

CONVEX SETS AND FUNCTIONS

1.0 INTRODUCTION

The roots of operations research can be found when early attempts were made to use a scientific approach in technical problems and in the management of organisations at the time of world war II. Britian had very limited military resources and therefore there was an urgent need to allocate resources to the various military operations and to the activities of each operation in an effective manner. Therefore the british military executives and managers called upon a team of scientists to apply a scientific method to study the technical problems related to air and land defence of the country. As the team was dealing with (military) operations the work of this team of scientists was named as OR in Britian.

Their efforts were instrumental in winning the air battle of Britian, and of the North Attantic etc.

The success of this team of scientists in Britian encouraged United States, Canada and France to start with such efforts. The work of this team was given various names in United States such as Operational analysis, operations evaluation operations research etc.

The apparent success of OR in the military attracted the attention of industrial management in this new field. In this way OR began to creep into industry and many governmental organisations.

After the war, many scientists were motivated to pursue research relevant in this new branch. The first technique in this field called the simplex method for solving linear programming problem was developed by American mathematician, George Dantzing in 1947. Since then many techniques such as quadratic programming, dynamical programming, inventory theory, queing theory etc. are developed. Thus the impact of OR can be experienced in almost all walks of life.

Definition of OR

We give few definitions of OR.

1) $O R$ is the application of the theories of probability, linear programming, queuing theory etc. to the problems of war, industry, agriculture and many organisation.
2) $\quad O R$ is the art of winning war without actually fighting.
3) OR is the art of giving bad answers to the problems where otherwise the worse answers are given. (T. L. Saathy 58)

Use of OR

In general we can say that whenever there is a problem there is OR for help. In addition to the military operations research is widely used in many organisations. Now we discuss the scope of OR in various fields.

1) Defence : There is a necessity to formulate optimum strategies that may give maximum benefit. OR helps the military executives to select the best course of action to win the battle.
2) Industry : The company executives require the use of OR for the following :
3) Production department to minimize the cost of production.
4) Marketing department to maximize the amount sold and to minimize the cost of sales.
5) Finance department to minimize the capital required to maintain any level of business.

The various departments come in conflict with each other as the policy of one department is against the policy of the other. This difficulty is solved by the application of OR techniques. Thus OR has great scope in industry. Now a days almost all big industries in India make use of OR techniques.
3) L. I. C. : OR techniques are applicable to enable L. I. C. officers to decide the premium rates of various policies in the best interest of the corporation.
4) Agriculture : With the increase of population and resulting shortage of food there is a need to increase agriculture output for a country. But there are many problems faced by the agriculture department of a country. e. g. (i) climate conditions (ii) Problem of optimal distribution of water from the resources etc.

Thus there is a need of the policy under the given restrictions for which OR techniques are useful to determine the best policies.
5) Planning : Careful planning plays an important role in the economic development of many organisations for which OR techniques are fruitful for such planning.

CONVEX SETS AND THEIR PROPERTIES

1.1 Definition I (Convex Set) Let $R^{n}=\left\{\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in R, i=1,2, \ldots, n\right\}$

A subset $S \subset R^{n}$, is said to be convex, if for any two points \bar{x}_{1}, \bar{x}_{2} in S the line segment joining the points \bar{x}_{1} and \bar{x}_{2} is also contained in S.

In other words, a subset $S \subset R^{n}$ is convex, if and only if
$\bar{x}_{1}, \bar{x}_{2} \in S \Rightarrow \lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2} \in S ; 0<\lambda \leq 1$
Some convex and non - convex sets in R^{2} are given below.

Convex Sets

Non - convex Sets

Example 1.1

Show that the set $S=\left\{\left(x_{1}, x_{2}\right): 3 x_{1}^{2}+2 x_{2}^{2} \leq 6\right\}$ is convex.

Solution :

Let $\overline{\mathrm{x}}, \overline{\mathrm{y}} \in \mathrm{S}$ where $\overline{\mathrm{x}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $\overline{\mathrm{y}}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$.
Since $\bar{x}, \bar{y} \in S, 3 x_{1}^{2}+2 x_{2}^{2} \leq 6$ and $3 y_{1}^{2}+2 y_{2}^{2} \leq 6$.
The line segment joining \bar{x} and \bar{y} is the set
$\{\bar{u}: \bar{u}=\lambda \bar{x}+(1-\lambda) \bar{y}, 0 \leq \lambda \leq 1\}$
For some $\lambda, 0 \leq \lambda \leq 1$, let $\bar{u}=\left(u_{1}, u_{2}\right)$ be a point of this set, so that
$u_{1}=\lambda x_{1}+(1-\lambda) y_{1}$, and $u_{2}=\lambda x_{2}+(1-\lambda) y_{2}$
Now,

$$
\begin{aligned}
3 u_{1}^{2}+2 u_{2}^{2} & =3\left[\lambda x_{1}+(1-\lambda) y_{1}\right]^{2}+2\left[\lambda x_{2}+(1-\lambda) y_{2}\right]^{2} \\
& =\lambda^{2}\left(3 x_{1}^{2}+2 x_{2}^{2}\right)+(1-\lambda)^{2}\left[3 y_{1}^{2}+2 y_{2}^{2}\right]+2 \lambda(1-\lambda)\left(3 x_{1} y_{1}+2 x_{2} y_{2}\right) \\
& \leq 6 \lambda^{2}+6(1-\lambda)^{2}+12 \lambda(1-\lambda)=6
\end{aligned}
$$

Since $\quad\left(x_{1}-y_{1}\right)^{2} \geq 0, \quad x_{1} y_{1} \leq \frac{1}{2}\left(x_{1}^{2}+y_{1}^{2}\right) \quad$ similarly $\quad x_{2} y_{2} \leq \frac{1}{2}\left(x_{2}^{2}+y_{2}^{2}\right) \quad$ and $3 \mathrm{x}_{1} \mathrm{y}_{1}+2 \mathrm{x}_{2} \mathrm{y}_{2} \leq 6$ and we have
$3 u_{1}^{2}+2 u_{2}^{2} \leq 6$ and hence $\bar{u}=\left(u_{1}, u_{2}\right) \in S$.
Hence S is a convex set.

Example 1.2

In R^{n} consider,
$S_{1}=\{\overline{\mathrm{x}}| | \overline{\mathrm{x}} \mid \leq 1\}$ where $|\overline{\mathrm{x}}|=\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\ldots+\mathrm{x}_{\mathrm{n}}^{2}\right)^{1 / 2}$
Take $\bar{x}_{1}, \bar{x}_{2} \in S$
Then $\left|\overline{\mathrm{x}}_{1}\right| \leq 1,\left|\overline{\mathrm{x}}_{2}\right| \leq 1$ and for $0 \leq \lambda \leq 1$,

$$
\begin{aligned}
\left|\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}\right| & \leq|\lambda|\left|\bar{x}_{1}\right|+\left|(1-\lambda) \bar{x}_{2}\right| \\
& =\lambda\left|\bar{x}_{1}\right|+(1-\lambda)\left|\bar{x}_{2}\right| \leq 1
\end{aligned}
$$

$\Rightarrow \lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2} \in S_{1} \Rightarrow S_{1}$ is a convex set.

Example 1.3

Show that $C=\left\{\left(x_{1}, x_{2}\right) \mid 2 x_{1}+3 x_{2}=7\right\} \subseteq R^{2}$ is convex set.

Solution :

Let

$$
\bar{x}=\left(x_{1}, x_{2}\right) \text { and } \bar{y}=\left(y_{1}, y_{2}\right) \in C \text { and let } 0 \leq \lambda \leq 1 .
$$

Let

$$
\begin{gathered}
\overline{\mathrm{w}}=\lambda \overline{\mathrm{x}}+(1-\lambda) \overline{\mathrm{y}}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \\
\Rightarrow \overline{\mathrm{w}}=\lambda\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+(1-\lambda)\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \\
\Rightarrow\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\left(\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}, \lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}\right) \\
\Rightarrow \mathrm{w}_{1}=\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}, \mathrm{w}_{2}=\lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}
\end{gathered}
$$

We have $2 w_{1}+3 w_{2}=2\left(\lambda x_{1}+(1-\lambda) y_{1}\right)+3\left(\lambda x_{2}+(1-\lambda) y_{2}\right)$

$$
\Rightarrow 2 \mathrm{w}_{1}+3 \mathrm{w}_{2}=\lambda\left(2 \mathrm{x}_{1}+3 \mathrm{x}_{2}\right)+(1-\lambda)\left(2 \mathrm{y}_{1}+3 \mathrm{y}_{2}\right)
$$

Since $\bar{x}, \bar{y} \in C, 2 x_{1}+3 x_{2}=7,2 y_{1}+3 y_{2}=7$
Hence $\quad 2 w_{1}+3 w_{2}=\lambda .7+(1-\lambda) .7=7$
$\Rightarrow \bar{w}=\left(w_{1}, w_{2}\right)=\lambda \bar{x}+(1-\lambda) \bar{y} \in C, \forall \lambda, 0 \leq \lambda \leq 1$.
Hence C is a convex set.

Example 1.4

Show that $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 2 x_{1}-x_{2}+x_{3} \leq 4\right\} \subseteq R^{3}$ is a convex set.

Solution :

Let $\overline{\mathrm{x}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ and $\overline{\mathrm{y}}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)$ be any two points in S . Then by hypothesis,
$2 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3} \leq 4,2 \mathrm{y}_{1}-\mathrm{y}_{2}+\mathrm{y}_{3} \leq 4$
Let

$$
\begin{align*}
& \overline{\mathrm{w}}=\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)=\lambda \overline{\mathrm{x}}+(1-\lambda) \overline{\mathrm{y}} \text { where } 0 \leq \lambda \leq 1 \tag{i}\\
\Rightarrow & \overline{\mathrm{w}}=\lambda\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)+(1-\lambda)\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \\
\Rightarrow & \overline{\mathrm{w}}=\left(\lambda \mathrm{x}_{1}, \lambda \mathrm{x}_{2}, \lambda \mathrm{x}_{3}\right)+\left((1-\lambda) \mathrm{y}_{1},(1-\lambda) \mathrm{y}_{2},(1-\lambda) \mathrm{y}_{3}\right) \\
\Rightarrow & \overline{\mathrm{w}}=\left(\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}, \lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}, \lambda \mathrm{x}_{3}+(1-\lambda) \mathrm{y}_{3}\right) \\
\Rightarrow & \mathrm{w}_{1}=\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}, \mathrm{w}_{2}=\lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}, \mathrm{w}_{3}=\lambda \mathrm{x}_{3}+(1-\lambda) \mathrm{y}_{3}
\end{align*}
$$

We have,

$$
\begin{align*}
2 \mathrm{w}_{1}-\mathrm{w}_{2}+\mathrm{w}_{3} & =2\left(\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}\right)-\left(\lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}\right)+\left(\lambda \mathrm{x}_{3}+(1-\lambda) \mathrm{y}_{3}\right) \\
& =\lambda\left(2 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}\right)+(1-\lambda)\left(2 \mathrm{y}_{1}-\mathrm{y}_{2}+\mathrm{y}_{3}\right) \\
& \leq \lambda .4+(1-\lambda) 4=4 \tag{1}
\end{align*}
$$

$\Rightarrow \bar{w}=\lambda \bar{x}+(1-\lambda) \bar{y} \in S$ for all $\bar{x}, \bar{y}, \in S$ and for all λ such that $0 \leq \lambda \leq 1$
$\Rightarrow S$ is a convex set.

Example 1.5

Show that in $R^{3}, S=\left\{\left(x_{1}, x_{2}, x_{3}\right)\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1\right\}$ is a convex set.

Solution :

Let $\overline{\mathrm{x}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ and $\overline{\mathrm{y}}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \in \mathrm{S}$.
Then $\|\mathrm{x}\|^{2}=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2} \leq 1$ and $\mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2}+\mathrm{y}_{3}^{2}=\|\mathrm{y}\|^{2} \leq 1$
Let $0 \leq \lambda \leq 1$ and $\bar{z}=\lambda \bar{x}+(1-\lambda) \bar{y}$ where $\bar{z}=\left(z_{1}, z_{2}, z_{3}\right)$
Then $\quad \bar{z}=\lambda\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)+(1-\lambda)\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)$

$$
\Rightarrow \overline{\mathrm{z}}=\left(\lambda \mathrm{x}_{1}, \lambda \mathrm{x}_{2}, \lambda \mathrm{x}_{3}\right)+\left((1-\lambda) \mathrm{y}_{1},(1-\lambda) \mathrm{y}_{2},(1-\lambda) \mathrm{y}_{3}\right)
$$

$$
\begin{aligned}
& \Rightarrow \overline{\mathrm{z}}=\left(\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}, \lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}, \lambda \mathrm{x}_{3}+(1-\lambda) \mathrm{y}_{3}\right) \\
& \Rightarrow\|\bar{z}\|^{2}=\left[\lambda \mathrm{x}_{1}+(1-\lambda) \mathrm{y}_{1}\right]^{2}+\left(\lambda \mathrm{x}_{2}+(1-\lambda) \mathrm{y}_{2}\right)^{2}+\left(\lambda \mathrm{x}_{3}+(1-\lambda) \mathrm{y}_{3}\right)^{2} \\
& \Rightarrow\|\bar{z}\|^{2}=\lambda^{2}\left[\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}\right]+(1-\lambda)^{2}\left[\mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2}+\mathrm{y}_{3}^{2}\right]+2 \lambda(1-\lambda)\left(\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\mathrm{x}_{3} \mathrm{y}_{3}\right) \text { (ii) }
\end{aligned}
$$

For $i=1,2,3$, since $\left(x_{i}-y_{i}\right)^{2} \geq 0, x_{i} y_{i} \leq \frac{1}{2}\left(x_{i}^{2}+y_{i}^{2}\right)$ and therefore

$$
\begin{align*}
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} & \leq \frac{1}{2}\left[x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right] \\
& \leq \frac{1}{2}(1+1)=1 \tag{iii}
\end{align*}
$$

Thus, $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \leq 1$
Hence from (i), (ii) and (iii) we have
$\|\bar{z}\|^{2} \leq \lambda^{2}+(1-\lambda)^{2}+2 \lambda(1-\lambda) 1.1=[\lambda+(1-\lambda)]^{2}=1$
$\Rightarrow \lambda \bar{x}+(1-\lambda) \bar{y}=\bar{z} \in S$ for all $\bar{x}, \bar{y} \in S$ and for all λ such that $0 \leq \lambda \leq 1$.
$\Rightarrow S$ is a convex set.

Theorem 1.1

The intersection of any finite number of convex sets is a convex set.

Proof

Let $S_{1}, S_{2}, \ldots, S_{n}$ be a finite number of convex sets, and let $S=S_{1} \cap S_{2} \cap \ldots \cap S_{n}$.
Let $\bar{x}, \bar{y} \in S$ and $0 \leq \lambda \leq 1$
Then $\bar{x}, \bar{y} \in S_{i}$ for each $i=1,2, \ldots, n$ where each S_{i} is a convex set. Then
$\lambda \bar{x}+(1-\lambda) \bar{y} \in S_{i}$ for each $i=1,2, \ldots, n$
$\Rightarrow \lambda \bar{x}+(1-\lambda) \bar{y} \in S, \cap S_{2} \cap \ldots S_{n}=S$
$\Rightarrow S$ is a convex set.

Theorem 1.2

Let S and T be convex sets in R^{n}. Then $\alpha S+\beta T$ is also convex for any α, β in R.

Proof

Let $\bar{x}, \bar{y} \in \alpha S+\beta T$

Then $\bar{x}=\alpha \bar{u}_{1}+\beta \bar{v}_{1}$ and $\bar{y}=\alpha \bar{u}_{2}+\beta \bar{v}_{2}$, where $\bar{u}_{1}, \bar{u}_{2} \in S$ and $\bar{v}_{1}, \bar{v}_{2} \in T$
For any λ with $0 \leq \lambda \leq 1$, we have
$\lambda \bar{x}+(1-\lambda) \bar{y}=\lambda\left(\alpha \bar{u}_{1}+\beta \bar{v}_{1}\right)+(1-\lambda)\left(\alpha \bar{u}_{2}+\beta \bar{v}_{2}\right)$
$\Rightarrow \lambda \bar{x}+(1-\lambda) \bar{y}=\alpha\left(\lambda \bar{u}_{1}+(1-\lambda) \bar{u}_{2}\right)+\beta\left(\lambda \bar{v}_{1}+(1-\lambda) \bar{v}_{2}\right)$
$\bar{u}_{1}, \bar{u}_{2} \in S, S$ is convex.
$\therefore \lambda \bar{u}_{1}+(1-\lambda) \bar{u}_{2} \in S$
Similarly, $\quad \lambda \bar{v}_{1}+(1-\lambda) \bar{v}_{2} \in T$

$$
\lambda \bar{x}+(1-\lambda) \bar{y} \in \alpha S+\beta T,
$$

Hence $\alpha S+\beta T$ is convex.

Definition 1.2

A convex combination of a finite number of points $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}$ is a point
$\bar{x}=\lambda_{1} \bar{x}_{1}+\lambda_{2} \bar{x}_{2}+\ldots+\lambda_{n} \bar{x}_{n}$
where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0$ and $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}=1$

Remark

From this definition it follows that a subset $K \subseteq R^{n}$ is convex, if convex combination of any two points of K belongs to K .

Theorem 1.3

For a set K to be convex it is necessary and sufficient that every convex combination of points in K belongs to K .

Proof

Let every convex combination of points in K belong to K .
Then every convex combination of two points in K belongs to K .
Therefore K is convex. Hence the condition is sufficient.
Converly let K be convex.
To prove that the condition is necessary we shall follow the method of induction. We shall first prove that if the condition is true for r points it is also true for $r+1$ points.

Let $\sum_{i=1}^{r} \lambda_{i} \bar{x}_{i} \in K$ where K is convex and $\bar{x}_{i} \in K, \sum_{i=1}^{r} \lambda_{i}=1, \lambda_{i} \geq 0, i=1,2, \ldots, r$

Consider $\sum_{i=1}^{r+1} \mu_{i} \bar{x}_{i}, \bar{x}_{i} \in K, \sum_{i=1}^{r+1} \mu_{i}=1, \mu_{i} \geq 0, i=1,2, \ldots, r+1$
Here two cases arise.
i) $\quad \mu_{r+1}=0$
ii) $\quad \mu_{r+1} \neq 0$

Case (I)

$$
\mu_{\mathrm{r}+1}=0 \Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{r}+1} \mu_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{r}} \mu_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{i}} \in \mathrm{~K}
$$

Since by hypothesis $\mu_{i} \geq 0$ and $\sum_{i=1}^{r} \mu_{i}=1$.

Case (II)

$$
\begin{aligned}
\mu_{r+1} \neq 0 \Rightarrow \sum_{i=1}^{r+1} \mu_{i} \bar{x}_{1} & =\left(1-\mu_{r+1}\right) \frac{\sum_{i=1}^{r} \mu_{i} \bar{x}_{i}}{\left(1-\mu_{r+1}\right)}+\mu_{r+1} \bar{x}_{r+1} \\
& =\left(1-\mu_{r+1}\right) \bar{y}+\mu_{r+1} \bar{x}_{r+1}
\end{aligned}
$$

where $\quad \bar{y}=\frac{\sum_{i=1}^{r} \mu_{i} \bar{x}_{i}}{\left(1-\mu_{r+1}\right)}=\sum_{i=1}^{r} \frac{\mu_{i}}{1-\mu_{r+1}} \bar{x}_{i}=\sum_{i=1}^{r} \lambda_{i} \bar{x}_{i}$ and $\sum_{i=1}^{r+1} \mu_{i}=1$
and $\quad \sum_{i=1}^{r} \lambda_{i}=\frac{\sum_{i=1}^{r} \mu_{i}}{1-\mu_{r+1}}=\frac{1-\mu_{r+1}}{1-\mu_{r+1}}=1$

Thus $\quad \lambda_{i} \geq 0, \sum_{i=1}^{r} \lambda_{i}=1$ and therefore $\bar{y} \in K$.
Therefore by hypothesis $\overline{\mathrm{y}} \in \mathrm{K}$.
Hence $\sum_{i=1}^{r+1} \mu_{i} \bar{x}_{i}=\left(\sum_{i=1}^{r} \mu_{i}\right) \overline{\mathrm{y}}+\mu_{r+1} \overline{\mathrm{x}}_{\mathrm{r}+1}=\left(1-\mu_{\mathrm{r}+1}\right) \overline{\mathrm{y}}+\mu_{\mathrm{r}+1} \overline{\mathrm{x}}_{\mathrm{r}} \in \mathrm{K}$ becasue the right hand side is the convex linear combination of two points \bar{y} and \bar{X}_{r+1} in K which by hypothesis is convex.

This proves the theorem for $r+1$ points. It is true for $r=2$ by definition. Hence theorem is proved.

Definition 1.3

The convex hull of a set S is the intersection of all convex sets containing S. We shall denote by $[\mathrm{S}]$ the convex hull of S .

Remark

Every set has a convex hull, because R^{n} is a convex set and so there is always at least one convex set R^{n} of which every set is a subset. Also a convex set is its own convex hull.

Theorem 1.4

The convex hull of S is the set of all finite convex combinations of points in S.

Proof

Let K be the set of all finite convex combination of the points in S.
Then by theorem $1.3, \mathrm{~K}$ is a convex set containing S .
Hence $\mathrm{S} \subseteq \mathrm{K}$. Let K_{1} be any convex set which contains S . Then K_{1} contains all convex combinations of points in K_{1}. Hence it contains all convex combinations of points in S .

Hence $K \subseteq K_{1}$.
Thus K is a subset of all convex sets containing S which shows that K is the intersection of all convex sets containing S . Hence $\mathrm{K}=[\mathrm{S}]$.
i.e. K is the convex hull of S.

Theorem 1.5

The set of all convex combinations of a finite number of points $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{m}$ is a convex set.
Proof
Let $S=\left\{\bar{x} \mid \bar{x}=\sum_{i=1}^{m} \lambda_{i} \bar{x}_{i}, \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1\right\}$
To show that S is a convex set take \bar{x}^{\prime} and \bar{x}^{\prime} ' in S, so that $\bar{x}^{\prime}=\sum_{i=1}^{m} \lambda_{i}^{\prime} \bar{x}_{i}$ where $\lambda_{i}^{\prime} \geq 0$ and $\sum_{i=1}^{m} \lambda_{i}^{\prime}=1$ and $\bar{x}^{\prime \prime}=\sum_{i=1}^{m} \lambda^{\prime \prime} \bar{x}_{i}$ where $\lambda^{\prime \prime}{ }_{i} \geq 0$ and $\sum_{i=1}^{m} \lambda^{\prime \prime}{ }_{i}=1$.

Consider the vector

$$
\bar{x}=\lambda \bar{x}^{\prime}+(1-\lambda) \bar{x}^{\prime}, 0 \leq \lambda \leq 1
$$

$$
\begin{aligned}
& \Rightarrow \quad \overline{\mathrm{x}}=\lambda \sum_{\mathrm{i}=1}^{m} \lambda_{i} \bar{x}_{i}+(1-\lambda) \sum_{i=1}^{m} \lambda_{\mathrm{i}}^{\prime \prime} \bar{x}_{i} \\
& \Rightarrow \quad \overline{\mathrm{x}}=\sum_{\mathrm{i}=1}^{m}\left[\lambda \lambda_{i}^{\prime}+(1-\lambda) \lambda^{\prime \prime}{ }_{i}\right] \overline{\mathrm{x}}_{\mathrm{i}}
\end{aligned}
$$

We can write $\bar{x}=\sum_{i=1}^{m} \mu_{i} \bar{x}_{i}$
where $\mu_{i}=\lambda \lambda^{\prime}{ }_{i}+(1-\lambda) \lambda^{\prime \prime}{ }_{i}$
Since $0 \leq \lambda \leq 1, \lambda_{i}^{\prime} \geq 0, \lambda^{\prime \prime}{ }_{i} \geq 0$ it follows that $\mu_{i} \geq 0 \forall i=1,2, \ldots, m$. Also

$$
\begin{aligned}
\sum_{i=1}^{m} \mu_{i} & =\sum_{i=1}^{m}\left\{\lambda \lambda_{i}^{\prime}+(1-\lambda) \lambda^{\prime \prime}{ }_{i}\right\} \\
& =\lambda \sum_{i=1}^{m} \lambda^{\prime}{ }_{i}+(1-\lambda) \sum_{i=1}^{m} \lambda^{\prime \prime}{ }_{i}=\lambda .1+(1-\lambda) 1=1
\end{aligned}
$$

Hence \bar{x} is a convex combination of $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{m} \Rightarrow \bar{x} \in S$.
Thus for each pair of points \bar{x}^{\prime} and $\bar{x}^{\prime} '$ in S the line segment joining them is contained in S. Hence S is a convex set.

Theorem 1.6

Every point of [S] can be expressed as a convex combination of at most ($n+1$) points of $S \subseteq R^{n}$.

Proof

By definition of convex null and theorem 1.1, [S] is a convex set.
Let $\bar{x}_{i} \in S, i=1,2, \ldots, m$.
$\bar{x}=\sum_{i=1}^{m} \lambda_{i} \bar{x}_{i}, \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0, \quad \bar{x} \in[S]$
Now $\bar{x} \in[S]$ can be expressed as a convex combination of points in S follows from the above theorem (1.3). What we have to prove now is that for any given \bar{x} we can always find $m \leq n+1$.

Let us suppose if possible that there is an $\bar{x} \in[S]$ for which $m>n+1$. Since the space R^{n} is n - dimensional, not more than n vectors in R^{n} can be linearly independent. Consider the vectors, $\bar{x}_{1}-\bar{x}_{m}, \bar{x}_{2}-\bar{x}_{m}, \ldots, \bar{x}_{m-1}-\bar{x}_{m}$.

Since m-1>n these (m-1) vectors cannot be linearly independent.
Hence it is possible to find $\alpha_{i}, i=1,2, \ldots, m-1$ not all zero such that

$$
\sum_{i=1}^{m-1} \alpha_{i}\left(\bar{x}_{i}-\bar{x}_{m}\right)=\overline{0}
$$

or $\quad \sum_{i=1}^{m-1} \alpha_{i} \bar{x}_{i}-\left(\sum_{i=1}^{m-1} \alpha_{i}\right) \bar{x}_{m}=\overline{0}$
or $\sum_{i=1}^{m} \alpha_{i} \bar{x}_{i}=\overline{0}$ where $\alpha_{m}=-\sum_{i=1}^{m-1} \alpha_{i}$
or $\quad \sum_{i=1}^{m} \alpha_{i}=0$
Let $\mu_{i}=\lambda_{i}-\beta \alpha_{i}, i=1,2, \ldots, m$. Since $\lambda_{i} \geq 0$ we can choose β such that $\mu_{i} \geq 0$ with $\mu_{i}=0$ for at least one i. This will happen if $\beta=\operatorname{mim}_{i}\left\{\frac{\lambda_{i}}{\alpha_{i}}\right\}$ over those values of i for which $\alpha_{i}>0$ or $\beta_{i}=\max \left\{\frac{\lambda_{i}}{\alpha_{i}}\right\}$ over i for which $\alpha_{i}<0$.

Also

$$
\sum_{i=1}^{m} \mu_{i}=\sum_{i=1}^{m} \lambda_{i}-\beta \sum_{i=1}^{m} \alpha_{i}=1 \quad\left[\sum_{1}^{m} \lambda_{i}=1 \& \sum_{1}^{m} \alpha_{i}=0\right]
$$

Now

$$
\begin{aligned}
\sum_{i=1}^{m} \mu_{i} \bar{x}_{i} & =\sum_{i=1}^{m} \lambda_{i} \bar{x}_{i}-\sum_{i=1}^{m} \beta \alpha_{i} \bar{x}_{i} \\
& =\sum_{i=1}^{m} \lambda_{i} \bar{x}_{i}=\bar{x}
\end{aligned}
$$

(Since $\sum_{i=1}^{m} \alpha_{i} \bar{x}_{i}=0$)
Since at least one $\mu_{i}=0$ it follows that \bar{x} is a convex linear conbination of at most ($m-1$) points. If $m-1>n+1$ we can again apply the above argument and express \bar{x} as a convex combination of $m-2$ points, and so on till $m-k=n+1, k>0$. This proves the theorem.

Definition 1.4

A point \bar{x} of a convex set K is an extreme point or vertex of K if it is not possible to find two points \bar{x}_{1}, \bar{x}_{2} in K such that
$\bar{x}=(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2}, 0<\lambda<1$
A point of K which is not a vertex of K is called an internal point of K .

Theorem 1.7

The set of all internal points of a convex set K is again a convex set.

Proof

Let V be the set of vertices of K . Then $\mathrm{K}-\mathrm{V}$ is the set of internal points.
Let $\bar{x}_{1}, \bar{x}_{2} \in \mathrm{~K}-\mathrm{V}$. Then $\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2} \in \mathrm{~K}$ and $\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2} \notin \mathrm{~V}$
Hence $\bar{x}=(1-\lambda) \bar{x}_{1}+\lambda \bar{x}_{2} \in K, 0<\lambda<1$, is by definition not a vertex of K, but $\bar{x} \in K$.
i. e. $\bar{x} \in K-V$.

Hence $\mathrm{K}-\mathrm{V}$ is a convex set.

Definition 1.5

The set of all convex combinations of a finite number of points $\bar{x}_{i}, i=1,2, \ldots, m$ is the convex polynedron spanned by these points.

Theorem 1.8

The convex polyhedron is a convex set.

Proof

Let \bar{y}_{1} and \bar{y}_{2} be any two points in the polyhedron spanned by $\bar{x}_{i}, i=1,2, \ldots, m$
Then by definition

$$
\begin{aligned}
& \bar{y}_{1}=\sum_{i=1}^{m} \lambda_{i} \bar{x}_{\mathrm{i}}, \sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i} \geq 0 \\
& \overline{\mathrm{y}}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mu_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{i}}, \sum_{\mathrm{i}=1}^{\mathrm{m}} \mu_{\mathrm{i}}=1, \mu_{\mathrm{i}} \geq 0
\end{aligned}
$$

Now let,

$$
\begin{array}{r}
\overline{\mathrm{y}}=(1-\alpha) \bar{y}_{1}+\alpha \overline{\mathrm{y}}_{2}, 0 \leq \alpha \leq 1 \\
\Rightarrow \overline{\mathrm{y}}=(1-\alpha) \sum_{\mathrm{i}=1}^{\mathrm{m}} \lambda_{\mathrm{i}} \bar{x}_{\mathrm{i}}+\alpha \sum_{\mathrm{i}=1}^{\mathrm{m}} \mu_{\mathrm{i}} \bar{x}_{i}
\end{array}
$$

$$
\Rightarrow \overline{\mathrm{y}}=\sum_{\mathrm{i}=1}^{m}\left[(1-\alpha) \lambda_{\mathrm{i}}+\alpha \mu_{\mathrm{i}}\right] \overline{\mathrm{x}}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{m} \beta_{\mathrm{i}} \overline{\mathrm{x}}_{\mathrm{i}},
$$

where

$$
\beta_{i}=(1-\alpha) \lambda_{i}+\alpha \mu_{i}
$$

Since $\sum_{i=1}^{m} \beta_{i}=(1-\alpha) \sum_{i=1}^{m} \lambda_{i}+\alpha \sum_{i=1}^{m} \mu_{i}=1, \bar{y}$ is also in the polyhedron. Hence polyhedron is a convex set.

Theorem 1.9

The set of vertices of a convex polyhedron is a subset of its spanning points.

Proof

Let W be the set of points spanning the convex polyhedron, and V be the set of its vertices. If possible let $\bar{y} \in V$ but $\bar{y} \notin W$. Since \bar{y} is in the poly hedron by definition it is a convex linear combination of points of W all of which are other than $\overline{\mathrm{y}}$ (by assumption). Hence by definition \bar{y} is not a vertex which is a contradiction. Therefore $\bar{y} \in W$ or $V \subseteq W$.

Remark

It is obvious that there can be spanning points which are not vertices. For example consider the points A, B, C, D in R^{2} such that D is in the triangle formed by the vertices A, B, C. The four points span the triangle $A B C$ but D is not a vertex.

HYPERPLANES AND HALF SPACES

Definition 1.5

Let $\overline{\mathrm{x}} \in \mathrm{R}^{\mathrm{n}}, \overline{\mathrm{C}}(\neq 0)$ a constant row n - vector and $\alpha \in \mathrm{R}$. Then we define,
i) A hyperplane as $\{\bar{x} \mid \bar{C} \bar{x}=\alpha\}$
ii) A closed half - space as $\{\overline{\mathrm{x}} \mid \overline{\mathrm{C}} \overline{\mathrm{x}} \leq \alpha\}$ or $\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}} \geq \alpha\}$
iii) An open half space as $\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}}<\alpha\}$ or $\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}}>\alpha\}$

Definition 1.6

A set $X \subseteq R^{n}$ is said to be an $\in-n b d$ of a point $\bar{x}_{0} \in R^{n}$ if,
$\left\{\overline{\mathrm{x}}\left|\left|\overline{\mathrm{x}}-\overline{\mathrm{x}}_{0}\right|<\epsilon\right\} \subseteq \mathrm{X}\right.$ where $|\overline{\mathrm{x}}|=\left|\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right|=\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\ldots+\mathrm{x}_{\mathrm{n}}^{2}\right)^{1 / 2}$

Definition 1.7

The δ.nbd of \bar{x} in R^{n} is defined as the set of all points \bar{y} in R^{n} such that $|\bar{y}-\bar{x}|<\delta$ (Where $\delta>0, \delta \in \mathrm{R}$)

Definition 1.8

If R^{n} the point \bar{x} is a boundry point of the set S if every δ - neighbourhood of \bar{x} contains some points which are in S and some points which are not in S.

For example in
$S_{1}=\{\bar{x}| | \bar{x} \mid \leq 1\}, \quad S_{2}=\{\bar{x}| | \bar{x} \mid<1\}, \bar{x} \in R^{2}$ the points on the circumference of the circle $x_{1}^{2}+x_{2}^{2}=1$ are the boundry points of S_{1} and $S_{2} . S_{1}$ contains all its boundry points while S_{2} contains none of them.

Definition 1.9

A set is said to be closed if it contains all its boundry points and is said to be open if its complement is closed.

Definition 1.10

A set S is said to be bounded from below if there exists \bar{y} in R^{n} with each component finite such that for every $\bar{x} \in S, \bar{y} \leq \bar{x} .\left[\right.$ Note $\left.: \bar{y} \leq \bar{x} \Leftrightarrow y_{j} \leq x_{j}, j=1,2, \ldots, n\right]$.

Definition 1.11

A set S is bounded if there exists a finite real number $M \geq 0$ such that for all \bar{x} in S, $|\overline{\mathrm{x}}| \leq \mathrm{M}$.

Corollary 1.10

A hyperplane is a closed set.

Proof

Let $\left\{\overline{\mathrm{x}} \mid \overline{\mathrm{C}} \overline{\mathrm{x}}=\alpha_{0}\right\}$ be a hyperplane.
Let \bar{x}_{1} be the boundry point of the hyperplane. Suppose it is not a point of the hyper plane.

Then either $\bar{c} \bar{x}_{1}>\alpha_{0}$ or $\bar{c} \bar{x}_{1}<\alpha_{0}$.
Suppose $\overline{\mathrm{c}} \overline{\mathrm{X}}_{1}<\alpha_{0}$ and let $\overline{\mathrm{c}} \overline{\mathrm{X}}_{1}=\alpha_{1}<\alpha_{0}$
Now $\quad \bar{c} \bar{x}=\bar{c}\left[\bar{x}_{1}+\bar{x}-\bar{x}_{1}\right]$

$$
\Rightarrow \bar{c} \bar{x}=\bar{c} \bar{x}_{1}+\bar{c}\left(\bar{x}-\bar{x}_{1}\right) \Rightarrow \bar{c} \bar{x} \leq|\bar{c} \bar{x}|=\left|\bar{c} \bar{x}_{1}+\bar{c}\left(\bar{x}-\bar{x}_{1}\right)\right|
$$

$$
\begin{array}{ll}
\Rightarrow \overline{\mathrm{c}} \overline{\mathrm{x}} \leq\left|\overline{\mathrm{c}} \overline{\mathrm{x}}_{1}\right|+\left|\overline{\mathrm{c}}\left(\overline{\mathrm{x}}-\overline{\mathrm{x}}_{1}\right)\right| & \\
\Rightarrow \overline{\mathrm{c}} \overline{\mathrm{x}} \leq \alpha_{1}+\left|\overline{\mathrm{c}}\left(\overline{\mathrm{x}}-\overline{\mathrm{x}}_{1}\right)\right| & {\left[\left|\overline{\mathrm{c}} \overline{\mathrm{x}}_{1}\right|=\left|\alpha_{1}\right|=\alpha_{1}\right]} \\
\Rightarrow \overline{\mathrm{c}} \overline{\mathrm{x}} \leq \alpha_{1}+|\overline{\mathrm{c}}|\left|\overline{\mathrm{x}}-\overline{\mathrm{x}}_{1}\right| &
\end{array}
$$

Consider the $\in \operatorname{nbd}$ of $\bar{X}_{1},\left\{\overline{\mathrm{x}} \| \overline{\mathrm{x}}-\overline{\mathrm{X}}_{1} \mid<\epsilon\right\}$ where \in is an orbitary positive number.

Let $\in=\frac{\alpha_{0}-\alpha_{1}}{2|\overline{\mathrm{c}}|}$
Hence if \bar{x} is in the $\in-n b d$ of \bar{x}_{1} we get $\overline{\bar{c}} \bar{x}<\alpha_{1}+\frac{\left(\alpha_{0}-\alpha_{1}\right)}{2}=\frac{\alpha_{0}+\alpha_{1}}{2}<\alpha_{0}$
This shows that \bar{x} is in the half space $\bar{c} \bar{x}<\alpha_{0}$. Hence there exits a nbd. of \bar{x}_{1} which contains no points of the hyperplane $\overline{\mathrm{C}} \overline{\mathrm{x}}=\alpha_{0}$. Hence $\overline{\mathrm{X}}_{1}$ is not a boundry point of the hyperplane. This is a contradiction. Thus there is no boundry point of the hyper plane which is not in the hyperplane. Hence the hyperplane is a closed set.

Definition 1.12

In R^{n}, every hyper plane $\{\bar{x} / \bar{c} \bar{x}=\alpha\}$ determines two open half spaces and two closed half spaces. The open half spaces are :
$X_{1}=\{\bar{x} \mid \overline{\mathrm{c}} \overline{\mathrm{x}}>\alpha\}$ and $\mathrm{X}_{2}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}}<\alpha\}$
The closed half - spaces are

$$
X_{3}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}} \geq \alpha\} \text { and } \mathrm{X}_{4}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}} \leq \alpha\} .
$$

Corollery 1.11

A hyperplane is a convex set.

Proof

Let $X=\{\overline{\mathrm{X}} \mid \overline{\mathrm{C}} \overline{\mathrm{X}}=\alpha\}$ be a hyperplane and let $\overline{\mathrm{X}}_{1}, \overline{\mathrm{X}}_{2}$ be any two points of this hyperplane. Then $\overline{\mathrm{c}} \overline{\mathrm{X}}_{1}=\alpha$ and $\overline{\mathrm{C}} \overline{\mathrm{x}}_{2}=\alpha$. Now if $0 \leq \lambda \leq 1$, we have

$$
\begin{aligned}
\overline{\mathrm{c}}\left[\lambda \overline{\mathrm{x}}_{1}+(1-\lambda) \overline{\mathrm{x}}_{2}\right] & =\overline{\mathrm{c}}\left(\lambda \overline{\mathrm{x}}_{1}\right)+\overline{\mathrm{c}}(1-\lambda) \overline{\mathrm{x}}_{2} \\
& =\lambda\left(\overline{\mathrm{c}} \overline{\mathrm{x}}_{1}\right)+(1-\lambda) \overline{\mathrm{c}} \overline{\mathrm{x}}_{2} \\
& =\lambda \alpha+(1-\lambda) \alpha=\alpha
\end{aligned}
$$

Therefore the point $\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}$ for $0 \leq \lambda \leq 1$ is in the hyperplane. Hence the hyperplane is a convex set.

Corollary 1.12

The closed half spaces $\mathrm{H}_{1}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}} \geq \alpha\}$ and $\mathrm{H}_{2}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}} \leq \alpha\}$ are convex sets.

Proof

Let \bar{x}_{1}, \bar{x}_{2} be any two points of H_{1}. Then $\bar{c} \bar{x}_{1} \geq \alpha$ and $\bar{c} \bar{x}_{2} \geq \alpha$. If $0 \leq \lambda \leq 1$.

$$
\begin{aligned}
\overline{\mathrm{c}}\left[\lambda \bar{x}_{1}+(1-\lambda) \overline{\mathrm{x}}_{2}\right] & =\lambda\left(\overline{\mathrm{c}} \overline{\mathrm{x}}_{1}\right)+(1-\lambda) \overline{\mathrm{c}} \overline{\mathrm{x}}_{2} \\
& \geq \lambda \alpha+1(1-\lambda) \alpha=\alpha
\end{aligned}
$$

$\Rightarrow \lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2} \in H_{1}$. Hence H_{1} is a convex set. Similarly H_{2} is a convex set.

Corollary 1.13

The open half spaces $H_{1}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}}>\alpha\}$ and $\mathrm{H}_{2}=\{\overline{\mathrm{x}} \mid \overline{\mathrm{c}} \overline{\mathrm{x}}<\alpha\}$ are convex sets.

Proof

Let \bar{x}_{1}, \bar{x}_{2} be any two points of H_{1}.
Then $\bar{c} \bar{x}_{1}>\alpha, \bar{c} \bar{x}_{2}>\alpha$
If $0 \leq \lambda \leq 1$, we have

$$
\begin{aligned}
\overline{\mathrm{c}}\left[\lambda \overline{\mathrm{x}}_{1}+(1-\lambda) \overline{\mathrm{x}}_{2}\right] & =\lambda\left(\overline{\mathrm{c}} \overline{\mathrm{x}}_{1}\right)+(1-\lambda) \overline{\mathrm{c}} \overline{\mathrm{x}}_{2} \\
& >\lambda \alpha+(1-\lambda) \alpha=\alpha
\end{aligned}
$$

$\Rightarrow \lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2} \in \mathrm{H}_{1}, \forall \overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2} \in \mathrm{H}_{1}$
$\Rightarrow H_{1}$ is a convex set.
Similarly H_{2} is a convex set.

SUPPORTING AND SEPARATING HYPERPLANES

Definition 1.13 (Supporting hyperplane)

Let $S \subset R^{n}$ be any closed convex set and $\bar{w} \in S$ be a boundary point. Then a hyperplane $\bar{c} \bar{x}=z$ is called a supporting hyperplane of S at \bar{w}, if
i) $\overline{\mathrm{c}} \cdot \overline{\mathrm{w}}=\mathrm{z}$ and
ii) $\mathrm{S} \subset \mathrm{H}_{+}$or $\mathrm{S} \subset \mathrm{H}_{-}$
where $H_{+}=\{\bar{x}: \bar{c} \bar{x} \geq z\}$ and $H_{-}=\{\bar{x}: \bar{c} \bar{x} \leq z\}$

Remarks

1) The supporting hyperplane need not be unique.
2) S may intersect the supporting hyperplane in more than one boundary points.

Theorem 1.14

Let S be a closed convex set. Then S has extreme points in every supporting hyperplane.

Proof

Let \bar{w} be a boundary point of a closed convex set S.
Let $\bar{c} \bar{x}=z$ be a supporting hyperplane at $\bar{w} \in S$. Let $B=S \cap\{\bar{x} \mid \bar{c} \bar{x}=z\}$.
Then B is a closed convex set and $B \neq \varphi$ for $\bar{w} \in B$.
We claim that every extreme point of B is also an extreme point of S.
Let us assume to the contrary that an extreme point $\overline{\mathrm{b}}$ of B , is not an extreme point of S . Then there exist $\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2} \in \mathrm{~S}$, such that

$$
\overline{\mathrm{b}}=\lambda \overline{\mathrm{x}}_{1}+(1-\lambda) \overline{\mathrm{x}}_{2},
$$

$$
\begin{equation*}
0<\lambda<1 \tag{i}
\end{equation*}
$$

Therefore $\quad \bar{c} \overline{\mathrm{~b}}=\lambda \overline{\mathrm{c}} \overline{\mathrm{x}}_{1}+(1-\lambda) \overline{\mathrm{c}} \overline{\mathrm{x}}_{2}$.
Since $\bar{c} \bar{x}=z$ is a supporting hyperplane at \bar{w} and $\bar{x}_{1}, \bar{x}_{2} \in S$

$$
\begin{array}{ll}
& \overline{\mathrm{c}} \overline{\mathrm{x}}_{1} \leq \mathrm{z} \text { and } \overline{\mathrm{c}} \overline{\mathrm{x}}_{2} \leq \mathrm{z} \\
\text { or } & \overline{\mathrm{c}} \overline{\mathrm{x}}_{1} \geq \mathrm{z} \text { and } \overline{\mathrm{c}} \overline{\mathrm{x}}_{2} \geq \mathrm{z} \tag{ii}
\end{array}
$$

From (i) and (ii)

$$
\bar{c} \bar{b} \leq \lambda z+(1-\lambda) z=z \quad \text { or } \quad \bar{c} \bar{b} \geq \lambda z+(1-\lambda) z=z
$$

Therefore \bar{b} is not a point of B.
This is a contradiction.
Therefore every extreme point of B is also an extreme point of S.

Definition 1.14 (Separating hyperplane)

Let S and T be two non-empty subsets of R^{n}. The hyperplane H is said to separate S and T if H is contained in one of the closed half spaces generated by H and T is contained in the other closed half space. The hyperplane H is called separating hyperplane.

Remark :

A hyperplane H strictly separates S and T if S is contained in one of the open half spaces generated by H and T is contained in the other open half space.

Theorem 1.15 (Separating Hyperplane)

Let $S \subset R^{n}$ be a closed convex set. Then for any point \bar{y} not is S, there is a hyperplane containing \bar{y} such that S is contained in one of the open half spaces determined by the hyperplane.

Proof

We are given that $\bar{y} \notin \mathrm{~S}$.
Since S is a closed set, there exist $w \subset S$, such that,

$$
\begin{equation*}
|\bar{w}-\bar{y}|=\min _{\bar{x} \in S}|\bar{x}-\bar{y}| \quad \text { i.e. }|\bar{w}-\bar{y}| \leq|\bar{x}-\bar{y}| w \in S, \bar{x} \in S \tag{i}
\end{equation*}
$$

Observe that $|\bar{w}-\bar{y}|>0(S$ is closed and $\bar{y} \notin S)$
Let \bar{u} be any point of S. Since S is a convex set
$[\lambda \bar{u}+(1-\lambda) \bar{w}] \in S$ for $0 \leq \lambda \leq 1$
From (i) and (ii)

$$
\begin{array}{ll}
& |\lambda \bar{u}+(1-\lambda) \bar{w}-\bar{y}| \geq|\bar{w}-\bar{y}| \\
\Rightarrow & |(\bar{w}-\bar{y})+\lambda(\bar{u}-\bar{w})|^{2} \geq|\bar{w}-\bar{y}|^{2} \\
\Rightarrow & \lambda^{2}|\bar{u}-\bar{w}|^{2}+|\bar{w}-\bar{y}|^{2}+2 \lambda(\bar{w}-\bar{y})(\bar{u}-\bar{w}) \geq|\bar{w}-\bar{y}|^{2} \\
\Rightarrow \quad & \lambda^{2}|\bar{u}-\bar{w}|^{2}+2 \lambda(\bar{w}-\bar{y})(\bar{u}-\bar{w}) \geq 0 \\
\Rightarrow & \lambda|\bar{u}-\bar{w}|^{2}+2(\bar{w}-\bar{y}) \cdot(\bar{u}-\bar{w}) \geq 0 .
\end{array}
$$

Letting $\lambda \rightarrow 0$, and $\bar{c}=(\bar{w}-\bar{y})$; we get

$$
(\bar{w}-\bar{y})(\bar{u}-\bar{w}) \geq 0 \text { or } \bar{c}(\bar{u}-\bar{w}) \geq 0 \text { i.e. } \bar{c} \cdot \bar{u} \geq \bar{c} \cdot \bar{w}
$$

or

$$
\bar{c} \cdot \bar{u}-\bar{c} \cdot \bar{y} \geq \bar{c} \cdot \bar{w}-\bar{c} \cdot \bar{y}
$$

or $\quad \bar{c}(\bar{u}-\bar{y}) \geq \bar{c}(\bar{w}-\bar{y})=|\bar{c}|^{2}$
Hence $\bar{c} \bar{u}>\bar{c} \bar{y}$.
Putting $\bar{c} \bar{y}=z$, we get $\bar{c} \bar{u}>z$.
Thus \bar{y} lies on the hyperplane $\bar{c} \bar{x}=z$ and for all $\bar{u} \in S, \bar{c} \bar{u} \geq z$.
This completes the proof.

CONVEX FUNCTIONS

Definition 1.14 (Convex Functions)

Let S be a non - empty convex subset of R^{n}. A function $f(\bar{x})$ on S is said to be convex if for any two vectors \bar{x}_{1} and \bar{x}_{2} in S.

$$
\mathrm{f}\left[\lambda \overline{\mathrm{x}}_{1}+(1-\lambda) \overline{\mathrm{x}}_{2}\right] \leq \lambda \mathrm{f}\left(\bar{x}_{1}\right)+(1-\lambda) \mathrm{f}\left(\bar{x}_{2}\right) \quad 0 \leq \lambda \leq 1
$$

Definition 1.15 (Strictly convex function)

Let S be a non empty convex subset of R^{n}. A function $f(x)$ on S is said to be strictly convex if for any two different vectors x_{1} and x_{2} is S.

$$
f\left[\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}\right]<\lambda f\left(\bar{x}_{1}\right)+(1-\lambda) f\left(\bar{x}_{2}\right)
$$

Fig A : Strictly Convex Function

Fig B : Strictly Concave Function

It follows from the above two definitions that every strictly convex function is also convex. The graph of a strictly convex function has been illustrated in Fig. A.

Definition 1.16 [Concave (strictly concave) function]

A function $f(\bar{x})$ on a non-empty subset S of R^{n} is said to be concave (strictly concave) if $-f(\bar{x})$ is convex (strictly convex).

Clearly, every strictly concave function is also concave. The graph of a strictly concave function has been illustrated in Fig. B.

Fig C: Both Convex and Concave Functions

Fig D

It is possible for a function to be both convex and concave. For example, $f(\bar{x})=\bar{x}$ is such a function (Fig. C). The function in Fig. D is strictly convex for $\bar{x} \geq \bar{x}_{0}$ but not strictly convex for $\overline{\mathrm{x}}<\overline{\mathrm{x}}_{0}$.

The following results are the immediate consequences of the above definitions :
i) A linear function $z=c \bar{x}, \bar{x} \in R^{n}$ is a convex (concave) function but not strictly convex (concave).
ii) The sum of convex (concave) functions is convex (concave) and if at least one of the functions is strictly convex (concave) then so is their sum.
Note : In what follows we shall deal with convex functions only. However, all the results remain valid if we deal with concave functions.

LOCAL AND GLOBAL EXTREMA

In the problems of constrained optimization, we are interested in determining a vector \bar{x} that minimises the function $f(\bar{x})$ [or maximises $-f(\bar{x})$] subject to the 'constraints' $g_{i}(\bar{x}) \leq 0(i=1,2, \ldots, m)$. The set of the vectors \bar{x} satisfying these constraints is usually called the 'feasible region'.

Definition 1.17 (Global minima)

A global minimum of the function $f(\bar{x})$ is said to be attained at \bar{x}_{0} if $f\left(\bar{x}_{0}\right) \leq f(\bar{x})$ for all \bar{x} in the feasible region.

Example : Function $f(\bar{x})=x_{1}^{2}$, subject to the constraint $x_{1} \geq 0$, has a minimum at $x_{1}=0$.

Definition 1.18 (Local minima)

A local minimum $f\left(\bar{x}_{0}\right)$ of function $f(\bar{x})$ is said to be attained at \bar{x}_{0} if there exists a positive ε such thai $f\left(\bar{x}_{0}\right) \leq f(\bar{x})$ for all \bar{x} in the feasible region which also satisfy the condition $\left|\overline{\mathrm{x}}_{0}-\overline{\mathrm{x}}\right| \leq \varepsilon$.

Example:

The function $f(\bar{x})=x_{1}^{2}-x_{1}^{3}$ subject to the constraint $x_{1} \geq 0$, has a local minimum at $x_{1}=0$. Note that $f(\bar{x})$ has no global minimum at all.

Note : The word extremum is used to indicate either maximum or minimum.

Theorem 1.16

Let $f(\bar{x})$ be a convex function on a convex set S. If $f(\bar{x})$ has a local minimum on S, then this local minimum is also a global minimum on S .

Proof :

Let $f(\bar{x})$ have a local minimum $f\left(\bar{x}_{0}\right)$ at \bar{x}_{0} which is not a global minimum on S. Then, there exists at least one x_{1} in $S\left(\bar{x}_{1} \neq \bar{x}_{0}\right)$ such that $f\left(\bar{x}_{1}\right)<f\left(\bar{x}_{0}\right)$. Since $f(\bar{x})$ is a convex function on S, we have

$$
f\left[\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{0}\right] \leq \lambda f\left(\bar{x}_{1}\right)+(1-\lambda) f\left(\bar{x}_{0}\right)
$$

Also $\quad \lambda f\left(\bar{x}_{1}\right)+(1-\lambda) f\left(\bar{x}_{0}\right)<\lambda f\left(\bar{x}_{0}\right)+(1-\lambda) f\left(\bar{x}_{0}\right)=f\left(\bar{x}_{0}\right)$
Thus $\mathrm{f}\left[\lambda \overline{\mathrm{x}}_{1}+(1-\lambda) \overline{\mathrm{x}}_{0}\right] \leq \mathrm{f}\left(\overline{\mathrm{x}}_{0}\right)$
Now, for any $\varepsilon>0$, we observe that

$$
\left|\left[\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{0}\right]-\mathrm{x}_{0}\right|=\lambda\left|\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{0}\right|<\varepsilon, \quad\left(\text { if } \lambda<\frac{\varepsilon}{\left|\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{0}\right|}\right)
$$

Thus $\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{0}$ will give a smaller value for $\mathrm{f}(\overline{\mathrm{x}})$ in the ε - neighbourhood of $\overline{\mathrm{x}}_{0}$, whenever $\lambda<\min \left\{1, \varepsilon| | \bar{x}_{1}-\bar{x}_{0} \mid\right\}$. This contradicts the fact that $f(\bar{x})$ takes on a local minimum at \bar{x}_{0}. Hence \bar{x}_{0} is a global minimal point.

Corollary 1.17

If a function $f(x)$ has a local minimum on a convex set S on which it is strictly convex, then this local minimum is also a global minimum on that set. This global minimum is attained at a single point.

Theorem 1.18

Let $f(\bar{x})$ be a convex function on a convex set S. Then the set of points in S at which $f(\bar{x})$ takes on its global minimum, is a convex set.

Proof:

The result is obvious if the global - minimum is attained at just a single point. Let us assume that the global minimum is attained at two different points \bar{x}_{1} and \bar{x}_{2} of S. Then $f\left(\bar{x}_{1}\right)=f\left(\bar{x}_{2}\right)$.

Now, since $f(\bar{x})$ is convex,

$$
\begin{array}{rlr}
& \mathrm{f}\left[\lambda \overline{\mathrm{x}}_{2}+(1-\lambda) \overline{\mathrm{x}}_{1}\right] \leq \lambda \mathrm{f}\left(\overline{\mathrm{x}}_{2}\right)+(1-\lambda) \mathrm{f}\left(\overline{\mathrm{x}}_{1}\right)=\mathrm{f}\left(\overline{\mathrm{x}}_{2}\right) \quad 0 \leq \lambda \leq 1 \\
\Rightarrow & \mathrm{f}\left[\lambda \overline{\mathrm{x}}_{2}+(1-\lambda) \overline{\mathrm{x}}_{1}\right] \leq \mathrm{f}\left(\overline{\mathrm{x}}_{2}\right)=\mathrm{f}\left(\overline{\mathrm{x}}_{1}\right) \\
\Rightarrow & \mathrm{f}\left[\lambda \overline{\mathrm{x}}_{2}+(1-\lambda) \overline{\mathrm{x}}_{1}\right] \leq \mathrm{f}\left(\overline{\mathrm{x}}_{1}\right)
\end{array}
$$

Thus every point $\bar{x}=\lambda \bar{x}_{2}+(1-\lambda) \bar{x}_{1}$ corresponds to a global minima. The set of all such $\overline{\mathrm{x}}$ is, obviously, a convex set.

Corollary 1.19

If the global minimum is attainable at two different points of S, then it is attainable at an infinite number of points of S.

Theorem 1.20

Let $f(\bar{x})$ be differentiable on its domain. If $f(\bar{x})$ is defined on an open convex set S, then $f(\bar{x})$ is convex if
$\mathrm{f}\left(\overline{\mathrm{x}}_{2}\right)-\mathrm{f}\left(\overline{\mathrm{x}}_{1}\right) \geq\left(\overline{\mathrm{x}}_{2}-\overline{\mathrm{x}}_{1}\right)^{\top} \nabla \mathrm{f}\left(\overline{\mathrm{x}}_{1}\right)$
for all $\bar{x}_{1}, \bar{x}_{2} \in S$.

Proof :

We shall prove that if
$f\left(\bar{x}_{2}\right)-f\left(\bar{x}_{1}\right) \geq\left(\bar{x}_{2}-\bar{x}_{1}\right)^{\top} \nabla f\left(\bar{x}_{1}\right)$ then $f(\bar{x})$ is convex.

Since $\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2} \in \mathrm{~S}, \overline{\mathrm{x}}_{0}=\lambda \overline{\mathrm{x}}_{2}+(1-\lambda) \overline{\mathrm{x}}_{1}$ for $0 \leq \lambda \leq 1$ implies that $\mathrm{x}_{0} \in \mathrm{~S}$.
Using the above condition for $\overline{\mathrm{X}}_{1}$ and $\overline{\mathrm{x}}_{0}$, we have

$$
\begin{equation*}
f\left(\bar{x}_{1}\right)-f\left(\bar{x}_{0}\right) \geq\left(\bar{x}_{1}-\bar{x}_{0}\right)^{\top} \nabla f\left(\bar{x}_{0}\right) \tag{i}
\end{equation*}
$$

Similarly, for $\overline{\mathrm{x}}_{2}$ and $\overline{\mathrm{x}}_{0}$,

$$
\begin{equation*}
f\left(\bar{x}_{2}\right)-f\left(\bar{x}_{0}\right) \geq\left(\bar{x}_{2}-\bar{x}_{0}\right)^{\top} \nabla f\left(\bar{x}_{0}\right) \tag{ii}
\end{equation*}
$$

Multiplying (ii) by λ and (i) by ($1-\lambda$) and then adding, we get

$$
\begin{aligned}
& \lambda f\left(\bar{x}_{2}\right)+(1-\lambda) f\left(\bar{x}_{1}\right) \geq f\left(\bar{x}_{0}\right)+\left[\lambda \bar{x}_{2}^{\top}+(1-\lambda) \bar{x}_{1}^{\top}\right] \nabla f\left(\bar{x}_{0}\right)-\bar{x}_{0}^{\top} \nabla f\left(\bar{x}_{0}\right) \\
& =f\left(\bar{x}_{0}\right)+\bar{x}_{0}^{\top} \nabla f\left(\bar{x}_{0}\right)-\bar{x}_{0}^{\top} \nabla f\left(\bar{x}_{0}\right)=f\left(\bar{x}_{0}\right)
\end{aligned}
$$

Using the definition of \bar{x}_{0}, this yields $\lambda f\left(\bar{x}_{2}\right)+(1-\lambda) f\left(\bar{x}_{1}\right) \geq f\left[\lambda \bar{x}_{2}+(1-\lambda) \bar{x}_{1}\right]$, which implies that $f(\bar{x})$ is convex.

1) Define : Convex set, hyperplane, extreme point, convex combination of points.
2) a) Prove that a hyperplane is a convex set.
b) Show that $\mathrm{c}=\left\{\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\} \mid 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}=7\right\} \subseteq \mathrm{R}^{2}$ is a convex set.
c) For any point $\bar{x}, \bar{y} \in R^{n}$ show that the line segment joining \bar{x}, \bar{y} i. e. $[x: y]$ is a convex set.
3) a) Show that $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 2 x_{1}-x_{2}+x_{3} \leq 4\right\} \subseteq R^{3}$ is convex set.
b) Show that in R^{3} the closed ball $x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1$ is a convex set.
c) Show that a hyperplane in R^{3} is a convex set.
4) a) Show that the closed half spaces $H_{1}=\{\bar{x} / \bar{c} \bar{x} \geq z\}$ as $H_{2}=\{\bar{x} / \bar{c} \bar{x} \leq z\}$ are convex sets.
b) The open half spaces $\{\bar{x} \mid \bar{c} \bar{x}>z\}$ and $\{\bar{x} \mid \overline{\bar{c}} \bar{x}>z\}$ are convex sets.
c) The intersection of any finite number of convex sets is a convex set.
5) a) Show that $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 2 x_{1}-x_{2}+x_{3} \leq 4, x_{1}+2 x_{2}-x_{3} \leq 1\right\}$ is a convex set.
b) Let A be an $m \times n$ matrix and \bar{b} be on n - vector then show that $\left\{\bar{x} \in R^{n} \mid A \bar{x} \leq \bar{b}\right\}$ is a convex set.
c) Let S and T be convex sets in R^{n}. Then for any scalars α, β prove that $\alpha S+\beta T$ is a convex set.
d) Prove that the set of all convex combinations of a finite number of points $\bar{x}_{1}, \bar{x}_{2}, \ldots, \overline{\mathrm{x}}_{\mathrm{m}}$ is a convex set.
6) a) If V is any finite subste of vectors in R^{n}, then prove that the convex hull of V is the set of all convex combinations of vertors in V .
b) If $A=\{\bar{x}, \bar{y}\} \subseteq R^{n}$ these prove that $\langle A\rangle=[\bar{x} \bar{y}]$.
c) Prove that: A linear function $z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$ defined over a convex polyhedron C takes its maximum (or minimum) value at an extreme point of C.
7) a) Let $S \subseteq R^{n}$ be a convex set with a nonempty interior. If $\bar{x}_{1} \in C / S$ and $\bar{x}_{2} \in$ int S then prove that for each $0<\lambda<1$ the point $\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}$ lies in int S.
b) If $S \subseteq R^{n}$ is a convex then prove that int S is also a convex set.
c) Let S be a convex set with a non empty interior. Then prove that cl S is also a convex set.
8) a) Let $S \subseteq R^{n}$ be a closed convex set and $\bar{y} \notin S$. Then prove that there exist unique $\bar{x}_{0} \in S$ such that $\left|\bar{y}-\bar{x}_{0}\right|=m n\{|\bar{y}-\bar{x}|=\bar{x} \in S\}$.
b) Let $X \subseteq R^{n}$ be a closed convex set. Then show that for any point \bar{y} not in X. There exist a hyerplane containing \bar{y} s. $t . X$ is contained in one of the open half spaces determined by the hyperplane.

LINEAR PROGRAMMING

2.0 INTRODUCTION

In 1947, George Dantzig and his associates, while working in the US department of Air Force, observed that a large number of military planning problems could be formulated as maximizing / minimizing a linear function (profit / cost) whose variables were restricted to values satisfying a system of linear constraints (e.g. $2 x_{1}+3 x_{2} \leq 5$). The term programming refers to the process of determining a particular action plane. Since the objective function (profit / cost) and constraints are linear, problems are called linear programming problems.

The general Linear Programming Problem (L.P.P.)

The general linear programming problem is to find a vector $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ which minimizes the linear form (i. e. objective function)

$$
\begin{equation*}
z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \tag{2.1}
\end{equation*}
$$

subject to the linear constraints

$$
\begin{equation*}
x_{J} \geq 0(j=1,2, \ldots, n) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \tag{2.3}\\
& a_{m_{1}} x_{1}+a_{m_{2}} x_{2}+\ldots+a_{m n} x_{n}=b m
\end{align*}
$$

Where the $\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{i}}$ and $\mathrm{c}_{\mathrm{j}}(\mathrm{i}=1,2, \ldots, \mathrm{~m}, \mathrm{j}=1,2, \ldots, \mathrm{~m})$ are given constants and $\mathrm{m}<\mathrm{n}$. We shall assume that the equations (2.3) have been multiplied by (-1) where necessary to make all $b_{i} \geq 0$. The function (2.1) is called objective function and system (2.2) and (2.3) are called constraints.

The general L. P. P. is also denoted by : Minimize $z=\sum_{j=1}^{n} c_{j} x_{j}$
subject to $x_{j} \geq 0, j=1,2, \ldots, n$ and

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(i=1,2, \ldots, m)
$$

Definition 2.1

A feasible solution to the L. P. P. is a vector $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which satisfies the conditions (2.2) and (2.3).

Definition 2.2

A basic solution to (2.3) (or L. P. problem) is a solution obtained by setting any $\mathrm{n}-\mathrm{m}$ variables equal to zero and solving for the remaining m variables, provided that the determinant of the coefficients of these m variables is non zero. The m variables are called the basic variables.

Definition 2.3

A basic feasible solution is a basic solution in which all the basic variables are non negative.

Definition 2.4

A non degenerate basic feasible solution is a basic feasible solution in which all the basic variables are positive.

Definition 2.5

A feasible solution which either maximizes or minimizes the objective function is called an optimal feasible solution.

Theorem 2.1

The collection of all felsible solutions to the L. P. P. is a convex set.

Proof

Let F be the set of all felsible solutions to the system $A \bar{x}=\bar{b}, \bar{x} \geq \overline{0}$
If the set F has only one point then obviously F is a convex set. Assume that F has more than one point.

Let $\bar{x}_{1}, \bar{x}_{2} \in \mathrm{~F}$. Then we have
$\mathrm{A} \overline{\mathrm{x}}_{1}=\overline{\mathrm{b}}, \bar{x}_{1} \geq \overline{0}$ and $\mathrm{A} \overline{\mathrm{x}}_{2}=\overline{\mathrm{b}}, \overline{\mathrm{x}}_{2} \geq \overline{0}$
Let $\bar{x}_{0}=\lambda \bar{x}_{1}+(1-\lambda) \overline{\mathrm{x}}_{2}$ where $\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2} \in \mathrm{~F}, 0 \leq \lambda \leq 1$.
Then $A \bar{x}_{0}=A\left[\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}\right]$
$=\lambda A \bar{x}_{1}+(1-\lambda) A \bar{x}_{2}$,
$=\lambda \bar{b}+(1-\lambda) \bar{b}=\bar{b}$
Also since $0 \leq \lambda \leq 1, \bar{x}_{1} \geq \overline{0}, \bar{x}_{2} \geq \overline{0}$ it follows that $\bar{x}_{0} \geq \overline{0}$. This shows that $\bar{x}_{0} \in F$ and consequently F is a convex set.

Remark

In general the convex set F is either (i) empty (ii) Unbounded or (iii) closed.

The empty set occurs when the constraints of the set can not be satisfied simultaneously. In this case the system yields no solution.

An unbounded set implies that the region of fisible solutions is not constrained in atleast one direction.

Finally closed set implies that the region of fessible solutions is a convex polyhedron since it is defined by the intersection of a finite number of linear constraints.

Note: We shall rewrite the definition of basic solution.

Basic Solution

Consider a system of simultaneous linear equations in n unknowns $A \bar{x}=\bar{b}(m<n)$, $r(A)=m$. If any $n-m$ variables are equated to zero then the solution of the resulting system for m variables provided the determinant of the coefficient matrix of these variables is $\neq 0$ is called a basic solution, where $r(A)=$ rank of A.

> OR

If any $m \times m$ non singular matrix is chosen from A and if all the remaining $n-m$ variables not associated with the columns in this matrix are set equal to 0 the solution to the resulting system of equations is called a basic solution. The m variables which can be different from zero are called basic variables.

Theorem 2.2

A necessary and sufficient condition for a point $\bar{x} \geq \overline{0}$ in F to be an extreme point is that \bar{x} is a basic feasible solution to the system $A \bar{x}=\bar{b}, \bar{x} \geq \overline{0}$.

OR
Every basic feasible solution of $A \bar{x}=\bar{b}$ is an extreme point of the convex set of feasible solutions (of $A \bar{x}=\bar{b}$) and conversely every extreme point of the convex set of feasible solutions is a basic feasible solution to $A \bar{x}=\bar{b}$.

Proof

Let F denote the set of feasible solutions of $A \bar{x}=\bar{b}$.
Let \bar{x} be a basic feasible solution of $A \bar{x}=\bar{b}$ which is a n-component vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Thus both non basic (zero) and basic (some of which may be zero) variables are contains in \bar{x}. Suppose the components of \bar{x} are so arranged that the first m components are the basic variables corresponding to basic vectors and are denoted by \bar{x}_{B} Then,
$\overline{\mathrm{x}}=\left(\overline{\mathrm{x}}_{\mathrm{B}}, \overline{\mathrm{o}}\right)$ where $\overline{\mathrm{o}}$ is an ($\mathrm{n}-\mathrm{m}$) component null vector. Also assume that the vectors of the matrix A are so arranged that the first m column vectors correspond to \bar{x}_{B} and we denote this sub matrix of A by B (called the basic matrix) and we denote the remaining ($n-m$) column vectors by R. Thus $A=(B, R)$.

Accordingly the system $A \bar{x}=\bar{b}$ becomes
$(\mathrm{B}, \mathrm{R})\left(\overline{\mathrm{x}}_{\mathrm{B}}, \overline{\mathrm{o}}\right)=\overline{\mathrm{b}}$ or $\mathrm{B} \overline{\mathrm{x}}_{\mathrm{B}}=\overline{\mathrm{b}}$.
By the definition of a basic solution B must be non singular.
Hence $\bar{x}_{B}=B^{-1} \bar{b}$
To prove that every basic feasible solution is an extreme point of the convex set of feasible solutions.

If possible assume that the two distinct feasible solution \bar{x}_{1} and $\overline{\mathrm{x}}_{2}$ exist such that

$$
\begin{equation*}
\bar{x}=\lambda \bar{x}_{1}+(1-\lambda) \bar{x}_{2}, 0<\lambda<1 \tag{1}
\end{equation*}
$$

But \bar{x}_{1} and $\overline{\mathrm{x}}_{2}$ can be expressed as,

$$
\begin{equation*}
\bar{x}_{1}=\left[\bar{x}_{B}^{(1)}, \bar{u}_{1}\right], \bar{x}_{2}=\left[\bar{x}_{B}^{(2)}, \bar{u}_{2}\right] \tag{2}
\end{equation*}
$$

where $\bar{x}_{B}{ }^{(1)}$ and $\bar{x}_{B}{ }^{(2)}$ are the first m components of \bar{x}_{1} and \bar{x}_{2} respectively and \bar{u}_{1}, \bar{u}_{2} denote the last $(n-m)$ component vectors of \bar{x}_{1} and \bar{x}_{2} respectively.

