Seat	
No.	

ENT - 60

Total No. of Pages: 18

M. Sc. Entrance Examination, 2024 MATHEMATICS Sub. Code: 58716

Day and Date : Monday, 29-07-2024

Total Marks: 100

Time: 12.30 p.m. to 2.00 p.m.

Instructions:

1) All questions are compulsory.

2) Each question carries 1 mark.

- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Use black ball point pen only for marking the circle. Do not make any stray mark on the OMR Answer Sheet.
- 5) Follow the instructions given on OMR Sheet.
- 6) Rough work shall be done on the sheet provided at the end of question paper.
- 7) Only non programmable calculators are allowed.

1) If $f(x) = x^2$ on [2, 4] and $P = \{2, \frac{5}{2}, 3, \frac{7}{2}, 4\}$ is a partition of [2, 4], then L(f, P) =____.

- A) $63/_{3}$
- B) $63/_{4}$
- C) $\frac{63}{8}$
- D) $^{126}/_4$

2) Let f be integrable function on [a, b]. For $x \in [a, b]$, let $F(x) = \int_1^x f(t) dt$. If f is continuous at x_0 in (a, b), then $F'(x_0) = \underline{\hspace{1cm}}$.

- A) $f''(x_0)$
- B) $f'(x_0)$
- C) $f(x_0)$
- D) $f(x_0) f(a)$

- 3) If $P = \{a = t_0 < t_1 < t_2 < \dots < t_n = b\}$ is a partition of [a, b], then the mesh(P) = _____.
 - A) $\max\{t_k t_{k-1} : k = 1, 2, ..., n\}$
 - B) $\min\{t_k t_{k-1} : k = 1, 2, ..., n\}$
 - C) $\max\{t_k + t_{k-1} : k = 1, 2, ..., n\}$
 - D) $\min\{t_k + t_{k-1} : k = 1, 2, ..., n\}$
- 4) $\lim_{h \to 0} \frac{1}{h} \int_{4}^{4+h} e^{t^2} dt = \underline{\qquad}.$
 - A) $4e^{x^2}$
 - B) e^{9}
 - C) e^{16}
 - D) 4
- 5) The integral $\int_0^1 \frac{\sin \sqrt{x}}{\sqrt{x}} dx$ is _____.
 - A) Improper integral of first kind
 - B) Improper integral of second kind
 - C) Improper integral of third kind
 - D) Not an improper integral
- 6) $\int_0^1 x^{m-1} (1-x)^{n-1} dx \text{ is convergent if } \underline{\hspace{1cm}}.$
 - A) m > 0, n < 0
 - B) m < 0, n > 0
 - C) m > 0, n > 0
 - D) m < 0, n < 0
- 7) $\int_0^1 \frac{\sec x}{x} dx \text{ is } \underline{\hspace{1cm}}$
 - A) divergent
 - B) absolutely convergent
 - C) convergent
 - D) proper integral

- 8) The Cauchy Principal Value of $\int_{-\infty}^{\infty} e^{-x^2} dx$ is _____.
 - A) $\pi/2$
 - B) π
 - C) $\sqrt{\pi}/4$
 - D) $\sqrt{\pi}$
- 9) In the half range Fourier cosine series expansion of $f(x) = \pi x$ in $[0, \pi]$, the value of a_0 is _____.
 - (A) 2π
 - (B) τ
 - (C) $\frac{\pi^2}{2}$
 - (D) 0
- 10) In the Fourier series expansion of $f(x) = x \cos x$ in $[-\pi, \pi]$, the value of a_n is _____
 - (A)
 - (B) T
 - (C) $\frac{2(-1)^{n+1}}{n^2-1}$
 - (D) 0
- 11) Which of the following statement is **not** correct for any group G.
 - A) Identity element is unique.
 - B) Inverse of each $a \in G$ is unique.
 - C) $(a^{-1})^{-1} = a$ for all $a \in G$.
 - D) $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.
- 12) $o(D_4) =$ _____.
 - A) 4
 - B) 8
 - C) 12
 - D) 4!
- 13) If $G = S_3$ then G' =_____.
 - A) A_3
 - B) S_3
 - C) $\{e\}$
 - D) D₄

