M/P ENT - 126 Total No. of Pages : 12

Seat No.

M.Phil./Ph.D. Entrance Examination, October - 2021 PHYSICS

Day and Date : Thursday, 28 - 10 - 2021

Total Marks : 100

Time : 10.00 a.m. to 12.00 Noon

Instructions: 1) All questions are compulsory.

- 2) Each question carries 2 marks.
- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Use black ball point pen only for marking the circle. Do not make any stray mark on the OMR Answer Sheet.
- Follow the instructions given on OMR Sheet. 5)
- Rough work shall be done on the sheet provided at the end of question 6) paper.
- Only non-programmable calculators are allowed. 7)
- For an $N \times N$ matrix consisting of all ones, 1)
 - A) all eigenvalues = 1
 - B) all eigenvalues = 0
 - the eigenvalues are $1, 2, \dots, N$ C)
 - D) one eigen value = N and other = 0
- 2) The mean free path of molecules of a gas at pressure P and temperature T is λ_1 . If the pressure of the gas molecule is reduced to P/2 and temperature is increased to 2T then the correct relation is:

(Consider that λ_2 is the mean free path after change in pressure and temperature)

- B) $\lambda_2 = 4\lambda_1$ D) $\lambda_2 = 16\lambda_1$ A) $\lambda_2 = 2\lambda_1$ C) $\lambda_2 = 8\lambda_1$
- 3) For an electromagnetic wave traveling in free space, the electric field is given by $\vec{E} = 100 \cos(10^8 t + kx) \hat{j} V/m$. The wavelength of wave in *meter* is:
 - A) 2π B) 4π
 - C) 6π 3π D)

4) Given that Ψ_1 and Ψ_2 are eigenstates of a Hamiltonian with eigenvalues E_1 and E_2 respectively. The energy uncertainty in the state $(\Psi_1 + \Psi_2)$ is:

A)
$$-\sqrt{E_1 E_2}$$

B) $\frac{1}{2} |E_1 - E_2|$
C) $\frac{1}{2} (E_1 + E_2)$
D) $\frac{1}{\sqrt{2}} |E_2 - E_1|$

5) Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration $1s^2 2s^2 2p^2$?

A)
$${}^{3}P < {}^{1}D < {}^{1}S$$

B) ${}^{3}P < {}^{1}S < {}^{1}D$
C) ${}^{3}P < {}^{1}F < {}^{1}S$
D) ${}^{3}P < {}^{1}F < {}^{1}D$

- 6) The radius of the ${}^{125}_{53}I$ nucleus is given to be 6 *fm*. In a collision with an incoming aluminium nucleus ${}^{27}_{13}Al$, the two nuclei have their surfaces just touching each other. The distance between the centres of the two nuclei at this instant is:
 - A) 8 fm
 B) 7.6 fm

 C) 9.6 fm
 D) 5.6 fm
- 7) In Atwood machine, two masses m_1 and m_2 suspended by a massless inextensible string over a frictionless, massless pulley. If the kinetic energy (T)

and potential energy (V) are given by $T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_1\dot{x}_2^2$ and $V = -m_1gx_1 - m_2gx_2$ respectively, then the Lagrangian equation of motion in terms of single variable is:

A)
$$\ddot{x}_1 = \frac{m_1 - m_2}{m_1 + m_2} g$$

B) $\ddot{x}_1 = \frac{m_2 - m_1}{m_1 - m_2} g$
C) $\ddot{x}_1 = \frac{m_2 - m_1}{m_1 + m_2} g$
D) $\ddot{x}_1 = \frac{m_1 m_2}{m_1 + m_2} g$

- 8) Assume that the intensity of solar radiation at Earth's surface is 1000 W/m^2 and that the sunlight is normal to a completely reflecting surface with an area of $3m^2$. The total radiation force that exerted on that surface is:
 - A) $2 \times 10^{-6} N$ B) $3 \times 10^{-6} N$ C) $2 \times 10^{-5} N$ D) 3N

9) If a unit vector \vec{a} makes an angle $\pi/3$ with \hat{i} , $\pi/4$ with \hat{j} and an acute angle θ with \hat{k} then, the value of θ is:

- A) $\theta = 45^{\circ}$ B) $\theta = 30^{\circ}$ C) $\theta = 60^{\circ}$ D) $\theta = 90^{\circ}$
- 10) The root mean square *(rms)* speeds of Hydrogen atoms at 500 K, V_{H} and Helium atoms at 2000 K, V_{He} are related as:
 - A) $V_H > V_{He}$ B) $V_H = V_{He}$ C) $V_H^2 = V_{He}^2$ D) $V_H < V_{He}$
- 11) Consider a one-dimensional infinite potential well of width *a*. The system contains five non-interacting electrons, each of mass *m*, at temperature T = 0K. The energy of the highest occupied state is:

A)
$$\frac{25\pi^2\hbar^2}{2ma^2}$$

B) $\frac{10\pi^2\hbar^2}{2ma^2}$
C) $\frac{5\pi^2\hbar^2}{2ma^2}$
D) $\frac{9\pi^2\hbar^2}{2ma^2}$

- 12) Which of the vibrational mode of CO₂ molecule is degenerate?
 - A) Symmetric stretching mode
 - B) Asymmetric stretching mode
 - C) Both symmetric as well as asymmetric stretching mode
 - D) Bending mode

13) Two blocks of mass m_1 and m_2 coupled by a spring of force constant k are placed on a smooth horizontal surface. If the Lagrangian of the system is

given by $L = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}k(x_1 - x_2)^2$, then natural frequencies of the system in terms of reduced mass μ are:

A)
$$\omega_1 = \sqrt{\frac{k}{\mu}} \text{ and } \omega_2 = \sqrt{-\frac{k}{\mu}}$$

B) $\omega_1 = 0 \text{ and } \omega_2 = \sqrt{\frac{k}{\mu}}$
C) $\omega_1 = 0 \text{ and } \omega_2 = \sqrt{\frac{\mu}{k}}$
D) $\omega_1 = 0 \text{ and } \omega_2 = \sqrt{-\frac{k}{\mu}}$

14) Antineutrino has :

A) Charge = 0, Spin = 0, Helicity =
$$+1$$
 and Lepton number = -1

B) Charge = 0, Spin =
$$\frac{1}{2}$$
, Helicity = +1 and Lepton number = 1

C) Charge = 0, Spin =
$$\frac{1}{2}$$
, Helicity = +1 and Lepton number = -1

D) Charge =
$$-1$$
, Spin = $\frac{1}{2}$, Helicity = -1 and Lepton number = 1

- 15) Which of the following is not a correct differential form of thermodynamic potential?
 - A) dU = TdS PdV B) dH = TdS + VdP
 - C) dF = SdT + PdV D) dG = -SdT + VdP
- 16) A charged particle *A* is moving at a speed much less than *c*, deaccelerates uniformly. A second particle *B*, has one-half the mass, twice the charge, three times the velocity and four times the acceleration than particle *A*. According

to classical electrodynamics, the ratio $\frac{P_B}{P_A}$ of the power radiated is:

C) 48 D) 64

- 17) The Lagrangian of a charged particle in an electromagnetic field is described as $L = \frac{1}{2}mv^2 - q\varphi + q\vec{v}.\vec{A}$. The corresponding Hamiltonian is : A) $H = \frac{1}{2}(\vec{P} + q\vec{A})^2 - q\varphi$ B) $H = \frac{1}{2}(\vec{P} - q\vec{A})^2 - q\varphi$ C) $H = \frac{1}{2}(\vec{P} + q\vec{A})^2 + q\varphi$ D) $H = \frac{1}{2}(\vec{P} - q\vec{A})^2 + q\varphi$
- 18) Which of the following assumptions does Fermi's Golden Rule make?
 - A) Inelastic scattering and infrequent scattering
 - B) Weak scattering and infrequent scattering
 - C) Time independent scattering and weak scattering
 - D) Time dependent scattering and weak scattering
- 19) The transformation for a system of one degree of freedom is given by, $Q = q \cos \alpha - p \sin \alpha$ and $P = q \sin \alpha + p \cos \alpha$. The generating function (F_1) for the transformation is:
 - A) $F_1(q,Q) = \frac{1}{2}(q^2 Q^2)\cot\alpha + Qq\csc\alpha$
 - B) $F_1(q,\mathbf{Q}) = \frac{1}{2}(q^2 Q^2)\cot\alpha Qq\csc\alpha$
 - C) $F_1(q,Q) = \frac{1}{2}(q^2 + Q^2)\cot\alpha Qq\csc\alpha$
 - D) $F_1(q,Q) = \frac{1}{2}(q^2 + Q^2)\cot\alpha + Qq\csc\alpha$
- 20) An ideal gas of N spinless atoms occupies a volume V at temperature T. Each atom has only two energy levels separated by an energy Δ . The chemical potential (μ) of the system is:

