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ALGEBRAIC  EXTENSIONS  OF  FIELDS

UNIT  -  I

1. INTRODUCTION
We have studied so far groups and rings in some detail and just touched fields as a

special class of rings. Let us recall the definition of field, “A field is a commutative ring with
unity in which every non-zero element has a multiplicative inverse”. Now in this section we
recall some basic definitions and results which are studied earlier.

Definition : A polynomial    P x F x  is said to be irreduible over F, if P (x) cannot be
expressed as a product of two non-constant polynomials over F.

A polynomial    P x F x  which is not irreduicible over F is called reducible
over F.

Example : A polynomial    2 1P x x x    (  is field of reals) is irreducible over 
but not over   (  is field of complex numbers) because     2 1P x x x i x i      and

     ,x i x i x    but      ,x i x i x   .

Definition : The polynomial   0 1 .... n
nf x a a x a x     in  x  (  is set of integers) is

said to be primitive if the greatest common divisor (g.c.d.) of a0, a1, ..., an is 1.

Definition : A polynomial 0 1 .... n
na a x a x    over a ring is called monic if an = 1.

Remark : By the definition of primitive polynomial it is obvious that every monic polynomial
   f x x  is primitive.
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Definition :  Let F, E be fields such that F E  and let    f x F x . An element E

is said to be a root or a zero of   f (x) if   0f   .

We know that if F be  a field and  F x be a ring of polynomials in x over F, then

 F x  has the following properties.

(i)  F x  is an integral domain with unity and  F F x .

(ii) The division algorithm holds in  F x .

i.e. if      ,f x g x F x  and   0g x  , then   unique      ,q x r x F x  such

that        f x g x q x r x   , where   0r x   or    deg degr x g x .

(iii)  F x  is PID (Principal Ideal Domain).

(iv)  F x  is UFD (Unique Factorization Domain).

(v) The units of  F x  are non-zero elements of F..

(vi) A polynomial    P x F x  is irreducible iff 
 
 

F x
P x  is a field.

Proposition : Let    f x F x  be a polynomial of degree > 1. If   0f    for some

F , then  f x  is reducible over F..

Proposition : Let    f x F x  be a polynomial of degree greater than or equal to 2. Then

 f x  is reducible iff  f x  has a root in F..

Lemma : If      ,f x g x x are primitive polynomials, then their product    f x g x
is also primitive.

Lemma (Gauss) : Let    f x x  be primitive. Then  f x  is reducible over Q iff  f x
is reducible over  .
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Lemma : If    f x x  is reducible over Q, then it is also reducible over  .

Theorem (Eisenstein Criterion) : Let    0 1 .... n
nf x a a x a x x     , 1n  . If there

is a prime ‘P’ such  that 2 |P 0 a , 0P a , 1P a ,...., 1nP a   and  |P  na , then  f x  is
irreducible over Q.

Example :    2 2f x x x    is irreducible over Q. Because if we write

  2 2
2 1 01 0 2f x x x a x a x a         then 0 2a   , 1 0a   and 2 1a  .

If we choose prime P = 2, then 2 |P 0 a , 0P a , 1P a  and  |P 2 a .

i.e. Eisenstein criterion holds for  f x .

Definition : A one-one homomorphism of a field F into a field E is called an embedding of F
into E.

2. ADJUNCTION OF ROOTS
Definition : Extension Field :

If F is subfield of a field E, then E is called an extension of F.

Remarks :

1. If there is an embedding   of a field F into a field E, then  F F  and hence we
can regard F as a subfield of E or E is an extension of F.

2. We write F E  when E is an extension of F..

3. Any field E can be considered as a vector space over any of its subfield.

Example : 1) The field Q of rationals is a subfield of the field   of reals and we say that 
is an extensionof Q.
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2) The field   of complex numbers is an extension of the field   of reals.

Definition : If E is an extension of F, then the dimension of the vector space E over F is called
the degree of E over F and is denoted by [ E : F ].

Note : If  :E F    i.e. degree of E over F is finite, then E is called finite extension of F,,
otherwise E is called an infinite extension of F.

Example :  : 2   because the set { 1, i } forms a basis of   over  .

Example :  Let F be any field and  F x  be a polynomial ring over F. Let E be the field of

quotient of  F x . Then E is field extension of F and an infinite set  21, , ,....x x  is linearly
independent subset of E which spans E.

  E is an infinite extensionof F..

Example : For any field F; [ F : F ] = 1.

Since  1 |F a a F   .

  {1} will be the basis for F over F. Infact for 0a   in F the singleton set {a} will be
the basis for F over F.

Conversely, if E is an extension of degree 1 of F then [E : F] = 1 = [F : F] and hence
E = F.

Theorem (2.1) :  Let F E K   be fields. If  :K E    and  :E F   , then

1)  :K F    and

2)     : : :K F K E E F
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Proof : Suppose that  :K E m  and  :E F n  let  1 2, ,...., mv v v  be a basis of K over E

and let  1 2, ,...., nw w w  be a basis of E over F. Consider the set

 |1 ,1i jB v w i m j n      of mn number of elements.

Claim : B is a basis of K over F.

i) B spans K over F :

For let u K  be any element.

Since  1 2, ,...., mv v v be a basis of K over E we write

1

m

i i
i

u a v


 ; ia E  for each i .... (1)

Now, since  1 2, ,...., nw w w  be a basis of E over F and because ia E , 1 i m 
we write

1

n

i ij j
j

a b w


 , ijb F ,  1 i m  ..... (2)

Substituting the expressions (2) into (1) we get

1 1

m n

ij i j
i j

u b v w
 

 , ijb F

i.e. 11 1 1 12 1 2 1 1 21 2 1 22 2 2 2 2...... ......n n n nu b v w b v w b v w b v w b v w b v w       

1 1 2 2..... ......m m m m mn m nb v w b v w b v w    

But this shows that any element u K  can be written as a linear combination of

elements of B with the elements ijb F , 1 i m  , 1 j n  .

i.e. B spans K over F.
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ii) B is linearly independent set over F :

Suppose that

11 1 1 12 1 2 1 1.... n nc v w c v w c v w  

21 2 1 22 2 2 2 2.... ....n nc v w c v w c v w    

1 1 2 2 .... 0m m m m mn m nc v w c v w c v w     , ijc F

We write above expression by rearranging the terms as

   11 1 1 1 21 1 2 2.... .... .....n n n nc w c w v c w c w v     

 1 1 .... 0m mn n mc w c w v    .

i.e. 1 1 2 2 .... 0m mv v v     

where 1 1 2 2 ....i i i in nc w c w c w E       for each 1 i m  , because

 1 2, ,...., nw w w be a basis of E over F and ijc F .

Now since  1 2, ,...., mv v v  be a basis of K over E we must have 0i   for each

1 i m  .

i.e. 1 1 2 2 .... 0i i i in nc w c w c w       for each 1 i m 

0ijc  , 1 i m   and 1 j n  .

(  1 2, ,...., nw w w  be a basis of E over F and ijc F )

But this shows that B is linearly independent set over F.

Thus from (i) and (ii) the set  |1 ,1i jB v w i m j n     , form a basis of K
over F.

 1)  :K F mn    and

2)      : : :K F K E E F 

Example (2.6) : If F E K   be fields and  :K F  is  finite then  :K E  and  :E F  are

divisors of  :K F  since by theorem (2.1)      : : :K F K E E F  .
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Example 2.7 : If E is an extension field of F and  :E F  is prime, prove that there are no
fields properly between E and F.

Ans. : Let [ E : F ] = P (P is a prime number).

Suppose there is a field K such that F K E   then by theorem (2.1)

     : : :E F E K K F  .

   : :P E K K F   ..... (1)

 :E K  divides P..

But P is a prime.

 : 1E K   or P

i) If  :E K  = 1 then E = K

ii) If [ E : K ] = P then [ K : F ] = 1 (  by (1))

K F 

Thus if F K E   then either E = K or K = F i.e. there are no fields properly
between F and E.

Theorem 2.2 : Let E and F be fields and let : F E   be an embedding of F into E.
Then there exists a field K such that F is a subfield of K and   can be extended to an
isomorphism of K onto E.

Proof : Given that : F E   be an embedding consider the set ‘S’ such that

  S E F  and S F  .

i.e. cardinality of S is same as cardinality of the compliment of   (F) in E and S is
disjoint with F.

Now, let  :f S E F   be a one-one map and let K F S  .

Define * : K E   by    * a a   if a F  and    * a f a   if a S .

Then  * is an extension of  .

Since  and f are 1 – 1 and S F  .
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   * is well defined, 1 – 1 and onto mapping.

Now for ,x y K  define

      1* * *x y x y      and

      1* * *x y x y    

Then above definitions of addition and multiplication coincide with the given addition
and multiplication of elements of the field.

  F is a subfield of K and K is the desired field.

Theorem 2.3 : Let P (x) be an irreducible polynomial in F [x]. Then   an extension E of F in
which P (x) has a root.

Proof : Since    P x F x  is irreducible polynomial.

  The ideal generated by P (x) i.e.  P x  in  F x  is maximal ideal.

  the quotient ring 
 
 

F x
P x  is a field.

Let
 
 

F x
E

p x


Now define, 
 
 

: F xF E
P x

    by

   a a P x    for a F

Then   is an embedding of F into 
 
 

F x
P x  (prove it)

Thus we can regard 
 
 

F xE
P x

  as an extension of F..

Let   0 1 .... n
nP x a a x a x    , n > 0 and ia F  then  x P x  is a root of

 P x in E.
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( Since      
0

n i
i

i
P x P x a x P x


  

  
0

n
i

i
i

a x P x


 

 
0

n
i

i
i

a x P x


 

      0P x P x P x     in E.)

Thus E is an extensionof F containing a root of  P x .

Theorem 2.4 : Kronecker Theorem

Let    f x F x  be a non constant polynomial. Then there exists an extension E of

F in which  f x  has a root.

Proof : Let    f x F x  be a non constant polynomial

i) If    f x F x  has a root in F then we take E = F..

ii) Suppose    f x F x  has no root in F..

Let  P x  be an irreducible factor of  f x  in  F x .

Define 
 
 

F xE
P x

 .

Then E is a field and it is an extension of F contains a root of  P x .

(  by theorem (2.3))

  E is an extension of F contains a root of  f x  (  P x  is a factor of  f x .

  root of  P x  is also root of  f x ).

Thus   an extension E of F that contains a root of non constant polynomial
   f x F x .
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Remark : Let    P x F x  be an irreducible polynomial having a root say ‘u’ in an extension

E of F. The subfield denoted by  F u  of E is the smallest subfield of E containing F and u

and we call  F u  the subfield of E generated by F and u.

Theorem 2.5 : Let  P x  be an irreducible polynomial in  F x  and let u be a root of  P x
in an extension E of F. Then,

(i)  F u , the subfield of E generated by F and u, is the set

    0 1 0 1.... | ....m m
m mF u b b u b u E b b x b x F x        

(ii) If the degree of  P x  is n, the set  11, ,..., nu u   forms a basis of  F u  over F, i.e.

each element of  F u  can be written unuquely as 1
0 1 1.... n

nc c u c u 
    where ic F  and

  :F u F n .

Proof : Let    P x F x  be an irreducible polynomial and let u be a root of  P x  in an
extension E of F.

Define a mapping,

 : F x E  by

 0 1 0 1..... ......      m m
m mb b x b x b b u b u

 0 1 ......    m
mb b x b x F x

Then   is a homomorphism.

( Since for   0 1 ......    m
mf x b b x b x ,    0 1 ......    n

ng x c c x c x  in  F x
and assume that m > n.

Then

           1
0 0 1 1 1...... .....

           n n m
n n n mf x g x b c b c x b c x b x b x F x

and

              2
0 0 0 1 1 0 0 2 1 1 2 0 ..... m n

m nf x g x b c b c b c x b c b c b c x b c x F x         
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  (i)            1
0 0 1 1 1.... ....

          n n m
n n n mf x g x b c b c u b c u b u b u

      0 1 0 1....... ......       m n
m nb b u b u c c u c u

         f x g x 

and (ii)             2
0 0 0 1 1 0 0 2 1 1 2 0 ....          m n

m nf x g x b c b c bc u b c b c b c u b c u

   0 1 1 0 1.... ....m n
m nb b u b u c c u c u       

     f x g x    )

 By fundamental theorem of homomorphism.

 
Im

Ker 


F x 
 ....... (1)

Now since u is root of  p x .

      0 0    p u p x p u

        Ker  p x 

Ker    is non-empty..

Claim :  Ker  p x

Since  F x  is a PID and as Ker   is an ideal of  F x .

 Ker   g x  for some    g x F x .

But since   Ker p x  .

       p x g x h x  for some    h x F x .

  h x F ; because    p x F x  is an irreducible polynomial.

    g x p x

 Ker   p x
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  From (1)

 
 

  0 1 0 1Im ..... | .....         m m
m m

F x b bu b u E b b x b x F x
p x



   F u

 
 

  
F x F u
p x

But since  p x  is an irreducible polynomial

 
 


F x
p x  is a field.

 F u  is a field and it is the smallest subfield of E containing F and u.

    F u F u  and

    0 1 0 1..... | .....        m m
m mF u b b u b u E b b x b x F x

Now if deg    p x n .

Let    2
0 1 2 .....     n

np x b b x b x b x ; 0nb 

Then   2
0 1 20 .....      n

np u b bu b u b u

(Since u is root of  p x )

  each of nu , 1nu , ..... can be expressed in the form 1
0 1 1..... 

   n
nb bu b u

with ib F .

     1
0 1 1..... |

      n
n iF u F u b b u b u b F

  The set  2 11, , ,.... nu u u  forms a basis for  F u  over F.

  : F u F n
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Example 2.8 : Consider the irreducible polynomial    2
21   p x x x x .

If u is a root of  p x  in some extension K of 2 . Show that the subfield   2 u  of
K has four elements.

Ans. :  2 0,1

By theorem (2.5)

   2 0 1 2|   iu b bu b

 0, ,1,1 u u

The field  2 u  is the smallest subfield of K generated by 2  and u and having four
elements.

Example 2.9 : Show that    2
31   p x x x x  is irreducible over 3  and   an

extension K of 3  with nine elements having all roots of  p x .

Ans. :  3 0,1, 2

Since  0 0p ,  1 0p  and  2 0p .

  2 1   p x x x  is irreducible over 3 .

  by theorem (2.5).

If u is root of  p x  in some extension K of 3  then

   0 1 3| 0,1,2, ,1 ,2 ,2 ,1 2 ,2 2iK b b u b u u u u u u       

is an extension of 3  having nine elements and containing all the roots of  p x .

3. Algebraic Extensions
Definition (3.1) : Let E be an extension of F. An element E  is said to be algebraic over

F if   is a root of a non constant polynomial    p x F x . i.e. an element E  is algebraic

over F if   a non constant polynomial    p x F x  such that   0p  .
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Remarks :

1. If E  is not algebraic over F, then   is called transcendental over F..

2. For any field F, every element F  is algebraic over F, since   a non constant

polynomial     p x x   in  F x  such that   0p  .

Example 3.1 :  (a)  An element 3  (field of reals) is algebraic over Q (field of rationals)

because   a non constant polynomial    2 3  p x x Q x  such that  3 0p .

(b) The complex number 1 i  is algebraic over Q, since   a non constant polynomial

   2 1 x Q x  such that i is a root of  2 1x .

Theorem 3.1 : Let F E  be fields and let u E  be algebraic over F. Let    p x F x

be a polynomial of the least degree such that   0p u . Then,

(i)  p x  is irreducible over F..

(ii) If    g x F x  is such that   0g u  then    p x g x .

(iii) There is exactly one monic polynomial    p x F x  of least degree such that

  0p u  .

Proof : (i) Suppose on the contrary    p x F x  is reducible over F..

     1 2  p x p x p x  for some non constant polynomials  1p x ,    2 p x F x

and    1deg degp x p x ,    2deg degp x p x .

Then      1 20   p u p u p u .

 1 0 p u  or  2 0p u

 u  satisfies a polynomial of degree less than  deg p x .

# a contradiction to the fact that    p x F x  be a polynomial of least degree

such that   0p u .



15

  p x  must be irreducible over F..

(ii) Let    g x F x  such that   0g u .

Then by division algorithm.

         g x p x q x r x  for some  q x ,    r x F x  where   0r x
or    deg degr x p x .

Since        0    g u p u q u r u .

 0  r u ...... (   0 p u )

But since    p x F x  be a polynomial of least degree such that   0p u .

 there does not exists    r x F x such that    deg degr x p x  and   0r u .

  0 r x

       g x p x q x

   | p x g x

(iii) Let    g x F x  be a monic polynomialof least degree such that   0g u .

Then by (i)  g x  is irreducible polynomial over F and by (ii)    |p x g x  and

   |g x p x .

Since  p x ,    g x F x are monic and irreducible polynomials, we must have

   p x g x .

Hence there is exactly one monic polynomial    p x F x  of least degree such that

  0p u  .

Theorem 3.2 : Let F E  be fields and u E  be algebraic over F, then   a unique monic

irreducible polynomial    p x F x  such that   0p u .

Proof : Consider the set        | 0  I f x F x f u
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Then I is an ideal of the ring  F x .

Since for  f x I  and    g x F x ;     0 f u g u .

     f x g x I

Now since  F x  is a PID

 I  is principal ideal.

    p x I  such that

          |   I p x p x g x g x F x

We assume that  p x  is monic polynomial in  F x .

(Since if  p x  is not monic i.e.   0 1 .....    n
np x a a x a x  with 0na  and let

  1 1 1
0 1 .....      n

n n n ng x a a a a x a a x  then     np x a g x . This shows that  p x and

 g x  are associates in  F x  hence    p x g x .)

        | 0    p x I f x F x f u

Since u E  is algebraic over F..

  a nonconstant polynomial    f x F x  such that   0f u .

     f x I p x

      f x p x g x  for some    g x F x .

  p x  is a non constant polynomial with

     deg degp x f x ,   f x I  and   0f x ...... (1)

  p x  is irreducible.

(If  p x  is reducible then       p x g x h x  for some non constant polynomials

     , g x h x F x  and
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     0   p u g u h u

  0 g u  or   0h u

 g x I   or  h x I

But since         deg deg deg p x g x h x

and   deg 0g x ,   deg 0h x

     deg deg g x p x and      deg degh x p x

# a contradiction to (1). )

Thus   monic irreducible polynomial    p x F x  such that   0p u .

Uniqueness :

Let   1
0 1 1....... 

    n n
np x a a x a x x  and

   1
0 1 1....... 

    m m
mq x b b x b x x   be two irreducible monic polynomials in

 F x  such that     0 p u q u .

Then     q x I p x .

       q x p x g x  for some    g x F x

But  q x  is irreducible.

  g x is a unit (i.e.  g x F )

and hence      deg deg q x p x n . i.e. m = n

Now     0 p u q u

     p x q x I

    0  p x q x      (       deg p x q x n  ,  deg p x n and by (1))

    p x q x .
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Definition 3.2 : The monic irreducble polynomial in  F x  of which u is a root will be called
the minimal polynomial of u over F.

Example 3.2 :  Q  and 3  the polynomial  2 3 x Q x  is the minimal polynomial

of 3 .

Definition 3.3 : An extension field E of F is called algebraic if each element of E is algebraic
over F.

Theorem 3.3 : If E is finite extension of F, then E is an algebraic extension of F.

Proof : Suppose E is finite extension of F.

Let  : E F n .

To prove that E is an algebraic extension of F.

Let u E  be any element.

  The set  1, ,.... nu u  must be linearly dependent set of elements of E over F..

  elements 0a , 1a ,....., na  (not all zero) in F such that

2
0 1 2 ....... 0    n

na a u a u a u

 u  is root of a non constant polynomial

   2
0 1 2 .......     n

np x a a x a x a x F x

 u  is algebraic over F..

  every element of E is algebraic over F..

Thus E is an algebraic extension of F.

Note : Converse of theorem (3.3) is not true i.e. an algebraic extension of a field F need not
be a finite extension of  F.
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Example 3.3 : Let 1P , 2P , ...., rP , .....  be all distinct primes. Then for each 0r  define

0 E Q   and  1r r rE E P  for all 0r .

( i.e. 0 E Q ,    1 0 1 1 E E P Q P ,     2 1 2 1 2 E E P Q P P

 2 1 2, E Q P P ,  3 1 2 3, ,E Q P P P , ......)

