Seat No.

Total No. of Pages: 14

P.G. Entrance Examination 2025

M.Sc. Mathematics

Subject Code: 58716

Instructions:

- 1) All questions are compulsory.
- 2) Each question carries 1 mark.
- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Follow the instructions given on OMR sheet.

A) intersecting to chord AB

5) Rough work shall be done on the sheet provided at the end of question paper.

Ι	Day and Date: Thursday, 15-May-2025	Total Marks: 100
]	Γime: 01.00 pm to 02.30 pm	
1.	Geometrically the Langranges Mean Value Theorem (LM)	VT) means that the tangent at point
	x = c to the curve $y = f(x)$ is	

B) perpendicular to chord AB

- C) not related to chord AB D) parallel to chord AB 2. If x = u + v and y = u v then the Jacobian $\frac{\partial(x,y)}{\partial(u,v)}$ is _____.
 - A) 0

- B) 1
- C) 2

- D) -2
- 3. The degree of the homogeneous function $\frac{x+y}{\sqrt{x}+\sqrt{y}}$ is ______.
 - A) $\sqrt{2}$

- B) 1
- C) $\frac{1}{2}$

- D) $-\frac{1}{2}$
- 4. The value of $\left(\sin \frac{\pi}{6} + i \cos \frac{\pi}{6}\right)^6$ is _____.

 A)1 B)-1 C)0 D)i
- 5. The solution of the equation cos(y px) = p is _____.
 - A) $y = cx cos^{-1}c$
- $B) y = cx + cos^{-1}c$
- C) $y = cx + \cos c$
- D) $y = cx + (cos^{-1}c)^2$
- 6. The complementary function (C.F.) of the equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 6y = e^{4x}$ is ______.
 - A) $y = c_1 e^{3x} + c_2 e^{2x}$
- B) $y = c_1 e^{-3x} + c_2 e^{-2x}$
- C) $y = c_1 e^{3x} + c_2 e^{-2x}$
- D) $y = c_1 e^{-3x} + c_2 e^{2x}$

7. If g. c. d. of two integers a and b is 1 then a, b are called . A) composite integers B) prime integers C) relatively prime integers D) associates If $u = \left(\frac{x^4 + y^4}{x + y}\right)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \underline{\hspace{1cm}}$. 8. C) 3*u* $D)u^3$ B) 2*u* A)u If $y = \sin 6x$ then $y_{18} =$ _____. 9. B) $6^{18} \cdot \sin(6x + 9\pi)$ C) $\sin 18 x$ D) $3^{18} \cdot \cos 6x$ A) 6^{18} P.I. of $\frac{1}{D^2+a^2}\cos ax$ is ______. 10. A) $\frac{x}{2a}sinax$ B) $\frac{-x^2}{21}\frac{1}{4a^2}sinax$ C) $\frac{x}{2a}cosax$ D) $\frac{-x^2}{21}\frac{1}{4a^2}cosax$ In solving $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$, by change of dependent variable method, the complete solution 11. is given by y = uv where $u = \dots$ A) $e^{\int Pdx}$ B) $e^{\frac{1}{2}\int Pdx}$ C) $e^{-\int Pdx}$ 12. Method of taking one variable as constant is useful in solving...... equation. A) simultaneous B) total differential homogeneous linear C) D) linear equation with constant coefficients Let y_0, y_1, \dots, y_n be set of values of y = f(x). Then $\Delta^2 y_0 = \dots$ 13. A) $y_2 - 3y_1 + y_0$ B) $y_3 - 2y_2 + y_1$ C) $y_2 - y_0$ D) $y_2 - 2y_1 + y_0$ 14. A vector point function \overline{f} is said to be solenoidal if......

