Seat	
No.	

ENT - 09

Total No. of Pages: 16

Total Marks: 100

M. SC. ENTRANCE EXAMINATION, 2025 STATISTICS/APPLIED STATISTICS AND INFORMATICS Subject Code: 58715

Day and Date : Tuesday, 13-05-2025

Time: 10.30 a.m. to 12.00 p.m.

Instructions:

- 1. All questions are compulsory.
- 2. n question carries 1 mark.
- 3. Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Follow the instructions given on OMR sheet.
- 5) Rough work shall be done on the sheet provided at the end of question paper.
- If G_1 and G_2 be the geometric mean of two data sets of sizes n_1 and n_2 respectively, then the geometric mean of pooled data set is....
 - A) Antilog $\frac{n_1 \log(G_1) + n_2 \log(G_2)}{n_1 + n_2}$
 - B) $\log\left[\frac{\log(G_1) + \log(G_2)}{n_1 + n_2}\right]$
 - C) Antilog $\left[\frac{\log(G_1) + \log(G_2)}{n_1 + n_2}\right]$
 - D) $\log \left[\frac{n_1 \log(G_1) + n_2 \log(G_2)}{n_1 + n_2} \right]$
- 2 Which measure of dispersion is affected most by extreme values?
 - A) Standard deviation
 - B) Range
 - C) Mean deviation
 - D) Quartile deviation
- For negatively skewed distribution, which of the following is true?
 - A) Median < Mean < Mode
 - B) Mode < Median < Mean
 - C) Mean < Median < Mode
 - D) Mode < Mean < Median
- 4 In a leap year, the probability of getting 5 Sundays in the month of March is....
 - A) 1/7
 - B) 2/7
 - C) 5/7
 - D) 3/7
- 5 If A and B are independent events and P(A) = 0.2, P(B) = 0.6 then $P(A^c \cup B^c) = ...$
 - A) 0.98
 - B) 0.6
 - (C) 0.88
 - D) 0.32
- 6 If the correlation coefficient between two random variable X and Y is 0.35 then the correlation coefficient between (2X 5) and (3 Y) is.....
 - A) -0.70
 - B) -0.35
 - C) 0.35
 - D) 0.70

7 804	Which of the following relation between coefficient of association (Q) and coefficient of
	colligation (Y) is true?
	A) Q = Y
	B) $ Q \ge Y $
	$C) Q \leq Y $
	D) None of these
0	Cross reproduction rate (CDD) considers only
8	Gross reproduction rate (GRR) considers only:
	A) Male births Total number of children
	B) Total number of children
	C) Number of births per thousand
0	D) Female births If $Y = 1 - 2$, then the value of mode is
9	If X follows binomial distribution with parameters $n = 7$ and $p = 1/3$ then the value of mode is
	A) 2
	B) 3
	C) 4
	D) 1
10	If X has Poisson distribution with parameter λ then its probability generating function is
	A) $e^{-\lambda(s-1)}$
	B) $e^{\lambda(s-1)}$
	C) $e^{-\lambda s}$
	D) $e^{\lambda s}$
11	If an random variable X has p.d.f. $f(x) = \frac{3x^2}{2}$, $ x < 1$ then p.d.f. of – X is
	A) $f(-x)$
	B) $-f(-x)$
	C) $1/f(x)$
	D) $f(x)$
12	If $X \sim \exp(1)$ then
12	A) $E(x) = Median$
	B) Mean=Variance
	C) Median=0
	D) All the above are correct
13	
13	A) $E(X) < E(Y)$
	E(X) > E(Y) $E(X) > E(Y)$
	C) $E(X) \ge E(Y)$
	D) $E(X) \le E(Y)$
14	
14	
	•
	B) $r_{13} \ge R_{1.23}$ C) $max\{ r_{12} , r_{13} \} \le R_{1.23}$
	C) $max\{ r_{12} , r_{13} \} \le R_{1.23}$ D) $ r_{12} \ge R_{1.23}$
15	
13	
	D) no bias

