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1.0 INTRODUCTION

The roots of operations research can be found when early attempts were made touse a
scientific approach in technical problems and in the management of organisations at the time of
world war Il. Britian had very limited military resources and therefore there was an urgent need
to allocate resources to the various military operations and to the activities of each operation in
an effective manner. Therefore the british military executives and managers called upon a team
of scientists to apply a scientific method to study the technical problems related to air and land
defence of the country. As the team was dealing with (military) operations the work of this team
of scientists was named as OR in Britian.

Their efforts were instrumental in winning the air battle of Britian, and of the North Attantic
etc.

The success of this team of scientists in Britian encouraged United States, Canada and
France to start with such efforts. The work of this team was given various names in United
States such as Operational analysis, operations evaluation operations research etc.

The apparent success of OR in the military attracted the attention of industrial
management in this new field. In this way OR began to creep into industry and many governmental
organisations.

After the war, many scientists were motivated to pursue research relevant in this new
branch. The first technique in this field called the simplex method for solving linear programming
problem was developed by American mathematician, George Dantzing in 1947. Since then
many techniques such as quadratic programming, dynamical programming, inventory theory,
queing theory etc. are developed. Thus the impact of OR can be experienced in almost all walks
of life.

Definition of OR
We give few definitions of OR.

1) ORis the application of the theories of probability, linear programming, queuing
theory etc. to the problems of war, industry, agriculture and many organisation.

2) ORis the art of winning war without actually fighting.

3) ORis the art of giving bad answers to the problems where otherwise the worse
answers are given. (T. L. Saathy 58)




Use of OR

In general we can say that whenever there is a problem there is OR for help. In addition
to the military operations research is widely used in many organisations. Now we discuss the
scope of OR in various fields.

1) Defence : There is a necessity to formulate optimum strategies that may give
maximum benefit. OR helps the military executives to select the best course of
action to win the battle.

2) Industry : The company executives require the use of OR for the following :
1) Production department to minimize the cost of production.
2) Marketing department to maximize the amount sold and to minimize the
cost of sales.
3) Finance department to minimize the capital required to maintain any level
of business.

The various departments come in conflict with each other as the policy of one
department is against the policy of the other. This difficulty is solved by the
application of OR techniques. Thus OR has great scope in industry. Now a days
almost all big industries in India make use of OR techniques.

3) L. I. C. : OR techniques are applicable to enable L. I. C. officers to decide the
premium rates of various policies in the best interest of the corporation.

4) Agriculture : With the increase of population and resulting shortage of food there
is a need to increase agriculture output for a country. But there are many problems
faced by the agriculture department of a country. e. g. (i) climate conditions (ii)
Problem of optimal distribution of water from the resources etc.

Thus there is a need of the policy under the given restrictions for which OR
techniques are useful to determine the best policies.

5) Planning : Careful planning plays an important role in the economic development
of many organisations for which OR techniques are fruitful for such planning.

CONVEX SETS AND THEIR PROPERTIES

1.1 Definition | (Convex Set) Let R" ={)_(:(X1,x2,....,xn)

X eR,i=12,...n}

A subset ScR", is said to be convex, if for any two points X,,Xx, in S the line segment
joining the points X, and X, is also contained in S.

In other words, a subset S—R" is convex, if and only if

Some convex and non - convex sets in R? are given below.
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Convex Sets

T @

Non - convex Sets
Example 1.1

Show that the set S={(x1,x2):3 X3 +2x3 £6} is convex.
Solution :
Let X,y € S where X=(x;,X,) and y=(y,,y,).
Since X, y €S, 3x? +2x3 <6 and 3y? +2y2 <6.
The line segment joining x and y is the set
{usu=ax+(1-2)y,0<a<1}
For some 2,0<A<1, let U=(u,,u,) be a point of this set, so that
Uy =Ax;+(1-21)y,, and u, =1 %, +(1-1)y,
Now,
3uf +2u; =3[1x, +(1—x)y1]2 +2[1x, +(1—7»)y2]2

=22 (3x12+2x§)+ (1—%)2 [3y$+2y§}+2k(1—%)(3x1 Y1+2X,Y5)

<622+6(1-1)" +12(1-1)=6

1 1
Since (x1—y1)220, x1y1£§(x12+y12) similarly ngZSE(X§+y§) and
3x4Y1 +2X,Y, <6 and we have

3u?+2u2<6 and hence U=(u;,u,)eS.

Hence S is a convex set.




Example 1.2

In R consider,

S, ={X[x<1} where [x|=(x¢ +)3+..+x¢)""

Take X,,X, €S

Then [x;|<1,[x,|<1 and for 0<2 <1,

2%, + (1= 1) Xo | < MRy | +[(1-2) %,
=Xy |+ (1= 1) [%g| <1

=AX +(1-1)X, €S, =S, is a convex set.

Example 1.3

Show that C={(x1,x2)|2x1 +3X, =7}g R? is convex set.

Solution :
Let X=(Xy,X,) and y=(y,,y,)eC andlet o< <1.
Let W=AX+(1-2)y=(w;,wW,)

=>W=2 (X, %) +(1-2) (Y4, Y2)
= (W, Wo)=(AX, +(1=2) y, A X, +(1-1) y,)
=W =AX +(1=2) Y, Wy =A%, +(1-2) Y,
We have 2w, +3 W, =2(A X, +(1-1)y;)+3 (A%, +(1-1) y,)
=2W,+3W, =1 (2%, +3%,)+(1-1)(2y,+3Y,)
Since X,yeC, 2x,+3x,=7,2y,+3y,=7
Hence 2w, +3w,=A7+(1-1).7=7

=>W=(W;,W,)=AX+(1-1)yeC,VA, 0<r<1.

Hence C is a convex set.




Example 1.4
Show that S={(x1,x2,x3)|2x1 — Xy + X5 S4}gR3 is a convex set.
Solution :
Let X=(X;,X,,X3) and y=(y,,Y,,Y5) be any two points in S. Then by hypothesis,
2X =X, + X354, 2y, -y, +y,<4 L (i)
Let W=(W;,W,,W3)=AX+(1-21)y where 0<i<1
= W= (X, X0, X3) +(1=1) (Y4, Y2, ¥3)
= W= (L Xy, A X, A% ) +((1-2) 1, (1-1) Y2, (1= 1) y5)
=W=(A % +(1-1) Y3, A% +(1-1) Y2, A X5 +(1-1) y3)

=W =AX +(1=2) Y, Wy =A X, +(1=R) Yo, W3 =A X5 +(1-1) Y4

We have,
2W, =W, + W5 =2(AX, +(1=2)yy) = (A X +(1=1) o ) + (A X5 +(1-2) y3)
=M (2% =X, +X3)+(1=1)(2y, =y, +V3)

SX.4+(1—X)4=4

=>w=1X+(1-1)ye S forall X,y,e S and for all ) such that 0<x<1

= S is a convex set.

Example 1.5

Show thatin R®, S = {(X1,X2,X3)| [X[* =2 +x2 +x3 S1} is a convex set.
Solution:
Let X=(X;,X;,X3) and y=(y,,Y,,y3)€ S.
Then ||§||2=x12+x§+x§g1 and y12+y§+y§=||y||231 .......... (i)
Let 0<x<1and Z=AX+(1-1)y where Z=(z,,2,,2;)
Then  Z=X(Xy, X2, X3)+(1=2)(Y1,¥2,Y3)

=Z=(M X, A X, A X3 ) +((1=2) y1,(1-1) y2, (1-1) y5)




=Z=(AX+(1-1) Y1, A X +(1= 1) Y2, A X5 +(1-1) y5)

2

:>||E||2 :[k X +(1—k)y1]2 +(h %, +(1—7»)y2)2 +(Axg +(1-1)y3)

:>||2||2:xz[xf+x§+x§}]+(1—x)2[yf+y§+y§}|+2k(1—k)(x1 Vi + X, Yo + X5 Y3 ) (i)
Fori = : 2 102, .2
ori=1,2,3, since (x,-y;)” 20, XY, SE(Xi +Yi ) and therefore
1
X1 + XY + X3Y3 s§[x12 X3+ +y2 +y2+yE]

1
<—(1+1)=1
2

Thus, Xqyq+Xoyo +Xzyz <1 (iii)

Hence from (i), (ii) and (iii) we have
2" <32 +(1-2)? + 24 (1-2) 11=[A+(1-2)] =1

=>AX+(1-1)y=ze S forall X,y e S and for all }, such that 0<1<1.

= S is a convex set.
Theorem 1.1

The intersection of any finite number of convex sets is a convex set.

Proof
Let S,,S,,...,S, be afinite number of convex sets, and let S=S,nS,n...nS,,.
Let x,ye S and 0<A<1
Then x,ye S, foreachi=1, 2, ..., n where each S, is a convex set. Then
AX+(1-1)ye S, foreachi=1,2,.,n
= AX+(1-1)ye $nS,N...§, =S
= S is a convex set.

Theorem 1.2

Let S and T be convex setsin gn. Then a S+ T is also convex for any o, in R.

Proof

Let X,y caS+BT




Then X=au;+Bv, and y=oau, +BVv,, where u,u,e S and v,,v,e T
Forany ) with 0<A<1, we have
AX+(1=1)y=A(aly+BVy)+(1-1)(al, +BV,)
=S AX+(1-1)y=a (AU +(1-1) Uy ) +B(A V4 +(1-1)Vy)
u;,u, €S, Sis convex.
A +(1-2)u, S
Similarly, Av,+(1-A)v, eT
AX+(1-1)ye aS+BT,
Hence oS+ T is convex.
Definition 1.2
A convex combination of a finite number of points X,, x,,..., X, is a point
X=Ay Xq+ A, Xy +oHh, X,
where A, A,,...,A, 20 and A, +A,+..+A, =1
Remark

From this definition it follows that a subset KcR " is convex, if convex combination of
any two points of K belongs to K.

Theorem 1.3

For a set K to be convex it is necessary and sufficient that every convex combination of
points in K belongs to K.

Proof
Let every convex combination of points in K belong to K.
Then every convex combination of two points in K belongs to K.
Therefore K is convex. Hence the condition is sufficient.
Converly let K be convex.

To prove that the condition is necessary we shall follow the method of induction. We
shall first prove that if the condition is true for r points it is also true for r + 1 points.

Let >4, X €K where Kiis convex and X, eK, D A=1420i=12,..r
i=1

i=1




r+1

Consider Z“l XI’ |EK Z “l_1 HI>0, i=12,...,r+1

Here two cases arise.

|) K1 :0
if) M1 #0
Case (l)

r+1

Krpq = O:Zl"lll ZH|X|EK

Since by hypothesis p, >0 and Zui=1
i=1

Case (ll)

r
r+1 Zui Xi
i=1

Hr+1¢0:>zuii1 =(1—Hr+1) -

< (1_Hr+1)+|-1r+1 Xr 41

:(1 - “r+1)y+ur+1 ir+1

ZMI X r+1
where v Zr: A Zr‘,}\'iii and 2 Mi=1
i= i=1

(1 l’lr+1 1 Hriq =1

}
Thus 2, >0, %=1 and therefore y eK .
=

Therefore by hypothesis y eK .

r+1 r
Hence > ;X = {z uin+ o1 X = (1= )Y + 1.4 X, €K becasue the right hand side
i1 =

is the convex linear combination of two points y and X, in K which by hypothesis is convex.




This proves the theorem for r + 1 points. It is true for r = 2 by definition. Hence theorem
is proved.

Definition 1.3

The convex hull of a set S is the intersection of all convex sets containing S. We shall
denote by [S] the convex hull of S.

Remark

Every sethas a convex hull, because R" is a convex set and so there is always at least
one convex set R" of which every set is a subset. Also a convex set is its own convex hull.
Theorem 1.4

The convex hull of S is the set of all finite convex combinations of pointsin S.
Proof

Let K be the set of all finite convex combination of the pointsin S.

Then by theorem 1.3, K is a convex set containing S.

Hence ScK. Let K, be any convex set which contains S. Then K, contains all convex

combinations of points in K, . Hence it contains all convex combinations of points in S.

Hence KcK,.

Thus K is a subset of all convex sets containing S which shows that K is the intersection
of all convex sets containing S. Hence K = [S].

i.e. Kis the convex hull of S.

Theorem 1.5

The set of all convex combinations of a finite number of points X,,X,,..., X, is a convex
set.

Proof

Let S={i|>‘(=iki ii,xizo,ixiﬂ}
i=1 i=1

To show that S is a convex set take X' and X" in S, so that ?'=z7»'i X where >0
i=1

m

and ik’iﬂ and X"'=>"A"/X where '",>0 and D=1,
i=1

i=1 i=1

Consider the vector X=AX'+(1-1)x",0<A <1




= i:xixiii+(1—x)ix"ji
i=1 i=1
= X= i AR+ (=2 %
i=1

m
We can write X=)" 1, %,
i=1

where p;=A A, +(1-A)A"

Since 0<A<1A', >0,A", >0 itfollows that . >0Vi=1,2,...,m.Also

i =3 o (-t

i=1 i=1

=xix'i+(1—x)iwg=x.1+(1—x)1=1
i=1

i=1
Hence x is a convex combination of Xx,,X,,...,X,, =X€S.

Thus for each pair of points X' and X'' in S the line segment joining them is contained in
S. Hence S is a convex set.

Theorem 1.6

Every point of [S] can be expressed as a convex combination of at most (n + 1) points of

By definition of convex null and theorem 1.1, [S] is a convex set.

Let X €S,i=12,...,m
x=Y % z 2,20 Xe[S]
i=1 i=1

Now X € [S] can be expressed as a convex combination of points in S follows from the

above theorem (1.3). What we have to prove now is that for any given x we can always find
m<n+1.

Let us suppose if possible that there is an X e[S] for which m > n + 1. Since the space

R" is n - dimensional, not more than n vectors in R" can be linearly independent. Consider the
VeCtors, Xq— Xy, Xo = Xy--- X

m-1"Xm -

C 10D
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Since m -1 > n these (m - 1) vectors cannot be linearly independent.

Hence it is possible to find a,,i=1,2,...,m—1 not all zero such that

m-1 m-1 _
or o X — o |X,=0

m

or ZOLi:O
i—1

Let u,=A, -Ba,i=12,...,m. Since A, >0 we can choose B such that u. >0 with u.=0
l"l'l I I I I I

mim 7\'i . .
for at least one i. This will happen if B=; {—} over those values of i for which o, >0 or

A
Bi :max{;‘} over i for which «, <0.
Also zuizz}‘i_Bzai=1 |:z7\‘i:1 &zai=0:|
T .

Now ZMi?i=ZXiii—zBai§i
i=1 i ;

(Since > ;X =0)
i=1

Since at least one p,=0 it follows that % is a convex linear conbination of at most

(m - 1) points. If m -1 >n + 1 we can again apply the above argument and express x as a
convex combination of m - 2 points, and soon tillm-k =n+ 1, k> 0. This proves the theorem.




Definition 1.4
A point x of a convex set K is an extreme point or vertex of K if it is not possible to find two
points X,,X, in K such that
X=(1-21) %X+ A %, 0<A <1
A point of K which is not a vertex of K is called an internal point of K.
Theorem 1.7
The set of all internal points of a convex set K is again a convex set.
Proof

Let V be the set of vertices of K. Then K - V is the set of internal points.
Let X,,X, e K-V .Then x;,x, eK and x,,x, ¢ V
Hence x=(1-1)X, + A X, eK,0<A <1, is by definition not a vertex of K, but xe K.
i.e. xeK-V.
Hence K - V is a convex set.
Definition 1.5

The set of all convex combinations of a finite number of points x,,i=1, 2, ..., mis the
convex polynedron spanned by these points.

Theorem 1.8
The convex polyhedron is a convex set.

Proof
Let y, and y, be any two points in the polyhedron spanned by x,i=1,2,...,m

Then by definition

V1=ikiii,ixi=1,xizo
i=1 i=1

yZ:zuiXi’ZHiz'],HiZO
i=1 i=1

Now let, y=(1-a)y,+ay,,0<a<1

M3

m
= V=(1—oc). kiii+a;piii
i=

Il
-




Il
x|

=Y ,

2[(1—007% +O”'Li:|ii ZZBi
i=1

i=1
where Bi=(1-o)\ +ap,

Since z Bi=(1-a) ZXi +a z w, =1, y isalsoin the polyhedron. Hence polyhedron is a
i=1

i=1 i=1
convex set.
Theorem 1.9
The set of vertices of a convex polyhedron is a subset of its spanning points.

Proof

Let W be the set of points spanning the convex polyhedron, and V be the set of its
vertices. If possible let y eV but y ¢ W . Since Yy isin the poly hedron by definition it is a convex

linear combination of points of W all of which are other than y (by assumption). Hence by

definition y is not a vertex which is a contradiction. Therefore yeW or VcW.
Remark

It is obvious that there can be spanning points which are not vertices. For example

consider the points A, B, C, D in R? such that D is in the triangle formed by the vertices A, B, C.
The four points span the triangle ABC but D is not a vertex.

HYPERPLANES AND HALF SPACES
Definition 1.5

Let xe R”,E(;ﬁ 0) a constant row n - vector and o €R . Then we define,

i) Ahyperplane as {Xcx=o}

i) A closed half - space as {X|cX<a} or {XcX>0]
ii)  Anopen half space as {XcX<a} or {X[cX>a]
Definition 1.6

A set Xc R" is said to be an e-nbd of a point X, e R" if,

X [x=X,|< el X where [X|=|(X{,Xo,..., X ) =(X2 + X2 +...+ X2 "
{H 0| } || (1 2 n) 1 2 n




Definition 1.7

The 8.nbd of x in Rn is defined as the set of all points y in R" such that |V—i|<8
(Where 56>0,6eR)
Definition 1.8

If Rn the point % is a boundry point of the set Sif every § - neighbourhood of x contains
some points which are in S and some points which are not in S.

For example in

S, ={x|[x|<1}, S,={X|X<1}, XeR? the points on the circumference of the circle

x? +x2 =1 are the boundry points of S, and S,. S, contains all its boundry points while S,
contains none of them.

Definition 1.9

A set is said to be closed if it contains all its boundry points and is said to be open if its
complement is closed.

Definition 1.10

A set S is said to be bounded from below if there exists y in R" with each component
finite such that for every XeS, y<x. [Note:y<x<y,<x;,j=12,...,n].
Definition 1.11

A set S is bounded if there exists a finite real number M>0 such that for all X in S,
X <M.
Corollary 1.10

A hyperplane is a closed set.

Proof
Let {X|cX=a, } be a hyperplane.

Let x, be the boundry point of the hyperplane. Suppose it is not a point of the hyper
plane.

Then either cx,>a, or cX,<a,.

Suppose cx,<o, andlet cXx,=a,<a,

Now CX=C[X +X—X]

—CX=CX, +6(§-§1):6§s|6§|:\6§1 +6(§->—<1)\

C14 )
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= CX<[CX|+[c(X-X))|
=CX<o +[C(X—X) [[ex|=lou| =a]
= TX<oy +[c|[x-X|
Consider the enbd of X,, {X|[X—X|<e€} where ¢ is an orbitary positive number.

_ G~ 0y

Let €= 2|6|

(0‘0 —0‘1): Qg+
2 2

Hence if % isin the e—nbd of X, we get ¢ x<a,+ <o

This shows that x is in the half space cXx<a,. Hence there exits a nbd. of X, which

contains no points of the hyperplane ¢ x=a,. Hence X, is not a boundry point of the hyperplane.

This is a contradiction. Thus there is no boundry point of the hyper plane which is not in the
hyperplane. Hence the hyperplane is a closed set.

Definition1.12

In R", every hyper plane {x/cX=a} determines two open half spaces and two closed
half spaces. The open half spaces are :

X;={X|cX>0} and X, ={Xx|cX<a|

The closed half - spaces are

X3 ={X[cXx>a} and X, ={X|cX<a}.
Corollery 1.11

A hyperplane is a convex set.

Proof

Let X={X|cx=a} be a hyperplane and let X,,X, be any two points of this hyperplane.

Then cX,;=a and cXx,=o.Nowif 0<A<1, we have

C[AX +(1-1) X, |=C (A X,)+C(1-1)X,

=1 (CX)+(1-1)CX,
=ra+(1-1)a=a

Therefore the point 1 X, +(1-4)x, for 0<A <1 isin the hyperplane. Hence the hyperplane
is a convex set.

C 15 D
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Corollary 1.12

The closed half spaces H;={Xcx>a} and H,={X/cX<a} are convex sets.

Proof
Let X,,X, be any two points of H,. Then ¢X,>a and cXx,>a.If 0<A<1.
C[AX +(1-1) X, |=1(CX,)+(1-R)CTX,
>ha+1(1-LN)a=a

= A X, +(1-1)X, eH, . Hence H, is a convex set. Similarly H, is a convex set.

Corollary 1.13

The open half spaces H,={XcX>a} and H,={X/cX<a} are convex sets.
Proof
Let X,,Xx, be any two points of H,.
Then cXx,>a,CX,>a
If 0<A<1,wehave
C[AX +(1-1) X, |=2(CX,)+(1-R)TX,
>ha+(1-A)a=a
=A% +(1-2)X, eH,,VX,, X, eH,
=H, is a convex set.

Similarly H, is a convex set.
SUPPORTING AND SEPARATING HYPERPLANES
Definition 1.13 (Supporting hyperplane)

Let ScR" be any closed convex setand w € S be a boundary point. Then a hyperplane
cX=z is called a supporting hyperplane of S at w, if

i) c-w=z and

ii) ScH, or ScH_

where H, ={X:cx>z} and H_ = {Xx:cx<z}
Remarks

1) The supporting hyperplane need not be unique.

2) S may intersect the supporting hyperplane in more than one boundary points.




Theorem 1.14
Let S be a closed convex set. Then S has extreme points in every supporting hyperplane.

Proof

Let w be a boundary point of a closed convex set S.
Let cx=2z be a supporting hyperplaneat we S.Let B=Sn {7( |E§:z}.

Then B is a closed convex setand B=¢ for weB.
We claim that every extreme point of B is also an extreme point of S.

Let us assume to the contrary that an extreme point p of B, is not an extreme point of
S. Then there exist x,,X, € S, such that

Therefore cb=icx,+(1-A)ex,. e (i)

Since ¢cXx=z is a supporting hyperplane at w and X,,X, € S

cx,<zand cx,<z
or cx,2zand cx,2z L (i)
From (i) and (ii)

EBSXZ+(1—7\,)Z=Z or 6627\,2+(1—7\,)Z=Z

Therefore b is not a point of B.
This is a contradiction.

Therefore every extreme point of B is also an extreme point of S.

Definition 1.14 (Separating hyperplane)

Let Sand T be two non-empty subsets of R". The hyperplane H is said to separate S and
T if H is contained in one of the closed half spaces generated by H and T is contained in the
other closed half space. The hyperplane H is called separating hyperplane.

Remark :

A hyperplane H strictly separates S and T if S is contained in one of the open half spaces
generated by Hand T is contained in the other open half space.




Theorem 1.15 (Separating Hyperplane)

Let ScR" be a closed convex set. Then for any point y notis S, there is a hyperplane

containing y such that S is contained in one of the open half spaces determined by the
hyperplane.

Proof

We are giventhat y¢ S.

Since S is a closed set, there exist wc S, such that,
W-yl=min[x-Y e [W-y|<[x-yweSxes .. (i)

Observe that |w-Yy|>0 (Sisclosedand y¢S)
Let u be any point of S. Since S is a convex set
[AU+(1-2)w|eSforo<a<t L (ii)
From (i) and (ii)
Pu+(1-1)w-y| = [w-y]
> [W-y)er@-w)f = -y
= 2u-w W=y +20(W-Y)(U-W)2[w-y
= 2[u-w+2n(W-y)(U-w)>0

= Au-wf+2(W-y) @-w)>0.




Letting A—0, and c=(W-Y); we get

or c-u-c-y>c-w-c-y
or  c(u-y)2c(W-y)=[c’
Hence cu>cy.

Putting cy=z,wegetcu>z.

Thus Y lies on the hyperplane cx=z andforallueS, cux>z.

This completes the proof.
CONVEX FUNCTIONS
Definition 1.14 (Convex Functions)

Let S be a non - empty convex subset of R". Afunction f(X) on S is said to be convex if
for any two vectors x, and X, in S.
A% +(1=0) %, | <A F (X)) +(1-1)F(X,) 0<r<1
Definition 1.15 (Strictly convex function)

Let S be a non empty convex subset of gn. A function f (x) on S is said to be strictly

convex if for any two different vectors x, and x, is S.
A% +(1=0) %, | <1 F(X) +(1-1)F(X,) 0<r<1

A A

y y

o X

><V

(0]

Fig A : Strictly Convex Function Fig B : Strictly Concave Function

It follows from the above two definitions that every strictly convex function is also convex.
The graph of a strictly convex function has been illustrated in Fig. A.




Definition 1.16 [Concave (strictly concave) function]
A function f(X) on a non - empty subset S of R"is said to be concave (strictly concave)
if —f(X) is convex (strictly convex).

Clearly, every strictly concave function is also concave. The graph of a strictly concave
function has been illustrated in Fig. B.

><V

@]
<Y

Xy

o}
Fig C : Both Convex and Concave Functions FigD

It is possible for a function to be both convex and concave. For example, f(x)=X is
such a function (Fig. C). The function in Fig. D is strictly convex for x>, butnot strictly convex
for x<X,.

The following results are the immediate consequences of the above definitions :

i) A linear function z=cXx,xeR" is a convex (concave) function but not strictly

convex ( concave).

ii) The sum of convex (concave) functions is convex (concave) and if at least one
of the functions is strictly convex (concave) then so is their sum.

Note : In what follows we shall deal with convex functions only. However, all the results
remain valid if we deal with concave functions.

LOCAL AND GLOBAL EXTREMA

In the problems of constrained optimization, we are interested in determining a vector x
that minimises the function f (X) [or maximises - f(x)] subject to the ‘constraints’
g,(x)<0(i=1,2,...,m). The set of the vectors X satisfying these constraints is usually called the

‘feasible region’.
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Definition 1.17 (Global minima)

A global minimum of the function f (x) is said to be attained at X, if f(x,)<f(x) forall X
in the feasible region.

Example : Function f(x)=x?, subject to the constraint x,>0, has a minimum at x,=0.
Definition 1.18 (Local minima)

A local minimum f(X,) of function f(X) is said to be attained at X, if there exists a
positive ¢ such thai f(X,)<f(X) forall X in the feasible region which also satisfy the condition
|§0 —Y|S €.

Example :

The function f(x)=x2 - x3 subject to the constraint x,>0, has alocal minimum at x,=0.

Note that f(X) has no global minimum at all.

Note : The word extremum is used to indicate either maximum or minimum.
Theorem 1.16

Letf (x) be a convex function on a convex set S. If f(x) has a local minimum on S, then
this local minimum is also a global minimum on S.

Proof:

Let f(X) have a local minimum f(X,) at X, which is not a global minimum on S. Then,

there exists at least one x, in S(x;#X,) such that f(X,)<f(X,). Since f(X) is a convex function
on S, we have

F[A % +(1=1) Xo [<AF (X)) + (1= 1) (%)
Also  AF(X,)+(1=2)F(Ro ) <A (%o )+ (1= 1) F (%) =F (%o )
Thus A%, +(1-2) % |<f (%)

Now, for any €>0, we observe that

. €
[2:3%,+ (1=2) %o |- X | = 2% %o | <, ('f K<m]

Thus L X;+(1-4)X, will give a smaller value for f(X) in the ¢ - neighbourhood of X, ,

whenever L <min{%¢|[X; —Xo|} . This contradicts the fact that f(x) takes on a local minimum

at X, . Hence X, is a global minimal point.
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Corollary 1.17

If a function f(x) has a local minimum on a convex set S on which it is strictly convex,
then this local minimum is also a global minimum on that set. This global minimum is attained at

a single point.
Theorem 1.18
Let f(X) be a convex function on a convex set S. Then the set of points in S at which

f(X) takes on its global minimum, is a convex set.

Proof:

The result is obvious if the global - minimum is attained at just a single point. Let us
assume that the global minimum is attained at two different points X, and X, of S. Then

f(%p)=f(x2).

Now, since f(X) is convex,

Thus every point X=X, +(1-1)X, corresponds to a global minima. The set of all such
X is, obviously, a convex set.

Corollary 1.19

If the global minimum is attainable at two different points of S, then it is attainable at an
infinite number of points of S.

Theorem 1.20

Let f(X) be differentiable on its domain. If f(X) is defined on an open convex set S, then
f(X) is convex if

(%)= F(%)2 (%~ %) V(%)

forall x,,x, € S.

Proof:

We shall prove that if

f(Xy)—f(%)2(X, - %,)" VF(X,) then f(X) is convex.




Since X;,X, € S, X, =1 X, +(1-1)%, for 0<A <1 implies that x, € S.

Using the above condition for X, and X, , we have

f(x)-F(%)2(X-%) Vf(%) (i)

Similarly, for X, and X, ,

f(%)-f(%)=(%-%) Vi(X%) (if)

Multiplying (i) by 2, and (i) by (1-2) and then adding, we get

(%) +(1=2)F (%) 21 (%) + [ K] +(1=0) %] |V (%g) = %] V(%)

=f(Xo)+Xo V(X)X V(%) = (o)

Using the definition of Xy, this yields A f (X, )+(1-1)f(X,)2f[1 %, +(1-1) %],

which implies that f(X) is convex.

1)
2)

3)

4)

¢ 666 EXERCISES ¢ ¢ ¢ ¢

Define : Convex set, hyperplane, extreme point, convex combination of points.

a)

b)

Prove that a hyperplane is a convex set.
Show that c= {{x1,x2 }|2 Xy +3X, =7}gR2 is a convex set.

Forany point X,y e R" show that the line segment joining X,y i.e. [x:y]
is a convex set.

Show that S={(x1,x2,x3 )|2X1 =X, + Xg S4}gR3 is convex set.
Show that in g3 the closed ball x? + x5 +x3 <1 is a convex set.
Show that a hyperplane in R3 is a convex set.

Show that the closed half spaces H,={x/c x>z} as H, ={x/cx<z} are
convex sets.

The open half spaces {XcXx>z} and {XcX>z} are convex sets.

The intersection of any finite number of convex sets is a convex set.




5)

6)

7)

8)

b)

Show that S={(X1,x2,x3)|2x1—x2+x3£4,x1+2x2—x3£1} is a convex

set.

Let A be an mxn matrix and ; be on n - vector then show that

{i cR" A)‘(sB} is a convex set.

Let S and T be convex sets in rn. Then for any scalars o, prove that

aS+BT is aconvex set.

Prove that the set of all convex combinations of a finite number of points
Xqy Xo,..., X, IS @ CONVEX set.

If V is any finite subste of vectors in gn, then prove that the convex hull of
V is the set of all convex combinations of vertorsin V.

If A={X,y}<R" these prove that <A >=[XYy].

Prove that : A linear function z=c,x,+¢, X, +...+¢, X,, defined over a

convex polyhedron C takes its maximum (or minimum) value at an
extreme point of C.

Let ScR" be a convex set with a nonempty interior. If X, eC/S and

X, €intS then prove thatforeach 0< <1 the point A X, +(1-1)X, liesin
intS.

If ScR" is a convex then prove that int S is also a convex set.

Let S be a convex set with a non empty interior. Then prove thatcl S is
also a convex set.

Let ScR" be aclosed convex setand y ¢S . Then prove that there exist
unique X, €S such that [y—X,|=mn{ly-X=XxeS} .

Let XcR" be a closed convex set. Then show that for any point y notin

X. There exist a hyerplane containing y s. t. Xiis contained in one of the
open half spaces determined by the hyperplane.

a o o aq




UNIT
02 LINEAR PROGRAMMING

2.0 INTRODUCTION

In 1947, George Dantzig and his associates, while working in the US department of Air
Force, observed that a large number of military planning problems could be formulated as
maximizing / minimizing a linear function (profit / cost) whose variables were restricted to values
satisfying a system of linear constraints (e.g. 2x, + 3x, < 5). The term programming refers to
the process of determining a particular action plane. Since the objective function (profit / cost)
and constraints are linear, problems are called linear programming problems.

The general Linear Programming Problem (L.P.P.)

The general linear programming problemis to find a vector (x1, x2,...,xn) which minimizes
the linear form (i. e. objective function)

Z=CX;+Cy Xy +...+C X, . (2.1)
subject to the linear constraints

x,20(j=1,2,..,n) L (2.2)
and

y, Xq+8y, Xy +...+2

mn Xy =bm

Where the aij,bi and ¢; (i=1,2,..,m,j=1,2, ..., m)are given constants and m<n. We
shall assume that the equations (2.3) have been multiplied by (-1) where necessary to make all
b,>0. The function (2.1) is called objective function and system (2.2) and (2.3) are called
constraints.

The general L. P. P. is also denoted by : Minimize Z=zcj X;

j=1

subjectto x;>20,j=1,2,..,nand

Da;x=b (i=1,2,..,m)
j=1




Definition 2.1

Afeasible solutionto the L. P. P.is a vector x= (x1, x2,...,xn) which satisfies the conditions
(2.2) and (2.3).
Definition 2.2

A basic solution to (2.3) (or L. P. problem) is a solution obtained by setting any n - m
variables equal to zero and solving for the remaining m variables, provided that the determinant
of the coefficients of these m variables is non zero. The m variables are called the basic variables.

Definition 2.3

A basic feasible solution is a basic solution in which all the basic variables are non
negative.

Definition 2.4

A non degenerate basic feasible solution is a basic feasible solution in which all the
basic variables are positive.

Definition 2.5

A feasible solution which either maximizes or minimizes the objective function is called
an optimal feasible solution.

Theorem 2.1

The collection of all felsible solutions to the L. P. P. is a convex set.
Proof

Let F be the set of all felsible solutions to the system Ax=b,x>0

If the set F has only one point then obviously F is a convex set. Assume that F has more
than one point.

Let X,,x, € F. Then we have

AX,=b,X,>0 and AX,=b,X,>0

Let X, =A%, +(1-4)X, where X,,X, eF,0<A<1.
Then AX, =A[L X, +(1-1)%,]

=0AX +(1-L)AX,,

=Ab+(1-1)b=Db

Also since 0<A<1X,>0,X,>0 it follows that x,>0. This shows that X, eF and
consequently F is a convex set.
Remark

In general the convex set F is either (i) empty (ii) Unbounded or (iii) closed.
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The empty set occurs when the constraints of the set can not be satisfied simultaneously.
In this case the system yields no solution.

An unbounded setimplies that the region of fisible solutions is not constrained in atleast
one direction.

Finally closed set implies that the region of fessible solutions is a convex polyhedron
since it is defined by the intersection of a finite number of linear constraints.

Note : We shall rewrite the definition of basic solution.

Basic Solution

Consider a system of simultaneous linear equations in n unknowns AX=b(m<n),
r(A)=m. If any n - m variables are equated to zero then the solution of the resulting system for

m variables provided the determinant of the coefficient matrix of these variables is #0 is called
a basic solution, where r (A) = rank of A.

OR

If any m xm non singular matrix is chosen from A and if all the remaining n - m variables
not associated with the columns in this matrix are set equal to 0 the solution to the resulting
system of equations is called a basic solution. The m variables which can be different from zero
are called basic variables.

Theorem 2.2
Anecessary and sufficient condition for a point x>0 in F to be an extreme point is that
% is a basic feasible solution to the system AX=Db,x>0.

OR

Every basic feasible solution of AX=b is an extreme point of the convex set of feasible
solutions (of AX=b )and conversely every extreme point of the convex set of feasible solutions
is a basic feasible solutionto AXx=b .

Proof

Let F denote the set of feasible solutions of Ax=b .

Let X be a basic feasible solution of Ax=b whichis a n-component vector (x,,X,,..., X, )-
Thus both non basic (zero) and basic (some of which may be zero) variables are contains in x.
Suppose the components of x are so arranged that the first m components are the basic
variables corresponding to basic vectors and are denoted by x; Then,

X=(xXg,0) where o is an (n - m) component null vector. Also assume that the vectors of

the matrix A are so arranged that the first m column vectors correspond to Xz and we denote

this sub matrix of A by B (called the basic matrix) and we denote the remaining (n - m) column
vectors by R. Thus A= (B, R).
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Accordingly the system Ax=b becomes

(B, R) (X3,0)=b or Bx; =b .
By the definition of a basic solution B must be non singular.
Hence X, =B'b

To prove that every basic feasible solution is an extreme point of the convex set of
feasible solutions.

