Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Part-I)

CORE PAPER (COMPULSORY)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-I</td>
<td>Mathematical Methods of Physics</td>
<td>4-credits</td>
</tr>
<tr>
<td>CP-II</td>
<td>Classical Mechanics</td>
<td>4-credits</td>
</tr>
<tr>
<td>CP-III</td>
<td>Quantum Mechanics-I</td>
<td>4-credits</td>
</tr>
<tr>
<td>CP-IV</td>
<td>Condensed Matter Physics</td>
<td>4-credits</td>
</tr>
<tr>
<td>LAB-I</td>
<td>Laboratory/ Practical Course-I</td>
<td>4-credits</td>
</tr>
<tr>
<td>LAB-II</td>
<td>Seminar +Tutorials on practical Course-I</td>
<td>4-credits</td>
</tr>
</tbody>
</table>

M.Sc. (Physics)-Part-I Semester-II (Total 24-credits)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-V</td>
<td>Quantum Mechanics-II</td>
<td>4-credits</td>
</tr>
<tr>
<td>CP-VI</td>
<td>Statistical Mechanics</td>
<td>4-credits</td>
</tr>
<tr>
<td>CP-VII</td>
<td>Electrodynamics</td>
<td>4-credits</td>
</tr>
<tr>
<td>CP-VIII</td>
<td>Atomic & Molecular Physics</td>
<td>4-credits</td>
</tr>
<tr>
<td>LAB-III</td>
<td>Laboratory/ Practical Course-II</td>
<td>4-credits</td>
</tr>
<tr>
<td>LAB-IV</td>
<td>Seminar +Tutorials on practical Course-II</td>
<td>4-credits</td>
</tr>
</tbody>
</table>
M.Sc. (Physics) (Part-I) (Semester-I) Syllabus
M.Sc. (Physics) (Semester-I)
Paper Code: CP-I
Paper title: Mathematical Methods of Physics
Total Credits: 4-credits

Unit 1- Matrix Algebra and Eigenvalue Problems (15)
Matrix multiplication – Inner product, direct product, Diagonal matrices, trace, matrix Inversion, Example of Gauss-Jordon Inversion, problems (Rajput 735 – 45, Iyengar 1.1 – 1.26).
Eigenvalues and Eigenvectors, Properties of Eigenvalues and Eigenvectors, Cayly-Hamilton Theorem and applications, similar matrices and diagonalizable Matrices, Eigenvalues of some Special Complex Matrices, Quadratics forms, problems. (Iyengar 2.1 to 2.35).

Unit 2- Complex Variables (15)
Definition of Complex Numbers, Equality of Complex Number, Complex Algebra, Conjugate Complex Numbers, Geometrical representation of Complex Number, Geometrical representations of the sum, difference, product and quotient of Complex Number, Cauchy-Rieman Conditions, Analytic functions, Multiply connected regions, Cauchy Theorem, Cauchy Integration formula, Derivatives, problems (Rajput – 283 – 314).

Unit 3-Calculus of Residues (15)
Singularities- Poles, Branch Points, Calculus of Residues-Residues Theorem, Cauchy Principle value, Pole Expansion of Meromorphic Functions, Product expansion of entire Functions, problems (Rajput 326 – 384).

Unit 4- Fourier- Series, Integral, and Transform (15)
Definition, Evaluation of Coefficients of Fourier Series (Cosine and Sine Series), Dirichelet’s Theorem, Graphical representation of a square wave function, Extension of interval, Complex form of Fourier Series, Properties of Fourier Series (Conversions, Integration, Differentiation, Parseval’s Theorem).
Fourier Integral- exponential form, Applications of Fourier Series analysis in Physics (Square wave, Full wave rectifier, Expansion of Raman Zeta function) (Rajput 527 – 561).
Fourier transform, Inversion theorem, exponential transform Example: Full wavetrain, Uncertainty principle [Arfken 931-946].

Text Books:
• Rajput B S, Mathematical Physics, Pragati Prakashan (Meerat) 1999
• Iyengar S R K, Jain R K , Mathematical Methods, Narosa, 2006

Reference Book:
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-I)
Paper Code: CP-II
Total Credits: 4-credits
Paper title: Classical Mechanics

Unit I: Central Force Problem: (15)
Two body problem, the equation of motion and first integral, Equation of orbit,
Kepler’s laws, Kepler’s problem, General analysis of orbits, Stability of orbits, Artificial
satellites, Rutherford Scattering: Differential scattering cross – section, Rutherford
Formulae for scattering.

Unit II: Variational principle and Hamiltonian formulation: (15)
Hamilton’s principle, Hamiltonian, Generalized momentum, Constant of motion,
Hamilton’s canonical equations of motion, Deduction of canonical equations from
Variational principle, Applications of Hamilton’s equations of motion. Principle of least
action, Proof of principle of least action.

Unit III: Canonical Transformations and Hamiltons - Jacobi Theory: (15)
Generating Functions, Illustrations of Canonical transformations, Condition for
Transformation to be Canonical, examples.
Poisson’s Brackets, Poisson’s theorem, Properties of Poisson’s Brackets, Hamiltons
Canonical equations in terms of Poisson’s Brackets,
Hamiltons – Jacobi Theory, Solution of harmonic oscillator problem by HJ Method.
Problems.

Unit IV: Special Relativity in Classical Mechanics: (15)
Special theory of relativity, Lorentz transformations and its consequences, 4-Vectors, 4-
Momentum, Lorentz Tensor, Minkowski Space, Elastic Scattering, Addition of velocities,
Mass- Energy relation, Lagrangian formulation of relativistic mechanics, Particle
accelerating under constant force, Hamiltonian formulation of relativistic mechanics,
particle in an EM field.

Text and Reference Books:
3. Introduction to Classical Mechanics, by R G Takwale and P S Puranik (Tata McGraw
Hill 1999).
M.Sc. (Physics) (Semester-I)
Paper Code: CP-III
Total Credits: 4-credits
Paper title: Quantum Mechanics-I

Unit 1: Fundamental Concepts and Formalism (15)
Why QM? Revision; Inadequacy of classical mechanics; Sequential Stern–Gerlach Experiment, Analogy with polarization of light, Ket and Bra spaces and inner products, Operators, the associative axiom Base kets and Matrix Representations, Measurements, Observables and the uncertainty relations, Change of basis, Position, momentum and translation; Wave function in Position and Momentum space

Unit 2: Quantum Dynamics (15)
Time evolution and Schrödinger equation; The Schrödinger versus the Heisenberg picture, Simple Harmonic Oscillation, Schrödinger Wave Equation, One-dimensional problems, wells and barriers; Harmonic oscillator by Schrödinger equation and by operator method. Uncertainty relation of x and p, States with minimum uncertainty product; General formalism of wave mechanics; Commutation relations

Unit 3: Angular Momentum (15)
Rotations and Angular momentum commutation relations, Spin ½ systems and Finite Rotations; SO(3), SU(2) and Euler Rotations, Eigenvalues and Eigenstates of Angular Momentum, Orbital Angular momentum, Addition of angular momenta

Unit 4: Approximation Methods for Stationary States (15)
Time-independent perturbation theory: Non-degenerate and degenerate case, first and second order perturbations, Applications: Stark Effect, Anharmonic oscillator, Hydrogen like atoms: Fine Structure and Zeeman effects

Text and Reference Books
1. J J Sakurai, Modern Quantum Mechanics (Addison Wesley)
2. L I Schiff, Quantum Mechanics (McGraw-Hill)
3. Mathews and Venkatesan Quantum Mechanics
4. S Gasiorowicz, Quantum Physics (Wiley)
5. B Craseman and J D Powell, Quantum Mechanics (Addison Wesley)
6. A P Messiah, Quantum Mechanics
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-I)
Paper Code: CP-IV
Total Credits: 4-credits
Paper title: CONDENSED MATTER PHYSICS

Unit I Crystal Physics (15)
Crystalline state of solids, simple crystal structures, Bragg condition, Brillouin zones, reciprocal lattice, structure factor; comparison of X-ray, electron and neutron diffraction methods; types of bonding.

Unit II Crystal Defects (15)
Point defects (Schottky and Frenkel defects, equilibrium concentration of vacancies, color centers); line defects (screw and edge dislocations, Berger’s vector and circuit, role of dislocations in plastic deformation and crystal growth); planar defects (stacking faults), observation of imperfections in the crystals.

Unit III Semiconducting and Superconducting Properties (15)
Semiconductors: Energy band gap, effective mass, intrinsic carrier concentration, conductivity of semiconductors, impurity levels in doped semiconductors. Superconductors: Critical temperature, Meissner effect, type-I and type-II superconductors, BCS theory of superconductivity, flux quantisation, Josephson effect, SQUID, high-Tc superconductivity.

