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1.0 INTRODUCTION
The roots of operations research can be found when early attempts were made to use a

scientific approach in technical problems and in the management of organisations at the time of
world war II. Britian had very limited military resources and therefore there was an urgent need
to allocate resources to the various military operations and to the activities of each operation in
an effective manner. Therefore the british military executives and managers called upon a team
of scientists to apply a scientific method to study the technical problems related to air and land
defence of the country. As the team was dealing with (military) operations the work of this team
of scientists was named as OR in Britian.

Their efforts were instrumental in winning the air battle of Britian, and of the North Attantic
etc.

The success of this team of scientists in Britian encouraged United States, Canada and
France to start with such efforts. The work of this team was given various names in United
States such as Operational analysis, operations evaluation operations research etc.

The apparent success of OR in the military attracted the attention of industrial
management in this new field. In this way OR began to creep into industry and many governmental
organisations.

After the war, many scientists were motivated to pursue research relevant in this new
branch. The first technique in this field called the simplex method for solving linear programming
problem was developed by American mathematician, George Dantzing in 1947. Since then
many techniques such as quadratic programming, dynamical programming, inventory theory,
queing theory etc. are developed. Thus the impact of OR can be experienced in almost all walks
of life.

Definition of OR
We give few definitions of OR.

1) OR is the application of the theories of probability, linear programming, queuing
theory etc. to the problems of war, industry, agriculture and many organisation.

2) OR is the art of winning war without actually fighting.

3) OR is the art of giving bad answers to the problems where otherwise the worse
answers are given. (T. L. Saathy 58)

CONVEX SETS AND
FUNCTIONS
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Use of OR
In general we can say that whenever there is a problem there is OR for help. In addition

to the military operations research is widely used in many organisations. Now we discuss the
scope of OR in various fields.

1) Defence : There is a necessity to formulate optimum strategies that may give
maximum benefit.  OR helps the military executives to select the best course of
action to win the battle.

2) Industry : The company executives require the use of OR for the following :

1) Production department to minimize the cost  of production.

2) Marketing department to maximize the amount sold and to minimize the
cost of sales.

3) Finance department to minimize the capital required to maintain any level
of business.

The various departments come in conflict with each other as the policy of one
department is against the policy of the other. This difficulty is solved by the
application of OR techniques. Thus OR has great scope in industry. Now a days
almost all big industries in India make use of OR techniques.

3) L. I. C. : OR techniques are applicable to enable L. I. C. officers to decide the
premium rates of various policies in the best interest of the corporation.

4) Agriculture : With the increase of population and resulting shortage of food there
is a need to increase agriculture output for a country. But there are many problems
faced by the agriculture department of a country. e. g. (i) climate conditions (ii)
Problem of optimal distribution of water from the resources etc.

Thus there is a need of the policy under the given restrictions for which OR
techniques are useful to determine the best policies.

5) Planning : Careful planning plays an important role in the economic development
of many organisations for which OR techniques are fruitful for such planning.

CONVEX SETS AND THEIR PROPERTIES

1.1 Definition I (Convex Set) Let R x x x x x R i nn
n i   1 2 1 2, ,...., , , ,...,b go t

A subset S Rn , is said to be convex, if for any two points x x1 2,  in S the line segment

joining the points x1  and x2  is also contained in S.

In other words, a subset S Rn  is convex, if and only if

x x S x x S1 2 1 21 0 1, ;        b g
Some convex and non - convex sets in R2  are given below..
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Convex Sets

Non - convex Sets

Example 1.1

Show that the set S x x x x  1 2 1
2

2
23 2 6, :b gn s  is convex.

Solution :

Let x y S,   where x x x 1 2,b g  and y y y 1 2,b g .

Since   2 2
1 2x,  y S,  3x 2x 6  and  2 2

1 23y 2y 6 .

The line segment joining x  and y  is the set

u u x y: ,      1 0 1b gm r
For some  ,0 1  , let u u u 1 2,b g be a point of this set, so that

u x y1 1 11   b g , and u x y2 2 21   b g
Now,

3 2 3 1 2 11
2

2
2

1 1
2

2 2
2

u u x y x y         b g b g

                      
22 2 2 2 2

1 2 1 2 1 1 2 23 x 2 x 1 3 y 2 y 2 1 3 x y 2 x y

                226 6 1 12 1 6

Since   2
1 1x y 0 ,   2 2

1 1 1 1
1x y x y
2

 similarly   2 2
2 2 2 2

1x y x y
2

 and

 1 1 2 23x y 2x y 6  and we have

 2 2
1 23u 2u 6  and hence u u u S 1 2,b g .

Hence S is a convex set.
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Example 1.2

In Rn  consider,,

S x x1 1 m r  where x x x xn   1
2

2
2 2 1 2

...
/d i

Take x x S1 2, 

Then x x1 21 1 ,  and for 0 1  ,

   x x x x1 2 1 21 1    ( ) b g
    x x1 21 1( )

     x x S S1 2 1 11( )  is a convex set.

Example 1.3

Show that C x x x x R   1 2 1 2
22 3 7,b go t  is convex set.

Solution :

Let        x x x 1 2,b g  and y y y C 1 2,b g  and let o  1.

Let       w x y w w    1 1 2b g b g,

     w x x y y 1 2 1 21, ,b g b gb g
         w w x y x y1 2 1 1 2 21 1, ,b g b g b gc h   

      w x y w x y1 1 1 2 2 21 1   b g b g,

We have 2 3 2 1 3 11 2 1 1 2 2w w x y x y         b gc h b gc h
      2 3 2 3 1 2 31 2 1 2 1 2w w x x y y b g b gb g

Since x y C x x y y, , ,    2 3 7 2 3 71 2 1 2

Hence      2 3 7 1 7 71 2w w     . .b g
      w w w x y C1 2 1, ,b g b g   , 0 1  .

Hence C is a convex set.
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Example 1.4

Show that S x x x x x x R    1 2 3 1 2 3
32 4, ,b go t  is a convex set.

Solution :

Let x x x x 1 2 3, ,b g  and y y y y 1 2 3, ,b g  be any two points in S. Then by hypothesis,

2 41 2 3x x x   , 2 41 2 3y y y        .......... (i)

Let        w w w w x y   1 2 3 1, ,b g b g   where 0 1 

      w x x x y y y 1 2 3 1 2 31, , , ,b g b gb g
        w x x x y y y     1 2 3 1 2 31 1 1, , , ,b g b g b g b gc h

          w x y x y x y     1 1 2 2 3 31 1 1b g b g b gc h, ,

                       w x y w x y w x y1 1 1 2 2 2 3 3 31 1 1     b g b g b g, ,

We have,

           2 2 1 1 11 2 3 1 1 2 2 3 3w w w x y x y x y               b gc h b gc h b gc h
                  2 1 21 2 3 1 2 3x x x y y yb g b g b g
            .4 1 4 4    .......... by (1)

                   w x y S 1b g  for all x y S, ,  and for all   such that 0 1 

 S  is a convex set.

Example 1.5

Show that in R S x x x x x x x3
1 2 3

2
1
2

2
2

3
2 1, , ,    b g{ }  is a convex set.

Solution :

Let x x x x 1 2 3, ,b g  and y y y y S 1 2 3, ,b g .

Then x x x x2
1
2

2
2

3
2 1     and y y y y1

2
2
2

3
2 2 1         .......... (i)

Let 0 1   and z x y   1b g  where z z z z 1 2 3, ,b g
Then z x x x y y y   1 2 3 1 2 31, , , ,b g b g b g

     z x x x y y y     1 2 3 1 2 31 1 1, , , ,b g b g b g b gc h
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       z x y x y x y     1 1 2 2 3 31 1 1b g b g b gc h, ,

         z x y x y x y2
1 1

2
2 2

2
3 3

2
1 1 1     b g b gc h b gc h

           z x x x y y y x y x y x y2 2
1
2

2
2

3
2 2

1
2

2
2

3
2

1 1 2 2 3 31 2 1   b g b gb g (ii)

For i = 1, 2, 3,  since  2i ix y 0  ,  2 2
i i i i

1x y x y
2

   and therefore

2 2 2 2 2 2
1 1 2 2 3 3 1 2 3 1 2 3

1x y x y x y x x x y y y
2
         

       1 1 1 1
2

  

Thus, 1 1 2 2 3 3x y x y x y 1   ............. (iii)

Hence from (i), (ii) and (iii) we have

z 2 2 2 2
1 2 1 11 1 1             b g b g b g.

     x y z S1b g  for all x y S,   and for all   such that 0 1  .

 S  is a convex set.

Theorem 1.1
The intersection of any finite number of convex sets is a convex set.

Proof

Let S S Sn1 2, ,...,  be a finite number of convex sets, and let S S S Sn   1 2 ... .

Let x y S,   and 0 1 

Then x y Si,   for each i = 1, 2, ..., n where each Si  is a convex set. Then

 x y Si  1b g  for each i = 1, 2,..., n

       x y S S S Sn1 2b g , ...

 S  is a convex set.

Theorem 1.2

Let S and T be convex sets in Rn . Then  S T  is also convex for any  ,  in R.

Proof

Let x y S T,   
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Then 1 1x u v   and 2 2y u v  , where 1 2u ,u S  and 1 2v ,v T

For any   with 0 1  , we have

       1 1 2 2x 1 y u v 1 u v         

       1 2 1 2x 1 y u 1 u v 1 v          

1 2u ,u S , S is convex.

 1 2  u 1 u S     

Similarly,    1 2v 1 v T    

 x 1 y S T      ,

Hence  S T  is convex.

Definition 1.2

A convex combination of a finite number of points x x xn1 2, ,...,  is a point

x x x xn n     1 1 2 2 ...

where   1 2 0, ,..., n   and   1 2 1   ... n

Remark

From this definition it follows that a subset K R n  is convex, if convex combination of
any two points of K belongs to K.

Theorem 1.3
For a set K to be convex it is necessary and sufficient that every convex combination of

points in K belongs to K.

Proof
Let every convex combination of points in K belong to K.

Then every convex combination of two points in K belongs to K.

Therefore K is convex. Hence the condition is sufficient.

Converly let K be convex.

To prove that the condition is necessary we shall follow the method of induction. We
shall first prove that if the condition is true for r points it is also true for r + 1 points.

Let  i i
i

r

x K

 

1

 where K is convex and x K i ri i i
i

r

   

, , , , ,..., 1 0 1 2

1
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Consider 
r 1 r 1

i i i i i
i 1 i 1

x ,x K, 1, 0
 

 
       , i r 1 2 1, ,...,

Here two cases arise.

i) r  1 0

ii) r  1 0

Case (I)

    r i i
i

r

i i
i

r

x x K






    1
1

1

1

0

Since by hypothesis  i 0  and  i
i

r



 1

1
.

Case (II)

     

r

i ir 1
i 1

r 1 i 1 r 1 r 1 r 1
i 1 r 1

x
0 x 1 x

1




   
 



       
 




        r 1 r 1 r 11 y x     

where        
 

r

i i r r
i 1 i

i i i
r 1 r 1i 1 i 1

x
y  x x

1 1


  




   
   


    and   

r 1

i
i 1

1



 

and        

r

ir
i 1 r 1

i
r 1 r 1i 1

1
1

1 1
 

 


 

   
   




Thus i 0  , 
r

i
i 1

1


    and therefore y K .

Therefore by hypothesis y K .

Hence    

r 1 r

i i i r 1 r 1 r 1 r 1 r
i 1 i 1

x y x 1 y x K


   
 

 
           

 
   becasue the right hand side

is the convex linear combination of two points y  and xr 1  in K which by hypothesis is convex.
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This proves the theorem for r + 1 points. It is true for r = 2 by definition. Hence theorem
is proved.

Definition 1.3
The convex hull of a set S is the intersection of all convex sets containing S. We shall

denote by [S] the convex hull of S.

Remark

Every set has a convex hull , because Rn  is a convex set and so there is always at least
one convex set Rn  of which every set is a subset. Also a convex set is its own convex hull.

Theorem 1.4
The convex hull of S is the set of all finite convex combinations of points in S.

Proof
Let K be the set of all finite convex combination of the points in S.

Then by theorem 1.3, K is a convex set containing S.

Hence S K . Let K1  be any convex set which contains S. Then K1  contains all convex

combinations of points in K1 . Hence it contains all convex combinations of points in S.

Hence K K 1 .

Thus K is a subset of all convex sets containing S which shows that K is the intersection
of all convex sets containing S. Hence K = [S].

i.e. K is the convex hull of S.

Theorem 1.5

The set of all convex combinations of a finite number of points x x xm1 2, ,...,  is a convex
set.

Proof

Let S x x xi i i i
i

m

i

m

   
R
S|
T|

U
V|
W|

   , ,0 1
11

To show that S is a convex set take x'  and x' '  in S, so that x xi i
i

m

' '



1
 where  i

' 0

and 'i
i

m



 1

1
 and x xi i

i

m

' ' ' '



1

 where ' 'i 0  and ' 'i
i

m



 1

1
.

Consider the vector         x x x      ' ( ) ' ',1 0 1
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      x x xi i i i
i

m

i

m

  

   ( ) ' '1

11

      x xi i i
i

m

  

    ' ( ) ' '1

1

We can write x xi i
i

m





1

where     i i i  ' ( ) ' '1

Since 0 1 0 0     , ' , ' 'i i  it follows that  i i m  0 1 2, ,..., . Also

               i i i
i

m

i

m

  

 ' ( ) ' '1

11
l q

              

     ' ( ) ' ' . ( )i i
i

m

i

m

1 1 1 1 1
11

Hence x  is a convex combination of x x x x Sm1 2, ,...,   .

Thus for each pair of points x'  and x' '  in S the line segment joining them is contained in
S. Hence S is a convex set.

Theorem 1.6
Every point of [S] can be expressed as a convex combination of at most (n + 1) points of

S Rn .

Proof
By definition of convex null and theorem 1.1, [S] is a convex set.

Let x S i mi  , , ,...,1 2 .

x xi i i i
i

m

i

m

  

  , ,1 0

11
,  x S[ ]

Now x S [ ]  can be expressed as a convex combination of points in S follows from the
above theorem (1.3). What we have to prove now is that for any given x  we can always find
m n 1.

Let us suppose if possible that there is an x S  for which m > n + 1. Since the space

Rn  is n - dimensional, not more than n vectors in Rn  can be linearly independent. Consider the
vectors, x x x x x xm m m m1 2 1  , ,..., .
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Since m - 1 > n these (m - 1) vectors cannot be linearly independent.

Hence it is possible to find  i i m, , ,..., 1 2 1 not all zero such that

           i i m
i

m

x x 




 b g
1

1

0

or  i i i
i

m

m
i

m

x x
F
HG

I
KJ 










1

1

1

1

0

or      i i
i

m

x 

 0

1

 where  m i
i

m

 





1

1

or  i
i

m



 0

1

Let   i i i i m  , , ,...,1 2 . Since  i 0  we can choose   such that  i 0  with  i  0

for at least one i. This will happen if 




RST

UVWi
mim i

i
 over those values of i for which  i 0  or



i

i

i


RST
UVWmax  over i for which  i 0 .

Also    i i i
i

m

i

m

i

m

  

 1

111
 i i

mm

 
L
NM

O
QP 1 0

11

&

Now           i i i i i i
i

m

i

m

i

m

x x x 



111

         

 i i
i

m

x x
1

(Since  i i
i

m

x 

 0

1
)

Since at least one  i  0  it follows that x  is a convex linear conbination of at most
(m - 1) points. If m - 1 > n + 1 we can again apply the above argument and express x  as a
convex combination of m - 2 points, and so on till m - k = n + 1, k > 0. This proves the theorem.
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Definition 1.4
A point x of a convex set K is an extreme point or vertex of K if it is not possible to find two

points x x1 2,  in K such that

x x x    1 0 11 2  b g ,

A point of K which is not a vertex of K is called an internal point of K.

Theorem 1.7
The set of all internal points of a convex set K is again a convex set.

Proof
Let V be the set of vertices of K. Then K - V is the set of internal points.

Let x x K V1 2,   . Then x x K1 2,   and x x V1 2, 

Hence x x x K     ( ) ,1 0 11 2   , is by definition not a vertex of K, but x K .

i. e. x K V  .

Hence K - V is a convex set.

Definition 1.5

The set of all convex combinations of a finite number of points xi , i = 1, 2, ..., m is the
convex polynedron spanned by these points.

Theorem 1.8
The convex polyhedron is a convex set.

Proof

Let y1  and y2  be any two points in the polyhedron spanned by x i mi, , ,...,1 2

Then by definition

     y xi i
i

m

i i
i

m

1
1 1

1 0  
 
   , ,

    y xi i
i

m

i i
i

m

2
1 1

1 0  
 
   , ,

Now let,       y y y    1 0 11 2  b g ,

   
m m

i i i i
i 1 i 1

y 1 x x
 

      
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   y x xi i
i

m

i i i
i

m

   
 
 ( )1

1 1

    ,

where          i i i  ( )1

Since     i i i
i

m

i

m

i

m

   

 1 1

111
b g , y  is also in the polyhedron. Hence polyhedron is a

convex set.

Theorem 1.9
The set of vertices of a convex polyhedron is a subset of its spanning points.

Proof
Let W be the set of points spanning the convex polyhedron, and V be the set of its

vertices. If possible let y V  but y W . Since y  is in the poly hedron by definition it is a convex

linear combination of points of W all of which are other than y  (by assumption). Hence by

definition y  is not a vertex which is a contradiction. Therefore y W  or V W .

Remark
It is obvious that there can be spanning points which are not vertices. For example

consider the points A, B, C, D in R2  such that D is in the triangle formed by the vertices A, B, C.
The four points span the triangle ABC but D is not a vertex.

HYPERPLANES AND HALF SPACES
Definition 1.5

Let x R Cn , 0b g  a constant row n - vector and R . Then we define,

i) A hyperplane as x c x m r

ii) A closed half - space as x c xm r  or  x c x

iii) An open half space as x c xm r  or   x c x 

Definition 1.6

A set X Rn  is said to be an nbd  of a point x Rn
0   if,

x x x X  0m r  where x x x x x x xn n    1 2 1
2

2
2 2 1 2

, ,..., ...
/b g d i
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Definition 1.7

The .nbd  of x  in Rn   is defined as the set of all points y  in Rn  such that y x 

(Where   0, R )

Definition 1.8

If Rn  the point x  is a boundry point of the set S if every   - neighbourhood of x  contains
some points which are in S and some points which are not in S.

For example in

S x x1 1 m r , S x x2 1 m r , x R 2  the points on the circumference of the circle

x x1
2

2
2 1   are the boundry points of S1  and S2 . S1  contains all its boundry points while S2

contains none of them.

Definition 1.9
A set is said to be closed if it contains all its boundry points and is said to be open if its

complement is closed.

Definition 1.10

A set S is said to be bounded from below if  there exists y  in Rn  with each component

finite such that for every x S , y x . Note y x y x j nj j: , , ,...,   1 2 .

Definition 1.11

A set S is bounded if there exists a finite real number M0  such that for all x  in S,

x M .

Corollary 1.10
A hyperplane is a closed set.

Proof

Let x c x 0m r be a hyperplane.

Let x1  be the boundry point of the hyperplane. Suppose it is not a point of the hyper
plane.

Then either c x1 0  or c x1 0 .

Suppose c x1 0  and let c x1 1 0  

Now c x c x x x  1 1

        c x c x c x x c x c x c x c x x1 1 1 1b g b g
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   c x c x c x x1 1b g

   c x c x x1 1b g c x1 1 1  

   c x c x x1 1

Consider the nbd  of x1 , x x x 1m r  where  is an orbitary positive number..

Let  
 0 1

2 c

Hence if x  is in the nbd  of x1  we get c x 






   

1
0 1 0 1

02 2
b g

This shows that x  is in the half space c x0 . Hence there exits a nbd. of x1  which

contains no points of the hyperplane c x 0 . Hence x1  is not a boundry point of the hyperplane.
This is a contradiction. Thus there is no boundry point of the hyper plane which is not in the
hyperplane. Hence the hyperplane is a closed set.

Definition 1.12

In Rn , every hyper plane x c x/ l q  determines two open half spaces and two closed
half spaces. The open half spaces are :

 1X x c x   and  2X x c x 

The closed half - spaces are

 3X x c x   and  4X x c x  .

Corollery 1.11
A hyperplane is a convex set.

Proof

Let X x c x m r  be a hyperplane and let x x1 2,  be any two points of this hyperplane.

Then c x1   and c x2   . Now if 0 1  , we have

c x x c x c x   1 2 1 21 1    ( ) b g b g
       c x c x1 21b g b g
    =     1b g

Therefore the point  x x1 21 b g  for 0 1   is in the hyperplane. Hence the hyperplane
is a convex set.
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Corollary 1.12

The closed half spaces H x c x1  m r  and H x c x2  m r  are convex sets.

Proof

Let x x1 2,  be any two points of H1. Then c x1   and c x2  . If 0 1  .

c x x c x c x   1 2 1 21 1    ( ) ( ) ( )

           1 1( )

    x x H1 2 11( ) . Hence H1 is a convex set. Similarly H2  is a convex set.

Corollary 1.13

The open half spaces H x c x1  m r  and H x c x2  m r  are convex sets.

Proof

Let x x1 2,  be any two points of H1.

Then c x c x1 2  ,

If 0 1  , we have

c x x c x c x   1 2 1 21 1    ( ) ( )b g
          ( )1

      x x H x x H1 2 1 1 2 11( ) , ,

H1  is a convex set.

Similarly H2 is a convex set.

SUPPORTING AND SEPARATING HYPERPLANES
Definition 1.13 (Supporting hyperplane)

Let S Rn  be any closed convex set and w S  be a boundary point. Then a hyperplane

c x z  is called a supporting hyperplane of S at w , if

i) c w z   and

ii) S H   or S H 

where H x c x z  :l q  and H x c x z  :l q
Remarks

1) The supporting hyperplane need not be unique.

2) S may intersect the supporting hyperplane in more than one boundary points.
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Theorem 1.14
Let S be a closed convex set. Then S has extreme points in every supporting hyperplane.

Proof

Let w  be a boundary point of a closed convex set S.

Let c x z  be a supporting hyperplane at w S . Let B S x c x z  m r .

Then B is a closed convex set and B  for w B .

We claim that every extreme point of B is also an extreme point of S.

Let us assume to the contrary that an extreme point b  of B, is not an extreme point of
S. Then there exist x x S1 2,  , such that

           b x x   1 21b g , 0 1 

Therefore     c b c x c x   1 21b g .      .......... (i)

Since c x z  is a supporting hyperplane at w  and 1 2x ,x S

c x z1  and c x z2 

or c x z1  and c x z2       .......... (ii)

From (i) and (ii)

c b z z z    1b g or c b z z z    1b g

Therefore b  is not a point of B.

This is a contradiction.

Therefore every extreme point of B is also an extreme point of S.

Definition 1.14 (Separating hyperplane)
Let S and T be two non-empty subsets of Rn. The hyperplane H is said to separate S and

T if H is contained in one of the closed half spaces generated by H and T is contained in the
other closed half space. The hyperplane H is called separating hyperplane.

Remark :
A hyperplane H strictly separates S and T if S is contained in one of the open half spaces

generated by H and T is contained in the other open half space.
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Theorem 1.15 (Separating Hyperplane)

Let S Rn  be a closed convex set. Then for any point y  not is S, there is a hyperplane

containing y  such that S is contained in one of the open half spaces determined by the
hyperplane.

Proof

w

S

y cx = z 
x1

x2

We are given that y S .

Since S is a closed set, there exist w S , such that,

w y x y
x S

  


min i.e. w y x y w S,x S          .......... (i)

Observe that  w y 0   (S is closed and y S )

Let u  be any point of S. Since S is a convex set

 u w S  1b g  for 0 1       .......... (ii)

From (i) and (ii)

 u w y w y    ( )1

 w y u w w y    b g b g
2 2

  2 2 2 22u w w y w y u w w y       b gb g

  2 2 2 0u w w y u w    b gb g

    2u w 2 w y u w 0       .
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Letting 0 , and c w y b g ; we get

w y u w  b gb g 0  or c u w b g 0   i.e.  c u c w  

or c u c y c w c y      

or c u y c w y c   b g b g 2

Hence c u c y .

Putting c y z , we get c u z .

Thus y  lies on the hyperplane c x z  and for all u S , c u z .

This completes the proof.

CONVEX FUNCTIONS
Definition 1.14 (Convex Functions)

Let S be a non - empty convex subset of Rn . A function f xb g  on S is said to be convex if

for any two vectors x1  and x2  in S.

f x x f x f x   1 2 1 21 1    b g b g b g b g 0 1 

Definition 1.15 (Strictly convex function)

Let S be a non empty convex subset of Rn . A function f (x) on S is said to be strictly

convex if for any two different vectors x1  and x2  is S.

f x x f x f x   1 2 1 21 1    b g b g b g b g 0 1 

o x

y

y = f (x)

Fig A : Strictly Convex Function

S

o x

y
y = f (x)

Fig B : Strictly Concave Function

S

It follows from the above two definitions that every strictly convex function is also convex.
The graph of a strictly convex function has been illustrated in Fig. A.
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Definition 1.16 [Concave (strictly concave) function]

A function f xb g  on a non - empty subset S of Rn is said to be concave (strictly concave)

if  f xb g  is convex (strictly convex).

Clearly, every strictly concave function is also concave. The graph of a strictly concave
function has been illustrated in Fig. B.

o x

y

y = f (x)

Fig C : Both Convex and Concave Functions

S

o x

y

y = f (x)

Fig D 

X0

It is possible for a function to be both convex and concave. For example, f x xb g   is

such a function (Fig. C). The function in Fig. D is strictly convex for x x 0  but not strictly convex

for x x 0 .

The following results are the immediate consequences of the above definitions :

i) A linear function z c x x Rn ,  is a convex (concave) function but not strictly
convex ( concave).

ii) The sum of convex (concave) functions is convex (concave) and if at least one
of the functions is strictly convex (concave) then so is their sum.

Note : In what follows we shall deal with convex functions only. However, all the results
remain valid if we deal with concave functions.

LOCAL AND GLOBAL EXTREMA

In the problems of constrained optimization, we are interested in determining a vector x
that minimises the function f ( x ) [or maximises - f( x )] subject to the ‘constraints’

g x i mi ( ) , ,..., 0 1 2b g . The set of the vectors x  satisfying these constraints is usually called the
‘feasible region’.
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Definition 1.17 (Global minima)

A global minimum of the function f ( x ) is said to be attained at x0  if f x f x0b g ( )  for all x

in the feasible region.

Example : Function f x x( ) 1
2 , subject to the constraint x1 0 , has a minimum at x1 0 .

Definition 1.18 (Local minima)

A local minimum f x0b g  of function f xb g  is said to be attained at x0  if there exists a

positive   such thai f x f x0b g ( )  for all x  in the feasible region which also satisfy the condition

x x0    .

Example :

The function f x x x( ) 1
2

1
3  subject to the constraint x1 0 , has a local minimum at x1 0 .

Note that f xb g  has no global minimum at all.

Note : The word extremum is used to indicate either maximum or minimum.

Theorem 1.16

Let f ( x ) be a convex function on a convex set S. If f xb g  has a local minimum on S, then
this local minimum is also a global minimum on S.

Proof :

Let f xb g  have a local minimum f x0b g  at x0  which is not a global minimum on S. Then,

there exists at least one x1 in S x x1 0b g  such that f x f x1 0b g b g . Since f xb g  is a convex function
on S, we have

f x x f x f x   1 0 1 01 1    b g b g b g b g
Also    f x f x f x f x f x1 0 0 0 01 1b g b g b g b g b g b g b g     

Thus f x x f x 1 0 01  b g b g
Now, for any  0 , we observe that

   x x x x x1 0 0 1 01     b g ,
1 0

if  
x x

    

Thus  x x1 01 b g  will give a smaller value for f xb g  in the   - neighbourhood of x0 ,

whenever  1 0min 1, | x x    . This contradicts the fact that f xb g   takes on a local minimum

at x0 . Hence x0  is a global minimal point.
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Corollary 1.17
If a function f(x) has a local minimum on a convex set S on which it is strictly convex,

then this local minimum is also a global minimum on that set. This global minimum is attained at
a single point.

Theorem 1.18

Let f xb g  be a convex function on a convex set S. Then the set of points in S at which

f xb g  takes on its global minimum, is a convex set.

Proof :

The result is obvious if the global - minimum is attained at just a single point. Let us
assume that the global minimum is attained at two different points x1  and x2  of S. Then

f x f x1 2b g b g .

Now, since f xb g  is convex,

f x x f x f x f x   2 1 2 1 21 1     b g b g b g b g b g 0 1 

 f x x f x f x 2 1 2 11   b g b g ( )

 f x x f x 2 1 11  ( ) ( )

Thus every point x x x   2 11b g  corresponds to a global minima. The set of all such

x  is, obviously, a convex set.

Corollary 1.19
If the global minimum is attainable at two different points of S, then it is attainable at an

infinite number of points of S.

Theorem 1.20

Let f xb g  be differentiable on its domain. If f xb g  is defined on an open convex set S, then

f xb g  is convex if

f x f x x x f xT( ) ( ) ( )2 1 2 1 1   b g
for all x x S1 2,  .

Proof :

We shall prove that if

f x f x x x f xT( )2 1 2 1 1   b g b g b g  then f xb g  is convex.
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Since x x S x x x1 2 0 2 11, ,    b g  for 0 1   implies that x S0  .

Using the above condition for x1  and x0 , we have

f x f x x x f xT
1 0 1 0 0b g b g b g b g         .......... (i)

Similarly, for x2  and x0 ,

f x f x x x f xT
2 0 2 0 0b g b g b g b g         .......... (ii)

Multiplying (ii) by   and (i) by 1b g and then adding, we get

   f x f x f x x x f x x f xT T T
2 1 0 2 1 0 0 01 1b g b g b g b g b g b g b g        

       T T
0 0 0 0 0 0f x x f x x f x f x     

Using the definition of 0x , this yields    f x f x f x x( ) ( )2 1 2 11 1    b g b g ,

which implies that  f x  is convex.

   EXERCISES  

1) Define : Convex set, hyperplane, extreme point, convex combination of points.

2) a) Prove that a hyperplane is a convex set.

b) Show that c x x x x R   1 2 1 2
22 3 7,l qo t  is a convex set.

c) For any point x y Rn,   show that the line segment joining x y,  i. e. [x : y]
is a convex set.

3) a) Show that S x x x x x x R    1 2 3 1 2 3
32 4, ,b go t  is convex set.

b) Show that in R3  the closed ball x x x1
2

2
2

3
2 1    is a convex set.

c) Show that a hyperplane in R3  is a convex set.

4) a) Show that the closed half spaces H x c x z1  /l q  as H x c x z2  /l q  are
convex sets.

b) The open half spaces x c x zm r  and x c x zm r  are convex sets.

c) The intersection of any finite number of convex sets is a convex set.
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5) a) Show that S x x x x x x x x x      1 2 3 1 2 3 1 2 32 4 2 1, , ,b go t  is a convex
set.

b) Let A be an m n  matrix and b  be on n - vector then show that

x R A x bn { }  is a convex set.

c) Let S and T be convex sets in Rn . Then for any scalars  ,  prove that

 S T  is a convex set.

d) Prove that the set of all convex combinations of a finite number of points
x x xm1 2, ,...,  is a convex set.

6) a) If V is any finite subste of vectors in Rn , then prove that the convex hull of
V is the set of all convex combinations of vertors in V.

b) If A x y Rn ,l q  these prove that   A x y .

c) Prove that : A linear function z c x c x c xn n   1 1 2 2 ...  defined over a
convex polyhedron C takes its maximum (or minimum) value at an
extreme point of C.

7) a) Let S Rn  be a convex set with a nonempty interior. If x C S1 /  and

x S2 int  then prove that for each 0 1   the point  x x1 21 ( )  lies in
int S.

b) If S Rn  is a convex then prove that int S is also a convex set.

c) Let S be a convex set with a non empty interior. Then prove that cl S is
also a convex set.

8) a) Let S Rn  be a closed convex set and y S . Then prove that there exist

unique x S0   such that y x mn y x x S    0 m r .

b) Let X Rn  be a closed convex set. Then show that for any point y  not in

X. There exist a hyerplane containing y  s. t. X is contained in one of the
open half spaces determined by the hyperplane.


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2.0 INTRODUCTION
In 1947, George Dantzig and his associates, while working in the US department of Air

Force, observed that a large number of military planning problems could be formulated as
maximizing / minimizing a linear function (profit / cost) whose variables were restricted to values
satisfying a system of linear constraints (e.g. 2x1 + 3x2   5). The term programming refers to
the process of determining a particular action plane. Since the objective function (profit / cost)
and constraints are linear, problems are called linear programming problems.

The general Linear Programming Problem (L.P.P.)

The general linear programming problem is to find a vector x x xn1 2, ,...,b g  which minimizes
the linear form (i. e. objective function)

       z c x c x c xn n   1 1 2 2 ...  .......... (2.1)

subject to the linear constraints

       xJ 0 ( j = 1, 2, ..., n) .......... (2.2)

and

a x a x a x bn n11 1 12 2 1 1   ...

a x a x a x bn n21 1 22 2 2 2   ... .......... (2.3)

a x a x a x bmm m mn n1 21 2   ...

Where the a bi j i,  and c j  (i = 1, 2, ..., m, j = 1, 2, ..., m) are given constants and m < n. Wee
shall assume that the equations (2.3) have been multiplied by (-1) where necessary to make all
bi 0 . The function (2.1) is called objective function and system (2.2) and (2.3) are called
constraints.

The general L. P. P. is also denoted by : Minimize z c xj j
j

n





1

subject to x j 0,  j = 1, 2, ..., n and

a x bi j j i
j

n





1

 (i = 1, 2, ..., m)

LINEAR PROGRAMMING
UNIT

02
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Definition 2.1

A feasible solution to the L. P. P. is a vector x x x xn 1 2, ,...,b g  which satisfies the conditions
(2.2) and (2.3).

Definition 2.2
A basic solution to (2.3) (or L. P. problem) is a solution obtained by setting any n - m

variables equal to zero and solving for the remaining m variables, provided that the determinant
of the coefficients of these m variables is non zero. The m variables are called the basic variables.

Definition 2.3
A basic feasible solution is a basic solution in which all the basic variables are non

negative.

Definition 2.4
A non degenerate basic feasible solution is a basic feasible solution in which all the

basic variables are positive.

Definition 2.5
A feasible solution which either maximizes or minimizes the objective function is called

an optimal feasible solution.

Theorem 2.1
The collection of all felsible solutions to the L. P. P. is a convex set.

Proof

Let F be the set of all felsible solutions to the system A x b x , 0

If the set F has only one point then obviously F is a convex set. Assume that F has more
than one point.

Let x x F1 2,  . Then we have

A x b x1 1 0 ,  and A x b x2 2 0 ,

Let x x x0 1 21   b g  where x x F1 2 0 1, ,   .

Then A x A x x0 1 21   b g
   A x A x1 21b g ,

    b b b1b g
Also since 0 1 0 01 2    , ,x x  it follows that x0 0 . This shows that x F0   and

consequently F is a convex set.

Remark
In general the convex set F is either (i) empty (ii) Unbounded or (iii) closed.
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The empty set occurs when the constraints of the set can not be satisfied simultaneously.
In this case the system yields no solution.

An unbounded set implies that the region of fisible solutions is not constrained in atleast
one direction.

Finally closed set implies that the region of fessible solutions is a convex polyhedron
since it is defined by the intersection of a finite number of linear constraints.

Note :  We shall rewrite the definition of basic solution.

Basic Solution

Consider a system of simultaneous linear equations in n unknowns A x b m n ( ),
r A m( ) . If any n - m variables are equated to zero then the solution of the resulting system for
m variables provided the determinant of the coefficient matrix of these variables is 0  is called
a basic solution, where r (A) = rank of A.

OR

If any m m  non singular matrix is chosen from A and if all the remaining n - m variables
not associated with the columns in this matrix are set equal to 0 the solution to the resulting
system of equations is called a basic solution. The m variables which can be different from zero
are called basic variables.

Theorem 2.2

A necessary and sufficient condition for a point x 0  in F to be an extreme point is that

x  is a basic feasible solution to the system A x b x , 0 .

OR

Every basic feasible solution of A x b  is an extreme point of the convex set of feasible

solutions (of A x b ) and conversely every extreme point of the convex set of feasible solutions

is a basic feasible solution to A x b .

Proof

Let F denote the set of feasible solutions of A x b .

Let x  be a basic feasible solution of A x b  which is a n - component vector (x x xn1 2, ,..., ).

Thus both non basic (zero) and basic (some of which may be zero) variables are contains in x .
Suppose the components of x  are so arranged that the first m components are the basic
variables corresponding to basic vectors and are denoted by xB  Then,

x x oB ,b g  where o  is an (n - m) component null vector. Also assume that the vectors of

the matrix A are so arranged that the first m column vectors correspond to xB  and we denote
this sub matrix of A by B (called the basic matrix) and we denote the remaining (n - m) column
vectors by R. Thus A = (B, R).



28

Accordingly the system A x b  becomes

   (B, R) x o bB,b g  or B x bB  .

By the definition of a basic solution B must be non singular.

Hence x B bB 
1

To prove that every basic feasible solution is an extreme point of the convex set of
feasible solutions.

If possible assume that the two distinct feasible solution x1  and x2  exist such that

    x x x   1 21b g , 0 1      .......... (1)

But x1  and x2  can be expressed as,

   x x u x x uB B1
1

1 2
2

2 ( ) ( ), , ,     .......... (2)

where xB
( )1  and xB

( )2  are the first m components of x1  and x2  respectively and u u1 2,

denote the last (n - m) component vectors of x1  and x2  respectively..

From (1) and (2)

        x o x u x uB B B, , ( ) ,( ) ( )   1
1

2
21     .......... (3)

i. e.         x o x x u uB B B, ( ) , ( )( ) ( )       1 2
1 21 1

Therefore    u u1 21 0  b g     .......... (4)

Since    0 1 0, ( )  and u u1 20 0 , , therefore from (4)

  u u1 2 0      .......... (5)

Since x x1 2,  are in the set of feasible solutions,

           A x b A x b B x bB1 2
1   , ( )  and Bx bB

( )2 

          x x B b xB B B
( ) ( )1 2 1

This shows that x x x 1 2  which contradicts the fact that x x1 2 . Conseqnently x  cannot
be expressed as a convex combination of any two distinct points in the set of feasible solutions
and hence it must be an extreme point.

Conversely

Let x x x xn 1 2, ,...,b g  be an extreme point of the convex set of feasible solutions.

We prove that x  is a basic feasible solution of A x b . By definition x  will be a basic
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feasible solution of A x b  if the column vectors associate with positive elements of x  are
linearly independent.

Assume that k - components of x  are positives (remaining are zeros). Arrange the
variables so that the first k components are positive. Then

      
k

j j j
j 1

x a b,x 0, j 1,2,...,k


       .......... (6)

If possible assume that the vectors a a ak1 2, ,...,  are not linearly independent. So they

are linearly dependent and hence there exist scalars  j  not all zero such that

        1 1 2 2 0a a ak k   ...

or        j j
j

k

a 

 0

1
    .......... (7)

From (6) and (7) it follows that for any  0 ,

 x a a bj j j j
j

k

j

k

 

  

11

or        x a bj j j
j

k

 

  d h

1

Thus the two points

    1 1 1 2 2 k kx x ,x ,..., x ,0,0,...,0            .......... (8)

         (n - k) components

and    2 1 1 2 2 k kx x ,x ,..., x ,0,0,...,0          .......... (9)

         (n - k) components

satisfy the constraints A x b

Since x j 0  select   such that 0 0  
R
S|
T|

U
V|
W|




min
xj

j
j

Then the first k components of 1 2x ,x   will always be positive.

Since the remaining components of 1x  and 2x  are zeros, it follows that 1x  and 2x  are
feasible solutions different from x . Adding (8) and (9) we obtain.
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         1 2 1 2 kx x 2 x ,x ,..., x ,0,0,...,0  

          1 2 1 2 k
1 1x x x ,x ,...,x ,0,0,...,0 x
2 2

    

Thus x  can be expressed as a convex combination of two distinct points 1x  and 2x  by

selecting  
1
2

i. e.  1 2
1 1x x 1 x
2 2

     
 

This contradicts the assumption that x  is an extreme point of the convex set of feasible
solutions.

Hence a a ak1 2, ,...,  are linearly independent and hence x  is a basic feasible solution.

We have obviously k m  . Because the number of linearly independent column vectors
cannot be greater than m which is the row rank = column rank = rank of a matrix A. If k = m then
the basic feasible solution is a non degenerate basic feasible solution.

Suppose k < m. Then the basic feasible solution is a degenerate basic feasible solution.
Select other (m - k) additional column vectors with their corresponding variables equation 0.
such that 1 2 ma ,a ,...,a  are linearly independent.

Thus the resulting set of k + (m - k) = m column vectors is linearly independent.

The sub matrix of A formed by these m columns is non singular.

Theorem 2.3

If the convex set of the feasible solutions of A x b ,  is a convex polyhedron then at
least one of the extreme points of the convex set of feasible solutions gives an optimal solution.

If the optimal solution occurs at more than one extreme point the value of the objective
function will be the same for all convex combinations of these extreme points.

