M. Sc. Entrance Examination, June - 2022 PHYSICS

Sub. Code : 58718

Day and Date : Friday, 10 - 06 - 2022 Time : 3.30 p.m. to 5.00 p.m. **Total Marks : 100**

Instructions :	1)	All questions are compulsory.
----------------	----	-------------------------------

- 2) Each question carries one mark.
- **3**) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Follow the instructions given on OMR sheet.
- 5) Rough work shall be done on the sheet provided at the end of question paper.

1) Angular acceleration is the rate of change of ______

- (A) Angular momentum (B) Linear momentum
- (C) Linear velocity (D) Angular velocity

2) The principle virtual work deals only the cases of _____

- (A) Statics (B) Dynamics
- (C) Mechanics (D) Kinematics
- **3**) All accessible microstates corresponding to possible macrostates are equally probable is known as _____
 - (A) Priori probability (B) Thermodynamic probability
 - (C) Most probable distribution (D) Probability distribution

- 4) For a system of N Particles moving independent of each other the number degrees of freedom is _____
 - (A) N (B) 2N
 - (C) 3N (D) 6N
- 5) A charged particle in an electromagnetic field experience a force called_____
 - (A) Gravitational force (B) Lorentz force
 - (C) Frictional force (D) Restoring force
- 6) The ______ force is an interaction.
 (A) Frictional (B) Electromagnetic
 - (C) Centrifugal (D) Viscous
- 7) 1 Fermi is equal to ______
 (A) 10^-9 m
 (B) 10^-10 m
 (C) 10^-11 m
 (D) 10^-15 m
- 8) _____ is the minimum energy required to break the nucleus into its constituent particles.
 - (A) Potential energy (B) Kinetic energy
 - (C) Binding energy (D) None of these
- 9) In hall effect, if current is flowing due to motion of holes, the hall coefficient is.
 - (A) Positive (B) Negative
 - (C) Zero (D) Either positive or negative
 - -2-

10) The conduction band of-insulator is
(A) Completely empty
(B) Completely filled
(C) Partially filled
(D) Partially empty

11) The SI unit of Flux density B is _____

- (A) A/m (B) A.m
- (C) wb/m (D) wb/(m^2)

12) In powder X-ray diffraction _____

- (A) λ is fixed while both θ and dhkl varies
- (B) λ is fixed and θ varies
- (C) θ is fixed and λ and varies
- (D) Both λ and θ varies
- **13**) The amount of work done in moving a unit positive charge from infinity to that point against the electrostatic forces is called _____
 - (A) Electric charge (B) Electric current
 - (C) Electric potential (D) All
- 14) The volume of unit cell of reciprocal lattice is
 - (A) $a^*.(b^*xc^*)$ (B) $a^*.(b^*.c^*)$
 - (C) a*.b*.c* (D) a*xb*xc*

15) The parallelogram law of vector addition is also used to find the ______ of two vectors

- (A) Multiplication (B) Division
- (C) Substraction (D) Resultant

16) The magnitude of the resultant of two unit vectors is _____

- (A) Zero (B) Square root of three
- (C) Square root of two (D) Two

17) The cross product of the vectors 3i + 4j - 5k and -i + j - 2k is, _____

- (A) 3i 11j + 7k (B) -3i + 11j + 7k
- (C) -3i 11j 7k (D) -3i + 11j 7k

19) The induced charge per unit area of a given dielectric substance is called as_____

- (A) Electric polarization vector (B) Electric displacement vector
- (C) Electric intensity vector (D) None of these
- **20**) If v = ix + jy + zk, then $\nabla \bullet V =$ _____
 - (A) 0 (B) 1
 - (C) 2 (D) 3

21)	In p	hase space, each cell has	volu	me.
	(A)	Minimum	(B)	Maximum
	(C)	Negligible	(D)	Finite
22)	The	rmal conductivity in gases is due to		
	(A)	Difference in molecular concentration	ions	
	(B)	The difference in velocity of molec	ules	
	(C)	Difference in temperatures		
	(D)	None of these		
23)	Nor	mal coordinates in coupled oscillator	ry sys	stem involve frequency
	(A)	One	(B)	Two
	(C)	Three	(D)	Two or Three
			. ,	
	~ /			
24)	The	del operator was first introduced b	У	
24)	The (A)	del operator was first introduced b Newton	y (B)	Kepler
24)	The (A) (C)	del operator was first introduced b Newton Ferguson	y (B) (D)	Kepler Hamilton
24)	The (A) (C)	del operator was first introduced b Newton Ferguson	y (B) (D)	Kepler Hamilton
24) 25)	The (A) (C) The	del operator was first introduced b Newton Ferguson dimension of electric field is	y (B) (D)	Kepler Hamilton
24) 25)	The (A) (C) The (A)	del operator was first introduced b Newton Ferguson dimension of electric field is [M L T ⁻³ A ⁻¹]	y (B) (D) (B)	Kepler Hamilton [M L T ⁻² A ⁻¹]
24) 25)	The (A) (C) The (A) (C)	<pre>del operator was first introduced b Newton Ferguson dimension of electric field is [M L T⁻³ A⁻¹] [M L T⁻³ A⁻²]</pre>	y (B) (D) (B) (D)	Kepler Hamilton $[M L T^{-2} A^{-1}]$ $[M L T^3 A^{-1}]$