A)
$$\mu = -kTlog(e^{-\beta\varepsilon_1} + e^{-\beta\varepsilon_2})$$
 B) $\mu = kTlog(e^{-\beta\varepsilon_1} + e^{-\beta\varepsilon_2})$

C)
$$\mu = -kTlog(e^{-\beta\varepsilon_1} - e^{-\beta\varepsilon_2})$$
 D) $\mu = -kTlog(e^{\beta\varepsilon_1} + e^{\beta\varepsilon_2})$

21) The average speed of an electron in the first Bohr orbit of an atom of atomic number Z is:

(Take, fine structure constant = $\alpha = \frac{e^2}{\hbar c}$)

A)
$$v = Zc$$

B) $v = \frac{Z\alpha}{c}$
C) $v = Zc\alpha$
D) $v = \frac{Zc}{\alpha}$

- 22) If the gauge function is given as $\lambda = -\frac{qt}{4\pi\varepsilon_0 r}$. The relation between transformed and original vector potential is :
 - A) $\vec{A}' = \vec{A} \frac{qt}{4\pi\varepsilon_0 r^2}\hat{r}$ B) $\vec{A}' = \vec{A} + \frac{qt}{4\pi\varepsilon_0 r^2}\hat{r}$ C) $\vec{A}' = \vec{A} - \frac{qt}{4\pi\varepsilon_0 r}\hat{r}$ D) $\vec{A}' = \vec{A} + \frac{qt}{4\pi\varepsilon_0 r}\hat{r}$
- 23) Fourier sine transform of $\frac{1}{x}$ is :

A)
$$\frac{\pi}{2}$$

B) $\sqrt{\frac{\pi}{2}}$
C) $\frac{\sqrt{\pi}}{2}$
D) $\frac{\pi}{\sqrt{2}}$

24) The ground state and first excited state wave function of a one-dimensional infinite potential well are ψ_1 and ψ_2 respectively. When two spin-up electrons are placed in this potential. Which one of the following with x_1 and x_2 denoting the position of the two electrons correctly represents the space part of the ground state wave function of the system?

A)
$$\frac{1}{\sqrt{2}} \Big[\psi_1(x_1) \psi_2(x_1) - \psi_1(x_2) \psi_2(x_2) \Big]$$

B)
$$\frac{1}{\sqrt{2}} \Big[\psi_1(x_1) \psi_2(x_2) + \psi_1(x_2) \psi_2(x_1) \Big]$$

C)
$$\frac{1}{\sqrt{2}} \left[\psi_1(x_1) \psi_2(x_1) + \psi_1(x_2) \psi_2(x_2) \right]$$

D) $\frac{1}{\sqrt{2}} \Big[\psi_1(x_1) \psi_2(x_2) - \psi_1(x_2) \psi_2(x_1) \Big]$

25) Solution of linear differential equation $xy' + 2y = 4x^2$ is:

A)
$$y = x^{2} + \frac{c}{x}$$

B) $y = x^{2} + \frac{c}{x^{2}}$
C) $y = x^{2} + \frac{c}{x^{2}}$
D) $y = x + \frac{c}{x^{2}}$

26) The method which involves controlled precipitation of a compound from the solution on a suitable substrate is:

A)	CVD	B)	SILAR
C)	Sol-gel	D)	CBD

- 27) The research which aims to find a solution for an immediate problem facing a society or an industrial/business organization is:
 - A) Applied research B) Industrial research
 - C) Theoretical research D) Fundamental research

28) The magnetometer whose working principle is characterized by Lorentz force is termed as:

- A) Induction magnetometer B) Magnetic magnetometer
- C) Magneto-resistive magnetometer D) SQUID magnetometer

