Seat	
No.	

C. $T = \frac{T_c}{\sqrt{6}}$ D. $T = \frac{T_c}{\sqrt{5}}$

ENT - 63

Total No. of Pages: 20

M. Sc. Entrance Examination, 2024 PHYSICS

Sub. Code: 58718

5ub. Couc. 30/10			
	Day and Date: Monday, 29-07-2024 Total Marks: 100		
	ne : 2.30 p.m. to 4.00 p.m.		
Ins	structions :		
1.	All questions are compuls	sory	
2.	Each question carries one	mark	
3.	Mark the correct answer i	n the given OMR by darker	ning the appropriate circle
4.	Use a black pen only for manswer sheet	narking the circle. Do not ma	ake any stray marks on the
5.	Follow the instructions gi	ven in the OMR sheet	
6.	Use the paper sheet provi	ded for rough work	
7.	The OMR Answer Sheet supervisor after examinat	and Question Paper shoultion	ld be handed over to the
8.	Only a Non-Programmab	le calculator is allowed	
1.	Biogas is	gas	
	A. methane	B. propane	
	C. butane	D. ethane	
2.	The critical temperature	of a superconductor at zer	o magnetic field is T _c . At
	which temperature, the	critical field becomes half	of its value at 0° K
	A. $T = \frac{T_c}{\sqrt{2}}$ B. $T = \frac{T_c}{\sqrt{2}}$	<u>.</u> <u>6</u>	

1

A. isotope effect B. London's effect C. Meissner effect D. BCS theory Which of the following is an example of top-down approach for the preparation of nanomaterials? A. Ball milling B. nucleation and growth C. Molecular beam epitaxy D. Gas phase agglomeration The order and degree of the differential equation $\frac{\partial^2 z}{\partial x^2} = k \frac{\partial z}{\partial y}$ is 5. A. 1, 2 B. 1, 1 C. 2, 1 D. 2. 2 To solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial t^2}$ by method of separation of variables, we assume the solution in the form u(x, y,t) =A. X(x)Y(y)Z(z)B. X(x)Y(y)C. X(x)Y(y)T(t)D. None of these For the equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$, the point of regular singularity is A. $x = \infty$ B.x = 1C. x = 0D. None of these

The magnetic lines of force cannot penetrate the body of a superconductor,

3.

this phenomenon is known as

Legendre's differential equation has general solution in the form

A.y = APn(x)

B. y = BQn(x)

C. APn(x) + BQn(x)

D. None of these

If x = 0 is regular singularity of the differential equation, then its series solution is assumed in the form

A. $y = \sum_{m=0}^{\infty} a_m x^m$ B. $y = \sum_{m=0}^{\infty} a_m x^{k+m}$

C. $y = \sum_{m=0}^{\infty} a_m x^{k-m}$ D. either (A) or (C)

10. The value of $\Gamma^{\frac{3}{2}}$ is

A. $\sqrt{\pi}$ B. $\frac{\sqrt{\pi}}{2}$ C. $\frac{\pi}{2}$ D. $\frac{\pi}{\sqrt{2}}$

11. β (m, n + 1) + β (m + 1,n) =

A. $\frac{m}{m+n}\beta(m,n)$ B. $\frac{n}{m+n}\beta(m,n)$ C. $\beta(m,n)$ D. 1

12. erf(x) + erf(x) =

A. 1

B. 2

C. 0

D. none of these

13. The modulus of complex number $2(\sqrt{3}+i)$ is

A. 2

B. 4

C. $2 + \sqrt{3}$

D. none of these

14. Cauchy-Riemann conditions for function f = u + iv to be analytic are

A.
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y}$$

A.
$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}$$
, $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y}$ B. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$

C.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ D. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$

