Seat	
No.	

P.G. Entrance Examination, June - 2022 M.Sc. MATHEMATICS Sub. Code : 58716

Day and Date : Friday, 10 - 06 - 2022 Time : 01.00 p.m. to 02.30 p.m.

Instructions : 1) All questions are compulsory.

- 2) Each question carries 1 mark.
- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- **4**) Follow the instructions given on OMR sheet.
- 5) Rough work shall be done on the sheet provided at the end of question paper.
- Let R_1 and R_2 be two rings with 0_1 is zero of R_1 and 0_2 is zero of R_2 . If 1) $f: R_1 \rightarrow R_2$ be a homomorphism, then which of the following is the Kernel of f?
 - A) $\{a \in R_1 \mid f(a) = 0_1\}$
 - B) $\{a \in R_2 | f(a) = 0_1\}$ D) $\{a \in R_1 | f(a) = 0_2\}$ C) $\{a \in R_2 \mid f(a) = 0_2\}$

Calculating cell evaluations (unit cost differences) d_{ij} for each empty cell (i, j)2) by using the formula $d_{ij} = c_{ij} - (u_i + v_j)$ is one of the steps of which method?

- A) VAM Lowest cost entry method B)
- C) MODI method D) Hungarian method
- 3) Let R be a commutative ring with unity. Consider the following statements :
 - *M* is maximal ideal of *R*. D

II)
$$\frac{R}{M}$$
 is a field. Then

- A) Only I) \Rightarrow II)
- C) I) \Leftrightarrow II)
- B) Neither I) \Rightarrow II) nor II) \Rightarrow I)
 - D) Only II) \Rightarrow I)

Total Marks: 100

4)
$$\int_{0}^{\infty} e^{-3t} \cos^{2} t \, dt = \dots$$

A) $\frac{11}{49}$
B) $\frac{10}{29}$
11
12

C)
$$\frac{11}{39}$$
 D) $\frac{12}{35}$

5) If L {
$$f(t)$$
 } = $f(s)$ Then L{ $f(at)$ } = $\frac{1}{a}f(s/a)$. This is _____.

- A) change of scale property B) second shifting theorem
- C) effect of division D) first shifting theorem

6)
$$L \{e^{at} t^n\} = \dots s > a$$

A) $\frac{n!}{(s-a)^{n+1}}$
B) $\frac{n!}{(s+a)^{n+1}}$
C) $\frac{n}{(s-a)^{n+1}}$
D) $\frac{n!}{(s-a)^n}$

7) If f(s) is Fourier transform of F(x) then Fourier transform of F(x).cosax is

A) $\frac{1}{2} [f(s-a) - f(s+a)]$ B) $\frac{1}{2} [f(s-a) + f(s+a)]$ C) $\frac{1}{2} [f(s) + f(s+a)]$ D) $\frac{1}{2} [f(s-a) + f(s)]$

8) If
$$f(t) = 1$$
 then Laplace transform of $f(t)$ is _____.
A) $\frac{1}{s} s < 0$
B) $\frac{1}{s} s > 0$
C) $\frac{1}{2s} s < 0$
D) $\frac{1}{2s} s > 0$

9) Infinite Fourier transform of F(x) = 1, |x| < k= 0, |x| > k

where
$$F{F(x)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) e^{isx} dx$$

A) $\sqrt{\frac{2}{\pi}} \frac{\cos sk}{s}$
B) $\sqrt{\frac{2}{\pi}} \frac{\tan sk}{s}$
C) $\sqrt{\frac{2}{\pi}} \frac{\sin sk}{s}$
D) $\sqrt{\frac{2}{\pi}} \frac{\sin sk}{k}$

10) Infinite Fourier transform of
$$F(x) = 1$$
, $|x| < k$
= 0, $|x| > k$

where
$$F{F(x)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) e^{isx} dx$$

