Seat	
No.	

Total No. of Pages: 20

P.G. Entrance Examination, July - 2023 M.Sc. PHYSICS

	Sub. Code: 58718						
•				sday, 18 - 07 - 2 o 12.00 noon	023		Total Marks: 100
11111	ie: 10	.30 a.	m. to) 12.00 noon			
Inst	ruction	ns:	1) 2)	All questions a			
			3)	-	ld be marked	d in	the given OMR answer sheet by
			4)	Follow the inst			
			5)	Rough work sh paper.	all be done on	the s	sheet provided at the end of question
1)	If an	obje	ct is	moving with a	constant vel	ocit	y, what is its acceleration?
	(A)	Zero)		1	(B)	Constant
	(C)	Varia	able		((D)	Unknown
2)	In ro	ckets	s and	Jet planes, the	e principle of	f cor	nservation of is used.
	(A)	angu	ılar m	nomentum	((B)	energy
	(C)	linea	ır mo	mentum		(D)	mass
3)	Acco	ordin	g to l	Kepler's law, t	he planetary	orbi	its around the sun are
	(A)	circu	ılar		1	(B)	elliptical
	(C)	hype	erboli	ic		(D)	parabolic

4)		atural frequency of vibration of a been of frequency v, then the body vib	ody is u and is subjected to periodic rates with frequency		
	(A)	u	(B)	v	
	(C)	greater than u	(D)	less than u	
5)		plates of glass wetted by few drarated from each other by	_	of water between them can be	
	(A)	pulling them apart normal to the su	rface		
	(B)	sliding them parallel to their planes			
	(C)	introducing some more water betw	een tl	hem	
	(D)	introducing some oil between them	l		
6)	Cou	lomb's law is only true for point ch	arges	s whose sizes are	
	(A)	medium	(B)	very large	
	(C)	very small	(D)	large	
7)	Abil	lity of capacitor to store charge dep	ends	upon	
	(A)	area of plates	(B)	distance between plates	
	(C)	type of dielectric used	(D)	all of above	
8)		formation of dipole is due to two	equa	al and dissimilar point charges	
	(A)	at a short distance	(B)	at a long distance	
	(C)	above each other	(D)	at very long distance	

Transistors and operational amplifiers are _____ 9) (B) active elements (A) passive elements (C) both active and passive elements (D) circuit elements **10**) The magnetic field B is the curl of _____ (A) magnetic vector potential (B) current density (C) electric scalar potential (D) current 11) Thermal equilibrium defines the constancy of _____ (A) volume (B) pressure (C) temperature (D) entropy 12) Heat conduction through a body is an example of_____ process. (A) reversible (B) irreversible (C) isothermal (D) isochoric 13) In standing waves the points where amplitude is maximum is called _____ (A) displacement (B) wavelength (C) antinodes (D) nodes 14) Potential energy due to stretching of a spring in a coupled oscillation is _____ $(A) \quad \frac{k(X_2 - X_1)}{2}$ (B) $\frac{k(X_2 + X_1)}{2}$

(C)
$$\frac{k(X_2 - X_1)^2}{2}$$

15)	Eve	ry phase point in phase space gives		at that point.
	(A)	momentum of molecule	(B)	probability
	(C)	state of motion of molecule	(D)	average energy
16)	Usir	ng Maxwell's thermodynamics relati	ons,	the ratio E _S /E _T is
	(A)	1	(B)	2
	(C)	γ	(D)	$1/\gamma$
17)	of th	Rayleigh's modified criterion, the content intensity at the saddle to the maximism of two close wavelength is		
	(A)	$8/\pi^2$	(B)	$\pi^2/8$
	(C)	$8 \pi^2$	(D)	$4/\pi^2$
18)	30°,	re are three prisms A, B, C of base with 36°, 45° respectively. If the light of of them, which has the highest reso	of wa	velength 5000A° is incident on
	(A)	A		
	(B)	В		
	(C)	C		
	(D)	All have the same resolving power		
19)	Paul	i-exclusion principle does not apply	' in _	statistics.
	(A)	Bose-Einstein	(B)	Fermi- Dirac
	(C)	Maxwell-Boltzmann	(D)	Both B.E and F. D

