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UNIT -1

ALGEBRAIC EXTENSIONS OF FIELDS

1. INTRODUCTION

We have studied so far groups and rings in some detail and just touched fields as a
special class of rings. Let us recall the definition of field, “A field is a commutative ring with
unity in which every non-zero element has a multiplicative inverse”. Now in this section we
recall some basic definitions and results which are studied earlier.

Definition : A polynomial P(x)e F[x] is said to be irreduible over F, if P (x) cannot be

expressed as a product of two non-constant polynomials over F.

A polynomial P(x)e F[x] which is not irreduicible over F is called reducible

over F.
Example : A polynomial pP(x)=x?+1e R[x] (R isfield of reals) is irreducible over R

but not over ¢ (¢ is field of complex numbers) because P(x)= x> +1=(x+i)(x—i) and

(x+1),(x=1) ¢ R[x] but (x+i),(x—i) e Clx].

Definition : The polynomial £ (x)=a,+ax+....+a,x" in Z[x] (7 isset of integers) is

said to be primitive if the greatest common divisor (g.c.d.) ofay, ay, ..., a, is 1.

Definition : A polynomial g, +ax +....+ a,x" over aring is called monic ifa, = 1.

Remark : By the definition of primitive polynomial it is obvious that every monic polynomial

f(x) e Z[x] is primitive.




Definition : LetF, E be fieldssuch that 7 — E andlet f(x)e F[x]. Anelement ¢ € E

is said to be aroot or a zero of f(x)if f(a)=0.

We know that if F be a field and F[x]be a ring of polynomials in x over F, then
F [ x] has the following properties.

() F[x] is an integral domain with unity and F = F[x].
(i) The division algorithmholds in F[x].
ie.if f(x),g(x)e Flx] and g(x) 0, then 3 unique ¢(x),r(x) e F[x] such
that f(x)=g(x)-q(x)+r(x),where r(x)=0 or degr(x) <degg(x).
(iii) F[x] is PID (Principal Ideal Domain).
(iv) F[x] is UFD (Unique Factorization Domain).

v) The units of F[x] are non-zero elements of F.

Flx
(vi)  Apolynomial P(x)e F[x] isirreducible iff m isa field.

Proposition : Let f(x) e F[x] be a polynomial of degree > 1. If f(a)=0 for some

a € F ,then f(x) isreducible over F.

Proposition : Let f(x) e F[x] bea polynomial of degree greater than or equal to 2. Then
f (x) isreducible iff £ (x) hasarootinF.

Lemma : If £ (x),g(x) e Z[x]are primitive polynomials, then their product £ (x)- g (x)

is also primitive.

Lemma (Gauss) : Let f(x) e Z[x] beprimitive. Then f (x) is reducible over Qiff f(x)

is reducible over 7, .
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Lemma : If f(x) e Z[x] is reducible over Q, then it is also reducible over 7, .

Theorem (Eisenstein Criterion) : Let f (x) =a,+ax+....+a,x" € Z[x], n>1.Ifthere

is a prime ‘P’ such that Pz\ao, P|a0, P|al,....,P|an_l and P\an, then £ (x) is

irreducible over Q.

Example : f(x)=x*-2eZ[x] is irreducible over Q. Because if we write

() =1-x"+0-x—2=a,x* +ax+a, then ay=—2, a;=0 and a, =1.
If we choose prime P =2, then Pz\ao, P|a0, P|al and P\az.

i.e. Eisenstein criterion holds for f(x).

Definition : A one-one homomorphism ofa field F into a field E is called an embedding of F
mto E.

2. ADJUNCTION OF ROOTS

Definition : Extension Field :

IfF is subfield of a field E, then E 1s called an extension of F.

Remarks :

1. Ifthere is an embedding o ofa field F into a field E, then f ~ &5 () and hence we
canregard F as a subfield of E or E is an extension of F.

2. We write ' < E whenE is an extension of F.

3. Any field E can be considered as a vector space over any of its subfield.

Example : 1) The field Q ofrationals is a subfield ofthe field g ofreals and we say that R
1s an extensionof Q.
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2) The field ¢ of complex numbers is an extension of the field g ofreals.

Definition : IfE is an extension of F, then the dimension of the vector space E over F is called
the degree of E over F and is denoted by [ E: F ].

Note : If [ £ : F] < o0 i.e. degree of E over F is finite, then E is called finite extension of F,
otherwise E is called an infinite extension of F.

Example : [C:R] =2 because the set { 1, } forms a basis of C over R .

Example : Let F be any field and F [ x] be a polynomial ring over F. Let E be the field of

quotient of F[x]. ThenE is field extension of F and an infinite set {1 X, X2, } is linearly

independent subset of E which spans E.

- E isan infinite extensionof F.

Example : Forany field F; [F: F]=1.
Since F={l-alaeF}.

. {1} will be the basis for F over F. Infact for 4 # ( in F the singleton set {a} will be
the basis for F over F.

Conversely, if E is an extension of degree 1 of F then [E : F] =1 =[F : F] and hence
E=F.

Theorem (2.1): Let F c Ec K befields. If [k : E] <o and [E: F] < o0, then
1) [K:F]<o and

2) [K:Fl=[K:EIE:F]
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Proof : Supposethat [K : E]=m and [E: F] =5 let {vl,vz,....,vm} be abasisof Kover E

and let {wl,wz,....,wn} be a basis of E over F. Consider the set

B= {viwj [1<i<m,1<j< n} of mn number of elements.

Claim : B is a basis of K over F.
i) B spans K over F :

For let 4 e K be any element.

Since {V}, Vy,....,v,,} be a basis of K over E we write

m
“:zai"i; a; € E foreachi e (D)
i=1

Now, since {wl, wz,....,wn} be a basis of E over F and because a, € £, 1<i<m

we write

n
ai:zbijwj,b,jeF, 1<i<m .. ()
j=1

Substituting the expressions (2) into (1) we get

m n

u=2.2.bymw; beF
i=1 j=1

Le. u = b vyw, +byw, +.oo.+ b, vw, + by oWy + bWy + o+ Dy VoW,
+eoeet b, v W + b, 5V, Wy + ...+ b, VW,

But this shows that any element ; ¢ K can be written as a linear combination of

elements of B with the elements b; € F, 1<j<m, 1< j<n.

1.e. B spans K over F.
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ii) B is linearly independent set over F :

Suppose that

VW + €V, + . O W,

HCy VaW, + CopVaWy + oo C VoW, + ...

+Cp VM + CpaVyWy et €V, W, =0, ¢ € F

We write above expression by rearranging the terms as

(W + oot W, )V + (oW + et oW, ) Vs

H(CppW) F oo Cpy W,y ) Vi = 0.

Le. Avi+ Ay, +..+4,v, =0
where A =c¢w +cow, +....+¢c,w, e E for each 1<j<m, because

{W}, Wy,....,w, } be abasis of E over Fand ¢; € F .

Now since {vl, vz,....,vm} be a basis of K over E we must have 4, =0 for each

1<i<m.
Le. L, =cyw +cow, +....+c,w, =0 foreach 1 <j<m
:>cl.j=0, 1<i<mand 1< j<n.
(- {wl, Woyeeens wn} be a basis of E over Fand ¢; € F)
But this shows that B is linearly independent set over F.

Thus from (i) and (ii) the set B = {viwj [1<i<m,1<j< n} , form a basis of K

over F.
1) [K:F]=mn<ow and

2)[K:Fl=[K:E]-[E:F]

Example (2.6) : If F — E c K befieldsand [K : F] is finitethen [K : E] and [E : ] are
divisors of [ K : F/] since bytheorem (2.1) [K : F]=[K : E]-|E: F].
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Example 2.7 : IfE is an extension field of F and [ £ : F] is prime, prove that there are no

fields properly between E and F.
Ans.: Let[ E:F]=P (Pisaprime number).
Suppose there is a field K such that F < K < E then by theorem (2.1)
[E:Fl=|E:K].[K:F].
- P=[E:X][K:F] .. (1)
—[E: K] divides P.
But P is a prime.
.'.[E:K]zl or P
0 If[E:K]=1thenE=K
i) If[E:K]=Pthen[K:F]=1 (- by (1))
=>K=F

Thus if F < K c E then either E = K or K = F i.e. there are no fields properly
between F and E.

Theorem 2.2 : Let E and F be fieldsand let . p___y g be an embedding of F into E.

Then there exists a field K such that F 1s a subfield of K and o can be extended to an
isomorphism of K onto E.

Proof : Given that 5.p__ s be an embedding consider the set ‘S’ such that
S|=|E~o(F) and SNF=¢.

1.e. cardinality of S is same as cardinality of the compliment of & (F) in E and S is
disjoint with F.

Now, let f:§— > E—o(F) beaone-onemapandlet K = FUS.

Define 6*: K—— E by 6 *(a)=c(a) faec F and 0 *(a) = f(a) f e S .
Then o * is an extension of & .

Since gandfare 1 — 1l and S(F =¢.
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.. o *is well defined, 1 — 1 and onto mapping.

Now for x, y € K define
x+y:(a*)_1(a*(x)+a*(y)) and

xy=(69"(c*(x) - *(y))

Then above definitions of addition and multiplication coincide with the given addition
and multiplication of elements of the field.

-. Fisasubfield of K and K is the desired field.

Theorem 2.3 : Let P () be an irreducible polynomial in F [x]. Then 3 an extension E of F in
which P (x) has aroot.

Proof: Since P(x)e F|[x] isirreducible polynomial.
-. The ideal generated by P (x) i.e.(P(x)) in F[x] is maximal ideal.

o Flx]
= the quotient ring < P (x)> is a field.

Oow delme, . <P(X)> Yy

ola)= a+<P(x)> forge F

Flx]
Then ¢ is an embedding of F into m (prove it)

Flx] .
Thus we can regard £ = m as an extension of F.

Let P(x)=ay+ax+...+ax",n>0and q, € F then x+(pP(x)) is a root of




(since PLr+{PC) =Y a, (x+(PC)

Zn: (X +(P(x)))

i=0
= iaixi +<P(x)>
i=0
=P(x)+ <P(x)> = <P(x)> =0 inE.)

Thus E is an extensionof F containing aroot of P(x).

Theorem 2.4 : Kronecker Theorem
Let f(x) e F[x] beanon constant polynomial. Then there exists an extension E of
Finwhich f(x) hasaroot.
Proof: Let £ (x)e F[x] be anon constant polynomial
i) If £ (x)e F[x] hasarootinF then we take E=F.
ii) Suppose f(x)e F[x] hasnorootinF.

Let P(x) be anirreducible factor of #(x) in F[x].

_ Flx]
Define £ = <P(x)>

Then E is a field and it is an extension of F contains a root of P(x).
(- bytheorem (2.3))
. E is an extension of F contains a root of f(x) (- P(x) is a factor of f(x).
. root of P(x) isalsorootof f(x)).

Thus 3 an extension E of F that contains a root of non constant polynomial

f(x)eFl[x].
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Remark: Let P(x) e F[x] be anirreducible polynomial having aroot say ‘«’ inan extension
E of F. The subfield denoted by F(3;) ofE is the smallest subfield of E containing F and u
and we call F () the subfield of E generated by F and u.

Theorem 2.5 : Let P(x) be anirreducible polynomial in F[x] and let u be aroot of P(x)

in an extension E of F. Then,

(@) F (u) , the subfield of E generated by F and u, is the set
Flul= {bo +bu+..+bu" e E|by+bx+..+b,x" e F[x]}

(i) Ifthe degree of P(x) isn, the set {1,%___,@!”“} forms abasis of ' (y) overF, i.e.
each element of £ (3) canbe written unuquely as ¢, + cu +....+cn_lu"_l where ¢; € ' and
[F(u) : F] =n.

Proof: Let P(x)e F[x] be anirreducible polynomial and let # be a root of P(x) inan
extension E of F.

Define a mapping,
¢:F[x]—>E by

m

B (by+bpx + ..o+ byx™ ) = by + bt + ...+ by

Vb +bx +....+b,x" € F[x]

Then ¢ is ahomomorphism.

( Since for f(x)=by+bx+.....+b,x", g(x)=cy+cx+....+cx" in Flx]
and assume that m > n.

Then

F)+g(x)=(by+cy)+(b+¢;)x+ .ot (b,+¢, )x"+b X" +....+b x" € Fx]
0 0 1 1 n n+l

and

F(x)-g(x) = (bycy) + (Bye; + bicy ) x + (bocy + ey + bzco)x2 et (b, ) x™ " € Flx]

I C10) |




L) (fD)+g(x)=(by+cy)+ (b +e)ut.t(b,+c, ) u" + b, u" "+ bu"

:(b0+b1u+ ....... +b um)+(co+clu+ ...... +cu”)

m

=¢(/ () +4(g(x))
and (ii) ¢ (f (x)- g (x)) = (boco) +(Boc; + bico Ju + (byey + by + bycy ) u” + oot (B, Ju™
= (bo + by + ... +bmum) : (CO +ou+ ...+ cnu”)

=¢(/(0)-¢(g()))

.. By fundamental theorem of homomorphism.

Flx]
Kerx¢zlm¢ ....... (1)

Now since u is root of p(x).
2 pW)=0=¢(p(x)=pw)=0

= p(x)eKer ¢

~.Ker ¢ is non-empty.
Claim : Ker ¢ = p(x))

Since F[x] isaPID and as Ker ¢ is an ideal of F[x].

~.Ker ¢ =(g(x)) forsome g(x)e F[x].

Butsince p(x)eKer ¢.

- p(x)=g(x)-h(x) forsome h(x)e F[x].

= h(x) e F;because p(x)e F[x] isanirreducible polynomial.

= (g(x)) ={p(x))

. Ker ¢=(p(x))

D)




-, From(1)

<§([j>glm¢:{bo+blu+ ----- +b,u" € E|by+bx+..... +bmx’”eF[x]}
= F[u]

o Flx]

ooy = F

Butsince p(x) is an irreducible polynomial

~ Flx]
. m is a field.

- F[u] isafield and it is the smallest subfield of £ containing F and .
. Flul=F(u) and

Flul={by+bpu+....+b,u" € E|by+bx+....+b,x" € F[x]}
Now ifdeg (p(x))=n.

Let p(x)=by+bx+bx*+...+bx"; b, #0

n

Then 0 = p(u)=by+bu+bu* +....+bu

(Since uisroot of p(x))

= eachof 7, 1, ... can be expressed in the form by +bu +.....+b _lu"_l

with b, e F'.
o Flul=F ) ={by+bu+....+b, u""|b e F|
. The set {1,u,uz,____u”‘l} forms a basis for F(y) over F.

.'.[F(u):F]zn
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Example 2.8 : Consider the irreducible polynomial p(x) = P+x+leZ ,[x].

Ifuisarootof p(x) insome extension K of Z, . Show that the subfield Z,(u) of

K has four elements.
Ans.: Z,={0,1}
By theorem (2.5)
Z,(u) ={by+bu | b e Z,}
={0,u,1,1+u}

The field Z, () is the smallest subfield of K generated by Z, and u and having four

elements.

Example 2.9 : Show that p(x)=x*—x—1eZ;[x] is irreducible over Z; and 3 an

extension K of Z, with nine elements having all roots of p(x).
Ans. : Z,=1{0,1,2}
Since p(0)#0, p(1) =0 and p(2)#0.
. p(x) = x?—x—1 isirreducible over Z;.
.. by theorem (2.5).
Ifuis root of p(x) in some extension K of Z; then
K ={by+bu|b € Zy} ={0,1,2,u,1+ 1,2 +u,2u,1 + 2u,2 + 2u}

is an extension of Z, having nine elements and containing all the roots of p(x).

3. Algebraic Extensions
Definition (3.1) : Let E be an extension of F. An element ¢, € E 1s said to be algebraic over

Fif  isaroot ofanonconstant polynomial p(x) e F[x].ie.anelement ¢ e E is algebraic

over F if 3 anon constant polynomial p(x) e F[x] suchthat p(a)=0.
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Remarks :
1. If ¢ € E 1s not algebraic over F, then ¢ is called transcendental over F.
2. For any field F, every element ¢ ¢ F is algebraic over F, since 3 a non constant

polynomial p(x)=(x—¢) in F[x] suchthat p(a)=0.

Example 3.1: (a) Anelement /3 ¢ R (field of reals) is algebraic over Q (field of rationals)
because 3 a non constant polynomial p(x) = -3¢ Ol x] such that p(\@ ) =0.

(b) The complex number ; — \/—] isalgebraic over Q, since 3 anon constant polynomial

(x2+1) e Olx] suchthatiisarootof (x241).

Theorem 3.1: Let F — E be fields and let 44 ¢ £ be algebraic over F. Let p(x) € F[x]
be a polynomial of the least degree such that p(x) = 0. Then,

@) p(x) isirreducible over F.
(1) If g(x)e F[x] is such that g(u) =0 then p(x)|g(x).

(1) There is exactly one monic polynomial p(x)e F[x] of least degree such that
p(u)=0.

Proof : (i) Suppose on the contrary p(x) e F[x] is reducible over F.

- p(x)= p,(x)- p,(x) for some non constant polynomials p,(x), p,(x) e F[x]

and deg p,(x) <deg p(x), deg p,(x) <deg p(x).
Then 0= p(u) = p,(u)- p,(u).
= p,(u)=0or p,(u)=0
= yu satisfies a polynomial of degree less than deg p (x).

#a contradiction to the fact that p(x) e F[x] bea polynomial ofleast degree
suchthat p(u)=0.
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. p(x) must be irreducible over F.

(i)  Let g(x)e Flx] suchthat g(x)=0.
Then by division algorithm.

g(x)=p(x)-q(x)+r(x) for some ¢(x), r(x)eF[x] where r(x)=0
or degr(x)<deg p(x).

Since 0 =g (u) = p(u)-q(u)+r(u).

=0=r@w) .. (- pu)=0)

But since p(x) e F[x] beapolynomial ofleast degree such that p (1) =0.

. there does not exists (x) e F [x]suchthat degr(x) < deg p(x) and »(x) =0.

~r(x)=0

= g(x)=p(x)-q(x)

= p(x)|g(x)
(i)  Let g(x)e F[x] beamonic polynomialofleast degree such that g(u)=0.

Then by (i) g(x) is irreducible polynomial over F and by (ii) p(x)|g(x) and
g(x)| p(x).

Since p(x), g(x)e F[x]are monic and irreducible polynomials, we must have
p(x)=g(x).

Hence there is exactly one monic polynomial p(x) € F[x] ofleast degree such that

p(u)zO.

Theorem 3.2 : Let F < E befields and 4 ¢ E be algebraic over F, then 3 a unique monic

irreducible polynomial p(x) e F[x] suchthat p(u)=0.

Proof : Consider the set 7 ={f(x)e F[x]| f(u) =0}
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Then Iis an ideal of the ring F'[x].

Since for f(x)el and g(x)e Flx]; f(u)-g(u)=0.

= f(x)-glx)el

Now since F[x] isaPID

- J 1sprincipal ideal.

- 3p(x) e[ suchthat

I :<p(x)> ={p(x)-g(x)]| g(x) e Flx]}

We assume that p(x) is monic polynomialin F[x].

(Since if p(x) isnot monicie. p(x)=a,+ax+....+ax" with a, #0 and let
g(x)=a'ay+a'ax+...+a,'ax" then p(x)=a,g(x). This shows that p(x)and
g(x) areassociates in F[x] hence <p(x)> = <g(x)> )

.'.<p(x)>=I:{f(x)eF[x]If(u)zo}

Since y ¢ E is algebraic over F.

.3 anonconstant polynomial f(x)e F[x] suchthat £ (x)=0.

= f(x)el :<p(x)>

f(x)=p(x)-g(x) forsome g(x)e F[x].

-. p(x) isanon constant polynomial with

deg(p(x))<deg(f(x)), Vf(x)eland f(x)z0 .. (1)

= p(x) isirreducible.

(If p(x) isreducible then p(x)=g(x)-h(x) for some non constant polynomials
g(x),h(x)e Flx] and
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0=p(u)=gu)-hu)

= g(u)=0or h(u)=0

=g(x)el or h(x)el

But since deg(p(x)) = deg(g (x))+deg(h(x))
and deg(g(x))>0, deg(h(x))>0

= deg(g(x)) < deg(p(x))and deg(h(x)) <deg(p(x))

# a contradictionto (1).)

Thus 3 monic irreducible polynomial p(x) e F[x] suchthat p(u)=0.

Uniqueness :
Let p(x)=ay+ax+.....+a, x" " +x" and

m—1 m

q(x)=by+bx +..... +b, x" +x™ be two irreducible monic polynomials in

F[x] suchthat p(u)=q(u)=0.
Then ¢(x) e =(p(x)).
= q(x)=p(x)-g(x) forsome g(x)e F[x]
But ¢(x) is irreducible.
— g(x)isaunit(ic. g(x) e F)
and hence deg(q(x))=deg(p(x))=n.ie.m=n
Now p(u)-g(u)=0
= p(x)-g(x) el
= p(x)—g(x)=0 (- deg(p(x)—g(x))<n, degp(x)=nandby (1))

= p(x)=q(x).
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Definition 3.2 : The monic irreducble polynomial in [ x] of which u is a root will be called
the minimal polynomial ofu over F.

