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A B S T R A C T   

Every year, the Western Ghats region experiences devastating landslides, resulting in significant loss of life and 
damage to both private and public assets. To mitigate these losses, it is essential to identify the areas most 
susceptible to landslides. This research aims to create an accurate landslide susceptibility map for a section of the 
Western Ghats region by employing a comprehensive approach that combines remote sensing and geographical 
information systems (GIS). The Landslide Numerical Risk Factor (LNRF) method is utilized to determine land
slide susceptibility zones. The LNRF model incorporates a landslide inventory based on geographic object-based 
image analysis and influencing factors. The resulting LNRF model generates a landslide susceptibility map, 
classifying over 35% of the study region’s land area as having a high probability of landslides. The model’s 
accuracy is assessed using the receiver operating characteristic (ROC) method, which yields an area under the 
curve (AUC) value of 0.77. This indicates that the LNRF model exhibits good predictive performance, resulting in 
a reliable landslide susceptibility map.   

1. Introduction 

Landslides are sudden and highly detrimental natural hazards that 
pose significant threats to human life, infrastructure, economic devel
opment, and property. They are considered one of the most frequent and 
severe natural disasters, causing widespread damage and endangering 
individuals and communities (Guzzetti et al., 1999; Hadji et al., 2017; 
Patil et al., 2020). According to the World Health Organization (WHO), 
landslides account for approximately 12% of all natural disasters, 
resulting in over 11,500 fatalities and $4.5 billion worth of economic 
losses annually (Froude and Petley, 2018; WHO, 2022). India, with its 
unique geographic and geological conditions such as unstable soil and 
rock formations, intense rainfall, and seismic activities, is particularly 
prone to landslides (Raj and Chandrasekar, 2016; Bhandari et al., 2020). 
The Western Ghats region, situated along India’s west coast, is one of the 
most landslide-vulnerable areas in the country, experiencing a high 
incidence of landslides each year (Raj and Chandrasekar, 2016; Bhan
dari et al., 2020). 

The undulating and mountainous terrain of the Himalayas and 
Western Ghats in India are well-known features of the country’s land
scape. Numerous studies on landslide mapping have identified these 

areas as highly susceptible to landslides and designated them as high- 
risk zones for such natural disasters (Ramachandra et al., 2010; Srivas
tava et al., 2010; Patil and Panhalkar, 2019; Patil et al., 2020; Patil et al., 
2022). Additionally, climate change has emerged as a significant factor 
affecting landslide occurrences worldwide (Iverson, 2018). Climate 
change-induced factors, such as intense rainfall, increased temperature, 
and sea-level rise, have a substantial impact on landslide susceptibility 
and frequency (Sidle et al., 2018). Therefore, it is essential to consider 
the effects of climate change while developing Landslide Susceptibility 
Mapping (LSM) models to ensure accurate and reliable predictions. 

Landslide susceptibility refers to the probability of landslides 
occurring in different geographic locations (van Westen et al., 2006; 
Guzzetti et al., 2006). By utilizing various landslide prediction models, it 
may be possible to mitigate damages caused by landslides to some extent 
(Pradhan and Lee, 2010). In the past two decades, significant de
velopments in processing power, remote sensing (RS), and geographic 
information systems (GIS) have made it easier to prepare landslide 
susceptibility maps (Achour and Pourghasemi, 2020). These advances 
have revolutionized the field of landslide studies (Lee, 2019; Shano 
et al., 2020; Patil et al., 2020; Pradhan et al., 2020, 2021; Coco et al., 
2021; Hodasova and Bednarik, 2021). 
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The urgency for accurate landslide susceptibility mapping in the 
Western Ghats region was emphasized by the devastating landslides in 
Taliye village in 2021, resulting in the loss of over 84 lives (Vallabh, 
2021; Inamdar, 2021). Such mapping is crucial for minimizing infra
structure damage and loss of human life. Therefore, several researchers 
have employed landslide susceptibility mapping as a vital first step in 
the strategy, evaluation, and mitigation of landslides. Numerous studies, 
including Dai et al. (2001), Lee (2005), Pradhan et al. (2010), Con
stantin et al. (2011), and Patil et al. (2022), have utilized this method to 
produce landslide vulnerability maps. However, the landslide vulnera
bility maps created in India thus far have primarily focused on key 
transportation routes and specific locations in highly susceptible states. 
Hence, it is essential to develop and map landslide susceptibility at 
different spatial scales to effectively manage landslide risks (Persichillo 
et al., 2016). Such mapping can aid in risk mitigation strategic planning, 
the implementation of monitoring and early warning systems, and the 
formulation of sustainable and efficient land-use plans for authorities 
and planners (Roccati et al., 2021). 

In recent years, various RS and GIS-based models have been 
employed to estimate landslide vulnerability. Among these models, both 

qualitative and quantitative approaches have been widely used (Dev
kota et al., 2013; Wang et al., 2016). One such quantitative method is the 
Landslide Numerical Risk Factor (LNRF) model, which offers a conve
nient and highly accurate way to map susceptibility classes for land
slides across different influencing factors. The LNRF method has been 
extensively utilized by researchers globally to investigate the relation
ship between previous landslide events and various subclasses of 
potentially influential factors. According to Ali Mohammadi et al. 
(2014), the LNRF model is particularly suitable for analyzing landslide 
susceptibility in mountainous regions. Thus, the objective of this study is 
to employ the LNRF model to produce a landslide susceptibility map in 
the Western Ghats, a mountainous terrain located in India. 