A)
$$\sqrt{\frac{2}{\pi}} \frac{\cos sk}{s}$$

B) $\sqrt{\frac{2}{\pi}} \frac{\tan sk}{s}$
C) $\sqrt{\frac{2}{\pi}} \frac{\sin sk}{s}$
D) $\sqrt{\frac{2}{\pi}} \frac{\sin sk}{k}$

11) Infinite Fourier transform of
$$F(x) = 1$$
, $|x| < k$
= 0, $|x| > k$

where
$$F{F(x)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(x) e^{isx} dx$$

A) $\sqrt{\frac{2}{\pi}} \frac{\cos sk}{s}$
B) $\sqrt{\frac{2}{\pi}} \frac{\tan sk}{s}$
C) $\sqrt{\frac{2}{\pi}} \frac{\sin sk}{s}$
D) $\sqrt{\frac{2}{\pi}} \frac{\sin sk}{k}$

12) If f(x) is expanded in a Fourier series of $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$, then

$$a_{0} = \underline{\qquad}.$$

A) $\frac{1}{\pi} \int_{0}^{\pi} f(x) dx$
B) $\frac{2}{\pi} \int_{0}^{\pi} f(x) dx$
C) $\frac{3}{\pi} \int_{0}^{\pi} f(x) dx$
D) $\frac{\pi}{2} \int_{0}^{\pi} f(x) dx$

13) Let *R* be a UFD. Consider the following statements :

- Irreducible element in *R* is prime. I)
- Product of any two primitive polynomials in R[x] is primitive. Then II)
- A) Both I) and II) are true B) Both I) and II) are false
- C) Only I) is true D) Only II) is true

14) Fourier coefficient a_0 in the Fourier series expansion of $f(x) = x\sin(x)$; $0 \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$ is _____. A) 0 B) 2 D) -4 C) -2

15) For the function $f(x) = \frac{\pi - x}{2}$ in (0, 2 π), then Fourier coefficient $b_n =$ _____.

A)	n	B)	$\frac{1}{n}$
C)	$\frac{1}{n^2}$	D)	n^2

16) If $P = \{a = t_0 < t_1 < t_2 < \dots < t_n = b\}$ is a partition of [a, b], then the mesh (P) = _____ A) $\max\{t_k - t_{k-1} : k = 1, 2, ..., n\}$ B) $\min\{t_k - t_{k-1} : k = 1, 2, ..., n\}$ C) $\max\{t_k + t_{k-1} : k = 1, 2, ..., n\}$ D) $\min\{t_k + t_{k-1} : k = 1, 2, ..., n\}$

17)
$$\lim_{x \to 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} dt = \dots$$

A) $e^{x^{2}}$
B) 0
C) 1
D) $2e^{x^{2}}$

18) Let $f(x) = x^2$ on [2, 4] and $P = \left\{ 2, \frac{5}{2}, 3, \frac{7}{2}, 4 \right\}$ be a partition of [0, 1], then L(f, P) = _____. A) 63/3 B) 63/4 C) 63/8 D) 126/4

19) If $F(x) = \int_{x}^{2x} t^{3} dt$, then F' (x) = A) $17x^{3}$ B) $\frac{15}{4}x^{3}$ C) $\frac{15}{4}x^{4}$ D) $15x^{3}$

20)	For	integrability, condition of continui	ity is	
	A)	Necessary	B)	Sufficient
	C)	Necessary and sufficient	D)	None of these

21) If T is a linear operator of V and α is eigenvalue of T also if $f(x) \in F[x]$ then

- A) $f(\alpha)$ is eigenvalue of T B) $f(\alpha)$ is eigenvalue of f(T)
- C) α is eigenvalue of f(T) D) $f(\alpha)$ is eigenvector of T

- A) v and w are always linearly independent
- B) v and w are always linearly dependent
- C) v and w are zero vectors
- D) v and w are non-negative

²²) Let v and w be eigenvectors of T corresponding two distinct eigenvalues of operator T on V then

23) If T(x, y) = (x + y, x + y) then eigenvector of T corresponding to eigenvalue 0 is

A) (0, 1) B) (1, 1)

C) (1, -1) D) (-1, -1)

24) Let *R* be a ring. An ideal $M \neq R$ of *R* is said to be ______ ideal of *R* if whenever *A* is an ideal of *R* such that $M \subseteq A \subseteq R$, then either M = A or R = A.

