SHIVAJI UNIVERSITY, KOLHAPUR.

R

Accredited By NAAC 2009
New Syllabus For

B.Sc. III

Biotechnology (Entire)

(Sem.-V & VI)

Syllabus to be implemented from June 2012 onwards.

SHIVAJI UNIVERSITY, KOLHAPUR

Biotechnology (Entire)

B. Sc III. Biotechnology (Entire)

Semester V

Course	Title of the Course	Theory	Internal
Code			
BTE - 501	Basics in Genetic Engineering	40	10
BTE - 502	Industrial Biotechnology	40	10
BTE - 503	Application of Biotechnology in Agriculture	40	10
BTE - 504	Developmental Biology (Plant and Animal)	40	10
BTE - 505	Techniques in Genetic engineering	Practical	
BTE - 506	Techniques in Industrial Biotechnology	Practical	
BTE - 507	Project (Part I)		

BTE – 501 Basics in Genetic Engineering

Sr.		Lectures
No.	Unit I	45 12
1.	Molecular Tools in r-DNA technology	12
1.	1. Introduction and Scope	
	2. Molecular tools and its application	
	2.1 Restriction enzymes- types (I, II, III),	
	nomenclature, recognition sequences, cleavage	
	patterns, modification of cut ends (linkers and	
	adaptors), application –RFLP, Restriction mapping.	
	2.2 Alkaline phosphatases	
	2.3 DNA ligases T4 and E. coli Ligases	
	2.4 Methylases	
	2.5 Reverse Transcriptases	
	2.6 Polymerases- Klenow enzymes, T4 DNA	
	polymerases, Taq DNA polymerases	
	2.7 Polynucleotide kinase	
	Unit II	12
2.	Cloning Vectors:	
	1. Introduction	
	2. Properties of good vectors	
	3. Cloning & expression vectors	
	4. Types-	
	4.1 <i>E.coli</i> vector	
	4.1.1 plasmid – pBR 322 and pUC18	
	4.1.2 Bacteriophage vectors – λ phage vector,	
	M 13 Vectors (λ replacement e. g. EMBL 3,	
	EM BL 4and λ insertional e.g λ gt 10 and	
	λgt 11)	
	4.2 Cosmid vector	
	4.3 Phagemid vector e.g pBlue script II KS/SK 4.4 Yeast vector- YAC and BAC	
	4.5 Animal vectors – Retroviral	
	4.6 Plant vector – Ti plasmid, Ri plasmid	
	4.7 shuttle vector- e.g pJBD 219	
	5. Selection of recombinant vector	
	Unit III	11
3.	Nucleic Acid Hybridisation :	
	3.1 Nucleic Acid and plasmid purification.	
	3.2 Probe Preparation	
	3.3 Methods of labelling probes.	
	3.3.1 Radio labelling – Nick translation, End labeling,	
	Primer extension	

	3.3.2 Non Radiolabelling – Biotin, dioxygenin,	
	fluorescent dyes,	
	3.3.3 Applications of probes.	
	Unit IV	10
4.	DNA Sequencing and blotting technique	
	4.1 Maxam Gilbert method	
	4.2 Sanger Coulson method	
	4.3 Automated DNA sequencing	
	4.4 Southern Blotting	
	4.5 Northern Blotting.	
	4.6 Western blotting	

- 1. Molecular Biotechnology Principles & applications of Recombinent DNA : Glick B. R. & Padtranak
- 2. Gene cloning & manipulating Christopher
- 3. An introduction to genetic engineering Nicholl D.S. T.
- 4. Principle of gene manipulation: An introduction to genetic engineering Old R.W. & Primrose S. B.
- 5. Gene VIII Lewin
- 6. Fundamentals of Biotechnology S. S. Purohit
- 7. Fundamentals of Biotechnology H. S. Chawala
- 8. Genetic engineering P. K. Gupta
- 9. Priciple of Biochemistry Wilson & Walker
- 10. Plant genetic engineering P. K. Gupta
- 11. Molecular Biotechnology of gene S. N. Jogdan
- 12. Protein Biotechnology M. Philopse
- 13. Molecular Biotechnology Principle & practices by Channarayappa
- 14. Biotechnology R. C. Dubey
- 15. Molecular cloning (Vol I, II, III) Sambrook and Russel

