2)C)
Thus E, E E, ismeasurable.

n
Now if {E,},_, is any finite collection of measurable sets then we prove that UE« is
= k=1
measurable by induction onn. For n = 1. E; ismeasurable. Suppose measurability holdsforn—1 then
n-1

UEx ismessurable and
k=1

n -1 0.
UE =§U E.<E E,
k=1 ek=1 (7]

Hence measurability holds for n and hence for dl n] N. Thus union of finite collection of
measurable sets is measurable.

8. Definition : A collection A of subsetsof R iscaled an dgebraof stsif A is closed under
complement and union.

It follows from the DeMorgan’s laws thet the dgebra A is closed under intersection aso.

Andgebra A iscdled s -dgebraif it is closed under countable union. (s -algebra or Borel
fied).
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Let M bethe collection of measurable subsets. Since complement of two measurable setsis
measurable, M is an agebra of measurable sets. We further show that M is s -algebra

9. Lemma: Let A beany set and E;, E,, E;, ... E, be afinite sequence of digoint measurable
sets. Then,

m*gAﬂ anj E, ﬂ?:g’{ m*(ANE,)
&=  Jg k=
Proof : We prove the lemma by induction on n.
Forn=1, m*(ANE,)=m*(ANE,) whichistruetrivialy.
Let the result be true for n—1

& n-1 O nc;l
ie m*QAﬂUEi s=am* (ANEy) holds
e k=1 @ k=1

Condder,

& a4l
eANQUEx 0N E, = ANE,

=
6 @n ol 16
SANQUEK <0NEy = AN Ey =
e ekl ekl o

Since E, is measurable set we gt

e n al é n o] u é n 6 . u
m* eANIGU B 0= eANGU By +NE pu+m* eAGl By 1Ex
e ek o 8 ek=1 g 8] 8 ekl g o

P
=m* (AN En)+m*geAﬂU Eys
e k=1 @

n-1
=m*(ANE,)+a (ANEx)  (By induction hypothesis)
k=1

m*geAﬂU E2=8 (ANEy)

e k=1 @ =1

Thusthe result istrue for n. Hence by induction, theresult istruefor dl n] N.

& é&n o J
ie m*éAuéJlEk [Ji:ké.lm*(AﬂEk) fordl nT N.
= Og k=
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10. Note : Intheaovelemmaif A = R then we get,

m*gRﬂanJ E, 32=§ m*(RNE;)

gé=1 Qg i=
* " O— on *
p m*cJE;+=a m*(E)
ei=1 @ i=1

This shows that m* is finitely additive on a digoint sequence of measurable setsi.e. m* is
finitely additive on a class of measurable sets. In the following theorem we prove that M is closed
under countable union.

11.  Theorem : Thecollection M of al measurable setsis s -algebra

Proof : Since finite union of measurable sats is measurable and complement of measurable sets is
measurable, the collection M of all measurable sets is an algebra. To prove that M is
s -agebrawe show that M isclosed under countable union. Let E bethe countable union of measurable
sets. Then there exist a countable collection of pairwise digoint measurable sets {E,} such that

| JE=E
- .

n
Let A beany sstandlet F, = JE, . Then each F,, isamessurable set.
k=l

By measurability of F, we have,

m*(A) =m*(ANF,)+m*(ANF¢) - (0)
NOW An FnzAniJ Ek9
ek=1 a
F <] n 00
Hence m*(ANF,) =m* éAﬂ‘? Ex+t
ek=1 20
=4 m*(ANEy) .. (i)
k=1
n ; ¥
Next F.=|JE JEK=E
k=1 k=1

b F, Il EP E°I F¢ P ANE®T ANFS

b m*(ANES)Em*(ANFS) .. (i)
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Using (ii) and (iii) in (i) we get,
m* (A)3 én_m*(Aﬂ Ek)+m*(Aﬂ E°) . (iv)
k=1

Thel.h.s isindependent of n. Henceletting n ® ¥ we get,

¥
m*(A)3 § m*(ANE,)+m*(ANE®)

k=1
But m*(ANE) = m*gAﬂUEkg_m*gﬁ(Aﬂ Ek)g
k=1 @ ek=1 2
3
P m*(ANE)£§ m*(ANE,) (V)
k=1

Using (V) in (iv) we get,

m*(A)3m* (A NE)+m * (A NE ©)
Which shows that E is measurable.

Thus count abl e un onof neasur abl e sts i s neasur abl ewhichinplies thaet od | edtieh of
measurable setsisa s -agebra

12. Proposition : Theinterval (a,¥) is measureble. Also every intervd (finite or infinite) is
measurable.
Proof : Let Abeany set. Let AN(a,¥)=A, and AN(a¥) =AN(-¥,a)=A,.

We provethat m* (A)3 m* (A, )+m*(A,). 1f m*(A) = ¥ thenthe aboveinequdity holds
trividly.

If m*(A) < ¥ thenforgiven | >0 there exist a countable collection of openintervas{l,} .

Suchthat Al 1, and & 2(1,)<m*(A)+ .. ()
Now Al UI,
P AN(a¥) (U| )

P Al Jél.N(a¥)d
L 1,=1,N(a¥)
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Then AT U,

Smilarty A, =AN(-¥ 8]l (LnJ'n) (-¥.4]
P AT (1.N(-¥,a])
Let I =1,N(-¥,a]

Therefore AT T
n

Further =1, NR=1,Ng-¥,a]U(a¥)y

=(1,N(-¥.a))u(l ,N(a,¥))

l,=1,Ul, which isadigoint union.

Now from (i),

Al U,

b m*(&)ﬁm*génjlagﬁém*(h})
Similarly from (i)

A1,

o m (A e i ee & me (1)

Therefore,

... (ii)

... (iii)

.. (iv)



Thus

m*(A) +m*(A,) <m* (A)+1
Snce| >0 isarbitrary we have,

m*(A)2 m*(A)+m*(A,)
Thisshowsthat theinterval (a,¥) ismeasurable.

13. Definition : Thesmalest s -dgebracontaining dl open setsiscaled afamily of Bord sets. It
isasotheamdlest s -algebra containing al closed sets and dso dl open intervals.

14.  Theorem: Thecollection M of measurable setsisas -algebrathat containsthe s -algebra
B of Borel sets. Each interval, each open set, each closed set, each Gy set and eech Fy <t is
measurable.

Proof : Weknow that (a,¥)7 M therefore ~ (a,¥ )T M ie (-¥,a]T M

Also B U¥b_

Since countable union of measureble setsis measurable, (- ¥ ,b)T M

Next, (a,b)=(-¥b)N(a¥)
Intersection of measurable intervas is measurable.
Hence, (a,b)T M

Thus every open interva is measurable. Each open et is countable union of open intervals.
Hence each open set is measurable. Complement of open set is closed set. Hence each closed set is
measurable. But the class of Bord satsisthe smallest s -algebra containing dl open sets, dl closed
setsand al open intervas.

Hencethefamily BB of Bord setsissubset of M ie B M
Thisshowsthat every Bordl setismesasurable. Alsoeach G4 setistheintersection of countable

collection of open sats. Since open sets are measurable and countable intersection of measurable sets
ismessurable, eech G, is messurable. Smilarly eech F, <t is the countable union of closed sets

which are measurable. Hence each 7, set isaso messurable.
15. Propostion : Thetrandate of a measurable set is measurable.

Proof : Weknow that outer measureistrandationinvariant.i.e m* (A+X = m* (A) forany
st A. Now if E isameasurable set then for any set A, A—yisaso aset for some yI R. Therefore

m*(A- y) =m*((A- y)NE)+ m*((A- y)NE®)
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Buu xI (A- yYNEU xT A-yand xi E
U x+yl Aand x+yl E+y
(x+y)T AN(E+Y)

xI {ANE +Y))- v

(@)

(=)

Ths  (A- Y)NE =gAN(E +Y)g- v

Similaty (A- y)NE® =§AN(E+y)° - yH

Therefore we get,

m*(A- y)=m*{ANE+y)- y|+m*EANE +Y)° - yH
But m* istrandation invariant. Hence we get

m*(A) =m* (ANE +Y))+m*( AN E+Y)°)

Therefore E +y is measurable. Thus trandation of measurable setsis dso measurable.

2.3 Outer and Inner Approximation of L ebesgue M easurable Sets:
1 Excision Property : If A isameasurable st of finite outermeasure which is contained in

B then

1
2)
3)
4)

5

m*(B- A)=m*(B)- m*(A)

Proof : By messurability of A we have

m* (B) =m* (BN A +m* (BN A®)
=m* (A)+m* @ - A)

P m*(B)-m*(A)=m *B - A) (o m* (A) <¥)

Theorem : Let E be any set. Then the following five Satements are equivaent.
E ismeasurable.

Giveni >0, thereisanopenset O E E with m* (O - E) <I
Gveni >0, thereisaclosedset F| E With m*(E - F) <]
Thereisasst Gin Gy with E] G,and m*(G- E)=0

Thereisaset FT Fowith Ej E, m*(E-F)=0
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Proof: (D) P (2)
Let E be amessurable sat. First assume that m(E) <¥ . Then by proposition 2.2 (14) for
gveni >0 thereisanopenset O E E such that,
m* (O) < m* (E)+1 . (i)
Now both Eand O aremeasurableand O = EU (O- E) whichisdigoint unionof measurable
Sets, hence we get,
m*(O) =m(E) +m(O- E)
P m(O- E)=m(O)- m(E) (- m(E) <¥)
P m*(O- E)=m*(0)- m*(E) (m=m* onmeasurable sts)
P m*O- E)<l (By (i)
Now let m(E) =¥ . R can be expressed as a countable digoint union of finite intervas.

Let, R:LJIn
n=1
Then. E:EﬂRzEﬂLnJIn=LnJEﬂ|n

Teke E,=ENI,. Therefore E=| JE, and each E, is measurable with m(E,,)<¥ .
n

Therefore, there exists an open set O,, E E . such that,

~

m*(O,, - En)<F

Take O:Lnjon

Then Jo,ElJE,p OEE  ad
n n

o- E={Jo,- | E.T J(o,- E,)

n

Hence, m*(O - E) £m* (U(on- En))£a°1 m* (O, - E,)

n

T o 1 &
£3—= 3=+
An ™ A%

b m*O-E)<I.
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@p 4

~ 1 - 1 =
Given | =H,thereisan open set O, E Ewith m*(O,, - E) <E.Take G OO“.Then

Gl GyadGEE ad, Gl O, b G- El O,- E fordln,

b m*(G- E)£m*(O, - E)<2"ni N
n

Since.h.s. isindependent of n, we get m*(G—E) =0 (Taking n® ¥ ) where G1 G,.
@ P Q)
Sncem*(G—-E) =0, GI G, theset G—E ismeasurable. Also G is messurable.

And E =G — (G —E). Hence E ismeasurable.
@Dp E
Eismeassurable p E ismeasurable.

Thereforefor given | >0 thereisanopensst 0 g E such that,
m*(0 - E) < (By (2)

Now, 0- EzonE=en(d)=e- 6

Teke 9=fF . ThenFiscosedset. AlO OE Ep Of EP Fi E

Thusthereisadosed st F | Esuchthat, m* (E - F) <1
@ p

~ 1 R 1 =
Given | = thereisaclosed set F, 1 Ewith m*(E - Fn)<H.Take F LnJFn.
Then FT F,and Fi E.ANd,
1 -
m*(E- F)Em*(E- F)<=, "ni N
n

Tekingn® ¥ weget, m* (E-F)=0where F1 F
® P 1)
Sincem*(E—F) =0, E—Fismeasurable. Also F1 F, . Hence F is measurable.

AndE= E=F|(E- F). Therefore E ismeasurable.



3. Theorem : Let E be ameasurable st of finite outer measure, Thenforeach | >0, thereisa

n
finite collection of openintervals {1, },'_ forwhich 0=|J1, , suchthat,
=

m*(E- O)+m*© -E) <
Proof : E is measurable set. Therefore by theorem for given | > 0 there exists an open set U/
suchthat Ef ¢/ and m* (U - E)<I /2.
Since E is measurable, by excison property,
m*(U)- m* (E)<I /2 b m*(U) <l /2+m*(E)

But m* (E) <¥ . Hence m* (i/) isdso finite. Next every open st is the union of digoint

collection of openintervals. Therefore there exists adiioint collection { Ik}i:1 of openintervas such

¥
that U =( 1.
k=1
Therefore for each naturd number n we have,

n n
a/('k):a_ m* (1) (- Outer messure of an interva isitslength)

n 0
=m* ﬁj e+ (.- Outer measureisfinitely additive on digoint measurable sets)
€k=1 @

Em*ecUl+ (m* ismonotone)

=m*(u)
Sincer.h.s. isindependent of n we have

C(1)Em*(u) <¥

~

T Qo

1

¥
P& (l)<¥
k=1

¥
This shows that the infinite series A 5(|k) of pogtive termsis convergent. Hence for given
k=1

¥
T >0 thereisaninteger n such that, a ()<l /2
k=n+1
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4.

n
Take O=| I, . Then Ois an open set and
k=L

Ol ub O- El u-E
P m*@©O-E)Em*(u- E)<l /2
b m*©- E)<l /2

¥ n
Alo, El ub E-Of u-o={JI,- [JI,
k=1 k=1

¥
p E-O I
k=n+1

¥
Thus |J I« isan open cover of E—O.
k=n+1

Hence, m* (E - O)=inf{§1 (1) |E- Ol Ulk}
k

£ 5 (1)< 12
k=n+1
Thuswe have m* (E - O)<l /2 and m*(O - E)<I /2.
Adding these in equations, m* (O - E)+m* (E- O) <l
Example: Let E beameasurable s&t. Provethat there exist aBorel set B; and B, such that,

B, I EI B, and m(B,)=m(E)=m(B,),

Solution : By proposition, thereisaset GT1 G, and F1 Fg suchthat F| E] G andm* (E-F)
=0, m*(G—E) =0.

Now, E=FU(E- F), G=EU(G- E)

B m(E) =m(F)+m(E- F), m(G)=m(E) +m(G-E)

But, m* (E-F)=m(E-F) =0, m*(G—-E) =m(G—-E) =0, (m=m* on measurable sets)
Hence wet get, m(E) = m(F), m(G) = m(E)

TekeB,=F,B,=GThen B, i Ei B,,

B, and B, are Bordl setsand m(B,) = m(E) = m(B,).
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5.

Example: If E; and E, are measurable, show that,

m(E,UE,)+m(E,NE,)=m(E,)+m(E,)

Solution : If dther m(E,) =¥ orm(E,) =¥ thenm(E,UE, )= ¥ andtheequdity holdstrivialy.

If m(E,)<¥, m(E,)<¥ thensince E,UE,, E;NE, are measurable sets such that
(E,UE,)=E,U(E,- E;) and E, =(E,NE,)U(E,- E,).

Since these unions are digoint we get,
m(E,UE,)=m(E,)+ m(E,- E,)
m(E,)=m(E,NE,)+m(E,- E,)

b m(E,UE,)=m(E)+m(E;)- m(E,NE,)

P m(E,UE,)+m(E;NE,)=m(E,)+m(E,)

Exercisesl| :

1

If E and E, are measurable sets with finite measure, prove that following are
equivaent.

(& m(E,DE,)=0 (b) m(E;- E,)=m(E,- E,)
(© m(E;)=m(E;NE,)=m(E,)
¥
If {E;} is a sequence of sets with m*(E;) = O for al j] N then prove that UEi isa
i=1
measurable set and has measure zero.

If E; isameasurable set and m* (E,DE, ) =0 then show that E, is measurable.

L ebesgue Measure:
Definition : Lebesgue Measure

A function m: M ® R* |J{¥} defined by m(E) = m*(E) is called Lebesgue measure of E.

Where M isas -agebraof Lebesgue measurable sets.

Thusmisaset function obtained by restriction of m* to thefamily M of measurablesets. Also

foranintervd I, m() =m*(1) = ¢ ()



Proof :

Proposition : Let { E, } ;_, be asequence of measurable setsthen m(U Ek) £8 m(Ey)

k

If the sets ' s are pairwise digoint then
m(U Ek) | m(Ey)
k k

{E} isasequence of measurable sets. Therefore U E, isdso measurable and
k

m(LkJEk) =m*(LkJEk) Eék m* (E,) :ék m(Ey)

b m(LkJEk)Eék m(Ey)

Now for afinite sequence { E, } E=l of digoint measurable sets, we have,

n 0 n
m(ij Ek——m*ijEk =4 m*(Ey)
e-1 @ &1 @ ki
n 0 n

P m¢JEc==a m(E)
ek=1 @ k2

Hence misfinitdy additive.
Next, for an infinite sequence of digoint measurable sets we have,

n } ¥
UJET JEK
k=1 k=1

n o) ¥ o
D mﬁj Ek —£m§ Ek+
ek=1 (4] ek=1 (%}

af‘J 0 n 9 2
b m¢lJ Ex+® melJE==a m(Ey)
k=1 @ €k=1 @ k=1

0, 2
= mgfj E,+* a m(Ey)

€ek=1 g k=1

Thel.h.s isindependent of n. Henceas n® ¥ , we get,

k



4.

6, &

k=1 @ k=1

Also by countable sub additivity of m* we get,

0 0 ¢ 3
mgﬁj E,+=m* %Ek £ a m*(Ek)=a_ m(Ey)

ek=1 %] &=1 g k=1 k

0 ¢
Hence, m{;ﬁ Ex+=a m(Ey)

ek=1 g k=1

Note : The above proposition says that Lebesgue measure is countably additive.

Example : Provethat countable subsetsof R are measurable.

Solution : If A iscountable set then m*(A) = 0. Hence A ismeasurable.

5.

Definition : A countable collection of sets.{Ek}?f:l is said to be ascending if E, [ E,q,

" k.Thesequence{Ek}:f:1 issad to be descending if E, ;| E,, " k.

6.

0]

(i)

Proof :

0]

Propostion :

o
If {Ak}i:l is ascending sequence of measurable sets then mgk:fk;: lim m(Ac).

If {B,}_, isadescending sequence of measurable setsand m(B;) < ¥ , then

mij B1<9= lim m(B,) .

=1 g Ko¥

If m(Ako) =¥ for some kg, then

Ag | QA(D m(Aq )£ me A<9

€k=i 1%}

b m?fjﬁkgz¥
4]

k=i



And Aol Agin "Nn=123,...

P m(Ag)Em(Ag,,) "n=1.2,..
P m(A)=¥ " k3 ky
> limm(A) =0

Hence we have m{;% Akgz lim m(A,)

=1 g Ko¥

Nowif m(A) <¥ fordlk=1,2,3,..

Thendefine C, = A - A1, k=1,2,3,.... (A=f)

¥ ¥
Then {C, }_, isadisioint sequence of measurable sets such that Uac=Uck
- Kk

0 ¥ 0
p mszAk+=m9 Cy+

k=1 @ €k=1 @

=a m(Cy)

k=1
:élém('%)' m(Ac1)H (By excision property)
=1im3 gm(A)- m(Ac 1)

k=1

= lim gn(A)- m(A)+m(A)- m(A)+..+m(A,)- m(A, )
= limm(A,)- m(A,) But A, =f P m(A)=0)
= imm(A,)= limm(A)

Thus, méﬁ A(gz lim m(A)

=1 g KOo¥



i) Let{B]},

Define D, =B,- B, k=1,2,3, ....

Since{B,} i:l
(i) we have

Therefore,
ek 1

is descending, the sequence { Dk}izl

be the descending sequence of measurable setswith m ( Bl) <¥

where D; =f

(By distributive law)

(By De Morgam laws)

mafJ Dk-—mgsl ﬂBk—

k=1 @

)- )8

ekl

Ontheother hand, fordl k=1, 2, 3, .....

m(D,) =m(B, - B)

=m(B;)- m(By)
Therefore,

m% Dk—— lim m(D, )

ek1 g ko¥
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is ascending. Therefore by above result

(By excison property)



¥

b m(B)- mel | B2 =lim m(B,)- m(8,)

ek—1 g k®¥

¥

b m(B)- mel | B 2=m(8,)- limm(8,)

k=l @ k® ¥

b maﬁa(-- lim m(B,) (~m(B) <¥)

ek1 g ko¥

7. Note: Thecondition m(Bl) <¥ isessentid intheabove propostion. We havethefollowing
counter example,

8. Example: Let {E} ?14:1 be a sequence of sets where E, =(n,¥).Then {E,}*_ isa

nJ n=1

¥ 6
decreasing sequence of measurable stsand [ |En =f P Mg |E,+=0
n=1 en=1 a

But m(E,) =m(L¥)=¥ whichisnot finite

And limm(E r])—Iimm(n¥) ¥
n® ¥

Thus I|mm 1mazﬁE +
Enl

The conclusion of the above proposition does not hold since m(E,) is nat finite.
0. Definition : For a mesurable set E, a property holds aimost everywhere on E if thereisa
subset B, of E such that the property holdsfor dl xT E - E, and m(E,) =0.

10. TheBord-Cantdli Lemma

¥
Let { Ek}?f:1 be a counteble collection of messurable sets for which § m(E, ) <¥ . Then
k=1

dmogdl x] R beongsto a mog finitdy meny of the E, 's
Proof : Foreach n] N we have,
¥ 5 ¥

¥
me(J Ec+£Q m(E) £ A m(E)<¥

€k=n g k=n k=n



Let Fn=UE«. Then {Fn}?f_l is a decreasing seuence of measurable sets with
k=n -

o ¥
m(F,) = méfj E+£ ké m(Ex) i.e. m(F,) <¥ . Therefore by continuity of measure we have
&l @ kel

maﬁF == limm(F,)

enl 7] n® ¥

p mgﬁeu Ekﬂg— lim mg Ekéﬁ lim a m(E, )

n=1ek=n ug ek=n 4] n®¥

3
Butif Sh=a M(E) then {S.} is a decreasing sequence of non-negative red numbers
k=n

which convergesto zeroi.e.

lims,=0pP %mam(Ek) 0

k=n
Thus, m?ﬁeUEkU‘:
—16< n Ug
¥ ¥ U

Thusamostdl x] R doesnot belongto | U Ex .
n=1k=n

Bu X ﬂUK b xI UEk foral n

n=k=n
p xI E fordl k3 nandfordl n
b xi E, for all k
b xI E, for amodt finitdly many E, 's

i.edmogdl x| R bdongstoamod finitdy many E, 's
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11. Note : Some of the properties of Lebesgue measure are named as follows :

1. Finite additivity : For any finite digoint collection { Ek}E:1 of measurable sets

n O On
mng E.~=a m(E)

€=1 @ k=1
2. Monotonicity : If A and B are measurable satssuchthat A B then m(A) £ m(B).
3. Excison : If A and B aemeasurable setswith A| B and m(A) <¥ , then
m(B- A) =m(B)- m(A)
Anshenceif m(A)=0,then m(B- A) =m(B).