A) trivial	B)	maximal
------------	----	---------

C) prime D) principal

25) If T(x, y) = (x, 0) then eigenvector of T for eigen value c = 0 is _____.

A)	(-1, 1)	B)	(-1, 0)
C)	(0, 1)	D)	(0, 0)

- **26)** Let V be a vector space over F and T be linear operator on V then c is called eigen value of T if ______.
 - A) $\exists v \in V$ such that T(v) = cv for all $c \in F$
 - B) $\forall v \in V$ such that T(v) = cv for some $c \in F$
 - C) $\forall v \in V$ such that T(v) = cv for all $c \in F$
 - D) $\exists v \in V$ such that T(v) = cv for some $c \in F$
- 27) Let S be an orthogonal set of nonzero vectors in an inner product space V then _____.
 - A) S is linearly dependent B) S is empty
 - C) S is linearly independent D) S is orthonormal

28) Let V be the inner product space and u, v in V are linearly dependent then

A)
$$|(u, v)| = ||u||$$
 B) $|(u, v)| = ||v||$

C) |(u, v)| = ||u|| ||v|| D) |(u, v)| = 0

29) The maximum degree of any vertex in a simple graph with *n* vertices is

A) n-1B) n+1C) 2n-1D) 2n

30) Let G be an undirected graph. Consider the two statements :

- P : Number of odd degree vertices of G is even.
- Q : Sum of degrees of all vertices of G is even.

Then

- A) Only P is true B) Only Q is true
- C) Both P and Q are true D) Neither P nor Q is true
- **31**) By Kruskal's algorithm one can determine
 - A) longest path in a graph B) spanning tree in a graph
 - C) minimum spanning tree in a graph D) trail in a graph

32) A graph with n vertices will definitely have a parallel edge or a loop if the number of edges of the graph are

- A) more than n-1B) more than $\frac{n(n-1)}{2}$ C) more than n+1D) more than $\frac{n+1}{2}$
- **33**) Let G be a graph. Consider the two statements :
 - I) G is connected
 - II) *G* has a spanning tree

Then

- A) Only (I) implies (II)
- B) Only (II) implies (I)
- C) Neither (I) implies (II) nor (II) implies (I)
- D) (I) implies (II) and (II) implies (I)

- 34) Let G be a simple graph with *n* vertices. Then the degree of each vertex is
 - A) strictly less than n-1 B) greater than n-1
 - C) always equal to n-1 D) less than or equal to n-1

35) Consider the following statements :

- I) $4x^3 + 6x + 1 \in Z[x]$ is primitive
- II) $4x^3 + 6x + 2 \in Z[x]$ is primitive. Then
- A) Both (I) and (II) are true B) Both (I) and (II) are false
- C) Only (I) is true D) Only (II) is true

36) Laurent series expansion of $e^{1/z}$, $0 < |z| < \infty$ is _____.

A)
$$\sum_{n=0}^{\infty} \frac{z^n}{(n)!}$$

B) $\sum_{n=0}^{\infty} \frac{1}{(n)! z^n}$
C) $\sum_{n=1}^{\infty} (-1)^n \frac{z^{2n}}{2n!}$
D) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(n)! z^n}$

37) Taylor series expansion of 1/z + 1, |z| < 1 is _____.A) $1 - (z - 1) + (z - 1)^2 - \dots$ B) $1 + (z - 1) + (z - 1)^2 + \dots$ C) $1 - z + z^2 - \dots$ D) $1 + z + z^2 - \dots$

38) The function $f(z) = \frac{z - ib}{z^2 + b^2}$ is continuous at _____.