Example3.2: O c R and /3 ¢ R thepolynomial x —3 ¢ Ol x] is the minimal polynomial

of /3.

Definition 3.3 : An extension field E of F is called algebraic if each element of E is algebraic
over F.

Theorem 3.3 : IfE is finite extension of F, then E is an algebraic extension of F.
Proof : Suppose E is finite extension of F.

Let [E:F]=n.

To prove that E is an algebraic extension of F.

Let 3 € E be any element.
. The set {1 U, u”} must be linearly dependent set of elements of E over F.
.3 elements q;, q,....., a, (not all zero) in F such that

o+ ap +au* + ...+ au”" =0

— y 1sroot of a non constant polynomial
p(x)=ay+ax+ax* +.....+ax" € Flx]
— y isalgebraic over F.

— every element of E is algebraic over F.

Thus E is an algebraic extension of F.

Note : Converse of theorem (3.3) is not true i.e. an algebraic extension of a field F need not
be a finite extension of F.
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Example3.3:Let £, P, ...., P,... be all distinct primes. Then for each - > () define

7

Ey=0 and E,=E, (P forall y>0.

(ie. Ey=0. E=Ey(JR)=0(JR). £=E(JB)=0(VR)(JA)

By =0(JBAB), Es=0(JBEAPAB), ...

Then E, = Q(\JB\[Ps-sifP.) is the smallest subfield of R containing
OU{JR./P,..\[P.}.

Now, we prove that \/P.,, € E, , /> () using induction on .

Since /A isirrational = /F ¢ O = E,

So for =0 result holds.

Assume that result is true forr— 1

1.e. assume that \/Fr ¢k, .

We prove that \/P.,, ¢ E, .

Let if possible \/E €E, then (/P  =a +b\/Fr forsome a,beE, ;.
(- E=E,(JB))

= P, =a’ +2ab\[P, + Pb*

7

= \F, :ﬁ(PH_az_Prbz)EEi’l

7

# a contradiction to the assumption /P. ¢ E, .
NP e E, forallr.

Hence [E,,,: E,]=2 forallr.
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andwe get Q= FE,cC E, c...C E, c .... isstrictly ascending chain of subfields of
R-

—0r
Also since each E, is a subfield of E.
= [E: Q] isinfinite.
1.e. E is infinite extension of Q.
But E is an algebraic extension of Q for if 4 € E be any element.

Then a € E, forsomer.

ie. a€kE, ZQ(\/F],\/E, ...... ,\/F,) and [Er:Q]:Zr

.. E, 1s finite extension of Q.

. by theorem (3.3) E, is an algebraic extension of Q.
-, a 1s algebraic over Q.

-, every element of E is algebraic over Q.

-. Eis an algebraic extension of Q.

Thus E is an algebraic extension of Q but not finite.

Remark : Extensions that are not algebraic are called transcendental extensions.

20




Theorem 3.4 : If E is an extension of F and 4 ¢ E is algebraic over F, then F(y) is an

algebraic extension of F. x cannot be algebraic over F.
Proof : Let E is an extension of Fand let 4 ¢ £ is algebraic over F, then by theorem (3.2) 3

a minimal polynomial p(x) ofu over F.
Let deg(p(x))=n
Then by theorem (2.5) [F (u): F]=n.
— F (y) is finite extension of F.

. by theorem (3.3) F () is an algebraic extension of F.

Definition 3.4 : An extension E of F is called finitely generated if 3 a finite number of

elements u;, u,, ..., u, in E such that the smallest subfield of E containing F and

{uptty,......,u,} isEitself.
We then write E = F (u,u,,......,u, )

Where F(ul,uz, ...... ,ui) :F(ul,uz, ...... ,ui_l)(ui)

Foreach 1 <ji< .

Note : A finitely generated extension of a field need not be an algebraic extension.

Example 3.4 : Let F[x] bea polynomial ring over a field F in indeterminate x. Let E be the
field of quotients of [ x] then

m
_ {ao +ax+..+a,x

/a,b; € F and not all b/'s are zero
by +bx +...+ b x" / /

ie. F=F(x).

Thus E is finitely generated extension ofa field F but by definition ofa polynomial ring
x 1s algebraic over F.

. Eisnot an algebraic extension of F.
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Theorem 3.5 : Let E = F (u},us,......,u,) be a finitely generated extension of F such that

eachu;i=1,2, ..., ris algebraic over F. Then E is finite over F and hence an algebraic
extension of F.

Proof : We prove the theorem using induction on 7. If »=1 then by theorem (3.4) result holds.

Assume that the result is true for »— 1.

Now since u, is algebraic over F, it is algebraic over F (uy,u,,......,u,_;) also.

. bytheorem (3.4).

ie. [ F (uptty,.ccstt,) s F (1 ..o,y ) | i finite.
~E:Fl= [F(ul,uz,....,ur) : F]
= [F(ul,uz,....,ur):F(ul,uz,....,urfl)]-[F (“19“2,----,“#1) : F]

= (finite) * (finite)

= finite
Thus [ E : F] is finite.

1.e. E is finite extension of F and hence by theorem (3.3) an algebraic extension of F.

Theorem 3.6 : Let E be an extension of F. If K is the subset of E consisting of all the elements
that are algebraic over F, then K is a subfield of E and an algebraic extension of F.

Proof : Here K ={u € E /u is algebraic over F}

Let a,b € K then bytheorem (3.5) F(a,b) is analgebraic extension of F.

Since F(a,b) isafield ab, - (if h0) < F (a,b)
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a
~ath,ab, 5 (if p # 0 ) are all algebraic over F.

a
:>aibaaba Z (biO)EK

= K issubfield of E
and since every element of F is algebraic over F, every element of F is in K.

. Kis an algebraic extension of F.

Definition 3.5 : Let K and L be extension fields of a field F. Thenanembedding - g s 1.

suchthat o (g) = a, Va e F iscalled an F-homomorphism of K into L or an embedding of
KmLoverF.

Theorem 3.7 : Let E be an algebraic extensionof Fand let . gy p be an embedding

of E into itselfover F. Then ¢ is onto and hence an automorphism of E.
Proof : To prove o is onto for let 4 ¢ E, we prove that 3 an element p ¢ F such that
o(b)=a-
Since E be an algebraic extension of F.
-, a 1s algebraic over F.
Let p(x)=ay+ax+...+a, x" ' +x" € F[x] be the minimal polynomial of ‘a’
over F.

Let @ = uy, Uy, ..., u,, € E areroots of p(x) thenbytheorem (3.5) F (uty, iy, ......, U, )

is finite extension of F.

Since each u;; 1 < <m isaroot of p(x) we have
0=p(u;)=ay+aw;+...+u]' foreachi

=0o(0)= G(ao +au;+ ...+ a, u

Ly ul”) for each i
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n—1

=0=0(ay)+0(a)-o(u)+..+0(a, )-o(u")+o(u") foreachi
(.- o is a homomorphism)
= 0=ay+a0 (u;)+...+a,_, [a(ui)]nfl +[ o (u;)]" foreach
[ Since o is F-homomorphism of E into itself
o(a;)=a;, foreachi. ]
= o (u;) isaroot of p(x) inEforeachi, 1<i<m.
But since ¢ is 1 1.

so(u), o(uy), e O'(um) must be same as u,, u,, ...., u,, in some order.

Nowlet E'= F(ul,uz,....,um)

Then o (E") = G(F(ul,uz,....,um))

= F(o(u).0 (1), (1,))
= F (utp, .., )
=E'
Le. g(E) = E'
|e(EY:Fl=[E" F]
=o(E)=E'
andsince a=u, € E', 3 b E' suchthat o (p) = g = o is onto.

-, o 1sanembedding (i.e. I — 1, homomorphism) and onto.

-, o 1sanisomorpism of E onto E hence an automorphism of E.
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Problem 3.1:Let f — g — E bethree fields such that K is an algebraic extensionof F and
a e E 1s algebraic over K. Show that ¢ is algebraic over F.

Ans.: F — K — E be fields such that K is algebraic extension of F. ¢, ¢ E is algebraic

over K then 3 a non-constant polynomial f(x)=a,+ax+....+a,x" in K[x] such that

a isarootof £ (x).

Now let L = F(ag,ay....,a, ), then f(x)e L[x] andhence ¢ is algebraic over L.

Since K is algebraic extension of F.
- each g;, 0 <ij <p isalgebraic over F.
. bytheorem (3.5) L is finite and hence an algebraic extension of F.

ie. [L:F]<o (1)

Since ¢ is algebraic over L.
. bytheorem (3.4) [ (¢ ) is a finite extension hence an algebraic extension of L.

[L(a):L]<oo (2)
. Bytheorem (2.1)

[L(a):F]=[L(a):L]-[L:F]l<o (-+ from (1) and (2))
. L(a) 1s finite and hence an algebraic extension of F.

s.a e L(a) isalgebraic over F.

Problem 3.2 : Prove that /7 is algebraic over Q. Find the degree of Q(\/E ) over Q.

Ans. : Since p(x)=x?—2 beanon constant polynomialin Q[x] suchthat p (\/5) =0.

-.+J2 isalgebraic over Q.

Now p (x)=x?-2¢ Ol x] be an irreducible polynomial such that p (\/5 ) =0 and
V2 € 0(+2) anextension of Q.
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. Bytheorem (2.5)

[o(V2):0]=2.

Problem 3.3 : Determine the minimal polynomial of \/2 4 5 over Q.

Ans.: Let ; =./2 +5
:>(u—5):\/§:>(u—5)2:2
—u’—10u+25=2
=u’—10u+23=0

The polynomial p(x) = x*—10x + 23 € Q[x] is monic irreducible polynomial such
that /2 45 is theroot of p(x).

-, p(x) = x* =10x + 23 is the minimal polynomial of /7 + 5 over Q.

Problem 3.4 : Find a suitable number “a’ such that O(+/2,+/5) = 0(a)-
Ans.: Since \/2, /5 0(V/2,4/5)-
=V2+V5¢0(V2.15)
=0(2+¥5)co(v2v5) L (1)
Nowsince (12 ++/5) € 0(v2 ++/5)
.'.(\/§+\/§)3EQ(«/§+\/§)
ie. 202+ 55 + 645 +15v2 € 0(v2 +45)
ie. 17v2+1W5 € 0(v2 +45)
Now since —11(v2 ++/5) e 0(v2 ++/5)
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.'.%[(17\/§+11\/§)—11(\/5+\/§)]eQ(x/E+\/§)

=202 +45)

Now since /2 ++/5. v2 € (V2 ++/5)

~ (V2+4+45)-v2e0(V2+45)

=5 0(J2+45)

- both /2,45 € 0(V2 +5)

=o(V2\5)co(v2+v5) L @)

Thus from (1) and (2) we write

0(V2.5) =02 ++5)
. the suitable value of a is (\/§+\/§) so that Q(\/E,\/g) =Q0(a).

Problem 3.5 : Let E be an extension of F and let a,b € E are algebraic over F. Suppose that

the extensions F'(g) and F(p) of F are of degree m and n respectively, where (m,n) =1
(i.e. mand n arerelatively primesi.e. ged (m, n) is 1). Then show that [F(a,b) : F] =m-n.
Ans.: Let [F(a,b):F]: r

r=[F(a,b):F|=[F(a,b):F(a)][F(a):F]

:r:[F(a,b):F(a)]-m ...... (1)

(--[F(a):F]=m given)

=>m/r
.. r = pm for some positive integerp. . (1)

Similarly we can write

r=|F(a,b):F|=[F(a,b): F(b)[F(b):F]
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=r=[F(a,b):F(b)]n (--[F(b): F]=n given)

=>n/r

.. r =nq for somepositive integerg. ... (11)

Since b is algebraicover Fand [F (p): F]=n.

. b satisfies an irreducible polynomialof degree n over F.

. bisalgebraic over F(g)and b may satisfy an irreducible polynomial of degree
less thann over F(q) i.e. [F(a)(b): F(a)] isatmost n.

i.e. bisalgebraic over F(q) and [ F(a,b): F(a)]|<n.

-, from (1)

r<m-n (2)

If r<m-n,then r=pm<mn= p<n and r = nqg <mn=> g <m (since from (1)
and (i1)) and (1) + (11) gives

r_pm .
r qn with p <nand g <m.
N L
1.e.p " withp <nand g <m.

=>m=gqa and n= po for some positive integer ¢ =1 .
= (mn)=a=1
#a contradictionto (m,n)=1.

.7 < mn isnot possible.
Sr=mn (v from(2))

.'.[F(a,b):F]=m-n
Problem 3.6 : Let E be an extension field of F. If 4 ¢ £ has a minimal polynomial of odd

degree over F, show that £ (4) = F(42).

Ans. : Since g e F(q)

.'.azeF(a)jF(az)gF(a)
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. wewrite FgF(az)gF(a)

Let [F(az):F]:n and [F(a):Fl=m
Since the minimal polynomial of @ over F is of odd degree.

.. m1is odd.

Now by theorem (2.1) [F (a): F] :[F(a):F(az)]-[F(az):F]

ie. m:[F(a):F(az)]-n

=n<m (1)

Now let f(x)=ay+a;x +.....+ x" be the minimal polynomial of ;2 over F

Then q + alaz ot a™=0

= q isroot of the polynomial.

g(x)=ay+ax’+...+x" € Flx]
=m/2n (- bytheorem(3.1))
=>m/n (- misodd)
=m<n (2)
-, from(1)and (2)
m=n

.'.[F(a):F]:mznz[F(az):F]

.'.F(a)zF(az) (‘.'F(az)gF(a))

4. Algebraically Closed Fields

Definition 4.1 : A field K is called algebraically closed if it possesses no proper algebraic
extensions.
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Theorem 4.1 : For any field K the following statements are all equivalent :

)] K is algebraically closed.
(i) Every irreducible polynomial in K [x] isofdegree 1.
(i)  Everypolynomialin K [x] ofpositive degree factors completelyin K [ x] into linear
factors.
(iv)  Everypolynomialin K [x] ofpositive degree has atleast one root in K.
Proof: (1) = (1)
Suppose K is algebraically closed.
Let p(x) e K [x] bean ireducible polynomial of degree n.
. by theorem (2.4) and (3.3) 3 a finite and hence algebraic extension E of K such
that [E:K]=n.

Since K is algebraically closed.

E=K ,son=1.

. every irreducible polynomial in K[ x] is of degree 1.

(i) = (i)

Suppose every irreducible polynomial in K [x] is of degree 1.

To prove that K is algebraically closed.
For let E be any algebraic extensionofK. . (1)

Let 4 e E be any element, then a is algebraic over K.

Let p(x)e K[x] be the minimal polynomialofa.

Since the minimal polynomial p (x) of ‘a’ is monic and irreducible.

~p(x)=x-a (- by assumption)

=>aek

=>FEFcK

- E=K (- by (1))
— K isalgebraically closed field.
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(i) = (i)

Suppose every irreducible polynomial in K [x] is of degree 1.
- by (i) = (1) Kis algebraically closed field.

Let f(x) e K[x] beany polynomial of positive degree.
Since K 1s algebraically closed field,

. Kcontains all the roots of f(x).

- f(x) factorscompletelyin K [x] into linear factors.

(ii)) = (iv)

Suppose every polynomial in K [ x] ofpositive degree factors completely in K [ x]
into linear factors.

Let f(x) e K[x] beany polynomial of positive degree.

= f(x) factors completelyin K [x] into linear factors.

— K contains allthe roots of f (x).

. K contains atleast one root of 7 (x).

(iv) = (1)

Suppose every polynomial in K [x] ofpositive degree has atleast one root in K.
To prove that K is algebraically closed field.

Let E be an algebraic extensionof K. . 2)
Let 4 € E beany element.

Then a is algebraic over K.

Let p(x) be the minimal polynomial of ‘a” over K then p(x) e K [x].

and by assumption p(x) hasarootsay ‘b’ in K.

= (x—b) isafactorof p(x)in K[x].

But since p(x) is minimal polynomial of @ over K.
. p(x) is monic, irreducible polynomialin K [x].

Suchthat p(a)=0.
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= p(x)=x-b
and p(a)=0=a-b=>a=bek

=aek

Thus K contains all elements of E.

Le. EcK 3)
- from(2)and(3) K=E

Thus every algebraic extension of K coincides with K.

— K isalgebraically closed.

Definition 4.2 : IfF is a subfield of a field E, then E is called an algebraic closure of F if,
)] E is an algebraic extension of F.

(1) E is algebraically closed.

Theorem 4.2 : Let Fbe afieldand let & : F —— L be an embedding of F into an algebraically

closed field L. Let £ = F () beanalgebraic extension of F. Then o canbe extended to an

embedding 7, : E— L and the number of such extensions is equal to the number of distinct

roots of the minimal polynomial of ¢ .

Proof : Let p(x)=a,+ax+....+x" be the minimal polynomial of ¢« over F.

n

Let p?(x)=0(ay)+o(a)x+...+x

Then p?(x)e Llx]

Since L is algebraically closed field.

. L contains all the roots of p?(x).
Let f e L bearootof p?(x).

Since p(x) be the minimal polynomial of o overF.
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. bytheorem (2.5)

E=F(a)={hy+ba+..+b, a""|becF|

Now, define 17, : E—— L by

15 (bg+ b+t b,_ 0" ) =5 (by) + 5 (b)) B+t 5 (b, y) B

Since any element of £ = F'(¢) canbe written uniquely in the form

hy+ba+...+b,_a""; beF.

~.1p 1s well defined mapping. 75 is 1-1(-- o is1-1)

Also it is easy to show that 775 is a homomosphism (prove it ?)

Thus 774 is anembedding of F(¢/) into L and it is an extension of & .

(- forseF; nﬁ(s) =o(s))

Further f——n; is a bijective correspondance between the distinct roots of
p° (x) and the extension of ¢ to E.

. The number of extensions of o to E is equal to the number of distinct roots of
p°(x) inL.

Also if ¢ isaroot of p(x) then o () isarootof p° (x). Thus number of distinct
rootof p? (x) is same as number of distinct roots of p(x). Here number of extensions of
o to E is equal to the number of distinct roots of p(x).
Theorem 4.3 : Let E be an algebraic extension of a field F, and let 0 : F——> L be an
embedding of F into an algebraically closed field L. Then o canbe extended to an embedding
n:E——L.
Proof : Consider the set

S:{(K,0)|FgK C E,0:K — L is an embedding and 6| za}

Then S#¢ (- (F,0)eS)

Define a binary operation < on S by
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(K,60,)<(K,0,) if K, c K, and 6, restricted to K| is 6, i.e. 92|K1 =0,

Then < is a partial ordering on S.

Claim : (S,<) satisfies the hypothesis of the Zorn’s lemma.
For let {(K,-, Hi)} isa chainin S.
Define K=UK; and g.x 5 by
0(a)=0,(a) if acKk,
Also if @ € K; (1K ; then 0.(a) :9j(a)
(- either K, K; or K; K, )
. 0 1s well defined map on K.
Clearly K is a subfield of E contaming Fand 9. g 4 1s an embedding.

And (K,0) is anupper bound for the chain {(K,6;)} .

Thus every chain {(K,-, 0, )} in S has an upper bound.

i.e. (8,<) satisfy the hypothesis of Zorn’s lemma.
. by Zorn’s lemma.
3 amaximal element (K,7) in'S.

Then 77 is an extension of & .

Claim : K=E
Let ifpossible g + F .
~.daeE suchthat g ¢ K.

Since E is an algebraic extension of F, ‘a’ is algebraic over F and hence over K.
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. by theorem (4.2), 3 anembedding 5': K (a) — L suchthat 77'1< =7.

But then (K,n) <(K (a),n') and (K (a),n") e S
#a contradiction to the maximality of (K,7)
LK=F

And 5 : E—— L is anembedding and is an extension of & .

Theorem 4.4 : Let K and K' be algebraic closures of a field F. Then g ~ x' under an
isomorphism that is an identity on F.

Proof : Let K and K' be algebraic closures ofa field F.

Then by definition of algebraic closure K and K' are algberaic extensions of F and are
algebraically closed fields.

Define ;. p_ g by

AMa)=a, YaeF
Then , is anembedding of F into algebraically closed field K (prove it ?)

.. bytheorem (4.3) 4 canbe extended to an embedding j*. g s K -
~K'=2=2*(K")cK
Since K' s algebraically closed field containing F.

- A*(K ") 1salso algebraically closed field containing F.
And since K is algebraic extensionof Fand F — A *(K").
. K 1salso algebraic extension of j *(g").

= A1*(K") =K (. 1*(K") 1salgebraically closed field and K is algebraic extension
of 3 *(K'). ... bydefinition of algebraically closed field j * (g ") = K )

This shows that anembedding j%. g'— g isonto.

. A% is anisomorphism of K' onto Kand A *(q)=a, Vae F ('-'l*|F =)
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Remarks :

1) Any field F has a unique (upto isomorphism) algebraic closure.

2) The algebraic closure of a field F is denoted by F .