Then  1 2, ,....,r rE Q P P P  is the smallest subfield of   containing

 1 2, ,...., rQ P P P .

Now, we prove that 1 r rP E , 0 r  using induction on ‘r’.

Since 1P  is irrational 1 0  P Q E

So for r = 0 result holds.

Assume that result is true for r – 1

i.e. assume that 1r rP E .

We prove that 1 r rP E .

Let if possible 1 r rP E  then 1  r rP a b P  for some 1,  ra b E .

(  1 r r rE E P )

2 2
1 2   r r rP a ab P Pb

 2 2
1 1

1
2      r r r rP P a Pb E

ab

# a contradiction to the assumption 1r rP E .

1r rP E   for all r.

Hence  1 : 2 r rE E  for all r.
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and we get 0 1 .... ....    rQ E E E  is strictly ascending chain of subfields of

 .

Let 
0

i
i

E E




 , then  1 2, ,......E Q P P  is the smallest subfield of   containing

 1 2, ,......Q P P  and

   0: :r rE Q E E

      1 1 2 1 0: : ...... :   r r r rE E E E E E

 2 2 ........2     ( r times )

 2 r

Also since each rE  is a subfield of E.

 : E Q  is infinite.

i.e. E is infinite extension of Q.

But E is an algebraic extension of Q for if a E  be any element.

Then  ra E  for some r.

i.e.  1 2, ,......,r ra E Q P P P   and  : 2 r
rE Q

 rE  is finite extension of Q.

  by theorem (3.3) rE  is an algebraic extension of Q.

  a is algebraic over Q.

  every element of E is algebraic over Q.

  E is an algebraic extension of Q.

Thus E is an algebraic extension of Q but not finite.

Remark : Extensions that are not algebraic are called transcendental extensions.
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Theorem 3.4 : If E is an extension of F and u E  is algebraic over F, then  F u  is an
algebraic extension of F. x cannot be algebraic over F.

Proof : Let E is an extension of F and let u E  is algebraic over F, then by theorem (3.2) 
a minimal polynomial  p x  of u over F..

Let   deg p x n

Then by theorem (2.5)   : F u F n .

  F u  is finite extension of F..

  by theorem (3.3)  F u  is an algebraic extension of F..

Definition 3.4 : An extension E of F is called finitely generated if   a finite number of
elements 1u , 2u , ...., ru  in E such that the smallest subfield of E containing F and

 1 2, ,......, ru u u  is E itself.

We then write   1 2, ,......, rE F u u u

Where     1 2 1 2 1, ,......, , ,......, i i iF u u u F u u u u

For each 1 i r .

Note : A finitely generated extension of a field need not be an algebraic extension.

Example 3.4 : Let  F x  be a polynomial ring over a field F in indeterminate x. Let E be the

field of quotients of  F x  then

0 1

0 1

.... / ,  and not all 's are zero
....

      
    

m
m

i j jn
n

a a x a xE a b F b
b b x b x

i.e.  E F x .

Thus E is finitely generated extension of a field F but by definition of a polynomial ring
x is algebraic over F.

  E is not an algebraic extension of F..
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Theorem 3.5 : Let  1 2, ,......, rE F u u u  be a finitely generated extension of F such that
each ui; i = 1, 2, ...., r is algebraic over F. Then E is finite over F and hence an algebraic
extension of F.

Proof : We prove the theorem using induction on r. If r = 1 then by theorem (3.4) result holds.

Assume that the result is true for r – 1.

i.e.  1 2 1, ,......, :  rF u u u F  is finite.

Now since ru  is algebraic over F, it is algebraic over  1 2 1, ,......, rF u u u  also.

  by theorem (3.4).

    1 2 1 1 2 1, ,......, : , ,......,   r r rF u u u u F u u u  is finite.

i.e.    1 2 1 2 1, ,...., : , ,......,   r rF u u u F u u u  is finite.

   1 2: , ,...., :    rE F F u u u F

        1 2 1 2 1 1 2 1, ,...., : , ,...., , ,...., :        r r rF u u u F u u u F u u u F

   = (finite) • (finite)

   =  finite

Thus  :E F  is finite.

i.e. E is finite extension of F and hence by theorem (3.3) an algebraic extension of F.

Theorem 3.6 : Let E be an extension of F. If K is the subset of E consisting of all the elements
that are algebraic over F, then K is a subfield of E and an algebraic extension of F.

Proof : Here  /  is algebraic over F K u E u

Let , a b K  then by theorem (3.5)  ,F a b  is an algebraic extension of F..

Since  ,F a b  is a field, ab , 
a
b  (if 0b )  ,F a b
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 a b , ab , 
a
b  (if 0b ) are all algebraic over F..

 a b , ab, 
a
b  ( 0b )K

 K  is subfield of E

and since every element of F is algebraic over F, every element of F is in K.

  K is an algebraic extension of F..

Definition 3.5 : Let K and L be extension fields of a field F. Then an embedding : K L 
such that  a a  ,   a F  is called an F-homomorphism of K into L or an embedding of
K in L over F.

Theorem 3.7 : Let E be an algebraic extension of F and let : E E   be an embedding
of E into itself over F. Then   is onto and hence an automorphism of E.

Proof : To prove   is onto for let a E , we prove that   an element b E  such that
 b a  .

Since E be an algebraic extension of F.

  a is algebraic over F..

Let    1
0 1 1.... 

     n n
np x a a x a x x F x  be the minimal polynomial of ‘a’

over F.

Let 1 2, ,...., ma u u u E  are roots of  p x  then by theorem (3.5)  1 2, ,......, mF u u u
is finite extension of F.

Since each iu ; 1 i m  is a root of  p x  we have

  0 10 ....     n
i i ip u a a u u  for each i

   1
0 1 10 .... n n

i n i ia a u a u u  
       for each i
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           1
0 1 10 ... n n

i n i ia a u a u u     
          for each i

(  is a homomorphism)

     1
0 1 10 .... n n

i n i ia a u a u u  


              for each i

[ Since   is F-homomorphism of E into itself

 i ia a  , for each i. ]

 iu  is a root of  p x  in E for each i, 1 i m .

But since   is 1 – 1.

 1u ,  2u , ....,  mu  must be same as 1u , 2u , ...., mu  in some order..

Now let  1 2' , ,...., mE F u u u

Then     1 2' , ,...., mE F u u u 

             1 2, ,...., mF u u u  

        1 2, ,...., mF u u u

       'E

i.e.  ' 'E E 

    ' : ' :E F E F 

 ' 'E E 

and since 1 'a u E  ,  'b E   such that  b a    is onto.

    is an embedding (i.e. 1 – 1, homomorphism) and onto.

    is an isomorpism of E onto E hence an automorphism of E.
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Problem 3.1 : Let  F K E  be three fields such that K is an algebraic extensionof F and
E  is algebraic over K. Show that   is algebraic over F..

Ans. :  F K E  be fields such that K is algebraic extension of F. E  is algebraic

over K then   a non-constant polynomial   0 1 ....    n
nf x a a x a x  in  K x  such that

  is a root of  f x .

Now let  0 1, ,...., nL F a a a , then    f x L x  and hence   is algebraic over L.

Since K is algebraic extension of F.

  each ia , 0  i n  is algebraic over F..

   by theorem (3.5) L is finite and hence an algebraic extension of F..

i.e.   :  L F ..... (1)

Since   is algebraic over L.

  by theorem (3.4)  L   is a finite extension hence an algebraic extension of L.

  :L L   ...... (2)

  By theorem (2.1)

       : : :L F L L L F     (  from (1) and (2))

 L   is finite and hence an algebraic extension of F..

  L   is algebraic over F..

Problem 3.2 : Prove that 2  is algebraic over Q. Find the degree of  2Q  over Q.

Ans. : Since   2 2 p x x  be a non constant polynomial in  Q x  such that  2 0p .

2  is algebraic over Q.

Now    2 2  p x x Q x  be an irreducible polynomial such that  2 0p  and

 2 2Q  an extension of Q.
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  By theorem (2.5)

 2 : 2   Q Q .

Problem 3.3 : Determine the minimal polynomial of 2 5  over Q.

Ans. : Let 2 5 u

   25 2 5 2     u u

2 10 25 2   u u
2 10 23 0   u u

The polynomial    2 10 23   p x x x Q x  is monic irreducible polynomial such

that 2 5  is the root of  p x .

  2 10 23   p x x x  is the minimal polynomial of 2 5  over Q.

Problem 3.4 : Find a suitable number ‘a’ such that    2, 5 Q Q a .

Ans. : Since 2 ,  5 2, 5Q .

 2 5 2, 5  Q

   2 5 2, 5  Q Q ....... (1)

Now since    2 5 2 5  Q

   3
2 5 2 5   Q

i.e.  2 2 5 5 6 5 15 2 2 5    Q

i.e.  17 2 11 5 2 5  Q

Now since    11 2 5 2 5   Q
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     1 17 2 11 5 11 2 5 2 5
6
        Q

 2 2 5Q  

Now since 2 5 ,  2 2 5Q 

     2 5 2 2 5    Q

 5 2 5Q  

  both  2, 5 2 5 Q

   2, 5 2 5  Q Q ....... (2)

Thus from (1) and (2) we write

   2, 5 2 5 Q Q

  the suitable value of a is  2 5  so that    2, 5 Q Q a .

Problem 3.5 : Let E be an extension of F and let , a b E  are algebraic over F. Suppose that

the extensions  F a  and  F b  of F are of degree m and n respectively, where  , 1m n

(i.e. m and n are relatively primes i.e. gcd  ,m n  is 1). Then show that  , :F a b F m n    .

Ans. : Let  , :  F a b F r

        , : , : :        r F a b F F a b F a F a F

   , :    r F a b F a m ......(1)

(   :  F a F m  given)

/m r
 r pm  for some positive integer p. ..... (i)

Similarly we can write

        , : , : :        r F a b F F a b F b F b F
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   , :    r F a b F b n (   :  F b F n  given)

/ n r
 r nq  for some positive integer q. ....... (ii)

Since b is algebraic over F and   : F b F n .

  b satisfies an irreducible polynomialof degree n over F..

  b is algebraic over  F a and b may satisfy an irreducible polynomial of degree

less than n over  F a  i.e.      :F a b F a  is atmost n.

i.e. b is algebraic over  F a  and    , :  F a b F a n .

  from (1)

 r m n ...... (2)

If  r m n , then    r pm mn p n  and    r nq mn q m  (since from (i)
and (ii)) and  (i)   (ii) gives


r pm
r qn  with p < n and q < m.

i.e. 
q m
p n   with p < n and q < m.

 m q  and n p  for some positive integer 1 .

 , 1  m n 

# a contradiction to  , 1m n .

r mn   is not possible.

 r mn (  from (2))

 , :F a b F m n    

Problem 3.6 : Let E be an extension field of F. If a E  has a minimal polynomial of odd

degree over F, show that    2F a F a .

Ans. : Since  a F a

     2 2   a F a F a F a
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  we write    2 F F a F a

Let  2 :   F a F n  and    : F a F m

Since the minimal polynomial of a over F is of  odd degree.

  m is odd.

Now by theorem (2.1)          2 2: : :       F a F F a F a F a F

i.e.     2:   m F a F a n

 n m ...... (1)

Now let   0 1 ..... nf x a a x x     be the minimal polynomial of 2a over F

Then 2 2
0 1 ..... 0na a a a   

 a  is root of the polynomial.

   2 2
0 1 ..... ng x a a x x F x    

/ 2m n (   by theorem (3.1))

/m n (   m is odd)

 m n ...... (2)

  from (1) and (2)

m = n

    2: :      F a F m n F a F

   2F a F a  (    2F a F a )

4. Algebraically Closed Fields
Definition 4.1 : A field K is called algebraically closed if it possesses no proper algebraic
extensions.
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Theorem 4.1 : For any field K the following statements are all equivalent :

(i) K is algebraically closed.

(ii) Every irreducible polynomial in  K x  is of degree 1.

(iii) Every polynomial in  K x  of positive degree factors completely in  K x  into linear
factors.

(iv) Every polynomial in  K x  of positive degree has atleast one root in K.

Proof : (i)   (ii)

Suppose K is algebraically closed.

Let    p x K x  be an ireducible polynomial of degree n.

  by theorem (2.4) and (3.3)   a finite and hence algebraic extension E of K such
that  : E K n .

Since K is algebraically closed.

 E K  , so n = 1.

  every irreducible polynomial in  K x  is of degree 1.

(ii)   (i)

Suppose every irreducible polynomial in  K x  is of degree 1.

To prove that K is algebraically closed.

For let E be any algebraic extension of K. ..... (1)

Let a E  be any element, then a is algebraic over K.

Let    p x K x  be the minimal polynomialof a.

Since the minimal polynomial  p x  of ‘a’ is monic and irreducible.

 p x x a   (  by assumption)

a K 

E K 

  E = K (  by (1))

 K  is algebraically closed field.
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(ii)   (iii)

Suppose every irreducible polynomial in  K x  is of degree 1.

  by (ii)   (i) K is algebraically closed field.

Let    f x K x  be any polynomial of positive degree.

Since K is algebraically closed field,

  K contains all the roots of  f x .

  f x  factors completely in  K x  into linear factors.

(iii)   (iv)

Suppose every polynomial in  K x  of positive degree factors completely in  K x
into linear factors.

Let    f x K x  be any polynomial of positive degree.

  f x  factors completely in  K x  into linear factors.

 K  contains all the roots of  f x .

  K contains atleast one root of  f x .

(iv)   (i)

Suppose every polynomial in  K x  of positive degree has atleast one root in K.

To prove that K is algebraically closed field.

Let E be an algebraic extension of K. ....... (2)

Let a E  be any element.

Then a is algebraic over K.

Let  p x  be the minimal polynomial of ‘a’ over K then    p x K x .

and by assumption  p x  has a root say ‘b’ in K.

  x b  is a factor of  p x  in  K x .

But since  p x  is minimal polynomial of a over K.

  p x  is monic, irreducible polynomial in  K x .

Such that   0p a .
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   p x x b

and   0     p a a b a b K

 a K
Thus K contains all elements of E.

i.e. E K ..... (3)

  from (2) and (3) K = E

Thus every algebraic extension of K coincides with K.

 K  is algebraically closed.

Definition 4.2 : If F is a subfield of a field E, then E is called an algebraic closure of F if,

(i) E is an algebraic extension of F.

(ii) E is algebraically closed.

Theorem 4.2 : Let F be a field and let : F L   be an embedding of F into an algebraically
closed field L. Let  E F   be an algebraic extension of F. Then   can be extended to an

embedding : E L  and the number of such extensions is equal to the number of distinct
roots of the minimal polynomial of  .

Proof : Let   0 1 ....    np x a a x x  be the minimal polynomial of   over F..

Let      0 1 .... np x a a x x     

Then     p x L x 

Since L is algebraically closed field.

  L contains all the roots of  p x .

Let L  be a root of  p x .

Since  p x  be the minimal polynomial of   over F..
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  by theorem (2.5)

   1
0 1 1.... |

     n
n iE F b b b b F  

Now, define : E L  by

       1 1
0 1 1 0 1 1.... ....n n

n nb b b b b b        
       

Since any element of  E F   can be written uniquely in the form

1
0 1 1.... 

   n
nb b b  ; ib F .

   is well defined mapping.   is 1 – 1 (    is 1–1)

Also it is easy to show that   is a homomosphism (prove it ?)

Thus   is an embedding of  F   into L and it is an extension of  .

(  for s F ;    s s  )

Further     is a bijective correspondance between the distinct roots of

 p x  and the extension of   to E.

  The number of extensions of   to E is equal to the number of distinct roots of
 p x  in L.

Also if   is a root of  p x  then     is a root of  p x . Thus number of distinct

root of  p x  is same as number of distinct roots of  p x . Here number of extensions of

  to E is equal to the number of distinct roots of  p x .

Theorem 4.3 : Let E be an algebraic extension of a field F, and let : F L   be an
embedding of F into an algebraically closed field L. Then   can be extended to an embedding

: E L .

Proof : Consider the set

  , | , :  is an embedding and FS K F K E K L       

Then S   (  ,F S  )

Define a binary operation   on S by
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   1 1 2 2, ,K K   if 1 2K K  and 2  restricted to 1K  is 1  i.e. 2 11K  .

Then   is a partial ordering on S.

Claim :  ,S  satisfies the hypothesis of the Zorn’s lemma.

For let   ,i iK   is a chain in S.

Define   iK K  and : K L  by

    ia a   if   ia K

Also if  i ja K K  then     i ja a 

(  either i jK K  or j iK K  )

  is well defined map on K.

Clearly K is a subfield of E containing F and : K L  is an embedding.

And  ,K   is an upper bound for the chain   ,i iK  .

Thus every chain   ,i iK   in S has an upper bound.

i.e.  ,S  satisfy the hypothesis of Zorn’s lemma.

  by Zorn’s lemma.

  a maximal element  ,K   in S.

Then   is an extension of  .

Claim : K = E

Let if possible K E .

 a E  such that a K .

Since E is an algebraic extension of F, ‘a’ is algebraic over F and hence over K.
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  by theorem (4.2),   an embedding  ' : K a L  such that ' K  .

But then     , , 'K K a   and   , 'K a S 

# a contradiction to the maximality of  ,K 

 K E

And : E L  is an embedding and is an extension of  .

Theorem 4.4 : Let K and K' be algebraic closures of a field F. Then 'K K  under an
isomorphism that is an identity on F.

Proof : Let K and K' be algebraic closures of a field F.

Then by definition of algebraic closure K and K' are algberaic extensions of F and are
algebraically closed fields.

Define : F K  by

  a a ,   a F

Then   is an embedding of F into algebraically closed field K (prove it ?)

  by theorem (4.3)   can be extended to an embedding *: 'K K .

 ' * '  K K K

Since K' is algebraically closed field containing F.

 * ' K  is also algebraically closed field containing F..

And since K is algebraic extensionof F and  * 'F K .

K  is also algebraic extension of  * 'K .

 * ' K K  (  * 'K  is algebraically closed field and K is algebraic extension
of  * 'K .  by definition of algebraically closed field  * ' K K )

This shows that an embedding *: 'K K is onto.

*  is an isomorphism of K' onto K and  * a a  ,  a F  ( * F  )
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Remarks :

1) Any field F has a unique (upto isomorphism) algebraic closure.

2) The algebraic closure of a field F is denoted by F .

3) Let F be a field and let   S x   be an infiite set of commuting indeterminates.

Define    1 2
finite

.... / ,i i i in i ijF S a x x x a F x S  

Then  F S  is a polynomial ring over F in S w.r.t. natural addition and multiplication.

Theorem 4.5 : Let F be a field. Then there exists an algebraically closed field K containing F
as a subfield.

Proof : Let F be a field.

We construct an extension 1K  of F in which every nonconstant polynomial has a root.

For each nonconstant polynomial     f f x F x  we correspond an indeterminate

fx  and let       |  and degree of 1fS x f f x F x f x    .

Consider the polynomial ring  F S  which is an integral domain.

Let A be an ideal in  F S  generated by all polynomials  ff x  of positive degree in

 F S .

Claim : A is proper ideal of  F S .

Let if possible A is not proper ideal in  F S .

i.e.  A F S .

As      1 21 1 2 21 1 ......     
nf f n fA g f x g f x g f x

where 1g , 2g , .....,  ng F S

( 1g , 2g , ....., ng  involves only a finite number of indeterminates)

We write 
if ix x  for each  if F x  then
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1 1fx x , 
2 2fx x , ...., 

nf nx x .

And the indeterminates occuring in all the ig , 1 i n  are in the set

 1 2, ,...., ,....n mx x x x .

   1 2
1

1 , ,....,


 
n

i m i i
i

g x x x f x ...... (1)

Let E be an extensionof F in which each of the polynomials 1f , 2f  ,...., nf  has a root

and let ia  be a root of if  in E, for each 1 i n .

If we substitute i ix a , 1 i n  and 1 .... 0   n mx x  in (1) we get 1 = 0 whichis
absurd #

Thus A is a proper ideal of  F S .

  by Zorn’s Lemma, let M be a maximal ideal of  F S  containing A.A.

Then there is 
 

: F SF
M

   defined by  a a M    is an embedding.

Thus we can regard 
 F S
M

 is a field extension of F..

Also each nonconstant polynomial     f f x F x  has a root in 
 F S
M

.