16	Norm	nal distribution having $Q_1 = 32.5$ and $Q_3 = 63.5$ then its mean is
	A)	22.5
	B)	0
	C)	48
	D) .	can't say
17	If X a	nd Y are two independent variables and their expected values are 1 and 2 respectively then
	E[(X-	$[-1)(Y-2)] = \dots$
	A)	1
	B)	0
	C)	2
	D)	1/2
18	If X a	nd Y are i.i.d gamma variates then distribution of $\frac{X}{X+Y}$ is
	A)	Gamma distribution
	-	Exponential distribution
		Beta distribution of 1st Kind
		Beta distribution of 2st Kind
19		h of the following is an example of time series problem?
		L. Estimating number of hotel rooms booking in next 6 months.
		2. Estimating the total sales in next 3 years of an insurance company.
veek		3. Estimating the number of calls for the next one week.
	A)	Only 3
	B)	B) 1 and 2
	C)	2 and 3
	D)	1,2 and 3
20	Let X	$\sim N(\mu, 25)$, Consider testing $H_0: \mu = 0$ against $H_1: \mu = 1$. Then
	A)	Both H ₀ and H ₁ are composite hypothesis
		Both H_0 and H_1 are simple hypothesis
	C)	H_0 is simple and H_1 is composite
	D)	H_0 is composite and H_1 is simple
21	Let X	follows Rayleigh distribution with parameter λ . What is the distribution of X^2 ?
21		Exponential
	B)	Weibull
	C)	Gamma
	D)	Cauchy
22	_	random variable X follows a log-normal distribution with parameters μ and σ^2 , and
1/ 2		$\log_{e}(X)$, then what is the third central moment of Y?
	A)	σ^2
	B)	3
	C)	μ°
	D)	0
23	If X a	nd Y are i.i.d. N(0, 1) then X/Y follows
	A)	C(0,2)
	B)	N(0,1)
	C)	N(0,2)
	D)	C(0,1)
24	Let X	follows Weibull distribution with parameter (α, λ) . What is the distribution of X^{λ} ?
	A)	Linear Failure Rate
	B)	Rayleigh
	C)	Exponential
	D)	Cauchy

- Let $X \sim \text{Logistic}(10,10)$. What are the mean and mode of the distribution of X, respectively?
 - A) 10 and 10
 - B) 10 and 100
 - C) 100 and 10
 - D) 100 and 100
- 26 If X has Pareto distribution with parameters 3 and 5 then mean of X is ------
 - A) 15/2
 - B) 15
 - C) 3/2
 - D) 5/2
- 27 If $(X_1, X_2, ..., X_k)$ follows Multinomial distribution with parameters $(n, p_1, p_2, ..., p_k)$ then $(X_1 + X_2)$ follows----- distribution.
 - A) Bernoulli
 - B) Binomial
 - C) Trinomial
 - D) None of these
- 28 If X is truncated normal variate, truncated left at X= a and truncated to the right at X= b then ---.
 - A) P(X < a) = 0
 - B) $P(X \le b) = 0$
 - C) P(X > a) = 0.5
 - D) P(X > a, X > b) =
- 29 Following is the pmf of truncated Poisson variate truncated at 0,

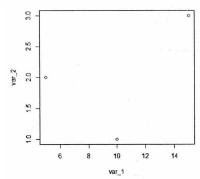
$$P(X=k) = C \frac{e^{-\lambda} \lambda^k}{k!}$$
 $k = 1,2,...$ then the value of C is-----

- A) λ^{-1}
- B) $1-e^{-\lambda}$
- C) $(1-e^{-\lambda})^{-1}$
- D) λ
- 30 If $(X,Y) \sim BN(0,0,1,1,0)$ then distribution of 2X + 3Y + 7 is -----.
 - A) N(5,13)
 - B) N(7,13)
 - C) N(7,20)
 - D) N(12,13)