If possible assume that the two distinct feasible solution %, and X, exist such that
X=A%X+(1-%)X,, O<rA<t L. (1)

But X, and X, can be expressed as,

X, =[7<B“>,U1}|,22 =[XB ,uz] .......... 2)

where %V and x,'® are the first m components of X, and X, respectively and u,,u,
denote the last (n - m) component vectors of x, and X, respectively.

From (1) and (2)

[%0]=2 %" 0 +-n[x?8 L (3)
i e. [iB,a]z[uBW +(1-2) %20 T, +(1-x)UZJ
Therefore AU, +(1-A)u,=0 L. (4)

Since >0, (1-1)>0 and u,>0,u, >0, therefore from (4)

U1 =U2 :0 .......... (5)

Since X,,X, are in the set of feasible solutions,

AX,=b,AX,=b=BX;'" =b and Bx;”’ =b

This shows that x=X, =X, which contradicts the fact that x, =X, . Conseqgnently x cannot

be expressed as a convex combination of any two distinct points in the set of feasible solutions
and hence it must be an extreme point.

Conversely

Let X=(X;,X,,...,X,) be an extreme point of the convex set of feasible solutions.

We prove that x is a basic feasible solution of AX=b . By definition % will be a basic
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feasible solution of Ax=Db if the column vectors associate with positive elements of % are
linearly independent.

Assume that k - components of x are positives (remaining are zeros). Arrange the
variables so that the first k components are positive. Then

k —_—
> x,3;=b,x;>0,j=12,...k
j=1

If possible assume that the vectors a,, a,,...,a, are not linearly independent. So they

are linearly dependent and hence there exist scalars ; not all zero such that

Ay +h,a, +..+A g =0

Aj

=0 (7)

I
-

M-

or

From (6) and (7) it follows that for any §>0,

k k
ZXjﬁjiSijﬁjzg
=1 j=1

k J—
or Y. (x 823 =b

j=1
Thus the two points
i}‘:(x1+6x1,x2+8k2,...,xk+8kk,w) .......... (8)
(n - k) components
and Ko =(X =84, Xy =82, X, =824,0,0,..,0) L (9)
(n - k) components

satisfy the constraints Ax=b

X A=0
ol

Then the first k components of x3,x; will always be positive.

Since x;>0 select § such that 0<8<min{

Since the remaining components of x; and X, are zeros, it follows that X3 and X are
feasible solutions different from x . Adding (8) and (9) we obtain.

(29
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Xy +X5 =2(X4,Xp,--,%,0,0,...,0)
:>17‘+1?*—(x X5, %, 0,0,...,0)=X
2 1 2 2= 13 R0 X, Uy Uy =

Thus X can be expressed as a convex combination of two distinct points X3 and X, by

selecting A=—

This contradicts the assumption that x is an extreme point of the convex set of feasible
solutions.

Hence a,,a,,...,a, are linearly independent and hence X is a basic feasible solution.

We have obviously k<m . Because the number of linearly independent column vectors

cannot be greater than m which is the row rank = column rank = rank of a matrix A. If k =m then
the basic feasible solution is a non degenerate basic feasible solution.

Suppose k <m. Then the basic feasible solution is a degenerate basic feasible solution.
Select other (m - k) additional column vectors with their corresponding variables equation 0.

such that a,,a,,...,a,, are linearly independent.

Thus the resulting set of k + (m - k) = m column vectors is linearly independent.
The sub matrix of A formed by these m columns is non singular.
Theorem 2.3

If the convex set of the feasible solutions of AX=b, is a convex polyhedron then at
least one of the extreme points of the convex set of feasible solutions gives an optimal solution.

If the optimal solution occurs at more than one extreme point the value of the objective
function will be the same for all convex combinations of these extreme points.

Proof

Let x,,X%,,...,x, be the extreme points of the convex set F of the feasible solutions of the
L. P. problem, maxz=¢-X subjectto Ax=b,x>0.

Suppose X, is the extreme point among x,,X,,..., %, at which the value of the objective

function is maximum say z*.

% — _ — _
i Z =mMaxc-X;=C-X
l. e. 1<ick i m
\ J
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Let X, € F which is not an extreme point and let z, be the corresponding value of the
objective function.

Then ZO 26?0 ........... (1)

Since X, is not an extreme point it can be expressed as convex combination of the

extreme points X, X,,..., X, of F (where F is assumed to be bounded).

Then Xy =A, X;+A, Xy +.co+ Ay X,

k
where A, A,,...,A, 20 and 27‘51
i=1

. *
i.e. zy<z

This implies that the value of the objective function at any point in the set of fessible

solutions is less than or equal to the maximal value z* at extreme points.

Let X,,X,,...., X, (r<k) be the extreme points of the set F at which the objective function
assumes the same optimum value. This means.

Z* =6-i1 =6-i2 =...=6‘ir

Furtherlet X=24; X;+X, X, +...+4, X,A;>0 and 27»,- =1 be convex combination of there
j=1

extreme points.

Then C-X=C-[A Xy + Ay Xy +.ct A, X, ]
=0 (C-X)+hy (C- Xy )+ (T X, )=Mg Z" 4.+ 1, 2"
=(Aq+hy ++A,)Z
=z" Thus cx=2"

This proves the result.

Note
Consider the general L. P. P.

Max. z=CX subjects to Ax=b,x>0 where

(31
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Where rank of Ai.e.r (A) =m<n.

For convenience column vectors will also be represented by row vectors without using
the transpose symbol (T). So there should be no confusion in understanding the scalar

multiplication of two vectors ¢ and x.

We shall denote the j*" column of Aby 3;,j=12,...,n

so that A=[a,a,...,a,] (1)

Form an mxm non singular submatrix B of A called the basic matrix, whose columns
are linearly independents vectors. Let these column vectors be renamed as

B1:Bss-.-,B,, - Therefore

B=[B1BoBn] 2)

These columns of B form a basic of R™.

Now any column 8; of Acan be expressed as a linear combination of the columns of B.

Let A=Y Br+Y2Bot ot Y B
5]:(B11B2""’Bm)'(y1j’y2j""’ymj)

i.e. @a;=BY; where Vj=(yij,y2j,---,ymj)

i.e. 3 =BY; where ¥,=(Y1;, Y2 Ymj)

i.e. ¥,=B™"a; where y,(i=1...,m) are scalars.

The vector Y; will change if the columns of A forming B change. Any basic matrix B will

yield a basic solution to AXx=b . The solution may be denoted by m component vector as

Xs =(Xg1Xgs - Xam) Where X is determined from %, =B~'b. ... (4)
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Note that Xg; corresponds to the column §, of the matrix B. The variables Xg1, Xz ---

are called basic variables and the remaining (n - m) variables are non basic variables.
Correspondings to x; we have z=c, X,+C, X, +...+C, X,
Let G =(Cq1,Ce, - Cam)
where Cg; is the coefficient of the basic variable Xg; in the objective function.
So Z=CgiXg1+Cgy Xgs +...+CaXam + 0
2=(Ca---+Cam ) (et Xem)
Z=Cg Xg

Finally we form a new variable z; defined as

m
Z;=Y1;Cg1tY2Ca2t---t¥Ym;Cam zchi Yij
i-1

There exists z; for each a;.
Example 2.1
lllustrate the above definitions and notations for the following L. P. problem.
Maximize Z=X{+2%X, +3X; +0x, +0 X,
subjectto 4 x,+2X, +X; +X, =4
X, +2X, +3X; —X5=8
Solution :

Constraints equations in matrix form may be written as

3, 33,83 X b

4211 0 4
X3 =
123 0 -1 8

m




or AX=b

A basis matrix B=(B,,B,) is formed using columns a, and a, where

I _ |4
B1233=[3} 322312[1}

The rank of the matrix Ais 2 and column vectors a,,a, are linearly independent and

thus form a basis for R?. Thus basis matrix is

. o 28 4
Hence the basic solution is Xg1 :W:X?” XBZZH

variables are (always) zeroi. e. X, =x,=x;=0.

=X; and the remaining non basic

Also  cg,=coeff.of xg,=coeff.of x; =c; =3

Cg, = coeff.of xz, =coeff.of x,=c,=1

Hence the value of the objective function is

. 28/11) 88
2205&2(3’1)[4/11 JZW

Also any vector a,=(j=12,3,4,5) can be expressed as a linear combination of vectors

B;(1=12).




Let aj=Y1jB1+Y2;B2=Yqj85 +Y 34

_ 1 -4][2 11
O E s L1
111-3  1][2] |4/11] | yy

6
Hence Yi2 —ﬁ and 1 Yoo —ﬂ .

Now the variable z, corresponding to the column vector a, can be obtained as

_ 6/11
ZZZCB y2=(3,1>[ )

4 /11
[58,44).2,
11 1] 11

Similarly z,,Z;,Z, and z; can also be obtained.

Theorem 2.4

Consider a set of m simultaneous linear equations in n unknowns with n>m,Ax=b and

r(A)=m. Then if there is a feasible solution x>0, there is a basic feasible solution.

Proof

To prove this assume that there exists a feasible solution to Ax=b with p<n positive
variables.

Number the variables, so that the first p variables are positive. Then the feasible solution
can be written as

X
|
I

o
—~~
—
N

and hence
x;>0,(j=12...,p).x,=0,(j=p+1p+2...,n) ... (2)
Case (i)

Suppose the set 8,(j=12,...,p) is linearly independent. Then p<m.

If p = m the given solution is automatically a nondegenerate basic feasible solution.
Supposep <m. We know that this set of p linearly independent column vectors can be
extended to form a base {a,,a,,...,a,} of the column space of A.

In this case {X1,X2,---,Xp,Xp+1,---,Xm} where x;=0,j=p+1p+2,....,m is a degenerate

basic fessible solution.
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Case (ii)

Suppose the vectors ;(j=12,...,p) are linearly dependent. We shall show that under

these circumstances it is possible to reduce the number of positive variables step by step until
the columns associated with the positive variables are linearly independent.

When the a;(j=1,2,...,p) are linearly dependent, there exist a,; not all zero such that

Mo

=0 (3)

-

and we proceed to reduce some x, in

p pa—

Z xja=bx>0(j=12...0) (4)
to zero.
Suppose some vector a, of the p vectors in Za :5 is expressed in terms of the

j=1
remaining (p - 1) vectors.
_ o _

Thus a, =—Zj¢ra—i a (5)

substituing (5) in (4) we obtain

sz:( J L (6)

J¢r

Here we have not more than (p - 1) variables. However we are not sure that all these
variables are non negative (In general if we choose a, orbitrarily some variables may be negative)

We wish to obtain

X120 (j=1,2,.0p) jE0 (7)
a

For any j for which a;=0 (7) will be satisfied automatically. When o; =0 we have,

X; X
a_J_a—rZO if a’j>0 .......... (8)
(36 )




X _ X a<0 (9)
a; o,
We select a, such that
X,. _ min i
o {aj ocj>0} ........ (10)

(Note that ZOLjaj =0=> atleast one a;#0 and hence ;>0 for some )

p o - —
Thus a fessible solution Y| X, =X - |3 b

— ]

}¢r
is obtained with not more than (p - 1) non zero variables.
These variables are also non negative. (since o;>0)

If the columns associated with the positive variabls are linearly independent by case (i)
we have a basic feasible solution. If the columns associates with the positive variables are
linearly dependent we can repeat the same procedure and reduce one of the positive variables
to 0. Utimately we shall arrive at a solution such that the columns corresponding to the positive
variables are linearly independent. (Note that a single non zero vector is always linearly
independent)

OR
Theorem 2.5
If a linear programming problem
max. z=cX s.t. AX=b,Xx>0

has at least one feasible solution then it has at least one basic feasible solution.
Proof
Let

)_(0 :(X1,X2,...,Xk,0,0,...,0)
be a feasible solution to the L. P. P. with positive components x,,x,,...,X, .

Let a,a,,...,a, be the first k columns of A (associated with the positive variables

X;, Xp,... X, Fespectively)

Then by hypothesis

X;a;+X,a,+...+xa=b (1)




Case (i)

Suppose a,,a,,...,a, are linearly indepedent. In this case X, =(X,X,,%,0,...,0) is a
basic fessible solution.

Case (ii)

Suppose a,,a,,..., a, are linearly dependent.

So there exist scalers L,,....,A, notall 0 such that
A, 3@, +...+ 1, a =0 with atieast one 1;#0 and hence assume this 2;>0. ... (2)
max }\‘ . . . .
Let v="100, {—’},kj >0 (i.e. m +x is taken over those j fro which A;>X)
<isk )3
J

Obviously v >0 for x;>0 (j=1, 2, ..., k) and at least one A;>0.

1
Multiply (2) by v and then subtract from (1) to get

L a=b

X;a; - i %

k
j
=1

<|=

k
=1

J

J

:Zk:[x-—ﬁJé- =b
T e T T (3)

=

3;:()(1 _ﬁ,xz _7\‘_2’---1Xk —}L—k,O,O,...,Oj
\' \' \'

is a new solution of Ax=b.

A Mo
We have v>—orx;>—(1<j<k)
X, v
J

The new solution >A< satisfies non negativity restriction.

A A
Since X; —7’=0 for atleastone |, x is a feasible solution with atthe most k - 1 positive

variables. All other variables are 0.

If the columns associated with the positive variables are still linearly. dependent, repeat
the above procedure. Cuntinuing in this way we get the column vectors ossociated with positive
variables which are linearly independent. Thus by case (i) we get a basic feasible solution.

38 )
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Example 2.2
If x,=2,x,=3,x,=1is afeasible solution of a L. P. P. problem
max. Z=X;+2X%X, +4 X,
subjectto 2x,+x, +4x; =11
3X+X, +5%x3=14
X4y X9, X5 20

find a Basic Feasible Solution

Solution :

We have Ax=b

X
a2 4] 5 5[
where I3 1 50 %7*2 P74

X3
The given feasible solution is x,=2,x,=3,x, =1.

Hence 23a,+33,+13,=b

__2__1__45_11
Where 31—3,2—1,3—5,—14
Step (2)

The vectors a, a,,a; associated wsith the positive variables x,,x,,x; are linearly
dependent so one of the vectors is a linear combination of the remaining two.

Let a;=A,a,+A,a, Thus

R HEY

Maximum no. of lin. independnet columns is less than 3 since row rank of coefficient

matrix Ais 2.
41 |2hq+0,
Now | 5|71 35, 42,

=20 +A,=43%,+A,=5

(39 )
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=>A=11,=2
=az;=a,+23a,

i. e. a,+2a,-a;=0
Where h=TA,=2,h;=—1
Step (3)

Now determine which of the variables x,,x,,x; should be 0. For this find

A
v=max(—’}kj >0
X.

J

—max| 2t 22 i
= X, %, (since Ay =1>0, A,=2>0))

12| 2
=max{—,—r=—
23] 3
o AV V7 SV I .
X=Xy v’X2 v’X3 v is a reduced solution where
X_hzz_izl
Yy 2/3 2
x—&=3—i=0
Z 2/3

Step (4)

A (1 5
Now the solution X:(E’O’Ej is to be tested for basicness. The determinant of the

matrix of the of column vectors corresponding to x,,x; is

C 20 )
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2 4
#0
™

Obviously a,,a; are linearly independent.

A 1 5
Hence X= E’O’E isaB.F.S.

Theorem 2.6

Leta L. P. P. have aB. F. S. If for any column 3; in Abut not in B:{b1,b2,...,5m} (basic
vectors for columns in A) we have =Y y;; b, withatleastone y;; >0 (i=1,2,..., m)then we
i=1
can find a new B. F. S. by replacing one of the columns in B by 3;.

Proof

Considera L. P. P. problem max z=¢X subjectto AX=b,x>0 where Ais mxn matrix
m <n and r (A) =m, where r (A) = rank of A.

Let X, be a BFS of the LPP, where B={b;,b,,...,b, } forms a basis for the columns of A.

For any column 3; in A (@, B), we have

5,‘ = 21: Yij b,
Suppose some Y, >0

5': yi'6i+yr'6r
Then : ,; . .

i=r

_ éj 1 & —
=>b=—-—)> y;b
yrj yrj ; J

i=r

Hence BX, =b gives b=) X b,
i=1

-




A
The new solution xg is also a basic solution with the basic variables.

A y . .
XBi=(xBi—xBrJJ,|=1,2,...,m, i£r
r

A XBr
and Xgr= _
r
Case (1)
Let Xgr =0

In this case the new set of basic variables is obviously non negative, since we have
assumed the existance of a BFS, X;.

Case (2)
Xgr 20

We have Y,;>0

For the remaining y;; (i=r).y;;=0,y;;>0 or y;;<0 .
If y;;=0 for some i, Xsi=Xg; >0,Xar >0

If yi;<O still xe1>0 and Xar 0.
Suppose Y;;>0

’ Vi o
We require Xai=Xg; —Xg, —-20,i=r
r]

Xgi > Xy

Vi Yrj

So we must have , Where y;;>0.

22 )
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yrj

Xo
ZBi yij>0
y.

XBr ' i
We select rin such a way that =m|n{ .
1]

Then we have aB. F. S.
Example 2.3

Given a basic feasible solution x; =4 and x,=8 tothe L. P. P.
max. z=X,+2X, subject to

X +2X, +X53=4

Xy +4X,+X,=8,

obtainanewB. F. S.

Solution :
We have AX=b
12 1 0] _ —
Where A=_1 5 0 1} =(X1X2,X3’X4)’b=(4’8)

The Y, s for any column &; in Abut notin B are

ey ]
SN R

Note that a,-B'a,=y, b,+y,b, and

a, =B’ a, =Yy B1 +¥Yo B2 .

C43)
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Since y,,=1y,,=1>0 we caninsert @, in B. We now select p_=b_for replacement by

a, which corresponds to the value of r determined by the minimum ratio rule :

X, | Xni
Br _ imln {i,yn >0}

Yr1 i1
.| XB1 st}
=min| —,—=
Y11 Y21
i X
=min i,§:|=4=ﬂ
11 Y
=r=1

Hence we remove B, and enter @, in place of §,=b,.

The new basic matrix becomes

I-3’2(51’[32) (Orﬁ’:(BAwBAz}A125’ AzzﬁzJ

A A /\_1 _
We can now find the basic feasible solution Xs either by using the result Xxs =B b or by
the transformation formulae.

A Yij .
X8i =Xg; — Xg, —

A Xgr N
and XBr=—— fori=r=1, X =Xs1
rj

Now B, =b, is removed means x, will not be a basic feasible solution. In its plane x,

corresponding to a, willbe a B. F. S. and X;=Xg;.

Using the formula

3
Xl =——=—=
1

A XB1 X i=4
11 1




o 1
XB?Zst_Xm&:XA; —X3&=8—4x?:4

Y11 Y14
Hence the newB. F. S. is
Xy =Xg1=4,%X,=0,X3=0,X, =Xz, =4
Theorem 2.7
If a linear programming problem,
Max. z=CX,,s.t. AX=b,x>0,

has at least one optimal feasible solution, then at least one basic feasible solution must
be optimal.

Proof

m+n-k

=0 ‘ \
Let X" =| X4, Xp,...,% 0,0,...,0

be an optimal feasible solution to the given linear programming problem which yields
the optimum value

If a,,a,,...,a, arelinearly independent then x0 is an optimed BFS. Otherwise a,, a,,...,a,

are linearly dependent and there exist A, not all 0,

k
such that 2_*13=0 where at least one A>0 0 (2)
=1
Aj
Let V=max|—|( (3)
1<j<k Xj

Obviously V > 0, because X;>0 and at least one A;>0(1<j<k)).

1
Now multiplying (2) by v and subtracting from (1) we get

k . 1 k _ _
ZXJ a,-—vZM a=b
j=1 j=1




A A A A _
( ! 2 X —TK,O,O,----,OJ is a new solution of Ax=b .

V>—kj kj>0' 1,2 k
>2=x-—1>0j=12,.....,
From (3) V=3, =%~ =%

J

A A
Thus x is a feasible solution and since X; —7’=0 for at least one j, | contains at the

most k - 1 non zero variables other variables being zero.

If the column vectors associated with the positive variables are still linearly dependent
we repeat the above process and finally get the solution which is a BFS. So without loss of

generality the solution >A< will be assumed as a basic feasible solution.
We have to prove that >A< is also optimum solution.

The value of the objective function corresponding to this solution >A< will become

k
. *
(since z —ZC,- X )

But, for optimality 7 must be equal to ;. Hence | will be optimal solution if and only if

we prove,

k
> ¢;2,=0 in equation (5).
j=1
We shall prove this by contradiction.
If possible, let us assume that

k
ZCJ-XJ-#O
=1




Then, there will be two possibilities :

k
1) :E:Cjkj>>0
j=1

k
2) :E:Cjkj<10
j=1

Now, in either of these two cases we can find a real number, say r, such that

k
chjkj>0
J:

(in first case, r will be positive and in second case r will negative)

k
e XS (Fg)>0 (6)
=
k
Now adding -Z'Cj Xj to both sides on (6 ), we have
=
K K K
ZCJ(”‘J)"’ZCJ XJ>ZCJ X]
j=1 j=1 j=1
k
or (ka2 (7)

m+n-k

—
Xy +T Ay, Xo +F Ay, X +1A,,0,0,...,0

Now, is also a solution for any value of r which

can be observed by multiplying equation ( 2 ) by r and adding to equation (1)
Furthermore, there exist an infinite number of choices of r for which the solution

m+n-k

—
X0 Ay X +1hgp X 104, 0,0, 0 atisfies the non - negativity restrictions also.

We now proceed to prove this statement. To satisfy the non - negativity restriction, we
need

Xj+r}\.j20,j=1,2,...,k




We have

X .
r>——if;>0
A
Xi .
r<——,ifx;<0
or A
r unrestricted, if ;=0

Thus, we observe that if we select r satisfying the relationship

mjax _ﬁ <r< mjin _ﬁ 8
(}\j>0) }\‘J (}\j<0) }\‘J .......... ( )

then X;+ri;>0 forj=1, 2, ...., k. We note that if there is no j for which ;>0 then there
is no lower limit for r and if there is no j for which %;<0, then there is no upper limit for r.

Furthermore,

T (260w T (2]
_4 an _4
(%>0) 7‘1’ (»<0) 7‘1’

This proves that when r lies in the non - empty interval given by ( 8 ), then the infinite
number of solutions.

m+n-k

—
Xy +T Ay, Xo +F Ay, X +1A,,0,0,...,0

satisfy the non - negativity restrictions also.

k
Now, from ( 7 ) we conclude that the left hand side Z o (X +ry) yields the value of the

i=1
objective function which is strictly greater than the greatest value of the objective function. This

k
contradiction proves that Zijj:o and hence )A( is optimal.
j=1

Note : By what we have proved we have the result :
If the linear programming problem :
Max. z = cx, subject to Ax = b, x>0

has feasible solution, then it has at least one optimal basic feasible solutions.

48 )
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Reduction of any feasible solution to a basic feasible solution

Example 2.4

If x,=2,%x,=3,x;=1, be afeasible solution of linear programming problem :

Max. z=x,+2X, +4X,,

subject to 2X+ X, +4 x5, =11,
3X;+ X, +5%3 =14,

X4 X0, X520,
then find a basic feasible solution.
Solution :

We express the above system as

a, a, a, b
X4
2 1 4 11
X, | =
3 1 5 14
X3
or X, 8+ X, 8y + X3 85 =b

But the given feasible solution is x,=2,x,=3,x,=1. Hence 2a,+3a,+1a,=b

5—2 5—1 5—4 b=
Where 17| g p 3274 3= 50 °7

11
14

Since the vectors a,,a,,a, associated with the corresponding varialbes x,,x,,x, are
linearly dependent, therefore one of the vectors can be expressed in terms of the remaining two.

Thus,

a;=A;a,+1,a,.50 A,a,+A,a,+A;a;=0,where A;=—1 ... (1)

-4_—k 2 ey 1
or _5_—13 2| 4

(4] [2h+2,
or T 3h 42,

which gives
2hi+h, =4,

3A,+A,=5

C 29 )




Solving these two equations we get A,=1,A, =2. Now substituting these values of A,

and A, in (1), we get the linear combination

k
a,+2a,-a,=0 or _Z,Maj:o .......... 2)
J:

Where A, =1A,=2,A;=-1

Now we have to determine which one of the three variables (x1,x2,x3) should be zero.

max .
v=1<j<3—L=max {hk—zk—e’}
Xy X X3

v v
1 1
Then, X1———2—2—§,
3
Ay 2 .
X, _T=3 _7=0 (which was expected also),
3
Xg——==1-| = |==
oy 2| 2
3

A (1 5 _ 12 _ 4
Now this solution X:(E’O’EJ will be a basic feasible if the vectors a1 =[3} and 33 =[5}

associated with non - zero variables x, and x, are linearly Independent.

Obviously a, and a, are linearly independent.

Hence the required basic feasible solution is




. 1(1 0 1 +5 41 111
To verify, we have 203 1172157114

Example 2.5
Show that the feasible solution x,=1,x, =0,x, =12z=3 to the system
X+ X, +X53=2
X=X, +X3=2
2x,+3X, +4 X5 =z(Min) is not basic.
Solution :

First, we express the given system of constraint equations in matrix form :

X4

1 1 1 2
X, | =

1 -1 1 2
X3

Therefore, according to our usual notations, we have

We show that the feasible solution x,=1,x, =0,x; =1 is not basic.

So, we prove that the vectors

SHEE

are linearly dependent.

Since there exist non - zero scalars A, =11, =-1suchthat },a,+1,a,=0

e (el

the given feasible solution is not basic.
Theorem 2.8

Considera L. P. P. max. z=C-X, such thatto Ax=b,x>0.

Let A:(§1,a2,... a ) and B=(B4,B,,....Bn) be a non singular submatrix of A.

TFa+m

(51
N——

\ i




Assume that a non - degenerate basic feasible solution X, =B'b to Ax=Db vyields a

value of the objective function z=¢; X; . If forany colunm @; in Abut notin B we have ¢;-z;>0,

and if atleast one y;; >O(i= 1,2,...,m) where 51‘ = Z Yij B , then we can find a new basic feasible
i=1

solution by replacing one of the columns in B by a;.

Proof

We shall obtain a new basic feasible solution by replacing one of the vectors (say @;)in

Abut not in B by some vector in B (say f, ). Obviously,
a#p; (i=1,2,..,m)

Since @; can be expressed as the linear combination of vectors in B, therefore

5j=;yij[3i

or 5j23/11'[31"‘3/21'[32 +""+yerr+"'+yijm .......... (1)
Now, by using the replacement theorem, a; can replace B, and still maintains the basic

matrix, provided Y,;#0.

Assuming Y,; #0, where Yrj >0,5,- can be written as
Bl zzyij Bi+YriB:
i=1
Solving the equation (2) for ., we obtain
1 - Y
Br =—2a;— _Bi
Ve Z‘ Yo (3)

i=r

Also, we have BX; =b

or (B1,B2,....,Bm)(XB1,XE,2,....,xBr,....,me)=b
or XB1B1+XBZB2+'"+XBrBr+"'+XBmBm:b

ZXBiBi +Xg B, =b
i—1

i#r

or




Substituting the value of B, from (3) in (4), we obtain

;XBi Bi+Xg, %51'—2‘,&& =b

rj i=1 yrj

i#r i#r

m A A
> XeiB+ Xera,=b
or i—1

i#r

- Yij . r
Where xBi:xBi—xBr—,|:1,2,...,m,|;tr’

]

;\(Br :&(fori:r)
yrj

Comparison of ( 5 b ) with (4 ) indicates that the new basic solution of Ax=b is given

by

A A A

XB = XBi,XBr),iz'I,Z,...,m;i;tr

A A A A
=| XB1,XB2,--+y XBry...., XBm

VAT Yo Xp,
=| Xg1 = Xgr —» Xg2 ~ Xgr -

yrj yrj -’yrj o

and other non - basic components are zero.

For the new basic solution to be feasible, we require

A
xgi>0,i=12,.....m

Yij . .
Hence Xg; —Xg, —>0,i=12,...,m,i#r and
r]

X
Br > 0
yrj




We see that (7 b ) holds as Y;;>0 and since we start with a non - degenerate basic
feasible solution, Xg;>0,i=12,....m_If y,;>0 and y;<0(i#r), then (7 a) is satisfied. If y,; >0

and y;>0(i=r), then equation ( 7 a ) is satisfied only when

Xgi  Xar
vy o0 (dividing (7 a ) by ¥;;>0)
1) rj
ey, e
or YR
XBI’ XB|
or yrj ylj

Xgr .| Xg;
=Min| —
or Y i |:yij }

This, if we select r such that

X Xp:
V= Br :M|n|:£’y”>0:|
Yri : ij

then column B, will be removed from basis matrix B to replace a; so that the new basic
solution will be feasible. This completes the proof.

Note

1) We denote the new non - singular matrtx, obtained from B by replacing B, with

a; by
Bz(BuBz,---,BmJ , Where

B—p,ivrB -3
2) If the minimum in ( 8 ) is not unique, the new basic solution will be degenerate.
In this case, the number of positive basic variables will be less than m.

The procedure in above theorem can be explained by the following numerical
example.




Example 2.6

Given the non - degeneate basic feasible solution x, =4 and x, =8 to the following LP
problem

Max. z=x,+2Xx,, subjectto
X +2X, +X53=4
X, +4X,+%X,=8
obtain the new basic feasible solution.

Solution :

The given basic feasible solution can be expressed as Bx; =b

=[o Wla)-[a

Here, we have

SRR

The Y;'s for every column a; in Abut notin B are

oo 001
s

Since y,,;=1y,,=1are >0, we caninsert a, in B. We now select B, for replacement by

a, which corresponds to the value of suffix r determined by the minimum ratio rule :

X Xg:
BC _Min| =L,y >0
Yr1 ! i1




Therefore,

Xg . | Xg1 Xp2
r:Mln[——

Yrq Y11’Y21
Br [4 8} 4
=—= - ===
Vi1 11 1
X X
Br _XB1_ .4
Y1 Y14

Hence we remove ;.

The new basis matrix becomes

A

B=(B1’sz=(51’[32) (because a, is replaced by B,)

(10
11
A /\_1 _
Now we can find the new basic feasible solution )A(B either by using theresult xs =B b
or using the transformation formulae (7 a ) and ( 7 b) of Theorem 2.8.

Hence the new basic feasible solution is :

So that the solution to the original system of equations becomes

we note that, if we had inserted a, instead of a,, the new basic feasible solution would

have been degenerate. We have developed the procedure for obtaining a new basic feasible
solution. Now we determine the value of the objective function corresponding to this new basic

feasible solution. We verify, whether 2>z where 2 denotes the new value of the objective

function. For this, we prove the following theorem.




Theorem 2.9

Assume that we have a non - degenerate basis feasible solution xg =B'b to AX=b

which gives a value for the objective function z=c;x; . Assume further that we have obtained a

new basic feasible solution )A(B =B'b to Ax=b by replacing one of the columns in B by a

column @, (for which y,;>0)inAbutnotinB. If ¢;~z;>0, the new value (denoted by g)of the
objective function will be greater than z, where z;=Cg ¥; and y,=B™'g,.
Proof

The value of the objection function for the original basic feasible solution is

Z=Cg Xg

:(CB1’CBZ"""CBm) (XB1’XBZ"""XBm)

or ZZECBIXBI .......... (A)

The new value is given by

N N N

Z=CB XB

M A A M A A AA
ZZCBl XBi = ZCB|XB|+CBr XBr
i=

or

I¢I’

AN

AN
where csi = Cg, (i#r), Car =C;

m A A
ZCBi Xgi +C; XBr

N>

Therefore,

¢I’

Subsituting the values of new variables )A(Bi and )A(Br from (7 a)and (7 b )of Theorem

2.8 into the last expression, we get

N Yij Xgr
Z=) Cgi| Xgi—Xg; — |+C;
z ( Bi y J i Yo oo (B)

rl

yr'
Since the term for which i =ris Cgr (XBr — Xg¢ —JJZO




we can include it in the summation ( B ) without changing 2 so that

Xg Xg
=z-—7, “c;
yrj yrj
XBr
:z+(cj—zj)
yrj
_ XBr
=z+(cj —zj)v, where V= Yoo e (©)
rj

Now, from ( C ) we observe that the new value 2 of the objective function is the original
value z plus the quantity (CJ- —Zj)v. Since v>0, and C;—z; is greater than 0. The value of the
objective function is improved.

Example 2.7

In worked example (2.6 ) show that the new value of the objective function is improved.
Solution :

Since ¢,=1.c,=2,¢c,=0,c, =0, then the original solution x; =4,x, =8,x,=x,=0 gives

z=1x0+2x0+0x4+0x8=0

In the new basis feasible solution x, replaces x,

1
Since Z1:CBy1:(0’0) 1 =0

N

and since ¢,-2z,=1-0>0, ; should exceed z ( = 0). From ( C ) we get




Theorem 2.10
If we select the vector a, to replace B, in B the suffix k can be selected by means of
Ck —Z zMjaX(Cj - Zj)’cj -2;>0 50 that the value of the objective function

zis increased as much as possible for the new basic feasible solution.

Proof
In the previsous Theorem we have obtained the improved value of z given by

A XBr
z:z+—(cj—zj)
yﬂ

Thus to give maximum value of 2 we should select that value of j for which the term.

XBr

yﬂ

(Ci - Zj) is maximum.

XBr

But the computational difficulty arises while obtaining Max. (cj —zj), because we

yﬂ

XBr

yﬂ

have to compute for each a; having ¢;-z;>0 by the rule

X Xo:
BT —_Min ﬂ,yij >0
Yri ] i

But the change in objective function depends on

XBr
yﬂ

and C;—z; both.

XBr XBr
Thus to avoid large number of computations of Yo we can neglect the value of v
r r

Hence the most convenient and time saving rule for choosing the vector a, to enter the

basis B consists of selecting the largest C; —z;. This is equivalent to choosing the vector a, to

replace B, by means of

C =% zMjaX(Cj_Zj) , for ¢;-2,>0.




Note

The following are the advantages of using the above test.

1. The choice of vector a, to enter the basis B by using above criteria gives the
greatest possible increase in z in each step.

2. More than m iterations will not be needed to reach the optimal basic feasible
solution.

3. It saves a time by giving the required solution in the least number of steps.

Definition 1 : Slack Variable

If the constraint has ‘<’ sign then in order to make it an equality we have to add something
positive to the left side of constraint. The non-negative variable which is added to the left hand
side of the constraint to convert it into equation is called slack variable.

e.g. X4+ X, <3 then x;+ X, + X3 =3 and x,is slack variable.

Surplus Variable

If a constraint has ‘>’ sign then in order to make it an equality we have to subtract
something non-negative from left hand side of inequality.

Definition

The positive variable which is subtracted from the left hand side of the constraint to
convert it into equation is called surplus variable.

e.g. X4+ X, >3 then X, + X, —X3 =3 and variable x, is surplus variable.

Conversion of given LPP into standard form of LPP
Step 1
Convert constraints into equations except non-negativity of variable.
Step 2
Make right side of each constraint non-negative.
(multiply equation by (—1) if necessary)
€.9. Xy +Xy=-3=X;-X,=3
Step 3

Make all variables non-negative if variable x is unrestricted in sign write x — x'— x"
where x',x">0.

Step 4

Convert objective function in maximization form.

Min f(x)=Max[—f(x)]




Example

Express the following LPP in standard form.
Min z = Xy —2X5 + X3

Subject to
2X1+3Xy +4x53 24
3Xq+5X, +2X3 27

X4, X, 20, X, is unrestricted in sign.

Step 1
2X1+3Xy +4X3 — X4 =4
3Xq+5Xy +2X3 — X5 =7
Step 2
—2X1—3Xy —4X3 + X, =4
33X +5Xy +2X3 — X5 =7
Step 3
X, is unrestricted. o Xg =Xy — Xg
Min z = x, —2x, +(x'3 —x;)

s.t. —2x1—3x2—4(x'3—x;)+x4:4
3X4 +5X, +2(x'3 —x;)—x5 =7
x1,x2,x'3,x'\;,,x4,x5 >0

Step 4

Min z = x; —2x, +(x'3 —x;)

=Max z*x = —X; + 2X, —(x'3 —x;)
Thus standard form is

Max z* = =X, + 2X, — X3 + X3

-




Subject to
-2%4 — 3X, —4x'3 +4x; +X4=4

3%, +5X, +2X5 — 2X5 — X5 =7

x1,x2,x'3,x'\;,,x4,x5 >0
Example 2.8
Solve the L. P. problem.

Max. z=3x,+5X,+4Xx,
subjectto 2x,+3x,<8
2X,+5x%5;<10
3X+2X, +4x;<15

and X, Xp, X3 20

Solution :

The inequalities are converted into equalities by introduction of slack variables x,, x5
and x4 as follows.

