M.Phil / Ph.D. Entrance Examination, September - 2019 ELECTRICAL ENGINEERING

Day and Date : Wednesday, 18 - 09 - 2019 Time : 10.00 a.m. to 12.00 p.m. **Total Marks : 100**

- **Instructions :** 1) All questions are compulsory.
 - 2) Each question carries 2 marks.
 - 3) Answer should be marked in the given OMR answer sheet by darkening the appropriate option.
 - 4) Use black ball point pen only for marking the circle. Do not make any stray mark on the OMR Answer Sheet.
 - 5) Follow the instructions given on OMR Sheet.
 - 6) Rough work shall be done on the sheet provided at the end of question paper.
 - 7) Only non-programmable calculators are allowed.
- 1) Calculate the values of two resistances which when connected in series gives 50Ω and 8Ω when connected in parallel.
 - a) 40Ω and 10Ω b) 36Ω and 14Ω
 - c) 30Ω and 20Ω d) None of the above
- 2) Two conductors one of copper and one of iron, are connected in parallel and at 20° carry equal currents. What proportion of current will pass through each, if the temperature is raised to 100°? Assume α for copper as 0.0042 and for iron as 0.006 per °C at 20°.
 - a) 50% and 50% b) 42% and 58%
 - c) 53% and 47% d) 100% and 0%

3) A factory has 240V supply from which following loads are taken

Lighting: three hundred 150W, four hundred 100W and five hundred 60W lamps Heating: 100kW

Motors: A total of 44.76kW output with an average efficiency of 75%

Misc: Various loads taking a current of 40A

A lighting load is on for a period of 4 hours/day, the heating load for 10 hours/ day and remaining for 2 hours/day, the weekly unit consumption of a factory when working on 5 days a week is

- a) 5555 kWh
- b) 7993 kWh
- c) 4476 kWh
- d) Cannot be calculated from given data
- 4) A hydroelectric generating station is supplied from a reservoir of capacity 6 million m³ at a head of 170 meters. The available energy in kWh if the hydraulic efficiency be 80% and electric efficiency 90% is

a)	4.8 MWh	b)	6 MWh
----	---------	----	-------

- c) 4.32 MWh d) 2MWh
- 5) Three identical point charges, each Q coulombs, are placed in free space at the vertices of an equilateral triangle 10 cm in side. The force on each charge is
 - a) $9\sqrt{3} \times 10^{11} Q^2 newton$ b) $3\sqrt{9} \times 10^{11} Q^2 newton$
 - c) $11\sqrt{3} \times 10^9 Q^2 newton$ d) $11\sqrt{9} \times 10^3 Q^2 newton$
- 6) Find the radius of an isolated sphere capable of being charged to 1MV before sparking into the air, given that breakdown voltage of air is 30,000 V/cm
 - a) r = 3.3 meter b) r = 33.3 meter
 - c) r = 0.33 meter d) r = 0.033 meter

7) The magnetic susceptibility of oxygen gas at 20°C is 167×10^{-11} H/m. The absolute permeability of oxygen is

a)	$16.7 \times 10^{-11} \text{ H/m}$	b)	$12.59 \times 10^{-7} \mathrm{H/m}$
c)	$167 imes 4\pi imes 10^{-7} \ \mathrm{H/m}$	d)	$5.988 \times 10^8 \text{H/m}$

8) The rms value of i = $12\sin \omega t + 6\sin(3\omega t - \pi/6) + 4\sin(5\omega t + \pi/3)$

- a) 4.69 A b) 14 A
- c) 15.5 A d) 9.74 A

9) A circuit offers a resistance of 20Ω in one direction and 100Ω in the reverse direction. A sinusoidal voltage of maximum value 200 V is applied to the above circuit. The current measured by moving iron ammeter and moving coil ammeter are _____ and ____ respectively.