> A) curl $\overline{f} = 0$ B) curl $\overline{f} = 1$ C) div $\overline{f} = 0$ D) div $\overline{f} = 1$

- 15. Value of div grad f is.....
 - A) $\nabla^2 f$
 - B) 0
 - C) grad div f
 - D) none of these
- 16. Value of $\int (x \, dy - y \, dx)$ around the circle $x^2 + y^2 = 1$ is

 - A) 0B) $\frac{\pi}{2}$
 - C) π
 - D) 2π
- $\beta(m+1,n) = \dots$ 17.
 - A) $\frac{1}{m+n}\beta(m,n)$
 - B) $\frac{m}{m+n}\beta(m,n)$
 - C) $\frac{n}{m+n}\beta(m,n)$
 - D) $\frac{mn}{m+n}\beta(m,n)$
- 18. The value of $\boxed{5/2}$ is equal to
 - A) $\frac{3}{4}\sqrt{\pi}$
 - B) $\frac{15}{8}\sqrt{\pi}$ C) $\frac{8}{15}\sqrt{\pi}$

 - D) None of the above
- If $\int_0^\infty e^{-ax} dx = \frac{1}{a}$, then $\int_0^\infty e^{-ax} x^n dx =$
 - A) $\frac{n!}{a^n}$
 - B) $\frac{(n+1)!}{a^n}$
 - C) $\frac{n!}{a^{n+1}}$
 - D) $\frac{(n-1)!}{a^n}$
- 20. $erf(0) = \dots$
 - A) 0
 - B) 1
 - C) -1
 - D) ∞

21.	If $f(x) = x^2$ for all $x \in \mathbb{R}$, then to A) $\{-2, 0, 3\}$ B) $\{0, 4, 3\}$ C) $\{-4, 0, 3\}$ D) $\{0, 4, 9\}$	he image set of {-2, 0, 3} is
22.	If $f: A \to B$ and $A \subseteq C$, then a funcalled A) restriction of f B) extension of f C) inverse of f D) identity map	action $g: C \to B$ such that $g(x) = f(x)$ for all $x \in A$ is
23.	Which of the following sequence i A) $\{(-1)^n\}_{n=1}^{\infty}$ B) $\{n\}_{n=1}^{\infty}$ C) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ D) $\{n^2\}_{n=1}^{\infty}$	s convergent?
24.	A non-decreasing sequence which A) convergent B) diverges to ∞ C) diverges to −∞ D) oscillatory	is bounded above is
25.	If a sequence $\{S_n\}_{n=1}^{\infty}$ converges to A) 2 B) -2 C) 12 D) $\frac{1}{2}$	o 2 then $\lim \sup_{n\to\infty} S_n = $
26.	The sequence 1, 0, 1, 0, 1, 0, is A) (C, 1) summable to B) (C, 1) summable to C) not (C, 1) summable D) (C, 1) summable to	1 0 e
27.	* /	quence of real numbers is convergent. t sequence of real numbers is a Cauchy sequence. C) both (I) and (II) are false D) both (I) and (II) are true

- 28. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then $\lim_{n \to \infty} a_n = \underline{\qquad}$.
 - A) 1
 - B) 0
 - **C**) ∞
 - $D) \infty$
- 29. The series $\sum_{n=0}^{\infty} \frac{1}{4^n}$
 - n=0
 - A) diverges to ∞
 - B) converges to 4
 - C) converges to $\frac{4}{3}$
 - D) diverges to $-\infty$
- 30. If $\{a_n\}_{n=1}^{\infty}$ is a nonincreasing sequence of positive real numbers and if $\sum_{n=1}^{\infty} a_n$ converges, then

$$\lim_{n\to\infty} na_n =$$

- A) 0
- B) 1
- C) ∞
- D) −∞
- 31. Centre of group $S_3 = \{I, (12), (13), (23), (123), (132)\}$ is _____
 - A) $\{I,(12),(13),(23)\}$
 - B) $\{I\}$
 - C) {(123), (132)}
 - D) S_3
- 32. If G is a group of order p (prime), then it will have only _____ subgroups.
 - A) one
 - B) p
 - C) two
 - D) infinite
- 33. If H and K are finite subgroups of a group G then which of the following statement is correct?
 - A) $o(HK) = \frac{o(H \cap K)}{o(H).o(K)}$
 - B) $o(HK) = \frac{o(H).o(K)}{o(H \cap K)}$
 - C) $o(H \cap K)$
 - D) o(H).o(K)

