SHIVAJI UNIVERSITY, KOLHAPUR

Biotechnology (Optional/Vocational) B. Sc III. Biotechnology (Optional/Vocational)

Course Code	Title of the Course	Theory / Practical	Marks	Lectures / Practical hrs.
BT0 - 301	Cell Metabolism, Virology and Animal Cell Culture	Theory	100	90 L
BT0 -302	Plant and Environmental Biotechnology	Theory	100	90 L
BT0 - 303	Microbial Technology	Theory	100	90 L
BT0 - 304	Methods in Biotechnology	Theory	100	90 L
BT0 -305	Techniques in Plant and Environmental Biotechnology	Practical	50	30 P
BT0 – 306	Techniques in Microbiology and Bioinformatics	Practical	50	30P
BT0 – 307	Project	Practical	50	30P
BT0 – 308	Entrepreneurship and Study Tour Report	Practical	50	30P

BT0 - 301<u>Cell Metabolism, Virology and Animal Cell</u> <u>Culture</u>

Topic	SECTION I	Lectures
no	(Cell Metabolism, Virology)	(45)
	Unit-I	12
1	General Metabolism	
	1.1-Introduction, Definition, Reactions of Metabolic	
	Pathways	
	1.1.1-Concepts of Free energy	
	1.1.2-Methods for study of Metabolic Pathways 1.1.3- Using radioisotopes, by using mutant, in	
	vitro studies.	
	1.2- Metabolism of Carbohydrate and Lipids	
	1.2.1- Carbohydrate metabolism- Reaction,	
	Energetics Significance, regulations of-	
	Glycolysis & Gluconeogenesis.	
	1.2.2- Reaction, significance of Pentose Phospate Pathway	
	1.2.3- Reaction& Energetics of TCA Cycle.	
	1.2.5- Reactione Energetics of Terr Cycle.	
_	Unit-II	11
2	2.1 Lipid Metabolism	
	2.1.1 Biosynthesis of Saturated Fatty acid-	
	Palmitic Acid	
	2.1.2 β-Oxidation of Fatty acid - Palmitic Acid	
	2.2 – Respiratory ElectronTransport Chain 2.2.1 Components of ETC	
	2.2.1 Components of LTC 2.2.2 flow of electrons Redox Values.	
	Mechanism of ATP generation – Chemical	
	coupling hypothesis, Chemiosmotic	
	Hypothesis.	
	2.3- Urea Cycle reaction & Significance.	
	Unit III	10
	Omt III	10
3	3.1 Introduction to Hormones- Definition, Types of	
	Vertebral Hormones- Steroid, Peptide, Aminoacid	
	3.2 Mode of Action- Hormone cascade mechanism	
	3.2.1- Hormone action at Cyclic nucleotide level	
	3.2.2- Induction of Enzyme synthesis at Nuclear level.	
	3.2.3- Stimulation of Enzyme synthesis at ribosomal	
L	2.2.5 Simulation of Engline Symmetric at 110050mar	

	level 3.2.4- Direct activation at enzyme level.	
	Unit-IV	12
4	 4.1 Virology 4.1.1- Inroduction. Types on the basis of Host & Nucleic acid 4.2 General Characteristics of Viruses. 4.3- General Structures of Viruses- TMV, Adeno virus, T₄ Bacteriophage 4.4- Reproduction of Viruses- 4.4.1- Adeno virus 4.4.2- Bacteriophage- T₄, λ- Phage 4.5- Isolation & Cultivation of Plant & Animal Viruses- Tissue culture & Embryonated Eggs 	
	SECTION II(Animal Cell Culture)	Lectures (45)
	Unit V	12
5	 5.1 Introduction to Animal Cell Culture 5.2 Characteristics of Animal Cell Culture 5.3 Substrates for Cell Growth 5.4 Culture media & their Properties Natural,	
	Unit-VI	11
6	6.1 Basic Techniques of Animal Cell Culture 6.1.1 Isolation of Tissue, 6.1.2 Desegregation 6.1.3 Measurement of Cell viability, 6.1.4 Maintenance of Cell Culture.	