2X,+3%X,+0.X5 +Xx, =8
0X;+2X,+5X;+X%5=10
3X +2X, +4 X5 +Xg =15
Take x,=0,x,=0,x;=0
Hence x, =8 and x; =10,x, =15 which is the initial basic feasible solution.

Now we construct a starting simplex table. Here we compute A; for all zero variables

Xj,j=1,2, 3 by the formula.
A;=C;-GCgY;
A=C,-Cp Y,
A,=3-(0,0,0)(2,0,3)=3
A,=C,-CpY,

A,=5-(0,0,0)(3,2,2)=5

<D
N—_—




Ay=C,-Cy Y,
Ay=4-(0,0,0)(0,5,2)=4

Since all A; are not less than or equal to zero therefore the solution is not optimal. So
we proceed to the next step.

To find incoming vector :
Since A, =3 is max. of A;,A,,A; therefore a,(=y,) is incoming vector.

Starting simplex table 1

B Cg Xg Y, Y, Y, Y, Ys Ys min ratio

X8

(o) | (o) | (ea)| (B1) | (B2) | (Bs) Y,

Ys O 15 3 2 4 0 0 1 ?
Z=Cg Xg X; 0 0 0 8 10 15
=0 C; 3 5 4 0 0 0
A, 3 5 4 X X X
T \J

To find outgoing vector

Since a, is incoming vector therefore we consider the ratio

Xg1 _(XB1 Xg2 Xssj
=N, N, N,
Yy (Y2 Yo Ya

min | XBi Y. >0
_— T >
We have Y I Yi2 2
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Hencer =1

i. e. B, is the outgoing vector.

Since a, is incoming vector and B, is outgoing vector, therefore the key element is

y12(=ay,) as shown in table 1 which is equal to 3.

In order to bring B, in place o, we make the following intermediate tables.

xe | Yo | Yo Ys | Y. | Y5 | Ye

Y, 8 2 3 0 1 0 0

Ys 10 0 2 5 0 1 0

Y, |15 |3 |2 |4 [o |0 |1

Divide key element by 3 to get unity at this position and then subtract 2 times of the first
row (obtained after dividing by 3) from the second and third row.

Xg Y, Y, Y, Y, \£ Ye
8 2 1
Y, — g 1 0 g 0 0
14 4 2
Ys - - g 0 5 - g 1 0
v, | 2012 o |4 | 20 |1
6 3 3 3

Now we construct second simplex table in which B,(Y,) is replaced by a,=(y,).




Second simplex table 2

B Cg Xg Y, Y, Y, Y, Ys Y min ratio
X
(B) (B2) | (Ba) | .
Y 5 § Z 1 0 1 0 0
2 3 3 3 B
14 4 2 14 .
— -— - ——min
Ys 0 3 3 0 3 1 0 15
vlo |28 o |a|-2]0 |1 |2
6 3 3 3 12
8 14 29
Z=CgXg X; 0 3 0 0 3 3
C| 3 5 4 0 0 0
N , | 5
i 3 X 3 X X
T l
incoming outgoing
vector vector

To test the optimality of the solution compute A; for all zero variables x,,x; and x, .

2 45
A;=c,—cz3 Y,=3-(5,0,0)| =,——,—
1 1 B "1 ( )(3 3 3)
10 1
Ay=Cy—Cg Yy =3-—=—
1 1 B "1 3 3

Ay =Cy —Cgys =4—(5,0,0)(0,5,4) =4-0=0

1 22

Ay=Co—CsY,=0-(5,0,0)| =,-=,=

4 4 B "4 ( )(3 3 3)
5
M3

Since all A; are not less than or equal to zero, therefore this solution is also not optimal.
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Since A, =4 is maximum of the A;'s, a; =(Y;) is the incoming vector.

XBr  min| XBi |
Also Yr3:i |:Y_i3’Yi3>0
. _st Xss_
=min| =—,——1 (since Y,, =0
| T3 Y33_( 3 )
.| 14 29} 14  Xg,
=min| —,— |=—=—=
15°12] 15 Y,,
=r=2

Therefore B, (=ys) is the outgoing vector and y,, =a,, =5 is the key element.

In order to bring y, in place of B, (=ys) we make the following intermediate table.

xs | Y | Yl Yo | Yo | Ys | Y
v, | 212 |4 0 o 0

2 | 3 3 3

v, | 20210 |[5]|-2]1 |o

5 3 3 3

Y | 212 o |4 | -2]0 |+

6 3 |3 3

Divide the key element by 5 to get 1 at this position, then subtract 4 times of the second
row thus obtained from the third row.

Xg Y, Y, Y, Y, \£ Ye
Y § Z 1 0 1 0 0
2 3 3 3
v, | 20 2o |1 | 221 (o
5 15 5 151 5
89 41 2 4
Ye E E 0 0 _E —g 1

The third simplex table in which B, (=Ys) is replaced by Y, is as follows




Table 3

B Cg Xg Y, Y, Y, Y, Ys Y min ratio
Xg
(=B) | (=82) (=Bs)| .
Y 5 § Z 1 0 1 0 0 4
2 3 3 3
v, |4 | 21 2o |+ [-2|1 |o |-Ire
5 15 15 15| 5 29
Y, 0 S 1A 0 0 R .S 1 —min—>
6 15 15 15 05
X 0 § E 0 0 g
! 3 15 15
C| 3 5 4 0 0 0
11 17 4
A. — AL
HEAE X 15| 5 | *
T d
Incoming Outgoing
vector vector

To test the optimality of the solution again compute A; for all zero variables x,,x, and

2 4 41

A1 =C,—Cg Y, :3—(5,4,0)(3, _G’ﬁ)

_5_(10_16)_11
a 3 15) 15

_5 (50-16)_45-34
a 15 ) 15

1 2 2
A4 =C,—Cj %:0—(5,4,0)(5,—G,—G)

5 8 17 14
A =] —— —— :——,A = — =0_ 5,4,0 0;_’_ =-
R ( 3 15) 15445 =08 ~Ca Yo =0~ )( 5 5) e
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4
Also As=C5—C. Y5 :—g

Since all the A,-'S are not less than or equal to zero, therefore the solution is not optimal.

Since A, is maximum of the A;'s , it follows that, a,(=Y;)is the incoming vector.

Xer min Xei Y.>0
= T >
AISO Yr1 i Yi1 1
. | YB1 Xg3
=min —, .o H H
i [Yﬂ Y31:| (= Y, is negative)
[, 89]_80
41 41
=r=3.

41
i. e. B3 (=Ys) is the outgoing vector and Yz, =2a3=-— is the key element.

15
Again in order to bring Y, in place of B;(=Ys) we make the following intermediate
table.
Xg Y, Y, Y, Y, \£ Ye

Y. 8 2 1 0 1 0 0

2 3 3 3
v | =120 |1 |22 o

3 15 15 15| 5
o |2 |20 [0 |-2|-2]+

6 15 15 15 5

41 2
Divide the key element by 15 to get 1 at this position, then subtract 3 times of the third

4
row from the first row and adding 15 times of the third row to the second row we have,




xs | Y, | Y| Ys | Y. [ Y | Y
v, | 2o |1 |0 | B8] W0
2 41 41 41 41
v, | 2 1o o [1 |-&|5 |4
3 41 411 M1 41
v | &1 o |o | -2| 121
6 15 41 411 41

The fourth simplex table in which B, (=Y;) is replaced by vy, is as follows.

B Cg Xg Y, Y, Y, Y, Ys Ys min ratio
Bs | B B
wls | 200 [+ |0 |3 |8 |0
2 41 41 41 41
v 4 [ 200 o |1 | -2|2 |&
8 41 41 | 41 41
vls |21 o |0 |-2]2|®
! 41 41 41 | 41

89 50 62
Z=CgXg X; VTl VTl Tl 0 0 0

= 765/41 C; 3 5 4 0 0 0

45 24 1
M| M| M

To test the optimality of the solution again compate A; for all zero variables x,,x,; and

A,=C, —CB%:O—(5,4,3)

15 .5 23 4
41" 41 41) 41

A5:c5—cB%:0—(5,4,3) 8 5 12):_24

4417 41) M
1 10 4 15 11
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Since allthe A;'s for zero variables are negative so, this solution is optimal.

H X—gx—s_ox—g
ence T 2T T gy

765
and max.z=——
41

Computational Procedure for Simplex Method

Example
Max z = 3x; +2X,
Subject to Xq+X, <4
X{ =Xy <2, X,X, 20
Answer
Step 1

Convert the given LPP into a standar form.

Max z = 3x; + 2X, +0x3 + 0x,

Subject to Xq =Xy +Xq =2, Xq,X0,X3,X4 20

Step 2

Construct starting simplex table. Variable which form identity matrix in starting simplex
table are basic variables cg represent cost of basic variables.

Basic Cg — 3 2 0 0
variable cost of
B.V.cg Xg X, X, Xq X,
Xq 0 4 1 1 0
X, 0 2 1 -1 0 1
Step 3
Calculate Aj=Cg - X; —C;
=(0)(1)+(0)(1)-3 =(0)M+(0)(-1)-2
=_3 =_2
C 70




Step 4 : Optimality Test

(i)

If all A;=0 the solution is optimal. Alterative optimal solutio will exist if any A;
corresponding to nm basic X is also zero.

If corresponding to any — ve A, all elements of the column X, are — ve or zero (<0),
then the solution under test is unbounded.

If at least one A; <0 then solution is not optimal and therefore proceed to improve the
solution in the next step.

Choose incoming and outgoing variable.
A, =Min{A.} <0
Let  Ac=Min{a;]

The correspoding variable x, is incoming varable.

Outgoing variable is decided by minimum ratio (component wise) rule.

XBr ) XBi
—=L =Min{—=/x,, >0
If Xkr i {in ki }

Then x, is outgoing variable from the set of basic variables x, and x,.
A, =MinfA,
k i { J}
Since

M.in{Aj} =Min{-3,-2,0,0} = -3
i

The variable corresponding to A, = -3 is x,. Therefore x, is incoming variable and x,

becomes basic variable.

Consider component wise ratio of the values of basic variables i.e. x; and coefficient of

incoming variable x, and take its Minimum.

Min J 2Bk =Min{f,3}=2
K| X 11

Corresponds to x, and therefore x, is outgoing variable.

Thus x, is incoming and x, is outgoing variable.




G 3 2 0 0 Min
B.V. Cg Xg @ X, Xq X, Ratio
4
Xq 0 4 1 1 1 0 1 =4
2
<_ 0 2 1 —1 0 1 3=
A -3 -2 0 0

Step 6

In order to make x, as basic variable perform elementary row operations to convert
column corresponding to variable x, as unit vector. Here operation R, — R, will make column
corresponding to variable x, as unit vector. The position 1 in the unit vector depends upon the
position of incoming variable in basic variables.

3 2 0 0
B.V. Cg Xg X, X, Xq X,
Xq 0 2 0 2 1 -1
X, 3 2 1 -1 0 1
Repeat step 4, 5 and 6.
G 3 2 0 0 Min
B.V. Cg Xg X, @ Xq X, ratio
2
«x | 0 2 0 2 1 ~1 5=
X, 3 2 1 -1 0 1 ---
Aj—> 0 -5 0 3
Step4 : A, <O
X

. . . . . B . - .
Therefore, variable x, is incoming component wise ratio . s {1, =}. Minimum ratio
2

corresponds to x; and x; is outgoing variable. Now make coumn corresponding to x, as unit
vector.




3 2 0 0 Min
B.V. Cg Xg X, X, Xq X, ratio

1 1

X2 2 1 0 1 E _E
1 1

X, 3 3 1 0 E E
3 1

A, - —

i 0 0 5 5

Since A; 20 Vj the solution x, =1 and x, = 3 is an optimal solution and optimal value.

Max z =3x, +2X, = 3(3) +2(1) =11

Example 2.9
Solve by simplex method the following L. P. problem.

Minimize Z=X,—3X,+2X,4
Subjectto 3x,—x,+2X;<7
—-2X,+4x,<12
-4 x,+3%X, +8x5;<10
X4y X9, X5 20

Solution :
First we convert the problem of minimization to maximization problem by taking objective
function z'=—2z.
max. Z'=—7Z=—-X,+3X, —2X4
Now the equations obtained by introducing slakc variables x,,x;,x,; are as follows.
3X; =Xy +2Xg3+X, =7
—2X;+4 %X, +0X3 +X5=12
-4 X,+3%X,+8X%3+Xs=10

Taking x,=x,=x;=0 we get x, =7,x; =12,X, =10 which is the starting B. F. S.




Starting simplex table

B Cg Xg Y, Y, Y, Y, Ys Y min ratio

Xpi

(OH) (az) A3 B+ B, B3 Y.

12

Y, 0 7 3 -1 2 1 0 0 —7—neg.

Y 0 12 -2 4 0 0 1 0 3—>min
10

Ye 0 10 -4 3 8 0 0 1 3

=0 ¢ |1 |3 |2 0o |0 [o

A -1 3 -2 X X X

A;=c,=cgy,;=-1-(0,0,0)(3,-2,—4)=-1
A,=C,—-CgYy,=3-(0,0,0)(-14,3)=3
Az=c3-Cgy;=-2-(0,0,0)(2,0,8)=-2
Since all the A;are not less than or equal to zero therefore the solution is not optimal.
A, is maximum.

Hence the incoming vector is a,(=Y,) and by mini ratio rule outgoing vector is

Bz (=Ys)-

Therefore key element =y,, =a,, =4

In order to b ring a, (=Yy,) in place of B, (=ys) the inter mediate table is as follows.

xs | Yo | ! Yo Yo Y5 | Ye

Yy, |7 |3 | 1| 2 1 0 0

Y, |12 | 2 | 4 0 0 1 0

Ye 10 -4 3 8 0 0 1




Xg Y, Y, Y, Y, \£ Ye
Y 10 é 0 2 1 1 0
4 2 4
1 1
Y, 3 5 1 0 0 2 0
5 3
Ye 1 ) 0 8 0 7 1

Second simplex table

B Cg Xg Y, Y, Y, Y, Ys Y min ratio
Xg
B2 P Bs | v,
5 1 _
Y, 0 10 5 0 2 1 2 0 4 min
1 1
Y, 3 3 5 1 0 0 2 0 -6 neg
5 3
Ye 0 1 ) 0 8 0 7 1 —-heg
X; 0 3 0 10 0 1
C| -1 3 -2 0 0 0
1 3
A 5 X -2 X 7 X
T \!
5 1 5) 1
Ay=c,—cgy,=-1-(0,3,0)| =,——=,—= |==
1=C4 = CgYy ( )(2 5 2) 5

Ay =Cs—Cgys=—2-(0,3,0)(2,0,8)=—2

11 3
A5 =Cs—CgYs :0—(0,3,0)(2,2,—3):——

Since all the A; are not less than or equal to zero the solution is not optimal.
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1
Here A1=§ is maximum.

Therefore y, is the incoming, vector and by the minimal ratio rate we find that 8, (=y,)
as the outgoing vector.

5
Therefore key element =Y, =5

In order to to bring y, in place of B, the inter mediate table is as follows

Xg Y, Y, Y, Y, \£ Ye
Y 10 é 0 2 1 1 0
4 2 4
1 1
Y, 3 5 1 0 0 2 0
5 3
Ye 1 ) 0 8 0 7 1

xe |Ye Y | Yy | Y. | Ys | Y
v, [4 |1 Jo |2 2] 210
1 5 5 10
Y, |5 0 1 1 T 2o
2 5 10
Y, |11 |0 0 3 |2 | 1y
5 2 2
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Third simplex table

B Cg Xg Y, Y, Y, Y, Ys Y min ratio
B1 BZ B3
v, | a4 a1 ]o]| 212 |21 |0
T 5 5 10
Y 3 5 0 1 1 l — 0
2 2 10
Y, 0 11 0 0 13 E —1 1
6 2 2
Z'=Cg Xg X; 4 5 0 0 0 11
=11 C; -1 3 -2 0 0 0
A L A .1
il X 5| 10| a0|”
4 21
Ay=Cs—Ca Y, =—2—-(-13,0)| =,1,13 |=——
3=C3=Cg T3 ( )(5 ) 5
2 15 11
A,=c,-¢cY,=0-(-13,0) =, —,— |=——
4 4 B '4 ( )(5 2 2) 10

1 3 19 41
AS :C5 _CB Y5 :—0_(_1,3,0)(ﬁ, g,—gj:—E

Since all A;'s for all non zao variables are negative so this solution is optimal.
Optimal solution is
X;=4,X,=5,X;=0
'

and max. z'=11

Hence minz=-11

Example 2.10
Using simplex algorithm to solve the problem.
max. Z=2X+5X, +7 Xg
subject to 3X,+2X,+4x,<100

X, +4 %, +2x5;<100

C 7))
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Xy +X, +3X5;<100
X4y X9, X5 20
Solution :

The equations obtained by introducing slack variables x,, x5, x; are as follows.
3X;+2X%X, +4 X5 +X, =100
Xy +4 X, +2X5 +X%5 =100
X+ X, +3 X5+ X5 =100
Take x,=Xx,=%;=100
Therefore starting B. F. S. is
x, =100,x5 =100, x5 =100
Starting simplex table

B Cg Xg Y, Y, Y, Y, Ys Y min ratio

Y, 0 100 | 3 2 4 1 0 0 25 min

Ys 0 100 | 1 4 2 0 1 0 50

Ye 0 100 | 1 1 3 0 0 1 —

Z'=Cqg Xg x| 0 0 0 100 | 100 | 100

=0 C; 2 5 7 0 0 0
A, 2 5 7 X X X
T \J
in out

A;=c,-cgy,;=2-(0,0,0)(3,1,1)=2
A,=c,—Cgy,=5-(0,0,0)(2,4,1)=5
Ag3=C3—Cgy;=7-0=7

Since all A; are not less than or equal to zero for zero variables, so the solution is not
optimal.
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Since A, =7 is maximum therefore o, (=Y;) is the incoming vector.

By the min ratio rule

Xo:
min{i,yi3 >0}=%=25  fori=1

i3
Therefore B, (=y,) is the outgoing vector. Therefore the key elementis y,, =a,; =4.In

order to brings B, in place of o, we divide the first row by 4 and then subtract 2 and 3 times of
this row from the second and third rows respectively.

Thus the second simplex table is as follows.

B Cg Xg Y, Y, Y, Y, Ys Y min ratio
X8
B1 Bz BG 2
Y 7 25 3 1 1 1 0 0 50
8 4 2 4
Y 0 50 . 3 0 . 1 0 % -
° 2 2 3
Y 0 25 A 0 3 0 1 50
6 4|2 4 U nes.

C| 2 5 7 0 0 0
A | 133 T
’ 412 | N e
T 2
incoming
vector
For above simplex table
3 1 5 21

A1:C1—CB y1:2—(7,0,0)(z,—5,—2):2 4

=12
4




A, =C,—CgY, :"'5_(7,0,0)(%,3,—1)25—l=§

2 2 2
1 1 3) 7
A4=Ca°sv4=0—(7,0,0>(z’—5,—z)=—z

Since all A; are not less than or equal to zero so the solution is not optimal.

3.
Here A, :E is max.

Therefore y, isincoming vector and by min ratio rule we find that B, (=y5) is the outgoing

vector. Key element is 3. Intermidiate table is :

Xg Y, Y, Y, Y, \£ Ye
Y 25 3 1 1 1 0 0
3 4 2 4
Y 50 A 3 0 A 1 0
5 2 2
Y, 25 > A 0 3 0 1
6 4 2 4
The third simplex table is as follows.
B Cg Xz Y, Y, Y, Y, \£ Ye Min
Y 7 U ] 0 1 1 L
3 3 6 3 6
s [ 220 [ o | 22 |
2 3 6 6 3
| o | 2] -2 10 o | > |1 |+
6 3 3 6 6
« 1o | B0 |, |, |10
! 3 3 3
C| 2 5 7 0 0 0
3 1
A, -3 X X ) 5 | X
(80 D




5

A=C,-CgY, :Z_(7’5’0)(E’_E’__

1

A,=C,-CgY, :0_(7’5’0)(5’_6’_1

As=Cs—Cq Vs :o—(7,5,0)(—

Since all A; for zero variables are negative, this solution is optimal.

50

0]
Optimal solution is X;=0,X, =—,X3 =3 and Max. z=200.

Complete solution with all computational steps is conveniently represented in the following

3

111
6'3'2

1

2

example.
Example :
Solve Max z =7x, +5X,
Subject to Xq+2%X, <6, 4X,+3%, <12, X{,X, 20
Solution :
Max z =7x, +5x,
Subject to X1+ 2Xy + X3 =6, 4X; +3X, +0X3 + X4 =12, X4,X5,X3,X4 20
G 7 5 0 0 Min
Xg
B.V. Cg Xg X, X, Xq X, ratio TI
Xq 0 3 1 2 1 0 6
“ X, 0 12 4 3 0 1
A -77 -5 0 0
5 1
Xq 0 3 0 2 1 2
7| s ! 3 o 1
X 4 4
1 7




Since A;20 Vj the solution is optimal.
Solution :
X, =3, X,=0and Max z=7(3) + 5(0) = 21.
Artificial Variable Technique

If starting simplex table do not contain identity matrix, we introduce new type of variables
caled artificia variables. These variables are fictitious and donot have any physical meaning.
This is only a device to introduce identity matrix in starting simplex table and to get basic
feasible solution so that simplex method may be adopted. Artificial variables are eliminated
from the simplex table as and when they become zero.

Two Phase Simplex Method

The process of eliminating artificial variables is performed in phase | and phase Il is
used to get an optimal solution.

Computational Procedure of Two Phase Simplex Method
Phase |

In this phase the simplex method is applied to LPP with artificial variables leading to a
final simplex table containing a bsic feasible solution (BFS) to the original problem.

Step 1
Assign a cost — 1 to each artificial variable and cost 0 to all other variables.
Step 2

Solve by simplex method until either of three possibilities do arise.

(i) If Max z* < 0, given original problem does not have any feasible solution.

(i) If Max z* = 0 and atleast one artificial variable appears in the optimal basis (basic
variable in last simplex table) at zero level then proceed to Phase Il.

(i) Ig Max z* = 0 and no artificial variable appears in the optimal basis proceed to Phase Il

Phase Il

Assign the actual cost to the variables in objective function and zero cost to every artificial
variable that appears in the basis. This new objective function is now maximized by simplex
method with last simplex table of phase | as starting simplex table with actual cost values.

Example 1
Solve the following problem
Max z = X, + X,
Subject to 2X,+ X, 24

X{+7TXy 27, X4,Xy, 20
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Solution :

Convert the given problem into standard LPP.

Max z = -x; - X,

s.t. 2X1+ Xy =Xz =4, Xy +TXy =X, =7
X4
2 1 1 0x]| (4
ie. 17 0 x5 |7
X4

Since coefficient matrix donot contain identity matrix, we have to solve this problem by
two phase method by introducing artificial variables.

Phase | Max z* =—1a, — 1a,
Subject to 2X1+ Xy =Xz +a;=4

Xq+TXy, = X4 +87 =7, Xq,X9,X3,X4,81,85 20

0 0 0 0 -1 -1 Min
B.V. Cg Xg X X, Xq X, a, a, Rato
a, — 1 4 2 1 — 1 0 1 0 4
—a, | -1 7 1 0 —1 0 1
A -3 -8 1 1 0 0
13 1 1 21
«— 81 -1 3 7 0 -1 7 1 —7 ﬁ
0 1 1 1 0 A 0 8 7
X2 7 7 7
13 0 1 1 0 8
7 7 7
0 21 1 0 _r 1 7 1
X4 13 13 13 13 13
« 0 10 0 1 1 2 1 2
2 13 13 13 13 13
0 0 0 0 0 1
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Since A;=0 Vj, an optimum basic feasible solution to the auxiliary LPP has been
attained.

21 10

X1 :ﬁ, X2 :ﬁ, X3 =X4 =a1 282 =0
By step 2 (iii) proceed to Phase Il.

Phse |l

Remove column of a, and a, from last simplex table. Starting simplex table will be last
simplex table of phase |. Whereas objective function is a function given in original problem.

Max z = -x; - X,

c 1 _ 1 0 0
B.V. Cg Xg X, X, Xq X,
1| A 1 0 _r 1
X4 B 13 13 13
| 0 1 1 _2
X2 B 13 13 13
6 1

Since A;20 Vj, an optimum BFS has been attained.

23 10

X4 =13 X2 13

Min z = x; + X,

_23,10_33
13 13 13
Example 2
Max z = —x; + 2X, + 3X3
Subject to —2X4+ Xy +3X3 =2

2X1+3Xy +4X3 =1, X4,X9,X3 20




Solution :

Though constraints are in the form of equations coefficient matrix do not contain identity
matrix and therefore one has to introduce artificial variables and solve by two phase simplex
method.

Phase |
Max z* =-a,—a,
s.t. —2X1+ Xy +3X3 +a; =2
2X1+3Xy +4X3 +a, =1, Xq,X5,X3,84,85, 20
G 0 0 0 -1 -1 Min
B.V. Cg Xg X X, Xq a, a, ratio
2
a, -1 2 -2 1 3 1 0 3
1
—a, | -1 1 2 3 [4] 0 1 "

A 0 —4 -7 0 0
5 7 5 3

S e e S R 1 2
A - . 1

X3 4 2 4 4
o5 . 7

2 4 4

Since all A; 2 0, an optimum BFS to the LPP has been attained.

But Max Z*:_a1—32:—§<0

Therefore (by step 2(i) of phase |) original problem does not possess any feasible solution.




Alternatively example 1 can be solved as follows.

Example 2.11
Solve the following L. P. problem
Min. Z=X,+X,
subject to 2x,+X%, 24
Xy +7TX, 27, X, %, 20
Solution :

First we convert the problem of minimization to the maximization problem by taking the
objective function zZ'=-z i. e.
Max. z'=—z=-x,—-X,
Introduction of surplus variables x, and x, in the given inequalities yields.
2X + Xy —X53=4
Xi+7T X, =X, =7
Here we can not get the starting B. F. S. so we introduce the artificial variables (positive)
X5 and Xg.
The above equations may be written as
2X + X, = X5+ X5 =4
Xy +7T Xy =Xq +Xg =7
The problem will be solved in two phases.

Phase : 1
This phase consists of the removal of artificial variables.

Taking x,=x,=x;=0,x,=0 we get x; =4 and x;=7.

We construct the first table as follows.

Table 1
s | Y| Yo | Ys | Yo | ABD| A(B)
A, | 4 2 1 -1 0 1 0
A, |7 1 7 0 -1 0 1-
x [0 o | o |0 |4 7
T l
(86 )




First we shall remove the artificial variable vector (columns) A, and A, from the basis

matrix. In place of artificial variable vector the entering vector should be so chosen that the
revised solution is non negative (B. F.) solution.

We can remove A, and introduce y, in its place in the basic matrix. For this we divide
the second row by 7 and then subtract it from the first row. Thus we get the following table.

It maybe seen thatif y,,y,,y, is entered in place of A, then the revised solution is not
non negative. So we can not enter either of them, in place of A,. Since artificial variable xg

becomes zero, we forget about A, for ever and will not consider it in any other table.

Xg Yi Y, Y, Y, A A"z

(B2) (B1)

A 3 E 0 1 l 1 —1—>
1 7 ) 7 7
v |1 21 1] o 1 o |2
2 7 7 7

Now we proceed to remove A, and introduce y, in its place in basic matrix. For this we

7 1
mutiply first row by — and subtract = times of this new row from the second row. Thus we get

13 7
the following table.
Table 2
Xg Y, Y, Y, Y, A *
B1) | (B2)
200, 2|z
Yi 13 13113 |13
LI PO O A N
Y2 | 73 13 91 | 13
X 211 0 0 0
J 13 13

Since the artificial variable x, becomes zero we forgetabout A, and will not consider it
again.

C 87 )
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Thus we get the following solution in phase (1)
qo2 5,210
11377 137

Which is the B. F. S. with which we proceed to get the optimal solution by simplex
method.

Phase (Il

The starting simplex table

X3 :0,X4 :0

B Cg Xg Y, Y, Y, Y, Min. ratio
B (B2)
Y. 1 21 1 0 LA
1 ) 13 13| 13
Y 1 10 0 1 U
2 [ 7 13 13 91
. 21 10
Z'=Cg Xg X; E E 0 0
31
—E C; -1 -1 0 0
6 7
A | ——
il X 13| o
7 1 6
A;=C,—C =0-(-1,-N) ——,— |=——
3707 Ys ( ) 13 13) 13
1 14 7
A,=C,— —0—(=1,-1)| —, —— |=—
4700 Y ( )13 91) 91

Since A; s for all zero variables are negative so the solution is optimal.
Therefore the optimal solution is

21 10

Xy =\ Xy = —
=932 =73 and
Min. z = A
IN. Z=-max. Z —13
(88 )




Example 2.12

Solve the following L. P. Problem

Max. Z=X{+2%X, +3 X3 =X,

Subject to

2X + X, +5%3 =20
Xy +2X, + X3 +%X, =10

X4y X9, X5,X4 20

Solution :

In order to get an identity matrix we need two more columns of the unit matrix as one
column of unit matrix (coeff. of x, ) is present in the constraints.

Thus we need only two artificial variables in the first two contraints. Introducing the

X, +2X, +3%;=15

artificial variables x; and x, we have,

X +2X, +3X;+0.X, +X5=15
2X + Xy +9 X5 +0.X, +X5=20

Xy +2X, + X3 +%X, =10

Phase (1)

Taking x,=x,=x,=0 we get x, =10,x; =15,x4=20.

First table
Xg Y, Y, Y, Y, A, A,
(Bs) | (B:) | (B2)
A, 15 1 2 3 0 1 0
A, 20 2 1 5 0 0 1 -
Y, 10 1 2 1 1 0 0
X; 0 0 0 10 15 20
T l

First we remove the artificial variable vector A, and introduce vy, in its place.

For this we divide the second row by 5 and subtract it 3 and one times of it from the first

and third rows respectively.

89 )




Thus we get the following table.
Second Table

xs | Y9 | Y| Ys | Y. | A | A,

Al s | =21 Lo o |1 AR
1 5| 5 5
Y| a | 2|21 |0 |o |2
3 5 | 5 5
v e [ 2|20 |1 |o |-2
. 5 | 5 5

1

Now the artificial variable x, =0 so we shall not consider it again. Again we remove the

5
artificial variable vector A, and introduce vy, inits place. For this we multiply first row by 7 and

1 9
then subtract its E and E times from the second and third rows.

Thus we get the following table.

xs | Y, |Y, | Y, [ Y, |A,

(B1) | (B2) | (Ba)

Y. 1—5—11 0 0 >
2 7 7 7
Y. >3 0 1 0 A
3 7 7 7
v, | 218 Jo o |1 [-2
4 7 7 7
1o |1 2[5 |,

! 7 7 7

Here the artifical variable x; =0 . We shall not consider it in the other table.




Thus we get the following B. F. S. with which we can proceed, for the optimal solution by
simplex method.

15 25 15

X =0,X, =—,Xg=—,X, =—
1 2 7 3 7 4 7
Phase (Il)
The starting simplex table is as follows.
B Cg Xg Y, Y, Y, Y, min ratio
X8
B1 Bz BB y1
Y. 2 15 A 1 0 0 14
2 7 7 - (neg')
Y. 3 2 3 0 1 0 el
3 7 7 3
Y 1 15 s 0 0 1 E(min)—>
a0 7 7 2
« Lo | 18 | 15
! 7 7 7
C| 1 2 3 -1
6
A, 7 X X X
T \2
136) 6
Ai=c,—cx Y, =1-(2,3,-1)| ——,=,= |==
1=C1=Co Yy =1 )( 77 7) 7

Since all A; are not less than or equal to zero so the solution is not optimal.

Here vy, is the incoming vector and by minimum ratio rule we find that y, is the outgoing
vector.

6
Therefore key element Y3, =7.

7

1
In order to bring y, in place of y, multiply third row by 5 and then add its 7times in

3
first row and subtract 7 times from the second row.

-




The second simplex table is as follows.

B Cg Xg Y, Y, Y, Y, min ratio
Bs | By P2
Y, 2 g 0 1 0 %
Y, 3 g 0 0 1 —%
Y. 1 ° 1 0 0 !
! 2 6
5 5 5
Z=CgXg X; 5 5 5 0
=15 C; 1 2 3 -1
A, X X X -1

1 17
A,=C,—CgV, :1—(2,3,1)(6,—5,6):_1

Since A, for zero variable is negative so the solution is optimal.

Optimal solution is

5 5 5
X4 :E,Xz :E;X3 =5 and max.z=15.
Example 2.13
Using simplex algorithm solve the L. P. problem

Min. z=4x,+8Xx,+3 X,

Subject to Xy +Xy 22
2X +X%X325
X4y X9, X5 20
Solution :

First we convert the problem of minimization to maximization problem by taking z'=-z.

max. z'=-z=-4Xx,-8x, -3X,
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Introducing the surplus variables x,,x; the equations obtained are
X+ X, +0.X5 =X, =2

2X,+0X, +X3—X5=5

The columns of x,and x, form a unit matrix. Therefore there is no need to introduce
the artificial variables.

Taking x,=0,x,=0,x; =0 we have

X,=2,X,=5 as starting B. F. S.

Starting simplex table

B Cg Xg Y, Y, Y, Y, Ys min ratio
Xg
()| Bi)| (B2)| (ca)| (as) v,
Y, -8 2 1 1 0 -1 0 2 min >
5
Y, | -3| 5 2 0 1 0 -1 5

| 4 |83 |0 |o
Al 10 | x | x | -8 | -3
T \2

Ay=cy—Cgy;=—4—-(-8,-3)(1,2)=10
A,=C4—Cgy,=0-(-8,-3)(-10)=-8
Ag=Cg—Cgys=0-(-8,-3)(0,-1)=-3
Since all A; s are not less than or equal to zero so the solution is not optimal.
Max.A;=10=A,

-. Entering vector is o (=y,) and by minimum ratio rule we find that outgoing vector is

Bi(=Y2)-

Therefore key elementis y,,=1.
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In order to bring a, in place of B, we subtract 2 times of the first row from the second
row.

Second simplex table is

B Cg Xg Y, Y, Y, Y, Ys min ratio
X8
(5.) (52) "
Y, -4 2 1 1 0 -1 0 -2 neg.
1T
Y, -3 1 0 -2 1 2 -1 5 min -

C| -4 -8 | -3 0 0
A, X -10[ x 2 -3
\ T

A,=C,—CgY, =—8—(—4,—3)(1,—2)=—10
Ay=C4—Cgy,=0-(-4,-3)(-12)=2

Ag=Cs —Cgys =0—(—4,—3)(0,-1)=-3

Since all A; s are not less than or equal to zero this solution is not optimal.

Since Max A;=A,, the incoming vectoris y, and by the minimum ratio rule we find that
the outgoing vector is y; (=,).
Key element = 2

In order to bring y, in place of y, we divide the second row by 2 and then add it to the
first row.




Third simplex table is

B Cg Xg Y, Y, Y, Y, Ys min ratio
(B1) (B2)
Y. 4 é 1 0 l 0 —1
1 ) 2 2 2
volo | 2o || X |4 |2
4 2 ) 2 2
X é 0 0 l 0
J 2 2
¢ | -4|-8|-3]0 0
A; X -8 -1 X -2

Since all A,-'S are negative, this solution is optimal.

A,=C,—Cgy,=—8-(-4,0)(0,-1)=-8

11
A3=C3—CgV; :—3—(—4,0)(5,5):—1

1 1
A5 =C5—Cg Vs :0_(_4’0)(_5’__j:_2

2

So the optimal solution is

x1:g,x2:0,x3:0

and minz=-(max.z')=10

1)

¢ 666 EXERCISES oo oo

Solve the L. P. Problem

Max. z=3x,+5x, +4 X,

Subject to 2X,+3x%,<8
2X,+5x%5;<10
3X;+2%X, +4 X5 <15

and X4, X5, X5 20

o5 )
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Solve by simplex method the following L. P. Problem
Minimize z=x,-3 X, +2X,
Subject to 3X =X, +2X5 <7
-X,+4x,<12
-4x,+3X%X,+8x,;<16
X4y X9, X520
Solve the following L. P. Problem
Minimize z=x, +Xx,
Subject to 2x,+X,24
Xy +7 X, 27
Xy X520
Using the simplex method to solve the following L. P. Problem
Max. z=Xx;+2X, +3 X5 — X,
Subject to X;+2%X,+3X;=15
2X + X, +5%3 =20
X, +2X, + X3 +%x=10
X4y X9, X5,X5 >0
Using the simplex method solve the L. P. Problem
Min. z=4x,+8Xx,+3 X,
Subject to Xy +Xy 22
2X +X%X325
X4y X9, X5 20
Using the simplex method, solve the following.
Max. z=2x,+5Xx, +7 X,
Subject to 3X+2X,+4x,<100
X, +4 %, +2x5;<100
X, +X, +3X5;<100

X4y X9, X5 20
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7)

8)

9)

10)

11)

Solve the following L. P. Problem
M z—gx -150 x +ix - X
ax. —4 1 2 50 3 4

_ X 1
Subject to f—(ﬁOxz—Ex3 +4x,<0

X4 1
—-90x, ——X,+3x%x,<0
2 2 50 3 4

and Xy, X5, X3,X4 20
Use the simplex method to solve the following

Max. z=30x,+23x, +29 %,
Subject to, 6X,+5x,+3x%x;<26
4x,+2X,+5%5<7

and X, Xp, X3 20
Also read the solution of the dual of the above problem from the final table.