20) For two images to be just resolved when the central maximum of one should fall at _____ image. (A) central maximum of the other (B) first minimum of the other (C) first secondary maximum of the other (D) first secondary minimum of the other **21**) Partial differential equation consist of _____ (A) only one dependent variable (B) at least two independent variables (C) two dependent variables (D) at least one independent variable 22) The highest derivative term appearing in the differential equation is called _____ differential equation. (A) degree of that (B) order of that (C) linearity of that (D) both A & B 23) The equation $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = z^2$ is called ______ differential equation. (A) Non-linear (B) Laplace (C) Bessele's (D) Linear **24**) The equation $P(x)\frac{d^2y}{dx^2} + Q(x)y = 0$ is a _____ differential equation. (A) first order inhomogenous (B) first order homogenous (C) second order homogenous (D) second order inhomogenous

- 25) For the equation $x(x-1)^3 \frac{d^2y}{dx^2} + 2(x-1)y + 3y = 0$, the point regular singularity is _____.
 - (A) x = 0

(B) x = 1

(C) both (A) & (B)

- (D) none of these
- **26**) $erf(0) + erf(\infty) =$ _____.
 - (A) 1

(B) 2

(C) 0

- (D) -1
- $27) \int_{0}^{\pi/2} \sqrt{\tan\theta} d\theta = \underline{\qquad}.$
 - (A) $\frac{\pi}{2\sqrt{2}}$

(B) $\pi\sqrt{2}$

(C) $\frac{\pi}{\sqrt{2}}$

- (D) $\frac{\pi}{\sqrt{3}}$
- 28) Addition of complex numbers holds _____
 - (A) commutative law

(B) associative law

(C) distributive law

- (D) both (A) and (B)
- **29**) The division of a complex number is _____
 - (A) pure real number

- (B) pure imaginary number
- (C) again a complex number
- (D) natural number

30)	If Z	= x + iy is a complex number, then	z - z	z =
	(A)	2iI(z)	(B)	iI(z)
	(C)	2R(z)	(D)	R(z)
31)	Qua	ntum mechanics reduces to classical	l mec	chanics in the limit $\hbar \rightarrow$
	(A)	infinity	(B)	zero
	(C)	one	(D)	two
32)	Exp	ectation value of an observable in the	ne sta	ntionary states is independent of
	(A)	space	(B)	time
	(C)	both space and time	(D)	length
33)	In q	uantum mechanics, equation of co	ntinu	ity determines conservation of
	(A)	mass	(B)	charge
	(C)	probability	(D)	parity
34)		velocity with which individual wa	ve as	ssociated with a particle moves
	(A)	phase	(B)	group
	(C)	particle	(D)	none of these
35)	A na	arrow wave group have clearly defir	nes _	
	(A)	energy	(B)	position
	(C)	wavelength	(D)	velocity

				LIN	1 – 03
36)	In a	rigid box, potential energy of a free	parti	cle is	
	(A)	zero	(B)	infinite	
	(C)	one	(D)	none of these	
37)	Eige	en value of an angular momentum op	perato	or (L _z) is	
		$(m+1)\hbar$		$l(l+1)\hbar$	
	(C)	$(l+1)\hbar 2$	(D)	$m\hbar$	
38)		hydrogen atom, potential (V) experi n nucleus varies as	ence	d by an electron at a dis	tance 'r'
	(A)	$1/r^2$	(B)	1/r	
	(C)	$1/r^3$	(D)	r	
39)	Gro	und state energy of a particle in a sin	nple l	narmonic oscillator is _	
	(A)	$n\hbar\omega$	(B)	$\hbar\omega/2$	
	(C)	$nh\omega$	(D)	$(n+1/2)\hbar\omega$	
40)	[x, r]	$[\rho_y] = \underline{\hspace{1cm}}.$			
,	(A)		(B)	ħ	
	(C)			$-i\hbar$	
41)	The	hour's hand of a clock has	de	egrees of freedom	
• • •	(A)		— (B)	_	
	(C)		(D)		