Thus we have constructed the extension field 
 

1 
F SK

M
 of  F in which every

nonconstruct polynomial in  F x  has a root.

Now inductively we can form a chain of fields 0 1 2 3 .....    F K K K K such

that any nonconstant polynomial over nK  has a root in 1nK , 0 n .

Define 
1





 n
n

K K .

Then K is a field extension of F.
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If   0 1 .....    m
mg x b b x b x , 0mb , m > 0  is a polynomial over K, then   ‘n’

such that    0 1, ,.....,   m n nb b b K g x K x  and  g x  has a root in 1 nK K .

Thus F has an algebraically closed extension.

Theorem 4.6 : Let F be a field. Then there exists an extension F  that is algebraic over F and
is algebraically closed i.e. each field has an algebraic closure.

Proof : Let F be a field, then by theorem (4.5)   an extension K of F which is algebraically
closed.

Let  /  is algebraic over  F a K a F then  F F K

and by theorem (3.6) F   is an algebraic extension of F.. ..... (1)

Now we prove that F  is algebraically closed.

For let    f x F x . Then  f x  has a root a K  (  K is algebraically closed)

 a K  is algebraic over F .

Now since F  is algebraic extensionof F (by (1))

  a is algebraic over F (see problem (3.1)).

 a F (  by definition of F )

  every root of any polynomial    f x F x  is in F .

But this shows that F  is algebraically closed field. ...... (2)

Thus from (1) and (2) F  is an algebraic closure of F..

EXAMPLES :
4.1  
4.2  

4.3  Q   (Q   is a countable set)
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EXERCISE :

1. Show that  3 2 x Q x  is irreducible over Q. Find an extension K of Q having all

roots of 3 2x  such that  : 6K Q .

2. Find the smallest extension of Q having a root of  4 2 x Q x .

3. Find a suitable number ‘a’ such that    3, Q i Q a .

4. Find the degree of  2, 3Q  over Q.

5. Determine the minimal polynomials of the folowing numbers over Q.

(a) 3 2 5 (b) 1 2  (c)  2 3 3

6. Let  F K E  be fields such that K is algebraic extension of F and E is an algebraic
extension of K then show that E is an algebraic extension of F.

7. If F is a subfield of an algebraically closed field K, then show that the algebraic
closure F  of F  in K is also algebraically closed.

8. Prove that    2, 5 2 5 Q Q .

9. Prove that   a  such that    32, 5 Q Q a .
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NORMAL AND SEPARABLE EXTENSION 

 

 

 Finding roots of polynomials has been an important problem since the time of 

the ancient Greeks. Some polynomials, however, 2 1x   over  , the real numbers, 

have no roots in  .  By constructing the splitting field for such a polynomial one can 

find the roots of the polynomial in the new field. 

 

1.  SPLITTING FIELDS 

 The first step in finding the Galois group of a polynomial over a field is to 

find the smallest extension of the field that contains all of the roots of the 

polynomial. Beginning with a field F , and a polynomial ( ) [ ]f x F x , we need to 

construct the smallest possible extension field K  of F  that contains all of the roots 

of ( )f x . 

Definition 1.1 : Let ( )f x be a polynomial in [ ]F x  of degree 1 . Then an extension 

K  of F is called a splitting field of ( )f x over F  if 

(i)  ( )f x factors into linear factors in [ ]K x ; that is 

 
1( ) ( ) ( ), .n if x c x x K     

 

(ii)  
1( , )nK F    ; that is, K is generated over F  by the roots 

 
1, n   of ( )f x in .K  

Note :  

1. The splitting field is the smallest field that containing all roots.  

2.   ( 3) 3 | ,a b a b     is a splitting field of 2 3 [ ]x x    

   over  . 

 

UNIT  -  II 
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https://en.wikipedia.org/wiki/Root_of_a_function


 
 

 

3.  Splitting field of 4 1 [ ]x x   over   is the field  . 

4.  We note that a polynomial ( ) [ ]f x F x  always has a splitting  

 field, namely, the field generated by its roots in a given algebraic closure F   

 of .F  

 

Theorem 1.1 : If K is a splitting field of ( ) [ ]f x F x over F , then K  is a finite 

extension and, hence, an algebraic extension of .F  

Proof. Since K is a splitting field of ( ) [ ]f x F x over ,F
1( , )nK F    ; that is, K

is generated over F  by the roots
1, n   of ( )f x in .K  That is, 

1( , )nK F     is a 

finitely generated extension of F  such that 
1, n   are algebraic over .F  Hence by 

theorem, K  is a finite extension and, hence, an algebraic extension of .F  

 

Theorem 1.2 (uniqueness of splitting field) :  Let K  be a splitting field of the 

polynomial ( ) [ ]f x F x over a field .F If E  is another splitting field of ( )f x over ,F

then there exists an isomorphism : E K  that is identity on .F  

Proof. Let K  be a splitting field of the polynomial ( ) [ ]f x F x over a field F  and K  

be an algebraic closure of K .  

 Then K  is algebraic over K . Since K is algebraic over ,F K  is algebraic 

over .F   

Hence  K F .  

 Since E is an algebraic extension of ,F by theorem the identity mapping

: F F  can be extended to an embedding : E K  .  

Let      0 1( ) [ ]n

nf x a a x a x F x    
 

and 

          0 1( ) ( ) ( ) ( ) [ ]n

nf x a a x a x F x        .  

Since  is identity on ,F ( ) ( )f x f x  .  
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Let    1( ) ,nf x c x x    ,i E  1, , ,i n  c F .  

Then    1( ) ( ) ( )nf x c x x       be unique factorization in [ ]K x . 

 But since ( )f x  has a factorization in [ ]K x , say    1( ) ,nf x c x x   

where ,i K  1, , ,i n  it follows that the sets 1( ), , ( )n    and 1, , n  are 

equal.  

Thus,         1 1 1, , ( ), , ( ) , ,n n nK F F F E               . 

Hence,   is an isomorphism of E onto K . 

 

Note : Theorem 1.2 proves that the splitting field of a polynomial over a given field 

is unique (up to isomorphism) if it exists. But recall that any field F has an algebraic 

closure F  that contains roots of all polynomials over F .Thus, the intersection of all 

subfields of F containing all the roots of a given polynomial ( ) [ ]f x F x is the 

splitting field of ( )f x over F . 

 

Example 1.1 : Show that degree of the extension of the splitting field of

3 2 [ ]x x   is 6. 

Solution : By Eisenstein's criterion 3 2 [ ]x x  is irreducible over   and it is the 

minimal polynomial of 1/32 .  

Thus  3 1/3[ ] 2 (2 )x x    with 
1/3(2 ) : 3     .  

 Since    3 1/3 2 1/3 2/32 2 2 2x x x x     , 3 2x   has two complex roots, say 

  and  .  

Thus 2 1/3 2/3 1/3( ) 2 2 (2 )[ ]p x x x x     is irreducible over 1/3(2 ) .  

Hence,  1/3 1/3 1/3(2 )[ ] ( ) (2 )( ) (2 , )x p x     and 
1/3 1/3(2 , ) : (2 )     degree 

of ( ) 2.p x   
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Because 1/3(2 , ) contains one root   of ( )p x , it will also contain the other root .  

Hence, 1/3(2 , ) is the splitting field of 3 2 [ ]x x  over  . Finally, 

1/3 1/3 1/3 1/3(2 , ) : (2 , ) : (2 ) (2 ) : 2 3 6.                     

 

Example 1.2 : Let p  be prime. Then show that ( ) 1 [ ]pf x x x    has splitting 

field ( ) , where 1  and 1p  . Also,  ( ) : 1p    . 

Solution : Let   1 2( ) 1 1 1p p pf x x x x x x         .  

We know 1 2( ) 1 [ ]p pp x x x x x         is irreducible over  .  

Let  be a root of ( )p x  in the splitting field of ( )f x over . Then, clearly 1p  and

1   .  

We assert that 2 11, , , , p    are p  distinct roots of ( )f x .  

Clearly, 1p   implies   1
p

i  for all positive integers i .  

Thus, we need to show that 2 11, , , , p     are distinct roots.  

 Note that if m  is the smallest positive integer such that 1m  , then | .m p  

Thus, .m p   

 Hence, no two roots in the list 2 11, , , , p     can be equal, whence these 

are all the p  roots of 1px  .  

Hence, the splitting field of 1 [ ]px x   is ( ) .  

Since, the minimal polynomial of a is ( )p x , which is of degree 1p  .  

Hence   degree of  ( 1): () p px     . 
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Example 1.3 : Let 2F  . Then show that splitting field of 3 2 1 [ ]x x F x    is a 

finite field with eight elements.    

Solution : Let 3 2( ) 1p x x x   .  

Since (0) 1 0p    and (1) 1 0p   , 
3 2 1x x   is irreducible over F .  

Let   be a root of this polynomial in its splitting field. Then, 

3 2 2 2

2 2

1 ( )( (1 ) ( ))

( )( )( 1 ).

x x x x x

x x x

   

   

       

     
 

Therefore, ( )F  is the splitting field of 3 2( ) 1p x x x   over F , and  

 ( ) : 3F F  , the degree of the minimal polynomial 3 2( ) 1p x x x    of  . 

Furthermore, ( )F  has a basis  21, ,  over F .  

Therefore,  2 2 2 2( ) 0,1, , ,1 ,1 , ,1F               , where 
3 2 1 0    .  

 

Example 1.4 : Show that the splitting field of 4( ) 2 [ ]f x x x    over   is 

1/4(2 ,i)  and its degree of extension is 8. 

Solution : Let 4( ) 2 [ ]f x x x   , then by Eisenstein criterion ( )f x  irreducible 

over  .  

 Also 1/42 is one root of ( )f x .Therefore ( )f x  is the minimal polynomial of 

1/42 over  .  

Thus, 
1/4(2 ) :      degree of ( ) 4f x  . 

 Now   1/4 1/4 2 1/2( ) 2 2 ( 2 )f x x x x   
 
and the factor 

2 1/2( ) 2p x x  is 

irreducible over 1/4(2 ) .  

Thus, 
2 1/2( ) 2p x x  is the minimal polynomial of 

1/42 i over 1/4(2 ),  
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Hence  
1/4 1/4 1/4(2 )(2 ) : (2 ) 2degree of  ( ) .xi p       

Since 1/4 1/4 1/4(2 )(2 ) (2 , ),i i    contains all roots of ( )f x , 1/4(2 , )i  is the splitting 

field of 4( ) 2 [ ]f x x x   . 

Therefore, 

1/4 1/4 1/4 1/4(2 , ) : (2 , ) : (2 ) (2 ) : 2.4 8i i                  . 

 

Example 1.5 : Find splitting field of 4( ) 4f x x  over  . 

Solution : Let 4( ) 4f x x   is not irreducible over  . 

Since 4 2 2( ) 4 ( 2 2)( 2 2)f x x x x x x       is reducible over  . But two factors 

are irreducible over  .  

By using quadratic formula, we find four roots 1 ,1 , 1i i i     and 1 i  . Thus 

splitting of this polynomial is ( )i  and  ( ) : 2.i    

 

Example 1.6 : If K  is an extension field of F  of degree 2, then prove that K  is the 

splitting field over  F for some polynomial. 

Solution : Let K  be an extension field of F  of degree 2. Since [ : ] 1K F  , we can 

choose K  such that F .  

Then   is algebraic over F . Let ( )p x  be minimal polynomial of   over F .  

Since [ : ( )][ ( ) : ] [ : ] 2K F F F K F     and [ ( ) : ] 1F F  , we have  

          [ ( ) : ] 2F F   and [ : ( )] 1K F   . 

Therefore ( )F K  .  

Thus minimal polynomial ( )p x  has degree 2. 

Let 2( ) , ,p x x ax b a b F    . Therefore ( ) ( )( )p x x x    , where    . 

Then ( , )F    be splitting field for ( )p x  over F .  
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Since ( )K F  , K  is subfield of ( , )F   . 

Since,  2 2( ) ( )( ) ( )p x x x x x x ax b              , we  have  

 a     and b  .  

Therefore ( )a F      .  

Thus ( , )F   is subfield of  K . 

Hence ( , )K F   .  

Thus K  is splitting field for some polynomial  ( )p x  over F . 

 

 

Example 1.7 : Let  2 2( ) 3, ( ) 1f x x g x x x x      . Show that their splitting 

fields are equal and find its degree over  . 

Solution : Let  2 2( ) 3, ( ) 1f x x g x x x x      .  

Then 3 i  are roots of ( )f x  and 
1 3

2

i 
are roots of  ( ).g x  

Therefore,  3 i is the splitting field of ( )f x and 
1 3

2

i  
  
 

 is the splitting 

field of ( ).g x  

Since   1 3
3

2

i
i

  
   

 
  , splitting field of  ( )f x and  ( )g x  are equal. 

Also   3 : degree of  ( ) 2i f x   
 
  . 

 

 

 

46 



 
 

 

Example 1.8 : Find condition on  and a b  such that the splitting field of 

 3x ax b x    has degree 3 over  . 

Solution : Let  3( )f x x ax b x    , then ( )f x must be irreducible over  , 

otherwise degree of extension is either 1 or 2. 

Let   , ,E     be splitting field of ( )f x  over  . 

Therefore 3( ) ( )( )( )f x x ax b x x x          implies that  

0, and a b               

Therefore       and 2/b a      . 

Thus and    are roots of second degree polynomial,  

   2 2( )g x x x a       . 

 Hence if  and    are in    then    , ,E        and  : 3E   

as desired. 

 But roots and    are in    if and only if discriminant 
23 4a     of 

( )g x  must be a square in   otherwise other two roots are in  ,   which is of 

degree 6 over   . 

Hence the splitting field of  3x ax b x    has degree 3 over   if   . 
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2.  NORMAL EXTENSIONS 

 Let  ( )i i
f x


be a family of polynomials of degree 1  over a field F . 

Splitting field of a family  ( )i i
f x


of polynomials is an extension E  of F such 

that every ( )if x splits into linear factors in [ ]E x , and E  is generated over F  by all 

the roots of the polynomials ( ),if x i . If   is finite and our polynomials are 

1( ), , ( )nf x f x , then their splitting field is a splitting field of the single polynomial

1( ) ( ) ( )nf x f x f x  , obtained by taking the product. The proof of uniqueness (up 

to isomorphism) of a splitting field of a single polynomial can be extended to prove 

the uniqueness (up to isomorphism) of a splitting field of a family of polynomials 

over a given field. 

 The next theorem proves a set of equivalent statements for an extension E  of

F to be a splitting field of a family of polynomials over F . 

 

Theorem 2.1 : Let E  bean algebraic extension of a field F contained in an 

algebraic closure F  of F . Then the following conditions are equivalent: 

(i) Every irreducible polynomial in [ ]F x that has a root in E  splits into linear 

factors in E . 

(ii) E  is the splitting field of a family of polynomials in [ ]F x . 

(iii) Every embedding   of E  in F  that keeps each element of F  fixed maps E  

onto E . (In other words, may be regarded as an automorphism of E . 

Proof : (i)   (ii)  

 Let E , and let ( )p x be its minimal polynomial over F . By (i), 

( )p x splits into linear factors in E . Thus, it follows immediately that E  is the 

splitting field of the family  ( )
E

p x   
of polynomial over F . 
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(ii) (iii)  

 Let  ( )i i
f x


, be a family of polynomials of which E  is the splitting 

field.  

 If  is a root of some ( )if x in E , then for any embedding  of E  into F  

that keeps each element of F  fixed, ( )  is also root of ( ).if x
 

 Since E  is generated by the roots of all the polynomials ( )if x , it follows 

that   maps E  into itself. That is : E E  be an embedding of E  into itself 

over F . Then, by Theorem,   is an automorphism of E . 

(iii) (i)  

 Let ( ) [ ]p x F x be an irreducible polynomial over F that has a root E .  

Let F   be another root of ( )p x . Now we claim that E  .  

Since  and   are roots of the same irreducible polynomial ( )p x , we have F -

isomorphisms  

[ ]( ) ( )
( ( ))

F xF F
p x

  
 

under the isomorphism,  

 0 1 0 1 0 1( )n n n

n n na a a a a x a x f x a a a                 . 

 

 Let : ( ) ( )F F   be the isomorphism given above. Then ( )  

and ( )a a   for all a F .  

 By Theorem,   can be extended to an embedding
* : E F  . But then, 

by (iii), 
* is an automorphism of E ;  

Therefore, *( ) ( ) E       . Hence the proof. 
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Definition 2.1 : An extension E  of a field F  is called normal if E  satisfies any 

one of the following equivalent conditions 

(i) Every irreducible polynomial in [ ]F x that has a root in E  splits into linear 

factors in E . 

(ii) E  is the splitting field of a family of polynomials in [ ]F x . 

(iii) Every embedding   of E  in F  that keeps each element of F  fixed maps E  

onto E . (In other words, may be regarded as an automorphism of E .) 

 

Note :  

1. The Field  of  complex numbers   is a normal extension of the field  of real 

numbers  and  : 2  . 

2.   is not a normal extension of the field  of rational numbers, for 

3 2 [ ]x x   is irreducible over   and has a root 3 2 in  , but it does not 

split into linear factors in   because it has complex roots. 

3. If cos( / 4) sin( / 4),i    then   is a normal extension of  . As

  is the splitting field of 
4 1 [ ]x x  . 

 

Example  2.1 : Let E  be a finite extension of F . Then E  is a normal extension of 

F  if and only if E  is a splitting field of a polynomial over F . 

Solution : Let E  be a finite extension of F and  
1( , , ),nE F     where 

i E  are 

algebraic over F .  

Let ( )ip x  be the minimal polynomial of 
i , over F .  

 Assume first that E  is a normal extension of F . Then ( )ip x splits in E  

because it has one root 
i E  .  
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Thus, 1( ) ( ) ( ) [ ]np x p x p x F x   has all roots in E .  

Since
1( , , ),nE F      and 

1, , n  , are some of the roots of ( )p x , E  must be 

the splitting field of ( ).p x  

Conversely suppose that E  is splitting field of ( ) [ ]f x F x . If  
1, , n   are 

all roots of ( ),p x then 
1( , , ).nE F      

 If : E F   is an embedding that keeps each element of F fixed, then 

( )i  is also root of ( ).f x   

Therefore ( )i j    for some j and ( )i E    for all 1 i n  .  

Hence ( )E E   and   is an automorphism of E .  

Thus by Theorem 2.1,  E  is a normal extension of F . 

 

Example 2.2 : Show that any extension K of a field F , such that  : 2,K F  is a 

normal extension.  

Solution : In example 1.6 we have shown that K is the splitting field 

( ) [ ]p x F x . Then by definition , K  is normal extension of F . 

 

Example 2.3 : Show that  2  and  2 7  are normal extension of  .  

Solution : Let 2    then   is algebraic over   and minimal polynomial is 

 2( ) 2p x x x   . 

Therefore  ( 2) : ( ) : degree of ( ) 2.p x    
 
     

Hence ( 2)  is normal extension of  . 

Similarly  2 7  is normal extension of  . 
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Example 2.4 : Let E   be normal extension of F   and let be K a subfield of E

containing F . Show that E  is a normal extension of K . Give an example to 

show that  K  need not be a normal extension of F .  

Solution : Let E   be normal extension of F . Then by definition E  is splitting 

field of a family of polynomials over F . 

Since  F K , E  is splitting field of a family of polynomials over K . 

Hence E  is a normal extension of K . 

Let  3 2,E   and  3 2K   where    is cube root of unity. 

Then     3 32 2,    . 

Here  3 2,E   is normal extension of  3 2K   but  3 2K   is not 

normal extension of  . 

 

Example 2.5 : Let  2F   and  4 2E  . Show that E  is normal 

extension of F  and F  is normal extension of  , but E  is not a normal 

extension of  . 

Solution : Since  2 2x x   be minimal polynomial of 2 ,  2 : 2  
 
  . 

Therefore  2F   is normal extension of  . 

Also   2 2 2x x   is minimal polynomial of 4 2  over  2 . 

Therefore    4 2 : 2 2  
 
  .  

Hence   4 2E   is normal extension of  2F  . 

Also  4 2x x   is minimal polynomial of 4 2  over   and roots 4 2 i  of 

 4 2x x   are does not belong to  4 2E  .  
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Therefore  4 2E   is not splitting field of  4 2x x  . 

Hence  4 2E   is not a normal extension of  . 