26) Intensity of Sound waves is proportional to _____

- (A) Square of the amplitude (B) Square of the frequency
- (C) Density of the medium (D) All of the above

27)
$$\int_{0}^{1} x^{2} (1-x)^{-1/2} dx =$$

(A) $8\pi^{1/2}/15$ (B) $8/15$
(C) $16\pi^{1/2}/15$ (D) $16/15$

28) Legendre's differential equation has general solution.in the form _____

- (A) $y = AP_n(x)$ (B) $y = BQ_n(x)$
- (C) $y = AP_n(x) BQ_n(x)$ (D) $y = AP_n(x) + BQ_n(x)$

29) It is thought that the main origin of cosmic rays is _____

- (A) Supernova and pulsar (B) Sun
- (C) Moon (D) None of these
- **30)** In a cubic crystal structure system if atomic radii r =2Å, then value of lattice constant, a = _____
 - (A) 0.5Å (B) 1Å
 - (C) 2Å (D) 4Å

- **31**) For a HCP crystal structure if c = 1.63 Å, then interplanner spacing for (100) plane is
 - (A) 1.63 Å (B) (1/1.63) Å
 - (C) 1 Å (D) 3.26 Å
- **32**) Nicol prism is made up of ______
 - (A) Natural calcite crystal (B) Properly cut natural calcite crystal
 - (C) Natural quartz crystal (D) Properly cut quartz crystal
- **33**) For just resolution of two nearby wavelengths, the central maximum of one should fall at ______
 - (A) Central maximum of the other (B) First minimum of the other
 - (C) First secondary maximum of other (D) All the above

34) The most probable distribution depends upon ______

- (A) Total area of phase space (B) Area of cell
- (C) Average density (D) average density and area of cell
- **35**) The gradient of a vector field is _____ quantity.
 - (A) A vector (B) A scalar
 - (C) Physical (D) Chemical

36) In Joule Thomson effect, cooling effect is observed at _____

(A) $T_i = 193 \text{ K}$ (B) $T_i > T$ (C) $T_i < T$ (D) $T_i = T$

37) Slow frequency of normal mode of oscillation of two identical pendula is given by _____

- (A) $\sqrt{(g/l)}$ (B) $\sqrt{(g/l + 2k/m)}$
- (C) $\sqrt{(l/g)}$ (D) $\sqrt{(l/g + 2k/m)}$
- 38) Reflection coefficient (R) and transmission coefficient (T) are related by
 - (A) R + T = 0 (B) R + T = 1
 - (C) R = 1/T (D) R T = 0

39) The total probability of the system _____

- (A) Increasing (B) Decreasing
- (C) Remains constant (D) None of the above
- **40)** The magnetic lines of force cannot penetrate through the body of superconductor this phenomenon is known as _____
 - (A) Isotopic effect (B) London effect
 - (C) Meissener effect (D) BCS theory

41) The susceptibility of superconductor is _____

- (A) 0 (B) 1
- (C) -1 (D) 2

- **42**) Which of the following method is physical method of synthesizing nanomaterials?
 - (A) Colloidal (B) Sputtering
 - (C) Spray pyrolysis (D) Electrodeposition
- **43**) Quantum dots are ______ dimensional nanostructures.
 - (A) One (B) Zero
 - (C) Two (D) Three
- **44**) Which of the following is an example of top-down approach for the preparation of nanomaterials ?
 - (A) Ball milling (B) Nucleation and growth
 - (C) Molecular beam *epitaxy* (D) Gas phase agglomeration
- **45**) Nanomaterials are the materials with at least one dimension measuring less than _____
 - (A) 1 nm (B) 10 nm
 - (C) 100 nm (D) 1000 nm
- **46**) For the equation $\frac{d^2y}{dx^2} + H(x)\frac{dy}{dx} + B(x)y = 0$ the functions P(x) and Q(x) are analytical at point $x = x_0$, then the point x_0 is _____ point.
 - (A) Singular (B) Ordinary
 - (C) Differential (D) None
 - -9-