D.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$$

15. Which of the following function is not analytic?

A.
$$f(z) = z$$

$$\mathbf{B}.\,f(z)=e^z$$

C.
$$f(z) = x^2 + 2ixy$$
 D. $f(z) = z^2$

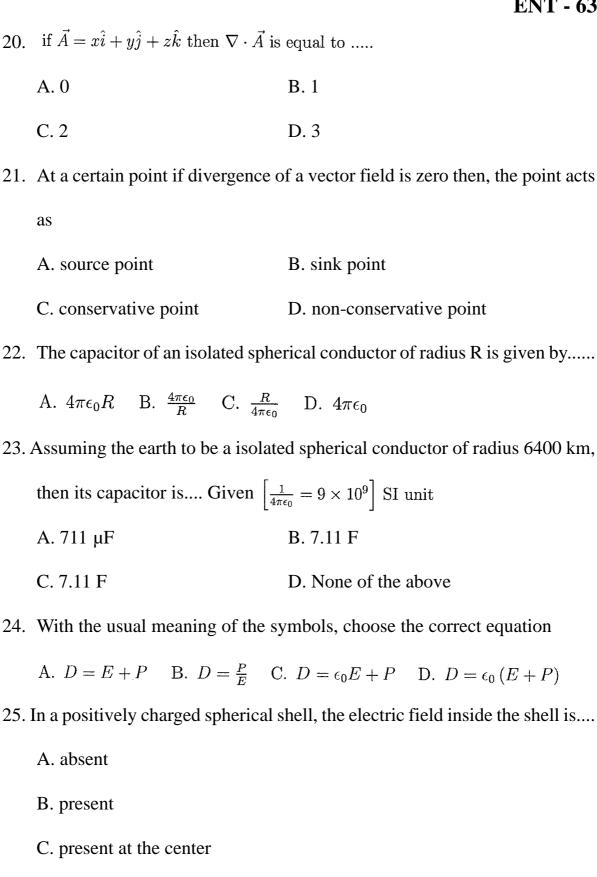
$$D. f(z) = z^2$$

- 16. For any vector field A, V. (x) is...
 - A. always zero
 - B. always non zero
 - C. always vector
 - D. None of the above
- 17. For any scalar field \vec{A} , $\nabla \cdot (\nabla \times \vec{A})$ is ...
 - A. always non zero
- B. always zero

C. always scalar

- D. None of the above
- 18. theorem converts the surface integral into the line integral
 - A. Gauss's

B. Green's


C. Stoke's

- D. None of the above
- 19.theorem converts the volume integral into the surface integral
 - A. Gauss's

B. Green's

C. Stoke's

D. None of the above

D. None of the above

26.	26. The electric flux is aphysical quantity.	
	A. vector	B. scalar
	C. tensor	D. None of the above
27.	In case of the spherical capacitor	made up of two concentric, hollow metallic
	spheres, if the separation between	en them is increased, then its capacity
	A. increases	B. decreases
	C. remains constant	D. becomes zero
28.	In LCR series circuit, at resonance	ce the current in the circuit tends to
	A. maximum	B. minimum
	C. zero	D. retard
29.	In parallel LCR circuit, at resona	ance the current in the circuit tends to
	A. increases	B. decreases
	C. remains constant	D. becomes zero
30.	With increase in resistance R in	the LCR series circuit, the sharpness
	A. increases	B. decreases
	C. remains constant	D. becomes zero
31. With increase in resistance R in the LCR series circuit, the band-width		
	A. increases	B. decreases
	C. remains constant	D. becomes zero

32.	The series LCR circuit9 is known	n as circuit	
	A. acceptor	B. rejector	
	C. complex	D. DC	
33.	Thevenin's theorem uses a source		
	A. current	B. voltage	
	C. both A and B	D. None of the above	
34.	Norton's theorem uses a	source	
	A. current	B. voltage	
	C. both A and B	D. None of the above	
35.	Resistor iscircuit eler	nent	
	A. active		
	B. passive		
	C. both active as well as passive		
	D. None of the above		
36.	The vector product of two paralle	el vectors is equal to	
	A. its magnitude		
	B. square of its magnitude		
	C. zero		
	D. None of the above		

37.	when two vectors \vec{P} and \vec{Q} of unequal magnitude are oppositely directed to	
	each other then magnitude of its resultant is	
	A. P - Q	B. $P + Q$
	C. $P^2 - Q^2$	D. $P^2 + Q^2$
38.	The equation, $\frac{dy}{dx} = \sin(x)$ isd	ifferential equation
	A. linear	B. non-linear
	C. homogeneous	D. first order non-linear
39.	when external force acting on a p	particle is zero, itsis conserved.
	A. linear momentum	B. angular momentum
	C. total energy	D. None of the above
40.	when external torque acting on a	system is zero, itsis conserved
	A. linear momentum	B. angular momentum
	C. total energy	D. None of the above
41.	In XY-plane, a particle moves p	parallel to X-axis, at $y = b$ with constant
	linear momentum (mv), then its	angular momentum is
	A. zero	
	B. mvb along -Z axis	
	C. mvb along +X axis	
	D. None of the above	