4, Countable monotonicity : For any collection { Ek}?(‘:1 of measurable sets which covers a
measurable set E.

¥ ¥
ie EI[JE P mE)EZM(E).
k=1

k=1

¥

5. Countable additivity : For any countable collection of digoint mesurable sets { E, }, _, -

0 ¢
mgﬁj E.~=a m(Ey)

ek=1 @ k=1
2.5 Nonmeasurable Sets

We have defined measurable sets and studied their properties. We have given many examples
of measurable sets. Henceit isnaturd to ask whether there exists any set which isnot measurable. The
answer isyes but congtruction of nonmeasurable set is not Smple.

We know that m* (E )= 0 if then E is measurable and hence every subset of E is dso

measurable. Hence nonmeasurable sets have positive outer measure. We show that if E isany set of
positive outer measure then there are subsets of E which are not measurable.

We firgt prove the following result.
1 Lemma: Let E be abounded measurable set of real number. Let U beabounded, countably
infinite set of real numbers for which the collection {I +E},; of trandations of E is digoint.
Then m(E) = 0.
Proof : Since trandate of a measurable set is measurable each set | + E ismeasurable " | T U.

Hence the collection {I +E},;  is a countable digoint collection of measurable sets. Hence by
countable additivity of Lebesgue measure we have



=8 m(l +E)
ITu

m(U(I +E)

ITu

Now E and U are bounded sets. Therefore there exists real numbers L and M such that
IM<L, "xI E
<M, "ITU

We provethat | J(I +E) isaso abounded set.
|
Let yI (J(I +E) bearbitrary. Then
|

yIl JU +E)p yl | +E forsome| | U
|

P y=I| +xforsome| | A andforsome| | E

P lyF Il +XE|lH X< L+M
Since y1 | J(I +E) isarbitrary we have
|
y <L +M forall ! Llj(' +E)

Hence | J(I +E) isbounded set and therefore m(U(I +E)]| isfinite
| |

Now if m(E) > 0 then

aml +E)=3 mE)=mE) § 1=¥
|

ITu ITu
Since U isacountably infinite.
Therefore, m(U (I +E)) =& m(l +E) hadsonlyif m(E) = 0.
Imu [NV]

2. Definition : For any set E of red numbers, any two points in E are said to be rationdly
equivdent if thair difference belongsto the set of rationd number Q .

ieforay x,yl E, x~yiff x- yI Q.

Thisrdation of ‘rationa equivaence isan equivalence relation on the st E. For,
() x-x=0"xI EP x~x,"xI E

2 X~yb x-ylQb y-xTQP y~x
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B Ifx~yady~zb x-y,y-zl QP x- y+y-zI QP x-z1QP x~z.

Therdation of ‘rationd equivalence isan equivaence rdation on the set E and hence partitions
E into digoint equivalence classes.

3. Definition : For the rational eguivaence relation on E we form a choice set C: by taking
exactly one member from each equivalene class. By Axiom of choise such aset C can be formed.

4, Note : If Cisthe choice set corresponding to the rationa equivalence relation on E, then
M The difference of two pointsin C is not rationdl.

(i)  ForeachpointxinEthereisapointcl Cg suchtha x~c i.e x- c=ql Q i.e. X=cC +q
for some g Q.
(i)  Foranyset Ul Q thecollection {I +C¢},;  isdigaint. Forif xT (1,+Cg)N(I,+Ce)
P x1 I;+Cg and x1 |,+C¢
P x=1,+c, and x=1,+c, forsome ¢;,c,1 C¢
P li+q =l; +G

Pc-c=l,-1,1Q
Which is a contradiction since difference of any two points in Gz is not rationa. Hence the
collection {I +C¢},; .

5. Theorem : (Vitdi) Any set E of real numbers with positive outer measure contains a subset
which is not measurable.

Proof : Since any et of red numbers contains a bounded subset of real numbers, we assume that E
is abounded subset of red numberswith m* (E )> 0.

Let Cg be a choice set for the rational equivalence relation on E. We show that C: is not
measurable.

On the contrary assume that Cr- is measurable.

Let U, beany bounded countably infinite set of rational numbers. Since Cismeasurable, the
collection of trandates {! +CE}|TUO is digoint and measurable.
Hence by lemmawe get m(C¢) =0.
Since measure is trandation invariant we get
m(Cg)=m(l +C¢g) 11U,

P m(l+Cg)=0 "1TU,
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Also the collection {| +CE}|TUO isdigoint. Hence

mee J (I +C¢)o= § m(l +Cc)=0
ngUO g 110
b meel J (I +C¢)o=0
17U 17}

Next E is bounded set. Therefore there exist areal number bsuchthat |y < b, " xI E
ie EI [-bDb]
Choose theindex set U,= [- 2b,2b]NQ i.e. U, containsal rational numbersin [ -2b, 2b]
Then U, isbounded and countably infinite set.

Nowif x] E then by partition of E w.r.t. the equivalence relation, there exists ¢ C such
that X~ cP X- ¢= ( for somerationa number g. But Cc | EI [-b,b]

b x,cl [-b,b] (-xI Eandcl Cg)

P -b<x<b,-b<c<b

P -2b<x-c<2b
P -2b<g<2b

b ql [-2b,2b]
P gl U, (" U, containsal rational numbersin [ —2b, 2b])

But x- c=qP x=c+dl g+ Cg, ql Uy.Hence xI [ J (I +C¢)
1T Ug
Snce x] E isabitrayweget EIi [ J (I +Cg).
11 Ug
By monotonicity of outer measure

m*(E)em*eel J (I +Ce)OE & m*(I +C¢)

YY) g 10
= a m*(Ce)=a mE)
I'TUp
= a m(Ce)=0
I'TUg
P m*(E)=0



Which is a contradiction because m* (E )> 0. Hence C is not mesurable. But Cg I E.

Therefore E contains a subset that is not measurable.

6. Theorem : Outer measure is not additive.

i.e. Therearedigoint setsA and B of red numbersfor which m* (AU B) <m * (A) +m* (B) .
Proof : We prove this by contradiction. Suppose m* (AU B) = m* (A) +m* (B) holds for every
par of digoint ssts A and B.

Then for any sets E and A of real numbers, ANE and AN EC are digoint sets and

(ANE)U(ANE®) = A. Therefore,
m* (A =m* g ANE)U(ANE°)H

=m*(ANE)+m*(A NE®) (By assumption)

This shows that E is measurable. Thus any set of red numbers is measurable which is a
contradiction since there exists nonmeasurable sets of real numbers. Hence there must existsapair of
digoint sets A and B such that,

m* (AUE) <m*(A)+m*(B).
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UNIT - 11l

LEBESGUE MEASURABLE FUNCTIONS

3.1

1.

M easur able Functions:
Wefirg establish the equivaence between the various sets that arise from afunction f.

Propostion : Let f be an extended red vaued function whose domain is measurable. Then

the following statements are equivaen.

0]

Proof :

For each real number c the set { x| f (x) >c} ismeasurable.
For each real number c the set { x| f () 3 ¢} ismeasurable.
For each real number ¢ the set { x| f (X) <c} is meesurable.

For each real number c the set { x| f (x) £ c} is measurable,

Let D bethedomanof fi.e f:D® R.

Now {x|f(x)>c}°={x|f(x)£c}

Hence { x| f (X) >c} ismeesurableiff { x| f (x) £ c} is measurable,
Whichimplies (i) 0 (iv)

Smilaly { x| f (x) <c} © ={x| f(x) 3 c} implies(ii) U (i)

¥
Nt (X170 g =(xI709>c- ]

n=1

1
Thereforeif { x| f (x) > ¢} ismeasurablethen [XI f(x)>c- ﬁ] ismeasurablefor al n. And

countable intersection of measurable sets is measurable. Hence { x| f (x) 3 ¢} is measurable. Thus

0P )

¥
Also {xlf(x)>c}:U[x|f(x)3c+%}

n=1

Therefore if (ii) is true then countable union of measurable sets is measurable. Hence

{x]f(x)>c} ismessurable Thus (i) b (i)

Thuswehave, (V) U () U (i) U (i)
Which shows that dl the four Satements are equivaent.
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2. Definition : Anextended red vaued function fissaid to be L ebesgue measurableif itsdomain
is measurable and if it satisfies one of four satements of the above propostion.

3. Proposition : If afunction f is measurable then the set { x| f (X) =c} is measurable for
dlcl R
Proof : Case(i): ¢l R, Cc<¥

For any finite real number c,

{x]f(x)=c} ={x|f(x)2N{x|f(x)Ec}

Since f is measurable, the sets { x| f (x) 3 ¢} and { x| f(X) £c} are measurable. Hence
{x]f(x) =c} ismeesurablefor al c.

Case(jii) c=+¥ or - ¥

If c=+¥ then f(x) =+¥ implies f (X)° k, " k] N.

¥
Hence,  {XIT00=+¥}=({xIT(x° K}
k=1

Andif c=-¥ then we canwrite,
¥
{xIf(=-¥} = xIf () £-K}
k=1

Sincef ismeasurable, thesets{ x| f (x) 3 k} and{ x| f (x) £ - k} aremeasurable. Countable
intersection of meesurable setsis measurable. Hencethe sets, { x| f (x) =+¥} and {x| f (x) =- ¥}
aremeasurable. Thus { x| f (X) =c} is measurable for any extended real number c.

4. Example: Show that afunction defined by,

f(x)= x+4 if x3 2
= 8 if x< 2
ismeasurable
Solution : Let ¢ be any red number. Then,
{x|f(¥3c}=R ifcE6

=(-¥,2)U[c-4¥) if6<cES
=[c- 4¥) if 8<c

Any interval is measurable. Hence { x| f (X) 2 ¢} ismeesurablefor dl ci.e. f is measurable
function.



5. Example : Discussthe measurability of f (x) =e*, x> 0.

Solution : Let ¢ beany red number. Then,
{x]f(92 c={x]e*® ¢} =(0,¥) if c£1
=(logec,¥) if ¢c>1

Theintervas (0,¥ ) and (log.c,¥ ) aremeasurablefor al ¢, Hencef (x) = eXismeasurable
function.

6. Proposition : Let f be afunction defined on ameasurable set E. Then f ismeasurableif and
only if for each open set O, theinverseimage of O under f, -1 (O) is measurable.

Proof : If Oisany open subset of R then
f10)={xI E |f (01 O}
First assume that inverse image of an open set is measurable. Then (c,¥),cl R isan open

set and hence f Y(c,¥) ismessurdbleforal ¢ R.
But  fi(c,¥)={xI E|f 0 (c¥)}
={x1 E|f(x)>c}.

Thusforal ¢i R theset, {xT E |f (x) >c} ismeasurable. Hencef is measurable function.
Conversely supposef ismeasurablefunction. Let Obe any open subset of R . Thenthereisacountable

¥
collection { I, }_, of open, bounded intervals such that © = E:th( Let I, =(a,.b ), k=1,2,3, ...

Then 1, =(-¥,B ) N(a.¥).

Let Ac=(a¥) and B =(-¥.b)
Therefore |, =ANB,,k=1,23, .....

Now f*(A)={xT E|f(xT A}
={xI E1T()T (a.¥)}
={xI EIf (0>a]
Smilaly 1B )={xI El f(x)>h}

Sincef ismeasurable, f*(A,) and f*(B,) aremeasurableforal k=1,2,3, ......
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y )
Therefore Ho)=t1 %Ik_f 1f§U AkﬂEﬁ()S

ek 1 ek=1 1%}

-1 AnUsS

ek=1 k=1 %]
= 1%A<—ﬂf l‘TxJBk—
ek 1 ek 1
a¥ u ¥ L‘J
:an Ad)an &J B)g
k=1 U &= u

But collection of measurable setsisa s -agebrawhich is closed under countable union and
intersection. Hence f “1(O) is measurable.

Thusf is measurableiff inverse image of an open set ismeasurable.
7. Proposition : A continuous, red va ued function defined on measurable domainismeasurable.

Proof ;: Let f beacontinuous function defined on ameasurable st E.i.e. f : E® R becontinuous
function where E is measurable.

Let O be any open subset of R . Since f is continuous there exists an open set U/ such that
f{0)=ENU.

Since U is open it is measurable. Therefore E( 1/ ismeasurablei.e f~1(0) is measurable.
Thus, inverseimage of an open set is measurable, hence f is measurable function.
8. Proposition : Let f be an extended real vaued function on E. Then,
0] If fismeasurableon Eandf = g aeonE, then g ismeasurable.

@i For ameasurable subset D of E, f ismeasurableon E if and only if therestrictionsof f to D and
E - D are measurable.

Proof :

0) First assumethat f ismeasurableon E. Let A={xT E|f(X)* g(X)}.Thenforany ci R,

{xI Elg(® > ={xI Alg(x)>c}U{x1 E |f (x)> N(E- A)
Now f =g axp mA)=0
P A ismeasurable and every subset of A ismeasurable.

Therefore {xT A|g(x) >¢} is measurable. Since f is measurable, {x1 E |f (x)>c} is
measurable. Since E and A are measurable, E— A isdso mesurable. Further union and intersection of
measurable sais is measurable.
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Hence { xI E |f (x) >c} ismeasurableforany ci R .i.e g ismeasurable function.
(i)  Forany ci R wehave,
{XTE|f (x)>c¢ ={xI D |f(¥X)>c}U{xT E-D |f(x)>c

Where D is measurable subset of E.

Thusif f ismeasurable then itsredtriction to D and E — D are measurable and conversdly if its
resriction to D and E — D are measurable then r.h.s. is union of measurable sets which is measurable
i.e. f ismeasurable on E. Thusf is measurable on E iff itsrestrictions to D and E — D are measurable.

0. Theorem : Letf and g be measurable functionson E that arefiniteaeon E. Thenfor any a
and b,af +bg ismesurableand f e+ gismeasurableon E.

Proof : Sincef and g arefinite a.e we may assumethat both f and g arefiniteon E.
Ifa =0 thendearly a f =0 and hencea f ismesasurable.

If a 1 0 thenfor any red number c.

. 1o cg
{xi E|af(x)>c}—%xl E|f(x)>;% ifa >0

- 1 cg
and {xI E|af(x)>c}—%xIE|f(x)<g% if a<0

Since f ismeesurable the setsto ther.h.s. are measurable. Thusfor dl ¢, { xI Ela f(x)> c}
ismeasurable. Hence a f is measurable function.

Nextif f (x)+g(x)<c for somerea number cthen f (x) <c- g(X) . Thereforethereexist
arationd number g suchthat f (x) <g<c- g(x).
(Since between any two digtinct real numbers there exists countably infinite rational numbers.)

Hence, {xT E+f(x)+g(x)<c =J &xT EIf()<atN{xT Ela<c- g(c)}g
dQ

= dxT E1f(9<atn{xi Elg(x) <c- d}§
qdQ
Sincef andg aremeasurable, { x1 E |f (x)< ¢} and {x] E|g(x) <c- g} aemessurable
and countable union of mesasurable setsis measurable. Hencef + g is measurable function.

Thusif f and g are measurable functionsthen a f +bg ismeasurablefordl a , b .

Now if f is measurable function then for any red number ¢3 0,
{x1 E112(0>c} ={x] E|f (>} U{xI E|f(x)<-+c}
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andforc<0, {xI E|f?%(®> ¢ =E.
Hencef 2 is messurable.
Findly for any measurable functionsf and g

1
fxg=§{(f+g)2- £2- ¢?}

Since (f +g)?, 2, g? ae messurable The sum and difference of measurable functionsis
measurable. Hence f xg ismeasurable.

10.  Note: Thecompostion of two measurable real vaued functions defined on R need not be
measurable.

11. Propodtion : Letg beamesasurablerea-valued function defined on E and let f beacontinuous
red vaued function defined on R . Then the composition feg isameasurable function on E.

Proof : We know that a function is measurable if and only if the inverse image of an open st is
measurable.

Consider anopenset O R. Then,
(fog) *(0)=(g "of *)(0)
=g*(f 1))

Sincef iscontinuous f ~*(O) isan open set. And since g is measurable, g‘l(f ‘1(0)) IS

measurable. Thustheinverseimage ( fog) }(0) ismeasurable. Therefore the composite function fog
is measurable.

12.  Note: If wedefineamodulusfunctionmby m: R ® R, m(x) =|X then misacontinuous
functionon R and for any measurable function f,

(mof )(x) = m( f(x)) =[f (¥)| =| f|(¥)

i.e. mof =|f|. Hence by aboveresult | f| is measurable function.
Further |f|p is measurable with the same domain E.
13.  Definition : For afinitefamily { f,} '_ of functions defined on adomain E we define,

max{ fy, fo,.e, Fu} (X) =max{ f,(X), £,(X),...., f (X} =

and  min{f, f,,..., f.} () =min{ f,(X, f,(X),...., f,(X)} "xI E



14. Proposition : For afinite family { fk}E:l of measurable functions with common domain E,
the functions max{ fy, f,,...., f,} and min{ f, f,,...., f,} aemeasurable functions
Proof : For any red number c,

max{ f,, fp, fa,.e, fr} () > P max{ (%), f(X),...., f,(X} >c

P f(X)>c for somek

Therefore,  {xT Emax{f;, f,,..., f.} () >d} :Lnj{xT E|f(¥)>¢
k=1

Since f,'s aremeasurable functions { x| f (¥ >a} ismeasurableforal k=1,2,3, ...n.
Also finite union of mesasurable setsis measurable. Hence max{ fy, fopenns fn} ismeasurable.

Smilarly for any rea number c,
min{ f,, f,,..., f.} (X) >c P min{ (%), ,(X),..., f,(X)} >¢c

P fi(X)>cfordlk=12, ...
n
Therefore,  {x1 E|min{f,, f,..... f.}(x)>d =({xT E| f(x>d

Since f,'s aremessurable functions and intersection of finite collection of measurable setsis

measurable setsis measurable, theset { X' E[min{f,, f,....f.} (x) > ¢} isdso mesurablefor dl c.

Hencethe function min{ f,, f,,....f,} ismessurable.

15.  Note: Forafunction f defined on a set E we define,
[10) =max{ f (x),- f ()}, £ (x) =max{f (x),0}
and 7 (x)=max{- f(x),0
Thereforeif f ismeasurable on E, by above proposition | f | ,fTand f~aremeasurableon E.

3.2 Sequencial Pointwise Limitsand Simple Approximation

1. Définition : For asequence{ f,} of functionswith common domain E, afunction f on E and
asubset Aj E wehave.

@) The sequence { f,} convergesto f pointwiseon A if
!gg fa)=1(X) «yi A
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(i) The sequence { fn} convergesto f pointwise on aese on A if it converges to f pointwise on
A—-B wherem (B) =0.

@)  The sequence{ fn} convergestof uniformly on A provided for eech| > 0, thereisapositive
integer N.

[f(¥)- f,(9<I ,"xI Aadfordl n3 N.

2. Propostion : Let{ fn} be a sequence of measurablefunctionson E which converges pointwise
aeeon Eto afunction f. Then f is measurable.

Proof : Since f,® faxe on E, there is a measurable subset B, of E such that m(Ey) =0 and
f,® fon E- E, pointwise. But f is measurable on E if and only if its redriction to E — g is

meeasurable where m(E,) = 0. Therefore without loss of generdlity we assumethat f,® f onE
pointwise. i.e f () =M 1,(x) "y g
Let c be afixed red number. Then,

f (x) <c forsome x| E.

1
p $ ininteger n such that f(x)<c-;<c.
P limf (x)<c 1f int
lm 1, - or some integer n.

1
b $ aninteger k suchthat f;(X) <c- o "j3k

Conversdy,

1
fi(x)<c- o "} 3 k and for someinteger n.

1
P Iimf (x)<c- — i
lm i (%) ~ . for some integer n.

1
P f(x)<c- H,forsomeintegern

P f(x)<c
. . 1 .
Thus f (x) <c ifandonlyif f;(x)<c- o " j 3 k and for someinteger n.
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I\

10
Since f |smeee&1rdale, | xI E|f, (x) <cC- _I\i/) iS measurable.

i 1)
And hence O} xI E|f;(x)<c- H% is measurable.

Also union of countable collection of measurable sats is measurable. Therefore,

TI'( 'S
@@ D> (D

Xl . 1g0 , -
ﬂl x1 E|f;(¥) <c- —yg={xI E|f(x)<c}
j=k | n%g

is measurable. Therefore f is measurable.

Step Functions:

3.

Definition : A function y :[a,b] ® R is caled a step function if there is a partition,

{a=x4,X1,Xz,..., X, =D} of theinterval [a b] suchthat inevery interval (.4, %, ) , thefunction y

is congtant. Thus,
y()=c " X1 (Xe1,%X), k=1,2,3,..,n
4, Note:
1) A step function is defined on a closed interval and assumes only finite number of

e

vaues.

At the endpoint of the interva the values assumed by the step function are arbitrary or
may not be assigned. These end points forms a finite set of discontinuities. Hence the
st of discontinuities of step function is a set of measure zero.

Following are some of the examples of step function.

D

@

f :[a,b] ® R defined by
f(xX)=a if aE£x<c
f(x)=b if cExEDb

a,b areconstantsanda<c<b

The Signum function S defined by
il if x>0
s(x=l0 ifx=0
-1 ifx<o
isastep function



3 The grestest integer function f : (a,b) ® R definedby f (x) =[X] isagep function.
Note that every step function is measurable, since it is defined on closed interva which is

measurable and { x| f (x) >a} aresubintervalsof [a b] which are dso measureblefor dl ai RR.