Use two phase simplex method to solve.

Miximize z=3 X, +2X, + X5 + X4

Subject to 4X,+5%X,+%X3-3%,=5
2X,=3X,—4X;+5%x,=7
x;20,¢,=123 4

Solve the following L. P. P.

Maximize z=3x,+4X,,

Subject to X, +4 X, <8,X,—2x%, <4

Xq X, 20
Solve the following L. P. P.

Maximize z=2x,+X,

Subject to 4x,+3x,<12

4x,+X,<8
4x,-X,<8
Xq X, 20

Cor D




12)  Solve the following L. P. P.

Max. z=5x,+3X,

Subject to X;+X,<2,
9X,+2x,<10,
3x,+8x,<12

X,;=0,x,2>0
13) SolvebyL.P.P.
Max. z=22x,+30x, +25Xx,

subject to 2X,+2x,<100
2X,+ X, + X3 <100
X, +2X,+2%3<100,
X4y X9, X5 20

14) Solve the L. P. P.

Max. z=5x,-2X, +3 X,

subject to 2X,+2X, - X322,
3x,-4x,<3,
X, +3 X5 <5

X4y X9, X5 20
15) Solve the L. P. P.

Max. z=x,+15X, +2X5 +5X,

Subject to 3X +2X, +X;3+%X, <6
2X + Xy +Xg +5X, <4
2X,+6Xx,-8%x;+4x%x,=0
X;+3%X,-4x;+3%,=0

X4y X9, X5,X4 20
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UNIT DEGENERACY, DUALITY AND
03 REVISED SIMPLEX METHOD

3.0 INTRODUCTION

We have considered the L. P. Problems in which by minimum ratio rule we get only one
vector to be deleted from the basis. But there are the L. P. Problems where we get more than
one vector which may be deleted from the basis.

e
Thus if min{ﬂ,yik >0} (a, isincoming vector)
ik

occurs at i=iy,i,,.. ig

i. e. minimum occurs for more than one value of i then the problemis to select the vector
to be deleted from the basis (If we choose one vector say B, (i is one of i,,i,,...,i; ) and delete it

from the basis then the next solution may be a degenerate B. F. S. Such problem is called
problem of degeneracy.

It is observed that when the simplex method is applied to a degenerate B. F. S. to geta
new B. F. S., the value of the objective function may remain unchanged i. e. the value of the
objective function is not improved.

The procedure for such problems of degeneracy is as follows.

min (XBi)
Let i —y Yik>0¢ occur at i=igin,...,1g

ik
where a, =y, is the incoming vector.

Let |, =iy ip,....i}

1) Renumber the columns of the table starting with the columns in the basis. Let
Y1, Y,,--- etc. be the new numbers of columns. Let y; be the new number of

entering vector y, i.e. y, =Y,.

Y|
2) Calculate MiN {y_} Viel; If minimum is unique then delete the corresponding
ik

vector from the basis.




If minimum is not unique then proceed to the next step.

Yik

3) Calculate mini{&}w el, where 1, is the set of all those values of iel,, for

which there isa tiein I,. Clearly I, cl, .

In this case if minimum is unique then correspondng vector is deleted from the
basis. If in this case also, minimum is not unique proceed to the next step.

4) Compute mini{ﬁ}v iel; where 1, is the set of those values of i€ 1, forwhich

Yik

there is a tie in (3) clearly 1, cl, cl,.

Proceeding in this way we can get a unique minimum value of i i. e. the unique

vector to be deleted from the basis.

Example 3.1
Solve the L. P. Problem
M z—gx —-150 x +ix —X
ax. =15 2T gg X
Subject t 1x -60x —ix +9x,<0
ubject 1o 4 1 2 25 3 4>

1 1
—X,—90x, ———Xx,+3x%x, <0
2 1 2 50 3 4

X5 <1
and X,,X,,X5,X, 20

Solution:

Introducing the slack variables in the constraints we get the following equalities

1 1

1 1

X5+ X, =1
Taking x,=0,x,=0,x;=0,x, =0 we have
X5 =0,Xs=0,%; =1

100
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Which is the starting B. F. S.
Starting simplex table

B Cg Xg Y4 Vs Yo Iz \Z Y Y3 Min ratio
X
V2 Yo Y3 \ Vs (B1)| Ye(B2)| Y7 (Bs) y_1
0 0 1 60 —i 9 1 0 0 0
Ys 4 | 25
0 0 l 90 —i 3 0 1 0 0
Yo 2 | 50
Yy, 0 1 0 0 1 0 0 0 1 -
Z=Cg Xg X; 0 0 0 0 0 0 1
3 1
=0 C; Z -150 % -6 0 0 0
3 1
A Z -150 % -6 0 0 X
T l

3 11 3
A1 =C;—Cg Y, :Z—(0,0,0)(Z,E,O):Z

A,=C,—Cg Y, =—150-(0,0,0)(-60,-90,0)=-150

1 1 1 1
AS =C3—CpY; :E_(O’O’O)(_E’_E"]): E

A4 =C4 _CB y4 2_6_(0,0,0)(9,3,0)2_6
Since all A; are not less than as equal to zero therefore the solution is not optimal
3
and maxaA, :Z:A1

Therefore incoming, vectoris y, and

min ) XBi . ,
i y—,yi,->0 is not unique.




This minimum is 0 and occurs fori=1andi= 2.
This problem is a problem of degeneracy.
Therefore to select the vector to be deleted from the basic we proceed as follows.
1) First of all we renumber the columns of above table as follows.
Let Y1=Y5Y2=Ye ¥Y3=Y7

Ye=Y1=Y5=Y2,Y6 =Y3 Y7 =VY4
2) Since minimum ratio occurs for
i=1andi=2itfollows that

l,={12}

Incoming vectoris y,=y, k=4 fori=1,2
In;lrl1 ?_‘1 zmin{&,&}
Yia Yisa You

1.0 =min{4,0}

_o=Yer
You

This minimum is unique and occur for i = 2. Therefore the vector to be deleted (i. e. the
outgoing vector) from the basis is y, (=B,)=Ys .

1
Therefore key elementis Yy, =5

1
Therefore in older to bring y, in place of y, we divide the second row by 5 and then

1
subtract 2 times of this row from the first row.
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Second simple table

B Cg | Xs Yi | Y2 Ys | Ye | Vs Yo % Min ratio
X8
(BZ) (B1) (B3) Y3
3115 1
Vs 0 0 0 -15 “700l 2 1 5 0 --
g 0 1 180 —l 6 0 2 0
d 4 ) 25 -
Y, 0o | 1 o |o 1 o | o 0 1 1 (Min) >
x | o |o |o |o |o 0 1
c g 150 i 6 0 0 0
: 4 | 50 |
1 21 3
A - — i _=
i 151 % 2| © 2 X
T 2
Incoming Outgoing
Vector Vector

3

Ap=C,—Cq Y2:—150—(0,Z,0)(—15,—180,0)2—15

|

1 3 3
A;=C,—C =+——0,—-,0|| -——,——,
370 "% Y = g, ( 4 )( 100" 25

3 15
A,=C,—C =-6-/0,—,0|| —,6,0 |=
4=C4—Cg Yy ( 4 )(2 )

3
Ag=Cg —Cg yGZ_E

20

Since all A; are not less than or equal to zero therefore the solution is not optimal.

1
Max. Aj:E:AQ,

\




1
Therefore incoming vector is 3 and by minimum ratio rule we find that the outgoing

vector is y, (=B,).

Yo3=—

o X : - Xe X2 3
(In considering ,— we need not consider the ratios and since Y13 =—,—— and
Ys Y13 Y3 100

1
—— are both negative.)

25

Therefore key element y,, =1.

3 1
In order to bring y, in place at y, (B;) we add 100 and 25 times of the third row in the

first and second rows respatively.

The third simplex table

B Cg | Xg Y1 Y2 Y3 Ya Ys Ye Y7
(B2) (Bs) (B1)
0 31, 5 | o B I
Ys 100 - 2 2 | 100
3 L 1 180 | O 6 0 2 L
Y1 4 25 ) 25
a 1 0 0 1 0 0 0 1
y3 50
X 1 0 1 0 3 0 0
j 25 100
c = 150 1 6 0 0 0
J 4 ) 50 |
A 15 A BEA
X ) X 2| * 2 20

)(—15,—180,0):—15
3 1)\(15 21
s o3 ) Bao)- 2

<D
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3 1 1 3
Ag = - :0_ 0’_’_ __’2’0 =—x
6=C ~CaYe ( 4 50)( 2 j 2

3 1\ 3 1 1
A = - :0_ 0’_’_ _1_’1 =T~
AR ( 4 50)(100 25 j 20

Since all A;<0 thesefore the solution is optimal and the optimal solution is

Xy =——

1
Max. z=—
and 20

DUALITY
Introduction

Every L. P. Problem is associated with another L. P. Problem called the dual of the
problem. Consider a L. P. Problem

Max. Z=CyX{+Cy X, +...+C X,
Subject to Qg1 Xy +a4p Xy +...+ 34, X, <b,
Ayq Xy +8g Xy +... 485, X, <by
A X +8mo X +...+ @0 X, <by,
and Xqy Xg,eeny Xy 20,
where the signs of all parameters a, b, c are orbitary.
Then the dual of this problem is defined as
Mini Z =b,w,+b,w, +...+b W

Subject to A Wy +ayW, +...+3,4 W, >Cy

and a;, Wy+a,, Wy +...+a,, W, =C,

and w,,w,,...,w, >0

m

where w,,w,,...,w,, are called the dual variables.

(105
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Also problem (1) is called the primal problem.

In a matrix notation a L. P. Problem is
Max. z=¢cX
Subjectto Ax<b

and x>0
and its dual is defined as
Min z* =b'w

Subjectto A'w>c'

and w=0
Wy
W,
Where w =
w

m

and A',b',c' are the transposes of the matrices A b and ¢ respectively.

It is obvious from the definition that the dual of the dual is the primal itself.

It is important to note that we can write the dual of a problem if all its constraints involve
the sign <.

If the constraint has a sign > then multiply both the sides by - 1 and makes the sign <.

If the constraint has a sign = for ex. dayx=b (3)
=1

then we can replace it by two constraints involving two inequalities i. e.

Za” x<bp (4)
j=1
;aij xz0p (5)

5) may be written as




Standard form of the primal

The L. P. Problem is in standard primal form if

1)
2)

It is a problem of maximization and

All the constraints involve the sign <.

Relationship between two problems (Primal and dual)

The two problems (primal and the dual) are related to each other in the following manner.

1)

If one is a maximization problem then the other is a minimization problem.

2) If one of them has a finite optimal solution then the other problem also has a finite
optimal solution.

3) From the final simplex table of one problem the solution of the other an be read
from the A; row below the columns of slack and surplus variables as follows.
The AJ'S(AJ =C;—2;=C;—Cg Y;) with the sign changed for the slack vectors in
the optimal (final) simplex table for the primal are the values of the corresponding
optimal dual variables in the final simplex table for the dual problem.

4) The optimal values of the objective functions in both the problems are the same
thatis Max.Z,=MinZ, .

5) If one problem has an unbounded solution then other has no feasible solution.

Example 3.2
Write the dual of the problem
Mini. z=3x, +x,

Subject to 2X,+3x,22

and

Solution:

Xq+X, 21

Xq X, 20

First we write the problem in standard primal form as follows.

Max. z'=-3x,-Xx, Where z'=-z

Such that -2%x,-3%,<-2
and — X=X, <=1
and Xy, X, 20

which may be written as

\




Maxz'=[-3,-1] [?
2 |

-2 =3 x -2
Such that <
-1 -1 ][x] [-1

and x,,x,>0

The dual of the given problem is given by

Mini. z*:[—2,—1}[w1}

-2 —1||w, S -3
suchthat| 5 _4 w, || 1

and w,,w,>0
or mini. ' =—-2w,;-w,
such that 2w, -w,>-3
3w, -w,>-1
Example 3.3
Write the dual of the problem
miz. z=2X,+5X,
such that Xy +Xy 22
2X,+X,+6X%X; <6
X=X, +3X3=4
and X,X,,X3>0.
Solution:

First we write the given problem in standard primal form as follows.

1) The objective function is changed from minimization to maximization.
i.e. Maxz'=-2x,-5x; where z'=-z

2) The sign of first constraint is changed to < by multiplying both sides by - 1 and

3) The third constraint is replaced by two constraints.

X, =X, +3 X5 <4

(108
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and  X;—X,+3X;>4
The second may be written as
—X;+X,—=3X;<-4

Thus the given problem in standard primal form is as follows.
Max. z'=0x,-2Xx, —5X;
subject to —X;—X, <2

2X,+X,+6X%X; <6

Xy =X, +3X5;<4

—X;+X,—=3X;<-4

and Xx;,X,,X; >0

X4
i.e. Max.z'=[0,-2,-5]| X, |
X3
-1 -1 0 2
X4
- 2 1 6 « <6
such that 1 _1 3172174
X3
-1 1 -3 —4

and X,,X,,X3,X, 20

Therefore the dual of the given problem is given by

Wy
'\
Miniz" =[2,6,+4,-4] *
W3
Wy
Wy
-1 2 1 -1 0
Wy
htht—1 1-1 1 > -2
'\
suehthatl o 6 3 —3||"*| |-5
Wy
and w,,w,,w,,w,>0
C109))




or Min. z'=2w,+6w,+4w,-4w,
such that W, +2W, +W;-w, >0
W, +W, —Wy+W, >-2
Ow,+6w,+3w;-3w,>-5
and w,,w,,w,,w, >0

Example 3.4

Apply the simplex method to solve the following
Max. z=30x, +23 X, +29 x4
s.t.  6x,+5x,+3x;<26
4X,+2X,+5%X5 <7
and x,,%X,,x,20 (1)

Also read the solution of the dual of the above problem from the final table.

Solution:

Introducing the slack variables x, and x, ,we have
6 X,+5X, +3X; +X, =26

4%, +2X, +5X5 +X5=7

Taking x,=x,=x;=0 we have x, =26 and x; =7,

which is the starting B. F. S.

110D
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Starting Simplex Table

XB
B Cg Xg Y, Yo Y, Y4 Ys Min. Ratio. y_1

13
Y4 0 26 6 5 3 1 0 3

7 .
Ys 0 7 4 2 5 0 1 Z—>M|n
Z=CgXg X; 0 0 0 26 7
=0 C; 30 23 29 0 0

A; 30 23 29 X X

T \!

Incoming Outgoing

A;=c,-cgy,;=30-(0,0)(0,4)=30
Similarly A,=23,A,=29
Since all A; are not less than or equal to zero therefore the solution is not optimal.
Max. A;=30=A,

Hence o, (=Y,) is incoming vector and by minimum ratio rule we find that y, (=B, ) is
outgoing vector.

Hence the key element y,,=a,,=4.




Second simplex table

XB
B Cg Xg Y, Y, Ys Ya Vs Min. Ratio. E
(B2) (B+)
o |3 e 1, |0, | e |2
Y4 2 2 2 |
30 ! 1 1 > 0 1 Z—>
Yi 4 2 4 4 8
7 31
Z=CgXg X; n 0 0 > 0
105
ZT C; 30 23 29 0 0
17 15
A, X 8 5 |X Y
l T
1
AZ:CZ—CBy2:23—(0,30)(2,§):8
95 17
A;=C,—C =29-(0,30)| ——,— |=——
3=C3-CgY; ( )( > 4) >
=29-375=-85
31 15
A =c.—C =(0,30)| -—,— |=——
5=C5—Cg Y5 =( )( > 4) >

Since all A; are not less than or equal to zero so the solution is not optimal. Here y, is

insuming vector and vy, is out going vector.

1
The key elementis Y, )

\




Final simplex table

B Cg Xg Y4 Y, Y, Y4 Ys Min. Ratio.
o | | 4 o By -2
Ya 2 | - 2 2
23 Z 2 1 é 0 l
Y2 2 2 2
7 17
Z=CgXg X; 0 E 0 7 0
161
:T C; 30 23 29 0 0
57 23
Aj 16 X —7 X —7

Ay=cy—-Cgy,=30-(0,23)(-4,2)=-16

A3=C3—CgV; :29—(0,23)(——,_ =

51 23
Ag=Cs—Cg Y5 :0—(0,23)(—5 —):——

Since all Ajare < 0 the solution isoptimal.
Therefore optimal solution is

7 161

To write the dual of the problem.

The given problem may be written as :

X4
Max. z=[30,23,29]| x, |,
X3

X
6 5 3] "| [26
suchthat|4 2 5 X2 = 7
X3

and Xx;,X,,X; >0

\




Therefore the dual of the given problem is given by

Miniz" =[26,7] [W1 }
Wy

6 4 30

5 21 |>|23
such that w, |
3 5 29

where w,,w, >0

OR
Min.  z'=26w,+7w,
s.t. 6w,+4w,>30
Sw,+2w,>23
3w, +5w,>29
where w,,w, >0
The dual problem (2) may be written as
Max. z =-26w,-7w,
s.t. 6w, +4w,-w;+wg=30
SW,+2wW,-w, +w, =23
3W,+SW, -Wgz+Wg =29

and  w,,w,,...,wg20

Where w,,w,,w, are surplus variables and wg,w,, w, are the artificial variables.

Now we obtain the solution of the above problem by simplex method.

<D
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Simplex table of the dual is

B Cg | Xg Y1 Y2 Y3 Ya Ys
0 7 19 0 0 s 1
Ys 2 2 2
Vs 0 16 4 0 1 -2 1 o0
7 23 > 1 0 A 0
Y - 2 2 2
__161 w 0 23 16 0 o7
T2 J 2 2
c; -26 | -7 0 0 0
17 9
A - _=
i 5| % X 5| X

. ., 161
Therefore solution is W;=0,w, :7,M|n.z =

DUALITY IN LINEAR PROGRAMMING
Definition : Primal Problem
Max z, = > cx; (=€7%)
i1
st Ax<b, x>0, Ann
Definition : Dual Problem
Min z,, = bw,;(=b"w)

i=1

st. ATw>c,w>0

(x has n components, w has m components)

General Rules for converting any primal to its dual
Step 1 : Convert the objective function into max form (Min z = - (Max — z)) -

Step 2 : If the constraint has '>' then multiply the constraint by (—1)
Step 3 : If the constraint has '=' then replace this constraint by two constraints '<'and '>"e.g.

X{+X, =2=X+X, <2 and x;+x,22.
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Step 4 : Every unrestricted variable is replaced by the difference of two non-negative variables
e.g. X, is unrestricted.

Xy =X3—X;H X3,X; =20
Step 1 to 4 : Standard primal LPP.
Step 5 : Dual of above primal LPP ios obtained

i) A5AT

(i) Interchange p, c.

(i) < —» >

(iv) Minimize objective function.

Example : Max z = 3x, + 2x,

s.t. x;+3x,<5

Xi =Xy <7, X4,X, 20
Answer : Max z, =C'X =C;X; +CyX,

st AX<b, x>0

X —_——
Primal : Max z =3x; +2x, =3 2]{)(1} _cTx
]

pual: Minz, =[5 7] "]

1 1 w1>3
3 ||w, | |2] WeW220

Example : Write dual of following LPP

Max z = 2x; +3X, — X3
st X4+X,-3%x3<8

X1 —Xo +X3 <4, X4,Xp,X3 20

116D
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X4
Answer: Maxz=[2 3 -1]|x,

X3
11 37 _[8
st |1 -1 1]172|%4]s XpX2X3 20
X3

Dual LPP Min z,, = 8w, + 4w,

17 1 2
1 1 P‘”} 3
s.t. 3 W, M w,wW, 20

Primal: Max z=c"x
st Ax<b, x>0
Dual: Minz, =b'w

st. ATw>c, w>0

Example : Find the dual of the following Primal.

a=3 Min z, =2X, +5X%5

a<3 St X +X,22, 2X1+X, +6X3 56,
a>3 X1 =Xy +3X3 =4, X4,Xp,X3 20
-a<-3

Answer : Max z, = -2x, — 5x, (2, =-z,)

—Xq — Xy <=2, 2Xq+ X, +6X3 <6
X1 =Xy +3X3 <4, —(X;—X, +3X3) <-4, X4,Xp,X3 20
Max z, = -2x, — 5x,
s.t. —Xy — Xy < -2
2X1+ Xy +6X3<6
X1 =Xy +3X3 <4

X1+ Xy =3X3 <4, Xq,Xp,X3 20

C17)
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Standard: Maxz,=[0 -2 -5]|x,

X3
-1 -1 0 « -2
2 1 6| "|_|6
s.t. 1 -1 3 x2 1 4], X4,X9,X3 20
-1 1 -3|"7% |4
Dual : Min z,, = 2w, +6W, + 4w; —4w,
12 1 1" To
w
11 1 1| 722
s.t. 0 6 3 -3 Wy 5| Wy, Wy, W3, W, 20
Wy

Min z,, =—2w, + 6w, +4(wW; — W, )
~W;+2wW, +1(Wg —w, ) >0
~Wi+ W, —1(Wg —wy )= -2
BW, +3(W3 —W,)>-5, Wy,Wy,Wz,W, >0
Let w; =w, —w, then w, is unrestricted.
= Min z,, = —2w, + 6w, + 4w,
s.t. ~W, +2W, + W5 20
W Wy — Wy > =2
BW, +3W3 > -5, w,,w,>0

W3 is unrestricted.

Observation : Third constraint in primal is equation. Third variable in its dual is unrestricted in
sign.

Example : Find dual of

Min z, =2X; +3X, +4X;

\




s.t. 2Xy+3Xy +5X3 22, 3X;+4X, +6X3<5

X4, X, 20, X3 unrestricted.
Answer : Max z, = —-2x, —3x, — 4x,

s.t. —2X4 —3Xy —5X3 < -2
3Xq +4X, +6X3 <5, Xx,,Xx,20
X3 =X4 — X5, X4,X52=0
Max z, =-2%, —3X, — 4 (X, — Xg)
—2X; = 3%, —5(X4 — X5 ) < -2

3%, + 4%, +6(X, —X5) <5, X4,X5,X4,X5 20

X4
Standard Primal:  Maxz, =[-2 -3 -4 4] 2
X4
X5
X4
2 3 5 5]x|_[2
3 4 6 6|[x4| | 5], X4X0,X4,%X520
X5
Min z,, =-2w, + 5w,
-2 3 -2
s.t. -5 6 ||wy]| |4, w;,w,>0
5 -6 4

Min z, = -2w, + 5w,
-2W, +3wW, >2-2, -3w,+4w, >-3

Sw,; —6w, <4
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Observation : 3 variable in primal is unrestricted. 3™ constraint in its dual is an equation.

Standard Primal:  Max z, =¢'x
s.t. AX<b, x>0

Dual : Min z,, =b'w
s.t. ATw>¢T, w=>0

Theorem : The dual of the dual of a given primal is the primal.

Proof : Consider a primal
Max z, =¢'X

s.t. AX<b, x>0 )
Dual of the above primal is

Minz, =b™w
s.t. A'w>c, w>0 ()
The corresponding primal is,

Max -z, =-b'w
s.t. ~ATw<-¢C, w>0 (1)
Observe that (I) and (1) are same.
Consider dual of (ll)

(I Max (-z, )=-b'Ww

s.t. ~ATw<-¢, w>0

st. (A" @>-b, u=0 (IV)
Standard form of (1V) is,

Max (-z,)=-(-¢)' t=c"u

s.t. ~AU>-b, U>0=+Au<b, U>0
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Thus we have,

Max z, =-C'

Observe that (1) = (V)

Thus dual of dual is primal.

u, Au<b, ux0 .. (IV)

Theorem : If % isany FS to primal problemand w is any FS to the dual problem then,

t'x<b'w

W

1l
N

n
i.e. zcixi <) bw;
it

Proof : Primalis Max z, =¢'x s.t. Ax

IA
T
x|
\Y
ol

Dualis Minz, =b™w s.t. ATw>¢, w>0

ayy ap A || Xq b,
Xy < b,
ajy o - @ : s x>0 Amxn X1 zbm><1
am1 am2 amn Xn b1n
n
ie. 2axs<b j=1,23 ..n (1)
=
(a,, a,, a a_. |
11 8p1 QAgq m1 W, c,
dip ay az Am2
ATw>c Wa | S|C2
W=2C=8y3 83 a3 Amz || . | 2
w C
m_4 n
a1n a2n a3n amn

p=1 i
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Zcixi <D W [Z apjxj] <2 Wobp (by 1)

Theorem : If X isa FS to the primal and w is a FS toits dual such that 5. % = p. & then

= is
an optimal solution to the primal and , is an optimal solution to the dual.

XD

Proof : We know that if x is a FS to the primal and § is a FS toits dualthen g.x<p.w-
Thus ¢-X<b-W=C-X=C-X<C-X
If X is a FS to the primal then, ¢ -X <C-X=C-X is maximum.
= X isan optimal solution to the primal.

Similarly if & is any FS toits dual C-X<b-W.

But  G.x<b-w
= b-w<b-W=b-w is minimum.
= w is an optimum solution to the dual.

Theorem : (Basic Duality Theorem)

If X, (v_vo) is an optimum solution to the primal (dual) then there exist a feasible solution

W, (X,) to the dual (primal) such that ©-X, =b - Wy, .

Proof : Primal z, =¢-X s.t. Ax<b, x>0

ol

Max z, =C-X s.t. AX+IX; =b, X,0,X; >
Let X, =[ X530 be an optimum solution to the primal where Xg is the optimum BFS
given by x, _B'b. Then the optimum primal solution is z =CXp =CgXg -

Where c; is cost vector associated with X .

(122>
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Basic Duality Theorem :

If X, (v_vo) is an optimum solution to the primal (dual) then there exist a feasible solution

W,y (X, ) tothe dual s.t. €'x, =b'W,,.
Proof : Primal Max z, =¢'x s.t. Ax<b

Consider Max z, =¢'x s.t. AX+IX;=b

X _
o A ] {_ } b
Amxn’ Imxm Identlty ( X5 (n+m)x1

mx(n+m)

A=[B C] where g0 then x; _Bb.

X

Let Xo :{58} be an optimum solution to the primal where x; eR™, g cR™™ then

Therefore z=¢C'X, =CgXg Where ¢ is cost vector corresponding to Xg .
_ =T _=Tr's -
51 _
=CgBe; -0, j=n+1,...n+m

Since X, is optimal A; 20 .

151 _

CBBaJ—CJZO,J_1,2,3, ..... ,n

71 ,

ciBe;20, j=n+1,n+2,..n+m

151 :

caBaj>c;, j=1,2,3,..,n

=1 = -
[cha1 caBa, - cBTBan]z[c1 C, C3 - Gy
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clB'A>cTand ag§1ej >0, j=n+1,..n+m
Put EET;§1 =W, (say) W,eR"
Then wgA>c' or ATw,>C.
Since Eg§1ej >0, 6&@1 >0 i.e. wy>0
Thus ATW,>CT, W,>0
i.e. Wy is feasible solution to the dual.
bW, =W'b=coBb=cixXg
Since b'W, =CgXg

W, is an optimum solution to the dual.

Similarly starting from dual problem we can reach to primal solution.

Theorem : If k" constraint in the primal is an equality then the dual variable w, is unrestricted in
sign.
Proof : Primal

Max z, =C'X

s.t. a11Xq + 812Xy +843X3 +..... + 84X, < by

AiXq + A oXg + A3Xg + .o F A, Xy S by

—A X1 — AoXy — A3zXz —.oee. — Ay Xy < by
Am1Xq +8moXs + 853Xz + ..o+ 8 X, <bpy,
X1, X0, X3, 0000, Xy 20

Dual of above primal will be,

Min z,, =bw, +b,w, +....+bw, -b,w, +b, W, 4+...+b W,

C124)
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W,
ayn 8y v @y T8t @py V\{Z C4
@i 8 v 8 —8p v App :' Cy
A3 A3 v 8y —83z - @nz || Wk |2|C3

. ) ) : " :

_a1n Aon "t Ay Gyt Qpp | _Cn ]

_Wm i

Wy, Wy, Wy, W, Wy, W 20
Mln ZW :b1W1+b2W2 ++bk (Wk —Wk)+ ..... +bme
s.t. AWy + 8y Wy +.... + 84 (wk —wk)+ ..... +amyW,, = by

A1oWq +890Wy + ...+ 8y, (wk —wk)+ ..... +8,oW, 2 by

AWy +89,Wy +.... + 8y, (wk —wk)+ ..... +a,,Wm 2 Db,
Wy, Wo,ey, Wi, W, W 20

Put w, =w, —w, then w, is unrestricted.

Thus we have,

m
Min z,, = > bw;
i=1
s.t. AWy +ay Wy +...+ayW, +.....+8yW,, =Cy

AypWq +89Wy + oo + 8 aWy + oo 8 W,, 2Cy

AgWq + 8o, Wy + oo+ B, Wy + oo + 8, W,, 2 C,
W4, Wo,ory Wy gy Wy iqpeee, W, 2 0, W, unrestricted k™ variable in dual is unrestricted in sign.

Theorem : If p*" variable in primal is unrestricted in sign then p" constraint of the dual is an
equation.

Proof: Max z, =C4Xq +CyXy + ... + C Xy +.oee. + C X,




s.t. a11Xy 81Xy +813Xg e+ ApXp oo+ Xy < by

Ap1Xq + 89Xy +8p3X3 + e +gpXp F o + 89X, <Dy

AmiX1 T 8mpXg +AmaXg + e FApXp +o H @ X, S by
X1y X eeeey Xp_gy Xpgyeenens , Xn ZO,xp unrestricted.
Since X, is unrestricted write

st x,20, x>0

Then primal becomes,

Max z, =CX; +.....+C (xp—xp)+....+cnxn

s.t. ap1Xq + 85Xy +..+ 3y (xp - xp)+.... +a4,X, <b,

AmiXq +8maXg .o+ np (xp —xp)+....+amnxn <b,

_1Xp, X X, =0

XqyXpyneeeny X pr-+sXn

p
The dual problem is,

Max z,, =bw, +b,w, +.....+b w_,

49 @y 3py Cq
dip Ay 8ma |[wy] | C2
W
ap azp Anp || W3 | 2] Cp
s.t. —ay, —ay —amp : —C,
) ) w,
L a1n a2n amn i L Cn i
ie. ayqWq +ayWy +83¢W3 + ..o + @pyWp, = Cy

A1pWq +3gWy +83,W3 + ..o+ 8pWp, 2 Co




_a1pW1 - aszZ - a3pW3 T oeeaas —a Wm 2 —C

AWy +ay,Wy + 83 W3 +..oo. + Wy, 2C

p and (p + 1) constraint implies.

Thus p'™ constraint in the dual is an equation.
REVISED SIMPLEX METHOD

The usual simplex method used so far is a lengthy algebraic procedure and the
calculations in the usual simplex method, are tedius and we have the following disadvantages :

i) It is very time-consuming even when considered on the time scal of electronic
digital computers. Hence it is not an efficient computational procedure.

ii) In the usual simplex method, many numbers are computed and stored which
are either never used at the current iteration or are needed only in an indirect way.

Keeping this in mind, a revised simplex method has been developed to overcome these
disadvantages, due to which speed of the calculations is incread by reducing the required amount
of computational effort. In general, approach of the revised simplex method is identical to that of
the ordinary simplex method.

Standard Forms for Revised Simplex Method
There are two standard forms for the revised simplex method :

Standard Form | : In this form, it is assumed that an identity (basis) matrix
is obtained after introducing slack variables only.

Standard Form Il : If artificial variables are needed for an initial identity (basis) matrix,
then two-phase method of ordinary simplex method is used in a slightly different way to handle
artificial variables.

Formulation of LP Problem in Standard Form |

A linear programming problem in standard form is :

Max. Z=C;X;+Cy X +...+C, X, +0X,, 4 +0X, o +...0X,.., ... (3.1)
Subject to
311X1+a12X2+...+a1n Xn+Xn+1 =b1
321X1+322X2+...+32n Xn+Xn+2 =b2
.......... (3.2)
81 Xy +850Xs +.oe+ 800 X + X e m =b,,
C 127D




and X, Xy, Xpum=0 (3.3)

where the starting basis matrix B is an m x m identity matrix.

In the revised simplex form, the objective function (3.1) is also considered as if it were
another constraint in which z is as large as possible and unrestricted in sign.

Thus (3.1) and (3.2) may be written in a compact form as :

Z-CyX;—Cy, X, —...—C, X, -0x,,,-0x,,,—...-0x,,, =0

311X1+a12X2+...+a1n Xn+Xn+1 =b1

321X1+322X2+...+32n Xn+Xn+2 =b2
.......... (3.4)

A Xy Fagy Xo +..+a8n, X, + Xoem =b,

which can be considered as a system of m + 1 simultaneous equations in (n + m + 1)
number of variables (z, x1,x2,....,xn+m) . Here our aim is to find the solution of the system (3.4)
such that z is as large as possible.

Now, the system (3.4) may be re-written as follows :

1. Xg +8g1 X +8gp Xp +...+ 80 X, +80 01 Xneq e+ 80nem Xnem =0

0.Xg +a@yy Xy +a X+t @y, Xy + 1. X0 +eee+0.X 4 =b,
.......... (3.5)
0.Xg +@m1 Xy +8mo Xo +ot@n Xy FO X g +eeee + 11X 4 =b,,
Again, writing the system (3.5) in matrix form,
1 : @y 8p._8n 8un Qonem
Xo 0
........................ e || b
0 a, ap.a, 1 0 =
oo S (3.6)
' Xn+m bm
0 : am1 am2 ...... amn 0 1

Using the partitioning of a matrix,

[2) ﬂ [ﬂ :m .......... (3.7)

Where aoz(amy aoz,...,aOm,...,aoymm) and the remaining symbols have their usual

meanings.
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The matrix equation (3.7) can be expressed in the original notation form as

o W 6

Equation (3.7) or (3.7) is referred to as standard form 1 for the revised simplex method.

Notations for Standard Form |

It is observed that all the vectors have (m + 1) components instead of m. Hence
superscript" is used for all vectors to show that they have (m + 1) components in standard
form - I.

) Corresponding to each a; inAanew (m+ 1) - component vector is represented
by éj“) as:
B =[—cj,a1j,a2j,....,amj],j=1,2,...,n+m
or éj“)=[aoj,a1j,...,amj}],j=1,2,...,n+m
a’=lag3] (3.8)
I Similarly, corresponding to m-component vector b inAX = b, we shall represent

the (m + 1) component vector by ,(') given by
b =[0,b1,b2,...,bm]=[0,5}] .......... (3.9)

) The column vector corresponding to z (or x, ) is the (m + 1) component unit

vector which is usually denoted by e, and will always be in the first column of the

basic matrix B, where the subscript 1 will show that it is of order (m+1)x(m+1)
whose remaining m columns are any @' such that the corresponding a; are

linearly independent and denoted by B("i=1,2,...,m (in some order).

Therefore, B, :[§11B(11)1""1B$r11)]

R O (3.10)
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If the basis matrix B for AX =b is be represented by

B11 B12 B1m
B21 B22 B2m
Bm1 Bm2 Bmm

e, 3% B L. pey
1 —Cg1 —Cg2 —Cgm
5 Bi1 B2 Bim
1 B2 B Bom | (3.11)
_0 Bm1 Bm2 Bmm |

where —cg; (i=1,2,...,m) are the coefficients of Xg;(i=1,2,...,m) in the equation.
Z—CyX;—Cy X, —...—C, X, -0X,,,—...—0X%,,,=0
and CB:[CB‘l’CBZ"""CBm]

Hence, the basic matrix B, [in equation (3.11)] can be represented in the partitioned
form as

1 —
B1:[0 ;B} .......... (3.12)

Now the right side of (3.12) can be used to obtaine the basis matrix B, in revised
simplex method for standard form .