 

3.  MULTIPLE ROOTS 

 In this section we discuss the multiplicity of roots of a polynomial over a 

field. For this purpose, we introduce the concept of the derivative of a polynomial. 

 

Definition 3.1 : Let 
2

0 1 2( ) n

nf x a a x a x a x      be a polynomial over a field 

F . Then  derivative of ( )f x  is defined as 
1

1 2'( ) 2 n

nf x a a x na x     .  

 

Note : 

1. Properties of derivatives that are familiar from calculus are not necessarily 

valid here. For example, '( ) 0f x   does not always imply that ( )f x  is a 

constant: for example, if we set 3( )f x x  in a field of characteristic 3 

then 2'( ) 3 0.f x x   

2. Derivative of a polynomial is a linear operation; that is 

 ( ) ( ) ' '( ) '( )af x bg x af x bg x   , where , .a b F  

3.  For the derivative of a product we have the usual rule 

 ( ) ( ) ' '( ) ( ) ( ) '( ).f x g x f x g x f x g x   

4. If ( ) 0Char F   and degree of ( ) 0f x n  , then degree of '( ) 1.f x n   

5.  If ( )Char F p  and degree of ( ) pf x x , then '( ) 0.f x   
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Definition 3.2 : Let K  be a splitting field of a polynomial ( ) [ ]f x F x . Let   be 

a root of ( )f x . Then   | ( )x f x  in [ ]K x . If  
s

x   is the highest power of 

 x  that divides ( )f x  in [ ]K x , then s  is called the multiplicity of  . 

  If 1s  , then   is called a simple root; if 1s  , then    is called a multiple 

root. 

 

Theorem 3.1 : Let  ( ) [ ]f x F x be a polynomial of degree 1  with as a root. 

 Then   is a multiple root if and only if '( ) 0f   . 

Proof : Let    is a root of ( ) [ ]f x F x ,  

By  division algorithm we can write  ( ) ( )f x x g x  .  

Therefore  '( ) '( ) ( )f x x g x g x   .  

Thus   is a multiple root of ( )f x  if and only if ( ) 0g   .  

Since '( ) ( )f g  ,  is a multiple root if and only if '( ) 0f   . 

 

Corollary 3.2 : Let ( ) [ ]f x F x be an irreducible polynomial over F . Then 

( )f x  has a multiple root if and only if '( ) 0.f x   

Proof : Let ( ) [ ]f x F x be an irreducible polynomial over F and   is root of 

( )f x . Suppose '( ) 0f x  . Therefore '( ) 0f   .  

Hence by Theorem 3.1,   is a multiple root of ( )f x . 

 On the other hand, suppose ( )f x  has a multiple root  . Then by  

Theorem 3.1,   is a root of '( )f x .  

 Since ( )f x  is irreducible, 1 ( )a f x  is the minimal polynomial of   over 

F , where a  is the leading coefficient of ( )f x .  

54 



 
 

 

 Now suppose '( ) 0f x  , then '( )f x  is a non constant polynomial satisfied 

by  . Since 1 ( )a f x  is the minimal polynomial of   over F , degree of '( )f x 

degree of 1 ( )a f x . Which is a contradiction.  

Hence, '( ) 0.f x   

 

Corollary 3.3 : Any irreducible polynomial ( )f x  over a field of characteristic 0  

has simple roots. Also any irreducible polynomial ( )f x  over afield F  of 

characteristic 0p   has multiple roots if and only if there exists ( ) [ ]g x F x  

such that ( ) ( ).pf x g x  

Proof : Let 
0

( )
n i

ii
f x a x


  

be an irreducible polynomial over a field F .  

 Then by Corollary 3.2 ( )f x  has multiple roots if and only if 

1

0
'( ) 0

n i

ii
f x ia x 


  . Therefore ( )f x  has multiple roots if and only if    

0,1ii a i n   .  

Thus in a field of characteristic 0,  if '( ) 0f x   then  0,1ia i n   .  

But then 0( )f x a F  , which is a contradiction.  

Hence in a field of characteristic 0 , all roots of ( )f x  are simple.  

Now if F  is of characteristic 0p  , and if 0,ia   we must have | .p i   

Thus ( )f x  has multiple roots if and only if,  either 0,ia  or | .p i   

Therefore ( ) ( )pf x g x , for a suitable polynomial ( ) [ ]g x F x . 

 

Theorem 3.4 : If ( ) [ ]f x F x  is irreducible over F , then all roots of ( )f x  have 

the same multiplicity. 

Proof : Let F  be the algebraic closure of F , and let   and   be roots of ( )f x  

in F  with multiplicities k  and 'k , respectively.  
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We know that 

( ) [ ] / ( ( )) ( )F F x f x F   , 

under the isomorphism,  

 0 1 0 1 0 1( )n n n

n n na a a a a x a x f x a a a                 . 

Let : ( ) ( )F F    be an isomorphism.  

Clearly, ( )    and ( ) ,s s  for all s F .  

We know : ( ) ( )F F    can be extended to an isomorphism 

*: ( )F F F   . Then we define a ring homomorphism : [ ] [ ]F x F x   by  

0 1 0 1( ) *( ) *( ) .r r

r ra a x a x a a x a x           

Clearly ( ( )) ( ),f x f x  ( ) [ ]f x F x .  

Therefore if  is roots of ( )f x  with multiplicity k , then  

( ) ( ) ( ), ( ) [ ]kf x x g x g x F x    

and  

     ( ) ( ) ( ) ( ) ( ) ( )k kf x x g x f x x g x         . 

Thus ( )kx   is also factor of ( )f x  and hence ' .k k   

By interchanging roles of   and  , we get '.k k   

Hence '.k k  

 

Corollary 3.5 : If ( ) [ ]f x F x  is irreducible over F , then
1

( ) ( )
kr

ii
f x a x 


  , 

where i , are the roots of ( )f x  in its splitting field over F , and k  is the 

multiplicity of each root. 

Proof. Let 1 2, , , r    be roots of polynomial ( ) [ ]f x F x  with multiplicities 

1 2, , , rk k k  respectively.  

Then 
1

( ) ( )
ikr

ii
f x a x 


  .  
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Since, ( )f x  is irreducible over F , by Theorem 3.4, all roots of ( )f x  have the 

same multiplicity. 

Therefore  1 2 rk k k k    .  

Hence  
1

( ) ( )
kr

ii
f x a x 


  . 

 

Example 3.1 : Prove that a polynomial  ( )f x F x  has multiple root if and only 

if  ( )f x  and ' ( )f x  has a non-constant common factor. 

Solution : Let a  be multiple root of ( )f x  in an extension E  of F . 

Then     ( ) ( ), 1, ( )
m

f x x a g x m g x E x    . 

Therefore        

 
   

   

1

1

' ( ) ( ) ' ( )

( ) ' ( ) , 1 0.

m m

m

f x m x a g x x a g x

x a m g x x a g x m





   

       

 

Therefore   
1m

x a


  is non-constant common factor of  ( )f x  and ' ( )f x . 

 Conversely suppose that ( )f x  and ' ( )f x  has a non-constant common 

factor.   

Now if all roots of ( )f x  are distinct, then 
1

( ) ( )
n

ii
f x a x a


  , for some  

a F  

and 
1

' ( ) ( )
n

j

i j i

f x a x a
 

 
  

 
   . 

Therefore, ' ( ) ( ) 0, 1i i j

j i

f a a a a i n


     . 

Hence no root of ( )f x  is a root of ' ( )f x , which is a contradiction. 

Therefore all roots of ( )f x  are not distinct. 

Hence  ( )f x  has multiple roots. 
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Example 3.2 : Let ( )f x  be a polynomial of degree n  over F  of characteristic 

p . Suppose '( ) 0f x   . Show that |p n  and that ( )f x  has atmost 
n

p
 distinct 

roots. 

Solution : Let ( )f x  be a polynomial of degree n  over F  and '( ) 0f x  .  

Then by corollary 3.2 ( )f x  has multiple roots. 

Also by corollary 3.3 ( )f x  has multiple roots if and only if there exists 

( ) [ ]g x F x  such that ( ) ( ).pf x g x   

Therefore  n pm  

Also by theorem 3.4, since each root is of same multiplicity, ( )f x  has atmost 
n

p
 

distinct roots. 

 

Example 3.3 : Let  K F x  be the field of rational functions in one variable x  

over a field F  of characteristic 3. (Indeed,  F x  is the field of fractions of the 

polynomial ring  F x  ) Then the polynomial 3y x  in the polynomial ring  K y

over K  is irreducible over K  and has multiple roots. 

Solution : If 3y x has a root in K , then there ( ) / ( )g x h x in K  with ( ) 0h x   

such that  
3

( ) / ( )g x h x x ; that is, 3 3( ) ( )g x xh x .  

 But this implies that    3 degree of ( ) 1 3 degree of ( ) ,h x g x  which is 

impossible. Thus,  3y x K y   is irreducible over K .  

 Now if 1  and 2  are two roots of 3y x in its splitting field, then 

3 3

1 2x   .  
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But then  
3

3 3 3

1 2 1 2( 1) 0        , and, hence
1 2 0   .  

 This shows that 3y x has only one distinct root whose multiplicity is 3. 

This completes the solution. 

 

4.  FINITE FIELDS 

 In this section we show that an irreducible polynomial over a finite field has 

only simple roots. Hence, it will follow then that the only fields over which an 

irreducible polynomial may have multiple roots are infinite fields of characteristic 

0p  . 

 

Definition 4.1 : A field is called prime if it has no proper subfield. 

 

Note :  

1.  Every field F  contains a prime field
pF ,which is precisely the intersection  

of the family of its subfields, called the prime field of F . 

2.    and 
p , where p  is prime  are prime fields.  

 

Theorem 4.1 : The prime field of a field F is either isomorphic to  or p , where 

p  is prime. 

Proof : Define the mapping :f F  given by ( ) ,f n ne e the unity of F . Then 

clearly f is a homomorphism. 

Case 1 : Ker (0)f  (or, equivalently, char F  is 0 ).  

Then f  is an embedding of   into F .  

This embedding can be extended to an embedding *:f F  defined by 

*( / ) / .f m n me ne  
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Thus,   embeds in F , and  hence, the prime field of F  is isomorphic to  . 

Case 2 : Ker (0)f  .  

Since   is a PID, Ker ( ),f m m  a positive integer.  

By the fundamental theorem of homomorphism of rings Im .m f    

This shows that m , being isomorphic to a subring of the field F , has no proper 

divisors of zero, so m  must be a prime number p .  

Thus, 
p embeds in F .  

Hence, the prime field of F  is isomorphic to 
p . 

 

Theorem 4.2 :  Let F  be a finite field. Then 

(i) The characteristic of F  is a prime number p  and F  contains a subfield 

.p pF    

(ii) The number of elements of F  is np  for some positive integer n . 

Proof :  i) Let characteristic of F  is a prime number p .  

Since every field F  contains a prime field pF , by theorem 4.1,  F  contains a 

subfield .p pF    

To prove (ii), we regard F  as a vector space over its prime field 
pF .  

Let  1, , ne e  be a basis of F  over pF . Then any element x F can be written 

uniquely as 

1 1 , , 1,2, , .n n i px a e a e a F i n       

Since each ia , in the above expression for x  be chosen in p  ways, the number of 

elements of F  is thus np . 
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Definition 4.2 : A finite field is called a Galois field. A Galois field with np

elements is denoted by  nGF p . 

 

Theorem 4.3 : Any finite field F with np elements is the splitting field of 

 
np

px x F x  . Consequently, any two finite fields with np elements are 

isomorphic. 

Proof : In the finite field F  with np elements the nonzero elements form a 

multiplicative group of order 1np  .  

Thus, if 0 ,F   then 
1 1,

np   so .
np   

Also, if 0,   then .
np    

Hence, all the np elements of F  satisfy the equation 0.
npx x   

Since  
np

px x F x   has only np roots, every element of F is a root of .
npx x   

Hence finite field F with np elements is the splitting field of  
np

px x F x  . 

Let E  and F  be two finite fields with np elements. By Theorem 4.2, E  

and F contain subfields pE  and pF , each of p  elements.  

Also, E  and F are splitting fields of
npx x over 

pE  and
pF , respectively. 

But since p p pE F   , it follows by uniqueness of splitting fields (up to 

isomorphism) that E F . This proves the theorem. 

 

Theorem 4.4 : For each prime p  and each positive integer 1n   the roots of 

 
np

px x x   in its splitting field over p  are all distinct and form a field F  with 

np elements. Also, F  is the splitting field of 
npx x over p . 
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Proof : Let  ( )
np

pf x x x x   .  

Since 1'( ) 1 0
nn pf x p x    , by Corollary 3.2, ( )f x cannot have multiple roots.  

Thus, ( )f x  has all its np distinct roots.  

We show that these roots form a field that is the splitting field of ( )f x over
p .  

Let   and  be roots, where  is different from zero.  

Then 

 
n n np p p           and    

1
1 1.

n
n np

p p   


    

Thus, the set of roots of ( )f x forms a subfield of the splitting field ( )f x over 
p  

with np elements and, therefore, coincides with the splitting field. 

 

Theorem 4.5 : If F is a finite field with np elements and m  is a positive integer, 

then there exists an extension field E of F such that  : ,E F m  and all such 

extensions are isomorphic. 

Proof : Let F  be the algebraic closure of F .  

Consider the polynomial  ( ) .
m npf x x x F x  

 

Since the multiplicative group of F  is of order 1np  ,for0 ,u F 
1 1,

npu   .  

Also, since ( 1) ( 2)( 1)( 1) 1,n n m n m nmp p p p              1 | 1n mnp p  . 

which  gives 1 1
mnpu   ; that is, 

mnpu u .  

This shows that each element of F  satisfies ( )f x . 

By Theorem 4.4 the mnp roots of ( )f x  are distinct and form a field E .  

Therefore 
p pF F E F     and  [ : ]pF F n , [ : ]pE F mn .  

Hence [ : ]E F m . 
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Theorem 4.6 : The multiplicative group of nonzero elements of a finite field is 

cyclic. 

Proof : Let *F  be the multiplicative group of nonzero elements of F .  

Since *F  is finite abelian group, we can find an element *F  whose order r  is 

the l.c.m. of the orders of all the elements of *F .  

Then the order of each element of *F  divides r .  

Hence, for all *, 1.ra F a   

Since the polynomial 1rx   has at most r  roots in F , it follows that the number of 

elements in * .F r   

However, 11, , , r    are all distinct and belong to *F .  

Thus, *F  is generated by .  Hence *F is cyclic. 

 

Corollary 4.7 : Let E  be a finite extension of a finite field F . Then ( )E F  for 

some .E  

Proof : Let E is a finite extension of a finite field F  and [ : ]E F n .  

Then E is an n  dimensional vector space over F  and hence 
n

E F  .  

Thus E is finite field. Then by above theorem, multiplicative group *E of nonzero 

elements of E is a cyclic group generated by .E   

Therefore E  itself is the smallest subfield of E  containing F  and  . Hence

( )E F  . 

 

Theorem 4.8 : Let F  be a finite field. Then there exists an irreducible polynomial 

of any given degree n  over F . 

Proof :  F  be a finite field. Then, by the Theorem 4.5, there exists an extension E of 

F  of any given degree .n  

Then by Corollary 4.7, ( ),E F a for some .E  
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Since E  is a finite extension of F , E is algebraic over F .  

Let ( )p x  be the minimal polynomial of   over F .  

Then ( ) :F F   degree of ( )p x .  

But since ( ),E F a  and  : ,E F n  we have an irreducible polynomial ( )p x of 

degree n  over F . 

 

Example 4.1 : Show that every finite extension of a finite field is normal. 

Solution : Let E  be finite extension of a finite field F and  :E F n .  

Then E  is also finite and *E , the multiplicative group of E  is cyclic and generated 

by u  such that 
1 1nu   . 

Therefore  u  is a root of  nx x F x  . 

All other roots of  nx x F x   are zero and power of u . 

Therefore all roots of  nx x F x   are in E . 

Hence E  is splitting field of  nx x F x  . 

Therefore E  is normal extension of F . 

 

Example 4.2 : Show that a finite field F  of np elements has exactly one subfield 

with mp elements for each divisor m  of n . 

Solution : We know that a cyclic group of order n  has a unique subgroup of order 

d  for each divisor d  of n . Let m  be divisor of n . 

Now consider the cyclic group  * 0F F  of order 1np  .  

Since |m n , 

      1 2
1 1 1 , .

m d m dn m mp p p p p n md
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Thus 1mp   divides 1np  .  

Then there exists a unique subgroup H  of *F of order 1mp  .  

So for all 1, 1
mpx H x   .  

Hence, 
mpx x  for all  0x H  .  

Since the roots of 
mpx x form a field,  0H   is the unique subfield of F of order 

mp . 

 

Example 4.3 : If  ( )f x F x is an irreducible polynomial over a finite field F , then 

all the roots of ( )f x are distinct. 

Solution : Let F  be a finite field with np elements.  

By Corollary 3.3, ( )f x  has multiple roots if and only if  
0

( ) .
im p

ii
f x a x


  

Because ,
np

i i ia F a a  . Set 
1np

i ib a


 .  

Thus, ( )f x  has multiple roots if and only if    0 0
( ) ,

ppm mi i

i ii i
f x b x b x

 
    

a contradiction, because ( )f x is irreducible.  

Thus, ( )f x must have distinct roots. 

 

Example 4.4 : If the multiplicative group *F  of nonzero elements of a field F  is 

cyclic, then F  is finite. 

Solution : Let  *F  , where   generates *F . If *F is finite, then F  is finite. 

So assume *F  is an infinite cyclic group. 

Case l : The characteristic of F is 0p  .  

In this case  pF F  , where pF  is the subfield  0,1,2, , 1p of F .  
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If 1 0  , then 
2 1  , a contradiction, because *F  is infinite.  

If 1 0  , then 1 *F  , so 1
r   , where r  is some positive or negative 

integer.  

In either case 1
r   yields a polynomial over 

pF  with   as its root.  

Thus,   is algebraic over 
pF , so  [ : ]p pF F degree of the minimal polynomial of

  over 
pF r , say.  

Then  pF F   has rp  elements, a contradiction.  

So either the characteristic of F  is 0 , or *F must be finite. 

Case 2 : The characteristic of F  is 0 .  

Here 0 1 F  . So 1 r  , where r is some positive or integer.  

This implies 
2 1r  ; that is,  o  is finite, a contradiction.  

Hence, *F  must be finite, so F  must be a finite field. 

 

Example 4.5 : The group of automorphisms of a field F  with np elements is cyclic 

of order n  and generated by  , where ( ) ,px x x F   . (  is called the Frobenius 

endomorphism.) 

Solution : Let F  be a field with np  elements.  

Let ( )Aut F denote the group of automorphisms of F .  

Clearly, the mapping : ,F F   defined by ( ) ,px x   is a homomorphism.  

Let p px y      0
p

x y   x y .  

This shows that  is 1-1 and, hence, onto.  

Thus, ( )Aut F .  

We note that n   identity because ( )
nn px x x   for all x F .  
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Let d  be the order of  . We have ( )
dd px x   for all x F .  

Hence, each x F is a root of the equation 0
dpt t  .  

This equation has dp roots. It follows that d n , hence d n . 

Let   be a generator of the multiplicative cyclic group *F .  

Then  pF F  , where 
pF  is the subfield of F  with p  elements.  

Let ( )f x be the minimal polynomial of  over 
pF .  

Clearly, the degree of ( )f x n .  

We are interested in counting the number of extensions of the identity mapping 

: pF F  to an automorphism *: F F  .  

This will then give us all the automorphisms of F , because, clearly, any 

automorphism of F  keeps each element of 
pF  fixed. 

By Lemma it follows that the number of automorphisms of F is equal to the 

distinct roots of ( )f x .  

However, by Example 4.3, ( )f x has all its roots distinct. Thus, the order of the 

group ( )Aut F is n . 

We showed in the beginning that there exists an element ( )Aut F such that the 

order of   is n . Hence, ( )Aut F  is a cyclic group generated by . 

 

Example 4.6 : Let a  and b  be two elements of finite field F , then prove that there 

exists elements   and   in F such that 2 21 0a b    . 

Solution : Let F be finite field with characteristic 2p  .  

Then F  contains 2n  elements.  

Therefore, every element of satisfies 2n

x x .  
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Then, 

2 ,
n

a a  for all a F  

 


12 .2 ,

n

a a


  for all a F  

  
1 2

2 ,
n

a a


  for all a F . 

