SU/BOS/Sci & Tech/5414

Date : 21/09/2017

To
The Principal,
Sadguru Gadage Maharaj College,
Karad.

Subject: Regarding syllabus of M. Sc. Industrial Microbiology course under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the syllabus of M. Sc. Industrial Microbiology course under the Faculty of Science and Technology.

This syllabus will be implemented from the academic year 2017-18 i.e. from June 2017 onwards.

You are therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Yours faithfully,

Dy. Registrar

Copy to :-

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The Dean, Faculty of Science & Technology</td>
</tr>
<tr>
<td>2.</td>
<td>Appointment Section</td>
</tr>
<tr>
<td>3.</td>
<td>Chairman, concerned co-ordinating committee</td>
</tr>
<tr>
<td>4.</td>
<td>Computer Centre/ IT Cell</td>
</tr>
<tr>
<td>5.</td>
<td>B.Sc/M.sc Exam</td>
</tr>
<tr>
<td>6.</td>
<td>Affiliation Section (U.G./P. G.)</td>
</tr>
<tr>
<td>7.</td>
<td>Eligibility Section</td>
</tr>
<tr>
<td>8.</td>
<td>P. G. Admission Section</td>
</tr>
<tr>
<td>9.</td>
<td>O.E. I Section</td>
</tr>
<tr>
<td>10.</td>
<td>P. G. Seminar Section</td>
</tr>
</tbody>
</table>
SHIVAJI UNIVERSITY, KOLHAPUR

M. Sc. INDUSTRIAL MICROBIOLOGY (Regular) SYLLABUS

Revised to be implemented from 2017-18
(Applicable to affiliated colleges only)

A. ORDINANCE AND REGULATIONS:

1. Ordinance:
 As per M.Sc. Microbiology course

B. REVISED SYLLABUS FOR MASTER OF SCIENCE (M. Sc.):

1. Title: Subject: - INDUSTRIAL MICROBIOLOGY
 Compulsory under the Faculty of Science

2. Year of implementation:
 New syllabus will be implemented from June 2017 onwards

3. Preamble: (Applicable to University affiliated college centers)
 Total number of semesters : 04
 (Two semesters per year)
 Total No. of papers : 16
 Total no. of practical courses : 08
 No. of theory papers per semester : 04
 No. of practical courses per semester : 02
 Maximum marks per paper (Theory/Practical) : 100
 Distribution of marks (Theory only) –
 Internal evaluation : 20
 External evaluation : 80
 (Semester exam)
 Total marks for M. Sc. Degree
 Theory papers : 1600
 Practical course : 800
 2400

4. General Objectives of the Course:
 This two year M. Sc. programme is designed to develop competent Industrial Microbiologists, who can progress to diverse fields of Industrial microbiological interests that include industry, research, teaching, medical science and entrepreneurship. The course is aimed at adding to the knowledge base of Industrial Microbiology as well as Microbiology graduates through significant inputs of latest information on the subject. It also envisages that the students read original research publications and develop the ability of critical evaluation of the study. Development of communication skills - written and spoken - as well as laboratory work and team work, creativity, planning and execution are also a major objective of this programme. In the core courses, the students study the basics of Industrial Microbiology along with the basics of subjects allied to and useful in Industrial Microbiology (Techniques, Biostatistics, Computer handling and Bioinformatics and Scientific writing). The specializations
include topics on various fields of Industrial Microbiology, Waste Management Technology, Extremophiles and Recombinant DNA Technology.

Students are required to undertake a Research Project/ Industrial Training. In the Research Project (undertaken at the Parent Department), the student is expected to study research methodology through experimental work, literature survey and report writing following the IMRAD (Introduction, Aims and objectives, Materials and Methods, Results and Discussion) system.

In Industrial Training, the student is to take training in the Industry for a period of at least three weeks in the vacation period. The student should study Microbiological aspects in the Industry and submit its report in the form of dissertation duly signed by the concerned authority (from the industry), concerned supervisor (in the department) and Head of the department.

Students are also required to compulsorily undertake an educational tour organized by the Department in each year (M. Sc. I and M. Sc. II) to various places of Microbiological interest and submit a ‘Tour Report’ duly signed by the Head of the Department, practical examinations respectively failing which they will not be allowed to attend the examination.