42.	42. The entropy of the universe is tending to		
	A. zero	B. minimum	
	C. maximum	D. remain constant	
43.	Efficiency of Carnot's heat engin	e is	
	A. zero	B. one	
	C. greater than one	D. less than one	
44.	All natural processes are		
	A. reversible	B. irreversible	
	C. isothermal	D. adiabatic	
45.	During reversible process	remains constant	
	A. entropy		
	B. temperature		
	C. volume		
	D. density		
46. Coefficient of viscosity of a gas at absolute temp T is proportional to			
	A. \sqrt{T}	B.T	
	C. <i>T</i> ²	D. <i>T</i> ⁻²	
47. Beat frequency of two SHM's of frequencies n_1 and n_2 is given by			
	A. $n_1 - n_2$	B. $n_1 + n_2$	
	C. $n_1 \times n_2$	D. $n_1 \pm n_2$	

48. I	48. In SIIM, acceleration varieswith displacement.	
	A. directly	B. indirectly
	C. non-linearly	D. indefinitely
49.]	In a coupled oscillator, the anti-	symmetric mode of oscillation hasthe
	frequency of the symmetric mod	le of oscillation.
	A. greater than	B. less than
	C. equal to	D. half of
50. 7	The symmetric mode of oscillation	on has the same frequency to that of
	A. simple pendulum	
	B. compound pendulum	
	C. asymmetric mode	
	D. beat frequency	
51. N	Microphones are	
	A. active transducers	B. passive transducers
	C. transducers	D. amplifiers
52. I	For a perfectly black body, the c	oefficient of transmission and absorption
	are	
	A. 0 and 1	B. 1 and 0
	C. 1 and 1	D. 0 and 0

	A. $\lambda_m^2 T = \text{constant}$ B. $\lambda_m^{-2} T = 0$	constant
	C. $\lambda_m T = \text{constant}$ D. $\lambda^4 T = \text{co}$	onstant
54.	The mathematical relation between	een entropy and probability can be stated
	as	
	A. $S = kW$	B. $S = WinK$
	C. S = KlnW	D. $S = K/W$
55.	The phase space is the superposit	tion of aspace andspace
	A. Position and Momentum	
	B. Position and Energy	
	C. Energy and Time D	
	D. Position and Angular Momer	ntum
56.	The volume of the cell in phase	space is
	A. <i>h</i>	B. h^2
	C. h^3	D. <i>h</i> ⁴
57.	If equation $\frac{d^2y}{dx^2} + H(x)\frac{dy}{dx} + B(x)y =$	= 0, the function $P(x)$ and $Q(x)$ are analytic
	at point $x = x_0$ then the point x_0	ispoint
	A. ordinary	B. singular
	C. both A and B	D. none of these

53. Wein's displacement law can be stated mathematically as

		12111 - 00
58.	For the equation, $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y$	= 0, the point of regular singularity is
	A. $x = \infty$	B. $x = 1$
	C. $x = 0$	D. None of these
59.	The Bessel's equation $x^2 \frac{d^2 y}{dx^2} + x \frac{d^2 y}{dx^2}$	$\frac{dy}{dx} + (x^2 - n^2)y = 0$ has regular singularity
	atpoint	
	A. $x = \infty$	B. $x = 0$
	C. $x = 1$	D. $x = n$
60.	The modulus of complex number	$2(\sqrt{3}+i)$ is
	A. 2	B. 4
	C. $2\sqrt{3}$	D. None of these
61.	The argument of complex numb	per $-1 - \sqrt{3}i$ is
	A. $\pi/3$ B. $2\pi/3$ C. $4\pi/3$	D. $5\pi/6$
62.	The value of $log(i)$ is	
	A. 1 B. $\pi/2$ C. $i\pi/2$ I	O. $i\pi/2$
63.	The value of $e^{(i\pi/2)}$	
	A. 1	B. $1 + i$

