.

3) Let $G = S_3$. Which of the following statement is not correct? A) $G' = A_3$ is a cyclic group B) G is abelian C) A_3 is normal subgroup of G D) $\frac{G}{A_3}$ is abelian

P.G. Entrance Examination, May - 2023 M.Sc. MATHEMATICS

Sub. Code : 58716

Day and Date : Monday, 08-05-2023 Time : 1.00 p.m. to 2.30 p.m.

Instructions : 1) All questions are compulsory.

- 2) Each question carries 1 mark.
- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Follow the instructions given on OMR Sheet.
- 5) Rough work shall be done on the sheet provided at the end of question paper.

Consider a group $G = \{1, -1, i, -i\}$ under usual multiplication. Which of the

1) Let G be a group. Consider the following statements :

- I) G is abelian
- II) Z(G) = G. Then
- A) Only (I) \Rightarrow (II)

A) G is a cyclic group

following statement is not correct?

C) $(I) \Leftrightarrow (II)$

C) $G = \langle -i \rangle$

2)

- B) Neither (I) \Rightarrow (II) nor (II) \Rightarrow (I)
- D) Only (II) \Rightarrow (I)

B) $G = \langle i \rangle$

D) G = < 1 >

P.T.O.

Total Marks : 100

Seat No.

ENT - 08 4) Consider the following statements : I) Field is an integral domain. II) Integral domain is a field. Then A) Both (I) and (II) are true B) Both (I) and (II) are false C) Only (I) is true D) Only (II) is true Let R be a ring of integers. Characteristic of R is 5) B) *p* (a prime number) A) 0 C) 1 D) ∞ An element *a* in a ring R is called _____ if $a^n = 0$ for some integer *n*. 6) A) B) invertible unit C) idempotent D) nilpotent

- Let $f: Z \to Z$ defined by f(x) = 0 for all $x \in Z$, where Z is ring of integers. 7) Consider the following statements :
 - f is a homomorphism I)
 - II) f is onto. Then
 - A) Both (I) and (II) are true B) Both (I) and (II) are false
 - C) Only (I) is true

- D) Only (II) is true
- Let R be a ring. If f(x), $g(x) \in R[x]$ be non-zero polynomials such that 8) $f(x) + g(x) \neq 0$, then which of the following statement is true?
 - $\deg(f(x) + g(x)) \le \min[\deg(f(x)), \deg(g(x))]$ A)
 - $\deg(f(x) + g(x)) \le \max \left[\deg(f(x)), \deg(g(x)) \right]$ B)
 - C) $\operatorname{deg}(f(x) + g(x)) > \max[\operatorname{deg}(f(x)), \operatorname{deg}(g(x))]$
 - D) $\deg(f(x)+g(x)) \le 0$

9) Consider the ring R = {0, 1, 2, 3, 4, 5} modulo 6. If $f(x) = 1 + 2x^3$, $g(x) = 2 + x + 3x^2 \in Z_6[x]$ over Z_6 , then $deg(f(x) \cdot g(x)) =$ _____. A) 2 B) 3 C) 4 D) 5

10) Let R be a ring and I be an ideal of R. If I = {0}, then quotient ring $\frac{R}{I} \cong$ _____.

A) R B)
$$\{0\}$$

C) $\frac{1}{R}$ D) Z_{p}

11) The inverse of a complex number z = 2 + 3i is $z^{-1} =$ _____.

A) $\left(\frac{2}{13}, \frac{3}{13}\right)$ B) $\left(\frac{2}{13}, \frac{-3}{13}\right)$ C) $\left(\frac{-2}{13}, \frac{3}{13}\right)$ D) $\left(\frac{-2}{13}, \frac{-3}{13}\right)$

12) If $f(z) = x^3 + i (1 - y)^3$, then f'(z) exists only at z =_____. A) i B) -iC) 0 D) 1 + i

13) For which of the following function f(z), $\overline{f}(z)$ is also analytic?

- A) z B) e^z
- C) $\sin z$ D) 2+3*i*

14) If Log z denotes the principal value of log z, then relation between them is _____.

