Seat	
No.	

M.Phil / Ph.D. Entrance Examination, May - 2019 PHYSICS (Special Drive)

Day and Date : Tuesday, 21 - 05 - 2019 Time : 01.00 p.m. to 03.00 p.m.

Total Marks : 100

Instructions: 1) All questions are compulsory.

- 2) Each question carries 2 mark.
- 3) Answers should be marked in the given OMR answer sheet by darkening the appropriate option.
- 4) Use black pen only for marking the circle. Do not make any stray mark on the Answer Sheet.
- 5) Follow the instructions given on OMR Sheet.
- 6) Rough work should be done on the sheet provided at the end of question paper.
- 7) Only non-programmable calculators are allowed.
- 1) An atom with one outer electron having orbital angular momentum l is placed in a weak magnetic field. The number of energy levels into which the higher total angular momentum state splits is
 - a) 2l + 2 b) 2l + 1
 - c) 2l d) 2l-1
- 2) The ground state of sodium atom (¹¹Na) is a ${}^{2}S_{\nu_{2}}$ state. The difference in energy levels arising in the presence of a weak magnetic field B. given in terms of Bohr magneton. μ_{B} is
 - a) $\mu_{\rm B}B$ b) $2\mu_{\rm B}B$
 - c) $4\mu_B B$ d) $6\mu_B B$

3) Transition for the sodium D_2 line (589.0 nm) is

a)
$${}^{2}P_{3_{2}} \rightarrow {}^{2}S_{1_{2}}$$

b) ${}^{2}P_{1_{2}} \rightarrow {}^{2}S_{1_{2}}$
c) ${}^{2}D_{3_{2}} \rightarrow {}^{2}P_{1_{2}}$
d) ${}^{2}D_{3_{2}} \rightarrow {}^{2}P_{3_{2}}$

4) What is the ground state of a helium atom a) ${}^{2}P_{\frac{1}{2}}$ b) ${}^{2}S_{0}$ c) ${}^{1}S_{\frac{1}{2}}$ d) ${}^{2}S_{0}$

- 5) Example of a non-central force is
 - a) Gravitational force $-\frac{Gm_1m_2}{r^2}\hat{r}$
 - b) Coulomb force $\frac{z_1 z_2}{r^2} \hat{r}$
 - c) Hooke law $kr \overline{r}$
 - d) Dipole dipole interaction $\frac{\overline{p}.\overline{r}}{r^3}$ where \overline{p} is the dipole moment

6) A particle is placed in a region with the potential $V(x) = \frac{1}{2}kx^2 + \frac{\lambda}{3}x^3$ where

k, $\lambda l > 0$.

Then,

- a) x = 0 and $x = k/\lambda$ are points of stable equilibrium
- b) x = 0 is a point of stable equilibrium and $x = k/\lambda$ is a point of unstable equilibrium
- c) x = 0 and $x = k/\lambda$ are points of unstable equilibrium
- d) There are no points of the stable or unstable equilibrium

7) A particle of mass m moves in a potential $V(x) = \frac{1}{2}m\omega^2 x^2 + \frac{1}{2}m\mu v^2$ where

X is the position coordinate, v is the speed, and ω and μ are constants. The canonical (conjugate) momentum of the particle is

a) $p = m(1 + \mu)v$ b) p = mvc) p = muvd) $p = m(1 - \mu)v$

8) The Lagrangian of a particle of mass m is

$$L = \frac{m}{2} \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{da}{dt} \right)^2 \right] - \frac{V}{2} \left(x^2 + y^2 \right) + W \text{ sin } \omega t \text{, where V, W and}$$

 $\boldsymbol{\omega}$ are constants. The conserved quantities are

- a) Energy and z-component of linear momentum only
- b) Energy and z-component of angular momentum only
- c) z-component of linear and angular momenta only
- d) Energy and z-component of both linear and angular momenta

9) An electron enters a uniform electric field region with its velocity perpendicular to the direction of the field. In the field region, the trajectory of the electron is

a) linear	b)	Circular
-----------	----	----------

c) parabolic d) helical

10) Electric field at large distance r, from the electric dipole is proportional to

a)	r^2	b)	r^{-2}
c)	r^{-3}	d)	r^{-4}

- **11)** A circularly polarized monochromatic plane wave is incident on a dielectric interface at Brewster angle. Which one of the following statements is correct?
 - a) The reflected light is plane polarized in the plane of incidence and the transmitted light is circularly polarized
 - b) The reflected light is plane polarized perpendicular to the plane of incidence and the transmitted light is plane polarized in the plane of incidence
 - c) The reflected light is plane polarized perpendicular to the plane of incidence and the transmitted light is elliptically polarized
 - d) There will be no reflected light and the transmitted light is circularly polarized

12) For the complex function, $f(z) = \frac{e^{\sqrt{z}} - e^{-\sqrt{z}}}{\sin(\sqrt{z})}$, which of the following

statement is correct?