42)	For a particle moving under the action of a conservative force, the Lagrangia of the system is			
	(A)	independent of the position		
	(B)	increases in the direction of a conse	ervati	ve force
	(C)	decreases in the direction of conser	vativ	ve force
	(D)	more information is needed		
43)		ngle particle is restricted to move on teneralized coordinates are		urface of sphere, then the number
	(A)	2	(B)	3
	(C)	6	(D)	4
44)	If th	e Lagrangian does not depend on tir	ne ex	aplicitly is
	(A)	the Hamiltonian is constant		
	(B)	the Hamiltonian cannot be constant	-	
	(C)	the kinetic energy is constant		
	(D)	the potential energy is constant		
45)		ariational principle the line integral of	some	e function between two endpoints
	(A)	zero	(B)	infinite
	(C)	extremum	(D)	one
46)	In th	ne case V << C, Lorentz transforma	tion i	s the same as
	(A)	Einstein's transformation	(B)	Galilean transformation
	(C)	Maxwell's transformation	(D)	Plank's transformation

47)	Acc	According to Einstein, the velocity of light in free space is						
	(A)	depending on the direction of propagation						
	(B)	variable						
	(C)	constant						
	(D)	infinite						
48)		How fast does a rocket have to move relative to an observer for its length to be contracted to 95% of its original length?						
	(A)	0.5 c	(B)	0.4 c				
	(C)	0.3 c	(D)	0.2 c				
49) A charge 'q' is moving with a velocity V parallel to a magnetic fie on the charge due to the magnetic field is				allel to a magnetic field B. Force				
	(A)	zero	(B)	Bv/q				
	(C)	qB/v	(D)	q v B				
50)	Lore	entz force is						
	(A)	(A) the vector sum of the electrostatic and magnetic force acting on a moving charged particle						
	(B)	the vector sum of the gravitational a charged particle	nd m	agnetic force acting on a moving				
	(C)	magnetic force acting on a moving	charg	ged particle				
	(D)	electrostatic force acting on a charg	ged p	article				
51)	Acc	ording to De-Morgan's first theorem	NOI	R gate is equivalent to				
	(A)	bubbled AND gate	(B)	bubbled OR gate				
	(C)	AND gate	(D)	OR gate				

52) _____ is a logic circuit that can add two bits at a time. (A) RS flip flop (B) Half adder (C) JK flip flop (D) Full adder 53) The voltage gain of an amplifier is expressed in _____ (A) ohm (B) volt (C) amp. (C) decibel 54) In crystal oscillator, the expression for frequency is _____ (B) $f = \frac{1}{2\pi\sqrt{RC}}$ (A) $f = \frac{1}{2\pi\sqrt{1.C}}$ (C) $f = \frac{1}{2\pi RC\sqrt{6}}$ (D) $f = \frac{1}{2\pi I C}$ **55**) Condition for Barkhausen criterion for sustained oscillations is _____ (A) $\beta \cdot A_v \ge 1$ (B) $\beta \cdot A_v \le 1$ (D) $\beta \cdot A_v \ge 2$ (C) $\beta \cdot A_v = 1$ **56**) ______ prevents the walls of CRT from charging to a high negative potential. (A) Aquadag (B) Focusing anode (D) Accelerating anode (C) Electron gun 57) If operational amplifier has CMRR of 90 dB, if its differential voltage gain is 2,00,000. Calculate its common mode gain _____ (A) 6.33 (B) 6.9 (C) 0.95 (D) 9.5