Proof

Let x x xk1 2, ,...,  be the extreme points of the convex set F of the feasible solutions of the

L. P. problem, max z c x   subject to A x b x , 0 .

Suppose xm  is the extreme point among x x xk1 2, ,...,  at which the value of the objective

function is maximum say z .

i. e.    i m1 i k
z max c x c x

 
   
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Let x F0   which is not an extreme point and let z0  be the corresponding value of the
objective function.

Then   0 0z c x     ........... (1)

Since x0  is not an extreme point it can be expressed as convex combination of the

extreme points x x xk1 2, ,...,  of F (where F is assumed to be bounded).

Then x x x xk k0 1 1 2 2     ...

where   1 2 0, ,..., k   and  i
i

k



 1

1

So from (1)     0 1 1 2 2 k kz c x x ... x     

           0 1 m 2 m k mz c x c x ... c x         

            0 1 m m mz c .... x c x       

i. e. z z0 


This implies that the value of the objective function at any point in the set of fessible
solutions is less than or equal to the maximal value z  at extreme points.

Let x x x r kr1 2, ,...., ( )  be the extreme points of the set F at which the objective function
assumes the same optimum value. This means.

   1 2 rz c x c x ... c x       

Further let x x x xr r j       1 1 2 2 0... ,  and  j
j

r



 1

1
 be convex combination of there

extreme points.

Then    1 1 2 2 r rc x c x x ... x       

            1 1 2 2 r r 1 rc x c x ... c x z ... z              

             1 2 ... r zb g
        z  Thus c x z 

This proves the result.

Note
Consider the general L. P. P.

Max. z c x  subjects to A x b x , 0  where
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A

a a

a a

a a

n

n

m mn



L

N

MMMMM

O

Q

PPPPP

11 1

21 2

1

..........

..........

...................
..........

    c c c cn ( , ,..., )1 2

    x x x b b b bn m 1 1 2,..., , , ,...,b g b g
Where rank of A i. e. r (A) = m < n.

For convenience column vectors will also be represented by row vectors without using
the transpose symbol (T). So there should be no confusion in understanding the scalar
multiplication of two vectors c  and x .

We shall denote the jth column of A by a j nj, , ,...,1 2

so that    A a a an 1 2, ,...,     .......... (1)

Form an m m  non singular submatrix B of A called the basic matrix, whose columns
are linearly independents vectors. Let these column vectors be renamed as

  1 2, ,..., m . Therefore

   B m   1 2, ,...,     .......... (2)

These columns of B form a basic of Rm .

Now any column aj  of A can be expressed as a linear combination of the columns of B.

Let    a y y yj j j m j m   1 1 2 2  ...

      j 1 2 m 1j 2 j m ja , ,..., y ,y ,..., y    

i. e. a B yj j  where y y y yj i j j m j , ,...,2d i

i. e. a B yj j  where y y y yj j j m j 1 2, ,...,d i

i. e. y B aj j 1  where y i mi j ( ,..., )1  are scalars.

The vector y j  will change if the columns of A forming B change. Any basic matrix B will

yield a basic solution to A x b . The solution may be denoted by m component vector as

x x x xB B BmB  1 2, ....,,d i  where xB  is determined from x B bB 
1 .     .......... (4)
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Note that xBi  corresponds to the column  i  of the matrix B. The variables x x xB B Bm1 2, ...,,

are called basic variables and the remaining (n - m) variables are non basic variables.

Correspondings to xB  we have z c x c x c xn n   1 1 2 2 ...

         Let c c c cB B B Bm 1 2
, ...,,d i

where cBi  is the coefficient of the basic variable xBi  in the objective function.

So      z c x c x c xB B B B Bm Bm    1 1 2 2 0...

     z c c x xB Bm B Bm 1 1,..., ,...,d id i
     z c xB B    ........... (5)

Finally we form a new variable z j  defined as

    z y c y c y c c yj j B j B m j Bm Bi i j
i

m

    

1 1 2 2

1

...

    z c c y y yj B Bm i j j m j 1 2,..., , ,...,d i d i
    z c yj B j

There exists z j  for each aj .

Example 2.1
Illustrate the above definitions and notations for the following L. P. problem.

Maximize      z x x x x x    1 2 3 4 52 3 0 0

subject to 4 2 41 2 3 4x x x x   

  x x x x1 2 3 52 3 8   

Solution :
Constraints equations in matrix form may be written as

a a a a a x b
x
x
x
x
x

1 2 3 4 5

1

2

3

4

5

4 2 1 1 0
1 2 3 0 1

4
8

L
NM

O
QP

L

N

MMMMMM

O

Q

PPPPPP


L
NM
O
QP
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or    A x b

A basis matrix B  1 2,b g  is formed using columns a3  and a1  where

     1 3 2 1
1
3

4
1

 
L
NM
O
QP  

L
NM
O
QPa a,

The rank of the matrix A is 2 and column vectors a a3 1,  are linearly independent and

thus form a basis for R2 . Thus basis matrix is

     
B

a a

 
L
NM

O
QP 1 2

3 1

1 4
3 1

,b g

Then the basic feasible solution is x B bB 
1

    x
B

ad j B bB 
F

HG
I
KJ

1 .

    xB 
 


L
NM

O
QP
L
NM
O
QP 

L
NM

O
QP

1
11

1 4
3 1

4
8

1
11

28
4

    
x

x

xB
B

B


L

N

MMMM

O

Q

PPPP

L
N
MM

O
Q
PP

28
11
4
11

1

2

Hence the basic solution is x xB1 3
28
11

  , x xB 2 1
4
11

   and the remaining non basic

variables are (always) zero i. e. x x x2 4 5 0   .

Also c coeff of x coeff of x cB B1 1 3 3 3   . .

c coeff of x coeff of x cB B2 2 1 1 1   . .

Hence the value of the objective function is

      z c xB B 
F
HG

I
KJ ( , )

/
/

3 1
28 11
4 11

88
11

Also any vector a jj  1 2 3 4 5, , , ,b g  can be expressed as a linear combination of vectors

 j j1 2,b g .
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Let      j 1j 1 2 j 2 1j 3 2j 1a y y y a y a     

    
121

2 2
22

y1 4 2 6 /111y B a
3 1 2 4 /11 y11

        
                 

Hence   y12
6
11

  and 1 y22
4
11

 .

Now the variable z2  corresponding to the column vector a2  can be obtained as

    z c yB2 2 3 1
6 11
4 11

 
F
HG

I
KJ,

/
/

b g

         L
NM

O
QP 3 6

11
1 4

11
22
11

2. .

Similarly z z z1 3 4, ,  and z5  can also be obtained.

Theorem 2.4

Consider a set of m simultaneous linear equations in n unknowns with n m A x b ,  and

r A m( ) . Then if there is a feasible solution x 0 , there is a basic feasible solution.

Proof

To prove this assume that there exists a feasible solution to A x b  with p n  positive
variables.

Number the variables, so that the first p variables are positive. Then the feasible solution
can be written as

        x a bj j
j

n





1
   ........... (1)

and hence

x j p x j p p nj j     0 1 2 0 1 2,( , ,...., ), , , ,...,b g    ........... (2)

Case (i)

Suppose the set a j pj ( , ,..., )1 2  is linearly independent. Then p m .

If p = m the given solution is automatically a nondegenerate basic feasible solution.

Supposep < m. We know that this set of p linearly independent column vectors can be
extended to form a base a a am1 2, ,...,l q  of the column space of A.

In this case x x x x xp p m1 2 1, ,..., , ,...,n s  where x j p p mj    0 1 2, , ,...,  is a degenerate
basic fessible solution.
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Case (ii)

Suppose the vectors a j pj ( , ,..., )1 2  are linearly dependent. We shall show that under
these circumstances it is possible to reduce the number of positive variables step by step until
the columns associated with the positive variables are linearly independent.

When the a j pj ( , ,..., )1 2  are linearly dependent, there exist  j  not all zero such that

          j j
j

p

a

 

1

0     .......... (3)

and we proceed to reduce some xr  in

         x a b x j pj j j
j

p

  

 , ( , ,..., )0 1 2

1
    .......... (4)

to zero.

Suppose some vector ar  of the p vectors in aj j
j

p

 

 0

1

 is expressed in terms of the

remaining (p - 1) vectors.

Thus      a ar
j

r
jj r

 




    .......... (5)

substituing (5) in (4) we obtain

      
x x a bj r

j

r
j

j
j r

p


F
HG

I
KJ 







1     .......... (6)

Here we have not more than (p - 1) variables. However we are not sure that all these
variables are non negative (In general if we choose ar  orbitrarily some variables may be negative)

We wish to obtain

x xj r
j

r
 




0  ( j = 1, 2, ..., p), j r     .......... (7)

For any j for which  j 0  (7) will be satisfied automatically. When  j  0  we have,

         
x xj

j

r

r 
 0  if  j 0     .......... (8)
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x xj

j

r

r 
 0  if  j 0     .......... (9)

We select ar  such that

    
x xr

r
j

j

j
j 

 
R
S|
T|

U
V|
W|

min 0     ........ (10)

(Note that  j ja   0 at least one  j  0  and hence  j 0 for some j )

Thus a fessible solution x x a bj r
j

r
j

j
j r

p


F
HG

I
KJ 







1

is obtained with not more than (p - 1) non zero variables.

These variables are also non negative. (since  j 0 )

If the columns associated with the positive variabls are linearly independent by case (i)
we have a basic feasible solution. If the columns associates with the positive variables are
linearly dependent we can repeat the same procedure and reduce one of the positive variables
to 0. Utimately we shall arrive at a solution such that the columns corresponding to the positive
variables are linearly independent. (Note that a single non zero vector is always linearly
independent)

OR

Theorem 2.5
If a linear programming problem

max. z c x  s. t. A x b x , 0

has at least one feasible solution then it has at least one basic feasible solution.

Proof
Let

x x x xk0 1 2 0 0 0 , ,..., , , ,...,b g
be a feasible solution to the L. P. P. with positive components x x xk1 2, ,..., .

Let a a ak1 2, ,...,  be the first k columns of A (associated with the positive variables

x x xx1 2, ,...  respectively)

Then by hypothesis

    x a x a x a bk k1 1 2 2   ...     .......... (1)
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Case (i)

Suppose a a ak1 2, ,...,  are linearly indepedent. In this case x x x xk0 1 2 0 0 , , , ,...,b g  is a
basic fessible solution.

Case (ii)

Suppose a a ak1 2, ,...,  are linearly dependent.

So there exist scalers  1,...., k  not all 0 such that

 1 1 0a ak k  ...  with atleast one  j  0  and hence assume this  j 0 .     .......... (2)

Let v
xj k

j

j
j

RS|T|
UV|W|

 1 0max ,


 (i.e. m +x is taken over those j fro which  j x )

Obviously v > 0 for x j 0  (j = 1, 2, ..., k) and at least one  j 0 .

Multiply (2) by 
1
v

 and then subtract from (1) to get

         
k k

j j j j
j 1 j 1

1x a a b
v 

   

k
j

j j
j 1

x a b
v

 
   

 
     .......... (3)

         1 2 k
1 2 kx x ,x ,...,x ,0,0,...,0

v v v

         
 

is a new solution of A x b .

We have v
x

or x
v

j kj

j
j

j   
 

1b g

The new solution x


 satisfies non negativity restriction.

Since x
vj

j 


0  for at least one j, x


 is a feasible solution with at the most k - 1 positive

variables. All other variables are 0.

If the columns associated with the positive variables are still linearly. dependent, repeat
the above procedure. Cuntinuing in this way we get the column vectors ossociated with positive
variables which are linearly independent. Thus by case (i) we get a basic feasible solution.
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Example 2.2

If x x x1 2 32 3 1  , ,  is a feasible solution of a L. P. P. problem

max.  z x x x  1 2 32 4

subject to  2 4 111 2 3x x x  

     3 5 141 2 3x x x  

  x x x1 2 3 0, , 

find a Basic Feasible Solution

Solution :

We have A x b

where A x
x
x
x

b
L
NM

O
QP 

L

N
MMM

O

Q
PPP


L
NM

O
QP

2 1 4
3 1 5

11
14

1

2

3

, ,

The given feasible solution is x x x1 2 32 3 1  , , .

Hence   2 3 11 2 3a a a b  .

Where a a a b1 2 3
2
3

1
1

4
5

11
14


L
NM
O
QP 

L
NM
O
QP 

L
NM
O
QP 

L
NM

O
QP, , ,

Step (2)

The vectors a a a1 2 3, ,  associated wsith the positive variables x x x1 2 3, ,  are linearly
dependent so one of the vectors is a linear combination of the remaining two.

Let a a a3 1 1 2 2    Thus

          
4
5

2
3

1
11 2

L
NM
O
QP 

L
NM
O
QP 

L
NM
O
QP 

Maximum no. of lin. independnet columns is less than 3 since row rank of coefficient
matrix A is 2.

  Now 
4
5

2
3

1 2

1 2

L
NM
O
QP 




L
NM

O
QP

 

 

              2 4 3 51 2 1 2   ,
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          1 21 2,

         a a a3 1 22

i. e.        a a a1 2 32 0  

Where              1 2 31 2 1   , ,

Step (3)

Now determine which of the variables x x x1 2 3, ,  should be 0. For this find

 v
x

j

j
j

F
HG

I
KJ max ,


 0

   
1 2

1 2
max ,

x x
  

  
 

(since 1 1 0   , 2 2 0    )

   
1 2 2max ,
2 3 3

   
 

 x x
v

x
v

x
v


   F
HG

I
KJ1

1
2

2
3

3  , ,  is a reduced solution where

    x
v1
1 2 1

2 3
1
2

   


/

    x
v2
2 3 2

2 3
0   


/

   x
v3
3 1 1

2 9
5
2

   
F
HG

I
KJ 


/

 x

 FHG

I
KJ

1
2

0 5
2

, ,

Step (4)

Now the solution x

 FHG

I
KJ

1
2

0 5
2

, ,  is to be tested for basicness. The determinant of the

matrix of the of column vectors corresponding to x x1 3,  is
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2 4
3 5

0
L
NM

O
QP 

Obviously a a1 3,  are linearly independent.

Hence x

 FHG

I
KJ

1
2

0 5
2

, ,  is a B. F. S.

Theorem 2.6

Let a L. P. P. have a B. F. S. If for any column aj  in A but not in B b b bm 1 2, ,...,n s  (basic

vectors for columns in A) we have a y bj i j i
i

m





1
 with at least one y i j 0  (i = 1, 2, ..., m) then we

can find a new B. F. S. by replacing one of the columns in B by aj .

Proof

Consider a L. P. P. problem max z c x  subject to A x b x , 0  where A is m n  matrix
m < n and r (A) = m, where r (A) = rank of A.

Let xB  be a BFS of the LPP, where B b b bm 1 2, ,...,n s  forms a basis for the columns of A.A.

For any column aj  in A  a Bj d h , we have

           a y bj i j i
i

m





1

Suppose some yrj
0

Then
a y b y bj i j i

i
i r

m

r j r 




1

       
  




b
a
y y

y br
j

r j r j
i j i

i
i r

m1

1

Hence B x bB   gives b x bBi i
i

m





1
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           

L

N
MMM

O

Q
PPP





b x b x
a
y y

y bBi i Br
j

r j r j
i j i

i
i r

m

i
i r

m 1

11

        
  

L
N
MM

O
Q
PP 




b x x
y
y

b
x
y

aBi Br
i j

r j
i

B r

r j
j

i
i r

m

1

The new solution xB


 is also a basic solution with the basic variables.

          x x x
y
y

i m i rBi B i Br
i j

r j


 
F
HG

I
KJ  , , ,..., ,1 2

and         x
x
yBr

Br

r j




Case (1)

Let xBr  0

In this case the new set of basic variables is obviously non negative, since we have
assumed the existance of a BFS, xB .

Case (2)

xBr  0

We have yr j 0

For the remaining y i r y y or yi j i j i j i j   b g, ,0 0 0 .

If yi j 0  for some i, x x xBi B i B r
 

  0 0,

If yi j 0  still xBi


0  and xBr


0 .

Suppose yi j 0

We require x x x
y
y

i rBi Bi Br
i j

r j


   0,

So we must have 
x
y

x
y

Bi

i j

Br

r j
 , where y i j 0 .
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We select r in such a way that 
x
y

x
y

yBr

r j

B i

i j
i j 

R
S|
T|

U
V|
W|

min 0

Then we have a B. F. S.

Example 2.3

Given a basic feasible solution x3 4  and x4 8  to the L. P. P..

max. z x x 1 22  subject to

  x x x1 2 32 4  

  x x x1 2 44 8   ,

obtain a new B. F. S.

Solution :

We have     A x b

Where        A x x x x x b
L
NM

O
QP  

1 2 1 0
1 2 0 1

4 81 2 3 4, , , , ,b g b g

      a a a a1 2 3 4
1
1

2
2

1
0

0
1


L
NM
O
QP 

L
NM
O
QP 

L
NM
O
QP 

L
NM
O
QP, , ,

We have B x bB   where B 
L
NM

O
QP

1 0
0 1

     x x x x x x xB B B B B     1 2 1 3 2 44 8 4 8d i b g, , ,

       1 1 2 2
1
0

0
1

 
L
NM
O
QP  

L
NM
O
QPb b,

The y j  s for any column aj  in A but not in B are

     y B a
y
y1

1
1

11

21

1 0
0 1

1
1

1
1

 
L
NM

O
QP
L
NM
O
QP

L
NM
O
QP 

L
NM

O
QP



     
121

2 2
22

y1 0 2 2
y B a

0 1 4 4 y
       

          
       

Note that       a B a y b y b1
1

1 11 1 12 2   and

      a B a y b y b2
1

2 21 1 22 2   .
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Since y y11 211 1 0  ,  we can insert a1  in B. We now select r rb  for replacement by

a1  which corresponds to the value of r determined by the minimum ratio rule :

   
x
y

x
y

yBr

r
i

B i

i
i

1 1
1 0 

RS|T|
UV|W|

min ,

          
L
NM

O
QP

min ,
x
y

x
y

B B1

11

2

21

          
L
NM

O
QP  min ,4

1
8
1

4 1

11

x
y

B

     r 1

Hence we remove 1  and enter a1  in place of 1 1 b .

The new basic matrix becomes

       B a

 1 2,b g  or a     

    
 FHG

I
KJ  

F
HG

I
KJ1 2 1 2 2, , ,

   
L
NM

O
QP


B

1 0
1 1

We can now find the basic feasible solution xB


 either by using the result x B bB
  


1

 or by
the transformation formulae.

     x x x
y
y

i m i rBi Bi Br
i j

r j


   , ,..., ,1

and x
x
y

Br
Br

r j


  for i = r = 1, x xi B



1

Now 1 1 b  is removed means x3  will not be a basic feasible solution. In its plane x4

corresponding to a1  will be a B. F. S. and x xB1 1 .

Using the formula

                x
x
y

x
B

B
   1

1

11

3

1
4
1

4
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    x x x
y
y

x x
y
y

B B B


       2 2 1

21

11
4 3

21

11
8 4 1

1
4

Hence the new B. F. S. is

      x x x x x xB B1 1 2 3 4 24 0 0 4     , , ,

Theorem 2.7
If a linear programming problem,

Max. z= c x, , s. t. A x=b,x 0 ,

has at least one optimal feasible solution, then at least one basic feasible solution must
be optimal.

Proof

Let      

m n k
0

1 2 kx x ,x ,...,x 0,0,...,0
  

 
 
 



be an optimal feasible solution to the given linear programming problem which yields
the optimum value

      z c xj j
j

k





1

.  Also x a bj j
j

k





1
    .......... (1)

If a a ak1 2, ,...,  are linearly independent then 0x  is an optimed BFS. Otherwise a a ak1 2, ,...,

are linearly dependent and there exist  j , not all 0,

such that  j j
j

k

a 

 0

1
 where at least one  j 0     .......... (2)

Let V
xj k

j

j


F
HG

I
KJ 

max
1


    .......... (3)

Obviously V > 0, because x j 0  and at least one  j j k  0 1 )b g .

Now multiplying (2) by 
1
V

 and subtracting from (1) we get

x a
V

a bj j j j
j

k

j

k

 

 1

11



1
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           
F
HG

I
KJ 


 x

V
a bj

j

j

k

j


1
    .......... (4)

    F
HG

I
KJ


x x

v
x

v
x

vk
k

1
1

2
2 0 0 0  , ,...., , , ,....,  is a new solution of A x b .

From (3) v
x

x
v

j kj

j
j

j    
 

0 1 2, , ,.....,

Thus x


 is a feasible solution and since x
vj

j 


0  for at least one j, x
  contains at the

most k - 1 non zero variables other variables being zero.

If the column vectors associated with the positive variables are still linearly dependent
we repeat the above process and finally get the solution which is a BFS. So without loss of

generality the solution x


 will be assumed as a basic feasible solution.

We have to prove that x


 is also optimum solution.

The value of the objective function corresponding to this solution x


 will become

        z c x c x cj j
j

j

k

j j
j

k

j j
j

k

  

 
F
HG

I
KJ    



 


1 1 1

1

         or       z z c j j
j

k




  1

1
     .......... (5)

(since       z c xj j
j

k





1

 )

But, for optimality z
  must be equal to z . Hence x

  will be optimal solution if and only if
we prove,

          c j j
j

k

 

 0

1

 in equation ( 5 ).

We shall prove this by contradiction.

If possible, let us assume that

          c j j
j

k

 

 0

1
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Then, there will be two possibilities :

1) c j j
j

k

 

 0

1

2) c j j
j

k

 

 0

1

Now, in either of these two cases we can find a real number, say r, such that

r c j j
j

k

 

 0

1

(in first case, r will be positive and in second case r will negative)

i. e. c rj j
j

k

d h

 0

1
    .......... (6)

Now adding c xj j
j

k




1
 to both sides on ( 6 ), we have

 
k k k

j j j j j j
j 1 j 1 j 1

c r c x c x
  

    

or c x r zj j j
j

k

 


 d h
1

    .......... (7)

Now, x r x r x rk k

m n k

1 1 2 2 0 0 0  
F
H
GG

I
K
JJ

 

  , ,..., , , ,...,
 

 is also a solution for any value of r which

can be observed by multiplying equation ( 2 ) by r and adding to equation ( 1 )

Furthermore, there exist an infinite number of choices of r for which the solution

x r x r x rk k

m n k

1 1 2 2 0 0  
F
H
GG

I
K
JJ

 

  , ,..., , ,...,


 satisfies the non - negativity restrictions also.

We now proceed to prove this statement. To satisfy the non - negativity restriction, we
need

x r j kj j   0 1 2, , ,...,

or r xj j  



48

We have

or

r
x

if

r
x

if

r unrestricted if

j

j
j

j

j
j

j

  

  



U

V

||||

W

||||









,

,

,

0

0

0

Thus, we observe that if we select r satisfying the relationship

j
x

r j
x

j j

j

j

j

j   

F
HG

I
KJ   

F
HG

I
KJ0 0d i d i

max min

    .......... (8)

then x rj j  0  for j = 1, 2, ...., k. We note that if there is no j for which  j 0 , then there

is no lower limit for r and if there is no j for which  j 0 , then there is no upper limit for r..

Furthermore,

j
x

j

j

j 


F
HG

I
KJ 0

0
d i

max

 and j
x

j

j

j 


F
HG

I
KJ 0

0
d i

min

This proves that when r lies in the non - empty interval given by ( 8 ), then the infinite
number of solutions.

x r x r x rk k

m n k

1 1 2 2 0 0 0  
F
H
GG

I
K
JJ

 

  , ,..., , , ,...,
 

satisfy the non - negativity restrictions also.

Now, from ( 7 ) we conclude that the left hand side c x rj j j
i

k



 d h

1
 yields the value of the

objective function which is strictly greater than the greatest value of the objective function. This

contradiction proves that c j j
j

k

 

 0

1

 and hence x
  is optimal.

Note : By what we have proved we have the result :

If the linear programming problem :

Max. z = cx, subject to Ax = b, x0

has feasible solution, then it has at least one optimal basic feasible solutions.
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Reduction of any feasible solution to a basic feasible solution
Example 2.4

If x x x1 2 32 3 1  , , , be a feasible solution of linear programming problem :

Max. z x x x  1 2 32 4 ,

subject to 2 4 111 2 3x x x   ,

3 5 141 2 3x x x   ,

x x x1 2 3 0, ,  ,

then find a basic feasible solution.

Solution :
We express the above system as

a a a b
x
x
x

1 2 3

1

2

3

2 1 4
3 1 5

11
14

F
HG

I
KJ
F

H
GG

I

K
JJ 

F
HG

I
KJ

or x a x a x a b1 1 2 2 3 3  

But the given feasible solution is x x x1 2 32 3 1  , , . Hence 2 3 11 2 3a a a b  

Where a a a b1 2 3
2
3

1
1

4
5

11
14


L
NM
O
QP 

L
NM
O
QP 

L
NM
O
QP 

L
NM

O
QP, , ,

Since the vectors a a a1 2 3, ,  associated with the corresponding varialbes x x x1 2 3, ,  are
linearly dependent, therefore one of the vectors can be expressed in terms of the remaining two.

Thus,

a a a3 1 1 2 2   . So   1 1 2 2 3 3 0a a a   , where 3 1     ........... (1)

or
4
5

2
3

1
11 2

L
NM
O
QP 

L
NM
O
QP 

L
NM
O
QP 

or
4
5

2
3

1 2

1 2

L
NM
O
QP 




L
NM

O
QP

 

 

which gives

2 41 2   ,

3 51 2  
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Solving these two equations we get  1 21 2 , . Now substituting these values of 1

and 2  in (1), we get the linear combination

a a a1 2 32 0    or  j j
j

k

a 

 0

1
    .......... (2)

Where   1 2 31 2 1   , ,

Now we have to determine which one of the three variables x x x1 2 3, ,b g  should be zero.


   

   
RST

UVW1 3 1

1

2

2

3

3
j

x x x x
j

j

max
max , ,

 
RST

UVWmax , ,1
2

2
3

1
1

2
3

Let x x x x

   F
HG

I
KJ1

1
2

2
3

3








, ,

Then, x1
1 2 1

2
3

1
2

   

 ,

x2
2 3 2

2
3

0   



 (which was expected also),

x3
3 1 1

2
3

5
2

  


F

H
GGG

I

K
JJJ





Now this solution x

 FHG

I
KJ

1
2

0 5
2

, ,  will be a basic feasible if the vectors a1
2
3


L
NM
O
QP  and a3

4
5


L
NM
O
QP

associated with non - zero variables x1  and x3  are linearly Independent.

Obviously a1  and a3  are linearly independent.

Hence the required basic feasible solution is

x x x1 2 3
1
2

0 5
2

  , ,
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To verify, we have 
1
2

1
3

0
1
1

5
2

4
5

11
14

L
NM
O
QP 

L
NM
O
QP

L
NM
O
QP 

L
NM

O
QP

Example 2.5

Show that the feasible solution x x x z1 2 31 0 1 3   , , ,  to the system

x x x1 2 3 2  

x x x1 2 3 2  

2 3 41 2 3x x x z Min   ( )  is not basic.

Solution :
First, we express the given system of constraint equations in matrix form :

1 1 1
1 1 1

2
2

1

2

3


L
NM

O
QP
L

N
MMM

O

Q
PPP

L
NM
O
QP

x
x
x

Therefore, according to our usual notations, we have

A x
x
x
x

b


L
NM

O
QP 

L

N
MMM

O

Q
PPP


L
NM
O
QP

1 1 1
1 1 1

2
2

1

2

3

, ,

We show that the feasible solution x x x1 2 31 0 1  , ,  is not basic.

So, we prove that the vectors

a1
1
1


L
NM
O
QP  and a3

1
1


L
NM
O
QP

are linearly dependent.

Since there exist non - zero scalars  1 21 1  ,  such that  1 1 2 2 0a a 

or 1
1
1

1
1
1

0
0

. .
F
HG
I
KJ  

F
HG
I
KJ 

F
HG

I
KJb g ,

the given feasible solution is not basic.

Theorem 2.8

Consider a L. P. P.  max. z c x  , such that to Ax b x , 0 .

Let A a a aa m 1 2, ,...,d i  and B m   1 2, ,...,b g  be a non singular submatrix of A.A.
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Assume that a non - degenerate basic feasible solution x B bB 
1  to A x b  yields a

value of the objective function z c xB B . If for any colunm aj  in A but not in B we have c zj j 0 ,

and if at least one y i mi j  0 1 2, ,...,b g  where a yj i j i
i

m



 

1
, then we can find a new basic feasible

solution by replacing one of the columns in B by a j .

Proof

We shall obtain a new basic feasible solution by replacing one of the vectors (say aj ) in

A but not in B by some vector in B (say r ). Obviously,,

aj i (i = 1, 2, ..., m)

Since aj  can be expressed as the linear combination of vectors in B, therefore

a yj i j i
i

m



 

1

or a y y y yj j j r j r m j m     1 1 2 2   .... ...     .......... (1)

Now, by using the replacement theorem, a j  can replace r  and still maintains the basic

matrix, provided yr j  0 .

Assuming yr j  0 , where y ar j j0,  can be written as

a y yj i j i r j r
i
i r

m

 



  
1     .......... (2)

Solving the equation (2) for r , we obtain

 r
r j

j
i j

r j
i

i
i r

m

y
a

y
y

 



1

1     .......... (3)

Also, we have B x bB 

or   1 2 1 2, ,...., , ,...., ,....,m B B Br Bmx x x x bb g d i

or x x x x bB B Br r Bm m1 1 2 2        ... ...

or
x x bBi i B r r

i
i r

m

  




1     .......... (4)
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Substituting the value of r  from (3) in (4), we obtain

x x
y

a
y
y

bB i B
i
i r

m

r j
j

i j

r j
i

i
i r

m

i r
  

L

N
MMM

O

Q
PPP








 
1 1

1

      
 

F
HG

I
KJ  




 x x
y
y

x
y

a bBi Br
i j

r j
i

Br

r j
j

i
i r

m


1  .......... (5 a)

or
x x a bBi i

i
i r

m

Br j







  

1  .......... (5 b)

Where x x x
y
y

i m i rBi Bi Br
i j

r j


   , , ,..., ;1 2 ,  .......... (6 a)

x
x
y

for i rBr
Br

r j


 b g  .......... (6 b)

Comparison of ( 5 b ) with ( 4 ) indicates that the new basic solution of A x b  is given
by

x x x i m i rB Bi Br
  

 FHG
I
KJ  , , , ,..., ;1 2

    
F
HG

I
KJ

   
x x x xB B Br Bm1 2, ,..., ,....,

       
F
HG

I
KJx x

y
y

x x
y
y

x
y

x x
y
yB Br

j

r j
B Br

j

r j

Br

r j
Bm Br

m j

r j
1

1
2

2, ,...., ,....,

and other non - basic components are zero.

For the new basic solution to be feasible, we require

x i mBi


 0 1 2, , ,....,

Hence x x
y
y

i m i rBi Br
i j

r j
   0 1 2, , ,..., , and  .......... (7 a)

x
y

Br

r j
0  .......... (7 b)
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We see that ( 7 b ) holds as yr j 0  and since we start with a non - degenerate basic

feasible solution, x i mBi  0 1 2, , ,...., . If yr j 0  and y i ri j  0 b g , then ( 7 a ) is satisfied. If yr j 0

and y i ri j  0 b g , then equation ( 7 a ) is satisfied only when

x
y

x
y

Bi

i j

Br

r j
 0 (dividing ( 7 a ) by yi j 0 )

or   
x
y

x
y

Bi

r j

Bi

i j

or
x
y

x
y

Br

r j

B i

i j


or
x
y

Min
x
y

Br

r j i

Bi

i j


L
N
MM

O
Q
PP

This, if we select r such that

  
L
N
MM

O
Q
PP

x
y

Min
x
y

yBr

r j i

B i

i j
i j, 0     .......... (8)

then column r  will be removed from basis matrix B to replace a j  so that the new basic
solution will be feasible. This completes the proof.

Note

1) We denote the new non - singular matrtx, obtained from B by replacing r  with

aj  by

B B B Bm
   
 FHG

I
KJ1 2, ,..., , where

B i r B ai i r j

 
   , ,

2) If the minimum in ( 8 ) is not unique, the new basic solution will be degenerate.
In this case, the number of positive basic variables will be less than m.

The procedure in above theorem can be explained by the following numerical
example.
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Example 2.6

Given the non - degeneate basic feasible solution x3 4  and x4 8  to the following LP
problem

Max. z x x 1 22 , subject to

x x x1 2 32 4  

x x x1 2 44 8  

obtain the new basic feasible solution.

Solution :

The given basic feasible solution can be expressed as  B x bB 


F
HG

I
KJ
F
HG

I
KJ 

F
HG

I
KJ

1 0
0 1

4
8

4
8

Here, we have

x
x

x
B bB

B

B

F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ

1

2

4
8

1 0
0 1

4
8

, ,

a a

A x

1 2 1 2

1 2 1 0
1 4 0 1

0
0
4
8

 


F
HG

I
KJ 

F

H

GGGG

I

K

JJJJ
,

The y sj '  for every column aj  in A but not in B are

y B a
y
y1

1
1

11

21

1 0
0 1

1
1

1
1

 
F
HG

I
KJ
F
HG
I
KJ 

F
HG
I
KJ 

F
HG

I
KJ



y B a
y
y2

1
2

12

22

1 0
0 1

2
4

2
4

 
F
HG

I
KJ
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ



Since y y11 211 1 ,  are > 0, we can insert a1  in B. We now select r  for replacement by

a1  which corresponds to the value of suffix r determined by the minimum ratio rule :

x
y

Min
x
y

yBr

r i

B i

i
i

1 1
1 0 

L
N
MM

O
Q
PP,
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Therefore,

x
y

Min
x
y

x
y

Br

r

B B

1

1

11

2

21


L
NM

O
QP

,

  L
NM

O
QP 

x
y

MinBr

r1

4
1

8
1

4
1

,

   
x
y

x
y

rBr

r

B

1

1

11
1

Hence we remove 1 .

The new basis matrix becomes

    B a
  
 FHG

I
KJ   1 2 1 2, ,b g (because a1  is replaced by 1 )

      
F
HG

I
KJ

1 0
1 1

Now we can find the new basic feasible solution xB
  either by using the result x B bB

  


1

or using the transformation formulae ( 7 a ) and ( 7 b) of Theorem 2.8.

Hence the new basic feasible solution is :

 x
x
y

B
B

  1
1

11

4
1

4

x x x y
y

B B B


      2 2 1

21

11
8 4 1

1
4

So that the solution to the original system of equations becomes

   x x x x x xB B1 1 2 3 4 24 0 0 4     , , ,

we note that, if we had inserted a2  instead of a1 , the new basic feasible solution would
have been degenerate. We have developed the procedure for obtaining a new basic feasible
solution. Now we determine the value of the objective function corresponding to this new basic

feasible solution. We verify, whether z z

  where z

  denotes the new value of the objective

function. For this, we prove the following theorem.
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Theorem 2.9

Assume that we have a non - degenerate basis feasible solution x B bB 
1  to A x b

which gives a value for the objective function z c xB B . Assume further that we have obtained a

new basic feasible solution x B bB





 1  to A x b  by replacing one of the columns in B by a

column aj  (for which yr j 0 ) in A but not in B. If c zj j 0 , the new value (denoted by z


) of the

objective function will be greater than z, where z c yj B j  and y B aj j 1 .

Proof
The value of the objection function for the original basic feasible solution is

z c xB B

    c c c x x xB B Bm B B Bm1 2 1 2, ,...., , ,....,d i d i

or z c xBi Bi
i

m





1
   .......... (A)

The new value is given by

z c xB B
  


or
z c x c x c xBi B i B i Bi Br Br

i
i r

m

i

m      






  
11

where c c i r c cBi Bi B r j

 
  b g,

Therefore, 
z c x c xBi B i j B r

i
i r

m  




 
1

Subsituting the values of new variables xBi


 and xBr


 from ( 7 a ) and (7 b ) of Theorem

2.8 into the last expression, we get

z c x x
y
y

c
x
yBi B i Br

i j

r j
j

Br

r ji
i r

m




 
F
HG

I
KJ 

1   ........... (B)

Since the term for which i = r is c x x
y
yBr Br Br

r j

r j


F
HG

I
KJ 0
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we can include it in the summation ( B ) without changing z


, so that

z c x x
y
y

c
x
yBi B i Br

i j

r j
j

Br

r ji

m



 
F
HG

I
KJ 

1

     

c x

x
y

c y
x
y

cBi Bi
Br

r j
B i i j

Br

r j
j

i

m

i

m

11

     z
x
y

z
x
y

cBr

r j
j

Br

r j
j

     z c z
x
yj j

Br

r j
d h

     z c zj jd h , where 
x
y

Br

r j
   .......... (C)

Now, from ( C ) we observe that the new value z
  of the objective function is the original

value z plus the quantity c zj jd h . Since 0 , and c zj j  is greater than 0. The value of the
objective function is improved.

Example 2.7
In worked example ( 2.6 ) show that the new value of the objective function is improved.

Solution :

Since c c c c1 2 3 41 2 0 0   , , , , then the original solution x x x x3 4 1 24 8 0   , ,  gives

z        1 0 2 0 0 4 0 8 0

In the new basis feasible solution x1  replaces x3

Since z c yB1 1 0 0
1
1

0 
F
HG
I
KJ ,b g

and since c z1 1 1 0 0    , z
   should exceed z ( = 0). From ( C ) we get

   z z c z
x
y

B
  1 1

11

1b g

   z

  0 4 1 0b g

      4   z 0
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Theorem 2.10

If we select the vector ak  to replace r  in B the suffix k can be selected by means of

c z Max c z c zk k j j j j j    d h, 0 ,  so that the value of the objective function

z is increased as much as possible for the new basic feasible solution.

Proof
In the previsous Theorem we have obtained the improved value of z given by

        z z
x
y

c zBr

r j
j j


  d h

Thus to give maximum value of z
  we should select that value of j for which the term.

x
y

c zBr

r j
i jd h  is maximum.

But the computational difficulty arises while obtaining Max
x
y

c zBr

r j
j j. d h , because we

have to compute 
x
y

Br

r j
 for each a j  having c zj j 0  by the rule

     
x
y

Min
x
y

yBr

r j j

B i

i j
i j 

L
N
MM

O
Q
PP, 0

But the change in objective function depends on

x
y

Br

r j
 and c zj j  both.

Thus to avoid large number of computations of 
x
y

Br

r j
, we can neglect the value of 

x
y

Br

r j
.

Hence the most convenient and time saving rule for choosing the vector ak  to enter the

basis B consists of selecting the largest c zj j . This is equivalent to choosing the vector ak  to

replace r  by means of

c z Max c zk k j j j  d h , for c zj j 0 .
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Note
The following are the advantages of using the above test.

1. The choice of vector ak  to enter the basis B by using above criteria gives the
greatest possible increase in z in each step.

2. More than m iterations will not be needed to reach the optimal basic feasible
solution.

3. It saves a time by giving the required solution in the least number of steps.

Definition 1 : Slack Variable
If the constraint has ‘ ’ sign then in order to make it an equality we have to add something

positive to the left side of constraint. The non-negative variable which is added to the left hand
side of the constraint to convert it into equation is called slack variable.

e.g. 1 2x x 3   then 1 2 3x x x 3    and x3 is slack variable.

Surplus Variable
If a constraint has ‘ ’ sign then in order to make it an equality we have to subtract

something non-negative from left hand side of inequality.

Definition
The positive variable which is subtracted from the left hand side of the constraint to

convert it into equation is called surplus variable.

e.g. 1 2x x 3   then 1 2 3x x x 3    and variable x3 is surplus variable.

Conversion of given LPP into standard form of LPP

Step 1
Convert constraints into equations except non-negativity of variable.

Step 2
Make right side of each constraint non-negative.

(multiply equation by (–1) if necessary)

e.g. 1 2 1 2x x 3 x x 3      

Step 3
Make all variables non-negative if variable x is unrestricted in sign write x x ' x " 

where x ',x " 0 .

Step 4
Convert objective function in maximization form.

    Min  f x Max f x 
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Example
Express the following LPP in standard form.

1 2 3Min z x 2x x  

Subject to

1 2 32x 3x 4x 4   

1 2 33x 5x 2x 7  

1 2x ,x 0 , x3 is unrestricted in sign.

Step 1

1 2 3 42x 3x 4x x 4    

1 2 3 53x 5x 2x x 7   

Step 2

1 2 3 42x 3x 4x x 4    

1 2 3 53x 5x 2x x 7   

Step 3

x3 is unrestricted. ' "
3 3 3 x x x  

 ' "
1 2 3 3Min z x 2x x x   

s.t.  ' "
1 2 3 3 42x 3x 4 x x x 4     

 ' "
1 2 3 3 53x 5x 2 x x x 7    

' "
1 2 3 3 4 5x ,x ,x ,x ,x ,x 0

Step 4

 ' "
1 2 3 3Min z x 2x x x   

 ' "
1 2 3 3Max z x 2x x x      

Thus standard form is

' "
1 2 3 3Max z x 2x x x     
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Subject to

' "
1 2 3 3 42x 3x 4x 4x x 4     

' "
1 2 3 3 53x 5x 2x 2x x 7    

' "
1 2 3 3 4 5x ,x ,x ,x ,x ,x 0

Example 2.8
Solve the L. P. problem.

Max.  z x x x  3 5 41 2 3

subject to  2 3 81 2x x 

     2 5 102 3x x 

         3 2 4 151 2 3x x x  

and         x x x1 2 3 0, , 

Solution :

The inequalities are converted into equalities by introduction of slack variables x x4 5,

and x6  as follows.