I) $o(cl(a)) =$ II) $a \in Z(G)$ Then A) Only I) = B) Only II) =	⇒ II)	E G. Consider the fol	lowing statements:	
A ring R is can A) an integraB) division ringC) a BooleanD) field	ing	for all $x \in R$.		
A) generator B) zero diviso C) idempoten D) nilpotent		$a^n = 0$ for some	me integer n .	
statements:	integers is an ideal of l. true s true ad II) are true		tiplication. Consider the followi	ing
	sm, then $Ker f = $ $(a) = a$ } $(a) = 0'$ } $(a) = a$ }		R' respectively. If $f: R \to R'$ be	e a
	ng and I be an ideal of		1	
A) <i>R</i>	B) {0}	C) <i>I</i>	D) Z_p	

- 20) Consider the following statements for a group S_3 :
 - I) S_3 is not abelian.
 - II) $o(S_3) = 3!$. Then
 - A) Both I) and II) are true.
- B) Both I) and II) are false.
- C) Only II) is true.
- D) Only I) is true.
- 21) Let G = (V, E) be a graph, where $V = \{v_1, v_2, v_3, v_4, v_5\}$ and $E = \{(v_1, v_4), (v_2, v_3), (v_3, v_1), (v_4, v_2), (v_5, v_2), (v_4, v_1), (v_4, v_4)\}$ then the degree of the vertex v_4 is
 - A) 3
- B) 4

C) 5

- D) 2
- 22) A graph G has 26 edges and degree of each vertex is k, then which of the following is possible number of vertices of G?
 - A) 25
- B) 10
- C) 13
- D) 20
- 23) The number of distinct minimum spanning trees for the following graph are

- A)2
- B) 3
- C) 6
- D) 5
- 24) In an Euler graph the degree of every vertex is
 - A) same
- B) even
- C) odd
- D) prime number

25) Consider the tree with root v_0 shown below

The height of the rooted tree is

- A) 5
- B) 3

C)

D) 9

					ENT - 6 0
	Which of the follo A) Modus Ponens	-		c? C) Elimination	D) Contradiction
27)				dicated., R: We show	ald be overconfident.
	A) ~P V ~Q V R	B)	$P \wedge \sim Q \wedge R$	C) P V Q \wedge R	D) P V Q $\wedge \sim R$
28)	Binary equivalent	of the octal nur	mber 173 is		
	A) 1110111	B) 11110	11		
	C) 1101111	D) 110	01011		
29)	A-F system is u	sed in which c	f the following	number systems?	
	A) Binary			· · · · ·	D) Decimal
30)	Addition of the	binary number	rs 101101 and	11101 is	
	A) 1001010) 1110010
31)	Which of the foll	owing is not tl	ne characteristi	cs of the canonical	form of L. P. P
	A) objective	function is of	maximization t	ype	
	B) all constra	aints are of (≤) type		

32) The IBFS to the following transportation problem

C) all variables x_i are non-negative

D) all constraints are expressed as equations

Distribution Centres

	D_1	D_2	D_3	D_4	Supply
P_1	19	30	50	12	7
Plants P ₂	70	30	40	60	10
P ₃	40	10	60	20	18
Demand	5	8	7	15	

by using North-W	est Corner method	is	
A) 975	B)875	C)985	D)675

- 33) The transportation problem deals with the transportation of _
 - A) a single product from a source to several destinations
 - B) a single product from several sources to several destinations
 - C) a single product from several sources to a destination
 - D) a multi-product from several sources to several destinations