Characteristic Functions:
5. Definition : Let E beany subset of R . Thefunction ¢  : R ® {0,1} defined by,
il if xT E

e -

is cdled the characterigtic function of E.
Following are some of the properties of a characterigtic function.
Q) c;=0andcy=1
(2 Al Bbc,fcy
©) Caus =Ca+Cpg- Cang
If A andB aredigointthenweget, C 5jg =Cp +Cp
4 Cas =Ca g
(5) ci=1l-cp
(6)  Foradigoint sequence{ A, } of setswehave, Cuap, = ac An
n

6. Example: Let A beany set. Provethet the characteristic function ¢ , of A ismeasurableif an
only if A ismessureble,

Solution : Forany al R consider the s,

{x|ca(x)>a} =R if a<0
=A if 0fa<1
= f if a31

Therefore, ¢ 5 ismeasurable
U {x|c o(x) >a} ismessurdble " al R
U R,Af aremeasurable
U Aismessuradle(Snce p and f are aways measurable)

Thus C 5 ismeasurableiff A ismeasurable.



1. Note:
@ Existence of non-measurable set implies the existence of non-measurable function.
For, if Pisanon-measurable s, then ¢  isanon-measurable function.

()] Sum of two measurable functions is measurable but sum of two non-measurable
functions need not be non-measurable.

For, if Pisnon-messurable set then p isaso non-messurable. Hence ¢ p and € 5 arenon-

measurable functions. But Cp +C s =C )5 =Cr which isameasurable function.

Simple Functions :

8. Definition : Afunction f iscdled smplefunctionif it is measurable and assumes only afinite
number of values.

If f :E® R isasmplefunction thenthereisafinitedigoint sequence{ E;} " of messurable

n
sassuchthat E={UJEi suchthatf () =a, xI E;,i=1,2,...n.Thusimf ={ay,a,,...,a,} Ard
i=1

the function can be expressed as alinear combination of characteristic functions. Thus,
n
f=4aaiceg X
i=1
Thisrepresentation of f isnot unique. If f isasmple function defined on ameasurable st E
and {ay,a,,a5,...,a,} istheset of nonzeroveluesof f thendefine A ={x1 E|f(x) =a;} andthe
function f isgiven by,

F-2
=a aiCAi
=

This representation of f is unique and called the canonical representation (natural
representation). In thisrepresentation al a;”sare nonzero and distinct and A;’ s are digoint measurable
sets.

Thus a ample function is afinite linear combination of characteridtic functions of measurable
sets.



0. Example : Prove that the sum, product and difference of two smple functions are smple.

m n
Solution : Let f =@ ac A adyY = abic B bethetwo smple functions. Then,
i=1 i=1

m n
[¢} [¢}
f+y =aaity ta bic Bj

i=1 i=1
m+n
_ o
= a YiCg;
i=1
where g; =a; =12 ...m
=b;. i =m+l, ..., m+n
ad C;=A i=1,2..,m
=Bi.m i=m+l, m+2, .., n

SinceA,, B; are measurable, each C; isaso measurableand hence f +y  isasmplefunction.
Smilaly f - y isdsoasmplefunction.

3 J
Now, fxy:aaiCAiﬁbiCBi
i=1 i=1

_ 28 b
=aA a;bjC Ty
1]

[o]
= a 9iiC pngj
i

SinceA; and B] are measurable, Aj(1B; are dso measurable for dl i, j. Hence f xy isa
smple function.

10.  The Smple Approximation Lemma

Let f be ameasurable real valued functions on E. Assumethat f is bounded on E and thereis
aninteger M 3 0 suchthat|f|£ M onE. Thenforeach| >0, therearesimplefunctionsf; andy ;

definedon Esuchthat f; £ f £y; and 0£y; - f; <l onE

Proof : Since f is bounded on E, |f(X)|EM fordl xi E. -ME£f(X)EM , "xI E i.e
f(E)I [-M,M] . Let (c, d) bean open bounded interval that contains f (E),i.e. f(E)I (c,d).



Letc=y, <Y, <Y, <... <Y,.1 <Y, =d beapartition of the closed bounded intervd [c, d] such
that the successive dements differ by lessthan T >0 (given)

e V- Vi " k=1,2,..n
Define I, =[ Vi1, i) and £ (1 )=E, k=12, ...n

Eechinterva 1, is open and f is messureble. Hence f (I, )= E, is messurable for all
k=123, ..n

Definesmplefunctionsf; andy; on E by

n n
f; =4 Ye-1Cg and Y i =4 Yk *Cg
k=1 k=1

Thenforay xi E, f(x)I (c,d)

Therefore there exists unique k such that y,_, £ f(X) <
Since f(x) 1 Iy, xT (1) =E,. Therefore cg, (X) =1
ad fj(X)= Ye-1C (0 = Yk-1
Yi(X) =Y XCh ) =
Hence, f; () £ f (x) <y (x) and y1 (%)~ f; (0= ¥ - Yier <

Since x| E isahitrary we get,
fi £f <Yi andyi 'fT <T onE.

11.  TheSmple Approximation Theorem

An extended red vaued function f on ameasurable set E ismeasurableif and only if thereisa
sequence {f .} of smple functions on E which converges pointwise on Eto f and |f .| £] | for dll n,
onE

If f is nonnegative we may choose {f .} to beincreasing.

Proof : Since each smple function is measurable, the sequence {f n} is a sequence of measurable

functions which convergesto f pointwise on E. Henece f is measurable. Conversely assume that f is
measurable. Since every function is a difference of nonnegetive functions, we further assume that

f30onE
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Let n beanaturd number. Define E,, by
E,={xI E|f(x)£n}
Then E, is measurable and the redtriction of f to E, is nonnegative bounded mesasurable

function.
ie f:E;®R, f(x)20,"xI E, and f(x)£n, " xI E, (Byddinitionof E,)

-1
Therefore by smple Approximaion Lemmaand by taking | = o there exists Smple function

1
f,andy , suchtha O£f £ f£y ,on E, and Ofy - fn<ﬁon E,.

1
P OEf £ fandOE f -f £y, - fn<ﬁ on E,.
Now f,: E, ® R canbeextendedto E by setting f,(X) =n, " x suchthat f (x)>n.
Hence, o£f £ f OnE

We show that the sequence {f .} convergesto f pointwise on E.

Let xi E beabitrary.
Casel : f(x) isfinite. Choose a naturd number N suchtha f (X)<N . Thenforany n3 N,

1
FO)< NP T()<N g0 hence O£ F(X) -f (X) <=, " n3 N.
n

p !‘(l@rgfn(x): f(x)
Casell: f(x)=¥.Snce f(x)>nfordln. f, (X)=n,"n.
Therefore |ImM () =¥ =1(X),
Thus there exists a sequence {f,} of smple functionssuch that f, ® f pointwise on E.

Now if y , =max{f,f,,..f,}. Then {y .} is an increasing sequence of simple functions and

O£f,£ f fordln.
P O£ max{ff,,.f} £ffordln

P Ofy ,£ ffordlnonE

and limy £ 1



Alsoy , =max(f,f,,..f ;)3 f, fordln

> iy limta= ¢

Hence !g@n;y n=T where {v .} isincreasing sequence of smple functions.

3.3 Littlewood’'s Three Principles
There are three principles roughly expressed in the following terms :
1 Every measurable st is nearly afinite union of open intervas.
Every measurable function is nearly continuous.
Every pointwise convergence sequence of measurablefunctionsis nearly uniformly convergent.

Wehavedready discussed first wto of these principles. One of the versonsof thethird principle
is given by Egoroff’s Theorem.

To prove Egoroff’s Theorem we require the following Lemma.

1. Lemma: Let Ebeameasurableset of finite measure. Let{ fn} be asequence of measurable
functions on E that converges pointwise on E to ared vaued function f. Then for each h >0 and
d >0, thereisameasurable subset A of E and thereisanindex N such that | f, - f|<h onAfordl
n3 N and m(E- A)<d.
Proof : For eachk, |f - f |(¥) =|f(X)- fi(¥)|, x] E.

Sinceech f,, ismessurableand f, ® f pointwiseonE, fisaso measurable. Hence| f - f,|

ismeasurable function for all k. Thereforetheset, { xT E|[|f(x)- f, (x)| <h} ismessurablefor dll k.
Let E, ={xI E||f(x)- f (x)|<h foralks n}

¥
Then En = {xT EI[f(®)- fi(x)|<h}
k=n
Since intersection of acountable collection of measurable setsis measurable. Therefore E, is
ameasurable set for dl n. Further { En} Is an ascending collection of messurable sets
¥

y )
?‘En=ﬂ{xi Ellf(x)- fi[<h}i N {xT EIlf(0- fk(x)|<h}=En+13
e

k=n k=n+1 1]

¥
Next E,i E fordl NP (JE, T E.

n=1
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Ontheother handif xi E then f,® f pointwiseon Eimplies 1M () =T (x),
Thereforefor h >0 there exists an integer N such that | f,,(x) - f (x)| <h fordl ns N.
Hence xT Ey

Thus xI EP xI E, for someN.

¥ ¥
Therefore ET UE,. ThusE=UJE,.
=1

n=1
By continuity of Lebesgue measure we get

m(E) = limm(E,)
n® ¥

Since m(E) isfinite, for given d , thereis an index N such that |[m(E) - m(E,,)| <d for all

. In particular for N,

0£ m(E)- m(Ey) <d (- E, T EP m(E,)<m(E))
Teke A= Ey . Then A ismessurable and
m(E - A)=m(E- Ey)
=m(E)- m(E,), (By excision property)
<d
Thuson A=Ey, |f,(X)- f(X)|<h foral n3 N and m(E - A)<d.
Egoroff’s Theorem

Let E beamessurable set with finitemessure. Let{ f,)} beaseguence of messurablefunctions

defined on E that converges pointwise on E to ared vaued function f. Thenfor each | >0, Thereis
aclosed set F contained in E for which f, ® f uniformly on Fand m(E- F) <I .

Proof :

1 ]
Let | >0 bearhitrary. For any integer ni N, and for h :H and d =W,thereexistsa

mesurable set A, and anindex N (n) such that

i (%) - f(x)|<% on A fordl ks N() .. (1)

~

and M(E- A,) <% . (2) (By Lemma)



¥
Teke A=() A, Therefore A ismeasurableand ,

n=1

m(E- A =m(EN A)

g 1 1 & &£ 1 18
Smcea_2n+l E;

7
I
N
>
+
x
|
N |
(o]
=}
I

P mE- A) <E .. (3)
Wecdimthat{ fn} convergestof uniformly on A. For given > 0 choosean integer n, such

1 .
that o <l Therefore by (1)

1
| f (%) - f(X)|<Eon Ay, fordl k3 N(np).

. 1 .
But Al A and Ed . Therefore we get

[T () - f(Q[<l onAfordl k3 N(n)

I
Which showsthat { f,} converges uniformly on A and we have m(E - A) < >
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Further A is measurable set. Therefore there exists a closed set F| A such that

)
m*(A- F) <E' Since F is closed, it is measurable. Hence A — F is also measurable and

m*(A- F)=m(A- F) <IE.

Now E- F=ENF°=ENF°NR=ENF°N(AUA°)
=(ENF° N AU(ENFeNA)T (ANF)U(ENA)

p E-Fi (ANF)U(ENA])
P m(E- F)£m(A- F)+m(E- A)<IE+|E

b m(E- F)<

Thus{ fn} converges uniformly on Fand m(E - F) <I whereFisclosed set containedin E.
3. Note: Wehave proved thefallowing result whichisaformulation of Littlewood sfirg principle.

If Eismeasurable st of finite measurethenfor each | > 0, thereisafnite digoint collection of
open intervals whose union isu and

m(E- U)+m(U - E) <I
i.e. every measurable st of finite measureis nearly equd to finite union of open intervals.

Next we prove a precise version of Littlewood' s second principle.

4, Proposition : Let f be asmple function defined on asat E. Then for evary | >0, thereisa
continuousfunctiongon R andaclosedset F| E suchthatf= gonFand m(E- F)<I .

Proof : Since f isasmple function, f tekes only finite ditinct vllueson E. Let ay, a, .... a,, bethe
finite number of distinct valuesof f on E.

Let E ={xT E|f(X=a},k=1,23, ...n
Thereforethe collection { E, }"_ isadigint collection of messurable sets whose union is E.
Hence by theorem there exists closed sets F, , k =1, 2, 3, ...n such that
i

F I E, and m(F- Ek)<H
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n
Take F = F« . Then Fis aso adlosed set and
k=1

m(E - F) =m(ENF)

= mginj E NFCo= métnj(Ekn F°)2
(7]

€k=1 ek=1 1]

n

Bu E-F=ENg F e

Therefore,

ek=1 4]
3 ol
=am(E-FR)Ea—
k=1 k=N



P mE- F)<I
Now defineafunction g :F ® R by g(xX) = a if xI F,,k=1,2, ...n. Sincethe collection
{Fe}., isdigoirt, g is properly defined. We show that g is continuous on F.

Let x| F bearbitrary. Then x1 F, for somek. Let | >0 be arbitrary. Then we can find
d >0 suchthat (x- d,x+d)NF =f fordl it k.

Andforany yi (x-d,x+d)NF

g(y) = a. Hence [g(x) - g(y)|=0<I fordl yI F suchthat |x- y|<d.
This showsthat g is continuous &t X.

Since x| F isahitrary, g iscontinuous on F. Thisfunction g which is continuous on aclosed
st F can be extended to acontinuous function on R . And for this extended continuous function g we
have

f(x)=g(x) onFand m(E- F) <l .

5. Lusin’s Theorem

Let f be ared vaued measurable function on E. Then for each | > there is a continuous
functiongon R and aclosed set F contained on E for which f = gon Fand m(E- F) < .

Proof : We prove the theorem for ameasurable set E such that m(E) <¥ . Sincef isameasurable
function, by Simple Approximation Theorem, thereisasequence{ f,} of smplefunctions defined on
E which convergesto f pointwise on E. Let n beanatural number, for each smplefunction f,, andfor
ay | >0 thereexigsacontinuousfunction g, on R and aclosed set F,, contained in E such that,

I
f, =9, on f, and m(E' Fn)<ﬁ'

Also by Egoroff’ stheorem thereisaclosed set Fy suchthat Fy I E and { f,} convergesto

~

f uniformly on F, and m(E- F0)<E'

¥
Define F =[] Fa . Then,
n=0



.. .L 0
¥ 6 ® @ 09

m(E- F)=m§eE- (Fn+ ngﬂgﬂ Fos T

e n=0 @ en=0 g g
e f 0

=m¢EN[J R+
e n=0 7]

£m(E- Fo)+m<§¥J(E- Fn)g

en=1 2

¥
£m(E- FO)+é m(E- F,)

n=1

Also Fiscountableintersection of closed set and henceitisclosed. Also F | F, fordl nand
f,=g,0n F,.Henceeach f, iscontinuousonFand f,, = g, onF. Also{ f,} convergesuniformly

on Fto the function f (- F I F,). Here f isaso continuous on F. And this function f on F can be
extended to a continuous function g definedon R such that f = g on Fwhere m(E - F) <1 .

0o



UNIT - IV

LEBESGUE INTEGRAL

I ntroduction :

We have sudied theory of Riemannintegration whichisvery useful in solving many mathemetica
problems. But there are some drawbacks. First of al the Riemann integrad of afunction isdefined ona
closed interval and cannot be defined on arbitrary set. Some problems in Probability theory,
Hydrodynamics Quantum mechanics requiresintegration of afunction over aset which may not be an
interval. Further thefunction f must be bounded and continuous amost every where so thet its Riemann
integra exist. Also, for asequence{ f, } of functionswhich convergesto f, the sequence of integrals,

{ f,, } need not convergeto of oreven of doesnot exist sometimes.
Henry Lebesgue in his classcd work introduced the concept of an integra based on the

measures theory which generdizes the Riemann integrd. The theory of Lebesgue integrd tries to
overcome the drawbacks of Riemann integrd.

4.1 Riemann Integral :
1 Let f be abounded red vaued function defined on the interva [ a, b]. Let P be a partition of
[a b] given by,
P={a=x, <X; <X, <..<X, =b}
Condgder the sums,

n n

U(f.P)=& (X - Xi.1)™M; and L(F.P)=Q (xi- Xi.1)>m,
i=1 i=1

where M; = sup f(x)and m; = _inf  f(X)
A (Xj-1.%i) A (xj-1.xi)
wherei=1,2 3, ..., n.

The upper Riemann integrd of f over [ a b] is defined by,

(R)(‘Sf(x)dx:infU(f,P)

and the lower Riemann integrd of f over [ a b isdefined by
b
(R)Of (x)dx=supL(f,P)

a

where the supremum and infimum are taken over dl possble partitionsPof [ a b].
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b b
If, (R)Of (x)dx = R)f (X)ax

then we say that Riemann integrd of f over [ a b] exists and the common value of lower and
upper integral is cdled the Riemann integration of f over [ 8, b]. Thus,

b b b
(R)Of (dx = (R)Bf (¥ ax = (R) o)f (X)clx

Notethat in order that the function f be Riemann integrable, it isnecessary for it to be bounded.
We give another definition of Riemann integra of abounded function using step functions.

Lety :[a,b] ® R beafunction defined by
y(X)=¢;, X;.1<x<x; (i=1,23,..,n)
where a= X, < X; <X, <..<X, =b isapatitionof [ b]. y iscaled asep function.
Observe that,
Ly, p)=8 6 (% - x.1)=U(y , p) forany partition Pof [a b].
b

Thusstepfundtiony isintegrableand (RIY =& G (X - X.1) .
a

2. Definition :
For any function f we define lower and upper Riemann integrals asfollows :
b i b P
(R)Of =supi (R)(§ If isastep functionand f £ f on[ab] {)
a T a .

b } b
ad (ROf =inf}(R)@( ly isastepfunctionandy 3 f on[ab] g
a T a .

3. Example: If f:[0,1] ® R defined by

fx)=1 if X israiond
f(x) =0 if X isirrationd
1 1

Show that (ROf (X =0 (R)¢f (dx =1
0 0

Thefunction f is caled Dirichlet’s function.
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Solution : For any partition Pof [ 0, 1]

D

@

2.

M.=landm =0 "

Hence,

U(f’P):é(Xi - X)) M = (% - x4) =1

L(f,P)=8 (x;- X.1)>m =0

Henceinf U (f,P)=1andsupL (f, P)=0

1 1
p (R)c‘)f(x)dle and (R)(‘)f(x)dx:O
0 0

Note:

In the above example the given function isnot Riemann integrable. In due course we show thet
its Lebesgue integrd exist.

A sequence { fn} of Riemann integrable functions need not converge to a Riemann integrable
function.

L ebesgue Integral of a Bounded M easur able Functions :
Definition : Let E be amessurable set. The function ¢ ¢ defined by,
ce(¥=1 if xi E
ce(x)=0 if xi E
is called the characterigtic function of E,
We define Lebesgueintegrd of ¢ ¢ by

F e =M(E)
Definition : A measurablered vaued functiony defined on aset E issad to be smpleif it

takes only finite number of red vaues.

Ify tekesdigtinct vayesay, a,, .. anonE, thendefine E; ={x1 Ely () =a} =y *(a).

n
Then y :éaiCEi onE.
i=1

Thisis called acanonica representation of y . Inthisrepresentation dl E; 'sare digoint and

a 'saredigtinct.



3. Definition : Forasmplefunctiony defined on a st of finite measure E, we define integral

_3 g
ofy overEby O —alaim(Ei) whereY =a &Cg isacanonica representation.
E s i=1

4, Example: If f =2C +3C 5, whereA;=[2,3], A,=[4,7]find ¢§

Solution: O =éaim(Ai)

=2>m(A) +3xm(A,)
=20(A) +3%(A,)
=2 1+3 3
=11
5. Example: If f:[0,1]] ® R defined by
fx)=1 if X isrationd
fx)=0 if X isirrationd

Find Of wherel =[0,1]
|
Solution : If Alisaset of rationd numbersin [0, 1] then f =c 5. Hence

Of =0ca=mA)=0 snce A iscountable
|

The following lemma shows that the eementary integrd is independent of the choice of the
representetion of the smple function.

6. Lemma: Let {E;}", bea finite digoint collection of measurable subsets of a set of finite

n

meesureE. If T = & gCg , a'sarered numbers, 1£i £ n then 0=
i=1 E

am(E)

Qos

i=1

n

Proof : Given f = é 8 *Cg . Here E;’s are digoint but the numbers a;’s need not be distinct.
i=1

Hence the representation of may not be canonical.

Let{I4,1,,...] } bethedistinct valuesof f .

Defire A ={xI EIf(x =1}, 1£j£m
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m
[¢]
Thenf = all i *C i isacanonical representation of f and hence O allm( i),
j E

Now for each |, let Ij be the set of indices i in the set of indices | ={1, 2, ...n} such that
a =l ;.

m
Then | :UI i . Therefore,

j=1
m EO
( ) %E”LIJJ > (on”LIJE' f()=1;)
- ﬁa}j m(E) (Since E;'sare digaint)
Therefore,
arm(a)=a a'm(e)
j=1 =il Ij
_8 g . E o
ja=1 iTanaJm( ) (va=1;only)
:éajm(Ei)
Hence g - =a am(E;)
E i=1

7. Proposition : Let f and y be the smple functions which vanishes outsde a set of finite
measure E.

Then (1) ¢pf +by =acy +bgy (2 f3yaeb 3¢y
Proof :

1 Lef —a aiXpandY = alb i *CB;j bethe canonica representationof f andy ona
i=1 J

st of finitemeasure E. Let A and B, bethe setswhere f and y are zero respectively.

m n
Then, E:UAi:UBj

i=0 j=0
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Therefore, E=ENE

-UanUs
i=0 j=0

=UE where E, = A/ B,

Snce{A} ", and{ B} ?:O aredigoint collectionsof meesurable sets. Thereforethe collection

{E\} i:o isaso adigoint collection of measurable sets and

s 3
f=aaceg , y=abceg
k=0 k=0

Hence,

14
af +by = § (aay +bby)Jcg,
k=0

And,

14

of +by = é. (aak +bbk)n(Ek)
k=0

- & aa,m(E,)+ & bbm(Ey)
k=0 k=0
s s
=agq aym(E)+bq b,m(E,)
k=0 k=0
Cpf +by =ac§ +bgy
2 For a= 1, b = -1 above result becomes,
§-v=§-0
Now f3yaxe
P f-y30ax
Pg-vy30
Pd-¢y20
e e’
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8. Note: If f =@ @ *Cg; isany representation for f where a;'s are not necessary digtinct
i=1

and E’s need not be pairwise digoint then,

f=a;xg ta, g, tazge +..ta, g,
P =arce a2 e, +ta e )

= ald: Eq +a263 E2 +"'+an6 En
=a,m(E,) +a,m(E,)+...+a;m(E;)
n
=4 & m(E;)
i=1

Thusfor any representation of Smple function f

(‘j‘:é_laim(Ei)

0. Note: A gep function takes only afinite number of values and each internd is measurable.
Hence every step function is asmple function.