2. Study region 

The study region is located in the southernmost portion of Mahara
shtra, encompassing the basins of the Bhogawati (Phonda Ghat) river 
and Ghataprabha river (Amboli Ghat). It includes two districts, namely 
Kolhapur (Radhanagari, Bhudargad, Ajara, and Chandgad Tehsils) and 
Sindhudurg (Kankauli, Kudal, and Savantvadi Tehsils). Geographically, 

Fig. 1. Geographical Location of Study region.  
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the study region spans from 15◦ 53′ to 16◦ 25′ North latitude and 73◦ 45′ 
to 75◦ 05′ East longitude, covering an area of approximately 1083 km2, 
which represents 0.35% of the total area of Maharashtra state (Fig. 1). 
The study region experiences an average yearly precipitation of around 
4200 mm. It exhibits variations in elevation, with the western part 
characterized by lower elevations and the eastern part featuring higher 
elevations. 

3. Material and methods 

Landslide susceptibility zonation mapping in the study region in
volves the following steps: a) Identification of past landslide events; b) 
Mapping of the layers of factors that influence landslides; c) Use of the 
LNRF model to map the susceptibility of landslides; and d) Evaluation of 
the accuracy of the susceptibility mapping. The research flowchart 
implemented in the present study is depicted in Fig. 2. 

3.1. Landslide inventory map 

An inventory map of landslides provides valuable information on the 
spatial patterns of landslide incidents within a given area, enhancing our 
understanding of the correlation between the distribution of landslides 
and the influencing factors associated with them (Abdo, 2022; Hong 
et al., 2015). Mapping the historical and current locations of landslides 
is a crucial initial step in creating susceptibility maps for an area (Hungr 
et al., 2005). Recent evidence from satellite images, on-site observa
tions, and research (Ajin et al., 2022; Vasudevan et al., 2022; Sarun 
et al., 2021) indicates a significant increase in the number of landslide 
incidents in the Western Ghats region in recent years. 

For this research project, the mapping of landslides is conducted 
using the geographic object-based image analysis (GEOBIA) approach. 
GEOBIA enhances the accuracy of landslide inventory mapping and 

detection of changes from multi-temporal satellite images (Blaschke 
et al., 2014). By analyzing pre- and post-event very high-resolution 
satellite images, spectral and/or morphological variations can be 
observed, enabling the detection of new or rejuvenated landslides 
(Daniel et al., 2015; Patil et al., 2020). Martha et al. (2012) proposed a 
semi-automated OBIA method for creating historical landslide in
ventories based on brightness changes in pre- and post-event satellite 
images. The increase in brightness in landslide regions resulting from 
the exposure of fresh soil and rocks on the earth’s surface can be 
detected by comparing pre- and post-event satellite images using the 
GEOBIA-based automated technique. This approach is used to map the 
landslide inventory from 2014 to 2019. Influencing factors are prepared 
for landslide susceptibility modeling, and LNRF simulation is performed 
using a combination of the landslide inventory and influencing factors. 

The GEOBIA method is employed to extract landslides for inventory 
mapping. Using a semi-automated approach, 58 landslides are detected 
from 2014 to 2019, and the results are presented as a landslide inventory 
map of the southwestern Ghats of Maharashtra (Fig. 3). The estimated 
size of the landslide area is 291,350.78 m2 (29.13 ha) in the study re
gion. The inventory mapping reveals that the west escarpment of the 
study region, extending from the central ridgeline, exhibits a steep slope 
and a high concentration of landslides. The majority of landslides on the 
inventory map are located on the western steep slope of the Ghat, while 
the upper plateau of the region shows a lower concentration of land
slides. The steep slopes around Phondaghat, Kumbhavade, and Amboli 
exhibit a very high concentration of historical landslides. Based on their 
shape as recorded in the inventory, the majority of landslides in the 
study region are identified as debris flow and transitional landslides. 

Fig. 2. Flowchart of research methodology.  
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3.2. Landslide influencing factors 

3.2.1. Slope 
The occurrence of landslides is significantly influenced by the 

gradient of the slope, which is a critical factor in landslide analysis that 
determines the severity and extent of the landslide. The stability of the 
slope is greatly affected by its geometry, and as the height of the slope 
increases, its stability decreases, resulting in more frequent and severe 

landslides on steep slopes compared to gentle slopes. Additionally, the 
slope determines the size and movement of the landslide, as supported 
by studies conducted by Donnarumma et al. (2013) and Chen et al. 
(2016). The slope of the study region is divided into seven categories 
(Fig. 4a): Gentle slope, Moderate slope, Strong slope, Very Strong slope, 
Extreme slope, Steep slope, and Very steep slope representing areas 24, 
21, 29, 13, 9, 3, and 1 percent respectively. In the Extreme slope cate
gory, there are 39% of landslides, comprised of the largest number of 

Fig. 3. Landslide inventory.  
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Fig. 4. Influencing factors (a) Slope; (b) Elevation; (c) Geology; (d) Lineament distance; (e) Rainfall; (f) TWI; (g) Topographic Curvature; (h) Soil; (i) LU/LC; (j) 
Geomorphology; (k) SPI; and (l) Earthquake. 
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landslides (Fig. 5a). However, the geographical allocation of landslides 
reduced as the gradient of the slope increased further. The removal of 
material at the bottom of a slope may increase the slope instability that 
triggers the landslide. 