	C) southeastD) stepping-					
1	A) prevent to B) obtain a b C) make cer	he solution from	m becoming on total supp tal cost does	g degenerate. ly and total desired exceed s	ome specified figur	
	A) addition o B) change in C) change in	does feasibilite of variable objective fund right hand sid does not chan	ctions coeffice e of feasible	cient		
37) The	cost of a slac	k variable is B) 1		·		
A	A) 0	B) 1	C) 2	D) -1		
	or maximizat A) profit	ion in assignm B) optimiza		n, the objective C) cost	e is to maximize the D) No	e one of the above
39) For 1	the following	game				
			Player B	D I	D	
		Player A	A_1 A_2	B ₁ 20 -4	B ₂ -6 3	
The	value of game	e is	- 1			
A	A) 10/11	B) 13/	11	C) 12/11	D) 14/	11
,	-	os, each of which s (hours) are gi	_	hrough the two	o machines A and B	in the order AB.
	Job	1	2	3	4	5
	Time for A	10	2	18	6	20
	Time for B	4	12	14	16	8
	e total elapse A) 30	d time T is B) 40	 C) 50	D) 60		
41)	In any metric	space $< M, \rho >$	the Cauch	y sequence		
	A) is always	convergent seq	uence	B) need 1	not be convergent se	equence
(C) is not conv	vergent sequen	ce	D) none	of these	
						7

34) Which of the following is a method for improving an initial solution in a

transportation problemA) northwest-cornerB) intuitive lowest-cost

42)	If M is the close is the interval	d interval [-2, 2]	with absolute value	metric, then open ball B [o);3]
	A) [-3,3]	B) (0,3)	C) (-2,2)	D) [-2,2]	
43)	Which of the foll	owing is closed su	bset of an absolute n	netric space?	
	A) {1}	B) $(1, \infty)$	C) (1,2]	D) none of	
44)	In any metric spa	ce inverse image o	of closed set is		
	A) need not be c	losed set	B) is close	ed set	
	C) is open set		D) neither	open nor closed	
45)	Let $< M$, $\rho > be a$	metric space. The	e subset A of M is to	ally bounded if and onl	
	A) there exists a	sequence of point	s of A that contains a	Cauchy subsequence	
	B) every sequence	ce of points of A c	ontains a Cauchy sul	osequence	
	C) there exists a	sequence of point	s of A that contains a	convergent subsequen	
	D) every sequence	e of points of A co	ontains a convergent	subsequence	
46)	For a subset $A = 0$	(3, 5) of R,			
		$A)=1 \text{ in } R_d.$			
	(II) diam($A) = 2 \text{ in } R^1.$			
	Then	no no _q			
	A) only statemen	at (I) is true			
	B) only statemen	t (II) is true			
	C) both statemen	ts (I) and (II) are	false		
	D) both statemen	ts (I) and (II) are	true		
47)	If f is a co	ntinuous functi	on of the compa	act metric space M ₁ in	ıto
	a metric space	M ₂ , then the ran	ge $f(M_1)$ of f is		
	A) open subset	of M ₂	B) bounded	subset of M ₂	
	C) connected si	ubset of M ₂	D) closed subs	set of M ₂	
48)	If A is not a co	nnected subset o	of <i>R</i> ¹ then		
	A) A may be a	singleton set			
	B) A may be u C) A may be a		s with nonempty in	ersection	
	D) A may be v	nion of interval	s with empty inters	ection	

