M.Phil / Ph.D. Entrance Examination, September - 2022 PHYSICS

Sub. Code : 58795

Day and Date : Friday, 23 - 09 - 2022 Time : 04.00 p.m. to 06.00 p.m. **Total Marks : 100**

Instructions : 1) All questions are compulsory.

- 2) Each question carries 2 marks.
- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Use black ball point pen only for marking the circle. Do not make any stray mark on the OMR Answer Sheet.
- 5) Follow the instructions given on OMR Sheet.
- 6) Rough work shall be done on the sheet provided at the end of question paper.
- 7) Only non-programmable calculators are allowed.
- 1) Let ω_p , ω_d and ω_{α} be the cyclotron frequencies of proton, deuterons and alpha particles, respectively in the same magnetic field. The correct relation of their frequencies is: (Assume that the particle masses are in the ratio 1:2:4)
 - a) $\omega_p = \omega_d = \omega_\alpha$ b) $\omega_p = \omega_d > \omega_\alpha$ c) $\omega_p > \omega_d = \omega_\alpha$ d) $\omega_p < \omega_d = \omega_\alpha$
- 2) The correct statement related to the Fermi energy (E_F) and the chemical potential (μ) of a metal is:
 - a) $\mu < E_F \text{ at } 0 \text{ K}$ c) $\mu = E_F \text{ only at } 0 \text{ K}$ b) $\mu < E_F \text{ at finite temperature}$ d) $\mu = E_F \text{ at finite temperature}$
- 3) A particular mechanical system depending on two coordinates u and v has kinetic energy $T = v^2u^2 + 2v^2$, and potential energy $V = v^2 u^2$. Its Lagrangian equations of motion are:
 - a) $v^2 \ddot{u} 2\dot{v}\dot{u} + 2u = 0; 2\ddot{v} + v(\dot{u}^2 1) = 0$
 - b) $v^2 \ddot{u} 2\dot{v}\dot{u} + 2u = 0; 2\ddot{v} + v(\dot{u}^2 + 1) = 0$
 - c) $v^2 \ddot{u} 2\dot{v}\dot{u} + 2u = 0; 2\ddot{v} v(\dot{u}^2 1) = 0$
 - d) $v^2 \ddot{u} 2\dot{v}\dot{u} + 2u = 0; 2\ddot{v} + v(\dot{u}^2 + 1) = 0$

4) If the \vec{a}, \vec{b} and \vec{c} are unit vectors such that $(\vec{a} + \vec{b} + \vec{c}) = 0$, then value of $(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$ is:

a) 2 b)
$$-\frac{2}{3}$$

c)
$$-\frac{3}{2}$$
 d) $\frac{2}{3}$

- 5) If L_x , L_y and L_z are respectively the *x*, *y* and *z* components of angular momentum operator *L*. The commutator $[L_x L_y, L_z]$ is equal to:
 - a) $i\hbar \left(L_x^2 + L_y^2\right)$ b) 0 c) $i\hbar \left(L_x^2 - L_y^2\right)$ d) $2i\hbar L_z$
- 6) Which of the following molecules give no infrared or microwave spectra but rotational Raman spectra?
 - a) HC1, HCN b) CO_2 , CH_4
 - c) O_2, H_2 d) CO, H_2O
- 7) The particle decay $d + d \rightarrow \frac{4}{2}He + \pi^0$ is forbidden, because it violates conservation of:
 - a) Baryon number b) Isospin
 - c) Charge d) Strangeness
- 8) The specific heat (C_{ν}) or heat capacity of a lattice at temperature *T* is *C*. If the temperature of lattice is doubled then assuming the Debye model of specific heat at low temperature, the new specific heat of the lattice is:
 - a) 2C b) 4C
 - c) C/2 d) 8C