29) Minimum interplanar spacing required for Bragg's diffraction is:

- A) $\lambda/4$ B) $\lambda/2$
- C) λ D) 2λ
- 30) Which of the following is not a role of hypothesis?
 - A) Guides the direction of the study
 - B) Determine feasibility of conducting the study
 - C) Identifies relevant and irrelevant facts
 - D) Provides framework for organizing the conclusions

31) Tapping mode in AFM is also called as:

C) Contact mode

- A) Non-contact mode B) Intermittent contact mode
 - D) Intermittent non-contact mode

32) Failure to acknowledge the borrowed material is a:

- A) Foot notes B) Casual Ignoring
- C) Copyrights D) Plagiarism
- 33) Which spectroscopy is based on the interaction of light with the chemical bonds within a material?
 - A) Atomic Absorption Spectroscopy (AAS)
 - B) Raman Spectroscopy
 - C) Nuclear Magnetic Resonance (NMR) Spectroscopy
 - D) Flame Spectroscopy

34) How closely individual measurements agree with each other is refers as?

- A) Error B) Accuracy
- C) Uncertainty D) Precision

35) In which technique, the difference in temperature between the sample and a reference material is examined against time or temperature.

A)	Raman	B)	DSC
C)	DTA	D)	NMR

36) The main stages for film formation in spin coating technique are:

- A) Deposition, spin up, spin off and pyrolysis
- B) Deposition, spin up, spin off and sublimation
- C) Deposition, spin up, spin off and evaporation
- D) Deposition, spin up, spin off and coating

- 37) The report written by a researcher for a specific field, reviewed by peer scholars before publication is known as:
 - A) Research monograph B) Research article
 - C) Patent D) Thesis

38) Which of the following is not a type of modulation scheme in RF systems?

- A) Shift Modulation (SM) B) Amplitude Modulation (AM)
- C) Frequency Modulation (FM) D) Phase Modulation (PM)

39) In SEM, the fraction of emission current leaving through the anode is known as:

- A) Heating current B) Filament current
- C) Beam current D) Probe current

40) Which of the electronic transition is not involved in UV-Visible region?

- A) $\sigma \rightarrow \sigma^*$ B) $n \rightarrow \sigma^*$
- C) $\lambda \rightarrow \sigma^*$ D) $n \rightarrow \Pi^*$

41) The quantitative standard of the published research article is judged by:

- A) Number of references used in research article
- B) Impact factor
- C) Number of citations to that article
- D) *h*-index
- 42) For IR spectroscopy, the molecule must have:
 - A) Spin moment B) Dipole moment
 - C) Round moment D) Linear moment

- 43) The method of deposition that requires an external current source for the deposition of metallic ions on the substrate:
 - A) Dip coating B) Spin coating
 - C) Electroplating D) Electroless plating
- 44) Microwave spectroscopy is used to get information about:
 - A) Accurate bond lengths and angles
 - B) Electric dipole moments
 - C) Centrifugal distortion constant
 - D) All of the above
- 45) In AFM, one of the disadvantages of contact mode scanning is:
 - A) Slow scan speed
 - B) Can't be done for rough surface samples
 - C) Higher possibility of tip damage
 - D) Very poor resolution of scanning
- 46) The weight loss in TGA is not attributed to:
 - A) Evaporation B) Decomposition
 - C) Reduction D) Absorption
- 47) In electrodeposition method, which electrode is used to close the current circuit in the electrochemical cell.
 - A) Counter electrode B) Working electrode
 - C) Reference electrode D) Ground electrode

- 48) The advantage of W filament for use in SEM is:
 - A) Large energy spread, and ΔE is 3eV
 - B) Replacement is fairly straightforward
 - C) High work function of 4.7eV
 - D) Short service lifetime
- 49) Simultaneous displacement method is also known as:
 - A) Jacobi's method
 - B) Monte-Carlo method
 - C) Gauss Seidel method
 - D) Hamiltonian method
- 50) If (220), (311), (222), and (511) are the Bragg reflections of zinc ferrite, then the unit cell of zinc ferrite is:
 - A) FCC
 - B) HCP
 - C) BCC
 - D) Data is insufficient for interpretation

0000

Rough Work