5. Duration:
 • The course shall be a fulltime course
 • The course shall be of two years, consisting of four semesters

6. Fee Structure:
 • Entrance Examination fees : as prescribed by Shivaji University, Kolhapur
 • Course Fee : as prescribed by Shivaji University, Kolhapur

7. Eligibility for Admission: (as per University rule)

8. Medium of instruction : English

9. Structure of the course:

 Theory Courses:
 MIC –101 –Taxonomy and Cytology of Microorganisms
 MIC –102 – Virology
 MIC –103 – Genetics and Molecular Biology
 MIC –104 – Immunology

 Practical Courses:
 MIC –105 – Practical Course - I
 MIC –106 – Practical Course – II

 Semester II

 Theory Courses:
 MIC –201 –Techniques in Microbiology
 MIC –202 – Microbial physiology, biochemistry and metabolism
 MIC –203 – Medical Microbiology
 MIC –204 – Microbial Ecology

 Practical Courses:
10. System of Examination: applicable to University affiliated college centers

1. Scheme of examination:
 • Semester examination (External evaluation) will be conducted for both theory and practical courses by the University at the end of each term (Semester)
 • Theory paper of the external evaluation (Semester exam) will be of 80 marks
 • The internal evaluation test (by the Department) will be for a total of 20 marks consisting of two tests of 10 marks each for each course paper in the middle of the semester
 • The two practical course examinations will be external evaluation (Semester exam) only, of 100 marks each
 • Question paper will be set in view of the entire syllabus and preferably covering each unit of the syllabus

2. Standard of passing:
 As per the rules and regulations of the university for the M. Sc. course

3. Nature of question paper and scheme of marking:
 a) External Evaluation (Semester exam) Theory paper: Maximum marks – 80
 • Equal weightage shall be given to all units of the theory paper
 • Total number of questions – 07
 • All questions will carry equal marks.
 • Out of the seven questions, five are to be attempted of which Question 1 will be compulsory
 • Question No. 1 will be of an objective type
 ➢ Total No. of bits – 16, Total marks – 16
 ➢ Nature of questions - multiple choice, fill in the blanks, definitions, true or false, match the following
 ➢ These questions will be answered along with the other questions in the same answer book
 • Remaining six questions will be divided into two sections, I and II.
 • Four questions are to be attempted from these sections in such a way that not more than two questions are answered from each section.
 • Both sections are to be written in the same answer book
 b) Internal Evaluation Theory paper: Maximum marks – 20
 • Objective- multiple choice/True or false/ fill in the blanks/match the following
 • Total number of questions will be 10 each carrying 01 mark
 c) Practical Examination (External Evaluation only) Maximum marks – 100
 • Total number of questions – 06
 • All questions will be compulsory
 • Questions 1 to 4 will have at least two (02) internal options
• Question 5 will be *viva voce* and question 6 will be for the journal, each carrying 10 marks

C. **INTAKE CAPACITY:**
 1. 20* students every year on the basis of entrance examination
 2. The above includes 10 % students from other Universities
 *for S.G.M. College, Karad.

D. **CREDIT SYSTEM:**
1. **Definition of CREDITS:**
 It is the workload of a student in College activities. This includes:
 1. Lectures – time put in for attendance in theory class
 2. Practicals – time put in performing experiments in the laboratory
 3. Seminars – time put in for delivering a seminar topic in class
 4. Private study work in the Library/Home – book issue, reference work (books and journals), reading magazines and relevant literature, internet access, study, preparation of notes, computations, etc.
 5. Examinations - – time put in for theory and practical examinations during and at the end of each semester
 6. Other activities – review writing of referred literature, taking subject related add on courses conducted by College, University or any authorized organizations.

1.1 **Types of credits:**
1.1.1 **Credits by evaluation** - examination (theory and practical)
1.1.2 **Credits by non-evaluation** – private study work in the Library/Home, proficiency in state, national and international sports, social service – NSS, military service – NCC, colloquiums and debates, cultural programmes, participation in seminars, scientific symposia, workshops, conferences, etc.

2. **Credits by lectures and practicals: 96**
 • Total instructional days as per norms of UGC = 180
 • One (01) credit is equivalent to 15 contact hours
 • There are four (04) theory papers with 04 hours teaching per week
 • Each theory paper consists of 04 units
 • There are two (02) practical courses of 09 hours duration per week
 • Each practical course consists of 02 units
 • As there are four (04) semesters to the M. Sc. course, the total credits from lectures and practicals will be - 04 × 24 = 96 credits

<table>
<thead>
<tr>
<th>Course type</th>
<th>Contact hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory paper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. **M. Sc. Course Work (credit system) for a student:**
 - Total number of credits for the entire M. Sc. Course will be **100**
 - **Theory papers**: \(16 \times 04 = 64\) credits
 - **Practical courses**: \(08 \times 04 = 32\) credits
 - **Other activities**: \(04\) credits
 - Total: \(100\) credits
 - The option of choosing credits from other departments/courses will be available only in semesters III and IV
 - This choice will be restricted to **08** credits and only for theory papers i.e. two (02) papers in place of the elective papers
 - Time course: **02** years minimum

4. **Class capacity:**
 - Theory: maximum **60** students per class
 - Practical courses: **10** students per batch

5. **Examination:**
 - **Theory Examination**:
 - **External**: 80 marks per theory paper (examination at the end of the Semester)
 - This will be conducted by the University as specified in section B.10
 - **Internal**: 20 marks per theory paper (based on `objective type’ question Paper)
 - This will be conducted by the Department as per the norms specified in section B.10.3b above
 - **Practical Examination**:
 - This will be conducted only by the University as specified in section B.10
 - **Project/Industrial Training evaluation**:
 - **External**: 50 marks by the university examiners through observation of the oral presentation and assessment at the time of the Semester IV practical examination
 - **Internal**: 50 marks by the concerned project supervisor as the internal examiner during progress of the work.
6. Courses available in the Department:

Semester-I:
- Theory courses: MIC-101, MIC-102, MIC-103, MIC-104
- Practical courses: MIC-105, MIC-106

Semester-II:
- Theory courses: MIC-201, MIC-202, MIC-203, MIC-204
- Practical courses: MIC-205, MIC-206
UNIT - I

1. Cell division, Cell cycle and differentiation of *Bacillus, Azotobacter, Candida* and *Aureobasidium*

UNIT - II

1. General characteristics and outline classification of:
 1.1 Archaea
 1.2 Mycoplasma
 1.3 Rickettsia
 1.4 Chlamydia

UNIT - III

1. Yeasts: Morphology, cytology and cultural characteristics of yeasts, outline classification of yeasts
2. Fungi: Outline classification of fungi, Fungal cell structure, Morphology of some common fungi - *Mucor, Rhizopus, Aspergillus, Penicillium* and *Fusarium*
3. General characteristics of Lichens and Mycorrhiza
4. Algae: Outline classification of algae, algal cell structure and reproduction, microalgae
5. Actinomycetes: General characteristics and outline classification

UNIT - IV

 1.1 Brief history of the Bergey’s Manual
 1.2 Prokaryotic Domains
2. Classification of Prokaryotic organisms- Concept of bacterial speciation, Bacterial nomenclature
3. Modern trends in Prokaryote taxonomy:
 3.1 Polyphasic taxonomy- Types of information used, polyphasic strategy, polyphasic taxonomy in practice
 3.2 Phylogenetic basis- Reconstruction and interpretation of phylogenetic trees, limitations, presentation of trees, 16 S rRNA sequence analysis
 3.3 Numerical taxonomy

REFERENCE BOOKS
2. Bergey’s Manual of Systemic Bacteriology 2nd Ed. Springer, USA.
5. The Yeasts- A.H. Rose
6. General Microbiology, 5th Ed. R. Y. Stanier and others
7. The Prokaryotes: A handbook on the Biology of Bacteria, Martin Dworkin (Editor- in-
Chief) and others Springer

MIC - 102: VIROLOGY

UNIT - I
1. Single burst and premature lysis experiment for phage host interaction
2. Productive cycle of T-odd phages
3. Productive cycle of lambda phage
4. Interaction of *Bacillus* phages with their hosts.
5. Properties of lambda lysogeny
6. Brief details of lysogenic interactions of P2, P22, P1 and Mu1 phages.

UNIT - II
1. Transmission of plant viruses:
 1.1 Vector transmission- insect, nematode and fungal vectors
 1.2 Non vector transmission- Seed transmission, graft transmission, mechanical transmission
2. Effect of viruses on plants- roots, stem, leaves, flowers and fruits
3. Gene expression and replication strategies of-
 3.1 Poty virus
 3.2 Potex virus
 3.3 TMV
 3.4 Lettuce necrosis yellow virus

UNIT - III
1. Productive cycle of animal viruses having DNA
 1.1 Herpes viruses
 1.2 Parvo viruses
2. Productive cycle of animal viruses having double stranded RNA- Reo virus
3. Productive cycle of animal viruses having single stranded RNA
 3.1 Rhabdo
 3.2 Picorna
 3.3 Retro
 3.4 Influenza

UNIT - IV
1. Slow viruses – Discovery, General features and importance
2. DI particles – general features and interactions
3. Inhibition and inactivation of bacteriophages, animal viruses and plant virusesphotodynamic inhibition, inactivation by heat and radiations, inactivation by chemicals
4. Antiviral chemotherapy- general approach, principles involved (inhibition of viral entry, inhibition of viral nucleic acid function, inhibition of viral protein function), chemicals of therapeutic use

REFERENCE BOOKS
1. General Virology- by S. Luria
2. Bacterial and Bacteriophage genetics- by Edward A. Birge
4. Introduction to Plant Virology – by Bos I.
5. Field’s Virology Vol I and II – by Lipincott
7. Molecular Biology and Biotechnology – by Walker and Gingold
8. Medical Microbiology 2nd ed. - by Mims, Playfour and Roitt
9. Brock’s Biology of Microorganisms by Madigan
10. Advances in General Microbiology Vol.I- by Shrivastava
11. Plant Viruses as Molecular Pathogens by Jawed A Khan and Jeanne Dijkstra

MIC – 103: GENETICS AND MOLECULAR BIOLOGY

UNIT - I
(12)
3. Molecular basis- genetic polymorphism and selection, coincidental and concerted molecular basis, gene duplication, sequence divergence, recombination and crossover fixation, pseudo-genes as dead ends of evolution
4. Origin and evolution of economically important microbes, plants and animals.
5. Evidences for nucleic acids as genetic material.
6. Organization of eukaryotic genetic material:
 6.1 Nuclear and organelle (mitochondria and chloroplasts)
 6.2 Polytene and Lampbrush chromosomes