 2 3 0 81 2 3 4x x x x   .

  0 2 5 101 2 3 5x x x x   

  3 2 4 151 2 3 6x x x x   

Take x x x1 2 30 0 0  , ,

Hence x4 8  and x x5 610 15 ,  which is the initial basic feasible solution.

Now we construct a starting simplex table. Here we compute  j  for all zero variables

x j , j = 1, 2, 3 by the formula.

       j j B jC C Y 

      1 1 1 C C YB

      1 3 0 0 0 2 0 3 3  , , , ,b g b g
      2 2 2 C C YB

      2 5 0 0 0 3 2 2 5  , , , ,b g b g
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      3 3 3 C C YB

      3 4 0 0 0 0 5 2 4  , , , ,b g b g
Since all  j  are not less than or equal to zero therefore the solution is not optimal. So

we proceed to the next step.

To find incoming vector :

Since 2 3  is max. of   1 2 3, ,  therefore 2 2 yb g  is incoming vector..

Starting simplex table 1

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1b g 2b g 3b g 1b g 2b g 3b g x
y

B

2

Y4 0 8 2 3 0 1 0 0
8
3

 

Y5 0 10 0 2 5 0 1 0 5

Y6 0 15 3 2 4 0 0 1
15
4

z c xB B x j 0 0 0 8 10 15

   = 0 c j 3 5 4 0 0 0

 j 3 5 4 x x x

A B
To find outgoing vector

Since 2  is incoming vector therefore we consider the ratio

       
x
Y

x
Y

x
Y

x
Y

B B B B1

2

1

12

2

22

3

32

F
HG

I
KJ, ,

i. e. 
x
Y
B1

2

8
3

5 15
2

 LNM
O
QP, ,

We have 
x
Y

x
Y

YBr

r
i

B i

i
i

2 2
2 0 

RS|T|
UV|W|

min ,
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  
RST

UVW
i

B B Bx
Y

x
Y

x
Y

min , ,1

12

2

22

3

32

8
3

Hence r = 1

i. e. 1  is the outgoing vector..

Since 2  is incoming vector and 1  is outgoing vector, therefore the key element is

y a12 12b g  as shown in table 1 which is equal to 3.

In order to bring 1  in place 2  we make the following intermediate tables.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 8 2 3 0 1 0 0

Y5 10 0 2 5 0 1 0

Y6 15 3 2 4 0 0 1

Divide key element by 3 to get unity at this position and then subtract 2 times of the first
row (obtained after dividing by 3) from the second and third row.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2
8
3

2
3

1 0
1
3

0 0

Y5
14
3


4
3

0 5 
2
3

1 0

Y6
29
3

5
3

0 4 
2
3

0 1

Now we construct second simplex table in which 1 4Yb g  is replaced by 2 2 yb g .



65

Second simplex table 2

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1b g 2b g 3b g x
y

B

3

Y2 5
8
3

2
3

1 0
1
3

0 0 --

Y5 0
14
3


4
3

0 5 
2
3

1 0
14
15

min

Y6 0
29
3

5
3

0 4 
2
3

0 1
29
12

z c xB B x j 0
8
3

0 0
14
3

29
3

c j 3 5 4 0 0 0

 j 
1
3

x 4 
5
3

x x

A B
incoming outgoing

vector vector

To test the optimality of the solution compute  j  for all zero variables x x1 3,  and x4 .

1 1 1 3 5 0 0 2
3

4
3

5
3

    F
HG

I
KJc c YB , , , ,b g

           1 1 1 3 10
3

1
3

    c c YB

           3 3 3 4 5 0 0 0 5 4   c c yB , , , ,b gb g  = 4 - 0 = 0

           4 4 4 0 5 0 0 1
3

2
3

2
3

    F
HG

I
KJc c YB , , , ,b g

           4
5
3

 

Since all  j  are not less than or equal to zero, therefore this solution is also not optimal.
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Since 3 4  is maximum of the  j s' , 3 3 Yb g  is the incoming vector..

Also           
x
Y

x
Y

YBr

r
i

B i

i
i

3 3
3 0

L
N
MM

O
Q
PP

min ,

    
L
N
MM

O
Q
PPmin ,

x
Y

x
Y

B B2

23

3

3 3
 (since Y13 0 )

    
L
NM

O
QP min ,14

15
29
12

14
15

2

23

x
Y

B

            r 2

Therefore 2 5 yb g  is the outgoing vector and y a23 23 5   is the key element.

In order to bring y3  in place of 2 5 yb g  we make the following intermediate table.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2
8
3

2
3

1 0
1
3

0 0

Y5
14
3


4
3

0 5 
2
3

1 0

Y6
29
3

5
3

0 4 
2
3

0 1

Divide the key element by 5 to get 1 at this position, then subtract 4 times of the second
row thus obtained from the third row.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2
8
3

2
3

1 0
1
3

0 0

Y5
14
15


4
5

0 1 
2

15
1
5

0

Y6
89
15

41
15

0 0 
2

15


4
5

1

The third simplex table in which 2 5 Yb g  is replaced by Y3  is as follows



67

Table 3

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1b g 2b g 3b g x
y

B

1

Y2 5
8
3

2
3

1 0
1
3

0 0 4

Y5 4
14
15


4

15
0 1 

2
15

1
5

0 
7
2

neg.

Y6 0
89
15

41
15

0 0 
2

15


4
05

1
89
41

min

x j 0
8
3

14
15

0 0
89
15

c j 3 5 4 0 0 0

 j
11
15

x x 
17
15


4
5

x

A B
Incoming Outgoing

vector vector

To test the optimality of the solution again compute  j  for all zero variables x x1 4,  and

x5 .

  1 1 1 3 5 4 0 2
3

4
15

41
15

    F
HG

I
KJc c yB , , , ,b g

  F
HG

I
KJ 3 10

3
16
15

11
15

 
F

HG
I
KJ 

3 50 16
15

45 34
15

      4 4
4

4
0 5 4 0 1

3
2

15
2

15
     F

HG
I
KJc c y

B , , , ,b g

              F
HG

I
KJ       F

HG
I
KJ 4 5 5 5

5
3

8
15

17
15

0 5 4 0 0 1
5

4
5

, , , , ,c c yB b g  = - 4 /5



68

Also 5 5 5
4
5

  c c ye

Since all the  j s'  are not less than or equal to zero, therefore the solution is not optimal.

Since 1  is maximum of the  j s' , it follows that, 1 1Yb g is the incoming vector..

Also      
x
Y

x
Y

YBr

r i

Bi

i
i

1 1
1 0 

L
N
MM

O
Q
PPmin ,


L
NM

O
QP

min ,
i

B By
Y

x
Y

1

11

3

31
 Y is negative21b g

 L
NM

O
QPi

min ,4 89
41

89
41

         r 3 .

i. e. 3 6 Yb g  is the outgoing vector and Y a31 31
41
15

   is the key element.

Again in order to bring Y1 in place of 3 6 Yb g  we make the following intermediate
table.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y2
8
3

2
3

1 0
1
3

0 0

Y3
14
15


4

15
0 1 

2
15

1
5

0

Y6
89
15

41
15

0 0 
2

15


4
5

1

Divide the key element by 
41
15

 to get 1 at this position, then subtract 
2
3

 times of the third

row from the first row and adding 
4

15
 times of the third row to the second row we have,
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xB Y1 Y2 Y3 Y4 Y5 Y6

Y2
50
41

0 1 0
15
41

8
41


10
41

Y3
62
41

0 0 1 
6
41

5
41

4
41

Y6
89
15

1 0 0 
2
41


12
41

15
41

The fourth simplex table in which 3 5 Yb g  is replaced by y1  is as follows.

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

3 1 1

Y2 5
50
41

0 1 0
15
41

8
41


10
41

Y3 4
62
41

0 0 1 
6
41

5
41

4
41

Y1 3
89
41

1 0 0 
2
41


12
41

15
41

z c xB B x j
89
41

50
41

62
41

0 0 0

   = 765/41 c j 3 5 4 0 0 0

 j x x x 
45
41


24
41


11
41

To test the optimality of the solution again compate  j  for all zero variables x x4 5,  and

x6 .

      4 4
1
4

0 5 4 3 15
41

5
41

2
41

45
41

     F
HG

I
KJ  c cB , , , ,b g

      5 5
1
5

0 5 4 3 8
41

5
41

12
41

24
41

    F
HG

I
KJ  c cB , , , ,b g

      6 6
1
6

0 5 4 3 10
41

4
41

15
41

11
41

    FHG
I
KJ  c cB , , , ,b g
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Since all the  j s'  for zero variables are negative so, this solution is optimal.

Hence    x x x1 2 3
89
41

50
41

62
41

  , ,

and       max.z 765
41

Computational Procedure for Simplex Method
Example

1 2Max z 3x 2x 

Subject to 1 2x x 4 

1 2x x 2  ,  1 2x ,x 0

Answer
Step 1

Convert the given LPP into a standar form.

1 2 3 4Max z 3x 2x 0x 0x   

Subject to 1 2 4x x x 2   , 1 2 3 4x ,x ,x ,x 0

Step 2
Construct starting simplex table. Variable which form identity matrix in starting simplex

table are basic variables cB represent cost of basic variables.

Basic cB   3 2 0 0

variable cost of

B.V. cB xB x1 x2 x3 x4

x3 0 4 1 1 0

x4 0 2 1 – 1 0 1

Step 3

Calculate j B j jc x c   

1 B 1 1c x c    2 B 2 2c x c   

            0 1 0 1 3                0 1 0 1 2   

     =  – 3        = – 2

3 4 0   
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Step 4 : Optimality Test

(i) If all j 0   the solution is optimal. Alterative optimal solutio will exist if any j

corresponding to nm basic xj is also zero.

(ii) If corresponding to any – ve j , all elements of the column xj are – ve or zero ( 0 ),
then the solution under test is unbounded.

(iii) If at least one j 0   then solution is not optimal and therefore proceed to improve the
solution in the next step.

Step 5
Choose incoming and outgoing variable.

Let  k jj
Min 0   

The correspoding variable xk is incoming varable.
Outgoing variable is decided by minimum ratio (component wise) rule.

If
Br Bi

kiikr ki

x xMin / x 0
x x

 
  

 

Then xBr is outgoing variable from the set of basic variables x3 and x4.

 k jj
Min  

Since

   jj
Min Min 3, 2,0,0 3     

The variable corresponding to 1 3    is x1. Therefore x1 is incoming variable and x1

becomes basic variable.

Consider component wise ratio of the values of basic variables i.e. xB and coefficient of
incoming variable x1 and take its Minimum.

 Bk
k 1k

x 4 2Min Min , 2
x 1 1

 
  

 

Corresponds to x4 and therefore x4 is outgoing variable.

Thus x1 is incoming and x4 is outgoing variable.
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cj 3 2 0 0 Min

B.V. cB xB x1 x2 x3 x4 Ratio

 x3 0 4 1 1 1 0
4 4
1


              x4 0 2 1 – 1 0 1
2  1 
1


j – 3  – 2 0 0

Step 6
In order to make x1 as basic variable perform elementary row operations to convert

column corresponding to variable x1 as unit vector. Here operation R1 – R2 will make column
corresponding to variable x1 as unit vector. The position 1 in the unit vector depends upon the
position of incoming variable in basic variables.

3 2 0 0

B.V. cB xB x1 x2 x3 x4

x3 0 2 0 2 1 – 1

x1 3 2 1 – 1 0 1

Repeat step 4, 5 and 6.

cj 3 2 0 0 Min

B.V. cB xB x1 x2 x3 x4 ratio

   x3 0 2 0 2 1 – 1
2  1 
2


      x1 3 2 1 – 1 0 1 ---

j  0 – 5 0 3

Step 4  :  2 0 

Therefore, variable x2 is incoming component wise ratio 
B

2

x
x  is {1, –}. Minimum ratio

corresponds to x3 and x3 is outgoing variable. Now make coumn corresponding to x2 as unit
vector.
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3 2 0 0 Min

B.V. cB xB x1 x2 x3 x4 ratio

x2 2 1 0 1
1
2

1
2



x1 3 3 1 0
1
2

1
2

j 0 0
3
2

1
2

Since j 0    j   the solution x2 = 1 and x1 = 3 is an optimal solution and optimal value.

   1 2Max z 3x 2x 3 3 2 1 11    

Example 2.9
Solve by simplex method the following L. P. problem.

Minimize       z x x x  1 2 33 2

Subject to  3 2 71 2 3x x x  

      2 4 121 2x x

      4 3 8 101 2 3x x x

      x x x1 2 3 0, , 

Solution :
First we convert the problem of minimization to maximization problem by taking objective

function z z'  .

max.          z z x x x'     1 2 33 2

Now the equations obtained by introducing slakc variables x x x4 5 6, ,  are as follows.

         3 2 71 2 3 4x x x x   

        2 4 0 121 2 3 5x x x x

        4 3 8 101 2 3 6x x x x

Taking x x x1 2 3 0    we get x x x4 5 67 12 10  , ,  which is the starting B. F. S.
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Starting simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1b g 2b g 3 1 2 3

x
Y

Bi

12

Y4 0 7 3 -1 2 1 0 0  7 neg.

Y5 0 12 -2 4 0 0 1 0 3min

Y6 0 10 -4 3 8 0 0 1
10
3

z c xB
1

8 x j 0 0 0 7 12 10

    = 0 c j -1 3 -2 0 0 0

 j -1 3 -2 x x x

       1 1 1 1 0 0 0 3 2 4 1        c c yB , , , ,b gb g
       2 2 2 3 0 0 0 1 4 3 3     c c yB , , , ,b gb g
       3 3 3 2 0 0 0 2 0 8 2      c c yB , , , ,b g b g

Since all the  j are not less than or equal to zero therefore the solution is not optimal.

2  is maximum.

Hence the incoming vector is 2 2 yb g  and by mini ratio rule outgoing vector is

2 5 yb g .
Therefore key element   y a22 22 4

In order to b ring 2 2 yb g in place of 2 5 yb g  the inter mediate table is as follows.

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 7 3 -1 2 1 0 0

Y5 12 -2 4 0 0 1 0

Y6 10 -4 3 8 0 0 1



75

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 10
5
2

0 2 1
1
4

0

Y2 3 
1
2

1 0 0
1
4

0

Y6 1 
5
2

0 8 0 
3
4

1

Second simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

2 1 3

x
Y

B

1

Y4 0 10
5
2

0 2 1
1
4

0 4 min

Y2 3 3 
1
2

1 0 0
1
4

0 -6 neg.

Y6 0 1 
5
2

0 8 0 
3
4

1 
2
5

neg

x j 0 3 0 10 0 1

c j -1 3 -2 0 0 0

 j
1
2

x -2 x 
3
4

x

A B

      1 1 1 1 0 3 0 5
2

1
2

5
2

1
2

     F
HG

I
KJ c c yB , , , ,b g

      3 3 3 2 0 3 0 2 0 8 2      c c yB , , , ,b gb g

      5 5 5 0 0 3 0 1
4

1
4

3 3
4

    F
HG

I
KJ c c yB , , , ,b g

Since all the  j  are not less than or equal to zero the solution is not optimal.
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Here 1
1
2

  is maximum.

Therefore y1  is the incoming, vector and by the minimal ratio rate we find that 1 4 yb g
as the outgoing vector.

Therefore key element  y11
5
2

.

In order to to bring y1  in place of 1  the inter mediate table is as follows

xB Y1 Y2 Y3 Y4 Y5 Y6

Y4 10
5
2

0 2 1
1
4

0

Y2 3 
1
2

1 0 0
1
4

0

Y6 1 
5
2

0 8 0 
3
4

1

xB Y1 Y2 Y3 Y4 Y5 Y6

Y1 4 1 0
4
5

2
5

1
10

0

Y2 5 0 1 1
1
5

3
10

0

Y6 11 0 0 13
5
2


1
2

1
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Third simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1 2 3

Y1 -1 4 1 0
4
5

2
5

1
10

0

Y2 3 5 0 1 1
1
2

3
10

0

Y6 0 11 0 0 13
5
2


1
2

1

z c xB B' x j 4 5 0 0 0 11

  = 11 c j -1 3 -2 0 0 0

 j x x 
21
5


11
10


41
40

x

3 3 3 2 1 3 0 4
5

113 21
5

      F
HG

I
KJ c c YB , , , ,b g

4 4 4 0 1 3 0 2
5

1
2

5
2

11
10

     F
HG

I
KJ  c c YB , , , ,b g

5 5 5 0 1 3 0 1
10

3
8

19
8

41
40

      F
HG

I
KJ c c YB , , , ,b g

Since all  j s'  for all non zao variables are negative so this solution is optimal.

Optimal solution is

 x x x1 2 34 5 0  , ,

and max.   z'11

  Hence min z 11

Example 2.10
Using simplex algorithm to solve the problem.

max.    z x x x  2 5 71 2 3

subject to    3 2 4 1001 2 3x x x  

     x x x1 2 34 2 100  
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     x x x1 2 33 100  

     x x x1 2 3 0, , 

Solution :

The equations obtained by introducing slack variables x x x4 5 6, ,  are as follows.

         3 2 4 1001 2 3 4x x x x   

x x x x1 2 3 54 2 100   

  x x x x1 2 3 63 100   

Take    x x x1 2 3 100  

Therefore starting B. F. S. is

x x x4 5 6100 100 100  , ,

Starting simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1 2 3 1 2 3

Y4 0 100 3 2 4 1 0 0 25 min

Y5 0 100 1 4 2 0 1 0 50

Y6 0 100 1 1 3 0 0 1
100

3

z c xB B' x j 0 0 0 100 100 100

   = 0 c j 2 5 7 0 0 0

 j 2 5 7 x x x

A B
in out

 1 1 1 2 0 0 0 3 11 2    c c yB , , , ,b gb g
 2 2 2 5 0 0 0 2 4 1 5    c c yB , , , ,b gb g
 3 3 3 7 0 7    c c yB

Since all  j  are not less than or equal to zero for zero variables, so the solution is not
optimal.
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Since 3 7  is maximum therefore 3 3 yb g  is the incoming vector..

By the min ratio rule

  min ,
x
y

yBi

i
i

3
3 0 100

4
25

RS|T|
UV|W|
  , for i = 1

Therefore 1 4 yb g  is the outgoing vector. Therefore the key element is y a13 13 4  . In

order to brings 1  in place of 3  we divide the first row by 4 and then subtract 2 and 3 times of
this row from the second and third rows respectively.

Thus the second simplex table is as follows.

B cB xB Y1 Y2 Y3 Y4 Y5 Y6 min ratio

1 2 6

x
y

B

2

Y3 7 25
3
4

1
2

1
1
4

0 0 50

Y5 0 50 
1
2

3 0 
1
2

1 0
50
3


Y6 0 25 
3
4


1
2

0 
3
4

0 1 -50 neg.

x j 0 0 25 0 50 25

c j 2 5 7 0 0 0

 j 
13
4

3
2

x 
7
4

x x

A B
incoming

vector

For above simplex table

1 1 1 2 7 0 0 3
4

1
2

5
4

2 21
4

     F
HG

I
KJ  c c yB , , , ,b g

1
13
4

 
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2 2 2 5 7 0 0 1
2

3 1
2

5 1
2

3
2

    F
HG

I
KJ   c c yB , , , ,b g

4 4 0 7 0 0 1
4

1
2

3
4

7
4

    F
HG

I
KJ  c c yB , , , ,b g

Since all  j  are not less than or equal to zero so the solution is not optimal.

Here 2
3
2

  is max.

Therefore y2  is incoming vector and by min ratio rule we find that 2 5 yb g  is the outgoing
vector. Key element is 3. Intermidiate table is :

xB Y1 Y2 Y3 Y4 Y5 Y6

Y3 25
3
4

1
2

1
1
4

0 0

Y5 50 
1
2

3 0 
1
2

1 0

Y6 25 
5
4


1
2

0 
3
4

0 1

The third simplex table is as follows.

B CB XB Y1 Y2 Y3 Y4 Y5 Y6 Min

Y3 7
50
3

5
6

0 1
1
3


1
6

0

Y2 5
50
3


1
6

1 0 
1
6

1
3

0

Y6 0
100

3


4
3

0 0 
5
6

1
6

1

x j 0
50
3

50
3

0 0
100

3

c j 2 5 7 0 0 0

 j -3 x x 
3
2


1
2

x
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1 1 1 7 5 0 5
6

1
6

4
3

3     F
HG

I
KJ C C Y zB , , , ,b g

4 4 4 0 7 5 0 1
3

1
6

1 3
2

     F
HG

I
KJ C C YB , , , ,b g

5 5 5 0 7 5 0 1
6

1
3

1
2

1
2

    FHG
I
KJ C C YB , , , ,b g

Since all  j  for zero variables are negative, this solution is optimal.

Optimal solution is x x x1 2 30 50
3

50
3

  , ,  and Max. z200 .

Complete solution with all computational steps is conveniently represented in the following
example.

Example :

Solve 1 2Max z 7x 5x 

Subject to 1 2x 2x 6  , 1 24x 3x 12  , 1 2x ,x 0

Solution :

1 2Max z 7x 5x 

Subject to 1 2 3x 2x x 6   , 1 2 3 44x 3x 0x x 12    , 1 2 3 4x ,x ,x ,x 0

cj 7 5 0 0 Min

B.V. cB xB x1 x2 x3 x4 ratio 
B

i

x
x

x3 0 3 1 2 1 0 6

  x4 0 12 4 3 0 1 3

j – 7  – 5 0 0

x3 0 3 0
5
4

1
1
4



x1 7 3 1
3
4

0
1
4

j   0
1
4

 0
7
4
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Since j 0  j    the solution is optimal.

Solution :
x1 = 3, x2 = 0 and Max z = 7(3) + 5(0) = 21.

Artificial Variable Technique
If starting simplex table do not contain identity matrix, we introduce new type of variables

caled artificia variables. These variables are fictitious and donot have any physical meaning.
This is only a device to introduce identity matrix in starting simplex table and to get basic
feasible solution so that simplex method may be adopted. Artificial variables are eliminated
from the simplex table as and when they become zero.

Two Phase Simplex Method
The process of eliminating artificial variables is performed in phase I and phase II is

used to get an optimal solution.

Computational Procedure of Two Phase Simplex Method
Phase I

In this phase the simplex method is applied to LPP with artificial variables leading to a
final simplex table containing a bsic feasible solution (BFS) to the original problem.

Step 1
Assign a cost – 1 to each artificial variable and cost 0 to all other variables.

Step 2
Solve by simplex method until either of three possibilities do arise.

(i) If Max z* < 0, given original problem does not have any feasible solution.

(ii) If Max z* = 0 and atleast one artificial variable appears in the optimal basis (basic
variable in last simplex table) at zero level then proceed to Phase II.

(iii) Ig Max z* = 0 and no artificial variable appears in the optimal basis proceed to Phase II.

Phase II
Assign the actual cost to the variables in objective function and zero cost to every artificial

variable that appears in the basis. This new objective function is now maximized by simplex
method with last simplex table of phase I as starting simplex table with actual cost values.

Example 1
Solve the following problem

1 2Max z x x 

Subject to 1 22x x 4 

1 2x 7x 7  ,  1 2x ,x 0
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Solution :
Convert the given problem into standard LPP.

1 2Max z x x  

s.t. 1 2 32x x x 4   , 1 2 4x 7x x 7  

i.e.

1

2

3

4

x
x2 1 1 0 4
x1 7 0 1 7
x

 
             
 
 

Since coefficient matrix donot contain identity matrix, we have to solve this problem by
two phase method by introducing artificial variables.

Phase I 1 2Max z 1a 1a   

Subject to 1 2 3 12x x x a 4   

1 2 4 1x 7x x a 7    , 1 2 3 4 1 2x ,x ,x ,x ,a ,a 0

0 0 0 0 –1 –1 Min

B.V. cB xB x1 x2 x3 x4 a1 a2 Rato

a1 – 1 4 2 1 – 1 0 1 0 4

  a2 – 1 7 1 7 0 – 1 0 1 1

j – 3 – 8 1 1 0 0

  a1 – 1 3
13
7

0 – 1
1
7

1
1
7


21
13

x2 0 1
1
7

1 0
1
7

 0
8
7

7

13  
7

  0 1
1
7

 0
8
7

x1 0
21
13

1 0
7

13


1
13

7
13

1
13



x2 0
10
13

0 1
1

13
2

13


1
13


2

13

0 0 0 0 0 1
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Since j 0  j   , an optimum basic feasible solution to the auxiliary LPP has been
attained.

1
21x
13

 ,  2
10x
13

 ,  3 4 1 2x x a a 0    .

By step 2 (iii) proceed to Phase II.

Phse II
Remove column of a1 and a2 from last simplex table. Starting simplex table will be last

simplex table of phase I. Whereas objective function is a function given in original problem.

1 2Max z x x  

cj – 1 – 1 0 0

B.V. cB xB x1 x2 x3 x4

x1 – 1
21
13

1 0
7

13


1
13

x2 – 1
10
13

0 1
1

13
2

13


j  0 0
6

13
1

13

Since j 0  j   , an optimum BFS has been attained.

1
23x
13

 ,  2
10x
13



  1 2Min z x x 

23 10 33
13 13 13

  

Example 2

1 2 3Max z x 2x 3x   

Subject to 1 2 32x x 3x 2   

1 2 32x 3x 4x 1   ,  1 2 3x ,x ,x 0
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Solution :
Though constraints are in the form of equations coefficient matrix do not contain identity

matrix and therefore one has to introduce artificial variables and solve by two phase simplex
method.

Phase I

1 2Max z a a   

s.t. 1 2 3 12x x 3x a 2    

1 2 3 22x 3x 4x a 1    ,  1 2 3 1 2x ,x ,x ,a ,a 0

cj 0 0 0 – 1 – 1 Min

B.V. cB xB x1 x2 x3 a1 a2 ratio

     a1 – 1 2 – 2 1 3 1 0
2
3

  a2 – 1 1 2 3 4 0 1
1
4

j 0 – 4 – 7  0 0

    a1 – 1
5
4

7
2


5
4

 0 1
3
4



    x3 0
1
4

1
2

3
4

1 0
1
4

7
2

5
4

0 0
7
4

Since all j 0  , an optimum BFS to the LPP has been attained.

But 1 2
5Max z a a 0
4

      

Therefore (by step 2(i) of phase I) original problem does not possess any feasible solution.
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Alternatively example 1 can be solved as follows.

Example 2.11
Solve the following L. P. problem

Min.    z x x 1 2

subject to   2 41 2x x 

  x x1 27 7  ,     x x1 2 0, 

Solution :
First we convert the problem of minimization to the maximization problem by taking the

objective function z z'   i. e.

Max. z z x x'    1 2

Introduction of surplus variables x3  and x4  in the given inequalities yields.

       2 41 2 3x x x  

       x x x1 2 47 7  

Here we can not get the starting B. F. S. so we introduce the artificial variables (positive)
x5  and x6 .

The above equations may be written as

2 41 2 3 5x x x x   

 x x x x1 2 4 67 7   

The problem will be solved in two phases.

Phase : 1
This phase consists of the removal of artificial variables.

Taking x x x x1 2 3 40 0   ,  we get x5 4  and x6 7 .

We construct the first table as follows.

Table 1

xB Y1 Y2 Y3 Y4 A1 1( )   A2 2( )

A1 4 2 1 -1 0 1    0

A2 7 1 7 0 -1 0    1

x j 0 0 0 0 4    7

A    B
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First we shall remove the artificial variable vector (columns) A1  and A2  from the basis
matrix. In place of artificial variable vector the entering vector should be so chosen that the
revised solution is non negative (B. F.) solution.

We can remove A2  and introduce y2  in its place in the basic matrix. For this we divide
the second row by 7 and then subtract it from the first row. Thus we get the following table.

It maybe seen that if y y y1 3 4, ,  is entered in place of A2  then the revised solution is not

non negative. So we can not enter either of them, in place of A2 . Since artificial variable x6

becomes zero, we forget about A2  for ever and will not consider it in any other table.

xB Y1 Y2 Y3 Y4 A1 A
2

2b g 1b g

A1 3
13
7

0 -1
1
7

1  
1
7

Y2 1
1
7

1 0 
1
7

0
1
7

x j 0 1 0 0 3 0

A
Now we proceed to remove A1  and introduce y1  in its place in basic matrix. For this we

mutiply first row by 
7

13
 and subtract 

1
7

 times of this new row from the second row. Thus we get

the following table.

Table 2

xB Y1 Y2 Y3 Y4 A1

1b g 2b g

y1
21
13

1 0 
7

13
1

13
7

13

y2
10
13

0 1
1

13


14
91


1

13

x j
21
13

10
13

0 0 0

Since the artificial variable x5  becomes zero we forget about A1  and will not consider it
again.
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Thus we get the following solution in phase (1)

  x x x x1 2 3 4
21
13

10
13

0 0   , , ,

Which is the B. F. S. with which we proceed to get the optimal solution by simplex
method.

Phase (II)
The starting simplex table

B cB xB Y1 Y2 Y3 Y4 Min. ratio

1b g 2b g

Y1 -1
21
13

1 0 
7

13
1

13

Y2 -1
10
13

0 1
1

13


14
91

z c xB B' x j
21
13

10
13

0 0

    
31
13

c j - 1 -1 0 0

 j x x 
6

13


7
91

3 3 3 0 1 1 7
13

1
13

6
13

      FHG
I
KJ  c c yB , ,b g

4 4 4 0 1 1 1
13

14
91

7
91

      F
HG

I
KJ  c c yB , ,b g

Since  j  s for all zero variables are negative so the solution is optimal.

Therefore the optimal solution is

 x x1 2
21
13

10
13

 ,  and

       Min. z = - max. z' 
31
13
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Example 2.12
Solve the following L. P. Problem

Max.    z x x x x   1 2 3 42 3

Subject to         x x x1 2 32 3 15  

 2 5 201 2 3x x x  

         x x x x1 2 3 42 10   

      x x x x1 2 3 4 0, , , 

Solution :
In order to get an identity matrix we need two more columns of the unit matrix as one

column of unit matrix (coeff. of x4 ) is present in the constraints.

Thus we need only two artificial variables in the first two contraints. Introducing the
artificial variables x5  and x6 we have,

         x x x x x1 2 3 4 52 3 0 15    .

         2 5 0 201 2 3 4 6x x x x x    .

         x x x x1 2 3 42 10   

Phase (1)

Taking x x x1 2 3 0    we get x x x4 5 610 15 20  , , .

First table

xB Y1 Y2 Y3 Y4 A1 A2

3b g 1b g 2b g
A1 15 1 2 3 0 1 0

A2 20 2 1 5 0 0 1 

Y4 10 1 2 1 1 0 0

x j 0 0 0 10 15 20

A B
First we remove the artificial variable vector A2  and introduce y3  in its place.

For this we divide the second row by 5 and subtract it 3 and one times of it from the first
and third rows respectively.
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Thus we get the following table.

Second Table

xB Y1 Y2 Y3 Y4 A1 A2

3b g 1b g

A1 3 
1
5

7
5

0 0 1  
3
5

Y3 4
2
5

1
5

1 0 0
1
5

Y4 6
3
5

9
5

0 1 0 
1
5

x j 0 0 4 6 3 0

A
Now the artificial variable x6 0  so we shall not consider it again. Again we remove the

artificial variable vector A1  and introduce y2  in its place. For this we multiply first row by 
5
7

 and

then subtract its 
1
5

 and 
9
5

 times from the second and third rows.

Thus we get the following table.

xB Y1 Y2 Y3 Y4 A1

1b g 2b g 3b g

Y2
15
7


1
7

1 0 0
5
7

Y3
25
7

3
7

0 1 0 
1
7

Y4
15
7

6
7

0 0 1 
9
7

x j 0
15
7

25
7

15
7

0

Here the artifical variable x5 0 . We shall not consider it in the other table.
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Thus we get the following B. F. S. with which we can proceed, for the optimal solution by
simplex method.

     x x x x1 2 3 40 15
7

25
7

15
7

   , , ,

Phase (II)
The starting simplex table is as follows.

B cB xB Y1 Y2 Y3 Y4 min ratio

1 2 3

x
y

B

1

Y2 2
15
7


1
7

1 0 0 - 14 (neg.)

Y3 3
25
7

3
7

0 1 0
25
3

Y4 - 1
15
7

6
7

0 0 1
5
2

(min)

x j 0
15
7

25
7

15
7

c j 1 2 3 -1

 j
6
7

x x x

A B

1 1 1 1 2 3 1 1
7

3
7

6
7

6
7

     FHG
I
KJ c c YB , , , ,b g

Since all  j  are not less than or equal to zero so the solution is not optimal.

Here y1  is the incoming vector and by minimum ratio rule we find that y4  is the outgoing
vector.

Therefore key element y31
6
7

 .

In order to bring y1  in place of y4  multiply third row by 
7
6

 and then add its s 
1
7

times in

first row and subtract 
3
7

 times from the second row..
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The second simplex table is as follows.

B cB xB Y1 Y2 Y3 Y4 min ratio

3 1 2

Y2 2
5
2

0 1 0
1
6

Y3 3
5
2

0 0 1 
1
2

Y1 1
5
2

1 0 0
7
6

z c xB B x j
5
2

5
2

5
2

0

    = 15 c j 1 2 3 -1

 j x x x -1

4 4 4 1 2 3 1 1
6

1
2

7
6

1    F
HG

I
KJ  c c yB , , , ,b g

Since 4  for zero variable is negative so the solution is optimal.

Optimal solution is

 x x x1 2 3
5
2

5
2

5
2

  , ,  and max.z15 .

Example 2.13
Using simplex algorithm solve the L. P. problem

Min. z x x x  4 8 31 2 3

Subject to x x1 2 2 

2 51 3x x 

x x x1 2 3 0, , 

Solution :

First we convert the problem of minimization to maximization problem by taking z z'  .

     max. z z x x x'     4 8 31 2 3
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Introducing the surplus variables x x4 5,  the equations obtained are

 x x x x1 2 3 40 2   .

           2 0 51 2 3 5x x x x   

The columns of x2 and x3  form a unit matrix. Therefore there is no need to introduce
the artificial variables.

Taking x x x1 4 50 0 0  , ,  we have

x x2 32 5 ,  as starting B. F. S.

Starting simplex table

B cB xB Y1 Y2 Y3 Y4 Y5 min ratio

1b g 1b g 2b g 4b g 5b g x
y

B

1

Y2 - 8 2 1 1 0 -1 0 2 min 

Y3 - 3 5 2 0 1 0 -1
5
2

x j 0 2 5 0 0

c j -4 -8 -3 0 0

 j 10 x x -8 -3

A B

1 1 1 4 8 3 1 2 10       c c yB , ,b gb g
4 4 4 0 8 3 1 0 8        c c yB , ,b gb g
5 5 5 0 8 3 0 1 3        c c yB , ,b gb g

Since all  j  s are not less than or equal to zero so the solution is not optimal.

    Max j.  10 1

 Entering vector is 1 1 yb g  and by minimum ratio rule we find that outgoing vector is

1 2 yb g .

Therefore key element is y11 1 .
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In order to bring 1  in place of 1  we subtract 2 times of the first row from the second
row.

Second simplex table is

B cB xB Y1 Y2 Y3 Y4 Y5 min ratio

1b g 2b g x
y

B

4

Y1 -4 2 1 1 0 -1 0 -2 neg.

Y3 - 3 1 0 -2 1 2 -1
1
2

 min 

x j 2 0 1 0 0

c j - 4 - 8 - 3 0 0

 j x - 10 x 2 -3

B A

2 2 2 8 4 3 1 2 10         c c yB , ,b gb g
  4 4 4 0 4 3 1 2 2       c c yB , ,b g b g
   5 5 5 0 4 3 0 1 3        c c yB , ,b gb g

Since all  j  s are not less than or equal to zero this solution is not optimal.

Since Max  j  4 , the incoming vector is y4  and by the minimum ratio rule we find that

the outgoing vector is y3 2b g .
Key element = 2

In order to bring y4  in place of y3  we divide the second row by 2 and then add it to the
first row.
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Third simplex table is

B cB xB Y1 Y2 Y3 Y4 Y5 min ratio

1b g 2b g

Y1 - 4
5
2

1 0
1
2

0 
1
2

Y4 0
1
2

0 -1
1
2

1 
1
2

x j
5
2

0 0
1
2

0

c j - 4 - 8 - 3 0 0

 j x - 8 - 1 x - 2

2 2 2 8 4 0 0 1 8        c c yB , ,b g b g

3 3 3 3 4 0 1
2

1
2

1      F
HG

I
KJ  c c yB , ,b g

5 5 5 0 4 0 1
2

1
2

2      F
HG

I
KJ c c yB , ,b g

Since all  j s' are negative, this solution is optimal.

So the optimal solution is

 x x x1 2 3
5
2

0 0  , ,

and  min max. 'z z  b g 10

   EXERCISES  

1) Solve the L. P. Problem

Max. z x x x  3 5 41 2 3

Subject to 2 3 81 2x x 

2 5 102 3x x 

3 2 4 151 2 3x x x  

and x x x1 2 3 0, , 
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2) Solve by simplex method the following L. P. Problem

Minimize z x x x  1 2 33 2

Subject to 3 2 71 2 3x x x  

  x x1 24 12

   4 3 8 161 2 3x x x

x x x1 2 3 0, , 

3) Solve the following L. P. Problem

Minimize z x x 1 2

Subject to 2 41 2x x 

x x1 27 7 

x x1 2 0

4) Using the simplex method to solve the following L. P. Problem

Max. z x x x x   1 2 3 42 3

Subject to x x x1 2 32 3 15  

2 5 201 2 3x x x  

x x x x1 2 32 10   

x x x x1 2 3 3 0, , , 

5) Using the simplex method solve the L. P. Problem

Min. z x x x  4 8 31 2 3

Subject to x x1 2 2 

2 51 3x x 

x x x1 2 3 0, , 

6) Using the simplex method, solve the  following.

Max. z x x x  2 5 71 2 3

Subject to 3 2 4 1001 2 3x x x  

x x x1 2 34 2 100  

x x x1 2 33 100  

x x x1 2 3 0, , 
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7) Solve the following L. P. Problem

Max. z x x x x   
3
4

150 1
501 2 3 4

Subject to
x x x x1

2 3 44
60 1

25
4 0   

x x x x1
2 3 42

90 1
50

3 0   

and x x x x1 2 3 4 0, , , 

8) Use the simplex method to solve the following

Max. z x x x  30 23 291 2 3

Subject to, 6 5 3 261 2 3x x x  

4 2 5 71 2 3x x x  

and x x x1 2 3 0, , 

Also read the solution of the dual of the above problem from the final table.

9) Use two phase simplex method to solve.

Miximize z x x x x   3 21 2 3 4

Subject to 4 5 3 51 2 3 4x x x x   

2 3 4 5 71 2 3 4x x x x   

x cj j 0 1 2 3 4, , , ,

10) Solve the following L. P. P.

Maximize z x x 3 41 2 ,

Subject to x x x x1 2 1 24 8 2 4   ,

x x1 2 0, 

11) Solve the following L. P. P.

Maximize z x x 2 1 2

Subject to 4 3 121 2x x 

4 81 2x x 

4 81 2x x 

x x1 2 0, 
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12) Solve the following L. P. P.

Max. z x x 5 31 2

Subject to x x1 2 2  ,

5 2 101 2x x  ,

3 8 121 2x x 

x x1 20 0 ,

13) Solve by L. P. P.

Max. z x x x  22 30 251 2 3

subject to 2 2 1001 2x x 

2 1001 2 3x x x  

x x x1 2 32 2 100   ,

x x x1 2 3 0, , 

14) Solve the L. P. P.

Max. z x x x  5 2 31 2 3

subject to 2 2 21 2 3x x x   ,

3 4 31 2x x  ,

x x2 33 5 

x x x1 2 3 0, , 

15) Solve the L. P. P.

Max. z x x x x   1 2 3 415 2 5

Subject to 3 2 61 2 3 4x x x x   

2 5 41 2 6 4x x x x   

2 6 8 4 01 2 3 4x x x x   

x x x x1 2 3 43 4 3 0   

x x x x1 2 3 4 0, , , 


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3.0 INTRODUCTION
We have considered the L. P. Problems in which by minimum ratio rule we get only one

vector to be deleted from the basis. But there are the L. P. Problems where we get more than
one vector which may be deleted from the basis.

Thus if min ,
x
y

yBi

ik
ik 

RS|T|
UV|W|

0 (k  is incoming vector)

occurs at i i i 1 2, ,..  is

i. e. minimum occurs for more than one value of i then the problem is to select the vector
to be deleted from the basis (If we choose one vector say  i (i is one of i i is1 2, ,..., ) and delete it
from the basis then the next solution may be a degenerate B. F. S. Such problem is called
problem of degeneracy.

It is observed that when the simplex method is applied to a degenerate B. F. S. to get a
new B. F. S., the value of the objective function may remain unchanged i. e. the value of the
objective function is not improved.

The procedure for such problems of degeneracy is as follows.

Let i
Bi

ik
ik

X
y

ymin ,
d i


R
S|
T|

U
V|
W|

0  occur at i i i is 1 2, ,...,

where k ky is the incoming vector..

Let I i i is1 1 2 , ,...,l q
1) Renumber the columns of the table starting with the columns in the basis. Let

y y1 2, ,...  etc. be the new numbers of columns. Let y t  be the new number of

entering vector yk  i. e. y yk t .

2) Calculate min
y
y

i Ii

ik

1
1

RS|T|
UV|W|
  . If minimum is unique then delete the corresponding

vector from the basis.