From (1) and (2)

$$
\begin{equation*}
\left[\bar{x}_{B}, \bar{o}\right]=\lambda\left[\overline{\mathrm{x}}_{\mathrm{B}}{ }^{(1)}, \overline{\mathrm{u}}_{1}\right]+(1-\lambda)\left[\overline{\mathrm{x}}_{B}{ }^{(2)}, \overline{\mathrm{u}}_{2}\right] \tag{3}
\end{equation*}
$$

i. e.

$$
\begin{equation*}
\left[\bar{x}_{B}, \bar{o}\right]=\left[\lambda \bar{x}_{B}^{(1)}+(1-\lambda) \bar{x}_{B}^{(2)}, \lambda \bar{u}_{1}+(1-\lambda) \bar{u}_{2}\right] \tag{4}
\end{equation*}
$$

Therefore $\lambda \bar{u}_{1}+(1-\lambda) \bar{u}_{2}=\overline{0}$
Since $\lambda>0,(1-\lambda)>0$ and $\bar{u}_{1} \geq \overline{0}, \bar{u}_{2} \geq \overline{0}$, therefore from (4)

$$
\begin{equation*}
\bar{u}_{1}=\bar{u}_{2}=\overline{0} \tag{5}
\end{equation*}
$$

Since $\overline{\mathrm{X}}_{1}, \overline{\mathrm{x}}_{2}$ are in the set of feasible solutions,

$$
\begin{aligned}
& \mathrm{A} \overline{\mathrm{x}}_{1}=\overline{\mathrm{b}}, \mathrm{~A} \overline{\mathrm{x}}_{2}=\overline{\mathrm{b}} \Rightarrow \mathrm{~B} \overline{\mathrm{x}}_{\mathrm{B}}{ }^{(1)}=\overline{\mathrm{b}} \text { and } \mathrm{B} \overline{\mathrm{X}}_{\mathrm{B}}^{(2)}=\overline{\mathrm{b}} \\
\Rightarrow & \overline{\mathrm{x}}_{\mathrm{B}}^{(1)}=\mathrm{X}_{\mathrm{B}}{ }^{(2)}=\mathrm{B}^{-1} \overline{\mathrm{~b}}=\overline{\mathrm{x}}_{\mathrm{B}}
\end{aligned}
$$

This shows that $\bar{x}=\bar{x}_{1}=\bar{x}_{2}$ which contradicts the fact that $\bar{x}_{1} \neq \bar{x}_{2}$. Conseqnently \bar{x} cannot be expressed as a convex combination of any two distinct points in the set of feasible solutions and hence it must be an extreme point.

Conversely

Let $\overline{\mathrm{x}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be an extreme point of the convex set of feasible solutions.
We prove that \bar{x} is a basic feasible solution of $A \bar{x}=\bar{b}$. By definition \bar{x} will be a basic
feasible solution of $A \bar{x}=\bar{b}$ if the column vectors associate with positive elements of \bar{x} are linearly independent.

Assume that k - components of $\overline{\mathrm{x}}$ are positives (remaining are zeros). Arrange the variables so that the first k components are positive. Then

$$
\begin{equation*}
\sum_{j=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}}=\overline{\mathrm{b}}, \mathrm{x}_{\mathrm{j}}>0, \mathrm{j}=1,2, \ldots, \mathrm{k} \tag{6}
\end{equation*}
$$

If possible assume that the vectors $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ are not linearly independent. So they are linearly dependent and hence there exist scalars λ_{j} not all zero such that

$$
\begin{align*}
\lambda_{1} \overline{\mathrm{a}}_{1}+\lambda_{2} \overline{\mathrm{a}}_{2}+\ldots+\lambda_{\mathrm{k}} \overline{\mathrm{a}}_{\mathrm{k}} & =\overline{0} \\
\text { or } \quad \sum_{\mathrm{j}=1}^{\mathrm{k}} \lambda_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}} & =\overline{0}
\end{align*}
$$

From (6) and (7) it follows that for any $\delta>0$,

$$
\begin{array}{ll}
\quad \sum_{j=1}^{k} x_{j} \bar{a}_{j} \pm \delta \sum_{j=1}^{k} \lambda_{j} \bar{a}_{j}=\bar{b} \\
\text { or } \quad \sum_{j=1}^{k}\left(x_{j} \pm \delta \lambda_{j}\right) \bar{a}_{j}=\bar{b}
\end{array}
$$

Thus the two points

$$
\overline{\mathrm{x}}_{1}^{*}=\left(\mathrm{x}_{1}+\delta \lambda_{1}, \mathrm{x}_{2}+\delta \lambda_{2}, \ldots, \mathrm{x}_{\mathrm{k}}+\delta \lambda_{\mathrm{k}}, \underline{0,0, \ldots, 0}\right) .
$$

and

$$
\begin{equation*}
\overline{\mathrm{x}}_{2}^{*}=\left(\mathrm{x}_{1}-\delta \lambda_{1}, \mathrm{x}_{2}-\delta \lambda_{2}, \ldots, \mathrm{x}_{\mathrm{k}}-\delta \lambda_{\mathrm{k}}, \underline{0,0, \ldots, 0}\right) \tag{9}
\end{equation*}
$$

($\mathrm{n}-\mathrm{k}$) components
satisfy the constraints $A \bar{x}=\bar{b}$
Since $\mathrm{x}_{\mathrm{j}}>0$ select δ such that $0<\delta<\min \left\{\left.\frac{\mathrm{x}_{\mathrm{j}}}{\left|\lambda_{\mathrm{j}}\right|} \right\rvert\, \lambda_{\mathrm{j}} \neq 0\right\}$
Then the first k components of $\overline{\mathrm{x}}_{1}^{*}, \overline{\mathrm{x}}_{2}^{*}$ will always be positive.
Since the remaining components of $\overline{\mathrm{x}}_{1}^{*}$ and $\overline{\mathrm{x}}_{2}^{*}$ are zeros, it follows that $\overline{\mathrm{x}}_{1}^{*}$ and $\overline{\mathrm{x}}_{2}^{*}$ are feasible solutions different from $\overline{\bar{x}}$. Adding (8) and (9) we obtain.

$$
\begin{aligned}
\overline{\mathrm{x}}_{1}^{*}+\overline{\mathrm{x}}_{2}^{*}=2\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, 0,0, \ldots, 0\right) \\
\Rightarrow \frac{1}{2} \overline{\mathrm{x}}_{1}^{*}+\frac{1}{2} \overline{\mathrm{x}}_{2}^{*}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, 0,0, \ldots, 0\right)=\overline{\mathrm{x}}
\end{aligned}
$$

Thus \bar{x} can be expressed as a convex combination of two distinct points \bar{x}_{1}^{*} and \bar{x}_{2}^{*} by selecting $\lambda=\frac{1}{2}$
i. e. $\bar{x}=\frac{1}{2} \bar{x}_{1}^{*}+\left(1-\frac{1}{2}\right) \overline{\mathrm{x}}_{2}^{*}$

This contradicts the assumption that \bar{x} is an extreme point of the convex set of feasible solutions.

Hence $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ are linearly independent and hence $\overline{\mathrm{x}}$ is a basic feasible solution.
We have obviously $\mathrm{k} \leq \mathrm{m}$. Because the number of linearly independent column vectors cannot be greater than m which is the row rank = column rank = rank of a matrixA. If $k=m$ then the basic feasible solution is a non degenerate basic feasible solution.

Suppose $k<m$. Then the basic feasible solution is a degenerate basic feasible solution. Select other ($m-k$) additional column vectors with their corresponding variables equation 0 . such that $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{m}}$ are linearly independent.

Thus the resulting set of $k+(m-k)=m$ column vectors is linearly independent.
The sub matrix of A formed by these m columns is non singular.

Theorem 2.3

If the convex set of the feasible solutions of $A \bar{x}=\bar{b}$, is a convex polyhedron then at least one of the extreme points of the convex set of feasible solutions gives an optimal solution.

If the optimal solution occurs at more than one extreme point the value of the objective function will be the same for all convex combinations of these extreme points.

Proof

Let $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}$ be the extreme points of the convex set F of the feasible solutions of the L. P. problem, $\max z=\bar{c} \cdot \bar{x}$ subject to $A \bar{x}=\bar{b}, \bar{x} \geq \overline{0}$.

Suppose \bar{x}_{m} is the extreme point among $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}$ at which the value of the objective function is maximum say z^{*}.
i. e.

$$
z^{*}=\max _{1 \leq i \leq \mathrm{k}} \overline{\mathrm{c}} \cdot \overline{\mathrm{x}}_{\mathrm{i}}=\overline{\mathrm{c}} \cdot \overline{\mathrm{x}}_{\mathrm{m}}
$$

Let $\bar{x}_{0} \in F$ which is not an extreme point and let z_{0} be the corresponding value of the objective function.

Then

$$
\begin{equation*}
z_{0}=\overline{\mathrm{c}} \cdot \bar{x}_{0} \tag{1}
\end{equation*}
$$

Since \bar{x}_{0} is not an extreme point it can be expressed as convex combination of the extreme points $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}$ of F (where F is assumed to be bounded).

Then $\bar{x}_{0}=\lambda_{1} \bar{x}_{1}+\lambda_{2} \bar{x}_{2}+\ldots+\lambda_{k} \bar{x}_{k}$
where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \geq 0$ and $\sum_{i=1}^{k} \lambda_{i}=1$
So from (1)

$$
\begin{aligned}
& \mathrm{z}_{0}=\overline{\mathrm{c}} \cdot\left(\lambda_{1} \overline{\mathrm{x}}_{1}+\lambda_{2} \overline{\mathrm{x}}_{2}+\ldots+\lambda_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{k}}\right) \\
\Rightarrow & \mathrm{z}_{0} \leq \overline{\mathrm{c}} \cdot \lambda_{1} \overline{\mathrm{x}}_{\mathrm{m}}+\overline{\mathrm{c}} \cdot \lambda_{2} \overline{\mathrm{x}}_{\mathrm{m}}+\ldots+\overline{\mathrm{c}} \cdot \lambda_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{m}} \\
\Rightarrow & \mathrm{z}_{0} \leq \overline{\mathrm{c}} \cdot\left(\lambda_{1}+\ldots .+\lambda_{\mathrm{m}}\right) \overline{\mathrm{x}}_{\mathrm{m}}=\overline{\mathrm{c}} \cdot \bar{x}_{\mathrm{m}}
\end{aligned}
$$

i. e. $z_{0} \leq z^{*}$

This implies that the value of the objective function at any point in the set of fessible solutions is less than or equal to the maximal value z^{*} at extreme points.

Let $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{\mathrm{r}}(r \leq k)$ be the extreme points of the set F at which the objective function assumes the same optimum value. This means.

$$
z^{*}=\bar{c} \cdot \bar{x}_{1}=\overline{\mathrm{c}} \cdot \overline{\mathrm{x}}_{2}=\ldots=\overline{\mathrm{c}} \cdot \overline{\mathrm{x}}_{\mathrm{r}}
$$

Further let $\overline{\mathrm{x}}=\lambda_{1} \overline{\mathrm{x}}_{1}+\lambda_{2} \overline{\mathrm{x}}_{2}+\ldots+\lambda_{\mathrm{r}} \overline{\mathrm{x}}_{\mathrm{r}}, \lambda_{\mathrm{j}} \geq 0$ and $\sum_{\mathrm{j}=1}^{\mathrm{r}} \lambda_{\mathrm{j}}=1$ be convex combination of there extreme points.

Then

$$
\begin{aligned}
\overline{\mathrm{c}} \cdot & \overline{\mathrm{x}}
\end{aligned}=\overline{\mathrm{c}} \cdot\left[\lambda_{1} \bar{x}_{1}+\lambda_{2} \overline{\mathrm{x}}_{2}+\ldots+\lambda_{\mathrm{r}} \overline{\mathrm{x}}_{\mathrm{r}}\right] .
$$

This proves the result.

Note

Consider the general L. P. P.
Max. $z=\bar{c} \bar{x}$ subjects to $A \bar{x}=\bar{b}, \bar{x} \geq 0$ where

$$
\begin{aligned}
& A=\left[\begin{array}{l}
a_{11} \ldots \ldots \ldots . a_{1 n} \\
a_{21} \ldots \ldots \ldots . a_{2 n} \\
\ldots \ldots \ldots \ldots \ldots . . \\
a_{m 1} \ldots \ldots \ldots . a_{m n}
\end{array}\right] \\
& \bar{C}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& \bar{x}=\left(x_{1}, \ldots, x_{n}\right), \bar{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)
\end{aligned}
$$

Where rank of A i. e. $r(A)=m<n$.
For convenience column vectors will also be represented by row vectors without using the transpose symbol (T). So there should be no confusion in understanding the scalar multiplication of two vectors $\overline{\mathrm{C}}$ and $\overline{\mathrm{x}}$.

We shall denote the $j^{\text {th }}$ column of A by $\overline{\mathrm{a}}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{n}$
so that

$$
\begin{equation*}
\mathrm{A}=\left[\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{n}}\right] \tag{1}
\end{equation*}
$$

Form an $m \times m$ non singular submatrix B of A called the basic matrix, whose columns are linearly independents vectors. Let these column vectors be renamed as
$\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{m}}$. Therefore

$$
\begin{equation*}
B=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right] \tag{2}
\end{equation*}
$$

These columns of B form a basic of R^{m}.
Now any column $\overline{\mathrm{a}}_{\mathrm{j}}$ of A can be expressed as a linear combination of the columns of B.
Let

$$
\begin{aligned}
& \bar{a}_{j}=y_{1 j} \beta_{1}+y_{2 j} \beta_{2}+\ldots+y_{m j} \beta_{m} \\
& \bar{a}_{j}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right) \cdot\left(y_{1 j}, y_{2 j}, \ldots, y_{m j}\right)
\end{aligned}
$$

i. e. $\bar{a}_{\mathrm{j}}=B \bar{y}_{\mathrm{j}}$ where $\bar{y}_{\mathrm{j}}=\left(y_{\mathrm{ij}}, \mathrm{y}_{2 \mathrm{j}}, \ldots, \mathrm{y}_{\mathrm{mj}}\right)$
i. e. $\bar{a}_{\mathrm{j}}=B \bar{y}_{\mathrm{j}}$ where $\bar{y}_{\mathrm{j}}=\left(y_{1 \mathrm{j}}, \mathrm{y}_{2 \mathrm{j}}, \ldots, \mathrm{y}_{\mathrm{mj}}\right)$
i. e. $\bar{y}_{j}=B^{-1} \bar{a}_{\mathrm{j}}$ where $\mathrm{y}_{\mathrm{ij}}(\mathrm{i}=1, \ldots, \mathrm{~m})$ are scalars.

The vector \bar{y}_{j} will change if the columns of Aforming B change. Any basic matrix B will yield a basic solution to $A \bar{X}=\bar{b}$. The solution may be denoted by m component vector as $\bar{x}_{B}=\left(x_{B 1}, x_{B 2}, \ldots, x_{B m}\right)$ where \bar{x}_{B} is determined from $\bar{x}_{B}=B^{-1} \bar{b}$.

Note that $X_{B i}$ corresponds to the column β_{i} of the matrix B. The variables $X_{B 1}, x_{B 2}, \cdots, x_{B m}$ are called basic variables and the remaining ($n-m$) variables are non basic variables.

Correspondings to \bar{x}_{B} we have $z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$

$$
\text { Let } \bar{c}_{B}=\left(c_{B 1}, c_{B_{2}}, \ldots, c_{B m}\right)
$$

where $C_{B i}$ is the coefficient of the basic variable $X_{B i}$ in the objective function.
So

$$
\begin{align*}
& \mathrm{z}=\mathrm{c}_{\mathrm{B} 1} \mathrm{x}_{\mathrm{B} 1}+\mathrm{c}_{\mathrm{B} 2} \mathrm{x}_{\mathrm{B} 2}+\ldots+\mathrm{c}_{\mathrm{Bm}} \mathrm{x}_{\mathrm{Bm}}+\overline{0} \\
& \mathrm{z}=\left(\mathrm{c}_{\mathrm{B} 1}, \ldots, \mathrm{c}_{\mathrm{Bm}}\right)\left(\mathrm{x}_{\mathrm{B} 1}, \ldots, \mathrm{x}_{\mathrm{B} m}\right) \\
& \mathrm{z}=\overline{\mathrm{c}}_{\mathrm{B}} \overline{\mathrm{x}}_{\mathrm{B}} \tag{5}
\end{align*}
$$

Finally we form a new variable z_{j} defined as

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{j}}=\mathrm{y}_{1 \mathrm{j}} \mathrm{c}_{\mathrm{B} 1}+\mathrm{y}_{2 \mathrm{j}} \mathrm{c}_{\mathrm{B} 2}+\ldots+\mathrm{y}_{\mathrm{mj}} \mathrm{c}_{\mathrm{Bm}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{Bi}} \mathrm{y}_{\mathrm{ij}} \\
& \mathrm{z}_{\mathrm{j}}=\left(\mathrm{c}_{\mathrm{B} 1}, \ldots, \mathrm{c}_{\mathrm{Bm}}\right)\left(\mathrm{y}_{\mathrm{ij}}, \mathrm{y}_{2 \mathrm{j}}, \ldots, \mathrm{y}_{\mathrm{mj}}\right) \\
& \mathrm{z}_{\mathrm{j}}=\overline{\mathrm{c}}_{\mathrm{B}} \overline{\mathrm{y}}_{\mathrm{j}}
\end{aligned}
$$

There exists z_{j} for each $\overline{\mathrm{a}}_{\mathrm{j}}$.

Example 2.1

Illustrate the above definitions and notations for the following L. P. problem.
Maximize

$$
z=x_{1}+2 x_{2}+3 x_{3}+0 x_{4}+0 x_{5}
$$

subject to $4 x_{1}+2 x_{2}+x_{3}+x_{4}=4$

$$
x_{1}+2 x_{2}+3 x_{3}-x_{5}=8
$$

Solution :

Constraints equations in matrix form may be written as

$$
\begin{aligned}
& \overline{\mathrm{a}}_{1} \overline{\mathrm{a}}_{2} \\
& \overline{\mathrm{a}}_{3}
\end{aligned} \overline{\mathrm{a}}_{4} \overline{\mathrm{a}}_{5} \begin{gathered}
\mathrm{x} \\
{\left[\begin{array}{rrrrr}
4 & 2 & 1 & 1 & 0 \\
1 & 2 & 3 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]}
\end{gathered}
$$

$$
A \bar{x}=\bar{b}
$$

A basis matrix $B=\left(\beta_{1}, \beta_{2}\right)$ is formed using columns $\overline{\mathrm{a}}_{3}$ and $\overline{\mathrm{a}}_{1}$ where

$$
\beta_{1}=\overline{\mathrm{a}}_{3}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \beta_{2}=\overline{\mathrm{a}}_{1}=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

The rank of the matrix A is 2 and column vectors $\overline{\mathrm{a}}_{3}, \overline{\mathrm{a}}_{1}$ are linearly independent and thus form a basis for R^{2}. Thus basis matrix is

$$
\begin{array}{r}
\mathbf{B}=\left(\beta_{1}, \beta_{2}\right)=\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right] \\
\overline{\mathrm{a}}_{3} \overline{\mathrm{a}}_{1}
\end{array}
$$

Then the basic feasible solution is $\bar{x}_{B}=\bar{B}^{-1} \bar{b}$

$$
\begin{aligned}
& \bar{x}_{B}=\left(\frac{+1}{|B|} \operatorname{adj} \cdot B\right) \bar{b} \\
& \bar{x}_{B}=\frac{-1}{11}\left[\begin{array}{rr}
1 & -4 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
8
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
28 \\
4
\end{array}\right] \\
& \bar{x}_{B}=\left[\begin{array}{l}
\frac{28}{11} \\
\frac{4}{11}
\end{array}\right]=\left[\begin{array}{l}
x_{B 1} \\
x_{B 2}
\end{array}\right]
\end{aligned}
$$

Hence the basic solution is $x_{B 1}=\frac{28}{11}=x_{3}, x_{B 2}=\frac{4}{11}=x_{1}$ and the remaining non basic variables are (always) zero i. e. $x_{2}=x_{4}=x_{5}=0$.

Also $\quad c_{B 1}=$ coeff. of $x_{B 1}=$ coeff. of $x_{3}=C_{3}=3$

$$
c_{B 2}=\text { coeff. of } x_{B 2}=\text { coeff. of } x_{1}=c_{1}=1
$$

Hence the value of the objective function is

$$
\mathrm{z}=\overline{\mathrm{c}}_{\mathrm{B}} \overline{\mathrm{x}}_{\mathrm{B}}=(3,1)\binom{28 / 11}{4 / 11}=\frac{88}{11}
$$

Also any vector $\overline{\mathrm{a}}_{\mathrm{j}}=(\mathrm{j}=1,2,3,4,5)$ can be expressed as a linear combination of vectors $\beta_{j}(\mathrm{j}=1,2)$.

Let

$$
\begin{aligned}
& \bar{a}_{\mathrm{j}}=\mathrm{y}_{1 \mathrm{j}} \beta_{1}+\mathrm{y}_{2 \mathrm{j}} \beta_{2}=\mathrm{y}_{1 \mathrm{j}} \overline{\mathrm{a}}_{3}+\mathrm{y}_{2 \mathrm{j}} \overline{\mathrm{a}}_{1} \\
& \overline{\mathrm{y}}_{2}=\overline{\mathrm{B}}^{-1} \overline{\mathrm{a}}_{2}=-\frac{1}{11}\left[\begin{array}{rr}
1 & -4 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
6 / 11 \\
4 / 11
\end{array}\right]=\left[\begin{array}{l}
\mathrm{y}_{12} \\
\mathrm{y}_{22}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\mathrm{y}_{12}=\frac{6}{11} \text { and } 1 \mathrm{y}_{22}=\frac{4}{11} .
$$

Now the variable z_{2} corresponding to the column vector $\overline{\mathrm{a}}_{2}$ can be obtained as

$$
\begin{aligned}
\mathrm{z}_{2} & =\overline{\mathrm{c}}_{\mathrm{B}} \overline{\mathrm{y}}_{2}=(3,1)\binom{6 / 11}{4 / 11} \\
& =\left[3 \cdot \frac{6}{11}+1 \cdot \frac{4}{11}\right]=\frac{22}{11}=2
\end{aligned}
$$

Similarly z_{1}, z_{3}, z_{4} and z_{5} can also be obtained.

Theorem 2.4

Consider a set of m simultaneous linear equations in n unknowns with $n>m, A \bar{x}=\bar{b}$ and $r(A)=m$. Then if there is a feasible solution $\bar{x} \geq \overline{0}$, there is a basic feasible solution.

Proof

To prove this assume that there exists a feasible solution to $A \bar{x}=\bar{b}$ with $p \leq n$ positive variables.

Number the variables, so that the first p variables are positive. Then the feasible solution can be written as

$$
\begin{equation*}
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}}=\overline{\mathrm{b}} \tag{1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
x_{j}>0,(j=1,2, \ldots, p), x_{j}=0,(j=p+1, p+2, \ldots, n) \tag{2}
\end{equation*}
$$

Case (i)

Suppose the set $\overline{\mathrm{a}}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, p)$ is linearly independent. Then $\mathrm{p} \leq \mathrm{m}$.
If $p=m$ the given solution is automatically a nondegenerate basic feasible solution.
Supposep < m. We know that this set of p linearly independent column vectors can be extended to form a base $\left\{\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{m}}\right\}$ of the column space of A .

In this case $\left\{x_{1}, x_{2}, \ldots, x_{p}, x_{p+1}, \ldots, x_{m}\right\}$ where $x_{j}=0, j=p+1, p+2, \ldots, m$ is a degenerate basic fessible solution.

Case (ii)

Suppose the vectors $\overline{\mathrm{a}}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{p})$ are linearly dependent. We shall show that under these circumstances it is possible to reduce the number of positive variables step by step until the columns associated with the positive variables are linearly independent.

When the $\overline{\mathrm{a}}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, \mathrm{p})$ are linearly dependent, there exist α_{j} not all zero such that

$$
\begin{equation*}
\sum_{j=1}^{p} \alpha_{j} \bar{a}_{j}=\overline{0} \tag{3}
\end{equation*}
$$

and we proceed to reduce some x_{r} in

$$
\begin{equation*}
\sum_{j=1}^{p} x_{j} \bar{a}_{j}=\bar{b}, x_{j}>0(j=1,2, \ldots, p) \tag{4}
\end{equation*}
$$

to zero.
Suppose some vector \bar{a}_{r} of the p vectors in $\sum_{j=1}^{p} \alpha_{j} \bar{a}_{j}=\overline{0}$ is expressed in terms of the remaining ($p-1$) vectors.

Thus

$$
\begin{equation*}
\bar{a}_{r}=-\sum_{j \neq r} \frac{\alpha_{j}}{\alpha_{r}} \bar{a}_{j} \tag{5}
\end{equation*}
$$

substituing (5) in (4) we obtain

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq r}}^{p}\left(x_{j}-x_{r} \frac{\alpha_{j}}{\alpha_{r}}\right) \bar{a}_{j}=\bar{b} \tag{6}
\end{equation*}
$$

Here we have not more than ($p-1$) variables. However we are not sure that all these variables are non negative (In general if we choose $\overline{\mathrm{a}}_{\mathrm{r}}$ orbitrarily some variables may be negative)

We wish to obtain

$$
\begin{equation*}
x_{j}-x_{r} \frac{\alpha_{j}}{\alpha_{r}} \geq 0(j=1,2, \ldots, p), j \neq r \tag{7}
\end{equation*}
$$

For any j for which $\alpha_{\mathrm{j}}=0$ (7) will be satisfied automatically. When $\alpha_{\mathrm{j}} \neq 0$ we have,

$$
\begin{equation*}
\frac{x_{j}}{\alpha_{\mathrm{j}}}-\frac{x_{\mathrm{r}}}{\alpha_{\mathrm{r}}} \geq 0 \text { if } \alpha_{\mathrm{j}}>0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x_{j}}{\alpha_{j}}-\frac{x_{r}}{\alpha_{r}} \leq 0 \text { if } \alpha_{j}<0 \tag{9}
\end{equation*}
$$

We select $\overline{\mathrm{a}}_{\mathrm{r}}$ such that

$$
\begin{equation*}
\frac{x_{r}}{\alpha_{r}}=\min _{j}\left\{\left.\frac{x_{j}}{\alpha_{j}} \right\rvert\, \alpha_{j}>0\right\} \tag{10}
\end{equation*}
$$

(Note that $\sum \alpha_{j} \bar{a}_{j}=\overline{0} \Rightarrow$ at least one $\alpha_{j} \neq 0$ and hence $\alpha_{j}>0$ for some j)
Thus a fessible solution $\sum_{\substack{j=1 \\ j \neq r}}^{p}\left(x_{j}-x_{r} \frac{\alpha_{j}}{\alpha_{r}}\right) \bar{a}_{j}=\bar{b}$
is obtained with not more than ($p-1$) non zero variables.
These variables are also non negative. (since $\alpha_{j}>0$)
If the columns associated with the positive variabls are linearly independent by case (i) we have a basic feasible solution. If the columns associates with the positive variables are linearly dependent we can repeat the same procedure and reduce one of the positive variables to 0 . Utimately we shall arrive at a solution such that the columns corresponding to the positive variables are linearly independent. (Note that a single non zero vector is always linearly independent)

OR

Theorem 2.5

If a linear programming problem
$\max . \mathrm{z}=\overline{\mathrm{c}} \overline{\mathrm{x}}$ s. t. $\mathrm{A} \overline{\mathrm{x}}=\overline{\mathrm{b}}, \overline{\mathrm{x}} \geq \overline{0}$
has at least one feasible solution then it has at least one basic feasible solution.

Proof

Let

$$
\overline{\mathrm{x}}_{0}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, 0,0, \ldots, 0\right)
$$

be a feasible solution to the L. P. P. with positive components $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$.
Let $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ be the first k columns of A (associated with the positive variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{x}}$ respectively)

Then by hypothesis

$$
\begin{equation*}
x_{1} \overline{\mathrm{a}}_{1}+\mathrm{x}_{2} \overline{\mathrm{a}}_{2}+\ldots+\mathrm{x}_{\mathrm{k}} \overline{\mathrm{a}}_{\mathrm{k}}=\overline{\mathrm{b}} \tag{1}
\end{equation*}
$$

Case (i)

Suppose $\bar{a}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ are linearly indepedent. In this case $\overline{\mathrm{x}}_{0}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{\mathrm{k}}, 0, \ldots, 0\right)$ is a basic fessible solution.

Case (ii)

Suppose $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ are linearly dependent.
So there exist scalers $\lambda_{1}, \ldots ., \lambda_{k}$ not all 0 such that
$\lambda_{1} \overline{\mathrm{a}}_{1}+\ldots+\lambda_{\mathrm{k}} \overline{\mathrm{a}}_{\mathrm{k}}=\overline{0}$ with atleast one $\lambda_{\mathrm{j}} \neq 0$ and hence assume this $\lambda_{\mathrm{j}}>0$.
Let $v=\max _{1 \leq j \leq \mathrm{k}}\left\{\frac{\lambda_{\mathrm{j}}}{\mathrm{x}_{\mathrm{j}}}\right\}, \lambda_{\mathrm{j}}>0 \quad$ (i.e. $\mathrm{m}+\mathrm{x}$ is taken over those j fro which $\lambda_{\mathrm{j}}>\mathrm{x}$)
Obviously $\mathrm{v}>0$ for $\mathrm{x}_{\mathrm{j}}>0(\mathrm{j}=1,2, \ldots, \mathrm{k})$ and at least one $\lambda_{\mathrm{j}}>0$.
Multiply (2) by $\frac{1}{\mathrm{v}}$ and then subtract from (1) to get

$$
\begin{align*}
& \sum_{j=1}^{k} x_{j} \bar{a}_{j}-\frac{1}{v} \sum_{j=1}^{k} \lambda_{j} \bar{a}_{j}=\bar{b} \\
& \Rightarrow \sum_{j=1}^{k}\left(x_{j}-\frac{\lambda_{j}}{v}\right) \bar{a}_{j}=\bar{b} \tag{3}\\
& \quad \Rightarrow \hat{x}=\left(x_{1}-\frac{\lambda_{1}}{v}, x_{2}-\frac{\lambda_{2}}{v}, \ldots, x_{k}-\frac{\lambda_{k}}{v}, 0,0, \ldots, 0\right)
\end{align*}
$$

is a new solution of $A \bar{x}=\bar{b}$.
We have $\mathrm{v} \geq \frac{\lambda_{\mathrm{j}}}{\mathrm{x}_{\mathrm{j}}}$ or $\mathrm{x}_{\mathrm{j}} \geq \frac{\lambda_{\mathrm{j}}}{\mathrm{v}}(1 \leq \mathrm{j} \leq \mathrm{k})$

The new solution \hat{x} satisfies non negativity restriction.
Since $\mathrm{x}_{\mathrm{j}}-\frac{\lambda_{\mathrm{j}}}{\mathrm{V}}=0$ for at least one $\mathrm{j}, \hat{\mathrm{x}}$ is a feasible solution with at the most $\mathrm{k}-1$ positive variables. All other variables are 0 .

If the columns associated with the positive variables are still linearly. dependent, repeat the above procedure. Cuntinuing in this way we get the column vectors ossociated with positive variables which are linearly independent. Thus by case (i) we get a basic feasible solution.

Example 2.2

If $x_{1}=2, x_{2}=3, x_{3}=1$ is a feasible solution of a L. P. P. problem
$\max . \quad \mathrm{z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}+4 \mathrm{x}_{3}$
subject to $2 x_{1}+x_{2}+4 x_{3}=11$

$$
\begin{gathered}
3 x_{1}+x_{2}+5 x_{3}=14 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

find a Basic Feasible Solution

Solution :

We have $A \bar{x}=\bar{b}$
where

$$
A=\left[\begin{array}{lll}
2 & 1 & 4 \\
3 & 1 & 5
\end{array}\right], \bar{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \bar{b}=\left[\begin{array}{l}
11 \\
14
\end{array}\right]
$$

The given feasible solution is $x_{1}=2, x_{2}=3, x_{3}=1$.
Hence $2 \overline{\mathrm{a}}_{1}+3 \overline{\mathrm{a}}_{2}+1 \cdot \overline{\mathrm{a}}_{3}=\overline{\mathrm{b}}$

Where

$$
\bar{a}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \bar{a}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \bar{a}_{3}=\left[\begin{array}{l}
4 \\
5
\end{array}\right], \bar{b}=\left[\begin{array}{l}
11 \\
14
\end{array}\right]
$$

Step (2)

The vectors $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \overline{\mathrm{a}}_{3}$ associated wsith the positive variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are linearly dependent so one of the vectors is a linear combination of the remaining two.

Let $\overline{\mathrm{a}}_{3}=\lambda_{1} \overline{\mathrm{a}}_{1}+\lambda_{2} \overline{\mathrm{a}}_{2}$ Thus

$$
\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Maximum no. of lin. independnet columns is less than 3 since row rank of coefficient matrix A is 2 .

$$
\begin{aligned}
& \text { Now }\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \lambda_{1}+\lambda_{2} \\
3 \lambda_{1}+\lambda_{2}
\end{array}\right] \\
& \Rightarrow 2 \lambda_{1}+\lambda_{2}=4,3 \lambda_{1}+\lambda_{2}=5
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \lambda_{1}=1, \lambda_{2}=2 \\
& \Rightarrow \overline{\mathrm{a}}_{3}=\overline{\mathrm{a}}_{1}+2 \overline{\mathrm{a}}_{2}
\end{aligned}
$$

i. e. $\quad \overline{\mathrm{a}}_{1}+2 \overline{\mathrm{a}}_{2}-\overline{\mathrm{a}}_{3}=\overline{0}$

Where

$$
\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=-1
$$

Step (3)

Now determine which of the variables x_{1}, x_{2}, x_{3} should be 0 . For this find

$$
\begin{aligned}
& v=\max \left(\frac{\lambda_{\mathrm{j}}}{\mathrm{x}_{\mathrm{j}}}\right), \lambda_{\mathrm{j}}>0 \\
&=\max \left(\frac{\lambda_{1}}{\mathrm{x}_{1}}, \frac{\lambda_{2}}{\mathrm{x}_{2}}\right) \quad\left(\text { since } \lambda_{1}=1>0, \lambda_{2}=2>0\right) \\
&=\max \left\{\frac{1}{2}, \frac{2}{3}\right\}=\frac{2}{3} \\
& \hat{x}=\left(x_{1}-\frac{\lambda_{1}}{\mathrm{v}}, \mathrm{x}_{2}-\frac{\lambda_{2}}{\mathrm{v}}, \mathrm{x}_{3}-\frac{\lambda_{3}}{\mathrm{v}}\right) \text { is a reduced solution where } \\
& \mathrm{x}_{1}-\frac{\lambda_{1}}{\mathrm{v}}=2-\frac{1}{2 / 3}=\frac{1}{2} \\
& x_{2}-\frac{\lambda_{2}}{\mathrm{v}}=3-\frac{2}{2 / 3}=0 \\
& x_{3}-\frac{\lambda_{3}}{\mathrm{v}}=1-\left(-\frac{1}{2 / 9}\right)=\frac{5}{2} \\
& \therefore
\end{aligned}
$$

Step (4)

Now the solution $\hat{x}=\left(\frac{1}{2}, 0, \frac{5}{2}\right)$ is to be tested for basicness. The determinant of the matrix of the of column vectors corresponding to x_{1}, x_{3} is
$\left|\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]\right| \neq 0$
Obviously $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{3}$ are linearly independent.
Hence $\hat{x}=\left(\frac{1}{2}, 0, \frac{5}{2}\right)$ is a B. F. S.

Theorem 2.6

Let a L. P. P. have a B. F. S. If for any column $\overline{\mathrm{a}}_{\mathrm{j}}$ in A but not in $\mathrm{B}=\left\{\overline{\mathrm{b}}_{1}, \overline{\mathrm{~b}}_{2}, \ldots, \overline{\mathrm{~b}}_{\mathrm{m}}\right\}$ (basic vectors for columns in A) we have $\bar{a}_{j}=\sum_{i=1}^{m} y_{i j} \bar{b}_{i}$ with at least one $y_{i j}>0(i=1,2, \ldots, m)$ then we can find a new B. F. S. by replacing one of the columns in B by $\overline{\mathrm{a}}_{\mathrm{j}}$.

Proof

Consider a L. P. P. problem max $z=\bar{c} \bar{x}$ subject to $A \bar{x}=\bar{b}, \bar{x} \geq \overline{0}$ where A is $m \times n$ matrix $m<n$ and $r(A)=m$, where $r(A)=$ rank of A.

Let \bar{x}_{B} be a BFS of the LPP, where $B=\left\{\bar{b}_{1}, \bar{b}_{2}, \ldots, \bar{b}_{m}\right\}$ forms a basis for the columns of A.
For any column $\overline{\mathrm{a}}_{\mathrm{j}}$ in $\mathrm{A}\left(\overline{\mathrm{a}}_{\mathrm{j}} \notin \mathrm{B}\right)$, we have

$$
\bar{a}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{y}_{\mathrm{ij}} \overline{\mathrm{~b}}_{\mathrm{i}}
$$

Suppose some $y_{r_{\mathrm{j}}}>0$

Then

$$
\begin{aligned}
& \bar{a}_{j}=\sum_{\substack{i=1 \\
i \neq r}}^{m} y_{i j} \overline{\mathrm{~b}}_{\mathrm{i}}+\mathrm{y}_{\mathrm{rj}} \overline{\mathrm{~b}}_{\mathrm{r}} \\
\Rightarrow & \overline{\mathrm{~b}}_{\mathrm{r}}=\frac{\overline{\mathrm{a}}_{\mathrm{j}}}{\mathrm{y}_{\mathrm{rj}}}-\frac{1}{\mathrm{y}_{\mathrm{rj}}} \sum_{\substack{i=1 \\
\mathrm{i} \neq \mathrm{r}}}^{m} \mathrm{y}_{\mathrm{ij}} \overline{\mathrm{~b}}_{\mathrm{i}}
\end{aligned}
$$

Hence $B \bar{x}_{B}=\bar{b}$ gives $\bar{b}=\sum_{i=1}^{m} x_{B i} \bar{b}_{i}$

$$
\begin{aligned}
& \Rightarrow \overline{\mathrm{b}}=\sum_{\substack{i=1 \\
i \neq r}}^{m} \mathrm{x}_{\mathrm{Bi}} \overline{\mathrm{~b}}_{\mathrm{i}}+\mathrm{x}_{\mathrm{Br}}\left[\frac{\overline{\mathrm{a}}_{\mathrm{j}}}{\mathrm{y}_{\mathrm{rj}}}-\frac{1}{y_{\mathrm{rj}}} \sum_{\substack{i=1 \\
i \neq \mathrm{r}}}^{m} \mathrm{y}_{\mathrm{ij}} \overline{\mathrm{~b}}_{\mathrm{i}}\right] \\
& \Rightarrow \overline{\mathrm{b}}=\sum_{\substack{i=1 \\
i \neq \mathrm{f}}}^{m}\left[\mathrm{x}_{\mathrm{Bi}}-\mathrm{x}_{\mathrm{Br}} \frac{\mathrm{y}_{\mathrm{ij}}}{\mathrm{y}_{\mathrm{rj}}}\right] \overline{\mathrm{b}}_{\mathrm{i}}+\frac{x_{\mathrm{Br}}}{\mathrm{y}_{\mathrm{rj}}} \overline{\mathrm{a}}_{\mathrm{j}}
\end{aligned}
$$

The new solution \hat{X}_{B} is also a basic solution with the basic variables.

$$
\hat{x}_{B i}=\left(x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}}\right), i=1,2, \ldots, m, i \neq r
$$

and

$$
\hat{\mathrm{x}}_{\mathrm{Br}}=\frac{\mathrm{x}_{\mathrm{Br}}}{\mathrm{y}_{\mathrm{rj}}}
$$

Case (1)

Let $\mathrm{X}_{\mathrm{Br}}=0$
In this case the new set of basic variables is obviously non negative, since we have assumed the existance of a BFS, \bar{x}_{B}.

Case (2)

$$
x_{B r} \neq 0
$$

We have $\mathrm{y}_{\mathrm{rj}}>0$
For the remaining $\mathrm{y}_{\mathrm{ij}}(\mathrm{i} \neq \mathrm{r}), \mathrm{y}_{\mathrm{ij}}=0, \mathrm{y}_{\mathrm{ij}}>0$ or $\mathrm{y}_{\mathrm{ij}}<0$.
If $y_{i j}=0$ for some $i, \hat{x}_{B i}=x_{B i} \geq 0, \hat{x}_{B r} \geq 0$
If $\mathrm{y}_{\mathrm{ij}}<0$ still $\hat{\mathrm{x}}_{\mathrm{Bi}} \geq 0$ and $\hat{\mathrm{x}}_{\mathrm{Br}} \geq 0$.
Suppose $\mathrm{y}_{\mathrm{ij}}>0$
We require $\hat{X}_{B i}=x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}} \geq 0, i \neq r$
So we must have $\frac{x_{B i}}{y_{i j}} \geq \frac{x_{B r}}{y_{r j}}$, where $y_{i j}>0$.

We select r in such a way that $\frac{x_{B r}}{y_{r j}}=\min \left\{\left.\frac{x_{B i}}{y_{i j}} \right\rvert\, y_{i j}>0\right\}$
Then we have a B. F. S.

Example 2.3

Given a basic feasible solution $x_{3}=4$ and $x_{4}=8$ to the L. P. P.
max. $z=x_{1}+2 x_{2}$ subject to

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}=4 \\
& x_{1}+4 x_{2}+x_{4}=8
\end{aligned}
$$

obtain a new B. F. S.

Solution :

We have

$$
\mathrm{A} \overline{\mathrm{x}}=\overline{\mathrm{b}}
$$

Where

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right], \overline{\mathrm{x}}=\left(\mathrm{x}_{1} \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right), \overline{\mathrm{b}}=(4,8) \\
& \overline{\mathrm{a}}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \overline{\mathrm{a}}_{2}=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \overline{\mathrm{a}}_{3}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \overline{\mathrm{a}}_{4}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

We have $B \bar{x}_{B}=\bar{b}$ where $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \overline{\mathrm{x}}_{\mathrm{B}}=\left(\mathrm{x}_{\mathrm{B} 1} \mathrm{x}_{\mathrm{B} 2}\right)=(4,8), \mathrm{x}_{\mathrm{B} 1}=\mathrm{x}_{3}=4, \mathrm{x}_{\mathrm{B} 2}=\mathrm{x}_{4}=8 \\
& \beta_{1}=\overline{\mathrm{b}}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \beta_{2}=\overline{\mathrm{b}}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The $y_{j} s$ for any column $\overline{\mathrm{a}}_{\mathrm{j}}$ in A but not in B are

$$
\begin{aligned}
& \bar{y}_{1}=B^{-1} \bar{a}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
y_{11} \\
y_{21}
\end{array}\right] \\
& \overline{\mathrm{y}}_{2}=\mathrm{B}^{-1} \overline{\mathrm{a}}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=\left[\begin{array}{l}
y_{12} \\
y_{22}
\end{array}\right]
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \overline{\mathrm{a}}_{1}=\overline{\mathrm{B}}^{1} \overline{\mathrm{a}}_{1}=\mathrm{y}_{11} \overline{\mathrm{~b}}_{1}+\mathrm{y}_{12} \overline{\mathrm{~b}}_{2} \text { and } \\
& \overline{\mathrm{a}}_{2}=\overline{\mathrm{B}}^{1} \overline{\mathrm{a}}_{2}=\mathrm{y}_{21} \overline{\mathrm{~b}}_{1}+\mathrm{y}_{22} \overline{\mathrm{~b}}_{2} .
\end{aligned}
$$

Since $y_{11}=1, y_{21}=1>0$ we can insert \bar{a}_{1} in B. We now select $\beta_{r}=\bar{b}_{r}$ for replacement by \bar{a}_{1} which corresponds to the value of r determined by the minimum ratio rule :

$$
\begin{aligned}
\frac{x_{B r}}{y_{r 1}} & =\min \left\{\frac{x_{B i}}{y_{i 1}}, y_{i 1}>0\right\} \\
& =\min \left[\frac{x_{B 1}}{y_{11}}, \frac{x_{B 2}}{y_{21}}\right] \\
& =\min \left[\frac{4}{1}, \frac{8}{1}\right]=4=\frac{x_{B 1}}{y_{11}} \\
\Rightarrow r & =1
\end{aligned}
$$

Hence we remove β_{1} and enter \bar{a}_{1} in place of $\beta_{1}=\bar{b}_{1}$.
The new basic matrix becomes

$$
\begin{aligned}
& \hat{B}=\left(\overline{a_{1}}, \beta_{2}\right) \quad\left(\text { or } \hat{\beta}=\left(\hat{\beta_{1}}, \hat{\beta_{2}}\right), \hat{\beta_{1}}=\overline{\mathrm{a}}, \hat{\beta_{2}}=\beta_{2}\right) \\
\Rightarrow & \hat{B}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad
\end{aligned}
$$

We can now find the basic feasible solution \hat{X}_{B} either by using the result $\hat{X}_{B}=\hat{B}^{-1} \bar{b}$ or by the transformation formulae.

$$
\hat{x}_{B i}=x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}}, i=1, \ldots, m, i \neq r
$$

$$
\text { and } \hat{X}_{B r}=\frac{x_{B r}}{y_{r j}} \text { for } i=r=1, x_{i}=\hat{X}_{B 1}
$$

Now $\beta_{1}=\bar{b}_{1}$ is removed means x_{3} will not be a basic feasible solution. In its plane x_{4} corresponding to \bar{a}_{1} will be a B. F. S. and $x_{1}=x_{B 1}$.

Using the formula

$$
\hat{\mathrm{x}}_{\mathrm{B} 1}=\frac{\mathrm{x}_{\mathrm{B} 1}}{\mathrm{y}_{11}}=\frac{\mathrm{x}_{3}}{1}=\frac{4}{1}=4
$$

$$
\hat{x}_{B 2}=x_{B 2}-x_{B 1} \frac{y_{21}}{y_{11}}=x_{4}-x_{3} \frac{y_{21}}{y_{11}}=8-4 \times \frac{1}{1}=4
$$

Hence the new B. F. S. is

$$
x_{1}=x_{B 1}=4, x_{2}=0, x_{3}=0, x_{4}=x_{B 2}=4
$$

Theorem 2.7

If a linear programming problem,
Max. $z=\bar{c} \bar{x}$, , s. t. $A \bar{x}=\bar{b}, \bar{x} \geq 0$,
has at least one optimal feasible solution, then at least one basic feasible solution must be optimal.

Proof

Let

$$
\bar{x}^{0}=(x_{1}, x_{2}, \ldots, x_{k} \overbrace{0,0, \ldots, 0}^{m+n-k})
$$

be an optimal feasible solution to the given linear programming problem which yields the optimum value

$$
\begin{equation*}
\mathrm{z}^{*}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \text {. Also } \sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}}=\overline{\mathrm{b}} \tag{1}
\end{equation*}
$$

If $\bar{a}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ are linearly independent then $\overline{\mathrm{x}} 0$ is an optimed $B F S$. Otherwise $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \ldots, \overline{\mathrm{a}}_{\mathrm{k}}$ are linearly dependent and there exist λ_{j}, not all 0 ,
such that $\sum_{\mathrm{j}=1}^{\mathrm{k}} \lambda_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}}=\overline{0}$ where at least one $\lambda_{\mathrm{j}}>0$

Let $V=\max _{1 \leq j \leq k}\left(\frac{\lambda_{j}}{x_{j}}\right)$
Obviously $V>0$, because $x_{j}>0$ and at least one $\left.\lambda_{j}>0(1 \leq j \leq k)\right)$.
Now multiplying (2) by $\frac{1}{\mathrm{~V}}$ and subtracting from (1) we get

$$
\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}}-\frac{1}{\mathrm{~V}} \sum_{\mathrm{j}=1}^{\mathrm{k}} \lambda_{\mathrm{j}} \overline{\mathrm{a}}_{\mathrm{j}}=\overline{\mathrm{b}}
$$

$$
\begin{equation*}
\Rightarrow \sum_{\mathrm{j}=1}^{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}-\frac{\lambda_{\mathrm{j}}}{\mathrm{~V}}\right) \overline{\mathrm{a}}_{\mathrm{j}}=\overline{\mathrm{b}} \tag{4}
\end{equation*}
$$

$\Rightarrow \hat{x}=\left(x_{1}-\frac{\lambda_{1}}{v}, x_{2}-\frac{\lambda_{2}}{v}, \ldots ., x_{k}-\frac{\lambda_{k}}{v}, 0,0, \ldots ., 0\right)$ is a new solution of $A \bar{x}=\bar{b}$.
From (3) $v \geq \frac{\lambda_{j}}{x_{j}} \Rightarrow x_{j}-\frac{\lambda_{j}}{v} \geq 0, j=1,2, \ldots \ldots, k$
Thus \hat{x} is a feasible solution and since $x_{j}-\frac{\lambda_{j}}{v}=0$ for at least one j, \hat{x} contains at the most k - 1 non zero variables other variables being zero.

If the column vectors associated with the positive variables are still linearly dependent we repeat the above process and finally get the solution which is a BFS. So without loss of generality the solution \hat{x} will be assumed as a basic feasible solution.

We have to prove that \hat{x} is also optimum solution.
The value of the objective function corresponding to this solution \hat{x} will become

$$
\begin{align*}
\hat{z} & =\sum_{j=1}^{k} c_{j}\left(x_{j}-\frac{\lambda_{j}}{v}\right)=\sum_{j=1}^{k} c_{j} x_{j}-\frac{1}{v} \sum_{j=1}^{k} c_{j} \lambda_{j} \\
\text { or } \quad \hat{z} & =z^{*}-\frac{1}{v} \sum_{j=1}^{k} c_{j} \lambda_{j} \tag{5}\\
z^{*} & \left.=\sum_{j=1}^{k} c_{j} x_{j}\right)
\end{align*}
$$

(since

But, for optimality \hat{z} must be equal to z^{*}. Hence \hat{x} will be optimal solution if and only if we prove,

$$
\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{j}} \lambda_{\mathrm{j}}=0 \text { in equation }(5) .
$$

We shall prove this by contradiction.
If possible, let us assume that

$$
\sum_{j=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{j}} \lambda_{\mathrm{j}} \neq 0
$$

Then, there will be two possibilities :

1) $\sum_{j=1}^{k} c_{j} \lambda_{j}>0$
2) $\sum_{j=1}^{k} \mathrm{c}_{\mathrm{j}} \lambda_{\mathrm{j}}<0$

Now, in either of these two cases we can find a real number, say r, such that

$$
r \sum_{j=1}^{k} c_{j} \lambda_{j}>0
$$

(in first case, r will be positive and in second case r will negative)
i. e. $\quad \sum_{j=1}^{k} c_{j}\left(r \lambda_{j}\right)>0$

Now adding $\sum_{\mathrm{j}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}$ to both sides on (6), we have

$$
\begin{align*}
& \quad \sum_{j=1}^{k} c_{j}\left(r \lambda_{j}\right)+\sum_{j=1}^{k} c_{j} x_{j}>\sum_{j=1}^{k} c_{j} x_{j} \\
& \text { or } \quad \sum_{j=1}^{k} c_{j}\left(x_{j}+r \lambda_{j}\right)>z^{*} \tag{7}
\end{align*}
$$

Now, $(x_{1}+r \lambda_{1}, x_{2}+r \lambda_{2}, \ldots, x_{k}+r \lambda_{k}, \overbrace{0,0, \ldots, 0}^{m+n-k})$ is also a solution for any value of r which can be observed by multiplying equation (2) by r and adding to equation (1)

Furthermore, there exist an infinite number of choices of r for which the solution
$(x_{1}+r \lambda_{1}, x_{2}+r \lambda_{2}, \ldots, x_{k}+r \lambda_{k}, \overbrace{0, \ldots, 0}^{m+n-k})$ satisfies the non - negativity restrictions also.
We now proceed to prove this statement. To satisfy the non - negativity restriction, we need

$$
\begin{aligned}
& x_{j}+r \lambda_{j} \geq 0, j=1,2, \ldots, k \\
\text { or } \quad & r \lambda_{j} \geq-x_{j}
\end{aligned}
$$

We have
or

$$
\left.\begin{array}{l}
r \geq-\frac{x_{j}}{\lambda_{\mathrm{j}}} \text {,if } \lambda_{\mathrm{j}}>0 \\
\mathrm{r} \leq-\frac{\mathrm{x}_{\mathrm{j}}}{\lambda_{\mathrm{j}}} \text {, if } \lambda_{\mathrm{j}}<0
\end{array}\right\}
$$

r unrestricted, if $\lambda_{j}=0$

Thus, we observe that if we select r satisfying the relationship

$$
\begin{equation*}
\max _{\left(\lambda_{j}>0\right)}^{\operatorname{j}}\left(-\frac{x_{j}}{\lambda_{j}}\right) \leq r \leq \min _{\left(\lambda_{j}<0\right)}^{\min }\left(-\frac{x_{j}}{\lambda_{j}}\right) \tag{8}
\end{equation*}
$$

then $x_{j}+r \lambda_{j} \geq 0$ for $j=1,2, \ldots ., k$. We note that if there is no j for which $\lambda_{j}>0$, then there is no lower limit for r and if there is no j for which $\lambda_{j}<0$, then there is no upper limit for r.

Furthermore,

$$
\underset{\left(\lambda_{j}>0\right)}{\max }\left(-\frac{x_{j}}{\lambda_{\mathrm{j}}}\right)<0 \text { and } \min _{\left(\lambda_{j}<0\right)}\left(-\frac{\mathrm{x}_{\mathrm{j}}}{\lambda_{\mathrm{j}}}\right)>0
$$

This proves that when r lies in the non - empty interval given by (8), then the infinite number of solutions.

$$
(x_{1}+r \lambda_{1}, x_{2}+r \lambda_{2}, \ldots, x_{k}+r \lambda_{k}, \overbrace{0,0, \ldots, 0}^{m+n-k})
$$

satisfy the non - negativity restrictions also.
Now, from (7) we conclude that the left hand side $\sum_{i=1}^{k} c_{j}\left(x_{j}+r \lambda_{j}\right)$ yields the value of the objective function which is strictly greater than the greatest value of the objective function. This contradiction proves that $\sum_{j=1}^{k} c_{j} \lambda_{j}=0$ and hence \hat{x} is optimal.

Note: By what we have proved we have the result:
If the linear programming problem :
Max. $z=c x$, subject to $A x=b, x \geq 0$ has feasible solution, then it has at least one optimal basic feasible solutions.

Reduction of any feasible solution to a basic feasible solution

Example 2.4

If $x_{1}=2, x_{2}=3, x_{3}=1$, be a feasible solution of linear programming problem :

$$
\text { Max. } z=x_{1}+2 x_{2}+4 x_{3},
$$

subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+4 x_{3}=11, \\
& 3 x_{1}+x_{2}+5 x_{3}=14, \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

then find a basic feasible solution.

Solution :

We express the above system as

$$
\begin{gathered}
\bar{a}_{1} \overline{\mathrm{a}}_{2} \\
\overline{\mathrm{a}}_{3}
\end{gathered} \begin{gathered}
\bar{b} \\
\left(\begin{array}{lll}
2 & 1 & 4 \\
3 & 1 & 5
\end{array}\right)\left(\begin{array}{l}
\mathrm{x}_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{11}{14}
\end{gathered}
$$

or

$$
x_{1} \overline{\mathrm{a}}_{1}+\mathrm{x}_{2} \overline{\mathrm{a}}_{2}+\mathrm{x}_{3} \overline{\mathrm{a}}_{3}=\overline{\mathrm{b}}
$$

But the given feasible solution is $x_{1}=2, x_{2}=3, x_{3}=1$. Hence $2 \bar{a}_{1}+3 \overline{\mathrm{a}}_{2}+1 \overline{\mathrm{a}}_{3}=\overline{\mathrm{b}}$
Where $\overline{\mathrm{a}}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \overline{\mathrm{a}}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \overline{\mathrm{a}}_{3}=\left[\begin{array}{l}4 \\ 5\end{array}\right], \overline{\mathrm{b}}=\left[\begin{array}{l}11 \\ 14\end{array}\right]$
Since the vectors $\overline{\mathrm{a}}_{1}, \overline{\mathrm{a}}_{2}, \overline{\mathrm{a}}_{3}$ associated with the corresponding varialbes $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are linearly dependent, therefore one of the vectors can be expressed in terms of the remaining two.

Thus,

$$
\begin{equation*}
\overline{\mathrm{a}}_{3}=\lambda_{1} \overline{\mathrm{a}}_{1}+\lambda_{2} \overline{\mathrm{a}}_{2} \text {. So } \lambda_{1} \overline{\mathrm{a}}_{1}+\lambda_{2} \overline{\mathrm{a}}_{2}+\lambda_{3} \overline{\mathrm{a}}_{3}=0 \text {, where } \lambda_{3}=-1 \tag{1}
\end{equation*}
$$

or $\quad\left[\begin{array}{l}4 \\ 5\end{array}\right]=\lambda_{1}\left[\begin{array}{l}2 \\ 3\end{array}\right]+\lambda_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
or $\quad\left[\begin{array}{l}4 \\ 5\end{array}\right]=\left[\begin{array}{l}2 \lambda_{1}+\lambda_{2} \\ 3 \lambda_{1}+\lambda_{2}\end{array}\right]$
which gives

$$
\begin{aligned}
& 2 \lambda_{1}+\lambda_{2}=4, \\
& 3 \lambda_{1}+\lambda_{2}=5
\end{aligned}
$$

Solving these two equations we get $\lambda_{1}=1, \lambda_{2}=2$. Now substituting these values of λ_{1} and λ_{2} in (1), we get the linear combination

$$
\begin{equation*}
a_{1}+2 a_{2}-a_{3}=0 \text { or } \sum_{j=1}^{k} \lambda_{\mathrm{j}} a_{j}=0 \tag{2}
\end{equation*}
$$

Where $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=-1$
Now we have to determine which one of the three variables $\left(x_{1}, x_{2}, x_{3}\right)$ should be zero.

$$
\begin{aligned}
v & =1 \leq j \leq 3 \frac{\lambda_{\mathrm{j}}}{\mathrm{x}_{\mathrm{j}}}=\max \left\{\frac{\lambda_{1}}{\mathrm{x}_{1}}, \frac{\lambda_{2}}{\mathrm{x}_{2}}, \frac{\lambda_{3}}{\mathrm{x}_{3}}\right\} \\
& =\max \left\{\frac{1}{2}, \frac{2}{3}, \frac{-1}{1}\right\}=\frac{2}{3}
\end{aligned}
$$

Let $\hat{x}=\left(x_{1}-\frac{\lambda_{1}}{v}, x_{2}-\frac{\lambda_{2}}{v}, x_{3}-\frac{\lambda_{3}}{v}\right)$
Then, $\mathrm{x}_{1}-\frac{\lambda_{1}}{v}=2-\frac{1}{\frac{2}{3}}=\frac{1}{2}$,

$$
\begin{aligned}
& \mathrm{x}_{2}=\frac{\lambda_{2}}{v}=3-\frac{2}{\frac{2}{3}}=0 \text { (which was expected also), } \\
& \mathrm{x}_{3}-\frac{\lambda_{3}}{v}=1-\left(\frac{-1}{\frac{2}{3}}\right)=\frac{5}{2}
\end{aligned}
$$

Now this solution $\hat{\mathrm{x}}=\left(\frac{1}{2}, 0, \frac{5}{2}\right)$ will be a basic feasible if the vectors $\overline{\mathrm{a}}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\overline{\mathrm{a}}_{3}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ associated with non - zero variables x_{1} and x_{3} are linearly Independent.

Obviously a_{1} and a_{3} are linearly independent.
Hence the required basic feasible solution is
$\mathrm{x}_{1}=\frac{1}{2}, \mathrm{x}_{2}=0, \mathrm{x}_{3}=\frac{5}{2}$

To verify, we have $\frac{1}{2}\left[\begin{array}{l}1 \\ 3\end{array}\right]+0\left[\begin{array}{l}1 \\ 1\end{array}\right]+\frac{5}{2}\left[\begin{array}{l}4 \\ 5\end{array}\right]=\left[\begin{array}{l}11 \\ 14\end{array}\right]$

Example 2.5

Show that the feasible solution $x_{1}=1, x_{2}=0, x_{3}=1, z=3$ to the system
$x_{1}+x_{2}+x_{3}=2$
$x_{1}-x_{2}+x_{3}=2$
$2 x_{1}+3 x_{2}+4 x_{3}=z(M i n)$ is not basic.

Solution :

First, we express the given system of constraint equations in matrix form :
$\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$
Therefore, according to our usual notations, we have
$A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right], \bar{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \bar{b}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$
We show that the feasible solution $x_{1}=1, x_{2}=0, x_{3}=1$ is not basic.
So, we prove that the vectors
$\overline{\mathrm{a}}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\overline{\mathrm{a}}_{3}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
are linearly dependent.
Since there exist non - zero scalars $\lambda_{1}=1, \lambda_{2}=-1$ such that $\lambda_{1} \bar{a}_{1}+\lambda_{2} \bar{a}_{2}=\overline{0}$
or $\quad 1 \cdot\binom{1}{1}+(-1) \cdot\binom{1}{1}=\binom{0}{0}$,
the given feasible solution is not basic.

Theorem 2.8

Consider a L. P. P. max. $z=\bar{c} \cdot \bar{x}$, such that to $A \bar{x}=\bar{b}, \bar{x} \geq 0$.
Let $A=\left(\bar{a}_{1}, a_{2}, \ldots, \bar{a}_{a+m}\right)$ and $B=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ be a non singular submatrix of A.

Assume that a non-degenerate basic feasible solution $\bar{x}_{B}=B^{-1} \bar{b}$ to $A \bar{x}=\bar{b}$ yields a value of the objective function $z=\bar{c}_{B} \bar{x}_{B}$. If for any colunm \bar{a}_{j} in A but not in B we have $c_{j}-z_{j}>0$, and if at least one $y_{i j}>0(i=1,2, \ldots, m)$ where $\bar{a}_{j}=\sum_{i=1}^{m} y_{i j} \beta_{i}$, then we can find a new basic feasible solution by replacing one of the columns in B by a_{j}.

Proof

We shall obtain a new basic feasible solution by replacing one of the vectors (say $\overline{\mathrm{a}}_{\mathrm{j}}$) in A but not in B by some vector in B (say β_{r}). Obviously,

$$
\bar{a}_{\mathrm{j}} \neq \beta_{\mathrm{i}} \quad(\mathrm{i}=1,2, \ldots, \mathrm{~m})
$$

Since $\overline{\mathrm{a}}_{\mathrm{j}}$ can be expressed as the linear combination of vectors in B, therefore

$$
\begin{align*}
& \bar{a}_{j}
\end{align*}=\sum_{i=1}^{m} y_{i j} \beta_{i} .
$$

Now, by using the replacement theorem, a_{j} can replace β_{r} and still maintains the basic matrix, provided $\mathrm{y}_{\mathrm{rj}} \neq 0$.

Assuming $\mathrm{y}_{\mathrm{rj}} \neq 0$, where $\mathrm{y}_{\mathrm{rj}}>0, \overline{\mathrm{a}}_{\mathrm{j}}$ can be written as

$$
\begin{equation*}
\bar{a}_{\mathrm{j}}=\sum_{\substack{\mathrm{i}=1 \\ i \neq \mathrm{F}}}^{\mathrm{m}} y_{\mathrm{ij}} \beta_{\mathrm{i}}+\mathrm{y}_{\mathrm{rj}} \beta_{\mathrm{r}} \tag{2}
\end{equation*}
$$

Solving the equation (2) for β_{r}, we obtain

$$
\begin{equation*}
\beta_{r}=\frac{1}{y_{r j}} \bar{a}_{\mathrm{j}}-\sum_{\substack{i=1 \\ i \neq \mathrm{r}}}^{m} \frac{y_{\mathrm{ij}}}{\mathrm{y}_{\mathrm{r}}} \beta_{\mathrm{i}} \tag{3}
\end{equation*}
$$

Also, we have $B \bar{x}_{B}=\bar{b}$
or $\quad\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)\left(x_{B 1}, x_{B 2}, \ldots, x_{B r}, \ldots, x_{B m}\right)=\bar{b}$
or $\quad x_{B 1} \beta_{1}+x_{B 2} \beta_{2}+\ldots+x_{B r} \beta_{r}+\ldots+x_{B m} \beta_{m}=\bar{b}$
or $\quad \sum_{\substack{i=1 \\ i \neq r}}^{m} x_{B} \beta_{i}+x_{B r} \beta_{r}=\bar{b}$

Substituting the value of β_{r} from (3) in (4), we obtain

$$
\begin{align*}
& \sum_{\substack{i=1 \\
i \neq r}}^{m} x_{B_{i}} \beta_{i}+x_{B_{r}}\left[\frac{1}{y_{r j}} \bar{a}_{j}-\sum_{\substack{i=1 \\
i \neq r}}^{m} \frac{y_{i j}}{y_{r j}} \beta_{i}\right]=\bar{b} \\
\Rightarrow & \sum_{\substack{i=1 \\
i \neq r}}^{m}\left(x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}}\right) \beta_{i}+\frac{x_{B r}}{y_{r j}} a_{j}=\bar{b} \tag{5a}\\
\text { or } \quad & \sum_{\substack{i=1 \\
i \neq r}}^{m} \hat{x}_{B i} \beta_{i}+\hat{x}_{B r} \bar{a}_{j}=\bar{b} \tag{5b}
\end{align*}
$$

Where $\hat{\mathrm{x}}_{\mathrm{Bi}}=\mathrm{x}_{\mathrm{Bi}}-\mathrm{x}_{\mathrm{B}} \frac{y_{i j}}{y_{r j}}, i=1,2, \ldots, m ; i \neq r$,
$\hat{X}_{B r}=\frac{x_{B r}}{y_{r j}}($ for $i=r)$
Comparison of (5b) with (4) indicates that the new basic solution of $A \bar{x}=\bar{b}$ is given by

$$
\begin{aligned}
\hat{x}_{B} & =\left(\hat{x}_{B i}, \hat{x}_{B r}\right), i=1,2, \ldots, m ; i \neq r \\
& =\left(\hat{x}_{B 1}, \hat{x}_{B 2}, \ldots, \hat{x}_{B r}, \ldots, \hat{x}_{B m}\right) \\
& =\left(x_{B 1}-x_{B r} \frac{y_{1 j}}{y_{r j}}, x_{B 2}-x_{B r} \frac{y_{2 j}}{y_{r j}}, \ldots, \frac{x_{B r}}{y_{r j}}, \ldots, x_{B m}-x_{B r} \frac{y_{m j}}{y_{r j}}\right)
\end{aligned}
$$

and other non - basic components are zero.
For the new basic solution to be feasible, we require
$\hat{X}_{B i} \geq 0, i=1,2, \ldots, m$
Hence $x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}} \geq 0, i=1,2, \ldots, m, i \neq r$ and

$$
\begin{equation*}
\frac{x_{B r}}{y_{r j}} \geq 0 \tag{7b}
\end{equation*}
$$

We see that (7 b) holds as $\mathrm{y}_{\mathrm{rj}}>0$ and since we start with a non - degenerate basic feasible solution, $x_{B i}>0, i=1,2, \ldots, m$. If $y_{r j}>0$ and $y_{i j} \leq 0(i \neq r)$, then ($7 a$ a is satisfied. If $y_{r j}>0$ and $\mathrm{y}_{\mathrm{ij}}>0(\mathrm{i} \neq \mathrm{r})$, then equation (7 a) is satisfied only when

$$
\begin{aligned}
& \frac{x_{B i}}{y_{i j}}-\frac{x_{B r}}{y_{r j}} \geq 0 \quad \quad \text { (dividing (7a) by } y_{i j}>0 \text {) } \\
& \text { or } \quad-\frac{x_{B i}}{y_{r j}} \geq-\frac{x_{B i}}{y_{i j}} \\
& \text { or } \quad \frac{x_{B r}}{y_{r j}} \leq \frac{x_{B i}}{y_{i j}} \\
& \text { or } \quad \frac{x_{B r}}{y_{r j}}=\operatorname{Min}\left[\frac{x_{B i}}{y_{i j}}\right]
\end{aligned}
$$

This, if we select r such that

$$
\begin{equation*}
v=\frac{x_{B r}}{y_{r j}}=\operatorname{Min}_{i}\left[\frac{x_{B i}}{y_{i j}}, y_{i j}>0\right] \tag{8}
\end{equation*}
$$

then column β_{r} will be removed from basis matrix B to replace a_{j} so that the new basic solution will be feasible. This completes the proof.
Note

1) We denote the new non - singular matrtx, obtained from B by replacing β_{r} with $\overline{\mathrm{a}}_{\mathrm{j}}$ by
$\hat{B}=\left(\hat{B}_{1}, \hat{B}_{2}, \ldots, \hat{B}_{m}\right)$, where
$\hat{B}_{i}=\beta_{i}, \mathbf{i} \neq r, \hat{B}_{r}=\bar{a}_{j}$
2) If the minimum in (8) is not unique, the new basic solution will be degenerate. In this case, the number of positive basic variables will be less than m .
The procedure in above theorem can be explained by the following numerical example.

Example 2.6

Given the non-degeneate basic feasible solution $x_{3}=4$ and $x_{4}=8$ to the following LP problem

Max. $z=x_{1}+2 x_{2}$, subject to

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}=4 \\
& x_{1}+4 x_{2}+x_{4}=8
\end{aligned}
$$

obtain the new basic feasible solution.

Solution :

The given basic feasible solution can be expressed as $B x_{B}=\bar{b}$
$\Rightarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{4}{8}=\binom{4}{8}$
Here, we have
$x_{B}=\binom{x_{B 1}}{x_{B 2}}=\binom{4}{8}, B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \bar{b}=\binom{4}{8}$
$\begin{gathered}\bar{a}_{1} \\ \bar{a}_{2}\end{gathered} \beta_{1} \beta_{2} \quad\left(\begin{array}{llll}1 & 2 & 1 & 0 \\ 1 & 4 & 0 & 1\end{array}\right), \bar{x}=\left(\begin{array}{l}0 \\ 0 \\ 4 \\ 8\end{array}\right)$
The \bar{y}_{j} 's for every column $\overline{\mathrm{a}}_{\mathrm{j}}$ in A but not in B are
$\bar{y}_{1}=B^{-1} \bar{a}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{1}{1}=\binom{1}{1}=\binom{y_{11}}{y_{21}}$
$\overline{\mathrm{y}}_{2}=B^{-1} \overline{\mathrm{a}}_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{2}{4}=\binom{2}{4}=\binom{y_{12}}{y_{22}}$
Since $y_{11}=1, y_{21}=1$ are >0, we can insert \bar{a}_{1} in B. We now select β_{r} for replacement by $\overline{\mathrm{a}}_{1}$ which corresponds to the value of suffix r determined by the minimum ratio rule :
$\frac{x_{B r}}{y_{r 1}}=\operatorname{Min}_{i}\left[\frac{x_{B i}}{y_{i 1}}, y_{i 1}>0\right]$

Therefore,

$$
\begin{aligned}
& \frac{x_{B r}}{y_{r 1}}=\operatorname{Min}\left[\frac{x_{B 1}}{y_{11}}, \frac{x_{B 2}}{y_{21}}\right] \\
& \Rightarrow \frac{x_{B r}}{y_{r 1}}=\operatorname{Min}\left[\frac{4}{1}, \frac{8}{1}\right]=\frac{4}{1} \\
& \Rightarrow \frac{x_{B r}}{y_{r 1}}=\frac{x_{B 1}}{y_{11}} \Rightarrow r=1
\end{aligned}
$$

Hence we remove β_{1}.
The new basis matrix becomes

$$
\begin{aligned}
\hat{\mathrm{B}} & =\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)=\left(\overline{\mathrm{a}}_{1}, \beta_{2}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

(because $\overline{\mathrm{a}}_{1}$ is replaced by β_{1})

Now we can find the new basic feasible solution \hat{X}_{B} either by using the result $\hat{x}_{B}=\hat{B}^{-1} \bar{b}$ or using the transformation formulae (7 a) and (7 b) of Theorem 2.8.

Hence the new basic feasible solution is :

$$
\begin{aligned}
& \hat{\mathrm{x}}_{\mathrm{B} 1}=\frac{\mathrm{x}_{\mathrm{B} 1}}{\mathrm{y}_{11}}=\frac{4}{1}=4 \\
& \hat{\mathrm{x}}_{\mathrm{B} 2}=\mathrm{x}_{\mathrm{B} 2}-\mathrm{x}_{\mathrm{B} 1}=\frac{\mathrm{y}_{21}}{\mathrm{y}_{11}}=8-4 \times \frac{1}{1}=4
\end{aligned}
$$

So that the solution to the original system of equations becomes

$$
x_{1}=x_{B 1}=4, x_{2}=0, x_{3}=0, x_{4}=x_{B 2}=4
$$

we note that, if we had inserted $\overline{\mathrm{a}}_{2}$ instead of $\overline{\mathrm{a}}_{1}$, the new basic feasible solution would have been degenerate. We have developed the procedure for obtaining a new basic feasible solution. Now we determine the value of the objective function corresponding to this new basic feasible solution. We verify, whether $\hat{z}>z$ where \hat{z} denotes the new value of the objective function. For this, we prove the following theorem.