3.2.2. Elevation 
According to Ercanoglu and Gokceoglu (2004), landslides are more 

likely to occur at higher altitudes. The Western Ghats region has a 
diverse topography with varying relief, comprising two major regions - 
Konkan and Ghati area. The elevation in both areas differs significantly, 
with the west section of the study region exhibiting the greatest eleva
tion changes in the Konkan region, while the Ghati plateau region is 
relatively flat with the least elevation change. Deshpande (1971) notes 
that there are local variations in elevation variations that appeared in 
the west-east course of the Western Ghats. The study region shows the 
lowest height in the west part, with an elevation of only 5 m above the 
mean sea. The west part of the study region has the least height 
compared to the east part, which is characterized by higher elevations. 
The elevation is classified into eight classes in the study region viz. Less 

than 79 m (16%), 80–214 m (17%), 215–349 m (11%), 350–484 m (5%), 
485–619 m (22%), 620–754 m (19%), 755–889 m (8%) and 890 to 958 
(1%) (Fig. 4b). The maximum elevation is 958 m, which is detected 
along the ridge line of the Western Ghats in the study region. The highest 
concentration of landslides tends to be in the elevation range of 
215–349 m (33% landslides) (Fig. 5b). 

3.2.3. Geology 
The stability of a slope and the type of weathering and erosion in a 

region are influenced by the composition of rocks (Citrabhuwana and 
Bahagiarti, 2016). The geology of a region determines the frequency and 
extent of landslides, with complex areas like the Himalayas and Deccan 
plateau posing threats such as earthquakes and landslides (Hubbard and 
Shaw, 2009). The Western Ghats indicates its uplift history, with a 
rugged and weak edge that has degraded from the Deccan Plateau. 
Therefore, it is crucial to consider the geology of the study region when 
assessing landslide susceptibility. The Geological Survey of India’s map 
source is used to map the geology of the study region, as presented in 
Fig. 4c. The geographical allocation of geological formations in the 

Fig. 5. (a) Slope vs. Landslide Inventory; (b) Elevation vs. Landslide Inventory; (c) Geology vs. Landslide Inventory; (d) Lineament distance vs. Landslide Inventory; 
(e) Rainfall vs. Landslide Inventory; and (f) TWI vs. Landslide Inventory. 
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study region is depicted on this map. The landslide inventory layer is 
then overlaid on the geological surface to illustrate the different types of 
rocks found in the study region. The maximum area is enclosed by rock 
formations of Essentially Aa Simple flow (26%), followed by Mainly 
simple/Aa flows (25%), Unclassified Basalt flow (18%), Quartz Chlorite 
amphibole schist/ferruginous phyllite (13%), Megacryst Flow (5%), 
Meta Basalt/hornblende schist (35), Laterite (2%), Granite (2%), 
Quartzite/quartz Sericite schist (1%), Mainly Aa simple flow (1%), Shale 
(1%), Basic Intrusives/dykes (<1%) Pegmamite/aplite (<1%). Land
slides are seen to occur 60% of the incidence in the Mostly Aa simple 
flow rock category (Fig. 5c). 

3.2.4. Lineament 
Lineaments, which are linear features on the landscape that reveal 

underlying geological structures such as faults and joints, are important 
in understanding slope stability and landslide occurrences (Hobbs, 
1904; Nagarajan et al., 1998). The degree of fracturing and joining with 
the slope, as well as the proximity to active fault zones, are critical 
factors in determining slope stability (Rodrigo et al., 2017). Landslides 
are more likely to occur in areas with linear patterns or lineaments 
(Nagarajan et al., 1998), and the existence of active faults can enhance 

the potential for landslides due to the weakening of rocks near the fault 
through extreme shearing (Leir et al., 2004). 

The lineaments are identified and mapped in the study region by 
using remote sensed data (about the Bhuvan web portal of NRSC) and 
GIS techniques. The NRSC produced a lineament map at a scale of 
1:50,000, with most lineaments being identified along stream valleys 
(Fig. 4d). Proximity zones are determined for the investigation by using 
a buffer around the lineament, as per the studies by Saha et al. (2005) 
and Ramli et al. (2010). The lineament distance of the study region is 
divided into four categories: 500 m, 1000 m, 2000 m, and >2000 m, 
representing 44%, 31%, 20%, and 5% area, respectively. There are 58% 

Fig. 6. (a) Topographic Curvature vs. Landslide Inventory; (b) Soil vs. Landslide Inventory; (c) LU/LC vs. Landslide Inventory; (d) Geomorphology vs. Landslide 
Inventory; (e) SPI vs. Landslide Inventory; and (f) Earthquake vs. Landslide Inventory. 

Table 1 
The unit weight based on the LNRF method 
(Ali Mohammadi et al., 2014b; Gupta and 
Joshi, 1990).  

LNRF Weight 

<0.67 0 
0.67–1.33 1 
>1.33 2  
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landslides in the 500 m buffer zone, comprising the highest number of 
landslides (Fig. 5d). 

3.2.5. Rainfall 
Several studies (Chen and Lee, 2003; Edier et al., 2016; Ogbonnaya, 

2015) have identified rainfall as a significant trigger for slope instability 
and landslides. In mountainous areas, landslides are often associated 
with either short-term rainstorms of high intensity or prolonged periods 
of low to moderate rainfall (Guzzetti et al., 2008). 