UNIT - II
(12)
2. Law of DNA constancy and redundancy, C-value paradox, Cot curves and DNA re-association constant, dosage compensation, genetic load.
3. Molecular basis of mitosis and meiosis
4. Replication of DNA and duplication of chromosomes – modes and molecular mechanisms of DNA replication in prokaryotes (bacteria) and eukaryotes (nuclear and mitochondrial).
5. Co-transcriptional and post-transcriptional processing of RNA, structure and stability of mRNA

UNIT - III
(12)
1. Translation in eukaryotes – machinery, initiation, elongation, termination and release, posttranslational processing.
2. Localization of proteins in cell - mechanisms of transport to nucleus, mitochondria, chloroplasts and outside the cell
3. Molecular mechanism of homologous recombination in bacteria and other organisms – RecBCD and Ruv systems, Holliday junction, interallelic, specialized and site specific recombination; Gene targeting.
4. Restriction and modification of DNA – enzymes, molecular mechanisms and significance.
UNIT - IV (12)

1. Teratogenesis- chromosome aberrations, genetic disorders; Genetic counseling.
2. Cancer and oncogenesis:
 2.1 Transforming viruses, environmental factors causing cancer - carcinogens
 2.2 Molecular mechanism and sequence of changes leading to oncogenesis - mutations, activation of proto-oncogenes, loss of function of tumour suppressor (anti-cancer) genes, role of apoptosis and telomere shortening in cancer.
3. Techniques in molecular genetics:
 3.1 Basic techniques - PCR, LCR, Nick translation, Blotting techniques – Southern, Northern and Southwestern blotting, colony hybridization
 3.2 Applications - Chromosome walking, DNA footprinting and 16s rRNA sequence analysis
 3.3 Transfection – Protoplast fusion, electroporation

REFERENCE BOOKS
3. Organic Evolution by N. Arumugam
4. Organic Evolution by R. S. Lulla, Seema Publications
5. Genetics by Strickberger
6. Microbial Genetics by D. Freifelder, J. Wiley and Sons
7. Genes – VI, VII, VIII and IX by B. Lewin, Jones and Bartlett Publishers
9. Genetics by S. Mitra, Macmillan India
10. Genetic Engineering by S. Mitra, Macmillan India
12. Molecular Biology by P. C. Turner and others, Bioscientific Publishers
16. An Introduction to Genetic Analysis Freeman 1993

MIC – 104: IMMUNOLOGY

UNIT - I (12)
1. MHC complex: structure, function, MHC polymorphism, assembly and presentation of peptide MHC complex.
2. Antigen processing and presentation: The endocytic and cytosolic pathway, immunological synapse (structure and function)
3. Signal transduction: Ras dependant and Jak/Stat pathway, signal transduction by IL-1, IL-2 and T-cell antigen receptors.

UNIT - II

1. Complement System: Regulation of complement pathways, biological consequences of activation, complement polymorphism
2. Genetics of antibody synthesis: Types of genes, location and positions of genes, genes for constant region, genes for variable region of immunoglobulin
4. Immunomodulation, potentiation, tolerance and suppression.
5. Vaccines:
 5.1 rDNA
 5.2 DNA vaccines
 5.3 Edible vaccines, Carrier, Synthetic peptide, subunit vaccines, anti-idiotypic

UNIT - III

1. Transplantation immunology: Immunological basis of graft rejection, clinical manifestation, immunosuppressive therapy, Kidney transplantation – ABO testing, pathology of graft rejection

UNIT - IV

2. Immunochemical techniques and their applications: Immunohistochemical technique, ELISA, FAT, Western blot technique, Immunoelectrophoresis (IEP), Immunodiffusion, Fluorescence Activated Cell Sorters.
3. PCR based diagnostic tests

REFERENCE BOOKS
1. Basic and Clinical Immunology by Stites Daniel P., Stobo John D., Frudenberg H.H., Wells J.V.
2. Biotechnology Application and Research by P. N. Cheremisinoff and R. P. Ouellette
3. Essential Immunology by Roitt Ivan M.
4. Fundamentals of Immunology 2nd ed. by Myrrik Quentin N. and Weiser Russell S.
5. Immunobiotechnology by Mahadev Sharma and Nirmal Tripathi
6. Immunology by I Kannan
7. Immunology 3rd ed. by Roitt I. M., Brostoff J., Male D. K.
8. Immunology 5th ed. by R. A. Goldsby, T. J. Kindt, B. A. Osborne, J. Kuby
9. Immunology II by Bellanti Joseph A.
12. Medical Microbiology by Irving William and others
14. Medical Microbiology 6th Edition by Gupte Satish, Jaypee Brothers,
16. Principles and techniques in Practical Biochemistry by Wilson and Walker
17. Text book of Microbiology by Vasanthakumari R.
18. The text book of Microbiology by Dubey R. C., Maheshwari D. K.