10. Definition : Let f be aboundd red-vaued function defined on a set of finite measure E. We
define the lower and Upper Lebesgueintegra of f over E by

=sup| If issmpleandf £ f on E]
Lower Lebesgue Integra [E

Upper Lebesgue Integral :inf[d ly issimpleandf £y on E]
E

11 Definition : A bounded function f on a domain E of finite measure is said to be Lebesgue
integrable over E if its Upper and Lower Lebesgue integrals over E are equa. The common vaue of
the Upper and Lower integrasis caled the Lebesgue integra or smply theintegrd of f over E and it

i denoted by gf |

12. Theorem: Letf beabounded function defined on the closed bounded interva [A, D). If f is
Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrds are

equdl.
Proof : fisRiemann integrable over [a, b)

P Riemann lower and upper integrals are equdl.
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p sup{(R)(‘j |f isastep function, f £ f]
|

:inf{(R)(‘y ly isastep function, f £y]
|

Now for smplefunction f andy such that

fEfEy
PJELy
E E
P supc £inf ¢
fgf)? fﬁyg e (1)

wheref andy aesmplefunctions But,

inf y£inf oy =supFG £ sup
ysf ooy E oo fEf fEf g - (2)
y - simple y -step f - step f - simple

(Supremum over larger st is larger and infinum over smdler set is larger. And every step
function isasmple function.)

P inf £ sup
o 9 - (3)

3f
. fEF
y -smple B f - simple

Hence from (1) and (3) we get

sup :ffiynf o

fEf -
f-simple y - simple

Hence f is Lebesgue integrable. Theinequdity (2) impliesthat dl the terms are equd. Hence
Lebesgueintegrd of f isequd to Riemann integrd of f.
13. Example: Let E bethe st of rational numbersin [0, 1]. Letf beaDirichlet’ sfunction defined
on [0, 1] by

f(x)=1ifxT Eg. -
0 =L1x1 B, 7 1013
=0if xi E})
Then OF= Obce =1m(E)=0 (Since E iss countable)
01 [0

Earlier we have shown that f isnot Riemann integrable. Thusf is Lebesgue integrable but not
. : . . 0of=0
Riemann integrable and Lebesgueintegrd of f is 01 :
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14. Theorem : Let f be abounded measurable function on a set of finite measure E. Then f is
integrable over E.

-1
Proof : Let n beanatura number. Take | = o By smple goproximation Lemma, there exigs two

amplefunctionsf , andy ,, on E such that

1
f,.EfE£y andOLy .- fn£ﬁ onE.

Applying monotone property and linearity property, we get
OEYn-fTn=0Yn- O £‘1—1c‘j.—1m(E)
n~'n— n- n -0
E E E EC)E n E n

b oginf[g ly issmplefunction,y 3 f]- sup{d |t issmplefunction, f £ f]
E E
1
EQn- Gk ME) “nl N
E E

b inf[g ly issimplefunction,y 2 f]zsup[d |t issmplefunction, f £ f]
E E
p fisLebesgueintegrable over E.

15.  Propostion : If f and g are bounded messurable function defined on amessurable st of finite

messurethen (i) gaf +bg:aEOf +bg

\

(ii) f=gaebP of =09
E E

\

0%

E

of l£
E

(iii) f £g axb (‘)f £(‘)g , Hence,
E E

() If AEf(x)£B then Am(E)£ f £ Bm(E)
E

v) If A and B are digoint measurable sets of finite measure then AL?B f :Aof +Sf .
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Proof :
M First we prove that,

(‘pf = a(‘)f -

£ £ al R

If a = 0then equdity holdstrividly.
If a >0then,

Oaf—lnf oy = inf oy

af£yE fE%E

Let Y —tp y=af
a

Therefore, Oaf - Ifngff ol

= inf ao‘

f £f

—alnfd

f£f

=a0f
E

If a <Othen

(jaf— inf O/

af£y E

= inf ¢
f3%E

=inf Oaf

f3f

=inf ao‘

f3f
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Thusfordl a] R

(‘jaf = a(‘)f
E E
Now we show that,
Of +9=0f + o8
E E E

Let y, and y , be the two simple functions such that f £y, g £y , therefore
f+gfy +y,.
Then,

0f+9— inf O’EC)’1+V2-O’1+0V2

f+gfy E

Taking infimum over dl Smplefunctionsy 12 f andy ,3 g wegdt,

Of +g9£ inf qy.+inf ¢y,
E "&y1g

gEyzE

b Of +g£of +op @

E E E

Smilalyif f, £ f and f , £ g aesmplefunctionssuchthat f  +f , £ f + g, then. And,

0f+g— sup o‘

fEf+g ¢

3 N
O1tf>
E

=J 1102

E E

Taking supremum over dl smplefunctionsf £ f and f , £ g we get,
Of+93 sup 1+ sup O 2

f1Ef £ fofg

P oOf +92 Of +(p ()

E E E

Hence from (a) and (b) we get,

Of +9=0f + 00

E E E
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Therefore, (\ﬁf *bg= (‘Ff + (‘j)g
E E E

=aQf +bop

E E
@i If f =g aethen f —g=0 ae
If y isasmplefunctionsuchthaty 3 f- g=0 ae
Py30aeb y30
E
Taking infimum over dl smplefunctionsy 3 f - g wegdt,

inf
y3f-g

o0
E

m

Smilalyif f isasmplefunctionsuchthet f £ f - g =0 ae., we can show that,

Of - 9£0b Of £g

E E E
Hence, Of = O
E E
iif) f £g9 ae
P O£g-f ae

If y isasmplefunctionsuchthay 3 g- f30theny 3 0 ae
P ¢y30
E

P inf ¢y30
y3g-f|9/

P g-f30
E



U
me,
m o,

-

w

o

Lv)
mg,
w
"X

Thus f £gae P Of £
E E

Sincef isbounded on E,
SHERFAN

b o Ifl£0f £0fl

E E E
P -dfl£ Of £ Of|
E E E
P of|£Of
E E

AET(X)EB, " xI E
b ALE f(X)EBX, "xi E
P Axc(x) £f(X)£Bcg(x)

P QA e(X) £ Of (X) £ OBc (X
E

b AM(E) £ Of £Bxm(E)
E

If A and B aredigoint messurable setsthen ¢ 5, C g , C oy aemeasurable functionsand
Cayg =Ca *Cpg
b fxg=f(catcs)

=fxx,,+tfxcy

P Of ae=0f s +0Of <&
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16.

1)

2)

3)

4)

Note : From the above proposition we conclude that,

If f(x)2 0 onEthen )f (x)dx2 0andif f(x)£0 onE, then Of X)dx£0
E E

If m(E) = O then gf =0

If f(x)=K ae. onE,then E)f = Km(E)

The result (ii) in the above propostion is one of the advantage over the Riemann integrdl.
Change in the vaue of function f on a set of measure zero has no effect on the Lebesgue

integrability of f or on the vaue of its integrd. On the other hand changing the vaues of a Riemann
integrable function on aset of measure zero may affect the Riemann integrability of the function or the
vaue of itsintegra.

17.

18.

In the above proposition, converse of (i) need not be true. We discuss the following example.

Example: Let f:[-1,]® R and g:[- 1,1] ® R bethefunctions defined by,

f(x) =2, X£0
=0, x>0
ad g(x)=1 "X

Thendearly f 1 g a>e. Infact they are not equa even for asingle point in the domain.

Also f =2>¢ 15 and g=C.qy

1 1
Therefore, ~ Of = 02C[.19 =2n{-1,0] =2
-1 -1
1
and W=Cg=m-1]=2
-1
1 1

Thus, OF = QY but 1 g
-1 -1

Proposition : Let { fn} be a sequence of bounded measurable functions on a set of finite

measure E. If { f,} ® f uniformly on E, then lim Eof” - EOf .
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Proof : Since the convergenceis uniform and each f,, isbounded, the limit function f is bounded.

Alsof isapointwiselimit of asequence of measurablefunctions. Thereforef isaso measurable.

Since f,® f uniformly, for given | >0 thereisa postiveinteger N such that

~

I
|f ® f”|<m(E) fordl n3 N andfordl x| E
Therefore
I -
of ® of|= £d,f-f|£ ——xm(E) =l
EE E%(E) m(E)
gfn < foralns N
P Ofn® Of '__rgQO =0f
E E E E
19.  Note: If Convergence f,® f isnot uniformthen Ofn need not convergeto Of . We
have the fallowing :
. él 2q
For each natural number n we define f, on p+ by f,(X) =n,if xI gﬁ,ﬁH:OOtherwise
Then ¢f, =1 for all n. Therefore lim ¢, =1. But lim f, =0P gf =0
Hence limgyf, * of .
20.  TheBounded Convergence Theorem

Let { f,} beaseguence of measurable functions on aset of finite measure E. Suppose { f.}

isuniformly pointwise bounded on E. i.e. there exigsanumber M 3 0 suchthat |fn|£ M onEfordl

n.If { f,} ® f pointwiseon E then 1 im Of ‘0‘c

Proof :

Since pointwise limit of a sequence of measurable functions is measurable. Therefore f is

measurable. Also | f,|EM fordlnonE b |f |[£EM on E. Now for any measurable subset of E,

E=AUE - A). Thereforefor any n,



ofn'c‘)f:dfn'f): 0 (fn'f)zdfn'f)"' C\)(fn' f)

E E E AJE- A A E-A
:dfn' f)+ Ofn+ b('f)
A E-A E- A
b (‘)fn- (‘)f £dfn- f|+ (‘)|fn|+ (‘)|- f|
E E A E-A E-A

£9f.- fl+2mM o1
A E- A

£Qf.- f[+2Mm(E- A)
A

Now forany 1 >0, and E is a set of finite measure, by Egoroff’s theorem, there exigts a

I
meesurable set A of E for which f, ® f uniformly on A and m(E- A)<N.Since f,® f

uniformly on A, there exists an integer N such that

~

|
|fn' f|<m,"n3 N and" xi A

Thereforefor n3 N we get,

Ofn - Of
E

E

EQfy- f|+2Mm(E- A)
A

T m(A) ]
+2M
2m(E) 4M

p £

0~ Of

E E

b <! fordine N

Ofn- Of
E E

N

Hence the sequence[g”} convergesto Eof .

lim of, = Of

ie n® ¥
E

m o,
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21. Note: A measurablefunction f on E is said to vanish outsde a st of finite meaaureif thereis
asubset E, of E for which m(E,) <¥ and f=00n E- E,.
We define asupport of afunction f asaset, supp f ={x1 E| f(X)* 0}

If afunction f vanishes outsde a st of finite measure then f has a finite support.
If f is bounded measurable function defined on a set E and has afinite support Ej then

of= o0 f=of+ 0f=o0f

E EOU( E EO) Eo E-Eo =)

where E is measurable st with finite measureandf =0 on E - E, . Thisdefinition aso holds
for ameasurable set E with m(E) = ¥ .

4.3. Lebesguelntegral of a Non-negative Measurable Function :

1 Definition : Let f be anonnegative measurable function on E. We defineintegrd of f over E
by

of = SUP{ ch| h is bounded measurable function of finite support and O£ h£ f on E}
E E

ie Of =sup o,

E hef £

Where supremum is taken over al bounded measurable functions on E with finite measurable
support.

2. Theorem : Chebychev’'s Inequality : Let f be a nonnegative measurable function on E.
Thenforany | >0,

- 1
m{xT E|f(x)?3 | }£|—(‘)f
E

Proof : Foranyred | >0, defineaset E; hy,

E ={xI E|f(x)%1}
Then E; ismeasurablefordl | .

First supposethat m(E ) =¥ .
For any naturd number n, definesets E, , by § , = § N[-n,n].

Then the sequence { E ,n} is an increasing sequence of measurable sets such that
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¥ - ¥ ¥ 6
UE ~=E ¢ B =F Nr=g NY[-nn]={JE =
n-1 n=1 n=1

e 1%}

Defineafunctiony ,,, nT N by
ya(¥=lxcg (X)), %] E

Theny () =1 ifxI E ,andy ,(x)=0if xi E ,.Hencey ,(X) £ f(x) onEfordln.

But (‘y”:d XCEI,n:| ><m(E|,n)
E E

5
=ImeJE 1+ (By continuity of Lebesgue messure)
2

H P Of 2 lim¢y,=¥ P Of =¥
e P Of* im0y
1
Therefore, I_Of =m(E, )
E

Now consider, m(E; ) <¥ . Defineafunctionhby h=1 xCg .Thenh £] onE. Therefore
h is bounded measurable function and support of his E; whose measure isfinite.

Therefore, f 2 h30on E .

b of* gh= gh=! oL=1m(§ )

E E FE E|



3.

b m(E )£ of

E

P m{xI E|f(x)?21I} E%(‘)f
E

Proposition : Let f be anonnegative measurable function on E. Then f =0 if and only if
E

f=0aeonE.

Proof : First assumethat yf =0. Then by Chebychev's inequdity for each natura number n we

have

E

- 19 1.
P mixl E[f(X)3-yE—f =0
| n% ne
= m}xT E|f(x)3iu:0
| n%
Therefore by countable additive property of Lebesgue measure,

- ¥ . 1{
{xXTE|f x)>0 = JIxI E |f x)3 _%
n=1! n

n=1

. it Loy
b m{xI E|f(x)>0}—m+U%X| E|f (X)Bﬁk%

¥ N R 1.
A mixIE|f x)° —g
n=1 n
=0
P m{xl E|f(X>0=0
P f=0axonE.
Conversdly supposethat f =0aeonE.

Let f beasmplefunction andh be abounded measurable function of finite support such that
f3ah3fs3o.
Then f =0 axeb f =0ax

P § =0
E



But d1 ?;ﬁd f isagmplefunctionsuchthat f £h.Hence h=0 since =0 fordl
E E

f £h.

Next Of - ‘?EJ? 0" Hence f =0, since oh = Ofor al bounded meesurable functionswith

E E
finite support suchthat h £ f .
Thes | =0 axeU Sf =
4, Theorem : If f and g are non negetive measurable functions then,
- pf =agf
0] : ,a >0
@y Of*t9=of+ou
E E E
(iii) f £g aethen Of £ (0
E E
Proof :
(0] Since f 30, a>0,af30
By definition,
Oaf =suph
htaf £
= Sup h
_Efg Let 5=K \ h=ak
= sup (pK
KEf E
=supa (K
KEF &
=asup OK
KEf E
=aQf

E

@i Let h and k be the bounded measurable functionssuchthat h£ f and k£ g

Then, h+k £f +g
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Now, Of To= ,}?fj?gog, ¢ is bounded measurable function.

3g1+k gnce h+k £f +g

=0+ ¢
E E
Taking supremum over dl bounded measurable functionsh, k suchthat h£ f and k £ g we get,

of+93wp¢+wpd<

hef g kg g

P of +g3 Of +C
o'+9" o'+ .. (1)
E E E

Next, let , be the bounded measurable function defined on a set of finite measure such that
¢ £ f +g. Definethe functions h and k by,

h(x) =min{ f (x),£(x)} and k(x)=/(x)- h(x)
Then h and k are bounded measurable functions. Further if f(x) < ¢ (X) then h(x) = f(x) and
k(x) =4(x) -h(x) £F(x) +g(x) - F(x) =g(X).
Andif f(x)3 ¢(x) then h(x) =/(X) and k(x) =/(X) - h(x) = £(x) - £(x) =0£ g(x)
Thus" xT E, h(x) £ f(x), k(x) £ 9(x)
Now k=/-h
P /=k+h
P (y=0kth

E E
=K+
E E

=} dﬁsupdﬁsupd"l

kEgg  KEf g
P yEQ+Of
E E E

Taking supremum over al bounded measurable functions 7 £ f + g, we get,

up V£ O + OJ

(Ef+gE g

N

P of +d£0Of + (o e
E E E



From (1) and (2) we get,

of +9=0f +

E E E
(i) Let f £g ae If hisbounded measurable function suchthat h£ f then h£ g ae.

Therefore, {h|hE f} | {h|h £ g}

P suph£sup ch
hef g hEg g

P Of £Q0
E E
5. Theorem : (Additivity Over Domains of | ntegration)

Let f beanonnegative measurablefunction on E. If A and B are digoint measurable subsets of
E then,

Of—of+of

AUB A B

Proof : Since A and B are messurable, Al B is aso measurable and the functions ¢ ,, cg ad

Cayp aemeasurable. Since A and B are digoint, we have
Cays =Ca TCp

Therefore, AS)B = Sf B

= Of[ca+cs]
E

= fxca+ fcg]
E

= Ofxca* Of s (Linearily property)

E B
=0of +of
A B

Nextif E, isameasurable subset of E then
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B = EoU(E' Eo)
Hence by above property,

o= 0 f=0f+ of
E EoU(E- EQ) Eo E-Ep
Now m(E,) =0. Hence m{x1 E,|f(x) >0} =0.

ie f =0axon E,.Hence ()f =0.
o

Thereforeweget, Of = ) f where m(E,) =0.
E  E-F

6. Fatou’sLemma

Let { fn} be a sequence of nonnegative measurable functionsonE. If f, ® f pointwiseae
on E, then

Of £liminf 3f, = limg)f,
E E E

Proof : Since Lebesgue mesasure over a set of messure zero is zero, we assume that f, ® f

pointwise on E. Also { fn} IS a sequence of nonnegative, measurable functions, the limit function f is
nonnegative and measurable.

Let h be a bounded measurable function of finite support suchthat h£ f onE.
Let M 3 0 beared number suchthet |h| £ M -

Let Eq={xT E|n(x)* O} .Then m(E,) <¥ . For each natura number n, defineafunction
h, on E by

h,(X) = min{h(x), f,(x}, " xT E
Thenh,, ismeasurablefor eechn. And 0£h, EM on K, fordl nand h, =0 on E- E,.
Thus h,, isbounded " n. Further for each xi E, h(x) £ f(x) and f (X) ® f(x) implies

h,(X) ® h(X). Thus{ hﬂ} isasequence of bounded measurabl e functionswhich converges pointwise
on E to h. Therefore by bounded convergence theorem,

%ﬂghzl!@@gnghzg (Since h, =0 andh=0o0n E- E, )
0



Butforeachn, h, £ f,,. HmceEdhEgH,fordl n.

Thus m—"mdh =limgh, £ imf;
E E E

n® ¥

Taking supremum over dl bounded measurable functions h £ f we get,

sup O £ liminf Of

nEfE
b Of £liminf Of,
E E

7. Note: Theinequdity in Fatou' s Lemmamay be drict. We have the following example :

8. Example: Let E= (0,1] . For any natural number n, define f, = n>ca% 130 ONE.
¢U—a
e

ng

Then { fn} is asequence of nonnegative measurable functionssuchthat f,® f =0 onE.

Af = cn>c nma% 1
Hence (yf =0.But O'n = 0! B g nd
E
PO =t n Hence f O~
Thus Of < lim of,, =limof,
E E
9. Monotone Conver gence Theorem :

Let{ f,} beanincreasing sequence of nonnegative measurable functionson E, and let
f = limf,, ae pointwiseon E. Then,

I'I'IO,
—h

=limof,
E

Proof : Since{ f,, } isasequence of nonnegative measurable functions, by Fatou'slemma

I'I'IO,
—h

limf,
C (1)
Also{ f } isanincressing sequenceand f,® f ae Hence f, £ f fordl nl N which

implies Of n £ Of fordl n1 N
E E
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b Supof £Of fordl ki N
n?'kE E

p |nf sup Of , £ Of

nd k E E
P limQOf, £ Of @
E E
From (1) and (2) we get
of £Elimof, £ Ilmof £ of
E E E E
P Of =lim of, =1im of,
E E E
P Of =limof,
E E
g
10. Qorollay:Let{ u,} beaseguenceof nonnegative measurablefunctions, and let f=aun.
n=1
Then
hY o¥ N\
of =a @'n
n=1

Proof : Define asequence of functions{ f,, } by,

f =

n Uy

1

1 QDo

=~

Since, u,'s are nonnegative measurable functions f,'s are nonnegative measurable and
{ f,,} isanincreasing sequence of nonnegative measurable functions and

¥
f.® f=gu,
k=1

Therefore by monotonic convergence theorem we get,

Of =limf,



¥ ¥
or (‘ﬁ Uy = é. o
k=1 k=1
11. Proposition : Let f be anonnegative measurable function and { E; } beadigoint sequence of

a of

measurable sets. If E = UE; then Sf - e
|

Proof : Let Uj=f>xCg,

Then, f><:E:f>cUEi
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12. Example: Show that Monotone Convergence theorem need not be true for decreasing
sequence of functions.

Solution : Let{ f, } beasequence of functions defined by,

f,x)=10 X< n fordl xI R
=1 X3 n
Y
A
fq fo
1+ — >
— i I } » X
1 2 3 4
fi>f>f3> .