Thus every element of F  is a square. 

Now if ,a b F , 1 1 2,a F a      for some F .  

Then for 0   we have  

2 2 11 1 . 0a b a a        

1 1 0              (char F 2p  ) 

Thus  2 21 0a b     if F be finite field with characteristic 2p  . 

Next if F be finite field with characteristic 2,p   then F  has np  elements.  

Let  21 |aW ax x F   .  

Then if  2 21 1 ,ax ay    for some , .x y F x y     

Thus for all 2, , 1 ax x F ax W    . 

Also 0 1 aF W   .  

Therefore aW  contains 
1 1

1
2 2

n np p 
   elements. 

Similarly,  2 |bW bx x F   contains 
1

2

np 
 elements. 

Since aW  and bW  more than half elements of F , a bW W   .  

Let a bc W W   then 2 2 2 21 1 0c a b a b            for some , .F    
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5.  SEPARABLE EXTENSIONS 

Definition 5.1 : An irreducible polynomial ( ) [ ]f x F x is called a separable 

polynomial if all its roots are simple.  

 

Any polynomial ( ) [ ]f x F x is called separable if all its irreducible factors are 

separable. 

A polynomial that is not separable is called inseparable. 

 

Definition 5.2 : Let E  be an extension of a field F . An element E that is 

algebraic over F  is called separable over F  if its minimal polynomial over F  is 

separable. 

 

Definition 5.3 : An algebraic extension E  of a field F  is called a separable 

extension if each element of E  is separable over F . 

 

Note :  

1. By Corollary 3.4, any polynomial over a field of characteristic zero is  

separable. Thus, if F  is a field of characteristic 0 , then any algebraic  

extension of F  is separable. 

2.  We know that, irreducible polynomials over finite fields have distinct  

 roots. Hence, any algebraic extension ofa finite field is separable. 

3. We know that, if  K F x  be the field of rational functions in one  

variable x  over a field F  of characteristic 3. Then the polynomial 3y x  

            in the polynomial ring  K y over K  is irreducible over K . Also, 3y x has  

       all its roots equal, each being  , say. Hence, ( )K  is not a separable  

       extension of K . 
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Definition 5.4 : A field F  is called perfect if each of its algebraic extensions is 

separable. 

 

Note.  

1. Fields of characteristic zero and finite fields are perfect fields. 

2.  Infinite fields of characteristic 0p  have inseparable extensions. Thus,  

 such fields are not, in general, perfect. 

 

Definition 5.5 : An extension E  of a field F  is called a simple extension if 

( )E F  for some E . 

 

Theorem 5.1 : If E  is a finite separable extension of a field F , then E is a simple 

extension of F . 

Proof :  If F is a finite field, then by Corollary 4.7, each finite extension E  of F  is 

simple.  

So suppose now that F  is infinite.  

 Since E  is a finite extension of F , 1( , ),nE F a a   where ,1 ,ia E i n  

are algebraic over F .  

 We first show that if ( , ),E F    then there exists an element E  such 

that ( )E F  . Then the result will follow by induction.  

 Let ( )p x and ( )q x be the minimal polynomials for   and  , respectively, 

over F . Let the roots of ( )p x be 1, , ,n     and let those of ( )q x  be

1, , .m   
 

 Since E is a separable extension of F , all ,1 ,i i n   , and all ,1 ,j j m   , 

are distinct.  
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 Since F  is infinite, there exists a F such that ( ) ( )i ja       for

1 , 2 .i n j m      

Then ( ) .j ia       So 
i ja a      for 1j  .  

Set a    . Then 
j ia    for all 1 i n  and 2 .j m   

Define ( ) ( ) ( )[ ].h x p ax F x     

Then ( ) ( ) 0h p   and ( ) ( ) 0j jh p a      for 1j  .  

So  isa root of ( )h x , but no , 1j j  is a root of ( )h x .  

Also,   is a root of ( )q x . Regard ( ) ( )[ ].q x F x  

Let ( ) ( )[ ]A x F x be the minimal polynomial of  over ( )F  .  

Therefore ( ) | ( )A x h x and ( ) | ( )A x q x .  

Then any root of ( )A x is a root of ( )q x  as well as a root of ( )h x .  

But the only common root of ( )q x  and ( )h x is  .  

Therefore, ( )A x x   . This implies that ( )F  .  

Then since , ( )a F       .  

Hence, ( , ) ( )F F   . 

 

Theorem 5.2 :  Let E  be a finite extension of a field F . Then the following are 

equivalent. 

(a) ( )E F  for some E . 

(b) There are only a finite number of intermediate fields between F  and E . 

Proof : (a)   (b) Let ( ) [ ]f x F x be the minimal polynomial of  over F .  

Let K  be a subfield of E  containing F , and let ( )g x be the minimal polynomial of 

  over K .  

Then since ( )g x is in [ ]K x , and ( ) 0f   , ( ) | ( )g x f x .  
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If 'K  is the subfield of K  containing F and the coefficients of the polynomial ( )g x , 

then ( ) '[ ]g x K x , being irreducible over K , is also irreducible over 'K .  

Also, ( )E F  implies ( ) '( )K K E   .  

Thus, [ : ]E K degree of ( ) [ : ']g x E K .  

Hence, 'K K . 

 Consider the mapping   from the family of intermediate fields to the 

divisors of ( )f x in [ ]E x , given by ( ) ( )K g x  , the minimal polynomial of   over 

K .  

 Then  is 1-1. Since there are only finitely many divisors of ( )f x , the family 

of intermediate fields between F and E  is also finite. 

 

(b)  (a) If F  is a finite field, then E  is a finite field, and the result follows from 

Corollary 4.7.  

So assume F is infinite. We first prove that for any two elements , E    there is 

an element E   such that ( , ) ( )F F   .  

For each a F consider the linear combination a    of   and  .  

The fields ( )aF  are intermediate fields between F  and E .  

Because there are only a finite number of intermediate fields, there exist 

, ,a b F a b  , such that ( ) ( )a bF F  .  

But then , ( )a b bF    implies , ( )a b bF   .  

Thus, ( ) ( )ba b F   , and, hence, ( )bF  .  

Then ( )b bb F      implies ( )bF  .  

Therefore, ( , ) ( )bF F   .  

Since ( ) ( , )bF F   , our assertion is proved. 
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We now choose u E  such that [ ( ) : ]F u F is as large as possible.  

Then we claim ( )E F u . Otherwise let , ( )x E x F u  .  

We can find an element t E  such that ( )F t  contains both u  and x , with

( ) ( )F t F u .  

This contradicts the choice of u . Hence, ( )E F u . 

 

Example 5.1 : Let E  be an extension of a field F , and let E  be algebraic over 

F . Then   is separable over F  if ( )F  is a separable extension of F . 

Solution : Let ( )F  . We show that  is separable over F .  

We have ( ) ( ).F F F     

Let L  be an algebraically closed field, and let : F L  be an embedding.  

Suppose 1( )p x is the minimal polynomial of  over F  that has m  distinct roots. 

 Then by Lemma, there are m  distinct extensions, say 1, , ,m   of  to 

( )F  . 

 Further, let 2( )p x be the minimal polynomial of   over ( )F  , and suppose 

2( )p x has n  distinct roots.  

 Then again by the same lemma, for each ,1 ,i i m   there are exactly n  

extensions ,1 ,ij j n   , to ( )F  . 

 It is clear that the set of mn  embeddings  ,1 ,1 ,ij j n i m      are the 

only possible embeddings from ( )F  to L  that extend : F L  . 

Now let 3( )p x  be the minimal polynomial of   over F . Then 

 ( ) :F F  = degree 3( )p x . 

       = number of distinct roots of 3( )p x , since   is separable over F . 

       = number of extensions of the embedding   to ( )F  . 

  73 



 
 

 

 

 Moreover,   is separable over F  implies   is separable over ( )F  , and, 

hence, by the same reasoning as in the previous paragraph, 

 ( ) : ( )F F   = degree 2( )p x . 

 = number of distinct roots of 2( )p x . 

 = number of extensions of each i  to ( )F  . 

 = n . 

Also, 

 ( ) :F F  = degree 1( )p x . 

     = number of distinct roots of 1( )p x . 

     = number of extensions of the embedding   to ( )F  . 

     = m . 

 

Thus,     ( ) : ( ) : ( ) ( ) :mn F F F F F F n      degree 1( )p x . 

Hence, m = degree 1( )p x = the number of distinct roots of 1( )p x . Thus, 

1( )p x  is a separable polynomial. Hence,   is separable over F .  

 

Example 5.2 : Let F E K  be three fields such that E  is a finite separable 

extension of F , and K  is a finite separable extension of E . Then K is a finite 

separable extension of F . 

Solution : From Theorem 5.1 we know that ( ), ( )E F K E   for some

,E K   . Let ( , ), ( )F F      .  

Then ( )F  is a finite separable extension of F , and   is a separable element over 

( )F  .  

We prove that   is separable over F .  
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Let 

1( )p x = the minimal polynomial of   over F  with m ,  

2( )p x = the minimal polynomial of   over ( )F  with degree n , 

3( )p x = the minimal polynomial of   over F  with degree s , 

4( )p x = the minimal polynomial of   over ( )F   with degree t . 

 

 Let : F L   be an embedding of F  into an algebraically closed field L .  

Since   is separable over F , there are exactly m  extensions   ,1 , i i m , of   

to ( )F  .  

 Also, since  is separable over ( )F  , again by Lemma , there are exactly n  

extensions of each i  to ( , )F   .  

Let us these n  extensions 1, , ,i in  where1 .i m   

 Therefore, there are precisely mn  extensions of : F L  to 

: ( , )ij F L    , 1 ,1 .i m j n     

 By considering extensions of : F L  to ( , )F   via ( )F  , we obtain 

similarly that there are precisely st  extensions to ( , )F   . Hence, mn st . 

 Suppose   is not separable over F . Then the number of extensions of  to 

( )F   is s .  

 This implies that the number of extensions of to ( , )F   is st mn  , a 

contradiction. Hence,   is separable over F . 

 

Example 5.3 : If K  is a field of characteristic 0p  , then K  is perfect if and only 

if pK K  (i.e., if and only if every element of K  has thp  root in K ). 

Solution : Suppose K  is perfect. Let a  be any element of K .  
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We claim that there is an element b  in K  such that 
pa b .  

We must show that the polynomial ( ) pf x x a   has a root in K .  

Let b  be a root of ( )f x in some extension field of .K  

Since K  is perfect, b  is separable over ( ) ( )pK K a K b  . 

Let ( )p x  be the minimal polynomial for b  over K .  

Sinceb  is a root of
p px b  in [ ]K x , ( )p x  is a factor of

p px b  in [ ]K x .  

In [ ]K x  we have the decomposition ( )p p px b x b   .  

So ( )p x is a power of x b . But b  is separable over K , so ( )p x has no multiple 

roots. Hence, ( )p x x b  . 

Because ( ) [ ]p x K x , it follows that b K . 

 Conversely, suppose that every element of K  is the thp power of an element 

of K . To show that K  is perfect, we show that every irreducible polynomial of 

[ ]K x has distinct roots.  

Let ( ) [ ]p x K x be irreducible.  

Now if  roots of ( )p x are not distinct.  

 Then by Corollary 3.4, ( )p x has the form 
2

0 1 2

p p np

na a x a x a x    , 

where 0, , na a K .  

 By hypothesis there exist elements 0, , nb b K  such that

( 0,1, , )p

i ia b i n   . Then, since K  has characteristic p , 

 0 1( )
p

n

np x b b x b x    , which is a contradiction.  

 Thus every irreducible polynomial of [ ]K x  has distinct roots. Hence, K  is 

perfect. 
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EXERCISE :  

1. Determine the splitting field of 4 2 1x x   over  . 

2. Find the degree of splitting field over   of 4 2x  .  

3. If  32, 2F  , find  :F   and prove that F  is not normal over   .  

4. Verify that  ( ) ( ) ' '( ) '( )f x g x f x g x   . 

5. Construct fields with 4, 8, 9 and 16 elements. 

6. Prove that a finite extension of a finite field is separable. 

7. Prove that every extension of   is separable. 

8. Show that the field generated by a root of 3 1x x  over   is not normal over 

 . 

9. Prove that every finite extension of a finite field is normal. 

10. Prove that in any finite field any element can be written as the sum of two 

squares 
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GALIOS  THEORY

UNIT  -  III

UNIT I : AUTOMORPHISM  GROUPS  AND FIXED FIELDS :
Recall :

(i) Any finite separable extension E of a field F is simple i.e.  E F a  for some a E .

(ii) For any field E, the set Aut (E) of all automorphisms of E forms a group under the
composition of mappings.

Note : Throughout this section, we confine ourselves to finite separable extension and their
groups of automorphisms.

Definition 1.1 : Let F be a field and E be an extension of F. An automorphism   of E is
called an F-automorphism if   fixes all elements of F.

Then       / Aut |      G E F E a a a F   is called the group of F-

automorphisms of E. Note that  /G E F  is a subgroup of Aut (E).

Theorem 1.1 : Let E be a finite separable extension of a field F. Then

   / :G E F E F

Proof : Any finite separable extension E of F is a simple extension of F.

i.e.  E F a  for some a E .

Let  p x  be the minimal polynomial of a over F and deg    p x n . Then,

       : : deg  E F F a E p x n
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Now, we know that if : F L  be an embedding of F into an algebraically

closed field L. Then   can be extended to an embedding : E L  and the nmber of

such extensions is equal to the number of distinct roots of the minimal polynomial  p x  of  a
over F.

Since the extension E of F is separable, the minimal polynomial  p x  of a over F has
distinct roots in L.

Here consider : F L  to be the identity map of F. Then   can be extended

to an embedding : E L  ( |F  is the identity map of F) and the number of such

extensions which fix all elements of F is equal to the degree of  p x .

   / :  G E F n E F

EXAMPLES :

1) Consider  /  G G

Let , a b  and G

Then          a ib a i b   

  a i b  (since   fixes all elements of  )

Also,        21 1     i i i   

i.e.  2 1 i

   i i

Hence,        a ib a i b a ib 

Thus, G contains only two  -automorphisms of  .

Hence, 2G .

Therefore, G is a cyclic group (since 2 is a prime)
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2) Consider   3 2 /  G G

 3 2 : 3     since 3 2x  is the minimal polynomial for 3 2  over  .

And  3 31,  2,  4  is a basis of  3 2 over  .

Let , , a b c  and G

Then            3 3 3 32 4 2 4    a b c a b c   

       3 32 4  a b c 

Also,       
3 33 32 2 2 2    

 3 2  is a cube root of 2.

 3 32 2  , 3 2  or 23 2  where 3 1 .

But 1 .

Since    3 32 2   ,  3 2  is real.

  The only possibility is  3 32 2 .

 3 3 3 32 4 2 4     a b c a b c

Hence,   is the identity and G is the trivial group.

Definition 1.2 : Let E be any field and let H be a subgroup of the group of automorphisms of

E, Aut (E). Then the set   |   HE a E a a H       is called the fixed field of H.

Note that HE  is a subfield of E.

Suppose ,  Ha b E .

Then   a a  and   b b ,  H .

        a b a b  

       a b  H

   Ha b E



81

Now suppose  , 0  Ha b E

Then       11   ab a b  

1 ab  H

1  Hab E

 HE  is a subfield of E.

Also note that if E is a field extension of F and  /H G E F  then,

 HF E E

Theorem 1.2 : (Dedekind theorem) : Let F and E be fields, and let 1 , 2 , ...., n  be
distinct embeddings of F into E. Suppose that, for

1 2, ,..., na a a E ,   
1

0



n

i i
i

a a  a F

Then, 0ia  for all i = 1, 2, ....., n

(i.e. distinct embeddings of F into E are linearly independent over E)

Proof : Suppose, if possible that there exist 1 2, ,..., na a a E  not all zero, such that,

     1 1 2 2 .... 0   n na a a a a a    a E

Then we can find such a relation having a few non-zero coefficients as possible. On
renumering, we can assume that this relation is

     1 1 2 2 .... 0   m mb a b a b a    a E ...... (1)
Clearly, m > 1

Otherwise if m = 1 then  1 1 0b a    a E

In particular if a = 1 then  1 1 11 0 b b  which is contradiction since all ib ’s are
non-zero.
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Therefore, m > 1

Now, 1  m   and hence there exists an element c E  such that    1  mc c  .

The equation (1) holds for all a E  and, in particular for ca  a E .

     1 1 2 2 .... 0    m mb ca b ca b ca  

and hence,

           1 1 1 2 2 2 .... 0   m m mb c a b c a b c a      ..... (2)

Multiplying eqn. (1) by  1 c  and substracting it from eqn. (2) we get,

             2 2 1 2 1....... 0    m m mb c c a b c c a          a E

This is a contradiction to the choice of equation (1), since

    1 0 m mb c c 

Therefore, 0ia  for all i = 1, 2, ...., n

Theorem 1.3 : Let H be a finite subgroup of the group of automorphisms of a field E. Then,

 : HE E H

Proof : Let  1 2, ,.....,  nH e g g g  and let

 : HE E m

Suppose m < n.

Let  1 2, ,....., ma a a  be a basis of E over HE .

Consider the system of m homogeneous linear equations

     1 1 2 2 ...... 0   j j n j ng a x g a x g a x

j = 1, 2, ...., m, in ‘n’ unknowns 1x , 2x , ...., nx .

Because n > m, this system has a nontrivial solution.

So there exist 1 2, ,...., ny y y E , not all zero, such that
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     1 1 2 2 ...... 0   j j n j ng a y g a y g a y

 1, 2,...., j m

Let a E  be any element. Then,

1 1 2 2 .....    m ma a a a    where 1,..., m HE  .

     1 1 2 2 ......    n ng a y g a y g a y

1 1 2 2
1 1 1

......
  

     
        

     
  
m m m

i i i i n i i n
i i i

g a y g a y g a y  

   1 1
1 1

.......
 

   
m m

i i i n i n
i i

g a y g a y 

      1 1 2 2
1

...... 0


    
m

i i i n i n
i

g a y g a y g a y

             2 2 2 1 2 1 1 1...... 0    j r r rg a y g y g y y g a y g y g y y     ...... (5)

For j = 1, 2, ....., n

(5) is a system equations like (3) but with fewer terms, which is contradiction unless

all the coefficients    1 1 0 i iy g y y g y   1, 2,..., i r

If this happens i.e.    1 1 0 i iy g y y g y

Then  1 1
1 1
 i iy y g y y     g H .

Thus, 1
1
 i Hy y E

1 2 , ,....., r Hz z z E  such that 1i iy y z ,

for i = 1, 2, ....., r

In relation (3), take j = 1, we get

   1 1 1 1 1...... 0  i r rg a y z g a y z

   1 1 1 1...... 0   r rg a z g a z ( 1 0 y )
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Since i Hz E ,  1 i ig z z         1, 2,...., i r

       1 1 1 1 1...... 0   r rg a g z g a g z

 1 1 1 2 2 ........ 0    r rg a z a z a z

Since  1 Aut g H E , 1g   is one-one homomorphism on E.

1 1 2 2 ........ 0    r ra z a z a z

But 1a , 2a , ...., ra  are linearly independent over HE .

  We get 1 2 ...... 0    rz z z .

1 20 ......     ry y y  which is contradiction to the fact that

0iy       1, 2,...., i r .

Hence, we have  :  HE E n H .

Theorem 1.4 : Let E be a finite separable extension of a field F, let  /H G E F .

Then  / HG E E H  and    : /H HE E G E E

Proof : If H  then   a a       Ha E

 /  HG E E

 /  HH G E E ...... (1)

But from the theorem 1.3, we have

 : HH E E ..... (2)

Also by the theorem 1.1, we have

   / :H HG E E E E ...... (3)

From (1), (2) and (3) we get    / :H HH G E E E E H  

 /  HH G E E  and    : /H HE E G E E
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Theorem 1.5 : Let E be a finite separable extension of a field F. Then the following are
equivalent

(i) E is a normal extension of F.

(ii) F is the fixed field of  /G E F .

(iii)    : /E F G E F .

Proof : Since E is a finite separable extension of F,  E F   for some E .

Let  p x  be the minimal polynomial of   over F, and let its degree be n.

Then     : : E F F F n .

Let 0E  be the fixed field of  /G E F  i.e.