DEGENERACY,  DUALITY  AND
REVISED  SIMPLEX  METHOD

UNIT

03
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If minimum is not unique then proceed to the next step.

3) Calculate mini
y
y

i Ii

ik

2
2

RS|T|
UV|W|
   where I2  is the set of all those values of i I 1 , for

which there is a tie in I2 . Clearly I I2 1 .

In this case if minimum is unique then correspondng vector is deleted from the
basis. If in this case also, minimum is not unique proceed to the next step.

4) Compute mini
y
y

i Ii

ik

3
3

RS|T|
UV|W|
   where I3  is the set of those values of i I 2  for which

there is a tie in (3) clearly I I I3 2 1  .

Proceeding in this way we can get a unique minimum value of i i. e. the unique
vector to be deleted from the basis.

Example 3.1
Solve the L. P. Problem

Max.    z x x x x   
3
4

150 1
501 2 3 4

Subject to       
1
4

60 1
25

9 01 2 3 4x x x x   

      
1
2

90 1
50

3 01 2 3 4x x x x   

      x3 1

         and x x x x1 2 3 4 0, , , 

Solution :

Introducing the slack variables in the constraints we get the following equalities

1
4

60 1
25

9 01 2 3 4 5x x x x x    

1
2

90 1
50

3 01 2 3 4 6x x x x x    

x x3 7 1 

Taking x x x x1 2 3 40 0 0 0   , , ,  we have

       x x x5 6 70 0 1  , ,
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Which is the starting B. F. S.

Starting simplex table

B cB xB y4 y5 y6 y7 y1 y2 y3 Min ratio

y1 y2 y3 y4 y5 1( ) y6 2( ) y7 3( )
x
y

B

1

y5 0 0
1
4

-60 
1

25
9 1 0 0 0

y6 0 0
1
2

- 90 
1

50
3 0 1 0 0

y7 0 1 0 0 1 0 0 0 1 -

z c xB B x j 0 0 0 0 0 0 1

   = 0 c j
3
4

-150
1

50
-6 0 0 0

 j
3
4

-150
1

50
-6 0 0 x

A B

1 1 1
3
4

0 0 0 1
4

1
2

0 3
4

    F
HG

I
KJ c c yB , , , ,b g

2 2 2 150 0 0 0 60 90 0 150        c c yB , , , ,b gb g

3 3 3
1

50
0 0 0 1

25
1

50
1 1

50
     F

HG
I
KJ c c yB , , , ,b g

4 4 4 6 0 0 0 9 3 0 6      c c yB , , , ,b gb g
Since all  j  are not less than as equal to zero therefore the solution is not optimal

          and max j  
3
4 1

Therefore incoming, vector is y1  and

i
B i

i l
i j

x
y

ymin , 
RS|T|

UV|W|
0  is not unique.
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This minimum is o and occurs for i = 1 and i = 2.

This problem is a problem of degeneracy.

Therefore to select the vector to be deleted from the basic we proceed as follows.

1) First of all we renumber the columns of above table as follows.

Let y y y y y y1 5 2 6 3 7  , ,

y y y y y y y y4 1 5 2 6 3 7 4    , ,

2) Since minimum ratio occurs for

i = 1 and i = 2 it follows that

I1 1 2 ,l q
Incoming vector is y y k1 4 4 ,  for i = 1, 2

i I
i

i

y
y

y
y

y
y

RS|T|
UV|W|


RST
UVW,

min min ,1

4

11

14

21

24

 F
HG

I
KJ

F
HG

I
KJ

R
S
||

T
||

U
V
||

W
||
min , min ,i 1

1
4

0
1
2

4 0l q

 0 21

24

y
y

This minimum is unique and occur for i = 2. Therefore the vector to be deleted (i. e. the

outgoing vector) from the basis is y y2 2 6 b g .

Therefore key element is y21
1
2

 .

Therefore in older to bring y1  in place of y6  we divide the second row by 
1
2

 and then

subtract 
1
4

 times of this row from the first row..
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Second simple table

B cB xB y1 y2 y3 y4 y5 y6 y7 Min ratio

2b g 1b g 3b g x
y

B

3

y5 0 0 0 -15 
3

100
15
2

1 
1
2

0 --

y1
3
4

0 1 -180 
1

25
6 0 2 0 --

y7 0 1 0 0 1 0 0 0 1 1 (Min)

x j 0 0 0 0 0 0 1

c j
3
4

-150
1

50
-6 0 0 0

 j 0 -15
1

20


21
2

0 
3
2

x

A B
Incoming Outgoing

Vector Vector

2 2 2 150 0 3
4

0 15 180 0 15     FHG
I
KJ    c c yB , , , ,b g

3 3 3
1

50
0 3

4
0 3

100
1

25
1 1

20
     FHG

I
KJ  F
HG

I
KJ c c yB , , , ,

4 4 4 6 0 3
4

0 15
2

6 0 21
2

    FHG
I
KJ
F
HG

I
KJ  c c yB , , , ,

6 6 6
3
2

   c c yB

Since all  j  are not less than or equal to zero therefore the solution is not optimal.

     Max.  j  
1

20 3
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Therefore incoming vector is 
1
3

 and by minimum ratio rule we find that the outgoing

vector is y7 2b g .

(In considering 
x
y

B

B
 we need not consider the ratios 

x
y

B1

13
 and 

x
y

B2

23
 since y13

3
100

   and

y23
1

25
  are both negative.)

Therefore key element y33 1 .

In order to bring y3  in place at y7 3b g  we add 
3

100
 and 

1
25

 times of the third row in the

first and second rows respatively.

The third simplex table

B cB xB y1 y2 y3 y4 y5 y6 y7

2b g 3b g 1b g

y5 0
3

100
0 -15 0

15
2

1 
1
2

3
100

y1
3
4

1
25

1 -180 0 6 0 2
1

25

y3             
1

50
1 0 0 1 0 0 0 1

x j
1

25
0 1 0

3
100

0 0

c j
3
4

-150
1

50
-6 0 0 0

 j x -15 x 
21
2

x 
3
2


1

20

2 2 2 150 0 3
4

1
50

15 180 0 15     FHG
I
KJ    c c yB , , , ,b g

4 4 4 6 0 3
4

1
50

15
2

6 0 21
2

     FHG
I
KJ
F
HG

I
KJ  c c yB , , , ,
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6 6 6 0 0 3
4

1
50

1
2

2 0 3
2

    FHG
I
KJ FHG

I
KJ  c c yB , , , ,

7 7 7 0 0 3
4

1
50

3
100

1
25

1 1
20

    FHG
I
KJ
F
HG

I
KJ c c yB , , , ,

Since all  j 0  thesefore the solution is optimal and the optimal solution is

 x x x x1 2 3 4
1

25
0 1 0   , , ,

and        Max z. 
1

20

DUALITY
Introduction

Every L. P. Problem is associated with another L. P. Problem called the dual of the
problem. Consider a L. P. Problem

Max. z c x c x c xn n   1 1 2 2 ...

Subject to a x a x a x bn n11 1 12 2 1 1   ...

a x a x a x bn n21 1 22 2 2 2   ...

...............................................

a x a x a x bm m m n n m1 1 2 2   ...      .......... (i)

and x x xn1 2 0, ,....,  ,

where the signs of all parameters a, b, c are orbitary.

Then the dual of this problem is defined as

Mini z b w b w b wm m
    1 1 2 2 ...

Subject to a w a w a w cm m11 1 21 2 1 1   ...

a w a w a w cm m12 1 22 2 2 2   ...

...................................................

and a w a w a w cn n mn n n1 1 2 2   ...

and w w wm1 2 0, ,..., 

where w w wm1 2, ,...,  are called the dual variables.
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Also problem (1) is called the primal problem.

In a matrix notation a L. P. Problem is

Max. z c x

Subject to A x b

and x0

and its dual is defined as

Min z b w  '

Subject to A w c' '

and w 0

Where w

w
w

wm



L

N

MMMMM

O

Q

PPPPP

1

2

....

and A b c', ', '  are the transposes of the matrices A b,  and c  respectively..

It is obvious from the definition that the dual of the dual is the primal itself.

It is important to note that we can write the dual of a problem if all its constraints involve
the sign  .

If  the constraint has a sign   then multiply both the sides by - 1 and makes the sign  .

If the constraint has a sign = for ex. a x bi j j i
j

n





1
   ........... (3)

then we can replace it by two constraints involving two inequalities i. e.

 a x bi j j i
j

n





1
   ........... (4)

  a x bi j j i
j

n





1
   ........... (5)

5) may be written as

             

a x bi j j i
j

n

1
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Standard form of the primal
The L. P. Problem is in standard primal form if

1) It is a problem of maximization and

2) All the constraints involve the sign  .

Relationship between two problems (Primal and dual)
The two problems (primal and the dual) are related to each other in the following manner.

1) If one is a maximization problem then the other is a minimization problem.

2) If one of them has a finite optimal solution then the other problem also has a finite
optimal solution.

3) From the final simplex table of one problem the solution of the other an be read

from the  j  row below the columns of slack and surplus variables as follows.

The  j j j j j B js c z c c y'    d h  with the sign changed for the slack vectors in
the optimal (final) simplex table for the primal are the values of the corresponding
optimal dual variables in the final simplex table for the dual problem.

4) The optimal values of the objective functions in both the problems are the same
that is Max Z Min Zx w.  .

5) If one problem has an unbounded solution then other has no feasible solution.

Example 3.2
Write the dual of the problem

Mini. z x x 3 1 2

Subject to 2 3 21 2x x 

x x1 2 1 

and x x1 2 0, 

Solution :

First we write the problem in standard primal form as follows.

Max. z x x'  3 1 2  where z z' 

Such that    2 3 21 2x x

and    x x1 2 1

and x x1 2 0, 

which may be written as
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Max z
x
x

' ,  
L
NM

O
QP3 1 1

2

Such that 
 
 
L
NM

O
QP
L
NM

O
QP



L
NM

O
QP

2 3
1 1

2
1

1

2

x
x

and x x1 2 0, 

The dual of the given problem is given by

Mini. z
w
w

   
L
NM

O
QP2 1 1

2
,

such that 
 
 
L
NM

O
QP
L
NM

O
QP



L
NM

O
QP

2 1
3 1

3
1

1

2

w
w

and w w1 2 0, 

or mini. 1 2z 2 w w  

such that    2 31 2w w

   3 11 2w w

Example 3.3
Write the dual of the problem

miz. z x x 2 52 3

such that x x1 2 2 

2 6 61 2 3x x x  

x x x1 2 33 4  

and x x x1 2 3 0, ,  .

Solution :

First we write the given problem in standard primal form as follows.

1) The objective function is changed from minimization to maximization.

i. e. Max z x x'  2 52 3  where z z' 

2) The sign of first constraint is changed to   by multiplying both sides by - 1 and

3) The third constraint is replaced by two constraints.

x x x1 2 33 4  



109

and x x x1 2 33 4  

The second may be written as

    x x x1 2 33 4

Thus the given problem in standard primal form is as follows.

Max. z x x x'  0 2 51 2 3

subject to   x x1 2 2

2 6 61 2 3x x x  

x x x1 2 33 4  

    x x x1 2 33 4

and x x x1 2 3 0, , 

i. e. Max z
x
x
x

. ' , ,  
L

N
MMM

O

Q
PPP

0 2 5
1

2

3

,

such that 

 


 

L

N

MMMM

O

Q

PPPP

L

N
MMM

O

Q
PPP




L

N

MMMM

O

Q

PPPP

1 1 0
2 1 6
1 1 3
1 1 3

2
6
4

4

1

2

3

x
x
x

and x x x x1 2 3 4 0, , , 

Therefore the dual of the given problem is given by

Miniz

w
w
w
w

   

L

N

MMMMM

O

Q

PPPPP
2 6 4 4

1

2

3

4

, , ,

such that 

 
 



L

N
MMM

O

Q
PPP

L

N

MMMMM

O

Q

PPPPP
 



L

N
MMM

O

Q
PPP

1 2 1 1
1 1 1 1
0 6 3 3

0
2
5

1

2

3

4

w
w
w
w

and w w w w1 2 3 4 0, , , 
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or Min. z w w w w    2 6 4 41 2 3 4

such that     w w w w1 2 3 42 0

     w w w w1 2 3 4 2

0 6 3 3 51 2 3 4w w w w    

and w w w w1 2 3 4 0, , , 

Example 3.4
Apply the simplex method to solve the following

Max. z x x x  30 23 291 2 3

s. t. 6 5 3 261 2 3x x x  

4 2 5 71 2 3x x x  

and x x x1 2 3 0, ,      .......... (1)

Also read the solution of the dual of the above problem from the final table.

Solution :

Introducing the slack variables x4  and x5 ,we have

6 5 3 261 2 3 4x x x x   

4 2 5 71 2 3 5x x x x   

Taking x x x1 2 3 0    we have x4 26  and x5 7 ,

which is the starting B. F. S.
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Starting Simplex Table

B cB xB y1 y2 y3 y4 y5 Min. Ratio. 
X
y

B

1

1b g 2b g 3b g 1b g 2b g

y4 0 26 6 5 3 1 0
13
3

y5 0 7 4 2 5 0 1
7
4
Min

z c xB B x j 0 0 0 26 7

  = 0 c j 30 23 29 0 0

 j 30 23 29 x x

A B
Incoming Outgoing

1 1 1 30 0 0 0 4 30    c c yB , ,b g b g
Similarly  2 323 29 ,

Since all  j  are not less than or equal to zero therefore the solution is not optimal.

Max.  j  30 1

Hence 1 1 yb g  is incoming vector and by minimum ratio rule we find that y5 2b g  is
outgoing vector.

Hence the key element y a21 21 4  .
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Second simplex table

B cB xB y1 y2 y3 y4 y5 Min. Ratio. 
X
y

B

2

2b g 1b g

y4 0
31
2

0 2 
9
2

1 
3
2

31
4

y1 30
7
4

1
1
2

5
4

0
1
4

7
8


z c xB B x j
7
4

0 0
31
2

0

  
105

2
c j 30 23 29 0 0

 j x 8 
17
2

x 
15
2

B A

2 2 2 23 0 30 2 1
2

8    F
HG

I
KJ c c yB , ,b g

3 3 3 29 0 30 9
2

5
4

17
2

    FHG
I
KJ  c c yB , ,b g

= 29 - 37.5 = - 8.5

5 5 5 0 30 3
2

1
4

15
2

   FHG
I
KJ  c c yB , ,b g

Since all  j  are not less than or equal to zero so the solution is not optimal. Here y2  is

insuming vector and y1  is out going vector..

The key element is y22
1
2


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Final simplex table

B cB xB y1 y2 y3 y4 y5 Min. Ratio.

y4 0
17
2

- 4 0 
19
2

1 
5
2

y2 23
7
2

2 1
5
2

0
1
2

z c xB B x j 0
7
2

0
17
2

0

  
161
2

c j 30 23 29 0 0

 j 16 x 
57
2

x 
23
2

1 1 1 30 0 23 4 2 16      c c yB , ,b gb g

3 3 3 29 0 23 19
2

5
2

57
2

    FHG
I
KJ  c c yB , ,b g

5 5 5 0 0 23 5
2

1
2

23
2

    FHG
I
KJ  c c yB , ,b g

Since all  j are   0 the solution isoptimal.

Therefore optimal solution is

x x x1 2 30 7
2

0  , ,  and max.z 161
2

.

To write the dual of the problem.

The given problem may be written as :

Max. z
x
x
x


L

N
MMM

O

Q
PPP

30 23 29
1

2

3

, , ,

such that 
6 5 3
4 2 5

26
7

1

2

3

L
NM

O
QP
L

N
MMM

O

Q
PPP

L
NM

O
QP

x
x
x

and x x x1 2 3 0, , 
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Therefore the dual of the given problem is given by

Mini z
w
w

 
L
NM

O
QP26 7 1

2
,

such that 

6 4
5 2
3 5

30
23
29

1

2

L

N
MMM

O

Q
PPP
L
NM

O
QP

L

N
MMM

O

Q
PPP

w
w

where w w1 2 0, 

OR

Min. z w w  26 71 2

s. t. 6 4 301 2w w 

5 2 231 2w w 

3 5 291 2w w      .......... (2)

where w w1 2 0, 

The dual problem (2) may be written as

Max. z w w1 1 226 7   

s. t. 6 4 301 2 3 6w w w w   

5 2 231 2 4 7w w w w   

3 291 2 5 8w s w w w   

and w w w1 2 8 0, ,..., 

Where w w w3 4 5, ,  are surplus variables and w w w6 9 8, ,  are the artificial variables.

Now we obtain the solution of the above problem by simplex method.
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Simplex table of the dual is

B cB xB y1 y2 y3 y4 y5

y5 0
57
2

19
2

0 0 
5
2

1

y3 0 16 4 0 1 - 2 0

y2 - 7
23
2

5
2

1 0 
1
2

0

z1
161
2

  w j 0
23
2

16 0
57
2

c j - 26 - 7 0 0 0

 j 
17
2

x x 
9
2

x

Therefore solution is w w Min z1 20 23
2

161
2

  , , .

DUALITY IN LINEAR PROGRAMMING
Definition : Primal Problem

 
n

T
x i i

i 1
Max z c x c x



 

s.t.  Ax b , x 0 , m nA 

Definition : Dual Problem

 
m

T
w i i

i 1
Min z b w b w



 

s.t. TA w c , w 0

( x  has n components, w  has m components)

General Rules for converting any primal to its dual

Step 1 : Convert the objective function into max form   Min z Max z   .

Step 2 : If the constraint has ' ' then multiply the constraint by (–1)

Step 3 : If the constraint has '=' then replace this constraint by two constraints ' ' and ' ' e.g.

1 2x x 2  1 2x x 2    and 1 2x x 2  .
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Step 4 : Every unrestricted variable is replaced by the difference of two non-negative variables
e.g. 1x  is unrestricted.

1 1 1x x x   , 1 1x ,x 0  

Step 1 to 4 : Standard primal LPP.

Step 5 : Dual of above primal LPP ios obtained

(i)  TA A

(ii)  Interchange b , c .

(iii)     

(iv) Minimize objective function.

Example : 1 2Max z 3x 2x 

s.t.  1 2x 3x 5 

1 2x x 7  , 1 2x ,x 0

Answer :  T
x 1 1 2 2Max z c x c x c x  

s.t.  Ax b ,  x 0

Primal :   1 T
1 2

1

x
Max z 3x 2x 3 2 c x

x
 

    
 

s.t.  
1

2

x1 3 5
x1 1 7
    

        
,  x 0

Dual :    1
w

2

w
Min z 5 7

w
 

  
 

1

2

w1 1 3
w3 1 2
    

        
, 1 2w ,w 0

Example : Write dual of following LPP

1 2 3Max z 2x 3x x  

s.t.  1 2 3x x 3x 8  

1 2 3x x x 4   ,  1 2 3x ,x ,x 0
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Answer :   
1

2

3

x
Max z 2 3 1 x

x

 
    
  

s.t.   

1

2

3

x
1 1 3 8

x
1 1 1 4

x

 
              

,   1 2 3x ,x ,x 0

Dual LPP w 1 2Min z 8w 4w 

s.t.
1

2

1 1 2
w

1 1 3
w

3 1 1

   
                 

,   1 2w ,w 0

Primal :  TMax z c x

s.t.   Ax b ,  x 0

Dual : T
wMin z b w

s.t.  TA w c ,  w 0

Example : Find the dual of the following Primal.

a 3 x 2 3Min z 2x 5x 

a 3 s.t.  1 2x x 2  , 1 2 32x x 6x 6   ,

a 3 1 2 3x x 3x 4   ,  1 2 3x ,x ,x 0

a 3  

Answer : '
x 2 3Max z 2x 5x    '

x xz z 

1 2x x 2    ,  1 2 32x x 6x 6  

1 2 3x x 3x 4   ,    1 2 3x x 3x 4     ,  1 2 3x ,x ,x 0

'
x 2 3Max z 2x 5x  

s.t. 1 2x x 2   

1 2 32x x 6x 6  

1 2 3x x 3x 4  

1 2 3x x 3x 4     ,   1 2 3x ,x ,x 0
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Standard :  
1

'
x 2

3

x
Max z 0 2 5 x

x

 
     
  

s.t.

1

2

3

1 1 0 2
x

2 1 6 6
x

1 1 3 4
x

1 1 3 4

     
    
        
          

,  1 2 3x ,x ,x 0

Dual : w 1 2 3 4Min z 2w 6w 4w 4w    

s.t.

1

2

3

4

w
1 2 1 1 0

w
1 1 1 1 2

w
0 6 3 3 5

w

 
     
           
        

 

,   1 2 3 4w ,w ,w ,w 0

 w 1 2 3 4Min z 2w 6w 4 w w    

 1 2 3 4w 2w 1 w w 0    

 1 2 3 4w w 1 w w 2     

 2 3 46w 3 w w 5    ,  1 2 3 4w ,w ,w ,w 0

Let '
3 3 4w w w   then '

3w  is unrestricted.

 '
w 1 2 3Min z 2w 6w 4w   

s.t. '
1 2 3w 2w w 0   

'
1 2 3w w w 2    

'
2 36w 3w 5   ,  2 2w ,w 0

3w is unrestricted.

Observation : Third constraint in primal is equation. Third variable in its dual is unrestricted in
sign.

Example : Find dual of

x 1 2 3Min z 2x 3x 4x  
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s.t. 1 2 32x 3x 5x 2   ,  1 2 33x 4x 6x 5  

1 2x ,x 0 ,  3x  unrestricted.

Answer : '
x 1 2 3Max z 2x 3x 4x   

s.t. 1 2 32x 3x 5x 2    

1 2 33x 4x 6x 5   ,  2 2x ,x 0

3 4 5x x x  ,  4 5x ,x 0

 '
x 1 2 4 5Max z 2x 3x 4 x x    

 1 2 4 52x 3x 5 x x 2     

 1 2 4 53x 4x 6 x x 5    ,  1 2 4 5x ,x ,x ,x 0

Standard Primal :  
1

2'
x

4

5

x
x

Max z 2 3 4 4
x
x

 
 
    
 
 
 

1

2

4

5

x
x2 3 5 5 2
x3 4 6 6 5
x

 
                
 
 

,  1 2 4 5x ,x ,x ,x 0

w 1 2Min z 2w 5w  

s.t.
1

2

2 3 2
w3 4 3
w5 6 4

5 6 4

    
              
   

   

,  1 2w ,w 0

w 1 2Min z 2w 5w  

1 22w 3w 2    ,  1 23w 4w 3   

1 2
1 2 1 2

1 2

5w 6w 4 5w 6w 4 5w 6w 4
5w 6w 4
    

       
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Observation : 3rd variable in primal is unrestricted. 3rd constraint in its dual is an equation.

Standard Primal : T
xMax z c x

s.t. Ax b,  x 0 

Dual : T
wMin z b w

s.t. TA w c,  w 0 

Theorem : The dual of the dual of a given primal is the primal.

Proof : Consider a primal

T
xMax z c x

s.t. Ax b,   x 0  .... (I)

Dual of the above primal is

T
wMin z b w

s.t. TA w c,   w 0  .... (II)

The corresponding primal is,

T
wMax z b w  

s.t. TA w c,  w 0    ... (III)

Observe that (II) and (III) are same.

Consider dual of (III)

(III)   T
wMax z b w  

s.t. TA w c,   w 0   

T
uMin z c u 

s.t.  TTA u b,  u 0    ..... (IV)

Standard form of (IV) is,

   T T
uMax z c u c u    

s.t. Au b,   u 0 Au b,   u 0       



121

Thus we have,

' T
uMax z c u  ,  Au b,   u 0  ..... (IV)

Observe that (I) = (V)

Thus dual of dual is primal.

Theorem : If  x  is any FS to primal problem and w  is any FS to the dual problem then,

T Tc x b w

i.e.
n m

i i i i
i 1 i 1

c x b w
 

 

Proof : Primal is T
xMax z c x  s.t. Ax b , x 0

Dual is T
wMin z b w  s.t. TA w c,  w 0 

11 12 1n 1 1

2 2

i1 i2 in

m1 m2 mn n 1n

a a a x b
x b

a a a
a a a x b

     
     
     
     
     
     


   

  


,  x 0 m n n 1 m 1A  x b  

i.e.
n

ij j i
j 1

a x b


 ,  i = 1, 2, 3, ..., n .... (1)

11 21 31 m1
1 1

12 22 32 m2
2 2T

13 23 33 m3

m n1
1n 2n 3n mn

a a a a
w c

a a a a
w c

A w c a a a a

w c
a a a a

 
    
    
      
    
    
     





 
  



1k 1 2k 2 3k 3 mk m ka w a w a w .... a w c    

m

pk p k
p 1

a w c


 ,   k = 1, 2, 3, ....., n

n n m m n

i i pi p i p pi i
i 1 i 1 p 1 p 1 i 1

c x a w x w a x
    

   
    

    
    
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n m n m

i i p pj j p p
i 1 p 1 j 1 p 1

c x w a x w b
   

 
   

 
    (by 1)

c x b w   

   
n

T
1 2 n 1 2 n i i

i 1
c x c c c x x x c x c x



     

T Tc x b w

Theorem : If x  is a FS to the primal and w  is a FS to its dual such that  c x b w    then x  is
an optimal solution to the primal and w  is an optimal solution to the dual.

Proof : We know that if x  is a FS to the primal and w  is a FS to its dual then c x b w   .

Thus   c x b w c x c x c x        

If x  is a FS to the primal then,  c x c x c x      is maximum.

 x   is an optimal solution to the primal.

Similarly if w  is any FS to its dual c x b w   .

But  c x b w  

  b w b w b w       is minimum.

 w  is an optimum solution to the dual.

Theorem : (Basic Duality Theorem)

If  0 0x w  is an optimum solution to the primal (dual) then there exist a feasible solution

 0 0w x  to the dual (primal) such that 0 0c x b w   .

Proof : Primal xz c x   s.t.  Ax b,  x 0 

xMax z c x   s.t. 5Ax Ix b  , 5x,0,x 0

Let 0 Bx x 0     be an optimum solution to the primal where Bx  is the optimum BFS

given by 1
Bx B b . Then the optimum primal solution is  0 B Bz c x c x  .

Where Bc  is cost vector associated with Bx .
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1
j B j j B j jc x c c B a c       ja A 

1
B jc B e 0   je I

Basic Duality Theorem :

If  0 0x w  is an optimum solution to the primal (dual) then there exist a feasible solution

 0 0w x  to the dual s.t. T T
0 0c x b w .

Proof : Primal T
xMax z c x  s.t. Ax b

Consider T
xMax z c x   s.t.  5Ax Ix b 

m nA  , m mI   identity    
   m n m 5 n m 1

x
A I b

x   

 
 

 

 A B C  where B 0  then 1
Bx B b .

Let 
B

0
x

x
0

 
  
 

 be an optimum solution to the primal where  m
Bx R , n m0 R   then

1
Bx B b .

Therefore T T
0 B Bz c x c x   where Bc  is cost vector corresponding to Bx .

1T T
j B j j B j jc x c c B a c     ,  j = 1, 2, 3, ..., n

1T
B jc B e 0  ,  j = n + 1, .... n + m

Since 0x  is optimal j 0  .


1T

B j jc B a c 0  ,  j = 1, 2, 3, ....., n

1T
B jc B e 0 ,  j = n + 1, n + 2, .... n + m

1T
B j jc B a c ,   j = 1, 2, 3, ..., n

 1 1 1T T T
B 1 B 2 B n 1 2 3 nc B a c B a c B a c c c c    
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1T T
Bc B A c and 1T

B jc B e 0 ,   j = n + 1, .... n + m

Put 1T T
B 0c B w   (say)  m

0w R

Then T T
0w A c  or  T

0A w c .

Since 1T
B jc B e 0 ,  1T

Bc B 0   i.e.   T
0w 0

Thus T
0A w c ,  0w 0

i.e. 0w  is feasible solution to the dual.

1T T T T
0 B B Bb w w b c B b c x  

Since T T
0 B Bb w c x

0w  is an optimum solution to the dual.

Similarly starting from dual problem we can reach to primal solution.

Theorem : If kth constraint in the primal is an equality then the dual variable wk is unrestricted in
sign.

Proof : Primal

T
xMax z c x

s.t. 11 1 12 2 13 3 1n n 1a x a x a x ..... a x b    



k1 1 k2 2 k3 3 kn n ka x a x a x ..... a x b    

k1 1 k2 2 k3 3 kn n ka x a x a x ..... a x b      



m1 1 m2 2 m3 3 mn n ma x a x a x ..... a x b    

1 2 3 nx ,x ,x ,.....,x 0

Dual of above primal will be,

' "
w 1 1 2 2 k k k k k 1 k 1 m mMin z b w b w .... b w b w b w ... b w        
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1

211 21 k1 k1 m1 1

12 22 k2 k2 m2 2
'

13 23 k3 k3 m3 k 3
"
k

1n 2n kn kn mn n

m

w
wa a a a a c

a a a a a c
a a a a a w c

w
a a a a a c

w

 
 

    
        
     
    
    
       

 
  

 
 

 
    

  

' "
1 2 3 k k mw ,w ,w ,....,w ,w ,...,w 0

 ' "
w 1 1 2 2 k k k m mMin z b w b w .... b w w ..... b w      

s.t.  ' "
11 1 21 2 k1 k k m1 m 1a w a w .... a w w ..... a w b      

 ' "
12 1 22 2 k2 k k m2 m 2a w a w .... a w w ..... a w b      



 ' "
1n 1 2n 2 kn k k mn m na w a w .... a w w ..... a w b      

' "
1 2 k k mw ,w ,....,w ,w ,.....,w 0

Put ' "
k k kw w w   then wk is unrestricted.

Thus we have,

m

w i i
i 1

Min z b w




s.t. 11 1 21 2 k1 k m1 m 1a w a w .... a w ..... a w c     

12 1 22 2 k2 k m2 m 2a w a w .... a w ..... a w c     



1n 1 2n 2 kn k mn m na w a w .... a w ..... a w c     

1 2 k 1 k 1 mw ,w ,....,w ,w ,....,w 0   , wk unrestricted kth variable in dual is unrestricted in sign.

Theorem : If pth variable in primal is unrestricted in sign then pth constraint of the dual is an
equation.

Proof : x 1 1 2 2 p p n nMax z c x c x .... c x ..... c x     
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s.t. 11 1 12 2 13 3 1p p 1n n 1a x a x a x ..... a x .... a x b      

21 1 22 2 23 3 2p p 2n n 2a x a x a x ..... a x .... a x b      



m1 1 m2 2 m3 3 mp p mn n na x a x a x ..... a x .... a x b      

1 2 p 1 p 1 nx ,x ,....,x ,x ,......,x 0   , xp unrestricted.

Since xp is unrestricted write

' "
p p px x x  s.t.   '

px 0 , "
px 0

Then primal becomes,

 ' "
x 1 1 p p p n nMax z c x ..... c x x .... c x     

s.t.  ' "
11 1 12 2 1p p p 1n n 1a x a x ..... a x x .... a x b      



 ' "
m1 1 m2 2 mp p p mn n ma x a x ..... a x x .... a x b      

' "
1 2 p 1, p p nx ,x ,.....,x x ,x ,...,x 0 

The dual problem is,

w 1 1 2 2 m mMax z b w b w ..... b w   

s.t.

11 21 m1 1

12 22 m2 21

2

1p 2p mp p3

1p 2p mp p

m

1n 2n mn n

a a a c
a a a cw

w
a a a cw
a a a c

w

a a a c

   
   

    
    
    
     
           
     

   
      



   



   

i.e. 11 1 21 2 31 3 m1 m 1a w a w a w ..... a w c    

12 1 22 2 32 3 m2 m 2a w a w a w ..... a w c    



1p 1 2p 2 3p 3 mp m pa w a w a w ..... a w c    
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1p 1 2p 2 3p 3 mp m pa w a w a w ..... a w c      



1n 1 2n 2 3n 3 mn m na w a w a w ..... a w c    

p and (p + 1)th constraint implies.

1p 1 2p 2 3p 3 mp m pa w a w a w ..... a w c    

Thus pth constraint in the dual is an equation.

REVISED SIMPLEX METHOD
The usual simplex method used so far is a lengthy algebraic procedure and the

calculations in the usual simplex method, are tedius and we have the following disadvantages :

i) It is very time-consuming even when considered on the time scal of electronic
digital computers. Hence it is not an efficient computational procedure.

ii) In the usual simplex method, many numbers are computed and stored which
are either never used at the current iteration or are needed only in an indirect way.

Keeping this in mind, a revised simplex method has been developed to overcome these
disadvantages, due to which speed of the calculations is incread by reducing the required amount
of computational effort. In general, approach of  the revised simplex method is identical to that of
the ordinary simplex method.

Standard Forms for Revised Simplex Method
There are two standard forms for the revised simplex method :

Standard Form I : In this form, it is assumed that an identity (basis) matrix
is obtained after introducing slack variables only.

Standard Form II : If artificial variables are needed for an initial identity (basis) matrix,
then two-phase method of ordinary simplex method is used in a slightly different way to handle
artificial variables.

Formulation of LP Problem in Standard Form I
A linear programming problem in standard form is :

Max. z c x c x c x x x xn n n n n m        1 1 2 2 1 20 0 0... ...  .......... (3.1)

Subject to

a x a x a x x b

a x a x a x x b

a x a x a x x b

n n n

n n n

m m mn n n m m

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

    

    

    

U

V
||

W
||







...

...

: : : : :
...

 .......... (3.2)
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and x x xn m1 2 0, ,...,    .......... (3.3)

where the starting basis matrix B is an m x m identity matrix.

 In the revised simplex form, the objective function (3.1) is also considered as if it were
another constraint in which z is as large as possible and unrestricted in sign.

Thus (3.1) and (3.2) may be written in a compact form as :

z c x c x c x x x x

a x a x a x x b

a x a x a x x b

a x a x a x x b

n n n n n m

n n n

n n n

m m mn n n m m

        

    

    

    

U

V
|||

W
|||

  







1 1 2 2 1 2

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

0 0 0 0... ...

...

...
: : : : :

...

 .......... (3.4)

which can be considered as a system of m + 1 simultaneous equations in (n + m + 1)

number of variables z x x xn m, , ,....,1 2 d i . Here our aim is to find the solution of the system (3.4)

such that z is as large as possible.

Now, the system (3.4) may be re-written as follows :

1 0

0 1 0

0 0 1

0 01 1 02 2 0 0 1 1 0

0 11 1 12 2 1 1 1

0 1 1 2 2 1

. ... ...

. ... . .... .

: : : : : : :
. ... ....

, ,x a x a x a x a x a x

x a x a x a x x x b

x a x a x a x x x b

n n n n n m n m

n n n n m

m m mn n n n m m

       

       

       

O

Q

PPPPP

  

 

 

 .......... (3.5)

Again, writing the system (3.5) in matrix form,

1

0 1 0

0 0 1

001 02 0 0 1 0

11 12 1

1 2

0

1 1








a a a a a

a a a

a a

x
x

x

b

b

n n n m

n

m m a
n m m

mn

.... , ,

......

.... .... ........... .........,.............
...

: : : : : :
: :

 



L

N

MMMMMMM

O

Q

PPPPPPP

L

N

MMMMM

O

Q

PPPPP


L

N

MMMM

O

Q

PPPP  .......... (3.6)

Using the partitioning of a matrix,

1
0

00 0a
A

x
x b

L
NM

O
QP
L
NM

O
QP 

L
NM
O
QP  .......... (3.7)

Where a a a a am n m0 01 0 2 0 0 , ,,..., ,...,d i  and the remaining symbols have their usual
meanings.
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The matrix equation (3.7) can be expressed in the original notation form as

1
0

0L
NM

O
QP
L
NM

O
QP 

L
NM
O
QP

C
A

z
X b  .......... (3.7')

Equation (3.7) or (3.7) is referred to as standard form 1 for the revised simplex method.

Notations for Standard Form I
It is observed that all the vectors have (m + 1) components instead of m. Hence

superscript(1) is used for all vectors to show that they have (m + 1) components in standard
form - I.

I) Corresponding to each  a j  in A a new (m + 1) - component vector is represented

by  aj
( )1  as :

a c a a a j n mj j j j m j
( ) , , ,...., , , ,...,1

1 2 1 2   

or a a a a j n mj j j m j
( ) , ,..., , , ,...,1

0 1 1 2  

a a aj j j
( ) ,1

0  .......... (3.8)

II) Similarly, corresponding to m-component vector b in AX = b , we shall represent
the (m + 1) component vector by b 1b g  given by

b b b b bm
( ) , , ,..., ,1

1 20 0   .......... (3.9)

III) The column vector corresponding to z (or x0 ) is the (m + 1) component unit

vector which is usually denoted by e1  and will always be in the first column of the

basic matrix B1 where the subscript 1 will show that it is of order m m  1 1b g b g
whose remaining m columns are any aj

( )1  such that the corresponding a j  are

linearly independent and denoted by i i m( ), , ,...,1 1 2  (in some order).

Therefore, B e m1 1 1
1 1 , ,....,( ) ( ) 

              ( ) ( ) ( ) ( ), , ,...,1
1
1

2
1 1

m            .......... (3.10)
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If the basis matrix B for A X b  is be represented by

  

  

  

11 12 1

21 22 2

1 2

...

...

... ... ... ....
...

m

m

m m mm

L

N

MMMMM

O

Q

PPPPP

then, from equation (3.10),

e

B

c c c
m

B B Bm

m

m

m m mm

1 1
1

2
1 1

1

1 2

11 12 1

21 22 2

1 2

1

0
0

0

  

  

  

  

( ) ( ) ( ).....
....

....... ................................................
...
...

: : : :
...



  L

N

MMMMMMMM

O

Q

PPPPPPPP









......... (3.11)

where  c i mBi 1 2, ,...,b g  are the coefficients of x i mB i 1 2, ,...,b g  in the equation.

z c x c x c x x xn n n n m        1 1 2 2 10 0 0... ...

and C c c cB B B Bm 1 2, ,....,

Hence, the basic matrix B1 [in equation (3.11)] can be represented in the partitioned
form as

 B
c
B

B
1

1
0


L

NM
O
QP            .......... (3.12)

Now the right side of (3.12) can be used to obtaine the basis matrix B1 in revised
simplex method for standard form I.

IV) To compute B1
1

We compute B1
1  by applying the rule of matrix algebra,

If   M
I Q

R

L
NM

O
QP0            .......... (3.13)

where R1 exists and is known, then inverse of matrix M is computed by the
formula
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M
I QR

R







L
N
MM

O
Q
PP

1
1

10            .......... (3.14)

Now, to apply this rule to computer B1
1 , compare the matrices B1 (3.12) and M

(3.13) to get,

I = 1, Q = CB  and R = B.

Substituting these values of I, Q, R in the formula (3.13) for matrix inverse, we
get,

B
C B

B
B

1
1

1

1

1

0






L
N
MM

O
Q
PP            .......... (3.15)

V) Any aj
( )1  (not in the basis matrix B1) can be expressed as the linear combination

of column vectors

   0
1

1
1

2
1 1( ) ( ) ( ) ( ), , ,...., md i

in B1. Therefore,

         a y y yj j j m j m
( ) ( ) ( ) ( )...1

0 1
1

1 1
1 1     

    y y yj j m j m0 1 0
1

1
1 1, ,..., , ,...,( ) ( ) ( )d id i  

   Y Bj
( )1

1            (From (3.10)

whic yields

Y B aJ j
( ) ( )1

1
1 1  .            .......... (3.16)

VI) Substituting B1  from (3.15) in (3.16), we get

         Y
C B

B

c
a

c C B a

B a
j

B j

j

j B j

j

( )1
1

1

1

1

1

0 0

L
N
MM

O
Q
PP

L
NMM

O
QPP


 



L
N
MM

O
Q
PP









    
 L
N
MM

O
Q
PP 

L
N
MM

O
Q
PP 

L
NMM

O
QPP

c z

Y

z c

Y Y
j j

j

j j

j j


           .......... (3.17)

We note from result (3.17) that the first component of Yj
( )1  is z cj jd h  or  jd h

which is always used to decide the optimality.
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Note : The advantage of treating the objective function as one of the constraints

is that, z cj j  or  jd h  for any aj  not in the basis can be easily computed by taking

the product of first row of B1
1 , with aj

( )1  not in the basis, that is,

 j j j jz c first row of B a   
1

1 1d i ( )  not in the basis.

VII) The (m + 1) - component solution vector XB
( )1  is given by

         X B bB
( ) ( )1

1
1 1             .......... (3.18)

or      X
C B

B b

C B b

B b
B

B B( )1
1

1

1

1

1

0

0 1 0

0 0

L
N
MM

O
Q
PP
L
NM

O
QP


 

 

L
N
MM

O
Q
PP









d i

   
L
NM

O
QP 

L
NM

O
QP

C X
X

z
X

B B

B B
[ because x B b c x zB B B 1 , ]

Thus,

         X
C X

X
z

XB
B B

B B

( )1 
L
NM

O
QP 

L
NM

O
QP            .......... (3.19)

In (3.19), it is observed that XB
( )1  is a basic solution (not necessarily feasible,

because z may be negative also) for the matrix equation (3.7) corresponding to

the basis matrix B1. Also, the first component of XB
( )1  immediately gives the value

of the objective function while the second component XB  gives exactly the basic
feasible solution to original constraint , AX = b corresponding to its basis matrix
B.