Then{ f,, } isadecreasing sequence of measurable functionsand f,,® 0= f .
Hence Of =0
R
But  Ofp = (Fpoy) =M[n¥) =¥ fordin
R R
Therefore, ,Ié@rg H?f” =¥
Thus RQf " r'g@ Igfn . Which shows that the Monotone Convergence Theorem isnot true for

decreasing sequence of functions.
13. Example: Show that we may have drict inequdity in Fatou's Lemma

Solution : Let{ f, } beasequence of functions defined by,

f.(x)=1 ifngx<n+1
=0 otherwise
ie fn(x) =C[n,n+1)

Then{ f,, } isasequence of nonnegative measurable functionsand f,, ® 0= f

Hence H?f =0 Apd H?fn =RG[n,n+1) =L N Therefore limyf, =1
R
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Andweget, 0= f <limpf, =1
R R

This shows that grict inequality holdsin Fatou's Lemma
14. Definition : A nonnegative measurable function f is said to be integrable over ameasurable
E

15.  Propostion: Let f and g be the two nonnegative measurable functions. If f isintegrable
over E and g(x) < f(x) on Ethen gisaso integrable and

Of-9=0f - &
E E E
Proof : Since f and g are nonnegative measurable functionsand g<fonE,f—g 3 OonE.
Therefore, f=(f-g)+g

p (‘)f:df- g+g
E E

=0f -9+
E

E

Butf isintegrableon EP ()f <¥
E

And g<fb g<Qf <¥
E E

N

P (o<¥
E
P g isintegrable over E.

Hence, )f = Of - g+ (0
E E E

b Of-9=0f - g

E E E

16. Propostion: Let f be anonnegative function which is integrable over E. Then for given
1 >0$d>0. Suchthat for every st Aj E with m(A) <d we have,

of <
A
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Proof : If f isnonnegative and bounded then assume that sup| f (x)| <M for somefinite podtivered

number M. Thenfor given | >0 choose d<TA/I , such that for any st A with m(A) <d we g,

&f <M =Mm(A) <M>d<M x— =
M
A A
P of <
A

Thus the result is true for nonnegetive bounded function.
Nextif f isnot bounded then define asequence{ f,, } by,

f.(x) = f(x) if f(x) £ n

=n if f(x) > n

Clearly f,(X) £n " n and " x

And f ., 3 f, fordln. Thus{ f,} isanincreasing sequence of bounded measurablefunctions,
ad f,® f.Also f,2 0 fordln

Hence by Monotone Convergence Theorem,

n® ¥

Of = lim f,
E E

Thereforefor given | > 0$ an integer N such that,

|
<7 fordl n3 N

O Of

E E

b lgf- )<t
E

Since, f3 fy, f- fy30p §f- fy 30
E

N

Hence EOf “

= of - fu
E



~

. |
Thes OF - T <3
E

Choose d >0 such that d<|_
2N
Then for any st A with m(A) <d we have,

of :df- fN)+ fn

A A

= f- fn)+Of
A A

55”9\‘ (since Ty £N)

~

:IE+N>m(A)

<I_+N>qj<|_+Nx|_:|_+|_:i
2 2N 2 2

P of <1
A

17. R oposi ti on: Let f beanonnegativeintegrable function over E. Then f isfiniteaeon E.
Proof : For any naturd number n, we have,

{xXTE|f (=¥} {xT E|f(X)2 n}
P m{xT E|f(X=¥}£m{xT E|f(X)3n},"n
By Chebychev'sinequdity we have,

- 1
m{xT E[f(x)3 n} £—f
r]E

) 1.
Therefore, m{xI E|f(x)z¥}£ﬁ0f " n
E

P m{xl E|f(X)=¥}=0

b fisfiniteaeonE.
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18. Beppo Levi'sLemma:

Let { fn} be an increasing sequence of nonnegative measurablefunctionson E. If the sequence

of integras [ C)fn} is bounded then { fn} converges pointwise on E to ameasurable function f thet is
E

finteaeonE.and lim of, = Of <¥ .

Proof : Since{ f,} isamonotonic (increasing) sequence of messurable functionson E, f, ® f on
E wheref isdso an extended red valued function.

Thus 0= lim £,09 v .

Since { fn} IS increasing sequence, by Monotone Convergence Theorem we have
of = lim of,
E : E

But { bfn] is bounded. Hence yf isfinitei.e Of <¥. Thereforef isintegrable on E and
E E E
hence by above propogtion f isfiniteaeon E.
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UNIT -V

THE GENERAL LEBESGUE INTEGRAL

I ntroduction :

We have defined Lebesgue integration of Smple functions, bounded measurable functionsand
nonnegative measurable functions. Now we define Lebesgue integration of any measurable function.

5.1 General Lebesgue Integral
1 Definition : Let f be any function defined on E. The positive part of f is defined as,

fr(x)=max(f(x),0),"x1 E
Similarly negative part of f isdefined as f~ (X) = max (- f(x),0) foral xi E. Note that
both f * and f ~ are nonnegative functions.
2. Note: (1) f = f*- f onE.Forif f(x)>0then f*(x)= f(x) and f (x)=0.Hence
fH(X)-f (X)= f(x).Smilalyif f(x)<Othen f*(x)=0and f (x)=- f(X).
Hence f*(x)- f (x)=0- (- f(x))=f(x).
(2) Smilarly |f|= f*+ f - onE.

3. Example: f ismeasuradleif andonly if f * and f — are measurable.
Solution : Let f be measurable. By definition

f*=max(f,0) and f  =max(- f,0)

Since maximum of measurable functionsis measurable, f * and f — are measurable.

Conversdy, if both f * and f — are measurablethen f* —f — ismeasurable.

P f ismeasurable.
B, Example: If f(x)=x, x1 [-1,1],findf *andf .

Solution : By definition, f *(x) = max ( f (x),0)

= max (X, 0) x1 [-11]
Hence, fr (X =x if O£ x£1
=0 -1£x<0
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Smilaly f~(x) =max(- f(x),0)

= max (X, 0) x1 [-11]
Hence, f (x)=0 if 0<x£1
==X if -1£x£0

6. Note:

@ The representation of f asf = f* —f~isnot unique. For, f; = f* + C,f, = f~+ C then
f=f —f,.

()] If fismeasurablethen f* and f ~ are measurable. Hence|f| =f*+f  isdsomeasurable

Converse need not be true. i.e. | f | is measurable but f need not be measurable.

For example, if Pisanonmeasurable subset of E:[O,l) then defineafunction f :E® R
by fx)=1 if xT P
=-1 if xI P

Thenf is not meesurable. But | f| (x) =1 is measurable.
7. Proposition : Let f beameasurablefunctiononE. Then f* and f~ areintegrable over E if
and only if | f | isintegrable over E.
Proof : Fird assumethat f* and f~ areintegrableonE. Since f* and f - are nonnegative measurable
functions by linearity property,

Ofl=0f T+ =0f "+f  <¥
E E E E

b |f| isintegrable over E.

Conversdy if | f| isintegreble over E. Thenwehave O£ f* £|f| and O£ f~ £]f].

And by monotone property we get,

Of " £ 9f|<¥ and Of " < Jf|<¥

E E E E

Henceboth f* and f- areintegrable over E.
8. Definition : A messureble function f on E is seid to be integrable over E if |f| isintegrable
over E.

i.e fisintegrableover Eiff both f* and - areintegrable over E. And we defineintegra of
f by



9. Note: For anonnegaivefunctionf, f = f* and f~ =0 onE.

10.  Proposition : Let f be integrable over E. Then f isfinteaeonEand, Of = O f |
E  E-E

whereE, I E with m(E;) =0.

Proof : Sincef isintegrable over E, by definition, | f| isadsointegrableover E. Also | f| isnonnegative

measureble function. Hence | f| isfiniteaeon E.

But|f|= f*+ f .Henceboth f* and - arefiniteae Hence f = f*- f~ isfiniteae
onE.

Let B, be ameasurable subset of Ewith m(E;) =0.

Then 0F=0 -1
E E

=0 - o
E E

=0f- _CE)Of (-~ Integrd of f* and f~ iszero over aset of measure zero)

11 Proposition : (TheIntegral Comparison Test)
Let f beameasurablefunction on E. Suppose thereisanonnegative, integrablefunction g over

£ 3.

E

Esuchthat | f|£ g onE. Then f isintegrable over E and | Of

E

Proof : Since | f| and g are nonneggative measurable functions over Eand | f |£ g implies

Of|£ Qp<¥,sncegisintegrableon E.
E E

b |f| isintegrable over E.
Hence by definition f isintegrable over E.
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And, afl=|d - f)‘
E E
= (‘)f"-(‘)f"E(‘)f" +¢ ‘
E E E E
Since f*, f730,0f 20, Of 20.
E
Hence, NIEQF +of =g f +f)=¢f
E E E E E
P |of £df|
E E

12. Note: Two functionsf and g are integrable over E then the sum f + g may not be properly
defined at pointsin E wheref and g take infinite values of opposite sgn. Hence we define the function

f + gonasubset A of Ewhereboth f and g arefiniteand then m(gE- A) =0 [E—A isaset where
gther f isinfinite or g isinfinite or both f and g areinfiniteand sincef and g areintegrable. f and g are
finteae. Hence m(E- A) =0]

If f + g isintegrable over A then we define

gf+g9)= Q (f+g=0f+g+ Of+g=0f+g

E AUE- A A E-A A

13. Proposition : Let f and g beintegrable function over E. Then,

@ a f isintegrable over E, and Cpf =a Of
E E

(b)  f+gisintegrable over E, and S)f tg= gf +SF

(© If f £g ase then gf £99

Proof :
@ If a >O0then,

Oaf = daf -af”’

-aQpf” (sincef *and f ~ are non-negative measurable)
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(b)

=aQf -agQf
E

=agof "~ of Y

Ee e H
cpf =a of
E E

Nextif a =—1thena f= (<1)f = —f

Therefore, af =- f =- (f*- f)=f - f*

And

=-enf - Af U
0" -0

& e H
:-(\)f

E

Frdlyif a <Othena =—-kwherek >0

Therefore, CRf = kf =- OKf =-kOf =aOf
E E

E E E

Hencefordl a1 R, wehave,

apf =a of

E E

If f,and f, are nonnegative integreble functions such thet f = 1 —f,. Andf = f* —f~,

Then

f=f-f,=f*- f

p fi+f =f"+f,

P ofi+0Of =0f  +0f2
E E E

D6f1'62=6f+'0f
E E E E
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Hence Of = Ofi~ Of2
E E E
This showsthat Of isindependent of the choice of representation for f.
E
Now if f and g areintegrable functionsthen f = f*- f~ and g=g*- g~ wheref*, f -,
g*, g~ are nonnegative integrable functions.

Therefore, f+g:(f+- f')-(9+'9_)
=(f*+g*)-(f +g7)

b (‘)f+g:df++g+)- df' +g')
E

(© If f £g ae.then O£ g- f ae
Buu O£g- fae

P O£Qg- f
E

b OE£¢p- Of

E E

P Of £0
E E
14.  Corollary : (Additivity over Domain of Integration)

Let f beintegrable over E. Assumethat A and B are digoint mesurable subsets of E. Then
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Proof : Wehave |f xc | £|f| and |f xcg|£|f| on E. By integral comparison test, the measurable
function f xc, and f xc areintegrableover E (- f isintegreble | f| isintegrable). And since A and
B aredigoint.

fxcyg =f[ca+cg]

=fx,+fxg onE

Hence, O F=0f Caus = fca+fxcg]
" AUB E E

= Of xca +Of XCp

of

15.  Example: If fisintegrablefunction, provethat | f| isasointegrableand £ 9f|.Do&s

integrability of | f| impliesthet of f 2
Solution : Forany functionf, f = f*- f~ where f 3 0, f 3 0.If f isintegrablethen f*and
f ~areintegreble. Hence | f|= f * + f ~ isintegrable

Further [f|=f*+f" 3 f"- f =f

b[f|s f and |f]° - f

b dfl* of ad Gfl° - 0f

E E E E
b §f[* of ad - 3FI£ Of
E E E E
P -f|E Of £ Of|
E E E

b |of|£ ]
E E

Findly | f| isintegrablethen f * and f ~ areintegrable. Hence f = f * - f = isintegrable.
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16. L ebesgue Convergence Theorem :
Statement : Let g be an integrable function over E and let { f, } be a sequence of measurable

functions such that |f,|Eg onEfordinand f,® f ae onE, then f isintegrable over E and

f=limQf,

m o
m o

Proof : |f,|£g fordln
P -g£f,£g fordln
b O£ f,+g and 0£g- f, "n

Therefore{ f, +g} and{ g—f,, } are the sequences of nonnegative measurable functions
suchthat f,+g® f+gadg- f,® g- f.

Therefore by Fatou's lemma,

of +g£limpf,+g and - fElimcy- f,
E E E E

Now, |f.|£d' nP [f|£g
Sincegisintegrable, | f| isintegrable and hencef isintegrable. Also esch f, isintegrable.

Hence we get,

(‘)f+dg£li_m[c‘)fn+c‘g] ad (g~ of £|i_m{@g- Ofn]
E E E E E E E

E

P Of + g £limdf,+ g and Ou- OF £ g~ limof,
E E

E E E E E E

Sincegisintegrable, OJ < ¥ . Hence we get,

E E E

P Of £limQf, £1imf, £ OF
E E E E
P Of =limf , =limQf,
E E E
P of =limof,
E E
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17.  Theorem : (General L ebesgue Dominated Convergence Theorem)

Let{ f,} beaseguenceof measurable functionson E that convergesa.e on E to f. Suppose
thereisasequence{ g, } of nonnegative functions on E that converges pointwissaeon Etog and

dominates{ f, } on Einthe sensethat | f,|£ g, onE " n.

of .

o R lim of, =
|fr|‘(|®rr;(pn:(p<¥,then,®¥Eon :
E E
Proof : |f,|£ g, fordln.
b -g,£f,Eqg, fordin

P O£ f,+g,and O£g,- f, fordln

Therefore{ f,,+g,}and{ g, — f,,} arethe sequences of nonnegative measurable functions
suchthet f,+g,® f+gadg,- f,® g- f ae

By Fatou’'slemma, we get,

f+g£”—m(\)fn+gn and (\ﬂ' f£”—m(\pn' fn
E E E

I'I'IO,

Now |f.|£g," nb |flEg

Sncegand g, areintegrable, f and f,, are integrable. Hence we g,
Of + QO£ limf 3+ 0po} et &9 1 £1im{ G910}
E E E E E E E E

f+fﬂ£”—m6fn+”_mfﬂn and 8- éf £”—mmn' m(\)fn
E E E E E E E

b

m o

But g, ® g areand ? :”mEOJ”

Therefore, we get

Of + 9 € limQyf,+ 09 ad &g - &f £ d- Tme
E E E E

E E E E

/

b

I'I'Io;

fEIMOF, and - Of £-limQ)f,
E E

m

fELl

iv)
m o
™
5

fnmdgmnmgn

m

b

m o

f £limQf, £1imQf, £ Of
E E E
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5.2 Characterization of Riemann and L ebesgue | ntegr ability
1. Lemma: Let{f,} and{y ,} besequencesof functionswhichareintegrable over E suchthat

{f .} isincreesing while {y .} isdecreasingon E. Let f beafunctionon Esuchthat f, £ f £y |, on
Efordln.

If lim ¢y n-fn)=0,then {f } ® f pointwisesaeonE, {y ,}® f aeonEand fis
n® ¥
E
integrable over E and

f

imdg.=0f limgy.=
n®¥d” 0 ,n®¥oln
E E E

m o

Proof : For x| E,definef * (X) :rl]g@n;lf (X andy * ()= r'g‘;y n(X) . Thefunctionsf * andy *

are extended real valued functions. The sequences{f .} and{y ,} aremonotonic and hencef * and

y * aeproperly definedon E. Further f * andy * are pointwise limit of sequences of measurable
functionsand hence f * andy * are measurable functions.

Alo f . £fEy ., "n b f*£fEy *.

Andsince{f )} isincressingand {y ,} isdecreasing, we have
f,Ef*E f £y * £y ,fordln

P OEy *-f*£y - f , fordln

POEQy *-f*)EQ,-f,) fordln
E E

p ogEdy*-f*)ﬁnl(i@rggyn-fn):o

b gy *-f%)=0
E

Py *-f*=0aeonE

Py*=f* aeonE
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Buf*£f £y * .Hencef*=f =y * ae.onE.
Andf , ® f*=f y ®y*=1f, aeonE
Sncef * andy * are measurable, f is aso measurable.
Further f , £ f £y , fordln.

bPf,EfE£y,

P G:£0f£0 1

E E E

Sncef, andy ; areintegrable, JL<¥: O1<¥.
E E

Hence ()f <¥ . Thereforef isintegrable over E.
E
Next f,£fE£y,fordln

POE£f-f,andOEy - f

P OEf-f,Ey,-f,and P Ofy ,- f £y ,-f,

P OEQ ~faEYn-fn OEQn- FEQ n-fo
E E ' E

POEQf -Fnfn-fn OEn-OFEQYn-fh
E E E ' E E E

Tekinglimtasn® ¥ and lim ¢y ,- f,,=0.

n® ¥
E

b ognlgggf-gngo, OEn'!@ng”' Sf £0

P of =Ilim = lim QA
0 n® ¥ On n®¥0”-
E E E

Theorem : Let f be a bounded function on a set of finite measure E. Then f is Lebesgue

integrable over E if and only if f ismeasurable.

Proof : We know that a bounded measurable function on a set of finite measure E is Lebesgue
integrable. Conversdly we show that a bounded, Lebesgue integrable function is messurable.

Let f beintegrablefunction on aset of finitemeasure E. Alsof isbounded. Sincef isintegrable,

lower and upper Lebesgue integrals are equdl. i.e.

sup| ¢§ If issimple,f £ f on E]:inf[@( ly issmple, f £y onE
E E
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Therefore there exists a sequence of smplefunctions {f |} and {y ,,} on E such that,

f £ f £y ,"n and r'é"ig”:i!@”;'g“

=) !g@n;dyn-fn)=0
E
Since maximum and minimum of ample functionsis again smple function we can replace each

f,by MaXFi andeachy , by MaXY i,

Then the sequence {f,} becomes increasing and {y ,} becomes decreasing such that

f,.EfEy, "n.Alsowehave b rI\(iFDrQ(‘)'r]-fr]:O. Hence by above Lemma we get

{fl® fly,.}® f ae onEandsincethe convergenceis pointwise, f is measurable.

3. Note : If abounded function on a closed and bounded intervd [a b] is Riemann integrable
over [a, b] then it is Lebesgue integrable over [a b] and the two integras are equa. The above
theorem suggest that a bounded L ebesgue integrals function is measurable. Hence we have following
theorem in which we prove the equivaence of Riemann integrability and measurability (or continuity
a.e)

4, Theorem : Let f be abounded function on the closed bounded interval [a, b]. Then f is
Riemann integrable over [a, b if and only if the st of pointsin[a b] a which f falsto be continuous
has measure zero i.e. f iscontinuous on [a, b] ae.

[Since continuity implies measurability, the above theorem gates that Riemann integrability on
aclosad bounded interva implies measurability]

Proof : Firg we assume that f is Riemann integrable over [a, b]. Then Riemann upper integral and
lower integrals are equal. Therefore there are sequenc&s{ pn} and { pn} of partitons of [a, b] such
tha  limU(f,p)=limL(f, b))

P lim&J(f.p,)- L(f, m)f=0

where U (,p,) and L(f, p;) areupper and lower Darbaux sums.
Under refinement of partition of [, b] thelower Darbaux sum increases and the upper Darbaux

sum decreases. Hence, we form acommon refinement p, of p, and p, sothat{ p,} isrefinemernt

of both { p,.} and { b, }.
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Also we construct the common refienement sequence { P, } such that p,,, 1 isrefinement of p,,

for al n. Therefore, r'ggéJ(fpn) L(f,p,)g=0.

Y A
/'+ Yn
NI
f n
\‘
O a tk—l tk b rX
P

n

For each integer n we define lower step function f | associated with f w.r.t. the partition B,
which agrees with f at the partition points of R, and in each open interval of the patition B,, f
assumes congtant value equd to the infimum of f on thet interval.

Similarly for each integer n we define upper sep function y ,, which agrees with f a the
partition points of P, and'y |, takes congtant value equa to the supremum of f on that interval.

Therefore by definition of the Darbaux sums we get,

b b
L(f.R)=n andU(f P,)=q,.fordln
a a

Further the sequences {f .} and {y ,} are sequences of integrable functions such that
f,£ f £y, fordl non[a b]. Moreover each Py, isrefinement of P, impliesthe sequence {f .} is

incressingand {y ,} is decreasing. Therefore,

o

r|l|®n;} ‘yn-fn):r[i®r2éj(fipn)' L(f’Pn)EIZO

Q

Hence by theorem {f .} ® f and{y ,} ® f on[a b] pointwise ae.
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Let E bethe st of pointswhere either {y ,(X)} or {f,(X)} fail toconvergeto f (x). Then
m(E)=0 (sncey ,® f ae f,® f ae). Let E, be the union of E and the set of dl partition

pointsin the sequence { B,} . Then m(E,) =0 since K, is the union of countable set and the set E
whose measureis zero.

Wed amthetf is continuous at each point in [a, b] — E,,
Let X,1 [a,b]- E, bearbitrary andlet | >0.

Since{y (%)} and {f (%)} convergesto f (x,) there exists an integer n, such that
Y n00)- FOQ)<T . [fa(x0)- TOo)[<T " n2 g
Py, (%)~ F0), Fx)-fr(x)<
B f(x)-T <fr (%) £ f(X)£Y r, (%) < f(x)+]
Since X, is not a partition point there exists d >0 suchthat (% - d, X, +d) 1 1, , where
I, issome openinterval corresponding to the partition R, .
Thereforeif (x- %)) <d then
Yy (%) =F e (N E F)EY  (X) =Y 1 (X0)
P f(X)-T <f(X)<f(x)+]
P {f(¥)- f(x)|<

Thus |x- x| <d b |f(X)- (%) <I . Which shows that f is continuous a X,. Since
%1 [a,b]- E, isanbitray, f iscontinuousaeon [a, b].

Next we prove the converse.

Let f be continuous on [, b] ae. Let {Pn} be a sequence of partitions of [a, b] for which
[R[®o.