Unit IV Dielectric and Magnetic Properties(15)

Reference Books:

Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-I)
Paper Code: LAB-I
Total Credits: 4-credits
Paper title: Laboratory/ Practical Course-I
1. Hall Effect
2. L.V.D.T.
3. Neutron Diffraction
4. Fabry-Parrot etalon
5. Crystal Structure
6. (F.C.C.& B.C.C.)
7. Lattice Dynamics
8. Temperature Transducer
9. Heat Capacity
10. Staircase Ramp Generator
11. Negative Feedback Amplifier
12. Astable Multivibrators
13. Monostable Multivibrators
14. Stefan’s Constant
15. B-H Curve
16. Thermal & electrical conductivity of copper
17. Mathematica- I
18. Statistical data analysis

M.Sc. (Physics) (Semester-I)
Paper Code: LAB-II
Total Credits: 4-credits
Paper title: Seminar + Tutorials on Practical Course-I
M.Sc. (Physics) (Part-I) (Semester-II) Syllabus
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-II)
Paper Code: CP-V
Total Credits: 4-credits
Paper title: Quantum Mechanics-II

Unit 1: Variational Methods; Perturbation theory for time evolution problem (15)
Variational methods, Time-dependent potentials: the Interaction picture, Time dependent perturbation theory, Applications to Interactions with classical radiation field

Unit 2: Scattering Theory (15)
The Lippmann-Schwinger Equation, the Born Approximation, Optical Theorem, Method of Partial Waves, Low-Energy Scattering and Bound States, Resonance Scattering, Scattering by Hard sphere, Coulomb Scattering

Unit 3: Theory of Spin Angular Momentum (15)
Identical particles; Symmetric and antisymmetric wave functions; Collision of identical particles; Spin angular momentum; Spin functions for a many-electron system

Unit 4: Theory of Radiation (15)
Semi-classical theory of radiation; Transition probability for absorption and induced emission; Electric dipole and forbidden transitions; Selection rules.

Text and Reference Books
1. J J Sakurai, Modern Quantum Mechanics
2. L I Schiff, Quantum Mechanics (McGraw-Hill)
3. S Gasiorowicz, Quantum Physics (Wiley)
4. B Craseman and J D Powell, Quantum Mechanics (Addison Wesley)
5. A P Messiah, Quantum Mechanics
6. Mathews and Venkatesan Quantum Mechanics
M.Sc. (Physics) (Semester-II)
Paper Code: CP-VI
Total Credits: 4-credits
Paper title: Statistical Mechanics (4-credits)

Unit I: Statistical Mechanics and Thermodynamics: (15)
Basic concepts – Phase space, ensemble, a priori probability, Liouville’s theorem (Revision). Fluctuations of physical quantities, Statistical Equilibrium

Thermodynamics – Thermodynamic Laws and Functions – Entropy, Free energy, Internal Energy, Enthalpy (definitions), Contact between statistics and thermodynamics – Entropy in terms of microstates, change in entropy with volume and temperature.

Unit II: Statistical Ensembles Theory: (15)
Micro canonical Ensemble– Micro canonical distribution, Entropy and specific heat of a perfect gas, Entropy and probability distribution.

Canonical Ensemble– Canonical Distribution, partition function, Calculation of free energy of an ideal gas, Thermodynamic Functions, Energy fluctuations.

Grand Canonical Ensemble– Grand Canonical distribution, Thermodynamic Functions, Number and Energy fluctuations.

Unit III: Formulation of Quantum Statistics: (15)

Unit IV: Phase Transitions and Critical Phenomenon: (15)
Phase Transitions, Conditions for phase equilibrium, First order Phase Transition: Clausius - Clayperon equation, Second order phase transition, The critical indices

Text and Reference books:
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-II)
Paper Code: CP-VII
Total Credits: 4-credits
Paper title: Electrodynamics

Unit I: Maxwell’s Equations and E.M. Waves: (15)
Maxwell’s Equations: microscopic and macroscopic forms (revision), conservation of the
bound charge and current densities, E.M. wave equations in waveguide of the arbitrary
cross section: TE and TM modes; Rectangular and circular waveguides, hybrid modes,
concept of LP modes

Unit II: Time –Dependent Potentials and Fields: (15)
Scalar and vector potentials: coupled differential equations, Gauge transformations:
Lorentz and Coulomb Gauges, Retarded Potentials, Lienard –Wiechert Potentials, Fields
due to a charge in the arbitrary motion.

Unit III: Radiation from Accelerated Charges and Radiation Reaction: (15)
Fields of charge in uniform motion, applications to linear and circular motions: cyclotron
and synchrotron radiations, Power radiated by point charge – Larmor’s formula, Angular
distribution of radiated power, Cerenkov radiation and Bremsstrahlung (qualitative
treatments).
Radiation Reaction: criteria for validity, Abraham –Lorentz formula, Physical basis of
radiation reaction – self force.

Unit IV: Formulation of Covariant Electrodynamics: (15)
Contravariant and co-variant four-vectors and their products, tensors of rank two and their
differentiation, Co-variant form of Maxwell’s equations: Four –potential and Fourcurrent,
E.M. field tensor – its curl and divergence.

Text and Reference books:
1. Introduction to Electrodynamics – D.J. Griffiths (Prentice- Hall 2002 (3rd edn)
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-II)
Paper Code: CP-VIII
Total Credits: 4-credits
Paper title: Atomic and Molecular Physics (4-credits)

Unit I: The Atom Model for Two Valence Electrons (15)
1-1 coupling, s-s coupling, LS or Russell - Saunders coupling; the Pauli exclusion principle,
Coupling schemes for two electrons, Γ-factors for LS coupling, Lande interval rule, jj-
coupling, branching rules, selection rules, Intensity relations.

Unit II: Zeeman Effect, Paschen-Back Effect and Stark Effect (15)
The magnetic moment of the atom, Zeeman effect for two-electrons, Intensity rules for
Zeeman effect, Paschen-Back effect for two electrons, Stark effect of hydrogen, weak
field Stark effect in hydrogen, strong field Stark effect in hydrogen, origin of hyperfine
structure. Principles of resonance Spectroscopy (ESR and NMR)

Unit III: Microwave Spectroscopy (15)
Classification of molecules: linear, symmetric tops, spherical tops, asymmetric tops;
rotational spectra: the rigid diatomic molecule, the non-rigid rotator, spectrum of a non-rigid
rotator, techniques and instrumentation of microwave spectroscopy, chemical analysis by
microwave spectroscopy.

Unit IV: Infra-Red Spectroscopy (15)
The vibrating diatomic molecule: the energy of a diatomic molecule, the simple harmonic
oscillator, the anharmonic oscillator, the diatomic vibrating-rotator, techniques and
instrumentation of infra-red spectroscopy, chemical analysis by infra-red spectroscopy.

Text books

Reference books
 (1950).
 Hall (1976).
M.Sc. (Physics) (Semester-II)
Paper Code: LAB-III
Total Credits: 4-credits
Paper title: Laboratory/ Practical Course-II (4-credits)

1. Fourier analysis
2. Passive filters
3. Solar cell
4. A.C. bridges
5. Thermal diffusivity of brass
6. Mutual inductance of coil
7. Series & parallel resonant circuits
8. Young’s modulus
9. Mathematica- II
10. Band gap energy
11. Resistivity by four Probe
12. Thermoelectric power
13. Electron Spin Resonance
14. Crystal structure of thin film
15. Rydberg constant
16. Dissociation energy of iodine molecule
17. Magnetic susceptibility of ferric chloride solution
18. Plank’s constant

M.Sc. (Physics) (Semester-II)
Paper Code: LAB-IV
Total Credits: 4-credits
Paper title: Laboratory/ Practical Course- Seminar + Tutorials on practical Course-II
M.Sc. (Physics)-Part-II Semester-III (Total 4-credits)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-IX</td>
<td>Nuclear and Particle Physics</td>
<td>4-credits</td>
</tr>
</tbody>
</table>

CHOICE BASE PAPER (ANY ONE PAPER)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBP-I</td>
<td>Data Analysis and Statistical Software (2-credits)+Tutorials/LAB work (2-credits)</td>
<td>4-credits</td>
</tr>
<tr>
<td>CBP-II</td>
<td>Numerical Computing Using MATLAB (2-credits) +Tutorials/LAB work (2-credits)</td>
<td>4-credits</td>
</tr>
<tr>
<td>CBP-III</td>
<td>Computational Programming using Mathematica (2-credits)+Tutorials/LAB work (2-credits)</td>
<td>4-credits</td>
</tr>
</tbody>
</table>
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Part-II) SEMESTER-IV

CORE PAPER (COMPULSORY)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-X</td>
<td>EXPERIMENTAL TECHNIQUES</td>
<td>4-credits</td>
</tr>
</tbody>
</table>

CHOICE BASE PAPER (ANY ONE PAPER)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBP-IV</td>
<td>COMPUTATIONAL METHODS AND PROGRAMMING</td>
<td>4-credits</td>
</tr>
<tr>
<td>CBP-V</td>
<td>MATLAB Programming and applications (2-credits) + Tutorials/LAB work (2-credits)</td>
<td>4-credits</td>
</tr>
<tr>
<td>CBP-VI</td>
<td>Electronic Devices-4-credits</td>
<td>4-credits</td>
</tr>
</tbody>
</table>
ELECTIVE PAPERS

(Any one Group)

Group– I (ENERGY SCIENCE) (Total 16-credits)

M.Sc. (Physics)-Part-II (Semester-III)
- ES-1. The New Energy Technologies (4-credits)
- ES-2. Solar Thermal Devices (4-credits)

ENERGY SCIENCE PROJECT WORK–I (4-credits)
ENERGY SCIENCE LAB–I (4-credits)

M.Sc. (Physics)-Part-II (Semester-IV)
- ES-3. Renewable Energy Resources (4-credits)
- ES-4. Energy Conversion Devices (4-credits)

ENERGY SCIENCE PROJECT WORK–II (4-credits)
ENERGY SCIENCE LAB–II (4-credits)

Group–II (MATERIALS SCIENCE) (Total 16-credits)

M.Sc. (Physics)-Part-II (Semester-III)
- MS-1. Imperfection in crystals (4-credits)
- MS-2. Physics of Metals and Alloys (4-credits)

MATERIALS SCIENCE PROJECT WORK–I (4-credits)
MATERIALS SCIENCE LAB–I (4-credits)