A set $C = \{1, 2, \dots, 1000\}$ in a discrete metric space is-----49) A) compact B) open C) need not be open D) connected Let $\langle M, \rho \rangle$ be a metric space. T: M \rightarrow M is a contraction on M then which of the following 50) B) ρ (Tx, Ty) $\leq \frac{3}{2} \rho(x, y)$ A) ρ (Tx, Ty) $\leq 2 \rho(x, y)$ C) ρ (Tx, Ty) $\leq \frac{2}{3} \rho(x, y)$ D) ρ (Tx, Ty) $\geq 3 \rho(x, y)$ 51) $L\left\{\frac{1}{\sqrt{t}}\right\} =$ _____. A) $\sqrt{\pi s}$ B) $\sqrt{\frac{s}{\pi}}$ 52) $L\{\sin^2 2t\} =$ _____. C) $\sqrt{\frac{\pi}{s}}$ D) $\sqrt{\frac{1}{\pi s}}$ A) $\frac{2}{s^2+4}$ B) $\left(\frac{2}{s^2+4}\right)^2$ C) $\frac{s}{s^2+4}$ D) $\frac{8}{s(s^2+16)}$ $53) L\left\{\int_0^t \cos 4u \ du\right\} = \underline{\hspace{1cm}}$ A) $\frac{1}{s^2+16}$ B) $\frac{s}{s^2+16}$ C) $\frac{1}{s(s^2+16)}$ D) $\frac{4}{s^2+16}$ 54) If F(t+2) is a Heaviside unit step function then $L\{F(t+2)\} =$ _____ C) $\frac{e^{-2s}}{s}$ D) e^{2s} A) e^{-2s} B) $\frac{e^{2s}}{s}$ 55) $L^{-1}\left\{\frac{1}{s+1} + \frac{6}{s^4}\right\} = \underline{\hspace{1cm}}$ D) $e^{-t} + t^3$ A) $e^{-t} + t^3$ B) $e^{-t} + \frac{t^3}{4}$ C) $e^{-t} + \frac{t^4}{4}$ 56) If $L^{-1}{f(s)} = 4 \sin t$ then $L^{-1}{f(4s)} =$ D) $\frac{1}{4}\sin\left(\frac{t}{4}\right)$ C) $\frac{1}{4}\sin t$ A) $\sin t$ B) $\cos t$ 57) If $L^{-1}{f(s)} = e^{-t}$ then $L^{-1}\left\{\frac{d}{ds} f(s)\right\} =$ _____ B) $t e^t$ C) $-e^{-t}$ D) $-te^{-t}$ 58) If $f_c(s)$ is Fourier cosine transform of F(X) then the Fourier cosine transform of $F\left(\frac{X}{a}\right)$ is _____ A) $af_c(as)$ B) $\frac{1}{a}f_c(as)$ C) $af_c\left(\frac{a}{s}\right)$ D) $\frac{1}{a}f_c\left(\frac{a}{s}\right)$

59)	In o	rder to find in	finite Fou	rier trai	nsforn	$n ext{ of } f$	(x), th	e function	f(x) mu	st be
	1	A) continuous i	n (−∞,∝	o) .	В) conti	nuous i	in (0,∞)		
	(C) integrable in	$1(-\infty,\infty)$)	D) conti	nuous	and integra	able in (–	-∞,∞)
60)	If I	F(x) is continu	ous and F	f'(x) is	piece	wise co	ontinuc	ous, then F	$S_{S}\{F'(x)\}$	And the second
	A)	$F_c\{F(x)\}$	В	$-F_c\{l$	F(x)					
	C)	$-s^2F_c\{F(x)\}$	Ι	$(s) - s F_c$	${}_{c}{F(x)}$)}				
61)		Vis a subspace A) W		n <i>L(W)</i> 3) <i>V</i>		C) {	[0]		D) φ	
62)		= (1,0,0,0) th A) 1					o Eucl D) 4		er produc	t in \mathbb{R}^4 is
63)		Im V = n and A) a subspace	$S = \{v_1,$	$v_2, \dots,$		pans V B) a		S is	of	V.
		C) a linearly d	ependent	subset		D) th	ne sma	llest subsp	pace	
64)		$\Gamma(0,1) = (0,3)$ A) 0					value o D) 3			
65) I	Let {	$\{u, v, w\}$ be a lin	early inde	pendent	set in	a vect	or space	e. Then wh	ich of the	following is
C	corre	ect? A) u is a linea B) $\{u, v, u + v + v\}$ C) $au + bv + b$ D) $\{u, u + v, v\}$	cw = 0 f	rly inder or some	ender nonze	nt. ero sca		o and c .		
,		be the inner product define		ce of rea	al poly	ynomia	ls of de	gree at mo	st 2 with r	espect to the
				$\langle f, g$	$ a\rangle = \int_{0}^{a}$	$\int_{0}^{1} f(x)$	$\cdot g(x)$	dx		
	If f	f(x) = x and g(x)								
		A) 1	B) -1	C	5) 5		D) $\frac{1}{5}$			
		$S = \{(1,0,2), (1 \text{ ar span of } S \text{ is } \}$,1,2)}. Th	e value	of k fo	or whic	h the v	ector (2k -	+ 2,1,5) b	elongs to the
		A) 1	B) -1			C) 4		D) 1/4		
68)	The	characteristic po	olynomial	of the n	natrix	$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$	is			
		A) $x^2 - 3x + C$ C) $x^2 - 3x$				2 B) x^{2}	+ 3 <i>x</i> - - 3 <i>x</i> -			