- a) z = 0 is branch point
- b) z = 0 is a pole of order one
- z = 0 is a removable singularity c)
- z = 0 is an essential singularity d)
- 13) Two matrices A and B are said to be similar if $B = P^{-1}AP$ for some invertible matrix P. which of the following statements is not true?
 - a) Det A = Det B
 - Trace of A = Trace of Bb)
 - A and B have the same eigen vectors c)
 - A and B have the same eigen values d)
- 14) The complex function f(z) = z is singular at
 - b) z = 0 $z = \infty$ a) d) z = ic) z = 1

15) The value of the integral $\oint \frac{e^2 \sin(z)}{z^2} dz$, where the counter C is the unit

circl	e: $ z - 2 = 1$		
a)	$2\pi i$	b)	4πί
c)	πί	d)	0

16) Match the reactions on the left with the associated interactions on the right

- (1) $\pi^+ \rightarrow \mu^+ + v_{\mu}$ (2) $\pi^0 \rightarrow \gamma + \gamma$ (3) $\pi^0 + n \rightarrow \pi^- + p$ (iii) Weak a) (1,iii), (2,ii), (3,i) b) (1,i), (2,ii), (3,iii)(1,ii), (2,i), (3,iii) c)
- (1,iii), (2,i), (3,ii) d)

- (i) Strong
- (ii) Electromagnetic

- 17) Choose the correct statements from the following
 - a) Neutron interacts through electromagnetic interaction
 - b) Electron does not interact through weal interactions
 - c) Neutrino interacts through weal and electromagnetic interaction
 - d) Quark interacts through strong interactions but not through weal interaction
- 18) The isospin (I) and baryon number (B) of the up quark is
 - a) I = 1, B = 1 b) I = 1, B = 1/3
 - c) I = 1/2, B = 1 d) I = 1/2, B = 1/3
- 19) Which of the following is violated by a β -decay phenomenon
 - a) Energy conservation
 - b) Momentum conservation
 - c) Angular momentum conservation
 - d) Parity conservation
- **20**) The value of α for which ψ_2 is orthogonal to ψ_1 is
 - a) 2 b) 1
 - c) -1 d) -2
- **21**) The stationary eigenfunction for Hamiltonian of a particle of mass m in one dimensional potential V(x) is given to be:

 $\psi(x) = \operatorname{Aexp}(-bx^2/2).$

Where A and b are real positive constants. It follows that:

a)	V(x) = Constant	b)	$V(x) \propto \frac{1}{x}$
c)	$V(x) \propto x^2$	d)	$V(x) \propto x^3$

- 22) If the ϕ dependent part of eigen function of an electron in hydrogen atom is $e^{2i\phi}$. then the minimum principle and minimum angular momentum quantum numbers n and *l* respectively for this eigenfunction will be
 - a) n = 3, l = 2b) n = 2, l = 2
 - c) n = 2, l = 1 d) n = 1, l = 2

23) Consider a system of two non-interacting classical particles which can occupy any of the three energy values E = 0, ε and 2ε having degeneracies g(E) = 1. 2 and 4 respectively. The mean energy of the system is

a)
$$\varepsilon \frac{4e^{-\varepsilon/kT} + 8e^{-2\varepsilon/kT}}{1 + 2e^{-\varepsilon/kT} + 4e^{-2\varepsilon/kT}}$$
b)
$$\varepsilon \frac{2e^{-\varepsilon/kT} + 8e^{-2\varepsilon/kT}}{1 + 2e^{-\varepsilon/kT} + 4e^{-2\varepsilon/kT}}$$
c)
$$\varepsilon \left[\frac{2e^{-\varepsilon/kT} + 4e^{-2\varepsilon/kT}}{1 + 2e^{-\varepsilon/kT} + 4e^{-2\varepsilon/kT}}\right]^2$$
d)
$$\varepsilon \frac{e^{-\varepsilon/kT} + 2e^{-2\varepsilon/kT}}{1 + e^{-\varepsilon/kT} + e^{-2\varepsilon/kT}}$$

- 24) Thermodynamic variables of the system can be volume V, pressure P, temperature T, number of particles N, internal energy E and chemical potential μ, etc. For a system to be specified by Microcanonical (MC), Canonical (CE) and Grand canonical (GC) ensembles, the parameters required for the respective ensembles are:
 - a) MC : (N,V.T); CE : (E,V,N); GC : (VT, μ)
 - b) MC : (E,V,N); CE : (N,V,T); GC : (V,T, μ)
 - c) MC : (T,V,μ) ; CE : (N,V,T); GC : (E,V,N)
 - d) MC : (E,V,N); CE : (V,T, μ); GC : (N,V,T)
- **25)** The wavefunctions of two identical particles in states *n* and *s* are given by $\phi_n(r_1)$ and $\phi_s(r_2)$ respectively. The particles obey Maxwell-Boltzmann statistics. The state of the combined two particle system is expressed as

a)
$$f_n(r_1) + f_s(r_2)$$

b)
$$\frac{1}{\sqrt{2}} [f_n(r_1) f_s(r_2) + f_n(r_2) f_s(r_1)]$$

c)
$$\frac{1}{\sqrt{2}}[f_n(r_1)f_s(r_2) - f_n(r_2)f_s(r_1)]$$

$$\mathbf{d}) \quad f_n(r_1) f_s(r_2)$$

- 26) Which of the following is the first step in starting the research process?
 - a) Searching sources of information to locate problem.
 - b) Survey of related literature
 - c) Searching for solutions to the problem
 - d) Identification of problem

27) What is a Patent?