M.Sc. (Physics)-Part-II (Semester-IV)
- MS-3. Mechanical Properties and Liquid Crystals (4-credits)
- MS-4. Special Materials (4-credits)

MATERIALS SCIENCE PROJECT WORK–II (4-credits)
MATERIALS SCIENCE LAB–II (4-credits)

Group– III (MODERN OPTICS) (Total 16-credits)

M.Sc. (Physics)-Part-II (Semester-III)
- MO-1. Laser Physics (4-credits)
- MO-2. Nonlinear Optics and Fibber Optics (4-credits)

MODERN OPTICS PROJECT WORK–I (4-credits)
MODERN OPTICS LAB–I (4-credits)
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics)-Part-II (Semester-IV)

MO-3. Laser and its Applications (4-credits)
MO-4. Holography (4-credits)

MODERN OPTICS PROJECT WORK–II (4-credits)

MODERN OPTICS LAB–II (4-credits)

Group–IV (SPACE SCIENCE) (Total 16-credits)

M.Sc. (Physics)-Part-II (Semester-III)

SS-1. Windows to the Universe, Solar System, Planetary Atmospheres (4-credits)
SS-2. Astrophysics of the Sun (4-credits)

SPACE SCIENCE PROJECT WORK–I (4-credits)

SPACE SCIENCE LAB–I (4-credits)

M.Sc. (Physics)-Part-II (Semester-IV)

SS-3. Solar Wind and its Interaction with Planets and Satellites (4-credits)
SS-4. Solar terrestrial Physics & Space Applications (4-credits)

SPACE SCIENCE PROJECT WORK–II (4-credits)

SPACE SCIENCE LAB–II (4-credits)

Group–V (SOLID STATE PHYSICS) (Total 16-credits)

M.Sc. (Physics)-Part-II (Semester-III)

SSP-1. Thin Solid Films: Deposition and properties (4-credits)
SSP-2. Semiconductor Devices (4-credits)

SOLID STATE PHYSICS PROJECT WORK–I (4-credits)

SOLID STATE PHYSICS LAB–I (4-credits)

M.Sc. (Physics)-Part-II (Semester-IV)

SSP-3. Physical Properties of Solids (4-credits)
SSP-4. Semiconductor Physics (4-credits)

SOLID STATE PHYSICS PROJECT WORK–II (4-credits)
SOLID STATE PHYSICS LAB–II (4-credits)

Group–VI (THEORETICAL PHYSICS) (Total 16-credits)

M.Sc. (Physics)-Part-II (Semester-III)
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

TH-1. Relativistic Quantum Mechanics (4-credits)
TH-2. Quantum Field Theory-1 (4-credits)

THEORETICAL PHYSICS PROJECT WORK–I (4-credits)

THEORETICAL PHYSICS LAB–I (4-credits)

M.Sc. (Physics)-Part-II (Semester-IV)
TH-3. Interaction of Electromagnetic Waves with Electron Beams and Plasmas
 (4 credits)
TH-4. Quantum Field Theory-2(4-credits)

THEORETICAL PHYSICS PROJECT WORK–II (4-credits)
THEORETICAL PHYSICS LAB–II (4-credits)
Unit-I Nucleon-Nucleon Interaction: (15)
Nature of the nuclear forces, form of nucleon-nucleon potential, Deuteron problem: The theory of ground state of deuteron, excited states of deuteron, n-p scattering at low energies (cross-section, phase shift analysis, scattering length, n-p scattering for square well potential, effective range theory); p-p scattering at low energies (cross-section, experiment, and results); exchange forces, tensor forces; high energy N-N scattering (qualitative discussion only of n-p and p-p scatterings), charge-independence and charge-symmetry of nuclear forces.

Unit-II Nuclear Models: (15)
Evidences for shell structure, single-particle shell model, its validity and limitations, collective model: collective vibration and collective rotation, single particle motion in a deformed potential

Unit-III Nuclear Reactions: (15)
Elementary ideas of alpha, beta and gamma decays and their classifications, characteristics, selection rules and basic theoretical understanding. Nuclear reactions, reaction mechanism, Compound nucleus reaction (origin of the compound nucleus hypothesis, discrete resonances, continuum states), optical model of particle-induced nuclear reaction and direct reactions (experimental characteristics, direct inelastic scattering and transfer reactions). Fission and fusion, Fission and heavy ion reactions.

Unit-IV Particle Physics: (15)
Classification of fundamental forces. Classification of Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, CPT invariance. Application of symmetry arguments to particle reactions, Parity non-conservation in weak interaction, Relativistic kinematics.

Reference Books:

2. Introduction to Particle Physics- M.P. Khanna (Prentice Hall, India, 1999).
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

ONE ELECTIVE PAPER FOR (Semester-III) (4-credits):- One course from following

CC.16 Data Analysis and Statistical Software (2-credits) +Tutorials/LAB work (2 credits)

M.Sc. (Physics) (Semester-III)
Paper Code: CBP-I
Total Credits: 4-credits
Paper title: Data Analysis and Statistical Software

Unit-I: Data Analysis

Origin data analysis tools: Analysis Templates™ for automated analysis, Custom Reports, Consolidated Analysis Reports, Recalculation of analysis results, Analysis Themes, Report Tables, Data selection and masking tools, Standardized analysis tools dialogs, Batch Analysis

Unit-II: Curve Fitting

Linear Regression, Polynomial Regression, Sigmoidal Fitting/Dose Response Curves, Nonlinear Fitter, Fitting Function Builder Fitting with Integral, Fitting Function Organizer, Fit Comparison: Compare models and compare datasets, Implicit function fitting with Orthogonal Distance Regression, Multiple Regression

Tutorials/LAB work (30) (2-credits)

Problems solving and tutorials using origin software

Text and reference books:

1. Statistical Data Analysis by Glen Cowan, Oxford Science Publications
3. Introduction to Statistics and Data Analysis by Roxy Peck, Chris Olsen, Jay L. Devore, 3rd addition, 2009

CC-1. Electronic Devices-4-credits
CC-2. 4-credits from choice based papers offered by other science departments for example, mathematics, statistics, computer science, electronics department
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: CBP-II
Total Credits: 4-credits
Paper title: Numerical Computing Using MATLAB (2-credits)

Unit-I Introduction and MATLAB Basics (15)

Unit-II Interacting with MATLAB (15)

Tutorials/LAB work (2-credits)
Algebra, Arithmetic, Calculus and Linear Algebra Problem solving using MATLAB (30)

Text & Reference books:

2. Introduction to Numerical Analysis Using MATLAB, By Rizwan Butt
4. Getting Started with MATLAB 5.0: - Rudra Pratap
5. Mastering MATLAB 5.0 : - d. Hanselman & B. littlefield

Tutorials/LAB work (2-credits)
M.Sc. (Physics) (Semester-III)
Paper Code: CBP-III
Total Credits: 4-credits
Paper title: Computational Programming using Mathematica

Unit-I: **Introduction to Mathematica**
Running Mathematica, numerical calculations, calculus in Mathematica, numerical mathematics, graphics-simple plot, parametric plots, contour and density plots, three-dimensional plots, complex numbers, animation, input and output control

Unit-II: **Vectors and Matrices in Mathematica**
Electric field, Ionic crystals, one, two, three-dimensional crystals, tubing curves, matrices, normal modes- system of two-masse, system of three-masse, system of five-masse normal modes of system of n-masse

Tutorials/LAB work (30) (2-credits)
Problems solving and tutorials using Mathematica

Text and Reference Books:

3.
4. Schaum's Outline of Mathematica, 2ed ,(Schaum's Outline Series) by Eugene Don,
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: ES-1
Total Credits: 16-credits
Paper title: ENERGY SCIENCE – I (Renewable Energy Resources)

Unit I Energy and Thermodynamics

Forms of Energy, Conservation of Energy, Entropy, Heat capacity, Thermodynamic cycles: Brayton, Carnot Diesel, Otto and Rankin cycle; Fossil fuels, time scale of fossil fuels and solar energy as an option. (15)

Unit II Solar Energy for Clean Environment

Sun as the source of energy and its energy transport to the earth, Extraterrestrial and terrestrial solar radiations, solar spectral irradiance, solar radiation geometry, Measurement techniques of solar radiations, Estimation of average solar radiation. (15)

Unit III Wind Energy

Origin and classification of winds, Aerodynamics of windmill: Maximum power, and Forces on the Blades and thrust on turbines; Wind data collection and field estimation of wind energy, Site selection, Basic components of wind mill, Types of wind mill, Wind energy farm, Hybrid wind energy systems: wind + PV; The present Indian Scenario. (15)

Unit IV Biomass Energy and Biogas Technology

Nature of Biomass as a fuel, Biomass energy conversion processes, Direct combustion: heat of combustion, combustion with improved Chulha and cyclone furnace; Dry chemical conversion processes: pyrolysis, gasification, types of gasification, Importance of biogas technology, anaerobic decomposition of biodegradable materials, Factors affecting Bio digestion, Types of biogas plants, Applications of biogas. (15)

Reference Books

6. Advances in Energy systems and technology- Peter Auer.
M.Sc. (Physics) (Semester-III)
Paper Code: ES-2
Total Credits: 16-credits
Paper title: ENERGY SCIENCE – II

ENERGY SCIENCE – II (Energy Conversion Devices)

Unit 1. Photovoltaic converters (15)
Interaction of solar radiations with semiconductors, photovoltaic effect, types of solar cell, equivalent circuit diagram of a solar cell, determination of series resistance (Rs) and shunt resistance (Rsh), ideal properties of semiconductor for use its solar cell, carrier generation and recombination, dark and illuminated characteristics of solar cell, solar cell output parameters: RL, Voc, Isc, Pm, FF, efficiency, performance dependence of a solar cell on band gap energy, diffusion length and carrier life time. Types of heterojunction, construction of energy band diagram of heterojunctions, origin of capacitance in a heterojunction, expression for junction capacitance, Mott – Schottky relation, problems.