To compute B’

We compute B;" by applying the rule of matrix algebra,

I Q
If M=[0 FJ .......... (3.13)

where R-1 exists and is known, then inverse of matrix M is computed by the
formula
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| -QR™
M =
{0 R } .......... (3.14)

Now, to apply this rule to computer B, compare the matrices B, (3.12) and M
(3.13) to get,

I=1,Q=-Cg and R=B.

Substituting these values of I, Q, R in the formula (3.13) for matrix inverse, we

get,
B— :B
0 B 1 ..........(3.'5)

V) Any a” (notin the basis matrix B,) can be expressed as the linear combination
of column vectors

(BS.BS".BE..... B
in B,. Therefore,
5,'(1) =Yoj By Y4 B! Tt Ymj B
=(YopYajrees Yy ) (BE. B, BY)

=Y B, (From (3.10)
whic yields
Y{"=B;"a".

)} Substituting g-' from (3.15) in (3.16), we get

- -1
yo_|! CeBT||7G|_|-6*CeB
" [0 B 3 0+B™'3,

—-C;+z Z;—C; A
= 71 = VJ :{VJ .......... (3.17)

We note from result (3.17) that the first component of Y(" is (z;-¢;) or (&)

which is always used to decide the optimality.
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Note : The advantage of treating the objective function as one of the constraints

is that, z;—¢; or (AJ-) forany a; notin the basis can be easily computed by taking

the product of first row of B;, with @" notin the basis, that is,

A, =z;-c;=(first row of B;")xa" notin the basis.

VIl)  The (m + 1) - component solution vector X{" is given by

X@='v® (3.18)
) {1 Ce B‘q m 1x0+Cq(B™'b)
B = | = _
o o B" J[b] [0x0+B7'D

CB XB r4
- X, = X, [ because x; =B™'b,cyx =2]

In (3.19), it is observed that X{" is a basic solution (not necessarily feasible,
because z may be negative also) for the matrix equation (3.7) corresponding to
the basis matrix B,. Also, the first component of X immediately gives the value

of the objective function while the second component X; gives exactly the basic

feasible solution to original constraint , AX = b corresponding to its basis matrix
B.

To Obtain Inverse of Initial Basis Matrix and Initial BFS

As in section 3.4, the inverse of initial basis matrix B, is given by,

8| CeB” (3.20)
0 B_1 .......... .

But, the initial basis matrix B for the original problem is always (mxm) identity matrix

(I,) - We note that |, always appearsin (AX = b) (if it is not so, it can be made to appear in A by
introducing the artifical variables).

Since B=1_ =B

C132)




B 1 Cg
or B11: }

Furthermore, if after ensuring that all b, >0 only the slack variables are needed and the
initial basis matrix B=I_, appears, then
CB1 :CBZ :CB3 ="'=CBm =0, | e. CB :O R

Thus (3.20) becomes

1 0 0

1 0 0 1 .. 0
B_1:|: :|: 0 0 0 :I 1
! 0 Im . . . "

oo . 1

Thus, the inverse of the initial basis matrix B will be B;"'=B, =I__, with which we start

the revised simplex procedure.

Then, the initial basic solution is

which is feasible.

After obtaining the initial basis matrix inverse B =I,. ., and an initial basic feasible solution

to start with the revised ‘simplex ‘procudure, we have to construct the starting revised simplex
table.

To Construct the Starting Table in Standard Form I.

Since X, (=) should always be in the basis, the first column B{" =(=#,) of initial basis
matrix inverse B~ =l _ ., will not be removed at any subsequent iteration. The remaining column
vectors of B;" willbe p{",pM .. pM.

The last column in the revised simplex table will be

Yk Yk

where k is predetermined by the formula
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A =minA; (for those j for which a; is notin B,).

Note : If there is a tie, we can use smallest index j which is an arbitary rule but
computationally useful.

Finally, it is conculded that only the column vectors
e.B",BY,....p0) of B;",X{" and Y"
will be needed to construct the revised simplex table.

Now the starting table for revised simplex method can be constructed as follows. Also

form atable for those, aJ“) which are not in the basis and will be useful to determine the required
Aj's.

Starting Table in standard form |

Variables in B;"
the basis e v - B | XO | v
z 1 0 0 -- 0 0 z, —c, | |Atablefor

[ o |1 o~ o [b [ve |[thosea® whichare
Xg2 0 0 1 0 b, Yok not included in the

B, of starting table|

Xgm 0 0 0 - 1 b, Ymk

Example 3.5

Solve the following linear programming problem by revised simplex method.
Max z=2x,+X,

subjectto 3 x,+4X, <6, 6X,+X,<3, X;,X,20.
Solution :
Step : 1 Express the given problem in Standard Form - |

After ensuring that all b, >0 and transforming the objective function of originlal problem

for maximization of z (if necessary), introduce non - negative slack variables to convert the
inequalities to equations. It should be noted that the objective function is also treated as if it were
the first constaint equation.
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Thus, the given problem is transformed to the following form,
zZ-2X,—%,=0
3X;+4X,+X3=6 (i)
6 X, +X,+X,=3
Step : 2 Construct the starting table in revised simplex form

We, proceed to obtain the initial basis matrix B, as an identity matrix and complete all

the columns of starting revised simplex table except the last column Y" (which can be done in
Step 5)

Applying this step, the system (i) of constraint equations can be expressed in the following
matrix form.

M A A 1
(e) a’ a a’ af’

1 1 1
3 By B

1 2 1 0 O ”
. - X4 0
X, |=|6
0 3 4 1 0
X3 3
0 6 10 1
[ Xa

Here the columns B{" p!" and g\" form the basis matrix B, (whose inverse is also B,

because B, =I, here). Now starting revise simplex table can be constructed as follows:

Table 1 Table 2

Variable in B1‘1 51(1) 5&1)

the basis e,(z) I i B | X |y ) -1

z 1 |0 0 0 3 4
—————— b — — —I — — — — — — — — — — — —

Xg1 =X3 0 I 1 0 6 6 1

Xg2 =X%4 0 : 0 1 3

Step : 3 Computions of A;=z;-c; for a{’ and a
Applying the formula :

A= (firstrow of B;') x (a{” notin the basis),
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A, = (first row of B;") x a{? =(1,0,0)(-2,3,6)
=[1x(~2)+0x3+0x6]=-2

A, = (first row of B;") x a{!
=(10,0)(-14,1)=[1x(=1)+0x4+0 x1]=—1

Remark : Instead of computing each required A; separately, we can also compute
simultaneously in a single step as follows :

{A,A,}={first row of By} [aﬁ”, a‘z”]

~2 -1
-[10,0]| 3 4
6 1

_ 1x(-2)+0x3+0x6 _ -2 21
1x(-1)+0x4+0x1 -1
which gives the values A,=-2,A,=-1 as obtained earlier.
Step : 4
Now apply the usual rule to test the starting solution (x, =x, =0, X, =6,x, =3) for optimality.

Since A, A, obtained in step 3 are both negative, so the starting basic feasible solution

is not optimal. Hence we proceed to determine the entering vector a{".
Step: 5

Let A =min{A} for those j for which a!" are not in the basis

So, we have

A=min[A;,A,|=min[-2,-1]=-2=A,

Hence k = 1

Hence a{" enters the basis and the variables x, will enter the solution.

Now, in order to find the leaving vector we first compute y(" fork = 1.
Step: 6

Since Y"=B;'a"=1_.,a"
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therefore, Y{" =a{" =(-2,3,6).

Now complete the last column X(" of starting table 1 by writing Y{" =a{" =(~2,3,6) in
that column. So the starting has grows to the following form.

Table 3
Variable in e : % By X v
the basis (z) I (Sy) (S,)
z 1 | 0 0 R -2
§ :3_ 0 : 1 0 6 3
X, 0 : 0 1 3 6
Step: 7

The vector p{" to be removed from the basis is determined by using the minimum ratio

rule (similar to that of ordinary simplex method).

Yk ! ik

X Xp:
Let = =min |:y_Bl’yik >0}

Putting k = 1 (which has been obtained in step 6)

X Xp: X X
Br :m_in ﬂ’yi1>0 = m|n|:ﬁ,ﬁ:|
Yr1 ! i1 Yi1 Yo

.16 3] 3
=min|—, — | ==
3 6] 6

Xgr X2

= =2,
° Y1 Y24 andr

S

Hence the vector g{") must leave the basis.

\




Table 4

Variable in e : i g | XY | Y | Minratio rule
I
. | Xg
the basis min. |y
| 1
z 1 : 0 0 0 -2
Xgq=Xg o |1 0 6 3 6/3
I
Xgp = X4 o |o 1 3 |[6] |[3/6«
I

Leaving vector ) Key element

| Xgj
Remark : If the MIN |:y_’yik >0} is attained for more than one value of i, the resulting
ik

basic feasile solution will be degenerate. In that case, we use the usual techniques to resolve
the degeneracy.
Step 8

In order to bring uniformity with the ordinary simplex method adopt the simple matrix
transformation rules. Here the intermediate coefficient matrix is :

(N () () (1)
B! B X§ Y
R, |0 0 0 2
R, |1 0 6 3
R, |0 1 3 [6]
\!

The column e, will never change. So there is no need to write the column e, in the
intermediate coefficient matrix. Also, the vector Y{" is going to be replaced by the outgoing
vector p{.

Now, divide the row R, by key element 6. Then add twice of third row to first, and 3 times
of third row to second. In this way, obtain the next matrix.
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0 1/3 1
1 -1/2 9/2
0 1/6 1/2 1
Table 5
Basic e [ g g | XY | Y |Min Ratio Rule
Vari. () (k=2)|min (Xg/Y,) a)  af
z 1 0 173 |1 -2 /3 0 -1
9/2
X3 0 1 -112(912 (712 17,57 0 4
1/2
— X 0 0 116 |1/2 1116 |7/6 1 1
[ l I 1

B;"

The improved solution is read from this table as :

z=1X3=9/2,x,=1/2,x,=x,=0.

Step: 9

{A4,A2}=(first row of B1‘1) (aﬁf), a‘z”),

] 0o -1
2(1, 0,5) 0 4
1 1

1><0+0><0+%><1

1><(—1)+0><4+%><1
| 13
|-2/3

1
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1 2
Thus, we get A4 :g’AZ =-3

Since A, is still negative, the solution under test is not optimal.
Step : 10 Determination of the entering vector 3{".

To find the value of k, we have
. 112
A =min[A,,A,]=min 373 =A, . Hencek =2.

So a‘21) should enter the solution, means the variable x, will enter the basic solution.

Step : 11 Determination of the leaving vector, given the entering vector a{".

1 0 1/3][-1] [-1++1/3
Now XV =B;"al’={0 1 —1/2|| 4|=|0+4+-1/2
0 0 1/6]|| 1| |0+0+1/6

-2/3
= 7/2
1/6

The ‘minimum ratio rule’ shows that 7/2 is the key element.

So remove the vector g{" from the basis, to bring it in place of Y{" by matrix
transformation.
Step : 12 Determination of new table for improved solution

For this, the intermediate coefficient matrix is :

By By Xy A

R, 0 1/2 1 -2/3

R, 1 -1/2 9/2 712

R, 0 1/6 1/2 2/6
\2 T

Applying the operations :

2 2\(2 1(2

7R2,R1 +(—§)(7R2} and Rs :_6(7R2j , we get
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1 1 1
B’ B’ Xy’

4/21 5/21 1317 0
2/7 -1/7 9/7 1
-1/21 1/42 2/7 0

Now, the table for improved solution is as follows :

Variable in B;’

the basis z YV % XW Y
e, BiY By

z 1 421 5/21 13/7

Xy = Xg4 0 2/7 -1/17 9/7

X, = Xa 0o | -1/21 2/7

af)

al)

The improved solutionis: z=13/7,x,=9/7,x,=21/7

Third lteration
Step : 13

{A4, A5} = (first row of By') (a}”,al)

0
~(14/21,5/21) | 0
1

o = O

1x0+4/21x0+5/21x1] _[5/21
1x0+4/21x1+5/21x0| |4/21

Therefore

Ay=5/21;A,=4/21

The positive values of A, and A, indicate that the optimal solution is

z=13/7,x,=9/7,x,=217
Example 3.6

Solve the following problem by revised simplex method :

Max z=x,+2X, , subjectto x, + X, <3,X,+2Xx,<5,3 X, +X, <6;X%,,X, >0
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Solution:

First express the given problem in revised simplex form :
Z-X,—2%,=0

Xy +X, +X3=3

X, +2X,+X,=5

3X+ Xy +X5 =6

Then express the system of constraint equations in the following matrix form :

& & af & af af

By B By B¢
.
1 -1 -2 0 0 0]|x| [0
01 1 1 0 O0f|x| |3
0 1 2 0 1 0]|xs| |5
0 3 1 0 0 1]|x| |6
| X5 |

Now form the revised simplex table for the first iteration.

Table
Variables in B;"
the basis B | B B Y [ XY Y [ Min al” ay
€ (") (af) (af’) (k=2) | (Xg/Y>)
2
z 1 0 0 0 0 -2 -1 -2
X3 =Xg1 0 1 0 0 3 1 3/1 1 1
X4 =Xg2 0 0 1 0 5 2 5/2 « 1 2
X5 =Xg3 0 0 0 1 6 1 6/1 3 1
2
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Step : 1

{Ay, A} = (first row of By") x (af, a})

-1 -2
1 1
- (1,0,0,0 —{-1,-2
( )y o |71 }
3 1

Hence A, =—1A,=-2

Since A, and A, both are negative the solution x, =3,x, =5,x; =6,z=0 is not optimal.
Therefore, we proceed to obtain the nextimproved solution.

Step : 2 Determination of entering vector a(".
To find the entering vector a(", apply the rule
A=min[A;,A,|=min[-1,-2]=-2=A, Hence k = 2.

So the vector a!) must enter the basis. This shows that x, will enter the basic feasible
solution.

Step : 3 Determination of the leaving vector ("

Compute the column Y{" corresponding to vector a)).

10 0 0|2 -2
0 01 0f 2 2
0 0 01 1 1

Apply the minimum ratio rule it follows

Here (2) is the ‘key element’ corresponding to which (" must leave the basis matrix.

Hence x, will be outgoing variable.
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Step : 4 Determination of the improved solution.

The intermediate coefficient matrix is :

By By By Xy A
0 0 0 0 -2
1 0 0 3
0 1 0 5 2
0 0 1 6
d T
Apply usual rules of transformation to obtain
0 1 0 5 0
1 -1/2 0 1/2 0
0 1/2 0 5/2 1
0 -1/2 1 712 0
The table for improved solution.
Table : 2
Variables in B;’
the basis e, pi» BV g | x{ Yo a" ay)
z 1 0 1 0 5 -1 0
X3 = Xg4 0 1 -1/2 0 1/2 1 0
Xy =Xgo 0 0 1/2 0 5/2 1 1
X5 =Xg3 0 0 -1/2 1 712 3 0
The improved solution now becomes :
z=5Xx;=1/2,x,=5/2,x,=712.
Step: 5
-1 0
10
(A,A,)=(1,0,10) 1107 {0, 1}
30
Hence A,=0, A, =1
<)




Since A, and A, bothare >0, the solution under test is optimal.

Furthermore, A,=0 shows that the problem has alternative optimum solutions. Thus,
the required optimal solution is is x,=0,x, =5/2,maxz=5.
Example 3.7

Solve by revised simplex method :

Max. Z=6X,-2X,+3 X,
subject to 2X,—X, +2X5<2
X, +4x,<4
X4y X9, X520
Solution :

The problem in the revised simplex form may be expressed by introducing the slack

variables x, and x; as
Z-6X,+2%X,-3%;=0
2X =Xy +2X5+X, =2
X, +4 X3 +X5 =4

The system of constraint equations may be represented in the following matrix form :

e, a’ a)) ay a’ aY

By Y B
T
X4

1 -6 2 -3 0 O ) 0

0 2 -1 2 1 ol ™%]=]2
X

0 1 0 4 0 1|7 4
X4
X5

The starting revised simplex table
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Variables in B;" Min a’ a al

the basis e, | pi" pY» XO [ Y=y | (Xg/Y,)

z 1 o o 0o |6 . 6 2 3

X4 =Xg1 o [1 o 2 22« |l2 -1 2

X5 =Xgo 0 0 1 4 1 4 /1 1 0 4
2

The starting solution is : x,=x,=X;=0;X,=2,x;=4,2=0.

Step 1

(A, A,,A4) = (first row of B') (af",al",af")

6 2 -3
-(10,0)| 2 -1 2|={-62-3}
1 0 4

Hence A,=-6,A,=2,A;=-3

Since A, and A, are still negative, the solution under test can be further improved.

Step : 2 Determination of the entering vector a("

The entering vector a{" corresponds to the value of k which is obtained by the critertion

A =min.[A;, Ay, Ay]=min{-6,2,— 3} =—6=A,

Hence k =1

So the entering vectoris found to be a!". This also means that the variable x, will enter

the basic solution.

Step : 3 Determination of the leaving vector p"

First we need to computer the column Y1<1> corresponding to the entering vector aﬁ” .

1 0 o0]|[-6] [-6
Y=o 1 of| 2|=] 2|>
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Now apply the min. ratio rule. This rule indicates that (2) is the 'key element' corresponding

to which p{" must leave the basis matrix. Hence x, will be the outgoing variable.
Step : 4 The firstinproved solution.

1 1 1 1
Bl Bs X Y

0 0 0 -6

A
o
N

]

0 1 4 1

To transform the above intermediate coefficient matrix, apply the usual rules of matrix
transformation to obtain

3 0 6 0

1/2 0 1 1

-1/2 1 3 0

Now construct the transformed Table 4.10 for second iteration.
Table 4
Variables in B1‘1 Min aﬁf) a(21) af,;)
the basis e, |p" BY X xP=Y" | (Xg/Yy)
z 1 3 0 6 -1 0 2 -3
X1 =Xg4 0 1/2 0 1 -1/2 1 -1 2
1
X5 =Xg2 0 -1/2 1 3 1/2 3/§<— 0 0 4
l

The improved solutionis : z=6,x,=1X,=X; =X, =0,X;=3.
Second lteration

Step: 5

(Ag A, A5) = (first row of By") (af’, &, af)

0 2 -3
~(13,0)[1 -1 2|={3,-13}
0 0 4

Hence A, =3,A,=-1A;=3
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Since A, is still negative, the solution under test is not optimal. Hence furtherimprovement
is possible. So we proceed to find the ‘entering’ and ’leaving’ vectors in the next step.

Step 6. Determination of the entering vector a{"

Here, we have

A =min[A,, Ay, Ay |=min[3,-13]=-1=A,

Hence k = 2.

Therefore, a!" will enter the basis. The entering vector a!! indicates that the variable

X, must enter the new solution.

Step : 7 Determination of the leaving vector p"

First calculate the column Y{" corresponding to vector a{"

v -B;"a" | 0

0

172 0
-1/2

1

-1

-1/2

1/2

Now complete the column Y" =Y{" of table 4.

The ‘min ratio rule’ in the column of Table 4 indicates that 1/2 is the key element

corresponding to which the vector B{") must leave the basis. Hence x; will be the outgoing

variable.

Step : 8 The next improved solution

Transform the Table 4 into Table 5 from which the mext improved solution can be easily

read.
Table 5
Variables in B1‘1 aﬁf) ag) ag)
the basis e % By XW Yo
z 1 2 2 12 0 0 -3
X1 =XB1 0 0 1 4 1 0 2
X2 = XBZ 0 - 1 2 6 0 1 4

The next improved solution from Table S'is :

z=12,X,=4,X, =6,X3 =X, =%X; =0

1
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Step: 9

Here we compute

{A4,A5,4,) = (first row of By") (af, af’, a)

0 0 -3
~(122)|1 0 2|={2209)
01 4

Hence A, =2,A;=2,A;=9

The solution under testis optimal because A,,A;, A, are all positive. Thus, the required
optimal solution is :

X;=4,%X,=6,X;=0,max.z=12
Example 3.8

Solve the following L.P.P. by revised simplex method.
Max z=3X;+ X, +2X3 +7 Xy,
subject to the constraints
2X,+3 X, —X; +4x,<40
-2X;+2X,-5%5;-x%,<35
X, +X, —2%X3 +3 %, <100
and Xy 22,X, 21,X5 23,X, 24
Solution :
Step : 1

In order to make the lower bounds of the variables zero, we substitute
Xy =Y +2,% =Y, +1 X3 =Y, +3,X, =y, +4 inthe gives LPP to obtain :

Max. Z'=3y,+y,+2y;+7y, where z'=z-41

s.t. 2y,+3y,-y;+4y,<20
-2y,+2y,+5y; -y, <26
Yi+Y,—2y;+3Yy,<91

and y,20,y,20,y,20,y,20.
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Step : 2 To express the LPP in revised simplex form.
Max. Z'=3y,+y,+2y;+7Y,
st "Z-3y;-y,-2y; -7y, =0
2y, +3y,-Y3+4y,+y;=20
—2Y,+2Y,+5Y; -y, +Ys=26
Yi+Y,—2Yy;+3Yy,+Yy; =91
y;20(i=12,...,7) and z' is unrerstricted in sign.

Clearly, the problem is of standard form I.

In matrix form the system of constraint equations can be written as :

By B By BY
e, a’ ay af a af’ a af’
-
Y4
1 -3 -1 -2 -7 0 0 0]|ly.| [0
0 2 3 -1 4 1 0 O0lys| |20
0 -2 2 5 -1 0 1 0lly,| |26
0o 1 1 -2 3 0 0 1]||ys| |91
Ye
Y7

Step : 3 To find initial basic solution and the basic matrix B,.

Here X{=(0,20,26,91) is the initial BFS and basis matrix B, is given by

B, =[BS),B$”,B§”,B§”]=I4 (unit matrix). So B;" =1,
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Step : 4 To construct the starting simplex table.

Variables in B, Sol. | Y =Y{" Min ratio
thebasis | gy’ | B pY By | XP | =Bi'ay (Xe/Y,)
z' 1 0 0 0 0 -7
Vs 0 1 0 0 20 4 S«
(min)

Ys 0 0 1 0 26 -1 --
Yy, 0 0 0 1 91 3 91/3

\2 T

Outgoing vector Incoming Vector

Step : 5 Test of optimality.

Computer A; for all a”,j=1,2,3,4 notin the basis.
(A1 Az, A5, A, )= (first row of B;') [a",a",a,a]

-3 -1 -2 -7
2 3 -1 4
-2 2 5 -1
1 1 -2 3

=(1,0,0,0) =(-3,-1-2,-7)

Since all A,-'S are not >0, the solution is not optimal.

Step : 6 To Find incoming and outgoing vectors

Incoming vector : Ay =mjin Aj=-T7=A,;Hence k=4,

Thus a is the vector entering the basis. So the column vector Y{" corresponding to

a{ is given by
Y‘§1) :B;1 agl) :|4 (—7141— 1,3):[_7,4,_ 1,3]

. . ﬁ—m'n @ _g —@—E
Outing Vector : Since y 2 3| a _Y14’

r4
Sor=1and hence B!’ =al" is the outgoing vector.

Therefore key element = y,, =4, by min. ratio rule.
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Step : 7 To find the improved solution

We bring a{" in place of B{" (=af’) in B;", to get the revised simplex table

Table 2

Variables in B, Sol. | Y =Y{" Min ratio

I
the basis | p I B By By | X§ | =Bi'al (Xs/Y3)

e, | a) a a}

2 1 |74 0 0 |35 |-15/4

1

I
Y4 0O | 1/4 0 0 5 -1/4 --
Ys 0 I 1/4 1 0 31 19/4 124 /19 «
Yy, 0 I -3/4 0 1 76 -5/4 --

\2 T
Outgoing vector Incoming vector

Step: 8

We computer (A1, A, Aq,Ag)=(first row of B;") (a{",af’,al",al")

31 -2 0
2 3 -1 1

~(17/4,0,0) _(1ir 157
2 2 5 0| |24 44
1 1 -2 0

Since A, =-15/4 istill negative, the solution under test is not optimal. So we proceed
to improve the solution in the next step.

Step : 9 To find entering and outgoing vectors.

AS in step 6, we find the entering vector a. The column vector Y{" corresponding to

ay is given by

By min. ratio rule, we find the outgoing vector p{" =a{" . So the key element will be 19/ 4.
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Step : 10 To find the revised solution

We bring a{! in place of B4’ (=a{’) in the basis B, and obtain next revised table 3.

Table 3

Variables in B, Sol. YO =Y{" | Min ratio
the basis | (" | p{" pL B x& =B;"al" | (Xg/Yy)

e, |a al) a!)
z' 1 3719 1519 O 1130/19 -13/19
Y4 0 5/19 119 0 126/19 8/19 63/4 «
Ys 0 1/19 4/19 O 124/19 -6/19 --
Yy, 0 -13/19 519 1 1599/19 -17/19 --

\! T
Outgoing vector Incoming vector

Step : 11 To test the optimality

We compute [Ay, A, Ag,Aq]= (first row of B;") [aﬁ”,a‘z”,ag”,ag)]

-3 -1 0 O
eSS MR e
19 19 -2 2 0 1 19 719 "19'19

1 1 0 O

Since A, <0, the solution under test is not optimal. So we proceed to revise the solution
in the next step.

Step : 12 To find entering and outgoing vectors.

As in step 6, we find the entering vector a{" . The column vector corresponding to a{" is
given by

19 18 19 19

By min ratio rule, we find the outgoing vectoris B{V =a!V . So the key element is 8 / 19.
Py’ =ay
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Step : 13 To find the improved solution

In order to bring a{’in place of B{” (=a{’) we divide second row by 8 / 19, then add its

13/19, 6/19 and 17/19 times in first, third and fourth rows respectively to obtain the nextimproved
solution.

Table 4
Variables in B, Sol.
the basis By pi» Y By X
e, a{’ al a})

z' 1 19/8 718 0 281/4
Y4 0 5/8 1/8 0 63/4
Y3 0 1/4 1/4 0 2312
Yy, 0 -1/8 3/8 1 393/4

Step : 14 To test the optimality

We compute, (A, A,,Ag Ag)=(first row of By') (af,al,af’,af")

17 0 0
:(1,E,Z,OJ 3 4 1.0 :(Q,L,E,ZJ
88 )2 -1 0 1/ (888’8
13 0 0

Since all A;>0, the solution under test is optimal. So the optimal solution of modified
LPP is,

y,=63/4,y,=0,y,=23/2,y,=0 and max z' =281/4
Tranforming this solution for the original LPP, we get the desired solution as,

X, =Y, +2=71/4,X, =y, +1=1X,=y; +3=29/2,x, =y, +4=4 and

maxz=max(z'+41)=445/4 .

\
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4)

¢ ¢ ¢ OEXERCISES® ¢ ¢ ¢

Use the revised simplex method to solve the L. P. Problem
Maximize z=3 X, +2Xx, +5X;
Subject to the constraints
X, +2X, + X5 <430
3 X, +3 x5 <460
X, +4x,<420,
and X4, X5, X5 20
Use the revised simplex method to solve.
Maximize z=X,+2X, +3 X;...4 X,
Subject to the constraints
3X;+2X%X, +3X3 —X, <25
—2X;+ Xy, —2X3+X, 25
2X+ X2+ x5 +x,=20
X4y X9, X5 20
Use the revised simplex method to solve the L. P. P.
Max. z=2x,+Xx,
Subject to constraints
3X,+4x,<6
6X,+X,<3
Xy X520
Use resived simplex method to solve the following L. P. P.

Maximize z=3Xx,+5x,, subject to the constraints

3X,+2Xx,<18

Xq X, 20
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Use the revised simpelx method to solve the L. P. P.
Maximize z=x,+X, +3 X,
Subject to 3X+2X, +%X5; 3,
2X + X, +2X5<2
X4y X9, X5 20
Use revised simpelx method to solve the L. P. P.
Maximize z=6x,—-2X, + 3 X4
Subject to 2X,—X, +2X5<2
X, +4x,<4
X4y X9, X5 20
Use revised simplex method to solve the L. P. P.
Maximize z=5x, +3 x, subject to the conditions
4x,+5x%,2=10,
5x,+2x%,<10
3x,+8x,<12 and
Xq X, 20
Use revised simplex method to solve the following L. P. P.
Maximize z=x,+2x, subject to the constraints
3X,+2%,26
X, +6Xx,>3
and X;20,x, >0
Use revised simplex method to solve the following L. P. P.

Max. z=x, +X, subject to the constraints

X, +2X, 27
4x,+X,26
Xq X, 20
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10) Use revised simplex method to solve the following L. P. P.
Minimize z=x,+2x, subject to the constraints
2X,+5X,>6
Xy +X,22
X,;=0,x,2>0
1) Use two phase revised implex method to solve the L. P. P.
Minimize z=3x, + x, subject to the constraints
Subject to constraints
Xq+X, 21
2X,+3%x,22
Xq X, 20
12) Use the two phase revised simplex method to solve the L. P. P.
Minimize z=4x, +2Xx, +3 X, , subject to the constraints,
2X +4X%,25
2X,+3X, +X%X; 24
X4y X9, X5 20
13) Solve the following L. P. P. by the revised simplex method.
Maximize z=2x,+4 X, +6X; —2X,
Subject to the conditions
X, +2X, +3%;=15
2X + X, +5%3 =20
3X,+6X,+3%x;+3%x,=30,

X4y X9, X5 20
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14) Use the revised simplex method to solve the L. P. P.

maximize z=x,+2x, subject to
X, +X, <3
X, +2X,<5,
3X,+X,<6

and  x,x,>0
15) Use the revised simplex method to solve,

Miximize z=2x, +3 x,, subject to,
X, =X, >0,
X,<4

and Xy, X, 20
16) Use the revised simplex method to solve the following L. P. P.

Minimize z=2x, +x, subject to the constrants
3X+X,23,
4x,+3x%,26,

X,+2X,>2, and x,,X, >0
1 2 1972

a o o aq
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UNIT INTERGER
04 PROGRAMMING

41 INTRODUCTION

There are certain decision problems where decision variables make sense only if they
have integer values in the solution. For example, it does not make sense saying 1.5 men working
on a project or 1.6 machines in a workshop. The integer solution to the problem can, however,
be obtained by rounding off the optimum value of the variables to the nearest integer value. This
approach can be easy in terms of economy of effort in time and cost that might be required to
derive an integer solution but this solution may not satisfy all the given constraints. Secondly, the
value of the objective function so obtained may not be optimal value. All such difficulties can be
avoided if the given problem, where an integer solution is required, is solved by integer
programming techniques.

4.1.1 Types of Interger Programming Problems
There are two types of integer programming problems.
i) Linear integer programming problems.
ii) Non - linear integer programming problems.

In this unit we are going to learn the methods of solving linear integer programming
problems. linear integer programming problems can be classified into three categories :

i) Pure (all) integer programming problems in which all decision variables are
required to have integer values.

ii) Mixed integer programming problems in which some, but not all, of the decision
variables are required to have integer values.

iii) Zero - one integer programming problems in which all decision variables must
have integer values of O or 1.

The pure integer programming problem in its standard form can be stated as follows :
Maximize z=c,; X, +C, X, +C5 X3 +....+C, X,

Subject to the constraints




A1 X1 +8ma Xy +8mz X3 +.ooct 8 Xy =Dy

and X,,X,,Xs,...,X, 20 and are integers.

Here we shall discuss two methods.

i) Gomory's cutting plane method and

ii) Branch and Bound method for solving integer programming problems.
42 GOMORY'S ALL INTEGER CUTTING PLANE METHOD

Gomory's cutting plane method was developed by R. E. Gomory in 1956 to solve integer
linear programming problems using the dual simplex method. It is based on the generation of a
sequence of linear inequalities called a 'cut'. This 'cut' cuts out a part of the feasible region of the
corresponding L. P. problem while leaving out the feasible region of the integer linear programming
problem. The hyperplane boundary of a cut is called the cutting plane.

Gomory's algorithm has the following properties :

i) Additional linear constraints never cut - off that portion of the original feasible
solution space which contain a feasible integer solution to the original problem.

ii) Each new additional constraint (or hyperplane) cuts - off the current non - integer
optimal solution to the linear programming problem.

4.2.1 Method for constructing additional constraint (cut)

Gomory's method begins by solving the linear programming (LP) problem without taking
into consideration the integer value requirement of the decision variables. If the solution so
obtained in anintegeri. e. all variables in the xg column (also called basis) of the simplex table
assume non - negative integer values, the current solution is the optimal solution to the given
integer LP problem. But if some of the basic variables do not have non - negative integer value,
an additional linear constraint called the Gomory constraint (or cut) is generated. This linear
constraint (or cutting plane), is added to the bottom of the optimal simplex table so that the
solution no longer remains feasible. The new problem is then solved by using the dual simplex
method. If the optimed solution so obtained in again non - integer, another cutting plane is
generated. The procedure is repeated until all basis variables assume non - negative integer
values.

4.2.2 The procedure for developing a cut

Select one of the rows, called source row for which basic variable is non - integer. The
desired cut is developed by considering only fractional parts of the coefficients in source row.

Suppose the basic variable x, has the largest fractional value among all basic variables.
Then the rt" constraint equation (row) from the simplex table can be rewritten as ,

Xg =b =1x +(ar1 X148, X, +)

:Xr+zar1 X (i)
SO
(160
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Where x;=(j=12,3,...) represents all the non - basic variables in the r'" constraint except
the variables x. and b, :(XB,) is the non - integer value of varialbe x.. Let us decompose the

coefficients of X; and Xg_into integer and non - negative fractional parts in equation (i).

[XBJ]H, =(1+0)x, +Z{[arj}l+fﬁ}x]

B

Where H:XB,-] and [aij] denote the largest integer obtained by trucating the fractional part

from Xz and a;; respectively. Rearranging equation (ii) we get,

f +{[x3r}]—xr —Z[arj]xj}zzm X
J#r
Where f, is strictly positive fraction (0<f, <1) while 0<f,;<1. We may write equation (iii)
in the form of following inequality.

<> fx

j£r

e D fyx=f+s,or—f=s,->fx, L (iv)

j=r
Where S, is a non - negative slack variable and is called the Gomory slack variable.
Equation (iv) represents Gomory's cutting plane constraint. This constraint create an additional

row along with a column for the new variable Sy .

4.2.4 Steps of Gormory's all integer programming algorithm
Step -1

Initialization : Formulate the standard integer LP problem. If there are any non -
integer coefficients in the constraint equations, convert them into integer
coefficients. Solve it by simplex method, ignoring the integer requirement of
variables.

Step - 2
Test of optimality

a) Examine the optimal solution. If all basic variables (i. e. Xg;=0b;>0 ) have

integer values, the integer optimal solution has been derived and the procedure
should be terminated. The current optimal solution obtained in step 1 is the optimal
basic feasible solution to the integer linear programming.

b) If one or more basic variables with integer requirements have non - integer
solution values, then go to step 3.

C161)
N—




Step -3

Generate cutting plane : Choose a row r corresponding to a variable x. which

has the largest fractional value f. and generate the cutting plane (a Gomory
constraint) as explained earlier in equation (iv)

—f=sg- 2 fix,

j=r
where 0<f;<1and 0<f, <1.

If there are more than one variables with the same largest fraction, then choose
the one that has the smallest contribution to the maximization LP problem or the
largest cost to the minimization LP problem.

Step -4

Obtain the new solution : Add the cutting plane generated in step 3 to the
bottom of the optimal simplex table as obtained in step. 3. Find a new optimal
solution by using the dual simplex method i. e. choose a variable to enterinto the

new solution having the smallest ratio {(Cj =Z))1yi;3Yi; <0} and return to step 2.

Start

v

Ignore integer requirement
and solve by simplex method

Do all basic
variables with
integer requirements
have integer
solution
values?

Current solution is
the requited integer
LP problem solution

Yes

No
¥

Select the basic variable with largest
A fractional value. Generate the cutting plane

Add the cutting plane to the bottom of optimal
simplex table. Find new optimal solution
using dual simplex method.

(162
N—

\




The process is repeated until all basic variables with integer requirements assume
non - negative integer values.

The procedure for solving an ILP problem can be explained through a flow chart

given above.
4.3 EXAMPLES
1) Solve the following integer programming problem using Gomory's cutting plane
algorithm.

Maximize z=x, +X,

Subject to

3X,+2%,<5

X, <2

and x,,x, >0 and are integers.

Answer :
Step : 1

Introducing the slack variables we get,
Maximize z=x,+x,+0s,+0s,
Subject to

3X,+2X,+8,=5

X, +8,=2

and x,,X,,S,5,20

The optimum solution to the LPP is given below.