BTE-502 Industrial Biotechnology

Sr. No.		No. of Lectures
	Unit I	12
1.	Introduction to Industrial Biotechnology 1.1 Concept and range of fermentation technology 1.2 Types of commercially important fermentations	
2.	Basic Design of Fermenter and types 2.1 Components of fermenter and their functions 2.2 Types of fermenters. - Stirred tank Fermenter - Airlift fermenter - Tower fermenter - Tubular fermenter	10
	Unit II	10
3.	Microbial Screening 3.1 Selection strategy and techniques 3.2 Primary and secondary screening 3.3 Primary screening of antibiotics, organic acids and amines, enzymes, vitamins and amino acid producers, volatile component degraders. 3.4 Secondary screening of antibiotic producers 3.5 Scale up 3.6 Strain improvement Concept. 3.7 Stock culture maintenance and preservation	11
	Unit III	11
4.	Fermentation Media 4.1 Composition of typical fermentation media. 4.2 Criteria for typical fermentation medium 4.3 General role of media components- water, carbon source, nitrogen source, minerals, precursors, growth factors, buffers, antifoams, oxidation-reduction potentials, inducers, inhibitors.	

	4.4 Optimization of media	
	4.5 Types of fermentation media	
	4.6 Factors affecting fermentation process	
	4.7 Sterilization of air and media	
	UNIT IV	13
	OINTI IV	13
5.	Downstream Process and Product Recovery	
	5.1 Downstream Processes in fermentation and bioprocess	
	technology	
	- Solid and liquid separation	
	- Flocculation and crystallization	
	- Drying, filtration and centrifugation	
	- Cell disruption by solid and liquid shear,	
	ultrasonication, enzyme action and mechanical	
	disruption	
	5.2 Product recovery and purification principle	
	- Extraction and precipitation	
	- Distillation (Fractional and Steam)- Principle, Process	
	- Evaporation	
	- Chromatographic separation (Principles of all	
	methods)	
	- Adsorption and concentration	
	- Lyophilization, spraying, drying and packing	

- 1. Text Book of Biotechnology Dr. H. K. Das
- 2. Industrial Microbiology & Biotechnology Arnold L.
- 3. Fermentation Technology Jayanto Acharekar
- 4. Basic Biotechnology Colin and Bjrorn
- 5. Frontiers in Microbial Biotechnology Bisel P.S.
- 6. Industrial Microbiology Prescot and Dunn
- 7. Principle of Fermentation Technology Stanbury P.F., Whitekar H., Hall S.
- 8. Bioprocess Engineering: Principles Nielson T. and Villadeson J.
- 9. Industrial Microbology- L.E. Casida
- 10. Fermentation Biotechnology- H.A. Modi
- 11. Industrial Microbiology- A.H.Patel

BTE-503 Application of Biotechnology in Agriculture

Sr.No.		Lectures 45
1	UNIT – I	12
	Methods for crop Improvement	
	1.1 Introduction	
	1.2 Acclimatization	
	1.3 Breeding for self and cross pollinated plants and	
	vegetatively reproducing plants- Selection (pure line	
	and mass), Hybridization and Mutation.	
	1.4 Somaclonal variations in crop improvement	
	1.5 Haploids in Breeding	
	1.6 Micropropagation for virus free plant.	
	1.7 Somatic embryogenesis in crop improvement	10
2	Unit II	10
	2.1 Somatic hybridization- Definition, protoplast fusion	
	technique, selection of hybrids, symmetric and	
	asymmetric hybrids, cybrid production.	
	2.2 Artificial Seed – Definition, Techniques, factors	
	affecting, applications limitations	
	2.3 Germplasm preservation- Introduction, principle,	
	Long term storage, factors affecting, short/medium	
	storage techniques, applications, limitations.	11
3	Unit III	11
	GM Crops	
	3.1 Herbicide resistance, bacterial, fungal, virus, insect	
	resistance	
	3.2 GM Foods, ethical & social aspects	
	3.3 Concept of IPR and IPP, forms of protection	
4	3.4 Molecular farming. Unit IV	12
-		_ _
	A) Biofertilizers and Biopesticide	
	Biofertilizers –	
	4.1 Definition , Principle, advantages4.2 Mass production and field application – <i>Rhizobium</i>,	
	Azotobacter, Azospirillum, Acetobacter, Azolla,	
	Cyanobacteria, PSB, VAM	
	4.3 Green manure and compost	
	Biopesticide – Principles and applications of	
	Bacterial, fungal, viral, Plant origin Biopesticides	
	,, 	