- Let $T = T(x_1, x_2, ... x_n)$ be a sufficient statistic based on sample of size n from $f(x,\theta), \theta \in \Theta$. If, nI_{θ} and $I_{\theta}(T)$ denotes information contained in sample and in statistic T respectively about parameter θ , then we have
 - A) $nI_{\theta} = I_{\theta}(T)$
 - B) $nI_{\theta} \leq I_{\theta}(T)$
 - $nI_{\theta} \geq I_{\theta}(T)$ C)
 - D) $nI_{\theta} = I_{\theta}(T) = 0$
- The derivative of $f = f(x, \theta)$ can be written as...... 32
 - $\left[\frac{1}{f(x,\theta)} \frac{\partial f(x,\theta)}{\partial \theta} \right] f(x,\theta)$ $\left[\frac{\partial \log f(x,\theta)}{\partial \theta} \right] f(x,\theta)$
 - B)
 - C) Both A) and B)
 - None of A) and B) D)
- 33 The Cramer-Rao inequality provides for the variance of statistic 'T'
 - A) Upper bound
 - B) Lower bound
 - C) Both A) and B)
 - None of A) and B) D)
- 34 Which of the following is the condition required for an unbiased statistic T of parameter $\Phi(\theta)$ to be MVBUE?

 - $V(T) < \frac{\sigma'\theta}{nI_{\theta}}$ $V(T) > \frac{\sigma'\theta}{nI_{\theta}}$ $V(T) = \frac{[\sigma'\theta]^2}{nI_{\theta}}$ $V(T) > \frac{\sigma'\theta}{I_{\theta}}$
- 35 If 'T' is MVBUE of parameter θ , then information contained in T is same as information contained in
 - A) **Population**
 - B) Sample
 - C) Either population or sample
 - None of these
- 36 Let $T = T(x_1, x_2, ... x_n)$ be a sufficient statistic based on sample of size n from $f(x,\theta), \theta \in \Theta$. If information contained in sample is same as information contained in T, then T is..... statistic.
 - A) Unbiased
 - B) Consistent
 - C) Efficient
 - D) Sufficient
 - 37 The point estimator of the parameter is a.....
 - constant value A)
 - B) integer value
 - C) fraction value
 - function of sample observations D)

- If $x_1, x_2, ... x_n$ is the sample of size n is from $U(0, \theta)$ distribution, then m. l. e. of parameter θ is
 - A) Sample median
 - B) Sample mean
 - $C) X_{(1)}$
 - $D) X_{(n)}$
- If sample of size n is taken from $N(\mu, \sigma^2)$ distribution, then sample mean square (S²) is MVBUE of
 - Α) μ
 - B) σ^2
 - C) Both A) and B)
 - D) None of A) and B)
- Let $x_1, x_2, ... x_n$ be a sample of size n from Poisson distribution with parameter θ , then most appropriate moment estimator of parameter θ is.......
 - A) Sample mean
 - B) Sample variance
 - C) Any one of A) and B)
 - D) None of A) and B)
- 41 Standard error of sample mean without replacement is standard error of sample mean with replacement.
 - A) Equal to
 - B) 2 times
 - C) More than
 - D) Less than
- Suppose population is divided in two strata with $N_1 = 60$, $N_2 = 50$, $S_1^2 = 25$, $S_2^2 = 16$. Then, Neyman allocation of sample size n = 20 is
 - A) $n_1 = 12, n_2 = 8$
 - B) $n_1 = 11, n_2 = 9$
 - C) $n_1 = 9, n_2 = 11$
 - D) None of these
- 43 Stratified sampling means......
- Arbitrary divide population into k groups and selecting samples randomly from each group,
- B) Divide population into homogeneous k exclusive groups and selecting samples randomly from each group.
- enumerating all observations.
- D) Arbitrary divide population in k groups and selecting groups randomly and enumerating all observations.
 - 44 How can non-sampling error be minimized?
 - A) By increasing the sample size
 - B) By using a probability sampling method
 - C) By ensuring accurate measurement instruments and data collection procedures
 - D) By reducing the survey period