Let {f} and{y .} bethe sequences of lower and upper step functions associated with the
function f over the partition P,,. Then f . £ f £y | foral non[a, b].
Let x,1 [a,b] suchthat fiscontinuousat X, and x, isnot apoint of any partition P,- Then
forgiven | >0 thereisd >0 suchthat
)
|X- Xo| <d P [ f(X)- f(><0)|<E
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~ ~

=} f(xo)-|5<f(x)< f(><0)+|E

Choose an integer N such that |R,| <d foral ns N . Let I, be the open interva of the
partition P, suchthat x,1 1,,. Then

o1 (%~ d. % +d)
But " xI I,,f,(X)Ef(X)EY ,(X).

~ ~

and 1 (36)- 5 £ ()% T (%) 87 (%) T (30) 5

b 1 (%0)E f(%)E f(><o)+|§' f(%)fyn(xo)“(xo)+|5

b O£f(x0)-fn(x0)£%<i O£y, (%)- f(x0)£|E<T

P OET(x)-fn(%)<l, P 0Ly (X)- f(x)< fordl n3 N.
b 1n(x)@ f(%).yn(x%)® f%).

B limf (%)= f (%), P limy (%)= f (%)

n® ¥
Sincex, 1 [a,b] issuch that f iscontinuousa x, and X, isnot the point of any partition P,
wegetf, ® f,y,® faeon[a b
b limf, =1 limy, =T aeon[a b].
Further since f is bounded on [a, b], the functions f , and y ,, are aso bounded on [a, b].
Therefore by bounded convergence theorem,
b

b
imd@.=0f lim
n®¥9” 0 '@ ¥

» QT
=]
I

) o
Q;

b
p !g@rggjyn-fn):o

The Riemann integration of a step function is same asits Lebesgue integrd, we have

b b
On=U(f.R) and §n=L(F.P)foraln
a a
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b
But of :ignfu (f.Py)

a

b
P éf £U (f ’Pn), fordln

a

b

Smilaly, Of =supL(f F,)
a n

P Of 2 L(f\R), fordln

b b
Thus O£ )f - ¢f £U (f,R,)- L(f,R,) fordln.

a a

b b b b

POER - F EYn- G
a a

a a

b b b
POEQH-F EQfyn-fh)

a a a

Tekinglimtas n® ¥ weget,

b b b b
Of - Of =0 e Of = 0f
a a a a

Hencef is Riemann integrable. Thus abounded function f is continuousaeon [a, b] impliesf
is Riemann integrable on [a, b].

oo
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UNIT - VI

DIFFERENTIABILITY OF MONOTONE FUNCTIONS

6.1 Vitali’'sLemma

1. Definition
A closed, bounded interva [c, d] is said to be nondegenrateif ¢ < d.
2. Definition

A collection F of closed, bounded, nondegenerate intervalsissaid to beacover of asst E, in
the sense of Vitdi, if for evay x| E and | >0 thereisanintervd | in F suchthat x| | and
O
3. The Vitali Covering Lemma

Let E bea st of finite outer measure. Let F be acollection of closed, bounded intervas that

coversE inthe sense of Vitali. Thenfor eech T > 0, thereisafinitedigioint subcollection {1, }_ of 7
such that,

c

é "o
m*aE- | J I o<
é

k=1

oOC

Proof : Since m* (E) <¥ , thereisanopenst O suchthat E| O and m*(O) <¥ .

Since F isaVitdi covering of E, we can assume that each interva of F iscontained in O.

Let {1,};_, beadigoint collection of setsin F.

¥
Then UNT O
k=1

p mgfj I ?E m(O)

k=1 @

P é¥ m(l,) £m(O)
k=1

¥
P & (1) £mO)<¥ e (D)
k=1

Now F isaVitdi covering of E. Therefore " x{ E and "1 >0, $I 1 Fsuchtha
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xI 1 and 2(1)< .

pEI(JI
wva
T - " i

Le F=il T F Y=ty )
1 k=1 %

PE-Uhl Ul e
k=1

[
| n
Nowif {1}, isafinitedigiaint subcollection of intervaisin 7 suchthat E1 U Ik thenthe
- k=1
proof is complete

e n noa
wE- Iy =f and m*geE- UlkS:m* (f)=0p m*geE-
g k=1 e k=1 @ e

II( S
=
A
%
o
I-T

1 9 %)

~

n n
If Eisnot covered by (U !k then there exist XT E- [J I . Then from (3) we can find an
k=1 k=1

intervd |1 F, suchthat xT 1T .
Snceljo,"ITFadF I F,1i0,"ITF,
b ¢(1)EmO)<¥.

Hence ¢ (1) isfinitefordl 1T F,.

Let S, =sup{¢()|1T 7}

Chooseaset I, %, suchthat £(1,) >%.Thenthecollection{l1, oy oo Iy Ieg} iS@
dioint collection of setsin . Inductively we can obtain acountable digioint collection of sets{ Ik}tzl

S

) -
inF such that E(In+1)>?3 fordl 1T 7.
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i-e-€(|n+l)>$1"l Withlﬂulk:f . e (4)
k=1

Next, for this countable collection { | k}t:l we have

I, O,"k=1,23,.
¥ Ve

p IO
k=1

p mg@ I EE m(O)

€ek=1 @

¥
P & m(l,) £Em(O) <¥
k=l

¥
P (l)<¥

k=l
3 .

Thus @ *(1x) converges. Hence ngka) =0
k=l

ie {/(1)}®0aske ¥ .. (B)

n n
Let n be any natural number. If 1k is not a cover of E, then there exists x1 E- Ut
k=L k=1

n 0
Since F is Vitdi covering of E there exigsaniintervd || Fsuchthat xi | and IﬂgJUIK;f .
ek=1 @

Thenl mustha/enoneﬂptyintersectionwithsomememberof{Ik}t:l.Otherwiseif LN =f, "k,

n-1
then IN[J 1, =f,"n=123, ...
k=1

By (4) E(In)>@ fordln=1,2, ..

Which isa contradiction since /(1 )® 0.

¥

Hence | intesects with some member of {1}, _ .

Let N bethe least natural number suchthat 1 (1 * f .
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N-1
ThenN>nand 1N J 1, =f .
k=1

Andby (4), ¢(Iy) >@ ie 20(1y)>¢0).

Since x] | and I NIyt f, the distance of x from the centre of | is at the most

1
£(|)+E£(|N).

| Iy
e

[—e
X C

But #(1)<2¢(1y) . Hence the distance between x and the centre of 1 is a the most.

P+ (1)<26010) 45 (1) = (1)

Therefore x1 5* 1.

n
Thus XI E- U1 P XTI 5%l for someN > n.

k=1
n } ¥
Hence E- U T U 5* 1k ... (6)
k=1 k=n+1

Sincenisarbitrary. Thisrelation holdsfordln=1, 2, 3, .....

¥
Now for any | >0,sinceé f('k) converges, we can find an integer n such that
k=1
¥ i
a ((I)<g N
k=n+1
For thisn we have
n } ¥
E-Ui U 5*1k
k=1 k=n+1
e "N 0 ¥ 0
b m*cE- JI+Em*¢ ] 5% I+
e k=1 @ €k=n+l (]
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i
<5% (by (7)

e " 0.
P m*cE- [l =<l .
e k=1 @

4. Definition

For ared vaued function f, let x be an interior point of its domain. We define the Upper
deriveiveof f a x as

_ e f(x+t)- f(X)U
Bf (x) = lim§ sup o= 19U
h®0é)<|t|£h t U

Smilarly thelower derivaive of f at X is defined as

f(x+t) - f(x)g
t e
Clearly Df (x) £ Df (X).If Df (x) = Df (x) then f is said to be differentiable a x and the
common vaue of the upper and lower derivativesisdenoted by f '(x).
S. Note

Let f be acontinuous on closed bounded interva [c, d] and differentiable on itsinterior (c, d)
then by Mean vaue theorem, there exists z1 (c,d) such that

€.
D1 (9 =g 1,

f(d)- f(9)
d-c
If f'3a on(cd)then f'(z)3a andweget

f(d)- f(c)
d-c

f'(2) =

affi(2s=
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P axd-c)E£[f(d)- f(c)
The fallowing theorem generdizes this inequdity.
6. Theorem
Let f be an increasing function on the closed bounded intervd [a, b]. Thenfor each 3 >0.

- _ 1
m*{ xI (a,b)|Df(x)3a}£a—[f(b)- f(a)]

and m*{ x (a,b)|Df (x) =¥} =0

Proof : Leta >0.Define E, ={xI (a,b)|Df (x)3 a} choosea 'l (0,a) ie 0<a'<a .
Let F beacallection of closed, bounded intervas|c, d] contained in (a, b) such that
f(d)- f(c)®a'(d-c)

Since Df (x) 2 a on E, , wehave

F(x+D)- f
5F (x) = lim sup 0~ T
h® 0 o<itleh t

o For)- 109
t
P f(x+t)- f(x)2a'(t) t® 0

3a >a'>0 (f isincreasng)

P f(x+t)- f(X)3 a'(x+t- X)

Thusfor every T > 0$ aninterva [x,x+t]T F such that

([x,x+t] =t <l (- t® 0)

Hence F isaVitdi covering of E, . Hence by Vitdi covering Lemmathereis afinite digoint
subcollection {[ g, d ]}, of intervalsin 7 such that

Uls.c k]u«

k=1

m*

D: :PI_ICD\

Now Eal aU[Ck dk]—UgEa U[Ck dk]_

ekl (%]

b m*( £m*aTJ[ck k]—+m*gEa U[Ck dk]-

ek—l
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Now f isincressing on [a, b] and {[ g, d ]} ; isadigoint collection of subintervalsin[a bj.

Therefore,

g (d)- f (c g f0)- ()

7 e

o 1 -
Thusforeach | >0 anda 'l (0a), m*(%)E;[f(b)- f(a)]+]
Snce >(Q isabitrary we get,

m*(Ea)ﬁai[f(b)- f ()]
b m*{xi (a,b)|Df(x)2a} £ai>{f(b)- f (@]

Next for each natura number n,
{xI (a,b)|Df (x) =¥} {xI (a,b)|Df(x)2 n}
b {xi (ab)|Df(x)=¥}i E, fordln=1,23, ...
Hence by above reault,
m*{xi (ab)|Df (x) =¥} £m* (E,)E %(f(b)- f(@) "n=123,..

b m*{xi (a,b)|Df (x)=¥} =0
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6.2 Lebesgue sTheorem
L ebesgue s theorem is one of the important theorem in mathematical andysis (1904).
1. L ebesgue’'s Theorem

If thefunction f ismonotone ontheopenintervd (a, b) thenitisdifferentiable dmost everywhere
on (a, b).

Proof : Letf beincreasing on (a, b). Further assumethat (a, b) isbounded [-.- aand b are extended
real numbers. (a, b) need not be bounded)].

For rationd numbersa and b define the sets

E.» ={x1 (a,b)|Df (x)>a >b > Df (x)}

Then, {x1 (a,b)|Df () >Df(x)} = |J Eap
a,b

rationals

b m{xT (ab)|Df(x)>Df ()} =meel J E, , 0 £ § m(E, ,)
(a,b) g ab

We prove that E, |, has measure zero » rdionds a, b.Let a, b be any two fixed
raiond numberswitha >b .Let E=E, .

Let] >0. Thenthereexistsanopenset Oforwhich E1 Ol [a,b] and m(O) < m* (E)+1 .
Let F bethe collection of closed bounded intervas[c, d] contained in O for which

f(d)- f(c)<b@d-c)
Snce Df (x)<b onE, F isaVitdi covering of E. This vitdi covering Lemmatels us that

thereis afinite digoint subcollection {[g,d ]}, _, of 7 for which

n u .
m* g€ - |J[ec deJa<
u

v )

0] ('PI_I('D\

Thuseachinterval in {[ g, di ]}, issuchthat
f(dy)- f(c)< b (dg- ) " k=123, ..n

ad  [c.d]i O

n
P U[c.d]T O
k=1
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= mffj[ck,dk]fa m(O)
%)

ek=1

P & m([c..d])£m(O) (- Thecollection {[c,.,d, ]} isdigoint)
k=1

P 4 /([c.d])€mO)
k=1

b & (d - &) EM(O)

=

Y QoS

1

Also by property of eechinterval [c,,dy ],

f(d)- f(c)< b (de- c)

>

P & §f(d)- T (o )£ bmO) <b[m* (E)+1]
k=1

Now for xT EN[c,d,] wehave Df (x) >a .

Hencelemma

m*{ EN[c.d ]} Eaigf(dk)- f(G)B " k=1,2..n

& n 5 % n ('j~(.?
But EZQEﬂU[Ck'dk]+U§E”§J[ck,dk]+:
e k=1 (%] ek=1 g g
n o - n 5
> m (€)= QU ENfe. cy] - GE- Ul 8
ek=1 a e ka1 2

55 m* ( EN[cy, d ])+1

8 €1 (d)- 1 (o)
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1 I
£—b[m* (E)+1]+]
a
b 1. .
=—m*(E)=—x +]
a a

b 1. .
i.e m*(E) £ —m* (E) +—X +I
a a
Since| >0 isarbitrary we have
b
m* (E) £ —m* (E)
a

But O£ m* (E)<¥ and b <a

b
p ;<1, Therefore we must have. m* (E )= 0.

Thus E=E, :{xT (a,b)|Df (X) >a >b > [_)f(x)} has measure zero. Hence

Df (x) = Df (x) aeon[a b] i.e fisdifferentiadbleaeon[a b].

2. Definition :

Let f be integrable over a closed bounded intervd [a, b]. Let f is extended to (b,b+1] by
assuming thevaue f (b) onthisinterval.

Fordl h, 0<h£1 we define the divided difference function Diffy, f average vaue function
Av,, fon[a, b] by

f(x+h)- f(X) 10

Diff,, f (X) = and AFO)=7 O
X

where 0<h£1 and x1 [a,b] .

3. Note:Fordl afu<n £b wehave

n "f(x+h)- f(x) 1@‘ Y u
Piffuf =0 . =5 e0f (x+h)- of (Wu
u u a] n a
lé1+\h n‘ U
=F§:‘of(><)- of (¥u
€u+h u a
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1én\ vﬂ1 uﬂ] m U
:Feof(x)+ ofx)- of(¥- of(®¥u
&i+h u G

n u+h

n+h u+h

=5 0100~ 5 0100

= Av,f(n)- Ay, f(u)
Corallary : Letf beanincreasing function ontheclosed bounded interva [a, b]. Thenf 'sisintegrable

b
over [a b] and Of '£ f(b)- f(a)

Proof : Sincef isincreasing on [a, by, it is measurable and hence its divided difference functions are
aso measurable. Sincef isincreasing (monotonic) on [a, b it isdifferentiable ae (a, b) [by Lebesgue
Theorem]. For each positive integer n, define

1 e
f§x+—3- f
Diff, f (x) = ”1Q’ , X1 [a,b]
n s
n
Diff, f1* | . _
Then 1 is a sequence of nonnegetive mesaurable functions and
n Jn=1

e 1o
fex+—=- f
¢ ny T

1
n

lim Dif  f (x) = lim
n® ¥ = n® ¥

= f'(x) aeon|a b]

Diff, f
Thus =~ ( convergestof'ae on|a b).

n
Hence by Fatou’'s Lemma,

b b
Af £ liminf oDiff, f
Of & 7t 0PIy
a a n
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f +:L f
b b SX —=- f(X)

d)lff f)=0 dx
But a n a 1
n
éb\ & 10 b\ l;l o 1
= néegf 8X+_+dx' Of (x)dxq, (substitution for x+==t)
@a ng a G n
€l U
é n b a
=né ¢ f(x¥)dx- Of (x)dxu
€.t v
&M g
) . .
g b b+_ a+_ b L;I
=né ¢ f(x)dx+ O f(x)dx- 0 f (X)dx- O f(x)qu
é 1 i
@a? a+ﬁ G
éﬁ)+l a+l u
én U
=né ¢ f (x)ax- Of(x)dxu
éo a G
1 1
b+— a+t—
1 \”f 1 ! ;
7N 0777 0
BARRNFAR
=Av,, f(b)- Av,, f(a
Vy (b)- y (a)
£ f(b)- f(a) (- f(x) = f(b) on [b,b_1]
andf (a) £ f(x) on Sa,a+1U0
€ nHz
b
P cPiff,, f(X) £ f(b)- f(a "
ale i (¥ £ f(b)- f(a) n

b
P %n;sup?DIﬁ% fE f(b)- f(a)
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Therefore we get
b b b

Of '£ liminf C‘piff}/f £Iimsup(‘piff}/f £ f(b)- f(a)

a a n a n

n® ¥ n® ¥

b
b of £f(b)- f(a)

a

6.3 Functions of Bounded Variations
1. Definition : Totd Variaion

Let f bearedl valued function defined on the dlosed boundeinterval [a, b]. Let P ={ Xy, X....%}
be a partition of [a, b]. The variation of f with respect to partition P is defined by

K
V(. p) =4 | (%)- f (%)
i=1

And thetotd variation of f on [a b] is defined by,
TV (f )=sup{V(f ,P)|Pisapartition of [a,b]}
2. Definition

A red vaued functionf on the closed, bounded interva [a, b] issaid to be of bounded variation
on[a by, if

TV(f)<¥
3. Example
Let f be an increasing function on [a, b] show that f is of bounded variations on [a, by.
Solution : Let P be apartition of [a, b] given by

P={a=xy<X <X <....< X = b}

k
Then V(F,p) =& |f(x)- f (%)
i=1

k
=a gf (x)- f(x.)8 (Since isincreasing)

=61 (%)~ T (%)a+&f (x2)- F(x)f+-+6F(%)- f(%-1)H
= (%)- f(%)

=f(b)- f(a)
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that

Hence Sl;pV(f, p)=f(b)- f(a)
P TV(f)=f(b)- f(a)<¥
Therefore f isof bounded variationson [a, by.
Definition
A red vaued function f issaid to be Lipschitz function if there existsared number ¢3 Q such

|f(x)- f(X)|£clx- X "x x'T [a,b]

Lipschitz functions are continuous but converse need not be true.

Example
Let f beaLipschitz function on [a, b] show that f is of bounded variation on [, b].

Solution : Sincef isaLipschitz function on [a, by, there exists ¢ 3 0 such that,

|f(u)- f(v)|Eclu- v "u,vi [a,b]
Therefore for any partition P ={x,, X....x} of [a b]
k
V(P =alf(x)- f(x4)
i=1

k
£a cfx - %
i=1

k
=Cé’_1 [% - %]

i=1

of (- %)+ (%= %) * ot (X~ %))

P V(f,p) £c(b- a)
Taking supremum over dl partitions of [a, b] we get,

supV(f,p) £c(b- a)
p

P TV(f)Ec(b- a)<¥
Hencef is of bounded variationson [a, b).
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6. Example
Defineafunction f on [0, 1] by

) .
T xcos&ig if 0<x£1
f(x)=i 2X @
{o ifx=0

Show that f is continuous on [0, 1] but not of bounded variations on [a, b.
Solution : For any natura number n consider the partition P, of [0, 1] given by

i}

k
The  V(F.R)=A|f (%) f(x.4)
i=1

1 1
2n-1"""3’

I\J||—‘

P IO !
=[{0,—,
"172n

(%)= FO0)*]f (%) F O+t F (%) - f (%))

_faeli_j_f()+fae1 o aelj +faé.¢_fae13
&ng V7| &n-15 | &n &30  &2¢
1 c0sBn PO 892
=|—cosc2n,—=- 0 cos?Zn 1) — - —cos n—
2n-1 29 2n 2

1

+..+ cosg- —cosp
2 2

® po o ® po_
But 0058n XEE: *1if niseven and 0038n XEEZ 0 if nisodd. Hence we get

1 1 1 1 1 1
V(f,P)=—+—+ + +o..+—+—
2n 2n 2n-2 2n-2 2 2

11 1

=1+—+— +.. +—

2 3 n

Asn® ¥8?1 11 10 ® ¥ th ; ! divergent.
sn +—+ =+, t—= snce the series isdiver
8 2 3 ng n= N

Hence V(f ,P,)® ¥ asn® ¥

Therefore f isnot afunction of bounded variations.
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7. Note

Let cT [a,b] beany dement, Pbeapartition of [a, b] and P be the refinement of P obtained
by adding c to the partition P.

Let P={a=%<x<..x, =b
Then, Pt={a=xy< % <..X.;<C<X <..X,=b}

Therefore,  V(F.0) =8 (f (%)- T (X1))

k=1

S 1F (%) fOsea)]* & 17 () ()

=a |f(Xk)' f()ﬁol)|+|f (x)- f (Xi-l)|

P A F(%)- F(x0)

k=i+1
i-1

EQ|f (%) (Xe)|#]f (- f (xa)|+]f (x)- (0

+ & 11 (%) T (51)
k=i+1
=V(f,P9
Thus V(f,P)EV(F,P¢ “pi Pt
This shows thet finer the partition, larger is the variation.

8. Lemma

Let f beafunction of bounded variations on the closed and bounded interva [a, b]. Thenf can
be expressed as the difference of two increasing functions on [a, b] asfollows,

F () =§F 00 +TV ()i TV (o) “x1 [a,b]

Proof : Let ¢l [a,b] be arbitrary. Let P be a partition of [a, b] containing ¢. Then P induces the
partitions P; and P, of [a, ¢] and [c, b] respectively and we have

\ ( f[a,b] 1 P) =V ( f[a,C]’ Pl) v ( f[c’b] ' Pz)
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Taking supremum over P, P; and P, we get,
TV ( f[a,b]) :TV( f[ac]) +TV( f[c,b])
If fis a function of bounded variations on [a, b] then TV( f[a,b]) <¥ and hence
TV (frax) < ¥ fordlxi [ab].
Thereforeof a£u<vE Db then
LAY ( f[a,v]) =TV ( f[a,u]) +TV( f[u,v])
I:)T\/(f[a,v])-T\/(f[au]):-I—V(f[u,v]) "afu<vEb
Let T :[a,b]® R beafunction defined by
T(X) :TV( f[a,x])
T iscdled thetotd variaion function for f andfor a£u<v £ b, we have
Tv(f[a,v])_TV(f[au]) :T\/(f[u’v])3 0
PT(V)-Tu)30
P T(v)3 T(u)
Thus u<vpb T()E£T(v)

Hence T isincreasing function. i.e TV ( fa; ) isincreasing function on [a, b.
Nextfor afu<v£b,let P={u,v} bethe partition of [u, v]. Then,
- ) £V - FQI=V(fug.P)ETV (fuy)
And TV (i) =TV (frag)- TV(frau)
Therefore,
f (u) - f(v)EW(f[a’V])-TV(f[a’u])
P fWHTV (fiap)) £ FW)+TV( fay)
Thus, u<vb f(u)+TV(f[a’u])£ f (v)+TV(f[aN])

This shows that f(X)+TV( f[a,x]) isan increasing function on [a, b].