- A) Log $z = 2 \log z + 2n \pi i$, n = 0, 1, -1, ...
- B) $\log z = \operatorname{Log} z + 2n \pi i, n = 0, 1, -1, \dots$
- C) Log $z = 3 \log z + n \pi i$, n = 0, 1, -1, ...
- D) $\log z = \operatorname{Log} z + n \pi i, n = 0, 1, -1, \dots$

- 15) An arc z = z(t), $a \le t \le b$ which does not cross itself except z(a) = z(b) is called _____.
 - A) Jordan arc B) Jordan curve
 - C) Closed arc D) Simple arc
- 16) The series of complex numbers $\sum_{n=0}^{\infty} \left(\frac{1}{2} i\frac{1}{2}\right)^n$ is _____.

A) divergent B) converges to
$$\frac{1}{\frac{1}{2} + i\frac{1}{2}}$$

C) converges to
$$\frac{1}{\frac{1}{2} - i\frac{1}{2}}$$
 D) converges to $\frac{-1}{\frac{1}{2} + i\frac{1}{2}}$

17) The Laurent series expansion of $z^2 \sin\left(\frac{1}{z^2}\right)$ in the domain $1 < |z| < \infty$ is _____.

A)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{z^{2n}}$$

B) $\sum_{n=0}^{\infty} \frac{1}{z^{2n+1}}$
C) $\sum_{n=0}^{\infty} \frac{1}{z^{2n}}$
D) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{z^{2n+1}}$

18) If
$$f(z) = \frac{1 - \cos z}{z^3}$$
 then $z = 0$ is ______ type of singularity of $f(z)$.

- A) removable B) simple pole
- C) pole of order 3 D) essential

19) The value of the integral $\int_C \frac{(z-2)dz}{z^2(z-3)}$ taken counter clockwise around the circle |z|=2 is _____. A) $\frac{2\pi i}{9}$ B) $2\pi i$ C) $-\frac{2\pi i}{9}$ D) $\frac{2\pi i}{3}$ 20) $\lim_{z=i}^{\text{Res}} \frac{z^2 + 4z}{z^2 + 1} =$ A) $2 + \frac{i}{2}$ B) $2 - \frac{i}{2}$ C) $-2 + \frac{i}{2}$ D) $-2i - \frac{1}{2}$ 21) The set {(0, 0, 0, 0), (1, -1, 2, 3), (0, 0, 1, 4)} of vectors in \mathbb{R}^4 is ______. B) linearly independent in \mathbb{R}^4 A) linearly dependent in \mathbb{R}^4 D) orthogonal subset in \mathbb{R}^4 C) a basis of \mathbb{R}^4 22) Let I : $\mathbb{R}^3 \to \mathbb{R}^3$ be the identity transformation. Then Rank of I is _____. A) 0 B) 3 C) 1 D) 6

23) If T (x, y, z) = (x - y, y - z, z - x), then \in Ker T.A) (1, 2, 3)B) (3, 1, 2)C) (2, 4, 6)D) (1, 1, 1)

24) Let V be a vector space of 4×4 symmetric matrices of real numbers over the field of real numbers. Then dim V = _____.

A)	10	B)	8
C)	4	D)	16

25) Let P₂ be the inner product space of polynomials of degree at most 2 over the field of real numbers, where the inner product is defined as ⟨p,q⟩ = ∫₋₁¹ p(x)q(x)dx for p,q ∈ P₂. If p = x and q = x², then the inner product ⟨p,q⟩ = ____.
A) 0 B) 1/2
C) 3/2 D) 2
26) Consider the following statements :

Statement (i) The subset $A = \{(x, y, 1) : x, y \in \mathbb{R}\}$ of \mathbb{R}^3 is a subspace of \mathbb{R}^3 . Statement (ii) The subset $B = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ is a subspace of \mathbb{R}^3 . Then _____. A) Only statement (ii) is true B) Both the statements are false C) Only statement (i) is true D) Both the statements are true

27) Let T (x, y, z) = (x + y, 2z - x) be a linear transformation from \mathbb{R}^3 into \mathbb{R}^2 . If B and B' are standard ordered basis for \mathbb{R}^3 and \mathbb{R}^2 respectively, then $[T]_{B,B'} = \underline{\qquad}$.