The study region is characterized by extreme rainfall on the west 
mountain slope in the southwest monsoon season, whereas the east 
slope receive milder rainfall. This high variation in rainfall patterns 
throughout the Western Ghats results in a diverse range of vegetation 
categories. To obtain average annual rainfall data for the last 8 years, 71 
surrounding stations of the Department of Agriculture, Government of 
Maharashtra are used, and the data is freely available on the official 
website https://maharain.maharashtra.gov.in/. Point data from the 
rainfall stations is interpolated using Kriging-Exponential interpolation 
techniques, and the average annual rainfall is found to range from 3039 
mm to 6177 mm (Fig. 4e). The study region is classified into six cate
gories based on the average annual rainfall: <3500 mm (4%), 
3500–4000 mm (19%), 4000–4500 mm (43%), 4500–5000 mm (9%), 
5000–5500 mm (7%) and >5500 mm (17%). Most of the landslide in
cidences are found in the 4000–4500 mm (67% landslides) rainfall range 
(Fig. 5e). 

3.2.6. Topographic Wetness Index (TWI) 
In 1979, Beven and Kirkby 1979 created the Topographic Wetness 

Index (TWI) as part of the runoff model known as TOPMODEL. This 
index can identify locations that accumulate precipitation, even in areas 
with seasonally or permanently saturated surfaces. Consequently, it is a 
valuable tool for characterizing the geomorphology of landslides, 
including the spatial arrangement of elevated regions that remain rela
tively dry and low-lying areas that tend to be wet. Rozycka et al. (2017) 
found this index to be particularly useful for describing landslide 
features. 

In this research, TWI is generated from a digital elevation model 
(DEM) using the topographic wetness formula in ArcGIS 10.7.1. The 
resulting TWI is then classified into three categories: Low wetness 
(52%), Moderate wetness (15%), and High wetness (33%). The upper 
slope of the study region exhibited lower wetness, while the slope toe 
showed higher wetness due to the likelihood of water accumulation. The 
majority of landslides are found in areas classified as Low wetness (82% 
landslides), followed by Moderate wetness (13% landslides) and High 
wetness (5% landslides) as shown in Fig. 4f and Fig. 5f. 

3.2.7. Topographic curvature 
Topographic curvature is a crucial factor to consider in the analysis 

of landslide susceptibility. It provides information on the terrain con
dition of an area and its slope morphology, as well as the movement of 
water (Akinci et al., 2011). Mathematically, the curvature is the change 
in the angle of the slope over an extremely narrow curve’s arc (Thomas, 
1968), which is the inverse of the circumference of a circle that is 
tangential to the curve at a minimum of three times (Kepr, 1969). 

For this research, digital elevation data is utilized to derive the plan 
curvature of the slope for landslide hazard evaluation. The plan curva
ture is categorized into three types: concave (positive curve), convex 
(negative curve), and flat (zero curve) (Qiqing et al., 2015), which cover 
approximately 52%, 57%, and 37% of the area, respectively (as shown 
in Fig. 4g). The Convex areas (57% landslide) tend to have the highest 
concentration of landslides (Fig. 6a). 

3.2.8. Soil 
To identify conditions of vulnerability to landslides, it is important to 

understand the hydrological processes that involve soil and relief. This 
knowledge is essential in the fields of environmental studies and risk 

reduction. Soil properties and relief forms significantly affect water 
infiltration and storage capacity in the soil, which, in turn, influence the 
likelihood of landslides (Petschko et al., 2014). Therefore, having in
formation on these factors is crucial in assessing landslide susceptibility. 

In this study, a soil map of the study region is created using data from 
the Geological Survey of India and the National Bureau of Soil Survey, 
India (as shown in Fig. 4h). The soil in the area is classified in to nine 
types. Among these, the majority of landslide incidents occurred in the 
Loamy, Very shallow, excessively drained soil type (54% landslides), 
followed by the Loamy-skeletal, shallow, excessively drained soil type 
(35% landslides) (Fig. 6b). 

3.2.9. Land use/land cover (LU/LC) 
The environmental and socio-economic aspects of the surface of the 

earth are represented by LU/LC (Mohammed et al., 2014). It is a critical 
element in understanding the relationship between human actions and 
the environment (Rajan and Shibasaki, 2001). In addition to various 
influencing factors affecting the spatial distribution of landslides, LU/LC 
dynamics are also an important factor in landslide mapping (Guillard 
and Zezere, 2012). Land use and land cover changes, such as defores
tation, slope ruptures, and steep slopes, can accelerate slope instability 
(Reichenbach et al., 2014). Land management activities, often in asso
ciation with natural conditions like flooding or earthquakes, can trans
form moderately stable hill slopes into landslides. 

An integrated approach of object-oriented classification of LISS-4 
image and reference use of the Google Earth software platform is used 
to produce the LU/LC map of the study region (Fig. 4i). The simplified 
map depicts LU/LC units such as Agriculture-Crop land (9%), 
Agriculture-Plantation (2%), Agriculture-Fallow (6%), Barren/Uncul
turable/Wastelands (10%), Builtup-Rural area and mining (1%), Forest- 
Deciduous (23%), Forest-Evergreen/Semi-evergreen (43%), Forest- 
Scrub Forest (2%), Wetlands/Water Bodies-Reservoir/River/Lakes 
(4%). The analysis indicates that a vast area of the study region (68%) 
is enclosed by forest, which is a very high percentage. As per the land
slide inventory, most of the landslide incidences occurred in Forest- 
Evergreen/Semi-evergreen (66%), followed by Barren/Unculturable/ 
Wastelands (19%) (Fig. 6c). 