C, 1 1 0 0
Basic Coeffts of Values of Variables Min
Variables | Basic variables | Basic variables | x, X, S, S, Ratio
Cg b=Xg Xg | X,
S, 0 5 3 2 1 0 5/2
«s, |oO 2 0 0 | 1
Z=CgXg =0 AjZZj—Cj -1 -1 0 0
s, 0 1 0 | 1 -2

\




X, 1 2 0 1 0 1 2/0
Z=CgXg =2 Aj=z;-¢c;> -1 0 0 -1
T
— X4 1 1/3 1 0 1/3 -2/3
X, 1 2 0 1 0 1
2=71/3 A=z,-¢,—> |0 0 | 13 | 13 | A=20

1 7
The optimal solution is X =§,X2 =2 and Max. Z=§.

Step : 2

In the current optimal solution, all the basic variables in the basic are notintegers and the
solution is not acceptable. Since both decision variables x, and x, are assumed to take an

integer value, a pure integer cut is developed under the assumption that all the variables are
integers. We go to next step.

Step: 3
Since x, is the only basic variable whose value is a non - negative fraction, we shall

consider the fist row for generating the Gomory cut. Considering x, - equation as the source
row we write.

1 2
§:X1 +0.x, +§s1 —532 (x, - source row)

The factoring of the x, - source row yields

(0+%)=(1+0)x1+(0+%Js1 +(—1 +%j32

Observe that each of the non - integer coefficient is factored into integer and fractional
parts in such a manner that the fractional part in such a manner that the fractional part is strictly
positive.

Rearrange the equation so that all of the integer coefficients appear on the left hand side.
This gives
1 1

—+(s —x)—ls +—s
3 2 1_3 1 3 2

1 1
—<—s,+—S
Therefore 335113 S2
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Thus complete Gomorian constraint can be written as

1
3

3 3

1 1

1 1 1
2 T9=gS1+5S0r —=01=5S81=5S;

3 3 3

Where g, is the new non - negative (integer) slack variable.

By adding the Gomory cut at the bottom of the simplex table, the new table so obtained

is given below.

C; - 1 1 0 0 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, S, s, g
X 1 1/3 1 0 13 | 23 | O
X, 1 2 0 1 0 1 0
g 0 -1/3 0 0 -3 | 173 1
Step -4
Apply the dual simplex method to find the new optimal solution.
c; - 1 1 0 0 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, S, s, g
X 1 1/3 1 0 13 | 23 | O
X, 1 2 0 1 0 1 0
« O 0 -1/3 0 0 -3 | 173 1
z:g z,-¢= 0 0 1/3 1/3 0
T
X 1 0 1 0 0 -1 1
X, 1 2 0 1 0 1 0
S, 0 1 0 0 1 1 -3
z=2 A=z-¢;—> 0 0 0 0 1

Since all A >0, the solution is optimal solution. Thus x, =0,x, =2,s,=1 and max.

This solution satisfies the integer requirement.
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2) Solve the following integer programming problem using Gomory's cutting plane

algorithm.
Maximize z=2x,+20x,-10x,
Subject to 2X%,+20x,+4x,<15

6x,+20x, +4x,=20
and x,,X,,X5 are non - negative integers.

Also show that it is not possible to obtain a feasible integer solution by using the
method of simplex rounding off.

Answer :

Adding slack variable s, in the first constraint and artificial variable in the second constraint
the problem is stated in the standard form as :

Maximize z=2x,+20x, -10x; +0s,-MA,
subject to
2X,+20x,+4 x5 +8,=15
6x,+20x,+4x; +A,=20
and x,,X,,s,,A,;>0 and are integers.

The optimal solution of the problem ignoring the integer requirement using the simplex
method (Big M technique) is obtained in the following table.

Cj 2 20 -10 0 -M
Basic Coeffts of | Values of Variables Min
Variables | Basic Basic X4 X, X5 S, A, | Ration
variables variables
« s 0 15 2 4 1 0 |[|15/20
A, -M 20 6 20 4 0 1 20/20
Z=-20M| z;-¢;—> -6M-2 [ -20 M-20| -4M+10 | O 0
X, 20 3/4 110 |1 1/5 1/20 | 0 15/2
«— A, -M 5 4 0 0 -1 1 5/4
z=15-5M z;-¢;—> -4M |0 14 M+1]|0
T

\
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X, 20 5/8 0 1 1/5 3/40 |-1/40
X4 2 5/4 1 0 0 -1/4 1 1/4
z=15 Z,—Ci— 0 0 14 1 M A >0

J

The non - integer optimal solutionis x,=5/4,x,=5/8,x, =0 and Max. z=15. Then the

rounded off solution will be x,=1,x,=0,x; =0 and Max z = 2. This solution does not satisfy the

second constraint 6x,+20x, +4 x; =20. Hence it is not possible to obtain an integer optimal

solution by simply rounding off the values of the variables.

To obtain the integer valued solution, we proceed to construct Gomory's constraint

(fractional cut). Since the fractional part of the value of x, =(0+5/8) is more that the fractional

part of x,=(1+1/4), the x, - row is selected for constructing the fractional cut as given below.

é—Ox +1.Xx +1x +is
8_'1 s A2 53 4 1

5 1 3
(0+§):(1+0)x2+(0+€)x3 +(O+Ej S,

On rearranging above equation we obtain the Gomory's fractional cut as,

S 1.3
g 9755 40

Sy

Adding this additional constraint at the bottom of optimal simplex table, we get

(Cut)

C| 2 20 10 O 0

Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, X3 S, 9
Xy 20 5/8 0 1 1/5 | 3/40 |0
X4 2 5/4 1 0 0 -1/4 |0
0 0 -51/8 0 0 -1/5 | -3/40 | 1
z=15 z,-¢;—> 0 0 14 1 0

00 14 1

Here maxy—,—, ,
0°0'(-1/5) (-3/40)
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= max{—,—,—?O,—ﬂ}
3

40
=3 Therefore we must enter the variable s, .

Thus s, is the entering variable whereas g, is outgoing variable. Here we are applying
dual simplex method.

C| 2 20 10 O 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, X5 S, g,
X, 20 0 0 1 0 0 1
X 2 10/3 1 0 2/3 |0 -10/3
S, 0 25/3 0 0 8/3 1 -40/3
z=20/3 | z;-¢;—> 0 0 34/3 | O 40/3

The solution is optimal but is still non - integer solution. Therefore one more fractioned

but should be added. Consider x, - row for censtructing the cut.

(3+%):(1+0)x1 +(0 +§)x3 +(—4 +§)91

We obtain Gomory's fractional cut as,

g -2x-2 Cut-1I
3 =0 3% 391 (Cut-1I)
Adding this constraint to the optiomal simplex table the new table becomes
C| 2 20 -10 0 O 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, X3 s, | 9 g,
X, 20 0 0 1 0 0 [1 0
10 2 10
X4 2 - 1 0 3 0 3 0
0 Gl 0 0 8 1 40 0
S 3 3 3
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1 2 2
g, 0 —g 0 0 —g 0 - 1
=2 z—c 0 0 #o, B 0
3 b 3 3
, 34/3 40/3
Ratio - - ~2/3 ~2/3
=-17 -20
T

Maximum ratio =-17. Remove g, from the basis and enter variable x, into the basis by
applying the dual simplex method.

C| 2 20 10 0 O 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, X3 s, | 9 g,
Xy 20 0 0 1 0 0o |1 0
X4 2 3 1 0 0 0 |[-4 0
S, 0 7 0 0 0 1 |-16 4
X3 -10 1/2 0 0 1 0o |1 -3/2

z=1

The above optimal solution is still non - integer because variable x; doex not have

integer value. Thus a first fractional cut will have to be constructed with the help of x, -row and
the required Gomory's fractional cut is

1 1

=850 (Cut1l)

Additing this cut to the bottom of above table we get a new table. Apply the dual simplex
method.

(169
N—



C| 2 20 -10 O 0 0 0
Basic Coeffts of | Values of Variables
Variables | Basic Basic X X, X; | s4 9 g, g;
variables | variables
X, 20 0 0 1 0 0 1 0 0
X 2 3 1 0 0 0 -4 0 0
S, 0 7 0 0 0 1 -16 | 4 0
X3 -10 1/2 0 0 1 0 1 32 |0
«— O; 0 -1/2 0 0 0 0 0 -1/2 1
z=1 zj-¢;—> 0 0 0 0 2 15 0
z,-c
Ratio 51 row - - - - - -30 -
T

Max. ratio = - 30 and therefore remove variable g, and enter variable g, into the basis

By applying the dual simplex method, we get the new optimal solution as shown in the following
table.

C| 20 20 -10 O 0 0 0
Basic Coeffts of | Values of Variables
Variables | Basic Basic X4 X, X5 S, 9 9, Js
variables | variables
X, 20 0 0 1 0 0 1 0 0
X 2 3 1 0 0 0 -4 0 0
S, 0 3 0 0 0 1 16| 0 8
X3 -10 2 0 0 1 0 1 0 -3
g, 0 1 0 0 0 0 0 1 -2
z=—14 z-¢;—»0 0 0 0 2 0 30

Since all the variables in above table have assumes integer values and all z;—¢; 20, the

solution is integer optimal solution. x,=3,x,=0,x; =2 and maz x = - 14.
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3)

Answer :

The owner of a readymade garments store sells two types of shirts - zee shirts
and button - down shorts. He makes a profit of Rs. 3 and Rs. 12 per shirt on zee
- shirts and Button down shirts, respectively. He has tow tailors A and B at his
disposal to stitch the shirts. Tailors A and B can devote at the most 7 hours and
15 hours per day respectively. Both these shirts are to be stitched by both the
tailors. Tailors A and B spend 2 hours and 5 hours, respectively in stitching one
zee - shirt and 4 hours and 3 hours, respectively in stitching a Button down shirt.
How many shirts of both types should be stitched in order to maximize daily
profit?

a) Formulate and solve this problem as an LP problem.

b) If the optimal solution is not integer valued, use Gomory technique to derive
the optimal integer solution.

Let x, and x, are number of zee - shirts and Button down shirts to be stitched daily,

respectively. Then we have to maximize profit = 3 x, +12x, subject to the constraints.

)

Availability of time with tailor A
2X,+4x,<7
Availability of time with tailor B

5x,+3x,<15

and x,,X, >0 and are integers. Thus we get,

Maximize z=3x,+12x,

Subject to,

2X,+4x,<7

5x,+3x,<15

and x,,x,>0 and are integers.

Adding slack variables s, and s, the given LP problem is stated into its standard form.

Maximize z=3x,+12x,

Subject to,

2X,+4x,+8,=07

5X,+3X,+85,=15

and x,,X,,S,5,20




C| 3 12 0 0
Basic Coeffts of Values of Variables Min
Variables | Basic variables | Basic variables | x, X, S, S, Ratio
Cg b=Xg Xg | X,
« s, 0 7 2 1 0 7/4
S, 0 15 5 3 0 1 15/3
z=0 z,-c;—~> -3 12 | 0 0
— X, 12 714 1/2 1 174 |0
S, 0 39/4 7/2 | O -3/411
z=21 Z,-C;—> 3 0 3 0 A;=0

The non - integer optimal solution is x,=0,x,=7/4 and max z = 21.

b)

To construct Gomory's fractional cut we use x, - rows.
2

7 1
Z:§X1 +X5 +ZS1

The required fractional cut is

Adding this additional constraint to the bottom of the optimal simplex and applying the
dual simplex method we get the following iterations.

3

4

LIV N
(] 5 X1 S

C| 3 12 0 0 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, S, S, 9,
X, 12 714 1/2 1 1/4 |0 0
s, 0 39/4 7/2 |0 -3/4 (1 0
g, 0 -3/4 -1/2 |1 0 -1/4 |0 1
z=21 Z,-C; 3 0 3 0 0




— -6 - -12 0 0
2
X, 12 1 0 1 0 0 1
S, 0 g/2 0 0 -5/2 |1 7
X 3 3/2 1 0 1/2 0 -2
2:32—3 z-c;—> 0 0 % 0 6

The optimal solution is still non - integer. Therefore adding one more fractional out with

the help of x, - row we get the following able and subsequent interations by dual simplex method.

C| 3 12 0 0 O 0
Basic Coeffts of Values of Variables
Variables | Basic variables | Basic variables | x, X, S, S, | 9 g,
Xy 12 1 0 1 0 0 |1 0
S, 0 9/2 0 0 —g 117 0
X4 3 3/2 1 0 172 | 0 | -2 0
d, 0 -1/2 0 0 -1/411 0 [ O 1
z:% z,-¢;—> 0 0 % 0 6 0
. zj-c

Ratio row 4 - - -3 0o - -
Xy 12 1 0 1 0 0 |1 0
S, 0 7 0 0 0 117 -5
X4 3 1 1 0 0 0 | -2 1
S, 0 1 0 0 1 0 1]0 -2
z=15 z—-c;—> 0 0 0 0 6 320

Since all the variables have assumed integer values and all

\
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integer optimal solution. Thus the company should produce x,=1 zee shirt, x,=1. Button -
down shirt to yield maximum profit z = Rs. 15.

44 GEOMETRICAL INTERPRETATION OF GOMORY'S CUTTINGS PLANE
METHOD

Let us consider the problem
Maximum z=x, + X,
Subject to
2X,+9X,<16
6x,+5x,<30

Xq X, 20

The graphical solution of this problem is obtained in the figure with solution space
represented by the convex region OABC. The optimal solution occurs at the extreme point B

i. e. x,=3.5x,=18, max z = 5.3. But this solution is not integer valued. While solving this

4 problem by Gomory's method, we introduce first
81 Gomory's constraint —ix —ix 4
i 107° 104 5

In order to express this constraint in terms of
X, &X,, we use the constraints 2x, +5x, +x; =16