- 1) Biotechnology U. Satyanarayana
- 2) A textbook of plant breeding B.D. Singh
- 3) Medical biotechnology S. N. Jogdand
- 4) Advances in Biotechnology- S.N.Jogadand
- 5) Introduction to plant breeding R. C. Chaudhary
- 6) A textbook of Biotechnology R. C. Dubey
- 7) Pharmaceutical Biotechnology S. P. Vyas ,V. K. Dixit
- 8) Biotchnology B. D. Singh
- 9) Fundamentals of agriculture biotechnology S. S. Purohit
- 10) Animal & cell biotechnology Ian, Freshney
- 11) Animal cell biotechnology Buttler
- 12) Methods in cell biology Volume 57
- 13) Cell and Developmental Biotechnology.-Raj narian Desikar
- 14) Text Book of Bryophytes, Pteridophytes, Gymnosperms, and Paleobotany- Subramurti.
- 15) Agricultutre application of Microbiology- Neeelima Rajvaidya.

BTE-504 Developmental Biology (Plant and Animal)

Sr. No.	Developmental Biology (Plant and Animal)	Lecture
	Unit I	10
1.	Gametogenesis and Fertilization in plants 1.1 Gametogenesis in Plants 1.2 Development of male and female gametophyte 1.3 Process of fertilization in Angiosperm	6
2.	Development of Embryo and Endosperm 2.1 Development of embryo and endosperm 2.2 Types of endosperm in Angiosperm	4
	Unit II	10
3.	Plant Meristem 3.1 Plant meristem, Definition, characters 3.2 Organization of shoot apical meristem 3.3 Organization of root apical meristem.	8
4.	Pollen germination 4.1 Pollen germination. 4.2 Self incompatibility and its genetic control.	2
	Unit III	12
5.	Gametogenesis, gametes and fertilization in animals 5.1 Gametogenesis in animals. 5.2 Types of eggs and sperms in animals. 5.3 Fertilization in animals.	5
6.	Early development in animals 6.1 Types and patterns of cleavages in animals. 6.2 Blastulation ,gastrulation in frog and chick up-to the formation of three germ layers. 6.3 Embryonic induction .	7

	Unit IV	13
7	Differentiation	
	7.1 Differentiation	(8)
	7.2 Didifferentiation	
	7.3 Rediffrentitation	
	7.4 Commitment	
	7.5 Transdifferentiation	
	7.6 Developmental plasticity	
8	Cell fusion , somatic cell genetics and immunoglobulin genes	(5)
	8.1 cell fusion and somatic cell genetics8.2 Immunoglobulin genes and antibody Diversity	

- 1. Developmental Biology-Gilbert
- 2. Foundations of Embryology Patten
- 3. Cell and Developmental Biotechnology Raj Narian Desikar
- 4. Text book of Bryophytes, Pteridophytes, Gymnosperms and Paleobotany Subramurti
- 5. Plant Anatomy and Embryology- S.N. Pandey, A. Chadha
- 6. Teresa K Attwood and David J. Parry-Smith, Introduction to Bioinformatics, Pearson Education Asia, 2001
- 7. Bexavanis & Francis, Bioinformatics-A practical guide to the analysis of genes and proteins, John Wiley and Sons, 2001
- 8. Rushidi, Basics of Bioinformatics, CRC Publications, 2001
- 9. Irfan Khan and Atiya Khanum, Emerging trends in Bioinformatics, Ukaaz Publishers, 2002
- 10. David M. Hill, Craig Martiz and Barke Mable, Molecular systematics
- 11. Khan Imtiyaz alam ,Rai University, Hydrabad:- Elementry Bioinformatics
- 12. N. Gautam Bioinformatics- Databases and algorithm
- 13. Plant Anatomy E.Cutter.
- 14. The Embryology of Angiosperm Bhojawani .S.S and Bhatnagar.S.P
- 15. An Introduction to the Embryology of Angiosperm. P.Maheswari.