3.2.10. Geomorphology 
Geomorphology is a scientific field that examines the inception, 

process, and development of landforms and their role in shaping land
scape design (Stetler, 2014). The Southern Indian tectonic shield is 
thought to have been made through a gradual geomorphic procedure 
(Radhakrishna, 1993). To obtain information about the study region’s 
geomorphology, data from the NGLM (National Geomorphology and 
Lineament Mapping) project’s database, available on NRSC’s Bhuvan 
website, is utilized (Fig. 4j). 

In the study region, there are eight distinct geomorphic landforms. 
The highest concentration of landslides, at 83%, is found in the Struc
tural Origin-Highly Dissected Upper Plateau. The Denudational Origin- 
Mod Dissected Hills & Valleys category comes second, with 15% of 
landslides. The remaining categories have a concentration of landslides 
of less than 3%. Fig. 6d illustrates the distribution of geomorphic units 
and the number of landslides present in each respective unit. 

3.2.11. Stream power index (SPI) 
SPI is a crucial factor in defining the stability of the study region, as it 

measures the erosive power of flowing water or streams, which is one of 
the leading contributing factors to stability (Moore and Grayson, 1991; 
Conforti et al., 2011; Regmi et al., 2014). It estimates the potential of 
streams to change the geomorphic features of the region by causing gully 
erosion and transport. The SPI method is useful in identifying areas 
where overland flow in the catchment has a greater capacity to erode the 
terrain (Wilson and Gallant, 2000). Therefore, incorporating the SPI 
method in erosion and terrain susceptibility modeling is significant. 

To compute the SPI for the study region, the digital elevation model 
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Table 2 
The results of integration of landslide layer with influencing factors (LNRF).  

Influencing Factors Area Units Landslide Area Analysis 

Factors No. Of 
Classes 

Class Area 
(Ha.) 

Geographical Area 
(%) 

Area 
(Ha.) 

Landslide Area 
(%) 

LNRF 
(A/E) 

Weight Instability 

Slope 1 <5◦ (Gentle Slope) 25,907 23.92 0.02 0.06 0.00 0 Low 
2 5◦–8.5◦ (Moderate Slope) 22,287 20.58 0.30 1.02 0.07 0 Low 
3 8.5◦–16.5◦ (Strong Slope) 31,735 29.31 2.65 9.08 0.64 0 Low 
4 16.5◦–24◦ (Very Strong Slope) 14,232 13.14 5.97 20.50 1.44 2 High 
5 24◦–35◦ (Extreme Slope) 10,196 9.42 11.32 38.84 2.72 2 High 
6 35◦–45◦ (Steep Slope) 2868 2.65 5.47 18.78 1.31 1 Medium 
7 >45◦ (Very Steep Slope) 1060 0.98 3.41 11.72 0.82 1 Medium 

Geology 1 Basic Intrusives/dykes 51 0.05 0.00 0 0.00 0 Low 
2 Essentially Aa Simple flow 28,606 26.42 0.00 0 0.00 0 Low 
3 Granite 2383 2.20 0.00 0 0.00 0 Low 
4 Laterite 2407 2.22 0.00 0 0.00 0 Low 
5 Mainly Aa simple flow 1382 1.28 0.00 0 0.00 0 Low 
6 Mainly simple/Aa flows 27,259 25.17 17.50 58.54 7.61 2 High 
7 Megacryst Flow 5377 4.97 3.54 11.84 1.54 2 High 
8 Meta Basalt/hornbelende schist … 5102 4.71 2.00 6.69 0.87 1 Medium 
9 Pegmamite/aplite 10 0.01 0.00 0.00 0.00 0 Low 
10 Quartz Chlorite amphibole schist 

… 
14,452 13.35 1.73 5.79 0.75 1 Medium 

11 Quartzite/quartz Sericite schist 1445 1.33 0.80 2.68 0.35 0 Low 
12 Shale 573 0.53 0.00 0.00 0.00 0 Low 
13 Unclassified Basalt flow 19,238 17.77 4.32 14.45 1.88 2 High 

Geomorphology 1 Denudational Origin-Mod 
Dissected Hills & Valleys 

13,995 12.92 4.28 14.70 1.18 1 Medium 

2 Denudational Origin-Mod 
Dissected Lower Plateau 

140 0.13 0.00 0.00 0 0 Low 

3 Denudational Origin-Mod 
Dissected Upper Plateau 

1094 1.01 0.00 0.00 0 0 Low 

4 Denudational Origin-Pediment- 
PediPlain Complex 

24,195 22.34 0.00 0.00 0 0 Low 

5 Structural Origin-Highly Dissected 
Lower Plateau 

1686 1.56 0.61 2.10 0.17 0 Low 

6 Structural Origin-Highly Dissected 
Upper Plateau 

62,732 57.93 24.24 83.20 6.66 2 High 

7 Structural Origin-Mod Dissected 
Upper Plateau 

767 0.71 0.00 0.00 0.00 0 Low 

8 Waterbodies 3677 3.40 0.00 0.00 0.00 0 Low 
Lineament 1 <500 m 47,147 43.54 16.95 58.18 2.33 2 High 

2 500–1000 m 33,956 31.36 11.79 40.46 1.62 2 High 
3 1000–2000 m 21,572 19.92 0.40 1.36 0.05 0 Low 
4 >2000 m 5610 5.18 0.00 0.00 0.00 0 Low 

Elevation 1 <79 m 17,179 15.87 0.00 0.00 0.00 0 Low 
2 80–214 m 18,470 17.06 6.61 22.71 1.82 2 High 
3 215–349 m 11,767 10.87 9.56 32.82 2.63 2 High 
4 350–484 m 5691 5.26 8.35 28.67 2.29 2 High 
5 485–619 m 24,129 22.28 4.60 15.79 1.26 1 Medium 
6 620–754 m 20,512 18.94 0.00 0 0.00 0 Low 
7 755–889 m 9113 8.42 0.00 0 0.00 0 Low 
8 890–958 m 1425 1.32 0.00 0 0.00 0 Low 