Unit 2: Materials and Solar cell Technology (15)
Single, poly – and amorphous silicon, GaAs, CdS, Cu2S, CuInSe2, CdTe etc. technologies for fabrication of single and polycrystalline silicon solar cells, amorphous silicon solar cells and tandem cells, solar cell modules, photovoltaic systems, space quality solar cells, problems.

Unit 3: Photochemical Converters (15)
Semiconductor – electrolyte interface, photoelectrochemical solar cells, conversion efficiency in relation to material properties, photoelectrolysis cell, driving force of photoelectrolysis, alkaline fuel cell, semiconductor- septum storage cell, problems.

Unit 4: Thermoelectric Converters (15)
Thermoelectric effects, solid state description of thermoelectric effect, Kelvin’s thermodynamic relations, analysis of thermoelectric generators, basic assumptions, temperature distribution and thermal energy transfer for generator, co-efficient of performance for thermoelectric cooling, problems.

Reference Books:
2. Photoelectrochemical solar cells – Suresh Chandra
4. Solar cells – Martin A.Green
9. Handbook of batteries and fuel cells – Lindsey. David
Topics for tutorials:

1. Construction of energy band diagram - examples
2. Examples on photovoltaic converters
3. Maintenance of photovoltaic systems
4. Energy bands diagrams for photoelectrochemical and photoelectrolysis cells
5. Design of thermoelectric cooler
6. Solar energy storage in the form of chemical energy
M.Sc. (Physics) (Semester-III)
Paper Code: MS-1
Total Credits: 16-credits
Paper title: MATERIALS SCIENCE - I

MATERIALS SCIENCE – I (Imperfections in crystals)

Unit I Point defects

Classification of defects, fundamental properties of point defects, lattice distortion, migration energy, point defects in thermal equilibrium, point defects in ionic crystals, equilibrium concentration of Frenkel and Schottky defects, ionic conductivity, determination of physical quantities associated with point defects, point defects in non-thermal equilibrium. (15)

Unit II Dislocations

Strength of an ideal crystal, concept of dislocation, geometrical aspects of dislocations, movement of dislocations, dislocations in periodic crystal structures, interaction of dislocations with point defects, Cottrell atmosphere, imperfect or partial dislocations, stacking faults, Lomer Cottrell locks, Thomson tetrahedron, partial dislocations in other crystal structures, multiplication of dislocations, Jogs and their formation, motion of a vacancy jog, measurement of stacking fault energy, origin of dislocations. (15)

Unit III Techniques for observation of defects

Techniques for observation of point defects and dislocations, electron microscopy, field ion microscopy, surface methods, x-ray topography, moiré technique. (15)

Unit IV Mechanical testing of materials

Mechanical testing of materials, tensile testing, tests of hardness, creep, fatigue and impact testing. (15)

Reference Books:

2. Introduction to dislocations - D. Hull, ELBS (1971)
4. Imperfections in crystals - Van Burren, North Holland (1960)
8. Techniques of metal research - R.F. Bunshaw, Interscience (1968)
9. Experimental methods in materials research - Herbert Herman, Interscience (1967)
10. Modern techniques in metallography - D.G. Brandon, Butterworths (1966)
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: MS-2
Total Credits: 16-credits
Paper title: MATERIALS SCIENCE – II (Physics of Metals and Alloys) SPC-II

Unit-1 Metallurgical thermodynamics (15)

Thermodynamic conditions for equilibrium, chemical potential, Gibb’s phase rule, entropy of mixing, applications of entropy of mixing (equilibrium concentration of vacancies in a crystal and entropy of mixing in metals), surface effects.

Unit-2 Solid solutions (15)

Solid solubility, types of solid solutions, Hume-Rothery rules, electron concentration, atomic size in solid solution, deviation from Vegard’s law, intermediate phases (electrochemical compounds, size factor compounds, and electron compounds), Laves phases, semiconducting intermediate phases, defect structures, order in solid solutions (types of super lattices, long and short – range order). (15)

Unit-3 Binary phase diagrams

Isomorphous alloy system, lever rule, derivation of phase diagrams from free energy principles, complete solubility, partial solid solubility, systems having intermediate phases, determination of liquid-solid equilibria (thermal analysis, and annealing & quenching methods), determination of solid state equilibrium by annealing and quenching method, study of equilibrium diagrams using X-ray technique.

Unit-4 Diffusion and Solidification (15)

Reference books

Tutorials: Physics of Metals and Alloys:

The tutorials will consist of solving problems given in the text and reference books.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: SSP-1
Total Credits: 16-credits
Paper title: SOLID STATE PHYSICS- I

SOLID STATE PHYSICS- I (Physical Properties of Solids)

Unit 1 : The Drude Theory of metals (15)

Basic assumptions of Model, Collision or relaxation times, DC electrical conductivity, Failures of the free electron model, The tight-binding method, Linear combinations of atomic orbitals, Application to bands from s-Levels, General features of Tight-binding levels, Wannier functions, Other methods for calculating band structure, Independent electron approximation, general features of valence band wave functions, Cellular method, Muffin-Tin potentials, Augmented plane wave (APW) method, Pseudopotentials

Unit 2: Transport Properties of Metals (15)

Unit 3: Phonons, Plasmons, Polaritons, and Polarons (15)

Vibrations of monatomic lattices: first Brillouin zone, group velocity, Long wavelength limit, Lattice with two atoms per primitive cell. Quantization of lattice vibrations, Phonon momentum Dielectric function of the electron gas, Plasma optics, Dispersion relation for Electromagnetic waves, Transverse optical modes in a plasma, Longitudinal Plasma oscillations, Plasmons, Polaritons, LST relations, Electron- electron interaction, Electron-phonon interaction: Polarons,

Unit 4: Point defects and Luminescence (15)

Lattice vacancies, diffusion, colour centres: F centres, other centres in alkali halides,Types of luminescence, The Frank–Condon principle, mechanism of Photoluminescence, Thermoluminescence, and Electroluminescence

Reference Books :

Tutorials:
1. Comparison between free electron theory and tight binding approximation
2. Transport properties of semiconductors
3. Fundamentals of magnetism
4. Thermal properties and heat capacity.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: SSP-2
Total Credits: 16-credits
Paper title: SOLID STATE PHYSICS-II, Semiconductor Physics

Unit I Energy bands and charge carriers in semiconductors (15)

Bonding forces and energy bands, direct and indirect band gap semiconductors, variation of energy bands with alloy composition, effective mass, electrons and holes in quantum wells, the Fermi level, electron and hole concentrations at equilibrium, temperature dependence of carrier concentrations, electrical conductivity and mobility, high field effects.

Unit II Excess carriers in semiconductors (15)

Optical absorption, direct recombination of electrons and holes, indirect recombination, trapping, steady state carrier generation, quasi Fermi levels, diffusion process of carriers, diffusion and drift of carriers, diffusion and recombination: the continuity equation, steady state carrier injection, diffusion length, the Haynes-Shockley experiment.

Unit III Dynamics of charge carriers and lattice, and Semiconductor Interfaces (15)

Electrons in a periodic potential, group velocity of electrons, inverse effective mass tensor, force equation, dynamics of electrons and holes, effective mass theory of impurities, the vibrational specific heat, thermal expansion, thermal conductivity. Schottky barriers, rectifying contacts, ohmic contacts, surface and interface states and their effects on barrier height, acceptor and donor surface states, Fermi level pinning

Unit IV Semiconductor crystal growth process (15)

Nucleation and growth theory, atomic bonding, formation energy of clusters, supersaturation, supercooling and volume energy, stability of small nuclei, the formation energies of liquid nuclei and crystalline nuclei, nucleation rates, the growth of crystal surfaces, growth of bulk semiconductors by zone melting and zone refining, Czochralski and liquid encapsulation techniques, growth of epitaxial layers by LPE, VPE and MBE techniques.

Reference Books

2. Physics of Semiconductor Devices by S.M. Sze
4. Semiconductors by R. A. Smith, Cambridge Univ. Press.
8. Growth of crystals from solutions by J. C. Brices
M.Sc. (Physics) (Semester-III)
Paper Code: MO-1
Total Credits: 16-credits
Paper title: MODERN OPTICS – I

MODERN OPTICS – I (Laser Physics) SPC – I

Unit – I: Laser Fundamentals and Pumping Processes: (15)

Unit – II: Optical Resonators: (15)

Plane – parallel resonator, concentric resonator, confocal resonator, resonators using a combination of plane and spherical mirrors, Fox and Li treatment, confocal resonator.

Unit – III: Continuous Wave Laser behaviour: (15)

Rate equations in 3 level and 4 level laser systems, CW behavior, Optimum output coupling, limit to monochromaticity and frequency pulling

Unit – IV: Transient Laser Behaviour: (15)

Text and Reference Books:

Tutorial: Laser Physics

The tutorials will consist of solving problems given in the text and reference books.
M.Sc. (Physics) (Semester-III)
Paper Code: MO-2
Total Credits: 16-credits
Paper title: MODERN OPTICS – II (Nonlinear Optics and Fiber Optics) SPC – II

Unit – I: Nonlinear Medium: (15)

Maxwell’s equations in Nonlinear media, Nonlinear polarization and susceptibilities, classical model of nonlinearity: anharmonic oscillator and free electron gas. Electrooptical and magnetooptical effects.