3) Let Fbe a fieldand let S = {x,, }ae , bean infiite set of commuting indeterminates.

Define F[S] :{ z aX; Xy Xy | 0y € FL X € S}

finite

Then F[S] is apolynomial ring over F in S w.r.t. natural addition and multiplication.

Theorem 4.5 : Let F be a field. Then there exists an algebraically closed field K containing F
as a subfield.

Proof: Let F be a field.

We construct an extension K; of F in which every nonconstant polynomial has a root.

For eachnonconstant polynomial /' = ' (x) e F [ x] we correspond an indeterminate

X, andlet S = {xf | /= f(x)e Flx] and degree of /' (x) > 1}_
Consider the polynomial ring F [ S] which is an integral domain.

Let Abeanidealin f[S] generated by all polynomials f (x f) ofpositive degree in
F[S].
Claim : Ais proper ideal of F[S].

Let if possible A is not proper idealin £[S].

ie. 4=F[S].

(g,g,- g, nvolvesonly a finite number of indeterminates)

We write X, = X; for each f; € F[x] then
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Xp =X, Xp =Xy, ., Xp =X,
And the indeterminates occuring in all the g;, 1<j<pn are in the set
{xl,xz,....,xn,....xm}.
n
'.'1:;gi(xl’x%""’xm)fi(xi) ...... (1)
i-
Let E be an extensionof F in which each of the polynomials f,, £ ,...., f,, hasaroot

and let g; bearootof f; mE, foreach 1<;<n.

Ifwe substitute x; =a;, 1 <i<p and x,,; =....= x,, = 0 m (1) we get 1 = 0 whichis
absurd #

Thus Ais a proper ideal of F[S].

. by Zorn’s Lemma, let M be a maximal ideal of [ §] containing A.

Then there is 0 : FF——> defined by ¢ (g) = g + M is an embedding.

Thus we can regard is a field extension of F.

F[S
Also each nonconstant polynomial f = £ (x)= F[x] hasarootin Y

Thus we have constructed the extension field K; = of F in which every

F[S]
M

nonconstruct polynomialin [ x] hasaroot.

Now inductively we can form a chain of fields /' = K, < K, < K, < K5 < .....such

that any nonconstant polynomial over K, hasarootin K, ,,, Vn>0.

Define KZDK,,.

n=l1

Then K is a field extension of F.
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If g(x)=by+bx+....+b,x", b, #0,m>0 isapolynomial over K, then 3 ‘»’

such that by, b,,.....,b, € K, = g(x) e K,[x] and g(x) hasarootin K,,, = K .

Thus F has an algebraically closed extension.

Theorem 4.6 : Let F be a field. Then there exists an extension g that is algebraic over F and

is algebraically closed i.e. each field has an algebraic closure.

Proof:

closed.

Let F be a field, then by theorem (4.5) 3 an extension K of F which is algebraically

Let F ={a e K/a is algebraic over F}then F c F c K
and by theorem (3.6) £ is an algebraic extensionofF. ... (1)
Now we prove that £ is algebraically closed.
Forlet f(x)e F[x]. Then f(x) hasaroot qe K (- Kis algebraically closed)
= q € K isalgebraicover .
Now since f is algebraic extensionof F (by (1))

. a 1s algebraic over F (see problem (3.1)).

—acF (-.- bydefinition of )

-, everyroot of any polynomial f(x) e F[x] isin 7.
But this shows that 7 isalgebraically closed field. ... 2)
Thus from (1) and (2) £ isanalgebraic closure of F.

EXAMPLES :

4.1

(- O isacountable set)
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EXERCISE :

1.

Show that x* —2 e Q[ x] isirreducible over Q. Find an extension K of Q having all

roots of x3 _» suchthat [K : 0]=6.

Find the smallest extension of Q having aroot of x* -2 € O[x].

Find a suitable number ‘a’ such that Q(+/3,i) = 0(a) -

Find the degree of 0(+/2,/3) over Q.

Determine the minimal polynomials of the folowing numbers over Q.

@) 372 +5 (b) J-1++2 (©) V2-33

Let F < K < E befields such that K is algebraic extension of F and E is an algebraic
extension of K then show that E 1s an algebraic extension of F.

If F is a subfield of an algebraically closed field K, then show that the algebraic
closure  of F in K is also algebraically closed.

Prove that O(~/2,+/5) = 0(v2 ++/5).

Prove that 3 4 e R suchthat Q(\/E,%/g) =0(a).
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UNIT - 11

NORMAL AND SEPARABLE EXTENSION

Finding roots of polynomials has been an important problem since the time of

the ancient Greeks. Some polynomials, however, x> +1 over R, the real numbers,
have no roots in R. By constructing the splitting field for such a polynomial one can

find the roots of the polynomial in the new field.

1. SPLITTING FIELDS
The first step in finding the Galois group of a polynomial over a field is to
find the smallest extension of the field that contains all of the roots of the

polynomial. Beginning with a field F, and a polynomial f(x)e F[x], we need to

construct the smallest possible extension field K of F that contains all of the roots

of f(X).

Definition 1.1 : Let f (x) be a polynomial in F[x] of degree >1. Then an extension

K of Fis called a splitting field of f (x) over F if

Q) f(x) factors into linear  factors in  K[x] ; that s
f(X)=c(x—)...(X—«,), o K.

(i) K=F(«,...cq,) ; that is, K is generated over F by the roots

a,...a, of f(x)inK.

Note :
1. The splitting field is the smallest field that containing all roots.
2. QW3) ={a+bx/§| a,b eQ} is a spliting field of x?—3eQ[x]

over Q.
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3. Splitting field of x* —1eR[x] over R is the field C.
4. We note that a polynomial f(x)eF[x] always has a splitting

field, namely, the field generated by its roots in a given algebraic closure F
of F.

Theorem 1.1 : If K is a splitting field of f (x) e F[x]over F, then K is a finite
extension and, hence, an algebraic extension of F.

Proof. Since K is a splitting field of f (x) € F[x]over F, K=F(«,...«,); that is, K
is generated over F by the roots e, ..., of f(x)inK. Thatis, K=F(«,...«,) is a
finitely generated extension of F such that «,,...«, are algebraic over F. Hence by

theorem, K is a finite extension and, hence, an algebraic extension of F.

Theorem 1.2 (uniqueness of splitting field) : Let K be a splitting field of the
polynomial f (x) € F[x]over a field F.If E is another splitting field of f (x) over F,
then there exists an isomorphism o : E — K that is identity on F.
Proof. Let K be a splitting field of the polynomial f (x) € F[x] over a field F and K
be an algebraic closure of K.

Then K is algebraic over K . Since K is algebraic over F, K is algebraic
over F.

Hence K=F.

Since E is an algebraic extension of F, by theorem the identity mapping
A:F — F can be extended to an embeddingo: E — K .
Let f(X)=a,+aX+...+a,X" €F[x] and

f7(x)=0(a,) +o(a)x+...+0o(a,)x" € F[x].

Since oisidentityonF, f7(x) = f(x).
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Let f(x)=c(x—) ... (X—a,), €E, i=1...,n, ceF.
Then f(x)=c(x—o(e)) ... (x—o(e,)) be unique factorization in K[X].

But since f (x) has a factorization inK[x], say f(x)=c(x—2,)...(x—=2,),
where g € K, i=1...,n, it follows that the sets{c(c)....,o(e,)}and{A,,..., 8, } are

equal.
Thus, K=F(B,.....8,)=F(c(a).....o(a,)) =0 (F(a,.....a,)) = (E).

Hence, o is an isomorphism of Eonto K.

Note : Theorem 1.2 proves that the splitting field of a polynomial over a given field

is unique (up to isomorphism) if it exists. But recall that any field F has an algebraic
closure F that contains roots of all polynomials over F .Thus, the intersection of all
subfields of F containing all the roots of a given polynomial f(x)e F[x]is the

splitting field of f (x) over F.

Example 1.1 : Show that degree of the extension of the splitting field of
x*—2eQ[x] is 6.
Solution : By Eisenstein's criterion x* —2 e Q[x]is irreducible over Q and it is the

minimal polynomial of 2**.
Thus Q[X]/(X°-2) = Q(2**) with [ Q(2"*):Q]=3.

Since x°—2=(x—2")(x*+2"x+2"), x’~2 has two complex roots, say
a and a.
Thus p(x) = x> +2x+2%* e Q(2"*)[x] is irreducible over Q(2**).
Hence, Q(2"°)[x]/(P(X)) = Q(2") () = Q(2"*,@) and [Q(Tﬁ,a) : @(21/3)] =degree
of p(x)=2.
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Because Q(2"%, ) contains one root o of p(x), it will also contain the other root a.

Hence, Q(2"%, ) is the splitting field of x* —2 € Q[x] over Q. Finally,
(@27, 2):Q]=[ Q2" 2): Q2") || Q2"): Q| =2x3=6.

Example 1.2 : Let p be prime. Then show that f (x) =x? —-1e Q[x] has splitting
field Q(a), where a =1and a” =1. Also, [Q(a):Q]=p-1.
Solution : Let f(x)=x"—1=(x-1)(x"*+Xx"?+...+x+1).
We know p(x) = X" +xP? +...+ x+1eQ[x] is irreducible over Q.
Let o be a root of p(x) in the splitting field of f (x) over Q. Then, clearly «” =1and
a#l.
We assert that 1,r,@?,...,a” " are p distinct roots of f(X).
Clearly, a® =1 implies (e')" =1for all positive integers i .
Thus, we need to show that 1, «,a?,...,a" are distinct roots.

Note that if m is the smallest positive integer such that ™ =1, then m| p.
Thus, m=p.

Hence, no two roots in the list 1,a,a?,...,a”" can be equal, whence these
are all the p roots of x? —1.
Hence, the splitting field of x* -1 Q[x] is Q(«).
Since, the minimal polynomial of ais p(x), which is of degree p—1.

Hence [Q(«): Q] =degree of p(x)=p-1.

Ca3)




Example 1.3 : Let F =Z,. Then show that splitting field of x*+x*+1e F[x] is a
finite field with eight elements.

Solution : Let p(x) = x®+x*+1.

Since p(0)=1#0 and p())=1#0, x*+x*+1 is irreducible over F .

Let o be a root of this polynomial in its splitting field. Then,

X4 x +1= (x+a) (X + L+ @) x + (@ +a?))

= (Xx+a)(X+a?)(x+1+a +a?).
Therefore, F(a)is the splitting field of p(x) = x®+x*+1over F, and
[F(a):F]=3, the degree of the minimal polynomial p(x)=x*+x*+1 of « .
Furthermore, F(«)has a basis {1,a,a2}over F.

Therefore, F(a) = {O,l,a,a2,1+ a,l+ az,a+a2,1+a+a2} , where &®+a® +1=0.

Example 1.4 : Show that the splitting field of f(x)=x*-2eQ[x] over Q is
Q(2"*,i) and its degree of extension is 8.
Solution : Let f(x) =x*—2e@Q[x], then by Eisenstein criterion f(x) irreducible
over Q.

Also 2% is one root of f(X).Therefore f(x) is the minimal polynomial of

2" over Q
Thus, [Q(Z”“) ; @} = degree of f(x) =4.

Now f(x) :(x—2”4)(x+2”4)(x2+2”2) and the factor p(x)=x*+2"%is
irreducible over Q(2"*).

Thus, p(x) = x*+2"2is the minimal polynomial of 2"*i over Q(2¥*),
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Hence [Q(2"*)(2"*i):Q(2"*) ] = degree of p(x)=2.

Since Q(2*)(2"*) = Q(2"*,i), contains all roots of f(x), Q(2",i) is the splitting
field of f(x)=x"—2eQ[x].

Therefore,

[Q@".):Q]=[Q@" D):QE@") |[Q@"):Q]=24=8.

Example 1.5 : Find splitting field of f(x)=x"+4over Q.

Solution : Let f(x)=x"+4 is not irreducible over Q.

Since f(x)=x"*+4=(x*+2x+2)(x* —2x+2)is reducible over Q. But two factors
are irreducible over Q.

By using quadratic formula, we find four roots 1+1i,1—i,—1+i and —1—i. Thus

splitting of this polynomial is Q(i) and [Q(i): Q]=2.

Example 1.6 : If K is an extension field of F of degree 2, then prove that K is the
splitting field over F for some polynomial.
Solution : Let K be an extension field of F of degree 2. Since [K:F]>1, we can

choose o €K suchthat ¢ ¢ F .
Then « is algebraic over F . Let p(x) be minimal polynomial of & over F .

Since [K: F(a)][F(«):F]=[K:F]=2 and [F(a):F]>1, we have
[F():F]=2 and [K: F(a)]=1.

Therefore F(a) =K.

Thus minimal polynomial p(x) has degree 2.

Let p(x)=x*+ax+b, a,beF. Therefore p(x)=(x—a)(x— L), where fC .

Then F(a, f) be splitting field for p(x) over F .
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Since K =F(«), K is subfield of F(a, ).

Since, p(x) =(X—a)(x— L) =x*—(a+ B)x+afi=x*+ax+b, we have
a+pf=-aand aff=b.

Therefore f=—-a—acF(a).

Thus F(a, B) is subfield of K.

Hence K=F(a, ).

Thus K is splitting field for some polynomial p(x) over F.

Example 1.7 : Let f(x)=x*+3, g(x)=x"+x+1eQ[x]. Show that their splitting
fields are equal and find its degree over Q.

Solution : Let f(x)=x*+3, g(x)=x*+x+1eQ[x].

1443
2

Then ++/3i are roots of f(x) and are roots of g(x).

~1+4/3i

2

Therefore, Q(xﬁi) is the splitting field of f(x)and Q( )is the splitting

field of g(x).

Since Q(ﬁi)z@(_lizﬁi) splitting field of f(x)and g(x) are equal.

Also [Q(ﬁ i) : Q} =degree of f(x)=2
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Example 1.8 : Find condition on a and b such that the splitting field of

x° +ax+b e Q[x] has degree 3 over Q.

Solution : Let f(x)=x’+ax+beQ[x], then f(x) must be irreducible over Q,
otherwise degree of extension is either 1 or 2.

Let E=Q(a,p, ) be splitting field of f(x) over Q.

Therefore f(x) =x>+ax+b=(x—a)(x—L)(x—y) implies that
a+pf+y=0,af+py+ya=a and affy =-b

Therefore B+y=-a and By =-bla=a’+a.

Thus g and y are roots of second degree polynomial,

g(x)=x*+ax+a’ +aeQ(a).

Hence if Band y arein Q(«) then E=Q(«,3,6)=Q(«) and [E: Q]=3

as desired.

But roots Sand y are in Q(«) if and only if discriminant A =-3¢” —4a of

g(x) must be a square in Q otherwise other two roots are in Q(a,\/Z) which is of

degree 6 over Q.

Hence the splitting field of x°+ax+b e Q[x] has degree 3 over Q if VA € Q(a).
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2. NORMAL EXTENSIONS

Let (1‘i(x))ieA be a family of polynomials of degree >1 over a field F .

Splitting field of a family ( f;(x))._, of polynomials is an extension E of F such

that every f,(x) splits into linear factors in E[X], and E is generated over F by all
the roots of the polynomials f,(x),ie A. If A is finite and our polynomials are
f,(x),..., f,(x), then their splitting field is a splitting field of the single polynomial
f(x) = f,(x)...f,(X), obtained by taking the product. The proof of uniqueness (up
to isomorphism) of a splitting field of a single polynomial can be extended to prove

the uniqueness (up to isomorphism) of a splitting field of a family of polynomials

over a given field.
The next theorem proves a set of equivalent statements for an extension E of

F to be a splitting field of a family of polynomials over F .

Theorem 2.1 : Let E bean algebraic extension of a field F contained in an
algebraic closure F of F. Then the following conditions are equivalent:
(i)  Every irreducible polynomial in F[X]that has a root in E splits into linear
factorsin E.
(i)  E is the splitting field of a family of polynomials in F[X].
(i) Every embedding o ofE in F that keeps each element of F fixed maps E
onto E . (In other words, o may be regarded as an automorphism of E .
Proof : (i) = (ii)
Let ¢ €E, and let p,(x) be its minimal polynomial over F . By (i),

p, (X) splits into linear factors in E. Thus, it follows immediately that E is the

splitting field of the family {p,(x)} __ of polynomial overF .

ae
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(i) = (iii)

Let {f,(x)},_,. be a family of polynomials of which E is the splitting
field.

If o is a root of some f.(x) in E, then for any embedding o of E into F
that keeps each element of F fixed, o()is also root of f,(x).

Since E is generated by the roots of all the polynomials f,(x), it follows

that o maps E into itself. That is o: E — E be an embedding of E into itself

over F . Then, by Theorem, o is an automorphism of E.
(i) = (i)

Let p(x) € F[x]be an irreducible polynomial over F that has a root « € E .
Let B<F beanother root of p(x). Now we claim that S € E .

Sincea and £ are roots of the same irreducible polynomial p(x), we have F -
isomorphisms
under the isomorphism,

a,taa+...+aa" >a+ax+...+ax +(f(x))>a+as+...+a,8".

Let o: F(a) > F(f)be the isomorphism given above. Then o(a)=/f
and o(a)=a forall acF.

By Theorem, o can be extended to an embeddingo : E — F. But then,
by (iii), ¢ is an automorphism of E ;

Therefore, f=oc(ax) =0 (a) € E. Hence the proof.
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Definition 2.1 : An extension E of a field F is called normal if E satisfies any

one of the following equivalent conditions
(i)  Every irreducible polynomial in F[X]that has a root in E splits into linear
factors in E.

(i)  E is the splitting field of a family of polynomials in F[x].

(i) Every embedding o ofE in F that keeps each element of F fixed maps E

onto E . (In other words, o may be regarded as an automorphism of E .)

Note :

1. The Field of complex numbers C is a normal extension of the field of real

numbers Rand [C:R]=2,
2. R is not a normal extension of the field Q of rational numbers, for

x> —2eQ[x] is irreducible over Q and has a root 32in R, but it does not

split into linear factors in R because it has complex roots.

3. if @=Cos(z/A)+isin(z/4), e Q(a)is a normal extension of Q. As

Q(ar)is the splitting field of X +1€QIx],

Example 2.1: Let E be a finite extension of F . Then E is a normal extension of
F ifand only if E is a splitting field of a polynomial over F .

Solution : Let E be a finite extension of Fand E =F(«,,...,«,), Where «, € Eare

algebraic over F .

Let p,(x) be the minimal polynomial of «,, over F .
Assume first that E is a normal extension of F . Then p,(x) splits in E

because it has one root ¢; € E.
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Thus, p(x) = p,(X)...p,(x) € F[x] has all roots in E.
Since E = F(a,...,a,), and ay,...,a,, are some of the roots of p(x), E must be
the splitting field of p(X).

Conversely suppose that E is splitting field of f(x)eF[x]. If «,,...,a, are

all roots of p(X),then E = F(a,,..., o).

If o:E—F is an embedding that keeps each element of F fixed, then

o(«;) is also root of f (x).
Therefore o () = ; forsome jand o(e;) € E forall 1<i<n.

Hence o(E) c E and o is an automorphism of E.

Thus by Theorem 2.1, E is a normal extension of F .

Example 2.2 : Show that any extension K of a field F, such that [K:F]=2,isa

normal extension.
Solution : In example 1.6 we have shown that K is the splitting field

p(x) € F[X]. Then by definition, K is normal extension of F .

Example 2.3 : Show that @(ﬁ) and Q(Z\ﬁ) are normal extension of Q.
Solution : Let & =+/-2 then « is algebraic over Q and minimal polynomial is
p(x)=x+2eQ[x].

Therefore [@(ﬁ) : Q] =[Q(c) : Q] =degree of p(x) =2.

Hence Q(\/—_Z) is normal extension of Q.

Similarly Q(Z\ﬁ) is normal extension of Q.
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Example 2.4 : Let E be normal extension of F and let be K a subfield of E
containing F . Show that E is a normal extension of K. Give an example to
show that K need not be a normal extension of F .

Solution : Let E be normal extension of F . Then by definition E is splitting
field of a family of polynomials over F .

Since F c K, E is splitting field of a family of polynomials over K.

Hence E is a normal extension of K.

Let EzQ(iﬁ, a)) and K =Q(§/§) where @ is cube root of unity.
Then Qc@(%)c@(%@,a)).
Here E:Q(Qﬁ,a)) is normal extension of K :Q(E/E) but K :Q(iﬁ) is not

normal extension of Q.

Example 2.5 : Let F:Q(\/f) and Ez@((‘/i). Show that E is normal

extension of F and F is normal extension of Q, but E is not a normal

extension of Q.

Solution : Since x* -2 eQ[x] be minimal polynomial of J2, [@(\5) : @} =2.
Therefore F = @(\/5) is normal extension of Q.

Also x? —ﬁe@(\ﬁ)[x] is minimal polynomial of 42 over Q(ﬁ)

Q(2)}-2

Therefore[ ( )
Hence E = @( 2) is normal extension of F = Q(J_)
]

Also x*—2eQ[x] is minimal polynomial of 42 over Q and roots +4/2 i of

x* —2 & Q[ x] are does not belong to E =Q(42).

| 52D




Therefore E = Q((‘ﬁ) is not splitting field of x* -2 Q[x].