A)	$\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 0 & 2 \end{bmatrix}$	B)	$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$
C)	$\begin{bmatrix} 1 & 1 \\ -1 & 2 \\ 0 & 0 \end{bmatrix}$	D)	$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$

- 28) Let *c* be an eigen value of a linear operator T on V. Then the set $\{v \in V | T(v) = cv\}$ is called ______ of T.
 - A) eigen space B) null space
 - C) range D) kernel

 $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

29) The constant term in the characteristic polynomial of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

30) Inner product space over complex field is called _____.

- A) Unitary space B) Euclidean space
- Real space C) None of these D)

31) The value of
$$\int_{0}^{\infty} \frac{\sin t}{t} dt = \underline{\qquad}$$
.
A) $\frac{\pi}{4}$
B) $\frac{\pi}{2}$
C) $\frac{\pi}{6}$
D) $\frac{\pi}{3}$

32)
$$L^{-1}\left\{\frac{k}{ks-1}\right\} = \underline{\qquad} k > 0$$

A) e^{2k}

C)
$$e^{4k}$$
 D) e

33)
$$L\{a^{t}\}=$$
_____.
A) $\frac{1}{s-\log a}$
B) $\frac{1}{s-a}$
C) $\frac{a}{s-\log a}$
D) does not exist

 $e^{\frac{s}{k}}$

B)

34) Infinite inverse Fourier sine transform of e^{-as} over $0 < s < \infty$ is _____ where

$$F(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty f_s(s) \cdot \sin sx \, ds$$

A)
$$\sqrt{\frac{2}{\pi}} \cdot \frac{x}{(a^2 + x^2)}$$

B)
$$\sqrt{\frac{2}{\pi}} \cdot \frac{x}{(a^2 - x^2)}$$

C)
$$\sqrt{\frac{2}{\pi}} \cdot \frac{1}{(a^2 + x^2)}$$

D)
$$\sqrt{\frac{2}{\pi}} \cdot \frac{1}{(a^2 - x^2)}$$

35) If L
$$\{f(t)\}=f(s)$$
 and $G(t)=f(t-a)$ $t > a$
 $= 0$ $t < a$
then L $\{G(t)\} =$ ______
A) $e^{as} \cdot f(s)$ B) $e^{-as} \cdot f(s)$
C) $e^{-s} \cdot f(s)$ D) $e^{-as} \cdot f'(s)$

36)
$$L\{e^{-4t} \cdot t^4\} =$$

A) $\frac{4}{(s-4)^4}$
B) $\frac{5!}{(s-3)^4}$
C) $\frac{5!}{(s+3)^4}$
D) $\frac{4!}{(s+4)}$

B)
$$\frac{5!}{(s-3)^4}$$

D) $\frac{4!}{(s+4)^5}$

37)
$$L^{-1}\left\{\frac{1}{(s-3)^2}\right\} =$$

A) $e^{2t} \cdot t$ B) $e^{3t} \cdot t$
C) $e^{3t} \cdot t^2$ D) $e^t \cdot t$

38) If $L\{f(t)\} = f(s)$ then $L^{-1}\{f(as)\} =$ A) $a L^{-1}\left\{f\left(\frac{s}{a}\right)\right\}$ B) $2a L^{-1}\left\{f\left(\frac{s}{a}\right)\right\}$ C) $\frac{1}{a}L^{-1}\left\{f\left(\frac{s}{a}\right)\right\}$ D) $\frac{1}{a}L^{-1}\{f(s)\}$

40)
$$L^{-1}\left\{\log\left(\frac{s+4}{s+3}\right)\right\} =$$

A) $\frac{1}{t}\left\{e^{-3t} + e^{-2t}\right\}$ B) $\frac{-2}{t}\left\{e^{-4t} - e^{-3t}\right\}$
C) $\frac{2}{t}\left\{e^{-3t} + e^{-4t}\right\}$ D) $\frac{-1}{t}\left\{e^{-4t} - e^{-3t}\right\}$

- 41) In '*n*' jobs and two machines (say A and B) sequencing problems in which the order of processing is AB.
 - A) Job having minimum time on machine B is processed first
 - B) Job having minimum time on machine A is processed in the last
 - C) Job having minimum time on machine B is processed in the last
 - D) Job having maximum time on machine B is processed in the last

42) In 3 machines and 5 jobs problem, the processing times are given in the following table

Job	1	2	3	4	5
A	30	80	70	50	40
В	40	50	10	20	30
С	70	90	50	60	100

The optimum sequence would be : _____.