D. -*i*

64. Phase velocity (u) is given by

C. *i*

A. $u = \frac{\Delta \omega}{\Delta k}$ B. $u = \frac{\Delta k}{\Delta \omega}$ C. $u = \frac{\omega}{k}$ D. $u = \frac{k}{\omega}$

- 65. Uncertainty principle is expressed as
 - A. $\Delta E \cdot \Delta p \geqslant \hbar$ B. $\Delta E \cdot \Delta x \geqslant \hbar$
 - C. $\Delta x \cdot \Delta t \geqslant \hbar$ D. $\Delta x \cdot \Delta p \geqslant \hbar$
- 66. The orthogonal condition for the wave functions $\psi_1(x)$ and $\psi_2(x)$ is
 - A. $\int_a^b \psi_1^*(x)\psi_2^*(x)dx = 0$ B. $\int_a^b \psi_1(x)\psi_2(x)dx = 0$

 - C. $\int_a^b \psi_1^*(x)\psi_2(x)dx = 0$ D. $\int_a^b \psi_2^*(x)\psi_2(x)dx = 0$
- 67. If the wave function is $\psi(x,t) = Ae^{\lambda|x|}e^{-i\omega t}$ where A, λ, ω are real and positive, then A is equal to
 - A. $A = \sqrt{\lambda}$ B. $A = \lambda$ C. $A = \lambda^2$ D. $A = \lambda^3$

- 68. $[L_{+}L_{-}] = \dots$
 - A. $\hbar L_{+}$ B. $2\hbar L_{z}$ C. $\hbar L_{z}$ D. $\hbar L_{-}$

- 69. Commutation relations among position and momentum operator are expressed as
 - A. $[x_i p_j] = i\hbar \delta_{ij}$ B. $[x_i p_j] = -i\hbar \delta_{ij}$ C. $[x_i p_j] = i\hbar$ D. $[x_i p_j] = 0$
- 70. The non-degenerate state of the energy possessed by a particle in threedimensional rigid box is given by
 - A. $n_x = 3, n_y = 3, n_z = 3$ B. $n_x = 2, n_y = 2, n_z = 2$
- - C. $n_x = 4, n_y = 4, n_z = 4$ D. $n_x = 5, n_y = 5, n_z = 5$
- 71. The zero point energy of linear harmonic oscillator is

- A. $E_0 = 0$ B. $E_0 = \hbar \omega$ C. $E_0 = 2\hbar \omega$ D. $E_0 = \frac{1}{2}\hbar \omega$

72.	NAND gate is also called as	gate.	
	A. Unique	B. Complete	
	C. Universal	D. Logic	
73.	is a logic circuit that add	ls 2 binary digits at a time.	
	A. Full adder	B. Half adder	
	C. Flip-flop	D. Gates	
74.	In a transistor $I_c = 2mA$, $I_B = 0.5$	mA then I_E	
	A. 1 <i>mA</i>	B. 3 <i>mA</i>	
	C. 0 mA	D. 2.5 mA	
75.	The gain with feedback is called	gain	
	A. Closed loop	B. Open loop	
	C. Both	D. None	
76.	Power source used in CRO is abo	out volts	
	A. 200	B. 180	
	C. 360	D. 2000	
77.	77. The gain control of the vertical amplifier is calibrated in terms of		
	A. voltage		
	B. current		
	C. potential		
	D. deflection sensitivity		