Hence E = Q((‘/f) is not a normal extension of Q.

3. MULTIPLE ROOTS
In this section we discuss the multiplicity of roots of a polynomial over a

field. For this purpose, we introduce the concept of the derivative of a polynomial.

Definition 3.1 : Let f(x)=a,+aXx+a,X*+...+a X" be a polynomial over a field

F . Then derivative of f(x) is defined as f'(X)=a, +2a,x+...+na x"*.

Note :

1. Properties of derivatives that are familiar from calculus are not necessarily
valid here. For example, f'(x)=0 does not always imply that f(x) is a
constant: for example, if we set f(x)=x® in a field of characteristic 3
then f'(x)=3x*=0.

2. Derivative of a polynomial is a linear operation;, that is

(af (x) +bg(x))' =af '(x)+bg'(x), where a,beF.

3. For the derivative of a product we have the wusual rule
(F(909))"=f'0)g(x) + f (x)g'(x).

4, If Char(F)=0 and degree of f(x)=n>0, then degree of f'(x)=n-1.

5. If Char(F) = p and degree of f(x)=x",then f'(x)=0.
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Definition 3.2 : Let K be a splitting field of a polynomial f(x) € F[x]. Let « be
arootof f(x).Then (x—a)| f(x) in K[x]. If (x—a)’ is the highest power of
(x—a)thatdivides f(x) in K[x], then s is called the multiplicity of « .

If s=1, then « is called a simple root; if s>1, then « is called a multiple

root.

Theorem 3.1 : Let f(x) € F[x]be a polynomial of degree >1 with « as a root.
Then « is a multiple root if and only if f '(«) =0.

Proof : Let « isarootof f(x)e F[x],

By division algorithm we can write f (x)=(x—a)g(X).

Therefore f'(x) =(x—a)g'(x)+9(x).

Thus « is a multiple root of f (x) if and only if g(«)=0.

Since f'(a)=g(«),a isamultiple root if and only if f'(«)=0.

Corollary 3.2 : Let f(x)e F[x]be an irreducible polynomial over F . Then
f (x) has a multiple root if and only if f '(x) =0.
Proof : Let f(x)< F[x]be an irreducible polynomial over F and « is root of
f(x) . Suppose f '(x) =0. Therefore f'(«)=0.
Hence by Theorem 3.1, « is a multiple root of f(x).

On the other hand, suppose f(x) has a multiple root « . Then by
Theorem 3.1, a isaroot of f'(x).

Since f(x) is irreducible, a™f(x) is the minimal polynomial of « over

F , where a is the leading coefficient of f(x).
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Now suppose f'(x) =0, then f'(x) isanon constant polynomial satisfied
by «. Since a™f(x) is the minimal polynomial of & over F degree of f '(x) >
degree ofa ' f (x) . Which is a contradiction.

Hence, f '(x) =0.

Corollary 3.3 : Any irreducible polynomial f(x) over a field of characteristic 0
has simple roots. Also any irreducible polynomial f(x) over afield F of
characteristic p=#0 has multiple roots if and only if there exists g(x) e F[x]
such that f (x)=g(x").
Proof : Let f(x)= Zinzoaixi be an irreducible polynomial over a field F .

Then by Corollary 3.2 f(x) has multiple roots if and only if
f'(x) =Zin:0iaix"l =0 . Therefore f(x) has multiple roots if and only if
la =0,1<i<n.
Thus in a field of characteristic 0, if f'(x)=0 then a =0,1<i<n.
But then f (x) =a, € F, which is a contradiction.
Hence in a field of characteristic 0, all roots of f(x) are simple.

Now if F is of characteristic p=0, and if a, =0, we must have p|i.
Thus f (x) has multiple roots if and only if, either a, =0,0r p]|i.

Therefore f(x)=g(x"), for asuitable polynomial g(x) € F[x].

Theorem 3.4 : If f(X) e F[x] is irreducible over F , then all roots of f(x) have

the same multiplicity.

Proof : Let F be the algebraic closure of F, and let « and £ be roots of f(x)

in F with multiplicities k and k', respectively.
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We know that
F (o) =FIXI/ (f(x) = F(A),
under the isomorphism,
a,taa+...+aa" >a+ax+...+ax +(f(x))>a+af+...+a,8".
Let o: F(a) > F(B) be an isomorphism.
Clearly, o(a)=/f and o(s)=s, forall seF.
We know o:F(a)—>F(f) can be extended to an isomorphism
o*: F —>?ﬂ) =F . Then we define a ring homomorphism n: F[x] - F[x] by
n(@,+ax+...+ax)=oc*()+ax+...+o*(a)x".
Clearly 7(f(x)) = f(x), f(x)eF[x].
Therefore if « is roots of f(x) with multiplicityk , then
f () = (x=@)g(x), g(x) € F[x]
and
n(F(x))=x=A"n(g(x)= f(x)=x=A"n(9(x).
Thus (x—B)* is also factor of f(x) and hence k'>k.

By interchanging roles of « and £, we get k >k".

Hence k =k".

Corollary 3.5 : If f(x) e F[x] is irreducible over F, then f (x) = aH::l(x—ai)k,

where «,, are the roots of f(x) in its splitting field over F , and k is the
multiplicity of each root.

Proof. Let ¢, 0,,...,a, be roots of polynomial f(x)e F[x] with multiplicities
k., K,,...,k, respectively.
Then f(x)=a] |, (x-a)" .
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Since, f(x) is irreducible over F, by Theorem 3.4, all roots of f(x) have the
same multiplicity.

Therefore k=k, =k, =...=Kk,.

r

Hence f(x)=a[] (x—a) -

Example 3.1 : Prove that a polynomial f(x)eF [x] has multiple root if and only
if f(x) and f'(x) has anon-constant common factor.
Solution : Let a be multiple root of f(x) in an extension E of F .
Then f(x)=(x-a)"g(x), m>1 g(x)eE[x].
Therefore
fro)=m(x—a)" g(x)+(x—a)" g'(x)
=(x—a)m71[m g(x)+(x-a)g'(x)], m-1>0.
Therefore (x—a)m’1 is non-constant common factor of f(x) and f'(x).

Conversely suppose that f(x) and f'(x) has a non-constant common
factor.
Now if all roots of f(x) are distinct, then f(x)=aH:’:1(x—ai) , for some
aeF
and f'(x):aZ[H(x—aj)} .
i=1 \_ j=i

Therefore, f'(a)=a] J(a—a;)#0, 1<i<n.

j#i
Hence no root of f(x) isarootof f'(x), which is a contradiction.
Therefore all roots of f(x) are not distinct.

Hence f(x) has multiple roots.
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Example 3.2 : Let f(x) be a polynomial of degree n over F of characteristic
p. Suppose f'(x)=0 . Show that p|n and that f(x) has atmost D distinct
p

roots.

Solution : Let f(x) be a polynomial of degree n over F and f'(x)=0.

Then by corollary 3.2 f(x) has multiple roots.

Also by corollary 3.3 f(x) has multiple roots if and only if there exists
g(x) € F[x] such that f(x)=g(x").

Therefore n=pm
Also by theorem 3.4, since each root is of same multiplicity f(x) has atmost n
; p

distinct roots.

Example 3.3 : Let K =F(x) be the field of rational functions in one variable x
over a field F of characteristic 3. (Indeed, F(x) is the field of fractions of the
polynomial ring F[x] ) Then the polynomial y*—x in the polynomial ring K[y]
over K is irreducible over K and has multiple roots.

Solution : If y®>—xhas a root in K, then there g(x)/h(x)in K with h(x) =0
such that (g(x)/h(x))3 =x; that is, g°*(x) = xh®(x).

But this implies that 3(degree of h(x))+1=3(degree of g(x)), which is
impossible. Thus, y*—x e K[y] is irreducible over K .

Now if g, and p, are two roots of y®—x in its splitting field, then

ﬂf:x:ﬂs_
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But then (3, - 5, )3 = +(-1)°p=0,and, hence 5, — 3, =0.
This shows that y®—xhas only one distinct root whose multiplicity is 3.

This completes the solution.

4. FINITE FIELDS
In this section we show that an irreducible polynomial over a finite field has

only simple roots. Hence, it will follow then that the only fields over which an

irreducible polynomial may have multiple roots are infinite fields of characteristic

p=0.

Definition 4.1 : A field is called prime if it has no proper subfield.

Note :
1. Every field F contains a prime field F, ,which is precisely the intersection

of the family of its subfields, called the prime field of F .

2. Q and Z,, where p is prime are prime fields.

Theorem 4.1 : The prime field of a field F is either isomorphic toQ or Z ,, where
p is prime.

Proof : Define the mapping f : Z — F given by f (n) = ne, e the unity of F . Then
clearly f is a homomorphism.

Case 1: Ker f =(0) (or, equivalently, char F is 0).

Then f is an embedding of Z into F .
This embedding can be extended to an embedding f*:Q—F defined by

f*(m/n)=me/ne.
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Thus, Q embeds in F, and hence, the prime field of F isisomorphicto Q.

Case 2 : Ker f #(0).

Since Z isaPID, Ker f =(m), m a positive integer.

By the fundamental theorem of homomorphism of rings Z , = Im f.

This shows that Z,, being isomorphic to a subring of the field F, has no proper
divisors of zero, so m must be a prime number p.

Thus, Zpembeds in F.

Hence, the prime field of F is isomorphicto Z .

Theorem 4.2 : Let F be a finite field. Then

(i) The characteristic of F is a prime number p and F contains a subfield
F=Z,

(ii) The number of elements of F is p" for some positive integer n.

Proof : i) Let characteristic of F is a prime number p.

Since every field F contains a prime field F,, by theorem 4.1, F contains a
subfield F, =Z .
To prove (ii), we regard F as a vector space over its prime field F,.

Let (e,,....e,) be a basis of F over F,. Then any element xeF can be written

uniquely as

X=ag+...+a¢e, aekF,i=12...n
Since each a,, in the above expression for x be chosen in p ways, the number of

elements of F isthus p".
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Definition 4.2 : A finite field is called a Galois field. A Galois field with p"

elements is denoted by GF(p").

Theorem 4.3 : Any finite field F with p" elements is the splitting field of

X" —xe Fp[x]. Consequently, any two finite fields with p" elements are
isomorphic.

Proof : In the finite field F with p" elements the nonzero elements form a

multiplicative group of order p"-1.

Thus, if 0= AeF, then A *=1s0 A" = A.

Also, if 1=0, then A”" = 4.

Hence, all the p"elements of F satisfy the equation x* —x =0.

Sincex” —x e F,[x] has only p"roots, every element of F is a root of x” —x.
Hence finite field F with p" elements is the splitting field of x* —x e F,[].

Let E and F be two finite fields with p"elements. By Theorem 4.2, E

and F contain subfields E  andF , each of p elements.

Also, E and F are splitting fields of x* — x over E, and F, respectively.
But since E,=Z =F,, it follows by uniqueness of splitting fields (up to

isomorphism) that E = F. This proves the theorem.

Theorem 4.4 : For each prime p and each positive integer n>1 the roots of

X" —xe Zp[x] in its splitting field over Z , are all distinct and form a field F with

p"elements. Also, F is the splitting field of x” —xover Z .
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Proof : Let f(x)=x" -xeZ,[x].

Since f'(x)=p"x" *—1=0, by Corollary 3.2, f (x) cannot have multiple roots.
Thus, f(x) has all its p" distinct roots.

We show that these roots form a field that is the splitting field of f (x) overZ .

Let o« and S be roots, where £ is different from zero.

Then

-1

(a+p)” =a” +p” =a+ B and (aﬂ‘l)pn =" (ﬂp”) i
Thus, the set of roots of f(x) forms a subfield of the splitting field f(X)over Z

with p"elements and, therefore, coincides with the splitting field.

Theorem 4.5 : IfF is a finite field with p"elements and m is a positive integer,
then there exists an extension field E of F such that [E:F]:m, and all such

extensions are isomorphic.

Proof : Let F be the algebraic closure of F .

Consider the polynomial f(x)=x"" -xeF[x].

Since the multiplicative group of F isof order p"-1,for0O2ueF, uPt=1,.
Also, since (p" ~1)(p"™ ™ + p"™ P+ +1)=p™ -1, (p"-1)|(p™-1).
which gives u” *=1:thatis, u®" =u.

This shows that each element of F satisfies f (x).

By Theorem 4.4 the p™ roots of f (x) are distinct and form a field E .
Therefore Z,=F,cFcEcF and [F:F]=n, [E:F,]=mn.

Hence [E:F]=m.
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Theorem 4.6 : The multiplicative group of nonzero elements of a finite field is
cyclic.

Proof : Let F* be the multiplicative group of nonzero elements of F .

Since F* is finite abelian group, we can find an element « € F* whose order r is
the I.c.m. of the orders of all the elements of F *.

Then the order of each element of F * divides r .

Hence, forall ae F*, a" =1.

Since the polynomial x"—1 has at most r roots in F, it follows that the number of
elements in F*<r.

However, 1,«,...,a"" are all distinct and belong to F *.

Thus, F* is generated by «. Hence F *is cyclic.

Corollary 4.7 : Let E be a finite extension of a finite field F . Then E = F(«) for
some « € E.

Proof : Let E is a finite extension of a finite field F and [E:F]=n.

Then Eisan n dimensional vector space over F and hence |E|=|F|" .

Thus E is finite field. Then by above theorem, multiplicative group E *of nonzero
elements of E is a cyclic group generated by « € E.

Therefore E itself is the smallest subfield of E containing F and « . Hence
E=F(a).

Theorem 4.8 : Let F be afinite field. Then there exists an irreducible polynomial
of any given degree n over F .

Proof : F be afinite field. Then, by the Theorem 4.5, there exists an extension E of
F of any given degree n.

Then by Corollary 4.7, E = F(a), for some « € E.
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Since E is a finite extension of F, « € E is algebraic over F .

Let p(x) be the minimal polynomial of « over F .
Then[F () : F]= degree of p(x).
But since E=F(a), and [E:F]=n, we have an irreducible polynomial p(x) of

degree n over F.

Example 4.1 : Show that every finite extension of a finite field is normal.

Solution : Let E be finite extension of a finite field F and [E:F]=n.

Then E is also finite and E", the multiplicative group of E is cyclic and generated
by u such that u"* =1.

Therefore u isarootof x"—xeF[x].

All other roots of x" —x e F[x] are zero and power of u.
Therefore all roots of X" —x e F[x] arein E.

Hence E is splitting field of x" —x e F[x].

Therefore E is normal extension of F .

Example 4.2 : Show that a finite field F of p"elements has exactly one subfield

with p™elements for each divisor m of n.

Solution : We know that a cyclic group of order n has a unique subgroup of order

d for each divisor d of n. Let m be divisor of n.

Now consider the cyclic group F*=F —{0} of order p"—1.
Since m|n,

p"—1=(p" —1)( p" Y 4 p" Py 4 p" +1), n=md.

Cea)




Thus p™ -1 divides p"-1.
Then there exists a unique subgroup H of F*of order p™ -1.
Soforall xeH, x"*'=1.

Hence, x*" =x forall xe H U{0}.

Since the roots of x?" = x form a field, H u{o} is the unique subfield of F of order

p".
Example 4.3 : If f(x) e F[x]is an irreducible polynomial over a finite field F, then
all the roots of f (x) are distinct.

Solution : Let F be a finite field with p" elements.

By Corollary 3.3, f(x) has multiple roots if and only if f (x) = >"" a, (xp)i.
Because a, € F,a” =a,.Set b =a” .

Thus, f(X) has multiple roots if and only if f (x) = Zzo(b,x‘)p :(zm bx‘)p,

a contradiction, because f (X) is irreducible.

Thus, f(X) must have distinct roots.

Example 4.4 : If the multiplicative group F* of nonzero elements of a field F is
cyclic, then F is finite.

Solution : Let F*:(a), where o generates F*. If F*is finite, then F is finite.
So assume F * is an infinite cyclic group.

Case | : The characteristic of Fis p>0.

In this case F =F (a), where F, is the subfield {0,1,2,..., p—1} of F .
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If 1+ =0, then &® =1, a contradiction, because F* is infinite.

If 1+ =0, then 1+acF*, so l+a=a", where r is some positive or negative

integer.

In either case 1+« = ' yields a polynomial over F, with « as its root.

Thus, « is algebraic over F_, so [F,(«): F,]=degree of the minimal polynomial of
a over F =r, say.

Then F =F () has p" elements, a contradiction.

So either the characteristic of F is 0, or F*must be finite.

Case 2 : The characteristic of F is 0.
Here0=1eF.So-1=a', where r is some positive or integer.
This implies &’ =1; that is, o(e)is finite, a contradiction.

Hence, F* must be finite, so F must be a finite field.

Example 4.5 : The group of automorphisms of a field F with p" elements is cyclic
of order n and generated by ¢, where ¢(x)=x", xe F. (¢ is called the Frobenius
endomorphism.)

Solution : Let F be a field with p" elements.

Let Aut(F) denote the group of automorphisms of F .

Clearly, the mapping ¢: F — F, defined by #(x) = x”, is a homomorphism.

Let X" =y® = (x-y)’=0=x=y.

This shows that ¢is 1-1 and, hence, onto.

Thus, ¢ < Aut(F).

We note that ¢" = identity because ¢"(x)=x" = xforall xeF.

(o8




Let d be the order of ¢. We have ¢°(x) = x" forall xeF.
Hence, each x € F is a root of the equation t” —t=0.
This equation has p“roots. It follows that d > n, hence d =n.

Let « be a generator of the multiplicative cyclic group F*.
Then F =F (), where F_ is the subfield of F with p elements.
Let f(X)be the minimal polynomial of & over F,.

Clearly, the degree of f(x)=n.

We are interested in counting the number of extensions of the identity mapping

A:F, — Ftoan automorphism A*:F —>F.

This will then give us all the automorphisms of F , because, clearly, any

automorphism of Fkeeps each element of F fixed.

By Lemma it follows that the number of automorphisms of F is equal to the
distinct roots of f(X).

However, by Example 4.3, f(x) has all its roots distinct. Thus, the order of the
group Aut(F)is n.

We showed in the beginning that there exists an element ¢ € Aut(F)such that the

order of ¢ is n. Hence, Aut(F) is a cyclic group generated by ¢ .

Example 4.6 : Let a and b be two elements of finite field F , then prove that there
exists elements « and g in F such that 1+aa” +bs° =0.

Solution : Let F be finite field with characteristic p=2.

Then F contains 2" elements.

Therefore, every element of satisfies x* —x.
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Then,

a” =a, forall aeF

on

-1
=a’ ?=q, forall aeF

2n71

:>(a )Z:a, forall aeF.

Thus every element of F is a square.
Now if a,beF,a'eF=a"'=a? forsome acF.
Then for =0 we have
1+aa® +bp*=1+aa'+0

=1+1=0 (charF p=2)
Thus 1+aa’®+bp* =0 if F be finite field with characteristic p=2.
Next if F be finite field with characteristic p=2, then F has p" elements.
Let W, ={1+ax”|xe F}.
Thenif 1+ax* =1+ay?, forsome x,yeF = x=xy.
Thus forall x,-xeF, 1+ax*eW,.

Also Oe F=1eW,.

n

p'-1 p"+1
2

Therefore W, contains 1+ elements.

"+1
p2+ elements.

Similarly, W, = {-bx’ | x € F } contains

Since W, and W, more than half elements of F, W, "W, = ¢.

Let ceW, "W, then c=1+ac’ =-bp* =1+aa’+bp* =0 for some o, S eF.
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5. SEPARABLE EXTENSIONS

Definition 5.1 : An irreducible polynomial f(x) e F[x]is called a separable

polynomial if all its roots are simple.

Any polynomial f(X) € F[x]is called separable if all its irreducible factors are

separable.
A polynomial that is not separableis called inseparable.

Definition 5.2 : Let E be an extension of a field F . An element « € E that is
algebraic over F is called separable over F if its minimal polynomial over F is

separable.

Definition 5.3 : An algebraic extension E of a field F is called a separable

extension if each element of E is separable over F .

Note :
1. By Corollary 3.4, any polynomial over a field of characteristic zero is

separable. Thus, if F is a field of characteristic 0, then any algebraic

extension of F is separable.

2. We know that, irreducible polynomials over finite fields have distinct
roots. Hence, any algebraic extension ofa finite field is separable.

3. We know that, if K = F(x) be the field of rational functions in one
variable x over afield F of characteristic 3. Then the polynomial y* —x
in the polynomial ring K[y]over K is irreducible over K. Also, y*—x has
all its roots equal, each being « , say. Hence, K(«) is not a separable

extension of K.
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Definition 5.4 : A field F is called perfect if each of its algebraic extensions is

separable.

Note.

1. Fields of characteristic zero and finite fields are perfect fields.

2. Infinite fields of characteristic p > Ohave inseparable extensions. Thus,

such fields are not, in general, perfect.