34.	Consider the cyclic group $\mathbf{Z_8} = \{0, 1, 2, 7\}$ under addition modulo 8. Then which of the following is not the generator of $\mathbf{Z_8}$. A) 1 B) 2 C) 3 D) 5
35.	Consider the following statements for a group G of prime order I) G is abelian. II) G is cyclic Then A) Only I) is true B) Only II) is true C) Both I) and II) are true D) Both I) and II) are false
36.	Number of generators of a finite cyclic group of order n is A) $\varphi(n)$ B) infinity C) 1 D) $\varphi(1)$
37.	theorem states that "Let $a, n \ (n \ge 1)$ be any integers such that $g.c.d.(a, n) = 1$. Then, $a^{\varphi(n)} \equiv 1 \pmod{n}$ ". A) Euler's B) Fermat's C) Cayley's D) Lagrange's
38.	An onto homomorphism is called A) endomorphism B) automorphism C) epimorphism D) monomorphism
39.	Which of the following is a unit in \mathbb{Z}_8 . A) 0 B) 2 C) 5 D) 4
40.	Consider the ring $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$ under addition and multiplication modulo 7. Then $6 \odot_7 2 = \underline{\hspace{1cm}}$. A) 3 B) 6 C) 1 D) 5

41. Consider the function

$$f(t) = \begin{cases} t^2, & 0 \le t < 1, \\ 2t - 2, & 1 \le t < 2, \\ 3t^2 - 4, & 2 \le t < 3. \end{cases}$$

Then

- A) f(t) is continuous at t = 1
- B) f(t) is continuous at t = 2
- C) f(t) is continuous on [0,3]
- D) f(t) is piecewise continuous in [0,3]

- $L^{-1}\left\{\frac{1}{\frac{3}{2}}\right\} = \underline{\qquad}$ 42.

 - A) $\sqrt{\frac{t}{\pi}}$ B) $2\sqrt{\frac{t}{\pi}}$ C) $\sqrt{t\pi}$
- D) $2\sqrt{t\pi}$
- If f(s) is Fourier transform of F(x), then the Fourier transform of F(ax)43.

- A) $af\left(\frac{s}{a}\right)$ B) $\frac{1}{a}f(as)$ C) $\frac{1}{a}f\left(\frac{s}{a}\right)$
- D) a f(as)

- 44. $L\{\cos^2 2t\} =$ _____.
 - A) $\frac{s}{s^2+4}$
 - B) $\frac{1}{s} + \frac{s}{s^2 + 4}$
 - C) $\frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2 + 4} \right)$
 - D) $\frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2 + 16} \right)$
- $L^{-1}\{\log (s+a)\} = \underline{\hspace{1cm}}$ 45. A) $t e^{-at}$ B) $-te^{-at}$ C) $\frac{e^{-at}}{t}$

- D) $\frac{-e^{-at}}{t}$

- 46. If $L\{F(t)\} = \frac{e^{-\frac{1}{s}}}{s}$, then $L\{F(3t)\} =$ _____.
 - A) $\frac{e^{-\frac{1}{s}}}{s}$ B) $\frac{e^{-\frac{3}{s}}}{s}$ C) $\frac{e^{-\frac{1}{3s}}}{s}$

- D) $\frac{e^{-\frac{1}{3s}}}{3s}$

- If f(s) is Fourier transform of F(x) then Fourier transform of F(x) cos ax is 47.
 - A) $\frac{1}{2}[f(s-a)-f(s+a)]$
- B) $\frac{1}{2}[f(s-a) + f(s+a)]$
- C) $\frac{1}{2}[f(s+a) f(s-a)]$
- D) $-\frac{1}{2}[f(s-a)+f(s+a)]$
- If $L^{-1}{f(s)} = \sin t$, then $L^{-1}\left\{\frac{f(s)}{s}\right\} = \underline{\hspace{1cm}}$ 48.
 - A) $1 \cos t$
- B) $1 + \cos t$ C) $\cos t$
- D) $\frac{\sin t}{t}$
- The inversion formula for the infinite Fourier cosine transform is 49.