BTE- 505 Techniques in Genetic engineering

Sr. No.	Practical	15 P
1.	Calculation of molecular size of digested DNA	01
2.	Construction of restriction map of plasmid DNA	02
3.	Western blotting technique	03
4.	Southern blotting technique	03
5.	DNA Amplification by PCR	01
6	RAPD Analysis	01
7.	cDNA cloning by Reverse Transcription PCR	02
8.	Purification of DNA fragments from agarose gel	02
9.	Ligation of DNA	02
10.	Transformation of <i>E. Coli</i> and Selection of recombinants (β-galactosidase)	02
11.	Agrobacterium transformation in plants	02
12.	Expression of gene in E. Coli (GST)	02
13.	Compulsory visit to molecular biology laboratory	

BTE - 506 Techniques in Industrial Biotechnology

Sr. No.	Practicals	15 P
1	Primary screening of amylase producers by Replica	02
	Plate technique	
2	Primary screening of antibiotic producers by	01
	crowded plate technique	
3	Production of Amylase - Purification,	02
	Immobilization and Activity	
4	Production of alcohol and estimation by colorimetric	02
	method	
5	Production of sauerkraut.	01
6	Mushroom Cultivation.	01
7	Isolation of vitamin B ₁₂ requiring mutants.	01
8	Production of citric acid and Recovery.	01
9	Bioassay- a) Vitamin B ₁₂	02
	b) Penicillin	
10	Detection and isolation of pathogens (E.Coli,	02
	Salmonella, Staphlococci) from spoiled food.	

BTE - 507 Project (Part I)

Guidelines -

- 1. Selection of the Project topic and allotment of project supervisor.
- 2. Preparation of Project Execution Plan: Time and Resource Allocation
- 3. Guidance by the Project Supervisor, for the self-study of relevant course topics and concepts by the student.
- 4. Self-study and reference work of relevant topics and concepts by the student.
- 5. The Project Work must involve practical work related to selected discipline
- 6. Students are expected to work on "Project Work" for about 10 periods per week.
- 7. A single student will normally do a project. In case of joint projects maximum number of students, in a team for joint project, should not exceed 3.
- 8. The student invests his energy, time and resources in a project. The project therefore should, if possible, have important bearing on some practical aspect. This will help student to justify his efforts on project.
- 9. Each "Project Supervisor" may be assigned maximum 5 students.
- 10. Submission Process: Student should prepare 2 copies of the Project Report. At the beginning, the respective Project Supervisor must approve both copies positively before university examination. Then respective Head or Coordinator approves both copies of the Project Report.
- 11. The student has to submit one of these approved copies of project report, duly signed by the project Supervisor and Principal, before practical examination. The report will be assessed by both Internal examiner (The project supervisor), who will assign the marks out 50 and the external examiner (appointed by university), who will assign marks out of 50, Thus the total will be out of 100 marks.
- 12. Theory, practical and project report shall form separate heads of passing.

SHIVAJI UNIVERSITY, KOLHAPUR Biotechnology (Entire) B. Sc III. Biotechnology (Entire) Semester VI

Course	Title of the Course	Theory	Internal
Code			
BTE - 601	Advances in Genetic Engineering	40	10
BTE - 602	Food and Microbial	40	10
	Biotechnology		
BTE - 603	Application of Biotechnology in	40	10
	Health		
BTE - 604	Bioinformatics	40	10
BTE - 605	Techniques in Bioinformatics	Practical	
BTE - 606	Techniques in Agricultural and	Practical	
	Health Biotechnology		
BTE - 607	Project (Part II)		