Unit – II: Nonlinear Phenomena and Applications: (15)

Unit – III: Optical fibers: (15)

Physical description, step index and graded index fibers, material and fabrication, light propagation (ray theory), numerical aperture, Transmission losses.

Unit – IV: Optical Fiber Waveguide and Applications: (15)

Text and Reference Books:

Tutorial: Nonlinear Optics and Fiber Optics:

The tutorials will consist of solving problems given in the text and reference books.
SPACE SCIENCE – I (Windows to the Universe, Solar System, Planetary Atmospheres)

Unit I Astronomy Fundamentals, Telescopes for Astronomy (15)

Radiation from space, radiation laws, Basic terminology used in astronomy, Introduction to the various types of astronomy: optical, radio, IR, UV, X-ray, \(\gamma \) ray, Gravitational etc. Introduction to Optical, IR, X ray, \(\gamma \) ray telescopes, brief description of the various instruments.

Unit II Radio Telescopes and Receivers (15)

Antennas, Types of interferometers, array, Radio telescopes of the world including GMRT, OOTY, PRL, Radio telescope receivers, total power receiver, Dicke receiver, correlation receiver, noise temperature. Noise sources.

Unit III The Solar System, Terrestrial and Jovian planets, (15)

Origin of solar system, occurrence of planetary systems, celestial mechanics, properties of the sun. Orbital and physical characteristics, atmosphere, Studies of Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and their moons. Recent explorations of various planets

Unit IV Scintillation, near earth and interplanetary plasma, ionization process of planetary atmosphere (15)

Interplanetary scintillation, interstellar scintillation, methods for probing solar wind, use of IPS in measurement of solar wind, study of irregularities in the interplanetary medium, properties of plasma at different distances from earth, photoionisation, cosmic ray ionization, meteoric ionization, various resonances in plasma, various waves in plasma, measurement procedures.

Reference Books

1. Source book on space science: S.Glasstone
2. Radio Astronomy : J.Kraus
3. Radio Telescopes: Christensen, Hogbom

Other Books

1. The New Cosmos: A.Unsold, B.Baschek, New York: Springer Verlag
2. The problems/exercise/short answer questions given in the text and reference books will form tutorial course.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: SS-2
Total Credits: 16-credits
Paper title: SPACE SCIENCE-II (Astrophysics of the Sun)

Unit 1: Stellar Studies (15)

Unit 2: The Sun and solar activity (15)
Internal Structure, atmosphere-Photosphere, Chromosphere, Corona, Sunspots, Sunspot Cycle, Butterfly Diagram, Magnetic Cycle, Prominence, Solar Flares and there Classification, Coronal activities- Coronal Mass Ejection (CMEs), Solar Constants.

Unit 3: Electromagnetic and Corpuscular Emissions from the Sun (15)

Unit 4: Methods for Solar Observations (15)
Space Borne; Solar and Heliospheric Observatory (SOHO), YOHKOHO, Stereographic Observations (NASA’s Stereo-Mission), Observations by NOAA’s GOES Satellites, Ground Based; H-alpha, K-Line and White Light Observations from Big Bear and Udaipur Solar Observatory, Magnetograms, _Radio Observation at 10.7-cm

Text Books:
1. Unit No.- 6,8,11,12,13,14 from Fundamentals of astronomy by Michael a. Seeds
2. Unit No.- 3, from Introduction to Space Physics, by M. G. Kivelson, C. T. Russell
3. Unit No.- 11,12,13 from Fundamental of astronomy, Editors; H. Karttunen, P. Kroger H. Oja, M. Poutanen, K. J. Donner
4. Unit No.-9 from Survey of the Universe, D.H. Menzel
5. Unit No.-8; Section 8.7 from Introduction to Statistical Mechanics, B. B. Laud

References Books:
1. Astrophysics of the solar System, by K .D. Abhyankar
2. Sourcebook on the Space Science, by S. Glasstone
3. Astrophysics Ed. By L.W. Fredrick
4. Planets, Stars and Galaxies, by S.J. Inglis
5. Astrophysics of the Sun , by H. Zirin

Other Books
1. Modern Astrophysics, B. W. Carroll, D. A. Ostlie
2. Stars and Galaxies, K. D. Abhyankar

Topics for tutorials:

The problems/ exercise/ short answer questions given in the Text and Reference Books will form Tutorial Course.
M.Sc. (Physics) (Semester-III)
Paper Code: TH-1
Total Credits: 16-credits
Paper title: RELATIVISTIC QUANTUM MECHANICS

RELATIVISTIC QUANTUM MECHANICS

UNIT 1 THE THEORY OF SPECIAL RELATIVITY (15)

The Lorentz transformations, Relativistic velocities, Mass, momentum and Energy, Fourvectors, Relativity and Electromagnetism (p. 1 – 18)

UNIT 2 ASPECTS OF ANGULAR MOMENTUM (15)

Various Angular Momenta, Angular momentum and Rotations, Operators and Eigenvectors for spin ½, Operators for Higher Spins, Orbital Magnetic moments, Spin without relativity, Thomas precession, Dirac Notation, Clebsch-Gordon and Racah coefficients, Relativistic quantum numbers and spin-angular momentum functions, Energy levels of one-Electron atom (p. 23 – 40, 50-62)

UNIT 3 PARTICLES OF SPIN ZERO AND THE DIRAC EQUATION (15)

The Klein-Gordon Equation, Relativistic wave functions, Probabilities and Currents, The fine structure constants, Two component KG equation, Free KG particles-antiparticles, Klein paradox, Spinless Electron atom (p. 64-88, 91-97)
Origin of Dirac equation, Dirac matrices, Lorentz invariance of the Dirac equation, Nonrelativistic limit of Dirac equation, Probabilities and currents, Forces and fields, Gauge invariance and Dirac equation (p. 99 118, 121-23, 125-28)

UNIT 4 FREE PARTICLES, CPT AND SECOND QUANTIZATION (15)

TEXT AND REFERENCE BOOKS

Paul Strange, Relativistic Quantum Mechanics, Cambridge University, 1998
The problems given in the Text and Reference books will form tutorial course.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-III)
Paper Code: TH-2
Total Credits: 16-credits
Paper title: Theoretical Physics Introductory Quantum Field Theory-I
(Second Quantization, QED and Renormalization)

Unit 1 Klein Gordon and Dirac Fields (15)
Elements of Classical Field Theory – Lagrangian and Hamiltonian Field Theory, Noether’s Theorem, KG Field as Harmonic Oscillators, KG Field in space-time, Causality, KG Propagator, particle creation by a classical source, Lorentz invariance in wave equations, The Dirac equation, Free particle solutions of the Dirac equation, Dirac matrices and Dirac field bilinears, Quantization of Dirac Field – spin and statistics, the Dirac propagator, Discrete symmetries of the Dirac Theory, Parity, Time Reversal, Charge conjugation (PeskinSchroeder 13-70:58)

Unit 2 Interacting Fields and Feynman Diagrams (15)

Unit 3 Elementary Processes of QED (15)
e+e⁻ → μ⁺-μ⁻: Trace technology, unpolarized cross section, e+e⁻ → hadrons; e+e⁻ → μ⁺-μ⁻: helicity structure, non-relativistic limit, bound states, vector meson production and decay, crossing symmetry, Compton scattering, Soft Bremsstrahlung : Classical and Quantum computations, Electron Vertex function: formal structure, evaluation, infrared divergence, Field strength renormalization, Electron self energy, LSZ Reduction formula, (PeskinSchroeder 176-201, 211-230:56)

Unit 4 Functional Methods (15)

Text and Reference Books
Michael E Peskin and Daniel V Schroeder, An Introduction to Quantum Field Theory, Perseus Books, 1995
M . Kaku, Quantum Field Theory: A Modern Introduction, OUP, 1993

The problems given in the Text and Reference books will form tutorial course.
ENERGY SCIENCE LAB-I (4-credits)

List of Experiments
1. Oxygen bomb Calorimeter
2. Wood Pyrolysis-I
3. Wood Pyrolysis-II
4. Powdery Biomass Gasifier
5. Microsoft Excel
6. Current Density
7. Solar Cell Characteristics
8. Sunshine Recorder
9. Pyranometer
10. Wind Data analysis
11. Air mass Ratio
12. Underground Resistivity measurement
13. Heat pipe
14. Biogas Plant
15. Vacuum Deposition System
16. Spray Pyrolysis System

MATERIALS SCIENCE LAB-I (4-credits)

List of Experiments
1 Jominy end test
2 Cooling curves
3 Stress-Strain curves
4 Average grain diameter
5 Laue diffraction
6 Crystal structure
7 Preparation of ferrite
8 Spectrometry of colored solutions
9 Crystal structure of thin film
10 Crystal growth from solution
11 Ionic conductivity

Tutorials
1 Tutorials will consist of 3-4 experiments based upon syllabi of theory paper of Materials Science.
SOLID STATE PHYSICS LAB –I (4-credits)

List of Experiments

1. Resistivity of thin film by two point probe method
2. Flat band potential
3. Ionic conductivity
4. Crystal structure of ferrite
5. Intensity calculations
6. Unijunction Transistor
7. Band gap energy of thin film
8. Growth of single crystal
9. Phase diagram
10. Metal semiconductor diode
11. Laue diffraction
12. Spectra of ions

MODERN OPTICS LAB-I (4-credits)