MIC - 105: PRACTICAL COURSE – I

UNIT - I

1. Microscopic observation of cysts in *Azotobacter*
2. Microscopic observation of endospore development in *Bacillus*
3. Isolation and morphological studies of Algae – *Spirulina*
4. Microbiological study of *Aspergillus, Penicillium, Rhizopus* and *Fusarium* species
 4.1 Isolation and characterization (growth and morphological)
 4.2 Slide culture study of developmental stages
5. Microbiological study of yeasts
 5.1 Isolation and characterization (cultural and morphological)
 5.2 Induction and observation of Ascospores of *Saccharomyces cerevisiae*
6. Microbiological study of Actinomycetes
 6.1 Isolation and characterization
 6.2 Cover slip and slide culture study of morphological characters
7. Induction and observation of Ascospores of *Saccharomyces cerevisiae*
8. Isolation and characterization of chemoautotrophic nitrifying bacteria

UNIT - II

9. Phage typing of *E. coli*
10. Titration of *E. coli* phages
11. Preparation of high titre stock of *E. coli* phages
12. Study of one step growth of T-4 phage
13. Isolation of plaque morphology mutants of phages by using UV radiations
14. Isolation of plaque morphology mutants of phages by using chemical mutagen
15. Demonstration of egg inoculation techniques

REFERENCE BOOKS

4. Analysis of Plants, Irrigation water and Soils by R. B. Somawanshi and others. Mahatma Phule Agricultural University, Rahuri
7. Benson’s Microbiological Applications Laboratory Manual in General Microbiology by Alfred E. Brown
10. Microbiological Methods by Michael Collins
12. Laboratory Exercises in Microbiology by Robert A. Pollock and others
13. Laboratory Techniques in Microbiology and Biotechnology by R. P. Tiwari, G. S. Hoondal and R. Tewari, Abhishek Publications, Chandigarh
15. Laboratory Exercises in Microbiology by J. P. Harley and L. M. Prescott 5th Ed.

MIC – 106: PRACTICAL COURSE –II

UNIT - I

1. Staining and microscopic observation of nuclear material of bacteria and yeasts – Feulgen and Giemsa methods.
2. Isolation of DNA and RNA from bacteria and yeasts.
3. Thermal denaturation of DNA
4. Gene transfer in *E. coli* by – transformation and conjugation
5. Demonstration of protoplast fusion in bacteria
6. Southern blotting (demonstration)
7. Estimation of mutation rate in *E. coli*
8. PCR (demonstration)

UNIT – II

9. Ouchterlony’s double diffusion test
10. Radial immunodiffusion test
11. Immunoelectrophoresis test
12. ASO test
13. RA test
14. Weil-Felix test
15. Ames test for carcinogenicity/mutagenicity of chemicals
16. ELISA test (demonstration)

REFERENCE BOOKS

5. Methods in Microbiology (Vol. 5B and Vol. 3A) by Norris and Ribbons. Academic Press
6. Microbiological Methods by Michael Collins
7. Handbook of Practical Immunology (Vols. 1, 2, 3) by D. M. Weir
9. Advanced Techniques in Diagnostic Microbiology by Yi-Wie-Tang and Charles W. Stratton, Springer
10. Molecular Biology Laboratory Manual by Denny R. Randall
UNIT - I
1. Enrichment culture techniques – principles and selective factors employed, enrichment systems – closed and open, single cell isolation methods
2. Principles and methods of preservation of bacteria, viruses, yeasts and molds
3. Isolation and cultivation of anaerobes – principles, reducing agents, indicators, anaerobic jar methods and anaerobic glove box, Hungate’s roll tube technique and its serum bottle modification.
4. Isolation of human and animal pathogenic fungi
5. Microscopic techniques –
 5.1 Electron microscopy – principles and working of transmission and scanning microscopes.
 5.1 Dark field, phase contrast, polarisation, differential interference contrast (DIC), fluorescence, confocal scanning, scanning tunnelling, atomic force microscopy.

UNIT - II
1. Good laboratory practices:
 1.1 Accuracy in preparation of solutions, media, etc.
 1.2 Qualifications of equipment – design (DQ), installation (IQ), operational (OQ) and performance (PQ)
 1.3 Validation and calibration
 1.4 Documentation- Concepts, necessity and types
2. Safety in the laboratory:
 2.1 Common hazards in the laboratory –
 2.1.1 Electrical equipment
 2.1.2 Chemicals – corrosive, irritant, toxic, flammable, explosive
 2.1.3 Ionising radiations
 2.1.4 Infectious materials
 2.1.5 Gas and fire
 2.2 Safety measures –
 2.2.1 In the use of equipments and gas facility
 2.2.2 Personal protection
 2.2.3 Waste disposal
 2.2.4 First aid