Theorem 2.9

Assume that we have a non-degenerate basis feasible solution $\bar{x}_{B}=B^{-1} \bar{b}$ to $A \bar{x}=\bar{b}$ which gives a value for the objective function $z=\bar{C}_{B} \bar{X}_{B}$. Assume further that we have obtained a new basic feasible solution $\hat{x}_{B}=\hat{B^{-1}} \bar{b}$ to $A \bar{x}=\bar{b}$ by replacing one of the columns in B by a column \bar{a}_{j} (for which $y_{r j}>0$) in A but not in B. If $c_{j}-z_{j}>0$, the new value (denoted by \hat{z}) of the objective function will be greater than z, where $z_{j}=\bar{c}_{B} \bar{y}_{j}$ and $\bar{y}_{j}=B^{-1} \bar{a}_{j}$.

Proof

The value of the objection function for the original basic feasible solution is

$$
\begin{align*}
\mathbf{Z} & =\overline{\mathrm{C}}_{\mathrm{B}} \overline{\mathrm{x}}_{\mathrm{B}} \\
& =\left(\mathrm{c}_{\mathrm{B} 1}, \mathrm{c}_{\mathrm{B} 2}, \ldots, \mathrm{c}_{\mathrm{Bm}}\right)\left(\mathrm{x}_{\mathrm{B} 1}, \mathrm{x}_{\mathrm{B} 2}, \ldots, \mathrm{x}_{\mathrm{Bm}}\right) \\
\text { or } \quad \mathrm{Z} & =\sum_{i=1}^{m} \mathrm{c}_{\mathrm{B} i} \mathrm{x}_{\mathrm{Bi}} \tag{A}
\end{align*}
$$

The new value is given by

$$
\hat{Z}=\hat{C}_{B} \hat{X}_{B}
$$

or $\quad \hat{\mathbf{z}}=\sum_{i=1}^{m} \hat{c}_{B i} \hat{X}_{B i}=\sum_{\substack{i=1 \\ i \neq r}}^{m} \hat{c}_{B i} \hat{X}_{B i}+\hat{c}_{B r} \hat{X}_{B r}$
where $\hat{\mathrm{C}}_{\mathrm{Bi}}=\mathrm{C}_{\mathrm{Bi}}(\mathrm{i} \neq \mathrm{r}), \hat{\mathrm{C}}_{\mathrm{Br}}=\mathrm{c}_{\mathrm{j}}$

Therefore, $\hat{\mathbf{z}}=\sum_{\substack{i=1 \\ i \neq r}}^{m} c_{B i} \hat{\mathbf{x}}_{B i}+\mathrm{c}_{\mathrm{j}} \hat{\mathrm{X}}_{B r}$

Subsituting the values of new variables $\hat{\mathrm{X}}_{\mathrm{Bi}}$ and $\hat{\mathrm{X}}_{\mathrm{Br}}$ from (7a) and (7b) of Theorem 2.8 into the last expression, we get

$$
\begin{equation*}
\hat{z}=\sum_{\substack{i=1 \\ i \neq \mathrm{F}}}^{m} c_{B i}\left(x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}}\right)+c_{j} \frac{x_{B r}}{y_{r j}} \tag{B}
\end{equation*}
$$

Since the term for which $i=r$ is $c_{B r}\left(x_{B r}-x_{B r} \frac{y_{r j}}{y_{r j}}\right)=0$
we can include it in the summation (B) without changing \hat{z}, so that

$$
\begin{align*}
\hat{z} & =\sum_{i=1}^{m} c_{B i}\left(x_{B i}-x_{B r} \frac{y_{i j}}{y_{r j}}\right)+c_{j} \frac{x_{B r}}{y_{r j}} \\
& =\sum_{i=1}^{m} c_{B i} x_{B i}-\frac{x_{B r}}{y_{r j}} \sum_{i=1}^{m} c_{B i} y_{i j}+\frac{x_{B r}}{y_{r j}} c_{j} \\
& =z-\frac{x_{B r}}{y_{r j}} z_{j}+\frac{x_{B r}}{y_{r j}} c_{j} \\
& =z+\left(c_{j}-z_{j}\right) \frac{x_{B r}}{y_{r j}} \\
& =z+\left(c_{j}-z_{j}\right) v, \text { where } v=\frac{x_{B r}}{y_{r j}} \tag{C}
\end{align*}
$$

Now, from (C) we observe that the new value \hat{z} of the objective function is the original value z plus the quantity $\left(c_{j}-z_{j}\right) v$. Since $v>0$, and $c_{j}-z_{j}$ is greater than 0 . The value of the objective function is improved.

Example 2.7

In worked example (2.6) show that the new value of the objective function is improved.

Solution :

Since $c_{1}=1, c_{2}=2, c_{3}=0, c_{4}=0$, then the original solution $x_{3}=4, x_{4}=8, x_{1}=x_{2}=0$ gives

$$
z=1 \times 0+2 \times 0+0 \times 4+0 \times 8=0
$$

In the new basis feasible solution x_{1} replaces x_{3}
Since $z_{1}=c_{B} y_{1}=(0,0)\binom{1}{1}=0$
and since $c_{1}-z_{1}=1-0>0, \hat{z}$ should exceed $z(=0)$. From (C) we get

$$
\begin{aligned}
\hat{z} & =z+\left(c_{1}-z_{1}\right) \frac{x_{B_{1}}}{y_{11}} \\
\hat{z} & =0+4(1-0) \\
& =4>z=0
\end{aligned}
$$

Theorem 2.10

If we select the vector \bar{a}_{k} to replace β_{r} in B the suffix k can be selected by means of

$$
c_{k}-z_{k}=\operatorname{Max}_{j}\left(c_{j}-z_{j}\right), c_{j}-z_{j}>0 \text {, so that the value of the objective function }
$$

z is increased as much as possible for the new basic feasible solution.

Proof

In the previsous Theorem we have obtained the improved value of z given by

$$
\hat{z}=z+\frac{x_{B r}}{y_{r j}}\left(c_{j}-z_{j}\right)
$$

Thus to give maximum value of \hat{z} we should select that value of j for which the term.
$\frac{x_{B r}}{y_{r j}}\left(c_{i}-z_{j}\right)$ is maximum.

But the computational difficulty arises while obtaining $\operatorname{Max} \cdot \frac{\mathrm{X}_{\mathrm{Br}}}{\mathrm{y}_{\mathrm{rj}}}\left(\mathrm{c}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}\right)$, because we have to compute $\frac{x_{B r}}{y_{r j}}$ for each a_{j} having $c_{j}-z_{j}>0$ by the rule

$$
\frac{x_{B r}}{y_{r j}}=\operatorname{Min}_{j}\left[\frac{x_{B i}}{y_{i j}}, y_{i j}>0\right]
$$

But the change in objective function depends on
$\frac{x_{B r}}{y_{r j}}$ and $c_{j}-z_{j}$ both.

Thus to avoid large number of computations of $\frac{x_{B r}}{y_{r j}}$, we can neglect the value of $\frac{x_{B r}}{y_{r j}}$.
Hence the most convenient and time saving rule for choosing the vector $\overline{\mathrm{a}}_{\mathrm{k}}$ to enter the basis B consists of selecting the largest $c_{j}-z_{j}$. This is equivalent to choosing the vector \bar{a}_{k} to replace β_{r} by means of

$$
c_{k}-z_{k}=\operatorname{Max}_{j}\left(c_{j}-z_{j}\right), \text { for } c_{j}-z_{j}>0 .
$$

Note

The following are the advantages of using the above test.

1. The choice of vector $\overline{\mathrm{a}}_{\mathrm{k}}$ to enter the basis B by using above criteria gives the greatest possible increase in z in each step.
2. More than m iterations will not be needed to reach the optimal basic feasible solution.
3. It saves a time by giving the required solution in the least number of steps.

Definition 1 : Slack Variable

If the constraint has ' \leq ' sign then in order to make it an equality we have to add something positive to the left side of constraint. The non-negative variable which is added to the left hand side of the constraint to convert it into equation is called slack variable.
e.g. $x_{1}+x_{2} \leq 3$ then $x_{1}+x_{2}+x_{3}=3$ and x_{3} is slack variable.

Surplus Variable

If a constraint has ' \geq ' sign then in order to make it an equality we have to subtract something non-negative from left hand side of inequality.

Definition

The positive variable which is subtracted from the left hand side of the constraint to convert it into equation is called surplus variable.
e.g. $x_{1}+x_{2} \geq 3$ then $x_{1}+x_{2}-x_{3}=3$ and variable x_{3} is surplus variable.

Conversion of given LPP into standard form of LPP

Step 1

Convert constraints into equations except non-negativity of variable.

Step 2

Make right side of each constraint non-negative.
(multiply equation by (-1) if necessary)
e.g. $-x_{1}+x_{2}=-3 \equiv x_{1}-x_{2}=3$

Step 3

Make all variables non-negative if variable x is unrestricted in sign write $x=x^{\prime}-x^{\prime \prime}$ where $\mathrm{x}^{\prime}, \mathrm{x}$ " ≥ 0.

Step 4

Convert objective function in maximization form.

$$
\operatorname{Min} f(x) \equiv \operatorname{Max}[-f(x)]
$$

Example

Express the following LPP in standard form.

$$
\operatorname{Min} z=x_{1}-2 x_{2}+x_{3}
$$

Subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3} \geq-4 \\
& 3 x_{1}+5 x_{2}+2 x_{3} \geq 7 \\
& x_{1}, x_{2} \geq 0, x_{3} \text { is unrestricted in sign. }
\end{aligned}
$$

Step 1

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3}-x_{4}=-4 \\
& 3 x_{1}+5 x_{2}+2 x_{3}-x_{5}=7
\end{aligned}
$$

Step 2

$$
\begin{aligned}
& -2 x_{1}-3 x_{2}-4 x_{3}+x_{4}=4 \\
& 3 x_{1}+5 x_{2}+2 x_{3}-x_{5}=7
\end{aligned}
$$

Step 3

$$
\begin{aligned}
& \mathrm{x}_{3} \text { is unrestricted. } \quad \therefore \mathrm{x}_{3}=\mathrm{x}_{3}^{\prime}-\mathrm{x}_{3}^{\prime \prime} \\
& \mathrm{Min} \mathrm{z}=\mathrm{x}_{1}-2 \mathrm{x}_{2}+\left(\mathrm{x}_{3}^{\prime}-\mathrm{x}_{3}^{\prime \prime}\right)
\end{aligned}
$$

s.t. $\quad-2 x_{1}-3 x_{2}-4\left(x_{3}^{\prime}-x_{3}^{\prime \prime}\right)+x_{4}=4$
$3 x_{1}+5 x_{2}+2\left(x_{3}^{\prime}-x_{3}^{\prime \prime}\right)-x_{5}=7$
$x_{1}, x_{2}, x_{3}^{\prime}, x_{3}^{\prime \prime}, x_{4}, x_{5} \geq 0$

Step 4

$$
\begin{aligned}
& \operatorname{Min} z=x_{1}-2 x_{2}+\left(x_{3}^{\prime}-x_{3}^{\prime \prime}\right) \\
& \equiv \operatorname{Max} z^{*}=-x_{1}+2 x_{2}-\left(x_{3}^{\prime}-x_{3}^{\prime \prime}\right)
\end{aligned}
$$

Thus standard form is

$$
\operatorname{Max} z *=-x_{1}+2 x_{2}-x_{3}^{\prime}+x_{3}^{\prime \prime}
$$

Subject to

$$
\begin{aligned}
& -2 x_{1}-3 x_{2}-4 x_{3}^{\prime}+4 x_{3}^{\prime \prime}+x_{4}=4 \\
& 3 x_{1}+5 x_{2}+2 x_{3}^{\prime}-2 x_{3}^{\prime \prime}-x_{5}=7 \\
& x_{1}, x_{2}, x_{3}^{\prime}, x_{3}^{\prime \prime}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

Example 2.8

Solve the L. P. problem.
Max. $\quad z=3 x_{1}+5 x_{2}+4 x_{3}$
subject to $2 x_{1}+3 x_{2} \leq 8$

$$
\begin{array}{r}
2 x_{2}+5 x_{3} \leq 10 \\
3 x_{1}+2 x_{2}+4 x_{3} \leq 15
\end{array}
$$

and

$$
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
$$

Solution :

The inequalities are converted into equalities by introduction of slack variables $\mathrm{x}_{4}, \mathrm{x}_{5}$ and x_{6} as follows.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+0 . x_{3}+x_{4}=8 \\
& 0 x_{1}+2 x_{2}+5 x_{3}+x_{5}=10 \\
& 3 x_{1}+2 x_{2}+4 x_{3}+x_{6}=15
\end{aligned}
$$

Take $x_{1}=0, x_{2}=0, x_{3}=0$
Hence $x_{4}=8$ and $x_{5}=10, x_{6}=15$ which is the initial basic feasible solution.
Now we construct a starting simplex table. Here we compute Δ_{j} for all zero variables $x_{j}, j=1,2,3$ by the formula.

$$
\begin{aligned}
& \Delta_{\mathrm{j}}=\mathrm{C}_{\mathrm{j}}-\mathrm{C}_{\mathrm{B}} \mathrm{Y}_{\mathrm{j}} \\
& \Delta_{1}=\mathrm{C}_{1}-\mathrm{C}_{\mathrm{B}} \mathrm{Y}_{1} \\
& \Delta_{1}=3-(0,0,0)(2,0,3)=3 \\
& \Delta_{2}=\mathrm{C}_{2}-\mathrm{C}_{\mathrm{B}} Y_{2} \\
& \Delta_{2}=5-(0,0,0)(3,2,2)=5
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{3}=C_{3}-C_{B} Y_{3} \\
& \Delta_{3}=4-(0,0,0)(0,5,2)=4
\end{aligned}
$$

Since all Δ_{j} are not less than or equal to zero therefore the solution is not optimal. So we proceed to the next step.

To find incoming vector :

Since $\Delta_{2}=3$ is max. of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ therefore $\alpha_{2}\left(=y_{2}\right)$ is incoming vector.

Starting simplex table 1

To find outgoing vector
Since α_{2} is incoming vector therefore we consider the ratio

$$
\frac{x_{\mathrm{B} 1}}{Y_{2}}=\left(\frac{x_{\mathrm{B} 1}}{Y_{12}}, \frac{x_{\mathrm{B} 2}}{Y_{22}}, \frac{x_{\mathrm{B}}}{Y_{32}}\right)
$$

i. e. $\frac{X_{B 1}}{Y_{2}}=\left[\frac{8}{3}, 5, \frac{15}{2}\right]$

We have $\frac{x_{B r}}{Y_{r 2}}=\min _{i}\left\{\frac{x_{B i}}{Y_{i 2}}, Y_{i 2}>0\right\}$

$$
=\min _{i}^{\min }\left\{\frac{x_{B 1}}{Y_{12}}, \frac{x_{B 2}}{Y_{22}}, \frac{x_{B 3}}{Y_{32}}\right\}=\frac{8}{3}
$$

Hence $r=1$
i. e. β_{1} is the outgoing vector.

Since α_{2} is incoming vector and β_{1} is outgoing vector, therefore the key element is $y_{12}\left(=a_{12}\right)$ as shown in table 1 which is equal to 3 .

In order to bring β_{1} in place α_{2} we make the following intermediate tables.

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{4}	8	2	3	0	1	0	0
Y_{5}	10	0	2	5	0	1	0
Y_{6}	15	3	2	4	0	0	1

Divide key element by 3 to get unity at this position and then subtract 2 times of the first row (obtained after dividing by 3) from the second and third row.

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{2}	$\frac{8}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	0	0
Y_{5}	$\frac{14}{3}$	$-\frac{4}{3}$	0	5	$-\frac{2}{3}$	1	0
Y_{6}	$\frac{29}{3}$	$\frac{5}{3}$	0	4	$-\frac{2}{3}$	0	1

Now we construct second simplex table in which $\beta_{1}\left(Y_{4}\right)$ is replaced by $\alpha_{2}=\left(y_{2}\right)$.

Second simplex table 2

B	C_{B}	$\mathrm{x}_{\text {B }}$	Y_{1}	$\begin{aligned} & Y_{2} \\ & \left(\beta_{1}\right) \end{aligned}$	Y_{3}	Y_{4}	$\begin{aligned} & Y_{5} \\ & \left(\beta_{2}\right) \end{aligned}$	$\begin{aligned} & Y_{6} \\ & \left(\beta_{3}\right) \end{aligned}$	min ratio $\frac{x_{B}}{y_{3}}$
Y_{2}	5	$\frac{8}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	0	0	--
Y_{5}	0	$\frac{14}{3}$	$-\frac{4}{3}$	0	5	$-\frac{2}{3}$	1	0	$\frac{14}{15} \rightarrow$ min
Y_{6}	0	$\frac{29}{3}$	$\frac{5}{3}$	0	4	$-\frac{2}{3}$	0	1	$\frac{29}{12}$
$\mathrm{z}=\mathrm{C}_{\mathrm{B}} \mathrm{x}_{\mathrm{B}}$		x_{j} c_{j} Δ_{j}	0 3 $-\frac{1}{3}$	$\begin{aligned} & \frac{8}{3} \\ & 5 \\ & x \end{aligned}$	0 4 4	$\begin{aligned} & 0 \\ & 0 \\ & -\frac{5}{3} \end{aligned}$	$\frac{14}{3}$	$\begin{aligned} & \frac{29}{3} \\ & 0 \\ & x \end{aligned}$	
					\uparrow incoming vector		\downarrow outgoing vector		

To test the optimality of the solution compute Δ_{j} for all zero variables $\mathrm{x}_{1}, \mathrm{x}_{3}$ and x_{4}.

$$
\begin{aligned}
& \Delta_{1}=c_{1}-c_{B} Y_{1}=3-(5,0,0)\left(\frac{2}{3},-\frac{4}{3}, \frac{5}{3}\right) \\
& \Delta_{1}=c_{1}-c_{B} Y_{1}=3-\frac{10}{3}=-\frac{1}{3} \\
& \Delta_{3}=c_{3}-c_{B} y_{3}=4-(5,0,0)(0,5,4)=4-0=0 \\
& \Delta_{4}=c_{4}-c_{B} Y_{4}=0-(5,0,0)\left(\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right) \\
& \Delta_{4}=-\frac{5}{3}
\end{aligned}
$$

Since all Δ_{j} are not less than or equal to zero, therefore this solution is also not optimal.

Since $\Delta_{3}=4$ is maximum of the $\Delta_{j}{ }^{\prime} s, \alpha_{3}=\left(Y_{3}\right)$ is the incoming vector.

Also

$$
\begin{aligned}
\frac{x_{\mathrm{Br}}}{Y_{\mathrm{r} 3}} & =\min \left[\frac{x_{\mathrm{Bi}}}{Y_{i 3}}, Y_{\mathrm{i} 3>0}\right] \\
& =\min \left[\frac{x_{\mathrm{B} 2}}{Y_{23}}, \frac{x_{\mathrm{B} 3}}{Y_{33}}\right]\left(\text { since } Y_{13}=0\right) \\
& =\min \left[\frac{14}{15}, \frac{29}{12}\right]=\frac{14}{15}=\frac{x_{B 2}}{Y_{23}} \\
\Rightarrow r & =2
\end{aligned}
$$

Therefore $\beta_{2}\left(=y_{5}\right)$ is the outgoing vector and $y_{23}=a_{23}=5$ is the key element.
In order to bring y_{3} in place of $\beta_{2}\left(=y_{5}\right)$ we make the following intermediate table.

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{2}	$\frac{8}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	0	0
Y_{5}	$\frac{14}{3}$	$-\frac{4}{3}$	0	5	$-\frac{2}{3}$	1	0
Y_{6}	$\frac{29}{3}$	$\frac{5}{3}$	0	4	$-\frac{2}{3}$	0	1

Divide the key element by 5 to get 1 at this position, then subtract 4 times of the second row thus obtained from the third row.

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{2}	$\frac{8}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	0	0
Y_{5}	$\frac{14}{15}$	$-\frac{4}{5}$	0	1	$-\frac{2}{15}$	$\frac{1}{5}$	0
Y_{6}	$\frac{89}{15}$	$\frac{41}{15}$	0	0	$-\frac{2}{15}$	$-\frac{4}{5}$	1

The third simplex table in which $\beta_{2}\left(=Y_{5}\right)$ is replaced by Y_{3} is as follows

Table 3

B	C_{B}	X_{B}	Y_{1}	Y_{2} $\left(=\beta_{1}\right)$	Y_{3} $\left(=\beta_{2}\right)$	Y_{4}	Y_{5}	$\begin{aligned} & Y_{6} \\ & \left(=\beta_{3}\right) \end{aligned}$	min ratio $\frac{x_{B}}{y_{1}}$
Y_{2}	5	$\frac{8}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	0	0	4
Y_{5}	4	$\frac{14}{15}$	$-\frac{4}{15}$	0	1	$-\frac{2}{15}$	$\frac{1}{5}$	0	$-\frac{7}{2}$ neg.
Y_{6}	0	$\frac{89}{15}$	$\frac{41}{15}$	0	0	$-\frac{2}{15}$	$-\frac{4}{05}$	1	$\frac{89}{41} \min \rightarrow$
		x_{j} c_{j} Δ_{j}	$\begin{aligned} & 0 \\ & 3 \\ & \frac{11}{15} \end{aligned}$	$\frac{8}{3}$	$\begin{aligned} & \frac{14}{15} \\ & 4 \end{aligned}$	0 0 $-\frac{17}{15}$	$\begin{aligned} & 0 \\ & 0 \\ & -\frac{4}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{89}{15} \\ & 0 \\ & x \end{aligned}$	

\uparrow
Incoming
vector

Outgoing
vector

To test the optimality of the solution again compute Δ_{j} for all zero variables $\mathrm{x}_{1}, \mathrm{x}_{4}$ and x_{5}.

$$
\begin{aligned}
\Delta_{1}=c_{1}-c_{B} y_{1} & =3-(5,4,0)\left(\frac{2}{3},-\frac{4}{15}, \frac{41}{15}\right) \\
& =3-\left(\frac{10}{3}-\frac{16}{15}\right)=\frac{11}{15} \\
& =3-\left(\frac{50-16}{15}\right)=\frac{45-34}{15} \\
\Delta_{4} & =c_{4}-c_{B} \frac{y_{4}}{4}=0-(5,4,0)\left(\frac{1}{3},-\frac{2}{15},-\frac{2}{15}\right) \\
\Rightarrow \quad \Delta_{4} & =\left(-\frac{5}{3}-\frac{8}{15}\right)=-\frac{17}{15}, \Delta_{5}=c_{5}-c_{B} y_{5}=0-(5,4,0)\left(0, \frac{1}{5}, \frac{4}{5}\right)=-4 / 5
\end{aligned}
$$

Also $\Delta_{5}=c_{5}-c_{e} y_{5}=-\frac{4}{5}$
Since all the Δ_{j} 's are not less than or equal to zero, therefore the solution is not optimal.
Since Δ_{1} is maximum of the Δ_{j} 's, it follows that, $\alpha_{1}\left(=Y_{1}\right)$ is the incoming vector.
Also $\quad \frac{x_{B r}}{Y_{r 1}}=\min _{i}\left[\frac{x_{B i}}{Y_{i 1}}, Y_{i 1}>0\right]$

$$
\begin{aligned}
& =\min _{i}\left[\frac{y_{B 1}}{Y_{11}}, \frac{x_{B 3}}{Y_{31}}\right] \\
& =\min _{i}\left[4, \frac{89}{41}\right]=\frac{89}{41} \\
& \Rightarrow r=3 .
\end{aligned}
$$

$\left(\because \mathrm{Y}_{21}\right.$ is negative $)$
i. e. $\beta_{3}\left(=Y_{6}\right)$ is the outgoing vector and $Y_{31}=a_{31}=\frac{41}{15}$ is the key element.

Again in order to bring Y_{1} in place of $\beta_{3}\left(=Y_{6}\right)$ we make the following intermediate table.

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{2}	$\frac{8}{3}$	$\frac{2}{3}$	1	0	$\frac{1}{3}$	0	0
Y_{3}	$\frac{14}{15}$	$-\frac{4}{15}$	0	1	$-\frac{2}{15}$	$\frac{1}{5}$	0
Y_{6}	$\frac{89}{15}$	$\frac{41}{15}$	0	0	$-\frac{2}{15}$	$-\frac{4}{5}$	1

Divide the key element by $\frac{41}{15}$ to get 1 at this position, then subtract $\frac{2}{3}$ times of the third row from the first row and adding $\frac{4}{15}$ times of the third row to the second row we have,

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{2}	$\frac{50}{41}$	0	1	0	$\frac{15}{41}$	$\frac{8}{41}$	$-\frac{10}{41}$
Y_{3}	$\frac{62}{41}$	0	0	1	$-\frac{6}{41}$	$\frac{5}{41}$	$\frac{4}{41}$
Y_{6}	$\frac{89}{15}$	1	0	0	$-\frac{2}{41}$	$-\frac{12}{41}$	$\frac{15}{41}$

The fourth simplex table in which $\beta_{3}\left(=Y_{5}\right)$ is replaced by y_{1} is as follows.

B	$\mathrm{C}_{\text {B }}$	$\mathrm{x}_{\text {B }}$	$\begin{aligned} & Y_{1} \\ & \beta_{3} \end{aligned}$	$\begin{aligned} & Y_{2} \\ & \beta_{1} \end{aligned}$	$\begin{aligned} & Y_{3} \\ & \beta_{1} \end{aligned}$	Y_{4}	Y_{5}	Y_{6}	min ratio
Y_{2}	5	$\frac{50}{41}$	0	1	0	$\frac{15}{41}$	$\frac{8}{41}$	$-\frac{10}{41}$	
Y_{3}	4	$\frac{62}{41}$	0	0	1	$-\frac{6}{41}$	$\frac{5}{41}$	$\frac{4}{41}$	
Y_{1}	3	$\frac{89}{41}$	1	0	0	$-\frac{2}{41}$	$-\frac{12}{41}$	$\frac{15}{41}$	
$\begin{aligned} z & =c_{B} x_{B} \\ & =765 / 41 \end{aligned}$		x_{j}	$\frac{89}{41}$	$\frac{50}{41}$	$\frac{62}{41}$	0	0	0	
		c_{j}	3	5	4	0	0	0	
		Δ_{j}	x	x	x	$-\frac{45}{41}$	$-\frac{24}{41}$	$-\frac{11}{41}$	

To test the optimality of the solution again compate Δ_{j} for all zero variables $\mathrm{x}_{4}, \mathrm{x}_{5}$ and x_{6}.

$$
\begin{aligned}
& \Delta_{4}=\mathrm{c}_{4}-\mathrm{c}_{\mathrm{B}} \frac{1}{4}=0-(5,4,3)\left(\frac{15}{41},-\frac{5}{41},-\frac{2}{41}\right)=-\frac{45}{41} \\
& \Delta_{5}=\mathrm{C}_{5}-\mathrm{C}_{B} \frac{1}{5}=0-(5,4,3)\left(\frac{8}{41}, \frac{5}{41},-\frac{12}{41}\right)=-\frac{24}{41} \\
& \Delta_{6}=\mathrm{c}_{6}-\mathrm{c}_{\mathrm{B}} \frac{1}{6}=0-(5,4,3)\left(-\frac{10}{41}, \frac{4}{41}, \frac{15}{41}\right)=-\frac{11}{41}
\end{aligned}
$$

Since all the Δ_{j} 's for zero variables are negative so, this solution is optimal.
Hence $\mathrm{x}_{1}=\frac{89}{41}, \mathrm{x}_{2}=\frac{50}{41}, \mathrm{x}_{3}=\frac{62}{41}$
and $\quad \max . \mathrm{z}=\frac{765}{41}$

Computational Procedure for Simplex Method

Example

$$
\operatorname{Max} z=3 x_{1}+2 x_{2}
$$

Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2, \quad x_{1}, x_{2} \geq 0
\end{aligned}
$$

Answer

Step 1

Convert the given LPP into a standar form.

$$
\operatorname{Max} z=3 x_{1}+2 x_{2}+0 x_{3}+0 x_{4}
$$

Subject to

$$
x_{1}-x_{2}+x_{4}=2, x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

Step 2

Construct starting simplex table. Variable which form identity matrix in starting simplex table are basic variables C_{B} represent cost of basic variables.

Basic variable	$\mathrm{c}_{\mathrm{B}} \rightarrow$ cost of B.V. c_{B}	x_{B}	x_{1}	x_{2}	x_{3}	x_{4}
x_{3}	0	4		1	1	0
x_{4}	0	2	1	-1	0	1

Step 3

Calculate $\quad \Delta_{\mathrm{j}}=\mathrm{C}_{\mathrm{B}} \cdot \mathrm{x}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$

$$
\begin{aligned}
\Delta_{1} & =c_{B} \cdot x_{1}-c_{1} \\
& =(0)(1)+(0)(1)-3 \\
& =-3
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{2} & =c_{B} \cdot x_{2}-c_{2} \\
& =(0)(1)+(0)(-1)-2 \\
& =-2
\end{aligned}
$$

$\Delta_{3}=\Delta_{4}=0$

Step 4 : Optimality Test

(i) If all $\Delta_{\mathrm{j}} \geq 0$ the solution is optimal. Alterative optimal solutio will exist if any Δ_{j} corresponding to nm basic x_{j} is also zero.
(ii) If corresponding to any - ve Δ_{j}, all elements of the column x_{j} are - ve or zero (≤ 0), then the solution under test is unbounded.
(iii) If at least one $\Delta_{\mathrm{j}}<0$ then solution is not optimal and therefore proceed to improve the solution in the next step.

Step 5

Choose incoming and outgoing variable.
Let $\quad \Delta_{\mathrm{k}}=\operatorname{Min}_{\mathrm{j}}\left\{\Delta_{\mathrm{j}}\right\}<0$
The correspoding variable x_{k} is incoming varable.
Outgoing variable is decided by minimum ratio (component wise) rule.
If $\quad \frac{x_{B r}}{x_{k r}}=\operatorname{Min}_{i}\left\{\frac{x_{B i}}{x_{k i}} / x_{k i}>0\right\}$
Then x_{Br} is outgoing variable from the set of basic variables x_{3} and x_{4}.

$$
\Delta_{\mathrm{k}}=\operatorname{Min}_{\mathrm{j}}\left\{\Delta_{\mathrm{j}}\right\}
$$

Since

$$
\operatorname{Min}_{\mathrm{j}}\left\{\Delta_{\mathrm{j}}\right\}=\operatorname{Min}\{-3,-2,0,0\}=-3
$$

The variable corresponding to $\Delta_{1}=-3$ is x_{1}. Therefore x_{1} is incoming variable and x_{1} becomes basic variable.

Consider component wise ratio of the values of basic variables i.e. x_{B} and coefficient of incoming variable x_{1} and take its Minimum.

$$
\operatorname{Min}_{k}\left\{\frac{x_{B k}}{x_{1 k}}\right\}=\operatorname{Min}\left\{\frac{4}{1}, \frac{2}{1}\right\}=2
$$

Corresponds to x_{4} and therefore x_{4} is outgoing variable.
Thus x_{1} is incoming and x_{4} is outgoing variable.

B.V.	c_{B}	c_{j}					
x_{B}	x_{1}	x_{2}	0 x_{3}	0 x_{4}	Min Ratio		
x_{3}	0	4	1	1	1	0	$\frac{4}{1}=4$
$\leftarrow \mathrm{x}_{4}$	0	2	1	-1	0	1	$\frac{2}{1}=\square$
		Δ_{j}	$-3 \uparrow$	-2	0	0	

Step 6

In order to make x_{1} as basic variable perform elementary row operations to convert column corresponding to variable x_{1} as unit vector. Here operation $R_{1}-R_{2}$ will make column corresponding to variable x_{1} as unit vector. The position 1 in the unit vector depends upon the position of incoming variable in basic variables.

B.V.	c_{B}	x_{B}	3 x_{1}	2 x_{2}	0 x_{3}	0 x_{4}
x_{3}	0	2	0	2	1	-1
x_{1}	3	2	1	-1	0	1

Repeat step 4, 5 and 6.

B.V.	C_{B}	c_{j} x_{B}	3 x_{1}	2 x_{2}	0 x_{3}	0 x_{4}	Min ratio
$\leftarrow \mathrm{x}_{3}$	0	2	0	2	1	-1	$\frac{2}{2}=\square 1$
x_{1}	3	2	1	-1	0	1	---
		$\Delta_{\mathrm{j}} \rightarrow$	0	-5	0	3	

Step 4 : $\Delta_{2}<0$
Therefore, variable x_{2} is incoming component wise ratio $\frac{x_{B}}{x_{2}}$ is $\{1,-\}$. Minimum ratio corresponds to x_{3} and x_{3} is outgoing variable. Now make coumn corresponding to x_{2} as unit vector.

B.V.	c_{B}	x_{B}	3 x_{1}	2 x_{2}	0 x_{3}	0 Min x_{4} ratio
x_{2}	2	1	0	1	$\frac{1}{2}$	$-\frac{1}{2}$
x_{1}	3	3	1	0	$\frac{1}{2}$	$\frac{1}{2}$
		Δ_{j}	0	0	$\frac{3}{2}$	$\frac{1}{2}$

Since $\Delta_{\mathrm{j}} \geq 0 \quad \forall \mathrm{j}$ the solution $\mathrm{x}_{2}=1$ and $\mathrm{x}_{1}=3$ is an optimal solution and optimal value.

$$
\operatorname{Max} z=3 x_{1}+2 x_{2}=3(3)+2(1)=11
$$

Example 2.9

Solve by simplex method the following L. P. problem.
Minimize $\quad z=x_{1}-3 x_{2}+2 x_{3}$
Subject to $3 x_{1}-x_{2}+2 x_{3} \leq 7$

$$
\begin{aligned}
& -2 x_{1}+4 x_{2} \leq 12 \\
& -4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Solution :

First we convert the problem of minimization to maximization problem by taking objective function $z^{\prime}=-z$.
max. $\quad z^{\prime}=-z=-x_{1}+3 x_{2}-2 x_{3}$
Now the equations obtained by introducing slakc variables $\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}$ are as follows.

$$
\begin{gathered}
3 x_{1}-x_{2}+2 x_{3}+x_{4}=7 \\
-2 x_{1}+4 x_{2}+0 x_{3}+x_{5}=12 \\
-4 x_{1}+3 x_{2}+8 x_{3}+x_{6}=10
\end{gathered}
$$

Taking $x_{1}=x_{2}=x_{3}=0$ we get $x_{4}=7, x_{5}=12, x_{6}=10$ which is the starting B. F. S.

Starting simplex table

B	C_{B}	$\mathrm{x}_{\text {B }}$	$\overline{Y_{1}}$ $\left(\alpha_{1}\right)$	Y_{2} $\left(\alpha_{2}\right)$	Y_{3} α_{3}	$\begin{aligned} & \mathrm{Y}_{4} \\ & \beta_{1} \end{aligned}$	$\begin{aligned} & Y_{5} \\ & \beta_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Y}_{6} \\ & \beta_{3} \end{aligned}$	min ratio $\frac{x_{B i}}{Y_{12}}$
Y_{4}	0	7	3	-1	2	1	0	0	$-7 \rightarrow$ neg.
Y_{5}	0	12	-2	4	0	0	1	0	$3 \rightarrow$ min
Y_{6}	0	10	-4	3	8	0	0	1	$\frac{10}{3}$
$\begin{aligned} z^{1} & =c_{B} x_{8} \\ & =0 \end{aligned}$		x_{j}	0	0	0	7	12	10	
		c_{j}	-1	3	-2	0	0	0	
		Δ_{j}	-1	3	-2	X	x	x	

$$
\begin{aligned}
& \Delta_{1}=c_{1}=c_{B} y_{1}=-1-(0,0,0)(3,-2,-4)=-1 \\
& \Delta_{2}=c_{2}-c_{B} y_{2}=3-(0,0,0)(-1,4,3)=3 \\
& \Delta_{3}=c_{3}-c_{B} y_{3}=-2-(0,0,0)(2,0,8)=-2
\end{aligned}
$$

Since all the Δ_{j} are not less than or equal to zero therefore the solution is not optimal.
Δ_{2} is maximum.
Hence the incoming vector is $\alpha_{2}\left(=y_{2}\right)$ and by mini ratio rule outgoing vector is $\beta_{2}\left(=y_{5}\right)$.

Therefore key element $=y_{22}=a_{22}=4$
In order to b ring $\alpha_{2}\left(=y_{2}\right)$ in place of $\beta_{2}\left(=y_{5}\right)$ the inter mediate table is as follows.

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{4}	7	3	-1	2	1	0	0
Y_{5}	12	-2	4	0	0	1	0
Y_{6}	10	-4	3	8	0	0	1

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{4}	10	$\frac{5}{2}$	0	2	1	$\frac{1}{4}$	0
Y_{2}	3	$-\frac{1}{2}$	1	0	0	$\frac{1}{4}$	0
Y_{6}	1	$-\frac{5}{2}$	0	8	0	$-\frac{3}{4}$	1

Second simplex table

B	$\mathrm{C}_{\text {B }}$	X_{B}	Y_{1}	$\begin{aligned} & Y_{2} \\ & \beta_{2} \end{aligned}$	Y_{3}	$\begin{aligned} & \mathrm{Y}_{4} \\ & \beta_{1} \end{aligned}$	Y_{5}	$\begin{aligned} & Y_{6} \\ & \beta_{3} \end{aligned}$	min ratio $\frac{x_{B}}{Y_{1}}$
Y_{4}	0	10	$\frac{5}{2}$	0	2	1	$\frac{1}{4}$	0	4 min
Y_{2}	3	3	$-\frac{1}{2}$	1	0	0	$\frac{1}{4}$	0	-6 neg.
Y_{6}	0	1	$-\frac{5}{2}$	0	8	0	$-\frac{3}{4}$	1	$-\frac{2}{5} \text { neg }$
		x_{j}	0	3	0	10	0	1	
		c_{j}	-1	3	-2	0	0	0	
		Δ_{j}	$\frac{1}{2}$	x	-2	x	$-\frac{3}{4}$	x	
\downarrow									
$\Delta_{1}=\mathrm{c}_{1}-\mathrm{c}_{\mathrm{B}} \mathrm{y}_{1}=-1-(0,3,0)\left(\frac{5}{2},-\frac{1}{2},-\frac{5}{2}\right)=\frac{1}{2}$									
$\Delta_{5}=c_{5}-c_{B} y_{5}=0-(0,3,0)\left(\frac{1}{4}, \frac{1}{4},-3\right)=-\frac{3}{4}$									

Since all the Δ_{j} are not less than or equal to zero the solution is not optimal.

Here $\Delta_{1}=\frac{1}{2}$ is maximum.
Therefore y_{1} is the incoming, vector and by the minimal ratio rate we find that $\beta_{1}\left(=y_{4}\right)$ as the outgoing vector.

Therefore key element $=\mathrm{y}_{11}=\frac{5}{2}$.
In order to to bring y_{1} in place of β_{1} the inter mediate table is as follows

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{4}	10	$\frac{5}{2}$	0	2	1	$\frac{1}{4}$	0
Y_{2}	3	$-\frac{1}{2}$	1	0	0	$\frac{1}{4}$	0
Y_{6}	1	$-\frac{5}{2}$	0	8	0	$-\frac{3}{4}$	1

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{1}	4	1	0	$\frac{4}{5}$	$\frac{2}{5}$	$\frac{1}{10}$	0
Y_{2}	5	0	1	1	$\frac{1}{5}$	$\frac{3}{10}$	0
Y_{6}	11	0	0	13	$\frac{5}{2}$	$-\frac{1}{2}$	1

Third simplex table

B	c_{B}	x_{B}	$\begin{aligned} & Y_{1} \\ & \beta_{1} \end{aligned}$	$\begin{aligned} & Y_{2} \\ & \beta_{2} \end{aligned}$	Y_{3}	Y_{4}	Y_{5}	Y_{6}	min ratio β_{3}
Y_{1}	-1	4	1	0	$\frac{4}{5}$	$\frac{2}{5}$	$\frac{1}{10}$	0	
Y_{2}	3	5	0	1	1	$\frac{1}{2}$	$\frac{3}{10}$	0	
Y_{6}	0	11	0	0	13	$\frac{5}{2}$	$-\frac{1}{2}$	1	
$\begin{aligned} z^{\prime} & =c_{B} x_{B} \\ & =11 \end{aligned}$		x_{j} C_{j} Δ_{j}	4 -1	5 3	$\begin{aligned} & 0 \\ & -2 \\ & -\frac{21}{5} \end{aligned}$	0 0 $-\frac{11}{10}$	0 0 $-\frac{41}{40}$	11 x	

$$
\begin{aligned}
& \Delta_{3}=c_{3}-c_{B} Y_{3}=-2-(-1,3,0)\left(\frac{4}{5}, 1,13\right)=-\frac{21}{5} \\
& \Delta_{4}=c_{4}-c_{B} Y_{4}=0-(-1,3,0)\left(\frac{2}{5}, \frac{1}{2}, \frac{5}{2}\right)=-\frac{11}{10} \\
& \Delta_{5}=c_{5}-c_{B} Y_{5}=-0-(-1,3,0)\left(\frac{1}{10}, \frac{3}{8},-\frac{19}{8}\right)=-\frac{41}{40}
\end{aligned}
$$

Since all Δ_{j} 's for all non zao variables are negative so this solution is optimal.
Optimal solution is

$$
x_{1}=4, x_{2}=5, x_{3}=0
$$

and max.

$$
z^{\prime}=11
$$

Hence $\min \mathrm{z}=-11$

Example 2.10

Using simplex algorithm to solve the problem.
max.

$$
z=2 x_{1}+5 x_{2}+7 x_{3}
$$

subject to

$$
\begin{array}{r}
3 x_{1}+2 x_{2}+4 x_{3} \leq 100 \\
x_{1}+4 x_{2}+2 x_{3} \leq 100
\end{array}
$$

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{3} \leq 100 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Solution :

The equations obtained by introducing slack variables x_{4}, x_{5}, x_{6} are as follows.
$3 x_{1}+2 x_{2}+4 x_{3}+x_{4}=100$
$x_{1}+4 x_{2}+2 x_{3}+x_{5}=100$

$$
x_{1}+x_{2}+3 x_{3}+x_{6}=100
$$

Take $\quad x_{1}=x_{2}=x_{3}=100$
Therefore starting B. F. S. is

$$
x_{4}=100, x_{5}=100, x_{6}=100
$$

Starting simplex table

B	C_{B}	x_{B}	$\begin{aligned} & Y_{1} \\ & \alpha_{1} \end{aligned}$	$\begin{aligned} & Y_{2} \\ & \alpha_{2} \end{aligned}$	$\begin{aligned} & Y_{3} \\ & \alpha_{3} \end{aligned}$	$\begin{aligned} & Y_{4} \\ & \beta_{1} \end{aligned}$	$\begin{aligned} & Y_{5} \\ & \beta_{2} \end{aligned}$	$\begin{aligned} & Y_{6} \\ & \beta_{3} \end{aligned}$	min ratio
Y_{4}	0	100	3	2	4	1	0	0	25 min
Y_{5}	0	100	1	4	2	0	1	0	50
Y_{6}	0	100	1	1	3	0	0	1	$\frac{100}{3}$
$\begin{aligned} z^{\prime} & =c_{B} x_{B} \\ & =0 \end{aligned}$		x_{j}	0	0	0	100	100	100	
		c_{j}	2	5	7	0	0	0	
		$\Delta_{\text {j }}$	2	5	7	x	x	X	
$\uparrow \quad \downarrow$									
$\Delta_{2}=\mathrm{c}_{2}-\mathrm{c}_{\mathrm{B}} \mathrm{y}_{2}=5-(0,0,0)(2,4,1)=5$									
$\Delta_{3}=c_{3}-c_{B} \mathrm{y}_{3}=7-0=7$									

Since all Δ_{j} are not less than or equal to zero for zero variables, so the solution is not optimal.

Since $\Delta_{3}=7$ is maximum therefore $\alpha_{3}\left(=y_{3}\right)$ is the incoming vector.
By the min ratio rule

$$
\min \left\{\frac{x_{B i}}{y_{i 3}}, y_{i 3}>0\right\}=\frac{100}{4}=25, \text { for } i=1
$$

Therefore $\beta_{1}\left(=y_{4}\right)$ is the outgoing vector. Therefore the key element is $y_{13}=a_{13}=4$. In order to brings β_{1} in place of α_{3} we divide the first row by 4 and then subtract 2 and 3 times of this row from the second and third rows respectively.

Thus the second simplex table is as follows.

B	C_{B}	X_{B}	Y_{1}	Y_{2}	$\begin{gathered} Y_{3} \\ \beta_{1} \end{gathered}$	Y_{4}	$\begin{aligned} & Y_{5} \\ & \beta_{2} \end{aligned}$	$\begin{aligned} & Y_{6} \\ & \beta_{6} \end{aligned}$	min ratio $\frac{x_{B}}{y_{2}}$
Y_{3}	7	25	$\frac{3}{4}$	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0	50
Y_{5}	0	50	$-\frac{1}{2}$	3	0	$-\frac{1}{2}$	1	0	$\xrightarrow{50} \rightarrow$
Y_{6}	0	25	$-\frac{3}{4}$	$-\frac{1}{2}$	0	$-\frac{3}{4}$	0	1	-50 neg .
		x_{j}	0	0	25	0	50	25	
		c_{j}	2	5	7	0	0	0	
		Δ_{j}	$-\frac{13}{4}$	$\frac{3}{2}$	x	$-\frac{7}{4}$	x	x	
\uparrow incoming vector									

For above simplex table

$\Delta_{1}=C_{1}-C_{B} y_{1}=2-(7,0,0)\left(\frac{3}{4},-\frac{1}{2},-\frac{5}{4}\right)=2-\frac{21}{4}$
$\Delta_{1}=-\frac{13}{4}$

$$
\begin{aligned}
& \Delta_{2}=c_{2}-c_{B} y_{2}=+5-(7,0,0)\left(\frac{1}{2}, 3,-\frac{1}{2}\right)=5-\frac{1}{2}=\frac{3}{2} \\
& \Delta_{4}=c_{\alpha} c_{B} y_{4}=0-(7,0,0)\left(\frac{1}{4},-\frac{1}{2},-\frac{3}{4}\right)=-\frac{7}{4}
\end{aligned}
$$

Since all Δ_{j} are not less than or equal to zero so the solution is not optimal.
Here $\Delta_{2}=\frac{3}{2}$ is max.
Therefore y_{2} is incoming vector and by min ratio rule we find that $\beta_{2}\left(=y_{5}\right)$ is the outgoing vector. Key element is 3 . Intermidiate table is :

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}
Y_{3}	25	$\frac{3}{4}$	$\frac{1}{2}$	1	$\frac{1}{4}$	0	0
Y_{5}	50	$-\frac{1}{2}$	3	0	$-\frac{1}{2}$	1	0
Y_{6}	25	$-\frac{5}{4}$	$-\frac{1}{2}$	0	$-\frac{3}{4}$	0	1

The third simplex table is as follows.

B	$\mathrm{C}_{\text {B }}$	X_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Min
Y_{3}	7	$\frac{50}{3}$	$\frac{5}{6}$	0	1	$\frac{1}{3}$	$-\frac{1}{6}$	0	
Y_{2}	5	$\frac{50}{3}$	$-\frac{1}{6}$	1	0	$-\frac{1}{6}$	$\frac{1}{3}$	0	
Y_{6}	0	$\frac{100}{3}$	$-\frac{4}{3}$	0	0	$-\frac{5}{6}$	$\frac{1}{6}$	1	
		x_{j}	0	$\frac{50}{3}$	$\frac{50}{3}$	0	0	$\frac{100}{3}$	
		c_{j}	2	5	7	0	0	0	
		$\Delta_{\text {j }}$	-3	x	x	$-\frac{3}{2}$	$-\frac{1}{2}$	x	

$\Delta_{1}=C_{1}-C_{B} Y_{1}=z-(7,5,0)\left(\frac{5}{6},-\frac{1}{6},-\frac{4}{3}\right)=-3$
$\Delta_{4}=C_{4}-C_{B} Y_{4}=0-(7,5,0)\left(\frac{1}{3},-\frac{1}{6},-1\right)=-\frac{3}{2}$
$\Delta_{5}=C_{5}-C_{B} Y_{5}=0-(7,5,0)\left(-\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)=-\frac{1}{2}$
Since all Δ_{j} for zero variables are negative, this solution is optimal.
Optimal solution is $x_{1}=0, x_{2}=\frac{50}{3}, x_{3}=\frac{50}{3}$ and Max. $z=200$.
Complete solution with all computational steps is conveniently represented in the following example.

Example:

Solve $\quad \operatorname{Max} z=7 x_{1}+5 x_{2}$
Subject to $\quad x_{1}+2 x_{2} \leq 6,4 x_{1}+3 x_{2} \leq 12, x_{1}, x_{2} \geq 0$

Solution :

Subject to		$\begin{aligned} & \operatorname{Max} z=7 x_{1}+5 x_{2} \\ & x_{1}+2 x_{2}+x_{3}=6,4 x_{1}+3 x_{2}+0 x_{3}+x_{4}=12, x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \end{aligned}$					
B.V.	C_{B}	c_{j} x_{B}	$\begin{array}{r} 7 \\ x_{1} \end{array}$	5 x_{2}	0 x_{3}	0 x_{4}	ratio $\frac{x_{B}}{x_{i}}$
$\begin{gathered} \mathrm{x}_{3} \\ \leftarrow \mathrm{x}_{4} \end{gathered}$	0 0	$\begin{gathered} 3 \\ 12 \end{gathered}$	1 4	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{r} 6 \\ \hline 3 \\ \hline \end{array}$
		Δ_{j}	$-7 \uparrow$	-5	0	0	
x_{3} x_{1}	0 7	3 3		$\begin{aligned} & \frac{5}{4} \\ & \frac{3}{4} \end{aligned}$	1 0	$\begin{gathered} -\frac{1}{4} \\ \frac{1}{4} \end{gathered}$	
		$\Delta_{\mathrm{j}} \rightarrow$	0	$+\frac{1}{4}$	0	$\frac{7}{4}$	

Since $\Delta_{\mathrm{j}} \geq 0 \quad \forall j$ the solution is optimal.

Solution :

$$
x_{1}=3, x_{2}=0 \text { and } \operatorname{Max} z=7(3)+5(0)=21 .
$$

Artificial Variable Technique

If starting simplex table do not contain identity matrix, we introduce new type of variables caled artificia variables. These variables are fictitious and donot have any physical meaning. This is only a device to introduce identity matrix in starting simplex table and to get basic feasible solution so that simplex method may be adopted. Artificial variables are eliminated from the simplex table as and when they become zero.

Two Phase Simplex Method

The process of eliminating artificial variables is performed in phase I and phase II is used to get an optimal solution.

Computational Procedure of Two Phase Simplex Method

Phase I

In this phase the simplex method is applied to LPP with artificial variables leading to a final simplex table containing a bsic feasible solution (BFS) to the original problem.

Step 1

Assign a cost - 1 to each artificial variable and cost 0 to all other variables.

Step 2

Solve by simplex method until either of three possibilities do arise.
(i) If $\operatorname{Max} z^{*}<0$, given original problem does not have any feasible solution.
(ii) If Max $z^{*}=0$ and atleast one artificial variable appears in the optimal basis (basic variable in last simplex table) at zero level then proceed to Phase II.
(iii) $\quad \lg \operatorname{Max} z^{*}=0$ and no artificial variable appears in the optimal basis proceed to Phase II.

Phase II

Assign the actual cost to the variables in objective function and zero cost to every artificial variable that appears in the basis. This new objective function is now maximized by simplex method with last simplex table of phase I as starting simplex table with actual cost values.

Example 1

Solve the following problem

$$
\operatorname{Max} z=x_{1}+x_{2}
$$

Subject to $\quad 2 x_{1}+x_{2} \geq 4$

$$
x_{1}+7 x_{2} \geq 7, \quad x_{1}, x_{2} \geq 0
$$

Solution :

Convert the given problem into standard LPP.
$\operatorname{Max} z=-x_{1}-x_{2}$
s.t. $2 x_{1}+x_{2}-x_{3}=4, x_{1}+7 x_{2}-x_{4}=7$
i.e. $\quad\left[\begin{array}{cccc}2 & 1 & -1 & 0 \\ 1 & 7 & 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}4 \\ 7\end{array}\right]$

Since coefficient matrix donot contain identity matrix, we have to solve this problem by two phase method by introducing artificial variables.

Phase I

$\operatorname{Max} z *=-1 \mathrm{a}_{1}-1 \mathrm{a}_{2}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}+a_{1}=4 \\
& x_{1}+7 x_{2}-x_{4}+a_{1}=7, x_{1}, x_{2}, x_{3}, x_{4}, a_{1}, a_{2} \geq 0
\end{aligned}
$$

B.V.	c_{B}	x_{B}	x_{1}	x_{2}	x_{3}	x_{4}	a_{1}	a_{2}	Rato
a_{1}	-1	4	2	1	-1	0	1	0	4
$\leftarrow \mathrm{a}_{2}$	-1	7	1	$\boxed{7}$	0	-1	0	1	$\boxed{1}$
		Δ_{j}	-3	-8	1	1	0	0	
$\leftarrow \mathrm{a}_{1}$	-1	3	$\frac{13}{7}$	0	-1	$\frac{1}{7}$	1	$-\frac{1}{7}$	$\boxed{\frac{21}{13}}$
x_{2}	0	1	$\frac{1}{7}$	1	0	$-\frac{1}{7}$	0	$\frac{8}{7}$	7
x_{1}	0	$\frac{21}{13}$	1	0	$-\frac{7}{13}$	$\frac{1}{13}$	$\frac{7}{13}$	$-\frac{1}{13}$	
x_{2}	0	$\frac{10}{13}$	0	1	$\frac{1}{13}$	$-\frac{2}{13}$	$-\frac{1}{13}$	$\frac{2}{13}$	
		$-\frac{13}{7} \uparrow$	0	1	$-\frac{1}{7}$	0	$\frac{8}{7}$		

Since $\Delta_{\mathrm{j}} \geq 0 \forall \mathrm{j}$, an optimum basic feasible solution to the auxiliary LPP has been attained.

$$
\mathrm{x}_{1}=\frac{21}{13}, \mathrm{x}_{2}=\frac{10}{13}, \quad \mathrm{x}_{3}=\mathrm{x}_{4}=\mathrm{a}_{1}=\mathrm{a}_{2}=0
$$

By step 2 (iii) proceed to Phase II.

Phse II

Remove column of a_{1} and a_{2} from last simplex table. Starting simplex table will be last simplex table of phase I. Whereas objective function is a function given in original problem.
$\operatorname{Max} \mathrm{z}=-\mathrm{x}_{1}-\mathrm{x}_{2}$

B.V.	c_{B}	c_{B}	-1	-1	0	0
x_{1}	-1	$\frac{21}{13}$	1	0	$-\frac{7}{13}$	$\frac{1}{13}$
x_{2}	-1	$\frac{10}{13}$	0	1	$\frac{1}{13}$	$-\frac{2}{13}$

Since $\Delta_{\mathrm{j}} \geq 0 \forall \mathrm{j}$, an optimum BFS has been attained.

$$
\begin{aligned}
& x_{1}=\frac{23}{13}, \quad x_{2}=\frac{10}{13} \\
& \begin{aligned}
\operatorname{Min} z & =x_{1}+x_{2} \\
& =\frac{23}{13}+\frac{10}{13}=\frac{33}{13}
\end{aligned}
\end{aligned}
$$

Example 2

$$
\operatorname{Max} z=-x_{1}+2 x_{2}+3 x_{3}
$$

Subject to $\quad-2 x_{1}+x_{2}+3 x_{3}=2$

$$
2 x_{1}+3 x_{2}+4 x_{3}=1, x_{1}, x_{2}, x_{3} \geq 0
$$

Solution :

Though constraints are in the form of equations coefficient matrix do not contain identity matrix and therefore one has to introduce artificial variables and solve by two phase simplex method.

Phase I

$$
\begin{array}{ll}
& \text { Max } z^{*}=-a_{1}-a_{2} \\
\text { s.t. } & -2 x_{1}+x_{2}+3 x_{3}+a_{1}=2 \\
& 2 x_{1}+3 x_{2}+4 x_{3}+a_{2}=1, \quad x_{1}, x_{2}, x_{3}, a_{1}, a_{2} \geq 0
\end{array}
$$

Since all $\Delta_{\mathrm{j}} \geq 0$, an optimum BFS to the LPP has been attained.
But

$$
\operatorname{Max} z *=-a_{1}-a_{2}=-\frac{5}{4}<0
$$

Therefore (by step 2(i) of phase I) original problem does not possess any feasible solution.

Alternatively example 1 can be solved as follows.

Example 2.11

Solve the following L. P. problem
Min.

$$
\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

subject to

$$
2 x_{1}+x_{2} \geq 4
$$

$$
x_{1}+7 x_{2} \geq 7, \quad x_{1}, x_{2} \geq 0
$$

Solution :

First we convert the problem of minimization to the maximization problem by taking the objective function $z^{\prime}=-z$ i. e.

Max. $z^{\prime}=-z=-x_{1}-x_{2}$
Introduction of surplus variables x_{3} and x_{4} in the given inequalities yields.

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}=4 \\
& x_{1}+7 x_{2}-x_{4}=7
\end{aligned}
$$

Here we can not get the starting B. F. S. so we introduce the artificial variables (positive) x_{5} and x_{6}.

The above equations may be written as

$$
\begin{aligned}
& 2 x_{1}+x_{2}-x_{3}+x_{5}=4 \\
& x_{1}+7 x_{2}-x_{4}+x_{6}=7
\end{aligned}
$$

The problem will be solved in two phases.

Phase: 1

This phase consists of the removal of artificial variables.
Taking $x_{1}=x_{2}=x_{3}=0, x_{4}=0$ we get $x_{5}=4$ and $x_{6}=7$.
We construct the first table as follows.

Table 1

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	$A_{1}\left(\beta_{1}\right)$	$A_{2}\left(\beta_{2}\right)$
A_{1}	4	2	1	-1	0	1	0
A_{2}	7	1	7	0	-1	0	$1 \rightarrow$
	x_{j}	0	0	0	0	4	7

$\uparrow \quad \downarrow$

First we shall remove the artificial variable vector (columns) A_{1} and A_{2} from the basis matrix. In place of artificial variable vector the entering vector should be so chosen that the revised solution is non negative (B. F.) solution.

We can remove A_{2} and introduce y_{2} in its place in the basic matrix. For this we divide the second row by 7 and then subtract it from the first row. Thus we get the following table.

It maybe seen that if y_{1}, y_{3}, y_{4} is entered in place of A_{2} then the revised solution is not non negative. So we can not enter either of them, in place of A_{2}. Since artificial variable x_{6} becomes zero, we forget about A_{2} for ever and will not consider it in any other table.
$\left.\begin{array}{|l|c|c|c|c|c|c|l|}\hline & x_{B} & Y_{1} & Y_{2} \\ \left(\beta_{2}\right) & Y_{3} & Y_{4} & A_{1} & A^{*}{ }_{2} \\ \left(\beta_{1}\right)\end{array}\right]$

Now we proceed to remove A_{1} and introduce y_{1} in its place in basic matrix. For this we mutiply first row by $\frac{7}{13}$ and subtract $\frac{1}{7}$ times of this new row from the second row. Thus we get the following table.

Table 2

	$\mathrm{x}_{\text {B }}$	Y_{1} $\left(\beta_{1}\right)$	$\begin{aligned} & Y_{2} \\ & \left(\beta_{2}\right) \\ & \hline \end{aligned}$	Y_{3}	Y_{4}	A_{1} *
y_{1}	$\frac{21}{13}$	1	0	$-\frac{7}{13}$	$\frac{1}{13}$	$\frac{7}{13}$
y_{2}	$\frac{10}{13}$	0	1	$\frac{1}{13}$	$-\frac{14}{91}$	$-\frac{1}{13}$
	x_{j}	$\frac{21}{13}$	$\frac{10}{13}$	0	0	0

Since the artificial variable x_{5} becomes zero we forget about A_{1} and will not consider it again.

Thus we get the following solution in phase (1)

$$
x_{1}=\frac{21}{13}, x_{2}=\frac{10}{13}, x_{3}=0, x_{4}=0
$$

Which is the B. F. S. with which we proceed to get the optimal solution by simplex method.

Phase (II)

The starting simplex table

B	c_{B}	x_{B}	Y_{1}	Y_{2}			
$\left(\beta_{1}\right)$	Y_{3}	Y_{4}	Min. ratio				
Y_{1}	-1	$\frac{21}{13}$	1	0	$-\frac{7}{13}$	$\frac{1}{13}$	
Y_{2}	-1	$\frac{10}{13}$	0	1	$\frac{1}{13}$	$-\frac{14}{91}$	
$\mathrm{Z}^{\prime}=c_{B} x_{B}$	x_{j}	$\frac{21}{13}$	$\frac{10}{13}$	0	0		
	$=-\frac{31}{13}$	c_{j}	-1	-1	0	0	

$$
\begin{aligned}
& \Delta_{3}=c_{3}-c_{B} y_{3}=0-(-1,-1)\left(-\frac{7}{13}, \frac{1}{13}\right)=-\frac{6}{13} \\
& \Delta_{4}=c_{4}-c_{B} y_{4}=0-(-1,-1)\left(\frac{1}{13},-\frac{14}{91}\right)=-\frac{7}{91}
\end{aligned}
$$

Since $\Delta_{\mathrm{j}} \mathrm{s}$ for all zero variables are negative so the solution is optimal.
Therefore the optimal solution is

$$
x_{1}=\frac{21}{13}, x_{2}=\frac{10}{13} \text { and }
$$

$$
\text { Min. } z=-\max . z^{\prime}=\frac{31}{13}
$$

Example 2.12

Solve the following L. P. Problem
Max.

$$
\begin{gathered}
z=x_{1}+2 x_{2}+3 x_{3}-x_{4} \\
x_{1}+2 x_{2}+3 x_{3}=15 \\
2 x_{1}+x_{2}+5 x_{3}=20 \\
x_{1}+2 x_{2}+x_{3}+x_{4}=10 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

Subject to

Solution :

In order to get an identity matrix we need two more columns of the unit matrix as one column of unit matrix (coeff. of x_{4}) is present in the constraints.

Thus we need only two artificial variables in the first two contraints. Introducing the artificial variables x_{5} and x_{6} we have,

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+0 \cdot x_{4}+x_{5}=15 \\
2 x_{1}+x_{2}+5 x_{3}+0 \cdot x_{4}+x_{6}=20 \\
x_{1}+2 x_{2}+x_{3}+x_{4}=10
\end{array}
$$

Phase (1)

Taking $x_{1}=x_{2}=x_{3}=0$ we get $x_{4}=10, x_{5}=15, x_{6}=20$.

First table

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4} $\left(\beta_{3}\right)$	A_{1} $\left(\beta_{1}\right)$	A_{2} $\left(\beta_{2}\right)$
A_{1}	15	1	2	3	0	1	0
A_{2}	20	2	1	5	0	0	$1 \rightarrow$
Y_{4}	10	1	2	1	1	0	0
	x_{j}	0	0	0	10	15	20

\uparrow
First we remove the artificial variable vector A_{2} and introduce y_{3} in its place.
For this we divide the second row by 5 and subtract it 3 and one times of it from the first and third rows respectively.

Thus we get the following table.

Second Table

	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}		
$\left(\beta_{3}\right)$	A_{1} $\left(\beta_{1}\right)$	A_{2}					
A_{1}	3	$-\frac{1}{5}$	$\frac{7}{5}$	0	0	1	$-\frac{3}{5} \rightarrow$
Y_{3}	4	$\frac{2}{5}$	$\frac{1}{5}$	1	0	0	$\frac{1}{5}$
Y_{4}	6	$\frac{3}{5}$	$\frac{9}{5}$	0	1	0	$-\frac{1}{5}$
	x_{j}	0	0	4	6	3	0

Now the artificial variable $x_{6}=0$ so we shall not consider it again. Again we remove the artificial variable vector A_{1} and introduce y_{2} in its place. For this we multiply first row by $\frac{5}{7}$ and then subtract its $\frac{1}{5}$ and $\frac{9}{5}$ times from the second and third rows.

Thus we get the following table.

	x_{B}	Y_{1}	Y_{2} $\left(\beta_{1}\right)$	Y_{3} $\left(\beta_{2}\right)$	Y_{4} $\left(\beta_{3}\right)$	A_{1}	
Y_{2}	$\frac{15}{7}$	$-\frac{1}{7}$	1	0	0	$\frac{5}{7}$	
Y_{3}	$\frac{25}{7}$	$\frac{3}{7}$	0	1	0	$-\frac{1}{7}$	
Y_{4}	$\frac{15}{7}$	$\frac{6}{7}$	0	0	1	$-\frac{9}{7}$	
	x_{j}	0	$\frac{15}{7}$	$\frac{25}{7}$	$\frac{15}{7}$	0	

Here the artifical variable $x_{5}=0$. We shall not consider it in the other table.

Thus we get the following B. F. S. with which we can proceed, for the optimal solution by simplex method.

$$
x_{1}=0, x_{2}=\frac{15}{7}, x_{3}=\frac{25}{7}, x_{4}=\frac{15}{7}
$$

Phase (II)

The starting simplex table is as follows.

B	c_{B}	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	min ratio
y^{\prime}		β_{1}	β_{2}	β_{3}	$\frac{x_{B}}{y_{1}}$		
Y_{2}	2	$\frac{15}{7}$	$-\frac{1}{7}$	1	0	0	-14 (neg.)
Y_{3}	3	$\frac{25}{7}$	$\frac{3}{7}$	0	1	0	$\frac{25}{3}$
Y_{4}	-1	$\frac{15}{7}$	$\frac{6}{7}$	0	0	1	$\frac{5}{2}(\min) \rightarrow$
	x_{j}	0	$\frac{15}{7}$	$\frac{25}{7}$	$\frac{15}{7}$		

Since all Δ_{j} are not less than or equal to zero so the solution is not optimal.
Here y_{1} is the incoming vector and by minimum ratio rule we find that y_{4} is the outgoing vector.

Therefore key element $\mathrm{y}_{31}=\frac{6}{7}$.
In order to bring y_{1} in place of y_{4} multiply third row by $\frac{7}{6}$ and then add its $\frac{1}{7}$ times in first row and subtract $\frac{3}{7}$ times from the second row.

The second simplex table is as follows.

B	c_{B}	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	min ratio
β_{2}	2	$\frac{5}{2}$	0	1	0	$\frac{1}{6}$	
Y_{2}	3	$\frac{5}{2}$	0	0	1	$-\frac{1}{2}$	
Y_{1}	1	$\frac{5}{2}$	1	0	0	$\frac{7}{6}$	
$z=c_{B} x_{B}$	x_{j}	$\frac{5}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	0		
$=15$	c_{j}	1	2	3	-1		

$$
\Delta_{4}=c_{4}-c_{B} y_{4}=1-(2,3,1)\left(\frac{1}{6},-\frac{1}{2}, \frac{7}{6}\right)=-1
$$

Since Δ_{4} for zero variable is negative so the solution is optimal.
Optimal solution is

$$
x_{1}=\frac{5}{2}, x_{2}=\frac{5}{2}, x_{3}=\frac{5}{2} \text { and max. } z=15 .
$$

Example 2.13

Using simplex algorithm solve the L. P. problem
Min. $z=4 x_{1}+8 x_{2}+3 x_{3}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2} \geq 2 \\
& 2 x_{1}+x_{3} \geq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Solution :

First we convert the problem of minimization to maximization problem by taking $z^{\prime}=-z$. max. $z^{\prime}=-z=-4 x_{1}-8 x_{2}-3 x_{3}$

Introducing the surplus variables $\mathrm{X}_{4}, \mathrm{x}_{5}$ the equations obtained are

$$
\begin{array}{r}
x_{1}+x_{2}+0 \cdot x_{3}-x_{4}=2 \\
2 x_{1}+0 x_{2}+x_{3}-x_{5}=5
\end{array}
$$

The columns of x_{2} and x_{3} form a unit matrix. Therefore there is no need to introduce the artificial variables.

Taking $x_{1}=0, x_{4}=0, x_{5}=0$ we have

$$
x_{2}=2, x_{3}=5 \text { as starting B. F. S. }
$$

Starting simplex table

B	C_{B}	x_{B}	Y_{1} $\left(\alpha_{1}\right)$	Y_{2} $\left(\beta_{1}\right)$	Y_{3} $\left(\beta_{2}\right)$	Y_{4} $\left(\alpha_{4}\right)$	Y_{5} $\left(\alpha_{5}\right)$	min ratio $\frac{\mathrm{x}_{\mathrm{B}}}{\mathrm{y}_{1}}$
Y_{2}	-8	2	1	1	0	-1	0	$2 \mathrm{~min} \rightarrow$
Y_{3}	-3	5	2	0	1	0	-1	$\frac{5}{2}$
		x_{j}	0	2	5	0	0	
		c_{j}	-4	-8	-3	0	0	
		$\Delta_{\text {j }}$	10	x	X	-8	-3	

$$
\begin{aligned}
& \Delta_{1}=c_{1}-c_{B} y_{1}=-4-(-8,-3)(1,2)=10 \\
& \Delta_{4}=c_{4}-c_{B} y_{4}=0-(-8,-3)(-1,0)=-8 \\
& \Delta_{5}=c_{5}-c_{B} y_{5}=0-(-8,-3)(0,-1)=-3
\end{aligned}
$$

Since all $\Delta_{\mathrm{j}} \mathrm{s}$ are not less than or equal to zero so the solution is not optimal.
Max. $\Delta_{\mathrm{j}}=10=\Delta_{1}$
\therefore Entering vector is $\alpha_{1}\left(=\mathrm{y}_{1}\right)$ and by minimum ratio rule we find that outgoing vector is $\beta_{1}\left(=y_{2}\right)$.

Therefore key element is $y_{11}=1$.

In order to bring α_{1} in place of β_{1} we subtract 2 times of the first row from the second row.

Second simplex table is

B	c_{B}	x_{B}	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	min ratio

$$
\begin{gathered}
\Delta_{2}=c_{2}-c_{B} y_{2}=-8-(-4,-3)(1,-2)=-10 \\
\Delta_{4}=c_{4}-c_{B} y_{4}=0-(-4,-3)(-1,2)=2 \\
\Delta_{5}=c_{5}-c_{B} y_{5}=0-(-4,-3)(0,-1)=-3
\end{gathered}
$$

Since all $\Delta_{\mathrm{j}} \mathrm{s}$ are not less than or equal to zero this solution is not optimal.
Since Max $\Delta_{\mathrm{j}}=\Delta_{4}$, the incoming vector is y_{4} and by the minimum ratio rule we find that the outgoing vector is $y_{3}\left(=\beta_{2}\right)$.

Key element $=2$
In order to bring y_{4} in place of y_{3} we divide the second row by 2 and then add it to the first row.