- If V $(\bar{y}_n)_{SRSWOR} = 3$, Population means square $(S^2) = 10$, Population size (N) = 5 then sample size n is
 - A) 2
 - B) 3
 - C) 1
 - D) 4
- 46 What is the primary purpose of ratio estimation in sampling?
 - A) To estimate the population mean
 - B) To improve estimation using auxiliary information
 - C) To estimate the population total
 - D) To reduce sampling error
- 47 What is the main advantage of regression estimation over ratio estimation?
 - A) Simplicity of calculation
 - B) Ability to handle non-linear relationships
 - C) Reduced bias
- not say D) are Improved precision when the relationship is not strictly proportional
 - 48 Two-stage sampling is often used when:
 - A) The population is homogeneous
- Philo areaB) The population is spread over a large geographic area
 - C) The population is small
 - D) The sampling frame is well-defined
- 49 are The method of linear systematic sampling is superior to stratified random sampling if intraclass correlation coefficient ρ is
 - A) High
 - B) Low
 - C) Moderate
 - D) All of the above
- 50 In cluster sampling with clusters of equal sizes is more efficient than corresponding SRSWOR if intra class correlation coefficient ρ is
 - A) Greater than zero
 - B) Less than zero
 - C) Equal to zero
 - D) Less than or equal to zero
 - What would be the output of the following R-code?

- A) 2
- B) 5
- C) TRUE FALSE FALSE FALSE TRUE
- D) Error:.....
- What would be the output of the following R-code?

$$x=c(10,20,30)$$

 $y=c(1,2,3)$
 $sum(x+2*y+10)$

- A) 82
- B) 182
- C) 102
- D) Error:.....

Which of the following command in R will generate following plot?


```
A)
      x=c(1,2,3)
      y=c(10,5,15)
      plot(x,y,xlab="var_1",ylab="var_2",type="p")
B)
      x=c(1,2,3)
      y=c(10,5,15)
      plot(y,x,xlab="var_1",ylab="var_2",type="p")
C)
      x=c(1,2,3)
      y=c(10,5,15)
      plot(x,y,xlab="var_2",ylab="var_1",type="p")
D)
      x=c(1,2,3)
      y=c(10,5,15)
      plot(y,x,xlab="var_2",ylab="var_1",type="p")
```

The output of the following R program is...

```
x=seq(1,10,2);y=2;t=-3
for(y in x){
  t=t+1
  if(y<6) t=t+1
  t=t-1
}</pre>
```

- A) 2
- B) 5
- c) 3
- D) 0

The output of the following R program is...

```
x=c(20,40,35)
s1=0;s2=10;y=2
for(i in x){
  if(y%%2==0){
   s1=s2+1
   s2=s1+2
  }
}
c(s1,s2)
```

- A) 17 19
- B) 14 16
- C) 15 16
- D) 13 14

- 56 Which of the following charts is most sensitive to large shifts in the process parameter?
 - Shewhart chart
 - B) **CUSUM** chart
 - C) **EWMA** chart
 - D) Moving average chart
- 57 A key parameter λ in an EWMA chart
 - sets the width of control limits
 - determines the sample size B)
 - C) controls the weighting of recent vs past data
 - D) represents the number of subgroups
- 58 The moving average control chart is suitable when
 - data is normally distributed A)
 - B) there is a need to smooth short-term fluctuations
 - there are many assignable causes C)
 - D) only attribute data is available
- The consumer's risk in a single sampling plan is the probability of 59
 - A) rejecting a good lot
 - B) accepting a bad lot
 - C) accepting a good lot
 - D) rejecting a bad lot
- $\sim 60 \sim 1$ In a single sampling plan, the sample size n and acceptance number c are usually determined based on
 - A) lot size and cost
 - B) producer's risk and consumer's risk
 - average production rate C)
 - D) standard deviation of the lot
- Let $X_1, X_2, ..., X_n$ be a sequence of independent and identically distributed random variables with mean 4 and variance 16. Which of the following statement is true?

 - $\bar{X}_n \stackrel{p}{\to} 16$ $\frac{1}{n} \sum_{i=1}^n X_i^2 \stackrel{p}{\to} 2$

 - $\sqrt{n} \left(\frac{\bar{X}_{n-4}}{4} \right) \stackrel{d}{\to} N(0,1)$ $E \left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X}_n) \right] = 16$
- 62 Let X_1, X_2, X_3 be a random sample from the uniform distribution on [0, 1]. What is the value of $P(X_{(1)} > 0.2)$?
 - A) 0.216
 - B) 0.512
 - C) 0.800
 - D) 0.488
- $63 16X_{(1)}$ is the smallest order statistic from a sample of size n from a continuous distribution with cumulative distribution function (CDF) F(x), then the CDF of $X_{(1)}$ is.....
 - $[F(x)]^n$ A)
 - $1 [1 F(x)]^n$ B)
 - $f(x) \cdot [F(x)]^n$ C)
 - D) $n[F(x)]^{n-1}[1-F(x)]$
- Let $X_1 \mid X_2 \mid \dots \mid X_n$ are independent and identically distributed Poisson variates with common mean 2, then $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ converges in probability to.....
 - A)
 - B) 4
 - 6 C)
 - 8 D)