58)		amp as an inverting amplifier can be in feedback path.	l as a integrator by connecting a	
	(A)	resistance	(B)	capacitor
	(C)	inductance	(D)	diode
59)	IC _	is widely used as Timer.		
	(A)	555	(B)	741
	(C)	7432	(D)	7408
60)	Dut	y cycle in astable multivibrator vario	es bet	ween
	(A)	0.5 to 1	(B)	0 to 0.5
	(C)	1 to 1.5	(D)	0 to 1.5
61)		magnetic moment of an electron on is	is one	e Bohr magneton while that of
	(A)	one Bohr magneton	(B)	one nuclear magneton
	(C)	two nuclear magneton	(D)	two Bohr magneton
62)		pairing effect in the semiempirical me	ass fo	rmula suggests that the
	(A)	even Z-even N	(B)	even Z-odd N
	(C)	odd Z-even N	(D)	odd Z-odd N
63)	A fr	equency modulated supply is emplo	oyed i	in
	(A)	cyclotron	(B)	synchrocyclotron
	(C)	betatron	(D)	electron-synchrotron

64)	In betatron, the electron beam obtainable is pulsative at intervals of time seconds.						
	(A)	1/50	(B)	1/200			
	(C)	1	(D)	50			
65)	Some energetic particles passing through transparent medium produce visible light, forms the principle of						
	(A)	Cerenkov detector	(B)	Semiconductor detector			
	(C)	Wilson cloud chamber	(D)	Scintillation detector			
66)	The	time for which the GM counter become	omes	passive after discharge is called			
	(A)	dead time	(B)	recovery time			
	(C)	time of discharge	(D)	none of these			
67)	The	total magnification produced by PM	AT is	s of the order of			
	(A)	10^{3}	(B)	10^{6}			
	(C)	10^9	(D)	10^{12}			
68)	Pari	ty is not conserved in into	eracti	ions.			
	(A)	gravitational	(B)	electromagnetic			
	(C)	weak	(D)	strong			
69)	One	atomic mass unit (amu) is equal to					
	(A)	931g	(B)	931kg			
	(C)	931 MeV	(D)	931 eV			

				$\mathbf{ENI} = 03$
70)	The	quenching gas in GM tube is		
	(A)	Air	(B)	Bromine vapour
	(C)	Argon	(D)	Water vapour
71)	Max	timum power from wind turbine for	r give	en incoming wind velocity v_i is
	(A)	$P_{\text{max}} = \frac{8}{27} \rho A v_i^3$	(B)	$P_{\text{max}} = \frac{27}{8} \rho A v_i^3$
	(C)	$P_{\max} = \rho A v_i^3$	(D)	$P_{\text{max}} = \frac{8}{27} \rho A v$
72)	Whi	ch of the following is S.I. unit of wi	nd po	ower density?
	(A)	W/cm ²	(B)	KW/cm ²
	(C)	W/m^2	(D)	KW/m^2
73)		ntellite station solar energy plant, the ground station in the form of		r energy from satellite is send to
	(A)	IR waves	(B)	heat waves
	(C)	microwaves	(D)	light waves
74)		re are n solar cells in a module and m ngle solar cell, then power of the so		-
	(A)	$n \times m \times P$	(B)	n + m + P
	(C)	$(n \times m)/P$	(D)	$P/(n \times m)$
75)	Ana	erobe is a microorganism which gro	ows in	1
	(A)	The presence of oxygen	(B)	Absence of oxygen
	(C)	Absence of moisture	(D)	Absence of H ₂ S

76)	The	essential properties of superconduc	ting	materials are
	(A)	only zero resistivity		
	(B)	only perfect diamagnetism		
	(C)	zero resistivity and perfect diamagn	etisn	1
	(D)	none of the above		
77)	Whi	ch of the following in 1D nanostruct	ure?	
	(A)	nanowire	(B)	nanorod
	(C)	nanoshell	(D)	nanotube
78)	If th	e size of nanoparticles is decreased,	its su	urface to volume ratio
	(A)	decreases	(B)	increases
	(C)	remains same	(D)	increases then decreases
79)	The	first talk about nanotechnology was	give	en by
	(A)	Albert Einstein	(B)	Newton
	(C)	Gordon Moore	(D)	Richard Feynman
80)		magnetic lines of force cannot pen phenomenon is known as		e the body of a superconductor,
	(A)	Isotope effect	(B)	London's effect
	(C)	Meissner effect	(D)	BCS theory
81)	Acc	ording to theory, universe	e has	beginning and end also.
	(A)	steady state	(B)	oscillating
	(C)	nebular	(D)	big bang