List of Experiments

1. Michelson's Interferometer
2. Talbot's Bands.
3. Calibration of Spectrograph.
4. Laser beam parameter.
5. Iron arc spectra
6. Copper arc spectra
7. Setting of C.D. spectrograph.
8. Mixture analysis.
9. Zeeman effect
10. Recording of Hologram
11. Mathhematica-I
12. Recording of FT-NMR Spectra
13. UV-Visible spectra of organic material

Tutorials

1. Concerning above list of experiments, it is possible to arrange some expt. With the availability of new experimental kits.
SPACE SCIENCE LAB-I (4-credits)

List of Experiments

1. Proton precession magnetometer
2. Amplitude Modulation
3. Variable Attenuator
4. Total electron content by GPS
5. Solar Data Analysis
6. Mesospheric Temperature Measurement from night airglow study
7. Frequency characteristic of Ku-band
8. Beam width of parabolic dish antenna
9. Mounting of Telescope
10. PR Radar
11. Designing of Yagi Antenna
12. Study of Leafy Vegetation
13. Beam width of Yagi Antenna & field strength
14. X-band characteristics of patch antenna

THEORETICAL PHYSICS LAB-I (4-credits)

List of Experiments

Introduction to Mathematica for Scientists and Engineers (Notebook form in Mathematica Tutorials) (IMSE)
1. IMSE Ch1: Introduction
2. IMSE Ch2: Functions
3. IMSE Ch3: Symbolic Manipulations
4. IMSE Ch4: Plots
5. IMSE Ch5: Lists, Arrays
6. Frequency characteristic of Ku-band

Tutorials

Tutorials from Schaum's Outlines: Mathematica (Eugene Don)
1. Getting Acquainted
2. Basic Concepts
3. Lists
4. Two-dimensional Graphics
5. Three-dimensional Graphics
M.Sc. (Physics) (Semester-IV)
Paper Code: CP-X
Total Credits: 16-credits
Paper title: EXPERIMENTAL TECHNIQUES

Unit I Vacuum Techniques (B 1 & 2)

Production of low pressures: rotary, diffusion, and sputter ion pumps; measurement of low pressure: McLeod, Pirani, thermocouple & Penning gauges; leak detection: simple methods of LD, palladium barrier and halogen leak detectors. (15)

Unit II Low Temperature and Microscopy Techniques (B 3 – 8)

Production of low temperatures: Adiabatic cooling, the Joule-Kelvin expansion, adiabatic demagnetization, 3He cryostat, the dilution refrigerator, principle of Pomerunchuk cooling, principle of nuclear demagnetization; measurement of low temperatures. Optical microscopy, scanning electron microscopy, electron microprobe analysis, low energy electron diffraction. (15)

Unit III Atomic Absorption Spectrometry (B 9 – 11)

Fundamentals: principle, basic equipment, operation, monochromator action, modulation; apparatus: double beam instrument, radiation sources, aspiration and atomization; interferences, control of AAS parameters, reciprocal sensitivity and detection limit techniques of measurement: routine procedure, matrix matching method, and method of additions. (15)

Unit IV X-Ray Fluorescence Spectrometry and Mössbauer Spectroscopy (B 11–16)

Introduction to wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and energy-dispersive X-ray fluorescence spectrometry (EDXRF), dispersive systems, detectors, instruments, matrix effects, XRF with synchrotron radiation. Elementary theory of recoil free emission and resonant absorption of gamma rays, Mössbauer experiment, hyperfine interactions: chemical isomer shift, magnetic dipole hf splitting, and electric quadrupole hf splitting; line broadening. (15)

Reference Books:

1. High vacuum techniques- J.Yarwood (Chapman & Hall) 1967
4. Low temperature physics – L.C. Jackson
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

11. Modern methods for trace element determination- C.Vandecasteele & C.B.Block
12. Principles of instrumental analysis- D.A. Skoog & J.J.Leary (Saunders College
1971.
15. Mössbauer effect: principles and applications- G.K.Wertheim (Academicpress, New
York) 1964.
York) 1971.

Topics for tutorial:

1. Hot cathode gauges
2. Gas-probe technique of leak detection
3. Simple cryostat designs
4. Etching techniques
5. Importance of Mössbauer spectroscopy technique.
M.Sc. (Physics) (Semester-IV)
Paper Code: CBP-IV
Total Credits: 4-credits
Paper title: COMPUTATIONAL METHODS AND PROGRAMMING

Unit I Ordinary Differential Equations (15)

Unit II Partial Differential Equations (15)
Types of Equations, Elliptic equations- Laplace's equation, Hyperbolic equations- Wave equation, Eulerian and Lagrangian methods, Parabolic equations - Diffusion, Conservative Methods - The equation of continuity, Maxwell's equations, Dispersion

Unit III Matrix Algebra (15)
Types of Matrices, Simple matrix problems, Elliptic equations- Poisson's equation, Systems of equation and Matrix inversion, Iterative methods- The Jacobi Method, Matrix Eigenvalue Problems-Schrödinger's equation,

Unit IV Monte Carlo Methods and Simulation (15)
Random number generators, Monte Carlo integration, the metropolis algorithm, The Ising model, Quantum Monte Carlo

Reference Books
1. Potter D, Computational Physics, Wiley, Chichester, 1973
4. Angus McKinnon, Computational Physics - 3rd/4th Year Option, Notes in .pdf Format

Tutorials
1 The problems given in the Text and Reference books will form tutorial course.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: CBP-V
Total Credits: 4-credits
Paper title: MATLAB Programming and applications

Unit-I MATLAB Graphics (15)
Two-Dimensional Plots: Parametric Plots, Contour Plots and Implicit Plots, Field plots,
Three-Dimensional Plots: Curves in Three-Dimensional Space, Surfaces in Three-
Dimensional Space, Figure Windows: Multiple Figure Windows, The Figure Toolbar,
Combining Plots in One Window, Customizing Graphics: Annotation, Change of Plot Style,
Full-Fledged Customization, Images, Animations, and Sound: Images, Animations, Sound

Unit-II MATLAB Programming (15)
Branching: Branching with if, Logical Expressions, Branching with switch, More about
Loops: Open-Ended loops, Braking from a Loop, Other Programming Commands: Sub-
functions, Cell and Structure Arrays, Commands for Parsing Input and Output, Evaluation
and Function Handles, User Input and Screen Output, Debugging, Interacting with the
Operating System: Calling External Programs, File Input and Output

Tutorials/LAB work (30) (2-credits)
Programming and graphics problem solving using MATLAB

Text & Reference books:

2. Introduction to Numerical Analysis Using MATLAB, By Rizwan Butt
4. Getting Started with MATLAB 5.0: - Rudra Pratap
5. Mastering MATLAB 5.0 : - d. Hanselman & B. Littlefield
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: CBP-VI
Total Credits: 4-credits
Paper title: Electronic Devices

Unit 1 Transistors and Microwave Devices: (15)

Bipolar junction transistor (BJT), frequency response and switching of BJT, Field effect transistor (JFET), MOSFET and related devices, MESFET device structure and its operation, Tunnel diode, Transferred electron devices and Gunn diode, Avalanche transit time diode and IMPATT diode.

Unit 2 Photonic Devices: (15)

Unit 3 Memory Devices: (15)

Semiconducting memories, memory organization and operation, Read and Write operation, Expanding memory size, Classification and characteristics of memories, Static and dynamic RAM, SRAM and DRAM, Charge couple memory (CCD) Devices, Magnetic, optical and ferroelectric memory devices,

Unit 4 Other electronic Devices: (15)

Magneto-optic and acousto-optic effects, Material’s properties related to get these effects, Piezoelectric, Electrostrictive and magnetostrictive effects, important materials exhibiting these properties and their applications in sensors and actuator devices.

Reference Books:

2. Modern Digital Electronics, R. P. Jain
3. Introduction to Semiconductor devices by M. S. Tyagi
M.Sc. (Physics) (Semester-IV)
Paper Code: ES-3
Total Credits: 16-credits
Paper title: EXPERIMENT ENERGY SCIENCE-III. The New Energy Technologies

Unit I Environmental Impacts of Renewable Energy Sources

Unit II Hydrogen as clean source of Energy

Unit III Superconductors and Fuel Cell Technology

Cuprates and MgB2 superconductors and their properties, superconducting wires, Role of superconductor in Electric generator, Magnetic energy storage devices and power transmission. Working principle of fuel cell, Components of fuel cell, EMF of fuel cell and polarization in fuel cells, Types of fuel cells, Advantages and disadvantages of fuel cell, Power generation with fuel cells. (15)

Unit IV Batteries and Supercapacitors

Energy storage systems, Faradaic and non-Faradaic processes, Types of capacitors and batteries, Comparison of capacitor and battery, Chargedischarge cycles, experimental evaluation using Cyclic voltammetry, and other techniques, Energy and entropy stored by capacitor, Electrochemical behaviour of RuO2, IrO2, and mixed oxides, Energy density and power density, Applications for electric vehicle drive systems. (15)

Reference Books
1) Biological paths to self reliance- Russell E. Anderson.
5) Hydrogen as an Energy Carrier- T. Carl-Jochen Winter, Joachim Nitsch (eds.)
6) Advances in Renewable Energy Technologies- S.H. Pawar, and L. A. Ekal (eds.)
7) Handbook of Batteries and Fuel Cells- David Linden.
M.Sc. (Physics) (Semester-IV)
Paper Code: ES-4
Total Credits: 16-credits
Paper title: ENERGY SCIENCE – IV (Solar Thermal Devices)

Unit 1: Principles of heat transfer (15)

Conduction: plane wall, multiplayer wall, cylinders and spheres, thermal conductivity of solid, liquid and gas, convection: free and forced convections, heat transfer through plane wall, radiation: characteristics of radiation, secular and diffuse reflections, gray surfaces, radiation function table, radiation exchange between two parallel gray surfaces, radiation characteristics and properties of materials, heat exchangers, double pipe heat exchangers, expression for effectiveness, methods to obtain rate of heat transfer in heat exchangers: LMTD and ENTU, flow and convection heat transfer in forced beds, problems.