    0 |  /    E s E s s G E F 

Then 0 F E E  and by the theorem 1.4,

   0: /E E G E F

Claim : (i)   (ii)

As we know the number of extensions of the inclusion mapping F F  to the

embedding  F F  is equal to the number of distinct roots of  p x .

Since E is separable extension of F, E  is a separable element i.e. its minimal

polynomial  p x  over F has distinct roots.

So the number of distinct roots of  p x  is equal to   degn p x .

Also,  E F   is a normal extension of F. So E contains all the roots of  p x .

Hence, any embedding  : F F   shall map  F   onto  F  .

Hence, any member of  /G E F  is an extension of the inclusion mapping F F .

 / G E F  = number of distinct roots of   p x n .

     0: / :   E F n G E F E E
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and     0 0: : :E F E E E F

 0 : n n E F

 0 : 1 E F

0 E F  i.e. fixed field of  /G E F  is F.

Claim : (ii)   (i)

Let    1 2/ identity, ,.....,  nG E F   

Consider the polynomial           1 2 ......    nf x x x x      .

Now, each  /i G E F  induces a natural homomorphism    * : i E X E X
as,

       *
0 1 0 1...... .......      m m

i m i i i ma a x a x a a x a x   

So               *
1 2 ......   i i i i nf x x x x         

But since 1i  , 2i  , ....., i n   are distinct members of  /G E F  and are only a

permutation of 1 , 2 , .... , n .

    * i f x f x  1,2,....., i n

Now by expanding  f x  we have,

   1 2
1 2 ....... 1 nn n n

nf x x c x c x c      

where  ic E

Now,     * i f x f x  implies

 i j jc c   , 1, 2,....., i j n

jc  is in the fixed field of  /G E F , which is F.

jc F   1, 2,....., j n
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    f x F x

Also, all the roots of  f x  which are  1  ,  2  ,  n   lie in E.

Now,  E F   and   is one of the roots of  f x , E is the splitting field of

   f x F x .

 E  is a normal extension of F. Hence the proof.

Claim : (ii) (iii)

F is the fixed field of  /G E F .

Hence, by the theorem 1.4.

   : /E F G E F

Claim : (iii) (ii)

Let 0E  be the fixed of  /G E F  then,

0 F E E

Also,       0: / : E E G E F E F

0 E F  i.e. F is the fixed field of  /G E F .

EXERCISES :

1. Let    f x F x  has r distinct roots in its splitting field E over F. Then prove that

 /G E F  is isomorphic to a subgroup of the symmetric group Sr of degree r.

Solution : Let 1a , 2a , ....., ra  be all the distinct roots of  f x  in its splitting E over F.

For any  /G E F ,  ia  is again a root of  f x  in E.

Also,    i ja a   for i j  since   is F-automorphism.

Thus,  1a ,  2a , ......,  ra  is a permutation of 1a , 2a , ....., ra  and let us

denote this permutation by  .
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Therefore,  rS  for each  /G E F .

Define  : /  rG E F S  by

     

Claim :   is well-defined.

Let  1 2, /G E F   such that

1 2 

   1 2 i ia a   1, 2,....., i r

Thus,  1 1a ,  1 2a , .....,  1 ra is a same permutation of 1a , 2a , ...., ra  as

 2 1a , ....,  2 ra .

1 2
   

   1 2    

Hence,   is well-defined.

Claim :   is a group homomorphism

Let  , /G E F  ,

     i ia a     

                 i ia a     

          ia    1, 2,....., i r

         

Hence,   is a group homomorphism.

Now,     ker / | identity in    rG E F S   

If ker   then     = Identity in  rS Id .
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  i ia a  1  i r

  Id since E is the splitting field of  f x  over F,  1 2, ,...., rE F a a a

i.e. E is generated by 1a , 2a , ...., ra  over F.

and   fixes all the generators of E over F.

Hence, it should fix all the elements of E.

i.e.  Id .
 ker  Id

    is an injective group-homomorphism.

    / / G E F G E F  which is a subgroup of rS .

2) The group   / G  , where 5 1  and 1 , is isomorphic to the cyclic group
of order 4.

Solution : 5 1

5 1 0  

  4 3 21 1 0          

Since 4 3 21 1 0          

Hence,   is a root of a polynomial

   4 3 2 1     p x x x x x x

 p x  is a cyclotomic polynomial over  .

  p x  is irreducible over  .

    : deg 4    p x .

Also, the roots of 5 1x  are 2 3 41, , , ,    .

So     is the splitting field of 5 1x  over  .

Hence,     is a normal extension of  .
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     / : 4     G  

A basis of     over   is  2 31, , ,   .

  Any element of     looks like

2 3
0 1 2 3  a a a a   , ia

The four  -automorphism of     are as follows :

2 3 2 3
1 0 1 2 3 0 1 2 3:       a a a a a a a a      

2 3 2 4 6
2 0 1 2 3 0 1 2 3:       a a a a a a a a      

      2 4
0 1 2 3   a a a a  

2 3 3 6 9
3 0 1 2 3 0 1 2 3:       a a a a a a a a      

      3 4
0 1 2 3   a a a a  

2 3 4 8 12
4 0 1 2 3 0 1 2 3:       a a a a a a a a      

      4 3 2
0 1 2 3   a a a a  

and order of 2  and 3  in   / G   is 4.

  /  G   is a cyclic group of order 4.

3) Let  3, 2E w ,where 3 1w  but 1w  and let H be the subgroup of  /G E

given by  ,H Id  where : E E  is defined by   a a    a ,   2w w

and    23 32 2 w . Then find the fixed field HE .

Solution : Let 3 2c

Then c is a real no. such that 3 2c .

We are given that  ,E w c  and  ,H Id 
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where   is defined by /  = identity on  .

and   2w w  and   2c cw .

Note that    ,    c c w E .

 21, ,c c  is a basis of   c  over  .

and  1, w  is a basis of  , w c over   c .

  The basis of E over   is  2 21, , , , ,c c w cw c w .

Consider a E . Then,

2 2
0 1 2 3 4 5a r rc r c r w r cw r c w     

where ir .

Now,   2 2 2 2
0 1 2 3 4 5     a r rcw r c w r w r cw r c

          2 2
0 1 2 3 4 51 1         r rc w r c w r w r cw r c

(Since 2 21 0 1      w w w w )

         2 2
0 3 1 5 3 1 4 2           a r r r c r c r w r r cw r c w

  a a

0 3 0  r r r , 1 1 r r , 2 5r r , 3 3 r r , 4 1 4  r r r  and 5 2r r .

3 0 r , 1 0r , 2 5r r .

2 2
0 2 4 2    a r r c r cw r c w

       2
0 2 41   r r c w r cw

   2
0 4 2    a r r cw r cw cw

   HE cw

On the other hand if  a cw .
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Then  20 1 2  a r rcw r cw  for some ir  and   a a .

Hence,    H Ha E cw E .

Thus, the fixed field HE  of H is equal to    3 2 cw w .

PROBLEMS :

1. Let  3 2,E w  be an extension of a field  , where 3 1w , 1w .

For each of the following subgroups iS  of the group  /G E  find SiE .

(a)  1 2,S Id   where  
3 3

2 2

2 2
:
 




w

w w


(b)  2 3,S Id   where 
3 3

3 2

2 2
:
 




w

w w


(c)  3 4 5, ,S Id    where

3 3

4
2 2:

 




w
w w

  and  
23 3

5
2 2:

 




w
w w



2. Let E be the spliting field of 4 2 1 x x  over the field of rationals  . Then determine

the group  /G E .

3. Let 1a  and 5 1a . Then prove that   a  is a normal extension of   and that

  / G a  is isomorphic to 4 , the group of integers modulo 4.
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UNIT II : FUNDAMENTAL  THEOREM  OF  GALOIS  THEORY

Definition 2.1 : Let    f x F x  be a polynomial, and let K be its splitting field over F.

Then the group  /G K F  of F-automorphisms of K is called the Galois group of  f x
over F.

Definition 2.2 : A finite, normal and separable extension E of a field F is called a Galois
extension of F.

Example : If    f x F x  is a polynomial over a field F of characteristic zero, then its
splitting field E over F is a Galois extension of F.

Theorem 2.1 (Fundamental Theorem of Galois Theory)

Let E be a Galois extension of F. Let K be any subfield of E containing F

(i.e.  E K F ). Then the mapping  /K G E K  sets up a one-to-one

correspondence from the set of subfields of E containing F to the subgroups of  /G E F such
that

(i)  / G E KK E

(ii) For any subgroup H of  /G E F ,  / HH G E E .

(iii)    : /E K G E K ,  :K F  = index of  /G E K  in  /G E F .

(iv) K is a normal extension of F if and only if  /G E K  is a normal subgroup of

 /G E F .

(v) If K is a normal extension of F then      / / / /G K F G E F G E K .

Proof :

(i) E is a normal extension of K.

  The fixed field of  /G E K  is K.

i.e.  / G E KK E .
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(ii) As E is Galois extension of F, this extension is a finite separable extension of F.

Now,  /H G E F . Then clearly  / HH G E E .

(iii) As E is a normal extension of F, and  E K F  then E is also a normal extension
of K.

  We have     : /E F G E F  and     : /E K G E K

Thus,     : : :E F E K K F  gives

     / / : G E F G E K K F

 : K F  = index of  /G E K  in  /G E F .

(iv) Let F  be an algebraic closure of F containing E. As we know if K is a normal of F if

and only if each embedding : K F , which keeps each element of F fixed, maps K
onto K.

Claim : K is a normal extension of F if and only if for each  /G E F ,   K K . If K

is a normal extensionof F and  /G E F  then   restricted to K is an embedding of K

into E and hence into F . Therefore,   K K .

Conversely, let : K F  be an embedding that keeps each element of F fixed.

  can be extended to *: E F . But then  * E E , because E is a

normal extension of F. Thus,  * /G E F .

As  * K K ,   K K . Therefore, K is a normal extension of F. This proves
our claim.

Therefore, K is a normal extension of F if and only if for all  /G E F  and

k K ,  k K .

Then for all  /G E K ,     k k   .

  1 k k    k K .

Hence,  1 / G E K  .
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   / / G E K G E F

Conversely, suppose    / /G E K G E F .

Then     k k     / G E K .

 k K  .

Therefore, K is a normal extension of F.

(v) Let K be a normal extension of F.

We know that  /G E F  then   k k .

Thus,   induces an automorphism *  of K defined by  * k k , k K .

 * / G K F

Conider the mapping    : / /f G E F G K F  defined by,,

  *f  

Let  1 2, /G E F  . Then,

        1 2 1 2 1 2* * * * * k k k     

            1 2 k 

Therefore,  1 2 1 2* * *    . Thus,  f is a homomorphim of  /G E F .

  ker / | *  identity  f G E F 

But, *  = identity if and only if  * k k   k K .

That is   k k   k K , so  /G E K .

Hence,  ker /f G E K .

Then by the fundamental theorem of homomorphisms,

 
 

 / Im /
/

G E F f G K F
G E K .
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From (iii), we get

 
 

 / :
/


G E F K F
G E K

Since, K is a normal extenion over F,

   / :G K F K F

 
 

   / Im / :
/

   
G E F f G K F K F
G E K

 
 

 / /
/

 G E F G K F
G E K

EXAMPLES :

1. The Galois group of  3 2 x x  is the group of symmetries of the triangle i.e. 3S .

Solution : Let E be the splitting field of 3 2x  over  .

Hence,  3 2,E w , where w is the root of the irreducible polynomial 2 1 x x

in  3 2 .

Hence,       3 2,E w

2




Basis is  1, w

           3 2

3




Basis is  3 31, 2, 4



Hence,  : 6E

Also,     3 23 3 32 2 2 2    x x x w x w
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Since, E is a normal extension of   and  : 6E ,  / 6G E .

These six automorphisms of E are determined by the manner in which they transform
the roots of 3 2x .

The root 3 2  can have only three images namely 3 2w  and 23 2w .

And the root w can have only two images, namely w and w2.

The Galois group  /G E  of 3 2x  over   is given by the table, where

   2 2/ , , , , ,G E Id      

Id  2   2 

1
32

1
32 3 2w 23 2w 3 2 3 2w 23 2w

w w w w w2 w2 w2

            3 1 , 1, 2,3 , 1,3,2 , 1, 2 , 1,3 , 2,3S

Define an iomorphism from  /G E  to 3S  as

   1, 2,3  and      1,2

Thus,   3/ G E S .

2. Let F be field of characteristic 2 .

Let  2  x a x  be an irreducible ploynomial over F. Then its Galois group is of
order 2.

Solution : If   is a root of 2 x a  then   is the other root.

Also,     since Ch 2F .

Thus, 2 x a  is separable over F.
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Hence, the splitting field  F   of 2 x a  over F is a finite, separable and normal
extension of degree 2 over F.

  / 2 G F F

3. The Galois group of  4 2 x x  is the octic group (i.e. group of symmetries of a
square, D4).

Solution : 4 2x  is irreducible over   and its roots are 4 2 , 4 2i ,  4 2i ,  4 2 .

  Spliting field of 4 2x  over   is  4 2, i .

Now, 2 1x  is irreducible polynomial over  4 2 .

 4 2, : 8    i

As,  4 2, i

 2




Basis is  1, i

 4 2

 4




Basis is  4 4 42,1, 4, 8

  

  Basis for  4 2, i over   is  4 4 4 4 4 41, , 2, 2 , 4, 4 , 8, 8i i i i

Let  4 2, E i

Then      4 4 4 44 4
0 1 2 3 4 5 6 72 4 8  2  4  8       a a a a a i a i a i a i

So if  / G E  then

         
2 34 4 4

0 1 2 3 42 2 2    a a a a a i     

           2 34 4 4
5 6 72 2 2  a i a i a i     
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Therefore,   is determined by  i  and  4 2 .

But  i  must be i or – i and  4 2  must be 4 2 , 4 2i , 4 2 i , 4 2 .

Since E over   is Galois extension,

   / : 8  G E E

Let    1 2 8/ , ,.....,G E     where

4 4
1 : 2 2 4 4

2 : 2 2 i

         i i           i i

4 4
3 : 2 2 4 4

4 : 2 2i

         i i           i i

4 4
5 : 2 2 4 4

6 : 2 2 i

         i i           i i

4 4
7 : 2 2 4 4

8 : 2 2i

         i i           i i

Let 4
1 2 ,  4

2 2 i ,  4
3 2  ,  4

4 2 i .

1

2

3

4

1d

2d

1l

2l
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Then the elements of  /G E permute the roots 1 , 2 , 3 , 4  of 4 2x  as
follows :

1 : 0  rotation ; 5 :  reflection about 1d ;

2 : 90  rotation ; 6 :  reflection about 1l ;

3 :180  rotation ; 7 :  reflection about 2d ;

4 : 270  rotation ; 8 :  reflection about 2l .

4. Let n be a positive integer, and let F be a field containing all the nth roots of unity. Let
K be the splitting field of   nx a F x . Then  K F  , where   is any root of nx a ,

and the Galois group  /G K F  is abelian.

Solution : If 2 / i nw e   and   is an root of nx a , then  , w , ....., 1nw   are all the

roots of nx a . Thus, the splitting field of nx a  over F is  K F  .

Let  1 2, /G K F  .

Because   is root of nx a ,  1   and  2   are also roots of nx a .

 1  iw     and   2  jw  

For 0 , 1  i j n . Then

       1 2 1 2 1  iw       

         1 1 iw  

       1 iw  (  iw F )

       i jw

Similarly,      2 1 2 1
  i jw       .

Hence, 1 2 2 1    .

Thus,  /G K F  is abelian.
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Fundamental Theorem of Algebra
Theorem 2.2 : The field   has no extension of degree 2.

Proof : Let K be a field extension of   such that  : 2K .

Then  a K  s.t.  K a .

Let  p x  be the minimal polynomial of a over  .

Then degree of  p x  must be zero.

Let   22  p x a bx x  where , a b .

Now,     2 2p x x b b a x b b a      

Where 2  b b a .

This is contradiction, since  p x  is irreducible over  .

Therefore, the field   has no extension of degree 2.

Theorem 2.3 : Let    f x x  be of odd degree.

Then  f x  has a real root.

Proof : Without loss of generality, we can assume that  f x  is a monic polynomial.

Suppose   1
0 1 1...... 

    n n
nf x a a x a x x

where n is odd, ia .

Let 0 1 11 ......      ns a a a

Then, 1 ia s   0 1   i n .

  1 1
0 1 1...... 1 1 .... 

        n n
na a s a s s s s

      1 n ns s



102

Therefore,   0f s . Also

     12 1
0 1 2 1...... 1  

        n nn
nf s a a s a s a s s

2
0 1 2 ......     na a s a s s (   n is odd)

1 1 0     n ns s

Therefore,    0f s f s    and s .

By the intermediate value theorem in analysis,   a real number a s.t.   0f a .

Thus, a is a root of  f x  in  .

Theorem 2.3 : Every polynomial    f x x  factors into linear factors in   x .

Proof : Let   0 1 ......    n
nf x a a x a x , n > 0

and 0na  be a polynomial in   x .

Put        2 1 g x x f x f x

      2
0 1 0 11 ...... ......       n n

n nx a a x a x a a x a x

Then,    g x x .

Let E be the splitting field of  g x  over  .

Then    E  since i is a root of  g x .

We prove that  E .

First observe that  : 2   and is a divisor of  :E , since

      : : : 2 :      E E E

 : E  is an even positive integer..

Suppose that  : 2 mE q , where , m q  an q is odd.

Let G be the Galois group  /G E . Since E is a normal extension of  .
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   / : 2    mG G E E q

By the Sylow theorem in group theory,

  a subgroup H of G such that 2 mH  (i.e. H is a 2-Sylow subgroup of G).

Let HE  be the fixed field of H.

Then   HE E  and

      2 : : : :    m
H H Hq E E E E H E

           2 : m
HE

 : HE q .

Also, since HE  is a finite separable extension of  , HE  is a simple extension of 
and hence   HE f  for some  Hf E .

Let    0 1 ......    qq x b b x x x  be the minimal polynomial of b over  .

Note that       deg : :    Hq x q b E .

Now,  deg q x  is odd, therefore  q x  has a real root.

i.e.   0q r  for some real no. r.

  x r  is a factor of  q x  in   x .

But  q x  is an irreducible polynomial over  , since  q x  is the minimal polynomial
of b over  .

 deg 1  q x q

i.e.  : 1   H HE E  and  : 2 mE

Claim : m = 1

Suppose, if possible m > 1.

Then   1: 2  mE  and hence   1/ 2  mG E .
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Again, by the Sylow theorem,  /G E  has a subgroup S of order 22 m .

If SE is the fixed field of S then

  2: 2   m
SE E S

Therefore,  : 2SE , since   1: 2  mE .

This is a contradiction to the fact that   has no extension of degree 2.

Therefore, m = 1 and  : 2E .

 : 1 E  and hence  E .

Thus,   is the splitting field of  g x .

Thus,   contains all the roots of  g x  and hence of  f x .

Thus,  f x  completely factors into linear factors in   x .

EXERCISE :

1. Let  3, 5E , then find the Galois group  /G E .

2. Let a be a real number such that   a  is a normal extension of   for which

  : 2  ma  where 0m .

Prove that there are fields  0 1 2 .....      mE E E E a  such that

 1 : 2 i iE E  for each 1 i m .
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UNIT III : CYCLOTOMIC POLYNOMIALS AND CYCLIC
EXTENSIONS
Roots of Unity and Cyclotomic Polynomials :
Definition 3.1 : Let E be a field, and let n be a positive integer. An element w E  is called
a primitive nth root of unity in E if 1nw  but 1mw  for any positive integer m < n.

Consider  | 1   nH x x

Note that,

1. H is a group under multiplication.

2. Also, H is a cyclic group generated by any primitive nth root w of unity.

3. There are exactly  n  primitive nth roots of unity for each positive integer n, where

  is Euler’s  -function.

4. These primitive nth roots of unity are 
   cos 2 sin 2k i k
n n

 
, where k is a positive

integer less than n and relatively prime to n.

Theorem 3.1 : Let F be a field, and let U be a finite subgroup of the multiplicative group
 * 0 F F . Then U  is cyclic.

In particular, the roots of   1 nx F x  form a cyclic group.

Proof : As U is a finite subgroup of the multiplicative group F*, which is abelian, hence U is
a finite abelian group.

     1 2 ......     kU S p S p S p

where    r
i i

iS p p  and 1,  ,  .....,  k kp p p are distinct primes.