78. The closed loop gain on non-inverting operational amplifier is $A_{CL} = \dots$		
A. $\frac{R_f}{R_1}$ B. $-\frac{R_f}{R_1}$ C. $1 + \frac{R_f}{R_1}$	D. $1 - \frac{R_f}{R_1}$	
79. In IC 555 reset terminal pin 2 i	is terminal	
A. Ground	B. Trigger	
C. Reset	D. Threshold	
80. For a system of N particles mo	oving independent of each other, the number	
of degrees of freedom is		
A. N	B. 2N	
C. 3N	D. 6N	
81. Langrange's equation of motio	n for conservative holonomic system is	
A. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0$	B. $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) + \frac{\partial L}{\partial q_j} = 0$	
C. $\frac{d}{dt} \left(\frac{\partial L}{\partial q_j} \right) - \frac{\partial L}{\partial q_j} = 0$	D. $\frac{d}{dt} \left(\frac{\partial L}{\partial q_j} \right) + \frac{\partial L}{\partial q_j} = 0$	
82. Hamilton's principle is given as $\delta I = \dots$ is for actual path		
A. $\delta \int_{t_1}^{t_2} L dt = 0$ B. $\int_{t_1}^{t_2} \frac{1}{L} dt$	C. $\int_{t_1}^{t_2} L^2 dt$ D. $\int_{t_1}^{t_2} L^3 dt$	
83. In a variational principle, the	line integral of a function between two end	
points is		
A. zero	B. infinite	

D. one

C. stationary

84. In Galilean relativity the transformation equation for x coordinate from S

A. x' = vt - x B. $x' = x - \frac{vt}{c^2}$ C. $x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$ D. x' = x - vt

85. The Lorentz transformation equation of time shows that the space and time are not two...... entities.

A. related

B. dependent

C. independent

to S' is......

D. different.

86. The Poisson's equation is represented as......

A. $\vec{\nabla} \cdot \vec{E} = 0$ B. $\vec{\nabla} \cdot \vec{V} = \frac{\rho}{\varepsilon_0}$ C. $\nabla^2 V = -\frac{\rho}{\varepsilon_0}$ D. $\nabla^2 \cdot E = 0$

87. Lorentz force is given by \vec{F}

A. $q\left[\vec{v}\times\left(\vec{B}+\vec{E}\right)\right]$ B. $q\left[\vec{B}+\left(\vec{v}\times\vec{E}\right)\right]$

C. $q \left[\vec{B} + \left(\vec{E} \times \vec{v} \right) \right]$ D. $q \left[\vec{E} + \left(\vec{v} \times \vec{B} \right) \right]$

88. Isotopes are nuclides with same...... but different

A. A-values, Z-values

B. A-values, N-values

C. Z-values, A-values.

D. N-values, Z-values

89. Most stable nuclide is......

A. ${}^{16}_{8}O$ B. ${}^{41}_{2}1Ca$

 $C._{82}^{206}Pb$ $D._{1}^{3}H$

90.	90. The first orbital resonance accelerator built was		
	A. Cyclotron	B. Synchrocyclotron	
	C. Betatron	D. Proton synchroton	
91.	The phase stable orbit condition in	synchrocyclotron is that the instantaneous	
	P.D. across dees is and		
	A. zero, about to become accele	rating	
	B. zero, about to become decele	rating	
	C. positive, very large		
	D. negative, very large		
92.	The gas amplification in GM-cou	unter is	
	A. less than unity	B. equal to unity	
	$C. \sim 10^3$	D. $\sim 10^{8}$	
93.	Cerenkov radiations are emitt	ed by particle moving with a velocity	
	the phase velocity	of light in same transparent medium.	
	A. half	B. less than	
	C. greater than	D. equal to	
94.	interactions are very wear	k, but have very large range.	
	A. strong	B. electromagnetic	
	C. weak	D. gravitational	

95.	are composite of quark (u and d) and an antiquark (ü and d		
	A. Leptons	B. Nucleons	
	C. Pions	D. Hyperons	
96.	6. The number of atoms per unit cell of BCC crystal is		
	A. 1	B. 2	
	C. 3	D. 4	
97.	. The ratio for hep crystal is		
	A. $\frac{2\sqrt{2}}{\sqrt{3}}$ B. $\frac{2\sqrt{3}}{\sqrt{2}}$ C. $\frac{\sqrt{3}}{2\sqrt{2}}$ D.	$\frac{\sqrt{2}}{3}$	
98.	. Reciprocal lattice to FCC lattice is		
	A. SC	B. FCC	
	C. BCC	D. HCP	
99. In Laue's method of X-ray diffraction			
	A. λ is fixed while both Θ and d varies B. λ is fixed and Θ varies C. Θ is fixed and λ varies D. Θ and λ both are fixed		
100. The susceptibility of diamagnetic material is			
	A. positive and small	B. positive and large	
	C. negative and small	D. zero	