	6.2 Cell lines	
	6.2.1 Types of Cell lines, Primary, Secondary,	
	Established	
	6.2.2 Evolution of Cell lines.	
	6.3 Scale up of Animal Cell Culture	
	6.3.1 Bioreactors of Animal cell culture	
	6.3.2 Roller Bottle	
	6.3.3 Spinner culture	
	6.3.4 Immobilized culture	
	6.3.5 Suspension culture	
	Unit-VII	10
7.	7.1 Organ Cultura Types of organ cultura	
	7.1 Organ Culture- Types of organ culture	
	7.2 Maintenance of Organ culture	
	7.2.1 Histotypic culture	
	7.3 Stem cell culture	
	7.3.1 Types of Stem Cells	
	7.3.2 Transplantation of Stem Cells	
	7.3.3. Applications	
	7.4 Applications of Animal cell culture	
	7.4.1 In Transplantation	
	7.4.2 Monoclonal Antibody production	
	7.4.3 Culture based Vaccine	
	7.4.4 Valuable recombinant products	
	7.4.5 Cloning.	
	7.4.6 Cell synchronization	
	Unit VIII	12
8	8.1 Transfection of Animal cells	
	8.1.1 electroporation, microinjection, liposome	
	mediated, gene gun method, virus mediated.	
	8.1.2 Selection of Transfected cells- Using	
	_	
	selective markers, NPT-II, TK, DHFR,	
	XGPRT	
	8.1.3 karyotyping	
	8.2 Transgenic Animals	
	8.2.1 Production of Transgenic Animals	
	8.2.2 Examples of Transgenic Animals- sheep,	
	mice, rabbit, cattle, pig, fish	
	8.2.3 Applications of Transgenic Animals	
	8.3 Bioethics of Animal Genetic Engineering.	

References:-

- 1. Biochemistry Lubert Strayer
- 2. Principles of Biochemistry- Lehninger
- 3. Virology- Luria & Delbruck
- 4. Animal cell culture- Fresheny
- 5. Biotechnology B.D.Singh
- 6. Biotechnology- R.C.Dubey
- 7. Gene Biotechnology- S.N.Jogdand
- 8. Fundamentals of Biochemistry- J.L.Jain S.Chand

Publication

 $BT0-302 \ \underline{Plant \ and \ Environmental \ Biotechnology}$

Topic No.	SECTION I (Plant Biotechnology)	Lectures 45
	Unit I	12
1.	 1.1 Introduction - History ,concept of cell culture, development of tissue culture, practical applications and recent advances. 1.3 Laboratory organization, Tissue culture media, Aseptic manipulation. 1.4 Clonal propagation (Micropropogation) - Technique, factors affecting, Applications, limitations. 1.5 Meristem culture - Principle, protocol, importance. 	
	Unit II	10
2	 2.1 Callus culture technique - Introduction, Principle, protocol, factors affecting, morphology, internal structure, genetic variation, applications, limitations. 2.2 Embryogenesis - Introduction, Principle, Protocol, factors affecting, importance. 2.3 Organogenesis - Introduction, Principle, Protocol, factors affecting, Applications. 2.4 Artificial seeds - Introduction, method, Importance. 2.4 Embryo culture - Introduction, Principle, Protocol, Applications. 	
	Unit III	12
3.	 3.1 Haploid production - Protocol for anther and pollen culture, Development of androgenic haploids, Applications, Problems. 3.2 Endosperm culture - Introduction, Technique, Applications. 3.2 Somaclonal variation - Introduction, Terminology, origin, Selection at plant level, Selection at cell level, mechanism, Assessment, Applications, Limitations. 	