A) ibB) -ibC) i^3b D) None

39) The function $w = \log z$ is not analytic at z =____. A) 0 B) 1 C) 2 D) $\frac{1}{2}$

- 40) Which of the following are not analytic?
 - A) z^3 B) $\frac{z}{z-1}$ C) e^z D) $\sin z$
- **41**) "Half open interval $\left[0, \frac{1}{2}\right]$ is not an open subset of R¹." Correct the statement.
 - A) Half open interval $\left[0,\frac{1}{2}\right]$ is open subset of R¹
 - B) True

C) Half open interval
$$\left[0,\frac{1}{2}\right]$$
 is closed subset of R¹

D) Half open interval $\left[0,\frac{1}{2}\right]$ is not an open subset of M

42) In any metric space
$$<$$
M, $\rho >$

- A) Both M and empty set are open sets
- B) Only M is open set
- C) Only Empty set is open set
- D) Both are neither open nor closed sets

43) "Half open interval $\left[0,\frac{1}{2}\right]$ is not an open subset of metric space [0, 1]." Correct the statement.

A) Half open interval
$$\left[0, \frac{1}{2}\right]$$
 is open subset of metric space $[0, 1]$

B) True

C) Half open interval
$$\left[0,\frac{1}{2}\right]$$
 is closed subset of metric space M

D) Half open interval $\left[0,\frac{1}{2}\right]$ is an open subset of M

44) Let f be any function from metric space R_d into a metric space M, for any $a \in \mathbf{R}_{d}$, the open ball B[a; 1] contains _____ only d A) R B) C) only a D) 1 **45**) If $a \in \mathbb{R}^1$ then $\{a\}$ is . A) B[*r*; 1] B) open set in R_d C) not open set in \mathbb{R}^1 D) $\{a\}$ contains interval **46**) Let $f(x) = 2x + 1 \in \mathbb{Z}_4[x]$. Consider the following statements : I) $[f(x)]^2 = 1$ II) f(x) is unit in $Z_{4}[x]$. Then A) Both I) and II) are true B) Both I) and II) are false C) Only I) is true Only II) is true D) 47) If f and g are continuous functions from a metric space M_1 into a metric space M₂ then which of the following statement is false? A) f + g is continuous on M_1 B) f - g is continuous on M₁ D) $\frac{f}{\sigma}$ is continuous on M₁ C) f.g is continuous on M_1 **48)** The solution of x p + y q = z is A) $f\left(\frac{x}{y}, \frac{y}{z}\right) = 0$ $\mathbf{B}) \quad f(x, y) = 0$ D) $f(x^2, y^2) = 0$ C) f(xy, yz) = 0**49**) $L \{ (t+1)^2 \} = \dots$ A) $\frac{3}{s^3} + \frac{1}{s^2} + \frac{1}{s}$ B) $\frac{2}{s^3} + \frac{3}{s^2} + \frac{2}{s}$ C) $\frac{2}{s^3} + \frac{2}{s^2} + \frac{1}{s}$ D) $\frac{3}{s^3} + \frac{3}{s^2} + \frac{1}{s}$

- **50**) In a traveling salesman problem, the elements of diagonal from left-top to right bottom are
 - A) Zeros B) All negative elements
 - C) All ones D) All infinity
- **51**) An assignment problem is considered as a particular case of a transportation problem because _____
 - A) The number of rows equals columns
 - B) All $x_{ij} = 0$ or 1
 - C) All rim conditions are 1
 - D) All of the above

52) 10 The series $\sum x^n / n!$ converges absolutely for _____

A)	All values of x	B)	$x \ge 0$
C)	$x \le 0$	D)	$0 \le x \le 1$

- 53) The series 2 3/2 + 4/3 5/4 + is ______
 A) Convergent B) Divergent
 - C) Absolutely convergent D) Conditionally convergent