Third simplex table is

B	C_{B}	x_{B}	$\begin{aligned} & Y_{1} \\ & \left(\beta_{1}\right) \end{aligned}$	Y_{2}	Y_{3}	$\begin{aligned} & Y_{4} \\ & \left(\beta_{2}\right) \end{aligned}$	Y_{5}	min ratio
Y_{1}	-4	$\frac{5}{2}$	1	0	$\frac{1}{2}$	0	$-\frac{1}{2}$	
Y_{4}	0	$\frac{1}{2}$	0	-1	$\frac{1}{2}$	1	$-\frac{1}{2}$	
		x_{j}	$\frac{5}{2}$	0	0	$\frac{1}{2}$	0	
		c_{j}	-4	-8	-3	0	0	
		Δ_{j}	x	-8	-1	x	-2	
$\Delta_{2}=c_{2}-c_{B} \mathrm{y}_{2}=-8-(-4,0)(0,-1)=-8$								
$\Delta_{3}=c_{3}-c_{B} y_{3}=-3-(-4,0)\left(\frac{1}{2}, \frac{1}{2}\right)=-1$								
$\Delta_{5}=c_{5}-C_{B} y_{5}=0-(-4,0)\left(-\frac{1}{2},-\frac{1}{2}\right)=-2$								

Since all Δ_{j} 's are negative, this solution is optimal.
So the optimal solution is

$$
\mathrm{x}_{1}=\frac{5}{2}, \mathrm{x}_{2}=0, \mathrm{x}_{3}=0
$$

and $\min z=-\left(\max . z^{\prime}\right)=10$

1) Solve the L. P. Problem

Max. $z=3 x_{1}+5 x_{2}+4 x_{3}$
Subject to $\quad 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 8$

$$
\begin{aligned}
& 2 x_{2}+5 x_{3} \leq 10 \\
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 15
\end{aligned}
$$

and

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

2) Solve by simplex method the following L. P. Problem

Minimize $z=x_{1}-3 x_{2}+2 x_{3}$
Subject to $\quad 3 x_{1}-x_{2}+2 x_{3} \leq 7$

$$
-x_{1}+4 x_{2} \leq 12
$$

$$
-4 x_{1}+3 x_{2}+8 x_{3} \leq 16
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

3) Solve the following L. P. Problem

Minimize $z=x_{1}+x_{2}$
Subject to $2 x_{1}+x_{2} \geq 4$
$x_{1}+7 x_{2} \geq 7$
$\mathrm{x}_{1} \mathrm{x}_{2} \geq 0$
4) Using the simplex method to solve the following L. P. Problem

Max. $\mathrm{z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}-\mathrm{x}_{4}$
Subject to $\quad x_{1}+2 x_{2}+3 x_{3}=15$
$2 x_{1}+x_{2}+5 x_{3}=20$
$x_{1}+2 x_{2}+x_{3}+x=10$
$x_{1}, x_{2}, x_{3}, x_{3} \geq 0$
5) Using the simplex method solve the L. P. Problem

Min. $z=4 x_{1}+8 x_{2}+3 x_{3}$
Subject to $\quad x_{1}+x_{2} \geq 2$
$2 x_{1}+x_{3} \geq 5$
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
6) Using the simplex method, solve the following.

Max. $z=2 x_{1}+5 x_{2}+7 x_{3}$
Subject to $3 x_{1}+2 x_{2}+4 x_{3} \leq 100$
$x_{1}+4 x_{2}+2 x_{3} \leq 100$
$x_{1}+x_{2}+3 x_{3} \leq 100$
$x_{1}, x_{2}, x_{3} \geq 0$
7) Solve the following L. P. Problem

Max. $z=\frac{3}{4} x_{1}-150 x_{2}+\frac{1}{50} x_{3}-x_{4}$
Subject to $\quad \frac{x_{1}}{4}-60 x_{2}-\frac{1}{25} x_{3}+4 x_{4} \leq 0$

$$
\frac{x_{1}}{2}-90 x_{2}-\frac{1}{50} x_{3}+3 x_{4} \leq 0
$$

and

$$
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

8) Use the simplex method to solve the following

Max. $z=30 x_{1}+23 x_{2}+29 x_{3}$
Subject to, $\quad 6 x_{1}+5 x_{2}+3 x_{3} \leq 26$

$$
4 x_{1}+2 x_{2}+5 x_{3} \leq 7
$$

and

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Also read the solution of the dual of the above problem from the final table.
9) Use two phase simplex method to solve.

Miximize $z=3 x_{1}+2 x_{2}+x_{3}+x_{4}$
Subject to $\quad 4 x_{1}+5 x_{2}+x_{3}-3 x_{4}=5$

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}-4 x_{3}+5 x_{4}=7 \\
& x_{j} \geq 0, c_{j}=1,2,3,4
\end{aligned}
$$

10) Solve the following L. P. P.

Maximize $z=3 x_{1}+4 x_{2}$,
Subject to $\quad x_{1}+4 x_{2} \leq 8, x_{1}-2 x_{2} \leq 4$

$$
x_{1}, x_{2} \geq 0
$$

11) Solve the following L. P. P.

Maximize $\mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2}$
Subject to $\quad 4 x_{1}+3 x_{2} \leq 12$

$$
4 x_{1}+x_{2} \leq 8
$$

$$
4 x_{1}-x_{2} \leq 8
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

12) Solve the following L. P. P.

Max. $z=5 x_{1}+3 x_{2}$
Subject to $\quad x_{1}+x_{2} \leq 2$,

$$
\begin{aligned}
& 5 x_{1}+2 x_{2} \leq 10, \\
& 3 x_{1}+8 x_{2} \leq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

13) Solve by L. P. P.

Max. $z=22 x_{1}+30 x_{2}+25 x_{3}$
subject to

$$
2 x_{1}+2 x_{2} \leq 100
$$

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3} \leq 100 \\
& x_{1}+2 x_{2}+2 x_{3} \leq 100 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

14) Solve the L. P. P.

Max. $z=5 x_{1}-2 x_{2}+3 x_{3}$
subject to $\quad 2 x_{1}+2 x_{2}-x_{3} \geq 2$,
$3 x_{1}-4 x_{2} \leq 3$,
$x_{2}+3 x_{3} \leq 5$
$x_{1}, x_{2}, x_{3} \geq 0$
15) Solve the L. P. P.

Max. $z=x_{1}+15 x_{2}+2 x_{3}+5 x_{4}$
Subject to

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}+x_{4} \leq 6 \\
& 2 x_{1}+x_{2}+x_{6}+5 x_{4} \leq 4 \\
& 2 x_{1}+6 x_{2}-8 x_{3}+4 x_{4}=0 \\
& x_{1}+3 x_{2}-4 x_{3}+3 x_{4}=0 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

UNIT 03

DEGENERACY, DUALITY AND REVISED SIMPLEX METHOD

3.0 INTRODUCTION

We have considered the L. P. Problems in which by minimum ratio rule we get only one vector to be deleted from the basis. But there are the L. P. Problems where we get more than one vector which may be deleted from the basis.

Thus if $\min \left\{\frac{x_{B i}}{y_{i k}}, y_{i k}>0\right\} \quad\left(\alpha_{k}\right.$ is incoming vector)
occurs at $i=i_{1}, i_{2}, . . i_{s}$
i. e. minimum occurs for more than one value of i then the problem is to select the vector to be deleted from the basis (If we choose one vector say $\beta_{i}\left(i\right.$ is one of $i_{1}, i_{2}, \ldots, i_{s}$) and delete it from the basis then the next solution may be a degenerate B. F. S. Such problem is called problem of degeneracy.

It is observed that when the simplex method is applied to a degenerate B. F. S. to get a new B. F. S., the value of the objective function may remain unchanged i. e. the value of the objective function is not improved.

The procedure for such problems of degeneracy is as follows.
Let $i^{\min }\left\{\frac{\left(x_{B i}\right)}{y_{i k}}, y_{i k}>0\right\}$ occur at $\quad i=i_{1}, i_{2}, \ldots, i_{s}$
where $\alpha_{k}=y_{k}$ is the incoming vector.
Let $\mathrm{I}_{1}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{s}}\right\}$

1) Renumber the columns of the table starting with the columns in the basis. Let $\bar{y}_{1}, \overline{\mathrm{y}}_{2}, \ldots$ etc. be the new numbers of columns. Let $\overline{\mathrm{y}}_{\mathrm{t}}$ be the new number of entering vector y_{k} i. e. $y_{k}=\bar{y}_{t}$.
2) Calculate $\min \left\{\frac{\bar{y}_{i 1}}{y_{i k}}\right\} \forall i \in I_{1}$. If minimum is unique then delete the corresponding vector from the basis.

If minimum is not unique then proceed to the next step.
3) Calculate mini $\left\{\frac{\bar{y}_{i 2}}{y_{i k}}\right\} \forall i \in I_{2}$ where I_{2} is the set of all those values of $i \in I_{1}$, for which there is a tie in I_{2}. Clearly $\mathrm{I}_{2} \subset \mathrm{I}_{1}$.

In this case if minimum is unique then correspondng vector is deleted from the basis. If in this case also, minimum is not unique proceed to the next step.
4) Compute mini $\left\{\frac{\bar{y}_{i 3}}{y_{i k}}\right\} \forall i \in I_{3}$ where I_{3} is the set of those values of $i \in I_{2}$ for which there is a tie in (3) clearly $\mathrm{I}_{3} \subset \mathrm{I}_{2} \subset \mathrm{l}_{1}$.

Proceeding in this way we can get a unique minimum value of ii. e. the unique vector to be deleted from the basis.

Example 3.1

Solve the L. P. Problem

Max.

$$
z=\frac{3}{4} x_{1}-150 x_{2}+\frac{1}{50} x_{3}-x_{4}
$$

Subject to

$$
\begin{aligned}
\frac{1}{4} x_{1}-60 x_{2}-\frac{1}{25} x_{3}+9 x_{4} & \leq 0 \\
\frac{1}{2} x_{1}-90 x_{2}-\frac{1}{50} x_{3}+3 x_{4} & \leq 0 \\
x_{3} & \leq 1 \\
\text { and } x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Solution :

Introducing the slack variables in the constraints we get the following equalities

$$
\begin{aligned}
\frac{1}{4} x_{1}-60 x_{2}-\frac{1}{25} x_{3}+9 x_{4}+x_{5} & =0 \\
\frac{1}{2} x_{1}-90 x_{2}-\frac{1}{50} x_{3}+3 x_{4}+x_{6} & =0 \\
x_{3}+x_{7} & =1
\end{aligned}
$$

Taking $x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0$ we have

$$
x_{5}=0, x_{6}=0, x_{7}=1
$$

Which is the starting B. F. S.
Starting simplex table

B	$\mathrm{C}_{\text {B }}$	$\mathrm{x}_{\text {B }}$	$\overline{\mathrm{y}}_{4}$ y_{1}	$\overline{\bar{y}_{5}}$ y_{2}	$\begin{aligned} & \overline{\mathrm{y}}_{6} \\ & \mathrm{y}_{3} \end{aligned}$	$\overline{\mathrm{y}}_{7}$ y_{4}	$\overline{\bar{y}_{1}}$ $y_{5}\left(\beta_{1}\right)$	$\begin{aligned} & \hline \bar{y}_{2} \\ & y_{6}\left(\beta_{2}\right) \end{aligned}$	$\overline{\mathrm{y}}_{3}$ $\mathrm{y}_{7}\left(\beta_{3}\right)$	Min ratio $\frac{x_{B}}{y_{1}}$
y_{5}	0	0	$\frac{1}{4}$	-60	$-\frac{1}{25}$	9	1	0	0	0
y_{6}	0	0	$\frac{1}{2}$	-90	$-\frac{1}{50}$	3	0	1	0	0
y_{7}	0	1	0	0	1	0	0	0	1	-
$\mathrm{z}=\mathrm{C}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}$		x_{j}	0	0	0	0	0	0	1	
		c_{j}	$\frac{3}{4}$	-150	$\frac{1}{50}$	-6	0	0	0	
		$\Delta_{\text {j }}$	$\frac{3}{4}$	-150	$\frac{1}{50}$	-6	0	0	x	
\uparrow										
$\Delta_{1}=c_{1}-c_{B} y_{1}=\frac{3}{4}-(0,0,0)\left(\frac{1}{4}, \frac{1}{2}, 0\right)=\frac{3}{4}$										
$\Delta_{3}=c_{3}-c_{B} y_{3}=\frac{1}{50}-(0,0,0)\left(-\frac{1}{25},-\frac{1}{50}, 1\right)=\frac{1}{50}$										
$\Delta_{4}=c_{4}-\mathrm{c}_{\mathrm{B}} \mathrm{y}_{4}=-6-(0,0,0)(9,3,0)=-6$										

Since all Δ_{j} are not less than as equal to zero therefore the solution is not optimal

$$
\text { and } \max \Delta_{\mathrm{j}}=\frac{3}{4}=\Delta_{1}
$$

Therefore incoming, vector is y_{1} and $\min _{i}^{\min }\left\{\frac{x_{B i}}{y_{i 1}}, y_{i j}>0\right\}$ is not unique.

This minimum is o and occurs for $\mathrm{i}=1$ and $\mathrm{i}=2$.
This problem is a problem of degeneracy.
Therefore to select the vector to be deleted from the basic we proceed as follows.

1) First of all we renumber the columns of above table as follows.

$$
\text { Let } \begin{aligned}
& \overline{\mathrm{y}}_{1}=\mathrm{y}_{5}, \overline{\mathrm{y}}_{2}=\mathrm{y}_{6}, \overline{\mathrm{y}}_{3}=\mathrm{y}_{7} \\
& \overline{\mathrm{y}}_{4}=\mathrm{y}_{1}=\overline{\mathrm{y}}_{5}=\mathrm{y}_{2}, \overline{\mathrm{y}}_{6}=\mathrm{y}_{3}, \overline{\mathrm{y}}_{7}=\mathrm{y}_{4}
\end{aligned}
$$

2) Since minimum ratio occurs for
$\mathrm{i}=1$ and $\mathrm{i}=2$ it follows that

$$
I_{1}=\{1,2\}
$$

Incoming vector is $\mathrm{y}_{1}=\overline{\mathrm{y}}_{4}, \mathrm{k}=4$ for $\mathrm{i}=1,2$

$$
\begin{aligned}
\min _{i \in i,}\left\{\frac{\bar{y}_{i 1}}{\bar{y}_{i 4}}\right\} & =\min \left\{\frac{\bar{y}_{11}}{\bar{y}_{14}}, \frac{\overline{\mathrm{y}}_{21}}{\overline{\mathrm{y}}_{24}}\right\} \\
& =\operatorname{mini}\left\{\frac{1}{\left(\frac{1}{4}\right)}, \frac{0}{\left(\frac{1}{2}\right)}\right\}=\min \{4,0\} \\
= & 0=\frac{\overline{\mathrm{y}}_{21}}{\overline{\mathrm{y}}_{24}}
\end{aligned}
$$

This minimum is unique and occur for $\mathrm{i}=2$. Therefore the vector to be deleted (i. e. the outgoing vector) from the basis is $\bar{y}_{2}\left(=\beta_{2}\right)=y_{6}$.

Therefore key element is $\mathrm{y}_{21}=\frac{1}{2}$.
Therefore in older to bring y_{1} in place of y_{6} we divide the second row by $\frac{1}{2}$ and then subtract $\frac{1}{4}$ times of this row from the first row.

Second simple table

Since all Δ_{j} are not less than or equal to zero therefore the solution is not optimal.

$$
\text { Max. } \Delta_{\mathrm{j}}=\frac{1}{20}=\Delta_{3}
$$

Therefore incoming vector is $\frac{1}{3}$ and by minimum ratio rule we find that the outgoing vector is $\mathrm{y}_{7}\left(=\beta_{2}\right)$.
(In considering $\frac{x_{B}}{y_{B}}$ we need not consider the ratios $\frac{x_{B 1}}{y_{13}}$ and $\frac{x_{B 2}}{y_{23}}$ since $y_{13}=-\frac{3}{100}$ and $y_{23}=-\frac{1}{25}$ are both negative.)

Therefore key element $y_{33}=1$.
In order to bring y_{3} in place at $y_{7}\left(\beta_{3}\right)$ we add $\frac{3}{100}$ and $\frac{1}{25}$ times of the third row in the first and second rows respatively.
The third simplex table

B	$\mathrm{C}_{\text {B }}$	x_{B}	$\begin{aligned} & y_{1} \\ & \left(\beta_{2}\right) \end{aligned}$	y_{2}	$\begin{aligned} & y_{3} \\ & \left(\beta_{3}\right) \end{aligned}$	y_{4}	y_{5} $\left(\beta_{1}\right)$	y_{6}	y_{7}	
y_{5}	0	$\frac{3}{100}$	0	-15	0	$\frac{15}{2}$	1	$-\frac{1}{2}$	$\frac{3}{100}$	
y_{1}	$\frac{3}{4}$	$\frac{1}{25}$	1	-180	0	6	0	2	$\frac{1}{25}$	
y_{3}	$\frac{1}{50}$	1	0	0	1	0	0	0	1	
		x_{j}	$\frac{1}{25}$	0	1	0	$\frac{3}{100}$	0	0	
		c_{j}	$\frac{3}{4}$	-150	$\frac{1}{50}$	-6	0	0	0	
		$\Delta_{\text {j }}$	x	-15	x	$-\frac{21}{2}$	x	$-\frac{3}{2}$	$-\frac{1}{20}$	

$\Delta_{2}=c_{2}-c_{B} y_{2}=-150-\left(0, \frac{3}{4}, \frac{1}{50}\right)(-15,-180,0)=-15$
$\Delta_{4}=c_{4}-c_{B} y_{4}=-6-\left(0, \frac{3}{4}, \frac{1}{50}\right)\left(\frac{15}{2}, 6,0\right)=-\frac{21}{2}$

$$
\begin{aligned}
& \Delta_{6}=c_{6}-c_{B} y_{6}=0-\left(0, \frac{3}{4}, \frac{1}{50}\right)\left(-\frac{1}{2}, 2,0\right)=-\frac{3}{2} \\
& \Delta_{7}=c_{7}-c_{B} y_{7}=0-\left(0, \frac{3}{4}, \frac{1}{50}\right)\left(\frac{3}{100}, \frac{1}{25}, 1\right)=-\frac{1}{20}
\end{aligned}
$$

Since all $\Delta_{\mathrm{j}} \leq 0$ thesefore the solution is optimal and the optimal solution is

$$
x_{1}=\frac{1}{25}, x_{2}=0, x_{3}=1, x_{4}=0
$$

and $\operatorname{Max} . z=\frac{1}{20}$

DUALITY

Introduction

Every L. P. Problem is associated with another L. P. Problem called the dual of the problem. Consider a L. P. Problem
Max.

$$
z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}
$$

Subject to

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2}
\end{aligned}
$$

$$
\begin{equation*}
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \tag{i}
\end{equation*}
$$

and

$$
x_{1}, x_{2}, \ldots, x_{n} \geq 0
$$

where the signs of all parameters a, b, c are orbitary.
Then the dual of this problem is defined as
Mini

$$
z^{*}=b_{1} w_{1}+b_{2} w_{2}+\ldots+b_{m} w_{m}
$$

Subject to

$$
\begin{aligned}
& a_{11} w_{1}+a_{21} w_{2}+\ldots+a_{m 1} w_{m} \geq c_{1} \\
& a_{12} w_{1}+a_{22} w_{2}+\ldots+a_{m 2} w_{m} \geq c_{2}
\end{aligned}
$$

and

$$
a_{1 n} w_{1}+a_{2 n} w_{2}+\ldots+a_{m n} w_{n} \geq c_{n}
$$

$$
\text { and } w_{1}, w_{2}, \ldots, w_{m} \geq 0
$$

where $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}}$ are called the dual variables.

Also problem (1) is called the primal problem.
In a matrix notation a L. P. Problem is
Max. $z=\bar{c} \bar{x}$
Subject to $A \bar{x} \leq \bar{b}$
and $\bar{x} \geq 0$
and its dual is defined as
Min $z^{*}=b^{\prime} w$
Subject to $A^{\prime} w \geq C^{\prime}$
and $w \geq 0$

Where $\mathrm{w}=\left[\begin{array}{l}\mathrm{w}_{1} \\ \mathrm{w}_{2} \\ \ldots . \\ \mathrm{w}_{\mathrm{m}}\end{array}\right]$
and $\mathrm{A}^{\prime}, \overline{\mathrm{b}}, \overline{\mathrm{C}}^{\prime}$ are the transposes of the matrices $\mathrm{A}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ respectively.
It is obvious from the definition that the dual of the dual is the primal itself.
It is important to note that we can write the dual of a problem if all its constraints involve the sign \leq.

If the constraint has a sign \geq then multiply both the sides by -1 and makes the sign \leq.
If the constraint has a sign $=$ for ex. $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$
then we can replace it by two constraints involving two inequalities i. e.

$$
\begin{align*}
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}} \leq \mathrm{b}_{\mathrm{i}} \tag{4}\\
& \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}} \geq \mathrm{b}_{\mathrm{i}} \tag{5}
\end{align*}
$$

5) may be written as

$$
-\sum_{j=1}^{n} a_{i j} x_{j} \leq-b_{i}
$$

Standard form of the primal

The L. P. Problem is in standard primal form if

1) It is a problem of maximization and
2) All the constraints involve the sign \leq.

Relationship between two problems (Primal and dual)

The two problems (primal and the dual) are related to each other in the following manner.

1) If one is a maximization problem then the other is a minimization problem.
2) If one of them has a finite optimal solution then the other problem also has a finite optimal solution.
3) From the final simplex table of one problem the solution of the other an be read from the Δ_{j} row below the columns of slack and surplus variables as follows.

The $\Delta_{j}{ }^{\prime} s\left(\Delta_{j}=c_{j}-z_{j}=c_{j}-c_{B} y_{j}\right)$ with the sign changed for the slack vectors in the optimal (final) simplex table for the primal are the values of the corresponding optimal dual variables in the final simplex table for the dual problem.
4) The optimal values of the objective functions in both the problems are the same that is $\operatorname{Max} . Z_{x}=\operatorname{Min} Z_{w}$.
5) If one problem has an unbounded solution then other has no feasible solution.

Example 3.2

Write the dual of the problem
Mini. $\mathrm{z}=3 \mathrm{x}_{1}+\mathrm{x}_{2}$
Subject to $\quad 2 x_{1}+3 x_{2} \geq 2$

$$
x_{1}+x_{2} \geq 1
$$

and

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

Solution :

First we write the problem in standard primal form as follows.
Max. $z^{\prime}=-3 x_{1}-x_{2}$ where $z^{\prime}=-z$
Such that $\quad-2 x_{1}-3 x_{2} \leq-2$
and

$$
-x_{1}-x_{2} \leq-1
$$

and

$$
x_{1}, x_{2} \geq 0
$$

which may be written as

$$
\operatorname{Maxz}=[-3,-1]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Such that $\left[\begin{array}{ll}-2 & -3 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \leq\left[\begin{array}{l}-2 \\ -1\end{array}\right]$
and $x_{1}, x_{2} \geq 0$
The dual of the given problem is given by
Mini. $z^{*}=[-2,-1]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$
such that $\left[\begin{array}{ll}-2 & -1 \\ -3 & -1\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \geq\left[\begin{array}{l}-3 \\ -1\end{array}\right]$
and $\mathrm{w}_{1}, \mathrm{w}_{2} \geq 0$
or \quad mini. $z^{*}=-2 w_{1}-w_{2}$
such that $\quad-2 w_{1}-w_{2} \geq-3$

$$
-3 w_{1}-w_{2} \geq-1
$$

Example 3.3

Write the dual of the problem
miz. $z=2 x_{2}+5 x_{3}$
such that $\quad x_{1}+x_{2} \geq 2$

$$
\begin{aligned}
& 2 x_{1}+x_{2}+6 x_{3} \leq 6 \\
& x_{1}-x_{2}+3 x_{3}=4
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$.

Solution :

First we write the given problem in standard primal form as follows.

1) The objective function is changed from minimization to maximization.
i. e. $M a x z^{\prime}=-2 x_{2}-5 x_{3}$ where $z^{\prime}=-z$
2) The sign of first constraint is changed to \leq by multiplying both sides by -1 and
3) The third constraint is replaced by two constraints.

$$
x_{1}-x_{2}+3 x_{3} \leq 4
$$

and

$$
x_{1}-x_{2}+3 x_{3} \geq 4
$$

The second may be written as

$$
-x_{1}+x_{2}-3 x_{3} \leq-4
$$

Thus the given problem in standard primal form is as follows.
Max. $z^{\prime}=0 x_{1}-2 x_{2}-5 x_{3}$
subject to $\quad-x_{1}-x_{2} \leq 2$

$$
\begin{aligned}
& 2 x_{1}+x_{2}+6 x_{3} \leq 6 \\
& x_{1}-x_{2}+3 x_{3} \leq 4 \\
& -x_{1}+x_{2}-3 x_{3} \leq-4
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$
i. e. Max. $z^{\prime}=[0,-2,-5]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$,
such that $\left[\begin{array}{rrr}-1 & -1 & 0 \\ 2 & 1 & 6 \\ 1 & -1 & 3 \\ -1 & 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \leq\left[\begin{array}{l}2 \\ 6 \\ 4 \\ -4\end{array}\right]$
and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
Therefore the dual of the given problem is given by
Mini $z^{*}=[2,6,+4,-4]\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3} \\ w_{4}\end{array}\right]$
such that $\left[\begin{array}{rrrr}-1 & 2 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 0 & 6 & 3 & -3\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3} \\ w_{4}\end{array}\right] \geq\left[\begin{array}{c}0 \\ -2 \\ -5\end{array}\right]$
and $w_{1}, w_{2}, w_{3}, w_{4} \geq 0$

$$
\begin{aligned}
& \text { or Min. } \quad z^{*}=2 w_{1}+6 w_{2}+4 w_{3}-4 w_{4} \\
& \text { such that } \quad-w_{1}+2 w_{2}+w_{3}-w_{4} \geq 0 \\
& -w_{1}+w_{2}-w_{3}+w_{4} \geq-2 \\
& 0 w_{1}+6 w_{2}+3 w_{3}-3 w_{4} \geq-5 \\
& \text { and } \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4} \geq 0
\end{aligned}
$$

Example 3.4

Apply the simplex method to solve the following
Max. $z=30 x_{1}+23 x_{2}+29 x_{3}$
s. t. $6 x_{1}+5 x_{2}+3 x_{3} \leq 26$

$$
\begin{equation*}
4 x_{1}+2 x_{2}+5 x_{3} \leq 7 \tag{1}
\end{equation*}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$
Also read the solution of the dual of the above problem from the final table.

Solution :

Introducing the slack variables x_{4} and x_{5}, we have
$6 x_{1}+5 x_{2}+3 x_{3}+x_{4}=26$
$4 x_{1}+2 x_{2}+5 x_{3}+x_{5}=7$
Taking $x_{1}=x_{2}=x_{3}=0$ we have $x_{4}=26$ and $x_{5}=7$,
which is the starting B. F. S.

Starting Simplex Table

B	c_{B}	x_{B}	y_{1} $\left(\alpha_{1}\right)$	y_{2} $\left(\alpha_{2}\right)$	y_{3} $\left(\alpha_{3}\right)$	y_{4} $\left(\beta_{1}\right)$	y_{5} $\left(\beta_{2}\right)$	Min. Ratio. $\frac{X_{B}}{y_{1}}$
y_{4}	0	26	6	5	3	1	0	$\frac{13}{3}$
y_{5}	0	7	4	2	5	0	1	$\frac{7}{4} \rightarrow$ Min
$z=c_{B} x_{B}$ $=0$	x_{j}	0	0	0	26	7		
	c_{j}	30	23	29	0	0		

$$
\Delta_{1}=\mathrm{c}_{1}-\mathrm{c}_{\mathrm{B}} \mathrm{y}_{1}=30-(0,0)(0,4)=30
$$

Similarly $\Delta_{2}=23, \Delta_{3}=29$
Since all Δ_{j} are not less than or equal to zero therefore the solution is not optimal.
Max. $\Delta_{\mathrm{j}}=30=\Delta_{1}$
Hence $\alpha_{1}\left(=y_{1}\right)$ is incoming vector and by minimum ratio rule we find that $y_{5}\left(=\beta_{2}\right)$ is outgoing vector.

Hence the key element $y_{21}=a_{21}=4$.

Second simplex table

B	C_{B}	x_{B}	$\begin{aligned} & y_{1} \\ & \left(\beta_{2}\right) \end{aligned}$	y_{2}	y_{3}	y_{4} $\left(\beta_{1}\right)$	y_{5}	Min. Ratio. $\frac{X_{B}}{y_{2}}$
y_{4}	0	$\frac{31}{2}$	0	2	$-\frac{9}{2}$	1	$-\frac{3}{2}$	$\frac{31}{4}$
y_{1}	30	$\frac{7}{4}$	1	$\frac{1}{2}$	$\frac{5}{4}$	0	$\frac{1}{4}$	$\stackrel{7}{8} \rightarrow$
$\begin{aligned} z & =C_{B} x_{B} \\ & =\frac{105}{2} \end{aligned}$		x_{j}	$\frac{7}{4}$	0	0	$\frac{31}{2}$	0	
		c_{j}	30	23	29	0	0	
		Δ_{j}	x	8	$-\frac{17}{2}$	x	$-\frac{15}{2}$	

$$
\begin{aligned}
\Delta_{2}=c_{2}-c_{B} y_{2} & =23-(0,30)\left(2, \frac{1}{2}\right)=8 \\
\Delta_{3}=c_{3}-c_{B} y_{3} & =29-(0,30)\left(-\frac{9}{2}, \frac{5}{4}\right)=-\frac{17}{2} \\
& =29-37.5=-8.5 \\
\Delta_{5}=c_{5}-c_{B} y_{5} & =(0,30)\left(-\frac{3}{2}, \frac{1}{4}\right)=-\frac{15}{2}
\end{aligned}
$$

Since all Δ_{j} are not less than or equal to zero so the solution is not optimal. Here y_{2} is insuming vector and y_{1} is out going vector.

The key element is $y_{22}=\frac{1}{2}$

Final simplex table

B	$\mathrm{C}_{\text {B }}$	x_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	Min. Ratio.
y_{4}	0	$\frac{17}{2}$	-4	0	$-\frac{19}{2}$	1	$-\frac{5}{2}$	
y_{2}	23	$\frac{7}{2}$	2	1	$\frac{5}{2}$	0	$\frac{1}{2}$	
$\mathrm{z}=\mathrm{Cb}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}$		x_{j}	0	$\frac{7}{2}$	0	$\frac{17}{2}$	0	
$=\frac{161}{2}$		c_{j}	30	23	29	0	0	
		Δ_{j}	16	x	$-\frac{57}{2}$	x	$-\frac{23}{2}$	

$$
\begin{aligned}
& \Delta_{1}=c_{1}-c_{B} y_{1}=30-(0,23)(-4,2)=-16 \\
& \Delta_{3}=c_{3}-c_{B} y_{3}=29-(0,23)\left(-\frac{19}{2}, \frac{5}{2}\right)=-\frac{57}{2} \\
& \Delta_{5}=c_{5}-c_{B} y_{5}=0-(0,23)\left(-\frac{5}{2}, \frac{1}{2}\right)=-\frac{23}{2}
\end{aligned}
$$

Since all Δ_{j} are ≤ 0 the solution isoptimal.
Therefore optimal solution is
$x_{1}=0, x_{2}=\frac{7}{2}, x_{3}=0$ and max. $z=\frac{161}{2}$.
To write the dual of the problem.
The given problem may be written as :
$\operatorname{Max.} \mathrm{z}=[30,23,29]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$,
such that $\left[\begin{array}{lll}6 & 5 & 3 \\ 4 & 2 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}26 \\ 7\end{array}\right]$
and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$

Therefore the dual of the given problem is given by

$$
\text { Miniz } z^{*}=[26,7]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

such that $\left[\begin{array}{ll}6 & 4 \\ 5 & 2 \\ 3 & 5\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \geq\left[\begin{array}{l}30 \\ 23 \\ 29\end{array}\right]$
where $\mathrm{w}_{1}, \mathrm{w}_{2} \geq 0$

OR

Min. $\quad z^{*}=26 w_{1}+7 w_{2}$
s. t. $\quad 6 w_{1}+4 w_{2} \geq 30$
$5 w_{1}+2 w_{2} \geq 23$
$3 w_{1}+5 w_{2} \geq 29$
where $\mathrm{w}_{1}, \mathrm{w}_{2} \geq 0$
The dual problem (2) may be written as
Max. $\quad z_{1}^{*}=-26 w_{1}-7 w_{2}$
s. t. $\quad 6 w_{1}+4 w_{2}-w_{3}+w_{6}=30$

$$
\begin{aligned}
& 5 w_{1}+2 w_{2}-w_{4}+w_{7}=23 \\
& 3 w_{1}+s w_{2}-w_{5}+w_{8}=29
\end{aligned}
$$

and

$$
w_{1}, w_{2}, \ldots, w_{8} \geq 0
$$

Where w_{3}, w_{4}, w_{5} are surplus variables and w_{6}, w_{9}, w_{8} are the artificial variables. Now we obtain the solution of the above problem by simplex method.

Simplex table of the dual is

B	c_{B}	x_{B}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	
y_{5}	0	$\frac{57}{2}$	$\frac{19}{2}$	0	0	$-\frac{5}{2}$	1	
y_{3}	0	16	4	0	1	-2	0	
y_{2}	-7	$\frac{23}{2}$	$\frac{5}{2}$	1	0	$-\frac{1}{2}$	0	
$z_{1}=-\frac{161}{2}$	w_{j}	0	$\frac{23}{2}$	16	0	$\frac{57}{2}$		
	c_{j}	-26	-7	0	0	0		

Therefore solution is $\mathrm{w}_{1}=0, \mathrm{w}_{2}=\frac{23}{2}, \mathrm{Min} . \mathrm{z}^{*}=\frac{161}{2}$

DUALITY IN LINEAR PROGRAMMING

Definition : Primal Problem
$\operatorname{Max} \mathrm{z}_{\mathrm{x}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\left(=\overline{\mathrm{c}}^{\mathrm{T}} \overline{\mathrm{x}}\right)$
s.t. $A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}, A_{m \times n}$

Definition : Dual Problem
$\operatorname{Min} \mathrm{z}_{\mathrm{w}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{b}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\left(=\overline{\mathrm{b}}^{\top} \overline{\mathrm{w}}\right)$
s.t. $A^{\top} \bar{W} \geq \bar{c}, \bar{W} \geq \overline{0}$
($\overline{\mathrm{x}}$ has n components, $\overline{\mathrm{w}}$ has m components)

General Rules for converting any primal to its dual

Step 1 : Convert the objective function into max form $(\operatorname{Min} z=-(\operatorname{Max}-z))$.
Step 2 : If the constraint has ' \geq ' then multiply the constraint by (-1)
Step 3 : If the constraint has ' $=$ ' then replace this constraint by two constraints ' \leq ' and ' \geq 'e.g.
$x_{1}+x_{2}=2 \equiv x_{1}+x_{2} \leq 2$ and $x_{1}+x_{2} \geq 2$.

Step 4 : Every unrestricted variable is replaced by the difference of two non-negative variables e.g. x_{1} is unrestricted.

$$
\mathrm{x}_{1}=\mathrm{x}_{1}^{*}-\mathrm{x}_{1}^{* *}, \mathrm{x}_{1}^{*}, \mathrm{x}_{1}^{* *} \geq 0
$$

Step 1 to 4 : Standard primal LPP.
Step 5 : Dual of above primal LPP ios obtained
(i) $A \rightarrow A^{\top}$
(ii) Interchange $\overline{\mathrm{b}}, \overline{\mathrm{c}}$.
(iii) $\leq \rightarrow \geq$
(iv) Minimize objective function.

Example: $\operatorname{Max} z=3 x_{1}+2 x_{2}$
s.t. $x_{1}+3 x_{2} \leq 5$
$\mathrm{x}_{1}-\mathrm{x}_{2} \leq 7, \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
Answer: $\operatorname{Max} \mathrm{z}_{\mathrm{x}}=\overline{\mathrm{c}}^{\top} \overline{\mathrm{x}}=\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}$
s.t. $A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$

Primal : $\operatorname{Max} z=3 x_{1}+2 x_{2}=\left[\begin{array}{ll}3 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{1}\end{array}\right]=\bar{c}^{\top} \bar{x}$

$$
\text { s.t. }\left[\begin{array}{cc}
1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
5 \\
7
\end{array}\right], \quad \bar{x} \geq \overline{0}
$$

Dual: $\operatorname{Min} z_{w}=\left[\begin{array}{ll}5 & 7\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$
$\left[\begin{array}{cc}1 & 1 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \geq\left[\begin{array}{l}3 \\ 2\end{array}\right], w_{1}, w_{2} \geq 0$
Example : Write dual of following LPP
Max $z=2 x_{1}+3 x_{2}-x_{3}$
s.t. $x_{1}+x_{2}-3 x_{3} \leq 8$
$\mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3} \leq 4, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$

Answer: $\operatorname{Max} z=\left[\begin{array}{lll}2 & 3 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
s.t. $\left[\begin{array}{ccc}1 & 1 & -3 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \leq\left[\begin{array}{l}8 \\ 4\end{array}\right], \quad x_{1}, x_{2}, x_{3} \geq 0$

Dual LPP $\quad \operatorname{Min} z_{w}=8 w_{1}+4 w_{2}$
s.t. $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ -3 & 1\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \geq\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right], \quad w_{1}, w_{2} \geq 0$

Primal : $\operatorname{Max} z=\bar{C}^{\top} \bar{x}$
s.t. $A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$

Dual: $\operatorname{Min} z_{w}=\bar{b}^{\top} \bar{w}$
s.t. $A^{\top} \bar{w} \geq \bar{c}, \bar{w} \geq \overline{0}$

Example : Find the dual of the following Primal.
$\mathrm{a}=3 \quad \operatorname{Min} \mathrm{z}_{\mathrm{x}}=2 \mathrm{x}_{2}+5 \mathrm{x}_{3}$
$a \leq 3 \quad$ s.t. $x_{1}+x_{2} \geq 2,2 x_{1}+x_{2}+6 x_{3} \leq 6$,
$\mathrm{a} \geq 3 \quad \mathrm{x}_{1}-\mathrm{x}_{2}+3 \mathrm{x}_{3}=4, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0$
$-\mathrm{a} \leq-3$
Answer: $\quad \operatorname{Max} z_{x}^{\prime}=-2 x_{2}-5 x_{3} \quad\left(z_{x}^{\prime}=-z_{x}\right)$
$-x_{1}-x_{2} \leq-2,2 x_{1}+x_{2}+6 x_{3} \leq 6$
$x_{1}-x_{2}+3 x_{3} \leq 4, \quad-\left(x_{1}-x_{2}+3 x_{3}\right) \leq-4, x_{1}, x_{2}, x_{3} \geq 0$
$\operatorname{Max} z_{x}^{\prime}=-2 x_{2}-5 x_{3}$
s.t. $\quad-x_{1}-x_{2} \leq-2$

$$
2 x_{1}+x_{2}+6 x_{3} \leq 6
$$

$$
x_{1}-x_{2}+3 x_{3} \leq 4
$$

$$
-x_{1}+x_{2}-3 x_{3} \leq-4, \quad x_{1}, x_{2}, x_{3} \geq 0
$$

Standard: $\quad \operatorname{Max} Z_{x}^{\prime}=\left[\begin{array}{lll}0 & -2 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
s.t. $\left[\begin{array}{ccc}-1 & -1 & 0 \\ 2 & 1 & 6 \\ 1 & -1 & 3 \\ -1 & 1 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \leq\left[\begin{array}{c}-2 \\ 6 \\ 4 \\ -4\end{array}\right], x_{1}, x_{2}, x_{3} \geq 0$

Dual: $\quad \operatorname{Min} \mathrm{z}_{\mathrm{w}}=-2 \mathrm{w}_{1}+6 \mathrm{w}_{2}+4 \mathrm{w}_{3}-4 \mathrm{w}_{4}$
s.t. $\left[\begin{array}{cccc}-1 & 2 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 0 & 6 & 3 & -3\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3} \\ w_{4}\end{array}\right] \geq\left[\begin{array}{c}0 \\ -2 \\ -5\end{array}\right], \quad w_{1}, w_{2}, w_{3}, w_{4} \geq 0$
$\operatorname{Min} z_{w}=-2 w_{1}+6 w_{2}+4\left(w_{3}-w_{4}\right)$

$$
-w_{1}+2 w_{2}+1\left(w_{3}-w_{4}\right) \geq 0
$$

$$
-w_{1}+w_{2}-1\left(w_{3}-w_{4}\right) \geq-2
$$

$$
6 w_{2}+3\left(w_{3}-w_{4}\right) \geq-5, w_{1}, w_{2}, w_{3}, w_{4} \geq 0
$$

Let $w_{3}^{\prime}=w_{3}-w_{4}$ then w_{3}^{\prime} is unrestricted.
$\Rightarrow \quad \operatorname{Min} z_{w}=-2 w_{1}+6 w_{2}+4 w_{3}^{\prime}$
s.t. $\quad-w_{1}+2 w_{2}+w_{3}^{\prime} \geq 0$

$$
\begin{aligned}
& -w_{1}+w_{2}-w_{3}^{\prime} \geq-2 \\
& 6 w_{2}+3 w_{3}^{\prime} \geq-5, \quad w_{2}, w_{2} \geq 0
\end{aligned}
$$

w_{3} is unrestricted.
Observation : Third constraint in primal is equation. Third variable in its dual is unrestricted in sign.
Example : Find dual of

$$
\operatorname{Min} z_{x}=2 x_{1}+3 x_{2}+4 x_{3}
$$

s.t. $\quad 2 x_{1}+3 x_{2}+5 x_{3} \geq 2, \quad 3 x_{1}+4 x_{2}+6 x_{3} \leq 5$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0, \mathrm{x}_{3} \text { unrestricted. }
$$

Answer: $\quad \operatorname{Max} z_{x}^{\prime}=-2 x_{1}-3 x_{2}-4 x_{3}$
s.t. $\quad-2 x_{1}-3 x_{2}-5 x_{3} \leq-2$

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+6 x_{3} \leq 5, \quad x_{2}, x_{2} \geq 0 \\
& x_{3}=x_{4}-x_{5}, x_{4}, x_{5} \geq 0 \\
& \operatorname{Max} z_{x}^{\prime}=-2 x_{1}-3 x_{2}-4\left(x_{4}-x_{5}\right) \\
& -2 x_{1}-3 x_{2}-5\left(x_{4}-x_{5}\right) \leq-2 \\
& 3 x_{1}+4 x_{2}+6\left(x_{4}-x_{5}\right) \leq 5, x_{1}, x_{2}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

Standard Primal : $\quad \operatorname{Max} z_{x}^{\prime}=\left[\begin{array}{llll}-2 & -3 & -4 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{4} \\ x_{5}\end{array}\right]$

$$
\left[\begin{array}{cccc}
-2 & -3 & -5 & 5 \\
3 & 4 & 6 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4} \\
x_{5}
\end{array}\right] \leq\left[\begin{array}{c}
-2 \\
5
\end{array}\right], \quad x_{1}, x_{2}, x_{4}, x_{5} \geq 0
$$

$\operatorname{Min} z_{w}=-2 w_{1}+5 w_{2}$
s.t. $\quad\left[\begin{array}{cc}-2 & 3 \\ -3 & 4 \\ -5 & 6 \\ 5 & -6\end{array}\right]\left[\begin{array}{c}w_{1} \\ w_{2}\end{array}\right] \geq\left[\begin{array}{c}-2 \\ -3 \\ -4 \\ 4\end{array}\right], w_{1}, w_{2} \geq 0$
$\operatorname{Min} z_{w}=-2 w_{1}+5 w_{2}$
$-2 w_{1}+3 w_{2} \geq-2,-3 w_{1}+4 w_{2} \geq-3$

$$
\left.\frac{-5 w_{1}+6 w_{2} \geq-4}{5 w_{1}-6 w_{2} \leq 4} \cdot 5 w_{1}-6 w_{2} \geq 4\right] \Rightarrow 5 w_{1}-6 w_{2}=4
$$

Observation : $3^{\text {rd }}$ variable in primal is unrestricted. $3^{\text {rd }}$ constraint in its dual is an equation.
Standard Primal : $\quad \operatorname{Max} z_{x}=\bar{c}^{\top} \bar{x}$
s.t. $\quad A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$

Dual:

$$
\operatorname{Min} z_{w}=\bar{b}^{\top} \bar{w}
$$

s.t.

$$
\mathrm{A}^{\top} \overline{\mathrm{w}} \geq \overline{\mathrm{c}}, \overline{\mathrm{w}} \geq \overline{0}
$$

Theorem : The dual of the dual of a given primal is the primal.
Proof : Consider a primal

$$
\begin{equation*}
\operatorname{Max} z_{x}=\bar{c}^{\top} \bar{x} \tag{I}
\end{equation*}
$$

s.t. $\quad A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$

Dual of the above primal is

$$
\operatorname{Min} z_{w}=\bar{b}^{\top} \bar{w}
$$

s.t.

$$
\begin{equation*}
\mathrm{A}^{\top} \overline{\mathrm{w}} \geq \overline{\mathrm{c}}, \overline{\mathrm{w}} \geq \overline{0} \tag{II}
\end{equation*}
$$

The corresponding primal is,

$$
\begin{equation*}
\operatorname{Max}-\mathrm{z}_{\mathrm{w}}=-\bar{b}^{\top} \overline{\mathrm{w}} \tag{III}
\end{equation*}
$$

s.t. $\quad-A^{\top} \bar{w} \leq-\bar{c}, \bar{w} \geq \overline{0}$

Observe that (II) and (III) are same.
Consider dual of (III)
(III)

$$
\operatorname{Max}\left(-z_{w}\right)=-\bar{b}^{\top} \bar{w}
$$

s.t.

$$
-A^{\top} \bar{w} \leq-\bar{c}, \quad \bar{w} \geq 0
$$

$\operatorname{Min} z_{u}=-\bar{c}^{\top} \bar{u}$
s.t.

$$
\begin{equation*}
\left(-\mathrm{A}^{\top}\right)^{\top} \overline{\mathrm{u}} \geq-\overline{\mathrm{b}}, \quad \overline{\mathrm{u}} \geq \overline{0} \tag{IV}
\end{equation*}
$$

Standard form of (IV) is,

$$
\operatorname{Max}\left(-\mathbf{z}_{\mathrm{u}}\right)=-(-\overline{\mathrm{c}})^{\top} \overline{\mathrm{u}}=\overline{\mathrm{c}}^{\top} \overline{\mathrm{u}}
$$

s.t. $\quad-A \bar{u} \geq-\bar{b}, \bar{u} \geq 0 \Rightarrow+A \bar{u} \leq \bar{b}, \bar{u} \geq 0$

Thus we have,

$$
\begin{equation*}
\operatorname{Max} z_{u}^{\prime}=-\bar{c}^{\top} \bar{u}, \quad A \bar{u} \leq \bar{b}, \quad \bar{u} \geq 0 \tag{IV}
\end{equation*}
$$

Observe that $(\mathrm{I})=(\mathrm{V})$
Thus dual of dual is primal.

Theorem : If \bar{x} is any FS to primal problem and \bar{w} is any FS to the dual problem then,

$$
\begin{array}{ll}
& \bar{c}^{\top} \bar{x} \leq \bar{b}^{\top} \bar{w} \\
\text { i.e. } \quad & \sum_{i=1}^{n} c_{i} x_{i} \leq \sum_{i=1}^{m} b_{i} w_{i}
\end{array}
$$

Proof : Primal is Max $z_{x}=\bar{c}^{\top} \bar{x}$ s.t. $A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$
Dual is $\operatorname{Min} z_{w}=\bar{b}^{\top} \bar{w}$ s.t. $A^{\top} \bar{w} \geq \bar{c}, \bar{w} \geq 0$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \leq\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{1 n}
\end{array}\right], \bar{x} \geq \overline{0} \quad \quad A_{m \times n} \bar{x}_{n \times 1}=b_{m \times 1}
$$

i.e. $\quad \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1,2,3, \ldots, n$

$$
\begin{aligned}
& A^{\top} \bar{w} \geq \bar{c} \Rightarrow\left[\begin{array}{ccccc}
a_{11} & a_{21} & a_{31} & \cdots & a_{m 1} \\
a_{12} & a_{22} & a_{32} & \cdots & a_{m 2} \\
a_{13} & a_{23} & a_{33} & \cdots & a_{m 3} \\
\vdots & \vdots & \vdots & & \\
a_{1 n} & a_{2 n} & a_{3 n} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right] \geq\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \\
& a_{1 k} w_{1}+a_{2 k} w_{2}+a_{3 k} w_{3}+\ldots .+a_{m k} w_{m} \geq c_{k} \\
& \sum_{p=1}^{m} a_{p k} w_{p} \geq c_{k}, k=1,2,3, \ldots ., n \\
& \sum_{i=1}^{n} c_{i} x_{i} \leq \sum_{i=1}^{n}\left[\sum_{p=1}^{m} a_{p i} w_{p}\right] x_{i}=\sum_{p=1}^{m} w_{p}\left(\sum_{i=1}^{n} a_{p i} x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\sum_{i=1}^{n} c_{i} x_{i} & \leq \sum_{p=1}^{m} w_{p}\left(\sum_{j=1}^{n} a_{p j} x_{j}\right) \leq \sum_{p=1}^{m} w_{p} b_{p} \\
= & \bar{c} \cdot \bar{x} \leq \bar{b} \cdot \bar{w} \\
\bar{c} \cdot \bar{x}= & \left(c_{1} c_{2} \cdots c_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\sum_{i=1}^{n} c_{i} x_{i}=\bar{c}^{\top} \bar{x} \\
& \bar{c}^{\top} \bar{x}=\bar{b}^{\top} \bar{w}
\end{aligned}
\end{aligned}
$$

Theorem : If $\hat{\bar{x}}$ is a FS to the primal and $\widehat{\bar{w}}$ is a FS to its dual such that $\overline{\mathrm{c}} \cdot \hat{\overline{\mathrm{x}}}=\overline{\mathrm{b}} \cdot \hat{\overline{\mathrm{w}}}$ then $\hat{\bar{x}}$ is an optimal solution to the primal and $\widehat{\overline{\mathrm{w}}}$ is an optimal solution to the dual.

Proof: We know that if \bar{x} is a FS to the primal and $\hat{\bar{w}}$ is a FS to its dual then $\bar{c} \cdot \bar{x} \leq \overline{\mathrm{b}} \cdot \hat{\overline{\mathrm{w}}}$.
Thus $\overline{\mathrm{c}} \cdot \overline{\mathrm{x}} \leq \overline{\mathrm{b}} \cdot \hat{\overline{\mathrm{w}}}=\overline{\mathrm{c}} \cdot \hat{\overline{\mathrm{x}}} \Rightarrow \overline{\mathrm{c}} \cdot \overline{\mathrm{x}} \leq \overline{\mathrm{c}} \cdot \hat{\overline{\mathrm{x}}}$
If \bar{x} is a FS to the primal then, $\overline{\mathrm{c}} \cdot \overline{\mathrm{x}} \leq \overline{\mathrm{c}} \cdot \hat{\overline{\mathrm{x}}} \Rightarrow \overline{\mathrm{c}} \cdot \hat{\bar{x}}$ is maximum.
$\Rightarrow \quad \hat{\bar{x}}$ is an optimal solution to the primal.
Similarly if \bar{w} is any $F S$ to its dual $\bar{c} \cdot \hat{\bar{x}} \leq \overline{\mathrm{b}} \cdot \overline{\mathrm{w}}$.
But $\quad \bar{c} \cdot \hat{\bar{x}} \leq \overline{\mathrm{b}} \cdot \hat{\overline{\mathrm{w}}}$
$\Rightarrow \quad \overline{\mathrm{b}} \cdot \widehat{\overline{\mathrm{w}}} \leq \overline{\mathrm{b}} \cdot \overline{\mathrm{w}} \Rightarrow \overline{\mathrm{b}} \cdot \widehat{\overline{\mathrm{w}}} \quad$ is minimum.
$\Rightarrow \quad \hat{\mathrm{w}}$ is an optimum solution to the dual.

Theorem : (Basic Duality Theorem)

If $\bar{x}_{0}\left(\bar{w}_{0}\right)$ is an optimum solution to the primal (dual) then there exist a feasible solution $\overline{\mathrm{w}}_{0}\left(\overline{\mathrm{x}}_{0}\right)$ to the dual (primal) such that $\overline{\mathrm{c}} \cdot \overline{\mathrm{x}}_{0}=\overline{\mathrm{b}} \cdot \overline{\mathrm{w}}_{0}$.

Proof : Primal $z_{x}=\bar{c} \cdot \bar{x}$ s.t. $A \bar{x} \leq \bar{b}, \bar{x} \geq \overline{0}$
$\operatorname{Max} z_{x}=\bar{c} \cdot \bar{x}$ s.t. $A \bar{x}+I \bar{x}_{5}=\bar{b}, \bar{x}, \overline{0}, \bar{x}_{5} \geq \overline{0}$
Let $\bar{x}_{0}=\left[\overline{\mathrm{x}}_{\mathrm{B}} \overline{\mathrm{o}}\right]$ be an optimum solution to the primal where $\overline{\mathrm{X}}_{\mathrm{B}}$ is the optimum BFS given by $\bar{x}_{B}=\bar{B}^{1} \mathrm{~b}$. Then the optimum primal solution is $\mathrm{z}=\overline{\mathrm{C}} \overline{\mathrm{x}}_{0}=\overline{\mathrm{c}}_{\mathrm{B}} \overline{\mathrm{X}}_{\mathrm{B}}$.

Where $\overline{\mathrm{c}}_{\mathrm{B}}$ is cost vector associated with $\overline{\mathrm{x}}_{\mathrm{B}}$.

$$
\begin{aligned}
\Delta_{\mathrm{j}}=\mathrm{c}_{\mathrm{B}} \cdot \overline{\mathrm{x}}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} & =\overline{\mathrm{c}}_{\mathrm{B}} \cdot \overline{\mathrm{~B}}^{1} \mathrm{a}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} & & \forall \overline{\mathrm{a}}_{\mathrm{j}} \in \mathrm{~A} \\
& =\overline{\mathrm{c}}_{\mathrm{B}} \cdot \overline{\mathrm{~B}}^{1} \mathrm{e}_{\mathrm{j}}-0 & & \overline{\mathrm{e}}_{\mathrm{j}} \in \mathrm{I}
\end{aligned}
$$

Basic Duality Theorem :

If $\bar{x}_{0}\left(\bar{w}_{0}\right)$ is an optimum solution to the primal (dual) then there exist a feasible solution $\bar{w}_{0}\left(\bar{x}_{0}\right)$ to the dual s.t. $\overline{\mathrm{c}}^{\top} \overline{\mathrm{x}}_{0}=\overline{\mathrm{b}}^{\top} \overline{\mathrm{w}}_{0}$.

Proof: Primal Max $z_{x}=\bar{c}^{\top} \bar{x}$ s.t. $A \bar{x} \leq \bar{b}$
Consider Max $z_{x}=\bar{c}^{\top} \bar{x}$ s.t. $A \bar{x}+\mid \bar{x}_{5}=\bar{b}$

$$
\left.A_{m \times n}, I_{m \times m} \text { identity } \underset{m \times(n+m)}{[A} \quad 1\right]\left[\begin{array}{cc}
\bar{x} \\
\bar{x}_{5}
\end{array}\right]_{(n+m) \times 1}=\bar{b}
$$

$A=\left[\begin{array}{ll}B & C\end{array}\right]$ where $|B| \neq 0$ then $\bar{X}_{B}=\bar{B}^{1} b$.
Let $\bar{x}_{0}=\left[\begin{array}{c}\bar{x}_{B} \\ \overline{0}\end{array}\right]$ be an optimum solution to the primal where $\bar{x}_{B} \in R^{m}, \overline{0} \in R^{n-m}$ then $\overline{\mathrm{x}}_{\mathrm{B}}=\overline{\mathrm{B}}^{1} \overline{\mathrm{~b}}$.

Therefore $\mathrm{z}=\overline{\mathrm{C}}^{\top} \overline{\mathrm{x}}_{0}=\overline{\mathrm{C}}_{\mathrm{B}}^{\top} \overline{\mathrm{x}}_{\mathrm{B}}$ where $\overline{\mathrm{C}}_{\mathrm{B}}$ is cost vector corresponding to $\overline{\mathrm{x}}_{\mathrm{B}}$.

$$
\begin{aligned}
\Delta_{j}=\bar{c}_{B}^{\top} \bar{x}_{j}-c_{j}= & \bar{c}_{B}^{\top} \bar{B}^{1} \bar{a}_{j}-c_{j}, j=1,2,3, \ldots, n \\
& =\bar{c}_{B}^{\top} \bar{B}^{1} e_{j}-0, j=n+1, \ldots . n+m
\end{aligned}
$$

Since $\overline{\mathrm{X}}_{0}$ is optimal $\Delta_{\mathrm{j}} \geq 0$.

$$
\begin{aligned}
\therefore \quad & \overline{\mathrm{c}}_{B}^{\top} \bar{B}^{-1} a_{j}-c_{j} \geq 0, j=1,2,3, \ldots ., n \\
& \overline{\mathrm{c}}_{B}^{\top} \bar{B}^{-1} e_{j} \geq 0, j=n+1, n+2, \ldots . n+m \\
& \overline{\mathrm{c}}_{B}^{\top} \bar{B}^{-1} a_{j} \geq c_{j}, j=1,2,3, \ldots, n \\
& {\left[\begin{array}{llll}
\overline{\mathrm{C}}_{B}^{\top} \bar{B}^{-1} a_{1} & \overline{\mathrm{c}}_{B}^{\top} \bar{B}^{1} a_{2} & \cdots & \overline{\mathrm{c}}_{B}^{\top} \bar{B}^{1} a_{n}
\end{array}\right] \geq\left[\begin{array}{lllll}
\mathrm{c}_{1} & c_{2} & c_{3} & \cdots & c_{n}
\end{array}\right] }
\end{aligned}
$$

$$
\overline{\mathrm{C}}_{\mathrm{B}}^{\top} \overline{\mathrm{B}}^{1} \geq \overline{\mathrm{C}}^{\top} \text { and } \overline{\mathrm{C}}_{\mathrm{B}}^{\top} \overline{\mathrm{B}}^{-1} e_{j} \geq 0, \quad \mathrm{j}=\mathrm{n}+1, \ldots . \mathrm{n}+\mathrm{m}
$$

Put $\quad \overline{\mathrm{C}}_{\mathrm{B}}^{\top} \overline{\mathrm{B}}^{1}=\overline{\mathrm{w}}_{0}^{\top}$ (say) $\overline{\mathrm{w}}_{0} \in \mathrm{R}^{m}$
Then $\quad \bar{w}_{0}^{\top} \mathrm{A} \geq \overline{\mathrm{c}}^{\top}$ or $\mathrm{A}^{\top} \overline{\mathrm{w}}_{0} \geq \overline{\mathrm{c}}$.
Since $\bar{C}_{B}^{\top} \bar{B}^{1} e_{j} \geq 0, \bar{C}_{B}^{\top} \bar{B}^{1} \geq \overline{0}$ i.e. $\bar{w}_{0}^{\top} \geq \overline{0}$
Thus $\quad \mathrm{A}^{\top} \overline{\mathrm{w}}_{0} \geq \overline{\mathrm{c}}, \overline{\mathrm{w}}_{0} \geq \overline{0}$
i.e. $\overline{\mathrm{w}}_{0}$ is feasible solution to the dual.

$$
\overline{\mathrm{b}}^{\top} \bar{w}_{0}=\bar{w}^{\top} \overline{\mathrm{b}}=\overline{\mathrm{c}}_{B}^{\top} \bar{B}^{-1} \overline{\mathrm{~b}}=\overline{\mathrm{c}}_{B}^{\top} \bar{x}_{B}
$$

Since $\bar{b}^{\top} \bar{w}_{0}=\bar{C}_{B}^{\top} \bar{X}_{B}$
$\overline{\mathrm{w}}_{0}$ is an optimum solution to the dual.
Similarly starting from dual problem we can reach to primal solution.
Theorem : If $\mathrm{k}^{\text {th }}$ constraint in the primal is an equality then the dual variable w_{k} is unrestricted in sign.

Proof : Primal

$$
\operatorname{Max} z_{x}=\bar{c}^{\top} \bar{x}
$$

s.t. $\quad a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots . .+a_{1 n} x_{n} \leq b_{1}$

$$
\begin{aligned}
& a_{k 1} x_{1}+a_{k 2} x_{2}+a_{k 3} x_{3}+\ldots .+a_{k n} x_{n} \leq b_{k} \\
& -a_{k 1} x_{1}-a_{k 2} x_{2}-a_{k 3} x_{3}-\ldots . .-a_{k n} x_{n} \leq-b_{k} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots .+a_{m n} x_{n} \leq b_{m}
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3}, \ldots . ., x_{n} \geq 0
$$

Dual of above primal will be,

$$
\operatorname{Min} z_{w}=b_{1} w_{1}+b_{2} w_{2}+\ldots .+b_{k} w_{k}^{\prime}-b_{k} w_{k}^{\prime \prime}+b_{k+1} w_{k+1}+\ldots+b_{m} w_{m}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc}
a_{11} & a_{21} & \cdots & a_{k 1} & -a_{k 1} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{k 2} & -a_{k 2} & \cdots & a_{m 2} \\
a_{13} & a_{23} & \cdots & a_{k 3} & -a_{k 3} & \cdots & a_{m 3} \\
\vdots & \vdots & & \vdots & \vdots & & \\
a_{1 n} & a_{2 n} & \cdots & a_{k n} & -a_{k n} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{k}^{\prime} \\
w_{k}^{\prime \prime} \\
\vdots \\
w_{m}
\end{array}\right] \geq\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{n}
\end{array}\right]} \\
& w_{1}, w_{2}, w_{3}, \ldots, w_{k}^{\prime}, w_{k}^{\prime \prime}, \ldots, w_{m} \geq 0 \\
& \operatorname{Min} z_{w}=b_{1} w_{1}+b_{2} w_{2}+\ldots .+b_{k}\left(w_{k}^{\prime}-w_{k}^{\prime \prime}\right)+\ldots . .+b_{m} w_{m}
\end{aligned}
$$

s.t. $\quad a_{11} w_{1}+a_{21} w_{2}+\ldots .+a_{k 1}\left(w_{k}^{\prime}-w_{k}^{\prime \prime}\right)+\ldots .+a_{m 1} w_{m} \geq b_{1}$

$$
a_{12} w_{1}+a_{22} w_{2}+\ldots .+a_{k 2}\left(w_{k}^{\prime}-w_{k}^{\prime \prime}\right)+\ldots .+a_{m 2} w_{m} \geq b_{2}
$$

$$
a_{1 n} w_{1}+a_{2 n} w_{2}+\ldots .+a_{k n}\left(w_{k}^{\prime}-w_{k}^{\prime \prime}\right)+\ldots . .+a_{m n} w_{m} \geq b_{n}
$$

$$
\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{k}}^{\prime}, \mathrm{w}_{\mathrm{k}}^{\prime \prime}, \ldots ., \mathrm{w}_{\mathrm{m}} \geq 0
$$

Put $\mathrm{w}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}}^{\prime}-\mathrm{w}_{\mathrm{k}}^{\prime \prime}$ then w_{k} is unrestricted.
Thus we have,

$$
\operatorname{Min} z_{w}=\sum_{i=1}^{m} b_{i} w_{i}
$$

s.t. $\quad a_{11} w_{1}+a_{21} w_{2}+\ldots .+a_{k 1} w_{k}+\ldots .+a_{m 1} w_{m} \geq c_{1}$

$$
\mathrm{a}_{12} \mathrm{w}_{1}+\mathrm{a}_{22} \mathrm{w}_{2}+\ldots .+\mathrm{a}_{\mathrm{k} 2} \mathrm{w}_{\mathrm{k}}+\ldots . .+\mathrm{a}_{\mathrm{m} 2} \mathrm{w}_{\mathrm{m}} \geq \mathrm{c}_{2}
$$

$$
a_{1 n} w_{1}+a_{2 n} w_{2}+\ldots .+a_{k n} w_{k}+\ldots . .+a_{m n} w_{m} \geq c_{n}
$$

$\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{k}-1}, \mathrm{w}_{\mathrm{k}+1}, \ldots, \mathrm{w}_{\mathrm{m}} \geq 0, \mathrm{w}_{\mathrm{k}}$ unrestricted $\mathrm{k}^{\text {th }}$ variable in dual is unrestricted in sign.
Theorem : If $p^{\text {th }}$ variable in primal is unrestricted in sign then $p^{\text {th }}$ constraint of the dual is an equation.

Proof: $\quad \operatorname{Max} z_{x}=c_{1} x_{1}+c_{2} x_{2}+\ldots .+c_{p} x_{p}+\ldots . .+c_{n} x_{n}$
s.t. $\quad a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots .+a_{1 p} x_{p}+\ldots .+a_{1 n} x_{n} \leq b_{1}$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots .+a_{2 p} x_{p}+\ldots .+a_{2 n} x_{n} \leq b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots .+a_{m p} x_{p}+\ldots .+a_{m n} x_{n} \leq b_{n} \\
& x_{1}, x_{2}, \ldots, x_{p-1}, x_{p+1}, \ldots . ., x_{n} \geq 0, x_{p} \text { unrestricted. }
\end{aligned}
$$

Since x_{p} is unrestricted write

$$
x_{p}=x_{p}^{\prime}-x_{p}^{\prime \prime} \quad \text { s.t. } \quad x_{p}^{\prime} \geq 0, x_{p}^{\prime \prime} \geq 0
$$

Then primal becomes,

$$
\operatorname{Max} z_{x}=c_{1} x_{1}+\ldots .+c_{p}\left(x_{p}^{\prime}-x_{p}^{\prime \prime}\right)+\ldots+c_{n} x_{n}
$$

s.t. $\quad a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 p}\left(x_{p}^{\prime}-x_{p}^{\prime \prime}\right)+\ldots .+a_{1 n} x_{n} \leq b_{1}$

$$
\begin{aligned}
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots .+a_{m p}\left(x_{p}^{\prime}-x_{p}^{\prime \prime}\right)+\ldots .+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots ., x_{p-1}, x_{p}^{\prime}, x_{p}^{\prime \prime}, \ldots, x_{n} \geq 0
\end{aligned}
$$

The dual problem is,

$$
\operatorname{Max} z_{w}=b_{1} w_{1}+b_{2} w_{2}+\ldots .+b_{m} w_{m}
$$

s.t. $\left[\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{m 1} \\ a_{12} & a_{22} & & a_{m 2} \\ \vdots & \vdots & & \vdots \\ a_{1 p} & a_{2 p} & & a_{m p} \\ -a_{1 p} & -a_{2 p} & & -a_{m p} \\ \vdots & \vdots & & \vdots \\ a_{1 n} & a_{2 n} & & a_{m n}\end{array}\right]\left[\begin{array}{c}w_{1} \\ w_{2} \\ w_{3} \\ \vdots \\ w_{m}\end{array}\right] \geq\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{p} \\ -c_{p} \\ \vdots \\ c_{n}\end{array}\right]$
i.e. $\quad a_{11} w_{1}+a_{21} w_{2}+a_{31} w_{3}+\ldots . .+a_{m 1} w_{m} \geq c_{1}$

$$
\mathrm{a}_{12} \mathrm{w}_{1}+\mathrm{a}_{22} \mathrm{w}_{2}+\mathrm{a}_{32} \mathrm{w}_{3}+\ldots .+\mathrm{a}_{\mathrm{m} 2} \mathrm{w}_{\mathrm{m}} \geq \mathrm{c}_{2}
$$

$$
a_{1 p} w_{1}+a_{2 p} w_{2}+a_{3 p} w_{3}+\ldots .+a_{m p} w_{m} \geq c_{p}
$$

$$
\begin{gathered}
-a_{1 p} w_{1}-a_{2 p} w_{2}-a_{3 p} w_{3}-\ldots . .-a_{m p} w_{m} \geq-c_{p} \\
\vdots \\
a_{1 n} w_{1}+a_{2 n} w_{2}+a_{3 n} w_{3}+\ldots .+a_{m n} w_{m} \geq c_{n}
\end{gathered}
$$

p and $(p+1)^{\text {th }}$ constraint implies.

$$
\mathrm{a}_{1 \mathrm{p}} \mathrm{w}_{1}+\mathrm{a}_{2 \mathrm{p}} \mathrm{w}_{2}+\mathrm{a}_{3 \mathrm{p}} \mathrm{w}_{3}+\ldots . .+\mathrm{a}_{\mathrm{mp}} \mathrm{w}_{\mathrm{m}}=\mathrm{c}_{\mathrm{p}}
$$

Thus $p^{\text {th }}$ constraint in the dual is an equation.

REVISED SIMPLEX METHOD

The usual simplex method used so far is a lengthy algebraic procedure and the calculations in the usual simplex method, are tedius and we have the following disadvantages :
i) It is very time-consuming even when considered on the time scal of electronic digital computers. Hence it is not an efficient computational procedure.
ii) In the usual simplex method, many numbers are computed and stored which are either never used at the current iteration or are needed only in an indirect way.

Keeping this in mind, a revised simplex method has been developed to overcome these disadvantages, due to which speed of the calculations is incread by reducing the required amount of computational effort. In general, approach of the revised simplex method is identical to that of the ordinary simplex method.

Standard Forms for Revised Simplex Method

There are two standard forms for the revised simplex method :
Standard Form I : In this form, it is assumed that an identity (basis) matrix is obtained after introducing slack variables only.

Standard Form II : If artificial variables are needed for an initial identity (basis) matrix, then two-phase method of ordinary simplex method is used in a slightly different way to handle artificial variables.

Formulation of LP Problem in Standard Form I

A linear programming problem in standard form is :
Max. $z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}+0 x_{n+1}+0 x_{n+2}+\ldots 0 x_{n+m}$
Subject to
$\left.\begin{array}{lcc}a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+x_{n+1} & =b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}+x_{n+2} & =b_{2} \\ : & : & : \\ a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}+x_{n+m} & =b_{m}\end{array}\right\}$
and $\quad x_{1}, x_{2}, \ldots, x_{n+m} \geq 0$
where the starting basis matrix B is an $m \times m$ identity matrix.
In the revised simplex form, the objective function (3.1) is also considered as if it were another constraint in which z is as large as possible and unrestricted in sign.

Thus (3.1) and (3.2) may be written in a compact form as:

$$
\left.\begin{array}{cc}
z-c_{1} x_{1}-c_{2} x_{2}-\ldots-c_{n} x_{n}-0 x_{n+1}-0 x_{n+2}-\ldots-0 x_{n+m} & =0 \tag{3.4}\\
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+x_{n+1} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}+x_{n+2} & =b_{2} \\
: & : \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}+x_{n+m} & \vdots \\
=b_{m}
\end{array}\right\}
$$

which can be considered as a system of $m+1$ simultaneous equations in $(n+m+1)$ number of variables $\left(z, x_{1}, x_{2}, \ldots, x_{n+m}\right)$. Here our aim is to find the solution of the system (3.4) such that z is as large as possible.

Now, the system (3.4) may be re-written as follows:

$$
\left.\begin{array}{cccc}
\text { 1. } x_{0}+a_{01} x_{1}+a_{02} x_{2}+\ldots+a_{0 n} x_{n}+a_{0, n 1} x_{n+1}+\ldots+a_{0, n+m} x_{n+m} & =0 \\
0 . x_{0}+a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+1 . x_{n+1}+\ldots .+0 . x_{n+m} & =b_{1} \\
: & : & : & : \tag{3.5}\\
0 . x_{0}+a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}+0 x_{n+1}+\ldots .+1 x_{n+m} & =b_{m}
\end{array}\right]
$$

Again, writing the system (3.5) in matrix form,

$$
\left[\begin{array}{ccccccc}
1 & \vdots & a_{01} & a_{02} \ldots a_{0 n} & a_{0, n+1} & a_{0, n+m} \tag{3.6}\\
\ldots . . & \ldots . & \ldots \ldots \ldots \ldots & \ldots \ldots \ldots, \ldots \ldots \ldots \ldots \\
0 & \vdots & a_{11} & a_{12} \ldots a_{1 n} & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \vdots & a_{m 1} & a_{m 2 \ldots \ldots} \ldots a_{m n} & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
\vdots \\
x_{n+m}
\end{array}\right]=\left[\begin{array}{l}
0 \\
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Using the partitioning of a matrix,

$$
\left[\begin{array}{ll}
1 & a_{0} \tag{3.7}\\
0 & \mathrm{~A}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
\mathrm{x}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{~b}
\end{array}\right]
$$

Where $a_{0}=\left(a_{01}, a_{02}, \ldots, a_{0 m}, \ldots, a_{0, n+m}\right)$ and the remaining symbols have their usual meanings.