a)	5.1 A, 2.55 A	b)	10 A, 2 A
c)	2 A, 10 A	d)	10 A, 0.0 A

a)	two times	b)	thre	e times
			~	

- c) equal to d) four times
- 11) A circuit with $R = 1\Omega$ and L = 2 H is connected to e.mf. of 3V at t = 0 sec, find the rate of storage of energy in the inductor at t = 2 sec.

a)	2.0 J/s	b)	1.0 J/s
c)	2.1J/s	d)	1.1J/s

12) A 5.0 μ F capacitor is discharged suddenly through a coil having an inductance of 2.0 H and a resistance of 200 Ω . The capacitor is initially charged to 10V. The value of additional resistance required to give critical damping is

a)	10 MΩ	b)	1065 Ω
----	-------	----	--------

c) 1225Ω d) $20 M\Omega$

13) The negative and zero sequence components of the following set of three unbalanced voltages are _____.

$$V_{A} = 10 \angle 30^{\circ}, V_{B} = 30 \angle -60^{\circ}, V_{C} = 15 \angle 145^{\circ}$$
a) $V_{2} = 8.24 \angle -276.2^{\circ}$ b) $V_{2} = 17.6 \angle 165^{\circ}$
 $V_{0} = 17.6 \angle 165^{\circ}$ $V_{2} = 8.24 \angle -276.2^{\circ}$
c) $V_{2} = 5.6 \angle -47.4^{\circ}$ d) $V_{2} = 8.24 \angle -276.2^{\circ}$
 $V_{0} = 17.6 \angle 165^{\circ}$ $V_{0} = 5.6 \angle -47.4^{\circ}$

14) A long shunt compound generator delivers a load current of 50A at 500V and has armature, series field and shunt field resistance of 0.05 Ω, 0.03 Ω, and 250 Ω respectively. The generated voltage is _____ if contact drop is IV per brush.

a) 502.16 V b)	508.16 V
----------------	----------

- c) 506.16 V d) 504.16 V
- 15) The output of a shunt generator is 24 kW at a terminal voltage of 200V. Armature resistance is = 0.05Ω , shunt field resistance is = 40Ω . If the iron and friction losses equals the copper losses at this load, the output of the prime mover driving the generator is _____.
 - a) 24.245 kW b) 27.562 kW
 - c) 48 kW d) 40 kW
- **16)** Two shunt generators each with armature resistance of 0.01 Ω and field resistance of 20 Ω run in parallel and supply a total load of 4000 A. The e.m.f.s are respectively 210V and 220V. The common busbar voltage is _____.
 - a) 210 V b) 189.4 V
 - c) 220 V d) 184.9 V

17) Two series motors run at a speed of 500 rpm and 550 rpm respectively when taking 50 A at 500V. The terminal resistance of each motor is 0.5Ω . The speed of the combination when connected in series and coupled mechanically is _____. The combination is taking 50 A on 500V supply.

a) 248 rpm	b)	525 rpm
------------	----	---------

c) 262.5 rpm d) 50 rpm

18) The primary of a 1000/250 V step down transformer has a resistance of 0.15 Ω and leakage reactance of 0.8 Ω . The primary induced emf is _____ when the primary current is 60 A at 0.8 pf lagging.

a) $870.5 \angle -1.2^{\circ}$ b) $970.5 \angle -1.6^{\circ}$

c) $990.0 \angle -2.5^{\circ}$ d) $900.0 \angle +6.6^{\circ}$

19) The regulation of a transformer in which percentage resistance drop is 1.0% and percentage reactance drop is 5.0% at 0.8 pf lagging and 0.8 pf leading is _____ and _____ respectively.

a)	5% and -5%	b)	0.8% and8%

- c) 3.8% and -2.2% d) 6% and -6.0%
- **20)** Two identical single phase transformers are connected I open delta across 3-phase mains and deliver a balanced load of 3000 kW at 11 kV and 0.8 p.f. lagging. The power factor at which two transformers are working is _____.
 - a) unity b) 0.866 lagging
 - c) 0.693 lagging d) 0.866 leading
- **21**) The starting torque of
 - a) Squirel-cage IM is better than Slip ring IM
 - b) Fix for Squirel-cage IM and can be varied for Slip ring IM
 - c) Depends on stator slots
 - d) Depends on number of poles