Frelly, f(X):gf(x)+TV(f[a’X])H- TV(f[a’X]), “x1 [a,b]

i.e. f can be expressed as a differene of two increasing functions on [a, by.
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0. Jordan’s Theorem

A function f isof bounded variations on the closed bounded interva [a, b if and only if itisthe
difference of two increasing functionson [a, b].

Proof : Let f be afunction of bounded variaions on [a, b]. Then by preceding lemma f can be
expressed as the difference of increasing functions.

Conversdy let f =g- h on[a b] whereg and h are increasing functionson [a, b).

Let P={,%,.%....%.} beapartition of [a, b]. Then
V(f,P):éllf(m)- f(x.1)]

(9(%)-h(x))- (9(x.1)- h(.0))

(9(%)- g(x-2))*+(h(x)- h(x.4))

{

= élgg(m)- g(x-l)a+éiléh(>ﬁ)- h(x.1)g

I
| QJOX

LN

I
| QJOA—

N

(%)- 9(%-2)|*|n(x) - h(x.1)}

H
Qo
«©«

o -
~ I

=g(b)- g(a+ h(b)- h(a)
Thus, V(f,P) £ g(b)- g(a)+ h(b)- h(a) holdsfor any partition P of [a, b].
Taking supremum over dl partitions P of [a, b] we g,
TV (f)£g((b)- g(@+h(b)- h(a) <¥ b f isof bounded variationson [a b].
10. Definition

A function f of bounded variations can be expressed as the difference of two monotonic
increasang functions. Thisrepresentation of f iscalled as Jordan decompostion of f. The abovetheorem
says that Jordan decomposition exigts for a function of bounded variations.

11. Corallary

If afunctionf isof bounded variations on closed bounded interva [a, b] thenitisdifferentiable
amost everywhere on the open interva (a b) and f " isintegrable over [a, b).

Proof : According to Jordan theroem, f is the difference of two increasing functions on [a, b]. Let
f =g- h where g andh areincreasang. Henceg' and h' exisssaeon (a, b) and therefore f '=g'- h'
exissaeon (a b). Also by theorem f ' isintegrable over [a, b].

oo
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UNIT - VII

CONTINUOUS FUNCTIONS

7.1 Absolutdy Continuous Functions
1. Definition
A red vaued function f on aclosed bounded interva [a, b] issaid to be absolutely continuous

on[a, b] if for every | >0, thereisd >0 such that for every finite digoint co||ection{(ak,bK)}E=1 of
open intervasin (a, b) with

~

<|

(b, - a) <d mmélh(m- f(a)

=~

T Qo5

1
2. Note

If f is absolutely continuous on [a, b] then for any ¢l [a,b] for given 1 >0, thereisd >0
suchthat [x- cl<d b |f (x)- f(0)|< .

Therefore f isuniformly continuous & c. Since ci [a,b] isarbitrary, f is continuous on [a, b].

Thus absolute continuity implies continuity. But the converse need not be true.

3. Proposition

If thefunction f is Lipschitz on aclosed bounded intervd [a, b then it is absolutely continuous
on|[a b].

Proof : Let f beaLipschitz function. Then there existis areal number ¢ such that
|f(u)- f(V)|Eclu-V fordl u,vi [a,b]

~

I
Thenfor given | >0 choose d :E then

lu-vi<d b |f(u)- f(v)|Ectu- \,{<c>I<E:T

Hencef is asolutely continuouson [a, b).
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4, Note

Absolutely continuous functions need not be Lipschitz for example f (x) =+/x, O£ x£1 is
absolutely continuous but not Lipschitz.

5. Theorem

Let f bethe absolutely continuous on aclosed bounded intervd [a, b]. Then f isthe difference
of two increasing absolutely continuous functions and hence f is a function of bounded variations
on|[a b].

Proof : Let f bethe absolutely continuous function on [a, b]. Thereforefor given | =1 choosed >0
such that for a partition P of [a, b] containing N closed intervals, {[ g, d |} ::1:1' |d - & |<d forall
k=12, ...N.
Then on any sub-interval [, d, ] of [a, b]
|6 - de|<d P |f(g)- f(d) <1 (sincef is absolutely continuous)

Therefore for any finite collection {()g,xi' )} of digoint intervalsin [, , dy | we have

alx-xl<dp [ (%)-f(x)<1
i Py

Teking supremum over al partitionsp, of [c,,d] we get

W(f[ck,dk])ﬁl, " 1£KEN
N
But TV(f[a,b]):ElTV(f[ck’dk])

N
£Q1=N<¥
k=1

Therefore f isafunction of bounded variationson [a, b].

Now any function f of bounded variations on [a, b] can be written as,

F00 =679+ TV (s )i TV/( o)

where TV ( fi,) isatota variation function on [a, b].

Also sum of two absolutely continuous functions is continuous. Hence it is sufficient to prove
that the totdl variation function TV( f[ ax] ) on [a, b] isabsolutely continuous.
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n

Let 1 >0 begiven. Sincef is absolutely continous, for a collection {( g, dk)}kz

, of disoint
open intervas, thereis d >0 such that

g J )

aldc-cf<dp &|f(d)- f(a)<5

=1 k=1 2

Now R if isany partitionof [c,d], k=1,2, ... nthen,

&

¢
e

<
—h

-t
=0
N

N

¥ kéz.lv ( Moad: Pk) 2

Teking supremum over dl partitions R, of [¢,d ], k=1, 2, ... nwe get,

.
Tv( f[ck,dk]) £§<l

=~

T Qo5

1
But Tv(f[ck-dk]):w(f[a‘l])_ Tv(f[a'ck])
Hence & §TV(flag)" TV (fagy U<t

Snce TV ( f[a,x] ) isincreasing on [a, b] we have,

|d - 6 |<d P él‘w(f[a,dk])- TV( f[ayck])‘

=~

T Qo5

1

Thisshowsthat TV ( f[ ax| ) isabsolutely continuouson [a, b]. Hencef isthedifference of two
increasing, absolutely continuous functionson [a, b).

6. Note

f=(+f)-T whereT and T +f areincreasng. Above proposition saysthat if f isabsolutely
continuousthen T isaso absolutdy continuousand dso T +f isabsolutdy continuous. Thust can be
expressed as a difference of increasing, absolutely continuous functions.

133



7. Definition : Uniformly Integrable Functions
A family F of measurable functions defined on E issaid to be uniformly integrable over E if for
each | >0 thereisad >0 suchthat foreach f1 F if A isameasurable of Ewith m(A) <d then

of|<
¢ .

8. Note : For 0< h£1 wehave

x+h

Diff, (X) = f(X+hr)]' ' AV FO) =20 fOd, i [a,b]

X

Andas h® 0, Diff, f(X)® f'(x) and Av, f(X)® f(x)," xI [a,b].

9. Theorem
Let f be continuous on the closed bounded interva [a, b]. Then f is asolutely continuous on

[a b if and only if the family of divided difference functions, { Diff,, f} _, ., isuniformly integreble

over [a, b].
Proof : First assumethat the family { Diff,, £}, isuniformly integreble over [a, b]. Let T >0 choose

d > 0such that

~

] I
E

To provethat f is absolutely continuouson [a, b] let {(ck, dk)} Ezl be the digoint collection of

open subintervals of (g, b) for which
g
a [d- o] <d [d istaken from uniform integrability] .... (2)

=~

1

Now fordl, 0<h£1 and 1£k £ n wehave

dk
ODiff, f =Av, f(c)- Av, f(dy)
ck

Therefore,
g g%
a|Av, f(d.)- Av, f (¢ )|=a | ODiff, f
k=1 k=1| g




§ %
£a (‘)|Diffh f
k=1ck

o [Diff, f]
n

U (ck.dk)

k=1

n
Lat E=J(c 0k ). Hence we can write,
k=1

Avy, f(dy)- Avy f (c)| £ gDift, £ 3)
E

=~

Y Qo5

1

Usng (1) in (3) (Snce m(E) <d ) we get

n |
a |Avy f (dg)- Avy f (Ck)|<§, "0<h£1
k=1

Sincef iscontinous, te&king limitas h ® 0 we get,

~

| (d)- f(ck)|<|E<T

=~

T Qo5

1

n
where & [0k - 6] <d . Hencef is absolutely continous:
k=l

To prove the converse, suppose that f is a absolutely continuous. Since every absolutely
continuous function is a difference of two increasing functions. We prove the converse for increasng
functionf. Now f isincreesng b  the divided difference functions are nonnegative. To prove thet the

family { Diff, f},_, .. of divided difference functions is uniformly integrable we prove thet for given
1 >0 there d >0 such that for any measurable subset E of (a, b) m(E) <d implies

Opiff, f < ," 0<h£1l

E

Now any measurableset Eiscontainedina G, set Gsuchtha m(G - E) =0.Every G, set

is the intersection of descending sequence of open sets. And every open et is a digoint union of
countable collection of open intervas. Therefore every open set can be expresed as a union of finite

digoint collection of openintervals. Hencewe provethat for acollection {(ck , dk)} Ezl of finitedigoint

n
open sub-intervas of (a, b) if E= U (e d) then
k=1
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i
m(E) <d P @Piffy, T <
E

We show that thet such d existsfor given | > 0. Now let T > Q bearhitrary. Thefunction f is

absolutely continuouson [a, b+ 1. Thereforefor given ] >0 thereisd >0 suchthatif {( ., d )} E:l

n
isadigoint collection of open sub-intervas of (a, b) with Eol [dk - Ck] <d,
k=1

(f(dk)' f(Ck))<E

Now for afu<v£b wehave

b

=~

T QDo

1

) - f()
O————dt

u

Vv
piff, f =
u

1éV\ v u
:F: f(t+h)dt- f t)dty
& a

u

év+h v U
:F‘%C\)f(t)dt' c‘)f t)dtg
€u+h u Q
1év v+h u+h \Y; l]
:F(?C\)f(t)d“’ c‘)f(t)dt- c‘)f(t)dt- c‘)f(t)dtl]
€u+h v u u+h a
év+h u+h U
:F(?C\)f(t)dt' (‘)f(t)dtu
ev u 9]
éh h u
:Fg(‘)f (v+t)dt- C‘)f (u+t)dty
& 0 a
1h
=—f (v+t)- f u+t)]dt
h0
Let g(t) = f(v+t)- f(u+t). Therefore,
Y, . 1h
QPiffy = ot where 0£t£1 and 0<h£1
u 0
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n
Now if E=J(G.0k) then
k=1

n
opiff,f= @ Diff,f= § Diff,f
E n (ck.dk)

U (ck.dk)

= —Cﬁ(t)dt where 0£t£1

ad  g(t) = f(dg +1)- €y *1)

Therefore d)lffhf _—Oa[f(dk+t)- f (g +1)]dt

Ok 1
Now a[dc- a]=a[(d+)- (g +1)]<d
k=1 k=1
b A[f(d+)- flo +0]<=
k=1 2
But d:)lffh f ——Ckﬁlgf (di+1)- f(c+t)g
0
1
02-o|t:——><h—E

o
p EdD|ffhf£E<I 0<hEl

Which shows that the family { Diff | f}, " is uniformly integrable over [a, b).

10. Note

For a non-degenerate, closed bounded interval [a, b], let F;,, Fac and Fp, denote the

families of functions on [a, b] which are Lipschtiz, absolutely continous and of bounded variations
respectively. Then the following dtrict indlusion holds.

fLipl, fACI' fBV
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Each of these collectionsare closed w.r.t. linear combination. Also thefunctionsin any of these
collections has totd variaion function in the same collection and hence any function in one of these
collections may be expressed as a difference of two increasing functions in the same collection.

7.2 Integrating Derivatives: Differentiating Indefinite I ntegrals
1. Definition

Let f be acontinuous function on the closed boundeinterva [a b]. By takingu=aandv =b
we get,

b
Piffy f =Av, f(b)- Avy, f(a) where 0<h£1

a

Thisis cdled a discrete formulation of the fundamenta theorem of integrd caculus.

2. Note
Sncef iscontinuous Av,, f(b)® f(b) and Av,, f(a)® f(a) assh® 0.
Further if f is absolutely continous we prove that

b b
Piffhf® Of "ashe 0
a a

3.  Theorem : (Fundamental theorem of intergal calculus for Lebesgue
integral)
Let f be absolutdly continuous function on the closed bounded interva [a b]. Then f is
differentiable ailmost every where on [a, b], its derivative f ' is integrable over [a, b] and

b

Of '=f(b)- f(a)

a
Proof : By discrete formulation of the fundamenta theorem of Integrd caculus we have

b
Piff, f ® Av, f(b)- Av,, f(a) (1)

a

Tekinglimtas h, @ o* we get
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a& o)
lim ¢ cpiff, f== lim [Av,, f(b)- Av, f(a)]
h®0+§a g heo’

= f(b)- f(a)

1
put h=H.Thereforeas h® 0", Nn® ¥ . Hencewe get,

o 0
lgr;g?)lff%fg: f(b)- f(a) e (2)

Now f isabsolutdy continuous function on [a, b]. Hencef can be expressed as adifference of
two increasing functions. By Lebsegue theorem increasing functions are differentiable ae on [a, by.

Diff, f1*
Hencef isdso differentiableon[a b] ae Thereforethesequence{ % ] converges pointwise

n=1

amost every whereon [a, b] tof

Diff, ¥
Also the sequence { % ] is uniformly integrable over [a, b]. Therefore by Vitdi

n=1
Convergence Theorem we can write

a2 5 b b
rlggégmff% f %— ggngff% f —g)f _____ (4)

Therefore from (2) and (4) we get

b

Of '=f(b)- f(a)

4. Definition
A function f on aclosed bounded interva [a, b] is cdled the indefinite integrd of afunction g
X
over [a, b if gisLebesgueintegrable over [a, b and f (X) = f (@) + QaMdt | " T [a,b].
a

5. Theorem

A function f on aclosed bounded intervd [a, b] is absolutely continuouson [, b] if and only if
it isan indefinite integrd over [a b).
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Proof : First suppose that f is absolutely continuous on [a, b]. For each x1 [a,b], f is absolutely
continuous over [a, X]. Hence by above theorem we have

X

Of '=f(¥- f(a)

P f(x)= f(a)+2‘)f'

a

Thusf isthe indefinite integrd of f ' over [a, b]. Conversaly suppose that f is the indefinite

integral of g over [a, b]. Let {(ak,bK)}Ezl be the digoint collection of open subintervals of (a, b).

n
weddine E=U(a.b) . Then,
k=1

8

T QoS
=
-
T

T Qo5

ay ‘ )

é f(x) = f(a)+:‘};," xI [a,b]

=~

1 k g

k=1

= ol

E

Now |g| isintegrable over [a, b]. Therefore for given | >0 thereisd >0 such tha for any
measurable subset E of [a b] with m(E) <d , 9g| <! .
n
Thereforefor, E= U (a.by)
k=1

m(E) <d b mzfj(ak,q()&d
]

€k=1

P 4 m(a.h)<d
k=1
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P & [o- a]<d
k=1

P a|f(b)- f(a)<

k=1

Which shows that f is absolutely continuous over [a, b).

6. Corollary

Let f be a monotone function on the closed bounded interva [a, b]. Then f isaabsolutdy
continuous on [a, b] if and only if

b

Of '=f(b)- f(a)

Proof : If f isabsolutely continous on [a, b] then by above theorem,
X
F)=1@+0f', "X (ab]
a

b
For x = b, weget Of '=f(b)- f(a)

a

b
Conversdly, assume that f is increasing on [a, b] and Of '= f(D)- (@) Then for any
a

x1 [a,b]
b X b
0=0f '-f(b) +f(a)=Of +QOf ' -f(b) +f (x) - F(x) +f(a)
ax 0 & 0
0=gof - f(X)+ f(aa+épf - f(b)+f(X)u . (2)
éa 0 & g

Sincef isincreasing on [a b,

X b
Of £ (- f(@ Of'Ef(b)- f(x)

X

X b
b of- f(X)- f(@£0, Of - f(b)+f(x)£0

a
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Thus sum of two nonpositive termsis zero (from (2)). Hence each of them must be zero,

X

ie. Of-f(x+f(a=0
b

X

P f(x)=f(a+Qf "x1 [a,b]

Thusf isindefiniteintegrd of f ' and hencef is absolutely continuous on [a, by.

1. Lemma
Let f beintegra over closed bounded interval [a, b]. Then f (x) =0 fordmostal x1 [a,b]

X2

if andonlyif Of =0 foral (x,%,)1 [a,b].

X

X2

Proof : Clearly if f(x)=0 foramostal xi [a,b]then Of =0 foral (x,%,)1 [a,b].

X
Conversely suppose that the condition holds

X2

ie Of =0 " (xx)i [ab] (D)

X1

We daim that, gf =0 for dl messurable sets E 1 [a,b] . e (2)

Since every open &t is acountable union of digoint open intervas, the equation (1) holds for
al open sats. The continuity of integration saysthat every Gy set G satisfies equation (1) Snceitisthe
countable intersection of open sets.

Further every neasurabl e set Edf [a, b canbe exressedas E=GEwhere G is Gy
sets and E; is a set of measure zero. Hence equation (1) holds for any measurable subset of [a, by.
Therefore our clam (2) holds.

Next messurability of f implies, the sets
E* ={x1 [ab]| f(x)2 0} and E" ={xI [a,b]| f(x) £0}
are measurable. Therefore f = f*- f~ and f = f* onEtand f =- f~ onE-.

Whereboth f* and f- are nonnegative measurable functions. Hence,
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b f"=0ae, f~ =0ae (Sncef * andf ~ are nonnegative measurable functions)

But f=f"- f .Hence f =0ae on|a, b

8. Theorem

dé u
Let f beintegrable over the closed bounded interval [a, b] then &gg)f 8: f(X) for dmost
al xi [a,b].
Proof : Define afunction F on [a, b] by
X
F(X)=0f, " xi [a,b]
a

Then F isan indefinite integra of some integrable function on [a, b] and hence it is absolutely
continuous. Therefore F isdifferentiable dmost everywhere on [a, b] and its derivative F isintegrable.

Now if [ %, %,] isany closed interval contained in [a, b], then

X2 X2 X2 X2

AF - f]=0F - Of =F (%) F(x)- of

1 X X *1
) X1 X2 X2 X2

=of- of- of =of - of
a a X 1 X

=0
e =OF-1)=0 [y x]i [ab] ([ % %] isarbitray)

b o[F*- f]=0

oy (Teking X, =a and x, =b)

P F- f=0 aeon[ab]
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P F'=faeon[ab]

d &

&%
P —&0fu="f aeonfab
dxg” g [2 0]

0. Note

X

d \
Above theorem shows that the differentid operator = and the integra operator O are

a

inverses of each other and that differentiation is reverse process of integration and vice-versaae.

0o
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UNIT - VIII

THE LP SPACES

8.1 Normed Linear Spaces
1. Definition

Let E be ameasurable set of red numbers. Let F be a collection of al measurable extended
red vadued functions on E which arefiniteaeon E.

Let f,g7 F.Weddfineardationon F by f @g if f(x)=g(x) aeonE. Then,
@) f @f fordl f1 F since f(x)=f(x) onE.
(ii) f @gb g @f ,"f,gl F.
(i) f@gadg@ b f=gaeonEandg=haeonE.

Lete  E ={xI E|f(x)? g(X}, E;={xI E|g(x)* h(x)}

Then m(E)=0=m(E,)

Therefore, {xT E |f (x) =h(x)} = §E- (E,UE,)gUE;
=(EUE;)- {E,UE,)- Egf
=E- EUE)- Egf

where E; | E; NE, suchthat E; ={xT ENE,|f(x)=h(x)}

Since m(E,) =m(E,) =0, m(E;) =0.Also m(E,UE,) =0.

Therefore m((E1U E,- E3) =0. Thisshowsthat f (x) =h(x) aeonEi.e f @h.

(i), (i1) and (iii) implies that the rdlation * @’ isan equivaencerdaion on F . Thisequivaence
relation on F inducesapartition of 7 into digoint collection of equivalence classesdenoted by 7 / @.

If f,971 F anda,b arered numbersthen a[f]+b[g]T F/°.

i.e. F /o isalinear space. The zero dement of thisequivaence classisthe st of al functions
which vanishaeon E.
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2. Definition
A st of dl equivalence dasses [ f]1 F/ @ such that df|P <¥,1£pP<y¥ iscdled an
E
LP (E) space.
- q.P .
Thus LP(E):ll[f]|df| <¥U
LE b
3. Note
(1) Iff@gten[f]=[g].
But f @gb f =g aeonE.
P §f =gl
E E
i.e. any member of the equivaent class gives same vaue of the integral. Therefore LP (E) is
properly defined " P,1£ P<¥ .
2 For any two real numbersaand b,
la+b| £lal +|bl £ 2max{|al,|bf}
Hence |a+bl” £ 2P gmax{lal I} g = 2° max{lal” Ibl°}
b la+bl” £2°{|al” +Ib"}
3  If[f],[g]T LP(E)anda,b arered numbersthan,

daf+bg £ & datl +bg
E E

=27lal” §f["+2°|b|" ol <¥
E E

snce f|” <¥ and Jg” <¥.
E E

Hence[a f +bg]T LP(E) i.e. LP(E) isalinear space. For p =1, L*(E) isaspaceof dl

equivaent classes of integrable functions.
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4, Definition

Let F beacallection of al measurable extended real vaued functionson E which arefiniteae
onE. A function f1 F iscaled essentially bounded if there is some real number M > 0 such that

|f()|£M fordmostdl x| E.
If such ared number M exigtsit is caled an essentid upper bound for f.