- Let *X* be any random variable with mean μ and variance 9. Then, the smallest value of *m* such that $P[|X \mu| < m] \ge 0.99$, is.....
 - A) 90
 - B) $\sqrt{90}$
 - C) $\sqrt{\frac{100}{11}}$
 - D) 30
- Consider the 3 components (c_1, c_2, c_3) system with equal probability (p) of the functioning for each component. The system functions if at least one of c_1 or c_2 and c_3 works. What is the system reliability?
 - A) p^3
 - B) $p(1-p)^2$
 - C) $p^2(2-p)$
 - D) p(2-p)
- If the failure rate function r of a component is $r(t) = \frac{t}{1+t}$; $t \ge 0$, then the survival function

is.....

- A) e^{-t}
- B) te^{-t}
- C) $1 e^{-t}$
- D) $(1+t)e^{-t}$
- A component has an exponential lifetime with failure rate $\lambda = 0.02$. What is probability that the component survives at least 50 hours?
 - A) e^{-2}
 - B) 0
 - C) e^{-1}
 - D) 1
- What is the failure rate function of the series system of two independent components when the failure rate functions of the 2 components are $r_1(t)$ and $r_2(t)$, respectively.
 - A) $\min(r_1(t), r_2(t))$
 - $B) r_1(t) + r_2(t)$
 - C) $r_1(t) \times r_2(t)$
 - D) $\max(r_1(t), r_2(t))$
- 70 For series system with 3 components: A, B, and C, the number of minimal cut sets.....
 - A) 1
 - B) 2
 - C) 3
 - D) Depends on failure rate
- If Λ denotes the likelihood ratio test statistic, then under certain regularity conditions which of the following is the asymptotic distribution of -2log Λ ?
 - A) Chi square distribution
 - B) Normal distribution
 - C) Gamma distribution
 - D) t-distribution
- 72 The LR-test for testing H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$ based on sample from normal population leads to....
 - A) One tailed t- test
 - B) Two tailed t-test
 - C) Two tailed F- test
 - D) One tailed F- test

- 73 The most preferred confidence interval for a parameter θ should be an interval
 - A) with shortest width and largest confidence coefficient
 - B) with largest width and largest confidence coefficient
 - C) based on sufficient statistics
 - D) All of the above
- 74 In SPRT of strength ($\alpha = 0.02, \beta = 0.03$), the stopping bounds (A, B) are given by....
 - A) $\left(\frac{97}{3}, \frac{2}{98}\right)$
 - B) $\left(\frac{97}{2}, \frac{3}{98}\right)$
 - C) $\left(\frac{98}{3}, \frac{2}{98}\right)$
 - D) $\left(\frac{98}{2}, \frac{3}{97}\right)$
- 75 The likelihood ratio test statistic for testing H_0 : $\sigma^2 = \sigma_0^2$ against H_1 : $\sigma^2 \neq \sigma_0^2$ based on a sample of size n from normal population $N(\mu, \sigma^2)$ leads to....
 - A) χ_{n-1}^2 distribution
 - B) χ_{n-2}^2 distribution
 - C) t_{n-1} distribution
 - D) t_{2n-1} distribution.
- The LR-test-for-testing H_0 : $\mu_1 = \mu_2$ against H_1 : $\mu_1 \neq \mu_2$ based on two independent random samples at two leftrom $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ of sizes n_1 and n_2 respectively leads to....
 - A) t-test with (n_1+n_2) d.f.
 - B) χ^2 -test with (n_1+n_2-2) d.f.
 - C) t-test with (n_1+n_2-2) d.f.
 - D) F-test with (n_1, n_2) d.f.
 - 77 The critical region of two sample Run test is....
 - A) Two tailed
 - B) Right tailed
 - C) Left tailed
 - D) Either (A) or (B) or (C)
 - 78 K-S test for single sample is referred to as....
 - A) Test of randomness
 - B) A test of goodness of fit
 - C) Test for correlation
 - D) None of these
- hypothesis H_0 : $\mu = \mu_0$ against the alternative hypothesis H_1 : $\mu = \mu_1$, where $\mu_1 > \mu_0$. Based on a random sample of size n, determine the value of K such that the critical region for the test is $\mu > \mu$. What is the value of K if significance level is $\alpha = 0.05.2$