- 69) If $T: V \to W$ and $S: W \to U$ are two linear transformations such that ST is onto then A) S is onto B) T is one - one C) S is one - one D) T is onto 70) If *V* is an Inner product space and $x, y \in V$ then $||x + y||^2 + ||x - y||^2 = A) <math>2(||x||^2 - ||y||^2)$ B) $||x||^2 + ||y||^2$ C) $2(||x||^2 + ||y||^2)$ D) $||x||^2 - ||y||^2$ 71) $1 + xa + \frac{x^2}{2!}a^2 + \frac{x^3}{3!}a^3 + \frac{x^4}{4!}a^4 + \cdots$ is power series expansion of _____. A) $\sin ax$ B) e^{ax} C) $\cos ax$ D) e^x 72) $\lim_{x\to 0^-} \left(\frac{1}{1-e^{\frac{-1}{x}}}\right) =$ _______. D) 2 C)-173) If $f(x) = \frac{x - |x|}{x}$ at $x \neq 0$ and f(x) = 2 at x = 0 then at x = 0 function has_____. A)Removable Discontinuity
- 74) Which of the following is not exact differential equation? A) $(x^2 + y^2 + 1)dx + 2xydy = 0$ B) $(y^2 - ax)dy + (x^2 - ay)dx = 0$ C) $2xydx + (y^2 - x^2)dy = 0$ D) $3x^2ydx + x^3dy = 0$

B)Discontinuity of first kind C) Discontinuity of second kind

D)Infinite Discontinuity

- 76) The solution of the homogeneous linear equation $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0$ is

 A) $y = \frac{c_1}{x^4} + \frac{c_2}{x}$ B) $y = \frac{c_1}{x} + \frac{c_2}{x}$ C) $y = \frac{c_1}{x} + \frac{c_2}{x^2}$ D) $y = \frac{c_1}{x^2} + \frac{c_2}{x^2}$ A) $y = \frac{c_1}{x^4} + \frac{c_2}{x}$ C) $y = \frac{c_1}{x} + \frac{c_2}{x^2}$
- 77) If $z = \left(\frac{\sqrt{x} \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$ then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$.
- 78) General solution of the differential equation $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ is B) $x = c_1 y$, $y = c_2 z$ A) $\Phi(xy,yz)=0$ C) $\Phi\left(\frac{x}{y}, yz\right) = 0$ D) $\Phi(xyz,yz)=0$

A) Simultaneous C) homogeneous linear	B) Total differential D) linear equation with constant coefficients	nts
80) By inspection method the solution of A) $x^a y^b z^c = k$ C) $x^a + y^b + z^a = k$	f $ayzdx + bzxdy + cxydz = 0$ is B) $xyz = abc$ D) $\frac{x^2y^2z^2}{abc} = 1$	
81) The amplitude of $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$ is A) $\frac{\pi}{6}$ B) $\frac{\pi}{4}$ C) $\frac{\pi}{3}$ D) None of these		
82) If $z = 1 + i\sqrt{3}$ then $ \arg z + \arg z $ A) $\pi/3$ B) $2\pi/3$ C) 0 D) $\pi/2$	g $\bar{z} =\cdots$	
83) If $f(z) = \bar{z}$ is		
 A) Continuous for every z not discontinuous for some values of discontinuous for every z, discontinuous nor dis	of z differentiable for every z ifferential for every z	
84) If C is given by the equation $ z $	$- \alpha = R$ then the value of $\int_C \frac{dz}{z-a}$ is	
A) πi B) $2\pi i$ C) $\frac{\pi i}{2}$ D) None of these		
85) The residue of $z^2 \sin \frac{1}{z}$ at $z=0$	is	
A) $\frac{1}{12}$ B) $\frac{1}{6}$	C) 6 D) $-\frac{1}{6}$	1