54)	If	$n^n / n!$ then	$\lim_{n\to\infty}u_{n+1}/u_n=$		
	A)	e		B)	e^2
	C)	1/ <i>e</i>		D)	1

55) For the Euler's function ϕ , ϕ (26) = _____ A) 11 B) 12 C) 13 D) 14

56) If o(G) = 20 then group G may have subgroup of order _____

A)	2	B)	3
C)	9	D)	7

57) Consider the field $Z_3 = \{0,1,2\}$ modulo 3. If $f(x) = 1 + x^2 + 2x^3$, $g(x) = 2 + x^3 \in Z_3[x]$ over Z_3 , then f(x) + g(x) =______ A) x^2 B) $1 + x^2 + x^3$ C) $1 + x^3$ D) $1 + x^2$

58) If $G = \{\pm 1, \pm i\}$ is a multiplicative group then order of -i is

- A) 1 B) 0
- C) 2 D) 4
- **59**) Between any two real numbers there exists _____
 - A) Only one rational numbers
 - B) Finite number of rational numbers
 - C) Infinitely many rational numbers
 - D) Finite number of irrational numbers

 60) If ______ then |a + b| = |a| + |b|, where $a, b \in \mathbb{R}$,

 A) $ab \ge 0$ B) ab = 0

 C) ab < 0 D) $ab \le 0$

61) If a and b are real numbers which of the following is always true?

- A) |a + b| = |a| + |b|B) $|a - b| \le |a| + |b|$
- C) $|a+b| \ge |a|+|b|$ D) $|a-b| \le |a|-|b|$

62) Any nonempty subset of real numbers which is bounded below has

- A) Supremum B) Both infimum and supremum
- C) Neither infimum nor supremum D) Infimum

63)
$$L\{e^{-3t} \cdot t^3\} =$$

A) $\frac{4}{(s-3)^4}$ B) $\frac{3!}{(s-3)^4}$
C) $\frac{4!}{(s+3)^4}$ D) $\frac{3!}{(s+3)^4}$

64) If f(x) is an even function then for Fourier series in $(-\pi, \pi)$, $b_n =$ _____

A) ∞ B) $(-1)^{n+1}$ C) 0 D) -1

65) For the function $f(x) = \begin{cases} x & 0 < x < \pi \\ 2\pi - x & \pi < x < 2\pi \end{cases}$ in (0, 2 π) then Fourier coefficient $a_0 =$ _____.

A)
$$\frac{\pi}{2}$$
 B) $\frac{2}{\pi}$
C) $\frac{\pi}{4}$ D) π

66) Let T be a linear operator of a FDVS on V over F, if T is invertible then

- A) 0 is the only eigenvalue of T
- B) 0 is a eigenvalue of T
- C) 0 is not eigenvalue of T
- D) 0 may or may not be a eigenvalue of T

67) Let T be a linear operator of a FDVS on V over F, and there exists a non-zero vector v in V such the T(v)=cv then

- (I) c is eigenvalue of T
- (II) T-cl is singular
- A) Only (I) is true B) Only (II) is true
- C) Both (I) and (II) are true D) Both (I) and (II) are false
- **68)** The L.P.P. Min z = -x + 2y subject to $-x + 3y \le 10$, $x + y \le 6$, $x y \le 2$, $x \ge 0$, $y \ge 0$ which of the following coordinate is corner point of the region of the feasible solutions of above L.P.P.?
 - A) (0,0) B) (4,2)
 - C) (2,5) D) (1,2)