Claim :  iS p  is cyclic  1, 2,...., i k .

Let   ia S p  be such that  0 a  is maximal say is
ip .

Because  0 ir
ia p , we have i is r .
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Also, for each   ix S p ,  0  i it s
i ix p p .

Therefore, 1 1  i ii ip pt s
x x .

Hence,    ix S p , 1iip s
x .

Because, the equation 1iip s
x  has atmost is

ip  roots.

   i is r
i i i ip p s r , since i ir s

i ip p .

   0  ir
i ia p S p  and hence  iS p  is a cyclic group generated by a.

Now, we know that if A and B are cyclic groups of orders m and n, respectively with

 gcd , 1m n , then A B  is again cyclic.

Here, each  iS p  is cyclic with cardinality ir
ip , and 1p , 2p , ....., kp  are distinct

primes.

 1 2
1 2gcd , ,....., 1 krr r

kp p p

Hence,      1 2 ......   kS p S p S p  is cyclic but

     1 2 ......    kU S p S p S p

Hence, U is cyclic.

Theorem 3.2 : Let F be a field and let n be a positive integer. Then there exists a primitive nth

root of unity in some extension E of F if and only if either char F = 0 or char  |F  n .

Proof : Let    1  nf x x F x , and let char F = 0 or char  |F  n . Then

  1' 0 nf x nx . Thus,  f x  has n distinct roots (in its splitting field E over F),
and they form a group, say H.

This group H, consisting of the n distinct roots of 1nx , is a cyclic group.

Now, if w H  is a generator of H, then 1nw , but 1mw  for any positive integer
m < n. Hence, w is a primitive nth root of unity in an extension E of F.
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Conversely, let w be a primitive nth root of unity in some extension field E of F.

Then, 1, w, 2w , ...., 1nw  are n distinct roots of   1 nf x x .

Otherewise if i jw w  with 0 1   j i n  then 1 i jw  with 0   i j n  which
is contradiction to the fact that w is a primitive nth root of unity.

So  f x  doesn’t possess multiple roots.

  1' 0  nf x nx

char 0 F  or char  |F  n .

Definition 3.2 : Let n be a positive integer, and let F be a field of characteristic zero or

characteristic  |p  n . Then the polynomial      n
w

x x w , where the product runs over

all the primitive nth roots w of unity (i.e. the primitive nth root of 1nx  over F) is called the
nth cyclotomic polynomial.

For example,  1 1  x x ,  2 1  x x ,   2
3 1   x x x ,

  4 3 2
5 1     x x x x x .

Theorem 3.3 :      n
w

x x w , w primitive nth root in  , is an irreducible polynomial

of degree  n  in   x  (where   is Euler’s ’s  -function).

Proof : Let E be the splitting field of  1 nx x .

Hence, the fixed field of  /  G E .

Hence, any  / G E ,  w  is again a primitive nth root of unity, for any
primitive nth root w of unity.

Also, the induced mapping    *: E x E x  keeps  n x  unaltered.

Thus, the coefficient of  n x  lie in the fixed field of  /G E  i.e.     n x x .
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But,  n x  is a factor of 1nx  and  n x  is monic implies     n x x .

Also, the number of primitive nth roots of unity is  n  implies  n x  is of degree

 n .

Claim :  n x  is irreducible over  .

Let    f x x  be an irreducible factor of  n x  and let w  be a root of  f x ,
where w is a primitive nth root of unity.

Claim : If p is a prime such that p doesn’t divide n then pw  is also a root of  f x .

Note that pw  is also a primitive nth root of unity..

 pw  is also a generator of the cyclic group consisting of the roots of 1nx .

Because    f x x  is a factor of  n x , there exists    h x x  such that

      n x f x h x .

So if pw  is not a root of  f x , it must be a root of  h x .

Thus, w is a root of  ph x . So  f x  and  ph x  have a common factor over some

extension of  . But this implies  f x  and  ph x  have a common factor over  .

Also,  f x  is irreducible over   and hence over  . We get  f x  divides  ph x .

       ph x f x g x

 g x  is also a monic polynomial over  , since  f x  and  ph x  are monic
polynomial over  .

Let     modf x f x p  and     modh x h x p .

i.e. polynomials obtained from  f x  and  h x  by replacing their coefficients a

with  pa .
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Now,   modpa a p    a .

     
pph x h x

So       ph x f x g x  gives that  h x  and  f x  have a common factor..

Thus,       n x f x h x  and    1 n
n x x , we get that 1nx  has multiple

roots. But this is not possible. For if   is a multiple root, then the derivative of 1nx  should

vanish at x  ; i.e. 1 10 0   n nn  , since characteristic  |p  n .

0   but   is not a root of 1nx , we get a contradiction.

Thus, w is a root of  f x , then pw  is also a root of  f x .

Now, any primitive nth root of unity can be obtained by raising w to a succession of
prime powers, with primes not dividing n, this implies that all primitive nth roots of unity are
roots of  f x .

Hence,     nf x x  i.e.  n x  is irreducible over  .

Theorem 3.4 : Let w be a primitive nth root of unity in  . Then   w  is the splitting field

of  n x  and also of  1 nx x .

Further,        : /       w n G w  and    */   nG w , the

multiplicative group formed by the units of n .

Proof : The minimal polynomialof w is  n x  and   w  contains a primitive nth root of
unity, it contains all nth roots of unity.

  w  is the splitting field of  n x  and of 1nx .

Also,   : w  = degree of     n x n .

Since,   w  is a finite, separable and normal extension of   (i.e. Galois extension

of  n x  over  ),
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       / :    G w n w

If   /  G w , then  w  is also a primitive nth root of unity..

   jw w , where  j < n and  , 1j n .

Denote this   by j .

We know that there are  n  no. of such j’s, and they are precisely the members of

the group *n .

Let   *: :  nf G w  be a map defined by    jf j  .

Claim : f is well-defined and one-one.

j k   with , j k n  and    , , 1 j n k n .

    j kw w 

 j kw w

1 j kw

If j k  then  j k n  and 1 j kw  which is contradiction to the fact that w is a
primitive nth root of unity.

  j k f  is one-one.

And if j k  for *, nj k .

Then j kw w .

    j kw w 

 j k  ( , j k   agree on w, hence agree on every element of   w )

    f j f k

   f is well-defined.
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Claim : f is a homomorphism.

Let *, nj k .

Write  jk qn r  with r < n.

Now,  mod jk n r  i.e. in *n , jk r .

 jk qn r rw w w

           r jk j kf jk f r f j f k   

  * /   n G w .

Remark : If p is an odd prime, then  * ep  is a cyclic group.

Hence,   / G w , where w is a primitive pe th root of unity (e > 0), is a cyclic

group of order    1 1 e ep p p .

EXAMPLES :

1. Prove that the Galois group of 4 2 1 x x  is the same as that of 6 1x  and is of
order 2.

Solution : 4 2 21 1    x x y y  where 2y x .

But 2 1 y y  is the minimal polynomial for a primitive 3rd root of unity..

So the splitting field of 4 2 1 x x  will contain the square roots of 2 / 3ie   and 4 / 3ie  .

Now,  
1

2 /3 / 32  i ie e   and  
1

4 / 3 2 /32  i ie e  .

So  E  , where /3 ie , is the splitting field of  4 2 1  x x x .

But / 3 2 / 6 i ie e    is a primitive 6th root of unity, E is the splitting field of 6 1x .

Then    *
6/   G   and  *

6 6 2  

Hence,   / G   is of order 2.
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CYCLIC EXTENSIONS :
Definition 3.3 : Let E be a Galois extension of F. Then E is called a cyclic extension of F if
 /G E F  is a cyclic group.

EXAMPLES :

1. If w is a primitive pth root of unity and the splitting field of 1px  over   is    w E
(say). Then E is a Galois extension of  .

   */    pG w  and * p  is a cyclic group of order p – 1.

  w  is a cyclic extension of  .

Lemma 3.1 : Let F be a field of non-zero characteristic p. Then for every positive integer k

the mapping k  of F into itself, defined by    p
k

k
x x  for all elements x of F, is an

embedding of F into itself. (The mapping  1  px x  is called the Frobenius endomorphism).

Proof : Consider a map : k F F  defined by    p
k

k
x x    x F .

Claim : k  is well-defined.

Let , x y F  such that   p pk k
x y x y .

    k kx y . Hence, k  is well-defined.

Claim : k  is injective.

Suppose      k kx y .

0    p p p pk k k k
x y x y

  0  pk
x y (  Characteristic of 0 F p )

0  x y (  F is a field hence integral domain)
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 x y

Therefore, k  is injective.

k  is an embedding of F into itself for every positive integer k.

Lemma 3.2 : Let E be a finite extension of F.

Suppose  : / *f G E F E ,  * 0 E E has the property that

      f f f     for all  , / G G E F  . Then there exists *E  such that

   1f       G .

(The mapping  f in the hypothesis of the lemma is called a crosed homomorphism.)

Proof : For all G ,   *f E , so   0f  .

Thus, if     0



G

f b


     * b E .

Then by the Dedekind lemma,   0f  , which is not true. Hence, there exists

*b E , such that

    0


 
G

f b


  

Then for any G , we get

       



G

f b


     

Then, by using       1f f f    , we get

        1


 

G
f f b


    

But    | |  G G   

Hence,         1


 

G
f f b
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    1
  f    

   1  f         G

Hence, the proof.

Lemma 3.3 : Let E be a finite extension of F, and let  /G G E F  be a cyclic group of
order n generated by  . If be w E  such that

     2 1... 1  nw w w w   , then there exists *E  such that

  1 w    .

Proof : By lemma 3.2, we need to define : *f G E  such that   f w  for some

G  and  f  is a crossed homomorphism.

Define : *f G E  as follows :

  1f id ,   f w  and      1 ..... i if w w w    for 2 1  i n .

Claim : f  is a crossed homomorphism i.e.

       f f f   

Let , i j G  . If  0 mod i j n  then

        1    i j i j nf f f f id   

Also,     i j if f  

         1 1.... ....   i j iw w w w w w    

         1 2 .... ....   n n iw w w w w   

  nf 

= 1

If  0 mod i j n , then
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           1 2 ....      i j i j r r rf f f w w w w      

  i j qn r  where and r < n, 0r .

Now, consider

          1 2 .....     i j i i j jf f w w w w      

      1 2 .....  j jw w w w  

             1 2 1..... .....      i j i j i iw w w w w w    

                     1 2 .......  r rw w w w  

      rf 

Hence, f is a crossed homomorphism.

Therefore, using Lemma 3.3,  * E .

Such that    1 f     .

i.e.  1 w    .

Hence, the proof.

Theorem 3.5 : Let  F  be a field and contain a primitive nth root w of unity. Then the following
are equivalent :

(i) E is a finite cyclic extension of degree n over F.

(ii) E is the splitting field of an irreducible polynomial   nx b F x .

Furthermore note  E F  , where   is a root of nx b .

Proof : (i)   (ii)

Let   be a generator of the finite cyclic group  /G E F .

By Lemma 3.3, there exists *E  such that    w   .

  i iw       1,2,..... i
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ni n i   

     
niw

      in n nw  

Thus, n F , and if  nb  , then   nx b F x  and  
1

  
n

n i

i
x b x w .

Claim :   nx b F x  is irreducible over F..

Suppose      nx b f x g x , where  f x  is nonconstant irreducible monic
polynomial over F.

If iw  is one root of  f x , then for each positive integer  j  we have,

       j i i j i i j iw w    

But iw F  (Since F contains a primitive nth root w  of unity).

So   j i i iw w  and also    j i j iw   .

Thus, we have

      j i i i j i jw w w w  

Because any F-automorphism maps a root of a polynomial over F onto a root of that
polynomial, we get that jw   is also a root of  f x .

Hence, all the roots of nx b  are roots of  f x .

Thus,    nf x x b . Therefore, nx b  is irreducible over F.

Also,  E F  , where   is a root of nx b  (since F contains nth root of unity)

and E is the splitting field of nx b  over F.

Claim :  (ii)   (i)

Let c E  be a root of . So  nb c . Clearly, then, c, cw, cw2, ...., cwn–1 are n

distinct roots of nx b , where w F  is a primitive nth root of unity..



117

Thus, nx b  is a separable irreducible polynomial.

Hence,  E F c  is a Galois extension of F.

For each  /G E F , let     be defined by

    |   kk c w c  

Then       becuase  c  is also a root of  nx b .

Moreover, for any  k   ,   /  k n  , for k jw c w c  if and only if

 modk j n .

Further if,  , /G E F   and if    kc w c  and    jc w c , then

          j j j kc w c w c w c  

So       mod  n     

Finally, if   0   then   c c .

So   is identity on E because  E F c .

Hence,   is an isomorphism from  /G E F  onto a subgroup of the additive

group n .

Also,   :F c F   = degree of the minimal polynomial of c over F

    = degree of nx b
    = n.

Because  E F c  is a Galois extension,

   / : G E F E F n  and  / G E F  subgroup of n .

 /  nG E F (which is a cyclic group)

Hence, E is a cyclic extension of degree n over F.
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EXERCISE :
1. If a field F contains a primitive nth root of unity, then the characteristic of F is 0 or a

prime p that does not divide n.

2. Let F contain a primitive nth root of unity, and let E be the splitting field of mx b
over F, where m | n and m is prime. Then either E = F or mx b  is irreducible over
F. What can you say of m is not prime ?
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POLYNOMIALS SOLVABLE BY RADICALS AND

SYMMETRIC FUNCTIONS

UNIT  -  IV

POLYNOMIALS  SOLVABLE  BY  RADICALS

Definition 4.1 : An extension E of a field F is an extension of radicals (or radical extension)
if there are elements 1 2, ,......, r E     and positive integers 1 2, ,......, rn n n  such that

 1 2, ,......, rE F     and   1 2 1, ,......,in
i iF     , 1 i r  .

Example :  3 52, 7  is a radical extension of  .

 33 2 2   and    5 35 7 7 2 

Theorem 4.1 : If rE  is a radical extension of 0F E  with intermediate field 1 1,....., rE E 

such that 1 2 1..... rE E E    , then there exists a radical extension '
sE of 0F E  with

intermediate fields ' ' '
1 2 1, ,....., sE E E   ( ' ' '

1 2 1..... sE E E    ) such that

(i) '
s rE E

(ii) '
sE  is a normal extension of F..

(iii) '
iE  is a splitting field of a polynomial of the form  '

1
im

i ix b E x  , i = 1, 2, ...., s.

Proof : We have an ascending chain of fields 0 1 ..... rF E E E     such that

 1i i iE E    1 i r   and i  is a root of  1
in

i ix a E x  .

Let w be a primitive nth root of unity, where 1 2, ,..., rn n n n .
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Now, consider

 1E w

  |

   0E w F w

  |

0E F

Now,  1E w  is a radical extension of F..

Since      0 0 1F E F w E w E w   

   1 1,E w F w  such that nw F  and  1
in F w  .

Also,  F w  is a splitting field of  1nx F x  , hence is a normal extension of F..

  F is the fixed field of   /G F w F .

    
  

 1
1 1

/

n

G F w F
f x x a F x






   

Here,    1
1 1

knf x x a  ,   /k G F w F  since 1a F .

Now, consider      1 11ng x x f x  . Then    1g x F x .

Let K be the splitting field of  1g x  over F..

  K is a normal extension of F. Clearly, 1 K  , w K  and 1E K .

  There is a finite ascending chain of fields between F and K such that each field is
a splitting field of a polynomial of the form mx b  over the precending field.

Similarly, we construct a field L such that L contains the field K and E2 and is a normal
extension of F.

Construction : Consider a polynomial

     2 1 2g x g x f x  where      
 

2
2 2

/

n

G K F
f x x a
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Now, K is a normal extension over F,    2f x F x .

   2g x F x  . Let L be the splitting field of  2g x  over F..

2 L   and K L . Hence,  1 2 2E E L   .

  L is a normal extension of F containing E2.

Continuing like this, we can construct a radical extension '
sE  of F having the desired

properties.

Definition 4.2 : A polynomial    f x F x  over a field F is said to be solvable by radicals
if its splitting field E is contained in some radical extension of F.

Note : We assume that all fields are of characteristic zero.

Theorem 4.2 :    f x F x  is solvable by radicals over F if and only if its splitting field E
over F has solvable Galois group G (E / F).

Proof : First suppose that G (E / F) is solvable. Because the characteristic of F is zero, E is a
normal separable extension. So    : /E F G E F n  , say. Assume first that F contains a
primitive nth root of unity. Then F contains primitive nth roots of unity for all positive integers
m that divide n. Let  /G G E F . Because G is solvable and finite, there is a chain

 0 1 .... rG G G G e      of subgroups of G such that 1i iG G   and 1i iG G   is cyclic.

Let 0 1 .... rF F F F E      be the corresponding subfields of E given by the fundamental

theorem. Then G iiE F  and  / i iG E F G .  Also, by the fundamental theorem,

   1 1/ /G G E F G E F G   implies 1F  is a normal extension of F..

E

1F

F

 /G E F G



 1 1/G E F G

   /G E E e

(normal)
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Now E can be regarded as the splitting field of  f x  over F1. So E is a finite normal

extension of F1. Then 2 1G G  implies that F2 is a normal extension of F1.

E

2F

 1 1/G E F G



 2 2/G E F G

 /G E E e

(normal)

1F

Continue in this way to show that Fi is a normal extension of Fi–1.

E

iF

 1 1/ i iG E F G 



 / i iG E F G

   /G E E e

(normal)

1iF 

Furthermore,      1 1 1/ / / / /   i i i i i iG F F G E F G E F G G  by the fundamental

theorem. So Fi is a cyclic extension of 1iF . Also, Fi is the splitting field of an irreducible

polynomial  1 in
i ix b F x  and  1i i iF F  , where 1 in

i i ib F . Then

 1,....., rE F   , 1
1 n F  and  1

1 1 1 1,...,  n
i iF F    for 1 i r . Thus,  f x  is

solvable by radicals over F.

Next we drop the assumption that F contains a primitive nth root of unity. The

polynomial  1 nx E x  has roots in E . Let   be a primitive nth root of unity lying in E .

Then  E   is the splitting field of  f x  regarded as a polynomial over  F  . Any  F  -

automorphism   of  E   will leave the coefficients of the polynomial  f x  unaltered.

Now, for any automorphism     /G E F   , we have  0 / E G E F  , since

E is a normal extension of F. Further, the map 0   is a 1 – 1 homomorphism of the group

    /G E F   into  /G E F . Then since a subgroup of a solvable group is solvable,
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    /G E F   is solvable. Now by the first part,  E   is a radical extension of  F  ;

so  E   is a radical extension of F. Then the splitting field E of    f x F x  is contained in

the radical extension  E   of F, so  f x  is solvable by radicals.

Before we prove the converse, we prove a lemma that deals with a particular case.

Lemma 4.1 : Let E be the splitting field of   nx a F x . Then  /G E F  is a solvable
group.

Proof :  If F contains a primitive nth root of unity , then we know that  /G E F  is abelian
and, hence, solvable. Now suppose that F does not contain a primitive nth root of unity. Let

F  be a generator of the cyclic group of the nth roots of unity. Let b be a root of nx a .

Then b  is also a root. So  1 b b   is in the splitting field E of   nx a F x . Consider

     F F E F  is a normal extension of F, since  F   is the splitting field of 1nx ;

so   /G E F   is a normal subgroup of  /G E F  by the fundamental theorem of Galois
theory.

E

 F 

 /G E F


 /G E F 

 e
(normal)

F

But   /G E F   is abelian, because E is the splitting field of   nx a F x . So

      / / e G E F G E F  is a normal series. Again by the fundamental theorem of

Galois theory,        / / / /G E F G E F G F F  , which is abelian (being isomorphic

to   / *Z n  because  F   is the splitting field of 1nx . So  /G E F  has a normal

series with abelian factors whose last element is the trivial group. Therefore,  /G E F  is
solvable.

We are now ready to complete the proof of the theorem.
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If a polynomial    f x F x  is solvable by radicals, we may, without any loss of

generality, assume that the splitting field E of  f x  is contained in a radical extension Er of F

such that Er is a normal extension of F and there exist intermediate fields 1 1,...., rE E  such that

Ei is a splitting field of a polynomial of the form  1 im
i ix b E x . Thus, by the fundamental

theorem of Galois theory

       1 2/ / ... /    r r r r re G E E G E E G E F

is a normal series. Also,

     1 1/ / / /     r r i r r i r i r iG E E G E E G E F

is solvable. Then,

       1 2/ / .... /    r r r r re G E E G E E G E F

is a normal series with solvable quotient groups, so  /rG E F  is solvable. Further, since

     / / / / r rG E F G E F G E E ,  /G E F  is a homomorphic image of  /rG E F .
Hence, it is solvable.