Definition 5.5 : An extension E of a field F is called a simple extension if

E =F(«) for some a €E.

Theorem 5.1 : IfE is a finite separable extension of a field F , then Eis a simple
extension of F .
Proof : If F is a finite field, then by Corollary 4.7, each finite extension E of F is
simple.
So suppose now that F is infinite.

Since E is a finite extension of F, E=F(a,...a,), where a € E,1<i<n,
are algebraic over F.

We first show that if E=F(a, ), then there exists an element &  E such
that E = F(6). Then the result will follow by induction.

Let p(x)and q(x) be the minimal polynomials for « and f, respectively,
over F . Let the roots of p(X) be a=«,,...,a,, and let those of q(X) be
B= P B

Since E is a separable extension of F, all ¢;,1<i<n,,andall B;,1<j<m,,

are distinct.
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Since F is infinite, there exists aeF such that a# (e —a)/(8~p;) for
1<i<n,2<j<m,
Then a(f—-p,) # o, —a.S0 af+a = a; +ap, for j=1.
Set =af+a.Then 6—ap; =g forall 1<i<nand 2<j<m.
Define h(x) = p(6—ax) € F(O)[x].
Then h(8) = p(a) =0and h(,) = p(9—apB,) =0 for j=1.
So Bisaroot of h(X) , butno B, j =1is a root of h(x) .
Also, S is aroot of q(x). Regard q(x) € F(O)[X].
Let A(X) € F(8)[x] be the minimal polynomial of S over F(6).
Therefore A(X)|h(x)and A(X)|q(x).
Then any root of A(X)is a root of q(X) as well as a root of h(x).
But the only common root of q(x) and h(x)is £.
Therefore, A(X)=X— /. This implies that S F(6).
Then since 8=af+a, acF(0).
Hence, F(a,B)=F(6).

Theorem 5.2 : Let E be a finite extension of a field F . Then the following are

equivalent.

(@) E=F(a)forsome a €E.

(b) There are only a finite number of intermediate fields between F and E.
Proof : (a) = (b) Let f(x) € F[X] be the minimal polynomial of & over F .
Let K be a subfield of E containing F, and let g(x) be the minimal polynomial of
a over K.

Then since g(X)isin K[x],and f(a)=0, g(X)| f(x).
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If K" is the subfield of K containing F and the coefficients of the polynomial g(x),
then g(x) € K'[x], being irreducible over K, is also irreducible over K.

Also, E =F(a)implies K(a)=K'(a) =E.

Thus, [E: K]=degree of g(x)=[E:KT.

Hence, K =K".

Consider the mapping o from the family of intermediate fields to the
divisors of f(x)in E[X], given by o(K)=g(X), the minimal polynomial of « over
K.

Theno is 1-1. Since there are only finitely many divisors of f(x), the family

of intermediate fields between F and E is also finite.

(b)= (a) If F is a finite field, then E is a finite field, and the result follows from
Corollary 4.7.

So assume F is infinite. We first prove that for any two elements «, € E there is
an element y € E such that F(a, 8)=F(y).

For each a e F consider the linear combination y, =a+afof a and S.

The fields F(y,) are intermediate fields between F and E .

Because there are only a finite number of intermediate fields, there exist
a,beF,a=b,suchthat F(y,)=F(y,).

But then y,,7, € F(»,) implies y,,7, € F(3,).

Thus, (a—b)g eF(y,),and, hence, fF(y,).

Theny, =a+bp e F(y,)implies a e F(y,).

Therefore, F(a, B) < F(y,) .

Since F(y,) < F(a, B), our assertion is proved.
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We now choose u € E such that [F(u): F]is as large as possible.

Then we claim E = F(u). Otherwise let xe E, X ¢ F(u).

We can find an element teE such that F(t) contains both u and x , with
Ft) 2F(u).

This contradicts the choice of u. Hence, E=F(u).

Example 5.1 : Let E be an extension of a field F , and let « € E be algebraic over

F.Then « is separable over F if F(«)is a separable extension of F .
Solution : Let € F(a). We show that £ is separable over F .

We have F c F(f) c F(a).

Let L be an algebraically closed field, and let o : F — L be an embedding.

Suppose p,(x) is the minimal polynomial of S over F that has m distinct roots.

Then by Lemma, there are m distinct extensions, say oy,...,0,, of o to
F(B).

Further, let p,(x)be the minimal polynomial of « over F(3), and suppose
p,(x)has n distinct roots.

Then again by the same lemma, for each o,,1<i<m,there are exactly n

extensions o, 1< j<n,,to F(a).

i
It is clear that the set of mn embeddings (aij),lg j<n,1<i<m, are the
only possible embeddings from F(a)to L thatextend o:F — L.
Now let p,(x) be the minimal polynomial of & over F . Then
[F(a):F] = degree p,(x).
= number of distinct roots of p,(x), since « is separable over F .

= number of extensions of the embedding o to F(«).
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Moreover, « is separable over F implies « is separable over F(f), and,
hence, by the same reasoning as in the previous paragraph,
[F():F(B)] = degree p,(x).
= number of distinct roots of p,(x).
= number of extensions of each o, to F(c).
=n.
Also,
[F(B):F] =degree p,(x).
= number of distinct roots of p,(x).
= number of extensions of the embedding & to F(f).

=m.

Thus, mn=[F(a):F]=[F(a): F(B)][F(B): F]=n-degree p,(x).
Hence, m = degree p,(X)= the number of distinct roots of p,(x). Thus,

p,(x) is a separable polynomial. Hence, S is separable over F .

Example 5.2 : Let F < E < K be three fields such that E is a finite separable
extension of F , and K is a finite separable extension of E. Then K is a finite
separable extension of F .

Solution : From Theorem 5.1 we know that E=F(a), K=E(f) for some

acE,feK. Let yeF(a,f), 7 ¢F(a).
Then F(a)is a finite separable extension of F, and y is a separable element over
F(a).

We prove that y is separable over F .
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Let
p,(x) = the minimal polynomial of & over F with m,
p, (x) = the minimal polynomial of y over F(a)with degree n,
p,(x) = the minimal polynomial of y over F with degree s,

p,(x) = the minimal polynomial of & over F(y) with degree t.

Let o: F — L be an embedding of F into an algebraically closed field L.

Since « is separable over F, there are exactly m extensions (o;),1<i<m,, of o
to F(a)

Also, since yis separable over F(«), again by Lemma , there are exactly n

extensions of each o, to F(a,7).
Let us these n extensions o,,...,o;,, wherel<i<m.

Therefore, there are precisely mn extensions of o:F—>L to
o;:F(a,y) > L, 1<i<m1<j<n

By considering extensions of o:F —Lto F(a,7) via F(y), we obtain
similarly that there are precisely st extensions to F(a,y). Hence, mn=st.

Suppose y is not separable over F . Then the number of extensions of o to
F(y) is <s.

This implies that the number of extensions of oto F(a,y)is <st=mn, a

contradiction. Hence, y is separable over F .

Example 5.3 : If K is a field of characteristic p=0, then K is perfect if and only

if KP =K (i.e., if and only if every element of K has p" rootin K).

Solution : Suppose K is perfect. Let a be any element of K.
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We claim that there is an element b in K such that a=hb".

We must show that the polynomial f (x) =x” —a hasarootin K.

Let b be aroot of f(X)in some extension field of K.

Since K is perfect, b is separable over K =K(a) =K(b").

Let p(X) be the minimal polynomial for b over K.

Sinceb is aroot of X" —b” in K[x], p(x) is a factor of x” —b” in K[Xx].

In K[x] we have the decomposition x” —b” = (x—b)".

So p(x)is a power of x—b. But b is separable over K, so p(x)has no multiple
roots. Hence, p(x)=x-b.

Because p(X) € K[X], it follows that be K .

Conversely, suppose that every element of K is the p" power of an element
of K. To show that K is perfect, we show that every irreducible polynomial of

K[x] has distinct roots.
Let p(X) € K[x]be irreducible.
Now if roots of p(X)are not distinct.
Then by Corollary 3.4, p(x) has the form a,+ax”+a,x*"+...+ax"™ ,
where a,,...,a, K.
By hypothesis there exist elements Db,,...,b,e K such that

a=b” (i=021...,n) . Then, since K has characteristic p ,
p(x) = (b0 +blx+...+bnx“)p, which is a contradiction.

Thus every irreducible polynomial of K[x] has distinct roots. Hence, K is

perfect.
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EXERCISE :

1.
2.

10.

Determine the splitting field of x*+x*+1 over Q.

Find the degree of splitting field over Q of x*+2.

If F :Q(\/EQ/E) find [F :@] and prove that F is not normal over Q.

Verify that (f(x)+g(x))'= f'(x)+g'(x).
Construct fields with 4, 8, 9 and 16 elements.
Prove that a finite extension of a finite field is separable.

Prove that every extension of QQ is separable.

Show that the field generated by a root of x*—x—1over Q is not normal over
Q.

Prove that every finite extension of a finite field is normal.

Prove that in any finite field any element can be written as the sum of two

squares
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UNIT - 111

GALIOS THEORY

UNIT I : AUTOMORPHISM GROUPS AND FIXED FIELDS :
Recall :

)] Any finite separable extension £ of a field F'is simple i.e. £ = F(g) forsome g e E .

(1) For any field E, the set Aut (E) of allautomorphisms of £ forms a group under the
composition of mappings.

Note : Throughout this section, we confine ourselves to finite separable extension and their
groups of automorphisms.

Definition 1.1 : Let /" be a field and £ be an extension of . An automorphism ¢ of E is
called an F-automorphismif ¢ fixes all elements of .

Then G(E/F)={c € Aut(E)|c(a)=aVaeF} is called the group of F-
automorphisms of £. Note that G(E/ F) is a subgroup of Aut (E).

Theorem 1.1 : Let £ be a finite separable extension of a field . Then
|G(E/F)|<[E:F]
Proof : Any finite separable extension £ of F'is a simple extension of .

i.e. E=F(q) forsome gecE.

Let p(x) bethe minimal polynomial ofa over ' and deg (p(x)) =n . Then,

[E:F]=[F(a): E]=deg(p(x))=n
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Now, we know that if 5: F — [ be an embedding of F' into an algebraically
closed field L. Then o can be extended to an embedding 5 : E—— L and the nmber of

such extensions is equal to the number of distinct roots of the minimal polynomial p(x) of a

overF.

Since the extension £ of F'is separable, the minimal polynomial p(x) ofa over Fhas

distinct rootsin L.

Here consider 5 : F — [, to be the identity map of F. Then ¢ can be extended
to an embedding 5 : E—— L (17| is the identity map of F) and the number of such

extensions which fix all elements of F'is equal to the degree of p(x).

~|G(E/F) <n=[E:F]

EXAMPLES :
1)  Consider G=G(C/R)
Let a,becR and g e G
Then 5 (a+ib) =o(a)+o(i)o(b)

=a+o(i)b (since o fixesallelements of R )
Also, _1=g(-1)= G(iz) =o(i)-o(i)
ie. 5(i)* =-1
=o(i)==i
Hence, g (a+ib)=a+o(i)b=a+ib
Thus, G contains only two R -automorphisms of (.
Hence, |G| =2.

Therefore, G is a cyclic group (since 2 is a prime)
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2)  Consider 6= G(Q(32)/0)
[Q(32): Q] = 3since 53— is the minimal polynomial for 3/ over Q.
And {1, 32, 3/4} isabasis of Q(3/2) over Q.
Let a,b,ceQ and 5 e G
Then o (a+32b+Y4c) =0 (a)+o(b)(¥2)+0(c)(Y4)
=a+bo(32)+co(34)

Also, (6(32)) =0 (32) =0 (2)=2

- o(3/2) isacube root of 2.

~o(2)=32. 20 or Y0 Where o =1.
But 1.

Since 5(32) < Q(¥2) < R o(¥2) isreal
. The only possibility is & (3/2) = 3/2 -

.'.G(a+%/§b+%/Zc)=a+§/§b+Q/Zc

Hence, o is the identity and G is the trivial group.

Definition 1.2 : Let £ be any field and let H be a subgroup of the group of automorphisms of
E,Aut (E). Thentheset £, ={ae E|c(a)=a Vo e H} is called the fixed field of H.

Note that £, is asubfield of E.
Suppose a,b e Ey; .
Then 5 (a)=a and 5(b)=b, Vo e H .

nola-b)=c(a)-oc(b)
=a—b VoeH
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Now suppose a,b(#0) e E,,
Then 6 (ab™!) =0 (a)-o(b) "
—ab”! VoeH
=ab '€ E,
. Ey isasubfield of E.
Also note that if £ is a field extension of Fand /7 < G(E/ F) then,
FcE,cCcE

Theorem 1.2 : (Dedekind theorem) : Let /" and E be fields, and let o, o5, ...., o, be

n

distinct embeddings of F'into E. Suppose that, for
n
a, a,,...,a, € E, Zl“aloi(a)ZO YaeF
i-
Then, ;=0 foralli=1,2,....,n
(i.e. distinct embeddings of F'into E are linearly independent over E)
Proof : Suppose, if possible that there exist a;, a,,...,a, € E not all zero, such that,

aio,(a)+a,0,(a)+...+a,0,(a)=0 YaecE

Then we can find such a relation having a few non-zero coefficients as possible. On
renumering, we can assume that this relation is

bo,(a)+bo,(a)+...+b,0,(a)=0 YaeE ... (1)
Clearly, m>1

Otherwise if m = 1 then ho,(a) =0 VaeE

In particular if a = 1 then b, (1) = b, = 0 which is contradiction since all b, ’s are

non-zero.
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Therefore, m > 1
Now, o, # o, and hence there exists an element ¢ e £ suchthat 5,(c) = o, (c).

The equation (1) holds for all 4 ¢ E and, in particular for ca Vg e E .
~.bo,(ca) +b,o,(ca)+...+b,0,(ca)=0
and hence,

bo,(c)o,(a)+b,0,(c)o,(a) +....+b,0,(c)o, (a) =0 ... 2)
Multiplying eqn. (1) by o, (c) and substracting it from eqn. (2) we get,
bz(az(c)—al (c))az(a)+ ....... +bm(0m(c)—a1 (c))am(a) =0 VYacE
This is a contradiction to the choice ofequation (1), since

b, (Gm (¢)-o, (c)) #0

Therefore, g; =0 foralli=1,2,.....n

Theorem 1.3 : Let H be a finite subgroup of the group of automorphisms of a field £. Then,
[E:E,]=1H]
Proof: Let H = {e =Gp oo gn} and let
[E E H] =m
Suppose m <n.
Let {a, ay,.....,a,,} be abasis of E over E, .
Consider the system of m homogeneous linear equations
gl(aj)x1+g2(aj)x2+ ...... +gn(aj)xn=0
j=1,2,...,m,in ‘n’unknowns x;, x,, ...., X,,.
Because n > m, this system has a nontrivial solution.

So there exist y;, y,,...., ¥, € £, notall zero, such that
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gl(aj)yl+g2(aj)y2+ ...... +gn(aj)yn=O
Vi=12,...m
Let 4 e E be any element. Then,
a=oya,+aya, +....+a,a, where a,...,a

mEEy.

~gl@n+g,(@y,+..t+g,(@)y,

m m m
:gl(zaiai]yl+g2(zaiai]y2+ ------ +gn(zaiai]yn

i=1 i=1

(5) is a system equations like (3) but with fewer terms, which is contradiction unless

all the coefficients yig(yl)—ylg(yi) =0VvVi=12,..,r
Ifthis happens i.e. yig(yl) —ylg(y,.) =0
Then yy, "' =g (v ') VeeH.

Thus, y,y, " € Ey

:>g1(a1)zl+ ...... +g1(ar)zr:O (- #0)
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Since z; € £y, gl(zi):zl. Vi=1,2,...r

Szt ayzy t . +a,z, =

But a,, a,, ...., a, arelinearly independent over £, .

y, 20 YVi=1,2,..,r.

Hence, we have [E: E;|=n=|H|.

Theorem 1.4 : Let £ be a finite separable extension of a field , let H < G(E/F).
Then G(E/Ey)=H and [E:E,|=|G(E/Ey)|

Proof:If o c H then 5(q)=a VackEy,

noeG(E/Ey)

ZH<G(E/Ey) L )
But from the theorem 1.3, we have

\Hl=[E:E,] . )
Also by the theorem 1.1, we have

G(E/Ey)\<[E:E,) L. 3)

From(1), (2) and (3) we get |H|<|G(E/ E, )| <[E: E; ] =|H]

H=G(E/Ey) and [E: Ey] Z‘G(E/EH)‘
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Theorem 1.5 : Let £ be a finite separable extension of a field . Then the following are
equivalent

)] E is anormal extension of F.

(i) Fis the fixed field of G(E/ F).

() [E:F1=|G(E/F).

Proof : Since E is a finite separable extension of F, £ = F () forsome ¢ € E .
Let p(x) be the minimal polynomial of @ over F, and let its degree be n.
Then[E:F]=[F(a):F]=n.

Let E, be the fixed fieldof G(E/ F) i.e.

E,={seE|o(s)=sVoeG(E/F)}

Then F' < E, < E and by the theorem 1.4,
[E:E,)=|G(E/F)

Claim : (i) = (i)

As we know the number of extensions of the inclusion mapping gy to the

embedding £ (g )——» F is equal to the number of distinct roots of p(x).

Since E 1s separable extension of F, ¢ ¢ E 1s a separable element i.e. its minimal

polynomial p(x) over F has distinct roots.
So the number of distinct roots of p(x) is equalto n(=deg p(x)).
Also, E = F(¢) is anormal extension of F. So E contains all the roots of p(x).
Hence, any embedding & : F(¢) —> F shallmap F(¢g) onto F(q).
Hence, any member of G (E / F) isanextensionoftheinclusionmapping p_ y F.
~.|G(E/ F)| =number of distinct roots of p(x)=n.

~[E:Fl=n=|G(E/F)|=[E:E
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and [E:F]=[E:E)|[E,: F]

=n=n[E: F]

= [E,:F]=1

= Ey=F ie.fixed fieldof G(E/F) is F.
Claim : (i) = (i)

Let G(E/F)={o, =identity,0,,.....,0, }

n

Consider the polynomial £ (x) =(x—-oy(a))(x-0,(@))....(x—0,(a)).

Now, each o, € G(E / F) induces anatural homomorphism g: E[X]— S E[X]
as,
G:(a0+a1x+ ...... +amxm)=0i(a0)+0i(al)x+ ....... +0,(a,,)x

So o; (f(0))=(x~(0,0)(2))(x~(0,0,)()).....(x~(05,) ()

But since 0,0/, 0,0,, ....., 0,0, aredistinct members of G(E/F) and are onlya

permutationof o, 05, ...., 0,.
O'I*(f(x)):f(x) Vi=1,2,...n
Now by expanding £ (x) we have,

() =x"—ex" +ex" +(-1D"¢c
where ¢, e E

Now, o-;(f(x)) = f(x) implies
Gi(cj)zcj Vi,j=1,2,....n
= ¢; isinthe fixed field of G(E/ F), whichis F.

:>cjeF Vji=12,...n




= f(x)eFlx]
Also, all the roots of f(x) whichare 5,(t), 5,(a), o, (a) lieinE.

Now, E = F(«) and « is one of the roots of f(x), E is the splitting field of
f(x)eFlx].

— F is anormal extension of F. Hence the proof.

Claim : (i) = (iii)
Fis the fixed field of G(E/ F).
Hence, by the theorem 1.4.
[E:Fl=|G(E/F)|

Claim : (iii) = (ii)
Let E, be the fixed of G(E/ F) then,
FcE,cE
Also, [E: Ey|=|G(E/F)|=[E:F]

= E,=F ie. Fisthefixedfieldof G(E/F).

EXERCISES :
1. Let f(x)e F[x] hasrdistinct roots in its splitting field £ over F. Then prove that
G(E/ F) isisomorphic to a subgroup of the symmetric group S, of degree r.

Solution : Let @, a,, ....., a, beall the distinct roots of £ (x) inits splitting £ over F.
Forany ¢ e G(E/F), O'(ai) isagainaroot of f(x) inE.
Also, o (a;)# G(aj) for i # j since ¢ is F-automorphism.

Thus, o (a,), 0(a,), ..., o(a,) isa permutation of a;, a,, ....., a, and let us

denote this permutation by ¢, .
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Therefore, ¢, €S, foreach 6 c G(E/ F).
Define ¢: G(E/F)——S, by

$(c)=¢,
Claim : ¢ is well-defined.
Let 0,0, € G(E/F) suchthat

s @, S

= 5, = 95,

= ¢(01)=¢(0,)

Hence, ¢ is well-defined.

Claim : ¢ isa group homomorphism
Let o,;n e G(E/F),
d(oon)(a)=(c°n)(q;)

=5 (n(a,))=(¢(c)op(n))(q)

=(88)(@)  Vi=1,2,..r

= ¢(oon)=¢,°9,
Hence, ¢ is a group homomorphism.
Now, ker¢ ={c e G(E/F)|$(c) =identity in S, }

If o e ker ¢ then ¢ (o) =Identityin S, (1d).
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=o(4)=q VI<i<r

— o = Id since E is the splitting field of f (x) over F, E = F(al,az,....,ar)
1.e. E'is generated by g, a,, ...., a, over F.

and o fixes all the generators of £ over F.