UNIT - III
1. Chromatography – general principles and working of
 1.1 Column chromatography – gel, ion exchange.
 1.2 Gas chromatography
 1.3 HPLC
2. Electrophoresis-
 2.1 Polyacrylamide gel electrophoresis (PAGE) - native and gradient gels, DNA Sequencing gels, SDS-PAGE, isoelectric focusing, 2-D PAGE
 2.2 Agarose gel electrophoresis- DNA gel, Pulsed field gel, RNA electrophoresis.
 2.3 Capillary electrophoresis
3. Centrifugation – principles of differential and density gradient centrifugation, sedimentation coefficient determination

UNIT - IV
1. Spectroscopy – Principles of IR and Raman spectrophotometry, turbidimetry and nephelometry, fluorimetry, luminometry, circular dichroism and optical rotational dichroism spectrophotometry, ESR, NMR
2. Mass spectrometry
3. X – ray crystallography
4. Radioisotopic techniques –
 4.1 Nature of radioactivity and general principles of radioisotopic techniques
 4.2 Methods of detection of radioactivity – gas ionization (GM counter), excitation (scintillation) and exposure of photographic emulsions (autoradiography).
 4.3 Methods of using radioisotopes – radioisotope tracer technique, isotope dilution assay (RIA) and other methods
5. Electrochemical techniques – general principles of electrochemical cells and potentiometry, principles and applications of the pH, ion selective and oxygen electrodes

REFERENCE BOOKS
2. Principles and techniques in Practical Biochemistry by Wilson and Walker
3. Research Methodology for Biological Sciences by N. Gurumani, MJP Publishers, Chennai
4. Bioinstrumentation by L. Veerakumari, MJP Publishers, Chennai
5. A manual of Laboratory Techniques by N. Raghuramulu and others, NIN, Hyderabad
6. Microbiological aspects of Anaerobic Digestion – Laboratory Manual by D. R. Ranade and R. V. Gadre, MACS, Agharkar Research Institute, Pune
8. Tools in Biochemistry by D. Cooper
9. Protein Purification by R. Scopes, Springer Verlag Publications
10. Analytical Biochemistry (Biochemical Techniques) by P. Asokan, Chinnaa Publications

MIC – 202: MICROBIAL PHYSIOLOGY, BIOCHEMISTRY AND METABOLISM
UNIT - I
1. Carbohydrate metabolism: Citric acid cycle- steps involved, amphibolic nature, anaplerotic reactions.
2. Oxidation of hydrocarbons:
 2.1 Aliphatic hydrocarbons - alkanes and alkenes- alpha, beta and omega oxidation
 2.2 Aromatic hydrocarbons - beta keto adipate pathway, valerate pathway and gentisate pathway
3. Oxidation of fatty acids and phospholipids: beta-oxidation of fatty acids, phospholipases and thioesterases
4. Catabolism of amino acids (General reactions)
5. Pasteur and Crabtree effect
6. Autotrophy - Concept, factors for, types of autotrophs, mechanisms
UNIT - II (12)
1. Respiratory metabolism:
 1.1 Mitochondrial ETC - structure of mitochondrion, ETC and its components, Shuttle system across membrane, Atkinson’s energy charge.
 1.2 Oxygen toxicity - mechanism of oxygen toxicity, mechanism to overcome the toxicity - catalase, peroxidase and superoxide dismutase
2. Photo-phosphorylation in bacteria-
 2.1 Photosynthetic and non-photosynthetic ETC
 2.2 Cyclic and non-cyclic photophosphorylation
3. Drug metabolism in the body, mechanisms of detoxification of various substances
4. Fermentation of saccharolytic clostridia and propionic acid bacteria

UNIT - III (12)
1. Protein chemistry - Structure of peptide bond, stabilization of conformation,
 1.1 Secondary structure, alpha helix, beta conformation, Ramachandran plot
 1.2 Tertiary structure
 1.3 Quaternary structure
2. Biosynthesis of aminoacids: α- ketoglutarate family, oxaloacetate family, Pyruvate family
3. Lipid metabolism in prokaryotes –
 3.1 Biosynthesis of fatty acids
 3.2 Phospholipid biosynthesis – phosphatidylethanolamine and phosphatidylglycerol
 3.3 Regulation of lipid metabolism
5. Purine and pyridine biosynthesis- de novo pathway and salvage pathway

UNIT - IV (12)
1. Osmosis- Effect of osmotic stress on microorganisms, plasmolysis and plasmoptysis, Microbial response to osmotic stress
2. Permeation- Primary active transport, secondary active transport, co-transport
 Transport of ions across the membrane V-type, F-type and P-type ATPases
3. Bio-signaling- Molecular mechanisms, signaling in bacteria- The two-component signaling mechanism in bacterial chemotaxis
4. Microbial hormones and quorum sensing in microorganisms