The matrix equation (3.7) can be expressed in the original notation form as

$$
\left[\begin{array}{rr}
1 & -C \tag{3.7'}\\
0 & A
\end{array}\right]\left[\begin{array}{l}
\mathrm{z} \\
\mathrm{X}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{~b}
\end{array}\right]
$$

Equation (3.7) or (3.7) is referred to as standard form 1 for the revised simplex method.

Notations for Standard Form I

It is observed that all the vectors have $(m+1)$ components instead of m. Hence superscript ${ }^{(1)}$ is used for all vectors to show that they have $(m+1)$ components in standard form -I .
I) Corresponding to each a_{j} in A a new $(m+1)$-component vector is represented by $\overline{\mathrm{a}}_{\mathrm{j}}{ }^{(1)}$ as :
$\bar{a}_{j}^{(1)}=\left[-c_{j}, a_{1 j}, a_{2 j}, \ldots, a_{m j}\right], j=1,2, \ldots, n+m$
or
$\bar{a}_{j}^{(1)}=\left[a_{0 j}, a_{1 j}, \ldots, a_{m j}\right], j=1,2, \ldots, n+m$
$\overline{\mathrm{a}}_{\mathrm{j}}^{(1)}=\left[\mathrm{a}_{\mathrm{oj}}, \overline{\mathrm{a}}_{\mathrm{j}}\right]$
II) Similarly, corresponding to m -component vector b in $\mathrm{AX}=\mathrm{b}$, we shall represent the $(m+1)$ component vector by ${ }^{(1)}$ given by
$\overline{\mathrm{b}}^{(1)}=\left[0, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{m}}\right]=[0, \overline{\mathrm{~b}}]$
III) The column vector corresponding to z (or x_{0}) is the ($m+1$) component unit vector which is usually denoted by $\overline{\mathrm{e}}_{1}$ and will always be in the first column of the basic matrix B_{1} where the subscript 1 will show that it is of order $(m+1) \times(m+1)$ whose remaining m columns are any $\overline{\mathrm{a}}_{\mathrm{j}}^{(1)}$ such that the corresponding a_{j} are linearly independent and denoted by $\beta_{i}^{(1)}, i=1,2, \ldots, m$ (in some order).

Therefore, $\mathrm{B}_{1}=\left[\overline{\mathrm{e}}_{1}, \beta_{1}^{(1)}, \ldots ., \beta_{\mathrm{m}}^{(1)}\right]$

$$
\begin{equation*}
=\left[\beta^{(1)}, \beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{\mathrm{m}}^{(1)}\right] \tag{3.10}
\end{equation*}
$$

If the basis matrix B for $A X=\bar{b}$ is be represented by

$$
\left[\begin{array}{llll}
\beta_{11} & \beta_{12} & \ldots & \beta_{1 \mathrm{~m}} \\
\beta_{21} & \beta_{22} & \ldots & \beta_{2 \mathrm{~m}} \\
\ldots & \ldots & \ldots & \ldots \\
\beta_{\mathrm{m} 1} & \beta_{\mathrm{m} 2} & \ldots & \beta_{\mathrm{m}}
\end{array}\right]
$$

then, from equation (3.10),
where $-\mathrm{c}_{\mathrm{Bi}}(\mathrm{i}=1,2, \ldots, \mathrm{~m})$ are the coefficients of $\mathrm{x}_{\mathrm{Bi}}(\mathrm{i}=1,2, \ldots, \mathrm{~m})$ in the equation. $z-c_{1} x_{1}-c_{2} x_{2}-\ldots-c_{n} x_{n}-0 x_{n+1}-\ldots-0 x_{n+m}=0$
and

$$
\mathrm{C}_{\mathrm{B}}=\left[\mathrm{c}_{\mathrm{B} 1}, \mathrm{C}_{\mathrm{B} 2}, \ldots, \mathrm{c}_{\mathrm{Bm}}\right]
$$

Hence, the basic matrix B_{1} [in equation (3.11)] can be represented in the partitioned form as

$$
\mathrm{B}_{1}=\left[\begin{array}{cc}
1 & -\mathrm{C}_{\mathrm{B}} \tag{3.12}\\
0 & \mathrm{~B}
\end{array}\right]
$$

Now the right side of (3.12) can be used to obtaine the basis matrix B_{1} in revised simplex method for standard form I.
IV) To compute B_{1}^{-1}

We compute B_{1}^{-1} by applying the rule of matrix algebra,
If $\quad M=\left[\begin{array}{ll}I & Q \\ 0 & R\end{array}\right]$
where R^{-1} exists and is known, then inverse of matrix M is computed by the formula

$$
M^{-1}=\left[\begin{array}{cc}
1 & -Q R^{-1} \tag{3.14}\\
0 & R^{-1}
\end{array}\right]
$$

Now, to apply this rule to computer B_{1}^{-1}, compare the matrices B_{1} (3.12) and M (3.13) to get,
$\mathrm{I}=1, \mathrm{Q}=-\mathrm{C}_{\mathrm{B}}$ and $\mathrm{R}=\mathrm{B}$.
Substituting these values of I, Q, R in the formula (3.13) for matrix inverse, we get,

$$
B_{1}^{-1}=\left[\begin{array}{ll}
1 & C_{B} B^{-1} \tag{3.15}\\
0 & B^{-1}
\end{array}\right]
$$

V) Any $\overline{\mathrm{a}}_{\mathrm{j}}^{(1)}$ (not in the basis matrix B_{1}) can be expressed as the linear combination of column vectors
$\left(\beta_{0}^{(1)}, \beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{m}^{(1)}\right)$
in B_{1}. Therefore,

$$
\begin{align*}
\bar{a}_{j}^{(1)} & =y_{0 j} \beta_{1}^{(1)}+y_{1 j} \beta_{1}^{(1)}+\ldots+y_{m j} \beta_{m}^{(1)} \\
& =\left(y_{0 j}, y_{1 j}, \ldots, y_{m j}\right)\left(\beta_{0}^{(1)}, \beta_{1}^{(1)}, \ldots, \beta_{m}^{(1)}\right) \\
& =\bar{Y}_{j}^{(1)} B_{1} \tag{3.10}
\end{align*}
$$

whic yields

$$
\begin{equation*}
\overline{\mathrm{Y}}_{j}^{(1)}=\mathrm{B}_{1}^{-1} \overline{\mathrm{a}}_{\mathrm{j}}^{(1)} . \tag{3.16}
\end{equation*}
$$

VI) Substituting B^{-1} from (3.15) in (3.16), we get

$$
\begin{align*}
\bar{Y}_{j}^{(1)} & =\left[\begin{array}{ll}
1 & C_{B} B^{-1} \\
0 & B^{-1}
\end{array}\right]\left[\begin{array}{c}
-c_{j} \\
\bar{a}_{j}
\end{array}\right]=\left[\begin{array}{c}
-c_{j}+C_{B} B^{-1} \bar{a}_{j} \\
0+B^{-1} \bar{a}_{j}
\end{array}\right] \\
& =\left[\begin{array}{c}
-c_{j}+z_{j} \\
\bar{Y}_{j}
\end{array}\right]=\left[\begin{array}{c}
z_{j}-c_{j} \\
\bar{Y}_{j}
\end{array}\right]=\left[\begin{array}{c}
\Delta \\
\bar{Y}_{j}
\end{array}\right] \tag{3.17}
\end{align*}
$$

We note from result (3.17) that the first component of $\bar{Y}_{j}^{(1)}$ is $\left(z_{j}-c_{j}\right)$ or $\left(\Delta_{\mathrm{j}}\right)$ which is always used to decide the optimality.

Note: The advantage of treating the objective function as one of the constraints is that, $z_{j}-c_{j}$ or $\left(\Delta_{j}\right)$ for any $\overline{\mathrm{a}}_{\mathrm{j}}$ not in the basis can be easily computed by taking the product of first row of B_{1}^{-1}, with $\overline{\mathrm{a}}_{\mathrm{j}}^{(1)}$ not in the basis, that is,

$$
\Delta_{\mathrm{j}}=\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}=\left(\text { first row of } \mathrm{B}_{1}^{-1}\right) \times \overline{\mathrm{a}}_{\mathrm{j}}^{(1)} \text { not in the basis. }
$$

VII) The $(m+1)$ - component solution vector $X_{B}^{(1)}$ is given by

$$
\begin{aligned}
X_{B}^{(1)} & =B_{1}^{-1} b^{(1)} \\
\text { or } \quad X_{B}^{(1)} & =\left[\begin{array}{ll}
1 & C_{B} B^{-1} \\
0 & B^{-1}
\end{array}\right]\left[\begin{array}{l}
0 \\
\bar{b}
\end{array}\right]=\left[\begin{array}{l}
1 \times 0+C_{B}\left(B^{-1} \bar{b}\right) \\
0 \times 0+B^{-1} \bar{b}
\end{array}\right] \\
& =\left[\begin{array}{c}
C_{B} X_{B} \\
X_{B}
\end{array}\right]=\left[\begin{array}{c}
z \\
X_{B}
\end{array}\right] \quad\left[\text { because } x_{B}=B^{-1} b, c_{B} x_{B}=z\right]
\end{aligned}
$$

Thus,

$$
X_{B}^{(1)}=\left[\begin{array}{c}
C_{B} X_{B} \tag{3.19}\\
X_{B}
\end{array}\right]=\left[\begin{array}{c}
z \\
X_{B}
\end{array}\right]
$$

In (3.19), it is observed that $X_{B}^{(1)}$ is a basic solution (not necessarily feasible, because z may be negative also) for the matrix equation (3.7) corresponding to the basis matrix B_{1}. Also, the first component of $X_{B}^{(1)}$ immediately gives the value of the objective function while the second component X_{B} gives exactly the basic feasible solution to original constraint, $\mathrm{AX}=\mathrm{b}$ corresponding to its basis matrix B.

To Obtain Inverse of Initial Basis Matrix and Initial BFS

As in section 3.4, the inverse of initial basis matrix B_{1} is given by,

$$
\mathrm{B}_{1}^{-1}=\left[\begin{array}{ll}
\mathrm{I} & \mathrm{C}_{\mathrm{B}} \mathrm{~B}^{-1} \tag{3.20}\\
0 & \mathrm{~B}^{-1}
\end{array}\right]
$$

But, the initial basis matrix B for the original problem is always $(m \times m)$ identity matrix $\left(I_{m}\right)$. We note that I_{m} always appears in $(A X=b)$ (if it is not so, it can be made to appear in A by introducing the artifical variables).

Since $B=I_{m}=B^{-1}$

$$
\begin{array}{ll}
& \mathrm{B}_{1}^{-1}=\left[\begin{array}{ll}
1 & \mathrm{C}_{\mathrm{B}} \mathrm{I}_{\mathrm{m}} \\
0 & \mathrm{I}_{\mathrm{m}}
\end{array}\right] \\
\text { or } & \mathrm{B}_{1}^{-1}=\left[\begin{array}{ll}
1 & \mathrm{C}_{\mathrm{B}} \\
0 & \mathrm{I}_{\mathrm{m}}
\end{array}\right]
\end{array}
$$

Furthermore, if after ensuring that all $b_{i} \geq 0$ only the slack variables are needed and the initial basis matrix $B=I_{m}$ appears, then

$$
\mathrm{c}_{\mathrm{B} 1}=\mathrm{C}_{\mathrm{B} 2}=\mathrm{c}_{\mathrm{B} 3}=\ldots=\mathrm{C}_{\mathrm{Bm}}=0 \text {, i. e. } \mathrm{c}_{\mathrm{B}}=0 .
$$

Thus (3.20) becomes

$$
B_{1}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
\hline 0 & I_{m}
\end{array}\right]=\left[\begin{array}{l|lll}
1 & 0 & \ldots & 0 \\
\hline 0 & 1 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
: & : & & : \\
0 & 0 & \ldots & 1
\end{array}\right]=I_{m+1}
$$

Thus, the inverse of the initial basis matrix B will be $B_{1}^{-1}=B_{1}=I_{m+1}$ with which we start the revised simplex procedure.

Then, the initial basic solution is

$$
X_{B}^{(1)}=B_{1}^{-1} \overline{\mathrm{~b}}^{(1)}=I_{m+1} \overline{\mathrm{~b}}^{(1)}=\left[\begin{array}{l}
0 \\
\overline{\mathrm{~b}}
\end{array}\right]
$$

which is feasible.
After obtaining the initial basis matrix inverse $B^{-1}=I_{m+1}$ and an initial basic feasible solution to start with the revised 'simplex 'procudure, we have to construct the starting revised simplex table.

To Construct the Starting Table in Standard Form I.

Since $\mathrm{x}_{0}(=\mathrm{z})$ should always be in the basis, the first column $\beta_{0}^{(1)}=\left(=\bar{e}_{1}\right)$ of initial basis matrix inverse $B^{-1}=I_{m+1}$ will not be removed at any subsequent iteration. The remaining column vectors of B_{1}^{-1} will be $\beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{m}^{(1)}$.

The last column in the revised simplex table will be
$Y_{k}^{(1)}=\left[\begin{array}{c}z_{k}-c_{k} \\ Y_{k}\end{array}\right]=\left[\begin{array}{c}\Delta_{k} \\ Y_{k}\end{array}\right]$
where k is predetermined by the formula
$\Delta_{\mathrm{k}}=\min \Delta_{\mathrm{j}}$ (for those j for which a_{j} is not in B_{1}).
Note : If there is a tie, we can use smallest index j which is an arbitary rule but computationally useful.

Finally, it is conculded that only the column vectors

$$
e_{1}, \beta_{1}^{(1)}, \beta_{2}^{(1)}, \ldots, \beta_{n m}^{(1)} \text { of } B_{1}^{-1}, X_{B}^{(1)} \text { and } Y_{k}^{(1)}
$$

will be needed to construct the revised simplex table.
Now the starting table for revised simplex method can be constructed as follows. Also form a table for those, $\mathrm{a}_{\mathrm{j}}^{(1)}$ which are not in the basis and will be useful to determine the required Δ_{j} 's.

Starting Table in standard form I

Variables in the basis		B_{1}^{-1}				$X_{B}^{(1)}$	$Y_{k}^{(1)}$
	e_{1}	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	--	$\beta_{\mathrm{m}}^{(1)}$		
z	1	0	0	--	0	0	$z_{k}-c_{k}$
$\mathrm{x}_{\mathrm{B} 1}$	0	1	0	--	0	b_{1}	$y_{1 k}$
$\mathrm{x}_{\mathrm{B} 2}$	0	0	1		0	b_{2}	$\mathrm{y}_{2 \mathrm{k}}$
:	.	:	:		:	:	.
:		:	:	:	:	:	.
$\mathrm{x}_{\text {Bm }}$	0	0	0	--	1	b_{m}	$y_{\text {mk }}$

A table for
those $\overline{\mathrm{a}}_{\mathrm{j}}^{(1)}$ which are
not included in the
B_{1}^{-1} of starting table.

Example 3.5

Solve the following linear programming problem by revised simplex method.
Max $z=2 x_{1}+x_{2}$
subject to $3 x_{1}+4 x_{2} \leq 6,6 x_{1}+x_{2} \leq 3, x_{1}, x_{2} \geq 0$.

Solution :

Step : 1 Express the given problem in Standard Form - I

After ensuring that all $b_{i} \geq 0$ and transforming the objective function of originlal problem for maximization of z (if necessary), introduce non - negative slack variables to convert the inequalities to equations. It should be noted that the objective function is also treated as if it were the first constaint equation.

Thus, the given problem is transformed to the following form,

$$
\begin{align*}
& z-2 x_{1}-x_{2}=0 \\
& 3 x_{1}+4 x_{2}+x_{3}=6 \tag{i}\\
& 6 x_{1}+x_{2}+x_{4}=3
\end{align*}
$$

Step : 2 Construct the starting table in revised simplex form
We, proceed to obtain the initial basis matrix B_{1} as an identity matrix and complete all the columns of starting revised simplex table except the last column $Y_{k}^{(1)}$ (which can be done in Step 5)

Applying this step, the system (i) of constraint equations can be expressed in the following matrix form.

$$
\begin{array}{ccccc}
\left(e_{1}\right) & a_{1}^{(1)} & a_{2}^{(1)} & a_{3}^{(1)} & a_{4}^{(1)} \\
\beta_{0}^{(1)} & & & \beta_{1}^{(1)} & \beta_{2}^{(1)}
\end{array}
$$

$$
\left[\begin{array}{c:cccc}
1 & -2 & -1 & 0 & 0 \\
\hdashline 0 & 3 & 4 & 1 & 0 \\
0 & 6 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
6 \\
3
\end{array}\right]
$$

Here the columns $\beta_{0}^{(1)}, \beta_{1}^{(1)}$ and $\beta_{2}^{(1)}$ form the basis matrix B_{1} (whose inverse is also B_{1}, because $B_{1}=I_{3}$ here). Now starting revise simplex table can be constructed as follows:

Table 1

Variable in the basis	B_{1}^{-1}			$X_{B}^{(1)}$	$Y_{k}^{(1)}$
	$\mathrm{e}_{1}(\mathrm{z})$	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$		
z	1	0	0	0	
$\mathrm{x}_{\mathrm{B} 1}=\mathrm{x}_{3}$	0		0	6	
$\mathrm{X}_{\mathrm{B} 2}=\mathrm{X}_{4}$	0		1	3	

Table 2

$\overline{\mathrm{a}}_{1}^{(1)}$	$\overline{\mathrm{a}}_{2}^{(1)}$
-2	-1
3	4
6	1

Step : 3 Computions of $\Delta_{j}=z_{j}-c_{j}$ for $a_{1}^{(1)}$ and $a_{2}^{(1)}$
Applying the formula :
$\Delta_{\mathrm{j}}=\left(\right.$ first row of $\left.\mathrm{B}_{1}^{-1}\right) \times\left(\mathrm{a}_{\mathrm{j}}^{(1)}\right.$ not in the basis),

$$
\begin{aligned}
\Delta_{1} & =\left(\text { first row of } B_{1}^{-1}\right) \times \mathrm{a}_{1}^{(1)}=(1,0,0)(-2,3,6) \\
& =[1 \times(-2)+0 \times 3+0 \times 6]=-2 \\
\Delta_{2} & =\left(\text { first row of } B_{1}^{-1}\right) \times \mathrm{a}_{2}^{(1)} \\
& =(1,0,0)(-1,4,1)=[1 \times(-1)+0 \times 4+0 \times 1]=-1
\end{aligned}
$$

Remark : Instead of computing each required Δ_{j} separately, we can also compute simultaneously in a single step as follows :

$$
\begin{aligned}
\left\{\Delta_{1}, \Delta_{2}\right\} & =\left\{\text { first row of } \mathrm{B}_{1}^{-1}\right\}\left[\mathrm{a}_{1}^{(1)}, \mathrm{a}_{2}^{(1)}\right] \\
& =[1,0,0]\left[\begin{array}{rr}
-2 & -1 \\
3 & 4 \\
6 & 1
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \times(-2)+0 \times 3+0 \times 6 \\
1 \times(-1)+0 \times 4+0 \times 1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right]=\{-2,-1\}
\end{aligned}
$$

which gives the values $\Delta_{1}=-2, \Delta_{2}=-1$ as obtained earlier.

Step: 4

Now apply the usual rule to test the starting solution ($x_{1}=x_{2}=0, x_{3}=6, x_{4}=3$) for optimality.
Since Δ_{1}, Δ_{2} obtained in step 3 are both negative, so the starting basic feasible solution is not optimal. Hence we proceed to determine the entering vector $\bar{a}_{k}^{(1)}$.

Step : 5

Let $\Delta_{\mathrm{k}}=\min \left\{\Delta_{\mathrm{j}}\right\}$ for those j for which $\mathrm{a}_{\mathrm{j}}^{(1)}$ are not in the basis
So, we have
$\Delta_{\mathrm{k}}=\min \left[\Delta_{1}, \Delta_{2}\right]=\min [-2,-1]=-2=\Delta_{1}$
Hence $\mathrm{k}=1$
Hence $a_{1}^{(1)}$ enters the basis and the variables x_{1} will enter the solution.
Now, in order to find the leaving vector we first compute $y_{k}^{(1)}$ for $k=1$.

Step : 6

$$
\text { Since } \bar{Y}_{k}^{(1)}=B_{1}^{-1} \bar{a}_{k}^{(1)}=I_{m+1} \bar{a}_{k}^{(1)}
$$

therefore, $\overline{\mathrm{Y}}_{1}^{(1)}=\overline{\mathrm{a}}_{1}^{(1)}=(-2,3,6)$.
Now complete the last column $X_{k}^{(1)}$ of starting table 1 by writing $Y_{1}^{(1)}=a_{1}^{(1)}=(-2,3,6)$ in that column. So the starting has grows to the following form.

Table 3

Variable in the basis	$e^{(1)}$ (z)	$\begin{aligned} & \beta_{1}^{(1)} \\ & \left(S_{1}\right) \end{aligned}$	$\begin{aligned} & \beta_{2}^{(1)} \\ & \left(\mathrm{S}_{2}\right) \end{aligned}$	$X_{B}^{(1)}$	$Y_{k}^{(1)}$
z	1	0	0	0	-2
X_{3}	0	1	0	6	3
x_{4}	0	0	1	3	6

Step: 7

The vector $\beta_{\mathrm{r}}^{(1)}$ to be removed from the basis is determined by using the minimum ratio rule (similar to that of ordinary simplex method).

Let $\frac{x_{B r}}{y_{r k}}=\min _{i}\left[\frac{x_{B i}}{y_{i k}}, y_{i k}>0\right]$
Putting $\mathrm{k}=1$ (which has been obtained in step 6)

$$
\frac{x_{\mathrm{Br}}}{y_{\mathrm{r} 1}}=\min _{i}\left[\frac{x_{\mathrm{Bi}}}{y_{i 1}}, y_{i 1}>0\right]=\min \left[\frac{x_{\mathrm{B} 1}}{y_{11}}, \frac{x_{B 2}}{y_{21}}\right]
$$

$$
=\min \left[\frac{6}{3}, \frac{3}{6}\right]=\frac{3}{6}
$$

So $\frac{x_{B r}}{y_{r 1}}=\frac{x_{B 2}}{y_{21}}$ and $r=2$.
Hence the vector $\beta_{2}^{(1)}$ must leave the basis.

Table 4

Variable in the basis		$\beta_{1}^{(1)}$		$X_{B}^{(1)}$	$Y_{k}^{(1)}$	Min ratio rule $\min .\left(\frac{X_{B}}{Y_{1}}\right)$
z	1		0	0	-2	
$\mathrm{x}_{\mathrm{B} 1}=\mathrm{x}_{3}$		1	0	6	3	$6 / 3$
$\mathrm{x}_{\mathrm{B} 2}=\mathrm{x}_{4}$			1	3	6	$3 / 6 \leftarrow$
\downarrow 仡						
Leaving vector $\beta_{2}^{(1)}$ Key element						

Remark : If the $\min _{i}\left[\frac{x_{B i}}{y_{i k}}, y_{i k}>0\right]$ is attained for more than one value of i, the resulting basic feasile solution will be degenerate. In that case, we use the usual techniques to resolve the degeneracy.

Step 8

In order to bring uniformity with the ordinary simplex method adopt the simple matrix transformation rules. Here the intermediate coefficient matrix is :

The column $\overline{\mathrm{e}}_{1}$ will never change. So there is no need to write the column $\overline{\mathrm{e}}_{1}$ in the intermediate coefficient matrix. Also, the vector $Y_{1}^{(1)}$ is going to be replaced by the outgoing vector $\beta_{2}^{(1)}$.

Now, divide the row R_{3} by key element 6 . Then add twice of third row to first, and 3 times of third row to second. In this way, obtain the next matrix.

$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$X_{B}^{(1)}$
0	$1 / 3$	1
1	$-1 / 2$	$9 / 2$
0	$1 / 6$	$1 / 2$

Table 5

Basic Vari.	$\overline{\mathrm{e}}^{(1)}$ (z)	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$X_{B}^{(1)}$	$\begin{aligned} & Y_{k}^{(1)} \\ & (k=2) \end{aligned}$	Min Ratio Rule $\min \left(X_{B} / Y_{2}\right)$	$\mathrm{a}_{4}^{(1)}$	$\mathrm{a}_{2}^{(1)}$
z	1	0	1/3	1	-2/3	$\min \left(X_{B} / Y_{2}\right)$	0	-1
x_{3}	0	1	-1/2	9/2	$7 / 2$	$\frac{9 / 2}{7 / 2} \rightarrow$	0	4
$\rightarrow \mathrm{X}_{1}$	0		$1 / 6$	$1 / 2$	$1 / 6$	$\frac{1 / 2}{1 / 6}$	1	1
		\downarrow	\uparrow	\uparrow				

The improved solution is read from this table as :

$$
z=1, x_{3}=9 / 2, x_{1}=1 / 2, x_{2}=x_{4}=0 .
$$

Step : 9

$$
\begin{aligned}
\left\{\Delta_{4}, \Delta_{2}\right\} & =\left(\text { first row of } \mathrm{B}_{1}^{-1}\right)\left(\mathrm{a}_{4}^{(1)}, \mathrm{a}_{2}^{(1)}\right), \\
& =\left(1,0, \frac{1}{3}\right)\left[\begin{array}{cc}
0 & -1 \\
0 & 4 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{r}
1 \times 0+0 \times 0+\frac{1}{3} \times 1 \\
1 \times(-1)+0 \times 4+\frac{1}{3} \times 1
\end{array}\right] \\
& =\left[\begin{array}{r}
1 / 3 \\
-2 / 3
\end{array}\right]
\end{aligned}
$$

Thus, we get $\Delta_{4}=\frac{1}{3}, \Delta_{2}=-\frac{2}{3}$
Since Δ_{2} is still negative, the solution under test is not optimal.
Step : 10 Determination of the entering vector $\overline{\mathrm{a}}_{\mathrm{k}}^{(1)}$.
To find the value of k, we have
$\Delta_{\mathrm{k}}=\min \left[\Delta_{4}, \Delta_{2}\right]=\min \left[\frac{1}{3},-\frac{2}{3}\right]=\Delta_{2}$. Hence $\mathrm{k}=2$.
So $a_{2}^{(1)}$ should enter the solution, means the variable x_{2} will enter the basic solution.
Step : 11 Determination of the leaving vector, given the entering vector $\overline{\mathrm{a}}_{2}^{(1)}$.

$$
\text { Now } \begin{aligned}
x_{2}^{(1)} & =B_{1}^{-1} a_{2}^{(1)}=\left[\begin{array}{rrr}
1 & 0 & 1 / 3 \\
0 & 1 & -1 / 2 \\
0 & 0 & 1 / 6
\end{array}\right]\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1++1 / 3 \\
0+4+-1 / 2 \\
0+0+1 / 6
\end{array}\right] \\
& =\left[\begin{array}{r}
-2 / 3 \\
7 / 2 \\
1 / 6
\end{array}\right]
\end{aligned}
$$

The 'minimum ratio rule' shows that $7 / 2$ is the key element.
So remove the vector $\beta_{1}^{(1)}$ from the basis, to bring it in place of $Y_{2}^{(1)}$ by matrix transformation.

Step : 12 Determination of new table for improved solution

For this, the intermediate coefficient matrix is :

Applying the operations:
$\frac{2}{7} R_{2}, R_{1}+\left(-\frac{2}{3}\right)\left(\frac{2}{7} R_{2}\right)$, and $R_{3}=-\frac{1}{6}\left(\frac{2}{7} R_{2}\right)$, we get

$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$X_{B}^{(1)}$
$4 / 21$	$5 / 21$	$13 / 7$
$2 / 7$	$-1 / 7$	$9 / 7$
$-1 / 21$	$1 / 42$	$2 / 7$

Now, the table for improved solution is as follows :

Variable in the basis	B_{1}^{-1}			$X_{B}^{(1)}$	$Y_{K}^{(1)}$		$a_{3}^{(1)}$
			$Y_{1}^{(1)}$				
	e_{1}		$\beta_{2}^{(1)}$				
z	1	4/21	5/21	13/7		0	0
$\mathrm{x}_{2}=\mathrm{x}_{\text {B1 }}$	0	$2 / 7$	-1/7	9/7		0	1
$\mathrm{x}_{1}=\mathrm{x}_{\text {B2 }}$	0	- 1 / 21	$4 / 21$	$2 / 7$		1	0

The improved solution is : $z=13 / 7, x_{2}=9 / 7, x_{1}=2 / 7$
Third Iteration

Step : 13

$$
\begin{aligned}
\left\{\Delta_{4}, \Delta_{3}\right\} & =\left(\text { first row of } B_{1}^{-1}\right)\left(a_{4}^{(1)}, a_{3}^{(1)}\right) \\
& =(1,4 / 21,5 / 21)\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \times 0+4 / 21 \times 0+5 / 21 \times 1 \\
1 \times 0+4 / 21 \times 1+5 / 21 \times 0
\end{array}\right]=\left[\begin{array}{l}
5 / 21 \\
4 / 21
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\Delta_{4}=5 / 21 ; \Delta_{3}=4 / 21
$$

The positive values of Δ_{4} and Δ_{3} indicate that the optimal solution is

$$
z=13 / 7, x_{2}=9 / 7, x_{1}=2 / 7
$$

Example 3.6

Solve the following problem by revised simplex method :
Max $z=x_{1}+2 x_{2}$, subject to $x_{1}+x_{2} \leq 3, x_{1}+2 x_{2} \leq 5,3 x_{1}+x_{2} \leq 6 ; x_{1}, x_{2} \geq 0$

Solution :

First express the given problem in revised simplex form :
$z-x_{1}-2 x_{2}=0$
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=3$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{4}=5$
$3 x_{1}+x_{2}+x_{5}=6$
Then express the system of constraint equations in the following matrix form :
$\begin{array}{llllll}\bar{e}_{1} & a_{1}^{(1)} & a_{2}^{(1)} & a_{3}^{(1)} & a_{4}^{(1)} & a_{5}^{(1)} \\ \beta_{0}^{(1)} & & \beta_{1}^{(1)} & \beta_{2}^{(1)} & \beta_{3}^{(1)}\end{array}$
$\left[\begin{array}{cccccc}1 & -1 & -2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 3 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}z \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}0 \\ 3 \\ 5 \\ 6\end{array}\right]$

Now form the revised simplex table for the first iteration.
Table

Step : 1

$$
\begin{aligned}
\left\{\Delta_{1}, \Delta_{2}\right\} & =\left(\text { first row of } B_{1}^{-1}\right) \times\left(a_{1}^{(1)}, a_{2}^{(1)}\right) \\
& =(1,0,0,0)\left[\begin{array}{rr}
-1 & -2 \\
1 & 1 \\
1 & 2 \\
3 & 1
\end{array}\right]=\{-1,-2\}
\end{aligned}
$$

Hence $\Delta_{1}=-1, \Delta_{2}=-2$
Since Δ_{1} and Δ_{2} both are negative the solution $x_{3}=3, x_{4}=5, x_{5}=6, z=0$ is not optimal. Therefore, we proceed to obtain the next improved solution.

Step : 2 Determination of entering vector $a_{k}^{(1)}$.
To find the entering vector $\mathrm{a}_{\mathrm{k}}^{(1)}$, apply the rule
$\Delta_{k}=\min \left[\Delta_{1}, \Delta_{2}\right]=\min [-1,-2]=-2=\Delta_{2}$ Hence $k=2$.
So the vector $a_{2}^{(1)}$ must enter the basis. This shows that x_{2} will enter the basic feasible solution.

Step : 3 Determination of the leaving vector $\beta_{r}^{(1)}$
Compute the column $Y_{2}^{(1)}$ corresponding to vector $a_{2}^{(1)}$.
$Y_{2}^{(1)}=B_{1}^{-1} a_{2}^{(1)}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{r}-2 \\ 1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{r}-2 \\ 1 \\ 2 \\ 1\end{array}\right]$
Apply the minimum ratio rule it follows
Here (2) is the 'key element' corresponding to which $\beta_{2}^{(1)}$ must leave the basis matrix. Hence x_{3} will be outgoing variable.

Step : 4 Determination of the improved solution.

The intermediate coefficient matrix is :

$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$\beta_{3}^{(1)}$	$X_{B}^{(1)}$
0	0	0	0
1	0	0	3
0	1	0	5
0	0	1	6
$Y_{2}^{(1)}$			
-2			
1			
2			
0	\downarrow	1	
0			

Apply usual rules of transformation to obtain

0	1	0	5
1	$-1 / 2$	0	$1 / 2$
0	$1 / 2$	0	$5 / 2$
0	$-1 / 2$	1	$7 / 2$

The table for improved solution.
Table : 2

Variables in	B_{1}^{-1}					
	the basis	e_{1}	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$\beta_{3}^{(1)}$	$X_{B}^{(1)}$
z	1	0	1	0	5	$Y_{K}^{(1)}$
$x_{3}=x_{B 1}$	0	1	$-1 / 2$	0	$1 / 2$	
$x_{2}=x_{B 2}$	0	0	$1 / 2$	0	$5 / 2$	
$x_{5}=x_{B 3}$	0	0	$-1 / 2$	1	$7 / 2$	

$a_{1}^{(1)}$	$a_{4}^{(1)}$
-1	0
1	0
1	1
3	0

The improved solution now becomes :
$z=5, x_{3}=1 / 2, x_{2}=5 / 2, x_{5}=7 / 2$.
Step : 5

$$
\left(\Delta_{1}, \Delta_{4}\right)=(1,0,1,0)\left[\begin{array}{rr}
-1 & 0 \\
1 & 0 \\
1 & 1 \\
3 & 0
\end{array}\right]=\{0,1\}
$$

Hence $\Delta_{1}=0, \Delta_{4}=1$

Since Δ_{1} and Δ_{4} both are ≥ 0, the solution under test is optimal.
Furthermore, $\Delta_{1}=0$ shows that the problem has alternative optimum solutions. Thus, the required optimal solution is is $x_{1}=0, x_{2}=5 / 2, \max z=5$.

Example 3.7

Solve by revised simplex method :
Max.

$$
z=6 x_{1}-2 x_{2}+3 x_{3}
$$

subject to

$$
\begin{aligned}
& 2 x_{1}-x_{2}+2 x_{3} \leq 2 \\
& x_{1}+4 x_{3} \leq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Solution :

The problem in the revised simplex form may be expressed by introducing the slack variables x_{4} and x_{5} as

$$
\begin{aligned}
& z-6 x_{1}+2 x_{2}-3 x_{3}=0 \\
& 2 x_{1}-x_{2}+2 x_{3}+x_{4}=2 \\
& x_{1}+4 x_{3}+x_{5}=4
\end{aligned}
$$

The system of constraint equations may be represented in the following matrix form :

$$
\begin{array}{llllll}
e_{1} & a_{1}^{(1)} & a_{2}^{(1)} & a_{3}^{(1)} & a_{4}^{(1)} & a_{5}^{(1)} \\
\beta_{0}^{(1)} & & & \beta_{1}^{(1)} & \beta_{2}^{(1)}
\end{array}
$$

$$
\left[\begin{array}{rrrrrr}
1 & -6 & 2 & -3 & 0 & 0 \\
0 & 2 & -1 & 2 & 1 & 0 \\
0 & 1 & 0 & 4 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]
$$

The starting revised simplex table

Variables in the basis	B_{1}^{-1}			$X_{B}^{(1)}$	$Y_{k}^{(1)}=Y_{1}^{(1)}$	Min$\left(X_{B} / Y_{1}\right)$	$\mathrm{a}_{1}^{(1)}$	$a_{2}^{(1)}$	$\mathrm{a}_{3}^{(1)}$
	e_{1}	$\beta_{1}^{(1)}$							
z	1	0	0	0	-6	\downarrow	-6	2	-3
$\mathrm{X}_{4}=\mathrm{x}_{\text {B1 }}$	0	1	0	2	2	$2 / 2 \leftarrow$	2	-1	2
$\mathrm{x}_{5}=\mathrm{x}_{\text {B2 }}$	0	0	1	4	1	4/1	1	0	4

The starting solution is: $x_{1}=x_{2}=x_{3}=0 ; x_{4}=2, x_{5}=4, z=0$.

Step 1

$$
\begin{aligned}
\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) & =\left(\text { first row of } B_{1}^{-1}\right)\left(a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}\right) \\
& =(1,0,0)\left[\begin{array}{rrr}
-6 & 2 & -3 \\
2 & -1 & 2 \\
1 & 0 & 4
\end{array}\right]=\{-6,2,-3\}
\end{aligned}
$$

Hence $\Delta_{1}=-6, \Delta_{2}=2, \Delta_{3}=-3$
Since Δ_{1} and Δ_{3} are still negative, the solution under test can be further improved.
Step : 2 Determination of the entering vector $a_{k}^{(1)}$
The entering vector $a_{k}^{(1)}$ corresponds to the value of k which is obtained by the critertion $\Delta_{\mathrm{k}}=\min \cdot\left[\Delta_{1}, \Delta_{2}, \Delta_{3}\right]=\min \{-6,2,-3\}=-6=\Delta_{1}$

Hence $\mathrm{k}=1$
So the entering vector is found to be $a_{1}^{(1)}$. This also means that the variable x_{1} will enter the basic solution.

Step : 3 Determination of the leaving vector $\beta_{r}^{(1)}$

First we need to computer the column $Y_{1}^{(1)}$ corresponding to the entering vector $\mathrm{a}_{1}^{(1)}$.

$$
Y_{1}^{(1)}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
-6 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
-6 \\
2 \\
1
\end{array}\right] \rightarrow
$$

Now apply the min. ratio rule. This rule indicates that (2) is the 'key element' corresponding to which $\beta_{1}^{(1)}$ must leave the basis matrix. Hence x_{4} will be the outgoing variable.
Step : 4 The first inproved solution.

$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$X_{B}^{(1)}$
0	0	0
1	0	2
0	1	4

$\mathrm{Y}_{1}^{(1)}$
-6
2
1

To transform the above intermediate coefficient matrix, apply the usual rules of matrix transformation to obtain

3	0	6
$1 / 2$	0	1
$-1 / 2$	1	3

Now construct the transformed Table 4.10 for second iteration.
Table 4

Variables in the basis	B_{1}^{-1}			$X_{B}^{(1)}$	$X_{k}^{(1)}=Y_{1}^{(1)}$	Min$\left(X_{B} / Y_{1}\right)$	$\mathrm{a}_{4}^{(1)}$	$a_{2}^{(1)}$	$a_{3}^{(1)}$
	e_{1}	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$						
z	1	3	0	6	-1		0	2	-3
$\mathrm{x}_{1}=\mathrm{x}_{\mathrm{B} 1}$	0	$1 / 2$	0	1	-1/2		1	-1	2
$\mathrm{X}_{5}=\mathrm{X}_{\mathrm{B} 2}$	0	-1/2	1	3	1/2	$3 / \frac{1}{2} \leftarrow$	0	0	4

The improved solution is: $z=6, x_{1}=1, x_{2}=x_{3}=x_{4}=0, x_{5}=3$.
Second Iteration
Step : 5

$$
\begin{aligned}
\left(\Delta_{4}, \Delta_{2}, \Delta_{3}\right) & =\left(\text { first row of } B_{1}^{-1}\right)\left(a_{4}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}\right) \\
& =(1,3,0)\left[\begin{array}{rrr}
0 & 2 & -3 \\
1 & -1 & 2 \\
0 & 0 & 4
\end{array}\right]=\{3,-1,3\}
\end{aligned}
$$

Hence $\Delta_{4}=3, \Delta_{2}=-1, \Delta_{3}=3$

Since Δ_{2} is still negative, the solution under test is not optimal. Hence further improvement is possible. So we proceed to find the 'entering' and 'leaving' vectors in the next step.

Step 6. Determination of the entering vector $a_{k}^{(1)}$
Here, we have

$$
\Delta_{\mathrm{k}}=\min \left[\Delta_{4}, \Delta_{2}, \Delta_{3}\right]=\min [3,-1,3]=-1=\Delta_{2}
$$

Hence $\mathrm{k}=2$.
Therefore, $a_{2}^{(1)}$ will enter the basis. The entering vector $a_{2}^{(1)}$ indicates that the variable x_{2} must enter the new solution.

Step : 7 Determination of the leaving vector $\beta_{r}^{(1)}$

First calculate the column $\bar{Y}_{2}^{(1)}$ corresponding to vector $\overline{\mathrm{a}}_{2}^{(1)}$

$$
\bar{Y}_{2}^{(1)}=B_{1}^{-1} \bar{a}_{2}^{(1)}=\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & 1 / 2 & 0 \\
0 & -1 / 2 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-1 / 2 \\
1 / 2
\end{array}\right]
$$

Now complete the column $\bar{Y}_{k}^{(1)}=\bar{Y}_{2}^{(1)}$ of table 4.
The 'min ratio rule' in the column of Table 4 indicates that $1 / 2$ is the key element corresponding to which the vector $\beta_{2}^{(1)}$ must leave the basis. Hence x_{5} will be the outgoing variable.
Step : 8 The next improved solution
Transform the Table 4 into Table 5 from which the mext improved solution can be easily read.

Table 5

Variables in the basis	B_{1}^{-1}			$X_{B}^{(1)}$	$Y_{k}^{(1)}$	$\mathrm{a}_{4}^{(1)}$	$a_{5}^{(1)}$	$a_{3}^{(1)}$
	e_{1}	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$					
z	1	2	2	12		0	0	-3
$\mathrm{X}_{1}=\mathrm{x}_{\text {B } 1}$	0	0	1	4		1	0	2
$\mathrm{x}_{2}=\mathrm{x}_{\text {B2 }}$	0	-1	2	6		0	1	4

The next improved solution from Table 5 is:

$$
z=12, x_{1}=4, x_{2}=6, x_{3}=x_{4}=x_{5}=0
$$

Step: 9

Here we compute

$$
\begin{aligned}
\left\{\Delta_{4}, \Delta_{5}, \Delta_{3}\right\} & =\left(\text { first row of } B_{1}^{-1}\right)\left(a_{4}^{(1)}, a_{5}^{(1)}, a_{3}^{(1)}\right) \\
& =(1,2,2)\left[\begin{array}{ccc}
0 & 0 & -3 \\
1 & 0 & 2 \\
0 & 1 & 4
\end{array}\right]=\{2,2,9\}
\end{aligned}
$$

Hence $\Delta_{4}=2, \Delta_{5}=2, \Delta_{3}=9$
The solution under testis optimal because $\Delta_{4}, \Delta_{5}, \Delta_{3}$ are all positive. Thus, the required optimal solution is :

$$
x_{1}=4, x_{2}=6, x_{3}=0, \max \cdot z=12
$$

Example 3.8

Solve the following L.P.P. by revised simplex method.
Max $z=3 x_{1}+x_{2}+2 x_{3}+7 x_{4}$,
subject to the constraints

$$
\begin{array}{ll}
& 2 x_{1}+3 x_{2}-x_{3}+4 x_{4} \leq 40 \\
& -2 x_{1}+2 x_{2}-5 x_{3}-x_{4} \leq 35 \\
& x_{1}+x_{2}-2 x_{3}+3 x_{4} \leq 100 \\
\text { and } & x_{1} \geq 2, x_{2} \geq 1, x_{3} \geq 3, x_{4} \geq 4
\end{array}
$$

Solution :

Step : 1

In order to make the lower bounds of the variables zero, we substitute $x_{1}=y_{1}+2, x_{2}=y_{2}+1, x_{3}=y_{3}+3, x_{4}=y_{4}+4$ in the gives LPP to obtain :

Max. $\quad z^{\prime}=3 y_{1}+y_{2}+2 y_{3}+7 y_{4}$ where $z^{\prime}=z-41$
s. t. $2 y_{1}+3 y_{2}-y_{3}+4 y_{4} \leq 20$
$-2 y_{1}+2 y_{2}+5 y_{3}-y_{4} \leq 26$
$\mathrm{y}_{1}+\mathrm{y}_{2}-2 \mathrm{y}_{3}+3 \mathrm{y}_{4} \leq 91$
and

$$
y_{1} \geq 0, y_{2} \geq 0, y_{3} \geq 0, y_{4} \geq 0 .
$$

Step : $\mathbf{2}$ To express the LPP in revised simplex form.
Max. $\quad z^{\prime}=3 y_{1}+y_{2}+2 y_{3}+7 y_{4}$
s. t $\quad{ }^{*} z^{\prime}-3 y_{1}-y_{2}-2 y_{3}-7 y_{4}=0$

$$
\begin{aligned}
& 2 y_{1}+3 y_{2}-y_{3}+4 y_{4}+y_{5}=20 \\
& -2 y_{1}+2 y_{2}+5 y_{3}-y_{4}+y_{6}=26 \\
& y_{1}+y_{2}-2 y_{3}+3 y_{4}+y_{7}=91 \\
& y_{i} \geq 0(i=1,2, \ldots, 7) \text { and } z^{\prime} \text { is unrerstricted in sign. }
\end{aligned}
$$

Clearly, the problem is of standard form I.
In matrix form the system of constraint equations can be written as :

$$
\begin{aligned}
& \beta_{0}^{(1)} \\
& e_{1} \\
& a_{1}^{(1)}
\end{aligned} a_{2}^{(1)} a_{3}^{(1)} a_{4}^{(1)} a_{5}^{(1)} a_{6}^{(1)} \beta_{2}^{(1)} a_{7}^{(1)} \beta_{3}^{(1)} .
$$

Step : 3 To find initial basic solution and the basic matrix B_{1}.
Here $X_{B}^{(1)}=(0,20,26,91)$ is the initial BFS and basis matrix B_{1} is given by $B_{1}=\left[\beta_{0}^{(1)}, \beta_{1}^{(1)}, \beta_{2}^{(1)}, \beta_{3}^{(1)}\right]=I_{4}$ (unit matrix). So $B_{1}^{-1}=I_{4}$

Step : 4 To construct the starting simplex table.

Variables in the basis	B_{1}^{-1}				Sol.$X_{B}^{(1)}$	$\begin{aligned} & Y_{k}^{(1)}=Y_{4}^{(1)} \\ & =B_{1}^{-1} a_{4}^{(1)} \end{aligned}$	Min ratio$\left(X_{B} / Y_{4}\right)$
	$\beta_{0}^{(1)}$	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$\beta_{3}^{(1)}$			
z'	1	0	0	0	0	-7	
y_{5}	0	1	0	0	20	4	$\begin{aligned} & 5 \leftarrow \\ & (\min) \end{aligned}$
y_{6}	0	0	1	0	26	-1	--
y_{7}	0	0	0	1	91	3	91/3
\downarrow							
Outgoing vector Incoming Vector							

Step : 5 Test of optimality.
Computer Δ_{j} for all $\mathrm{a}_{\mathrm{j}}^{(1)}, \mathrm{j}=1,2,3,4$ not in the basis.

$$
\begin{aligned}
\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right) & =\left(\text { first row of } B_{1}^{-1}\right)\left[a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, a_{4}^{(1)}\right] \\
& =(1,0,0,0)\left[\begin{array}{rrrr}
-3 & -1 & -2 & -7 \\
2 & 3 & -1 & 4 \\
-2 & 2 & 5 & -1 \\
1 & 1 & -2 & 3
\end{array}\right]=(-3,-1,-2,-7)
\end{aligned}
$$

Since all Δ_{j} 's are not ≥ 0, the solution is not optimal.
Step : 6 To Find incoming and outgoing vectors
Incoming vector: $\Delta_{k}=\min _{j} \Delta_{j}=-7=\Delta_{4} ;$ Hence $k=4$.
Thus $a_{4}^{(1)}$ is the vector entering the basis. So the column vector $Y_{4}^{(1)}$ corresponding to $\mathrm{a}_{4}^{(1)}$ is given by
$Y_{4}^{(1)}=B_{1}^{-1} a_{4}^{(1)}=I_{4}(-7,4,-1,3)=[-7,4,-1,3]$
Outing Vector: Since $\frac{x_{B r}}{y_{r 4}}=\min \left[\frac{20}{4},-\frac{91}{3}\right]=\frac{20}{4}=\frac{x_{B 1}}{y_{14}}$,
So $r=1$ and hence $\beta_{1}^{(1)}=a_{5}^{(1)}$ is the outgoing vector.
Therefore key element $=y_{14}=4$, by min. ratio rule.

Step : 7 To find the improved solution
We bring $a_{4}^{(1)}$ in place of $\beta_{1}^{(1)}\left(=a_{5}^{(1)}\right)$ in B_{1}^{-1}, to get the revised simplex table
Table 2

Variables in the basis	B_{1}^{-1}				Sol.$X_{B}^{(1)}$	$\begin{aligned} & Y_{k}^{(1)}=Y_{3}^{(1)} \\ & =B_{1}^{-1} a_{3}^{(1)} \end{aligned}$	$\begin{aligned} & \text { Min ratio } \\ & \left(X_{B} / Y_{3}\right) \end{aligned}$
	$\beta_{0}^{(1)}$ e_{1}	$\beta_{1}^{(1)}$ $a_{4}^{(1)}$	$\begin{aligned} & \beta_{2}^{(1)} \\ & a_{6}^{(1)} \end{aligned}$				
z'	1	$7 / 4$	0	0	35	-15/4	
y_{4}	0	1/4	0	0	5	-1/4	--
y_{6}	0	1/4	1	0	31	$19 / 4$	$124 / 19 \leftarrow$
y_{7}	0	-3/4	0	1	76	-5/4	--

Step : 8

We computer $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{5}\right)=\left(\right.$ first row of $\left.B_{1}^{-1}\right)\left(a_{1}^{(1)}, a_{2}^{(1)}, a_{3}^{(1)}, a_{5}^{(1)}\right)$

$$
=(1,7 / 4,0,0)\left[\begin{array}{rrrr}
-3 & -1 & -2 & 0 \\
2 & 3 & -1 & 1 \\
-2 & 2 & 5 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]=\left[\frac{1}{2}, \frac{17}{4},-\frac{15}{4}, \frac{7}{4}\right]
$$

Since $\Delta_{3}=-15 / 4$ is till negative, the solution under test is not optimal. So we proceed to improve the solution in the next step.
Step : 9 To find entering and outgoing vectors.
AS in step 6, we find the entering vector $a_{3}^{(1)}$. The column vector $Y_{3}^{(1)}$ corresponding to $\mathrm{a}_{3}^{(1)}$ is given by
$Y_{3}^{(1)}=B_{1}^{(1)}=\mathrm{a}_{3}^{(1)}=\left[-\frac{15}{4}, \frac{-1}{4}, \frac{19}{4}, \frac{-5}{4}\right]$
By min. ratio rule, we find the outgoing vector $\beta_{2}^{(1)}=a_{6}^{(1)}$. So the key element will be $19 / 4$.

Step : 10 To find the revised solution
We bring $a_{3}^{(1)}$ in place of $\beta_{2}^{(1)}\left(=a_{6}^{(1)}\right)$ in the basis B_{1}^{-1} and obtain next revised table 3.
Table 3

Variables in the basis	B_{1}^{-1}				Sol.$X_{B}^{(1)}$	$\begin{aligned} & Y_{k}^{(1)}=Y_{1}^{(1)} \\ & =B_{1}^{-1} a_{1}^{(1)} \end{aligned}$	Min ratio$\left(X_{B} / Y_{1}\right)$
	$\beta_{0}^{(1)}$		$\beta_{2}^{(1)}$				
	e_{1}	$a_{4}^{(1)}$	$a_{6}^{(1)}$	$a_{7}^{(1)}$			
z'	1	37/19	15/19	0	1130/19	-13/19	
y_{4}	0	5/19	1/19	0	126/19	8/19	63/4 \leftarrow
y_{3}	0	1 / 19	4/19	0	124/19	-6/19	--
y_{7}	0	-13/19	5/19	1	1599/19	-17/19	--
		\downarrow					
	Outgoing vector				Incoming vector		

Step : 11 To test the optimality
We compute $\left[\Delta_{1}, \Delta_{2}, \Delta_{5}, \Delta_{6}\right]=\left(\right.$ first row of $\left.B_{1}^{-1}\right)\left[\mathrm{a}_{1}^{(1)}, a_{2}^{(1)}, a_{5}^{(1)}, a_{6}^{(1)}\right]$

$$
=\left[1, \frac{37}{19}, \frac{15}{19}, 0\right]\left[\begin{array}{rrrr}
-3 & -1 & 0 & 0 \\
2 & 3 & 1 & 0 \\
-2 & 2 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]=\left[\frac{-13}{19}, \frac{122}{19}, \frac{37}{19}, \frac{15}{19}\right]
$$

Since $\Delta_{1}<0$, the solution under test is not optimal. So we proceed to revise the solution in the next step.
Step : 12 To find entering and outgoing vectors.
As in step 6, we find the entering vector $a_{1}^{(1)}$. The column vector corresponding to $a_{1}^{(1)}$ is given by

$$
Y_{1}^{(1)}=B_{1}^{-1} a_{1}^{(1)}=\left[\frac{-13}{19}, \frac{8}{18}, \frac{-6}{19}, \frac{-17}{19}\right]
$$

By min ratio rule, we find the outgoing vector is $\beta_{1}^{(1)}=a_{4}^{(1)}$. So the key element is $8 / 19$.

Step : 13 To find the improved solution
In order to bring $a_{1}^{(1)}$ in place of $\beta_{1}^{(1)}\left(=a_{4}^{(1)}\right)$ we divide second row by $8 / 19$, then add its $13 / 19,6 / 19$ and $17 / 19$ times in first, third and fourth rows respectively to obtain the next improved solution.

Table 4

Variables in the basis	B_{1}^{-1}				Sol.$X_{B}^{(1)}$
	$\beta_{0}^{(1)}$	$\beta_{1}^{(1)}$	$\beta_{2}^{(1)}$	$\beta_{3}^{(1)}$	
	e_{1}	$\mathrm{a}_{1}^{(1)}$	$\mathrm{a}_{3}^{(1)}$	$a_{7}^{(1)}$	
z'	1	19 / 8	$7 / 8$	0	$281 / 4$
y_{1}	0	5/8	$1 / 8$	0	63/4
y_{3}	0	1/4	1/4	0	23/2
y_{7}	0	-1/8	$3 / 8$	1	393/4

Step : 14 To test the optimality
We compute, $\left(\Delta_{2}, \Delta_{4}, \Delta_{5}, \Delta_{6}\right)=\left(\right.$ first row of $\left.B_{1}^{-1}\right)\left(\mathrm{a}_{2}^{(1)}, \mathrm{a}_{4}^{(1)}, \mathrm{a}_{5}^{(1)}, \mathrm{a}_{6}^{(1)}\right)$

$$
=\left(1, \frac{19}{8}, \frac{7}{8}, 0\right)\left[\begin{array}{rrrr}
-1 & 7 & 0 & 0 \\
3 & 4 & 1 & 0 \\
2 & -1 & 0 & 1 \\
1 & 3 & 0 & 0
\end{array}\right]=\left(\frac{63}{8}, \frac{13}{8}, \frac{19}{8}, \frac{7}{8}\right)
$$

Since all $\Delta_{\mathrm{j}}>0$, the solution under test is optimal. So the optimal solution of modified LPP is,
$y_{1}=63 / 4, y_{2}=0, y_{3}=23 / 2, y_{4}=0$ and $\max z^{\prime}=281 / 4$
Tranforming this solution for the original LPP, we get the desired solution as,
$x_{1}=y_{1}+2=71 / 4, x_{2}=y_{2}+1=1, x_{3}=y_{3}+3=29 / 2, x_{4}=y_{4}+4=4$ and $\max z=\max \left(z^{\prime}+41\right)=445 / 4$.

1) Use the revised simplex method to solve the L. P. Problem

Maximize $z=3 x_{1}+2 x_{2}+5 x_{3}$
Subject to the constraints

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3} \leq 430 \\
& 3 x_{1}+3 x_{3} \leq 460 \\
& x_{1}+4 x_{2} \leq 420,
\end{aligned}
$$

and $\quad x_{1}, x_{2}, x_{3} \geq 0$
2) Use the revised simplex method to solve.

Maximize $z=x_{1}+2 x_{2}+3 x_{3} \ldots 4 x_{4}$
Subject to the constraints

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+3 x_{3}-x_{4} \leq 25 \\
& -2 x_{1}+x_{2}-2 x_{3}+x_{4} \geq 5 \\
& 2 x_{1}+x \mid 2+x_{3}+x_{4}=20 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

3) Use the revised simplex method to solve the L. P. P.

Max. $z=2 x_{1}+x_{2}$
Subject to constraints

$$
\begin{aligned}
& 3 x_{1}+4 x_{2} \leq 6 \\
& 6 x_{1}+x_{2} \leq 3 \\
& x_{1} x_{2} \geq 0
\end{aligned}
$$

4) Use resived simplex method to solve the following L. P. P.

Maximize $z=3 x_{1}+5 x_{2}$, subject to the constraints

$$
\begin{aligned}
& x_{1} \leq 4 \\
& x_{2} \leq 6 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

5) Use the revised simpelx method to solve the L. P. P.

Maximize $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}$
Subject to $3 x_{1}+2 x_{2}+x_{3} \leq 3$,

$$
\begin{aligned}
& 2 x_{1}+x_{2}+2 x_{3} \leq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

6) Use revised simpelx method to solve the L. P. P.

Maximize $z=6 x_{1}-2 x_{2}+3 x_{3}$
Subject to

$$
\begin{aligned}
& 2 x_{1}-x_{2}+2 x_{3} \leq 2 \\
& x_{1}+4 x_{3} \leq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

7) Use revised simplex method to solve the L. P. P.

Maximize $z=5 x_{1}+3 x_{2}$ subject to the conditions

$$
\begin{aligned}
& 4 x_{1}+5 x_{2} \geq 10 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& 3 x_{1}+8 x_{2} \leq 12 \text { and } \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

8) Use revised simplex method to solve the following L. P. P.

Maximize $z=x_{1}+2 x_{2}$ subject to the constraints

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \geq 6 \\
& x_{1}+6 x_{2} \geq 3
\end{aligned}
$$

and

$$
x_{1} \geq 0, x_{2} \geq 0
$$

9) Use revised simplex method to solve the following L. P. P.

Max. $z=x_{1}+x_{2}$ subject to the constraints

$$
\begin{aligned}
& x_{1}+2 x_{2} \geq 7 \\
& 4 x_{1}+x_{2} \geq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

10) Use revised simplex method to solve the following L. P. P.

Minimize $\mathrm{z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}$ subject to the constraints

$$
\begin{aligned}
& 2 x_{1}+5 x_{2} \geq 6 \\
& x_{1}+x_{2} \geq 2 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

11) Use two phase revised implex method to solve the L. P. P.

Minimize $z=3 x_{1}+x_{2}$ subject to the constraints
Subject to constraints

$$
\begin{aligned}
& x_{1}+x_{2} \geq 1 \\
& 2 x_{1}+3 x_{2} \geq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

12) Use the two phase revised simplex method to solve the L. P. P.

Minimize $z=4 x_{1}+2 x_{2}+3 x_{3}$, subject to the constraints,

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \geq 5 \\
& 2 x_{1}+3 x_{2}+x_{3} \geq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

13) Solve the following L. P. P. by the revised simplex method.

Maximize $z=2 x_{1}+4 x_{2}+6 x_{3}-2 x_{4}$
Subject to the conditions

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=15 \\
& 2 x_{1}+x_{2}+5 x_{3}=20 \\
& 3 x_{1}+6 x_{2}+3 x_{3}+3 x_{4}=30 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

14) Use the revised simplex method to solve the L. P. P. maximize $\mathrm{z}=\mathrm{x}_{1}+2 \mathrm{x}_{2}$ subject to

$$
\begin{array}{ll}
& x_{1}+x_{2} \leq 3 \\
& x_{1}+2 x_{2} \leq 5 \\
& 3 x_{1}+x_{2} \leq 6 \\
\text { and } \quad & x_{1}, x_{2} \geq 0
\end{array}
$$

15) Use the revised simplex method to solve,

Miximize $z=2 x_{1}+3 x_{2}$, subject to,

$$
\begin{aligned}
& x_{2}-x_{1} \geq 0, \\
& x_{1} \leq 4
\end{aligned}
$$

and

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

16) Use the revised simplex method to solve the following L. P. P.

Minimize $z=2 x_{1}+x_{2}$ subject to the constrants

$$
\begin{aligned}
& 3 x_{1}+x_{2} \geq 3, \\
& 4 x_{1}+3 x_{2} \geq 6, \\
& x_{1}+2 x_{2} \geq 2, \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

UNIT 04

INTERGER

 PROGRAMMING
4.1 INTRODUCTION

There are certain decision problems where decision variables make sense only if they have integer values in the solution. For example, it does not make sense saying 1.5 men working on a project or 1.6 machines in a workshop. The integer solution to the problem can, however, be obtained by rounding off the optimum value of the variables to the nearest integer value. This approach can be easy in terms of economy of effort in time and cost that might be required to derive an integer solution but this solution may not satisfy all the given constraints. Secondly, the value of the objective function so obtained may not be optimal value. All such difficulties can be avoided if the given problem, where an integer solution is required, is solved by integer programming techniques.

4.1.1 Types of Interger Programming Problems

There are two types of integer programming problems.
i) Linear integer programming problems.
ii) Non - linear integer programming problems.

In this unit we are going to learn the methods of solving linear integer programming problems. linear integer programming problems can be classified into three categories :
i) Pure (all) integer programming problems in which all decision variables are required to have integer values.
ii) Mixed integer programming problems in which some, but not all, of the decision variables are required to have integer values.
iii) Zero - one integer programming problems in which all decision variables must have integer values of 0 or 1.

The pure integer programming problem in its standard form can be stated as follows :
Maximize $\mathrm{z}=\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}+\mathrm{c}_{3} \mathrm{x}_{3}+\ldots .+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$
Subject to the constraints
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots .+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots .+a_{2 n} x_{n}=b_{2}$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n}=b_{m}
$$

and $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \geq 0$ and are integers.
Here we shall discuss two methods.
i) Gomory's cutting plane method and
ii) Branch and Bound method for solving integer programming problems.

4.2 GOMORY'S ALL INTEGER CUTTING PLANE METHOD

Gomory's cutting plane method was developed by R. E. Gomory in 1956 to solve integer linear programming problems using the dual simplex method. It is based on the generation of a sequence of linear inequalities called a 'cut'. This 'cut' cuts out a part of the feasible region of the corresponding L. P. problem while leaving out the feasible region of the integer linear programming problem. The hyperplane boundary of a cut is called the cutting plane.

Gomory's algorithm has the following properties :
i) Additional linear constraints never cut - off that portion of the original feasible solution space which contain a feasible integer solution to the original problem.
ii) Each new additional constraint (or hyperplane) cuts - off the current non - integer optimal solution to the linear programming problem.

4.2.1 Method for constructing additional constraint (cut)

Gomory's method begins by solving the linear programming (LP) problem without taking into consideration the integer value requirement of the decision variables. If the solution so obtained in an integer i. e. all variables in the x_{B} column (also called basis) of the simplex table assume non-negative integer values, the current solution is the optimal solution to the given integer LP problem. But if some of the basic variables do not have non-negative integer value, an additional linear constraint called the Gomory constraint (or cut) is generated. This linear constraint (or cutting plane), is added to the bottom of the optimal simplex table so that the solution no longer remains feasible. The new problem is then solved by using the dual simplex method. If the optimed solution so obtained in again non - integer, another cutting plane is generated. The procedure is repeated until all basis variables assume non - negative integer values.

4.2.2 The procedure for developing a cut

Select one of the rows, called source row for which basic variable is non - integer. The desired cut is developed by considering only fractional parts of the coefficients in source row.

Suppose the basic variable x_{r} has the largest fractional value among all basic variables. Then the $r^{\text {th }}$ constraint equation (row) from the simplex table can be rewritten as ,

$$
\begin{align*}
x_{B_{r}} & =b_{r}=1 \cdot x_{r}+\left(a_{r 1} x_{1}+a_{r 2} x_{2}+\ldots\right) \\
& =x_{r}+\sum_{j \neq r} a_{r j} x_{j} \tag{i}
\end{align*}
$$

Where $x_{j}=(j=1,2,3, \ldots)$ represents all the non - basic variables in the $r^{\text {th }}$ constraint except the variables x_{r} and $b_{r}=\left(x_{B_{r}}\right)$ is the non-integer value of varialbe x_{r}. Let us decompose the coefficients of X_{j} and $x_{B_{r}}$ into integer and non-negative fractional parts in equation (i).

$$
\begin{equation*}
\left[\mathrm{x}_{\mathrm{B}_{\mathrm{r}}}\right]+\mathrm{f}_{\mathrm{r}}=(1+0) \mathrm{x}_{\mathrm{r}}+\sum_{\mathrm{j} \neq \mathrm{r}}\left\{\left[\mathrm{a}_{\mathrm{r}_{\mathrm{i}}}\right]+\mathrm{f}_{\mathrm{r}_{\mathrm{i}}}\right\} \mathrm{x}_{\mathrm{j}} \tag{ii}
\end{equation*}
$$

Where $\left[\mathrm{x}_{\mathrm{Br}}\right]$ and $\left[\mathrm{a}_{\mathrm{ij}}\right]$ denote the largest integer obtained by trucating the fractional part from $X_{B_{r}}$ and $\mathrm{a}_{\mathrm{r} j}$ respectively. Rearranging equation (ii) we get,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}+\left\{\left[\mathrm{x}_{\mathrm{Br}}\right]-\mathrm{x}_{\mathrm{r}}-\sum\left[\mathrm{a}_{\mathrm{rj}}\right] \mathrm{x}_{\mathrm{j}}\right\}=\sum_{\mathrm{j} \neq \mathrm{r}} \mathrm{f}_{\mathrm{rj}} \mathrm{x}_{\mathrm{j}} \tag{iii}
\end{equation*}
$$

Where f_{r} is strictly positive fraction $\left(0<f_{r}<1\right)$ while $0 \leq f_{r j} \leq 1$. We may write equation (iii) in the form of following inequality.

$$
\mathrm{f}_{\mathrm{r}} \leq \sum_{\mathrm{j} \neq \mathrm{r}} \mathrm{f}_{\mathrm{r}} \mathrm{x}_{\mathrm{j}}
$$

i. e. $\sum \mathrm{f}_{\mathrm{rj}} \mathrm{x}_{\mathrm{j}}=\mathrm{f}_{\mathrm{r}}+\mathrm{s}_{\mathrm{g}}$ or $-\mathrm{f}_{\mathrm{r}}=\mathrm{s}_{\mathrm{g}}-\sum_{\mathrm{j} \neq \mathrm{r}} \mathrm{f}_{\mathrm{rj}} \mathrm{x}_{\mathrm{j}}$

Where S_{g} is a non - negative slack variable and is called the Gomory slack variable. Equation (iv) represents Gomory's cutting plane constraint. This constraint create an additional row along with a column for the new variable S_{g}.

4.2.4 Steps of Gormory's all integer programming algorithm

Step - 1

Initialization : Formulate the standard integer LP problem. If there are any noninteger coefficients in the constraint equations, convert them into integer coefficients. Solve it by simplex method, ignoring the integer requirement of variables.

Step-2

Test of optimality

a) Examine the optimal solution. If all basic variables (i. e. $x_{B i}=b_{i} \geq 0$) have integer values, the integer optimal solution has been derived and the procedure should be terminated. The current optimal solution obtained in step 1 is the optimal basic feasible solution to the integer linear programming.
b) If one or more basic variables with integer requirements have non - integer solution values, then go to step 3 .

Step-3

Generate cutting plane: Choose a row r corresponding to a variable x_{r} which has the largest fractional value f_{r} and generate the cutting plane (a Gomory constraint) as explained earlier in equation (iv)

$$
-\mathrm{f}_{\mathrm{r}}=\mathrm{s}_{\mathrm{g}}-\sum_{\mathrm{j} \neq \mathrm{r}} \mathrm{f}_{\mathrm{r}} \mathrm{x}_{\mathrm{j}}
$$

where $0 \leq \mathrm{f}_{\mathrm{rj}}<1$ and $0<\mathrm{f}_{\mathrm{r}}<1$.
If there are more than one variables with the same largest fraction, then choose the one that has the smallest contribution to the maximization LP problem or the largest cost to the minimization LP problem.

Step - 4

Obtain the new solution : Add the cutting plane generated in step 3 to the bottom of the optimal simplex table as obtained in step. 3. Find a new optimal solution by using the dual simplex method i. e. choose a variable to enter into the new solution having the smallest ratio $\left\{\left(\mathrm{C}_{\mathrm{j}}-\mathrm{z}_{\mathrm{j}}\right) / \mathrm{y}_{\mathrm{ij}} ; \mathrm{y}_{\mathrm{ij}}<0\right\}$ and return to step 2.

The process is repeated until all basic variables with integer requirements assume non - negative integer values.
The procedure for solving an ILP problem can be explained through a flow chart given above.

4.3 EXAMPLES

1) Solve the following integer programming problem using Gomory's cutting plane algorithm.

Maximize $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}$
Subject to
$3 x_{1}+2 x_{2} \leq 5$
$\mathrm{x}_{2} \leq 2$
and $x_{1}, x_{2} \geq 0$ and are integers.

Answer :

Step : 1

Introducing the slack variables we get,
Maximize $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}$
Subject to
$3 x_{1}+2 x_{2}+s_{1}=5$
$\mathrm{x}_{2}+\mathrm{s}_{2}=2$
and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{2} \geq 0$
The optimum solution to the LPP is given below.

$\rightarrow x_{2}$	1	2	0	1	0	1	$2 / 0$
	$z=c_{B} x_{B}=2$	$\Delta_{j}=z_{j}-c_{j} \rightarrow$	-1	0	0	-1	
$\rightarrow x_{1}$	1	$1 / 3$	1	0	$1 / 3$	$-2 / 3$	
x_{2}	1	2	0	1	0	1	
	$z=7 / 3$	$\Delta_{j}=z_{j}-c_{j} \rightarrow$	0	0	$1 / 3$	$1 / 3$	$\Delta_{j} \geq 0$

The optimal solution is $\mathrm{x}_{1}=\frac{1}{3}, \mathrm{x}_{2}=2$ and Max. $\mathrm{z}=\frac{7}{3}$.

Step : 2

In the current optimal solution, all the basic variables in the basic are not integers and the solution is not acceptable. Since both decision variables x_{1} and x_{2} are assumed to take an integer value, a pure integer cut is developed under the assumption that all the variables are integers. We go to next step.

Step : 3

Since x_{1} is the only basic variable whose value is a non - negative fraction, we shall consider the fist row for generating the Gomory cut. Considering x_{1} - equation as the source row we write.

$$
\frac{1}{3}=x_{1}+0 \cdot x_{2}+\frac{1}{3} s_{1}-\frac{2}{3} s_{2}
$$

(x_{1} - source row)
The factoring of the x_{1} - source row yields

$$
\left(0+\frac{1}{3}\right)=(1+0) x_{1}+\left(0+\frac{1}{3}\right) s_{1}+\left(-1+\frac{1}{3}\right) s_{2}
$$

Observe that each of the non-integer coefficient is factored into integer and fractional parts in such a manner that the fractional part in such a manner that the fractional part is strictly positive.

Rearrange the equation so that all of the integer coefficients appear on the left hand side. This gives

$$
\frac{1}{3}+\left(s_{2}-x_{1}\right)=\frac{1}{3} s_{1}+\frac{1}{3} s_{2}
$$

Therefore $\frac{1}{3} \leq \frac{1}{3} \mathrm{~s}_{1}+\frac{1}{3} \mathrm{~s}_{2}$

Thus complete Gomorian constraint can be written as

$$
\frac{1}{3}+g_{1}=\frac{1}{3} s_{1}+\frac{1}{3} s_{2} \text { or }-\frac{1}{3}=g_{1}-\frac{1}{3} s_{1}-\frac{1}{3} s_{2}
$$

Where g_{1} is the new non - negative (integer) slack variable.
By adding the Gomory cut at the bottom of the simplex table, the new table so obtained is given below.