and 6 x,+5x, +x, =30. Then Gomory's constraint

'\4:-c becomes,
21 B (3.5,1.8) 3 . )
4_ ~70(18-2%1=5%,) ~ (306 -5%, )<~
0 2 4

) 1
i.e. Xq+Xy S5E

This constraint cuts off the feasible region and now the feasible region is reduced to
somewhat less than the previous one and the procedure continues till an integer valued corner
is found. Because of cuttings in the feasible region, the method was named as cutting plane
method.

~~~~~ EXERCISE ~~~~~
Find the optimum integer solution of the following all integer programming problems.
1) Max z=x, +X,
Subijctto
3X,-2%,<5
X2




2)

3)

4)

5)

6)

X;,X, >0 and are integers. (Ans.:x,;=3,x,=2,max.z=>5)

Max. z=x,-2x,

Subijctto

4x,+2%x,<15

X4, X, >0 and integers.
(Ans.:x;=3,x, =0,max.z=3)
Max. z=3x,

Subiject to,

3X,+2X,<7

Xi—Xy2-2

X4, X, >0 and integers.
(Ans.:x;=0,X, =2,maxz=6)
Max. z=x,+5x,

Subject to,

X, +10x, <20

X2

X4, X, >0 and integers.
(Ans.:x;=2,X, =1,maxz=7)
Max. z=3x,+4x,

Subiject to,

3X,+2%x,<8

X, +4x,210

X;, X, >0 and are integers.
(Ans.:x;=0,x, =4,maxz=16)
Max. z=11x, +4 X,

Subiject to,

—-X,+2X,<4

\
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5X,+2x%,<16

2X,—X,<4

X;,X, >0 and are integers.

(Ans.:x;=2,X, =3,maxz=234)
7) Max. z=x, - X,

Subiject to,

X +2X,<4

6x,+2%x,<9

X;, X, >0 and are integers.

(Ans.:x;=1x, =0,maxz=2)
8) Max. z=3x,-2X, +5X;

Subiject to,

SX,+2X, +7X;<28

4x,+5X,+5%x;<30

X4, X5,X5 20 and are integers.

(Ans.:x,;=0,x, =0,X; =4,maxz=20)

BRANCH AND BOUND METHOD

The branch and bound method was first developed by A. H. Land and A. G. Daig and it
was further studied by J.O. C. Little et. al. and other researchers. This method can be used to
solve allinteger, mixed integer and zero - one linear problems. This is the most general technique
for the solution of integer programming problem (I.P.P.) in which a few or all the variables are
constrained by their upper or lower bounds.

4.5 STEPS OF BRANCH AND BOUND ALGORITHM
Step : 1

Initialization : Consider the following all integer programming problem.




Maximize z=c,X,+C, X, +...4C_X,
Subject to constraints
aq1Xy + 845Xy + Ay3Xg +... X, X, by

(LP-A)
Ay1 Xy +8y, X, +8y5 X5 +... 485, X, <b,

Q1 X +8mp, Xy +855 X5 +...+8,,X, <b

mn®'n —=m

Obtain the optimal solution of the given problem ignoring integer restriction on the

variables.

If the solution to this LP problem (say L P - A) is infeasible or unbounded, the solution to
the given all integer programming problem is also infeasible or unbounded, as the case may be,

Otherwise examine optimal feasible solution. If the answer satisfies the integer
restrictions, the optimal integer solution has been obtained. If one or more basic variables do not
satisfy integer requirement then go to step 2.

Step : 2

a)

b)

Let the optimal value of objective function of LP -Abe z,. This value provides an
initial upper bound on objective function value for integer LP problem. Let it be
denoted by z,. The lower bound on integer LP problem can be obtained by
truncating to integer all values of the varialbes. Let the lower bound be denoted by
z, .

Let x, be the basic variable having largest fractional value.

Branch (or partition) the LP - A into two new LP sub - problems (also called

nodes) based on integer value of x, i. e. partitioning is done by adding two mutually
exclusive constraints.

X <[] and x =[x ]+1
to the original LP problem. Here [x, | is the integer portition of the current non -

integer value of the variable x, . Thisis done to exclude the non - integer value of

the variable x,. The two new LP sub problems are as follows.

LP sub - problem B LP sub - problem C
Max Z=zcj.xj Max ZZZCJ-.XJ-

j=1
subject to subject to

> a;x =b, > a;x =b,

\




X <[ X | Xy =[x, |+1
and x;>0 and x;>0
Step: 3

Bound step : Obtain optimal solution of sub - problems B and C. Let the optimal value of
the objective function of LP - B be z, and thatof LP - C be z,.

Step: 4
Examine solution of both LP - B and LP - C, which might contain optimal point.
1) Exclude a sub - problem from further consideration if it has an infeasible solution.

2) If a sub - problem yields a solution that is feasible but not an integer then for this
sub - problem return to step - 2.

3) If a sub - problem yields a feasible integer solution examine the value of objective
function. If this value is equal to the upper bound z;, an optimal solution has

been reached. But if it is not equal to the upper bound z, but exceeds the lower

bound z_, this value is considered as new upper bound and return to step 2.
Finally if it is less than the lower bound, terminate this branch.

Step: 5

The procedure of branching and bounding contimes until no further sub problem remains
to be examined. At this stage, the integer solution corresponding to the current lower bound is
the optimal all integer programming problem solution.

46 Examples

1) Solve the following all integer programming problem using the branch and bound
method.

Maximize z=3x,+5x,
Subject to the constraints
2X,+4X,<25

X,<8

2x,<10

and x,,x, >0 and integers.

Answer :

Relaxing the integer requirements, the optimal non - integer solution of the given integer
L. P. problem obtained by the graphical method as shown below is x,=8,x,=225 and

z,=35.25.
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4 A X1=8
12
107
8_.
2x,+4x,=25
6_
= > 2x,=10
4_.
)/ Feasible B (8, 2.25)
Region
« 7 .
;

The value of z, represents the initial upper bound, z, =35.25 on the value of the objective
function i. e. the value of the objective function in the subsequent steps cannot exceed 35.25.
The lower bound z is obtained by truncating the solution values to x,=8 and x,=2.

Thus z, =3(8)+5(2)=34

The variable x, (=2.25) is the only non -integer solution value and is therefore selected
for dividing the given problem into two sub - problems LP - B and LP - C. Two new censtrains
X, <2 and x, >3 are created. These two constraints are added to the given problem to get two
sub - problems.

LP-B LP-C
Max z=3x,+5Xx, Max. z=3x,+5Xx,
Subject to, Subiject to,
2X +4Xx,<25 2X +4Xx,<25
X,<8 X,<8
2x,<10 2x,<10
X, <2 X, >3
and x,,x, >0 and integers. and x,,x, >0 and integer.

In sub - problem L. P. B. the constraint 2x, <10 is redundant as x, <2 satisfy 2x,<10.

Subproblem B and C are solved graphically.
C179)
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A 4 X4 =8
121
1071
8_.
6_
> X, =5
41 C
2 | | / /\ > X, =2
Sl 274 6 8 10 12 14
B) Feasble region for sub - problem B
C) Feasible region for sub - problem C.

The solution to subproblem B is x,=8,x,=2,z,=34.

The solution to subproblem C is x, =6.5,x, =3,z, =34.5 . Notice that both solution yield
value of z lower than that of original LP problem. The value of z, establishes an upper bound on
z, and z, values of sub - problems.

Since the solution of sub - problem B is an all integer, we stop the search of this sub -
problem i. e. no further branching is required from node B. The value of z, =34 becomes the
new lower bound on the IP problems optiomal solution. A non - integer solution of sub - problem
C and also z,>z,, both indicate that further brancing is necessary from node C. However if
z, <z, then no further branching would have been required from node C. The upper bound now

takes the value z, =z, =34.5 instead of 35.25 atnode A.

The sub - problem C is now branched into two new subproblems D and E, and are
obtained by adding the constraints x,<6 and x,>7 (for problem C, x,=6.25)

LP-D LP-E
Max. z=3x, +5Xx, Max. z=3x,+5Xx,
Subject to, Subiject to,
2X +4Xx,<25 2X +4Xx,<25
X,<8 X,<8
2x,<10 2x,<10
X, >3 X, <3

\




X,<6 X =7
and x,,x,>0 and integers. and x,,x,>0 and integers.
Sub - problems D and E are solved graphically.
The solutions are
LP-D: x,=6,x,=3.25Max.z=z, =34.25
LP - E : No feasible solution exists because constraints
X,27 and x, >3 do not satisfy 2x,+4x,<25.

So this branch is terminated.

O M~ 0

||‘_ ||‘_ ||‘_

X X X

4 A A A
101
8_.
61

» X, =5
=
X, =3

A

2 4 6 8 10 12 14

In problem - D solution x, =3.25 is not an integer solution. Create new sub problems F

and G from sub problem D with two new constraints x, <3 and x, >4.

LP-F LP-G
Max. z=3x,+5Xx, Max. z=3x,+5Xx,
Subject to, Subiject to,
2X +4Xx,<25 2X +4Xx,<25
X,<8 X,<8
2x,<10 2x,<10
X, >3 X, >3
X,<6 X,<6
Xy <3 X, >4
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and x,,x,>0 and integers.

and x,,x,>0 and integers.

The graphical solution of sub - problems F and G gives

sub - problems F : x,=6,x,=3 and Max. z=z,=33

sub - problems G : x,=4.25,x, =4 and Max. z=z,=33.5

The branching process is terminated when new upper bound is less than or equal to the
lower bounds of previous solutions or no further branching is possible.

Although the solution at node G is non - integer, no additional branching is required from
this node because z; <z,. The branch and bound algorithm is terminated and the optimal integer

solution is x,=8,x, =2 and z = 34 yielded at node B.

The branch and bound procedure for the above problem is given below.

B F
X;=8,x,=2 i X, =6,X,=3
A X2 <2 1 z, =324 g(?lﬂ?(?rll D X; <3 1 Z5= 33
X;=8,X,=2.25 X;=6,X,=3
z,=35.25 X,<6 z;=33
z,= 35.25\ < X, 24 =
z,=34  x,>3 X;=6,X,=3.25 X;=45%,=4 |,
z,=34.25 z, =335
z,=345 \ E
z =330 X1 =1 Infeasible
2) Use branch and bound technique and solve the following integer programming

problem.
Max. z=7x,+9x,
Subject to,
—X;+3X,<6
7 X, +X,<35
0<x4,X, <7
and x,,x, are integers.

Answer

Relaxing the integers requirement the optimal non - integer solution obtained by graphical
method is as follows.
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7 Xy +X, =35

ﬁz
8_. X2 :7
67 (9/2,7/2)
4_.
27 Feasible
region
< f t t t > X1
il 2 4 6 8
9 7
X1 :E, X2 :E

9 7
and Z1:7(Ej+9(§j:63
Thus z,=63 and z =7(4)+9(3)=55

9
Both x, and x, are non - integer solution values. Choose X; =5 for dividing the given

problem into two sub problems LP - B and LP - C. Two new constraints x,<4 and x,>5 are
added to LP - B and LP - C respectively.

LP-B LP-C
Max. z=7x,+9x, Max. z=7x,+9x,
Subiject to, Subiject to,
—X;+3X,<6 —X;+3X,<6
7X,+X%X,<35 7X,+X%X,<35
0<x4,X, <7 0<x4,X, <7
X,<4 X, =9
and X, X, are integers. and X, X, are integers.

The solution to sub problem LP - B and LP - C are obtained by graphical method.

\




8_.
6_.
(4,10/3) /
4_.
2] Region B
< / : : > X,
v 2 4 6 8

Region C ={(5,0)}
7 X;+X,<35

10
The solution of sub problem LP - B is X;=4,X, =32 =58 . The feasible region for
subproblem LP - Cis {(5, 0)}. Therefore the solution of subproblem LP -Cis x,=5,x,=0,z, =35.

Since all the variables have integer values, we stop the search for this subproblem i. e. no
further branching is required from node C. The value z = 35 becomes the new lower bounds on

the IP problems optimal solution. A non - integer solution of subproblem B and z, >z,, both
indicate that further branching is necessary from node B.

The sub - problemB is now branched into two new subproblem D and E, and are obtained
by additing the constraints x, <3 and x, >4 (as for problem B,x, =10/3).

LP-D
Max Z=7x,+9x,
Subject to,
—X;+3X,<6
7 Xy +X,<35
0<x4,X, <7
X,<4

X, <3

The graphical solutions to LP -

LP-E
Max. Z=7x,+9x,
Subiject to,
—X;+3X,<6
7 Xy +X,<35

0<x4,X, <7

D and LP - E are as follows.
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8_.

> X, =7
@103)[\ | -
4“ o X2:3
2_
] 2 4x,=5\ ¢ 8 "X
Region C = {(5,0)}
X,=4 77X +X%X,<35

There is no feasible region for LP-E, Since x,<4 and x, >4 do not satisfy —x,+3y,<6
as such there is no feasible solution for problem LP - E. The solution of subproblem LP - D is
x,=4,X,=3 and z, =55 . Since there is no solution for subproblem LP - E no further branching
is required for this subproblem. Since solution to LP - D is an integer solution, no further branching
is required for LP - D asa.

Thus finally, we get the optimal solution to the given integer LP problem as z = 55,
X, =4,X,=3.

The tree - diagram corresponding to this problem is shown in the following figure.

Start
v
X, <4 | X, 25
v v
X1=4,X2=10/3 X1=5,X2=0
v v
X;=4,X,=3 .
7 =55 \\ No solution
.=

Optimal solution

\




Remark

If the number of variables are more than 2 then exclude the redendent constraints and
solve these problems by simplex method and obtain solutions corresponding to each sub -
problem.

~ ~~~~EXERCISE ~ ~ ~ ~ ~

Use branch and bound technique and solve the following integer programming problems.
1) Max. z=3x,+3x, +13 X,
Subiject to,
-3X,+6X, +7X;<8
5X,—3X,+7%x5<8

0£xj£5

and all X; are integer.
2) Max. z=3 x, +X,
Subiject to,
3X =X, +X3=12
3%, +11x, + X, =66
x;>20,j=12,3,4
3) Max. z=x, + X,
Subject to,
4x,-%,<10
2x,+5x%x,<10
X, X, =0,12,3
4) Min. z=3x,+25x,
Subject to,
Xy +2X, 220
3%x,+2x%,250

X4, X, >0 and integers.

\




5)

6)

7)

8)

(Ans.:x,=14,x, =4,z=52)
Max. z=2x,+3 X,
Subject to,

X;+3X,<9

3X+X, <7

X;—X, <1

X4, X, >0 and integers.
(Ans.:x;=0,x,=3,z=9)
Max. z=7 x,+6 X,

Subiject to,

2X,+3%x,<12

6x,+5x,<30
X4, X, >0 and integers.
(Ans.:x;=5,x,=0,z=35)
Max. z=5x,+4Xx,
Subject to,

Xy +X,22
5x,+3x,<15
3x,+5x,<15

and x,,x, >0 and integers.
(Ans.:x;=3,x,=0,z=15)
Max. z=-3 X, +X, +3 X,
Subiject to,

—X;+2X, +X3<4

2X,-15x5 <1

X;—3X, +2X5;<3

\
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Xq X, 20

X5 -Nnon - negative integers.

(Ans.:x1 =0,x, :g,x3 :1,222)

9) Max. z=x, +X,
Subiject to,

2X,+5x%x,216
6x,+5x,<30
X, >0
X, - hon - negative integer.

(Ans.:x1:4,x2:g,z:?)

10)  Max. z=110x,+100x,
Subject to,
6x,+5x,<29

4x,+14x,<48

X;,X, >0 and integers. (Ans.:x,=4,x,=1,2=540)

a o o aq
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UNIT DYNAMIC
05 PROGRAMMING

Dynamic programming is a quantitative technique for solving problems involving a
sequence of inter related decisions. It is a decision making problem. In this technique a problem
is divided into sub - problems (stages). The computation at different stages are linked through
recursive computations in such a way that the feasible optimum solution of the entire problem is
obtained when the last stage is reached.

This technique was developed by 'Richard Bellman'. Bellman's principle of optimality
states that. An optimal policy has the property that whatever the initial state and deciions are the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision.

Mathematically, this can be written as
fu (0= 5% g {rda)+ Rt {T(xdo)}}

Where fy (X) = The optimal return from an N stage process when
initial state is x.

r(d,) = Immediate return due to decision x,

T(xd,) = The transfer function which gives the resulting
state

{x} = Set of admissible decisions.

The problem which does not satisfy the principle of optimality cannot be solved by the
dynamic programming method.

Characteristics of Dynamic Programming

1) The problem can be divided into stages, with a policy decision required at each
stage.

2) Every stage consists of a number of states associated with it. The states are
different possible conditions in which the system may find itself at that stage of
the problem.

3) The decision at each stage converts the current state into a next state.

4) The state of the system at a stage is decscribed by state variables.

5) Given the current state, an optimal policy for the remaining stages is independent
of the policy adopted in previous stages.

<D
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6) A recursive relation (functional equation) is formulated with n stages.

7) Using recursive equation approach each time the solution procedure moves
backward stage by stage for obtaining the optimal policy of each state for that
particular stage, till it attains the optimum policy beginning at the initial stage.

51 EXAMPLES
Example : 1

A positive quantity C is to be divided into n parts in such a way that the product of the n
parts is to be a maximum. Obtain the optimal subdivision.

Solution :
Step : 1

Mathematical formulation and development of recurrence relation. If the number c is
divided into n parts y,,y,,...y, (sa,) . Then the problemis to find y,,y,,y,,...,y, which

Maximize z=y,,Y,,Y3,--, Yy

suchthat y,+y,+y; +...+Yy,=C

We form a recursive relation connecting n stage problem with the optimal decision
function for the (n - 1) stage such problemn=1,2, ..., n.

Let u,(i=12,...,n) be the i part of c. In this problem each part u, is may be regarded as

a stage, u; may assume any non negative values such that y, +y, +y, +...+y, =c.

Hence f, the alternatives at each stage are infinite. It is a problem of continuous system

and hence the optimal decision at each stage are obtained by using the method of differential
calculus.

Let f_ (c) denote the maximum value of the product when the quantity c is divided into n

parts. f (c) is function of discrete variables n.
Forn=1,i. e.if cis divided into one part only. Then y,=c
f(c)=c (1)
Forn=2,i.e.if Cis divided into two parts u, and u, .
Lety,=z

y,=C-2Z

f, (c)=Maxy, y, = Max {z(c-2)}

f2(c)=0|\S/|ZanC{zf2 (C—Z)} (Since f,(c—z)=(c—z) from (1)

(190 )
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Forn =3, if cis divided into threee parts u,,u,,u,
Lety,=z theny,+y,=c-z

Therefore the part ¢ - z is further divided into two parts y,,y, where maximum product

is f, (c—2z) by definition of f, (c).

f,(c)=Maxy,y, y; = Max {f, (c-2)}

By similar procedure we get

for n = m the recursive relation is

fo(c)= Max {zf (c-2} )

0<z<C
Step 2
Solve the recursive relation for optimal policy

From (1) f(c)=c
From (2)  f2(c)=Max {zf,(c-2)}

=g (e 2)

We apply the method of diff. calcules

%(z.(c—z)):c—2z=0

c
z=—,-2Z=—
2 2
2

dz?

{z(c-2)}=-2 4t z:%

. . c
Hence z (c - z) is maximum at ZZE

2
c C Cc
f2 (C):EEZ(EJ .......... (5)

cc
Optimal policy for two parts is (5’5)
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In other words the optimal policy for two parts is division of ¢ in two equal parts.

From (3) fs (C)=O|\S/|Zagxc{2f2 (c-2)}

=0|\</Iza<xc{z.(%J },fz (c- )=(C;ZZJ .......... From (5)

We apply the method of calculas

el [l )

c
z=—
3

c 2c
C—z=C—_-=— isto be divided into two parts whose product is maximum.

3 3

By the policy for two parts f, (c-2z) i. e.

(o) 1f20)  1(20) o c
e 2| 3 |sattalnedwhenthetwopartsare2 3 and2 3 )8 33

ccec
Hence the optimal policy for three parts is (555) is
c is divided into three equal parts.
In general for n parts (stages)

ccc c)

Optimal policy is (H’H’H""’H

fn (C) = (%J

We shall have this result by induction on n.
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The given result is true forn =1
f,=c.cis divided into one part only.

Assume that the given result is true forn =m.

et (c):(%)m

We shall show that the above result is true forn=m + 1

From (4)  fm.1(6)= Max {zf, (c-2)}

0<z<C

= Max {Z(EJ }
0<Z<C m

We apply the method of differential calculus

Sl ()

m+1

It can be prove that

d z(ﬁjm <0 zZ= c
dz2 |7\ m for T ma

m

c

c T m+1 ( c Jm”
fm+1 = =
m+1 m m+1
Optimal policy in this case is

c c c
m+1 m+1" "'m+1

Hence the required optimal policy is

ccC Cc
T
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Example : 2

Use dynamic programming to show that

n n 1
—ZDi log p; subject to Zpi =1 is maximum when pPy=pP, =...pP, :ﬁ
i=1

i=1
Step 1

Form a functional equation we consider a problem as follows

Divided 1 in n parts p,,p,,...,p, such that

— > p,logp, =—(p,logp, +p, logp, +...+p, logp, ) is maximum.
i=1

n-
i=1

Such that p,;+p, +p; +...+p, =1
f (1) is a function of discrete variable and it is continuous system problem.
Forn=1,i. e.if 1is divided into one part only then p,=1.
f,(1)=Max(-pg logp,)=-1logt .. (1)
Forn=2i.e.1is divided into two parts p, and p, .
Letp,=z
p,=1-z
f, (1)=Max(-p,logp, —p, logp,)

:Max[— zlogz—(1-z)log)(1- z)]

=(!\£Iaz(1[—zlogz+f1 M-z 2)

Forn =3i. e. if cis divided into three parts p,,p, andp,
Let p,=z,then p, +p,=1-2

Therefore the parts (1 - z) is divided into two parts p,,p, whose maximum value is
f,(1-2).
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fy (1)=Max[—p,logp, —p, logp, —p5 logp; ]
=Max [-zlogz+f,(1-29) (3)

By similar procedure

We get the functional equation forn =m.

f,(h=Max [-zlogz+f, ,(1-2 (4)

0<z<1

Step 2

Solve the functional equation

From (1) f,(1)=—1log1

From (2) f, (1)=Max| - zlogz+f(1-2)]

0<z<1

f, (1)=Max |- zlogz- (1-z)log(1- 2)|

0<z<1

We use method of differential calcules

%[_Z|ogz_(1—z)log(1—z)]

- —|ogz—§—(1—z) ) —(~1)log(1-2) |=0

(1-2)

N =

d 1
d?[—zlogz—m—z)Iog(1—z)]=—4<0 at ZZE

1 1 1 1 1 1
f, (1):—§Iog§—Eloggz—z(—gloggj

1
Thus the optimal policy for two parts is P1=pP> =5

using (3) we have

f, (1)=Max [-zlogz+f, (1-2)]

0<z<1




M['gz{ (12)”(17)}}

We use method of differential calcules.

%[—zlogz (1- z)Iog(122ﬂ

2

d 1-z 2
-zlog2-(1-z)log| —— 0 Z=—
Zz[z g2-(1-2) g(zﬂ< at 2=

2
1—Z=§ is to be divided into two parts p, and p, such that —p,logp,

maximum.

2
Hence for two parts f, (1-z) i. e. f2 (g) is attained when the two parts are
LY 2 T ¥ 2
P2=513)73 P 72(3)73

_p[2)o2)_2/3,54(2/3)
f2(1—z)_f2(3j_2{ 5 log 5 }

—p,logp; is




1
Hence the optimal policy for three parts is P1=pP, =P3 =§

1
In general for n parts the optimal policy is Py =P, =P3 =-..=P, :H

and 1 (1)=n{—%log(%j} ..........

The above result can be proved by induction.
For n =1 the given result is true

Assume that the given result is true forn=m, m > 1

f,(1)=m [—ilog (lﬂ
m m

We shall show that given result (7) also hold forn =m + 1

From (4)

f

m+1

(1)=Max { - zlogz+f, (1-2)}

0<Z<1

— Max {—zlogz+m{— (1r_nZ) log (1_Z)H

0<Z<1

Consider

%{—zlogz+m{— (1r_nZ) log (1_Z)H

:-Iogz—§+m _(1r_nZ)|0g(1r_nZ)+m(1r_nzj(1—12)(_%) =0

1
Z=
m-+1

Second derivative is < 0 for 2=

fm(1—z)=fm[1— 1 )

1+m

m+1
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and optimal policy is

P4 :p2:pm+1:m

Hence the required policy is

P1=P2=...Py :%
Example : 3
Find Min. Z=X+ Xy +... X,
when Xqy X9, X550, X, =d,

Xqy Xgyeeey Xy 20
Let f (d) be the minimum sum
Z=X;+ X, +... X,

When d=x,,X,,...,X, (d is factorized into n factors)

This is a n stage problem

Forn=11i.e.If dis factorized into one factor only x,=d
f, (d)=Minz=Minx, =d
Forn=2,i. e. If d is factorized into two factors x, and x,

Let x,=y Then x,=d/y (as d=x;,X,)

. : d
f, (d)=Min z_0|\</ly|£1d(y+;)

=Min {fy+fi@/yy} 2)

(198 )
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Forn =3i. e. d is factorized into three parts x,,X,, X,
Let X1 =Y, X, X _d
et X1=Y, =—

1 2 N3 y

i. e. partd/y is further divided into two parts whose minimum value is f, (d/y)

fy (d)=Minz=Min{x, + X, + X3 }

, d
=0|\<AJ£1d{y+f2 (;)} ........... (3)

By similar procedure we get the following functional equation forn =m.

£, (d)= Min {y+fm_1 [3)} __________ @)

We shall solve the above functional equation

From (1) f,(d)=d

From (2) f2 (d): Ol\S/IJQd {y+f1 (s)}

= Min {y+g}
0<y<d y

We use the method of differential calculers

d d d
—|y+—|=1-—=0
dy( y) y:

y=id1/2

d2

d) 2d
y+—)=—>0 for y=d"?
dyz( v y

y

d
Hence y+; is minimum for y=d"'2

f, (d)=d1/2 +d1%=2d1/2
From (3)
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. d
1/2
= Min {y+2(EJ }
0<y<d \

1/2 172
i y+2 g :1—%:0
dy y y

2 1/2
dd—z{y+z(§J }>0 for y=qd"3
y

1/2
Hence Y+Z(;) is minimum for y=d'"3

1/2 1/2
Hence the optimal policy is (d”s,(dZ/s) (d?) ) i. e. optimal policy is (d"'*,d"*,d"?)
By similar procedure we have

f,(d)=nd""

and the optimal policy is (d"",d"",...,d"")

The above result can be proved by induction.

Example : 4

Minimize z=y?+yi+y3

Subjectto y,+y,+y; 215 and y,,y,,y; 20.
Solution :

In this problem y,,y,,y, are decision variables. This is three stage problem.

200
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State variables s,,s,,s; are defined as
S;=Y +Y,+Y3215
S2=Y1+Y2=S3-Y3
$1=Y1=82"Y>

Fs(ss)= n;in [yg +F, (52)]

Thus F; (Sz)zrr;in[yg "‘(52 - h)ﬂl

By method of differential calculus

d 2 2 . _ _ .
E[Y2+(32—Y2)]—2Y2 2(32 Y2)—0

i [ngf(sz—yz)z}lZO aty,=s,/2
dys

Hence F, (s,)=s3/2

Fs(ss)= n;in [yg +F, (52)]

R )2]

. 2
=min|y;s+
Y3 [y3 2
By method of differential calcules
F;(s) is minimum at y,=s,/2
Hence F; (83)=?,83 >15

F; (s3) is minimum for s; =15

Minimum value of y2 +y2 1 y2 is 75, y,=y, =y, =5

g da a a
(201

N————



UNIT | APPLICATION TO LINEAR
06 PROGRAMMING

Solution of Linear Programming Problem as a Dynamic Programming Problem

Ageneral L. P. problem is

Max. zZ=CiX;+CpXy+..ccr.nn. +C, X,
subject to
Ay X+ Xyt +ay, X, <b,
Qg Xq+8g Xy +evunnnnnn. +a,, X, <b,
A1 X1+ X +eeeeennnn +am, X, <b,
and X;,Xy,........ X, 20

We can formulate this L. P. problem as a dynamic problem.
General linear programming problem is considered as a multi stage problem with each

activity x,,x,,....,x, as individual stage. This is a n stage problem. As X; is continuous, each

activity has an infinite number of alternatives within, the feasible region, L. P. is an allocation
problem which requires, the allocation of resources to the activities.

b,,b,,.....,b, are mresources.

Let f, (by,b,,....,b,,) be the maximum value of the general linear programming defined
above for the states x,,x,,....,x, forstates b,,b,,...,b,

We use backward compatational procedure.

f, (by,b,,...,b,)= Max {cj X; +f_4 (b1 —a;; X;,by —ay; X;...b, —a,; xj)}

0<x;<b;

The maximum value of b that X; can assume is

b:Min{ﬁ,b—Z,....,b—m}
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EXAMPLES

1)

Solve the following L. P. P. by dynamic programming
Maximise z=2x,+5X,
Subject to 2X,+X,<43

2X,<46

Xq X, 20

Solution:

Since there are two resources, the states of the equivalent dynamic programming problem

can be described by two variables only,

Let (by,b,) describe the statesj (= 1, 2)

Forj=2 we have

f, (by,b,)=max{5x,}

=5max{x,}

=5min Eb—z
1 2

46
=5min{43,—
{ > } .......... (1)
Next we have

f,(by,b,)=max{2x,+5x,}

= max {2x,+f,(43-2x,,46)}

0<x,<43/2
. 46
=0<T§£/2{2X1+5mm(43_zx1’7)} __________ (2)
by using (1)
Consider,
min{43—2x1,42—6}:43—2x1
if 43-2X, s42—6:23
(203




ie.if 43-23<2x,
ie.if 20<2x,

i.e.if x,210

Thus

min {43—2x1,%}:43—2x1 i 42—32x1210

and
min 43—2x1,fg :i§:23
2 2
if 43—2x12i§:23
2
if 43 -23>2x,
if 20>2x,
if X, <10
Thus

min {43—2&,%}:42—6:23 if 0<x,<10

Then from (2)

f, (bs,b,)=max 2
" 2x,+5(23) 0<x,<10
215-8x, ,10£x1££
f1 (b1,b2)=maX 2
o 2x%,+115 ,0<x,<10

43 |
Nomnnax(215—8x0for10$X1S7;|satx1=10

Also max(2x,+115) for 0<x,<10 is at x,=10

Hence x; =10

and

(204 )




Maximum value of z is

Zyox =2 =2X%,+115
=2(10) + 115
=135

and x; is given by
Z'=2x;+5X;
135=2(10)+5x
135-20=5x;
115=5Xx,
X; =23

Hence maximum z=2z+=135 at x;=10,x, =23

2) Solve the following L. P. P. for dynamic programming.
Maximise z=8x,+7X,
Subject to 2X,+X,<8
5X,+2%,<15
Xy X520
Solution :

Since there are two resources, the states of the equivalent dynamic programming problem
can be described by two variables only

Let (by,b,) describe the statesj (= 1, 2)

Forj=2 we have

f, (by,b,)=max{7x,}

=7max{x,}
=7min E&
1 2
. 15
:7m|n{8,?} .......... (1)




Next we have

f, (by,b,)=max{8x,+7 x,}

= max_{8x,+f,(8-2x,,15-5x,)}

0<x,<8/2
0<x,<15/5
_Orsnx?;(S {8 X4 +7m|n{8—2x1,—2 }} __________ 2)
by using (1)
Consider,
15-5x
min (8—2X1,—1):8—2x1
i 8- 2x,< 05X
if 16-4x,<15-5Xx,
if 16-15<-5x,+4Xx,
if 1<-x,
if X <-1
But x,>0

Therefore, x,<—1 is not possible.

Therefore
15-5x,) 15-5x
i 8-2x,, 1= L
min ( 1 > ) >
e i 8-2x> 125X
if 16-4x,215-5x,
if 16-152-5x,+4x,
if 12>-X,
if X, = -1
i.e if X,;=0

(206
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Thus

15-5x 15-5x
min| 8 -2x,, 1= 1
( 1 2 j > if x,>0.
Then from (2)
15-5x
f,(bs,b,)= mX?x {8 X, +7 (71)} x,>0
9 105
:mX?X ——X1 +T y X1ZO
105
Now for x,;=0, Znax :T
. 105
Hence x;=0 and Zy =2 =T=52.5

And x; is given by
Z' =8x;+7X,

195 _g(0)+7x;

52.5=7x,

52.5
7

X5 =
X,=7.5
Hence maximum z=z" =525 at x;=0,x,=7.5
3) Solve the following L. P. P. by dynamic programming
Maximise z=4x,+14x,
Subject to 2x,+7x,<21
7X,+2x%,<21
Xq X, 20
Solution :

Since there are two resources, the states of the equivalent dynamic programming problem
can be described by two variables only.
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Let (b,,b,) describe the statesj (=1, 2)

Forj=2, we have

f, (by,b,)=max{14x,}

=14 max{x,}

Next we have

f,(b,,b,)=max{4x,+14x,}

= max {4x,+f,(21-2x,,21-7x,)}

0<x,<21/2
0<x,<21/7
= max {4x1+14min{21_7x1 ,21_7)(1 }} 2)
onax, 7 5 ([ e
by using (1)
Consider
. 21-7x, 21-7x,\ 21-2x,
min 7 T S
if <
7 2
if 42 -4 x, <147 -49x,
if 49 x,—4x,<147-42
if 45x,<105
|f X <@ — Z
45 3
Thus
(208




. 21-2x, 21-7x,\ 21-2x, 0<x <Z
min 7 T 5 =T UsXsg
and

. 21-2x, 21-7x,\ 21-7x,
min 7T =7
if 2

7 2
if 42-4x,>147 - 49X,
if 49 x, -4 x,>147 42
if 45x,>105
|f X >E—Z
" 45 3
Thus
min 21—2x1,21—7x1 :21_7X1,ZS <3
7 2 2
Then from (2)
4x1+14(21_2X1), 03x1s§
f, (b;,b,)=max 01 7 .
' 4x1+14( - X1), Lex,<3
2 3
7

4%,+2(21-2x,), 0<x,<
=max ; 3
4%,+7(21-7x,), §£x1£3

42, 0
=max
X1 7
147-45x,, —

3

7 _ 7
Now max. (147 -45x,) for gSX1S3 s at X, ==

(209
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H X; !
ence Xy =—
3
From above maximum value of z is
*
Zow=2 =42

and x; is given by

Z'=4x;+14 X,

42:4(§j+14x;

14x;=42—§=—126_28
3 3
. 98
" 14x3

. 7
Hence maximum z=z"=42 at X;=X; Zg

Applications to Inventory
Example

Suppose that there are n machines which can perform 2 jobs. If x of them do the first job,
then they produce goods worth g (x) = 3 x and if y of the machines perform the second job, then
they produce goods worth h (y) = 2.5 y. Machines are subject to depreciation, so that after

performing the first job only a(x)=x/3 machines remains available and after performing the

2
second job b(X)=§y machines remains available in the beginning of the second year. The

process is repeated with remaining machines. Obtain the maximum total return after 3 years
and also find the optimal policy in each year.

Solution:

Here first, second and third year are considered as period 1, 2 and 3 respectively.

Let
X; = number of machines devoted to the job 1 in ith period.
Y = number of machines devoted to the job 2 in ith period.
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totoal number of machines in hand (available) at the beginning of ith period

[
1

—h
—~
(2]
-

I}

maximum possible return when there are n periods left with initial number
of available machines being 's'.

The problem is now taken out by using backward reference approach.
Consider the 3rd year.

Here s, is the number of machines available at the beginning of the 3rd year.

Thus, f; (33):me;x{3 X3 +25Yy5}
X3:Y3
subject to X3 +Y3<8S;
and X;,¥,20 (1)

Here we have a simple L. P. P.

Maximise z=3X;+25Y,
subject to X3 +Y3<8S;
X3,Y3 >0

A

B (0.s,)

A(s;,0)

»

A

It is clear that the solution of this L. P. P. is at A(s;,0).

(The line z= 0, if move parallel to it self through the feasible area)
Max. z is occur at A(s3,0).
S X3=85, Y3=0
and  f(s3)=3s, L (2)

Consider the situation in the second year the number of machines available at the
beginning of this yearis clearly s, and we have

C211)
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f, (sz)zmax{3 Xy +25Y, +f, (%+§y2)}

X2 Y2

Since x, and y, machines are used for the two jobs and x, /3 and (2/3)y, machines
will remain available at the beginning of the next year.

X2 Y2

f, (s,)=max {3 X, +25Y, +3(%+§y2)}

=max {3X, +25Y, +X, +2Y,}

X2 Y2

f,(s,)=max{4x,+45y,}
X2 Y2

subject to X, +Y,<8,

X5¥,20 (3)

NB(0s,)

A
v

It is clear from the graph that the solution of the L. P. P. is given by equation (3) is
occuring at B(0,s,) .

Hence the solution is

X; =0, y;=5,

and f,(s,)=45s, 4)

Now in the first year, the total number of machines available at the beginning of the

period is s, and we have

X1Y1

fy (s1)=max {3 X;+25y,+f, (%+§y1)}

(212D
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=max {3 X, +25Yy, +4.5(%+%y1)}

X1Y1

=max {3x,+25y,+15%,+3y,}

X1Y1

fy(s;)=max{4.5x,+55y,}

X1Y1
subject to X, +Y,<s,
X;,Y120

NB(.s,)

A

The solution of this L. P. P. is given by equation (5) is occur at B(0,s,)
But s, =n

i. e. at the beginning there are n machines.

Hence the solution is

x; =0 yi1=S,=n

f3 (S1): 55 S1 =55n .......... (6)
Thus
Period 1 Period 2 Period 3

. 2(2 4

x; =0 X5 =0 X3 =3 gn :§n

* * 2 *

y1 =N y2 :gn y3:0 .......... (7)




Thus equation (7) gives the entire solutions means during the first period all the n -
machines are used for the second job. Then (2 / 3) n machines will be left for the second year.

2 2(2 4
Then use all the machine [(g)”) again for second job. Therefore g(gn)=§n machines will

4
be available for the third year. In the third year use all these §n machines for the first job.

If this is done then the optimum possible return will be 5.5 n.
Example

A man is engaged in buying and selling identical items. He operates from a warehouse
that can be hold 500 items. Each month he can sell any quantity that be chooses up to the stock
at the beginning of the month. Each month, he can buy as much as he wishes for delivery at the
end of the month so long as his stock does not exceed 500 items. For the next four months, he
has the following error - free forecasts of cost sales prices.

Month [ 1 2 3 4
Cost C, 27 24 26 28

Sale prices  p, 28 25 25 27

If he currently has a stock of 200 units, what quantities should he sell and buy in next four
months ? Find the solution using dynamic programming.

Solution:

To solve the problem by using dynamic programming we consider the months 1, 2, 3, 4
as periods respectively.

Let

X; - the number of items for sell during the ith month

Y - the number of items ordered (buy) during the ith month.

b, - stock level in the beginning of the ith month.

f, (b)) - The maximum possible return when there are n months left with the initial
stock level b, at the beginning of the month.

C, - cost in the ith month.

P, - sale price in the ith month.

It is clear that

b, =by +y, - X,
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by=b,+y,—X,
b, =bs+y3—X;

In general
by =b,_1+Yn_1—Xq_4
by, 1=by+Y, =X,

Since ware house capacity is of 500 items
b, +y, —X,<500
=0<y,<500+x,-b,

and  0<x,<b,

We use backward compatational procedure. The recurrence equation as followes.

f; (b4)=r2?z({x4 Ps—Cy Y4}
f, (b3)=r2533x{x3 P3 —C3 Y5 +1; (b, )}

fa (b2)=max{x2 P, —Cp Y, +f, (bg )}

X2 Y2
f, (b,)= rgix Xipy—cy v+ (by)}

Step - |
Let b, be the stock level at the starting of the fourth month.

Therefore,
fs (b4):r)1(1&ylx X4 Ps—Cy¥s}
where 0<x,<b,,0<y, <500+x, -b,

f,(by)=max {27 x, 28y, }

X4 Y4

Max. occurs at x, =b, and y, =0

f,(b,)=27b, (1)
Step - I

In the third month, i.e. 2 months are left with initial stock and b, be the initial state at the
beginning of this month.
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Since the stock b, =b, —x; +y, will be available at the beginning of next month.

f, (by)=max{25x, -26y, +27b, }

X3Y3

Where 0<x,<b,,0<y, <500+Xx, —b,

:max{25 X3 =26y, +27 (by — X, +y3)}

X3Y3

=max{25x; —26y; +27b; —27 X5 +27 y, }

X33

=max{-2X; +Y; +27b,}
X3Y3

It will be max. when x; =0 and y; =500+x; —b,

f, (by)=max {-2x; +500+x; —b; +27b, }
=max{500+26b; —x;}

f, (bs) is maximum at x, =0

Thus optimal decisions are
x;=0 and y, =500+x,; —b,

=500-b,

f,(by)=500+26b,

Step - 1ll

In the second month, b, be the intial stock at the beginning of this month.

Since the stock b, =b, —x, +y, will be available at the beginning of next month.

fy (b,)=max {p2 X, —Cp Yo+, (Dy )}

X2 Y2

Where 0<x,<b, and 0<y, <500+x, —b,

fy(by)=max{25x, - 24y, +f, (b;)}

X2 Y2

=max {25x, —24y, +26b; +500}

X2 Y2
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fy(by)=max{25x, - 24y, + 26 (b, — X, +y,)+500}

X2 Y2

=max{25x, —24y,+26 b, —26 x, + 26y, +500}

X2 Y2

=max{-x, +2y, +26b, +500}

X2Y2

=max{-x, +2(500+x, —b, ) +26b, + 500}
=max{-X, +1000+2x, —2b, +26b, +500}
=max{x, +24b, +1500}

It will be maximum at x, =b,

=25b, +1500

Thus optimal decision are

X, =b, y,=500+x,-b,=500+b, -b,
=500
and f;(b,)=25b,+1500 L. (3)
Step - IV

In the first month, b, be the initial stock at the beginning of this month.

Since the stock b, =b, — x, +y, will be available at the beginning of next month.

fy (by)= max{X1 P1—Cq Y, +fs (bZ)}

X1Y4

=max{28x,—-27y,+25b, +1500}

X1Y1

=max{28x,-27y,+25(b,—x,+Y,)+1500}

X1Y4

=max{28x,-27y,+25b,-25x,+25y,+1500}

X1Y1

=max{3x,-2y,+25b,+1500}

X1Y1

o1
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Clearly this will be occurs at y,=0 and x,=Db,

fy (b;)=3b,—0+25b,+1500
=28b,+1500

Thus optimal decisions are
X, =b, y,=0

and  f,(b;)=28b,+1500

But at beginning, b, =200
X,=200=b, y,=0

Xy =by=b;—x;+y, y,=500

X3 =0 y,=500-b,
X, =b, y,=0
Thus
X, =200 y,=0 fy (b;)=28b,+1500=7100
X, =0 y, =500 fy (b,)=1500
X3 =0 y;=0 f, (b3)=500+26b; =13500
X, =500 y,=0 f, (b,)=13500
The optimal solution for next four month is
Month i 1 2 3 4
Sale X; 200 O 0 500

Purchase Y 0 500 O 0
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UNIT NON - LINEAR
07 PROGRAMMING

7.1  INTRODUCTION
The general non linear programming problem (NLPP) can be stated as follows.
Optimize (Maximize or minimize)
z=F(X;,Xp,..., X,)
Subject to
g (X4, Xg,.., X, ) {S,20r =} bi=12,...,m

and X,20,j=12,...n

Where f(x,X,,...,X,) and g;(xy,X,,...,X,) and real valued functions of n decision

A

variables x,,x,,...,x, and at least one of them s non linear.
7.2 UNCONSTRAINED EXTERNAL PROBLEM

An extreme point of f(x) defines either a maximum or minimum of the function. A point
Xo = (X1, Xg1---, X, ) is @ maximum point if f(X, +h)<f(X,) forall h=(h,,h,,...h,) such that ‘hj‘ is
sufficiently small for all j.

Similarly X, is @ minimum point if f(io +ﬁ)2f(§0) such that ‘hj‘ is sufficiently small for
allj.
Quadratic forms

Let X=(X,Xy,...,X,) and A=(aij) is nxn matrix, then a function of n variables denoted
by f(X;,Xs,....X,) or Q(X) is called a quadratic form in n space if

Q(X)=XTAX=) > a; XX

i=1 j=1

The matrix A can always be assumed symmetric since each elemen of every pair of
coefficients a;; and a; (i=]) can be replaced by (aij +aji)/2 without changing, the value of
Q(x).

The quadratic form Q(X) is
C219)




1) Positive definite if Q(x)>0 forevery Xx=0.

2) Positive - semidefinite if Q(X)>0 for every x and there exists x=0 such that
Q(x)=0.

3) Negative definite if Q(X) is positive definite.

4) Negative semidefinite if — Q(X) is positive - semi definite.

5) Indefinite if it is non of the above cases.

Following results can be proved.

1) Q(x) is positive definite (semidefinite) if the values of the principal minor

detaminants of A are positive (non negative). In this case Ais said to be positive
definite (semidefinite)

2) Q(X) is negative definite if the value of kth principal minor detaminant of A has

the sign of (—1)k k=1, 2, ..., n.Inthis case Ais called negative - definite.

3) Q(Xx) is negative semi definite if the kth principal minor determinant of Ais either
zero or has the sign (—1)k
k=1,2,..,n
Theorem
A necessary and sufficient condition for X, to be an extreme point of f(i) is that
Vf(X,)=0 must be satisfied.

Note : The above condition is also satisfied for inflection and saddle points. Hence these
conditions are necessary but not sufficient for identifing extreme points. Hence the points obtained

from the solution of Vf(X,)=0 are called as stationary points.

The following theorem gives the sufficiency conditions for X, to be an extreme point.
THEOREM

A sufficient condition for a stationary point X, to be an extreme pointis that the Hessian

matrix H evaluated at X, is
1) positive definite when X, is a minimum point.

2) negative definite when X, is a maximum point.

X =(Xq, X0, X350, Xy )

2200
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The Hessian matrix for f(X) is defined by

o f d? f o%f
ox? X4 0X, OX, OX,
H=l oo,
o*f o*f o f
X, 0%, 0X,0X,  ox}
Example -1

Find the extreme point of the function.
f(X)=x7+X5+x5 4%, —8x,-12X, +64
Solution :

Let YO be an extreme point of f(?). The necessary condition for extreme point is

V§(X,)=0.
VE(X,)= LT I PCL Y
0Xy OX, OXg
— a—f:2x1—4:0:>x1:2
X4
a—f:2x2—8:0:>x2 =4
Xy
a—f:2x3 -12=0=x;=6
0Xs

Hence X, =(2,4,6) is extreme point.

The Hessian matrix is given by

[ 62 f 2 f 2 f
ox2 0X, OX OX, 0%
ézf 62¥ 2 $2f3 200
L P oxox |0 20
X X X X
2 1 X2 2 3 0 0 2
0 f 0% f 0 f
| OX; 0%, 0X30%X,  OX5
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The three principal minors are

2 0
2 \0 2\

Their values are 2, 4, 8.

o O N
o N O
N O O

All are positive. Hence the Hession matrix H is positive definite.
Hence the point X, =(2,4,6) is a minimum point of f(Y).
frn =(f(X)) at X=(2,4,6)

=22 142 162-4(2)-8(4)-12(6)+64

=8
ofn =8

min

Example - 2

Find the extreme points of the function f(X)=x+2x, +X, X, =X} x5 - X}

Solution:

For extreme point X, we must have Vf(X,)=0

a—f:1—2x1:0

0%y

a—f:x3 -2%,=0
0X,
a—f:2+x2—2x3 =0
0Xs

Solving the above equations

X, =124
We get Ao = 2’3’3
X, is an extreme point.

The Hessian matrix

\




Edi 02 f 2f |
ox2 X, 0X DX, 0X
12f 21f 2 12f 3 _2 0 0
H=| 2 0 . 0 -l 0 -2 1
0X, OXy OX, 0X, 0Xg 0 1 -2
o f o f o f
| OX3 0%y 0X3 0%,  Ox5° |
Principal minor determinants
of H|X0 have the values
5 0 -2 0 O
|—2|=—2,‘ ) 2‘:4, 0-2 1=-6
- 01 -2

Sign of (-1)" are as follows.

Sign are (—1)1 =-ve
(—1)2 =+ve
(—1)3 =-ve

Hence Hat X, is negative definite.

ox (124} . . <

The point Xo =| 7,77 | is a maximum point of f(X)
19
max_12-

7.3 LAGRANGE'S METHOD OF UNDETERMINED MULTIPLIERS

This is a systematic way of generating the necessary conditions for a stationary points
when the constraints are equations.

Example -1
Minimize Z=f(x,,x,)=3€**"+2e*"°
subject to the constraints

X;+X,=7 and x,,x,>0

C223)
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Solution:

In this problem hagrangian function
L (XX, &) =F (X3, X5 ) = A (Xq + X, = 7)
=31 +2e*7° (X, +X, - 7)
Where ), is a Lagrangian multiplier. The necessary condition for the minimum of f(x1, x2)
are given by

L e -3 =0=1 =662

0%y

a—"zzeX2+5—x=o:>x=2eX2+5

0X,

L
%:_(X1 +X, = 7)=0= X, + X, =7
662X1+1:26X2+5:267—X1+5 (X2=7—X1)
362x1+1 :e7—x1+5

2x1+1 _ A7-X1+5

€993 e e

Hence log; +2x,+1=7-x,+5
1
X4 :5[11—Iog3],x2 =7-X

Example - 2
Use Lagrange's method to maximize f(X) where f(X)=x;,X,,....X, and
X+ Xy, + X3+ + X, =D, X, X5, X5...,X,>0.

Solution:

In this problem Lagrangian function is
L (X, Xg,--+, Xn, A)
=f(Xq,Xp,., Xy ) = A (Xg + Xp + X5 +...+ X, —b)

=Xy Xy Xg ... Xy —A (X + X5 + X3 +...+ X, —b)

The necessary conditions for the maximum are

C 224D
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i:(x2 Xge. Xy) = A=0=X, X,... X, —A X; =0

0%y

—foax,=0 (1)
%:(x1 Xge.. Xy) = A =0=>X, Xp,... X, A X, =0

—f-ax,=0 2)
%:(x1 x2...xn_1)—7»:0:>x1 Xy ... Xp_ 1 X, —A X, =0

Sfoax,=0 (3)
%z—[x1 +X, +...+ X, —b]=0

=X, +X, +...+ X, —b=0
Adding above n equations we have

nf—A(X;+X, +...4+%,)=0

=nf-Ab=0
L
b

From equation f-A x,=0

Similarly x,=b/n,...,x,=b/n

Hence
Xy =Xy =Xz =...=X, =—
1 2 3 n n
. . b
Therefore f is maximum at X;=X; =....=X, =5
(225D
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Obtained the set of necessary conditions for the non linear programming problem.

Maximize f = x12 +3 xg +5 xg
subject to the constraints

Xy + Xy +3X3 =2,5%,+2X, +X3 =5 and x,x,,Xx; >0

Solution :

In this problem hagrangian function is

L (X, X, X3, Mg,k ) =F =g (X + X5 +3 X5 —2) =4, (5% = 12X, + X3 —5)
=(xF+3x3+5X3) =Ly (X +X, +3X5 =2) =, (65X, +2X, + X5 — 5)

The necessary conditions are

L oy —n,-52,=0

Xq

L 6%, —-n,—22,-0

X3

:—"=10x3—3x1—x3=0

X3

oL

G_M:_(X1+X2+3X3 -2)=0

oL
E:—(5x1 +2X,+X;—5)=0
7.4 NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMIZATION OF AN
OBJECTIVE FUNCTION
The general NLPP having n variables and equally type constraints (m<n) can be given

as follows.
Optimize z=f(X), X=(X;,X5,X3,-.-,X,)

oo
A




Subjectto g (X)=f,i=123,....,m
x>0
The above constraints can be written as
hi (X)=g; (X)-b,
foreveryi,i=1,2,3..m
To find the necessary conditions for maximum or minimum of f(X) a new function. The
hagrangian function h(>_<, X) is formed by introducing m Lagrangiam multipliers X:(x1,x2,...,xm) .

This function is defined as
L(X7)=F(X)-> 2 (X)
i=1

=f(Xq,Xp,, X )= A1 hy (X) =R, hy (Y)...—km h,, (Y)

Assuming that L, f, hi are all differentiable partially w. r. t. x;,X,,..,X, A4, A5,...,A,, . The
necessary conditions for the objective function to be maximum or minimum are given by

oL of mhiam(x)

axj axj i=1

=0,j=12,...,n
j

oL
— =0-h :0,i:1,2,...,m
and oX. [

The above equations can be written as

o, h()
axj i=1

,=0,j=12,...,n
j
—h,=0 i=1,2,3,...m

These are m + n necessary conditions.

These necessary conditions also become sufficient for a maximum (minimum) of the
objective function if the objection in concave (convex) and the side and the constraints are
equally once.

The sufficient conditions for the Lagrangian method will be stated without proof.
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. B
Define Ho =]
xm : nxn

(m+n)x(m+n)

Where g is mxm null matrix.

oh,(x)  ohy(X) ohy(%) ]
o ox, ox,
ohy(X)  ohy (%) oh, (%)
F-| o ox, ox,
ohn(X)  Ohy (%) ohn (%)
ox R x|
and
[ 2%L L ?L |
ox? ax, Gx Bx,
o°L oL o°L
Re|oon on? o
oL oL o°L
_axnax1 ox, 0%, axn2 Jinsn)

PT istranspose of p .
If (X*,X‘) is a stationary point of L(Y,X) and B is the corresponding bordered Hessian

matrix evaluated at (X*,X') Then X, is

1) A maximum point if, starting with the principal minor determinant of order (2m+1),

the last (n - m) principal minor detuminants of 48 form an alternating sign pattern

starting with (-1)™"".

2) A minimum point, if starting with the principal minor determinant of order (2m+1)..

The last (n - m) principal minor determinants of 8 have the sign of (—1)m .
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The above conditions are sufficient for identifying an extreme point, but the conditions
are not necessary. In other words, a stationary point may be an extreme point without satisfying
the above conditions.

Optimize Z=f(X)=x7 +X5+X5

subject to X;+X,+3X;=2
S5X;+2X, +X53=5
Solution :
The Lagrangian function is
L(R) =2 45 +X5 =2y [X, + X, + 3%y 2] = A, [5 X, +2X, + X5 — 5]

Necessary conditions for the stationary point are

5—)'(‘1:2x1—x1—5x2=0 .......... (1)
%zzxz—m—zxz:o .......... )
%:2x3—3k1—k2:0 .......... 3)
aa—;;:—(x1+x2+3x3—2):0 .......... 4)
%:—(5x1+2x2+x3—5):0 .......... (5)

Subtracting (2) equation from (1) st we have

2Xy=2%X,-3%,=0 (6)
Multipling equation (2) by 3 and subtracting equation (3) we have
5x,-2%x,-5A,=0 (7)

Now equate the expressions for A, from (6) and (7)

3 5

=X,

10x,-28x%x,+6x,;=0
The above equation can be written as

5%x,=14X,+3%x;=0
oo
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Also  X,+X,+3x;-2=0

5X;+2X%X,+X;-5=0

Solving equations (4) (5) and (8)

for x,,x, and x; we get

X4 _37_0 '804,x, =0'348
46

X, =0'283

Bordered Hessian matrix B is given by

O : P
HE=| .,
PT: Q
oL
ax1_2x1 Ay—5A hy (X) =X +%, +3%3 -2
oL
22, Ny (R)=5%,+2%, +X, =5
i—Zx3 3Ahi—A,
0X;

oh, oh, oh,
0%y 0X, 00X,

P=
oh, oh,  oh,
0%y 0X, 0Xs
%L oL oL
ox; X, Xy X, 0%y
| oL &L oL
Xy 0%, OX3 Xy 0%y
oL oL oL
| 0X3 0%, 0X30%X, 0%}
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B [
15 2 00
1 2 0 2 0
3 1 0 0 2

Heren=3, m=2
n-m=1

We have to check determinan of 4B

001 13
00 5 2 1
\ﬁ3\=15200
12 0 2 0
3 10 0 2

By C,-C, and C,-3C,

00 01 0
00 3 2-5
\HB\=15 2 0 0
1 2 -2 2 -5
31 .00 2

Expanding by 4th column

00 3-5000 3 5
‘HB‘:—15 2 015 2 0
1.2 -2 6 1 2-2 -6
31 0 231 0 -2

By R,-R; and R, -3R,

0 O 3 5
0 3 4 -6
1 2 -2 6| Expanding by 3rd colour
0 -5 6 -20

HI-

(231
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0 3 5
‘HB‘z 3 4 —6|=460>0
5 6 -20

Here (-1)" —(—1)2 =1 positive sign.

Xo =(X4,X5,X3) is @ minimum point.
7.5 Kuhn - TUCKER'S CONDITIONS
Theorem7.5.1 (A)

The necessary conditions for maximization of f(x),X=(X,X,,X3,...,X,) at X=X,
Subject to the conditions

g(X)<b,,i=1,2,3...,mand x>0

are

1) M:o j=1,2,3,..n
ox , ,2,3, ...

2) i[9 (X)-b;]=0 i=1,2,3,..,m

3) A, >0 i=1,2,3,....,m

4) g (X)<b, i=1,2,3,....,m

The necessary conditions for minimization of f(X), X=(Xy,X,....,X,) at X=X, subject to
the the conditions

g (x)<b,i=12,...,m and x>0 are

1) Mw j=1,2,..n
ox (2, .

2) i[9 (X)-b;]=0 i=1,2,...,m
3) A, <0 i=1,2,....,m
4) g, (x)<b, i=1,2,...m
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Proof (A)
Itis given that g; (X)<b; i=1,2,..m . (1)
We have to prove (1), (2) and (3)

Introduce slack variables s; such that

g, (X)+s? =D, i=1,2,3,....,m
ie. g (X)+s?-b=0 i=1,2,..m 2)
The hitts of (2) is denoted by G;(X,s;)

G (%5,)=0, i=1,2,.m (3)
The problem reduces to
Maximize f(X), X=(Xy, Xz, X, ),
such that G,(x;,s,)=0, i=1,2,..m (4)

This is a problem of constrained optimization in n + 1 variables and a single equality
constraint and can thus be solved by the Lagrangian multiplier method.

We introduce hagrangia function L(Y,X,E) where 5=(s,,s,,...,5,) and

L(Y,X,g)zf(i)—ixi [9,(X)+87 -b)]

The extreme points of unconstrained problem are given by

oL(xRs) . .

—axj , i=1,2, ... n (5)

aL(Y,Z,s)_O -

—aci =0, i=1,2, ... m (6)

aL(Y,Z,s)_O _

— =0, i=1,2, ... m (7)
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From (6) we get
-2%;5,=0

=A;5,=0

Multiplying by s, we have

2 $2=0, i=1,2,.m L. 8)

From (7) we get

g, (X)+s? —b;=0

=s? =b;,-g, (X), i=1,2,...m
Using this s? in (8) we have

A [b - (X)]=0, i=1,2,...m
The above equation can be written as

i[9 (X)-bi]=0, i=1,2,..m . (10)

Thus the equations (5) (10) and constraint (1) satisfied by the stationary point X, = (i, ,§)

proves the necessary conditions (1) (2) and (3) respectively.
Proof of B

>

ol

The proof of (1) (2) and (4) are as in case (l)
Proof of (3) for both the parts.

For maximum we shall show that 1 >0.

The constraints are given by

g (X)<b,, i=1,2,...,m

The necessary condition for maximum is that 3 >0 and for minimum of f(i) is that

Consider the maximization case

We know that A, measures the rate of variation of f with respect to b,




We see that as b, increases, the solution becomes less constrained.

f can not decrease.

UL

i.e. A, <0
Hence the proof.

Use Kuhn's Tucker method to solve the following problem

Minimize f(X)=x2 + x5 +x3
Subject to 2X,+X,<5
X, +X3<2
X, 21
X, 22
X320
Solution

Problem in standard form
Minimize f(X)=xZ + x5 + X3
Subject to 2X,+X,-5<0

X +X3 —2<0

Here

L(X,2,8)=F(X)=ash =k h, =2 hy =2, h, —2s hy




The conditions are

oL <. oh

Fra Il i=1,2,3
ox; 1= X 1 &

A h =0 i=1,2,3,4,5
h,<0 i=1,2,3,4,5
1. <0 i=1,2,3,4,5

f(X)=x2 + x5 +x3
Ayhy=2y (2%, + X, —5)

}\.2 h2=}\.2 X1+X3—2)

Ashs =g (—X3)
In this problem from (1)
2X,—2hy—Ay+hy=0
2Xy—Ay+Ay=0
2X3—A,+As=0
From (2)

Ay (2% +X, =5)=0

From (3)

2X,+X%X,-5<0
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-X3 <0

From (4) Ay, Ay Ag,Ay,A <0
Let 1;,1,,A5 be non zero
From (6) we get

Xy =1X,=2,X5=0

Using the above values

We check the conditions (7)
2X,+X%X,-5<0
1+2-5<0 True

X +X3 —2<0

1+0-2<0 True
1-x,<0

1-1<0 True
2-%,<0

2-2<0 True
-X3 <0

0<0 True

\
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2X,~20—hy+hy=0

2(1)-0-0+1,=0

2+X1;=0
hy=-2
2Xy—Aq+2,=0
2(2)-0+x,=0
Ay=—4
2X;—hy+h5=0
2(0)-0+25=0
As=0

a o a aq
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UNIT |  WOLFE'S AND BEALE'S
08 METHODS

8.1 INTRODUCTION

The problem of optimizing a quadratic function subject to linear constraints is called a
quadratic programming problem of the nonlinear programs. The quadratic programming
problems are computationally the least difficult to handle. For this reason, quadratic functions
and programs are as widely used as the linear functions and programs in modelling the
optimization problems. Quadratic programs are not only useful in the application of these models
of real - life situation but also serve as subproblems in a number of algorithms for general non -
linear programs. Consequently many algorithms have been developed for quadratic programs.
In this unit, we shall describe Wolfe's and Beal's method.

8.2 QUADRATIC PROGRAM

A quadratic program can be represented in the form
. L — 1= 11 A=

Maximize / Minimize f(X)=c X+§X QX

Subject to the constraints

AX(2,=<)b and x>0.

Where b eR™, A is mxn real matrix, X,c eR", is called a General quadratic programming
problem (GQPP).

Definition :

A quadratic form X" QX is said to be positive definite if X' Qx>0 for X=0 and positive
semidefinite if X" Qx>0 for X=0 and there is at least one x=0 such that X' Qx=0.
Definition

A quadratic form XT QX is said to be negative definite and negative semidefinite if —x™ Qx
is positive definite and positive semidefinite respectively.

The function X" QX is assumed to be negative semidefinite in the maximization case
and positive semidefinite for manimization case.

8.3 WOLFE'S MODIFIED SIMPLEX METHOD

Let the quadratic programming problem be
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Maximize z=f(x)= ZC X ++ zzcjk j
J 1k=

Subject to be consteaints :

Za x<b,x,20 (i=1,2,...,m,j=1,23,..,n)

ijo =

Whree Cj,=Cy;Vjk, b=0Vi=12,....m

Also assume that the quadratic form ZCjk X; X be negative semidefinite.

8.3.1 Steps of Wolfe's modified simplex algorithm
Step : 1
Convert the inequality constraints into equations by introducing slack variables
qi2 in the i constraint (i= 1, 2, 3,...,m) and the slack variables rj2 in the j" non-
negatively constraint (j=1, 2, 3, ..., n).
Step : 2
Construct the Langrangian function

L(i,a,F,X,H f ix [Zau i bi+qi2:|_ l’lj|:_xj+rj2]
J

i=1 j=1
Where )_(=(x1,x2,x3,...,xn)), ﬁ=(q12,Q§,Q§1---1Q§),

F=(r2o2r?) and A=(hy g hgreeo g ) = (1, Hgeees 1)

Differentiate the above function L partially with respectto x,q,r,A,u and equate
the first order partial derivatives to zero. Thus derive Kuhn - Tucker conditions
from the resulting equations.

Step: 3
Introduce the non - negative artificial variable v;, j=1,2,3,...,n inthe Kuhn Tucker
conditions.
n
+ZC Zkl Ij+l’lj+v =0 j=1,2,3,...,n
k=1

Construct an objective function Z, =v, +Vv, + v, +..4V,

(240
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Step: 4

Obtain the initial basic feasible solution to the following linear programming
problem.

Minimize Z,=v,+V, +V; +...4V,

Subject to the constraints
ZC,ka Z%. aj+t+vi==C; (1=1,23,..,n)

a. X;+s;=b i=1,2,3,...,n)
17

Vi, A1 X 20 (i=1,2,..m,j=1,2,3,..,n)

and satisfying the complementary slackness condition
2“1 X; +Zki s;,=0 or

$,=0,1;%,=0 (i=1,2,3,.m,j=1,2,3,..,n)

Step: 5

Step :

Remark
1)
2)
3)
8.4

Apply two phase simplex method in the usual manner to find an optimum solution
to the linear programming problem constructed in step 4. Enter the variables
such that the above complementary slackness conditions are satisfied.

6

The optimum solution thus obtained in step 5 gives the optimum solution of the
given QPP also.

If the quadratic programming problem is given in the minimize form then convert

it into maximize it into maximization one by suitable modifications in f (x) and the
'>" constraints.

While solving simplex, introduce s, if A, isnotin the solution or A, will be removed

when s, enters.

If %, is the basic solution with positive value, then x; cannot be basic with positive

value. Similarly p; and X; cannot be positive simultaneously.

ILLUSTRATIVE EXAMPLES ON WOLFE'S METHOD
Example 8.4.1

Apply Wolfe's method for solving the quadratic programming problem.
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Max. Z =4x,+6X, —2X2 2%, X, —2X%5

Subjectto, x,+2x,<2,%,,X,20.

Solution :
Step : 1
First we convert the inequality constraints into equations.
X, +2X, +Q° =2
— X, +17 =0
—X, +12=0
Step : 2
The Lagrangian function
L (X1, X2, Q1:F1,T2, Ay, 1, 1)
= (4%, +6%, —2XF =2, X, —2X3 )= Ay (X, +2%, +0F - 2)
— oy (=X + 1) =1y (— Xy +15)
The necessary and sufficient conditions are
oL oL
(9—)(1:4—4x1 —2Xy —hq+ 1y :O,£:6—2x1 —4Xx,—2\;+n,=0
Define S,=q? we have x,+2x, +S,-2=0
and the umplementary conditions are
AS;=0,uy %X, =0,pn, X, =0 and x;,X,,8,1q, 114,11, 20
Step: 3
Introduce the non - negative artifical variables.
4% +2Xy+hy—py+Vy=4, 2X,+4 X, +21,—pn, +V,=6 and the new objective
function min Z, =v, +v,.
Step: 4

To construct the modified linear programming problem
Max Z,=-v,-v,
Subject to the constraints

4%, +2X, + Ay —p +Vv =4
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2X +4X, +2h —p, +V,=6
X, +2X,+S,=2

Where all the variables are non - negative and

HiX =0, py X, =0, 2,5,=0
Step: 5

Now solve this problem by two phase simplex method.

C—-> o0 0 0 0 0o - -1 0
Basic Cs| Xg X, | X, Ao oHy w, | vy v, | s; | Max Min y
B
Variable ratio ratio Xi
4
v, 4| 4 412 1 |11 |0 |1 |]ofo Z: 1
11 6 2 4 2 0 110 1 0 21 3
Va ) ) 6 3
1
S, 0 2 1 2 0 0 0 0 0 1 2 2
z=-10| Z;-C; > -6 -6 301 1 0 0 0
T
X, is introduce as a basic variable leaving v,
Ci— 0 0 0 0 0o - -1 0
Basic Cs| X | X X, | Ay TP Wy | vy v, | s, | Max Min
X
Variable ratio ratio f
|
172 1
X4 0 1 1 121 14 | 14| 0 | 174 [0 | O 5 2 2
3
v, -1 4 0 3 32 |12 1| -12|1 |0 2 4/3
3
S, 0 1 0 32| 114 |14 0 | -1/4]10 | 1 5 2/3
Z=-4 | Z;-C,;> 0 -3 32 12 1 32 0 O
T
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o [a3 1]
Most negative of TS5 is - 3.

and maximum ratio {

133[_3
2'4’ 2

2

. X, is entering variable (possible because pu,=0)and S, is leaving variable.

C—- 0 O 0 0 0 -1 -1 0
Basic | Cg Xg X | X | Ay | my w, | vy v, | s, | Max. | Min.
Variable rations | ratio ))((_E:
X, |0 2/3 110 13 1-13 |0 173 1 0 -1/3 % 2
“v, |1 | 2 00 o |1]o0o [1 | -2 1
X, |0 2/3 0|1 -1/611/6 | O -1/6 | 0 2/3 | -- -
Zz=-2 Z,-C;—> 0 O 2 0 1 1 0 2
T
Since - 2 is most negative 1, enters (possible as S,=0)and Max. ratiois 1, v,
is leaving variable.
C—> 0 0 0 0 0 -1 -1 0
Basic Cg Xg X, | X Aq TP TP Vv, Vv, S,
Variable
1 1 1 1
X 0 1/3 1 0 0 3 5 3 8 0
Py 0 1 0 0 1 0 1 0 1 -1
! 2 2
5 1 1 1 1 1
X2 0 s | 21" 1% |s | 2| 8|12 |2
Z=0 Z-C > 0 0 0 0 0 1 1 0

1 S
Since all Aj=Z;-C; are >0 . We get the optimal solution as X =7 and X;=

C 242 )
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Step: 6

The optimal value

Z =4 X, +6X, —2XF —2X, Xp —2%5
2 2
_a4( N[ D) 2[ 1) of 1222
3 6 3 3)\6 6

Example 8.4.2
Apply Wolfe's method to solve the quadratic programming problem.
Max. Z =2x,+x, — X
Subject to

2x,+3X%X,<6,2X,+X,<4 and x,,x,>0.

Solution :
Step : 1
First we convert the inequality constraints into equations
2x,+3x%,+G> =6
2X,+X, +03 =4
—X,+r2 =0
—X, +12=0
Step : 2

The Lagrangian function L (X,,X,,04,0o, 0, lys o)
= (2%, + X, =X ) = kg (2%, +3X, +GF —6)—hp (2, + X, +3 —4)

—|,t1(—X1+r12)—|,t2 (_Xz +r22)
The necessary and sufficient conditions are
oL oL
a_x1:2_2X1 —2Ah =2, + 14 :O,E:1—3x1 +u,=0
oL 0

_6_%1:2)(1 +3X,+G5 -6=0,-

=2X,+X, +q5-4=0
2
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Now define S, =q?,S, =q2 then we have the complementary conditions,

AiS1=0,15 S, =0, X =0,p, X, =0

and X1,X2,S1,82,7\'1,7\'2,H1,H2 >0

Step: 3

Introduce the non - negative artificial variable
2X +2h+2h, g +V =2
SAhi+Ah, =y +V,=1

and the new objective function min Z, =v, +v,.

Step: 4

To construct the modified linear programming problem.
Max. Z,=-v,-v,

Subject to

2X, +20+ 20, -V, =2

Shi+Ah, =y +V,=1

2X,+3X,+S,=6

2X,+X,+S,=4

With

X =0,p, X, =0,1,S,=0,A,S, =0and x,,X5,A;, Ay, 1y, 115, S;,S, >0

Step: 5

Now solve this program by two phase simplex method.

C—- 0 O 0 0 0 O -1 -1 0 0

Basic Cs | Xg Xg | X0 | A | Ay | oy | Mo | Ve V| sy | S, | Max
Variable ratio
v, -1 2 210 2 2 110 110 [0 0 1

v, -1 1 0 |0 3 1 O |10 ]1 |0 0 0

S, 0 6 2 |3 0 0 0 |0 0|10 [1 0 1/3
S, 0 4 2 (1 0 0 0 |0 0|0 (O 1 1/2




Z=-3 Z-C;»> -2 0 -5 3001 1 0O 0 O 0
T
Though most negative value of Z;-C; is -5, A, cannot be an entering variable
as 1,S,=0 and S,=0. Similarly A, cannot be an entering variable as S, #0.
Therefore x, is an entering variable (possible because p,=0).
C—- 0 O 0 0 0 O -1 -1 0 0
Basic Cs | X )| X | A | Ayl omy o | vi | V] sy | S, Max
Variable ratio
0 1 1 0 1 1 A 0 1 0 |0 0 0
X 2 2
v, -1 1 00O 3 1 0O [-1]10 [1 0 0 0
3
s, o |4 | o 2 (2|1 o |-1fo |1 o]
1
S, 0 2 0 (1 -2 2 |1 0 -110 |O 1 2
Z=-1 Z-C;»> 0 O -3 -1 0 1 1 0 O 0
T
Though - 3 is most negative value corresponding variable %, cannotbe an entering
variable as A,S,=0 and S;=#0.Sois X, . Since u,=0, x,can be introduced
(x4,V,,S4,S, are already basic variables p, cannot be introduce as p,x,=0 and
there are x, is the only possibility). Thus introducing x, as a basic variable and
with leaving variable S, we get the following table.
C—- 0 O 0 0 0 O -1 -1 0 0
Basic Cs | Xg g | X Ay | Ay [y Mo | vy VeS| S,| Max
Variable ratio
Ay
X4 0 1 1 0 1 1 -1/210 1210 |0 0 x_:1
B
v, -1 1 0 |0 3 1 o |-1 10 |1 0 0 3




o |2 1ol 222010 |-MHo L]0
X2 3 3| 3|3 3 3 -
o 2 |log o -4 422, 1, 1,
S2 3 3 3 3 3 3 -
z=41 Z-C,»> |0 0 3 -1 0 1 1 0 0 0

Since most negative Z;-C; is - 3 the corresponding variable A, is the entering
variable (possible as s, =0)and the variable v, is the leaving variable as max.

ratio of A, and xg is 3 corresponds to variable v, . We get the following table.

C—- 0 O 0 0 0 O -1 -1 0 0

Basic Cs | Xg )| Xo | A | Ay [ my My vy |V, [ |S, | Max
Variable ratio
2 2 111 1 1
X4 0 3 1 0 0 3|17 2l3 |2 |3 0 0
A 0 1 01]0 1 1 0 1 0 1 0 0
! 3 3 3 3
14 4( 1 2 112 1
X2 O 1 9o [T O] 9|3 | 9| 3]|e |3 |°
10 gl 2 | 4| 2|4 1
S2 O 1 9 [ |°] 9|3 | 9| 3|e | 3|
z=0  Z,-C, o0 0 0 0 0 1 1 0 0
Since all Z;-C;20 we get the optimal solution as
X =X = 2 == =% = s, =5t =10 2 th ini iabl
1= 1—3, 1= 1—3, 2 = 2—9, 2 = r—g an e remaining variaple

Aoyl 1y, S, V4, V, are zero. The maximum value of objective function is

* * * =|‘2
Z, =2X,+ X, — X,

2) 14 (2 22
=2 = |[+——-|=| =—
3)°9 (3] 9

\ i




Example 8.4.3
Use Wolfe's method to solve the quadratic programming problem
Max. Z=2x,+3x, —2X

Subject to the condition

X, +4Xx,<4
X +2X%X,<2
and Xy, X, 20
Solution :
Step : 1
Max. Z=2x,+3x, -2x?
Subject to the constraints
X, +4X, +q =4
X, +2X, +Q3=2
—X,+r2 =0
—X, +12=0
Step : 2

The Lagrangian function now becomes L (X, X5, 04,02, Ay Ao, iy, 1y
=(2%X,+3%, = 2XF) =y (X, +4 X, +0F ~4) = Ay (X, +2%, + 05 - 2)

— My (_X1 +r12)—|,t2(—X2 +r22)
The necessary and sufficient conditions are

oL oL
a—x122—4x1 —7\.1—7\,24-“,1 :0,£:3—47\.1 —7\.2+H2 =0

Define S,=q? and S, =q3 then we have

—a—L:x1 +4x,+S,-4=0 - oL
O\q '

=X,+2X,+S,-2=0
2

and the complementary conditions
2S,=0,A,S, =0,u.x,=0,u, x, =0 and

X3 Xg:hys Mgy Mgy 12, 84,8, 20
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Step: 3

Introduce the non - negative artificial variables

X +M+ A, -+ V=2

and the new objective function min Z =v, +v,

Step: 4

40X, +h, -, +V,=3

To construct the modified linear programming problem

max. Z,=—-V, -V,

Subiject to,

4X+M+ A, — g+ V=2

40X, +h, -, +V,=3

X, +4Xx,+s,=4

X;+2X,+8,=2

Ai81=0,A;8, =0, X =0,u; X, =0

and X;,X,,Aq,A5,V4,V5,8,,8,>0

Step: 5

Solve the problem constructed in step 4 by simplex method

C—- 0 O 0 0 0O O -1 1 0 0
Basic Cs | Xg g | X | A | Al my Mo | Vi | V] sy | S, | Max
Variable rations

X
v, 1| 2 o [t |1 |-1fo [1]o o o |
v, -1 3 0 |0 4 1 0 |1 0 1 0 0 0
S, 0 4 1 4 0 0 0 (O 0 |0 1 0 %
S, 0 2 1 2 0 0 0 (O 0O |0 ]O 1 1/2
Z=5 2-C>|-4 0 5 2 1 1 0 0 0 0
1T \
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Above table shows thats any one of x,,A,,A, can enter as basic variables but
since A,S,=0 and 1,S,=0 where S,#0 and S,=0, A, and A, cannot be

introduce as a basic variable. Therefore x, enters the basis and since the

X, column

maximum value of ratio x5 column

is 2, the corresponding variable v, leaves
the basis and we get the following iteration.

C—- 0 O 0 0 0 O -1 0 O

Basic Cs | Xg X[ X | A | Ay [y e [ ve] s4| S, | Max
Variable ratio
0 1 1 0 1 T 0 O[O0 ]O 0
X 2 4 | 4 4
v, -1 3 0] O 4 1 0 |1 1 0 (0O 0
S 0 ! 0| 4 LI N 0 0 [ 1 0 8
! 2 4 41 4 7
S 0 3 0] 2 LI N 0 0|oO 1 4
2 2 4 41 4 3
Z,=-3 Z,-C;—> 0O O -4 -1 0o 1 O 0 ©O

T \!

Above table indicates that either A, or A, enters the basis, but this is not true
because S,#0,S,#0 and A,S,=0,1,S,=0. x,,v,,S,,S, are already basis
elements. Since p,x,=0 and x,=0, p, cannot enter as a basic element. Thus

only left out variables are x, and p, .

Enter x, as a basic element . Consider the second column of the above table

X 4
and take the ratio x_2 and the maximum value of the ratio. Since § is the maximum
B

ratio the corresponding variable S, leaves the basis and we get the following
table.
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Basic Cs | Xg X, | X | Ay Ay TP u, | vy s S, | Max.
Variable ratio
0 1 110 1 1 1 0 010 |0 1
X 2 4 4 4 2
1
v, -1 3 0|0 4 1 0 111 [0 (O 3
S 0 1 0 (0 1 1 1 0 0 [1 2 1
<94 2 4 4 4 i 2
0 3 0 [1 R L 0 0|0 1
X2 4 8 | 8|8 2 |”
Z=-3 Z;-C;> 0 O -4 -1 0 1 0O 0 O
T
Again ., cannot enter the basis since S, isinthe basis and 1,S,=0 . The variable
A, enters as the basic variable. Consider the ratio of columns corresponding to
1
A, and xg. Since the maximum ratio is 5 and is corresponding to the variable
x, and S, any one of it can leave the basis. Suppose S, leaves the basis. Thus
we introduce 1, into the basis and drop S, .
C—-> 0 O 0 0 0 0 -1 0 O
Basic Cs | Xg X, | X | A4 Ay TP w, | vof s4 [ S, [ Max
Variable ratio
« X 0 0 110 0 0 0 0 0 [ -1 [[+2 e
v, -1 1 0|0 3 0 1 111 (48 0
Ay 0 2 0|0 1 1 -1 0 0 [4 |-8 0
0 1 0 [1 0 0 0 0 0 A 0
X2 2 | 2
Z=-1 Z;-C;— 0 O -3 0 -1 1 0O 4 -8
T
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S, enters as a basic variable and variable x, leaves the basis.

C—-> 0 O 0 0 0 0 -1 0 O

Basic Cs | xg X, | X | Ay Ay TP u, | vo | sy |S, | Max
Variable ratio
S 0 0 1 0 0 0 0 0 0 1 1
2 2 2 B
«V, -1 1 4 |0 3 0 1 -1 11 |0 |O 3
1
Ay 0 2 4 |0 1 1 -1 0 0 [0 |O 2
0 1 1 1 0 0 0 0 0 1 0 0
X2 4 4
Z=-1 Z-C/— 4 0 -3 0 -1 1 0 0 O
We introduce 1, into the basis and drop v, formit
C—-> 0 O 0 0 0 0 -1 0 0
Basic Cs | Xg X, | X | Aq Ay TP Wy v, S, S,
Variable
S 0 0 1 0 0 0 0 0 0 1 1
2 2 2
A 0 u 2 0 1 0 u l u 0 0
! 3 3 3 3 3
A 0 > 1 0 0 1 el 1 0 0
2 3 3 3 3 3
0 1 1 1 0 0 0 0 0 1 0
X2 4 4
Z=0 Z;-C;— 0 O 0 0 0 0 1 0 0

Since Z;—C;=0 an optimum solution has been reached. The optimum solution

1 5
is X1:0’X2:1’7¥1:§’7¥2:§’H1 =p, =0,5,=5,=0.




Step: 6

The required optimal solution is x,=0,x, =1 and the
Max Z=2x,+3x,-2X%,2
=2(0)+3(1)-2(0)=3
~~~~~EXERCISE~~~~~