82)	Acc	ording to Big-Bang Hubble constant	t H _	with time.			
	(A)	increases	(B)	remains constant			
	(C)	decreases	(D)	becomes zero			
83)	In NaCl molecule the bond formed is						
	(A)	metallic	(B)	ionic			
	(C)	covalent	(D)	spectral			
84)	Raman shift in frequency for antistokes line is						
	(A)	positive	(B)	negative			
	(C)	zero	(D)	very large			
85)	Transitions from S levels to the lowest P-level give rise to a spectral series called						
	(A)	Diffuse	(B)	Sharp			
	(C)	Principal	(D)	Fundamental			
86)	In Raman effect the lines on low frequency of exciting line are calledlines.						
	(A)	Rayleigh	(B)	Stokes			
	(C)	Antistokes	(D)	Stark			
87)	A molecular system can be stable if the total energy possessed by the molecular system is						
	(A)	zero	(B)	minimum			
	(C)	maximum	(D)	infinity			

				$\mathbf{ENI} - \mathbf{US}$			
88)	A st						
	(A)	Protostar	(B)	Red-giant			
	(C)	White dwarf	(D)	Cephied variable			
89)	energy levels are always single.						
	(A)	S	(B)	P			
	(C)	D	(D)	F			
90)	The rotational energy of a molecule depends upon						
	(A)	moment of inertia	(B)	charge			
	(C)	centre of mass	(D)	axis of rotation			
91)	The c/a ratio in HCP crystal structure is						
	(A)	0.63	(B)	1.63			
	(C)	1.66	(D)	2.63			
92)	In HCP crystal structure system, If $d_{100} = 2\text{Å}$, then $d_{002} = $						
	(A)	1Å	(B)	1.63Å			
	(C)	2Å	(D)	3.26Å			
93)	For, Simple cubic crystal structure, the relation between lattice parameter 'a' and atomic radius 'r' is						
	(A)	r = a	(B)	r = a/2			
	(C)	r = 2a	(D)	r = 4a			
94)	In re	eciprocal lattice					
	(A)	$a^* . a = 0$	(B)	a*b = 1			
	(C)	a*.a = 1	(D)	a*.a = 1/b			

,	Volu						
	(A)	a^3	(B)	$(a^3)/2$			
	(C)	$(a^3)/4$	(D)	$(a^3)/6$			
96)	In powder method of X-ray diffraction						
	(A)	λ is fixed while both θ and d varie	S				
	(B)	λ is fixed and θ varies					
	(C)	θ is fixed and λ varies					
	(D)	λ and θ both are fixed					
97)	Curi	ie law for paramagnetic material is					
	(A)	$\chi = C/T$	(B)	$\chi = C/(T - \theta)$			
	(C)	$\chi = C/(T + \theta)$	(D)	$\chi = CT$			
98)	The energy loss during hysteresis is the area of loop.						
	(A)	$\chi-T$	(B)	B - H			
	(C)	M - B	(D)	$\chi - H$			
99)	The	effective mass of an electron is m ³	* = <u> </u>				
	(A)	d^2E/dk^2	(B)	$[d^2E/dk^2]/\hbar^2$			
	(C)	$(1/\hbar)[d E/dk]$	(D)	$\hbar^2/[d^2 E/dk^2]$			
100)The	band gap energy of the semicondu	ctor i	s of the order ofeV			
	(A)	0	(B)	1			
	(C)	7	(D)	Infinite			

Rough Work

Rough Work