- 22) The maximum torque of IM occurs when
 - a) Rotor reactance equals its resistance
 - b) pf is unity
 - c) cu losses are minimum
 - d) rotor slots are even in number
- 23) A three phase 440V, 50 Hz 4-pole Y connected IM has rotor resistance of 0.1 Ω and reactance of 0.9 Ω per phase. The ratio of stator to rotor turns is 3.5. Gross output at the slip of 5% is
 - a) 7250 W b) 5250 W
 - c) 6250 W d) 8250 W
- 24) What modification is necessary if an IM is required to operate on a voltage different from that for which it is designed.
 - a) No modification required
 - b) Number of conductors per slot have to be changed in the same ratio as the change in voltage
 - c) Load should be changed
 - d) None of the above
- **25**) Induction motors are called asynchronous because _____.
 - a) They are rotating transformers
 - b) They work on principles of induction
 - c) Synchronously rotating field is absent
 - d) Their rotor can never run at synchronous speed

26) A three phase 800 kVA, 11 kV, star connected alternator has resistance of 1.5Ω /phase and synchronizing reactance of 25Ω /phase. The % regulation for a load of 600 kW at 0.8 leading pf is _____.

a)	5.52%	b)	-5.52%
c)	-7.72%	d)	7.72%

- 27) Two readings obtained on a 440V (2-wire) system with a voltmeter having resistance of 60 M Ω were i) 75 V between positive mains and earth and ii) 25V between negative main and earth. The insulation resistance of each main is _____ and _____ respectively.
 - a) $0.816 \text{ M}\Omega$ and $0.272 \text{ M}\Omega$
 - b) 0.45 M Ω and 0.15 M Ω
 - c) 80 M and 240 M
 - d) 75 M Ω and 25 M Ω
- **28)** An analog voltmeter uses external multiplier settings. With a multiplier setting of 20 k Ω , it reads 440V and with a multiplier setting of 80 k Ω it reads 352 V. For a multiplier setting of 40 k Ω , the voltmeter reads _____.

a)	371 V	b)	383 V	
c)	394 V	d)	406 V	

29) The Laplace transform of a function f(t) is

$$F(s) = \frac{1}{s(s+1)}$$

As t tends to infinity, f(t) approaches _____.

 a) 1/2
 b) zero

 c) 1
 d) infinity

30) In s-domain representation, the transfer function of a system is _____.

- a) Laplace transform of unit step response of a system
- b) Laplace transform of OC test/Laplace transform of SC test
- c) Zeros/poles
- d) Output/Input

31) The transfer function of a compensator is given by

$$G_{c}(s) = \frac{(s+a)}{(s+b)}.$$

$$G_{c}(s) \text{ is a lead compensator if } _____.$$

$$a) \quad a = 1, b = 2 \qquad b) \quad a = 3, b = 2$$

$$c) \quad a = 7, b = 5 \qquad d) \quad a = 3, b = 1$$

32) Nichol's chart is used to determine _____

- a) transient response
- b) closed loop frequency response
- c) open loop frequency response
- d) settling time due to step input

33) The function $f(x) = 2x - x^2 + 3$ has _____.

- a) a maximum at x = 1 and a minimum at x = 5
- b) a maximum at x = 1 and a minimum at x = -5
- c) only a maximum at x = 1
- d) only a minimum at x = 1

34) Following is not a performance specification for transient response of a system.

- a) Settling timeb) Peak overshootc) Steady state errord) Rise time
- 35) The resonant frequency of a second order system is given by

a)
$$\omega_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$

b) $\omega_r = \frac{\omega_n}{2\zeta}$
c) $\omega_r = \frac{\omega_n}{2\zeta\sqrt{1-2\zeta^2}}$
d) $\omega_r = \omega_n\sqrt{1-2\zeta^2}$

36) Among the following four, the slowest ADC is .