9) For a medium $\sigma = 0, \mu = 2\mu_0, \varepsilon = 4\varepsilon_0$ and $\vec{B} = 2\mu\cos(\omega t - 5y)\hat{z}$. The value of ω is:

a)
$$\frac{5c}{2\sqrt{2}}$$

b) $\frac{c}{2\sqrt{2}}$
c) $\frac{2c}{5\sqrt{2}}$
d) $\frac{5c}{2\sqrt{5}}$

10) A person measures the period of a simple pendulum inside a stationary lift and finds it to be T seconds. If the lift accelerates upward with an acceleration $\frac{9}{4}$, then the time period will he:

a) T
b)
$$\frac{T}{4}$$

c) $\frac{2T}{\sqrt{5}}$
d) $2T\sqrt{5}$

11) The ground state of the realistic helium atom is of course nondegenerate. Consider a hypothetical helium atom in which two electrons are replaced by two identical spin-one particles of negative charge. Neglect spin dependent forces. For this hypothetical atom, the degeneracy of the ground state is:

- c) 8 d) 6
- 12) The wavefunction of a hydrogen atom is given by the following superposition of energy eigen functions $\psi_{n/m}(\vec{r})$ (*n*, *l*, and *m* are the usual quantum numbers):

$$\psi(\vec{r}) = \frac{\sqrt{2}}{\sqrt{7}} \psi_{100}(\vec{r}) - \frac{3}{\sqrt{14}} \psi_{210}(\vec{r}) + \frac{1}{\sqrt{7}} \psi_{322}(\vec{r})$$

The expectation value of the energy $\langle E \rangle$ and the expectation value of L^2 are, respectively:

a)
$$\frac{229}{504}E_0$$
 and $\frac{12\hbar^2}{7}$
b) $\frac{101}{504}E_0$ and $\frac{12\hbar^2}{7}$
c) $\frac{229}{504}E_0$ and \hbar^2
d) $\frac{101}{504}E_0$ and \hbar^2

- **13**) If $f_1(z) = z^2 + z$ and $f_2(z) = z^3$ where z = (x+iy), then which one of following statement is correct:
 - a) Both $f_1(z)$ and $f_2(z)$ are not analytic everywhere
 - b) Only $f_2(z)$ is analytic everywhere
 - c) Both $f_1(z)$ and $f_2(z)$ are analytic everywhere
 - d) Only $f_1(z)$ is analytic everywhere
- 14) A classical particle with total energy *E* moves under the influence of a potential $V(x) = 3x^3 + 2x^2y + 2xy^2 + y^3$. The average potential energy, calculated over a long time is equal to :

a)
$$\frac{2E}{3}$$

b) $\frac{E}{3}$
c) $\frac{E}{5}$
d) $\frac{2E}{5}$

- 15) Consider a particle with three possible spin states: s = 0 and $s = \pm 1$. There is a magnetic field *h* present and the energy for a spin state 's' is *-hs*. The system is at a temperature T. Which of the following statements is true about the entropy S(T)?
 - a) S(T) = In 3 at T = 0 and S(T) = 0 at higher T
 - b) S(T) = 0 at T = 0 and S(T) = In 3 at higher T
 - c) S(T) = 0 at T = 0 and S(T) = 3 at higher T
 - d) S(T) = In 3 at T = 0 and S(T) = 3 at higher T
- **16)** If $\vec{E}_1 = xy\hat{i} + 2yz\hat{j} + 3xz\hat{k}$ and $\vec{E}_2 = y^2\hat{i} + (2xy + z^2)\hat{j} + 2yz\hat{k}$ then :
 - a) Both are impossible electrostatic fields
 - b) Both are possible electrostatic fields
 - c) Only \vec{E}_1 is a possible electrostatic field
 - d) Only \vec{E}_2 is a possible electrostatic field

17) A particle of mass *m* is moving in a potential $V(x) = \frac{1}{2}m\omega_0^2 x^2 + \frac{a}{2mx^2}$ where