5.  Definition: ¥ (E)
A collection of al equivadent dasses [f] for which f is essentidly bounded is caled L¥ (E)
space. ¥ (E) isdsoalinear subspaceof 7/ @.

6. Note

For smplicity and convenience we say thet the equivaence classes [ f] asfunctions and denote
them by f ingterad of [f]. Thus

LP(E) =1 f | §f|” <¥¥

here f =[f].
T, where [f]

7. Definition : Norm on Linear Spaces
Let X bealinear space. A redl valued functiond ||.|| on X iscdled anormif (|.: X ® R)-
O It +al]f]+]gll. f.gT X
(i) |la f[=kll]|f], "fT X and"al R.
@iy |f|® oand|f|=0,iff f=0.
A linear space X together with anormis called a normed linear space.
Afunction f1 X iscaled unit functionif | f|=1. Notethat forany f1 X, f 1 0 then

f f
H isaunit function. H isanormdization of f.

8. Example

Show that LY(E) isanormed linear space.

Solution : We have, Ll(E):[f |(‘jf|<¥].
E
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i.e gpace of dl Lebesgue integrable function isthe L(E) . Clearly LY(E) is linear space
(since Lebesgue integration islinear). Defineanorm on L*(E) by
I1k=31 - 11 e
Then,
0) f,gl L}(E)p f andgaefiniteaconE.

And |f +g| £|f| +|g| ae onE.
b Of +9l£ Of|+|g[= 3f [+ Jul < ¥
E E E E
b f+gl L'(E) and | f +gf, £]|f], +[gl
(i) la ll=cn f|= G If|=R I3
E E E
(i)  For f1 LYE) suchthat | f[ =0 then

df|=0p f =0 aeonE.
E

p [f] isthezeroof L1(E).
P f=0

Alof=00n EP ¢Jf|=0pP |f],=0.
E

Hence ||| isanormon L*(E) . Therefore L(E) isanormed linear space.

9. Example

Show that L¥ (E) isanormed linear space.
Solution : Wehave L¥ (E) ={ f | f isessentially bounded on E}
b ¥(E)={f||f(x)|£ M aeonE for somerea number M >0}
Forafunction 1 L¥ (E) wedefine,

| ], =inf{M [|f(X)|£ M aeonE}
= infimum of the essentid supremum of f.

148



Hence | f|£]|f], aeonE.

1
Firg we prove the triangle in equdity for the norm. For each natural number n, || f ||¥ +E is

not the infimum of the essentia supremum of f. Hence,

1
|f (| £]f|l, t-aeonk
1
ie ¢ asetE, suchtha |f|£]f], +-onE-E, and m(E,) =0.

Let By =L¥JEn.Then m(E,)=mc EnEE é m(E,)=0
n=1 el @ n=l
And |f|£]f], on E- B, and m(E,)=0
ie |f|E]f], aeonE.
Thus | |, isthe smallest essential supremum of f. Now if f,gT L¥ (E). Then,
109+ g £]F I+ [k (1], +lgll, aeonE.
But | f +gf|, isthesmallest essential supremum.
Hence | +g], =[f, +[dl, -
Next |a f|, isthesmallest essential supremumof a f .

b laf|£]af]|, aeonE

b lal|f|£]a f], ae onE.

1
P [fleilafl aonE,a 1 0.

1
b |fl £m||a f (-] f]l, isthe smallest upper bound of |f|)

b lallfl, £]a fly
Alo |f|£]f], ae onE.

p lal|f|£lal] f[, aeconE

149



b laf|£ll]|f], aeonE

b [a fl, £lal]f],
Thus  [a f|l, =lalAf], (a10)
Clearly | f|, 2 0.Andif | f[, =0 then

|f(x)|£]f], =0 aeonE.

P |f(X)|=0aeonE

P f=0aeonE.

b f@o

Thus ||y isanormon L¥ (E) and therefore L¥ (E) isanormed linear space.

8.2 Thelnequalities
1.  Definition
For any measureble st E, f 1 L7(E), 1< p<¥ wedefineafunction ||,]| on L”(E) by
, 1/P
Ifle =311
&
We show tht ||.|| isanormon LP (E) .
2.  Définition
i 11
If pT (1,%) isarea number then its conjugate g is aso real number such that B+a:1'
o : : __b . : :
Notethat if pl (1,¥),|tsconjugate01—p—_1 doliesin (1,¥). Conjugateof 1is ¥ and
vice-versa
3.  Theorem: Young s|nequality

For 1< p<¥ , and aconjugate q of p, and for any two positive real numbersaand b,

p ¢
ab<a_+b_
P q
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Proof : Defineafunction g by

1 1
g(X):BXp*'a' X, "x>0

Differentiating w.r.t. x we get,
g'(x)=x"t-1
Then g'(x)>0 if x >1and g'(X)<0if x <1land g'(x)=0 at x = 1. Also
g"(x)=(p - Dx" 2.

Hence g"(x)>0, " x>0 sncep> 1.

1
Therefore g isminmuma x = 1 and Ymin =B+a' 1=0,
Hence g(x) 2 0, " x1 (0,%).

1 1
P =xP+=- X3 0, "yj (0,%)

Y q
xP 1 A
P ?"‘63 X, "x1 (0,¥%)
xP
P XE—+—"xI (0¥)
p
a
Take X=W.Thenwegd

&ea ('j£1aea ('jp+1
&l p&ily q

a 1 a° 1

b = =

b™ pyadP q
a 1l1la° 1

P ngb—q”a (“(a-)p=q)

axp? a® b
g2+
b " p q
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p d

P a*x £T+E, wherea >0, b > 0 and p and g are conjugates of each other.

4.  Theorem : Holder’s Inequality
Let E be any measurable set and 1£ p<¥ and q the conjugate of p. If f1 L°(E) and
gl LY(E) thenther product feg isintegrable over E and

9f gl £, Al
Moreover if f 1 0 thenthefunction f, given by

f* =] ][ " >san( ) 4f|"" belongsto LI(E).
and of <1+ =[], and [ ¥, =1

E

Proof :
Casel: p=1
If p=1then q=¥ . Thereforeif f1 L(E) and g L¥ (E).

. N ll/l -
then §f|<¥ and |, =(gf) =g
E E

and |g|£]g], aeonE.

Therefore df g = (‘jf|>{g|
E E

£ 0f Mgl
E
=lalv 3t [=lal AL
E

s OF 0l £[ITl Aol
E

Nextforp=1, f*=| [ "sgn(f)| [

=sgn(f)1 L* (E)

snce sgn(f)= AT L¥ (E)
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And OF Xf*=0fsan(f)=gf[=]f],
E E E

Also | T, = ||sgn(f)||¥ =1 since 1 isthe essentia supremum of sgn (f).
Thus the result holdsfor p = 1.
Casell: p>1let f10,gt 0" f1 LP(E), g1 LYE).

f g
If Holder’ s Inequdity istrue when f isreplaced by ”f " and g isreplaced by ||g|| thenitis
P q

truefor f and g. Hence we assumethat f and g are normalized functions. i.e. || f "p =1, ||QI||q =1
Then, &fjf|p¢%’ =1, ‘B‘Ct“59|q'+°/yq =1
& 5 & o
P gf”=1 p ggl'=1
E " E

Now | f|” and |g|* areintegrable over E.
Therefore f and g arefiniteaeon E. Thereforeby Y oung'sInequdity, taking a = | f |, b =|g|,

f°, lg”
|ng|£T+T aeonE.

p p
b §fale gl ol
E e P q

1 1
== 8P += gl
,df" 5 ad

1 1 11
==+ =
p q P q
=1
b df xg| £1 i.e isintegrable over E.
E

Hence f,gi LY(E)
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f g
Also for any functions f and g (not normalised) ”f " and ||g||
P q

are normalised. Hence we

get
f
~ xi £1
el fl, gl

P f xg|£] f],4dll,
E
Findly for any function f T LP(E),
fxf*:f>1|f||1r;psgn(f)>1f|p'1

:||f||lF;p>1f|p,a_eonE (- fsgn(f)=|f| ae onE)

B gt <= gff, P4t
E

E
1- N 1-
=1 P 1P =] P A 1]
E
1- +
=[PP =]e)

%

a1, =01
E
"%uﬁul " son( f w“\ X4

1-
=[] P ey

|(p Dq 0}/
SE o

| P

P
q

=||f||1r;p>§ﬁf|p°

E

1 p+o

p
— P q —
=10, A =M,
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+(1- p=0°

Q|'o

- |1, ¢

=1

Thus Of f* = fl, and | f =1
E

5. Minkowski’s Inequality
Let E be ameasurable set and 1< p <¥ . If the functions f and g belongsto LP(E) then

f+gl LP(E) and |f + ol £[|], +]dl,
Proof : Let, 1<p<¥.
Since LP(E) isalinear space, f, gl LP(E)
b f+gl LPE)

Let f +g* 0 onE. Let (f +g)* bethe conjugate function of f + g. Then by Holder’s
Inequdlity we have,

|f+al, = f +g){f +g)*

¢
And |(f +g)*] =1
=0Of {f +g)*+0o(f +g)*
¢ ¢

ENIFN, ACF + )], +lal (f +9),

= (11, + bl JA(F +0)],

=11, +ol, (<1 +0),=1)
6. Note

We have dready established the Minkowski’s Inequdity forp=1,p=¥.

Hencetheinegudlity, | f + 9] £]f[, +|dl|, holds" 1£p£¥,.
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7.  Theorem : (The Cauchy -Schwar z | nequality)

Let E be ameasurable set and f and g be measurable functions on E such that f 2 and g 2are
integrable over E. Then f xg isdso integrable over E and

81 gl £ &y oy 7"
E E  98E &

Proof : Since f2 and g2 areintegrable over Ewehave f, gl L?(E) . Hence by Holder inequality
(P=2,9=2).

af gl £]|l. 4l
E

8. Corollary
Let Ebeamesurablesstand 1< p<¥ .

Let F beasubfamily of LP(E) such that ||f||p£ M, "f1 F and for some constant M.
Then thefamily F isuniformly integrable over E.
Proof : Let T >0 and let A be any measurable subset of E of finite measure. Let p and g be the
conjugates of each other consider thespaces LP (A) and LY(A) . DefineafunctiongonA by g(x) =1,
"x1 A .Then,

Jol* = §=m(A) <¥ . Hence, gT LI(A)
A A

Now f1 Fi LP(A).Then|f| €M
Therefore by redtricting f to A and by Holder’ sinequaity we g,

af o= afl £ fl, 4 dl,
A A

A
A A 9

1%}
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df| ><(m(A)

EM >{m(A)]%

- o o
Thusfordl f1 ]—“,forgiveni>o,taked:8VE and we get,

m(A)<d b (‘jf|£M(m(A))q<M>d%
A

b §f|<l
A

Hence f is uniformly integrable over E, " f1 F i.e Thefamily F is uniformly integreble
over E.

9. Corollary

Let E beameasurable st of finitemeasureand let 1£ p; < p, £¥ . Then L2 (E) I LP(E) .
And further

[, Eclitlo,. = fT LP2(E)
PR
Where C =[m(E)]n-r, if p, <¥

and C=[m(E)]%1 if p, =¥

Proof :
) Y
Let p, <¥ .Define p—E>1 (v i< p,)

Let q bethe conjugate of p. Let f1 LP2(E).

Then dfplp:
E

P2
31 = g1 <
E E
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P 2T LP(E)

N9 = N =
Let g=cg.Then gy’ = g=mE) <¥
E E

Hence g1 LY(E) . By Holder' sinequality we get,

gt g £ 1] A,
E

1 1
b df [ P?p ’6%9|qga
E g é @

£EN TP
(0

P 1
= g0 2wy
E 5 &t o
=[] {m(E)) 2
Pt e ]2 {m(E))/*
E

1
Teking E power of both sdeswe get

1
a1 2|0 % £ 1], )]s

E (%]

P Py
=m(E) % A f],

, 1_1a§ 16_’)_1881 PO_P2- P
SN B0 e Py PE By B

P2~ Py
Thereforeif C =[m(E)] pp, then
[, £Clt],, <¥

Hence f T LR (E) and therefore L™ (E) [ LPL(E)
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Casell : p, =¥ and1£ p, <p, =¥
Then fT L*(E)b |f [£]f],

B If]% £] 1]
P af*edfly
E E

=[ [ >m(E) <¥

1
Hence f T LR (E).Andtaking E power of both sides we get,

1
1 & e, e/
E 7]
1

Teke C=m(E)™ then

1
[l £Sltl,,. po=¥ and c=m(E)".

10 Note
(1) IfEisof fintemesurethen 1£ p, <p, £¥ b L°2(E) isproper subspaceof L™ (E).

2 If E isof infinite measure, then there are no inlcusion relationshipsamong LP (E) spaces.

11. Example
Let Ebeaset of finitemessureand let 1£ p, <p, £¥ . Teke E= (0,1] . Defineafunction f
1 1
onEby f(x)=x* where- —<a&<-—,
S P2

Then f T LR (E) but fi LP2(E).Hence L™ (E)I L™(E).
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12. Example
Let E=(1,¥%).Then m(E) = ¥ . Define afunction f on E by,
X-yz

f(x)= ,
) 1+In x

x>1

Then f1 L2(E) and fi LP(E) forany p? 2. Hence in generd there is no indlusion

relationship among the LP (E) whenever E is not a set with finite measure.

8.3 LPisComplete: The Riesz-Fischer Theorem

Since LP spaces are normed spaces, it is possible to introduce convergence conceptsin LP,
sgmilar to the convergencein R , which is normed by absolute vaue function.

1. Definition

A sequence { f,} inalinear space X which is normed by anorm function |j.|| on X issaid to
convergeto afunction f in X if

lim{|f-f]=0
fim - 1
Wewrite{ f,} ® f inXor 1M T =1 jnx.
2. Definition
For 1£ p<¥, LP(E) arenormed linear spaces. For asequencef f,} of functionsin LP (E),
{t}e f, 1 it lim|f,- f],=0 ie
lim ¢f, - f|° =
n®¥d o f[7=0
E
For p =¥, thesequence{ f.} of functionsin L¥ (E) convergestoafunction f1 L¥ (E) if

{f.} ® f uniformly aeonE.

3.  Definition
Let X be anormed space normed by ||| A squence{ f,} in X issaid to be Cauchy in X if for

eech | >0 thereisanatura number N suchthat | f, - f.| <l foral mn3 N.
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A normed linear space X issaid to be complete if every Cauchy sequencein X convergesto
afunctionin X. A comlete normed linear spaceis cdled aBanach Space .

4. Proposition :

Let X be a normed linear space. Then every convergent sequence in X is Cauchy. And a
Cauchy sequencein X convergesit it has a convergent subseguence.

Proof : Let{ f,} beaconvergent sequencein X suchthat { f,} ® f inX. By triangleinequality for
thenormon X,

"fn' fm”:”fn']c +f - fm”
E]fo- f1+[f - ol "mn

Asm® ¥, f,® f and|f - f,|® 0. Therefore thereisan integer N, such that

~

I
R Y

Similarly there exists an integer N, such that

~

[f- 1] <= o N,
2

Take N = max{ Ny, N,} . Then we get

[
||fl"|- fm||<E+E:I " m,n3 N
Hence { f,} isaCauchy sequence,

Now let { f,.} beaCuchy sequencein X that has a subseguence { fr, } which convergesto f

inX.Let] >0 begiven. Since{ f,} isCauchy we can choose an integer N such that
T n
| - fm"<§ m,n3 N

since { f, } convergesto f we can choose k such that n, > N and | fo, - f||<IE.

Using triangle inequdity for the norm we get
|- f||:||fn- fot+fo- f||

N R i s
2 2
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P |f,- f|<l fordl n3 N.

Therefore the sequence convergestof in X.

5. Definition : Rapidly Cauchy Sequence

Let X bealinear space normed by ||| A sequence{ f,} in X issaid to be rapidly Cauchy if
g
there is a convergent series of positive numbers @ | « for which
k=1

| fisa- fil|ET (* foral k.

6. Note

If { fn} is a sequence in normed linear space and if there is a sequence of non-negative

numbers {a} such that

| fisa- | £ & foral k.

Then fn+k - fn =[fn+k - fn+k-1] +[ fn+k-1 - fn+|<- 2]+----+[ 1;n+1' fn]

x

nt+k-1

éfiﬂ' fJ'Elforail n, k.

n+°k-1, .
a gfju-f

j=n

QJo

n

Therefore, |- Tl =

~

n+k-1

£a |fa- fi

Qo

n

x

n+k-1

£

Qo

¥
[o]
3 £d 3 "nk
n j=n

¥
me |- =89,
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7. Proposition

Let X beanormed linear space. Then every rgpidly Cauchy sequencein X is Cauchy. Further
every Cauchy sequence has rapidly Cauchy subsequence.

¥

Proof : Let{ fn} be arapidly Cauchy sequence in X and let éi k be a convergent series of non-
k=1

negative numbers for which

| fsa- fil|<T* fordl k.

¥
[¢]
P fouc- Tl £aT
j=n
3 - g -
Since the series A | k converges, the series al also converges. Hence the sequence
k=1 k=1

{ f.} isaCauchy sequence

Conversely assume that { fn} is a Cauchy sequence in X. We can choose strictly increasing

sequence of natural numbers { n } such that

aelo

L L TR

nk+1

k
A @l o 8816(_ 2
Teke a, = ¢35 _g\/_a . Then "an' fn‘”£8§5 =a°,

and é¥ & =§ gal 0 converges
k=1 */—!Zf
Hence{ fy,} isarapidly Cauchy subsequence
8.  Theorem
Let E beameasurable set and 1£ p £ ¥ . Then every rapidly Cauchy sequencein LP(E)

converges, with respect to LP(E) norm, pointwise aeon E to afunctionin LP(E).

Proof : Weassumethat 1£ p<¥ . Let { f,} bearapidly convergent subsequencein LP(E). Then

¥

o ~
for aconvergent series A | k of positive numbers we have,
k=1
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|| frsa - fk"p £l k2," k
P & fk|p9/vp£T < foral k
& p

N Per 2
P Afca Wl 8P forank,
E
For afixed natura number k we have,
| fiaa(¥) - F Q|21 ifandonlyif [, - f(9|" 3T (P
Therefore by Chebychev' s inequdity we get,

m{xT E[fn00- 0021 J =m{xi El[fes00- 0021}

1 1 .
£ Qfiss- fk|p£A—p>4 2P
1P e I\

£1,°
Lee  E ={xT E[|f,()- f (|21}

Thenm(E, ) £1 P . And

0_¢ g -
mngEk+£a m(Ek)Eka__I M

€k=1 @ k= 1
g -
But p3 1, hencethe series A ! K" converges. Therefore
k=1
3
a m(Ey) <¥
k=1
3
P limg m(E)=0
k=n

Hence by Bord-Cantdli lemmadmogt dl x| E beongstoamost finitdy meny E, 's.i.e. $
aset By E suchthat m(E,) =0 andforal x1 E - Eg, thereexistsan integer K(x) such that
| Fra () - f ()] <y, " k3 K(x)

(snce x belongsto amogt finitely many E, 's)
164



Thusif xI E - E, then

| fiesa(X) - F (<, " k3 K(X)

n+k-1

P [frk (- {0 £ & |fju00- f;(X)
j=n

n+k-1
o] ~

Eal fordl n3 K(x) andforal k.
j=n
X

Eal foral n3 K(x) and " k..
j=n

¥
° ~
Since the series QI i converges, the sequence { f, (X)} isCauchy. Sincetheset g of redl

numbers is complete, the sequence { f, (X)} convergesin g . Let £, (X) ® f(X).

Then f, ® f aeonE. (since X1 E- Ey and m(E;)=0)
Now we have,
n+k
"fn+k f " = : | J+1CX) f; (X)
J:

n+k-1

£ é ||fj+1(x)‘ fj(X)”p
j=n

nt&-{‘ g R
£Eailjfeql?
j=n j=n
1oy
P &Y fp- LPPEQT 2
& 5 =
2 O
Ddfn+k f|£a| "n.K
j=n EJ

Snce f,® f pointwiseaeonE, tekinglimitas k ® ¥ , we get (By Fatous Lemma)

df - f |p£||mdfn+k- fol” £ al 22
S 5
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p

b df'flp gal 2= fordin

..p
T° P22 <y
j converges. Hence ga jx <¥,
' o}

QJ°+K

Now

j=1

b gf - f,|" <¥
E

b |f - f,| isintegrable over E.
b f-f1LPE)

But f, 1 LP(E) fordln,and LP(E) isalinear space. Hence f, +(f - f,)T LP(E), " n
P f1 LP(E)

wheref isapointwise limit of { f,} aeonE. Thus { f }1 L°(E) and f,® f aeonE,
pointwisethen f 1 LP(E).i.e.LP(E) iscomplete

9. Riesz-Fischer Theorem
Let E be a measurable set and 1£ p£¥ . Then LP(E) is a Banach space. Moreover if
{f.}® f inLP(E), then asubsequenceof { f,} converges pointwiseaeon Etof.

Proof : Weknowthat LP(E), 1£ p £¥ isanormedlinear space. Weprovethat LP (E) iscomplete.

Consider a Cauchy sequence { fn} in LP(E). Then there exists a subsequence { an} of
{ fn} whichisrapidly Cauchy. By previoustheorem every rgpidly Cauchy sequence converges pointwise

toafunctionin LP(E). Let { fnk} ® f pointwissaeonEwhere f T LP(E).And by proposition, if
a subsequence of a Cauchy sequence converges then the Cauchy sequence converges in the normed
linear space.

Hence the given Cauchy sequence { f,} convergesto the function fin LP(E).
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10. Note
If asequence { f,} in LP(E) converges pointwise ae. on E to afunction fin LP(E) then

{f.} may not convergeingenerd in LP(E).

/o

For example: E=[0, 1], 1£ p <¥ . For each natura number n define fn =n (0 i
'/nu

Then the sequence { f,} converges pointwise ae on E to a function f = 0. But the sequence { f}

does not convergeto f =0w.r.t. LP[0,1] norm.

0o
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