	3.3 Suspension culture technique - Introduction,	
	Principle, protocol, different categories, growth	
	and growth measurement, Synchronization,	
	Applications, Limitations.	
	Unit IV	11
4.	4.1 Protoplast culture - Introduction, Principle,	
	Isolation, culture methods, importance.	
	4.2 Somatic hybridization - Protoplast fusion	
	techniques, Selection of hybrids, Biochemical	
	complementation, visual and morphological	
	methods, Cybrid production.	
	4.3 Genetic transformation - <i>Agrobacterium</i>	
	mediated, Electroporation, micro projectile,	
	macro injection, pollen mediated, marker genes,	
	expression of transferred genes.	
	4.4 Practical applications of tissue and organ	
	culture - application in agriculture, application	
	of horticulture and forestry, applications in	
	industries, transgenic plants.	
	SECTION II	Lectures
	(Environmental Biotechnology)	45
	(Environmental Diotecthology)	
	Unit V	13
5.	5.1 Conventional and non conventional fuels and	
	their environmental impacts	
	5.2 Modern fuels	
	5.2.1 Methanogenesis and biogas production.	
	5.2.2 Biohydrogen production	
	5.2.3 Bioethanol production and Gasohol	
	experiment	
	5.2.4 solar energy converters	
	5.2.5 Biopolymers (PHA, PHB) and Biodiesel	
	5.3 Global environmental problems	
	5.3.1Green house effect and global warming	
	5.3.2 Ozone depletion	
	5.3.3 U.V radiations	
	5.3.4 Acid rain	
		10
	Unit VI	

6	6.1 Types of waste	
O	6.2 Solid waste management	
	6.2.1 Types of solid waste(hazardous and non	
	hazardous)	
	6.2.2 Treatment and disposal	
	6.3 Waste water treatment	
	6.3.1 Methods of treatment-	
	Primary - (screening, grinding, grit	
	removal, flocculation,	
	sedimentation,	
	flotation, equalization,	
	coagulation,	
	clarification)	
	Secondary - (Aerobic-Trickling filters,	
	activated sludge processes,	
	stabilization ponds)(Anaerobic-Up	
	flow anaerobic sludge blanket	
	reactors),	
	Tertiary - (Chemical precipitation,	
	adsorption, chlorination,	
	enzymatic treatment, activated	
	carbon, filtration- micro & nano)	
	Unit VII	12
7	7.1 Bioremediation	
	7.1.1Definition & types (in situ & ex situ)	
	7.1.2 Bioremediation of hydrocarbons, dyes,	
	heavy	
	metals, pesticides	
	7.1.3 Agricultural bioremediation-composting and	
	vermicomposting	
	1 0	
	7.2 Biopesticides7.3 Bioaugmentation	
	7.4 Biosorption	
	7.5 Bioleaching-Types, chemistry & e.g. copper &	
	uranium	
	7.6 Microbial enhancement of oil recovery	
	7.7 Phytoremediation	
	Unit VIII	10
	Unit VIII	10

8.	8.1 Biofertilizers	
	8.1.1 Rhizobial inoculants	
	8.1.2 Azotobacter inoculunts	
	8.1.3 Azospirillum inoculunts	
	8.1.4 Cyanobacterial inoculunts	
	8.1.5 Phosphate solubilizing bacteria	
	8.1.6 VAM	
	8.1.7 Frankia	
	8.1.8 Azolla	
	8.2 Methods of Field applications	

References:-

- 1. Introduction to plant tissue culture-M.K.Razdan
- 2. Plant tissue culture Theory & practice- S.S.Bhojwani & M.K.Razdan
- 3. Crop improvement in biotechnology-H.S.Chawala
- 4. Plant tissue culture-Kalyankumar dey
- 5. Textbook of biotechnology- R.C.Dubey
- 6. Plant tissue culture- U .Kumar
- 7. Biotechnology- B.D.Singh
- 8. Environmental biotechnology- Indu Shekhar Thakur
- 9. Environmental biotechnology-Chattergy
- 10.Environmental biology-Verma & Agarwal
- 11. Environmental chemistry-B.K. Sharma
- 12.Environmental Pollution- Peavy & Rowe 13.Environmental problems & solutions- Asthana & Asthana
- 14. Environmental science-Siago Canninhham
- 15. Environmental biotechnology-S.N. Jogdand
- 16. Water engineering- Treatment dispose & reuse-Metcalf & Eddy
- 17. Environmental Biotechnology-C.S.K Mishra & Juwarkar