 - A) $F(x) = \frac{1}{\pi} \int_0^\infty F_c(F(x)) \cos x \, ds$ B) $F(x) = \frac{2}{\pi} \int_0^\infty F_c(F(x)) \cos sx \, ds$

 - C) $F(x) = \frac{2}{\pi} \int_0^\infty F_c(F(x)) \cos x \, ds$ D) $F(x) = \frac{1}{\pi} \int_0^\infty F_c(F(x)) \cos sx \, ds$
- 50. $L\left\{\frac{\sin 3t}{t}\right\} = \underline{\qquad}.$

- A) $\cot^{-1}\left(\frac{s}{3}\right)$ B) $\tan^{-1}\left(\frac{s}{3}\right)$ C) $\sin^{-1}\left(\frac{s}{3}\right)$ D) $\cos^{-1}\left(\frac{s}{3}\right)$
- Which of the following complex number satisfies the equation $z^2 + 2z + 2 = 0$? 51.
 - A) z = 1 i
- B) z = i 1
- C) z = 1 + i
- D) z = i 2
- 52. Which of the following function of a complex variable z is only differentiable at z = 0?
 - A) z^2

- B) $\cos z$
- C) $e^z + \sin z$
- D) $|z|^2$
- If f(z) = u(x, y) + iv(x, y) is such that both u(x, y) and v(x, y) satisfies Cauchy 53. Riemann equations and if $u_x(x, y) = 2x$ and $u_y(x, y) = -2y$ then for any z = (x, y), the value of $f'(z) = \cdots$
 - A) 2z

- B) -2z
- C) 0

D) $2\bar{z}$

- 54. An analytic function with constant argument is ...
 - A) purely imaginary B) constant
- C) only a zero function D) an identity function

- 55. $\int_{0}^{1} (1+it)^{2} dt = \cdots$
 - A) $\frac{2}{3} i$ B) $\frac{2}{3} + i$ C) $\frac{4}{3} i$

- D) $\frac{4}{3} + i$

- Isolated singularities of $f(z) = \frac{z^2 + 2z + 1}{(z+2)(z^2-9)}$ are ... 56.
 - A) z = 2, -2,3
- `B) z = 2, -2, -3 C) z = -2, -3, 3 D) z = 2, -2, 3
- The sequence of complex numbers $z_n = -\frac{1}{n} + i\left(1 \frac{1}{n}\right)$, n = 1, 2, ... is ... 57.
 - A) divergent
- B) converges to i C) converges to -1 D) oscillatory
- If $f(z) = \frac{z^2 3}{(z+2)^6 (z^2 2)^4}$ then z = -2 is a pole of order... 58.
 - A) 1
- B) 6

C) 5

- D) 11
- The value of the integral $\int_C \frac{dz}{z-(z+4)}$ taken counterclockwise around the circle |z|=259. is
 - A) $\frac{\pi i}{2}$
- B) $2\pi i$

- C) $-\frac{\pi i}{2}$
- D) $\frac{2\pi i}{2}$

- The function $f(z) = \frac{Z(z^2-1)}{(z+2)(z-3)}$ has ...simple zeros. 60.
 - A) z = 0.1, -1 B) z = 0, i, -i C) z = -2, 3 D) z = i, -i