Hence, it should fix all the elements of E.

= ker¢ =1{1d}

= ¢ is an injective group-homomorphism.
~.G(E/F)~¢(G(E/F)) which is a subgroup of S, .

2) The group G(Q(ar)/Q), where o5 =1 and ¢ # 1, is isomorphic to the cyclic group
oforder 4.

Solution : ;5 -1
=a’-1=0
:>(a—1)(a4+a3+a2+(x +1):0

Since o 21 = a*+a’ +a’ +a+1=0
Hence, o is aroot ofa polynomial
p(x)=x4+x3+x2+x+1 e Q[x]

p(x) is acyclotomic polynomial over Q.

- p(x) isirreducible over Q.
~[Q(a):Q]=degp(x)=4.

Also, the roots of 5 _1 are 1, o, 0>, a” -

So Q(er) is the splitting field of 5 _1 over Q.

Hence, Q(«) is anormal extension of Q.
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~|6(Q(a)/Q) =[Q(a):Q]=4
. . 2 3
Abasis of Q(a) over Q is {l,a,a o }
. Any element of Q(¢) looks like
2 3 a E@
ay+ a0 +a,a”+aa’, a
The four Q -automorphismof Q(¢) areas follows :
) 2 3 2 3
O )+ a0 +a,a” +a,a” — ag+a,a +aa” +ayo
) 2 3 2 4 6
O, Ay + a0+ a0 + a0 —> ag+a” +a,a” + aye
_ 2 4
=a,+ a0 +a,d” +aa
) 2 3 3 6 9
031 a4y +aA +a,a" +a,0” = ag+ a2’ +a,a +aa
_ 3 4
=a,+ a0’ +a,a + a0
) 2 3 4 8 12
04 ay+ a0 +at” +a0” —> ag+aa” +a,a” + ao
and order of o, and o3 in G(Q(a)/Q) is 4.

~.G(Q(a)/Q) isacyclic group of order 4.

3) Let £ = Q(W,%/E) ,where 1,3 — 1 but y % | and let /7 be the subgroup of G(E/ Q)
givenby H ={Id,c}where . p___ g isdefinedby 5(a)=a VacQ, g(w)=w?
and 5 (3/2) = 32w . Then find the fixed field £, .

Solution : Let . — 32
Then cis areal no. suchthat 3 — .

We are given that £ = Q(w,c) and H ={Id,c}
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where o is defined by o /Q =identityon Q.
and 5 (w)=w? and 5 (¢) = cn? -
Note that Q = Q(c) c Q(c,w)=E.
{1,e,c?} isabasis of Q(c) over Q.
and {1,w} is a basis of Q(w,c)over Q(c).
. The basis of E over Q is {1,c,cz, w,cew, ¢ }
Consider g € E . Then,
A =Ty +HCH+ 1+ RWH Few+ 1w
where 7,€ Q.
Now, 6 (a) =1y +rew’ + 1w+ W’ + rew+ re’
:ro+rlc(—l—w)+r2c2w+r3(—l—w)+r4cw+r502
(Since |+ w+u? =0=w? =—1-w)
~ola) :(ro—r3)+(—r1)c+r502+(—r3)w+(—r1 +1y)ew+ rctw
~ola)=a
=Sy —l=1y, K=K, =I5, E=—T;, h=—l+r, and r;=r,.
=>nrn=0,/r=0,n=r.
L= Ty I rew+ et W
=1y + e (14 w) + ryew
Sa = Fy Frew— 1/2((:w)2 eQ(ew)
~EyC Q(ew)

On the other hand if ¢ € Q(cw).
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Then 4 =71y +rew+ ;/2((;w)2 forsome € Q and 5 (a)=a-
Hence, ac E,; = Q(ew) C E,, .

Thus, thefixed field E,; of Hisequalto Q(cw) = Q(3/2w) -

PROBLEMS :

1. Let f = Q(%/E, w) be an extension of a field Q, where 3 =1, w=1.

For each of the following subgroups S; ofthe group G(£/Q) find Ej;, .

2 > ow

— h O, .
@@  §,={ld,o,} where 92 {w—)wz

> ow

(b)  S,={ld,o;} where ffai{W% I

(©) Sy = {Id, O 0'5} where

2 53w 2 = 3ow?
Oyt and Os-

w—>w w—>w

2. Let £ be the spliting field of 4 _ 2 ;1 over the field of rationals Q. Then determine
the group G(E/Q).
3. Let g #1 and 45 = 1. Then prove that Q(g) is anormal extension of @ and that

G (@ (a)/ Q) is isomorphic to Z 4, the group of integers modulo 4.
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UNIT II : FUNDAMENTAL THEOREM OF GALOIS THEORY

Definition 2.1: Let f(x) e F[x] be apolynomial, and let X be its splitting field over F.

Then the group G (K /F) of F-automorphisms of X is called the Galois group of 7 (x)
over F.

Definition 2.2 : A finite, normal and separable extension £ of a field /' is called a Galois
extension of F.

Example : If £ (x)e F[x] is a polynomial over a field F of characteristic zero, then its
splitting field £ over F'is a Galois extension of F.

Theorem 2.1 (Fundamental Theorem of Galois Theory)

Let £ be a Galois extension of F. Let K be any subfield of £ containing F
(i.e. Ec Kc F). Then the mapping x — 3G(E/K) sets up a one-to-one
correspondence from the set of subfields of £ containing F'to the subgroups of G (£ / F) such
that

@) K = EG(E/K)

(ii) For any subgroup Hof G(E/F), H=G(E/Ey).

) [E£:K]=|G(E/K)|,[K:F]=indexof G(E/K)in G(E/F).

(iv) K is a normal extension of F if and only if G(E/K) is a normal subgroup of

G(E/F).

v) If K is a normal extension of F'then G(K /F)~G(E/F)/G(E/K)-
Proof:

)] E is anormal extension of K.

. The fixed field of G(E/K) is K.

ie. K=Eg k)

(93)




(1) As E is Galois extension of F,, this extension is a finite separable extension of F.
Now, H <G(E/F).Thenclearly H = G(E/Ey).

(11) As E'i1s anormal extension of F,and £ 5 K o F then £ is also a normal extension
of K.

.. Wehave [E:F]=|G(E/F) and [E:K]=|G(E/K)

Thus, [E: F]1=[E: K][K : F] gives
IG(E/F)|=|G(E/K)|-[K : F]

= [K:F]=indexof G(E/K)in G(E/F).

(v)  Let g beanalgebraic closure of F containing £. As we know if K is a normal of F'if

and only if each embedding . x 7 , which keeps each element of /" fixed, maps K
onto K.

Claim : K is a normal extension of F'ifand only ifforeach s e G(E/ F), o (K) = K - IfK
is a normal extensionof Fand o ¢ G(E/F) then o restricted to K is an embedding of K

into £ and hence into . Therefore, 5 (K) = K -
Conversely, let 5. g 7 be an embedding that keeps each element of ¥ fixed.

..o canbe extended to 5. g . Butthen 5*(fg)=E, because E is a

normal extension of F. Thus, g* e G(E/ F) -

As 6*%(K) =K, o(K) = K - Therefore, K 1s a normal extension of F. This proves
our claim.

Therefore, K is a normal extension of F if and only if for all & ¢ G(E/F) and

keK,o(k)ekK.
Thenforall r e G(E/K), T(G(k))ZG(k).
= (c70)k)=k VkeK.

Hence, 67 't6 e G(E/K)-
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V)

= G(E/K)<G(E/F)
Conversely, suppose G(E/K)< G(E/F).
Then 7 (6 (k) =0 (k) VreG(E/K).-

=olk)ek.
Therefore, K is anormal extension of F.

Let K be a normal extension of F.
We know that ¢ e G(E/ F) then ¢ (k) =k -
Thus, o induces an automorphism g * of K definedby o *(k) =k, ke K -
=o*eG(K/F)
Conider the mapping f: G(E/F)—— G(K / F) defined by,
flo)=0c*
Let 6,0, € G(E/F) . Then,
(o,*0,*)(k) zal*(az*(k)) zal*(az(k))
=(0y0,) (k)
Therefore, (0\0,)* = 0, * o, *. Thus, fis ahomomorphimof G(E/ F).
ker f ={c e G(E/F)|c*= identity}
But, g* =identity ifandonlyif ¢ *(k) =k Vke K -
Thatis 6 (k)=k VkeK .30 6 eG(E/K).

Hence, ker f =G(E/K).

Then by the fundamental theorem of homomorphisms,

G(E/F)

m:lmch(K/F)_
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From (iii), we get

‘G(E/F) _[k:F]

GE/K)|
Since, K is a normal extenion over F,

IG(K/F)|=[K :F]

G(E/F)

"‘G(E/K)

<|m f|<|G(K /F)|=[K : F]

G(E/F)

..G(E/K)zG(K/F)

EXAMPLES :

1. The Galois group of x* —2 e Q[x] is the group of symmetries of the triangle i.e. Sj.

Solution : Let £ be the splitting field of 3 _2 over Q.

Hence, F = Q(%/E, w) , where w is the root of the irreducible polynomial 2 4 41

in Q(32).
Hence, E :Q(%/E, w)

2 Basis is {1, w}
o(¥2)
}3 Basis is {1,3/2,3/4}
Q

Hence, [E:Q]=6

Also, 3 -2 :(x—i/z)(x—é/zw)(x—%/zwz)
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Since, E is a normal extension of Q and [E: Q] =6,

G(E/Q)|=6.

These six automorphisms of £ are determined by the manner in which they transform

the rootsof 3 _ 9.

The root 3/7 canhave only three images namely 3/2,y and 3/2,,2.

And the root w can have only two images, namely w and w2.

The Galois group G(E/Q) of x3 2 over Q is given by the table, where

G(E/Q) = {Id, 0',0'2,1, 0'1,0'21}

Id o o2 T oT ot
25 25| w2 wR/2 2 w2 | wR2
w w w w w2 w2 w2

Sy ={(1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}
Define an iomorphism from G(E/Q) to S; as
o (1,2,3)and 7 (1,2)

Thus, G(E/Q) = S;.

2. Let F'be field of characteristic -« 9.

Let x?> — 4 e[x] be an irreducible ploynomial over F. Then its Galois group is of
order 2.

Solution : If ¢ isaroot of 2 _, then —¢ is the other root.
Also, ¢ # —qa since Ch F = 2.

Thus, 2 _, is separable over F.
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Hence, the splitting field F(¢) of y2 —, over Fis a finite, separable and normal
extension of degree 2 over F.

~|G(Fla)/F)|=2

3. The Galois group of x* —2 e Q[x] is the octic group (i.e. group of symmetries of a
square, D).

Solution : *_ 7 isirreducible over Q anditsrootsare 42, 42, —i42. —42.
~. Spliting field of x*_2 over Q is Q(%/2,).

Now, 2 41 isirreducible polynomial over Q(i‘/i ) .

\S)

Basis is {1,i}

}4 Basis is {4/2,1,%/4, 48}

-, Basis for Q(4/2,)over Q is {1,7,4/2,4/2i, 44, 44, 43, 43}

Let B e E=Q(2,i)

Then f = ay+ a2 + a, 34 + adf8 + a,i+as (i ¥2) + a, (i 44) + a, (i 4B)
Soif o € G(E/Q) then
o(B)=ao+ac(¥2)+a0(42) +a0 (42) + a0 (i)

+a56(i)6(i‘/§)+a60(i)0(i‘/§)2+a76(i)0(<‘/§)3
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Therefore, o is determined by & (j) and & (4/2).

But o (j) mustbeior—iand &(4/2) mustbe 42, 42;, —42i, 42 .

Since £ over QQ 1s Galois extension,

G(E/Q)|=[E:Q]=8

Let G(E/Q)={0},05.....,04} Where

alzi‘/z—ﬁ‘/z 02:1‘/5—%(‘/5
I—>i I—>i

@:i‘/i—)—‘\‘/z 04:1‘/5—>—ii‘/§
I—>i I—>i

651%—>% 06:1‘/5—>ii‘/§
I—>i I—>i

afi‘/i—)—i‘/z 08:‘\‘/5—>—ii‘/§
I—>i I—>i

Let al:i‘/z, azzz’i‘ﬁ, a3:—‘\‘/§, a4:—ii‘/§.
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Then the elements of G(E/Q) permute the roots a;, a,, a3, a, of x*_2 as

follows :
o, :0° rotation;; o : reflectionabout d| ;
o, :90° rotation ; o, : reflection about /;;
05 :180° rotation ; o, : reflection about d, ;
o, :270° rotation ; oy : reflectionabout /, .
4. Let 1 be a positive integer, and let F'be a field containing all the n'™ roots ofunity. Let

Kbe the splitting field of " — 5 « F[x]. Then K = F (), where o isanyrootof 7 _ 4,
and the Galois group G (K / F) is abelian.

Solution : If |, — ,27//7 and ¢ isanrootof y _ ,,then ¢, aw, ....., g/} are all the

roots of " _ 4. Thus, the splitting field of y _ , over Fis K = F(¢) -
Let 0,0, G(K/F).
Because ¢ isroot of " _,, o,(a) and o, (a) arealso roots of " _ .
~oa)=aw and o,(a)=aw’
For 0<i, j<n—-1.Then
(010,)(a)=0(0,(a))=0, (aw')
=o,(a)a, (W)
:O'l(Ol)Wi Cow'eF)
— it
Similarly, (0,07)(a) = 0, (01 (@) = aw'*/ .
Hence, 0,0, = 0,0.

Thus, G(K / F) is abelian.
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Fundamental Theorem of Algebra

Theorem 2.2 : The field ¢ has no extension of degree 2.

Proof : Let K be a field extension of ¢ suchthat [K :C]=2.
Then g e K st. K=C(a)-
Let p(x) be the minimal polynomial ofa over C.
Then degree of p(x) must be zero.

Let p(x):a+2bx+x2 where a,be@.

Now, p(x):(x+b— bz—a)(x+b+\/b2—a)
Where p +/p? g e C-

This is contradiction, since p(x) isirreducible over C .

Therefore, the field ¢ has no extension ofdegree 2.

Theorem 2.3 : Let f(x) e R[x] be of odd degree.
Then £ (x) hasarealroot.
Proof : Without loss of generality, we can assume that f (x) isa monic polynomial.
Suppose f(x)=ay+ax+....4a, x"" +x"
wherenisodd, g, eR.
Let s:l+|a0|+|al|+ ...... +|an_l|

Then,

a|<s=1 vo<i<n-1.

<(s=D(+s+..+5"")

. n-1
L ‘ao +as+......ta, s
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Therefore, 7(s)>0.Also

f=s)=ay—as+a,s+... +(-1)""a,
= Gy~ Ay + st —......— 5" (- nisodd)
<s"-1-5"=-1<0

Therefore, f(—s) <0< f(s) and s e R.

By the intermediate value theorem in analysis, 3 arealnumber as.t. f(a)=0.

Thus, aisarootof f(x) in R.

Theorem 2.3 : Every polynomial f(x) e C[x] factors into linear factorsin C[x].
Proof: Let f(x)=ay+ax+...+ax",n>0
and a, # 0 be apolynomialin C[x].
Put g(x)=(x2+1) £(x) 7 (x)
:(x2+1)(a0+alx+ ...... +anx”)(c70+c71x+ ...... +c7x")
Then, g(x) e R[x].
Let E be the splitting field of g(x) over R .

Then R — C c E sinceiisaroot of g(x).
We provethat g — .

First observe that [C:R] =2 and isadivisor of [ £ : R], since
[E:R]=[E:C][C:R]=2-[E:C]

-.[E : R] isan even positive integer.

Suppose that [ £ : R]=2"¢, where m,q e Z* ang is odd.

Let G be the Galois group G(E/R) - Since E is a normal extension of [ .
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IGl=|G(E/R)|=[E:R]=2"¢
By the Sylow theorem in group theory,
3 asubgroup H of G suchthat |f7| = 2™ (i.e. Hisa 2-Sylow subgroup of G).

Let E}; be the fixed field of H.

Then Rc E;; c E and

2"q =[E:Rl=[E:E,]|[E, :R]=|HI[E, :R]

=2"[E; :R]

=[E, :R]=¢.

Also, since E; 1s a finite separable extension of R , £, 1sa simple extension of R
and hence E,, =R (/) forsome f € Ej;.

Let g(x) =bhy+bx+.....+x? € R[x] be the minimal polynomial of bover R .

Note that degg(x) = ¢ =[R(b): R]=[E; : R].

Now, deg ¢(x) isodd, therefore ¢(x) has areal root.

ie. ¢g(r)=0 forsomerealno.r.

= (x—r) isafactor of g(x) in R[x].

But ¢(x) isanirreducible polynomial over R , since g (x) is the minimal polynomial

ofbover R.
=degg(x)=1=¢

ie. [Ey:R]=1=E,; =R and [E.R] = 2"

Claim: m=1
Suppose, if possible m > 1.

Then [£ : C] = 2" and hence |G(E/C)|=2"".
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Again, by the Sylow theorem, G ( £/C) has a subgroup S of order pm-2.
If E 1s the fixed field of S then
[E:Eg]=IS|=2""

Therefore, [ Eg: C]=2,since [E:C]=2"".
This is a contradiction to the fact that ¢ has no extension of degree 2.

Therefore, m=1and [E:R]=2.
—[E:C]=1andhence g = C.

Thus,  is the splitting field of g (x).

Thus, ¢ contains all the roots of g (x) and hence of £ (x).

Thus, f(x) completely factors into linear factorsin C[x].

EXERCISE :
1. Let £ = Q(+/3,4/5). then find the Galois group G (E/Q).

2. Let a be a real number such that Q(q) is a normal extension of Q for which

[Q(a):Q]=2" where ;> 0.

Prove that there are fields E,=Qc E,c E,c....c E, =Q(a) such that

[Ei+13Ei]:2 foreach 1 <i<m.
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UNIT IITI : CYCLOTOMIC POLYNOMIALS AND CYCLIC
EXTENSIONS

Roots of Unity and Cyclotomic Polynomials :
Definition 3.1 : Let £ be a field, and let n be a positive integer. An element ¢ E is called

a primitive n'" root of unity in £ if ;7 — 1 but ,» | for any positive integer m <.

Consider H = {x eClx"= 1}

Note that,

1. H is a group under multiplication.

2. Also, H is a cyclic group generated by any primitive nt! root wofunity.

3. There are exactly ¢(n) primitive nth roots of unity for each positive integer n, where

¢ 1s Euler’s ¢ -function.

cos(2kr) N isin(2kx)
n

4. These primitive n roots of unity are , where k s a positive

integer less than » and relatively prime to 7.

Theorem 3.1 : Let F'be a field, and let U be a finite subgroup of the multiplicative group
F*=F—{0}. Then U is cyclic.

In particular, the roots of x" —1 ¢ F[x] forma cyclic group.

Proof : As U'is a finite subgroup of the multiplicative group F*, which is abelian, hence U is
a finite abelian group.

where ‘S ( pi)‘ =p/ and p,, p;, ....., p, are distinct primes.
Claim : S(pi) iscyclic Vi=1,2,...,k.

LetaeS ( pi) be such that 0(q) is maximal say pi.

Because 0(a)|p/, wehave s, <r;.
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Also, for each x € S(p;), 0(x) = pli < p¥.
t; S;
Therefore, x?' =1= x¥i ' =1.
Hence, Vxe S(p;), 2
Because, the equation xpisi =1 has atmost pfi roots.
Cp' 2 pl = s =1, 8ince pi> pi.

= 0(a)=pj =[S(p,)

and hence S ( pi) is a cyclic group generated by a.
Now, we know that if 4 and B are cyclic groups of orders m and n, respectively with

ged(m,n)=1,then 4 B isagain cyclic.

Here, each S ( pi) is cyclic with cardinality p’*,and p;, p,, ....., p, are distinct

primes.

UzS(pl)XS(Pz)X ...... xS(pk)

Hence, U is cyclic.

Theorem 3.2 : Let F'be a field and let n be a positive integer. Then there exists a primitive nt

root of unity in some extension £ of F'if and only if either char F'=0 or char F / n.

Proof: Let f(x) =x"—1e F|x], and let char F=0 or char F/ n.Then
f(x)= nx"120.Thus, £ (x) hasn distinct roots (inits splitting field £ over F),
and they forma group, say H.

This group H, consisting of the n distinct roots of . _1, is a cyclic group.

Now, if e H isa generator of /, then ,, — 1, but ,, | for any positive integer

m < n. Hence, wis a primitive n™ root of unity in an extension £ of F.
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Conversely, let wbe a primitive n? root of unity in some extension field £ of F.
Then, 1, w, 2, ...., /! are n distinct roots of £ (x)=x"—-1.

Otherewise if 1,/ = 4/ with 0 < j <i<n—1 then y/~/ =1 with 0 <i— j <n which

is contradiction to the fact that wis a primitive n! root of unity.