A)	1-5-4-3-2	B)	2-4-3-5-1
C)	4-1-3-2-5	D)	4-1-5-2-3

43) Let T = Total elapsed time to process all jobs through two machines M_1 and M_2 , t_{2i} = Time required for processing jth job on machine M_2 ,

 I_{2j} = Time for which machine M_2 remains idle after processing (j - 1)th job and before starting work on jth job. Then _____ .

- A) $T = \sum_{j=1}^{n} t_{2j} + \sum_{j=1}^{n} I_{2j}$ B) $T > \sum_{j=1}^{n} t_{2j} + \sum_{j=1}^{n} I_{2j}$ C) $T < \sum_{j=1}^{n} t_{2j} + \sum_{j=1}^{n} I_{2j}$ D) $T = \sum_{j=1}^{n} t_{2j} - \sum_{j=1}^{n} I_{2j}$
- 44) Using Dominance method following matrix can be reduced to _____.

$\begin{bmatrix} -5\\5\\5 \end{bmatrix}$	10 -10 -20	20 -10 -20		
A)	[10 10	20 -10	B)	$\begin{bmatrix} 5 & -10 \\ 5 & -20 \end{bmatrix}$
C)	$\begin{bmatrix} -5\\5 \end{bmatrix}$	$\begin{bmatrix} 10 \\ -10 \end{bmatrix}$	D)	$\begin{bmatrix} -10 & -10 \\ -20 & -20 \end{bmatrix}$

45) Which statement is true about the game $\begin{bmatrix} 1 & -3 \\ 4 & 1 \end{bmatrix}$?

- A) game is fair B) value of the game is 4
- C) value of the game is 1 D) no saddle point exists

46) A saddle point of a payoff matrix is that position in the matrix where _____.

- A) Maximum of row minima is equal to minimum of column maxima
- B) Maximum of row minima is not equal to minimum of column maxima
- C) Maximum of row minima is greater than to minimum of column maxima
- D) Maximum of row minima is less than to minimum of column maxima

47) In Vogel's method, the difference between the smallest cost & second smallest cost for each row & column is called _____ .

- A) Requirement B) Saddle point
- C) Penalty D) Capacity

48) The dummy source or destination in a T.P. is introduced to _____.

- A) Prevent solution to become degenerate
- B) To satisfy rim conditions
- C) Ensure that total cost does not exceed a limit
- D) Solve the balanced transportation problem

49) Hungarian method is used to solve _____

- A) Transportation problem B) Assignment problem
- C) 2×2 games D) Linear programming problem
- 50) If *m* is the number of constraints in a linear programming with two variables *x* and *y* and non-negativity constraints $x \ge 0$, $y \ge 0$ the feasible region in the graphical solution will be surrounded by how many lines?
 - A) m B) m + 1
 - C) m + 2 D) m + n 1

51) The binary number 110101 in decimal notation is given by

 A) 53
 B) 35

 C) 30
 D) 50

52) Addition of binary numbers 1101 and 111 is

- A) 11001 B) 10011
- C) 10101 D) 10100

53) The premises $(p \land q) \lor r$ and $r \rightarrow s$ imply which of the conclusion?

A)	$p \lor r$	B)	$p \lor s$
C)	$p \lor q$	D)	$q \lor r$

54) A compound statement using "AND" is called

A)	induction	B)	disjunction
C)	conjunction	D)	negation

55) Which of the following statements is a Tautology?

A)	$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$	B) $(p \rightarrow q) -$	$\rightarrow (p \land q)$
C)	$p \wedge \neg q$	D) $(p \wedge \neg q)$	$(\neg p \lor q)$

56) Let G be a graph such that minimum degree of each vertex is at least 2 then

- A) G is acyclic B) G is always connected
- C) G contains at least one circuit D) G is always simple

57) Let G be a simple graph. Which of the following statements is true?P: Adjacency matrix is symmetric.