- a) An agreement between the inventor and the Government
- b) An agreement to the Government
- c) Document of the library
- d) An agreement between library and Publisher

28) Article published in research journal are _____

- a) Primary sources b) Reference sources
- c) Tertiary sources d) Secondary sources

29) What is deemed a good measure of the quality of a journal?

- a) The impact factor b) Citations
- c) h-index d) i-10 index

30) Testing hypothesis is a

- a) inferential statistics b) descriptive statistics
- c) data preparation d) data analysis

31) Both the current and potential are varied in _____ mode of electrodeposition.

- a) Potentiodynamic b) Galvonostatic
- c) Potentiostatic d) None of these
- **32**) Which type of ground wave travels over the earth surface by acquiring direct path through air from transmitting to receiving antennas?
 - a) Surface wave b) Space wave
 - c) Both surface & space d) None of the above
- **33**) In thermo gravimetric analysis (TGA), the change in weight of the sample may occur due to
 - a) Gas desorption b) Decomposition
 - c) Chemisorption d) All of above
 - -7-

- **34)** In Laue x-ray diffraction method the conditions are:
 - a) Monochromatic Beam. Variable Angle
 - b) Monochromatic Beam. Fixed Angle
 - c) Polychromatic Beam. Variable Angle
 - d) Polychromatic Beam. Fixed Angle
- **35**) The scanning electron microscope (SEM) has a magnification that ranges from:
 - a) 10x to 10,000x b) 100x to 10,000x
 - c) 1x to 100x d) 10x to 10,000x
- **36)** XRD intensity depends upon
 - a) Crystal Structure b) Atomic positions
 - c) Occupancies d) All of above
- 37) X-rays are used for studying crystal structure of solids because
 - a) They have very high energy, hence they can penetrate through solids
 - b) They are electromagnetic radiation, and hence do not interact with matter
 - c) Their wavelengths are comparable to inter-atomic distances
 - d) Their high frequency enables rapid analysis
- **38.** The wavenumber of a transition is 1500 cm⁻¹. In what part of the electromagnetic spectrum does this come?
 - a) Microwave b) Infrared
 - c) Ultraviolet-visible d) Radiowave
- **39**) In spray pyrolysis technique solution is converted into fine droplets according to which principle?
 - a) Bernoulli's b) Archimedes
 - -8-

c) Siphon d) Stokes

40. The important deposition parameters involved in hydrothermal method of thin film deposition are

- a) Temperature and pressure b) Temperature and time
- c) Temperature and solvent d) Pressure and time
- **41.** Which antennas are renowned as patch antennas especially adopted for space craft applications?
 - a) Aperture b) Array
 - c) Lens d) Microstrip

42) When an electromagnetic wave travels from transmitter to receiver, which factor/s affect/s the propagation level?

- a) Curvature of earth b) Roughness of earth
- c) Magnetic field of earth d) All of the above
- **43**) RF amplifiers are used in radio receivers for
 - a) improved image frequency rejection
 - b) improved rejection of adjacent unwanted signals
 - c) prevention of re-radiation of the local oscillator through the antenna of the receiver
 - d) all of the above
- 44) In DTA endothermic peak occurs due to
 - a) Oxidation b) Chemisorption
 - c) Melting d) Crystallization
- **45**) Which of the following statements is wrong?
 - a) UV absorption is attributable to electronic transitions.
 - b) UV spectra provide information about valence electrons.
 - c) IR absorption is attributable to transitions between rotational energy levels of whole molecules.

- d) UV-Vis spectrometers used to estimate band gap energy.
- 46) Which of the following statements regarding IR spectroscopy is not correct?
 - a) Infrared radiation is higher in energy than UV radiation.
 - b) Infrared spectra record the transmission of IR radiation.
 - c) Molecular vibrations are due to periodic motions of atoms in molecules, and include bond stretching. torsional changes, and bond angle changes.
 - d) Infrared spectra give information about bonding features and functional groups in molecules.
- **47**) The frequency of a transition is 3.0×10^{15} Hz. What is the energy of this transition?

a)	0.124eV	b)	1.240 eV
)	•••••	-)	

- c) 12.40 eV d) 124.0 eV
- **48**) In the Gauss elimination method for solving a system of linear algebraic equations, triangularization leads to _____ matrix.
 - a) Digonal b) Lower triangular
 - c) Upper triangular d) Singular
- **49**) Newton-Raphson method of solution of numerical equation is not preferred when
 - a) Graph of A (B) is vertical
 - b) Graph of x(y) is not parallel
 - c) The graph of f(x) is nearly horizontal-where it crosses the x-axis.
 - d) None of these
- **50**) The convergence of ______ numerical method is sensitive to starting volume.
 - a) False position b) Gauss seidal
 - c) Newton-Raphson d) Jacobi

жжж

Rough Work

Rough Work