Unit 2: Flat Plate Collectors (15)

Selective surfaces its characteristics and examples, energy balance equation for flat plate collector, thermal analysis of a flat plate collector, efficiency of flat plate collector, solar cookers, solar thermal systems for various applications, solar dryers and industrial products, problems.

Unit 3: Concentrating solar energy collectors (15)

Reasons for using concentrating collectors, thermodynamic limits to concentration, optical limits to concentration, various types of concentrators, compound parabolic concentrators (CPC) and its thermal analysis, tracking of the sun, continuously tracking solar concentrators.

Unit 4: Solar pond (15)

Basic principle of operation of solar pond, theoretical analysis of solar pond, extraction of heat from solar pond, types of solar pond, applications of solar ponds, problems.

Reference Books:

1. Principles of solar engineering by Frank Kreith and Janf Kreider.
2. Solar energy conversion, A. E. Dixon & J. D. Leslie
4. Solar energy by Sukhatme
5. Solar energy utilization by G.D.Rai
6. Selective surfaces by O.P. Agnihotri

Topics for tutorials:

1. Methods to obtain selective surfaces
2. Examples on determination of rate flow of heat
3. Maintenance of flat plate collector based devices
4. Derivation of efficiency of CPC
5. Maintenance of solar ponds
M.Sc. (Physics) (Semester-IV)
Paper Code: MS-3
Total Credits: 16-credits
Paper title: Mechanical Properties and Liquid Crystals

Unit I Stress strain curves

General theory of stress and strain, glide elements, independent slip systems, general theory of glide, von Mises criterion, stress strain curves, Luders bands, temperature dependence of stress strain curves, dependence of lower yield point on grain size, strain ageing, work hardening, theories of work hardening, microstructure of deformed metals, solid solution hardening and precipitation hardening, Bauschinger effect. (15)

Unit II Recovery, recrystallization, and creep

Recovery of mechanical and other properties, polygonization, recrystallization, grain growth, secondary recrystallization. Creep in metals, creep curve, types and mechanisms of creep, creep resistant alloys. (15)

Unit III Fracture and fatigue

Modes of fracture, ductile and brittle fracture, fracture behaviour of semi-brittle materials, fracture under creep and fatigue conditions, ductile to brittle transition, microscopical examination of fracture, Griffith theory, nucleation and propagation of fracture cracks, blue brittleness. S-N curves, mechanism of fatigue, theory of fatigue, fatigue resistant structures. (15)

Unit IV Liquid crystals

a. Liquid crystal mesophases: Mesomorphic behaviour, mesogenic compounds, classification of mesophases, nematics proper, chiral nematics, smectics with liquid layers, bond orientational order and ordered layers, cubic thermotropic mesophases of disc like molecules, liquid crystalline polymers, lyotropic liquid crystals.

b. Physical properties of liquid crystals: Physical properties of liquid crystals (15)

Reference Books:

1. Mechanical properties of materials - Mclintock and Argon, Addison Wesley
7. Modern techniques in metallurgy - D.G. Brandon, Butterworth (1966)
8. Techniques of metal research - R.F. Bunshaw, Interscience (1968)

Tutorials

1. Yield point phenomenon
2. Effect of grain growth on properties
3. Fracture in semi-brittle materials
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: MS-4
Total Credits: 16-credits
Paper title: MATERIALS SCIENCE – IV Special Materials

Unit I Iron carbon system

Phase diagram of iron carbon system, pearlite transformation, effect of temperature on pearlite transformation, TTT diagrams, hardening of steels, hardenability, variables influencing the hardenability, martensite transformation, quench cracks, tempering, cast irons. **(15)**

Unit II Alloys
Alloy steels, tool steels, brasses and bronzes, lead alloys, magnetic alloys and super alloys. **(15)**

Unit III Composite materials

Introduction, properties of component materials, particulate composites, fiber reinforced composites, planar composites, fabrication and applications of composites, theories of hardening of composites (dispersion strengthening and fibrous reinforcement) **(15)**

Unit IV Glasses

Types of glasses, role of oxides in glasses, glass transition temperature, optical properties of glasses, electrical properties of glasses, electronically conducting glasses, special glasses, metallic glasses. **(15)**

Reference Books

Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

12. Materials science, testing, and properties for technicians - W. O. Fellers
 Prentice Hall, N. J. (1990)
13. Elements of materials science - L. H. van Vlack Addition-Wesley, Massachusetts
 (1959)

Topics for Tutorials

1. Heat treatment of steels
2. Effect of alloying elements on properties
3. Modern developments in glasses
M.Sc. (Physics) (Semester-IV)

Paper Code: SSP-3

Total Credits: 16-credits

Paper title: SOLID STATE PHYSICS- III (Thin Solid Films: Deposition and properties)

Unit 1: Physical methods: Vacuum evaporation and sputtering (15)

Unit 2: Chemical Methods (15)

Chemical vapor deposition: Common CVD reactions, Methods of film preparation, laser CVD, Photochemical CVD, Plasma enhanced CVD, Chemical bath deposition: ionic and solubility products, preparation of binary semiconductors,
Electrodeposition: Deposition mechanism and preparation of compound thin film
Spray pyrolysis: Deposition mechanism and preparation of compound thin films

Unit 3: Nucleation, growth and structure of films (15)

Unit 4: Properties of thin films (15)

Reference books

2. Thin Film Technology by O S Heavens (1970)

Tutorials

1. Deposition of copper film using thermal evaporation
2. Chemical bath deposition of semiconductor thin films
3. Epitaxial growth of silicon
4. Electrical properties of metallic and semiconducting thin films
5. Quantum size effect
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: SSP-4
Total Credits: 16-credits
Paper title: SOLID STATE PHYSICS – IV Semiconductor Devices

Unit I Semiconductor abrupt junctions

Equilibrium conditions, the contact potential, space charge at a semiconductor junction, qualitative description of current flow at a junction, minority and majority carrier currents, carrier injection, minority carrier distributions, variation of the quasi Fermi levels with the position, junction current from excess minority carriers, junction breakdown mechanisms, capacitance of p-n junctions. (15)

Unit II Semiconductor heterojunctions

Types of heterojunctions, energy band diagrams of heterostructures, current-voltage and capacitance-voltage characteristics of anisotype heterojunctions, heterojunction bipolar transistors, electrical and optical characteristics of LEDs, laser gain semiconductor band system, high electron mobility transistor, hot electron heterojunction transistor. (15)

Unit III 2D electron gas and Quantum wells

2D electron gas in Si and GaAs MOS structures, effect of applied bias on energy bands of the MOS capacitors, bias dependence of capacitance, free charge carrier transfer, triangular quantum wells (both finite and infinite), coupled quantum wells and super lattices, doubleheterostructure lasers, single quantum well lasers, multiple quantum well lasers. Optical absorption due to electronic transistions in quantum wells (15)

Unit IV Transport properties of heterostructures and quantum devices

Effect of electric field parallel and perpendicular to the interfaces, effects of constant magnetic field, Landau levels, magneto conductivity in a 2D heterostructure. One-D and Zero-D quantum structures, density of states in 3D, 2D, 1D and 0D structures, 1D and 0D optical phenomena and optical devices, quantum confined stark effect, quantum well modulators, self-electro-optic effect devices, resonant tunneling devices, the coulomb blockade, single electron transistor (15)

Reference Books

5. Luminescence and LED by E. W. Williams and R. Hall.
Tutorials

1. Photonics and optical storage devices
2. Optical modulators/switches and electro-optical wave guides
3. Coupling and device integration and energy losses
M.Sc. (Physics) (Semester-IV)
Paper Code: MO-3
Total Credits: 16-credits
Paper title: MODERN OPTICS – III (Laser and its Applications) SPC – III

Unit – I: Crystalline Solid State Lasers: (15)

Unit – II: Gas Lasers: (15)

Unit –III: Applications of Lasers: (15)

Applications in pure science, Applications in applied science, Industrial Applications, optical communication, optical data processing.

Unit-IV : Advances in Laser physics: (15)

The semi classical approach, material equation, field equation, Travelling waves, Standing waves

Text and Reference Books:

15. Willate, Introduction to Gas Lasers.

Tutorial: Laser and its Applications:

The tutorials will consist of solving problems given in the text and reference books
M.Sc. (Physics) (Semester-IV)
Paper Code: MO-4
Total Credits: 16-credits
Paper title: MODERN OPTICS – IV (Holography) SPC – IV

Unit – I: Introduction to Basic Concepts: (15)

Unit – II: The Reconstructed Image: (15)

Image of a point, Image magnification, orthoscopic and pseudoscopic images, Image aberrations, effect of source size and spectral bandwidth.

Unit – III: Optical system and Light Sources (15)

Hologram Recording Materials:
Optical changes in Photosensitive materials, Exposure & sensitivity, Recording resolution,Noise and Recording Linearity and Ideal recording material, Silver halide photographic Photoconductor-Thermoplastic films, emulsions, Dichromated gelatine films, Thermoplastic films, Photocromic materials.