BTE – 601 Advances in Genetic Engineering

Sr. No.		Lectures 45
	Unit I	12
1.	Isolation of Gene 5.1 Chemical synthesis 5.2 Isolation desired gene from DNA 5.3 Isolation of specific gene with PCR 5.4 cDNA and genomic library . 5.5 Screening of libraries- immunological screening and colony or plaque hybridization.	
	Unit II	12
2.	PCR and its application 6.1 Primer designing 6.2 Fidelity of thermostable enzymes. 6.3 Steps in PCR reaction 6.4 Types of PCR – RT-PCR,real time PCR, touch down PCR,hot start PCR,colony PCR 6.5 Applications- site directed mutagenesis, Molecular diagnostics, viral and bacterial detection,	
	Unit III	12
3.	Cloning methodologies 7.1 Construction of plasmid – e. g. Somatostatin 7.2 Insertion of foreign DNA into host cells 7.2.1 Transformation 7.2.2 Transfection 7.2.3 Chemical methods- CaCl ₂ coprecipitation, polycation mediated gene transfer. 7.2.4 Physical methods- Liposomes, microingection, electroporation, biolistics. 7.3 screening of recombinants	00
	Unit IV	09
4.	Application of r-DNA technology 8.1 Production of transgenics-knock out mice 8.2 In medicines –Insulin and Somatostatin 8.3 Gene Silencing- Introduction, Principle of Si-RNA and Si- RNA technology	

Molecular Markers

2.1 Introduction – Morphological, Biochemical, Molecular Markers

Molecular markers RFLP,RAPD,AFLP,STRS,QTL,SSR

- Molecular Biotechnology Principles & applications of Recombinent DNA : Glick B. R. & Padtranak
- 2. Gene cloning & manipulating Christopher
- 3. An introduction to genetic engineering Nicholl D.S. T.
- 4. Principle of gene manipulation : An introduction to genetic engineering Old R.W. & Primrose S. B.
- 5. Gene VIII Lewin
- 6. Fundamentals of Biotechnology S. S. Purohit
- 7. Fundamentals of Biotechnology H. S. Chawala
- 8. Genetic engineering P. K. Gupta
- 9. Priciple of Biochemistry Wilson & Walker
- 10. Plant genetic engineering P. K. Gupta
- 11. Molecular Biotechnology of gene S. N. Jogdan
- 12. Protein Biotechnology M. Philopse
- 13. Molecular Biotechnology Principle & practices by Channarayappa
- 14. Biotechnology R. C. Dubey
- 15. Molecular cloning (Vol I, II, III) Sambrook and Russel

BTE-602 Food and Microbial Biotechnology

Topic		No. of
No.	Unit I	Lectures 12
1.	Microbial Cultures and Production	12
1.	6.1 Concept of pure and mixed culture	
	6.2 Microbial growth kinetics (Batch, Continuous and	
	Fed Batch)	
	6.3 Microbial Production of	
	- Enzymes (amylase) - Antibiotics (Penicillin)	
	-Vitamins (B ₁₂)	
	- Single Cell Protein- (Spirulina)	
	- Amino acids (Lysine).	
	TT:4 TT	11
	Unit- II	11
2.	Fermented Foods and Beverages	
	7.1 Dairy Products – Cheese, Yoghurt, Indian Dairy	
	Products	
	7.2 Indian Foods – Idli, Dahi, Gilebi	
	7.3 Bakery Products – Bread	
	7.4 Basics of Extruded Foods	
	Fermented Pickles – Sauerkraut	
	7.5 Beverages – Beer, Wine	
	Unit- III	10
3	Food Spoilage and Preservation	
	8.1 Types of spoilage- Physical, Chemical and	
	Biological (auto and microbial)	
	8.2 Preservation methods	
	- High and Low temperatures	
	- Controlled atmosphere and Anerobiosis	
	- Radiations and Asepsis	
	- Chemical preservatives	
	(Salt, sugar, organic acids, SO ₂)	
	Unit- IV	12
4	Introduction to Food Biotechnology	
	10.1 Principle, Risk analysis and Regulations	
	10.2 Multidisciplinary perspectives of GM crops	
	Y	
5	Impact of food on human health	
	11.1 Public health principles	
	11.2 Characteristics of food supply for public health	

- Food Safety
- Capacity to supply nutritional adequacy.
- Sustainability
- Capacity for Consumer choice
- accessibly and affordability to all.
- 11.3 Food Toxicity Mycotoxin (Aflatoxin), Exotoxin (*Staphylococcal*), Botulism.
- 11.4 Food borne illness- Shigellosis, Amoebiosis, Aspergillosis.
- 11.5 Impact of GM food.