- Q : Trace of adjacency matrix is 1.
- A) Ponly B) Qonly
- C) Both P and Q D) Neither P nor Q

- 58) The maximum number of edges in a simple graph G with n vertices is
 - A) n(n-1)C) n(n+1)/2B) 2nD) n(n-1)/2
- 59) Consider the tree with root v_0 shown below

The number of leaves on the tree are

A)	5	B)	6
C)	4	D)	9

60) In an Euler graph the degree of every vertex is

A)	same	B)	even
C)	odd	D)	prime

- 61) If f is a bounded function defined on [a, b], then f is integrable on [a, b] if and only if
 - A) L(f) < U(f)B) L(f) > U(f)C) L(f) = U(f)D) L(f) + U(f) = 0

62) If
$$F(x) = \int_{1}^{\sqrt{x}} \sin t \, dt$$
, then $F'(x) =$ _____
A) $\frac{\sin \sqrt{x}}{2\sqrt{x}}$
B) $\sin \sqrt{x}$
C) $\frac{\sin \sqrt{x}}{\sqrt{x}}$
D) $\cos \sqrt{x}$

-13-

63)
$$\int_{a}^{\infty} \frac{dx}{x^{p}} dx$$
, where $x > a > 0$, is convergent if ______
A) $p = 1$ B) $p > 1$
C) $p \le 1$ D) $p < 1$

64) If f(x) is an even function then for Fourier series in $(-\pi, \pi)$, $b_n =$ _____

A)
$$\infty$$
 B) $(-1)^{n+1}$

 C) 0
 D) -1

65)
$$\int_{0}^{1} \frac{\sec x}{x} dx$$
 is _____
A) convergent B) absolutely convergent
C) divergent D) proper integral

- 66) Let g be continuous on [a, b] and differentiable in (a, b). If g' is integrable on [a, b], then
 - A) $\left| \int_{a}^{b} g \right| \leq \int_{a}^{b} |g|$ B) $\int_{a}^{b} g' = g(b) - g(a)$ C) $\left| \int_{a}^{b} g \right| \geq \int_{a}^{b} |g|$ D) g(b) = g(a)
- 67) The mesh of partition P is ______ of the subinterval comprising P.
 - A) Minimum length

B) Maximum length

C) Equal

D) None

68)
$$\lim_{x \to 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} dt =$$

A) $e^{x^{2}}$
B) 0
C) 1
D) $2e^{x^{2}}$

-14-

- A) set B of X B)
- C) set B of Y

- B) subset B of X
- D) subset B of Y
- 72) If E is any subset of metric space M then which of the following statement is true?
 - A) $E \subset \overline{E}$
 - B) E is closed subset of M if $E = \overline{E}$
 - C) E is closed and $\overline{E} = \overline{\overline{E}}$
 - D) All the statements in (A), (B) and (C) are true

73) Every subset of R_d is _____.

- A) both open and closed B) only open
- C) only closed D) neither open nor closed
- 74) Let $\langle M_1, \rho_1 \rangle$ and $\langle M_2, \rho_2 \rangle$ be metric spaces and let $f: M_1 \Rightarrow M_2$. Then f is continuous on M_1 if and only if f^{-1} (G) is open in _____, whenever G is open in M_2 .
 - A) M_1 B) M_2
 - C) $f(M_1)$ D) $f(M_2)$

75)	Any	polynomial function is	at ea	ach point in R ¹ .
	A)	continuous	B)	discontinuous
	C)	not differentiable	D)	always constant
76)	The	set in metric space X is closed if an	nd on	ly if its complement is
	A)	closed	B)	open
	C)	always empty set	D)	always X
`			0	
77)	The	intersection of countable collection	n of o	pen sets 1s
	A)	always open	B)	always closed
	C)	need not be open	D)	neither closed nor open
78)	The	set \overline{E} of all limit points of E is called	ed the	2
	A)	open set	B)	closure of E
	C)	connected set	D)	compact
	- 0			
79)	If a	$\in \mathbf{R}_{d}$ then $\{a\}$ is		
	A)	B [<i>a</i> ;1]	B)	open set in R _d
	C)	not open set in R _d	D)	not closed set in R _d
80)	1f <i>f</i> ;	is continuous at a and if $a \in \mathbf{D}$ then	ofic	antinuous
80)	•	is continuous at u and if $c \in \mathbb{R}$ then		continuous
	A)	on K	B)	at a
	C)	at c	D)	at a.c
81)	The	greatest lower bound of the set {1/	$2^n \mid n$	$i \in \mathbb{N}$ is .
,	A)	1/2	B)	1
	C)	0	D)	2
	,		,	