BT0 - 303- Microbial Technology

Sr.	SECTION I	Lectures
No.	Bioprocess Engineering	45
	Unit I	12
1.	1.1 Basic design of fermentor	
	1.2 Construction material used for fermentor	
	1.3 Accessories associated with fermentor	
	1.4 Types of fermentor-Tube tower fermentor, bubble	
	cap formantar fluidized had formantar air lift formantar	
	fermentor, fluidized bed fermentor, air lift fermentor 1.5 Fermentation media	
	1.6 Sterilization of fermentation media, equipment & air	
	1.0 Stermzation of Termentation media, equipment & an	
	Unit II	12
2	2.1 Screening of industrially important micro- organisms	
	2.1.1 Primary screening	
	2.1.2 Secondary screening	
	2.2 Pure culture techniques	
	2.2.1 Methods of isolation of industrially important	
	micro-organisms	
	2.2.2 Enrichment techniques	
	2.3 Strain improvement	
	2.3.1 By mutation	
	2.3.2 Genetic engineering	
	2.3.3 Genetic recombination	
	2.4 Maintenance of industrially important micro-	
	organisms	
	Unit III	09
	<u> </u>	
3.	3.1 Scale up- bench studies, pilot studies, industrial scale	
	3.2 Building of inoculum & pitching.	
	3.3 Computer application in fermentation technology	
	3.4 Types of fermentations	
	3.4.1Continuo fermentation	
	3.4.2 Batch fermentation	
	3.4.3 Solid state fermentation	
	Unit IV	12
	UIIIL I V	

4.	4.1 Down stream processing- Centrifugation, Distillation, Solvent extraction, Filtration, Ultrafilteration, precipitation, Ion exchange chromatography, Gel filtration, Affinity chromatography, Crystallization & drying 4.2 Assay 4.2.1 Physico-chemical assay-	
	Gravimetric, Spectrophotometric, Chromatographic 4.2.2 Microbiological assay- Diffusion assay, turbid metric assay, metabolic response assay, end point determination assay, enzymatic assay	
	SECTION II	Lectures 45
	(Fermentation technology)	
	Unit V	
5.	5.1Some specific fermentations- 5.1.1 Organic acid —citric acid 5.1.2 Aminoacid-lysin 5.1.3 Vinegar 5.1.4 Antibiotic-Penicillin	12
	Unit VI	
6	6.1 Specific fermentations- 6.1.1 Vitamin- vitamin B12 6.1.2 Enzyme-Amylase 6.1.3 Therapeutic agent- L-asparginase 6.1.4 Phytohormone - gibbrellins 6.1.5 Single cell protein	12
	Unit VII	
7	 7.1 Alcoholic beverages-wine, beer fermentation 7.2 Cheese fermentation 7.3 Bread fermentation 7.4 Xanthan gum fermentation 7.5 Lactic acid fermentation 	12
8.	8.1 Fermentation economics 8.2 IPR	9

References:

- 1. Comprehensive Biotechnology volume 3 Murray Moo- Young
- 2. Basic biotechnology- Colin Ratledge & Bijon Kritinsen, cambridge university press ,UK
- 3. Industrial microbiology casida
- 4. Principles of fermentations technology-Whittekar
- 5. Industrial microbiology- Prescott & dunns
- 6. Industrial microbiology- A.H.Patel
- 7. Industrial microbiology-Pepler & perlman