 ω_0 and *a* are positive constants. The angular frequency of small oscillations for the simple harmonic motion of the particle about a stable minimum of the potential *V*(*x*) is:

a)
$$4\omega_0$$
 b) $\sqrt{2}\omega_0$

c)
$$4\sqrt{2}\omega_0$$
 d) $2\omega_0$

18. The wave function of a free particle in one dimension is given by $\psi(x) = A\sin x + B\sin 3x$. Then $\psi(x)$ is an eigen state of:

- a) the position operator b) the Hamiltonian
- c) the momentum operator d) the parity operator
- 19. A simple harmonic one-dimensional oscillator has energy levels $E_n = (n+1/2)\hbar\omega$, where ω is the characteristic oscillator (angular) frequency and n = 0, 1, 2, ... Suppose the oscillator is in thermal contact with a heat reservoir kT at temperature T. The mean energy of the oscillator as a function of the temperature T is :

a)
$$\langle E \rangle = -\frac{\hbar\omega}{2} \coth(\beta \hbar\omega/2)$$

b)
$$\langle E \rangle = \frac{\hbar \omega}{2} \cot(\beta \hbar \omega / 2)$$

c)
$$\langle E \rangle = \frac{\hbar \omega}{2} \coth(-\beta \hbar \omega / 2)$$

d)
$$\langle E \rangle = \frac{\hbar \omega}{2} \operatorname{coth} (\beta \hbar \omega / 2)$$

- **20)** The induced emf in a loop having 12 turns of wire has a magnitude of 1 .5 V when the magnetic flux is changed from 6 *T*. m^2 to 9 *T*. m^2 . The time required for this flux change is:
 - a) 6s b) 9s
 - c) 24s d) 18s

21) Solution of differential equation $\frac{dy}{dx} + 3x^2y = 6x^2$ is:

a) $y = 2 + Ce^{-x^3}$ b) $y = 2 - Ce^{-x^3}$ c) $y = 2 + Ce^{x^3}$ d) $y = 2 - Ce^{x^3}$

22) The violation of CP invariance theorem was observed in:

- a) Decay of beta particles b) Decay of alpha particles
- c) Decay of heavy ions d) Decay of K^0 meson
- **23)** The scattering of particles by a potential can be analysed by Born approximation. In particular, if the scattered wave is replaced by an appropriate plane wave, the corresponding Born approximation is known as the first-Born approximation. Such an approximation is valid for
 - a) large incident energies and weak scattering potentials.
 - b) large incident energies and strong scattering potentials.
 - c) small incident energies and weak scattering potentials.
 - d) small incident energies and strong scattering potentials.
- 24) Let A be the $N \ge N$ matrix. The incorrect statement for matrix A is:
 - a) A scalar λ is an eigenvalue of the $N \times N$ matrix. A if and only if the matrix $(A \lambda I)$ is singular.
 - b) An $N \times N$ matrix. A has at least one and at most N distinct complex eigenvalues.
 - c) If $\lambda_1, \lambda_2, ..., \lambda_k$ are distinct eigenvalues of the same matrix A, then the corresponding eigenvectors $V_1, V_2, ..., V_k$ are linearly dependent.
 - d) The product of the eigenvalues equals its determinant.

25) A beam of neutral atom passes through a Stern-Gerlach apparatus and split up into five equally spaced lines. The total angular momentum (P_j) of the atom is:

a)
$$\sqrt{11}\hbar$$

b) $\sqrt{6}\hbar$
c) $\sqrt{5}\hbar$
d) $\sqrt{12}\hbar$

26) The research which is relies on only experience or observation is:

- a) Pure research b) Basic research
- c) Conceptual research d) Empirical research
- 27) Which of the following is not a main step in spray pyrolysis method?
 - a) Atomization of the precursor solution
 - b) Control on pH
 - c) Transportation of aerosol
 - d) Decomposition of precursor on substrate

28) Which of the following RF system that can transmit and receive frequency simultaneously at each end?