Basic	Coeffts of	Values of	Variables				
Variables	Basic variables	Basic variables	X_{1}	x_{2}	s_{1}	s_{2}	g_{1}
x_{1}	1	1/3	1	0	1/3	-2/3	0
x_{2}	1	2	0	1	0	1	0
g_{1}	0	-1/3	0	0	-1/3	-1/3	1

Step - 4
Apply the dual simplex method to find the new optimal solution.

Since all $\Delta_{\mathrm{j}} \geq 0$, the solution is optimal solution. Thus $\mathrm{x}_{1}=0, \mathrm{x}_{2}=2, \mathrm{~s}_{1}=1$ and max. $\mathrm{z}=2$. This solution satisfies the integer requirement.
2) Solve the following integer programming problem using Gomory's cutting plane algorithm.

Maximize $\quad z=2 x_{1}+20 x_{2}-10 x_{3}$
Subject to $2 \mathrm{x}_{1}+20 \mathrm{x}_{2}+4 \mathrm{x}_{3} \leq 15$

$$
6 x_{1}+20 x_{2}+4 x_{3}=20
$$

and x_{1}, x_{2}, x_{3} are non-negative integers.
Also show that it is not possible to obtain a feasible integer solution by using the method of simplex rounding off.

Answer :

Adding slack variable s_{1} in the first constraint and artificial variable in the second constraint the problem is stated in the standard form as :

Maximize $z=2 x_{1}+20 x_{2}-10 x_{3}+0 s_{1}-M A_{1}$
subject to

$$
\begin{aligned}
& 2 x_{1}+20 x_{2}+4 x_{3}+s_{1}=15 \\
& 6 x_{1}+20 x_{2}+4 x_{3}+A_{1}=20
\end{aligned}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~s}_{1}, \mathrm{~A}_{1} \geq 0$ and are integers.
The optimal solution of the problem ignoring the integer requirement using the simplex method (Big M technique) is obtained in the following table.

x_{2}	20	$5 / 8$	0	1	$1 / 5$	$3 / 40$	$-1 / 40$	
x_{1}	2	$5 / 4$	1	0	0	$-1 / 4$	$1 / 4$	
$\mathrm{z}=15$	$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow$							

The non-integer optimal solution is $x_{1}=5 / 4, x_{2}=5 / 8, x_{3}=0$ and Max. $z=15$. Then the rounded off solution will be $x_{1}=1, x_{2}=0, x_{3}=0$ and $\operatorname{Max} z=2$. This solution does not satisfy the second constraint $6 x_{1}+20 x_{2}+4 x_{3}=20$. Hence it is not possible to obtain an integer optimal solution by simply rounding off the values of the variables.

To obtain the integer valued solution, we proceed to construct Gomory's constraint (fractional cut). Since the fractional part of the value of $x_{2}=(0+5 / 8)$ is more that the fractional part of $x_{1}=(1+1 / 4)$, the x_{2} - row is selected for constructing the fractional cut as given below.

$$
\begin{aligned}
\frac{5}{8} & =0 \cdot x_{1}+1 \cdot x_{2}+\frac{1}{5} x_{3}+\frac{3}{40} s_{1} \\
\left(0+\frac{5}{8}\right) & =(1+0) x_{2}+\left(0+\frac{1}{5}\right) x_{3}+\left(0+\frac{3}{40}\right) s_{1}
\end{aligned}
$$

On rearranging above equation we obtain the Gomory's fractional cut as,

$$
\begin{equation*}
-\frac{5}{8}=g_{1}-\frac{1}{5} x_{3}-\frac{3}{40} s_{1} \tag{CutI}
\end{equation*}
$$

Adding this additional constraint at the bottom of optimal simplex table, we get

		c_{j}	2	20	-10	0	0
Basic Variables	Coeffts of Basic variables	Values of Basic variables	Variables				
			x_{1}	x_{2}	x_{3}	s_{1}	g_{1}
X_{2}	20	$5 / 8$	0	1	1/5	3/40	0
x_{1}	2	$5 / 4$	1	0	0	-1/4	0
$\leftarrow \mathrm{g}_{1}$	0	-5/8	0	0	-1/5	-3/40	1
$z=15$	$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow$		0	0	14	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	0

Here

$$
\max \left\{\frac{0}{0}, \frac{0}{0}, \frac{14}{(-1 / 5)}, \frac{1}{(-3 / 40)}\right\}
$$

$$
\begin{aligned}
& =\max \left\{-,-,-70,-\frac{40}{3}\right\} \\
& =-\frac{40}{3} \text { Therefore we must enter the variable } \mathrm{s}_{1} .
\end{aligned}
$$

Thus s_{1} is the entering variable whereas g_{1} is outgoing variable. Here we are applying dual simplex method.

c_{j}			2	20	-10	0	0
Basic Variables	Coeffts of Basic variables	Values of Basic variables	Variables				
			x_{1}	x_{2}	x_{3}	s_{1}	g_{1}
x_{2}	20	0	0	1	0	0	1
x_{1}	2	10/3	1	0	$2 / 3$	0	-10/3
s_{1}	0	$25 / 3$	0	0	8/3	1	-40/3
$\mathrm{z}=20 / 3$	$z_{j}-c_{j} \rightarrow$		0	0	34/3	0	40/3

The solution is optimal but is still non - integer solution. Therefore one more fractioned but should be added. Consider x_{1} - row for censtructing the cut.

$$
\left(3+\frac{1}{3}\right)=(1+0) x_{1}+\left(0+\frac{2}{3}\right) x_{3}+\left(-4+\frac{2}{3}\right) g_{1}
$$

We obtain Gomory's fractional cut as,

$$
\begin{equation*}
-\frac{1}{3}=g_{2}-\frac{2}{3} x_{3}-\frac{2}{3} g_{1} \tag{Cut-II}
\end{equation*}
$$

Adding this constraint to the optiomal simplex table the new table becomes

c_{j}			20		-10	0	0	0
Basic Variables	Coeffts of Basic variables	Values of Basic variables			les			
			x_{1}	x_{2}	x_{3}	s_{1}	g_{1}	g_{2}
x_{2}	20	0	0	1	0	0	1	0
X_{1}	2	$\frac{10}{3}$	1	0	$\frac{2}{3}$	0	$-\frac{10}{3}$	0
s_{1}	0	$\frac{25}{3}$	0	0	$\frac{8}{3}$	1	$-\frac{40}{3}$	0

$\leftarrow \mathrm{g}_{2}$	0	$-\frac{1}{3}$	0	0	$-\frac{2}{3}$	0	$-\frac{2}{3}$	1
$z=\frac{20}{3}$	$z_{j}-c_{j}$		0	0	$\frac{34}{3}$	0	$\frac{40}{3}$	0
		Ratio	-	-	$\frac{34 / 3}{-2 / 3}$		$\frac{40 / 3}{-2 / 3}$	-
					$=-17$		-20	
					\uparrow			

Maximum ratio $=-17$. Remove g_{2} from the basis and enter variable x_{3} into the basis by applying the dual simplex method.

c_{j}			2	20	-10	0	0	0
Basic Variables	Coeffts of Basic variables	Values of Basic variables	Variables					
			x_{1}	x_{2}	x_{3}	s_{1}	g_{1}	g_{2}
x_{2}	20	0	0	1	0	0	1	0
X_{1}	2	3	1	0	0	0	-4	0
s_{1}	0	7	0	0	0	1	-16	4
X_{3}	-10	1/2	0	0	1	0	1	-3/2
$z=1$								

The above optimal solution is still non-integer because variable x_{3} doex not have integer value. Thus a first fractional cut will have to be constructed with the help of x_{3}-row and the required Gomory's fractional cut is

$$
\begin{equation*}
-\frac{1}{2}=g_{3}-\frac{1}{2} g_{2} \tag{CutIII}
\end{equation*}
$$

Additing this cut to the bottom of above table we get a new table. Apply the dual simplex method.

Basic Variables variables	Coeffts of Basic variables	Values of Basic	Variables						
			x_{1}	x_{2}	x_{3}	s_{1}	g_{1}	g_{2}	g_{3}
x_{2}	20	0	0	1	0	0	1	0	0
x_{1}	2	3	1	0	0	0	-4	0	0
s_{1}	0	7	0	0	0	1	-16	4	0
x_{3}	-10	1/2	0	0	1	0	1	-3/2	0
$\leftarrow \mathrm{g}_{3}$	0	-1/2	0	0	0	0	0	-1/2	1
$z=1$	$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow$		0	0	0	0	2	15	0

Ratio $\frac{\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}}{5^{\text {th }} \text { row }} \rightarrow$

Max. ratio $=-30$ and therefore remove variable g_{3} and enter variable g_{2} into the basis By applying the dual simplex method, we get the new optimal solution as shown in the following table.

Basic	Coeffts of	Values of							
Variables variables	Basic variables	Basic	x_{1}	x_{2}	x_{3}	s_{1}	g_{1}	g_{2}	g_{3}
x_{2}	20	0	0	1	0	0	1	0	0
x_{1}	2	3	1	0	0	0	-4	0	0
s_{1}	0	3	0	0	0	1	-16	0	8
x_{3}	-10	2	0	0	1	0	1	0	-3
g_{2}	0	1	0	0	0	0	0	1	-2
$\mathrm{z}=-14$		$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow 0$	0	0	0	2	0	30	

Since all the variables in above table have assumes integer values and all $z_{j}-c_{j} \geq 0$, the solution is integer optimal solution. $x_{1}=3, x_{2}=0, x_{3}=2$ and maz $x=-14$.
3) The owner of a readymade garments store sells two types of shirts - zee shirts and button - down shorts. He makes a profit of Rs. 3 and Rs. 12 per shirt on zee - shirts and Button down shirts, respectively. He has tow tailors A and B at his disposal to stitch the shirts. Tailors A and B can devote at the most 7 hours and 15 hours per day respectively. Both these shirts are to be stitched by both the tailors. Tailors A and B spend 2 hours and 5 hours, respectively in stitching one zee - shirt and 4 hours and 3 hours, respectively in stitching a Button down shirt. How many shirts of both types should be stitched in order to maximize daily profit?
a) Formulate and solve this problem as an LP problem.
b) If the optimal solution is not integer valued, use Gomory technique to derive the optimal integer solution.

Answer :

Let x_{1} and x_{2} are number of zee - shirts and Button down shirts to be stitched daily, respectively. Then we have to maximize profit $=3 x_{1}+12 x_{2}$ subject to the constraints.
i) Availability of time with tailor A

$$
2 x_{1}+4 x_{2} \leq 7
$$

ii) Availability of time with tailor B

$$
5 x_{1}+3 x_{2} \leq 15
$$

and $x_{1}, x_{2} \geq 0$ and are integers. Thus we get,
Maximize $\mathrm{z}=3 \mathrm{x}_{1}+12 \mathrm{x}_{2}$
Subject to,

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \leq 7 \\
& 5 x_{1}+3 x_{2} \leq 15
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$ and are integers.
Adding slack variables s_{1} and s_{2} the given LP problem is stated into its standard form.
Maximize $\mathrm{z}=3 \mathrm{x}_{1}+12 \mathrm{x}_{2}$
Subject to,

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+s_{1}=07 \\
& 5 x_{1}+3 x_{2}+s_{2}=15
\end{aligned}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{2} \geq 0$

Basic	Coeffts of	Values of	Varia				Min
Variables	Basic variables C_{B}	Basic variables $b=X_{B}$	X_{1}	x_{2}	s_{1}	s_{2}	Ratio x_{B} / x_{k}
$\leftarrow \mathrm{s}_{1}$	0	7	2	4	1	0	$7 / 4$
s_{2}	0	15	5	3	0	1	15/3
$\mathrm{z}=0$		$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow$	-3	-12	0	0	
$\rightarrow \mathrm{x}_{2}$	12	$7 / 4$	1/2	1	1/4	0	
s_{2}	0	$39 / 4$	$7 / 2$	0	-3/4	1	
$\mathrm{z}=21$		$z_{j}-c_{j} \rightarrow$	3	0	3	0	$\Delta_{\mathrm{j}} \geq 0$

The non - integer optimal solution is $x_{1}=0, x_{2}=7 / 4$ and $\max z=21$.
b)

To construct Gomory's fractional cut we use x_{2} - rows.

$$
\frac{7}{4}=\frac{1}{2} x_{1}+x_{2}+\frac{1}{4} s_{1}
$$

The required fractional cut is

$$
-\frac{3}{4}=g_{1}-\frac{1}{2} x_{1}-\frac{1}{4} s_{1}
$$

Adding this additional constraint to the bottom of the optimal simplex and applying the dual simplex method we get the following iterations.

		$\frac{\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}}{\operatorname{row} 3}$	-6	-	-12	0	0
			\uparrow				
x_{2}	12	1	0	1	0	0	1
S_{2}	0	$\mathrm{g} / 2$	0	0	-5/2	1	7
x_{1}	3	$3 / 2$	1	0	1/2	0	-2
	$z=\frac{33}{2}$	$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow$	0	0	$\frac{3}{2}$	0	6

The optimal solution is still non - integer. Therefore adding one more fractional out with the help of x_{1}-row we get the following able and subsequent interations by dual simplex method.

		c_{j}	3	12	0	0	0	0	
Basic Variables	Coeffts of Basic variables	Values of Basic variables	Variables						
			x_{1}	x_{2}	s_{1}	s_{2}	g_{1}	g_{2}	
x_{2}	12	1	0	1	0	0	1	0	
s_{2}	0	9/2	0	0	$-\frac{5}{2}$	1	7	0	
x_{1}	3	$3 / 2$	1	0	1/2	0	-2	0	
g_{2}	0	-1/2	0	0	-1/4	0	0	1	
$z=\frac{33}{2}$	$\xrightarrow{\text { Ratio } \frac{z_{j}-c_{j}}{\text { row 4 }} \rightarrow}$		0	0	$\frac{3}{2}$	0	6	0	
			-	-3	0	-	-		
x_{2}	12	1		0	1	0	0	1	0
s_{2}	0	7	0	0	0	1	7	-5	
x_{1}	3	1	1	0	0	0	-2	1	
s_{1}	0	1	0	0	1	0	0	-2	
$z=15$		$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \rightarrow$	0	0	0	0	6	$3 \geq 0$	

Since all the variables have assumed integer values and all $\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}} \geq 0$, the solution is an
integer optimal solution. Thus the company should produce $x_{1}=1$ zee shirt, $x_{2}=1$. Button down shirt to yield maximum profit $z=$ Rs. 15.

4.4 GEOMETRICAL INTERPRETATION OF GOMORY'S CUTTINGS PLANE METHOD

Let us consider the problem
Maximum $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+5 x_{2} \leq 16 \\
& 6 x_{1}+5 x_{2} \leq 30
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
The graphical solution of this problem is obtained in the figure with solution space represented by the convex region OABC. The optimal solution occurs at the extreme point B i. e. $x_{1}=3.5, x_{2}=1.8, \max z=5.3$. But this solution is not integer valued. While solving this
 problem by Gomory's method, we introduce first Gomory's constraint $-\frac{3}{10} x_{3}-\frac{9}{10} x_{4} \leq-\frac{4}{5}$.

In order to express this constraint in terms of $x_{1} \& x_{2}$, we use the constraints $2 x_{1}+5 x_{2}+x_{3}=16$ and $6 x_{1}+5 x_{2}+x_{4}=30$. Then Gomory's constraint becomes,

$$
\begin{aligned}
& -\frac{3}{10}\left(16-2 x_{1}-5 x_{2}\right)-\frac{9}{10}\left(30-6 x_{1}-5 x_{2}\right) \leq-\frac{4}{5} \\
& \text { i. e. } x_{1}+x_{2} \leq 5 \frac{1}{6}
\end{aligned}
$$