Earthquake 1 2.93–3.09 17,122 15.81 6.35 21.79 0.87 1 Medium 
2 3.10–3.26 22,663 20.93 1.12 3.83 0.15 0 Low 
3 3.27–3.43 31,149 28.77 2.45 8.39 0.34 0 Low 
4 3.44–3.60 37,351 34.49 19.23 65.99 2.64 2 High 

LULC 1 Agriculture, Crop land 9765 9.02 0.05 0.17 0.02 0 Low 
2 Agriculture, Fallow 6120 5.65 0.00 0.00 0.00 0 Low 
3 Agriculture, Plantation 2638 2.44 0.00 0.00 0.00 0 Low 
4 Barren/Unculturable/Wastelands 10,932 10.10 5.43 18.64 2.05 2 High 
5 Builtup, Mining 255 0.24 0.00 0.00 0.00 0 Low 
6 Builtup, Rural area 996 0.92 0.00 0.00 0.00 0 Low 
7 Deciduous Forest 25,299 23.36 4.31 14.79 1.63 2 High 
8 Evergreen/Semi-evergreen 46,041 42.52 19.35 66.40 7.30 2 High 
9 Forest, Scrub Forest 2320 2.14 0.00 0 0.00 0 Low 
10 River/Stream 526 0.49 0.00 0 0.00 0 Low 
11 Reservoir/Lakes/Ponds 3393 3.13 0.00 0 0.00 0 Low 

Rainfall 1 <3500 mm 4233 3.91 0.00 0 0.00 0 Low 
2 3500–4000 mm 21,084 19.47 2.02 6.94 0.42 0 Low 
3 4000–4500 mm 47,021 43.42 19.64 67.43 4.05 2 High 
4 4500–5000 mm 9582 8.85 0.00 0.00 0.00 0 Low 
5 5000–5500 mm 8037 7.42 0.51 1.73 0.10 0 Low 
6 >5500 mm 18,327 16.93 6.96 24 1.43 2 High 

Topographic 
Curvature 

1 Concave 40,548 37.45 9.26 31.79 0.95 1 Medium 
2 Convex 28,159 26.00 16.59 56.95 1.71 2 High 
3 Flat 39,578 36.55 3.28 11.26 0.34 0 Low 

(continued on next page) 
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is used as input data, and the SPI module available in SAGA software is 
utilized. The SPI values in the study region range from − 3 to 5, repre
senting the varying erosive power of the rivers in the area. Higher SPI 
values signify the potential for overland flow paths in heavy rainfall, 
which can result in gully erosion or other erosion-prone areas. In this 
study, the SPI values are classified into three categories: <0 (Low Power) 
(75%), 0–2 (Moderate Power) (23%), and >2 (High Power) (2%) 
(Fig. 4k). Most of the landslide incidences occurred in the Moderate 
Power category (46% Landslide), followed by the Low Power category 
(32% Landslide) and the High Power category (22% Landslides) 
(Fig. 6e). 

3.2.12. Earthquake 
The occurrence of landslides can be influenced by various factors, 

and earthquakes are one of the significant triggering causes (Wang et al., 
2014). To analyze the hazard associated with earthquake-induced 
landslides, it is essential to consider both landslide and seismic haz
ards (Martino et al., 2019). In this study, earthquake data is analyzed by 
interpolating reported magnitudes at different locations. Earthquake 
magnitudes are reported by IMD and Earthquake bulletins. The earth
quakes in the study region ranged from 2.93 to 3.6 on the Richter scale, 
which falls in the medium range of magnitudes. The interpolated 
earthquake map divides the study region into four zones based on 

magnitude: 2.93–3.09 (16%), 3.10–3.26 (21%), 3.27–3.43 (29%), and 
3.44–3.60 (34%) (Fig. 4l). The highest concentration of landslides is 
found in the 3.44 to 3.60 magnitude earthquake category, with 66% of 
landslides occurring in this zone (Fig. 6f). 

3.3. Landslide Numerical Risk Factor (LNRF) 

Gupta and Joshi (1990) proposed a model for zoning landslide sus
ceptibility using GIS known as LNRF, which is a useful method, partic
ularly for hilly regions. Moreover, a review of the literature revealed 
certain findings of research such as Gupta and Joshi (1990); Mohammed 
et al. (2014a), and Malik et al. (2016) suggested that the LNRF system 
has an effective approach for mapping landslide susceptibility mapping. 
The occurrence of the landslide includes multiple natural and human 
factors. Therefore, for this research work, influencing factors are 
selected, and weighted values are determined for each phenomenon 
using the LNRF model. In this analysis, the weight of every class is 
determined by dividing the number of landslides (Landslide Inventory, 
2014–2019) in one unit by the mean of landslides in whole units. The 
weights of the LNRF are calculated using equation (1) for each influ
encing factor. The LNRF weights of each factor are attached to the 
corresponding attribute table of the influencing factor. All influencing 
factors are integrated with their respective tables for the attributes. This 
model is calculated from the following formula: 

LNRF=A / E (Mohammadi et al., 2014a) (1)  

Where. 

A is the landslide area in each unit, and 
E is the average area of the landslide in the all unit. 