Remark : We know that the symmetric group Sn is not solvable if 5n . Thus, any polynomial
whose Galois group is Sn, 5n , is not solvable by radicals.

Recall the important fact that the Galois group of a polynomial    f x F x  having
r distinct roots is embedable in the symmetric group Sr, the group of all permutations of the r

distinct roots  1,....., r  .

We call a subgroup H of Sn a transitive permutation group if, for all  , 1, 2,...,i j n ,

there exists H  such that   i j .

We also recall the following result from group theory.

If p is a prime number and if a subgroup G of Sp is a transitive group of permutations
containing a transportation (a, b), then G = Sp.
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Theorem 4.3 : Let  f x  be a polynomial over a field F with no multiple roots. Then  f x

is irreducible over F if and only if the Galois group G of  f x  is isomorphic to a transitive
permutation group.

Proof : Let 1,....., n   be the roots of  f x  in some splitting field E. Then for each G ,

   1 ,...., n     is a permutation of 1,....., n  . We may look upon G as a subgroup of Sn.

First assume  f x  is irreducible over F. Then for each i = 1, ...., n

      /iF F x f x

in which   i x f x ,   a a f x , a F . This isomorphism induces the

isomorphism    : i jF F   , where i j   and a a , a F . But since E is a

normal extension of F,   can be extended to an F-homomorphism *: E E . Then

 * /G E F  and  * i j   . Thus, G is a transitive permutation group.

Conversely, let F be transitive. Let  p x  be the minimal polynomial for 1  over F..

Suppose i  is any root. Because G is transitive, there exists G  such that  1  i   .

Then       1 1 0  ip p p     . Hence, each i  is a root of  p x . Because

   |p x f x , it follows that    f x cp x , c F . Thus,  f x  is irreducible over F..

Theorem 4.4 : Let    f x Q x  be a monic irreducible polynomial over Q of degree p,

where p is prime. If  f x  has exactly two nonreal roots in C, then the Galois group of  f x
is isomorphic tp Sp.

Proof : Let E C  be a splitting field of  f x  over Q.  /G E Q  is isomorphic to a transitive

permutation group H, which is a subgroup of Sp. Let 1,...., p   be roots of  f x , and let i

be its complex root. Because    f x Q x , i  is also a root of  f x . Hence, i j   for

some 1 j p , j i . Consider the embedding : z z  from E to Q. Because E is a

normal extension of Q,   maps E onto E. Thus,  /G E Q . Then the permutation of the

roots 1,...., p   of  f x  corresponding to the element   of the Galois group  /G E Q
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takes i  to j  and j  to i , and keeps all k   ,k i j fixed. Hence,  pH S . Thus,

 /  pG E Q S , as required.

EXAMPLES :

(a) Show that if an irreducible polynomial    p x F x  over a field F has a root in a

radical extension of F, then  p x  is solvable by radicals over F..

Solution : Let Er be a radical extension of F. Then there exists a radical extension '
sE  of F

such that ' s rE E  and '
sE  is a normal extension of F. Because  p x  is irreducible over F

and has a root in Er, it has a root in '
sE . But because '

sE  is a normal extension of F, it follows

that '
sE  contains a splitting field of  p x . This shows that  p x  is solvable by radicals.

(b) Show that the polynomial 7 510 15 5  x x x  is not solvable by radicals over Q.

Solution : By Eisentein’s criterion   7 510 15 5   f x x x x  is irreducible over Q. Further,,
by Descartes’s rule of signs it is known that

The number of positive real roots   The number of changes in signs in   2f x ,

and The number of negative real roots   The number of changes in signs in   3 f x .

Thus, the total number of real roots 5 . Moreover, by the intermediate value theorem
there are five real roots, one in each of the intervals (–4, –3), (–2, –1), (–1, 0), (1, 2) and
(3, 4). So  f x  has exactly two nonreal roots. By theorem 4.4 the Galois group of  f x  is

S7. Hence, by Theorem 4.2  f x  is not solvable by radicals.

PROBLEMS :
1. Show that the following polynomials are not solvable by radicals over Q :

(a) 5 9 3 x x (b)  5 42 5 5 x x

(c) 5 8 6 x x (d) 5 4 2 x x
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2. Let  1 2 3, ,F x x x  be a polynomial ring in 1 2 3, ,x x x  over a field F. Let  1 2 3, ,K F x x x

be the field of rational functions (i.e. the field of fractions of the ring  1 2 3, ,F x x x ).
Suppose

   3 2
1 2 3    f t t x t x t x K t

Prove that the Galois group of  f t  over K is S3. Generalize this result to a polynomial
of degree n (see Theorem 4.1).

SYMMETRIC FUNCTIONS :
In this section we give an application of Galois theory to the symmetric functions. Let

F be a field, and let 1,...., ny y  be n indeterminates. Consider the field of rational functions

 1,...., nF y y  over F. If   is a permutation of  1,...., n  that is,  nS  then   gives
rise to a natural map.

   1 1: ,...., ,....,n nF y y F y y

given by,

 
 

 
 

(1) ( )1

1 (1) ( )
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g y y g y y
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where  1,...., nf y y ,    1 1,...., ,....,n ng y y F y y and  1,...., 0ng y y . It is immediate

that   is an automosphism of  1,...., nF y y  leaving each element of F fixed.

Definition 4.3 : An element    1 1,...., / ,....,n nf y y g y y  of  1,...., nF y y  is called a

symmetric function in 1,...., ny y  over F if it is left fixed by all permutations of 1, ...., n that is,

for all  nS .

 
 

 
 

1 1

1 1

,...., ,....,
,...., ,....,

 
 

 

n n

n n

f y y f y y
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Let nS  be the group of all F-automosphisms   of  1,...., nF y y  corresponding to

 nS . Obviously, n nS S . Let K be the subfield of  1,...., nF y y  that is the fixed field of

nS . Consider the polynomial

   
1

 
n

i
i

f x x y

Now     1,...., nf x F y y x . Clearly, the natural mapping

     1 1,...., ,....,n nF y y x F y y x

induced by each  nS  leaves  f x  unaltered. Thus, the coefficients of  f x  are unaltered

by each  nS . Hence, the coefficients lie in the fixed field K.

Let us write the polynomial  nS  as 1 2
1 2 .....    n n

nx a x a x a , where ia K .

Definition 4.4 : If ia is the coefficient of n ix  in the polynomial    1  n
i if x x y , then

 1 i
ia  is called the ith elementary symmetric function in 1,...., ny y  and is denoted by is .

Thus,

1 1 2 ...    ns y y y ,

2 1 2 1 3 1...     n ns y y y y y y ,



1 2 ... .n ns y y y

Theorem 4.5 : Let 1,...., ns s  be the elementary symmetric functions in the indeterminates

1,  ... , ny y . Then every symmetric function in 1,  ... , ny y  over F is a rational function of the

elementary symmetric functions. Also,  1,...., nF y y  is a finite normal extension of

 1,...., nF y y  of degree n !, and the Galois group of this extension is isomorphic to Sn.
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Proof : Consider the field  1,...., nE F s s . Becausee K is the field of all symmetric functions

in 1,...., ny y  over F, E K . Also, because  1,...., nF y y  is a splitting field of the polynomial

   1  n
i if x x y , of degree n over E, we have,

 1,...., : !   nF y y E n ....... (1)

Further,

 1,...., : !     nnF y y K S n ....... (2)

But since E K , we obtain from (1) and (2) that E = K.

Now  f x  is a separable polynomial over E, and  1,...., nF y y  is its splitting field.

Thus  1,...., nF y y  is a finite, separable, normal extension of E.

    1 1,...., : ,...., /   n nF y y E G F y y E ......... (3)

Because   1,...., /nG F y y E  is embeddable in nS , and  1,...., : !   nF y y E n ,

we get from (3) that,

  1,...., / n nG F y y E S

Finally, the fact that K = E shows that every symmetric function can be expressed as
a rational function of the elementary symmetric functions 1,...., ns s .

EXAMPLE :
1) We express the following symmetric polynomials as rational functions of the elementary
symmetric functions.

(a) 2 2 2
1 2 3 x x x

(b)      2 22
1 2 2 3 3 1  x x x x x x
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Solution :

(a)      22 2 2 2
1 2 3 1 2 3 1 2 2 3 3 1 1 22 2         x x x x x x x x x x x x s s

where 1s  and 2s  are elementary symmetric functions of 1x , 2x  and 3x .

(b) By simple computation it can be checked that

1
1 1 3
 

sy x ,   1
2 2 3
 

sy x ,   1
3 3 3
 

sy x

are the roots of 3 3 0  x x  , where

2
1

23


 
s s ,  

3
1 1 2

3
2
27 3

   
s s ss .

Then the cubic equation whose roots are  21 2y y ,  22 3y y  and  23 1y y  is

   3 2 23 9 3 27 0    y y    ....... (1)

Now,            2 2 2 22 2
1 2 2 3 3 1 1 2 2 3 3 1      x x x x x x y y y y y y

= Product of all the roots of (1)

 2 327 4   

PROBLEM :
1. Express the following symmetric functions as rational functions of elementary symmetric

functions.

(a)  3 3 3
1 2 3 x x x

(b) 2 2 2 2 2 2
1 2 2 3 3 1  x x x x x x

(c)    2 2 2 2 2 2
1 2 2 3 3 1  x x x x x x

(d)      3 33
1 2 2 3 3 1  x x x x x x
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RULER AND  COMPASS  CONSTRUCTIONS

UNIT  -  V

The theory of fields provides solutions to many ancient geometric problems. Among
such problems are the following :

1. To construct by ruler and compass a square having the same area as that of a circle.

2. To construct by ruler and compass a cube having twice the volume of a given cube.

3. To trisect a given angle by ruler and compass.

4. To construct by ruler and compass a regular polygon having n sides.

For these we must translate the geometric problem into an algebraic problem. We

shall regard the plane as the coordinate plane R2 of analytic geometry. Let 2
0 P R . Assume

0P  has at least two points. We construct an ascending chain of subsets iP  of  2R , i = 0, 1, 2,

...., inductively as follows : Let 1iP be the union of iP  and the set of points obtained by

intersection of (i) two distinct lines each passing through two distinct points in iP , or (ii) two

distinct circles each with its center in iP  and passing through another point in iP , or (iii) a line
and a circle of the types described in (i) and (ii).

Suppose that the coordinates of points in 0P  belong to a subfield of K of R. The

equation of a line passing through two distinct points in 0P  and the equation of a circle whose

center is in 0P  and that passes through another point in 0P  are

0  ax by c , , , a b c K ...... (1)

2 2 2 2 0    x y gx fy d , , , g f d K ...... (2)

respectively.

It follows then that the coordinates of the point of intersection of two such lines (1) lie
in K. Also, the coordinates of the points of intersection of a line (1) and a circle (2), as well as
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the coordinates of the ponts of intersection of two distinct circles (2), lie in  1K  , 1 0 ,

1K . Likewise, we get that the coordinates of points in iP  lie in  1,...., iK   ,

1,....., 0i  , 1K ,    2 1 1 1,......, ,....,  i iK K     .

Definition 5.1 : (a) A point X is constructible from 0P  if  iX P  for .  0,1, 2,....i .

(b) A line l is constructible from 0P  if it passes through two distinct points in some iP ,

 0,1, 2,....i .

(c) A circle C is constructible from 0P  if its center is in some iP , and it passes through

another point in iP ,  0,1, 2,....i .

From now on whenever a point X (a line l, a circle C) is constructible from Q Q ,
we shall also say that the point X (the line l, the circle C) is constructible.

DEfinition 5.2 : A real number u is constructible from Q if the point (u, 0) is constructible
from Q Q , the subset of the plane 2R .

It then follows from all this that if u R  is constructible from Q, then there exists an
ascending chain.

0 1 2 ....     nQ K K K K

of subfields 1K , 2K , ..., nK  of R such that.

(i)  nu K

(ii)  1i i iK K  , 1 i n , where 2
1i iK .

Thus,  1: 2 i iK K  and, hence,  : 2 m
nK Q , m n .

So we have shown.
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Theorem 5.1 : Let u R  be constructible from Q. Then there exists a subfield K of R

containing u such that  : 2 mK Q  for some positive integer m.

Theorem 5.2 : Let K be the subset of R consisting of numbers constructible from Q. Then K
is a subfield containing square roots of all nonnegative numbers in K.

Before we prove this theorem, we prove a series of lemmas.

Lemma 5.1 : The following are equivalent statements :

(i) u R  is constructible from Q.

(ii) (a, 0) is a constructible point from Q Q .

(iii) (a, a) is a constructible point from Q Q .

(iv) (0, a) is a constructible point from Q Q .

Proof : (i)   (ii) Definition.

(ii)   (iii) The circle  2 2 2  x a y a  is constructible because its center (a, 0) is a
constructible point, and it passes through a constructible point (0, 0). Also, the line x = y is
constructible because it passes through constructible points (0, 0) and (1, 1). The point (a, a)
is clearly a point of intersection of the citcle and the line. Hence, (a, a) is constructible.

(iii)   (iv) The circle 2 2 22 x y a  is constructible because its center (0, 0) is
constructible, and it passes through a constructible point (a, a). Also, the line y = – x is
constructible because it passes through two distinct constructible points (0, 0) and (1, –1).
One of the points of intersection of this circle and this line is (– a, a). This implies that (0, a) is
a constructible point because it is the intersection of the constructible lines y = a [which passes
through two distinct constructible points (– a, a) and (a, a)] and x = 0.

(iv)   (ii) Follows by symmetry..

Henceforth, whenever we say that a real number a is constructible, we mean that a is
constructible from Q.
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Lemma 5.2 : If a is a constructible number, then x = a and y = a are constructible lines.

Proof : If a = 0, then x = 0 is clearly constructible. So let 0a . Then x = a passes through
two distinct constructible points (a, 0) and (a, a). Hence, x = a is constructible. Similarly,
y = a is constructible.

Lemma 5.3 : If a and b are constructible numbers, then (a, b) is a constructible point.

Proof : (a, b) is the intersection of the constructible lines x = a and y = b.

Lemma 5.4 : If a and b are constructible numbers, then a b  are also constructible.

Proof :  ,0a b  are the points of intersection of the constructible line y = 0 and the

constructible circle  2 2 2  x a y b  (the center (a, 0) is constructible; the point (a, b)
through which the circle passes is constructible).

Lemma 5.5 : If a and b are constructible numbers, then

(i) ab is constructible

(ii) a / b, 0b , is constructible.

Proof : (i) The line ay  =  – x + ab is constructible because it passes through constructible
points (0, b) and (a, b – 1). The intersection of this line with the constructible line y = 0 is
(ab, 0). Hence ab is constructible.

(Note that we have used the fact that if b is constructible, then b – 1 is also constructible).

(ii) If a = 0, then it is clear. So let 0a . Then the line bx = a – y is constructible
because it passes through two distinct constructible points : (0, a) and (a, a (1 – b)). The
intersection of this line with the constructible line y = 0 is (a / b, 0). Hence, a / b is ocnstructible.

Lemma 5.6 : If a > 0 is constructible, then a  is constructible.

Proof : The point  1, a  is a point of intersection of the constructible circle

2 2
21 1

2 2
         

   
a ax y
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[which passes through the constructible point (0, 0) and which has constructible center

  1 / 2,0 a ] and the constructible line x = 1. Thus,  1, a  is a constructible point.

Next,  0, 2 a  is also a constructible point because it is a point of intersection of the

constructible circle    221 1    x y a a  and the constructible line x = 0. Therefore,

2 a  is a constructible number. Then by Lemma 5.5, a  is a constructible number..

Proof of the theorem 5.2 follows from Lemmas 5.4 – 5.6.

Theorem 5.3 : If  mu K , where 0 1 2 ....     mK Q K K K  is an ascending tower of

fields iK  such that  1: 2 i iK K , then u is constructible.

Equivalently, if   : 2 tQ u Q  for some t > 0, then u is constructible.

Proof : Since rationals are constructible, the proof follows from Lemmas 5.4 – 5.6.

Definition 5.3 : An angle   is constructible by ruler and compass if the point (cos  ,sin  )
is constructible from Q Q .

Remark : The point (cos , sin ) is constructible from Q Q  if and only if cos   is a
constructible number (equivalently, if and only if sin   is a constructible number).

Proof : Let (cos , sin ) be a constructible point. Then (2 cos  , 0) is a point of intersection

of the constructible circle    22cos sin 1   x y   and the constructible line y = 0, so

 2cos ,0 is a constructible point. Thus, 2 cos   is a constructible number. So by Throem
5.2, cos  is a constructible number. Conversely, assume that cos   is a constructible number..
Then by Theorem 5.2, sin   is also a constructible number. This yields, by Lemma 5.1 that
the points (cos , 0), (cos  , cos  ), (0, sin ), and (sin  , sin ) are constructible
points. This means that the lines x = cos   and y = sin   are constructible lines. Hence, their
intersection, namely, the point (cos  , sin  ) is a constructible point. The statement in
parenthese can be proved the same way.
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EXAMPLE :
(a) Problem of Squaring a Circle

It is impossible to construct a square equal in area to the area of a circle of radius 1.

Solution : Assume we have a circle of unit radius. If a is the side of the square whose area is
equal to that of this circle, then 2   . But since   is not algebraic over Q, a2 and, hence,

a is not algebraic over Q. So   : 2 mQ a Q  for any positive integer m. Hence, by Theorem
5.1, a is not constructible by ruler and compass.

(b) Problem of Duplicating a Cube.

It is impossible to construct a cube with a volume equal to wtice the volume of a given
cube by using ruler and compass only.

Solution : We can assume that the side of the given cube is 1. Let the side of the cube to be
constructed be x. Then x3 – 2 = 0. So we have to construct the number 21/3 (the real cube
root of 2). Because x3 – 2 is irreducible over Q.

 1/ 32 : 3    Q Q a  a power of 12.

Thus, by Theorem 5.1. 21/3 is not constructible from Q by ruler and compass.

(c) Problem of Trisecting and Angle

There exists an angle that cannot be trisected by using ruler and compass only.

Solution : We show that the angle 60° cannot be trisected by ruler and compass. Now if this
angle can be trisected by ruler and compass, then the number cos 20° is constructible from Q.
This is equivalent to the constructibility of 2 cos 20° from Q. Set a = 2 cos 20°. Then from
cos 3  = 4 cos3  – 3 cos  , we deduce 3 3 1 0  a a . Because the polynomial

 3 3 1  x x Q x  is irreducible over Q and has a root a, it follows that

  : 3 Q a Q  power of 2.

Thus, by Theorem 5.1, a = 2 cos 20° (or, equivalently, an angle of 20°) cannot be
constructed by ruler and compass from Q. This completes the solution.



137

(d) Problem of Constructing a Regular n-gon

A regular n-gon is constructible (equivalently, the angle 
2
n


 is constructible) if and

only if  n  is a power of 2.

Solution : Let 
2 2cos sin  i
n n
  , where   is a primitive nth root of unity. Then

22cos 
n
  . Set 

2cosu
n


. To show that u is constructible, we need to prove that

  : 2 kQ u Q , 0k . Consider the following tower :

         Q 

|

         Q u

|

           Q

Now 
2

22 2cos sin    
 n n

 
 , and so 2 22cos 1 0  

n
  . Thus 

satisfies.

 2 22cos 1    
 

x x Q u
n


Which is clearly an irreducible polynomial over Q (u), proving that

    : 2Q Q u . Now     : Q Q n  ,     1:
2

Q u Q n . This shows that u is

constructible if and only if  n is a power of 2.
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Problems :

1. Show that the angle 
2
5


 can be trisected using ruler and compass.

2. Show that it is impossible to construct a regular 9-gon or 7-gon using ruler and compass.

3. Show that it is possible to trisect 54° using ruler and compass.

4. Prove that the regular 17-gon is constructible with ruler and compass.

5. Find which of the following numbers are constructible.

(i) 3 1

(ii) 2 1

(iii) 3 1 1 

(iv) 3 2 1

(v) 4 2 5