This constraint cuts off the feasible region and now the feasible region is reduced to somewhat less than the previous one and the procedure continues till an integer valued corner is found. Because of cuttings in the feasible region, the method was named as cutting plane method.

~~~~~EXERCISE ~~~~~
Find the optimum integer solution of the following all integer programming problems.
1) \(\operatorname{Max} z=x_{1}+x_{2}\)

Subjct to
\[
3 x_{1}-2 x_{2} \leq 5
\]
\[
x_{1} \leq 2
\]
\(x_{1}, x_{2} \geq 0\) and are integers. (Ans.: \(x_{1}=3, x_{2}=2\), max. \(z=5\) )
2) Max. \(z=x_{1}-2 x_{2}\)

Subjct to
\(4 x_{1}+2 x_{2} \leq 15\)
\(x_{1}, x_{2} \geq 0\) and integers.
(Ans.: \(x_{1}=3, x_{2}=0, \max . z=3\) )
3) Max. \(z=3 x_{2}\)

Subject to,
\(3 x_{1}+2 x_{2} \leq 7\)
\(x_{1}-x_{2} \geq-2\)
\(x_{1}, x_{2} \geq 0\) and integers.
(Ans.: \(x_{1}=0, x_{2}=2, \operatorname{maxz}=6\) )
4) Max. \(z=x_{1}+5 x_{2}\)

Subject to,
\(x_{1}+10 x_{2} \leq 20\)
\(\mathrm{x}_{1} \leq 2\)
\(x_{1}, x_{2} \geq 0\) and integers.
(Ans.: \(x_{1}=2, x_{2}=1, \operatorname{maxz}=7\) )
5) Max. \(z=3 x_{1}+4 x_{2}\)

Subject to,
\(3 x_{1}+2 x_{2} \leq 8\)
\(x_{1}+4 x_{2} \geq 10\)
\(x_{1}, x_{2} \geq 0\) and are integers.
(Ans.: \(x_{1}=0, x_{2}=4, \max z=16\) )
6) Max. \(z=11 x_{1}+4 x_{2}\)

Subject to,
\[
-x_{1}+2 x_{2} \leq 4
\]
\(5 x_{1}+2 x_{2} \leq 16\)
\(2 \mathrm{x}_{1}-\mathrm{x}_{2} \leq 4\)
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\) and are integers.
(Ans.: \(x_{1}=2, x_{2}=3, \operatorname{maxz}=34\) )
7) Max. \(z=x_{1}-x_{2}\)

Subject to,
\(\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 4\)
\(6 x_{1}+2 x_{2} \leq 9\)
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\) and are integers.
(Ans.: \(x_{1}=1, x_{2}=0, \operatorname{maxz}=2\) )
8) Max. \(z=3 x_{1}-2 x_{2}+5 x_{3}\)

Subject to,
\(5 x_{1}+2 x_{2}+7 x_{3} \leq 28\)
\(4 x_{1}+5 x_{2}+5 x_{3} \leq 30\)
\(x_{1}, x_{2}, x_{3} \geq 0\) and are integers.
(Ans.: \(x_{1}=0, x_{2}=0, x_{3}=4, \operatorname{maxz}=20\) )

\section*{BRANCH AND BOUND METHOD}

The branch and bound method was first developed by A. H. Land and A. G. Daig and it was further studied by J.O. C. Little et. al. and other researchers. This method can be used to solve all integer, mixed integer and zero - one linear problems. This is the most general technique for the solution of integer programming problem (I.P.P.) in which a few or all the variables are constrained by their upper or lower bounds.

\subsection*{4.5 STEPS OF BRANCH AND BOUND ALGORITHM}

\section*{Step : 1}

Initialization : Consider the following all integer programming problem.
\[
\begin{aligned}
& \text { Maximize } \mathrm{z}=\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \\
& \text { Subject to constraints }
\end{aligned}
\]

Obtain the optimal solution of the given problem ignoring integer restriction on the variables.

If the solution to this LP problem (say LP - A) is infeasible or unbounded, the solution to the given all integer programming problem is also infeasible or unbounded, as the case may be,

Otherwise examine optimal feasible solution. If the answer satisfies the integer restrictions, the optimal integer solution has been obtained. If one or more basic variables do not satisfy integer requirement then go to step 2.

\section*{Step : 2}
a) Let the optimal value of objective function of \(L P-A\) be \(z_{1}\). This value provides an initial upper bound on objective function value for integer LP problem. Let it be denoted by \(z_{u}\). The lower bound on integer LP problem can be obtained by truncating to integer all values of the varialbes. Let the lower bound be denoted by \(\mathrm{z}_{\mathrm{L}}\).
b) Let \(x_{k}\) be the basic variable having largest fractional value.
c) Branch (or partition) the LP - A into two new LP sub - problems (also called nodes) based on integer value of \(x_{k}\) i. e. partitioning is done by adding two mutually exclusive constraints.
\[
x_{k} \leq\left[x_{k}\right] \text { and } x_{k} \geq\left[x_{k}\right]+1
\]
to the original LP problem. Here \(\left[x_{k}\right]\) is the integer portition of the current non integer value of the variable \(x_{k}\). This is done to exclude the non-integer value of the variable \(x_{k}\). The two new LP sub problems are as follows.
LP sub - problem B
LP sub - problem C
\(\operatorname{Max} \mathrm{z}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{j}}\)
\[
\operatorname{Max} z=\sum c_{j} \cdot x_{j}
\]
subject to
\[
\sum \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}=\mathrm{b}_{\mathrm{i}}
\]
subject to
\[
\sum a_{i j} x_{j}=b_{i}
\]
\[
\begin{array}{ll}
x_{k} \leq\left[x_{k}\right] & x_{k} \geq\left[x_{k}\right]+1 \\
\text { and } x_{j} \geq 0 & \text { and } x_{j} \geq 0
\end{array}
\]

\section*{Step: 3}

Bound step : Obtain optimal solution of sub-problems B and C. Let the optimal value of the objective function of \(L P-B\) be \(z_{2}\) and that of \(L P-C\) be \(z_{3}\).

\section*{Step: 4}

Examine solution of both LP - B and LP - C, which might contain optimal point.
1) Exclude a sub - problem from further consideration if it has an infeasible solution.
2) If a sub - problem yields a solution that is feasible but not an integer then for this sub - problem return to step - 2 .
3) If a sub - problem yields a feasible integer solution examine the value of objective function. If this value is equal to the upper bound \(z_{U}\), an optimal solution has been reached. But if it is not equal to the upper bound \(z_{U}\) but exceeds the lower bound \(z_{L}\), this value is considered as new upper bound and return to step 2 . Finally if it is less than the lower bound, terminate this branch.

\section*{Step: 5}

The procedure of branching and bounding contimes until no further sub problem remains to be examined. At this stage, the integer solution corresponding to the current lower bound is the optimal all integer programming problem solution.

\subsection*{4.6 Examples}
1) Solve the following all integer programming problem using the branch and bound method.

Maximize \(z=3 x_{1}+5 x_{2}\)
Subject to the constraints
\(2 x_{1}+4 x_{2} \leq 25\)
\(x_{1} \leq 8\)
\(2 x_{2} \leq 10\)
and \(x_{1}, x_{2} \geq 0\) and integers.

\section*{Answer :}

Relaxing the integer requirements, the optimal non - integer solution of the given integer
L. P. problem obtained by the graphical method as shown below is \(x_{1}=8, x_{2}=2.25\) and \(z_{1}=35.25\).


The value of \(z_{1}\) represents the initial upper bound, \(z_{u}=35.25\) on the value of the objective function i. e. the value of the objective function in the subsequent steps cannot exceed 35.25 . The lower bound \(z_{L}\) is obtained by truncating the solution values to \(x_{1}=8\) and \(x_{2}=2\).

Thus \(z_{L}=3(8)+5(2)=34\)
The variable \(x_{2}(=2.25)\) is the only non - integer solution value and is therefore selected for dividing the given problem into two sub - problems LP - B and LP - C. Two new censtrains \(x_{2} \leq 2\) and \(x_{2} \geq 3\) are created. These two constraints are added to the given problem to get two sub-problems.

LP - B
\(\operatorname{Max} z=3 x_{1}+5 x_{2}\)
Subject to,
\[
\begin{array}{r}
2 x_{1}+4 x_{2} \leq 25 \\
x_{1} \leq 8 \\
2 x_{2} \leq 10 \\
x_{2} \leq 2
\end{array}
\]
and \(x_{1}, x_{2} \geq 0\) and integers.

LP - C
Max. \(z=3 x_{1}+5 x_{2}\)
Subject to,
\[
2 x_{1}+4 x_{2} \leq 25
\]
\[
x_{1} \leq 8
\]
\[
2 x_{2} \leq 10
\]
\[
x_{2} \geq 3
\]
and \(x_{1}, x_{2} \geq 0\) and integer.

In sub-problem L. P. B. the constraint \(2 x_{2} \leq 10\) is redundant as \(x_{2} \leq 2\) satisfy \(2 x_{2} \leq 10\).
Subproblem B and C are solved graphically.

B) Feasble region for sub - problem B
C) Feasible region for sub - problem C.

The solution to subproblem \(B\) is \(x_{1}=8, x_{2}=2, z_{2}=34\).
The solution to subproblem \(C\) is \(x_{1}=6.5, x_{2}=3, z_{3}=34.5\). Notice that both solution yield value of \(z\) lower than that of original LP problem. The value of \(z\), establishes an upper bound on \(z_{2}\) and \(z_{3}\) values of sub - problems.

Since the solution of sub - problem \(B\) is an all integer, we stop the search of this sub problem i. e. no further branching is required from node \(B\). The value of \(z_{2}=34\) becomes the new lower bound on the IP problems optiomal solution. A non - integer solution of sub - problem C and also \(\mathrm{z}_{3}>\mathrm{z}_{2}\), both indicate that further brancing is necessary from node C. However if \(z_{3} \leq z_{2}\) then no further branching would have been required from node \(C\). The upper bound now takes the value \(z_{U}=z_{3}=34.5\) instead of 35.25 at node \(A\).

The sub - problem \(C\) is now branched into two new subproblems \(D\) and \(E\), and are obtained by adding the constraints \(\mathrm{x}_{1} \leq 6\) and \(\mathrm{x}_{1} \geq 7\) (for problem \(\mathrm{C}, \mathrm{x}_{1}=6.25\) )

LP - D
Max. \(z=3 x_{1}+5 x_{2}\)
Subject to,
\[
2 x_{1}+4 x_{2} \leq 25
\]
\[
x_{1} \leq 8
\]
\[
2 x_{2} \leq 10
\]
\[
x_{2} \geq 3
\]

LP-E
Max. \(z=3 x_{1}+5 x_{2}\)
Subject to,
\[
2 x_{1}+4 x_{2} \leq 25
\]
\[
x_{1} \leq 8
\]
\[
2 x_{2} \leq 10
\]
\[
x_{2} \leq 3
\]
\[
x_{1} \leq 6
\]
and \(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\) and integers.
Sub - problems D and E are solved graphically.
The solutions are
LP - D : \(x_{1}=6, x_{2}=3.25\), Max. \(z=z_{4}=34.25\)
LP - E: No feasible solution exists because constraints
\(x_{1} \geq 7\) and \(x_{2} \geq 3\) do not satisfy \(2 x_{1}+4 x_{2} \leq 25\).
So this branch is terminated.


In problem-D solution \(x_{2}=3.25\) is not an integer solution. Create new sub problems \(F\) and \(G\) from sub problem \(D\) with two new constraints \(x_{2} \leq 3\) and \(x_{2} \geq 4\).

LP - F
Max. \(z=3 x_{1}+5 x_{2}\)
Subject to,
\[
2 x_{1}+4 x_{2} \leq 25
\]
\[
x_{1} \leq 8
\]
\[
2 x_{2} \leq 10
\]
\[
x_{2} \geq 3
\]
\[
x_{1} \leq 6
\]
\[
x_{2} \leq 3
\]

LP-G
Max. \(z=3 x_{1}+5 x_{2}\)
Subject to,
\[
2 x_{1}+4 x_{2} \leq 25
\]
\[
x_{1} \leq 8
\]
\[
2 x_{2} \leq 10
\]
\[
x_{2} \geq 3
\]
\[
x_{1} \leq 6
\]
\[
x_{2} \geq 4
\]
and \(x_{1}, x_{2} \geq 0\) and integers. and \(x_{1}, x_{2} \geq 0\) and integers.
The graphical solution of sub - problems \(F\) and \(G\) gives
sub-problems \(F: x_{1}=6, x_{2}=3\) and Max. \(z=z_{5}=33\)
sub-problems G: \(\mathrm{x}_{1}=4.25, \mathrm{x}_{2}=4\) and Max. \(\mathrm{z}=\mathrm{z}_{6}=33.5\)
The branching process is terminated when new upper bound is less than or equal to the lower bounds of previous solutions or no further branching is possible.

Although the solution at node \(G\) is non - integer, no additional branching is required from this node because \(z_{6}<z_{4}\). The branch and bound algorithm is terminated and the optimal integer solution is \(x_{1}=8, x_{2}=2\) and \(z=34\) yielded at node \(B\).

The branch and bound procedure for the above problem is given below.

2) Use branch and bound technique and solve the following integer programming problem.

Max. \(z=7 x_{1}+9 x_{2}\)
Subject to,
\[
\begin{aligned}
& -x_{1}+3 x_{2} \leq 6 \\
& 7 x_{1}+x_{2} \leq 35 \\
& 0 \leq x_{1}, x_{2} \leq 7
\end{aligned}
\]
and \(x_{1}, x_{2}\) are integers.

\section*{Answer}

Relaxing the integers requirement the optimal non - integer solution obtained by graphical method is as follows.

\[
x_{1}=\frac{9}{2}, x_{2}=\frac{7}{2}
\]
and \(z_{1}=7\left(\frac{9}{2}\right)+9\left(\frac{7}{2}\right)=63\)
Thus \(\mathrm{z}_{\mathrm{u}}=63\) and \(\mathrm{z}_{\mathrm{L}}=7(4)+9(3)=55\)
Both \(x_{1}\) and \(x_{2}\) are non - integer solution values. Choose \(x_{1}=\frac{9}{2}\) for dividing the given problem into two sub problems LP - \(B\) and LP - C. Two new constraints \(x_{1} \leq 4\) and \(x_{1} \geq 5\) are added to LP - \(B\) and LP - C respectively.

LP - B
Max. \(z=7 x_{1}+9 x_{2}\)
Subject to,
\[
\begin{aligned}
-x_{1}+3 x_{2} & \leq 6 \\
7 x_{1}+x_{2} & \leq 35 \\
0 \leq x_{1}, x_{2} & \leq 7 \\
x_{1} & \leq 4
\end{aligned}
\]
and \(\mathrm{x}_{1}, \mathrm{x}_{2}\) are integers.
The solution to sub problem LP - B and LP - C are obtained by graphical method.


The solution of sub problem LP - \(B\) is \(x_{1}=4, x_{2}=\frac{10}{3}, z_{2}=58\). The feasible region for subproblem LP - C is \(\{(5,0)\}\). Therefore the solution of subproblem LP - C is \(x_{1}=5, x_{2}=0, z_{3}=35\). Since all the variables have integer values, we stop the search for this subproblem i. e. no further branching is required from node \(C\). The value \(z=35\) becomes the new lower bounds on the IP problems optimal solution. A non - integer solution of subproblem \(B\) and \(z_{2}>z_{3}\), both indicate that further branching is necessary from node B .

The sub - problemB is now branched into two new subproblem D and E , and are obtained by additing the constraints \(x_{2} \leq 3\) and \(x_{2} \geq 4\) (as for problem \(B, x_{2}=10 / 3\) ).

LP - D
LP-E
Max \(Z=7 x_{1}+9 x_{2}\)
Max. \(Z=7 x_{1}+9 x_{2}\)
Subject to,
\[
\begin{aligned}
-x_{1}+3 x_{2} & \leq 6 \\
7 x_{1}+x_{2} & \leq 35 \\
0 \leq x_{1}, x_{2} & \leq 7 \\
x_{1} & \leq 4 \\
x_{2} & \leq 3
\end{aligned}
\]

Subject to,
\[
\begin{aligned}
-x_{1}+3 x_{2} & \leq 6 \\
7 x_{1}+x_{2} & \leq 35 \\
0 \leq x_{1}, x_{2} & \leq 7 \\
x_{1} & \leq 4 \\
x_{2} & \geq 4
\end{aligned}
\]

The graphical solutions to LP - D and LP - E are as follows.


There is no feasible region for LP-E, Since \(x_{1} \leq 4\) and \(x_{2} \geq 4\) do not satisfy \(-x_{1}+3 y_{2} \leq 6\) as such there is no feasible solution for problem LP - E. The solution of subproblem LP - D is \(x_{1}=4, x_{2}=3\) and \(z_{4}=55\). Since there is no solution for subproblem LP - \(E\) no further branching is required for this subproblem. Since solution to LP - D is an integer solution, no further branching is required for LP - D asa.

Thus finally, we get the optimal solution to the given integer LP problem as \(z=55\), \(x_{1}=4, x_{2}=3\).

The tree - diagram corresponding to this problem is shown in the following figure.


\section*{Remark}

If the number of variables are more than 2 then exclude the redendent constraints and solve these problems by simplex method and obtain solutions corresponding to each sub problem.

\section*{EXERCISE ~~~~~}

Use branch and bound technique and solve the following integer programming problems.
1) Max. \(z=3 x_{1}+3 x_{2}+13 x_{3}\)

Subject to,
\[
\begin{array}{r}
-3 x_{1}+6 x_{2}+7 x_{3} \leq 8 \\
5 x_{1}-3 x_{2}+7 x_{3} \leq 8 \\
0 \leq x_{j} \leq 5
\end{array}
\]
and all \(\mathrm{x}_{\mathrm{j}}\) are integer.
2) Max. \(z=3 x_{1}+x_{2}\)

Subject to,
\[
\begin{aligned}
& 3 x_{1}-x_{2}+x_{3}=12 \\
& 3 x_{1}+11 x_{2}+x_{4}=66 \\
& x_{j} \geq 0, j=1,2,3,4
\end{aligned}
\]
3) Max. \(z=x_{1}+x_{2}\)

Subject to,
\[
\begin{gathered}
4 x_{1}-x_{2} \leq 10 \\
2 x_{1}+5 x_{2} \leq 10 \\
x_{1}, x_{2}=0,1,2,3
\end{gathered}
\]
4) Min. \(z=3 x_{1}+2.5 x_{2}\)

Subject to,
\[
\begin{gathered}
x_{1}+2 x_{2} \geq 20 \\
3 x_{1}+2 x_{2} \geq 50 \\
x_{1}, x_{2} \geq 0 \text { and integers. }
\end{gathered}
\]
(Ans.: \(x_{1}=14, x_{2}=4, z=52\) )
5) Max. \(z=2 x_{1}+3 x_{2}\)

Subject to,
\[
\begin{array}{r}
x_{1}+3 x_{2} \leq 9 \\
3 x_{1}+x_{2} \leq 7 \\
x_{1}-x_{2} \leq 1
\end{array}
\]
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\) and integers.
(Ans.: \(x_{1}=0, x_{2}=3, z=9\) )
6) Max. \(z=7 x_{1}+6 x_{2}\)

Subject to,
\[
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 12 \\
& 6 x_{1}+5 x_{2} \leq 30
\end{aligned}
\]
\(x_{1}, x_{2} \geq 0\) and integers.
(Ans.: \(x_{1}=5, x_{2}=0, z=35\) )
7) Max. \(z=5 x_{1}+4 x_{2}\)

Subject to,
\[
\begin{aligned}
x_{1}+x_{2} & \geq 2 \\
5 x_{1}+3 x_{2} & \leq 15 \\
3 x_{1}+5 x_{2} & \leq 15
\end{aligned}
\]
and \(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\) and integers.
(Ans.: \(x_{1}=3, x_{2}=0, z=15\) )
8) Max. \(z=-3 x_{1}+x_{2}+3 x_{3}\)

Subject to,
\[
\begin{aligned}
-x_{1}+2 x_{2}+x_{3} & \leq 4 \\
2 x_{2}-1.5 x_{3} & \leq 1 \\
x_{1}-3 x_{2}+2 x_{3} & \leq 3
\end{aligned}
\]
\[
\begin{gathered}
x_{1}, x_{2} \geq 0 \\
x_{3} \text { - non - negative integers. } \\
\left(\text { Ans.: } x_{1}=0, x_{2}=\frac{8}{7}, x_{3}=1, z=\frac{29}{7}\right)
\end{gathered}
\]
9) Max. \(z=x_{1}+x_{2}\)

Subject to,
\[
\begin{aligned}
2 x_{1}+5 x_{2} & \geq 16 \\
6 x_{1}+5 x_{2} & \leq 30 \\
x_{2} & \geq 0
\end{aligned}
\]
\(\mathrm{x}_{1}\) - non - negative integer.
\(\left(\right.\) Ans.: \(\left.x_{1}=4, x_{2}=\frac{6}{5}, z=\frac{26}{5}\right)\)
10) Max. \(z=110 x_{1}+100 x_{2}\)

Subject to,
\[
\begin{aligned}
& 6 x_{1}+5 x_{2} \leq 29 \\
& 4 x_{1}+14 x_{2} \leq 48
\end{aligned}
\]
\(x_{1}, x_{2} \geq 0\) and integers. (Ans.: \(x_{1}=4, x_{2}=1, z=540\) )

Dynamic programming is a quantitative technique for solving problems involving a sequence of inter related decisions. It is a decision making problem. In this technique a problem is divided into sub - problems (stages). The computation at different stages are linked through recursive computations in such a way that the feasible optimum solution of the entire problem is obtained when the last stage is reached.

This technique was developed by 'Richard Bellman'. Bellman's principle of optimality states that. An optimal policy has the property that whatever the initial state and deciions are the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.

Mathematically, this can be written as
\[
\mathrm{f}_{\mathrm{N}}(\mathrm{x})=\max _{\mathrm{d}_{\mathrm{n}} \in\{x\}}\left\{\mathrm{r}\left(\mathrm{~d}_{\mathrm{n}}\right)+\mathrm{f}_{\mathrm{N}-1}\left\{\mathrm{~T}\left(\mathrm{x}, \mathrm{~d}_{\mathrm{n}}\right)\right\}\right\}
\]

Where \(\quad f_{N}(x) \quad=\quad\) The optimal return from an \(N\) stage process when initial state is x .
\(\left.\begin{array}{lll}r\left(d_{n}\right) & = & \text { Immediate return due to decision } x_{n}\end{array}\right]\)\begin{tabular}{l} 
The transfer function which gives the resulting \\
state
\end{tabular}
\(\{x\} \quad=\quad\) Set of admissible decisions.
The problem which does not satisfy the principle of optimality cannot be solved by the dynamic programming method.

\section*{Characteristics of Dynamic Programming}
1) The problem can be divided into stages, with a policy decision required at each stage.
2) Every stage consists of a number of states associated with it. The states are different possible conditions in which the system may find itself at that stage of the problem.
3) The decision at each stage converts the current state into a next state.
4) The state of the system at a stage is decscribed by state variables.
5) Given the current state, an optimal policy for the remaining stages is independent of the policy adopted in previous stages.
6) A recursive relation (functional equation) is formulated with \(n\) stages.
7) Using recursive equation approach each time the solution procedure moves backward stage by stage for obtaining the optimal policy of each state for that particular stage, till it attains the optimum policy beginning at the initial stage.

\subsection*{5.1 EXAMPLES}

\section*{Example : 1}

A positive quantity C is to be divided into n parts in such a way that the product of the n parts is to be a maximum. Obtain the optimal subdivision.

\section*{Solution :}

\section*{Step : 1}

Mathematical formulation and development of recurrence relation. If the number c is divided into \(n\) parts \(y_{1}, y_{2}, \ldots y_{n}\left(s a_{4}\right)\). Then the problem is to find \(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\) which

Maximize \(\mathrm{z}=\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}\)
such that \(y_{1}+y_{2}+y_{3}+\ldots+y_{n}=c\)
We form a recursive relation connecting n stage problem with the optimal decision function for the \((n-1)\) stage such problem \(n=1,2, \ldots, n\).

Let \(u_{i}(i=1,2, \ldots, n)\) be the \(i^{\text {th }}\) part of \(c\). In this problem each part \(u_{i}\) is may be regarded as a stage, \(u_{i}\) may assume any non negative values such that \(y_{1}+y_{2}+y_{3}+\ldots+y_{n}=c\).

Hence \(f_{a}\) the alternatives at each stage are infinite. It is a problem of continuous system and hence the optimal decision at each stage are obtained by using the method of differential calculus.

Let \(f_{n}(c)\) denote the maximum value of the product when the quantity c is divided into n parts. \(f_{n}(c)\) is function of discrete variables \(n\).

For \(\mathrm{n}=1\), i. e. if c is divided into one part only. Then \(\mathrm{y}_{1}=\mathrm{c}\)
\(\therefore \quad \mathrm{f}_{1}(\mathrm{c})=\mathrm{c}\)
For \(\mathrm{n}=2\), i. e. if C is divided into two parts \(\mathrm{u}_{1}\) and \(\mathrm{u}_{2}\).
Let \(y_{1}=z\)
\[
\begin{array}{ll}
\therefore & \mathrm{y}_{2}=\mathrm{c}-\mathrm{z} \\
\therefore & \mathrm{f}_{2}(\mathrm{c})=\operatorname{Maxy}_{1} \mathrm{y}_{2}=\operatorname{Max}_{0 \leq \mathrm{z} \leq \mathrm{C}}\{\mathrm{z}(\mathrm{c}-\mathrm{z})\} \\
& \mathrm{f}_{2}(\mathrm{c})=\operatorname{Max}_{0 \leq \mathrm{z} \leq \mathrm{C}}\left\{\mathrm{zf}_{2}(\mathrm{c}-\mathrm{z})\right\}
\end{array}
\]
\[
\left(\text { Since } f_{1}(c-z)=(c-z) \text { from }(1)\right.
\]

For \(\mathrm{n}=3\), if c is divided into threee parts \(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\)
Let \(y_{1}=z\), then \(y_{2}+y_{3}=c-z\)
Therefore the part \(\mathrm{c}-\mathrm{z}\) is further divided into two parts \(\mathrm{y}_{2}, \mathrm{y}_{3}\) where maximum product is \(f_{2}(c-z)\) by definition of \(f_{n}(c)\).
\(\therefore \quad \mathrm{f}_{3}(\mathrm{c})=\operatorname{Maxy}_{1} \mathrm{y}_{2} \mathrm{y}_{3}=\operatorname{Max}_{0 \leq \mathrm{ZC}}\left\{\mathrm{zf}_{2}(\mathrm{c}-\mathrm{z})\right\}\)
By similar procedure we get
for \(\mathrm{n}=\mathrm{m}\) the recursive relation is
\(\mathrm{f}_{\mathrm{m}}(\mathrm{c})=\operatorname{Max}_{0 \leq \mathrm{z} \leq \mathrm{C}}\left\{\mathrm{zf}_{\mathrm{m}-1}(\mathrm{c}-\mathrm{z})\right\}\)

\section*{Step 2}

Solve the recursive relation for optimal policy
From (1) \(\quad \mathrm{f}_{1}(\mathrm{c})=\mathrm{c}\)
From (2) \(\quad \mathrm{f}_{2}(\mathrm{c})=\operatorname{Max}_{0 \leq \mathrm{Z} \leq \mathrm{C}}\{\mathrm{zf}(\mathrm{c}-\mathrm{z})\}\)
\[
=\operatorname{Max}_{0 \leq Z \leq C}\{z .(c-z)\}
\]

We apply the method of diff. calcules
\[
\begin{aligned}
& \frac{d}{d z}(z \cdot(c-z))=c-2 z=0 \\
& \therefore \quad z=\frac{c}{2}, c-z=\frac{c}{2} \\
& \frac{d^{2}}{d Z^{2}}\{z(c-z)\}=-2 \text { at } z=\frac{c}{2}
\end{aligned}
\]

Hence \(z(c-z)\) is maximum at \(z=\frac{c}{2}\)
\(\therefore \quad \mathrm{f}_{2}(\mathrm{c})=\frac{\mathrm{c}}{2} \cdot \frac{\mathrm{c}}{2}=\left(\frac{\mathrm{c}}{2}\right)^{2}\)

Optimal policy for two parts is \(\left(\frac{\mathrm{c}}{2}, \frac{\mathrm{c}}{2}\right)\)

In other words the optimal policy for two parts is division of c in two equal parts.
From (3)
\[
\begin{aligned}
f_{3}(c) & =\operatorname{Max}_{0 \leq Z \leq C}\left\{z f_{2}(c-z)\right\} \\
& =\operatorname{Max}_{0 \leq z \leq c}\left\{z \cdot\left(\frac{c-z}{z}\right)^{2}\right\}, f_{2}(c-z)=\left(\frac{c-z}{z}\right)^{2}
\end{aligned}
\]

We apply the method of calculas
\[
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dz}}\left\{\mathrm{z} \cdot\left(\frac{\mathrm{c}-\mathrm{z}}{\mathrm{z}}\right)^{2}\right\}=\left\{1 \cdot\left(\frac{\mathrm{c}-\mathrm{z}}{\mathrm{z}}\right)^{2}+\mathrm{z} \cdot 2\left(\frac{\mathrm{c}-\mathrm{z}}{2}\right)\left(-\frac{1}{2}\right)\right\}=0 \\
& \therefore \quad \mathrm{c}=3 \mathrm{z} \\
& \quad \mathrm{z}=\frac{\mathrm{c}}{3} \\
& \therefore \quad \mathrm{c}-\mathrm{z}=\mathrm{c}-\frac{\mathrm{c}}{3}=\frac{2 \mathrm{c}}{3} \text { is to be divided into two parts whose product is maximum. }
\end{aligned}
\]

By the policy for two parts \(f_{2}(c-z)\) i. e.
i. e. \(f_{2}\left(\frac{2 \mathrm{c}}{3}\right)\) is attained when the two parts are \(\frac{1}{2}\left(\frac{2 \mathrm{c}}{3}\right)\) and \(\frac{1}{2}\left(\frac{2 \mathrm{c}}{3}\right)\) is \(\frac{\mathrm{c}}{3}, \frac{\mathrm{c}}{3}\)
\(f_{3}(c)=\frac{c}{3}\left\{\frac{c-\frac{c}{3}}{2}\right\}^{2}=\frac{c}{3}\left\{\frac{c}{3}\right\}^{2}=\left(\frac{c}{3}\right)^{3}\)

Hence the optimal policy for three parts is \(\left(\frac{\mathrm{c}}{3}, \frac{\mathrm{c}}{3}, \frac{\mathrm{c}}{3}\right)\) is
c is divided into three equal parts.
In general for n parts (stages)
Optimal policy is \(\left(\frac{c}{n}, \frac{c}{n}, \frac{c}{n}, \ldots, \frac{c}{n}\right)\)
\[
\therefore \quad \mathrm{f}_{\mathrm{n}}(\mathrm{c})=\left(\frac{\mathrm{c}}{\mathrm{n}}\right)^{\mathrm{n}}
\]

We shall have this result by induction on \(n\).

The given result is true for \(\mathrm{n}=1\)
\(f_{1}=c . c\) is divided into one part only.
Assume that the given result is true for \(n=m\).
i. e. \(f_{m}(c)=\left(\frac{c}{m}\right)^{m}\)

We shall show that the above result is true for \(\mathrm{n}=\mathrm{m}+1\)
From (4) \(\quad \mathrm{f}_{\mathrm{m}+1}(\mathrm{c})=\underset{0 \leq \mathrm{Max} \leq \mathrm{C}}{\operatorname{Maf}}\{\mathrm{zf}(\mathrm{c}-\mathrm{z})\}\)
\[
=\operatorname{Max}_{0 \leq z \leq C}\left\{z .\left(\frac{c-z}{m}\right)^{m}\right\}
\]

We apply the method of differential calculus
\[
\begin{aligned}
\frac{d}{d z}\left\{z\left(\frac{c-z}{m}\right)^{m}\right\} & =1 \cdot\left(\frac{c-z}{m}\right)^{m}+z m\left(\frac{c-z}{m}\right)^{m-1}\left(-\frac{1}{m}\right) \\
& =0 \\
\therefore \quad z & =\frac{c}{m+1}
\end{aligned}
\]

It can be prove that
\[
\begin{aligned}
& \frac{d^{2}}{d z^{2}}\left\{z \cdot\left(\frac{c-z}{m}\right)^{m}\right\}<0 \text { for } z=\frac{c}{m+1} \\
& \therefore \quad f_{m+1}=\frac{c}{m+1}\left\{\frac{c-\frac{c}{m+1}}{m}\right\}^{m}=\left(\frac{c}{m+1}\right)^{m+1}
\end{aligned}
\]

Optimal policy in this case is
\(\left\{\frac{c}{m+1}, \frac{c}{m+1}, \ldots, \frac{c}{m+1}\right\}\)
Hence the required optimal policy is
\(\left\{\frac{c}{n}, \frac{c}{n}, \ldots, \frac{c}{n}\right\}\)

\section*{Example : 2}

Use dynamic programming to show that
\[
-\sum_{i=1}^{n} p_{i} \log p_{i} \text { subject to } \sum_{i=1}^{n} p_{i}=1 \text { is maximum when } p_{1}=p_{2}=\ldots p_{n}=\frac{1}{n}
\]

\section*{Step 1}

Form a functional equation we consider a problem as follows
Divided 1 in \(n\) parts \(p_{1}, p_{2}, \ldots, p_{n}\) such that
\(-\sum_{i=1}^{n} p_{i} \log p_{i}=-\left(p_{1} \log p_{1}+p_{2} \log p_{2}+\ldots+p_{n} \log p_{n}\right)\) is maximum.
Let \(f_{n}(1)\) denote maximum value of \(-\sum_{i=1}^{n} p_{i} \log _{i}\) when 1 is divided in \(n\) parts \(p_{1}, p_{2}, \ldots, p_{n}\).
Such that \(\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}+\ldots+\mathrm{p}_{\mathrm{n}}=1\)
\(f_{n}(1)\) is a function of discrete variable and it is continuous system problem.
For \(\mathrm{n}=1\), i. e. if 1 is divided into one part only then \(\mathrm{p}_{1}=1\).
\(\therefore \quad f_{1}(1)=\operatorname{Max}\left(-p_{8} \log p_{1}\right)=-1 \cdot \log 1\)
For \(n=2\) i.e. 1 is divided into two parts \(p_{1}\) and \(p_{2}\).
Let \(p_{1}=z\)
\[
\begin{array}{rlrl}
\therefore \quad & p_{2}= & 1-z \\
\therefore \quad f_{2}(1) & =\operatorname{Max}\left(-p_{1} \log p_{1}-p_{2} \log p_{2}\right) \\
& =M \operatorname{Max}[-z \log z-(1-z) \log )(1-z)] \\
& =\operatorname{Max}_{0 \leq z \leq 1}\left[-z \log z+f_{1}(1-z)\right] \tag{2}
\end{array}
\]

For \(\mathrm{n}=3 \mathrm{i}\). e . if c is divided into three parts \(\mathrm{p}_{1}, \mathrm{p}_{2}\) and \(\mathrm{p}_{3}\)
Let \(p_{1}=z\), then \(p_{2}+p_{3}=1-z\)
Therefore the parts \((1-z)\) is divided into two parts \(p_{2}, p_{3}\) whose maximum value is \(f_{2}(1-z)\).
\[
\begin{align*}
f_{3}(1) & =\operatorname{Max}\left[-p_{1} \log p_{1}-p_{2} \log p_{2}-p_{3} \log p_{3}\right] \\
& =\operatorname{Max}_{0 \leq z \leq 1}\left[-z \log z+f_{2}(1-z)\right] \tag{3}
\end{align*}
\]

By similar procedure
We get the functional equation for \(n=m\).
\[
\begin{equation*}
f_{m}(1)=\operatorname{Max}_{0 \leq z \leq 1}\left[-z \log z+f_{m-1}(1-z)\right] \tag{4}
\end{equation*}
\]

\section*{Step 2}

Solve the functional equation
From (1) \(\quad f_{1}(1)=-1 \log 1\)
From (2) \(\quad f_{2}(1)=\operatorname{Max}_{0 \leq z \leq 1}[-z \log z+f(1-z)]\)
\[
f_{2}(1)=\operatorname{Max}_{0 \leq z \leq 1}[-z \log z-(1-z) \log (1-z)]
\]

We use method of differential calcules
\[
\begin{aligned}
& \frac{d}{d z}[-z \log z-(1-z) \log (1-z)] \\
& \quad=\left[-\log z-\frac{z}{z}-(1-z) \frac{(-1)}{(1-z)}-(-1) \log (1-z)\right]=0
\end{aligned}
\]
\[
\therefore \quad z=\frac{1}{2}
\]
\(\frac{d^{2}}{d z^{2}}[-z \log z-(1-z) \log (1-z)]=-4<0\) at \(Z=\frac{1}{2}\)
\(f_{2}(1)=-\frac{1}{2} \log \frac{1}{2}-\frac{1}{2} \log \frac{1}{2}=-z\left(-\frac{1}{2} \log \frac{1}{2}\right)\)
Thus the optimal policy for two parts is \(p_{1}=p_{2}=\frac{1}{2}\)
using (3) we have
\(f_{3}(1)=\operatorname{Max}_{0 \leq z \leq 1}\left[-z \log z+f_{2}(1-z)\right]\)
\[
\begin{equation*}
=\operatorname{Max}_{0 \leq z \leq 1}\left[-z \log z+2\left\{-\left(\frac{1-z}{2}\right) \log \left(\frac{1-z}{2}\right)\right\}\right] \tag{5}
\end{equation*}
\]

We use method of differential calcules.
\[
\begin{aligned}
& \frac{d}{d z}\left[-z \log z-(1-z) \log \left(\frac{1-z}{2}\right)\right] \\
& =\left[-\log z-\frac{z}{z}-(-1) \log \left(\frac{1-z}{z}\right)-(1-z) \frac{1}{(1-z)}\left(-\frac{1}{z}\right)\right] \\
& =0 \\
& \therefore \quad \quad z=\frac{1}{3} \\
& \therefore \quad 1-z=1-\frac{1}{3}=\frac{2}{3} \\
& \frac{d^{2}}{d z^{2}}\left[-z \log 2-(1-z) \log \left(\frac{1-z}{z}\right)\right]<0 \text { at } z=\frac{2}{3}
\end{aligned}
\]
\(1-z=\frac{2}{3}\) is to be divided into two parts \(p_{2}\) and \(p_{3}\) such that \(-p_{2} \log p_{2}-p_{3} \log p_{3}\) is maximum.

Hence for two parts \(f_{2}(1-z)\) i. e. \(f_{2}\left(\frac{2}{3}\right)\) is attained when the two parts are
\[
\begin{align*}
\mathrm{p}_{2}=\frac{1}{2}\left(\frac{2}{3}\right)=\frac{1}{3}, \mathrm{p}_{3} & =\frac{1}{2}\left(\frac{2}{3}\right)=\frac{1}{3} \\
\mathrm{f}_{2}(1-\mathrm{z})=\mathrm{f}_{2}\left(\frac{2}{3}\right) & =2\left\{-\frac{2 / 3}{2} \log \frac{(2 / 3)}{2}\right\} \\
& =3\left\{-\frac{1}{3} \log \left(\frac{1}{3}\right)\right\} \\
\mathrm{f}_{3}(1) & =-\frac{1}{3} \log \left(\frac{1}{3}\right)+2\left\{-\frac{1}{3} \log \left(\frac{1}{3}\right)\right\} \\
& =3\left\{-\frac{1}{3} \log \left(\frac{1}{3}\right)\right\} \tag{6}
\end{align*}
\]

Hence the optimal policy for three parts is \(p_{1}=p_{2}=p_{3}=\frac{1}{3}\)
In general for \(n\) parts the optimal policy is \(p_{1}=p_{2}=p_{3}=\ldots=p_{n}=\frac{1}{n}\)
and \(f_{n}(1)=n\left\{-\frac{1}{n} \log \left(\frac{1}{n}\right)\right\}\)
The above result can be proved by induction.
For \(\mathrm{n}=1\) the given result is true
Assume that the given result is true for \(n=m, m>1\)
\(f_{m}(1)=m\left[-\frac{1}{m} \log \left(\frac{1}{m}\right)\right]\)
We shall show that given result (7) also hold for \(n=m+1\)
From (4)
\[
\begin{aligned}
f_{m+1}(1) & =\operatorname{Max}_{0 \leq z \leq 1}\left\{-z \log z+f_{m}(1-z)\right\} \\
& =\operatorname{Max}_{0 \leq z \leq 1}\left[-z \log z+m\left\{-\frac{(1-z)}{m} \log \frac{(1-z)}{m}\right\}\right]
\end{aligned}
\]

Consider
\[
\begin{aligned}
& \frac{d}{d f}\left[-z \log z+m\left\{-\frac{(1-z)}{m} \log \frac{(1-z)}{m}\right\}\right] \\
& =-\log z-\frac{z}{z}+m\left[-\frac{(1-z)}{m} \log \frac{(1-z)}{m}+m\left(\frac{1-z}{m}\right) \frac{1}{\left(\frac{1-z}{m}\right)}\left(-\frac{1}{m}\right)\right]=0 \\
& z=\frac{1}{m+1}
\end{aligned}
\]

Second derivative is \(<0\) for \(z=\frac{1}{m+1}\)
\(f_{m}(1-z)=f_{m}\left(1-\frac{1}{1+m}\right)\)
\[
\begin{aligned}
& =\mathrm{f}_{\mathrm{m}}\left(\frac{\mathrm{~m}}{1+\mathrm{m}}\right)=\mathrm{m}\left\{-\frac{\left(\frac{\mathrm{m}}{1+\mathrm{m}}\right)}{\mathrm{m}} \log \frac{\frac{\mathrm{~m}}{1+\mathrm{m}}}{\mathrm{~m}}\right\} \\
& =\mathrm{m}\left[-\frac{1}{1+\mathrm{m}} \log \left(\frac{1}{1+\mathrm{m}}\right)\right]
\end{aligned}
\]
and optimal policy is
\[
\therefore \quad \mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}_{\mathrm{m}+1}=\frac{1}{\mathrm{~m}+1}
\]

Hence the required policy is
\[
\mathrm{p}_{1}=\mathrm{p}_{2}=\ldots \mathrm{p}_{\mathrm{n}}=\frac{1}{\mathrm{n}}
\]

\section*{Example: 3}

Find Min. \(\quad \mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}\)
when \(\quad x_{1}, x_{2}, x_{3}, \ldots, x_{n}=d\),
\[
x_{1}, x_{2}, \ldots, x_{n} \geq 0
\]

Let \(f_{n}(d)\) be the minimum sum
\[
z=x_{1}+x_{2}+\ldots+x_{n}
\]

When \(\mathrm{d}=\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\) ( d is factorized into n factors)
This is a n stage problem
For \(\mathrm{n}=1 \mathrm{i}\). e . If d is factorized into one factor only \(\mathrm{x}_{1}=\mathrm{d}\)
\(\therefore \quad \mathrm{f}_{1}(\mathrm{~d})=\operatorname{Min} \mathrm{z}=\operatorname{Min} \mathrm{x}_{1}=\mathrm{d}\)
For \(\mathrm{n}=2\), i . e . If d is factorized into two factors \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\)
Let \(x_{1}=y\) Then \(x_{2}=d / y \quad\) (as \(d=x_{1}, x_{2}\) )
\(f_{2}(d)=\operatorname{Min} z=\operatorname{Min}_{0 \leq y \leq d}\left(y+\frac{d}{y}\right)\)
\[
\begin{equation*}
=\operatorname{Min}_{0 \leq y \leq d}\left\{y+f_{1}(d / y)\right\} \tag{2}
\end{equation*}
\]

For \(n=3\) i. e. \(d\) is factorized into three parts \(x_{1}, x_{2}, x_{3}\)
Let \(x_{1}=y, x_{2} x_{3}=\frac{d}{y}\)
i. e. part \(d / y\) is further divided into two parts whose minimum value is \(f_{2}(d / y)\)
\[
\begin{align*}
\therefore \quad f_{3}(d) & =\operatorname{Min} z=\operatorname{Min}\left\{x_{1}+x_{2}+x_{3}\right\} \\
& =\operatorname{Min}_{0 \leq y \leq d}\left\{y+f_{2}\left(\frac{d}{y}\right)\right\} \tag{3}
\end{align*}
\]

By similar procedure we get the following functional equation for \(n=m\).
\[
\begin{equation*}
f_{m}(d)=\operatorname{Min}_{0 \leq y \leq d}\left\{y+f_{m-1}\left(\frac{d}{y}\right)\right\} \tag{4}
\end{equation*}
\]

We shall solve the above functional equation
From (1) \(\quad f_{1}(d)=d\)
From (2) \(\quad f_{2}(d)=\operatorname{Min}_{0 \leq y \leq d}\left\{y+f_{1}\left(\frac{d}{y}\right)\right\}\)
\[
=\operatorname{Min}_{0 \leq y \leq d}\left\{y+\frac{d}{y}\right\}
\]

We use the method of differential calculers
\[
\begin{aligned}
& \frac{d}{d y}\left(y+\frac{d}{y}\right)
\end{aligned}=1-\frac{d}{y^{2}}=0 .
\]
\(\frac{d^{2}}{d y^{2}}\left(y+\frac{d}{y}\right)=\frac{2 d}{y^{3}}>0\) for \(y=d^{1 / 2}\)
Hence \(y+\frac{d}{y}\) is minimum for \(y=d^{1 / 2}\)
\(\therefore \quad f_{2}(d)=d^{1 / 2}+\frac{d}{d^{1 / 2}}=2 d^{1 / 2}\)
From (3)
\[
\begin{aligned}
& \qquad \begin{aligned}
& f_{3}(d)=\operatorname{Min}_{0 \leq y \leq d}\left\{y+f_{2}\left(\frac{d}{y}\right)\right\} \\
&=\operatorname{Min}_{0 \leq y \leq d}\left\{y+2\left(\frac{d}{y}\right)^{1 / 2}\right\} \\
& \frac{d}{d y}\left\{y+2\left(\frac{d}{y}\right)^{1 / 2}\right\}=1-\frac{d^{1 / 2}}{y^{3 / 2}}=0 \\
& \therefore \quad y^{3 / 2}=d^{1 / 2}
\end{aligned} \\
& \therefore \quad y=d^{1 / 3} \\
& \quad \frac{d^{2}}{d y^{2}}\left\{y+z\left(\frac{d}{y}\right)^{1 / 2}\right\}>0 \text { for } y=d^{1 / 3} \\
& \text { Hence } y+z\left(\frac{d}{y}\right)^{1 / 2} \text { is minimum for } y=d^{1 / 3} \\
& \therefore \quad f_{3}(d)=d^{1 / 3}+Z\left(\frac{d}{d^{1 / 3}}\right)=3 d^{1 / 3}
\end{aligned}
\]

Hence the optimal policy is \(\left(d^{1 / 3},\left(d^{2 / 3}\right)^{1 / 2},\left(d^{2 / 3}\right)^{1 / 2}\right)\) i. e. optimal policy is \(\left(d^{1 / 3}, d^{1 / 3}, d^{1 / 3}\right)\)
By similar procedure we have
\(f_{n}(d)=n d^{1 / n}\)
and the optimal policy is \(\left(d^{1 / n}, d^{1 / n}, \ldots, d^{1 / n}\right)\)
The above result can be proved by induction.

\section*{Example: 4}

Minimize \(\quad \mathrm{z}=\mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2}+\mathrm{y}_{3}^{2}\)
Subject to \(y_{1}+y_{2}+y_{3} \geq 15\) and \(y_{1}, y_{2}, y_{3} \geq 0\).

\section*{Solution :}

In this problem \(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\) are decision variables. This is three stage problem.

State variables \(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\) are defined as
\[
\begin{gathered}
\mathrm{s}_{3}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \geq 15 \\
\mathrm{~s}_{2}=\mathrm{y}_{1}+\mathrm{y}_{2}=\mathrm{s}_{3}-\mathrm{y}_{3} \\
\mathrm{~s}_{1}=\mathrm{y}_{1}=\mathrm{s}_{2}-\mathrm{y}_{2} \\
\mathrm{~F}_{3}\left(\mathrm{~s}_{3}\right)=\min _{\mathrm{y}_{3}}\left[\mathrm{y}_{3}^{2}+\mathrm{F}_{2}\left(\mathrm{~s}_{2}\right)\right] \\
\mathrm{F}_{2}\left(\mathrm{~s}_{2}\right)=\min _{\mathrm{y}_{2}}\left[\mathrm{y}_{2}^{2}+\mathrm{F}_{1}\left(\mathrm{~s}_{1}\right)\right] \\
\mathrm{F}_{1}\left(\mathrm{~s}_{1}\right)=\mathrm{y}_{1}^{2}=\left(\mathrm{s}_{2}-\mathrm{y}_{2}\right)^{2}
\end{gathered}
\]

Thus \(\mathrm{F}_{2}\left(\mathrm{~s}_{2}\right)=\min _{\mathrm{y}_{2}}\left[\mathrm{y}_{2}^{2}+\left(\mathrm{s}_{2}-\mathrm{y}_{2}\right)^{2}\right]\)

\section*{By method of differential calculus}
\(\frac{d}{d y_{2}}\left[y_{2}^{2}+\left(s_{2}-y_{2}\right)^{2}\right]=2 y_{2}-2\left(s_{2}-y_{2}\right)=0\)
\(\frac{d^{2}}{d y_{2}^{2}}\left[y_{2}^{2}+\left(s_{2}-y_{2}\right)^{2}\right] \geq 0\) at \(y_{2}=s_{2} / 2\)
Hence \(F_{2}\left(s_{2}\right)=s_{2}^{2} / 2\)
\[
\begin{aligned}
F_{3}\left(s_{3}\right) & =\min _{y_{3}}\left[y_{3}^{2}+F_{2}\left(s_{2}\right)\right] \\
& =\min _{y_{3}}\left[y_{3}^{2}+\frac{\left(s_{3}-y_{3}\right)^{2}}{2}\right]
\end{aligned}
\]

By method of differential calcules
\(F_{3}(s)\) is minimum at \(y_{3}=s_{3} / 2\)
Hence \(F_{3}\left(s_{3}\right)=\frac{s_{3}^{2}}{3}, s_{3} \geq 15\)
\(F_{3}\left(s_{3}\right)\) is minimum for \(s_{3}=15\)
Minimum value of \(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\) is \(75, y_{1}=y_{2}=y_{3}=5\)

\section*{UNIT}

\section*{Solution of Linear Programming Problem as a Dynamic Programming Problem}

A general L. P. problem is
Max. \(\quad \mathrm{z}=\mathrm{c}_{1} \mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}+\ldots \ldots \ldots+\mathrm{c}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\)
subject to
\[
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots \ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots \ldots+a_{2 n} x_{n} \leq b_{2} \\
& \text {................................................... } \\
& \text {................................................... } \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots+a_{m n} x_{n} \leq b_{m}
\end{aligned}
\]
and \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . ., \mathrm{x}_{\mathrm{n}} \geq 0\).
We can formulate this L. P. problem as a dynamic problem.
General linear programming problem is considered as a multi stage problem with each activity \(x_{1}, x_{2}, \ldots, x_{n}\) as individual stage. This is a \(n\) stage problem. As \(x_{j}\) is continuous, each activity has an infinite number of alternatives within, the feasible region, L. P. is an allocation problem which requires, the allocation of resources to the activities.
\[
\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots \ldots, \mathrm{~b}_{\mathrm{m}} \text { are } \mathrm{m} \text { resources. }
\]

Let \(f_{n}\left(b_{1}, b_{2}, \ldots, b_{m}\right)\) be the maximum value of the general linear programming defined above for the states \(x_{1}, x_{2}, \ldots, x_{n}\) for states \(b_{1}, b_{2}, \ldots, b_{n}\)

We use backward compatational procedure.
\[
f_{n}\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\operatorname{Max}_{0 \leq x_{j} \leq b_{j}}\left\{c_{j} x_{j}+f_{j-1}\left(b_{1}-a_{i j} x_{j}, b_{1}-a_{2 j} x_{j} \ldots b_{n}-a_{m j} x_{j}\right)\right\}
\]

The maximum value of \(b\) that \(x_{j}\) can assume is
\[
\mathrm{b}=\operatorname{Min}\left\{\frac{\mathrm{b}_{1}}{\mathrm{a}_{\mathrm{ij}}}, \frac{\mathrm{~b}_{2}}{\mathrm{a}_{2 \mathrm{j}}}, \ldots, \frac{\mathrm{~b}_{\mathrm{m}}}{\mathrm{a}_{\mathrm{mj}}}\right\}
\]

\section*{EXAMPLES}
1) Solve the following L.P. P. by dynamic programming

Maximise \(z=2 x_{1}+5 x_{2}\)
Subject to \(2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 43\)
\[
\begin{aligned}
& 2 x_{2} \leq 46 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
\]

\section*{Solution :}

Since there are two resources, the states of the equivalent dynamic programming problem can be described by two variables only,

Let \(\left(b_{1}, b_{2}\right)\) describe the states \(j(=1,2)\)
For \(\mathrm{j}=2\) we have
\[
\begin{align*}
f_{2}\left(b_{1}, b_{2}\right) & =\max _{x_{2}}\left\{5 x_{2}\right\} \\
& =5 \max _{x_{2}}\left\{x_{2}\right\} \\
& =5 \min \left\{\frac{b_{1}}{1}, \frac{b_{2}}{2}\right\} \\
& =5 \min \left\{43, \frac{46}{2}\right\} \tag{1}
\end{align*}
\]

Next we have
\[
\begin{align*}
\mathrm{f}_{1}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right) & =\max _{\mathrm{x}_{1}}\left\{2 \mathrm{x}_{1}+5 \mathrm{x}_{2}\right\} \\
& =\max _{0 \leq x_{1} \leq 43 / 2}\left\{2 \mathrm{x}_{1}+\mathrm{f}_{2}\left(43-2 \mathrm{x}_{1}, 46\right)\right\} \\
& =\max _{0 \leq x_{1} \leq 43 / 2}\left\{2 \mathrm{x}_{1}+5 \min \left(43-2 \mathrm{x}_{1}, \frac{46}{2}\right)\right\} \tag{2}
\end{align*}
\]
by using (1)
Consider,
\(\min \left\{43-2 x_{1}, \frac{46}{2}\right\}=43-2 x_{1}\)
if \(43-2 x_{1} \leq \frac{46}{2}=23\)
i. e. if \(\quad 43-23 \leq 2 x_{1}\)
i. e. if \(20 \leq 2 x_{1}\)
i. e. if \(\quad x_{1} \geq 10\)

Thus
\(\min \left\{43-2 x_{1}, \frac{46}{2}\right\}=43-2 x_{1}\) if \(\frac{43}{2} \geq x_{1} \geq 10\)
and
\(\min \left\{43-2 x_{1}, \frac{46}{2}\right\}=\frac{46}{2}=23\)
if \(\quad 43-2 x_{1} \geq \frac{46}{2}=23\)
if \(\quad 43-23 \geq 2 x_{1}\)
if \(\quad 20 \geq 2 x_{1}\)
if \(\quad \mathrm{x}_{1} \leq 10\)
Thus
\(\min \left\{43-2 x_{1}, \frac{46}{2}\right\}=\frac{46}{2}=23\) if \(0 \leq x_{1} \leq 10\)
Then from (2)
\(f_{1}\left(b_{1}, b_{2}\right)=\max _{x_{1}}\left\{\begin{array}{lc}2 x_{1}+5\left(43-2 x_{1}\right) & , 10 \leq x_{1} \leq \frac{43}{2} \\ 2 x_{1}+5(23) & 0 \leq x_{1} \leq 10\end{array}\right.\)
\(\therefore \quad \mathrm{f}_{1}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right)=\max _{\mathrm{x}_{1}} \begin{cases}215-8 \mathrm{x}_{1} & , 10 \leq \mathrm{x}_{1} \leq \frac{43}{2} \\ 2 \mathrm{x}_{1}+115 & , 0 \leq \mathrm{x}_{1} \leq 10\end{cases}\)
Now max \(\left(215-8 x_{1}\right)\) for \(10 \leq x_{1} \leq \frac{43}{2}\) is at \(x_{1}=10\)
Also \(\max \left(2 x_{1}+115\right)\) for \(0 \leq x_{1} \leq 10\) is at \(x_{1}=10\)
Hence \(x_{1}^{*}=10\)
and

Maximum value of \(z\) is
\[
\begin{aligned}
z_{\max }=z^{*} & =2 x_{1}+115 \\
& =2(10)+115 \\
& =135
\end{aligned}
\]
and \(x_{2}^{*}\) is given by
\[
\begin{aligned}
z^{*} & =2 x_{1}^{*}+5 x_{2}^{*} \\
135 & =2(10)+5 x \\
135-20 & =5 x_{2}^{*} \\
115 & =5 x_{2}^{*} \\
x_{2}^{*} & =23
\end{aligned}
\]

Hence maximum \(z=z^{*}=135\) at \(x_{1}^{*}=10, x_{2}^{*}=23\)
2) Solve the following L. P. P. for dynamic programming.

Maximise \(\quad \mathrm{z}=8 \mathrm{x}_{1}+7 \mathrm{x}_{2}\)
Subject to \(\quad 2 x_{1}+x_{2} \leq 8\)
\[
\begin{aligned}
& 5 x_{1}+2 x_{2} \leq 15 \\
& x_{1} x_{2} \geq 0
\end{aligned}
\]

\section*{Solution :}

Since there are two resources, the states of the equivalent dynamic programming problem can be described by two variables only

Let \(\left(b_{1}, b_{2}\right)\) describe the states \(j(=1,2)\)
For \(\mathrm{j}=2\) we have
\[
\begin{align*}
\mathrm{f}_{2}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right) & =\max _{\mathrm{x}_{2}}\left\{7 \mathrm{x}_{2}\right\} \\
& =7 \max _{\mathrm{x}_{2}}\left\{\mathrm{x}_{2}\right\} \\
& =7 \min \left\{\frac{\mathrm{~b}_{1}}{1}, \frac{\mathrm{~b}_{2}}{2}\right\} \\
& =7 \min \left\{8, \frac{15}{2}\right\} \tag{1}
\end{align*}
\]

Next we have
\[
\begin{align*}
\mathrm{f}_{1}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right) & =\max _{\mathrm{x}_{1}}\left\{8 \mathrm{x}_{1}+7 \mathrm{x}_{2}\right\} \\
& =\max _{\substack{0 \leq x_{1} \leq 12 \\
0 \leq x_{1} \leq 15 / 5}}\left\{8 \mathrm{x}_{1}+\mathrm{f}_{2}\left(8-2 \mathrm{x}_{1}, 15-5 \mathrm{x}_{1}\right)\right\} \\
& =\max _{0 \leq x_{1} \leq 3}\left\{8 \mathrm{x}_{1}+7 \min \left\{8-2 \mathrm{x}_{1}, \frac{15-5 \mathrm{x}_{1}}{2}\right\}\right\} \tag{2}
\end{align*}
\]
by using (1)
Consider,
\(\min \quad\left(8-2 x_{1}, \frac{15-5 x_{1}}{2}\right)=8-2 x_{1}\)
if \(\quad 8-2 x_{1} \leq \frac{15-5 x_{1}}{2}\)
if \(\quad 16-4 x_{1} \leq 15-5 x_{1}\)
if \(\quad 16-15 \leq-5 x_{1}+4 x_{1}\)
if \(\quad 1 \leq-x_{1}\)
if \(\quad \mathrm{x}_{1} \leq-1\)
But \(x_{1} \geq 0\)
Therefore, \(x_{1} \leq-1\) is not possible.
Therefore
\(\min \left(8-2 x_{1}, \frac{15-5 x_{1}}{2}\right)=\frac{15-5 x_{1}}{2}\)
i.e. if \(8-2 x_{1} \geq \frac{15-5 x_{1}}{2}\)
if \(\quad 16-4 x_{1} \geq 15-5 x_{1}\)
if \(\quad 16-15 \geq-5 x_{1}+4 x_{1}\)
if \(\quad 1 \geq-x_{1}\)
if \(\quad \mathrm{x}_{1} \geq-1\)
i.e. if \(x_{1} \geq 0\)

Thus
\(\min \left(8-2 x_{1}, \frac{15-5 x_{1}}{2}\right)=\frac{15-5 x_{1}}{2}\) if \(x_{1} \geq 0\).
Then from (2)
\[
\begin{aligned}
f_{1}\left(b_{1}, b_{2}\right) & =\max _{x_{1}}\left\{8 x_{1}+7\left(\frac{15-5 x_{1}}{2}\right)\right\}, & & x_{1} \geq 0 \\
& =\max _{x_{1}}\left\{-\frac{19}{2} x_{1}+\frac{105}{2}\right\}, & & x_{1} \geq 0
\end{aligned}
\]

Now for \(\mathrm{x}_{1}=0, \mathrm{z}_{\max }=\frac{105}{2}\)
Hence \(x_{1}^{*}=0\) and \(z_{\text {max }}=z^{*}=\frac{105}{2}=52.5\)
And \(x_{2}^{*}\) is given by
\[
\begin{aligned}
& z^{*}=8 x_{1}^{*}+7 x_{2}^{*} \\
& \frac{105}{2}=8(0)+7 x_{2}^{*} \\
& 52.5=7 x_{2}^{*} \\
& \therefore \quad x_{2}^{*}=\frac{52.5}{7} \\
& \therefore \quad x_{2}^{*}=7.5
\end{aligned}
\]

Hence maximum \(z=z^{*}=52.5\) at \(x_{1}^{*}=0, x_{2}^{*}=7.5\)
3) Solve the following L. P. P. by dynamic programming

Maximise \(\quad z=4 x_{1}+14 x_{2}\)
Subject to \(2 x_{1}+7 x_{2} \leq 21\)
\[
\begin{aligned}
& 7 x_{1}+2 x_{2} \leq 21 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
\]

\section*{Solution :}

Since there are two resources, the states of the equivalent dynamic programming problem can be described by two variables only.

Let \(\left(b_{1}, b_{2}\right)\) describe the states \(j(=1,2)\)
For \(\mathrm{j}=2\), we have
\(\mathrm{f}_{2}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right)=\max _{\mathrm{x}_{2}}\left\{14 \mathrm{x}_{2}\right\}\)
\(=14 \max _{x_{2}}\left\{\mathrm{x}_{2}\right\}\)
\(=14 \min \left\{\frac{b_{1}}{7}, \frac{b_{2}}{2}\right\}\)
\(=14 \min \left\{\frac{21}{7}, \frac{21}{2}\right\}\)

Next we have
\[
\begin{align*}
\mathrm{f}_{1}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}\right) & =\max _{\mathrm{x}_{1}}\left\{4 \mathrm{x}_{1}+14 \mathrm{x}_{2}\right\} \\
& =\max _{\substack{0 \leq x_{1} \leq 1 / 21 / 2 \\
0 \leq x_{1} \leq 21 / 7}}\left\{4 \mathrm{x}_{1}+\mathrm{f}_{2}\left(21-2 \mathrm{x}_{1}, 21-7 \mathrm{x}_{1}\right)\right\} \\
& =\max _{0 \leq \mathrm{x}_{1} \leq 3}\left\{4 \mathrm{x}_{1}+14 \min \left\{\frac{21-7 \mathrm{x}_{1}}{7}, \frac{21-7 \mathrm{x}_{1}}{2}\right\}\right\} \tag{2}
\end{align*}
\]
by using (1)
Consider
\(\min \quad\left(\frac{21-7 x_{1}}{7}, \frac{21-7 x_{1}}{2}\right)=\frac{21-2 x_{1}}{7}\)
if \(\quad \frac{21-2 x_{1}}{7} \leq \frac{21-7 x_{1}}{2}\)
if \(\quad 42-4 x_{1} \leq 147-49 x_{1}\)
if \(\quad 49 x_{1}-4 x_{1} \leq 147-42\)
if \(\quad 45 x_{1} \leq 105\)
if \(\quad \mathrm{x}_{1} \leq \frac{105}{45}=\frac{7}{3}\)
Thus
\(\min \left(\frac{21-2 x_{1}}{7}, \frac{21-7 x_{1}}{2}\right)=\frac{21-2 x_{1}}{7}, 0 \leq x_{1} \leq \frac{7}{3}\)
and
\(\min \quad\left(\frac{21-2 \mathrm{x}_{1}}{7}, \frac{21-7 \mathrm{x}_{1}}{2}\right)=\frac{21-7 \mathrm{x}_{1}}{2}\)
if \(\quad \frac{21-2 x_{1}}{7} \geq \frac{21-7 x_{1}}{2}\)
if \(\quad 42-4 x_{1} \geq 147-49 x_{1}\)
if \(\quad 49 x_{1}-4 x_{1} \geq 147-42\)
if \(\quad 45 x_{1} \geq 105\)
if \(\quad \mathrm{x}_{1} \geq \frac{105}{45}=\frac{7}{3}\)
Thus
\(\min \left(\frac{21-2 x_{1}}{7}, \frac{21-7 x_{1}}{2}\right)=\frac{21-7 x_{1}}{2}, \frac{7}{3} \leq x_{1} \leq 3\)
Then from (2)
\[
\begin{aligned}
f_{1}\left(b_{1}, b_{2}\right) & =\max _{x_{1}} \begin{cases}4 x_{1}+14\left(\frac{21-2 x_{1}}{7}\right), & 0 \leq x_{1} \leq \frac{7}{3} \\
4 x_{1}+14\left(\frac{21-7 x_{1}}{2}\right), & \frac{7}{3} \leq x_{1} \leq 3\end{cases} \\
& =\max _{x_{1}} \begin{cases}4 x_{1}+2\left(21-2 x_{1}\right), & 0 \leq x_{1} \leq \frac{7}{3} \\
4 x_{1}+7\left(21-7 x_{1}\right), & \frac{7}{3} \leq x_{1} \leq 3\end{cases} \\
& =\max _{x_{1}} \begin{cases}42, & 0 \leq x_{1} \leq \frac{7}{3} \\
147-45 x_{1}, & \frac{7}{3} \leq x_{1} \leq 3\end{cases}
\end{aligned}
\]

Now max. \(\left(147-45 x_{1}\right)\) for \(\frac{7}{3} \leq x_{1} \leq 3\) is at \(x_{1}=\frac{7}{3}\)

Hence \(\mathrm{x}_{1}^{*}=\frac{7}{3}\)
From above maximum value of \(z\) is
\[
z_{\max }=z^{*}=42
\]
and \(x_{2}^{*}\) is given by
\[
\begin{aligned}
z^{*} & =4 x_{1}^{*}+14 x_{2}^{*} \\
42 & =4\left(\frac{7}{3}\right)+14 x_{2}^{*} \\
14 x_{2}^{*} & =42-\frac{28}{3}=\frac{126-28}{3} \\
x_{2}^{*} & =\frac{98}{14 \times 3} \\
x_{2}^{*} & =\frac{7}{3}
\end{aligned}
\]

Hence maximum \(z=z^{*}=42\) at \(x_{1}^{*}=x_{2}^{*}=\frac{7}{3}\)

\section*{Applications to Inventory}

\section*{Example}

Suppose that there are \(n\) machines which can perform 2 jobs. If \(x\) of them do the first job, then they produce goods worth \(\mathrm{g}(\mathrm{x})=3 \mathrm{x}\) and if y of the machines perform the second job, then they produce goods worth \(\mathrm{h}(\mathrm{y})=2.5 \mathrm{y}\). Machines are subject to depreciation, so that after performing the first job only \(a(x)=x / 3\) machines remains available and after performing the second job \(b(x)=\frac{2}{3} y\) machines remains available in the beginning of the second year. The process is repeated with remaining machines. Obtain the maximum total return after 3 years and also find the optimal policy in each year.

\section*{Solution :}

Here first, second and third year are considered as period 1, 2 and 3 respectively.
Let
\(x_{i} \quad=\quad\) number of machines devoted to the job 1 in ith period.
\(y_{j} \quad=\quad\) number of machines devoted to the job 2 in ith period.
\(\mathrm{s}_{\mathrm{i}} \quad=\quad\) totoal number of machines in hand (available) at the beginning of ith period
\(f_{n}(s)=\quad\) maximum possible return when there are \(n\) periods left with initial number of available machines being 's'.

The problem is now taken out by using backward reference approach.
Consider the 3rd year.
Here \(s_{3}\) is the number of machines available at the beginning of the 3rd year.
Thus,
\[
\mathrm{f}_{1}\left(\mathrm{~s}_{3}\right)=\max _{x_{3}, y_{3}}\left\{3 \mathrm{x}_{3}+2.5 \mathrm{y}_{3}\right\}
\]
subject to
\[
\mathrm{x}_{3}+\mathrm{y}_{3} \leq \mathrm{s}_{3}
\]
and
\[
\begin{equation*}
x_{3}, y_{3} \geq 0 \tag{1}
\end{equation*}
\]

Here we have a simple L. P. P.
Maximise
\[
z=3 x_{3}+2.5 y_{3}
\]
subject to
\[
\begin{aligned}
& x_{3}+y_{3} \leq s_{3} \\
& x_{3}, y_{3} \geq 0
\end{aligned}
\]


It is clear that the solution of this L. P. P. is at \(A\left(s_{3}, 0\right)\).
(The line \(z=0\), if move parallel to it self through the feasible area)
Max. \(z\) is occur at \(A\left(s_{3}, 0\right)\).
\[
\begin{equation*}
\therefore \mathrm{x}_{3}^{*}=\mathrm{s}_{3}, \mathrm{y}_{3}^{*}=0 \tag{2}
\end{equation*}
\]
and \(\quad f_{1}\left(s_{3}\right)=3 s_{3}\)
Consider the situation in the second year the number of machines available at the beginning of this year is clearly \(\mathrm{s}_{2}\) and we have
\[
\mathrm{f}_{2}\left(\mathrm{~s}_{2}\right)=\max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{3 \mathrm{x}_{2}+2.5 \mathrm{y}_{2}+\mathrm{f}_{1}\left(\frac{\mathrm{x}_{2}}{3}+\frac{2}{3} \mathrm{y}_{2}\right)\right\}
\]

Since \(x_{2}\) and \(y_{2}\) machines are used for the two jobs and \(x_{2} / 3\) and \((2 / 3) y_{2}\) machines will remain available at the beginning of the next year.
\[
\begin{align*}
& \therefore \quad \begin{aligned}
\mathrm{f}_{2}\left(\mathrm{~s}_{2}\right)= & \max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{3 \mathrm{x}_{2}+2.5 \mathrm{y}_{2}+3\left(\frac{\mathrm{x}_{2}}{3}+\frac{2}{3} \mathrm{y}_{2}\right)\right\} \\
= & \max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{3 \mathrm{x}_{2}+2.5 \mathrm{y}_{2}+\mathrm{x}_{2}+2 \mathrm{y}_{2}\right\}
\end{aligned} \\
& \qquad \begin{aligned}
\mathrm{f}_{2}\left(\mathrm{~s}_{2}\right)= & \max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{4 \mathrm{x}_{2}+4.5 \mathrm{y}_{2}\right\} \\
\text { subject to } \quad & \mathrm{x}_{2}+\mathrm{y}_{2} \leq \mathrm{s}_{2} \\
& \mathrm{x}_{2}, \mathrm{y}_{2} \geq 0
\end{aligned}
\end{align*}
\]


It is clear from the graph that the solution of the L. P. P. is given by equation (3) is occuring at \(B\left(0, s_{2}\right)\).

Hence the solution is
\[
\begin{align*}
& x_{2}^{*}=0, y_{2}^{*}=\mathrm{s}_{2} \\
& \text { and } \mathrm{f}_{2}\left(\mathrm{~s}_{2}\right)=4.5 \mathrm{~s}_{2} \tag{4}
\end{align*}
\]

Now in the first year, the total number of machines available at the beginning of the period is \(s_{1}\) and we have
\[
\mathrm{f}_{3}\left(\mathrm{~s}_{1}\right)=\max _{\mathrm{x}_{1} \mathrm{y}_{1}}\left\{3 \mathrm{x}_{1}+2.5 \mathrm{y}_{1}+\mathrm{f}_{2}\left(\frac{\mathrm{x}_{1}}{3}+\frac{2}{3} \mathrm{y}_{1}\right)\right\}
\]
\[
\begin{aligned}
= & \max _{x_{1} y_{1}}\left\{3 x_{1}+2.5 \mathrm{y}_{1}+4.5\left(\frac{x_{1}}{3}+\frac{2}{3} \mathrm{y}_{1}\right)\right\} \\
= & \max _{x_{1} y_{1}}\left\{3 \mathrm{x}_{1}+2.5 \mathrm{y}_{1}+1.5 \mathrm{x}_{1}+3 \mathrm{y}_{1}\right\} \\
\mathrm{f}_{3}\left(\mathrm{~s}_{1}\right)= & \max _{x_{1} y_{1}}\left\{4.5 \mathrm{x}_{1}+5.5 \mathrm{y}_{1}\right\} \\
\text { tho } \quad & \mathrm{x}_{1}+\mathrm{y}_{1} \leq \mathrm{s}_{1} \\
& \mathrm{x}_{1}, \mathrm{y}_{1} \geq 0
\end{aligned}
\]
subject to


The solution of this L. P. P. is given by equation (5) is occur at \(B\left(0, s_{1}\right)\)
But \(\mathrm{s}_{1}=\mathrm{n}\)
i. e. at the beginning there are \(n\) machines.

Hence the solution is
\(\mathrm{x}_{1}^{*}=0\)
\(\mathrm{y}_{1}^{*}=\mathrm{s}_{1}=\mathrm{n}\)
\(\mathrm{f}_{3}\left(\mathrm{~s}_{1}\right)=5.5 \mathrm{~s}_{1}=5.5 \mathrm{n}\)
Thus
Period 1
Period 2
Period 3
\(x_{1}^{*}=0\)
\[
\mathrm{x}_{2}^{*}=0
\]
\[
x_{3}^{*}=\frac{2}{3}\left(\frac{2}{3} n\right)=\frac{4}{9} n
\]
\(y_{1}^{*}=n\)
\[
\begin{equation*}
y_{2}^{*}=\frac{2}{3} n \tag{7}
\end{equation*}
\]
\[
\mathrm{y}_{3}^{*}=0
\]

Thus equation (7) gives the entire solutions means during the first period all the n machines are used for the second job. Then \((2 / 3) n\) machines will be left for the second year. Then use all the machine \(\left(\left(\frac{2}{3}\right) n\right)\) again for second job. Therefore \(\frac{2}{3}\left(\frac{2}{3} n\right)=\frac{4}{9} n\) machines will be available for the third year. In the third year use all these \(\frac{4}{9} n\) machines for the first job.

If this is done then the optimum possible return will be 5.5 n .

\section*{Example}

A man is engaged in buying and selling identical items. He operates from a warehouse that can be hold 500 items. Each month he can sell any quantity that be chooses up to the stock at the beginning of the month. Each month, he can buy as much as he wishes for delivery at the end of the month so long as his stock does not exceed 500 items. For the next four months, he has the following error - free forecasts of cost sales prices.
\begin{tabular}{llllll} 
Month & \(i\) & 1 & 2 & 3 & 4 \\
Cost & \(c_{i}\) & 27 & 24 & 26 & 28 \\
Sale prices & \(p_{i}\) & 28 & 25 & 25 & 27
\end{tabular}

If he currently has a stock of 200 units, what quantities should he sell and buy in next four months? Find the solution using dynamic programming.

\section*{Solution :}

To solve the problem by using dynamic programming we consider the months 1, 2, 3, 4 as periods respectively.

Let
\(x_{j} \quad-\quad\) the number of items for sell during the ith month
\(y_{j} \quad-\quad\) the number of items ordered (buy) during the ith month.
\(b_{j} \quad-\quad\) stock level in the beginning of the ith month.
\(f_{n}\left(b_{n}\right)\) - The maximum possible return when there are \(n\) months left with the initial stock level \(b_{n}\) at the beginning of the month.
\(c_{i} \quad-\quad\) cost in the ith month.
\(p_{i} \quad-\quad\) sale price in the ith month.
It is clear that
\[
\mathrm{b}_{2}=\mathrm{b}_{1}+\mathrm{y}_{1}-\mathrm{x}_{1}
\]
\[
\begin{aligned}
& \mathrm{b}_{3}=\mathrm{b}_{2}+\mathrm{y}_{2}-\mathrm{x}_{2} \\
& \mathrm{~b}_{4}=\mathrm{b}_{3}+\mathrm{y}_{3}-\mathrm{x}_{3}
\end{aligned}
\]

In general
\[
\begin{aligned}
& b_{n}=b_{n-1}+y_{n-1}-x_{n-1} \\
& b_{n+1}=b_{n}+y_{n}-x_{n}
\end{aligned}
\]

Since ware house capacity is of 500 items
\[
\begin{aligned}
& \mathrm{b}_{\mathrm{n}}+\mathrm{y}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}} \leq 500 \\
& \Rightarrow 0 \leq \mathrm{y}_{\mathrm{n}} \leq 500+\mathrm{x}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}}
\end{aligned}
\]
and \(0 \leq \mathrm{x}_{\mathrm{n}} \leq \mathrm{b}_{\mathrm{n}}\)
We use backward compatational procedure. The recurrence equation as followes.
\[
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{~b}_{4}\right)=\max _{\mathrm{x}_{4} \mathrm{y}_{4}}\left\{\mathrm{x}_{4} \mathrm{p}_{4}-\mathrm{c}_{4} \mathrm{y}_{4}\right\} \\
& \mathrm{f}_{2}\left(\mathrm{~b}_{3}\right)=\max _{\mathrm{x}_{3} \mathrm{y}_{3}}\left\{\mathrm{x}_{3} \mathrm{p}_{3}-\mathrm{c}_{3} \mathrm{y}_{3}+\mathrm{f}_{1}\left(\mathrm{~b}_{4}\right)\right\} \\
& \mathrm{f}_{3}\left(\mathrm{~b}_{2}\right)=\max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{\mathrm{x}_{2} \mathrm{p}_{2}-\mathrm{c}_{2} \mathrm{y}_{2}+\mathrm{f}_{2}\left(\mathrm{~b}_{3}\right)\right\} \\
& \mathrm{f}_{4}\left(\mathrm{~b}_{1}\right)=\max _{\mathrm{x}_{1} \mathrm{y}_{1}}\left\{\mathrm{x}_{1} \mathrm{p}_{1}-\mathrm{c}_{1} \mathrm{y}_{1}+\mathrm{f}_{3}\left(\mathrm{~b}_{2}\right)\right\}
\end{aligned}
\]

\section*{Step-I}

Let \(b_{4}\) be the stock level at the starting of the fourth month.
Therefore,
\[
\mathrm{f}_{1}\left(\mathrm{~b}_{4}\right)=\max _{\mathrm{x}_{4} \mathrm{y}_{4}}\left\{\mathrm{x}_{4} \mathrm{p}_{4}-\mathrm{c}_{4} \mathrm{y}_{4}\right\}
\]
where \(0 \leq \mathrm{x}_{4} \leq \mathrm{b}_{4}, 0 \leq \mathrm{y}_{4} \leq 500+\mathrm{x}_{4}-\mathrm{b}_{4}\)
\(\therefore \quad \mathrm{f}_{1}\left(\mathrm{~b}_{4}\right)=\max _{\mathrm{x}_{4} \mathrm{y}_{4}}\left\{27 \mathrm{x}_{4}-28 \mathrm{y}_{4}\right\}\)
\(\therefore \quad\) Max. occurs at \(\mathrm{x}_{4}=\mathrm{b}_{4}\) and \(\mathrm{y}_{4}=0\)
\(\therefore \quad \mathrm{f}_{1}\left(\mathrm{~b}_{4}\right)=27 \mathrm{~b}_{4}\)

\section*{Step - II}

In the third month, i.e. 2 months are left with initial stock and \(b_{3}\) be the initial state at the beginning of this month.

Since the stock \(b_{4}=b_{3}-x_{3}+y_{3}\) will be available at the beginning of next month.
\[
\therefore \quad \mathrm{f}_{2}\left(\mathrm{~b}_{3}\right)=\max _{\mathrm{x}_{3} y_{3}}\left\{25 \mathrm{x}_{3}-26 \mathrm{y}_{3}+27 \mathrm{~b}_{4}\right\}
\]

Where \(0 \leq \mathrm{x}_{3} \leq \mathrm{b}_{3}, 0 \leq \mathrm{y}_{3} \leq 500+\mathrm{x}_{3}-\mathrm{b}_{3}\)
\[
\begin{aligned}
& =\max _{x_{3} y_{3}}\left\{25 x_{3}-26 y_{3}+27\left(b_{3}-x_{3}+y_{3}\right)\right\} \\
& =\max _{x_{3} y_{3}}\left\{25 x_{3}-26 y_{3}+27 b_{3}-27 x_{3}+27 y_{3}\right\} \\
& =\max _{x_{3} y_{3}}\left\{-2 x_{3}+y_{3}+27 b_{3}\right\}
\end{aligned}
\]

It will be max. when \(x_{3}=0\) and \(y_{3}=500+x_{3}-b_{3}\)
\[
\begin{aligned}
\therefore \quad f_{2}\left(b_{3}\right) & =\max _{x_{3}}\left\{-2 x_{3}+500+x_{3}-b_{3}+27 b_{3}\right\} \\
& =\max _{x_{3}}\left\{500+26 b_{3}-x_{3}\right\}
\end{aligned}
\]
\[
\begin{array}{ll} 
& f_{2}\left(b_{3}\right) \text { is maximum at } x_{3}=0 \\
\therefore \quad & f_{2}\left(b_{3}\right)=500+26 b_{3}
\end{array}
\]

Thus optimal decisions are
\[
\begin{align*}
\mathrm{x}_{3}=0 \text { and } \mathrm{y}_{4} & =500+\mathrm{x}_{3}-\mathrm{b}_{3} \\
& =500-\mathrm{b}_{3} \\
\therefore \quad \mathrm{f}_{2}\left(\mathrm{~b}_{3}\right) & =500+26 \mathrm{~b}_{3} \tag{2}
\end{align*}
\]

\section*{Step - III}

In the second month, \(b_{2}\) be the intial stock at the beginning of this month.
Since the stock \(b_{3}=b_{2}-x_{2}+y_{2}\) will be available at the beginning of next month.
\[
\therefore \quad \mathrm{f}_{3}\left(\mathrm{~b}_{2}\right)=\max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{\mathrm{p}_{2} \mathrm{x}_{2}-\mathrm{c}_{2} \mathrm{y}_{2}+\mathrm{f}_{2}\left(\mathrm{~b}_{3}\right)\right\}
\]

Where \(0 \leq \mathrm{x}_{2} \leq \mathrm{b}_{2}\) and \(0 \leq \mathrm{y}_{2} \leq 500+\mathrm{x}_{2}-\mathrm{b}_{2}\)
\[
\begin{aligned}
\mathrm{f}_{3}\left(\mathrm{~b}_{2}\right) & =\max _{\mathrm{x}_{2} \mathrm{y}_{2}}\left\{25 \mathrm{x}_{2}-24 \mathrm{y}_{2}+\mathrm{f}_{2}\left(\mathrm{~b}_{3}\right)\right\} \\
& =\max _{\mathrm{x}_{2} y_{2}}\left\{25 \mathrm{x}_{2}-24 \mathrm{y}_{2}+26 \mathrm{~b}_{3}+500\right\}
\end{aligned}
\]
\[
\begin{aligned}
f_{3}\left(b_{2}\right) & =\max _{x_{2} y_{2}}\left\{25 x_{2}-24 y_{2}+26\left(b_{2}-x_{2}+y_{2}\right)+500\right\} \\
& =\max _{x_{2} y_{2}}\left\{25 x_{2}-24 y_{2}+26 b_{2}-26 x_{2}+26 y_{2}+500\right\} \\
& =\max _{x_{2} y_{2}}\left\{-x_{2}+2 y_{2}+26 b_{2}+500\right\} \\
& =\max _{x_{2}}\left\{-x_{2}+2\left(500+x_{2}-b_{2}\right)+26 b_{2}+500\right\} \\
& =\max _{x_{2}}\left\{-x_{2}+1000+2 x_{2}-2 b_{2}+26 b_{2}+500\right\} \\
& =\max _{x_{2}}\left\{x_{2}+24 b_{2}+1500\right\}
\end{aligned}
\]

It will be maximum at \(\mathrm{x}_{2}=\mathrm{b}_{2}\)
\[
\begin{aligned}
\therefore \quad \mathrm{f}_{3}\left(\mathrm{~b}_{2}\right) & =\mathrm{b}_{2}+24 \mathrm{~b}_{2}+1500 \\
& =25 \mathrm{~b}_{2}+1500
\end{aligned}
\]

Thus optimal decision are
\[
\begin{align*}
\mathrm{x}_{2}=\mathrm{b}_{2} \quad \mathrm{y}_{2} & =500+\mathrm{x}_{2}-\mathrm{b}_{2}=500+\mathrm{b}_{2}-\mathrm{b}_{2} \\
& =500
\end{align*}
\]
and \(\quad f_{3}\left(b_{2}\right)=25 b_{2}+1500\)

\section*{Step - IV}

In the first month, \(b_{1}\) be the initial stock at the beginning of this month.
Since the stock \(b_{2}=b_{1}-x_{1}+y_{1}\) will be available at the beginning of next month.
\[
\begin{aligned}
\therefore \quad f_{4}\left(b_{1}\right) & =\max _{x_{1} y_{1}}\left\{x_{1} p_{1}-c_{1} y_{1}+f_{3}\left(b_{2}\right)\right\} \\
& =\max _{x_{1} y_{1}}\left\{28 x_{1}-27 y_{1}+25 b_{2}+1500\right\} \\
& =\max _{x_{1} y_{1}}\left\{28 x_{1}-27 y_{1}+25\left(b_{1}-x_{1}+y_{1}\right)+1500\right\} \\
& =\max _{x_{1} y_{1}}\left\{28 x_{1}-27 y_{1}+25 b_{1}-25 x_{1}+25 y_{1}+1500\right\} \\
& =\max _{x_{1} y_{1}}\left\{3 x_{1}-2 y_{1}+25 b_{1}+1500\right\}
\end{aligned}
\]

Clearly this will be occurs at \(\mathrm{y}_{1}=0\) and \(\mathrm{x}_{1}=\mathrm{b}_{1}\)
\[
\begin{aligned}
\therefore \quad \mathrm{f}_{4}\left(\mathrm{~b}_{1}\right) & =3 \mathrm{~b}_{1}-0+25 \mathrm{~b}_{1}+1500 \\
& =28 \mathrm{~b}_{1}+1500
\end{aligned}
\]

Thus optimal decisions are
\[
\begin{array}{ll} 
& x_{1}=b_{1} \quad y_{1}=0 \\
\text { and } \quad & f_{4}\left(b_{1}\right)=28 b_{1}+1500 \tag{4}
\end{array}
\]

But at beginning, \(b_{1}=200\)
\[
\begin{array}{lll}
\therefore \quad \mathrm{x}_{1}=200=\mathrm{b}_{1} & \mathrm{y}_{1}=0 \\
\mathrm{x}_{2}=\mathrm{b}_{2}=\mathrm{b}_{1}-\mathrm{x}_{1}+\mathrm{y}_{1} & \mathrm{y}_{2}=500 \\
\mathrm{x}_{3}=0 & \mathrm{y}_{3}=500-\mathrm{b}_{3} \\
\mathrm{x}_{4}=\mathrm{b}_{4} & \mathrm{y}_{4}=0
\end{array}
\]

Thus
\begin{tabular}{lll}
\(\mathrm{x}_{1}=200\) & \(\mathrm{y}_{1}=0\) & \(\mathrm{f}_{4}\left(\mathrm{~b}_{1}\right)=28 \mathrm{~b}_{1}+1500=7100\) \\
\(\mathrm{x}_{2}=0\) & \(\mathrm{y}_{2}=500\) & \(\mathrm{f}_{3}\left(\mathrm{~b}_{2}\right)=1500\) \\
\(\mathrm{x}_{3}=0\) & \(\mathrm{y}_{3}=0\) & \(\mathrm{f}_{2}\left(\mathrm{~b}_{3}\right)=500+26 \mathrm{~b}_{3}=13500\) \\
\(\mathrm{x}_{4}=500\) & \(\mathrm{y}_{4}=0\) & \(\mathrm{f}_{1}\left(\mathrm{~b}_{4}\right)=13500\)
\end{tabular}

The optimal solution for next four month is
\begin{tabular}{llllll} 
Month & i & 1 & 2 & 3 & 4 \\
Sale & \(\mathrm{x}_{\mathrm{i}}\) & 200 & 0 & 0 & 500 \\
Purchase & \(\mathrm{y}_{\mathrm{i}}\) & 0 & 500 & 0 & 0
\end{tabular}

\title{
NON - LINEAR PROGRAMMING
}

\subsection*{7.1 INTRODUCTION}

The general non linear programming problem (NLPP) can be stated as follows.
Optimize (Maximize or minimize)
\(z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\)
Subject to
\(\mathrm{g}_{\mathrm{i}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\{\leq, \geq\) or \(=\} \mathrm{b}_{\mathrm{i}} \mathrm{i}=1,2, \ldots, \mathrm{~m}\)
and \(x_{j} \geq 0, j=1,2, \ldots n\)
Where \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) and \(g_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) and real valued functions of \(n\) decision variables \(x_{1}, x_{2}, \ldots, x_{n}\) and at least one of them is non linear.

\subsection*{7.2 UNCONSTRAINED EXTERNAL PROBLEM}

An extreme point of \(f(\bar{x})\) defines either a maximum or minimum of the function. A point \(\bar{x}_{0}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\) is a maximum point if \(\mathrm{f}\left(\overline{\mathrm{x}}_{0}+\overline{\mathrm{h}}\right) \leq \mathrm{f}\left(\overline{\mathrm{x}}_{0}\right)\) for all \(\overline{\mathrm{h}}=\left(\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots \mathrm{~h}_{\mathrm{n}}\right)\) such that \(\left|\mathrm{h}_{\mathrm{j}}\right|\) is sufficiently small for all \(j\).

Similarly \(\bar{x}_{0}\) is a minimum point if \(f\left(\bar{x}_{0}+\bar{h}\right) \geq f\left(\bar{x}_{0}\right)\) such that \(\left|h_{j}\right|\) is sufficiently small for all j.

\section*{Quadratic forms}

Let \(\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) and \(A=\left(a_{i j}\right)\) is \(n \times n\) matrix, then a function of \(n\) variables denoted by \(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) or \(Q(\bar{x})\) is called a quadratic form in \(n\) space if
\[
Q(\bar{x})=\bar{x}^{\top} A \bar{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
\]

The matrix A can always be assumed symmetric since each elemen of every pair of coefficients \(\mathrm{a}_{\mathrm{ij}}\) and \(\mathrm{a}_{\mathrm{ji}}(\mathrm{i} \neq \mathrm{j})\) can be replaced by \(\left(\mathrm{a}_{\mathrm{ij}}+\mathrm{a}_{\mathrm{ji}}\right) / 2\) without changing, the value of \(Q(\bar{x})\).

The quadratic form \(Q(\bar{x})\) is
1) Positive definite if \(Q(\bar{x})>0\) for every \(\bar{x} \neq 0\).
2) Positive - semidefinite if \(Q(\bar{x}) \geq 0\) for every \(\bar{x}\) and there exists \(\bar{x} \neq 0\) such that \(Q(\bar{x})=0\).
3) \(\quad\) Negative definite if \(Q(\bar{x})\) is positive definite.
4) Negative semidefinite if \(-Q(\bar{x})\) is positive - semi definite.
5) Indefinite if it is non of the above cases.

Following results can be proved.
1) \(\quad Q(\bar{x})\) is positive definite (semidefinite) if the values of the principal minor detaminants of \(A\) are positive (non negative). In this case \(A\) is said to be positive definite (semidefinite)
2) \(\quad Q(\bar{x})\) is negative definite if the value of kth principal minor detaminant of \(A\) has the sign of \((-1)^{k} k=1,2, \ldots, n\). In this case \(A\) is called negative - definite.
3) \(\quad Q(\bar{x})\) is negative semi definite if the \(k\) th principal minor determinant of \(A\) is either zero or has the sign \((-1)^{k}\)
\(k=1,2, \ldots, n\)

\section*{Theorem}

A necessary and sufficient condition for \(\bar{X}_{0}\) to be an extreme point of \(f(\bar{X})\) is that \(\nabla f\left(\bar{X}_{0}\right)=0\) must be satisfied.

Note : The above condition is also satisfied for inflection and saddle points. Hence these conditions are necessary but not sufficient for identifing extreme points. Hence the points obtained from the solution of \(\nabla f\left(X_{0}\right)=0\) are called as stationary points.

The following theorem gives the sufficiency conditions for \(\bar{X}_{0}\) to be an extreme point.

\section*{THEOREM}

A sufficient condition for a stationary point \(X_{0}\) to be an extreme point is that the Hessian matrix \(H\) evaluated at \(X_{0}\) is
1) positive definite when \(X_{0}\) is a minimum point.
2) negative definite when \(X_{0}\) is a maximum point.
\[
X=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)
\]

The Hessian matrix for \(f(\bar{X})\) is defined by
\(H=\left(\begin{array}{ccc}\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{d^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \cdots \ldots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots \\ \frac{\partial^{2} f}{\partial x_{n}{ }^{2}}\end{array}\right)\)

\section*{Example-1}

Find the extreme point of the function.
\[
f(\bar{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4 x_{1}-8 x_{2}-12 x_{3}+64
\]

\section*{Solution :}

Let \(\bar{X}_{0}\) be an extreme point of \(f(\bar{X})\). The necessary condition for extreme point is \(\nabla f\left(\bar{X}_{0}\right)=0\).
\[
\begin{aligned}
& \therefore \quad \nabla \mathrm{f}\left(\overline{\mathrm{X}}_{0}\right)=\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{1}} \mathrm{i}+\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{2}} \mathrm{i}+\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{3}} \mathrm{k}=0 \\
& \Rightarrow \quad \frac{\partial \mathrm{f}}{\partial \mathrm{x}_{1}}=2 \mathrm{x}_{1}-4=0 \Rightarrow \mathrm{x}_{1}=2 \\
& \\
& \frac{\partial \mathrm{f}}{\partial \mathrm{x}_{2}}=2 \mathrm{x}_{2}-8=0 \Rightarrow \mathrm{x}_{2}=4 \\
& \\
& \frac{\partial \mathrm{f}}{\partial \mathrm{x}_{3}}=2 \mathrm{x}_{3}-12=0 \Rightarrow \mathrm{x}_{3}=6
\end{aligned}
\]

Hence \(X_{0}=(2,4,6)\) is extreme point.
The Hessian matrix is given by
\[
H=\left[\begin{array}{lll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} \\
\frac{\partial^{2} f}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{3}^{2}}
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
\]

The three principal minors are
\(|2|\left|\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right|\left|\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right|\)
Their values are 2, 4, 8 .
All are positive. Hence the Hession matrix H is positive definite.
Hence the point \(\bar{X}_{0}=(2,4,6)\) is a minimum point of \(f(\bar{X})\).
\(\mathrm{f}_{\text {min }}=(\mathrm{f}(\overline{\mathrm{X}}))\) at \(\overline{\mathrm{X}}=(2,4,6)\)
\[
\begin{aligned}
& =2^{2}+4^{2}+6^{2}-4(2)-8(4)-12(6)+64 \\
& =8 \\
\therefore f_{\min } & =8
\end{aligned}
\]

\section*{Example-2}

Find the extreme points of the function \(f(\bar{X})=x_{1}+2 x_{3}+x_{2} x_{3}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\)

\section*{Solution :}

For extreme point \(\bar{X}_{0}\) we must have \(\nabla f\left(\bar{X}_{0}\right)=0\)
\(\frac{\partial f}{\partial x_{1}}=1-2 x_{1}=0\)
\(\frac{\partial f}{\partial x_{2}}=x_{3}-2 x_{2}=0\)
\(\frac{\partial f}{\partial x_{3}}=2+x_{2}-2 x_{3}=0\)
Solving the above equations
We get \(X_{0}=\left(\frac{1}{2}, \frac{2}{3}, \frac{4}{3}\right)\)
\(X_{0}\) is an extreme point.
The Hessian matrix
\(H=\left[\begin{array}{lll}\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} \\ \frac{\partial^{2} f}{\partial \mathbf{x}_{2} \partial \mathbf{x}_{1}} & \frac{\partial^{2} f}{\partial \mathbf{x}_{2}{ }^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} \\ \frac{\partial^{2} f}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} f}{\partial \mathbf{x}_{3}{ }^{2}}\end{array}\right]=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]\)
Principal minor determinants
of \(\mathrm{H}_{\mathrm{X}_{0}}\), have the values
\[
|-2|=-2,\left|\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right|=4,\left|\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -2 & 1 \\
0 & 1 & -2
\end{array}\right|=-6
\]

Sign of \((-1)^{k}\) are as follows.
Sign are \(\quad(-1)^{1}=-\) ve
\[
\begin{aligned}
& (-1)^{2}=+\mathrm{ve} \\
& (-1)^{3}=-\mathrm{ve}
\end{aligned}
\]

Hence Hat \(X_{0}\) is negative definite.
The point \(\bar{X}_{0}=\left(\frac{1}{2}, \frac{2}{3}, \frac{4}{3}\right)\) is a maximum point of \(f(\bar{X})\)
\(\mathrm{f}_{\text {max }}=\frac{19}{12}\).

\subsection*{7.3 LAGRANGE'S METHOD OF UNDETERMINED MULTIPLIERS}

This is a systematic way of generating the necessary conditions for a stationary points when the constraints are equations.

\section*{Example - 1}

Minimize \(Z=f\left(x_{1}, x_{2}\right)=3 e^{2 x_{1}+1}+2 e^{x_{2}+5}\)
subject to the constraints
\(\mathrm{x}_{1}+\mathrm{x}_{2}=7\) and \(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\)

\section*{Solution :}

In this problem hagrangian function
\[
\begin{aligned}
L\left(x_{1}, x_{2}, \lambda\right) & =f\left(x_{1}, x_{2}\right)-\lambda\left(x_{1}+x_{2}-7\right) \\
& =3 e^{2 x_{1}+1}+2 e^{x_{2}+5}-\lambda\left(x_{1}+x_{2}-7\right)
\end{aligned}
\]

Where \(\lambda\) is a Lagrangian multiplier. The necessary condition for the minimum of \(f\left(x_{1}, x_{2}\right)\) are given by
\[
\begin{aligned}
& \frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=6 \mathrm{e}^{2 \mathrm{x}_{1}+1}-\lambda=0 \Rightarrow \lambda=6 \mathrm{e}^{2 \mathrm{x}_{1}+1} \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=2 \mathrm{e}^{\mathrm{x}_{2}+5}-\lambda=0 \Rightarrow \lambda=2 \mathrm{e}^{\mathrm{x}_{2}+5} \\
& \frac{\partial \mathrm{~L}}{\partial \lambda}=-\left(\mathrm{x}_{1}+\mathrm{x}_{2}-7\right)=0 \Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}=7 \\
& \therefore \quad 6 \mathrm{e}^{2 \mathrm{x}_{1}+1}=2 \mathrm{e}^{\mathrm{x}_{2}+5}=2 \mathrm{e}^{7-x_{1}+5} \quad\left(\mathrm{x}_{2}=7-\mathrm{x}_{1}\right) \\
& \therefore \quad 3 \mathrm{e}^{2 \mathrm{x}_{1}+1}=\mathrm{e}^{7-\mathrm{x}_{1}+5} \\
& \therefore \quad \quad \mathrm{e}^{\log 3} \cdot \mathrm{e}^{2 \mathrm{x}_{1}+1}=\mathrm{e}^{7-x_{1}+5}
\end{aligned}
\]

Hence \(\log _{3}+2 x_{1}+1=7-x_{1}+5\)
\(\therefore \quad \mathrm{x}_{1}=\frac{1}{3}[11-\log 3], \mathrm{x}_{2}=7-\mathrm{x}_{1}\)

\section*{Example-2}

Use Lagrange's method to maximize \(f(\bar{x})\) where \(f(\bar{x})=x_{1}, x_{2}, \ldots, x_{n}\) and \(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{\mathrm{n}}=\mathrm{b}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots, \mathrm{x}_{\mathrm{n}}>0\).

\section*{Solution :}

In this problem Lagrangian function is
\[
L\left(x_{1}, x_{2}, \ldots, x_{n}, \lambda\right)
\]
\[
=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\lambda\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}-b\right)
\]
\[
=x_{1} x_{2} x_{3} \ldots x_{n}-\lambda\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}-b\right)
\]

The necessary conditions for the maximum are
\[
\begin{align*}
\frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}} & =\left(\mathrm{x}_{2} \mathrm{x}_{3} \ldots \mathrm{x}_{\mathrm{n}}\right)-\lambda=0 \Rightarrow \mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}-\lambda \mathrm{x}_{1}=0 \\
& \Rightarrow \mathrm{f}-\lambda \mathrm{x}_{1}=0 \tag{1}
\end{align*}
\]
\[
\begin{align*}
\frac{\partial L}{\partial x_{2}} & =\left(x_{1} x_{3} \ldots x_{n}\right)-\lambda=0 \Rightarrow x_{1}, x_{2}, \ldots x_{n}-\lambda x_{2}=0 \\
& \Rightarrow f-\lambda x_{2}=0 \tag{2}
\end{align*}
\]
\[
\begin{align*}