So f(x) doesn’t possess multiple roots.
= f'(x)=nx""%20

—char F =0 or charF/n.

Definition 3.2 : Let n be a positive integer, and let " be a field of characteristic zero or

characteristic p / n . Thenthe polynomial @, (x)= H(x —w), where the product runs over

w
all the primitive n' roots w of unity (i.e. the primitive n root of ,# _| over F) is called the

n' cyclotomic polynomial.

For example, @, (x)=x—1, ®,(x)=x+1, ®;(x) =x*+x+1,

Os(x)=x"+x +x* +x+1.

Theorem3.3: @, (x)= H(x —w), wprimitive n! root in ¢, is an irreducible polynomial

w

ofdegree ¢(n) in 7[x] (where ¢ is Euler’s ¢ -function).
Proof : Let £ be the splitting field of x” —1 e Q[x].

Hence, the fixed field of G(E/Q)=Q.

t

Hence, any 6 e G(E/Q), o(w) is again a primitive n h root of unity, for any

primitive " root w of unity.

Also, the induced mapping o*: E[x]——s E[x] keeps @, (x) unaltered.

Thus, the coefficient of @, (x) liein the fixed fieldof G(E/Q) ie. @, (x) e Q[x].
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But, @, (x) is afactor of y» _1 and @, (x) is monic implies @, (x) € Z[x].
Also, the number of primitive n™ roots ofunity is ¢ (1) implies @, (x) is of degree

¢(n).

Claim : @, (x) isirreducible over 7.

Let f(x)eZ[x] be anirreducible factor of @, (x) and let w be aroot of f(x),

where wis a primitive # root of unity.

Claim : If p is a prime such that p doesn’t divide n then w” is also aroot of £ (x).

Note that w? is also a primitive n" root of unity.

— P 1s also a generator of the cyclic group consisting of the roots of 7 _1.

Because f(x)eZ[x] isafactorof @, (x),thereexists /(x) e Z[x] suchthat
®,(x)=f(x)h(x).

So if w” isnotarootof f(x), it must bearootof ;(x).
Thus, wisarootof j,(x?).So f(x) and j(,?) have acommon factor over some

extension of Q. But this implies '(x) and ( xP) have a common factor over Q.

Also, f(x) isirreducible over 7, and hence over Q. We get f (x) divides (7).

2 h(x?) = £(x)-g(x)

g (x) is also a monic polynomial over 7, since f(x) and p(x?) are monic

polynomial over 7, .
Let f(x)=f(x)(mod p) and #(x)=h(x)(mod p).
i.e. polynomials obtained from 7 '(x) and /(x) byreplacing their coefficients 4 7,

wittheZp.
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Now, a” =a(modp) VaeZ.

() =(h(x))”
So h(x?) = 7(x)-g(x) gives that ;(x) and f(x) have a common factor.
Thus, ®@,(x)= f(x)h(x) and ®, (x)‘(x” —1), we get that ,» _] has multiple
roots. But this is not possible. For if ¢ is a multiple root, then the derivative of ,# _1 should
vanishat x = ;1.e. 770" 1 =0 = "' = (), since characteristic p / n.
= a =0 but o isnotarootof ,”_1, we get a contradiction.

Thus, wisaroot of f(x),then 7 isalsoarootof £ (x).

Now, any primitive n root of unity can be obtained by raising w to a succession of
prime powers, with primes not dividing », this implies that all primitive n roots ofunity are

roots of £ (x).

Hence, f(x)=®,(x) ie. @, (x) isirreducible over 7 .

Theorem 3.4 : Let wbe a primitive " root of unity in ¢ . Then Q (w) is the splitting field
of ®, (x) andalso of x" —1e Q[x]-

Further, [Q(w):Q]z(b(n):[G(Q(W)/@)] and G(Q(w)/Q)=Z,, the
multiplicative group formed by the unitsof 7, .

Proof : The minimal polynomialofwis ®, (x) and Q(w) contains a primitive n root of

unity, it contains all n" roots of unity.
. Q(w) is the splitting field of @, (x) and of x» _1.
Also, [Q(w): Q] =degree of @, (x) =¢(n).

Since, Q(w) is a finite, separable and normal extension of Q (i.e. Galois extension

of @, (x) over Q),
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G(Q(w)/ Q) =¢(m)=[Q(w): Q]

If 6 € G(Q(w)/Q), then () is also a primitive nth root of unity.
~o(w)=w/, where j<nand (j,n)=1.

Denote this o by o;.

We know that there are ¢ () no. of such;’s, and they are precisely the members of

the group ZZ .

Let f:7) ——G(Q(w):Q) be amap defined by /' (j)=0;.

Claim : fis well-defined and one-one.
o; =0y with j,k<n and (j,n)=(kn)=1.
:>aj(w)=0'k(w)

= w =wf

—=wF=1

If j#k then j—k <n and /=% — 1 which is contradiction to the fact that wis a

primitive n™ root of unity.

.. j=k = f 1sone-one.

Andif j=k for jkeZ,.

Then ,,,/ — %

=0, (w)=0;(w)

=o0,;=0;, (' 0,0, agree onw, hence agree on every element of Q(w))

= f(j)=r (k)
-, fis well-defined.
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Claim : f'is a homomorphism.
Let j ke ZZ :
Write jk =gn+r withr<n.
Now, jk(modn)=rie.inZ , jk=r.

ij an+r —

fk)=r=0,=0,=0,00=1(j)f (k)

=W

~Z, =G(Q(w)/Q).
Remark : Ifp is an odd prime, then ( Zpe)* is a cyclic group.

Hence, G(Q(w)/Q), where wis a primitive p th root of unity (e > 0), is a cyclic

group of order ¢(pe) = p¢! (p-1).

EXAMPLES :

1. Prove that the Galois group of 4 4 y2 41 is the same as that of ¢ _1 and is of

order 2.

Solution : x4+x2+1:y2+y+1 where y:xz.

But y2 + y+1 is the minimal polynomial for a primitive 3rd root of unity.

So the splitting field of * 4 2 41 will contain the square roots of 27/3 and p47i/3.

Now, (ezm'/3)% _ 407i/3 and (647”'/3)% — 42mil3.
So E =Q(a), where o = ¢7/3, is the splitting field of x* + x> +1e Q[x]-
But ,7i/3 _ ,27i/6 _ , isaprimitive 61 root ofunity, £ is the splitting field of 6 _1.

Then G(Q(a)/Q) =7 and |Z¢| = ¢(6) =2

Hence, G(Q(a)/Q) isoforder 2.
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CYCLIC EXTENSIONS :

Definition 3.3 : Let £ be a Galois extension of . Then £ is called a cyclic extension of F'if

G(E/F) isacyclic group.

EXAMPLES :

1. Ifwis a primitive p root of unity and the splitting field of ;.7 _ | over Q is Qw)=E
(say). Then E is a Galois extension of Q.

~G(Qw)/Q)~ Z; and Z; is a cyclic group of order p — 1.

. Q(w) isacyclic extension of Q.

Lemma 3.1 : Let F'be a field of non-zero characteristic p. Then for every positive integer k
. . . k .
the mapping IT, of F into itself, defined by IT, (x) = x”  for all elements x of F, is an

embedding of F'into itself. (The mapping IT, (x) = x” is called the Frobenius endomorphism).

Proof : Consider a map I1, : F —— F defined by I, (x) = xpk VxeF .

Claim : IT; is well-defined.

k k
Let x,y € F suchthat y — ), — 7" = 7" .

=11, (x) =11, (») . Hence, I1, is well-defined.
Claim : I1, isinjective.
Suppose IT, (x)=T1,(y).

k k k k
=>xP =y =xP —pP =0

k
= (X —y)p =0 (- Characteristicof F = p#0)

=x—y=0 (- Fisafield hence integral domain)
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=>x=y
Therefore, 11, is injective.

~.I1, 1s anembedding of ' into itself for every positive integer .

Lemma 3.2 : Let £ be a finite extension of F.

Suppose  f:G(E/F)——>E*, E*=E-{0}has the property that
f(on)=0cf(n) f(o) forall 6,n € G=G(E/F). Thenthere exists ¢ € E* such that
fle)=claa Voei.

(The mapping f'in the hypothesis of the lemma is called a crosed homomorphism.)

Proof: ForallneG, f(n)eE*,so f(n)=0.

Thus, if Y, f(7)n(6)=0 vpe E*.
neG

Then by the Dedekind lemma, f(r)=0, which is not true. Hence, there exists
b e E*, such that

a=> f(n)nb)=0

neG

Then forany & ¢ G, we get

Y o(f(n)on®)=cla)

neG

Then, by using o ( (7)) = /(o)™ £ (on) , we get

> ()" f(on)-on(B)=c(a)

neG

But {on|neG}={n|neG}

Hence, (£ ()" Y £(n)-n(b)=c(a)

neG
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=(f(0) -a=cla)

—sacla)=f(c) VoeG

Hence, the proof.

Lemma 3.3 : Let £ be a finite extension of , and let G = G(E/F) be a cyclic group of
order n generated by o . Ifbe 1 ¢ E such that

w-oc(w)-c?(w)...c"'(w)=1, then there exists e E* such that

w=c(a)-a!

Proof : By lemma 3.2, we need to define f:G—— E* suchthat f(o)=w for some

o G and f is a crossed homomorphism.

Define f:G—— E* asfollows:

flid)=1, f(c)=w and f(ai):ai_l(w) ..... o(w)-wfor2<i<n-1.

Claim : f is a crossed homomorphism i.e.
fon)=a(f(n)-f (o)
Let 6',67 e G. If i+ j =0(modn) then
flo'-6/)= f(c")=f(c") = flid) =1
Also, o'( 1 (57)) £ (o)
=o' (6 (W)....o(w)-w)(c™ (W)....o (w)-w)
=" (w)-a"2(W)...a' (W)...c (w)-(w)

= f(c")
=1

If i+ j = 0(modn),then
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f(O'iO'j)Zf(O'Hj)Zf(O'r):O'r_l(W)-O'r_z(w)....O'(W)-W
i+ j=gn+r whereandr<mn, 0.

Now, consider
o' f(o?) (o) =o' (a7 (w)- 072 (W)....o (w)-w)-
(67" (W)- 072 (W) o (W) W)
=™ () -6 (W).... 0 (W) -0 (). (W)W
=" (W)-0" 2 (W) (W)W

- r(c")
Hence, f1s a crossed homomorphism.

Therefore, using Lemma 3.3, 3 ¢ € E *.
Suchthat f(5)=c(a™) .

i.e. W:g(ail).a.

Hence, the proof.

Theorem 3.5 : Let F be a field and contain a primitive n! root w of unity. Then the following

are equivalent :

E is a finite cyclic extension of degree n over F.
E 1s the splitting field of an irreducible polynomial x" —p ¢ F[x].

Furthermore note E = F(¢), where ¢ is arootof 7 _p.

Proof: (1) = (1)

Let o be a generator of the finite cyclic group G(E/F)-

By Lemma 3.3, there exists ¢ ¢ E * suchthat 5 () = wo -

~o(a)=wa Vi=1,2,...
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Thus, 4" ¢ F,andif p = o”, then x" —p ¢ F[x] and x"—b:H(x—wia).

i=1
Claim : x" —p ¢ F[x] isirreducible over F.

Suppose x"—b= f(x)-g(x), where f(x) is nonconstant irreducible monic
polynomial over F.

If w'a is oneroot of 1 (x), then for each positive integer j we have,
aj*"(w"a) = Gj*"(w")ajfi((x)

But 1,/ ¢ F (Since F contains a primitive n root w of unity).

So /(i) = andalso ¢/ (q)=w/" .q -

Thus, we have

Gjii(w’.a) =w-wl=w.q

Because any F-automorphism maps a root of a polynomial over F onto aroot of that

polynomial, we get that 1,/ isalso arootof f(x).
Hence, all the roots of " _p areroots of f(x).
Thus, f(x)=x"—b.Therefore, y» _p isirreducible over F.

Also, E = F(g), where ¢ isaroot of y# _p, (since F contains n™ root of unity)

and E is the splitting field of y” _p over F.
Claim : (ii)) = (i)
Let ¢ € E be aroot of . So p = ". Clearly, then, c, cw, w2, ..., ew L are n

distinct roots of " _p, where y ¢ F is a primitive nroot of unity.
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Thus, " _p is a separable irreducible polynomial.
Hence, E = F(¢) is a Galois extension of F.

Foreach ¢ e G(E/F),let y(o) be defined by
%(G)Z{k€Z|G(C)=WkC}
Then y (o) # ¢ becuase o (¢) isalso arootof x_p.

Moreover, for any ke y (o), y(c)=k € Z/nZ, for e =/ if and only if

k= j(modn).
Further if, 6,7 € G(E/ F) andif 5 (¢) = wke and 7(¢) = w/c, then
(o)) =0 (we) =wio (¢) =w* (c)
So y(ot) = y(c)+ y(r)(modn)
Finally, if (o) =0 then 5 (c)=c-
So o isidentity on £ because E = F(c¢).
Hence, yx is an isomorphism from G(E/F) onto a subgroup of the additive
group Z,, .
Also, [F(¢): F] =degree ofthe minimal polynomial of ¢ over F
=degree of " _p
=n.
Because E = F(¢) is aGalois extension,
|G(E/F)|=[E:F]=n and G(E/F) ~ subgroupof Z,,.

=G(E/F)~Z,  (whichisacyclic group)

Hence, E is a cyclic extension of degree n over F.
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EXERCISE :

1. Ifa field F contains a primitive ™ root of unity, then the characteristic of Fis 0 or a
prime p that does not divide n.

2. Let F contain a primitive 7' root ofunity, and let £ be the splitting field of ,» _p,

over F, where m | n and m is prime. Then either £ = F or y” _}, is irreducible over

F. What can you say of m is not prime ?

Jd
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UNIT - IV

POLYNOMIALS SOLVABLE BY RADICALS AND
SYMMETRIC FUNCTIONS

POLYNOMIALS SOLVABLE BY RADICALS
Definition 4.1 : An extension E of a field F is an extension of radicals (or radical extension)

if there are elements o, @, ......,a, € E and positive integers n,, n,, ......,n, such that

Example : Q(%/E, 7 ) is aradical extension of Q.

(¥2)' =2eQand (¥7) =7 Q(¥2)

Theorem 4.1 : If £, is aradical extension of /' = E,, with intermediate field £,,....., E

s Hr-1

such that £, c E, c.....c E,_,, then there exists a radical extension ES of F'=E, with

r=1»

intermediate fields E{, E'z, ..... , E;_l (E; c E2 c.....C E;_l) such that

(i) E,DE,
(1) ES is anormal extension of F.

(iii) E, is a splitting field of a polynomial of the form x™ ~beE [x],i=1,2,....s.

Proof : We have an ascending chain of fields F'=FE,c E, c....c E, such that

E;=E_(o;) (1<i<r) and &; isarootof x" — g, € E; [x].

Let w be a primitive n' root of unity, where n = n,n,,...,n..
1742 r
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Now, consider
E] (W)

|
Ey(w)=F (w)

|

Now, E,(w) is aradical extension of F.

Since F = Eyc F (w)=Ey(w) c E;(w)

E,(w) = F(w,a;)suchthat y» ¢ f and o' € F (w).

Also, F(w) isasplitting field of x” —1 ¢ F[ x], hence is a normal extension of F.

— Fis the fixed field of G(F (w)/F).

= fi(x)= H (x"‘—a(al))eF[x]
oeG(F(w)/F)

Here, f](x):(x”l—al)k, k:|G(F(W)/F)| since g, € F .

Now, consider g, (x) = (x" —l)fl (x).Then g,(x) e F[x].
Let K be the splitting field of g, (x) overF.

= Kisanormalextension of F. Clearly, ;e K, we K and E, c K .

— There is a finite ascending chain of fields between F and K such that each field is

a splitting field of'a polynomial of the form , _ p over the precending field.

Similarly, we construct a field L such that L contains the field K and E, and is a normal

extension of F.

Construction : Consider a polynomial

2,(x)=g,(x) f,(x) where L= T] (xnz_g(az))

ceG(K/F)
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Now, K is a normal extensionover F, £, (x) € F[x].
= g,(x) e F[x]. Let L be the splitting field of g, (x) over F.

= a,elL and K c L.Hence, E (a,)=E,cL.
= L isanormal extension of F containing E,.

Continuing like this, we can construct a radical extension ES of F having the desired
properties.

Definition 4.2 : Apolynomial f(x) e F[x] overa field F is said to be solvable by radicals
ifits splitting field E is contained in some radical extension of F.

Note : We assume that all fields are of characteristic zero.

Theorem4.2: f(x) e F[x] is solvable by radicals over F ifand only ifits splitting field E
over F has solvable Galois group G (E/F).

Proof : First suppose that G (E / F) is solvable. Because the characteristic of F is zero, Eis a
normal separable extension. So [E : F] = |G (E/F )| = n , say. Assume first that F contains a
primitive n' root of unity. Then F contains primitive n'f roots of unity for all positive integers

m that divide n. Let G=G(E/F) . Because G is solvable and finite, there is a chain
G=G,> G, >...oG, =(e) ofsubgroups of G suchthat G, < G,_, and G; < G,_; is cyclic.
Let F' = Fyc F| c....c F, = E bethe corresponding subfields of £ given by the fundamental
theorem. Then Eg, =F; and G(E/F;)=G,. Also, by the fundamental theorem,
G,=G(E/F)<G(E/F)=G implies F is anormal extension of F.

G(E/F)=G

Fi < > G(E/F)=G,
(normal) /\ g
F

G(E/E)=(e)
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Now E can be regarded as the splitting field of f (x) over F,. So E is a finite normal

extension of F. Then G, < G; implies that F, is anormal extension of F,.

G(E/E):Gl

\ / .
. > G (E | F, ) =G,
(normal) /\ O

K G(E/E)=e

Continue in this way to show that F; is a normal extension of F, ;.

E G(E/F)=Gy,

\/ v
F; < > G(E/F)=G;
(normal) /\ 0

Fi G(E/E)=(e)

Furthermore, G(F;/F,_,)=G(E/F_,)/ G(E/F;)=G,_,/G; by the fundamental
theorem. So F; is a cyclic extension of F;_; . Also, F; is the splitting field of an irreducible

polynomial x"-p eF, [x] and F.:F._l(ai), where o"=bheF,_ . Then

1 1

E=F(ay....a,), a"e F and o' € F;,_ = F (a,...,a;_;) for 1 <j <. Thus, f(x) is
solvable by radicals over F.

t

Next we drop the assumption that F contains a primitive n'! root of unity. The

polynomial x" —1 e E[x] hasroots in E .Let p be aprimitive n' root of unity lying in E-
Then E (p) is the splitting field of £ (x) regarded asa polynomial over F(p).Any F(p)-
automorphism o of E(p) will leave the coefficients of the polynomial f (x) unaltered.
Now, for any automorphism o € G(E(p)/ F(p)), we have oy =0 |, € G(E/F),since
E is anormal extension of F. Further, the map o - o, isa 1 — 1 homomorphism of the group

G(E(p)/F(p)) into G(E/F). Then since a subgroup ofa solvable group is solvable,
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G(E(p)/F(p)) is solvable. Now by the first part, £(p) isa radical extensionof F(p);
so E ( p) is aradical extension of F. Then the splitting field E of £ (x) e F[x] is contained in
the radical extension E(p) of F,so f(x) is solvable by radicals.

Before we prove the converse, we prove a lemma that deals with a particular case.

Lemma 4.1 : Let E be the splitting field of x” — 4 ¢ F[x].- Then G(E/F) is a solvable
group.

Proof: IfF contains a primitive nroot of unity , then we know that G(E/ F) is abelian
and, hence, solvable. Now suppose that F does not contain a primitive n" root of unity. Let

p € F beagenerator of the cyclic group of the n' roots of unity. Let b be aroot of 7 _ ;.
Then bp isalsoaroot. So p = b (bp) isin the splitting field E of x" — 4 ¢ F[x]. Consider
F c F(p)c E-F(p)isanormal extension of F, since F (p) is the splitting field of . _1;

so G (E /F( p)) is anormal subgroup of G(E/ F) by the fundamental theorem of Galois

E G(E/F)
F(p)< > G(E/F(p))
(normal) /\ U
F

(e)

theory.

But G(E/F(p)) is abelian, because E is the splitting field of x" — ¢ € F[x]. So
(e)<G(E/F(p))<G(E/F) is a normal series. Again by the fundamental theorem of
Galoistheory, G(E/F)/G(E/F(p))=G(F (p)/F), whichis abelian (being isomorphic

to (Z/(n))* because F(p) is the splitting field of x” _1. So G(E/F) has a normal

series with abelian factors whose last element is the trivial group. Therefore, G(E/F) is
solvable.