To Obtain Inverse of Initial Basis Matrix and Initial BFS

As in section 3.4, the inverse of initial basis matrix B1 is given by,,

        B
I C B

B
B

1
1

1

10






L
N
MM

O
Q
PP            .......... (3.20)

But, the initial basis matrix B for the original problem is always m mb g  identity matrix

Imb g . We note that Im  always appears in (AX = b) (if it is not so, it can be made to appear in A by
introducing the artifical variables).

Since B I Bm  1
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       B
C I
I

B m

m
1

1 1
0

 
L
NM

O
QP

or        B
C
I

B

m
1

1 1
0

 
L
NM

O
QP

Furthermore, if after ensuring that all bi 0  only the slack variables are needed and the

initial basis matrix B Im  appears, then

c c c cB B B Bm1 2 3 0    ... ,  i. e. cB 0 .

Thus (3.20) becomes

B1
1 

1 0
0

1 0 0
0 1 0
0 0 0

0 0 1

Im

L
NM

O
QP 

N

MMMMMM Q

PPPPPP

...
...
...

: : :
...

 Im 1

Thus, the inverse of the initial basis matrix B will be B B Im1
1

1 1


   with which we start

the revised simplex procedure.

Then, the initial basic solution is

X B b I b
bB m

( ) ( ) ( )1
1

1 1
1

1 0
  

L
NM

O
QP




which is feasible.

After obtaining the initial basis matrix inverse B Im


1
1 and an initial basic feasible solution

to start with the revised ‘simplex ‘procudure, we have to construct the starting revised simplex
table.

To Construct the Starting Table in Standard Form I.

Since x z0 b g  should always be in the basis, the first column 0
1

1
( )   eb g  of initial basis

matrix inverse B Im


1
1  will not be removed at any subsequent iteration. The remaining column

vectors of B1
1  will be   1

1
2
1 1( ) ( ) ( ), ,..., m .

The last column in the revised simplex table will be

Y
z c

Y Yk
k k

k

k

k

( )1 
L

NM
O
QP 

L
NM

O
QP



where k is predetermined by the formula
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 k jmin  (for those j for which a j  is not in B1).

Note : If there is a tie, we can use smallest index j which is an arbitary rule but
computationally useful.

Finally, it is conculded that only the column vectors

e nm1 1
1

2
1 1, , ,...,( ) ( ) ( )    of B XB1

1 1 , ( )  and Yk
( )1

will be needed to construct the revised simplex table.

Now the starting table for revised simplex method can be constructed as follows. Also

form a table for those, a j
( )1  which are not in the basis and will be useful to determine the required

 j s' .

Starting Table in standard form I

Variables in B1
1

 the basis e1 1
1( ) 2

1( ) -- m
( )1 XB

( )1 YK
( )1

z 1 0 0 -- 0 0 z ck k A table for

xB1 0 1 0 -- 0 b1 y k1 those aj
( )1  which are

xB2 0 0 1 0 b2 y k2 not included in the

: : : : : : : B1
1  of starting table.

: : : : : : : :

xBm 0 0 0 -- 1 bm ymk

Example 3.5
Solve the following linear programming problem by revised simplex method.

Max z x x 2 1 2

subject to 3 4 6 6 3 01 2 1 2 1 2x x x x x x    , , , .

Solution :

Step : 1 Express the given problem in Standard Form - I

After ensuring that all bi 0  and transforming the objective function of originlal problem
for maximization of z (if necessary), introduce non - negative slack variables to convert the
inequalities to equations. It should be noted that the objective function is also treated as if it were
the first constaint equation.
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Thus, the given problem is transformed to the following form,

z x x  2 01 2

3 4 61 2 3x x x        .......... (i)

6 31 2 4x x x  

Step : 2 Construct the starting table in revised simplex form

We, proceed to obtain the initial basis matrix B1 as an identity matrix and complete all

the columns of starting revised simplex table except the last column Yk
( )1  (which can be done in

Step 5)

Applying this step, the system (i) of constraint equations can be expressed in the following
matrix form.

e a a a a

z
x
x
x
x

1 1
1

2
1

3
1

4
1

0
1

1
1

2
1

1

2

3

4

1 2 1 0 0

0 3 4 1 0
0 6 1 0 1

0
6
3

( ) ( ) ( ) ( )

( ) ( ) ( )  

 L

N

MMMM

O

Q

PPPP

L

N

MMMMMM

O

Q

PPPPPP


L

N
MMM

O

Q
PPP

Here the columns  0
1

1
1( ) ( ),  and 2

1( )  form the basis matrix B1 (whose inverse is also B1,

because B I1 3  here). Now starting revise simplex table can be constructed as follows:

Table 1 Table 2

Variable in B1
1 a1

1( ) a2
1( )

the basis e z1 ( ) 1
1( ) 2

1( ) XB
( )1 Yk

( )1 - 2 - 1

z 1 0 0 0 3 4

x xB1 3 0 1 0 6 6 1

x xB 2 4 0 0 1 3

Step : 3 Computions of  j j jz c   for a1
1( )  and a2

1( )

Applying the formula :

 j   (first row of B1
1 ) x ( a j

( )1  not in the basis),
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1   (first row of B1
1 ) x a1

1 1 0 0 2 3 6( ) ( , , )( , , ) 

             1 2 0 3 0 6 2( )

2  (first row of B1
1 ) x a2

1( )

               ( , , ) , ,1 0 0 1 4 1 1 1 0 4 0 1 1b g b g
Remark : Instead of computing each required  j  separately, we can also compute

simultaneously in a single step as follows :

 1 2 1
1

1
1

2
1, ,( ) ( )l q n s first row of B a a


 L

N
MMM

O

Q
PPP

1 0 0
2 1
3 4
6 1

, ,


     
     

L
NM

O
QP 



L
NM

O
QP   

1 2 0 3 0 6
1 1 0 4 0 1

2
1

2 1
( )
( )

,l q

which gives the values  1 22 1   ,  as obtained earlier..

Step : 4

Now apply the usual rule to test the starting solution x x x x1 2 3 40 6 3   , ,b g  for optimality..

Since  1 2,  obtained in step 3 are both negative, so the starting basic feasible solution

is not optimal. Hence we proceed to determine the entering vector ak
( )1 .

Step : 5

Let  k jminn s  for those j for which a j
( )1  are not in the basis

So, we have

   k       min , min ,1 2 12 1 2

Hence k = 1

Hence a1
1( )  enters the basis and the variables x1  will enter the solution.

Now, in order to find the leaving vector we first compute yk
( )1  for k = 1.

Step : 6

Since Y B a I ak k m k
( ) ( ) ( )1

1
1 1

1
1 


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therefore, Y a1
1

1
1 2 3 6( ) ( ) , ,  b g .

Now complete the last column Xk
( )1  of starting table 1 by writing Y a1

1
1
1 2 3 6( ) ( ) , ,  b g  in

that column. So the starting has grows to the following form.

Table 3

Variable in e( )1 1
1( ) 2

1( ) XB
( )1 Yk

( )1

the basis (z) ( )S1 ( )S2

z 1 0 0 0 - 2

x3 0 1 0 6 3

x4 0 0 1 3 6

Step : 7

The vector r
( )1  to be removed from the basis is determined by using the minimum ratio

rule (similar to that of ordinary simplex method).

Let 
x
y

x
y

yBr

r k i

B i

ik
ik 

L
N
MM

O
Q
PPmin , 0

Putting k = 1 (which has been obtained in step 6)

x
y

x
y

y
x
y

x
y

Br

r i

B i

i
i

B B

1 1
1

1

11

2

21
0 

L
N
MM

O
Q
PP 

L
NM

O
QP

min , min ,

       
L
NM

O
QP min ,6

3
3
6

3
6

So 
x
y

x
y

Br

r

B

1

2

21
  and r = 2.

Hence the vector 2
1( )  must leave the basis.
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Table 4

Variable in e( )1 1
1( ) 2

1( ) XB
( )1 Yk

( )1 Min ratio rule

the basis min. 
X
Y

B

1

F
HG

I
KJ

z 1 0 0 0 -2

x xB1 3 0 1 0 6 3 6 / 3

x xB 2 4 0 0 1 3 6 3 / 6 

B A
Leaving vector 2

1( ) Key element

Remark : If the min ,
i

B i

ik
ik

x
y

y 
L
N
MM

O
Q
PP0  is attained for more than one value of i, the resulting

basic feasiIe solution will be degenerate. In that case, we use the usual techniques to resolve
the degeneracy.

Step 8
In order to bring uniformity with the ordinary simplex method adopt the simple matrix

transformation rules. Here the intermediate coefficient matrix is :

1
1( ) 2

1( ) XB
( )1 Y1

1( )

R1 0 0 0 -2

R2 1 0 6 3

R3 0 1 3 6

B
The column e1  will never change. So there is no need to write the column e1  in the

intermediate coefficient matrix. Also, the vector Y1
1( )  is going to be replaced by the outgoing

vector 2
1( ) .

Now, divide the row R3  by key element 6. Then add twice of third row to first, and 3 times
of third row to second. In this way, obtain the next matrix.
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1
1( ) 2

1( ) XB
( )1

0 1 / 3 1 0

1 - 1 / 2 9 / 2 0

0 1 / 6 1 / 2 1

Table 5

Basic e( )1 1
1( ) 2

1( ) XB
( )1 Yk

( )1 Min Ratio Rule

Vari. (z) (k = 2) min X YB / 2b g a4
1( ) a2

1( )

z 1 0 1/ 3 1 -2 /3 0 -1

x3 0 1 - 1 / 2 9 / 2 7 / 2
9 2
7 2

/
/

 0 4

 x1 0 0 1 / 6 1 / 2 1 / 6
1 2
1 6

/
/ 1 1

      A
B1

1

The improved solution is read from this table as :

z x x x x    1 9 2 1 2 03 1 2 4, / , / , .

Step : 9

    4 2 1
1

4
1

2
1, , ,( ) ( )l q d i d i first row of B a a

     
F
HG

I
KJ

L

N
MMM

O

Q
PPP

1 0 1
3

0 1
0 4
1 1

, ,

    
    

     

L

N

MMMM

O

Q

PPPP

1 0 0 0 1
3

1

1 1 0 4 1
3

1( )

     
L
NM

O
QP

1 3
2 3

/
/
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Thus, we get  4 2
1
3

2
3

 ,

Since 2  is still negative, the solution under test is not optimal.

Step : 10 Determination of the entering vector ak
( )1 .

To find the value of k, we have

   k   L
NM

O
QPmin , min ,4 2 2

1
3

2
3 . Hence k = 2.

So a2
1( )  should enter the solution, means the variable x2  will enter the basic solution.

Step : 11 Determination of the leaving vector, given the entering vector a2
1( ) .

Now x B a2
1

1
1

2
1

1 0 1 3
0 1 1 2
0 0 1 6

1
4
1

1 1 3
0 4 1 2
0 0 1 6

( ) ( )
/
/
/

/
/

/
  

L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


  
  
 

L

N
MMM

O

Q
PPP



   
L

N
MMM

O

Q
PPP

2 3
7 2
1 6

/
/
/

The ‘minimum ratio rule’ shows that 7/2 is the key element.

So remove the vector 1
1( )  from the basis, to bring it in place of Y2

1( )  by matrix
transformation.

Step : 12 Determination of new table for improved solution
For this, the intermediate coefficient matrix is :

1
1( ) 2

1( ) XB
( )1 Y2

1( )

R1 0 1 / 2 1 - 2 / 3

R2 1 - 1 / 2 9 / 2 7 / 2

R3 0 1 / 6 1 / 2 2 / 6

B A
Applying the operations :

2
7

2
3

2
72 1 2R R R, , FHG

I
KJ
F
HG

I
KJ  and R R3 2

1
6

2
7

 F
HG

I
KJ , we get
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1
1( ) 2

1( ) XB
( )1

4 / 21 5 / 21 13 / 7 0

2 / 7 - 1 / 7 9 / 7 1

- 1 / 21 1 / 42 2 / 7 0

Now, the table for improved solution is as follows :

Variable in B1
1

the basis z Y2
1( ) Y1

1( ) XB
( )1 YK

( )1 a4
1( ) a3

1( )

e1 1
1( ) 2

1( )

z 1 4 / 21 5 / 21 13/7 0 0

x xB2 1 0 2 / 7 - 1 / 7 9 / 7 0 1

x xB1 2 0 - 1 / 21 4 / 21 2 / 7 1 0

The improved solution is : z x x  13 7 9 7 2 72 1/ , / , /

Third Iteration

Step : 13

 4 3 1
1

4
1

3
1, ,( ) ( )l q d i d i first row of B a a

  
L

N
MMM

O

Q
PPP

1 4 21 5 21
0 0
0 1
1 0

, / , /b g

  
    
    

L
NM

O
QP 

L
NM

O
QP

1 0 4 21 0 5 21 1
1 0 4 21 1 5 21 0

5 21
4 21

/ /
/ /

/
/

Therefore

          4 35 21 4 21 / ; /

The positive values of 4  and 3  indicate that the optimal solution is

           z x x  13 7 9 7 2 72 1/ , / , /

Example 3.6

Solve the following problem by revised simplex method :

Max z x x 1 22 , subject to x x x x x x x x1 2 1 2 1 2 1 23 2 5 3 6 0      , , ; ,
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Solution :

First express the given problem in revised simplex form :

z x x  1 22 0

x x x1 2 3 3  

x x x1 2 42 5  

3 61 2 5x x x  

Then express the system of constraint equations in the following matrix form :

e a a a a a

z
x
x
x
x
x

1 1
1

2
1

3
1

4
1

5
1

0
1

1
1

2
1

3
1

1

2

3

4

5

1 1 2 0 0 0
0 1 1 1 0 0
0 1 2 0 1 0
0 3 1 0 0 1

0
3
5
6

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )   

 L

N

MMMM

O

Q

PPPP

L

N

MMMMMMMM

O

Q

PPPPPPPP



L

N

MMMM

O

Q

PPPP

Now form the revised simplex table for the first iteration.

Table

Variables in B1
1

the basis 0
1( ) 1

1( ) 2
1( ) 3

1( ) XB
( )1 YK

( )1 Min a1
1( ) a2

1( )

e1 a3
1( )d i a4

1( )d i a5
1( )d i (k=2) X YB / 2b g

B
z 1 0 0 0 0 - 2 - 1 - 2

x xB3 1 0 1 0 0 3 1 3 / 1 1 1

x xB4 2 0 0 1 0 5 2 5 / 2  1 2

x xB5 3 0 0 0 1 6 1 6 / 1 3 1

B
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Step : 1

 1 2 1
1

1
1

2
1, ,( ) ( )l q d i d i first row of B a a

   


 L

N

MMMM

O

Q

PPPP
  1 0 0 0

1 2
1 1
1 2
3 1

1 2, , , ,b g l q

Hence  1 21 2   ,

Since 1  and 2  both are negative the solution x x x z3 4 53 5 6 0   , , ,  is not optimal.
Therefore, we proceed to obtain the next improved solution.

Step : 2 Determination of entering vector ak
( )1 .

To find the entering vector ak
( )1 , apply the rule

   k       min , min ,1 2 21 2 2  Hence k = 2.

So the vector a2
1( )  must enter the basis. This shows that x2  will enter the basic feasible

solution.

Step : 3 Determination of the leaving vector r
( )1

Compute the column Y2
1( )  corresponding to vector a2

1( ) .

Y B a2
1

1
1

2
1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
1
2
1

2
1
2
1

( ) ( ) 

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP


L

N

MMMM

O

Q

PPPP


Apply the minimum ratio rule it follows

Here (2) is the ‘key element’ corresponding to which 2
1( )  must leave the basis matrix.

Hence x3  will be outgoing variable.
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Step : 4 Determination of the improved solution.
The intermediate coefficient matrix is :

1
1( ) 2

1( ) 3
1( ) XB

( )1 Y2
1( )

0 0 0 0 - 2

1 0 0 3 1

0 1 0 5 2

0 0 1 6 1

B A
Apply usual rules of transformation to obtain

0 1 0 5 0

1 - 1 / 2 0 1 / 2 0

0 1 / 2 0 5 / 2 1

0 - 1 / 2 1 7 / 2 0

The table for improved solution.

Table : 2

Variables in B1
1

the basis e1 1
1( ) 2

1( ) 3
1( ) XB

( )1 YK
( )1 a1

1( ) a4
1( )

z 1 0 1 0 5 - 1 0

x xB3 1 0 1 - 1/2 0 1 / 2 1 0

x xB2 2 0 0 1 / 2 0 5 / 2 1 1

x xB5 3 0 0 - 1 / 2 1 7 / 2 3 0

The improved solution now becomes :

z x x x   5 1 2 5 2 7 23 2 5, / , / , / .

Step : 5

 1 4 1 0 1 0

1 0
1 0
1 1
3 0

0 1, , , , ,b g b g l q

L

N

MMMM

O

Q

PPPP


Hence  1 40 1 ,
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Since 1  and 4  both are 0 , the solution under test is optimal.

Furthermore, 1 0  shows that the problem has alternative optimum solutions. Thus,

the required optimal solution is is x x z1 20 5 2 5  , / ,max .

Example 3.7

Solve by revised simplex method :

Max. z x x x  6 2 31 2 3

subject to 2 2 21 2 3x x x  

x x1 34 4 

x x x1 2 3 0, , 

Solution :

The problem in the revised simplex form may be expressed by introducing the slack
variables x4  and x5  as

z x x x   6 2 3 01 2 3

2 2 21 2 3 4x x x x   

x x x1 3 54 4  

The system of constraint equations may be represented in the following matrix form :

e a a a a a

z
x
x
x
x
x

1 1
1

2
1

3
1

4
1

5
1

0
1

1
1

2
1

1

2

3

4

5

1 6 2 3 0 0
0 2 1 2 1 0
0 1 0 4 0 1

0
2
4

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )  

 


L

N
MMM

O

Q
PPP

L

N

MMMMMMMM

O

Q

PPPPPPPP


L

N
MMM

O

Q
PPP

The starting revised simplex table
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Variables in B1
1 Min a1

1( ) a2
1( ) a3

1( )

the basis e1 1
1( ) 2

1( ) XB
( )1 Y Yk

( ) ( )1
1

1 X YB / 1b g
z 1 0 0 0 -6 B -6 2 -3

x xB4 1 0 1 0 2 2 2/2  2 - 1 2

x xB5 2 0 0 1 4 1 4 /1 1 0 4

B
The starting solution is : x x x x x z1 2 3 4 50 2 4 0     ; , , .

Step 1

  1 2 3 1
1

1
1

2
1

3
1, , , ,( ) ( ) ( )b g d i d i first row of B a a a

      
 


L

N
MMM

O

Q
PPP
  1 0 0

6 2 3
2 1 2
1 0 4

6 2 3, , , ,b g l q

Hence   1 2 36 2 3    , ,

Since 1  and 3  are still negative, the solution under test can be further improved.

Step : 2 Determination of the entering vector ak
( )1

The entering vector ak
( )1  corresponds to the value of k which is obtained by the critertion

    k       min. , , min , ,1 2 3 16 2 3 6l q
Hence k = 1

So the entering vector is found to be a1
1( ) . This also means that the variable x1  will enter

the basic solution.

Step : 3 Determination of the leaving vector r
( )1

First we need to computer the column Y1
1( )  corresponding to the entering vector a1

1( ) .

Y1
1

1 0 0
0 1 0
0 0 1

6
2
1

6
2
1

( ) 
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP

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Now apply the min. ratio rule. This rule indicates that (2) is the 'key element' corresponding

to which 1
1( )  must leave the basis matrix. Hence x4  will be the outgoing variable.

Step : 4 The first inproved solution.

1
1( ) 2

1( ) XB
( )1 Y1

1( )

0 0 0 - 6

1 0 2 2

0 1 4 1

To transform the above intermediate coefficient matrix, apply the usual rules of matrix
transformation to obtain

3 0 6 0

1 / 2 0 1 1

- 1 / 2 1 3 0

Now construct the transformed Table 4.10 for second iteration.

Table 4

Variables in B1
1 Min a4

1( ) a2
1( ) a3

1( )

the basis e1 1
1( ) 2

1( ) XB
( )1 X Yk

( ) ( )1
1

1 X YB / 1b g
z 1 3 0 6 -1 0 2 -3

x xB1 1 0 1 /2 0 1 - 1/2 1 -1 2

x xB5 2 0 -1/2 1 3 1 /2 3 1
2

/  0 0 4

B
The improved solution is : z x x x x x     6 1 0 31 2 3 4 5, , , .

Second Iteration

Step : 5

  4 2 3 1
1

4
1

2
1

3
1, , , ,( ) ( ) ( )b g d i d i first row of B a a a

      



L

N
MMM

O

Q
PPP
 1 3 0

0 2 3
1 1 2
0 0 4

3 1 3, , , ,b g l q

Hence   4 2 33 1 3   , ,
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Since 2  is still negative, the solution under test is not optimal. Hence further improvement
is possible. So we proceed to find the ‘entering’ and ’leaving’ vectors in the next step.

Step 6. Determination of the entering vector ak
( )1

Here, we have

    k      min , , min , ,4 2 3 23 1 3 1

Hence k = 2.

Therefore, a2
1( )  will enter the basis. The entering vector a2

1( )  indicates that the variable

x2  must enter the new solution.

Step : 7 Determination of the leaving vector r
( )1

First calculate the column Y2
1( )  corresponding to vector a2

1( )

Y B a2
1

1
1

2
1

1 3 0
0 1 2 0
0 1 2 1

2
1
0

1
1 2
1 2

( ) ( ) /
/

/
/

 


L

N
MMM

O

Q
PPP


L

N
MMM

O

Q
PPP




L

N
MMM

O

Q
PPP



Now complete the column Y Yk
( ) ( )1

2
1  of table 4.

The ‘min ratio rule’ in the column of Table 4 indicates that 1/2 is the key element

corresponding to which the vector 2
1( )  must leave the basis. Hence x5  will be the outgoing

variable.

Step : 8 The next improved solution

Transform the Table 4 into Table 5 from which the mext improved solution can be easily
read.

Table 5

Variables in B1
1 a4

1( ) a5
1( ) a3

1( )

the basis e1 1
1( ) 2

1( ) XB
( )1 Yk

( )1

z 1 2 2 12 0 0 - 3

x xB1 1 0 0 1 4 1 0 2

x xB2 2 0 - 1 2 6 0 1 4

The next improved solution from Table 5 is :

z x x x x x     12 4 6 01 2 3 4 5, , ,
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Step : 9
Here we compute

  4 5 3 1
1

4
1

5
1

3
1, , , ,( ) ( ) ( )l q d i d i first row of B a a a

        
L

N
MMM

O

Q
PPP
1 2 2

0 0 3
1 0 2
0 1 4

2 2 9, , , ,b g l q

Hence   4 5 32 2 9  , ,

The solution under testis optimal because   4 5 3, ,  are all positive. Thus, the required
optimal solution is :

x x x z1 2 34 6 0 12   , , ,max.

Example 3.8

Solve the following L.P.P. by revised simplex method.

Max z x x x x   3 2 71 2 3 4,

subject to the constraints

2 3 4 401 2 3 4x x x x   

    2 2 5 351 2 3 4x x x x

x x x x1 2 3 42 3 100   

and x x x x1 2 3 42 1 3 4   , , ,

Solution :

Step : 1

In order to make the lower bounds of the variables zero, we substitute
x y x y x y x y1 1 2 2 3 3 4 42 1 3 4       , , ,  in the gives LPP to obtain :

Max. z y y y y'   3 2 71 2 3 4  where z z' 41

s. t. 2 3 4 201 2 3 4y y y y   

    2 2 5 261 2 3 4y y y y

y y y y1 2 3 42 3 91   

and y y y y1 2 3 40 0 0 0   , , , .
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Step : 2 To express the LPP in revised simplex form.

Max. z y y y y'   3 2 71 2 3 4

s. t      z y y y y' 3 2 7 01 2 3 4

2 3 4 201 2 3 4 5y y y y y    

     2 2 5 261 2 3 4 6y y y y y

y y y y y1 2 3 4 72 3 91    

y ii  0 1 2 7, ,...,b g  and z' is unrerstricted in sign.

Clearly, the problem is of standard form I.

In matrix form the system of constraint equations can be written as :

   0
1

1
1

2
1

3
1

1 1
1

2
1

3
1

4
1

5
1

6
1

7
1

1

2

3

4

5

6

7

1 3 1 2 7 0 0 0
0 2 3 1 4 1 0 0
0 2 2 5 1 0 1 0
0 1 1 2 3 0 0 1

0
20
26
91

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

'
e a a a a a a a

z
y
y
y
y
y
y
y

   


 


L

N

MMMM

O

Q

PPPP

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP



L

N

MMMM

O

Q

PPPP

Step : 3 To find initial basic solution and the basic matrix B1.

Here XB
( ) , , ,1 0 20 26 91 b g  is the initial BFS and basis matrix  B1 is given by

B I1 0
1

1
1

2
1

3
1

4    ( ) ( ) ( ) ( ), , ,  (unit matrix). So B I1
1

4
 
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Step : 4 To construct the starting simplex table.

Variables in B1
1 Sol. Y Yk

( ) ( )1
4
1 Min ratio

the basis 0
1( ) 1

1( ) 2
1( ) 3

1( ) XB
( )1  B a1

1
4
1( ) X YB / 4b g

z' 1 0 0 0 0 - 7

---------------------------------------------------------------------------------------------------

y5 0 1 0 0 20 4 5 

(min)

y6 0 0 1 0 26 - 1 --

y7 0 0 0 1 91 3 91 / 3

B A
Outgoing vector Incoming Vector

Step : 5 Test of optimality.

Computer  j  for all a jj
( ), , , ,1 1 2 3 4  not in the basis.

   1 2 3 4 1
1

1
1

2
1

3
1

4
1, , , , , ,( ) ( ) ( ) ( )b g d i first row of B a a a a



   


 


L

N

MMMM

O

Q

PPPP
    1 0 0 0

3 1 2 7
2 3 1 4
2 2 5 1
1 1 2 3

3 1 2 7, , , , , ,b g b g

Since all  j s'  are not 0 , the solution is not optimal.

Step : 6 To Find incoming and outgoing vectors

Incoming vector :    k j j Hence k    min ;7 44 .

Thus a4
1( )  is the vector entering the basis. So the column vector Y4

1( )  corresponding to

a4
1( )  is given by

Y B a I4
1

1
1

4
1

4 7 4 1 3 7 4 1 3( ) ( ) , , , , , ,       b g

Outing Vector : Since 
x
y

x
y

Br

r

B

4

1

14

20
4

91
3

20
4

 L
NM

O
QP  min , ,

So r = 1 and hence 1
1

5
1( ) ( )a  is the outgoing vector..

Therefore key element = y14 4 , by min. ratio rule.
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Step : 7 To find the improved solution

We bring a4
1( )  in place of 1

1
5
1( ) ( ) ad i   in B1

1 , to get the revised simplex table

Table 2

Variables in B1
1 Sol. Y Yk

( ) ( )1
3
1 Min ratio

the basis 0
1( ) 1

1( ) 2
1( ) 3

1( ) XB
( )1  B a1

1
3
1( ) X YB / 3b g

e1 a4
1( ) a6

1( ) a7
1( )

z' 1 7 /4 0 0 35 -15 / 4

---------------------------------------------------------------------------------------------------

y4 0 1 / 4 0 0 5 - 1 / 4 --

y6 0 1 / 4 1 0 31 19 / 4 124 / 19 

y7 0 - 3 / 4 0 1 76 - 5 / 4 --

B A
Outgoing vector Incoming vector

Step : 8

We computer    1 2 3 5 1
1

1
1

2
1

3
1

5
1, , , , , ,( ) ( ) ( ) ( )b g d i d i first row of B a a a a



  





L

N

MMMM

O

Q

PPPP
 L
NM

O
QP17 4 0 0

3 1 2 0
2 3 1 1
2 2 5 0
1 1 2 0

1
2

17
4

15
4

7
4

, / , , , , ,b g

Since 3 15 4  /  is till negative, the solution under test is not optimal. So we proceed
to improve the solution in the next step.

Step : 9 To find entering and outgoing vectors.

AS  in step 6, we find the entering vector a3
1( ) . The column vector Y3

1( )  corresponding to

a3
1( )  is given by

Y B a3
1

1
1

3
1 15

4
1

4
19
4

5
4

( ) ( ) ( ) , , ,   
 L

NM
O
QP

By min. ratio rule, we find the outgoing vector 2
1

6
1( ) ( )a . So the key element will be 19 / 4.
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Step : 10 To find the revised solution

We bring a3
1( )  in place of 2

1
6
1( ) ( )ad i  in the basis B1

1  and obtain next revised table 3.

Table 3

Variables in B1
1 Sol. Y Yk

( ) ( )1
1

1 Min ratio

the basis 0
1( ) 1

1( ) 2
1( ) 3

1( ) XB
( )1  B a1

1
1
1( ) X YB / 1b g

e1 a4
1( ) a6

1( ) a7
1( )

z' 1 37/19 15/19 0 1130/19 -13/19

y4 0 5/19 1/19 0 126/19 8/19 63/4 

y3 0 1 / 19 4 / 19 0 124/19 -6/19 --

y7 0 -13/19 5/19 1 1599/19 -17/19 --

B A
Outgoing vector    Incoming vector

Step : 11 To test the optimality

We compute    1 2 5 6 1
1

1
1

2
1

5
1

6
1, , , , , ,( ) ( ) ( ) ( ) first row of B a a a ad i

          
 LNM

O
QP

 



L

N

MMMM

O

Q

PPPP


L
NM

O
QP1 37

19
15
19

0

3 1 0 0
2 3 1 0
2 2 0 1
1 1 0 0

13
19

122
19

37
19

15
19

, , , , , ,

Since 1 0 , the solution under test is not optimal. So we proceed to revise the solution
in the next step.

Step : 12 To find entering and outgoing vectors.

As in step 6, we find the entering vector a1
1( ) . The column vector corresponding to a1

1( )  is
given by

Y B a1
1

1
1

1
1 13

19
8

18
6

19
17

19
( ) ( ) , , , 

  L
NM

O
QP



By min ratio rule, we find the outgoing vector is 1
1

4
1( ) ( )a . So the key element is 8 / 19.
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Step : 13 To find the improved solution

In order to bring a1
1( ) in place of 1

1
4
1( ) ( )ad i  we divide second row by 8 / 19, then add its

13/19, 6/19 and 17/19 times in first, third and fourth rows respectively to obtain the next improved
solution.

Table 4

Variables in B1
1 Sol.

the basis 0
1( ) 1

1( ) 2
1( ) 3

1( ) XB
( )1

e1 a1
1( ) a3

1( ) a7
1( )

z' 1 19 / 8 7 / 8 0 281 / 4

y1 0 5 / 8 1 / 8 0 63 / 4

y3 0 1 / 4 1 / 4 0 23 / 2

y7 0 - 1 / 8 3 / 8 1 393 / 4

Step : 14 To test the optimality

We compute,    2 4 5 6 1
1

2
1

4
1

5
1

6
1, , , , , ,( ) ( ) ( ) ( )b g d i d i first row of B a a a a

 FHG
I
KJ





L

N

MMMM

O

Q

PPPP
 F
HG

I
KJ1 19

8
7
8

0

1 7 0 0
3 4 1 0
2 1 0 1
1 3 0 0

63
8

13
8

19
8

7
8

, , , , , ,

Since all  j 0 , the solution under test is optimal. So the optimal solution of modified
LPP is,

y y y y1 2 3 463 4 0 23 2 0   / , , / ,  and max z' = 281 / 4

Tranforming this solution for the original LPP, we get the desired solution as,

x y x y x y x y1 1 2 2 3 3 4 42 71 4 1 1 3 29 2 4 4           / , , / ,  and

max max ' /z z  41 445 4b g .
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 EXERCISES 

1) Use the revised simplex method to solve the L. P. Problem

Maximize z x x x  3 2 51 2 3

Subject to the constraints

x x x1 2 32 430  

3 3 4601 3x x 

x x1 24 420  ,

and x x x1 2 3 0, , 

2) Use the revised simplex method to solve.

Maximize z x x x x  1 2 3 42 3 4...

Subject to  the constraints

3 2 3 251 2 3 4x x x x   

    2 2 51 2 3 4x x x x

2 2 201 3 4x xl x x   

x x x1 2 3 0, , 

3) Use the revised simplex method to solve the L. P. P.

Max. z x x 2 1 2

Subject to constraints

3 4 61 2x x 

6 31 2x x 

x x1 2 0

4) Use resived simplex method to solve the following L. P. P.

Maximize z x x 3 51 2 , subject to the constraints

x1 4

x2 6

3 2 181 2x x 

x x1 2 0, 
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5) Use the revised simpelx method to solve the L. P. P.

Maximize z x x x  1 2 33

Subject to 3 2 31 2 3x x x   ,

2 2 21 2 3x x x  

x x x1 2 3 0, , 

6) Use revised simpelx method to solve the L. P. P.

Maximize z x x x  6 2 31 2 3

Subject to 2 2 21 2 3x x x  

x x1 34 4 

x x x1 2 3 0, , 

7) Use revised simplex method to solve the L. P. P.

Maximize z x x 5 31 2  subject to the conditions

4 5 101 2x x  ,

5 2 101 2x x 

3 8 121 2x x   and

x x1 2 0, 

8) Use revised simplex method to solve the following L. P. P.

Maximize z x x 1 22  subject to the constraints

3 2 61 2x x 

x x1 26 3 

and x x1 20 0 ,

9) Use revised simplex method to solve the following L. P. P.

Max. z x x 1 2  subject to the constraints

x x1 22 7 

4 61 2x x 

x x1 2 0, 
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10) Use revised simplex method to solve the following L. P. P.

Minimize z x x 1 22  subject to the constraints

2 5 61 2x x 

x x1 2 2 

x x1 20 0 ,

11) Use two phase revised implex method to solve the L. P. P.

Minimize z x x 3 1 2  subject to the constraints

Subject to constraints

x x1 2 1 

2 3 21 2x x 

x x1 2 0, 

12) Use the two phase revised simplex method to solve the L. P. P.

Minimize z x x x  4 2 31 2 3 , subject to the constraints,

2 4 51 2x x 

2 3 41 2 3x x x  

x x x1 2 3 0, , 

13) Solve the following L. P. P. by the revised simplex method.

Maximize z x x x x   2 4 6 21 2 3 4

Subject to the conditions

x x x1 2 32 3 15  

2 5 201 2 3x x x  

3 6 3 3 301 2 3 4x x x x    ,

x x x1 2 3 0, , 
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14) Use the revised simplex method to solve the L. P. P.

maximize z x x 1 22  subject to

x x1 2 3 

x x1 22 5  ,

3 61 2x x 

and x x1 2 0, 

15) Use the revised simplex method to solve,

Miximize z x x 2 31 2 , subject to,

x x2 1 0  ,

x1 4

and x x1 2 0, 

16) Use the revised simplex method to solve the following L. P. P.

Minimize z x x 2 1 2  subject to the constrants

3 31 2x x  ,

4 3 61 2x x  ,

x x1 22 2  ,  and x x1 2 0, 


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4.1 INTRODUCTION
There are certain decision problems where decision variables make sense only if they

have integer values in the solution. For example, it does not make sense saying 1.5 men working
on a project or 1.6 machines in a workshop. The integer solution to the problem can, however,
be obtained by rounding off the optimum value of the variables to the nearest integer value. This
approach can be easy in terms of economy of effort in time and cost that might be required to
derive an integer solution but this solution may not satisfy all the given constraints. Secondly, the
value of the objective function so obtained may not be optimal value. All such difficulties can be
avoided if the given problem, where an integer solution is required, is solved by integer
programming techniques.

4.1.1 Types of Interger Programming Problems
There are two types of integer programming problems.

i) Linear integer programming problems.

ii) Non - linear integer programming problems.

In this unit we are going to learn the methods of solving linear integer programming
problems. linear integer programming problems can be classified into three categories :

i) Pure (all) integer programming problems in which all decision variables are
required to have integer values.

ii) Mixed integer programming problems in which some, but not all, of the decision
variables are required to have integer values.

iii) Zero - one integer programming problems in which all decision variables must
have integer values of 0 or 1.

The pure integer programming problem in its standard form can be stated as follows :

Maximize z c x c x c x c xn n    1 1 2 2 3 3 ....

Subject to the constraints

a x a x a x a x bn n11 1 12 2 13 3 1 1    ....

a x a x a x a x bn n21 1 22 2 23 3 2 2    ....

............................................................

INTERGER
PROGRAMMING

UNIT

04
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a x a x a x a x bm m m mn n m1 1 2 2 3 3    ....

and x x x xn1 2 3 0, , ,...,   and are integers.

Here we shall discuss two methods.

i) Gomory's cutting plane method and

ii) Branch and Bound method for solving integer programming problems.

4.2 GOMORY'S ALL INTEGER CUTTING PLANE METHOD
Gomory's cutting plane method was developed by R. E. Gomory in 1956 to solve integer

linear programming problems using the dual simplex method. It is based on the generation of a
sequence of linear inequalities called a 'cut'. This 'cut' cuts out a part of the feasible region of the
corresponding L. P. problem while leaving out the feasible region of the integer linear programming
problem. The hyperplane boundary of a cut is called the cutting plane.

Gomory's algorithm has the following properties :

i) Additional linear constraints never cut - off that portion of the original feasible
solution space which contain a feasible integer solution to the original problem.

ii) Each new additional constraint (or hyperplane) cuts - off the current non - integer
optimal solution to the linear programming problem.

4.2.1 Method for constructing additional constraint (cut)
Gomory's method begins by solving the linear programming (LP) problem without taking

into consideration the integer value requirement of the decision variables. If the solution so
obtained in an integer i. e. all variables in the xB  column (also called basis) of the simplex table
assume non - negative integer values, the current solution is the optimal solution to the given
integer LP problem. But if some of the basic variables do not have non - negative integer value,
an additional linear constraint called the Gomory constraint (or cut) is generated. This linear
constraint (or cutting plane), is added to the bottom of the optimal simplex table so that the
solution no longer remains feasible. The new problem is then solved by using the dual simplex
method. If the optimed solution so obtained in again non - integer, another cutting plane is
generated. The procedure is repeated until all basis variables assume non - negative integer
values.

4.2.2 The procedure for developing a cut
Select one of the rows, called source row for which basic variable is non - integer. The

desired cut is developed by considering only fractional parts of the coefficients in source row.

Suppose the basic variable xr  has the largest fractional value among all basic variables.
Then the rth constraint equation (row) from the simplex table can be rewritten as ,

           x b x a x a xB r r r rr
    1 1 1 2 2. ...d i

       

x a xr r j j
j r

     .......... (i)
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Where x jj  ( , , ,... )1 2 3  represents all the non - basic variables in the rth constraint except

the variables xr  and b xr Br
 d i  is the non - integer value of varialbe xr . Let us decompose the

coefficients of x j  and xBr
 into integer and non - negative fractional parts in equation (i).

     x f x a f xB r r r r j
j r

r j j
    


( )1 0 { }     .......... (ii)

Where xBr  and ai j  denote the largest integer obtained by trucating the fractional part

from xBr
 and ar j  respectively. Rearranging equation (ii) we get,

  f x x a x f xr Br r r j j r j j
j r

    


o t     .......... (iii)

Where fr  is strictly positive fraction 0 1 frb g  while 0 1 f r j . We may write equation (iii)
in the form of following inequality.

   f f xr r j j
j r





i. e. f x f sr j j r g   or   

f s f xr g r j j
j r

    .......... (iv)

Where Sg  is a non - negative slack variable and is called the Gomory slack variable.
Equation (iv) represents Gomory's cutting plane constraint. This constraint create an additional
row along with a column for the new variable Sg .

4.2.4 Steps of Gormory's all integer programming algorithm
Step - 1

Initialization : Formulate the standard integer LP problem. If there are any non -
integer coefficients in the constraint equations, convert them into integer
coefficients. Solve it by simplex method, ignoring the integer requirement of
variables.

Step - 2

Test of optimality

a) Examine the optimal solution. If all basic variables (i. e. x bBi i 0  ) have
integer values, the integer optimal solution has been derived and the procedure
should be terminated. The current optimal solution obtained in step 1 is the optimal
basic feasible solution to the integer linear programming.

b) If one or more basic variables with integer requirements have non - integer
solution values, then go to step 3.
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Step - 3

Generate cutting plane : Choose a row r corresponding to a variable xr  which

has the largest fractional value fr  and generate the cutting plane (a Gomory
constraint) as explained earlier in equation (iv)

   

f s f xr g r j j
j r

where 0 1 fr j  and 0 1 fr .

If there are more than one variables with the same largest fraction, then choose
the one that has the smallest contribution to the maximization LP problem or the
largest cost to the minimization LP problem.

Step - 4

Obtain the new solution : Add the cutting plane generated in step 3 to the
bottom of the optimal simplex table as obtained in step. 3. Find a new optimal
solution by using the dual simplex method i. e. choose a variable to enter into the

new solution having the smallest ratio ( ) / ;C z y yj j i j i j 0n s  and return to step 2.

Start

Ignore integer requirement
and solve by simplex method

Do all basic 
variables with 

integer requirements
have integer 

solution
values?

Yes Current solution is
the requited integer 
LP problem solution

No

Select the basic variable with largest 
fractional value. Generate the cutting plane

Add the cutting plane to the bottom of optimal
simplex table. Find new optimal solution

using dual simplex method.
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The process is repeated until all basic variables with integer requirements assume
non - negative integer values.

The procedure for solving an ILP problem can be explained through a flow chart
given above.