\frac{\partial L}{\partial x_{n}} & =\left(x_{1} x_{2} \ldots x_{n-1}\right)-\lambda=0 \Rightarrow x_{1} x_{2} \ldots x_{n-1} x_{n}-\lambda x_{n}=0 \\
& \Rightarrow f-\lambda x_{n}=0 \tag{3}
\end{align*}
\]
\[
\begin{aligned}
\frac{\partial L}{\partial \lambda} & =-\left[x_{1}+x_{2}+\ldots+x_{n}-b\right]=0 \\
& \Rightarrow x_{1}+x_{2}+\ldots+x_{n}-b=0
\end{aligned}
\]

Adding above \(n\) equations we have
\[
\begin{aligned}
& \mathrm{nf}-\lambda\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}\right)=0 \\
& \Rightarrow \mathrm{nf}-\lambda \mathrm{b}=0 \\
& \therefore \quad \lambda=\frac{\mathrm{nf}}{\mathrm{~b}}
\end{aligned}
\]

From equation \(\mathrm{f}-\lambda \mathrm{x}_{1}=0\)
\[
\begin{array}{ll}
\mathrm{f}-\frac{\mathrm{nf}}{\mathrm{~b}} \mathrm{x}_{1}=0 \\
\therefore \quad x_{1}=\frac{\mathrm{b}}{\mathrm{n}}
\end{array}
\]

Similarly \(\mathrm{x}_{2}=\mathrm{b} / \mathrm{n}, \ldots, \mathrm{x}_{\mathrm{n}}=\mathrm{b} / \mathrm{n}\)
Hence
\[
x_{1}=x_{2}=x_{3}=\ldots=x_{n}=\frac{b}{n}
\]

Therefore f is maximum at \(\mathrm{x}_{1}=\mathrm{x}_{2}=\ldots=\mathrm{x}_{\mathrm{n}}=\frac{\mathrm{b}}{\mathrm{n}}\)
\(f_{\max }=\left(\frac{b}{n}\right)^{n}\)

\section*{Note}

In this problem minimum value of \(f\) if zero. This value is achieved by taking any one of \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\) zero.

Obtained the set of necessary conditions for the non linear programming problem.
Maximize \(\mathrm{f}=\mathrm{x}_{1}^{2}+3 \mathrm{x}_{2}^{2}+5 \mathrm{x}_{3}^{2}\)
subject to the constraints
\[
x_{1}+x_{2}+3 x_{3}=2,5 x_{1}+2 x_{2}+x_{3}=5 \text { and } x, x_{2}, x_{3} \geq 0
\]

\section*{Solution :}

In this problem hagrangian function is
\[
\begin{aligned}
\mathrm{L}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \lambda_{1}, \lambda_{2}\right) & =\mathrm{f}-\lambda_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}-2\right)-\lambda_{2}\left(5 \mathrm{x}_{1}-12 \mathrm{x}_{2}+\mathrm{x}_{3}-5\right) \\
& =\left(\mathrm{x}_{1}^{2}+3 \mathrm{x}_{2}^{2}+5 \mathrm{x}_{3}^{2}\right)-\lambda_{1}\left(\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}-2\right)-\lambda_{2}\left(5 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}-5\right)
\end{aligned}
\]

The necessary conditions are
\[
\begin{aligned}
& \frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=2 \mathrm{x}_{1}-\lambda_{1}-5 \lambda_{2}=0 \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=6 \mathrm{x}_{2}-\lambda_{1}-2 \lambda_{2}=0 \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{3}}=10 \mathrm{x}_{3}-3 \lambda_{1}-\lambda_{3}=0 \\
& \frac{\partial \mathrm{~L}}{\partial \lambda_{1}}=-\left(\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}-2\right)=0 \\
& \frac{\partial \mathrm{~L}}{\partial \lambda_{2}}=-\left(5 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}-5\right)=0
\end{aligned}
\]

\subsection*{7.4 NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMIZATION OF AN OBJECTIVE FUNCTION}

The general NLPP having \(n\) variables and equally type constraints ( \(m \leq n\) ) can be given as follows.

Optimize \(z=f(\bar{x}), \bar{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)\)

Subject to \(\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}})=\mathrm{f}_{\mathrm{i}} \mathrm{i}=1,2,3, \ldots, \mathrm{~m}\)
\[
\bar{x} \geq 0
\]

The above constraints can be written as
\(h_{i}(\bar{x})=g_{i}(\bar{x})-b_{i}\)
for every \(\mathrm{i}, \mathrm{i}=1,2,3 \ldots \mathrm{~m}\)
To find the necessary conditions for maximum or minimum of \(f(\bar{x})\) a new function. The hagrangian function \(h(\overline{\mathrm{x}}, \bar{\lambda})\) is formed by introducing \(m\) Lagrangiam multipliers \(\bar{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\).

This function is defined as
\[
\begin{aligned}
L(\bar{X}, \bar{\lambda}) & =f(\bar{X})-\sum_{i=1}^{m} \lambda_{i} h_{i}(\bar{X}) \\
& =f\left(x_{1}, x_{2}, \ldots, x_{m}\right)-\lambda_{1} h_{1}(\bar{x})-\lambda_{2} h_{2}(\bar{X}) \ldots-\lambda_{m} h_{m}(\bar{X})
\end{aligned}
\]

Assuming that L , f , hi are all differentiable partially w. r. t. \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}}\). The necessary conditions for the objective function to be maximum or minimum are given by
\[
\begin{aligned}
& \frac{\partial L}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}-\sum_{i=1}^{m} h_{i} \frac{\partial h_{i}(\bar{x})}{\partial x_{j}}=0, j=1,2, \ldots, n \\
& \text { and } \frac{\partial L}{\partial X_{i}}=0-h_{i}=0, i=1,2, \ldots, m
\end{aligned}
\]

The above equations can be written as
\[
\begin{gathered}
\frac{\partial f}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i} \frac{\partial h_{i}(\bar{X})}{\partial x_{j}},=0, j=1,2, \ldots, n \\
-h_{i}=0 \quad i=1,2,3, \ldots, m
\end{gathered}
\]

These are \(m+n\) necessary conditions.
These necessary conditions also become sufficient for a maximum (minimum) of the objective function if the objection in concave (convex) and the side and the constraints are equally once.

The sufficient conditions for the Lagrangian method will be stated without proof.

Define \(H^{B}=\left[\begin{array}{lll}\overline{0}_{m \times n} & : & \bar{P}_{m \times n} \\ \ldots \ldots \ldots \ldots \ldots \\ \bar{P}_{n \times m} & : & \bar{Q}_{n \times n}\end{array}\right]_{(m+n) \times(m+n)}\)
Where \(\overline{\mathrm{O}}\) is \(\mathrm{m} \times \mathrm{m}\) null matrix.
\[
\bar{P}=\left[\begin{array}{cccc}
\frac{\partial h_{1}(\bar{x})}{\partial x_{1}} & \frac{\partial h_{1}(\bar{x})}{\partial x_{2}} & \ldots \ldots \ldots & \frac{\partial h_{1}(\bar{x})}{\partial x_{n}} \\
\frac{\partial h_{2}(\bar{x})}{\partial x_{1}} & \frac{\partial h_{2}(\bar{x})}{\partial x_{2}} & \ldots \ldots \ldots & \frac{\partial h_{2}(\bar{x})}{\partial x_{n}} \\
\ldots . . \ldots \\
\frac{\partial h_{m}(\bar{x})}{\partial x_{1}} & \frac{\partial h_{m}(\bar{x})}{\partial x_{2}} & \ldots \ldots \ldots . & \frac{\partial h_{m}(\bar{x})}{\partial x_{n}}
\end{array}\right]_{m \times n}
\]
and
\(\bar{P}^{\top}\) is transpose of \(\bar{P}\).
If \(\left(X^{*}, \lambda^{*}\right)\) is a stationary point of \(L(\bar{x}, \bar{\lambda})\) and \(H^{B}\) is the corresponding bordered Hessian matrix evaluated at \(\left(x^{*}, \lambda^{\prime}\right)\) Then \(X_{0}\) is
1) A maximum point if, starting with the principal minor determinant of order \((2 m+1)\), the last \((n-m)\) principal minor detuminants of \(H^{B}\) form an alternating sign pattern starting with \((-1)^{m+1}\).
2) A minimum point, if starting with the principal minor determinant of order \((2 m+1)\).. The last \((n-m)\) principal minor determinants of \(H^{B}\) have the sign of \((-1)^{m}\).

The above conditions are sufficient for identifying an extreme point, but the conditions are not necessary. In other words, a stationary point may be an extreme point without satisfying the above conditions.

Optimize \(\quad Z=f(\bar{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\)
subject to
\[
\begin{aligned}
& x_{1}+x_{2}+3 x_{3}=2 \\
& 5 x_{1}+2 x_{2}+x_{3}=5
\end{aligned}
\]

\section*{Solution :}

The Lagrangian function is
\[
\mathrm{L}(\overline{\mathrm{x}}, \bar{\lambda})=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}-\lambda_{1}\left[\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}-2\right]-\lambda_{2}\left[5 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}-5\right]
\]

Necessary conditions for the stationary point are
\[
\begin{align*}
& \frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=2 \mathrm{x}_{1}-\lambda_{1}-5 \lambda_{2}=0  \tag{1}\\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=2 \mathrm{x}_{2}-\lambda_{1}-2 \lambda_{2}=0  \tag{2}\\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=2 \mathrm{x}_{3}-3 \lambda_{1}-\lambda_{2}=0  \tag{3}\\
& \frac{\partial \mathrm{~L}}{\partial \lambda_{1}}=-\left(\mathrm{x}_{1}+\mathrm{x}_{2}+3 \mathrm{x}_{3}-2\right)=0  \tag{4}\\
& \frac{\partial \mathrm{~L}}{\partial \lambda_{2}}=-\left(5 x_{1}+2 x_{2}+x_{3}-5\right)=0 \tag{5}
\end{align*}
\]

Subtracting (2) equation from (1) st we have
\[
\begin{equation*}
2 x_{1}-2 x_{2}-3 \lambda_{2}=0 \tag{6}
\end{equation*}
\]

Multipling equation (2) by 3 and subtracting equation (3) we have
\[
\begin{equation*}
5 x_{2}-2 x_{3}-5 \lambda_{2}=0 \tag{7}
\end{equation*}
\]

Now equate the expressions for \(\lambda_{2}\) from (6) and (7)
\(\frac{2 x_{1}-2 x_{2}}{3}=\frac{6 x_{2}-2 x_{3}}{5}=\lambda_{2}\)
\(10 x_{1}-28 x_{2}+6 x_{3}=0\)
The above equation can be written as
\[
\begin{equation*}
5 x_{1}-14 x_{2}+3 x_{3}=0 \tag{8}
\end{equation*}
\]

Also \(x_{1}+x_{2}+3 x_{3}-2=0\)
\[
\begin{equation*}
5 x_{1}+2 x_{2}+x_{3}-5=0 \tag{4}
\end{equation*}
\]

Solving equations (4) (5) and (8)
for \(x_{1}, x_{2}\) and \(x_{3}\) we get
\(x_{1}=\frac{37}{46}=0^{\prime} 804, x_{2}=0^{\prime} 348\)
\(x_{3}=0^{\prime} 283\)
Bordered Hessian matrix \(\overline{\mathrm{H}}^{\mathrm{B}}\) is given by
\[
\begin{aligned}
& \bar{H}^{B}=\left[\begin{array}{c:c}
\overline{\mathrm{O}} & : \\
\ldots \ldots & \overline{\mathrm{P}} \\
\ldots \ldots \ldots \\
\overline{\mathrm{P}^{\top}}: & \overline{\mathrm{Q}}
\end{array}\right] \\
& \frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=2 \mathrm{x}_{1}-\lambda_{1}-5 \lambda_{2} \\
& h_{1}(\bar{x})=x_{1}+x_{2}+3 x_{3}-2 \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=2 \mathrm{x}_{2}-\lambda_{1}-2 \lambda_{2} \\
& h_{2}(\bar{x})=5 x_{1}+2 x_{2}+x_{3}-5 \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{3}}=2 \mathrm{x}_{3}-3 \lambda_{1}-\lambda_{2} \\
& \overline{\mathrm{P}}=\left[\begin{array}{lll}
\frac{\partial h_{1}}{\partial \mathbf{x}_{1}} & \frac{\partial h_{1}}{\partial \mathbf{x}_{2}} & \frac{\partial h_{1}}{\partial \mathbf{x}_{3}} \\
\frac{\partial h_{2}}{\partial \mathbf{x}_{1}} & \frac{\partial h_{2}}{\partial \mathbf{x}_{2}} & \frac{\partial h_{2}}{\partial \mathbf{x}_{3}}
\end{array}\right] \\
& \bar{R}=\left[\begin{array}{lll}
\frac{\partial^{2} L}{\partial x_{1}^{L}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{1} \partial x_{3}} \\
\frac{\partial^{2} L}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L}{\partial x_{2}^{2}} & \frac{\partial^{2} L}{\partial x_{2} \partial x_{3}} \\
\frac{\partial^{2} L}{\partial x_{3} \partial x_{1}} & \frac{\partial_{2} L}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} L}{\partial x_{3}^{2}}
\end{array}\right]
\end{aligned}
\]
\(\overline{\mathrm{H}}^{\mathrm{B}}=\left[\begin{array}{cccccc}0 & 0 & . & 1 & 1 & 3 \\ 0 & 0 & . & 5 & 2 & 1 \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ 1 & 5 & . & 2 & 0 & 0 \\ 1 & 2 & . & 0 & 2 & 0 \\ 3 & 1 & . & 0 & 0 & 2\end{array}\right]\)
Here \(\mathrm{n}=3, \mathrm{~m}=2\)
\[
n-m=1
\]

We have to check determinan of \(\overline{\mathrm{H}}^{\mathrm{B}}\)
\(\left|\overline{\mathrm{H}}^{\mathrm{B}}\right|=\left[\begin{array}{ccccc}0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 5 & 2 & 1 \\ 1 & 5 & 2 & 0 & 0 \\ 1 & 2 & 0 & 2 & 0 \\ 3 & 1 & 0 & 0 & 2\end{array}\right]\)

By \(\mathrm{C}_{3}-\mathrm{C}_{4}\) and \(\mathrm{C}_{5}-3 \mathrm{C}_{4}\)
\(\left|\bar{H}^{\mathrm{B}}\right|=\left[\begin{array}{rrrrr}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 2 & -5 \\ 1 & 5 & 2 & 0 & 0 \\ 1 & 2 & -2 & 2 & -5 \\ 3 & 1 & . & 0 & 0\end{array}\right]\)
Expanding by 4th column
\(\left|H^{B}\right|=-\left|\begin{array}{rrrr}0 & 0 & 3 & -5 \\ 1 & 5 & 2 & 0 \\ 1 & 2 & -2 & 6 \\ 3 & 1 & 0 & 2\end{array}\right|=\left|\begin{array}{rrrr}0 & 0 & 3 & 5 \\ 1 & 5 & 2 & 0 \\ 1 & 2 & -2 & -6 \\ 3 & 1 & 0 & -2\end{array}\right|\)
By \(R_{2}-R_{3}\) and \(R_{4}-3 R_{3}\)
\(\left|H^{B}\right|=\left|\begin{array}{rrrr}0 & 0 & 3 & 5 \\ 0 & 3 & 4 & -6 \\ 1 & 2 & -2 & 6 \\ 0 & -5 & 6 & -20\end{array}\right|\) Expanding by 3rd colour
\(\left|H^{B}\right|=\left|\begin{array}{rrr}0 & 3 & 5 \\ 3 & 4 & -6 \\ -5 & 6 & -20\end{array}\right|=460>0\)
Here \((-1)^{m}-(-1)^{2}=1\) positive sign.
\(\mathrm{X}_{0}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)\) is a minimum point.

\subsection*{7.5 Kuhn - TUCKER'S CONDITIONS}

\section*{Theorem 7.5.1 (A)}

The necessary conditions for maximization of \(f(\bar{x}), \bar{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)\) at \(\bar{x}=\bar{x}_{0}\)
Subject to the conditions
\(g_{i}(\bar{x}) \leq b_{i}, i=1,2,3 \ldots, m\) and \(\bar{x} \geq \overline{0}\)
are
1) \(\quad \frac{\partial L(\bar{x}, \bar{\lambda}, \bar{s})}{\partial \mathrm{x}_{j}}=0, \quad j=1,2,3, \ldots n\)
2) \(\quad \lambda_{i}\left[g_{i}(\bar{x})-b_{i}\right]=0 \quad i=1,2,3, \ldots, m\)
3) \(\lambda_{i} \geq 0 \quad i=1,2,3, \ldots, m\)
4) \(\quad g_{i}(\bar{x}) \leq b_{i} \quad i=1,2,3, \ldots, m\)

The necessary conditions for minimization of \(f(\bar{x}), \bar{x}=\left(x_{1}, x_{2}, \ldots ., x_{n}\right)\) at \(\bar{x}=\bar{x}_{0}\) subject to the the conditions
\(g_{i}(\bar{x}) \leq b_{i}, i=1,2, \ldots, m\) and \(\bar{x} \geq 0\) are
1) \(\frac{\partial L(\bar{x}, \bar{\lambda}, \bar{\sigma})}{\partial x_{j}}=0 \quad j=1,2, \ldots . n\)
2) \(\quad \lambda_{i}\left[g_{i}(\bar{x})-b_{i}\right]=0 \quad i=1,2, \ldots, m\)
3) \(\lambda_{i} \leq 0 \quad i=1,2, \ldots, m\)
4) \(\quad g_{i}(\bar{x}) \leq b_{i} \quad i=1,2, \ldots . m\)

\section*{Proof (A)}

It is given that \(\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}}) \leq \mathrm{b}_{\mathrm{i}} \quad \mathrm{i}=1,2, \ldots \ldots \mathrm{~m}\)
We have to prove (1), (2) and (3)
Introduce slack variables \(\mathrm{s}_{\mathrm{i}}\) such that
\[
g_{i}(\overline{\mathrm{x}})+\mathrm{s}_{\mathrm{i}}^{2}=\mathrm{b}_{\mathrm{i}}, \quad \mathrm{i}=1,2,3, \ldots ., \mathrm{m}
\]
i.e.
\[
\begin{equation*}
\mathrm{g}_{\mathrm{i}}(\overline{\mathrm{x}})+\mathrm{s}_{\mathrm{i}}^{2}-\mathrm{b}_{\mathrm{i}}=0 \quad \mathrm{i}=1,2, \ldots, \mathrm{~m} \tag{2}
\end{equation*}
\]

The hitts of (2) is denoted by \(\mathrm{G}_{\mathrm{i}}\left(\overline{\mathrm{x}}, \mathrm{s}_{\mathrm{i}}\right)\)
\[
\begin{equation*}
\therefore \quad \mathrm{G}_{\mathrm{i}}\left(\overline{\mathrm{x}}, \mathrm{~s}_{\mathrm{i}}\right)=0, \quad \mathrm{i}=1,2, \ldots . \mathrm{m} \tag{3}
\end{equation*}
\]

The problem reduces to
Maximize \(f(\bar{x}), \bar{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\),
such that \(G_{i}\left(x_{i}, s_{i}\right)=0, \quad i=1,2, \ldots . m\)
This is a problem of constrained optimization in \(n+1\) variables and a single equality constraint and can thus be solved by the Lagrangian multiplier method.

We introduce hagrangia function \(L(\overline{\mathrm{x}}, \bar{\lambda}, \bar{\sigma})\) where \(\overline{\mathrm{s}}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \sigma_{\mathrm{n}}\right)\) and
\[
\begin{gathered}
\bar{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \\
L(\bar{X}, \bar{\lambda}, \bar{s})=f(\overline{\mathrm{x}})-\sum_{\mathrm{i}=1}^{\mathrm{m}} \lambda_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}\left(\overline{\mathrm{x}}, \sigma_{\mathrm{i}}\right) \\
\mathrm{L}(\overline{\mathrm{X}}, \bar{\lambda}, \overline{\mathrm{~s}})=\mathrm{f}(\overline{\mathrm{x}})-\sum_{\mathrm{i}=1}^{m} \lambda_{\mathrm{i}}\left[\mathrm{~g}_{\mathrm{i}}(\overline{\mathrm{x}})+\mathrm{s}_{1}^{2}-\mathrm{b}_{\mathrm{i}}\right]
\end{gathered}
\]

The extreme points of unconstrained problem are given by
\[
\begin{array}{ll}
\frac{\partial L(\bar{x}, \bar{\lambda}, \mathrm{~s})}{\partial \mathrm{x}_{\mathrm{j}}}=0, & \mathrm{j}=1,2, \ldots . . \mathrm{n} \\
\frac{\partial \mathrm{~L}(\overline{\mathrm{x}}, \bar{\lambda}, \mathrm{~s})}{\partial \sigma_{\mathrm{i}}}=0, & \mathrm{i}=1,2, \ldots . . \mathrm{m} \\
\frac{\partial \mathrm{~L}(\overline{\mathrm{x}}, \bar{\lambda}, \mathrm{~s})}{\partial \lambda_{\mathrm{i}}}=0, & \mathrm{i}=1,2, \ldots . . \mathrm{m} \tag{7}
\end{array}
\]

From (6) we get
\(-2 \lambda_{i} S_{i}=0\)
\(\Rightarrow \lambda_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}=0\)
Multiplying by \(\mathrm{s}_{\mathrm{i}}\) we have
\(\lambda_{i} s_{i}^{2}=0, \quad i=1,2, \ldots m\)
From (7) we get
\(g_{i}(\bar{x})+s_{i}^{2}-b_{i}=0\)
\(\Rightarrow s_{i}^{2}=b_{i}-g_{i}(\bar{x}), \quad i=1,2, \ldots . . m\)

Using this \(s_{i}^{2}\) in (8) we have
\(\lambda_{i}\left[b_{i}-g_{i}(\bar{x})\right]=0, \quad i=1,2, \ldots . . m\)
The above equation can be written as
\(\lambda_{i}\left[g_{i}(\bar{x})-b_{i}\right]=0, \quad i=1,2, \ldots, m\)
Thus the equations (5) (10) and constraint (1) satisfied by the stationary point \(\overline{\mathrm{x}}_{0}=(\overline{\mathrm{x}}, \bar{\lambda}, \overline{\mathrm{s}})\) proves the necessary conditions (1) (2) and (3) respectively.

\section*{Proof of B}

The proof of (1) (2) and (4) are as in case (I)
Proof of (3) for both the parts.
For maximum we shall show that \(\bar{\lambda} \geq 0\).
The constraints are given by
\(g_{i}(\bar{X}) \leq b_{i}, \quad i=1,2, \ldots ., m\)
The necessary condition for maximum is that \(\bar{\lambda} \geq 0\) and for minimum of \(f(\bar{X})\) is that \(\bar{\lambda} \leq \overline{0}\).

Consider the maximization case
We know that \(\lambda_{i}\) measures the rate of variation of \(f\) with respect to \(b_{i}\)
\(\frac{\partial f(\bar{x})}{\partial b_{i}}=\lambda_{i}, \quad i=1,2, \ldots m\)

We see that as \(b_{i}\) increases, the solution becomes less constrained.
\(f\) can not decrease.
\[
\frac{\partial f(\bar{x})}{\partial b_{i}} \geq 0
\]
i. e. \(\quad \lambda_{i} \geq 0\)

Similarly for minimization of \(f(\bar{x})\) as \(b_{i}\) increases \(f\) can not increase
\[
\frac{\partial f(\bar{x})}{\partial b_{i}} \leq 0
\]
i. e. \(\quad \lambda_{i} \leq 0\)

Hence the proof.
Use Kuhn's Tucker method to solve the following problem
Minimize \(\quad f(\bar{X})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\)
Subject to \(2 x_{1}+x_{2} \leq 5\)
\[
\begin{aligned}
& x_{1}+x_{3} \leq 2 \\
& x_{1} \geq 1 \\
& x_{2} \geq 2 \\
& x_{3} \geq 0
\end{aligned}
\]

\section*{Solution}

Problem in standard form
Minimize \(f(\bar{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\)
Subject to \(2 x_{1}+x_{2}-5 \leq 0\)
\[
\begin{aligned}
& x_{1}+x_{3}-2 \leq 0 \\
& 1-x_{1} \leq 0 \\
& 2-x_{2} \leq 0 \\
& -x_{3} \leq 0
\end{aligned}
\]

Here
\(L(\bar{X}, \bar{\lambda}, \bar{s})=f(\bar{X})-\lambda_{1} \bar{h}_{1}-\lambda_{2} \overline{\mathrm{~h}}_{2}-\lambda_{3} \overline{\mathrm{~h}}_{3}-\lambda_{4} \overline{\mathrm{~h}}_{4}-\lambda_{5} \overline{\mathrm{~h}}_{5}\)

The conditions are
\[
\begin{align*}
& \frac{\partial \mathrm{L}}{\partial \mathrm{x}_{\mathrm{j}}}=\sum_{\mathrm{i}=1}^{5} \lambda_{\mathrm{i}} \frac{\partial \mathrm{~h}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}, \quad \mathrm{i}=1,2,3  \tag{1}\\
& \lambda_{i} h_{i}=0  \tag{2}\\
& i=1,2,3,4,5 \\
& h_{i} \leq 0 \quad i=1,2,3,4,5  \tag{3}\\
& \lambda_{i} \leq 0 \quad i=1,2,3,4,5 \\
& \therefore \quad \mathrm{f}(\overline{\mathrm{X}})=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2} \\
& \lambda_{1} h_{1}=\lambda_{1}\left(2 x_{1}+x_{2}-5\right) \\
& \lambda_{2} \mathrm{~h}_{2}=\lambda_{2}\left(\mathrm{x}_{1}+\mathrm{x}_{3}-2\right) \\
& \lambda_{3} h_{3}=\lambda_{3}\left(1-x_{1}\right) \\
& \lambda_{4} h_{4}=\lambda_{4}\left(2-x_{2}\right) \\
& \lambda_{5} h_{5}=\lambda_{5}\left(-x_{3}\right)
\end{align*}
\]

In this problem from (1)
\[
\begin{array}{r}
2 x_{1}-2 \lambda_{1}-\lambda_{2}+\lambda_{3}=0 \\
2 x_{2}-\lambda_{1}+\lambda_{4}=0 \\
2 x_{3}-\lambda_{2}+\lambda_{5}=0 \tag{5}
\end{array}
\]

From (2)
\[
\begin{align*}
& \lambda_{1}\left(2 x_{1}+x_{2}-5\right)=0 \\
& \lambda_{2}\left(x_{1}+x_{3}-2\right)=0 \\
& \lambda_{3}\left(1-x_{1}\right)=0 \\
& \lambda_{4}\left(2-x_{2}\right)=0 \\
& \lambda_{5}\left(-x_{3}\right)=0 \tag{6}
\end{align*}
\]

From (3)
\[
2 x_{1}+x_{2}-5 \leq 0
\]
\(x_{1}+x_{3}-2 \leq 0\)
\(1-x_{1} \leq 0\)
\(2-x_{2} \leq 0\)
\(-x_{3} \leq 0\)
From (4) \(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{f} \leq 0\)
Let \(\lambda_{3}, \lambda_{4}, \lambda_{5}\) be non zero
From (6) we get
\[
x_{1}=1, x_{2}=2, x_{3}=0
\]

Using the above values
We check the conditions (7)
\(2 x_{1}+x_{2}-5 \leq 0\)
\(1+2-5 \leq 0\)
True
\(\mathrm{x}_{1}+\mathrm{x}_{3}-2 \leq 0\)
\(1+0-2 \leq 0\)
True
\(1-x_{1} \leq 0\)
\(1-1 \leq 0\)
\(2-x_{2} \leq 0\)
\(2-2 \leq 0\)
True
\(-x_{3} \leq 0\)
\(0 \leq 0\)
True
\(\lambda_{2}\left(x_{1}+x_{3}-2\right)=0\)
\(\lambda_{2}(1+0-2)=0\)
\(\lambda_{2}=0\)
\(\lambda_{1}\left(2 x_{1}+x_{2}-5\right)=0\)
\(\lambda_{1}(2+2-5)=0\)
\(\lambda_{1}=0\)
\[
\begin{aligned}
2 \mathrm{x}_{1}-2 \lambda_{1}-\lambda_{2}+\lambda_{3} & =0 \\
2(1)-0-0+\lambda_{3} & =0 \\
2+\lambda_{3} & =0 \\
\lambda_{3} & =-2 \\
2 \mathrm{x}_{2}-\lambda_{1}+\lambda_{4} & =0 \\
2(2)-0+\lambda_{4} & =0 \\
\lambda_{4} & =-4 \\
2 \mathrm{x}_{\mathrm{j}}-\lambda_{2}+\lambda_{5} & =0 \\
2(0)-0+\lambda_{5} & =0 \\
\lambda_{5} & =0
\end{aligned}
\]

\title{
WOLFE'S AND BEALE'S METHODS
}

\subsection*{8.1 INTRODUCTION}

The problem of optimizing a quadratic function subject to linear constraints is called a quadratic programming problem of the nonlinear programs. The quadratic programming problems are computationally the least difficult to handle. For this reason, quadratic functions and programs are as widely used as the linear functions and programs in modelling the optimization problems. Quadratic programs are not only useful in the application of these models of real - life situation but also serve as subproblems in a number of algorithms for general non linear programs. Consequently many algorithms have been developed for quadratic programs. In this unit, we shall describe Wolfe's and Beal's method.

\subsection*{8.2 QUADRATIC PROGRAM}

A quadratic program can be represented in the form
Maximize / Minimize \(f(\bar{x})=\bar{c}^{\top} \bar{x}+\frac{1}{2} \bar{x}^{\top} Q \bar{x}\)
Subject to the constraints
\(\mathrm{A} \bar{x}(\geq,=, \leq) \overline{\mathrm{b}}\) and \(\bar{x} \geq 0\).
Where \(\bar{b} \in R^{m}, A\) is \(m \times n\) real matrix, \(\bar{x}, \bar{c} \in R^{n}\), is called a General quadratic programming problem (GQPP).

\section*{Definition :}

A quadratic form \(\bar{x}^{\top} Q \bar{x}\) is said to be positive definite if \(\bar{x}^{\top} Q \bar{x}>0\) for \(\bar{x} \neq 0\) and positive semidefinite if \(\bar{x}^{\top} Q \bar{x} \geq 0\) for \(\bar{x} \neq 0\) and there is at least one \(\bar{x} \neq 0\) such that \(\bar{x}^{\top} Q \bar{x}=0\).

\section*{Definition}

A quadratic form \(\bar{x}^{\top} Q \bar{x}\) is said to be negative definite and negative semidefinite if \(-\bar{x}^{\top} Q \bar{x}\) is positive definite and positive semidefinite respectively.

The function \(\bar{x}^{\top} Q \bar{x}\) is assumed to be negative semidefinite in the maximization case and positive semidefinite for manimization case.

\subsection*{8.3 WOLFE'S MODIFIED SIMPLEX METHOD}

Let the quadratic programming problem be

Maximize \(\mathrm{z}=\mathrm{f}(\mathrm{x})=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}+\frac{1}{2} \sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{jk}} \mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{k}}\)
Subject to be consteaints :
\(\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, x_{j} \geq 0(i=1,2, \ldots, m, j=1,2,3, \ldots, n)\)
Whree \(C_{j k}=C_{k j} \forall j, k, \quad b_{i} \geq 0 \forall i=1,2, \ldots, m\)
Also assume that the quadratic form \(\sum C_{j k} x_{j} x_{k}\) be negative semidefinite.

\subsection*{8.3.1 Steps of Wolfe's modified simplex algorithm}

\section*{Step : 1}

Convert the inequality constraints into equations by introducing slack variables \(q_{i}^{2}\) in the \(i^{\text {th }}\) constraint \((i=1,2,3, \ldots, m)\) and the slack variables \(r_{j}^{2}\) in the \(j^{\text {th }}\) nonnegatively constraint \((j=1,2,3, \ldots, n)\).
Step : 2
Construct the Langrangian function
\(L(\bar{x}, \bar{q}, \bar{r}, \lambda, \mu)=\bar{f}(\bar{x})-\sum_{i=1}^{m} \lambda_{i}\left[\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}+q_{i}^{2}\right]-\sum_{j=1}^{n} \mu_{j}\left[-x_{j}+r_{j}^{2}\right]\)
Where \(\left.\bar{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)\right), \bar{q}=\left(q_{1}^{2}, q_{2}^{2}, q_{3}^{2}, \ldots, q_{m}^{2}\right)\),
\[
\bar{r}=\left(r_{1}^{2}, r_{2}^{2}, \ldots, r_{n}^{2}\right) \text { and } \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m}\right), \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)
\]

Differentiate the above function \(L\) partially with respect to \(\bar{x}, \overline{\bar{q}}, \bar{r}, \lambda, \mu\) and equate the first order partial derivatives to zero. Thus derive Kuhn - Tucker conditions from the resulting equations.

\section*{Step : 3}

Introduce the non-negative artificial variable \(v_{j}, j=1,2,3, \ldots, n\) in the Kuhn Tucker conditions.
\[
\mathrm{C}_{\mathrm{j}}+\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{C}_{\mathrm{jk}} \mathrm{x}_{\mathrm{k}}-\sum_{\mathrm{i}=1}^{\mathrm{m}} \lambda_{\mathrm{i}} \mathrm{a}_{\mathrm{ij}}+\mu_{\mathrm{j}}+\mathrm{v}_{\mathrm{j}}=0 \quad \mathrm{j}=1,2,3, \ldots, \mathrm{n}
\]

Construct an objective function \(Z_{v}=v_{1}+v_{2}+v_{3}+\ldots+v_{n}\)

\section*{Step : 4}

Obtain the initial basic feasible solution to the following linear programming problem.

Minimize \(Z_{v}=v_{1}+v_{2}+v_{3}+\ldots+v_{n}\)
Subject to the constraints
\(\sum_{k=1}^{n} C_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+\mu_{j}+v_{j}=-C_{j} \quad(j=1,2,3, \ldots, n)\)
\(\sum \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}+\mathrm{s}_{\mathrm{i}}=\mathrm{b}_{\mathrm{i}} \quad(\mathrm{i}=1,2,3, \ldots, \mathrm{n})\)
\(v_{j}, \lambda_{i}, \mu_{j}, x_{j} \geq 0\)
\[
(i=1,2, \ldots . . m, j=1,2,3, \ldots, n)
\]
and satisfying the complementary slackness condition
\[
\begin{array}{ll}
\sum \mu_{j} x_{j}+\sum \lambda_{i} s_{i}=0 & \text { or } \\
\lambda_{i} s_{i}=0, \mu_{j} x_{j}=0 & (i=1,2,3, \ldots m, j=1,2,3, \ldots, n)
\end{array}
\]

\section*{Step : 5}

Apply two phase simplex method in the usual manner to find an optimum solution to the linear programming problem constructed in step 4. Enter the variables such that the above complementary slackness conditions are satisfied.

Step : 6
The optimum solution thus obtained in step 5 gives the optimum solution of the given QPP also.

\section*{Remark}
1) If the quadratic programming problem is given in the minimize form then convert it into maximize it into maximization one by suitable modifications in \(f(x)\) and the ' \(\geq\) ' constraints.
2) While solving simplex, introduce \(s_{i}\) if \(\lambda_{i}\) is not in the solution or \(\lambda_{i}\) will be removed when \(s_{i}\) enters.
3) If \(\lambda_{i}\) is the basic solution with positive value, then \(x_{i}\) cannot be basic with positive value. Similarly \(\mu_{\mathrm{j}}\) and \(\mathrm{x}_{\mathrm{j}}\) cannot be positive simultaneously.

\subsection*{8.4 ILLUSTRATIVE EXAMPLES ON WOLFE'S METHOD}

\section*{Example 8.4.1}

Apply Wolfe's method for solving the quadratic programming problem.

Max. \(Z_{x}=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}\)
Subject to, \(x_{1}+2 x_{2} \leq 2, x_{1}, x_{2} \geq 0\).

\section*{Solution :}

\section*{Step : 1}

First we convert the inequality constraints into equations.
\[
\begin{array}{r}
x_{1}+2 x_{2}+q_{1}^{2}=2 \\
-x_{1}+r_{1}^{2}=0 \\
-x_{2}+r_{2}^{2}=0
\end{array}
\]

Step : 2
The Lagrangian function
\[
L\left(x_{1}, x_{2}, q_{1}, r_{1}, r_{2}, \lambda_{1}, \mu_{1}, \mu_{2}\right)
\]
\[
\begin{array}{r}
=\left(4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}\right)-\lambda_{1}\left(x_{1}+2 x_{2}+q_{1}^{2}-2\right) \\
-\mu_{1}\left(-x_{1}+r_{1}^{2}\right)-\mu_{2}\left(-x_{2}+r_{2}^{2}\right)
\end{array}
\]

The necessary and sufficient conditions are
\[
\frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=4-4 \mathrm{x}_{1}-2 \mathrm{x}_{2}-\lambda_{1}+\mu_{1}=0, \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=6-2 \mathrm{x}_{1}-4 \mathrm{x}_{2}-2 \lambda_{1}+\mu_{2}=0
\]

Define \(S_{1}=q_{1}^{2}\) we have \(x_{1}+2 x_{2}+S_{1}-2=0\)
and the umplementary conditions are
\[
\lambda_{1} S_{1}=0, \mu_{1} x_{1}=0, \mu_{2} x_{2}=0 \text { and } x_{1}, x_{2}, s, \lambda_{1}, \mu_{1}, \mu_{2} \geq 0
\]

Step : 3
Introduce the non-negative artifical variables.
\(4 x_{1}+2 x_{2}+\lambda_{1}-\mu_{1}+v_{1}=4,2 x_{1}+4 x_{2}+2 \lambda_{1}-\mu_{2}+v_{2}=6\) and the new objective function \(\min Z_{v}=v_{1}+v_{2}\).
Step: 4
To construct the modified linear programming problem
\(\operatorname{Max} Z_{v}=-v_{1}-v_{2}\)
Subject to the constraints
\[
4 x_{1}+2 x_{2}+\lambda_{1}-\mu_{1}+v_{1}=4
\]
\[
\begin{array}{r}
2 x_{1}+4 x_{2}+2 \lambda_{1}-\mu_{2}+v_{2}=6 \\
x_{1}+2 x_{2}+S_{1}=2
\end{array}
\]

Where all the variables are non - negative and
\(\mu_{1} \mathrm{X}_{1}=0, \mu_{2} \mathrm{X}_{2}=0, \lambda_{1} \mathrm{~S}_{1}=0\)
Step: 5
Now solve this problem by two phase simplex method.
\(\begin{array}{cllllllll}\mathrm{C}_{\mathrm{j}} \rightarrow & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0\end{array}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{1}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} & \begin{tabular}{l} 
Min \\
ratio \(\frac{x_{B}}{\mathrm{x}_{\mathrm{i}}}\)
\end{tabular} \\
\hline \(\mathrm{v}_{1}\) & -1 & 4 & 4 & 2 & 1 & -1 & 0 & 1 & 0 & 0 & \(\frac{4}{4}=1\) & 1 \\
\hline \(\mathrm{v}_{2}\) & -1 & 6 & 2 & 4 & 2 & 0 & -1 & 0 & 1 & 0 & \(\frac{2}{6}=\frac{1}{3}\) & 3 \\
\hline \(\mathrm{~S}_{1}\) & 0 & 2 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & \(\frac{1}{2}\) & 2 \\
\hline \(\mathrm{z}=-10\) & \(\mathrm{Z}_{\mathrm{j}}-C_{\mathrm{j}} \rightarrow\) & -6 & -6 & -3 & 1 & 1 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\(\uparrow\)
\(x_{1}\) is introduce as a basic variable leaving \(v_{1}\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c}{\(C_{j} \rightarrow\)} & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(C_{B}\) & \(x_{B}\) & \(x_{1}\) & \(x_{2}\) & \(\lambda_{1}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(v_{1}\) & \(v_{2}\) & \(s_{1}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} & \begin{tabular}{l} 
Min \\
ratio \(\frac{x_{B}}{x_{i}}\)
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & 1 & 1 & \(1 / 2\) & \(1 / 4\) & \(-1 / 4\) & 0 & \(1 / 4\) & 0 & 0 & \(\frac{1 / 2}{1}=\frac{1}{2}\) & 2 \\
\hline\(v_{2}\) & -1 & 4 & 0 & 3 & \(3 / 2\) & \(1 / 2\) & -1 & \(-1 / 2\) & 1 & 0 & \(\frac{3}{4}\) & \(4 / 3\) \\
\hline \(\mathrm{~S}_{1}\) & 0 & 1 & 0 & \(\boxed{3 / 2}\) & \(-1 / 4\) & \(1 / 4\) & 0 & \(-1 / 4\) & 0 & 1 & \(\frac{3}{2}\) & \(2 / 3\) \\
\hline\(Z=-4\) & \(Z_{j}-C_{j} \rightarrow\) & 0 & -3 & \(-3 / 2\) & \(-1 / 2\) & 1 & \(3 / 2\) & 0 & 0 & & \\
\hline
\end{tabular}
\(\uparrow\)

Most negative of \(\left\{-3,-\frac{3}{2},-\frac{1}{2}\right\}\) is -3 .
and maximum ratio \(\left\{\frac{1}{2}, \frac{3}{4}, \frac{3}{2}\right\}=\frac{3}{2}\)
\(\therefore \mathrm{x}_{2}\) is entering variable (possible because \(\mu_{2}=0\) ) and \(\mathrm{S}_{1}\) is leaving variable.
\[
\begin{array}{lllllllll}
\mathrm{C}_{\mathrm{j}} \rightarrow & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0
\end{array}
\]
\begin{tabular}{|c|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{1}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \begin{tabular}{l} 
Max. \\
rations
\end{tabular} & \begin{tabular}{l} 
Min. \\
ratio \(\frac{x_{B}}{x_{i}}\)
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & \(2 / 3\) & 1 & 0 & \(1 / 3\) & \(-1 / 3\) & 0 & \(1 / 3\) & 0 & \(-1 / 3\) & \(\frac{1}{2}\) & 2 \\
\hline\(\leftarrow \mathrm{v}_{2}\) & -1 & 2 & 0 & 0 & 2 & 0 & -1 & 0 & 1 & -2 & 1 & 1 \\
\hline \(\mathrm{x}_{2}\) & 0 & \(2 / 3\) & 0 & 1 & \(-1 / 6\) & \(1 / 6\) & 0 & \(-1 / 6\) & 0 & \(2 / 3\) & -- & -- \\
\hline \(\mathrm{Z}=-2\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 0 & 0 & -2 & 0 & 1 & 1 & 0 & 2 & \\
\hline
\end{tabular}
\(\uparrow\)
Since - 2 is most negative \(\lambda_{1}\) enters (possible as \(S_{1}=0\) ) and Max. ratio is \(1, v_{2}\) is leaving variable.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c}{\(C_{j} \rightarrow 0\)} & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(C_{B}\) & \(x_{B}\) & \(x_{1}\) & \(x_{2}\) & \(\lambda_{1}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(v_{1}\) & \(v_{2}\) & \(s_{1}\) \\
\hline \(\mathrm{x}_{1}\) & 0 & \(1 / 3\) & 1 & 0 & 0 & \(-\frac{1}{3}\) & \(\frac{1}{6}\) & \(\frac{1}{3}\) & \(-\frac{1}{6}\) & 0 \\
\hline\(\lambda_{1}\) & 0 & 1 & 0 & 0 & 1 & 0 & \(-\frac{1}{2}\) & 0 & \(\frac{1}{2}\) & -1 \\
\hline \(\mathrm{x}_{2}\) & 0 & \(\frac{5}{6}\) & 0 & 1 & 0 & \(\frac{1}{6}\) & \(-\frac{1}{12}\) & \(-\frac{1}{6}\) & \(\frac{1}{12}\) & \(\frac{1}{2}\) \\
\hline\(Z=0\) & \(Z_{j}-C_{j} \rightarrow\) & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{tabular}

Since all \(\Delta_{\mathrm{j}}=\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}\) are \(\geq 0\). We get the optimal solution as \(\mathrm{x}_{1}=\frac{1}{3}\) and \(\mathrm{x}_{2}=\frac{5}{6}\).

\section*{Step : 6}

The optimal value
\[
\begin{aligned}
Z_{x}^{*} & =4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2} \\
& =4\left(\frac{1}{3}\right)+6\left(\frac{5}{6}\right)-2\left(\frac{1}{3}\right)^{2}-2\left(\frac{1}{3}\right)\left(\frac{5}{6}\right)-2\left(\frac{5}{6}\right)^{2} \\
& =\frac{25}{6}
\end{aligned}
\]

\section*{Example 8.4.2}

Apply Wolfe's method to solve the quadratic programming problem.
Max. \(Z_{x}=2 x_{1}+x_{2}-x_{1}^{2}\)
Subject to
\(2 x_{1}+3 x_{2} \leq 6,2 x_{1}+x_{2} \leq 4\) and \(x_{1}, x_{2} \geq 0\).

\section*{Solution :}

\section*{Step : 1}

First we convert the inequality constraints into equations
\[
\begin{array}{r}
2 x_{1}+3 x_{2}+q_{1}^{2}=6 \\
2 x_{1}+x_{2}+q_{2}^{2}=4 \\
-x_{1}+r_{1}^{2}=0 \\
-x_{2}+r_{2}^{2}=0
\end{array}
\]

Step : 2
The Lagrangian function \(L\left(x_{1}, x_{2}, q_{1}, q_{2}, r_{1}, r_{2}, \mu_{1}, \mu_{2}\right)\)
\[
\begin{aligned}
& =\left(2 x_{1}+x_{2}-x_{1}^{2}\right)-\lambda_{1}\left(2 x_{1}+3 x_{2}+q_{1}^{2}-6\right)-\lambda_{2}\left(2 x_{1}+x_{2}+q_{2}^{2}-4\right) \\
& -\mu_{1}\left(-x_{1}+r_{1}^{2}\right)-\mu_{2}\left(-x_{2}+r_{2}^{2}\right)
\end{aligned}
\]

The necessary and sufficient conditions are
\[
\begin{aligned}
& \frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=2-2 \mathrm{x}_{1}-2 \lambda_{1}-2 \lambda_{2}+\mu_{1}=0, \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=1-3 \lambda_{1}+\mu_{2}=0 \\
& -\frac{\partial \mathrm{L}}{\partial \lambda_{1}}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{q}_{1}^{2}-6=0,-\frac{\partial \mathrm{L}}{\partial \lambda_{2}}=2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{q}_{2}^{2}-4=0
\end{aligned}
\]

Now define \(\mathrm{S}_{1}=\mathrm{q}_{1}^{2}, \mathrm{~S}_{2}=\mathrm{q}_{2}^{2}\) then we have the complementary conditions,
\(\lambda_{1} S_{1}=0, \lambda_{2} S_{2}=0, \mu_{1} x_{1}=0, \mu_{2} x_{2}=0\)
and \(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \geq 0\)

\section*{Step : 3}

Introduce the non - negative artificial variable
\(2 x_{1}+2 \lambda_{1}+2 \lambda_{2}-\mu_{1}+v_{1}=2\)
\(3 \lambda_{1}+\lambda_{2}-\mu_{2}+v_{2}=1\)
and the new objective function \(\min Z_{v}=v_{1}+v_{2}\).

\section*{Step : 4}

To construct the modified linear programming problem.
Max. \(Z_{v}=-V_{1}-V_{2}\)
Subject to
\(2 \mathrm{x}_{2}+2 \lambda_{1}+2 \lambda_{2}-\mu_{1}+\mathrm{v}_{1}=2\)
\(3 \lambda_{1}+\lambda_{2}-\mu_{2}+v_{2}=1\)
\(2 x_{1}+3 x_{2}+S_{1}=6\)
\(2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{S}_{2}=4\)
With
\(\mu_{1} x_{1}=0, \mu_{2} x_{2}=0, \lambda_{1} S_{1}=0, \lambda_{2} S_{2}=0\) and \(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}, S_{1}, S_{2} \geq 0\)

\section*{Step : 5}

Now solve this program by two phase simplex method.
\[
\begin{array}{llllllllll}
\mathrm{C}_{j} \rightarrow 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0
\end{array}
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{1}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{v}_{1}\) & -1 & 2 & 2 & 0 & 2 & 2 & -1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline \(\mathrm{v}_{2}\) & -1 & 1 & 0 & 0 & 3 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
\hline \(\mathrm{~S}_{1}\) & 0 & 6 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \(1 / 3\) \\
\hline \(\mathrm{~S}_{2}\) & 0 & 4 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \(1 / 2\) \\
\hline
\end{tabular}
\begin{tabular}{|l|lllllllllll|}
\hline \(\mathrm{Z}=-3\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & -2 & 0 & -5 & -3 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Though most negative value of \(Z_{j}-C_{j}\) is \(-5, \lambda_{1}\) cannot be an entering variable as \(\lambda_{1} S_{1}=0\) and \(S_{1} \neq 0\). Similarly \(\lambda_{2}\) cannot be an entering variable as \(S_{2} \neq 0\).
Therefore \(\mathrm{x}_{1}\) is an entering variable (possible because \(\mu_{1}=0\) ).
\[
\begin{array}{cccccccccc}
\mathrm{C}_{j} \rightarrow 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0
\end{array}
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{1}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & 1 & 1 & 0 & 1 & 1 & \(-\frac{1}{2}\) & 0 & \(\frac{1}{2}\) & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{v}_{2}\) & -1 & 1 & 0 & 0 & 3 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
\hline \(\mathrm{~S}_{1}\) & 0 & 4 & 0 & 3 & -2 & -2 & 1 & 0 & -1 & 0 & 1 & 0 & \(\frac{3}{4}\) \\
\hline \(\mathrm{~S}_{2}\) & 0 & 2 & 0 & 1 & -2 & -2 & 1 & 0 & -1 & 0 & 0 & 1 & \(\frac{1}{2}\) \\
\hline \(\mathrm{Z}_{2}=-1\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 0 & 0 & -3 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\(\uparrow\)
Though -3 is most negative value corresponding variable \(\lambda_{1}\) cannot be an entering variable as \(\lambda_{1} S_{1}=0\) and \(S_{1} \neq 0\). So is \(\lambda_{2}\). Since \(\mu_{2}=0, x_{2}\) can be introduced ( \(\mathrm{x}_{1}, \mathrm{v}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{2}\) are already basic variables \(\mu_{1}\) cannot be introduce as \(\mu_{1} \mathrm{x}_{1}=0\) and there are \(x_{2}\) is the only possibility). Thus introducing \(x_{2}\) as a basic variable and with leaving variable \(S_{1}\) we get the following table.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\multicolumn{1}{c}{} & \(C_{j} \rightarrow\) & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(C_{B}\) & \(x_{B}\) & \(x_{1}\) & \(x_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(v_{1}\) & \(v_{2}\) & \(s_{1}\) & \(S_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & 1 & 1 & 0 & 1 & 1 & \(-1 / 2\) & 0 & \(1 / 2\) & 0 & 0 & 0 & \(\frac{\lambda_{1}}{x_{B}}=1\) \\
\hline \(\mathrm{v}_{2}\) & -1 & 1 & 0 & 0 & 3 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{x}_{2}\) & 0 & \(\frac{4}{3}\) & 0 & 1 & \(-\frac{2}{3}\) & \(-\frac{2}{3}\) & \(\frac{1}{3}\) & 0 & \(-\frac{1}{3}\) & 0 & \(\frac{1}{3}\) & 0 & -- \\
\hline \(\mathrm{s}_{2}\) & 0 & \(\frac{2}{3}\) & 0 & 0 & \(-\frac{4}{3}\) & \(-\frac{4}{3}\) & \(\frac{2}{3}\) & 0 & \(-\frac{1}{3}\) & 0 & \(-\frac{1}{3}\) & 1 & - \\
\hline \(\mathrm{Z}=-1\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 0 & 0 & -3 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & \\
\hline
\end{tabular}
\(\uparrow\)
Since most negative \(Z_{j}-C_{j}\) is -3 the corresponding variable \(\lambda_{1}\) is the entering variable (possible as \(s_{1}=0\) ) and the variable \(v_{2}\) is the leaving variable as max. ratio of \(\lambda_{1}\) and \(x_{B}\) is 3 corresponds to variable \(v_{2}\). We get the following table.
\[
\begin{array}{llllllllll}
\mathrm{C}_{\mathrm{j}} \rightarrow 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0
\end{array}
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{1}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~s}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & \(\frac{2}{3}\) & 1 & 0 & 0 & \(\frac{2}{3}\) & \(-\frac{1}{2}\) & \(\frac{1}{3}\) & \(\frac{1}{2}\) & \(-\frac{1}{3}\) & 0 & 0 & \\
\hline\(\lambda_{1}\) & 0 & \(\frac{1}{3}\) & 0 & 0 & 1 & \(\frac{1}{3}\) & 0 & \(-\frac{1}{3}\) & 0 & \(\frac{1}{3}\) & 0 & 0 & \\
\hline \(\mathrm{x}_{2}\) & 0 & \(\frac{14}{9}\) & 0 & 1 & 0 & \(-\frac{4}{9}\) & \(\frac{1}{3}\) & \(-\frac{2}{9}\) & \(-\frac{1}{3}\) & \(\frac{2}{9}\) & \(\frac{1}{3}\) & 0 & \\
\hline \(\mathrm{~s}_{2}\) & 0 & \(\frac{10}{9}\) & 0 & 0 & 0 & \(-\frac{8}{9}\) & \(\frac{2}{3}\) & \(-\frac{4}{9}\) & \(-\frac{2}{3}\) & \(\frac{4}{9}\) & \(-\frac{1}{3}\) & 1 & \\
\hline \(\mathrm{Z}=0\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}\) & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}

Since all \(Z_{j}-C_{j} \geq 0\) we get the optimal solution as \(\mathrm{x}_{1}=\mathrm{x}_{1}^{*}=\frac{2}{3}, \lambda_{1}=\lambda_{1}^{*}=\frac{1}{3}, \mathrm{x}_{2}=\mathrm{x}_{2}^{*}=\frac{14}{9}, \mathrm{~s}_{2}=\mathrm{s}_{\mathrm{r}}^{*}=\frac{10}{9}\) and the remaining variable \(\lambda_{2}, \mu_{1}, \mu_{2}, \mathrm{~s}_{1}, \mathrm{v}_{1}, \mathrm{v}_{2}\) are zero. The maximum value of objective function is
\(Z_{x}^{*}=2 x_{1}^{*}+x_{2}^{*}-x_{1}^{*^{2}}\)
\[
=2\left(\frac{2}{3}\right)+\frac{14}{9}-\left(\frac{2}{3}\right)^{2}=\frac{22}{9}
\]

\section*{Example 8.4.3}

Use Wolfe's method to solve the quadratic programming problem
Max. \(Z=2 x_{1}+3 x_{2}-2 x_{1}^{2}\)
Subject to the condition
\[
\begin{aligned}
& x_{1}+4 x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 2
\end{aligned}
\]
and
\[
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\]

\section*{Solution :}

\section*{Step : 1}

Max. \(Z=2 x_{1}+3 x_{2}-2 x_{1}^{2}\)
Subject to the constraints
\[
\begin{array}{r}
\mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{q}_{1}^{2}=4 \\
\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{q}_{2}^{2}=2 \\
-\mathrm{x}_{1}+\mathrm{r}_{1}^{2}=0 \\
-\mathrm{x}_{2}+\mathrm{r}_{2}^{2}=0
\end{array}
\]

\section*{Step : 2}

The Lagrangian function now becomes \(L\left(x_{1}, x_{2}, q_{1}, q_{2}, r_{1}, r_{2}, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}\right)\)
\[
\begin{aligned}
& =\left(2 x_{1}+3 x_{2}-2 x_{1}^{2}\right)-\lambda_{1}\left(x_{1}+4 x_{2}+q_{1}^{2}-4\right)-\lambda_{2}\left(x_{1}+2 x_{2}+q_{2}^{2}-2\right) \\
& -\mu_{1}\left(-x_{1}+r_{1}^{2}\right)-\mu_{2}\left(-x_{2}+r_{2}^{2}\right)
\end{aligned}
\]

The necessary and sufficient conditions are
\[
\frac{\partial \mathrm{L}}{\partial \mathrm{x}_{1}}=2-4 \mathrm{x}_{1}-\lambda_{1}-\lambda_{2}+\mu_{1}=0, \frac{\partial \mathrm{~L}}{\partial \mathrm{x}_{2}}=3-4 \lambda_{1}-\lambda_{2}+\mu_{2}=0
\]

Define \(S_{1}=q_{1}^{2}\) and \(S_{2}=q_{2}^{2}\) then we have
\[
-\frac{\partial \mathrm{L}}{\partial \lambda_{1}}=\mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{S}_{1}-4=0, \quad-\frac{\partial \mathrm{L}}{\partial \lambda_{2}}=\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{S}_{2}-2=0
\]
and the complementary conditions
\(\lambda_{1} S_{1}=0, \lambda_{2} S_{2}=0, \mu_{1} x_{1}=0, \mu_{2} x_{2}=0\) and
\(\mathrm{x}_{1}, \mathrm{x}_{2}, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{2} \geq 0\)

\section*{Step : 3}

Introduce the non - negative artificial variables
\(4 \mathrm{x}_{1}+\lambda_{1}+\lambda_{2}-\mu_{1}+\mathrm{v}_{1}=2\)
\[
4 \lambda_{1}+\lambda_{2}-\mu_{2}+v_{2}=3
\]
and the new objective function \(\min Z_{v}=v_{1}+v_{2}\)

\section*{Step : 4}

To construct the modified linear programming problem
max. \(Z_{v}=-v_{1}-v_{2}\)
Subject to,
\[
\begin{aligned}
& 4 \mathrm{x}_{1}+\lambda_{1}+\lambda_{2}-\mu_{1}+\mathrm{v}_{1}=2 \\
& 4 \lambda_{1}+\lambda_{2}-\mu_{2}+\mathrm{v}_{2}=3 \\
& \mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{s}_{1}=4 \\
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{s}_{2}=2 \\
& \quad \lambda_{1} \mathrm{~s}_{1}=0, \lambda_{2} \mathrm{~s}_{2}=0, \mu_{1} \mathrm{x}_{1}=0, \mu_{2} \mathrm{x}_{2}=0 \\
& \text { and } \mathrm{x}_{1}, \mathrm{x}_{2}, \lambda_{1}, \lambda_{2}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{2} \geq 0
\end{aligned}
\]

\section*{Step : 5}

Solve the problem constructed in step 4 by simplex method
\[
\begin{array}{llllllllll}
C_{j} \rightarrow 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0
\end{array}
\]
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|c|c|c|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{1}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
rations
\end{tabular} \\
\hline \(\mathrm{v}_{1}\) & -1 & 2 & 4 & 0 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 0 & \(\frac{\mathrm{x}_{1}}{\mathrm{x}_{\mathrm{B}}}=2\) \\
\hline \(\mathrm{v}_{2}\) & -1 & 3 & 0 & 0 & 4 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
\hline \(\mathrm{~S}_{1}\) & 0 & 4 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \(\frac{1}{4}\) \\
\hline \(\mathrm{~S}_{2}\) & 0 & 2 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \(1 / 2\) \\
\hline \(\mathrm{Z}_{\mathrm{j}}=-5\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & -4 & 0 & -5 & -2 & 1 & 1 & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}

Above table shows thats any one of \(\mathrm{x}_{1}, \lambda_{1}, \lambda_{2}\) can enter as basic variables but since \(\lambda_{1} S_{1}=0\) and \(\lambda_{2} S_{2}=0\) where \(S_{1} \neq 0\) and \(S_{2} \neq 0, \lambda_{1}\) and \(\lambda_{2}\) cannot be introduce as a basic variable. Therefore \(x_{1}\) enters the basis and since the maximum value of ratio \(\frac{x_{1} \text { column }}{x_{B} \text { column }}\) is 2 , the corresponding variable \(v_{1}\) leaves the basis and we get the following iteration.
\[
\begin{array}{ccccccccc}
\mathrm{C}_{\mathrm{j}} \rightarrow 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}
\]
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|c|c|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & \(\frac{1}{2}\) & 1 & 0 & \(\frac{1}{4}\) & \(\frac{1}{4}\) & \(-\frac{1}{4}\) & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathrm{v}_{2}\) & -1 & 3 & 0 & 0 & 4 & 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
\hline \(\mathrm{~S}_{1}\) & 0 & \(\frac{7}{2}\) & 0 & 4 & \(-\frac{1}{4}\) & \(-\frac{1}{4}\) & \(\frac{1}{4}\) & 0 & 0 & 1 & 0 & \(\frac{8}{7}\) \\
\hline \(\mathrm{~S}_{2}\) & 0 & \(\frac{3}{2}\) & 0 & 2 & \(-\frac{1}{4}\) & \(-\frac{1}{4}\) & \(\frac{1}{4}\) & 0 & 0 & 0 & 1 & \(\frac{4}{3}\) \\
\hline \(\mathrm{Z}_{\mathrm{j}}=-3\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 0 & 0 & -4 & -1 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}
\(\uparrow\)
\(\downarrow\)
Above table indicates that either \(\lambda_{1}\) or \(\lambda_{2}\) enters the basis, but this is not true because \(S_{1} \neq 0, S_{2} \neq 0\) and \(\lambda_{1} S_{1}=0, \lambda_{2} S_{2}=0 . \quad x_{1}, v_{2}, S_{1}, S_{2}\) are already basis elements. Since \(\mu_{1} x_{1}=0\) and \(x_{1} \neq 0, \mu_{1}\) cannot enter as a basic element. Thus only left out variables are \(x_{2}\) and \(\mu_{2}\).

Enter \(\mathrm{x}_{2}\) as a basic element. Consider the second column of the above table and take the ratio \(\frac{x_{2}}{x_{B}}\) and the maximum value of the ratio. Since \(\frac{4}{3}\) is the maximum ratio the corresponding variable \(\mathrm{S}_{2}\) leaves the basis and we get the following table.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\multicolumn{1}{c}{\(\mathrm{C}_{\mathrm{j}} \rightarrow\)} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{x}_{1}\) & 0 & \(\frac{1}{2}\) & 1 & 0 & \(\frac{1}{4}\) & \(\frac{1}{4}\) & \(-\frac{1}{4}\) & 0 & 0 & 0 & 0 & \(\frac{1}{2}\) \\
\hline \(\mathrm{v}_{2}\) & -1 & 3 & 0 & 0 & 4 & 1 & 0 & -1 & 1 & 0 & 0 & \(\frac{1}{3}\) \\
\hline\(\leftarrow \mathrm{~S}_{1}\) & 0 & \(\frac{1}{2}\) & 0 & 0 & \(\frac{1}{4}\) & \(\frac{1}{4}\) & \(-\frac{1}{4}\) & 0 & 0 & 1 & -2 & \(\frac{1}{2}\) \\
\hline \(\mathrm{x}_{2}\) & 0 & \(\frac{3}{4}\) & 0 & 1 & \(-\frac{1}{8}\) & \(-\frac{1}{8}\) & \(\frac{1}{8}\) & 0 & 0 & 0 & \(\frac{1}{2}\) & - \\
\hline \(\mathrm{Z}=-3\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 0 & 0 & -4 & -1 & 0 & 1 & 0 & 0 & 0 & \\
\hline
\end{tabular}

Again \(\lambda_{1}\) cannot enter the basis since \(S_{1}\) is in the basis and \(\lambda_{1} S_{1}=0\). The variable \(\lambda_{2}\) enters as the basic variable. Consider the ratio of columns corresponding to \(\lambda_{2}\) and \(x_{B}\). Since the maximum ratio is \(\frac{1}{2}\) and is corresponding to the variable \(x_{1}\) and \(S_{1}\) any one of it can leave the basis. Suppose \(S_{1}\) leaves the basis. Thus we introduce \(\lambda_{2}\) into the basis and drop \(S_{1}\).
\(\begin{array}{clllllllll}\mathrm{C}_{\mathrm{j}} \rightarrow & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0\end{array}\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline\(\leftarrow \mathrm{x}_{1}\) & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & +2 & \(\infty\) \\
\hline \(\mathrm{v}_{2}\) & -1 & 1 & 0 & 0 & 3 & 0 & 1 & -1 & 1 & -4 & 8 & 0 \\
\hline\(\lambda_{2}\) & 0 & 2 & 0 & 0 & 1 & 1 & -1 & 0 & 0 & 4 & -8 & 0 \\
\hline \(\mathrm{x}_{2}\) & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \(\frac{1}{2}\) & \(-\frac{1}{2}\) & 0 \\
\hline \(\mathrm{Z}=-1\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 0 & 0 & -3 & 0 & -1 & 1 & 0 & 4 & -8 & \\
\hline
\end{tabular}
\(S_{2}\) enters as a basic variable and variable \(x_{1}\) leaves the basis.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\multicolumn{1}{c}{\(\mathrm{C}_{\mathrm{j}} \rightarrow\)} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(\mathrm{C}_{\mathrm{B}}\) & \(\mathrm{x}_{\mathrm{B}}\) & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(\mathrm{v}_{2}\) & \(\mathrm{~s}_{1}\) & \(\mathrm{~S}_{2}\) & \begin{tabular}{l} 
Max. \\
ratio
\end{tabular} \\
\hline \(\mathrm{S}_{2}\) & 0 & 0 & \(\frac{1}{2}\) & 0 & 0 & 0 & 0 & 0 & 0 & \(-\frac{1}{2}\) & 1 & -- \\
\hline\(\leftarrow \mathrm{v}_{2}\) & -1 & 1 & -4 & 0 & 3 & 0 & 1 & -1 & 1 & 0 & 0 & 3 \\
\hline\(\lambda_{2}\) & 0 & 2 & 4 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & \(\frac{1}{2}\) \\
\hline \(\mathrm{x}_{2}\) & 0 & 1 & \(\frac{1}{4}\) & 1 & 0 & 0 & 0 & 0 & 0 & \(\frac{1}{4}\) & 0 & 0 \\
\hline \(\mathrm{Z}=-1\) & \(\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \rightarrow\) & 4 & 0 & -3 & 0 & -1 & 1 & 0 & 0 & 0 & \\
\hline
\end{tabular}

We introduce \(\lambda_{1}\) into the basis and drop \(v_{2}\) formit
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\multicolumn{1}{c}{\(C_{j} \rightarrow\)} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
\hline \begin{tabular}{l} 
Basic \\
Variable
\end{tabular} & \(C_{B}\) & \(x_{B}\) & \(x_{1}\) & \(x_{2}\) & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\mu_{1}\) & \(\mu_{2}\) & \(v_{2}\) & \(s_{1}\) & \(S_{2}\) \\
\hline\(S_{2}\) & 0 & 0 & \(\frac{1}{2}\) & 0 & 0 & 0 & 0 & 0 & 0 & \(-\frac{1}{2}\) & 1 \\
\hline\(\lambda_{1}\) & 0 & \(\frac{1}{3}\) & \(-\frac{4}{3}\) & 0 & 1 & 0 & \(\frac{1}{3}\) & \(-\frac{1}{3}\) & \(\frac{1}{3}\) & 0 & 0 \\
\hline\(\lambda_{2}\) & 0 & \(\frac{5}{3}\) & \(\frac{16}{3}\) & 0 & 0 & 1 & \(-\frac{4}{3}\) & \(\frac{1}{3}\) & \(-\frac{1}{3}\) & 0 & 0 \\
\hline\(x_{2}\) & 0 & 1 & \(\frac{1}{4}\) & 1 & 0 & 0 & 0 & 0 & 0 & \(\frac{1}{4}\) & 0 \\
\hline\(Z=0\) & \(Z_{j}-C_{j} \rightarrow\) & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}

Since \(Z_{j}-C_{j} \geq 0\) an optimum solution has been reached. The optimum solution
is: \(x_{1}=0, x_{2}=1, \lambda_{1}=\frac{1}{3}, \lambda_{2}=\frac{5}{3}, \mu_{1}=\mu_{2}=0, S_{1}=S_{2}=0\).

\section*{Step : 6}

The required optimal solution is \(\mathrm{x}_{1}=0, \mathrm{x}_{2}=1\) and the
\(\operatorname{Max} Z=2 x_{1}+3 x_{2}-2 x_{1} 2\)
\[
\begin{aligned}
=2(0)+ & 3(1)-2(0)=3 \\
& \sim \sim \sim \sim \text { EXERCISE } \sim \sim \sim \sim
\end{aligned}
\]

Use Wolfe's method and solve the following problems.
1) \(\operatorname{Min} . Z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\)

Subject to,
\(x_{1}+x_{2}+3 x_{3}=2\)
\(5 x_{1}+2 x_{2}+x_{3}=5\)
\(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0\)
(Ans.: \(x_{1}=0.81, x_{2}=0.35, x_{3}=0.35, \min z=0.857\) )
2) \(\quad\) Min \(Z=-x_{1}-x_{2}-x_{3}+\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\)

Subject to
\(x_{1}+x_{2}+x_{3}-1 \leq 0\)
\(4 x_{1}+2 x_{2}-\frac{7}{2} \leq 0\)
\(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0\)
\(\left(\right.\) Ans.: \(\left.x_{1}=x_{2}=x_{3}=\frac{1}{3}, z=-\frac{15}{18}\right)\)
3) Max. \(Z=2 x_{1}+3 x_{2}-2 x_{1}^{2}\)

Subject to,
\(\mathrm{x}_{1}+4 \mathrm{x}_{2} \leq 4\)
\(\mathrm{x}_{1}+\mathrm{x}_{2} \leq 2\)
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\)
\(\left(\right.\) Ans.: \(\left.x_{1}=0, x_{2}=1, \lambda_{1}=\frac{1}{3}, \lambda_{2}=\frac{5}{3}, \operatorname{Max.} \mathrm{z}=3\right)\)
4) \(\quad\) Min. \(Z=6-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}\)

Subject to,
\(\mathrm{x}_{1}+\mathrm{x}_{2} \leq 2\)
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\)
(Ans.: \(\mathrm{x}_{1}=\frac{3}{2}, \mathrm{x}_{2}=\frac{1}{2}, \lambda_{1}=0, \lambda_{2}=1\), Max. \(\mathrm{z}=\frac{1}{2}\) )

\subsection*{8.5 BEALE'S METHOD}

Another approach to solve a quadratic programming problem has been suggested by Beale. In this method the variables are partitioned into basic and non - basic variables and the results of classical calculus are used. At each iteration the objective function is expressed in terms of non - basic variables only.

A general quadratic programming problem with linear constraints can be writter as,
\(\operatorname{Max} f(x)=C \bar{x}+\frac{1}{2} \bar{x}^{T} Q \bar{x}\)
Subject to the constraints
\(A \bar{x}=b \quad \bar{x} \geq 0\).
Where \(\bar{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n+m}\right)^{\top} C\) is \(1 \times n\) and \(A\) is \(m \times(n+m), Q\) is symmetric matrix.

\subsection*{8.5.1 Steps of Beale's iterative procedure}

\section*{Step : 1}

Express the given quadratic programming problem with linear constraints by introducing slack and / or surplus variables.

\section*{Step : 2}

Select \(m\) variables as basic and the remaining \(n\) variables as non - basic. With this choice the linear constraints can be represented in the partition matrices.
\(A \times=b\)
\([B, R]\left[\begin{array}{l}X_{B} \\ X_{N B}\end{array}\right]=b \quad\) or \(\quad B X_{B}+R X_{N B}=b\)
Where \(X_{B}\) and \(X_{N B}\) denote basic and non - basic variables respectively and matrix \(A\) is partitioned into the submatrices \(B\) and \(R\) corresponding to \(x_{B}\) and \(x_{N B}\) respectively.

Since \(B x_{B}+R x_{N B}=b, x_{B}=B^{-1}\left(b-R x_{N B}\right)\)

\section*{Step : 3}

Express the basic variables \(x_{B}\) in terms of non-basic variables.

\section*{Step : 4}

Express the objective function in terms of non - basic variables.
Thus by increasing the value of any of the non - basic variables \(X_{N B}\), the value of the objective function can be improved.

Note that the constraints on the new problem become
\(\mathrm{B}^{-1} \mathrm{Rx}_{\mathrm{NB}} \leq \mathrm{B}^{-1} \mathrm{~b} \quad\left(\right.\) as \(\left.\mathrm{x}_{\mathrm{B}} \geq 0\right)\)
Thus any component of \(x_{N B}\) can be increased only until \(\frac{\partial f}{\partial x_{N B}}=0\) or, none or more components of \(X_{B}\) are reduced to zero.
If we have more than \(m\) non-zero variables at any step of iteration, define a new variables \(S_{i}\), Where \(S_{i}=\frac{\partial f}{\partial x_{N B}}\) and a new constraint \(S_{i}=0\).

\section*{Step : 5}

Now we have \(m+1\) non - zero variables and \(m+1\). Constraints, solution gives a basic solution to the extended set of constraints.

Step : 6
Repeat the above procedure until no further improvement in the objective function may be obtained by increasing one of the non - basic variables.
This technique will give an optimal solution in finite number of steps.

\subsection*{8.6 ILLUSTRATIVE EXAMPLES ON BEALE'S METHOD}

\section*{Example 8.6.1}

Use Beale's method for solving the quadratic programming problem.
Max. \(\mathrm{z}_{\mathrm{x}}=4 \mathrm{x}_{1}+6 \mathrm{x}_{2}-2 \mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{2}^{2}\)
Subjec to
\[
x_{1}+2 x_{2} \leq 2 \text { and } x_{1}, x_{2} \geq 0 .
\]

\section*{Solution:}

Step : 1

Introducing slack variable \(\mathrm{x}_{3}\), the given problem becomes
Max. \(\mathrm{z}_{\mathrm{x}}=4 \mathrm{x}_{1}+6 \mathrm{x}_{2}-2 \mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{x}_{2}-2 \mathrm{x}_{2}^{2}\)
Subject to,
\(x_{1}+2 x_{2}+x_{3}=2, x_{1}, x_{2}, x_{3} \geq 0\)
Selecting \(x_{1}\) arbitrarily to be the basic variable we get,
\(x_{1}=2-2 x_{2}-x_{3}\) where \(x_{B}=\left(x_{1}\right), x_{N B}=\binom{x_{2}}{x_{3}}\)

\section*{Step: 2}

Expressing \(Z_{x}\) in terms of \(X_{N B}\), we find
\[
\begin{aligned}
& f\left(x_{2}, x_{3}\right)=4\left(2-2 x_{2}-x_{3}\right)+6 x_{2}-2\left(2-2 x_{2}-x_{3}\right)^{2}-2\left(2-2 x_{2}-x_{3}\right) x_{2}-2 x_{2}^{2} \\
& \frac{\partial f\left(x_{\text {NB }}\right)}{\partial x_{2}}=-8+6-4\left(2-2 x_{2}-x_{3}\right)(-2)-2\left(2-4 x_{2}-x_{3}\right)-4 x_{2}
\end{aligned}
\]

Now evaluating this partial derivative at \(x_{N B}=0\) i.e. \(x_{2}=0, x_{3}=0\) we get,
\[
\frac{\partial f\left(x_{\mathrm{NB}}\right)}{\partial \mathrm{x}_{2}}=-8+6+16-14=10>0
\]

This indicates that the objective function will increase if \(x_{2}\) is increased. Now, we should observe whether the partial derivative with respect to \(x_{3}\) gives a more promising alternative.
\[
\frac{\partial f\left(x_{\mathrm{NB}}\right)}{\partial \mathrm{x}_{3}}=-4+4\left(2-2 \mathrm{x}_{2}-\mathrm{x}_{3}\right)+2 \mathrm{x}_{2}
\]

At the point \(x_{N B}=0\) we get \(\frac{\partial f\left(x_{N B}\right)}{\partial x_{3}}=4>0\).
Since \(\frac{\partial f}{\partial x_{2}}\left(x_{N B}=0\right)>\frac{\partial f}{\partial x_{3}}\left(x_{N B}=0\right)\), increase in \(x_{2}\) will give better improvement in the objective function.
Step: 3
How much \(x_{2}\) may increase?
The maximum value of \(\mathrm{x}_{2}\) allowed to attain is determined by checking two quantities.
i) The value of \(\mathrm{x}_{2}\) at which \(\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{2}}\left(\mathrm{x}_{\mathrm{NB}}\right)=0\)
ii) The largest value \(x_{2}\) can attain without deriving the basic variables negative. Then \(x_{2}\) will be the minimum value of these two.
\[
\begin{aligned}
\left.\frac{\partial f\left(x_{N B}\right)}{\partial x_{2}}\right|_{x_{3}=0} & =-8+6+8\left(2-2 x_{2}\right)-2\left(2-4 x_{2}\right)-4 x_{2} \\
& =10-12 x_{2}=0 \text { i. e. } x_{2}=\frac{5}{6}
\end{aligned}
\]
and \(x_{1}=2-2 x_{2}-x_{3}\)
\(\therefore \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0\), Max. value \(\mathrm{x}_{2}\) can attain is \(\mathrm{x}_{2}=1\) at \(x_{3}=0\).
\[
x_{2}=\operatorname{Min}\left\{\frac{5}{6}, 1\right\}=\frac{5}{6}
\]

Thus we find \(x_{2}=\frac{5}{6}\) and the new basic variable is \(x_{2}\). We now initiate a new interation by solving for \(x_{2}\) in terms of \(x_{1}\) and \(x_{3}\).

\section*{Second Iteration}

\section*{Step : 1}

Selecting \(\mathrm{x}_{2}\) as a basic variable we get,
\(x_{2}=1-\frac{1}{2}\left(x_{1}+x_{3}\right)\)
Here \(x_{B}=\left(x_{2}\right)\) and \(x_{N B}=\binom{x_{1}}{x_{3}}\)
Step : 2
Expressing \(z_{x}\) in terms of \(x_{N B}\) we find
\[
\begin{aligned}
f\left(x_{1}, x_{3}\right) & =4 x_{1}+6\left(1-\frac{1}{2}\left(x_{1}+x_{3}\right)\right)-2 x_{1}^{2}-2 x_{1}\left(1-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)-2\left(1-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)^{2} \\
\frac{\partial f}{\partial x_{1}} & =4-3-4 x_{1}-2\left(1-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)-2 x_{1}\left(-\frac{1}{2}\right)-4\left(1-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)\left(-\frac{1}{2}\right) \\
& =1-3 x_{1}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{\partial f}{\partial x_{3}}=6\left(-\frac{1}{2}\right)-2 x_{1}\left(-\frac{1}{2}\right)-4\left(1-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)\left(-\frac{1}{2}\right)=-1-x_{3} \\
& \left.\frac{\partial f}{\partial x_{1}}\right|_{x_{1}=x_{3}=0}=1>0 \text { and }\left.\frac{\partial f}{\partial x_{3}}\right|_{x_{1}=x_{3=0}}=-1<0
\end{aligned}
\]

This indicates that \(x_{1}\) can be introduced to increase \(z_{x}\).

\section*{Step : 3}

How much \(x_{1}\) may increase 1
\[
\left.\frac{\partial f}{\partial x_{1}}\right|_{x_{3}=0}=1-3 x_{1}=0 \Rightarrow x_{1}=\frac{1}{3}
\]
\(x_{2}=1-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\), At the most \(x_{1}=2\) with \(x_{3}=0 . \quad x_{1}=\operatorname{Min}\left(\frac{1}{3}, 1\right)=\frac{1}{3} . \quad\) The new basic variable is \(x_{1}\).

Since \(\left.\frac{\partial f}{\partial x_{3}}\right|_{x_{1}=x_{3}=0}=-1<0, x_{3}\) cannot become basic variable and therefore the optimal solution is attained at \(x_{1}=\frac{1}{3}\) and \(x_{2}=\frac{5}{6}, x_{3}=0\).

Max. \(z_{x}=4\left(\frac{1}{3}\right)+6\left(\frac{5}{6}\right)-2\left(\frac{1}{3}\right)^{2}-2\left(\frac{1}{3}\right)\left(\frac{5}{6}\right)-2\left(\frac{5}{6}\right)^{2}\)
\[
=\frac{25}{6}
\]

Observe that \(x_{1}+2 x_{2}=\left(\frac{1}{3}\right)+2\left(\frac{5}{6}\right)=2, x_{1}>0, x_{2}>0\)
Thus all the constraints are satisfied.

\section*{Example 8.6.2}

Solve the following quadratic problem by Beale's method.
\(\operatorname{Max} Z_{x}=10 x_{1}+25 x_{2}-10 x_{1}^{2}-x_{2}^{2}-4 x_{1} x_{2}\)
Subject to,
\[
x_{1}+2 x_{2}+x_{3}=10
\]
\[
\begin{aligned}
& \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{4}=9 \\
\text { and } & \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0
\end{aligned}
\]

\section*{Solution :}

\section*{Step : 1}

Select \(\mathrm{x}_{1}, \mathrm{x}_{2}\) as basic variables. (Since there are two constraints we choose 2 variables as basic variables).
\(x_{1}+2 x_{2}=10-x_{3}\)
\(x_{1}+x_{2}=9-x_{4}\)
Solving above two equations simultaneously for \(x_{1}\) and \(x_{2}\) we get \(\mathrm{x}_{1}=8+\mathrm{x}_{3}-2 \mathrm{x}_{4}\) and \(\mathrm{x}_{2}=1-\mathrm{x}_{3}+\mathrm{x}_{4}\)

Here \(\mathrm{x}_{\mathrm{B}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \quad \mathrm{x}_{\mathrm{NB}}=\left(\mathrm{x}_{3}, \mathrm{x}_{4}\right)\)
Step : 2
Expressing \(Z_{x}\) is terms of \(x_{3}\) and \(x_{4}\) we get,
\[
\begin{aligned}
& \begin{aligned}
f\left(x_{3}, x_{4}\right)=10\left(8+x_{3}-\right. & \left.2 x_{4}\right)+25\left(1-x_{3}+x_{4}\right)-10\left(8+x_{3}-2 x_{4}\right)^{2}-\left(1-x_{3}+x_{4}\right)^{2} \\
& -4\left(8+x_{3}-2 x_{4}\right)\left(1-x_{3}+x_{4}\right)
\end{aligned} \\
& \begin{aligned}
\frac{\partial f}{\partial x_{3}}\left(x_{N B}\right)=10-25-20(8 & \left.+x_{3}-2 x_{4}\right)-2\left(1-x_{3}+x_{4}\right)(-1)-4\left(1-x_{3}+x_{4}\right) \\
& +4\left(8+x_{3}-2 x_{4}\right)
\end{aligned} \\
& \begin{aligned}
\left.\frac{\partial f\left(x_{\text {NB }}\right)}{\partial x_{3}}\right|_{x_{3}=x_{4}=0}=-145<0
\end{aligned}
\end{aligned}
\]

Therefore objective function we decrease if we increase \(x_{3}\).
\[
\begin{gathered}
\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{4}}\left(\mathrm{x}_{\mathrm{NB}}\right)=-20+25-20\left(8+\mathrm{x}_{3}-2 \mathrm{x}_{4}\right)(-2)-2\left(1-\mathrm{x}_{3}+\mathrm{x}_{4}\right) \\
-4\left(8+\mathrm{x}_{3}-2 \mathrm{x}_{4}\right)+8\left(1-\mathrm{x}_{3}+\mathrm{x}_{4}\right)
\end{gathered}
\]
\(\left.\frac{\partial f\left(x_{\text {NB }}\right)}{\partial x_{4}}\right|_{x_{3}=x_{4}=0}=299>0\)
Therefore increase in \(x_{4}\) will improve the objective function. So we proceed to decide how much \(\mathrm{x}_{4}\) can increase.

\section*{Step : 3}
\[
\mathrm{x}_{1}=8+\mathrm{x}_{3}-2 \mathrm{x}_{4} \quad \because \mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{4} \geq 0
\]
maximum value \(x_{4}\) can attain is \(x_{4}=4\) at \(x_{3}=0\).
\[
\begin{aligned}
\left.\frac{\partial f\left(x_{\text {NB }}\right)}{\partial x_{4}}\right|_{x_{3}=} & =-20+25+40\left(8-2 x_{4}\right)-2\left(1+x_{4}\right)-4\left(8-2 x_{4}\right)+8\left(1+x_{4}\right) \\
& =299-66 x_{4}=0 \Rightarrow x_{4}=\frac{299}{66} \\
x_{4} & =\operatorname{Min}\left\{4, \frac{299}{66}\right\}=4
\end{aligned}
\]

Since at \(x_{3}=0, x_{4}=4, x_{1}=0, x_{1}\) cannot be basic variable.
\(\therefore\) The new basic variables are \(\mathrm{x}_{4}\) and \(\mathrm{x}_{2}\).

\section*{Second Iteration}

\section*{Step : 1}

Solve the constraints for \(\mathrm{x}_{2}\) and \(\mathrm{x}_{4}\).
\(x_{2}=5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\) and \(x_{4}=9-x_{1}-\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)\)
\[
=4-\frac{1}{2} x_{1}+\frac{1}{2} x_{3}
\]

Thus \(\mathrm{x}_{\mathrm{B}}=\left(\mathrm{x}_{2}, \mathrm{x}_{4}\right) \quad \mathrm{x}_{\mathrm{NB}}=\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)\)
Step : 2
Express \(Z_{x}\) in terms of non- basic variables.
\(f\left(x_{1}, x_{3}\right)=10 x_{1}+25\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)-10 x_{1}^{2}-\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)^{2}\)
\[
\begin{aligned}
& \quad-4 x_{1}\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right) \\
& \frac{\partial f}{\partial x_{1}}=10+25\left(-\frac{1}{2}\right)-20 x_{1}+\frac{1}{2} \cdot 2\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)-4\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)+2 x_{1} \\
& \left.\frac{\partial f}{\partial x_{1}}\right|_{x_{1}=x_{3}=0}=-\frac{35}{2}<0 \\
& \frac{\partial f}{\partial x_{3}}=25\left(-\frac{1}{2}\right)-2\left(5-\frac{1}{2} x_{1}-\frac{1}{2} x_{3}\right)\left(-\frac{1}{2}\right)-4 x_{1}\left(-\frac{1}{2}\right) \\
& \left.\frac{\partial f}{\partial x_{3}}\right|_{x_{1}=x_{3}=0}=-\frac{15}{2}<0
\end{aligned}
\]

Since both the partial derivaties are negative, neither \(x_{1}\) nor \(x_{3}\) non - basic variables can be introduced to increase \(Z_{x}\) and thus the optimal solution has been obtained. The solution is given by \(x_{1}=x_{3}=0, x_{2}=5\) and \(x_{4}=4\) and optimal value of \(Z\) is.
\[
Z_{\max }=10(0)+25(5)-10(0)^{2}-(5)^{2}-4(0)(S)=100
\]

\section*{Example 8.6.3}

Use Beal's method to solve quadratic programming problem.
Maximize \(Z=2 x_{1}+3 x_{2}-2 x_{2}^{2}\)
Subject to the constraints
\[
\begin{aligned}
& x_{1}+4 x_{2} \leq 4 \\
& x_{1}+x_{2} \leq 2
\end{aligned}
\]
and \(x_{1}, x_{2} \geq 0\)

\section*{Solution :}

\section*{Step : 1}

Introduce slack variables in the constraints to get equations.
\[
\begin{aligned}
& x_{1}+4 x_{2}+x_{3}=4 \\
& x_{1}+x_{2}+x_{4}=2
\end{aligned}
\]
and
\[
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\]

Solve the constraints for \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\).
\[
\begin{aligned}
& x_{1}+4 x_{2}=4-x_{3} \\
& x_{1}+x_{2}=2-x_{4}
\end{aligned}
\]

Solving above equations simultaneously we get,
\[
x_{1}=\frac{1}{3}\left(4+x_{3}-4 x_{4}\right) \text { and } x_{2}=\frac{1}{3}\left(2-x_{3}+x_{4}\right)
\]

Initially \(\mathrm{x}_{1}=\frac{4}{3}\) and \(\mathrm{x}_{2}=\frac{2}{3}\)
Thus \(x_{B}=\left(x_{1}, x_{2}\right)\) and \(x_{N B}=\left(x_{3}, x_{4}\right)\).

\section*{Step : 2}

Express Z in terms of non - basic variables.
\(Z=f\left(x_{3}, x_{4}\right)=\frac{2}{3}\left(4+x_{3}-4 x_{4}\right)+\left(2-x_{3}+x_{4}\right)-\frac{2}{9}\left(2-x_{3}+x_{4}\right)^{2}\)
\(\frac{\partial f}{\partial x_{3}}=\frac{2}{3}-1-\frac{4}{9}\left(2-x_{3}+x_{4}\right)(-1) ;\left.\quad \frac{\partial f}{\partial x_{3}}\right|_{x_{3}, x_{4}=0}=\frac{2}{3}-1+\frac{8}{9}=\frac{5}{9}>0\)
\(\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{4}}=-\frac{8}{3}+1-\frac{4}{9}\left(2-\mathrm{x}_{3}+\mathrm{x}_{4}\right) ;\left.\quad \frac{\partial \mathrm{f}}{\partial \mathrm{x}_{4}}\right|_{\mathrm{x}_{3}=\mathrm{x}_{4}=0}=-\frac{8}{3}+1-\frac{8}{9}=-\frac{23}{9}<0\)
Since \(\frac{\partial f}{\partial x_{3}}>0\), increase in \(x_{3}\) will increase the objective function whereas, since \(\frac{\partial f}{\partial \mathrm{x}_{4}}<0\), increase in \(\mathrm{x}_{4}\) will decrease the objective function. Therefore we increase the value of \(x_{3}\) since we want to maximize \(Z\).

\section*{Step : 3}

How much \(x_{3}\) may increase?
Since \(x_{2}=\frac{1}{3}\left(2-x_{3}+x_{4}\right)\) at the most \(x_{3}=2\) with \(x_{2}=0\) and
\[
\frac{\partial f}{\partial x_{3}}=\frac{5}{9}-\frac{4}{9} x_{3}=0 \Rightarrow x_{3}=\frac{5}{4}
\]
\[
x_{3}=\min \left\{2, \frac{5}{4}\right\}=\frac{5}{4}
\]

Thus we get three non-zero variables.
\[
x_{3}=\frac{5}{4} \text { therefore } x_{1}=\frac{7}{4} \text { and } x_{2}=\frac{1}{4}
\]

Thus we have three non-zero variables with 2 constraints.
Therefore introduce new variable
\[
x_{5}=\left.\frac{\partial f}{\partial x_{3}}\right|_{x_{4}=0}
\]

Step: 4
Since at \(x_{3}=\frac{5}{4},\left.\frac{\partial f}{\partial x_{3}}\right|_{x_{4}=0}=0\) we introduce a new variable
\[
x_{5}=\left.\frac{\partial f}{\partial x_{3}}\right|_{x_{4}=0}=\frac{5}{9}-\frac{4}{9} x_{3}
\]
i. e. We introduce a new constraint
\(\frac{4}{9} x_{3}+x_{5}=\frac{5}{9}\)
Thus we have the following system of constraints.
\(x_{1}+4 x_{2}+x_{3}=4\)
\(x_{1}+x_{2}+x_{4}=2\)
\(\frac{4}{9} x_{3}+x_{5}=\frac{5}{9}\)
Now represent \(x_{1}, x_{2}, x_{3}\) in terms of non-basic variables \(x_{4}\) and \(x_{5}\). By solving above linear equations simultaneously for \(x_{1}, x_{2}, x_{3}\) we get,
\(x_{1}=\frac{7}{4}-\frac{3}{4} x_{5}-\frac{4}{3} x_{4}\)
\(x_{2}=\frac{1}{4}+\frac{3}{4} x_{5}+\frac{1}{3} x_{4}\)
\(x_{3}=\frac{5}{4}-\frac{9}{4} x_{5}\)
\(x_{B}=\left(x_{1}, x_{2}, x_{3}\right) \quad\) and \(\quad x_{N B}=\left(x_{4}, x_{5}\right)\)

\section*{Step: 5}

Express \(Z\) in terms of non - basic variables \(x_{4}\) and \(x_{5}\).
\[
\begin{aligned}
& Z=f\left(x_{4}, x_{5}\right)=2\left(\frac{7}{4}-\frac{3}{4} x_{5}-\frac{4}{3} x_{4}\right)+3\left(\frac{1}{4}+\frac{3}{4} x_{5}+\frac{1}{3} x_{4}\right)-2\left(\frac{1}{4}+\frac{3}{4} x_{5}+\frac{1}{3} x_{4}\right)^{2} \\
& \left.\frac{\partial f}{\partial x_{4}}\right|_{x_{4}=x_{5}=0}=-\frac{8}{3}+1-4\left(\frac{1}{4}\right)\left(\frac{1}{3}\right)=-2<0 \\
& \left.\frac{\partial f}{\partial x_{5}}\right|_{x_{4}=x_{5}=0}=-\frac{3}{2}+\frac{9}{4}-4\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=0
\end{aligned}
\]

Since \(\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{4}}<0\) and \(\frac{\partial \mathrm{f}}{\partial \mathrm{x}_{5}}=0\), no further improvement is possible and we get optimal solution at \(x_{1}=\frac{7}{4}, x_{2}=\frac{1}{4}, x_{3}=\frac{5}{4}, x_{4}=x_{5}=0\).
and \(\quad Z=2 x_{1}+3 x_{2}-2 x_{2}^{2}\)
\[
\begin{aligned}
& =2 \cdot \frac{7}{4}+3 \cdot \frac{1}{4}-2\left(\frac{1}{4}\right)^{2} \\
& =\frac{14}{4}+\frac{3}{4}-\frac{1}{8}=\frac{33}{8}
\end{aligned}
\]
\[
\sim \sim \sim \sim \sim \text { EXERCISE ~~~~~ }
\]

Solve the following problems by Beale's method.
1) \(\operatorname{Max} . Z=2 x_{1}+3 x_{2}-x_{1}^{2}\)

Subject to,
\[
\begin{aligned}
& x_{1}+2 x_{2} \leq 4, x_{1}, x_{2} \geq 0 \\
& \left(\text { Ans.: } x_{1}=\frac{1}{4}, x_{2}=\frac{15}{8}, z=\frac{97}{16}\right)
\end{aligned}
\]
2) Max. \(Z=2 x_{1}+2 x_{2}-2 x_{2}^{2}\)

Subject to,
\[
\begin{aligned}
& x_{1}+4 x_{2} \leq 2, \quad x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0 \\
& \left(\text { Ans. }: x_{1}=0, x_{2}=1, z=3\right)
\end{aligned}
\]
3) Max. \(Z=6 x_{1}+3 x_{2}-x_{1}^{2}+4 x_{1} x_{2}-4 x_{2}^{2}\)

Subject to the constraints
\(x_{1}+x_{2} \leq 3, \quad 4 x_{1}+x_{2} \leq 9\)
\(\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0\)
(Ans.: \(x_{1}=2, x_{2}=1, z=15\) )
4) \(\quad\) Min \(Z=183-44 x_{1}-42 x_{2}+8 x_{1}^{2}-12 x_{1} x_{2}+17 x_{2}^{2}\)

Subject to,
\(2 x_{1}+x_{2} \leq 10, x_{1}, x_{2} \geq 0\)
(Ans.: \(x_{1}=3.8, x_{2}=2.4, z=19\) )
5) \(\quad \operatorname{Max} Z=\frac{1}{4}\left(2 x_{3}-x_{1}\right)-\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+\frac{2}{3}\right)\)

Subject to,
\(x_{1}-x_{2}+x_{3}=1\) and \(x_{1}, x_{2}, x_{3} \geq 0\)
\(\left(\right.\) Ans.: \(\left.x_{1}=\frac{1}{8}, x_{2}=0, x_{3}=\frac{7}{8}, z=\frac{1}{64}\right)\)
6) Max. \(Z=-4 x_{1}^{2}-3 x_{2}^{2}\)

Subject to,
\(x_{1}+3 x_{2} \geq 5, x_{1}-4 x_{2} \geq 4, \quad x_{1}, x_{2} \geq 0\)

\section*{REFERENCES}
1. R. L. Ackoff and M. W. Sasieni, Fundamentals of operations Research, Wiley, New York, 1968.
2. J.S. Chandan, M.P. Kawatra and Kittokim, Essentials of Linear Programming, Vikas, New Delhi, 1996.
3. A. Chames and W.W. Copper, Management Models and Industrial Applications of Linear Programming, I and II, Wiley, New York, 1960.
4. C.W. Churchnan, R.L. Ackoff and E.L. Arn 0 ff, Introduction to Operations Research, Wiley, New York, 1957.
5. S. Dano, Linear Programming in Industry, Springer-Verlag, Berlin, 1973.
6. G.B. Danzig, Linear Programming and Extensions, Princeton University Press, Princeton, 1963.
7. G.B. Dantzig, Application of the Simplex Method of a Transportation, Problems, Cowles commission Monograph 13, Wiley New York, 1951.
8. L.R. Foulds, Optimization Techniques, Springer-Verlag Berlin, 1981.
9. S.1. Gass, Linear Programming, Methods and Application, McGraw-Hili, New York, 1958.
10. B.S. Goel and S.K. Mittal, Operations Research, Pragati Prakashan, Meerut, 1994.
11. R.K. Gupta, Operations Research, Krishna Prakashan Media (P) Ltd., Meerut, 2004.
12. G.Hadely, Linear Programming, Addision Wesley, Reading, Masschusetts, 1962.
13. G.Hadley, Non-Linear and Dynamic Programming, Addision-Wesley, Reading, Masschusetts, 1964.
14. F.S. Hiller and G.J. Liberman, Introduction to Operations Research, Holden-Day, San Franscisco, 1974.
15. F.L Hitchcock, Distribution of a Product from several sources to numerals locations, Journal of Mathematical Physics, 20, 1941.
16. Jagjit Singh, Operations Research, Penguins, Middlesex, 1971.
17. N.S.Kambo, Mathematical Programming Techniques, Affiliated East-West Press, New Delhi, 1991.
18. Kanti Swarup, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand, New Delhi, 1991.
19. LiV, Kantorovich, On the translocations of masses, Doklady Akad, Nauk SSr, 37, (1942), Translated in Management Science, 5, No.1, 1958.
20. TC. Koopmans, Optimum Utilization of the Transportation systems, Econometrica, 17, 1949.
21. TC. Koopmans, Activity Analysis of Production and Allocation, Cowles commission Monograph 13, Wiley, New York, 1951.
22. K. V. Mittal, Optimization Methods in Operations Research and System Analysis, Wiley Eastern, New Delhi, 1983.
23. N.G. Nair, Operations Research, Dhanpat Rai and sons, 1994.
24. S. Philipose, Operations Research, A Practical Approach, Tata MacGraw - Hill, New Delhi, 1986.
25. S.S.Rao, Optimization, Theory and Application, Wiley Eastern, New Delhi, 1977.
26. S.D. Sharma, Operations Research, Kedarnath Ramnath, Meerut, 1994.
27. TL. Saaty, Mathematical Methods of Operation Research, McGraw - Hill, New York, 1959.
28. H.A. Taha, Operations Research, An Introdution, McMillan, New York, 1976
29. S. Vajda, The The01Y of Games and Linear Programming, John Wiley, New York, 1956.
30. H.M. Wagner, Principles of Operations Research, Prentice-Hall of India, New Delhi, 1994.
31. Joseph G.Ecker and Michael Kupferschmid, Introduction to Operations Research, John Wiley, New York, 1988.~~~~~