As per equation (1), the weight of every homogeneous unit is 
assessed and related tables are made for weighted maps. LNRF is 
determined for each homogeneous unit in three groups of low instability 
(0), medium (1), and high (2) as per (Table 1) At last, the zonation map 
of the landslide is prepared by integrating all derived weights of each 
influencing factor (Patil A. et al., 2020). 

Table 2 (continued ) 

Influencing Factors Area Units Landslide Area Analysis 

Factors No. Of 
Classes 

Class Area 
(Ha.) 

Geographical Area 
(%) 

Area 
(Ha.) 

Landslide Area 
(%) 

LNRF 
(A/E) 

Weight Instability 

Soil Type 1 Clayey, shallow, well-drained 5750 5.31 0.38 1.29 0.12 0 Low 
2 Fine-loamy, moderately deep, 

well-drained 
8845 8.17 1.05 3.61 0.33 0 Low 

3 Fine-loamy, slightly deep, well 
drained 

14,447 13.34 0.67 2.29 0.21 0 Low 

4 Fine, deep, excessively drained 3821 3.53 0.00 0.00 0.00 0 Low 
5 Fine, deep, moderately drained 7586 7.01 0.17 0.57 0.05 0 Low 
6 Loamy-skeletal, shallow, 

excessively drained 
8655 7.99 10.29 35.32 3.18 2 High 

7 Loamy-skeletal, shallow, well 
drained 

8113 7.49 0.81 2.77 0.25 0 Low 

8 Loamy, very shallow, excessively 
drained 

49,007 45.26 15.78 54.15 4.87 2 High 

9 Loamy, very shallow, well drained 2062 1.90 0.00 0.00 0.00 0 Low 
SPI 1 <0 (Low Power) 81,364 75.14 9.32 31.99 0.96 1 Medium 

2 0-2 (Moderate Power) 24,649 22.76 13.30 45.65 1.37 2 High 
3 >2 (High Power) 2273 2.10 6.52 22.36 0.67 1 Medium 

TWI 1 <5 (Low Wetness) 56,489 52.17 23.95 82.21 2.47 2 High 
2 5-10 (Moderate Wetness) 16,499 15.24 3.76 12.91 0.39 0 Low 
3 >10 (High Wetness) 35,298 32.60 1.42 4.88 0.15 0 Low  
Total 108,285 100 29.134 100    

*LNRF=Landslide Numerical Risk Factor *A = Geographical Area of Class *E = Mean Area of Landslide. 

Fig. 7. Landside Hazard (LNRF) vs. Landslide Inventory.  
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Fig. 8. Landslide hazard zonation using LNRF model.  
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4. Result and discussion 

4.1. Landslide susceptibility map 

The Landslide Number Rating Factor (LNRF) was calculated by 
integrating twelve influencing factors (Geology, Geomorphology, Slope, 
Elevation, Lineament, SPI, Earthquake, Rainfall, Soil, TWI, LU/LC, and 
Topographic curvature) with the landslide inventory layer. The tabular 
results of the LNRF model are shown in Table 2. LNRF values greater 
than 1 indicate that the influencing factors have a high responsibility for 
landslide occurrences, while values below 1 suggest that the factors are 
more consistent and have less influence on landslides (Gupta and Joshi, 
1990). 

For the slope factor, the class of 24◦–35◦ (LNRF = 2.72) has the 
greatest influence on landslide occurrences in the study region. Steep 
hillsides prone to instability are caused by situations where the shear 
stress on the slope surpasses its resistance. Human activities such as road 
construction and changes in land use and land cover exacerbate this 
issue. On the other hand, flat areas (LNRF = 0) do not significantly affect 
landslide occurrences. 

Regarding the geology parameter, the geologic units of mainly sim
ple/Aa flows, unclassified basalt flow, and megacryst flow (LNRF =
7.61, 1.88, and 1.54, respectively) have a greater impact on landslide 
occurrences in the study region compared to other geologic units. These 
structures create favorable conditions for landslides as water infiltrates 
(Hong et al., 2016). 

The analysis using the LNRF method reveals that elevation has a 
significant impact on landslide occurrences (Table 2). The class of 
215–349 m shows a strong correlation with landslides, as indicated by 
its high LNRF value of 2.23. However, it should be noted that the 

occurrence of landslides initially increases with increasing elevation up 
to certain categories, after which it starts to decrease. 

The LNRF method also highlights a significant correlation between 
topographic curvature classes and landslides. Both convex and concave 
surfaces show a stronger correlation with landslide occurrences, with 
LNRF values of 1.71 and 0.95, respectively. This is due to the divergence 
and convergence of water flow on these slopes, contributing to landslide 
occurrences (Hong et al., 2016; Chen et al., 2017). 

The analysis of the Topographic Wetness Index (TWI) reveals that 
this factor has a significant impact on landslide occurrences. Interest
ingly, areas with the lowest wetness levels (less than 5) have the highest 
impact on landslide occurrences, indicated by the high LNRF value of 
2.47. Conversely, areas with the highest wetness levels (between 5 and 
10 and above 10) have the least influence, with LNRF values of 0.39 and 
0.15, respectively. 

The Specific Erosion Potential Index (SPI) results also highlight its 
major impact on landslide occurrences. Areas with moderate erosive 
stream power (between 0 and 2) have the highest impact, with an LNRF 
value of 1.37. Conversely, areas with the highest and lowest erosive 
stream power levels (less than 0 and greater than 2) have the least in
fluence, with LNRF values of 0.96 and 0.67, respectively. 