- The set $S = \{ (1,2), (3,4), (5,6) \}$ of vectors in \mathbb{R}^2 is . 61.
 - a linearly independent subset. A)
 - a basis of R^3 . B)
 - C) a linearly dependent subset.
 - D) an orthogonal set.
- If $T: R2 \to R^2$ is a linear transformation and $\{e_1 = (1,0), e_2 = (0,1)\}$ is standard basis of \mathbb{R}^2 . 62. If $T(e_1) = (1,2)$ and $T(e_2) = (2,3)$, then $T(x,y) = ____$.
 - A) (2x + y, 2x + 3y)
- B) (2x, 3y)
- C) (x + 2y, 2x + 3y) D) (x + y, x y).
- Hom (V, W), where V and W are vector spaces over field F is called dual space over F, if 63.
 - A) V = F

- B) W = F C) $W \neq F$ D) none of these.
- The norm of vector (4, 2, 2, -6) is _____. 64.
 - A) 60

- B) $2\sqrt{15}$ C) 14 D) $4\sqrt{15}$

65.	If $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$ then the characteristic polynomial	vnomial of A is
	20 22	
	A) $x^2 - 6$. B) $x^2 + 6$. C) $x^2 -$	$x - 6$ D) $x^2 + 5x - 6$.
66.	If $\lambda = 1/5$ is an eigen value of an invert	ible operator T then eigen value of T^{-1} is
	A) -5 B) 1/5	C) 5 D) -1/5
67.	If $T: U \to V$ is a linear transformation such	ch that $dim U = 4$ and nullity of $T = 2$ then rank of
	T is	
	A) 1 B) 2 C) 0	D) 4.
68.	If S is orthonormal set then for any $\alpha \in S$	•
	A) $\ x\ = 1$ B) $\ x\ \ge 2$	$C)\ \alpha\ = 0$ $D)\ \alpha\ < 1$
69.	Inner product space over real field is called	ed
	A)Null space B) Euclid	ean space
	C) Unitary space D) subspa	ace
70.	If S is orthogonal set of non zero vectors	in an inner product space V then
	A)S is linearly independent set	B) S is linearly dependent set
	C) S is empty set	D) none of these
71.	The general form of a first-order partial d	ifferential equation in two variables is
	A) $F(x, y, u) = 0$	B) $F(p, q, u) = 0$
	C) $F(x, y, u, p, q) = 0$	D) $F\left(x, y, u, \frac{\partial^2 u}{\partial x^2}\right) = 0$
72.	The method of finding particular integral equation with constant coefficients is	(PI) for a non-homogeneous linear partial differential
	A) Separation of variables	B) Charpit's method
	C) Operator method	D) Runge-Kutta method
73.	To form a partial differential equation by	eliminating arbitrary constants, we use
	A) Total differentiation	B) Partial differentiation
	C) Successive partial derivatives	D) Both B and C
74.	The general solution of the partial differe	ntial equation $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ involves
	A) Real and distinct roots	B) Repeated roots
	C) Complex roots	D) No real roots

75. If the right-hand side is of the form e^{ax+by} , then PI is found by-----A) Multiplying by inverse operator B) Trial method C) Substituting D=a, D'=b D) Both A and C 76. Which of the following is a non-linear partial differential equation of first order? A) p + q = uB) $p^2 + q^2 = 1$ C) p + q + u = 0D) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ 77. A singular solution of a partial differential equation is-----A) A specific case of the general solution B) A solution that cannot be obtained from the complete integral C) The same as the complete solution D) Always a constant solution The function $z = e^{\{x+y\}}$ is a solution to the equation (D - D)z = 0 because-----78. A) It satisfies the non-homogeneous part B) Dz = D'zC) It's a general solution D) None of these For the partial differential equation $(D^2 - 2DD' + D'^2)u = 0$, the solution involves 79. functions of-----A) x + yB) x - yC) $x^2 + y^2$ D) $x^2 - v^2$ The partial differential equation $p^2 + q^2 + u = 0$ is-----80. A) Linear B) semi-linear C) Fully non-linear D) Quasi-linear 81. In the discrete metric space, an open ball B[x;1] is-----. A) the entire space