- 1. Text Book of Biotechnology Dr. H. K. Das
- 2. Industrial Microbiology & Biotechnology Arnold L.
- 3. Fermentation Technology Jayanto Acharekar
- 4. Basic Biotechnology Colin and Bjrorn
- 5. Frontiers in Microbial Biotechnology Bisel P.S.
- 6. Industrial Microbiology Prescot and Dunn
- 7. Principle of Fermentation Technology Stanbury P.F., Whitekar H., Hall S. J.
- 8. Bioprocess Engineering: Principles Nielson T. and Villadeson J.
- 9. Industrial Microbology- L.E. Casida
- 10. Fermentation Biotechnology- H.A. Modi
- 11. Industrial Microbiology- A.H.Patel
- 12. Food Biotechnology- Varun Mehta

BTE 603 Application of Biotechnology in Health

Topic		No. of
No.		Lectures
1	Unit I	12
	Applications of animal cell culture.	
	5.1 Characteristics of stem cells,	
	5.2 Concept of stem cell progenitors.	
	5.3 Concept of stem cell technology and its application.	
	5.4 Transgenic technology & cloning in mammals	
2	Unit II	10
	Vaccines- Principle & practices	
	6.1 Subunit vaccines- Hepatitis B vaccine, Foot and	
	Mouth disease Vaccine, AIDS Vaccine	
	6.2 DNA Vaccines	
	6.3 Edible Vaccines	
	6. 4Recombinant vaccines- Cholera Vaccine, Vaccinia	
	Virus Vaccine	
3	Unit III	12
	C	
	Monoclonal antibodies & hybridoma technology	
	7.1 Production	
	7.2 Formulation	
	7.3 Applications- Diagnostics & Therapeutics	
	Biosensors-	
	7.4 Principle & applications.	
	7.5 Biochips & microarray technology	
	Gene therapy –	
	7.6 Types – Somatic, Germline, Argumentation	
	7.7 Gene therapy strategies for cancer	
4	Unit IV	11
	Forensic medicine	
	8.1 Prepration of DNA sample	
	8.2 Approches of DNA analysis	
	Public health	
	8.3 Epidemiology	
	8.4 Diagnosis of infectious diseases	
	8.5 Detection of genetic diseases	
	8.6 Diagnosis of cancers	

- 1) Biotechnology U. Satyanarayana
- 2) A textbook of plant breeding B.D. Singh
- 3) Medical biotechnology S. N. Jogdand
- 4) Advances in Biotechnology- S.N.Jogadand
- 5) Introduction to plant breeding R. C. Chaudhary
- 6) A textbook of Biotechnology R. C. Dubey
- 7) Pharmaceutical Biotechnology S. P. Vyas ,V. K. Dixit
- 8) Biotchnology B. D. Singh
- 9) Fundamentals of agriculture biotechnology S. S. Purohit
- 10) Animal & cell biotechnology Ian, Freshney
- 11) Animal cell biotechnology Buttler
- 12) Methods in cell biology Volume 57
- 13) Cell and Developmental Biotechnology.-Raj narian Desikar
- 14) Text Book of Bryophytes, Pteridophytes, Gymnosperms, and Paleobotany- Subramurti.
- 15) Agricultutre application of Microbiology- Neeelima Rajvaidya.