We are now ready to complete the proofof the theorem.
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Ifa polynomial f (x)e F[x] is solvable by radicals, we may, without any loss of
generality, assume that the splitting field E of f (x) is contained in a radical extension E, of F
such that E . is a normal extension of F and there exist intermediate fields £,...., £, _; such that
E, is a splitting field of a polynomial of the form x™ — b, € E; | [x]. Thus, by the fundamental
theorem of Galois theory

(e)cG(E,/E,_|)cG(E,/E,_,)c..cG(E,/F)

1s anormal series. Also,

G(E,/E,)/G(E./E

r—i+l

)=G(E,_i/F,._;)

r—i+l r—i

is solvable. Then,
(e)cG(E,/E,.|)cG(E,/E,,)c..cG(E,/F)

is a normal series with solvable quotient groups, so G (Er /| F ) is solvable. Further, since

G(E/F)=G(E,/F)/G(E,/E), G(E/F) is a homomorphic image of G(E,/F).

Hence, it is solvable.

Remark : We know that the symmetric group S, is not solvable if 7 > 5. Thus, any polynomial
whose Galois group is S, n > 5, is not solvable by radicals.

Recall the important fact that the Galois group ofa polynomial £ (x) e F[x] having

r distinct roots is embedable in the symmetric group S , the group of all permutations of the »

distinct roots (a,,.....,,.).
We call a subgroup H of S, a transitive permutation group if, for all i, j € {1,2,...,n},
there exists o ¢ H suchthat & (i) = j-

We also recall the following result from group theory.

If p is aprime number and if a subgroup G of. Sp 1s a transitive group of permutations
containing a transportation (@, b), then G= Sp.
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Theorem 4.3 : Let f(x) be apolynomial over a field F with no multiple roots. Then £ (x)

is irreducible over F if and only if the Galois group G of f (x) is isomorphic to a transitive

permutation group.
Proof: Let a,.....,a, betheroots of ' (x) insome splitting field E. Then for each 5 € G,

o(ay),....,o(a,) isapermutationof ,....., &, . We may look upon G as a subgroup of S, .

First assume f (x) isirreducible over F. Then for eachi=1, ..., n
F(ay)= FL/(f ()

in which o, > x+(f(x)), ar>a+(f(x)), aeF. This isomorphism induces the
isomorphism 77 :F(ai)%F(aj),where o;+>a;and g>a, ae F.Butsince Eisa
normal extension of F, 7 can be extended to an F-homomorphism n*: E — E . Then

n*e G(E/F) and n*(o;) = o . Thus, G is a transitive permutation group.

Conversely, let F be transitive. Let p(x) be the minimal polynomial for o, over F.
Suppose ¢; is any root. Because G is transitive, there exists g € G suchthat o (al) =q;.
Then p(o;)= p(a(al)) =op(a;)=0. Hence, each q; is a root of p(x). Because
p(x)| f(x),itfollowsthat 7 (x)=cp(x), ce F.Thus, f(x) isirreducible over F.

Theorem 4.4 : Let £ (x) e O[x] be a monic irreducible polynomial over Q of degree p,
where p is prime. If f(x) has exactly two nonreal roots in C, then the Galois group of f (x)

1s isomorphic tp Sp.

Proof: Let £ — C beasplitting field of #(x) overQ. G(E/ Q) is isomorphic to a transitive
permutation group H, which is a subgroup ofSp. Let @j,....,a, beroots of f(x),andlet ¢

be its complex root. Because f'(x) e Q[x], @; isalsoarootof f(x).Hence, ;i =a; for
some 1< j< p, j#i.Consider the embedding ¢ :z > z fromE to Q. Because E is a

normal extension of Q, o maps E onto E. Thus, o € G( £/ Q). Then the permutation of the

100ts @,....,a , of f(x) corresponding to the element & of the Galois group G(E/Q)
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takes o, to @; and «; to «,,and keeps all o, (k #1i, j)fixed. Hence, H =S, . Thus,

G(E/Q)=S§,,asrequired.

EXAMPLES :

(a) Show that if an irreducible polynomial p(x)e F[x] over afield F hasarootina
radical extension of F, then p(x) is solvable by radicals over F.

Solution : Let £, be a radical extension of F. Then there exists a radical extension ES of F
such that ES D E, and ES is a normal extension of F. Because p(x) isirreducible over F
and hasarootin £, it hasa root in ES . But because ES is anormal extension ofF, it follows

that ES contains a splitting field of p(x). This shows that p(x) is solvable by radicals.

(b) Show that the polynomial 7 —10x° +15x + 5 1S not solvable by radicals over Q.

Solution : By Eisentein’s criterion f (x)=x’ =10x° +15x + 5 isirreducible over Q. Further,

by Descartes’s rule of signs it is known that

The number of positive real roots < The number of changes insignsin f (x) =2,

and  The number of negative real roots < The number of changes insignsin f (—x) = 3.

Thus, the total number of real roots < 5. Moreover, by the intermediate value theorem
there are five real roots, one in each of the intervals (—4, -3), (-2, -1), (-1, 0), (1, 2) and

(3,4).So £ (x) has exactly two nonreal roots. By theorem 4.4 the Galois group of f (x) is
S.. Hence, by Theorem4.2 f(x) is not solvable by radicals.

PROBLEMS :

1. Show that the following polynomials are not solvable by radicals over Q :
(@) x°-9x+3 (b) 2x°—5x*+5
() x> —8x+6 (d) x° —4x+2
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2. Let F'[x;, x5, 3| beapolynomial ring in x,, x,, x; overafield F. Let K = F (x;, x5, x3)
be the field ofrational functions (i.e. the field of fractions of the ring /' [xl, X5, x3] ).
Suppose

F@)= —xt>+ xt —x, e K 1]

Prove that the Galois group of f'(¢) over Kis ;. Generalize this result to a potynomial
of degree n (see Theorem4.1).

SYMMETRIC FUNCTIONS :

In this section we give an application of Galois theory to the symmetric functions. Let

F be a field, and let y,,...., y, be n indeterminates. Consider the field of rational functions

F ()} y,) over F. If o is a permutation of {1,....,n} — thatis, c € S, — then ¢ gives

rise to a natural map.

o F(yl,....,yn) —)F(yl,....,yn)

given by,

E(f(yl,....,yn)] _ f(yo(l),....,yc(n))
g(yl”""yn) g(yo(l),,yg(n)) >

where f(VpoesVn)s &(Vpes vy) €F [Vppoos vy and g (yy.., ,) # 0. 1t is immediate

that & is an automosphism of F (,...., y, ) leaving each element of F fixed.

Definition 4.3 : An element f(yl,....,yn)/g(yl,....,yn) of F(yl,....,yn) is called a
symmetric functionin y,,...., y, over Fifit is left fixed by all permutations of 1, ...., n that is,

forallo e §,.

g(f(yl,....,yn)] _ S (Dpees V)

g(yl,....,yn) g(yl,....,yn)
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Let S, be the group of all F-automosphisms & of F (..., v, ) corresponding to

o €S,.0Obviously, S, = S, . Let K be the subfield of F (y,,....,»,) that s the fixed field of

S, - Consider the polynomial

£ =TT(x-)
i=1

Now f(x) & F(yy....,»,)[x]. Clearly, the natural mapping

F(yl,....,yn)[x] - F(yl,....,yn)[x]

induced by each & € §,, leaves f (x) unaltered. Thus, the coefficients of ' (x) are unaltered

byeach & e S, . Hence, the coefficients lie in the fixed field K.

Let us write the polynomial & € S, as x”" + alx”_l + azx_2 +....ta,,where ¢, e K .

Definition 4.4 : If a; is the coefficient of =i inthe polynomial f (x) =TI~ (x—;),then

(-1) a; 1s called the i elementary symmetric function in Vp----r ¥, and is denoted by s; .

Thus,

S=VV2t Yzt Tt YV

Theorem 4.5 : Let s,,...., s, be the elementary symmetric functions in the indeterminates
Vp - 2, - Then every symmetric functionin yj, ...y, overF is a rational function of the

elementary symmetric functions. Also, F(y....,»,) is a finite normal extension of

F ( Vipeovos yn) of degree n !, and the Galois group of this extension is isomorphicto S, .
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Proof: Consider the field £ = F (sl, v sn) . Becausee K is the field ofall symmetric functions
mn y,....,y, overk, g = g .Also, because F' ( Vipeees yn) is a splitting field ofthe polynomial
f(x) =TI, (x— ;) , of degree n over E, we have,
[F(yl,....,yn):EJSn! ....... (1)
Further,
(F (o) K280l =t @)
But since g — g, we obtain from (1) and (2) that E =K.

Now f(x) is a separable polynomial over E, and F ( yy,...., v, ) isits splitting field.

Thus F (..., y,) isa finite, separable, normal extension of E.

[F(yl,....,yn):E]Z‘G(F(yl,....,yn)/E)‘ ......... 3)

Because G(F(yl,....,yn)/E) is embeddable in S, , and [F(yl,....,yn) : E] =n!,
we get from (3) that,

G(F(yl,....,yn)/E): S,

Finally, the fact that K =E shows that every symmetric function can be expressed as

arational function of the elementary symmetric functions s,....,s,, .

EXAMPLE :

1) We express the following symmetric polynomials as rational functions of the elementary
symmetric functions.

(@) xl2 + x% + x32

(b) (xl_XZ)Z(XZ_x3)2(x3_xl)2

129)




Solution :

(a) (xl2 + x% + x32) = (xl +x,+ x3)2 — 2(x1x2 + X3 + x3x1) = s12 -2s,
where s; and s, are elementary symmetric functions of x;, x, and x;.
(b) By simple computation it can be checked that
y_x—ﬂ y =xp—L y_x—ﬂ
1TATR, TR TR, BEhs T
are the roots of x* + 3¢ x+ 8 =0, where
2 3
o=—-+s =—§;——+—=
3 2 ﬂ 3 27 3
Then the cubic equation whose roots are ( y, - y2)2 (3y- y3)2 and (y, -y )2 is
GBa+y)+9a(Ba+y)+278*=0 .. @)
2 2 2 2 2 2
Now,  (x=x,)" (3= x3) (33=3) =(m=22) (v2=»3) (n3-0)
= Product of all the roots of (1)
=-27(p%+40°)
PROBLEM :
1. Express the following symmetric functions as rational functions of elementary symmetric

functions.

(a) xl3 +x§+x33

(b) X +x7 + X35 + X3%;

(c) (x12 +x§)(x§+x32)(x32 +x12)

(d) (x+ x2)3 (x, + x3)3 (x5 + x1)3

Jd
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UNIT -V

RULERAND COMPASS CONSTRUCTIONS

The theory of fields provides solutions to many ancient geometric problems. Among
such problems are the following :

1. To construct by ruler and compass a square having the same area as that ofa circle.
2 To construct by ruler and compass a cube having twice the volume of a given cube.
3. To trisect a given angle by ruler and compass.

4 To construct by ruler and compass a regular polygon having 7 sides.

For these we must translate the geometric problem into an algebraic problem. We
shall regard the plane as the coordinate plane R? of analytic geometry. Let Fc R? . Assume
F, has at least two points. We construct an ascending chain of subsets P, of p2,i=0, 1,2,
...., iInductively as follows : Let P, be the union of P, and the set of points obtained by
intersection of (1) two distinct lines each passing through two distinct points in £, or (i1) two
distinct circles each with its center in P and passing through another pointin £, or (iii) a line
and a circle of the types described in (1) and (i1).

Suppose that the coordinates of points in F, belong to a subfield of K of R. The
equation of a line passing through two distinct points in F, and the equation of a circle whose

center is in £, and that passes through another point in F, are
ax+by+c=0, a,b,cex . (1)
X+ 42ex+2fp+d=0, gfideK L. )

respectively.

It follows then that the coordinates of the point of intersection of two such lines (1) lie
in K. Also, the coordinates of the points of intersection of a line (1) and a circle (2), as well as
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the coordinates ofthe ponts of intersection of two distinct circles (2), lie in K (« Joy ) ,a;>0,

o, € K . Likewise, we get that the coordinates of points in P lie in K (\/71, \/7 )

Ay ,ai>0,aleK,azeK(\/aT), ...... aeK(\/T, F)

Definition 5.1 : (a) A point X is constructible from £ if X € P, for.i € {0,1,2,....} .
(b) Aline /1s constructible from F, ifit passes through two distinct points insome £,
€ {0,1,2,....} .
(c)Acircle Cis constructible from £ ifits center is insome P, and it passes through
another pointin P, i € {0,1,2,....} .

From now on whenever a point X (a line /, a circle C) is constructible from Ox Q,
we shall also say that the point X (the line /, the circle C) is constructible.

DEfinition 5.2 : Areal number « is constructible from Q ifthe point (u, 0) is constructible
from O x Q, the subset of the plane p2.

It then follows from all this that if ; ¢ R is constructible from Q, then there exists an
ascending chain.

O=K,cK,cK,c...cKk,
of subfields X, K,, ..., K, of R such that.
(1 uek,
(i) K=K, (O‘i) , 1<i<n,where aiz ek,
Thus, [K;: K, ;] <2 and, hence, [K,:0]=2", m<n.

So we have shown.
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Theorem 5.1 : Let 3 ¢ R be constructible from Q. Then there exists a subfield K of R

containing # such that [ K: Q] = 2" for some positive integer m.

Theorem 5.2 : Let K be the subset of R consisting of numbers constructible from Q. Then K
is a subfield containing square roots of all nonnegative numbers in K.

Before we prove this theorem, we prove a series of lemmas.

Lemma 5.1 : The following are equivalent statements :
1 u € R isconstructible from Q.

(1) (a, 0) is a constructible point from Ox Q.

(1) (a, a) is a constructible point from Ox Q.

(v) (0, @) is a constructible point from Ox Q.
Proof : (i) = (i1) Definition.

(i) = (iii) The circle (x—q)* + y? = g* is constructible because its center (a, 0) is a
constructible point, and it passes through a constructible point (0, 0). Also, the linex =y is

constructible because it passes through constructible points (0, 0) and (1, 1). The point (a, a)
is clearly a point of intersection of the citcle and the line. Hence, (a, @) is constructible.

(iii) = (iv) The circle x* + y? = 247 is constructible because its center (0, 0) is
constructible, and it passes through a constructible point (a, a). Also, the line y =— x is
constructible because it passes through two distinct constructible points (0, 0) and (1, —1).
One of'the points of intersection of this circle and this line is (—a, a). This implies that (0, a) is
a constructible point because it is the intersection of the constructible lines y = a [which passes
through two distinct constructible points (—a, a) and (¢, a)] and x=0.

(iv) = (i1) Follows by symmetry.

Henceforth, whenever we say that a real number « is constructible, we mean that a is
constructible from Q.
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Lemma 5.2 : If a is a constructible number, thenx = a and y = a are constructible lines.

Proof: If a =0, then x =0 is clearly constructible. So let 4 # (. Then x = a passes through
two distinct constructible points (@, 0) and (a, ). Hence, x = a is constructible. Similarly,
y=a s constructible.

Lemma 5.3 : Ifa and b are constructible numbers, then (a, ) is a constructible point.

Proof: (a, b) is the intersection of the constructible linesx =a and y = b.

Lemma 5.4 : If a and b are constructible numbers, then 5+ p are also constructible.
Proof : (a+b,0) are the points of intersection of the constructible line y = 0 and the

constructible circle (x—¢)* + y? = b* (the center (a, 0) is constructible; the point (a, b)

through which the circle passes is constructible).

Lemma 5.5 : If ¢ and b are constructible numbers, then
)] ab 1s constructible
(1) a/b, b #0,1s constructible.

Proof: (i) The line ay = —x + ab is constructible because it passes through constructible
points (0, ) and (a, b — 1). The intersection of this line with the constructible line y =0 is
(ab, 0). Hence ab is constructible.

(Note that we have used the fact that if b is constructible, then »— 1 is also constructible).

(i1) If @ =0, then it is clear. So let 4 = (). Then the line bx = a — y is constructible
because it passes through two distinct constructible points : (0, a) and (a, a (1 —b)). The
intersection of this line with the constructible liney=01s (a /b, 0). Hence, a /b is ocnstructible.

Lemma 5.6 : If @ > 0 is constructible, then /4 is constructible.

Proof : The point (1 ~a ) is a point of intersection of the constructible circle

o (2]
2 d 2
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[which passes through the constructible point (0, 0) and which has constructible center

((1+a)/2,0)] and the constructible line x = 1. Thus, (1 ~a ) is a constructible point.

Next, (0, 2\/2 ) is also a constructible point because it is a point of intersection of the

constructible circle (x — 1)2 + ( y— \/Z )2 = g +1 and the constructible line x=0. Therefore,
2/ is a constructible number. Then by Lemma 5.5, |/ is a constructible number.

Proofofthe theorem 5.2 follows from Lemmas 5.4 — 5.6.

Theorem 5.3 :1f u € K, , where K, =0 c K, c K, c....c K,, isanascending tower of

fields K, such that [K;: K, ;] =2, thenu s constructible.

Equivalently, if [Q (u): Q] = 2! for some ¢> 0, then u is constructible.

Proof : Since rationals are constructible, the proof follows from Lemmas 5.4 — 5.6.

Definition 5.3 : Anangle ¢ is constructible by ruler and compass if the point (cos « ,sin ¢ )

is constructible from Ox Q.

Remark : The point (cos« , sing ) is constructible from O x Q ifand only ifcos ¢ is a
constructible number (equivalently, if and only if sin ¢ 1s a constructible number).

Proof : Let (cos ¢ , sine ) be a constructible point. Then (2 cos ¢ , 0) is a point of intersection
ofthe constructible circle (x —cos o)’ + (y-sina )2 =1 and the constructible line y=0, so

(2cosa,0) is a constructible point. Thus, 2 cos ¢ is a constructible number. So by Throem

5.2, cos ¢ 1s aconstructible number. Conversely, assume that cos ¢ is a constructible number.
Then by Theorem 5.2, sin ¢ is also a constructible number. This yields, by Lemma 5.1 that
the points (cos ¢ , 0), (cos a, cos a ), (0, sing ), and (sin ¢, sing ) are constructible
points. This means that the linesx = cos o and y=sin ¢ are constructible lines. Hence, their
intersection, namely, the point (cos « , sin ) 1s a constructible point. The statement in
parenthese can be proved the same way.
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EXAMPLE :
(a) Problem of Squaring a Circle

It is impossible to construct a square equal in area to the area of a circle of radius 1.
Solution : Assume we have a circle of unit radius. Ifa is the side ofthe square whose area is
equal to that ofthis circle, then 2 — ;. Butsince 7 is not algebraic over Q, a? and, hence,
a is not algebraic over Q. So [Q (a): Q] # 2" for any positive integer m. Hence, by Theorem

5.1, a is not constructible by ruler and compass.

(b) Problem of Duplicating a Cube.

It is impossible to construct a cube with a volume equal to wtice the volume ofa given
cube by using ruler and compass only.

Solution : We can assume that the side of the given cube is 1. Let the side of the cube to be
constructed be x. Thenx® —2 = 0. So we have to construct the number 213 (the real cube
root of 2). Because x> —2 is irreducible over Q.

[Q(2”3):Q]=3 # q apower of 12.

Thus, by Theorem 5.1. 2173 is not constructible from Q by ruler and compass.

(© Problem of Trisecting and Angle
There exists an angle that cannot be trisected by using ruler and compass only.

Solution : We show that the angle 60° cannot be trisected by ruler and compass. Now if this
angle can be trisected by ruler and compass, then the number cos 20° is constructible from Q.
This is equivalent to the constructibility of 2 cos 20° from Q. Set a =2 cos 20°. Then from

cos 39 =4 cos39 — 3 cos @, we deduce ,3_ —1=0. Because the polynomial
a’ —3a 0

x° —=3x—1e Qlx] is irreducible over Q and has a root a, it follows that

[0(a): Q] =3+ power of 2.

Thus, by Theorem 5.1, a =2 cos 20° (or, equivalently, an angle 0 20°) cannot be
constructed by ruler and compass from Q. This completes the solution.
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) Problem of Constructing a Regular n-gon

2r
Aregular n-gon is constructible (equivalently, the angle ’y is constructible) if and

onlyif ¢(n) is apower of 2.

Solution : Let ® =cos——+isin—  where ¢ is a primitive n'" root of unity. Then
n n

_ 2 2
-+ =2cos PR Set u = cos PR To show that u is constructible, we need to prove that
[Q (u): Q] =2% k> 0. Consider the following tower :

O(w)
|
0u)

|
0

2
2 .22 2r
Now (a)—cos—ﬂ] =—s1n2—ﬂ, and so ® —2cos=—w+1=0. Thus
n n n

satisfies.

x* —(2cos2—ﬂ)x+le 0u)

n

Which is clearly an irreducible polynomial over Q (u), proving that

[0(®):0(w)]=2.Now [Q(w): Q] =p(n), [0(u):0]= %(P(n) . This shows that u is

constructible if and only if ¢ (7) is a power of 2.
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Problems :

2r
1. Show that the angle 5 can be trisected using ruler and compass.
2. Show that it is impossible to construct a regular 9-gon or 7-gon using ruler and compass.
3. Show that it is possible to trisect 54° using ruler and compass.
4. Prove that the regular 17-gon is constructible with ruler and compass.
5. Find which of the following numbers are constructible.

O 3+l

@ x40
) JV3-1+1
™ Y2+1

\2 IN2 +5

Jd
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