K. What is the value of K if significance level is $\alpha = 0.05.$?

- A) $\mu_0 + 1.645 / \sqrt{n}$
- B) $\mu_0 + 3.290 / \sqrt{n}$
- C) $\mu_0 + 3.92 / \sqrt{n}$
- D) $\mu_0 + 1.96 / \sqrt{n}$
- 80. If there are 16 observations, What are the minimum possible numbers of runs?
 - A) 2
 - B) 1
 - C) 6
 - D) 8
- 81 an Completely Randomized Design (CRD), the experimental units are assumed to be
 - A) Homogeneous
 - B) Structured
 - C) Heterogeneous
 - D) Stratified

Which of the following is used to visually inspect treatment effects? 82 A) Histogram B) **Piechart** C) Box-plot D) Line chart The F-test in ANOVA is justified by 83 A) T-test Central Limit Theorem B) C) Chochran's Theorem D) Law of Large Numbers In RBD, blocking is used to control: 84 Treatment effect B) Random variation C) Known sources of variability D) Sample size In LSD, rows and columns represent 85 **Blocks** A) **Treatments** B) C) **Experimental units** D) Random factors 86 Which test is applied for non-normal data to compare multiple groups? A) t-test B) Kruskal-Wallis test C) Z-test F-test D) The standard error of the difference between two treatment means in RBD with t treatments and r replications and mean error sum of square S_E^2 will be A) B) C) D) If the interaction effect ABC is confounded completely in 2³ experiments then d.f. for error is...... 88 A) 6(r-1)B) 7(r-1)C) 8(r-1)D) (7r-1).....transformation is useful for count data. 89 $sin^{-1}(.)$ A) $tan^{-1}(.)$ B) square root C) D) square In one-way ANOVA with total number of observations is 15 with 5 treatments then total 90 degrees of freedom is 75 A) B) 3

10

14

C) D)

91	Which of the following is a basic component of a Linear Programming Problem?
(4)	A) Non-linear constraints
*	B) Objective function
	C) Random variables
	D) All of these
92	In simplex method, which condition indicates an unbounded solution?
	A) All entries in key column are positive
4	B) All entries in key column are zero or negative
	C) Artificial variable has positive value
	D) Objective function increases indefinitely
93	Which method is used to get IBFS using penalties in transportation problem?
	A) Least cost method
	B) North West Corner Rule
	C) Vogel's Approximation Method
	D) MODI method
94	[8 6 10]
Tribud V	Consider the cost matrix = $\begin{bmatrix} 8 & 6 & 10 \\ 9 & 7 & 4 \end{bmatrix}$ and supply = [20,30], demand = [15,25,10],
	Using the North West Corner Rule, what is total cost?
	A) 400
	B) 330
	C) 520
	D) 445
95	In sequencing, the goal is to
	A) Minimize transportation cost
	B) Minimize total elapsed time
	C) Maximize jobs
	D) Equal distribution
96	Which describes a single-server queue?
	A) $M/M/1$
	B) M/M/c
	C) M/D/1
	D) M/G/1
97	M/M/1 with $\lambda = 3$, $\mu = 5$. Traffic intensity ρ ?
	A) 0.6
	B) 1.2
	C) 0.4
	D) 2.0
98	Monte Carlo simulation is based on
	A) Deterministic events
	B) Exact calculation
	C) Random sampling
	D) Optimization methods
99	Which of the following is not a property of random numbers?
	A) Uniformity
	B) Independence
	C) Predictability
	D) Reproducibility
100	Which of the following is not a decision criterion under uncertainty?
	A) Criterion of regret
	B) Criterion of optimism
	C) Criterion of probability
	D) Criterion of pessimism

Rough -

Rough -

Rough -