- **47**) If natural frequency of vibration of a body is u and is subjected to periodic force of frequency v, then the body vibrates with frequency _____
 - (A) u (B) v
 - (C) Greater than u (D) less than u

48) Damped oscillatory motion occurs when the restoring force is _____

- (A) Greater than damping force (B) Less than damping force
- (C) Equal to damping force (D) Equal to external periodic force

49) A small amount of liquid, set free in the air, takes spherical shape because of its _____

- (A) High density (B) Viscosity
- (C) Elasticity (D) Surface tension

50) A beam supported at both the ends and loaded at the centre is equivalent to
(A) a cantilever
(B) Three cantilevers

(C) Two cantilevers (D) Four cantilevers

51) The oscillatory motion of a body about its mean position only under the action of restoring force developed is called ______ oscillatory motion.

- (A) Damped (B) Free
- (C) Over damped (D) Forced

- **52**) If a diatomic gas molecule has translational, rotational and vibrational degrees of freedom, then the ratio of Cp/Cv, is _____
 - (A) 1.29 (B) 1.40
 - (C) 1.33 (D) 2
- 53) A Carnot's engine is operating between 100°C and 50°C. Its efficiency will be.
 - (A) 13.4 % (B) 15.29%
 - (C) 50 % (D) 100%

54) During an adiabatic change of thermodynamic system, ... remains constant.

- (A) Pressure (B) Temperature
- (C) Volume (D) entropy
- **55**) Entropy is a measure of _____
 - (A) Perfect order (B) Available energy
 - (C) Disorder (D) Chemical composition of matter

56) Which of thermodynamic function have P and T independent variables?.

- (A) Internal energy (B) Helmholtz free energy
- (C) Gibb's function (D) Enthalpy

- **57**) The method of separation of variables is useful for conversion of given differential equation into ________ equation.
 - (A) Ordinary differential (B) Partial differential
 - (C) Cubic (D) Quadratic

58) As absolute temperature of a perfectly black body is reduced to half its Value, then rate of emission of energy per unit area becomes ______ times.

- (A) 0.045 (B) 0.056
- (C) 0.063 (D) 0.073

59) To obtain two coherent sources _____

- (A) They must have same wavelength
- (B) They must have same path difference
- (C) They must have same phase difference
- (D) They must be derived from the same original source
- **60**) For just resolution of two nearly equal wavelengths the angular separation, their principal maxima should be equal to _____
 - (A) Angular width (B) Half the angular width
 - (C) Double the angular width (D) Quarter the angular width

61) In IC 555, trigger is applied at terminal number _____

- (A) 3 (B) 1
- (C) 4 (D) 2

62) When J = K = 1 and clock is high then the J-K Filp-Flop is in the _____state.

(A)	Reset	(B)	Set
(C)	toggle	(D)	Last

63) The arrangement of electrodes which produce a focused beam of electrons is called _____

- (A) Electron tube (B) Electron gun
- (C) Electric tube (D) Electric gun

64) The working principle of cloud chamber states that the super saturated vapor remains ______ against the formation of droplets.

- (A) Stable (B) Unstable
- (C) First stable and then unstable (D) None of these

65) In cyclotron, the energy of the particles accelerated is _____P.D. between the Dees.

- (A) Directly proportional to (B) Inversely proportional to
- (C) Independent of (D) None of these

66) ______ are elementary particles which are not constituted of quarks.

- (A) Baryons (B) Mesons
- (C) Leptons (D) Nucleons
- 67) _____ colour of stars are hottest
 (A) Red (B) Blue
 - (C) Yellow (D) None of these

68)	The	equation $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial x}\right)^2 = 1$ is called	1	equation.
	(A)	Linear	(B)	Non-linear
	(C)	quadratic	(D)	Non-homogeneous
69)	Stok	tes and anti-stokes lines are observe	ed in	spectra
	(A)	Hydrogen	(B)	Optical
	(C)	Scattering	(D)	Raman
70)	Norr exte	mal Zeeman effect is observed whe rnal field.	en the	e atom is placed in
	(A)	Strong magnetic	(B)	Weak magnetic
	(C)	Strong electric	(D)	Weak electric
71)	Ran	nan effect is due to of light	ht	
	(A)	Interference	(B)	Polarization
	(C)	Diffraction	(D)	Scattering
72)	Zee	man effect is not used in	_	
	(A)	MRI scan	(B)	NMR
	(C)	Optical amplifiers	(D)	Laser cooling
73)		is the cause of origin of bio	mass	energy.
	(A)	Photosynthesis	(B)	Fermentation
	(C)	Oxidation	(D)	Deoxidation

74) First wind turbine was constructed and installed in 1985 in _____

- (A) Denmark (B) Canada
- (C) Netherland (D) Sweden

75) Clarity index on clear day at noon is _____

- (A) 0.1 (B) 0
- (C) 0.7 (D) Infinity

76) In satellite station solar energy plant the solar energy from satellite is send to the ground station in the form of ______

- (A) IR waves (B) Heat waves
- (C) Micro waves (D) Light waves

77) Which of the following is not renewable source of energy?