BTE – 604 Bioinformatics

Sr.		Lectures
No.		45
	Unit I	10
1.	Introduction to Bioinformatics:-History, Computers in	
	Biology and Medicines, Internet, and related programs;	
	Networking HTTP, HTML, WAN, LAN, MAN, applications	
	in communication.	
	Information Resources:- Introduction, aim and objectives,	
	National Centre for Biotechnology Information (NCBI),	
	National Library of Medicine (NLM), and National Institute of Health (NIH), EBI, Sequence retrieval system (SRS):- Entrez,	
	DBGet	
	BBGG	
	Unit II	10
2.	Genomics:- Human Genome Project (HGP)- Goal and	
	applications, final draft of HGP	
	Genome databases:- Introduction, Databases, Data, Nucleic	
	acid sequence database, Gene Bank, EMBL, DDBJ	
	Proteomics: - Introduction to amino acids and protein,	
	Proteome, Protein structure, Primary protein sequence databases- SWISS-PROT, PIR,	
	MIPS, NRL-3D, TrEMBL, Annotation and applications.	
	Secondary protein sequence databases:- PROSITE,	
	PROFILE, PRINT, pfam, BLOCK, IDENTIFY; applications.	
	Other databases: - Literature database, PubMed, PubMed	
	central,	
	Structural databases:- Introduction, Difference between	
	Primary structure and 3D structure, Protein databank(PDB), -	
	Molecular modeling databank (MMDB). CATH, SCOP,	
	PdbSum	
	Unit III	12
3.	Sequence Alignment:- Introduction, Protein sequence,	
	Nucleic acid sequence, Pair wise sequence alignment,	
	Multiple sequence alignment, Local and Global sequence	
	alignment, Algorithm used in sequence alignment, Matrices-	
	Dot matrix, PAM, BLOSSOM, Phylogopotic analysis:	
	Phylogenetic analysis:- Introduction: Evolution, definition of phylogenetic tree, nodes,	
	internodes, root, tree, styles; cladogram, phenogram,	
	curvogram, Steps involved in construction of phylogenetic	
	tree	
	Methods of phylogenetic analysis: - Distance method,	
	Character based Method	
	Phylogenetic analysis tool (Phylip, ClustalW).	

	Unit IV	13
4.		
	Structure-based drug designing	
	Introduction; Structure-based drug designing approaches:	
	Target Identification and Validation, homology modeling and	
	protein folding, receptor mapping, active site analysis and	
	pharmacophore mapping, Grid maps	
	Ligand-based drug designing and Docking	
	Introduction; Ligand-based drug designing approaches: Lead	
	Designing, combinatorial chemistry, High Throughput	
	Screening (HTS), QSAR, Database generation and Chemical	
	libraries, ADME property.	
	Introduction to docking methods to generate new structure;	
	Tools and Molecular docking programs: AutoDock, Dock,	
	HEX	

- 1. Bioinformatics methods and applications by S. C. Rastogi, N. Mendiratta, P.Rastogi.
- 2. Principle of bioinformatics by p. shanmughavel.
- 3. Computational Drug Designing, David C. Young
- 4. Computational Drug Design: A Guide for Computational and Medicinal Chemists,
 David C. Young
- 5. Textbook of drug design and discovery, Povl Krogsgaard-Larsen, Tommy Liljefors, Ulf Madsen
- 6. Computer-aided drug design: methods and applications, Thomas J. Perun, Catherine Lamb Propst
- 7. An introduction to Bioinformatics by T. K. Attwood, Parry-Smith D. J.

$BTE-605 \quad Techniques \ in \ Bioinformatics$

Sr. No.	Practicals	15
1	Introduction to PUBMED Central database using the ENTREZ search engine.	01
2	Getting the amino acid sequences by exploring and querying the protein Sequence database.	01
3	Getting the gene sequences by exploring and querying the nucleic acid Databases.	01
4	Functional site prediction using Web-Gene Server.	01
5	Construction of Phylogenetic Tree using ClustalW.	01
6	Similarity search for nucleotide using the BLASTn and interpretation of the results.	01
7	Smilarity search for protein using the BLASTp and interpretation of the results.	01
8	Protein and nucleic acid pair-wise sequence alignment by using ClustalW	01
9	Analysis of Secondary and tertiary structure of protein using visualizing software like Pymol or Rasmol.	01
10	Prediction of the secondary structure of protein using ExPasy web tool (GOR method).	01
11	Three dimensional structure prediction by using the homology modeling technique using SPDBV.	01
12	Energy calculation of the biomolecules using molecular mechanics and quantum mechanics. (Argus lab).	01
13	Calculate PI/MW of protein using ExPasy web tool.	01
14	Molecular Docking of protein and ligand by Argus lab	02