$BT0-304 \ \underline{Methods \ in \ Biotechnology}$

Topic	Section I	Lectures
No.	(Biochemical technique)	45
	Unit I	12
1	1.1Cell disruption methods-Grinding, abrasive presses,	
	enzymatic method, sonication.	
	1.2 Centrifugation	
	1.2.1 Introduction and Basic principle of	
	sedimentation	
	1.2.2 Types of centrifuge	
	1.2.3 Centrifugation- differential centrifugation,	
	Density gradient centrifugation.	
	1.3 Separation of protein by precipitation-	
	1.3.1 Salt precipitation - Salting out by ammonium	
	sulphate.	
	1.3.2 Organic solvent precipitation	
	1.4 Dialysis	
	Unit II	12
2	2.1 Chromatographic methods – Principle, methodology	
	and applications of	
	2.1.1 Gel Filtration method	
	2.1.2 Ion exchange chromatography	
	2.1.3 Affinity chromatography	
	2.1.4 GLC –Gas liquid chromatography	
	2.1.5 HPLC-High Performance Liquid	
	chromatography Unit III	11
3		11
3	3.1 Electrophoresis	
	3.1.1. Introduction, types and general principle 3.1.2 Supporting media – (Agarose, poly acryl amide	
	gel)	
	3.2 Electrophoresis of nucleic acid	
	3.2.1 Agarose gel electrophoresis of DNA	
	3.2.2 DNA sequencing gel	
	3.2.3 Pulsed field gel electrophoresis	
	3.2.4 Electrophoresis of RNA	
	3.3 Electrophoresis of protein	
	3.3.1 SDS-PAGE electrophoresis- methodology and	
	applications	
	3.3.2 Isoelectricfocusing	
	Unit IV	10
4	4.1 Tracer technique.	
	4.1.1 Introduction – Radioactivity, radioisotopes,	

		1
	types of radiation (α, β, γ) , half life period of	
	radioisotope	
	4.2 Methods of measurement of radioactivity	
	4.2.1 Gas ionization	
	4.2.2 Solvent excitation- Liquid scintillation counter	
	4.2.3 Autoradiography	
	4.3 Application of radioisotope in biological system	
	Section II	Lectures
	(Gene biotechnology and Bioinformatics)	45
5	Unit V	12
	5.1 Techniques in gene biotechnology- DNA Finger	
	printing (DNA profiling)	
	5.1.1 Introduction	
	5.1.2 Genetic markers	
	5.1.3 Use of minisatellite	
	5.1.4 Multilocus and single locus probes	
	5.1.5 Scheme for DNA Finger printing	
	5.1.6 Applications	
	5.2 Restriction mapping	
	Unit VI	12
6	6.1 Chromosome walking and jumping –introduction and	
	steps	
	6.2 Gene targeting	
	6.2.1 Theory	
	6.2.2 Application	
	6.2.3 Gene targeting in mice	
	6.3 Human gene therapy	
	6.3.1 Introduction	
	6.3.2 Types of gene theory- 1. Somatic gene 2. Germ	
	Line 3. Enhancement 4. Eugenic genetic	
	engineering.	
	6.3.3 Methods for gene transfer –virus vector,non-viral	
	approach	
	6.3.4 Limitations and requirement in gene therapy	
	6.4 Antisense therapy- introduction, principle, application	
	6.5 DNA micro array	
	Unit VII	10
7	7.1 Introduction to Bioinformatics	
	7.1.1 Definition of bioinformatics	
	7.1.2 Use of computer and internet in biology and	
	medicine	
	7.1.3 Definition and classification of databases	
	(primary and secondary)	

	7.1.4 Sequences and nomenclature	
	7.1.5 Information sourses-introduction, aim and	
	objectives	
	NCBI(National Centre for Biotechnology	
	Information)	
	NLM(National Library of medicine)	
	NIH (National Institute of Health)	
	SRS(Sequence Retrieval System)	
	EBI, Entrez, DBGet	
	, ,	
	Unit VIII	11
8	8.1 Introduction to genomics	
	8.1.1 Definition	
	8.1.2 Methods of gene sequencing	
	1.Direct sequencing of BAC(Bacterial Artificial	
	chromosome)	
	2.Random shot gun sequencing	
	3. Whole genome shot gun sequencing	
	8.1.3 Gene prediction and gene counting	
	8.1.4Types of genomics (structural and functional)	
	8.1.5Application of genomics	
	8.2Human Genome Project	
	8.2.1 Introduction and definition	
	8.2.2 Difficulties in mapping and sequencing	
	8.2.3 Technical strategies 1. Physical mapping 2.	
	Genetic	
	mapping	
	83 Introduction to proteomics	
	8.3.1 Introduction, definition & scope.	
	8.3.2 Types of proteomics –1.Expression 2.Structural	
	3. Functional	
	8.3.3 Application of proteomics	