(A)	Wind	(B)	Solar
(C)	Nuclear	(D)	Ocean

- **78)** Body having larger value of ______ rolls down slowly and takes larger time to reach bottom.
 - (A) Mass (B) Acceleration
 - (C) Radius of gyration (D) Angular velocity
- **79**) Hamilton's principle is _____ principle.
 - (A) Differential (B) Integral
 - (C) Algebraic (D) Virtual

80) If an object reaches the speed of light, its length changes to _____ (A) Infinite (B) Double of the value (C) Half of the value (D) Zero **81**) The inertial frame of reference is ______ frame of reference (A) An accelerated (B) An unaccelerated (C) A rotating (D) An oscillating 82) In Brachsitochrome Problem, the path of the particle is _____ (A) Parabolic (B) Circular (C) Straight line (D) Cycloid 83) If the particle moves in a central force field, its ______ remains constant. (A) Linear velocity (B) Areal velocity (C) Angular velocity (D) Linear momentum 84) If energy of the particle is less than the step potential then classically _____ (A) R = 1, T = 0(B) R = 0, T = 1(C) R = T = 1/2(D) None of these **85**) The wavelength of matter wave is independent of ______ (A) Mass (B) Momentum (C) Velocity (D) Charge **86**) In a transistor circuit, Ic = _____ (B) $I_{\rm F}$ (A) I_{R} (C) $I_{\rm R} - I_{\rm C}$ (D) Both (A) & (B)

87) ______ flip-flop is a refinement of R-S flip-flop.

(A) J-K	(B)	D
(C) T	(D)	All

88) Differential amplifiers uses ______ stages of amplifiers.

- (A) Four balanced (B) Two balanced
 - (C) Three balanced (D) Two unbalanced

89) The astronomer who first observed thered shift in the spectra of distant galaxies was _____

(A)	Hubble	(B)	Slipher
(C)	Sandage	(D)	Kepler

(A)	Three	(B)	five
(C)	Six	(D)	3N

91) According to Biot savart's law magnetic field at a point due to small element of current carrying conductor is _____

- (A) Directly proportional to current flowing through it
- (B) Inversely proportional to current flowing through it
- (C) Inversely proportional to the length of conductor
- (D) Directly proportional to r

92) A moving coil microphone works on the principle of _____

- (A) Electromagnetic induction (B) Motor action
- (C) Amplifier (D) Transformer
- **93**) $(-15 81)^{\frac{1}{2}} =$ (A) $\pm (1 - 4i)$ (B) $\pm (1 + 4i)$ (C) $\pm (1 - 2i)$ (D) $\pm (1 + 2i)$

94)	The	argument of $-1 - \sqrt{3}$ is	_	
	(A)	4π/3	(B)	π/3
	(C)	2π/3	(D)	5π/3
0.7)	6(
95)	ert()	$x_{c}^{c} + \operatorname{ert}_{c}(x) = $		
	(A)	0	(B)	1
	(C)	2	(D)	∞
96)	Frar	nk-Condon principle helps in estima	ting t	he
	(A)	Moment of inertia of the molecule	(B)	Bond length
	(C)	Reduced mass of molecule	(D)	Intensity of bands
07)	Dia	hang theory was strongly supported	dhu	
7 1)	Dig-	Hubble	(D)	Fred Hoyle
	(\mathbf{A})		(D)	Firstein
	(C)	George Gamow	(D)	EInstein
98)	The calle	transitions from nS levels to the lowe	est P-1	level give rise to a spectral series
	(A)	Sharp	(B)	Principal
	(C)	Diffuse	(D)	Fundamental
99)	In a	diabatic expansion real gas show		effect
"	(Δ)	Cooling	(B)	Heating
	(\mathbf{A})	heating and cooling	(\mathbf{D})	Temperature dependent
	(C)	heating and cooming	(D)	Temperature dependent
100)Usir	ng Maxwell's thermodynamics relat	ions,	E _s /E _T is
	(A)	1	(B)	2
	(C)	γ	(D)	$1/\gamma$

Rough Work

Rough Work