Unit – IV: Applications of Holography: (15)

Text and Reference Books:

Tutorial: Holography

The tutorials will consist of solving problems given in the text and reference books.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: SS-3
Total Credits: 16-credits
Paper title: SPACE SCIENCE-III (Solar Wind and its Interaction with Planets and Satellites) SPC – III

Unit 1: Study of Solar Wind and Interaction with Magnetized Planets: (15)

Introduction, a Quick Survey of the Solar Wind Properties, Basic Concepts of S.W. formation
In the Solar Corona, the Magnetic Structure of the Corona and S.W. the Major Time Dependent Disturbances of the S.W., Planetary Magnetic Fields, Size and Shape of the Magnetospheric Cavity, Self-Consistent Models, Flow around the Magnetospheres.

Unit 2: S. W. Interaction with Earth’s Magnetosphere: (15)

Unit 3: Magnetosphere in the solar system and Effects of Solar activities on Technological Earth Systems: (15)

Unit 4: Physics of space plasma and interaction with unmagnetized celestial bodies (15)

Introduction, Single Particle Motion, Collection of Particles, Plasma State, Fluid Description of Plasma, Magnetohydrodynamics(MHD) and its applications, Plasma Interaction with Moonlike Bodies, Plasma Interaction with Bodies with Atmospheres.

References Books:

1. Astrophysics of the solar System, by K. D. Abhyankar
2. Sourcebook on the Space Science, by S. Glasstone
3. Astrophysics Ed. By L.W. Fredrick
4. Solar wind and Interplanetary Disturbances S. K. Alurkar
5. Planets, Stars and Galaxies, by S.J. Inglis

Topics for tutorials:

The problems/ exercise/ short questions answers given in the Text and Reference Books will form Tutorial Course.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: SS-4
Total Credits: 16-credits
Paper title: SPACE SCIENCE-IV Solar terrestrial Physics & Space Applications

Unit I Wave Propagation in ionosphere, (15)
Radio wave propagation in absence and presence of magnetic field, Formation of Chapman layer, Appleton Hartree equation and its explanation, propagation of radio waves at different frequencies.

Unit II Diagnostic techniques for probing ionosphere (15)
Ground based, balloon based, space based techniques, Ionosonde, air glow, P.R.Radar, radio scintillation, magnetometer, Langmuir probe, electrostatic analyzer, mass spectrometer, radiosonde.

Unit III Fundamentals of antennas, microstrip antennas, Remote Sensing (15)
Types of antennas, radiation pattern, arrays, microstrip antennas, radiation pattern, Physical basis of remote sensing, signatures, sensors, air borne and space borne techniques, multispectral scanner, IR scanner, mechanical scanner, microwave radiometry.

Unit IV Satellite Communication, propulsion and power for space, materials for space, microwaves in space (15)
Orbital mechanics of satellite, attitude of satellite, transmission process, power, systems for communication. Rocket propulsion, power for rockets, Materials processing in space, design of space vehicles, methods of gravity simulation, space lab payloads. Microwave technology for space power beaming

Reference Books
1. An introductory course on space science and earth environment: S.S. Degaonkar
3. Ionosphere techniques and phenomena: A.Giraud, M.Petit
4. Antennas: J.D. Kraus.
6. Antenna Theory Analysis and design: C.A.Balanis
7. Remote sensing principles and interpretations: F.F.Sabins
8. Introduction to remote sensing: J.B.Campbell
10. Microwave radiometer: N.Skou
11. Microwave propagation and techniques: D.C.Sarkar
13. Recent information from internet

Tutorial
1 The problems/exercise/short answer questions given in the text and reference books will form tutorial course.
Syllabus for M. Sc (Physics) Choice Base Credit System
(Under Academic Flexibility Scheme)

M.Sc. (Physics) (Semester-IV)
Paper Code: TH-3
Total Credits: 16-credits
Paper title: Interaction of Electromagnetic Waves With Electron Beams And Plasmas

UNIT 1 BASIC EQUATIONS AND PROPERTIES OF LINEAR WAVES (15)

UNIT 2 RESONANCE ABSORPTION, PLASMA WAVE EXCITATION, COHERENT EMISSION OF RADIATION (15)

UNIT 3 SELF-FOCUSSING AND FILAMENTATION, PARAMETRIC INSTABILITIES IN A HOMOGENEOUS PLASMA (15)

UNIT 4 A NONLINEAR SCHRODINGER EQUATION AND PARAMETRIC INSTABILITIES IN AN INHOMOGENEOUS PLASMA (15)
Basic equation, Stationary solution, Instability of an Envelope Soliton, Criterion for Collapse WKB Solution, Raman Side scattering, Brillouin Side scattering, Scattering off a Heavily damped Ion Acoustic Mode, Decay Instability, Oscillating two-stream Instability, Two Plasmon decay (LiuTripathi 134-166:43)

TEXT AND REFERENCE BOOKS
The problems given in the Text and Reference books will form tutorial course.
M.Sc. (Physics) (Semester-IV)
Paper Code: TP-4
Total Credits: 16-credits
Paper title: Introductory Quantum Field Theory 2

(Renormalization and Non-Abelian Gauge Theories)

UNIT 1 RENORMALIZATION AND SYMMETRY (15)

UNIT 2 NON-ABELIAN GAUGE INVARIANCE AND QUANTIZATION OF NONABELIAN GAUGE THEORIES (15)

UNIT 3 QUANTUM CHROMODYNAMICS (15)

From quarks to QCD, e+-e Annihilation into hadrons: Total cross-section, The running of α_s, Gluon emission, Deep Inelastic scattering: Deep inelastic neutrino scattering, The distribution functions, Hard scattering processes in Hadron Collisions: Lepton pair production, Kinematics, Jet Pair production, Parton Evolution: The equivalent photon Approximation, Measurement of α_s (PeskinSchroeder 545-579, 593-595:37)

UNIT 4 GAUGE THEORIES WITH SPONTANEOUS SYMMETRY BREAKING AND FRONTIERS OF QFT (15)

TEXT AND REFERENCE BOOKS

Michael E Peskin and Daniel V Schroeder, An Introduction to Quantum Field Theory, Perseus Books, 1995
M . Kaku, Quantum Field Theory: A Modern Introduction, OUP, 1993

The problems given in the Text and Reference books will form tutorial course.
ENERGY SCIENCE LAB-II

List of Experiments

1. Solar Line Concentrator (I)
2. Solar Line Concentrator (II)
3. Solar Pont Concentrator
4. Solar Still
5. Solar Dryer
6. Solar Cooker
7. Flat Plate Collector
8. PV – IV Characteristics
9. PV-Water Pumping System
10. PV-Spray System
11. Flue Gas Analyser
12. Wind Energy Conversion
13. Partical Size Measurement
14. Close Cycle Cryogenic System
15. Hot Water Bumb
16. 3kW Aerogenerator

MATERIALS SCIENCE LAB-II

List of Experiments

1. Brinell hardness
2. Crystal structure
3. Hysteresis loop tracer
4. Band gap of semiconducting thin films
5. Work hardening
6. Intensity calculations
7. Phase diagram of Pb-Sn alloy
8. Phase diagram of Pb-Sn alloy
9. Microstructure of steels
10. Microstructure of brasses
11. Crystal growth by gel technique

Tutorials

1. Tutorials will consist of 3-4 experiments based upon syllabi of theory paper of Materials Science.
SOLID STATE PHYSICS LAB–II

List of Experiments

1 Mathematica 5.1
2 Thermoelectric power
3 Chemical bath deposition
4 Flat band potential – II
5 Successive Ionic Layer Absorption and Reaction (SILAR)
6 Work function
7 Phosphorescence decay
8 Magnetic susceptibility
9 van der pauw method
10 Vacuum deposition
11 Crystal growth by gel technique
12 Photovoltaic cell
13 Electrodepositon

MODERN OPTICS LAB—II

List of Experiments

1 Vibrational analysis of CN
2 Vibrational analysis of AlO
3 Vibrational analysis of C2
4 Mixture analysis
5 Solar Spectrum
6 Temperature of flame
7 Measurement of Brewster angle and R.I. of materials like glass
8 Determination of wavelength of light by grating
9 Production and analysis of polarized light with the help of He-Ne laser
10 Fabry-Parot etalon – Exact fraction method
11 Recording of IR spectra
12 CD-spectrometer by using Hydrogen and Helium lamp.
Depending on availability of new experimental kits, few new experiments will be added to this list
SPACE SCIENCE LAB–II

List of Experiments

1 Brightness of sky using photometer
2 Study of atmospheric disturbance using He-Ne laser
3 Ionospheric Scintillation
4 Moisture content in soil by Resistively meter
5 Solar spectrum
6 Study of ionosphere using GPS
7 Study of effect of rain & cloud on Satellite signal
8 Analysis of solar data in C-Band
9 Study of earth's seismicity using seismograph
10 Computer programming
11 Lemi data analysis using Matlab
12 Accelerograph
13 Sunspot recording using C+5 telescope
THEORETICAL PHYSICS LAB–II (4-credits)

ADVANCED MATHEMATICA TUTORIALS:

1. Tutorials From Schaum’s Outlines: Mathematica (Eugene Don)

 Chapter 7: Algebra and Trigonometry
 Chapter 7: Differential Calculus
 Chapter 9: Integral Calculus
 Chapter 10: Multivariate Calculus
 Chapter 11: Ordinary Differential Equations
 Chapter 12: Linear Algebra

2. Introduction to Mathematica for Scientists and Engineers (Notebook form in Mathematica Tutorials)

 IMSE Ch7: Complex
 IMSE Ch8: Fourier
 IMSE Ch9: Programming
 IMSE Ch10: Statistics
 IMSE Ch5: Input-Output
 IMSE Ch6: Solve – Numerical Solutions

3. Assignments