- a) Half-duplex b) Full-duplex
- c) Simplex RF system d) Compound RF system
- **29)** Which of the following substrate is not suitable for thin film deposition by electrodeposition technique?
 - a) FTO b) ITO
 - c) Ceramic d) Ti foil
- **30)** In XRD, the broadening of diffraction peaks at half of the maximum intensity is effects on:
 - a) Peak intensity b) Crystallite size
 - c) Miller indices d) Peak position

M/P ENT - 28

- **31)** In AFM, the normal force between the probe and the sample is measured by the cantilever bending. which follows :
 - Brewster's law Hook's law a) b)
 - c) Pascal's law d) Moseley's law
- 32) The difference between measured value and true value of a quantity represents:
 - Accuracy of measurement. b) Precision of measurement. a)
 - c) Error in measurement. d) Uncertainty in measurement.

33) *Turnitin* and *iThenticate* are the leading tools in research fleld for the use of :

- Reference management a)
- c) Plagiarism detection d) Making graphical abstracts

34) The thickness of the film synthesized by spin coating method is related to the:

- a) square root of rotation time
- c) square of rotation time d)

35) The samples which cannot be imaged in SEM:

- Metals and alloys a)
- Liquids and biological specimens in their native state b)
- Ceramic and rocks c)
- d) Powders and polymers

36) To be a Raman active material, molecule must have:

- a) Isotropic polarizability b) Isotropic dipole moment
- Anisotropic polarizability c) d) Anisotropic dipole moment

37) Chromophore exhibits absorption of electromagnetic radiations in:

- IR region Microwave region a) b)
- Visible or UV region X-ray region c) d)

-8-

- b) square of rotation speed
- square root of rotation speed

- Data visualization and analysis b)

- **38**) Which one of the following is not an indication of quality of researcher?
 - a) Impact factor b) h index
 - c) Number of citations d) i -10 index

39) The formula does not require that the interval of integration be divided into an even number of intervals is:

- a) Trapezoidal b) Newton Raphson
- c) Euler d) Simpson's 1/3
- **40)** In SILAR, the forces which causes the adsorption of the ions in the solution on the surface of substrate are:
 - a) Cohesive forces b) Van-der Waals forces
 - c) Chemical attractive forces d) All of the above
- **41)** In NaCl crystal, a family of planes separated by 200 *nm*. If the first order maximum is observed at an incidence angle of 30°, then the wavelength of X-ray scattered from this crystal is:
 - a) 2 nm
 b) 200 μm
 c) 200 nm
 d) 20 nm
- 42) For microwave spectroscopy, the molecule must possess permanent:
 - a) Polarizabilityb) Quadrupole momentc) Dipole momentd) Linear moment

43) The social networking platform for people doing research is:

- a) Scopus b) ResearchGate
- c) SciFinder d) Web of Science
- **44)** IR spectrum is a plot of:
 - a) % Transmittance, wavenumber b) % Reflectance, time
 - c) % Reflectance, wavenumber d) % Transmittance, time

- **45**) Disadvantage of LaB_6 filaments over W filaments is:
 - a) Five to ten times brighter than W filaments
 - b) Longer service life
 - c) Chemically reactive when it gets hot
 - d) Improved image quality
- 46) A research problem is feasible only when :
 - a) It has utility and relevance
 - b) It is new and adds something to knowledge
 - c) It is researchable
 - d) All of the above
- **47**) In which electrochemical technique, the constant current is imposed between the working and auxiliary electrodes while the resulting potential response is monitored.
 - a) Chronocoulometry b) Chronoamperometry
 - c) Chronopotentiometry d) Both a) and b)
- **48)** AFM can measure forces as small as:

a)	10 ⁻² N	b)	10^{-12} N
c)	10 ⁻⁷ N	d)	10 ⁻⁵ N

49) In Simpson's 1/3 rule, the order of fitting polynomial is:

a)	2	b)	3
c)	1	d)	4

- **50)** In which technique, the change in mass of the sample due to evaporation, decomposition and interaction with the atmosphere is taken into account for analysis.
 - a) AAS b) DSC
 - c) TGA d) NMR

0000

Rough Work

Rough Work