4.3 EXAMPLES
1) Solve  the following integer programming problem using Gomory's cutting plane

algorithm.

Maximize z x x 1 2

Subject to

3 2 51 2x x 

x2 2

and x x1 2 0,   and are integers.

Answer :
Step : 1
Introducing the slack variables we get,

Maximize z x x s s   1 2 1 20 0

Subject to

3 2 51 2 1x x s  

x s2 2 2 

and x x s s1 2 1 2 0, , , 

The optimum solution to the LPP is given below.

C j 1 1 0 0

Basic Coeffts of Values of Variables Min
Variables Basic variables Basic variables x1 x2 s1 s2 Ratio

CB b XB x xB k/

      s1 0 5 3 2 1 0 5 / 2

  s2 0 2 0 1 0 1 2/1

z c xB B  0  j j jz c  -1 -1 0 0

     = c x cB j j  A
  s1 0 1 3 0 1 -2 1/3

1
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  x2 1 2 0 1 0 1 2/0

z c xB B 2  j j jz c   -1 0 0 -1

A
  x1 1 1 / 3 1 0 1/3 -2/3

x2 1 2 0 1 0 1

z7 3/  j j jz c   0 0 1/3 1/3  j  0

The optimal solution is x x1 2
1
3

2 ,  and Max. z
7
3

.

Step : 2

In the current optimal solution, all the basic variables in the basic are not integers and the
solution is not acceptable. Since both decision variables x1  and x2  are assumed to take an
integer value, a pure integer cut is developed under the assumption that all the variables are
integers. We go to next step.

Step : 3

Since x1  is the only basic variable whose value is a non - negative fraction, we shall

consider the fist row for generating the Gomory cut. Considering x1  - equation as the source
row we write.

   
1
3

0 1
3

2
31 2 1 2   x x s s.    ( x1  - source row)

The factoring of the x1  - source row yields

      0 1
3

1 0 0 1
3

1 1
31 1 2F

HG
I
KJ    F

HG
I
KJ   F

HG
I
KJ( ) x s s

Observe that each of the non - integer coefficient is factored into integer and fractional
parts in such a manner that the fractional part in such a manner that the fractional part is strictly
positive.

Rearrange the equation so that all of the integer coefficients appear on the left hand side.
This gives

1
3

1
3

1
32 1 1 2   s x s sb g

Therefore 
1
3

1
3

1
31 2 s s
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Thus complete Gomorian constraint can be written as

         
1
3

1
3

1
31 1 2  g s s  or    

1
3

1
3

1
31 1 2g s s

Where g1  is the new non - negative (integer) slack variable.

By adding the Gomory cut at the bottom of the simplex table, the new table so obtained
is given below.

c j    1 1 0 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 s1 s2 g1

x1 1 1 / 3 1 0 1/3 -2/3 0

x2 1 2 0 1 0 1 0

g1 0 - 1 / 3 0 0 -1/3 -1/3 1

Step - 4

Apply the dual simplex method to find the new optimal solution.

c j   1 1 0 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 s1 s2 g1

      x1 1 1 / 3 1 0 1/3 -2/3 0

     x2 1 2 0 1 0 1 0

  g1 0 - 1 / 3 0 0 -1/3 -1/3 1

z 7
2

z cj j  0 0 1/3 1/3 0

A
     x1 1 0 1 0 0 -1 1

     x2 1 2 0 1 0 1 0

     s1 0 1 0 0 1 1 -3

    z2    z cj j 0 0 0 0 1

Since all  j 0 , the solution is optimal solution. Thus x x s1 2 10 2 1  , ,  and max. z = 2.
This solution satisfies the integer requirement.
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2) Solve the following integer programming problem using Gomory's cutting plane
algorithm.

Maximize z x x x  2 20 101 2 3

Subject to 2 20 4 151 2 3x x x  

6 20 4 201 2 3x x x  

and x x x1 2 3, ,  are non - negative integers.

Also show that it is not possible to obtain a feasible integer solution by using the
method of simplex rounding off.

Answer :

Adding slack variable s1 in the first constraint and artificial variable in the second constraint
the problem is stated in the standard form as :

Maximize z x x x s MA    2 20 10 01 2 3 1 1

subject to

2 20 4 151 2 3 1x x x s   

6 20 4 201 2 3 1x x x A   

and x x s A1 2 1 1 0, , ,   and are integers.

The optimal solution of the problem ignoring the integer requirement using the simplex
method (Big M technique) is obtained in the following table.

c j 2 20 -10 0 -M

Basic Coeffts of Values of Variables Min
Variables Basic Basic x1 x2 x3 s1 A1 Ration

variables variables

  s1 0 15 2 20 4 1 0 15/20

A1 - M 20 6 20 4 0 1 20 / 20

Z M 20 z cj j  -6M-2 -20 M-20 -4M+10 0 0

x2 20 3/4 1/10 1 1/5 1/20 0 15/2

 A1 - M 5 4 0 0 -1 1 5/4

z M 15 5 z cj j  - 4 M 0 14 M + 1 0

A
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x2 20 5 / 8 0 1 1/5 3/40   -1/40

x1 2 5 / 4 1 0 0 -1/4 1/4

z15 z cj j  0 0 14 1 M  j  0

The non - integer optimal solution is x x x1 2 35 4 5 8 0  / , / ,  and Max. z = 15. Then the

rounded off solution will be x x x1 2 31 0 0  , ,  and Max z = 2. This solution does not satisfy the

second constraint 6 20 4 201 2 3x x x   . Hence it is not possible to obtain an integer optimal
solution by simply rounding off the values of the variables.

To obtain the integer valued solution, we proceed to construct Gomory's constraint
(fractional cut). Since the fractional part of the value of x2 0 5 8 ( / )  is more that the fractional

part of x1 1 1 4 ( / ) , the x2  - row is selected for constructing the fractional cut as given below..

    
5
8

0 1 1
5

3
401 2 3 1   . .x x x s

       0 5
8

1 0 0 1
5

0 3
402 3 1F

HG
I
KJ    F

HG
I
KJ  F

HG
I
KJb gx x s

On rearranging above equation we obtain the Gomory's fractional cut as,

     
5
8

1
5

3
401 3 1g x s          (Cut I)

Adding this additional constraint at the bottom of optimal simplex table, we get

c j 2 20 -10 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 x3 s1 g1

x2 20 5 / 8 0 1 1 / 5 3 / 40 0

x1 2 5 / 4 1 0 0 - 1/4 0

g1 0 - 5 / 8 0 0 -1/5 -3/40 1

z = 15 z cj j  0 0 14 1 0

A

Here max , ,
/

,
( / )

0
0

0
0

14
1 5

1
3 40 

RS|T|
UV|W|b g
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        = max , , ,   RST
UVW70 40

3

        = 
40
3

 Therefore we must enter the variable s1 .

Thus s1  is the entering variable whereas g1  is outgoing variable. Here we are applying
dual simplex method.

c j 2 20 -10 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 x3 s1 g1

x2 20 0 0 1 0 0 1

x1 2 10 / 3 1 0 2 / 3 0 -10/3

s1 0 25 / 3 0 0 8/3 1 -40/3

z = 20 / 3 z cj j  0 0 34/3 0 40/3

The solution is optimal but is still non - integer solution. Therefore one more fractioned
but should be added. Consider x1  - row for censtructing the cut.

        3 1
3

1 0 0 2
3

4 2
31 3 1F

HG
I
KJ    F

HG
I
KJ   F

HG
I
KJb gx x g

We obtain Gomory's fractional cut as,

     
1
3

2
3

2
32 3 1g x g       (Cut - II)

Adding this constraint to the optiomal simplex table the new table becomes

c j 2 20 -10 0 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 x3 s1 g1 g2

x2 20 0 0 1 0 0 1 0

x1 2
10
3

1 0
2
3

0 
10
3

0

s1 0
25
3

0 0
8
3

1 
40
3

0
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g2 0 
1
3

0 0 
2
3

0 
2
3

1

z 20
3

z cj j 0 0
34
3

0
40
3

0

Ratio - -
34 3

2 3
/
/

40 3
2 3

/
/ -

= - 17 - 20

A
Maximum ratio = - 17. Remove g2  from the basis and enter variable x3  into the basis by

applying the dual simplex method.

c j 2 20 -10 0 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 x3 s1 g1 g2

x2 20 0 0 1 0 0 1 0

x1 2 3 1 0 0 0 -4 0

s1 0 7 0 0 0 1 -16 4

x3 -10 1/2 0 0 1 0 1 -3/2

z = 1

The above optimal solution is still non - integer because variable x3  doex not have

integer value. Thus a first fractional cut will have to be constructed with the help of x3  - row and
the required Gomory's fractional cut is

    
1
2

1
23 2g g        (Cut III)

Additing this cut to the bottom of above table we get a new table. Apply the dual simplex
method.
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c j 2 20 -10 0 0 0 0

Basic Coeffts of Values of Variables
Variables Basic Basic x1 x2 x3 s1 g1 g2 g3

variables variables

     x2 20 0 0 1 0 0 1 0 0

     x1 2 3 1 0 0 0 -4 0 0

     s1 0 7 0 0 0 1 -16 4 0

     x3 -10 1/2 0 0 1 0 1 -3/2 0

  g3 0 -1/2 0 0 0 0 0 -1/2 1

z = 1 z cj j  0 0 0 0 2 15 0

Ratio 
z c

row
j j

th




5 - - - - - -30 -

A
Max. ratio = - 30 and therefore remove variable g3  and enter variable g2  into the basis

By applying the dual simplex method, we get the new optimal solution as shown in the following
table.

c j 20 20 -10 0 0 0 0

Basic Coeffts of Values of Variables
Variables Basic Basic x1 x2 x3 s1 g1 g2 g3

variables variables

x2 20 0 0 1 0 0 1 0 0

x1 2 3 1 0 0 0 -4 0 0

s1 0 3 0 0 0 1 -16 0 8

x3 -10 2 0 0 1 0 1 0 -3

g2 0 1 0 0 0 0 0 1 -2

z 14 z cj j  0 0 0 0 2 0 30

Since all the variables in above table have assumes integer values and all z cj j 0 , the

solution is integer optimal solution. x x x1 2 33 0 2  , ,  and maz x = - 14.
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3) The owner of a readymade garments store sells two types of shirts - zee shirts
and button - down shorts. He makes a profit of Rs. 3 and Rs. 12 per shirt on zee
- shirts and Button down shirts, respectively. He has tow tailors A and B at his
disposal to stitch the shirts. Tailors A and B can devote at the most 7 hours and
15 hours per day respectively. Both these shirts are to be stitched by both the
tailors. Tailors A and B spend 2 hours and 5 hours, respectively in stitching one
zee - shirt and 4 hours and 3 hours, respectively in stitching a Button down shirt.
How many shirts of both types should be stitched in order to maximize daily
profit?

a) Formulate and solve this problem as an LP problem.

b) If the optimal solution is not integer valued, use Gomory technique to derive
the optimal integer solution.

Answer :

Let x1  and x2  are number of zee - shirts and Button down shirts to be stitched daily,,

respectively. Then we have to maximize profit = 3 121 2x x  subject to the constraints.

i) Availability of time with tailor A

2 4 71 2x x 

ii) Availability of time with tailor B

5 3 151 2x x 

and x x1 2 0,   and are integers. Thus we get,

Maximize z x x 3 121 2

Subject to,

2 4 71 2x x 

5 3 151 2x x 

and x x1 2 0,   and are integers.

Adding slack variables s1  and s2  the given LP problem is stated into its standard form.

Maximize z x x 3 121 2

Subject to,

2 4 071 2 1x x s  

5 3 151 2 2x x s  

and x x s s1 2 1 2 0, , , 
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c j 3 12 0 0

Basic Coeffts of Values of Variables Min
Variables Basic variables Basic variables x1 x2 s1 s2 Ratio

CB b XB x xB k/

  s1 0 7 2 4 1 0 7/4

     s2 0 15 5 3 0 1 15 / 3

     z0 z cj j  -3 -12 0 0

  x2 12 7 / 4 1 / 2 1 1 / 4 0

     s2 0 39 / 4 7 / 2 0 - 3 / 4 1

z = 21 z cj j  3 0 3 0  j 0

The non - integer optimal solution is x x1 20 7 4 , /  and max z = 21.

b)

To construct Gomory's fractional cut we use x2  - rows.

7
4

1
2

1
41 2 1  x x s

The required fractional cut is

            
3
4

1
2

1
41 1 1g x s

Adding this additional constraint to the bottom of the optimal simplex and applying the
dual simplex method we get the following iterations.

c j 3 12 0 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 s1 s2 g1

x2 12 7 / 4 1 / 2 1 1 / 4 0 0

s2 0 39 / 4 7 / 2 0 - 3 /4 1 0

g1 0 - 3 / 4 - 1 /2 0 -1/4 0 1

z = 21 z cj j 3 0 3 0 0
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z c
row

j j
3 - 6 - - 12 0 0

A
x2 12 1 0 1 0 0 1

s2 0 g / 2 0 0 - 5/2 1 7

x1 3 3 / 2 1 0 1/2 0 - 2

z 33
2

z cj j  0 0
3
2

0 6

The optimal solution is still non - integer. Therefore adding one more fractional out with
the help of x1 - row we get the following able and subsequent interations by dual simplex method.

c j 3 12 0 0 0 0

Basic Coeffts of Values of Variables
Variables Basic variables Basic variables x1 x2 s1 s2 g1 g2

x2 12 1 0 1 0 0 1 0

s2 0 9 / 2 0 0 
5
2

1 7 0

x1 3 3 / 2 1 0 1/2 0 -2 0

g2 0 - 1 /2 0 0 -1/4 0 0 1

z 33
2

z cj j  0 0
3
2

0 6 0

Ratio 
z c
row

j j


4 - - -3 0 - -

x2 12 1 0 1 0 0 1 0

s2 0 7 0 0 0 1 7 -5

x1 3 1 1 0 0 0 -2 1

s1 0 1 0 0 1 0 0 -2

z = 15 z cj j  0 0 0 0 6           3 0

Since all the variables have assumed integer values and all z cj j 0 , the solution is an
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integer optimal solution. Thus the company should produce x1 1  zee shirt, x2 1 . Button -
down shirt to yield maximum profit z = Rs. 15.

4.4 GEOMETRICAL INTERPRETATION OF GOMORY'S CUTTINGS PLANE
METHOD
Let us consider the problem

Maximum z x x 1 2

Subject to

2 5 161 2x x 

6 5 301 2x x 

x x1 2 0, 

The graphical solution of this problem is obtained in the figure with solution space
represented by the convex region OABC. The optimal solution occurs at the extreme point B
i. e. x x1 23 5 18 . , . ,  max z = 5.3. But this solution is not integer valued. While solving this

problem by Gomory's method, we introduce first

Gomory's constraint   
3

10
9

10
4
53 4x x .

In order to express this constraint in terms of
x x1 2& , we use the constraints 2 5 161 2 3x x x  

and 6 5 301 2 4x x x   . Then Gomory's constraint
becomes,

      
3

10
16 2 5 9

10
30 6 5 4

51 2 1 2x x x xb g b g

i. e. x x1 2 5 1
6

 

This constraint cuts off the feasible region and now the feasible region is reduced to
somewhat less than the previous one and the procedure continues till an integer valued corner
is found. Because of cuttings in the feasible region, the method was named as cutting plane
method.

~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~
Find the optimum integer solution of the following all integer programming problems.

1) Max z x x 1 2

Subjct to

3 2 51 2x x 

x1 2
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x x1 2 0,   and are integers.  Ans x x z.: , ,max.1 23 2 5  b g
2) Max. z x x 1 22

Subjct to

4 2 151 2x x 

x x1 2 0,   and integers.

Ans x x z.: , ,max.1 23 0 3  b g
3) Max. z x3 2

Subject to,

3 2 71 2x x 

x x1 2 2  

x x1 2 0,   and integers.

Ans x x z.: , ,max1 20 2 6  b g
4) Max. z x x 1 25

Subject to,

x x1 210 20 

x1 2

x x1 2 0,   and integers.

Ans x x z.: , ,max1 22 1 7  b g
5) Max. z x x 3 41 2

Subject to,

3 2 81 2x x 

x x1 24 10 

x x1 2 0,   and are integers.

Ans x x z.: , ,max1 20 4 16  b g
6) Max. z x x 11 41 2

Subject to,

  x x1 22 4
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5 2 161 2x x 

2 41 2x x 

x x1 2 0,   and are integers.

Ans x x z.: , ,max1 22 3 34  b g
7) Max. z x x 1 2

Subject to,

x x1 22 4 

6 2 91 2x x 

x x1 2 0,   and are integers.

Ans x x z.: , ,max1 21 0 2  b g
8) Max. z x x x  3 2 51 2 3

Subject to,

5 2 7 281 2 3x x x  

4 5 5 301 2 3x x x  

x x x1 2 3 0, ,   and are integers.

Ans x x x z.: , , ,max1 2 30 0 4 20   b g
BRANCH AND BOUND METHOD

The branch and bound method was first developed by A. H. Land and A. G. Daig and it
was further studied by J.O. C. Little et. al. and other researchers. This method can be used to
solve all integer, mixed integer and zero - one linear problems. This is the most general technique
for the solution of integer programming problem (I.P.P.) in which a few or all the variables are
constrained by their upper or lower bounds.

4.5 STEPS OF BRANCH AND BOUND ALGORITHM
Step : 1

Initialization : Consider the following all integer programming problem.



177

Maximize z c x c x c x
Subject to constra s
a x a x a x x x b
a x a x a x a x b

a x a x a x a x b

LP A

n n

n n

n n

m m m mn n m

   

    

    

    

U

V

||||

W

||||



1 1 2 2

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

...
int

...
...

...................................................
...

b g

Obtain the optimal solution of the given problem ignoring integer restriction on the
variables.

If the solution to this LP problem (say L P - A) is infeasible or unbounded, the solution to
the given all integer programming problem is also infeasible or unbounded, as the case may be,

Otherwise examine optimal feasible solution. If the answer satisfies the integer
restrictions, the optimal integer solution has been obtained. If one or more basic variables do not
satisfy integer requirement then go to step 2.

Step : 2

a) Let the optimal value of objective function of LP - A be z1 . This value provides an
initial upper bound on objective function value for integer LP problem. Let it be
denoted by zu . The lower bound on integer LP problem can be obtained by
truncating to integer all values of the varialbes. Let the lower bound be denoted by
zL .

b) Let xk  be the basic variable having largest fractional value.

c) Branch (or partition) the LP - A into two new LP sub - problems (also called
nodes) based on integer value of xk  i. e. partitioning is done by adding two mutually
exclusive constraints.

x xk k  and x xk k 1

to the original LP problem. Here xk  is the integer portition of the current non -

integer value of the variable xk . This is done to exclude the non - integer value of

the variable xk . The two new LP sub problems are as follows.

LP sub - problem B LP sub - problem C

Max z c xj j
j

n



 .

1
Max z c xj j .

subject to subject to

a x bi j j i a x bi j j i
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x xk k x xk k 1

and x j 0 and x j 0

Step : 3
Bound step : Obtain optimal solution of sub - problems B and C. Let the optimal value of

the objective function of LP - B be z2  and  that of LP - C be z3 .

Step : 4
Examine solution of both LP - B and LP - C, which might contain optimal point.

1) Exclude a sub - problem from further consideration if it has an infeasible solution.

2) If a sub - problem yields a solution that is feasible but not an integer then for this
sub - problem return to step - 2.

3) If a sub - problem yields a feasible integer solution examine the value of objective
function. If this value is equal to the upper bound zU , an optimal solution has

been reached. But if it is not equal to the upper bound zU  but exceeds the lower

bound zL , this value is considered as  new upper bound and return to step 2.
Finally if it is less than the lower bound, terminate this branch.

Step : 5
The procedure of branching and bounding contimes until no further sub problem remains

to be examined. At this stage, the integer solution corresponding to the current lower bound is
the optimal all integer programming problem solution.

4.6 Examples
1) Solve the following all integer programming problem using the branch and bound

method.

Maximize z x x 3 51 2

Subject to the constraints

2 4 251 2x x 

x1 8

2 102x 

and x x1 2 0,   and integers.

Answer :
Relaxing the integer requirements, the optimal non - integer solution of the given integer

L. P. problem obtained by the graphical method as shown below is x x1 28 2 25 , .  and

z1 35 25 . .
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2 4 6 8 10 12
x1

x2

2

4

6

8

10

12
x1=8

2x2=10C
2x1+4x =252

Feasible
Region

B (8, 2.25)

The value of z1 represents the initial upper bound, zu  35 25.  on the value of the objective
function i. e. the value of the objective function in the subsequent steps cannot exceed 35.25.
The lower bound zL  is obtained by truncating the solution values to x1 8  and x2 2 .

Thus zL   3 8 5 2 34( ) ( )

The variable x2 2 25( . )  is the only non - integer solution value and is therefore selected
for dividing the given problem into two sub - problems LP - B and LP - C. Two new censtrains
x2 2  and x2 3  are created. These two constraints are added to the given problem to get two
sub - problems.

LP - B LP - C

Max z x x 3 51 2 Max. z x x 3 51 2

Subject to, Subject to,

2 4 251 2x x  2 4 251 2x x 

x1 8 x1 8

         2 102x           2 102x 

x2 2 x2 3

and x x1 2 0,   and integers. and x x1 2 0,   and integer..

In sub - problem L. P. B. the constraint 2 102x   is redundant as x2 2  satisfy 2 102x  .

Subproblem B and C are solved graphically.
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2 4 6 8 10 12

2

4

6

8

10

12

14

B

C
x2 5

x2 3
x2 2

x1 8
x2

B) Feasble region for sub - problem B

C) Feasible region for sub - problem C.

The solution to subproblem B is x x z1 2 28 2 34  , , .

The solution to subproblem C is x x z1 2 36 5 3 34 5  . , , . . Notice that both solution yield
value of z lower than that of original LP problem. The value of z, establishes an upper bound on
z2  and z3  values of sub - problems.

Since the solution of sub - problem B is an all integer, we stop the search of this sub -
problem i. e. no further branching is required from node B. The value of z2 34  becomes the
new lower bound on the IP problems optiomal solution. A non - integer solution of sub - problem
C and also z z3 2 , both indicate that further brancing is necessary from node C. However if

z z3 2  then no further branching would have been required from node C. The upper bound now

takes the value z zU  3 34 5.  instead of 35.25 at node A.

The sub - problem C is now branched into two new subproblems D and E, and are
obtained by adding the constraints x1 6  and x1 7  (for problem C, x1 6 25 . )

LP - D LP - E

Max. z x x 3 51 2 Max. z x x 3 51 2

Subject to, Subject to,

2 4 251 2x x  2 4 251 2x x 

x1 8 x1 8

         2 102x           2 102x 

x2 3 x2 3
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x1 6 x1 7

and x x1 2 0,   and integers. and x x1 2 0,   and integers.

Sub - problems D and E are solved graphically.

The solutions are

LP - D : x x Max z z1 2 46 3 25 34 25   , . , . .

LP - E : No feasible solution exists because constraints

x1 7  and x2 3  do not satisfy 2 4 251 2x x  .

So this branch is terminated.

2 4 6 8 10 12

6

8

10
x 1

=8

14
x1

D4

2

x 1
=7

x2 5

x2 3
x2 2

x 1
=6

In problem - D solution x2 3 25 .  is not an integer solution. Create new sub problems F

and G from sub problem D with two new constraints x2 3  and x2 4 .

LP - F LP - G

Max. z x x 3 51 2 Max. z x x 3 51 2

Subject to, Subject to,

2 4 251 2x x  2 4 251 2x x 

x1 8 x1 8

         2 102x            2 102x 

x2 3 x2 3

x1 6 x1 6

x2 3 x2 4
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and x x1 2 0,   and integers. and x x1 2 0,   and integers.

The graphical solution of sub - problems F and G gives

sub - problems F : x x1 26 3 ,  and Max. z z 5 33

sub - problems G : x x1 24 25 4 . ,  and Max. z z 6 33 5.

The branching process is terminated when new upper bound is less than or equal to the
lower bounds of previous solutions or no further branching is possible.

Although the solution at node G is non - integer, no additional branching is required from
this node because z z6 4 . The branch and bound algorithm is terminated and the optimal integer

solution is x x1 28 2 ,  and z = 34 yielded at node B.

The branch and bound procedure for the above problem is given below.

Infeasible

z  = 35.25
z

U

L = 34

E

G

F

D

B

A

Optimal
Solution

x2 2

x1 6

x1 7

x2 3

x2 4C

x2 3

x x1 28 2 25 , .
z1 35 25 .

x x1 28 2 ,
z2 34

x x1 26 3 25 , .
z4 34 25 .

x x1 26 3 ,
z5 33

x x1 26 3 ,
z5 33

x x1 24 5 4 . ,
z6 33 5 .

zU 34 5.
zL 33 0.

x

2) Use branch and bound technique and solve the following integer programming
problem.

Max. z x x 7 91 2

Subject to,

  x x1 23 6

7 351 2x x 

0 71 2 x x,

and x x1 2,  are integers.

Answer
Relaxing the integers requirement the optimal non - integer solution obtained by graphical

method is as follows.
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2

2

4 6 8

4

6

8
x x1 23 6 

Feasible
region

(9/2,7/2)

x1 7

x2 7

x1

x2
7 351 2x x 

       x x1 2
9
2

7
2

 ,

and z1 7 9
2

9 7
2

63 F
HG

I
KJ 

F
HG

I
KJ 

Thus zu 63  and zL   7 4 9 3 55( ) ( )

Both x1  and x2  are non - integer solution values. Choose x1
9
2

  for dividing the given

problem into two sub problems LP - B and LP - C. Two new constraints x1 4  and x1 5  are
added to LP - B and LP - C respectively.

LP - B LP - C

Max. z x x 7 91 2 Max. z x x 7 91 2

Subject to, Subject to,

  x x1 23 6   x x1 23 6

   7 351 2x x     7 351 2x x 

   0 71 2 x x,    0 71 2 x x,

x1 4 x1 5

and x x1 2,  are integers. and x x1 2,  are integers.

The solution to sub problem LP - B and LP - C are obtained by graphical method.
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2

2

4 6 8
x1

4

6

8

Region B

(4,10/3)

  x x1 23 6

Region C = {(5,0)}
7 351 2x x 

x1 5x1 4

x2

The solution of sub problem LP - B is x x z1 2 24 10
3

58  , , . The feasible region for

subproblem LP - C is {(5, 0)}. Therefore the solution of subproblem LP - C is x x z1 2 35 0 35  , , .
Since all the variables have integer values, we stop the search for this subproblem i. e. no
further branching is required from node C. The value z = 35 becomes the new lower bounds on
the IP problems optimal solution. A non - integer solution of subproblem B and z z2 3 , both
indicate that further branching is necessary from node B.

The sub - problemB is now branched into two new subproblem D and E, and are obtained
by additing the constraints x2 3  and x2 4  (as for problem B x, /2 10 3 ).

LP - D LP - E

Max Z x x 7 91 2 Max. Z x x 7 91 2

Subject to, Subject to,

  x x1 23 6   x x1 23 6

   7 351 2x x     7 351 2x x 

  0 71 2 x x,    0 71 2 x x,

x1 4 x1 4

x2 3 x2 4

The graphical solutions to LP - D and LP - E are as follows.
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2

2

6 8

4

6

8

(4,10/3)
  x x1 23 6

Region C = {(5,0)}
x =41

x =52

x2 7

x2

x1

x2 3

4

7 351 2x x 

D

There is no feasible region for LP-E, Since x1 4  and x2 4  do not satisfy   x y1 23 6
as such there is no feasible solution for problem LP - E. The solution of subproblem LP - D is
x x1 24 3 ,  and z4 55 . Since there is no solution for subproblem LP - E no further branching
is required for this subproblem. Since solution to LP - D is an integer solution, no further branching
is required for LP - D asa.

Thus finally, we get the optimal solution to the given integer LP problem as z = 55,
x x1 24 3 , .

The tree - diagram corresponding to this problem is shown in the following figure.

Start

x1 4 x2 5

No solution

Optimal solution

x2 4x2 3

x x1 29 2 7 2 / , /
z1 63

x x1 24 10 3 , /
z2 58

x x1 25 0 ,
z3 35

x x1 24 3 ,
z4 55
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Remark
If the number of variables are more than 2 then exclude the redendent constraints and

solve these problems by simplex method and obtain solutions corresponding to each sub -
problem.

~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~
Use branch and bound technique and solve the following integer programming problems.

1) Max. z x x x  3 3 131 2 3

Subject to,

   3 6 7 81 2 3x x x

   5 3 7 81 2 3x x x  

       0 5 x j

and all x j  are integer..

2) Max. z x x 3 1 2

Subject to,

3 121 2 3x x x  

3 11 661 2 4x x x  

x jj  0 1 2 3 4, , , ,

3) Max. z x x 1 2

Subject to,

  4 101 2x x 

2 5 101 2x x 

x x1 2 0 1 2 3, , , ,

4) Min. z x x 3 2 51 2.

Subject to,

x x1 22 20 

3 2 501 2x x 

x x1 2 0,   and integers.
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Ans x x z.: , ,1 214 4 52  b g
5) Max. z x x 2 31 2

Subject to,

x x1 23 9 

3 71 2x x 

  x x1 2 1 

x x1 2 0,   and integers.

Ans x x z.: , ,1 20 3 9  b g
6) Max. z x x 7 61 2

Subject to,

2 3 121 2x x 

6 5 301 2x x 

x x1 2 0,   and integers.

Ans x x z.: , ,1 25 0 35  b g
7) Max. z x x 5 41 2

Subject to,

x x1 2 2 

       5 3 151 2x x 

       3 5 151 2x x 

and x x1 2 0,   and integers.

Ans x x z.: , ,1 23 0 15  b g
8) Max. z x x x   3 31 2 3

Subject to,

   x x x1 2 32 4

     2 15 12 3x x .

x x x1 2 33 2 3  
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x x1 2 0, 

x3  - non - negative integers.

Ans x x x z.: , , ,1 2 30 8
7

1 29
7

   F
HG

I
KJ

9) Max. z x x 1 2

Subject to,

2 5 161 2x x 

6 5 301 2x x 

x2 0

x1  - non - negative integer..

Ans x x z.: , ,1 24 6
5

26
5

  F
HG

I
KJ

10) Max. z x x 110 1001 2

Subject to,

6 5 291 2x x 

4 14 481 2x x 

x x1 2 0,   and integers.  Ans x x z.: , ,1 24 1 540  b g

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Dynamic programming is a quantitative technique for solving problems involving a
sequence of inter related decisions. It is a decision making problem. In this technique a problem
is divided into sub - problems (stages). The computation at different stages are linked through
recursive computations in such a way that the feasible optimum solution of the entire problem is
obtained when the last stage is reached.

This technique was developed by 'Richard Bellman'. Bellman's principle of optimality
states that. An optimal policy has the property that whatever the initial state and deciions are the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision.

Mathematically, this can be written as

f x r d f T x dN d x n N nn
( ) ( ) ( , )max  l q l qn s1

Where f xN ( ) = The optimal return from an N stage process when
initial state is x.

r dn( ) = Immediate return due to decision xn

T x dn,b g = The transfer function which gives the resulting
state

xl q = Set of admissible decisions.

The problem which does not satisfy the principle of optimality cannot be solved by the
dynamic programming method.

Characteristics of Dynamic Programming
1) The problem can be divided into stages, with a policy decision required at each

stage.

2) Every stage consists of a number of states associated with it. The states are
different possible conditions in which the system may find itself at that stage of
the problem.

3) The decision at each stage converts the current state into a next state.

4) The state of the system at a stage is decscribed by state variables.

5) Given the current state, an optimal policy for the remaining stages is independent
of the policy adopted in previous stages.

DYNAMIC
PROGRAMMING

UNIT

05
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6) A recursive relation (functional equation) is formulated with n stages.

7) Using recursive equation approach each time the solution procedure moves
backward stage by stage for obtaining the optimal policy of each state for that
particular stage, till it attains the optimum policy beginning at the initial stage.

5.1 EXAMPLES
Example : 1

A positive quantity C is to be divided into n parts in such a way that the product of the n
parts is to be a maximum. Obtain the optimal subdivision.

Solution :

Step : 1
Mathematical formulation and development of recurrence relation. If the number c is

divided into n parts y y y s an1 2 4, ,... ( ) . Then the problem is to find y y y yn1 2 3, , ,...,  which

Maximize z y y y yn 1 2 3, , ,...,

such that y y y y cn1 2 3    ...

We form a recursive relation connecting n stage problem with the optimal decision
function for the (n - 1) stage such problem n = 1, 2, ..., n.

Let u i ni 1 2, ,...,b g  be the ith part of c. In this problem each part ui  is may be regarded as

a stage, ui  may assume any non negative values such that y y y y cn1 2 3    ... .

Hence fa  the alternatives at each stage are infinite. It is a problem of continuous system
and hence the optimal decision at each stage are obtained by using the method of differential
calculus.

Let f cn ( )  denote the maximum value of the product when the quantity c is divided into n

parts. f cn ( )  is function of discrete variables n.

For n = 1, i. e. if c is divided into one part only. Then y c1 

 f c c1 ( )     .......... (1)

For n = 2, i. e. if C is divided into two parts u1  and u2 .

Let y z1 

 y c z2  

 f c Maxy y Max z c z
Z C2 1 2 0

( )  
 

b gm r

f c Max zf c z
Z C2 0 2( ) 

 
b gm r (Since f c z c z1   b g b g  from (1)
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For n = 3, if c is divided into threee parts u u u1 2 3, ,

Let y z1  ,  then y y c z2 3  

Therefore the part c - z is further divided into two parts y y2 3,  where maximum product

is f c z2 b g  by definition of f cn ( ) .

 f c Maxy y y Max zf c z
Z C3 1 2 3 0 2b g b gm r  

     .......... (3)

By similar procedure we get

for n = m the recursive relation is

f c Max zf c zm Z C m( ) 
  0 1 b gn s     .......... (4)

Step 2
Solve the recursive relation for optimal policy

From (1) f c c1 ( )

From (2) f c Max zf c z
Z C2 0 2( ) ( ) 

 
l q

           
 
Max z c z

Z C0
.( )l q

We apply the method of diff. calcules

d
dz

z c z c z.    b gc h 2 0

 z c c z c
  

2 2
,

d
dZ

z c z
2

2 2  b gm r  at z c


2

Hence z (c - z) is maximum at z c


2

 f c c c c
2

2

2 2 2
( ) .  FHG

I
KJ     .......... (5)

Optimal policy for two parts is 
c c
2 2

,F
HG

I
KJ
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In other words the optimal policy for two parts is division of c in two equal parts.

From (3) f c Max zf c z
Z C3 0 2( ) 

 
b gm r

          
F

HG
I
KJ

R
S|
T|

U
V|
W|

 
F

HG
I
KJ 

Max z c z
z

f c z c z
zZ C0

2

2

2

. , b g       .......... From (5)

We apply the method of calculas

d
dz

z c z
z

c z
z

z c z. . .F
HG

I
KJ

R
S|
T|

U
V|
W|


F
HG

I
KJ 

F
HG

I
KJ FHG

I
KJ

R
S|
T|

U
V|
W|


2 2

1 2
2

1
2

0

 c = 3 z

z c


3

 c z c c c
   

3
2
3

 is to be divided into two parts whose product is maximum.

By the policy for two parts f c z2 ( )  i. e.

i. e. f
c

2
2
3

F
HG

I
KJ  is attained when the two parts are 

1
2

2
3
cF

HG
I
KJ  and 

1
2

2
3
cF

HG
I
KJ  is 

c c
3 3

,

f c c c c
c c c

3

2

2 3

3
3

2 3 3 3
b g

R
S|

T|

U
V|

W|
 RST

UVW  FHG
I
KJ

Hence the optimal policy for three parts is 
c c c
3 3 3

, ,F
HG

I
KJ  is

c is divided into three equal parts.

In general for n parts (stages)

Optimal policy is 
c
n

c
n

c
n

c
n

, , ,...,F
HG

I
KJ

 f c c
nn

n

( ) FHG
I
KJ

We shall have this result by induction on n.
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The given result is true for n = 1

f c1  . c is divided into one part only..

Assume that the given result is true for n = m.

i. e. f c c
mm

m

b g FHG
I
KJ

We shall show that the above result is true for n = m + 1

From (4) f c Max zf c zm Z C m  
 1 0

b g b gm r


F

HG
I
KJ

R
S|
T|

U
V|
W| 

Max z c z
mZ C

m

0
.

We apply the method of differential calculus

d
dz

z c z
m

c z
m

zm c z
m m

m m m
F

HG
I
KJ

R
S|
T|

U
V|
W|


F
HG

I
KJ 

F
HG

I
KJ FHG

I
KJ



1 11

.

    = 0

 z c
m


1

It can be prove that

d
dz

z c z
m

m2

2 0. F
HG

I
KJ

R
S|
T|

U
V|
W|
  for z c

m


1


f c

m

c c
m
m

c
mm

m

m











R
S
||

T
||

U
V
||

W
||




F
HG

I
KJ1

1

1
1

1

Optimal policy in this case is

c
m

c
m

c
m  

RST
UVW1 1 1

, ,...,

Hence the required optimal policy is

c
n

c
n

c
n

, ,...,RST
UVW
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Example : 2
Use dynamic programming to show that



p pi i
i

n

log
1

subject to pi
i

n



 1

1
 is maximum when p p p

nn1 2
1

  ...

Step 1
Form a functional equation we consider a problem as follows

Divided 1 in n parts p p pn1 2, ,...,  such that

     

p p p p p p p pi i n n
i

n

log log log ... log1 1 2 2
1

b g  is maximum.

Let fn ( )1  denote maximum value of 

p pi i
i

n

log
1

 when 1 is divided in n parts p p pn1 2, ,..., .

Such that p p p pn1 2 3 1    ...

fn ( )1  is a function of discrete variable and it is continuous system problem.

For n = 1, i. e. if 1 is divided into one part only then p1 1 .

 f Max p p1 8 11 1 1( ) log .log   b g     .......... (1)

For n = 2 i. e. 1 is divided into two parts p1  and p2 .

Let p z1 

 p z2 1 

 f Max p p p p2 1 1 2 21( ) log log  b g
           Max z z z zlog log)1 1b g b g

          
 

Max z z f z
Z0 1 1 1log b g     .......... (2)

For n = 3 i. e. if c is divided into three parts p p andp1 2 3,

Let p z1  , then p p z2 3 1  

Therefore the parts (1 - z) is divided into two parts p p2 3,  whose maximum value is

f z2 1( ) .
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f Max p p p p p p3 1 1 2 2 3 31( ) log log log   

           
 

Max z z f z
Z0 1 2 1log b g    .......... (3)

By similar procedure

We get the functional equation for n = m.

f Max z z f zm z m( ) log1 1
0 1 1   
   b g    .......... (4)

Step 2
Solve the functional equation

From (1) f1 1 1 1( ) log 

From (2) f Max z z f z
z2 0 1

1 1( ) log   
 

b g

f Max z z z z
z2 0 1

1 1 1b g b g b g    
 

log log

We use method of differential calcules

    
d

dz
z z z z   log log1 1b g b g

           



  
L
NMM

O
QPP
log logz z

z
Z

z
z1

1
1

1 1 0b g b g
b g b g b g

 z 1
2

d
dz

z z z z
2

2 1 1 4 0      log logb g b g  at Z 
1
2

f z2 1 1
2

1
2

1
2

1
2

1
2

1
2

b g   FHG
I
KJlog log log

Thus the optimal policy for two parts is p p1 2
1
2

 

using (3) we have

f Max z z f z
z3 0 1 21 1( ) log   

 
b g
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           
F

HG
I
KJ

F
HG

I
KJ

RST
UVW

L
NM

O
QP 

Max z z z z
Z0 1

2 1
2

1
2

log log     .......... (5)

We use method of differential calcules.

d
dz

z z z z
  

F
HG

I
KJ

L
NM

O
QPlog log1 1

2
b g

    
F

HG
I
KJ  


FHG

I
KJ

L
NMM

O
QPP

log logz z
z

z
z

z
z z

1 1 1 1
1

1b g b g b g
= 0

 z 1
3

 1 1 1
3

2
3

   z

d
dz

z z z
z

2

2 2 1 1 0  
F

HG
I
KJ

L
NM

O
QP log logb g  at z 2

3

1 2
3

 z  is to be divided into two parts p2  and p3  such that  p p p p2 2 3 3log log  is

maximum.

Hence for two parts f z2 1( )  i. e. f2
2
3

F
HG

I
KJ  is attained when the two parts are

p2
1
2

2
3

1
3

 F
HG

I
KJ  , p3

1
2

2
3

1
3

 F
HG

I
KJ 

f z f2 21 2
3

2 2 3
2

2 3
2

  F
HG

I
KJ  RST

UVWb g / log ( / )

   F
HG

I
KJ

RST
UVW3 1

3
1
3

log

     f3 1 1
3

1
3

2 1
3

1
3

( ) log log  F
HG

I
KJ   F

HG
I
KJ

RST
UVW

  F
HG

I
KJ

RST
UVW3 1

3
1
3

log     .......... (6)
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Hence the optimal policy for three parts is p p p1 2 3
1
3

  

In general for n parts the optimal policy is p p p p
nn1 2 3
1

    ...

and f n
n nn ( ) log1 1 1

  F
HG

I
KJ

RST
UVW     .......... (7)

The above result can be proved by induction.