- a) parallel- comparator (i.e. flash) type
- b) successive approximation
- c) integrating type
- d) counting type

37) A digital to analog converter with a full scale output voltage of 3.5 V has a resolution close to 14 mV. Its bit size is _____.

a)	4	b)	8
c)	16	d)	32

38) A 3-phase diode bridge rectifier is fed from a 400V (rms), 50 Hz, 3-phase ac source. If the load is purely resistive, then peak instantaneous output voltage is equal to _____.

a) 400 V b) $400 \sqrt{2}$ c) $400 \sqrt{2/3}$ d) $400 \sqrt{3}$

39) A single phase fully controlled bridge converter supplies a load drawing constant and ripple-free load current. If the triggering angle is 300, the input p.f. will be

a)	0.65	b)	0 78
aj	0.05	0)	0.70

- c) 0.85 d) 0.866
- **40**) A series RLC circuit is connected to a 25 V source of variable frequency. The circuit current is found to be maximum of 0.5 A at a frequency of 400 Hz and the voltage across C is 150 V. Assuming ideal components, the values of R and L are respectively _____.
 - a) 50 Ω and 300 mH
 - b) 12.5 Ω and 0.119 H
 - c) 50Ω and 0.119 H
 - d) 12.5 Ω and 300 mH

41) A series R-L-C circuit has $R = 50 \Omega$; $L = 100 \mu$ H and $C = 1 \mu$ F. The lower half power frequency of the circuit is _____.

a)	30.55 kHz	b)	3.055 kHz
c)	51.92 kHz	d)	1.92 kHz

- **42**) The equivalent capacitance of two capacitors in parallel is four times their equivalent capacitance in series. This means that _____.
 - a) the capacitances of two capacitors are equal
 - b) the capacitances are 1 μ F and 4 μ F
 - c) the capacitances are 6 μ F and 9 μ F
 - d) none of the above
- **43**) Power consumed by a balanced 3-phase, 3-wire load is measured by twowattmeter method. The first wattmeter reads twice that of second. Then the load impedance angle in radians is _____.

a)	$\pi/12$	b)	$\pi/8$
c)	$\pi/6$	d)	π/3

44) The average power delivered to an impedance $(4-j3) \Omega$ by a current $5\cos(100 \pi t + 100)$ A is _____.

a)	44.2 W	b)	50 W
c)	62.5 W	d)	125 W

- **45**) For a specified input voltage and frequency, if the equivalent radius of the core of a transformer is reduced by half, the factor by which the number of turns in primary should change to maintain the same no load current is
 - a) ¹/₄ b) ¹/₂
 - c) 2 d) 1
- **46**) The two voltage surges are defined as $1/50 \ \mu s$ and $3/50 \ \mu s$. Which surge is more harmful?
 - a) 1/50 µs b) 3/50 µs
 - c) both equally d) none of the above

- **47**) If the fault current is 2000 A, the relay setting 50% and CT ratio is 400/5, the P.S.M is _____.
 - a) 23 b) 50
 - c) 15 d) None of the above
- **48**) NAND and NOR gates are called 'universal gates' primarily because _____.
 - a) they are available everywhere
 - b) they are wisely used in IC packages
 - c) they can be easily combined to produce AND, OR and NOR gates
 - d) they can be manufactured easily
- **49**) The counter circuit is called ripple counter
 - a) When it counts ripples as input
 - b) Because it is asynchronous counter
 - c) When output of one flipflop drives another flipflop
 - d) Because it does not contain any flipflop
- **50**) A 6-bit DAC produces $V_{out} = 0.25V$ for a digital input of 000010. Determine resolution and V_{out} for an input of 110110.
 - a) 0.125, 6.75 V
 - b) 0.125, 7.875V
 - c) 0.25, 5V
 - d) 0.25, 8V

$\bullet \bullet \bullet$

Rough Work