REFERENCE BOOKS
1. Text book of Biochemistry 4th ed. by West, Todd, Mason and Burgen
2. Principles of Biochemistry 5th ed. by White, Handler, Smith
3. Lehninger Principles of Biochemistry by Nelson and Cox
4. Biochemistry by Zubay
5. Elements of Biochemistry by O. P. Agrawal
6. Bacterial Metabolism by H. W. Doelle
7. Bacterial Metabolism by Gottschalk
8. Advances in General Microbiology by Shrivastava
9. Biochemistry by Stryer
10. Biochemistry of Lipids, Lipoproteins and membranes by D. E. Vance and J. E. Vance
Elsevier Science
MIC - 203: MEDICAL MICROBIOLOGY

UNIT - I
(12)
1. Virulence: Establishment, spreading, Bacterial adhesion to host cells, Bacterial invasion of host cells and its mechanisms.
2. Attributes of microorganisms that enable them to cause disease:
 2.1 Exotoxins (Diptheria, Cholera, Clostridial, Staphylococcal)
 2.2 Endotoxins of gram negative bacteria
 2.3 Extracellular enzymes (Coagulase, Lysozyme)
3. Pathogen survival mechanisms:
 3.1 Capsulation, sporulation, cyst formation
 3.2 Against Environmental factors-
 3.2.1 Physical (Heat, radiations)
 3.2.2 Chemical (antibiotics and disinfectants)
 3.3 immune escape mechanisms
4. Collection and transport of clinical specimens (clinical samples from throat, alimentary tract, genito-urinary tract, conjuctiva, ear, blood), preliminary processing of specimens

UNIT - II
(12)
1. Bacterial Diseases: causative agent - morphological, cultural, biochemical, antigenic characters; lab diagnosis, transmission, prevention and control of diseases caused by Leptospirosis, Bordetella pertussis, Rickettsia burnetti, Mycobacterium tuberculosis
2. Fungal Diseases: Etiology, clinical features, pathogenesis, laboratory diagnosis, prevention and control of
 2.1 Superficial Mycoses - Pityriasis
 2.2 Subcutaneous Mycoses - Mycetoma
 2.3 Systemic Mycoses - Histoplasmosis

UNIT - III
(12)
1. Etiology, clinical features, pathogenesis, Laboratory diagnosis, prevention and control of diseases caused by –
 1.1 Herpes virus
 1.2 Encephalitis virus
 1.3 Influenza - H1N1
2. Diseases caused by Protozoa – Leishmaniasis, Filariasis
3. Pathology of AIDS and prevalence of Tuberculosis, Mycoplasma and Cryptococcus infections
4. Special microbial metabolites and their applications in health care– Lovastatin, Daunorubicin

UNIT - IV
(12)
1. B-cell immunodeficiency disorders:
 1.1 X-linked agammaglobinaemia
 1.2 Selective IgA and IgM deficiency
2. T-cell immunodeficiency disorders: Congenital thymic aplasia
3. Combined B-cell and T-cell immunodeficiency disorders:
 3.1 Ataxia telangiectasia
3.2 Graft versus host disease.
4. Complement disorders: complement component deficiency
5. Rheumatic disease: Systemic lupus erythematosus
6. Atopic diseases: Allergic rhinitis and asthma
7. Autoimmune diseases: Organ specific and systemic autoimmune diseases, mechanism of induction of autoimmunity, treatment

REFERENCE BOOKS
1. Basic and clinical Immunology by D. P. Stites, J. D. Stobo, H. H. Frudenber, J. V. Wells
4. Medical Microbiology, by W. Irving, T. Boswell and D. Aladeen
5. Medical Microbiology, by R. Cruickshank, J. P. Duguid, B. P. Marmion, R. H. A. Swain
6. The Textbook of Microbiology, by R. C. Dubey and D. K. Maheshwari
7. Text book of Microbiology by R. Vasanthkumari
8. Medical Microbiology by S. Rajan MJP Publishers
9. Immunology II by J. A. Bellanti
10. Medical Immunology 9th ed. by D. P. Stites, I. T. Abba, T. G. Parslow
11. Immunology by I Kannan
12. Immunobiotechnology by M. Sharma and N. Tripathi
13. Biotechnology Application and Research by P. N. Cheremisinoff and R. P. Ouellette
15. Fundamentals of Immunology 2nd ed. by Q. N. Myrrik and R. S. Weiser
16. Essential Immunology by I. M. Roitt
17. Immunology 3rd ed. by I. M. Roitt, J. Brostoff and D. K. Male

MIC – 204: MICROBIAL ECOLOGY

UNIT - I
1. Concept and importance of microbial ecology, energy flow, attachment properties of microbes.
2. Microbial communities and ecosystems - Development of microbial communities, Structure and function of microbial systems; Historical system, Proximate system, Temporal system
3. Physiological ecology of Microorganisms: abiotic limitations to microbial growth, environmental determinants-starvation strategies, temperature, radiation, pressure, salinity, water activity, pH, redox potential, magnetic force, organic and inorganic compounds