For n = 1 the given result is true

Assume that the given result is true for n = m, m > 1

f m
m mm ( ) log1 1 1

  F
HG

I
KJ

L
NM

O
QP

We shall show that given result (7) also hold for n = m + 1

From (4)

f Max z z f zm Z m  
   1 0 1

1 1b g b gm rlog

   
 RST|

UVW|
L
N
MM

O
Q
PP 

Max z z m
z

m
z

mZ0 1

1 1
log log

b g b g

Consider

d
df

z z m
z

m
z

m
  

 RST|
UVW|

L
N
MM

O
Q
PP

log log
1 1b g b g

    
 


F

HG
I
KJ F
HG

I
KJ

FHG
I
KJ

L

N

MMMM

O

Q

PPPP
log logz z

z
m

z
m

z
m

m z
m z

m
m

1 1 1 1
1

1 0
b g b g

        z
m



1

1

Second derivative is < 0 for z m



1

1

f z f
mm m1 1 1

1
  


F
HG

I
KJb g
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


F
HG

I
KJ  


F
HG

I
KJ 

R
S
||

T
||

U
V
||

W
||

f m
m

m

m
m

m

m
m

mm 1
1 1log

 
 

F
HG

I
KJ

L
NM

O
QP

m
m m

1
1

1
1

log

and optimal policy is

 p p p
mm1 2 1

1
1

  


Hence the required policy is

p p p
nn1 2
1

  ...

Example : 3

Find Min. z x x xn   1 2 ...

when x x x x dn1 2 3, , ,...,  ,

x x xn1 2 0, ,..., 

Let f dn ( )  be the minimum sum

z x x xn   1 2 ...

When d x x xn 1 2, ,...,  (d is factorized into n factors)

This is a n stage problem

For n = 1 i. e. If d is factorized into one factor only x d1 

 f d Min z Min x d1 1( )       .......... (1)

For n = 2, i. e. If d is factorized into two factors x1  and x2

Let x y1   Then x d y2  / (as d x x 1 2, )

f d Min z Min y d
yy d2 0

( )  
F
HG

I
KJ 

         
 
Min y f d y

y d0 1 /b gm r     .......... (2)
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For n = 3 i. e. d is factorized into three parts x x x1 2 3, ,

Let x y x x d
y1 2 3 ,

i. e. part d / y is further divided into two parts whose minimum value is f d y2 /b g
 f d Min z Min x x x3 1 2 3( )   l q

          
F
HG

I
KJ

RST
UVW 

Min y f d
yy d0 2    ........... (3)

By similar procedure we get the following functional equation for n = m.

f d Min y f d
ym y d m( ) 

F
HG

I
KJ

RST
UVW 

0 1     .......... (4)

We shall solve the above functional equation

From (1) f d d1 ( )

From (2) f d Min y f d
yy d2 0 1( ) 

F
HG

I
KJ

RST
UVW 

         
RST

UVW 
Min y d

yy d0

We use the method of differential calculers

   
d

dy
y d

y
d
y


F
HG

I
KJ   1 02

       y d  1 2/

d
dy

y d
y

d
y

2

2 3
2 0

F
HG

I
KJ    for y d 1 2/

Hence y d
y

  is minimum for y d 1 2/

 f d d d
d

d2
1 2

1 2
1 22b g  /

/
/     .......... (5)

From (3)
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 f d Min y f d
yy d3 0 2( ) 

F
HG

I
KJ

RST
UVW 

          
F
HG

I
KJ

R
S|
T|

U
V|
W| 

Min y d
yy d0

1 2

2
/

     
d

dy
y d

y
d
y


F
HG

I
KJ

R
S|
T|

U
V|
W|
  2 1 0

1 2 1 2

3 2

/ /

/

 y d3 2 1 2/ /

 y d 1 3/     .......... (6)

    d
dy

y z d
y

2

2

1 2

0
F
HG

I
KJ

R
S|
T|

U
V|
W|


/

 for y d 1 3/

Hence y z d
y


F
HG

I
KJ

1 2/

 is minimum for y d 1 3/

 f d d Z d
d

d3
1 3

1 3
1 33b g  F

HG
I
KJ 

/
/

/

Hence the optimal policy is d d d1 3 2 3 1 2 2 3 1 2/ / / / /
, ,d i d iFH IK  i. e. optimal policy is d d d1 3 1 3 1 3/ / /, ,d i

By similar procedure we have

f d ndn
nb g 1/

and the optimal policy is d d dn n n1 1 1/ / /, ,...,d i
The above result can be proved by induction.

Example : 4

Minimize z y y y  1
2

2
2

3
2

Subject to y y y1 2 3 15    and y y y1 2 3 0, ,  .

Solution :

In this problem y y y1 2 3, ,  are decision variables. This is three stage problem.
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State variables s s s1 2 3, ,  are defined as

s y y y3 1 2 3 15   

s y y s y2 1 2 3 3   

s y s y1 1 2 2  

      F s y F s
y3 3 3

2
2 2

3
b g b g min

      F s y F s
y2 2 2

2
1 1

2
b g b g min

       F1 s y s y1 1
2

2 2
2b g b g  

Thus F s y s y
y2 2 2

2
2 2

2

2
b g b g  min

By method of differential calculus

d
dy

y s y y s y
2

2
2

2 2
2

2 2 22 2 0     b g b g

d
dy

y s y
2

2
2 2

2
2 2

2 0  b g  at y s2 2 2 /

Hence F s s2 2 2
2 2b g /

     F s y F s
y3 3 3

2
2 2

3
b g b g min

     
L

N
MM

O
Q
PPmin

y
y

s y
3

3
2 3 3

2

2
b g

By method of differential calcules

F s3 ( )  is minimum at y s3 3 2 /

Hence F s s s3 3
3
2

33
15( ) , 

F s3 3( )  is minimum for s3 15

Minimum value of y y y1
2

2
2

3
2   is 75, y y y1 2 3 5  


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Solution of Linear Programming Problem as a Dynamic Programming Problem
A general L. P. problem is

Max. z c x c x c xn n   1 1 2 2 ..........

subject to

a x a x a x bn n11 1 12 2 1 1   ..........

a x a x a x bn n21 1 22 2 2 2   ..........

.....................................................

.....................................................

a x a x a x bm m mn n m1 1 2 2   ..........

and x x xn1 2 0, ,........,  .

We can formulate this L. P. problem as a dynamic problem.

General linear programming problem is considered as a multi stage problem with each
activity x x xn1 2, ,....,  as individual stage. This is a n stage problem. As x j  is continuous, each
activity has an infinite number of alternatives within, the feasible region, L. P. is an allocation
problem which requires, the allocation of resources to the activities.

b b bm1 2, ,.....,  are m resources.

Let f b b bn m1 2, ,....,b g  be the maximum value of the general linear programming defined

above for the states x x xn1 2, ,....,  for states b b bn1 2, ,...,

We use backward compatational procedure.

f b b b Max c x f b a x b a x b a xn n x b j j j i j j j j n m j j
j j

1 2 0 1 1 1 2, ,..., , ...b g d io t    
 



The maximum value of b that x j  can assume is

b Min b
a

b
a

b
ai j j

m

m j


RS|T|
UV|W|

1 2

2
, ,....,

APPLICATION TO LINEAR
PROGRAMMING

UNIT

06
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EXAMPLES
1) Solve the following L. P. P. by dynamic programming

Maximise z x x 2 51 2

Subject to 2 431 2x x 

2 462x 

x x1 2 0, 

Solution :

Since there are two resources, the states of the equivalent dynamic programming problem
can be described by two variables only,

Let b b1 2,b g  describe the states j (= 1, 2)

For j = 2 we have

f b b x
x2 1 2 2

2

5, maxb g l q

  5
2

2max
x

xl q

  
RST

UVW5
1 2
1 2min ,b b

  
RST

UVW5 43 46
2

min ,     .......... (1)

Next we have

f b b x x
x1 1 2 1 2

1

2 5, maxb g l q 

    
 
max ,

/0 43 2 1 2 1
1

2 43 2 46
x

x f xb gm r

    F
HG

I
KJ

RST
UVW 

max min ,
/0 43 2 1 1

1

2 5 43 2 46
2x

x x     .......... (2)

by using (1)

Consider,

min ,43 2 46
2

43 21 1RST
UVW x x

if 43 2 46
2

231  x
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i. e. if 43 23 2 1  x

i. e. if 20 2 1 x

i. e. if x1 10

Thus

min ,43 2 46
2

43 21 1RST
UVW x x  if 

43
2

101 x

and

min ,43 2 46
2

46
2

231RST
UVW x

if 43 2 46
2

231  x

if 43 23 2 1  x

if 20 2 1 x

if x1 10

Thus

min ,43 2 46
2

46
2

231RST
UVW x   if  0 101 x

Then from (2)

           f b b
x x x

x x
x1 1 2

1 1 1

1 1
1

2 5 43 2 10 43
2

2 5 23 0 10
, max

,b g b g
b g


   

  

R
S|
T|

 f b b
x x

x x
x1 1 2

1 1

1 1
1

215 8 10 43
2

2 115 0 10
, max

,

,
b g   

  

R
S|
T|

Now max 215 8 1 xb g  for 10 43
21 x  is at x1 10

Also max 2 1151x b g  for 0 101 x  is at x1 10

Hence x1 10 

and
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Maximum value of z is

 z z xmax    2 1151

  = 2 (10) + 115

  = 135

and x2
  is given by

           z x x   2 51 2

       135 2 10 5 ( ) x

135 20 5 2  x

       115 5 2 x

         x2 23 

Hence maximum z z 135  at x x1 210 23  ,

2) Solve the following L. P. P. for dynamic programming.

Maximise z x x 8 71 2

Subject to 2 81 2x x 

5 2 151 2x x 

x x1 2 0

Solution :

Since there are two resources, the states of the equivalent dynamic programming problem
can be described by two variables only

Let b b1 2,b g  describe the states j (= 1, 2)

For j = 2 we have

f b b x
x2 1 2 2

2

7, maxb g l q

  7
2

2max
x

xl q

  
RST

UVW7
1 2
1 2min ,b b

  
RST

UVW7 8 15
2

min ,     .......... (1)
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Next we have

f b b x x
x1 1 2 1 2

1

8 7, maxb g l q 

  
   

 
 

max ,
/
/

0 8 2
0 15 5

1 2 1 1
1
1

8 8 2 15 5
x
x

x f x xb gm r

    
RST

UVW
RST

UVW 
max min ,

0 3 1 1
1

1

8 7 8 2 15 5
2x

x x x
    .......... (2)

by using (1)

Consider,

min 8 2 15 5
2

8 21
1

1
F

HG
I
KJ  x x x,

if 8 2 15 5
21

1 
x x

if 16 4 15 51 1  x x

if 16 15 5 41 1   x x

if 1 1  x

if x1 1 

But x1 0

Therefore, x1 1   is not possible.

Therefore

min 8 2 15 5
2

15 5
21

1 1
F

HG
I
KJ 

x x x,

i. e. if 8 2 15 5
21

1 
x x

if 16 4 15 51 1  x x

if 16 15 5 41 1   x x

if 1 1  x

if x1 1 

i. e. if x1 0
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Thus

min ,8 2 15 5
2

15 5
21

1 1
F

HG
I
KJ 

x x x
 if x1 0 .

Then from (2)

f b b x x
x1 1 2 1

1

1

8 7 15 5
2

, max ,b g 
F

HG
I
KJ

RST
UVW x1 0

    RST
UVWmax ,

x
x

1

19
2

105
21 x1 0

Now for x1 0 , zmax 
105

2

Hence x1 0   and z zmax .   105
2

52 5

And x2
  is given by

           z x x   8 71 2

       
105

2
8 0 7 2  b g x

      52 5 7 2.  x

     x2
52 5

7
 

.

     x2 7 5  .

Hence maximum z z  52 5.  at x x1 20 7 5  , .

3) Solve the following L. P. P. by dynamic programming

Maximise z x x 4 141 2

Subject to 2 7 211 2x x 

7 2 211 2x x 

x x1 2 0, 

Solution :

Since there are two resources, the states of the equivalent dynamic programming problem
can be described by two variables only.
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Let b b1 2,b g  describe the states j (= 1, 2)

For j = 2, we have

f b b x
x2 1 2 2

2

14, maxb g l q

  14
2

2max
x

xl q

  
RST

UVW14
7 2

1 2min ,b b

  
RST

UVW14 21
7

21
2

min ,     .......... (1)

Next we have

 f b b x x
x1 1 2 1 2

1

4 14, maxb g l q 

  
   

 
 

max ,
/
/

0 21 2
0 21 7

1 2 1 1
1
1

4 21 2 21 7
x
x

x f x xb gm r

   
 RST

UVW
RST

UVW 
max min ,

0 3 1
1 1

1

4 14 21 7
7

21 7
2x

x x x
    .......... (2)

by using (1)

Consider

min
21 7

7
21 7

2
21 2

7
1 1 1 F

HG
I
KJ 

x x x,

if
21 2

7
21 7

2
1 1


x x

if 42 4 147 491 1  x x

if 49 4 147 421 1x x  

if 45 1051x 

if x1
105
45

7
3

 

Thus
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min
21 2

7
21 7

2
21 2

7
0 7

3
1 1 1

1
 F

HG
I
KJ 


 

x x x x, ,

and

min
21 2

7
21 7

2
21 7

2
1 1 1 F

HG
I
KJ 

x x x,

if
21 2

7
21 7

2
1 1


x x

if 42 4 147 491 1  x x

if 49 4 147 421 1x x  

if 45 1051x 

if x1
105
45

7
3

 

Thus

min , ,21 2
7

21 7
2

21 7
2

7
3

31 1 1
1

 F
HG

I
KJ 


 

x x x x

Then from (2)

f b b
x x x

x x x
x1 1 2

1
1

1

1
1

1
1

4 14 21 2
7

0 7
3

4 14 21 7
2

7
3

3
, max

,

,
b g


F

HG
I
KJ  


F

HG
I
KJ  

R
S
||

T
||


   

   

R
S
||

T
||

max
,

,
x

x x x

x x x1

4 2 21 2 0 7
3

4 7 21 7 7
3

3

1 1 1

1 1 1

b g

b g


 

  

R
S
||

T
||

max
,

,
x

x

x x1

42 0 7
3

147 45 7
3

3

1

1 1

Now max. 147 45 1 xb g  for 
7
3

31 x  is at x1
7
3


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Hence x1
7
3

 

From above maximum value of z is

    z zmax   42

and x2
  is given by

        z x x   4 141 2

       42 4 7
3

14 2 F
HG

I
KJ 

x

 14 42 28
3

126 28
32x   


      x2
98

14 3
 



     x2
7
3

 

Hence maximum z z  42  at x x1 2
7
3

  

Applications to Inventory
Example

Suppose that there are n machines which can perform 2 jobs. If x of them do the first job,
then they produce goods worth g (x) = 3 x and if y of the machines perform the second job, then
they produce goods worth h (y) = 2.5 y. Machines are subject to depreciation, so that after
performing the first job only a x x( ) / 3  machines remains available and after performing the

second job b x y( ) 2
3

 machines remains available in the beginning of the second year. The

process is repeated with remaining machines. Obtain  the maximum total return after 3 years
and also find the optimal policy in each year.

Solution :

Here first, second and third year are considered as period 1, 2 and 3 respectively.

Let

xi = number of machines devoted to the job 1 in ith period.

y j = number of machines devoted to the job 2 in ith period.
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s i = totoal number of machines in hand (available) at the beginning of ith period

f sn( ) = maximum possible return when there are n periods left with initial number
of available machines being 's'.

The problem is now taken out by using backward reference approach.

Consider the 3rd year.

Here s3  is the number of machines available at the beginning of the 3rd year..

Thus, f s x y
x y1 3 3 3

3 3

3 2 5( ) max .
,

 l q

subject to x y s3 3 3 

and x y3 3 0,      .......... (1)

Here we have a simple L. P. P.

Maximise z x y 3 2 53 3.

subject to x y s3 3 3 

x y3 3 0, 

B s0 3,

A s3 0,
0

z = 0

It is clear that the solution of this L. P. P. is at A s3 0,b g .

(The line z = 0, if move parallel to it self through the feasible area)

Max. z is occur at A s3 0,b g .

 x s3 3 , y3 0 

and f s s1 3 33( )     .......... (2)

Consider the situation in the second year the number of machines available at the
beginning of this year is clearly s2  and we have
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f s x y f x y
x y2 2 2 2 1

2
2

2 2

3 2 5
3

2
3

b g   F
HG

I
KJ

RST
UVWmax .

Since x2  and y2  machines are used for the two jobs and x2 3/  and 2 3 2/b gy  machines
will remain available at the beginning of the next year.

 f s x y x y
x y2 2 2 2

2
2

2 2

3 2 5 3
3

2
3

( ) max .   F
HG

I
KJ

RST
UVW

             max .
x y

x y x y
2 2

3 2 5 22 2 2 2l q

f s x y
x y2 2 2 2

2 2

4 4 5( ) max . l q

subject to x y s2 2 2 

x y2 2 0,      .......... (3)

0

z = 0

B s0 2,

A s2 0,

It is clear from the graph that the solution of the L. P. P. is given by equation (3) is

occuring at B s0 2,b g .

Hence the solution is

x2 0  , y s2 2
 

and f s s2 2 24 5( ) .     .......... (4)

Now in the first year, the total number of machines available at the beginning of the
period is s1  and we have

f s x y f x y
x y3 1 1 1 2

1
1

1 1

3 2 5
3

2
3

b g   F
HG

I
KJ

RST
UVWmax .
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            F
HG

I
KJ

RST
UVWmax . .

x y
x y x y

1 1

3 2 5 4 5
3

2
31 1

1
1

            max . .
x y

x y x y
1 1

3 2 5 15 31 1 1 1l q

f s x y
x y3 1 1 1

1 1

4 5 5 5b g l q max . .

subject to x y s1 1 1 

x y1 1 0, 

0

z = 0

B s0 1,

A s1 0,

The solution of this L. P. P. is given by equation (5)  is occur at B s0 1,b g
But s n1 

i. e. at the beginning there are n machines.

Hence the solution is

x1 0  y s n1 1
  

f s s n3 1 15 5 5 5b g . .     .......... (6)

Thus

Period 1 Period 2 Period 3

x1 0  x2 0  x n n3
2
3

2
3

4
9

  F
HG

I
KJ 

y n1
  y n2

2
3

  y3 0      .......... (7)
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Thus equation (7) gives the entire solutions means during the first period all the n -
machines are used for the second job. Then (2 / 3) n machines will be left for the second year.

Then use all the machine 
2
3

F
HG

I
KJ

F
HG

I
KJn  again for second job. Therefore 

2
3

2
3

4
9

n nF
HG

I
KJ   machines will

be available for the third year. In the third year use all these 
4
9

n  machines for the first job.

If this is done then the optimum possible return will be 5.5 n.

Example
A man is engaged in buying and selling identical items. He operates from a warehouse

that can be hold 500 items. Each month he can sell any quantity that be chooses up to the stock
at the beginning of the month. Each month, he can buy as much as he wishes for delivery at the
end of the month so long as his stock does not exceed 500 items. For the next four months, he
has the following error - free forecasts of cost sales prices.

Month i 1 2 3 4

Cost c i 27 24 26 28

Sale prices pi 28 25 25 27

If he currently has a stock of 200 units, what quantities should he sell and buy in next four
months ? Find the solution using dynamic programming.

Solution :

To solve the problem by using dynamic programming we consider the months 1, 2, 3, 4
as periods respectively.

Let

x j - the number of items for sell during the ith month

y j - the number of items ordered (buy) during the ith month.

b j - stock level in the beginning of the ith month.

f bn n( ) - The maximum possible return when there are n months left with the initial

stock level bn  at the beginning of the month.

c i - cost in the ith month.

pi - sale price in the ith month.

It is clear that

b b y x2 1 1 1  
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b b y x3 2 2 2  

b b y x4 3 3 3  

In general

b b y xn n n n    1 1 1

b b y xn n n n   1

Since ware house capacity is of 500 items

b y xn n n  500

    0 500y x bn n n

and 0 x bn n

We use backward compatational procedure. The recurrence equation as followes.

f b x p c y
x y1 4 4 4 4 4

4 4
b g l q max

f b x p c y f b
x y2 3 3 3 3 3 1 4

3 3
b g b gm r  max

f b x p c y f b
x y3 2 2 2 2 2 2 3

2 2
b g b gm r  max

f b x p c y f b
x y4 1 1 1 1 1 3 2

1 1
b g b gm r  max

Step - I

Let b4  be the stock level at the starting of the fourth month.

Therefore,

f b x p c y
x y1 4 4 4 4 4

4 4
b g l q max

where 0 0 5004 4 4 4 4     x b y x b,

 f b x y
x y1 4 4 4

4 4

27 28b g l q max

 Max. occurs at x b4 4  and y4 0

 f b b1 4 427b g    ........... (1)

Step - II

In the third month, i.e. 2 months are left with initial stock and b3  be the initial state at the
beginning of this month.
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Since the stock b b x y4 3 3 3    will be available at the beginning of next month.

 f b x y b
x y2 3 3 3 4

3 3

25 26 27b g l q  max

Where 0 0 5003 3 3 3 3     x b y x b,

              max
x y

x y b x y
3 3

25 26 273 3 3 3 3b gm r

              max
x y

x y b x y
3 3

25 26 27 27 273 3 3 3 3l q

              max
x y

x y b
3 3

2 273 3 3l q

It will be max. when x3 0  and y x b3 3 3500  

 f b x x b b
x2 3 3 3 3 3

3

2 500 27b g l q     max

             max
x

b x
3

500 26 3 3l q

f b2 3b g  is maximum at x3 0

 f b b2 3 3500 26b g 

Thus optimal decisions are

x3 0  and y x b4 3 3500  

 500 3b

 f b b2 3 3500 26b g     ........... (2)

Step - III

In the second month, b2  be the intial stock at the beginning of this month.

Since the stock b b x y3 2 2 2    will be available at the beginning of next month.

 f b p x c y f b
x y3 2 2 2 2 2 2 3

2 2
b g b gm r  max

Where 0 2 2 x b  and 0 5002 2 2   y x b

f b x y f b
x y3 2 2 2 2 3

2 2

25 24b g b gm r  max

             max
x y

x y b
2 2

25 24 26 5002 2 3l q



217

f b x y b x y
x y3 2 2 2 2 2 2

2 2

25 24 26 500b g b gm r     max

               max
x y

x y b x y
2 2

25 24 26 26 26 5002 2 2 2 2l q

          =max
x2 y

x y b
2

2 2 22 26 500   l q

                max
x

x x b b
2

2 2 2 22 500 26 500b gm r

                max
x

x x b b
2

2 2 2 21000 2 2 26 500l q

            max
x

x b
2

2 224 1500l q

It will be maximum at x b2 2

 f b b b3 2 2 224 1500b g  

           25 15002b

Thus optimal decision are

x b2 2 y x b b b2 2 2 2 2500 500     

     500

and f b b3 2 225 1500b g      .......... (3)

Step - IV

In the first month, b1  be the initial stock at the beginning of this month.

Since the stock b b x y2 1 1 1    will be available at the beginning of next month.

  f b x p c y f b
x y4 1 1 1 1 1 3 2

1 1
b g b gm r  max

             max
x y

x y b
1 1

28 27 25 15001 1 2l q

               max
x y

x y b x y
1 1

28 27 25 15001 1 1 1 1b gm r

               max
x y

x y b x y
1 1

28 27 25 25 25 15001 1 1 1 1l q

              max
x y

x y b
1 1

3 2 25 15001 1 1l q
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Clearly this will be occurs at y1 0  and x b1 1

  f b b b4 1 1 13 0 25 1500b g   

            28 15001b

Thus optimal decisions are

x b1 1 y1 0

and f b b4 1 128 1500b g      .......... (4)

But at beginning, b1 200

 x b1 1200  y1 0

x b b x y2 2 1 1 1    y2 500

x3 0 y b3 3500 

x b4 4 y4 0

Thus

x1 200 y1 0 f b b4 1 128 1500 7100b g  

x2 0 y2 500 f b3 2 1500b g
x3 0 y3 0 f b b2 3 3500 26 13500b g  

x4 500 y4 0 f b1 4 13500b g
The optimal solution for next four month is

Month i 1 2 3 4

Sale xi 200 0 0 500

Purchase y i 0 500 0 0


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7.1 INTRODUCTION
The general non linear programming problem (NLPP) can be stated as follows.

Optimize (Maximize or minimize)

z f x x xn 1 2, ,...,b g
Subject to

g x x x or b i mi n i1 2 1 2, ,..., , , ,...,b gl q   

and x j nj  0 1 2, , ,...

Where f x x xn1 2, ,...,b g  and g x x xi n1 2, ,...,b g  and real valued functions of n decision

variables x x xn1 2, ,...,  and at least one of them is non linear..

7.2 UNCONSTRAINED EXTERNAL PROBLEM

An extreme point of f x( )  defines either a maximum or minimum of the function. A point

x x x xn0 1 2 , ,...,b g  is a maximum point if f x h f x0 0 d i b g  for all h h h hn 1 2, ,...b g  such that h j  is
sufficiently small for all j.

Similarly x0  is a minimum point if f x h f x0 0 d i b g  such that h j  is sufficiently small for
all j.

Quadratic forms

Let x x x xn 1 2, ,...,b g  and A ai j d i  is n n  matrix, then a function of n variables denoted

by f x x xn1 2, ,...,b g  or Q xb g  is called a quadratic form in n space if

Q x x A x a x xT
i j i j

j

n

i

n

b g 



11

The matrix A can always be assumed symmetric since each elemen of every pair of

coefficients ai j  and a j i  i jb g  can be replaced by a ai j j id i / 2  without changing, the value of

Q xb g .

The quadratic form Q xb g  is

NON - LINEAR
PROGRAMMING

UNIT

07
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1) Positive definite if Q xb g0  for every x 0 .

2) Positive - semidefinite if  Q xb g0  for every x  and there exists x 0  such that

Q xb g0 .

3) Negative definite if Q xb g  is positive definite.

4) Negative semidefinite if Q xb g  is positive - semi definite.

5) Indefinite if it is non of the above cases.

Following results can be proved.

1) Q xb g  is positive definite (semidefinite) if the values of the principal minor
detaminants of A are positive (non negative). In this case A is said to be positive
definite (semidefinite)

2) Q xb g  is negative definite if the value of kth principal minor detaminant of A has

the sign of 1b gk  k = 1, 2, ..., n. In this case A is called negative - definite.

3) Q xb g  is negative semi definite if the kth principal minor determinant of A is either

zero or has the sign 1b gk

k = 1, 2, ..., n

Theorem

A necessary and sufficient condition for X0  to be an extreme point of f Xd i  is that

 f X0 0d i  must be satisfied.

Note : The above condition is also satisfied for inflection and saddle points. Hence these
conditions are necessary but not sufficient for identifing extreme points. Hence the points obtained

from the solution of  f X0 0b g  are called as stationary points.

The following theorem gives the sufficiency conditions for X0  to be an extreme point.

THEOREM

A sufficient condition for a stationary point X0  to be an extreme point is that the Hessian

matrix H evaluated at X0  is

1) positive definite when X0  is a minimum point.

2) negative definite when X0  is a maximum point.

X x x x xn 1 2 3, , ,....,b g
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The Hessian matrix for f Xd i  is defined by

H

f
x

d f
x x

f
x x

f
x x

f
x x

f
x

n

n n n



F

H

GGGGGG

I

K

JJJJJJ


  


 


 


 




2

1
2

2

1 2

2

1

2

1

2

2

2

2

..........................................

.....

Example - 1
Find the extreme point of the function.

f x x x x x x xb g      1
2

2
2

3
2

1 2 34 8 12 64

Solution :

Let X0  be an extreme point of f Xd i . The necessary condition for extreme point is

 f X0 0d i .

     f X f
x

i f
x

i f
x

k0
1 2 3

0d i 












f
x

x x
1

1 12 4 0 2    




f
x

x x
2

2 22 8 0 4    




f
x

x x
3

3 32 12 0 6    

Hence X0 2 4 6 , ,b g  is extreme point.

The Hessian matrix is given by

H

f
x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x



L

N

MMMMMMMM

O

Q

PPPPPPPP


L

N
MMM

O

Q
PPP





 


 


 





 


 


 




2

1
2

2

1 2

2

1 3
2

2 1

2

2
2

2

2 3
2

3 1

2

3 2

2

3
2

2 0 0
0 2 0
0 0 2
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The three principal minors are

2
2 0
0 2

2 0 0
0 2 0
0 0 2

Their values are 2, 4, 8.

All are positive. Hence the Hession matrix H is positive definite.

Hence the point X0 2 4 6 , ,b g  is a minimum point of f Xd i .

f f Xmin  d ie j  at X  2 4 6, ,b g

            2 4 6 4 2 8 4 12 6 642 2 2 ( ) ( ) ( )

       = 8

 fmin 8

Example - 2

Find the extreme points of the function f X x x x x x x xd i     1 3 2 3 1
2

2
2

3
22

Solution :

For extreme point X0  we must have  f X0 0d i




f
x

x
1

11 2 0  




f
x

x x
2

3 22 0  




f
x

x x
3

2 32 2 0   

Solving the above equations

We get X0
1
2

2
3

4
3

 FHG
I
KJ, ,

X0  is an extreme point.

The Hessian matrix
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H

f
x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x



L

N

MMMMMMMM

O

Q

PPPPPPPP







L

N
MMM

O

Q
PPP





 


 


 





 


 


 





2

1
2

2

1 2

2

1 3
2

2 1

2

2
2

2

2 3

2

3 1

2

3 2

2

3
2

2 0 0
0 2 1
0 1 2

Principal minor determinants

of H X0
 have the values

  









 2 2

2 0
0 2

4
2 0 0
0 2 1
0 1 2

6, ,

Sign of 1b gk  are as follows.

Sign are   1 1b g ve

  1 2b g ve

  1 3b g ve

Hence Hat X0  is negative definite.

The point X0
1
2

2
3

4
3

 FHG
I
KJ, ,  is a maximum point of f Xd i

fmax 
19
12

.

7.3 LAGRANGE'S METHOD OF UNDETERMINED MULTIPLIERS
This is a systematic way of generating the necessary conditions for a stationary points

when the constraints are equations.

Example - 1

Minimize Z f x x e ex x   
1 2

2 1 53 21 2,b g
subject to the constraints

x x1 2 7   and x x1 2 0, 
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Solution :

In this problem hagrangian function

L x x f x x x x1 2 1 2 1 2 7, , , b g b g b g   

          3 2 72 1 5
1 2

1 2e e x xx x  b g
Where   is a Lagrangian multiplier. The necessary condition for the minimum of f x x1 2,b g

are given by




 
L
x

e ex x

1

2 1 2 16 0 61 1     




 
L
x

e ex x

2

5 52 0 22 2     


 

L x x x x       1 2 1 27 0 7b g

 6 2 22 1 5 7 51 2 1e e ex x x     x x2 17 b g
 3 2 1 7 51 1e ex x  

 e e ex xlog .3 2 1 7 51 1  

Hence log3 1 12 1 7 5    x x

 x x x1 2 1
1
3

11 3 7   log ,

Example - 2

Use Lagrange's method to maximize f xb g  where f x x x xnb g 1 2, ,...,  and

x x x x bn1 2 3    ... ,  x x x xn1 2 3 0, , ...,  .

Solution :

In this problem Lagrangian function is

L x x xn1 2, ,..., ,b g
      f x x x x x x x bn n1 2 1 2 3, ,..., ...b g b g

      x x x x x x x x bn n1 2 3 1 2 3... ... b g
The necessary conditions for the maximum are
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


 
L
x

x x x x x x xn n
1

2 3 1 2 10 0     ... ...b g

         f x 1 0     .......... (1)




 
L
x

x x x x x x xn n
2

1 3 1 2 20 0     ... , ,...b g

         f x 2 0     .......... (2)




 
L
x

x x x x x x x x
n

n n n n      1 2 1 1 2 10 0... ...d i

         f xn 0     .......... (3)


 

L x x x bn      1 2 0...

           x x x bn1 2 0...

Adding above n equations we have

nf x x xn     1 2 0...b g
         nf b 0

  
nf
b

From equation f x  1 0

f n f
b

x 1 0  F
HG

I
KJ

nf
b

 x b
n1 

Similarly x b n x b nn2  / ,..., /

Hence

x x x x b
nn1 2 3    ...

Therefore f is maximum at x x x b
nn1 2   ....
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f b
n

n

max 
F
HG

I
KJ

Note

In this problem minimum value of f if zero. This value is achieved by taking any one of
x x xn1 2, ,...,  zero.

Obtained the set of necessary conditions for the non linear programming problem.

Maximize f x x x  1
2

2
2

3
23 5

subject to the constraints

x x x x x x1 2 3 1 2 33 2 5 2 5     ,  and x x x, ,2 3 0

Solution :

In this problem hagrangian function is

L x x x f x x x x x x1 2 3 1 2 1 1 2 3 2 1 2 33 2 5 12 5, , , ,   b g b g b g        

              x x x x x x x x x1
2

2
2

3
2

1 1 2 3 2 1 2 33 5 3 2 5 2 5d i b g b g 

The necessary conditions are




 
L
x

x
1

1 1 22 5 0   




 
L
x

x
2

2 1 26 2 0   




 
L
x

x
3

3 1 310 3 0   




L x x x
1

1 2 33 2 0     b g




L x x x
2

1 2 35 2 5 0    b g

7.4 NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMIZATION OF AN
OBJECTIVE FUNCTION

The general NLPP having n variables and equally type constraints  ( )m n  can be given
as follows.

Optimize z f x x x x x xn b g b g, , , ,...,1 2 3
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Subject to g x f i mi ib g , , , ,...,1 2 3

      x0

The above constraints can be written as

h x g x bi i ib g b g 

for every i, i = 1, 2, 3...m

To find the necessary conditions for maximum or minimum of f xb g  a new function. The

hagrangian function h x, d i  is formed by introducing m Lagrangiam multipliers     1 2, ,..., mb g .

This function is defined as

L X f X h Xi i
i

m

, d i d i d i 



1

   f x x x h x h X h Xm m m1 2 1 1 2 2, ,..., ...b g b g d i d i  

Assuming that L, f, hi are all differentiable partially w. r. t. x x xn1 2, ,..,   1 2, ,..., m . The
necessary conditions for the objective function to be maximum or minimum are given by

     









L
x

f
x

h
h X

x
j n

j j
i

i

ji

m

   



d i
0 1 2

1

, , ,...,

and 



L
X

h i m
i

i   0 0 1 2, , ,...,

The above equations can be written as








f
x

h X
x

j n
j

i
i

ji

m

  



d i
1

0 1 2, , , ,...,

        hi 0        i = 1, 2, 3, ...., m

These are m + n necessary conditions.

These necessary conditions also become sufficient for a maximum (minimum) of the
objective function if the objection in concave (convex) and the side and the constraints are
equally once.

The sufficient conditions for the Lagrangian method will be stated without proof.
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Define H

P

P Q

B
m n m n

n m n n m n m n



L

N

MMMM

O

Q

PPPP

 

    

0 :

...................
: b g b g

Where O  is m m  null matrix.

P

h x
x

h x
x

h x
x

h x
x

h x
x

h x
x

h x
x

h x
x

h x
x

n

n

m m m

n



L

N

MMMMMMMMMM




























1

1

1

2

1

2

1

2

2

2

1 2

b g b g b g

b g b g b g

b g b g b g

..........

..........

.....:................:...........................:.....

..........

O

Q

PPPPPPPPPP m n

and

R

L
x

L
x x

L
x x

L
x x

L
x

L
x x

L
x x

L
x x

L
x

n

n

n n n n n



L

N

MMMMMMMMMM

O

Q

PPPPPPPPPP







 


 


 





 


 


 




2

1
2

2

1 2

2

1

2

2 1

2

2
2

2

2

2

1

2

2

2

2

,
..........

..........

.....:............:.................: :

..........
b g

P T  is transpose of P .

If X ,d i  is a stationary point of L x,d i  and HB  is the corresponding bordered Hessian

matrix evaluated at x, 'd i  Then X0  is

1) A maximum point if, starting with the principal minor determinant of order 2 1mb g ,
the last (n - m) principal minor detuminants of HB  form an alternating sign pattern

starting with  1 1b gm .

2) A minimum point, if starting with the principal minor determinant of order 2 1mb g ..
The last (n - m) principal minor determinants of HB  have the sign of 1b gm .
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The above conditions are sufficient for identifying an extreme point, but the conditions
are not necessary. In other words, a stationary point may be an extreme point without satisfying
the above conditions.

Optimize Z f x x x x   b g 1
2

2
2

3
2

subject to x x x1 2 33 2  

5 2 51 2 3x x x  

Solution :
The Lagrangian function is

L x x x x x x x x x x,  d i           1
2

2
2

3
2

1 1 2 3 2 1 2 33 2 5 2 5

Necessary conditions for the stationary point are




 
L
x

x
1

1 1 22 5 0        .......... (1)




 
L
x

x
2

2 1 22 2 0        .......... (2)




 
L
x

x
2

3 1 22 3 0        .......... (3)




L x x x
1

1 2 33 2 0     b g     .......... (4)




L x x x
2

1 2 35 2 5 0    b g    .......... (5)

Subtracting (2) equation from (1) st we have

2 2 3 01 2 2x x      .......... (6)

Multipling equation (2) by 3 and subtracting equation (3) we have

5 2 5 02 3 2x x      .......... (7)

Now equate the expressions for 2  from (6) and (7)

2 2
3

6 2
5

1 2 2 3
2

x x x x





10 28 6 01 2 3x x x  

The above equation can be written as

5 14 3 01 2 3x x x      .......... (8)
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Also x x x1 2 33 2 0       .......... (4)

5 2 5 01 2 3x x x       .......... (5)

Solving equations (4) (5) and (8)

for x x1 2,  and x3  we get

x x1 2
37
46

0 804 0 348  ' , '

x3 0 283 '

Bordered Hessian matrix HB  is given by

H
O P

P Q

B

T



L

N
MMM

O

Q
PPP

:
.......:......

:




 
L
x

x
1

1 1 22 5   h x x x x1 1 2 33 2b g   




 
L
x

x
2

2 1 22 2   h x x x x2 1 2 35 2 5b g   




 
L
x

x
3

3 1 22 3  

P

h
x

h
x

h
x

h
x

h
x

h
x



L

N

MMMM

O

Q

PPPP



















1

1

1

2

1

3

2

1

2

2

2

3

R

L
x

L
x x

L
x x

L
x x

L
x

L
x x

L
x x

L
x x

L
x

L



L

N

MMMMMMMM

O

Q

PPPPPPPP





 


 


 





 


 


 




2

1

2

1 2

2

1 3
2

2 1

2

2
2

2

2 3
2

3 1

2

3 2

2

3
2
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HB 

L

N

MMMMMMMM

O

Q

PPPPPPPP

0 0 1 1 3
0 0 5 2 1

1 5 2 0 0
1 2 0 2 0
3 1 0 0 2

.

.
............................

.

.

.

Here n = 3, m = 2

n - m = 1

We have to check determinan of HB

HB 

L

N

MMMMMM

O

Q

PPPPPP

0 0 1 1 3
0 0 5 2 1
1 5 2 0 0
1 2 0 2 0
3 1 0 0 2

By C C3 4  and C C5 43

HB 


 

L

N

MMMMMM

O

Q

PPPPPP

0 0 0 1 0
0 0 3 2 5
1 5 2 0 0
1 2 2 2 5
3 1 0 0 2.

Expanding by 4th column

HB  






 


0 0 3 5
1 5 2 0
1 2 2 6
3 1 0 2

0 0 3 5
1 5 2 0
1 2 2 6
3 1 0 2

By R R2 3  and R R4 33

HB 



 

0 0 3 5
0 3 4 6
1 2 2 6
0 5 6 20

 Expanding by 3rd colour
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HB  
 

 
0 3 5
3 4 6
5 6 20

460 0

Here    1 1 12b g b gm  positive sign.

X x x x0 1 2 3 , ,b g  is a minimum point.

7.5 Kuhn - TUCKER'S CONDITIONS
Theorem 7.5.1 (A)

The necessary conditions for maximization of f x x x x x xnb g b g, , , ,..., 1 2 3  at x x 0

Subject to the conditions

g x bi ib g , i = 1, 2, 3...., m and x 0

are

1)
 



L x s

x j

, ,d i
 0 , j = 1, 2, 3, ...n

2)  i i ig x bb g 0 i = 1, 2, 3, ..., m

3)  i 0 i = 1, 2, 3, ...., m

4) g x bi ib g i = 1, 2, 3, ...., m

The necessary conditions for minimization of f xb g, x x x xn 1 2, ,....,b g  at x x 0  subject to
the the conditions

g x b i mi ib g , , ,...,1 2  and x0  are

1)
  



L x

x j

, ,d i
0 j = 1, 2, ....n

2)  i i ig x bb g 0 i = 1, 2, ...., m

3)  i 0 i = 1, 2, ...., m

4) g x bi ib g i = 1, 2, ....m
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Proof (A)

It is given that g x bi ib g i = 1, 2, .....m     .......... (1)

We have to prove (1), (2) and (3)

Introduce slack variables s i  such that

g x s bi i ib g 2 , i = 1, 2, 3, ...., m

i.e. g x s bi i ib g  2 0 i = 1, 2, ...., m  ............. (2)

The hitts of (2) is denoted by G x si i,b g
 G x si i,b g0 , i = 1, 2, ....m  ............. (3)

The problem reduces to

Maximize f xb g,  X x x xn 1 2, ,....,b g ,
such that G x si i i,b g0 , i = 1, 2, ....m  ............. (4)

This is a problem of constrained optimization in n + 1 variables and a single equality
constraint and can thus be solved by the Lagrangian multiplier method.