 $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ where $a_n = \frac{1}{2\pi i} \oint \frac{f(z) dz}{(z - z_0)^{n+1}}$ 69) The series represents _____. A) Laurent series B) Taylor C) Maclaurin D) None **70**) The equation pP + qQ = R is known as _____ B) Clairaut's equation A) Charpit's equation C) Bernoulli's equation D) Lagrange's equation **71**) The locus of total differential equation Pdx + Qdy + Rdz = 0 is ______ to the locus of simultaneous differential equation $\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$. A) parallel B) orthogonal C) normal D) tangent 72) The complete solution of the differential equation $\frac{dx}{x} = \frac{dy}{v} = \frac{dz}{z}$ is _____. B) $xy = C_1, yz = C_2$ D) $xy = C_1, y = C_2z$ A) $y = C_1 x, xz = C_2$ C) $y = C_1 x, y = C_2 z$ 73) The series $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, $|z - z_0| < R$ where $a_n = \frac{f''(z_0)}{n!}$ represent A) Laurent series B) Taylor C) Maclaurin D) None 74) When 0 < |z| < 4, the expansion of $\frac{1}{4z - z^2}$ is _____. A) $\sum_{n=0}^{\infty} (-1)^n \frac{z^{n+1}}{\Delta^{n+1}}$ B) $\sum_{n=0}^{\infty} \frac{z^{n+1}}{4^{n+1}}$ C) $\sum_{n=0}^{\infty} \frac{z^{n-1}}{z^{n+1}}$ D) $\sum_{n=0}^{\infty} \frac{z^n}{A^{n+1}}$

75) A point x ∈ M is a limit point of E ⊂ M if and only if there are points of E arbitrarily close to _____

- A) M
 B) E
 C) x
 D) Open ball B[x:a]
- 76) Let E be subset of the metric space M. Then the point x ∈ M is a limit point of E if and only if every open ball B[x:r] about x contains _____ poin of E.
 - A) at most oneB) at least oneC) allD) no

77) Let E be a subset of the metric space M. A point x ∈ M is called _____of E if there is a sequence {x_n}_{n=1}[∞] of points of E which converges to x.

- A) limit point or cluster point B) closure
- C) convergent point D) none of them

78) Let <M₁,ρ₁> and <M₂,ρ₂> be metric spaces and let f: M₁ ⇒ M₂. Then f is continuous on M₁ if and only if f⁻¹(G) is open in _____, whenever G is open in M₂.

A) M_1 B) M_2 C) $f(M_1)$ D) $f(M_2)$

79) The method of finding an initial solution based upon opportunity costs is called _____.

- A) the northwest corner rule B) Vogel's approximation
- C) Flood's technique D) Hungarian method

80) The simplified form of
$$\frac{(\cos 2\theta + i\sin 2\theta)(\cos \theta - i\sin \theta)^3}{(\cos 3\theta + i\sin 3\theta)^2(\cos 5\theta - i\sin 5\theta)^4}$$
 is _____.
A) $\cos 21\theta - i\sin 21\theta$ B) $\cos 13\theta - i\sin 13\theta$
C) $\cos 21\theta + i\sin 21\theta$ D) $\cos 13\theta + i\sin 13\theta$

- 81) If the condition of integrability is satisfied then the solution of the equation yz dx + zx dy + xy dz = 0 is _____
 - A) x + y + z = cB) xyz = c
 - C) $x^2 + y^2 + z^2 = c$ D) $x^2 + z = c$
- 82) The value of the following 2×2 game without saddle point using arithmetic method is .

				Player B	
				B ₁	B ₂
			A ₁	5	1
		Player			
		А	A ₂	3	4
A)	17/5				B) 5/17
C)	7/15				D) 7/5

- **83**) The modified distribution (MODI) method is also known as
 - U-V method or method of multipliers A)
 - Stepping stone method B)
 - C) Matrix minima method
 - Unit cost penalty method D)
- 84) While solving a LP model graphically, the area bounded by the constraints is called .
 - A) Feasible region
 - C) Empty region
- B) Infeasible region
- D) None of the above
- 85) The positive variable which is added to left hand side of the constraints, so as to bring them into equality are called as
 - Surplus variables A) Slack variables B)
 - D) None of these C) Artificial variables
- 86) Let V be the inner product space and nonzero u,v in V are orthogonal then
 - A) $||x + y||^2 = ||x||^2 + ||y||^2$ B) $||x + y||^2 > ||x||^2 + ||y||^2$
 D) $\{u, v\}$ are linearly dependent C) $||x + y||^2 < ||x||^2 + ||y||^2$

87) Let G be a graph with Euler circuit. Then the degree of every vertex is

- A) even B) odd
- C) same D) a prime number

88) The adjacency matrix of the graph G is always

- A) symmetric matrix B) diagonal matrix
- C) invertible D) triangular matrix

89) What is the maximum number of children that a binary tree node can have?