(\mathbf{a})	T 1	C 11	1 1	•	C	• .	•	
X71	The set	ot all	ordered	nairs	ot.	integers	15	
041	The Set	or an	oracica	pans	U1	megers	10	
				1		0		

A)	finite		
----	--------	--	--

D) none of these C) uncountable

83) Consider two statements

- Every absolutely convergent series is convergent I)
- Every Cauchy sequence of real numbers is not bounded II)
- Only (I) is true Only (II) is true A) B)
- C) Both (I) and (II) are true

B) countable

Both (I) and (II) are false D)

84)	The	series	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p} \text{ converges for } ____$
	A)	p < 0	B) $p > 0$
	C)	p = 0	D) $p = -1$

85)	$\{S_n\}$	={1,-1,1,-1,1,-1,}	is (C,1) summal	ble to
	A)	-2	B)	0
	C)	2	D)	1/2

86) Let H be a subgroup and K be a normal subgroup of the group G, then is normal in H.

- A) $H \cup K$ B) $H \cap K$
- C) H+K D) none of these

87) Which of the following is not an ideal of a ring $(Z,+,\cdot)$?

A)	(2Z,+, ·)	B)	$(3Z, +, \cdot)$
(\mathbf{C})	(67 + 1)	D)	$(\mathbf{D} \perp \cdot)$

C)	$(6Z, +, \cdot)$	D)	$(R,+,\cdot)$

88)	The	order of symmetric group s_5 is	·		
	A)	40	B)	60	
	C)	120	D)	100	

89) The rank of every *n*-rowed non-singular matrix is _____.

A)	0	B)	$n \times n$
C)	п	D)	∞

90) The number of generators of the cyclic group of order 8 is

 A) 1
 B) 2

 C) 3
 D) 4

91) Left hand limit of $f(x) = \frac{|x|}{x} \text{as } x \to 0 \text{ is}$ A) 1 B) -1

C) 0 D) does not exist

92) The function $f(x) = x^2 - 2x$ satisfies all the conditions of Lagrange's mean value theorem in [-1, 3], then the value of 'c' is _____

- A) 0 B) 2
- C) 1 D) -1

93) The function
$$u = \sin\left(\frac{x^2 + y^2}{x + y}\right)$$
 is _____.

- A) a homogeneous function of degree 1
- B) a homogeneous function of degree 2
- C) a homogeneous function of degree 0
- D) not a homogeneous function
- 94) If $y = x^{n}$, then $y_{n} =$ _____. A) n! B) 0 C) nx^{n-1} D) x^{n-1}

95) The maximum value of the function $f(x,y) = 2(x-y)^2 - x^4 - y^4$ at the point

- $(\sqrt{2}, -\sqrt{2})$ is _____. A) 8 B) -8
- C) 0 D) 16

96) The complete integral of $z = px + qy + \log (pq)$ is _____. A) $z = ax + by + \log (ab)$ B) $z = ax + y \log a + c$ C) $z = ax - by + \log (ab)$ D) $z = ax - y \log a + c$

97) The order of partial differential equation $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 3z$ is _____. A) 2 B) 4

98) The complementary function of $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = x$ is _____. A) $C_1 e^x + C_2 e^{2x}$ B) $C_1 e^{-x} + C_2 e^{-2x}$ C) $C_1 x + C_2 x^2$ D) $C_1 + C_2 x$

99)
$$\frac{1}{D-a}f(x) = \underline{\qquad}$$

A) $e^{-ax}\int f(x)e^{-ax} dx$
B) $e^{-ax}\int f(x)e^{ax} dx$
C) $e^{ax}\int f(x)e^{ax} dx$
D) $e^{ax}\int f(x)e^{-ax} dx$

100) If $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ is function of x alone say f(x), then integrating factor is ______. A) f(x) B) $e^{\int f(x)dx}$ C) f(y) D) $e^{\int f(y)dy}$

Rough Work