We introduce hagrangia function L x, , d i  where s s s n 1 2, ,...,b g  and

    1 2, ,...., nb g

L X s f x G xi i i
i

m

, , ,  d i b g b g 



1

        L X s f x g x s bi i i
i

m

, , d i b g b g   

 1

2

1

The extreme points of unconstrained problem are given by

 



L x s

x j

, ,d i
 0 , j = 1, 2, .....n     .......... (5)

 



L x s

i

, ,d i
 0 , i = 1, 2, ..... m     .......... (6)

 



L x s

i

, ,d i
 0 , i = 1, 2, ..... m     .......... (7)
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From (6) we get

 2 0 i is

  i is 0

Multiplying by s i  we have

 i is2 0 , i = 1, 2, ....m     .......... (8)

From (7) we get

g x s bi i ib g  2 0

  s b g xi i i
2 b g, i = 1, 2, .....m     .......... (9)

Using this s i
2  in (8) we have

 i i ib g x b g 0 , i = 1, 2, .....m

The above equation can be written as

 i i ig x bb g 0, i = 1, 2, ..., m   .......... (10)

Thus the equations (5) (10) and constraint (1) satisfied by the stationary  point x x s0  , ,d i
proves the necessary conditions (1) (2) and (3) respectively.

Proof of B

The proof of (1) (2) and (4) are as in case (I)

Proof of (3) for both the parts.

For maximum we shall show that  0 .

The constraints are given by

g X bi id i , i = 1, 2, ....., m

The necessary condition for maximum is that  0  and for minimum of f Xd i  is that

  0 .

Consider the maximization case

We know that  i  measures the rate of variation of f with respect to bi





f x
bi

i
b g

 , i = 1, 2, ....m
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We see that as bi  increases, the solution becomes less constrained.

f can not decrease.



f x
bi

b g
0

i. e.  i 0

Similarly for minimization of f xb g  as bi  increases f can not increase



f x
bi

b g
0

i. e.  i 0

Hence the proof.

Use Kuhn's Tucker method to solve the following problem

Minimize f X x x xd i  1
2

2
2

3
2

Subject to 2 51 2x x 

x x1 3 2 

x1 1

x2 2

x3 0

Solution

Problem in standard form

Minimize f x x x xb g  1
2

2
2

3
2

Subject to 2 5 01 2x x  

x x1 3 2 0  

1 01 x

2 02 x

 x3 0

Here

L X s f X h h h h h, ,     d i d i     1 1 2 2 3 3 4 4 5 5
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The conditions are








L
x

h
xj

i
i

ji



 ,

1

5

i = 1, 2, 3     .......... (1)

 i ih 0 i = 1, 2, 3, 4, 5     .......... (2)

hi 0 i = 1, 2, 3, 4, 5     .......... (3)

 i 0 i = 1, 2, 3, 4, 5     .......... (4)

 f X x x xd i  1
2

2
2

3
2

 1 1 1 1 22 5h x x  b g
 2 2 2 1 3 2h x x  b g
 3 3 3 11h x b g
 4 4 4 22h x b g
 5 5 5 3h x b g

In this problem from (1)

2 2 01 1 2 3x      

          2 1 42 x 0   

          2 03 2 5x         .......... (5)

From (2)

1 1 22 5 0x x  b g
2 1 3 2 0x x  b g
3 11 0 xb g
4 22 0 xb g
5 3 0 xb g     .......... (6)

From (3)

2 5 01 2x x  
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x x1 3 2 0  

1 01 x

2 02 x

 x3 0     .......... (7)

From (4)     1 2 3 4 0, , , , f 

Let   3 4 5, ,  be non zero

From (6) we get

x x x1 2 31 2 0  , ,

Using the above values

We check the conditions (7)

2 5 01 2x x  

1 2 5 0   True

x x1 3 2 0  

1 0 2 0   True

1 01 x

1 1 0  True

2 02 x

2 2 0  True

 x3 0

0 0 True

2 1 3 2 0x x  b g
    2 1 0 2 0  b g

      2 0

1 1 22 5 0x x  b g
    1 2 2 5 0  b g

       1 0
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2 2 01 1 2 3x      

     2 1 0 0 03( )   

        2 03 

 3 2 

         2 02 1 4x    

          2 2 0 04( )  

 4 4 

         2 02 5x j    

          2 0 0 05b g  

 5 0


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8.1 INTRODUCTION
The problem of optimizing a quadratic function subject to linear constraints is called a

quadratic programming problem of the nonlinear programs. The quadratic programming
problems are computationally the least difficult to handle. For this reason, quadratic functions
and programs are as widely used as the linear functions and programs in modelling the
optimization problems. Quadratic programs are not only useful in the application of these models
of real - life situation but also serve as subproblems in a number of algorithms for general non -
linear programs. Consequently many algorithms have been developed for quadratic programs.
In this unit, we shall describe Wolfe's and Beal's method.

8.2 QUADRATIC PROGRAM
A quadratic program can be represented in the form

Maximize / Minimize f x c x x Q xT T( ) 
1
2

Subject to the constraints

A x b  , ,b g  and x0 .

Where b Rm , A  is m n  real matrix, x c Rn, ,  is called a General quadratic programming
problem (GQPP).

Definition :

A quadratic form x Q xT  is said to be positive definite if x Q xT 0  for x 0  and positive

semidefinite if x Q xT 0  for x 0  and there is at least one x 0  such that x Q xT  0 .

Definition

A quadratic form x Q xT  is said to be negative definite and negative semidefinite if  x Q xT

is positive definite and positive semidefinite respectively.

The function x Q xT  is assumed to be negative semidefinite in the maximization case
and positive semidefinite for manimization case.

8.3 WOLFE'S MODIFIED SIMPLEX METHOD
Let the quadratic programming problem be

WOLFE'S AND BEALE'S
METHODS

UNIT

08
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Maximize z f x C x C x xj j jk j k
k

n

j

n

j

n

  

( ) 1

2 111

Subject to be consteaints :

a x b xi j j i j
j

n

 

 , 0

1

 (i = 1, 2, ..., m, j = 1, 2, 3, ...., n)

Whree C C j k b i mjk k j i    , , , ,....,0 1 2

Also assume that the quadratic form C x xjk j k  be negative semidefinite.

8.3.1 Steps of Wolfe's modified simplex algorithm
Step : 1

Convert the inequality constraints into equations by introducing slack variables

qi
2  in the ith constraint (i = 1, 2, 3,...,m) and the slack variables rj

2  in the jth non-
negatively constraint (j = 1, 2, 3, ..., n).

Step : 2

Construct the Langrangian function

L x q r f x a x b q x ri i j j i i
j

n

j j j
j

n

i

m

( , , , , ) ( )      
L
N
MM

O
Q
PP   

 
  2

1

2

11

Where x x x x xn 1 2 3, , ,..., )d h , q q q q qm 1
2

2
2

3
2 2, , ,...,d i ,

r r r rn 1
2

2
2 2, ,...,d i  and      1 2 3, , ,..., ,mb g     ( , ,..., )1 2 n

Differentiate the above function L partially with respect to x q r, , , ,   and equate
the first order partial derivatives to zero. Thus derive Kuhn - Tucker conditions
from the resulting equations.

Step : 3

Introduce the non - negative artificial variable v j , j n1 2 3, , ,...,  in the Kuhn Tucker
conditions.

n m

j jk k i i j j j
k 1 i 1

C C x a v 0
 

        j = 1, 2, 3, ..., n

Construct an objective function Z v v v vv n    1 2 3 ...
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Step : 4

Obtain the initial basic feasible solution to the following linear programming
problem.

Minimize Z v v v vv n    1 2 3 ...

Subject to the constraints

C x a v Cjk k i i j j j j
i

m

k

n

    

  

11
(j = 1, 2, 3, ..., n)

a x s bi j j i i  (i = 1, 2, 3, ..., n)

v xj i j j, , ,  0 (i = 1, 2,....m, j = 1, 2, 3, ...,n)

and satisfying the complementary slackness condition

 j j i ix s  0 or

 i i j js x 0 0, (i = 1, 2, 3,...m, j = 1, 2, 3, ..., n)

Step : 5

Apply two phase simplex method in the usual manner to find an optimum solution
to the linear programming problem constructed in step 4. Enter the variables
such that the above complementary slackness conditions are satisfied.

Step : 6

The optimum solution thus obtained in step 5 gives the optimum solution of the
given QPP also.

Remark
1) If the quadratic programming problem is given in the minimize form then convert

it into maximize it into maximization one by suitable modifications in f (x) and the
' ' constraints.

2) While solving simplex, introduce s i  if  i  is not in the solution or  i  will be removed

when s i  enters.

3) If  i  is the basic solution with positive value, then xi  cannot be basic with positive

value. Similarly  j  and x j  cannot be positive simultaneously..

8.4 ILLUSTRATIVE EXAMPLES ON WOLFE'S METHOD
Example 8.4.1

Apply Wolfe's method for solving the quadratic programming problem.
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Max. Z x x x x x xx     4 6 2 2 21 2 1
2

1 2 2
2

Subject to, x x x x1 2 1 22 2 0  , , .

Solution :
Step : 1

First we convert the inequality constraints into equations.

          x x q1 2 1
22 2  

       x r1 1
2 0

       x r2 2
2 0

Step : 2

The Lagrangian function

L x x q r r1 2 1 1 2 1 1 2, , , , , , ,  b g

              4 6 2 2 2 2 21 2 1
2

1 2 2
2

1 1 2 1
2x x x x x x x x qd i d i

      1 1 1
2

2 2 2
2( ) ( )x r x r

The necessary and sufficient conditions are

           



 



 
L
x

x x L
x

x x
1

1 2 1 1
2

1 2 1 24 4 2 0 6 2 4 2 0           ,

Define S q1 1
2  we have x x S1 2 12 2 0   

and the umplementary conditions are

  1 1 1 1 2 20 0 0S x x  , ,  and x x s1 2 1 1 2 0, , , , ,   

Step : 3

Introduce the non - negative artifical variables.

4 2 4 2 4 2 61 2 1 1 1 1 2 1 2 2x x v x x v            ,  and the new objective

function min Z v vv  1 2 .

Step : 4
To construct the modified linear programming problem

Max Z v vv   1 2

Subject to the constraints

4 2 41 2 1 1 1x x v     
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2 4 2 61 2 1 2 2x x v     

       x x S1 2 12 2  

Where all the variables are non - negative and

  1 1 2 2 1 10 0 0x x S  , ,

Step : 5

Now solve this problem by two phase simplex method.

C j  0 0 0 0 0 -1 -1 0

Basic CB xB x1 x2 1 1 2 v1 v2 s1 Max. Min

Variable ratio ratio

v1 -1 4 4 2 1 -1 0 1 0 0
4
4

1 1

v2 - 1 6 2 4 2 0 -1 0 1 0
2
6

1
3

 3

S1 0 2 1 2 0 0 0 0 0 1
1
2

2

z = -10 Z Cj j  -6 -6 -3 1 1 0 0 0

A
x1  is introduce as a basic variable leaving v1

C j  0 0 0 0 0 -1 -1 0

Basic CB xB x1 x2 1 1 2 v1 v2 s1 Max. Min

Variable ratio ratio

x1 0 1 1 1/2 1/4 -1/4 0 1/4 0 0
1 2

1
1
2

/
 2

v2 -1 4 0 3 3/2 1/2 -1 -1/2 1 0
3
4

4/3

S1 0 1 0 3/2 -1/4 1/4 0 -1/4 0 1
3
2

2/3

Z = -4 Z Cj j  0 -3 -3/2 -1/2 1 3/2 0 0

A

B

i

x
x

B

i

x
x
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Most negative of   RST
UVW3 3

2
1
2

, ,  is - 3.

and maximum ratio 
1
2

3
4

3
2

3
2

, ,RST
UVW

 x2  is entering variable (possible because 2 0 ) and S1  is leaving variable.

C j  0 0 0 0 0 -1 -1 0

Basic CB xB x1 x2 1 1 2 v1 v2 s1 Max. Min.

Variable rations ratio

     x1 0 2/3 1 0 1/3 -1/3 0 1/3 0 -1/3
1
2

2

 v2 -1 2 0 0 2 0 -1 0 1 -2 1 1

     x2 0 2/3 0 1 -1/6 1/6 0 -1/6 0 2/3 -- --

Z = -2 Z Cj j  0 0 -2 0 1 1 0 2

A
Since - 2 is most negative 1 enters (possible as S1 0 ) and Max. ratio is 1, v2

is leaving variable.

C j  0 0 0 0 0 -1 -1 0

Basic CB xB x1 x2 1 1 2 v1 v2 s1

Variable

x1 0 1/3 1 0 0 
1
3

1
6

1
3


1
6

0

1 0 1 0 0 1 0 
1
2

0
1
2

-1

x2 0
5
6

0 1 0
1
6


1

12


1
6

1
12

1
2

Z = 0 Z Cj j  0 0 0 0 0 1 1 0

Since all  j j jZ C   are 0 . We get the optimal solution as x1
1
3

  and x2
5
6

 .

B

i

x
x
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Step : 6

The optimal value

Z x x x x x xx
     4 6 2 2 21 2 1

2
1 2 2

2

     
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ  F

HG
I
KJ
F
HG

I
KJ 

F
HG

I
KJ4 1

3
6 5

6
2 1

3
2 1

3
5
6

2 5
6

2 2

     
25
6

Example 8.4.2
Apply Wolfe's method to solve the quadratic programming problem.

Max. Z x x xx   2 1 2 1
2

Subject to

2 3 6 2 41 2 1 2x x x x   ,  and x x1 2 0,  .

Solution :
Step : 1

First we convert the inequality constraints into equations

      2 3 61 2 1
2x x q  

         2 41 2 2
2x x q  

      x r1 1
2 0

      x r2 2
2 0

Step : 2

The Lagrangian function L x x q q r r( , , , , , , , )1 2 1 2 1 2 1 2 

                           2 2 3 6 2 41 2 1
2

1 1 2 1
2

2 1 2 2
2x x x x x q x x qd i d i d i 

           1 1 1
2

2 2 2
2x r x rd i d i

The necessary and sufficient conditions are




  



 
L
x

x L
x1

1 1 2 1
2

1 22 2 2 2 0 1 3 0         ,

                    






L x x q L x x q
1

1 2 1
2

2
1 2 2

22 3 6 0 2 4 0,
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Now define S q S q1 1
2

2 2
2 ,  then we have the complementary conditions,

   1 1 2 2 1 1 2 20 0 0 0S S x x   , , ,

and x x S S1 2 2 1 2 1 21
0, , , , , ,,     

Step : 3

Introduce the non - negative artificial variable

2 2 2 21 1 2 1 1x v      

3 11 2 2 2     v

and the new objective function min Z v vv  1 2 .

Step : 4

To construct the modified linear programming problem.

Max. Z v vv   1 2

Subject to

2 2 2 22 1 2 1 1x v      

3 11 2 2 2     v

2 3 61 2 1x x S  

2 41 2 2x x S  

With

   1 1 2 2 1 1 2 20 0 0 0x x S S   , , , and x x S S1 2 1 2 1 2 1 2 0, , , , , , ,    

Step : 5

Now solve this program by two phase simplex method.

C j  0 0 0 0 0 0 -1 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v1 v2 s1 S2 Max.

Variable ratio

v1 -1 2 2 0 2 2 -1 0 1 0 0 0 1

v2 -1 1 0 0 3 1 0 -1 0 1 0 0 0

S1 0 6 2 3 0 0 0 0 0 0 1 0 1 / 3

S2 0 4 2 1 0 0 0 0 0 0 0 1 1/2
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Z=-3 Z Cj j  -2 0 -5 -3 1 1 0 0 0 0

A
Though most negative value of Z Cj j  is - 5, 1 cannot be an entering variable

as 1 1 0S   and S1 0 . Similarly 2  cannot be an entering variable as S2 0 .

Therefore x1  is an entering variable (possible because 1 0 ).

C j  0 0 0 0 0 0 -1 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v1 v2 s1 S2 Max.

Variable ratio

x1 0 1 1 0 1 1 
1
2

0
1
2

0 0 0 0

v2 -1 1 0 0 3 1 0 -1 0 1 0 0 0

S1 0 4 0 3 -2 -2 1 0 -1 0 1 0
3
4

S2 0 2 0 1 -2 -2 1 0 -1 0 0 1
1
2

Z  1 Z Cj j  0 0 -3 -1 0 1 1 0 0 0

A
Though - 3 is most negative value corresponding variable 1 cannot be an entering

variable as 1 1 0S   and S1 0 . So is 2 . Since 2 0 , x2 can be introduced

( x v s s1 2 1 2, , ,  are already basic variables 1 cannot be introduce as 1 1 0x   and

there are x2  is the only possibility). Thus introducing x2  as a basic variable and

with leaving variable S1  we get the following table.

C j  0 0 0 0 0 0 -1 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v1 v2 s1 S2 Max.

Variable ratio

x1 0 1 1 0 1 1 -1/2 0 1/2 0 0 0
1 1
xB



v2 -1 1 0 0 3 1 0 -1 0 1 0 0 3
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x2 0
4
3

0 1 
2
3


2
3

1
3

0 
1
3

0
1
3

0 --

s2 0
2
3

0 0 
4
3


4
3

2
3

0 
1
3

0 
1
3

1 --

Z = -1 Z Cj j  0 0 -3 -1 0 1 1 0 0 0

A
Since most negative Z Cj j  is - 3 the corresponding variable 1 is the entering

variable (possible  as s1 0 ) and the variable v2  is the leaving variable as max.

ratio of 1 and xB  is 3 corresponds to variable v2 . We get the following table.

C j  0 0 0 0 0 0 -1 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v1 v2 s1 S2 Max.

Variable ratio

x1 0
2
3

1 0 0
2
3


1
2

1
3

1
2


1
3

0 0

1 0
1
3

0 0 1
1
3

0 
1
3

0
1
3

0 0

x2 0
14
9

0 1 0 
4
9

1
3


2
9


1
3

2
9

1
3

0

s2 0
10
9

0 0 0 
8
9

2
3


4
9


2
3

4
9


1
3

1

Z = 0 Z Cj j 0 0 0 0 0 0 1 1 0 0

Since all Z Cj j  0  we get the optimal solution as

x x x x s sr1 1 1 1 2 2 2
2
3

1
3

14
9

10
9

       * * * *, , ,   and the remaining variable

  2 1 2 1 1 2, , , , ,s v v  are zero. The maximum value of objective function is

Z x x xx
* * *   2 1 2 1

2

     
F
HG

I
KJ   FHG

I
KJ 2 2

3
14
9

2
3

22
9

2
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Example 8.4.3
Use Wolfe's method to solve the quadratic programming problem

Max. Z x x x  2 3 21 2 1
2

Subject to the condition

x x1 24 4 

x x1 22 2 

and      x x1 2 0, 

Solution :
Step : 1

Max. Z x x x  2 3 21 2 1
2

Subject to the constraints

x x q1 2 1
24 4  

x x q1 2 2
22 2  

         x r1 1
2 0

         x r2 2
2 0

Step : 2

The Lagrangian function now becomes L x x q q r r1 2 1 2 1 2 1 2 1 2, , , , , , , , ,   b g
           2 3 2 4 4 2 21 2 1

2
1 1 2 1

2
2 1 2 2

2x x x x x q x x qd i d i d i 

      1 1 1
2

2 2 2
2x r x rd i d i

The necessary and sufficient conditions are

 



  



  
L
x

x L
x1

1 1 2 1
2

1 2 22 4 0 3 4 0          ,

Define S q1 1
2  and S q2 2

2  then we have

               



L x x S
1

1 2 14 4 0 ,       



L x x S
2

1 2 22 2 0

and the complementary conditions

   1 1 2 2 1 1 2 20 0 0 0S S x x   , , ,  and

x x s s1 2 1 2 1 2 1 2 0, , , , , , ,    
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Step : 3

Introduce the non - negative artificial variables

4 21 1 2 1 1x v      

     4 31 2 2 2     v

and the new objective function min Z v vv  1 2

Step : 4

To construct the modified linear programming problem

max. Z v vv   1 2

Subject to,

4 21 1 2 1 1x v      

     4 31 2 2 2     v

 x x s1 2 14 4  

 x x s1 2 22 2  

     1 1 2 2 1 1 2 20 0 0 0s s x x   , , ,

and x x v v s s1 2 1 2 1 2 1 2 0, , , , , , ,  

Step : 5

Solve the problem constructed in step 4 by simplex method

C j  0 0 0 0 0 0 -1 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v1 v2 s1 S2 Max.

Variable rations

v1 -1 2 4 0 1 1 -1 0 1 0 0 0
x
xB

1 2

v2 -1 3 0 0 4 1 0 -1 0 1 0 0 0

S1 0 4 1 4 0 0 0 0 0 0 1 0
1
4

S2 0 2 1 2 0 0 0 0 0 0 0 1 1/2

Z j  5 Z Cj j  -4 0 -5 -2 1 1 0 0 0 0

A B
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Above table shows thats any one of x1 1 2, ,   can enter as basic variables but

since 1 1 0S   and 2 2 0S   where S1 0  and S2 0 , 1 and 2  cannot be

introduce as a basic variable. Therefore x1  enters the basis and since the

maximum value of ratio 
x column
x columnB

1
 is 2, the corresponding variable v1  leaves

the basis and we get the following iteration.

C j  0 0 0 0 0 0 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v2 s1 S2 Max.

Variable ratio

x1 0
1
2

1 0
1
4

1
4


1
4

0 0 0 0 0

v2 -1 3 0 0 4 1 0 -1 1 0 0 0

S1 0
7
2

0 4 
1
4


1
4

1
4

0 0 1 0
8
7

S2 0
3
2

0 2 
1
4


1
4

1
4

0 0 0 1
4
3

Z j  3 Z Cj j  0 0 -4 -1 0 1 0 0 0

A B
Above table indicates that either  1 2or  enters the basis, but this is not true

because S S1 20 0 ,  and  1 1 2 2 1 2 1 20 0S S x v S S , . , , ,  are already basis

elements. Since 1 1 0x   and x1 0 , 1 cannot enter as a basic element. Thus

only left out variables are x2  and 2 .

Enter x2  as a basic element . Consider the second column of the above table

and take the ratio 
x
x

2

B
 and the maximum value of the ratio. Since 

4
3

 is the maximum

ratio the corresponding variable S2  leaves the basis and we get the following
table.
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C j  0 0 0 0 0 0 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v2 s1 S2 Max.

Variable ratio

x1 0
1
2

1 0
1
4

1
4


1
4

0 0 0 0
1
2

v2 -1 3 0 0 4 1 0 -1 1 0 0
1
3

 S1 0
1
2

0 0
1
4

1
4


1
4

0 0 1 -2
1
2

x2 0
3
4

0 1 
1
8


1
8

1
8

0 0 0
1
2

-

Z = -3 Z Cj j  0 0 -4 -1 0 1 0 0 0

A
Again 1 cannot enter the basis since S1  is in the basis and 1 1 0S  . The variable

2  enters as the basic variable. Consider the ratio of columns corresponding to

2  and xB . Since the maximum ratio is 
1
2

 and is corresponding to the variable

x1  and S1  any one of it can leave the basis. Suppose S1  leaves the basis. Thus

we introduce 2 into the basis and drop S1 .

C j  0 0 0 0 0 0 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v2 s1 S2 Max.

Variable ratio

 x1 0 0 1 0 0 0 0 0 0 -1 +2 

v2 -1 1 0 0 3 0 1 -1 1 -4 8 0

2 0 2 0 0 1 1 -1 0 0 4 -8 0

x2 0 1 0 1 0 0 0 0 0
1
2


1
2

0

Z = -1 Z Cj j  0 0 -3 0 -1 1 0 4 -8

A
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S2  enters as a basic variable and variable x1  leaves the basis.

C j  0 0 0 0 0 0 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v2 s1 S2 Max.

Variable ratio

S2 0 0
1
2

0 0 0 0 0 0 
1
2

1 --

 v2 -1 1 -4 0 3 0 1 -1 1 0 0 3

2 0 2 4 0 1 1 -1 0 0 0 0
1
2

x2 0 1
1
4

1 0 0 0 0 0
1
4

0 0

Z = -1 Z Cj j  4 0 -3 0 -1 1 0 0 0

We introduce 1 into the basis and drop v2  formit

C j  0 0 0 0 0 0 -1 0 0

Basic CB xB x1 x2 1 2 1 2 v2 s1 S2

Variable

S2 0 0
1
2

0 0 0 0 0 0 
1
2

1

1 0
1
3


4
3

0 1 0
1
3


1
3

1
3

0 0

2 0
5
3

16
3

0 0 1 
4
3

1
3


1
3

0 0

x2 0 1
1
4

1 0 0 0 0 0
1
4

0

Z = 0 Z Cj j  0 0 0 0 0 0 1 0 0

Since Z Cj j 0  an optimum solution has been reached. The optimum solution

is : x x S S1 2 1 2 1 2 1 20 1 1
3

5
3

0 0       , , , , ,    .
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Step : 6

The required optimal solution is x x1 20 1 ,  and the

  Max Z x x x  2 3 2 21 2 1

   2 0 3 1 2 0 3( ) ( ) ( )

~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~
Use Wolfe's method and solve the following problems.

1) Min. Z x x x  1
2

2
2

3
2

Subject to,

x x x1 2 33 2  

5 2 51 2 3x x x  

x x x1 2 3 0, , 

Ans x x x z.: . , . , . ,min .1 2 30 81 0 35 0 35 0 857   b g

2) Min Z x x x x x x     1 2 3 1
2

2
2

3
21

2 d i
Subject to

x x x1 2 3 1 0   

4 2 7
2

01 2x x  

x x x1 2 3 0, , 

Ans x x x z.: ,1 2 3
1
3

15
18

    F
HG

I
KJ

3) Max. Z x x x  2 3 21 2 1
2

Subject to,

x x1 24 4 

x x1 2 2 

x x1 2 0, 

Ans x x Max z.: , , , , .1 2 1 20 1 1
3

5
3

3    F
HG

I
KJ 
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4) Min. Z x x x x x    6 6 2 2 21 1
2

1 2 2
2

Subject to,

x x1 2 2 

x x1 2 0, 

Ans x x Max z.: , , , , .1 2 1 2
3
2

1
2

0 1 1
2

    F
HG

I
KJ 

8.5 BEALE'S METHOD
Another approach to solve a quadratic programming problem has been suggested by

Beale. In this method the variables are partitioned into basic and non - basic variables and the
results of classical calculus are used. At each iteration the objective function is expressed in
terms of non - basic variables only.

A general quadratic programming problem with linear constraints can be writter as,

Max f x C x x Q x( ) 
1
2



Subject to the constraints

A x b x 0 .

Where x x x x xn m
T

 1 2 3, , ,...,d i  C is 1n  and A is m n m ( ) , Q is symmetric matrix.

8.5.1 Steps of Beale's iterative procedure
Step : 1

Express the given quadratic programming problem with linear constraints by
introducing slack and / or surplus variables.

Step : 2

Select m variables as basic and the remaining n variables as non - basic. With
this choice the linear constraints can be represented in the partition matrices.

A b 

B R
X
X

bB

NB
,

L
NM

O
QP
 or B X RX bB NB 

Where XB  and XNB  denote basic and non - basic variables respectively and

matrix A is partitioned into the submatrices B and R corresponding to xB  and xNB

respectively.
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Since B x R x b x B b RxB NB B NB   , ( )1

Step : 3

Express the basic variables xB  in terms of non - basic variables.

Step : 4

Express the objective function in terms of non - basic variables.

Thus by increasing the value of any of the non - basic variables xNB , the value of
the objective function can be improved.

Note that the constraints on the new problem become

B R x B bNB
 1 1 (as xB 0 )

Thus any component of xNB  can be increased only until 


f
xNB

 0  or, none or

more components of xB  are reduced to zero.

If we have more than m non - zero variables at any step of iteration, define a new

variables Si , Where S
f

xi
NB





 and a new constraint Si  0 .

Step : 5

Now we have m + 1 non - zero variables and m + 1. Constraints, solution gives
a basic solution to the extended set of constraints.

Step : 6

Repeat the above procedure until no further improvement in the objective function
may be obtained by increasing one of the non - basic variables.

This technique will give an optimal solution in finite number of steps.

8.6 ILLUSTRATIVE EXAMPLES ON BEALE'S METHOD
Example 8.6.1

Use Beale's method for solving the quadratic programming problem.

Max. z x x x x x xx     4 6 2 2 21 2 1
2

1 2 2
2

Subjec to

1 2x 2 x 2   and x x1 2 0,  .

Solution :
Step : 1
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Introducing slack variable x3 , the given problem becomes

Max. z x x x x x xx     4 6 2 2 21 2 1
2

1 2 2
2

Subject to,

x x x x x x1 2 3 1 2 32 2 0   , , ,

Selecting x1  arbitrarily to be the basic variable we get,

x x x1 2 32 2    where x x xB NB x
x ( ),1 3

2e j
Step : 2

Expressing Z x  in terms of xNB , we find

        f x x x x x x x x x x x2 3 2 3 2 2 3
2

2 3 2 2
24 2 2 6 2 2 2 2 2 2 2,b g b g b g b g          

         




f x
x

x x x x xNBd i
2

2 3 2 3 28 6 4 2 2 2 2 2 4 4          ( )( ) ( )

Now evaluating this partial derivative at xNB  0  i.e. x x2 30 0 ,  we get,

         




f x
x

NBd i
2

8 6 16 14 10 0      

This indicates that the objective function will increase if x2  is increased. Now,,

we should observe whether the partial derivative with respect to x3  gives a more
promising alternative.

         




f x
x

x x xNBd i b g
3

2 3 24 4 2 2 2     

At the point xNB  0  we get 




f x
x

NBd i
3

4 0  .

Since 






f
x

x f
x

xNB NB
2 3

0 0  d i d i , increase in x2  will give better improvement

in the objective function.

Step : 3

How much x2  may increase ?

The maximum value of x2  allowed to attain is determined by checking two
quantities.
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i) The value of x2  at which 



f
x

xNB
2

0d i

ii) The largest value x2  can attain without deriving the basic variables negative.

Then x2  will be the minimum value of these two.

 




f x
x

x x xNB

x

( )
( ) ( )

2 0
2 2 2

3

8 6 8 2 2 2 2 4 4


       

            10 12 02x  i. e. x2
5
6

 .

and x x x1 2 32 2    x x x1 2 3 0, , , Max. value x2  can attain is x2 1

at x3 0 .

     x Min2
5
6

1 5
6

 RST
UVW,

Thus we find x2
5
6

  and the new basic variable is x2 . We now initiate a new

interation by solving for x2  in terms of x1  and x3 .

Second Iteration
Step : 1

Selecting x2  as a basic variable we get,

x x x2 1 31 1
2

  b g

Here x xB  ( )2  and xNB x
x

3

1e j
Step : 2

Expressing zx  in terms of xNB  we find

f x x x x x x x x x x x1 3 1 1 3 1
2

1 1 3 1 3

2

4 6 1 1
2

2 2 1 1
2

1
2

2 1 1
2

1
2

,b g b g   F
HG

I
KJ    F

HG
I
KJ   F

HG
I
KJ

     



f
x

x x x x x x
1

1 1 3 1 1 34 3 4 2 1 1
2

1
2

2 1
2

4 1 1
2

1
2

1
2

     F
HG

I
KJ  FHG

I
KJ   F

HG
I
KJ FHG

I
KJ

 1 3 1x
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


f
x

x x x x
3

1 1 3 36 1
2

2 1
2

4 1 1
2

1
2

1
2

1 FHG
I
KJ  FHG

I
KJ   F

HG
I
KJ FHG

I
KJ   




f
x x x1

1 3 0

1 0
 

   and 



f
x x x3

1 3 0

1 0
 

  

This indicates that x1  can be introduced to increase zx .

Step : 3

How much x1  may increase 1




f
x

x x
x1 0

1 1

3

1 3 0 1
3



    

x x x2 1 31 1
2

1
2

   , At the most x1 2  with x3 0 . x Min1
1
3

1 1
3

 F
HG

I
KJ , . The

new basic variable is x1 .

Since 



f
x

x
x x3 0

3

1 3

1 0
 

   ,  cannot become basic variable and therefore the

optimal solution is attained at x1
1
3

  and x2
5
6

 , x3 0 .

Max. zx 
F
HG

I
KJ 

F
HG

I
KJ 

F
HG

I
KJ  F

HG
I
KJ
F
HG

I
KJ 

F
HG

I
KJ4 1

3
6 5

6
2 1

3
2 1

3
5
6

2 5
6

2 2

 
25
6

Observe that x x x x1 2 1 22 1
3

2 5
6

2 0 0  FHG
I
KJ 

F
HG

I
KJ   , ,

Thus all the constraints are satisfied.

Example 8.6.2
Solve the following quadratic problem by Beale's method.

Max Z x x x x x xx     10 25 10 41 2 1
2

2
2

1 2

Subject to,

x x x1 2 32 10  
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x x x1 2 4 9  

and x x x x1 2 3 4 0, , , 

Solution :
Step : 1

Select x x1 2,  as basic variables. (Since there are two constraints we choose 2
variables as basic variables).

x x x1 2 32 10  

x x x1 2 49  

Solving above two equations simultaneously for x1  and x2  we get

x x x1 3 48 2    and x x x2 3 41  

Here x x xB  1 2,b g x x xNB  3 4,b g
Step : 2

Expressing Z x  is terms of x3  and x4  we get,

f x x x x x x x x x x3 4 3 4 3 4 3 4
2

3 4
210 8 2 25 1 10 8 2 1,b g b g b g b g b g           

            4 8 2 13 4 3 4x x x xb gb g



f
x

x x x x x x xNB
3

3 4 3 4 3 410 25 20 8 2 2 1 1 4 1d i b g b gb g b g           

     4 8 23 4x xb g





f x
x

NB

x x

d i
3

03 4

145 0
 

  

Therefore objective function we decrease if we increase x3 .




f
x

x x x x xNB
4

3 4 3 420 25 20 8 2 2 2 1d i b gb g        ( )

              4 8 2 8 13 4 3 4x x x xb g b g
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



f x
x

NB

x x

d i
4

03 4

299 0
 

 

Therefore increase in x4  will improve the objective function. So we proceed to

decide how much x4  can increase.

Step : 3

x x x1 3 48 2    x x x1 3 4 0, ,  ,

maximum value x4  can attain is x4 4  at x3 0 .





f x
x

x x x xNB

x

d i b g b g b g b g
4

0

4 4 4 4

3

20 25 40 8 2 2 1 4 8 2 8 1


          

           299 66 0 299
664 4x x

x Min4 4 299
66

4 RST
UVW,

Since at x x x3 4 10 4 0  , , , x1  cannot be basic variable.

 The new basic variables  are x4  and x2 .

Second Iteration
Step : 1

Solve the constraints for x2  and x4 .

x x x2 1 35 1
2

1
2

    and x x x x4 1 1 39 5 1
2

1
2

    F
HG

I
KJ

        4 1
2

1
21 3x x

Thus x x xB  2 4,b g x x xNB  1 3,b g
Step : 2

Express Zx  in terms of non - basic variables.

f x x x x x x x x1 3 1 1 3 1
2

1 3

2

10 25 5 1
2

1
2

10 5 1
2

1
2

,b g   F
HG

I
KJ    F

HG
I
KJ
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           F
HG

I
KJ4 5 1

2
1
21 1 3x x x

       



f
x

x x x x x x
1

1 1 3 1 3 110 25 1
2

20 1
2

2 5 1
2

1
2

4 5 1
2

1
2

2  FHG
I
KJ    F

HG
I
KJ   F

HG
I
KJ .




f
x x x1 01 3

35
2

0
 

  

      



f
x

x x x
3

1 3 125 1
2

2 5 1
2

1
2

1
2

4 1
2

 FHG
I
KJ   F

HG
I
KJ FHG

I
KJ  FHG

I
KJ




f
x x x3 01 3

15
2

0
 

  

Since both the partial derivaties are negative, neither x1  nor x3  non - basic

variables can be introduced to increase Z x  and thus the optimal solution has

been obtained. The solution is given by x x x1 3 20 5  ,  and x4 4  and optimal
value of Z is.

Z Smax      10 0 25 5 10 0 5 4 0 1002 2b g b g b g b g b gb g
Example 8.6.3

Use Beal's method to solve quadratic programming problem.

Maximize Z x x x  2 3 21 2 2
2

Subject to the constraints

x x1 24 4 

x x1 2 2 

and x x1 2 0, 

Solution :
Step : 1

Introduce slack variables in the constraints to get equations.

x x x1 2 34 4  

x x x1 2 4 2  

and x x x x1 2 3 4 0, , , 



263

Solve the constraints for x1  and x2 .

1 2 3x 4x 4 x  

x x x1 2 42  

Solving above equations simultaneously we get,

x x x1 3 4
1
3

4 4  b g  and x x x2 3 4
1
3

2  b g

Initially x1
4
3

  and x2
2
3



Thus x x xB  1 2,b g  and x x xNB  3 4,b g .

Step : 2

Express Z in terms of non - basic variables.

Z f x x x x x x x x         3 4 3 4 3 4 3 4
22

3
4 4 2 2

9
2,b g b g b g b g




f
x

x x
3

3 4
2
3

1 4
9

2 1     b gb g; 


f
x x x3 03 4

2
3

1 8
9

5
9

0
, 

    




f
x

x x
4

3 4
8
3

1 4
9

2    b g; 


f
x x x4 03 4

8
3

1 8
9

23
9

0
 

      

Since 



f
x3

0 , increase in x3  will increase the objective function whereas, since




f
x4

0 , increase in x4  will decrease the objective function. Therefore we increase

the value of x3  since we want to maximize Z.

Step : 3

How much x3  may increase ?

Since x x x2 3 4
1
3

2  b g  at the most x3 2  with x2 0  and




f
x

x x
3

3 3
5
9

4
9

0 5
4

    
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x3 2 5
4

5
4

 RST
UVWmin ,

Thus we get three non - zero variables.

x3
5
4

  therefore x1
7
4

  and x2
1
4



Thus we have three non-zero variables with 2 constraints.

Therefore introduce new variable

4

5
3 x 0

fx
x







Step : 4

Since at x
f

x x
3

3 0

5
4

0
4

 


, 


 we introduce a new variable

x f
x

x
x

5
3 0

3

4

5
9

4
9

  





i. e. We introduce a new constraint

4
9

5
93 5x x 

Thus we have the following system of constraints.

x x x1 2 34 4  

x x x1 2 4 2  

4
9

5
93 5x x 

Now represent x x x1 2 3, ,  in terms of non - basic variables x4  and x5 . By solving

above linear equations simultaneously for x x x1 2 3, ,  we get,

x x x1 5 4
7
4

3
4

4
3

  

x x x2 5 4
1
4

3
4

1
3

  
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x x3 5
5
4

9
4

 

x x x xB  1 2 3, ,b g and x x xNB  4 5,b g
Step : 5

Express Z in terms of non - basic variables x4  and x5 .

Z f x x x x x x x x   F
HG

I
KJ   F

HG
I
KJ   F

HG
I
KJ4 5 5 4 5 4 5 4

2

2 7
4

3
4

4
3

3 1
4

3
4

1
3

2 1
4

3
4

1
3

,b g




f
x x x4 04 5

8
3

1 4 1
4

1
3

2 0
 

    F
HG

I
KJ
F
HG

I
KJ   




f
x x x5 04 5

3
2

9
4

4 1
4

3
4

0
 

    F
HG

I
KJ
F
HG

I
KJ 

Since 



f
x4

0  and 



f
x5

0 , no further improvement is possible and we get

optimal solution at x x x x x1 2 3 4 5
7
4

1
4

5
4

0    , , , .

and Z x x x  2 3 21 2 2
2

      F
HG

I
KJ2 7

4
3 1

4
2 1

4

2

. .

      
14
4

3
4

1
8

33
8

~ ~ ~ ~ ~ EXERCISE ~ ~ ~ ~ ~
Solve the following problems by Beale's method.

1) Max. Z x x x  2 31 2 1
2

Subject to,

x x1 22 4  , x x1 2 0, 

Ans x x z.: , ,1 2
1
4

15
8

97
16

  F
HG

I
KJ
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2) Max. Z x x x  2 2 21 2 2
2

Subject to,

x x1 24 2  , x x1 2 2 

x x1 2 0, 

Ans x x z.: , ,1 20 1 3  b g
3) Max. Z x x x x x x    6 3 4 41 2 1

2
1 2 2

2

Subject to the constraints

x x x x1 2 1 23 4 9   ,

x x1 2 0, 

Ans x x z.: , ,1 22 1 15  b g
4) Min Z x x x x x x     183 44 42 8 12 171 2 1

2
1 2 2

2

Subject to,

2 10 01 2 1 2x x x x  , ,

Ans x x z.: . , . ,1 23 8 2 4 19  b g

5) Max Z x x x x    
1
4

2 1
23 1 1

2
2
2

3
2b g d i

Subject to,

x x x1 2 3 1    and x x x1 2 3 0, , 

Ans x x x z.: , , ,1 2 3
1
8

0 7
8

1
64

   F
HG

I
KJ

6) Max. Z x x  4 31
2

2
2

Subject to,

x x x x1 2 1 23 5 4 4   , ,  x x1 2 0, 


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