References:-

- 1. Practical biochemistry principles and techniques Wilson and Walkar (edi. VI)
- 2. Protein purification –Robert Scoop
- 3. Biophysical chemistry –Nath Upadhyay
- 4. Textbook of Biotechnology- R.C.Duby
- 5. Textbook of Biotechnology- B.D.Singh
- 6.Gene biotechnology -S.N.Jogdand
- 7.Gene manipulation Old and Primrose
- 8. Introduction to Bioinformatics Rastogi

BT0 - 305<u>Techniques in Plant and Environmental</u> <u>Biotechnology</u>

Sr. no.	Name of the Practical	30 P
1	Preparation of stock solution & media	1
2	Callus culture technique- initiation of culture, callus morphology.	1
3	Suspension culture technique – initiation, growth measurement	2
4	Initiation of anther culture	1
5	Synthetic seed production	1
6	Initiation of micropropagation- shoot tip or axillary bud culture technique	1
7	Subculture & multiplication of culture	1
8	Root differentiation	1
9	Acclimatization & hardening	1
10	Isolation of E . $coli$ phages from sewage	2
11	Determination of BOD of sewage	2
12	Determination of COD of sewage	1
13	Isolation of <i>Rhizobium</i> from root nodules	2
14	Isolation of PSB from soil.	2
15	Observation of different developmental stages in chick embryo	1

BT0 - 306 Techniques in Microbiology and Bioinformatics

Sr. no.	Name of the Practical	30 P
1	Bioassay of penicillin	1
2	Bioassay of vitamin B12	1
3	Immobilization of yeast(Saccharomyces cerevisiae) cells and production of ethanol by using immobilized yeast cells and determination of alcohol content by specific gravity method	4
4	Production of bacterial amylase by submerged culture method & estimation of amylase by DNSA method	4
5	Determination of molecular weight of DNA	1
6	Browsing and understanding NCBI Web page, Introduction to literature database- PubMed	1
7	Exploring protein sequence database- Introduction to protein databank(PDB) & RasMol to visualize 3D structure of protein	1
8	Exploring Nucleic acid sequence database, Understanding Human genome project	1
9	Purification of proteins by gel filtration chromatography	1

Practical Examination:-

- A) The practical examination will be conducted on three (3) consecutive days for not less than 4 1/2 hours on each day of the practical examination.
- B) Each candidate must produce a certificate from the Head of the Department in his/her college stating that he/she has completed in a satisfactory manner the practical course on the guidelines laid down from time to time by Academic Council on the recommendation of Board of studies and has been recorded his/her observations in the laboratory journal and written a report on each exercise performed. Every journal is to be checked and signed periodically by a member teaching staff and certified by the Head of the Department at the end of staff and certified by the Head of the Department at the end of the year. Candidates are to produce their journal at the time of practical examination. Candidates have to visit the least Two (2) places of Biotechnological interest (Pharmaceutical industry, Dairy, Research institutes etc.) and satisfactorily complete project work, job training, and entrepreneurship as per syllabus. The report of the same should be duly certified by the Head of the Department and submit the respective reports at the time of examination.

BT0 - 307

For Vocational Biotechnology-Project On Job Training Report

For optional biotechnology – Project

BT0 - 308

Entrepreneurship Study Tour Report

Question paper pattern:

BT0 - 305:-Techniques in Plant and Environmental Biotechnology

Q.1 Major Experiment	20 Marks
Q.2 Minor Experiment	10 Marks
Q.3 Spotting	10 Marks
Q.4 Journal	5 Marks
Q.5 Oral	5 Marks

BT0 - 306:- Techniques in Microbiology and Bioinformatics

Q.1 Major Experiment	20 Marks
Q.2 Minor Experiment	10 Marks
Q.3 Spotting	10 Marks
Q.4 Journal	5 Marks
Q.5 Oral	5 Marks

BT0 - 307

For Vocational Biotechnology-

Project	35 Marks
On Job Training Report	15 Marks

For optional biotechnology –

Project 50 Marks

BT0 - 308

Entrepreneurship	35 Marks
Study Tour Report	15 Marks