Linear factors such as lineaments also have significant effects on 
landslide occurrences. The classes of <500 m and 500–1000 m, repre
senting the least distance from lineaments, have the highest LNRF values 
(2.33 and 1.62) and the most considerable effect on landslides. In 
contrast, the categories of 1000–2000 m and >2000 m, representing the 
highest distance from lineaments, have the lowest LNRF values (0.05 
and 0.00). Geomorphology also plays a major role in landslide occur
rences. The “Structural Origin-Highly Dissected Upper Plateau” category 
has the highest impact on landslide occurrences (LNRF = 6.66), while 

Fig. 9. Landslide point inventory by GSI.  
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others have a relatively lower influence. 
Based on the land use and land cover (LU/LC) categories, “Ever

green/Semi-evergreen forest,” “Barren/uncultivated field,” and “De
ciduous forest” (LNRF = 7.30, 2.05, and 1.63, respectively) have the 
highest relation to landslide occurrences. Human activities, particularly 
deforestation, contribute to this correlation (Youssef et al., 2016). In 
terms of soil type, “Loamy, very shallow, excessively drained” and 
“Loamy-skeletal, shallow, excessively drained” (LNRF = 4.87 and 3.18, 
respectively) have a significant effect on landslides. 

When combining rainfall and landslide maps in the LNRF model, it 
becomes apparent that areas with rainfall categories between 4000 and 
4500 mm and greater than 5500 mm have a significant impact on 
landslide occurrences. These areas show a high LNRF value, indicating a 
strong correlation between high rainfall and landslide occurrences. 
Other rainfall categories have a relatively lower impact, suggesting their 
influence is less significant. The integration of earthquake and landslide 
maps in the LNRF model reveals that earthquake zones with magnitudes 
of 3.44–3.60 have a greater effect on landslide occurrences compared to 
other earthquake levels. All influencing variables are associated with 
landslides, leading to varying intensities of landslide occurrences. 

The integrated result of the LNRF, as a landslide hazard index, ranges 
from 1 to 20. The highest value (20) reflects the sum of the largest 
weights of all 12 factors and indicates a high susceptibility region. The 
hazard index is categorized into four categories using the natural breaks 
(Jenks) method of classification: Low (27%), Moderate (38%), High 
(27%), and Very High (8%). It is notable that 60% of historical land
slides are found in the Very High category, which covers only 8% of the 
land area. In contrast, no landslides have occurred in the low-hazard 
category (Fig. 7). 

The areas around Dajipur, Nardave, and Amboli are considered 
dangerous for landslide incidence according to the LNRF results (Fig. 8). 
Phondaghat, Patgaon, and Kitavade villages fall under the categories of 
moderate and low landslide hazards. Areas further away from the 
foothills are much safer than those near the foot of the mountains. The 
high landslide hazard potential areas are found in the western part of the 
central mountain range, mostly categorized as a high and very high 
landslide susceptible zone. 

4.2. Accuracy assessment 

To assess the reliability and performance of the GIS-based LNRF 
technique in estimating areas susceptible to landslides, the receiver 
operating characteristic (ROC) method was employed. The ROC curve is 
a useful tool for evaluating the quality of a forecasting system, and the 
area under the curve (AUC) can be used to determine the overall model 

performance, where a higher AUC indicates better performance. In this 
study, the Geological Survey of India’s landslide point inventory data 
was used as the testing data for the ROC method, as shown in Fig. 9. 

The ROC curve was utilized to evaluate the overall performance of 
the landslide models on the 51 testing datasets. The success rate was 
determined by comparing the testing data with the landslide suscepti
bility map, as illustrated in Fig. 10. The LNRF model achieved an AUC 
value of 0.77, indicating good prediction performance and reliable re
sults for the landslide susceptibility map. These findings suggest that the 
GIS-based LNRF technique is a reliable and effective method for esti
mating areas susceptible to landslides. 

5. Conclusion 

In conclusion, this study addresses the lack of research on landslide 
vulnerability in the Western Ghats of Maharashtra. By utilizing the LNRF 
model for landslide susceptibility mapping and integrating 12 influ
encing factors, the study provides valuable insights into the suscepti
bility of the region to landslides. The geology, land use/land cover, and 
geomorphology factors were found to have the most significant influ
ence on the model. 

The performance of the model was assessed using the ROC tech
nique, which indicated good prediction performance. The susceptibility 
results showed that approximately 35% of the study region falls under 
high and very high landslide-susceptible zones. It is noteworthy that a 
significant number of historical landslides occurred in these high sus
ceptibility zones. 

Specific areas such as Dajipur, Shivapur, Nardave, and Amboli were 
identified as particularly dangerous for landslide incidents. On the other 
hand, Phondaghat, Patgaon, and Kitavade villages were found to have 
relatively lower susceptibility. Regions farther away from the foothills 
were also considered safer. The western region of the central mountain 
range, including Phonda Ghat and Amboli Ghat roads, was identified as 
having high potential landslide susceptibility. 

The landslide susceptibility map generated through the LNRF model 
can serve as a valuable resource for planners and engineers. It can aid in 
identifying areas where preventive measures should be implemented to 
reduce the potential for future landslides. By utilizing this information, 
the impact of natural disasters can be minimized, contributing to the 
safety and well-being of local communities. 

Overall, this research enhances our understanding of landslide sus
ceptibility in the Western Ghats of Maharashtra and emphasizes the 
importance of proactive measures to mitigate the risks associated with 
landslides. The findings of this study can inform decision-making pro
cesses and help in the development of effective strategies to promote the 
resilience and safety of the region. 
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