A)	0	B)	1
C)	2	D)	3

90) For the game with pay off matrix :

			Player B		
			B ₁	B ₂	B ₃
		A ₁	-1	2	-2
	Player				
	A	A_2	6	4	-6
~					

The game is _____.

A) Fair game

- B) Strictly determinable
- C) Not strictly determinable
- D) None of these

91) Let G be a simple graph with n vertices. Then the degree of each vertex is

- A) strictly less than n-1 B) greater than n-1
- C) always equal to n-1 D) less than or equal to n-1

92) Zeros and singular points of a function $\frac{z^3-1}{z^2-3z+2}$ are _____. A) 1, ω , ω^2 ; 2,3 B) 1, 2; 1, ω , ω^2 C) 1, ω , ω^2 ; 1, 2 D) 1, 0, ω ; 1, 2

93) Laurent series expansion of 1/z+1, $1 < |z| < \infty$ is _____.

A)
$$1 - z + z^2 - ...$$

B) $\sum_{n=0}^{\infty} z^n$
C) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{z^n}$
D) $\sum_{n=0}^{\infty} \frac{(-1)^n}{z^n}$

94) The partial differential equation corresponding to the equation $z = ax + by + \sqrt{a^2 + b^2}$ is _____. A) $z = px + qy + p^2 + q^2$ B) $z = py - qy - \sqrt{p^2 + q^2}$ C) $z = px + qy + \sqrt{p^2 + q^2}$ D) z = px + qy + p + q

95) The complete solution of $\frac{d^2y}{dx^2} - y = 2xe^x$ by method of variation of parameter is y = Au + Bv, then value, of u and v are _____ A) e^{x}, e^{-x} B) x, -xD) $x, \frac{1}{r}$ C) $\sin x$, $\cos x$

96) If $y = e^{-x}$ is known solution of C. F. of the equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$

if _____. A) 1 + P + Q = 0B) $a^2 + aP + Q = 0$ D) 1 - P + Q = 0C) P + xO = 0

97) For the differential equation $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$, y = x is a part of solution if _____.

- A) 1 + P + Q = 0B) P + xQ = 0D) 1 - P + Q = 0
- C) $a^2 + aP + O = 0$

- **98**) Consider the following statements for a ring *Z* of integers under usual addition and multiplication :
 - I) 2 is unit element of Z
 - II) $\{0\}$ is a maximal ideal in Z. Then
 - A) Both I) and II) are true
 - B) Only I) is true
 - C) Both I) and II) are false
 - D) Only II) is true
- **99)** Let *R* and *R'* be rings and let *R* has unity 1. If $f : R \to R'$ be an onto homomorphism, then consider the following statements :

I)
$$\frac{R}{\ker f} \cong R'$$
.

- II) f(1) is not unity of R'. Then
- A) Both I) and II) are true
- B) Only I) is true
- C) Both I) and II) are false
- D) Only II) is true

100) Let I_1 and I_2 be ideals of a ring *R*. Consider the following statements :

I)
$$\frac{I_1+I_2}{I_1} \cong \frac{I_2}{I_1\cap I_2}$$
.

II)
$$\frac{I_1 + I_2}{I_2} \cong \frac{I_1}{I_1 \cap I_2}$$
 Then

- A) Both I) and II) are true
- B) Only I) is true
- C) Both I) and II) are false
- D) Only II) is true

むむむ

Rough Work