UNIT - II
1. Emerging technologies in microbial community studies- Microautoradiography, FISH, Isotopic analysis, DNA microarrays.
2. Quantitative ecology: Sample collection, processing and detection of microbial populations
3. Determination of microbial numbers, biomass, measurement of microbial metabolism.
UNIT - III (12)
1. Atmo-ecosphere - characteristics and stratification of atmosphere, microbial dispersal through air, microorganisms in atmosphere.
2. Hydro ecosphere-
 2.1 Fresh water habitats- the Neuston, wetlands, lakes, rivers; composition and activities of microbial communities;
 2.2 Marine habitats- characteristics and stratification of the ocean, vertical and horizontal zones, composition and activities of microbial communities
3. The animal as an environment – The indigenous microbial population of alimentary tract and skin, factors affecting composition of flora, sources of nutrients for organisms in the alimentary tract and on skin, energy metabolism in rumen

UNIT - IV (12)
1. Biological interactions –
 1.1 Microbe – Microbe interactions
 1.2 Microbe – Plant interactions
 1.3 Microbe – Animal interactions
2. Ecological control of pests and disease causing populations- Modification of - populations, reservoirs of pathogens and vector populations Microbial control of pests, genetic engineering in biological control

REFERENCE BOOKS
1. Microbial Ecology by M. Lynch and others
2. Experimental microbial ecology by R. C. Burns and others
3. Environmental Microbiology by K. Vijaya Ramesh, MJP Publishers
7. The Prokaryotes: A handbook on the Biology of Bacteria; M. Dworkin (Editor in Chief) and others

MIC – 205: PRACTICAL COURSE – III
UNIT - I
1. Closed system enrichment of Azotobacter
2. Enrichment and isolation of chitin degrading bacteria
3. Enrichment of Clostridium species using potato, Thioglycollate broth and Candle jar
4. Spectroscopy -
 4.1 Calibration of colorimeter/ spectrophotometer (Verification of Beer’s law),
 4.2 Determination of absorption maxima, molar extinction coefficient and difference spectra
5. Chromatography –
 5.1 Separation of dyes and aminoacids on silica gel column
 5.2 Ion exchange chromatography of aminoacids / proteins
6. Electrophoresis –
6.1 SDS – PAGE
6.2 Agarose gel electrophoresis
7. Centrifugation –
7.1 Density gradient centrifugation of budding yeast cells
7.2 Differential centrifugation of disrupted yeast cells
8. Preservation of microbial cultures –
8.4 Slant cultures of aerobic and facultative organisms
8.5 Stab cultures of microaerophilc organisms
8.6 Soil culture technique for spore formers

UNIT - II

9. Study of galactose transport in yeasts
10. Determination of specific growth rate and generation time of E. coli
11. Determination of protein content of bacteria
12. Determination of carbohydrate content of bacteria
13. Determination of nucleic acid (DNA, RNA) content of bacteria
14. Determination of phenol coefficient of test disinfectant
15. Effect of hypotonic and hypertonic solutions on cells

REFERENCE BOOKS
3. Laboratory Methods in Food Microbiology by Harrigan, Academic Press
5. Laboratory Microbiology by L. Jack Bradshaw. W. B. Saunders & Co.
6. Benson’s Microbiological Applications Laboratory Manual in General Microbiology by Alfred E. Brown
7. Methods in Microbiology (Vol. 1, 3A and 5B) by Norris and Ribbons. Academic Press
8. Microbiological Methods by Michael Collins
10. Laboratory Exercises in Microbiology by Robert A. Pollock and others

MIC – 206: PRACTICAL COURSE – IV

UNIT - I

1. Qualitative and Quantitative study of water microflora
2. Study of microflora in Winogradsky column
3. Qualitative and quantitative study of air microflora
4. Isolation and characterization of microflora from human skin and throat
5. Demonstration of bacterial synergism and antagonism
6. Detection of siderophores production by microorganisms

UNIT - II

7. Isolation and characterization of respiratory pathogenic bacteria from nose and throat.
8. Determination of susceptibility to dental caries by Snyder test
9. Isolation and characterization of etiological agent of dental caries
10. Isolation and characterization of enteric pathogens from clinical samples
11. Isolation and characterization of Urinary tract infection (UTI) causing bacteria from urine sample
12. Antibiotic sensitivity of UTI causing bacteria

REFERENCE BOOKS
3. Medical Microbiology by Cruickshank and others. ELBS Publications
5. Laboratory Methods in Food Microbiology by Harrigan, Academic Press
7. Laboratory Microbiology by L. Jack Bradshaw. W. B. Saunders & Co.
8. Benson’s Microbiological Applications: Laboratory Manual in General Microbiology by Alfred E. Brown
9. Microbiological Methods by Michael Collins
11. Laboratory Exercises in Microbiology by Robert A. Pollock and others
13. Practical Handbook of Microbiology by Emanuel Golman and Lawrence H. Green, 2nd Ed CRC Press
14. Procedures/Guidelines for the Microbiology Laboratory