BTE – 606 Techniques in Agricultural and Health Biotechnology

Sr.	Practicals	15
No.		
1	Isolation of Azotobacter	02
2	Isolation of <i>Rhizobium</i> from root nodules	02
3	Isolation of PSB from soil.	02
4	Production of Biofertilizer- Azotobacter, PSB	02
5	Isolation of Trichoderma	01
6	Production of Biopesticide - Trichoderma	01
8	Production of Artificial seed	01
9	Analysis of Milk and milk products -	02
	a) Estimation of lactic acid.	
	b) Estimation of total fat.	
	c) MBRT	
10	Determination of antibacterial activity of crude plant	02
	extract.	
11	Industrial Visit- Wine Industry, Food Processing	
	Industry.	

BTE – 606 Project (Part –II)

Practical Examination:-

- A) The practical examination will be conducted on three (3) consecutive days for each practical not less than 5 hours on each day of the practical examination.
- B) Each candidate must produce a certificate from the Head of the Department in his/her college stating that he/she has completed in a satisfactory manner the practical course on the guidelines laid down from time to time by Academic Council on the recommendation of Board of studies and has been recorded his/her observations in the laboratory journal and written a report on each exercise performed. Every journal is to be checked and signed periodically by a member teaching staff and certified by the Head of the Department at the end of staff and certified by the Head of the Department at the end of the year. Candidates are to produce their journal at the time of practical examination. Candidates have to visit the Biotechnological institutes as per the syllabus and satisfactorily complete project work. The visit and project report should be duly certified by the Head of the Department and submit the reports at the time of examination.

BTE– **505:-** Techniques in Genetic engineering.

and

BTE– **605:-** Techniques in Bioinformatics

Q.1	A)	Major Experiment	20 Marks
	B)	Major Experiment	20 Marks
Q.2	A)	Minor Experiment	10 Marks
	B)	Minor Experiment	10 Marks
Q.3		Spotting	10 Marks
Q.4		Tour Report	10 Marks
Q.5		Journal	10 Marks
Q.6		Viva-voce	10 Marks

BTE-506 Techniques in Industrial Biotechnology

and

BTE-606 Techniques in Agricultural and Health Biotechnology

Q.1	A)	Major Experiment	20 Marks
	B)	Major Experiment	20 Marks
Q.2	A)	Minor Experiment	10 Marks
	B)	Minor Experiment	10 Marks
Q.3		Spotting	10 Marks
Q.4		Tour Report	10 Marks
Q.5		Journal	10 Marks
Q.6		Viva-voce	10 Marks

BTE 507 and BTE 607: Project

A) Internal Examination 50 Marks

B) External Examination 50 Marks

COMMON NATURE OF QUESTION FOR THEORY PAPER MENTIONED SPERATELY:

Equivalence of the Pre-revised and revised course

Prerevised Course		Revised Course	
BTE – 301	Genetic Engineering	BTE – 501	Basics in Genetic Engineering
		BTE – 601	Advances in Genetic Engineering
BTE – 302	Industrial, Food and Microbial	BTE – 502	Industrial Biotechnology
	Biotechnology	BTE – 602	Food and Microbial Biotechnology
BTE – 303	Application of Biotechnology in	BTE – 503	Application of Biotechnology in
	Agriculture and Health		Agriculture
		BTE – 603	Application of Biotechnology in Health
BTE – 304	Developmental Biology	BTE – 504	Developmental Biology (Plant and
DIE - 304	Developmental Biology	DIE - 304	animal)
		DEE	Bioinformatics
		BTE – 604	
BTE – 311	Techniques in Genetic	BTE – 505	Techniques in Genetic engineering
	engineering and Bioinformatics	BTE – 605	Techniques in Bioinformatics
BTE – 312	Techniques in Industrial, Food,	BTE – 506	Techniques in Industrial
	Agricultural, Health and	BTE – 606	Biotechnology
	Microbial Biotechnology		Techniques in Agricultural and
			Health Biotechnology
BTE – 313	Project	BTE – 507	Project (Part I)
		BTE – 607	Project (Part II)