B) a singleton set $\{x\}$

D) empty set

C) all points at distance less than 1

82.	A set B in a metric space is closed if it A) contains all its limit points B) is a union of open balls C) is bounded D) is not open
83.	Let $<$ M, $\rho>$ be a metric space and let $\left\{S_n\right\}_{n=1}^{\infty}$ be a sequence of points in M then we say that sequence s_n approaches $L \in M$ as n approaches infinity, if given $\epsilon>0$ there exists $N \in I$ such that A) $\rho(s_n, L) > \epsilon$, $(n \ge N)$ B) $\rho(s_n, L) = \epsilon$, $(n \ge N)$ C) $\rho(s_n, L) < \epsilon$, $(n \ge N)$ D) $\rho(s_n, L) < \epsilon$, $(n \ge N)$
84.	Every Cauchy sequence in any metric space is A) divergent B) convergent C) oscillatory D) need no be convergent
85.	If M is the closed interval [0,1] with absolute value metric, then the open ball $B\left[\frac{1}{2};\frac{1}{4}\right]$ is the interval A) $\left[0,\frac{3}{4}\right]$ B) $\left(0,\frac{3}{4}\right)$ C) $\left(\frac{1}{4},\frac{3}{4}\right)$ D) $\left(0,\frac{3}{4}\right]$
86.	If A is not bounded subset of a metric space M then diam(A) is A) less than zero B) zero C) infinity D) one
87.	 If A is not a connected subset of R¹ then A) A may be a singleton set B) A may be union of intervals with nonempty intersection C) A may be an interval D) A may be union of intervals with empty intersection

	A) compactB) openC) connectedD) need not be open
89.	In a usual metric space R^1 , the set $A = (0, 1] \cup [1, 2]$ is A) an open set in R^1 B) a connected set in R^1 C) a closed set in R^1 D) a compact set in R^1
90.	In any metric space arbitrary intersection of closed sets is A) open B) not open C) closed D) not closed
91.	In a Linear Programming Problem (LPP), the feasible region is defined by:
	A) Only equality constraintsB) Only inequality constraintsC) A combination of equality and inequality constraintsD) The objective function
92.	Which of the following is NOT a requirement for a standard LPP?
	A) Linearity of the objective functionB) Non-negativity constraintsC) Integer-valued decision variablesD) Constraints must be linear
93.	The graphical method for solving LPP is suitable for problems with:
	A) Two decision variablesB) Three decision variablesC) More than three decision variablesD) Only one decision variable
94.	In the Simplex method, the variable entering the basis is selected based on:
	A) The smallest coefficient in the objective functionB) The most negative coefficient in the objective rowC) The largest coefficient in the objective functionD) A random selection

A subset $S = \{\ 1, \, 2, \, \dots, \, 10\}$ in discrete metric space is ------

88.

- 95. A factory produces two products A and B with profits of ₹6 and ₹4 per unit respectively. The production constraints are:
 - $3A + 2B \le 120$ (Machine hours)
 - $A + 2B \le 80$ (Labor hours)

What is the optimal production mix for maximum profit?

- A) A=20, B=30
- B) A=30, B=20
- C) A=40, B=10
- D) A=10, B=40
- 96. In a transportation problem, the number of basic variables in a feasible solution is:
 - A) m+n
 - B) $m \times n$
 - C) m-n
 - D) m+n-1
- 97. The North-West Corner Rule is used to find:
 - A) An optimal solution for a transportation problem
 - B) The shadow prices in a transportation problem
 - C) An initial basic feasible solution for a transportation problem
 - D) The dual of a transportation problem
- 98. The Hungarian method is used to solve:
 - A) Transportation problems
 - B) Assignment problems
 - C) Network problems
 - D) Inventory problems
- 99. In a maximization assignment problem, the objective is to:
 - A) Maximize the total profit
 - B) Minimize the total cost
 - C) Balance the assignments
 - D) Assign tasks randomly
- 100 The Travelling Salesman Problem (TSP) aims to:
 - A) Minimize transportation costs
 - B) Find the shortest possible route visiting each city exactly once
 - C) Assign jobs to workers optimally
 - D) Solve a linear programming problem