79) Method of taking one variable as constant is useful in solving..... equation ·

- 86) The residue of $z^2e^{1/z}$ at z = 0 is
 - A) 1/12
- B) 1/6
- C)6
- D)12
- 87) If $I = \int \frac{dz}{z-2}$ then value of I along the curve |z-2| = 3 is
 - A) 0
 - B) 2π
 - C) $2\pi i$
 - D) None of these
- 88) If $u(x,y) = x^2 y^2$ then corresponding analytic function f(z) =_____.
 - A) $z^2 + C$ B) $z^3 + C$
- C)z + C
- D) $z^3 + iC$
- 89) The singularity of function $\frac{1}{\sin z \cos z}$ at $z = \frac{\pi}{4}$ is
 - A) Simple pole
 - B) Double pole
 - C) Singularity
 - D) None of these
 - 90) Residue of $\frac{z^2-2z}{(z+1)^2(z^2+4)}$ at double pole z=-1 is

 - A) $-\frac{4}{5}$ B) $-\frac{4}{5}$
 - C) $-\frac{14}{25}$
 - D) $\frac{14}{25}$

91) Le	et $A = \{1, 2, 3\}$	and $R = \{(1$, 1), (2, 3),	$(3, 1)$ }	be a re	lation on A the	en R is	•••
	A) reflexive	B)	symmetric	;				
	C) anti-symm	netric	D) tra	nsitive				
92) A	cyclic group of	order 7 has	s no. of	generat	ors.			
	A) 7	B)	6		C) 5		D)	4
93) If	H is a subgroup	of G and C	O(H) = 6, C	O(G) = 5	54 then	[G:H]=		
	A) 6	B) 9		C) 3		D) 2		
94) If	G is a group an	$d \in G$, then	n a subset {	$x \in G/$	xa = a	x} is called	• * *	
	A) Center of (G				B) normalize	er of 'a	' in G
	C) right coset	of 'a' in G				D) none of t	these	
95) Ev	ery finite group	o is isomorp	ohic to					
A) abelian grou	ıp F	B) a cyclic	group	ı			
C)	a permutation	group	D) no	one of t	hese			
96) W	hich of the follo	owing are ze	ero divisors	in a rin	g (Z ₁₂ ,	\oplus_{12} , \otimes_{12} $ angle$		
	A) 6, 2	B)	6, 5		C) 4, 7	7	D) 5	,7
97) Th	e greatest lowe	r bound of t	he set $\{x \in$	Q/x =	$=\frac{(-1)^n}{n}$,	$n \in N$ is		
	A)0	B)	•		**	C) -1		D) 2
98) If	${S_n} = {1, -1, 1}$	1, -2,1, -3,	} , then	$\lim_{n\to\infty} s$	$\sup S_n =$	=		
	A) 0	B)				C) -1		D) 2
99) Th	e positive p- se	ries $\sum \frac{1}{n^2}$ is	•••					
	A)convergent					B) divergent		
	C)neither conv	ergent nor	uivergent			D) none of th	iese	

- 99) The positive p- series $\sum \frac{1}{n^2}$ is ...
 - A)convergent
 - C)neither convergent nor divergent

- B) divergent
- D) none of these

- 100) The series $\sum \left(\frac{1}{2}\right)^n$ is
 - A)convergent
 - C)neither convergent nor divergent
- B) divergent
- D) none of these

- Rough Work -

ENT - 60

- Rough Work -