Use Wolfe's method and solve the following problems.

1)

2)

3)

Min. Z=x%+x3 +x2
Subiject to,

X+ X, +3X;=2
S5X;+2X, +X53=5
X4y X9, X5 20

(Ans.:x;=0.81,x, =0.35,x; =0.35,minz=0.857)

1 2 2 2
Min Z=—X;—X, — X3 +§(x1 +x2+x3)

Subject to

X, +X, +X;3—1<0
4x1+2x2—gso

X4y X9, X5 20

1 15
ANS. X, =X, =X, =—,Z=———
( s 18j
Max. Z=2x1+3x2—2x$
Subject to,
X, +4Xx,<4
X, +X,<2

Xq X, 20

1

(Ans.:x1 =0,x, =14, :g,xz :%,Max.z:3)
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4) Min. Z=6-6x,+2x5 —2X,X, +2X5
Subiject to,
Xy +X, <2

Xq X, 20

3 1 1
(Ans.:x1 = E’XZ =§,x1 =0,2, :1,Max.z:§j
8.5 BEALE'S METHOD

Another approach to solve a quadratic programming problem has been suggested by
Beale. In this method the variables are partitioned into basic and non - basic variables and the
results of classical calculus are used. At each iteration the objective function is expressed in
terms of non - basic variables only.

A general quadratic programming problem with linear constraints can be writter as,
Max f(x)=C7(+%iT QXx

Subject to the constraints

Ax=b x>0.

- LI . . , ,
Where x=(x1,x2,x3,...,xn+m) Cis 1xn and Ais mx(n+m), Q is symmetric matrix.

8.5.1 Steps of Beale's iterative procedure
Step : 1

Express the given quadratic programming problem with linear constraints by
introducing slack and / or surplus variables.

Step : 2

Select m variables as basic and the remaining n variables as non - basic. With
this choice the linear constraints can be represented in the partition matrices.

Ax=b

NB

XB
[B,R] X =b or BX; +RX\g =b

Where X and Xyg denote basic and non - basic variables respectively and

matrix A is partitioned into the submatrices B and R corresponding to x; and Xyg
respectively.
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Since Bxg +Rxyg=b, X3 =B~ (b—Rxys)
Step: 3

Express the basic variables xg in terms of non - basic variables.
Step: 4

Express the objective function in terms of non - basic variables.

Thus by increasing the value of any of the non - basic variables Xyg, the value of
the objective function can be improved.

Note that the constraints on the new problem become

B"'Rxy<B'b (as x5>0)

Thus any component of Xyg can be increased only until =0 or, none or

XNB

more components of x; are reduced to zero.

If we have more than m non - zero variables at any step of iteration, define a new

variables S,, Where S;= and a new constraint S,=0.

OXng
Step: 5

Now we have m + 1 non - zero variables and m + 1. Constraints, solution gives
a basic solution to the extended set of constraints.

Step: 6

Repeat the above procedure until no further improvement in the objective function
may be obtained by increasing one of the non - basic variables.

This technique will give an optimal solution in finite number of steps.
8.6 ILLUSTRATIVE EXAMPLES ON BEALE'S METHOD
Example 8.6.1
Use Beale's method for solving the quadratic programming problem.
Max. z, =4 X, +6 X, —2X5 =2 X, X, —2 X5
Subjec to
X;+2Xx,<2 andx,,x,>0.
Solution :
Step : 1
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Introducing slack variable x, , the given problem becomes

Max. z, =4 X, +6 X, —2X5 =2 X, X, —2 X5
Subiject to,
Xy +2 X, + X3 =2,X, X5, X3 20

Selecting x, arbitrarily to be the basic variable we get,

X
X,=2-2X, —X; Where XB:(X1)1XNB:(X§)

Step : 2

Step :

Expressing Z, in terms of Xyg, we find
F(XpoXs)=4(2-2X, — X3 ) +6 X, —2(2- 2%, — X5 )* = 2(2-2X, — X5 ) X, — 2 X2

@f(XNB)
0X,

=—8+6-4(2-2x,-X3)(-2)-2(2-4X%, —X3)—4X,

Now evaluating this partial derivative at xyg =0 i.e. x, =0, X3 =0 we get,

@f(XNB)
0X,

=-8+6+16-14=10>0

This indicates that the objective function will increase if x, is increased. Now,

we should observe whether the partial derivative with respect to x, gives a more
promising alternative.

%, =—4+4(2-2X,—X;3)+2X,

M=4>0

At the point Xys =0 we get
e point Xyg 9et s

of
Since ax. (XNB :0)>_8x (XNB :0), increase in x, will give better improvement
2 3

in the objective function.
3

How much x, may increase ?

The maximum value of x, allowed to attain is determined by checking two

quantities.
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of

) The value of x, atwhich 5 ~(*ue)=0
2

ii) The largest value x, can attain without deriving the basic variables negative.

Then x, will be the minimum value of these two.

of (Xus)
=-8+6+8(2-2x%,)-2(2-4x%,)-4X,
6X2 X3 =0
-
, 5
=10-12x,=0 i.e. X, ==
6
and x,=2-2Xx, —X; " XX, X3 20, Max. value x, can attain is x, =1
at x;=0.

X, :Min{gj}:g

5
Thus we find X; s and the new basic variable is x, . We now initiate a new

interation by solving for x, in terms of x, and x, .
Second Iteration
Step : 1

Selecting x, as a basic variable we get,
X =1 (X, + %)
2

Here x5 =(x,) and Xyg =(§13)
Step : 2

Expressing z, in terms of Xyz we find

2
1 1 1 1 1
f(Xy,%3)=4X, +6(1—§(x1 +x3))—2xf -2X, (1—§x1 _§X3)_2(1_§X1 —Exs)

6—f=4—3—4x1—2(1—1x1—1x3)—2x1 (—1)—4(1—1x1—1x3)(—1)
0X4 2 2 2 2 2 2

=1-3x
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=—1<0

X1=X3-0
This indicates that x, can be introduced to increase z, .
Step: 3

How much x, may increase 1

The

(VRN

1 1 . (1)
X, =1-—X; ==X, At the most x,=2 with x,=0. X;=Min| =, 1]=

2 2 3
new basic variable is x,.

of
Since 8 Xs

—1<0. X3 cannot become basic variable and therefore the

X;=X3=0

1 5
optimal solution is attained at X;=— and X 5 % =0.

A RURS R

1 5
Observe that X1 +2X; =(§)+2(EJ=Z X;>0,%,>0

Thus all the constraints are satisfied.

Example 8.6.2
Solve the following quadratic problem by Beale's method.
Max Z, =10x,+25x, - 10X — x5 —4 X, X,
Subject to,

Xy +2X, +X3=10

\ i




X+ X, +X, =9

and Xy, X5, X3,X4 20

Solution :

Step : 1

Select x,,x, as basic variables. (Since there are two constraints we choose 2
variables as basic variables).

Xy +2X, =10-X4
X+ X, =9-X,
Solving above two equations simultaneously for x, and x, we get
X;=8+X;—2X, and X, =1-X; +X,
Here xg =(x4,X,) Xxg = (X3 X4)
Step : 2

Expressing Z, is terms of x; and x, we get,

f(X3,X4)=10(8+X;3—2X,)+25(1=X5 +X,)—10(8+X,4 —2x4)2 —(1-X%,4 +x4)2
—4(8+X;—2X%,)(1-X5 +X4)
;Tf(XNB):1O—25—20(8+X3 —2X4)=2(1=X3 + X4 ) (=1) =4 (1-X; +X,)
3

+4(8+%3-2X4)

of (XNB)

=-145<0
0X,

X3=X%4=0
Therefore objective function we decrease if we increase x; .

of

aT(xNB):—20+25—20(8+x3—2x4)(—2)—2(1—x3+x4)
4

—4(8+X;—2%,)+8(1-X3 +X,)
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0f{xve) ~299>0
0X,

X3=X4=0

Therefore increase in x, will improve the objective function. So we proceed to

decide how much x, can increase.

Step: 3
X, =8+X3-2X, " Xy Xz, X4 20,
maximum value x, can attainis x, =4 at x;=0.
0f(xys)
P —-20+25+40(8-2x,)-2(1+x,)-4(8-2x,)+8(1+X,)
4

x3=0

20966, =0=> X, =222
66

X4 :Min{4,%}:4

Since at x,=0,x, =4,x,=0, x, cannot be basic variable.
.. The new basic variables are x, and x, .

Second Iteration

Step : 1
Solve the constraints for x, and x, .

1 1 1
x2:5_5x1—§x3 and x4:9—x1—(5—§x1—§x3)
1 1
=4 ——X,+—=X
271 2™

Thus xg = (X2, X,) Xxg = (X1, X3)

Step : 2
Express Z, in terms of non - basic variables.

2
1 1 1 1
f(x1,x3):10x1+25(5—§x1—§x3)—10x12—(5—§x1 —Exs)
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1 1
-4 x, (5—§x1—§x3)

6—f=10+25 ] —20x1+1.2 5—1x1—1x3 -4 5—1x1—1x3 +2X,
2 2 2 2 2 2

0%y

a_f —_§<0

0%y N 2
6—f=25(—1)—2(5—1x1—1x3)(—1) 4x, 1
0X; 2 2 2 2 2

a_f —_E<O

0 3lx,=x3=0 2

Since both the partial derivaties are negative, neither x, nor x, non - basic
variables can be introduced to increase Z, and thus the optimal solution has
been obtained. The solution is given by x,=x,=0,x, =5 and x, =4 and optimal
value of Zis.

Z,x=10(0)+25(5)-10(0)* - (5)* —4(0)(S)=100

max

Example 8.6.3

Use Beal's method to solve quadratic programming problem.
Maximize Z=2x,+3x, —2x>
Subject to the constraints
X, +4Xx,<4
X, +X,<2
and x,,x,>0
Solution :

Step : 1
Introduce slack variables in the constraints to get equations.

X, +4 X, +X;=4
X+ X, +X, =2
and Xy, X5, X3,X4 20
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Solve the constraints for x, and x, .
X1+4Xy=4—X3
Xi+X,=2-X,

Solving above equations simultaneously we get,

1 1
X :§(4+x3 —-4x,) and X, :5(2—x3 +X4)

s 4 2
Initially X, =3 and X, =3
Thus Xg =(X;,X,) and Xyg =(X3,X,).

Step : 2

Express Z in terms of non - basic variables.

Z:f(x3,x4):§(4+x3 —4x,)+(2— x5 +x4)—§(2—x3 +x4)2

of 2 4 of 2 8 5
—=—-1-—(2- —1); — =—-1+—=—>0
ox. 3 1 9(2 X5 +X, ) (=1); Xl a0 3 T80
of 8 4 of 8 8 23
—=——+1-—(2- ; =——+1-—=-—"<0
on, 3+ 9(2 X3 +X,); Xl o 38 0
of
Since 67>0 ,increase in x, will increase the objective function whereas, since
3
of
El <0 increasein x , Willdecrease the objective function. Therefore we increase
4

the value of x, since we want to maximize Z.
Step: 3

How much x, may increase ?

1
Since X, =§(2—X3 +X4) at the most x, =2 with x,=0 and

of 5 4 5
==Xy =0=> Xy =—
ox; 9 9 4
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Xz =min 2,E :E
4] 4

Thus we get three non - zero variables.

5 7 1
X3 =7 therefore X =7 and X, =7

Thus we have three non-zero variables with 2 constraints.

Therefore introduce new variable

. = of
§=——
0 X3 x40
Step: 4
, 5 of . .
Since at X;=—,— =0 we introduce a new variable
4 0Xq4 Xy =0
w0t .5 4,
© x|, , 9 9°

i. e. We introduce a new constraint

ix +X S
3 5 9

9
Thus we have the following system of constraints.
X +4 X, +X;=4

X+ X, +X, =2
ix +X >
97 ™ g

Now represent x,,X,,X, interms of non - basic variables x, and x, . By solving

above linear equations simultaneously for x,,x,,x, we get,

X _Z——X _ix

1_4 5 3 4
1 3

Xy Z+ZX5+ Xy




X3 :_—gxs
4 4

Xp =(X1,X2,X3) and XNB :(X41X5)
Step: 5

Express Z in terms of non - basic variables x, and x;.

2
Z:f(x4,x5):2(z—§x5 —£x4)+3(%+%x5 +1x4)—2(1+§x5 +%x4)

4 4 3 3 4 4
of =—§+1—4(1)(1)=—2<0
0%y X4 =X5=0 3 4)\3
ot :_§+2_4(1)(§)=o
0Xs Xy =X =0 2 4 4 )\ 4
of of
Since 87<0 and 6720’ no further improvement is possible and we get
4 5
: : 7 5
optimal solution at X, =Z,X2 =Z,X3 :Z’X4 =X5=0.
and  Z=2x,+3x,-2X5
2
o7 31_2(1J
4
14 3 1 33
=t —=—
4 8 8
~~~~~ EXERCISE ~~ ~ ~ ~

Solve the following problems by Beale's method.
1) Max. Z=2x,+3 X, - X%
Subject to,

X, +2X%X,<4, X,X,20

1 15 _ 97
ANns. X, =—,X, =—,Z=——
4 8 16




2)

3)

4)

5)

6)

Max. Z=2x,+2x, -2}

Subiject to,

X, +4X,£2, X +X,<2

Xq X, 20

(Ans.:x;=0,x, =1,2z=3)

Max. Z=6x,+3x, — X5 +4 X, X, —4 X3
Subject to the constraints

Xy +X,<3, 4X,+X,<9

Xq X, 20

(Ans.:x,;=2,x,=12=15)

Min Z=183-44 x,-42x, +8X% — 12X, X, +17 X
Subject to,

2X,+X%X, <10,X,,X, >0

Ans.:x,=3.8,x,=24,z=19
1 2

1 1
Max Z:Z(Zx3 —x1)—5(x12 +x5+3)

Subiject to,

X; =X, +Xg=Tand x;,X,,X; 20

(Ans.:x1 :%,x2 =0,X, :%’226%)

Max. Z=—-4x? -3 x3
Subiject to,

X, +3%X,25,X,-4%x,24, X{,X,20

a o o aq

2
2
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